Notes on Functional Programming with Haskell (PDF 184P)
Notes on Functional Programming with Haskell (PDF 184P)
Notes on Functional Programming with Haskell (PDF 184P)
This note covers the following topics: functions and their
definitions, using the hugs interpreter, haskell basics, higher order
functions, more list notations, more on data types, input-output, haskell
laws, program synthesis, models of reduction, divide and conquer algorithms,
infinite data structures.
Gert Smolka's "Introduction to Functional Programming and the Structure of Programming
Languages using OCaml" is an extensive tutorial that deals with the functional
principles of programming using OCaml. The document first addresses basic issues
like syntax and semantics, thereby providing a solid grounding in the
theoretical issues concerning programming languages. Polymorphic functions are
considered, iteration has been discussed, and lists, constructor types, and
trees have been dealt with, including linearization. The notes include practical
aspects such as parsing and a mini OCaml interpreter to help in the
implementation of functional languages. Additional topics include running time
analysis, inductive correctness proofs, and arrays. It takes a well-rounded
approach to functional programming and data structures; both theoretical ideas
and practice are emphasized.
Tyng-Ruey Chuang's
"Functional Programming" gives a condensed summary of the leading concepts of
functional programming. The basic concepts of functional programming are covered
in this PDF and expose the core principles and paradigms. Among other things, it
considers fold and unfold functions that are indispensable in the treatment of
data structures in a functional manner. The paper also considers parameterized
modules, which allow flexible and reusable parts of code. Main topics are
function evaluation and binding, raw items of how functions work and interact in
functional programming languages. Addressing these notions, Chuang's notes give
a chance for brief but intensive introduction to the techniques and practices of
functional programming.
David
Walker's 'Functional Programming Lecture Notes' give quite an extended
introduction to functional programming using OCaml. The notes introduce the
reader to the very basics of OCaml and simple manipulations of data, from
thinking in recursion to problem-solving. It covers Polymorphism and
Higher-Order programming, commonly referred to as PolyHO. It will discuss
functions operating on other functions and even data. Pipelines and datatypes
have been explained purely from functional programming paradigms. It first
introduces the functional evaluation model and functional space model, thereby
introducing the reader to the theoretical points of view of functional
programming. Equational reasoning, modules, functors, and modular reasoning are
other topics treated within this context, while more practical aspects concern
mutable data structures, threads, and parallel complexity models. This book will
no doubt be very useful to those readers who would wish to become acquainted
with both the theory and practice of functional programming.
Simon Thompson's Type Theory and Functional Programming explains the
connection between type theory and functional programming. The book starts with
an introduction to propositional and predicate logic, which gives a basis needed
to understand type theory. It then leads on to functional programming and
&