
Functional Programming

Tyng–Ruey Chuang

2010 Formosan Summer School
on Logic, Language, and Computation

June 28 – July 9, 2010

This course note . . .

• . . . is prepared for the 2010 Formosan Summer School on Logic, Language, and Com-
putation (FLOLAC) held in Taipei, Taiwan,

• . . . is made available from the FLOLAC ’10 web site:

http://flolac.iis.sinica.edu.tw/flolac10/

(please also check the above site for updated version)

• . . . and is released to the public under a Creative Commons Attribution-ShareAlike
3.0 Taiwan license:

http://creativecommons.org/licenses/by-sa/3.0/

Course outline

Unit 1. Basics of functional programming.

Unit 2. Fold/unfold functions; Parametric modules.

Each unit consists of 2 hours of lecture and 1 hour of lab/tutor. Examples will be given
in Objective Caml (O’Caml). Useful online resources about O’Caml:

• Web site: http://caml.inria.fr/

• Book: Developing Applications with Objective Caml.
URL: http://caml.inria.fr/pub/docs/oreilly-book/

1



1 Basics of functional programming

1.1 Function, evaluation, and binding

Functions

let x = 1

let y = x + 1

let succ n = n + 1

let z = succ y

• val x : int = 1
val y : int = 2
val succ : int -> int = <fun>
val z : int = 3

let sum x y = x + y

let five = sum 2 3

• val sum : int -> int -> int = <fun>
val five : int = 5

let plus3 = sum 3

let seven = plus3 4

• val plus3 : int -> int = <fun>
val seven : int = 7

Anonymous functions

let succ = fun n -> n + 1

let one = succ 0

let two = (fun n -> n + 1) one

• val succ : int -> int = <fun>
val one : int = 1
val two : int = 2

let sum = fun x -> fun y -> x + y

let plus3 = sum 3

• val sum : int -> int -> int = <fun>
val plus3 : int -> int = <fun>

let twice = fun f -> fun x -> f (f x)

let plus6 = twice plus3

let seven = plus6 one

• val twice : (’a -> ’a) -> ’a -> ’a = <fun>
val plus6 : int -> int = <fun>
val seven : int = 7

2



Functions as arguments and as results

let compose f g = fun x -> f (g x)

let plus3 n = n + 3

let times2 n = n * 2

let this = compose plus3 times2 1

let that = compose times2 plus3 1

• val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
val plus3 : int -> int = <fun>
val times2 : int -> int = <fun>
val this : int = 5
val that : int = 8

let twice f = compose f f

let what = twice (fun n -> n + n)

let guess = what 1

• val twice : (’a -> ’a) -> ’a -> ’a = <fun>
val what : int -> int = <fun>
val guess : int = 4

Notations in O’Caml
Function application is just juxtaposition, and is left associative. These two definitions

are the same:

• let this = compose plus3 times2 1

• let this = ((compose plus3) times2) 1

Function abstraction is right associative. These two definitions are the same:

• let sum = fun x -> fun y -> x + y

val sum : int -> int -> int = <fun>

• let sum = fun x -> (fun y -> x + y)

val sum : int -> (int -> int) = <fun>

Evaluation in O’Caml

• Expressions are evaluated before they are passed as arguments to the function body.

• The function body is evaluated only when all the arguments are evaluated.

• Functions can be partially applied.

3



Binding in O’Caml

• Lexical binding: Expressions are evaluated and bound to the corresponding identifiers
in the order they appear in the program text.

• Nested binding: Outer bindings are shadowed by inner bindings.

let x = 100
let f y = let x = x + y in x
let x = 10
let z = f x

• Simultaneous binding: Several bindings occur at the same time under the same envi-
ronment.

let x = z
and z = x

• Recursive binding: Identifiers can be referred to when they are being defined.

let rec fac n = if n <= 0 then 1 else n * (fac (n -1))
let six = fac 3

Recursive functions: examples

• Expressiveness: Euclid’s algorithm for greatest common divisor (gcd), assuming inte-
gers m,n > 0:

let rec gcd m n =
if m mod n = 0

then n
else gcd n (m mod n)

let u = gcd 57 38
let v = gcd 38 59

• The danger of non-terminating computation:

let rec loop x = loop x
let oops = loop 0

4



1.2 Data types

Built-in data types in O’Caml

type int 0, -1, . . .

type char ’a’, ’\’’, . . .

type string "\"O’Caml\" is a fine language.\n", . . .

type float 3.14159, 0.314159e1, . . .

type unit = ()

type bool = false | true

type ’a list = [] | :: of ’a * ’a list [], true::false::[], [1; 2; 3], . . .

type ’a option = None | Some of ’a None, Some 17, Some [None; Some true], . . .

Built-in type operators in O’Caml

Cartesian product

type int_pair = int * int

let rec gcd (m, n) =
if m mod n = 0

then n else gcd (n, m mod n)

val gcd : int * int -> int = <fun>

Function space

type int2int2int = int -> int -> int

let rec gcd m n =
if m mod n = 0

then n else gcd n (m mod n)

val gcd : int -> int -> int = <fun>

5



Expressions, values, and types

• Well-typed expressions:

0, (1 + 2), (sum 2 3), (fun x -> fun y -> x + y), (2, true)

• Ill-typed expressions:

(1 + ’2’), (sum 2 3.0), ((fun x -> fun y -> x + y) 0 1 2)

• All O’Caml values have types:

val sum : int -> int -> int = <fun>
val five : int = 5

• Some values are polymorphic:

val twice : (’a -> ’a) -> ’a -> ’a = <fun>
val empty_list : ’a list = []

• Expressions are statically checked to ensure they always evaluate to values.

O’Caml is strict

• O’Caml insists on evaluating the arguments in a function application though the ar-
guments may not be required for the computation in the function body. O’Caml is
called a strict language.

• Some functional language, e.g., Haskell, will evaluate the function arguments only
when they are demanded by the computation in the function body. These languages
are non-strict.

• What is wrong in this picture (in O’Caml):

let oracle () = ...

let choice this that =
if oracle () then this else that

• let rec loop x = loop x
let oops = choice (loop 0) 0

6



Functions to the rescue!

let rec loop x = loop x

let choice this that =
if oracle () then this else that

let new_choice this that =
if oracle () then this () else that ()

let was = choice (loop 0) 0
let now = new_choice (fun () -> loop 0) (fun () -> 0)

val choice : ’a -> ’a -> ’a = <fun>
val new_choice : (unit -> ’a) -> (unit -> ’a) -> ’a = <fun>

What about variables?

• We can bind values to identifiers; once an identifier is bound, its value never changes.
Of course, bindings can be nested hence, for the same identifier, the inner binding may
shadow outer binding.

• Can one implement a counter using only functions?

• We can implement many counters using only functions!

• let init value = fun () -> value
let read counter = counter ()
let step counter more = fun () -> read counter + more

val init : ’a -> unit -> ’a = <fun>
val read : (unit -> ’a) -> ’a = <fun>
val step : (unit -> int) -> int -> unit -> int = <fun>

Counters via functions

let init value = fun () -> value
let read counter = counter ()
let step counter more = fun () -> read counter + more

let mem = init 0
let x = step mem 1
let y = step mem 2
let z = step x 100
let x_y_z = (read x, read y, read z)

7



val init : ’a -> unit -> ’a = <fun>
val read : (unit -> ’a) -> ’a = <fun>
val step : (unit -> int) -> int -> unit -> int = <fun>
val mem : unit -> int = <fun>
val x : unit -> int = <fun>
val y : unit -> int = <fun>
val z : unit -> int = <fun>
val x_y_z : int * int * int = (1, 2, 101)

Programming by pattern-matching

type ’a table = (string * ’a) list

let rec lookup key table =
match table with

[] -> None
| (name, value) :: rest ->
if key = name then Some value

else lookup key rest

type color = Red | Yellow | Green
let fruits = [("banana", Yellow); ("guava", Green)]

let this = lookup "guava" fruits
let that = lookup "mango" fruits

val lookup : ’a -> (’a * ’b) list -> ’b option = <fun>

val fruits : (string * color) list = [("banana", Yellow); ("guava", Green)]

val this : color option = Some Green

val that : color option = None

List reversal: two examples

• let rec reverse list =
match list with

[] -> []
| head :: tail -> (reverse tail) @ [head]

• let reverse list =
let rec rev rest accumulator =

match rest with
[] -> accumulator

| hd :: tl -> rev tl (hd :: accumulator)
in

rev list []

8



• Both have type:

val reverse : ’a list -> ’a list = <fun>

• Which one is better?

Functions over lists

let rec filter p list =
match list with

[] -> []
| head :: tail -> if p head then head :: (filter p tail)

else filter p tail

let rec append front rear =
match front with

[] -> rear
| head :: tail -> head :: (append tail rear)

let this = filter (fun n -> n mod 2 = 0) [1; 2; 3]
let that = append [1; 2; 3] [100; 101; 102]

val filter : (’a -> bool) -> ’a list -> ’a list = <fun>
val append : ’a list -> ’a list -> ’a list = <fun>
val this : int list = [2]
val that : int list = [1; 2; 3; 100; 101; 102]

User-defined type constructors

type ’a tree = Leaf
| Node of ’a * ’a tree * ’a tree

• tree is a type constructor: it construct a type α tree whenever given a type α.

• Leaf and Node are the two value constructors for type α tree.

Leaf: ’a tree
Node: ’a * ’a tree * ’a tree -> ’a tree

• In O’Caml, type constructors start with lower-case letters; value constructors start
with upper-case letters.

9



• In O’Caml, type constructors and value constructors are unary. Type construction
uses postfix notation; value construction, prefix.

Some (Node (1, Node (0, Leaf, Leaf), Node (2, Leaf, Leaf)))

has type

int tree option

Functions over trees

let rec swap tree =
match tree with

Leaf -> Leaf
| Node (here, left, right) ->
Node (here, swap right, swap left)

let rec insert key tree =
match tree with

Leaf -> Node (key, Leaf, Leaf)
| Node (here, left, right) ->
if key < here

then Node (here, insert key left, right)
else Node (here, left, insert key right)

val swap : ’a tree -> ’a tree = <fun>
val insert : ’a -> ’a tree -> ’a tree = <fun>

Functions over trees, continued

let rec build f s =
match f s with

None -> Leaf
| Some (a, left, right) ->
Node (a, build f left, build f right)

let range (low, high) =
if low > high

then None
else let mid = (low + high) / 2 in

Some (mid, (low, mid - 1), (mid + 1, high))

let tree1to7 = build range (1, 7)

10



val build : (’a -> (’b * ’a * ’a) option) -> ’a -> ’b tree = <fun>

val range : int * int -> (int * (int * int) * (int * int)) option = <fun>

val tree1to7 : int tree = Node (4, Node (2, Node (1, Leaf, Leaf), Node (3, Leaf, Leaf)),

Node (6, Node (5, Leaf, Leaf), Node (7, Leaf, Leaf)))

2 Fold/unfold functions; Parametric modules

2.1 Fold/unfold functions for data types

Functions over lists, re-visited

let rec filter p list =
match list with

[] -> []
| head :: tail ->
if p head then head :: (filter p tail)

else filter p tail

let rec append front rear =
match front with

[] -> rear
| head :: tail -> head :: (append tail rear)

• Both functions work on lists in a bottom-up manner.

• What is the base case, and what is the inductive step?

Fold function for lists

let rec fold (base, step) list =
match list with

[] -> base
| hd :: tl -> step (hd, fold (base, step) tl)

let filter p list =
let step (hd, acc) = if p hd then (hd :: acc) else acc

in
fold ([], step) list

let append front rear =
fold (rear, fun (hd, acc) -> hd :: acc) front

val fold : ’a * (’b * ’a -> ’a) -> ’b list -> ’a = <fun>
val filter : (’a -> bool) -> ’a list -> ’a list = <fun>
val append : ’a list -> ’a list -> ’a list = <fun>

11



Fold function for trees

let rec swap tree =
match tree with

Leaf -> Leaf
| Node (here, left, right) ->
Node (here, swap right, swap left)

let rec fold (base, step) tree =
match tree with

Leaf -> base
| Node (here, left, right) ->
step (here, fold (base, step) left,

fold (base, step) right)

let swap’ tree = fold (Leaf,
fun (here, left, right) -> Node (here, right, left)) tree

val fold : ’b * (’a * ’b * ’b -> ’b) -> ’a tree -> ’b = <fun>

What is a tree, anyway?

fold : ’b * (’a * ’b * ’b -> ’b) -> ’a tree -> ’b

• A tree of type α tree is a value that can be folded.

• Whenever given a base value of type β, and an inductive function of type α×β×β → β,
a tree can be folded into a value of type β.

A new data type for trees

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let rec fold f tree =
match tree with

Rec Leaf -> f Leaf
| Rec (Node (here, left, right)) ->

f (Node (here, fold f left, fold f right))

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b
type ’a tree = Rec of (’a, ’a tree) t
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>

12



A new swap function

let swap tree =
let f t = match t with Leaf -> Rec Leaf

| Node (here, left, right) ->
Rec (Node (here, right, left))

in
fold f tree

let tree123 = Rec (Node (2, Rec (Node (1, Rec Leaf, Rec Leaf)),
Rec (Node (1, Rec Leaf, Rec Leaf))))

let tree321 = swap tree123

val swap : ’a tree -> ’a tree = <fun>

val tree123 : int tree =

Rec (Node (2, Rec (Node (1, Rec Leaf, Rec Leaf)),

Rec (Node (1, Rec Leaf, Rec Leaf))))

val tree321 : int tree =

Rec (Node (2, Rec (Node (1, Rec Leaf, Rec Leaf)),

Rec (Node (1, Rec Leaf, Rec Leaf))))

Look at a tree this way!

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>

• Type constructor (α, β) t defines (the only) two forms of a tree node.

• Type constructor α tree defines a tree as a recursive structure via type constructor
(α, β) t. The recursion occurs at the second type argument to t.

• A function of type (α, β) t → β comprises both the base case and the inductive step
necessary for folding a value of type α tree to a value of type β.

A new data type for trees, continued

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let rec unfold g seed =
match g seed with

Leaf -> Rec Leaf
| Node (here, left, right) ->

Rec (Node (here, unfold g left, unfold g right))

13



type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b
type ’a tree = Rec of (’a, ’a tree) t
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

We saw this before!

let rec build f s =
match f s with

None -> Leaf
| Some (a, left, right) ->
Node (a, build f left, build f right)

let range (low, high) =
if low > high

then None
else let mid = (low + high) / 2 in

Some (mid, (low, mid - 1), (mid + 1, high))

let tree1to7 = build range (1, 7)

val build : (’a -> (’b * ’a * ’a) option) -> ’a -> ’b tree = <fun>

val range : int * int -> (int * (int * int) * (int * int)) option = <fun>

val tree1to7 : int tree = Node (4, Node (2, Node (1, Leaf, Leaf), Node (3, Leaf, Leaf)),

Node (6, Node (5, Leaf, Leaf), Node (7, Leaf, Leaf)))

Rewrite it using unfold

let rec unfold g seed =
match g seed with

Leaf -> Rec Leaf
| Node (here, left, right) ->

Rec (Node (here, unfold g left, unfold g right))

let range (low, high) =
if low > high

then Leaf
else let mid = (low + high) / 2 in

Node (mid, (low, mid - 1), (mid + 1, high))

let balanced = unfold range
let tree1to7 = balanced (1, 7)

val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

val range : int * int -> (int, int * int) t = <fun>

val balanced : int * int -> int tree = <fun>

val tree1to7 : ...

14



Look at a tree the other way!

type (’a, ’b) t = Leaf | Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

val unfold : (’b -> (’a, ’b) t) -> ’b -> ’a tree = <fun>

• Type constructor (α, β) t defines (the only) two forms of a tree node.

• Type constructor α tree defines a tree as a recursive structure via type constructor
(α, β) t. The recursion occurs at the second type argument to t.

• A function of type β → (α, β) t comprises the co-inductive step necessary for unfolding
a value of type β to a value of type α tree.

Fold and unfold for trees

let rec fold f tree =
match tree with

Rec Leaf -> f Leaf
| Rec (Node (here, left, right)) ->

f (Node (here, fold f left, fold f right))

let rec unfold g seed =
match g seed with

Leaf -> Rec Leaf
| Node (here, left, right) ->

Rec (Node (here, unfold g left, unfold g right))

val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

Functions fold and unfold look strangely similar to each other!

Fold and unfold for trees, the third round (I)

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

let map (f, g) t =
match t with Leaf -> Leaf

| Node (h, l, r) -> Node (f h, g l, g r)

type ’a tree = Rec of (’a, ’a tree) t

let down (Rec t) = t
let up t = Rec t

15



val map : (’a->’b) * (’c->’d) -> (’a,’c) t -> (’b,’d) t = <fun>
val down : ’a tree -> (’a, ’a tree) t = <fun>
val up : (’a, ’a tree) t -> ’a tree = <fun>

Fold and unfold for trees, the third round (II)

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

type ’a tree = Rec of (’a, ’a tree) t

let id x = x

let rec fold f tree = f (map (id, fold f) (down tree))

let rec unfold g seed = up (map (id, unfold g) ( g seed))

val id : ’a -> ’a = <fun>
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>

Fold and unfold for trees — ever more functional!
Fold and unfold are functions that each takes in a (basis) function as the argument and

return a (tree) function as the result.

let ($) f g x = f (g x)

let rec fold f tree = (f $ map (id, fold f) $ down) tree
let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

let this = fold up
let that = unfold down

val ( $ ) : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>
val fold : ((’a, ’b) t -> ’b) -> ’a tree -> ’b = <fun>
val unfold : (’a -> (’b, ’a) t) -> ’a -> ’b tree = <fun>
val this : ’a tree -> ’a tree = <fun>
val that : ’a tree -> ’a tree = <fun>

What is this, and what is that?

16



Functional diagram for fold
In the diagram, functions are arrows, and types are objects.

α tree
down

- (α, α tree) t

β

fold f

?
�

f
(α, β) t

map (id, fold f)

?

let rec fold f tree = (f $ map (id, fold f) $ down) tree

Functional diagram for unfold
In the diagram, functions are arrows, and types are objects.

β
g

- (α, β) t

α tree

unfold f

?
�

up
(α, α tree) t

map (id, unfold f)

?

let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

Let’s not forget lists!

type (’a, ’b) t = Null
| Cons of ’a * ’b

type ’a list = Rec of (’a, ’a list) t

let rec fold f list = (f $ map (id, fold f) $ down) list
let rec unfold g seed = (up $ map (id, unfold g) $ g) seed

α list
down

- (α, α list) t

β

fold f

?
�

f
(α, β) t

map (id, fold f)

?

β
g

- (α, β) t

α list

unfold f

?
�

up
(α, α list) t

map (id,unfold f)

?

17



2.2 Parametric Modules

Modules

• A module, also called structure, packs together related definitions (types, values, and
even modules).

• The module name acts as a “name space” to avoid name conflicts.

module MyStack =
struct
type ’a t = ’a list
let empty = []
let push elm stack = elm :: stack
let pop stack =

match stack with
[] -> None

| head :: tail -> Some (head, tail)
end

let whatever = MyStack.push 1 []

Module interfaces

• A module interface, also called signature, specifies which components of a structure
are accessible from the outside, and with which type.

• It acts as a contract between the user and the implementer of a module. Interface
checking is always enforced in O’Caml.

module type STACK =
sig
type ’a t
val empty: ’a t
val push: ’a -> ’a t -> ’a t
val pop: ’a t -> (’a * ’a t) option

end

module S: STACK = MyStack
let whatever = S.push 1 S.empty

Parametric modules

• A parametric module, also called functor, is a structure parameterized by other struc-
tures.

18



• Type sharing and structure sharing constraints can be used to relate the arguments
and the result.

module type QUEUE = STACK
module type S2Q = functor (S: STACK) -> QUEUE

module MakeQueue: S2Q = functor (S: STACK) ->
struct
type ’a t = ’a S.t * ’a S.t
let empty = (S.empty, S.empty)
let push elm (front, rear) = (front, S.push elm rear)
let pop (front, rear) =

match S.pop front with
Some (e, s) -> Some (e, (s, rear))

| None -> ...
end

Tree folding

type (’a, ’b) t = Leaf
| Node of ’a * ’b * ’b

let map (f, g) t =
match t with Leaf -> Leaf

| Node (h, l, r) -> Node (f h, g l, g r)

type ’a tree = Rec of (’a, ’a tree) t

α tree
down

- (α, α tree) t

β

fold f

?
�

f
(α, β) t

map (id, fold f)

?

List folding

type (’a, ’b) t = Null
| Cons of ’a * ’b

let map (f, g) t =
match t with Null -> Null

19



| Cons (hd, tl) -> Cons (f hd, g tl)

type ’a list = Rec of (’a, ’a list) t

α list
down

- (α, α list) t

β

fold f

?
�

f
(α, β) t

map (id, fold f)

?

A fold for all seasons?

• Wanted: A way to describe the derivation of a unary type constructor by recursing
over a binary type constructor, and to define the accompanying fold function at the
same time.

• This is exactly what a parametric module can do!

• Input: a module with a binary type constructor and its map function.

• Output: a module with a unary type constructor, its map function, and its fold and
unfold functions.

Module interfaces FUN and FIX

module type FUN =
sig
type (’a, ’u) t
val map: (’a -> ’b) * (’u -> ’v) -> (’a, ’u) t -> (’b, ’v) t

end

module type FIX =
sig
module Base: FUN
type ’a t = Rec of (’a, ’a t) Base.t
val down: ’a t -> (’a, ’a t) Base.t
val up: (’a, ’a t) Base.t -> ’a t

val map: (’a -> ’b) -> ’a t -> ’b t
val fold: ((’a, ’x) Base.t -> ’x) -> ’a t -> ’x

end

20



Mu, the fixed-pointing module

module type MU = functor (B: FUN) -> FIX with module Base = B

module Mu: MU = functor (B: FUN) ->
struct
module Base = B
type ’a t = Rec of (’a, ’a t) Base.t
let down (Rec t) = t
let up t = Rec t

let rec fold f (Rec t) = f (Base.map (id, fold f) t)
let rec map f (Rec t) = Rec (Base.map (f, map f) t)

end

Module Tree

module T =
struct
type (’a, ’b) t = Leaf

| Node of ’a * ’b * ’b

let map (f, g) t =
match t with Leaf -> Leaf

| Node ( h, l, r) ->
Node (f h, g l, g r)

end

module Tree = Mu(T)

Module List

module L =
struct
type (’a, ’b) t = Null

| Cons of ’a * ’b
let map (f, g) t =

match t with Null -> Null
| Cons ( hd, tl) ->
Cons (f hd, g tl)

end

module List = Mu(L)

21


