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Chapter 1

Introduction and setting

This set of lecture notes explores some of the (many) connections relating information theory,
statistics, computation, and learning. Signal processing, machine learning, and statistics all revolve
around extracting useful information from signals and data. In signal processing and information
theory, a central question is how to best design signals—and the channels over which they are
transmitted—to maximally communicate and store information, and to allow the most effective
decoding. In machine learning and statistics, by contrast, it is often the case that there is a
fixed data distribution that nature provides, and it is the learner’s or statistician’s goal to recover
information about this (unknown) distribution.

A central aspect of information theory is the discovery of fundamental results: results that
demonstrate that certain procedures are optimal. That is, information theoretic tools allow a
characterization of the attainable results in a variety of communication and statistical settings. As
we explore in these notes in the context of statistical, inferential, and machine learning tasks, this
allows us to develop procedures whose optimality we can certify—no better procedure is possible.
Such results are useful for a myriad of reasons; we would like to avoid making bad decisions or false
inferences, we may realize a task is impossible, and we can explicitly calculate the amount of data
necessary for solving different statistical problems.

1.1 Information theory

Information theory is a broad field, but focuses on several main questions: what is information,
how much information content do various signals and data hold, and how much information can be
reliably transmitted over a channel. We will vastly oversimplify information theory into two main
questions with corresponding chains of tasks.

1. How much information does a signal contain?

2. How much information can a noisy channel reliably transmit?

In this context, we provide two main high-level examples, one for each of these tasks.

Example 1.1.1 (Source coding): The source coding, or data compression problem, is to
take information from a source, compress it, decompress it, and recover the original message.
Graphically, we have

Source → Compressor → Decompressor → Receiver
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The question, then, is how to design a compressor (encoder) and decompressor (decoder) that
uses the fewest number of bits to describe a source (or a message) while preserving all the
information, in the sense that the receiver receives the correct message with high probability.
This fewest number of bits is then the information content of the source (signal). 3

Example 1.1.2: The channel coding, or data transmission problem, is the same as the source
coding problem of Example 1.1.1, except that between the compressor and decompressor is a
source of noise, a channel. In this case, the graphical representation is

Source → Compressor → Channel → Decompressor → Receiver

Here the question is the maximum number of bits that may be sent per each channel use in
the sense that the receiver may reconstruct the desired message with low probability of error.
Because the channel introduces noise, we require some redundancy, and information theory
studies the exact amount of redundancy and number of bits that must be sent to allow such
reconstruction. 3

1.2 Moving to statistics

Statistics and machine learning can—broadly—be studied with the same views in mind. Broadly,
statistics and machine learning can be thought of as (perhaps shoehorned into) source coding and
a channel coding problems.

In the analogy with source coding, we observe a sequence of data points X1, . . . , Xn drawn from
some (unknown) distribution P on a space X . For example, we might be observing species that
biologists collect. Then the analogue of source coding is to construct a model (often a generative
model) that encodes the data using relatively few bits: that is,

Source (P )
X1,...,Xn−→ Compressor

P̂→ Decompressor → Receiver.

Here, we estimate P̂—an empirical version of the distribution P that is easier to describe than
the original signal X1, . . . , Xn, with the hope that we learn information about the generating
distribution P , or at least describe it efficiently.

In our analogy with channel coding, we make a connection with estimation and inference.
Roughly, the major problem in statistics we consider is as follows: there exists some unknown
function f on a space X that we wish to estimate, and we are able to observe a noisy version
of f(Xi) for a series of Xi drawn from a distribution P . Recalling the graphical description of
Example 1.1.2, we now have a channel P (Y | f(X)) that gives us noisy observations of f(X) for
each Xi, but we may (generally) now longer choose the encoder/compressor. That is, we have

Source (P )
X1,...,Xn−→ Compressor

f(X1),...,f(Xn)−→ Channel P (Y | f(X))
Y1,...,Yn−→ Decompressor.

The estimation—decompression—problem is to either estimate f , or, in some cases, to estimate
other aspects of the source probability distribution P . In general, in statistics, we do not have
any choice in the design of the compressor f that transforms the original signal X1, . . . , Xn, which
makes it somewhat different from traditional ideas in information theory. In some cases that we
explore later—such as experimental design, randomized controlled trials, reinforcement learning
and bandits (and associated exploration/exploitation tradeoffs)—we are also able to influence the
compression part of the above scheme.
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Example 1.2.1: A classical example of the statistical paradigm in this lens is the usual linear
regression problem. Here the data Xi belong to Rd, and the compression function f(x) = θ>x
for some vector θ ∈ Rd. Then the channel is often of the form

Yi = θ>Xi︸ ︷︷ ︸
signal

+ εi︸︷︷︸
noise

,

where εi
iid∼ N(0, σ2) are independent mean zero normal perturbations. The goal is, given a

sequence of pairs (Xi, Yi), to recover the true θ in the linear model.
In active learning or active sensing scenarios, also known as (sequential) experimental design,
we may choose the sequence Xi so as to better explore properties of θ. Later in the course we
will investigate whether it is possible to improve estimation by these strategies. As one concrete
idea, if we allow infinite power, which in this context corresponds to letting ‖Xi‖ → ∞—
choosing very “large” vectors xi—then the signal of θ>Xi should swamp any noise and make
estimation easier. 3

For the remainder of the class, we explore these ideas in substantially more detail.

1.3 A remark about measure theory

As this book focuses on a number of fundamental questions in statistics, machine learning, and
information theory, fully general statements of the results often require measure theory. Thus,
formulae such as

∫
f(x)dP (x) or

∫
f(x)dµ(x) appear. While knowledge of measure theory is cer-

tainly useful and may help appreciate the results, it is completely inessential to developing the
intuition and, I hope, understanding the proofs and main results. Indeed, the best strategy (for
a reader unfamiliar with measure theory) is to simply replace every instance of a formula such as
dµ(x) with dx. The most frequent cases we encounter will be the following: we wish to compute
the expectation of a function f of random variable X following distribution P , that is, EP [f(X)].
Normally, we would write EP [f(X)] =

∫
f(x)dP (x), or sometimes EP [f(X)] =

∫
f(x)p(x)dµ(x),

saying that “P has density p with respect to the underlying measure µ.” Instead, one may simply
(and intuitively) assume that x really has density p over the reals, and instead of computing the
integral

EP [f(X)] =

∫
f(x)dP (x) or EP [f(X)] =

∫
f(x)p(x)dµ(x),

assume we may write

EP [f(X)] =

∫
f(x)p(x)dx.

Nothing will be lost.

1.4 Outline and chapter discussion

We divide the lecture notes into four distinct parts, each of course interacting with the others,
but it is possible to read each as a reasonably self-contained unit. The lecture notes begin with
a revew (Chapter 2) that introduces the basic information-theoretic quantities that we discuss:
mutual information, entropy, and divergence measures. It is required reading for all the chapters
that follow.
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Part I of the notes covers what I term “stability” based results. At a high level, this means that
we ask what can be gained by considering situations where individual observations in a sequence
of random variables X1, . . . , Xn have little effect on various functions of the sequence. We begin
in Chapter 4 with basic concentration inequalities, discussing how sums and related quantities can
converge quickly; while this material is essential for the remainder of the lectures, it does not depend
on particular information-theoretic techniques. We discuss some heuristic applications to problems
in statistical learning—empirical risk minimization—in this section of the notes. We provide a
treatment of more advanced ideas in Chapter 6, including some approaches to concentration via
entropy methods. We then turn in Chapter 5 carefully investigate generalization and convergence
guarantees—arguing that functions of a sample X1, . . . , Xn are representative of the full population
P from which the sample is drawn—based on controlling different information-theoretic quantities.
In this context, we develop PAC-Bayesian bounds, and we also use the same framework to present
tools to control generalization and convergence in interactive data analyses. These types of analyses
reflect modern statistics, where one performs some type of data exploration before committing to a
fuller analysis, but which breaks classical statistical approaches, because the analysis now depends
on the sample. Finally, we provide a chapter (Chapter 7) on disclosure limitation and privacy
techniques, all of which repose on different notions of stability in distribution.

Part II studies fundamental limits, using information-theoretic techniques to derive lower bounds
on the possible rates of convergence for various estimation, learning, and other statistical problems.

Part III revisits all of our information theoretic notions from Chapter 2, but instead of sim-
ply giving definitions and a few consequences, provides operational interpretations of the different
information-theoretic quantities, such as entropy. Of course this includes Shannon’s original results
on the relationship between coding and entropy (Chapter 2.4.1), but we also provide an interpreta-
tion of entropy and information as measures of uncertainty in statistical experiments and statistical
learning, which is a perspective typically missing from information-theoretic treatments of entropy
(Chapters TBD). We also relate these ideas to game-playing and maximum likelihood estimation.
Finally, we relate generic divergence measures to questions of optimality and consistency in statisti-
cal and machine learning problems, which allows us to delineate when (at least in asymptotic senses)
it is possible to computationally efficiently learn good predictors and design good experiments.
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Chapter 2

An information theory review

In this first introductory chapter, we discuss and review many of the basic concepts of information
theory in effort to introduce them to readers unfamiliar with the tools. Our presentation is relatively
brisk, as our main goal is to get to the meat of the chapters on applications of the inequalities and
tools we develop, but these provide the starting point for everything in the sequel. One of the
main uses of information theory is to prove what, in an information theorist’s lexicon, are known
as converse results: fundamental limits that guarantee no procedure can improve over a particular
benchmark or baseline. We will give the first of these here to preview more of what is to come,
as these fundamental limits form one of the core connections between statistics and information
theory. The tools of information theory, in addition to their mathematical elegance, also come
with strong operational interpretations: they give quite precise answers and explanations for a
variety of real engineering and statistical phenomena. We will touch on one of these here (the
connection between source coding, or lossless compression, and the Shannon entropy), and much
of the remainder of the book will explore more.

2.1 Basics of Information Theory

In this section, we review the basic definitions in information theory, including (Shannon) entropy,
KL-divergence, mutual information, and their conditional versions. Before beginning, I must make
an apology to any information theorist reading these notes: any time we use a log, it will always
be base-e. This is more convenient for our analyses, and it also (later) makes taking derivatives
much nicer.

In this first section, we will assume that all distributions are discrete; this makes the quantities
somewhat easier to manipulate and allows us to completely avoid any complicated measure-theoretic
quantities. In Section 2.2 of this note, we show how to extend the important definitions (for our
purposes)—those of KL-divergence and mutual information—to general distributions, where basic
ideas such as entropy no longer make sense. However, even in this general setting, we will see we
essentially lose no generality by assuming all variables are discrete.

2.1.1 Definitions

Here, we provide the basic definitions of entropy, information, and divergence, assuming the random
variables of interest are discrete or have densities with respect to Lebesgue measure.
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Entropy: We begin with a central concept in information theory: the entropy. Let P be a distri-
bution on a finite (or countable) set X , and let p denote the probability mass function associated
with P . That is, if X is a random variable distributed according to P , then P (X = x) = p(x). The
entropy of X (or of P ) is defined as

H(X) := −
∑
x

p(x) log p(x).

Because p(x) ≤ 1 for all x, it is clear that this quantity is positive. We will show later that if X
is finite, the maximum entropy distribution on X is the uniform distribution, setting p(x) = 1/|X |
for all x, which has entropy log(|X |).

Later in the class, we provide a number of operational interpretations of the entropy. The
most common interpretation—which forms the beginning of Shannon’s classical information the-
ory [158]—is via the source-coding theorem. We present Shannon’s source coding theorem in
Section 2.4.1, where we show that if we wish to encode a random variable X, distributed according
to P , with a k-ary string (i.e. each entry of the string takes on one of k values), then the minimal
expected length of the encoding is given by H(X) = −

∑
x p(x) logk p(x). Moreover, this is achiev-

able (to within a length of at most 1 symbol) by using Huffman codes (among many other types of
codes). As an example of this interpretation, we may consider encoding a random variable X with
equi-probable distribution on m items, which has H(X) = log(m). In base-2, this makes sense: we
simply assign an integer to each item and encode each integer with the natural (binary) integer
encoding of length dlogme.

We can also define the conditional entropy, which is the amount of information left in a random
variable after observing another. In particular, we define

H(X | Y = y) = −
∑
x

p(x | y) log p(x | y) and H(X | Y ) =
∑
y

p(y)H(X | Y = y),

where p(x | y) is the p.m.f. of X given that Y = y.
Let us now provide a few examples of the entropy of various discrete random variables

Example 2.1.1 (Uniform random variables): As we noted earlier, if a random variable X is
uniform on a set of size m, then H(X) = logm. 3

Example 2.1.2 (Bernoulli random variables): Let h2(p) = −p log p−(1−p) log(1−p) denote
the binary entropy, which is the entropy of a Bernoulli(p) random variable. 3

Example 2.1.3 (Geometric random variables): A random variable X is Geometric(p), for
some p ∈ [0, 1], if it is supported on {1, 2, . . .}, and P (X = k) = (1 − p)k−1p; this is the
probability distribution of the number X of Bernoulli(p) trials until a single success. The
entropy of such a random variable is

H(X) = −
∞∑
k=1

(1− p)k−1p [(k − 1) log(1− p) + log p] = −
∞∑
k=0

(1− p)kp [k log(1− p) + log p] .

As
∑∞

k=0 α
k = 1

1−α and d
dα

1
1−α = 1

(1−α)2
=
∑∞

k=1 kα
k−1, we have

H(X) = −p log(1− p) ·
∞∑
k=1

k(1− p)k − p log p ·
∞∑
k=1

(1− p)k = −1− p
p

log(1− p)− (1− p) log p.

As p ↓ 0, we see that H(X) ↑ ∞. 3
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Example 2.1.4 (A random variable with infinite entropy): While most “reasonable” discrete
random variables have finite entropy, it is possible to construct distributions with infinite
entropy. Indeed, let X have p.m.f. on {2, 3, . . .} defined by

p(k) =
A

k log2 k
where A−1 =

∞∑
k=2

1

k log2 k
<∞,

the last sum finite as
∫∞

2
1

x logα xdx < ∞ if and only if α > 1: for α = 1, we have
∫ x
e

1
t log t =

log log x, while for α > 1, we have

d

dx
(log x)1−α = (1− α)

1

x logα x

so that
∫∞
e

1
t logα tdt = 1

e(1−α) . To see that the entropy is infinite, note that

H(X) = A
∑
k≥2

logA+ log k + 2 log log k

k log2 k
≥ A

∑
k≥2

log k

k log2 k
− C =∞,

where C is a numerical constant. 3

KL-divergence: Now we define two additional quantities, which are actually much more funda-
mental than entropy: they can always be defined for any distributions and any random variables,
as they measure distance between distributions. Entropy simply makes no sense for non-discrete
random variables, let alone random variables with continuous and discrete components, though it
proves useful for some of our arguments and interpretations.

Before defining these quantities, we recall the definition of a convex function f : Rk → R as any
bowl-shaped function, that is, one satisfying

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.1.1)

for all λ ∈ [0, 1], all x, y. The function f is strictly convex if the convexity inequality (2.1.1) is
strict for λ ∈ (0, 1) and x 6= y. We recall a standard result:

Proposition 2.1.5 (Jensen’s inequality). Let f be convex. Then for any random variable X,

f(E[X]) ≤ E[f(X)].

Moreover, if f is strictly convex, then f(E[X]) < E[f(X)] unless X is constant.

Now we may define and provide a few properties of the KL-divergence. Let P and Q be
distributions defined on a discrete set X . The KL-divergence between them is

Dkl (P ||Q) :=
∑
x∈X

p(x) log
p(x)

q(x)
.

We observe immediately that Dkl (P ||Q) ≥ 0. To see this, we apply Jensen’s inequality (Propo-
sition 2.1.5) to the function − log and the random variable q(X)/p(X), where X is distributed
according to P :

Dkl (P ||Q) = −E
[
log

q(X)

p(X)

]
≥ − logE

[
q(X)

p(X)

]
= − log

(∑
x

p(x)
q(x)

p(x)

)
= − log(1) = 0.
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Moreover, as log is strictly convex, we have Dkl (P ||Q) > 0 unless P = Q. Another consequence of
the positivity of the KL-divergence is that whenever the set X is finite with cardinality |X | < ∞,
for any random variable X supported on X we have H(X) ≤ log |X |. Indeed, letting m = |X |, Q
be the uniform distribution on X so that q(x) = 1

m , and X have distribution P on X , we have

0 ≤ Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
= −H(X)−

∑
x

p(x) log q(x) = −H(X) + logm, (2.1.2)

so that H(X) ≤ logm. Thus, the uniform distribution has the highest entropy over all distributions
on the set X .

Mutual information: Having defined KL-divergence, we may now describe the information
content between two random variables X and Y . The mutual information I(X;Y ) between X and
Y is the KL-divergence between their joint distribution and their products (marginal) distributions.
More mathematically,

I(X;Y ) :=
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.1.3)

We can rewrite this in several ways. First, using Bayes’ rule, we have p(x, y)/p(y) = p(x | y), so

I(X;Y ) =
∑
x,y

p(y)p(x | y) log
p(x | y)

p(x)

= −
∑
x

∑
y

p(y)p(x | y) log p(x) +
∑
y

p(y)
∑
x

p(x | y) log p(x | y)

= H(X)−H(X | Y ).

Similarly, we have I(X;Y ) = H(Y ) −H(Y | X), so mutual information can be thought of as the
amount of entropy removed (on average) in X by observing Y . We may also think of mutual infor-
mation as measuring the similarity between the joint distribution of X and Y and their distribution
when they are treated as independent.

Comparing the definition (2.1.3) to that for KL-divergence, we see that if PXY is the joint
distribution of X and Y , while PX and PY are their marginal distributions (distributions when X
and Y are treated independently), then

I(X;Y ) = Dkl (PXY ||PX × PY ) ≥ 0.

Moreover, we have I(X;Y ) > 0 unless X and Y are independent.
As with entropy, we may also define the conditional information between X and Y given Z,

which is the mutual information between X and Y when Z is observed (on average). That is,

I(X;Y | Z) :=
∑
z

I(X;Y | Z = z)p(z) = H(X | Z)−H(X | Y,Z) = H(Y | Z)−H(Y | X,Z).

Entropies of continuous random variables For continuous random variables, we may define
an analogue of the entropy known as differential entropy, which for a random variable X with
density p is defined by

h(X) := −
∫
p(x) log p(x)dx. (2.1.4)
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Note that the differential entropy may be negative—it is no longer directly a measure of the number
of bits required to describe a random variable X (on average), as was the case for the entropy. We
can similarly define the conditional entropy

h(X | Y ) = −
∫
p(y)

∫
p(x | y) log p(x | y)dxdy.

We remark that the conditional differential entropy of X given Y for Y with arbitrary distribution—
so long as X has a density—is

h(X | Y ) = E
[
−
∫
p(x | Y ) log p(x | Y )dx

]
,

where p(x | y) denotes the conditional density of X when Y = y. The KL divergence between
distributions P and Q with densities p and q becomes

Dkl (P ||Q) =

∫
p(x) log

p(x)

q(x)
dx,

and similarly, we have the analogues of mutual information as

I(X;Y ) =

∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy = h(X)− h(X | Y ) = h(Y )− h(Y | X).

As we show in the next subsection, we can define the KL-divergence between arbitrary distributions
(and mutual information between arbitrary random variables) more generally without requiring
discrete or continuous distributions. Before investigating these issues, however, we present a few
examples. We also see immediately that for X uniform on a set [a, b], we have h(X) = log(b− a).

Example 2.1.6 (Entropy of normal random variables): The differential entropy (2.1.4) of
a normal random variable is straightforward to compute. Indeed, for X ∼ N(µ, σ2) we have
p(x) = 1√

2πσ2
exp(− 1

2σ2 (x− µ)2), so that

h(X) = −
∫
p(x)

[
1

2
log

1

2πσ2
− 1

2σ2
(x− µ)2

]
=

1

2
log(2πσ2) +

E[(X − µ)2]

2σ2
=

1

2
log(2πeσ2).

For a general multivariate Gaussian, where X ∼ N(µ,Σ) for a vector µ ∈ Rn and Σ � 0 with
density p(x) = 1

(2π)n/2
√

det(Σ)
exp(−1

2(x− µ)>Σ−1(x− µ)), we similarly have

h(X) =
1

2
E
[
n log(2π) + log det(Σ) + (X − µ)>Σ−1(X − µ)

]
=
n

2
log(2π) +

1

2
log det(Σ) +

1

2
tr(ΣΣ−1) =

n

2
log(2πe) +

1

2
log det(eΣ).

3

Continuing our examples with normal distributions, we may compute the divergence between
two multivariate Gaussian distributions:

Example 2.1.7 (Divergence between Gaussian distributions): Let P be the multivariate
normal N(µ1,Σ), and Q be the multivariate normal distribution with mean µ2 and identical
covariance Σ � 0. Then we have that

Dkl (P ||Q) =
1

2
(µ1 − µ2)>Σ−1(µ1 − µ2). (2.1.5)

We leave the computation of the identity (2.1.5) to the reader. 3
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An interesting consequence of Example 2.1.7 is that if a random vector X has a given covari-
ance Σ ∈ Rn×n, then the multivariate Gaussian with identical covariance has larger differential
entropy. Put another way, differential entropy for random variables with second moments is always
maximized by the Gaussian distribution.

Proposition 2.1.8. Let X be a random vector on Rn with a density, and assume that Cov(X) = Σ.
Then for Z ∼ N(0,Σ), we have

h(X) ≤ h(Z).

Proof Without loss of generality, we assume that X has mean 0. Let P be the distribution of
X with density p, and let Q be multivariate normal with mean 0 and covariance Σ; let Z be this
random variable. Then

Dkl (P ||Q) =

∫
p(x) log

p(x)

q(x)
dx = −h(X) +

∫
p(x)

[
n

2
log(2π)− 1

2
x>Σ−1x

]
dx

= −h(X) + h(Z),

because Z has the same covariance as X. As 0 ≤ Dkl (P ||Q), we have h(Z) ≥ h(X) as desired.

We remark in passing that the fact that Gaussian random variables have the largest entropy has
been used to prove stronger variants of the central limit theorem; see the original results of Barron
[16], as well as later quantitative results on the increase of entropy of normalized sums by Artstein
et al. [9] and Madiman and Barron [134].

2.1.2 Chain rules and related properties

We now illustrate several of the properties of entropy, KL divergence, and mutual information;
these allow easier calculations and analysis.

Chain rules: We begin by describing relationships between collections of random variables
X1, . . . , Xn and individual members of the collection. (Throughout, we use the notation Xj

i =
(Xi, Xi+1, . . . , Xj) to denote the sequence of random variables from indices i through j.)

For the entropy, we have the simplest chain rule:

H(X1, . . . , Xn) = H(X1) +H(X2 | X1) + . . .+H(Xn | Xn−1
1 ).

This follows from the standard decomposition of a probability distribution p(x, y) = p(x)p(y | x).
to see the chain rule, then, note that

H(X,Y ) = −
∑
x,y

p(x)p(y | x) log p(x)p(y | x)

= −
∑
x

p(x)
∑
y

p(y | x) log p(x)−
∑
x

p(x)
∑
y

p(y | x) log p(y | x) = H(X) +H(Y | X).

Now set X = Xn−1
1 , Y = Xn, and simply induct.

A related corollary of the definitions of mutual information is the well-known result that con-
ditioning reduces entropy :

H(X | Y ) ≤ H(X) because I(X;Y ) = H(X)−H(X | Y ) ≥ 0.

So on average, knowing about a variable Y can only decrease your uncertainty about X. That
conditioning reduces entropy for continuous random variables is also immediate, as for X continuous
we have I(X;Y ) = h(X)− h(X | Y ) ≥ 0, so that h(X) ≥ h(X | Y ).
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Chain rules for information and divergence: As another immediate corollary to the chain
rule for entropy, we see that mutual information also obeys a chain rule:

I(X;Y n
1 ) =

n∑
i=1

I(X;Yi | Y i−1
1 ).

Indeed, we have

I(X;Y n
1 ) = H(Y n

1 )−H(Y n
1 | X) =

n∑
i=1

[
H(Yi | Y i−1

1 )−H(Yi | X,Y i−1
1 )

]
=

n∑
i=1

I(X;Yi | Y i−1
1 ).

The KL-divergence obeys similar chain rules, making mutual information and KL-divergence mea-
sures useful tools for evaluation of distances and relationships between groups of random variables.

As a second example, suppose that the distribution P = P1×P2×· · ·×Pn, and Q = Q1×· · ·×Qn,
that is, that P and Q are product distributions over independent random variables Xi ∼ Pi or
Xi ∼ Qi. Then we immediately have the tensorization identity

Dkl (P ||Q) = Dkl (P1 × · · · × Pn||Q1 × · · · ×Qn) =

n∑
i=1

Dkl (Pi||Qi) .

We remark in passing that these two identities hold for arbitrary distributions Pi and Qi or random
variables X,Y . As a final tensorization identiy, we consider a more general chain rule for KL-
divergences, which will frequently be useful. We abuse notation temporarily, and for random
variables X and Y with distributions P and Q, respectively, we denote

Dkl (X||Y ) := Dkl (P ||Q) .

In analogy to the entropy, we can also define the conditional KL divergence. Let X and Y have
distributions PX|z and PY |z conditioned on Z = z, respectively. Then we define

Dkl (X||Y | Z) = EZ [Dkl

(
PX|Z ||PY |Z

)
],

so that if Z is discrete we have Dkl (X||Y | Z) =
∑

z p(z)Dkl

(
PX|z||PY |z

)
. With this notation, we

have the chain rule

Dkl (X1, . . . , Xn||Y1, . . . , Yn) =
n∑
i=1

Dkl

(
Xi||Yi | Xi−1

1

)
, (2.1.6)

because (in the discrete case, which—as we discuss presently—is fully general for this purpose) for
distributions PXY and QXY we have

Dkl (PXY ||QXY ) =
∑
x,y

p(x, y) log
p(x, y)

q(x, y)
=
∑
x,y

p(x)p(y | x)

[
log

p(y | x)

q(y | x)
+ log

p(x)

q(x)

]
=
∑
x

p(x) log
p(x)

q(x)
+
∑
x

p(x)
∑
y

p(y | x) log
p(y | x)

q(y | x)
,

where the final equality uses that
∑

y p(y | x) = 1 for all x.
Expanding upon this, we give several tensorization identities, showing how to transform ques-

tions about the joint distribution of many random variables to simpler questions about their
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marginals. As a first example, we see that as a consequence of the fact that conditioning de-
creases entropy, we see that for any sequence of (discrete or continuous, as appropriate) random
variables, we have

H(X1, . . . , Xn) ≤ H(X1) + · · ·+H(Xn) and h(X1, . . . , Xn) ≤ h(X1) + . . .+ h(Xn).

Both equalities hold with equality if and only if X1, . . . , Xn are mutually independent. (The only
if follows because I(X;Y ) > 0 whenever X and Y are not independent, by Jensen’s inequality and
the fact that Dkl (P ||Q) > 0 unless P = Q.)

We return to information and divergence now. Suppose that random variables Yi are indepen-
dent conditional on X, meaning that

P (Y1 = y1, . . . , Yn = yn | X = x) = P (Y1 = y1 | X = x) · · ·P (Yn = yn | X = x).

Such scenarios are common—as we shall see—when we make multiple observations from a fixed
distribution parameterized by some X. Then we have the inequality

I(X;Y1, . . . , Yn) =

n∑
i=1

[H(Yi | Y i−1
1 )−H(Yi | X,Y i−1

1 )]

=

n∑
i=1

[H(Yi | Y i−1
1 )−H(Yi | X)] ≤

n∑
i=1

[H(Yi)−H(Yi | X)] =

n∑
i=1

I(X;Yi),

(2.1.7)

where the inequality follows because conditioning reduces entropy.

2.1.3 Data processing inequalities:

A standard problem in information theory (and statistical inference) is to understand the degrada-
tion of a signal after it is passed through some noisy channel (or observation process). The simplest
of such results, which we will use frequently, is that we can only lose information by adding noise.
In particular, assume we have the Markov chain

X → Y → Z.

Then we obtain the classical data processing inequality.

Proposition 2.1.9. With the above Markov chain, we have I(X;Z) ≤ I(X;Y ).

Proof We expand the mutual information I(X;Y,Z) in two ways:

I(X;Y, Z) = I(X;Z) + I(X;Y | Z)

= I(X;Y ) + I(X;Z | Y )︸ ︷︷ ︸
=0

,

where we note that the final equality follows because X is independent of Z given Y :

I(X;Z | Y ) = H(X | Y )−H(X | Y,Z) = H(X | Y )−H(X | Y ) = 0.

Since I(X;Y | Z) ≥ 0, this gives the result.
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There are related data processing inequalities for the KL-divergence—which we generalize in
the next section—as well. In this case, we may consider a simple Markov chain X → Z. If we
let P1 and P2 be distributions on X and Q1 and Q2 be the induced distributions on Z, that is,
Qi(A) =

∫
P(Z ∈ A | x)dPi(x), then we have

Dkl (Q1||Q2) ≤ Dkl (P1||P2) ,

the basic KL-divergence data processing inequality. A consequence of this is that, for any function
f and random variables X and Y on the same space, we have

Dkl (f(X)||f(Y )) ≤ Dkl (X||Y ) .

We explore these data processing inequalities more when we generalize KL-divergences in the next
section and in the exercises.

2.2 General divergence measures and definitions

Having given our basic definitions of mutual information and divergence, we now show how the
definitions of KL-divergence and mutual information extend to arbitrary distributions P and Q
and arbitrary sets X . This requires a bit of setup, including defining set algebras (which, we will
see, simply correspond to quantization of the set X ), but allows us to define divergences in full
generality.

2.2.1 Partitions, algebras, and quantizers

Let X be an arbitrary space. A quantizer on X is any function that maps X to a finite collection
of integers. That is, fixing m < ∞, a quantizer is any function q : X → {1, . . . ,m}. In particular,
a quantizer q partitions the space X into the subsets of x ∈ X for which q(x) = i. A related
notion—we will see the precise relationship presently—is that of an algebra of sets on X . We say
that a collection of sets A is an algebra on X if the following are true:

1. The set X ∈ A.

2. The collection of sets A is closed under finite set operations: union, intersection, and com-
plementation. That is, A,B ∈ A implies that Ac ∈ A, A ∩B ∈ A, and A ∪B ∈ A.

There is a 1-to-1 correspondence between quantizers—and their associated partitions of the set
X—and finite algebras on a set X , which we discuss briefly.1 It should be clear that there is a
one-to-one correspondence between finite partitions of the set X and quantizers q, so we must argue
that finite partitions of X are in one-to-one correspondence with finite algebras defined over X .

In one direction, we may consider a quantizer q : X → {1, . . . ,m}. Let the sets A1, . . . , Am
be the partition associated with q, that is, for x ∈ Ai we have q(x) = i, or Ai = q−1({i}). Then
we may define an algebra Aq as the collection of all finite set operations performed on A1, . . . , Am
(note that this is a finite collection, as finite set operations performed on the partition A1, . . . , Am
induce only a finite collection of sets).

For the other direction, consider a finite algebra A over the set X . We can then construct a
quantizer qA that corresponds to this algebra. To do so, we define an atom of A as any non-empty
set A ∈ A such that if B ⊂ A and B ∈ A, then B = A or B = ∅. That is, the atoms of A are the
“smallest” sets in A. We claim there is a unique partition of X with atomic sets from A; we prove
this inductively.

1Pedantically, this one-to-one correspondence holds up to permutations of the partition induced by the quantizer.
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Base case: There is at least 1 atomic set, as A is finite; call it A1.

Induction step: Assume we have atomic sets A1, . . . , Ak ∈ A. Let B = (A1 ∪ · · · ∪Ak)c be their
complement, which we assume is non-empty (otherwise we have a partition of X into atomic sets).
The complement B is either atomic, in which case the sets {A1, A2, . . . , Ak, B} are a partition of
X consisting of atoms of A, or B is not atomic. If B is not atomic, consider all the sets of the form
A ∩ B for A ∈ A. Each of these belongs to A, and at least one of them is atomic, as there is a
finite number of them. This means there is a non-empty set Ak+1 ⊂ B such that Ak+1 is atomic.

By repeating this induction, which must stop at some finite index m as A is finite, we construct
a collection A1, . . . , Am of disjoint atomic sets in A for which and ∪iAi = X . (The uniqueness is
an exercise for the reader.) Thus we may define the quantizer qA via

qA(x) = i when x ∈ Ai.

2.2.2 KL-divergence

In this section, we present the general definition of a KL-divergence, which holds for any pair of
distributions. Let P and Q be distributions on a space X . Now, let A be a finite algebra on X
(as in the previous section, this is equivalent to picking a partition of X and then constructing the
associated algebra), and assume that its atoms are atoms(A). The KL-divergence between P and
Q conditioned on A is

Dkl (P ||Q | A) :=
∑

A∈atoms(A)

P (A) log
P (A)

Q(A)
.

That is, we simply sum over the partition of X . Another way to write this is as follows. Let
q : X → {1, . . . ,m} be a quantizer, and define the sets Ai = q−1({i}) to be the pre-images of each
i (i.e. the different quantization regions, or the partition of X that q induces). Then the quantized
KL-divergence between P and Q is

Dkl (P ||Q | q) :=

m∑
i=1

P (Ai) log
P (Ai)

Q(Ai)
.

We may now give the fully general definition of KL-divergence: the KL-divergence between P
and Q is defined as

Dkl (P ||Q) := sup {Dkl (P ||Q | A) such that A is a finite algebra on X}
= sup {Dkl (P ||Q | q) such that q quantizes X} .

(2.2.1)

This also gives a rigorous definition of mutual information. Indeed, if X and Y are random variables
with joint distribution PXY and marginal distributions PX and PY , we simply define

I(X;Y ) = Dkl (PXY ||PX × PY ) .

When P and Q have densities p and q, the definition (2.2.1) reduces to

Dkl (P ||Q) =

∫
R
p(x) log

p(x)

q(x)
dx,
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while if P and Q both have probability mass functions p and q, then—as we see in Exercise 2.6—the
definition (2.2.1) is equivalent to

Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
,

precisely as in the discrete case.
We remark in passing that if the set X is a product space, meaning that X = X1×X2×· · ·×Xn

for some n < ∞ (this is the case for mutual information, for example), then we may assume our
quantizer always quantizes sets of the form A = A1 × A2 × · · · × An, that is, Cartesian products.
Written differently, when we consider algebras on X , the atoms of the algebra may be assumed to be
Cartesian products of sets, and our partitions of X can always be taken as Cartesian products. (See
Gray [94, Chapter 5].) Written slightly differently, if P and Q are distributions on X = X1×· · ·×Xn
and qi is a quantizer for the set Xi (inducing the partition Ai1, . . . , A

i
mi of Xi) we may define

Dkl

(
P ||Q | q1, . . . , qn

)
=

∑
j1,...,jn

P (A1
j1 ×A

2
j2 × · · · ×A

n
jn) log

P (A1
j1
×A2

j2
× · · · ×Anjn)

Q(A1
j1
×A2

j2
× · · · ×Anjn)

.

Then the general definition (2.2.1) of KL-divergence specializes to

Dkl (P ||Q) = sup
{
Dkl

(
P ||Q | q1, . . . , qn

)
such that qi quantizes Xi

}
.

So we only need consider “rectangular” sets in the definitions of KL-divergence.

Measure-theoretic definition of KL-divergence If you have never seen measure theory be-
fore, skim this section; while the notation may be somewhat intimidating, it is fine to always
consider only continuous or fully discrete distributions. We will describe an interpretation that will
mean for our purposes that one never needs to really think about measure theoretic issues.

The general definition (2.2.1) of KL-divergence is equivalent to the following. Let µ be a measure
on X , and assume that P and Q are absolutely continuous with respect to µ, with densities p and
q, respectively. (For example, take µ = P +Q.) Then

Dkl (P ||Q) =

∫
X
p(x) log

p(x)

q(x)
dµ(x). (2.2.2)

The proof of this fact is somewhat involved, requiring the technology of Lebesgue integration. (See
Gray [94, Chapter 5].)

For those who have not seen measure theory, the interpretation of the equality (2.2.2) should be
as follows. When integrating a function f(x), replace

∫
f(x)dµ(x) with one of two pairs of symbols:

one may simply think of dµ(x) as dx, so that we are performing standard integration
∫
f(x)dx, or

one should think of the integral operation
∫
f(x)dµ(x) as summing the argument of the integral, so

dµ(x) = 1 and
∫
f(x)dµ(x) =

∑
x f(x). (This corresponds to µ being “counting measure” on X .)

2.2.3 f-divergences

A more general notion of divergence is the so-called f -divergence, or Ali-Silvey divergence [4, 54]
(see also the alternate interpretations in the article by Liese and Vajda [131]). Here, the definition
is as follows. Let P and Q be probability distributions on the set X , and let f : R+ → R be a
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convex function satisfying f(1) = 0. If X is a discrete set, then the f -divergence between P and Q
is

Df (P ||Q) :=
∑
x

q(x)f

(
p(x)

q(x)

)
.

More generally, for any set X and a quantizer q : X → {1, . . . ,m}, letting Ai = q−1({i}) = {x ∈
X | q(x) = i} be the partition the quantizer induces, we can define the quantized divergence

Df (P ||Q | q) =
m∑
i=1

Q(Ai)f

(
P (Ai)

Q(Ai)

)
,

and the general definition of an f divergence is (in analogy with the definition (2.2.1) of general
KL divergences)

Df (P ||Q) := sup {Df (P ||Q | q) such that q quantizes X} . (2.2.3)

The definition (2.2.3) shows that, any time we have computations involving f -divergences—such
as KL-divergence or mutual information—it is no loss of generality, when performing the compu-
tations, to assume that all distributions have finite discrete support. There is a measure-theoretic
version of the definition (2.2.3) which is frequently easier to use. Assume w.l.o.g. that P and Q are
absolutely continuous with respect to the base measure µ. The f divergence between P and Q is
then

Df (P ||Q) :=

∫
X
q(x)f

(
p(x)

q(x)

)
dµ(x). (2.2.4)

This definition, it turns out, is not quite as general as we would like—in particular, it is unclear
how we should define the integral for points x such that q(x) = 0. With that in mind, we recall
that the perspective transform (see Appendices B.1.1 and B.3.3) of a function f : R→ R is defined
by pers(f)(t, u) = uf(t/u) if u > 0 and by +∞ if u ≤ 0. This function is convex in its arguments
(Proposition B.3.12). In fact, this is not quite enough for the fully correct definition. The closure of
a convex function f is cl f(x) = sup{`(x) | ` ≤ f, ` linear}, the supremum over all linear functions
that globally lower bound f . Then [104, Proposition IV.2.2.2] the closer of pers(f) is defined, for
any t′ ∈ int dom f , by

cl pers(f)(t, u) =


uf(t/u) if u > 0

limα↓0 αf(t′ − t+ t/α) if u = 0

+∞ if u < 0.

(The choice of t′ does not affect the definition.) Then the fully general formula expressing the
f -divergence is

Df (P ||Q) =

∫
X

cl pers(f)(p(x), q(x))dµ(x). (2.2.5)

This is what we mean by equation (2.2.4), which we use without comment.
In the exercises, we explore several properties of f -divergences, including the quantized repre-

sentation (2.2.3), showing different data processing inequalities and orderings of quantizers based
on the fineness of their induced partitions. Broadly, f -divergences satisfy essentially the same prop-
erties as KL-divergence, such as data-processing inequalities, and they provide a generalization of
mutual information. We explore f -divergences from additional perspectives later—they are impor-
tant both for optimality in estimation and related to consistency and prediction problems, as we
discuss in Chapter 14.
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Examples We give several examples of f -divergences here; in Section 8.2.2 we provide a few
examples of their uses as well as providing a few natural inequalities between them.

Example 2.2.1 (KL-divergence): By taking f(t) = t log t, which is convex and satisfies
f(1) = 0, we obtain Df (P ||Q) = Dkl (P ||Q). 3

Example 2.2.2 (KL-divergence, reversed): By taking f(t) = − log t, we obtain Df (P ||Q) =
Dkl (Q||P ). 3

Example 2.2.3 (Total variation distance): The total variation distance between probability
distributions P and Q defined on a set X is the maximum difference between probabilities they
assign on subsets of X :

‖P −Q‖TV := sup
A⊂X

|P (A)−Q(A)| = sup
A⊂X

(P (A)−Q(A)), (2.2.6)

where the second equality follows by considering compliments P (Ac) = 1 − P (A). The total
variation distance, as we shall see later, is important for verifying the optimality of different
tests, and appears in the measurement of difficulty of solving hypothesis testing problems. The
choice f(t) = 1

2 |t− 1|, we obtain the total variation distance, that is, ‖P −Q‖TV = Df (P ||Q).
There are several alternative characterizations, which we provide as Lemma 2.2.4 next; it will
be useful in the sequel when we develop inequalities relating the divergences. 3

Lemma 2.2.4. Let P,Q be probability measures with densities p, q with respect to a base measure
µ and f(t) = 1

2 |t− 1|. Then

‖P −Q‖TV = Df (P ||Q) =
1

2

∫
|p(x)− q(x)|dµ(x)

=

∫
[p(x)− q(x)]+ dµ(x) =

∫
[q(x)− p(x)]+ dµ(x)

= P (dP/dQ > 1)−Q(dP/dQ > 1) = Q(dQ/dP > 1)− P (dQ/dP > 1).

In particular, the set A = {x | p(x)/q(x) ≥ 1} maximizes P (B)−Q(B) over B ⊂ X and so achieves
‖P −Q‖TV = P (A)−Q(A).

Proof Eliding the measure-theoretic details,2 we immediately have

Df (P ||Q) =
1

2

∫ ∣∣∣∣p(x)

q(x)
− 1

∣∣∣∣ q(x)dµ(x) =
1

2

∫
|p(x)− q(x)|dµ(x)

=
1

2

∫
x:p(x)>q(x)

[p(x)− q(x)] dµ(x) +
1

2

∫
x:q(x)>p(x)

[q(x)− p(x)] dµ(x)

=
1

2

∫
[p(x)− q(x)]+ dµ(x) +

1

2

∫
[q(x)− p(x)]+ dµ(x).

Considering the last inegral
∫

[q(x)− p(x)]+ dµ(x), we see that the set A = {x : q(x) > p(x)}
satisfies

Q(A)− P (A) =

∫
A

(q(x)− p(x))dµ(x) ≥
∫
B

(q(x)− p(x))dµ(x) = Q(B)− P (B)

2To make this fully rigorous, we would use the Hahn decomposition of the signed measure P −Q to recognize that∫
f(dP − dQ) =

∫
f [dP − dQ]+ −

∫
f [dQ− dP ]+ for any integrable f .
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for any set B, as any x ∈ B \A clearly satisfies q(x)− p(x) ≤ 0.

Example 2.2.5 (Hellinger distance): The Hellinger distance between probability distribu-
tions P and Q defined on a set X is generated by the function f(t) = (

√
t− 1)2 = t− 2

√
t+ 1.

The Hellinger distance is then

dhel(P,Q)2 :=
1

2

∫
(
√
p(x)−

√
q(x))2dµ(x). (2.2.7)

The non-squared version dhel(P,Q) is indeed a distance between probability measures P and
Q. It is sometimes convenient to rewrite the Hellinger distance in terms of the affinity between
P and Q, as

dhel(P,Q)2 =
1

2

∫
(p(x) + q(x)− 2

√
p(x)q(x))dµ(x) = 1−

∫ √
p(x)q(x)dµ(x), (2.2.8)

which makes clear that dhel(P,Q) ∈ [0, 1] is on roughly the same scale as the variation distance;
we will say more later. 3

Example 2.2.6 (χ2 divergence): The χ2-divergence is generated by taking f(t) = (t − 1)2,
so that

Dχ2 (P ||Q) :=

∫ (
p(x)

q(x)
− 1

)2

q(x)dµ(x) =

∫
p(x)2

q(x)
dµ(x)− 1, (2.2.9)

where the equality is immediate because
∫
pdµ =

∫
qdµ = 1. 3

2.2.4 Inequalities and relationships between divergences

Important to our development will come will be different families of inequalities relating the different
divergence measures. These inequalities will be particularly important because, in some cases,
different distributions admit easy calculations with some divergences, such as KL or χ2 divergence,
but it can be challenging to work with others that may be more “natural” for a particular problem.
Most importantly, replacing a variation distance by bounding it with an alternative divergence is
often convenient for analyzing the properties of product distributions (as will become apparent
in Chapter 8). We record several of these results here, making a passing connection to mutual
information as well.

The first inequality shows that the Hellinger distance and variation distance roughly generate
the same topology on collections of distributions, as they upper and lower bound the other (if we
tolerate polynomial losses).

Proposition 2.2.7. The total variation distance and Hellinger distance satisfy

d2
hel(P,Q) ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
2− d2

hel(P,Q).

Proof We begin with the upper bound. We have by Hölder’s inequality that

1

2

∫
|p(x)− q(x)|dµ(x) =

∫
|
√
p(x)−

√
q(x)| · |

√
p(x) +

√
q(x)|dµ(x)

≤
(

1

2

∫
(
√
p(x)−

√
q(x))2dµ(x)

) 1
2
(

1

2

∫
(
√
p(x) +

√
q(x))2dµ(x)

) 1
2

= dhel(P,Q)

(
1 +

∫ √
p(x)q(x)dµ(x)

) 1
2

.
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As in Example 2.2.5, we have
∫ √

p(x)q(x)dµ(x) = 1 − dhel(P,Q)2, so this (along with the repre-
sentation Lemma 2.2.4 for variation distance) implies

‖P −Q‖TV =
1

2

∫
|p(x)− q(x)|dµ(x) ≤ dhel(P,Q)(2− d2

hel(P,Q))
1
2 .

For the lower bound on total variation, note that for any a, b ∈ R+, we have a+ b− 2
√
ab ≤ |a− b|

(check the cases a > b and a < b separately); thus

d2
hel(P,Q) =

1

2

∫ [
p(x) + q(x)− 2

√
p(x)q(x)

]
dµ(x) ≤ 1

2

∫
|p(x)− q(x)|dµ(x),

as desired.

Several important inequalitites relate the variation distance to the KL-divergence. We state
two important inequalities in the next proposition, both of which are important enough to justify
their own names.

Proposition 2.2.8. The total variation distance satisfies the following relationships.

(a) Pinsker’s inequality: for any distributions P and Q,

‖P −Q‖2TV ≤
1

2
Dkl (P ||Q) . (2.2.10)

(b) The Bretagnolle-Huber inequality: for any distributions P and Q,

‖P −Q‖TV ≤
√

1− exp(−Dkl (P ||Q)) ≤ 1− 1

2
exp(−Dkl (P ||Q)).

Proof Exercise 2.19 outlines one proof of Pinsker’s inequality using the data processing inequality
(Proposition 2.2.13). We present an alternative via the Cauchy-Schwarz inequality. Using the
definition (2.2.1) of the KL-divergence, we may assume without loss of generality that P and Q are
finitely supported, say with p.m.f.s p1, . . . , pm and q1, . . . , qm. Define the negative entropy function
h(p) =

∑m
i=1 pi log pi. Then showing that Dkl (P ||Q) ≥ 2 ‖P −Q‖2TV = 1

2 ‖p− q‖
2
1 is equivalent to

showing that

h(p) ≥ h(q) + 〈∇h(q), p− q〉+
1

2
‖p− q‖21 , (2.2.11)

because by inspection h(p)−h(q)−〈∇h(q), p−q〉 =
∑

i pi log pi
qi

. We do this via a Taylor expansion:
we have

∇h(p) = [log pi + 1]mi=1 and ∇2h(p) = diag([1/pi]
m
i=1).

By Taylor’s theorem, there is some p̃ = (1− t)p+ tq, where t ∈ [0, 1], such that

h(p) = h(q) + 〈∇h(q), p− q〉+
1

2
〈p− q,∇2h(p̃)(p− q)〉.

But looking at the final quadratic, we have for any vector v and any p ≥ 0 satisfying
∑

i pi = 1,

〈v,∇2h(p̃)v〉 =

m∑
i=1

v2
i

pi
= ‖p‖1

m∑
i=1

v2
i

pi
≥
( m∑
i=1

√
pi
|vi|√
pi

)2

= ‖v‖21 ,
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where the inequality follows from Cauchy-Schwarz applied to the vectors [
√
pi]i and [|vi|/

√
pi]i.

Thus inequality (2.2.11) holds.
For the claim (b), we use Proposition 2.2.7. Let a =

∫ √
p(x)q(x)dµ(x) be a shorthand for the

affinity, so that d2
hel(P,Q) = 1 − a. Then Proposition 2.2.7 gives ‖P −Q‖TV ≤

√
1− a

√
1 + a =√

1− a2. Now apply Jensen’s inequality to the exponential: we have∫ √
p(x)q(x)dµ(x) =

∫ √
q(x)

p(x)
p(x)dµ(x) =

∫
exp

(
1

2
log

q(x)

p(x)

)
p(x)dµ(x)

≥ exp

(
1

2

∫
p(x) log

q(x)

p(x)
dµ(x)

)
= exp

(
−1

2
Dkl (P ||Q)

)
.

In particular,
√

1− a2 ≤
√

1− exp(−1
2Dkl (P ||Q))2, which is the first claim of part (b). For the

second, note that
√

1− c ≤ 1− 1
2c for c ∈ [0, 1] by concavity of the square root.

We also have the following bounds on the KL-divergence in terms of the χ2-divergence.

Proposition 2.2.9. For any distributions P,Q,

Dkl (P ||Q) ≤ log(1 +Dχ2 (P ||Q)) ≤ Dχ2 (P ||Q) .

Proof By Jensen’s inequality, we have

Dkl (P ||Q) ≤ log

∫
dP 2

dQ
= log(1 +Dχ2 (P ||Q)).

The second inequality is immediate as log(1 + t) ≤ t for all t > −1.

It is also possible to relate mutual information between distributions to f -divergences, and even
to bound the mutual information above and below by the Hellinger distance for certain problems. In
this case, we consider the following situation: let V ∈ {0, 1} uniformly at random, and conditional
on V = v, draw X ∼ Pv for some distribution Pv on a space X . Then we have that

I(X;V ) =
1

2
Dkl

(
P0||P

)
+

1

2
Dkl

(
P1||P

)
where P = 1

2P0 + 1
2P1. The divergence measure on the right side of the preceding identity is a

special case of the Jenson-Shannon divergence, defined for λ ∈ [0, 1] by

Djs,λ (P ||Q) := λDkl (P ||λP + (1− λ)Q) +Dkl (Q||λP + (1− λ)Q) , (2.2.12)

which is a symmetrized and bounded variant of the typical KL-divergence (we use the shorthand
Djs (P ||Q) := Djs, 1

2
(P ||Q) for the symmetric case). As a consequence, we also have

I(X;V ) =
1

2
Df (P0||P1) +

1

2
Df (P1||P0) ,

where f(t) = −t log( 1
2t + 1

2) = t log 2t
t+1 , so that the mutual information is a particular f -divergence.

This form—as we see in the later chapters—is frequently convenient because it gives an object
with similar tensorization properties to KL-divergence while enjoying the boundedness properties
of Hellinger and variation distances. The following proposition captures the latter properties.
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Proposition 2.2.10. Let (X,V ) be distributed as above. Then

log 2 · d2
hel(P0, P1) ≤ I(X;V ) = Djs (P0||P1) ≤ min

{
log 2 · ‖P0 − P1‖TV ,

2 · d2
hel(P0, P1)

}
.

Proof The lower bound and upper bound involving the variation distance both follow from
analytic bounds on the binary entropy functional h2(p) = −p log p−(1−p) log(1−p). By expanding
the mutual information and letting p0 and p1 be densities of P0 and P1 with respect to some base
measure µ, we have

2I(X;V ) = 2Djs (P0||P1) =

∫
p0 log

2p0

p0 + p1
dµ+

∫
p1 log

2p1

p0 + p1
dµ

= 2 log 2 +

∫
(p0 + p1)

[
p0

p1 + p1
log

p0

p0 + p1
+

p1

p1 + p1
log

p1

p0 + p1

]
dµ

= 2 log 2−
∫

(p0 + p1)h2

(
p0

p1 + p0

)
dµ.

We claim that
2 log 2 ·min{p, 1− p} ≤ h2(p) ≤ 2 log 2 ·

√
p(1− p)

for all p ∈ [0, 1] (see Exercises 2.17 and 2.18). Then the upper and lower bounds on the information
become nearly immediate.

For the variation-based upper bound on I(X;V ), we use the lower bound h2(p) ≥ 2 log 2 ·
min{p, 1− p} to write

2

log 2
I(X;V ) ≤ 2−

∫
(p0(x) + p1(x)) min

{
p0(x)

p0(x) + p1(x)
,

p1(x)

p0(x) + p1(x)

}
dµ(x)

= 2− 2

∫
min{p0(x), p1(x)}dµ(x)

= 2

∫
(p1(x)−min{p0(x), p1(x)})dµ(x) = 2

∫
p1>p0

(p1(x)− p0(x))dµ(x).

But of course the final integral is ‖P1 − P0‖TV, giving I(X;V ) ≤ log 2 ‖P0 − P1‖TV. Conversely,
for the lower bound on Djs (P0||P1), we use the upper bound h2(p) ≤ 2 log 2 ·

√
p(1− p) to obtain

1

log 2
I(X;V ) ≥ 1−

∫
(p0 + p1)

√
p0

p1 + p0

(
1− p0

p1 + p0

)
dµ

= 1−
∫
√
p0p1dµ =

1

2

∫
(
√
p0 −

√
p1)2dµ = d2

hel(P0, P1)

as desired.
The Hellinger-based upper bound is simpler: by Proposition 2.2.9, we have

Djs (P0||P1) =
1

2
Dkl (P0||(P0 + P1)/2) +

1

2
Dkl (P1||(P0 + P1)/2)

≤ 1

2
Dχ2 (P0||(P0 + P1)/2) +

1

2
Dχ2 (P1||(P0 + P1)/2)

=
1

2

∫
(p0 − p1)2

p0 + p1
dµ =

1

2

∫
(
√
p0 −

√
p1)2(

√
p0 +

√
p1)2

p0 + p1
dµ.

Now note that (a + b)2 ≤ 2a2 + 2b2 for any a, b ∈ R, and so (
√
p0 +

√
p1)2 ≤ 2(p0 + p1), and thus

the final integral has bound
∫

(
√
p0 −

√
p1)2dµ = 2d2

hel(P0, P1).
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2.2.5 Convexity and data processing for divergence measures

f -divergences satisfy a number of very useful properties, which we use repeatedly throughout the
lectures. As the KL-divergence is an f -divergence, it of course satisfies these conditions; however,
we state them in fuller generality, treating the KL-divergence results as special cases and corollaries.

We begin by exhibiting the general data processing properties and convexity properties of f -
divergences, each of which specializes to KL divergence. We leave the proof of each of these as
exercises. First, we show that f -divergences are jointly convex in their arguments.

Proposition 2.2.11. Let P1, P2, Q1, Q2 be distributions on a set X and f : R+ → R be convex.
Then for any λ ∈ [0, 1],

Df (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λDf (P1||Q1) + (1− λ)Df (P2||Q2) .

The proof of this proposition we leave as Exercise 2.11, which we treat as a consequence of the
more general “log-sum” like inequalities of Exercise 2.8. It is, however, an immediate consequence
of the fully specified definition (2.2.5) of an f -divergence, because pers(f) is jointly convex. As an
immediate corollary, we see that the same result is true for KL-divergence as well.

Corollary 2.2.12. The KL-divergence Dkl (P ||Q) is jointly convex in its arguments P and Q.

We can also provide more general data processing inequalities for f -divergences, paralleling
those for the KL-divergence. In this case, we consider random variables X and Z on spaces X
and Z, respectively, and a Markov transition kernel K giving the Markov chain X → Z. That
is, K(· | x) is a probability distribution on Z for each x ∈ X , and conditioned on X = x, Z has
distribution K(· | x) so that K(A | x) = P(Z ∈ A | X = x). Certainly, this includes the situation
when Z = φ(X) for some function φ, and more generally when Z = φ(X,U) for a function φ and
some additional randomness U . For a distribution P on X, we then define the marginals

KP (A) :=

∫
X
K(A, x)dP (x).

We then have the following proposition.

Proposition 2.2.13. Let P and Q be distributions on X and let K be any Markov kernel. Then

Df (KP ||KQ) ≤ Df (P ||Q) .

See Exercise 2.10 for a proof.
As a corollary, we obtain the following data processing inequality for KL-divergences, where we

abuse notation to write Dkl (X||Y ) = Dkl (P ||Q) for random variables X ∼ P and Y ∼ Q.

Corollary 2.2.14. Let X,Y ∈ X be random variables, let U ∈ U be independent of X and Y , and
let φ : X × U → Z for some spaces X ,U ,Z. Then

Dkl (φ(X,U)||φ(Y, U)) ≤ Dkl (X||Y ) .

Thus, further processing of random variables can only bring them “closer” in the space of distribu-
tions; downstream processing of signals cannot make them further apart as distributions.
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2.3 First steps into optimal procedures: testing inequalities

As noted in the introduction, a central benefit of the information theoretic tools we explore is that
they allow us to certify the optimality of procedures—that no other procedure could (substantially)
improve upon the one at hand. The main tools for these certifications are often inequalities gov-
erning the best possible behavior of a variety of statistical tests. Roughly, we put ourselves in the
following scenario: nature chooses one of a possible set of (say) k worlds, indexed by probabil-
ity distributions P1, P2, . . . , Pk, and conditional on nature’s choice of the world—the distribution
P ? ∈ {P1, . . . , Pk} chosen—we observe data X drawn from P ?. Intuitively, it will be difficult to
decide which distribution Pi is the true P ? if all the distributions are similar—the divergence be-
tween the Pi is small, or the information between X and P ? is negligible—and easy if the distances
between the distributions Pi are large. With this outline in mind, we present two inequalities, and
first examples of their application, to make concrete these connections to the notions of information
and divergence defined in this section.

2.3.1 Le Cam’s inequality and binary hypothesis testing

The simplest instantiation of the above setting is the case when there are only two possible dis-
tributions, P1 and P2, and our goal is to make a decision on whether P1 or P2 is the distribution
generating data we observe. Concretely, suppose that nature chooses one of the distributions P1

or P2 at random, and let V ∈ {1, 2} index this choice. Conditional on V = v, we then observe a
sample X drawn from Pv. Denoting by P the joint distribution of V and X, we have for any test
Ψ : X → {1, 2} that the probability of error is then

P(Ψ(X) 6= V ) =
1

2
P1(Ψ(X) 6= 1) +

1

2
P2(Ψ(X) 6= 2).

We can give an exact expression for the minimal possible error in the above hypothesis test.
Indeed, a standard result of Le Cam (see [127, 177, Lemma 1]) is the following variational representa-
tion of the total variation distance (2.2.6), which is the f -divergence associated with f(t) = 1

2 |t−1|,
as a function of testing error.

Proposition 2.3.1. Let X be an arbitrary set. For any distributions P1 and P2 on X , we have

inf
Ψ
{P1(Ψ(X) 6= 1) + P2(Ψ(X) 6= 2)} = 1− ‖P1 − P2‖TV ,

where the infimum is taken over all tests Ψ : X → {1, 2}.

Proof Any test Ψ : X → {1, 2} has an acceptance region, call it A ⊂ X , where it outputs 1 and
a region Ac where it outputs 2.

P1(Ψ 6= 1) + P2(Ψ 6= 2) = P1(Ac) + P2(A) = 1− P1(A) + P2(A).

Taking an infimum over such acceptance regions, we have

inf
Ψ
{P1(Ψ 6= 1) + P2(Ψ 6= 2)} = inf

A⊂X
{1− (P1(A)− P2(A))} = 1− sup

A⊂X
(P1(A)− P2(A)),

which yields the total variation distance as desired.
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In the two-hypothesis case, we also know that the optimal test, by the Neyman-Pearson lemma,
is a likelihood ratio test. That is, assuming that P1 and P2 have densities p1 and p2, the optimal
test is of the form

Ψ(X) =

{
1 if p1(X)

p2(X) ≥ t
2 if p1(X)

p2(X) < t

for some threshold t ≥ 0. In the case that the prior probabilities on P1 and P2 are each 1
2 , then

t = 1 is optimal.
We give one example application of Proposition 2.3.1 to the problem of testing a normal mean.

Example 2.3.2 (Testing a normal mean): Suppose we observe X1, . . . , Xn
iid∼ P for P = P1

or P = P2, where Pv is the normal distribution N(µv, σ
2), where µ1 6= µ2. We would like to

understand the sample size n necessary to guarantee that no test can have small error, that
is, say, that

inf
Ψ
{P1(Ψ(X1, . . . , Xn) 6= 1) + P2(Ψ(X1, . . . , Xn) 6= 2)} ≥ 1

2
.

By Proposition 2.3.1, we have that

inf
Ψ
{P1(Ψ(X1, . . . , Xn) 6= 1) + P2(Ψ(X1, . . . , Xn) 6= 2)} ≥ 1− ‖Pn1 − Pn2 ‖TV ,

where Pnv denotes the n-fold product of Pv, that is, the distribution of X1, . . . , Xn
iid∼ Pv.

The interaction between total variation distance and product distributions is somewhat subtle,
so it is often advisable to use a divergence measure more attuned to the i.i.d. nature of the sam-
pling scheme. Two such measures are the KL-divergence and Hellinger distance, both of which
we explore in the coming chapters. With that in mind, we apply Pinsker’s inequality (2.2.10)
to see that ‖Pn1 − Pn2 ‖

2
TV ≤

1
2Dkl (Pn1 ||Pn2 ) = n

2Dkl (P1||P2), which implies that

1− ‖Pn1 − Pn2 ‖TV ≥ 1−
√
n

2
Dkl (P1||P2)

1
2 = 1−

√
n

2

(
1

2σ2
(µ1 − µ2)2

) 1
2

= 1−
√
n

2

|µ1 − µ2|
σ

.

In particular, if n ≤ σ2

(µ1−µ2)2
, then we have our desired lower bound of 1

2 .

Conversely, a calculation yields that n ≥ Cσ2

(µ1−µ2)2
, for some numerical constant C ≥ 1, implies

small probability of error. We leave this calculation to the reader. 3

2.3.2 Fano’s inequality and multiple hypothesis testing

There are of course situations in which we do not wish to simply test two hypotheses, but have
multiple hypotheses present. In such situations, Fano’s inequality, which we present shortly, is
the most common tool for proving fundamental limits, lower bounds on probability of error, and
converses (to results on achievability of some performance level) in information theroy. We write
this section in terms of general random variables, ignoring the precise setting of selecting an index
in a family of distributions, though that is implicit in what we do.

Let X be a random variable taking values in a finite set X , and assume that we observe a
(different) random variable Y , and then must estimate or guess the true value of X̂. That is, we
have the Markov chain

X → Y → X̂,
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and we wish to provide lower bounds on the probability of error—that is, that X̂ 6= X. If we let
the function h2(p) = −p log p− (1− p) log(1− p) denote the binary entropy (entropy of a Bernoulli
random variable with parameter p), Fano’s inequality takes the following form [e.g. 53, Chapter 2]:

Proposition 2.3.3 (Fano inequality). For any Markov chain X → Y → X̂, we have

h2(P(X̂ 6= X)) + P(X̂ 6= X) log(|X | − 1) ≥ H(X | X̂). (2.3.1)

Proof This proof follows by expanding an entropy functional in two different ways. Let E be
the indicator for the event that X̂ 6= X, that is, E = 1 if X̂ 6= X and is 0 otherwise. Then we have

H(X,E | X̂) = H(X | E, X̂) +H(E | X̂)

= P(E = 1)H(X | E = 1, X̂) + P(E = 0)H(X | E = 0, X̂)︸ ︷︷ ︸
=0

+H(E | X̂),

where the zero follows because given there is no error, X has no variability given X̂. Expanding
the entropy by the chain rule in a different order, we have

H(X,E | X̂) = H(X | X̂) +H(E | X̂,X)︸ ︷︷ ︸
=0

,

because E is perfectly predicted by X̂ and X. Combining these equalities, we have

H(X | X̂) = H(X,E | X̂) = P(E = 1)H(X | E = 1, X̂) +H(E | X).

Noting that H(E | X) ≤ H(E) = h2(P(E = 1)), as conditioning reduces entropy, and that
H(X | E = 1, X̂) ≤ log(|X | − 1), as X can take on at most |X | − 1 values when there is an error,
completes the proof.

We can rewrite Proposition 2.3.3 in a convenient way when X is uniform in X . Indeed, by
definition of the mutual information, we have I(X; X̂) = H(X) −H(X | X̂), so Proposition 8.4.1
implies that in the canonical hypothesis testing problem from Section 8.2.1, we have

Corollary 2.3.4. Assume that X is uniform on X . For any Markov chain X → Y → X̂,

P(X̂ 6= X) ≥ 1− I(X;Y ) + log 2

log(|X |)
. (2.3.2)

Proof Let Perror = P(X 6= X̂) denote the probability of error. Noting that h2(p) ≤ log 2 for any
p ∈ [0, 1] (recall inequality (2.1.2), that is, that uniform random variables maximize entropy), then
using Proposition 8.4.1, we have

log 2 + Perror log(|X |) ≥ h2(Perror) + Perror log(|X | − 1)
(i)

≥ H(X | X̂)
(ii)
= H(X)− I(X; X̂).

Here step (i) uses Proposition 2.3.3 and step (ii) uses the definition of mutual information, that
I(X; X̂) = H(X) − H(X | X̂). The data processing inequality implies that I(X; X̂) ≤ I(X;Y ),
and using H(X) = log(|X |) completes the proof.
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In particular, Corollary 2.3.4 shows that when X is chosen uniformly at random and we observe
Y , we have

inf
Ψ

P(Ψ(Y ) 6= X) ≥ 1− I(X;Y ) + log 2

log |X |
,

where the infimum is taken over all testing procedures Ψ. Some interpretation of this quantity
is helpful. If we think roughly of the number of bits it takes to describe a variable X uniformly
chosen from X , then we expect that log2 |X | bits are necessary (and sufficient). Thus, until we
collect enough information that I(X;Y ) ≈ log |X |, so that I(X;Y )/ log |X | ≈ 1, we are unlikely to
be unable to identify the variable X with any substantial probability. So we must collect enough
bits to actually discover X.

Example 2.3.5 (20 questions game): In the 20 questions game—a standard children’s game—
there are two players, the “chooser” and the “guesser,” and an agreed upon universe X . The
chooser picks an element x ∈ X , and the guesser’s goal is to find x by using a series of yes/no
questions about x. We consider optimal strategies for each player in this game, assuming that
X is finite and letting m = |X | be the universe size for shorthand.
For the guesser, it is clear that at most dlog2me questions are necessary to guess the item
X that the chooser has picked—at each round of the game, the guesser asks a question that
eliminates half of the remaining possible items. Indeed, let us assume that m = 2l for some
l ∈ N; if not, the guesser can always make her task more difficult by increasing the size of X
until it is a power of 2. Thus, after k rounds, there are m2−k items left, and we have

m

(
1

2

)k
≤ 1 if and only if k ≥ log2m.

For the converse—the chooser’s strategy—let Y1, Y2, . . . , Yk be the sequence of yes/no answers
given to the guesser. Assume that the chooser picks X uniformly at random in X . Then Fano’s
inequality (2.3.2) implies that for the guess X̂ the guesser makes,

P(X̂ 6= X) ≥ 1− I(X;Y1, . . . , Yk) + log 2

logm
.

By the chain rule for mutual information, we have

I(X;Y1, . . . , Yk) =

k∑
i=1

I(X;Yi | Y1:i−1) =

k∑
i=1

H(Yi | Y1:i−1)−H(Yi | Y1:i−1, X) ≤
k∑
i=1

H(Yi).

As the answers Yi are yes/no, we have H(Yi) ≤ log 2, so that I(X;Y1:k) ≤ k log 2. Thus we
find

P(X̂ 6= X) ≥ 1− (k + 1) log 2

logm
=

log2m− 1

log2m
− k

log2m
,

so that we the guesser must have k ≥ log2(m/2) to be guaranteed that she will make no
mistakes. 3

2.4 A first operational result: entropy and source coding

The final section of this chapter explores the basic results in source coding. Source coding—in its
simplest form—tells us precisely the number of bits (or some other form of information storage)
are necessary to perfectly encode a seqeunce of random variables X1, X2, . . . drawn according to a
known distribution P .
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2.4.1 The source coding problem

Assume we receive data consisting of a sequence of symbols X1, X2, . . ., drawn from a known
distribution P on a finite or countable space X . We wish to choose an encoding, represented by a
d-ary code function C that maps X to finite strings consisting of the symbols {0, 1, . . . , d− 1}. We
denote this by C : X → {0, 1, . . . , d − 1}∗, where the superscript ∗ denotes the length may change
from input to input, and use `C(x) to denote the length of the string C(x).

In general, we will consider a variety of types of codes; we define each in order of complexity of
their decoding.

Definition 2.1. A d-ary code C : X → {0, . . . , d−1}∗ is non-singular if for each x, x′ ∈ X we have

C(x) 6= C(x′) if x 6= x′.

While Definition 2.1 is natural, generally speaking, we wish to transmit or encode a variety of code-
words simultaneously, that is, we wish to encode a sequence X1, X2, . . . using the natural extension
of the code C as the string C(X1)C(X2)C(X3) · · · , where C(x1)C(x2) denotes the concatenation of
the strings C(x1) and C(x2). In this case, we require that the code be uniquely decodable:

Definition 2.2. A d-ary code C : X → {0, . . . , d − 1}∗ is uniquely decodable if for all sequences
x1, . . . , xn ∈ X and x′1, . . . , x

′
n ∈ X we have

C(x1)C(x2) · · ·C(xn) = C(x′1)C(x′2) · · ·C(x′n) if and only if x1 = x′1, . . . , xn = x′n.

That is, the extension of the code C to sequences is non-singular.

While more useful (generally) than simply non-singular codes, uniquely decodable codes may require
inspection of an entire string before recovering the first element. With that in mind, we now consider
the easiest to use codes, which can always be decoded instantaneously.

Definition 2.3. A d-ary code C : X → {0, . . . , d − 1}∗ is uniquely decodable or instantaneous if
no codeword is the prefix to another codeword.

As is hopefully apparent from the definitions, all prefix/instantaneous codes are uniquely decodable,
which are in turn non-singular. The converse is not true, though we will see a sense in which—as
long as we care only about encoding sequences—using prefix instead of uniquely decodable codes
has negligible consequences.

For example, written English, with periods (.) and spaces ( ) included at the ends of words
(among other punctuation) is an instantaneous encoding of English into the symbols of the alphabet
and punctuation, as punctuation symbols enforce that no “codeword” is a prefix of any other. A
few more concrete examples may make things more clear.

Example 2.4.1 (Encoding strategies): Consider the encoding schemes below, which encode
the letters a, b, c, and d.

Symbol C1(x) C2(x) C3(x)

a 0 00 0
b 00 10 10
c 000 11 110
d 0000 110 111

By inspection, it is clear that C1 is non-singular but certainly not uniquely decodable (does
the sequence 0000 correspond to aaaa, bb, aab, aba, baa, ca, ac, or d?), while C3 is a prefix
code. We leave showing that C2 is uniquely decodable as an exercise. 3
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2.4.2 The Kraft-McMillan inequalities

We now turn to a few results on the connections between source-coding and entropy. Our first
result, the Kraft-McMillan inequality, is an essential result that—as we shall see–essentially says
that there is no difference in code-lengths attainable by prefix codes and uniquely decodable codes.

0
1

2

0
1

2 0
1

2

x1

x2 x3 x5 x6 x7

Figure 2.1. Prefix-tree encoding of a set of symbols. The encoding for x1 is 0, for x2 is 10, for x3
is 11, for x4 is 12, for x5 is 20, for x6 is 21, and nothing is encoded as 1, 2, or 22.

Theorem 2.4.2. Let X be a finite or countable set, and let ` : X → N be a function. If `(x) is the
length of the encoding of the symbol x in a uniquely decodable d-ary code, then∑

x∈X
d−`(x) ≤ 1. (2.4.1)

Conversely, given any function ` : X → N satisfying inequality (2.4.1), there is a prefix code whose
codewords have length `(x) for each x ∈ X .

Proof We prove the first statement of the theorem first by a counting and asymptotic argument.
We begin by assuming that X is finite; we eliminate this assumption subsequently. As a

consequence, there is some maximum length `max such that `(x) ≤ `max for all x ∈ X . For a sequence
x1, . . . , xn ∈ X , we have by the definition of our encoding strategy that `(x1, . . . , xn) =

∑n
i=1 `(xi).

In addition, for each m we let

En(m) := {x1:n ∈ X n such that `(x1:n) = m}

denote the symbols x encoded with codewords of length m in our code, then as the code is uniquely
decodable we certainly have card(En(m)) ≤ dm for all n and m. Moreover, for all x1:n ∈ X n we
have `(x1:n) ≤ n`max. We thus re-index the sum

∑
x d
−`(x) and compute

∑
x1,...,xn∈Xn

d−`(x1,...,xn) =

n`max∑
m=1

card(En(m))d−m

≤
n`max∑
m=1

dm−m = n`max.
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The preceding relation is true for all n ∈ N, so that( ∑
x1:n∈Xn

d−`(x1:n)

)1/n

≤ n1/n`1/nmax → 1

as n→∞. In particular, using that∑
x1:n∈Xn

d−`(x1:n) =
∑

x1,...,xn∈Xn
d−`(x1) · · · d−`(xn) =

(∑
x∈X

d−`(x)

)n
,

we obtain
∑

x∈X d
−`(x) ≤ 1.

Returning to the case that card(X ) =∞, by defining the sequence

Dk :=
∑

x∈X ,`(x)≤k

d−`(x),

as each subset {x ∈ X : `(x) ≤ k} is uniquely decodable, we have Dk ≤ 1 for all k. Then
1 ≥ limk→∞Dk =

∑
x∈X d

−`(x).
The achievability of such a code is straightforward by a pictorial argument (recall Figure 2.1),

so we sketch the result non-rigorously. Indeed, let Td be an (infinite) d-ary tree. Then, at each
level m of the tree, assign one of the nodes at that level to each symbol x ∈ X such that `(x) = m.
Eliminate the subtree below that node, and repeat with the remaining symbols. The codeword
corresponding to symbol x is then the path to the symbol in the tree.

JCD Comment: Fill out this proof, potentially deferring it.

With the Kraft-McMillan theorem in place, we we may directly relate the entropy of a random
variable to the length of possible encodings for the variable; in particular, we show that the entropy
is essentially the best possible code length of a uniquely decodable source code. In this theorem,
we use the shorthand

Hd(X) := −
∑
x∈X

p(x) logd p(x).

Theorem 2.4.3. Let X ∈ X be a discrete random variable distributed according to P and let `C
be the length function associated with a d-ary encoding C : X → {0, . . . , d− 1}∗. In addition, let C
be the set of all uniquely decodable d-ary codes for X . Then

Hd(X) ≤ inf {EP [`C(X)] : C ∈ C} ≤ Hd(X) + 1.

Proof The lower bound is an argument by convex optimization, while for the upper bound
we give an explicit length function and (implicit) prefix code attaining the bound. For the lower
bound, we assume for simplicity that X is finite, and we identify X = {1, . . . , |X |} (let m = |X | for
shorthand). Then as C consists of uniquely decodable codebooks, all the associated length functions
must satisfy the Kraft-McMillan inequality (2.4.1). Letting `i = `(i), the minimal encoding length
is at least

inf
`∈Rm

{
m∑
i=1

pi`i :
m∑
i=1

d−`i ≤ 1

}
.
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By introducing the Lagrange multiplier λ ≥ 0 for the inequality constraint, we may write the
Lagrangian for the preceding minimization problem as

L(`, λ) = p>`+ λ

(
n∑
i=1

d−`i − 1

)
with ∇`L(`, λ) = p− λ

[
d−`i log d

]m
i=1

.

In particular, the optimal ` satisfies `i = logd
θ
pi

for some constant θ, and solving
∑m

i=1 d
− logd

θ
pi = 1

gives θ = 1 and `(i) = logd
1
pi

.

To attain the result, simply set our encoding to be `(x) =
⌈
logd

1
P (X=x)

⌉
, which satisfies the

Kraft-McMillan inequality and thus yields a valid prefix code with

EP [`(X)] =
∑
x∈X

p(x)

⌈
logd

1

p(x)

⌉
≤ −

∑
x∈X

p(x) logd p(x) + 1 = Hd(X) + 1

as desired.

Theorem 2.4.3 thus shows that, at least to within an additive constant of 1, the entropy both
upper and lower bounds the expected length of a uniquely decodable code for the random variable
X. This is the first of our promised “operational interpretations” of the entropy.

2.4.3 Entropy rates and longer codes

Theorem 2.4.3 is a bit unsatisfying in that the additive constant 1 may be quite large relative to
the entropy. By allowing encoding longer sequences, we can (asymptotically) eliminate this error
factor. To that end, we here show that it is possible, at least for appropriate distributions on
random variables Xi, to achieve a per-symbol encoding length that approaches a limiting version of
the Shannon entropy of a random variable. We give two definitions capturing the limiting entropy
properties of sequences of random variables.

Definition 2.4. The entropy rate of a sequence X1, X2, . . . of random variables is

H({Xi}) := lim
n→∞

1

n
H(X1, . . . , Xn) (2.4.2)

whenever the limit exists.

In some situations, the limit (2.4.2) may not exist. However, there are a variety of situations in
which it does, and we focus generally on a specific but common instance in which the limit does
exist. First, we recall the definition of a stationary sequence of random variables.

Definition 2.5. We say a sequence X1, X2, . . . of random variable is stationary if for all n and all
k ∈ N and all measurable sets A1, . . . , Ak ⊂ X we have

P(X1 ∈ A1, . . . , Xk ∈ Ak) = P(Xn+1 ∈ A1, . . . , Xn+k ∈ Ak).

With this definition, we have the following result.
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Proposition 2.4.4. Let the sequence of random variables {Xi}, taking values in the discrete space
X , be stationary. Then

H({Xi}) = lim
n→∞

H(Xn | X1, . . . , Xn−1)

and the limits (2.4.2) and above exist.

Proof We begin by making the following standard observation of Cesàro means: if cn = 1
n

∑n
i=1 ai

and ai → a, then cn → a.3 Now, we note that for a stationary sequence, we have that

H(Xn | X1:n−1) = H(Xn+1 | X2:n),

and using that conditioning decreases entropy, we have

H(Xn+1 | X1:n) ≤ H(Xn | X1:n−1).

Thus the sequence an := H(Xn | X1:n−1) is non-increasing and bounded below by 0, so that it has
some limit limn→∞H(Xn | X1:n−1). As H(X1, . . . , Xn) =

∑n
i=1H(Xi | X1:i−1) by the chain rule

for entropy, we achieve the result of the proposition.

Finally, we present a result showing that it is possible to achieve average code length of at most
the entropy rate, which for stationary sequences is smaller than the entropy of any single random
variable Xi. To do so, we require the use of a block code, which (while it may be prefix code) treats
sets of random variables (X1, . . . , Xm) ∈ Xm as a single symbol to be jointly encoded.

Proposition 2.4.5. Let the sequence of random variables X1, X2, . . . be stationary. Then for any
ε > 0, there exists an m ∈ N and a d-ary (prefix) block encoder C : Xm → {0, . . . , d− 1}∗ such that

lim
n

1

n
EP [`C(X1:n)] ≤ H({Xi}) + ε = lim

n
H(Xn | X1, . . . , Xn−1) + ε.

Proof Let C : Xm → {0, 1, . . . , d− 1}∗ be any prefix code with

`C(x1:m) ≤
⌈

log
1

P (X1:m = x1:m)

⌉
.

Then whenever n/m is an integer, we have

EP [`C(X1:n)] =

n/m∑
i=1

EP
[
`C(Xmi+1, . . . , Xm(i+1))

]
≤

n/m∑
i=1

[
H(Xmi+1, . . . , Xm(i+1)) + 1

]
=

n

m
+
n

m
H(X1, . . . , Xm).

Dividing by n gives the result by taking m suitably large that 1
m+ 1

mH(X1, . . . , Xm) ≤ ε+H({Xi}).
3Indeed, let ε > 0 and take N such that n ≥ N implies that |ai − a| < ε. Then for n ≥ N , we have

cn − a =
1

n

n∑
i=1

(ai − a) =
N(cN − a)

n
+

1

n

n∑
i=N+1

(ai − a) ∈ N(cN − a)

n
± ε.

Taking n → ∞ yields that the term N(cN − a)/n → 0, which gives that cn − a ∈ [−ε, ε] eventually for any ε > 0,
which is our desired result.
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Note that if the m does not divide n, we may also encode the length of the sequence of encoded
words in each block of length m; in particular, if the block begins with a 0, it encodes m symbols,
while if it begins with a 1, then the next dlogdme bits encode the length of the block. This would
yields an increase in the expected length of the code to

EP [`C(X1:n)] ≤ 2n+ dlog2me
m

+
n

m
H(X1, . . . , Xm).

Dividing by n and letting n→∞ gives the result, as we can always choose m large.

2.5 Bibliography

The material in this chapter is classical in information theory. For all of our treatment of mutual
information, entropy, and KL-divergence in the discrete case, Cover and Thomas provide an es-
sentially complete treatment in Chapter 2 of their book [53]. Gray [94] provides a more advanced
(measure-theoretic) version of these results, with Chapter 5 covering most of our results (or Chap-
ter 7 in the newer addition of the same book). Csiszár and Körner [55] is the classic reference for
coding theorems and results on communication, including stronger converse results.

The f -divergence was independently discovered by Ali and Silvey [4] and Csiszár [54], and is
consequently sometimes called an Ali-Silvey divergence or Csiszár divergence. Liese and Vajda [131]
provide a survey of f -divergences and their relationships with different statistical concepts (taking
a Bayesian point of view), and various authors have extended the pairwise divergence measures to
divergence measures between multiple distributions [98], making connections to experimental design
and classification [89, 70], which we investigate later in book. The inequalities relating divergences
in Section 2.2.4 are now classical, and standard references present them [127, 167]. For a proof that
equality (2.2.4) is equivalent to the definition (2.2.3) with the appropriate closure operations, see
the paper [70, Proposition 1]. We borrow the proof of the upper bound in Proposition 2.2.10 from
the paper [132].

2.6 Exercises

Our first few questions investigate properties of a divergence between distributions that is weaker
than the KL-divergence, but is intimately related to optimal testing. Let P1 and P2 be arbitrary
distributions on a space X . The total variation distance between P1 and P2 is defined as

‖P1 − P2‖TV := sup
A⊂X

|P1(A)− P2(A)| .

Exercise 2.1: Prove the following identities about total variation. Throughout, let P1 and P2

have densities p1 and p2 on a (common) set X .

(a) 2 ‖P1 − P2‖TV =
∫
|p1(x)− p2(x)|dx.

(b) For functions f : X → R, define the supremum norm ‖f‖∞ = supx∈X |f(x)|. Show that
2 ‖P1 − P2‖TV = sup‖f‖∞≤1

∫
X f(x)(p1(x)− p2(x))dx.

(c) ‖P1 − P2‖TV =
∫

max{p1(x), p2(x)}dx− 1.
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(d) ‖P1 − P2‖TV = 1−
∫

min{p1(x), p2(x)}dx.

(e) For functions f, g : X → R,

inf

{∫
f(x)p1(x)dx+

∫
g(x)p2(x)dx : f + g ≥ 1, f ≥ 0, g ≥ 0

}
= 1− ‖P1 − P2‖TV .

Exercise 2.2 (Divergence between multivariate normal distributions): Let P1 be N(θ1,Σ) and
P2 be N(θ2,Σ), where Σ � 0 is a positive definite matrix. What is Dkl (P1||P2)?

Exercise 2.3 (The optimal test between distributions): Prove Le-Cam’s inequality: for any
function ψ with domψ ⊃ X and any distributions P1, P2,

P1(ψ(X) 6= 1) + P2(ψ(X) 6= 2) ≥ 1− ‖P1 − P2‖TV .

Thus, the sum of the probabilities of error in a hypothesis testing problem, where based on a sample
X we must decide whether P1 or P2 is more likely, has value at least 1 − ‖P1 − P2‖TV. Given P1

and P2 is this risk attainable?

Exercise 2.4: A random variable X has Laplace(λ, µ) distribution if it has density p(x) =
λ
2 exp(−λ|x−µ|). Consider the hypothesis test of P1 versus P2, whereX has distribution Laplace(λ, µ1)
under P1 and distribution Laplace(λ, µ2) under P2, where µ1 < µ2. Show that the minimal value
over all tests ψ of P1 versus P2 is

inf
ψ

{
P1(ψ(X) 6= 1) + P2(ψ(X) 6= 2)

}
= exp

(
−λ

2
|µ1 − µ2|

)
.

Exercise 2.5 (Log-sum inequality): Let a1, . . . , an and b1, . . . , bn be non-negative reals. Show
that

n∑
i=1

ai log
ai
bi
≥
( n∑
i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

.

(Hint: use the convexity of the function x 7→ − log(x).)

Exercise 2.6: Given quantizers g1 and g2, we say that g1 is a finer quantizer than g2 under the
following condition: assume that g1 induces the partition A1, . . . , An and g2 induces the partition
B1, . . . , Bm; then for any of the sets Bi, there are exists some k and sets Ai1 , . . . , Aik such that
Bi = ∪kj=1Aij . We let g1 ≺ g2 denote that g1 is a finer quantizer than g2. Prove

(a) Finer partitions increase the KL divergence: if g1 ≺ g2,

Dkl (P ||Q | g2) ≤ Dkl (P ||Q | g1) .

(b) If X is discrete (so P and Q have p.m.f.s p and q) then

Dkl (P ||Q) =
∑
x

p(x) log
p(x)

q(x)
.

Exercise 2.7 (f -divergences generalize standard divergences): Show the following properties of
f -divergences:
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(a) If f(t) = |t− 1|, then Df (P ||Q) = 2 ‖P −Q‖TV.

(b) If f(t) = t log t, then Df (P ||Q) = Dkl (P ||Q).

(c) If f(t) = t log t− log t, then Df (P ||Q) = Dkl (P ||Q) +Dkl (Q||P ).

(d) For any convex f satisfying f(1) = 0, Df (P ||Q) ≥ 0. (Hint: use Jensen’s inequality.)

Exercise 2.8 (Generalized “log-sum” inequalities): Let f : R+ → R be an arbitrary convex
function.

(a) Let ai, bi, i = 1, . . . , n be non-negative reals. Prove that( n∑
i=1

ai

)
f

(∑n
i=1 bi∑n
i=1 ai

)
≤

n∑
i=1

aif

(
bi
ai

)
.

(b) Generalizing the preceding result, let a : X → R+ and b : X → R+, and let µ be a finite
measure on X with respect to which a is integrable. Show that∫

a(x)dµ(x)f

(∫
b(x)dµ(x)∫
a(x)dµ(x)

)
≤
∫
a(x)f

(
b(x)

a(x)

)
dµ(x).

If you are unfamiliar with measure theory, prove the following essentially equivalent result: let
u : X → R+ satisfy

∫
u(x)dx <∞. Show that∫

a(x)u(x)dxf

(∫
b(x)u(x)dx∫
a(x)u(x)dx

)
≤
∫
a(x)f

(
b(x)

a(x)

)
u(x)dx

whenever
∫
a(x)u(x)dx <∞. (It is possible to demonstrate this remains true under appropriate

limits even when
∫
a(x)u(x)dx = +∞, but it is a mess.)

(Hint: use the fact that the perspective of a function f , defined by h(x, t) = tf(x/t) for t > 0, is
jointly convex in x and t (see Proposition B.3.12).

Exercise 2.9 (Data processing and f -divergences I): As with the KL-divergence, given a quantizer
g of the set X , where g induces a partition A1, . . . , Am of X , we define the f -divergence between
P and Q conditioned on g as

Df (P ||Q | g) :=
m∑
i=1

Q(Ai)f

(
P (Ai)

Q(Ai)

)
=

m∑
i=1

Q(g−1({i}))f
(
P (g−1({i}))
Q(g−1({i}))

)
.

Given quantizers g1 and g2, we say that g1 is a finer quantizer than g2 under the following condition:
assume that g1 induces the partition A1, . . . , An and g2 induces the partition B1, . . . , Bm; then for
any of the sets Bi, there are exists some k and sets Ai1 , . . . , Aik such that Bi = ∪kj=1Aij . We let
g1 ≺ g2 denote that g1 is a finer quantizer than g2.

(a) Let g1 and g2 be quantizers of the set X , and let g1 ≺ g2, meaning that g1 is a finer quantization
than g2. Prove that

Df (P ||Q | g2) ≤ Df (P ||Q | g1) .
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Equivalently, show that whenever A and B are collections of sets partitioning X , but A is a
finer partition of X than B, that∑

B∈B
Q(B)f

(
P (B)

Q(B)

)
≤
∑
A∈A

Q(A)f

(
P (A)

Q(A)

)
.

(Hint: Use the result of Question 2.8(a)).

(b) Suppose that X is countable (or finite) so that P and Q have p.m.f.s p and q. Show that

Df (P ||Q) =
∑
x

q(x)f

(
p(x)

q(x)

)
,

where on the left we are using the partition definition (2.2.3); you should show that the partition
into discrete parts of X achieves the supremum. You may assume that X is finite. (Though
feel free to prove the result in the case that X is infinite.)

Exercise 2.10 (General data processing inequalities): Let f be a convex function satisfying
f(1) = 0. Let K be a Markov transition kernel from X to Z, that is, K(·, x) is a probability
distribution on Z for each x ∈ X . (Written differently, we have X → Z, and conditioned on X = x,
Z has distribution K(·, x), so that K(A, x) is the probability that Z ∈ A given X = x.)

(a) Define the marginals KP (A) =
∫
K(A, x)p(x)dx and KQ(A) =

∫
K(A, x)q(x)dx. Show that

Df (KP ||KQ) ≤ Df (P ||Q) .

Hint: by equation (2.2.3), w.l.o.g. we may assume that Z is finite and Z = {1, . . . ,m}; also
recall Question 2.8.

(b) Let X and Y be random variables with joint distribution PXY and marginals PX and PY .
Define the f -information between X and Y as

If (X;Y ) := Df (PXY ||PX × PY ) .

Use part (a) to show the following general data processing inequality: if we have the Markov
chain X → Y → Z, then

If (X;Z) ≤ If (X;Y ).

Exercise 2.11 (Convexity of f -divergences): Prove Proposition 2.2.11. Hint: Use Question 2.8.

Exercise 2.12 (Variational forms of KL divergence): Let P and Q be arbitrary distributions on a
common space X . Prove the following variational representation, known as the Donsker-Varadhan
theorem, of the KL divergence:

Dkl (P ||Q) = sup
f :EQ[ef(X)]<∞

{
EP [f(X)]− logEQ[exp(f(X))]

}
.

You may assume that P and Q have densities.
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Exercise 2.13: Let P and Q have densities p and q with respect to the base measure µ over the
set X . (Recall that this is no loss of generality, as we may take µ = P + Q.) Define the support
suppP := {x ∈ X : p(x) > 0}. Show that

Dkl (P ||Q) ≥ log
1

Q(suppP )
.

Exercise 2.14: Let P1 be N(θ1,Σ1) and P2 be N(θ2,Σ2), where Σi � 0 are positive definite
matrices. Give Dkl (P1||P2).

Exercise 2.15: Let {Pv}v∈V be an arbitrary collection of distributions on a space X and µ be a
probability measure on V. Show that if V ∼ µ and conditional on V = v, we draw X ∼ Pv, then

(a) I(X;V ) =
∫
Dkl

(
Pv||P

)
dµ(v), where P =

∫
Pvdµ(v) is the (weighted) average of the Pv. You

may assume that V is discrete if you like.

(b) For any distribution Q on X , I(X;V ) =
∫
Dkl (Pv||Q) dµ(v) − Dkl

(
P ||Q

)
. Conclude that

I(X;V ) ≤
∫
Dkl (Pv||Q) dµ(v), or, equivalently, P minimizes

∫
Dkl (Pv||Q) dµ(v) over all prob-

abilities Q.

Exercise 2.16 (The triangle inequality for variation distance): Let P and Q be distributions
on Xn

1 = (X1, . . . , Xn) ∈ X n, and let Pi(· | xi−1
1 ) be the conditional distribution of Xi given

Xi−1
1 = xi−1

1 (and similarly for Qi). Show that

‖P −Q‖TV ≤
n∑
i=1

EP
[ ∥∥Pi(· | Xi−1

1 )−Qi(· | Xi−1
1 )

∥∥
TV

]
,

where the expectation is taken over Xi−1
1 distributed according to P .

Exercise 2.17: Let h(p) = −p log p− (1− p) log(1− p). Show that h(p) ≥ 2 log 2 ·min{p, 1− p}.

Exercise 2.18 (Lin [132], Theorem 8): Let h(p) = −p log p − (1 − p) log(1 − p). Show that
h(p) ≤ 2 log 2 ·

√
p(1− p).

Exercise 2.19 (Proving Pinsker’s inequality via data processing): We work through a proof of
Proposition 2.2.8.(a) using the data processing inequality for f -divergences (Proposition 2.2.13).

(a) Define Dkl (p||q) = p log p
q + (1 − p) log 1−p

1−q . Argue that to prove Pinsker’s inequality (2.2.10),

it is enough to show that (p− q)2 ≤ 1
2Dkl (p||q).

(b) Define the negative binary entropy h(p) = p log p+ (1− p) log(1− p). Show that

h(p) ≥ h(q) + h′(q)(p− q) + 2(p− q)2

for any p, q ∈ [0, 1].

(c) Conclude Pinsker’s inequality (2.2.10).

JCD Comment: Below are a few potential questions
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Exercise 2.20: Use the paper “A New Metric for Probability Distributions” by Dominik Endres
and Johannes Schindelin to prove that if V ∼ Uniform{0, 1} and X | V = v ∼ Pv, then

√
I(X;V )

is a metric on distributions. (Said differently, Djs (P ||Q)1/2 is a metric on distributions, and it
generates the same topology as the TV-distance.)

Exercise 2.21: Relate the generalized Jensen-Shannon divergence between m distributions to
redundancy in encoding.
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Chapter 3

Exponential families and statistical
modeling

Our second introductory chapter focuses on readers who may be less familiar with statistical mod-
eling methodology and the how and why of fitting different statistical models. As in the preceding
introductory chapter on information theory, this chapter will be a fairly terse blitz through the main
ideas. Nonetheless, the ideas and distributions here should give us something on which to hang our
hats, so to speak, as the distributions and models provide the basis for examples throughout the
book. Exponential family models form the basis of much of statistics, as they are a natural step
away from the most basic families of distributions—Gaussians—which admit exact computations
but are brittle, to a more flexible set of models that retain enough analytical elegance to permit
careful analyses while giving power in modeling. A key property is that fitting exponential family
models reduces to the minimization of convex functions—convex optimization problems—an oper-
ation we treat as a technology akin to evaluating a function like sin or cos. This perspective (which
is accurate enough) will arise throughout this book, and informs the philosophy we adopt that once
we formulate a problem as convex, it is solved.

3.1 Exponential family models

We begin by defining exponential family distributions, giving several examples to illustrate a few
of their properties. There are three key objects when defining a d-dimensional exponential family
distribution on an underlying space X : the sufficient statistic φ : X → Rd representing what we
model, a canonical parameter vector θ ∈ Rd, and a carrier h : X → R+.

In the discrete case, where X is a discrete set, the exponential family associated with the
sufficient statistic φ and carrier h has probability mass function

pθ(x) = h(x) exp (〈θ, φ(x)〉 −A(θ)) ,

where A is the log-partition-function, sometimes called the cumulant generating function, with

A(θ) := log
∑
x∈X

h(x) exp(〈θ, φ(x)〉).

In the continuous case, pθ is instead a density on X ⊂ Rk, and pθ takes the identical form above
but

A(θ) = log

∫
X
h(x) exp(〈θ, φ(x)〉)dx.
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We can abstract away from this distinction between discrete and continuous distributions by making
the definition measure-theoretic, which we do here for completeness. (But recall the remarks in
Section 1.3.)

With our notation, we have the following definition.

Definition 3.1. The exponential family associated with the function φ and base measure µ is
defined as the set of distributions with densities pθ with respect to µ, where

pθ(x) = exp (〈θ, φ(x)〉 −A(θ)) , (3.1.1)

and the function A is the log-partition-function (or cumulant function)

A(θ) := log

∫
X

exp (〈θ, φ(x)〉) dµ(x) (3.1.2)

whenever A is finite (and is +∞ otherwise). The family is regular if the domain

Θ := {θ | A(θ) <∞}

is open.

In Definition 3.1, we have included the carrier h in the base measure µ, and frequently we will give
ourselves the general notation

pθ(x) = h(x) exp(〈θ, φ(x)〉 −A(θ)).

In some scenarios, it may be convient to re-parameterize the problem in terms of some function
η(θ) instead of θ itself; we will not worry about such issues and simply use the formulae that are
most convenient.

We now give a few examples of exponential family models.

Example 3.1.1 (Bernoulli distribution): In this case, we have X ∈ {0, 1} and P (X = 1) = p
for some p ∈ [0, 1] in the classical version of a Bernoulli. Thus we take µ to be the counting
measure on {0, 1}, and by setting θ = log p

1−p to obtain a canonical representation, we have

P (X = x) = p(x) = px(1− p)1−x = exp(x log p− x log(1− p))

= exp

(
x log

p

1− p
+ log(1− p)

)
= exp

(
xθ − log(1 + eθ)

)
.

The Bernoulli family thus has log-partition function A(θ) = log(1 + eθ). 3

Example 3.1.2 (Poisson distribution): The Poisson distribution (for count data) is usually
parameterized by some λ > 0, and for x ∈ N has distribution Pλ(X = x) = (1/x!)λxe−λ. Thus
by taking µ to be counting (discrete) measure on {0, 1, . . .} and setting θ = log λ, we find the
density (probability mass function in this case)

p(x) =
1

x!
λxe−λ = exp(x log λ− λ)

1

x!
= exp(xθ − eθ) 1

x!
.

Notably, taking h(x) = (x!)−1 and log-partition A(θ) = eθ, we have probability mass function
pθ(x) = h(x) exp(θx−A(θ)). 3
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Example 3.1.3 (Normal distribution, mean parameterization): For the d-dimensional normal
distribution, we take µ to be Lebesgue measure on Rd. If we fix the covariance and vary only
the mean µ in the family N(µ,Σ), then X ∼ N(µ,Σ) has density

pµ(x) = exp

(
−1

2
(x− µ)>Σ−1(x− µ)− 1

2
log det(2πΣ)

)
.

Setting h(x) = −1
2x
>Σ−1x and reparameterizing θ = Σ−1µ, we obtain

pθ(x) = exp

(
−1

2
x>Σ−1x− 1

2
log det(2πΣ)

)
︸ ︷︷ ︸

=:h(x)

exp

(
x>θ − 1

2
θ>Σθ

)
.

In particular, we have carrier h(x) = exp(−1
2x
>Σ−1x)/((2π)d/2 det(Σ)), sufficient statistic

φ(x) = x, and log partition A(θ) = 1
2θ
>Σ−1θ. 3

Example 3.1.4 (Normal distribution): Let X ∼ N(µ,Σ). We may re-parameterize this as
as Θ = Σ−1 and θ = Σ−1µ, and we have density

pθ,Θ(x) ∝ exp

(
〈θ, x〉 − 1

2
〈xx>,Θ〉

)
,

where 〈·, ·〉 denotes the Euclidean inner product. See Exercise 3.1. 3

In some cases, it is analytically convenient to include a few more conditions on the exponential
family.

Definition 3.2. Let {Pθ}θ∈Θ be an exponential family as in Definition 3.1. The sufficient statistic
φ is minimal if Θ = domA ⊂ Rd is full-dimensional and there exists no vector u such that

〈u, φ(x)〉 is constant µ-almost surely.

Definition 3.2 is essentially equivalent to stating that φ(x) = (φ1(x), . . . , φd(x)) has linearly inde-
pendent components when viewed as vectors [φi(x)]x∈X . While we do not prove this, via a suitable
linear transformation—a variant of Gram-Schmidt orthonormalization—one may modify any non-
minimal exponential family {Pθ} into an equivalent minimal exponential family {Qη}, meaning
that the two collections satisfy the equality {Pθ} = {Qη} (see Brown [39, Chapter 1]).

3.2 Why exponential families?

There are many reasons for us to study exponential families. The first major reason is their
analytical tractability: as the normal distribution does, they often admit relatively straightforward
computation, therefore forming a natural basis for modeling decisions. Their analytic tractability
has made them the objects of substantial study for nearly the past hundred years; Brown [39]
provides a deep and elegant treatment. Moreover, as we see later, they arise as the solutions to
several natural optimization problems on the space of probability distributions, and they also enjoy
certain robustness properties related to optimal Bayes’ procedures (there is, of course, more to
come on this topic).
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Here, we enumerate a few of their key analytical properties, focusing on the cumulant generating
(or log partition) function A(θ) = log

∫
e〈θ,φ(x)〉dµ(x). We begin with a heuristic calculation, where

we assume that we exchange differentiation and integration. Assuming that this is the case, we
then obtain the important expectation and covariance relationships that

∇A(θ) =
1∫

e〈θ,φ(x)〉dµ(x)

∫
∇θe〈θ,φ(x)〉dµ(x)

= e−A(θ)

∫
∇θe〈θ,φ(x)〉dµ(x) =

∫
φ(x)e〈θ,φ(x)〉−A(θ)dµ(x) = Eθ[φ(X)]

because e〈θ,φ(x)〉−A(θ) = pθ(x). A completely similar (and still heuristic, at least at this point)
calculation gives

∇2A(θ) = Eθ[φ(X)φ(X)>]− Eθ[φ(X)]Eθ[φ(X)]> = Covθ(φ(X)).

That these identities hold is no accident and is central to the appeal of exponential family models.
The first and, from our perspective, most important result about exponential family models is

their convexity. While (assuming the differentiation relationships above hold) the differentiation
identity that ∇2A(θ) = Covθ(φ(X)) � 0 makes convexity of A immediate, one can also provide a
direct argument without appealing to differentiation.

Proposition 3.2.1. The cumulant-generating function θ 7→ A(θ) is convex, and it is strictly convex
if and only if Covθ(φ(X)) is positive definite for all θ ∈ domA.

Proof Let θλ = λθ1 + (1−λ)θ2, where θ1, θ2 ∈ Θ. Then 1/λ ≥ 1 and 1/(1−λ) ≥ 1, and Hölder’s
inequality implies

log

∫
exp(〈θλ, φ(x)〉)dµ(x) = log

∫
exp(〈θ1, φ(x)〉)λ exp(〈θ2, φ(x)〉)1−λdµ(x)

≤ log

(∫
exp(〈θ1, φ(x)〉)

λ
λdµ(x)

)λ(∫
exp(〈θ2, φ(x)〉)

1−λ
1−λdµ(x)

)1−λ

= λ log

∫
exp(〈θ1, φ(x)〉)dµ(x) + (1− λ) log

∫
exp(〈θ2, φ(x)〉)dµ(x),

as desired. The strict convexity will be a consequence of Proposition 3.2.2 to come, as there we
formally show that ∇2A(θ) = Covθ(φ(X)).

We now show that A(θ) is indeed infinitely differentiable and how it generates the moments of
the sufficient statistics φ(x). To describe the properties, we provide a bit of notation related to
tensor products: for a vector x ∈ Rd, we let

x⊗k := x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
k times

denote the kth order tensor, or multilinear operator, that for v1, . . . , vk ∈ Rd satisfies

x⊗k(v1, . . . , vk) := 〈x, v1〉 · · · 〈x, vk〉 =

k∏
i=1

〈x, vi〉.
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When k = 2, this is the familiar outer product x⊗2 = xx>. (More generally, one may think of x⊗k

as a d×d×· · ·×d box, where the (i1, . . . , ik) entry is [x⊗k]i1,...,ik = xi1 · · ·xik .) With this notation,
our first key result regards the differentiability of A, where we can compute (all) derivatives of eA(θ)

by interchanging integration and differentiation.

Proposition 3.2.2. The cumulant-generating function θ 7→ A(θ) is infinitely differentiable on the
interior of its domain Θ := {θ ∈ Rd : A(θ) <∞}. The moment-generating function

M(θ) :=

∫
exp(〈θ, φ(x)〉)dµ(x)

is analytic on the set ΘC := {z ∈ Cd | Re z ∈ Θ}. Additionally, the derivatives of M are computed
by passing through the integral, that is,

∇kθM(θ) = ∇kθ
∫
e〈θ,φ(x)〉dµ(x) =

∫
∇kθe〈θ,φ(x)〉dµ(x)

=

∫
φ(x)⊗k exp(〈θ, φ(x)〉)dµ(x).

The proof of the proposition is involved and requires complex analysis, so we defer it to Sec. 3.6.1.
As particular consequences of Proposition 3.2.2, we can rigorously demonstrate the expectation

and covariance relationships that

∇A(θ) =
1∫

e〈θ,φ(x)〉dµ(x)

∫
∇e〈θ,φ(x)〉dµ(x) =

∫
φ(x)pθ(x)dµ(x) = Eθ[φ(X)]

and

∇2A(θ) =
1∫

e〈θ,φ(x)〉dµ(x)

∫
φ(x)⊗2e〈θ,φ(x)〉dµ(x)−

(
∫
φ(x)e〈θ,φ(x)〉dµ(x))⊗2

(
∫
e〈θ,φ(x)〉dµ(x))2

= Eθ[φ(X)φ(X)>]− Eθ[φ(X)]Eθ[φ(X)]>

= Covθ(φ(X)).

Minimal exponential families (Definition 3.2) also enjoy a few additional regularity properties.
Recall that A is strictly convex if

A(λθ0 + (1− λ)θ1) < λA(θ0) + (1− λ)A(θ1)

whenever λ ∈ (0, 1) and θ0, θ1 ∈ domA. We have the following proposition.

Proposition 3.2.3. Let {Pθ} be a regular exponential family. The log partition function A is
strictly convex if and only if {Pθ} is minimal.

Proof If the family is minimal, then Varθ(u
>φ(X)) > 0 for any vector u, while Varθ(u

>φ(X)) =
u>∇2A(θ)u. This implies the strict positive definiteness ∇2A(θ) � 0, which is equivalent to strict
convexity (see Corollary B.3.2 in Appendix B.3.1). Conversely, if ∇2A(θ) � 0 for all θ ∈ Θ, then
Varθ(u

>φ(X)) > 0 for all u 6= 0 and so u>φ(x) is non-constant in x.
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3.2.1 Fitting an exponential family model

The convexity and differentiability properties make exponential family models especially attractive
from a computational perspective. A major focus in statistics is the convergence of estimates of
different properties of a population distribution P and whether these estimates are computable.
We will develop tools to address the first of these questions, and attendant optimality guarantees,
throughout this book. To set the stage for what follows, let us consider what this entails in the
context of exponential family models.

Suppose we have a population P (where, for simplicity, we assume P has a density p), and for
a given exponential family P with densities {pθ}, we wish to find the model closest to P . Then it
is natural (if we take on faith that the information-theoretic measures we have developed are the
“right” ones) find the distribution Pθ ∈ P closest to P in KL-divergence, that is, to solve

minimize
θ

Dkl (P ||Pθ) =

∫
p(x) log

p(x)

pθ(x)
dx. (3.2.1)

This is evidently equivalent to minimizing

−
∫
p(x) log pθ(x)dx =

∫
p(x) [−〈θ, φ(x)〉+A(θ)] dx = −〈θ,EP [φ(X)]〉+A(θ).

This is always a convex optimization problem (see Appendices B and C for much more on this), as A
is convex and the first term is linear, and so has no non-global optima. Here and throughout, as we
mention in the introductory remarks to this chapter, we treat convex optimization as a technology:
as long as the dimension of a problem is not too large and its objective can be evaluated, it is
(essentially) computationally trivial.

Of course, we never have access to the population P fully; instead, we receive a sample
X1, . . . , Xn from P . In this case, a natural approach is to replace the expected (negative) log
likelihood above with its empirical version and solve

minimize
θ

−
n∑
i=1

log pθ(Xi) =

n∑
i=1

[−〈θ, φ(Xi)〉+A(θ)], (3.2.2)

which is still a convex optimization problem (as the objective is convex in θ). The maximum
likelihood estimate is any vector θ̂n minimizing the negative log likelihood (3.2.2), which by setting
gradients to 0 is evidently any vector satisfying

∇A(θ̂n) = E
θ̂n

[φ(X)] =
1

n

n∑
i=1

φ(Xi). (3.2.3)

In particular, we need only find a parameter θ̂n matching moments of the empirical distribution
of the observed Xi ∼ P . This θ̂n is unique whenever Covθ(φ(X)) � 0 for all θ, that is, when
the covariance of φ is full rank in the exponential family model, because then the objective in the
minimization problem (3.2.2) is strictly convex.

Let us proceed heuristically for a moment to develop a rough convergence guarantee for the
estimator θ̂n; the next paragraph assumes a comfort with some of classical asymptotic statistics
(and the central limit theorem) and is not essential for what comes later. Then we can see how
minimizers of the problem (3.2.2) converge to their population counterparts. Assume that the data
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Xi are i.i.d. from an exponential family model Pθ? . Then we expect that the maximum likelihood
estimate θ̂n should converge to θ?, and so

1

n

n∑
i=1

φ(Xi) = ∇A(θ̂n) = ∇A(θ?) + (∇2A(θ?) + o(1))(θ̂n − θ?).

But of course, ∇A(θ?) = Eθ? [φ(X)], and so the central limit theorem gives that

1

n

n∑
i=1

(φ(Xi)−∇A(θ?))
·∼ N

(
0, n−1Covθ?(φ(X))

)
= N

(
0, n−1∇2A(θ?)

)
,

where
·∼means “is approximately distributed as.” Multiplying by (∇2A(θ?)+o(1))−1 ≈ ∇2A(θ?)−1,

we thus see (still working in our heuristic)

θ̂n − θ? = (∇2A(θ?) + o(1))−1 1

n

n∑
i=1

(φ(Xi)−∇A(θ?))

·∼ N
(
0, n−1 · ∇2A(θ?)−1

)
, (3.2.4)

where we use that BZ ∼ N(0, BΣB>) if Z ∼ N(0,Σ). (It is possible to make each of these steps
fully rigorous.) Thus the cumulant generating function A governs the error we expect in θ̂n − θ?.

Much of the rest of this book explores properties of these types of minimization problems: at
what rates do we expect θ̂n to converge to a global minimizer of problem (3.2.1)? Can we show
that these rates are optimal? Is this the “right” strategy for choosing a parameter? Exponential
families form a particular working example to motivate this development.

3.3 Divergence measures and information for exponential families

Their nice analytic properties mean that exponential family models also play nicely with the in-
formation theoretic tools we develop. Indeed, consider the KL-divergence between two exponential
family distributions Pθ and Pθ+∆, where ∆ ∈ Rd. Then we have

Dkl (Pθ||Pθ+∆) = Eθ [〈θ, φ(X)〉 −A(θ)− 〈θ + ∆, φ(X)〉+A(θ + ∆)]

= A(θ + ∆)−A(θ)− Eθ[〈∆, φ(X)〉]
= A(θ + ∆)−A(θ)−∇A(θ)>∆.

Similarly, we have

Dkl (Pθ+∆||Pθ) = Eθ+∆ [〈θ + ∆, φ(X)〉 −A(θ + ∆)− 〈θ, φ(X)〉+A(θ)]

= A(θ)−A(θ + ∆) + Eθ+∆[〈∆, φ(X)〉]
= A(θ)−A(θ + ∆)−∇A(θ + ∆)>(−∆).

These identities give an immediate connection with convexity. Indeed, for a differentiable convex
function h, the first-order divergence associated with h is

Dh(u, v) = h(u)− h(v)− 〈∇h(v), u− v〉, (3.3.1)

which is always nonnegative, and is the gap between the linear approximation to the (convex)
function h and its actual value. In much of the statistical and machine learning literature, the
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divergence (3.3.1) is called a Bregman divergence, though we will use the more evocative first-
order divergence. These will appear frequently throughout the book and, more generally, appear
frequently in work on optimization and statistics.

JCD Comment: Put in a picture of a Bregman divergence

We catalog these results as the following proposition.

Proposition 3.3.1. Let {Pθ} be an exponential family model with cumulant generating function
A(θ). Then

Dkl (Pθ||Pθ+∆) = DA(θ + ∆, θ) and Dkl (Pθ+∆||Pθ) = DA(θ, θ + ∆).

Additionally, there exists a t ∈ [0, 1] such that

Dkl (Pθ||Pθ+∆) =
1

2
∆>∇2A(θ + t∆)∆,

and similarly, there exists a t ∈ [0, 1] such that

Dkl (Pθ+∆||Pθ) =
1

2
∆>∇2A(θ + t∆)∆.

Proof We have already shown the first two statements; the second two are applications of Tay-
lor’s theorem.

When the perturbation ∆ is small, that A is infinitely differentiable then gives that

Dkl (Pθ||Pθ+∆) =
1

2
∆>∇2A(θ)∆ +O(‖∆‖3),

so that the Hessian ∇2A(θ) tells quite precisely how the KL divergence changes as θ varies (locally).
As we saw already in Example 2.3.2 (and see the next section), when the KL-divergence between
two distributions is small, it is hard to test between them, and in the sequel, we will show converses
to this. The Hessian ∇2A(θ?) also governs the error in the estimate θ̂n− θ? in our heuristic (3.2.4).
When the Hessian ∇2A(θ) is quite positive semidefinite, the KL divergence Dkl (Pθ||Pθ+∆) is large,
and the asymptotic covariance (3.2.4) is small. For this—and other reasons we address later—for
exponential family models, we call

∇2A(θ) = Covθ(φ(X)) = Eθ[∇ log pθ(X)∇ log pθ(X)>] (3.3.2)

the Fisher information of the parameter θ in the model {Pθ}.

3.4 Generalized linear models and regression

We can specialize the general modeling strategies that exponential families provide to more directly
address prediction problems, where we wish to predict a target Y ∈ Y given covariates X ∈ X .
Here, we almost always have that Y is either discrete or continuous with Y ⊂ R. In this case, we
have a sufficient statistic φ : X ×Y → Rd, and we model Y | X = x via the generalized linear model
(or conditional exponential family model) if it has density or probability mass function

pθ(y | x) = exp
(
φ(x, y)>θ −A(θ | x)

)
h(y), (3.4.1)
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where as before h is the carrier and (in the case that Y ⊂ Rk)

A(θ | x) = log

∫
exp(φ(x, y)>θ)h(y)dy

or, in the discrete case,

A(θ | x) = log
∑
y

exp(φ(x, y)>θ)h(y).

The log partition function A(· | x) provides the same insights for the conditional models (3.4.1)
as it does for the unconditional exponential family models in the preceding sections. Indeed, as
in Propositions 3.2.1 and 3.2.2, the log partition A(· | x) is always C∞ on its domain and convex.
Moreover, it gives the expected moments of the sufficient statistic φ conditional on x, as

∇A(θ | x) = Eθ[φ(X,Y ) | X = x],

from which we can (typically) extract the mean or other statistics of Y conditional on x.
Three standard examples will be our most frequent motivators throughout this book: linear

regression, binary logistic regression, and multiclass logistic regression. We give these three, as
well as describing two more important examples involving modeling count data through Poisson
regression and making predictions for targets y known to live in a bounded set.

Example 3.4.1 (Linear regression): In linear regression, we wish to predict Y ∈ R from a
vector X ∈ Rd, and assume that Y | X = x follow the normal distribution N(θ>x, σ2). In this
case, we have

pθ(y | x) =
1√

2πσ2
exp

(
− 1

2σ2
(y − x>θ)2

)
= exp

(
1

σ2
yx>θ − 1

2σ2
θ>xx>θ

)
exp

(
− 1

2σ2
y2 +

1

2
log(2πσ2)

)
,

so that we have the exponential family representation (3.4.1) with φ(x, y) = 1
σ2xy, h(y) =

exp(− 1
2σ2 y

2 + 1
2 log(2πσ2)), and A(θ) = 1

2σ2 θ
>xx>θ. As ∇A(θ | x) = Eθ[φ(X,Y ) | X = x] =

1
σ2xEθ[Y | X = x], we easily recover Eθ[Y | X = x] = θ>x. 3

Frequently, we wish to predict binary or multiclass random variables Y . For example, consider
a medical application in which we wish to assess the probability that, based on a set of covariates
x ∈ Rd (say, blood pressure, height, weight, family history) and individual will have a heart attack
in the next 5 years, so that Y = 1 indicates heart attack and Y = −1 indicates not. The next
example shows how we might model this.

Example 3.4.2 (Binary logistic regression): If Y ∈ {−1, 1}, we model

pθ(y | x) =
exp(yx>θ)

1 + exp(yx>θ)
,

where the idea in the probability above is that if x>θ has the same sign as y, then the large
x>θy becomes the higher the probability assigned the label y; when x>θy < 0, the probability
is small. Of course, we always have pθ(y | x) + pθ(−y | x) = 1, and using the identity

yx>θ − log(1 + exp(yx>θ)) =
y + 1

2
x>θ − log(1 + exp(x>θ))
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we obtain the generalized linear model representation φ(x, y) = y+1
2 x and A(θ | x) = log(1 +

exp(x>θ)).
As an alternative, we could represent Y ∈ {0, 1} by

pθ(y | x) =
exp(yx>θ)

1 + exp(x>θ)
= exp

(
yx>θ − log(1 + ex

>θ)
)
,

which has the simpler sufficient statistic φ(x, y) = xy. 3

Instead of a binary prediction problem, in many cases we have a multiclass prediction problem,
where we seek to predict a label Y for an object x belonging to one of k different classes. For
example, in image recognition, we are given an image x and wish to identify the subject Y of the
image, where Y ranges over k classes, such as birds, dogs, cars, trucks, and so on. This too we can
model using exponential families.

Example 3.4.3 (Multiclass logistic regression): In the case that we have a k-class prediction
problem in which we wish to predict Y ∈ {1, . . . , k} from X ∈ Rd, we assign parameters
θy ∈ Rd to each of the classes y = 1, . . . , k. We then model

pθ(y | x) =
exp(θ>y x)∑k
j=1 exp(θ>j x)

= exp

θ>y x− log

( k∑
j=1

eθ
>
j x

) .

Here, the idea is that if θ>y x > θ>j x for all j 6= y, then the model assigns higher probability to

class y than any other class; the larger the gap between θ>y x and θ>j x, the larger the difference
in assigned probabilities. 3

Other approaches with these ideas allow us to model other situations. Poisson regression models
are frequent choices for modeling count data. For example, consider an insurance company that
wishes to issue premiums for shipping cargo in different seasons and on different routes, and so
wishes to predict the number of times a given cargo ship will be damaged by waves over a period
of service; we might represent this with a feature vector x encoding information about the ship to
be insured, typical weather on the route it will take, and the length of time it will be in service.
To model such counts Y ∈ {0, 1, 2, . . .}, we turn to Poisson regression.

Example 3.4.4 (Poisson regression): When Y ∈ N is a count, the Poisson distribution with

rate λ > 0 gives P (Y = y) = e−λλy

y! . Poisson regression models λ via eθ
>x, giving model

pθ(y | x) =
1

y!
exp

(
yx>θ − eθ>x

)
,

so that we have carrier h(y) = 1/y! and the simple sufficient statistic yx>θ. The log partition

function is A(θ | x) = eθ
>x. 3

Lastly, we consider a less standard example, but which highlights the flexibility of these models.
Here, we assume a linear regression problem but in which we wish to predict values Y in a bounded
range.

Example 3.4.5 (Bounded range regression): Suppose that we know Y ∈ [−b, b], but we wish
to model it via an exponential family model with density

pθ(y | x) = exp(yx>θ −A(θ | x))1 {y ∈ [−b, b]} ,
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which is non-zero only for −b ≤ y ≤ b. Letting s = x>θ for shorthand, we have∫ b

−b
eysdy =

1

s

[
ebs − e−bs

]
,

where the limit as s→ 0 is 2b; the (conditional) log partition function is thus

A(θ | x) =

{
log ebθ

>x−e−bθ>x
θ>x

if θ>x 6= 0

log(2b) otherwise.

While its functional form makes this highly non-obvious, our general results guarantee that
A(θ | x) is indeed C∞ and convex in θ. We have ∇A(θ | x) = xEθ[Y | X = x] because
φ(x, y) = xy, and we can therefore immediately recover Eθ[Y | X = x]. Indeed, set s = θ>x,
and without loss of generality assume s 6= 0. Then

E[Y | x>θ = s] =
∂

∂s
log

ebs − e−bs

s
=
b(ebs + e−bs)

ebs − e−bs
− 1

s
,

which increases from −b to b as s = x>θ increases from −∞ to +∞. 3

3.4.1 Fitting a generalized linear model from a sample

We briefly revisit the approach in Section 3.2.1 for fitting exponential family models in the context
of generalized linear models. In this case, the analogue of the maximum likelihood problem (3.2.2)
is to solve

minimize
θ

−
n∑
i=1

log pθ(Yi | Xi) =

n∑
i=1

[
−φ(Xi, Yi)

>θ +A(θ | Xi)
]
.

This is a convex optimization problem with C∞ objective, so we can treat solving it as an (essen-
tially) trivial problem unless the sample size n or dimension d of θ are astronomically large.

As in the moment matching equality (3.2.3), a necessary and sufficient condition for θ̂n to
minimize the above objective is that it achieves 0 gradient, that is,

1

n

n∑
i=1

∇A(θ̂n | Xi) =
1

n

n∑
i=1

φ(Xi, Yi).

Once again, to find θ̂n amounts to matching moments, as ∇A(θ | Xi) = E[φ(X,Y ) | X = Xi], and
we still enjoy the convexity properties of the standard exponential family models.

In general, we of course do not expect any exponential family or generalized linear model (GLM)
to have perfect fidelity to the world: all models are in accurate (but many are useful!). Nonetheless,
we can still fit any of the GLM models in Examples 3.4.1–3.4.5 to data of the appropriate type. In
particular, for the logarithmic loss `(θ;x, y) = − log pθ(y | x), we can define the empirical loss

Ln(θ) :=
1

n

n∑
i=1

`(θ;Xi, Yi).

Then, as n → ∞, we expect that Ln(θ) → E[`(θ;X,Y )], so that the minimizing θ should give the
best predictions possible according to the loss `. We shall therefore often be interested in such
convergence guarantees and the deviations of sample quantities (like Ln) from their population
counterparts.
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3.5 Lower bounds on testing a parameter’s value

We give a bit of a preview here of the tools we will develop to prove fundamental limits in Part II of
the book, an hors d’oeuvres that points to the techniques we develop. In Section 2.3.1, we presented
Le Cam’s method and used it in Example 2.3.2 to give a lower bound on the probability of error in
a hypothesis test comparing two normal means. This approach extends beyond this simple case,
and here we give another example applying it to exponential family models.

We give a stylized version of the problem. Let {Pθ} be an exponential family model with
parameter θ ∈ Rd. Suppose for some vector v ∈ Rd, we wish to test whether v>θ > 0 or v>θ < 0 in
the model. For example, in the regression settings in Section 3.4, we may be interested in the effect
of a treatment on health outcomes. Then the covariates x contain information about an individual
with first index x1 corresponding to whether the individual is treated or not, while Y measures the
outcome of treatment; setting v = e1, we then wish to test whether there is a positive treatment
effect θ1 = e>1 θ > 0 or negative.

Abstracting away the specifics of the scenario, we ask the following question: given an exponen-
tial family {Pθ} and a threshold t of interest, at what separation δ > 0 does it become essentially
impossible to test

v>θ ≤ t versus v>θ ≥ t+ δ?

We give one approach to this using two-point hypothesis testing lower bounds. In this case, we
consider testing sequences of two alternatives

H0 : θ = θ0 versus H1,n : θ = θn

as n grows, where we observe a sample Xn
1 drawn i.i.d. either according to Pθ0 (i.e., H0) or Pθn

(i.e., H1,n). By choosing θn in a way that makes the separation v>(θn − θ0) large but testing H0

against H1,n challenging, we can then (roughly) identify the separation δ at which testing becomes
impossible.

Proposition 3.5.1. Let θ0 ∈ Rd. Then there exists a sequence of parameters θn with ‖θn − θ0‖ =
O(1
√
n), separation

v>(θn − θ0) =
1√
n

√
v>∇2A(θ0)−1v,

and for which

inf
Ψ
{Pθ0(Ψ(Xn

1 ) 6= 0) + Pθn(Ψ(Xn
1 ) 6= 1)} ≥ 1

2
+O(n−1/2).

Proof Let ∆ ∈ Rd be a potential perturbation to θ1 = θ0 + ∆, which gives separation δ =
v>θ1 − v>θ0 = v>∆. Let P0 = Pθ0 and P1 = Pθ1 . Then the smallest summed probability of error
in testing between P0 and P1 based on n observations Xn

1 is

inf
Ψ
{P0(Ψ(X1, . . . , Xn) 6= 0) + P1(Ψ(X1, . . . , Xn) 6= 1)} = 1− ‖Pn0 − Pn1 ‖TV

by Proposition 2.3.1. Following the approach of Example 2.3.2, we apply Pinsker’s inequal-
ity (2.2.10) and use that the KL-divergence tensorizes to find

2 ‖Pn0 − Pn1 ‖
2
TV ≤ nDkl (P0||P1) = nDkl (Pθ0 ||Pθ0+∆) = nDA(θ0 + ∆, θ0),

where the final equality follows from the equivalence between KL and first-order divergences for
exponential families (Proposition 3.3.1).
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To guarantee that the summed probability of error is at least 1
2 , that is, ‖Pn0 − Pn1 ‖TV ≤

1
2 ,

it suffices to choose ∆ satisfying nDA(θ0 + ∆, θ0) ≤ 1
2 . So to maximize the separation v>∆ while

guaranteeing a constant probability of error, we (approximately) solve

maximize v>∆
subject to DA(θ0 + ∆, θ0) ≤ 1

2n .

Now, consider that DA(θ0 + ∆, θ0) = 1
2∆>∇2A(θ0)∆ + O(‖∆‖3). Ignoring the higher order term,

we consider maximizing v>∆ subject to ∆>∇2A(θ0)∆ ≤ 1
n . A Lagrangian calculation shows that

this has solution

∆ =
1√
n

1√
v>∇2A(θ0)−1v

∇2A(θ0)−1v.

With this choice, we have separation δ = v>∆ =
√
v>∇2A(θ0)−1v/n, and DA(θ0 + ∆, θ0) =

1
2n +O(1/n3/2). The summed probability of error is at least

1− ‖Pn0 − Pn1 ‖TV ≥ 1−
√

n

4n
+O(n−1/2) = 1−

√
1

4
+O(n−1/2) =

1

2
+O(n−1/2)

as desired.

Let us briefly sketch out why Proposition 3.5.1 is the “right” answer using the heuristics in Sec-
tion 3.2.1. For an unknown parameter θ in the exponential family model Pθ, we observe X1, . . . , Xn,
and wish to test whether v>θ ≥ t for a given threshold t. Call our null H0 : v>θ ≤ t, and assume
we wish to test at an asymptotic level α > 0, meaning the probability the test falsely rejects H0 is
(as n → ∞) is at most α. Assuming the heuristic (3.2.4), we have the approximate distributional
equality

v>θ̂n
·∼ N

(
v>θ,

1

n
v>∇2A(θ̂n)−1v

)
.

Note that we have θ̂n on the right side of the distribution; it is possible to make this rigorous, but
here we target only intuition building. A natural asymptotically level α test is then

Tn :=

{
Reject if v>θ̂n ≥ t+ z1−α

√
v>∇2A(θ̂n)−1v/n

Accept otherwise,

where z1−α is the 1 − α quantile of a standard normal, P(Z ≥ z1−α) = α for Z ∼ N(0, 1). Let θ0

be such that v>θ0 = t, so H0 holds. Then

Pθ0(Tn rejects) = Pθ0

(√
n · v>(θ̂n − θ0) ≥ z1−α

√
v>∇2A(θ̂n)−1v

)
→ α.

At least heuristically, then, this separation δ =
√
v>A(θ0)−1v/

√
n is the fundamental separation

in parameter values at which testing becomes possible (or below which it is impossible).
As a brief and suggestive aside, the precise growth of the KL-divergence Dkl (Pθ0+∆||Pθ0) =

1
2∆>∇2A(θ0)∆ +O(‖∆‖3) near θ0 plays the fundamental role in both the lower bound and upper
bound on testing. When the Hessian ∇2A(θ0) is “large,” meaning it is very positive definite,
distributions with small parameter distances are still well-separated in KL-divergence, making
testing easy, while when ∇2A(θ0) is small (nearly indefinite), the KL-divergence can be small even
for large parameter separations ∆ and testing is hard. As a consequence, at least for exponential
family models, the Fisher information (3.3.2), which we defined as ∇2A(θ) = Covθ(φ(X)), plays a
central role in testing and, as we see later, estimation.
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3.6 Deferred proofs

We collect proofs that rely on background we do not assume for this book here.

3.6.1 Proof of Proposition 3.2.2

We follow Brown [39]. We demonstrate only the first-order differentiability using Lebesgue’s domi-
nated convergence theorem , as higher orders and the interchange of integration and differentiation
are essentially identical. Demonstrating first-order complex differentiability is of course enough to
show that A is analytic.1 As the proof of Proposition 3.2.1 does not rely on analyticity of A, we
may use its results. Thus, let Θ = domA(·) in Rd, which is convex. We assume Θ has non-empty
interior (if the interior is empty, then the convexity of Θ means that it must lie in a lower dimen-
sional subspace; we simply take the interior relative to that subspace and may proceed). We claim
the following lemma, which is the key to applying dominated convergence; we state it first for Rd.

Lemma 3.6.1. Consider any collection {θ1, . . . , θm} ⊂ Θ, and let Θ0 = Conv{θi}mi=1 and C ⊂
int Θ0. Then for any k ∈ N, there exists a constant K = K(C, k, {θi}) such that for all θ0 ∈ C,

‖x‖k exp(〈θ0, x〉) ≤ K max
j≤m

exp(〈θj , x〉).

Proof Let B = {u ∈ Rd | ‖u‖ ≤ 1} be the unit ball in Rd. For any ε > 0, there exists a K = K(ε)
such that ‖x‖k ≤ Keε‖x‖ for all x ∈ Rd. As C ⊂ int Conv(Θ0), there exists an ε > 0 such that for
all θ0 ∈ C, θ0 + 2εB ⊂ Θ0, and by construction, for any u ∈ B we can write θ0 + 2εu =

∑m
j=1 λjθj

for some λ ∈ Rm+ with 1>λ = 1. We therefore have

‖x‖k exp(〈θ0, x〉) ≤ ‖x‖k sup
u∈B

exp(〈θ0 + εu, x〉)

= ‖x‖k exp(ε ‖x‖) exp(〈θ0, x〉) ≤ K exp(2ε ‖x‖) exp(〈θ0, x〉)
= K sup

u∈B
exp(〈θ0 + 2εu, x〉).

But using the convexity of t 7→ exp(t) and that θ0 + 2εu ∈ Θ0, the last quantity has upper bound

sup
u∈B

exp(〈θ0 + 2εu, x〉) ≤ max
j≤m

exp(〈θj , x〉).

This gives the desired claim.

A similar result is possible with differences of exponentials:

Lemma 3.6.2. Under the conditions of Lemma 3.6.1, there exists a K such that for any θ, θ0 ∈ C

e〈θ,x〉 − e〈θ0,x〉

‖θ − θ0‖
≤ K max

j≤m
e〈θj ,x〉.

Proof We write

exp(〈θ, x〉)− exp(〈θ0, x〉)
‖θ − θ0‖

=
exp(〈θ − θ0, x〉)− 1

‖θ − θ0‖
exp(〈θ0, x〉)

1For complex functions, Osgood’s lemma shows that if A is continuous and holomorphic in each variable individ-
ually, it is holomorphic. For a treatment of such ideas in an engineering context, see, e.g. [92, Ch. 1].
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so that the lemma is equivalent to showing that

|e〈θ−θ0,x〉 − 1|
‖θ − θ0‖

≤ K max
j≤m

exp(〈θj − θ0, x〉).

From this, we can assume without loss of generality that θ0 = 0 (by shifting). Now note that
by convexity e−a ≥ 1 − a for all a ∈ R, so 1 − ea ≤ |a| when a ≤ 0. Conversely, if a > 0, then
aea ≥ ea − 1 (note that d

da(aea) = aea + ea ≥ ea), so dividing by ‖x‖, we see that

|e〈θ,x〉 − 1|
‖θ‖ ‖x‖

≤ |e
〈θ,x〉 − 1|
|〈θ, x〉|

≤ max{〈θ, x〉e〈θ,x〉, |〈θ, x〉|}
|〈θ, x〉|

≤ e〈θ,x〉 + 1.

As θ ∈ C, Lemma 3.6.1 then implies that

|e〈θ,x〉 − 1|
‖θ‖

≤ ‖x‖
(
e〈θ,x〉 + 1

)
≤ K max

j
e〈θj ,x〉,

as desired.

With the lemmas in hand, we can demonstrate a dominating function for the derivatives. Indeed,
fix θ0 ∈ int Θ and for θ ∈ Θ, define

g(θ, x) =
exp(〈θ, x〉)− exp(〈θ0, x〉)− exp(〈θ0, x〉)〈x, θ − θ0〉

‖θ − θ0‖
=
e〈θ,x〉 − e〈θ0,x〉 − 〈∇e〈θ0,x〉, θ − θ0〉

‖θ − θ0‖
.

Then limθ→θ0 g(θ, x) = 0 by the differentiability of t 7→ et. Lemmas 3.6.1 and 3.6.2 show that if
we take any collection {θj}mj=1 ⊂ Θ for which θ ∈ int Conv{θj}, then for C ⊂ int Conv{θj}, there
exists a constant K such that

|g(θ, x)| ≤ | exp(〈θ, x〉)− exp(〈θ0, x〉)|
‖θ − θ0‖

+ ‖x‖ exp(〈θ0, x〉) ≤ K max
j

exp(〈θj , x〉)

for all θ ∈ C. As
∫

maxj e
〈θj ,x〉dµ(x) ≤

∑m
j=1

∫
e〈θj ,x〉dµ(x) < ∞, the dominated convergence

theorem thus implies that

lim
θ→θ0

∫
g(θ, x)dµ(x) = 0,

and so M(θ) = exp(A(θ)) is differentiable in θ, as

M(θ) = M(θ0) +

〈∫
xe〈θ0,x〉dµ(x), θ − θ0

〉
+ o(‖θ − θ0‖).

It is evident that we have the derivative

∇M(θ) =

∫
∇ exp(〈θ, x〉)dµ(x).

Analyticity Over the subset ΘC := {θ + iz | θ ∈ Θ, z ∈ Rd} (where i =
√
−1 is the imaginary

unit), we can extend the preceding results to demonstrate that A is analytic on ΘC. Indeed, we
first simply note that for a, b ∈ R, exp(a + ib) = exp(a) exp(ib) and | exp(a + ib)| = exp(a), i.e.
|ez| = e z for z ∈ C, and so Lemmas 3.6.1 and 3.6.2 follow mutatis-mutandis as in the real case.
These are enough for the application of the dominated convergence theorem above, and we use that
exp(·) is analytic to conclude that θ 7→M(θ) is analytic on ΘC.
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3.7 Bibliography

3.8 Exercises

Exercise 3.1: In Example 3.1.4, give the sufficient statistic φ and an explicit formula for the log
partition function A(θ,Θ) so that we can write pθ,Θ(x) = exp(〈θ, φ1(x)〉+ 〈Θ, φ2(x)〉 −A(θ,Θ)).

Exercise 3.2: Consider the binary logistic regression model in Example 3.4.2, and let `(θ;x, y) =
− log pθ(y | x) be the associated log loss.

(i) Give the Hessian ∇2
θ`(θ;x, y).

(ii) Let (xi, yi)
n
i=1 ⊂ Rd × {±1} be a sample. Give a sufficient condition for the minimizer of the

empirical log loss

Ln(θ) :=
1

n

n∑
i=1

`(θ;xi, yi)

to be unique that depends only on the vectors {xi}. Hint. A convex function h is strictly
convex if and only if its Hessian ∇2h is positive definite.
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Chapter 4

Concentration Inequalities

In many scenarios, it is useful to understand how a random variable X behaves by giving bounds
on the probability that it deviates far from its mean or median. This can allow us to give prove
that estimation and learning procedures will have certain performance, that different decoding and
encoding schemes work with high probability, among other results. In this chapter, we give several
tools for proving bounds on the probability that random variables are far from their typical values.
We conclude the section with a discussion of basic uniform laws of large numbers and applications
to empirical risk minimization and statistical learning, though we focus on the relatively simple
cases we can treat with our tools.

4.1 Basic tail inequalities

In this first section, we have a simple to state goal: given a random variable X, how does X
concentrate around its mean? That is, assuming w.l.o.g. that E[X] = 0, how well can we bound

P(X ≥ t)?

We begin with the three most classical three inequalities for this purpose: the Markov, Chebyshev,
and Chernoff bounds, which are all instances of the same technique.

The basic inequality off of which all else builds is Markov’s inequality.

Proposition 4.1.1 (Markov’s inequality). Let X be a nonnegative random variable, meaning that
X ≥ 0 with probability 1. Then

P(X ≥ t) ≤ E[X]

t
.

Proof For any random variable, P(X ≥ t) = E[1 {X ≥ t}] ≤ E[(X/t)1 {X ≥ t}] ≤ E[X]/t, as
X/t ≥ 1 whenever X ≥ t.

When we know more about a random variable than that its expectation is finite, we can give
somewhat more powerful bounds on the probability that the random variable deviates from its
typical values. The first step in this direction, Chebyshev’s inequality, requires two moments, and
when we have exponential moments, we can give even stronger results. As we shall see, each of
these results is but an application of Proposition 4.1.1.
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Proposition 4.1.2 (Chebyshev’s inequality). Let X be a random variable with Var(X) <∞. Then

P(X − E[X] ≥ t) ≤ Var(X)

t2
and P(X − E[X] ≤ −t) ≤ Var(X)

t2

for all t ≥ 0.

Proof We prove only the upper tail result, as the lower tail is identical. We first note that
X −E[X] ≥ t implies that (X −E[X])2 ≥ t2. But of course, the random variable Z = (X −E[X])2

is nonnegative, so Markov’s inequality gives P(X − E[X] ≥ t) ≤ P(Z ≥ t2) ≤ E[Z]/t2, and
E[Z] = E[(X − E[X])2] = Var(X).

If a random variable has a moment generating function—exponential moments—we can give
bounds that enjoy very nice properties when combined with sums of random variables. First, we
recall that

ϕX(λ) := E[eλX ]

is the moment generating function of the random variable X. Then we have the Chernoff bound.

Proposition 4.1.3. For any random variable X, we have

P(X ≥ t) ≤ E[eλX ]

eλt
= ϕX(λ)e−λt

for all λ ≥ 0.

Proof This is another application of Markov’s inequality: for λ > 0, we have eλX ≥ eλt if and
only if X ≥ t, so that P(X ≥ t) = P(eλX ≥ eλt) ≤ E[eλX ]/eλt.

In particular, taking the infimum over all λ ≥ 0 in Proposition 4.1.3 gives the more standard
Chernoff (large deviation) bound

P(X ≥ t) ≤ exp

(
inf
λ≥0

logϕX(λ)− λt
)
.

Example 4.1.4 (Gaussian random variables): When X is a mean-zero Gaussian variable
with variance σ2, we have

ϕX(λ) = E[exp(λX)] = exp

(
λ2σ2

2

)
. (4.1.1)

To see this, we compute the integral; we have

E[exp(λX)] =

∫ ∞
−∞

1√
2πσ2

exp

(
λx− 1

2σ2
x2

)
dx

= e
λ2σ2

2

∫ ∞
−∞

1√
2πσ2

exp

(
− 1

2σ2
(x− λσ2x)2

)
dx︸ ︷︷ ︸

=1

,

because this is simply the integral of the Gaussian density.
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As a consequence of the equality (4.1.1) and the Chernoff bound technique (Proposition 4.1.3),
we see that for X Gaussian with variance σ2, we have

P(X ≥ E[X] + t) ≤ exp

(
− t2

2σ2

)
and P(X ≤ E[X]− t) ≤ exp

(
− t2

2σ2

)
for all t ≥ 0. Indeed, we have logϕX−E[X](λ) = λ2σ2

2 , and infλ{λ
2σ2

2 − λt} = − t2

2σ2 , which is
attained by λ = t

σ2 . 3

4.1.1 Sub-Gaussian random variables

Gaussian random variables are convenient for their nice analytical properties, but a broader class
of random variables with similar moment generating functions are known as sub-Gaussian random
variables.

Definition 4.1. A random variable X is sub-Gaussian with parameter σ2 if

E[exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R. We also say such a random variable is σ2-sub-Gaussian.

Of course, Gaussian random variables satisfy Definition 4.1 with equality. This would be un-
interesting if only Gaussian random variables satisfied this property; happily, that is not the case,
and we detail several examples.

Example 4.1.5 (Random signs (Rademacher variables)): The random variable X taking
values {−1, 1} with equal property is 1-sub-Gaussian. Indeed, we have

E[exp(λX)] =
1

2
eλ +

1

2
e−λ =

1

2

∞∑
k=0

λk

k!
+

1

2

∞∑
k=0

(−λ)k

k!
=

∞∑
k=0

λ2k

(2k)!
≤
∞∑
k=0

(λ2)k

2kk!
= exp

(
λ2

2

)
,

as claimed. 3

Bounded random variables are also sub-Gaussian; indeed, we have the following example.

Example 4.1.6 (Bounded random variables): Suppose that X is bounded, say X ∈ [a, b].
Then Hoeffding’s lemma states that

E[eλ(X−E[X])] ≤ exp

(
λ2(b− a)2

8

)
,

so that X is (b− a)2/4-sub-Gaussian.
We prove a somewhat weaker statement with a simpler argument, while Exercise 4.1 gives one
approach to proving the above statement. First, let ε ∈ {−1, 1} be a Rademacher variable,
so that P(ε = 1) = P(ε = −1) = 1

2 . We apply a so-called symmetrization technique—a
common technique in probability theory, statistics, concentration inequalities, and Banach
space research—to give a simpler bound. Indeed, let X ′ be an independent copy of X, so that
E[X ′] = E[X]. We have

ϕX−E[X](λ) = E
[
exp(λ(X − E[X ′]))

]
≤ E

[
exp(λ(X −X ′))

]
= E

[
exp(λε(X −X ′))

]
,
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where the inequality follows from Jensen’s inequality and the last equality is a conseqence of
the fact that X −X ′ is symmetric about 0. Using the result of Example 4.1.5,

E
[
exp(λε(X −X ′))

]
≤ E

[
exp

(
λ2(X −X ′)

2

)]
≤ exp

(
λ2(b− a)2

2

)
,

where the final inequality is immediate from the fact that |X −X ′| ≤ b− a. 3

While Example 4.1.6 shows how a symmetrization technique can give sub-Gaussian behavior,
more sophisticated techniques involving explicitly bounding the logarithm of the moment generating
function of X, often by calculations involving exponential tilts of its density. In particular, letting
X be mean zero for simplicity, if we let

ψ(λ) = logϕX(λ) = logE[eλX ],

then

ψ′(λ) =
E[XeλX ]

E[eλX ]
and ψ′′(λ) =

E[X2eλX ]

E[eλX ]
− E[XeλX ]2

E[eλX ]2
,

where we can interchange the order of taking expectations and derivatives whenever ψ(λ) is finite.
Notably, if X has density pX (with respect to any base measure) then the random variable Yλ with
density

pλ(y) =
eλy

E[eλX ]
pX(y)

(with respect to the same base measure) satisfies

ψ′(λ) = E[Yλ] and ψ′′(λ) = E[Y 2
λ ]− E[Yλ]2 = Var(Yλ).

One can exploit this in many ways, which the exercises and coming chapters do. As a particular
example, we can give sharper sub-Gaussian constants for Bernoulli random variables.

Example 4.1.7 (Bernoulli random variables): Let X be Bernoulli(p), so that X = 1 with
probability p and X = 0 otherwise. Then a strengthening of Hoeffding’s lemma (also, essen-
tially, due to Hoeffding) is that

logE[eλ(X−p)] ≤ σ2(p)

2
λ2 for σ2(p) :=

1− 2p

2 log 1−p
p

.

Here we take the limits as p → {0, 1
2 , 1} and have σ2(0) = 0, σ2(1) = 0, and σ2(1

2) = 1
4 .

Because p 7→ σ2(p) is concave and symmetric about p = 1
2 , this inequality is always sharper

than that of Example 4.1.6. Exercise 4.9 gives one proof of this bound exploiting exponential
tilting. 3

Chernoff bounds for sub-Gaussian random variables are immediate; indeed, they have the same
concentration properties as Gaussian random variables, a consequence of the nice analytical prop-
erties of their moment generating functions (that their logarithms are at most quadratic). Thus,
using the technique of Example 4.1.4, we obtain the following proposition.

Proposition 4.1.8. Let X be a σ2-sub-Gaussian. Then for all t ≥ 0 we have

P(X − E[X] ≥ t) ∨ P(X − E[X] ≤ −t) ≤ exp

(
− t2

2σ2

)
.
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Chernoff bounds extend naturally to sums of independent random variables, because moment
generating functions of sums of independent random variables become products of moment gener-
ating functions.

Proposition 4.1.9. Let X1, X2, . . . , Xn be independent σ2
i -sub-Gaussian random variables. Then

E

[
exp

(
λ

n∑
i=1

(Xi − E[Xi])

)]
≤ exp

(
λ2
∑n

i=1 σ
2
i

2

)
for all λ ∈ R,

that is,
∑n

i=1Xi is
∑n

i=1 σ
2
i -sub-Gaussian.

Proof We assume w.l.o.g. that the Xi are mean zero. We have by independence that and
sub-Gaussianity that

E
[

exp

(
λ

n∑
i=1

Xi

)]
= E

[
exp

(
λ

n−1∑
i=1

Xi

)]
E[exp(λXn)] ≤ exp

(
λ2σ2

n

2

)
E
[

exp

(
λ

n−1∑
i=1

Xi

)]
.

Applying this technique inductively to Xn−1, . . . , X1, we obtain the desired result.

Two immediate corollary to Propositions 4.1.8 and 4.1.9 show that sums of sub-Gaussian random
variables concentrate around their expectations. We begin with a general concentration inequality.

Corollary 4.1.10. Let Xi be independent σ2
i -sub-Gaussian random variables. Then for all t ≥ 0

max

{
P
( n∑
i=1

(Xi − E[Xi]) ≥ t
)
,P
( n∑
i=1

(Xi − E[Xi]) ≤ −t
)}
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Additionally, the classical Hoeffding bound, follows when we couple Example 4.1.6 with Corol-
lary 4.1.10: if Xi ∈ [ai, bi], then

P
( n∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

To give another interpretation of these inequalities, let us assume that Xi are indepenent and
σ2-sub-Gaussian. Then we have that

P
(

1

n

n∑
i=1

(Xi − E[Xi]) ≥ t
)
≤ exp

(
− nt

2

2σ2

)
,

or, for δ ∈ (0, 1), setting exp(− nt2

2σ2 ) = δ or t =

√
2σ2 log 1

δ√
n

, we have that

1

n

n∑
i=1

(Xi − E[Xi]) ≤

√
2σ2 log 1

δ√
n

with probability at least 1− δ.

There are a variety of other conditions equivalent to sub-Gaussianity, which we capture in the
following theorem.
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Theorem 4.1.11. Let X be a mean-zero random variable and σ2 ≥ 0 be a constant. The following
statements are all equivalent, meaning that there are numerical constant factors Kj such that if one
statement (i) holds with parameter Ki, then statement (j) holds with parameter Kj ≤ CKi, where
C is a numerical constant.

(1) Sub-gaussian tails: P(|X| ≥ t) ≤ 2 exp(− t2

K1σ2 ) for all t ≥ 0.

(2) Sub-gaussian moments: E[|X|k]1/k ≤ K2σ
√
k for all k.

(3) Super-exponential moment: E[exp(X2/(K3σ
2))] ≤ e.

(4) Sub-gaussian moment generating function: E[exp(λX)] ≤ exp(K4λ
2σ2) for all λ ∈ R.

Particularly, (1) implies (2) with K1 = 1 and K2 ≤ e1/e; (2) implies (3) with K2 = 1 and

K3 = e
√

2
e−1 < 3; (3) implies (4) with K3 = 1 and K4 ≤ 3

4 ; and (4) implies (1) with K4 = 1
2 and

K1 ≤ 2.

This result is standard in the literature on concentration and random variables, but see Ap-
pendix 4.5.1 for a proof of this theorem.

For completeness, we can give a tighter result than part (3) of the preceding theorem, giving a
concrete upper bound on squares of sub-Gaussian random variables. The technique used in the ex-
ample, to introduce an independent random variable for auxiliary randomization, is a common and
useful technique in probabilistic arguments (similar to our use of symmetrization in Example 4.1.6).

Example 4.1.12 (Sub-Gaussian squares): Let X be a mean-zero σ2-sub-Gaussian random
variable. Then

E[exp(λX2)] ≤ 1

[1− 2σ2λ]
1
2
+

, (4.1.2)

and expression (4.1.2) holds with equality for X ∼ N(0, σ2).
To see this result, we focus on the Gaussian case first and assume (for this case) without loss
of generality (by scaling) that σ2 = 1. Assuming that λ < 1

2 , we have

E[exp(λZ2)] =

∫
1√
2π
e−( 1

2
−λ)z2dz =

∫
1√
2π
e−

1−2λ
2

z2dz =

√
2π√

1− 2λ

1√
2π
,

the final equality a consequence of the fact that (as we know for normal random variables)∫
e−

1
2σ2

z2dz =
√

2πσ2. When λ ≥ 1
2 , the above integrals are all infinite, giving the equality in

expression (4.1.2).
For the more general inequality, we recall that if Z is an independent N(0, 1) random variable,

then E[exp(tZ)] = exp( t
2

2 ), and so

E[exp(λX2)] = E[exp(
√

2λXZ)]
(i)

≤ E
[
exp(λσ2Z2)

] (ii)
=

1

[1− 2σ2λ]
1
2
+

,

where inequality (i) follows because X is sub-Gaussian, and inequality (ii) because Z ∼ N(0, 1).
3
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4.1.2 Sub-exponential random variables

A slightly weaker condition than sub-Gaussianity is for a random variable to be sub-exponential,
which—for a mean-zero random variable—means that its moment generating function exists in a
neighborhood of zero.

Definition 4.2. A random variable X is sub-exponential with parameters (τ2, b) if for all λ such
that |λ| ≤ 1/b,

E[eλ(X−E[X])] ≤ exp

(
λ2τ2

2

)
.

It is clear from Definition 4.2 that a σ2-sub-Gaussian random variable is (σ2, 0)-sub-exponential.
A variety of random variables are sub-exponential. As a first example, χ2-random variables are

sub-exponential with constant values for τ and b:

Example 4.1.13: Let X = Z2, where Z ∼ N(0, 1). We claim that

E[exp(λ(X − E[X]))] ≤ exp(2λ2) for λ ≤ 1

4
. (4.1.3)

Indeed, for λ < 1
2 we have that

E[exp(λ(Z2 − E[Z2]))] = exp

(
−1

2
log(1− 2λ)− λ

)
(i)

≤ exp
(
λ+ 2λ2 − λ

)
where inequality (i) holds for λ ≤ 1

4 , because − log(1− 2λ) ≤ 2λ+ 4λ2 for λ ≤ 1
4 . 3

As a second example, we can show that bounded random variables are sub-exponential. It is
clear that this is the case as they are also sub-Gaussian; however, in many cases, it is possible to
show that their parameters yield much tighter control over deviations than is possible using only
sub-Gaussian techniques.

Example 4.1.14 (Bounded random variables are sub-exponential): Suppose that X is a
mean zero random variable taking values in [−b, b] with variance σ2 = E[X2] (note that we are
guaranteed that σ2 ≤ b2 in this case). We claim that

E[exp(λX)] ≤ exp

(
3λ2σ2

5

)
for |λ| ≤ 1

2b
. (4.1.4)

To see this, note first that for k ≥ 2 we have E[|X|k] ≤ E[X2bk−2] = σ2bk−2. Then by an
expansion of the exponential, we find

E[exp(λX)] = 1 + E[λX] +
λ2E[X2]

2
+

∞∑
k=3

λkE[Xk]

k!
≤ 1 +

λ2σ2

2
+

∞∑
k=3

λkσ2bk−2

k!

= 1 +
λ2σ2

2
+ λ2σ2

∞∑
k=1

(λb)k

(k + 2)!

(i)

≤ 1 +
λ2σ2

2
+
λ2σ2

10
,

inequality (i) holding for λ ≤ 1
2b . Using that 1 + x ≤ ex gives the result.

It is possible to give a slightly tighter result for λ ≥ 0 In this case, we have the bound

E[exp(λX)] ≤ 1 +
λ2σ2

2
+ λ2σ2

∞∑
k=3

λk−2bk−2

k!
= 1 +

σ2

b2

(
eλb − 1− λb

)
.
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Then using that 1 + x ≤ ex, we obtain Bennett’s moment generating inequality, which is that

E[eλX ] ≤ exp

(
σ2

b2

(
eλb − 1− λb

))
for λ ≥ 0. (4.1.5)

Inequality (4.1.5) always holds, and for λb near 0, we have eλb − 1− λb ≈ λ2b2

2 . 3

In particular, if the variance σ2 � b2, the absolute bound on X, inequality (4.1.4) gives much
tighter control on the moment generating function of X than typical sub-Gaussian bounds based
only on the fact that X ∈ [−b, b] allow.

More broadly, we can show a result similar to Theorem 4.1.11.

Theorem 4.1.15. Let X be a random variable and σ ≥ 0. Then—in the sense of Theorem 4.1.11—
the following statements are all equivalent for suitable numerical constants K1, . . . ,K4.

(1) Sub-exponential tails: P(|X| ≥ t) ≤ 2 exp(− t
K1σ

) for all t ≥ 0

(2) Sub-exponential moments: E[|X|k]1/k ≤ K2σk for all k ≥ 1.

(3) Existence of moment generating function: E[exp(X/(K3σ))] ≤ e.

(4) If, in addition, E[X] = 0, then E[exp(λX)] ≤ exp(K4λ
2σ2) for all |λ| ≤ K ′4/σ.

In particular, if (2) holds with K2 = 1, then (4) holds with K4 = 2e2 and K ′4 = 1
2e .

The proof, which is similar to that for Theorem 4.1.11, is presented in Section 4.5.2.
While the concentration properties of sub-exponential random variables are not quite so nice

as those for sub-Gaussian random variables (recall Hoeffding’s inequality, Corollary 4.1.10), we
can give sharp tail bounds for sub-exponential random variables. We first give a simple bound on
deviation probabilities.

Proposition 4.1.16. Let X be a mean-zero (τ2, b)-sub-exponential random variable. Then for all
t ≥ 0,

P(X ≥ t) ∨ P(X ≤ −t) ≤ exp

(
−1

2
min

{
t2

τ2
,
t

b

})
.

Proof The proof is an application of the Chernoff bound technique; we prove only the upper tail
as the lower tail is similar. We have

P(X ≥ t) ≤ E[eλX ]

eλt

(i)

≤ exp

(
λ2τ2

2
− λt

)
,

inequality (i) holding for |λ| ≤ 1/b. To minimize the last term in λ, we take λ = min{ t
τ2
, 1/b},

which gives the result.

Comparing with sub-Gaussian random variables, which have b = 0, we see that Proposition 4.1.16
gives a similar result for small t—essentially the same concentration sub-Gaussian random variables—
while for large t, the tails decrease only exponentially in t.

We can also give a tensorization identity similar to Proposition 4.1.9.
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Proposition 4.1.17. Let X1, . . . , Xn be independent mean-zero sub-exponential random variables,
where Xi is (σ2

i , bi)-sub-exponential. Then for any vector ai ∈ Rn, we have

E

[
exp

(
λ

n∑
i=1

Xi

)]
≤ exp

(
λ2
∑n

i=1 a
2
iσ

2
i

2

)
for |λ| ≤ 1

b∗
,

where b∗ = maxi bi|ai|. That is, 〈a,X〉 is (
∑n

i=1 a
2
iσ

2
i ,mini

1
bi|ai|)-sub-exponential.

Proof We apply an inductive technique similar to that used in the proof of Proposition 4.1.9.
First, for any fixed i, we know that if |λ| ≤ 1

bi|ai| , then |aiλ| ≤ 1
bi

and so

E[exp(λaiXi)] ≤ exp

(
λ2a2

iσ
2
i

2

)
.

Now, we inductively apply the preceding inequality, which applies so long as |λ| ≤ 1
bi|ai| for all i.

We have

E

[
exp

(
λ

n∑
i=1

aiXi

)]
=

n∏
i=1

E[exp(λaiXi)] ≤
n∏
i=1

exp

(
λ2a2

iσ
2
i

2

)
,

which is our desired result.

As in the case of sub-Gaussian random variables, a combination of the tensorization property—
that the moment generating functions of sums of sub-exponential random variables are well-
behaved—of Proposition 4.1.17 and the concentration inequality (4.1.16) immediately yields the
following Bernstein-type inequality. (See also Vershynin [170].)

Corollary 4.1.18. Let X1, . . . , Xn be independent mean-zero (σ2
i , bi)-sub-exponential random vari-

ables (Definition 4.2). Define b∗ := maxi bi. Then for all t ≥ 0 and all vectors a ∈ Rn, we
have

P
( n∑
i=1

aiXi ≥ t
)
∨ P
( n∑
i=1

aiXi ≤ −t
)
≤ exp

(
−1

2
min

{
t2∑n

i=1 a
2
iσ

2
i

,
t

b∗ ‖a‖∞

})
.

It is instructive to study the structure of the bound of Corollary 4.1.18. Notably, the bound
is similar to the Hoeffding-type bound of Corollary 4.1.10 (holding for σ2-sub-Gaussian random
variables) that

P
( n∑
i=1

aiXi ≥ t
)
≤ exp

(
− t2

2 ‖a‖22 σ2

)
,

so that for small t, Corollary 4.1.18 gives sub-Gaussian tail behavior. For large t, the bound is
weaker. However, in many cases, Corollary 4.1.18 can give finer control than naive sub-Gaussian
bounds. Indeed, suppose that the random variables Xi are i.i.d., mean zero, and satisfy Xi ∈ [−b, b]
with probability 1, but have variance σ2 = E[X2

i ] ≤ b2 as in Example 4.1.14. Then Corollary 4.1.18
implies that

P
( n∑
i=1

aiXi ≥ t
)
≤ exp

(
−1

2
min

{
5

6

t2

σ2 ‖a‖22
,

t

2b ‖a‖∞

})
. (4.1.6)
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When applied to a standard mean (and with a minor simplification that 5/12 < 1/3) with ai = 1
n ,

we obtain the bound that 1
n

∑n
i=1Xi ≤ t with probability at least 1−exp(−nmin{ t2

3σ2 ,
t

4b}). Written

differently, we take t = max{σ
√

3 log 1
δ

n ,
4b log 1

δ
n } to obtain

1

n

n∑
i=1

Xi ≤ max

σ
√

3 log 1
δ√

n
,
4b log 1

δ

n

 with probability 1− δ.

The sharpest such bound possible via more naive Hoeffding-type bounds is b
√

2 log 1
δ/
√
n, which

has substantially worse scaling.

Further conditions and examples

There are a number of examples and conditions sufficient for random variables to be sub-exponential.
One common condition, the so-called Bernstein condition, controls the higher moments of a random
variable X by its variance. In this case, we say that X satisfies the b-Bernstein condition if

|E[(X − µ)k]| ≤ k!

2
σ2bk−2 for k = 3, 4, . . . , (4.1.7)

where µ = E[X] and σ2 = Var(X) = E[X2] − µ2. In this case, the following lemma controls
the moment generating function of X. This result is essentially present in Theorem 4.1.15, but it
provides somewhat tighter control with precise constants.

Lemma 4.1.19. Let X be a random variable satisfying the Bernstein condition (4.1.7). Then

E
[
eλ(X−µ)

]
≤ exp

(
λ2σ2

2(1− b|λ|)

)
for |λ| ≤ 1

b
.

Said differently, a random variable satisfying Condition (4.1.7) is (
√

2σ, b/2)-sub-exponential.
Proof Without loss of generality we assume µ = 0. We expand the moment generating function
by noting that

E[eλX ] = 1 +
λ2σ2

2
+
∞∑
k=3

λkE[Xk]

k!

(i)

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

|λb|k−2

= 1 +
λ2σ2

2

1

[1− b|λ|]+

where inequality (i) used the Bernstein condition (4.1.7). Noting that 1+x ≤ ex gives the result.

As one final example, we return to Bennett’s inequality (4.1.5) from Example 4.1.14.

Proposition 4.1.20 (Bennett’s inequality). Let Xi be independent mean-zero random variables
with Var(Xi) = σ2

i and |Xi| ≤ b. Then for h(t) := (1 + t) log(1 + t)− t and σ2 :=
∑n

i=1 σ
2
i , we have

P

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
−σ

2

b2
h

(
bt

σ2

))
.
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Proof We assume without loss of generality that E[X] = 0. Using the standard Chernoff bound
argument coupled with inequality (4.1.5), we see that

P

(
n∑
i=1

Xi ≥ t
∑)

≤ exp

(
n∑
i=1

σ2
i

b2

(
eλb − 1− λb

)
− λt

)
.

Letting h(t) = (1 + t) log(1 + t) − t as in the statement of the proposition and σ2 =
∑n

i=1 σ
2
i , we

minimize over λ ≥ 0, setting λ = 1
b log(1 + bt

σ2 ). Substituting into our Chernoff bound application
gives the proposition.

A slightly more intuitive writing of Bennett’s inequality is to use averages, in which case for
σ2 = 1

n

∑n
i=1 σ

2
i the average of the variances,

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

(
−nσ

2

b
h

(
bt

σ2

))
.

It is possible to show that
nσ2

b
h

(
bt

σ2

)
≥ nt2

2σ2 + 2
3bt

,

which gives rise to the classical Bernstein inequality that

P

(
1

n

n∑
i=1

Xi ≥ t

)
≤ exp

(
− nt2

2σ2 + 2
3bt

)
. (4.1.8)

4.1.3 Orlicz norms

Sub-Gaussian and sub-exponential random variables are examples of a broader class of random
variables belonging to what are known as Orlicz-spaces. For these, we take any convex function
ψ : R+ → R+ with ψ(0) = 0 and ψ(t)→∞ as t ↑ ∞, a class called the Orlicz functions. Then the
Orlicz norm of a random variable X is

‖X‖ψ := inf {t > 0 | E[ψ(|X|/t)] ≤ 1} . (4.1.9)

That this is a norm is not completely trivial, though a few properties are immediate: clearly
‖aX‖ψ = |a| ‖X‖ψ, and we have ‖X‖ψ = 0 if and only if X = 0 with probability 1. The key result
is that in fact, ‖·‖ψ is actually convex, which then guarantees that it is a norm.

Proposition 4.1.21. The function ‖·‖ψ is convex on the space of random variables.

Proof Because ψ is convex and non-decreasing, x 7→ ψ(|x|) is convex as well. (Convince yourself
of this.) Thus, its perspective transform pers(ψ)(t, |x|) := tψ(|x|/t) is jointly convex in both t ≥ 0
and x (see Appendix B.3.3). This joint convexity of ψ̃ implies that for any random variables X0

and X1 and t0, t1,

E[pers(ψ)(λt0 + (1− λ)t1, |λX0 + (1− λ)X1|)] ≤ λE[pers(ψ)(t0, |X0|)] + (1− λ)E[pers(ψ)(t1, |X1|)].

Now note that E[ψ(|X|/t)] ≤ 1 if and only if tE[ψ(|X|/t)] ≤ t.
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Because ‖·‖ψ is convex and positively homogeneous, we certainly have

‖X + Y ‖ψ = 2 ‖(X + Y )/2‖ψ ≤ ‖X‖ψ + ‖Y ‖ψ ,

that is, the triangle inequality holds.
We can recover several standard norms on random variables, including some we have already

implicitly used. The first are the classical Lp norms, where we take ψ(t) = tp, where we see that

inf{t > 0 | E[|X|p/tp] ≤ 1} = E[|X|p]1/p.

We also have what we term the sub-Gaussian and sub-Exponential norms, typically denoted by
considering the functions

ψp(x) := exp (|x|p)− 1.

These induce the Orlicz ψp-norms, as for p ≥ 1, these are convex (as they are the composition of the
increasing convex function exp(·) applied to the nonnegative convex function | · |p). Theorem 4.1.11
shows that we have a natural sub-Gaussian norm

‖X‖ψ2
:= inf

{
t > 0 | E[exp(X2/t2)] ≤ 2

}
, (4.1.10)

while Theorem 4.1.15 shows a natural sub-exponential norm (or Orlicz ψ1-norm)

‖X‖ψ1
:= inf {t > 0 | E[exp(|X|/t)] ≤ 2} . (4.1.11)

Many relationships follow immediately from the definitions (4.1.10) and (4.1.11). For example,
any sub-Gaussian random variable (whether or not it is mean zero) has a square that is sub-
exponential:

Lemma 4.1.22. A random variable X is sub-Gaussian if and only if X2 is sub-exponential, and
moreover,

‖X‖2ψ2
=
∥∥X2

∥∥
ψ1
.

(This is immediate by definition.) By tracing through the arguments in the proofs of Theo-
rems 4.1.11 and 4.1.15, we can also see that an alternative definition of the two norms could
be

sup
k∈N

1√
k
E[|X|k]1/k and sup

k∈N

1

k
E[|X|k]1/k

for the sub-Gaussian and sub-exponential norms ‖X‖ψ2
and ‖X‖ψ1

, respectively. They are all
equivalent.

4.1.4 First applications of concentration: random projections

In this section, we investigate the use of concentration inequalities in random projections. As
motivation, consider nearest-neighbor (or k-nearest-neighbor) classification schemes. We have a
sequence of data points as pairs (ui, yi), where the vectors ui ∈ Rd have labels yi ∈ {1, . . . , L},
where L is the number of possible labels. Given a new point u ∈ Rd that we wish to label, we find
the k-nearest neighbors to u in the sample {(ui, yi)}ni=1, then assign u the majority label of these
k-nearest neighbors (ties are broken randomly). Unfortunately, it can be prohibitively expensive to
store high-dimensional vectors and search over large datasets to find near vectors; this has motivated
a line of work in computer science on fast methods for nearest neighbors based on reducing the
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dimension while preserving essential aspects of the dataset. This line of research begins with Indyk
and Motwani [112], and continuing through a variety of other works, including Indyk [111] and
work on locality-sensitive hashing by Andoni et al. [6], among others. The original approach is due
to Johnson and Lindenstrauss, who used the results in the study of Banach spaces [117]; our proof
follows a standard argument.

The most specific variant of this problem is as follows: we have n points u1, . . . , un, and we
could like to construct a mapping Φ : Rd → Rm, where m� d, such that

‖Φui − Φuj‖2 ∈ (1± ε) ‖ui − uj‖2 .

Depending on the norm chosen, this task may be impossible; for the Euclidean (`2) norm, however,
such an embedding is easy to construct using Gaussian random variables and with m = O( 1

ε2
log n).

This embedding is known as the Johnson-Lindenstrauss embedding. Note that this size m is
independent of the dimension d, only depending on the number of points n.

Example 4.1.23 (Johnson-Lindenstrauss): Let the matrix Φ ∈ Rm×d be defined as follows:

Φij
iid∼ N(0, 1/m),

and let Φi ∈ Rd denote the ith row of this matrix. We claim that

m ≥ 8

ε2

[
2 log n+ log

1

δ

]
implies ‖Φui − Φuj‖22 ∈ (1± ε) ‖ui − uj‖22

for all pairs ui, uj with probability at least 1−δ. In particular, m & logn
ε2

is sufficient to achieve
accurate dimension reduction with high probability.
To see this, note that for any fixed vector u,

〈Φi, u〉
‖u‖2

∼ N(0, 1/m), and
‖Φu‖22
‖u‖22

=
m∑
i=1

〈Φi, u/ ‖u‖2〉
2

is a sum of independent scaled χ2-random variables. In particular, we have E[‖Φu/ ‖u‖2‖
2
2] = 1,

and using the χ2-concentration result of Example 4.1.13 yields

P
(∣∣∣‖Φu‖22 / ‖u‖22 − 1

∣∣∣ ≥ ε) = P
(
m
∣∣∣‖Φu‖22 / ‖u‖22 − 1

∣∣∣ ≥ mε)
≤ 2 inf

|λ|≤ 1
4

exp
(
2mλ2 − λmε

)
= 2 exp

(
−mε

2

8

)
,

the last inequality holding for ε ∈ [0, 1]. Now, using the union bound applied to each of the
pairs (ui, uj) in the sample, we have

P
(

there exist i 6= j s.t.
∣∣∣‖Φ(ui − uj)‖22 − ‖ui − uj‖

2
2

∣∣∣ ≥ ε ‖ui − uj‖22) ≤ 2

(
n

2

)
exp

(
−mε

2

8

)
.

Taking m ≥ 8
ε2

log n2

δ = 16
ε2

log n + 8
ε2

log 1
δ yields that with probability at least 1− δ, we have

‖Φui − Φuj‖22 ∈ (1± ε) ‖ui − uj‖22. 3

Computing low-dimensional embeddings of high-dimensional data is an area of active research,
and more recent work has shown how to achieve sharper constants [57] and how to use more struc-
tured matrices to allow substantially faster computation of the embeddings Φu (see, for example,
Achlioptas [1] for early work in this direction, and Ailon and Chazelle [3] for the so-called “Fast
Johnson-Lindenstrauss transform”).

74



Lexture Notes on Statistics and Information Theory John Duchi

4.1.5 A second application of concentration: codebook generation

We now consider a (very simplified and essentially un-implementable) view of encoding a signal for
transmission and generation of a codebook for transmitting said signal. Suppose that we have a set
of words, or signals, that we wish to transmit; let us index them by i ∈ {1, . . . ,m}, so that there are
m total signals we wish to communicate across a binary symmetric channel Q, meaning that given
an input bit x ∈ {0, 1}, Q outputs a z ∈ {0, 1} with Q(Z = x | x) = 1− ε and Q(Z = 1−x | x) = ε,
for some ε < 1

2 . (For simplicity, we assume Q is memoryless, meaning that when the channel is
used multiple times on a sequence x1, . . . , xn, its outputs Z1, . . . , Zn are conditionally independent:
Q(Z1:n = z1:n | x1:n) = Q(Z1 = z1 | x1) · · ·Q(Zn = zn | xn).)

We consider a simplified block coding scheme, where we for each i we associate a codeword
xi ∈ {0, 1}d, where d is a dimension (block length) to be chosen. Upon sending the codeword over
the channel, and receiving some zrec ∈ {0, 1}d, we decode by choosing

i∗ ∈ argmax
i∈[m]

Q(Z = zrec | xi) = argmin
i∈[m]

‖zrecxi‖1 , (4.1.12)

the maximum likelihood decoder. We now investigate how to choose a collection {x1, . . . , xm}
of such codewords and give finite sample bounds on its probability of error. In fact, by using
concentration inequalities, we can show that a randomly drawn codebook of fairly small dimension
is likely to enjoy good performance.

Intuitively, if our codebook {x1, . . . , xm} ⊂ {0, 1}d is well-separated, meaning that each pair of
words xi, xk satisfies ‖xi − xk‖1 ≥ cd for some numerical constant c > 0, we should be unlikely to
make a mistake. Let us make this precise. We mistake word i for word k only if the received signal
Z satisfies ‖Z − xi‖1 ≥ ‖Z − xk‖1, and letting J = {j ∈ [d] : xij 6= xkj} denote the set of at least
c · d indices where xi and xk differ, we have

‖Z − xi‖1 ≥ ‖Z − xk‖1 if and only if
∑
j∈J
|Zj − xij | − |Zj − xkj | ≥ 0.

If xi is the word being sent and xi and xk differ in position j, then |Zj −xij |− |Zj −xkj | ∈ {−1, 1},
and is equal to −1 with probability (1− ε) and 1 with probability ε. That is, we have ‖Z − xi‖1 ≥
‖Z − xk‖1 if and only if∑

j∈J
|Zj − xij | − |Zj − xkj |+ |J |(1− 2ε) ≥ |J |(1− 2ε) ≥ cd(1− 2ε),

and the expectation EQ[|Zj−xij |−|Zj−xkj | | xi] = −(1−2ε) when xij 6= xkj . Using the Hoeffding
bound, then, we have

Q(‖Z − xi‖1 ≥ ‖Z − xk‖1 | xi) ≤ exp

(
−|J |(1− 2ε)2

2

)
≤ exp

(
−cd(1− 2ε)2

2

)
,

where we have used that there are at least |J | ≥ cd indices differing between xi and xk. The
probability of making a mistake at all is thus at most m exp(−1

2cd(1 − 2ε)2) if our codebook has
separation c · d.

For low error decoding to occur with extremely high probability, it is thus sufficient to choose
a set of code words {x1, . . . , xm} that is well separated. To that end, we state a simple lemma.
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Lemma 4.1.24. Let Xi, i = 1, . . . ,m be drawn independently and uniformly on the d-dimensional
hypercube Hd := {0, 1}d. Then for any t ≥ 0,

P
(
∃ i, j s.t. ‖Xi −Xj‖1 <

d

2
− dt

)
≤
(
m

2

)
exp

(
−2dt2

)
≤ m2

2
exp

(
−2dt2

)
.

Proof First, let us consider two independent draws X and X ′ uniformly on the hypercube. Let

Z =
∑d

j=1 1
{
Xj 6= X ′j

}
= dham(X,X ′) = ‖X −X ′‖1. Then E[Z] = d

2 . Moreover, Z is an i.i.d.

sum of Bernoulli 1
2 random variables, so that by our concentration bounds of Corollary 4.1.10, we

have

P
(∥∥X −X ′∥∥

1
≤ d

2
− t
)
≤ exp

(
−2t2

d

)
.

Using a union bound gives the remainder of the result.

Rewriting the lemma slightly, we may take δ ∈ (0, 1). Then

P

(
∃ i, j s.t. ‖Xi −Xj‖1 <

d

2
−
√
d log

1

δ
+ d logm

)
≤ δ.

As a consequence of this lemma, we see two things:

(i) If m ≤ exp(d/16), or d ≥ 16 logm, then taking δ ↑ 1, there at least exists a codebook
{x1, . . . , xm} of words that are all separated by at least d/4, that is, ‖xi − xj‖1 ≥

d
4 for all

i, j.

(ii) By taking m ≤ exp(d/32), or d ≥ 32 logm, and δ = e−d/32, then with probability at least
1−e−d/32—exponentially large in d—a randomly drawn codebook has all its entries separated
by at least ‖xi − xj‖1 ≥

d
4 .

Summarizing, we have the following result: choose a codebook of m codewords x1, . . . , xm uniformly
at random from the hypercube Hd = {0, 1}d with

d ≥ max

{
32 logm,

8 log m
δ

(1− 2ε)2

}
.

Then with probability at least 1− 1/m over the draw of the codebook, the probability we make a
mistake in transmission of any given symbol i over the channel Q is at most δ.

4.2 Martingale methods

The next set of tools we consider constitute our first look at argument sbased on stability, that is,
how quantities that do not change very much when a single observation changes should concentrate.
In this case, we would like to understand more general quantities than sample means, developing a
few of the basic cools to understand when functions f(X1, . . . , Xn) of independent random variables
Xi concentrate around their expectations. Roughly, we expect that if changing the value of one xi
does not significantly change f(xn1 ) much—it is stable—then it should exhibit good concentration
properties.

To develop the tools to do this, we go throuhg an approach based on martingales, a deep subject
in probability theory. We give a high-level treatment of martingales, taking an approach that does
not require measure-theoretic considerations, providing references at the end of the chapter. We
begin by providing a definition.
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Definition 4.3. Let M1,M2, . . . be an R-valued sequence of random variables. They are a martin-
gale if there exist another sequence of random variables {Z1, Z2, . . .} ⊂ Z and sequence of functions
fn : Zn → R such that

E[Mn | Zn−1
1 ] = Mn−1 and Mn = fn(Zn1 )

for all n ∈ N. We say that the sequence Mn is adapted to {Zn}.

In general, the sequence Z1, Z2, . . . is a sequence of increasing σ-fields F1,F2, . . ., and Mn is Fn-
measurable, but Definition 4.3 is sufficienet for our purposes. We also will find it convenient to
study differences of martingales, so that we make the following

Definition 4.4. Let D1, D2, . . . be a sequence of random variables. They form a martingale differ-
ence sequence if Mn :=

∑n
i=1Di is a martingale.

Equivalently, there is a sequence of random variables Zn and functions gn : Zn → R such that

E[Dn | Zn−1
1 ] = 0 and Dn = gn(Zn1 )

for all n ∈ N.
There are numerous examples of martingale sequences. The classical one is the symmetric

random walk.

Example 4.2.1: Let Dn ∈ {±1} be uniform and independent. Then Dn form a martingale
difference sequence adapted to themselves (that is, we may take Zn = Dn), and Mn =

∑n
i=1Di

is a martingale. 3

A more sophisticated example, to which we will frequently return and that suggests the potential
usefulness of martingale constructions, is the Doob martingale associated with a function f .

Example 4.2.2 (Doob martingales): Let f : X n → R be an otherwise arbitrary function,
and let X1, . . . , Xn be arbitrary random variables. The Doob martingale is defined by the
difference sequence

Di := E[f(Xn
1 ) | Xi

1]− E[f(Xn
1 ) | Xi−1

1 ].

By inspection, the Di are functions of Xi
1, and we have

E[Di | Xi−1
1 ] = E[E[f(Xn

1 ) | Xi
1] | Xi−1

1 ]− E[f(Xn
1 ) | Xi−1

1 ]

= E[f(Xn
1 ) | Xi−1

1 ]− E[f(Xn
1 ) | Xi−1

1 ] = 0

by the tower property of expectations. Thus, the Di satisfy Definition 4.4 of a martingale
difference sequence, and moreover, we have

n∑
i=1

Di = f(Xn
1 )− E[f(Xn

1 )],

and so the Doob martingale captures exactly the difference between f and its expectation. 3
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4.2.1 Sub-Gaussian martingales and Azuma-Hoeffding inequalities

With these motivating ideas introduced, we turn to definitions, providing generalizations of our
concentration inequalities for sub-Gaussian sums to sub-Gaussian martingales, which we define.

Definition 4.5. Let {Dn} be a martingale difference sequence adapted to {Zn}. Then Dn is a
σ2
n-sub-Gaussian martingale difference if

E[exp(λDn) | Zn−1
1 ] ≤ exp

(
λ2σ2

n

2

)
for all n and λ ∈ R.

Immediately from the definition, we have the Azuma-Hoeffding inequalities, which generalize
the earlier tensorization identities for sub-Gaussian random variables.

Theorem 4.2.3 (Azuma-Hoeffding). Let {Dn} be a σ2
n-sub-Gaussian martingale difference se-

quence. Then Mn =
∑n

i=1Di is
∑n

i=1 σ
2
i -sub-Gaussian, and moreover,

max {P(Mn ≥ t),P(Mn ≤ −t)} ≤ exp

(
− nt2

2
∑n

i=1 σ
2
i

)
for all t ≥ 0.

Proof The proof is essentially immediate: letting Zn be the sequence to which the Dn are
adapted, we write

E[exp(λMn)] = E

[
n∏
i=1

eλDi

]

= E

[
E

[
n∏
i=1

eλDi | Zn−1
1

]]

= E

[
E

[
n−1∏
i=1

eλDi | Zn−1
1

]
E[eλDn | Zn−1

1 ]

]

because D1, . . . , Dn−1 are functions of Zn−1
1 . Then we use Definition 4.5, which implies that

E[eλDn | Zn−1
1 ] ≤ eλ2σ2

n/2, and we obtain

E[exp(λMn)] ≤ E

[
n−1∏
i=1

eλDi

]
exp

(
λ2σ2

n

2

)
.

Repeating the same argument for n− 1, n− 2, . . . , 1 gives that

logE[exp(λMn)] ≤ λ2

2

n∑
i=1

σ2
i

as desired.
The second claims are simply applications of Chernoff bounds via Proposition 4.1.8 and that

E[Mn] = 0.

As an immediate corollary, we recover Proposition 4.1.9, as sums of independent random vari-
ables form martingales via Mn =

∑n
i=1(Xi − E[Xi]). A second corollary gives what is typically

termed the Azuma inequality:
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Corollary 4.2.4. Let Di be a bounded difference martingale difference sequence, meaning that
|Di| ≤ c. Then Mn =

∑n
i=1Di satisfies

P(n−1/2Mn ≥ t) ∨ P(n−1/2Mn ≤ −t) ≤ exp

(
− t2

2c2

)
for t ≥ 0.

Thus, bounded random walks are (with high probability) within ±
√
n of their expectations after

n steps.
There exist extensions of these inequalities to the cases where we control the variance of the

martingales; see Freedman [87].

4.2.2 Examples and bounded differences

We now develop several example applications of the Azuma-Hoeffding inequalities (Theorem 4.2.3),
applying them most specifically to functions satisfying certain stability conditions.

We first define the collections of functions we consider.

Definition 4.6 (Bounded differences). Let f : X n → R for some space X . Then f satisfies
bounded differences with constants ci if for each i ∈ {1, . . . , n}, all xn1 ∈ X n, and x′i ∈ X we have

|f(xi−1
1 , xi, x

n
i+1)− f(xi−1

1 , x′i, x
n
i+1)| ≤ ci.

The classical inequality relating bounded differences and concentration is McDiarmid’s inequal-
ity, or the bounded differences inequality.

Proposition 4.2.5 (Bounded differences inequality). Let f : X n → R satisfy bounded differences
with constants ci, and let Xi be independent random variables. f(Xn

1 )−E[f(Xn
1 )] is 1

4

∑n
i=1 c

2
i -sub-

Gaussian, and

P (f(Xn
1 )− E[f(Xn

1 )] ≥ t) ∨ P (f(Xn
1 )− E[f(Xn

1 )] ≤ −t) ≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Proof The basic idea is to show that the Doob martingale (Example 4.2.2) associated with f is
c2
i /4-sub-Gaussian, and then to simply apply the Azuma-Hoeffding inequality. To that end, define
Di = E[f(Xn

1 ) | Xi
1]−E[f(Xn

1 ) | Xi−1
1 ] as before, and note that

∑n
i=1Di = f(Xn

1 )−E[f(Xn
1 )]. The

random variables

Li := inf
x
E[f(Xn

1 ) | Xi−1
1 , Xi = x]− E[f(Xn

1 ) | Xi−1
1 ]

Ui := sup
x

E[f(Xn
1 ) | Xi−1

1 , Xi = x]− E[f(Xn
1 ) | Xi−1

1 ]

evidently satisfy Li ≤ Di ≤ Ui, and moreover, we have

Ui − Li ≤ sup
xi−1
1

sup
x,x′

{
E[f(Xn

1 ) | Xi−1
1 = xi−1

1 , Xi = x]− E[f(Xn
1 ) | Xi−1

1 = xi−1
1 , Xi = x′]

}
= sup

xi−1
1

sup
x,x′

∫ (
f(xi−1

1 , x, xni+1)− f(xi−1
1 , x′, xni+1)

)
dP (xni+1) ≤ ci,

where we have used the independence of the Xi and Definition 4.6 of bounded differences. Conse-
quently, we have by Hoeffding’s Lemma (Example 4.1.6) that E[eλDi | Xi−1

1 ] ≤ exp(λ2c2
i /8), that

is, the Doob martingale is c2
i /4-sub-Gaussian.
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The remainder of the proof is simply Theorem 4.2.3.

A number of quantities satisfy the conditions of Proposition 4.2.5, and we give two examples
here; we will revisit them more later.

Example 4.2.6 (Bounded random vectors): Let B be a Banach space—a complete normed
vector space—with norm ‖·‖. Let Xi be independent bounded random vectors in B satisfying
E[Xi] = 0 and ‖Xi‖ ≤ c. We claim that the quantity

f(Xn
1 ) :=

∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥
satisfies bounded differences. Indeed, we have by the triangle inequality that

|f(xi−1
1 , x, xni+1)− f(xi−1

1 , x′, xni+1)| ≤ 1

n

∥∥x− x′∥∥ ≤ 2c

n
.

Consequently, if Xi are indpendent, we have

P

(∣∣∣∣∣
∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥− E
[∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥]
∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−nt

2

2c2

)
(4.2.1)

for all t ≥ 0. That is, the norm of (bounded) random vectors in an essentially arbitrary vector
space concentrates extremely quickly about its expectation.
The challenge becomes to control the expectation term in the concentration bound (4.2.1),
which can be a bit challenging. In certain cases—for example, when we have a Euclidean
structure on the vectors Xi—it can be easier. Indeed, let us specialize to the case that Xi ∈ H,
a (real) Hilbert space, so that there is an inner product 〈·, ·〉 and the norm satisfies ‖x‖2 = 〈x, x〉
for x ∈ H. Then Cauchy-Schwarz implies that

E
[∥∥∥∥ n∑

i=1

Xi

∥∥∥∥]2

≤ E
[∥∥∥∥ n∑

i=1

Xi

∥∥∥∥2]
=
∑
i,j

E[〈Xi, Xj〉] =

n∑
i=1

E[‖Xi‖2].

That is assuming the Xi are independent and E[‖Xi‖2] ≤ σ2, inequality (4.2.1) becomes

P
(∥∥Xn

∥∥ ≥ σ√
n

+ t

)
+ P

(∥∥Xn

∥∥ ≤ − σ√
n
− t
)
≤ 2 exp

(
−nt

2

2c2

)
where Xn = 1

n

∑n
i=1Xi. 3

We can specialize Example 4.2.6 to a situation that is very important for treatments of concen-
tration, sums of random vectors, and generalization bounds in machine learning.

Example 4.2.7 (Rademacher complexities): This example is actually a special case of Ex-
ample 4.2.6, but its frequent uses justify a more specialized treatment and consideration. Let
X be some space, and let F be some collection of functions f : X → R. Let εi ∈ {−1, 1} be a
collection of independent random sign vectors. Then the empirical Rademacher complexity of
F is

Rn(F | xn1 ) :=
1

n
E

[
sup
f∈F

n∑
i=1

εif(xi)

]
,
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where the expectation is over only the random signs εi. (In some cases, depending on context
and convenience, one takes the absolute value |

∑
i εif(xi)|.) The Rademacher complexity of

F is
Rn(F) := E[Rn(F | Xn

1 )],

the expectation of the empirical Rademacher complexities.
If f : X → [b0, b1] for all f ∈ F , then the Rademacher complexity satisfies bounded differences,
because for any two sequences xn1 and zn1 differing in only element j, we have

n|Rn(F | xn1 )−Rn(F | zn1 )| ≤ E
[

sup
f∈F

n∑
i=1

εi(f(xi)−f(zi))

]
= E[sup

f∈F
εi(f(xj)−f(zj))] ≤ b1−b0.

Consequently, the empirical Rademacher complexity satisfies Rn(F | Xn
1 )−Rn(F) is (b1−b0)2

4n -
sub-Gaussian by Theorem 4.2.3. 3

These examples warrant more discussion, and it is possible to argue that many variants of these
random variables are well-concentrated. For example, instead of functions we may simply consider
an arbitrary set A ⊂ Rn and define the random variable

Z(A) := sup
a∈A
〈a, ε〉 = sup

a∈A

n∑
i=1

aiεi.

As a function of the random signs εi, we may write Z(A) = f(ε), and this is then a function
satisfying |f(ε) − f(ε′)| ≤ supa∈A |〈a, ε − ε′〉|, so that if ε and ε′ differ in index i, we have |f(ε) −
f(ε′)| ≤ 2 supa∈A |ai|. That is, Z(A)− E[Z(A)] is

∑n
i=1 supa∈A |ai|2-sub-Gaussian.

Example 4.2.8 (Rademacher complexity as a random vector): This view of Rademacher
complexity shows how we may think of Rademacher complexities as norms on certain spaces.
Indeed, if we consider a vector space L of linear functions on F , then we can define the F-
seminorm on L by ‖L‖F := supf∈F |L(f)|. In this case, we may consider the symmetrized
empirical distributions

P 0
n :=

1

n

n∑
i=1

εi1Xi f 7→ P 0
nf :=

1

n

n∑
i=1

εif(Xi)

as elements of this vector space L. (Here we have used 1Xi to denote the point mass at Xi.)
Then the Rademacher complexity is nothing more than the expected norm of P 0

n , a random
vector, as in Example 4.2.6. This view is somewhat sophisticated, but it shows that any general
results we may prove about random vectors, as in Example 4.2.6, will carry over immediately
to versions of the Rademacher complexity. 3

4.3 Uniformity and metric entropy

Now that we have explored a variety of concentration inequalities, we show how to put them to use
in demonstrating that a variety of estimation, learning, and other types of procedures have nice
convergence properties. We first give a somewhat general collection of results, then delve deeper
by focusing on some standard tasks from machine learning.
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4.3.1 Symmetrization and uniform laws

The first set of results we consider are uniform laws of large numbers, where the goal is to bound
means uniformly over different classes of functions. Frequently, such results are called Glivenko-
Cantelli laws, after the original Glivenko-Cantelli theorem, which shows that empirical distributions
uniformly converge. We revisit these ideas in the next chapter, where we present a number of more
advanced techniques based on ideas of metric entropy (or volume-like considerations); here we
present the basic ideas using our stability and bounded differencing tools.

The starting point is to define what we mean by a uniform law of large numbers. To do so, we
adopt notation (as in Example 4.2.8) we will use throughout the remainder of the book, reminding
readers as we go. For a sample X1, . . . , Xn on a space X , we let

Pn :=
1

n

n∑
i=1

1Xi

denote the empirical distribution on {Xi}ni=1, where 1Xi denotes the point mass at Xi. Then for
functions f : X → R (or more generally, any function f defined on X ), we let

Pnf := EPn [f(X)] =
1

n

n∑
i=1

f(Xi)

denote the empirical expectation of f evaluated on the sample, and we also let

Pf := EP [f(X)] =

∫
f(x)dP (x)

denote general expectations under a measure P . With this notation, we study uniform laws of
large numbers, which consist of proving results of the form

sup
f∈F
|Pnf − Pf | → 0, (4.3.1)

where convergence is in probability, expectation, almost surely, or with rates of convergence. When
we view Pn and P as (infinite-dimensional) vectors on the space of maps from F → R, then we
may define the (semi)norm ‖·‖F for any L : F → R by

‖L‖F := sup
f∈F
|L(f)|,

in which case Eq. (4.3.1) is equivalent to proving

‖Pn − P‖F → 0.

Thus, roughly, we are simply asking questions about when random vectors converge to their expec-
tations.1

The starting point of this investigation considers bounded random functions, that is, F consists
of functions f : X → [a, b] for some −∞ < a ≤ b < ∞. In this case, the bounded differences
inequality (Proposition 4.2.5) immediately implies that expectations of ‖Pn − P‖F provide strong
guarantees on concentration of ‖Pn − P‖F .

1Some readers may worry about measurability issues here. All of our applications will be in separable spaces,
so that we may take suprema with abandon without worrying about measurability, and consequently we ignore this
from now on.
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Proposition 4.3.1. Let F be as above. Then

P (‖Pn − P‖F ≥ E[‖Pn − P‖F ] + t) ≤ exp

(
− 2nt2

(b− a)2

)
for t ≥ 0.

Proof Let Pn and P ′n be two empirical distributions, differing only in observation i (with Xi and
X ′i). We observe that

sup
f∈F
|Pnf − Pf | − sup

f∈F
|P ′nf − Pf | ≤ sup

f∈F

{
|Pnf − Pf | − |P ′nf − Pf |

}
≤ 1

n
sup
f∈F
|f(Xi)− f(X ′i)| ≤

b− a
n

by the triangle inequality. An entirely parallel argument gives the converse lower bound of − b−a
n ,

and thus Proposition 4.2.5 gives the result.

Proposition 4.3.1 shows that, to provide control over high-probability concentration of ‖Pn − P‖F ,
it is (at least in cases where F is bounded) sufficient to control the expectation E[‖Pn − P‖F ]. We
take this approach through the remainder of this section, developing tools to simplify bounding
this quantity.

Our starting points consist of a few inequalities relating expectations to symmetrized quantities,
which are frequently easier to control than their non-symmetrized parts. This symmetrization
technique is widely used in probability theory, theoretical statistics, and machine learning. The key
is that for centered random variables, symmetrized quantities have, to within numerical constants,
similar expectations to their non-symmetrized counterparts. Thus, in many cases, it is equivalent
to analyze the symmetized quantity and the initial quantity.

Proposition 4.3.2. Let Xi be independent random vectors on a (Banach) space with norm ‖·‖
and let εi{−1, 1} be independent random signs. Then for any p ≥ 1,

2−pE

[∥∥∥∥ n∑
i=1

εi(Xi − E[Xi])

∥∥∥∥p
]
≤ E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ 2pE

[∥∥∥∥ n∑
i=1

εiXi

∥∥∥∥p
]

In the proof of the upper bound, we could also show the bound

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ 2pE

[∥∥∥∥ n∑
i=1

εi(Xi − E[Xi])

∥∥∥∥p
]
,

so we may analyze whichever is more convenient.
Proof We prove the right bound first. We introduce independent copies of the Xi and use
these to symmetrize the quantity. Indeed, let X ′i be an independent copy of Xi, and use Jensen’s
inequality and the convexity of ‖·‖p to observe that

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]

= E

[∥∥∥∥ n∑
i=1

(Xi − E[X ′i])

∥∥∥∥p
]
≤ E

[∥∥∥∥ n∑
i=1

(Xi −X ′i)
∥∥∥∥p
]
.

Now, note that the distribution of Xi−X ′i is symmetric, so that Xi−X ′i
dist
= εi(Xi−X ′i), and thus

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ E

[∥∥∥∥ n∑
i=1

εi(Xi −X ′i)
∥∥∥∥p
]
.
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Multiplying and dividing by 2p, Jensen’s inequality then gives

E

[∥∥∥∥ n∑
i=1

(Xi − E[Xi])

∥∥∥∥p
]
≤ 2pE

[∥∥∥∥1

2

n∑
i=1

εi(Xi −X ′i)
∥∥∥∥p
]

≤ 2p−1

[
E

[∥∥∥∥ n∑
i=1

εiXi

∥∥∥∥p
]

+ E

[∥∥∥∥ n∑
i=1

εiX
′
i

∥∥∥∥p
]]

as desired.
For the left bound in the proposition, let Yi = Xi−E[Xi] be the centered version of the random

variables. We break the sum over random variables into two parts, conditional on whether εi = ±1,
using repeated conditioning. We have

E

[∥∥∥∥ n∑
i=1

εiYi

∥∥∥∥p
]

= E

[∥∥∥∥ ∑
i:εi=1

Yi −
∑
i:ε=−1

Yi

∥∥∥∥p
]

≤ E

[
2p−1E

[∥∥∥∥ ∑
i:εi=1

Yi

∥∥∥∥p | ε
]

+ 2p−1E

[∥∥∥∥ ∑
i:εi−1

Yi

∥∥∥∥p | ε
]]

= 2p−1E

[
E

[∥∥∥∥ ∑
i:εi=1

Yi +
∑

i:εi=−1

E[Yi]

∥∥∥∥p | ε
]

+ E

[∥∥∥∥ ∑
i:εi=−1

Yi +
∑
i:εi=1

E[Yi]

∥∥∥∥p | ε
]]

≤ 2p−1E

[
E

[∥∥∥∥ ∑
i:εi=1

Yi +
∑

i:εi=−1

Yi

∥∥∥∥p | ε
]

+ E

[∥∥∥∥ ∑
i:εi=−1

Yi +
∑
i:εi=1

Yi

∥∥∥∥p | ε
]]

= 2pE

[∥∥∥∥ n∑
i=1

Yi

∥∥∥∥p
]
.

We obtain as an immediate corollary a symmetrization bound for supremum norms on function
spaces. In this corollary, we use the symmetrized empirical measure

P 0
n :=

1

n

n∑
i=1

εi1Xi , P 0
nf =

1

n

n∑
i=1

εif(Xi).

The expectation of
∥∥P 0

n

∥∥
F is of course the Rademacher complexity (Examples 4.2.7 and 4.2.8), and

we have the following corollary.

Corollary 4.3.3. Let F be a class of functions f : X → R and Xi be i.i.d. Then E[‖Pn − P‖F ] ≤
2E[‖P 0

n‖F ].

From Corollary 4.3.3, it is evident that by controlling the expectation of the symmetrized process
E[‖P 0

n‖F ] we can derive concentration inequalities and uniform laws of large numbers. For example,
we immediately obtain that

P
(
‖Pn − P‖F ≥ 2E[‖P 0

n‖F ] + t
)
≤ exp

(
− 2nt2

(b− a)2

)
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for all t ≥ 0 whenever F consists of functions f : X → [a, b].
There are numerous examples of uniform laws of large numbers, many of which reduce to

developing bounds on the expectation E[‖P 0
n‖F ], which is frequently possible via more advanced

techniques we develop in Chapter 6. A frequent application of these symmetrization ideas is to
risk minimization problems, as we discuss in the coming section; for these, it will be useful for us
to develop a few analytic and calculus tools. To better match the development of these ideas, we
return to the notation of Rademacher complexities, so that Rn(F) := E[

∥∥P 0
n

∥∥
F ]. The first is a

standard result, which we state for its historical value and the simplicity of its proof.

Proposition 4.3.4 (Massart’s finite class bound). Let F be any collection of functions with f :
X → R, and assume that σ2

n := n−1E[maxf∈F
∑n

i=1 f(Xi)
2] <∞. Then

Rn(F) ≤
√

2σ2
n log |F|√
n

.

Proof For each fixed xn1 , the random variable
∑n

i=1 εif(xi) is
∑n

i=1 f(xi)
2-sub-Gaussian. Now,

define σ2(xn1 ) := n−1 maxf∈F
∑n

i=1 f(xi)
2. Using the results of Exercise 4.7, that is, that E[maxj≤n Zj ] ≤√

2σ2 log n if the Zj are each σ2-sub-Gaussian, we see that

Rn(F | xn1 ) ≤
√

2σ2(xn1 ) log |F|√
n

.

Jensen’s inequality that E[
√
·] ≤

√
E[·] gives the result.

A refinement of Massart’s finite class bound applies when the classes are infinite but, on a
collection X1, . . . , Xn, the functions f ∈ F may take on only a (smaller) number of values. In this
case, we define the empirical shatter coefficient of a collection of points x1, . . . , xn by SF (xn1 ) :=
card{(f(x1), . . . , f(xn)) | f ∈ F}, the number of distinct vectors of values (f(x1), . . . , f(xn)) the
functions f ∈ F may take. The shatter coefficient is the maximum of the empirical shatter coeffi-
cients over xn1 ∈ X n, that is, SF (n) := supxn1 SF (xn1 ). It is clear that SF (n) ≤ |F| always, but by
only counting distinct values, we have the following corollary.

Corollary 4.3.5 (A sharper variant of Massart’s finite class bound). Let F be any collection of
functions with f : X → R, and assume that σ2

n := n−1E[maxf∈F
∑n

i=1 f(Xi)
2] <∞. Then

Rn(F) ≤
√

2σ2
n log SF (n)√

n
.

Typical classes with small shatter coefficients include Vapnik-Chervonenkis classes of functions; we
do not discuss these further here, instead referring to one of the many books in machine learning
and empirical process theory in statistics.

The most important of the calculus rules we use are the comparison inequalities for Rademacher
sums, which allow us to consider compositions of function classes and maintain small complexity
measurers. We state the rule here; the proof is complex, so we defer it to Section 4.5.3

Theorem 4.3.6 (Ledoux-Talagrand Contraction). Let T ⊂ Rn be an arbitrary set and let φi : R→
R be 1-Lipschitz and satisfy φi(0) = 0. Then for any nondecreasing convex function Φ : R→ R+,

E

[
Φ

(
1

2
sup
t∈T

∣∣∣∣ n∑
i=1

φi(ti)εi

∣∣∣∣
)]
≤ E

[
Φ

(
sup
t∈T
〈t, ε〉

)]
.
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A corollary to this theorem is suggestive of its power and applicability. Let φ : R → R be
L-Lipschitz, and for a function class F define φ ◦ F = {φ ◦ f | f ∈ F}. Then we have the following
corollary about Rademacher complexities of contractive mappings.

Corollary 4.3.7. Let F be an arbitrary function class and φ be L-Lipschitz. Then

Rn(φ ◦ F) ≤ 2LRn(F) + |φ(0)|/
√
n.

Proof The result is an almost immediate consequence of Theorem 4.3.6; we simply recenter our
functions. Indeed, we have

Rn(φ ◦ F | xn1 ) = E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi(φ(f(xi))− φ(0)) +
1

n

n∑
i=1

εiφ(0)

∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

εi(φ(f(xi))− φ(0))

∣∣∣∣
]

+ E

[∣∣∣∣ 1n
n∑
i=1

εiφ(0)

∣∣∣∣
]

≤ 2LRn(F) +
|φ(0)|√

n
,

where the final inequality follows by Theorem 4.3.6 (as g(·) = φ(·)− φ(0) is Lipschitz and satisfies
g(0) = 0) and that E[|

∑n
i=1 εi|] ≤

√
n.

4.3.2 Metric entropy, coverings, and packings

When the class of functions F under consideration is finite, the union bound more or less provides
guarantees that Pnf is uniformly close to Pf for all f ∈ F . When F is infinite, however, we require
a different set of tools for addressing uniform laws. In many cases, because of the application
of the bounded differences inequality in Proposition 4.3.1, all we really need to do is to control
the expectation E[‖P 0

n‖F ], though the techniques we develop here will have broader use and can
sometimes directly guarantee concentration.

The basic object we wish to control is a measure of the size of the space on which we work.
To that end, we modify notation a bit to simply consider arbitrary vectors θ ∈ Θ, where Θ is a
non-empty set with an associated (semi)metric ρ. For many purposes in estimation (and in our
optimality results in the further parts of the book), a natural way to measure the size of the set is
via the number of balls of a fixed radius δ > 0 required to cover it.

Definition 4.7 (Covering number). Let Θ be a set with (semi)metric ρ. A δ-cover of the set Θ with
respect to ρ is a set {θ1, . . . , θN} such that for any point θ ∈ Θ, there exists some v ∈ {1, . . . , N}
such that ρ(θ, θv) ≤ δ. The δ-covering number of Θ is

N(δ,Θ, ρ) := inf {N ∈ N : there exists a δ-cover θ1, . . . , θN of Θ} .

The metric entropy of the set Θ is simply the logarithm of its covering number logN(δ,Θ, ρ).
We can define a related measure—more useful for constructing our lower bounds—of size that
relates to the number of disjoint balls of radius δ > 0 that can be placed into the set Θ.

Definition 4.8 (Packing number). A δ-packing of the set Θ with respect to ρ is a set {θ1, . . . , θM}
such that for all distinct v, v′ ∈ {1, . . . ,M}, we have ρ(θv, θ

′
v) ≥ δ. The δ-packing number of Θ is

M(δ,Θ, ρ) := sup {M ∈ N : there exists a δ-packing θ1, . . . , θM of Θ} .
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δ

Figure 4.1. A δ-covering of the
elliptical set by balls of radius δ.

δ/2

δ/2

Figure 4.2. A δ-packing of the
elliptical set, where balls have ra-
dius δ/2. No balls overlap, and
each center of the packing satisfies
‖θv − θv′‖ ≥ δ.

Figures 4.1 and 4.2 give examples of (respectively) a covering and a packing of the same set.
An exercise in proof by contradiction shows that the packing and covering numbers of a set are

in fact closely related:

Lemma 4.3.8. The packing and covering numbers satisfy the following inequalities:

M(2δ,Θ, ρ) ≤ N(δ,Θ, ρ) ≤M(δ,Θ, ρ).

We leave derivation of this lemma to Exercise 4.11, noting that it shows that (up to constant factors)
packing and covering numbers have the same scaling in the radius δ. As a simple example, we see
for any interval [a, b] on the real line that in the usual absolute distance metric, N(δ, [a, b], | · |) �
(b− a)/δ.

As one example of the metric entropy, consider a set of functions F with reasonable covering
numbers (metric entropy) in ‖·‖∞-norm.

Example 4.3.9 (The “standard” covering number guarantee): Let F consist of functions
f : X → [−b, b] and let the metric ρ be ‖f − g‖∞ = supx∈X |f(x)− g(x)|. Then

P

(
sup
f∈F
|Pnf − Pf | ≥ t

)
≤ exp

(
− nt2

18b2
+ logN(t/3,F , ‖·‖∞)

)
. (4.3.2)
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So as long as the covering numbersN(t,F , ‖·‖∞) grow sub-exponentially in t—so that logN(t)�
nt2—we have the (essentially) sub-Gaussian tail bound (4.3.2). Example 4.4.11 gives one typ-
ical case. Indeed, fix a minimal t/3-cover of F in ‖·‖∞ of size N := N(t/3,F , ‖·‖∞), call-
ing the covering functions f1, . . . , fN . Then for any f ∈ F and the function fi satisfying
‖f − fi‖∞ ≤ t/2, we have

|Pnf − Pf | ≤ |Pnf − Pnfi|+ |Pnfi − Pfi|+ |Pfi − Pf | ≤ |Pnfi − Pfi|+
2t

3
.

The Azuma-Hoeffding inequality (Theorem 4.2.3) guarantees (by a union bound) that

P
(

max
i≤N
|Pnfi − Pfi| ≥ t

)
≤ exp

(
−nt

2

2b2
+ logN

)
.

Combine this bound (replacing t with t/3) to obtain inequality (4.3.2). 3

Given the relationships between packing, covering, and size of sets Θ, we would expect there
to be relationships between volume, packing, and covering numbers. This is indeed the case, as we
now demonstrate for arbitrary norm balls in finite dimensions.

Lemma 4.3.10. Let B denote the unit ‖·‖-ball in Rd. Then(
1

δ

)d
≤ N(δ,B, ‖·‖) ≤

(
1 +

2

δ

)d
.

Proof We prove the lemma via a volumetric argument. For the lower bound, note that if the
points v1, . . . , vN are a δ-cover of B, then

Vol(B) ≤
N∑
i=1

Vol(δB + vi) = N Vol(δB) = N Vol(B)δd.

In particular, N ≥ δ−d. For the upper bound on N(δ,B, ‖·‖), let V be a δ-packing of B with
maximal cardinality, so that |V| = M(δ,B, ‖·‖) ≥ N(δ,B, ‖·‖) (recall Lemma 4.3.8). Notably, the
collection of δ-balls {δB+ vi}Mi=1 cover the ball B (as otherwise, we could put an additional element
in the packing V), and moreover, the balls { δ2B + vi} are all disjoint by definition of a packing.
Consequently, we find that

M

(
δ

2

)d
Vol(B) = M Vol

(
δ

2
B
)
≤ Vol

(
B +

δ

2
B
)

=

(
1 +

δ

2

)d
Vol(B).

Rewriting, we obtain

M(δ,B, ‖·‖) ≤
(

2

δ

)d(
1 +

δ

2

)d Vol(B)

Vol(B)
=

(
1 +

2

δ

)d
,

completing the proof.

Let us give one application of Lemma 4.3.10 to concentration of random matrices; we explore
more in the exercises as well. We can generalize the definition of sub-Gaussian random variables
to sub-Gaussian random vectors, where we say that X ∈ Rd is a σ2-sub-Gaussian vector if

E[exp(〈u,X − E[X]〉)] ≤ exp

(
σ2

2
‖u‖22

)
(4.3.3)
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for all u ∈ Rd. For example, X ∼ N(0, Id) is immediately 1-sub-Gaussian, and X ∈ [−b, b]d with
independent entries is b2-sub-Gaussian. Now, suppose that Xi are independent isotropic random
vectors, meaning that E[Xi] = 0, E[XiX

>
i ] = Id, and that they are also σ2-sub-Gaussian. Then by

an application of Lemma 4.3.10, we can give concentration guarantees for the sample covariance
Σn := 1

n

∑n
i=1XiX

>
i for the operator norm ‖A‖op := sup{〈u,Av〉 | ‖u‖2 = ‖v‖2 = 1}.

Proposition 4.3.11. Let Xi be independent isotropic and σ2-sub-Gaussian vectors. Then there is
a numerical constant C such that the sample covariance Σn := 1

n

∑n
i=1XiX

>
i satisfies

‖Σn − Id‖op ≤ Cσ
2

d+ log 1
δ

n
+

√
d+ log 1

δ

n


with probability at least 1− δ.

Proof We begin with an intermediate lemma.

Lemma 4.3.12. Let A be symmetric and {ui}Ni=1 be an ε-cover of the unit `2 ball Bd2. Then

(1− 2ε) ‖A‖op ≤ max
i≤N
〈ui, Aui〉 ≤ ‖A‖op .

Proof The second inequality is trivial. Fix any u ∈ Bd2. Then for the i such that ‖u− ui‖2 ≤ ε,
we have

〈u,Au〉 = 〈u− ui, Au〉+ 〈ui, Au〉 = 2〈u− ui, Au〉+ 〈ui, Aui〉 ≤ 2ε ‖A‖op + 〈ui, Aui〉

by definition of the operator norm. Taking a supremum over u gives the final result.

Let the matrix Ei = XiX
>
i − I, and define the average error En = 1

nEi. Then with this lemma
in hand, we see that for any ε-cover N of the `2-ball Bd2,

(1− 2ε)
∥∥En∥∥op

≤ max
u∈N
〈u,Enu〉.

Now, note that 〈u,Eiu〉 = 〈u,Xi〉2−‖u‖22 is sub-exponential, as it is certainly mean 0 and, moreover,
is the square of a sub-Gaussian; in particular, Theorem 4.1.15 shows that there is a numerical
constant C <∞ such that

E[exp(λ〈u,Eiu〉)] ≤ exp
(
Cλ2σ4

)
for |λ| ≤ 1

Cσ2
.

Taking ε = 1
4 in our covering N , then,

P(
∥∥En∥∥op

≥ t) ≤ P
(

max
u∈N
〈u,Enu〉 ≥ t/2

)
≤ |N | ·max

u∈N
P
(
〈u, nEnu〉 ≥ nt/2

)
by a union bound. As sums of sub-exponential random variable remain sub-exponential, Corol-
lary 4.1.18 implies

P
(∥∥En∥∥op

≥ t
)
≤ |N | exp

(
−cmin

{
nt2

σ4
,
nt

σ2

})
,

where c > 0 is a numerical constant. Finally, we apply Lemma 4.3.10, which guarantees that

|N | ≤ 9d, and then take t to scale as the maximum of σ2 d+log 1
δ

n and σ2

√
d+log 1

δ
n .
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4.4 Generalization bounds

We now build off of our ideas on uniform laws of large numbers and Rademacher complexities to
demonstrate their applications in statistical machine learning problems, focusing on empirical risk
minimization procedures and related problems. We consider a setting as follows: we have a sample
Z1, . . . , Zn ∈ Z drawn i.i.d. according to some (unknown) distribution P , and we have a collection
of functions F from which we wish to select an f that “fits” the data well, according to some loss
measure ` : F × Z → R. That is, we wish to find a function f ∈ F minimizing the risk

L(f) := EP [`(f, Z)]. (4.4.1)

In general, however, we only have access to the risk via the empirical distribution of the Zi, and
we often choose f by minimizing the empirical risk

L̂n(f) :=
1

n

n∑
i=1

`(f, Zi). (4.4.2)

As written, this formulation is quite abstract, so we provide a few examples to make it somewhat
more concrete.

Example 4.4.1 (Binary classification problems): One standard problem—still abstract—
that motivates the formulation (4.4.1) is the binary classification problem. Here the data Zi
come in pairs (X,Y ), where X ∈ X is some set of covariates (independent variables) and
Y ∈ {−1, 1} is the label of example X. The function class F consists of functions f : X → R,
and the goal is to find a function f such that

P(sign(f(X)) 6= Y )

is small, that is, minimizing the risk E[`(f, Z)] where the loss is the 0-1 loss, `(f, (x, y)) =
1 {f(x)y ≤ 0}. 3

Example 4.4.2 (Multiclass classification): The multiclass classifcation problem is identical
to the binary problem, but instead of Y ∈ {−1, 1} we assume that Y ∈ [k] = {1, . . . , k} for
some k ≥ 2, and the function class F consists of (a subset of) functions f : X → Rk. The
goal is to find a function f such that, if Y = y is the correct label for a datapoint x, then
fy(x) > fl(x) for all l 6= y. That is, we wish to find f ∈ F minimizing

P (∃ l 6= Y such that fl(X) ≥ fY (X)) .

In this case, the loss function is the zero-one loss `(f, (x, y)) = 1 {maxl 6=y fl(x) ≥ fy(x)}. 3

Example 4.4.3 (Binary classification with linear functions): In the standard statistical
learning setting, the data x belong to Rd, and we assume that our function class F is indexed
by a set Θ ⊂ Rd, so that F = {fθ : fθ(x) = θ>x, θ ∈ Θ}. In this case, we may use the zero-one
loss, the convex hinge loss, or the (convex) logistic loss, which are variously `zo(fθ, (x, y)) :=
1
{
yθ>x ≤ 0

}
, and the convex losses

`hinge(fθ, (x, y)) =
[
1− yx>θ

]
+

and `logit(fθ, (x, y)) = log(1 + exp(−yx>θ)).

The hinge and logistic losses, as they are convex, are substantially computationally easier to
work with, and they are common choices in applications. 3
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The main motivating question that we ask is the following: given a sample Z1, . . . , Zn, if we
choose some f̂n ∈ F based on this sample, can we guarantee that it generalizes to unseen data? In
particular, can we guarantee that (with high probability) we have the empirical risk bound

L̂n(f̂n) =
1

n

n∑
i=1

`(f̂n, Zi) ≤ R(f̂n) + ε (4.4.3)

for some small ε? If we allow f̂n to be arbitrary, then this becomes clearly impossible: consider the
classification example 4.4.1, and set f̂n to be the “hash” function that sets f̂n(x) = y if the pair
(x, y) was in the sample, and otherwise f̂n(x) = −1. Then clearly L̂n(f̂n) = 0, while there is no
useful bound on R(f̂n).

4.4.1 Finite and countable classes of functions

In order to get bounds of the form (4.4.3), we require a few assumptions that are not too onerous.
First, throughout this section, we will assume that for any fixed function f , the loss `(f, Z) is
σ2-sub-Gaussian, that is,

EP [exp (λ(`(f, Z)− L(f)))] ≤ exp

(
λ2σ2

2

)
(4.4.4)

for all f ∈ F . (Recall that the risk functional L(f) = EP [`(f, Z)].) For example, if the loss is the
zero-one loss from classification problems, inequality (4.4.4) is satisfied with σ2 = 1

4 by Hoeffding’s

lemma. In order to guarantee a bound of the form (4.4.4) for a function f̂ chosen dependent on
the data, in this section we give uniform bounds, that is, we would like to bound

P
(

there exists f ∈ F s.t. L(f) > L̂n(f) + t
)

or P

(
sup
f∈F

∣∣∣L̂n(f)−R(f)
∣∣∣ > t

)
.

Such uniform bounds are certainly sufficient to guarantee that the empirical risk is a good proxy
for the true risk L, even when f̂n is chosen based on the data.

Now, recalling that our set of functions or predictors F is finite or countable, let us suppose
that for each f ∈ F , we have a complexity measure c(f)—a penalty—such that∑

f∈F
e−c(f) ≤ 1. (4.4.5)

This inequality should look familiar to the Kraft inequality—which we will see in the coming
chapters—from coding theory. As soon as we have such a penalty function, however, we have the
following result.

Theorem 4.4.4. Let the loss `, distribution P on Z, and function class F be such that `(f, Z) is
σ2-sub-Gaussian for each f ∈ F , and assume that the complexity inequality (4.4.5) holds. Then
with probability at least 1− δ over the sample Z1:n,

L(f) ≤ L̂n(f) +

√
2σ2

log 1
δ + c(f)

n
for all f ∈ F .
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Proof First, we note that by the usual sub-Gaussian concentration inequality (Corollary 4.1.10)
we have for any t ≥ 0 and any f ∈ F that

P
(
L(f) ≥ L̂n(f) + t

)
≤ exp

(
− nt

2

2σ2

)
.

Now, if we replace t by
√
t2 + 2σ2c(f)/n, we obtain

P
(
L(f) ≥ L̂n(f) +

√
t2 + 2σ2c(f)/n

)
≤ exp

(
− nt

2

2σ2
− c(f)

)
.

Then using a union bound, we have

P
(
∃ f ∈ F s.t. L(f) ≥ L̂n(f) +

√
t2 + 2σ2c(f)/n

)
≤
∑
f∈F

exp

(
− nt

2

2σ2
− c(f)

)

= exp

(
− nt

2

2σ2

)∑
f∈F

exp(−c(f))︸ ︷︷ ︸
≤1

.

Setting t2 = 2σ2 log 1
δ/n gives the result.

As one classical example of this setting, suppose that we have a finite class of functions F . Then
we can set c(f) = log |F|, in which case we clearly have the summation guarantee (4.4.5), and we
obtain

L(f) ≤ L̂n(f) +

√
2σ2

log 1
δ + log |F|
n

uniformly for f ∈ F

with probability at least 1− δ. To make this even more concrete, consider the following example.

Example 4.4.5 (Floating point classifiers): We implement a linear binary classifier using
double-precision floating point values, that is, we have fθ(x) = θ>x for all θ ∈ Rd that may
be represented using d double-precision floating point numbers. Then for each coordinate of
θ, there are at most 264 representable numbers; in total, we must thus have |F| ≤ 264d. Thus,
for the zero-one loss `zo(fθ, (x, y)) = 1

{
θ>xy ≤ 0

}
, we have

L(fθ) ≤ L̂n(fθ) +

√
log 1

δ + 45d

2n

for all representable classifiers simultaneously, with probability at least 1− δ, as the zero-one
loss is 1/4-sub-Gaussian. (Here we have used that 64 log 2 < 45.) 3

We also note in passing that by replacing δ with δ/2 in the bounds of Theorem 4.4.4, a union
bound yields the following two-sided corollary.

Corollary 4.4.6. Under the conditions of Theorem 4.4.4, we have

∣∣∣L̂n(f)− L(f)
∣∣∣ ≤

√
2σ2

log 2
δ + c(f)

n
for all f ∈ F

with probability at least 1− δ.
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4.4.2 Large classes

When the collection of functions is (uncountably) infinite, it can be more challenging to obtain
strong generalization bounds, though there still exist numerous tools for these ideas. The most
basic, of which we will give examples, leverage covering number bounds (essentially, as in Exam-
ple 4.3.9). We return in the next chapter to alternative approaches based on randomization and
divergence measures, which provide guarantees with somewhat similar structure to those we present
here.

Let us begin by considering a few examples, after which we provide examples showing how to
derive explicit bounds using Rademacher complexities.

Example 4.4.7 (Rademacher complexity of the `2-ball): Let Θ = {θ ∈ Rd | ‖θ‖2 ≤ r}, and
consider the class of linear functionals F := {fθ(x) = θTx, θ ∈ Θ}. Then

Rn(F | xn1 ) ≤ r

n

√√√√ n∑
i=1

‖xi‖22,

because we have

Rn(F | xn1 ) =
r

n
E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
2

]
≤ r

n

√√√√E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥2

2

]
=
r

n

√√√√ n∑
i=1

‖xi‖22,

as desired. 3

In high-dimensional situations, it is sometimes useful to consider more restrictive function
classes, for example, those indexed by vectors in an `1-ball.

Example 4.4.8 (Rademacher complexity of the `1-ball): In contrast to the previous example,
suppose that Θ = {θ ∈ Rd | ‖θ‖1 ≤ r}, and consider the linear class F := {fθ(x) = θTx, θ ∈ Θ}.
Then

Rn(F | xn1 ) =
r

n
E

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥
∞

]
.

Now, each coordinate j of
∑n

i=1 εixi is
∑n

i=1 x
2
ij-sub-Gaussian, and thus using that E[maxj≤d Zj ] ≤√

2σ2 log d for arbitrary σ2-sub-Gaussian Zj (see Exercise 4.7), we have

Rn(F | xn1 ) ≤ r

n

√√√√2 log(2d) max
j

n∑
i=1

x2
ij .

To facilitate comparison with Example 4.4.8, suppose that the vectors xi all satisfy ‖xi‖∞ ≤ b.
In this case, the preceding inequality implies that Rn(F | xn1 ) ≤ rb

√
2 log(2d)/

√
n. In contrast,

the `2-norm of such xi may satisfy ‖xi‖2 = b
√
d, so that the bounds of Example 4.4.7 scale

instead as rb
√
d/
√
n, which can be exponentially larger. 3

These examples are sufficient to derive a few sophisticated risk bounds. We focus on the case
where we have a loss function applied to some class with reasonable Rademacher complexity, in
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which case it is possible to recenter the loss class and achieve reasonable complexity bounds. The
coming proposition does precisely this in the case of margin-based binary classification. Consider
points (x, y) ∈ X × {±1}, and let F be an arbitrary class of functions f : X → R and L =
{(x, y) 7→ `(yf(x))}f∈F be the induced collection of losses. As a typical example, we might have
`(t) = [1− t]+, `(t) = e−t, or `(t) = log(1 + e−t). We have the following proposition.

Proposition 4.4.9. Let F and X be such that supx∈X |f(x)| ≤ M for f ∈ F and assume that

` is L-Lipschitz. Define the empirical and population risks L̂n(f) := Pn`(Y f(X)) and L(f) :=
P`(Y f(X)). Then

P

(
sup
f∈F
|L̂n(f)− L(f)| ≥ 4LRn(F) + t

)
≤ 2 exp

(
− nt2

2L2M2

)
for t ≥ 0.

Proof We may recenter the class L, that is, replace `(·) with `(·) − `(0), without changing
L̂n(f)− L(f). Call this class L0, so that ‖Pn − P‖L = ‖Pn − P‖L0 . This recentered class satisfies
bounded differences with constant 2ML, as |`(yf(x)) − `(y′f(x′))| ≤ L|yf(x) − y′f(x′)| ≤ 2LM ,
as in the proof of Proposition 4.3.1. Applying Proposition 4.3.1 and then Corollary 4.3.3 and gives
that P(supf∈F |L̂n(f) − L(f)| ≥ 2Rn(L0) + t) ≤ exp(− nt2

2M2L2 ) for t ≥ 0. Then applying the con-
traction inequality (Theorem 4.3.6) yields Rn(L0) ≤ 2LRn(F), giving the result.

Let us give a few example applications of these ideas.

Example 4.4.10 (Support vector machines and hinge losses): In the support vector machine
problem, we receive data (Xi, Yi) ∈ Rd × {±1}, and we seek to minimize average of the losses
`(θ; (x, y)) =

[
1− yθTx

]
+

. We assume that the space X has ‖x‖2 ≤ b for x ∈ X and that

Θ = {θ ∈ Rd | ‖θ‖2 ≤ r}. Applying Proposition 4.4.9 gives

P
(

sup
θ∈Θ
|Pn`(θ; (X,Y ))− P`(θ; (X,Y ))| ≥ 4Rn(FΘ) + t

)
≤ exp

(
− nt2

2r2b2

)
,

where FΘ = {fθ(x) = θTx}θ∈Θ. Now, we apply Example 4.4.7, which implies that

Rn(φ ◦ FΘ) ≤ 2Rn(Fθ) ≤
2rb√
n
.

That is, we have

P
(

sup
θ∈Θ
|Pn`(θ; (X,Y ))− P`(θ; (X,Y ))| ≥ 4rb√

n
+ t

)
≤ exp

(
− nt2

2(rb)2

)
,

so that Pn and P become close at rate roughly rb/
√
n in this case. 3

Example 4.4.10 is what is sometimes called a “dimension free” convergence result—there is no
esxplicit dependence on the dimension d of the problem, except as the radii r and b make explicit.
One consequence of this is that if x and θ instead belong to a Hilbert space (potentiall infinite
dimensional) with inner product 〈·, ·〉 and norm ‖x‖2 = 〈x, x〉, but for which we are guaranteed
that ‖θ‖ ≤ r and similarly ‖x‖ ≤ b, then the result still applies. Extending this to other function
classes is reasonably straightforward, and we present a few examples in the exercises.
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When we do not have the simplifying structure of `(yf(x)) identified in the preceding examples,
we can still provide guarantees of generalization using the covering number guarantees introduced
in Section 4.3.2. The most common and important case is when we have a Lipschitzian loss function
in an underlying parameter θ.

Example 4.4.11 (Lipschitz functions over a norm-bounded parameter space): Consider the
parametric loss minimization problem

minimize
θ∈Θ

L(θ) := E[`(θ;Z)]

for a loss function ` that is M -Lipschitz (with respect to the norm ‖·‖) in its argument, where
for normalization we assume infθ∈Θ `(θ, z) = 0 for each z. Then the metric entropy of Θ
bounds the metric entropy of the loss class F := {z 7→ `(θ, z)}θ∈Θ for the supremum norm
‖·‖∞. Indeed, for any pair θ, θ′, we have

sup
z
|`(θ, z)− `(θ′, z)| ≤M

∥∥θ − θ′∥∥ ,
and so an ε-cover of Θ is an Mε-cover of F in supremum norm. In particular,

N(ε,F , ‖·‖∞) ≤ N(ε/M,Θ, ‖·‖).

Assume that Θ ⊂ {θ | ‖θ‖ ≤ b} for some finite b. Then Lemma 4.3.10 guarantees that
logN(ε,Θ, ‖·‖) ≤ d log(1 + 2/ε) . d log 1

ε , and so the classical covering number argument in
Example 4.3.9 gives

P
(

sup
θ∈Θ
|Pn`(θ, Z)− P`(θ, Z)| ≥ t

)
≤ exp

(
−c nt2

b2M2
+ Cd log

M

t

)
,

where c, C are numerical constants. In particular, taking t2 � M2b2d
n log n

δ gives that

|Pn`(θ, Z)− P`(θ, Z)| .
Mb
√
d log n

δ√
n

with probability at least 1− δ. 3

4.4.3 Structural risk minimization and adaptivity

In general, for a given function class F , we can always decompose the excess risk into the approxi-
mation/estimation error decomposition. That is, let

L∗ = inf
f
L(f),

where the preceding infimum is taken across all (measurable) functions. Then we have

L(f̂n)− L∗ = L(f̂n)− inf
f∈F

L(f)︸ ︷︷ ︸
estimation

+ inf
f∈F

L(f)− L∗︸ ︷︷ ︸
approximation

. (4.4.6)

There is often a tradeoff between these two, analogous to the bias/variance tradeoff in classical
statistics; if the approximation error is very small, then it is likely hard to guarantee that the esti-
mation error converges quickly to zero, while certainly a constant function will have low estimation
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error, but may have substantial approximation error. With that in mind, we would like to develop
procedures that, rather than simply attaining good performance for the class F , are guaranteed
to trade-off in an appropriate way between the two types of error. This leads us to the idea of
structural risk minimization.

In this scenario, we assume we have a sequence of classes of functions, F1,F2, . . ., of increasing
complexity, meaning that F1 ⊂ F2 ⊂ . . .. For example, in a linear classification setting with
vectors x ∈ Rd, we might take a sequence of classes allowing increasing numbers of non-zeros in
the classification vector θ:

F1 :=
{
fθ(x) = θ>x such that ‖θ‖0 ≤ 1

}
, F2 :=

{
fθ(x) = θ>x such that ‖θ‖0 ≤ 2

}
, . . . .

More broadly, let {Fk}k∈N be a (possibly infinite) increasing sequence of function classes. We
assume that for each Fk and each n ∈ N, there exists a constant Cn,k(δ) such that we have the
uniform generalization guarantee

P

(
sup
f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)
≤ δ · 2−k.

For example, by Corollary 4.4.6, if F is finite we may take

Cn,k(δ) =

√
2σ2

log |Fk|+ log 1
δ + k log 2

n
.

(We will see in subsequent sections of the course how to obtain other more general guarantees.)
We consider the following structural risk minimization procedure. First, given the empirical

risk L̂n, we find the model collection k̂ minimizing the penalized risk

k̂ := argmin
k∈N

{
inf
f∈Fk

L̂n(f) + Cn,k(δ)

}
. (4.4.7a)

We then choose f̂ to minimize the risk over the estimated “best” class F
k̂
, that is, set

f̂ := argmin
f∈F

k̂

L̂n(f). (4.4.7b)

With this procedure, we have the following theorem.

Theorem 4.4.12. Let f̂ be chosen according to the procedure (4.4.7a)–(4.4.7b). Then with proba-
bility at least 1− δ, we have

L(f̂) ≤ inf
k∈N

inf
f∈Fk

{L(f) + 2Cn,k(δ)} .

Proof First, we have by the assumed guarantee on Cn,k(δ) that

P

(
∃ k ∈ N and f ∈ Fk such that sup

f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)

≤
∞∑
k=1

P

(
∃ f ∈ Fk such that sup

f∈Fk

∣∣∣L̂n(f)− L(f)
∣∣∣ ≥ Cn,k(δ)

)
≤
∞∑
k=1

δ · 2−k = δ.
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On the event that supf∈Fk |L̂n(f)−L(f)| < Cn,k(δ) for all k, which occurs with probability at least
1− δ, we have

L(f̂) ≤ L̂n(f) + C
n,k̂

(δ) = inf
k∈N

inf
f∈Fk

{
L̂n(f) + Cn,k(δ)

}
≤ inf

k∈N
inf
f∈Fk

{L(f) + 2Cn,k(δ)}

by our choice of f̂ . This is the desired result.

We conclude with a final example, using our earlier floating point bound from Example 4.4.5,
coupled with Corollary 4.4.6 and Theorem 4.4.12.

Example 4.4.13 (Structural risk minimization with floating point classifiers): Consider
again our floating point example, and let the function class Fk consist of functions defined by
at most k double-precision floating point values, so that log |Fk| ≤ 45d. Then by taking

Cn,k(δ) =

√
log 1

δ + 65k log 2

2n

we have that |L̂n(f)−L(f)| ≤ Cn,k(δ) simultaneously for all f ∈ Fk and all Fk, with probability
at least 1− δ. Then the empirical risk minimization procedure (4.4.7) guarantees that

L(f̂) ≤ inf
k∈N

 inf
f∈Fk

L(f) +

√
2 log 1

δ + 91k

n

 .

Roughly, we trade between small risk L(f)—as the risk inff∈Fk L(f) must be decreasing in

k—and the estimation error penalty, which scales as
√

(k + log 1
δ )/n. 3

4.5 Technical proofs

4.5.1 Proof of Theorem 4.1.11

(1) implies (2) Let K1 = 1. Using the change of variables identity that for a nonnegative
random variable Z and any k ≥ 1 we have E[Zk] = k

∫∞
0 tk−1P(Z ≥ t)dt, we find

E[|X|k] = k

∫ ∞
0

tk−1P(|X| ≥ t)dt ≤ 2k

∫ ∞
0

tk−1 exp

(
− t

2

σ2

)
dt = kσk

∫ ∞
0

uk/2−1e−udu,

where for the last inequality we made the substitution u = t2/σ2. Noting that this final integral is
Γ(k/2), we have E[|X|k] ≤ kσkΓ(k/2). Because Γ(s) ≤ ss for s ≥ 1, we obtain

E[|X|k]1/k ≤ k1/kσ
√
k/2 ≤ e1/eσ

√
k.

Thus (2) holds with K2 = e1/e.

(2) implies (3) Let σ = ‖X‖ψ2
= supk≥1 k

− 1
2E[|X|k]1/k, so that K2 = 1 and E[|X|k] ≤ k

k
2 σ for

all k. For K3 ∈ R+, we thus have

E[exp(X2/(K3σ
2))] =

∞∑
k=0

E[X2k]

k!K2k
3 σ2k

≤
∞∑
k=0

σ2k(2k)k

k!K2k
3 σ2k

(i)

≤
∞∑
k=0

(
2e

K2
3

)k
where inequality (i) follows because k! ≥ (k/e)k, or 1/k! ≤ (e/k)k. Noting that

∑∞
k=0 α

k = 1
1−α ,

we obtain (3) by taking K3 = e
√

2/(e− 1) ≈ 2.933.
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(3) implies (4) Let us take K3 = 1. We claim that (4) holds with K4 = 3
4 . We prove this

result for both small and large λ. First, note the (highly non-standard, but true!) inequality that

ex ≤ x+ e
9x2

16 for all x. Then we have

E[exp(λX)] ≤ E[λX]︸ ︷︷ ︸
=0

+E
[
exp

(
9λ2X2

16

)]

Now note that for |λ| ≤ 4
3σ , we have 9λ2σ2/16 ≤ 1, and so by Jensen’s inequality,

E
[
exp

(
9λ2X2

16

)]
= E

[
exp(X2/σ2)

9λ2σ2

16

]
≤ e

9λ2σ2

16 .

For large λ, we use the simpler Fenchel-Young inequality, that is, that λx ≤ λ2

2c + cx2

2 , valid for all
c ≥ 0. Then we have for any 0 ≤ c ≤ 2 that

E[exp(λX)] ≤ e
λ2σ2

2c E
[
exp

(
cX2

2σ2

)]
≤ e

λ2σ2

2c e
c
2 ,

where the final inequality follows from Jensen’s inequality. If |λ| ≥ 4
3σ , then 1

2 ≤
9
32λ

2σ2, and we
have

E[exp(λX)] ≤ inf
c∈[0,2]

e[ 1
2c

+ 9c
32

]λ2σ2
= exp

(
3λ2σ2

4

)
.

(4) implies (1) This is the content of Proposition 4.1.8, with K4 = 1
2 and K1 = 2.

4.5.2 Proof of Theorem 4.1.15

(1) implies (2) As in the proof of Theorem 4.1.11, we use that for a nonnegative random variable
Z we have E[Zk] = k

∫∞
0 tk−1P(Z ≥ t)dt. Let K1 = 1. Then

E[|X|k] = k

∫ ∞
0

tk−1P(|X| ≥ t)dt ≤ 2k

∫ ∞
0

tk−1 exp(−t/σ)dt = 2kσk
∫ ∞

0
uk−1 exp(−u)du,

where we used the substitution u = t/σ. Thus we have E[|X|k] ≤ 2Γ(k+1)σk, and using Γ(k+1) ≤
kk yields E[|X|k]1/k ≤ 21/kkσ, so that (2) holds with K2 ≤ 2.

(2) implies (3) Let K2 = 1, and note that

E[exp(X/(K3σ))] =

∞∑
k=0

E[Xk]

Kk
3σ

kk!
≤
∞∑
k=0

kk

k!
· 1

Kk
3

(i)

≤
∞∑
k=0

(
e

K3

)k
,

where inequality (i) used that k! ≥ (k/e)k. Taking K3 = e2/(e− 1) < 5 gives the result.

(3) implies (1) If E[exp(X/σ)] ≤ e, then for t ≥ 0

P(X ≥ t) ≤ E[exp(X/σ)]e−t/σ ≤ e1−t/σ.

With the same result for the negative tail, we have

P(|X| ≥ t) ≤ 2e1−t/σ ∧ 1 ≤ 2e−
2t
5σ ,

so that (1) holds with K1 = 5
2 .
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(2) if and only if (4) Thus, we see that up to constant numerical factors, the definition ‖X‖ψ1
=

supk≥1 k
−1E[|X|k]1/k has the equivalent statements

P(|X| ≥ t) ≤ 2 exp(−t/(K1 ‖X‖ψ1
)) and E[exp(X/(K3 ‖X‖ψ1

))] ≤ e.

Now, let us assume that (2) holds with K2 = 1, so that σ = ‖X‖ψ1
and that E[X] = 0. Then we

have E[Xk] ≤ kk ‖X‖kψ1
, and

E[exp(λX)] = 1 +

∞∑
k=2

λkE[Xk]

k!
≤ 1 +

∞∑
k=2

λk ‖X‖kψ1
· k

k

k!
≤ 1 +

∞∑
k=2

λk ‖X‖kψ1
ek,

the final inequality following because k! ≥ (k/e)k. Now, if |λ| ≤ 1
2e‖X‖ψ1

, then we have

E[exp(λX)] ≤ 1 + λ2e2 ‖X‖ψ1

∞∑
k=0

(λ ‖X‖ψ1
e)k ≤ 1 + 2e2 ‖X‖2ψ1

λ2,

as the final sum is at most
∑∞

k=0 2−k = 2. Using 1 + x ≤ ex gives that (2) implies (4). For
the opposite direction, we may simply use that if (4) holds with K4 = 1 and K ′4 = 1, then
E[exp(X/σ)] ≤ exp(1), so that (3) holds.

4.5.3 Proof of Theorem 4.3.6

JCD Comment: I would like to write this. For now, check out Ledoux and Talagrand
[129, Theorem 4.12] or Koltchinskii [122, Theorem 2.2].

4.6 Bibliography

A few references on concentration, random matrices, and entropies include Vershynin’s extraordi-
narily readable lecture notes [170], upon which our proof of Theorem 4.1.11 is based, the compre-
hensive book of Boucheron, Lugosi, and Massart [34], and the more advanced material in Buldygin
and Kozachenko [41]. Many of our arguments are based off of those of Vershynin and Boucheron
et al. Kolmogorov and Tikhomirov [121] introduced metric entropy.

4.7 Exercises

Exercise 4.1 (Concentration of bounded random variables): Let X be a random variable taking
values in [a, b], where −∞ < a ≤ b < ∞. In this question, we show Hoeffding’s Lemma, that is,
that X is sub-Gaussian: for all λ ∈ R, we have

E[exp(λ(X − E[X]))] ≤ exp

(
λ2(b− a)2

8

)
.

(a) Show that Var(X) ≤ ( b−a2 )2 = (b−a)2

4 for any random variable X taking values in [a, b].

(b) Let
ϕ(λ) = logE[exp(λ(X − E[X]))].
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Assuming that E[X] = 0 (convince yourself that this is no loss of generality) show that

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(t) =
E[X2etX ]

E[etX ]
− E[XetX ]2

E[etX ]2
.

(You may assume that derivatives and expectations commute, which they do in this case.)

(c) Construct a random variable Yt, defined for t ∈ R, such that Yt ∈ [a, b] and

Var(Yt) = ϕ′′(t).

(You may assume X has a density for simplicity.)

(d) Using the result of part (c), show that ϕ(λ) ≤ λ2(b−a)2

8 for all λ ∈ R.

Exercise 4.2: In this question, we show how to use Bernstein-type (sub-exponential) inequal-
ities to give sharp convergence guarantees. Recall (Example 4.1.14, Corollary 4.1.18, and inequal-
ity (4.1.6)) that if Xi are independent bounded random variables with |Xi−E[X]| ≤ b for all i and
Var(Xi) ≤ σ2, then

max

{
P

(
1

n

n∑
i=1

Xi ≥ E[X] + t

)
,P

(
1

n

n∑
i=1

Xi ≤ E[X]− t

)}
≤ exp

(
−1

2
min

{
5

6

nt2

σ2
,
nt

2b

})
.

We consider minimization of loss functions ` over finite function classes F with ` ∈ [0, 1], so that if
L(f) = E[`(f, Z)] then |`(f, Z)− L(f)| ≤ 1. Throughout this question, we let

L? = min
f∈F

L(f) and f? ∈ argmin
f∈F

L(f).

We will show that, roughly, a procedure based on picking an empirical risk minimizer is unlikely to
choose a function f ∈ F with bad performance, so that we obtain faster concentration guarantees.

(a) Argue that for any f ∈ F

P
(
L̂(f) ≥ L(f) + t

)
∨ P

(
L̂(f) ≤ L(f)− t

)
≤ exp

(
−1

2
min

{
5

6

nt2

L(f)(1− L(f))
,
nt

2

})
.

(b) Define the set of “bad” prediction functions Fε bad := {f ∈ F : L(f) ≥ L? + ε}. Show that for
any fixed ε ≥ 0 and any f ∈ F2εbad, we have

P
(
L̂(f) ≤ L? + ε

)
≤ exp

(
−1

2
min

{
5

6

nε2

L?(1− L?) + ε(1− ε)
,
nε

2

})
.

(c) Let f̂n ∈ argminf∈F L̂(f) denote the empirical minimizer over the class F . Argue that it is
likely to have good performance, that is, for all ε ≥ 0 we have

P
(
L(f̂n) ≥ L(f?) + 2ε

)
≤ card(F) · exp

(
−1

2
min

{
5

6

nε2

L?(1− L?) + ε(1− ε)
,
nε

2

})
.
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(d) Using the result of part (c), argue that with probability at least 1− δ,

L(f̂n) ≤ L(f?) +
4 log |F|δ

n
+

√
12

5
·

√
L?(1− L?) · log |F|δ√

n
.

Why is this better than an inequality based purely on the boundedness of the loss `, such as
Theorem 4.4.4 or Corollary 4.4.6? What happens when there is a perfect risk minimizer f??

Exercise 4.3 (Likelihood ratio bounds and concentration): Consider a data release problem,
where given a sample x, we release a sequence of data Z1, Z2, . . . , Zn belonging to a discrete set Z,
where Zi may depend on Zi−1

1 and x. We assume that the data has limited information about x
in the sense that for any two samples x, x′, we have the likelihood ratio bound

p(zi | x, zi−1
1 )

p(zi | x′, zi−1
1 )

≤ eε.

Let us control the amount of “information” (in the form of an updated log-likelihood ratio) released
by this sequential mechanism. Fix x, x′, and define

L(z1, . . . , zn) := log
p(z1, . . . , zn | x)

p(z1, . . . , zn | x′)
.

(a) Show that, assuming the data Zi are drawn conditional on x,

P (L(Z1, . . . , Zn) ≥ nε(eε − 1) + t) ≤ exp

(
− t2

2nε2

)
.

Equivalently, show that

P
(
L(Z1, . . . , Zn) ≥ nε(eε − 1) + ε

√
2n log(1/δ)

)
≤ δ.

(b) Let γ ∈ (0, 1). Give the largest value of ε you can that is sufficient to guarantee that for any
test Ψ : Zn → {x, x′}, we have

Px(Ψ(Zn1 ) 6= x) + Px′(Ψ(Zn1 ) 6= x′) ≥ 1− γ,

where Px and Px′ denote the sampling distribution of Zn1 under x and x′, respectively?

Exercise 4.4 (Marcinkiewicz-Zygmund inequality): Let Xi be independent random variables
with E[Xi] = 0 and E[|Xi|p] <∞, where 1 ≤ p <∞. Prove that

E

[∣∣∣∣ n∑
i=1

Xi

∣∣∣∣p
]
≤ CpE

[( n∑
i=1

|Xi|2
)p/2]

where Cp is a constant (that depends on p). As a corollary, derive that if E[|Xi|p] ≤ σp and p ≥ 2,
then

E

[∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣p
]
≤ Cp

σp

np/2
.
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That is, sample means converge quickly to zero in higher moments. Hint: For any fixed x ∈ Rn, if
εi are i.i.d. uniform signs εi ∈ {±1}, then εTx is sub-Gaussian.

Exercise 4.5 (Small balls and anti-concentration): Let X be a nonnegative random variable
satisfying P(X ≤ ε) ≤ cε for some c <∞ and all ε > 0. Argue that if Xi are i.i.d. copies of X, then

P

(
1

n

n∑
i=1

Xi ≥ t

)
≥ 1− exp(−2n [1/2− 2ct]2+)

for all t.

Exercise 4.6 (Lipschitz functions remain sub-Gaussian): Let X be σ2-sub-Gaussian and f :
R→ R be L-Lipschitz, meaning that |f(x)− f(y)| ≤ L|x− y| for all x, y. Prove that there exists a
numerical constant C <∞ such that f(X) is CL2σ2-sub-Gaussian.

Exercise 4.7 (Sub-gaussian maxima): Let X1, . . . , Xn be σ2-sub-gaussian (not necessarily inde-
pendent) random variables. Show that

(a) E[maxiXi] ≤
√

2σ2 log n.

(b) There exists a numerical constant C <∞ such that E[maxi |Xi|p] ≤ (Cpσ2 log k)p/2.

Exercise 4.8: Consider a binary classification problem with logistic loss `(θ; (x, y)) = log(1 +
exp(−yθTx)), where θ ∈ Θ := {θ ∈ Rd | ‖θ‖1 ≤ r} and y ∈ {±1}. Assume additionally that the

space X ⊂ {x ∈ Rd | ‖x‖∞ ≤ b}. Define the empirical and population risks L̂n(θ) := Pn`(θ; (X,Y ))

and L(θ) := P`(θ; (X,Y )), and let θ̂n = argminθ∈Θ L̂(θ). Show that with probability at least 1− δ
over (Xi, Yi)

iid∼ P ,

L(θ̂n) ≤ inf
θ∈Θ

L(θ) + C
rb
√

log d
δ√

n

where C <∞ is a numerical constant (you need not specify this).

Exercise 4.9 (Sub-Gaussian constants of Bernoulli random variables): In this exercise, we will
derive sharp sub-Gaussian constants for Bernoulli random variables (cf. [106, Thm. 1] or [118, 24]),
showing

logE[et(X−p)] ≤ 1− 2p

4 log 1−p
p

t2 for all t ≥ 0. (4.7.1)

(a) Define ϕ(t) = log(E[et(X−p)]) = log((1− p)e−tp + pet(1−p)). Show that

ϕ′(t) = E[Yt] and ϕ′′(t) = Var(Yt)

where Yt = (1− p) with probability q(t) := pet(1−p)

pet(1−p)+(1−p)e−tp and Yt = −p otherwise.

(b) Show that ϕ′(0) = 0 and that if p > 1
2 , then Var(Yt) ≤ Var(Y0) = p(1 − p). Conclude that

ϕ(t) ≤ p(1−p)
2 t2 for all t ≥ 0.

(c) Argue that p(1 − p) ≤ 1−2p

2 log 1−p
p

for p ∈ [0, 1]. Hint: Let p = 1+δ
2 for δ ∈ [0, 1], so that the

inequality is equivalent to log 1+δ
1−δ ≤

2δ
1−δ2 . Then use that log(1 + δ) =

∫ δ
0

1
1+udu.
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(d) Let C = 2 log 1−p
p and define s = Ct = 2 log 1−p

p s, and let

f(s) =
1− 2p

2
Cs2 + Cps− log(1− p+ peCs),

so that inequality (4.7.1) holds if and only if f(s) ≥ 0 for all s ≥ 0. Give f ′(s) and f ′′(s).

(e) Show that f(0) = f(1) = f ′(0) = f ′(1) = 0, and argue that f ′′(s) changes signs at most twice
and that f ′′(0) = f ′′(1) > 0. Use this to show that f(s) ≥ 0 for all s ≥ 0.

JCD Comment: Perhaps use transportation inequalities to prove this bound, and
also maybe give Ordentlich and Weinberger’s “A Distribution Dependent Refinement
of Pinsker’s Inequality” as an exercise.

Exercise 4.10: Let s(p) = 1−2p

log 1−p
p

. Show that s is concave on [0, 1].

Exercise 4.11: Prove Lemma 4.3.8.

JCD Comment: Add in some connections to the exponential family material. Some
ideas:

1. A hypothesis test likelihood ratio for them (see page 40 of handwritten notes)

2. A full learning guarantee with convergence of Hessian and everything, e.g., for logistic
regression?

3. In the Ledoux-Talagrand stuff, maybe worth going through example of logistic regres-
sion. Also, having working logistic example throughout? Helps clear up the structure
and connect with exponential families.

4. Maybe an exercise for Lipschitz functions with random Lipschitz constants?
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Chapter 5

Generalization and stability

Concentration inequalities provide powerful techniques for demonstrating when random objects
that are functions of collections of independent random variables—whether sample means, functions
with bounded variation, or collections of random vectors—behave similarly to their expectations.
This chapter continues exploration of these ideas by incorporating the central thesis of this book:
that information theory’s connections to statistics center around measuring when (and how) two
probability distributions get close to one another. On its face, we remain focused on the main
objects of the preceding chapter, where we have a population probability distribution P on a space
X and some collection of functions f : X → R. We then wish to understand when we expect the
empirical distribution

Pn :=
1

n

n∑
i=1

1Xi,

defined by teh sample Xi
iid∼ P , to be close to the population P as measured by f . Following the

notation we introduce in Section 4.3, for Pf := EP [f(X)], we again ask to have

Pnf − Pf =
1

n

n∑
i=1

(
f(Xi)− EP [f(X)]

)
to be small simultaneously for all f .

In this chapter, however, we develop a family of tools based around PAC (probably approximately
correct) Bayesian bounds, where we slightly perturb the functions f of interest to average them in
some way; when these perturbations keep Pnf stable, we expect that Pnf ≈ Pf , that is, the sample
generalizes to the population. These perturbations allow us to bring the tools of the divergence
measures we have developed to bear on the problems of convergence and generalization. Even more,
they allow us to go beyond the “basic” concentration inequalities to situations with interaction,
where a data analyst may evaluate some functions of Pn, then adaptively choose additional queries
or analyses to do on the sample sample Xn

1 . This breaks standard statistical analyses—which
assume an a priori specified set of hypotheses or questions to be answered—but is possible to
address once we can limit the information the analyses release in precise ways that information-
theoretic tools allow. Modern work has also shown how to leverage these techniques, coupled with
computation, to provide non-vacuous bounds on learning for complicated scenarios and models to
which all classical bounds fail to apply, such as deep learning.
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5.1 The variational representation of Kullback-Leibler divergence

The starting point of all of our generalization bounds is a surprisingly simply variational result,
which relates expectations, moment generating functions, and the KL-divergence in one single
equality. It turns out that this inequality, by relating means with moment generating functions
and divergences, allows us to prove generalization bounds based on information-theoretic tools and
stability.

Theorem 5.1.1 (Donsker-Varadhan variational representation). Let P and Q be distributions on
a common space X . Then

Dkl (P ||Q) = sup
g

{
EP [g(X)]− logEQ[eg(X)]

}
,

where the supremum is taken over measurable functions g : X → R with EQ[eg(X)] <∞.

We give one proof of this result and one sketch of a proof, which holds when the underlying space
is discrete, that may be more intuitive: the first constructs a particular “tilting” of Q via the
function eg, and verifies the equality. The second relies on the discretization of the KL-divergence
and may be more intuitive to readers familiar with convex optimization: essentially, we expect this
result because the function log(

∑k
j=1 e

xj ) is the convex conjugate of the negative entropy. (See also
Exercise 5.1.)
Proof We may assume that P is absolutely continuous with respect to Q, meaning that Q(A) = 0
implies that P (A) = 0, as otherwise both sides are infinite by inspection. Thus, it is no loss of
generality to let P and Q have densities p and q.

Attainment in the equality is easy: we simply take g(x) = log p(x)
q(x) , so that EQ[eg(X)] = 1. To

show that the right hand side is never larger than Dkl (P ||Q) requires a bit more work. To that
end, let g be any function such that EQ[eg(X)] < ∞, and define the random variable Zg(x) =
eg(x)/EQ[eg(X)], so that EQ[Z] = 1. Then using the absolute continuity of P w.r.t. Q, we have

EP [logZg] = EP
[
log

p(X)

q(X)
+ log

(
Zg(X)

q(X)

p(X)

)]
= Dkl (P ||Q) + EP

[
log

(
Zg
dQ

dP

)]
≤ Dkl (P ||Q) + logEP

[
dQ

dP
Zg

]
= Dkl (P ||Q) + logEQ[Zg].

As EQ[Zg] = 1, using that EP [logZg] = EP [g(X)]− logEQ[eg(X)] gives the result.

Here is the second proof of Theorem 5.1.1, which applies when X is discrete and finite. That we
can approximate KL-divergence by suprema over finite partitions (as in definition (2.2.1)) suggests
that this approach works in general—which it can—but this requires some not completely trivial
approximations of EP [g] and EQ[eg] by discretized versions of their expectations, which makes
things rather tedious.
Proof of Theorem 5.1.1, the finite case As we have assumed that P and Q have finite
supports, which we identify with {1, . . . , k} and p.m.f.s p, q ∈ ∆k = {p ∈ Rk+ | 〈1, p〉 = 1}. Define

fq(v) = log(
∑k

j=1 qje
vj ), which is convex in v (recall Proposition 3.2.1). Then the supremum in

the variational representation takes the form

h(p) := sup
v∈Rk

{〈p, v〉 − fq(v)} .
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If we can take derivatives and solve for zero, we are guaranteed to achieve the supremum. To that
end, note that

∇v{〈p, v〉 − fq(v)} = p−

[
qie

vi∑k
j=1 qje

vj

]k
i=1

,

so that setting vj = log
pj
qj

achieves p−∇vfq(v) = p− p = 0 and hence the supremum. Noting that

log(
∑k

j=1 qj exp(log
pj
qj

)) = log(
∑k

j=1 pj) = 0 gives h(p) = Dkl (p||q).

The Donsker-Varadhan variational representation already gives a hint that we can use some
information-theoretic techniques to control the difference between an empirical sample and its
expectation, at least in an average sense. In particular, we see that for any function g, we have

EP [g(X)] ≤ Dkl (P ||Q) + logEQ[eg(X)]

for any random variable X. Now, changing this on its head a bit, suppose that we consider a
collection of functions F and put two probability measures π and π0 on F , and consider Pnf −Pf ,
where we consider f a random variable f ∼ π or f ∼ π0. Then a consequence of the Donsker-
Varadhan theorem is that∫

(Pnf − Pf)dπ(f) ≤ Dkl (π||π0) + log

∫
exp(Pnf − Pf)dπ0(f)

for any π, π0. While this inequality is a bit naive—bounding a difference by an exponent seems
wasteful—as we shall see, it has substantial applications when we can upper bound the KL-
divergence Dkl (π||π0).

5.2 PAC-Bayes bounds

Probably-approximately-correct (PAC) Bayesian bounds proceed from a perspective similar to that
of the covering numbers and covering entropies we develop in Section 4.3, where if for a collection
of functions F there is a finite subset (a cover) {fv} such that each f ∈ F is “near” one of the
fv, then we need only control deviations of Pnf from Pf for the elements of {fv}. In PAC-Bayes
bounds, we instead average functions f with other functions, and this averaging allows a similar
family of guarantees and applications.

Let us proceed with the main results. Let F be a collection of functions f : X → R, and
assume that each function f is σ2-sub-Gaussian, which we recall (Definition 4.1) means that
E[eλ(f(X)−Pf)] ≤ exp(λ2σ2/2) for all λ ∈ R, where Pf = EP [f(X)] =

∫
f(x)dP (x) denotes the

expectation of f under P . The main theorem of this section shows that averages of the squared
error (Pnf − Pf)2 of the empirical distribution Pn to P converge quickly to zero for all averaging
distributions π on functions f ∈ F so long as each f is σ2-sub-Gaussian, with the caveat that we
pay a cost for different choices of π. The key is that we choose some prior distribution π0 on F
first.

Theorem 5.2.1. Let Π be the collection of all probability distributions on the set F and let π0 be
a fixed prior probability distribution on f ∈ F . With probability at least 1− δ,∫

(Pnf − Pf)2dπ(f) ≤ 8σ2

3

Dkl (π||π0) + log 2
δ

n
simultaneously for all π ∈ Π.
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Proof The key is to combine Example 4.1.12 with the variational representation that Theo-
rem 5.1.1 provides for KL-divergences. We state Example 4.1.12 as a lemma here.

Lemma 5.2.2. Let Z be a σ2-sub-Gaussian random variable. Then for λ ≥ 0,

E[eλZ
2
] ≤ 1√

[1− 2σ2λ]+

.

Without loss of generality, we assume that Pf = 0 for all f ∈ F , and recall that Pnf =
1
n

∑n
i=1 f(Xi) is the empirical mean of f . Then we know that Pnf is σ2/n-sub-Gaussian, and

Lemma 5.2.2 implies that E[exp(λ(Pnf)2)] ≤
[
1− 2λσ2/n

]−1/2

+
for any f , and thus for any prior

π0 on f we have

E
[∫

exp(λ(Pnf)2)dπ0(f)

]
≤
[
1− 2λσ2/n

]−1/2

+
.

Consequently, taking λ = λn := 3n
8σ2 , we obtain

E
[∫

exp(λn(Pnf)2)dπ0(f)

]
= E

[∫
exp

(
3n

8σ2
(Pnf)2

)
dπ0(f)

]
≤ 2.

Markov’s inequality thus implies that

P
(∫

exp
(
λn(Pnf)2

)
dπ0(f) ≥ 2

δ

)
≤ δ, (5.2.1)

where the probability is over Xi
iid∼ P .

Now, we use the Donsker-Varadhan equality (Theorem 5.1.1). Letting λ > 0, we define the
function g(f) = λ(Pnf)2, so that for any two distributions π and π0 on F , we have

1

λ

∫
g(f)dπ(f) =

∫
(Pnf)2dπ(f) ≤

Dkl (π||π0) + log
∫

exp(λ(Pnf)2)dπ0(f)

λ
.

This holds without any probabilistic qualifications, so using the application (5.2.1) of Markov’s
inequality with λ = λn, we thus see that with probability at least 1− δ over X1, . . . , Xn, simulta-
neously for all distributions π,∫

(Pnf)2dπ(f) ≤ 8σ2

3

Dkl (π||π0) + log 2
δ

n
.

This is the desired result (as we have assumed that Pf = 0 w.l.o.g.).

By Jensen’s inequality (or Cauchy-Schwarz), it is immediate from Theorem 5.2.1 that we also
have ∫

|Pnf − Pf |dπ(f) ≤

√
8σ2

3

Dkl (π||π0) + log 2
δ

n
simultaneously for all π ∈ Π (5.2.2)

with probability at least 1− δ, so that Eπ[|Pnf −Pf |] is with high probability of order 1/
√
n. The

inequality (5.2.2) is the original form of the PAC-Bayes bound due to McAllester, with slightly
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sharper constants and improved logarithmic dependence. The key is that stability, in the form of a
prior π0 and posterior π closeness, allow us to achieve reasonably tight control over the deviations
of random variables and functions with high probability.

Let us give an example, which is similar to many of our approaches in Section 4.4, to illustrate
some of the approaches this allows. The basic idea is that by appropriate choice of prior π0

and “posterior” π, whenever we have appropriately smooth classes of functions we achieve certain
generalization guarantees.

Example 5.2.3 (A uniform law for Lipschitz functions): Consider a case as in Section 4.4,
where we let L(θ) = P`(θ, Z) for some function ` : Θ×Z → R. Let Bd2 = {v ∈ Rd | ‖v‖2 ≤ 1}
be the `2-ball in Rd, and let us assume that Θ ⊂ rBd2 and additionally that θ 7→ `(θ, z) is
M -Lipschitz for all z ∈ Z. For simplicity, we assume that `(θ, z) ∈ [0, 2Mr] for all θ ∈ Θ (we
may simply relativize our bounds by replacing ` by `(·, z)− infθ∈Θ `(θ, z) ∈ [0, 2Mr]).
If L̂n(θ) = Pn`(θ, Z), then Theorem 5.2.1 implies that∫

|L̂n(θ)− L(θ)|dπ(θ) ≤

√
8M2r2

3n

[
Dkl (π||π0) + log

2

δ

]
for all π with probability at least 1 − δ. Now, let θ0 ∈ Θ be arbitrary, and for ε > 0 (to be
chosen later) take π0 to be uniform on (r + ε)Bd2 and π to be uniform on θ0 + εBd2. Then we

immediately see that Dkl (π||π0) = d log(1+ r
ε ). Moreover, we have

∫
L̂n(θ)dπ(θ) ∈ L̂n(θ0)±Mε

and similarly for L(θ), by the M -Lipschitz continuity of `. For any fixed ε > 0, we thus have

|L̂n(θ0)− L(θ0)| ≤ 2Mε+

√
2M2r2

3n

[
d log

(
1 +

r

ε

)
+ log

2

δ

]
simultaneously for all θ0 ∈ Θ, with probability at least 1 − δ. By choosing ε = rd

n we obtain
that with probability at least 1− δ,

sup
θ∈Θ
|L̂n(θ)− L(θ)| ≤ 2Mrd

n
+

√
8M2r2

3n

[
d log

(
1 +

n

d

)
+ log

2

δ

]
.

Thus, roughly, with high probability we have |L̂n(θ)− L(θ)| ≤ O(1)Mr
√

d
n log n

d for all θ. 3

On the one hand, the result in Example 5.2.3 is satisfying: it applies to any Lipschitz function
and provides a uniform bound. On the other hand, when we compare to the results achievable for
specially structured linear function classes, then applying Rademacher complexity bounds—such
as Proposition 4.4.9 and Example 4.4.10—we have somewhat weaker results, in that they depend
on the dimension explicitly, while the Rademacher bounds do not exhibit this explicit dependence.
This means they can potentially apply in infinite dimensional spaces that Example 5.2.3 cannot.
We will give an example presently showing how to address some of these issues.

5.2.1 Relative bounds

In many cases, it is useful to have bounds that provide somewhat finer control than the bounds
we have presented. Recall from our discussion of sub-Gaussian and sub-exponential random vari-
ables, especially the Bennett and Bernstein-type inequalities (Proposition 4.1.20), that if a random
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variable X satisfies |X| ≤ b but Var(X) ≤ σ2 � b2, then X concentrates more quickly about
its mean than the convergence provided by naive application of sub-Gaussian concentration with
sub-Gaussian parameter b2/8. To that end, we investigate an alternative to Theorem 5.2.1 that
allows somewhat sharper control.

The approach is similar to our derivation in Theorem 5.2.1, where we show that the moment
generating function of a quantity like Pnf −Pf is small (Eq. (5.2.1)) and then relate this—via the
Donsker-Varadhan change of measure in Theorem 5.1.1—to the quantities we wish to control. In
the next proposition, we provide relative bounds on the deviations of functions from their means.
To make this precise, let F be a collection of functions f : X → R, and let σ2(f) := Var(f(X)) be
the variance of functions in F . We assume the class satisfies the Bernstein condition (4.1.7) with
parameter b, that is, ∣∣∣E [(f(X)− Pf)k

]∣∣∣ ≤ k!

2
σ2(f)bk−2 for k = 3, 4, . . . . (5.2.3)

This says that the second moment of functions f ∈ F bounds—with the additional boundedness-
type constant b—the higher moments of functions in f . We then have the following result.

Proposition 5.2.4. Let F be a collection of functions f : X → R satisfying the Bernstein condi-
tion (5.2.3). Then for any |λ| ≤ 1

2b , with probability at least 1− δ,

λ

∫
Pfdπ(f)− λ2

∫
σ2(f)dπ(f) ≤ λ

∫
Pnfdπ(f) +

1

n

[
Dkl (π||π0) + log

1

δ

]
simultaneously for all π ∈ Π.

Proof We begin with an inequality on the moment generating function of random variables
satisfying the Bernstein condition (4.1.7), that is, that |E[(X − µ)k]| ≤ k!

2 σ
2bk−2 for k ≥ 2. In this

case, Lemma 4.1.19 implies that
E[eλ(X−µ)] ≤ exp(λ2σ2)

for |λ| ≤ 1/(2b). As a consequence, for any f in our collection F , we see that if we define

∆n(f, λ) := λ
[
Pnf − Pf − λσ2(f)

]
,

we have that
E[exp(n∆n(f, λ))] = E[exp(λ(f(X)− Pf)− λ2σ2(f))]n ≤ 1

for all n, f ∈ F , and |λ| ≤ 1
2b . Then, for any fixed measure π0 on F , Markov’s inequality implies

that

P
(∫

exp(n∆n(f, λ))dπ0(f) ≥ 1

δ

)
≤ δ. (5.2.4)

Now, as in the proof of Theorem 5.2.1, we use the Donsker-Varadhan Theorem 5.1.1 (change of
measure), which implies that

n

∫
∆n(f, λ)dπ(f) ≤ Dkl (π||π0) + log

∫
exp(n∆n(f, λ))dπ0(f)

for all distributions π. Using inequality (5.2.4), we obtain that with probability at least 1− δ,∫
∆n(f, λ)dπ(f) ≤ 1

n

[
Dkl (π||π0) + log

1

δ

]
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for all π. As this holds for any fixed |λ| ≤ 1/(2b), this gives the desired result by rearranging.

We would like to optimize over the bound in Proposition 5.2.4 by choosing the “best” λ. If we
could choose the optimal λ, by rearranging Proposition 5.2.4 we would obtain the bound

Eπ[Pf ] ≤ Eπ[Pnf ] + inf
λ>0

{
λEπ[σ2(f)] +

1

nλ

[
Dkl (π||π0) + log

1

δ

]}
= Eπ[Pnf ] + 2

√
Eπ[σ2(f)]

n

[
Dkl (π||π0) + log

1

δ

]
simultaneously for all π, with probability at least 1−δ. The problem with this approach is two-fold:
first, we cannot arbitrarily choose λ in Proposition 5.2.4, and second, the bound above depends on
the unknown population variance σ2(f). It is thus of interest to understand situations in which
we can obtain similar guarantees, but where we can replace unknown population quantities on the
right side of the bound with known quantities.

To that end, let us consider the following condition, a type of relative error condition related
to the Bernstein condition (4.1.7): for each f ∈ F ,

σ2(f) ≤ bPf. (5.2.5)

This condition is most natural when each of the functions f take nonnegative values—for example,
when f(X) = `(θ,X) for some loss function ` and parameter θ of a model. If the functions f are
nonnegative and upper bounded by b, then we certainly have σ2(f) ≤ E[f(X)2] ≤ bE[f(X)] = bPf ,
so that Condition (5.2.5) holds. Revisiting Proposition 5.2.4, we rearrange to obtain the following
theorem.

Theorem 5.2.5. Let F be a collection of functions satisfying the Bernstein condition (5.2.3) as in
Proposition 5.2.4, and in addition, assume the variance-bounding condition (5.2.5). Then for any
0 ≤ λ ≤ 1

2b , with probability at least 1− δ,

Eπ[Pf ] ≤ Eπ[Pnf ] +
λb

1− λb
Eπ[Pnf ] +

1

λ(1− λb)
1

n

[
Dkl (π||π0) + log

1

δ

]
for all π.

Proof We use condition (5.2.5) to see that

λEπ[Pf ]− λ2bEπ[Pf ] ≤ λEπ[Pf ]− λ2Eπ[σ2(f)],

apply Proposition 5.2.4, and divide both sides of the resulting inequality by λ(1− λb).

To make this uniform in λ, thus achieving a tighter bound (so that we need not pre-select λ),
we choose multiple values of λ and apply a union bound. To that end, let 1+η = 1

1−λb , or η = λb
1−λb

and 1
λb(1−λb) = (1+η)2

η , so that the inequality in Theorem 5.2.1 is equivalent to

Eπ[Pf ] ≤ Eπ[Pnf ] + ηEπ[Pnf ] +
(1 + η)2

η

b

n

[
Dkl (π||π0) + log

1

δ

]
.
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Using that our choice of η ∈ [0, 1], this implies

Eπ[Pf ] ≤ Eπ[Pnf ] + ηEπ[Pnf ] +
1

η

b

n

[
Dkl (π||π0) + log

1

δ

]
+

3b

n

[
Dkl (π||π0) + log

1

δ

]
.

Now, take η1 = 1/n, . . . , ηn = 1. Then by optimizing over η ∈ {η1, . . . , ηn} (which is equivalent, to
within a 1/n factor, to optimizing over 0 < η ≤ 1) and applying a union bound, we obtain

Corollary 5.2.6. Let the conditions of Theorem 5.2.5 hold. Then with probability at least 1− δ,

Eπ[Pf ] ≤ Eπ[Pnf ] + 2

√
bEπ[Pnf ]

n

[
Dkl (π||π0) + log

n

δ

]
+

1

n

(
Eπ[Pnf ] + 5b

[
Dkl (π||π0) + log

n

δ

])
,

simultaneously for all π on F .

Proof By a union bound, we have

Eπ[Pf ] ≤ Eπ[Pnf ] + ηEπ[Pnf ] +
1

η

b

n

[
Dkl (π||π0) + log

n

δ

]
+

3b

n

[
Dkl (π||π0) + log

n

δ

]
for each η ∈ {1/n, . . . , 1}. We consider two cases. In the first, assume that Eπ[Pnf ] ≤ b

n(Dkl (π||π0)+
log n

δ . Then taking η = 1 above evidently gives the result. In the second, we have Eπ[Pnf ] >
b
n(Dkl (π||π0) + log n

δ ), and we can set

η? =

√
b
n(Dkl (π||π0) + log n

δ )

Eπ[Pnf ]
∈ (0, 1).

Choosing η to be the smallest value ηk in {η1, . . . , ηn} with ηk ≥ η?, so that η? ≤ η ≤ η? + 1
n then

implies the claim in the corollary.

5.2.2 A large-margin guarantee

Let us revisit the loss minimization approaches central to Section 4.4 and Example 5.2.3 in the
context of Corollary 5.2.6. We will investigate an approach to achieve convergence guarantees that
are (nearly) independent of dimension, focusing on 0-1 losses in a binary classification problem.
Consider a binary classification problem with data (x, y) ∈ Rd × {±1}, where we make predictions
〈θ, x〉 (or its sign), and for a margin penalty γ ≥ 0 we define the loss

`γ(θ; (x, y)) = 1 {〈θ, x〉y ≤ γ} .

We call the quantity 〈θ, x〉y the margin of θ on the pair (x, y), noting that when the margin is
large, 〈θ, x〉 has the same sign as y and is “confident” (i.e. far from zero). For shorthand, let us
define the expected and empirical losses at margin γ by

Lγ(θ) := P`γ(θ; (X,Y )) and L̂γ(θ) := Pn`γ(θ; (X,Y )).

Consider the following scenario: the data x lie in a ball of radius b, so that ‖x‖2 ≤ b; note that
the losses `γ and `0 satisfy the Bernstein (5.2.3) and self-bounding (5.2.5) conditions with constant
1 as they take values in {0, 1}. We then have the following proposition.
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Proposition 5.2.7. Let the above conditions on the data (x, y) hold and let the margin γ > 0 and
radius r <∞. Then with probability at least 1− δ,

P (〈θ,X〉Y ≤ 0) ≤
(

1 +
1

n

)
Pn(〈θ,X〉Y ≤ γ) +

√
8
rb log n

δ

γ
√
n

√
Pn(〈θ,X〉Y ≤ γ) + C

r2b2 log n
δ

γ2n

simultaneously for all ‖θ‖2 ≤ r, where C is a numerical constant independent of the problem
parameters.

Proposition 5.2.7 provides a “dimension-free” guarantee—it depends only on the `2-norms ‖θ‖2
and ‖x‖2—so that it can apply equally in infinite dimensional spaces. The key to the inequality
is that if we can find a large margin predictor—for example, one achieved by a support vector
machine or, more broadly, by minimizing a convex loss of the form

minimize
‖θ‖2≤r

1

n

n∑
i=1

φ(〈Xi, θ〉Yi)

for some decreasing convex φ : R → R+, e.g. φ(t) = [1− t]+ or φ(t) = log(1 + e−t)—then we get
strong generalization performance guarantees relative to the empirical margin γ. As one particular
instantiation of this approach, suppose we can obtain a perfect classifier with positive margin: a
vector θ with ‖θ‖2 ≤ r such that 〈θ,Xi〉Yi ≥ γ for each i = 1, . . . , n. Then Proposition 5.2.7
guarantees that

P (〈θ,X〉Y ≤ 0) ≤ C
r2b2 log n

δ

γ2n

with probability at least 1− δ.
Proof Let π0 be N(0, τ2I) for some τ > 0 to be chosen, and let π be N(θ̂, τ2I) for some θ̂ ∈ Rd
satisfying ‖θ̂‖2 ≤ r. Then Corollary 5.2.6 implies that

Eπ[Lγ(θ)]

≤ Eπ[L̂γ(θ)] + 2

√
Eπ[L̂γ(θ)]

n

[
Dkl (π||π0) + log

n

δ

]
+

1

n

(
Eπ[L̂γ(θ)] + C

[
Dkl (π||π0) + log

n

δ

])
≤ Eπ[L̂γ(θ)] + 2

√
Eπ[L̂γ(θ)]

n

[ r2

2τ2
+ log

n

δ

]
+

1

n

(
Eπ[L̂γ(θ)] + C

[ r2

2τ2
+ log

n

δ

])
simultaneously for all θ̂ satisfying ‖θ̂‖2 ≤ r with probability at least 1− δ, where we have used that
Dkl

(
N(θ, τ2I)||N(0, τ2I)

)
= ‖θ‖22 /(2τ2).

Let us use the margin assumption. Note that if Z ∼ N(0, τ2I), then for any fixed θ0, x, y we
have

`0(θ0; (x, y))− P(Z>x ≥ γ) ≤ E[`γ(θ0 + Z; (x, y))] ≤ `2γ(θ0; (x, y)) + P(Z>x ≥ γ)

where the middle expectation is over Z ∼ N(0, τ2I). Using the τ2 ‖x‖22-sub-Gaussianity of Z>x, we
can obtain immediately that if ‖x‖2 ≤ b, we have

`0(θ0; (x, y))− exp

(
− γ2

2τ2b2

)
≤ E[`γ(θ0 + Z; (x, y))] ≤ `2γ(θ0; (x, y)) + exp

(
− γ2

2τ2b2

)
.
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Returning to our earlier bound, we evidently have that if ‖x‖2 ≤ b for all x ∈ X , then with
probability at least 1− δ, simultaneously for all θ ∈ Rd with ‖θ‖2 ≤ r,

L0(θ) ≤ L̂2γ(θ) + 2 exp

(
− γ2

2τ2b2

)
+ 2

√
L̂2γ(θ) + exp(− γ2

2τ2b2
)

n

[ r2

2τ2
+ log

n

δ

]
+

1

n

(
L̂2γ(θ) + exp

(
− γ2

2τ2b2

)
+ C

[ r2

2τ2
+ log

n

δ

])
.

Setting τ2 = γ2

2b2 logn
, we immediately see that for any choice of margin γ > 0, we have with

probability at least 1− δ that

L0(θ) ≤ L̂2γ(θ) +
2b

n
+ 2

√
1

n

[
L̂2γ(θ) +

b

n

][r2b2 log n

2γ2
+ log

n

δ

]
+

1

n

(
L̂2γ(θ) +

1

n
+ C

[r2b2 log n

2γ2
+ log

n

δ

])
for all ‖θ‖2 ≤ r.

Rewriting (replacing 2γ with γ) and recognizing that with no loss of generality we may take γ
such that rb ≥ γ gives the claim of the proposition.

5.2.3 A mutual information bound

An alternative perspective of the PAC-Bayesian bounds that Theorem 5.2.1 gives is to develop
bounds based on mutual information, which is also central to the interactive data analysis set-
ting in the next section. We present a few results along these lines here. Assume the setting of
Theorem 5.2.1, so that F consists of σ2-sub-Gaussian functions. Let us assume the following ob-

servational model: we observe Xn
1

iid∼ P , and then conditional on the sample Xn
1 , draw a (random)

function F ∈ F following the distribution π(· | Xn
1 ). Assuming the prior π0 is fixed, Theorem 5.2.1

guarantees that with probability at least 1− δ over Xn
1 ,

E[(PnF − PF )2 | Xn
1 ] ≤ 8σ2

3n

[
Dkl (π(· | Xn

1 )||π0) + log
2

δ

]
,

where the expectation is taken over F ∼ π(· | Xn
1 ), leaving the sample fixed. Now, consider choosing

π0 to be the average over all samples Xn
1 of π, that is, π0(·) = EP [π(· | Xn

1 )], the expectation taken

over Xn
1

iid∼ P . Then by definition of mutual information,

I(F ;Xn
1 ) = EP [Dkl (π(· | Xn

1 )||π0)] ,

and by Markov’s inequality we have

P(Dkl (π(· | Xn
1 )||π0) ≥ K · I(F ;Xn

1 )) ≤ 1

K

for all K ≥ 0. Combining these, we obtain the following corollary.
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Corollary 5.2.8. Let F be chosen according to any distribution π(· | Xn
1 ) conditional on the sample

Xn
1 . Then with probability at least 1− δ0 − δ1 over the sample Xn

1
iid∼ P ,

E[(PnF − PF )2 | Xn
1 ] ≤ 8σ2

3n

[
I(F ;Xn

1 )

δ0
+ log

2

δ1

]
.

This corollary shows that if we have any procedure—say, a learning procedure or otherwise—
that limits the information between a sample Xn

1 and an output F , then we are guaranteed that
F generalizes. Tighter analyses of this are possible, though not our focus here, just that already
there should be an inkling that limiting information between input samples and outputs may be
fruitful.

5.3 Interactive data analysis

A major challenge in modern data analysis is that analyses are often not the classical statistics and
scientific method setting. In the scientific method—forgive me for being a pedant—one proposes
a hypothesis, the status quo or some other belief, and then designs an experiment to falsify that
hypothesis. Then, upon performing the experiment, there are only two options: either the experi-
mental results contradict the hypothesis (that is, we must reject the null) so that the hypothesis is
false, or the hypothesis remains consistent with available data. In the classical (Fisherian) statis-
tics perspective, this typically means that we have a single null hypothesis H0 before observing a
sample, we draw a sample X ∈ X , and then for some test statistic T : X → R with observed value
tobserved = T (X), we compute the probability under the null of observing something as extreme as
what we observed, that is, the p-value p = PH0(T (X) ≥ tobserved).

Yet modern data analyses are distant from this pristine perspective for many reasons. The
simplest is that we often have a number of hypotheses we wish to test, not a single one. For example,
in biological applications, we may wish to investigate the associations between the expression of
number of genes and a particular phenotype or disease; each gene j then corresponds to a null
hypothesis H0,j that gene j is independent of the phenotype. There are numerous approaches to
addressing the challenges associated with such multiple testing problems—such as false discovery
rate control, familywise error rate control, and others—with whole courses devoted to the challenges.

Even these approaches to multiple testing and high-dimensional problems do not truly capture
modern data analyses, however. Indeed, in many fields, researchers use one or a few main datasets,
writing papers and performing multiple analyses on the same dataset. For example, in medicine,
the UK Biobank dataset [163] has several thousand citations (as of 2023), many of which build
on one another, with early studies coloring the analyses in subsequent studies. Even in situations
without a shared dataset, analyses present researchers with huge degrees of freedom and choice.
A researcher may study a summary statistic of his or her sampled data, or a plot of a few simple
relationships, performing some simple data exploration—which statisticians and scientists have
advocated for 50 years, dating back at least to John Tukey!—but this means that there are huge
numbers of potential comparisons a researcher might make (that he or she does not). This “garden
of forking paths,” as Gelman and Loken [91] term it, causes challenges even when researchers are
not “p-hacking” or going on a “fishing expedition” to try to find publishable results. The problem
in these studies and approaches is that, because we make decisions that may, even only in a small
way, depend on the data observed, we have invalidated all classical statistical analyses.

To that end, we now consider interactive data analyses, where we perform data analyses se-
quentially, computing new functions on a fixed sample X1, . . . , Xn after observing some initial
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information about the sample. The starting point of our approach is similar to our analysis of
PAC-Bayesian learning and generalization: we observe that if the function we decide to compute
on the data Xn

1 is chosen without much information about the data at hand, then its value on the
sample should be similar to its values on the full population. This insight dovetails with what we
have seen thus far, that appropriate “stability” in information can be useful and guarantee good
future performance.

5.3.1 The interactive setting

We do not consider the interactive data analysis setting in full, rather, we consider a stylized
approach to the problem, as it captures many of the challenges while being broad enough for
different applications. In particular, we focus on the statistical queries setting, where a data
analyst wishes to evaluate expectations

EP [φ(X)] (5.3.1)

of various functionals φ : X → R under the population P using a sample Xn
1

iid∼ P . Certainly,
numerous problems problems are solvable using statistical queries (5.3.1). Means use φ(x) = x,
while we can compute variances using the two statistical queries φ1(x) = x and φ2(x) = x2, as
Var(X) = EP [φ2(X)]− EP [φ1(X)]2.

Classical algorithms for the statistical query problem simply return sample means Pnφ :=
1
n

∑n
i=1 φ(Xi) given a query φ : X → R. When the number of queries to be answered is not chosen

adaptively, this means we can typically answer a large number relatively accurately; indeed, if we
have a finite collection Φ of σ2-sub-Gaussian φ : X → R, then we of course have

P

(
max
φ∈Φ
|Pnφ− Pφ| ≥

√
2σ2

n
(log(2|Φ|) + t)

)
≤ e−t2 for t ≥ 0

by Corollary 4.1.10 (sub-Gaussian concentration) and a union bound. Thus, so long as |Φ| is not
exponential in the sample size n, we expect uniformly high accuracy.

Example 5.3.1 (Risk minimization via statistical queries): Suppose that we are in the loss-
minimization setting (4.4.2), where the losses `(θ,Xi) are convex and differentiable in θ. Then
gradient descent applied to L̂n(θ) = Pn`(θ,X) will converge to a minimizing value of L̂n. We
can evidently implement gradient descent by a sequence of statistical queries φ(x) = ∇θ`(θ, x),
iterating

θ(k+1) = θ(k) − αkPnφ(k), (5.3.2)

where φ(k) = ∇θ`(θ(k), x) and αk is a stepsize. 3

One issue with the example (5.3.1) is that we are interacting with the dataset, because each
sequential query φ(k) depends on the previous k − 1 queries. (Our results on uniform convergence
of empirical functionals and related ideas address many of these challenges, so that the result of
the process (5.3.2) will be well-behaved regardless of the interactivity.)

We consider an interactive version of the statistical query estimation problem. In this version,
there are two parties: an analyst (or statistician or learner), who issues queries φ : X → R, and
a mechanism that answers the queries to the analyst. We index our functionals φ by t ∈ T for a
(possibly infinite) set T , so we have a collection {φt}t∈T . In this context, we thus have the following
scheme:
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Input: Sample Xn
1 drawn i.i.d. P , collection {φt}t∈T of possible queries

Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Mechanism responds with answer Ak approximating Pφ = EP [φ(X)] using Xn
1

Figure 5.1: The interactive statistical query setting

Of interest in the iteration 5.1 is that we interactively choose T1, T2, . . . , Tk, where the choice Ti
may depend on our approximations of EP [φTj (X)] for j < i, that is, on the results of our previous
queries. Even more broadly, the analyst may be able to choose the index Tk in alternative ways
depending on the sample Xn

1 , and our goal is to still be able to accurately compute expectations
PφT = EP [φT (X)] when the index T may depend on Xn

1 . The setting in Figure 5.1 clearly breaks
with the classical statistical setting in which an analysis is pre-specified before collecting data, but
more closely captures modern data exploration practices.

5.3.2 Second moment errors and mutual information

The starting point of our derivation is the following result, which follows from more or less identical
arguments to those for our PAC-Bayesian bounds earlier.

Theorem 5.3.2. Let {φt}t∈T be a collection of σ2-sub-Gaussian functions φt : X → R. Then for
any random variable T and any λ > 0,

E[(PnφT − PφT )2] ≤ 1

λ

[
I(Xn

1 ;T )− 1

2
log
[
1− 2λσ2/n

]
+

]
and

|E[PnφT ]− E[PφT ]| ≤
√

2σ2

n
I(Xn

1 ;T )

where the expectations are taken over T and the sample Xn
1 .

Proof The proof is similar to that of our first basic PAC-Bayes result in Theorem 5.2.1. Let
us assume w.l.o.g. that Pφt = 0 for all t ∈ T , noting that then Pnφt is σ2/n-sub-Gaussian. We

prove the first result first. Lemma 5.2.2 implies that E[exp(λ(Pnφt)
2)] ≤

[
1− 2λσ2/n

]−1/2

+
for each

t ∈ T . As a consequence, we obtain via the Donsker-Varadhan equality (Theorem 5.1.1) that

λE
[∫

(Pnφt)
2dπ(t)

]
(i)

≤ E[Dkl (π||π0)] + E
[
log

∫
exp(λ(Pnφt)

2)dπ0(t)

]
(ii)

≤ E[Dkl (π||π0)] + logE
[∫

exp(λ(Pnφt)
2)dπ0(t)

]
(iii)

≤ E[Dkl (π||π0)]− 1

2
log
[
1− 2λσ2/n

]
+

for all distributions π on T , which may depend on Pn, where the expectation E is taken over the

sample Xn
1

iid∼ P . (Here inequality (i) is Theorem 5.1.1, inequality (ii) is Jensen’s inequality, and
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inequality (iii) is Lemma 5.2.2.) Now, let π0 be the marginal distribution on T (marginally over
all observations Xn

1 ), and let π denote the posterior of T conditional on the sample Xn
1 . Then

E[Dkl (π||π0)] = I(Xn
1 ;T ) by definition of the mutual information, giving the bound on the squared

error.
For the second result, note that the Donsker-Varadhan equality implies

λE
[∫

Pnφtdπ(t)

]
≤ E[Dkl (π||π0)] + log

∫
E[exp(λPnφt)]dπ0(t) ≤ I(Xn

1 ;T ) +
λ2σ2

2n
.

Dividing both sides by λ gives E[PnφT ] ≤
√

2σ2I(Xn
1 ;T )/n, and performing the same analysis with

−φT gives the second result of the theorem.

The key in the theorem is that if the mutual information—the Shannon information—I(X;T )
between the sample X and T is small, then the expected squared error can be small. To make this
a bit clearer, let us choose values for λ in the theorem; taking λ = n

2eσ2 gives the following corollary.

Corollary 5.3.3. Let the conditions of Theorem 5.3.2 hold. Then

E[(PnφT − PφT )2] ≤ 2eσ2

n
I(Xn

1 ;T ) +
5σ2

4n
.

Consequently, if we can limit the amount of information any particular query T (i.e., φT ) contains
about the actual sample Xn

1 , then guarantee reasonably high accuracy in the second moment errors
(PnφT − PφT )2.

5.3.3 Limiting interaction in interactive analyses

Let us now return to the interactive data analysis setting of Figure 5.1, where we recall the stylized
application of estimating mean functionals Pφ for φ ∈ {φt}t∈T . To motivate a more careful ap-
proach, we consider a simple example to show the challenges that may arise even with only a single
“round” of interactive data analysis. Naively answering queries accurately—using the mechanism
Pnφ that simply computes the sample average—can easily lead to problems:

Example 5.3.4 (A stylized correlation analysis): Consider the following stylized genetics
experiment. We observe vectors X ∈ {−1, 1}k, where Xj = 1 if gene j is expressed and −1
otherwise. We also observe phenotypes Y ∈ {−1, 1}, where Y = 1 indicates appearance of
the phenotype. In our setting, we will assume that the vectors X are uniform on {−1, 1}k
and independent of Y , but an experimentalist friend of ours wishes to know if there exists a
vector v with ‖v‖2 = 1 such that the correlation between vTX and Y is high, meaning that
vTX is associated with Y . In our notation here, we have index set {v ∈ Rk | ‖v‖2 = 1}, and
by Example 4.1.6, Hoeffding’s lemma, and the independence of the coordinates of X we have
that vTXY is ‖v‖22 /4 = 1/4-sub-Gaussian. Now, we recall the fact that if Zj , j = 1, . . . , k, are
σ2-sub-Gaussian, then for any p ≥ 1, we have

E[max
j
|Zj |p] ≤ (Cpσ2 log k)p/2

for a numerical constant C. That is, powers of sub-Gaussian maxima grow at most logarith-
mically. Indeed, by Theorem 4.1.11, we have for any q ≥ 1 by Hölder’s inequality that

E[max
j
|Zj |p] ≤ E

[∑
j

|Zj |pq
]1/q

≤ k1/q(Cpqσ2)p/2,
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and setting q = log k gives the inequality. Thus, we see that for any a priori fixed v1, . . . , vk, vk+1,
we have

E[max
j

(vTj (PnY X))2] ≤ O(1)
log k

n
.

If instead we allow a single interaction, the problem is different. We issue queries associated
with v = e1, . . . , ek, the k standard basis vectors; then we simply set Vk+1 = PnY X/ ‖PnY X‖2.
Then evidently

E[(V T
k+1(PnY X))2] = E[‖PnY X‖22] =

k

n
,

which is exponentially larger than in the non-interactive case. That is, if an analyst is allowed
to interact with the dataset, he or she may be able to discover very large correlations that are
certainly false in the population, which in this case has PXY = 0. 3

Example 5.3.4 shows that, without being a little careful, substantial issues may arise in interac-
tive data analysis scenarios. When we consider our goal more broadly, which is to be able to provide
accurate approximations to Pφ for queries φ chosen adaptively for any population distribution P
and φ : X → [−1, 1], it is possible to construct quite perverse situations, where if we compute
sample expectations Pnφ exactly, one round of interaction is sufficient to find a query φ for which
Pnφ− Pφ ≥ 1.

Example 5.3.5 (Exact query answering allows arbitrary corruption): Suppose we draw a

sample Xn
1 of size n on a sample space X = [m] with Xi

iid∼ Uniform([m]), where m ≥ 2n. Let
Φ be the collection of all functions φ : [m]→ [−1, 1], so that P(|Pnφ−Pφ| ≥ t) ≤ exp(−nt2/2)
for any fixed φ. Suppose that in the interactive scheme in Fig. 5.1, we simply release answers
A = Pnφ. Consider the following query:

φ(x) = n−x for x = 1, 2, . . . ,m.

Then by inspection, we see that

Pnφ =
m∑
j=1

n−j card({Xi | Xi = j})

=
1

n
card({Xi | Xi = 1}) +

1

n2
card({Xi | Xi = 1}) + · · ·+ 1

nm
card({Xi | Xi = m}).

It is clear that given Pnφ, we can reconstruct the sample counts exactly. Then if we define a
second query φ2(x) = 1 for x ∈ Xn

1 and φ2(x) = −1 for x 6∈ Xn
1 , we see that Pφ2 ≤ n

m − 1,
while Pnφ2 = 1. The gap is thus

E[Pnφ2 − Pφ2] ≥ 2− n

m
≥ 1,

which is essentially as bad as possible. 3

More generally, when one performs an interactive data analysis (e.g. as in Fig. 5.1), adapting
hypotheses while interacting with a dataset, it is not a question of statistical significance or mul-
tiplicity control for the analysis one does, but for all the possible analyses one might have done
otherwise. Given the branching paths one might take in an analysis, it is clear that we require
some care.

118



Lexture Notes on Statistics and Information Theory John Duchi

With that in mind, we consider the desiderata for techniques we might use to control information
in the indices we select. We seek some type of stability in the information algorithms provide
to a data analyst—intuitively, if small changes to a sample do not change the behavior of an
analyst substantially, then we expect to obtain reasonable generalization bounds. If outputs of a
particular analysis procedure carry little information about a particular sample (but instead provide
information about a population), then Corollary 5.3.3 suggests that any estimates we obtain should
be accurate.

To develop this stability theory, we require two conditions: first, that whatever quantity we
develop for stability should compose adaptively, meaning that if we apply two (randomized) algo-
rithms to a sample, then if both are appropriately stable, even if we choose the second algorithm
because of the output of the first in arbitrary ways, they should remain jointly stable. Second, our
notion should bound the mutual information I(Xn

1 ;T ) between the sample Xn
1 and T . Lastly, we

remark that this control on the mutual information has an additional benefit: by the data process-
ing inequality, any downstream analysis we perform that depends only on T necessarily satisfies the
same stability and information guarantees as T , because if we have the Markov chain Xn

1 → T → V
then I(Xn

1 ;V ) ≤ I(Xn
1 ;T ).

We consider randomized algorithms A : X n → A, taking values in our index set A, where
A(Xn

1 ) ∈ A is a random variable that depends on the sample Xn
1 . For simplicity in derivation,

we abuse notation in this section, and for random variables X and Y with distributions P and Q
respectively, we denote

Dkl (X||Y ) := Dkl (P ||Q) .

We then ask for a type of leave-one-out stability for the algorithms A, where A is insensitive to the
changes of a single example (on average).

Definition 5.1. Let ε ≥ 0. A randomized algorithm A : X n → A is ε-KL-stable if for each
i ∈ {1, . . . , n} there is a randomized Ai : X n−1 → A such that for every sample xn1 ∈ X n,

1

n

n∑
i=1

Dkl

(
A(xn1 )||Ai(x\i)

)
≤ ε.

Examples may be useful to understand Definition 5.1.

Example 5.3.6 (KL-stability in mean estimation: Gaussian noise addition): Suppose we
wish to estimate a mean, and that xi ∈ [−1, 1] are all real-valued. Then a natural statistic
is to simply compute A(xn1 ) = 1

n

∑n
i=1 xi. In this case, without randomization, we will have

infinite KL-divergence between A(xn1 ) and Ai(x\i). If instead we set A(xn1 ) = 1
n

∑n
i=1 xi + Z

for Z ∼ N(0, σ2), and similarly Ai = 1
n

∑
j 6=i xj + Z, then we have (recall Example 2.1.7)

1

n

n∑
i=1

Dkl

(
A(xn1 )||A(x\i)

)
=

1

2nσ2

n∑
i=1

1

n2
x2
i ≤

1

2σ2n2
,

so that a the sample mean of a bounded random variable perturbed with Guassian noise is
ε = 1

2σ2n2 -KL-stable. 3

We can consider other types of noise addition as well.

Example 5.3.7 (KL-stability in mean estimation: Laplace noise addition): Let the conditions
of Example 2.1.7 hold, but suppose instead of Gaussian noise we add scaled Laplace noise,
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that is, A(xn1 ) = 1
n

∑n
i=1 xi + Z for Z with density p(z) = 1

2σ exp(−|z|/σ), where σ > 0. Then
using that if Lµ,σ denotes the Laplace distribution with shape σ and mean µ, with density
p(z) = 1

2σ exp(−|z − µ|/σ), we have

Dkl (Lµ0,σ||Lµ1,σ) =
1

σ2

∫ |µ1−µ0|
0

exp(−z/σ)(|µ1 − µ0| − z)dz

= exp

(
−|µ1 − µ0|

σ

)
− 1 +

|µ1 − µ0|
σ

≤ |µ1 − µ0|2

2σ2
,

we see that in this case the sample mean of a bounded random variable perturbed with Laplace
noise is ε = 1

2σ2n2 -KL-stable, where σ is the shape parameter. 3

The two key facts are that KL-stable algorithms compose adaptively and that they bound
mutual information in independent samples.

Lemma 5.3.8. Let A : X n → A0 and A′ : A0 × X → A1 be ε and ε′-KL-stable algorithms,
respectively. Then the (randomized) composition A′ ◦ A(xn1 ) = A′(A(xn1 ), xn1 ) is ε + ε′-KL-stable.
Moreover, the pair (A′ ◦A(xn1 ), A(xn1 )) is ε+ ε′-KL-stable.

Proof Let Ai and A′i be the promised sub-algorithms in Definition 5.1. We apply the data
processing inequality, which implies for each i that

Dkl

(
A′(A(xn1 ), xn1 )||A′i(Ai(x\i), x\i)

)
≤ Dkl

(
A′(A(xn1 ), xn1 ), A(xn1 )||A′i(Ai(x\i), x\i), Ai(x\i)

)
.

We require a bit of notational trickery now. Fixing i, let PA,A′ be the joint distribution of
A′(A(xn1 ), xn1 ) and A(xn1 ) and QA,A′ the joint distribution of A′i(Ai(x\i), x\i) and Ai(x\i), so that
they are both distributions over A1 × A0. Let PA′|a be the distribution of A′(t, xn1 ) and similarly
QA′|a is the distribution of A′i(t, x\i). Note that A′, A′i both “observe” x, so that using the chain
rule (2.1.6) for KL-divergences, we have

Dkl

(
A′ ◦A,A||A′i ◦Ai, Ai

)
= Dkl

(
PA,A′ ||QA,A′

)
= Dkl (PA||QA) +

∫
Dkl

(
PA′|t||QA′|t

)
dPA(t)

= Dkl (A||Ai) + EA[Dkl

(
A′(A, xn1 )||A′i(A, xn1 )

)
].

Summing this from i = 1 to n yields

1

n

n∑
i=1

Dkl

(
A′ ◦A||A′i ◦Ai

)
≤ 1

n

n∑
i=1

Dkl (A||Ai) + EA
[

1

n

n∑
i=1

Dkl

(
A′(A, xn1 )||A′i(A, xn1 )

) ]
≤ ε+ ε′,

as desired.

The second key result is that KL-stable algorithms also bound the mutual information of a
random function.

Lemma 5.3.9. Let Xi be independent. Then for any random variable A,

I(A;Xn
1 ) ≤

n∑
i=1

I(A;Xi | X\i) =

n∑
i=1

∫
Dkl

(
A(xn1 )||Ai(x\i)

)
dP (xn1 ),

where Ai(x\i) = A(xi−1
1 , Xi, x

n
i+1) is the random realization of A conditional on X\i = x\i.
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Proof Without loss of generality, we assume A and X are both discrete. In this case, we have

I(A;Xn
1 ) =

n∑
i=1

I(A;Xi | Xi−1
1 ) =

n∑
i=1

H(Xi | Xi−1
1 )−H(Xi | A,Xi−1

1 ).

Now, because the Xi follow a product distribution, H(Xi | Xi−1
1 ) = H(Xi), while H(Xi |

A,Xi−1
1 ) ≥ H(Xi | A,X\i) because conditioning reduces entropy. Consequently, we have

I(A;Xn
1 ) ≤

n∑
i=1

H(Xi)−H(Xi | A,X\i) =
n∑
i=1

I(A;Xi | X\i).

To see the final equality, note that

I(A;Xi | X\i) =

∫
Xn−1

I(A;Xi | X\i = x\i)dP (x\i)

=

∫
Xn−1

∫
X
Dkl (A(xn1 )||A(x1:i−1, Xi, xi+1:n)) dP (xi)dP (x\i)

by definition of mutual information as I(X;Y ) = EX [Dkl

(
PY |X ||PY

)
].

Combining Lemmas 5.3.8 and 5.3.9, we see (nearly) immediately that KL stability implies
a mutual information bound, and consequently even interactive KL-stable algorithms maintain
bounds on mutual information.

Proposition 5.3.10. Let A1, . . . , Ak be εi-KL-stable procedures, respectively, composed in any
arbitrary sequence. Let Xi be independent. Then

1

n
I(A1, . . . , Ak;X

n
1 ) ≤

k∑
i=1

εi.

Proof Applying Lemma 5.3.9,

I(Ak1;Xn
1 ) ≤

n∑
i=1

I(Ak1;Xi | X\i) =
k∑
j=1

n∑
i=1

I(Aj ;Xi | X\i, A
j−1
1 ).

Fix an index j and for shorthand, let A = A and A′ = (A1, . . . , Aj−1) be the first j− 1 procedures.
Then expanding the final mutual information term and letting ν denote the distribution of A′, we
have

I(A;Xi | X\i, A′) =

∫
Dkl

(
A(a′, xn1 )||A(a′, x\i)

)
dP (xi | A′ = a′, x\i)dP

n−1(x\i)dν(a′ | x\i)

where A(a′, xn1 ) is the (random) procedure A on inputs xn1 and a′, while A(a′, x\i) denotes the
(random) procedure A on input a′, x\i, Xi, and where the ith example Xi follows its disdtribution
conditional on A′ = a′ and X\i = x\i, as in Lemma 5.3.9. We then recognize that for each i, we
have ∫

Dkl

(
A(a′, xn1 )||A(a′, x\i)

)
dP (xi | a′, x\i) ≤

∫
Dkl

(
A(a′, xn1 )||Ã(a′, x\i)

)
dP (xi | a′, x\i)

for any randomized function Ã, as the marginal A in the lemma minimizes the average KL-
divergence (recall Exercise 2.15). Now, sum over i and apply the definition of KL-stability as
in Lemma 5.3.8.
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5.3.4 Error bounds for a simple noise addition scheme

Based on Proposition 5.3.10, to build an appropriately well-generalizing procedure we must build
a mechanism for the interaction in Fig. 5.1 that maintains KL-stability. Using Example 5.3.6, this
is not challenging for the class of bounded queries. Let Φ = {φt}t∈T where φt : X → [−1, 1] be
the collection of statistical queries taking values in [−1, 1]. Then based on Proposition 5.3.10 and
Example 5.3.6, the following procedure is stable.

Input: Sample Xn
1 ∈ X n drawn i.i.d. P , collection {φt}t∈T of possible queries φt : X →

[−1, 1]
Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Mechanism draws independent Zk ∼ N(0, σ2) and responds with answer

Ak := Pnφ+ Zk =
1

n

n∑
i=1

φ(Xi) + Zk.

Figure 5.2: Sequential Gaussian noise mechanism.

This procedure is evidently KL-stable, and based on Example 5.3.6 and Proposition 5.3.10, we
have that

1

n
I(Xn

1 ;T1, . . . , Tk, Tk+1) ≤ k

2σ2n2

so long as the indices Ti ∈ T are chosen only as functions of Pnφ + Zj for j < i, as the classical
information processing inequality implies that

1

n
I(Xn

1 ;T1, . . . , Tk, Tk+1) ≤ 1

n
I(Xn

1 ;A1, . . . , Ak)

because we have Xn
1 → A1 → T2 and so on for the remaining indices. With this, we obtain the

following theorem.

Theorem 5.3.11. Let the indices Ti, i = 1, . . . , k + 1 be chosen in an arbitrary way using the
procedure 5.2, and let σ2 > 0. Then

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 2ek

σ2n2
+

10

4n
+ 4σ2(log k + 1).

By inspection, we can optimize over σ2 by setting σ2 =
√
k/(log k + 1)/n, which yields the

upper bound

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 10

4n
+ 10

√
k(1 + log k)

n
.

Comparing to Example 5.3.4, we see a substantial improvement. While we do not achieve accuracy
scaling with log k, as we would if the queried functionals φt were completely independent of the
sample, we see that we achieve mean-squared error of order

√
k log k

n
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for k adaptively chosen queries.
Proof To prove the result, we use a technique sometimes called the monitor technique. Roughly,
the idea is that we can choose the index Tk+1 in any way we desire as long as it is a function of the
answers A1, . . . , Ak and any other constants independent of the data. Thus, we may choose

Tk+1 := Tk? where k? = argmax
j≤k

{|Aj − PφTj |},

as this is a (downstream) function of the k different ε = 1
2σ2n2 -KL-stable queries T1, . . . , Tk. As

a consequence, we have from Corollary 5.3.3 (and the fact that the queries φ are 1-sub-Gaussian)
that for T = Tk+1,

E[(PnφT − PφT )2] ≤ 2e

n
I(Xn

1 ;Tk+1) +
5

4n
≤ 2ekε+

5

4n
=

ek

σ2n2
+

5

4n
.

Now, we simply consider the independent noise addition, noting that (a+ b)2 ≤ 2a2 + 2b2 for any
a, b ∈ R, so that

E
[
max
j≤k

(Aj − PφTj )2

]
≤ 2E[(PnφT − PφT )2] + 2E

[
max
j≤k
{Z2

j }
]

≤ 2ek

σ2n2
+

10

4n
+ 4σ2(log k + 1), (5.3.3)

where inequality (5.3.3) is the desired result and follows by the following lemma.

Lemma 5.3.12. Let Wj, j = 1, . . . , k be independent N(0, 1). Then E[maxjW
2
j ] ≤ 2(log k + 1).

Proof We assume that k ≥ 3, as the result is trivial otherwise. Using the tail bound for
Gaussians (Mills’s ratio for Gaussians, which is tighter than the standard sub-Gaussian bound)
that P(W ≥ t) ≤ 1√

2πt
e−t

2/2 for t ≥ 0 and that E[Z] =
∫∞

0 P(Z ≥ t)dt for a nonnegative random

variable Z, we obtain that for any t0,

E[max
j
W 2
j ] =

∫ ∞
0

P(max
j
W 2
j ≥ t)dt ≤ t0 +

∫ ∞
t0

P(max
j
W 2
j ≥ t)dt

≤ t0 + 2k

∫ ∞
t0

P(W1 ≥
√
t)dt ≤ t0 +

2k√
2π

∫ ∞
t0

e−t/2dt = t0 +
4k√
2π
e−t0/2.

Setting t0 = 2 log(4k/
√

2π) gives E[maxjW
2
j ] ≤ 2 log k + log 4√

2π
+ 1.

5.4 Bibliography and further reading

PAC-Bayes techniques originated with work of David McAllester [135, 136, 137], and we remark
on his excellently readable tutorial [138]. The particular approaches we take to our proofs in
Section 5.2 follow Catoni [44] and McAllester [137]. The PAC-Bayesian bounds we present, that
simultaneously for any distribution π on F , if F ∼ π then

E[(PnF − PF )2 | Xn
1 ] .

1

n

[
Dkl (π||π0) + log

1

δ

]
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with probability at least 1 − δ suggest that we can optimize them by choosing π carefully. For
example, in the context of learning a statistical model parameterized by θ ∈ Θ with losses `(θ;x, y),
it is natural to attempt to find π minimizing

Eπ[Pn`(θ;X,Y ) | Pn] + C

√
1

n
Dkl (π||π0)

in π, where the expectation is taken over θ ∼ π. If this quantity has optimal value ε?n, then one is

immediately guaranteed that for the population P , we have Eπ[P`(θ;X, y)] ≤ ε?n + C
√

log 1
δ/
√
n.

Langford and Caruana [126] take this approach, and Dziugaite and Roy [79] use it to give (the
first) non-trivial bounds for deep learning models.

The questions of interactive data analysis begin at least several decades ago, perhaps most pro-
foundly highlighted positively by Tukey’s Exploratory Data Analysis [168]. Problems of scientific
replicability have, conversely, highlighted many of the challenges of reusing data or peeking, even
innocently, at samples before performing statistical analyses [113, 86, 91]. Our approach to for-
malizing these ideas, and making rigorous limiting information leakage, draws from a more recent
strain of work in the theoretical computer science literature, with major contributions from Dwork,
Feldman, Hardt, Pitassi, Reingold, and Roth and Bassily, Nissim, Smith, Steinke, Stemmer, and
Ullman [78, 76, 77, 20, 21]. Our particular treatment most closely follows Feldman and Steinke [82].
The problems these techniques target also arise frequently in high-dimensional statistics, where one
often wishes to estimate uncertainty and perform inference after selecting a model. While we do
not touch on these problems, a few references in this direction include [25, 166, 109].

5.5 Exercises

Exercise 5.1 (Duality in Donsker-Varadhan): Here, we give a converse result to Theorem 5.1.1,
showing that for any function h : X → R,

logEQ[eh(X)] = sup
P
{EP [h(X)]−Dkl (P ||Q)} , (5.5.1)

where the supremum is taken over probability measures. If Q has a density, the supremum may be
taken over probability measures having a density.

(a) Show the equality (5.5.1) in the case that X is discrete by directly computing the supremum.
(That is, let |X | = k, and identify probability measures P and Q with vectors p, q ∈ Rk+.)

(b) Let Q have density q. Assume that EQ[eh(X)] <∞ and let

Zh(x) = exp(h(x))/EQ[exp(h(X))],

so EQ[Zh(X)] = 1. Let P have density p(x) = Zh(x)q(x). Show that

logEQ[eh(X)] = EP [h(X)]−Dkl (P ||Q) .

Why does this imply equality (5.5.1) in this case?

(c) If EQ[eh(X)] = +∞, then monotone convergence implies that limB↑∞ EQ[emin{B,h(X)}] = +∞.
Conclude (5.5.1).
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Exercise 5.2 (An alternative PAC-Bayes bound): Let f : Θ × X → R, and let π0 be a density
on θ ∈ Θ. Use the dual form (5.5.1) of the variational representation of the KL-divergence show

that with probability at least 1− δ over the draw of Xn
1

iid∼ P ,∫
Pnf(θ,X)π(θ)dθ ≤

∫
logEP [exp(f(θ,X))]π(θ)dθ +

Dkl (π||π0) + log 1
δ

n

simultaneously for all distributions π on Θ, where the expectation EP is over X ∼ P .

Exercise 5.3 (A mean estimator with sub-Gaussian concentration for a heavy-tailed distribu-
tion [45]): In this question, we use a PAC-Bayes bound to construct an estimator of the mean E[X]
of a distribution with sub-Gaussian-like concentration that depends only on the second moments
Σ = E[XX>] of the random vector X (not on any additional dimension-dependent quantitites)
while only assuming that E[‖X‖2] <∞. Let ψ be an odd function (i.e., ψ(−t) = −ψ(t)) satisfying

− log(1− t+ t2) ≤ ψ(t) ≤ log(1 + t+ t2).

The function ψ(t) = min{1,max{−1, t}} (the truncation of t to the range [−1, 1]) is such a function.
Let πθ be the normal distribution N(θ, σ2I) and π0 be N(0, σ2I).

(a) Let λ > 0. Use Exercise 5.2 to show that with probability at least 1− δ, for all θ ∈ Rd

1

λ

∫
Pnψ(λ〈θ′, X〉)πθ(θ′)dθ′ ≤ 〈θ,E[X]〉+ λ

(
θ>Σθ + σ2 tr(Σ)

)
+
‖θ‖22 /2σ2 + log 1

δ

nλ
.

(b) For λ > 0, define the “directional mean” estimator

En(θ, λ) =
1

λ

∫
Pnψ(λ〈θ′, X〉)πθ(θ′)dθ′.

Give a choice of λ > 0 such that with probability 1− δ,

sup
θ∈Sd−1

|En(θ, λ)− 〈θ,E[X]〉| ≤ 2√
n

√(
1

2σ2
+ log

1

δ

)(
‖Σ‖op + σ2 tr(Σ)

)
,

where Sd−1 = {u ∈ Rd | ‖u‖2 = 1} is the unit sphere.

(c) Justify the following statement: choosing the vector µ̂n minimizing

sup
θ∈Sd−1

|En(θ, λ)− 〈θ, µ〉|

in µ guarantees that with probability at least 1− δ,

‖µ̂n − E[X]‖2 ≤
4√
n

√(
1

2σ2
+ log

1

δ

)(
‖Σ‖op + σ2 tr(Σ)

)
.

(d) Give a choice of the prior/posterior variance σ2 so that

‖µ̂n − E[X]‖2 ≤
4√
n

√
tr(Σ) + 2 ‖Σ‖op log

1

δ

with probability at least 1− δ.
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Exercise 5.4 (Large-margin PAC-Bayes bounds for multiclass problems): Consider the following
multiclass prediction scenario. Data comes in pairs (x, y) ∈ bBd2 × [k] where Bd2 = {v ∈ Rd | ‖v‖2 ≤
1} denotes the `2-ball and [k] = {1, . . . , k}. We make predictions using predictors θ1, . . . , θk ∈ Rd,
where the prediction of y on an example x is

ŷ(x) := argmax
i≤k

〈θi, x〉.

We suffer an error whenever ŷ(x) 6= y, and the margin of our classifier on pair (x, y) is

〈θy, x〉 −max
i 6=y
〈θi, x〉 = min

i 6=y
〈θy − θi, x〉.

If 〈θy, x〉 > 〈θi, x〉 for all i 6= y, the margin is then positive (and the prediction is correct).

(a) Develop an analogue of the bounds in Section 5.2.2 in this k-class multiclass setting. To do
so, you should (i) define the analogue of the margin-based loss `γ , (ii) show how Gaussian
perturbations leave it similar, and (iii) prove an analogue of the bound in Section 5.2.2. You
should assume one of the two conditions

(C1) ‖θi‖2 ≤ r for all i (C2)
k∑
i=1

‖θi‖22 ≤ kr
2

on your classification vectors θi. Specify which condition you choose.

(b) Describe a minimization procedure—just a few lines suffice—that uses convex optimization to
find a (reasonably) large-margin multiclass classifier.

Exercise 5.5 (A variance-based information bound): Let Φ = {φt}t∈T be a collection of functions
φt : X → R, where each φt satisfies the Bernstein condition (4.1.7) with parameters σ2(φt) and b,
that is, |E[(φt(X)− Pφt(X))k]| ≤ k!

2 σ
2(φt)b

k−2 for all k ≥ 3 and Var(φt(X)) = σ2(φt). Let T ∈ T
be any random variable, which may depend on an observed sample Xn

1 . Show that for all C > 0
and |λ| ≤ C

2b , then ∣∣∣∣E [ PnφT − PφT
max{C, σ(φT )}

]∣∣∣∣ ≤ 1

n|λ|
I(T ;Xn

1 ) + |λ|.

Exercise 5.6 (An information bound on variance): Let Φ = {φt}t∈T be a collection of functions
φt : X → R, where each φt : X → [−1, 1]. Let σ2(φt) = Var(φt(X)). Let s2

n(φ) = Pnφ
2 − (Pnφ)2 be

the sample variance of φ. Show that for all C > 0 and 0 ≤ λ ≤ C/4, then

E
[

s2
n(φT )

max{C, σ2(φT )}

]
≤ 1

nλ
I(T ;Xn

1 ) + 2.

The max{C, σ2(φT )} term is there to help avoid division by 0. Hint: If 0 ≤ x ≤ 1, then
ex ≤ 1 + 2x, and if X ∈ [0, 1], then E[eX ] ≤ 1 + 2E[X] ≤ e2E[X]. Use this to argue that
E[eλnPn(φ−Pφ)2/max{C,σ2}] ≤ e2λn for any φ : X → [−1, 1] with Var(φ) ≤ σ2, then apply the
Donsker-Varadhan theorem.

Exercise 5.7: Consider the following scenario: let φ : X → [−1, 1] and let α > 0, τ > 0. Let
µ = Pnφ and s2 = Pnφ

2 − µ2. Define σ2 = max{αs2, τ2}, and assume that τ2 ≥ 5α
n .
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(a) Show that the mechanism with answer Ak defined by

A := Pnφ+ Z for Z ∼ N(0, σ2)

is ε-KL-stable (Definition 5.1), where for a numerical constant C <∞,

ε ≤ C · s2

n2σ2
·
(

1 +
α2

σ2

)
.

(b) Show that if α2 ≤ C ′τ2 for a numerical constant C ′ <∞, then we can take ε ≤ O(1) 1
n2α

.

Hint: Use exercise 2.14, and consider the “alternative” mechanisms of sampling from

N(µ−i, σ
2
−i) where σ2

−i = max{αs2
−i, τ

2}

for

µ−i =
1

n− 1

∑
j 6=i

φ(Xj) and s2
−i =

1

n− 1

∑
j 6=i

φ(Xj)
2 − µ2

−i.

Input: Sample Xn
1 ∈ X n drawn i.i.d. P , collection {φt}t∈T of possible queries φt : X →

[−1, 1], parameters α > 0 and τ > 0
Repeat: for k = 1, 2, . . .

i. Analyst chooses index Tk ∈ T and query φ := φTk

ii. Set s2
k := Pnφ

2 − (Pnφ)2 and σ2
k := max{αs2

k, τ
2}

iii. Mechanism draws independent Zk ∼ N(0, σ2
k) and responds with answer

Ak := Pnφ+ Zk =
1

n

n∑
i=1

φ(Xi) + Zk.

Figure 5.3: Sequential Gaussian noise mechanism with variance sensitivity.

Exercise 5.8 (A general variance-dependent bound on interactive queries): Consider the algo-
rithm in Fig. 5.3. Let σ2(φt) = Var(φt(X)) be the variance of φt.

(a) Show that for b > 0 and for all 0 ≤ λ ≤ b
2 ,

E
[
max
j≤k

|Aj − PφTj |
max{b, σ(φTj )}

]
≤ 1

nλ
I(Xn

1 ;T k1 ) + λ+
√

2 log(ke)

√
4α

nb2
I(Xn

1 ;T k1 ) + 2α+
τ2

b2
.

(If you do not have quite the right constants, that’s fine.)

(b) Using the result of Question 5.7, show that with appropriate choices for the parameters
α, b, τ2, λ that for a numerical constant C <∞

E

[
max
j≤k

|Aj − PφTj |
max{(k log k)1/4/

√
n, σ(φTj )}

]
≤ C (k log k)1/4

√
n

.

You may assume that k, n are large if necessary.

(c) Interpret the result from part (b). How does this improve over Theorem 5.3.11?
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Chapter 6

Advanced techniques in concentration
inequalities

6.1 Entropy and concentration inequalities

In the previous sections, we saw how moment generating functions and related techniques could
be used to give bounds on the probability of deviation for fairly simple quantities, such as sums of
random variables. In many situations, however, it is desirable to give guarantees for more complex
functions. As one example, suppose that we draw a matrix X ∈ Rm×n, where the entries of X are
bounded independent random variables. The operator norm of X, |||X||| := supu,v{u>Xv : ‖u‖2 =
‖v‖2 = 1}, is one measure of the size of X. We would like to give upper bounds on the probability
that |||X||| ≥ E[|||X|||] + t for t ≥ 0, which the tools of the preceding sections do not address well
because of the complicated dependencies on |||X|||.

In this section, we will develop techniques to give control over such complex functions. In
particular, throughout we let Z = f(X1, . . . , Xn) be some function of a sample of independent
random variables Xi; we would like to know if Z is concentrated around its mean. We will use
deep connections between information theoretic quantities and deviation probabilities to investigate
these connections.

First, we give a definition.

Definition 6.1. Let φ : R→ R be a convex function. The φ-entropy of a random variable X is

Hφ(X) := E[φ(X)]− φ(E[X]), (6.1.1)

assuming the relevant expectations exist.

A first example of the φ-entropy is the variance:

Example 6.1.1 (Variance as φ-entropy): Let φ(t) = t2. Then Hφ(X) = E[X2] − E[X]2 =
Var(X). 3

This example is suggestive of the fact that φ-entropies may help us to control deviations of random
variables from their means. More generally, we have by Jensen’s inequality that Hφ(X) ≥ 0 for
any convex φ; moreover, if φ is strictly convex and X is non-constant, then Hφ(X) > 0. The
rough intuition we consider throughout this section is as follows: if a random variable X is tightly
concentrated around its mean, then we should have X ≈ E[X] “most” of the time, and so Hφ(X)
should be small. The goal of this section is to make this claim rigorous.
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6.1.1 The Herbst argument

Perhaps unsurprisingly given the focus of these lecture notes, we focus on a specific φ, using
φ(t) = t log t, which gives the entropy on which we focus:

H(Z) := E[Z logZ]− E[Z] logE[Z], (6.1.2)

defined whenever Z ≥ 0 with probability 1. As our particular focus throughout this chapter, we
consider the moment generating function and associated transformation X 7→ eλX . If we know the
moment generating function ϕX(λ) := E[eλX ], then ϕ′X(λ) = E[XeλX ], and so

H(eλX) = λϕ′X(λ)− ϕX(λ) logϕX(λ).

This suggests—in a somewhat roundabout way we make precise—that control of the entropy H(eλX)
should be sufficient for controlling the moment generating function of X.

The Herbst argument makes this rigorous.

Proposition 6.1.2. Let X be a random variable and assume that there exists a constant σ2 <∞
such that

H(eλX) ≤ λ2σ2

2
ϕX(λ). (6.1.3)

for all λ ∈ R (respectively, λ ∈ R+) where ϕX(λ) = E[eλX ] denotes the moment generating function
of X. Then

E[exp(λ(X − E[X]))] ≤ exp

(
λ2σ2

2

)
for all λ ∈ R (respectively, λ ∈ R+).

Proof Let ϕ = ϕX for shorthand. The proof procedes by an integration argument, where we
show that logϕ(λ) ≤ λ2σ2

2 . First, note that

ϕ′(λ) = E[XeλX ],

so that inequality (6.1.3) is equivalent to

λϕ′(λ)− ϕ(λ) logϕ(λ) = H(eλX) ≤ λ2σ2

2
ϕ(λ),

and dividing both sides by λ2ϕ(λ) yields the equivalent statement

ϕ′(λ)

λϕ(λ)
− 1

λ2
logϕ(λ) ≤ σ2

2
.

But by inspection, we have

∂

∂λ

1

λ
logϕ(λ) =

ϕ′(λ)

λϕ(λ)
− 1

λ2
logϕ(λ).

Moreover, we have that

lim
λ→0

logϕ(λ)

λ
= lim

λ→0

logϕ(λ)− logϕ(0)

λ
=
ϕ′(0)

ϕ(0)
= E[X].
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Integrating from 0 to any λ0, we thus obtain

1

λ0
logϕ(λ0)− E[X] =

∫ λ0

0

[
∂

∂λ

1

λ
logϕ(λ)

]
dλ ≤

∫ λ0

0

σ2

2
dλ =

σ2λ0

2
.

Multiplying each side by λ0 gives

logE[eλ0(X−E[X])] = logE[eλ0X ]− λ0E[X] ≤ σ2λ2
0

2
,

as desired.

It is possible to give a similar argument for sub-exponential random variables, which allows us
to derive Bernstein-type bounds, of the form of Corollary 4.1.18, but using the entropy method. In
particular, in the exercises, we show the following result.

Proposition 6.1.3. Assume that there exist positive constants b and σ such that

H(eλX) ≤ λ2
[
bϕ′X(λ) + ϕX(λ)(σ2 − bE[X])

]
(6.1.4a)

for all λ ∈ [0, 1/b). Then X satisfies the sub-exponential bound

logE[eλ(X−E[X])] ≤ σ2λ2

[1− bλ]+
(6.1.4b)

for all λ ≥ 0.

An immediate consequence of this proposition is that any random variable satisfying the entropy
bound (6.1.4a) is (2σ2, 2b)-sub-exponential. As another immediate consequence, we obtain the
concentration guarantee

P(X ≥ E[X] + t) ≤ exp

(
−1

4
min

{
t2

σ2
,
t

b

})
as in Proposition 4.1.16.

6.1.2 Tensorizing the entropy

A benefit of the moment generating function approach we took in the prequel is the excellent
behavior of the moment generating function for sums. In particular, the fact that ϕX1+···+Xn(λ) =∏n
i=1 ϕXi(λ) allowed us to derive sharper concentration inequalities, and we were only required to

work with marginal distributions of the Xi, computing only the moment generating functions of
individual random variables rather than characteristics of the entire sum. One advantage of the
entropy-based tools we develop is that they allow similar tensorization—based on the chain rule
identities of Chapter 2 for entropy, mutual information, and KL-divergence—for substantially more
complex functions. Our approach here mirrors that of Boucheron, Lugosi, and Massart [34].

With that in mind, we now present a series of inequalities that will allow us to take this approach.
For shorthand throughout this section, we let

X\i = (X1, . . . , Xi−1, Xi+1, . . . , Xn)

be the collection of all variables except Xi. Our first result is a consequence of the chain rule for
entropy and is known as Han’s inequality.
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Proposition 6.1.4 (Han’s inequality). Let X1, . . . , Xn be discrete random variables. Then

H(Xn
1 ) ≤ 1

n− 1

n∑
i=1

H(X\i).

Proof The proof is a consequence of the chain rule for entropy and that conditioning reduces
entropy. We have

H(Xn
1 ) = H(Xi | X\i) +H(X\i) ≤ H(Xi | Xi−1

1 ) +H(X\i).

Writing this inequality for each i = 1, . . . , n, we obtain

nH(Xn
1 ) ≤

n∑
i=1

H(X\i) +
n∑
i=1

H(Xi | Xi−1
1 ) =

n∑
i=1

H(X\i) +H(Xn
1 ),

and subtracting H(Xn
1 ) from both sides gives the result.

We also require a divergence version of Han’s inequality, which will allow us to relate the entropy
H of a random variable to divergences and other information-theoretic quantities. Let X be an
arbitrary space, and let Q be a distribution over X n and P = P1×· · ·×Pn be a product distribution
on the same space. For A ⊂ X n−1, define the marginal densities

Q(i)(A) := Q(X\i ∈ A) and P (i)(A) = P (X\i ∈ A).

We then obtain the tensorization-type Han’s inequality for relative entropies.

Proposition 6.1.5. With the above definitions,

Dkl (Q||P ) ≤
n∑
i=1

[
Dkl (Q||P )−Dkl

(
Q(i)||P (i)

)]
.

Proof We have seen earlier in the notes (recall the definition (2.2.1) of the KL divergence as
a supremum over all quantizers and the surrounding discussion) that it is no loss of generality to
assume that X is discrete. Thus, noting that the probability mass functions

q(i)(x\i) =
∑
x

q(xi−1
1 , x, xni+1) and p(i)(x\i) =

∏
j 6=i

pj(xj),

we have that Han’s inequality (Proposition 6.1.4) is equivalent to

(n− 1)
∑
xn1

q(xn1 ) log q(xn1 ) ≥
n∑
i=1

∑
x\i

q(i)(x\i) log q(i)(x\i).

Now, by subtracting q(xn1 ) log p(xn1 ) from both sides of the preceding display, we obtain

(n− 1)Dkl (Q||P ) = (n− 1)
∑
xn1

q(xn1 ) log q(xn1 )− (n− 1)
∑
xn1

q(xn1 ) log p(xn1 )

≥
n∑
i=1

∑
x\i

q(i)(x\i) log q(i)(x\i)− (n− 1)
∑
xn1

q(xn1 ) log p(xn1 ).
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We expand the final term. Indeed, by the product nature of the distributions p, we have

(n− 1)
∑
xn1

q(xn1 ) log p(xn1 ) = (n− 1)
∑
xn1

q(xn1 )

n∑
i=1

log pi(xi)

=
n∑
i=1

∑
xn1

q(xn1 )
∑
j 6=i

log pi(xi)︸ ︷︷ ︸
=log p(i)(x\i)

=
n∑
i=1

∑
x\i

q(i)(x\i) log p(i)(x\i).

Noting that ∑
x\i

q(i)(x\i) log q(i)(x\i)−
∑
x\i

q(i)(x\i) log p(i)(x\i) = Dkl

(
Q(i)||P (i)

)
and rearranging gives the desired result.

Finally, we will prove the main result of this subsection: a tensorization identity for the entropy
H(Y ) for an arbitrary random variable Y that is a function of n independent random variables.
For this result, we use a technique known as tilting, in combination with the two variants of Han’s
inequality we have shown, to obtain the result. The tilting technique is one used to transform
problems of random variables into one of distributions, allowing us to bring the tools of information
and entropy to bear more directly. This technique is a common one, and used frequently in
large deviation theory, statistics, for heavy-tailed data, amont other areas. More concretely, let
Y = f(X1, . . . , Xn) for some non-negative function f . Then we may always define a tilted density

q(x1, . . . , xn) :=
f(x1, . . . , xn)p(x1, . . . , xn)

EP [f(X1, . . . , Xn)]
(6.1.5)

which, by inspection, satisfies
∫
q(xn1 ) = 1 and q ≥ 0. In our context, if f ≈ constant under the

distribution P , then we should have f(xn1 )p(xn1 ) ≈ cp(xn1 ) and so Dkl (Q||P ) should be small; we
can make this rigorous via the following tensorization theorem.

Theorem 6.1.6. Let X1, . . . , Xn be independent random variables and Y = f(Xn
1 ), where f is a

non-negative function. Define H(Y | X\i) = E[Y log Y | X\i]. Then

H(Y ) ≤ E
[ n∑
i=1

H(Y | X\i)
]
. (6.1.6)

Proof Inequality (6.1.6) holds for Y if and only if holds identically for cY for any c > 0, so
we assume without loss of generality that EP [Y ] = 1. We thus obtain that H(Y ) = E[Y log Y ] =
E[φ(Y )], where assign φ(t) = t log t. Let P have density p with respect to a base measure µ. Then
by defining the tilted distribution (density) q(xn1 ) = f(xn1 )p(xn1 ), we have Q(X n) = 1, and moreover,
we have

Dkl (Q||P ) =

∫
q(xn1 ) log

q(xn1 )

p(xn1 )
dµ(xn1 ) =

∫
f(xn1 )p(xn1 ) log f(xn1 )dµ(xn1 ) = EP [Y log Y ] = H(Y ).
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Similarly, if φ(t) = t log t, then

Dkl

(
Q(i)||P (i)

)
=

∫
Xn−1

(∫
f(xi−1

1 , x, xni+1)pi(x)dµ(x)

)
log

p(i)(x\i)
∫
f(xi−1

1 , x, xni+1)pi(x)dµ(x)

p(i)(x\i)
p(i)(x\i)dµ(x\i)

=

∫
Xn−1

E[Y | x\i] logE[Y | x\i]p(i)(x\i)dµ(x\i)

= E[φ(E[Y | X\i])].

The tower property of expectations then yields that

E[φ(Y )]− E[φ(E[Y | X\i])] = E[E[φ(Y ) | X\i]− φ(E[Y | X\i])] = E[H(Y | X\i)].

Using Han’s inequality for relative entropies (Proposition 6.1.4) then immediately gives

H(Y ) = Dkl (Q||P ) ≤
n∑
i=1

[
Dkl (Q||P )−Dkl

(
Q(i)||P (i)

)]
=

n∑
i=1

E[H(Y | X\i)],

which is our desired result.

Theorem 6.1.6 shows that if we can show that individually the conditional entropies H(Y | X\i)
are not too large, then the Herbst argument (Proposition 6.1.2 or its variant Proposition 6.1.3)
allows us to provide strong concentration inequalities for general random variables Y .

Examples and consequences

We now show how to use some of the preceding results to derive strong concentration inequalities,
showing as well how we may give convergence guarantees for a variety of procedures using these
techniques.

We begin with our most straightforward example, which is the bounded differences inequality.
In particular, we consider an arbitrary function f of n independent random variables, and we
assume that for all x1:n = (x1, . . . , xn), we have the bounded differences condition:

sup
x∈X ,x′∈X

∣∣f(x1, . . . , xi−1, x, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′, xi+1, . . . , xn)

∣∣ ≤ ci for all x\i.

(6.1.7)
Then we have the following result.

Proposition 6.1.7 (Bounded differences). Assume that f satisfies the bounded differences condi-
tion (6.1.7), where 1

4

∑n
i=1 c

2
i ≤ σ2. Let Xi be independent. Then Y = f(X1, . . . , Xn) is σ2-sub-

Gaussian.

Proof We use a similar integration argument to the Herbst argument of Proposition 6.1.2, and
we apply the tensorization inequality (6.1.6). First, let U be an arbitrary random variable taking
values in [a, b]. We claim that if ϕU (λ) = E[eλU ] and ψ(λ) = logϕU (λ) is its cumulant generating
function, then

H(eλU )

E[eλU ]
≤ λ2(b− a)2

8
. (6.1.8)
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To see this, note that

∂

∂λ
[λψ′(λ)− ψ(λ)] = ψ′′(λ), so λψ′(λ)− ψ(λ) =

∫ λ

0
tψ′′(t)dt ≤ λ2(b− a)2

8
,

where we have used the homework exercise XXXX (recall Hoeffding’s Lemma, Example 4.1.6), to

argue that ψ′′(t) ≤ (b−a)2

4 for all t. Recalling that

H(eλU ) = λϕ′U (λ)− ϕU (λ)ψ(λ) =
[
λψ′(λ)− ψ(λ)

]
ϕU (λ)

gives inequality (6.1.8).
Now we apply the tensorization identity. Let Z = eλY . Then we have

H(Z) ≤ E
[ n∑
i=1

H(Z | X\i)
]
≤ E

[ n∑
i=1

c2
iλ

2

8
E[eλZ | X\i]

]
=

n∑
i=1

c2
iλ

2

8
E[eλZ ].

Applying the Herbst argument gives the final result.

As an immediate consequence of this inequality, we obtain the following dimension independent
concentration inequality.

Example 6.1.8: Let X1, . . . , Xn be independent vectors in Rd, where d is arbitrary, and
assume that ‖Xi‖2 ≤ ci with probability 1. (This could be taken to be a general Hilbert space
with no loss of generality.) We claim that if we define

σ2 :=

n∑
i=1

c2
i , then P

(∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

≥ t
)
≤ exp

(
−2

[t−
√
σ]

2
+

σ2

)
.

Indeed, we have that Y = ‖
∑n

i=1Xi‖2 satisfies the bounded differences inequality with param-
eters ci, and so

P
(∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
2

≥ t
)

= P
(∥∥∥∥ n∑

i=1

Xi

∥∥∥∥
2

− E
∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

≥ t− E
∥∥∥∥ n∑
i=1

Xi

∥∥∥∥
2

)

≤ exp

(
−2

[t− E‖
∑n

i=1Xi‖2]2+∑n
i=1 c

2
i

)
.

Noting that E[‖
∑n

i=1Xi‖2] ≤
√

E[‖
∑n

i=1Xi‖22] =
√∑n

i=1 E[‖Xi‖22] gives the result. 3

6.1.3 Concentration of convex functions

We provide a second theorem on the concentration properties of a family of functions that are quite
useful, for which other concentration techniques do not appear to give results. In particular, we
say that a function f : Rn → R is separately convex if for each i ∈ {1, . . . , n} and all x\i ∈ Rn−1

(or the domain of f), we have that

x 7→ f(x1, . . . , xi−1, x, xi+1, . . . , xn)

is convex. We also recall that a function is L-Lipschitz if |f(x) − f(y)| ≤ ‖x− y‖2 for all x, y ∈
Rn; any L-Lipschitz function is almost everywhere differentiable, and is L-Lipschitz if and only if
‖∇f(x)‖2 ≤ L for (almost) all x. With these preliminaries in place, we have the following result.
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Theorem 6.1.9. Let X1, . . . , Xn be independent random variables with Xi ∈ [a, b] for all i. Assume
that f : Rn → R is separately convex and L-Lipschitz with respect to the ‖·‖2 norm. Then

E[exp(λ(f(X1:n)− E[f(X1:n)]))] ≤ exp
(
λ2(b− a)2L2

)
for all λ ≥ 0.

We defer the proof of the theorem temporarily, giving two example applications. The first is to
the matrix concentration problem that motivates the beginning of this section.

Example 6.1.10: Let X ∈ Rm×n be a matrix with independent entries, where Xij ∈ [−1, 1]
for all i, j, and let |||·||| denote the operator norm on matrices, that is, |||A||| = supu,v{u>Av :
‖u‖2 ≤ 1, ‖v‖2 ≤ 1}. Then Theorem 6.1.9 implies

P(|||X||| ≥ E[|||X|||] + t) ≤ exp

(
− t

2

16

)
for all t ≥ 0. Indeed, we first observe that

| |||X||| − |||Y ||| | ≤ |||X − Y ||| ≤ ‖X − Y ‖Fr ,

where ‖·‖Fr denotes the Frobenius norm of a matrix. Thus the matrix operator norm is 1-
Lipschitz. Therefore, we have by Theorem 6.1.9 and the Chernoff bound technique that

P(|||X||| ≥ E[|||X|||] + t) ≤ exp(4λ2 − λt)

for all λ ≥ 0. Taking λ = t/8 gives the desired result. 3

As a second example, we consider Rademacher complexity. These types of results are important
for giving generalization bounds in a variety of statistical algorithms, and form the basis of a variety
of concentration and convergence results. We defer further motivation of these ideas to subsequent
chapters, just mentioning here that we can provide strong concentration guarantees for Rademacher
complexity or Rademacher chaos.

Example 6.1.11: Let A ⊂ Rn be any collection of vectors. The the Rademacher complexity
of the class A is

Rn(A) := E

[
sup
a∈A

n∑
i=1

aiεi

]
, (6.1.9)

where εi are i.i.d. Rademacher (sign) variables. Let R̂n(A) = supa∈A
∑n

i=1 aiεi denote the
empirical version of this quantity. We claim that

P(R̂n(A) ≥ Rn(A) + t) ≤ exp

(
− t2

16 diam(A)2

)
,

where diam(A) := supa∈A ‖a‖2. Indeed, we have that ε 7→ supa∈A a
>ε is a convex function,

as it is the maximum of a family of linear functions. Moreover, it is Lipschitz, with Lipschitz
constant bounded by supa∈A ‖a‖2. Applying Theorem 6.1.9 as in Example 6.1.10 gives the
result. 3

Proof of Theorem 6.1.9 The proof relies on our earlier tensorization identity and a sym-
metrization lemma.
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Lemma 6.1.12. Let X,Y
iid∼ P be independent. Then for any function g : R→ R, we have

H(eλg(X)) ≤ λ2E[(g(X)− g(Y ))2eλg(X)1 {g(X) ≥ g(Y )}] for λ ≥ 0.

Moreover, if g is convex, then

H(eλg(X)) ≤ λ2E[(X − Y )2(g′(X))2eλg(X)] for λ ≥ 0.

Proof For the first result, we use the convexity of the exponential in an essential way. In
particular, we have

H(eλg(X)) = E[λg(X)eλg(X)]− E[eλg(X)] logE[eλg(Y )]

≤ E[λg(X)eλg(X)]− E[eλg(X)λg(Y )],

because log is concave and ex ≥ 0. Using symmetry, that is, that g(X) − g(Y ) has the same
distribution as g(Y )− g(X), we then find

H(eλg(X)) ≤ 1

2
E[λ(g(X)−g(Y ))(eλg(X)−eλg(Y ))] = E[λ(g(X)−g(Y ))(eλg(X)−eλg(Y ))1 {g(X) ≥ g(Y )}].

Now we use the classical first order convexity inequality—that a convex function f satisfies f(t) ≥
f(s)+f ′(s)(t−s) for all t and s, Theorem B.3.3 in the appendices—which gives that et ≥ es+es(t−s)
for all s and t. Rewriting, we have es−et ≤ es(s− t), and whenever s ≥ t, we have (s− t)(es−et) ≤
es(s− t)2. Replacing s and t with λg(X) and λg(Y ), respectively, we obtain

λ(g(X)− g(Y ))(eλg(X) − eλg(Y ))1 {g(X) ≥ g(Y )} ≤ λ2(g(X)− g(Y ))2eλg(X)1 {g(X) ≥ g(Y )} .

This gives the first inequality of the lemma.
To obtain the second inequality, note that if g is convex, then whenever g(x) − g(y) ≥ 0, we

have g(y) ≥ g(x) + g′(x)(y − x), or g′(x)(x− y) ≥ g(x)− g(y) ≥ 0. In particular,

(g(X)− g(Y ))21 {g(X) ≥ g(Y )} ≤ (g′(X)(X − Y ))2,

which gives the second result.

Returning to the main thread of the proof, we note that the separate convexity of f and the
tensorization identity of Theorem 6.1.6 imply

H(eλf(X1:n)) ≤ E
[ n∑
i=1

H(eλf(X1:n) | X\i)
]
≤ E

[ n∑
i=1

λ2E

[
(Xi − Yi)2

(
∂

∂xi
f(X1:n)

)2

eλf(X1:n) | X\i

] ]
,

where Yi are independent copies of the Xi. Now, we use that (Xi−Yi)2 ≤ (b−a)2 and the definition
of the partial derivative to obtain

H(eλf(X1:n)) ≤ λ2(b− a)2E[‖∇f(X1:n)‖22 e
λf(X1:n))].

Noting that ‖∇f(X)‖22 ≤ L2, and applying the Herbst argument, gives the result.
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Exercise 6.1 (A discrete isoperimetric inequality): Let A ⊂ Zd be a finite subset of the d-
dimensional integers. Let the projection mapping πj : Zd → Zd−1 be defined by

πj(z1, . . . , zd) = (z1, . . . , zj−1, zj+1, . . . , zd)

so that we “project out” the jth coordinate, and define the projected sets.

Aj = πj(A) = {πj(z) : z ∈ A}

=
{
z ∈ Zd−1 : there exists z? ∈ Z such that (z1, z2, . . . , zj−1, z?, zj , . . . , zd−1) ∈ A

}
.

Prove the Loomis-Whitney inequality, that is, that

card(A) ≤

 d∏
j=1

card(Aj)

 1
d−1

.
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Chapter 7

Privacy and disclosure limitation

In this chapter, we continue to build on our ideas on stability in different scenarios, ranging from
model fitting and concentration to interactive data analyses. Here, we show how stability ideas
allow us to provide a new type of protection: the privacy of participants in studies. Until the mid-
2000s, the major challenge in this direction had been a satisfactory definition of privacy, because
collection of side information often results in unforeseen compromises of private information. The
introduction of differential privacy—a type of stability in likelihood ratios for data releases from
differing samples—alleviated these challenges, providing a firm foundation on which to build private
estimators and other methodology. (Though it is possible to trace some of the definitions and major
insights in privacy back at least to survey sampling literature in the 1960s.) Consequently, in this
chapter we focus on privacy notions based on differential privacy and its cousins, developing the
information-theoretic stability ideas helpful to understand the protections it is possible to provide.

7.1 Disclosure limitation, privacy, and definitions

We begin this chapter with a few cautionary tales and examples, which motivate the coming
definitions of privacy that we consider. A natural belief might be that, given only certain summary
statistics of a large dataset, individuals in the data are protected. Yet this appears, by and large,
to be false. As an example, in 2008 Nils Homer and colleagues [107] showed that even releasing
aggregated genetic frequency statistics (e.g., frequency of single nucleotide polymorphisms (SNP) in
microarrays) can allow resolution of individuals within a database. Consequently, the US National
Institutes of Health (NIH), the Wellcome Trust, and the Broad Institute removed genetic summaries
from public access (along with imposing stricter requirements for private access) [161, 52].

Another hypothetical example may elucidate some of the additional challenges. Suppose that I
release a dataset that consists of the frequent times that posts are made worldwide that denigrate
government policies, but I am sure to remove all information such as IP addresses, usernames, or
other metadata excepting the time of the post. This might seem a priori reasonably safe, but now
suppose that an authoritarian government knows precisely when its citizens are online. Then by
linking the two datasets, the government may be able to track those who post derogatory statements
about their leaders.

Perhaps the strongest definition of privacy of databases and datasets is due to Dalenius [56], who
suggests that “nothing about an individual should be learnable from the database that cannot be
learned without access to the database.” But quickly, one can see that it is essentially impossible
to reconcile this idea with scientific advancement. Consider, for example, a situation where we
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perform a study on smoking, and discover that smoking causes cancer. We publish the result, but
now we have “compromised” the privacy of everyone who smokes who did not participate in the
study: we know they are more likely to get cancer.

In each of these cases, the biggest challenge is one of side information: how can we be sure
that, when releasing a particular statistic, dataset, or other quantity that no adversary will be able
to infer sensitive data about participants in our study? We articulate three desiderata that—we
believe—suffice for satisfactory definitions of privacy. In discussion of private releases of data, we
require a bit of vocabulary. We term a (randomized) algorithm releasing data either a privacy
mechanism, consistent with much of the literature in privacy, or a channel, mapping from the input
sample to some output space, in keeping with our statistical and information-theoretic focus. In
no particular order, we wish our privacy mechanism, which takes as input a sample Xn

1 ∈ X n and
releases some Z to satisfy the following.

i. Given the output Z, even an adversary knowing everyone in the study (excepting one person)
should not be able to test whether you belong to the study.

ii. If you participate in multiple “private” studies, there should be some graceful degradation
in the privacy protections, rather than a catastrophic failure. As part of this, any definition
should guarantee that further processing of the output Z of a private mechanism Xn

1 → Z, in
the form of the Markov chain Xn

1 → Z → Y , should not allow further compromise of privacy
(that is, a data-processing inequality). Additional participation in “private” studies should
continue to provide little additional information.

iii. The mechanism Xn
1 → Z should be resilient to side information: even if someone knows

something about you, he should learn little about you if you belong to Xn
1 , and this should

remain true even if the adversary later gleans more information about you.

The third desideratum is perhaps most elegantly phrased via a Bayesian perspective, where an
adversary has some prior beliefs π on the membership of a dataset (these prior beliefs can then
capture any side information the adversary has). The strongest adversary has a prior supported on
two samples {x1, . . . , xn} and {x′1, . . . , x′n} differing in only a single element; a private mechanism
would then guarantee the adversary’s posterior beliefs (after the release Xn

1 → Z) should not change
significantly.

Before continuing addressing these challenges, we take a brief detour to establish notation for the
remainder of the chapter. It will be convenient to consider randomized procedures acting on samples
themselves; a sample xn1 is cleary isomorphic to the empirical distribution Pn = 1

n

∑n
i=1 1xi , and

for two empirical distributions Pn and P ′n supported on {x1, . . . , xn} and {x′1, . . . , x′n}, we evidently
have

n
∥∥Pn − P ′n∥∥TV

= dham({x1, . . . , xn}, {x′1, . . . , x′n}),

and so we will identify samples with their empirical distributions. With this notational convenience
in place, we then identify

Pn =

{
Pn =

1

n

n∑
i=1

1xi | xi ∈ X

}
as the set of all empirical distributions on n points in X and we also abuse notation in an obvious
way to define dham(Pn, P

′
n) := n ‖Pn − P ′n‖TV as the number of differing observations in the samples

Pn and P ′n represent. A mechanism M is then a (typically) randomized mapping M : Pn → Z,
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which we can identify with its induced Markov channel Q from X n → Z; we use the equivalent
views as is convenient.

The challenges of side information motivate Dwork et al.’s definition of differential privacy [74].
The key in differential privacy is that the noisy channel releasing statistics provides guarantees of
bounded likelihood ratios between neighboring samples, that is, samples differing in only a single
entry.

Definition 7.1 (Differential privacy). Let M : Pn → Z be a randomized mapping. Then M is
ε-differentially private if for all (measurable) sets S ⊂ Z and all Pn, P

′
n ∈ Pn with dham(Pn, P

′
n) ≤ 1,

P(M(Pn) ∈ S)

P(M(P ′n) ∈ S)
≤ eε. (7.1.1)

The intuition and original motivation for this definition are that an individual has little incentive
to participate (or not participate) in a study, as the individual’s data has limited effect on the
outcome.

The model (7.1.1) of differential privacy presumes that there is a trusted curator, such as a
hospital, researcher, or corporation, who can collect all the data into one centralized location, and
it is consequently known as the centralized model. A stronger model of privacy is the local model,
in which data providers trust no one, not even the data collector, and privatize their individual
data before the collector even sees it.

Definition 7.2 (Local differential privacy). A channel Q from X to Z is ε-locally differentially
private if for all measurable S ⊂ Z and all x, x′ ∈ X ,

Q(Z ∈ S | x)

Q(Z ∈ S | x′)
≤ eε. (7.1.2)

It is clear that Definition 7.2 and the condition (7.1.2) are stronger than Definition 7.1: when
samples {x1, . . . , xn} and {x′1, . . . , x′n} differ in at most one observation, then the local model (7.1.2)
guarantees that the densities

dQ(Zn1 | {xi})
dQ(Zn1 | {x′i})

=
n∏
i=1

dQ(Zi | xi)
dQ(Zi | x′i)

≤ eε,

where the inequality follows because only a single ratio may contain xi 6= x′i.
In the remainder of this introductory section, we provide a few of the basic mechanisms in use

in differential privacy, then discuss its “semantics,” that is, its connections to the three desiderata
we outline above. In the coming sections, we revisit a few more advanced topics, in particular, the
composition of multiple private mechanisms and a few weakenings of differential privacy, as well as
more sophisticated examples.

7.1.1 Basic mechanisms

The basic mechanisms in either the local or centralized models of differential privacy use some type
of noise addition to ensure privacy. We begin with the simplest and oldest mechanism, randomized
response, for local privacy, due to Warner [173] in 1965.

Example 7.1.1 (Randomized response): We wish to have a participant in a study answer
a yes/no question about a sensitive topic (for example, drug use). That is, we would like to
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estimate the proportion of the population with a characteristic (versus those without); call
these groups 0 and 1. Rather than ask the participant to answer the question specifically,
however, we give them a spinner with a face painted in two known areas, where the first
corresponds to group 0 and has area eε/(1 + eε) and the second to group 1 and has area
1/(1 + eε). Thus, when the participant spins the spinner, it lands in group 0 with probability
eε/(1 + eε). Then we simply ask the participant, upon spinning the spinner, to answer “Yes”
if he or she belongs to the indicated group, “No” otherwise.

Let us demonstrate that this randomized response mechanism provides ε-local differential
privacy. Indeed, we have

Q(Yes | x = 0)

Q(Yes | x = 1)
= e−ε and

Q(No | x = 0)

Q(No | x = 1)
= eε,

so that Q(Z = z | x)/Q(Z = z | x′) ∈ [e−ε, eε] for all x, z. That is, the randomized response
channel provides ε-local privacy. 3

The interesting question is, of course, whether we can still use this channel to estimate the
proportion of the population with the sensitive characteristic. Indeed, we can. We can provide
a somewhat more general analysis, however, which we now do so that we can give a complete
example.

Example 7.1.2 (Randomized response, continued): Suppose that we have an attribute of
interest, x, taking the values x ∈ {1, . . . , k}. Then we consider the channel (of Z drawn
conditional on x)

Z =

{
x with probability eε

k−1+eε

Uniform([k] \ {x}) with probability k−1
k−1+eε .

This (generalized) randomized response mechanism is evidently ε-locally private, satisfying
Definition 7.2.

Let p ∈ Rk+, pT1 = 1 indicate the true probabilities pi = P(X = i). Then by inspection, we
have

P(Z = i) = pi
eε

k − 1 + eε
+ (1− pi)

1

k − 1 + eε
= pi

eε − 1

eε + k − 1
+

1

eε + k − 1
.

Thus, letting ĉn ∈ Rk+ denote the empirical proportion of the Z observations in a sample of
size n, we have

p̂n :=
eε + k − 1

eε − 1

(
ĉn −

1

eε + k − 1
1

)
satisfies E[p̂n] = p, and we also have

E
[
‖p̂n − p‖22

]
=

(
eε + k − 1

eε − 1

)2

E
[
‖ĉn − E[ĉn]‖22

]
=

1

n

(
eε + k − 1

eε − 1

)2 k∑
j=1

P(Z = j)(1−P(Z = j)).

As
∑

j P(Z = j) = 1, we always have the bound E[‖p̂n − p‖22] ≤ 1
n( e

ε+k−1
eε−1 )2.

We may consider two regimes for simplicity: when ε ≤ 1 and when ε ≥ log k. In the former
case—the high privacy regime—we have 1

k . P(Z = i) . 1
k , so that the mean `2 squared error

scales as 1
n
k2

ε2
. When ε ≥ log k is large, by contrast, we see that the error scales at worst as 1

n ,
which is the “non-private” mean squared error. 3
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While randomized response is essentially the standard mechanism in locally private settings, in
centralized privacy, the “standard” mechanism is Laplace noise addition because of its exponential
tails. In this case, we require a few additional definitions. Suppose that we wish to release some
d-dimensional function f(Pn) of the sample distribution Pn (equivalently, the associated sample
Xn

1 ), where f takes values in Rd. In the case that f is Lipschitz with respect to the Hamming
metric—that is, the counting metric on X n—it is relatively straightforward to develop private
mechanisms. To better reflect the nomenclature in the privacy literature and easier use in our
future development, for p ∈ [1,∞] we define the global sensitivity of f by

GSp(f) := sup
Pn,P ′n∈Pn

{∥∥f(Pn)− f(P ′n)
∥∥
p
| dham(Pn, P

′
n) ≤ 1

}
.

This is simply the Lipschitz constant of f with respect to the Hamming metric. The global sensi-
tivity is a convenient metric, because it allows simple noise addition strategies.

Example 7.1.3 (Laplace mechanisms): Recall the Laplace distribution, parameterized by a
shape parameter β, which has density on R defined by

p(w) =
1

2β
exp(−|w|/β),

and the analogous d-dimensional variant, which has density

p(w) =
1

(2β)2
exp(−‖w‖1 /β).

If W ∼ Laplace(β), W ∈ R, then E[W ] = 0 by symmetry, while E[W 2] = 1
β

∫∞
0 w2e−w/β = 2β2.

Suppose that f : Pn → Rd has finite global sensitivity for the `1-norm,

GS1(f) = sup
{∥∥f(Pn)− f(P ′n)

∥∥
1
| dham(Pn, P

′
n) ≤ 1, Pn, P

′
n ∈ Pn

}
.

Letting L = GS1(f) be the Lipschitz constant for simplicity, if we consider the mechanism
defined by the addition of W ∈ Rd with independent Laplace(L/ε) coordinates,

Z := f(Pn) +W, Wj
iid∼ Laplace(L/ε), (7.1.3)

we have that Z is ε-differentially private. Indeed, for samples Pn, P
′
n differing in at most a

single example, Z has density ratio

q(z | Pn)

q(z | P ′n)
= exp

(
− ε
L
‖f(Pn)− z‖1 +

ε

L

∥∥f(P ′n)− z
∥∥

1

)
≤ exp

( ε
L

∥∥f(Pn)− f(P ′n)
∥∥

1

)
≤ exp(ε)

by the triangle inequality and that f is L-Lipschitz with respect to the Hamming metric. Thus
Z is ε-differentially private. Moreover, we have

E[‖Z − f(Pn)‖22] =
2dGS1(f)2

ε2
,

so that if L is small, we may report the value of f accurately. 3

The most common instances and applications of the Laplace mechanism are in estimation of
means and histograms. Let us demonstrate more carefully worked examples in these two cases.
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Example 7.1.4 (Private one-dimensional mean estimation): Suppose that we have variables
Xi taking values in [−b, b] for some b <∞, and wish to estimate E[X]. A natural function to
release is then f(Xn

1 ) = Xn = 1
n

∑n
i=1Xi. This has Lipschitz constant 2b/n with respect to

the Hamming metric, because for any two samples x, x′ ∈ [−b, b]n differing in only entry i, we
have

|f(x)− f(x′)| = 1

n
|xi − x′i| ≤

2b

n

because xi ∈ [−b, b]. Thus the Laplace mechanism (7.1.3) with the choice variance W ∼
Laplace(2b/(nε)) yields

E[(Z − E[X])2] = E[(Xn − E[X])2] + E[(Z −Xn)2] =
1

n
Var(X) +

8b2

n2ε2
≤ b2

n
+

8b2

n2ε2
.

We can privately release means with little penalty so long as ε� n−1/2. 3

Example 7.1.5 (Private histogram (multinomial) release): Suppose that we wish to estimate
a multinomial distribution, or put differently, a histogram. That is, we have observations
X ∈ {1, . . . , k}, where k may be large, and wish to estimate pj := P(X = j) for j = 1, . . . , k.
For a given sample xn1 , the empirical count vector p̂n with coordinates p̂n,j = 1

n

∑n
i=1 1 {Xi = j}

satisfies

GS1(p̂n) =
2

n

because swapping a single example xi for x′i may change the counts for at most two coordinates
j, j′ by 1. Consequently, the Laplace noise addition mechanism

Z = p̂n +W, Wj
iid∼ Laplace

(
2

nε

)
satisfies

E[‖Z − p̂n‖22] =
8k

n2ε2

and consequently

E[‖Z − p‖22] =
8k

n2ε2
+

1

n

k∑
j=1

pj(1− pj) ≤
8k

n2ε2
+

1

n
.

This example shows one of the challenges of differentially private mechanisms: even in the case
where the quantity of interest is quite stable (insensitive to changes in the underlying sample,
or has small Lipschitz constant), it may be the case that the resulting mechanism adds noise
that introduces some dimension-dependent scaling. In this case, the conditions on privacy
levels acceptable for good estimation—in that the rate of convergence is no different from the
non-private case, which achieves E[‖p̂n − p‖22] = 1

n

∑k
j=1 pj(1− pj) ≤

1
n are that ε� k

n . Thus,
in the case that the histogram has a large number of bins, the naive noise addition strategy
cannot provide as much protection without sacrificing efficiency.

If instead of `2-error we consider `∞ error, it is possible to provide somewhat more satisfying

results in this case. Indeed, we know that P(‖W‖∞ ≥ t) ≤ k exp(−t/b) for Wj
iid∼ Laplace(b),

so that in the mechanism above we have

P(‖Z − p̂n‖∞ ≥ t) ≤ k exp

(
− tnε

2

)
all t ≥ 0,
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so using that each coordinate of p̂n is 1-sub-Gaussian, we have

E[‖Z − p‖∞] ≤ E[‖p̂n − p‖∞] + E[‖W‖∞] ≤
√

2 log k

n
+ inf
t≥0

{
t+

2k

nε
exp

(
− tnε

2

)}
≤
√

2 log k

n
+

2 log k

nε
+

2

nε
.

In this case, then, whenever ε � (n/ log k)−1/2, we obtain rate of convergence at least√
2 log k/n, which is a bit loose (as we have not controlled the variance of p̂n), but some-

what more satisfying than the k-dependent penalty above. 3

7.1.2 Resilience to side information, Bayesian perspectives, and data processing

One of the major challenges in the definition of privacy is to protect against side information,
especially because in the future, information about you may be compromised, allowing various
linkage attacks. With this in mind, we return to our three desiderata. First, we note the following
simple fact: if Z is a differentially private view of a sample Xn

1 (or associated empirical distribution
Pn), then any downstream functions Y are also differentially private. That is, if we have the Markov
chain Pn → Z → Y , then for any Pn, P

′
n ∈ Pn with dham(Pn, P

′
n) ≤ 1, we have for any set A that

P(Y ∈ A | x)

P(Y ∈ A | x′)
=

∫
P (Y ∈ A | z)q(z | Pn)dµ(z)∫
P (Y ∈ A | z)q(z | P ′n)dµ(z)

≤ eε
∫
P (Y ∈ A | z)q(z | P ′n)dµ(z)∫
P (Y ∈ A | z)q(z | P ′n)dµ(z)

= eε.

That is, any type of post-processing cannot reduce privacy.
With this simple idea out of the way, let us focus on our testing-based desideratum. In this

case, we consider a testing scenario, where an adversary wishes to test two hypotheses against one
another, where the hypotheses are

H0 : Xn
1 = xn1 vs. H1 : Xn

1 = (xi−1
1 , x′i, x

n
i+1),

so that the samples under H0 and H1 differ only in the ith observation Xi ∈ {xi, x′i}. Now, for a
channel taking inputs from X n and outputting Z ∈ Z, we define ε-conditional hypothesis testing
privacy by saying that

Q(Ψ(Z) = 1 | H0, Z ∈ A) +Q(Ψ(Z) = 0 | H1, Z ∈ A) ≥ 1− ε (7.1.4)

for all sets A ⊂ Z satisfying Q(A | H0) > 0 and Q(A | H1) > 0. That is, roughly, no matter
what value Z takes on, the probability of error in a test of whether H0 or H1 is true—even with
knowledge of xj , j 6= i—is high. We then have the following proposition.

Proposition 7.1.6. Assume the channel Q is ε-differentially private. Then Q is also ε̄ = 1−e−2ε ≤
2ε-conditional hypothesis testing private.

Proof Let Ψ be any test of H0 versus H1, and let B = {z | Ψ(z) = 1} be the acceptance region
of the test. Then

Q(B | H0, Z ∈ A) +Q(Bc | H1, Z ∈ A) =
Q(A,B | H0)

Q(A | H0)
+
Q(A,Bc | H1)

Q(A | H1)

≥ e−2εQ(A,B | H1)

Q(A | H1)
+
Q(A,Bc | H1)

Q(A | H1)

≥ e−2εQ(A,B | H1) +Q(A,Bc | H1)

Q(A | H1)
,
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where the first inequality uses ε-differential privacy. Then we simply note that Q(A,B | H1) +
Q(A,Bc | H1) = Q(A | H1).

So we see that (roughly), even conditional on the output of the channel, we still cannot test whether
the initial dataset was x or x′ whenever x, x′ differ in only a single observation.

An alternative perspective is to consider a Bayesian one, which allows us to more carefully
consider side information. In this case, we consider the following thought experiment. An adversary
has a set of prior beliefs π on X n, and we consider the adversary’s posterior π(· | Z) induced by
observing the output Z of some mechanism M . In this case, Bayes factors, which measure how
much prior and posterior distributions differ after observations, provide one immediate perspective.

Proposition 7.1.7. A mechanism M : Pn → Z is ε-differentially private if and only if for any
prior distribution π on Pn and any observation z ∈ Z, the posterior odds satisfy

π(Pn | z)
π(P ′n | z)

≤ eε

for all Pn, P
′
n ∈ Pn with dham(Pn, P

′
n) ≤ 1.

Proof Let q be the associated density of Z = M(·) (conditional or marginal). We have π(Pn |
z) = q(z | Pn)π(Pn)/q(z). Then

π(Pn | z)
π(P ′n | z)

=
q(z | Pn)π(Pn)

q(z | P ′n)π(P ′n)
≤ eεπ(Pn)

π(P ′n)

for all z, Pn, P
′
n if and only if M is ε-differentially private.

Thus we see that private channels mean that prior and posterior odds between two neighboring
samples cannot change substantially, no matter what the observation Z actually is.

For an an alternative view, we consider a somewhat restricted family of prior distributions,
where we now take the view of a sample xn1 ∈ X n. There is some annoyance in this calculation
in that the order of the sample may be important, but it at least gets toward some semantic
interpretation of differential privacy. We consider the adversary’s beliefs on whether a particular
value x belongs to the sample, but more precisely, we consider whether Xi = x. We assume that
the prior density π on X n satisfies

π(xn1 ) = π\i(x\i)πi(xi), (7.1.5)

where x\i = (xi−1
1 , xni+1) ∈ X n−1. That is, the adversary’s beliefs about person i in the dataset

are independent of his beliefs about the other members of the dataset. (We assume that π is
a density with respect to a measure µ on X n−1 × X , where dµ(s, x) = dµ(s)dµ(x).) Under the
condition (7.1.5), we have the following proposition.

Proposition 7.1.8. Let Q be an ε-differentially private channel and let π be any prior distribution
satisfying condition (7.1.5). Then for any z, the posterior density πi on Xi satisfies

e−επi(x) ≤ πi(x | Z = z) ≤ eεπi(x).
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Proof We abuse notation and for a sample s ∈ X n−1, where s = (xi−1
1 , xni+1), we let s ⊕i x =

(xi−1
1 , x, xni+1). Letting µ be the base measure on X n−1 × X with respect to which π is a density

and q(· | xn1 ) be the density of the channel Q, we have

πi(x | Z = z) =

∫
s∈Xn−1 q(z | s⊕i x)π(s⊕i x)dµ(s)∫

s∈Xn−1

∫
x′∈X q(z | s⊕i x′)π(s⊕i x′)dµ(s, x′)

(?)

≤ eε
∫
s∈Xn−1 q(z | s⊕i x)π(s⊕i x)dµ(s)∫

s∈Xn−1

∫
x′∈X q(z | s⊕i x)π(s⊕i x′)dµ(s)dµ(x′)

= eε
∫
s∈Xn−1 q(z | s⊕i x)π\i(s)dµ(s)πi(x)∫

s∈Xn−1 q(z | s⊕i x)π\i(s)dµ(s)
∫
x′∈X πi(x

′)dµ(x′)

= eεπi(x),

where inequality (?) follows from ε-differential privacy. The lower bound is similar.

Roughly, however, we see that Proposition 7.1.8 captures the idea that even if an adversary has
substantial prior knowledge—in the form of a prior distribution π on the ith value Xi and everything
else in the sample—the posterior cannot change much.

7.2 Weakenings of differential privacy

One challenge with the definition of differential privacy is that it can sometimes require the addition
of more noise to a desired statistic than is practical for real use. Moreover, the privacy considerations
interact in different ways with geometry: as we saw in Example 7.1.5, the Laplace mechanism
adds noise that introduces dimension-dependent scaling, which we discuss more in Example 7.2.9.
Consequently, it is of interest to develop weaker notions that—at least hopefully—still provide
appropriate and satisfactory privacy protections. To that end, we develop two additional types
of privacy that allow the development of more sophisticated and lower-noise mechanisms than
standard differential privacy; their protections are necessarily somewhat weaker but are typically
satisfactory.

We begin with a definition that allows (very rare) catostrophic privacy breaches—as long as the
probability of this event is extremely small (say, 10−20), these may be acceptable.

Definition 7.3. Let ε, δ ≥ 0. A mechanism M : Pn → Z is (ε, δ)-differentially private if for all
(measurable) sets S ⊂ Z and all neighboring samples Pn, P

′
n,

P(M(Pn) ∈ S) ≤ eεP(M(P ′n) ∈ S) + δ. (7.2.1)

One typically thinks of δ in the definition above as satisfying δ = δn, where δn � n−k for any
k ∈ N. (That is, δ decays super-polynomially to zero.) Some practitioners contend that all real-
world differentially private algorithms are in fact (ε, δ)-differentially private: while one may use
cryptographically secure random number generators, there is some possibility (call this δ) that a
cryptographic key may leak, or an encoding may be broken, in the future, making any mechanism
(ε, δ)-private at best for some δ > 0.

An alternative definition of privacy is based on Rényi divergences between distributions. These
are essentially simply monotonically transformed f divergences (recall Chapter 2.2), though their
structure is somewhat more amenable to analysis, especially in our contexts. With that in mind,
we define
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Definition 7.4. Let P and Q be distributions on a space X with densities p and q (with respect to
a measure µ). For α ∈ [1,∞], the Rényi-α-divergence between P and Q is

Dα(P ||Q) :=
1

α− 1
log

∫ (
p(x)

q(x)

)α
q(x)dµ(x).

Here, the values α ∈ {1,∞} are defined in terms of their respective limits.
Rényi divergences satisfy exp((α − 1)Dα(P ||Q)) = 1 + Df (P ||Q), i.e., Dα(P ||Q) = 1

α−1 log(1 +
Df (P ||Q)), for the f -divergence defined by f(t) = tα − 1, so that they inherit a number of the
properties of such divergences. We enumerate a few here for later reference.

Proposition 7.2.1 (Basic facts on Rényi divergence). Rényi divergences satisfy the following.

i. The divergence Dα(P ||Q) is non-decreasing in α.

ii. limα↓1Dα(P ||Q) = Dkl (P ||Q) and limα↑∞Dα(P ||Q) = sup{t | Q(p(X)/q(X) ≥ t) > 0}.

iii. Let K(· | x) be a Markov kernel from X → Z as in Proposition 2.2.13, and let KP and KQ be
the induced marginals of P and Q under K, respectively. Then Dα(KP ||KQ) ≤ Dα(P ||Q).

We leave the proof of this proposition as Exercise 7.1, noting that property i is a consequence
of Hölder’s inequality, property ii is by L’Hopital’s rule, and property iii is an immediate conse-
quence of Proposition 2.2.13. Rényi divergences also tensorize nicely—generalizing the tensoriza-
tion properties of KL-divergence and information of Chapter 2 (recall the chain rule (2.1.6) for
KL-divergence)—and we return to this later. As a preview, however, these tensorization proper-
ties allow us to prove that the composition of multiple private data releases remains appropriately
private.

With these preliminaries in place, we can then provide

Definition 7.5 (Rényi-differential privacy). Let ε ≥ 0 and α ∈ [1,∞]. A channel Q from Pn to
output space Z is (ε, α)-Rényi private if for all neighboring samples Pn, P

′
n ∈ Pn,

Dα

(
Q(· | Pn)||Q(· | P ′n)

)
≤ ε. (7.2.2)

Clearly, any ε-differentially private channel is also (ε, α)-Rényi private for any α ≥ 1; as we soon
see, we can provide tighter guarantees than this.

7.2.1 Basic mechanisms

We now describe a few of the basic mechanisms that provide guarantees of (ε, δ)-differential privacy
and (ε, α)-Rényi privacy. The advantage for these settings is that they allow mechanisms that more
naturally handle vectors in `2, and smoothness with respect to Euclidean norms, than with respect
to `1, which is most natural for pure ε-differential privacy. A starting point is the following example,
which we will leverage frequently.

Example 7.2.2 (Rényi divergence between Gaussian distributions): Consider normal distri-
butions N(µ0,Σ) and N(µ1,Σ). Then

Dα(N(µ0,Σ)||N(µ1,Σ)) =
α

2
(µ0 − µ1)TΣ−1(µ0 − µ1). (7.2.3)
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To see this equality, we compute the appriate integral of the densities. Let p and q be the
densities of N(µ0,Σ) and N(µ1,Σ), respectively. Then letting Eµ1 denote expectation over
X ∼ N(µ1,Σ), we have∫ (

p(x)

q(x)

)α
q(x)dx = Eµ1

[
exp

(
−α

2
(X − µ0)TΣ−1(X − µ0) +

α

2
(X − µ1)TΣ−1(X − µ1)

)]
(i)
= Eµ1

[
exp

(
−α

2
(µ0 − µ1)TΣ−1(µ0 − µ1) + α(µ0 − µ1)TΣ−1(X − µ1)

)]
(ii)
= exp

(
−α

2
(µ0 − µ1)TΣ−1(µ0 − µ1) +

α2

2
(µ0 − µ1)TΣ−1(µ0 − µ1)

)
,

where equality (i) is simply using that (x − a)2 − (x − b)2 = (a − b)2 + 2(b − a)(x − b) and
equality (ii) follows because (µ0 − µ1)TΣ−1(X − µ1) ∼ N(0, (µ1 − µ0)TΣ−1(µ1 − µ0)) under
X ∼ N(µ1,Σ). Noting that −α+ α2 = α(α− 1) and taking logarithms gives the result. 3

Example 7.2.2 is the key to developing different privacy-preserving schemes under Rényi privacy.
Let us reconsider Example 7.1.3, except that instead of assuming the function f of interest is smooth
with respect to `1 norm, we use the `2-norm.

Example 7.2.3 (Gaussian mechanisms): Suppose that f : Pn → Rd has Lipschitz constant
L with respect to the `2-norm (for the Hamming metric dham), that is, global `2-sensitivity

GS2(f) = sup
{∥∥f(Pn)− f(P ′n)

∥∥
2
| dham(Pn, P

′
n) ≤ 1

}
≤ L.

Then, for any variance σ2 > 0, we have that the mechanism

Z = f(Pn) +W, W ∼ N(0, σ2I)

satisfies
Dα

(
N(f(Pn), σ2)||N(f(P ′n), σ2)

)
=

α

2σ2

∥∥f(Pn)− f(P ′n)
∥∥2

2
≤ α

2σ2
L2

for neighboring samples Pn, P
′
n. Thus, if we have Lipschitz constant L and desire (ε, α)-Rényi

privacy, we may take σ2 = L2α
2ε , and then the mechanism

Z = f(Pn) +W W ∼ N

(
0,
L2α

2ε
I

)
(7.2.4)

satisfies (ε, α)-Rényi privacy. 3

Certain special cases can make this more concrete. Indeed, suppose we wish to estimate a mean

E[X] where Xi
iid∼ P for some distribution P such that ‖Xi‖2 ≤ r with probability 1 for some

radius.

Example 7.2.4 (Bounded mean estimation with Gaussian mechanisms): Letting f(Xn
1 ) =

Xn be the sample mean, where Xi satisfy ‖Xi‖2 ≤ r as above, we see immediately that

GS2(f) =
2r

n
.

In this case, the Gaussian mechanism (7.2.4) with L = 2r
n yields

E
[∥∥Z −Xn

∥∥2

2

]
= E[‖W‖22] =

2dr2α

n2ε
.
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Then we have

E[‖Z − E[X]‖22] = E[‖Xn − E[X]‖22] + E[‖Z −Xn‖22] ≤ r2

n
+

2dr2α

n2ε
.

It is not immediately apparent how to compare this quantity to the case for the Laplace mech-
anism in Example 7.1.3, but we will return to this shortly once we have developed connections
between the various privacy notions we have developed. 3

7.2.2 Connections between privacy measures

An important consideration in our development of privacy definitions and mechanisms is to un-
derstand the relationships between the definitions, and when a channel Q satisfying one of the
definitions satisfies one of our other definitions. Thus, we collect a few different consequences of
our definitions, which help to show the various definitions are stronger or weaker than others.

First, we argue that ε-differential privacy implies stronger values of Rényi-differential privacy.

Proposition 7.2.5. Let ε ≥ 0 and let P and Q be distributions such that e−ε ≤ P (A)/Q(A) ≤ eε

for all measurable sets A. Then for any α ∈ [1,∞],

Dα(P ||Q) ≤ min

{
3α

2
ε2, ε

}
.

As an immediate corollary, we have

Corollary 7.2.6. Let ε ≥ 0 and assume that Q is ε-differentially private. Then for any α ≥ 1, Q
is (min{3α

2 ε
2, ε}, α)-Rényi private.

Before proving the proposition, let us see its implications for Example 7.2.4 versus estimation
under ε-differential privacy. Let ε ≤ 1, so that roughly to have “similar” privacy, we require
that our Rényi private channels satisfy Dα(Q(· | x)||Q(· | x′)) ≤ ε2. The `1-sensitivity of the mean
satisfies ‖xn − x′n‖1 ≤

√
d‖xn − x′n‖2 ≤ 2

√
dr/n for neighboring samples. Then the Laplace

mechanism (7.1.3) satisfies

E[‖ZLaplace − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +

8r2

n2ε2
· d2,

while the Gaussian mechanism under (ε2, α)-Rényi privacy will yield

E[‖ZGauss − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +

2r2

n2ε2
· dα.

This is evidently better than the Laplace mechanism whenever α < d.
Proof of Proposition 7.2.5 We asume that P and Q have densities p and q with respect to a
base measure µ, which is no loss of generality, whence the ratio condition implies that e−ε ≤ p/q ≤ eε
and Dα(P ||Q) = 1

α−1 log
∫

(p/q)αqdµ. We prove the result assuming that α ∈ (1,∞), as continuity
gives the result for α ∈ {1,∞}.

First, it is clear that Dα(P ||Q) ≤ ε always. For the other term in the minimum, let us assume
that α ≤ 1 + 1

ε and ε ≤ 1. If either of these fails, the result is trivial, because for α > 1 + 1
ε we

have 3
2αε

2 ≥ 3
2ε ≥ ε, and similarly ε ≥ 1 implies 3

2αε
2 ≥ ε.
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Now we perform a Taylor approximation of t 7→ (1 + t)α. By Taylor’s theorem, we have for any
t > −1 that

(1 + t)α = 1 + αt+
α(α− 1)

2
(1 + t̃)α−2t2

for some t̃ ∈ [0, t] (or [t, 0] if t < 0). In particular, if 1 + t ≤ c, then (1 + t)α ≤ 1 + αt +
α(α−1)

2 max{1, cα−2}t2. Now, we compute the divergence: we have

exp ((α− 1)Dα(P ||Q)) =

∫ (
p(z)

q(z)

)α
q(z)dµ(z)

=

∫ (
1 +

p(z)

q(z)
− 1

)α
q(z)dµ(z)

≤ 1 + α

∫ (
p(z)

q(z)
− 1

)
q(z)dµ(z) +

α(α− 1)

2
max{1, exp(ε(α− 2))}

∫ (
p(z)

q(z)
− 1

)2

q(z)dµ(z)

≤ 1 +
α(α− 1)

2
eε[α−2]+ · (eε − 1)2.

Now, we know that α− 2 ≤ 1/ε− 1 by assumption, so using that log(1 + x) ≤ x, we obtain

Dα(P ||Q) ≤ α

2
(eε − 1)2 · exp([1− ε]+).

Finally, a numerical calculation yields that this quantity is at most 3α
2 ε

2 for ε ≤ 1.

We can also provide connections from (ε, α)-Rényi privacy to (ε, δ)-differential privacy, and
then from there to ε-differential privacy. We begin by showing how to develop (ε, δ)-differential
privacy out of Rényi privacy. Another way to think about this proposition is that whenever two
distributions P and Q are close in Rényi divergence, then there is some limited “amplification” of
probabilities that is possible in moving from one to the other.

Proposition 7.2.7. Let P and Q satisfy Dα(P ||Q) ≤ ε. Then for any set A,

P (A) ≤ exp

(
α− 1

α
ε

)
Q(A)

α−1
α .

Consequently, for any δ > 0,

P (A) ≤ min

{
exp

(
ε+

1

α− 1
log

1

δ

)
Q(A), δ

}
≤ exp

(
ε+

1

α− 1
log

1

δ

)
Q(A) + δ.

As above, we have an immediate corollary to this result.

Corollary 7.2.8. Assume that M is (ε, α)-Rényi private. Then it is also (ε + 1
α−1 log 1

δ , δ)-
differentially private for any δ > 0.

Before turning to the proof of the proposition, we show how it can provide prototypical (ε, δ)-
private mechanisms via Gaussian noise addition.
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Example 7.2.9 (Gaussian mechanisms, continued): Consider Example 7.2.3, where f : Pn →
Rd has `2-sensitivity L. Then by Example 7.2.2, the Gaussian mechanism Z = f(Pn) +W for

W ∼ N(0, σ2I) is (αL
2

2σ2 , α)-Rényi private for all α ≥ 1. Combining this with Corollary 7.2.8,
the Gaussian mechanism is also(

αL2

2σ2
+

1

α− 1
log

1

δ
, δ

)
-differentially private

for any δ > 0 and α > 1. Optimizing first over α by taking α = 1 +
√

2σ2 log δ−1/L2, we see

that the channel is ( L
2

2σ2 +
√

2L2 log δ−1/σ2, δ)-differentially private. Thus we have that the
Gaussian mechanism

Z = f(Pn) +W, W ∼ N(0, σ2I) for σ2 = L2 max

{
8 log 1

δ

ε2
,
1

ε

}
(7.2.5)

is (ε, δ)-differentially private.
To continue with our `2-bounded mean-estimation in Example 7.2.4, let us assume that

ε < 8 log 1
δ , in which case the Gaussian mechanism (7.2.5) with L2 = r2/n2 achieves (ε, δ)-

differential privacy, and we have

E[‖ZGauss − E[X]‖22] = E[
∥∥Xn − E[X]

∥∥2

2
] +O(1)

r2

n2ε2
· d log

1

δ
.

Comparing to the previous cases, we see an improvement over the Laplace mechanism whenever
log 1

δ � d, or that δ � e−d. 3

Proof of Proposition 7.2.7 We use the data processing inequality of Proposition 7.2.1.iii,
which shows that

ε ≥ Dα(P ||Q) ≥ 1

α− 1
log

[(
P (A)

Q(A)

)α
Q(A)

]
.

Rearranging and taking exponentials, we immediately obtain the first claim of the proposition.
For the second, we require a bit more work. First, let us assume that Q(A) > e−εδ

α
α−1 . Then

we have by the first claim of the proposition that

P (A) ≤ exp

(
α− 1

α
ε+

1

α
log

1

Q(A)

)
Q(A)

≤ exp

(
α− 1

α
ε+

1

α
ε+

1

α− 1
log

1

δ

)
Q(A) = exp

(
ε+

1

α− 1
log

1

δ

)
Q(A).

On the other hand, when Q(A) ≤ e−εδ
α
α−1 , then again using the first result of the proposition,

P (A) ≤ exp

(
α− 1

α
(ε+ logQ(A))

)
≤ exp

(
α− 1

α

(
ε− ε+

α

α− 1
log δ

))
= δ.

This gives the second claim of the proposition.
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Finally, we develop our last set of connections, which show how we may relate (ε, δ)-private
channels with ε-private channels. To provide this definition, we require one additional weakened
notion of divergence, which relates (ε, δ)-differential privacy to Rényi-α-divergence with α = ∞.
We define

Dδ
∞ (P ||Q) := sup

S⊂X

{
log

P (S)− δ
Q(S)

| P (S) > δ

}
,

where the supremum is over measurable sets. Evidently equivalent to this definition is that
Dδ
∞(P ||Q) ≤ ε if and only if

P (S) ≤ eεQ(S) + δ for all S ⊂ X .

Then we have the following lemma.

Lemma 7.2.10. Let ε > 0 and δ ∈ (0, 1), and let P and Q be distributions on a space X .

(i) We have Dδ
∞(P ||Q) ≤ ε if and only if there exists a probability distribution R on X such that

‖P −R‖TV ≤ δ and D∞(R||Q) ≤ ε.

(ii) We have Dδ
∞(P ||Q) ≤ ε and Dδ

∞(Q||P ) ≤ ε if and only if there exist distributions P0 and Q0

such that

‖P − P0‖TV ≤
δ

1 + eε
, ‖Q−Q0‖TV ≤

δ

1 + eε
,

and
D∞ (P0||Q0) ≤ ε and D∞ (Q0||P0) ≤ ε.

The proof of the lemma is technical, so we defer it to Section 7.5.1. The key application of the
lemma—which we shall see presently—is that (ε, δ)-differentially private algorithms compose in
elegant ways.

7.2.3 Side information protections under weakened notions of privacy

We briefly discuss the side information protections these weaker notions of privacy protect. For both
(ε, δ)-differential privacy and (ε, α)-Rényi privacy, we revisit the treatment in Proposition 7.1.7,
considering Bayes factors and ratios of prior and posterior divergences, as these are natural for-
mulations of side information in terms of an adversary’s probabilistic beliefs. Our first analogue of
Proposition 7.1.7, applies to the (ε, δ)-private case.

Proposition 7.2.11. Let M be a (ε, δ)-differentially private mechanism. Then for any neighboring

Pn, P
′
n, P

(0)
n ∈ Pn, we have with probability at least 1−δ over the draw of Z = M(P

(0)
n ), the posterior

odds satisfy
π(Pn | z)
π(P ′n | z)

≤ e3επ(Pn)

π(P ′n)
.

Deferring the proof momentarily, this result shows that as long as two samples x, x′ are neighboring,
then an adversary is extremely unlikely to be able to glean substantially distinguishing information
between the samples. This is suggestive of a heuristic in differential privacy that if n is the sample
size, then one should take δ � 1/n to limit the probability of disclosure: by a union bound, we see
that for each individual i ∈ {1, . . . , n}, we can simultaneously guarantee that the posterior odds
for swapping individual i’s data do not change much (with high probability).

Unsurprisingly at this point, we can also give posterior update bounds for Rényi differential
privacy. Here, instead of giving high-probability bounds—though it is possible—we can show that
moments of the odds ratio do not change significantly. Indeed, we have the following proposition:
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Proposition 7.2.12. Let M be a (ε, α)-Rényi private mechanism, where α ∈ (1,∞). Then for

any neighboring Pn, P
′
n, P

(0)
n ∈ Pn, we have

E0

[(
π(Pn | Z)

π(P ′n | Z)

)α−1
] 1
α−1

≤ eεπ(Pn)

π(P ′n)
,

where E0 denotes expectation taken over Z = M(P
(0)
n ).

Proposition 7.2.12 communicates a similar message to our previous results in this vein: even if
we get information from the output of the private mechanism on some sample x0 ∈ X n near the
samples (datasets) of interest x, x′ that an adversary wishes to distinguish, it is impossible to update
beliefs by much. The parameter α then controls the degree of difficulty of this “impossible” claim,
which one can see by (for example) applying a Chebyshev-type bound to the posterior ratio and
prior ratios.

We now turn to the promised proofs of Propositions 7.2.11 and 7.2.12. To prove the former, we
require a definition.

Definition 7.6. Distributions P and Q on a space X are (ε, δ)-close if for all measurable A

P (A) ≤ eεQ(A) + δ and Q(A) ≤ eεP (A) + δ.

Letting p and q denote their densities (with respect to any shared base measure), they are (ε, δ)-
pointwise close if the set

A := {x ∈ X : e−εq(x) ≤ p(x) ≤ eεq(x)} = {x ∈ X : e−εp(x) ≤ q(x) ≤ eεp(x)}

satisfies P (A) ≥ 1− δ and Q(A) ≥ 1− δ.

The following lemma shows the strong relationship between closeness and approximate differ-
ential privacy.

Lemma 7.2.13. If P and Q are (ε, δ)-close, then for any β > 0, the sets

A+ := {x : p(x) > e(1+β)εq(x)} and A− := {x : p(x) ≤ e−(1+β)εq(x)}

satisfy

max{P (A+), Q(A−)} ≤ eβεδ

eβε − 1
, max{P (A−), Q(A+)} ≤ e−εδ

eβε − 1
.

Conversely, if P and Q are (ε, δ)-pointwise close, then

P (A) ≤ eεQ(A) + δ and Q(A) ≤ eεP (A) + δ

for all sets A.

Proof Let A = A+ = {x : p(x) > e(1+β)εq(x)}. Then

P (A) ≤ eεQ(A) + δ ≤ e−βεP (A) + δ,

so that P (A) ≤ δ
1−e−βε . Similarly,

Q(A) ≤ e−(1+β)εP (A) ≤ e−βεQ(A) + e−(1+β)εδ,
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so thatQ(A) ≤ e−(1+β)εδ/(1−e−βε) = e−εδ/(eβε−1). The set A− satisfies the symmetric properties.
For the converse result, let B = {x : e−εq(x) ≤ p(x) ≤ eεq(x)}. Then for any set A we have

P (A) = P (A ∩B) + P (A ∩Bc) ≤ eεQ(A ∩B) + δ ≤ eεQ(A) + δ,

and the same inequalities yield Q(A) ≤ eεP (A) + δ.

That is, (ε, δ)-close distributions are (2ε, e
ε+e−ε

eε−1 δ)-pointwise close, and (ε, δ)-pointewise close dis-
tributions are (ε, δ)-close.

A minor extension of this lemma (taking β = 1 and applying the lemma twice) yields the
following result.

Lemma 7.2.14. Let P0, P1, P2 be distributions on a space X , each (ε, δ)-close. Then for any i, j, k,
j 6= k, the set

Ajk :=

{
x ∈ X : log

pj(x)

pk(x)
> 3ε

}
satisfies Pi(Ajk) ≤ Cδmax{ε−1, 1}

for a numerical constant C ≤ 2.

With Lemma 7.2.14 in hand, we can prove Proposition 7.2.11:

Proof of Proposition 7.2.11 Let P
(0)
n ∈ Pn denote the “true” sample. Consider the three

channels Q0, Q1, Q2, which represent the induced distributions of M(P
(0)
n ),M(Pn), and M(P ′n),

respectively. Then by Lemma 7.2.14, with probability at least 1− 2δmax{ε−1, 1}, Z ∼ Q0 belongs
to the set A = {z ∈ Z | e−3εq1(z) ≤ q2(z) ≤ e3εq1(z)}. Calculating the odds ratios immediately
gives the result.

Finally, we provide the proof of Proposition 7.2.12.
Proof of Proposition 7.2.12 Let r = α − 1 for shorthand, and let p = α

r = α
α−1 > 1 and

p∗ = p
p−1 = α be its conjugate. As in the proof of Proposition 7.2.11, let Q0, Q1, and Q2 represent

the distributions of Z = M(P
(0)
n ), Z = M(Pn), and Z = M(P ′n), respectively. We apply Hölder’s

inequality: letting qi be the density of Qi with respect to some base measure dµ—which we know
must exist by definition of Rényi differential privacy—we have

E
[(

π(Pn | Z)

π(P ′n | Z)

)r]
=

∫ (
q1(z)π(Pn)

q2(z)π(P ′n)

)r
q0(z)dµ

=

(
π(Pn)

π(P ′n)

)r ∫ (q1(z)

q2(z)

)r q0(z)

q2(z)
q2(z)dµ

≤
(
π(Pn)

π(P ′n)

)r (∫ (q1(z)

q2(z)

)pr
q2(z)dµ

) 1
p
(∫ (

q0(z)

q2(z)

)p∗
q2(z)dµ

) 1
p∗

=

(
π(Pn)

π(P ′n)

)r
exp

(
(α− 1)2

α
Dα(Q1||Q2) +

α− 1

α
Dα(Q0||Q2)

)
≤
(
π(Pn)

π(P ′n)

)r
exp

(
(α− 1)2 + α− 1

α
ε

)
as pr = α and p∗ = α. Taking everything to the 1/(α− 1) power and gives the result.
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7.3 Composition and privacy based on divergence

One of the major challenges in privacy is to understand what happens when a user participates in
multiple studies, each providing different privacy guarantees. In this case, we might like to under-
stand and control privacy losses even when the mechanisms for information release may depend
on one another. Conveniently, all Rényi divergences provide strong guarantees on composition,
essentially for free, and these then allow us to prove strong results on the composition of multiple
private mechanisms.

7.3.1 Composition of Rényi-private channels

A natural idea to address composition is to attempt to generalize our chain rules for KL-divergence
and related ideas to Rényi divergences. Unfortunately, this plan of attack does not quite work, as
there is no generally accepted definition of a conditional Rényi divergence, and associated chain
rules do not sum naturally. In situations in which individual divergence of associated elements of a
joint distribution have bounded Rényi divergence, however, we can provide some natural bounds.

Indeed, consider the following essentially arbitrary scheme for data generation: we have distri-
butions P and Q on a space Zn, where Zn1 ∼ P and Zn1 ∼ Q may exhibit arbitrary dependence. If,
however, we can bound the conditional Rényi divergence between P (Zi | Zi−1

1 ) and Q(Zi | Zi−1
1 ),

we can provide some natural tensorization guarantees. To set notation, let Pi(· | zi−1
1 ) be the the

(regular) conditional probability of Zi conditional on Zi−1
1 = zi−1

1 under P , and similarly for Qi.
We have the following theorem.

Theorem 7.3.1. Let the conditions above hold, εi < ∞ for i = 1, . . . , n, and α ∈ [1,∞]. Assume
that conditional on zi−1

1 , we have Dα

(
Pi(· | zi−1

1 )||Qi(· | zi−1
1 )

)
≤ εi. Then

Dα(P ||Q) ≤
n∑
i=1

εi.

Proof We assume without loss of generality that the conditional distributions Pi(· | zi−1
1 ) and

Qi are absolutely continuous with respect to a base measure µ on Z.1 Then we have

Dα(P ||Q) =
1

α− 1
log

∫ n∏
i=1

(
pi(zi | zi−1

1 )

qi(zi | zi−1
1 )

)α
qi(zi | zi−1

1 )dµn(zn1 )

=
1

α− 1
log

∫
Zn−1

1

[∫ (
pn(zn | zn−1

1 )

qn(zn | zn−1
1 )

)α
qn(zn | zn−1

1 )dµ(zn)

]
n−1∏
i=1

(
pi
qi

)α
qidµ

n−1

≤ 1

α− 1
log

∫
Zn−1

1

exp((α− 1)εn)
n−1∏
i=1

(
pi(zi | zi−1

1 )

qi(zi | zi−1
1 )

)α
qi(zi | zi−1

1 )dµn−1(zn−1
1 )

= εn +Dα

(
Pn−1

1 ||Qn−1
1

)
.

Applying the obvious inductive argument then gives the result.

1This is no loss of generality, as the general definition of f -divergences as suprema over finite partitions, or
quantizations, of each Xi and Yi separately, as in our discussion of KL-divergence in Chapter 2.2.2. Thus we may
assume Z is discrete and µ is a counting measure.
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7.3.2 Privacy games and composition

To understand arbitrary composition of private channels, let us consider a privacy “game,” where
an adversary may sequentially choose a dataset—in an arbitrary way—and then observes a private
release Zi of some mechanism applied to the dataset and the dataset with one entry (observation)
modified. The adversary may then select a new dataset, and repeat the game. We then ask whether
the resulting sequence of (private) observations Zk1 remains private. Figure 7.1 captures this in an

algorithmic form. Letting Z
(b)
i denote the random observations under the bit b ∈ {0, 1}, whether

Input: Family of channels Q and bit b ∈ {0, 1}.
Repeat: for k = 1, 2, . . .

i. Adversary chooses arbitrary space X , n ∈ N, and two datasets x(0), x(1) ∈ X n with
dham(x(0), x(1)) ≤ 1.

ii. Adversary chooses private channel Qk ∈ Q.

iii. Adversary observes one sample Zk ∼ Qk(· | x(b)).

Figure 7.1. The privacy game. In this game, the adversary may not directly observe
the private b ∈ {0, 1}.

the distributions of (Z
(0)
1 , . . . , Z

(0)
k ) and (Z

(1)
1 , . . . , Z

(1)
k ) are substantially different. Note that, in

the game in Fig. 7.1, the adversary may track everything, and even chooses the mechanisms Qk.

Now, let Z(0) = (Z
(0)
1 , . . . , Z

(0)
k ) and Z(1) = (Z

(1)
1 , . . . , Z

(1)
k ) be the outputs of the privacy game

above, and let their respective marginal distributions be Q(0) and Q(1). We then make the following
definition.

Definition 7.7. Let ε ≥ 0, α ∈ [1,∞], and k ∈ N.

(i) A collection Q of channels satisfies (ε, α)-Rényi privacy under k-fold adaptive composition
if, in the privacy game in Figure 7.1, the distributions Q(0) and Q(1) on Z(0) and Z(1),
respectively, satisfy Dα

(
Q(0)||Q(1)

)
≤ ε and Dα

(
Q(1)||Q(0)

)
≤ ε.

(ii) Let δ > 0. Then a collection Q of channels satisfies (ε, δ)-differential privacy under k-fold
adaptive composition if Dδ

∞(Q(0)||Q(1)) ≤ ε and Dδ
∞(Q(1)||Q(0)) ≤ ε.

By considering a special case centered around a particular individual in the game 7.1, we can gain
some intuition for the definition. Indeed, suppose that an individual has some data x0; in each
round of the game the adversary generates two datasets, one containing x0 and the other identical
except that x0 is removed. Then satisfying Definition 7.7 captures the intuition that an individual’s
privacy remains protected, even in the face of multiple (private) accesses of the individual’s data.

As an immediate corollary to Theorem 7.3.1, we then have the following.

Corollary 7.3.2. Assume that each channel in the game in Fig. 7.1 is (εi, α)-Rényi private. Then
the arbitrary composition of k such channels remains (

∑k
i=1 εi, α)-Rényi private.

More sophisticated corollaries are possible once we start to use the connections between privacy
measures we outline in Section 7.2.2. In this case, we can develop so-called advanced composition
rules, which sometimes suggest that privacy degrades more slowly than might be expected under
adaptive composition.
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Corollary 7.3.3. Assume that each channel in the game in Fig. 7.1 is ε-differentially private.
Then the composition of k such channels is kε-differentially private. Additionally, the composition
of k such channels is (

3k

2
ε2 +

√
6k log

1

δ
· ε, δ

)
differentially private for all δ > 0.

Proof The first claim is immediate: forQ(0), Q(1) as in Definition 7.7, we know thatDα

(
Q(0)||Q(1)

)
≤

kε for all α ∈ [1,∞] by Theorem 7.3.1 coupled with Proposition 7.2.5 (or Corollary 7.2.6).
For the second claim, we require a bit more work. Here, we use the bound 3α

2 ε
2 in the Rényi

privacy bound in Corollary 7.2.6. Then we have for any α ≥ 1 that

Dα

(
Q(0)||Q(1)

)
≤ 3kα

2
ε2

by Theorem 7.3.1. Now we apply Proposition 7.2.7 and Corollary 7.2.8, which allow us to conclude
(ε, δ)-differential privacy from Rényi privacy. Indeed, by the preceding display, setting η = 1 + α,
we have that the composition is (3k

2 ε
2 + 3kη

2 ε2 + 1
η log 1

δ , δ)-differentially private for all η > 0 and
δ > 0. Optimizing over η gives the second result.

We note in passing that it is possible to get slightly sharper results than those in Corollary 7.3.3;

indeed, using ideas from Exercise 4.3 it is possible to achieve (kε(eε−1)+
√

2k log 1
δ ε, δ)-differential

privacy under adaptive composition.
A more sophisticated result, which shows adaptive composition for (ε, δ)-differentially private

channels, is also possible using Lemma 7.2.10.

Theorem 7.3.4. Assume that each channel in the game in Fig. 7.1 is (ε, δ)-differentially private.
Then the composition of k such channels is (kε, kδ)-differentially private. Additionally, they are(

3k

2
ε2 +

√
6k log

1

δ0
· ε, δ0 +

kδ

1 + eε

)
differentially private for all δ0 > 0.

Proof Consider the channels Qi in Fig. 7.1. As each satisfies Dδ
∞(Qi(· | x(0))||Qi(· | x(1))) ≤ ε

and Dδ
∞(Qi(· | x(1))||Qi(· | x(0))) ≤ ε, Lemma 7.2.10 guarantees the existence (at each sequential

step, which may depend on the preceding i−1 outputs) of probability measures Q
(0)
i and Q

(1)
i such

that D∞(Q
(1−b)
i ||Q(b)

i ) ≤ ε, ‖Q(b)
i −Qi(· | x(b))‖TV ≤ δ/(1 + eε) for b ∈ {0, 1}.

Note that by construction (and Theorem 7.3.1) we have Dα(Q
(b)
1 · · ·Q

(b)
k ||Q

(1−b)
1 · · ·Q(1−b)

k ) ≤
min{3kα

2 ε2, kε}, where Q(b) denotes the joint distribution on Z1, . . . , Zk under bit b. We also have

by the triangle inequality that ‖Q(b)
1 · · ·Q

(b)
k −Q

(b)‖TV ≤ kδ/(1 + eε) for b ∈ {0, 1}. (See Exer-
cise 2.16.) As a consequence, we see as in the proof of Corollary 7.3.3 that the composition is
(3k

2 ε
2 + 3kη

2 ε2 + 1
η log 1

δ0
, δ0 + kδ/(1 + eε))-differentially private for all η > 0 and δ0. Optimizing

gives the result.
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As a consequence of these results, we see that whenever the privacy parameter ε < 1, it is
possible to compose multiple privacy mechanisms together and have privacy penalty scaling only
as the worse of

√
kε and kε2, which is substantially better than the “naive” bound of kε. Of course,

a challenge here—relatively unfrequently discussed in the privacy literature—is that when ε ≥ 1,
which is a frequent case for practical deployments of privacy, all of these bounds are much worse
than a naive bound that k-fold composition of ε-differentially private algorithms is kε-differentially
private.

7.4 Additional mechanisms and privacy-preserving algorithms

Since the introduction of differential privacy, a substantial literature has grown providing mecha-
nisms for different estimation, learning, and data release problems. Here, we describe a few of those
beyond the basic noise addition schemes we have thus far developed, highlighting a few applications
along the way. One major challenge with the naive approaches is that they rely on global sensitivity
of the functions to be estimated, rather than local sensitivities—a worst case notion that sometimes
forces privacy to add unnecessary noise. In Section 7.4.2, we give one potential approach to this
problem, which we develop further in exercises and revisit in optimality guarantees in sequential
chapters. Our view is necessarily somewhat narrow, but the results here can form a natural starting
point for further work in this area.

7.4.1 The exponential mechanism

In many statistical, learning, and other problems, there is a natural notion of loss (or conversely,
utility) in releasing a potentially noisy result of some computation. We abstract this by considering
the input space Pn of samples of size n (that is, empirical distributions) and output space Z along
with a loss function ` : Pn × Z → R, where `(Pn, z) measures the loss of z on an input Pn ∈ Pn.
For example, if we wish to compute a function f : Pn → R, a natural notion of loss is `(Pn, z) =
|f(Pn) − z| for z ∈ R. As a more sophisticated and somewhat abstract formulation, suppose we
wish to release a sample distribution P̃ approximating an input sample Pn ∈ Pn, where we wish P̃
to be accurate for most statistical queries in some family, that is, 1

n

∑n
i=1 φ(xi) ≈ E

P̃
[φ(X)] for all

φ ∈ Φ. Then a natural loss is `(Pn, P̃ ) = supφ∈Φ |EPnφ(X)− E
P̃

[φ(X)]|.
In scenarios in which we have such a loss, the abstract exponential mechanism provides an

attractive approach. We assume that for each z ∈ Z, the loss `(·, z) has (global) sensitivity L, i.e.,
|`(Pn, z)− `(P ′n, z)| ≤ L for all neighboring Pn, P

′
n ∈ Pn. We assume we have a base measure µ on

Z, and then define the exponential mechanism by

P(M(Pn) ∈ A) =
1∫

exp(− ε
L`(Pn, z))dµ(z)

∫
A

exp
(
− ε
L
`(Pn, z)

)
dµ(z), (7.4.1)

assuming
∫
e−

ε
L
`(x,z)dµ(z) is finite for each Pn ∈ Pn. (Typically, one assumes ` takes on values

in R+ and µ is a finite measure, making the last assumption trivial.) That is, the exponential
mechanism M releases Z = M(Pn) with probability proportional to

exp
(
− ε
L
`(Pn, z)

)
.

That the mechanism (7.4.1) is 2ε-differentially private is immediate: for any neighboring Pn, P
′
n,
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we have

Q(A | Pn)

Q(A | P ′n)
=

∫
exp(− ε

L`(P
′
n, z))dµ(z)∫

exp(− ε
L`(Pn, z))dµ(z)

∫
A exp(− ε

L`(Pn, z))dµ(z)∫
A exp(− ε

L`(P
′
n, z))dµ(z)

≤ sup
z∈Z

{
exp

( ε
L

[`(Pn, z)− `(P ′n, z)]
)}
· sup
z∈A

{
exp

( ε
L

[`(P ′n, z)− `(Pn, z)]
)}
≤ exp(2ε).

As a first (somewhat trivial) example, we can recover the Laplace mechanism:

Example 7.4.1 (The Laplace mechanism): We can recover Example 7.1.3 through the
exponential mechanism. Indeed, suppose that we wish to release f : Pn → Rd, where GS1(f) ≤
L. Then taking z ∈ Rd, `(Pn, z) = ‖f(Pn)− z‖1, and µ to be the usual Lebesgue measure on
Rd, the exponential mechanism simply uses density

q(z | Pn) ∝ exp
(
− ε
L
‖f(Pn)− z‖1

)
,

which is the Laplace mechanism. 3

One challenge with the exponential mechanism (7.4.1) is that it is somewhat abstract and is
often hard to compute, as it requires evaluating an often high-dimensional integral to sample from.
Yet it provides a nice abstract mechanism with strong privacy guarantees and, as we shall see, good
utility guarantees. For the moment, we defer further examples and provide utility guarantees when
µ(Z) is finite, giving bounds based on the measure of “bad” solutions. For notational convenience,
we define the optimal value

`?(Pn) = inf
z∈Z

`(Pn, z),

assuming tacitly that it is finite, and the sublevel sets

St := {z ∈ Z | `(Pn, z) ≤ `?(Pn) + t}.

With these definitions, we have the following proposition.

Proposition 7.4.2. Let t ≥ 0. Then for the exponential mechanism (7.4.1), if Z ∼ Q(· | Pn) then

`(Pn, Z) ≤ `?(Pn) + 2t

with probability at least 1− exp
(
− εt
L + log µ(Z)

µ(St)

)
.

Proof Assume without loss of generality (by scaling) that the global Lipschitzian (sensitivity)
constant of ` is L = 1. Then for Z ∼ Q(· | Pn), we have

P (`(Pn, Z) ≥ `?(Pn) + 2t) =

∫
Sc2t

exp(−ε`(Pn, z))dµ(z)∫
exp(−ε`(Pn, z))dµ(z)

=

∫
Sc2t

exp(−ε(`(Pn, z)− `?(Pn)))dµ(z)∫
exp(−ε(`(Pn, z)− `?(Pn)))dµ(z)

≤

∫
Sc2t

exp(−2εt)dµ(z)∫
St

exp(−ε(`(Pn, z)− `?(Pn)))dµ(z)
≤ exp(−εt)µ(Sc2t)

µ(St)
,

where the last inequality uses that `(Pn, z)− `?(Pn) ≤ t on St.

We can provide a few simplifications of this result in different special cases. For example, if Z
is finite with cardinality card(Z), then Proposition 7.4.2 implies that taking µ to be the counting
measure on Z we have
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Corollary 7.4.3. In addition to the conditions in Proposition 7.4.2, assume that card(Z) is finite.
Then for any u ∈ (0, 1), with probability at least 1− u,

`(Pn, Z) ≤ `?(Pn) +
2L

ε
log

card(Z)

u
.

That is, with extremely high probability, the loss of Z from the exponential mechanism is at most
logarithmic in card(Z) and grows only linearly with the global sensitivity L.

A second corollary allows us to bound the expected loss of the exponential mechanism, assuming
we have some control over the measure of the sublevel sets St.

Corollary 7.4.4. Let t ≥ 0 be the smallest scalar such that t ≥ 2L
ε log µ(Z)

µ(St)
and t ≥ L

ε . Then Z

drawn from the exponential mechanism (7.4.1) satisfies

E[`(Pn, Z)] ≤ `?(Pn) + t+
2L

ε
≤ `?(Pn) + 3t ≤ `?(Pn) +O(1)

L

ε
log

(
1 +

µ(Z)

µ(St)

)
.

Proof We first recall that if W ≥ 0 is a nonnegative random variable, then by a change of
variables, E[W ] =

∫∞
0 P(W ≥ t)dt. Take `(Pn, Z) − `?(Pn) ≥ 0 as our random variable, fix any

t0 ≥ 0, and let ρ = log µ(Z)
µ(St0 ) . Then by Proposition 7.4.2 we have

E[`(Pn, Z)− `?(Pn)] ≤ t0 +

∫ ∞
t0

P(`(Pn, Z)− `?(Pn) ≥ t)dt

= t0 + 2

∫ ∞
t0/2

P(`(Pn, Z)− `?(Pn) ≥ 2t)dt

≤ t0 + 2

∫ ∞
t0/2

exp

(
−εt
L

+ log
µ(Z)

µ(St)

)
dt

≤ t0 + 2eρ
∫ ∞
t0/2

exp

(
−εt
L

)
dt = t0 +

2L

ε
exp

(
ρ− εt0

2L

)
.

Take t0 as in the statement of the corollary to obtain the result.

Corollary 7.4.4 may seem a bit circular: we require the ratio µ(Z)/µ(St) to be controlled—but
it is relatively straightforward to use it (and Proposition 7.4.2) with a bit of care and standard
bounds on volumes.

Example 7.4.5 (Empirical risk minimization via the exponential mechanism): We consider
the empirical risk minimization problem, where we have losses ` : Θ×X → R+, where Θ ⊂ Rd
is a parameter space of interest, and we wish to choose

θ̂n ∈ argmin
θ∈Θ

{
L(θ, Pn) :=

1

n

n∑
i=1

`(θ, xi)

}

where Pn = 1
n

∑n
i=1 1xi . We make a few standard assumptions: first, for simplicity, that n

is large enough that n
d ≥ ε. We also assume that Θ ⊂ Rd is an `2-ball of radius R, that

θ 7→ `(θ, xi) is M -Lipschitz for all xi, and that `(θ, xi) ∈ [0, 2MR] for all θ ∈ Θ. (Note that
this last is no loss of generality, as `(θ, xi)− infθ∈Θ `(θ, xi) ≤M supθ,θ′∈Θ ‖θ − θ′‖2 ≤ 2MR.)
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Take the empirical loss L(θ, Pn) as our criterion function for the exponential mechanism, which
evidently satisfies |L(θ, Pn)− L(θ, P ′n)| ≤ 2MR

n whenever dham(Pn, P
′
n) ≤ 1, so that we release

θ with density

q(θ | x) ∝ exp
(
− nε

2MR
L(θ, Pn)

)
.

Let θ̂n be the empirical minimizer as above; then by the Lipschitz continuity of `, the sublevel
set St evidently satisfies

St ⊃
{
θ ∈ Θ | ‖θ − θ̂n‖2 ≤

t

M

}
.

Then a volume calculation (with the factor of 2 necessary because we may have θ̂n on the
boundary of Θ) yields that for µ the Lebesgue measure,

µ(St)

µ(Z)
≥
(

t

2MR

)d
.

As a consequence, by Corollary 7.4.4, whenever t ≥ O(1)MR
nε · d log MR

t , we have E[L(θ, Pn) |
Pn] ≤ L(θ̂n, Pn) + 3t. The choice t = O(1)MRd

nε suffices whenever ε
d ≤ 1, so we obtain

E[L(θ, Pn)] ≤ L(θ̂n, Pn) +O(1)
MRd

nε
log

nε

d
,

whenever d
nε ≤ 1. Notably, standard empirical risk minimization (recall Chapter 4.4) typically

achieves rates of convergence roughly of MR/
√
n, so that the gap of the exponential mechanism

is lower order whenever d√
nε
≤ 1. 3

7.4.2 Local sensitivities and the inverse sensitivity mechanism

A particular choice of the exponential mechanism (7.4.1) can provide strong optimality guarantees
for 1-dimensional quantities, and appears to be the “right” mechanism (in principle) when one
wishes to estimate a scalar-valued functional f(Pn). A better (in principle) algorithm than noise
addition schemes using the global sensitivity GS(f) = sup |f(Pn) − f(P ′n)| is to use a local notion
of sensitivity: we are only concerned with adding noise commensurate with the changes of f near
Pn ∈ Pn. With this in mind, define the modulus of continuity of f at Pn by

ωf (k;Pn) := sup
{
|f(P ′n)− f(Pn)| | dham(Pn, P

′
n) ≤ k

}
,

which measures the amount that changing k observations in Pn can change the function f . In the
privacy literature, the particular choice k = 1 yields the local sensitivity

LS(f, Pn) := sup
{
|f(Pn)− f(P ′n)| | dham(P ′n, Pn) = 1

}
= ωf (1;Pn). (7.4.2)

A naive strategy, then, would be to release

Z = f(Pn) +
LS(f, Pn)

ε
·W for W ∼ Laplace(1),

which is analogous to the Laplace mechanism (7.1.3), except that the noise scales with the local
sensitivity of f at Pn. The issue, as the next example makes clear, is that the scale of this noise
can compromise privacy.
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Example 7.4.6 (The sensitivity of the sensitivity): Consider estimating a median f(Pn) =
med(Pn), where the data x ∈ [0, 1], where n = 2m + 1 for simplicity, to make the median
unique. If the sample consists of m points xi = 0 and m+ 1 points xi = 1, then the sensitivity
ωf (1, Pn) = 1, the maximal value—we simply move one example from xi = 1 to xi = 0,
changing the median from med(Pn) = 1 to 0. On the other hand, on the sample P ′n with m−1
points xi = 0 and m+ 2 points xi = 1, the sensitivity ωf (1, P ′n) = 0, because changing a single
example cannot move the median from f(P ′n) = 1. 3

Instead of using the inherently unstable quantity ω, then, we can instead use, essentially, its
inverse: define the inverse sensitivity

df (t, Pn) := inf
{
dham(P ′n, Pn) | f(P ′n) = t

}
, (7.4.3)

where df (t, Pn) = +∞ if no P ′n yields f(P ′n) = t. So df (t, Pn) counts the number of examples that
must be changed in the sample Pn to move f(Pn) to a target t, and by inspection, always satisfies

|df (t, Pn)− df (t, P ′n)| ≤ dham(Pn, P
′
n).

Then the inverse sensitivity mechanism releases a value t with probability density proportional to

q(t | Pn) ∝ exp
(
−ε

2
df (t, Pn)

)
. (7.4.4)

Implicit in the definition (7.4.4) is a base measure µ, typically one of Lebesgue measure or counting
measure on a discrete set. Then a quick calculation (or recognition that the density (7.4.4) is a
particular instance of the exponential mechanism) gives the following proposition.

Proposition 7.4.7. Let M be the inverse sensitivity mechanism with density (7.4.4). Then M is
ε-differentially private.

As in the general exponential mechanism (7.4.1), efficiently sampling from the density (7.4.4)
can be challenging. Some cases admit easier reformulations.

Example 7.4.8 (Mean estimation with bounded data): Suppose the data x ∈ [a, b] are
bounded and we wish to estimate the sample mean f(Pn) = EPn [X] = xn, where Pn =
1
n

∑n
i=1 1xi . Changing a single observation can move the mean by at most b−a

n (replace xi = a
with x′i = b). Thus, while discretization issues and that we may have xi 6∈ {a, b} make precisely
computing df tedious, the approximation

dmean(t, Pn) =

⌈
n|t− xn|
b− a

⌉
,

where we define dmean(t, Pn) = +∞ for t 6∈ [a, b], is both Lipschitz (with respect to the
Hamming metric) in the sample Pn, and approximates df (t, Pn). (See Exercise 7.8 for a more
general approach justifying this particular approximation.) The approximation

q(t | Pn) :=
exp(− ε

2dmean(t, Pn))∫ b
a exp(− ε

2dmean(s, Pn))ds
(7.4.5)

to the density (7.4.4) is thus ε-differentially private,
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The density (7.4.5) yields a particular step-like density. Define the shells

Sk =

{[
xn − k

b− a
n

, xn − (k − 1)
b− a
n

]
∪
[
xn + (k − 1)

b− a
n

, xn + k
b− a
n

]}
∩ [a, b]

corresponding to the amount the mean may change if we modify k examples and let Vol(Sk) be
volume (length) of the intervals making up Sk. To sample from the density (7.4.5), note that

the denominator C(Pn) :=
∫ b
a exp(− ε

2dmean(s, Pn))ds =
∑n

k=1 Vol(Sk)e
− kε

2 . Then we draw an

index I ∈ [n] with probability P(I = k) = Vol(Sk)e
−εk/2/C(Pn), and then choose t uniformly

at random within Sk. 3

Example 7.4.9 (Median estimation): For the median, the inverse sensitivity takes a par-
ticularly clean form, making sampling from the density (7.4.4) fairly straightforward. In this
case, for a sample Pn = 1

n

∑n
i=1 1xi , where xi ∈ R, we have

df (t, Pn) = card {i ∈ [n] | xi ∈ [f(Pn), t]} ,

the number of examples between the median f(Pn) and putative target t. If the data lie in
a range x ∈ [a, b], then the density q is relatively straightforward to compute. Similar to the
approach to the stepped density in Example 7.4.8, divide [a, b] into the intervals

S−k := [a−k , a
−
k−1] and S+

k := [a+
k−1, a

+
k ], k = 1, . . . , n/2,

where

a−k = inf
{
f(P ′n) | dham(P ′n, Pn) ≤ k

}
and a+

k = sup
{
f(P ′n) | dham(P ′n, Pn) ≤ k

}
.

That is, a−k is the smallest we can make the median by changing k examples and a+
k the largest,

corresponding to the the 1
2 −

k
n and 1

2 + k
n quantiles of the sample Pn, where the 0 quantile is

a and 1 quantile is b. Then defining the normalization constant

C(Pn) :=

∫ b

a
exp

(
−ε

2
df (t, Pn)

)
dt =

n∑
k=1

Vol(S−k ∪ S
+
k ) exp

(
−ε

2
k
)

(where the volume is simply interval length), we may sample from the density (7.4.4) by first
drawing a random index I ∈ {1, . . . , n} with probability proportional to

P(I = k | Pn) =
Vol(S−k ∪ S

+
k )

C(Pn)
exp

(
−ε

2
k
)
,

then drawing t uniformly at random in the each of the intervals S−k or S+
k with probabilities

Vol(S−k )/Vol(S−k ∪ S
+
k ) or Vol(S+

k )/Vol(S−k ∪ S
+
k ), respectively. 3

The particular sampling strategies—where we construct concentric shells Sk around f(Pn) and
sample from these with geometrically decaying probabilities e−kε/2—point toward more general
sampling stratgies and optimality guarantees for the inverse sensitivity mechanism. Define the
“shells”

Sk := {f(P ′n) | dham(Pn, P
′
n) = k}.
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We focus on sampling from the density (7.4.4) in the case t ∈ R, so sampling is equivalent to
drawing an index I ∈ [n] with probability

P(I = k | Pn) =
1

C(Pn)
e−

ε
2
k for C(Pn) :=

n∑
k=1

Vol(Sk)e
− ε

2
k, (7.4.6)

then choosing t uniformly at random in Sk.
Define the shorthand ω(k) = ωf (k, Pn). Then the values t ∈ Sk all satisfy |f(Pn) − t| ≤ ω(k),

and so the inverse sensitivity mechanism M guarantees

E[|M(Pn)− f(Pn)|] ≤
n∑
k=1

P(M(Pn) ∈ Sk)ω(k).

Now our calculations become heuristic, where we make an effort to give the rough flavor of results
possible, and later apply the care necessary for tighter guarantees. Suppose that the interval lengths
Vol(Sk) are of the same order for k . 1

ε , and grow only polynomially quickly for k � 1
ε . Then

we have the heuristic bound C(Pn) :=
∑n

k=1 Vol(Sk)e
−kε/2 & Vol(S1)

∑n
k=1 e

−kε/2 & ε−1 Vol(S1),
while

E[|M(Pn)− f(Pn)|] ≤
n∑
k=1

Vol(Sk)e
−kε/2∑n

i=1 Vol(Si)e−iε/2
ω(k)

heuristic

.
n∑
k=1

εe−kε/2ω(k) . max
k

e−kε/2ω(k),

where the heuristic inequality is our bound on the normalizing constant C(Pn), and the final bound
follows because maxima are larger than (weighted) averages. Continuing the heuristic derivation,
the final maximum has is exponentially small weight on ω(k) for k � 1

ε . Thus—and again, this is
highly non-rigorous—we expect roughly that

E[|M(Pn)− f(Pn)|]
heuristic

. max
k

e−kε/2ω(k)
heuristic

. ωf

(c
ε
, Pn

)
, (7.4.7)

where c is some numerical constant.
To gain some intuition for the claims of optimality we have made, let us revisit the equivalent

definitions of privacy that repose on testing, as in Eq. (7.1.4) and Proposition 7.1.6. By the
definition of differential privacy, the inverse sensitivity mechanism satisfies

P(M(Pn) ∈ A) ≤ ekεP(M(P ′n) ∈ A)

for any samples Pn, P
′
n satisfying dham(Pn, P

′
n) ≤ k. So for k ≤ 1

ε , we have

P(M(Pn) ∈ A) ≤ exp(1)P(M(P ′n) ∈ A),

and so no procedure exists that can test whether the sample is Pn or P ′n with probability of error less
than e−2, by Proposition 7.1.6. Thus, at a fundamental level, no procedure can reliably distinguish
the outputs of M(Pn) from those of M(P ′n) when Pn and P ′n differ in only 1/ε examples. Thus, we
cannot expect to estimate f(Pn) to accuracy better than ωf (1

ε , Pn), and so for any ε-differentially
private mechanism M and Pn, there exists P ′n ∈ Pn with dham(Pn, P

′
n) ≤ 1

ε and for which

max
P̂∈{Pn,P ′n}

E
[
|M(P̂ )− f(P̂ )|

]
& ωf

(
1

ε
, Pn

)
, (7.4.8)

which the heuristic calculation (7.4.7) achieves.
To provide more rigorous guarantees requires restrictions on the functions f whose values we

wish to release. The simplest is that the function f : Pn → R obey a natural ordering property,
where larger changes in the sample distribution Pn beget larger changes in f .
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Definition 7.8. A function f : Pn → R is sample monotone if for each s, t ∈ f(Pn) satisfying
f(Pn) ≤ s ≤ t or t ≤ s ≤ f(Pn), we have df (s, Pn) ≤ df (t, Pn).

So the mean and median (Examples 7.4.8 and 7.4.9) are both sample monotone. So, too, are
appropriately continuous functions f . For this, we make the obvious identification of f : Pn → R
with the induced function on X n by defining fX (xn1 ) := f(n−1

∑n
i=1 1xi). Then we say f : Pn → R

is continuous if the induced function fX is.

Observation 7.4.10. Let f : Pn → R be continuous and X convex. Then f is sample monotone.

Proof Identify f with its induced function fX for notational simplicity, and let x ∈ X n,
f(x) ≤ s ≤ t, and Pn = n−1

∑n
i=1 1xi be the empirical distribution associated with x. We

show that df (s, Pn) ≤ df (t, Pn). If df (t, Pn) = +∞, then the desired inequality holds triv-
ially. Otherwise, let x′ ∈ X n satisfy f(x′) = t and dham(x, x′) = df (t, Pn). Then the function
g(λ) := f((1 − λ)x + λx′) is continuous in λ and satisfies g(0) = f(x) ≤ g(1) = f(x′) = t. By the
intermediate value theorem, there exists λs ∈ [0, 1] with g(λs) = s, and as X is convex the vector
xs = (1− λs)x+ λsx

′ ∈ X n satisfies f(xs) = g(λs) = s. That xs is a convex combination of x and
x′ then implies df (s, Pn) ≤ dham(x, xs) ≤ dham(x, x′) = df (t, Pn).

With Definition 7.8 in place, we can provide a few stronger guarantees for the inverse sensitivity
mechanism. To avoid pathological sampling issues, one replaces the inverse sensitivity df (t, Pn) with
a “smoothed” version, where for ρ ≥ 0 we define

df,ρ(t, Pn) := inf
{
dham(Pn, P

′
n) | |f(P ′n)− t| ≤ ρ

}
.

(Pathological cases include estimating the median where the sample Pn consists of a single point re-
peated n times, which would make the density (7.4.4) uniform.) Then instead of the density (7.4.4),
we define the continuous inverse sensitivity mechanism Mcont to have density

q(t | Pn) =
exp(− ε

2df,ρ(t, Pn))∫
exp(− ε

2df,ρ(s, Pn))ds
. (7.4.9)

While the parameter ρ adds complexity, setting it to be very small (say, ρ = 1
n2 ) is a reasonable

practical default.
The continuous inverse sensitivity enjoys fairly strong error guarantees, as the next two propo-

sitions demonstrate, providing two prototypical results. (Exercises 7.11 and 7.12 show how to prove
the propositions.) The first proposition shows that the inverse sensivity mechanism is essentially
never worse than the Laplace mechanism (7.1.3) when ε . 1.

Proposition 7.4.11. Let f be sample monotone (Definition 7.8) and have finite global sensitivity
GS(f) <∞. Then taking ρ = 0,

E [|Mcont(Pn)− f(Pn)|] ≤ 1

1− e−ε/2
GS(f).

As Example 7.1.3 shows, the standard Laplace mechanism M has error

E [|M(Pn)− f(Pn)|] =
GS(f)

ε
,
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the same scaling Proposition 7.4.11 guarantees, because 1− e−ε/2 = ε/2 +O(ε2).
For the next proposition, which provides a more nuanced guarantee, we require local sensitivities

for samples P ′n near Pn, and so we define the largest local sensitivity within Hamming distance K
of the sample Pn by

L(K) := sup
P ′n∈Pn

{
LS(f, P ′n) | dham(Pn, P

′
n) ≤ K

}
= sup

P ′n∈Pn

{
ωf (1, P ′n) | dham(Pn, P

′
n) ≤ K

}
,

where we recall the definition (7.4.2) of the local sensitivity of f . Then we have the following.

Proposition 7.4.12. Let f be sample monotone (Definition 7.8) and have finite global sensitivity

GS(f) <∞. Then for any ρ ≥ 0 and Kn =
⌈

4 log(2nGS(f)/ρ)
ε

⌉
,

E [|Mcont(Pn)− f(Pn)|] ≤ 2ρ+
1

1− e−ε/2
L(Kn).

Unpacking Proposition 7.4.12 a bit, let us make the default substitution ρ = 1
n2 . Then because

1− e−ε/2 = ε/2 +O(ε2), for ε . 1 this yields

E [|Mcont(Pn)− f(Pn)|] . 1

ε
sup
P ′n∈Pn

{
LS(f, P ′n) | dham(P ′n, Pn) ≤ Kn

}
+

1

n2
,

where Kn = 4 log GS(f)+12 logn
ε . 1

ε log n for large sample sizes n. Comparing this to the sketched
lower bound (7.4.8), these quantities are of the same order whenever the moduli of continu-
ity ωf (k;Pn) are roughly additive and comparable near Pn, so that for k . 1

ε there is a chain

P
(1)
n , P

(2)
n , . . . , P

(k)
n with dham(P

(i)
n , P

(i+1)
n ) = 1 and ωf (k;Pn) &

∑k
i=1 LS(f, P

(i)
n ) and LS(f, Pn) �

LS(f, P ′n) for P ′n satisfying dham(Pn, P
′
n) . logn

ε . Under these conditions—which often require care
to check, but which hold, for example, for mean estimation—we then obtain

E [|Mcont(Pn)− f(Pn)|] . ωf

(
1

ε
, Pn

)
+

1

n2
.

7.5 Deferred proofs

7.5.1 Proof of Lemma 7.2.10

We prove the first statement of the lemma first. Let us assume there existsR such that ‖P −R‖TV ≤
δ and D∞ (R||Q) ≤ ε. Then for any set S we have

P (S) ≤ R(S) + δ ≤ eεQ(S) + δ, i.e. log
P (S)− δ
Q(S)

≤ ε,

which is equivalent to Dδ
∞(P ||Q) ≤ ε. Now, let us assume that Dδ

∞(P ||Q) ≤ ε, whence we must
construct the distribution R.

We assume w.l.o.g. that P and Q have densities p, q, and define the sets

S := {x : p(x) > eεq(x)} and T := {x : p(x) < q(x)}.

On these sets, we have 0 ≤ P (S)− eεQ(S) ≤ δ by assumption, and we then define a distribution R
with density that we partially specify via

x ∈ S ⇒ r(x) := eεq(x) < p(x)

x ∈ (T ∪ S)c ⇒ r(x) := p(x) ≤ eεq(x) and r(x) ≥ q(x).
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Now, we note that eεq(x) ≥ p(x) ≥ q(x) for x ∈ (S ∪ T )c, and thus

Q(S) +Q(Sc ∩ T c) ≤ eεQ(S) + P (Sc ∩ T c)
= R(S) +R(Sc ∩ T c) (7.5.1)

= eεQ(S) + P (Sc ∩ T c) < P (S) + P (Sc ∩ T c).

In particular, when x ∈ T , we may take the density r so that p(x) ≤ r(x) ≤ q(x), as

R(S) +R(Sc ∩ T c) + P (T ) < 1 and R(S) +R(Sc ∩ T c) +Q(T ) > 1

by the inequalities (7.5.1), and so that R(X ) = 1. With this, we evidently have r(x) ≤ eεq(x) by
construction, and because S ⊂ T c, we have

R(T )−P (T ) = P (T c)−R(T c) = P (S ∩T c)−R(S ∩T c) +P (Sc∩T c)−R(Sc∩T c) = P (S)−R(S),

where we have used that r = p on (T ∪ S)c by construction. Thus we find that

‖P −R‖TV =
1

2

∫
S
|r − p|+ 1

2

∫
T
|r − p| = 1

2
(P (S)−R(S)) +

1

2
(R(T )− P (T ))

= P (S)−R(S) = P (S)− eεQ(S) ≤ δ

by assumption.
Now, we turn to the second statement of the lemma. We start with the easy direction, where

we assume that P0 and Q0 satisfy D∞(P0||Q0) ≤ ε and D∞(Q0||P0) ≤ ε as well as ‖P − P0‖TV ≤ δ
and ‖Q−Q0‖TV ≤ δ. Then for any set S we have

P (S) ≤ P0(S) +
δ

1 + eε
≤ eεQ0(S) +

δ

1 + eε
≤ eεQ(S) + eεδ +

δ

1 + eε
,

or Dδ
∞(P ||Q) ≤ ε. The other direction is similar.

We consider the converse direction, where we have both Dδ
∞(P ||Q) ≤ ε and Dδ

∞(Q||P ) ≤ ε. Let
us construct P0 and Q0 as in the statement of the lemma. Define the sets

S := {x : p(x) > eεq(x)} and S′ := {x : q(x) > eεp(x)}

as well as the sets

T := {x : eεq(x) ≥ p(x) ≥ q(x)} and T ′ := {x : e−εq(x) ≤ p(x) < q(x)},

so that S, S′, T, T ′ are all disjoint, and X = S ∪S′ ∪T ∪T ′. We begin by constructing intermediate
measures—which end up not being probabilities—P1 and Q1, which we modify slightly to actually
construct P0 and Q0. We first construct densities similar to our construction above for part (i),
setting

x ∈ S ⇒ p1(x) := eεq1(x), q1(x) :=
1

1 + eε
(p(x) + q(x))

x ∈ S′ ⇒ q1(x) := eεp1(x), p1(x) :=
1

1 + eε
(p(x) + q(x)).

Now, define the two quantities

α := P (S)− P1(S) = P (S)− eε

1 + eε
(P (S) +Q(S)) =

P (S)− eεQ(S)

1 + eε
≤ δ

1 + eε
.
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and similarly

α′ := Q(S′)−Q1(S′) =
Q(S′)− eεP (S′)

1 + eε
≤ δ

1 + eε
.

Note also that we have P (S) − P1(S) = Q1(S) − Q(S) and Q(S′) − Q1(S′) = P1(S′) − P (S′) by
construction.

We assume w.l.o.g. that α ≥ α′, so that if β = α− α′ ≥ 0, we have β ≤ δ
1+eε , and we have the

sandwiching

P1(S) + P1(S′) + P (T ∪ T ′) = P1(S) + P1(S′) + 1− P (S ∪ S′) = 1− β < 1

because S and S′ are disjoint and T< ∪ T> = (S ∪ S′)c, and similarly

Q1(S) +Q1(S′) +Q(T ∪ T ′) = Q1(S) +Q1(S′) + 1−Q(S ∪ S′) = 1 + β > 1.

Let p1 = p on the set T ∪T ′ and similarly for q1 = q. Then we have P1(X ) = 1−β, Q1(X ) = 1 +β,
and | log p1

q1
| ≤ ε.

Now, note that S ∪ T = {x : q1(x) ≥ p1(x)}, and we have

Q1(S) +Q1(T )− P1(S)− P1(T ) = Q1(S) +Q(T )− P1(S)− P (T )

≥ Q1(S) +Q1(S′) +Q(T ) +Q(T ′)− P1(S)− P1(S′)− P (T )− P (T ′) = 2β.

Now, (roughly) we decrease the density q1 to q0 on S ∪ T and increase p1 to p0 on S ∪ T , while
still satisfying q0 ≥ p0 on S ∪ T . In particular, we may choose the densities q0 = q1 on T ′ ∪ S′ and
p0 = p1 on T ′ ∪ S′, while choosing q0, p0 so that

p1(x) ≤ p0(x) ≤ q0(x) ≤ q1(x) on S ∪ T,

where
P0(S ∪ T ) = P1(S ∪ T ) + β and Q0(S ∪ T ) = Q1(S ∪ T )− β. (7.5.2)

With these choices, we evidently obtain Q0(X ) = P0(X ) = 1 and that D∞(P0||Q0) ≤ ε and
D∞(Q0||P0) ≤ ε by construction. It remains to consider the variation distances. As p0 = p on T ′,
we have

‖P − P0‖TV =
1

2

∫
S
|p− p0|+

1

2

∫
S′
|p− p0|+

1

2

∫
T
|p− p0|

=
1

2
(P (S)− P0(S)) +

1

2
(P0(S′)− P (S)) +

1

2
(P0(T )− P (T ))

≤ 1

2
(P (S)− P1(S))︸ ︷︷ ︸

=α

+
1

2
(P0(S′)− P (S))︸ ︷︷ ︸

=α′

+
1

2
(P0(T )− P (T ))︸ ︷︷ ︸

≤β

,

where the P0(T ) − P (T ) ≤ β claim follows becase p1(x) = p(x) on T and by the increasing
construction yielding equality (7.5.2), we have P0(T ) − P (T ) = P0(T ) − P1(T ) = β + P1(S) −
P0(S) ≤ β. In particular, we have ‖P − P0‖TV ≤

α+α′

2 + β
2 = α ≤ δ

1+eε . The argument that

‖Q−Q0‖TV ≤
δ

1+eε is similar.
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7.6 Bibliography

Given the broad focus of this book, our treatment of privacy is necessarily somewhat brief, and
there is substantial depth to the subject that we do not cover.

The initial development of randomized response began with Warner [173], who proposed ran-
domized response in survey sampling as a way to collect sensitive data. This elegant idea remained
in use for many years, and a generalization to data release mechanisms with bounded likelihood
ratios—essentially, the local differential privacy definition 7.2—is due to Evfimievski et al. [80] in
2003 in the databases community. Dwork, McSherry, Nissim, and Smith [74] and the subsequent
work of Dwork et al. [73] defined differential privacy and its (ε, δ)-approximate relaxation. A small
industry of research has built out of these papers, with numerous extensions and developments.

Exponential mechanism is McSherry and Talwar [139].
The book of Dwork and Roth [72] surveys much of the field, from the perspective of computer

science, as of 2014. Lemma 7.2.10 is due to Dwork et al. [75], and our proof is based on theirs.

7.7 Exercises

Exercise 7.1: Prove Proposition 7.2.1.

Exercise 7.2: Prove Proposition 7.4.7.

Exercise 7.3 (Laplace mechanisms versus randomized response): In this question, you will
investigate using Laplace and randomized response mechanisms, as in Examples 7.1.3 and 7.1.1–
7.1.2, to perform locally private estimation of a mean, and compare this with randomized-response
based mechanisms.

We consider the following scenario: we have data Xi ∈ [0, 1], drawn i.i.d., and wish to estimate
the mean E[X] under local ε-differential privacy.

(a) The Laplace mechanism simply sets Zi = Xi+Wi for Wi
iid∼ Laplace(b) for some b. What choice

of b guarantees ε-local differential privacy?

(b) For your choice of b, let Zn = 1
n

∑n
i=1 Zi. Give E[(Zn − E[X])2].

(c) A randomized response mechanism for this case is the following: first, we randomly round Xi

to {0, 1}, by setting

X̃i =

{
1 with probability Xi

0 otherwise.

Conditional on X̃i = x, we then set

Zi =

{
x with probability eε

1+eε

1− x with probability 1
1+eε .

What is E[Zi]?

(d) For the randomized response Zi above, give constants a and b so that aZi − b is unbiased
for E[X], that is, E[aZi − b] = E[X]. Let θ̂n = 1

n

∑n
i=1(aZi − b) be your mean estimator.

What is E[(θ̂n − E[X])2]? Does this converge to the mean-square error of the sample mean
E[(Xn − E[X])2] = Var(X)/n as ε ↑ ∞?
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(e) Now, it is time to compare the simple randomized response estimator from part (d) with the
Laplace mechanism from part (b). For each of the following distributions, generate samples
of size N = 10, 100, 1000, 10000, and then for T = 25 tests, compute the two estimators, both
with ε = 1. Then plot the mean-squared error and confidence intervals for each of the two
methods as well as the sample mean without any privacy.

i. Uniform distribution: X ∼ Uniform[0, 1], with E[X] = 1/2.

ii. Bernoulli distribution: X ∼ Bernoulli(p), where p = .1.

iii. Uniform distribution: X ∼ Uniform[.49, .51], with E[X] = 1/2.

Do you prefer the Laplace or randomized response mechanism? In one sentence, why?

Exercise 7.4 (A more sophisticated randomized response scheme): Let us consider a more
sophisticated randomized response scheme than that in Exercise 7.3. Define quantized values

b0 = 0, b1 =
1

k
, . . . , bk−1 =

k − 1

k
, bk = 1. (7.7.1)

Now consider a randomized response estimator that, when X ∈ [bj , bj+1] first rounds X randomly

to X̃ ∈ {bj , bj+1} so that E[X̃ | X] = X. Conditional on X̃ = j, we then set

Z =

{
j with probability eε

k+eε

Uniform({0, . . . , k} \ {j}) with probability k
k+eε .

(a) Give a and b so that E[aZ − b] = E[X].

(b) For your values of a and b above, let θ̂n = 1
n

∑n
i=1(aZi − b). Give a (reasonably tight) bound

on E[(θ̂n − E[X])2].

(c) For any given ε > 0, give (approximately) the k in the choice of the number of bins (7.7.1) that
optimizes your bound, and (approximately) evaluate E[(θ̂n−E[X])2] with your choice of k. As
ε ↑ ∞, does this converge to Var(X)/n?

Exercise 7.5 (Subsampling via divergence measures (Balle et al. [14])): The hockey stick di-
vergence functional, defined for α ≥ 1, is φα(t) = [1− αt]+. It is straightforward to relate this to
(ε, δ)-differential privacy via Definition 7.6: two distributions P and Q are (ε, δ)-close if and only
their φeε-divergences are less than δ, i.e., if and only if

Dφeε (P ||Q) ≤ δ and Dφeε (Q||P ) ≤ δ.

(In your answer to this question, feel free to use Dα (P ||Q) as a shorthand for Dφα (P ||Q).)

(a) Let P0, P1, Q1 be any three distributions, and for some q ∈ [0, 1] and α ≥ 1, define P =
(1 − q)P0 + qP1 and Q = (1 − q)P0 + qQ1. Let α′ = 1 + q(α − 1) = (1 − q) + qα and
θ = α′/α ≤ 1. Show that

Dφα′ (P ||Q) = qDφα ((1− θ)P0 + θP1||Q1) .

(b) Let ε > 0 and define ε(q) = log(1 + q(eε − 1)). Show that

Dφ
eε(q)

(P ||Q) ≤ qmax {Dφeε (P0||Q1) , Dφeε (P1||Q1)} .
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Exercise 7.6 (Subsampling and privacy amplification (Balle et al. [14])): Consider the follow-
ing subsampling approach to privacy. Assume that we have a private (randomized) algorithm,
represented by A, that acts on samples of size m and guarantees (ε, δ)-differential privacy. The
subsampling mechanism is then defined as follows: given a sample Xn

1 of size n > m, choose a
subsample Xsub of size m uniformly at random from Xn

1 , and then release Z = A(Xsub).

(a) Use the results of parts (a) and (b) in Exercise 7.5 to show that Z is (ε(q), δq)-differentially
private, where q = m/n and ε(q) = log(1 + q(eε − 1)).

(b) Show that if ε ≤ 1, then Z is ((e − 1)qε, qδ)-differentially private, and if ε ≤ 1
2 , then Z is

(2(
√
e − 1)qε, qδ)-differentially private. Hint: Argue that for any T > 0, one has et − 1 ≤

(eT − 1) tT for all t ∈ [0, T ].

Exercise 7.7 (Concentration and privacy composition): In this question, we give an alternative
to the privacy composition approaches we exploit in Section 7.3.2. Consider an identical scenario to
that in Fig. 7.1, and begin by assuming that each channel Qi is ε-differentially private with density
qi, and let Q(b) be shorthand for Q(· | x(b)). Define the log-likelihood ratio

L(b)(Zk1 ) :=
k∑
i=1

log
q

(b)
i (Zi)

q
(1−b)
i (Zi)

.

(a) Let P , Q be any two distributions satisfying D∞ (P ||Q) ≤ ε and D∞ (Q||P ) ≤ ε, i.e., that

log P (A)
Q(A) ∈ [−ε, ε] for all sets A. Show that

Dkl (P ||Q) ≤ ε(eε − 1).

(b) Let Q(b) denote the joint distribution of Z1, . . . , Zk when bit b holds in the privacy game in
Fig. 7.1. Show that

Eb[L(b)(Zk1 )] ≤ kε(eε − 1)

where Eb denotes expectation under Q(b), and that for all t ≥ 0,

Q(b)
(
L(b)(Zk1 ) ≥ kε(eε − 1) + t

)
≤ exp

(
− t2

2kε2

)
.

Conclude that for any δ ∈ (0, 1), with probability at least 1− δ over Zk1 ∼ Q(b),

L(b)(Zk1 ) ≤ k(eε − 1)ε+

√
2k log

1

δ
· ε.

(c) Argue that for any (measurable) set A,

Q(b)(Zk1 ∈ A) ≤ eε(k,δ) ·Q(1−b)(Zk1 ∈ A) + δ

for all δ ∈ [0, 1], where ε(k, δ) = kε(eε − 1) +
√

2k log 1
δ · ε.

(d) Conclude the following tighter variant of Corollary 7.3.3: if each channel in Fig. 7.1 is ε-
differentially private, then the composition of k such channels is(

kε(eε − 1) +

√
2k log

1

δ
· ε, δ

)
differentially private for all δ > 0.
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As an aside, a completely similar derivation yields the following tighter analogue of Theorem 7.3.4:
if each channel is (ε, δ)-differentially private, then their composition is(

kε(eε − 1) +

√
2k log

1

δ0
· ε, δ0 +

kδ

1 + eε

)
differentially private for all δ0 > 0.

Exercise 7.8 (One-dimensional minimization with inverse sensitivity): Consider the private
minimization of the one dimensional loss `(θ, x) (for θ ∈ Θ ⊂ R), where we wish to estimate

θ̂(Pn) ∈ argmin
θ
{Pn`(θ,X) :=

1

n

n∑
i=1

`(θ,Xi)},

where we recall the notation from Chapters 4 and 5. Assume that the loss ` is convex, differentiable
in θ, and that it satisfies the Lipschitz-type guarantees that there exist constants 0 < L0 ≤ L1 <∞

[−L0, L0] ⊂ {`′(θ, x)}x∈X ⊂ [−L1, L1] (7.7.2)

for all θ ∈ Θ and that {`′(θ, x)}x∈X is an interval. (That is, the set of potential derivatives `′(θ, x)
as x varies includes [−L0, L0], is convex, and |`′(θ, x)| ≤ L1 for all θ ∈ Θ, x ∈ X .)

(a) Let the loss ` be the Huber loss `(θ, x) = hu(θ − x) for some fixed u > 0, where

hu(t) =

{
1

2u t
2 if |t| ≤ u

|t|+ u
2 if |t| ≥ u.

When X = R, show that ` satisfies the containment (7.7.2) with L0 = L1 = 1.

(b) Let the loss ` be the absolute value `(θ, x) = |θ − x|, where we abuse notation to call
{`′(θ, x)}x=θ = [−1, 1] (the subdifferential). When X = R, show that ` satisfies the con-
tainment (7.7.2) with L0 = L1 = 1.

(c) Let d
θ̂

be the inverse sensitivity (7.4.3) for the minimizer θ̂(Pn), which is the solution (in θ) to
Pn`

′(θ,X) = 0. Assuming inequality (7.7.2) holds, show that⌈
n|Pn`′(θ,X)|

2L1

⌉
≤ d

θ̂
(θ, Pn) ≤

⌈
n|Pn`′(θ,X)|

L0

⌉
.

(d) Show that the function

d(θ, Pn) :=

⌈
n|Pn`′(θ,X)|

2L1

⌉
is 1-Lipschitz with respect to the Hamming metric in Pn.

The Lipschitz behavior of d(θ, Pn) in part (d) makes this a computationally attractive alternative
to the pure inverse sensitivity (7.4.3) and associated mechanism with density (7.4.4).

Exercise 7.9 (Estimating means with inverse sensitivity mechanisms): In this question, we
compare behavior of mean estimation under differential privacy with the Laplace mechanism and
the inverse sensitivity-type mechanism in Example 7.4.8. Let X = [−1, 1] be the data space and
consider estimating the mean xn of xn1 ∈ X n.
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(a) Implement the Laplace mechanism (7.1.3) for this problem. Fix n = 200 and repeat the
following experiment 50 times. For ε = .1, .5, 1, 2, generate a sample xn1 ∈ X n (from whatever
distribution you like), then estimate xn using the Laplace mechanism. Give a table of the mean
squared errors (xn −M(xn1 ))2.

(b) Implement the inverse sensitivity mechanism using the approximation in Example 7.4.8. Repeat
the experiment in part (a).

(c) Compare the results.

Exercise 7.10 (Estimating medians with the inverse sensitivity mechanism): The data at https:
//stats311.stanford.edu/data/salaries.txt contains approximately 250,000 salaries from the
University of California Schools between 2011 and 2014. Assuming that the maximum salary is 3·106

and minimum is 0 (so the data x ∈ [0, 3 ·106]), implement the inverse sensitivity mechanism for the
median as in Example 7.4.9. Repeat the following 20 times: for each of ε = .0625, .125, .25, .5, 1, 2,
estimate the median using the inverse sensitivity mechanism with ε-differential privacy. Compute
the mean absolute errors across the 20 experiments for each ε.

Exercise 7.11 (Shells and accuracy in inverse sensitivity): Let f : Pn → R be sample monotone
(Def. 7.8) and ρ ≥ 0. Let M = Mcont be the continuous inverse sensitivity mechanism with
density (7.4.9). Define the upper and lower shells

Sk+ = {t > f(Pn) | df,ρ(t, Pn) = k} and Sk− = {t < f(Pn) | df,ρ(t, Pn) = k} ,

and the upper and lower moduli of continuity (values in the shells Sk±)

ω+(k) := sup{t ∈ Sk+} − f(Pn) and ω−(k) := f(Pn)− inf{t ∈ Sk−}.

Let S0 = {t ∈ R | |f(Pn)− t| ≤ ρ}.

(a) Justify the inequality

E[|M(Pn)− f(Pn)|]

≤ P(M(Pn) ∈ S0)ρ+
n∑
k=1

P(M(Pn) ∈ Sk+)(ω+(k) + ρ) +
n∑
k=1

P(M(Pn) ∈ Sk−)(ω−(k) + ρ).

(b) Bound P(M(Pn) ∈ Sk+) and P(M(Pn) ∈ Sk−), and using these bounds demonstrate that

E [|M(Pn)− f(Pn)|]

≤ ρ+

∑n
k=1 ω

+(k) · (ω+(k)− ω+(k − 1))e−kε/2

ρ+
∑n

k=1(ω+(k)− ω+(k − 1))e−kε/2 +
∑n

k=1(ω−(k)− ω−(k − 1))e−kε/2

+

∑n
k=1 ω

+(k) · (ω−(k)− ω−(k − 1))e−kε/2

ρ+
∑n

k=1(ω−(k)− ω−(k − 1))e−kε/2 +
∑n

k=1(ω−(k)− ω−(k − 1))e−kε/2

(c) Show that

n∑
k=1

[
(ω−(k)− ω−(k − 1)) + ω+(k)− ω+(k − 1)

]
e−kε/2 ≥ (1−e−ε/2)

n∑
k=1

(
ω+(k) + ω−(k)

)
e−kε/2.
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Exercise 7.12 (Accuracy of the inverse sensitivity mechanism): In this question, we prove
Propositions 7.4.11 and 7.4.12. Let the conditions and notation of Exercise 7.11 hold. Recall the
definition

L(K) := sup
P ′n∈Pn

{
LS(f, P ′n) | dham(Pn, P

′
n) ≤ K

}
.

(a) Use Exercise 7.11.(b) and (c) to show that for any K ∈ N,

E [|Mcont(Pn)− f(Pn)|] ≤ ρ+
L(K)

1− e−ε/2
·
∑K

k=1 (ω+(k) + ω−(k)) e−kε/2∑n
k=1 (ω+(k) + ω−(k)) e−kε/2

+
GS(f)

ρ

n∑
k=K+1

(
ω+(k) + ω−(k)

)
e−kε/2.

(b) Choose values for ρ and K to show that E[|Mcont(Pn)− f(Pn)|] ≤ 1
1−e−ε/2 GS(f), giving Propo-

sition 7.4.11.

(c) Prove Proposition 7.4.12.

Exercise 7.13 (Subsampling and Rényi privacy): We would like to estimate the mean E[X] of
X ∼ P , where X ∈ B = {x ∈ Rd | ‖x‖2 ≤ 1}, the `2-ball in Rd. We investigate the extent to which
subsampling of a dataset can improve privacy by providing some additional anonymity. Consider
the following mechanism for estimating (scaled) multiples of this mean: for a dataset {X1, . . . , Xn},
we let Si ∈ {0, 1} be i.i.d. Bernoulli(q), that is, E[Si] = q, and then consider the algorithm

Z =
n∑
i=1

XiSi + σW, W ∼ N(0, Id). (7.7.3)

In this question, we investigate the Rényi privacy properties of the subsampling (7.7.3). (Recall
the Rényi divergence of Definition 7.4, Dα(P ||Q) = 1

α−1 log
∫

(p/q)αq.)
We consider a slight variant of Rényi privacy, where we define data matrices X and X ′ to be

adjacent if X ∈ Rd×n and X ′ ∈ Rd×n−1 where X ′ is X with a single column removed. Then a
mechanism is (ε, α)-Rényi private against single removals if and only if

Dα

(
Q(· | X)||Q(· | X ′)

)
≤ ε and Dα

(
Q(· | X ′)||Q(· | X)

)
≤ ε (7.7.4)

for all neighboring X and X ′ consisting of samples of size n and n− 1, respectively.

(a) Let Q(· | X) and Q(· | X ′) denote the channels for the mechanism (7.7.3) with data matrices
X = [x1 · · · xn−1 x] and X ′ = [x1 · · · xn−1] ∈ Rd×n. Let Pµ denote the normal distribution
N(µ, σ2I) with mean µ and covariance σ2I on Rd. Show that for any α ∈ (1,∞),

Dα

(
Q(· | X)||Q(· | X ′)

)
≤ Dα(qPx + (1− q)P0||P0)

and
Dα

(
Q(· | X ′)||Q(· | X)

)
≤ Dα(P0||qPx + (1− q)P0) .
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(b) Show that for the Rényi α = 2-divergence,

D2 (qPx + (1− q)P0||P0) ≤ log
(

1 + q2
(

exp(‖x‖22 /σ
2)− 1

))
and

D2 (P0||qPx + (1− q)P0) ≤ log

(
1 +

q2

1− q

(
exp(‖x‖22 /σ

2)− 1
))

.

(Hint: Example 7.2.2.)

Consider two mechanisms for computing a sample mean Xn of vectors, where ‖xi‖2 ≤ b for all i.
The first is to repeat the following T times: for t = 1, 2, . . . , T ,

i. Draw S ∈ {0, 1}n with Si
iid∼ Bernoulli(q)

ii. Set Zt = 1
nq (XS + σsubWt), where Wt

iid∼ N(0, I), as in (7.7.3).

Then set Zsub = 1
T

∑T
t=1 Zt. The other mechanism is to simply set ZGauss = Xn + σGaussW for

W ∼ N(0, I).

(c) What level of privacy does Zsub have? That is, Zsub is (ε, 2)-Rényi private (against single
removals (7.7.4)). Give a tight upper bound on ε.

(d) What level of (ε, 2)-Rényi privacy does ZGauss provide?

(e) Fix ε > 0, and assume that each mechanism Zsub and ZGauss have parameters chosen so that
they are (ε, 2)-Rényi private. Optimize over T, q, n, σsub in the subsampling mechanism and
σGauss in the Gaussian mechanism, and provide the sharpest bound you can on

E[
∥∥Zsub −Xn

∥∥2

2
] and E[

∥∥ZGauss −Xn

∥∥2

2
].

You may assume ‖xi‖2 = b for all i. (In your derivation, to avoid annoying constants, you
should replace log(1 + t) with its upper bound, log(1 + t) ≤ t, which is fairly sharp for t ≈ 0.)
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Part II

Fundamental limits and optimality
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JCD Comment: Put a brief commentary here. Some highlights:

i. Minimax lower bounds (both local and global) using Le Cam’s, Fano’s, and Assouad’s methods.
Worked out long example with nonparametric regression.

ii. Strong data processing inequalities, along with some bounds on them (constrained risk inequal-
ities).

iii. Functionals for lower bounds perhaps
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Chapter 8

Minimax lower bounds: the Le Cam,
Fano, and Assouad methods

Understanding the fundamental limits of estimation and optimization procedures is important for
a multitude of reasons. Indeed, developing bounds on the performance of procedures can give
complementary insights. By exhibiting fundamental limits of performance (perhaps over restricted
classes of estimators), it is possible to guarantee that an algorithm we have developed is optimal, so
that searching for estimators with better statistical performance will have limited returns, though
searching for estimators with better performance in other metrics may be interesting. Moreover,
exhibiting refined lower bounds on the performance of estimators can also suggest avenues for de-
veloping alternative, new optimal estimators; lower bounds need not be a fully pessimistic exercise.

In this chapter, we define and then discuss techniques for lower-bounding the minimax risk,
giving three standard techniques for deriving minimax lower bounds that have proven fruitful in
a variety of estimation problems [177]. In addition to reviewing these standard techniques—the
Le Cam, Fano, and Assouad methods—we present a few simplifications and extensions that may
make them more “user friendly.” Finally, the concluding sections of the chapter (Sections 8.6
and 8.7) present extensions of the ideas to nonparametric problems, where the effective number of
parameters to estimate grows with the sample size n; this culminates with an essentially geometric
treatment of information and divergence measures directly relating covering and packing numbers
to estimation.

8.1 Basic framework and minimax risk

Our first step here is to establish the minimax framework we use. When we study classical es-
timation problems, we use a standard version of minimax risk; we will also show how minimax
bounds can be used to study optimization problems, in which case we use a specialization of the
general minimax risk that we call minimax excess risk (while minimax risk handles this case, it is
important enough that we define additional notation).

Let us begin by defining the standard minimax risk, deferring temporarily our discussion of
minimax excess risk. Throughout, we let P denote a class of distributions on a sample space X ,
and let θ : P → Θ denote a function defined on P, that is, a mapping P 7→ θ(P ). The goal is
to estimate the parameter θ(P ) based on observations Xi drawn from the (unknown) distribution
P . In certain cases, the parameter θ(P ) uniquely determines the underlying distribution; for
example, if we attempt to estimate a normal mean θ from the family P = {N(θ, σ2) : θ ∈ R} with
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known variance σ2, then θ(P ) = EP [X] uniquely determines distributions in P. In other scenarios,
however, θ does not uniquely determine the distribution: for instance, we may be given a class of
densities P on the unit interval [0, 1], and we wish to estimate θ(P ) =

∫ 1
0 (p′(t))2dt, where p is the

density of P . Such problems arise, for example, in estimating the uniformity of the distribution
of a species over an area (large θ(P ) indicates an irregular distribution). In this case, θ does not
parameterize P , so we take a slightly broader viewpoint of estimating functions of distributions in
these notes.

The space Θ in which the parameter θ(P ) takes values depends on the underlying statistical
problem; as an example, if the goal is to estimate the univariate mean θ(P ) = EP [X], we have
Θ ⊂ R. To evaluate the quality of an estimator θ̂, we let ρ : Θ × Θ → R+ denote a (semi)metric
on the space Θ, which we use to measure the error of an estimator for the parameter θ, and let
Φ : R+ → R+ be a non-decreasing function with Φ(0) = 0 (for example, Φ(t) = t2).

For a distribution P ∈ P, we assume we receive i.i.d. observations Xi drawn according to some
P , and based on these {Xi}, the goal is to estimate the unknown parameter θ(P ) ∈ Θ. For a
given estimator θ̂—a measurable function θ̂ : X n → Θ—we assess the quality of the estimate
θ̂(X1, . . . , Xn) in terms of the risk

EP
[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

For instance, for a univariate mean problem with ρ(θ, θ′) = |θ − θ′| and Φ(t) = t2, this risk is the
mean-squared error. As the distribution P is varied, we obtain the risk functional for the problem,
which gives the risk of any estimator θ̂ for the family P.

For any fixed distribution P , there is always a trivial estimator of θ(P ): simply return θ(P ),
which will have minimal risk. Of course, this “estimator” is unlikely to be good in any real sense,
and it is thus important to consider the risk functional not in a pointwise sense (as a function of
individual P ) but to take a more global view. One approach to this is Bayesian: we place a prior
π on the set of possible distributions P, viewing θ(P ) as a random variable, and evaluate the risk
of an estimator θ̂ taken in expectation with respect to this prior on P . Another approach, first
suggested by Wald [172], which is to choose the estimator θ̂ minimizing the maximum risk

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X1 . . . , Xn), θ(P ))

)]
.

An optimal estimator for this metric then gives the minimax risk, which is defined as

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X1, . . . , Xn), θ(P ))

)]
, (8.1.1)

where we take the supremum (worst-case) over distributions P ∈ P, and the infimum is taken over
all estimators θ̂. Here the notation θ(P) indicates that we consider parameters θ(P ) for P ∈ P and
distributions in P.

In some scenarios, we study a specialized notion of risk appropriate for optimization problems
(and statistical problems in which all we care about is prediction). In these settings, we assume
there exists some loss function ` : Θ × X → R, where for an observation x ∈ X , the value `(θ;x)
measures the instantaneous loss associated with using θ as a predictor. In this case, we define the
risk

LP (θ) := EP [`(θ;X)] =

∫
X
`(θ;x)dP (x) (8.1.2)

as the expected loss of the vector θ. (See, e.g., Chapter 5 of the lectures by Shapiro, Dentcheva,
and Ruszczyński [159], or work on stochastic approximation by Nemirovski et al. [143].)
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Example 8.1.1 (Support vector machines): In linear classification problems, we observe
pairs z = (x, y), where y ∈ {−1, 1} and x ∈ Rd, and the goal is to find a parameter θ ∈ Rd
so that sign(〈θ, x〉) = y. A convex loss surrogate for this problem is the hinge loss `(θ; z) =
[1− y〈θ, x〉]+; minimizing the associated risk functional (8.1.2) over a set Θ = {θ ∈ Rd : ‖θ‖2 ≤
r} gives the support vector machine [51]. 3

Example 8.1.2 (Two-stage stochastic programming): In operations research, one often
wishes to allocate resources to a set of locations {1, . . . ,m} before seeing demand for the
resources. Suppose that the (unobserved) sample x consists of the pair x = (C, v), where
C ∈ Rm×m corresponds to the prices of shipping a unit of material, so cij ≥ 0 gives the cost
of shipping from location i to j, and v ∈ Rm denotes the value (price paid for the good) at
each location. Letting θ ∈ Rm+ denote the amount of resources allocated to each location, we
formulate the loss as

`(θ;x) := inf
r∈Rm,T∈Rm×m

{∑
i,j

cijTij−
m∑
i=1

viri | ri = θi+

m∑
j=1

Tji−
m∑
j=1

Tij , Tij ≥ 0,

m∑
j=1

Tij ≤ θi
}
.

Here the variables T correspond to the goods transported to and from each location (so Tij is
goods shipped from i to j), and we wish to minimize the cost of our shipping and maximize
the profit. By minimizing the risk (8.1.2) over a set Θ = {θ ∈ Rm+ :

∑
i θi ≤ b}, we maximize

our expected reward given a budget constraint b on the amount of allocated resources. 3

For a (potentially random) estimator θ̂ : X n → Θ given access to a sample X1, . . . , Xn, we may
define the associated maximum excess risk for the family P by

sup
P∈P

{
EP
[
LP (θ̂(X1, . . . , Xn))

]
− inf
θ∈Θ

L(θ)

}
,

where the expectation is taken over Xi and any randomness in the procedure θ̂. This expression
captures the difference between the (expected) risk performance of the procedure θ̂ and the best
possible risk, available if the distribution P were known ahead of time. The minimax excess risk,
defined with respect to the loss `, domain Θ, and family P of distributions, is then defined by the
best possible maximum excess risk,

Mn(Θ,P, `) := inf
θ̂

sup
P∈P

{
EP
[
LP (θ̂(X1, . . . , Xn))

]
− inf
θ∈Θ

LP (θ)

}
, (8.1.3)

where the infimum is taken over all estimators θ̂ : X n → Θ and the risk LP is implicitly defined in
terms of the loss `. The techniques for providing lower bounds for the minimax risk (8.1.1) or the
excess risk (8.1.3) are essentially identical; we focus for the remainder of this section on techniques
for providing lower bounds on the minimax risk.

8.2 Preliminaries on methods for lower bounds

There are a variety of techniques for providing lower bounds on the minimax risk (8.1.1). Each of
them transforms the maximum risk by lower bounding it via a Bayesian problem (e.g. [110, 127,
130]), then proving a lower bound on the performance of all possible estimators for the Bayesian
problem (it is often the case that the worst case Bayesian problem is equivalent to the original
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minimax problem [127]). In particular, let {Pv} ⊂ P be a collection of distributions in P indexed
by v and π be any probability mass function over v. Then for any estimator θ̂, the maximum risk
has lower bound

sup
P∈P

EP
[
Φ(ρ(θ̂(Xn

1 ), θ(P )))
]
≥
∑
v

π(v)EPv
[
Φ(ρ(θ̂(Xn

1 ), θ(Pv)))
]
.

While trivial, this lower bound serves as the departure point for each of the subsequent techniques
for lower bounding the minimax risk.

8.2.1 From estimation to testing

A standard first step in proving minimax bounds is to “reduce” the estimation problem to a testing
problem [177, 175, 167]. The idea is to show that the probability of error in testing problems lower
bounds the estimation risk, and we can develop tools for the former. We use two types of testing
problems: one a multiple hypothesis test and the second based on multiple binary hypothesis tests.

Given an index set V of finite cardinality, consider a family of distributions {Pv}v∈V contained
within P. This family induces a collection of parameters {θ(Pv)}v∈V ; we call the family a 2δ-packing
in the ρ-semimetric if

ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′.

We use this family to define the canonical hypothesis testing problem:

• first, nature chooses V according to the uniform distribution over V;

• second, conditioned on the choice V = v, the random sample X = Xn
1 = (X1, . . . , Xn) is

drawn from the n-fold product distribution Pnv .

Given the observed sample X, the goal is to determine the value of the underlying index v. We
refer to any measurable mapping Ψ : X n → V as a test function. Its associated error probability
is P(Ψ(Xn

1 ) 6= V ), where P denotes the joint distribution over the random index V and X. In
particular, if we set P = 1

|V|
∑

v∈V Pv to be the mixture distribution, then the sample X is drawn

(marginally) from P , and our hypothesis testing problem is to determine the randomly chosen index
V given a sample from this mixture P .

With this setup, we obtain the classical reduction from estimation to testing.

Proposition 8.2.1. The minimax error (8.1.1) has lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X1, . . . , Xn) 6= V ), (8.2.1)

where the infimum ranges over all testing functions.

Proof To see this result, fix an arbitrary estimator θ̂. Suppressing dependence on X throughout
the derivation, first note that it is clear that for any fixed θ, we have

E[Φ(ρ(θ̂, θ))] ≥ E
[
Φ(δ)1

{
ρ(θ̂, θ) ≥ δ

}]
= Φ(δ)P(ρ(θ̂, θ) ≥ δ),

where the final inequality follows because Φ is non-decreasing. Now, let us define θv = θ(Pv), so
that ρ(θv, θv′) ≥ 2δ for v 6= v′. By defining the testing function

Ψ(θ̂) := argmin
v∈V

{ρ(θ̂, θv)},
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θ̂

θv

θv′ 2δ

Figure 8.1. Example of a 2δ-packing of a set. The estimate θ̂ is contained in at most one of the
δ-balls around the points θv.

breaking ties arbitrarily, we have that ρ(θ̂, θv) < δ implies that Ψ(θ̂) = v because of the triangle
inequality and 2δ-separation of the set {θv}v∈V . Indeed, assume that ρ(θ̂, θv) < δ; then for any
v′ 6= v, we have

ρ(θ̂, θv′) ≥ ρ(θv, θv′)− ρ(θ̂, θv) > 2δ − δ = δ.

The test must thus return v as claimed. Equivalently, for v ∈ V, the inequality Ψ(θ̂) 6= v implies
ρ(θ̂, θv) ≥ δ. (See Figure 8.1.) By averaging over V, we find that

sup
P

P(ρ(θ̂, θ(P )) ≥ δ) ≥ 1

|V|
∑
v∈V

P(ρ(θ̂, θ(Pv)) ≥ δ | V = v) ≥ 1

|V|
∑
v∈V

P(Ψ(θ̂) 6= v | V = v).

Taking an infimum over all tests Ψ : X n → V gives inequality (8.2.1).

The remaining challenge is to lower bound the probability of error in the underlying multi-way
hypothesis testing problem, which we do by choosing the separation δ to trade off between the loss
Φ(δ) (large δ increases the loss) and the probability of error (small δ, and hence separation, makes
the hypothesis test harder). Usually, one attempts to choose the largest separation δ that guarantees
a constant probability of error. There are a variety of techniques for this, and we present three:
Le Cam’s method, Fano’s method, and Assouad’s method, including extensions of the latter two
to enhance their applicability. Before continuing, however, we review some inequalities between
divergence measures defined on probabilities, which will be essential for our development, and
concepts related to packing sets (metric entropy, covering numbers, and packing).

8.2.2 Inequalities between divergences and product distributions

We now present a few inequalities, and their consequences when applied to product distributions,
that will be quite useful for proving our lower bounds. The three divergences we relate are the total
variation distance, Kullback-Leibler divergence, and Hellinger distance, all of which are instances
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of f -divergences (recall Section 2.2.3). We first recall the definitions of the three when applied to
distributions P , Q on a set X , which we assume have densities p, q with respect to a base measure
µ. Then we recall the total variation distance (2.2.6) is

‖P −Q‖TV := sup
A⊂X

|P (A)−Q(A)| = 1

2

∫
|p(x)− q(x)|dµ(x),

which is the f -divergence Df (P ||Q) generated by f(t) = 1
2 |t− 1|. The Hellinger distance (2.2.7) is

dhel(P,Q)2 :=

∫
(
√
p(x)−

√
q(x))2dµ(x),

which is the f -divergence Df (P ||Q) generated by f(t) = (
√
t − 1)2. We also recall the Kullback-

Leibler (KL) divergence

Dkl (P ||Q) :=

∫
p(x) log

p(x)

q(x)
dµ(x), (8.2.2)

which is the f -divergence Df (P ||Q) generated by f(t) = t log t. As noted in Section 2.2.3, Propo-
sition 2.2.8, these divergences have the following relationships.

Proposition (Proposition 2.2.8, restated). The total variation distance satisfies the following re-
lationships:

(a) For the Hellinger distance,

1

2
dhel(P,Q)2 ≤ ‖P −Q‖TV ≤ dhel(P,Q)

√
1− dhel(P,Q)2/4.

(b) Pinsker’s inequality: for any distributions P , Q,

‖P −Q‖2TV ≤
1

2
Dkl (P ||Q) .

We now show how Proposition 2.2.8 is useful, because KL-divergence and Hellinger distance
both are easier to manipulate on product distributions than is total variation. Specifically, consider
the product distributions P = P1 × · · · × Pn and Q = Q1 × · · · × Qn. Then the KL-divergence
satisfies the decoupling equality

Dkl (P ||Q) =

n∑
i=1

Dkl (Pi||Qi) , (8.2.3)

while the Hellinger distance satisfies

dhel(P,Q)2 =

∫ (√
p1(x1) · · · pn(xn)−

√
q1(x1) · · · qn(xn)

)2
dµ(xn1 )

=

∫ ( n∏
i=1

pi(xi) +
n∏
i=1

qi(xi)− 2
√
p1(x1) · · · pn(xn)q1(xn) · · · qn(xn)

)
dµ(xn1 )

= 2− 2

n∏
i=1

∫ √
pi(x)qi(x)dµ(x) = 2− 2

n∏
i=1

(
1− 1

2
dhel(Pi, Qi)

2

)
. (8.2.4)
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In particular, we see that for product distributions Pn and Qn, Proposition 2.2.8 implies that

‖Pn −Qn‖2TV ≤
1

2
Dkl (Pn||Qn) =

n

2
Dkl (P ||Q)

and
‖Pn −Qn‖TV ≤ dhel(P

n, Qn) ≤
√

2− 2(1− dhel(P,Q)2)n.

As a consequence, if we can guarantee that Dkl (P ||Q) ≤ 1/n or dhel(P,Q) ≤ 1/
√
n, then we

guarantee the strict inequality ‖Pn −Qn‖TV ≤ 1 − c for a fixed constant c > 0, for any n. We
will see how this type of guarantee can be used to prove minimax lower bounds in the following
sections.

8.2.3 Metric entropy and packing numbers

The second part of proving our lower bounds involves the construction of the packing set in Sec-
tion 8.2.1. The size of the space Θ of parameters associated with our estimation problem—and
consequently, how many parameters we can pack into it—is strongly coupled with the difficulty of
estimation. The tools we develop in Section 4.3.2 on metric entropies and covering and packing
numbers therefore become central.

Probably the most central construction relies on volume bounds on packing and covering num-
bers, which we recall from Lemma 4.3.10: the covering and packing numbers of a norm ball B in
its own norm ‖·‖ scale exponentially in the dimension. In particular, for any δ < 1, there is a
packing V of B such that ‖v − v′‖ ≥ δ for all distinct v, v′ ∈ V and |V| ≥ (1/δ)d, because we know
M(δ,B, ‖·‖) ≥ N(δ,B, ‖·‖) as in Lemma 4.3.8. We thus state the following corollary for later use,
which states that we can construct exponentially large packings of arbitrary norm-balls (in finite
dimensions) where the points have constant distance from one another.

Corollary 8.2.2. Let Bd = {v ∈ Rd | ‖v‖ ≤ 1} be the unit ball for the norm ‖·‖. Then there exists
V ⊂ Bd with |V| ≥ 2d and ‖v − v′‖ ≥ 1

2 for each v 6= v′ ∈ V.

Another common packing arises from coding theory, where the technique is to construct well-
separated code-books ({0, 1}-valued bit strings associated to individual symbols to be communi-
cated) for communication. In showing our lower bounds, we show that even if a code-book is
well-separated, it may still be hard to estimate. With that, we now demonstrate that there exist
(exponentially) large packings of the d-dimensional hypercube of points that are O(d)-separated in
the Hamming metric.

Lemma 8.2.3 (Gilbert-Varshamov bound). Let d ≥ 1. There is a subset V of the d-dimensional
hypercube Hd = {−1, 1}d of size |V| ≥ exp(d/8) such that the `1-distance

∥∥v − v′∥∥
1

= 2
d∑
j=1

1
{
vj 6= v′j

}
≥ d

2

for all v 6= v′ with v, v′ ∈ V.

Proof We use the proof of Guntuboyina [97]. Consider a maximal subset V of Hd = {−1, 1}d
satisfying ∥∥v − v′∥∥

1
≥ d/2 for all distinct v, v′ ∈ V. (8.2.5)
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That is, the addition of any vector w ∈ Hd, w 6∈ V to V will break the constraint (8.2.5). This
means that if we construct the closed balls B(v, d/2) := {w ∈ Hd : ‖v − w‖1 ≤ d/2}, we must have⋃

v∈V
B(v, d/2) = Hd so |V||B(0, d/2)| =

∑
v∈V
|B(v, d/2)| ≥ 2d. (8.2.6)

We now upper bound the cardinality of B(v, d/2) using the probabilistic method, which will imply
the desired result. Let Si, i = 1, . . . , d, be i.i.d. Bernoulli {0, 1}-valued random variables. Then by
their uniformity, for any v ∈ Hd,

2−d|B(v, d/2)| = P(S1 + S2 + . . .+ Sd ≤ d/4) = P(S1 + S2 + . . .+ Sd ≥ 3d/4)

≤ E [exp(λS1 + . . .+ λSd)] exp(−3λd/4)

for any λ > 0, by Markov’s inequality (or the Chernoff bound). Since E[exp(λS1)] = 1
2(1 + eλ), we

obtain
2−d|B(v, d/2)| ≤ inf

λ≥0

{
2−d(1 + eλ)d exp(−3λd/4)

}
Choosing λ = log 3, we have

|B(v, d/2)| ≤ 4d exp(−(3/4)d log 3) = 3−3d/44d.

Recalling inequality (8.2.6), we have

|V|3−3d/44d ≥ |V||B(v, d/2)| ≥ 2d, or |V| ≥ 33d/4

2d
= exp

(
d

[
3

4
log 3− log 2

])
≥ exp(d/8),

as claimed.

8.3 Le Cam’s method

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple binary hypoth-
esis testing testing problems. In this section, we explore this connection, showing the connection
between hypothesis testing and total variation distance, and we then show how this can yield
lower bounds on minimax error (or the optimal Bayes’ risk) for simple—often one-dimensional—
estimation problems.

In the first homework, we considered several representations of the total variation distance,
including a question showing its relation to optimal testing. We begin again with this strand of
thought, recalling the general testing problem discussed in Section 8.2.1. Suppose that we have a
Bayesian hypothesis testing problem where V is chosen with equal probability to be 1 or 2, and
given V = v, the sample X is drawn from the distribution Pv. Denoting by P the joint distribution
of V and X, we have for any test Ψ : X → {1, 2} that the probability of error is

P(Ψ(X) 6= V ) =
1

2
P1(Ψ(X) 6= 1) +

1

2
P2(Ψ(X) 6= 2).

Recalling Section 8.2.1, we note that Proposition 2.3.1 gives an exact representation of the testing
error using total variation distance. In particular, we have
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Proposition (Proposition 2.3.1, restated). For any distributions P1 and P2 on X , we have

inf
Ψ
{P1(Ψ(X) 6= 1) + P2(Ψ(X) 6= 2)} = 1− ‖P1 − P2‖TV , (8.3.1)

where the infimum is taken over all tests Ψ : X → {1, 2}.

Returning to the setting in which we receive n i.i.d. observations Xi ∼ P , when V = 1 with
probability 1

2 and 2 with probability 1
2 , we have

inf
Ψ

P (Ψ(X1, . . . , Xn) 6= V ) =
1

2
− 1

2
‖Pn1 − Pn2 ‖TV . (8.3.2)

The representations (8.3.1) and (8.3.2), in conjunction with our reduction of estimation to testing
in Proposition 8.2.1, imply the following lower bound on minimax risk. For any family P of
distributions for which there exists a pair P1, P2 ∈ P satisfying ρ(θ(P1), θ(P2)) ≥ 2δ, then the
minimax risk after n observations has lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1

2
− 1

2
‖Pn1 − Pn2 ‖TV

]
. (8.3.3)

The lower bound (8.3.3) suggests the following strategy: we find distributions P1 and P2,
which we choose as a function of δ, that guarantee ‖Pn1 − Pn2 ‖TV ≤

1
2 . In this case, so long as

ρ(θ(P1), θ(P2)) ≥ 2δ, we have the lower bound

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1

2
− 1

2
· 1

4

]
=

1

4
Φ(δ).

We now give an example illustrating this idea.

Example 8.3.1 (Bernoulli mean estimation): Consider the problem of estimating the mean
θ ∈ [−1, 1] of a {±1}-valued Bernoulli distribution under the squared error loss (θ− θ̂)2, where
Xi ∈ {−1, 1}. In this case, by fixing some δ > 0, we set V = {−1, 1}, and we define Pv so that

Pv(X = 1) =
1 + vδ

2
and Pv(X = −1) =

1− vδ
2

,

whence we see that the mean θ(Pv) = δv. Using the metric ρ(θ, θ′) = |θ−θ′| and loss Φ(δ) = δ2,
we have separation 2δ of θ(P−1) and θ(P1). Thus, via Le Cam’s method (8.3.3), we have that

Mn(Bernoulli([−1, 1]), (·)2) ≥ 1

2
δ2
(
1−

∥∥Pn−1 − Pn1
∥∥

TV

)
.

We would thus like to upper bound ‖Pn−1 − Pn1 ‖TV as a function of the separation δ and
sample size n; here we use Pinsker’s inequality (Proposition 2.2.8(a)) and the tensorization
identity (8.2.3) that makes KL-divergence so useful. Indeed, we have∥∥Pn−1 − Pn1

∥∥2

TV
≤ 1

2
Dkl

(
Pn−1||Pn1

)
=
n

2
Dkl (P−1||P1) =

n

2
δ log

1 + δ

1− δ
.

Noting that δ log 1+δ
1−δ ≤ 3δ2 for δ ∈ [0, 1/2], we obtain that ‖Pn−1 − Pn1 ‖TV ≤ δ

√
3n/2 for

δ ≤ 1/2. In particular, we can guarantee a high probability of error in the associated hy-
pothesis testing problem (recall inequality (8.3.2)) by taking δ = 1/

√
6n; this guarantees

‖Pn−1 − Pn1 ‖TV ≤ 1
2 . We thus have the minimax lower bound

Mn(Bernoulli([−1, 1]), (·)2) ≥ 1

2
δ2

(
1− 1

2

)
=

1

24n
.
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While the factor 1/24 is smaller than necessary, this bound is optimal to within constant
factors; the sample mean (1/n)

∑n
i=1Xi achieves mean-squared error (1− θ2)/n.

As an alternative proof, we may use the Hellinger distance and its associated decoupling
identity (8.2.4). We sketch the idea, ignoring lower order terms when convenient. In this case,
Proposition 2.2.7 implies

‖Pn1 − Pn2 ‖TV ≤
√

2dhel(P
n
1 , P

n
2 ) =

√
2− 2(1− dhel(P1, P2)2)n.

Noting that

dhel(P1, P2)2 =

(√
1 + δ

2
−
√

1− δ
2

)2

= 1− 2

√
1− δ2

4
= 1−

√
1− δ2 ≈ 1

2
δ2,

and noting that (1− δ2) ≈ e−δ2 , we have (up to lower order terms in δ) that ‖Pn1 − Pn2 ‖TV ≤√
2− 2 exp(−δ2n/2). Choosing δ2 = 1/(4n), we have

√
2− 2 exp(−δ2n/2) ≤ 1/2, thus giving

the lower bound

Mn(Bernoulli([−1, 1]), (·)2) “ ≥”
1

2
δ2

(
1− 1

2

)
=

1

16n
,

where the quotations indicate we have been fast and loose in the derivation. 3

This example shows the “usual” rate of convergence in parametric estimation problems, that is,
that we can estimate a parameter θ at a rate (in squared error) scaling as 1/n. The mean estimator
above is, in some sense, the prototypical example of such regular problems. In some “irregular”
scenarios—including estimating the support of a uniform random variable, which we study in the
homework—faster rates are possible.

We also note in passing that their are substantially more complex versions of Le Cam’s method
that can yield sharp results for a wider variety of problems, including some in nonparametric
estimation [127, 177]. For our purposes, the simpler two-point perspective provided in this section
will be sufficient.

JCD Comment: Talk about Euclidean structure with KL space and information geom-
etry a bit here to suggest the KL approach later.

8.4 Fano’s method

Fano’s method, originally proposed by Has’minskii [100] for providing lower bounds in nonpara-
metric estimation problems, gives a somewhat more general technique than Le Cam’s method, and
it applies when the packing set V has cardinality larger than two. The method has played a central
role in minimax theory, beginning with the pioneering work of Has’minskii and Ibragimov [100, 110].
More recent work following this initial push continues to the present day (e.g. [28, 177, 175, 29,
149, 97, 43]).

8.4.1 The classical (local) Fano method

We begin by stating Fano’s inequality, which provides a lower bound on the error in a multi-
way hypothesis testing problem. Let V be a random variable taking values in a finite set V
with cardinality |V| ≥ 2. If we let the function h2(p) = −p log p − (1 − p) log(1 − p) denote the
entropy of the Bernoulli random variable with parameter p, Fano’s inequality (Proposition 2.3.3
from Chapter 2) takes the following form:
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Proposition 8.4.1 (Fano inequality). For any Markov chain V → X → V̂ , we have

h2(P(V̂ 6= V )) + P(V̂ 6= V ) log(|V| − 1) ≥ H(V | V̂ ). (8.4.1)

Restating the results in Chapter 2, we also have the following convenient rewriting of Fano’s
inequality when V is uniform in V (recall Corollary 2.3.4).

Corollary 8.4.2. Assume that V is uniform on V. For any Markov chain V → X → V̂ ,

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
. (8.4.2)

In particular, Corollary 8.4.2 shows that we have

inf
Ψ

P(Ψ(X) 6= V ) ≥ 1− I(V ;X) + log 2

log |V|
,

where the infimum is taken over all testing procedures Ψ. By combining Corollary 8.4.2 with the
reduction from estimation to testing in Proposition 8.2.1, we obtain the following result.

Proposition 8.4.3. Let {θ(Pv)}v∈V be a 2δ-packing in the ρ-semimetric. Assume that V is uniform
on the set V, and conditional on V = v, we draw a sample X ∼ Pv. Then the minimax risk has
lower bound

M(θ(P); Φ ◦ ρ) ≥ Φ(δ)

(
1− I(V ;X) + log 2

log |V|

)
.

To gain some intuition for Proposition 8.4.3, we think of the lower bound as a function of the
separation δ > 0. Roughly, as δ ↓ 0, the separation condition between the distributions Pv is
relaxed and we expect the distributions Pv to be closer to one another. In this case—as will be
made more explicity presently—the hypothesis testing problem of distinguishing the Pv becomes
more challenging, and the information I(V ;X) shrinks. Thus, what we roughly attempt to do
is to choose our packing θ(Pv) as a function of δ, and find the largest δ > 0 making the mutual
information small enough that

I(V ;X) + log 2

log |V|
≤ 1

2
. (8.4.3)

In this case, the minimax lower bound is at least Φ(δ)/2. We now explore techniques for achieving
such results.

Mutual information and KL-divergence

Many techniques for upper bounding mutual information rely on its representation as the KL-
divergence between multiple distributions. Indeed, given random variables V and X as in the
preceding sections, if we let PV,X denote their joint distribution and PV and PX their marginals,
then

I(V ;X) = Dkl (PX,V ||PX × PV ) ,

where PX ×PV denotes the distribution of (X,V ) when the random variables are independent. By
manipulating this definition, we can rewrite it into a form more convenient for our purposes.

Indeed, focusing on our setting of testing, let us assume that V is drawn from a prior distribution
π (this may be a discrete or arbitrary distribution, though for simplicity we focus on the case when
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π is discrete). Let Pv denote the distribution of X conditional on V = v, as in Proposition 8.4.3.
Then marginally, we know that X is drawn from the mixture distribution

P :=
∑
v

π(v)Pv.

With this definition of the mixture distribution, via algebraic manipulations, we have

I(V ;X) =
∑
v

π(v)Dkl

(
Pv||P

)
, (8.4.4)

a representation that plays an important role in our subsequent derivations. To see equality (8.4.4),
let µ be a base measure over X (assume w.l.o.g. that X has density p(· | v) = pv(·) conditional on
V = v), and note that

I(V ;X) =
∑
v

∫
X
p(x | v)π(v) log

p(x | v)∑
v′ p(x | v′)π(v′)

dµ(x) =
∑
v

π(v)

∫
X
p(x | v) log

p(x | v)

p(x)
dµ(x).

Representation (8.4.4) makes it clear that if the distributions of the sample X conditional
on V are all similar, then there is little information content. Returning to the discussion after
Proposition 8.4.3, we have in this uniform setting that

P =
1

|V|
∑
v∈V

Pv and I(V ;X) =
1

|V|
∑
v∈V

Dkl

(
Pv||P

)
.

The mutual information is small if the typical conditional distribution Pv is difficult to distinguish—
has small KL-divergence—from P .

The local Fano method

The local Fano method is based on a weakening of the mixture representation of mutual informa-
tion (8.4.4), then giving a uniform upper bound on divergences between all pairs of the conditional
distributions Pv and Pv′ . (This method is known in the statistics literature as the “generalied Fano
method,” a poor name, as it is based on a weak upper bound on mutual information.) In particular
(focusing on the case when V is uniform), the convexity of − log implies that

I(V ;X) =
1

|V|
∑
v∈V

Dkl

(
Pv||P

)
≤ 1

|V|2
∑
v,v′

Dkl (Pv||Pv′) . (8.4.5)

In the local Fano method approach, we construct a local packing. This local packing approach
is based on constructing a family of distributions Pv for v ∈ V defining a 2δ-packing (recall Sec-
tion 8.2.1), meaning that ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′, but which additionally satisfy the
uniform upper bound

Dkl (Pv||Pv′) ≤ κ2δ2 for all v, v′ ∈ V, (8.4.6)

where κ > 0 is a fixed problem-dependent constant. If we have the inequality (8.4.6), then so long
as we can find a local packing V such that

log |V| ≥ 2(κ2δ2 + log 2),
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we are guaranteed the testing error condition (8.4.3), and hence the minimax lower bound

M(θ(P),Φ ◦ ρ) ≥ 1

2
Φ(δ).

The difficulty in this approach is constructing the packing set V that allows δ to be chosen to obtain
sharp lower bounds, and we often require careful choices of the packing sets V. (We will see how
to reduce such difficulties in subsequent sections.)

Constructing local packings As mentioned above, the main difficulty in using Fano’s method
is in the construction of so-called “local” packings. In these problems, the idea is to construct a
packing V of a fixed set (in a vector space, say Rd) with constant radius and constant distance.
Then we scale elements of the packing by δ > 0, which leaves the cardinality |V| identical, but
allows us to scale δ in the separation in the packing and the uniform divergence bound (8.4.6). In
particular, Lemmas 8.2.3 and 4.3.10 show that we can construct exponentially large packings of
certain sets with balls of a fixed radius.

We now illustrate these techniques via two examples.

Example 8.4.4 (Normal mean estimation): Consider the d-dimensional normal location
family Nd = {N(θ, σ2Id×d) | θ ∈ Rd}; we wish to estimate the mean θ = θ(P ) of a given
distribution P ∈ Nd in mean-squared error, that is, with loss ‖θ̂ − θ‖22. Let V be a 1/2-packing
of the unit `2-ball with cardinality at least 2d, as guaranteed by Lemma 4.3.10. (We assume
for simplicity that d ≥ 2.)
Now we construct our local packing. Fix δ > 0, and for each v ∈ V, set θv = δv ∈ Rd. Then
we have

‖θv − θv′‖2 = δ
∥∥v − v′∥∥

2
≥ δ

2

for each distinct pair v, v′ ∈ V, and moreover, we note that ‖θv − θv′‖2 ≤ δ for such pairs as
well. By applying the Fano minimax bound of Proposition 8.4.3, we see that (given n normal

observations Xi
iid∼ P )

Mn(θ(Nd), ‖·‖22) ≥
(

1

2
· δ

2

)2(
1− I(V ;Xn

1 ) + log 2

log |V|

)
=
δ2

16

(
1− I(V ;Xn

1 ) + log 2

d log 2

)
.

Now note that for any pair v, v′, if Pv is the normal distribution N(θv, σ
2Id×d) we have

Dkl (Pnv ||Pnv′) = n ·Dkl

(
N(δv, σ2Id×d)||N(δv′, σ2Id×d)

)
= n · δ

2

2σ2

∥∥v − v′∥∥2

2
,

as the KL-divergence between two normal distributions with identical covariance is

Dkl (N(θ1,Σ)||N(θ2,Σ)) =
1

2
(θ1 − θ2)>Σ−1(θ1 − θ2)

as in Example 2.1.7. As ‖v − v′‖2 ≤ 1, we have the KL-divergence bound (8.4.6) with κ2 =
n/2σ2.
Combining our derivations, we have the minimax lower bound

Mn(θ(Nd), ‖·‖22) ≥ δ2

16

(
1− nδ2/2σ2 + log 2

d log 2

)
. (8.4.7)
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Then by taking δ2 = dσ2 log 2/(2n), we see that

1− nδ2/2σ2 + log 2

d log 2
= 1− 1

d
− 1

4
≥ 1

4

by assumption that d ≥ 2, and inequality (8.4.7) implies the minimax lower bound

Mn(θ(Nd), ‖·‖22) ≥ dσ2 log 2

32n
· 1

4
≥ 1

185
· dσ

2

n
.

While the constant 1/185 is not sharp, we do obtain the right scaling in d, n, and the variance
σ2; the sample mean attains the same risk. 3

Example 8.4.5 (Linear regression): In this example, we show how local packings can give
(up to some constant factors) sharp minimax rates for standard linear regression problems. In
particular, for fixed matrix X ∈ Rn×d, we observe

Y = Xθ + ε,

where ε ∈ Rn consists of independent random variables εi with variance bounded by Var(εi) ≤
σ2, and θ ∈ Rd is allowed to vary over Rd. For the purposes of our lower bound, we may
assume that ε ∼ N(0, σ2In×n). Let P denote the family of such normally distributed linear
regression problems, and assume for simplicity that d ≥ 32.
In this case, we use the Gilbert-Varshamov bound (Lemma 8.2.3) to construct a local packing
and attain minimax rates. Indeed, let V be a packing of {−1, 1}d such that ‖v − v′‖1 ≥ d/2 for
distinct elements of V, and let |V| ≥ exp(d/8) as guaranteed by the Gilbert-Varshamov bound.
For fixed δ > 0, if we set θv = δv, then we have the packing guarantee for distinct elements
v, v′ that

‖θv − θv′‖22 = δ2
d∑
j=1

(vj − v′j)2 = 4δ2
∥∥v − v′∥∥

1
≥ 2dδ2.

Moreover, we have the upper bound

Dkl

(
N(Xθv, σ

2In×n)||N(Xθv′ , σ
2In×n)

)
=

1

2σ2
‖X(θv − θv′)‖22

≤ δ2

2σ2
γ2

max(X)
∥∥v − v′∥∥2

2
≤ 2d

σ2
γ2

max(X)δ2,

where γmax(X) denotes the maximum singular value of X. Consequently, the bound (8.4.6)
holds with κ2 ≤ 2dγ2

max(X)/σ2, and we have the minimax lower bound

M(θ(P), ‖·‖22) ≥ dδ2

2

(
1− I(V ;Y ) + log 2

log |V|

)
≥ dδ2

2

(
1−

2dγ2max(X)
σ2 δ2 + log 2

d/8

)
.

Now, if we choose

δ2 =
σ2

64γ2
max(X)

, then 1− 8 log 2

d
− 16dγ2

max(X)δ2

d
≥ 1− 1

4
− 1

4
=

1

2
,

by assumption that d ≥ 32. In particular, we obtain the lower bound

M(θ(P), ‖·‖22) ≥ 1

256

σ2d

γ2
max(X)

=
1

256

σ2d

n

1

γ2
max( 1√

n
X)

,
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for a convergence rate (roughly) of σ2d/n after rescaling the singular values of X by 1/
√
n.

This bound is sharp in terms of the dimension, dependence on n, and the variance σ2, but
it does not fully capture the dependence on X, as it depends only on the maximum singular
value. Indeed, in this case, an exact calculation (cf. [130]) shows that the minimax value of
the problem is exactly σ2 tr((X>X)−1). Letting λj(A) be the jth eigenvalue of a matrix A,
we have

σ2 tr((X>X)−1) =
σ2

n
tr((n−1X>X)−1) =

σ2

n

d∑
j=1

1

λj(
1
nX
>X)

≥ σ2d

n
min
j

1

λj(
1
nX
>X)

=
σ2d

n

1

γ2
max( 1√

n
X)

.

Thus, the local Fano method captures most—but not all—of the difficulty of the problem. 3

8.4.2 A distance-based Fano method

While the testing lower bound (8.4.2) is sufficient for proving lower bounds for many estimation
problems, for the sharpest results it sometimes requires a somewhat delicate construction of a well-
separated packing (e.g. [43, 69]). To that end, we also provide extensions of inequalities (8.4.1)
and (8.4.2) that more directly yield bounds on estimation error, allowing more direct and simpler
proofs of a variety of minimax lower bounds (see also reference [67]).

More specifically, suppose that the distance function ρV is defined on V, and we are inter-
ested in bounding the estimation error ρV(V̂ , V ). We begin by providing analogues of the lower
bounds (8.4.1) and (8.4.2) that replace the testing error with the tail probability P(ρV(V̂ , V ) > t).
By Markov’s inequality, such control directly yields bounds on the expectation E[ρV(V̂ , V )]. As
we show in the sequel and in chapters to come, these distance-based Fano inequalities allow more
direct proofs of a variety of minimax bounds without the need for careful construction of packing
sets or metric entropy calculations as in other arguments.

We begin with the distance-based analogue of the usual discrete Fano inequality in Proposi-
tion 8.4.1. Let V be a random variable supported on a finite set V with cardinality |V| ≥ 2, and let
ρ : V × V → R be a function defined on V × V. In the usual setting, the function ρ is a metric on
the space V, but our theory applies to general functions. For a given scalar t ≥ 0, the maximum
and minimum neighborhood sizes at radius t are given by

Nmax
t := max

v∈V

{
card{v′ ∈ V | ρ(v, v′) ≤ t}

}
and Nmin

t := min
v∈V

{
card{v′ ∈ V | ρ(v, v′) ≤ t}

}
.

(8.4.8)
Defining the error probability Pt = P(ρV(V̂ , V ) > t), we then have the following generalization of
Fano’s inequality:

Proposition 8.4.6. For any Markov chain V → X → V̂ , we have

h2(Pt) + Pt log
|V| −Nmin

t

Nmax
t

+ logNmax
t ≥ H(V | V̂ ). (8.4.9)

Before proving the proposition, which we do in Section 8.8.1, it is informative to note that it
reduces to the standard form of Fano’s inequality (8.4.1) in a special case. Suppose that we take
ρV to be the 0-1 metric, meaning that ρV(v, v′) = 0 if v = v′ and 1 otherwise. Setting t = 0 in
Proposition 8.4.6, we have P0 = P[V̂ 6= V ] and Nmin

0 = Nmax
0 = 1, whence inequality (8.4.9) reduces
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to inequality (8.4.1). Other weakenings allow somewhat clearer statements (see Section 8.8.2 for a
proof):

Corollary 8.4.7. If V is uniform on V and (|V| −Nmin
t ) > Nmax

t , then

P(ρV(V̂ , V ) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nmax
t

. (8.4.10)

Inequality (8.4.10) is the natural analogue of the classical mutual-information based form of
Fano’s inequality (8.4.2), and it provides a qualitatively similar bound. The main difference is
that the usual cardinality |V| is replaced by the ratio |V|/Nmax

t . This quantity serves as a rough
measure of the number of possible “regions” in the space V that are distinguishable—that is, the
number of subsets of V for which ρV(v, v′) > t when v and v′ belong to different regions. While
this construction is similar in spirit to the usual construction of packing sets in the standard
reduction from testing to estimation (cf. Section 8.2.1), our bound allows us to skip the packing set
construction. We can directly compute I(V ;X) where V takes values over the full space, as opposed
to computing the mutual information I(V ′;X) for a random variable V ′ uniformly distributed over
a packing set contained within V. In some cases, the former calculation can be much simpler, as
illustrated in examples and chapters to follow.

We now turn to providing a few consequences of Proposition 8.4.6 and Corollary 8.4.7, showing
how they can be used to derive lower bounds on the minimax risk. Proposition 8.4.6 is a generaliza-
tion of the classical Fano inequality (8.4.1), so it leads naturally to a generalization of the classical
Fano lower bound on minimax risk, which we describe here. This reduction from estimation to
testing is somewhat more general than the classical reductions, since we do not map the original
estimation problem to a strict test, but rather a test that allows errors. Consider as in the standard
reduction of estimation to testing in Section 8.2.1 a family of distributions {Pv}v∈V ⊂ P indexed by
a finite set V. This family induces an associated collection of parameters {θv := θ(Pv)}v∈V . Given
a function ρV : V × V → R and a scalar t, we define the separation δ(t) of this set relative to the
metric ρ on Θ via

δ(t) := sup
{
δ | ρ(θv, θv′) ≥ δ for all v, v′ ∈ V such that ρV(v, v′) > t

}
. (8.4.11)

As a special case, when t = 0 and ρV is the discrete metric, this definition reduces to that of a
packing set: we are guaranteed that ρ(θv, θv′) ≥ δ(0) for all distinct pairs v 6= v′, as in the classical
approach to minimax lower bounds. On the other hand, allowing for t > 0 lends greater flexibility
to the construction, since only certain pairs θv and θv′ are required to be well-separated.

Given a set V and associated separation function (8.4.11), we assume the canonical estimation
setting: nature chooses V ∈ V uniformly at random, and conditioned on this choice V = v, a sample
X is drawn from the distribution Pv. We then have the following corollary of Proposition 8.4.6,
whose argument is completely identical to that for inequality (8.2.1):

Corollary 8.4.8. Given V uniformly distributed over V with separation function δ(t), we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ
(δ(t)

2

) [
1− I(X;V ) + log 2

log |V|
Nmax
t

]
for all t. (8.4.12)

Notably, using the discrete metric ρV(v, v′) = 1 {v 6= v′} and taking t = 0 in the lower bound (8.4.12)
gives the classical Fano lower bound on the minimax risk based on constructing a packing [110, 177,
175]. We now turn to an example illustrating the use of Corollary 8.4.8 in providing a minimax
lower bound on the performance of regression estimators.
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Example: Normal regression model Consider the d-dimensional linear regression model Y =
Xθ + ε, where ε ∈ Rn is i.i.d. N(0, σ2) and X ∈ Rn×d is known, but θ is not. In this case, our
family of distributions is

PX :=
{
Y ∼ N(Xθ, σ2In×n) | θ ∈ Rd

}
=
{
Y = Xθ + ε | ε ∼ N(0, σ2In×n), θ ∈ Rd

}
.

We then obtain the following minimax lower bound on the minimax error in squared `2-norm: there
is a universal (numerical) constant c > 0 such that

Mn(θ(PX , ‖·‖22) ≥ c σ
2d2

‖X‖2Fr

≥ c

γmax(X/
√
n)2
· σ

2d

n
, (8.4.13)

where γmax denotes the maximum singular value. Notably, this inequality is nearly the sharpest
known bound proved via Fano inequality-based methods [43], but our technique is essentially direct
and straightforward.

To see inequality (8.4.13), let the set V = {−1, 1}d be the d-dimensional hypercube, and define
θv = δv for some fixed δ > 0. Then letting ρV be the Hamming metric on V and ρ be the usual
`2-norm, the associated separation function (8.4.11) satisfies δ(t) > max{

√
t, 1}δ. Now, for any

t ≤ dd/3e, the neighborhood size satisfies

Nmax
t =

t∑
τ=0

(
d

τ

)
≤ 2

(
d

t

)
≤ 2

(
de

t

)t
.

Consequently, for t ≤ d/6, the ratio |V|/Nmax
t satisfies

log
|V|
Nmax
t

≥ d log 2− log 2

(
d

t

)
≥ d log 2− d

6
log(6e)− log 2 = d log

2

21/d 6
√

6e
> max

{
d

6
, log 4

}
for d ≥ 12. (The case 2 ≤ d < 12 can be checked directly). In particular, by taking t = bd/6c we
obtain via Corollary 8.4.8 that

Mn(θ(PX), ‖·‖22) ≥ max{bd/6c , 2}δ2

4

(
1− I(Y ;V ) + log 2

max{d/6, 2 log 2}

)
.

But of course, for V uniform on V, we have E[V V >] = Id×d, and thus for V, V ′ independent and
uniform on V,

I(Y ;V ) ≤ n 1

|V|2
∑
v∈V

∑
v′∈V

Dkl

(
N(Xθv, σ

2In×n)||N(Xθv′ , σ
2In×n)

)
=

δ2

2σ2
E
[∥∥XV −XV ′∥∥2

2

]
=
δ2

σ2
‖X‖2Fr .

Substituting this into the preceding minimax bound, we obtain

Mn(θ(PX), ‖·‖22) ≥ max{bd/6c , 2}δ2

4

(
1−

δ2 ‖X‖2Fr /σ
2 + log 2

max{d/6, 2 log 2}

)
.

Choosing δ2 � dσ2/ ‖X‖2Fr gives the result (8.4.13).
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8.5 Assouad’s method

Assouad’s method provides a somewhat different technique for proving lower bounds. Instead of
reducing the estimation problem to a multiple hypothesis test or simpler estimation problem, as
with Le Cam’s method and Fano’s method from the preceding lectures, here we transform the
original estimation problem into multiple binary hypothesis testing problems, using the structure
of the problem in an essential way. Assouad’s method applies only problems where the loss we care
about is naturally related to identification of individual points on a hypercube.

8.5.1 Well-separated problems

To describe the method, we begin by encoding a notion of separation and loss, similar to what we
did in the classical reduction of estimation to testing. For some d ∈ N, let V = {−1, 1}d, and let us
consider a family {Pv}v∈V ⊂ P indexed by the hypercube. We say that the the family Pv induces
a 2δ-Hamming separation for the loss Φ ◦ ρ if there exists a function v̂ : θ(P)→ {−1, 1}d satisfying

Φ(ρ(θ, θ(Pv))) ≥ 2δ
d∑
j=1

1 {[v̂(θ)]j 6= vj} . (8.5.1)

That is, we can take the parameter θ and test the individual indices via v̂.

Example 8.5.1 (Estimation in `1-error): Suppose we have a family of multivariate Laplace
distributions on Rd—distributions with density proportional to p(x) ∝ exp(−‖x− µ‖1)—and
we wish to estimate the mean in `1-distance. For v ∈ {−1, 1}d and some fixed δ > 0 let pv be
the density

pv(x) =
1

2
exp (−‖x− δv‖1) ,

which has mean θ(Pv) = δv. Under the `1-loss, we have for any θ ∈ Rd that

‖θ − θ(Pv)‖1 =
d∑
j=1

|θj − δvj | ≥ δ
d∑
j=1

1 {sign(θj) 6= vj} ,

so that this family induces a δ-Hamming separation for the `1-loss. 3

8.5.2 From estimation to multiple binary tests

As in the standard reduction from estimation to testing, we consider the following random process:
nature chooses a vector V ∈ {−1, 1}d uniformly at random, after which the sample X is drawn
from the distribution Pv conditional on V = v. Then, if we let P±j denote the joint distribution
over the random index V and X conditional on the jth coordinate Vj = ±1, we obtain the following
sharper version of Assouad’s lemma [10] (see also the paper [7]); we provide a proof in Section 8.8.3
to follow.

Lemma 8.5.2. Under the conditions of the previous paragraph, we have

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

inf
Ψ

[P+j(Ψ(X) 6= +1) + P−j(Ψ(X) 6= −1)] .
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While Lemma 8.5.2 requires conditions on the loss Φ and metric ρ for the separation condi-
tion (8.5.1) to hold, it is sometimes easier to apply than Fano’s method. Moreover, while we will
not address this in class, several researchers [7, 68] have noted that it appears to allow easier ap-
plication in so-called “interactive” settings—those for which the sampling of the Xi may not be
precisely i.i.d. It is closely related to Le Cam’s method, discussed previously, as we see that if we
define P+j = 21−d∑

v:vj=1 Pv (and similarly for −j), Lemma 8.5.2 is equivalent to

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

[
1− ‖P+j − P−j‖TV

]
. (8.5.2)

There are standard weakenings of the lower bound (8.5.2) (and Lemma 8.5.2). We give one
such weakening. First, we note that the total variation is convex, so that if we define Pv,+j to be
the distribution Pv where coordinate j takes the value vj = 1 (and similarly for P −v,−j), we have

P+j =
1

2d

∑
v∈{−1,1}d

Pv,+j and P−j =
1

2d

∑
v∈{−1,1}d

Pv,+j .

Thus, by the triangle inequality, we have

‖P+j − P−j‖TV =

∥∥∥∥ 1

2d

∑
v∈{−1,1}d

Pv,+j − Pv,−j
∥∥∥∥

TV

≤ 1

2d

∑
v∈{−1,1}d

‖Pv,+j − Pv,−j‖TV ≤ max
v,j
‖Pv,+j − Pv,−j‖TV .

Then as long as the loss satisfies the per-coordinate separation (8.5.1), we obtain the following:

M(θ(P),Φ ◦ ρ) ≥ dδ
(

1−max
v,j
‖Pv,+j − Pv,−j‖TV

)
. (8.5.3)

This most common version of Assouad’s lemma sometimes too brutally controls ‖P+j − P−j‖TV.
We also note that by the Cauchy-Schwarz inequality and convexity of the variation-distance,

we have

d∑
j=1

‖P+j − P−j‖TV ≤
√
d

( d∑
j=1

‖P+j − P−j‖2TV

)1/2

≤
√
d

( d∑
j=1

1

2d

∑
v

‖Pv,+j − Pv,−j‖2TV

) 1
2

,

and consequently we have a not quite so terribly weak version of inequality (8.5.2):

M(θ(P),Φ ◦ ρ) ≥ δd

1−
(

1

d

d∑
j=1

∑
v∈{−1,1}d

‖Pv,+j − Pv,−j‖2TV

) 1
2

 . (8.5.4)

Regardless of whether we use the sharper version (8.5.2) or weakened versions (8.5.3) or (8.5.4),
the technique is essentially the same. We seek a setting of the distributions Pv so that the probability
of making a mistake in the hypothesis test of Lemma 8.5.2 is high enough—say 1/2—or the variation
distance is small enough—such as ‖P+j − P−j‖TV ≤ 1/2 for all j. Once this is satisfied, we obtain
a minimax lower bound of the form

M(θ(P),Φ ◦ ρ) ≥ δ
d∑
j=1

[
1− 1

2

]
=
dδ

2
.
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8.5.3 Example applications of Assouad’s method

We now provide two example applications of Assouad’s method. The first is a standard finite-
dimensional lower bound, where we provide a lower bound in a normal mean estimation problem.
For the second, we consider estimation in a logistic regression problem, showing a similar lower
bound. In Section 8.6 to follow, we show how to use Assouad’s method to prove strong lower
bounds in a standard nonparametric problem.

Example 8.5.3 (Normal mean estimation): For some σ2 > 0 and d ∈ N, we consider
estimation of mean parameter for the normal location family

N :=
{
N(θ, σ2Id×d) : θ ∈ Rd

}
in squared Euclidean distance. We now show how for this family, the sharp Assouad’s method
implies the lower bound

Mn(θ(N ), ‖·‖22) ≥ dσ2

8n
. (8.5.5)

Up to constant factors, this bound is sharp; the sample mean has mean squared error dσ2/n.
We proceed in (essentially) the usual way we have set up. Fix some δ > 0 and define θv = δv,
taking Pv = N(θv, σ

2Id×d) to be the normal distribution with mean θv. In this case, we see that
the hypercube structure is natural, as our loss function decomposes on coordinates: we have
‖θ − θv‖22 ≥ δ2

∑d
j=1 1 {sign(θj) 6= vj}. The family Pv thus induces a δ2-Hamming separation

for the loss ‖·‖22, and by Assouad’s method (8.5.2), we have

Mn(θ(N ), ‖·‖22) ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
,

where Pn±j = 21−d∑
v:vj=±1 P

n
v . It remains to provide upper bounds on ‖Pn+j − Pn−j‖TV. By

the convexity of ‖·‖2TV and Pinsker’s inequality, we have∥∥Pn+j − Pn−j∥∥2

TV
≤ max

dham(v,v′)≤1
‖Pnv − Pnv′‖

2
TV ≤

1

2
max

dham(v,v′)≤1
Dkl (Pnv ||Pnv′) .

But of course, for any v and v′ differing in only 1 coordinate,

Dkl (Pnv ||Pnv′) =
n

2σ2
‖θv − θv′‖22 =

2n

σ2
δ2,

giving the minimax lower bound

Mn(θ(N ), ‖·‖22) ≥ 2δ2
d∑
j=1

[
1−

√
2nδ2/σ2

]
.

Choosing δ2 = σ2/8n gives the claimed lower bound (8.5.5). 3

Example 8.5.4 (Logistic regression): In this example, consider the logistic regression model,
where we have known (fixed) regressors Xi ∈ Rd and an unknown parameter θ ∈ Rd; the goal
is to estimate θ after observing a sequence of Yi ∈ {−1, 1}, where for y ∈ {−1, 1} we have

P (Yi = y | Xi, θ) =
1

1 + exp(−yX>i θ)
.
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Denote this family by Plog, and for P ∈ Plog, let θ(P ) be the predictor vector θ. We would
like to estimate the vector θ in squared `2 error. As in Example 8.5.3, if we choose some δ > 0
and for each v ∈ {−1, 1}d, we set θv = δv, then we have the δ2-separation in Hamming metric
‖θ − θv‖22 ≥ δ2

∑d
j=1 1 {sign(θj) 6= vj}. Let Pnv denote the distribution of the n independent

observations Yi when θ = θv. Then we have by Assouad’s lemma (and the weakening (8.5.4))
that

Mn(θ(Plog), ‖·‖22) ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]

≥ dδ2

2

[
1−

(
1

d

d∑
j=1

1

2d

∑
v∈{−1,1}d

∥∥Pnv,+j − Pnv,−j∥∥2

TV

) 1
2

]
. (8.5.6)

It remains to bound ‖Pnv,+j − Pnv,−j‖2TV to find our desired lower bound. To that end, use the

shorthands pv(x) = 1/(1 + exp(δx>v)) and let Dkl (p||q) be the binary KL-divergence between
Bernoulli(p) and Bernoulli(q) distributions. Then Pinsker’s inequality (recall Proposition 2.2.8)
implies that for any v, v′,

‖Pnv − Pnv′‖TV ≤
1

4
[Dkl (Pnv ||Pnv′) +Dkl (Pnv′ ||Pnv )]

=
1

4

n∑
i=1

[Dkl (pv(Xi)||pv′(Xi)) +Dkl (pv′(Xi)||pv(Xi))] .

Let us upper bound the final KL-divergence. Let pa = 1/(1 + ea) and pb = 1/(1 + eb). We
claim that

Dkl (pa||pb) +Dkl (pb||pa) ≤ (a− b)2. (8.5.7)

Deferring the proof of claim (8.5.7), we immediately see that

‖Pnv − Pnv′‖TV ≤
δ2

4

n∑
i=1

(
X>i (v − v′)

)2
.

Now we recall inequality (8.5.6) for motivation, and we see that the preceding display implies

1

2dd

d∑
j=1

∑
v∈{−1,1}d

∥∥Pnv,+j − Pnv,−j∥∥2

TV
≤ δ2

4d

1

2d

∑
v∈{−1,1}d

d∑
j=1

n∑
i=1

(2Xij)
2 =

δ2

d

n∑
i=1

d∑
j=1

X2
ij .

Replacing the final double sum with ‖X‖2Fr, where X is the matrix of the Xi, we have

Mn(θ(Plog), ‖·‖22) ≥ dδ2

2

[
1−

(
δ2

d
‖X‖2Fr

) 1
2

]
.

Setting δ2 = d/4 ‖X‖2Fr, we obtain

Mn(θ(Plog), ‖·‖22) ≥ dδ2

4
=

d2

16 ‖X‖2Fr

=
d

n
· 1

16 1
dn

∑n
i=1 ‖Xi‖22

.
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That is, we have a minimax lower bound scaling roughly as d/n for logistic regression, where
“large” Xi (in `2-norm) suggest that we may obtain better performance in estimation. This is
intuitive, as a larger Xi gives a better signal to noise ratio.

We return to prove the claim (8.5.7). Indeed, by a straightforward expansion, we have

Dkl (pa||pb) +Dkl (pb||pa) = pa log
pa
pb

+ (1− pa) log
1− pa
1− pb

+ pb log
pb
pa

+ (1− pb) log
1− pb
1− pa

= (pa − pb) log
pa
pb

+ (pb − pa) log
1− pa
1− pb

= (pa − pb) log

(
pa

1− pa
1− pb
pb

)
.

Now note that pa/(1− pa) = e−a and (1− pb)/pb = eb. Thus we obtain

Dkl (pa||pb) +Dkl (pb||pa) =

(
1

1 + ea
− 1

1 + eb

)
log
(
eb−a

)
= (b− a)

(
1

1 + ea
− 1

1 + eb

)
Assume without loss of generality that b ≥ a. Noting that ex ≥ 1 + x by convexity, we have

1

1 + ea
− 1

1 + eb
=

eb − ea

(1 + ea)(1 + eb)
≤ eb − ea

eb
= 1− ea−b ≤ 1− (1 + (a− b)) = b− a,

yielding claim (8.5.7). 3

8.6 Nonparametric regression: minimax upper and lower bounds

To show further applications of the minimax optimality ideas we have developed, we consider one
of the two the most classical non-parametric (meaning that the number of parameters can grow
with the sample size n) problems: estimating a regression function on a subset of the real line (the
most classical problem being estimation of a density). In non-parametric regression, we assume
there is an unknown function f : R→ R, where f belongs to a pre-determined class of functions F ;
usually this class is parameterized by some type of smoothness guarantee. To make our problems
concrete, we will assume that the unknown function f is L-Lipschitz and defined on [0, 1]. Let F
denote this class.

In the standard non-parametric regression problem, we obtain observations of the form

Yi = f(Xi) + εi (8.6.1)

where εi are independent, mean zero conditional on Xi, and E[ε2
i ] ≤ σ2. See Figure 8.2 for an

example. We also assume that we fix the locations of the Xi as Xi = i/n ∈ [0, 1], that is, the Xi

are evenly spaced in [0, 1]. Given n observations Yi, we ask two questions: (1) how can we estimate
f? and (2) what are the optimal rates at which it is possible to estimate f?

8.6.1 Kernel estimates of the function

A natural strategy is to place small “bumps” around the observed points, and estimate f in a
neighborhood of a point x by weighted averages of the Y values for other points near x. We now
formalize a strategy for doing this. Suppose we have a kernel function K : R → R+, which is
continuous, not identically zero, has support suppK = [−1, 1], and satisfies the technical condition

λ0 sup
x
K(x) ≤ inf

|x|≤1/2
K(x), (8.6.2)
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Figure 8.2. Observations in a non-parametric regression problem, with function f plotted. (Here
f(x) = sin(2x+ cos2(3x)).)

where λ0 > 0 (this says the kernel has some width to it). A natural example is the “tent” function
given by Ktent(x) = [1− |x|]+, which satisfies inequality (8.6.2) with λ0 = 1/2. See Fig. 8.3 for two
examples, one the tent function and the other the function

K(x) = 1 {|x| < 1} exp

(
− 1

(x− 1)2

)
exp

(
− 1

(x+ 1)2

)
,

which is infinitely differentiable and supported on [−1, 1].

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 −1.0 −0.5 0.0 0.5 1.0

Figure 8.3: Left: “tent” kernel. Right: infinitely differentiable compactly supported kernel.

Now we consider a natural estimator of the function f based on observations (8.6.2) known as
the Nadaraya-Watson estimator. Fix a bandwidth h, which we will see later smooths the estimated
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functions f . For all x, define weights

Wni(x) :=
K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

)
and define the estimated function

f̂n(x) :=
n∑
i=1

YiWni(x).

The intuition here is that we have a locally weighted regression function, where points Xi in the
neighborhood of x are given higher weight than further points. Using this function f̂n as our
estimator, it is possible to provide a guarantee on the bias and variance of the estimated function
at each point x ∈ [0, 1].

Proposition 8.6.1. Let the observation model (8.6.1) hold and assume condition (8.6.2). In
addition assume the bandwidth is suitably large that h ≥ 2/n and that the Xi are evenly spaced on
[0, 1]. Then for any x ∈ [0, 1], we have

|E[f̂n(x)]− f(x)| ≤ Lh and Var(f̂n(x)) ≤ 2σ2

λ0nh
.

Proof To bound the bias, we note that (conditioning implicitly on Xi)

E[f̂n(x)] =

n∑
i=1

E[YiWni(x)] =

n∑
i=1

E[f(Xi)Wni(x) + εiWni(x)] =

n∑
i=1

f(Xi)Wni(x).

Thus we have that the bias is bounded as∣∣∣E[f̂n(x)]− f(x)
∣∣∣ ≤ n∑

i=1

|f(Xi)− f(x)|Wni(x)

≤
∑

i:|Xi−x|≤h

|f(Xi)− f(x)|Wni(x) ≤ Lh
n∑
i=1

Wni(x) = Lh.

To bound the variance, we claim that

Wni(x) ≤ min

{
2

λ0nh
, 1

}
. (8.6.3)

Indeed, we have that

Wni(x) =
K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

) =
K
(
Xi−x
h

)
∑

j:|Xj−x|≤h/2K
(
Xj−x
h

) ≤ K
(
Xi−x
h

)
λ0 supxK(x)|{j : |Xj − x| ≤ h/2}|

,

and because there are at least nh/2 indices satisfying |Xj − x| ≤ h, we obtain the claim (8.6.3).
Using the claim, we have

Var(f̂n(x)) = E
[( n∑

i=1

(Yi − f(Xi))Wni(x)

)2]
= E

[( n∑
i=1

εiWni(x)

)2]

=
n∑
i=1

Wni(x)2E[ε2
i ] ≤

n∑
i=1

σ2Wni(x)2.
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Noting that Wni(x) ≤ 2/λ0nh and
∑n

i=1Wni(x) = 1, we have

n∑
i=1

σ2Wni(x)2 ≤ σ2 max
i
Wni(x)

n∑
i=1

Wni(x)︸ ︷︷ ︸
=1

≤ σ2 2

λ0nh
,

completing the proof.

With the proposition in place, we can then provide a theorem bounding the worst case pointwise
mean squared error for estimation of a function f ∈ F .

Theorem 8.6.2. Under the conditions of Proposition 8.6.1, choose h = (σ2/L2λ0)1/3n−1/3. Then
there exists a universal (numerical) constant C <∞ such that for any f ∈ F ,

sup
x∈[0,1]

E[(f̂n(x)− f(x))2] ≤ C
(
Lσ2

λ0

)2/3

n−
2
3 .

Proof Using Proposition 8.6.1, we have for any x ∈ [0, 1] that

E[(f̂n(x)− f(x))2] =
(
E[f̂n(x)]− f(x)

)2
+ E[(f̂n(x)− E[f̂n(x)])2] ≤ 2σ2

λ0nh
+ L2h2.

Choosing h to balance the above bias/variance tradeoff, we obtain the thoerem.

By integrating the result in Theorem 8.6.2 over the interval [0, 1], we immediately obtain the
following corollary.

Corollary 8.6.3. Under the conditions of Theorem 8.6.2, if we use the tent kernel Ktent, we have

sup
f∈F

Ef [‖f̂n − f‖22] ≤ C
(
Lσ2

n

)2/3

,

where C is a universal constant.

In Proposition 8.6.1, it is possible to show that a more clever choice of kernels—ones that are
not always positive—can attain bias E[f̂n(x)]−f(x) = O(hβ) if f has Lipschitz (β−1)th derivative.
In this case, we immediately obtain that the rate can be improved to

sup
x

E[(f̂n(x)− f(x))2] ≤ Cn−
2β

2β+1 ,

and every additional degree of smoothness gives a corresponding improvement in convergence rate.
We also remark that rates of this form, which are much larger than n−1, are characteristic of non-
parametric problems; essentially, we must adaptively choose a dimension that balances the sample
size, so that rates of 1/n are difficult or impossible to achieve.
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8.6.2 Minimax lower bounds on estimation with Assouad’s method

Now we can ask whether the results we have given are in fact sharp; do there exist estimators
attaining a faster rate of convergence than our kernel-based (locally weighted) estimator? Using
Assouad’s method, we show that, in fact, these results are all tight. In particular, we prove the
following result on minimax estimation of a regression function f ∈ F , where F consists of 1-
Lipschitz functions defined on [0, 1], in the ‖·‖22 error, that is, ‖f − g‖22 =

∫ 1
0 (f(t)− g(t))2dt.

Theorem 8.6.4. Let the observation points Xi be spaced evenly on [0, 1], and assume the observa-
tion model (8.6.1). Then there exists a universal constant c > 0 such that

Mn(F , ‖·‖22) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖22

]
≥ c

(
σ2

n

) 2
3

.

Deferring the proof of the theorem temporarily, we make a few remarks. It is in fact possible to
show—using a completely identical technique—that if Fβ denotes the class of functions with β − 1
derivatives, where the (β − 1)th derivative is Lipschitz, then

Mn(Fβ, ‖·‖22) ≥ c
(
σ2

n

) 2β
2β+1

.

So for any smoothness class, we can never achieve the parametric σ2/n rate, but we can come
arbitrarily close. As another remark, which we do not prove, in dimensions d ≥ 1, the minimax
rate for estimation of functions f with Lipschitz (β − 1)th derivative scales as

Mn(Fβ, ‖·‖22) ≥ c
(
σ2

n

) 2β
2β+d

. (8.6.4)

This result can, similarly, be proved using a variant of Assouad’s method or a local Fano method;
see, for example, Györfi et al. [99, Chapter 3]. Exercise 8.9 works through a particular case of this
lower bound. This is a striking example of the curse of dimensionality: the penalty for increasing
dimension results in worse rates of convergence. For example, suppose that β = 1. In 1 dimension,
we require n ≥ 90 ≈ (.05)−3/2 observations to achieve accuracy .05 in estimation of f , while we
require n ≥ 8000 = (.05)−(2+d)/2 even when the dimension d = 4, and n ≥ 64 ·106 observations even
in 10 dimensions, which is a relatively small problem. That is, the problem is made exponentially
more difficult by dimension increases.

We now prove Theorem 8.6.4. To establish the result, we show how to construct a family of
problems—indexed by binary vectors v ∈ {−1, 1}k—so that our estimation problem satisfies the
separation (8.5.1), then we show that the information based on observing noisy versions of the
functions we have defined is small. Choosing k to make our resulting lower bound as high as
possible completes the argument.

Construction of a separated family of functions To construct our separation in Hamming
metric, as required by Eq. (8.5.1), fix some k ∈ N; we will choose k later. This approach is somewhat
different from our standard approach of using a fixed dimensionality and scaling the separation
directly; in non-parametric problems, we scale the “dimension” itself to adjust the difficulty of the
estimation problem. Define the function g(x) = [1/2− |x− 1/2|]+, so that g is 1-Lipschitz and is
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0 outside of the interval [0, 1]. Then for any v ∈ {−1, 1}k, define the “bump” functions

gj(x) :=
1

k
g

(
k

(
x− j − 1

k

))
and fv(x) :=

k∑
j=1

vjgj(x),

which we see is 1-Lipschitz. Now, consider any function f : [0, 1]→ R, and let Ej be shorthand for
the intervals Ej = [(j − 1)/k, j/k] for j = 1, . . . , k. We must find a mapping identifying a function
f with points in the hypercube {−1, 1}k. To that end, we may define a vector v̂(f) ∈ {−1, 1}k by

v̂j(f) = argmin
s∈{−1,1}

∫
Ej

(f(t)− sgj(t))2 dt.

We claim that for any function f ,(∫
Ej

(f(t)− fv(t))2dt

) 1
2

≥ 1 {v̂j(f) 6= vj}
(∫

Ej

fv(t)
2dt

) 1
2

. (8.6.5)

Indeed, on the set Ej , we have vjgj(t) = fv(t), and thus
∫
Ej
gj(t)

2dt =
∫
Ej
fv(t)

2dt. Then by the

triangle inequality, we have

2 · 1 {v̂j(f) 6= vj}
(∫

Ej

gj(t)
2dt

) 1
2

=

(∫
Ej

((v̂j(f)− vj)gj(t))2 dt

) 1
2

≤
(∫

Ej

(f(t)− vjgj(t))2 dt

) 1
2

+

(∫
Ej

(f(t)− v̂j(f)gj(t))
2 dt

) 1
2

≤ 2

(∫
Ej

(f(t)− fv(t))2 dt

) 1
2

,

by definition of the sign v̂j(f).
With the definition of v̂ and inequality (8.6.5), we see that for any vector v ∈ {−1, 1}k, we have

‖f − fv‖22 =
k∑
j=1

∫
Ej

(f(t)− fv(t))2 dt ≥
k∑
j=1

1 {v̂j(f) 6= vj}
∫
Ej

fv(t)
2dt.

In particular, we know that∫
Ej

fv(t)
2dt =

1

k2

∫ 1/k

0
g(kt)2dt =

1

k3

∫ 1

0
g(u)2du ≥ c

k3
,

where c is a numerical constant. In particular, we have the desired separation

‖f − fv‖22 ≥
c

k3

k∑
j=1

1 {v̂j(f) 6= vj} . (8.6.6)
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Bounding the binary testing error Let Pnv denote the distribution of the n observations
Yi = fv(Xi) + εi when fv is the true regression function. Then inequality (8.6.6) implies via
Assouad’s lemma that

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
. (8.6.7)

Now, we use convexity and Pinsker’s inequality to note that∥∥Pn+j − Pn−j∥∥2

TV
≤ max

v

∥∥Pnv,+j − Pnv,−j∥∥2

TV
≤ max

v

1

2
Dkl

(
Pnv,+j ||Pnv,−j

)
.

For any two functions fv and fv′ , we have that the observations Yi are independent and normal
with means fv(Xi) or fv′(Xi), respectively. Thus

Dkl (Pnv ||Pnv′) =

n∑
i=1

Dkl

(
N(fv(Xi), σ

2)||N(fv′(Xi), σ
2)
)

=

n∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2. (8.6.8)

Now we must show that the expression (8.6.8) scales more slowly than n, which we will see must
be the case as whenever dham(v, v′) ≤ 1. Intuitively, most of the observations have the same
distribution by our construction of the fv as bump functions; let us make this rigorous.

We may assume without loss of generality that vj = v′j for j > 1. As the Xi = i/n, we thus
have that only Xi for i near 1 can have non-zero values in the tensorization (8.6.8). In particular,

fv(i/n) = fv′(i/n) for all i s.t.
i

n
≥ 2

k
, i.e. i ≥ 2n

k
.

Rewriting expression (8.6.8), then, and noting that fv(x) ∈ [−1/k, 1/k] for all x by construction,
we have

n∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2 ≤
2n/k∑
i=1

1

2σ2
(fv(Xi)− fv′(Xi))

2 ≤ 1

2σ2

2n

k

1

k2
=

n

k3σ2
.

Combining this with inequality (8.6.8) and the minimax bound (8.6.7), we obtain∥∥Pn+j − Pn−j∥∥TV
≤
√

n

2k3σ2
,

so

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

[
1−

√
n

2k3σ2

]
.

Choosing k for optimal tradeoffs Now we simply choose k; in particular, setting

k =

⌈( n

2σ2

)1/3
⌉

then 1−
√

n

2k3σ2
≥ 1−

√
1/4 =

1

2
,

and we arrive at

Mn(F , ‖·‖22) ≥ c

k3

k∑
j=1

1

2
=

c

2k2
≥ c′

(
σ2

n

)2/3

,

where c′ > 0 is a universal constant. Theorem 8.6.4 follows.
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8.7 Global Fano Method

In this section, we extend the techniques of Section 8.4 on Fano’s method (the local Fano method)
to a more global construction. In particular, we show that, rather than constructing a local packing,
choosing a scaling δ > 0, and then optimizing over this δ, it is actually, in many cases, possible to
prove lower bounds on minimax error directly using packing and covering numbers (metric entropy
and packing entropy).

8.7.1 A mutual information bound based on metric entropy

To begin, we recall the classical Fano inequality in Corollary 8.4.2, which says that for any Markov
chain V → X → V̂ , where V is uniform on the finite set V, we have

P(V̂ 6= V ) ≥ 1− I(V ;X) + log 2

log(|V|)
.

Thus, there are two ingredients in proving lower bounds on the error in a hypothesis test: upper
bounding the mutual information and lower bounding the size |V|. The key in the global Fano
method is an upper bound on the former (the information I(V ;X)) using covering numbers.

Before stating our result, we require a bit of notation. First, we assume that V is drawn from a
distribution µ, and conditional on V = v, assume the sample X ∼ Pv. Then a standard calculation
(or simply the definition of mutual information; recall equation (8.4.4)) gives that

I(V ;X) =

∫
Dkl

(
Pv||P

)
dµ(v), where P =

∫
Pvdµ(v).

Now, we show how to connect this mutual information quantity to a covering number of a set of
distributions.

Assume that for all v, we have Pv ∈ P, where P is a collection of distributions. In analogy
with Definition 4.7, we say that the collection of distributions {Qi}Ni=1 form an ε-cover of P in
KL-divergence if for all P ∈ P, there exists some i such that Dkl (P ||Qi) ≤ ε2. With this, we may
define the KL-covering number of the set P as

Nkl (ε,P) := inf

{
N ∈ N | ∃ Qi, i = 1, . . . , N, sup

P∈P
min
i
Dkl (P ||Qi) ≤ ε2

}
, (8.7.1)

where Nkl (ε,P) = +∞ if no such cover exists. With definition (8.7.1) in place, we have the following
proposition.

Proposition 8.7.1. Under conditions of the preceding paragraphs, we have

I(V ;X) ≤ inf
ε>0

{
ε2 + logNkl (ε,P)

}
. (8.7.2)

Proof First, we claim that∫
Dkl

(
Pv||P

)
dµ(v) ≤

∫
Dkl (Pv||Q) dµ(v) (8.7.3)
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for any distribution Q. Indeed, we have∫
Dkl

(
Pv||P

)
dµ(v) =

∫
V

∫
X
dPv log

dPv

dP
dµ(v) =

∫
V

∫
X
dPv

[
log

dPv
Q

+ log
dQ

dP

]
dµ(v)

=

∫
V
Dkl (Pv||Q) dµ(v) +

∫
X

∫
V
dµ(v)dPv︸ ︷︷ ︸

=dP

log
dQ

dP

=

∫
Dkl (Pv||Q) dµ(v)−Dkl

(
P ||Q

)
≤
∫
Dkl (Pv||Q) dµ(v),

so that inequality (8.7.3) holds. By carefully choosing the distribution Q in the upper bound (8.7.3),
we obtain the proposition.

Now, assume that the distributions Qi, i = 1, . . . , N form an ε2-cover of the family P, meaning
that

min
i∈[N ]

Dkl (P ||Qi) ≤ ε2 for all P ∈ P.

Let pv and qi denote the densities of Pv and Qi with respect to some fixed base measure on X (the
choice of based measure does not matter). Then definining the distribution Q = (1/N)

∑N
i=1Qi,

we obtain for any v that in expectation over X ∼ Pv,

Dkl (Pv||Q) = EPv
[
log

pv(X)

q(X)

]
= EPv

[
log

pv(X)

N−1
∑n

i=1 qi(X)

]
= logN + EPv

[
log

pv(X)∑N
i=1 qi(X)

]
≤ logN + EPv

[
log

pv(X)

maxi qi(X)

]
≤ logN + min

i
EPv

[
log

pv(X)

qi(X)

]
= logN + min

i
Dkl (Pv||Qi) .

By our assumption that the Qi form a cover, this gives the desired result, as ε ≥ 0 was arbitrary,
as was our choice of the cover.

By a completely parallel proof, we also immediately obtain the following corollary.

Corollary 8.7.2. Assume that X1, . . . , Xn are drawn i.i.d. from Pv conditional on V = v. Let
Nkl (ε,P) denote the KL-covering number of a collection P containing the distributions (over a
single observation) Pv for all v ∈ V. Then

I(V ;X1, . . . , Xn) ≤ inf
ε≥0

{
nε2 + logNkl (ε,P)

}
.

With Corollary 8.7.2 and Proposition 8.7.1 in place, we thus see that the global covering numbers
in KL-divergence govern the behavior of information.

We remark in passing that the quantity (8.7.2), and its i.i.d. analogue in Corollary 8.7.2, is
known as the index of resolvability, and it controls estimation rates and redundancy of coding
schemes for unknown distributions in a variety of scenarios; see, for example, Barron [17] and
Barron and Cover [18]. It is also similar to notions of complexity in Dudley’s entropy integral
(cf. Dudley [71]) in empirical process theory, where the fluctuations of an empirical process are
governed by a tradeoff between covering number and approximation of individual terms in the
process.
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8.7.2 Minimax bounds using global packings

There is now a four step process to proving minimax lower bounds using the global Fano method.
Our starting point is to recall the Fano minimax lower bound in Proposition 8.4.3, which begins
with the construction of a set of points {θ(Pv)}v∈V that form a 2δ-packing of a set Θ in some
ρ-semimetric. With this inequality in mind, we perform the following four steps:

(i) Bound the packing entropy. Give a lower bound on the packing number of the set Θ with
2δ-separation (call this lower bound M(δ)).

(ii) Bound the metric entropy. Give an upper bound on the KL-metric entropy of the class P of
distributions containing all the distributions Pv, that is, an upper bound on logNkl (ε,P).

(iii) Find the critical radius. Noting as in Corollary 8.7.2 that with n i.i.d. observations, we have

I(V ;X1, . . . , Xn) ≤ inf
ε≥0

{
nε2 + logNkl (ε,P)

}
,

we now balance the information I(V ;Xn
1 ) and the packing entropy logM(δ). To that end, we

choose εn and δ > 0 at the critical radius, defined as follows: choose the any εn such that

nε2n ≥ logNkl (εn,P) ,

and choose the largest δn > 0 such that

logM(δn) ≥ 4nε2n + 2 log 2 ≥ 2Nkl (εn,P) + 2nε2n + 2 log 2 ≥ 2 (I(V ;Xn
1 ) + log 2) .

(We could have chosen the εn attaining the infimum in the mutual information, but this way
we need only an upper bound on logNkl (ε,P).)

(iv) Apply the Fano minimax bound. Having chosen δn and εn as above, we immediately obtain
that for the Markov chain V → Xn

1 → V̂ ,

P(V 6= V̂ ) ≥ 1− I(V ;X1, . . . , Xn) + log 2

logM(δn)
≥ 1− 1

2
=

1

2
,

and thus, applying the Fano minimax bound in Proposition 8.4.3, we obtain

Mn(θ(P); Φ ◦ ρ) ≥ 1

2
Φ(δn).

8.7.3 Example: non-parametric regression

In this section, we flesh out the outline in the prequel to show how to obtain a minimax lower
bound for a non-parametric regression problem directly with packing and metric entropies. In
this example, we sketch the result, leaving explicit constant calculations to the dedicated reader.
Nonetheless, we recover an analogue of Theorem 8.6.4 on minimax risks for estimation of 1-Lipschitz
functions on [0, 1].

We use the standard non-parametric regression setting, where our observations Yi follow the
independent noise model (8.6.1), that is, Yi = f(Xi) + εi. Letting

F := {f : [0, 1]→ R, f(0) = 0, f is Lipschitz}

be the family of 1-Lipschitz functions with f(0) = 0, we have
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Proposition 8.7.3. There exists a universal constant c > 0 such that

Mn(F , ‖·‖∞) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖∞

]
≥ c

(
σ2

n

)1/3

,

where f̂n is constructed based on the n independent observations f(Xi) + εi.

The rate in Proposition 8.7.3 is sharp to within factors logarithmic in n; a more precise analysis of
the upper and lower bounds on the minimax rate yields

Mn(F , ‖·‖∞) := inf
f̂n

sup
f∈F

Ef
[
‖f̂n − f‖∞

]
�
(
σ2 log n

n

)1/3

.

See, for example, Tsybakov [167] for a proof of this fact.
Proof Our first step is to note that the covering and packing numbers of the set F in the `∞
metric satisfy

logN(δ,F , ‖·‖∞) � logM(δ,F , ‖·‖∞) � 1

δ
. (8.7.4)

To see this, fix some δ ∈ (0, 1) and assume for simplicity that 1/δ is an integer. Define the sets

Ej = [δ(j − 1), δj), and for each v ∈ {−1, 1}1/δ define hv(x) =
∑1/δ

j=1 vj1 {x ∈ Ej}. Then define

the function fv(t) =
∫ t

0 hv(t)dt, which increases or decreases linearly on each interval of width δ in

[0, 1]. Then these fv form a 2δ-packing and a 2δ-cover of F , and there are 21/δ such fv. Thus the
asymptotic approximation (8.7.4) holds.

JCD Comment: TODO: Draw a picture

Now, if for some fixed x ∈ [0, 1] and f, g ∈ F we define Pf and Pg to be the distributions of the
observations f(x) + ε or g(x) + ε, we have that

Dkl (Pf ||Pg) =
1

2σ2
(f(Xi)− g(Xi))

2 ≤
‖f − g‖2∞

2σ2
,

and if Pnf is the distribution of the n observations f(Xi) + εi, i = 1, . . . , n, we also have

Dkl

(
Pnf ||Png

)
=

n∑
i=1

1

2σ2
(f(Xi)− g(Xi))

2 ≤ n

2σ2
‖f − g‖2∞ .

In particular, this implies the upper bound

logNkl (ε,P) .
1

σε

on the KL-metric entropy of the class P = {Pf : f ∈ F}, as logN(δ,F , ‖·‖∞) � δ−1. Thus we have
completed steps (i) and (ii) in our program above.

It remains to choose the critical radius in step (iii), but this is now relatively straightforward:
by choosing εn � (1/σn)1/3, and whence nε2n � (n/σ2)1/3, we find that taking δ � (σ2/n)1/3 is
sufficient to ensure that logN(δ,F , ‖·‖∞) & δ−1 ≥ 4nε2n + 2 log 2. Thus we have

Mn(F , ‖·‖∞) & δn ·
1

2
&

(
σ2

n

)1/3

as desired.
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8.8 Deferred proofs

8.8.1 Proof of Proposition 8.4.6

Our argument for proving the proposition parallels that of the classical Fano inequality by Cover
and Thomas [53]. Letting E be a {0, 1}-valued indicator variable for the event ρ(V̂ , V ) ≤ t, we
compute the entropy H(E, V | V̂ ) in two different ways. On one hand, by the chain rule for entropy,
we have

H(E, V | V̂ ) = H(V | V̂ ) +H(E | V, V̂ )︸ ︷︷ ︸
=0

, (8.8.1)

where the final term vanishes since E is (V, V̂ )-measurable. On the other hand, we also have

H(E, V | V̂ ) = H(E | V̂ ) +H(V | E, V̂ ) ≤ H(E) +H(V | E, V̂ ),

using the fact that conditioning reduces entropy. Applying the definition of conditional entropy
yields

H(V | E, V̂ ) = P(E = 0)H(V | E = 0, V̂ ) + P(E = 1)H(V | E = 1, V̂ ),

and we upper bound each of these terms separately. For the first term, we have

H(V | E = 0, V̂ ) ≤ log(|V| −Nmin
t ),

since conditioned on the event E = 0, the random variable V may take values in a set of size at
most |V| −Nmin

t . For the second, we have

H(V | E = 1, V̂ ) ≤ logNmax
t ,

since conditioned on E = 1, or equivalently on the event that ρ(V̂ , V ) ≤ t, we are guaranteed that
V belongs to a set of cardinality at most Nmax

t .
Combining the pieces and and noting P(E = 0) = Pt, we have proved that

H(E, V | V̂ ) ≤ H(E) + Pt log
(
|V| −Nmin

)
+ (1− Pt) logNmax

t .

Combining this inequality with our earlier equality (8.8.1), we see that

H(V | V̂ ) ≤ H(E) + Pt log(|V| −Nmin
t ) + (1− Pt) logNmax

t .

Since H(E) = h2(Pt), the claim (8.4.9) follows.

8.8.2 Proof of Corollary 8.4.7

First, by the information-processing inequality [e.g. 53, Chapter 2], we have I(V ; V̂ ) ≤ I(V ;X),
and hence H(V | X) ≤ H(V | V̂ ). Since h2(Pt) ≤ log 2, inequality (8.4.9) implies that

H(V | X)− logNmax
t ≤ H(V | V̂ )− logNmax

t ≤ P(ρ(V̂ , V ) > t) log
|V| −Nmin

t

Nmax
t

+ log 2.

Rearranging the preceding equations yields

P(ρ(V̂ , V ) > t) ≥ H(V | X)− logNmax
t − log 2

log
|V|−Nmin

t
Nmax
t

. (8.8.2)
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Note that his bound holds without any assumptions on the distribution of V .
By definition, we have I(V ;X) = H(V ) − H(V | X). When V is uniform on V, we have

H(V ) = log |V|, and hence H(V | X) = log |V| − I(V ;X). Substituting this relation into the
bound (8.8.2) yields the inequality

P(ρ(V̂ , V ) > t) ≥
log |V|

Nmax
t

log
|V|−Nmin

t
Nmax
t

− I(V ;X) + log 2

log
|V|−Nmin

t
Nmax
t

≥ 1− I(V ;X) + log 2

log |V|
Nmax
t

.

8.8.3 Proof of Lemma 8.5.2

Fix an (arbitrary) estimator θ̂. By assumption (8.5.1), we have

Φ(ρ(θ, θ(Pv))) ≥ 2δ

d∑
j=1

1 {[v̂(θ)]j 6= vj} .

Taking expectations, we see that

sup
P∈P

EP
[
Φ(ρ(θ̂(X), θ(P )))

]
≥ 1

|V|
∑
v∈V

EPv
[
Φ(ρ(θ̂(X), θv))

]

≥ 1

|V|
∑
v∈V

2δ
d∑
j=1

EPv
[
1
{

[ψ(θ̂)]j 6= vj

}]
as the average is smaller than the maximum of a set and using the separation assumption (8.5.1).
Recalling the definition of the mixtures P±j as the joint distribution of V and X conditional on
Vj = ±1, we swap the summation orders to see that

1

|V|
∑
v∈V

Pv

(
[v̂(θ̂)]j 6= vj

)
=

1

|V|
∑
v:vj=1

Pv

(
[v̂(θ̂)]j 6= vj

)
+

1

|V|
∑

v:vj=−1

Pv

(
[v̂(θ̂)]j 6= vj

)
=

1

2
P+j

(
[v̂(θ̂)]j 6= vj

)
+

1

2
P−j

(
[v̂(θ̂)]j 6= vj

)
.

This gives the statement claimed in the lemma, while taking an infimum over all testing procedures
Ψ : X → {−1,+1} gives the claim (8.5.2).

8.9 Bibliography

For a fuller technical introduction into nonparametric estimation, see the book by Tsybakov [167].
Has’minskii [100].

The material in Section 8.7 is based on a paper of Yang and Barron [175].

8.10 Exercises

Exercise 8.1 (A generalized version of Fano’s inequality; cf. Proposition 8.4.6): Let V and V̂ be
arbitrary sets, and suppose that π is a (prior) probability measure on V, where V is distributed
according to π. Let V → X → V̂ be Markov chain, where V takes values in V and V̂ takes values
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in V̂. Let N ⊂ V × V̂ denote a measurable subset of V × V̂ (a collection of neighborhoods), and for
any v̂ ∈ V̂, denote the slice

Nv̂ := {v ∈ V : (v, v̂) ∈ N} . (8.10.1)

That is, N denotes the neighborhoods of points v for which we do not consider a prediction v̂ for
v to be an error, and the slices (8.10.1) index the neighborhoods. Define the “volume” constants

pmax := sup
v̂
π(V ∈ Nv̂) and pmin := inf

v̂
π(V ∈ Nv̂).

Define the error probability Perror = P[(V, V̂ ) 6∈ N ] and entropy h2(p) = −p log p− (1−p) log(1−p).

(a) Prove that for any Markov chain V → X → V̂ , we have

h2(Perror) + Perror log
1− pmin

pmax
≥ log

1

pmax
− I(V ; V̂ ). (8.10.2)

(b) Conclude from inequality (8.10.2) that

P[(V, V̂ ) 6∈ N ] ≥ 1− I(V ;X) + log 2

inf v̂ log 1
π(Nv̂)

.

(c) Now we give a version explicitly using distances. Let V ⊂ Rd and define N = {(v, v′) :
‖v − v′‖ ≤ δ} to be the points within δ of one another. Let Bv denote the ‖·‖-ball of radius 1
centered at v. Conclude that for any prior π on Rd that

P
(
‖V − V̂ ‖2 ≥ δ

)
≥ 1− I(V ;X) + log 2

log 1
supv π(δBv)

.

Exercise 8.2: In this question, we will show that the minimax rate of estimation for the parameter

of a uniform distribution (in squared error) scales as 1/n2. In particular, assume that Xi
iid∼

Uniform(θ, θ + 1), meaning that Xi have densities p(x) = 1 {x ∈ [θ, θ + 1]}. Let X(1) = mini{Xi}
denote the first order statistic.

(a) Prove that

E[(X(1) − θ)2] =
2

(n+ 1)(n+ 2)
.

(Hint: the fact that E[Z] =
∫∞

0 P(Z ≥ t)dt for any positive Z may be useful.)

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of θ ∈ R for the
uniform family U = {Uniform(θ, θ + 1) : θ ∈ R} in squared error has lower bound c/n2, where
c is a numerical constant.

Exercise 8.3 (Sign identification in sparse linear regression): In sparse linear regression, we have
n observations Yi = 〈Xi, θ

∗〉+ εi, where Xi ∈ Rd are known (fixed) matrices and the vector θ∗ has

a small number k � d of non-zero indices, and εi
iid∼ N(0, σ2). In this problem, we investigate the

problem of sign recovery, that is, identifying the vector of signs sign(θ∗j ) for j = 1, . . . , d, where
sign(0) = 0.
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Assume we have the following process: fix a signal threshold θmin > 0. First, a vector S ∈
{−1, 0, 1}d is chosen uniformly at random from the set of vectors Sk := {s ∈ {−1, 0, 1}d : ‖s‖1 = k}.
Then we define vectors θs so that θsj = θminsj , and conditional on S = s, we observe

Y = Xθs + ε, ε ∼ N(0, σ2In×n).

(Here X ∈ Rn×d is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator Ŝ of S, we have

P(Ŝ 6= S) ≥ 1

2
unless n ≥ c

d
k log

(
d
k

)∥∥n−1/2X
∥∥2

Fr

σ2

θ2
min

,

where c is a numerical constant. You may assume that k ≥ 4 or log
(
d
k

)
≥ 4 log 2.

(b) Assume that X ∈ {−1, 1}n×d. Give a lower bound on how large n must be for sign recovery.
Give a one sentence interpretation of σ2/θ2

min.

Exercise 8.4 (General minimax lower bounds): In this exercise, we outline a more general
approach to minimax risk than that afforded by studying losses applied to parameter error. In
particular, we may instead consider losses of the form

L : Θ× P → R+

where P is a collection of distributions and Θ is a parameter space, where additionally the losses
satisfy the condition

inf
θ∈Θ

L(θ, P ) = 0 for all P ∈ P.

(a) Consider a statistical risk minimization problem, where we have a distribution P on random
variable X ∈ X , loss function f : Θ × X → R, and for P ∈ P define the population risk
FP (θ) := EP [f(θ,X)]. Show that

L(θ, P ) := FP (θ)− inf
θ∈Θ

FP (θ)

satisfies the conditions above.

(b) For distributions P0, P1, define the separation between them (for the loss L) by

sepL(P0, P1; Θ) := sup

{
δ ≥ 0 :

L(θ, P0) ≤ δ implies L(θ, P1) ≥ δ
L(θ, P1) ≤ δ implies L(θ, P0) ≥ δ for any θ ∈ Θ

}
. (8.10.3)

That is, having small loss on P0 implies large loss on P1 and vice versa.

We say a collection of distributions {Pv}v∈V indexed by V is δ-separated if sepL(Pv, Pv′ ; Θ) ≥ δ.
Show that if {Pv}v∈V is δ-separated, then for any estimator θ̂

1

|V|
∑
v∈V

EPv [L(θ̂, Pv)] ≥ δ inf
v̂
P(v̂ 6= V ),

where P is the joint distribution over the random index V chosen uniformly and then X sampled
X ∼ Pv conditional on V = v.
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(c) Show that if P has a δ-separated subset {Pv}v∈V , then

M(P, L) := inf
θ̂

sup
P∈P

EP [L(θ̂, P )] ≥ δ inf
v̂
P(v̂ 6= V ).

Exercise 8.5 (Optimality in stochastic optimization): In this question, we prove minimax lower
bounds on the convergence rates in stochastic optimization problems based on the size of the
domain over which we optimize and certain Lipschitz conditions of the functions themselves. You
may assume the dimension d in the problems we consider is as large as you wish.

The setting is as follows: we have a domain Θ ⊂ Rd, function f : Θ× X → R, which is convex
in its first argument, and population risks FP (θ) := EP [f(θ,X)], where the expectation is taken
over X ∼ P . For any two functions F0, F1, let θv ∈ argminθ∈Θ Fv(θ), and define the optimization
distance between F0 and F1 by

dopt(F0, F1; Θ) := inf
θ∈Θ

{
F0(θ) + F1(θ)− F0(θ0)− F1(θ1)

}
.

Define also the loss L(θ, P ) := FP (θ)− infθ∈Θ FP (θ).

(a) Show for any δ ≥ 0 that if dopt(F0, F1; Θ) ≥ δ, then sepL(P0, P1; Θ) ≥ δ
2 , where sep is defined

in Eq. (8.10.3).

We consider lower bounds for stochastic optimization problems with appropriately Lipschitz f .

(b) Let the sample space X = {±ej}dj=1 be the signed standard basis vectors, and for θ ∈ Rd,
define

f(θ;x) :=

{
|θj − 1| if x = ej

|θj + 1| if x = −ej .

Let v ∈ {−1, 1}d. For some δ > 0 to be chosen, define the distribution Pv on X by

X =

{
vjej w.p. 1+δ

2d

−vjej w.p. 1−δ
2d .

(Note that ‖X‖0 = 1.) Give an explicit formula for

Fv(θ) := EPv [f(θ,X)].

(c) Show that θv = argminθ Fv(θ) = v and that Fv(θ
v) = 1− δ.

(d) Let V ⊂ {±1}d be a d/2-packing in `1-distance of cardinality at least exp(d/8) (by Gilbert-
Varshamov, Lemma 8.2.3). Assume that Θ ⊃ [−1, 1]d. Show that dopt(Fv, Fv′) ≥ δ ‖v − v′‖1 /d
for all distinct v, v′ ∈ V.

(e) For our loss L(θ, P ) = FP (θ)− infθ∈Θ FP (θ), show that the minimax loss gap

Mn(P,Θ, L) := inf
θ̂n

sup
P∈P

EP [L(θ̂n(Xn
1 ), P )] = inf

θ̂n

sup
P∈P

{
EP [FP (θ̂n(Xn

1 ))− F ?P ]
}

(where F ?P = infθ∈Θ FP (θ) and Xn
1

iid∼ P ) satisfies

Mn(P, L) ≥ cmin

{√
d√
n
, 1

}
.

where c > 0 is a constant. You may assume d ≥ 8 (or any other large constant) for simplicity.
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(f) Show how to modify this construction so that for constants L,R > 0, if Θ ⊃ [−R,R]d, there
are functions f that are L-Lipschitz with respect to the `∞ norm, meaning

|f(θ;x)− f(θ′;x)| ≤ L
∥∥θ − θ′∥∥∞ ,

such that for this domain Θ, loss f (and induced L), and the same family of distributions P
as above,

Mn(P,Θ, L) ≥ cLRmin

{√
d√
n
, 1

}
.

(g) Suppose that instead, we have Θ ⊃ {θ ∈ Rd | ‖θ‖2 ≤ R2}, the `2-ball of radius R2, and allow
f to be L2-Lipschitz with respect to the `2-norm (instead of `∞). Show that

Mn(P,Θ, L) ≥ cL2R2√
n
.

(h) What do these results say about stochastic gradient methods?

Exercise 8.6 (Optimality in high-dimensional stochastic optimization): We revisit the setting
in Question 8.5, except that we consider a high-dimensional regime. In particular, we will prove
lower bounds on optimization when the domain Θ = {θ ∈ Rd | ‖θ‖1 ≤ r}, the `1-ball, and the loss
functions f are M -Lipschitz with respect to the `1-norm, equivalently, that ‖∇θf(θ, x)‖∞ ≤M for
all θ ∈ Θ. For distributions P on X, define FP (θ) = EP [f(θ,X)] and F ?P = infθ∈Θ FP (θ).

We now give an explicit construction. Let the sample space X = {−1, 1}d be the hypercube,
and consider linear losses

f(θ;x) = M〈θ, x〉,

which are evidently M -Lipschitz w.r.t. the `1-norm. Now, for the packing set V = {±ej}dj=1 of the

standard basis vectors, define the distribution Pv on X ∈ {±1}d to have independent coordinates
with

Xj =

{
1 w.p.

1+δvj
2

−1 w.p.
1−δvj

2 .

That is, X ∼ Pv has independent random sign coordinates except in coordinate j when v = ej ,
where P±ej (Xj = ±1) = 1±δ

2 . Let

Fv(θ) = EPv [f(θ,X)] = Mδ〈v, θ〉.

(a) Give θv := argminθ∈Θ Fv(θ).

(b) Using the optimization distance dopt(F0, F1; Θ) = infθ∈Θ{F0(θ) + F1(θ) − F ?0 − F ?1 }, where
F ?v = infθ∈Θ Fv(θ), defined in Question 8.5, show the separation

min
v 6=v′

dopt(Fv, Fv′ ; Θ) = Mδr.

(c) Let the loss L(θ, P ) = FP (θ) − infθ∈Θ FP (θ) as in Question 8.5, let P be the collection of
distributions supported on [−1, 1]d, and define the minimax loss gap

Mn(P,Θ, L) := inf
θ̂n

sup
P∈P

{
EP
[
FP (θ̂n(Xn

1 ))− F ?P
]}
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where Xn
1

iid∼ P . Show that there exists a numerical constant c > 0 such that

Mn(P,Θ, L) ≥ c
√

log(2d)√
n

.

(You may assume d ≥ 2 to avoid trivial cases.) Hint. Use the result of Question 8.4 part (c).

Exercise 8.7: In this question, we study the question of whether adaptivity can give better
estimation performance for linear regression problems. That is, for i = 1, . . . , n, assume that we
observe variables Yi in the usual linear regression setup,

Yi = 〈Xi, θ〉+ εi, εi
iid∼ N(0, σ2), (8.10.4)

where θ ∈ Rd is unknown. But now, based on observing Y i−1
1 = {Y1, . . . , Yi−1}, we allow an adaptive

choice of the next predictor variables Xi ∈ Rd. Let Lnada(F2) denote the family of linear regression
problems under this adaptive setting (with n observations) where we constrain the Frobenius norm
of the data matrix X> = [X1 · · · Xn], X ∈ Rn×d, to have bound ‖X‖2Fr =

∑n
i=1 ‖Xi‖22 ≤ F2. We

use Assouad’s method to show that the minimax mean-squared error satisfies the following bound:

M(Lnada(F2), ‖·‖22) := inf
θ̂

sup
θ∈Rd

E[‖θ̂ − θ‖22] ≥ dσ2

n
· 1

16 1
dnF

2
. (8.10.5)

Here the infimum is taken over all adaptive procedures satisfying ‖X‖2Fr ≤ F2.
In general, when we choose Xi based on the observations Y i−1

1 , we are taking Xi = Fi(Y
i−1

1 , U i1),
where Ui is a random variable independent of εi and Y i−1

1 and Fi is some function. Justify the
following steps in the proof of inequality (8.10.5):

(i) Assume that nature chooses v ∈ V = {−1, 1}d uniformly at random and, conditionally on v,
let θ = θv. Justify

M(Lnada(F2), ‖·‖22) ≥ inf
θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22].

Argue it is no loss of generality to assume that the choices for Xi are deterministic based on
the Y i−1

1 . Thus, throughout we assume that Xi = Fi(Y
i−1

1 , ui1), where un1 is a fixed sequence,
or, for simplicity, that Xi is a function of Y i−1

1 .

(ii) Fix δ > 0. Let v ∈ {−1, 1}d, and for each such v, define θv = δv. Also let Pnv denote the joint
distribution (over all adaptively chosen Xi) of the observed variables Y1, . . . , Yn, and define
Pn+j = 1

2d−1

∑
v:vj=1 P

n
v and Pn−j = 1

2d−1

∑
v:vj=−1 P

n
v , so that Pn±j denotes the distribution of

the Yi when v ∈ {−1, 1}d is chosen uniformly at random but conditioned on vj = ±1. Then

inf
θ̂

1

|V|
∑
v∈V

Eθv [‖θ̂ − θv‖22] ≥ δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
.

(iii) We have

δ2

2

d∑
j=1

[
1−

∥∥Pn+j − Pn−j∥∥TV

]
≥ δ2d

2

1−
(

1

d

d∑
j=1

∥∥Pn+j − Pn−j∥∥2

TV

) 1
2

 .
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(iv) Let P
(i)
+j be the distribution of the random variable Yi conditioned on vj = +1 (with the other

coordinates of v chosen uniformly at random), and let P
(i)
+j (· | y

i−1
1 , xi) denote the distribution

of Yi conditioned on vj = +1, Y i−1
1 = yi−1

1 , and xi. Justify∥∥Pn+j − Pn−j∥∥2

TV
≤ 1

2
Dkl

(
Pn+j ||Pn−j

)
≤ 1

2

n∑
i=1

∫
Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
dP i−1

+j (yi−1
1 , xi).

(v) Then we have
d∑
j=1

Dkl

(
P

(i)
+j (· | y

i−1
1 , xi)||P (i)

−j (· | y
i−1
1 , xi)

)
≤ 2δ2

σ2
‖xi‖22 .

(vi) We have
d∑
j=1

∥∥Pn+j − Pn−j∥∥2

TV
≤ δ2

σ2
E[‖X‖2Fr],

where the final expectation is over V drawn uniformly in {−1, 1}d and all Yi, Xi.

(vii) Show how to choose δ appropriately to conclude the minimax bound (8.10.5).

Exercise 8.8: Suppose under the setting of Question 8.7 that we may no longer be adaptive,
meaning that the matrix X ∈ Rn×d must be chosen ahead of time (without seeing any data).
Assuming n ≥ d, is it possible to attain (within a constant factor) the risk (8.10.5)? If so, give an
example construction, if not, explain why not.

Exercise 8.9 (The curse of dimensionality in nonparametric regression): Consider the non-
parametric regression problem in Section 8.6. Let Bd be the unit `2-ball in Rd and consider the
function class F of 1-Lipschitz functions taking values in [−1, 1] on Bd, and consider the error
‖f − g‖22 =

∫
Bd(f(x)− g(x))2dx. (Here, 1-Lipschitz means |f(x)− f(x′)| ≤ ‖x− x′‖2 for any x, x′.)

We show the minimax lower bound (8.6.4) for this function class using Fano’s method. Fix δ ∈ [0, 1]
to be chosen and let {xj}Mj=1 be the centers of a maximal 2δ-packing of Bd, so that M ≥ ( 1

2δ )d (by
Lemma 4.3.10), and define the “bump” functions

gj(x) = δ
[
1− ‖x− xj‖2 /δ

]
+
,

which all have disjoint support. Then for a vector v ∈ {±1}M , define

fv(x) :=

M∑
j=1

vjgj(x).

(a) Show that fv ∈ F .

(b) Show that
∫
gj(x)2dx = 2·SA(d)

d(d+1)(d+2)δ
2+d, where SA(d) denotes the surface area of Bd.

(c) Use the Gilbert-Varshamov bound (Lemma 8.2.3) to show there is a collection V ⊂ {±1}M of
cardinality exp(M/8) with ‖fv − fv′‖22 ≥ cdδ2 for all v 6= v′ ∈ V, where cd depends only on the
dimension d.
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(d) Prove the minimax lower bound (8.6.4) for β = 1.

Exercise 8.10 (Optimal algorithms for memory access): In a modern CPU, memory is
organized in a hierarchy, so that data upon which computations are being actively performed lies
in a very small memory close to the logic units of the processor for which access is extraordinarily
fast, while data not being actively used lies in slower memory slightly farther from the processor.
(Modern processor memory is generally organized into the registers—a small number of 4- or 8-byte
memory locations on the processor—and level 1, 2, (and sometimes 3 or more) cache, which contain
small amounts of data and increasing access times, and RAM (random access memory).) Moving
data—communicating—between levels of the memory hierarchy is both power intensive and very
slow relative to computation on the data itself, so that in many algorithms the bulk of the time of
the algorithm is in moving data from one place to another to be computed upon. Thus, developing
very fast algorithms for numerical (and other) tasks on modern computers requires careful tracking
of memory access and communication, and careful control of these quantities can often yield orders
of magnitude speed improvements in execution. In this problem, you will prove a lower bound on
the number of communication steps that a variety of numerical-type methods must perform, giving
a concrete (attainable) inequality that allows one to certify optimality of specific algorithms.

In particular, we consider matrix multiplication, as it is a proxy for a class of cubic algorithms
that are well behaved. Let A,B ∈ Rn×n be matrices, and assume we wish to compute C = AB,
via the simple algorithm that for all i, j sets

Cij =
n∑
l=1

AilBlj .

Computationally, this forces us to repeatedly execute operations of the form

Mem(Cij) = F (Mem(Ail),Mem(Blj),Mem(Cij)),

where F is some function—that may depend on i, j, l—and Mem(·) indicates that we access the
memory associated with the argument. (In our case, we have Cij = Cij + Ail · Blj .) We assume
that executing F requires that Mem(Ail), Mem(Blj), and Mem(Cij) belong to fast memory, and
that each are distinct (stored in a separate place in flow and fast memory). We assume that the
order of the computations does not matter, so we may re-order them in any way. We call Mem(Ail)
(respectively B or C) and operand in our computation. We let M denote the size of fast/local
memory, and we would like to lower bound the number of times we must communicate an operand
into or out of the fast local memory as a function of n, the matrix size, and M , the fast memory
size, when all we may do is re-order the computation being executed. We let NStore denote the
number of times we write something from fast memory out to slow memory and let NLoad the
number of times we load something from slow memory to fast memory. Let N be the total number
of operations we execute (for simple matrix multiplication, we have N = n3, though with sparse
matrices, this can be smaller).

We analyze the procedure by breaking the computation into a number of segments, where each
segment contains precisely M load or store (communication-causing) instructions.

(a) Let Nseg be an upper bound on the number of evaluations with the function F (·) in any given
segment (you will upper bound this in a later part of the problem). Justify that

NStore +NLoad ≥M bN/Nsegc .
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(b) Within a segment, all operands involved must be in fast memory at least once to be computed
with. Assume that memory locations Mem(Ail), Mem(Blj), and Mem(Cij) do not overlap.
For any operand involved in a memory operation in one of the segments, the operand (1) was
already in fast memory at the beginning of the segment, (2) was read from slow memory, (3)
is still in fast memory at the end of the segment, or (4) is written to slow memory at the end
of the segment. (There are also operands potentially created during execution that are simply
discarded; we do not bound those.) Justify the following: within a segment, for each type of
operand Mem(Aij), Mem(Bij), or Mem(Cij), there are at most c ·M such operands (i.e. there
are at most cM operands of type Mem(Aij), independent of the others, and so on), where c is
a numerical constant. What value of c can you attain?

(c) Using the result of question 6.1, argue that Nseg ≤ c′
√
M3 for a numerical constant c′. What

value of c′ do you get?

(d) Using the result of part (c), argue that the number of loads and stores satisfies

NStore +NLoad ≥ c′′
N√
M
−M

for a numerical constant c′′. What is your constant?

JCD Comment: A few additional question ideas:

1. Use the global Fano method technique to give lower bounds for density estimation

2. Curse of dimensionality in high-dimensional regression? The idea would be to take dis-
joint δ-balls Bj ⊂ Bd, where Bd = {x | ‖x‖ ≤ 1} is the unit ball, with centers xj , where
j runs from 1 to (1/δ)d, then define the bump function gj(x) = δ [1− ‖x− xj‖ /δ]+.
Then set fv(x) =

∑
j vjgj(x), which is 1-Lipschitz for the norm ‖·‖. Then the sepa-

ration is δ, while the log cardinality is 2δ
−d

, giving δ2(1− nδ2+d) as the lower bound.
Take δ = n−1/(2+d).
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Chapter 9

Constrained risk inequalities

In this chapter, we revisit our minimax bounds in the context of what we term constrained risk
inequalities. While the minimax risk of provides a first approach for providing fundamental limits
on procedures, its reliance on the collection of all measurable functions as its class of potential
estimators is somewhat limiting. Indeed, in most statistical and statistical learning problems, we
have some type of constraint on our procedures: they must be efficiently computable, they must
work with data arriving in a sequential stream, they must be robust, or they must protect the
privacy of the providers of the data. In modern computational hardware, where physical limits
prevent increasing clock speeds, we may like to use as much parallel computation as possible,
though there are potential tradeoffs between “sequentialness” of procedures and their parallelism.

With this as context, we replace the minimax risk of Chapter 8.1 with the constrained mini-
max risk, which, given a collection C of possible procedures—private, communication limited, or
otherwise—defines

M(θ(P),Φ ◦ ρ, C) := inf
θ̂∈C

sup
P∈P

EP
[
Φ
(
ρ(θ̂(X), θ(P ))

)]
, (9.0.1)

where as in the original defining equation (8.1.1) of the minimax risk, Φ : R+ → R+ is a nondecreas-
ing loss, ρ is a semimetric on the space Θ, and the expectation is taken over the sample X ∼ P .
In this chapter, we study the quantity (9.0.1) via a few examples, highlighting possibilities and
challenges with its analysis. We will focus on a restricted class of examples—many procedures do
not fall in the framework we consider—that assumes, given a sample X1, . . . , Xn, we can represent
the class C of estimators under consideration as acting on some view or processed version Zi of
Xi. This allows us to study communication complexity, memory complexity, and certain private
estimators.

9.1 Strong data processing inequalities

The starting point for our results is to consider strong data processing inequalities, which improve
upon the standard data processing inequality for divergences, as in Chapter 2.1.3, to provide more
quantitative versions. The initial setting is straightforward: we have distributions P0 and P1 on a
space X , and a channel (Markov kernel) Q from X to Z. When Q is contractive on the space of
distributions, we have a strong data processing inequality.

Definition 9.1 (Strong data processing inequalities). Let f : R+ → R ∪ {+∞} be convex and
satisfy f(1) = 0. For distributions P0, P1 on X and a channel Q from X to a space Z, define
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the marginal distribution Mv(A) :=
∫
Q(A | x)dPv(x). The channel Q satisfies a strong data

processing inequality with constant α ≤ 1 for the given f -divergence

Df (M0||M1) ≤ αDf (P0||P1)

for any choice of P0, P1 on X . For any such f , we define the f -strong data processing constant

αf (Q) := sup
P0 6=P1

Df (M0||M1)

Df (P0||P1)
.

These types of inequalities are common throughout information and probability theory. Perhaps
their most frequent use is in the development conditions for the fast mixing of Markov chains.
Indeed, suppose the Markov kernel Q satisfies a strong data processing inequality with constant α
with respect to variation distance. If π denotes the stationary distribution of the Markov kernel Q
and we use the operator ◦ to denote one step of the Markov kernel,1

Q ◦ P :=

∫
Q(· | x)dP (x),

then for any initial distribution π0 on the space X we have

‖Q ◦ · · · ◦Q︸ ︷︷ ︸
k times

π0 − π‖TV ≤ αk ‖π0 − π‖TV

because Q ◦ π = π by definition of the stationary distribution. Thus, the Markov chain enjoys
geometric mixing.

To that end, a common quantity of interest is the Dobrushin coefficient, which immediately
implies mixing rates.

Definition 9.2. The Dobrushin coefficient of a channel or Markov kernel Q is

αTV(Q) := sup
x,y
‖Q(· | x)−Q(· | y)‖TV .

The Dobrushin coefficient satisfies many properties, some of which we discuss in the exercises and
others of which we enumerate here. The first is that

Proposition 9.1.1. The Dobrushin coefficient is the strong data processing constant for the vari-
ation distance, that is,

αTV(Q) = sup
P0 6=P1

‖Q ◦ P0 −Q ◦ P1‖TV

‖P0 − P1‖TV

.

Proof There are two directions to the proof; one easy and one more challenging. For the easy
direction, we see immediately that if 1x and 1y denote point masses at x and y, then

sup
P0 6=P1

‖Q ◦ P0 −Q ◦ P1‖TV

‖P0 − P1‖TV

≥ sup
x,y
‖Q(· | x)−Q(· | y)‖TV

as ‖1x − 1y‖TV = 1 for x 6= y.

1The standard notation is usually to right-multiply the measure P , so that the marginal distribution M = PQ
means M(A) =

∫
Q(A | x)dP (x); we find our notation more intuitive.
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The other direction—that ‖Q ◦ P0 −Q ◦ P1‖TV ≤ αTV ‖P0 − P1‖TV—is is more challenging.
For this, recall Lemma 2.2.4 characterizing the variation distance, and let Q?(A) := infy Q(A | y).
Then by definition of the Dobrushin coefficient α = αTV(Q), we evidently have |Q(A | x)−Q?(A)| ≤
α. Let Mv =

∫
Q(· | x)dPv(x) for v ∈ {0, 1}. By expanding dP0−dP1 into its positive and negative

parts, we thus obtain

M0(A)−M1(A) =

∫
Q(A | x)(dP0 − dP1)(x)

=

∫
Q(A | x) [dP0(x)− dP1(x)]+ −

∫
Q(A | x) [dP1(x)− dP0(x)]+

≤
∫
Q(A | x) [dP0(x)− dP1(x)]+ −

∫
Q?(A) [dP1(x)− dP0(x)]+

=

∫
Q(A | x) [dP0(x)− dP1(x)]+ −

∫
Q?(A) [dP0(x)− dP1(x)]+ ,

where the final equality uses Lemma 2.2.4. But of course we then obtain

M0(A)−M1(A) =

∫
(Q(A | x)−Q?(A)) [dP0(x)− dP1(x)]+ ≤ α

∫
[dP0 − dP1]+ = α ‖P0 − P1‖TV ,

where the inequality follows as 0 ≤ Q(A | x)−Q?(A) ≤ α and the equality is one of the character-
izations of the total variation distance in Lemma 2.2.4.

A more substantial fact is that the Dobrushin coefficient upper bounds every other strong data
processing constant.

Theorem 9.1.2. Let f : R+ → R ∪ {∞} satisfy f(1) = 0. Then for any channel Q,

αTV(Q) ≥ αf (Q).

The theorem is roughly a consequence of a few facts. First, Proposition 9.1.1 holds. Second,
without loss of generality we may assume that f ≥ 0; indeed, replace f(t) with h(t) = f(t)− f ′(1)t
for any f ′(1) ∈ ∂f(1), we have h ≥ 0 as 0 ∈ ∂h(1) and Dh = Df . Third, any f ≥ 0 with 0 ∈ ∂f(1)

can be approximated arbitrarily accurately with functions of the form h(t) =
∑k

i=1 ai [t− ci]+ +∑k
i=1 bi [di − t]+, where ci ≥ 1 and di ≤ 1. For such h, an argument shows that

Dh(Q ◦ P0||Q ◦ P1) ≤ αTV(Q)Dh(P0||P1),

which follows from the similarities between variation distance, with f(t) = 1
2 |t|, and the positive

part functions [·]+.
There is a related result, which we do not prove, that guarantees that strong data processing

constants for χ2-divergences are the “worst” constants. In particular, if QP =
∫
Q(· | x)dP (x)

denotes the application of one step of a channel Q to X ∼ P , then the χ2 contraction coefficient is

αχ2(Q) = sup
P0 6=P1

Dχ2 (QP0||QP1)

Dχ2 (P0||P1)
.

Then it is possible to show that for any twice continuously differentiable f on R++ with f ′′(1) > 0,

αχ2(Q) ≤ αf (Q), (9.1.1)
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and we also have αχ2(Q) = αkl(Q), so that the strong data processing inequalities for KL-divergence
and χ2-divergence coincide.

In our context, that of (constrained) minimax lower bounds, such data processing inequalities
immediately imply somewhat sharper lower bounds than the (unconstrained) applications in previ-
ous chapters. Indeed, let us revisit the situation present in the local Fano bound, where we the KL
divergence has a Euclidean structure as in the bound (8.4.6), meaning that Dkl (P0||P1) ≤ κ2δ2 when
our parameters of interest θv = θ(Pv) satisfy ρ(θ0, θ1) ≤ δ. We assume that the constraints C impose
that the data Xi is passed through a channel Q with KL-data processing constant αKL(Q) ≤ 1. In
this case, in the basic Le Cam’s method (8.3.2), an application of Pinsker’s inequality yields that
whenever ρ(θ0, θ1) ≥ 2δ then

Mn(θ(P),Φ ◦ ρ, C) ≥ Φ(δ)

2

[
1−

√
n

2
Dkl (M0||M1)

]
≥ Φ(δ)

2

[
1−

√
nκ2αKL(Q)δ2/2

]
,

and the “standard” choice of δ to make the probability of error constant results in δ2 = (2nκ2αKL(Q))−1,
or the minimax lower bound

Mn(θ(P),Φ ◦ ρ, C) ≥ 1

4
Φ

(
1√

2nκ2αKL(Q)

)
,

which suggests an effective sample size degradation of n 7→ nαKL(Q). Similarly, in the local Fano
method in Chapter 8.4.1, we see identical behavior and an effective sample size degradation of
n 7→ nαKL(Q), that is, if without constraints a sample size of n(ε) is required to achieve some
desired accuracy ε, with the constraint a sample size of at least n(ε)/αKL(Q) is necessary.

9.2 Local privacy

In Chapter 7 on differential privacy, we define locally private mechanisms (Definition 7.2) as those
for which there is no trust: individuals randomize their own data, and no central curator collects
or analyzes and then privatizes the resulting statistics. With such privacy mechanisms, we can
directly develop strong data processing inequalities, after which we can prove strong lower bounds
on estimation. In this section, we (more or less) focus on one-dimensional quantities and Le Cam’s
two-point method for lower bounds, as they allow the most direct application of the ideas. We will
later develop more sophisticated techniques.

We begin with our setting. We have a ε-differentially private channel Q taking inputs x ∈ X
and outputting Z. Here, we allow sequential interactivity, meaning that the ith private variable Zi
may depend on both Xi and Zi−1

1 (see the graphical model in Figure 9.1), so that instead of the
basic constraint in Definition 7.2 that Q(A | x) ≤ eεQ(A | x′) for all x, x′, local differential privacy
instead means

Q(Zi ∈ A | Xi = x, zi−1
1 )

Q(Zi ∈ A | Xi = x′, zi−1
1 )

≤ eε (9.2.1)

for all (measurable) sets A and inputs x, x′, zi−1
1 . The key result is the following contraction

inequality on the space of probabilities.

Theorem 9.2.1. Let Q be an ε-locally differentially private channel from X to Z. Then for any
distributions P0, P1 inducing marginal distributions Mv(·) =

∫
Q(· | x)dPv(x),

Dkl (M0||M1) +Dkl (M1||M0) ≤ 4(eε − 1)2 ‖P0 − P1‖2TV .
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X1 X2 X3 Xn

Z1 Z2 Z3 Zn

Figure 9.1. The sequentially interactive private observation model: the ith output Zi may depend
on Xi and the previously released Zi−1

1 .

Proof Without loss of generality, we assume that the output space Z is finite (by defini-
tion (2.2.3)), and let mv(z) and q(z | x) be the p.m.f.s of M and Q, respectively, and let P0

and P1 have densities p0 and p1 with respect to a measure µ. Then

Dkl (M0||M1) +Dkl (M1||M0) =
∑
z

(m0(z)−m1(z)) log
m0(z)

m1(z)

For any a, b ≥ 0, we have log a
b = log(1 + a

b − 1) ≤ a
b − 1, and similarly, log b

a ≤
b
a − 1. That is,

| log a
b | ≤

|a−b|
min{a,b} . Substituting above, we obtain

Dkl (M0||M1) +Dkl (M1||M0) ≤
∑
z

(m0(z)−m1(z))2

min{m0(z),m1(z)}
.

To control the difference m0(z)−m1(z), note that for any fixed x0 ∈ X we have∫
X
q(z | x0)(p0(x)− p1(x))dµ(x) = 0.

Thus

m0(z)−m1(z) =

∫
X

(q(z | x)− q(z | x0))(p0(x)− p1(x))dµ(x),

and so

|m0(z)−m1(z)| ≤ sup
x∈X
|q(z | x)− q(z | x0)|

∫
X
|p0(x)− p1(x)|dµ(x)

= 2q(z | x0) sup
x∈X

(
q(z | x)

q(z | x0)
− 1

)
‖P0 − P1‖TV .

By definition of local differential privacy, q(z|x)
q(z|x0) − 1 ≤ eε − 1, and as x0 was arbitrary we obtain

|m0(z)−m1(z)| ≤ 2(eε − 1) inf
x
q(z | x) ‖P0 − P1‖TV .

Noting that infx q(z | x) ≤ min{m0(z),m1(z)} we obtain the theorem.
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To be able to apply this result to obtain minimax lower bounds for estimation as in Sec-
tion 8.3, we need to address samples drawn from product distributions, even with the potential
interaction (9.2.1). In this case, we consider sequential samples Zi ∼ Q(· | Xi, Z

i−1
1 ) and define

Mn
v =

∫
Q(· | xn1 )dPv(x

n
1 ) to be the marginal distribution over all the Zn1 . Then we have the

following corollary.

Corollary 9.2.2. Assume that each channel Q(· | Xi, Z
i−1
1 ) is εi-differentially private. Then

Dkl (Mn
0 ||Mn

1 ) ≤ 4
n∑
i=1

(eεi − 1)2 ‖P0 − P1‖2TV .

Proof Recalling the chain rule (2.1.6) for the KL-divergence, we have

Dkl (Mn
0 ||Mn

1 ) =

n∑
i=1

EM0

[
Dkl

(
M0,i(· | Zi−1

1 )||M1,i(· | Zi−1
1 )

)]
,

where the outer expectation is taken over Zi−1
1 drawn marginally from Mn

0 , and Mv,i(· | zi−1
1 )

denotes the conditional distribution on Zi given Zi−1
1 = zi−1

1 when Xn
1

iid∼ Pv. Writing this distri-
bution out, we note that Zi is conditionally independent of X\i given Xi and Zi−1

1 by construction,
so for any set A

Mv,i(A | zi−1
1 ) =

∫
Q(Zi ∈ A | xn1 , zi−1

1 )dPv(x
n
1 | zi−1

1 ) =

∫
Q(Zi ∈ A | xi, zi−1

1 )dPv(x
n
1 | zi−1

1 )

=

∫
Q(Zi ∈ A | xi, zi−1

1 )dPv(xi).

Now we know that Q(Zi ∈ · | xi, zi−1
1 ) is εi-differentially private by assumption, so Theorem 9.2.1

gives
Dkl

(
M0,i(· | zi−1

1 )||M1,i(· | zi−1
1 )

)
≤ 4(eεi − 1)2 ‖P0 − P1‖2TV

for any realization zi−1
1 of Zi−1

1 . Iterating this gives the result.

Local privacy is such a strong condition on the channel Q that it actually “transforms” the
KL-divergence into a variation distance, so that even if two distributions P0 and P1 have infinite
KL-divergence Dkl (P0||P1) = +∞—for example, if their supports are not completely overlapping—
their induced marginals have the much smaller divergence Dkl (M0||M1) ≤ 4(eε−1)2 ‖P0 − P1‖2TV ≤
4(eε−1)2. This transformation into a different metric means that even in estimation problems that
should on their faces be easy become quite challenging under local privacy constraints; for example,
minimax squared error for estimating the mean of a random variable with finite variance scales as
1/
√
n rather than the typical 1/n scaling in non-private cases (see Exercise 9.4).

Let us demonstrate how to apply Corollary 9.2.2 in a few applications. Our main object of
interest is the private analogue of the minimax risk (8.1.1), where for a parameter θ : P → Θ,
semimetric ρ, and loss Φ, for a family of channels Q we define the channel-constrained minimax
risk

Mn(θ(P),Φ ◦ ρ,Q) := inf
θ̂n

inf
Q∈Q

sup
P∈P

EP,Q
[
Φ(ρ(θ̂n(Zn1 ), θ(P )))

]
. (9.2.2)

When we take Q = Qε to be the collection of ε-locally differentially private (interactive) chan-
nels (9.2.1), we obtain the ε-locally private minimax risk.

A few examples showing lower (and upper) bounds for the private minimax risk (9.2.2) in mean
estimation follow.
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Example 9.2.3 (Bounded mean estimation): Let P be the collection of distributions with
supports on [−b, b], where 0 < b <∞. Then for any ε ≥ 0, the minimax squared error satisfies

Mn(θ(P), (·)2,Qε) &
b2

(eε − 1)2n
+
b2

n
.

The second term in the bound is the classic minimax rate for this collection of distributions.
To see the first term, take Bernoulli distributions P0 and P1 ∈ P, where for some δ ≥ 0
to be chosen, under P0 we have X = b with probability 1−δ

2 and −b otherwise, while under

P1 we have X = b with probability 1+δ
2 and X = −b otherwise. Then ‖P0 − P1‖TV = δ,

E1[X] − E0[X] = 2bδ, and by Le Cam’s method (8.3.3), for any ε-locally private channel Q
and induced marginals Mn

0 ,M
n
1 as in Corollary 9.2.2, we have

Mn(θ(P), (·)2, {Q}) ≥ b2δ2

2

(
1−

√
1

2
Dkl (Mn

0 ||Mn
1 )

)
≥ b2δ2

2

(
1−

√
2(eε − 1)2n ‖P0 − P1‖2TV

)
=
b2δ2

2

(
1−

√
2(eε − 1)2nδ2

)
.

Setting δ2 = 1
8n(eε−1)2

gives the claimed minimax bound. 3

Effectively, then, we see a reduction in the effective sample size: when ε is large, there is no change,
but otherwise, the estimation error is similar to that when we observe a sample of size nε2.

Example 9.2.4 (Estimating the parameter of a uniform distribution): In exercise 8.2, we show
that estimating the parameter θ of a Uniform(θ, θ+ 1) distribution has minimax squared error
scaling as 1/n2. Under local differential privacy, this is impossible. Let P = {Uniform(θ, θ +
1), θ ∈ [0, 1]} be the collection of uniform distributions with the given supports. Letting P0

and P1 be Uniform(0, 1) and Uniform(δ, 1 + δ), respectively, where δ ≥ 0 is to be chosen, we
have ‖P0 − P1‖TV = δ, while for any ε-differentially private channel Q and induced marginals
M0 and M1,

Dkl (Mn
0 ||Mn

1 ) ≤ 4(eε − 1)2n ‖P0 − P1‖2TV = 4(eε − 1)2nδ2.

Applying Le Cam’s method (8.3.3) and taking δ � 1√
n(eε−1)

, we thus have that if Qε denotes

the collection of ε-locally differentially private channels,

Mn(θ(P), (·)2,Qε) &
1

(eε − 1)2n
.

When ε . 1, the best attainable rate thus scales as 1
nε2

. 3

In both the preceding examples, a number of simple estimators achieve the given minimax rates.

The simplest is one based on the Laplace mechanism (Example 7.1.3): let Wi
iid∼ Laplace(1), and

set Zi = Xi + 2b
ε Wi in Example 9.2.3 and Zi = Xi + 2

εWi in Example 9.2.4. In the former, define

θ̂n = Zn to be the mean; in the latter, E[Zn] = θ+1
2 , so θ̂n = 2Zn − 1 achieves the minimax rate.

More extreme examples are possible. Consider, for example, the problem of testing the support
of a distribution, where we care only about distinguishing two distributions.
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Example 9.2.5 (Support testing): Consider the problem of testing between the support of
two uniform distributions, that is, given n observations, we wish to test whether P = P0 =
Uniform[0, 1] or P = P1 = Uniform[θ, 1] for some θ ∈ (0, 1). We can ask the rate at which
we may take θ ↓ 0 with n while still achieving non-trivial testing power. Without privacy, a
simple (and optimal) test Ψ is to simply check whether any observation Xi < θ, in which case
we can trivially accept P0 and reject P1, otherwise accepting P1. Then

P0(Xi > θ, all i) = (1− θ)n while P1(Xi > θ, all i) = 1.

So the summed probability of error

P0(Ψ = 1) + P1(Ψ = 0) = (1− θ)n ≤ exp(−θn),

and if θ � 1/n this tends to zero, while θn = θ0/n yields limn P0(Ψ = 1) = e−θ0 .
Consider now the private case. Then for any ε-differentially private channel Q and induced

marginals M0,M1, we have Dkl (Mn
0 ||Mn

1 ) ≤ 4n(eε − 1)2 ‖P0 − P1‖2TV by Corollary 9.2.2 while
‖P0 − P1‖TV = θ. The Bretagnolle-Huber inequality (Proposition 2.2.8.(b)) thus guarantees
that

‖Mn
0 −Mn

1 ‖
2
TV ≤ 1− exp(−Dkl (Mn

0 ||Mn
1 )) ≤ 1− exp(−4n(eε − 1)2θ2).

Whenever θ � 1√
n

, we have ‖Mn
0 −Mn

1 ‖TV → 0, and so for any test based on the private data

Zn1 , the probabilities of error

inf
Ψ
{P0(Ψ(Zn1 ) 6= 0) + P1(Ψ(Zn1 ) 6= 1)} ≥ 1−

√
1− exp(−cεnθ2),

where cε = 4(eε−1)2. In the range that 1
n � θ � 1√

n
, then, there is an essentially exponential

gap between the non-private and private cases. 3

9.3 Communication complexity

Communication complexity is a broad field, encompassing results establishing fundamental limits in
streaming and online algorithms, memory-limited procedures, and (of course) in minimal commu-
nication in various fields. Recent connections between communication complexity and information-
theoretic techniques have increased its applicability in statistical problems, which is our main mo-
tivation here, and to which we return in force in Section 9.4 to come. To motivate our approaches,
however, we give a (necessarily limited) overview of communication complexity, along with some
of the basic techniques and approaches, which then extend to statistical problems.

9.3.1 Classical communication complexity problems

The most basic problems in communication complexity are not really statistical, instead asking a
simpler question: two entities (always named Alice and Bob) have inputs x, y and wish to jointly
compute a function f(x, y). The question is then how many bits—or other messages—Alice and
Bob need to communicate to compute this value. Less abstractly, Alice and Bob have input domains
X and Y (often, these are {0, 1}n), and Alice receives a vector x ∈ X and Bob y ∈ Y, each unknown
to the other, and they jointly exchange messages until they can successfully evaluate f(x, y). To
abstract away any details of the computational model, we assume each has infinite computational
power, which allows a focus on communication. To formulate this as communication, we consider a
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yes no no yes yes no no yes

0 1

1 00 1

00 1 0 1

0 1 0 1 0 1 0 1

a1(x)

b1 b1

a2 a2

b2 b2 b2 b2

no no

Figure 9.2. A communication tree representing testing equality for 2-dimensional bit strings
x, y ∈ {0, 1}2. Internal nodes labeled aj communicate the jth bit aj(x) = xj of x, while internal
nodes labeled bj communicate the jth bit bj(y) = yj of y. The maximum number of messages is 4.
(A more efficient protocol is to have Alice send the entire string x ∈ {0, 1}n, then for Bob to check
equality x = y and output “Yes” or “No.”)

protocol Π, which specifies the messages that each of Alice and Bob send to one another. We view
this as a series of rounds, where at each round, the protocol allows one {0, 1}-valued bit to be sent
and determines who sends this bit, and, at termination time, can compute f(x, y) based on the
communicated message. Then the communication cost of Π is the maximum number of messages
sent to (correctly) compute f over all inputs x, y.

A more convenient formulation for analysis is to consider a binary tree:

Definition 9.3. A protocol Π over a domain X × Y with output space Z is a binary tree, where
each internal node v is labeled with a mapping av : X → {0, 1} or bv : Y → {0, 1} and each leaf is
labeled with a value z ∈ Z.

Then to execute a communication protocol Π on input (x, y), we walk down the tree: beginning
at the root node, for each internal node v labeled av (an Alice node) we walk left if av(x) = 0 and
right if av(x) = 1, and each node v labeled bv (a Bob node) we walk left if bv(y) = 0 and right if
bv(y) = 1. Then the communication cost of the protocol Π is the height of the tree, which we denote
by depth(Π). Figure 9.2 shows an example for testing the equality x = y of two 2-dimensional bit
strings x, y ∈ {0, 1}2.

In classical communication complexity, the main questions center around the communication
complexity of a function f : X → Y, which is the length of the shortest protocol that computes f
correctly on all inputs: letting Πout(x, y) denote the final output of the protocol Π on inputs (x, y),
this is

CC(f) := inf {depth(Π) | Πout(x, y) = f(x, y) for all x ∈ X , y ∈ Y} .

In many cases, it is useful to allow randomized communication protocols, which tolerate some
probability of error; in this case, we let Alice and Bob each have access to (an arbitrary amount)
of randomness, which we can identify without loss of generality with uniform random variables

Ua, Ub
iid∼ Uniform[0, 1], and the nodes av and bv in Definition 9.3 are then mappings av : X × [0, 1]→
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{0, 1} and bv : Y × [0, 1] → {0, 1} and they calculate av(·, Ua) and bv(·, Ub), respectively. Abusing
notation slightly by leaving this randomness implicit, the randomized communication complexity
for an accuracy δ is then the length of the shortest randomized protocol that calculates f(x, y)
correctly with probability at least 1− δ, that is,

RCCδ(f) := inf {depth(Π) | P(Πout(x, y) 6= f(x, y)) ≤ δ for all x ∈ X , y ∈ Y} . (9.3.1)

In the definition (9.3.1), we leave the randomization in Π implicit, and note that we require that
the tree it induces still have a maximum length. We note that essentially any choice of δ > 0 is
immaterial, as we always have

RCCδ(f) ≤ O(1) log
1

δ
· RCC1/3(f),

making all (constant) probability of error complexities essentially equivalent. (See Exercise 9.7.)
There are variants of randomized complexity that allow public randomness rather than pri-

vate randomness, which can yield simpler algorithms and somewhat reduced complexity, but this
improvement is limited, as Alice and Bob can always essentially simulate public randomness (see
Exercise 9.8). Letting Ppub be the collection of protocols in which both Alice and Bob have access
to a shared random variable U ∼ Uniform[0, 1], we make the obvious extension

RCCpub
δ (f) := inf

Π∈Ppub

{depth(Π) | P(Πout(x, y, U) 6= f(x, y)) ≤ δ for all x ∈ X , y ∈ Y} .

Finally, we have distributional communication complexity, which for a probability measure µ on
inputs X × Y is the depth of the shortest protocol that succeeds with a given µ-probability:

DCCµδ (f) := inf {depth(Π) | µ(Πout(X,Y ) 6= f(X,Y )) ≤ δ} , (9.3.2)

where the infimum is taken over deterministic protocols.
The final notion we consider is the information complexity. In this case, we require again that

for each input pair x, y, the (potentially randomized) protocol Π(x, y) still compute f(x, y) correctly
with probability at least 1−δ, but instead of measuring the depth of the tree, we let X,Y be drawn
randomly from some distribution and measure the mutual information I2(X,Y ; Π(X,Y )). (We use
base-2 logarithms to reflect bit communication.) In this case, we define

ICδ(f) := sup inf
Π
{I2(X,Y ; Π(X,Y )) | P(Πout(x, y) 6= f(x, y)) ≤ δ for all x ∈ X , y ∈ Y} , (9.3.3)

where the supremum is taken over joint distributions on (X,Y ), the infimum over randomized
protocols Π, and the right probability P is over any randomness in Π. There is a subtlety in this
definition: we require Π to be accurate on all inputs (x, y), not just with probability over the
distribution on (X,Y ) in the information measure I(X,Y ; Π(X,Y )). Relaxations to distributional
variants of the information complexity (9.3.3) are also natural, as in the definition (9.3.2). Thus
we sometimes consider the distributional information complexity

ICµδ (f) := inf
Π
{I2(X,Y ; Π(X,Y )) | µ(Πout(X,Y ) 6= f(X,Y )) ≤ δ} ,

where the infimum can be taken over deterministic or randomized protocols.
The different notions of communication complexity satisfy a natural ordering, making proving

lower bounds for some notions (or conversely, developing low-communication methods for different
protocols) much easier or harder than others. We record the standard inequalities in the coming
proposition, which essentiall follows immediately from the operational interpretation of entropy as
the average length of the best encoding of a signal (Section 2.4.1).
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Proposition 9.3.1. For any function f , δ ∈ (0, 1), and probability measure µ on X × Y,

CC(f) ≥ RCCδ(f) ≥ RCCpub
δ (f) ≥ DCCµδ (f) ≥ ICµδ (f)

and
RCCδ(f) ≥ ICδ(f).

Proof The first two inequalities are immediate. By Theorem 2.4.3, we have

depth(Π) ≥ H2(Π) ≥ H2(Π)−H2(Π | X,Y ) = I2(X,Y ; Π(X,Y )),

and so for all δ ∈ (0, 1
2) we have both

RCCδ(f) ≥ ICδ(f) and DCCµδ (f) ≥ ICµδ (f).

All that remains is to demonstrate RCCpub
δ (f) ≥ DCCµδ (f). For this, let Π be any protocol with

public randomness U such that P(Πout(x, y, U) 6= f(x, y)) ≤ δ for all x, y. Then by taking an
expectation over (X,Y ) ∼ µ, we obtain

δ ≥ Eµ [P(Πout(X,Y, U) 6= f(X,Y ) | X,Y )] ≥ inf
u
µ (Πout(X,Y, u) 6= f(X,Y )) ,

that is, there must be at least some u achieving the average error of Π, and the protocol Π is
deterministic given u. So any protocol Π using public randomness to achieve probability of error δ
can be modified into a deterministic protocol Π(·, ·, u) that achieves µ-probability of error δ.2

Frequently, the first inequality in Proposition 9.3.1 is strict—even exponentially large—while
the randomized complexity and information complexity end up being of roughly the same order.
Understanding these differences is one of the major goals in communication complexity research.

9.3.2 Deterministic communication: lower bounds and structure

Deterministic communication complexity lower bounds often admit fairly elegant and somewhat
elementary arguments, and the gaps between them and the randomized complexity highlight that we
indeed expect providing lower bounds on randomized communication (9.3.1) or information (9.3.3)
complexity to be quite challenging. The starting point, to which we will return when we consider
randomized protocols, is to understand some structural aspects of the inputs and outputs of a
protocol tree.

Recall that a set R ⊂ X × Y is a rectangle if it has the form R = A × B for some A ⊂ X and
B ⊂ Y. Equivalently, R is a rectangle if (x0, y0) ∈ R and (x1, y1) ∈ R imply that (x0, y1) ∈ R.
As the next proposition shows, rectangular sets provide a key way to understand communication
complexity.

Proposition 9.3.2. Let v be a node in a deterministic protocol Π and Rv be those pairs (x, y)
reaching node v. Then Rv is a rectangle.

2This is one direction of Yao’s minimax theorem [176], which states that communication complexity with public
(shared) randomness and worst-case distributional complexity are identical: RCCpub

δ (f) = supµ DCC
µ
δ (f).
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Proof We prove the result by induction. Certainly, for the root node v, we have Rv = X × Y,
which is a rectangle. Now, let v be an arbitrary (non-root) node in the tree and w its parent; assume
w.l.o.g. that v is the left child of w and that in w, Alice speaks (that is, we use aw : X → {0, 1}.)
Then Rw = A×B by the inductive assumption. If aw(x) = 0, then

Rv = {{x} ×B | aw(x) = 0, x ∈ A} = {{x | aw(x) = 0} ∩A} ∩B,

which is a rectangle.

The structure of rectangles for correct protocols thus naturally determines the communication
complexity of a function f . For a set R ⊂ X × Y, we say R is f -constant if f(x, y) = f(x′, y′) for
all (x, y) ∈ R and (x′, y′) ∈ R. Thus, any correct protocol Π necessarily partitions X × Y into a
collection of f -constant rectangles, where we identify the rectangles with the leaves l of the protocol
tree. In particular, Proposition 9.3.2 implies the following corollary.

Corollary 9.3.3. Let N be the size of the minimal partition of X × Y into f -constant rectangles.
Then CC(f) ≥ log2N .

Proof Any correct protocol Π partitions X × Y into the f -constant rectangles {Rl} indexed by
its leaves l. The minimal depth of a binary tree with at least N leaves is log2N .

A related corollary follows by considering fooling sets, which are basically sets that rectangles
cannot contain.

Definition 9.4 (Fooling sets). A set S ⊂ X×Y is a fooling set for f if for any two pairs (x0, y0) ∈ S
and (x1, y1) ∈ S satisfying f(x0, y0) = f(x1, y1), at least one of the inequalities f(x0, y1) 6= f(x0, y0)
or f(x1, y0) 6= f(x0, y0) holds.

With this definition, the next corollary is almost immediate.

Corollary 9.3.4. Let f have a fooling set S of size N . Then CC(f) ≥ log2N .

Proof By definition, no f -constant rectangle contains more than a single element of S. So the
tree associated with any correct protocol Π has a single leaf for each element of S.

An extension of the fooling set idea is the rectangle measure method, which proves that (for
some probability measure P ) the “size” of f -constant rectangles is small. By judicious choice of
the probability, we can then demonstrate lower bounds.

Proposition 9.3.5. Let P be a probability distribution on X × Y. If all f -constant rectangles R
have probability at most P (R) ≤ δ, Then CC(f) ≥ log2

1
δ .

Proof By the union bound, any f -constant partition of X × Y into rectangles {Rl}Nl=1 satisfies

1 ≤
∑N

l=1 P (Rl) ≤ Nδ. So N ≥ 1
δ , and the result follows by Corollary 9.3.3.

With these results, we can provide lower bounds on two exemplar problems that will inform
much of our coming development.
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Example 9.3.6 (Equality): Consider the problem of testing equality of two n-bit strings
x, y ∈ {0, 1}n, letting f = EQ be f(x, y) = 1 if x = y and 0 otherwise. Define the set
S = {(x, x) | x ∈ {0, 1}n}, which has cardinality 2n, and satisfies f(x, x) = 1 for all (x, x) ∈ S.
That S is a fooling set is immediate: for any (x, x) and (x′, x′) ∈ S, if x 6= x′, then certainly
(x, x′) 6∈ S. So

n ≤ CC(EQ) ≤ n+ 1,

where the upper bound follows by letting Alice simply communicate the string x and Bob
check if x = y, outputting 1 or 0 as x = y or x 6= y. 3

The second example concerns inner products on F2, the field of arithmetic on the integers modulo
2 (that is, with bit strings); one could extend this to inner products in more complicated number
systems (such as floating point), but the basic ideas are cleaner when we deal with bits.

Example 9.3.7 (Inner products on F2): Consider computing the inner product IP2(x, y) =
〈x, y〉 mod 2 for n-bit strings x, y ∈ {0, 1}n, where addition is performed modulo 2. Rather
than a constructing a fooling set directly, we use Proposition 9.3.5 and let P be the uniform
distribution on {0, 1}n × {0, 1}n. Let R = A × B be a rectangle with 〈x, y〉 = 0 for all
x ∈ A and y ∈ B. The linearity of the inner product guarantees that 〈x, y〉 = 0 for all
x ∈ span(A) and y ∈ span(B), the (linear) spans of A and B in Fn2 , respectively. Now
recognize that span(A), span(B) ⊂ Fn2 are orthogonal subspaces of Fn2 , and so their dimensions
d0 = dim(span(A)) and d1 = dim(span(B)) satisfy d0 + d1 ≤ n.

Noting that if d0 = dim(A) then |A| ≤ 2d0 in Fn2 , we thus obtain |R| ≤ |A| · |B| ≤ 2n, which
(under the uniform measure P ) satisfies

P (R) ≤ 2n

22n
= 2−n.

By Proposition 9.3.5, we thus have

n ≤ CC(IP2) ≤ n+ 1,

where once again the upper bound follows by letting Alice simply communicate x ∈ {0, 1}n
and having Bob output 〈x, y〉 mod 2. 3

9.3.3 Randomization, information complexity, and direct sums

When we allow randomization, the complexity bounds can, in some cases, drastically change.
Consider again the equality function in Example 9.3.6. When we allow randomization, we can
achieve O(log n) complexity to check equality (with high probability).

Example 9.3.8 (Equality with randomization): Let x, y ∈ {0, 1}n and p be a prime number
satisfying n2 ≤ p ≤ 2n2 (the Prime Number Theorem guarantees the existence of such a p).
Let Alice choose a uniformly random number U ∈ {0, . . . , p− 1} and compute the polynomial

a(U) = x1 + x2U + x3U
2 + · · ·+ xnU

n−1 mod p.

Then Alice may communicate both U and a(U) to Bob, which requires at most 2 log2 p ≤
4 log2 n+ 2 log 2 bits. Then Bob checks whether

b(U) = y1 + y2U + y3U
2 + · · ·+ ynU

n−1 mod p
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satisfies b(U) = a(U). If so, Bob outputs “Yes” (equality), and otherwise, Bob outputs “No.”
This protocol satisfies depth(Π) ≤ 4 log2 n+ 1. Moreover, if x = y, it is always correct, while if
x 6= y, then the protocol is incorrect only if a(U) = b(U), that is, U is a root of the polynomial

p(u) =

n∑
i=1

(xi − yi)ui−1.

But this is a non-zero degree n− 1 polynomial, which has at most n− 1 roots (on the field Fp;
see Appendix A.1 for a brief review of polynomials). Thus for x 6= y we have

P(Π(x, y) fails) = P(a(U) = b(U)) ≤ n− 1

p
<

1

n
,

and so RCC1/n(EQ) ≤ O(1) log n, exponentially improving over deterministic complexity.
In passing, we make two additional remarks. First, this protocol is one-way and non-

interactive: Alice can simply send O(log n) bits. Second, we can achieve essentially any prob-
ability of success in the bound while still only paying logarithmically in communication, as
taking nk ≤ p ≤ 2nk for k ≥ 2 yields RCC1/nk(EQ) ≤ 2k log2 n+O(1). 3

Example 9.3.8 makes clear that any lower bounds on randomized communication complexity,
or, relatedly, information complexity, will necessarily be somewhat more subtle than those we have
presented for CC. We develop a few of the main ideas here. Because our focus is on information
theoretic techniques, we pass over a few of the standard tools for proving lower bounds involving
discrepancy and randomized inputs, touching on these in the bibliographic notes at the end of the
chapter. One of our main goals will be to show that the information complexity of the inner product
is indeed Ω(n), a much stronger result than Example 9.3.7. In contrast to the lower bounds we
provide for minimax risk in most of this book, the focus in communication complexity is to take
an a priori accurate estimator and demonstrate that it requires a certain amount of information to
be communicated, rather than the contrapositive result that limited information yields inaccurate
estimators. While these are clearly equivalent, it can be fruitful to use the perspective most relevant
for the problem at hand.

Two main ideas form the basis for information complexity lower bounds: first, direct sum
inequalitites, which show that computing a function on n inputs requires roughly order n more
communication than computing it (or at least, one of the constituent functions making it up)
on one. The second important insight is to provide lower bounds on the information necessary
to compute different primitives, and the particular structure of even randomized communication
protocols makes this possible. For the remainder of Section 9.3.3, we address the first of these,
returning to the information complexity of primitives in Section 9.3.4.

Direct sum bounds and decomposition

To show direct sum inequalities, we demonstrate that computing some function on n inputs requires
roughly n times the communication of single-input computation. In general, we consider functions
f of the form

f(xn1 , y
n
1 ) = g(h(x1, y1), h(x2, y2), . . . , h(xn, yn)), (9.3.4)

where g is the global function of the n primitives h, calling such functions decomposable with
primitive h. Several problems have the decomposable structure (9.3.4); focusing on the case that
the inputs x, y ∈ {0, 1}n and f(x, y) ∈ {0, 1}, we have the following three immediate examples.
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Example 9.3.9 (Composition in equality): The equality function f(x, y) = 1 if x 6= y and
f(x, y) = 0 otherwise satisfies the decomposition (9.3.4), where h(xi, yi) = 1 {xi 6= yi} and g
is the OR function g(z) = 1 {〈1, z〉 > 0}, which is 1 if any of z1, . . . , zn is non-zero, and 0
otherwise. 3

Example 9.3.10 (Decomposition of inner product): The inner product in F2, f(x, y) = 〈x, y〉
mod 2, where h(xi, yi) = xiyi, and g(z) = 〈1, z〉 mod 2, which satisfies g(z) = 0 if

∑n
i=1 zi is

even and g(z) = 1 otherwise. 3

Example 9.3.11 (Decomposition of disjointness): The set disjointness function f(x, y) =
DISJ(x, y) := 1 {〈x, y〉 > 0} arises when x, y are characteristic vectors of two subsets A,B
of [n], that is, xi = 1 {i ∈ A} and yi = 1 {i ∈ B}. Then f(x, y) = 1 {A ∩B 6= ∅}, which
corresponds to g being the OR g(z) = 1 {〈1, z〉 > 0} and h the AND function h(xi, yi) = xiyi.
3

While Example 9.3.8 makes clear that the decomposition (9.3.4) is not sufficient to guarantee a
randomized complexity lower bound of order n, it will be useful.

To develop the main information complexity direct sum theorem showing that the information
complexity of f is at least the sum of the complexities of its constituent primitives, we leverage
what we term plantable inputs:

Definition 9.5. Let f : X n × Yn → {0, 1} have the decomposition (9.3.4), where the primitive h
is {0, 1}-valued. The pair (x, y) ∈ X n×Yn admits a planted solution if for each i ∈ {1, . . . , n}, all
x′i, y

′
i, and vectors all

x′ = (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn) and y′ = (y1, . . . , yi−1, y

′
i, yi+1, . . . , yn),

we have f(x′, y′) = h(x′i, y
′
i).

The binary inner product in Examples 9.3.7 and 9.3.10 has many plantable inputs: any of the 3n

pairs of vectors x, y ∈ {0, 1}n with 〈x, y〉 = 0 admit planted solutions, as we have xiyi = 0 for each
i. The set-disjointness problem, Example 9.3.11, has the same plantable inputs. For the equality
function, only the 2n pairs x = y admit planted solutions.

We outline the key idea to our direct sum lower bounds. Because we define information com-
plexity for protocols Π that are correct on all inputs with high probability, we can choose an
arbitrary distribution on inputs (xn1 , y

n
1 ) ∈ X n × Yn. Thus we choose a fooling distribution µ for

f , meaning that for (Xi, Yi)
iid∼ µ the pair (Xn

1 , Y
n

1 ) ∈ X n × Yn always admits a planted solution
(Definition 9.5). The next definition says this slightly differently.

Definition 9.6. A distribution µ on (x, y) ∈ X × Y is a fooling distribution if all (xn1 , y
n
1 ) in the

support of the product µn admit planted solutions (Definition 9.5).

Typically, fooling distributions µ require some dependence between Xi and Yi—for example, in the
inner product, we require XiYi = 0, so that if Xi = 1 then Yi = 0 and vice versa:

Example 9.3.12 (A fooling distribution for inner products and set disjointness): Define
the distribution µ on pairs (x, y) ∈ {0, 1} × {0, 1} as follows: let V be uniform on {0, 1}, and
conditional on V = 0, set X = 0 and let Y ∼ Uniform{0, 1}; conditional on V = 1, set Y = 0

and let X ∼ Uniform{0, 1}. Then certainly XY = 0, and any set of pairs (Xi, Yi)
iid∼ µ satisfy

both that the binary inner product IP2(Xn
1 , Y

n
1 ) = 〈Xn

1 , Y
n

1 〉 mod 2 = 0 and set disjointness
DISJ(Xn

1 , Y
n

1 ) = 1 {〈Xn
1 , Y

n
1 〉 > 0} = 0. 3
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Fooling distributions, as in Example 9.3.12, make conditioning natural in information com-
plexity. If (X,Y ) ∼ µ, there is always a random variable V such that X ⊥⊥ Y | V , that is, X
and Y are conditionally independent given V (trivially, we can take V = X). Thus, for function
h : X × Y → {0, 1}, we define the conditional information complexity

CICµδ (h) := inf
Π

sup
V
{I(X,Y ; Π(X,Y ) | V ) s.t. P(Πout(x, y) 6= h(x, y)) ≤ δ for all x ∈ X , y ∈ Y} ,

where the infimum is over all (randomized) protocols and the supremum is over all random variables
making X and Y conditionally independent with joint distribution (X,Y ) ∼ µ. So if we can find a
variable V making the mutual information I(X,Y ; Π(X,Y ) | V ) large for any correct protocol Π,
the conditional information complexity of h is necessarily large.

With this, we obtain our main direct sum theorem for information complexity.

Theorem 9.3.13. Let µ be a fooling distribution X × Y for a function f with primitive h. Then

ICδ(f) ≥ n · CICµδ (h).

Proof Let V = V n
1 ∈ Vn be any random vector with i.i.d. entries making (Xi, Yi) conditionally

indpendent given Vi. Then for any protocol Π, we have

I(Xn
1 , Y

n
1 ; Π) = H(Π)−H(Π | Xn

1 , Y
n

1 )

= H(Π)−H(Π | Xn
1 , Y

n
1 , V ) ≥ H(Π | V )−H(Π | Xn

1 , Y
n

1 , V ) = I(Xn
1 , Y

n
1 ; Π | V )

because we have the Markov chain V → (Xn
1 , Y

n
1 )→ Π. Using the chain rule for mutual informa-

tion, where we recognize that Xn
1 and Y n

1 are independent given V , we have

I(Xn
1 , Y

n
1 ; Π | V ) =

n∑
i=1

I(Xi, Yi; Π | V,Xi−1
1 , Y i−1

1 )

=

n∑
i=1

H(Xi, Yi | V,Xi−1
1 , Y i−1

1 )−H(Xi, Yi | V,Π, Xi−1
1 , Y i−1

1 )

≥
n∑
i=1

H(Xi, Yi | V )−H(Xi, Yi | V,Π) =

n∑
i=1

I(Xi, Yi; Π | V ) (9.3.5)

because conditioning reduces entropy and (Xi, Yi) are independent of Xi−1
1 , Y i−1

1 given V .
Now we come to the key reduction from the global protocol Π to one solving individual prim-

itives. On inputs (x, y) ∈ X × Y, define the simulated protocol Πi,v(x, y) so that given the vector

v\i ∈ Vn−1, Alice and Bob independently generate (X∗j , Y
∗
j )

iid∼ µ(· | Vj = vj) for j 6= i, which

is possible because of the assumed conditional independence given V , yielding X∗\i ∈ X
n−1 and

Y ∗\i ∈ Y
n−1, respectively. They then execute the protocol Π((X∗\i, x), (Y ∗\i, y)) (where we substitute

x and y into input position i for each). Two key consequences of this simulation follow: that Πi,v

is a δ-error protocol for the primitive h and that we have the distributional equality

(Xi, Yi, Vi,Πi,v(Xi, Yi))
dist
= (Xi, Yi, Vi,Π(Xn

1 , Y
n

1 )) | V\i = v\i, (9.3.6)

that is, the joint over the simulated protocol is equal to that over the original protocol Π conditional
on V\i = v\i. The latter claim (9.3.6) is essentially definitional; the former requires a bit more work.
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To see that Πi,v is a δ-error protocol for the primitive h, note that by construction, X∗\i and Y ∗\i are

in the support of µ, and so admit planted solutions. In particular, f((X∗\i, x), (Y ∗\i, y)) = h(x, y),
and so Πi,v is necessarily a δ-error protocol.

The distributional equality (9.3.6) guarantees that for any v we have

I(Xi, Yi; Π(Xn
1 , Y

n
1 ) | Vi, V\i = v\i) = I(Xi, Yi; Πi,v(Xi, Yi) | Vi),

and as Πi,v is a δ-error protocol for h, we have

inf
v
I(Xi, Yi; Πi,v(Xi, Yi) | Vi) ≥ CICµδ (h).

Substituting in the bound (9.3.5), we obtain

I(Xn
1 , Y

n
1 ; Π) ≥

n∑
i=1

I(Xi, Yi; Π | V ) ≥
n∑
i=1

inf
v
I(Xi, Yi; Πi,v(Xi, Yi) | Vi) ≥ nCICµδ (h),

as desired.

With Theorem 9.3.13 in hand, we have our desired direct sum result, so that proving informa-
tion complexity lower bounds reduces to providing lower bounds on the (conditional) information
complexity of various 1-bit primitives. The following corollary highlights the theorem’s applications
to inner product and set disjointness (Examples 9.3.10 and 9.3.11).

Corollary 9.3.14. Let f be the binary inner product f(x, y) = 〈x, y〉 mod 2 or the disjointness
function f(x, y) = 1 {〈x, y〉 > 0}. Let µ be the fooling distribution in Example 9.3.12. Then

ICδ(f) ≥ n · CICµδ (h)

where h(a, b) = ab is the product (or AND) function.

Exercise 9.10 explores similar techniques for the entrywise lesser than or equal function, showing
similar complexity lower bounds.

9.3.4 The structure of randomized communication and communication com-
plexity of primitives

Theorem 9.3.13 provides a powerful direct sum result that demonstrates that, at least if a problem
admits planted solutions for (nearly) i.i.d. sampling, then the information complexity must scale
at least linearly in the complexity of the primitives making up the function f . Thus, we turn to
providing information lower bounds for computing different primitive functions. Our main tool
will be to show that even randomized communication protocols essentially partition the input
space X × Y into rectangles—in analogy with Proposition 9.3.2 in the deterministic case—which
allows us to provide lower bounds. The broad idea is simple: if we have an accurate protocol for
computing a certain function h, we must necessarily be able to distinguish between the distribution
of Π on different inputs (x, y), as the fundamental connection between tests and variation distance
(Proposition 2.3.1) reveals.

Our main goal now is to prove the following proposition, which gives a lower bound on the
(conditional) information complexity of computing the AND of two bits.
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Proposition 9.3.15. Let h(x, y) = xy for inputs x, y ∈ {0, 1}. Let µ be the fooling distribution in
Example 9.3.12. Then

CICµδ (h) ≥ 1

4

(
1− 2

√
δ(1− δ)

)
.

We prove this proposition in the remainder of this section, noting that as an immediate corollary,
we obtain the following lower bounds on the communication complexity of set disjointness and
binary inner product.

Corollary 9.3.16. Let f be the binary inner product f(x, y) = 〈x, y〉 mod 2 or the disjointness
function f(x, y) = 1 {〈x, y〉 > 0}. Then

ICδ(f) ≥ n

4
(1− 2

√
δ(1− δ)).

To control the complexity of computing individual primitives, it proves easier to use metrics
tied more directly to testing. To that end, we recall the connection between Hellinger distance
and the mutual information, or Jensen-Shannon divergence, between a variable X and a single bit
B ∈ {0, 1} in Proposition 2.2.10, which gives that if B → Z, where Z ∼ Pb conditional on B = b,
then

I2(Z;B) ≥ d2
hel(P0, P1).

To apply this inequality, recall the fooling distribution µ for inner products in Example 9.3.12,
where V ∼ Uniform{0, 1} and conditional on V = 0 we set X = 0 and draw Y ∼ Uniform{0, 1}, and
otherwise Y = 0 and X ∼ Uniform{0, 1}. Then for V → (X,Y ) from this distribution, we have

I2(X,Y ; Π(X,Y ) | V ) =
1

2
I2(Y ; Π(0, Y ) | V = 0) +

1

2
I2(X; Π(X, 0) | V = 1).

Letting Qxy denote the (conditional) distribution over Π on input bits x, y ∈ {0, 1} and noting that
X and Y above are each uniform on {0, 1}, we see that Proposition 2.2.10 applies and so

I2(X,Y ; Π(X,Y ) | V ) ≥ 1

2
d2

hel(Q01, Q00) +
1

2
d2

hel(Q10, Q00).

Applying the triangle inequality that (a− b)2 ≤ (|a− c|+ |c− b|)2 ≤ 2(a− c)2 + 2(b− c)2, we obtain
the following lemma.

Lemma 9.3.17. Let Π be any protocol acting on two bit inputs x, y ∈ {0, 1}, and let µ be the
fooling distribution in Example 9.3.12. Let Qxy be the distribution of Π(x, y) on inputs x, y. Then

I2(X,Y ; Π(X,Y ) | V ) ≥ 1

4
d2

hel(Q01, Q10).

The last step in the proof of Proposition 9.3.15 is to demonstrate a property of (randomized)
protocols Π analogous to the rectangular property of deterministic communcation that Proposi-
tions 9.3.2 and 9.3.5 demonstrate. In analogy with the output leaf in the tree for deterministc
communication complexity, let τ be the transcript of the communication protocol, that is, its en-
tire communication trace. Then we claim the following analog of Proposition 9.3.2 that the set of
inputs resulting in a particular output in deterministic complexity is a rectangle in X × Y.

Lemma 9.3.18. Let Π be any randomized protocol with inputs in X×Y. Then there exist functions
qx and qy such that for any transcript τ ,

P(Π(x, y) = τ) = qx(τ) · qy(τ).
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Proof We may view any randomized protocol as a particular instatiation of a deterministic
protocol Π(·, ·, ua, ub), where ua, ub ∈ [0, 1] are realizations of the randomness available to Alice and
Bob, respectively, inducing a particular binary communication tree. By Proposition 9.3.2, for any
leaf l, the set

Rl(ua, ub) = {(x, y) ∈ X × Y | Π(x, y, ua, ub) reaches l}

is a rectangle, that is, Rl(ua, ub) = Al(ua)× Bl(ub) for sets Al(u) ⊂ X and Bl(u) ⊂ Y. Of course,
the leaves l of the tree are in bijection with the entire transcript τ , so that if τ ends in leaf l, then

P(Π(x, y) = τ) = P((x, y) ∈ Rl(Ua, Ub)) = P(x ∈ Al(Ua), y ∈ Bl(Ub))

where Ua, Ub
iid∼ Uniform[0, 1] are the the randomness Alice and Bob use, respectively.

Expanding this as an integral gives

P(x ∈ Al(Ua), y ∈ Bl(Ub)) =

∫ 1

0

∫ 1

0
1 {x ∈ Al(ua)}1 {y ∈ Bl(ub)} duadub

= P(x ∈ Al(Ua))P(y ∈ Bl(Ub)).

Set qx(τ) = P(x ∈ Al(Ua)) and qy(τ) = P(y ∈ Bl(Ub)).

We thus have the following key cut and paste property, which shows that in some sense, Hellinger
distances respect the “rectangular” structure of communication protocols.

Lemma 9.3.19. Let Π be any protocol acting on inputs in X × Y and let Qx,y be the distribution
of Π(x, y) on inputs x, y. Then

dhel(Qx,y, Qx′,y′) = dhel(Qx,y′ , Qx′,y).

Proof Let T be the collection of all possible transcripts the protocol outputs. By Lemma 9.3.18
we have

d2
hel(Qx,y, Qx′,y′) =

1

2

∑
τ∈T

(√
Qx,y(τ)−

√
Qx′,y′(τ)

)2

=
1

2

∑
τ∈T

(√
qx(τ)qy(τ)−

√
qx′(τ)qy′(τ)

)2

= 1−
∑
τ

√
qx(τ)qy(τ)qx′(τ)qy′(τ).

Rearranging by the trivial modification qxqyqx′qy′ = qxqy′qx′qy, we have the result.

We now finalize the proof of Proposition 9.3.15. Substituting this cutting and pasting in
Lemma 9.3.17 we have

I2(X,Y ; Π(X,Y ) | V ) ≥ 1

4
d2

hel(Q01, Q10) =
1

4
d2

hel(Q00, Q11).

Then a simple lemma recalling the testing inequalities in Chapter 2.3.1 completes the proof of the
proposition, because it guarantees that 4I2(X,Y ; Π(X,Y ) | V ) ≥ 1 − 2

√
δ(1− δ) no matter the

choice of protocol Π, and so

CICµδ (h) ≥ inf
Π
I2(X,Y ; Π(X,Y ) | V ) ≥ 1

4

(
1− 2

√
δ(1− δ)

)
.
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Lemma 9.3.20. Let Π be any δ-accurate protocol for computing h(x, y) = xy and Qxy be its
distribution on inputs (x, y). Then d2

hel(Q00, Q11) ≥ 1− 2
√
δ(1− δ).

Proof Assume that Π computes the product xy ∈ {0, 1} correctly with probability at least
1 − δ, that is, P(Πout(x, y) 6= xy) ≤ δ for all x, y ∈ {0, 1}. By Le Cam’s testing lower bounds
(Proposition 2.3.1), we know that

2δ ≥ P(Πout(0, 0) 6= 0) + P(Πout(1, 1) 6= 1) ≥ 1− ‖Q00 −Q11‖TV

(?)

≥ 1− dhel(Q00, Q11)
√

2− d2
hel(Q00, Q11),

where inequality (?) follows from the inequalities in Proposition 2.2.7 relating Hellinger and total-
variation distance. Let d = d2

hel(Q00, Q11) for shorthand. Then rearranging gives d(2 − d) ≥
(1− 2δ)2. Solving for d in 0 ≥ d2 − 2d + (1− 2δ)2 yields d ≥ 1−

√
1− (1− 2δ)2. Recognize that

1− (1− 2δ)2 = 4(δ − δ2).

9.4 Communication complexity in estimation

A major application combining strong data processing inequalities and communication is in the
communication and information complexity of statistical estimation itself. In this context, we limit
the amount of information—or perhaps bits—that a procedure may send about individual examples,
and then ask to what extent this constrains the estimator. This has applications in situations in
which the memory available to an estimator is limited, in situations with privacy—as we shall
see—and of course, when we restrict the number of bits different machines storing distributed data
may send.

We consider the following setting: m machines, or agents, have data Xi, i = 1, . . . ,m. Com-

munication proceeds in rounds t = 1, 2, . . . , T , where in each round t machine i sends datum Z
(t)
i .

To allow for powerful protocols—with little restriction except that each machine i may send only

a certain amount of information—we allow Z
(t)
i to depend arbitrarily on the previous messages

Z
(t)
1 , . . . , Z

(t)
i−1 as well as Z

(τ)
k for all k ∈ {1, . . . ,m} and τ < t. We visualize this as a public

blackboard B, where in each round t each Z
(t)
i is collected into B(t), along with the previous public

blackboards B(τ) for τ < t, and all machines may read these public blackboards. Thus, in round t,

individual i generates the communicated variable Z
(t)
i according to the channel

Q
Z

(t)
i

(· | Xi, Z
(t)
<i , B

(t−1)) = Q
Z

(t)
i

(· | Xi, Z
(t)
→i).

Here we have used the notation Z<i := (Z1, . . . , Zi−1), and we will use Z≤i := (Z1, . . . , Zi) and

similarly for superscripts throughout. We will also use the notation Z
(t)
→i = (B(1), Z

(t)
<i ) to denote

all the messages coming into communication of Z
(t)
i . Figure 9.3 illustrates two rounds of this

communication scheme.
We can provide lower bounds on the minimax risk of communication-constrained estimators by

extending the data processing inequality approach we have developed. Our approach to the lower
bounds, which we provide in Sections 9.4.1 and 9.4.2 to follow, is roughly as follows. First, we
develop another direct sum bound, in analogy with Theorem 9.3.13, meaning that the difficulty of
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X1 X2 X3 Xm

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
m

B(1)

X1 X2 X3 Xm

Z
(1)
1 Z

(1)
2 Z

(1)
3 Z

(1)
m

B(1)

Z
(2)
1 Z

(2)
2 Z

(2)
3 Z

(2)
m

B(2)

Figure 9.3. Left: single round of communication of variables, writing to public blackboard B(1).
Right: two rounds of communication of variables, writing to public blackboards B(1) and B(2).

solving a d-dimensional problem is roughly d-times that of solving a 1-dimensional version of the
problem; thus, any lower bounds on the error in 1-dimensional problems imply lower bounds for
d-dimensional problems. Second, we provide an extension of the data processing inequalities we
have developed thus far to apply to particular communication scenarios.

The key to our reductions is that we consider families of distributions where the coordinates of
X are independent, which dovetails with Assouad’s method. We thus index our distributions by
v ∈ {0, 1}d, and in proving our lower bounds, we assume the typical Markov structure

V → (X1, . . . , Xm)→ Π(Xm
1 ),

where V is chosen uniformly at random from {−1, 1}d, and Π = Π(Xm
1 ) denotes the protocol of

the entire communication—in this context, this is the entire set of blackboard messages

Π = (B(1), . . . , B(T )),

(which also encodes the message order). We assume that X follows a d-dimensional product
distribution, so that conditional on V = v we have

X
iid∼ Pv = Pv1 ⊗ Pv2 ⊗ · · · ⊗ Pvd . (9.4.1)

The generation strategy (9.4.1) guarantees that conditional on the jth coordinate Vj = vj , the co-
ordinates Xi,j are i.i.d. and independent of V\j = (V1, . . . , Vj−1, Vj+1, . . . , Vd) as well as independent
of Xi′,j for data points i′ 6= i.

9.4.1 Direct sum communication bounds

Our first step is to argue that, if we can prove a lower bound on the information complexity of
one-dimensional estimation, we can prove a lower bound on d-dimensional problems that scales
with the dimension. To accomplish this reduction, let X≤m,j = (Xi,j)

m
i=1 be the jth coordinate of

the data, and let X≤m,\j be the remaining d − 1 coordinates across all i = 1, . . . ,m. Then by the
construction (9.4.1), we have the Markov structure

Vj → X≤m,j → Π(Xm
1 )← X≤m,\j ← V\j .
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In particular, viewing X≤m,\j as extraneous randomness, we have the simpler Markovian structure

Vj → X≤m,j → Π, (9.4.2)

so that we may think of the communication Π = Π(X≤m,j) as acting only on X≤m,j . Now, define
M−j and Mj to be the marginal distributions over the total communication protocol Π conditional
on Vj = ±j, the one-variable model (9.4.2). Then Le Cam’s testing equality (Proposition 2.3.1),
and the equivalence between Hellinger and variation distance (Proposition 2.2.7) imply that

inf
V̂

2
d∑
j=1

P(V̂j(Π) 6= Vj) ≥
d∑
j=1

(1− ‖M−j −M+j‖TV) ≥
d∑
j=1

(1−
√

2dhel(M−j ,M+j))

≥ d

1−

√√√√2

d

d∑
j=1

d2
hel(M−j ,M+j)


by Cauchy-Schwarz. Summarizing, we have the following

Proposition 9.4.1 (Assouad’s method in communication). Let M+j be the marginal distribution
over Π conditional on Vj = 1 and M−j be the marginal distribution of Π conditional on Vj = −1
in Markov structure (9.4.2) and assume Xi follow the product distribution (9.4.1). Then

d∑
j=1

P(V̂j(τ) 6= Vj) ≥
d

2

1−

√√√√2

d

d∑
j=1

d2
hel(M−j ,M+j)

 .

Recalling Assouad’s method (Lemma 8.5.2) of Chapter 8.5, we see that any time we have a problem
with separation with respect to the Hamming metric (8.5.1), we have a lower bound on its error in
estimation problems. This proposition analogizes Theorem 9.3.13, in that small Hellinger distance
between the individual marginals M±j necessarily makes the testing and estimation problems hard.

9.4.2 Communication data processing

We now revisit the data processing inequalities in Section 9.1, where we consider a variant that
allows us to prove lower bounds for estimation problems with limited communication. It will be
more notationally convenient in this section to use V ∈ {0, 1} rather than {−1, 1}, so we do so
without comment. Our starting point is a revised strong data processing inequality.

Definition 9.7. Let P0, P1 be arbitrary distributions on a space X , let V ∈ {0, 1} uniformly at
random, and conditional on V = v, draw X ∼ Pv. Consider the Markov chain V → X → Z. The
mutual information strong data processing constant β(P0, P1) is

β(P0, P1) := sup
X→Z

I(V ;Z)

I(X;Z)
,

where the supremum is taken over all conditional distributions (Markov kernels) from X to Z.

In contrast to Definition 9.1, in this definition we have a contraction over the “beginning” of the
chain V → X rather than the distribution X → Z. Identifying Z with a communication protocol
Π(Xm

1 ), this makes it possible to develop lower bounds on estimation and testing that then depend
on the information I(X; Π).

Distributions with bounded likelihood ratios provide one way to demonstrate a strong data
processing inequality of the form in Definition 9.7, where in analogy with Theorem 9.2.1 we obtain
a contraction inequality involving the total variation distance.
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Proposition 9.4.2. Let V → X → Z, where X ∼ Pv conditional on V = v. Let PX and PX(· | Z)
denote the marginal and conditional distributions on X given Z, respectively. If | log dPv

dPv′
| ≤ α for

all v, v′, then

I(V ;Z) ≤ 4(eα − 1)2EZ
[
‖PX(· | Z)− PX‖2TV

]
≤ 2(eα − 1)2I(X;Z).

We leave the proof of this proposition as Exercise 9.12, as it follows by adapting the techniques
we use to prove Theorem 9.2.1, with the main difference being the random variables with bounded
likelihood ratios (X → Z versus V → X). A brief example illustrates Proposition 9.4.2.

Example 9.4.3 (Bernoulli distributions): Let Pv = Bernoulli(1+vδ
2 ) for v ∈ {−1, 1}. Then

we have likelihood ratio bound ∣∣∣∣log
dP1

dP−1

∣∣∣∣ ≤ log
1 + δ

1− δ
and so under the conditions of Proposition 9.4.2, for any Z we have

I(V ;Z) ≤ 2

(
1 + δ

1− δ
− 1

)2

I(X;Z) = 2

(
2δ

1− δ

)2

I(X;Z)
(i)

≤ 10δ2I(X;Z),

where inequality (i) holds for δ ∈ [0, 1/10]. 3

We now give the two main results connecting mutual information and the contraction-type
bounds in Definition 9.7. To provide bounds using Proposition 9.4.1, we wish to control the
Hellinger distance between individual marginals M±j , so we consider single variables in the Markov
chain

V → (X1, . . . , Xm)→ Π,

where V ∈ {0, 1}. To state the coming theorems, we make a restriction on the data generation
V → X, calling distributions P0 and P1 (c, β)-contractive if

β(P0, P1) ≤ β ≤ 1 and max {D∞ (P0||P1) , D∞ (P1||P0)} ≤ log c, (9.4.3)

where D∞ (·||·) denotes the Rényi-∞-divergence. Proposition 9.4.2 shows that whenever such a c
exists we certainly have β(P0, P1) ≤ 2(c− 1)2.

The next theorem then provides the basic information contraction inequality for single-variable
communication.

Theorem 9.4.4. Let 1 ≤ c <∞ and β ≤ 1. Let P0 and P1 be (c, β)-contractive (9.4.3) distributions
on X and Mv, v ∈ {0, 1} be the marginal distribution of the protocol Π conditional on V = v. Then

d2
hel(M0,M1) ≤ 7

2
(c+ 1)β ·min {I(Xm

1 ; Π(Xm
1 ) | V = 0), I(Xm

1 ; Π(Xm
1 ) | V = 1)} .

The proof of Theorem 9.4.4 is quite complicated, so we defer it to Section 9.5.
We can use Theorem 9.4.4 to obtain bounds on the probability of error—detection of d-

dimensional signals—in higher dimensional problems based on mutual information alone. Because
the theorem provides a bound involving the minimum of the conditional mutual informations, we
have substantial freedom to combine the direct-sum lower bounds in Section 9.4.1 to massage it
into the mutual information between the data Xm

1 and the protocol Π(Xm
1 ).

We thus recall the definition (9.4.1) of our product distribution signals, where we assume that
each individual datum Xi = (Xi,1, . . . , Xi,d) = (Xi,j)

d
j=1 belongs to a d-dimensional set and condi-

tional on V = v ∈ {−1, 1}d has independent coordinates distributed as Xi,j ∼ Pvj . With this, we
have the following theorem, which follows by a combination of Assouad’s method (in the context
of communication bounds, i.e. Proposition 9.4.1) and Theorem 9.4.4.
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Theorem 9.4.5. Let Π the entire communication protocol in Figure 9.3, V ∈ {−1, 1}d be uniform,

and generate Xi
iid∼ Pv, i = 1, . . . ,m according to the independent coordinate distribution (9.4.1).

Assume additionally that for each coordinate j = 1, . . . , d, the coordinate distributions P±vj are

(c, β)-contractive (9.4.3). Then for any estimator V̂ ,

d∑
j=1

P(V̂j(Π) 6= Vj) ≥
d

2

(
1−

√
7(c+ 1)

β

d
· I(X1, . . . , Xm; Π | V )

)
.

Proof Under the given conditions, Proposition 9.4.1 and Theorem 9.4.4 immediately combine to
give

d∑
j=1

P(V̂j(Π) 6= Vj) ≥
d

2

1−

√√√√7(c+ 1)
β

d

d∑
j=1

min
v∈{−1,1}

I(X1,j , . . . , Xm,j ; Π | Vj = v)

 .

Certainly
min

v∈{−1,1}
I(X1,j , . . . , Xm,j ; Π | Vj = v) ≤ I(X1,j , . . . , Xm,j ; Π | Vj).

Then, using that w.l.o.g. we may assume the Xi,j are discrete, we obtain

d∑
j=1

I((Xi,j)
m
i=1; Π | Vj) =

d∑
j=1

[H((Xi,j)
m
i=1 | Vj)−H((Xi,j)

m
i=1 | Π, Vj)]

(i)
=

d∑
j=1

[
H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j , V )−H((Xi,j)

m
i=1 | Π, Vj)

]
≤

d∑
j=1

[
H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j , V )−H((Xi,j)

m
i=1 | (Xi,j′)i≤m,j′<j ,Π, V )

]
=

d∑
j=1

I((Xi,j)
m
i=1; Π | V, (Xi,j′)i≤m,j′<j) = I(X1, . . . , Xm; Π | V ),

where equality (i) used the independence of Xi,j from V\j and Xi,j′ for j′ 6= j given Vj , and the
inequality that conditioning reduces entropy. This gives the theorem.

9.4.3 Applications: communication and privacy lower bounds

Let us now turn to a few different applications of our lower bounds on communication-constrained
estimators. We evidently require two conditions: first, we must show that the distributions our data
follows satisfy a strong (mutual information) data processing inequality (Definition 9.7). Second,
we must provide a (good enough) upper bound on the mutual information I(X1, . . . , Xm; Π | V )
between the data points Xi and communication protocol. While there are many strategies to pro-
viding bounds and strong data processing inequalities, we focus mainly on situations with bounded
likelihood ratio, where Proposition 9.4.2 directly provides the type of strong data processing in-
equality we require.
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Communication lower bounds

Our first set of examples consideres direct communication bounds, where controlling I(Xm
1 ; Π) is

relatively straightforward. Assume the setting in the introduction to Section 9.4, where to establish
our communication bounds we assume each machine i = 1, . . . ,m may send at most Bi total bits
of information throughout the entire communication protocol—that is, for each pair i, t, we have a
bound

H(Z
(t)
i | Z

(t)
→i) ≤ Bi,t and

∑
t

Bi,t ≤ Bi (9.4.4)

on the message from Xi in round t. (This is a weaker condition that H(Z
(t)
i ) ≤ Bi,t for each i, t.)

With this bound, we can provide minimax lower bounds on communication-constrained estimator.
For our first collection, we consider estimating the parameters of d independent Bernoulli dis-

tributions in squared error. Let Pd be the family of d-dimensional Bernoulli distributions, where
we let the parameter θ ∈ [0, 1]d be such that Pθ(Xj = 1) = θj . Then we have the following result.

Proposition 9.4.6. Let Mm(θ(Pd), ‖·‖22 , {Bi}mi=1) denote the minimax mean-square error for es-
timation of a d-dimensional Bernoulli under the information constraint (9.4.4). Then

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cmin

{
d

m

d
1
m

∑m
i=1Bi

, d

}
,

where c > 0 is a numerical constant.

Proof By the standard Assouad reduction (Section 8.5), when we take coordinate distributions

Pvj = Bernoulli(
1+δvj

2 ), we have a cδ2-separation in Hamming metric. Applying Theorem 9.4.5 and
Example 9.4.3, we obtain the minimax lower bound, valid for 0 ≤ δ ≤ 1

10 , of

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cδ2d

(
1−

√
C
δ2

d
I(X1, . . . , Xm; Π | V )

)
.

Now, we note that for any Markov chain V → X → Z,

I(X;Z | V ) = H(Z | V )−H(Z | X,V ) = H(Z | V )−H(Z | X) ≤ H(Z)−H(Z | X) = I(X;Z).

Thus we obtain

I(X1, . . . , Xm; Π | V ) ≤ I(X1, . . . , Xm; Π)

=
m∑
i=1

T∑
t=1

I(X1, . . . , Xm;Z
(t)
i | Z

(t)
→i).

As the message Z
(t)
i satisfies the conditional independence Z

(t)
i ⊥⊥ X\i | Z

(t)
→i, Xi, this final quantity

equals
∑

i,t I(Xi;Z
(t)
i | Z

(t)
→i). But of course I(Xi;Z

(t)
i | Z

(t)
→i) ≤ H(Z

(t)
i | Z

(t)
→i) ≤ Bi,t, and so

Mm(θ(Pd), ‖·‖22 , {Bi}
m
i=1) ≥ cδ2d

1−

√√√√C
δ2

d

∑
i,t

Bi,t

 .

Choosing δ = min{1/10, d
2C

∑
iBi
} gives the result.

244



Lexture Notes on Statistics and Information Theory John Duchi

This result deserves some discussion. It is sharp in the case that the number of bits is of order
d or less from each machine: when we set Bi = d, the lower bound becomes

sup
θ

Eθ[‖θ̂(Π)− θ‖22] & min

{
d

m
· d
d
, d

}
=

d

m
,

which is certainly achievable (each machine simply sends its entire vector Xi ∈ {0, 1}d). When
machines communicate fewer than d bits, we have a tighter result; for example, if only k/m machines
send d bits, and the rest communicate little, we obtain

sup
θ

Eθ[‖θ̂(Π)− θ‖22] & min

{
d

m
· md
kd

, d

}
=
d

k
,

which is similarly intuitive. The extension of these ideas to the case when each machine has an
individual sample of size n is more challenging, as it requires tensorized variants of the strong data
processing inequality in Definition 9.7; we provide remarks in the bibliographical section.

Lower bounds in locally private estimation

We return to the local privacy setting we consider in Section 9.2, except now we allow substantially
more interaction. We treat local differential privacy in the communication model of Figure 9.3,
where n individuals have data Xi which they wish to privatize, and proceed in rounds, releasing

data Z
(t)
i from individual i in round t. A natural setting is to assume each data release Z

(t)
i is

εi,t-differentially private: instead of the sequentially interactive model (9.2.1), we have

Q(Z
(t)
i ∈ A | Xi = x, Z

(t)
→i = z

(t)
→i) ≤ exp(εi,t) ·Q(Z

(t)
i ∈ A | Xi = x′, Z

(t)
→i = z

(t)
→i) (9.4.5)

for each i, t and all possible x, x′, z
(t)
→i. At a more abstract level, rather than a particular privacy

guarantee on each individual data release Z
(t)
i , we can assume a more global stability guarantee

akin to the (average) KL-stability in interactive data analysis (Definition 5.1). Thus, let Π(xn1 )
be the entire collection of communicated information in the protocol in Figure 9.3 on input data
x1, . . . , xn. Abusing notation to let Dkl (Z0||Z1) be the KL-divergence between the distributions of
Z0 and Z1, as in Definition 5.1, we make the following definition to capture arbitrary interactions.

Definition 9.8 (Average KL-privacy). Let the samples x≤n ∈ X n and x
(i)
≤n ∈ X n differ only in

example i. Then the data release Π is εkl-KL-locally-private on average if

1

n

n∑
i=1

Dkl

(
Π(x

(i)
≤n)||Π(x≤n)

)
≤ εkl.

The following observation shows that for appropriate choices of εkl, this is indeed weaker than
the interactive guarantee (9.4.5).

Lemma 9.4.7. Let the communication Q satisfy the interactive privacy guarantee (9.4.5) and Π
be the induced communication protocol over rounds t ≤ T . Then

1

n

n∑
i=1

Dkl

(
Π(x

(i)
≤n)||Π(x≤n)

)
≤ 1

n

n∑
i=1

T∑
t=1

min

{
εi,t,

3

2
ε2
i,t

}
.
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Proof Using the chain rule for the KL-divergence, we have for any j that

Dkl

(
Π(x

(j)
≤n)||Π(x≤n)

)
=

n∑
i=1

T∑
t=1

E
[
Dkl

(
Q(Zti ∈ · | x

(j)
i , Z

(t)
→i)||Q(Zti ∈ · | xi, Z

(t)
→i)
)]

=

T∑
t=1

E
[
Dkl

(
Q(Zti ∈ · | x

(j)
j , Z

(t)
→i)||Q(Zti ∈ · | xj , Z

(t)
→i)
)]
,

where the expectation is taken over Z
(t)
→i in the protocol Π(x

(j)
≤n), and the second equality follows

because x
(i)
j = xj for all j except index i. Now let P0 and P1 be arbitrary distributions whose

densities satisfy p0(z)/p1(z) ≤ eε. Then

Dkl (P0||P1) ≤ ε and Dkl (P0||P1) ≤ log
(
1 +Dχ2 (P0||P1)

)
≤ log

(
1 + (eε − 1)2

)
by Proposition 2.2.9. Then by inspection min{ε, log(1 + (eε − 1)2)} ≤ min{ε, 3

2ε
2} for all ε ≥ 0.

Returning to the initial KL-divergence sum, we thus obtain

n∑
i=1

Dkl

(
Π(x

(i)
≤n)||Π(x≤n)

)
≤

n∑
i=1

T∑
t=1

E
[
min

{
εi,t,

3

2
ε2
i,t

}]
,

as desired.

The key is that the average KL-local privacy guarantee is sufficient to provide a mutual infor-
mation bound, thus allowing us to apply Theorem 9.4.5 as in the proof of Proposition 9.4.6.

Proposition 9.4.8. Let Π be any εkl-KL-locally-private on average protocol and assume that
X1, . . . , Xn are independent conditional on V . Then Then

I(X1, . . . , Xn; Π(Xn
1 ) | V ) ≤ nεkl.

Proof The conditional independence of the Xi guarantees that

I(Xn
1 ; Π(Xn

1 ) | V ) =
n∑
i=1

H(Xi | Xi−1
1 , V )−H(Xi | Π, Xi−1

1 , V )

≤
n∑
i=1

H(Xi | X\i, V )−H(Xi | Π, X\i, V ) =
n∑
i=1

I(Xi; Π(Xn
1 ) | V,X\i).

We abuse notation to let Π∗(X\i) be the marginal protocol (marginalizing over Xi). Then

I(Xi; Π(Xn
1 ) | V,X\i) = E

[
Dkl

(
Π(X\i, Xi)||Π∗(X\i)

)]
≤ E

[
Dkl

(
Π(X\i, Xi)||Π(X\i, X

′
i)
)]

where the first expectation is taken over V and Xj
iid∼ Pv conditional on V = v and the inequality

uses convexity and draws X ′i independently. Summing over i = 1, . . . , n, Definition 9.8 gives the
result.

Applying Theorem 9.4.5, we then obtain the following corollary.
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Corollary 9.4.9. Let the conditions of Theorem 9.4.5 hold. If the data release Π is εkl-private on
average, then

d∑
j=1

P(V̂j(Π) 6= Vj) ≥
d

2

(
1−

√
7(c+ 1)

β

d
nεkl

)
.

Specializing to the case that we wish to estimate a d-dimensional Bernoulli vector, where X ∈ {±1}
has coordinates with P(Xj = 1) = θj , Example 9.4.3 gives the following minimax lower bound.

Corollary 9.4.10. Let Mn(θ(Pd), ‖·‖22 , εkl) denote the minimax mean-square error for estima-
tion of a d-dimensional Bernoulli under the εkl-KL-locally-private-on-average constraint in Defini-
tion 9.8. Then

Mn(θ(Pd), ‖·‖22 , εkl) ≥ cmin

{
d,

d2

nεkl

}
.

Proof By Corollary 9.4.9 and Example 9.4.3, we have minimax lower bound

Mn(θ(Pd), ‖·‖22 , εkl) & dδ2

(
1−

√
C
δ2

d
nεkl

)

for a numerical constant C, which is valid for δ . 1. Choose δ2 to scale as min{1, d
nεkl
}.

When instead of the average KL-privacy we use the pure local differential privacy constraint (9.4.5),
Lemma 9.4.7 implies the following.

Corollary 9.4.11. Let Mn(θ(Pd), ‖·‖22 , ε) denote the minimax mean-square error for estimation
of a d-dimensional Bernoulli where each data release is εi,t-locally differentially private (9.4.5), and∑∞

t=1 εi,t ≤ ε. Then

Mn(θ(Pd), ‖·‖22 , ε) ≥ cmin

{
d,

d2

n(ε ∧ ε2)

}
.

9.5 Proof of Theorem 9.4.4

The proof proceeds in stages. The basic ideas are as follows:

1. Relate the Hellinger distance between the marginal distributions M0 and M1 of Π conditional
on V = 0 or 1 to a sum of Hellinger distances between the marginal M0 and an alternative M ′i

where Xi ∼ P1 and X\i
iid∼ P0.

2. Provide a data processing inequality to relate dhel(M0,M
′
i) and the mutual information I(Xi; Π)

between the individual observation Xi and the protocol Π.

3. Use the standard chain rules for mutual information to finalize the theorem.

Step 1: sequential modification of marginals

We begin by relating the marginal distributions M0 and M1 by a sequence of one-variable changes.
To that end, for bit vectors b ∈ {0, 1}m define Mb to be the marginal distribution over the protocol
Π(Xm

1 ) generated from (X1, . . . , Xm), where for each i we generate Xi by indpendently sampling

Xi | b ∼ Pbi . (9.5.1)
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For the standard basis vectors e1, . . . , em, we expect M0 to be close to Mel , and thus hope for some
type of tensorization behavior, where we can relate M0 and M1 via one-step changes from M0 to
Mel . The next lemma realizes this promise.

Lemma 9.5.1. Let M0,M1, and Mel be as above. Then

d2
hel(M0,M1) ≤ 7

m∑
l=1

d2
hel(M0,Mel). (9.5.2)

Proof The proof crucially relies on the Euclidean structures that the Hellinger distance induces
along with analogues of the cut-and-paste (the “rectangular” structure of inputs in communication
protocols) properties from deterministic and randomized two-player communication. We assume
without loss of generality that Π is discrete, as the Hellinger distance is an f -divergence and so can
be arbitrarily approximated by discrete random variables.

First, we analogize the “rectangular” probabilistic structure of two-player communication pro-
tocols in Lemmas 9.3.18 and 9.3.19, which yields a multi-player cut-and-paste lemma.

Lemma 9.5.2 (cutting and pasting). Let a, b, c, d ∈ {0, 1}m be bit vectors satisfying ai+bi = ci+di
for each i = 1, . . . ,m. Then

d2
hel(Ma,Mb) = d2

hel(Mc,Md).

Proof We claim the following analogue of Lemma 9.3.18: for any Xm
1 = xm1 and any communi-

cation transcript τ , we may write

Q(Π(xm1 ) = τ | xm1 ) =

m∏
i=1

fi,xi(τ) (9.5.3)

for some functions fi,xi . Indeed, letting τ = {z(t)
i }i≤n,t≤T we have

Q(Π(xm1 ) = τ | xm1 ) =
∏
i,t

Q(z
(t)
i | x

m
1 , z

(t)
→i) =

m∏
i=1

T∏
t=1

Q(z
(t)
i | xi, z

(t)
→i)︸ ︷︷ ︸

=:fi,xi (τ)

where we use that message z
(t)
i depends only on xi and z

(t)
→i. Then we can write Mb(Π(Xm

1 ) = τ)
as a product using Eq. (9.5.3): integrating over independent Xi ∼ Pbi , we have

Mb(Π(Xm
1 ) = τ) =

∫
Q(τ | xm1 )dPb1(x1) · · · dPbm(xm) =

m∏
i=1

∫
fi,τ (xi)dPbi(xi)︸ ︷︷ ︸

:=gi,bi (τ)

=

m∏
i=1

gi,bi(τ).

Taking Ma,Mb,Mc,Md as in the statement of the lemma,

d2
hel(Ma,Mb) = 1−

∑
τ

√√√√ m∏
i=1

gi,ai(τ)gi,bi(τ).

But as ai + bi = ci + di and each is {0, 1}-valued, we certainly have gi,aigi,bi = gi,cigi,di , and so the
lemma follows.

The second result we require is due to Jayram [115], and is the following:
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Lemma 9.5.3. Let {Pb}b∈{0,1}m be any collection of distributions satisfying the cutting and pasting

property d2
hel(Pa, Pb) = d2

hel(Pc, Pd) whenever a, b, c, d ∈ {0, 1}m satisfy a + b = c + d. Let N = 2k

for some k ∈ N. Then for any collection of bit vectors {b(i)}Ni=1 ⊂ {0, 1}m with 〈b(i), b(j)〉 = 0 for
all i 6= j and b =

∑
i b

(i),

k∏
l=1

(1− 2−l)d2
hel(P0, Pb) ≤

m∑
i=1

d2
hel(P0, Pb(i)).

We defer the technical proof to Section 9.5.1.
A computation shows that

∏k
l=1(1 − 2−l) > 2

7 . Lemma 9.5.3 nearly gives us our desired re-
sult (9.5.2), except that it requires a power of 2. To that end, let k0 be the largest k ∈ N such that

2k0 ≤ m, and construct bit vectors b(1), . . . , b(2
k0 ) satisfying

∑
i b

(i) = 1 and 1 ≤
∥∥b(i)∥∥

0
≤ 2 for

each i. Then Lemma 9.5.3, via the cutting-pasting property of the marginals M , implies

2

7
d2

hel(M0,M1) ≤
2k0∑
i=1

d2
hel(M0,Mb(i)) ≤ 2

m∑
i=1

d2
hel(M0,Mei),

where the second inequality again follows from Lemma 9.5.3 as b(i) = ej or ej + ej′ for some basis
vectors ej , e

′
j . This gives Lemma 9.5.1.

Step 2: from Hellinger to Shannon information

Now we relate the strong data processing processing constants for mutual information in Defini-
tion 9.7 to compare Hellinger distances with mutual information. We claim the following lemma.

Lemma 9.5.4. Let the conditions of Theorem 9.4.4 hold. Let M0 and Mel be the marginal distri-
butions over Π when Xi have the sampling distribution (9.5.1). Then for l ∈ {1, . . . ,m},

d2
hel(Mel ,M0) ≤ c+ 1

2
βI(Xl; Π(Xm

1 ) | V = 0).

Proof Consider the following alternative distributions. Let W ∼ Uniform{0, 1}, and draw X ′ ∈
Xm with independent coordinates according to

X ′i
iid∼ P0 if W = 0 or X ′i ∼

{
P0 if i 6= l

P1 if i = l
if W = 1.

Then we have the Markov chain W → X ′ → Π(X ′), and moreover,

W → X ′l → Π(X ′)← X ′\l,

so that additionally W → X ′l → Π(X ′) is a Markov chain. As a consequence, Definition 9.7 of the
strong data processing inequality gives

I(W ; Π(X ′)) ≤ βI(X ′l ; Π(X ′)).

Using Proposition 2.2.10, we thus have

d2
hel(Mel ,M0) ≤ I(W ; Π(X ′)) ≤ βI(X ′l ; Π(X ′)). (9.5.4)
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It remains to relate I(X ′l ; Π(X ′)) to I(Xl; Π(X) | V = 0). Here we bounded likelihood ratio
between P0 by P1. Indeed, we have by the condition (9.4.3) that

P0 ≥
1

c
P1 so (c+ 1)P0 ≥ P0 + P1 or P0 ≥

2

c+ 1

P0 + P1

2
.

As a consequence, we have

I(Xl; Π(Xm
1 ) | V = 0) =

∫
Dkl (Q(· | Xl = x)||M0) dP0(x)

≥ 2

c+ 1

∫
Dkl (Q(· | Xl = x)||M0)

dP0(x) + dP1(x)

2

≥ 2

c+ 1

∫
Dkl

(
Q(· | Xl = x)||M

) dP0(x) + dP1(x)

2

=
2

c+ 1
I(X ′l ; Π(X ′)),

where the second inequality uses that M =
∫
Q(· | Xl = x)dP0(x)+dP1(x)

2 minimizes the integrated
KL-divergence (recall inequality (8.7.3)). Returning to inequality (9.5.4), we evidently have the
result of the lemma.

Step 3: Completing the proof of Theorem 9.4.4

By combining the tensorization Lemma 9.5.1 with the information bound in Lemma 9.5.4, we obtain

d2
hel(M0,M1) ≤ 7

m∑
i=1

d2
hel(M0,Mei) ≤

7

2
(c+ 1)β

m∑
i=1

I(Xi; Π | V = 0).

By symmetry, we also have

d2
hel(M0,M1) ≤ 7

m∑
i=1

d2
hel(M0,Mei) ≤

7

2
(c+ 1)β

m∑
i=1

I(Xi; Π | V = 1).

Now, we note that as the Xi are independent conditional on V (and w.l.o.g. for the purposes of
mutual information, we may assume they are discrete), for any v ∈ {0, 1} we have

m∑
i=1

I(Xi; Π | V = v) =

m∑
i=1

[H(Xi | V = v)−H(Xi | Π, V = v)]

=

m∑
i=1

[
H(Xi | Xi−1

1 , V = v)−H(Xi | Π, V = v)
]

≤
m∑
i=1

[
H(Xi | Xi−1

1 , V = v)−H(Xi | Xi−1
1 ,Π, V = v)

]
=

m∑
i=1

I(Xi; Π | Xi−1
1 , V = v) = I(X1, . . . , Xm; Π | V = v),

where the inequality used that conditioning decreases entropy. We thus obtain

d2
hel(M0,M1) ≤ 7

2
(c+ 1)β min

v∈{0,1}
I(X1, . . . , Xm; Π | V = v)

as desired.
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9.5.1 Proof of Lemma 9.5.3

We prove the result by induction. It is trivially true for m = 1, that is, k = 0, so now we consider
the inductive case, that is, it holds for m = 1, . . . , 2k−1 and we consider m = 2k.

First, we observe that if {ui}Ni=1 are arbitrary vectors and u = 1
N

∑N
i=1 ui is their mean, then

∑
i,j

‖ui − uj‖22 =
∑
i,j

‖ui − u+ u− uj‖22 =
∑
i,j

‖ui − u‖22 +
∑
i,j

‖u− uj‖22 = 2N
N∑
i=1

‖u− ui‖22 .

Thus, if u0 is any other vector, that u minimizes
∑

i ‖ui − u‖
2
2 over all u gives

1

N

∑
1≤i<j≤N

‖ui − uj‖22 ≤
N∑
i=1

‖ui − u‖22 ≤
N∑
i=1

‖ui − u0‖22 . (9.5.5)

Now, we return to the Hellinger distances. Evidently 2d2
hel(Pa, Pb) =

∥∥√pa(·)−√pb(·)∥∥2

2
, so

that it is a Euclidean distance. As a consequence, for any pairwise disjoint collection of N bit
vectors b(i), we have

N∑
i=1

d2
hel(P0, Pb(i)) ≥

1

N

∑
1≤i<j≤N

d2
hel(Pb(i) , Pb(j)) =

1

N

∑
1≤i<j≤N

d2
hel(P0, Pb(i)+b(j)) (9.5.6)

where the inequality follows from (9.5.5) and the equality by the assumed cut-and-paste property.
Now, we apply Baranyai’s theorem, which says that we may decompose any complete graph KN ,
where N is even, into N − 1 perfect matchings Mi with N/2 edges—necessarily, as they form a
perfect matching—where each Mi is edge disjoint. Identifying the pairs i < j with the complete
graph, we thus obtain

∑
1≤i<j≤N

d2
hel(P0, Pb(i)+b(j)) =

N−1∑
l=1

∑
(i,j)∈Ml

d2
hel(P0, Pb(i)+b(j)). (9.5.7)

Now fix n ∈ {1, . . . , N−1} and a matchingMn. By assumption we have 〈b(i)+b(j), b(i
′)+b(j

′)〉 =
0 for any distinct pairs (i, j), (i′, j′) ∈ Mn, and moreover,

∑
(i,j)∈Mn

(b(i) + b(j)) = b. Thus, our
induction hypothesis gives that for any l ∈ {1, . . . , N − 1} and any of our matchings Mn, we have

∑
(i,j)∈Mn

d2
hel(P0, Pb(i)+b(j)) ≥ d

2
hel(P0, Pb)

k−1∏
l=1

(1− 2−l).

Substituting this lower bound into inequality (9.5.7) and using inequality (9.5.6), we obtain

N∑
i=1

d2
hel(P0, Pb(i)) ≥

1

N
· (N − 1)d2

hel(P0, Pb)

k−1∏
l=1

(1− 2−l) = d2
hel(P0, Pb)

k∏
l=1

(1− 2−l),

where we have used N = 2k.
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9.6 Bibliography

Data processing inequalities originate with Dobrushin’s study of central limit theorems for Markov
chains [62, 63]; Dobrushin first proved Proposition 9.1.1 (see [63, Sec. 3.1]). Cohen et al. [50] show
that the strong data processing constant for variation distance is the largest of the strong data
processing constants (Theorem 9.1.2) for finite state spaces using careful linear algebraic techniques,
also showing the opposite extremality (inequality (9.1.1)) of the χ2 contraction coefficient [50,
Proposition II.6.15] for finite state spaces. Del Moral et al. [61] and Polyanskiy and Wu [146] give
related and approachable treatments for general alphabets, and Exercises 9.1 and 9.2 follow [61].
More broadly, strong data processing inequalities arise in many applications in communication,
estimation, and some functional analysis [147, 146].

Communication complexity begins with Yao [176], which introduces the communication com-
plexity setting we discuss in Section 9.3, making the connections between randomized complexities
and public (shared) randomness. The standard classical reference for the subject is Kushilevitz
and Nisan’s book [124]. There are numerous techniques that we do not discuss, including so-called
discrepancy lower bounds, which address both randomized and deterministic communication com-
plexity; for example, these give the stronger lower bound that DCCδ(IP2) ≥ n−O(1) [124, Example
3.29 and Exercise 3.30]. Communication complexity has uses far beyond the “standard” commu-
nication setting we have outlined, with more recent research showing how to use the techniques
to provide lower bounds on the performance of algorithms in many computational models, such
as streaming models and memory-limited computation [141, 148]. Our information complexity ap-
proach follows Bar-Yossef et al. [15]. Recent work has shown how communication lower bounds and
strong data processing inequalities can be used to show the necessity of “memorization” in some
natural problems in machine learning, where any learning procedure with good enough performance
necessarily encodes substantial irrelevant information about a dataset [38].

Our treatment of communication complexity and its applications in estimation follows an ap-
proach Zhang et al. [178] originate. The particular techniques we adapt, involving direct sums and
strong data processing in communication, we adapt from Braverman et al. [37] and Garg et al.
[90]. Our results apply most easily to scenarios in which each machine or agent owns only a single
data item, which allows application of Proposition 9.4.2; tensorizing this to multiple observations
requires some care, but can be done with a truncation argument [178, 37] or more careful Sobolev
inequalities [147]. Our extension to private estimation scenarios follows the paper [65], which also
shows how to generalize to other variants of privacy.

9.7 Exercises

Exercise 9.1 (Approximating nonnegative convex functions): Let f : R → R+ ∪ {+∞} be a
closed, nonnegative convex function.

(a) Show that there exists a sequence of piecewise linear functions fn satisfying fn−1 ≤ fn ≤ f for
all n and for which fn(x) ↑ f(x) pointwise for all x s.t. f(x) < ∞, and fn(x) ↑ ∞ otherwise.
Hint: Let L be the collection of linear functions below f , that is L = {l | l(x) = a+ bx, l(x) ≤
f(x) for all x}, and note that f(x) = sup{l(x) | l ∈ L}. (See Appendix C.2.) You may replace
L with functions of the form l(x) = f(x0) + g(x− x0), where g ∈ ∂f(x0) is a subderivative of
f at x0.

(b) Show that if for some z0 ∈ R we have f(z0) = 0, then one may take the functions fn to be of
the form fn(x) =

∑n
i=1 ai [bi − x]+ +

∑n
i=1 ci [x− di]+, where bi ≤ z0, di ≥ z0, and ai, ci ≥ 0.
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(c) Conclude that for any measure µ on R+,
∫
fndµ ↑

∫
fdµ.

Exercise 9.2 (Proving Theorem 9.1.2): In this question, we formalize the sketched proof of
Theorem 9.1.2 by filling in details of the following steps. Let α = αTV(Q) be the Dobrushin
coefficient of the channel Q and f : R→ R+ ∪ {+∞} be a closed convex function.

(a) There exists a nondecreasing sequence fn of piecewise linear functions, each of the form fn(x) =∑n
i=1 ai [bi − x]+ +

∑n
i=1 ci [x− di]+, where bi ≤ 1, di ≥ 1, and ai, ci ≥ 0. Hint: Exercise 9.1.

(b) Let Mv(A) =
∫
Q(A | x)dPv(x) for v ∈ {0, 1} be the induced marginal distributions. Show

that for any function of the form h(t) = [t−∆]+, where ∆ > 1,

Dh (M0||M1) ≤ αDh (P0||P1) (9.7.1)

by the following steps:

i. Define the set X (∆) := {x | dP0(x) ≤ ∆dP1(x)}. Argue that X (∆) must be non-null (i.e.,
have positive measure).

ii. Define the probability distribution P∆ with density

dP∆(x) =
∆dP1(x)− dP0(x)∫
[∆dP1(x)− dP0(x)]+

1 {x ∈ X (∆)} .

Argue that the measure
G = ∆P1 − (∆− 1)P∆

is a probability distribution.

iii. Show that
Dh (P0||P1) = ‖P0 −G‖TV .

It may be useful to show that dP0 − dG ≤ 0 on X (∆).

iv. Conclude that

Dh (P0||P1) ≥ 1

α
‖Q ◦ P0 −Q ◦G‖TV ≥

1

α
Dh (Q ◦ P0||Q ◦ P1) .

(c) Using the monotone convergence theorem, show that Df (M0||M1) ≤ αDf (P0||P1).

Exercise 9.3 (Markov chain mixing): Consider a Markov chain X1, X2, . . . with transition distri-
bution P (· | x) and stationary distribution π. Let P k(· | x) denote the distribution of the Markov
chain initialized in state x after k steps. Assume there exists some (finite) positive integer k ∈ N
such that for any two initial states x0, x1, the Markov chain satisfies∥∥∥P k(· | x0)− P k(· | x1)

∥∥∥
TV
≤ β < 1.

Show that the Markov chain enjoys fast mixing for any f divergence: if there is any n such that
Df (Pn(· | x)||π) <∞, the Markov chain mixes exponentially quickly in that it satisfies

lim sup
n

1

n
logDf (Pn(· | x)||π) ≤ 1

k
log β < 0.
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In brief, as soon as one can demonstrate a constant gap in variation distance, one is guaranteed a
Markov chain mixes geometrically.

Exercise 9.4: For k ∈ [1,∞], we consider the collection of distributions

Pk := {P : EP [|X|k]1/k ≤ 1},

that is, distributions P supported on R with kth moment bounded by 1. We consider minimax
estimation of the mean E[X] for these families under ε-local differential privacy, meaning that for
each observation Xi, we observe a private realization Zi (which may depend on Zi−1

1 ) where Zi
is an ε-differentially private view of Xi. Let Qε denote the collection of all ε-differentially private
channels, and define the (locally) private minimax risk

Mn(θ(P), (·)2, ε) := inf
θ̂n

inf
Q∈Qε

sup
P∈P

EP,Q[(θ̂n(Zn1 )− θ(P ))2].

(a) Assume that ε ≤ 1. For k ∈ [1,∞], show that there exists a constant c > 0 such that

Mn(θ(Pk), (·)2, ε) ≥ c
(

1

nε2

) k−1
k

.

(b) Give an ε-locally differentially private estimator achieving the minimax rate in part (a).

Exercise 9.5: Show that strong data processing inequality in Theorem 9.2.1 is sharp in the
following sense. There exist ε-differentially private channels Qε such that for any Bernoulli distri-
butions P0 and P1 and induced marginal distributions Mv,ε = Q(· | X = 1)Pv(X = 1) +Q(· | X =
0)Pv(X = 0),

Dkl (M0,ε||M1,ε)

‖P0 − P1‖2TV

=
ε2

2
+O(ε3)

as ε ↓ 0.

Exercise 9.6: We apply the results of Exercise 9.4 to a problem of estimation of drug use.
Assume we interview a series of individuals i = 1, . . . , n, asking whether each takes illicit drugs.
Let Xi ∈ {0, 1} be 1 if person i uses drugs, 0 otherwise, and define θ∗ = E[X] = E[Xi] = P (X = 1).
Instead of Xi we observe answers Zi under differential privacy,

Zi | Xi = x ∼ Q(· | Xi = x)

for a ε-differentially private Q with ε < 1
2 (so that (eε − 1)2 ≤ 2ε2). Let Qε denote the family of

all ε-differentially private channels, and let P denote the Bernoulli distributions with parameter
θ(P ) = P (Xi = 1) ∈ [0, 1] for P ∈ P.

(a) Use Le Cam’s method and the strong data processing inequality in Theorem 9.2.1 to show that
the minimax rate for estimation of the proportion θ∗ in absolute value satisfies

Mn(θ(P), | · |, ε) := inf
Q∈Qε

inf
θ̂

sup
P∈P

EP,Q
[
|θ̂(Z1, . . . , Zn)− θ(P )|

]
≥ c 1√

nε2
,

where c > 0 is a universal constant.
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(b) Give a rate-optimal estimator for this problem. That is, define an ε-differentially private channel
Q and an estimator θ̂ such that E[|θ̂(Zn1 )− θ|] ≤ C/

√
nε2, where C is a universal constant.

(c) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which
consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs
(a 1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population
proportion of drug abusers: give an estimated number of users for ε ∈ {2−k, k = 0, 1, . . . , 10}.
Perform each experiment several times. Assuming that the proportion of users in the dataset
is the true population proportion, how accurate is your estimator?

Exercise 9.7: Show that the randomized communication complexity (9.3.1) satifies RCCδ(f) ≤
O(1) log 1

δRCC1/3(f) for any f and any δ < 1.

Exercise 9.8 (From public to private randomness): Consider the randomized complexity (9.3.1)

and associated public-randomness complexity RCCpub
δ . Let X = Y = {0, 1}n and f : X×Y → {0, 1},

and let Π be a protocol using public randomness U such that maxx,y P(Π(x, y, U) 6= f(x, y)) ≤ ε.

(a) Use Hoeffding’s inequality to show that there are k = log 2
δ2
n points u1, . . . , uk such that if I ∈ [k]

is chosen uniformly at random, then P(Π(x, y, uI) 6= f(x, y)) ≤ ε+ δ.

(b) Give a protocol that uses no public randomness but whose communication complexity is at
most depth(Π) +O(1) log n

δ .

(c) Conclude that RCCδ(f) ≤ RCCpub
δ (f) +O(1) log n

δ .

Exercise 9.9 (An information lower bound for indexing): In the indexing problem in communi-
cation complexity, Alice receives an n-bit string x ∈ {0, 1}n and Bob an index y ∈ [n] = {1, . . . , n},
and the two communicate to evaluate xy; set f(x, y) = xy.

(a) Show that if Bob can send messages, the communication complexity of indexing satisfies
CC(f) ≤ O(1) log n.

In the one way communication model, only Alice can send messages. Let µ be the uniform
distribution on (X,Y ) ∈ {0, 1}n × [n]. We will show that DCCµδ (f) ≥ (1 − h2(δ))n, where
h2(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy.

(b) Fix the index Y = i and let pi = P(X̂i = Xi | Y = i) based on a protocol Π. Use Fano’s
inequality (Proposition 8.4.1) to argue that h2(pi) ≥ H2(Xi | Π).

(c) Show that if Π is a δ-error one-way protocol under µ, then

I(Xn
1 ; Π) ≥ (1− h2(δ))n.

Exercise 9.10 (Information complexity for entrywise less or equal): Consider the entrywise less
than or equal to function f : {0, 1}n×{0, 1}n → {0, 1} with f(x, y) = 1 {x � y}, so that f(x, y) = 1
if xi ≤ yi for each i and 0 if there exists i such that xi > yi.

(a) Show that f has the decompositional structure (9.3.4). Give the functions g and h.

(b) Give a fooling distribution µ on X × Y for f .

255

http://web.stanford.edu/class/stats311/Data/drugs.txt


Lexture Notes on Statistics and Information Theory John Duchi

(c) Use Theorem 9.3.13 and a modification of the proof of Proposition 9.3.15 to show that ICδ(f) ≥
n
4 (1− 2

√
δ(1− δ)). (This is order optimal, because ICδ(f) ≤ CC(f) ≤ n+ 1 trivially.)

Exercise 9.11 (Lower bounds for private logistic regression): This question is (likely) challenging.
Consider the logistic regression model for y ∈ {±1}, x ∈ Rd, that

pθ(y | x) =
1

1 + exp(−y〈θ, x〉)
.

For a distribution P on (X,Y ) ∈ Rd × {±1}, where Y | X = x has logistic distribution, define the
excess risk

L(θ, P ) := EP [`(θ;X,Y )]− inf
θ
EP [`(θ;X,Y )]

where `(θ;x, y) = log(1 + exp(−y〈x, θ〉)) is the logistic loss. Let P be the collection of such
distributions, where X is supported on {−1, 1}d. Following the notation of Exercise 8.4, for a
channel Q mapping (X,Y )→ Z, define

Mn(P, L,Q) := inf
θ̂

sup
P∈P

EP,Q[L(θ̂(Zn1 ), P )],

where the expectation is taken over Zi ∼ Q(· | Xi, Z
i−1
1 ). Assume that the channel releases are all

(locally) ε-differentially private.

(a) Show that for all n large enough,

Mn(P, L,Q) ≥ c · d
n
· d

ε ∧ ε2

for some (numerical) constant c > 0.

(b) Suppose we allow additional passes through the dataset (i.e. multiple rounds of communication),
but still require that all data Zi released from Xi be ε-differentially private. That is, assume
we have the (sequential and interactive) release schemes of Fig. 9.3, and we guarantee that

Z
(t)
i ∼ Q(· | Xi, B

(1), . . . , B(t), Z
(t)
1 , . . . , Z

(t)
i−1)

is εi,t-differentially private, where
∑

t εi,t ≤ ε for all i. Does the lower bound of part (a) change?

Exercise 9.12: In this question, we prove Proposition 9.4.2.

(a) Show that if p(v) and p(v | x) denote the p.m.f.s of V and V conditional on X = x, then

e−αp(v) ≤ p(v | x) ≤ eαp(v).

(b) Show that
|p(v | z)− p(v)| ≤ 2(eα − 1) ‖PX(· | z)− PX(·)‖TV .

(c) Complete the proof of the proposition.

JCD Comment: A few additional exercises to add:

1. Prove Yao’s minimax theorem.

2. Is there a clean “memorization” phenomenon to cover?

256



Chapter 10

Testing and functional estimation

When we wish to estimate a complete “object,” such as the parameter θ in a linear regression
Y = Xθ+ ε, or a density when we observe X1, . . . , Xn i.i.d. with a density f , the previous chapters
give a number of approaches to proving fundamental optimality results and limits. In many cases,
however, we wish to estimate functionals of a distribution or larger parameter, rather than the
entire distribution or a high-dimensional parameter. Suppose we wish to estimate some statistic
T (P ) ∈ R of a probability distribution P . Then a naive estimator is to construct an estimate P̂
of P , and simply plug it in: use T̂ = T (P̂ ). But frequently—and as we have seen in the preceding
chapters—our ability to estimate P̂ may be limited, while various statistics of P may be easier to
estimate. As a trivial example of this phenomenon, suppose we have an unknown distribution P
supported on [−1, 1], and we wish to estimate the statistic T (P ) = EP [X], its expectation. Then
the trivial sample mean estimator

Tn := Xn

satisfies E[(Tn − E[X])2] ≤ 1
n . But an estimator that first attempts to approximate the full distri-

bution P via some P̂ and then estimate
∫
xdP̂ (x) is likely to incur substantial additional error.

Alternatively, we might wish to test different properties of distributions. In goodness of fit
testing, we are given a sample X1, . . . , Xn i.i.d. from a distribution Q, and we wish to distinguish

whether Q = P or Q is far from P . In related two-sample tests, we are given samples Xn
1

iid∼ P

and Y m
1

iid∼ Q, and again wish to test whether Q = P or Q and P are far from one another. For
example, in a medical study, we may wish to distinguish whether there are significant differences
between a treated population Q and control population P .

More broadly, we wish to develop tools to understand the optimality of different estimators
and tests of functionals, by which we mean scalar valued parameters of a distribution P . Such
parameters could include the norm ‖θ‖2 of a regression vector, an estimate of the best possible
expected loss inff EP [`(f(X), Y )] in a prediction problem, the distance ‖P − P0‖TV of a sampled
population P from a reference P0, or the probability mass of outcomes we have not observed in a
study. This chapter develops a few of the tools to understand these problems.

10.1 Le Cam’s convex hull method

Our starting point is to revisit Le Cam’s method from Chapter 8.3, which focused on “two-point”
methods to provide a lower bound on estimation error. We can substantially generalize this by
instead comparing families of distributions that all induce separations between statistics of one
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another, and then computing the distance between the convex hulls of the families. This leads to
Le Cam’s convex hull method, which we state abstractly and specialize later to different scenarios
of interest. Let P be a collection of distributions on an underlying space X , and let θ : P → Rd be
a parameter of interest. We say that two subsets P0 ⊂ P and P1 are δ-separated in ‖·‖ if

‖θ(P0)− θ(P1)‖ ≥ δ for all P0 ∈ P0 and P1 ∈ P1. (10.1.1)

We do not require that all of P0 be somehow on one side or the other of the collection {θ(P1) |
P1 ∈ P1} of parameters associated with P1, just that they be pairwise separate.

Let Conv(P) be the collection of mixtures of elements of P, that is,

Conv(P) =

{
m∑
i=1

λiPi | m ∈ N, λ � 0, 〈λ,1〉 = 1, Pi ∈ P

}
.

Defining the minimax risk

M(θ(P), ‖·‖) = inf
θ̂

sup
P∈P

EP
[
‖θ̂ − θ(P )‖

]
(note the temporary lack of sample size n), we then have the following generalization of inequal-
ity (8.3.3).

Theorem 10.1.1 (Le Cam’s Convex Hull Lower Bound). Let P0 and P1 ⊂ P be δ-separated in
‖·‖. Then

M(θ(P), ‖·‖) ≥ δ

2
sup

{[
1−

∥∥P 0 − P 1

∥∥
TV

]
| P 0 ∈ Conv(P0), P 1 ∈ Conv(P1)

}
Proof For any parameter θ, the separation ‖θ(P0)− θ(P1)‖ ≥ δ and the triangle inequality
guarantees that at least one of ‖θ − θ(P0)‖ ≥ δ/2 or ‖θ − θ(P1)‖ ≥ δ/2 holds for all pairs P0 ∈ P0

and P1 ∈ P1. Let P 0 =
∑m

j=1 αjPj and P 1 =
∑m

j=1 βjQj for Pj ∈ P0 and Qj ∈ P1, respectively,
where α, β are convex combinations. Then by Markov’s inequality,

M(θ(P), ‖·‖) ≥ 1

2

m∑
j=1

αjEPj
[
‖θ̂ − θ(Pj)‖

]
+

1

2

m∑
j=1

βjEQj
[
‖θ̂ − θ(Qj)‖

]
≥ δ

2

[ m∑
j=1

αjEPj
[
1{‖θ̂ − θ(Pj)‖ ≥ δ/2}

]
+

m∑
j=1

βjEQj
[
1{‖θ̂ − θ(Pj)‖ ≥ δ/2}

] ]

≥ δ
m∑
j=1

(
αjEPj

[
inf

P0∈P0

1{‖θ̂ − θ(P0)‖ ≥ δ/2}
]

+ βjEQj

[
inf

P1∈P1

1{‖θ̂ − θ(P1)‖ ≥ δ/2}
])

=
δ

2

(
EP 0

[
inf

P0∈P0

1{‖θ̂ − θ(P0)‖ ≥ δ/2}
]

+ EP 1

[
inf

P1∈P1

1{‖θ̂ − θ(P1)‖ ≥ δ/2}
])

.

Note that if we define fv(x) = infP∈Pv 1{‖θ̂(x)− θ(P )‖ ≥ δ/2} for v = 0, 1, then f0 + f1 ≥ 1.
We claim the following lemma, which extends Le Cam’s lemma (Proposition 2.3.1) to give

Lemma 10.1.2. For any two distributions P0 and P1,

inf
f0+f1≥1

EP0 [f0] + EP1 [f1] ≥ 1− ‖P0 − P1‖TV .
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We leave this form of total variation distance as an exercise (see Exercise 2.1). Substituting it into
the display above, we find that for any P v ∈ Conv(Pv), we have

M(θ(P), ‖·‖) ≥ δ

2

[
1−

∥∥P 0 − P 1

∥∥
TV

]
.

Taking a supremum over the P v gives the theorem.

10.1.1 The χ2-mixture bound

Theorem 10.1.1 provides a powerful tool for developing lower bounds between collections of well-
separated distributions. The most typical approach is to take the class P0 to consist of a single
“base” distribution P0, and then let P1 vary around P0 in some prescribed way, so that for an
index set V, we let P = 1

|V|
∑

v∈V Pv. Even so, when we have a sample of size n from one of the
distributions, this results in a total variation quantity of the form∥∥Pn0 − Pn∥∥TV

where Pn =
1

|V|
∑
v∈V

Pnv ,

yielding a mixture of product distributions—something frequently quite challenging to control.
The key technique here is to leverage the inequalities relating divergences from Chapter 2, which

allows us to replace the variation distance with something more convenient. In previous chapters,
this was the KL-divergence; now, instead, we use a χ2-divergence, as it interacts much more nicely
with the mixture product structure. Essentially, we replace an expectation over X ∼ P with two
expectations: one over X ∼ P and another over independent samples V, V ′ ∼ Uniform(V). To
obtain the bound, first note that

2
∥∥P0 − P

∥∥2

TV
≤ Dkl

(
P ||P0

)
≤ log(1 +Dχ2

(
P ||P0

)
) ≤ Dχ2

(
P ||P0

)
by Propositions 2.2.8 and 2.2.9.

We then have the following technical lemma.

Lemma 10.1.3. Let P = 1
|V|
∑

v∈V Pv and Pv and P0 have densities pv, p0 with respect to some
base measure µ on a set X . Then

Dχ2

(
P ||P0

)
=

1

|V|2
∑
v,v′∈V

∫
pv(x)pv′(x)

p0(x)
dµ(x)− 1 =

1

|V|2
∑
v,v′∈V

E0

[
pv(X)pv′(X)

p2
0(X)

]
− 1,

where the expectation is taken with respect to X ∼ P0. More generally, let V ∈ V be a random
variable distributed according to π and conditional on V = v, let X | V = v ∼ Pv. Then for the

paired likelihood ratio l(x | v, v′) =
pv(x)pv′ (x)

p20(x)
, the marginal distribution P of X satisfies

Dχ2

(
P ||P0

)
= E0

[
l(X | V, V ′)

]
− 1,

where the expectation is taken jointly over X ∼ P0 and V, V ′
iid∼ π.
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Proof The starting point is to notice that for any two distributions P andQ we haveDχ2 (P ||Q) =∫
(dP/dQ− 1)2dQ =

∫
dP 2

dQ − 2
∫
dP
dQdQ+

∫
dQ =

∫
dP 2

dQ − 1. Then we proceed by recognizing that

( 1
N

∑N
i=1 xi)

2 = 1
N2

∑
i,j xixj for any sequence xi, and so

Dχ2

(
P ||P0

)
+ 1 =

∫
((1/|V|)

∑
v∈V dPv)

2

dP0
=

1

|V|2
∑
v,v′∈V

∫
dPvdPv′

dP0

as desired. The second statement has identical proof to the first except that we replace 1
|V|
∑

v∈V
with expectations according to π.

The applications of this lemma are many, and going through a few examples will best show how
to leverage it. Roughly, our typical approach is the following: we identify V with {±1}d or some
other suitably nice collection of vectors. We then choose distributions Pv and P0 with densities
suitably nice that the ratios pv/p0 “act” like exponentials involving inner products of v ∈ V with
some other quantity; then, because v is uniform in V in Lemma 10.1.3, we can leverage all the
tools we have developed to control moment generating functions and concentration inequalities in
Chapter 4 to bound the χ2-divergence and then apply Theorem 10.1.1.

Let us give one example of this approach, where we see the technique we use to prove the
lemma arises frequently. Let P0 = N(0, σ2Id) be the standard normal distribution on Rd, and for
V = {−1, 1}d and some δ ≥ 0 to be chosen, let Pv = N(δv, σ2Id). Then we have the following

lemma, which shows that while Dkl (Pv||P0) = dδ2

2σ2 for each individual Pv, the divergence for the
average can be much smaller (even quadratically so in the ratio δ2/σ2).

Lemma 10.1.4. Let P0 and Pv be Gaussian distributions as above, and define the mixture P =
1
2d

∑
v∈{±1}d Pv. Then

2
∥∥P0 − P

∥∥2

TV
≤ log(1 +Dχ2

(
P ||P0

)
) ≤ dδ4

2σ4
.

Proof The first inequality combines Pinsker’s inequality (Proposition 2.2.8) with the bound
Dkl (P ||Q) ≤ log(1 +Dχ2 (P ||Q)) in Proposition 2.2.9. Now we expand the χ2-divergence, yielding

1 +Dχ2

(
P ||P0

)
= E

[
exp

(
− 1

2σ2
‖Y − δV ‖22 −

1

2σ2

∥∥Y − δV ′∥∥2

2
+

1

σ2
‖Y ‖22

)]
,

where the expectation is over Y ∼ N(0, σ2In) and V, V ′
iid∼ Uniform(V). Taking the expectation over

Y first, before averaging over the packing elements, allows more careful control. Indeed, expanding
the squares and recognizing that ‖v‖22 = d for each v ∈ {±1}d, we have

1 +Dχ2

(
P ||P0

)
= E

[
exp

(
δ

σ2
〈Y, V + V ′〉 − nδ2

σ2

)]
= E

[
exp

(
δ2

2σ2

∥∥V + V ′
∥∥2

2
− nδ2

σ2

)]
= E

[
exp

(
δ2

σ2
〈V, V ′〉

)]
≤ exp

(
dδ4

2σ4

)
,

where the final key inequality follows because an individual U ∼ Uniform({±1}) is 1-sub-Gaussian,
and 〈V, V ′〉 is thus d-sub-Gaussian.
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10.1.2 Estimating errors and the norm of a Gaussian vector

JCD Comment: It would probably be good to connect this to some other literatures
and motivate things, e.g.,

1. Signal detection: is there something to discover?

2. Multiple testing: say we have d distinct p-values Uj . Then set Zj = Φ−1(Uj). Under
the null that Uj ∼ Uniform[0, 1] these are i.i.d. N(0, 1). Alternatives then deviate from
this. Often interesting to consider other alternatives (sparse/dense/etc.)

JCD Comment: Clean this up now, because I moved Lemma 10.1.4 up.

Let us give one example to show how the mixture approach suggested by Lemma 10.1.3 works,
along with showing that a more naive approach using the two point method of Chapter 8.3 fails
to provide the correct bounds. After this we will further develop the techniques. We motivate the
example by considering regression problems, then simplify it to a more stylized and easily workable
form. Suppose we wish to estimate the best possible loss achievable in a regression problem,

inf
θ
E[(X>θ − Y )2].

For simplicity, assume thatX ∼ N(0, Id), and that “base” distribution P0 is simply that Y ∼ N(0, 1),
while the alternatives are that Y = X>θ? + (1 − ‖θ?‖22)ε, where ε ∼ N(0, 1) and ‖θ?‖22 ≤ 1. In
either case we have Y ∼ N(0, 1) marginally, while

inf
θ
E0[(X>θ − Y )2] = 1 and inf

θ
Eθ? [(X>θ − Y )2] = 1− ‖θ?‖22 ,

so that estimating the final risk is equivalent to estimating the `2-norm ‖θ?‖22.
To make the calculations more palatable, let us assume the simpler Gaussian sequence model

Y = θ? + ε, ε ∼ N(0, σ2In) (10.1.2)

where θ? ∈ Rn satisfies ‖θ?‖2 ≤ r for some radius r, and we wish to estimate the statistic

T (P ) := ‖θ?‖22 .

Note that E[‖Y ‖22] = ‖θ?‖22 + nσ2, so that a natural estimator is the debiased quantity

Tn := ‖Y ‖22 − nσ
2.

Using that E[ε2
j ] = 1 and E[ε4

j ] = 3, we then obtain

E
[∣∣∣Tn − ‖θ?‖22∣∣∣2] =

n∑
j=1

Var
(
(θ?j + σεj)

2
)

= 2nσ4 + ‖θ?‖22 σ
2 ≤ 2nσ4 + r2σ2.

That is, the family Pσ,r defined as Gaussian sequence models (10.1.2) with variance σ2 and ‖θ?‖22 ≤
r2 satisfies

Mn(T (Pσ,r), | · |) ≤
√

2nσ4 + r2σ2 ≤
√

2nσ2 + rσ. (10.1.3)

We first provide the more naive approach. Suppose that we were to use Le Cam’s two-point
method to achieve a lower bound in this case. The minimax risk from inequality (8.3.3) shows that
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(for a numerical constant c > 0), if P0 and P1 are (respectively) N(θ0, σ
2In) and N(θ1, σ

2In), then
for any choice of θ0, θ1 we have

Mn(T (Pσ,r), | · |) ≥
1

4

{∣∣∣‖θ0‖22 − ‖θ1‖22
∣∣∣ · [1− ‖P0 − P1‖TV]

}
. (10.1.4)

Recalling Pinsker’s inequality (Proposition 2.2.8), we have

1− ‖P0 − P1‖TV ≥ 1− 1√
2

√
Dkl (P0||P1) = 1− 1

2

‖θ0 − θ1‖2
σ

.

So whenever ‖θ0 − θ1‖2 ≤ σ, we have

Mn(T (Pσ,r), | · |) ≥
1

8

∣∣∣‖θ0‖22 − ‖θ1‖22
∣∣∣ .

Take any θ0 such that ‖θ0‖2 = r and θ1 = (1− t)θ0, then choose the largest t ∈ [0, 1] such that
‖θ0 − θ1‖2 = tr ≤ σ. The choice t = min{1, σr } then gives that

‖θ0‖22 − ‖θ1‖22 = r2(1− (1− t)2) = r2(2t− t2) = 2 min
{
r2, rσ

}
−min

{
r2, σ2

}
≥ min{r2, σr}.

In particular, this application of the two-point approach yields

Mn(T (Pσ,r), | · |) ≥
1

4
min

{
r2, σr

}
. (10.1.5)

(A careful inspection of the argument, potentially replacing the application of Pinsker with KL
with a Hellinger distance bound, as in Proposition 2.2.8 shows that this is, essentially, the “best
possible” bound achievable by the two-point approach.) While this bound does capture the second
term in the upper bound (10.1.3) whenever σr ≤ r2, that is, r ≥ σ, we require more sophisticated
techniques to address the scaling with dimension n in the problem.

We therefore turn to using the mixture approach. Let P0 = N(0, σ2In), and for V = {±1}n
define Pv = N(δv, σ2In). It is immediate that T (P0) = 0 while T (Pv) = δ2n, so we have separation
in the values of the statistic. In this case, we apply Theorem 10.1.1 and to obtain

Mn(T (Pσ,r), | · |) ≥
δ2n

2

{
1−

√
1

2
log(1 +Dχ2

(
P ||P0

)
)

}
for P = 1

2n
∑

v∈V Pv. Substituting the result of Lemma 10.1.4 into the minimax lower bound, we
obtain

Mn(T (Pσ,r), | · |) ≥
δ2n

2

(
1−

√
nδ4

4σ4

)
.

We choose δ so that the (implied) probability of error in the hypothesis test from which our
reduction follows is at least 1

2 , for which it evidently suffices to take δ = σ
n1/4 . Putting all the pieces

together, we achieve the minimax lower bound

Mn(T (Pσ,r), | · |) ≥
δ2n

4
=
σ2√n

4
. (10.1.6)

Comparing the result from the upper bound (10.1.3), we see that at least in the regime that the
radius r scales at most as σ

√
n, the mixture Le Cam method allows us to characterize the minimax

risk of estimation of ‖θ‖22 in a Gaussian sequence model.
By combining the result (10.1.3) with the more naive two-point lower bound (10.1.5), which is

valid in “large radius” regimes, we have actually characterized the minimax risk.
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Corollary 10.1.5. Let Pσ,r be the Gaussian sequence model family {N(θ, σ2In) | ‖θ‖2 ≤ r}, and
T (θ) = ‖θ‖22. Then there is a numerical constant c > 0 such that the minimax absolute error
satisfies

c
(
σ2√n+ rσ

)
≤Mn(T (Pσ,r), | · |) ≤

√
2nσ4 + r2σ2.

Proof The only thing to recognize is that rσ ≥ σ2√n whenever r ≥ σ
√
n, in which case

min{r2, σr} = σr in the bound (10.1.5).

10.2 Minimax hypothesis testing

In the general hypothesis testing problem, we have a family of potential distributions P, and we
are given a sample X ∼ P for some P ∈ P. Then we wish to distinguish between two disjoint
hypotheses H0 and H1:

H0 : P ∈ P0

H1 : P ∈ P1,
(10.2.1)

where the collections P0 ⊂ P and P1 ⊂ P are disjoint. Then for a given test statistic Ψ : X → {0, 1},
we define the risk of the test to be

R(Ψ | P0,P1) := sup
P∈P0

P (Ψ 6= 0) + sup
P∈P1

P (Ψ 6= 1),

that is, the sum of the worst-case probabilities that the test is correct. (We also use the notation
R(Ψ | H0, H1) to denote the same quantity.) In the scenarios we consider, we will assume a metric
ρ on the family of distributions P, and instead of the general hypothesis test (10.2.1), we will
consider testing whether P ∈ P0 or ρ(P, P0) ≥ ε for all P0 ∈ P, giving the variant

H0 : P ∈ P0

H1 : P ∈ P1(ε) := {P ∈ P s.t. ρ(P, P0) ≥ ε all P0 ∈ P0}
(10.2.2)

In this case, we can define the risk at distance ε for a sample of size n by

Rn(Ψ, ε) := sup
P∈P0

P (Ψ(Xn
1 ) 6= 0) + sup

P∈P1(ε)
P (Ψ(Xn

1 ) 6= 1), (10.2.3)

leaving P0 and P implicit in the definition, and where we let Xn
1

iid∼ P . From this, we can define
the minimax test risk

inf
Ψ
Rn(Ψ, ε).

We then ask for the particular thresholds ε at which the minimax test risk becomes small or
large. Thus, while the coming definition allows some ambiguity, we say that a sequence εn is a
minimax threshold or critical testing radius for the testing problem (10.2.2) if there exist numerical
constants 0 < c ≤ C <∞ such that

inf
Ψ
Rn(Ψ, Cεn) ≤ 1

3
and inf

Ψ
Rn(Ψ, cεn) ≥ 2

3
. (10.2.4)

Here, the constants 1
3 and 2

3 are unimportant, the point being that for separation at most cεn,
no hypothesis test can test whether the distribution P satisfies P ∈ P0 or infP0∈P0 ρ(P, P0) ≥ cεn
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with reasonable accuracy. But it is possible to test whether P ∈ P0 or infP0∈P0 ρ(P, P0) ≥ Cεn
with reasonable accuracy. Moreover, we can make the probability of error exponentially small by
increasing the sample size by a constant factor, as Exercise 10.2 explores.

Conveniently, the minimax test risk has a precise divergence-based form, to which we can apply
the techniques comparing different divergences we have developed. In particular, we have the
following analogue of Le Cam’s convex hull lower bound in Theorem 10.1.1, which provides the
same fundamental quantity (the variation distance between convex hulls of P0 and P1) for lower
bounds, except that it applies for testing.

Proposition 10.2.1 (Convex hull lower bounds in testing). For any classes P0 and P1, the mini-
max test risk satisfies

inf
Ψ
R(Ψ | P0,P1) ≥ 1− sup

{∥∥P 0 − P 1

∥∥
TV
| P 0 ∈ Conv(P0), P 1 ∈ Conv(P1)

}
.

Proof Let P 0 ∈ Conv(P0) and P 1 ∈ Conv(P1). Then for any test Ψ,

R(Ψ | P0,P1) ≥ P 0(Ψ 6= 0) + P 1(Ψ 6= 1)

because suprema are always at least as large as averages. Now note that the set A = {x | Ψ(x) = 0}
satisfies

P 0(Ψ 6= 0) + P 1(Ψ 6= 1) = P 0(Ac) + P 1(A) = 1− (P 0(A)− P 1(A)),

and take an infimum over regions A.

In fact, equality typically holds in Proposition 10.2.1, but this requires the application of (infinite
dimensional) convex duality, which is beyond our scope here.

10.2.1 Detecting a difference in populations

With the generic worst-case hypothesis testing setup in place, we can give a general recipe for
developing tests. We specialize this recipe in the next few sections to different problems, including
signal detection in a Gaussian model, two-sample tests in multinomials, and goodness of fit testing.
The basic approach in all of these problems is frequently the following: to demonstrate achievability
and testability, we develop an estimator Tn of the distance ρ(P0, P1), or some other function of
the distance, where Tn has reasonable properties. We then develop a test Ψ by thresholding this
estimator. For the converse results that no test can distinguish the families P0 and P1 at a particular
distance, we use the mixture χ2 approaches we have outlined.

Let us give the general recipe first. Suppose that we have a statistic T designed to separate
the classes P0 and P1. Such a statistic should assign large values for samples X ∼ P1 for P1 ∈ P1

and small values for samples X ∼ P0. A more quantitative version of this, where the separation
E1[T ]−E0[T ] is commensurate with the variance of T , is sufficient to test between P0 and P1 with
high accuracy. To that end, we say that the statistic T robustly C-separates P0 and P1 if

EP1 [T ]− sup
P0∈P0

EP0 [T ] ≥ C
(

sup
P0∈P0

√
VarP0(T ) +

√
VarP1(T )

)
. (10.2.5)

for each P1 ∈ P1. Typically, we choose statistics T so that EP0 [T ] = 0 for each P0 in the null P0

(though this is not always possible). The next proposition shows how to define a test that leverages
this to achieve small worst-case test error.
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Proposition 10.2.2. Let the statistic T : X → R robustly C-separate P0 from P1. Then for the
threshold τ = supP0∈P0

EP0 [T ] + supP0∈P0

√
VarP0(T ), the test

Ψ(X) := 1 {T ≥ τ}

satisfies

R(Ψ | {P0},P1) ≤ 2

C2
.

Proof Without loss of generality we assume supP0∈P0
EP0 [T ] = 0, as the test is invariant to shifts,

so that τ = supP0∈P0

√
VarP0(T ). We can also assume that C ≥ 1, as otherwise the proposition is

vacuous. We control the test error in each case. Under any null P0, we have

P0(Ψ 6= 0) = P0(T ≥ τ) ≤ Var0(T )

C2τ2
=

1

C2
.

For the alternatives under P1 ∈ P1, we have

P1(Ψ 6= 1) = P1(T ≤ τ) = P1(T − E1[T ] ≤ τ − E1[T ]) ≤ Var1(T )

[E1[T ]− τ ]2+
.

But of course,

E1[T ]− τ = E1[T ]− sup
P0

EP0 [T ]− sup
P0

√
VarP0(T ) ≥ C

√
Var1(T ) + (C − 1) sup

P0

√
VarP0(T )

by the robust C-separation. As we have assumed w.l.o.g. that C ≥ 1, this yields

P1(Ψ 6= 1) ≤ Var1(T )

C2Var1(T )
=

1

C2

as desired.

10.2.2 Signal detection and testing a Gaussian mean

A common problem in statistics, communication, and information theory is the signal detection
problem, where we observe X ∼ P from an unknown distribution P , and wish to detect if there
is some “signal” present in P . To study such a problem, we typically formulate a null model—
indicating absence of signal—and a set of alternatives for which there is some signal, though we
only care to test its existence. The existence of a signal can then justify further investigation or
data collection to actually estimate the signal.

Let us give a few variants of this problem, for which a substantial literature exists.

Example 10.2.3 (Dense Gaussian signal detection): We consider testing the null H0 and
alternative H1 given by

H0 : P = P0 = N(0, Id)
H1 : P ∈ P1(r) := {N(θ, Id) | ‖θ‖2 ≥ r}.

(10.2.6)

That is, we are interested in whether X ∼ P has a mean θ separated by at least r from the all-
zeros vector. The problem is to find the critical radius r at which testing between P0 = {P0}
and P1 becomes feasible (or infeasible). 3
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Example 10.2.4 (A global null in multiple hypothesis testing): Consider the problem of
testing d distinct null hypotheses H0,j , j = 1, . . . , d, where for each we have a p-value Yj and
reject H0,j if Y0,j ≤ τ for a threshold τ . (Recall that a p value is a random variable Y that is
sub-uniform, meaning that P (Y ≤ u) ≤ P (U ≤ u) for U ∼ Uniform[0, 1], so we are less likely
to reject at threshold τ than a uniform would be.) If we assume the Yj are exact p-values, that
is, P (Yj ≤ u) = u for u ∈ [0, 1], then testing the global independent null

H0 :=
d⋂
j=1

H0,j = each Yj
iid∼ Uniform[0, 1]

is equivalent to Gaussian signal detection. Indeed, let Zj = Φ−1(Yj), where Φ denotes the
standard Gaussian cumulative distribution. Then under the global null H0, we have

Z ∼ N(0, Id).

The question of which alternative class P1 to consider is then frequently a matter of applica-
tions. For example, we might be curious about alternatives for which a few nulls H0,j are false,
that is, sparse alternatives. Example 10.2.3 corresponds to something like dense alternatives.
3

With these as motivation, let us consider Example 10.2.3 more carefully, in effort to find the
critical radius r at which minimax testing becomes feasible (or infeasible). While our standard
techniques for estimation tell us that the minimax rate for estimating θ in a normal location family
P = {N(θ, σ2Id)}θ∈Rd (say, in mean squared error) necessarily scale as

Mn(θ(P), ‖·‖22) =
dσ2

n
,

we can test whether the mean of a Gaussian is zero at a smaller dimensionality—effectively, while
E[‖θ̂ − θ‖22] → 0 as n → ∞ if and only if d/n → 0, in the testing case, we can save a dimension-
dependent factor

√
d. In particular, the next two examples—one addressing achievability and one

the fundamental limit—show that in the dense Gaussian signal detection problem of Example 10.2.3,
the critical test radius (10.2.4) at which testing is feasible or infeasible scales as

rn :=
d1/4

√
n
.

We can achieve (asymptotically) accurate testing in the dense signal detection problem (10.2.6) if
and only if

√
d/n→ 0 as n→∞.

We first demonstrate achievability in Example 10.2.3, leveraging Proposition 10.2.2.

Example 10.2.5 (Achievability in Gaussian mean testing): We wish to test the alterna-
tives (10.2.6). We use the approach of Proposition 10.2.2: find an estimator of ‖θ‖22, and
then threshold it for our test. The discussion preceding Corollary 10.1.5 (specifically equa-
tion (10.1.3)) shows that given a sample of size n, the estimator Tn = ‖Xn‖22−d/n is unbiased
for ‖θ‖22 and satisfies

Eθ
[
(Tn − ‖θ‖22)2

]
= Varθ(Tn) ≤ 2d

n2
+
‖θ‖22
n

. (10.2.7)
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Note that E0[Tn] = 0, and so because

Eθ[Tn]− E0[Tn] = ‖θ‖22 ,

the statistic Tn robustly 2-separates P0 from P1(r) (recall definition (10.2.5)) whenever

1

2
‖θ‖22 ≥

(√
2d

n
+

√
2d

n2
+

1

n
‖θ‖22

)

for all θ with ‖θ‖2 ≥ r. Immediately we see that if we take radius r2 = C
√
d
n for some C > 0,

then this separation occurs if C
√
d ≥ 2(

√
2d+

√
2d+ C

√
d), which of course happens for large

constant C. Applying Proposition 10.2.2, we thus see that the test Ψ(Xn
1 ) = 1

{
Tn ≥

√
2d/n2

}
satisfies

Rn(Ψ, Crn) ≤ 1

3
for rn =

d1/4

√
n
,

which gives the achievability required for the critical test radius (10.2.4). 3

Example 10.2.5 shows that at the critical radius rn = d1/4√
n

, it is possible (in a worst-case sense)

to test between the null H0 : N(0, Id) and alternatives H1 : N(θ, Id) for ‖θ‖2 ≥ Crn, where C is a
numerical constant. We can also provide the converse.

Example 10.2.6 (Lower bounds in Gaussian mean testing): Let P1(r) = {N(θ, Id) | ‖θ‖2 ≥ r}
be a collection of Gaussians with means r away from the origin in `2-norm. We seek the critical
radius r below which it is impossible to distinguish between P0 = N(0, Id) and P1 ∈ P1(r) given

an i.i.d. sample Xn
1 . Lemma 10.1.4 and Proposition 10.2.1 combine (set σ2 = 1

n and δ2 = r2

d
in Lemma 10.1.4) to give

inf
Ψ
Rn(Ψ | P0,P1(r)) ≥ 1− 1√

2

[
exp

(
n2r4

2d

)
− 1

]
.

In particular, the threshold r2 =
√
d/n means that there is necessarily constant test error

probability Rn ≥ 1− 1√
2
(
√
e− 1) > .54. Combining the estimation guarantee with this lower

bound shows that the critical radius (10.2.4) for testing H0 : N(0, Id) against the family of
alternatives H1 : N(θ, Id) with ‖θ‖22 ≥ r2 is precisely r2 =

√
d/n. 3

10.2.3 Goodness of fit and two-sample tests for multinomials

The basic question in goodness of fit testing—called property testing in the theoretical computer

science literature—is the following. Given a sample X1, . . . , Xn
iid∼ P , we wish to test whether

P = P0 for a prescribed base distribution P0 or P is far from P0. The related two-sample testing

problem generalizes this, where we assume samples X1, . . . , Xn
iid∼ P and Y1, . . . , Ym

iid∼ Q, and wish
to test whether P = Q. Each of these falls into the class of hypothesis tests (10.2.2), where the
choice of the metric ρ can change the character of upper and lower bounds somewhat dramatically.
General methods for developing goodness of fit and two-sample tests typically take the broad
approach in Section 10.2.1, defining a statistic T that separates the distribution P0 (or the joint
that Xi and Yj have the same distribution) from the alternatives about which we are curious, then
thresholding that statistic.
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It turns out that even in what might appear to be a particularly simple case—that of multinomial
distributions, where we identify the distribution P with a probability mass function (p.m.f.) p ∈
∆d—a surprising amount of complexity arises. We thus work through two examples on testing
distance between discrete distributions by considering two metrics on the probability mass functions:
the `2-metric and the total variation distance (or `1 metric). Then ρ(p, q) = ‖p− q‖ for ‖·‖ = ‖·‖2
or ‖·‖ = ‖·‖1. In the uniformity testing case, we let p0 = 1

d1 be the uniform distribution on [d],
and we seek the critical threshold ε at which testing

‖p− p0‖ = 0 versus ‖p− p0‖ ≥ ε

from n i.i.d. observations Xi
iid∼ p becomes feasible or infeasible.

It is simpler (for analyzing procedures) to consider a slight variant of this problem, which
uses the Poissonization trick. To motivate the idea, identify the observations Xi with the basis
vectors (so that observing item j ∈ {1, . . . , d} corresponds to Xi = ej). Then that the sample mean
p̂ = 1

n

∑n
i=1Xi is unbiased, but its coordinates exhibit dependence in that 〈1, p̂〉 = 1—an annoyance

for analyses. Thus, we consider an alternative approach, where we assume a two-stage sampling

procedure: we first drawn N ∼ Poi(n), and then conditional on N = m, draw Xi
iid∼ p, i = 1, . . . ,m.

As E[N ] = n and N concentrates around its mean, this is nearly equivalent to simply observing

Xi
iid∼ p for i = 1, . . . , n, and a standard probabilistic calculation shows that the distribution of

{Xi}Ni=1 conditional on N = m is identical to the distribution of Xi
iid∼ p, i = 1, . . . ,m.

Even more, the minimax risk for estimation in this Poissonized sampling scheme is similar to
that for estimation in the original multinomial setting. Indeed, suppose that we wish to estimate
an abstract statistic T (p) of p ∈ ∆d, and assume for simplicity that T (p) ∈ [−r, r] for some fixed r.
Define the minimax and Poissonized minimax risks

Mn := inf
Tn

sup
p∈∆d

Ep
[
(Tn(Xn

1 )− T (p))2
]

and
MPoi(n) := inf

{Tm}
sup
p∈∆d

Ep
[
(TN (XN

1 )− T (p))2
]
,

where the latter expectation is taken over the sample size N ∼ Poi(n), and {Tm} denotes a sequence
of estimators (defined for all sample sizes m). We have the following proposition, which shows that
if we can provide procedures that work in the poissonized (independent sampling) setting, then the
standard multinomial sampling setting is similarly easy (or challenging).

Proposition 10.2.7. There exist numerical constants 0 < c,C <∞ such that

MPoi(2n) − Cr2 exp(−cn) ≤Mn ≤ 2 ·MPoi(n/2). (10.2.8)

For a proof, see Exercises 10.3 and 10.4.
Let us leverage these ideas to construct an estimator for the `2-distance between two multinomial

distributions. In this case, suppose we have Xi
iid∼ p and Yi

iid∼ q, where p, q ∈ ∆d, both for
i = 1, . . . , N and N ∼ Poi(n), and we define

p̂ =
1

n

N∑
i=1

Xi, q̂ =
1

n

N∑
i=1

Yi. (10.2.9)

268



Lexture Notes on Statistics and Information Theory John Duchi

This is equivalent to sampling np̂j
ind∼ Poi(npj) and nq̂j

ind∼ Poi(nqj), j = 1, . . . , d, and so we use
the quantities (10.2.9) to define an estimator we can threshold using Proposition 10.2.1. We work
through this in the next (somewhat complicated) example.

Example 10.2.8 (Estimating the `2-distance between multinomials): For the estimators (10.2.9),
define the quantity

Zj := (np̂j − nq̂j)2 − np̂j − nq̂j .

Recalling that if W ∼ Poi(λ) then E[W ] = Var(W ) = λ, we have E[np̂j ] = pj and Var(np̂j) =
npj , so

E[Zj ] = E[(np̂j)
2] + E[(nq̂j)

2]− 2n2pjqj − npj − nqj
= Var(np̂j) + Var(nq̂j) + (npj)

2 + (nqj)
2 − 2n2pjqj − npj − nqj = n2 ‖p− q‖22 .

In particular, the statistic

Tn :=
1

n2
〈1, Z〉

satisfies E[Tn] = ‖p− q‖22.
To be able to test whether p and q are identical using Proposition 10.2.2, we must compute the
variance of 〈1, Z〉, which—conveniently, by the independence our Poisson sampling gives—is∑d

j=1 Var(Zj). Leveraging that for a Poisson W ∼ Poi(λ) we have (by tedious calculation)
that

E[W ] = λ, E[W 2] = λ(1 + λ), E[W 3] = λ+ 3λ2 + λ3, E[W 4] = λ+ 7λ2 + 6λ3 + λ4,

we obtain (see Exercise 10.7)

Var(Zj) = 4n3(pj − qj)2(pj + qj) + 2(pj + qj)
2n2 (10.2.10)

and
Var(〈1, Z〉) ≤ 4n3 ‖p− q‖24 ‖p+ q‖2 + 2n2 ‖p+ q‖22 .

Under the (non-point) null H0 : p = q, Var(〈1, Z〉) = 2n2 ‖p+ q‖22 ≤ 8n2, as supp,q ‖p+ q‖2 =
2. Proposition 10.2.2 thus shows that if

‖p− q‖22 ≥ C

√ 8

n2
+

√
16 ‖p− q‖24

n
+

8

n2

 , (10.2.11)

then the test
Ψ := 1

{
Tn ≥

√
8/n

}
satisfies P0(Ψ 6= 0) + P1(Ψ 6= 1) ≤ 2

C2 , where P0 is any distribution with p = q and P1 is
any distribution with ‖p− q‖2 satisfying the separation (10.2.11). As ‖p− q‖2 ≥ ‖p− q‖4,
inequality (10.2.11) a necessary and sufficient condition for inequality (10.2.11) to hold is that
‖p− q‖2 & 1/

√
n. 3

Summarizing, we see that if we wish to test whether two multinomials are identical or separated
in `2, the critical threshold for the hypothesis test

H0 : p = q
H1 : ‖p− q‖2 ≥ δ

(10.2.12)
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satisfies δ ≤ 1√
n

: we can test between H0 and H1 at separations that are essentially “independent”

of the dimension or number of categories d. This is in fact sharp, as a relatively straightforward
argument with Le Cam’s two-point lemma demonstrates (see Exercise 10.9). However, if we change
the norm ‖·‖2 into the `1-norm ‖·‖1, the story changes significantly.

Let us change the hypothesis test (10.2.12) to simpler looking—in that we only test goodness of
fit—`1-based variant. Identifying distributions P on {1, . . . , d} with their p.m.f.s p ∈ ∆d, let P0 be
the uniform distribution on {1, . . . , d}, with p.m.f. p0 = 1

d1. Then we consider the testing problem

H0 : p = p0

H1 : ‖p− p0‖1 ≥ δ,
(10.2.13)

which tests the `1-distance to uniformity. In this case, developing a test that distinguishes these
hypotheses at the optimal rate is quite sophisticated, though we outline an approach to it in the
exercises. To develop the correct order of lower bound—that is, a threshold δ for which no test can
reliably distinguish H0 from H1—is possible via the mixture of χ2-distributions approach we have
developed in Lemma 10.1.3.

JCD Comment: Should I just do these as lemmas / propositions rather than examples?
They’re a bit involved for examples!

Proposition 10.2.9 (A lower bound for testing `1-separated multinomials). In the testing prob-
lem (10.2.13),

inf
Ψ
Rn(Ψ | H0, H1) ≥ 1− 1√

2

whenever δ ≤ d1/4√
n

.

Proof We construct a particular packing of the probability simplex ∆d ∈ Rd+ that guarantees
that the divergence between elements of H0 and H1 in the test (10.2.13) is small. For simplicity,
we assume d is even, as it changes nothing. For the base distribution P0 take p.m.f. p0 = 1

d1 as
required by the problem (10.2.13). To construct the alternatives, let V ⊂ {±1}d be the collection
of 2d/2 vectors of the form v = (v′,−v′), where v′ ∈ {±1}d/2, so that 〈1, v〉 = 0 for each v ∈ V.
Then for δ ≥ 0 to be chosen, define the p.m.f.s pv = 1+δv

d . Identify samples X ∈ {e1, . . . , ed}. Then
for any x ∈ {ej}, we have Pv(X = x) = 1

d(1 + δ〈v, x〉), and so for any pair v, v′ we have

Pv(X = x)Pv′(X = x)

P0(X = x)2
= (1 + δ〈v, x〉)(1 + δ〈v′, x〉).

From this key equality, we see that if V, V ′
iid∼ Uniform(V), then for P = 1

|V|
∑

v∈V Pv we have

1 +Dχ2

(
P ||P0

)
= E0

[
n∏
i=1

(1 + δ〈V,Xi〉)(1 + δ〈V ′, Xi〉)

]
= E

[
E0[(1 + δ〈V,X〉)(1 + δ〈V ′, X〉) | V, V ′]n

]
= E

[(
1 +

δ2

d
〈V, V ′〉

)n]
,

where the final equality follows because E0[〈v,X〉] = 1
d〈v,1〉 = 0 for each v ∈ V. Now we use that

1 + t ≤ et for all t to obtain

1 +Dχ2

(
P ||P0

)
≤ E

[
exp

(
nδ2

d
〈V, V ′〉

)]
= E

exp

2nδ2

d

d/2∑
j=1

Uj


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for Uj
iid∼ Uniform{±1}. But of course these Uj are 1-sub-Gaussian, so

1 +Dχ2

(
P ||P0

)
≤ exp

(
n2δ4

d

)
.

Now use Pinsker’s inequalities (Propositions 2.2.8 and 2.2.9), which gives 2
∥∥P0 − P

∥∥2

TV
≤ n2

δ4
d.

Choose δ4 = d
n2 .

10.3 Geometrizing rates of convergence

JCD Comment: Outline for this section:

1. Introduce modulus of continuity (w.r.t. Hellinger), draw a picture suggesting why it
should be hard or easy

2. Example with Fisher information-type quantity

3. Show that for testing, the rate at which we can test really is this modulus whenever
we have linear functions and convex classes, because of Le Cam’s result on Hellinger
affinities.

JCD Comment: Write this section

10.4 Best possible lower bounds and super-efficiency

JCD Comment: Write this section. Get in super-efficiency stuff.

10.5 Bibliography

JCD Comment: We stole the mixture idea from David Pollard I believe.

Outline

I. Motivation: function values, testing certain quantities (e.g. is ‖P −Q‖TV ≥ ε or not), entropy
and other quantities, and allows superefficiency guarantees in an elegant way

II. Le Cam’s methods

1. The general form with mixtures

2. The χ2-type bounds, with mixtures to a point mass

3. Geometrizing rates of convergence

4. Examples: Fisher information in classical problems (especially for a one-dimensional quan-
tity)

5. Example: testing distance to uniformity (failure from standard two-point bound)
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6. More sophisticated examples:

a. Smooth functionals (as in Birgé and Massart [30]), like differential entropy
∫
h(x) log h(x)dx

b. Higher-dimensional problems, which are hard

III. “Best possible” lower bounds, super-efficiency and constrained risk inequalities

1. Basic (two-point) constrained risk inequality (cf. [66])

2. Constrained risk inequality when P1 is actually a mixture (easiest with a functional): means
that any minimax bound around P0 is quite strong

3. Potentially (?): Cai and Low [42] paper on minimax estimation for 1
n ‖θ‖1 when y = θ+ε in

a Gaussian sequence model as an example and application of a constrained risk inequality.
This is probably too challenging, though—can we find a case where polynomials actually
allow us to do stuff?

a. Hard because of all the polynomial approximation stuff... but maybe there is a simpler
version that simply shows how approximation via polynomials allows lower bounds.
Approach works for Gaussian stuff, as in Cai and Low [42] or the earlier paper “Effect
of mean on variance function estimation in nonparametric regression” by Wang, Brown,
Cai, Levine.

b. Similar idea gives variation distance bounds for Poisson priors on parameters when seek-
ing lower bounds on estimating entropy H(X) = −

∑
x px log px of discrete distributions

with (unknown) support; see [174].

10.6 A useful divergence calculation

Now, let us suppose that we define the collection {Pv} by tiltings of an underlying base distribution
P0, where each tilting is indexed by a function gv : X → [−1,∞), and where

dPv(x) = (1 + gv(x))dP0(x),

while
∫
gvdP0 = 0, so that each Pv is a valid distribution. Let Pnv be the distribution of n observa-

tions Xi
iid∼ Pv, and let Pn = 1

|V|
∑

v∈V Pv.

Lemma 10.6.1. Define the inner product 〈f, g〉P =
∫
f(x)g(x)dP (x) and let V, V ′

iid∼ Uniform(V).
Then

Dχ2

(
Pn||P0

)
+ 1 ≤ E[exp(n〈gV , gV ′〉P0)].

Proof The simple technical lemma 10.1.3 essentially gives us the result. We observe that

Dχ2

(
Pn||Pn0

)
+ 1 =

1

|V|2
∑
v,v′

∫
dPnv dP

n
v′

dPn0
=

1

|V|2
∑
v,v′

(∫
(1 + gv(x))(1 + gv′(x))dP0(x)

)n
because Pnv (x1, . . . , xn) =

∏n
i=1(1 + gv(xi))dP0(xi), so that the integral decomposes into a product

of integrals. Then expanding (1 + gv)(1 + gv′) and noting that each has zero mean under P0 gives

Dχ2

(
Pn||Pn0

)
+ 1 =

1

|V|2
∑
v,v′

(1 + E0[gv(X)gv′(X)])n .
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Lastly, we note that (1 + t) ≤ et for all t, and so

1

|V|2
∑
v,v′

(1 + E0[gv(X)gv′(X)])n ≤ 1

|V|2
∑
v,v′

exp (nE0[gv(X)gv′(X)]) ,

which is of course equivalent to the result we desired.

A specialization of Lemma 10.6.1 follows when we choose our functions g to correspond to a
partition of X -space. Here, we define the following.

Definition 10.1. Let k ∈ N and the functions φj : X → [−b, b]. Then the functions φj are an
admissible partition with variances σ2

j of X with respect to a probability distribution P0 if

(i) The supports Ej = suppφj of each of the functions are disjoint.

(ii) Each function has P0 mean 0, i.e., EP0 [φj(X)] = 0 for each j.

(iii) Function j has variance σ2
j = EP0 [φ2

j (X)] =
∫
φ2
j (x)dP0(x).

With such a partition, we can define the functions gv(x) = t〈v, φ(x)〉 = t
∑k

j=1 vjφj(x) for

|t| ≤ 1/b, and if we take V = {−1, 1}k, we obtain the following.

Lemma 10.6.2. Let the functions {φj}kj=1 be an admissible partition of X with variances σ2
j . Fix

|t| ≤ 1
b , and let dPtv = (1 + t〈v, φ(x)〉)dP0(x) and Pnt = 1

|V|
∑

v∈V P
n
v . Then

Dχ2

(
Pnt ||P0

)
≤ exp

(
n2t4

2

k∑
j=1

σ4
j

)
− 1,

and if |t| ≤ 1√
n

1
(
∑k
j=1 σ

4
j )1/4

, then

Dχ2

(
Pnt ||P0

)
≤ n2t4

k∑
j=1

σ4
j .

Proof First, if φ(x) = [φj(x)]kj=1, then E0[φ(X)φ(X)T ] = diag(σ2
j ), that is, the diagonal matrix

with σ2
j on its diagonal. By Lemma 10.6.1, we therefore have

Dχ2

(
Pnt ||P0

)
+ 1 ≤ E

exp

nt2 k∑
j=1

σ2
jVjV

′
j

 ≤ E

exp

n2t4

2

k∑
j=1

σ4
jV

2
j


by Hoeffding’s Lemma (see Example 4.1.6), as Vj

iid∼ Uniform({±1}) Noting that V 2
j = 1 gives the

first part of the lemma. The final statement is immediate once we observe that ex ≤ 1 + (e− 1)x ≤
1 + 2x for 0 ≤ x ≤ 1.
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10.7 Exercises

Exercise 10.1: Recall the Hellinger distance between distributions P and Q with densities p, q
is dhel(P,Q)2 =

∫
(
√
p(x)−

√
q(x))2dx. Let P be N(µ0,Σ) and Q be N(µ1,Σ). Show that

1

2
dhel(P,Q)2 = 1− exp

(
−1

8
(µ0 − µ1)>Σ−1(µ0 − µ1)

)
.

Exercise 10.2: Suppose that the test Ψ has test risk for testing between P0 and P1 satisfying
Rn(Ψ | P0,P1) ≤ 1

3 Let k ∈ N. Show how, given a sample of size kn, we can develop a test Ψ? with

Rkn(Ψ? | P0,P1) ≤ 2 exp (−ck) ,

where c > 0 is a numerical constant. Hint. Split the sample into k samples of size n, and then
apply Ψ to each.

Exercise 10.3 (Poissonization: lower bounds [174]): Prove the lower bound in Proposition 10.2.7,
inequality (10.2.8), that is, that for numerical constants C, c,

MPoi(2n) − Cr2 exp(−cn) ≤Mn.

Hint. Bound MPoi(2n) with a weighted sum of Mm. Use the MGF calculation that for X ∼ Poi(λ),

E[etX ] = exp(λ(et − 1)) to show that N ∼ Poi(2n) is concentrated above n.

Exercise 10.4 (Poissonization: upper bounds [174]): Assume the minimax result that

Mn = sup
π

inf
Tn

E
[
(Tn(Xn

1 )− T (p))2
]
,

where the supremum is over probability distributions (priors π) on p ∈ ∆k, and the expectation

is now over the random choice of p and the sample Xn
1

iid∼ p drawn conditional on p. (This is a
standard infinite-dimensional saddle point result generalizing von-Neumann’s minimax theorem;
cf. [81, 160].) You will show the upper bound in Proposition 10.2.7, Eq. (10.2.8).

Let {Tm} be an arbitrary sequence of estimators and define the sequence of averaged risks

rm := E[(Tm(Xm
1 )− T (p))2].

Define the modified risks r̃m = min{r1, . . . , rm} = min{r̃m−1, rm}, and the “corrected” estimators

T̃m(xm1 ) :=

{
T̃m−1(xm−1

1 ) if rm ≥ r̃m−1

Tm(xm1 ) if rm < r̃m−1.

(a) Show that E[(T̃m(Xm
1 )− T (p))2] ≤ E[(Tm(Xm

1 )− T (p))2].

(b) Show that
1

2
inf
Tn

E[(Tn(Xn
1 )− T (p))2] ≤ E[(TN (XN

1 )− T (p))2]

for N ∼ Poi(n/2) and p ∼ π, then Xi drawn i.i.d. conditionally on p.

(c) Finalize the proof of the upper bound in inequality (10.2.8).
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Exercise 10.5: Consider the hypothesis testing problem of testing whether a collection of inde-
pendent Bernoulli random variables X1, . . . , Xn is is fair (H0, so that P(Xi = 1) = 1

2 for each i) or
that there are unfair subcollections. That is, we wish to test

H0 : Xi
iid∼ Bernoulli(1

2)

H1 : Xi
ind∼ Bernoulli(1+θi

2 ), θ ∈ C

for a set C ⊂ [−1, 1]n. Show that if the set C is orthosymmetric, meaning that whenever θ ∈ C
then Sθ ∈ C for any diagonal matrix S of signs, i.e. diag(S) ∈ {±1}n, then no test can reliably
distinguish H0 from H1 (in a minimax sense). Hint. Let v ∈ V := {±1}n index coordinate signs
and define θv = Dv for some diagonal D, where Dv ∈ C. Let Pv be the product distribution with
Xi ∼ Bernoulli(1+Divi

2 ). What is 1
2n
∑

v∈V Pv?

Exercise 10.6 (Testing a trend in independent Bernoullis): Consider testing whether a collection
of Bernoulli random variables has an “upward trend” over time, by which we mean that if Xi ∼
Bernoulli(pi) independently, then

pend :=
1

n/4

n∑
i= 3n

4
+1

pi > pbeg :=
1

n/4

n/4∑
i=1

pi.

Consider the following more quantitative version of this problem: we wish to test

H0 : Xi
iid∼ Bernoulli(1

2)

H1 : Xi
ind∼ Bernoulli(pi), pend − pbeg ≥ δ.

(a) Use Le Cam’s two-point method to show that there exists a numerical constant c > 0 such that
for δ ≤ c√

n
, no test can reliably distinguish H0 from H1.

(b) Use the statistic

Tn :=
1

n/4

n∑
i=3n/4+1

Xi −
1

n/4

n/4∑
i=1

Xi

to develop a test Ψ (use Proposition 10.2.2) that achieves test risk Rn(Ψ | H0, H1) ≤ 1
4 whenever

δ ≥ C√
n

, where C <∞ is a constant.

Exercise 10.7: Prove the identity (10.2.10).

Exercise 10.8 (Unbiased estimators of distance for multinomials): Let Xi
iid∼ p, i = 1, . . . , n, and

Yi
iid∼ q, i = 1, . . . ,m, meaning that Xn

1 and Y m
1 are multinomial samples for p, q ∈ ∆d. Define the

empirical estimators p̂j = 1
n

∑n
i=1 1 {Xi = j} and q̂j = 1

m

∑n
i=1 1 {Yi = j}.

(a) Give E[‖p̂‖22].

(b) Show that Tn := ‖p̂− q̂‖22 satisfies

E[Tn] = ‖p− q‖22 +
1

n
+

1

m
− 1

n
‖p‖22 −

1

n
‖q‖22 .
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(c) Modify Tn into a new statistic T unb
n so that E[T unb

n ] = ‖p− q‖22.

Exercise 10.9: Show that in the hypothesis testing problem (10.2.12), there is a numerical
constant c > 0 such that δ ≤ c/

√
n implies that no test can reliably distinguish H0 from H1.

JCD Comment:

1. Poissonization: remark in main text.

2. Work through Liam’s `1-multinomial testing

3. Lower bound for testing whether collection of coins is fair or some number are unfair.
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Part III

Entropy, predictions, divergences, and
information
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Chapter 11

Predictions, loss functions, and
entropies

In prediction problems broadly construed, we have a random variable X and a label, or target or
response, Y , and we wish to fit a model or predictive function that accurately predicts the value
of Y given X. There are several perspectives possible when we consider such problems, each with
attendant advantages and challenges. We can roughly divide these into three approaches, though
there is considerable overlap between the tools, techniques, and goals of the three:

(1) Point prediction, where we wish to find a prediction function f so that f(X) most accurately
predicts Y itself.

(2) Probabilistic prediction, where we output a predicted distribution P of Y , and we seek P(Y =
y | X = x) ≈ P (Y = y | X = x), where here P denotes the “true” probability and P the
predicted one. A relaxed version of this is calibration, the subject of the next chapter, where
we ask that P(Y = y | P ) ≈ P (Y = y), that is, the distribution of Y given a predicted
distribution P is accurate.

(3) Predictive inference, where for a given level α ∈ (0, 1), we seek a confidence set mapping C
such that P(Y ∈ C(X)) ≈ 1− α.

We focus mostly on the former two, though there is overlap between the approaches.
In this first chapter of the sequence, we focus on the probabilistic prediction problem. Our main

goal will be to elucidate and identify loss functions for choosing probabilistic predictions that are
proper, meaning that the true distribution of Y minimizes the loss, and strictly proper, meaning that
the true distribution of Y uniquely minimizes the loss. As part of this, we will develop mappings
between losses and entropy-type functionals; these will repose on convex analytic techniques for their
cleanest statements, highlighting the links between convex analysis, prediction, and information.
Moreover, we highlight how any proper loss (which will be defined) is in correspondence with a
particular measure of entropy on the distribution P , and how these connect with an object known
as the Bregman divergence central to convex optimization. For the deepest understanding of this
chapter, it will therefore be useful to review the basic concepts of convexity (e.g., convex sets,
functions, and subgradients) in Appendix B, as well as the more subtle tools on optimality and
stability of solutions to convex optimization problems in Appendix C. We give an overview of the
important results in Section 11.1.1.
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11.1 Proper losses, scoring rules, and generalized entropies

As motivation, consider a weather forecasting problem: a meteorologist wishes to prediction the
weather Yt on days t = 1, 2, . . ., where Yt = 1 indicates rain and Yt = 0 indicates no rain. At time t,
using covariates Xt (for example, the weather the previous day, long term trends, or simulations),
the forecaster predicts a probability pt ∈ [0, 1]. We would like the forecaster’s predictions to be
as accurate as possible, so that P(Yt = 1) ≈ pt. Following the standard dicta of decision theory,
we choose a loss function `(p, y) that scores a prediction p for a given outcome y. Ideally, the
forecaster should have an incentive to make predictions as accurately as possible, so the distribution
minimizing the expected loss should coincide with the true distribution of Y .

This leads to proper losses. In our treatment, we will sometimes allow infinite values, so we work
with the upper and lower extended real lines, recalling that R = R ∪ {+∞} and R = R ∪ {−∞}.

Definition 11.1. Let P be a collection of distributions on Y. A loss ` : P × Y → R is proper if,
whenever Y ∼ P ∈ P,

E[`(P, Y )] ≤ E[`(Q,Y )] for all Q ∈ P.

The loss is strictly proper if the preceding inequality is strict whenever Q 6= P .

In much of the literature on prediction, one instead considers proper scoring rules, which are simply
negative proper losses, that is, functions S : P × Y satisfying S(P, y) = −`(P, y) for a (strictly)
proper loss. We focus on losses for consistency with the convex analytic tools we develop. In
addition, frequently we will work with discrete distributions, so that Y has a probability mass
function (p.m.f.), in which case we will use p ∈ ∆k := {p ∈ Rk+ | 〈1, p〉 = 1} to identify the
distribution and `(p, y) instead of `(P, y).

Perhaps the two most famous proper losses are the log loss and the squared loss (often termed
Brier scoring). For simplicity let us assume that Y ∈ {1, 2, . . . , k}, and let ∆k = {p ∈ Rk+ | 1T p = 1}
be the probability simplex; we then identify distributions P on Y with vectors p ∈ ∆k, and abuse
notation to write `(p, y) accordingly and when it is unambiguous. The squared loss is then

`sq(p, y) = (py − 1)2 +
∑
i 6=y

p2
i = ‖p− ey‖22 ,

where ey is the yth standard basis vector, while the log loss (really, the negative logarithm) is

`log(p, y) = − log py.

Both of these are strictly proper. To this propriety, let Y have p.m.f. p ∈ ∆k, so that P(Y = y) = py.
Then for the squared loss and any q ∈ ∆k, we have

E[`sq(q, Y )]− E[`sq(p, Y )] = E[‖q − eY ‖22]− E[‖p− eY ‖22] = ‖q‖22 − 2〈q, p〉+ 2〈p, p〉 = ‖q − p‖22 .

For the log loss, we have

E[`log(q, Y )]− E[`log(p, Y )] = −
k∑
y=1

py log qy +

k∑
y=1

py log py =

k∑
y=1

py log
py
qy

= Dkl (p||q) .

It is immediate that q = p uniquely minimizes each loss.
That the gap between the expected losses at q and p reduced to a particular divergence-like

measure—the squared `2-distance in the case of the squared loss and the KL-divergence in the
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case of the log loss—is no accident. In fact, for proper losses, we will show that this divergence
representation necessarily holds.

The key underlying our development is a particular construction, which we present in Sec-
tion 11.1.2, that transforms a loss into a generalized notion of entropy. Because it is so central, we
highlight it here, though before doing so, we take a brief detour through a few of the concepts in
convexity we require. Figures representing these results capture most of the mathematical content,
while Chapters B and C in the appendices contain proofs of the results we require.

11.1.1 A convexity primer

Recall that a function f : Rd → R is convex if for all x, y ∈ dom f and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

where for x 6∈ dom f we define f(x) = +∞. We exclusively work with proper convex functions, so
that f(x) > −∞ for each x. Typically, we work with closed convex f , meaning that the epigraph
epi f = {(x, t) ∈ Rd×R | f(x) ≤ t} ⊂ Rd+1 is a closed set; equivalently, f is lower semi-continuous,
so that lim infy→x f(y) ≥ f(x). A concave function f is one for which −f is convex.

Three main concepts form the basis for our development. The first is the subgradient (see
Appendix B.3). For a function f : Rd → R, the subgradient set (also called the subdifferential) at
the point x is

∂f(x) :=
{
s ∈ Rd | f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ Rd

}
. (11.1.1)

If f is a convex function, then at any point x in the relative interior of its domain, ∂f(x) is non-
empty (Theorem B.3.3). Moreover, a quick calculation shows that x minimizes f(x) if and only if
0 ∈ ∂f(x), and (a more challenging calculation) that if ∂f(x) = {s} is a singleton, then s = ∇f(x)
is the usual gradient. See the left plot of Figure 11.1. We shall in some cases allow subgradients to

take values in the extended reals Rk and Rk, which will necessitate some additional care.
The second concept is that the supremum of a collection of convex functions is always convex,

that is, if fα is convex for each index α ∈ A, then

f(x) := sup
α∈A

fα(x)

is convex, and f is closed in fα is closed for each α. The closure of f is immediate because
epi f =

⋂
epi fα, and convexity follows because

f(λx+ (1− λ)y) ≤ sup
α∈A
{λfα(x) + (1− λ)fα(y)} ≤ λ sup

α∈A
fα(x) + (1− λ) sup

α∈A
fα(y).

Conveniently, subdifferentiability of individual fα implies the subdifferentiability of f when the
supremum is attained. Indeed, let A(x) = {α | fα(x) = f(x)}. Then

∂f(x) ⊂ Conv {sα ∈ ∂fα(x) | α ∈ A(x)} (11.1.2)

because if s =
∑

α∈A(x) λαsα for some λα ≥ 0 with
∑

α λα = 1, then

f(y) ≥
∑

α∈A(x)

λαfα(y) ≥
∑

α∈A(x)

λα [fα(x) + 〈sα, y − x〉] = f(x) + 〈s, y − x〉.

See the right plot of Figure 11.1.
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f(x)

f̂(x) = f(x0) + f ′(x0)(x− x0)

      
      
      
      

(a)
(b)
(c)
(d)

Figure 11.1. Left: The quadratic f(x) = 1
2x

2 and the linear approximation f̂(x) = f(x0)+s(x−x0),

where x0 = 1
2 and s = f ′(x0). Right: the piecewise quadratic f(x) = max{f0(x), f1(x)} where

f0(x) = 1
2x

2 and f1(x) = 1
4 (x + 1

4 )2 + 1
8 , intersecting at x0 = 1−

√
10

4 . (a) The function f(x). (b)

The linear underestimator f̂(x) = f(x0) + s0(x− x0) for s0 = f ′0(x0). (c) The linear underestimator

f̂(x) = f(x0)+s1(x−x0) for s1 = f ′1(x0). (d) The linear approximation f̂(x) = f(x1)+f ′(x1)(x−x1)
around the point x1 = 1

4 .

Lastly, we revisit a special duality relationship that all closed convex functions f enjoy (see
Appendix C.2 for a fuller treatment). The Fenchel-Legendre conjugate or convex conjugate of a
function f is

f∗(s) := sup
x
{〈s, x〉 − f(x)} . (11.1.3)

The function f∗ is always convex, as it is the supremum of linear functions of s, and for any x?(s)
maximizing 〈s, x〉 − f(x), we have that x?(s) ∈ ∂sf∗(s) by the relationship (11.1.2); by a bit more
work, we see that if s ∈ ∂f(x), then 0 ∈ ∂x{f(x) − 〈s, x〉} and so x maximizes 〈s, x〉 − f(x). See
Figure 11.2 for a graphical representation of this process. Flipping this argument by replacing
f with f∗ and x with s, when s ∈ ∂f(x) and x maximizes 〈s, x〉 − f(x) in x, then x ∈ ∂f∗(s)
and so s maximizes 〈s, x〉 − f∗(s) in s. From this development comes the biconjugate, that is,
f∗∗(x) = sups{〈s, x〉 − f∗(s)}, or f∗∗ = (f∗)∗. The biconjugate f∗∗, it turns out, is the supremum
of all linear functionals below f , because 〈s, x〉 − f∗(s) ≤ f(x) for all s, and if ∂f(x) is non-empty,
then the preceding argument guarantees that 〈s, x〉 − f∗(s) = f(x) for s ∈ ∂f(x). Theorem C.2.1
in the appendices makes this rigorous, and shows that if f is a closed convex function, then

f(x) = f∗∗(x) = sup
s
{〈s, x〉 − f∗(s)}

for all x. In particular, by passing through the conjugate, we can recover the function f directly
whenever f is closed convex.

We immediately have the Fenchel-Young inequality that

f∗(s) + f(x) ≥ 〈s, x〉 for all s, x,

and (see Proposition C.2.2) if f is a closed convex function, then equality holds if and only if

s ∈ ∂f(x) or x ∈ ∂f∗(s), (11.1.4)
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which are equivalent. Thus we obtain the identities

∂f∗ = (∂f)−1 and ∂f = (∂f∗)−1,

and we have the characterization

∂f∗(s) = argmin
x
{−〈s, x〉+ f(x)} = argmax

x
{〈s, x〉 − f(x)} .

f(x)

sx

(0,−f∗(s))

f∗(s)

sx− f∗(s)

Figure 11.2. The conjugate function. The line of long dashes is f(x) = sx, while the dotted line
is x 7→ sx − f∗(s). The blue line is the largest gap between sx and f(x), which equals f∗(s). Note
that x 7→ sx− f∗(s) meets the graph of f(x) at exactly the point of maximum difference sx− f(x),
where f ′(x) = s.

11.1.2 From a proper loss to an entropy

The key construction underlying all of our proper losses is the optimal value of the expected loss.
To any loss ` acting on a family P of distributions, we construct the generalized entropy associated
with the loss ` by

H`(Y ) := inf
Q∈P

E[`(Q,Y )], (11.1.5)

where we have paralleled the typical notation H(Y ) for the Shannon entropy. In many cases, it
will be more convenient to write this entropy directly as a function of the distribution P of Y , in
which case we write

H`(P ) = inf
Q∈P

EP [`(Q,Y )], (11.1.6)

where Y follows the distribution P ; we will use whichever is more convenient. As the nota-
tion (11.1.6) makes clear, H`(P ) is the infimum of a collection of linear functions of the form
P 7→ EP [`(Q,Y )], one for each Q ∈ P), so that necessarily H`(P ) is concave in P . The remainder

282



Lexture Notes on Statistics and Information Theory John Duchi

of this chapter, and several parts of the coming chapters, highlights the ways that this particular
quantity informs the properties of the loss `, and more generally, how we may always view any
concave function H on a family of distributions P as a generalized entropy function.

In Section 11.2, we show how such entropy-type functionals map back to losses themselves,
so for now we content ourselves with a few examples to see why we call these entropies. Let us
temporarily assume that Y has finite support {1, . . . , k} with P = ∆k = {p ∈ Rk+ | 〈1, p〉 = 1} the
collection of probability mass functions on elements {1, . . . , k}.

Example 11.1.1 (Log loss): Consider the log loss `log(p, y) = − log py. Then

H`log(p) = inf
q∈∆k

Ep[− log qY ] = inf
q∈∆k

−
k∑
y=1

py log
qy
py
−

k∑
y=1

py log py

 = −
k∑
y=1

py log py,

the classical Shannon entropy. 3

This highlights an operational interpretation of entropy distinct from that arising in coding: the
(Shannon) entropy is the minimal expected loss of a player in a prediction game, where the player
chooses a distribution Q on Y , nature draws Y ∼ P , and upon observing Y = y, the player suffers
loss − logQ(Y = y).

Example 11.1.2 (0-1 error): If instead we take the 0-1 loss, that is, `0-1(p, y) = 1 if py ≤ pj
for some j 6= y and `0-1(p, y) = 0 otherwise, then

H`0-1(p) = inf
q∈∆k

Ep[`(q, y)] = 1−max
y
py.

So H`0-1(ey) = 0 for any standard basis vector, that is, distribution with all mass on a single
point y, and H`0-1(p) > 0 otherwise. Moreover, the vector p = 1/k maximizes H`0-1(p), with
H`0-1(1/k) = k−1

k . 3

Example 11.1.3 (Brier scoring and squared error): For the squared error (Brier scoring)
loss `sq(p, y) = ‖p− ey‖22, where ey ∈ {0, 1}k is the yth standard basis vector, let Y have p.m.f.
p ∈ ∆k. Then

H`sq(Y ) = E[`sq(p, Y )] = ‖p‖22 − 2 ‖p‖22 + 1 = 1− ‖p‖22 .

So as above, we have H`sq(Y ) ≥ 0, with H`sq(Y ) = 0 if and only if Y is a point mass on one
of {1, . . . , k}, and the uniform distribution with p.m.f. p = 1

k1 maximizes the entropy, with
H`sq(Uniform([k])) = 1− 1/k. 3

These examples highlight how these entropy functions are types of uncertainty measures, giving
rise to “maximally uncertain” distributions p, which are typically uniform on Y .

11.1.3 The information in an experiment

In classical information theory, the mutual (Shannon) information between random variables X
and Y is the gap between the entropy of Y and the remaining entropy given X, that is,

I(X;Y ) = H(Y )−H(Y | X).
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In complete analogy with our development in Chapter 2, then, we can define the information
between variables X and Y relative to a particular loss function `. Thus, we define the `-conditional
entropy

H`(Y | X = x) := inf
Q∈P

E [`(Q,Y ) | X = x]

and, in analogy to the definitions in Section 2.1.1, the conditional entropy of Y given X is

H`(Y | X) := E
[

inf
Q∈P

E[`(Q,Y ) | X]

]
=

∫
X
H`(Y | X = x)dP (x),

the average minimal expected loss when one observes X.
With this definition, we then can discuss the information in an experiment. This nomenclature

follows classical statistical parlance, where by an experiment, we mean the observation of a variable
X in a Markov chain X → Y , where we think of Y as a hypothesis to be tested or a value to be
predicted, and we ask how much observing X helps to actually allow this prediction. Then we
define

I`(X;Y ) := H`(Y )−H`(Y | X), (11.1.7)

which is nonnegative and is the gap between the prior entropy of Y and its posterior entropy
conditional on the observation X. That is, this information measure is precisely the gap between
the best achievable loss in the prediction of a distribution P for Y a priori, when we observe
nothing, and that achievable a posteriori, when we observe X. In parallel to our alternative view of
the entropy as the (expected) minimal loss of a player in a prediction game, then, the information
between X and Y is the improvement an observation X offers a player in predicting Y when
measuring error with the loss `. The information (11.1.7) is typically asymmetrical in X and Y , so
we are careful about the ordering (this lack of symmetric holds, essentially, unless ` is the log loss).

The next three examples show different information quantities, where in each we let Y have
finite cardinality k, and thus identify P with the probability simplex ∆k = {p ∈ Rk+ | 〈1, p〉 = 1}.

Example 11.1.4 (Shannon information): Taking the log loss `(p, y) = − log py, we have

I`(X;Y ) = H`(Y )−H`(Y | X) = H(Y )−H(Y | X) = I(X;Y ),

the classical Shannon information. 3

Example 11.1.5 (0-1 error): Consider the 0-1 error `0-1(p, y) = 1 if py ≤ maxj pj and
`0-1(p, y) = 0 if py > maxj 6=y pj . Then letting y? = argmaxy P(Y = y) and y?(x) = argmaxy P(Y =
y | X = x), we have

I`0-1(X;Y ) = P(Y = y?)− E [P(Y = y?(X) | X)] = P(Y = y?)− P(Y = y?(X)),

the gap between the prior probability of making a mistake when guessing Y and the posterior
probability given X. 3

Example 11.1.6 (Squared error): For the Brier score with squared error `sq(p, y) = ‖p− ey‖22,

we have H`sq(p) = 1− ‖p‖22, and so

I`sq(X;Y ) =
k∑
j=1

E
[
P(Y = j | X)2

]
−

k∑
j=1

P(Y = j)2 =
k∑
j=1

Var(P(Y = j | X)),

the summed variances of the random variables P(Y = j | X). The higher the variance of these
quantities, the more information X carries about Y . 3
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11.2 Characterizing proper losses and Bregman divergences

With the definition (11.1.5) of the fundamental generalized entropy, we can now proceed to a
characterization of all proper losses. We do this in three settings: in the first (Section 11.2.1),
we give a representation for proper losses when Y is finite and discrete, so we can identify it
with Y = {1, . . . , k} and distributions P on Y with probability mass functions p ∈ ∆k. We then
demonstrate a full characterization of propriety (Section 11.2.2), which requires measure-theoretic
tools and can be skipped. As the final approach to considering propriety, we modify the results for
finite Y to consider cases in which Y is vector-valued and Y ⊂ Rk is contained in a compact set.
This case transparently generalizes the finite representations of Section 11.2.1 and will form the
basis of our development going forward, as it allows us to more directly apply to tools of convexity
and analysis.

11.2.1 Characterizing proper losses for Y taking finitely many vales

Here, we present the Savage representation of proper losses, which characterizes all proper losses
using the entropies (11.1.5) or, equivalently, (11.1.6). To avoid pathological cases, we work with
regular losses, which always assign a finite value to the correct predicted distribution; we assume
regularity without further comment.

Definition 11.2. Let P be a family of distribution on Y. The loss ` : P × Y → R is regular for
the family P if EP [`(P, Y )] is real valued for all P ∈ P.

We do allow losses to attain infinite values, for example, we can allow `(Q, y) = +∞ if Q assigns
probability 0 to an event y, as in the case of the logarithmic loss. The following theorem then
provides the promised representation of proper losses, and additionally, highlights the centrality of
the generalized entropy functionals.

Theorem 11.2.1 (Proper scoring rules: the finite case). Let Y = {1, . . . , k} be finite and P ⊂ ∆k

a convex collection of distributions on Y. Then the following are true.

(i) If the loss ` : P × Y → R satisfies the representation

`(p, y) = −h(p)− 〈∇h(p), ey − p〉 (11.2.1)

for a subdifferentiable closed convex function h : P → R, where ∇h(p) ∈ ∂h(p), then ` is
proper.

(ii) Conversely, if ` is proper, then choosing h to be the negative generalized entropy

h`(p) := −H`(p) = sup
q
{−Ep[`(q, Y )] | q ∈ P}

satisfies equality (11.2.1) (and h is closed).

Additionally, if ` is real valued, then ∇h(p) ∈ Rk in the representation (11.2.1). If `(p, y) can take
the value +∞, then we allow ∇h(p) ∈ Rk when p 6∈ relint ∆k. The loss is strictly proper if and only
if the convex h is strictly convex.

Proof If ` has the given representation and P(Y = y) = py, then we have

E[`(q, Y )] = −h(q)− 〈∇h(q), p− q〉 ≥ −h(p) = E[`(p, Y )]
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by the first-order convexity property of convex functions (that is, the definition (11.1.1)) of a
subdifferential).

Conversely, suppose that the loss is proper, and let h(p) = h`(p). Clearly h is convex, as it is
the supremum of linear functionals of p. Moreover, propriety of ` guarantees that

h(p) ≥ −E[`(q, Y )] = h(q) +

k∑
y=1

−`(q, y)(pk − qk)

That is, for each q ∈ P the vector [−`(q, y)]ky=1 ∈ ∂h(q), so h is subdifferentiable. Choosing the

vector ∇h(p) = [−`(p, y)]ky=1, we have

`(p, y) = −h(p) + `(p, y) + h(p) = −h(p)−
k∑
i=1

pi`(p, i) + `(p, y) = −h(p)− 〈∇h(p), ey − p〉

as desired. Note that `(p, y) < ∞ except when py = 0, in which case our definition ∇h(p) =
[−`(p, y)]ky=1 remains sensible as −〈∇h(p), ey − p〉 = +∞.

As an alternative argument more directly using convexity, definition of h(p) = supq{−Ep[`(q, Y )] |
q ∈ P} and the immediate calculation (11.1.2) of the subdifferential of the supremum shows that

∂h(p) ⊃
{

[−`(q, y)]ky=1 | q ∈ ∆k satisfies − Ep[`(q, Y )] = h(p)
}
.

But propriety guarantees that the set of such q includes p, so that ∂h(p) ⊃ [−`(p, y)]ky=1.
For the strict inequalities and strict propriety, trace the argument replacing inequalities with

strict inequalities for q 6= p and use Corollary B.3.2 or C.1.7.

The negative generalized entropy h in Theorem 11.2.1 is essentially unique and marks an impor-
tant duality between proper losses and convex functions: to each loss, we can assign a generalized
entropy, and from this generalized entropy, we can reconstruct the loss. Exercise 11.2 explores this
connection. We can also give a few examples that show how to recover standard losses. For each,
we begin with a convex function h, then exhibit the associated proper or strictly proper scoring
rule. One thing to notice in this representation is that, typically, we do not expect to achieve a
loss function convex in p, which is a weakness of the representation (11.2.1). In Section 11.3 (and
Chapter 14 in more depth), however, we will show how to convert suitable proper losses into sur-
rogates that are convex in their arguments and which, after a particular transformation based on
convex duality, are proper and yield the correct distributional predictions. We defer this, however,
and instead provide a few examples.

Example 11.2.2 (Logarithmic losses): Consider the negative entropy h(p) =
∑k

y=1 py log py.

We have ∂
∂py

h(p) = 1 + log py ∈ [−∞, 1], and

`log(p, y) = −
k∑
j=1

pj log pj +
k∑
j=1

py(1 + log pj)− (1 + log py) = − log py,

yielding the log loss. Note that for this case, we do require that the gradients ∇h(p) take
values in the (downward) extended reals Rk. 3
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Example 11.2.3 (Brier scores and squared error): When we have the squared error `sq(p, y) =
‖p− ey‖22, we can directly check that h(p) = ‖p‖22 gives the loss. Indeed,

−‖p‖22 − 2〈p, ey − p〉 = ‖p‖22 − 2〈p, ey〉+ 1− 1 = ‖p− ey‖22 − 1.

So aside from an additive constant, we have the desired result. 3

More esoteric examples exist in the literature, such as the spherical score arising from h(p) =
‖p‖2 (note the lack of a square).

Example 11.2.4 (Spherical scores): Let h(p) = ‖p‖2, which is strictly convex on ∆k. Then

∇h(p) = p/ ‖p‖2

and `(p, y) = −‖p‖2−
1
‖p‖2
〈p, ey − p〉 = −py/ ‖p‖2, which is strictly proper but does not retain

convexity. 3

Bregman divergences

A key aspect of the Savage representation (11.2.1) is that associated to any proper loss is a first-
order divergence (or, less evocatively, the Bregman divergence). Recall from Chapter 3 that for a
function function h : Rk → R, the first-order divergence associated with h is

Dh(u, v) := h(u)− h(v)− 〈∇h(v), u− v〉. (11.2.2)

In typical definitions of the divergence, one requires that h be differentiable; here, we allow non-
differentiable h so long as the choice ∇h(v) ∈ ∂h(v) is given. In particular, we see that

Dh(u, v) ≥ 0

for all u and v, and moreover, if h is strictly convex

Dh(u, v) > 0 whenever u 6= v.

(See, e.g., Corollaries B.3.2 and C.1.7 in the appendices.)
Familiar examples include the squared Euclidean norm h(u) = 1

2 ‖u‖
2
2, which by inspection gives

Dh(u, v) =
1

2
‖u− v‖22 ,

and the negative entropies h(u) =
∑k

j=1 uj log uj , which implicitly encodes the constraint that
u � 0. This gives

Dh(u, v) =

k∑
j=1

uj log uj −
k∑
j=1

vj log vj −
k∑
j=1

(1 + log vj)(uj − vj) =

k∑
j=1

uj log
uj
vj

+ 1T (u− v).

If u, v ∈ ∆k, then evidently Dh(u, v) = Dkl (u||v) because 1Tu = 1T v = 1, where we identify u and
v with probability mass functions.

Continuing this identification of distributions on Y with elements p ∈ ∆k in the probability
simplex, we can reconsider the gaps between a loss evaluated at a true distribution p and an
alternative q. In this case, the representation Theorem 11.2.1 provides allows us to connect proper
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losses with first-order divergences immediately. Indeed, let h : ∆k → R be a convex function and
loss ` be the associated proper loss, with `(p, y) = −h(p)− 〈∇h(p), ey − p〉. Now, suppose that Y
has p.m.f. p; then for any q ∈ ∆k, the gap

Ep[`(q, Y )]− Ep[`(p, Y )] = h(p)− h(q)−
k∑
y=1

py〈∇h(q), ey − q〉

= h(p)− h(q)− 〈∇h(q), p− q〉 = Dh(p, q).

We record this as a corollary to Theorem 11.2.1, highlighting the links between propriety, first-order
divergences, and proper loss functions.

Corollary 11.2.5. Let the conditions of Theorem 11.2.1 hold. Then ` is (strictly) proper if and
only if there exists a (strictly) convex h : ∆k → R for which

Ep[`(q, Y )]− Ep[`(p, Y )] = Dh(p, q)

for all p, q ∈ ∆k.

11.2.2 General proper losses

More generally, we can consider predicting distributions P on general sets Y. For example, recalling
the meteorological motivation of predicting the weather, suppose we wish to predict a distribution
of the (real-valued) amount Y of rainfall on a given day. Many predictions place a point mass
at Y = 0, with a decaying tail for higher amounts of rainfall. Then it is natural to predict a
cumulative distribution function F : R → [0, 1], measuring error relative to the actual amount of
rain that falls. Several losses are common in the literature; one common example is the continuous
ranked probability score.

Example 11.2.6 (Continuous ranked probability score (CRPS)): The CRPS loss for a CDF
F at y is

`crps(F, y) =

∫
(F (t)− 1 {y ≤ t})2dt. (11.2.3)

This is a strictly proper scoring rule: let G be any cumulative distribution function, meaning
that limt→−∞G(t) = 0 and limt→∞G(t) = 1, and let Y have CDF F . Then

E[`crps(G, Y )]− E[`crps(F, Y )] =

∫ (
G(t)2 − F (t)2 − 2(G(t)− F (t))E[1 {Y ≤ t}]

)
dt

=

∫
(G(t)− F (t))2 dt

because E[1 {Y ≤ t}] = F (t). This is the (squared) Cramér-von-Mises distance between F and
G, and which is positive unless F = G. Unfortunately, computing the CRPS loss (11.2.3) is
often challenging except for specially structured F . 3

Because the computation of the continuous ranked probability score is challenging, it can be
advantageous to consider other losses on probability distributions, which can allow more flexibility
in modeling. To that end, we define the quantile loss: for a probability distribution P on Y , let

Quantα(Y ) = Quantα(P ) := inf {t | P (Y ≤ t) ≥ α}
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to be the α-quantile of the distribution P . (When Y has cumulative distribution F , this is the
inverse CDF mapping F−1(α) = inf{t | F (t) ≥ α}.) Defining the quantile penalty

ρα(t) = α [t]+ + (1− α) [−t]+ ,

for a collection A of values in [0, 1], the quantile loss is

`quant,A(P, y) :=
∑
α∈A

ρα(y − Quantα(P )). (11.2.4)

The propriety of the quantile loss is relatively straightforward; it is, however, not strictly proper.

Example 11.2.7 (Quantile loss): To see that the quantile loss (11.2.4) is proper, consider the
single quantile penalty ρα: let g(t) = E[ρα(Y − t)] = αE[[Y − t]+] + (1− α)E[[t− Y ]+], which
we claim is minimized by Quantα(Y ). Indeed, g is convex, and it has left and right derivatives

∂−g(t) := lim
s↑t

g(s)− g(t)

s− t
= −αP(Y ≥ t) + (1− α)P(Y < t) = P(Y < t)− α and

∂+g(t) := lim
s↓t

g(s)− g(t)

s− t
= −αP(Y > t) + (1− α)P(Y ≤ t) = P(Y ≤ t)− α.

Indeed, for t = Quantα(Y ), we have ∂−g(t) = P(Y < t)−α ≤ 0 and ∂+g(t) = P(Y ≤ t)−α ≥ 0,
because t 7→ P(Y ≤ t) is right continuous. So convexity yields

E[ρα(Y − Quantα(Y ))] ≤ E[ρα(Y − t)]

for all t. Applying this argument for each α ∈ A, we thus have

E[`quant,A(Q,Y )] ≥ E[`quant,A(P, Y )]

for any Q whenever Y ∼ P , and equality holds whenever Q and P have identical α quantile
for each α ∈ A. 3

The general case of Theorem 11.2.1 allows us to address such scenarios, though it does require
measure theory to properly define. Happily, the generality does not require a particularly more
sophisticated proof. For a (convex) function h : P → R on a family of distributions P on a set Y,
we say h′(P ; ·) : Y → R is a subderivative of h at P ∈ P whenever

h(Q) ≥ h(P ) +

∫
Y
h′(P, y)(dQ(y)− dP (y))

= h(P ) + EQ[h′(P, Y )]− EP [h′(P, Y )]

for all Q ∈ P. (11.2.5)

When Y is discrete and we can identify P with the simplex ∆k, the inequality (11.2.5) is simply
the typical subgradient inequality (11.1.1) that h(q) ≥ h(p) + 〈∇h(p), q − p〉 for p, q ∈ ∆k, where
∇h(p) ∈ ∂h(p). We then have the following generalization of Theorem 11.2.1.

Theorem 11.2.8. Let P be a convex collection of distributions on Y. Then the following are true.

(i) If the loss ` : P × Y → R satisfies the representation

`(P, y0) = −h(P )− h′(P, y0) +

∫
h′(P, y)dP (y), for all y0 ∈ Y, (11.2.6)

where h′(P, ·) : Y → R is a subderivative of h at P ∈ P, then it is proper.
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(ii) Conversely, if ` is proper, then choosing h to be the negative generalized entropy h`(P ) =
−H`(P ) = sup{−EP [`(Q,Y )] | Q ∈ P} satisfies equality (11.2.6).

The loss is strictly proper if and only if the convex h is strictly convex.

Proof If ` has the representation (11.2.6), then we have

−EP [`(P, Y )] = h(P ) ≥ h(Q) +

∫
h′(Q, y)(dP (y)− dQ(y)) = −EP [`(Q,Y )]

for any Q ∈ P by the definition (11.2.5) of a subderivative. Rewriting, we have EP [`(P, Y )] ≤
EP [`(Q,Y )] and ` is proper.

Conversely, if ` is proper and regular, then as in the proof of Theorem 11.2.1 we define

h(P ) := sup
Q∈P
−EP [`(Q,Y )] = −EP [`(P, Y )],

which is the supremum of linear functionals of P and hence convex. If we let h′(P, y) = −`(P, y) ∈ R
for P ∈ P, then

h(P ) ≥ −EP [`(Q,Y )] = h(Q) + EQ[`(Q,Y )]− EP [`(Q,Y )] = h(Q) +

∫
h′(P, y)(dP (y)− dQ(y))

by propriety, so that evidently h′(P, y) is a subderivative of h at P ∈ P. That L(P, y0) = −h(P )−
h′(P, y0) +

∫
h′(P, y)dP (y) is then immediate.

The arguments for strict propriety/convexity are similar.

The obvious corollary to Theorem 11.2.8 follows.

Corollary 11.2.9. Let P be a convex collection of probability distributions on Y. Then the loss
` : P ×Y → R is proper if and only if there exists a convex function h : P → R with subderivatives
h′(P, ·) : Y → R such that

`(P, y0) = −h(P )− h′(P, y0) + EP [h′(P, Y )] for all y0 ∈ Y.

The loss ` is strictly proper if and only if h is strictly concave.

The subdifferentials and differentiability in this potentially infinite dimensional case can make
writing the particular representation (11.2.6) challenging; for example, the representation of the
quantile loss in Example 11.2.7 is quite complex. In the case of predictions involving the cumulative
distribution function F , however, one can obtain the subderivative by taking directional (Gateaux)
derivatives in directions G−F for cumulative distributions G. In this case, for the point cumulative
distribution Gy with Gy(t) = 1 {y ≤ t}, we define

h′(F, y) = lim
ε↓0

h(F + ε(Gy − F ))− h(F )

ε
.

The continuous ranked probability score (Example 11.2.6) admits this expansion.
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Example 11.2.10 (CRPS (Example 11.2.6) continued): The strict propriety of the CRPS
loss (11.2.3) means that the generalized entropy

h(F ) = sup
G
−E[`(G, Y )] = −E[`crps(F, Y )] =

∫
(F (t)− 1)F (t)dt

by definition. Expanding h(F + ε(G− F )) for small ε as in the recipe above, we have

h(F + ε(G− F )) = h(F )− ε
∫

(G(t)− F (t))dt+ 2ε

∫
F (t)(G(t)− F (t))dt+O(ε2).

to obtain the y-based derivative h′(F, y), we choose Gy(t) = 1 {y ≤ t} to obtain directional
derivative

h′(F, y) = lim
ε↓0

h(F + ε(Gy − F ))− h(F )

ε
=

∫
(1 {y ≤ t}−F (t))dt−2

∫
(F (t)(1 {y ≤ t}−F (t))dt.

By inspection, when Y has cumulative distribution function F , E[h′(F, Y )] = 0 and so

−h(F )− h′(F, y) + E[h′(F, Y )]

=

∫ (
−F (t)2 + F (t)− F (t) + 1 {y ≤ t}+ 2F (t)2 − 2F (t)1 {y ≤ t}

)
dt

= −
∫

(F (t)− 1 {y ≤ t})2 dt = `crps(F, y),

as desired. 3

11.2.3 Proper losses and vector-valued Y

The final variant of propriety we consider generalizes that when Y is finite and identified with
{1, . . . , k} in Section 11.2.1. Now, we assume that Y is vector-valued, with Y ⊂ Rk, and assume
the convex hull

Conv(Y) = {EP [Y ] | P is a distribution on Y}

is bounded. (Typically, it will also be compact, though this will not be central to our development,
and pathological cases, such as Y = {1/n}n∈N, exist.) An example showing how to use this
representation for multinomial Y ∈ {1, . . . , k} may be clarifying.

Example 11.2.11 (Multinomial Y as vectors): If Y is a multinomial taking values in a
discrete set of size k, we can instead identify Y with the first k standard basis vectors e1, . . . , ek.
Then p = E[Y ] ∈ ∆k is the p.m.f. of Y , and Conv(Y) = ∆k. 3

Example 11.2.12 (Binary Y as a scalar): When Y ∈ {0, 1} is a Bernoulli random variable,
we identify Y with itself, so that p = E[Y ] = P(Y = 1) ∈ [0, 1] and Conv(Y) = [0, 1]. 3

Example 11.2.13 (Ordinal Y as a scalar): Consider a rating problem of predicting the
rating Y of a movie from 1 to 5 stars. In this case, Y takes values {1, . . . , 5} ⊂ R, but the
ordering between the elements is important; it is unnatural to treat Y as a multinomial. More
generally, Y may take values in {y1, . . . , yk} ⊂ R, where y1 < · · · < yk. As in the binary case,
we identify Y with its scalar value, so that E[Y ] ∈ [y1, yk] and Conv(Y) = [y1, yk]. 3
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In this vector-valued Y case, instead of prediction distributions P , the goal is to predict the
mean mapping

µ(P ) := EP [Y ] ∈ Conv(Y),

so that µ : P → Rk for the collection P of distributions on Y . Our goal is to reward predictions of
the correct expectation, leading to the following definition.

Definition 11.3. Let C = cl Conv(Y) be a convex set. Then ` : C × Y → R is proper if

EP [`(µ, Y )] ≥ EP [`(EP [Y ], Y )] for all µ ∈ C,

and strictly proper if the inequality is strict whenever µ 6= EP [Y ].

Definition 11.3 generalizes Definition 11.2 in the multinomial case, where Y is a discrete set that
we may identify with the basis vectors {e1, . . . , ek}, as Example 11.2.11 makes clear.

With this definition, we can extend Theorem 11.2.1 to a more general case, where as usual we
say that ` is regular if EP [`(EP [Y ], Y )] <∞ for all distributions P on Y.

Theorem 11.2.14. Let Y ⊂ Rk be finite, P be the collection of distributions on Y, and C =
Conv(Y) = {EP [Y ] | P ∈ P}. A regular loss ` : C × Y → R is proper if and only if there exists a
closed convex h : C → R such that

`(µ, y) = −h(µ)− 〈∇h(µ), y − µ〉

for some subgradient ∇h(µ) ∈ ∂h(µ) ⊂ Rk. Additionally, if ` : C × Y → R, then ∂h(µ) ⊂ Rk, and
if µ ∈ relintC, we have ∂h(µ) ⊂ Rk. The loss is strictly proper if and only if the associated h is
strictly convex.

With this theorem, we have an essentially complete analogy with Theorem 11.2.1. There are
subtleties in the proof because the mapping from probabilities P to EP [Y ] can be many-to-one,
necessitating some care in the calculations, and making infinite losses somewhat challenging. A few
examples centered around ordinal regression illustrate the scenarios.

Example 11.2.15 (Ordinal regression, Example 11.2.13 continued): Let Y ∈ {0, 1, . . . , k} be
a value to be predicted, where the ordering on Y is important, as in ratings of items. In this
case, the set C = Conv(Y) = [0, k], and any strictly convex loss with domain [0, k] gives rise to
a proper loss via the construction `h(µ, y) = −h(µ)− h′(µ)(y− µ). First, we take h(µ) = 1

2µ
2.

This gives rise to a (modified) squared error

`h(µ, y) =
1

2
(µ− y)2 − 1

2
y2,

which is strictly convex and proper.
Other choices of h are possible. One natural choice is a variant of the negative binary

entropy, and we define
h(µ) = (k − µ) log(k − µ) + µ logµ,

which is convex in µ ∈ [0, k], with h(µ) = +∞ for µ > k or µ < 0, while h(0) = h(k) = k log k.
We have h′(µ) = log µ

k−µ , and so

`h(µ, y) = −y logµ+ (y − k) log(k − µ),

for y ∈ {0, . . . , k}. Here, however, note the importance of allowing infinite values in the loss `
when µ→ {0, k}. 3
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Proof One direction is, as in the previous cases, straightforward. Let ` have the given represen-
tation. Then for µ(P ) = EP [Y ],

EP [`(µ, Y )] = −h(µ)− 〈∇h(µ), µ(P )− µ〉 ≥ −h(µ(P )) = EP [`(µ(P ), Y )],

and the inequality is strict if h is strictly convex.
The converse direction (from a proper loss to function h) is more subtle. We first give the

argument in the case that the losses ` are finite-valued, so that `(µ, y) < ∞ for each µ ∈ C and
y ∈ Y, deferring the proof of the general case to Section 11.5.1 as it yields little additional intuition.
Let Y = {y1, . . . , ym} ⊂ Rk, and assume w.l.o.g. that that the matrix A = [y1 · · · ym] with columns
yj has rank k (otherwise, we simply work in a subspace). We may identify P with the probability
simplex ∆m, and then the mean mapping µ(p) =

∑m
i=1 piyi for p ∈ Rm is surjective. Now for

µ ∈ Rk define

h(µ) := inf
p:µ(p)=µ

sup
α
{−Ep[`(α, Y )]} (?)

= inf
p∈∆m

{−Ep[`(µ, Y )] | µ(p) = µ} ,

where the equality (?) follows because ` is proper. The function h is closed convex, as it is the partial
infimum of the closed convex function p 7→ −Ep[`(µ, Y )] + I∆m(p), where we recall I∆m(p) = 0 if
p ∈ ∆m and +∞ otherwise (see Proposition B.3.11).

We compute ∂h(µ) directly now. The infimum over p in the definition of h(µ) is attained, as
∆m is compact and g(p) := −Ep[`(µ, Y )] is necessarily continuous in p satisfying µ(p) = µ, because
regularity of the loss guarantees `(µ, yi) ∈ R whenever pi > 0 is feasible in the mean mapping
constraint µ(p) = µ. Moreover, it is immediate that

∇g(p) =

−`(µ, y1)
...

−`(µ, ym)

 ∈ Rm.

Let p?(µ) be any p attaining the infimum. By Proposition B.3.27 on the subgradients of partial
minimization, we thus obtain

∂h(µ) =
{
s ∈ Rk | yTi s = −`(µ, yi) for i = 1, . . . ,m

}
,

and moreover, this set is necessarily non-empty for all µ ∈ relintC = {µ(p) | p � 0, p ∈ ∆m}. Using
this equality, we have

`(µ, y) = −h(µ) + h(µ) + `(µ, y) = −h(µ) + Ep?(µ)[−`(µ, Y )] + `(µ, y)

= −h(µ) +

m∑
i=1

p?i (µ)yTi s− yT s

= −h(µ) + 〈s,Ep?(µ)[Y ]− y〉 = −h(µ)− 〈s, y − µ〉

for any s ∈ ∂h(µ), as Ep[Y ] = µ(p) = µ by construction.
Lastly, to obtain strict convexity of h, note that if Ep[Y ] = µ, then we can use the representation

Ep[`(µ′, Y )]− Ep[`(µ, Y )] = −h(µ′)− 〈∇h(µ′), µ− µ′〉+ h(µ) = Dh(µ, µ′)

which is positive whenever µ 6= µ′ if and only if h is strictly convex.
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11.3 From entropies to convex losses, arbitrary predictions, and
link functions

Frequently, when we fit models, it is inconvenient to directly model or predict probabilities, that is,
to minimize over probabilistic predictions. Instead, we often wish to fit some real-valued prediction
and then transform it into a probabilistic prediction. This is perhaps most familiar from binary
and multiclass logistic regression, where a link function transforms real-valued predictions into
probabilistic predictions. For the binary logistic regression case with Y ∈ {−1, 1}, we assume that
we predict a score s ∈ R, where s > 0 indicates a prediction that Y is more likely to be 1 and s < 0
that it is more likely negative. The implied (modelled) probability that Y = y is then

p(y | s) =
1

1 + exp(−ys)
for y ∈ {−1, 1}.

Similarly, for k-class classification problems, when using multiclass logistic regression, we predict a
score vector s ∈ Rk, where sy indicates a score associated to one of the k potential class labels y;
this then implies the probabilites

p(y | s) =
exp(sy)∑k
i=1 exp(si)

=
1

1 +
∑

i 6=y exp(si − sy)
,

where we clearly have
∑

y p(y | s) = 1.
In binary and logistic regression, instead of directly minimizing negative log probabilities of

error over the probability simplex (though one does this implicitly), instead we use surrogate logistic
losses whose arguments can range over all of R or Rk. In the case of binary logistic regression with
y ∈ {−1, 1}, this is

ϕ(s, y) = log(1 + exp(−sy)),

while in the multiclass case we use the multiclass logistic loss

ϕ(s, y) = −sy + log

(
k∑
i=1

exp(si))

)
= log

1 +
∑
i 6=y

exp(si − sy)

 .

Note that for each of these, we have a direct relationship between the probabilistic predictions and
derivatives of ϕ. In the binary logistic regression case, we have

p(y | s) = 1 +
∂

∂s
ϕ(s, y) = 1− 1

1 + exp(ys)
=

1

1 + exp(−ys)
,

while in the multiclass case we similarly have

p(y | s) = 1 +
∂

∂sy
ϕ(s, y) =

exp(sy)∑k
i=1 exp(si)

.

11.3.1 Convex conjugate linkages

These dualities turn out to hold in substantially more generality, and they are the key to trans-
forming proper losses (as applied on probabilities) into proper surrogate losses that apply directly
to real-valued scores and which are convex in their arguments, allowing us to bring the tools of
convex optimization to bear on actually fitting predictive models. We work in the general setting of
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Section 11.2.3 of losses for vector-valued y where Y ⊂ Rk, so that instead of predicting probability
distributions on Y itself we predict elements µ of the set {EP [Y ]} = Conv(Y), and let ` be a strictly
proper loss. Theorems 11.2.1 and 11.2.14 demonstrate that if the loss ` is proper, there exists a
(negative) generalized entropy, which in the case of Theorem 11.2.1 is h(p) = supq{−Ep[`(q, Y )]},
for which

`(µ, y) = −h(µ)− 〈∇h(µ), y − µ〉.

Note that h is always a closed convex function, meaning that it is lower semicontinuous or that its
epigraph epih = {(µ, t) | h(µ) ≤ t} is closed.

Let us suppose temporarily that we have any such entropy. Recalling the convex conju-
gate (11.1.3), the negative generalized entropy h is closed convex, and so its conjugate h∗(s) =
sup{〈s, µ〉 − h(µ)} satisfies h∗∗(µ) = h(µ). In particular, if we define the surrogate loss

ϕ(s, y) := h∗(s)− 〈s, y〉,

which is defined for all s ∈ Rk (instead of Conv(Y)), then

EP [ϕ(s, Y )] = h∗(s)− 〈s,EP [Y ]〉 = h∗(s)− 〈s, µ(P )〉

for the mean mapping µ(P ) = EP [Y ]. Moreover,

inf
s
EP [ϕ(s, Y )] = inf

s
{h∗(s)− 〈s, µ(P )〉} = −h∗∗(µ(P )) = −h(µ(P )),

and so it generates the same negative entropy as the original loss `, as

inf
µ

EP [`(µ, Y )] = inf
µ
{−h(µ)− 〈∇h(µ), µ(P )− µ〉} = −h(µ(P )).

This identification of (generalized) entropies will underpin much of our development of the consis-
tency of losses in sections to come. For now, we content ourselves with addressing how to under-
stand propriety of the surrogate loss ϕ and how to transform predictions s ∈ Rk into probabilistic
predictions µ.

The key will be to consider what we term convex-conjugate-linkages, or conjugate linkages for
short. Recall the duality relationships (11.1.4) from the Fenchel-Young inequality we present in
the convexity primer in Section 11.1.1. The negative generalized entropy h is convex, and the
dualities associated with its conjugate h∗(s) = supµ{〈s, µ〉 − h(µ)} will form the basis of our
transformations. We first give a somewhat heuristic presentation, as the intuition is important
(but details to make things precise can be a bit tedious). Essentially, we require that h∗ and h are
continuously differentiable, in which case we have

∇h(µ) = s if and only if ∇h∗(s) = µ if and only if h∗(s) + h(µ) = 〈s, µ〉

by the Fenchel-Young inequalities (11.1.4). That is, the gradient ∇h∗ of the conjugate transforms
a score vector s ∈ Rk into elements c to predict Y: we transform s into a prediction µ via the
conjugate link function

predh(s) = argmax
µ

{〈s, µ〉 − h(µ)} = ∇h∗(s) = (∇h)−1(s), (11.3.1)

which finds the µ that best trades having maximal “entropy” −h(µ), or uncertainty, with alignment
with the scores 〈s, µ〉.
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With this, it is then natural to consider the function substituting the prediction µ = predh(s)
into `(µ, y), and so we consider

`(predh(s), y).

Immediately, if µ = predh(s) = ∇h∗(s), we have s = ∇h(µ) by construction (or the Fenchel-Young
inequality (11.1.4)), and so h(µ) = 〈s, µ〉 − h∗(s) for this particular pair (s, µ), and ∇h(µ) =
∇h(∇h∗(s)) = s because ∇h and ∇h∗ are inverses. Substituting, we obtain

`(predh(s), y) = −h(predh(s))− 〈∇h(predh(s)), y − predh(s)〉 = −h(µ)− 〈s, y − µ〉
= h∗(s)− 〈s, µ〉 − 〈s, y − µ〉,

that is, we have recovered the surrogate

ϕ(s, y) = h∗(s)− 〈s, y〉. (11.3.2)

The surrogate loss (11.3.2) constructed from the negative entropy h is the key transformation of
the loss ` into a convex loss, and (no matter the properties of `) is always convex.

As we have already demonstrated, the construction (11.3.2) is more general than we have
presented; certainly, h∗ is always convex, and so ϕ is always convex in s. Moreover, if Y has
expectation E[Y ] = µ, then

inf
s
E[ϕ(s, µ)] = inf

s
{h∗(s)− 〈s, µ〉} = −h(µ)

by conjugate duality, so the surrogate ϕ always recovers the negative entropy h; without some type
of differentiability conditions, however, the construction of the prediction mapping predh requires
more care. Chapter 14 more deeply investigates these connections.

All that remains is to give more precise conditions under which the prediction (11.3.1) is always
unique and exists for all possible score vectors s ∈ Rk. To that end, we make the following definition.

Definition 11.4. Let h : Rk → R. Then h is a Legendre negative entropy if it is strictly convex,
continuously differentiable, and

‖∇h(µ)‖ → ∞ if either

{
µ→ bd domh or

‖µ‖ → ∞.
(11.3.3)

This is precisely the condition we require to make each step in the development of the surro-
gate (11.3.2) airtight; as a corollary to Theorem C.2.9 in the appendices, we have the following.

Corollary 11.3.1. Let h be a Legendre negative entropy. Then the conjugate link prediction (11.3.1)
is unique and exists for all s ∈ Rk. In particular, the conjugate h∗ is strictly convex, continuously
differentiable, satisfies domh∗ = Rk, and ∇h∗ = (∇h)−1.

With this corollary in place, we can then give a theorem showing the equivalence of the strictly
proper loss ` and its surrogate.

Theorem 11.3.2. Let ` : C × Y → R be the strictly proper loss associated with the Legendre
negative entropy h. Then

`(predh(s), y) = ϕ(s, y) := h∗(s)− 〈s, y〉.
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Moreover, the convex surrogate ϕ satisfies the consistency that if

E[ϕ(sn, Y )]→ inf
s
E[ϕ(s, Y )]

then µn = predh(sn) satisfies
E[`(µn, Y )]→ inf

µ
E[`(µ, Y )].

Proof The first equality we have already demonstrated. For the minimization claim, we note
that if µ = E[Y ], then E[ϕ(s, Y )] = h∗(s)−〈µ, s〉 and infs{h∗(s)−〈µ, s〉} = −h(µ). Strict propriety
of ` then gives infµ′ E[`(µ′, Y )] = −h(µ).

Said differently, the surrogate ϕ is consistent with the loss ` and (strictly) proper, in that
if s minimizes E[ϕ(s, Y )], then predh(s) minimizes E[`(µ, Y )]. The statement in terms of limits
is necessary, however, as simple examples show, because with some link functions it is in fact
impossible to achieve the extreme points of Conv(Y), as in logistic regression. We provide a few
example applications (and non-applications) of Theorem 11.3.2. For the first, let us consider binary
logistic regression.

Example 11.3.3 (Binary logistic regression): For a label Y ∈ {0, 1} and predictions p ∈ [0, 1],
take the generalized entropy

h(p) = p log p+ (1− p) log(1− p).

By inspection, domh = [0, 1], and h′(p) = log p
1−p satisfies |h′(p)| → ∞ as p → {0, 1}. For

s ∈ R, the conjugate is

h∗(s) = sup
p
{sp− p log p− (1− p) log(1− p)} = log(1 + es),

where the supremum is achieved by p = predh(s) = es

1+es . Then we have

ϕ(s, y) = log(1 + es)− sy = − log p(y | s),

where p(y | s) = eys

1+es is the binary logistic probability of the label y ∈ {0, 1}.
For the induced loss `(p, y) = −y log p − (1 − y) log(1 − p) (the log loss), if P(Y = 1) = 1,

then p = 1 minimizes E[`(p, Y )]. Similarly, if P(Y = 0) = 1, then p = 0 minimizes E[`(p, Y )].
Neither of these is achievable by a finite ˙̀ in p(y | s) = eys

1+es , showing how the limiting argument
in Theorem 11.3.2 is necessary. 3

The next example shows that we sometimes need to elaborate the setting of Theorem 11.3.2 to deal
with constraints.

Example 11.3.4 (Multiclass logistic regression): Identify the set Y = {e1, . . . , ek} with the
k standard basis vectors, and for p ∈ ∆k = {p ∈ Rk+ | 1T p = 1}, consider the negative entropy

h(p) =
k∑
y=1

py log py.
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This function is strictly convex and of Legendre type for the positive orthant Rk+ but not for
∆k. Shortly, we shall allow linear constraints on the predictions to address this shortcoming.
As an alternative, take Y = {0, e1, . . . , ek−1}, so that Conv(Y) = {p ∈ Rk−1

+ | 1T p ≤ 1}, which
has an interior and so more easily admits a conjugate duality relationship. In this case, the
negative entropy-type function

h(p) =

k−1∑
y=1

py log py + (1− 1T p) log(1− 1T p) (11.3.4)

is of Legendre type. A calculation for s ∈ Rk−1 yields

h∗(s) = log

1 +

k−1∑
y=1

esy

 ,

with

predh(s) =

(
es1

1 +
∑k−1

j=1 e
sj
, . . . ,

esk−1

1 +
∑k−1

j=1 e
sj

)
.

Letting p denote the entries of this vector, we can then assign a probability to class k via
pk = 1−

∑k−1
j=1 pj . 3

In Section 11.4 we revisit exponential families in the (proper) loss minimization framework we
have thus far developed, which gives some additional perspective on these problems.

11.3.2 Convex conjugate linkages with affine constraints

As Example 11.3.4 shows, in some cases a “natural” formulation fails to satisfy the desiderata of our
link functions. Accordingly, we make a slight modification to the Legendre type (11.3.3) negative
entropy h to allow for affine constraints, which still allows us to develop the precise convexity
dualities with proper losses we require. Continuing to work in the scenario in which Y ⊂ Rk,
suppose now that the affine hull

A = aff(Y) :=


m∑
j=1

αjyj | yj ∈ Y, αT1 = 1,m ∈ N


is a proper subspace of Rk. The key motivating example here is the “failure” case of Example 11.3.4
on multiclass logistic regression, where Y = {e1, . . . , ek}, whose affine hull is exactly those vectors
p ∈ Rk satisfying 〈p,1〉 = 1. Naturally, in this case we wish to predict probabilities, and so given a
score vector s ∈ Rk and using the negative entropy h(p) =

∑k
y=1 py log py, we let

pred(s) = argmin
p

{
h(p)− 〈s, p〉 | 1T p = 1

}
=

esy/ k∑
j=1

esj

k
y=1

.

Generalizing this approach to arbitrary regularizers h, we modify the prediction (11.3.1) to be

predh,A(s) = argmax
µ∈A

{〈s, µ〉 − h(µ)} .
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Then for the loss `(µ, y) = −h(µ)−〈∇h(µ), y−µ〉 associated with the negative entropy h, we define
the surrogate

ϕ(s, y) := `(predh,A(s), y).

Perhaps remarkably, this construction still yields a well-defined convex loss with the same consis-
tency properties as those in Theorem 11.3.2. Indeed, defining

hA(µ) = h(µ) + IA(µ)

and the associated conjugate h∗A(s) = sup{〈s, µ〉 − h(µ) | µ ∈ A}, we have the following theorem.

Theorem 11.3.5. Let ` : C × Y → R be the strictly proper loss associated with the Legendre
negative entropy h and A = aff(Y) be the affine hull of Y. Then

ϕ(s, y) := `(predh,A(s), y) = h∗A(s)− 〈s, y〉.

Moreover, the convex surrogate ϕ satisfies the consistency that if

E[ϕ(sn, Y )]→ inf
s
E[ϕ(s, Y )]

then µn = predh,A(sn) satisfies

E[`(µn, Y )]→ inf
µ

E[`(µ, Y )].

We return to proving the theorem presently, focusing here on how it applies to Example 11.3.4.

Example 11.3.6 (Multiclass logistic regression): Consider Example 11.3.4, where we identify
Y = {e1, . . . , ek} ⊂ Rk, which has affine hull A = {p ∈ Rk | 〈1, p〉 = 1}. Then taking
h(p) =

∑k
y=1 pk log pk, a calculation with a Lagrangian shows that

predh,A(s) = argmin
p∈∆k

{−〈s, p〉+ h(p)} =

esy/ k∑
j=1

esj

 .
In turn, this gives surrogate logistic loss

ϕ(s, y) = log

 k∑
j=1

esj−sy

 .

Notably, the logistic loss is not strictly convex, as ϕ(s + t1, y) = ϕ(s, y) for t ∈ R. If Y is a
multinomial random variable with P(Y = ey) = py, then by another calculation, the vector
with entries

s?y = log py

minimizes E[ϕ(s, Y )], which in turn gives predh,A(s?) = p, maintaining propriety. 3
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Proof of Theorem 11.3.5

Before proving the theorem proper, we show how the key identity that s = ∇h(c) we use to develop
equality (11.3.2) generalizes in the presence of the affine constraint. The function hA is strictly
convex on its domain domh ∩ A, and moreover, ∇h∗A exists and is continuous. The following
corollary (a consequence of Corollary C.2.12 in Appendix C.2) extends Corollary 11.3.1 and allows
us to address equality (11.3.2).

Corollary 11.3.7. The conjugate h∗A is continuously differentiable with domh∗A = Rk, and if
µ = ∇h∗A(s), then µ ∈ int domh and

∇h(µ) = s+ v

for some vector v normal to A, that is, a vector v ∈ Rk satisfying 〈v, µ0−µ1〉 = 0 for all µ0, µ1 ∈ A.

While the proof of the corollary requires some care to make precise, a sketch can give intuition.
Sketch of Proof Because h is strictly convex and its derivatives ∇h(µ) explode as µ →
bd domh, the minimizer of −〈s, µ〉+ h(µ) over µ ∈ A exists and is unique. Let A = {µ | Aµ = b}
for shorthand, where A ∈ Rn×k for some n < k. Then introducing Lagrange multiplier w ∈ Rn for
the constraint µ ∈ A, the Lagrangian for finding predh,A(s) = argminµ{h(µ)− 〈s, µ〉 | µ ∈ A} is

L(µ,w) = h(µ)− 〈s, µ〉+ wT (Aµ− b).

Minimizing out µ by setting ∇µL(µ,w) = 0, we obtain

∇h(µ)− s+ATw = 0.

But if µ0, µ1 ∈ A, then v = ATw satisfies 〈v, µ0 − µ1〉 = wTA(µ0 − µ1) = wT (b− b) = 0, so that v
is normal to A.

Finally, we return to prove the theorem. Take any vector s ∈ Rk. Then because predh,A(s) =
∇h∗A(s), we have

ϕ(s, y) = `(predh,A(s), y) = −h(∇h∗A(s))− 〈∇h(∇h∗A(s)), y −∇h∗A(s)〉.

As ∇h∗A(s) ∈ A and using the shorthand µ = ∇h∗A(s) ∈ A, we have ∇h(µ) = s + v for some v
normal to A. Moreover, h(µ) = hA(µ), and so the Fenchel-Young inequality (11.1.4) guarantees
−hA(µ) = h∗A(s)− 〈s, µ〉. Substituting in the expression for ϕ, we obtain

ϕ(s, y) = h∗A(s)− 〈s, µ〉 − 〈s+ v, y − µ〉
= h∗A(s)− 〈s, µ〉+ 〈s, µ− y〉 = h∗A(s)− 〈s, y〉

where the second equality follows because v ⊥ µ− y.
For the consistency argument, let µn = predh,A(sn). Then E[`(µn, Y )] = E[ϕ(sn, Y )] and if

µ = E[Y ], then E[ϕ(s, Y )] = h∗A(s)−〈µ, s〉 and infs E[ϕ(s, Y )] = −hA(µ) = −h(µ). Strict propriety
of ` gives infµ′ E[`(µ′, Y )] = −h(µ).
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11.4 Exponential families, maximum entropy, and log loss

Realistically, making predictions using an arbitrary distribution P on an arbitrary space X is sta-
tistically infeasible: we could never collect enough data to accurately model complex phenomena
without any assumptions on P . Accordingly, we may seek more tractable models to make predic-
tions feasible, and we can then investigate the consequences of moving from the entire family P
of distributions on X to smaller families is. A particularly important class of distributions, which
allows us to study these questions in great detail, are the exponential families from Chapter 3; here,
we investigate them in the framework that we have developed for proper losses.

Let {Pθ} be a regular exponential family indexed by θ on a space X with sufficient statistic
φ : X → Rd, where for a base measure ν on X , Pθ has density

pθ(x) = exp(〈θ, φ(x)〉 −A(θ))

with respect to ν, where A(θ) = log
∫
e〈θ,φ(x)〉dν(x) is the log partition function. (Recall that

regularity means that the domain

Θ := domA = {θ | A(θ) <∞}

is open, as in Definition 3.1). Consider the log loss − log pθ(x), which we suggestively denote with
the surrogate ϕ as a function of θ,

ϕ(θ, x) := − log pθ(x) = A(θ)− 〈θ, φ(x)〉.

Proposition 3.2.1 guarantees this is always convex in θ because the log partition function is convex,
and it is C∞ (Proposition 3.2.2). While the log loss − log p(x) is proper, the exponential family
{Pθ} can capture only a subset of the distributions on X .

The mean mapping µ(P ) := EP [φ(X)] ∈ Rd will be of central importance to the development
of proper losses, exponential families, and the duality relationships between maximum likelihood
and entropy that we explore here. Accordingly, throughout this section we let

P := {distributions P � ν} = {distributions P with a density p w.r.t. ν}

be the collection of distributions with densities with respect to ν (as Pθ by definition has), and we
define the set of potential mean parameters

M :=
{
µ(P ) = EP [φ(X)] ∈ Rd | P � ν

}
= {µ(P ) | P ∈ P} . (11.4.1)

Now, for any distribution P ∈ P with mean vector µ = µ(P ), the associated generalized negative
entropy is

h(µ) := sup
θ
{−EP [ϕ(θ,X)]} = sup

θ
{〈θ, µ(P )〉 −A(θ)} = A∗(µ),

the convex conjugate of A. At this point, the centrality of the duality relationships (via gradients
∇A and ∇A∗) between Θ and M to fitting and modeling should come as no surprise, and so we
elucidate a few of the main properties. Because ∇A(θ) = Eθ[φ(X)] in the exponential family, we
immediately see that

∇A(Θ) := {∇A(θ)}θ∈Θ ⊂M.

Recalling the duality relationship (11.1.4) that

θ ∈ ∂A∗(µ) if and only if ∇A(θ) = µ,

we can say much more.
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Proposition 11.4.1. Let Mo = relintM. Then ∇A(Θ) =Mo. Additionally:

(i) If the family is minimal, then M has non-empty interior and h is continuously differentiable
on Mo, with θ = ∇h(µ) if and only if ∇A(θ) = µ.

(ii) If the family is non-minimal, then h is continuously differentiable relative to aff(M), meaning
that there exists a continuous mapping ∇h(µ) ∈ Θ such that for all µ ∈Mo,

∂h(µ) =
{
∇h(µ) + aff(M)⊥

}
.

Moreover, Θ = Θ + aff(M)⊥.

The proof of the proposition relies on the more sophisticated duality theory we develop in Appen-
dices B and C, so we defer it to Section 11.5.2.

We can summarize the proposition by considering minimizers and maximizers: suppose we wish
to choose θ to minimize

EP [ϕ(θ,X)] = EP [− log pθ(X)] = A(θ)− 〈µ(P ), θ〉.

Then so long as the distribution P is not extremal in that µ(P ) = EP [φ(X)] ∈ relintM, there
exists a parameter θ(P ), unique up to translation in the subspace perpendicular to aff(M), for
which

θ(P ) ∈ argmin
θ

EP [ϕ(θ,X)] = argmin
θ
{A(θ)− 〈µ(P ), θ〉}.

Moreover, this parameter satisfies the mean matching condition

∇A(θ(P )) = µ(P ),

which is of course sufficient to be a minimizer of the expected log loss. As the statements in the
proposition evidence, calculations become more challenging when we must perform them all in an
affine subspace, though sometimes this care is unavoidable.

Example 11.4.2 (Gaussian estimation): Assume we fit a distribution assuming X has a
Gaussian distribution with mean µ and covariance Σ � 0, both to be estimated. Performing
the transformation to the exponential family form with precision K = Σ−1 and θ = Σ−1µ, we
have

pθ,K(x) = exp

(
〈θ, x〉 − 1

2
〈xx>,K〉 −A(θ,K)

)
for A(θ,K) =

1

2
θ>K−1θ − 1

2
log det(2πK).

The log partition function has gradients

∇θA(θ,K) = K−1θ and ∇KA(θ,K) = −1

2
K−1θθ>K−1 − 1

2
K−1.

Matching moments for a distribution P with second moment matrix M = E[XX>] � 0 and
mean E[X], we obtain

E[X] = K−1θ and M = K−1θθ>K−1 +K−1.

Setting θ = KE[X] and noting that M = Cov(X)− E[X]E[X]>, we solve M = E[X]E[X]> +
K−1 by setting K−1 = Cov(X).
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When Cov(X) 6� 0, the solution K = Cov(X)−1 does not exist, so we must rely instead
on part (ii) of Proposition 11.4.1. With some care, one may check that we can work in the
subspace spanned by the eigenvectors of Cov(X), that is, if Cov(X) = UΛU> and U ∈ Rd×k,
the collection of symmetric matrices K whose column space belongs to span(U). Then the
pseudo-inverse K = Cov(X)† is the appropriate solution, and it recovers the covariance Σ =
K† = Cov(X) � 0. 3

Finally, let us give a last result that shows the duality relationships between the negative
generalized entropy h(µ) and log partition A, which allows us to also capture a few of the nuances
of minimization of the surrogate log loss ϕ(θ, x) = − log pθ(x) when we encounter distributions P
for which the mean mapping µ(P ) is on the boundary of M or even outside it.

Proposition 11.4.3. Let {Pθ} be a regular exponential family with log partition A(θ) with domain
Θ, and let M be the associated mean parameter space with relative interior Mo = relintM. Let
h(µ) = A∗(µ) be the associated negative generalized entropy. Then

(i) A(θ) = h∗(θ) = A∗∗(θ) for all θ.

(ii) If µ ∈ Mo, there exists θ(µ) ∈ Θ such that the negative entropy satisfies h(µ) = A∗(µ) =
〈θ(µ), µ〉 −A(θ(µ)) <∞. If µ 6∈ clM, then h(µ) = +∞.

(iii) If µ ∈ bdM = clM\Mo, then for any µ0 ∈Mo, h(µ) = limt→0 h(tµ0 + (1− t)µ), and there
exist θt ∈ Θ with

∇A(θt) = tµ0 + (1− t)µ and lim
t→0
{A(θt)− 〈µ, θt〉} = inf

θ
{A(θ)− 〈µ, θ〉} .

In particular, there exist sequences of dual pairs (µn, θn) with µn ∈Mo and θn ∈ Θ satisfying
µn = ∇A(θn), µn → µ, h(µn)→ h(µ), and A(θn)− 〈µ, θn〉 → infθ{A(θ)− 〈µ, θ〉}.

See Section 11.5.2 for the deferred proof.
While the statement of Proposition 11.4.3 is somewhat complex, considering minimizers of

E[ϕ(θ,X)] can give some understanding. If P is a distribution such that µ(P ) ∈ Mo, then there
exists a parameter θ(P ) minimizing EP [ϕ(θ,X)]. If µ(P ) ∈ bdM, then either there exists a
minimizer θ(P ) of the loss, or there is a sequence of points θn such that

EP [ϕ(θn, X)]→ inf
θ
EP [ϕ(θ,X)] = −h(µ(P )), and µ(Pθn)→ µ(P ),

so that they asymptotically satisfy the mean identiy. Finally, if µ(P ) 6∈ clM, then infθ E[ϕ(θ,X)] =
−∞, making the choice of exponential family model poor, as it cannot capture the mean parameters
at all.

11.4.1 Maximizing entropy

As we have seen, our notion of generalized entropies as the minimal values of expected losses can
recapture the classical entropy H(P ) = −

∑
x p(x) log p(x) when P has a probability mass function

p, as in the case of multiclass prediction. For exponential family models, this connection goes much
futher, and the (negative) generalized entropy h(µ) for µ ∈M coincides with a more general notion
of entropy known as the Shannon entropy. We begin with the definition:
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Definition 11.5. Let ν be a base measure on X and assume P has density p with respect to ν.
Then the Shannon entropy of P is

H(P ) = −
∫
p(x) log p(x)dν(x).

For a distribution P with probability mass function p, the base measure ν is counting measure,
yielding the classical entropy H(P ) = −

∑
x p(x) log p(x), while for a distribution P with density

p (for Lebesgue measure ν, so that dν(x) = dx for x ∈ Rd), we recover the differential entropy
H(P ) = −

∫
p(x) log p(x)dx.

Example 11.4.4: Let P be the uniform distribution on [0, a]. Then the differential entropy
H(P ) = − log(1/a) = log a. 3

Example 11.4.5: Let P be the normal distribution N(µ,Σ) and ν be Lebesgue measure.
Then

H(P ) =
1

2
log(det(2πΣ)) +

1

2
E[(X − µ)>Σ−1(X − µ)] =

d

2
log(2πe) +

1

2
log det(Σ).

because p(x) = 1√
det(2πΣ)

exp(−1
2(x− µ)>Σ−1(x− µ)). 3

For exponential families, the log partition determines the Shannon entropy directly, highlighting
that −h is indeed a familiar entropy-like object.

Proposition 11.4.6. Let {Pθ} be a regular exponential family with respect to the base measure ν.
Then for any θ ∈ Θ,

H(Pθ) = −h(µ(Pθ)) = A(θ)− 〈µ(Pθ), θ〉,

where h(µ) = sup{〈µ, θ〉 −A(θ)} = A∗(µ).

Proof Using log pθ(x) = 〈θ, φ(x)〉 − A(θ) we obtain H(Pθ) = −Eθ[〈θ, φ(X)〉 − A(θ)] = A(θ) −
〈µ(Pθ), θ〉, where as usual µ(P ) = EP [φ(X)]. As θ and µ(Pθ) have the duality relationship
∇A(θ) = µ(Pθ), we obtain A(θ)− 〈µ(Pθ), θ〉 = −h(µ(Pθ)) as desired.

The maximum entropy principal, which Jaynes [114] first elucidated in the 1950s, originates in
statistical mechanics, where Jaynes showed that (in a sense) entropy in statistical mechanics and
information theory were equivalent. The maximum entropy principle is this: given some constraints
(prior information) about a distribution P , we consider all probability distributions satisfying said
constraints. Then to encode our prior information while being as “objective” or “agnostic” as
possible (essentially being as uncertain as possible), we should choose the distribution P satisfying
the constraints to maximize the Shannon entropy. This principal naturally gives rise to exponential
family models, and (as we revisit later) allows connections to Bayesian and minimax procedures.
One caveat throughout is that the base measure ν is essential to all our derivations: it radically
effects the distributions P we consider.

With all this said, suppose (without making any exponential family assumptions yet) we are
given φ : X → Rd and a mean vector µ ∈ Rd, and we wish to solve

maximizeH(P ) subject to EP [φ(X)] = µ (11.4.2)
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over all distributions P ∈ P, the collection of distributions having densities with respect to the
base measure ν, that is, P � ν. Rewriting problem (11.4.2), we see that it is equivalent to

maximize −
∫
p(x) log p(x)dν(x)

subject to

∫
p(x)φ(x)dν(x) = µ, p(x) ≥ 0 for x ∈ X ,

∫
p(x)dν(x) = 1.

Let
P lin
µ := {P � ν | EP [φ(X)] = µ}

be distributions with densities w.r.t. ν satisfying the expectation (linear) constraint E[φ(X)] = µ.
We then obtain the following theorem.

Theorem 11.4.7. For θ ∈ Rd, let Pθ have density

pθ(x) = exp(〈θ, φ(x)〉 −A(θ)), A(θ) = log

∫
exp(〈θ, φ(x)〉)dν(x),

with respect to the measure ν. If EPθ [φ(X)] = µ, then Pθ maximizes H(P ) over P lin
µ ; moreover, the

distribution Pθ is unique (though θ need not be).

Proof We first give a heuristic derivation—which is not completely rigorous—and then check to
verify that our result is exact. First, we write a Lagrangian for the problem (11.4.2). Introducing
Lagrange multipliers λ(x) ≥ 0 for the constraint p(x) ≥ 0, θ0 ∈ R for the normalization constraint
that P (X ) = 1, and θ ∈ Rd for the constraints that EP [φ(X)] = µ, we obtain the following
Lagrangian:

L(p, θ, θ0, λ) =

∫
p(x) log p(x)dν(x) +

d∑
i=1

θi

(
µi −

∫
p(x)φi(x)dν(x)

)
+ θ0

(∫
p(x)dν(x)− 1

)
−
∫
λ(x)p(x)dν(x).

Now, heuristically treating the density p = [p(x)]x∈X as a finite-dimensional vector (in the case
that X is finite, this is completely rigorous), we take derivatives and obtain

∂

∂p(x)
L(p, θ, θ0, λ) = 1 + log p(x)−

d∑
i=1

θiφi(x) + θ0 − λ(x) = 1 + log p(x)− 〈θ, φ(x)〉+ θ0 − λ(x).

To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero
to find that

p(x) = exp (〈θ, φ(x)〉 − 1− θ0 − λ(x)) .

Now, we note that with this setting, we always have p(x) > 0, so that the constraint p(x) ≥ 0
is unnecessary and (by complementary slackness) we have λ(x) = 0. In particular, by taking
θ0 = −1+A(θ) = −1+log

∫
exp(〈θ, φ(x)〉)dν(x), we have that (according to our heuristic derivation)

the optimal density p should have the form

pθ(x) = exp (〈θ, φ(x)〉 −A(θ)) .

So we see the form of distribution we would like to have.
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Consider any distribution P ∈ P lin
µ , and assume that we have some θ satisfying EPθ [φ(X)] = µ.

In this case, we may expand the entropy H(P ) as

H(P ) = −
∫
p log pdν = −

∫
p log

p

pθ
dν −

∫
p log pθdν

= −Dkl (P ||Pθ)−
∫
p(x)[〈θ, φ(x)〉 −A(θ)]dν(x)

(?)
= −Dkl (P ||Pθ)−

∫
pθ(x)[〈θ, φ(x)〉 −A(θ)]dν(x)

= −Dkl (P ||Pθ) +H(Pθ),

where in the step (?) we have used the fact that
∫
p(x)φ(x)dν(x) =

∫
pθ(x)φ(x)dν(x) = µ. As

Dkl (P ||Pθ) > 0 unless P = Pθ, we have shown that Pθ is the unique distribution maximizing the
entropy, as desired.

We obtain the following immediate corollary, which shows the direct connection between max-
imum entropy and minimizing expected logarithmic loss.

Corollary 11.4.8. Let {Pθ} be the exponential family with densities pθ(x) = exp(〈θ, φ(x)〉−A(θ))
with respect to ν. For any µ ∈M, if there exists θ satisfying EPθ [φ(X)], then Pθ solves

minimize
p

EP [− log p(x)]

over all densities p satisfying
∫
φ(x)p(x)dν(x) = µ.

So if we consider minimizing the negative log loss (which is strictly proper) but wish to guarantee
that the predictive distribution satisfies EP [φ(X)] = µ, then the exponential family model is the
unique minimizer.

We give three examples of maximum entropy, showing how the choice of the base measure ν
effects the resulting maximum entropy distribution. For all three, we assume that the space X = R
is the real line. We consider maximizing the entropy over all distributions P satisfying

EP [X2] = 1.

Example 11.4.9: Assume that the base measure ν is counting measure on the support
{−1, 1}, so that ν({−1}) = ν({1}) = 1. Then the maximum entropy distribution is given by
P (X = x) = 1

2 for x ∈ {−1, 1}. 3

Example 11.4.10: Assume that the base measure ν is Lebesgue measure on X = R, so that
ν([a, b]) = b − a for b ≥ a. Then by Theorem 11.4.7, we have that the maximum entropy
distribution has the form pθ(x) ∝ exp(−θx2); recognizing the normal, we see that the optimal
distribution is simply N(0, 1). 3

Example 11.4.11: Assume that the base measure ν is counting measure on the integers
Z = {. . . ,−2,−1, 0, 1, . . .}. Then Theorem 11.4.7 shows that the optimal distribution is a
discrete version of the normal: we have pθ(x) ∝ exp(−θx2) for x ∈ Z. That is, we choose θ > 0
so that the distribution pθ(x) = exp(−θx2)/

∑∞
j=−∞ exp(−θj2) has variance 1. 3
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We remark in passing that in some cases, it is interesting to instead consider inequality rather than
equality constraints in the linear constraints defining the family P lin. Exercises 11.10 and 11.11
explore these ideas.

Lastly, we consider the empirical variant of minimizing the log loss, equivalently, of maximum
likelihood, where we maximize the likelihood of a given sample X1, . . . , Xn. Consider the sample-
based maximum likelihood problem of solving

maximize
θ

n∏
i=1

pθ(Xi) ≡ minimize − 1

n

n∑
i=1

log pθ(Xi), (11.4.3)

for the exponential family model pθ(x) = exp(〈θ, φ(x)〉 −A(θ)). We have the following result.

Proposition 11.4.12. Let µ̂n = 1
n

∑n
i=1 φ(Xi). Then any θ solving EPθ [φ(X)] = µ̂n is a maximum

likelihood solution, which exists if and only if µ̂n ∈ relintM. If the sample is drawn Xi
iid∼ P where

P � ν and µ(P ) ∈ relintM, then with probability 1, µ̂n ∈ relintM eventually.

Proof Define the empirical negative log likelihood

L̂n(θ) := − 1

n

n∑
i=1

log pθ(Xi) = −〈µ̂n, θ〉+A(θ),

which is convex. Taking derivatives and using that Θ = domA is open, the parameter θ is a mini-
mizer if and only if ∇L̂n(θ) = µ̂n−∇A(θ) = 0 if and only if ∇A(θ) = µ̂n. Apply Proposition 11.4.1.

For the final statement, note that µ̂ ∈ aff(M) with probability 1. Then because µ(P ) ∈ relintM
and µ̂n → µ(P ) with probability 1, we see that for any ε > 0 there is some (random, but finite) N
such that n ≥ N implies ‖µ̂n − µ(P )‖ ≤ ε and µ̂n ∈ aff(M), so that µ̂n ∈ relintM.

As a consequence of the result, we have the following rough equivalences tying together the
preceding material. In short, maximum entropy subject to (linear) empirical moment constraints
(Theorem 11.4.7) is equivalent to maximum likelihood estimation in exponential families (Propo-
sition 11.4.12), and these are all equivalent to minimizing the (surrogate) log loss E[ϕ(θ,X)].

11.4.2 I-projections and maximum likelihood

Certainly exponential family models cannot capture all possible distributions on X or even distri-
butions P � ν on X . As Corollary 11.4.8 shows, exponential family models minimize the log loss.
They also solve certain projection-like problems onto different families of distributions. First, sup-
pose that we have a family Π of distributions and some fixed distribution P . Then the I-Projection
(for information projection) of the distribution P onto the family Π is

P ? := argmin
Q∈Π

Dkl (Q||P ) , (11.4.4)

when such a distribution exists.
By making a small tweak to the exponential family models we consider, we can show that

exponential family models also solve the I-projection problem. Indeed, if we assume P has density
p with respect to ν and let Pθ have density

pθ(x) = p(x) exp(〈θ, φ(x)〉 −A(θ)) for A(θ) := log

∫
exp(〈θ, φ(x)〉)p(x)dν(x)
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so that p is the carrier of Pθ (recall Chapter 3). The next proposition uses this to show, perhaps
unsurprisingly given our derivations thus far, that I-Projection is essentially the same as maximum
entropy, and the projection of a distribution P onto a family of linearly constrained distributions
yields exponential family distributions.

Proposition 11.4.13. Let Π = P lin
µ . If pθ(x) = p(x) exp(〈θ, φ(x)〉−A(θ)) satisfies EPθ [φ(X)] = µ,

then Pθ solves the I-projection problem (11.4.4). Moreover we have the Pythagorean identity

Dkl (Q||P ) = Dkl (Pθ||P ) +Dkl (Q||Pθ)

for Q ∈ P lin
µ .

Proof We perform an expansion of the KL-divergence parallels that in the proof of Theo-
rem 11.4.7. Indeed, for any Q� ν, we have

Dkl (Q||P ) =

∫
q log

q

p
dν =

∫
q log

pθ
p
dν +Dkl (Q||Pθ) =

∫
q(x) [〈θ, φ(x)〉 −A(θ)] dν(x) +Dkl (Q||Pθ)

because pθ(x) = p(x) exp(〈θ, φ(x)〉 − A(θ)). Then because Q ∈ P lin
µ , we have

∫
q(x)[〈θ, φ(x)〉 −

A(θ)]dν(x) =
∫
pθ log pθ

p dν = Dkl (Pθ||P ), giving the proposition.

In brief, the exponential family model is the projection—in the sense of the KL divergence—of
a distribution P onto the collection of distributions satisfying E[φ(X)] = µ.

11.5 Technical and deferred proofs

11.5.1 Finalizing the proof of Theorem 11.2.14

The issue remaining in the proof of Theorem 11.2.14 occurs when `(µ, yi) = +∞ for some i. In this
case, we necessarily have pi = 0 for all p ∈ ∆m satisfying Ep[Y ] = µ; define the set of infinite loss
indices I(µ) := {i | L(µ, yi) = +∞}, which is evidently in the set {i | pi = 0 whenever Ap = 0}.
Because of this containment, we vectors {yi}i∈I(µ) are independent and independent of {yi}i 6∈I(µ).

In particular, there exists ∆ ∈ Rk such that yTi ∆ = 0 for all i 6∈ I(µ) but for which yTi ∆ > 0 for
each i ∈ I(µ). Working on the subspace {p ∈ ∆m | pi = 0, i ∈ I(µ)}, we can perform precisely the
same derivation except that G(µ) = {s ∈ Rk | yTi s = −`(µ, yi) for i 6∈ I(µ)} is non-empty. Then
we have

h(µ′) = −Ep?(µ′)[`(µ
′, Y )]

(i)

≥ −Ep?(µ′)[`(µ, Y )] = −Ep?(µ)[`(µ, Y )] +

m∑
i=1

`(µ, yi)(p
?
i (µ)− p?i (µ′)),

where inequality (i) follows because ` is proper. We then have

m∑
i=1

`(µ, yi)(p
?
i (µ)− p?i (µ′))

(ii)
=

∑
i 6∈I(µ)

`(µ, yi)(p
?
i (µ)− p?i (µ′))−

∑
i∈I(µ)

`(µ, yi)p
?
i (µ
′)

=
∑
i 6∈I(µ)

sT yi(p
?
i (µ)− p?i (µ′))−

∑
i∈I(µ)

`(µ, yi)p
?
i (µ
′)
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for any s ∈ G(µ), where equality (ii) follows because p?i (µ) = 0 for i ∈ I(µ). As we allow extended
reals, replace s with s∞ = limt→∞(s + t∆), which satisfies 〈s∞, yi〉 = ∞ = `(µ, yi) for i ∈ I(µ),
and we finally obtain

h(µ′) ≥ h(µ) +
m∑
i=1

sT∞yi(p
?
i (µ)− p?i (µ′)) = h(µ) + 〈s∞, µ− µ′〉.

The equality of the loss is as before.

11.5.2 Proof of Proposition 11.4.1

We first give the proof in the case that {Pθ} is a minimal exponential family, meaning that 〈u, φ(x)〉
is non-constant in x for each u 6= 0, addressing the non-minimal case at the end. Then A is strictly
convex (Proposition 3.2.3). As part of this proof, we will show thatMo is indeed open in this case.
We show both inclusions Mo ⊂ ∇A(Θ) and that ∇A(Θ) ⊂Mo.

Showing that ∇A(Θ) ⊂ Mo. Fix θ0 ∈ Θ, and let µ = ∇A(θ0). We must show that there
exists ε > 0 such that for all ‖u‖ ≤ ε, the point µ + u ∈ M. Let θu = argminθ{A(θ)− 〈µ + u, θ〉}
whenever the minimizer exists, where evidently θ0 does exist because µ = ∇A(θ0). Note that the
strict convexity of A guarantees θu is unique if it exists. But now, we may use the convex analyitic
fact (Proposition C.1.10 in Appendix C.1.2) that u 7→ θu is continuous in u in a neighborhood of
0. These minimizers necessarily satisfy ∇A(θu) = µ+ u, that is, Eθu [φ(X)] = µ+ u ∈M.

Showing thatMo ⊂ ∇A(Θ). Let µ ∈Mo, so that there exists an ε > 0 such that µ+εB ⊂Mo.
It is enough to show that A(θ)− 〈µ, θ〉 is coercive in θ, as then there necessarily exists a (unique)
minimizer θ(µ) of A(θ) − 〈µ, θ〉, and this minimizer satisfies ∇A(θ(µ)) = µ, so that µ ∈ ∇A(Θ).
For this, it is sufficient to show that for any non-zero vector v the recession function of the tilted
version f(θ) := A(θ)− 〈µ, θ〉 of A,

f ′∞(v) := lim
t→∞

A(θ + tv)− 〈µ, θ + tv〉 − (A(θ)− 〈µ, θ〉)
t

where θ ∈ Θ is otherwise arbitrary, satisfies f ′∞(v) > 0 for all v 6= 0, which guarantees that
A(·)− 〈µ, ·〉 has a minimizer. (See Proposition C.2.5 and Corollary C.2.6 in Appendix C.2.1).

To that end, for vectors v ∈ Rd, define the essential supremum of φ(x) in the direction v by

ν?(φ, v) := ess sup
x
〈φ(x), v〉 = inf

t
{t ∈ R | ν({x ∈ X | 〈v, φ(x)〉 ≥ t}) = 0} .

Now as µ ∈Mo, for any vector v 6= 0 we have 〈v, µ〉 < ν?(φ, v). Let ε > 0 satisfy 〈v, µ〉 < ν?(φ, v)−ε
be otherwise arbitrary, fix θ ∈ Θ, and let Xε = {x | 〈v, φ(x)〉 ≥ ν?(φ, v) − ε}, which satisfies
ν(Xε) > 0. Then

A(θ + tv)− 〈µ, θ + tv〉 = log

∫
exp(〈φ(x), θ + tv〉)dν(x)− 〈µ, θ + tv〉

≥ log

∫
Xε

exp(〈φ(x), θ〉)et(ν?−ε)dν(x)− 〈µ, θ〉 − t〈µ, v〉

= t(ν?(φ, v)− ε) + log ν(Xε)− t〈µ, v〉+ log

∫
Xε
e〈φ(x),θ〉dν(x)− 〈µ, θ〉.

If ν(Xε) = +∞, then A(θ + tv) = +∞ and so A′∞(v) > 0 certainly. If ν(Xε) < ∞, then note that
ν?(φ, v)− ε− 〈µ, v〉 > 0, and so

A(θ + tv)− 〈µ, θ + tv〉 ≥ t(ν?(φ, v)− ε− 〈µ, v〉)− log ν(Xc) + log

∫
Xc
e〈φ(x),θ〉dν(x)− 〈µ, θ〉
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and thus

A(θ + tv)− 〈µ, θ + tv〉 − (A(θ)− 〈µ, v〉)
t

≥ ν?(φ, v)− ε− 〈µ, v〉+ o(1) (11.5.1)

as t→∞.

Extending to the non-minimal case. If the exponential family is not minimal, there exists
a unit vector u and constant c such that 〈u, φ(x)〉 = c for ν-almost all x. Let U ∈ Rd×k be an
orthonormal basis for all such vectors, where k is the dimension of this collection. Then there exists
a vector c ∈ Rk such that c = U>φ(x) for ν-almost all x, and we see that A(θ+Uv) = A(θ) + 〈c, v〉
as 〈θ + Uv, φ(x)〉 = 〈θ, φ(x)〉 + 〈c, v〉 for ν-almost all x. We show both inclusions as above. Let
U⊥ ∈ Rd×d−k be an orthonormal basis for the orthogonal subspace to U , so that U>U = Ik and
U>⊥U⊥ = Id−k, and for any µ ∈M, we have aff(M) = µ+ span(U⊥).

Showing that ∇A(Θ) ⊂ Mo. Fix θ0 ∈ Θ and let µ = ∇A(θ0). We must show that there
exists ε > 0 such that for all u ∈ span(U⊥) satisfying ‖u‖ ≤ ε, the point µ+ u ∈ M. To that end,
note that for any vectors v ∈ Rd−k and w ∈ Rk, we have

A(θ0 + U⊥v + Uw)− 〈µ+ u, U⊥v + Uw〉 = A(θ0 + U⊥v)− 〈µ+ u, U⊥v〉

because U>u = 0 and U>µ = c for each u ∈ span(U⊥) and µ ∈ M. The function g(v) :=
A(θ0 + U⊥v) − 〈µ,U⊥v〉 is strictly convex as ∇2g(v) = U>⊥∇2A(θ0 + U⊥v)U⊥ � 0, because we
know that u>φ(x) is non-constant for all u ∈ span(U⊥). Define f(v) = A(θ0 + U⊥v) − 〈µ,U⊥v〉.
Then applying Proposition C.1.10 as in the minimal representation case, there exists ε > 0 such
that vu = argminv{f(v)− 〈u, U⊥v〉} exists and is continuous in u ∈ span(U⊥), where by inspection
v0 = 0. Then θu := θ0 + U⊥vu minimizes A(θ)− 〈µ+ u, θ〉, satisfying ∇A(θu) = µ+ u.

Showing that Mo ⊂ ∇A(Θ). We again follow the logic of the minimal representation case.
Let µ ∈Mo = relintM, and recall ν?(φ,U⊥v) = ess supx〈φ(x), U⊥v〉. Then there exists ε > 0 such
that µ+ u ∈M for each u ∈ span(U⊥) with ‖u‖ ≤ ε, so that

〈µ,U⊥v〉 < sup
‖u‖2≤ε,u∈span(U⊥)

〈µ+ u, U⊥v〉 ≤ ν?(φ,U⊥v).

Define g(v) = A(θ + U⊥v) − 〈µ,U⊥v〉. Then because A(θ + Uw + U⊥v) − 〈µ,U⊥v − Uw〉 =
A(θ + U⊥v) − 〈µ,U⊥v〉 for all w ∈ Rk, v ∈ Rd−k, it is enough to show that g′∞(v) > 0 for all
v 6= 0. Following the same argument, mutatis mutandis, as that leading to inequality (11.5.1)
yields that g′∞(v) > 0 for all v 6= 0. That is, v 7→ A(θ + U⊥v) − 〈µ,U⊥v〉 has a minimizer v(µ)
(Corollary C.2.6), which is unique by the strict convexity of v 7→ A(θ+U⊥v), and which necessarily
satisfies U>⊥∇A(θ + U⊥v(µ)) = U>⊥µ. As U>∇A(θ) = c for all θ and U>µ = c for all µ ∈ M, this
shows that there exists θ(µ) such that ∇A(θ(µ)) = µ as desired. Moreover, fixing an arbitrary θ
and letting v(µ) be the unique minimizer of A(θ + U⊥v)− 〈µ,U⊥v〉, the set of all minimizers

Θ?(µ) = argmin
θ
{A(θ)− 〈µ, θ〉} =

{
θ + U⊥v(µ) + Uw | w ∈ Rk

}
.

This gives Proposition 11.4.1.

11.5.3 Proof of Proposition 11.4.3

For part (i), because Θ = domA ⊂ Rd is open and A is C∞ on its domain, A is necessarily a closed
convex function and so A∗∗(θ) = A(θ) for all θ ∈ Rd. (See Theorem C.2.1.) For part (ii), note
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that if µ ∈ Mo, there exists θ(µ) ∈ Θ such that ∇A(θ(µ)) = µ by Proposition 11.4.1. This θ(µ)
maximizes 〈θ, µ〉 − A(θ) over all θ, and so h(µ) = 〈θ(µ), µ〉 − A(θ(µ)) <∞. By Corollary C.2.4 in
Appendix C.2.1 and Proposition 11.4.1, dom ∂h =Mo, and as h is subdifferentiable on the relative
interior of its domain, we have domh ⊂ clMo = clM. As h is closed convex, any point µ outside
its domain necessarily satisfies h(µ) = +∞.

Finally, for part (iii), we note that the function g(t) = h(tµ0 + (1 − t)µ) is a one-dimensional
closed convex function. One-dimensional closed convex functions are continuous on their domains
(Observation B.3.6 in Appendix B.3.2), and so g is necessarily continuous. Thus limt↓0 g(t) = g(0).
The existence of θt follows from Proposition 11.4.1.

Bibliography

JCD Comment: Need to do a lot here!
Gneiting and Raftery [93]

11.6 Exercises

Exercise 11.1 (Strict propriety of the log loss): Let ∆k = {p ∈ Rk+ | 1T p = 1} be the probability
simplex. Show that if `(q, y) = − log qy and P(Y = y) = py, then

argmin
q∈∆k

E[`(q, Y )] = p,

where we treat 0 log 0 as 0 (which is the natural limit of t log t as t ↓ 0).

Exercise 11.2 (Uniqueness of generalized entropies): Here we give an alternative perspective
on the generalized entropies associated with losses, showing when they are unique. For a concave
function f : ∆k → R, define the perspective-type transform fper(p) = 〈1, p〉f(p/〈1, p〉), where
fper(0) = 0, and which gives fper : Rk+ → R.

(a) Let ` : ∆k → R be strictly proper and let Y have p.m.f. p. Show that H(p) = infq∈∆k
E[`(q, Y )]

is strictly concave, and that Hper is strictly concave and continuously differentiable on Rk++.

(b) Show the converse that if H : ∆k → R is strictly concave and its perspective Hper is differen-
tiable on Rk++, then there exists a proper scoring loss ` satisfying

H(p) = inf
q∈∆k

Ep[`(q, Y )]

and that `(q, y) = ∇yHper(q) for all q ∈ dom∇Hper.

Exercise 11.3: Give the details in the computations for Example 11.3.4.

Exercise 11.4: Let y ∈ {0, 1} and take the regularization function h(p) = − log p− log(1− p).

(a) Verify that the entropy is of Legendre type (Definition 11.4).

(b) Give the associated loss ` and surrogate loss ϕ in the sense of Section 11.3.

(c) Plot the surrogate ϕ(s, y) + log 8 and the logistic regression surrogate log(1 + es) − sy for
y ∈ {0, 1}, each as function of s. (The shift by log 8 guarantees the losses coincide at s = 0.)
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(d) Give predh(s) for s ∈ R, verifying that predh(s) ∈ [0, 1].

Exercise 11.5: For h(p) = − log p− log(1− p) as in Exercise 11.4, show that h is self-concordant,
meaning that h′′′(p) ≤ 2(h′′(p))3/2 for all p ∈ (0, 1). (Such functions are important in optimization;
the conjugate h∗ is then also guaranteed to be self-concordant.)

Exercise 11.6 (Surrogates for regression): Define h(c) = 1
4c

4.

(a) Give the conjugate h∗(s) to h.

(b) Show directly that the surrogate loss ϕ(s, y) = h∗(s)−sy satisfies that if ŝ = argmins E[ϕ(s, Y )],
then predh(ŝ) = E[Y ].

Exercise 11.7: Let P be a predicted distribution and for α ∈ [0, 1
2 ], define the lower and upper

quantiles lα = Quantα(P ) and uα = Quant1−α(P ). Given these quantiles, for a finite set A ⊂ [0, 1
2 ],

define the weighted interval loss

W (P, y) :=
∑
α∈A

[α(uα − lα) + dist(y, [lα, uα])] ,

which penalizes P using both the size (uα − lα) of the quantile intervals and the distance of the
outcome y from the predicted quantiles. Define the symmetrized set As = A ∪ {1 − α | α ∈ A}.
Show that

W (P, y) = `quant,As(P, y),

where `quant is the quantile loss (11.2.4).

Exercise 11.8: We explore a particularization of the results in Section 11.4. Let Y ∼ Poi(eθ), so
that Y has p.m.f. pθ(y) = exp(θy − eθ)/y! for y ∈ N. Let A(θ) = eθ be the log-partition function.
Define the “surrogate” loss ϕ(θ, y) = − log pθ(y).

(a) Give the associated negative generalized entropy h(µ) for µ ∈ (0,∞).

(b) Give the associated loss `(µ, y) in the proper representation of Theorem 11.2.14. Directly verify
that it is strictly proper, in that argminµ E[`(µ, Y )] = E[Y ] for any Y supported on R+.

Exercise 11.9: We explore a particularization of Example 11.4. Let X ∼ N(0,Σ) for a co-
variance Σ � 0, and let K = Σ−1 be the associated precision matrix. Then X has density
pK(x) = exp(−1

2〈xx
T ,K〉 + 1

2 log det(K)) with respect to (a scaled) Lebesgue measure, and log
partition A(K) = −1

2 log det(K), which has domain the positive definite matrices K � 0 (and is
+∞ elsewhere).

(a) Give the associated negative generalized entropy h(M) for symmetric matrices M . Specify the
domain of h.

(b) Give the associated loss `(M,x) in the proper representation of Theorem 11.2.14. Directly
verify that it is strictly proper, in that if the second moment matrix C := E[XXT ] of X
satisfies C � 0, then argminM E[`(M,X)] = C.
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Exercise 11.10: In this extended exercise, we generalize Theorem 11.4.7 to apply to general
(finite-dimensional) convex cone constraints. A set C is a convex cone if for any two points x, y ∈ C,
we have λx + (1 − λ)y ∈ C for all λ ∈ [0, 1], and C is closed under positive scaling: x ∈ C implies
that tx ∈ C for all t ≥ 0. The following are standard examples (the positive orthant and the
semi-definite cone):

i. The orthant. Take C = Rd+ = {x ∈ Rd : xj ≥ 0, j = 1, . . . , d}. Then clearly C is convex and
closed under positive scaling.

ii. The semidefinite cone. Take C = {X ∈ Rd×d : X = X>, X � 0}, where a matrix X � 0 means
that a>Xa ≥ 0 for all vectors a. Then C is convex and closed under positive scaling as well.

Given a convex cone C, we associate a cone ordering � with the cone and say that for two elements
x, y ∈ C, we have x � y if x− y � 0, that is, x− y ∈ C. In the orthant case, this simply means that
x is component-wise larger than y. For a given inner product 〈·, ·〉, define the dual cone

C∗ := {y : 〈y, x〉 ≥ 0 for all x ∈ C} .

For the standard (Euclidean) inner product, the positive orthant is thus self-dual, and similarly
the semidefinite cone is also self-dual. For a vector y, we write y �∗ 0 if y ∈ C∗ is in the dual cone.
With this setup, consider the following linearly constrained maximum entropy problem, where the
cone ordering � derives from a cone C:

maximize H(P ) subject to EP [φ(X)] = µ, EP [ψ(X)] � β, (11.6.1)

where the base measure ν is implicit. Let P lin
µ,β be the collection of distributions P � ν satisfying

the constraints in problem (11.6.1).
Prove the following theorem:

Theorem 11.6.1. For θ ∈ Rd and K ∈ C∗, the dual cone to C, let Pθ,K have density

pθ,K(x) = exp (〈θ, φ(x)〉 − 〈K,ψ(x)〉 −A(θ,K)) , A(θ,K) = log

∫
exp(〈θ, φ(x)〉−〈K,ψ(x)〉)dν(x),

with respect to the measure ν. If

EPθ,K [φ(X)] = µ and EPθ,K [ψ(X)] = β,

then Pθ,K maximizes H(P ) over P lin
µ,β. Moreover, the distribution Pθ,K is unique.

Exercise 11.11 (An application of Theorem 11.6.1): Let the cone C be the positive semidefinite
cone in Rd×d, ν be the Lebesgue measure dν(x) = dx and define ψ(x) = 1

2xx
> ∈ Rd×d. Let Σ � 0.

Give the density solving

maximize −
∫
p(x) log p(x)dx subject to EP [XX>] � Σ.

Exercise 11.12: Prove that the log determinant function is concave over the positive semidefinite
matrices. That is, show that for X,Y ∈ Rd×d satisfying X � 0 and Y � 0, we have

log det(λX + (1− λ)Y ) ≥ λ log det(X) + (1− λ) log det(Y )
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for any λ ∈ [0, 1]. Hint: think about log-partition functions.

Exercise 11.13 (Entropy and log-determinant maximization): Consider the following optimiza-
tion problem over symmetric positive semidefinite matrices in Rd×d:

maximize
Σ�0

log det(Σ) subject to Σij = σij

where σij are specified only for indices i, j ∈ S (but we know that σij = σji and (i, i) ∈ S for all i).
Let Σ∗ denote the solution to this problem, assuming there is a positive definite matrix Σ satisfying
Σij = σij for i, j ∈ S. Show that for each unobserved pair (i, j) 6∈ S, the (i, j) entry [Σ∗−1]ij of
the inverse Σ∗−1 is 0. Hint: The distribution maximizing the entropy H(X) = −

∫
p(x) log p(x)dx

subject to E[XiXj ] = σij has Gaussian density of the form p(x) = exp(
∑

(i,j)∈S λijxixj − Λ0).

Exercise 11.14: JCD Comment: Finish this.
Equivalence of integrated quantile losses and continuous ranked probability score.
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Chapter 12

Calibration and Proper Losses

In Chapter 11, we encountered proper losses, in which we assume we predict probability distribu-
tions on outcomes Y . In typical problems, we wish to predict things about Y from a given set of
covariates or inputs X, and in focusing exclusively on the losses ` themselves, we implicitly assume
that we can model Y | X basically perfectly. Here, we move away from this focus exclusively on
the loss itself to incorporate discussion of predictions, where we seek a function f : X → Y (or
some other output space) that yields the most accurate predictions.

In this chapter, we adopt the view of Section 11.2.3, where the target Y ⊂ Rk is vector-valued,
and we wish to predict its expectation E[Y | X] as accurately as possible. For binary prediction,
we have Y ∈ {0, 1}, so that E[Y | X] = P(Y = 1 | X); in the case of multiclass prediction problems,
it is easy to represent Y as an element of the k standard basis vectors {e1, . . . , ek} ⊂ Rk, so that
p = E[Y | X] is simply the p.m.f. of Y given X with entries py = P(Y = y | X). We focus here,
therefore, on choosing functions to minimize the risk, or expected population loss,

L(f) := E[`(f(X), Y )].

When f is chosen from a collection F ⊂ {X → Rk} of functions, for example, to guarantee that we
can generalize, we do not expect to be able to perfect minimize the population loss. Accordingly,
even though the loss is proper and hence minimized by f?(x) = E[Y | X = x], we cannot perfectly
model reality, and so it is unrealistic to expect to be able to find f satisfying f(x) = E[Y | X = x],
even approximately, for all x.

We therefore depart from the goal of perfection to address a somewhat simpler criterion: that
of calibration. Here, the idea is that a predictor should be accurate on average conditional on its
own predictions. Consider again a weather forecasting problem, where Yt = 1 indicates it rains on
day t and Yt = 0 indicates no rain, and we wish to predict Yt based on observable covariates Xt

at time t. While we would like a forecaster to have perfect predictions pt = E[Yt | Xt], we instead
ask that on days where the forecaster makes a given prediction, it should rain (roughly) with that
given frequency. In particular, we seek calibration, which is that

f(X) = E[Y | f(X)]. (12.0.1)

That is, given that the forecaster makes a prediction with value p = f(X), we should have

E[Y | f(X) = p] = p.

While in general it is challenging to achieve this perfect calibration, in this chapter we investigate
several variants of the desideratum (12.0.1) that allow for more elegant statistical and information-
theoretic approaches, as well as procedures to achieve calibration.

315



Lexture Notes on Statistics and Information Theory John Duchi

This chapter therefore proceeds as follows. The first goal is to

JCD Comment: Fix notation. Also add a transition here to make clearer why we are
doing this and what we are doing.

1. First show what we want to measure.

2. Show how to measure it, specifically using partitioned methods. I think that parti-
tioned ones should be better than non-partitioned approaches, because we can estimate
the binned / partitioned calibration error

3. Show a few ways to achieve it (population and finite-sample level).

It is important to note that the literature on calibration is broad, and there are several distinct
strands. We take the particular focus that most dovetails with our treatment of proper losses and
scoring rules, basing our development around random variables and finite-dimensional probabilities.
So, for example, if a logistic regression model (as in Example 3.4.2 or 3.4.3) for image classification
assigns a probability of 80% that an image is, say, a dog, then the model is (approximately)
calibrated if in the population of all images in the world to which the model assigns probabilty
80%, (approximately) 80% are dogs. The first direction of research that we essentially do not
touch are the following: in the forecasting literature, one often considers predicting the distribution
of a (potentially continuous) random variable Y , such as the amount of rainfall; if we predict a
cumulative distribution F as in Example 11.2.6, then perfect calibration (12.0.1) becomes that

P(Y ≤ u | F ) = F (u) for all u ∈ R.

This is far too stringent a condition to be achievable, so that one relaxes to various forms of marginal
or average calibration. See the bibliographic notes for some discussion of the approaches here.

The second strand of research on calibration that, again, we do not address, considers more
adversarial and sequential settings, where instead of any probabilistic underpinnings, nature (an
adversary) plays a game against the player (or predictor). Philosophically, this approach elegantly
does away with the need for probabilities: there is a physical world where whether it rains tomorrow
is essentially deterministic, and we use probability as a crutch to model things we cannot measure,
so calibration means that of the days on which we predict rain with a chance of 50%, it rains on
roughly 50% of those days. In this sequential setting, at times t = 1, 2, . . . , T , the player makes
a prediction pt of the outcome, and then nature may choose the outcome Yt. Without giving the
player a bit more leeway, calibration is impossible: say that Y ∈ {0, 1}, and nature plays Yt = 1
if pt ≤ .5 and Yt = 0 if pt > .5. Then any player is miscalibrated at least by an amount .5.
Astoundingly, Foster and Vohra [84] show that if the player is allowed to randomize, then the
forecasted probabilities pt can be made arbitrarily close to the empirical averages of the observed
Yt. While many of the techniques we consider and develop arise from this adversarial setting in the
literature, we shall mostly address the scenarios in which Y is indeed random.

12.1 Proper losses and calibration error

When we use a proper loss to measure the error `(f(x), y) in making the prediction f(x) for the value
y, it turns out we can always improve the losses by modifying f to be a calibrated version of itsef:
calibration is always useful. To make this precise, assume we are making predictions in the convex
hull of Y, that is, that can be represented as E[Y ] for some distribution, so f : X →M = Conv(Y).
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Then by Theorems 11.2.1 and 11.2.14, there exists a convex function h such that

`(µ, y) = −h(µ)− 〈∇h(µ), y − µ〉 (12.1.1)

for all µ ∈M, y ∈ Y. Recall the Bregman divergence (11.2.2)

Dh(u, v) = h(u)− h(v)− 〈∇h(v), u− v〉,

which is nonnegative for all convex h (and strictly positive whenever h is strictly convex and u 6= v),
and Corollary 11.2.5. Then for any prediction function f , if we condition on the predicted value
S = f(X), then

E[`(S, Y ) | S] = E[`(E[Y | S], Y ) | S] + E[`(S, Y )− `(E[Y | S], Y ) | S]

= E[`(E[Y | S], Y ) | S] + E[Dh(E[Y | S], S) | S],

where we use the linearity E[`(s, Y )] = `(s,E[Y ]) for any distribution on Y and fixed s ∈ Rk in the
second equality. We record this as a theorem.

Theorem 12.1.1. Let ` be a proper loss with representation (12.1.1). Then for any f : X → Rk,

E[`(f(X), Y )] = E[`(E[Y | f(X)], Y )] + E[Dh(E[Y | f(X)], f(X))].

In particular, the predictor g : Rk → Rk defined by

g(s) := E[Y | f(X) = s]

is calibrated and satisfies

E[`(g ◦ f(X), Y )] = E[`(E[Y | f(X)], Y )] ≤ E[`(f(X), Y )],

and the inequality is strict whenever f is not calibrated and ` is strictly proper.

Proof The first statement we have already proved. For the second, note that

g(s) = E[Y | f(X) = s]

by construction of g, so that E[`(g ◦ f(X), Y )] = E[`(E[Y | f(X)], Y )]. The inequality and its
strictness are immediate because h is strictly convex if and only if ` is strictly proper.

To interpret this result, it essentially says that if we can post-process f to make it calibrated,
then we can only improve its risk, or expected loss, when ` is a proper loss. We can give an alter-
native version of Theorem 12.1.1, where we instead consider the conjugate linkages in Section 11.3,
which can be useful when we wish to find f via convex optimization (instead of by directly min-
imizing a proper loss). To that end, assume that h is a strictly convex function, differentiable on
the interior of its domain, satisfying the Legendre conditions (11.3.3), and define the surrogate loss
(linked via duality and the negative generalized entropy h to `)

ϕ(s, y) = h∗(s)− 〈s, y〉 = `(predh(s), y),

where `(µ, y) = −h(µ)− 〈∇h(µ), y − µ〉 and

predh(s) = argmin
µ
{−〈s, µ〉+ h(µ)} = ∇h∗(s).

Then we have the following decomposition of the population surrogate loss, which follows similarly
to Theorem 12.1.1.

317



Lexture Notes on Statistics and Information Theory John Duchi

Theorem 12.1.2. Let ϕ be the surrogate loss defined above. Then for any f : X → Rk, we have

E[ϕ(f(X), Y )] = E[`(E[Y | f(X)], Y )] + E [Dh(E[Y | f(X)], predh(f(X)))] .

Proof The key is to rely on the duality relationships inherent in the definition of the surrogate
ϕ(s, y) = h∗(s) − 〈s, y〉. We fix x and work in exclusively in the space of the scores (predictions)
s = f(x) ∈ Rk, as

E[ϕ(f(X), Y ) | X = x] = ϕ(f(x),E[Y | X = x])

by definition. Let µ ∈M = Conv(Y). Then ϕ(s, µ) = h∗(s)− 〈s, µ〉, and

inf
s
ϕ(s, µ) = − sup

s
{〈s, µ〉 − h∗(s)} = −h(µ)

because h is (closed) convex. Additionally, if µ∗(s) = ∇h∗(s) = predh(s), then the conjugate duality
relationships (11.1.4) guarantee h∗(s) = 〈s, µ∗(s)〉 − h(µ∗(s)) and s = ∇h(µ∗(s)). Thus

ϕ(s, µ)− inf
s′
ϕ(s, µ) = h∗(s)− 〈s, µ〉+ h(µ) = h(µ)− h(µ∗(s))− 〈s, µ− µ∗(s)〉

= h(µ)− h(µ∗(s))− 〈∇h(µ∗), µ− µ∗(s)〉 = Dh(µ, µ∗(s)).

Taking the expectation over X and using the shorthand S = f(X), we thus obtain

E[ϕ(S, Y )] = E[ϕ(S,E[Y | S])]

= E
[
inf
s
ϕ(s,E[Y | S])

]
+ E [Dh(E[Y | s], predh(s))] .

Lastly, we use that `(µ, y) = −h(µ) − 〈∇h(µ), y − µ〉 is proper, so infs ϕ(s, µ) = −h(µ) = `(µ, µ),
giving the first claim of the theorem.

As in Theorem 12.1.1, Theorem 12.1.2 shows that calibrating a predictor f can only improve
the surrogate loss associated with h. Any predictor f : X → Rk has unnecessary error arising from
the average divergence of the prediction from being calibrated,

E [Dh (E[Y | f(X)], predh(f(X)))] .

In both cases, we see that any proper (or derived proper) loss has a natural decomposition into
an error term relating to the typical error in predicting Y from E[Y | f(X)], which one frequently
refers to as sharpness of the predictor. Replacing f(X) with the expectation of Y given f(X) (or a
particular transformation thereof) does not increase this first term, but improves the second term,
which measures the typical error of a prediction from calibration.

Let us consider an example with squared error:

Example 12.1.3 (Squared error and calibration): In the case that h(p) = 1
2 ‖p‖

2
2, we have

h∗ = h and∇h = ∇h∗ is the identity. Then Theorems 12.1.1 and 12.1.2 reduce to the statement
that

E[‖Y − f(X)‖22] = E
[
‖Y − E[Y | X]‖22

]
+ E

[
‖E[Y | X]− f(X)‖22

]
,

so we may also see the decompositions of the theorems as bias/variance expansions. 3
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12.2 Measuring calibration

The first step to building a practicable theory of calibration is to define and measure the calibration
of a predictor f . The first step, defining a calibrated predictor, is relatively easy, but measuring
how “close” a particular predictor f is to being calibrated raises several challenges, as typical and
naive measures of calibration are impossible to estimate. Thus, in this section, we develop several
quantities to measure calibration, providing a main theorem relating the different quantities to one
another and demonstrating a simple technique to estimate one of them, returning in Section 12.5.2
to show the equivalences between the measures.

We begin with a natural candidate for calibration: the expected difference, or expected calibra-
tion error,

ece(f) := E[‖E[Y | f(X)]− f(X)‖]. (12.2.1)

The calibration error (12.2.1) is 0 if and only if f is perfectly calibrated, as then E[Y | f(X)] = f(X),
and it is positive otherwise. Unfortunately, while the next lemma guarantees that ece is lower semi-
continuous, it is not continuous.

Lemma 12.2.1. The expected calibration error ece is lower semi-continuous with respect to L1(P )
on F , that is, if E[‖fn(X)− f(X)‖]→ 0 and f ∈ L1(P ), then

lim inf
n

ece(fn) ≥ ece(f).

This result requires some delicate measure-theoretic arguments, so we defer it to the technical
proofs (see Section 12.6.1). The disctontinuity of ece is relatively easy to show, however, even in
very simple cases.

Example 12.2.2 (Discontinuity of the calibration error): Let Y ∈ {0, 1} be a Bernoulli
random variable, and let X ∈ {0, 1}. Take Y = X with probability 1. Then the predictor that
always predicts 1

2 is perfectly calibrated, but if for ε ∈ [0, 1
2 ] we define fε by

fε(0) =
1

2
− ε and fε(1) =

1

2
+ ε

then we see that ece(fε) = 1
2 − ε, while ece(f0) = 0. Certainly fε → f0 in any Lp distance on

functions, while limε→0 ece(fε) = 1
2 . 3

12.2.1 The impossibility of measuring calibration

The discontinuity Example 12.2.2 highlights suggests that estimating calibration ece(f) for a fixed
function f should be nontrivial, and indeed, using the tools on functional estimation and testing
we develop in Chapter 10, we can show strong lower bounds for estimating the calibration error
unless one makes unjustifiable assumptions about the distribution of Y | f(X). The precise reasons
differ a bit from the discontinuity of ece(f) in f , though the intuition is relatively straightforward:
if f(X) has a density, then even given a very large sample (Xn

1 , Y
n

1 ), all the observations f(Xi) will
be distinct, and we have no a priori reason to assume that E[Y | f(X)] should be continuous in
the predicted value f(X).

To make this more precise, fix a function f whose calibration error we wish to evaluate, and
consider a hypothesis test of H0 : ece(f) = 0 against alternatives that f is miscalibrated, H1 :
ece(f) ≥ γ for some γ > 0. We observe predictions f(Xi) and outcomes Yi, that is, pairs

Zi = (f(Xi), Yi)
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drawn i.i.d.; the coming lower bound holds if X = [0, 1] and f(x) = x, so in many cases, observing
X is of no help. Recall the (worst-case) test risk from Section 10.2, that for the testing problem
between classes H0 : P ∈ P0 and H1 : P ∈ P1 of distributions,

Rn(Ψ | P0,P1) := sup
P∈P0

P (Ψ(Zn1 ) 6= 0) + sup
P∈P1

P (Ψ(Zn1 ) 6= 1).

Because we consider the function f fixed and ask only whether we can evaluate its calibration error
under an (unknown) distribution P , we denote the expected calibration error of f under P via
eceP (f) = EP [‖EP [Y | f(X)]− f(X)‖]. We thus consider testing perfect calibration H0 : ece(f) =
0 against alternatives H1 : ece(f) ≥ γ of miscalibration for γ > 0, defining

Pγ = {distributions P on (X,Y ) | eceP (f) ≥ γ}

as the collection of distributions for which f is (1
2 − γ) mis-calibrated.

Theorem 12.2.3. Let f : X → [0, 1] be a predictor of Y ∈ {0, 1}. Assume for some 0 < c < 1
2 that

f(X ) ∩ [c, 1− c] has cardinality at least N . Then there is a distribution P0 such that eceP0(f) = 0
and for any 0 < γ ≤ c,

inf
Ψ
Rn(Ψ | {P0},Pγ) ≥ 1− nγ2

2
√
N

1

c(1− c)
.

Before proving Theorem 12.2.3, we note the following immediate corollary; part (ii) follows from
part (i), which follows by taking N ↑ ∞ in the theorem.

Corollary 12.2.4. Let the conditions of Theorem 12.2.3 hold and let P0 = {P | eceP (f) = 0}.

(i) If there exists 0 < c < 1
2 such that f(X )∩[c, 1−c] has infinite cardinality, then P0 is non-empty

and for any 0 < γ ≤ c,
lim inf

n
inf
Ψ
R(Ψ | P0,Pγ) = 1.

(ii) If there exists a neighborhood U of 1
2 such that U ⊂ f(X ), then P0 is non-empty and for any

γ < 1
2 , the minimax test risk satisfies

lim inf
n

inf
Ψ
R(Ψ | P0,Pγ) = 1.

In brief, no test exists that is better than random guessing for testing between

H0 : ece(f) = 0 and H1 : ece(f) ≥ c

given access to the predictions f(Xi) and observed outcomes Yi. The theorem and corollary apply to
binary prediction models with Y ∈ {0, 1}, but the results immediately extend to more complicated
prediction problems where Y is vector-valued or multiclass.
Proof The proof relies on the convex hull testing lower bound from Proposition 10.2.1. Without
loss of generality, we can assume that X ⊂ [0, 1] and that f(x) = x by transforming the input
space. Let S = f(X) be the (random) scores that f outputs.

We first construct the perfectly calibrated distribution P0 and miscalibrated family Pγ . Define
the distribution P0 so that S is uniform on distinct points s1, . . . , sN ∈ [c, 1 − c] and Y | S = s ∼
Bernoulli(s), that is, given S = s, Y = 1 with probability s and Y = 0 with probability 1 − s. By
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construction, eceP0(f) = 0. To construct the particular members of the alternative family Pγ , for
each j ∈ [N ], define the “tilting” function

φj(y, s) :=

(
y

sj
− 1− y

1− sj

)
1 {s = sj} .

Then E0[φj(Y, S)] = 0 while

Var0(φj(Y, S)) =
1

N
E0

[(
Y

sj
− 1− Y

sj

)2

| S = sj

]
=

1

N

(
1

sj
+

1

1− sj

)
=

1

N

1

sj(1− sj)
.

Note that |φj(y, s)| ≤ 1
c as c < 1

2 , and if we define the vector φ(y, s) = (φ1(y, s), . . . , φN (y, s)), then
‖φ(y, s)‖0 ≤ 1 (that is, the number of non-zero entries is at most 1). Now as γ ∈ [0, c], for each
v ∈ {−1, 1}N we may define the tilted distribution Pv with

Pv(Y = y, S = s) = (1 + γ〈v, φ(y, s)〉)P0(Y = y, S = s),

which is a valid distribution whenever γ ≤ c, as |〈v, φ(y, s)〉| ≤ 1
c . We compute the calibration error

for distributions P ∈ {Pv}. Noting that S is still uniform on {s1, . . . , sN} under Pv, we have

Ev[Y | S = sj ] = sj + γvjE[φj(Y, sj)Y | S = sj ] = sj + γvj ,

and so ecePv(f) = 1
N

∑N
j=1 γ|vj | = γ. In particular, we have Pv ∈ Pγ .

Lastly, we compute a bound on the testing error. For this, we recall Lemma 10.1.3. Letting
Pn = 1

2N

∑
v P

n
v , we have

Dχ2

(
Pn||Pn0

)
+ 1 =

1

22N

∑
v,v′

E0

[
(1 + γ〈v, φ(Y, S)〉)(1 + γ〈v′, φ(Y, S)〉)

]n
=

1

22N

∑
v,v′

(
1 + γ2v>Cov0(φ(Y, S))v′

)n
because the sampling is i.i.d. By our variance calculation for φ and that each φj has disjoint
support, we have Cov0(φ(Y, S)) = 1

N diag([ 1
sj(1−sj) ]Nj=1), and so

Dχ2

(
Pn||Pn0

)
+ 1 = E

(1 +
γ2

N

N∑
j=1

VjV
′
j

sj(1− sj)

)n ≤ E

exp

(
nγ2

N

N∑
j=1

VjV
′
j

sj(1− sj)

)
where the expectation is over V, V ′

iid∼ Uniform({±1}N ). But of course VjV
′
j i.i.d. random signs, and

hence 1-sub-Gaussian, so that

Dχ2

(
Pn||Pn0

)
+ 1 ≤ exp

n2γ4

N2

N∑
j=1

1

s2
j (1− sj)2

 ≤ exp

(
n2γ4

2N

1

c2(1− c)2

)
because c ≤ sj ≤ 1 − c. Apply Proposition 10.2.1 and Pinsker’s inequality (Propositions 2.2.8
and 2.2.9) to see that

inf
Ψ
R(Ψ | {P0},Pγ) ≥ 1−

√
1

2
log
(
1 +Dχ2

(
Pn||P0

))
≥ 1−

√
n2γ4

4N

1

c2(1− c)2
.

Taking square roots gives the result.
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12.2.2 Alternative calibration measures

The fundamental impossibility results in Theorem 12.2.3 and Corollary 12.2.4, even in the binary
prediction case, suggest that we should choose some more easily estimable measure for calibration.
In Section 12.5 we provide formal definitions for calibration measures to be continuous (or Lipschitz
continuous) and equivalent to one another. Here, we provide the alternative definitions of calibration
we consider, giving a corollary that captures their relationships for multiclass classification, and
then describing how to estimate one of them. Let us take the general setting of this chapter, where
the label space Y ⊂ Rk and P is a distribution on X × Y. Let F be a collection of functions
mapping X → Rk and integrable with respect to P , that is, E[‖f(X)‖] <∞ for each f ∈ F .

In brief, we require that a calibration measure M : F → R+ be sound (in analogy with proof
systems, where soundness means nothing false can be proved), meaning that

M(f) = 0 implies E[Y | f(X)] = f(X) (12.2.2a)

and complete (continuing the analogy, that everything true can be proved), meaning that

E[Y | f(X)] = f(X) implies M(f) = 0. (12.2.2b)

We begin by considering types of distance to calibration. Let C(P ) denote those functions g
that are perfectly calibrated for P , that is, C(P ) = {g : X → Rk | EP [Y | g(X)] = g(X)} (where
the defining equality holds with P -probability 1 over X). The set P always consists at least of the
constant function g(X) = EP [Y ] and so is non-empty (but is typically larger). Then we call the
minimum L1(P ) distance of a function f to the set C(P ) the distance to calibration

dcal(f) := inf
g
{E[‖g(X)− f(X)‖] s.t. g ∈ C(P )} . (12.2.3)

It is not always clear how to estimate the distance dcal(f), making using it sometimes challenging.
We also consider a complementary quantity that relies on an alternative variational character-

ization. Let W ⊂ {Rk → Rk} be a symmetric collection of functions, meaning that w ∈ W implies
−w ∈ W. We can view any such collection as potential witnesses of miscalibration, in that

E[〈w(f(X)), Y − f(X)〉] = E[〈w(f(X)),E[Y | f(X)]− f(X)〉]

and so if w can “witness” the portions of space where f(X) 6≈ E[Y | f(X)], it can certify miscali-
bration. We then arrive at what we term the calibration error relative to the class W,

CE(f,W) := sup
w∈W

E[〈w(f(X)), Y − f(X)〉]. (12.2.4)

Depending on the class W, this is sometimes called the weak calibration error, and with large
enough classes, we can recover the classical expected calibration error (12.2.1).

Example 12.2.5 (Recovering expected calibration error): For a norm ‖·‖, let the set W be
the collection of all functions w with bound sups ‖w(s)‖∗ ≤ 1. Then

CE(f,W) = E

[
sup
‖w‖∗≤1

〈w,E[Y | f(X)]− f(X)〉

]
= E[‖E[Y | f(X)]− f(X)‖] = ece(f),

the expected calibration error. 3
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It is more interesting to consider restricted classes; one of particular interest to us is that of bounded
Lipschitz functions. Let

W‖·‖ :=
{
w : Rk → Rk | ‖w(s0)− w(s1)‖∗ ≤ ‖s0 − s1‖ and ‖w(s)‖∗ ≤ 1 for all s, s0, s1

}
(12.2.5)

denote the collection of functions bounded by 1 in ‖·‖∗ and that are 1-Lipschitz with respect to
‖·‖. Then (as we see presently) we can at least estimate the calibration error relative to the class
W in the definition (12.2.4).

The final calibration measure we consider reposes on the idea of quantizing or partitioning the
output space, which relates to the idea of “binning” predictions that the literature on calibration
frequently considers. Here, we consider averages of Y conditioned on predictions in larger sets.
Thus, instead of evaluating the precise conditioning E[Y | f(X)] we to look instead at the expec-
tation of Y conditional on f(X) ∈ A for a set A, so that a predicted score is (nearly) calibrated
if the diameter diam(A) is small, and E[Y | f(X) ∈ A] ≈ s for some s ∈ A. Given a partition
A of the space M = Conv(Y), it is then natural to evaluate the average error for each element
of A (weighting by the probability of A), and consider the calibration error (12.2.4) for indicator
functions of A ∈ A, where we abuse notation slightly to define

CE(f,A) :=
∑
A∈A
‖E[(f(X)− Y )1 {f(X) ∈ A}]‖ =

∑
A∈A
‖E[f(X)− Y | f(X) ∈ A]‖P(f(X) ∈ A).

Indeed, taking a supremum over all such partitions gives supACE(f | A) = E[‖E[Y | f(X)]− f(X)‖],
the original expected calibration error (12.2.1). Additionally, and here we elide details, if f(X) is
a continuous random variable with suitably nice density and An denotes any partition satisfying
diam(A) ≤ 1/n for A ∈ An, then limn CE(f,An) = E[‖E[Y | f(X)]− f(X)‖]. Instead of consider-
ing CE(f,A) directly, we optimize over all partitions, but penalize the average size of elements of
A, giving the partitioned calibration error

pce(f) := inf
A

{
CE(f,A) +

∑
A∈A

diam(A)P(f(X) ∈ A)

}
. (12.2.6)

Each of these is equivalent to within polynomial scaling.

Corollary 12.2.6. Let Y ⊂ Rk have finite diameter and ‖·‖ be any norm. Then each of the
calibration measures dcal, CE(·,W‖·‖), and pce in definitions (12.2.3), (12.2.4), and (12.2.6) is
sound and complete (12.2.2). Additionally, let Y = {e1, . . . , ek} and ‖·‖ = ‖·‖1 be the `1-norm.
Then for any f : X →M = Conv(Y),

1

2
CE(f,W‖·‖) ≤ dcal(f) ≤ CE(f,W‖·‖) + 2

√
kCE(f,W‖·‖)

and
dcal(f) ≤ pce(f) ≤ dcal(f) + 2

√
k dcal(f).

Corollary 12.2.6 will come as a consequence of the deeper development we purse in Section 12.5.
Here, we take Corollary 12.2.6 as motivation to give the type of typical result that justifies cali-

bration estimates. As any of the calibration measures is roughly equivalent (except ece), measuring
any of them on a sample can provide evidence for or against calibration of a predictor f . We focus
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on the simpler binary case in which f : X → [0, 1] and let WLip be bounded Lipschitz functions
w : [0, 1]→ [−1, 1]. Given a sample (Xn

1 , Y
n

1 ), the empirical variant of CE(f,W) is

ĈEn(f) := sup
‖w‖∞≤1

{
1

n

n∑
i=1

wi(Yi − f(Xi)) s.t. |wi − wj | ≤ |f(Xi)− f(Xj)| for i, j ≤ n

}
.

By combining uniform covering bounds for the class of Lipschitz functions with a standard concen-
tration inequality, we then have the following convergence guarantee for ĈEn.

Proposition 12.2.7. There exists a numerical constant C such that for any δ > 0,∣∣∣ĈEn(f)− CE(f,WLip)
∣∣∣ ≤ C√log n

δ

n1/3

with probability at least 1− δ.

Proof Fix ε > 0 and let N (ε) be a minimal ε-cover of the setWLip in uniform norm, meaning that∥∥w − w(j)
∥∥
∞ ≤ ε for each w(j) ∈ N (ε), and let N(ε) be its (minimal) cardinality. Then logN(ε) .

1
ε log 1

ε (recall Proposition 8.7.3 and Eq. (8.7.4)). For shorthand, let the error vector E ∈ [−1, 1]n

have entries Ei = Yi−f(Xi), and abusing notation, for w ∈ WLip let 〈w,E〉n = 1
n

∑n
i=1w(f(Xi))Ei.

Then for any w ∈ WLip, there exists i ≤ N(ε) such that

|〈w,E〉n − 〈w(i), E〉n| ≤ ε,

while ĈEn(f) = supw∈WLip
〈w,E〉n. In particular, we have∣∣∣ĈEn(f)− CE(f,WLip)
∣∣∣ ≤ sup

w∈WLip

|〈w,E〉n − E[〈w,E〉n]| ≤ max
w∈N (ε)

|〈w,E〉n − E[〈w,E〉n]|+ 2ε.

Thus for any t ≥ 0, we have

P
(∣∣∣ĈEn(f)− CE(f,WLip)

∣∣∣ ≥ t) ≤ P
(

max
w∈N (ε)

|〈w,E〉n − E[〈w,E〉n]| ≥ t− 2ε

)
≤ 2N(ε) exp

(
−
n [t− 2ε]2+

2

)

by the Azuma-Hoeffding inequality and a union bound. Take ε = n−1/3 and t = Cn−1/3
√

log n
δ for

an appropriate numerical constant C to obtain the proposition.

Summarizing, while the expected calibration error is fundamentally inestimable, there are alter-
native measures that are both sound and complete, and they can admit reasonable estimators. As
the class size k grows, however, it can become statistically infeasible to estimate the calibration of
predictors f , so that one must consider alternative metrics. The exercises and bibliography explore
these questions in more detail.
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12.3 Auditing and improving calibration at the population level

Theorems 12.1.1 and 12.1.2 provide decompositions of the expected loss of a predictor

E[`(f(X), Y )] = E[`(E[Y | f(X)], Y )] + E [Dh (E[Y | f(X)], f(X))]

into an average loss and an expected divergence between f(X) and E[Y | f(X)], where h is the
negative (generalized) entropy (11.1.6) associated with the loss `, so that the loss has representation
`(µ, y) = −h(µ)− 〈∇h(µ), y− µ〉. This suggests an approach to improving a predictor f : X → Rk
without compromising its average loss: make it closer to being calibrated, so that E[Y | f(X)] ≈
f(X). Here, we make this idea precise by using the weak calibration (12.2.4): if there exists a
witness function w certifying that E[〈w(f(X)), Y − f(X)〉] � 0, then we can post-process f to
f(X) + ηw(f(X)) for some stepsize η > 0 and only improve the expected loss. We first develop
the idea in the context of the squared error, where the calculations are cleanest, and extend it to
general proper losses based on convex conjugates (as in Section 11.3) immediately after. Combining
the ideas we develop, we also provide a (population-level) algorithm to transform a function f
by post-processing its outputs that guarantees the result is nearly calibrated relative to a class
W of witnesses. This provides an algorithmic proof quantitatively relating the calibration error
CE(f,W) relative to a class W to the improvement achievable in minimizing E[`(f(X), Y )] by
post-composition g ◦ f .

12.3.1 The post-processing gap and calibration audits for squared error

Consider a thought experiment: instead of using f to make predictions, we use a postprocessing g◦f ,
where g : Rk → Rk has the (suggestively chosen) form g(v) = v + w(v), where w(v) = (g(v) − v).
Then using the representation `(µ, y) = −h(µ) − 〈∇h(µ), y − µ〉 for the proper loss, we recall
Theorem 12.1.1 and for µ(f(X)) := E[Y | f(X)] expand

E[`(g ◦ f(X), Y )] = E[−h(g ◦ f(X))− 〈∇h(g ◦ f(X)), Y − g ◦ f(X)〉]
= E[−h(µ(f(X)))] + E[h(µ(f(X)))− 〈∇h(g ◦ f(X)), Y − g ◦ f(X)〉]
= E[`(E[Y | f(X)], Y )] + E[Dh(E[Y | f(X)], g ◦ f(X))],

where the final equality uses the linearity of y 7→ `(µ, y), that is,

E[`(g ◦ f(X), Y )] = E[`(E[Y | f(X)], Y )] + E [Dh (E[Y | f(X)], f(X) + w(f(X)))] . (12.3.1)

We have decomposed the expected loss E[`(g ◦ f(X), Y )] into a term that post-processing does not
change, which measures the sharpness with which E[Y | f(X)] predicts Y , and a divergence term
Dh measuring the error in calibration of g ◦ f(X) = f(X) + w(f(X)) for E[Y | f(X)].

The expansion (12.3.1) points toward an ability to postprocess any prediction function f : X →
Rk to both (i) obtain calibration relative to a class of functionsW, as in Definition (12.2.4), and (ii)
improve the expected loss E[`(f(X), Y )]. Moreover, this improvement is monotone, in that changes
“toward” calibration guarantee smaller expected loss, an improvement over the less refined results
in Theorems 12.1.1 and 12.1.2. To that end, define the post-processing gap for the (proper) loss `
and function f relative to the class W of functions Rk → Rk by

gap(`, f,W) := E[`(f(X), Y )]− inf
w∈W

E[`(f(X) + w(f(X)), Y )]. (12.3.2)

The gap (12.3.2) is fundamentally tied to the calibration error relative to the class W.
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We specialize here to the simpler case of the squared error, as the statements are most transpar-
ent. We focus exclusively on symmetric convex collections of functions W, meaning that if w ∈ W,
then −w ∈ W, and W is convex.

Proposition 12.3.1. Let `(µ, y) = 1
2 ‖y − µ‖

2
2 be the squared error (Brier score), and let W be a

symmetric convex collection of functions, each 1-Lipschitz with respect to the `2-norm ‖·‖2. Define
R2(f) = supw∈W E[‖w(f(X))‖22]. Then

1

2
min

{
CE(f,W),

CE(f,W)2

R2(f)

}
≤ gap(`, f,W) ≤ CE(f,W)

Proof Fix x and let µ = E[Y | f(X) = f(x)] ∈ Conv(Y) and w = w(f(x)) be a potential update
to f(x). Then because `(µ, y) = 1

2 ‖µ− y‖
2
2, for any y ∈ Y

`(µ, y) + 〈∇`(µ, y), w〉+
1

2
‖w‖2 = `(µ+ w, y).

Recognizing that ∇`(µ, y) = (µ− y), for any w ∈ W we therefore have

−E[〈f(X)− Y,w(f(X))〉]− 1

2
E[‖w(f(X))‖22] ≤ E[`(f(X), Y )]− E[`(f(X) + w(f(X)), Y )]

≤ −E[〈f(X)− Y,w(f(X))〉].

Taking suprema over w on each side of the preceding inequalities and using the symmetry of W
gives

sup
w∈W

{
E[〈f(X)− Y,w(f(X))〉]− 1

2
E[‖w(f(X))‖22]

}
≤ gap(`, f,W)

≤ sup
w∈W

E[〈f(X)− Y,w(f(X))〉].

Because CE(f,W) = supw∈W E[〈f(X) − Y,w(f(X))〉], we can use the convexity of W and the
definition R2(f) := supw∈W E[‖w(f(X))‖22] to see that for any η ∈ [0, 1], we may replace w with
η · w ∈ W, and we have

sup
η∈[0,1]

[
ηCE(f,W)− η2

2
R2(f)

]
≤ gap(`, f,W) ≤ CE(f,W).

Maximizing over η on the left side, we choose η = min{1, CE(f,W)
R2(f)

} to obtain the proposition.

As an immediate corollary, we see that if W =W‖·‖2 consists of the 1-Lipschitz functions with
‖w(·)‖2 ≤ 1, we have a cleaner guarantee.

Corollary 12.3.2. Let W =W‖·‖2 and the conditions of Proposition 12.3.1 hold. Then

1

2 diam(Y)2
CE(f,W)2 ≤ gap(`, f,W) ≤ CE(f,W).

Thus, the calibration error upper and lower bounds the gap between the expected loss of f and a
post-processed version of f . This yields a nearly operational interpretation of the calibration error
relative to the classW: it is, to within a square, exactly the amount we could improve the expected
loss of the function f by postprocessing f itself.
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12.3.2 Calibration audits for losses based on conjugate linkages

Recall as in Section 11.3.1 that, by a transformation tied to the loss ` via its associated generalized
negative entropy, we may define the surrogate

ϕ(s, y) := h∗(s)− 〈s, y〉,

and we may transform arbitrary scores s ∈ Rk to predictions via the conjugate link (11.3.1), that
is,

predh(s) = argmin
µ
{−〈s, µ〉+ h(µ)} = ∇h∗(s).

So long as h is appropriately smooth, these satisfy `(predh(s), y) = ϕ(s, y). In complete analogy
with the post-processing gap (12.3.2) when we assume f makes predictions in (the affine hull of)
Y, we can define the surrogate post-processing gap

gap(ϕ, f,W) := E[ϕ(f(X), Y )]− inf
w∈W

E[ϕ(f(X) + w(f(X)), Y )]. (12.3.3)

In spite of the similarity with definition (12.3.2), the actual predictions of Y from f in this case
come via the link predh(f(X)). Thus, in this case we instead consider the calibration error relative
to a class W but after the composition of f with predh = ∇h∗, so that

CE(predh ◦ f,W) = sup
w∈W

E[〈w(f(X)), Y − predh(f(X))〉] = sup
w∈W

E[〈w(f(X)), Y −∇h∗(f(X))〉],

where as always we assume that the class of witness functions satisfies W = −W. When the
prediction function is continuous enough in s, we can give an analogue of Proposition 12.3.1 to the
more general surrogate case. To that end, we assume that the conjugate h∗ has Lipschitz continuous
gradient with respect to the dual norm ‖·‖∗, meaning that

‖∇h∗(s0)−∇h∗(s1)‖ ≤ ‖s0 − s1‖∗

for all s0, s1 ∈ Rk. This is equivalent (see Proposition C.2.7) to the negative entropy h being
strongly convex with respect to the norm ‖·‖, and also immediately implies that

ϕ(s+ w, y) ≤ ϕ(s, y) + 〈∇sϕ(s, y), w〉+
‖w‖2∗

2
.

Example 12.3.3 (Multiclass logistic regression): For multiclass logistic regression, where we
take h(p) =

∑k
j=1 pj log pj , we know that h is strongly convex with respect to the `1 norm (this

is Pinsker’s inequality; see inequality (2.2.11)). Thus, the conjugate h∗(s) = log(
∑k

j=1 e
sj ) has

Lipschitz gradient with respect to the `∞ norm, meaning that for the prediction link

predh(s) =

[
esy∑k
j=1 e

sj

]k
y=1

,

we have ∥∥predh(s)− predh(s′)
∥∥

1
≤
∥∥s− s′∥∥∞

for all s, s′ ∈ Rk. 3
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Example 12.3.4 (The squared error): When we measure the error of a predictions in Rk
by the squared `2-norm 1

2 ‖f(x)− y‖22, this corresponds to the generalized negative entropy

h(µ) = 1
2 ‖µ‖

2
2. In this case, the norm ‖·‖ = ‖·‖2 = ‖·‖∗, and we have the self duality h∗ = h,

so that the prediction mapping predh is the identity. 3

With these examples as motivation, we then have the following generalization of Proposi-
tion 12.3.1.

Proposition 12.3.5. Let the negative generalized entropy h be strongly convex with respect to the
norm ‖·‖ and consider surrogate loss ϕ(s, y) = h∗(s)−〈s, y〉. Define R2

∗(f) := supw∈W E[‖w(f(X))‖2∗].
Then

1

2
min

{
CE(predh ◦ f,W),

CE(predh ◦ f,W)2

R2
∗(f)

}
≤ gap(ϕ, f,W) ≤ CE(predh ◦ f,W).

Proof Fix x and let s = f(x) and w = w(f(x)), and notice that for any y we have

ϕ(s, y) + 〈∇ϕ(s, y), w〉 ≤ ϕ(s+ w, y) ≤ ϕ(s, y) + 〈∇ϕ(s, y), w〉+
1

2
‖w‖2∗ .

Recognizing that ∇ϕ(s, y) = ∇h∗(s)− y, for any w ∈ W we have

−E[〈∇ϕ(f(X), Y ), w(f(X))〉]− 1

2
E[‖w(f(X))‖2∗] ≤ E[ϕ(f(X), Y )]− E[ϕ(f(X) + w(f(X)), Y )]

≤ −E[〈∇ϕ(f(X), Y ), w(f(X))〉].

Taking suprema over w on each side and using the symmetry of W gives

sup
w∈W

{
E[〈∇h∗(f(X))− Y,w(f(X))〉]− 1

2
E[‖w(f(X))‖2∗]

}
≤ gap(ϕ, f,W)

≤ sup
w∈W

E[〈∇h∗(f(X))− Y,w(f(X))〉].

Because CE(predh ◦ f,W) = supw∈W E[〈∇h∗(f(X))−Y,w(f(X))〉], we can use the convexity of W
and the definition R2

∗(f) := supw∈W E[‖w(f(X))‖2∗], to see that for any η ∈ [0, 1], we may replace
w with η · w ∈ W and

sup
η∈[0,1]

[
ηCE(predh ◦ f,W)− η2

2
R2
∗(f)

]
≤ gap(ϕ, f,W) ≤ CE(predh ◦ f,W).

Set η = min{1, CE(predh◦f,W)
R2
∗(f)

}.

A corollary specializing to the case of bounded witness functions allows a somewhat cleaner
statement, in analogy with Corollary 12.3.2. It provides the same operational interpretation: the
calibration error CE(f,W) of f relative toW upper and lower bounds improvement possible through
postprocessing f .

Corollary 12.3.6. Let the conditions of Proposition 12.3.5 hold, and additionally assume that the
witness functions W satisfy ‖w(s)‖∗ ≤ 1 for all s ∈ Rk. Then

1

2 diam(domh)2
CE(predh ◦ f,W)2 ≤ gap(ϕ, f,W) ≤ CE(predh ◦ f,W).
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We can give an alternative perspective for this section by focusing on the definitions (12.3.2)
and (12.3.3) of the post-processing gap. Suppose we have a proper loss ` and we wish to improve the
expected loss of a predictor f by post-processing f . When there is little to be gained by replacing
f with an adjusted version f(x) +w(f(x)) for some w ∈ W, then f must be calibrated with respect
to the class W. So, for example, for a surrogate ϕ, the function f (really, its associated prediction
function predh ◦ f) is calibrated with respect to W if and only if E[ϕ(f(X) + w(f(X)), Y )] ≤
E[ϕ(f(X), Y )] for all w ∈ W.

As a particular special case to close this section, the standard multiclass logistic loss provides
a clean example.

Example 12.3.7 (Multiclass logistic losses, continued): Let h be the negative entropy h(p) =∑k
j=1 pj log pj restricted to the probability simplex ∆k = {p ∈ Rk+ | 〈1, p〉 = 1} and the

surrogate ϕ(s, y) = log(
∑k

j=1 e
sj ) − sy. Then for any class W consisting of functions with

‖w(s)‖∞ ≤ 1 for all s ∈ Rk and any function f : X → Rk,

1

2
CE(predh ◦ f,W)2 ≤ E[ϕ(f(X), Y )]− inf

w∈W
E[ϕ(f(X) + w(f(X)), Y )].

(Note that domh has diameter 1 in the `1-norm.) 3

12.3.3 A population-level algorithm for calibration

Implicit in each of the calibration gap bounds in Propositions 12.3.1 and 12.3.5 is bound on the
improvement of a predictor f relative to processing outputs with a class W of functions. This
suggests an algorithm for updating the predictions of f to make them calibrated, after which no
improvement is possible. While we work at the population level here, similar procedures can allow
calibration given access to additional data.

Working in the more general setting of surrogate losses based on the generalized negative entropy
h, as these include the standard squared error as a special case, the key idea is that if we find the
witness w maximizing E[〈w(f(X)), Y − predh(f(X))〉] we can update f with f − η ·w ◦ f for some
stepsize η, thus improving the calibration of f relative to the class W of potential witnesses. In
Figure 12.1, we present a prototypical algorithm for achieving this.

The following theorem bounds the convergence of the algorithm.

Theorem 12.3.8. Assume that the surrogate loss ϕ is nonnegative and that the class of witnesses
W satisfies R∗ := sups ‖w(s)‖∗ <∞. Then the algorithm in Figure 12.1 guarantees that

min
τ<t

CE(predh ◦ fτ ,W) ≤
√

2R2
∗E[ϕ(f0(X), Y )]√

t
,

and in particular terminates with CE(predh ◦ ft,W) ≤ ε for some t with

t ≤ 2R2
∗E[ϕ(f0(X), Y )]

ε2
.

Proof We begin by showing a one-step progress guarantee beginning from a fixed function f .
For any w : Rk → Rk and any f , we have

E[ϕ(f(X) + ηw(f(X)), Y )] ≤ E[ϕ(f(X), Y )] + ηE[〈w(f(X)),∇h∗(f(X))−Y 〉] +
η2

2
E[‖w(f(X))‖2∗].
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Input: Population distribution P , collection of bounded witness functions W, general-
ized negative entropy h strongly convex w.r.t. norm ‖·‖, initial predictor f0 : X → Rk,
calibration tolerance ε > 0
Initialize: set R2

∗ := sups ‖w(s)‖2∗
Repeat: for t = 0, 1, . . .

i. Find witness wt maximizing E[〈w(ft(X)), Y − predh(ft(X))〉]

ii. Set ηt = E[〈wt(ft(X)),Y−predh(ft(X))〉]
R2
∗

iii. Update ft+1 = ft − ηt · wt ◦ ft

iv. Terminate if
CE(predh ◦ ft,W) ≤ ε.

Figure 12.1: Improving calibration relative to the class W

Let w maximize E[〈w(f(X)),∇h∗(f(X))− Y 〉], so that

E[ϕ(f(X)− ηw(f(X)), Y )] ≤ E[ϕ(f(X), Y )]− ηCE(predh ◦ f,W) +
η2

2
R2
∗.

Choose ηf = CE(predh◦f,W)
R2
∗

to obtain

E[ϕ(f(X)− ηfw(f(X)), Y )] ≤ E[ϕ(f(X), Y )]− 1

2

CE(predh ◦ f,W)2

R2
∗

. (12.3.4)

Now we apply the obvious inductive argument. Let ft be a function in the iteration of Algo-

rithm 12.1. Then inequality (12.3.4) guarantees that if δ2
t := 1

2
CE(predh◦ft,W)2

R2
∗

, then

E[ϕ(ft+1(X), Y )] ≤ E[ϕ(ft(X), Y )]− δ2
t .

In particular,

0 ≤ E[ϕ(ft(X), Y )] ≤ E[ϕ(f0(X), Y )]−
t−1∑
τ=0

δ2
τ .

In particular,
tmin
τ<t

δ2
τ ≤ E[ϕ(f0(X), Y )],

so that minτ<t δτ ≤
√

E[ϕ(f0(X), Y )]/t. Replacing δτ with its definition gives the theorem.

12.4 Calibeating: improving squared error by calibration

Sections 12.1 and 12.3 show that at least at the population level, taking a predictor f and modifying
(or postprocessing) it to guarantee its calibration can only improve the losses it suffers, whether
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those are squared error or general proper losses. That is, by calibrating we can beat (and hence,
calibeat) a given predictor. These arguments have exclusively been at the population level, leaving
it unclear whether this approach might actually work given a finite sample. While employing
these ideas for general losses and general decision settings, where we only guarantee Y ⊂ Rk, is
challenging because of dimensionality issues, here we show how to improve calibration in finite
samples while simultaneously losing little in squared error for binary predictions with Y ∈ {0, 1}.
That is, we have calibeating : from any potential predictor f , we can construct a predictor g with
both small calibration error and with (asymptotically) no larger squared error than f , realizing
Theorem 12.1.1 but in finite samples.

Let f : X → [0, 1] be any predictor of Y ∈ {0, 1}, and consider the squared error loss
`(s, y) = (s − y)2 with population loss L(f) = E[(Y − f(X))2]. The idea to improve calibra-
tion of f without losing much in accuracy (squared error) is fairly straightforward: we discretize
f by binning its predictions so that the number of Xi for which f(Xi) is in a bin is equal; such
binning ideas are central to the theory of calibration. Then we choose the postprocessed func-
tion g by averaging observed Y values over those bins. This transforms the (population level)
idea present in Theorem 12.1.1, which says to choose the post-processing conditional expectation
g(x) = E[Y | f(X) = f(x)], into one implementable in finite samples, which approximately sets

g(x) ≈ E[Y | l(x) ≤ f(X) ≤ u(x)],

where l and u are lower and upper bounds over which to average the predictions of f .
To make the ideas concrete, assume we have a sample (Xi, Yi)

2n
i=1 of size 2n drawn i.i.d. according

to P (where we choose 2n for notational convenience), which we divide into samples {(Xi, Yi)}ni=1

and {(Xi, Yi)}2ni=n+1, letting P
(1)
n denote the empirical distribution on the first sample and P

(2)
n that

on the second. We use the first to choose the binning (quantization) of f and the second to actually
choose values for the binned function. Fix a number of bins b ∈ N to be chosen, for convenience
assuming that b divides n. Let the indices i1, . . . , in sort f(Xi), so that

f(Xi1) < f(Xi2) < · · · < f(Xin),

and construct index partitions Ij , j = 1, . . . , b, by Ij := {ib(j−1)+1, . . . , ibj}. Here, we have assumed
(essentially) without loss of generality that the predictions f(Xi) are distinct with probability
1.1 Given this partitioning of indices I1, . . . , Ib, for j = 1, . . . , b define the lower and upper bin
boundaries

l̂j = max
i∈Ij−1

f(Xi) and ûj = max
i∈Ij

f(Xi),

except that l̂1 = 0 and ûb = 1, and define the bins

B1 =
[
l̂1, û1

)
, B2 =

[
l̂2, û2

)
, . . . , Bb =

[
l̂b, ûb

]
to partition [0, 1]. These partition [0, 1] evenly in the empirical probabilities of f(Xi), i = 1, . . . , n,
not evenly in the widths ûj − l̂j .

To construct the recalibrated and binned version g of f , for each x ∈ X , define the bin mapping

bin(x) := the bin j such that f(x) ∈ Bj ,

1If this distinctness fails, we can add random dithering by letting Ui
iid∼ Uniform[− 1

2
, 1
2
] and replacing the ob-

servations Xi with pairs (Xi, Ui) and f(Xi) with fext(Xi, Ui) := f(Xi) + εUi for some ε > 0. Then L(fext) =

E[(Y − f(X)− εU)2] = E[(Y − f(X))2] + ε2

12
and `(fext(x, u), y) ≤ `(f(x), y) + 2ε for all x, u, y, so that we lose little.
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which implicitly depends on the first sample (Xn
1 , Y

n
1 ). The partitioning of [0, 1] into the bins Bj

also induces a partition on X =
⋃b
j=1 f

−1(Bj), where elements x, x′ belong to the same partition
set if bin(x) = bin(x′). Once we have this mapping from x to the associated prediction bin, we can
use the second sample (its empirical distribution) to define the binned function g by the average of

the second sample distribution P
(2)
n over those examples falling into each bin. Formally, we define

g to be the the piecewise constant function

g(x) := E
P

(2)
n

[Y | bin(X) = bin(x)], (12.4.1)

or equivalently, for each x ∈ Bj , we have

g(x) := E
P

(2)
n

[Y | f(X) ∈ Bj ]

=
1∑2n

i=n+1 1 {bin(Xi) = j}

2n∑
i=n+1

1 {bin(Xi) = j}Yi

where we assign g(x) an arbitrary value if no Xi satisfies f(Xi) ∈ Bj for the index j = bin(x).
Informally, this function g partitions X space into regions of roughly equal (small) probability

1/b, and for which f(x) belongs to a given interval on each region. Then recalibrating f on that
region changes the prediction error (Y − f(X))2 little, but improves the calibration. Formally, we
can show the following theorem.

Theorem 12.4.1. Let g be the binned and recalibrated estimator (12.4.1). Assume that the number
of bins b and sample size n satisfy n

logn ≥ b. Then there exists a numerical constant c > 0 such
that for all δ ∈ (0, 1), with probability at least 1− 2 exp(−cnb )− δ,

L(g) ≤ L(f) +
3

b
+

2b log 2b
δ

n
− E

[
(E[Y | bin(X)]− E[f(X) | bin(X)])2

]
and g has expected calibration error (12.2.1) at most

ece(g) ≤

√
2b log 2b

δ

n
.

JCD Comment: Put in some figures here.

The proof of Theorem 12.4.1 is long, so we defer it to Section 12.4.1. To interpret the theorem,

consider the terms in it. Roughly, we see that if we choose the number of bins to be
√
n log 1

δ , then

the calibeating predictor g guarantees

L(g) ≤ L(f) +O(1)

√
log n

δ

n
− E

[
(E[Y | bin(X)]− E[f(X) | bin(X)])2

]
,

while the expected calibration error is of order n−1/4, ignoring the logarithmic factors. So we
improve the loss L(f) by a factor involving the calibration error of f (relative to the random
binning)—the less calibrated f is, the more improvement we can provide—and with a penalty
tending to 0 at rate

√
log n/n.
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12.4.1 Proof of Theorem 12.4.1

Throughout the proof, we use the shorthands that P (Bj) = P (f(X) ∈ Bj) and Pn(Bj) =
Pn(f(X) ∈ Bj) = 1

n

∑n
i=1 1 {f(Xi) ∈ Bj} to mean the (empirical) probability that f(X) ∈ Bj , and

P
(1)
n and P

(2)
n denote empirical probabilities with respect to the samples (Xn

1 , Y
n

1 ) and (X2n
n+1, Y

2n
n+1),

respectively. The key to the argument is to show three things:

1. With high probability, each bin Bj has the approximately correct probability 1
2b ≤ P (Bj) ≤ 7

4b .

2. With similarly high probability, the empirical probabilities on the second sample P
(2)
n satisfy

1
4b ≤ P

(2)
n (Bj) ≤ 2

b .

3. Conditional on P
(2)
n (Bj) being large enough, the expectations E

P
(2)
n

[Y | f(X) ∈ Bj ] are accurate,

so that g(x) ≈ E[Y | f(X) ∈ Bj ] for x satisfying f(x) ∈ Bj .

Once we have each of these three, we can show that L(g) is essentially no larger than L(f), up
to diminishing error terms in n, and that g itself is well-calibrated. We proceed through each step
in turn, stating the results as lemmas whose proofs we provide at the end of this section.

Lemma 12.4.2. Let n
logn ≥ b. For a numerical constant c > 0, we have

P
(

1

2b
≤ P (Bj) ≤

7

4b
for all j = 1, . . . , b

)
≥ 1− 2 exp

(
−cn

b

)
.

With Lemma 12.4.2 in hand, the second step of the proof of Theorem 12.4.1 is relatively

straightforward. In the lemma, conditioning on P
(1)
n indicates conditioning on the first sample

(Xn
1 , Y

n
1 ).

Lemma 12.4.3. Let n
logn ≥ b. Assume the first sample P

(1)
n is such that 1

2b ≤ P (Bj) ≤ 7
4b for each

selected bin Bj, j = 1, . . . , b. Then there exists a numerical constant c > 0 such that

P
(

1

4b
≤ P (2)

n (Bj) ≤
2

b
| P (1)

n

)
≥ 1− 2 exp

(
−cn

b

)
.

Lemma 12.4.4. Let the conditions of Lemma 12.4.3 hold. Then there exists a numerical constant
c > 0 such that for any δ ∈ (0, 1)

P

(
max
j≤b

sup
x:f(x)∈Bj

|g(x)− E[Y | f(X) ∈ Bj ]| ≥
√

2b

n
log

2b

δ
| P (1)

n

)
≤ 2 exp

(
−cn

b

)
+ δ.

With the three lemmas in place, we can now expand the squared error to obtain the calibeating
theorem. Recalling the population squared error L(g) = E[(Y − g(X))2], let us suppose that the
consequences of Lemmas 12.4.2–12.4.4 hold, so that |g(x) − E[Y | f(X) ∈ Bj ]|2 ≤ 2b

n log 2b
δ and

P (Bj) ≤ 7
4b for each j. By the lemmas, these hold with probability 1− 2 exp(−cnd )− δ. Define the

average function values and conditional expectations

f j := E[f(X) | f(X) ∈ Bj ] and Ej := E[Y | f(X) ∈ Bj ].

Then we have

L(g) = E[(Y − g(X))2] =

b∑
j=1

P (Bj)E[(Y − Ej + Ej − g(X))2 | f(X) ∈ Bj ].
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Considering the expectation term, note that g(X) is constant for f(X) ∈ Bj by construction of the
binning, and so for any x ∈ f−1(Bj), we have

E[(Y − Ej + Ej − g(X))2 | f(X) ∈ Bj ]
= E[(Y − E[Y | f(X) ∈ Bj ])2 | f(X) ∈ Bj ] + (g(x)− E[Y | f(X) ∈ Bj ])2

≤ E[(Y − E[Y | f(X) ∈ Bj ])2 | f(X) ∈ Bj ] +
2b

n
log

2b

δ
.

Now, using that E[Y | f(X) ∈ Bj ] = Ej , we see that

E[(Y − Ej)2 | f(X) ∈ Bj ] = E[(Y − f j)2 | f(X) ∈ Bj ]− (Ej − f j)2

by adding and subtracting f j and expanding the square. Summarizing, we have shown so far that

L(g) ≤
b∑

j=1

P (Bj)E[(Y − f j)2 | f(X) ∈ Bj ] +
2b

n
log

2b

δ
−

b∑
j=1

P (Bj)(Ej − f j)2. (12.4.2)

We can directly relate the first term in the expansion (12.4.2) to the expected error E[(Y −
f(X))2]. Indeed, by expanding out the square, we have

E[(Y − f j)2 | f(X) ∈ Bj ]
= E[(Y − f(X) + f(X)− f j)2 | f(X) ∈ Bj ]
= E[(Y − f(X))2 | f(X) ∈ Bj ] + 2E[(Y − f(X))(f(X)− f j) | f(X) ∈ Bj ] + Var(f(X) | f(X) ∈ Bj)

≤ E[(Y − f(X))2 | f(X) ∈ Bj ] + 2
√

Var(f(X) | f(X) ∈ Bj) + Var(f(X) | f(X) ∈ Bj),

where the inequality is Cauchy-Schwarz, as |Y −f(X)| ≤ 1. Finally, we recognize that Bj ⊂ [l̂j , ûj ],

so Var(f(X) | f(X) ∈ Bj) ≤ 1
4(ûj − l̂j)2, and thus

E[(Y − f j)2 | f(X) ∈ Bj ] ≤ E[(Y − f(X))2 | f(X) ∈ Bj ] +
5

4
(ûj − l̂j).

Substituting in the bound (12.4.2) and recognizing that
∑b

j=1 P (Bj)E[(Y − f(X))2 | f(X) ∈ Bj ] =

E[(Y − f(X))2] = L(f), we have

L(g) ≤ L(f) +
5

4

b∑
j=1

P (Bj)(ûj − l̂j) +
2b

n
log

2b

δ
−

b∑
j=1

P (Bj)(Ej − f j)2.

But of course, P (Bj) ≤ 7
4b by the assumed conclusions of Lemma 12.4.2, and so

∑b
j=1 P (Bj)(ûj −

l̂j) ≤ 7
4b as

∑b
j=1(ûj − l̂j) = 1. This gives the final inequality

L(g) ≤ L(f) +
35

16b
+

2b

n
log

2b

δ
−

b∑
j=1

P (Bj)(Ej − f j)2,

proving the first claim of the theorem. The bound on calibration error is immediate because
|g(x) − E[Y | f(X) ∈ Bj ]|2 ≤ 2b

n log 2b
δ for each x ∈ f−1(Bj) with the prescribed probability, by

Lemma 12.4.4.
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Proof of Lemma 12.4.2 We follow the notational shorthand Pn(A) = 1
n

∑n
i=1 1 {f(Xi) ∈ A}.

Fix a pair 0 ≤ l < u ≤ 1 and define the interval A = [l, u]. Then Bernstein’s inequality (4.1.8)
shows that

P
(∣∣∣∣ 1nPn(A)− P (A)

∣∣∣∣ ≥ v) ≤ 2 exp

(
− nv2

2P (A) + 2
3v

)
for all v ≥ 0. Partition [0, 1] into intervals A1, . . . , A4b, Aj = [lj , uj ], each of probability P (Aj) = 1

4b .

Now, fix an index j? ∈ [b] and consider the (empirically constructed) bin Bj? = [l̂j? , ûj?). Then
there exist some j, k ∈ N such that

Aj ∪ · · · ∪Aj+k ⊃ Bj? ⊃ Aj+1 ∪ · · · ∪Aj+k−1.

We provide upper and lower bounds on k as a function of the error in Pn(Aj). Suppose that
for some t > 0, we have

1− t
4b
≤ Pn(Aj) ≤

1 + t

4b
for j = 1, . . . , 4b. (12.4.3)

Then
1 + t

4b
(k + 1) ≥ Pn(Aj ∪ · · · ∪Aj+k) ≥ Pn(Bj?) =

1

b
,

and similarly
1− t

4b
(k − 1) ≤ Pn(Aj+1 ∪ · · · ∪Aj+k) ≤ Pn(Bj?) =

1

b
,

implying the bounds
4

1 + t
− 1 ≤ k ≤ 4

t− 1
+ 1.

In particular, if t < 1
3 then 3 ≤ k ≤ 6, and so when the bounds (12.4.3) hold with t = 1

3 we obtain

1

2b
≤ k − 1

4b
= P (Aj+1 ∪ · · · ∪Aj+k−1) ≤ P (Bj?) ≤ P (Aj ∪ · · · ∪Aj+k) =

k + 1

4b
≤ 7

4b
.

Apply Bernstein’s inequality for using t = 1
3 , or v = 1

12b , with variance bound σ2 ≤ P (Aj) ≤ 1
4b

to obtain that for each j = 1, . . . , 4b, we have

P
(
|Pn(Aj)− P (Aj)| ≥

1

12b

)
≤ 2 exp

(
− n/(12b)2

2/(4b) + 2
3

1
12b

)
= 2 exp

(
− n

80b

)
.

Apply a union bound to obtain the lemma once we recognize that n/b − log b & n/b whenever
n/ log n ≥ b.

Proof of Lemma 12.4.3 Assume that P (Bj) ≤ 7
4b . Then applying Bernstein’s inequal-

ity (4.1.8), and using that 1 {f(X) ∈ Bj} is a Bernoulli random variable with mean (and hence
variance) at most 7

4b , we have

P
(
P (2)
n (Bj) ≥

2

b

)
≤ exp

(
− n/(4b)2

7
4b + 2

3
1
4b

)
= exp

(
− 1

28 + 8/3

n

b

)
≤ exp

(
− 1

31

n

b

)
.

Similarly, we have P(P
(2)
n (Bj) ≤ 1

4b) ≤ exp(− 1
31
n
b ) as P (Bj) ≥ 1

2b . Applying a union bound over
j = 1, . . . , b, then noting that n/b− log b & n/b whenever n/ log n ≥ b, we again obtain
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Proof of Lemma 12.4.4 Recall that g(x) = E
P

(2)
n

[Y | bin(X) = bin(x)], and note that g is

constant on x ∈ f−1(Bj). Fix a bin j, and let I(j) = {i ∈ {n+ 1, . . . , 2n} | f(Xn+i) ∈ Bj} denote
the indices in the second sample for which f(Xn+i) falls in bin Bj . Then conditional on i ∈ I(j),
we have Yi ∼ P (Y ∈ · | f(X) ∈ Bj), so that

P

∣∣∣∣ 1

|I(j)|
∑
i∈I(j)

Yi − E[Y | f(X) ∈ Bj ]
∣∣∣∣ ≥ t | I(j)

 ≤ 2 exp
(
−2 card(I(j))t2

)
by Hoeffding’s inequality. Then (conditioning on the bins {Bj} chosen using P

(1)
n , which by as-

sumption satisfy P (Bj) ∈ [ 1
2b ,

7
4b ], we have for any fixed x ∈ f−1(Bj) that

P

(
sup

x∈f−1(Bj)

|g(x)− E[Y | f(X) ∈ Bj ]| ≥ t | P (1)
n

)
=
∑
I⊂[n]

P
(
|g(x)− E[Y | f(X) ∈ Bj ]| ≥ t, I(j) = I | P (1)

n

)
≤ P

(
card(I(j)) <

n

4b
| P (1)

n

)
+

∑
I⊂[n],card(I)≥n/4b

P
(
|g(x)− E[Y | f(X) ∈ Bj ]| ≥ t, I(j) = I | P (1)

n

)
≤ P

(
P (2)
n (Bj) <

1

4b

)
+ 2 exp

(
−nt

2

2b

)
,

where the final line applies Hoeffding’s inequality. Taking t2 =
2b log 2b

δ
n and applying Lemma 12.4.3

and a union bound gives Lemma 12.4.4.

12.5 Continuous and equivalent calibration measures

We finally return to constructing a calculus and tools with which to measure calibration, addressing
the issues of discontinuity of ece that Example 12.2.2 highlights, and building to a combination
of results that imply Corollary 12.2.6. In the end, we will see that for appropriate classes F of
predictors, several potential measures M : F → R+ are roughly equivalent sound and complete
calibration measures, all enjoying similar continuity properties. We begin with two definitions.

Definition 12.1. A function M : F → R+ is a continuous calibration measure for the distribution
P on X × Y if

(i) it is sound and complete (12.2.2), that is, M(f) = 0 if and only if f is calibrated for P , and

(ii) it is continuous with respect to the L1(P ) metric on F , that is, for any f , if fn is a sequence
of functions with E[‖f(X)− fn(X)‖]→ 0, then

M(f)−M(fn)→ 0.

A stronger definition replaces continuity with a Lipschitz requirement.
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Definition 12.2. A function M : F → R+ is a Lipschitz calibration measure for the distribution
P on X ×Y if it is sound and complete (Definition 12.1, part (i)), and instead of part (ii) satisfies

(iii) it is Lipschitz continuous with respect to the L1(P ) metric on F , that is, for some C <∞

|M(f0)−M(f1)| ≤ C · EP [‖f0(X)− f1(X)‖]

for all f0, f1 ∈ F .

If conditions (i) and (ii) (respectively (iii)) hold for all P in a collection of distributions P on X ×Y,
we will say that M is a continuous (respectively, Lipschitz) calibration measure for P.

The desiderata (ii) and (iii) are matters of taste; the central idea is that some type of continuity
is essential for efficient modeling, estimation, and analysis. We leave the norm ‖·‖ implicit in the
definition, and we typically omit the distribution P from the calibration metric as it is clear from
context. The two parts of Definition 12.2 admit many possible calibration measures. We consider
two types of measures, which are (almost) dual to one another, as examples. Both use a variational
representation, where in one we essentially look for the “closest” function that is calibrated, while
in the other, we investigate the ease with which we can (quantitatively) certify that a predictor f
is uncalibrated.

A key concept will be the equivalence of calibration measures, where we target a quantitative
equivalence. To define this, let 0 < α, β <∞. Then we say that two candidate calibration measures
M0 and M1 on F ⊂ X → Rk are (α, β)-equivalent if there exist constants c0, c1 (which may depend
on Y) such that

M0(f) ≤ c0 [M1(f) + M1(f)α] and M1(f) ≤ c1

[
M0(f) + M0(f)β

]
. (12.5.1)

Then in a strong sense, M0(f)→ 0 if and only if M1(f)→ 0.

12.5.1 Calibration measures

We revisit the potential calibration measures in Section 12.2.2 here to recapitulate definitions,
providing initial results on their soundness and completeness. We focus on the distance to calibra-
tion (12.2.3) and relative calibration errors (12.2.4), as the partitioned calibration error (12.2.6) we
use more as a proof device.

Distances to calibration. Recall the distance to calibration (12.2.3), which for C(P ) = {g :
X → Rk | EP [Y | g(X)] = g(X)} (where the defining equality holds with P -probability 1
over X) has definition dcal(f) := infg {E[‖g(X)− f(X)‖] s.t. g ∈ C(P )}. The measure (12.2.3)
is, after appropriate normalization, the largest Lipschitz measure of calibration: if M is any Lip-
schitz calibration measure (with constant C = 1 in Definition 12.2 part (iii)), then taking a per-
fectly calibrated g with ece(g) = 0, we necessarily have M(g) = 0. Then for any f we have
M(f) = M(f)−M(g) ≤ E[‖f(X)− g(X)‖], and taking an infimum over such g guarantees

M(f) ≤ dcal(f).

The second related quantity, which sometimes admits cleaner properties for analysis, is the penalized
calibration distance, which we define as

pcal(f) := inf
g
{E[‖f(X)− g(X)‖] + E [‖E[Y | g(X)]− g(X)‖]} . (12.5.2)
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These quantities are strongly related, and in the sequel (see Corollary 12.5.8), we show that

pcal(f) ≤ dcal(f) ≤ pcal(f) + CY
√
pcal(f),

where CY is a constant depending only on the set Y whenever Y has finite diameter.
To build intuition for the definition (12.5.2), consider the two quantities. The first measures

the usual L1 distance between the function f and a putative alternative g. The second is the
expected calibration error of g. By restricting the infimum in definition (12.2.3) to functions g
with ece(g) = 0, we simply have the L1 distance to the nearest calibrated function; as is, the
additional term in (12.5.2) allows trading between the distance to a calibrated function and the
actual calibration error. We also have the following proposition.

Proposition 12.5.1. The functions dcal and pcal are Lipschitz calibration measures.

Proof If f is calibrated, then pcal(f) = dcal(f) = 0 immediately. Conversely, if pcal(f) = 0, there
exists a sequence of functions gn satisfying E[‖f(X)− gn(X)‖] → 0, as each term in the defini-
tion (12.5.2) is nonnegative. Additionally, we must have that ece(gn) = E[‖E[Y | gn(X)]− gn(X)‖]→
0. Applying Lemma 12.2.1 we have 0 ≥ lim infn ece(gn) ≥ ece(f). If dcal(f) = 0, then there ex-
ists a sequence of functions gn with ece(gn) = 0 and E[‖f(X)− gn(X)‖] → 0. Again, the lower
semicontinuity of ece from Lemma 12.2.1 gives 0 = lim infn ece(gn) ≥ ece(f).

To see that pcal is Lipschitz in f , let f0, f1 : X → Rk, and let g0, g1 be within ε > 0 of achieving
the infima in definition (12.5.2) for f0 and f1, respectively. Then

pcal(f0)− pcal(f1) ≤ inf
g
{E[‖f0(X)− g(X)‖] + E[‖E[Y | g(X)]− g(X)‖]}

− E[‖f1(X)− g1(X)‖] + E[‖E[Y | g1(X)]− g1(X)‖] + ε

≤ E[‖f0(X)− g1(X)‖]− E[‖f1(X)− g1(X)‖] + ε

≤ E[‖f0(X)− f1(X)‖] + ε.

Take ε ↓ 0. The lower inequality is similar, as is the proof for dcal.

Weak calibration. The calibration error (12.2.4) relative to a class W,

CE(f,W) := sup
w∈W

E[〈w(f(X), Y − f(X)〉]

admits similar properties, as it also satisfies our desiderata for a calibration measure. In particular,
if we takeW to be the classW‖·‖ of bounded Lipschitz witness functions (12.2.5), we have the next
two propositions.

Proposition 12.5.2. Let F consist of functions with E[‖f(X)‖] < ∞ and assume E[‖Y ‖] < ∞.
Then CE(·,W‖·‖) is a continuous calibration measure over F .

Because continuity is such a weak requirement, the proof of this result relies on measure theoretic
results, so we defer it to Section 12.6.2.

When we assume the collection F consists of bounded functions and Y itself is bounded, we
can give a stronger guarantee for the weak calibration, and we no longer need to rely on careful
arguments considering the order of various limits.
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Proposition 12.5.3. Assume that diam(Y) is finite and that F is a collection of bounded functions
X → Rk. Then CE(·,W‖·‖) is a Lipschitz calibration measure over F .

Proof Let W = W‖·‖ for shorthand. That CE(f,W) = 0 when f is calibrated is immediate, as
by definition of conditional expectation we have

E[〈w(f(X)), Y − f(X)〉] = E[〈w(f(X)),E[Y | f(X)]− f(X)〉] = 0.

To obtain the converse that CE(f,W) = 0 implies f is calibrated, we require an intermediate
lemma, which leverages the density of Lipschitz functions in Lp spaces. As was the case for the
lower semi-continuity lemma 12.2.1 central to the proof of the converse in Proposition 12.5.1, this
lemma requires measure-theoretic approximation arguments, so we defer its proof to Section 12.6.3.

Lemma 12.5.4. Let S ∈ Rk be a random variable and E[‖g(S)‖] <∞. If E[〈w(S), g(S)〉] = 0 for
all bounded and 1-Lipschitz functions w, then g(S) = 0 with probability 1.

The converse is now trivial: let S = f(X), and note that CE(f,W) = supw∈W E[〈w(S),E[Y |
S]− S〉], and take g(S) = E[Y | S]− S in Lemma 12.5.4.

To see that CE is Lipschitz, let w0 ∈ W be such that CE(f0,W) ≥ E[〈w0(f0(X)), Y −f0(X)〉]−ε,
and let C <∞ satisfy C ≥ supy∈Y,x∈X ,f∈F ‖y − f(x)‖. Then

CE(f0,W)− CE(f1,W) ≤ E[〈w0(f0(X)), Y − f0(X)〉]− E[〈w0(f1(X)), Y − f1(X)〉] + ε

≤ E[〈w0(f0(X))− w0(f1(X)), Y − f0(X)〉] + E[〈w0(f1(X)), f1(X)− f0(X)〉] + ε

≤ CE[‖w0(f0(X))− w0(f1(X))‖∗] + E[‖f1(X)− f0(X)‖] + ε

≤ (1 + C)E[‖f1(X)− f0(X)‖] + ε.

Repeating the same argument, mutatis mutandis, for the lower bound gives the Lipschitz continuity
as desired.

The family of weak calibration measures CE(f,W) as we vary the collection of potential witness
functions W yields a variety of behaviors. Different choices of W can give different continuous
calibration measures, where we may modify Definition 12.1 part (ii) to other notions of continuity,
such as Lipschitzness with respect to L2(P ) norms. We explore a few of these in the exercises at
the end of the chapter.

12.5.2 Equivalent calibration measures

That all three measures dcal(f), pcal(f), CE(f,W‖·‖) are Lipschitz calibration measures when the
label space Y is bounded suggests deeper relationships between these and other notions of calibra-
tion, such as the equivalence (12.5.1). We elucidate this here, showing that each of the measures
dcal, pcal, and CE are equivalent. Indeed, the main consequence of the results in this chapter is that
this equivalence holds for multiclass classification.

Theorem 12.5.5. Let Y = {e1, . . . , ek} and W‖·‖ be the collection (12.2.5) of bounded Lipschitz

functions for a norm ‖·‖ on Rk. Then dcal, pcal, and CE(·,W‖·‖) are each (1
2 ,

1
2)-equivalent. More-

over, this equivalence is sharp, in that they are not (α, β)-equivalent for any α, β > 1
2 .
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The theorem follows as a compilation of the other results in this section. Along the way to demon-
strating this theorem, we introduce a few alternative measures of calibration we use as stepping
stones toward our final results. While many of our derivations will apply for general sets Y, in
some cases we will restrict to multiclass classification problems, so that Y = {e1, . . . , ek} ⊂ Rk
are the k standard basis vectors. We present two main results: the first, Theorem 12.5.6, shows
an equivalence (up to a square root) between the penalized calibration distance (12.5.2) and the
partitioned calibration error (12.2.6). As a corollary of this result, we obtain the equivalence of the
distance to calibration (12.2.3) and penalized distance to calibration (12.5.2). The second main
result, Theorem 12.5.9, gives a similar equivalence between the penalized distance (12.5.2) and
the calibration error relative to Lipschitz functions (12.2.4). Throughout, to make the calculations
cleaner and more transparent, we restrict our functions to make predictions in M = conv(Y).

Partition-based calibration measures and lifting to random variables

It is easier to work directly in the space of predictions f(X) ∈ Rk rather than addressing the
underlying space X . To that end, let S = f(X) be the random vector (use the mnemonic that S is
for “scores”) induced by f(X) and taking values in Conv(Y), which has a joint distribution (S, Y )
with the label Y . Then, for example, the expected calibration error of f is simply

ece(f) = E[‖E[Y | S]− S‖].

Once we work exclusively in the space of random scores S = f(X), we may define alternative
distances to calibration in analogy with the (penalized) distances to calibration, which will allow
us to more easily relate distances to the partitioned error (12.2.6). Thus, we define

dcal,low(f) := inf
V
{E[‖S − V ‖] s.t. E[Y | V ] = V } (12.5.3a)

and
pcal,low(f) := inf

V
{E[‖S − V ‖] + E[‖E[Y | V ]− V ‖]} , (12.5.3b)

where the infimum are over all random variables V taking values in Conv(Y), which can have
arbitrary distribution with (S, Y ) (but do not modify the joint (S, Y )), and in case (12.5.3a) are
calibrated. This formulation is convenient in that we can represent it as a convex optimization
problem, allowing us to bring the tools of duality to bear on it, though we defer this temporarily. By
considering V = g(X) for functions g : X → Conv(Y), we immediately see that pcal(f) ≥ pcal,low(f).
We can also consider upper distances

dcal,up(f) := inf
g
{E[‖S − g(S)‖] s.t. E[Y | g(S)] = g(S)}

and
pcal,up(f) := inf

g:Rk→Conv(Y)
{E[‖S − g(S)‖] + E[‖E[Y | g(S)]− g(S)‖]} ,

which restrict the definitions (12.2.3) and (12.5.2) to compositions. We therefore have the inequal-
ities

dcal,low(f) ≤ dcal(f) ≤ dcal,up(f) and pcal,low(f) ≤ pcal(f) ≤ pcal,up(f). (12.5.4)

The partitioned calibration error (12.2.6) allows us to provide a bound relating the calibration
error and the lower and upper calibration errors. To state the theorem, we make a normalization
with ‖·‖, assuming without loss of generality that ‖·‖∞ ≤ ‖·‖.
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Theorem 12.5.6. Let Y ⊂ Rk have finite diameter diam(Y) in the norm ‖·‖. Let S = f(X) ∈ Rk.
Then for all ε > 0,

pcal,up(f) ≤ dcal,up(f) ≤ pce(S) ≤
(

1 +
2k diam(Y)

ε

)
pcal,low(f) + ‖1k‖∗ ε

≤
(

1 +
2k diam(Y)

ε

)
dcal,low(f) + ‖1k‖∗ ε.

While the first inequality in Theorem 12.5.6 is relatively straightforward to prove, the second
requires substantially more care, so we defer the proof of the theorem to Section 12.6.4.

We record a few corollaries, one consequence of which is to show that the partitioned calibration
error (12.2.6) is at least a calibration measure in the sense of Definition 12.2.(i). Theorem 12.5.6
also shows that the penalized calibration distance pcal(f) is equivalent, up to taking a square root,
to the upper and lower calibration “distances”. In each corollary, we let Ck = ‖1k‖∗ for shorthand.

Corollary 12.5.7. Let the conditions of Theorem 12.5.6 hold. Then

pcal,low(f) ≤ pcal(f) ≤ pcal,low(f) + 2
√
Ckk diam(Y)

√
pcal,low(f)

and

dcal,low(f) ≤ dcal(f) ≤ dcal,low(f) + 2
√
Ckk diam(Y)

√
dcal,low(f).

Proof The first lower bound is immediate (recall the naive inequalitites (12.5.4)). Now set
ε =

√
2k diam(Y)pcal,low(f)/Ck in Theorem 12.5.6, and recognize that pcal,low(f) ≤ pcal,up(f).

We also obtain an approximate equivalence between the calibration distance dcal and penalized
calibration distance pcal from definitions (12.2.3) and (12.5.2).

Corollary 12.5.8. Let the conditions of Theorem 12.5.6 hold. Then

pcal(f) ≤ dcal(f) ≤ pcal(f) + 2
√
ckk diam(Y)

√
pcal(f).

Proof The first inequality is immediate by definition. For the second, note (see Lemma 12.6.4
in the proof of Theorem 12.5.6 in Section 12.6.4) that pcal,low(f) ≤ pce(S) for S = f(X). Then
apply Theorem 12.5.6 with ε =

√
2k diam(Y)pcal,low(f)/ck as in Corollary 12.5.7, and recognize

that pcal,low ≤ pcal.

Let us instantiate the theorem and its corollaries in a few special cases. If we make binary
predictions with Y = {0, 1}, then Ck = k = diam(Y) = 1, and Theorem 12.5.6 implies that

pcal,low(f) ≤ pcal(f) ≤ pcal,low(f) + 2
√
pcal,low(f).

For k-class multiclass classification, where we identify Y = {e1, . . . , ek} with the k standard basis
vectors, we have the bounds

pcal,low(f) ≤ pcal(f) ≤ pcal,low(f) + 2
√
kpcal,low(f),

so long as we measure calibration errors with respect to the `1-norm, that is, ‖y − f(x)‖1, because
diam(Y) ≤ 1 and Ck = ‖1‖∞ = 1.

JCD Comment: Remark on sharpness here.
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The equivalence between calibration error and the calibration distance

We can rewrite the calibration error CE(S,A) relative to partitions in the definition (12.2.6) as the
supremum over a collectionWA of functions of the form w(s) = v1 {s ∈ A}, where ‖v‖∗ ≤ 1, so that
CE(S,WA) = supw∈WA E[〈w(S), Y −S〉] =

∑
A∈A E[‖E[Y | S]− S‖]. Relaxing this supremum, and

removing the infimum over partitions, we might expect a similar relationship to Theorem 12.5.6
to hold. Via a duality argument that the definition (12.5.3) of the lower calibration error as an
infimum over joint distributions makes possible, we can directly relate the measures.

Theorem 12.5.9. Let Y ⊂ Rk have finite diameter in the norm ‖·‖ and W‖·‖ be the collec-
tion (12.2.5) of bounded Lipschitz functions. Then

CE(f,W‖·‖) ≤ (1 + diam(Y)) · pcal,low(f).

Conversely, let Y = {e1, . . . , ek} and define Ck := ‖1k‖∗max{1,diam(Y)}. Then

dcal,low(f) ≤ Ck · CE(f,W‖·‖).

This proof, while nontrivial, is more elementary than the others in this chapter, so we present it
here. Before giving it, however, we give a few corollaries that give a fuller picture of the relationships
between the different calibration measures we have developed. These show how, for the case of k-
class multiclass classification where we identify Y = {e1, . . . , ek} with the standard basis vectors,
the distance to calibration (12.2.3) and penalized calibration (12.5.2) provide essentially equivalent
measures of calibration error, and that these in turn are equivalent to the calibration error with
respect to the collection of bounded Lipschitz functions.

We first give a corollary for the penalized calibration (12.5.2).

Corollary 12.5.10. Let Y = {e1, . . . , ek} and ‖·‖ = ‖·‖1 be the `1-norm. Then for any f : X →
Conv(Y), we have

1

2
CE(f,W‖·‖) ≤ pcal(f) ≤ CE(f,W‖·‖) + 2

√
kCE(f,W‖·‖).

Proof Let W = W‖·‖ for shorthand. Theorem 12.5.9 gives CE(f,W) ≤ 2pcal,low(f), and
pcal,low(f) ≤ pcal(f), giving the lower bound. For the upper bound, Corollary 12.5.7 gives pcal(f) ≤
pcal,low(f) + 2

√
k
√
pcal,low(f), then using that pcal,low(f) ≤ dcal,low(f) and the second part of Theo-

rem 12.5.9 gives the corollary.

The same argument implies the following analogue for the distance to calibration (12.2.3).

Corollary 12.5.11. Let Y = {e1, . . . , ek} and ‖·‖ = ‖·‖1 be the `1-norm. Then for any f : X →
Conv(Y), we have

1

2
CE(f,W‖·‖) ≤ dcal(f) ≤ CE(f,W‖·‖) + 2

√
kCE(f,W‖·‖).

Proof of Theorem 12.5.9

The proof of the upper bound is fairly straightforward. For any w ∈ W‖·‖, we have

E[〈w(S), Y − S〉] = E[〈w(S), V − S〉] + E[〈w(S)− w(V ), Y − V 〉] + E[〈w(V ), Y − V 〉]
≤ E[‖V − S‖] + diam(Y)E[‖V − S‖] + E[〈w(V ),E[Y | V ]− V 〉]
≤ (1 + diam(Y))E[‖V − S‖] + E[‖E[Y | V ]− V ‖].
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To prove the converse requires more; we present most of the argument for an arbitrary discrete
space Y and specialize to the multiclass setting only at the end. The starting point is to reduce the
problem to a discrete problem over probability mass functions rather than general distributions, as
then it is much easier to apply the standard tools of convex duality. Consider the value

dcal,low(S) = inf
V
{E[‖S − V ‖] s.t. E[Y | V ] = V } .

Let b ∈ N and Sb be a (minimal) 1/b covering {s1, . . . , sN} of Conv(Y), and define Sb to be the
projection of S to the nearest si. Then ‖S − V ‖ = ‖Sb − V ‖ ± 1

b , and

dcal,low(S) = inf
V
{E[‖Sb − V ‖] s.t. E[Y | V ] = V } ± 1

b
.

Now, if we replace the infimum over arbitrary joint distributions of (Sb, Y, V ) leaving the marginal
(Sb, Y ) unchanged (with V calibrated) with an infimum over only discrete distributions on V , we
have

dcal,low(S) ≤ inf
V finitely supported

{E[‖Sb − V ‖] s.t. E[Y | V ] = V }+
1

b
. (12.5.5)

Notably, the infimum is non-empty, as we can always choose V = Y .
With the problem (12.5.5) in hand, we can write a finite dimensional optimization problem

whose optimal value is the discretized infimum on the right side. Without loss of generality assuming
that S is finitely supported, we let psy = P(S = s, Y = y) be the probability mass function of
(S, Y ). Then introducing the joint distribution Q with p.m.f. qsyv = Q(S = s, Y = y, V = v), the
infimum (12.5.5) has the constraint that

∑
v qsyv = psy. Then E[‖S − V ‖] =

∑
s,y,v qsyv ‖s− v‖ and

the calibration constraint E[Y | V ] = V is equivalent to the equality constraint that
∑

s,y qsyv(y −
v) = 0 for each v. This yields the convex optimization problem

minimize
∑

s,y,v qsyv ‖s− v‖
subject to

∑
v qsyv = psy, q � 0,

∑
y,q qsyv(y − v) = 0 for all v

(12.5.6)

in the variable q. We take the dual of this problem. Taking Lagrange multipliers λsy for each
equality constraint that

∑
v qsyv = psy, θsyv ≥ 0 for the nonnegativity constraints on q, and βv ∈ Rk

for each equality constraint that 0 =
∑

s,y qsyv(y − v), we have Lagrangian

L(q, z, λ, θ, β)

=
∑
s,y,v

qsyv ‖s− v‖+
∑
s,y,v

qsyvβ
T
v (y − v)−

∑
s,y

λsy

(∑
v

qsyv − psy
)
− 〈θ, q〉.

Taking an infimum over q, we see that unless

‖s− v‖+ βTv (y − v)− λsy − θsyv = 0

for each triple (s, y, v), we have infq L(q, λ, θ, β) = −∞. The equality in the preceding display is
equivalent to ‖s− v‖+ βTv (y − v) ≥ λsy, so that eliminating θ � 0 variables, we have the dual

maximize
∑

s,y λsypsy
subject to λsy ≤ ‖s− v‖+ βTv (y − v), all s, y, v
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to problem (12.5.6). Equivalently, recognizing that at the optimum we must saturate the constraints
on λ via λsy = minv{‖s− v‖+ βTv (y − v)}, we have

maximize
∑
s,y

psy min
v

{
‖s− v‖+ βTv (y − v)

}
(12.5.7)

in the variables βv, and strong duality obtains.
The dual problem (12.5.7) is the key to the final step in the proof. To make the functional

notation clearer, let us fix any collection of vectors βv and define λy(s) = minv{‖s− v‖+βTv (y−v)}
for each y ∈ Y. If we can exhibit a C-Lipschitz function s 7→ w(s) that satisfies

〈w(s), y − s〉 ≥ λy(s) (12.5.8)

for each y ∈ Y and ‖w(s)‖∗ ≤ C, we will evidently have shown that

sup
w∈W‖·‖

E[〈w(S), Y − S〉] ≥ 1

C
dcal,low(S),

by the dual formulation (12.5.7).
The functions λy are each 1-Lipschitz with respect to ‖·‖, as

λy(s)− λy(s′) ≥ min
v

{
‖s− v‖+ βTv (y − v)−

∥∥s′ − v∥∥− βTv (y − v)
}

= min
v

{
‖s− v‖ −

∥∥s′ − v∥∥} ≥ −∥∥s− s′∥∥ ,
and similarly

λy(s)− λy(s′) ≤ max
v

{
‖s− v‖+ βTv (y − v)−

∥∥s′ − v∥∥− βTv (y − v)
}
≤
∥∥s− s′∥∥

by the triangle inequality. Here, we specialize to the particular multiclass classification case in which
the set Y = {e1, . . . , ek} consists of extreme points of the probability simplex, so that s ∈ Conv(Y)
means that 〈1, s〉 = 1 and s � 0. Abusing notation slightly, let λi = λei for i = 1, . . . , k. Then
define the function

w(s) :=

λ1(s)
...

λk(s)

 .
By inspection, we have ∥∥w(s)− w(s′)

∥∥
∗ ≤

∥∥∥∥s− s′∥∥1
∥∥
∗ = ‖1‖∗

∥∥s− s′∥∥ .
Additionally, because λi(s) ≤ ‖s− ei‖ (take v = ei in the definition of λi), we have ‖w(s)‖∗ ≤
‖1‖∗ diam(Y). Finally, we have

〈w(s), ei − s〉 = (1− si)λi(s)−
∑
j 6=i

sjλj(s)

≥ (1− si)λi(s)−
∑
j 6=i

sj〈βs, ej − s〉
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because λj(s) ≤ 〈βs, ej − s〉 by taking v = s in the definition of λj . Adding and subtracting
si〈βs, ei − s〉, we obtain

〈w(s), ei − s〉 ≥ (1− si)λi(s)−
k∑
j=1

sj〈βs, ej − s〉+ si〈βs, ei − s〉

= (1− si)λi(s) + si〈βs, ei − s〉 ≥ λi(s),

because s � 0 and 〈βs, ei − s〉 ≥ λi(s). This is the desired inequality (12.5.8).

12.6 Deferred technical proofs

Several of the proofs in this chapter rely on standard results from analysis and measure theory; we
give these as base lemmas, as any book on graduate level real analysis (implicitly) contains them
(see, e.g., Tao [164, Chapters 1.3 and 1.13] or Royden [154]).

Lemma 12.6.1 (Egorov’s theorem). Let fn → f in Lp(P ) for some p ≥ 1. Then for each ε > 0,
there exists a set A of measure at least P (A) ≥ 1− ε such that fn → f uniformly on A.

Lemma 12.6.2 (Monotone convergence). Let fn : X → R+ be a monotone increasing sequence of
functions and f(x) = limn fn(x) (which may be infinite). Then

∫
f(x)dµ(x) = limn

∫
fn(x)dµ(x)

for any measure µ.

Lemma 12.6.3 (Density of Lipschitz functions). Let CLip
c be the collection of compactly supported

Lipschitz functions on Rk and P a probability distribution on Rk. Then CLip
c is dense in Lp(P ), that

is, for each ε > 0 and f with EP [|f(X)|p] <∞, there exists g ∈ CLip
c with EP [|g(X)−f(X)|p]1/p ≤ ε.

12.6.1 Proof of Lemma 12.2.1

LetWk be the collection of k-Lipschitz functions w with ‖w(s)‖∗ ≤ 1 for all s, and letW denote the
collection of measurable functions with ‖w(s)‖∗ ≤ 1 for all s. Recall the defininition CE(g,Wk) =
supw∈Wk

E[〈w(g(X)), Y − g(X)〉]. Then if fn → f in L1(P ), by Egorov’s theorem (Lemma 12.6.1),
for each ε > 0 there exists a set A with P (A) ≥ 1− ε and fn → f uniformly on A. Then

E[〈w(fn(X)), Y − fn(X)〉]
= E[〈w(fn(X)), Y − fn(X)〉1 {X ∈ A}] + E[〈w(fn(X)), Y − fn(X)〉1 {X ∈ Ac}]
≥ E[〈w(fn(X)), Y − fn(X)〉1 {X ∈ A}]− E[‖Y − fn(X)‖1 {X ∈ Ac}] (12.6.1)

because ‖w(s)‖∗ ≤ 1. As | ‖y − fn(x)‖1{x ∈ Ac}−‖y − f(x)‖1{x ∈ Ac}| ≤ ‖f(x)− fn(x)‖ by the
triangle inequality, the last term in inequality (12.6.1) converges to E[‖Y − f(X)‖1 {X ∈ Ac}] as
n → ∞. Focusing on the first term in (12.6.1), for any ε1 > 0 the uniform convergence of fn to f
on A guarantees that for large enough n, we have

E[〈w(fn(X)), Y − fn(X)〉]
= E[〈w(f(X)), Y − fn(X)〉1 {X ∈ A}] + E[〈w(fn(X))− w(f(X)), Y − fn(X)〉1 {X ∈ A}]
≥ E[〈w(f(X)), Y − fn(X)〉1 {X ∈ A}]− k sup

x∈A
‖f(x)− fn(x)‖∗ E[‖Y − fn(X)‖]

≥ E[〈w(f(X)), Y − fn(X)〉1 {X ∈ A}]− ε1
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Adding and subtracting f(X) in the final expectation, we have

E[〈w(f(X)), Y − fn(X)〉1 {X ∈ A}]
= E[〈w(f(X)), Y − f(X)〉1 {X ∈ A}] + E[〈w(f(X)), f(X)− fn(X)〉1 {X ∈ A}]
≥ E[〈w(f(X)), Y − f(X)〉]− E[‖Y − f(X)‖1 {X ∈ Ac}]− E[‖f(X)− fn(X)‖]
→ E[〈w(f(X)), Y − f(X)〉]− E[‖Y − f(X)‖1 {X ∈ Ac}].

Substituting these bounds into inequality (12.6.1), we have for any ε > 0 that there exists a set Aε
with P (Aε) ≥ 1− ε and for which

lim inf
n

E[〈w(fn(X)), Y − fn(X)〉]

≥ E[〈w(f(X)), Y − f(X)〉]− 2E[‖Y − f(X)‖1 {X ∈ Acε}].

For each m ∈ N, let Bm =
⋃
n≤mA1/n. Certainly P (Bm) ≥ 1− 1/m, and fn → f uniformly on

Bm (as the guarantees on A1/n from Egorov’s theorem apply); the same argument thus gives

lim inf
n

E[〈w(fn(X)), Y − fn(X)〉]

≥ E[〈w(f(X)), Y − f(X)〉]− 2E[‖Y − f(X)‖1 {X ∈ Bc
m}].

Because Bm is an increasing sequence of sets with P (Bm) ≥ 1 − 1/m, the limit B∞ =
⋃
mBm

satisfies P (B∞) = 1. For any x ∈ B∞, we see that x ∈ Bm for some finite m; trivially, for
x ∈ B∞ we thus have ‖y − f(x)‖1 {x 6∈ Bm} → ‖y − f(x)‖1 {x 6∈ B∞} = 0 as m → ∞. Said
differently, except on a null set, we have ‖y − f(x)‖1 {x 6∈ Bm} → 0 for P -almost all (x, y), and
this is certainly dominated by ‖y − f(x)‖. Lebesgue’s dominated convergence theorem then implies
E[‖Y − f(X)‖1 {X 6∈ Bm}] → 0 as m → ∞. Summarizing, we have shown that for any w ∈ Wk,
we have

lim inf
n

E[〈w(fn(X)), Y − fn(X)〉] ≥ E[〈w(f(X)), Y − f(X)〉].

By taking a supremum over w ∈ Wk in the last display and recognizing that ε > 0 was arbitrary,
we have shown that

lim inf
n

CE(fn,Wk) ≥ CE(f,Wk)

for all k <∞. By Lemma 12.6.3, for any integrable f and for each ε > 0 there exists k such that

sup
w∈Wk

E[〈w(f(X)), Y − f(X)〉] ≥ sup
w∈W

E[〈w(f(X)), Y − f(X)〉]− ε.

and for this k we have

lim inf
n

CE(fn,Wk) ≥ CE(f,Wk) ≥ CE(f,W)− ε.

Noting that CE(fn,W) ≥ CE(fn,Wk) for any k and taking ε→ 0 gives the lemma.

12.6.2 Proof of Proposition 12.5.2

The proof that CE(·,W‖·‖) identifies calibration (Definition 12.1, part (i)) is identical to the argu-
ment for Proposition 12.5.3, so we omit it.
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Let W =W‖·‖ for shorthand, and consider a sequence of functions fn → f . Then

CE(f,W)− CE(fn,W) ≤ sup
w∈W

E[〈w(f(X)), Y − f(X)〉 − 〈w(fn(X)), Y − fn(X)〉]

and

CE(fn,W)− CE(f,W) ≤ sup
w∈W

E[〈w(fn(X)), Y − fn(X)〉 − 〈w(f(X)), Y − f(X)〉].

We focus on bounding the first display, as showing that the second tends to zero requires, mutatis
mutandis, an identical argument.

Fix any w ∈ W. Then

E[〈w(f(X)), Y − f(X)〉 − 〈w(fn(X)), Y − fn(X)〉]
= E[〈w(f(X))− w(fn(X)), Y − f(X)〉] + E[〈w(fn(X)), fn(X)− f(X)〉]
≤ E[min{2, ‖f(X)− fn(X)‖} ‖Y − f(X)‖] + E[‖fn(X)− f(X)‖],

where the inequality follows because ‖w(s)− w(s′)‖∗ ≤ 2 and ‖w(s)− w(s′)‖∗ ≤ ‖s− s′‖ for any
s, s′ by construction. The second expectation certainly tends to zero as n→∞, so we consider the
first. Define gn(x, y) = min{2, ‖f(x)− fn(x)‖} ‖y − f(x)‖. Then gn(x, y) ≤ g(x, y) = ‖y − f(x)‖,
which has finite expectation by assumption. Moreover, Egorov’s theorem (Lemma 12.6.1) guaran-
tees that for each k, there is a set Ak with P (Ak) ≥ 1 − 1/k and for which gn → 0 uniformly on
Ak (because E[‖f(X)− fn(X)‖]→ 0). Define A∞ =

⋃
k Ak, so that P (A∞) = 1, and gn(x, y)→ 0

pointwise on A∞. Then the dominated convergence theorem guarntees that

E[gn(X,Y )] = E[gn(X,Y )1 {(X,Y ) ∈ A∞}] + E[gn(X,Y )1 {(X,Y ) 6∈ A∞}]︸ ︷︷ ︸
=0

→ 0.

Notably, this convergence is independent of w, and so we obtain

lim sup
n
{CE(f,W)− CE(fn,W)} ≤ 0.

A similar argument gives the converse bound.

12.6.3 Proof of Lemma 12.5.4

Define f(s) = g(s)/max{1, ‖g(s)‖}, so that E[‖g(s)‖2] = E[〈f(s), g(s)〉]. Using Lemma 12.6.3,
we see that for each n ∈ N there exists a C = Cn-Lipschitz function (where C < ∞) wn with
E[‖wn(S)− f(S)‖] ≤ 1

n , and w.l.o.g. we may assume ‖wn(s)‖2 ≤ 1 (by projection if necessary,
which is Lipschitzian). Then

E[‖g(S)‖2] = E[〈f(S), g(S)〉] = E[〈f(S)− wn(S), g(S)〉] + E[〈wn(S), g(S)〉]︸ ︷︷ ︸
=0

.

Note that wn → f in L1(P ). Then for any ε > 0, an application of Egorov’s theorem
(Lemma 12.6.1) and that E[‖g(S)‖] < ∞ gives that we can find sets Aε with P (Aε) ≥ 1 − ε
and for which wn → f uniformly on Aε. Then

E[‖g(S)‖2] = E[〈f(S)− wn(S), g(S)〉1 {S ∈ Aε}] + E[‖g(S)‖2 1 {S 6∈ Aε}]

≤ E
[

sup
s∈Aε
‖f(s)− wn(s)‖2 ‖g(S)‖2 1 {S ∈ Aε}

]
+ E[‖g(S)‖2 1 {S 6∈ Aε}]

→ E[‖g(S)‖2 1 {S 6∈ Aε}].
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as n ↑ ∞. We now employ the same device we use in the proof of Lemma 12.2.1. For m ∈ N,
let Bm =

⋃
n≤mA1/n. Then wn → f uniformly on Bm, and so E[‖g(S)‖2] ≤ E[‖g(S)‖2 1 {S 6∈ Bm}],

that is, E[‖g(S)‖2 1 {S ∈ Bm}] = 0. Monotone convergence implies 0 = limm→∞ E[‖g(S)‖2 1 {S ∈ Bm}] =
E[‖g(S)‖2 1 {S ∈ B∞}] where B∞ =

⋃
mBn. As P (B∞) = 1 by continuity of measure, we have

E[‖g(S)‖2] = 0, giving the lemma.

12.6.4 Proof of Theorem 12.5.6

The following lemma gives the lower bound in the theorem and is fairly straightforward.

Lemma 12.6.4. For S = f(X), we have

pcal,up(f) ≤ dcal,up(f) ≤ pce(S). (12.6.2)

Proof Fix any partition A, and define qA(s) to be the (unique) set A such that s ∈ A (so we
quantize s). Then set g(s) = E[Y | S ∈ qA(s)] to be the expectation of Y conditional on S being in
the same partition element as s. Then g(S) = E[Y | g(S)] with probability 1, so that g is perfectly
calibrated, and

pcal,up(f) ≤ dcal,up(f) ≤ E[‖S − g(S)‖]

=
∑
A∈A

E[‖S − E[Y | S ∈ A]‖1 {S ∈ A}]

≤
∑
A∈A

E [(‖S − E[S | S ∈ A]‖+ ‖E[S − Y | S ∈ A]‖) 1 {S ∈ A}]

≤
∑
A∈A

diam(A)P(S ∈ A) +
∑
A∈A
‖E[(S − Y )1 {S ∈ A}]‖ .

Taking an infimum gives the claim (12.6.2).

To prove the claimed upper bound requires more work. For pedagogical reasons, let us attempt
to prove a similar upper bound relating pce(S) to pcal,low(f). We might begin with a partition A
with maximal diameter diam(A) ≤ ε for A ∈ A, and for random variables (S, V, Y ), begin with the
first term in the partition error, whence

CE(S,A) ≤
∑
A∈A
‖E[(S − V )1 {S ∈ A}]‖+ ‖E[(V − Y )1 {S ∈ A}]‖

≤ E[‖S − V ‖] +
∑
A∈A
‖E[(V − Y )1 {V ∈ A}]‖+

∑
A∈A
‖E[(V − Y )(1 {S ∈ A} − 1 {V ∈ A})]‖

≤ E[‖S − V ‖] + E[‖E[Y | V ]− V ‖] +
∑
A∈A
‖E[(V − Y )(1 {S ∈ A} − 1 {V ∈ A})]‖

by Jensen’s inequality applied to conditional expectations, once we recognize E[(Y−V )1 {V ∈ A}] =
E[(E[Y | V ]− V )1 {V ∈ A}]. For the final term, a straightforward computation yields∑
A∈A
‖E[(V − Y )(1 {S ∈ A} − 1 {V ∈ A})]‖ ≤ diam(Y)

∑
A∈A

[P(S ∈ A, V 6∈ A) + P(S 6∈ A, V 6∈ A)]

= 2 diam(Y)P(S and V belong to different A ∈ A).
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If S and V had continuous distributions, we would expect the probability that they fail to belong
to the same partition elements to scale as E[‖S − V ‖]. This may fail, but to rectify the issue, we
can randomize.

Consequently, let us consider the randomized partition error, which we index with ε > 0 and
for U ∼ Uniform[−1, 1]k define as

rpceε(S) := inf
A

{∑
A∈A
‖E[(S − Y )1 {S + εU ∈ A}]‖+

∑
A∈A

diam(A)P(S ∈ A)

}
. (12.6.3)

(The choice of uniform [−1, 1]k is only made for convenience in the calculations to follow.) Letting
ck = ‖1k‖∗, we see immediately that

pce(S) ≤ rpceε(S) + ckε

for all ε ≥ 0. We can say more.

Lemma 12.6.5. Let ε > 0. Then for any random variable V ,

rpceε(S) ≤ E[‖S − V ‖] + E[‖E[Y | V ]− V ‖] +
2k

ε
E[‖Y − S‖ ‖V − S‖∞].

Note that by combining Lemma 12.6.5 with the display above and recognizing that ‖Y − S‖ ≤
diam(Y) with probability 1, we have the theorem.
Proof We replicate the calculation bounding CE(S,A) above, but while allowing the random-
ization. Let A be a partition of Rk into hypercubes of width ε, that is, [−ε, ε]k + εz, where z ∈ 2Zk
ranges over integer vectors with even entries. Then diam(A) ≤ ckε, and

‖E[(S − Y )1 {S + εU ∈ A}]‖
≤ ‖E[(S − V )1 {S + εU ∈ A}]‖+ ‖E[(V − Y )1 {V + εU ∈ A}]‖

+ ‖E[(V − Y )(1 {S + εU ∈ A} − 1 {S + εU ∈ A})]‖
≤ ‖E[(S − V )1 {S + εU ∈ A}]‖+ ‖E[(V − Y )1 {V + εU ∈ A}]‖

+ E [‖V − Y ‖ · (P(V + εU ∈ A,S + εU 6∈ A | V, S) + P(S + εU ∈ A, V + εU 6∈ A | V, S, Y ))]

Summing over sets A and using the triangle inequality and that S + εU ∈ A for some A, we find∑
A∈A
‖E[(S − Y )1 {S + εU ∈ A}]‖ ≤ E[‖S − V ‖] + E[‖E[Y | V ]− V ‖] (12.6.4)

+ 2E
[
‖V − Y ‖

∑
A∈A

P(V + εU ∈ A,S + εU 6∈ A | V, S, Y )

]
.

We now may bound the probability in inequality (12.6.4). Recall that A = [−ε, ε]k + εz for
some z ∈ 2Zk, and fix v, s ∈ Rk. Let B = [−1, 1]k be the `∞ ball. Then

P(v + εU ∈ B, s+ εU 6∈ B) = P(U 6∈ ε−1(B − s) | U ∈ ε−1(B − v))P(v + εU ∈ B)

≤
k ‖s− v‖∞

ε
P(v + εU ∈ B), (12.6.5)

where inequality (12.6.5) follows because if s, v ∈ Rk are the centers of two `∞ balls Bs and Bv
of radius 1, and if δ = ‖s− v‖∞, then the volume of Bv \ Bs is at most kδk/δk−1 = kδ. (See
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s

v

δ

δ

1
δk−1 hypercubes

Figure 12.2. The volume argument in inequality (12.6.5). In k dimensions, the hypercube of
side-length δ can be replicated 1/δk−1 times on each exposed base of the cube centered at v, where
δ = ‖s− v‖∞. There are at most k such faces, giving volume at most kδk/δk−1 = kδ to the gray
region.

Figure 12.2. The k-dimensional surface area of one side of a hypercube of radius δ is 2kδk−1, and
we can put at most 1/δk−1 boxes in each facial part of the grey region.)

Substituting inequality (12.6.5) into the bound (12.6.4) and conditioning and deconditioning on
V, S, we find that∑

A∈A
‖E[(S − Y )1 {S + εU ∈ A}]‖

≤ E[‖S − V ‖] + E[‖E[Y | V ]− V ‖] +
2k

ε
E
[
‖V − Y ‖

∑
A∈A
‖V − S‖∞ 1 {V + εU ∈ A}

]
= E[‖S − V ‖] + E[‖E[Y | V ]− V ‖] +

2k

ε
E[‖Y − V ‖ ‖V − S‖∞].

Taking an infimum over partitions A gives the lemma.

12.7 Bibliography

Draft: Calibration remains an active research area. The initial references for online calibration are
Foster and Vohra [84], Dawid and Vovk [59]. The idea of calibeating is most present in Foster and
Hart [85]. Our proof of calibeating is based on Kumar et al. [123]. Blasiok et al. [31] demonstrate
the equivalence of the different metrics for measuring calibration, focusing on the case of binary
prediction; the extension to vector-valued Y appears to be new. The ideas of the postprocessing
gap and also descend from Blasiok et al. [32], and the connections with general proper losses also
appear to be new. Propositions 12.5.1, 12.5.2, and 12.5.3 are new in that they are the first to
demonstrate that the measures are valid calibration measures (Definition 12.1, part (i)).
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JCD Comment: A few more things to add either in the bibliography or the introduction
to the section:

1. We only really do calibration for binary/multiclass things. One would also really like to
predict full distributions Pt on general outcomes Y , which is harder (nearly impossible)
to do in any conditional sense.

2. It’s much easier to do predictive inference (cover) because don’t need accuracy

3. Maybe comment on variants for top entry (from multiclass to binary) classification
and why that is important. Maybe in the middle, maybe here.

12.8 Exercises

JCD Comment: Add a uniform convexity version of Proposition 12.3.5 as an exercise.

JCD Comment: Can we add an exercise about achieving weak calibration for different
classes of functions?

JCD Comment: A few potential exercises:

(i) Deal with any class W for which E[〈w, f〉] = 0 for all w ∈ W means f = 0, then
still get a continuous calibration measure

JCD Comment: Exercise: do Aaditya’s top-class calibration approach.

JCD Comment: Do we need more commentary on calibeating? Maybe an exercise on
empirics? Project ideas: calibeating with witnesses in higher dimensions, doing calibeat-
ing in higher dimensions, optimality results / lower bounds.

JCD Comment: Do Example 3.2 of Kumar et al. [123] as exercise

JCD Comment: Coding and empirical exercises on calibration?

JCD Comment: Remark on impossibility of inference of ece? Exercises on its impos-
sibility too, perhaps, and one-sided estimation of it. And maybe some minimax lower
bounds on the Lipschitz one as well I think.

JCD Comment: Exercise potential: let W be a collection from an RKHS
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Chapter 13

Surrogate Risk Consistency: the
Classification Case

I. The setting: supervised prediction problem

(a) Have data coming in pairs (X,Y ) and a loss L : R×Y → R (can have more general losses)

(b) Often, it is hard to minimize L (for example, if L is non-convex), so we use a surrogate ϕ

(c) We would like to compare the risks of functions f : X → R:

Rϕ(f) := E[ϕ(f(X), Y )] and R(f) := E[L(f(X), Y )]

In particular, when does minimizing the surrogate give minimization of the true risk?

(d) Our goal: when we define the Bayes risks R∗ϕ and R∗

Definition 13.1 (Fisher consistency). We say the loss ϕ is Fisher consistent if for any
sequence of functions fn

Rϕ(fn)→ R∗ϕ implies R(fn)→ R∗

II. Classification case

(a) We focus on the binary classification case so that Y ∈ {−1, 1}
1. Margin-based losses: predict sign correctly, so for s ∈ R,

L(s, y) = 1 {sy ≤ 0} and ϕ(s, y) = φ(ys).

2. Consider conditional version of risks. Let η(x) = P(Y = 1 | X = x) be conditional
probability, then

R(f) = E[1 {f(X)Y ≤ 0}] = P(sign(f(X)) 6= Y )

= E [η(X)1 {f(X) ≤ 0}+ (1− η(X))1 {f(X) ≥ 0}] = E[`(f(X), η(X))]

and

Rφ(f) = E[φ(Y f(X))]

= E [η(X)φ(f(X)) + (1− η(X))φ(−f(X))] = E[`φ(f(X), η(X))]

where we have defined the conditional risks

`(s, η) = η1 {s ≤ 0}+ (1− η)1 {s ≥ 0} and `φ(s, η) = ηφ(s) + (1− η)φ(−s).
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3. Note the minimizer of `: we have s∗(η) = sign(η−1/2), and f∗(X) = sign(η(X)−1/2)
minimizes risk R(f) over all f

4. Minimizing f can be achieved pointwise, and we have

R∗ = E[inf
s
`(s, η(X))] and R∗φ = E[inf

s
`φ(s, η(X))].

(b) Example 13.0.1 (Exponential loss): Consider the exponential loss, used in Ad-
aBoost (among other settings), which sets φ(s) = e−s. In this case, we have

argmin
s

`φ(s, η) =
1

2
log

η

1− η
because

∂

∂s
`φ(s, η) = −ηe−s + (1− η)es.

Thus f∗φ(x) = 1
2 log η(x)

1−η(x) , and this is Fisher consistent. 3

(c) Classification calibration

1. Consider pointwise versions of risk (all that is necessary, turns out)

2. Define the infimal conditional φ-risks as

`∗φ(η) := inf
s
`φ(s, η) and `wrong

φ (η) := inf
s(η−1/2)≤0

`φ(s, η).

3. Intuition: if we always have `∗φ(η) < `wrong
φ (η) for all η, we should do fine

4. Define the sub-optimality function H : [0, 1]→ R

H(δ) := `wrong
φ

(
1 + δ

2

)
− `∗φ

(
1 + δ

2

)
.

Definition 13.2. The margin-based loss φ is classification calibrated if H(δ) > 0 for
all δ > 0. Equivalently, for any η 6= 1

2 , we have `∗φ(η) < `wrong
φ (η).

5. Example (Example 13.0.1 continued): For the exponential loss, we have

`wrong
φ (η) = inf

s(2η−1)≤0

{
ηe−s + (1− η)es

}
= e0 = 1

while the unconstrained minimal conditional risk is

`∗φ(η) = η

√
1− η
η

+ (1− η)

√
η

1− η
= 2
√
η(1− η),

so that H(δ) = 1−
√

1− δ2 ≥ 1
2δ

2. 3

Example 13.0.2 (Hinge loss): We can also consider the hinge loss, which is
defined as φ(s) = [1− s]+. We first compute the minimizers of the conditional
risk; we have

`φ(s, η) = η [1− s]+ + (1− η) [1 + s]+ ,

whose unique minimizer (for η 6∈ {0, 1
2 , 1}) is s(η) = sign(2η − 1). We thus have

`∗φ(η) = 2 min{η, 1− η} and `wrong
φ (η) = η + (1− η) = 1.

We obtain H(δ) = 1−min{1 + δ, 1− δ} = δ. 3

Comparing to the sub-optimality function for exp-loss, is tighter.
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6. Pictures: use exponential loss, with η and without.

(d) Our goal: using classification calibration, find some function ψ such that ψ(Rφ(f)−R∗φ) ≤
R(f)−R∗, where ψ(δ) > 0 for all δ > 0. Can we get a convex version of H, them maybe
use Jensen’s inequality to get the results? Turns out we will be able to do this.

III. Some necessary asides on convex analysis

(a) Epigraphs and closures

1. For a function f , the epigraph epi f is the set of points (x, t) such that f(x) ≤ t
2. A function f is said to be closed if its epigraph is closed, which for convex f occurs if

and only if f is lower semicontinuous (meaning lim infx→x0 f(x) ≥ f(x0))

3. Note: a one-dimensional closed convex function is continuous

Lemma 13.0.3. Let f : R→ R be convex. Then f is continuous on the interior of its
domain.

(Proof in notes; just give a picture)

Lemma 13.0.4. Let f : R→ R be closed convex. Then f is continuous on its domain.

4. The closure of a function f is the function cl f whose epigraph is the closed convex
hull of epi f (picture)

(b) Conjugate functions (Fenchel-Legendre transform)

1. Let f : Rd → R be an (arbitrary) function. Its conjugate (or Fenchel-Legendre conju-
gate) is defined to be

f∗(s) := sup
t
{〈t, s〉 − f(t)} .

(Picture here) Note that we always have f∗(s) + f(t) ≥ 〈s, t〉, or f(t) ≥ 〈s, t〉 − f∗(s)
2. The Fenchel biconjugate is defined to be f∗∗(t) = sups{〈t, s〉 − f∗(s)} (Picture here,

noting that f ′(t) = −s implies f∗(t) = ts− f(t))

3. In fact, the biconjugate is the largest closed convex function smaller than f :

Lemma 13.0.5. We have

f∗∗(x) = sup
a∈Rd,b∈R

{〈a, x〉 − b : 〈a, t〉 − b ≤ f(t) for all t} .

Proof Let A ⊂ Rd × R denote all the pairs (a, b) minorizing f , that is, those pairs
such that f(t) ≥ 〈a, t〉 − b for all t. Then we have

(a, b) ∈ A⇔ f(t) ≥ 〈a, t〉 − b for all t

⇔ b ≥ 〈a, t〉 − f(t) all t

⇔ b ≥ f∗(a) and a ∈ dom f∗.

Thus we obtain the following sequence of equalities:

sup
(a,b)∈A

{〈a, t〉 − b} = sup {〈a, t〉 − b : a ∈ dom f∗,−b ≤ −f∗(a)}

= sup {〈a, t〉 − f∗(a)} .

So we have all the supporting hyperplanes to the graph of f as desired.
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4. Other interesting lemma:

Lemma 13.0.6. Let h be either (i) continuous on [0, 1] or (ii) non-decreasing on [0, 1].
(And set h(1 + δ) = +∞ for δ > 0.) If h satisfies h(t) > 0 for t > 0 and h(0) = 0,
then f(t) = h∗∗(t) satisfies f(t) > 0 for any t > 0.

(Proof by picture)

IV. Classification calibration results:

(a) Getting quantitative bounds on risk: define the ψ-transform via

ψ(δ) := H∗∗(δ). (13.0.1)

(b) Main theorem for today:

Theorem 13.0.7. Let φ be a margin-based loss function and ψ the associated ψ-transform.
Then for any f : X → R,

ψ(R(f)−R∗) ≤ Rφ(f)−R∗φ. (13.0.2)

Moreover, the following three are equivalent:

1. The loss φ is classification-calibrated

2. For any sequence δn ∈ [0, 1],

ψ(δn)→ 0 ⇔ δn → 0.

3. For any sequence of measurable functions fn : X → R,

Rφ(fn)→ R∗φ implies R(fn)→ R∗.

1. Some insights from theorem. Recall examples 13.0.1 and 13.0.2. For both of these, we
have that ψ(δ) = H(δ), as H is convex. For the hinge loss, φ(s) = [1− s]+, we obtain
for any f that

P(Y f(X) ≤ 0)− inf
f

P(Y f(X) ≤ 0) ≤ E
[
[1− Y f(X)]+

]
− inf

f
E
[
[1− Y f(X)]+

]
.

On the other hand, for the exponential loss, we have

1

2

(
P(Y f(X) ≤ 0)− inf

f
P(Y f(X) ≤ 0)

)2

≤ E [exp(−Y f(X))]− inf
f

E [exp(−Y f(X))] .

The hinge loss is sharper.

2. Example 13.0.8 (Regression for classification): What about the surrogate loss
1
2(f(x) − y)2? In the homework, show which margin φ this corresponds to, and
moreover, H(δ) = 1

2δ
2. So regressing on the labels is consistent. 3

(c) Proof of Theorem 13.0.7 The proof of the theorem proceeds in several parts.

1. We first state a lemma, which follows from the results on convex functions we have
already proved. The lemma is useful for several different parts of our proof.

Lemma 13.0.9. We have the following.

a. The functions H and ψ are continuous.
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b. We have H ≥ 0 and H(0) = 0.

c. If H(δ) > 0 for all δ > 0, then ψ(δ) > 0 for all δ > 0.

Because H(0) = 0 and H ≥ 0: we have

`wrong
φ (1/2) := inf

s(1−1)≤0
`φ(s, 1/2) = inf

s
`φ(s, 1/2) = `∗φ(1/2),

so H(0) = `∗φ(1/2) − `∗φ(1/2) = 0. (It is clear that the sub-optimality gap H ≥ 0 by
construction.)

2. We begin with the first statement of the theorem, inequality (13.0.2). Consider first
the gap (for a fixed margin s) in conditional 0-1 risk,

`(s, η)− inf
s
`(s, η) = η1 {s ≤ 0}+ (1− η)1 {s ≥ 0} − η1 {η ≤ 1/2} − (1− η)1 {η ≥ 1/2}

=

{
0 if sign(s) = sign(η − 1

2)

η ∨ (1− η)− η ∧ (1− η) = |2η − 1| if sign(s) 6= sign(η − 1
2).

In particular, we obtain that the gap in risks is

R(f)−R∗ = E [1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|] . (13.0.3)

Now we use expression (13.0.3) to get an upper bound on R(f) − R∗ via the φ-risk.
Indeed, consider the ψ-transform (13.0.1). By Jensen’s inequality, we have that

ψ(R(f)−R∗) ≤ E [ψ(1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|)] .

Now we recall from Lemma 13.0.9 that ψ(0) = 0. Thus we have

ψ(R(f)−R∗) ≤ E [ψ(1 {sign(f(X)) 6= sign(2η(X)− 1)} |2η(X)− 1|)]
= E [1 {sign(f(X)) 6= sign(2η(X)− 1)}ψ(|2η(X)− 1|)] (13.0.4)

Now we use the special structure of the suboptimality function we have constructed.
Note that ψ ≤ H, and moreover, we have for any s ∈ R that

1 {sign(s) 6= sign(2η − 1)}H(|2η − 1|) = 1 {sign(s) 6= sign(2η − 1)}
[

inf
s(2η−1)≤0

`φ(s, η)− `∗φ(η)

]
≤ `φ(s, η)− `∗φ(η), (13.0.5)

because (1 + |2η − 1|)/2 = max{η, 1− η}.
Combining inequalities (13.0.4) and (13.0.5), we see that

ψ(R(f)−R∗) ≤ E [1 {sign(f(X)) 6= sign(2η(X)− 1)}H(|2η(X)− 1|)]
≤ E

[
`φ(f(X), η(X))− `∗φ(η(X))

]
= Rφ(f)−R∗φ,

which is our desired result.

3. Having proved the quantitative bound (13.0.2), we now turn to proving the second
part of Theorem 13.0.7. Using Lemma 13.0.9, we can prove the equivalence of all three
items.
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We begin by showing that IV(b)1 implies IV(b)2. If φ is classification calibrated, we
have H(δ) > 0 for all δ > 0. Because ψ is continuous and ψ(0) = 0, if δ → 0, then
ψ(δ) → 0. It remains to show that ψ(δ) → 0 implies that δ → 0. But this is clear
because we know that ψ(0) = 0 andψ(δ) > 0 whenever δ > 0, and the convexity of ψ
implies that ψ is increasing.
To obtain IV(b)3 from IV(b)2, note that by inequality (13.0.2), we have

ψ(R(fn)−R∗) ≤ Rφ(fn)−R∗φ → 0,

so we must have that δn = R(fn)−R∗ → 0.
Finally, we show that IV(b)1 follows from IV(b)3. Assume for the sake of contradiction
that IV(b)3 holds but IV(b)1 fails, that is, φ is not classification calibrated. Then there
must exist η < 1/2 and a sequence sn ≥ 0 (i.e. a sequence of predictions with incorrect
sign) satisfying

`φ(sn, η)→ `∗φ(η).

Construct the classification problem with a singleton X = {x}, and set P(Y = 1) = η.
Then the sequence fn(x) = sn satisfies Rφ(fn)→ R∗φ but the true 0-1 risk R(fn) 6→ R∗.

V. Classification calibration in the convex case

a. Suppose that φ is convex, which we often use for computational reasons

b.

Theorem 13.0.10 (Bartlett, Jordan, McAuliffe [19]). If φ is convex, then φ is classification
calibrated if and only if φ′(0) exists and φ′(0) < 0.

Proof First, suppose that φ is differentiable at 0 and φ′(0) < 0. Then

`φ(s, η) = ηφ(s) + (1− η)φ(−s)

satisfies `′φ(0, η) = (2η − 1)φ′(0), and if φ′(0) < 0, this quantity is negative for η > 1/2.
Thus the minimizing s(η) ∈ (0,∞]. (Proof by picture, but formalize in full notes.)

For the other direction assume that φ is classification calibrated. Recall the definition of
a subgradient gs of the function φ at s ∈ R is any gs such that φ(t) ≥ φ(s) + gs(t− s) for
all t ∈ R. (Picture.) Let g1, g2 be such that `(s) ≥ `(0) + g1s and `(s) ≥ `(0) + g2s, which
exist by convexity. We show that both g1, g2 < 0 and g1 = g2. By convexity we have

`φ(s, η) ≥ η(φ(0) + g1s) + (1− η)(φ(0)− g2s)

= [ηg1 − (1− η)g2] s+ φ(0). (13.0.6)

We first show that g1 = g2, meaning that φ is differentiable. Without loss of generality,
assume g1 > g2. Then for η > 1/2, we would have ηg1 − (1− η)g2 > 0, which would imply
that

`φ(s, η) ≥ φ(0) ≥ inf
s′≤0

{
ηφ(s′) + (1− η)φ(−s′)

}
= `wrong

φ (η),

for all s ≥ 0 by (13.0.6), by taking s′ = 0 in the second inequality. By our assumption of
classification calibration, for η > 1/2 we know that

inf
s
`φ(s, η) < inf

s≤0
`φ(s, η) = `wrong

φ (η) so `∗φ(η) = inf
s≥0

`φ(s, η),
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and under the assumption that g1 > g2 we obtain `∗φ(η) = infs≥0 `φ(s, η) > `wrong
φ (η), which

is a contradiction to classification calibration. We thus obtain g1 = g2, so that the function
φ has a unique subderivative at s = 0 and is thus differentiable.

Now that we know φ is differentiable at 0, consider

ηφ(s) + (1− η)φ(−s) ≥ (2η − 1)φ′(0)s+ φ(0).

If φ′(0) ≥ 0, then for s ≥ 0 and η > 1/2 we must have the right hand side is at least
φ(0), which contradicts classification calibration, because we know that `∗φ(η) < `wrong

φ (η)
exactly as in the preceding argument.

13.1 General results

JCD Comment: Here we should have some more general results on surrogate risk
consistency.

I. Setting: we have a loss (risk) L : Rk × Y → R+ and instead wish to minimize a surrogate
ϕ : Rk × Y → R for it

a. Say it’s Fisher consistent (or infinite sample consistent) if Rϕ(fn)→ R?ϕ implies R(fn)→
R?

b. Reduce to pointwise cases, compare non-uniform to uniform results (noting that in cases
where L is discrete, they are the same—requires a proof)

c. Basically, this is Question 13.4, except we will use finite Y I think (can still leave the super
general version in)

13.2 Proofs of convex analytic results

13.2.1 Proof of Lemma 13.0.4

First, let (a, b) ⊂ dom f and fix x0 ∈ (a, b). Let x ↑ x0, which is no loss of generality, and we may
also assume x ∈ (a, b). Then we have

x = sa+ (1− s)x0 and x0 = βb+ (1− β)x

for some s, β ∈ [0, 1]. Rearranging by convexity,

f(x) ≤ sf(a) + (1− s)f(x0) = f(x0) + s(f(a)− f(x0))

and

f(x0) ≤ βf(b) + (1− β)f(x), or
1

1− β
f(x0) ≤ f(x) +

β

1− β
f(b).

Taking s, β → 0, we obtain

lim inf
x→x0

f(x) ≥ f(x0) and lim sup
x→x0

f(x) ≤ f(x0)

as desired.
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13.2.2 Proof of Lemma 13.0.4

We need only consider the endpoints of the domain by Lemma 13.0.3, and we only need to show
that lim supx→x0 f(x) ≤ f(x0). But this is obvious by convexity: let x = ty + (1 − t)x0 for any
y ∈ dom f , and taking t→ 0, we have f(x) ≤ tf(y) + (1− t)f(x0)→ f(x0).

13.2.3 Proof of Lemma 13.0.6

We begin with the case (i). Define the function hlow(t) := infs≥t h(s). Then because h is continuous,
we know that over any compact set it attains its infimum, and thus (by assumption on h) hlow(t) > 0
for all t > 0. Moreover, hlow is non-decreasing. Now define flow(t) = h∗∗low(t) to be the biconjugate
of hlow; it is clear that f ≥ flow as h ≥ hlow. Thus we see that case (ii) implies case (i), so we turn
to the more general result to see that flow(t) > 0 for all t > 0.

For the result in case (ii), assume for the sake of contradiction there is some z ∈ (0, 1) satisfying
h∗∗(z) = 0. It is clear that h∗∗(0) = 0 and h∗∗ ≥ 0, so we must have h∗∗(z/2) = 0. Now, by
assumption we have h(z/2) = b > 0, whence we have h(1) ≥ b > 0. In particular, the piecewise
linear function defined by

g(t) =

{
0 if t ≤ z/2

b
1−z/2(t− z/2) if t > z/2

is closed, convex, and satisfies g ≤ h. But g(z) > 0 = h∗∗(z), a contradiction to the fact that h∗∗

is the largest (closed) convex function below h.

13.3 Exercises

Exercise 13.1: Find the suboptimality function Hφ and ψ-transform for the binary classification
problem with the following losses.

(a) Logistic loss. That is,
φ(s) = log(1 + e−s)

(b) Squared error (ordinary regression). The surrogate loss in this case for the pair (x, y) is 1
2(f(x)−

y)2. Show that for y ∈ {−1, 1}, this can be written as a margin-based loss, and compute the
associated suboptimality function Hφ and ψ-transform. Is the squared error classification
calibrated?

Exercise 13.2: Suppose we have a regression problem with data (independent variables) x ∈ X
and y ∈ R. We wish to find a predictor f : X → R minimizing the probability of being far away
from the true y, that is, for some c > 0, our loss is of the form

L(f(x), y) = 1 {|y − f(x)| ≥ c} .

Show that no loss of the form ϕ(s, y) = |s − y|p, where p ≥ 1, is Fisher consistent for the loss L,
even if the distribution of Y conditioned on X = x is symmetric about its mean E[Y | X]. That is,
show there exists a distribution on pairs X,Y such that the set of minimizers of the surrogate

Rϕ(f) := E[ϕ(f(X), Y )]

is not included in the set of minimizers of the true risk, R(f) = P(|Y − f(X)| ≥ c), even if the
distribution of Y (conditional on X) is symmetric.
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Exercise 13.3 (Empirics of classification calibration): In this problem you will compare the
performance of hinge loss minimization and an ordinary linear regression in terms of classifica-
tion performance. Specifically, we compare the performance of the hinge surrogate loss with the
regression surrogate when the data is generated according to the model

y = sign(〈θ∗, x〉+ σZ), Z ∼ N(0, 1) (13.3.1)

where θ∗ ∈ Rd is a fixed vector, σ ≥ 0 is an error magnitude, and Z is a standard normal random
variable. We investigate the model (13.3.1) with a simulation study.

Specifically, we consider the following set of steps:

(i) Generate two collections of n datapoints in d dimensions according to the model (13.3.1),
where θ ∈ Rd is chosen (ahead of time) uniformly at random from the sphere {θ ∈ Rd : ‖θ‖2 =
R}, and where each xi ∈ Rd is chosen as N(0, Id×d). Let (xi, yi) denote pairs from the first
collection and (xtest

i , ytest
i ) pairs from the second.

(ii) Set

θ̂hinge = argmin
θ:‖θ‖2≤R

1

n

n∑
i=1

[1− yi〈xi, θ〉]+

and

θ̂reg = argmin
θ

1

2n

n∑
i=1

(yi − 〈xi, θ〉)2 = argmin
θ
‖Xθ − y‖22 .

(iii) Evaluate the 0-1 error rate of the vectors θ̂hinge and θ̂reg on the held-out data points {(xtest
i , ytest

i )}ni=1.

Perform the preceding steps (i)–(iii), using any n ≥ 100 and d ≥ 10 and a radius R = 5, for
different standard deviations σ = {0, 1, . . . , 10}; perform the experiment a number of times. Give
a plot or table exhibiting the performance of the classifiers learned on the held-out data. How do
the two compare? Given that for the hinge loss we know Hφ(δ) = δ (as presented in class), what
would you expect based on the answer to Question 13.1?

I have implemented (in the julia language; see http://julialang.org/) methods for solving
the hinge loss minimization problem with stochastic gradient descent so that you do not need to.
The file is available at this link. The code should (hopefully) be interpretable enough that if julia
is not your language of choice, you can re-implement the method in an alternative language.

Exercise 13.4: In this question, we generalize our results on classification calibration and surro-
gate risk consistency to a much broader supervised learning setting. Consider the following general
supervised learning problem, where we assume that we have data in pairs (X,Y ) ∈ X × Y, where
X and Y are general spaces.

Let L : Rm × Y → R+ be a loss function we wish to minimize, so that the loss of a prediction
function f : X → Rm for the pair (x, y) is L(f(x), y). Let ϕ : Rm × Y → R be an arbitrary
surrogate, where ϕ(f(x), y) is the surrogate loss. Define the risk and ϕ-risk

R(f) := E[L(f(X), Y )] and Rϕ(f) := E[ϕ(f(X), Y )].

Let PY denote the space of all probability distributions on Y, and define the conditional (pointwise)
risks ` : Rm × PY → R and `ϕ : Rm × PY → R by

`(s, P ) =

∫
Y
L(s, y)p(y)dy and `ϕ(s, P ) =

∫
Y
`(s, y)p(y)dy.
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(Here for simplicity we simply write integration against dy; you may make this fully general if you
wish.) Let `∗(P ) = infs `(s, P ) denote the minimal conditional risk, and similarly for `∗ϕ(P ), when
Y has distribution P . If Px denotes the distribution of Y conditioned on X = x, then we may
rewrite the risk functionals as

R(f) = E[`(f(X), PX)] and Rϕ(f) = E[`ϕ(f(X), PX)].

We will show that the same machinery we developed for classification calibration extends to this
general supervised learning setting.

For ε ≥ 0, define the suboptimality gap function

∆ϕ(ε, P ) := inf
s∈Rm

{
`ϕ(s, P )− `∗ϕ(P ) : `(s, P )− `∗(P ) ≥ ε

}
, (13.3.2)

which measures the gap between achievable (pointwise) risk and the best surrogate risk when we
enforce that the true loss is not minimized. Also define the uniform suboptimality function

∆ϕ(ε) := inf
s∈Rm,P∈PY

{
`ϕ(s, P )− `∗ϕ(P ) : `(s, P )− `∗(P ) ≥ ε

}
.

(Compare this with the definition of ∆ for the classification case to gain intuition.)

(a) A uniform result: let ∆∗∗ϕ (ε) be the biconjugate of ∆ϕ (that is, ∆∗∗ϕ is the largest convex function
below ∆ϕ). Show that

∆∗∗ϕ (R(f)−R∗) ≤ Rϕ(f)−R∗ϕ.

Prove that ∆ϕ(ε) > 0 for all ε > 0 implies if Rϕ(fn)→ R∗ϕ, then R(fn)→ R∗.

(b) We say that the loss ϕ is uniformly calibrated if ∆ϕ(ε) > 0 for all ε > 0. Show that, in the
margin-based binary classification case with loss φ : R → R, uniform calibration as defined
here is equivalent to classification-calibration as defined in class. You may assume that the
margin-based loss φ is continuous.

(c) A non-uniform result: assume that for all distributions P ∈ PY on the set Y, we have

∆ϕ(ε, P ) > 0

if ε > 0. (We call this calibration.) Assume that there exists an upper bound function B : X →
R+ such that E[B(X)] <∞ and `(s, Px) ≤ `∗(Px) +B(x) for all x and s ∈ Rm. For example, if
the loss L is bounded, this holds. Show that if the sequence of functions fn : X → Rm satisfies

Rϕ(fn)→ R∗ϕ then R(fn)→ R∗.

Equivalently, show that for any distribution P on X ×Y, for all ε > 0 there exists a δ > 0 such
that

Rϕ(f) ≤ R∗ϕ + δ implies R(f) ≤ R∗ + ε.

(You may ignore any measurability issues that come up.)
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Chapter 14

Divergences, classification, and risk

JCD Comment: There is so much to do in this section.

1. Change entropies to all be H(Y ) and H(Y | X) or H(Y | q(X))

2. For losses or risks, probably ` would be better and L for population loss (risk), but
not sure

3. connect information to amount of entropy left, so there are alternative informations

4. Give proof of universal equivalence for the binary case, which is “easy” (at least,
easier...) because we can just use binary entropies of the form h(p) = infα{p`(α) +
(1 − p)`(−α)}, choosing distributions in a fairly transparent way to get them. (Will
probably write this down in afternoon.)

New outline:

I. Generalized entropies

(a) Definitions as infima of losses

(b) Gaps in prior and posterior risk become statistical information

II. From entropy to losses

(a) Basically that each entropy gives rise to a loss

(b) Generalized version of this: structured prediction problems (with an example)

III. Predictions with entropies and scoring rules

(a) Some similarity to the ideas in the Fenchel-Young losses paper, where given a vector s of
scores, we make predictions

predΩ(s) := argmax {〈p, s〉 − Ω(p)}

(b) If loss is generalized entropy loss, then there is duality in that loss minimizers s give
calibrated p when Ω is strictly (or perhaps uniformly?) convex

IV. Surrogate risk consistency with convex entropy-based losses

362



Lexture Notes on Statistics and Information Theory John Duchi

(a) Multiclass case: any time we have a uniformly convex loss, we get consistency (or uniformly
convex entropy I guess)

(b) The discrete losses for structured prediction

V. Loss equivalence

(a)

I. Bayes risk in classification problems

a. Recall definition (2.2.3) of f -divergence between two distributions P and Q as

Df (P ||Q) :=

∫
q(x)f

(
p(x)

q(x)

)
dx,

where f : R+ → R is a convex function satisfying f(1) = 0. If f is not linear, then
Df (P ||Q) > 0 unless P = Q.

b. Focusing on binary classification case, let us consider some example risks and see what
connections they have to f -divergences. (Recall we have X ∈ X and Y ∈ {−1, 1} we would
like to classify.)

1. We require a few definitions to understand the performance of different classification
strategies. In particular, we consider the difference between the risk possible when we
see a point to classify and when we do not.

2. The prior risk is the risk attainable without seeing x, we have for a fixed sign α ∈ R the
definition

Rprior(α) := P (Y = 1)1 {α ≤ 0}+ P (Y = −1)1 {α ≥ 0} , (14.0.1)

and similarly the minimal prior risk, defined as

R∗prior := inf
α
{P (Y = 1)1 {α ≤ 0}+ P (Y = −1)1 {α ≥ 0}} = min{P (Y = 1), P (Y = −1)}.

(14.0.2)

3. Also have the prior φ-risk, defined as

Rφ,prior(α) := P (Y = 1)φ(α) + P (Y = −1)φ(−α), (14.0.3)

and the minimal prior φ-risk, defined as

R∗φ,prior := inf
α
{P (Y = 1)φ(α) + P (Y = −1)φ(−α)} . (14.0.4)

c. Examples of 0-1 loss and its friends: have X ∈ X and Y ∈ {−1, 1}.
1. Example 14.0.1 (Binary classification with 0-1 loss): What is Bayes risk of binary

classifier? Let

p+1(x) = p(x | Y = 1) =
P (Y = 1 | X = x)p(x)

P (Y = 1)
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be the density of X conditional on Y = 1 and similarly for p−1(x), and assume that
each class occurs with probability 1/2. Then

R∗ = inf
γ

∫
[1 {γ(x) ≤ 0}P (Y = 1 | X = x) + 1 {γ(x) ≥ 0}P (Y = −1 | X = x)] p(x)dx

=
1

2
inf
γ

∫
[1 {γ(x) ≤ 0} p+1(x) + 1 {γ(x) ≥ 0} p−1(x)] dx =

1

2

∫
min{p+1(x), p−1(x)}dx.

Similarly, we may compute the minimal prior risk, which is simply 1
2 by defini-

tion (14.0.2). Looking at the gap between the two, we obtain

R∗prior−R∗ =
1

2
−1

2

∫
min{p+1(x), p−1(x)}dx =

1

2

∫
[p1 − p−1]+ =

1

2
‖P1 − P−1‖TV .

That is, the difference is half the variation distance between P1 and P−1, the dis-
tributions of x conditional on the label Y . 3

2. Example 14.0.2 (Binary classification with hinge loss): We now repeat precisely
the same calculations as in Example 14.0.1, but using as our loss the hinge loss
(recall Example 13.0.2). In this case, the minimal φ-risk is

R∗φ =

∫
inf
α

[
[1− α]+ P (Y = 1 | X = x) + [1 + α]+ P (Y = −1 | X = x)

]
p(x)dx

=
1

2

∫
inf
α

[
[1− α]+ p1(x) + [1 + α]+ p−1(x)

]
dx =

∫
min{p1(x), p−1(x)}dx.

We can similarly compute the prior risk as R∗φ,prior = 1. Now, when we calculate
the improvement available via observing X = x, we find that

R∗φ,prior −R∗φ = 1−
∫

min{p1(x), p−1(x)}dx = ‖P1 − P−1‖TV ,

which is suggestively similar to Example 14.0.1. 3

d. Is there anything more we can say about this?

II. Statistical information, f -divergences, and classification problems

a. Statistical information

1. Suppose we have a classification problem with data X ∈ X and labels Y ∈ {−1, 1}. A
natural notion of information that X carries about Y is the gap

R∗prior −R∗, (14.0.5)

that between the prior risk and the risk attainable after viewing x ∈ X .

2. Didn’t present this. True definition of statistical information: suppose class 1 has
prior probability π and class −1 has prior 1−π, and let P1 and P−1 be the distributions
of X ∈ X given Y = 1 and Y = −1, respectively. The Bayes risk associated with the
problem is then

Bπ(P1, P−1) := inf
γ

∫
[1 {γ(x) ≤ 0} p1(x)π + 1 {γ(x) ≥ 0} p−1(x)(1− π)] dx (14.0.6)

=

∫
p1(x)π ∧ p−1(x)(1− π)dx
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and similarly, the prior Bayes risk is

Bπ := inf
α
{1 {α ≤ 0}π + 1 {α ≥ 0} (1− π)} = π ∧ (1− π). (14.0.7)

Then statistical information is

Bπ −Bπ(P1, P−1). (14.0.8)

3. Measure proposed by DeGroot [60] in experimental design problem; goal is to infer state
of world based on further experiments, want to measure quality of measurement.

4. Saw that for 0-1 loss, when a-priori each class was equally likely, then R∗prior − R∗ =
1
2 ‖P1 − P−1‖TV, and similarly for hinge loss (Example 14.0.2) that R∗φ,prior − R∗φ =
‖P1 − P−1‖TV.

5. Note that if P1 6= P−1, then the statistical information is positive.

b. Did present this. More general story? Yes.

1. Consider any margin-based surrogate loss φ, and look at the difference between

Bφ,π(P1, P−1) := inf
γ

∫
[φ(γ(x))p1(x)π + φ(−γ(x))p−1(x)(1− π)] dx

=

∫
inf
α

[φ(α)p1(x)π + φ(−α)p−1(x)(1− π)] dx

and the prior φ-risk, Bφ,π.

2. Note that

Bφ,π −Bφ,π(P1, P−1)

is simply gap in φ-risk R∗φ,prior −R∗φ for distribution with P (Y = 1) = π and

P (Y = y | X = x) =
p(x | Y = y)P (Y = y)

p(x)
=
py(x)π1{y=1}(1− π)1{y=−1}

πp1(x) + (1− π)p−1(x)
. (14.0.9)

c. Have theorem (see, for example, Liese and Vajda [131], or Reid and Williamson [150]):

Theorem 14.0.3. Let P1 and P−1 be arbitrary distributions on X , and let π ∈ [0, 1] be a
prior probability of a class label. Then there is a convex function fπ,φ : R+ → R satisfying
fπ,φ(1) = 0 such that

Bφ,π −Bφ,π(P1, P−1) = Dfπ,φ (P−1||P1) .

Moreover, this function fπ,φ is

fπ,φ(t) = sup
α

[
`∗φ(π)− πφ(α)t+ (1− π)φ(−α)

πt+ (1− π)

]
(tπ + (1− π)). (14.0.10)

Proof First, consider the integrated Bayes risk. Recalling the definition of the condi-
tional distribution η(x) = P (Y = 1 | X = x), we have

Bφ,π −Bφ,π(P1, P−1) =

∫ [
`∗φ(π)− `∗φ(η(x))

]
p(x)dx

=

∫
sup
α

[
`∗φ(π)− φ(α)P (Y = 1 | x)− φ(−α)P (Y = −1 | x)

]
p(x)dx

=

∫
sup
α

[
`∗φ(π)− φ(α)

p1(x)π

p(x)
− φ(−α)

p−1(x)(1− π)

p(x)

]
p(x)dx,
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where we have used Bayes rule as in (14.0.9). Let us now divide all appearances of the
density p1 by p−1, which yields

Bφ,π −Bφ,π(P1, P−1)

=

∫
sup
α

`∗φ(π)−
φ(α) p1(x)

p−1(x)π + φ(−α)(1− π)

p1(x)
p−1(x)π + (1− π)

( p1(x)

p−1(x)
π + (1− π)

)
p−1(x)dx.

(14.0.11)

By inspection, the representation (14.0.11) gives the result of the theorem if we can argue
that the function fπ is convex, where we substitute p1(x)/p−1(x) for t in fπ(t).

To see that the function fπ is convex, consider the intermediate function

sπ(u) := sup
α
{−πφ(α)u− (1− π)φ(−α)} .

This is the supremum of a family of linear functions in the variable u, so it is convex.
Moreover, as we noted in the first exercise set, the perspective of a convex function g,
defined by h(u, t) = tg(u/t) for t ≥ 0, is jointly convex in u and t. Thus, as

fπ(t) = `∗φ(π) + sπ

(
t

πt+ (1− π)

)
(πt+ (1− π)),

we have that fπ is convex. It is clear that fπ(1) = 0 by definition of `∗φ(π).

d. Take-home: any loss function induces an associated f -divergence. (There is a complete
converse, in that any f -divergence can be realized as the difference in prior and posterior
Bayes risk for some loss function; see, for example, Liese and Vajda [131] for results of this
type.)

III. Quantization and other types of empirical minimization

a. Do these equivalences mean anything? What about the fact that the suboptimality function
Hφ was linear for the hinge loss?

b. Consider problems with quantization: we must jointly learn a classifier (prediction or dis-
criminant function) γ and a quantizer q : X → {1, . . . , k}, where k is fixed and we wish
to find an optimal quantizer q ∈ Q, where Q is some family of quantizers. Recall the
notation (2.2.1) of quantization of f -divergence, so

Df (P0||P1 | q) =
k∑
i=1

P1(q−1(i))f

(
P0(q−1(i))

P1(q−1(i))

)
=

k∑
i=1

P1(Ai)f

(
P0(Ai)

P1(Ai)

)
where the Ai are the quantization regions of X .

c. Using Theorem 14.0.3, we can show how quantization and learning can be unified.

1. Quantized version of risk: for q : X → {1, . . . , k} and γ : [k]→ R,

Rφ(γ | q) = E[φ(Y γ(q(X)))]
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2. Rearranging and using integration,

Rφ(γ | q) = E[φ(Y γ(q(X)))] =

k∑
z=1

E[φ(Y γ(z)) | q(X) = z]P (q(X) = z)

=
k∑
z=1

[φ(γ(z))P (Y = 1 | q(X) = z) + φ(−γ(z))P (Y = −1 | q(X) = z)]P (q(X) = z)

=
k∑
z=1

[
φ(γ(z))

P (q(X) = z | Y = 1)P (Y = 1)

P (q(X) = z)
+ φ(−γ(z))

P (q(X) = z | Y = −1)P (Y = −1)

P (q(X) = z)

]
P (q(X) = z)

=

k∑
z=1

[φ(γ(z))P1(q(X) = z)π + φ(−γ(z))P−1(q(X) = z)(1− π)] .

3. Let P q denote the distribution with probability mass function

P q(z) = P (q(X) = z) = P (q−1({z})),

and define quantized Bayes φ-risk

R∗φ(q) = inf
γ
Rφ(γ | q)

Then for problem with P (Y = 1) = π, we have

R∗φ,prior −R∗φ(q) = Bφ,π −Bφ,π(P q
1 , P

q
−1) = Dfπ,φ (P−1||P1 | q) . (14.0.12)

d. Result unifying quantization and learning: we say that loss functions φ1 and φ2 are univer-
sally equivalent if they induce the same f divergence (14.0.10), that is, there is a constant
c > 0 and a, b ∈ R such that

fπ,φ1(t) = cfπ,φ2(t) + at+ b for all t. (14.0.13)

Theorem 14.0.4. Let φ1 and φ2 be equivalent margin-based surrogate loss functions. Then
for any quantizers q1 and q2,

R∗φ1(q1) ≤ R∗φ1(q2) if and only if R∗φ2(q1) ≤ cR∗φ2(q2).

Proof The proof follows straightforwardly via the representation (14.0.12). If φ1 and φ2

are equivalent, then we have that

R∗φ1,prior −R∗φ1(q) = Dfπ,φ1
(P−1||P1 | q) = cDfπ,φ2

(P−1||P1 | q) + a+ b

= c
[
R∗φ2,prior −R∗φ2(q)

]
+ a+ b

for any quantizer q. In particular, we have

R∗φ1(q1) ≤ R∗φ1(q2) if and only if R∗φ1,prior −R∗φ1(q1) ≥ R∗φ1,prior −R∗φ1(q2)

if and only if Dfπ,φ1
(P−1||P1 | q1) ≥ Dfπ,φ1

(P−1||P1 | q2)

if and only if Dfπ,φ2
(P−1||P1 | q1) ≥ Dfπ,φ2

(P−1||P1 | q2)

if and only if R∗φ2,prior −R∗φ2(q1) ≥ R∗φ2,prior −R∗φ2(q2).

Subtracting R∗φ2,prior from both sides gives our desired result.
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e. Some comments:

1. We have an interesting thing: if we wish to learn a quantizer and a classifier jointly,
then this is possible by using any loss equivalent to the true loss we care about.

2. Example: hinge loss and 0-1 loss are equivalent.

3. Turns out that the condition that the losses φ1 and φ2 be equivalent is (essentially)
necessary and sufficient for two quantizers to induce the same ordering [144]. This
equivalence is necessary and sufficient for the ordering conclusion of Theorem 14.0.4.

14.1 Generalized entropies

14.2 From entropy to losses

14.2.1 Classification case

JCD Comment: Notation: let P be the distribution on Y and let p the associated
p.m.f., with py = P (Y = y) for notational simplicity.

Say we have a (generalized) entropy H : ∆k → R, a concave function with H(p) > −∞ except
(potentially) when one of the pj = 0. From any generalized entropy H, we can define a convex loss
ϕ for which

H(p) = inf
s

k∑
y=1

pyL(s, y),

and this loss is
ϕ(s, y) = −sy + (−H)∗(s).

14.2.2 Structured prediction case

In the structured prediction case, where we represent y by a statistic τ(y) ∈ Rm so that

L(y′, y) := τ(y′)>Aτ(y),

we can define the generalized entropy (with some abuse of notation)

HL(P ) := min
y

EP
[
τ(y)>Aτ(Y )

]
.

We define the marginal polytope

M := Conv({τ(y)}y∈Y) =

∑
y∈Y

pyτ(y) | p ∈ ∆Y


and if we define the mean mapping µ : ∆Y →M by

µ(P ) := EP [τ(Y )] =
∑
y∈Y

pyτ(y),

we see that
HL(P ) = min

y∈Y
τ(y)>Aµ(P ) = inf

ν∈M
ν>Aµ(P ).
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Notably, HL is concave in p, as it is the infimum of linear functionals, and with some abuse of
notation, we can also define the negative entropy mapping

Ω(µ) := −min
y∈Y

τ(y)>Aµ+ IM(µ),

which evidently satisfies Ω(ν) = HL(P ) for any ν ∈ M satisfying ν = µ(P ) and is convex. The
associated surrogate loss is

ϕ(s, y) := −s>τ(y) + Ω∗(s), (14.2.1)

and we have
Ep[ϕ(s, Y )] = −s>µ(p) + Ω∗(s),

so that

inf
s
Ep[ϕ(s, Y )] = inf

s

{
−s>µ(p) + Ω∗(s)

}
= − sup

s

{
s>µ(p)− Ω∗(s)

}
= −Ω(µ(p)) = HL(p).

14.3 Predictions, calibration, and scoring rules

14.4 Surrogate risk consistency

14.4.1 Uniformly convex case

14.4.2 Structured prediction (discrete) case

The amazing thing is that the construction (14.2.1) is surrogate-risk consistent under fairly weak
conditions. We have the prediction function

ŷ(s) ≡ pred(s) := argmax
y∈Y

{
τ(y)>s

}
,

where we choose the element arbitrarily if the maximizer is non-unique.
The first question is why this should be (surrogate-risk) consistent. To gain some intuition for

this case, we present a few heuristic calculations that rely on convex analysis, before we move the
the more sophisticated (and rigorous) argument to come. As always, we consider only pointwise
versions of the risk—as surrogate risk consistency requires only this—and fix a P ∈ ∆Y and its
induced µ = µ(P ). Consider the s minimizing the conditional surrogate risk

`ϕ(s, P ) = −s>µ+ Ω∗(s).

As s minimizes `, we have Ω(µ) − s>µ + Ω∗(s) = 0, and thus (using some duality results in the
appendices) we necessarily have

s ∈ ∂Ω(µ).

As Ω(µ) = maxy∈Y −τ(y)>Aµ+ IM(µ), we see that

∂Ω(µ) = Conv{−A>τ(y) | τ(y)>Aµ = min
y′

τ(y′)>Aµ}+NM(µ)

= {−A>ν | ν>Aµ = HL(P ), ν ∈M}+NM(µ), (14.4.1)

where we recall that µ = µ(P ). If we make the (unrealistically) simplifying assumption that µ is
interior toM (say, for example, if P assigns positive probability to all y ∈ Y), i.e. µ ∈ intM, then
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NM(µ) = {0}. If we also assume there is only a single label y? ∈ Y minimizing τ(y?)>Aµ, that is,
a single best prediction for the probabilities P on Y , then we obtain that s = −A>τ(y?). Then of
course the prediction function becomes

pred(s) = argmax
y∈Y

{
−τ(y)>A>τ(y?)

}
= y?

by the assumed identifiability condition on L.
We can actually make this fully rigorous under a few additional assumptions.

Assumption 14.1. The loss L is symmetric, and if y minimizes EP [L(y, Y )] = EP [τ(y)>Aτ(Y )]
then P (Y = y) > 0.

We have the following theorem.

Theorem 14.4.1. The surrogate ϕ is consistent for the discrete structured prediction loss L.

14.4.3 Proof of Theorem 14.4.1

The proof proceeds similarly to the heuristic guarantee that pred(s) is correct in this case. Recall
the gap functional (13.3.2),

∆ϕ(ε, P ) := inf
s

{
`ϕ(s, P )− `?ϕ(P ) | `(s, P )− `?(P ) ≥ ε

}
.

In this case, we may simplify the quantities by writing out the entropy functionals explicitly as
`(s, P ) = τ(ŷ(s))>Aµ − infν∈M ν>Aµ, where ŷ(s) is (an arbitrary) element of the prediction set
argmaxy s

>τ(y). We need only show that ∆ϕ(ε, P ) > 0 whenever ε > 0, which we prove by
contradiction.

Thus, assume for the sake of contradiction that ∆ϕ(ε, P ) = 0. As the losses ϕ are piecewise
linear and the set of s such that `(s, P ) − `?(P ) ≥ ε is a union of polyhedra, there must be s
achieving the infimum, and so for some vector of scores s, we have

Ω∗(s)− s>µ+ Ω(µ) = 0

while ŷ(s) is incorrect. Following the calculation (14.4.1), we thus obtain that for some ν? ∈ M
satisfying 〈ν?, Aµ〉 = miny τ(y)>Aµ and a vector w ∈ NM(µ), we have

s = −A>ν? + w.

For any ν ∈M, define the shorthand let y?(µ) = argminy τ(y)>Aµ, which is a set-valued mapping,
and let y?(P ) = y?(µ(P )) when there is no chance of notational confusion. If we can show the
inclusions

ŷ(s) ⊂ y?(ν?) ⊂ y?(µ(P )), (14.4.2)

then the proof is complete, as we would evidently have our desired contradiction because necessarily
τ(ŷ)>Aµ = miny τ(y)>Aµ for any ŷ ∈ ŷ(s).

To see the inclusion y?(ν?) ⊂ y?(µ(P )) is relatively straightforward. Let

ν ′ ∈ Conv

{
τ(y) | τ(y)>Aµ(P ) = min

y′
EP [L(y′, Y )] = HL(P )

}
(14.4.3)
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be otherwise arbitrary. For all P ′ such that ν ′ = µ(P ′), the identifiability assumption 14.1 guaran-
tees that if y ∈ y?(ν ′), we must have P ′(Y = y) > 0. That is, we have

y?(ν ′) ⊂ ∩P ′
{

suppP ′ | ν ′ = µ(P ′)
}
.

In particular, Assumption 14.1 guarantees there is at least one P ′ satisfying suppP ′ ⊂ y?(µ(P ))
and ν ′ = µ(P ′), so that y?(ν ′) ⊂ y?(µ(P )) for all ν ′ in the convex hull (14.4.3), and in particular
for ν?.

The first inclusion in the chain (14.4.2) is more challenging. We begin a convex analytic result
that allows us to simplify maximizers of s>τ(y) in y.

Lemma 14.4.2. Let w ∈ NM(µ) be the element satisfying s = −AT ν? + w. Then for any y ∈ Y
and any z ∈ suppP ,

〈τ(z)− τ(y), w〉 ≥ 0.

Proof Fix any y ∈ Y and let z ∈ suppP , so that pz > 0. Then for a vector α ∈ Conv(τ(y′) |
y 6∈ {y, z}), we can write µ(P ) = λyτ(y) + λzτ(z) + (1 − λy − λz)α, where λy ≥ 0, λz ≥ pz > 0,
and λy + λz ≤ 1. The vector ν = (λy + λz)τ(y) + (1 − λy − λz)α similarly satisfies ν ∈ M. By
the definition of the normal cone NM(µ), we know that w>(µ′ − µ) ≤ 0 for all µ′ ∈ M, and in
particular this holds for µ′ = ν. As

ν − µ = λz(τ(y)− τ(z)),

we obtain
λzw

>(τ(y)− τ(z)) ≤ 0,

and as λz > 0 the lemma follows.

With Lemma 14.4.2 in hand, we can consider the predictions pred(s) = argmaxy s
>τ(y). As

s = −A>ν? + w, we have

ŷ(s) = argmax
y∈Y

{
−τ(y)>A>ν? + τ(y)>w

}
= argmax

y∈Y

{
−τ(y)>Aν? + τ(y)>w

}
,

where we have used the assumed symmetry of A. Let y ∈ y?(ν?) and y′ 6∈ y?(ν?), so that
τ(y′)>Aν? > τ(y)>Aν?. Then by our earlier argument that P (Y = y) > 0, we obtain from
Lemma 14.4.2 that

τ(y′)>w ≤ τ(y)>w.

We then see that
−τ(y′)>Aν? + τ(y′)>w < −τ(y)>Aν? + τ(y)>w,

and so y′ 6∈ ŷ(s). In particular, ŷ(s) ⊂ y?(ν?) as desired.

14.5 Loss equivalence

Definition 14.1. The generalized entropy associated with a vector of losses (`y)
k
y=1, `y : Rk → R+

is

H`(Y ) := inf
s


k∑
y=1

P (Y = y)`y(s)

 .
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The associated conditional entropy of Y given X = x is H`(Y | X = x) = infs
∑k

y=1 P (Y = y |
X = x)`y(s), and the conditional entropy of Y given X is

H`(Y | X) :=

∫
X
H`(Y | X = x)dP (x).

From the definition, it is immediate that such entropies obey similar properties to the typical
(Shannon) entropy H(Y ) = −

∑
y p(y) log p(y) of a discrete random variable. Indeed, they are

non-negative, and

JCD Comment: Fill this out in more detail, giving examples, motivation, etc. Some
examples that would be worth doing (maybe earlier): multiclass with sums of hinge losses,
and also the multiclass with order statistics (both from my papers). Can leave giving
“gap” calculations as exercises.

We can associate a natural information measure to such entropies: the loss-based information
that X carries about a target Y is

I`(X;Y ) := H`(Y )−H`(Y | X),

which is clearly nonnegative.
In cases such as margin-based binary classification, when it is more natural to think of prediction

functions as mapping into R, it is more convenient to work with a slight modification of these
entropies, where for a margin-based loss φ and Y ∈ {±1}, we define

Hφ(Y ) := inf
s∈R
{P (Y = 1)φ(−s) + P (Y = −1)φ(s)} ,

so that Hφ is really a concave function on p ∈ [0, 1] with Hφ(Y ) = hφ(P (Y = 1)), where the binary
generalized entropy is

hφ(p) := inf
s∈R
{pφ(−s) + (1− p)φ(s)} .

Definition 14.2. Losses `1 and `2 are universally equivalent if for all distributions on (X,Y ) and
all quantizers q1 and q2,

I`1(q1(X);Y ) ≤ I`1(q2(X);Y ) if and only if I`2(q1(X);Y ) ≤ I`2(q2(X);Y ).

We note in passing that swapping the roles of q1 and q2 and taking contrapositives, we an equivalent
formulation to Definition 14.2 is that

I`1(q1(X);Y ) < I`1(q2(X);Y ) if and only if I`2(q1(X);Y ) < I`2(q2(X);Y ).

Theorem 14.5.1. Let the multiclass losses `1 and `2 be bounded below and H1 and H2 be the
associated generalized entropies. Then `1 and `2 are universally equivalent if and only if there exist
a > 0, b ∈ Rk, and c ∈ R such that for all distributions on Y ∈ [k],

H1(Y ) = aH2(Y ) + b>p+ c, (14.5.1)

where p = [P (Y = y)]ky=1 is the p.m.f. of Y .

JCD Comment: Do the easy version here.
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14.6 Proof of Theorem 14.5.1

We give the proof of the “hard” direction of Theorem 14.5.1: that is, that if `1 and `2 are universally
equivalent, then their associated entropies are necessary linearly related (14.5.1). We prove the
result in the slightly simpler case of binary classification, as the more general result introduces few
new ideas except that it requires more technical care.

We thus work with margin-based losses φi : R → R+, i = 1, 2, where without any loss of
generality we assume infs `i(s) = 0 (as we may subtract a constant), and we have generalized
(binary) entropies

hi(p) := inf
s
{pφi(−s) + (1− p)φ(s)} .

By inspection, each hi is a closed concave function (as it is the infimum of linear functions of p),
and by symmetry they satisfy hi(0) = hi(1) = 0 and hi(

1
2) = supp∈[0,1] hi(p). We show that these

entropies satisfy a particular order equivalence property on [0, 1], which will turn out to be sufficient
to prove their equality.

To motivate what follows, recall that universal equivalence (Def. 14.2) must hold for all dis-
tributions on (X,Y ), and hence all (measurable) spaces X and joint distributions on X × {±1}.
Thus, consider a space X that we can partition into sets {A,Ac} or {B,Bc}, where we take the
conditional distributions

Y | X ∈ A =

{
1 w.p. pa

−1 w.p. 1− pa,
Y | X ∈ Ac =

{
1 w.p. qa

−1 w.p. 1− qa,

and

Y | X ∈ B =

{
1 w.p. pb

−1 w.p. 1− pb,
Y | X ∈ Bc =

{
1 w.p. qb

−1 w.p. 1− qb,

where we require the consistency conditions that the marginals over Y remain constant, that is, if
P (A) = P (X ∈ A), we have

P (A)pa + P (Ac)qa = P (Y = 1) = P (B)pb + P (Bc)qb.

Then evidently by defining quantizers q1 and q2 such that q1(x) = 1 {x ∈ A} and q2(x) =
1 {x ∈ B}, we have

Iφ1(q1(X);Y ) = h1(P (Y = 1))− P (A)h1(pa)− (1− P (A))h1(qa),

Iφ1(q2(X);Y ) = h1(P (Y = 1))− P (B)h1(pb)− (1− P (B))h1(qb),

and similarly for Iφ2 . Then universal equivalence implies that

P (A)h1(pa) + (1− P (A))h1(qa) ≤ P (B)h1(pb) + (1− P (B))h1(qb) if and only if

P (A)h2(pa) + (1− P (A))h2(qa) ≤ P (B)h2(pb) + (1− P (B))h2(qb)

whenever the consistency condition P (A)pa + (1 − P (A))qa = P (B)pb + (1 − P (B))qb holds. As
we may choose X and the probabilities, we can take P (A) = P (B) = 1

2 (so that their are two
equiprobable partitions), and the preceding conditions become

h1(pa) + h1(qa) ≤ h1(pb) + h1(qb) if and only if h2(pa) + h2(qa) ≤ h2(pb) + h2(qb)

whenever pa + qa = pb + qb.
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Generalizing this construction by taking distributions over X that partition it into k equiprob-
able sets {A1, . . . , Ak} or {B1, . . . , Bk}, each with P (Ai) = P (Bi) = 1/k, we see that universal
equivalence implies that for any vectors p ∈ [0, 1]k and q ∈ [0, 1]k satisfies 1>p = 1>q,

k∑
i=1

h1(pi) ≤
k∑
i=1

h1(qi) if and only if
k∑
i=1

h2(pi) ≤
k∑
i=1

h2(qi). (14.6.1)

We shall give condition (14.6.1) a name, as it implies certain equivalence properties for convex
functions (we can replace hi with −hi and obtain convex functions).

Definition 14.3. Let Ω ⊂ R be a closed interval and let f1, f2 : Ω→ R be closed convex functions.
Then f1 and f2 are order equivalent if for any k ∈ N and vectors s ∈ Ωk and t ∈ Ωk satisfying
1>s = 1>t, we have

k∑
i=1

f1(si) ≤
k∑
i=1

f1(ti) if and only if

k∑
i=1

f2(si) ≤
k∑
i=1

f2(ti)

As in the brief remark following Definition 14.2, by taking complements we have as well that

k∑
i=1

f1(si) <
k∑
i=1

f1(ti) if and only if
k∑
i=1

f2(si) <
k∑
i=1

f2(ti)

The theorem will then be proved if we can show the following lemma.

Lemma 14.6.1. Let f1 and f2 be order equivalent on Ω. Then there exist a > 0, and b, c ∈ R such
that f1(t) = af2(t) + bt+ c for all t ∈ Ω.

The proof of Lemma 14.6.1 is somewhat involved, and we proceed in three parts. The key is
that order equivalence actually implies a strong relationship between affine combinations of points
in the domain of the functions fi, not just convex combinations of points, which guarantees that
we can predict values of f2(v) for any v ∈ Ω by just three values of fi evaluate in Ω. We state this
as a lemma, whose proof we defer temporarily to Sec. 14.6.1

Lemma 14.6.2. If f1 and f2 are order equivalent on Ω, then for any λ ∈ Rk satisfying λ>1 = 1
and any u ∈ Ωk, if λ>u = v ∈ Ω then

k∑
i=1

λif1(ui) ≤ f1(v) if and only if

k∑
i=1

λif2(ui) ≤ f2(v),

and the statement still holds with both inequalities replaced with strict inequalities.

In particular, if

k∑
i=1

λif1(ui) = f1(v) then necessarily

k∑
i=1

λif2(ui) = f2(v) (14.6.2)

whenever λ ∈ Rk satisfies λ>1 = 1 and u>λ =
∑k

i=1 λiui = v.
Second, we recognize that we may assume both f1 and f2 are nonlinear in the lemma; otherwise,

it is immediate. Nonlinearity guarantees that
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Lemma 14.6.3. Let f be convex on R. Let u0 < u1 and for λ ∈ [0, 1], define uλ = (1−λ)u0 +λu1.
If there exists any λ ∈ (0, 1) such that f(uλ) = λf(u0) + (1− λ)f(u1), then f is linear on [u0, u1].

We leave the proof (an algebraic manipulation using the definitions of convexity) as Question 14.2.
The last intermediate step we require in the proof of Lemma 14.6.1 is that at three particular

points in the domain Ω, we can satisfy Lemma 14.6.1.

Lemma 14.6.4. Let f1, f2 be order equivalent on Ω = [u0, u1] and uc = 1
2(u0 + u1). There are

a > 0 and b, c ∈ R such that f1(t) = af2(t) + bt+ c for t ∈ {u0, uc, u1}.

We can now finalize the proof of Lemma 14.6.1:
Proof Without loss of generality by an affine rescaling, we can assume that f1(t) = f2(t) for
t ∈ {u0, uc, u1}, and our goal will be to show that f1(t) = f2(t) for all t ∈ Ω.

Let v ∈ Ω with v 6∈ {u0, uc, u1}, and u = [u0 uc u1]> for shorthand. We seek λ = (λ0, λc, λ1) ∈
R3, where λ>1 = 1, such that both λ>u = v and λ0f1(u0) +λcf1(uc) +λ1f1(u1) = f1(v). If we can
find such a λ, then equality (14.6.2) guarantees that f1(v) = f2(v), and we are done. As the points
(ui, f1(ui))

3
i=1 are not collinear (recall Lemma 14.6.3), the matrix

A :=

 1 1 1
u0 uc u1

f1(u0) f1(uc) f1(u1)


is full rank. In particular, there is a vector λ solving

Aλ = [1 v f1(v)]> , i.e. λ = A−1 [1 v f1(v)]> ,

which evidently satisfies our desiderata. Thus f1(v) = f2(v), and as v was arbitrary, the proof is
complete.

14.6.1 Proof of Lemma 14.6.2

We prove the result first for λ with rational entries, as a continuity argument will give the rest. For
each i, let αi = [λi]+ and βi = [−λi]+ be the positive and negative parts of λ, so that λ = α − β.

Let k ∈ N be such that we can write αi = ai
k and βi = bi

k , where ai, bi ∈ N. Then we have

α>u = v + β>u or a>u = kv + b>u,

where 1>a = k + 1>b, as 1>λ = 1
k1>(a− b) = 1. Then we may define the two vectors

s = [u1 · · · u1︸ ︷︷ ︸
a1 times

· · · um · · · um︸ ︷︷ ︸
am times

]> and t = [v · · · v︸ ︷︷ ︸
k times

u1 · · · u1︸ ︷︷ ︸
b1 times

· · · um · · · um︸ ︷︷ ︸
bm times

]>.

Then each has entries in Ω, and we have 1>t = 1>s. Then order equivalence (Def. 14.3) guarantees
that

m∑
i=1

aif1(ui) ≤ kf1(v) +
m∑
i=1

bif1(ui) if and only if
m∑
i=1

aif2(ui) ≤ kf2(v) +
m∑
i=1

bif2(ui)
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and (as per the remark following the definition)

m∑
i=1

aif1(ui) = kf1(v) +
m∑
i=1

bif1(ui) if and only if
m∑
i=1

aif2(ui) = kf2(v) +
m∑
i=1

bif2(ui).

These two displays are equivalent to
∑m

i=1 λifj(ui) ≤ fj(v) and
∑m

i=1 λifj(ui) = fj(v), respectively,
for j = 1, 2.

We have therefore proved Lemma 14.6.2 for λ taking rational values. Because closed convex
functions on R are continuous on their domains (Lemma 13.0.4) the result extends to real-valued
λ.

14.6.2 Proof of Lemma 14.6.4

If either of f1 or f2 is linear, the other is as well, and the proof becomes trivial, so we assume
w.l.o.g. they are both nonlinear.

Without loss of generality, we take u0 = 0, u1 = 1, and uc = 1
2 by scaling. Then we must solve

the three equations

f1(0) = af2(0) + c, f1

(
1

2

)
= af2

(
1

2

)
+
b

2
+ c, f1(1) = af2(1) + b+ c.

From the first we obtain c = f1(0)− af2(0), and substituting this into the third yields b = f1(1)−
f1(0) − a(f2(1) − f2(0)). Finally, substituting both equalities into the equality with f1(1

2) yields
that

f1

(
1

2

)
= a

[
f2

(
1

2

)
− f2(1)− f2(0)

2

]
+
f1(1)− f1(0)

2
+ f1(0)− af2(0)

= a

[
f2(

1

2
)− f2(1) + f2(0)

2

]
+
f1(1) + f1(0)

2
.

As we know that f1, f2 are nonlinear, Lemma 14.6.3 applies, so that the convexity gaps f1(1
2) −

f1(1)+f1(0)
2 and f2(1

2)− f2(1)+f2(0)
2 are both positive, and thus we take

a =
f1(1

2)− f1(0)+f1(1)
2

f2(1
2)− f2(0)+f2(1)

2

> 0.

14.7 Bibliography

Point to full proof of Theorem 14.5.1.

14.8 Exercises

Exercise 14.1 (Bayes risk gaps): Consider a general binary classification problem with (X,Y ) ∈
X × {−1, 1}. Let φ(α) = log(1 + e−α), so that we use the logistic loss. Show that the surrogate
risk gap

L∗φ,prior − L∗φ = I(X;Y ),

where I is the mutual information.
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Exercise 14.2: Prove Lemma 14.6.3. Hint: without loss of generality, you may take u0 = 0,
u1 = 1. Then for any u ∈ [0, 1], write λ as a convex combination of either {0, u} or {u, 1} and use
the definition of convexity.
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Chapter 15

Fisher Information

Having explored the definitions associated with exponential families and their robustness properties,
we now turn to a study of somewhat more general parameterized distributions, developing connec-
tions between divergence measures and other geometric ideas such as the Fisher information. After
this, we illustrate a few consequences of Fisher information for optimal estimators, which gives a
small taste of the deep connections between information geometry, Fisher information, exponential
family models. In the coming chapters, we show how Fisher information measures come to play a
central role in sequential (universal) prediction problems.

15.1 Fisher information: definitions and examples

We begin by defining the Fisher information. Let {Pθ}θ∈Θ denote a parametric family of distribu-
tions on a space X , each where θ ∈ Θ ⊂ Rd indexes the distribution. Throughout this lecture and
the next, we assume (with no real loss of generality) that each Pθ has a density given by pθ. Then
the Fisher information associated with the model is the matrix given by

Iθ := Eθ
[
∇θ log pθ(X)∇ log pθ(X)>

]
= Eθ[ ˙̀

θ
˙̀>
θ ], (15.1.1)

where the score function ˙̀
θ = ∇θ log pθ(x) is the gradient of the log likelihood at θ (implicitly

depending on X) and the expectation Eθ denotes expectation taken with respect to Pθ. Intuitively,
the Fisher information captures the variability of the gradient ∇ log pθ; in a family of distributions
for which the score function ˙̀

θ has high variability, we intuitively expect estimation of the parameter
θ to be easier—different θ change the behavior of ˙̀

θ—though the log-likelihood functional θ 7→
Eθ0 [log pθ(X)] varies more in θ.

Under suitable smoothness conditions on the densities pθ (roughly, that derivatives pass through
expectations; see Remark 15.1 at the end of this chapter), there are a variety of alternate definitions
of Fisher information. These smoothness conditions hold for exponential families, so at least in
the exponential family case, everything in this chapter is rigorous. (We note in passing that there
are more general definitions of Fisher information for more general families under quadratic mean
differentiability; see, for example, van der Vaart [169].) First, we note that the score function has

378



Lexture Notes on Statistics and Information Theory John Duchi

mean zero under Pθ: we have

Eθ[ ˙̀
θ] =

∫
pθ(x)∇θ log pθ(x)dx =

∫
∇pθ(x)

pθ(x)
pθ(x)dx

=

∫
∇pθ(x)dx

(?)
= ∇

∫
pθ(x)dx = ∇1 = 0,

where in equality (?) we have assumed that integration and derivation may be exchanged. Under
similar conditions, we thus attain an alternate definition of Fisher information as the negative
expected hessian of log pθ(X). Indeed,

∇2 log pθ(x) =
∇2pθ(x)

pθ(x)
− ∇pθ(x)∇pθ(x)>

pθ(x)2
=
∇2pθ(x)

pθ(x)
− ˙̀

θ
˙̀>
θ ,

so we have that the Fisher information is equal to

Iθ = Eθ[ ˙̀
θ

˙̀>
θ ] = −

∫
pθ(x)∇2 log pθ(x)dx+

∫
∇2pθ(x)dx

= −E[∇2 log pθ(x)] +∇2

∫
pθ(x)dx︸ ︷︷ ︸

=1

= −E[∇2 log pθ(x)]. (15.1.2)

Summarizing, we have that

Iθ = Eθ[ ˙̀
θ

˙̀
θ] = −Eθ[∇2 log pθ(X)].

This representation also makes clear the additional fact that, if we have n i.i.d. observations from the
model Pθ, then the information content similarly grows linearly, as log pθ(X

n
1 ) =

∑n
i=1 log pθ(Xi).

We now give two examples of Fisher information, the first somewhat abstract and the second
more concrete.

Example 15.1.1 (Canonical exponential family): In a canonical exponential family model,
we have log pθ(x) = 〈θ, φ(x)〉−A(θ), where φ is the sufficient statistic and A is the log-partition
function. Because ˙̀

θ = φ(x)−∇A(θ) and ∇2 log pθ(x) = −∇2A(θ) is a constant, we obtain

Iθ = ∇2A(θ).

3

Example 15.1.2 (Two parameterizations of a Bernoulli): In the canonical parameterization
of a Bernoulli as an exponential family model (Example 3.1.1), we had pθ(x) = exp(θx −
log(1 + eθ)) for x ∈ {0, 1}, so by the preceding example the associated Fisher information is
eθ

1+eθ
1

1+eθ
. If we make the change of variables p = Pθ(X = 1) = eθ/(1 + eθ), or θ = log p

1−p , we

have Iθ = p(1− p). On the other hand, if P (X = x) = px(1− p)1−x for p ∈ [0, 1], the standard
formulation of the Bernoulli, then ∇ logP (X = x) = x

p −
1−x
1−p , so that

Ip = Ep

[(
X

p
− 1−X

1− p

)2
]

=
1

p
+

1

1− p
=

1

p(1− p)
.

That is, the parameterization can change the Fisher information. 3
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15.2 Estimation and Fisher information: elementary considera-
tions

The Fisher information has intimate connections to estimation, both in terms of classical estimation
and the information games that we discuss subsequently. As a motivating calculation, we consider

estimation of the mean of a Bernoulli(p) random variable, where p ∈ [0, 1], from a sample Xn
1

iid∼
Bernoulli(p). The sample mean p̂ satisfies

E[(p̂− p)2] =
1

n
Var(X) =

p(1− p)
n

=
1

Ip
· 1

n
,

where Ip is the Fisher information for the single observation Bernoulli(p) family as in Example 15.1.2.
In fact, this inverse dependence on Fisher information is unavoidable, as made clear by the Cramér
Rao Bound, which provides lower bounds on the mean squared error of all unbiased estimators.

Proposition 15.2.1 (Cramér Rao Bound). Let φ : Rd → R be an arbitrary differentiable function
and assume that the random function (estimator) T is unbiased for φ(θ) under Pθ. Then

Var(T ) ≥ ∇φ(θ)>I−1
θ ∇φ(θ).

As an immediate corollary to Proposition 15.2.1, we may take φ(θ) = 〈λ, θ〉 for λ ∈ Rd. Then
varying λ over all of Rd, and we obtain that for any unbiased estimator T for the parameter θ ∈ Rd,
we have Var(〈λ, T 〉) ≥ λ>I−1

θ λ. That is, we have

Corollary 15.2.2. Let T be unbiased for the parameter θ under the distribution Pθ. Then the
covariance of T has lower bound

Cov(T ) � I−1
θ .

In fact, the Cramér-Rao bound and Corollary 15.2.2 hold, in an asymptotic sense, for substantially
more general settings (without the unbiasedness requirement). For example, see the books of
van der Vaart [169] or Le Cam and Yang [128, Chapters 6 & 7], which show that under appropriate
conditions (known variously as quadratic mean differentiability and local asymptotic normality)
that no estimator can have smaller mean squared error than Fisher information in any uniform
sense.

We now prove the proposition, where, as usual, we assume that it is possible to exchange
differentiation and integration.
Proof Throughout this proof, all expectations and variances are computed with respect to Pθ.
The idea of the proof is to choose λ ∈ Rd to minimize the variance

Var(T − 〈λ, ˙̀
θ〉) ≥ 0,

then use this λ to provide a lower bound on Var(T ).
To that end, let ˙̀

θ,j = ∂
∂θj

log pθ(X) denote the jth component of the score vector. Because

Eθ[ ˙̀
θ] = 0, we have the covariance equality

Cov(T − φ(θ), ˙̀
θ,j) = E[(T − φ(θ)) ˙̀

θ,j ] = E[T ˙̀
θ,j ] =

∫
T (x)

∂
∂θj
pθ(x)

pθ(x)
pθ(x)dx

=
∂

∂θj

∫
T (x)pθ(x)dx =

∂

∂θj
φ(θ),
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where in the final step we used that T is unbiased for φ(θ). Using the preceding equality,

Var(T − 〈λ, ˙̀
θ〉) = Var(T ) + λ>Iθλ− 2E[(T − φ(θ))〈λ, ˙̀

θ〉] = Var(T ) + λ>Iθλ− 2〈λ,∇φ(θ)〉.

Taking λ = I−1
θ ∇φ(θ) gives 0 ≤ Var(T − 〈λ, ˙̀

θ〉) = Var(T ) − ∇φ(θ)>I−1
θ ∇φ(θ), and rearranging

gives the result.

15.3 Connections between Fisher information and divergence mea-
sures

By making connections between Fisher information and certain divergence measures, such as KL-
divergence and mutual (Shannon) information, we gain additional insights into the structure of
distributions, as well as optimal estimation and encoding procedures. As a consequence of the
asymptotic expansions we make here, we see that estimation of 1-dimensional parameters is gov-
erned (essentially) by moduli of continuity of the loss function with respect to the metric induced
by Fisher information; in short, Fisher information is an unavoidable quantity in estimation. We
motivate our subsequent development with the following example.

Example 15.3.1 (Divergences in exponential families): Consider the exponential family
density pθ(x) = h(x) exp(〈θ, φ(x)〉−A(θ)). Then a straightforward calculation implies that for
any θ1 and θ2, the KL-divergence between distributions Pθ1 and Pθ2 is

Dkl (Pθ1 ||Pθ2) = A(θ2)−A(θ1)− 〈∇A(θ1), θ2 − θ1〉.

That is, the divergence is simply the difference between A(θ2) and its first order expansion
around θ1. This suggests that we may approximate the KL-divergence via the quadratic re-
mainder in the first order expansion. Indeed, as A is infinitely differentiable (it is an exponential
family model), the Taylor expansion becomes

Dkl (Pθ1 ||Pθ2) =
1

2
〈θ1 − θ2,∇2A(θ1)(θ1 − θ2)〉+O(‖θ1 − θ2‖3)

=
1

2
〈θ1 − θ2, Iθ1(θ1 − θ2)〉+O(‖θ1 − θ2‖3).

3

In particular, KL-divergence is roughly quadratic for exponential family models, where the
quadratic form is given by the Fisher information matrix. We also remark in passing that for a
convex function f , the Bregman divergence (associated with f) between points x and y is given
by Df (x, y) = f(x) − f(y) − 〈∇f(y), x − y〉; such divergences are common in convex analysis,
optimization, and differential geometry. Making such connections deeper and more rigorous is the
goal of the field of information geometry (see the book of Amari and Nagaoka [5] for more).

We can generalize this example substantially under appropriate smoothness conditions. Indeed,
we have

Proposition 15.3.2. For appropriately smooth families of distributions {Pθ}θ∈Θ,

Dkl (Pθ1 ||Pθ2) =
1

2
〈θ1 − θ2, Iθ1(θ1 − θ2)〉+ o(‖θ1 − θ2‖2). (15.3.1)
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We only sketch the proof, as making it fully rigorous requires measure-theoretic arguments and
Lebesgue’s dominated convergence theorem.
Sketch of Proof By a Taylor expansion of the log density log pθ2(x) about θ1, we have

log pθ2(x) = log pθ1(x) + 〈∇ log pθ1(x), θ1 − θ2〉

+
1

2
(θ1 − θ2)>∇2 log pθ1(x)(θ1 − θ2) +R(θ1, θ2, x),

where R(θ1, θ2, x) = Ox(‖θ1 − θ2‖3) is the remainder term, where Ox denotes a hidden dependence
on x. Taking expectations and assuming that we can interchange differentiation and expectation
appropriately, we have

Eθ1 [log pθ2(X)] = Eθ1 [log pθ1(X)] + 〈Eθ1 [ ˙̀
θ1 ], θ1 − θ2〉

+
1

2
(θ1 − θ2)>Eθ1 [∇2 log pθ1(X)](θ1 − θ2) + Eθ1 [R(θ1, θ2, X)]

= Eθ1 [log pθ1(X)]− 1

2
(θ1 − θ2)>Iθ1(θ1 − θ2) + o(‖θ1 − θ2‖2),

where we have assumed that the O(‖θ1 − θ2‖3) remainder is uniform enough in X that E[R] =
o(‖θ1 − θ2‖2) and used that the score function ˙̀

θ is mean zero under Pθ.

We may use Proposition 15.3.2 to give a somewhat more general version of the Cramér-Rao
bound (Proposition 15.2.1) that applies to more general (sufficiently smooth) estimation problems.
Indeed, we will show that Le Cam’s method (recall Chapter 8.3) is (roughly) performing a type of
discrete second-order approximation to the KL-divergence, then using this to provide lower bounds.
More concretely, suppose we are attempting to estimate a parameter θ parameterizing the family
P = {Pθ}θ∈Θ, and assume that Θ ⊂ Rd and θ0 ∈ int Θ. Consider the minimax rate of estimation
of θ0 in a neighborhood around θ0; that is, consider

inf
θ̂

sup
θ=θ0+v∈Θ

Eθ[‖θ̂(Xn
1 )− θ‖2],

where the observations Xi are drawn i.i.d. Pθ. Fixing v ∈ Rd and setting θ = θ0 + δv for some
δ > 0, Le Cam’s method (8.3.3) then implies that

inf
θ̂

max
θ∈{θ0,θ+δv}

Eθ[‖θ̂(Xn
1 )− θ‖2] ≥ δ2 ‖v‖2

8

[
1−

∥∥Pnθ0 − Pnθ0+δv

∥∥
TV

]
.

Using Pinsker’s inequality that 2 ‖P −Q‖2TV ≤ Dkl (P ||Q) and the asymptotic quadratic approxi-
mation (15.3.1), we have∥∥Pnθ0 − Pnθ0+δv

∥∥
TV
≤
√
n

2
Dkl (Pθ0 ||Pθ0+δv) =

√
n

2

(
δ2v>Iθ0v + o(δ2 ‖v‖2)

) 1
2
.

By taking δ2 = (nv>Iθ0v)−1, for large enough v and n we know that θ0 + δv ∈ int Θ (so that the
distribution Pθ0+δv exists), and for large n, the remainder term o(δ2 ‖v‖2) becomes negligible. Thus
we obtain

inf
θ̂

max
θ∈{θ0,θ+δv}

Eθ[‖θ̂(Xn
1 )− θ‖2] &

δ2 ‖v‖2

16
=

1

16

‖v‖2

nv>Iθ0v
. (15.3.2)

In particular, in one-dimension, inequality (15.3.2) implies a result generalizing the Cramér-Rao
bound. We have the following asymptotic local minimax result:
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Corollary 15.3.3. Let P = {Pθ}θ∈Θ, where Θ ⊂ R, be a family of distributions satisfying the
quadratic approximation condition of Proposition 15.3.2. Then there exists a constant c > 0 such
that

lim
v→∞

lim
n→∞

inf
θ̂n

sup
θ:|θ−θ0|≤v/

√
n

Eθ
[
(θ̂n(Xn

1 )− θ)2
]
≥ c 1

n
I−1
θ0
.

Written differently (and with minor extension), Corollary 15.3.3 gives a lower bound based on
a local modulus of continuity of the loss function with respect to the metric induced by the Fisher
information. Indeed, suppose we wish to estimate a parameter θ in the neighborhood of θ0 (where
the neighborhood size decreases as 1/

√
n) according to some loss function ` : Θ×Θ→ R. Then if

we define the modulus of continuity of ` with respect to the Fisher information metric as

ω`(δ, θ0) := sup
v:‖v‖≤1

`(θ0, θ0 + δv)

δ2v>Iθ0v
,

the combination of Corollary 15.3.3 and inequality (15.3.2) shows that the local minimax rate of
estimating Eθ[`(θ̂n, θ)] for θ near θ0 must be at least ω`(n

−1/2, θ0). For more on connections between
moduli of continuity and estimation, see, for example, Donoho and Liu [64].
Remark 15.1: In order to make all of our exchanges of differentiation and expectation rigorous,
we must have some conditions on the densities we consider. One simple condition sufficient to make
this work is via Lebesgue’s dominated convergence theorem. Let f : X ×Θ→ R be a differentiable
function. For a fixed base measure ν assume there exists a function g such that g(x) ≥ ‖∇θf(x, θ)‖
for all θ, where ∫

X
g(x)dµ(x) <∞.

Then in this case, we have ∇θ
∫
f(x, θ)dµ(x) =

∫
∇θf(x, θ)dµ(x) by the mean-value theorem and

definition of a derivative. (Note that for all θ0 we have supv:‖v‖2≤δ ‖∇θf(x, θ)‖2
∣∣
θ=θ0+v

≤ g(x).)
More generally, this type of argument can handle absolutely continuous functions, which are dif-
ferentiable almost everywhere. 3
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Chapter 16

Universal prediction and coding

In this chapter, we explore sequential game playing and online probabilistic prediction schemes.
These have applications in coding when the true distribution of the data is unknown, biological
algorithms (encoding genomic data, for example), control, and a variety of other areas. The field of
universal prediction is broad; in addition to this chapter touching briefly on a few of the techniques
therein and their relationships with statistical modeling and inference procedures, relevant reading
includes the survey by Merhav and Feder [140], the more recent book of Grünwald [95], and Tsachy
Weissman’s EE376c course at Stanford.

JCD Comment: Check out the below stuff a bit more carefully

16.1 Basics of minimax game playing with log loss

The final set of problems we consider in which exponential families make a natural appearance are
in so-called minimax games under the log loss. In particular, we consider the following general
formulation of a two-player minimax game. First, we choose a distribution Q on a set X (with
density q). Then nature (or our adversary) chooses a distribution P ∈ P on the set X , where P is
a collection of distributions on X , so we suffer loss

sup
P∈P

EP [− log q(X)] = sup
P∈P

∫
p(x) log

1

q(x)
dx. (16.1.1)

In particular, we would like to solve the minimax problem

minimize
Q

sup
P∈P

E[− log q(X)].

To motivate this abstract setting we give two examples, the first abstract and the second somewhat
more concrete.

Example 16.1.1: Suppose that receive n random variables Xi
iid∼ P ; in this case, we have the

sequential prediction loss

EP [− log q(Xn
1 )] =

n∑
i=1

EP
[
log

1

q(Xi | Xi−1
1 )

]
,

which corresponds to predicting Xi given Xi−1
1 as well as possible, when the Xi follow an

(unknown or adversarially chosen) distribution P . 3

385



Lexture Notes on Statistics and Information Theory John Duchi

Example 16.1.2 (Coding): Expanding on the preceding example, suppose that the set X
is finite, and we wish to encode X into {0, 1}-valued sequences using as few bits as possible.
In this case, the Kraft inequality (recall Theorem 2.4.2) tells us that if C : X → {0, 1}∗ is an
uniquely decodable code, and `C(x) denotes the length of the encoding for the symbol x ∈ X ,
then ∑

x

2−`C(x) ≤ 1.

Conversely, given any length function ` : X → N satisfying
∑

x 2−`(x) ≤ 1, there exists an
instantaneous (prefix) code C with the given length function. Thus, if we define the p.m.f.
qC(x) = 2−`C(x)/

∑
x 2−`C(x), we have

− log2 qC(xn1 ) =
n∑
i=1

[
`C(xi) + log

∑
x

2−`C(x)

]
≤

n∑
i=1

`C(xi).

In particular, we have a coding game where we attempt to choose a distributionQ (or sequential
coding scheme C) that has as small an expected length as possible, uniformly over distributions
P . (The field of universal coding studies such questions in depth; see Tsachy Weissman’s course
EE376b.) 3

We now show how the minimax game (16.1.1) naturally gives rise to exponential family models,
so that exponential family distributions are so-called robust Bayes procedures (cf. Grünwald and
Dawid [96]). Specifically, we say that Q is a robust Bayes procedure for the class P of distributions
if it minimizes the supremum risk (16.1.1) taken over the family P; that is, it is uniformly good for
all distributions P ∈ P. If we restrict our class P to be a linearly constrained family of distributions,
then we see that the exponential family distributions are natural robust Bayes procedures: they
uniquely solve the minimax game. More concretely, assume that P = P lin

α and that Pθ denotes the
exponential family distribution with density pθ(x) = p(x) exp(〈θ, φ(x)〉 − A(θ)), where p denotes
the base density. We have the following.

Proposition 16.1.3. If EPθ [φ(X)] = α, then

inf
Q

sup
P∈P lin

α

EP [− log q(X)] = sup
P∈P lin

α

EP [− log pθ(X)] = sup
P∈P lin

α

inf
Q

EP [− log q(X)].

Proof This is a standard saddle-point argument (cf. [153, 104, 35]). First, note that

sup
P∈P lin

α

EP [− log pθ(X)] = sup
P∈P lin

α

EP [−〈φ(X), θ〉+A(θ)]

= −〈α, θ〉+A(θ) = EPθ [−〈θ, φ(X)〉+A(θ)] = H(Pθ),

where H denotes the Shannon entropy, for any distribution P ∈ P lin
α . Moreover, for any Q 6= Pθ,

we have

sup
P

EP [− log q(X)] ≥ EPθ [− log q(X)] > EPθ [− log pθ(X)] = H(Pθ),

where the inequality follows because Dkl (Pθ||Q) =
∫
pθ(x) log pθ(x)

q(x) dx > 0. This shows the first
equality in the proposition.
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For the second equality, note that

inf
Q

EP [− log q(X)] = inf
Q

EP
[

log
p(X)

q(X)

]
︸ ︷︷ ︸

=0

−EP [log p(x)] = H(P ).

But we know from our standard maximum entropy results (Theorem 11.4.7) that Pθ maximizes the
entropy over P lin

α , that is, supP∈P lin
α
H(P ) = H(Pθ).

In short: maximum entropy is equivalent to robust prediction procedures for linear families of
distributions P lin

α , which is equivalent to maximum likelihood in exponential families, which in turn
is equivalent to I-projection.

JCD Comment: Here we are back to the original stuff

16.2 Universal and sequential prediction

We begin by defining the universal prediction (and universal coding) problems. In this setting, we
assume we are playing a game in which given a sequence Xn

1 of data, we would like to predict the
data (which, as we saw in Example 16.1.2, is the same as encoding the data) as as if we knew the
true distribution of the data. Or, in more general settings, we would like to predict the data as
well as all predictive distributions P from some family of distributions P, even if a priori we know
little about the coming sequence of data.

We consider two versions of this game: the probabilistic version and the adversarial version.
We shall see that they have similarities, but there are also a few important distinctions between
the two. For both of the following definitions of sequential prediction games, we assume that p and
q are densities or probability mass functions in the case that X is continuous or discrete (this is no
real loss of generality) for distributions P and Q.

We begin with the adversarial case. Given a sequence xn1 ∈ X n, the regret of the distribution
Q for the sequence xn1 with respect to the distribution P is

Reg(Q,P, xn1 ) := log
1

q(xn1 )
− log

1

p(xn1 )
=

n∑
i=1

log
1

q(xi | xi−1
1 )

− log
1

p(xi | xi−1
1 )

, (16.2.1)

where we have written it as the sum over q(xi | xi−1
1 ) to emphasize the sequential nature of the

game. Associated with the regret of the sequence xn1 is the adversarial regret (usually simply called
the regret) of Q with respect to the family P of distributions, which is

RXn (Q,P) := sup
P∈P,xn1∈Xn

Reg(Q,P, xn1 ). (16.2.2)

In more generality, we may which to use a loss function ` different than the log loss; that is, we
might wish to measure a loss-based version the regret as

n∑
i=1

`(xi, Q(· | xi−1
1 ))− `(xi, P (· | xi−1

1 )),
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where `(xi, P ) indicates the loss suffered on the point xi when the distribution P over Xi is played,
and P (· | xi−1

1 ) denotes the conditional distribution of Xi given xi−1
1 according to P . We defer

discussion of such extensions later, focusing on the log loss for now because of its natural connections
with maximum likelihood and coding.

A less adversarial problem is to minimize the redundancy, which is the expected regret under a
distribution P . In this case, we define the redunancy of Q with respect to P as the expected regret
of Q with respect to P under the distribution P , that is,

Redn(Q,P ) := EP
[
log

1

q(Xn
1 )
− log

1

p(Xn
1 )

]
= Dkl (P ||Q) , (16.2.3)

where the dependence on n is implicit in the KL-divergence. The worst-case redundancy with
respect to a class P is then

Rn(Q,P) := sup
P∈P

Redn(Q,P ). (16.2.4)

We now give two examples to illustrate the redundancy.

Example 16.2.1 (Example 16.1.2 on coding, continued): We noted in Example 16.1.2 that
for any p.m.f.s p and q on the set X , it is possible to define coding schemes Cp and Cq with
code lengths

`Cp(x) =

⌈
log

1

p(x)

⌉
and `Cq(x) =

⌈
log

1

q(x)

⌉
.

Conversely, given (uniquely decodable) encoding schemes Cp and Cq : X → {0, 1}∗, the func-

tions pCp(x) = 2−`Cp (x) and qCq(x) = 2−`Cq (x) satisfy
∑

x pCp(x) ≤ 1 and
∑

x qCq(x) ≤ 1. Thus,
the redundancy of Q with respect to P is the additional number of bits required to encode
variables distributed according to P when we assume they have distribution Q:

Redn(Q,P ) =
n∑
i=1

EP
[
log

1

q(Xi | Xi−1
1 )

− log
1

p(Xi | Xi−1
1 )

]

=
n∑
i=1

EP [`Cq(Xi)]− EP [`Cp(Xi)],

where `C(x) denotes the number of bits C uses to encode x. Note that, as in Section 2.4.1,
the code d− log p(x)e is (essentially) optimal. 3

As another example, we may consider a filtering or prediction problem for a linear system.

Example 16.2.2 (Prediction in a linear system): Suppose we believe that a sequence of
random variables Xi ∈ Rd are Markovian, where Xi given Xi−1 is normally distributed with
mean AXi−1+g, where A is an unknown matrix and g ∈ Rd is a constant drift term. Concretely,
we assume Xi ∼ N(AXi−1 + g, σ2Id×d), where we assume σ2 is fixed and known. For our class
of predicting distributions Q, we may look at those that at iteration i predict Xi ∼ N(µi, σ

2I).
In this case, the regret is given by

Reg(Q,P, xn1 ) =
n∑
i=1

1

2σ2
‖µi − xi‖22 −

1

2σ2
‖Axi−1 + g − xi‖22 ,

388



Lexture Notes on Statistics and Information Theory John Duchi

while the redundancy is

Redn(Q,P ) =
1

2σ2

n∑
i=1

E[‖AXi−1 + g − µi(Xi−1
1 )‖22],

assuming that P is the linear Gaussian Markov chain specified. 3

16.3 Minimax strategies for regret

Our definitions in place, we now turn to strategies for attaining the optimal regret in the adversarial
setting. We discuss this only briefly, as optimal strategies are somewhat difficult to implement, and
the redundancy setting allows (for us) easier exploration.

We begin by describing a notion of complexity that captures the best possible regret in the ad-
versarial setting. In particular, assume without loss of generality that we have a set of distributions
P = {Pθ}θ∈Θ parameterized by θ ∈ Θ, where the distributions are supported on X n. We define
the complexity of the set P (viz. the complexity of Θ) as

Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1 )dxn1 or generally Compn(Θ) := log

∫
Xn

sup
θ∈Θ

pθ(x
n
1 )dν(xn1 ),

(16.3.1)
where ν is some base measure on X n. Note that we may have Compn(Θ) = +∞, especially when
Θ is non-compact. This is not particularly uncommon, for example, consider the case of a normal
location family model over X = R with Θ = R.

It turns out that the complexity is precisely the minimax regret in the adversarial setting.

Proposition 16.3.1. The minimax regret

inf
Q

RX (Q,P) = Compn(Θ).

Moreover, if Compn(Θ) < +∞, then the normalized maximum likelihood distribution (also known
as the Shtarkov distribution) Q, defined with density

q(xn1 ) =
supθ∈Θ pθ(x

n
1 )∫

supθ pθ(x
n
1 )dxn1

,

is uniquely minimax optimal.

The proposition completely characterizes the minimax regret in the adversarial setting, and it
gives the unique distribution achieving the regret. Unfortunately, in most cases it is challenging
to compute the minimax optimal distribution Q, so we must make approximations of some type.
One approach is to make Bayesian approximations to Q, as we do in the sequel when we consider
redundancy rather than adversarial regret. See also the book of Grünwald [95] for more discussion
of this and other issues.
Proof We begin by proving the result in the case that Compn < +∞. First, note that the
normalized maximum likelihood distribution Q has constant regret:

RXn (Q,P) = sup
xn1∈Xn

[
log

1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
= sup

xn1

[
log

∫
supθ pθ(x

n
1 )dxn1

supθ pθ(x
n
1 )

− log
1

supθ pθ(x
n
1 )

]
= Compn(P).

389



Lexture Notes on Statistics and Information Theory John Duchi

Moreover, for any distribution Q on X n we have

RXn (Q,P) ≥
∫ [

log
1

q(xn1 )
− log

1

supθ pθ(x
n
1 )

]
q(xn1 )dxn1

=

∫ [
log

q(xn1 )

q(xn1 )
+ Compn(Θ)

]
q(xn1 )dxn1

= Dkl

(
Q||Q

)
+ Compn(Θ), (16.3.2)

so that Q is uniquely minimax optimal, as Dkl

(
Q||Q

)
> 0 unless Q = Q.

Now we show how to extend the lower bound (16.3.2) to the case when Compn(Θ) = +∞. Let
us assume without loss of generality that X is countable and consists of points x1, x2, . . . (we can
discretize X otherwise) and assume we have n = 1. Fix any ε ∈ (0, 1) and construct the sequence
θ1, θ2, . . . so that pθj (xj) ≥ (1 − ε) supθ∈Θ pθ(x), and define the sets Θj = {θ1, . . . , θj}. Clearly
we have Comp(Θj) ≤ log j, and if we define qj(x) = maxθ∈Θj pθ(x)/

∑
x∈X maxθ∈Θj pθ(x), we may

extend the reasoning yielding inequality (16.3.2) to obtain

RX (Q,P) = sup
x∈X

[
log

1

q(x)
− log

1

supθ∈Θ pθ(x)

]
≥
∑
x

qj(x)

[
log

1

q(x)
− log

1

maxθ∈Θj pθ(x)

]

=
∑
x

qj(x)

[
log

qj(x)

q(x)
+ log

∑
x′

max
θ∈Θj

pθ(x
′)

]
= Dkl

(
Qj ||Q

)
+ Comp(Θj).

But of course, by noting that

Comp(Θj) ≥ (1− ε)
j∑
i=1

sup
θ
pθ(xi) +

∑
i>j

max
θ∈Θj

pθ(xi)→ +∞

as j →∞, we obtain the result when Compn(Θ) =∞.

We now give an example where (up to constant factor terms) we can explicitly calculate the
minimax regret in the adversarial setting. In this case, we compete with the family of i.i.d. Bernoulli
distributions.

Example 16.3.2 (Complexity of the Bernoulli distribution): In this example, we consider
competing against the family of Bernoulli distributions {Pθ}θ∈[0,1], where for a point x ∈ {0, 1},
we have Pθ(x) = θx(1 − θ)1−x. For a sequence xn1 ∈ {0, 1}n with m non-zeros, we thus have

for θ̂ = m/n that

sup
θ∈[0,1]

Pθ(x
n
1 ) = P

θ̂
(xn1 ) = θ̂m(1− θ̂)n−m = exp(−nh2(θ̂)),

where h2(p) = −p log p− (1− p) log(1− p) is the binary entropy. Using this representation, we
find that the complexity of the Bernoulli family is

Compn([0, 1]) = log
n∑

m=0

(
n

m

)
e−nh2(m

n
).
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Rather than explicitly compute with this, we now use Stirling’s approximation (cf. Cover and
Thomas [53, Chapter 17]): for any p ∈ (0, 1) with np ∈ N, we have(

n

np

)
∈ 1√

n

[
1√

8p(1− p)
,

1√
πp(1− p)

]
exp(nh2(p)).

Thus, by dealing with the boundary cases m = n and m = 0 explicitly, we obtain

n∑
m=0

(
n

m

)
exp(−nh2(

m

n
)) = 2 +

n−1∑
m=1

(
n

m

)
exp(−nh2(

m

n
))

∈ 2 +

[
1√
8
,

1√
π

]
1√
n

n−1∑
m=1

1√
m
n (1− m

n )︸ ︷︷ ︸
→n

∫ 1
0 (θ(1−θ))−

1
2

,

the noted asymptote occuring as n → ∞ by the fact that this sum is a Riemann sum for the
integral

∫ 1
0 θ
−1/2(1− θ)−1/2dθ. In particular, we have that as n→∞,

inf
Q

RXn (Q,P) = Compn([0, 1]) = log

(
2 + [8−1/2, π−1/2]n1/2

∫ 1

0

1√
θ(1− θ)

dθ

)
+ o(1)

=
1

2
log n+ log

∫ 1

0

1√
θ(1− θ)

dθ +O(1).

We remark in passing that this is equal to 1
2 log n+ log

∫ 1
0

√
Iθdθ, where Iθ denotes the Fisher

information of the Bernoulli family (recall Example 15.1.2). We will see that this holds in more
generality, at least for redundancy, in the sequel. 3

16.4 Mixture (Bayesian) strategies and redundancy

We now turn to a slightly less adversarial setting, where we assume that we compete against a
random sequence Xn

1 of data, drawn from some fixed distribution P , rather than an adversarially
chosen sequence xn1 . Thinking of this problem as a game, we choose a distribution Q according
to which we make predictions (based on previous data), and nature chooses a distribution Pθ ∈
P = {Pθ}θ∈Θ. In the simplest case—upon which we focus—the data Xn

1 are then generated i.i.d.
according to Pθ, and we suffer expected regret (or redundancy)

Redn(Q,Pθ) = Eθ
[
log

1

q(Xn
1 )

]
− Eθ

[
log

1

pθ(X
n
1 )

]
= Dkl (Pnθ ||Qn) , (16.4.1)

where we use Qn to denote that Q is applied on all n data points (in a sequential fashion, as
Q(· | Xi−1

1 )). In this expression, q and p denote the densities of Q and P , respectively. In a slightly
more general setting, we may consider the expected regret of Q with respect to a distribution Pθ
even under model mis-specification, meaning that the data is generated according to an alternate
distribution P . In this case, the (more general) redundancy becomes

EP
[
log

1

q(Xn
1 )
− log

1

pθ(X
n
1 )

]
. (16.4.2)
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In both cases (16.4.1) and (16.4.2), we would like to be able to guarantee that the redundancy
grows more slowly than n as n→∞. That is, we would like to find distributions Q such that, for
any θ0 ∈ Θ, we have 1

nDkl

(
Pnθ0 ||Qn

)
→ 0 as n → ∞. Assuming we could actually obtain such a

distribution in general, this is interesting because (even in the i.i.d. case) for any fixed distribution
Pθ 6= Pθ0 , we must have Dkl

(
Pnθ0 ||P

n
θ

)
= nDkl (Pθ0 ||Pnθ ) = Ω(n). A standard approach to attaining

such guarantees is the mixture approach, which is based on choosing Q as a convex combination
(mixture) of all the possible source distributions Pθ for θ ∈ Θ.

In particular, given a prior distribution π (weighting function integrating to 1) over Θ, we define
the mixture distribution

Qπn(A) =

∫
Θ
π(θ)Pθ(A)dθ for A ⊂ X n. (16.4.3)

Rewriting this in terms of densities pθ, we have

qπn(xn1 ) =

∫
Θ
π(θ)pθ(x

n
1 )dθ.

Conceptually, this gives a simple prediction scheme, where at iteration i we play the density

qπ(xi | xi−1
1 ) =

qπ(xi1)

qπ(xi−1
1 )

,

which is equivalent to playing

qπ(xi | xi−1
1 ) =

∫
Θ
q(xi, θ | xi−1

1 )dθ =

∫
Θ
pθ(xi)π(θ | xi−1

1 )dθ,

by construction of the distributions Qπ as mixtures of i.i.d. Pθ. Here the posterior distribution
π(θ | xi−1

1 ) is given by

π(θ | xi−1
1 ) =

π(θ)pθ(x
i−1
1 )∫

Θ π(θ′)pθ′(x
i−1
1 )dθ′

=
π(θ) exp

(
− log 1

pθ(xi−1
1 )

)
∫

Θ π(θ′)pθ′(x
i−1
1 )dθ′

, (16.4.4)

where we have emphasized that this strategy exhibits an exponential weighting approach, where
distribution weights are scaled exponentially by their previous loss performance of log 1/pθ(x

i−1
1 ).

This mixture construction (16.4.3), with the weighting scheme (16.4.4), enjoys very good per-
formance. In fact, we say that so long as the prior π puts non-zero mass over all of Θ, under some
appropriate smoothness conditions, the scheme Qπ is universal, meaning that Dkl (Pnθ ||Qπn) = o(n).
We have the following theorem illustrating this effect. In the theorem, we let π be a density on Θ,
and we assume the Fisher information Iθ for the family P = {Pθ}θ∈Θ exists in a neighborhood of
θ0 ∈ int Θ, and that the distributions Pθ are sufficiently regular that differentiation and integration
can be interchanged. (See Clarke and Barron [49] for precise conditions.) We have

Theorem 16.4.1 (Clarke and Barron [49]). Under the above conditions, if Qπn =
∫
Pnθ π(θ)dθ is

the mixture (16.4.3), then

Dkl

(
Pnθ0 ||Q

π
n

)
− d

2
log

n

2πe
→ log

1

π(θ0)
+

1

2
log det(Iθ0) as n→∞. (16.4.5)

While we do not rigorously prove the theorem, we give a sketch showing the main components
of the result based on asymptotic normality arguments for the maximum likelihood estimator in
Section 16.5. See Clarke and Barron [49] for a full proof.
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Example 16.4.2 (Bernoulli distributions with a Beta prior): Consider the class of binary
(i.i.d. or memoryless) Bernoulli sources, that is, the Xi are i.i.d Bernoulli(θ), where θ = Pθ(X =
1) ∈ [0, 1]. The Beta(α, β)-distribution prior on θ is the mixture π with density

π(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

on [0, 1], where Γ(a) =
∫∞

0 ta−1e−tdt denotes the gamma function. We remark that that under
the Beta(α, β) distribution, we have Eπ[θ] = α

α+β . (See any undergraduate probability text for
such results.)
If we play via a mixture of Bernoulli distributions under such a Beta-prior for θ, by Theo-
rem 16.4.1 we have a universal prediction scheme. We may also explicitly calculate the predic-
tive distribution Q. To do so, we first compute the posterior π(θ | Xi

1) as in expression (16.4.4).
Let Si =

∑i
j=1Xj be partial sum of the Xs up to iteration i. Then

π(θ | xi1) =
pθ(x

i
1)π(θ)

q(xi1)
∝ θSi(1− θ)i−Siθα−1θβ−1 = θα+Si−1(1− θ)β+i−Si−1,

where we have ignored the denominator as we must simply normalize the above quantity in
θ. But by inspection, the posterior density of θ | Xi

1 is a Beta(α+ Si, β + i− Si) distribution.
Thus to compute the predictive distribution, we note that Eθ[Xi] = θ, so we have

Q(Xi = 1 | Xi
1) = Eπ[θ | Xi

1] =
Si + α

i+ α+ β
.

Moreover, Theorem 16.4.1 shows that when we play the prediction game with a Beta(α, β)-
prior, we have redundancy scaling as

Dkl

(
Pnθ0 ||Q

π
n

)
=

1

2
log

n

2πe
+ log

[
Γ(α)Γ(β)

Γ(α+ β)

1

θα−1
0 (1− θ0)β−1

]
+

1

2
log

1

θ0(1− θ0)
+ o(1)

for θ0 ∈ (0, 1). 3

As one additional interesting result, we show that mixture models are actually quite robust,
even under model mis-specification, that is, when the true distribution generating the data does not
belong to the class P = {Pθ}θ∈Θ. That is, mixtures can give good performance for the generalized
redundancy quantity (16.4.2). For this next result, we as usual define the mixture distribution Qπ

over the set X via Qπ(A) =
∫

Θ Pθ(A)dπ(θ). We may also restrict this mixture distribution to a
subset Θ0 ⊂ Θ by defining

QπΘ0
(A) =

1

π(Θ0)

∫
Θ0

Pθ(A)dπ(θ).

Then we obtain the following robustness result.

Proposition 16.4.3. Assume that Pθ have densities pθ over X , let P be any distribution having
density p over X , and let qπ be the density associated with Qπ. Then for any Θ0 ⊂ Θ,

EP
[
log

1

qπ(X)
− log

1

pθ(X)

]
≤ log

1

π(Θ0)
+Dkl

(
P ||QπΘ0

)
−Dkl (P ||Pθ) .
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In particular, Proposition 16.4.3 shows that so long as the mixture distributions QπΘ0
can closely

approximate Pθ, then we attain a convergence guarantee nearly as good as any in the family P =
{Pθ}θ∈Θ. (This result is similar in flavor to the mutual information bound (8.7.2), Corollary 8.7.2,
and the index of resolvability quantity.)
Proof Fix any Θ0 ⊂ Θ. Then we have qπ(x) =

∫
Θ pθ(x)dπ(θ) ≥

∫
Θ0
pθ(x)dπ(θ). Thus we have

EP
[
log

p(X)

qπ(X)

]
≤ EP

[
inf

Θ0⊂Θ
log

p(X)∫
Θ0
pθ(x)dπ(θ)

]

= EP

[
inf
Θ0

log
p(X)π(Θ0)

π(Θ0)
∫

Θ0
pθ(x)dπ(θ)

]
= EP

[
inf
Θ0

log
p(X)

π(Θ0)qπΘ0
(X)

]
.

This is certainly smaller than the same quantity with the infimum outside the expectation, and
noting that

EP
[
log

1

qπ(X)
− log

1

pθ(X)

]
= EP

[
log

p(X)

qπ(X)

]
− EP

[
log

p(X)

pθ(X)

]
gives the result.

16.4.1 Bayesian redundancy and objective, reference, and Jeffreys priors

We can also imagine a slight variant of the redundancy game we have described to this point. Instead
of choosing a distribution Q and allowing nature to choose a distribution Pθ, we could switch the
order of the game. In particular, we could assume that nature first chooses prior distribution π
on θ, and without seeing θ (but with knowledge of the distribution π) we choose the predictive
distribution Q. This leads to the Bayesian redundancy, which is simply the expected redundancy
we suffer: ∫

Θ
π(θ)Dkl (Pnθ ||Qn) dθ.

However, recalling our calculations with mutual information (equations (8.4.4) and (8.7.3)), we
know that the Bayes-optimal prediction distribution is Qπn. In particular, if we let T denote a
random variable distributed according to π, and conditional on T = θ assume that the Xi are
drawn according to Pθ, we have that the mutual information between T and Xn

1 is

Iπ(T ;Xn
1 ) =

∫
π(θ)Dkl (Pnθ ||Qπn) dθ = inf

Q

∫
π(θ)Dkl (Pnθ ||Q) dθ. (16.4.6)

With Theorem 16.4.1 in hand, we can give a somewhat more nuanced picture of this mutual
information quantity. As a first consequence of Theorem 16.4.1, we have that

Iπ(T ;Xn
1 ) =

d

2
log

n

2πe
+

∫
log

√
det Iθ
π(θ)

π(θ)dθ + o(1), (16.4.7)

where Iθ denotes the Fisher information matrix for the family {Pθ}θ∈Θ. One strand of Bayesian
statistics—we will not delve too deeply into this now, instead referring to the survey by Bernardo
[26]—known as reference analysis, advocates that in performing a Bayesian analysis, we should
choose the prior π that maximizes the mutual information between the parameters θ about which
we wish to make inferences and any observations Xn

1 available. Moreover, in this set of strategies,
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one allows n to tend to ∞, as we wish to take advantage of any data we might actually see. The
asymptotic formula (16.4.7) allows us to choose such a prior.

In a different vein, Jeffreys [116] proposed that if the square root of the determinant of the
Fisher information was integrable, then one should take π as

πjeffreys(θ) =

√
det Iθ∫

Θ

√
det Iθdθ

known as the Jeffreys prior. Jeffreys originally proposed this for invariance reasons, as the infer-
ences made on the parameter θ under the prior πjeffreys are identical to those made on a trans-
formed parameter φ(θ) under the appropriately transformed Jeffreys prior. The asymptotic ex-
pression (16.4.7), however, shows that the Jeffreys prior is the asymptotic reference prior. Indeed,
computing the integral in (16.4.7), we have∫

Θ
π(θ) log

√
det Iθ
π(θ)

dθ =

∫
Θ
π(θ) log

πjeffreys(θ)

π(θ)
dθ + log

∫ √
det Iθdθ

= −Dkl (π||πjeffreys) + log

∫ √
det Iθdθ,

whenever the Jeffreys prior exists. Moreover, we see that in an asymptotic sense, the worst-case
prior distribution π for nature to play is given by the Jeffreys prior, as otherwise the−Dkl (π||πjeffreys)
term in the expected (Bayesian) redundancy is negative.

Example 16.4.4 (Jeffreys priors and the exponential distribution): Let us now assume that
our source distributions Pθ are exponential distributions, meaning that θ ∈ (0,∞) and we have
density pθ(x) = exp(−θx− log 1

θ ) for x ∈ [0,∞). This is clearly an exponential family model,

and the Fisher information is easy to compute as Iθ = ∂2

∂θ2
log 1

θ = 1/θ2 (cf. Example 15.1.1).

In this case, the Jeffreys prior is πjeffreys(θ) ∝
√
I = 1/θ, but this “density” does not integrate

over [0,∞). One approach to this difficulty, advocated by Bernardo [26, Definition 3] (among
others) is to just proceed formally and notice that after observing a single datapoint, the
“posterior” distribution π(θ | X) is well-defined. Following this idea, note that after seeing
some data X1, . . . , Xi, with Si =

∑i
j=1Xj as the partial sum, we have

π(θ | xi1) ∝ pθ(xi1)πjeffreys(θ) = θi exp

(
− θ

i∑
j=1

xj

)
1

θ
= θi−1 exp(−θSi).

Integrating, we have for si =
∑i

j=1 xj

q(x | xi1) =

∫ ∞
0

pθ(x)π(θ | xi1)dθ ∝
∫ ∞

0
θe−θxθi−1e−θsidθ =

1

(si + x)i+1

∫ ∞
0

uie−udu,

where we made the change of variables u = θ(si + x). This is at least a distribution that
normalizes, so often one simply assumes the existence of a piece of fake data. For example, by
saying we “observe” x0 = 1, we have prior proportional to π(θ) = e−θ, which yields redundancy

Dkl

(
Pnθ0 ||Q

π
n

)
=

1

2
log

n

2πe
+ θ0 + log

1

θ0
+ o(1).

The difference is that, in this case, the redundancy bound is no longer uniform in θ0, as it
would be for the true reference (or Jeffreys, if it exists) prior. 3
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16.4.2 Redundancy capacity duality

Let us discuss Bayesian redundancy versus worst-case redundancy in somewhat more depth. If we
play a game where nature chooses T according to the known prior π, and draws data Xn

1 ∼ Pθ
conditional on T = θ, then we know that as in expression (16.4.7), we have

inf
Q

Eπ [Dkl (PnT ||Q)] =

∫
Dkl (Pnθ ||Qπn)π(θ)dθ = Iπ(T ;Xn

1 ).

A natural question that arises from this expression is the following: if nature chooses a worst-case
prior, can we swap the order of maximization and minimization? That is, do we ever have the
equality

sup
π
Iπ(T ;Xn

1 ) = inf
Q

sup
θ
Dkl (Pnθ ||Q) ,

so that the worst-case Bayesian redundancy is actually the minimax redundancy? It is clear that
if nature can choose the worst case Pθ after we choose Q, the redundancy must be at least as bad
as the Bayesian redundancy, so

sup
π
Iπ(T ;Xn

1 ) ≤ inf
Q

sup
θ
Dkl (Pnθ ||Q) = inf

Q
Rn(Q,P).

Indeed, if this inequality were an equality, then for the worst-case prior π∗, the mixture Qπ
∗
n would

be minimax optimal.
In fact, the redundancy-capacity theorem, first proved by Gallager [88], and extended by Haus-

sler [101] (among others) allows us to do just that. That is, if we must choose a distribution
Q and then nature chooses Pθ adversarially, we can guarantee to worse redundancy than in the
(worst-case) Bayesian setting. We state a simpler version of the result that holds when the ran-
dom variables X take values in finite spaces; Haussler’s more general version shows that the next
theorem holds whenever X ∈ X and X is a complete separable metric space.

Theorem 16.4.5 (Gallager [88]). Let X be a random variable taking on a finite number of values
and Θ be a measurable space. Then

sup
π

inf
Q

∫
Dkl (Pθ||Q) dπ(θ) = sup

π
Iπ(T ;X) = inf

Q
sup
θ∈Θ

Dkl (Pθ||Q) .

Moreover, the infimum on the right is uniquely attained by some distribution Q∗, and if π∗ attains
the supremum on the left, then Q∗ =

∫
Pθdπ

∗(θ).

See Section 16.6 for a proof of Theorem 16.4.5.
This theorem is known as the redundancy-capacity theorem in the literature, because in classical

information theory, the capacity of a noisy channel T → Xn
1 is the maximal mutual informationx

supπ Iπ(T ;Xn
1 ). In the exercises, you explore some robustness properties of the optimal distribution

Qπ in relation to this theorem. In short, though, we see that if there is a capacity achieving
prior, then the associated mixture distribution Qπ is minimax optimal and attains the minimax
redundancy for the game.

16.5 Asymptotic normality and Theorem 16.4.1

In this section, we very briefly (and very hand-wavily) justify the asymptotic expression (16.4.5).
To do this, we argue that (roughly) the posterior distribution π(θ | Xn

1 ) should be roughly normally
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distributed with appropriate variance measure, which gives the result. We now give the intuition for
this statement, first by heuristically deriving the asymptotics of a maximum likelihood estimator,
then by looking at the Bayesian case. (Clarke and Barron [49] provide a fully rigorous proof.)

16.5.1 Heuristic justification of asymptotic normality

First, we sketch the asymptotic normality of the maximum likelihood estimator θ̂, that is, θ̂ is
chosen to maximize log pθ(X

n
1 ). (See, for example, Lehmann and Casella [130] for more rigorous

arguments.) Assume that the data are generated i.i.d. according to Pθ0 . Then by assumption that

θ̂ maximizes the log-likelihood, we have the stationary condition 0 = ∇ log p
θ̂
(Xn

1 ). Performing a
Taylor expansion of this quantity about θ0, we have

0 = ∇ log p
θ̂
(Xn

1 ) = ∇ log pθ0(Xn
1 ) +∇2 log pθ0(Xn

1 )(θ̂ − θ0) +R

where R is a remainder term. Assuming that θ̂ → θ0 at any reasonable rate (this can be made
rigorous), this remainder is negligible asymptotically.

Rearranging this equality, we obtain

θ̂ − θ0 ≈ (−∇2 log pθ0(Xn
1 ))−1∇ log pθ0(Xn

1 )

=
1

n

(
− 1

n

n∑
i=1

∇2 log pθ0(Xi)︸ ︷︷ ︸
≈Iθ0

)−1 n∑
i=1

∇ log pθ0(Xi)

≈ 1

n
I−1
θ0

n∑
i=1

∇ log pθ0(Xi),

where we have used that the Fisher information Iθ = −Eθ[∇2 log pθ(X)] and the law of large
numbers. By the (multivariate) central limit theorem, we then obtain the asymptotic normality
result

√
n(θ̂ − θ0) ≈ 1√

n
I−1
θ0

n∑
i=1

∇ log pθ0(Xi)
d→ N(0, I−1

θ0
),

where
d→ denotes convergence in distribution, with asymptotic variance

I−1
θ0

Eθ0 [∇ log pθ0(X)∇ log pθ0(X)>]I−1
θ0

= I−1
θ0
Iθ0I

−1
θ0

= I−1
θ0
.

Completely heuristically, we also write

θ̂ “ ∼ ” N(θ0, (nIθ0)−1). (16.5.1)

16.5.2 Heuristic calculations of posterior distributions and redundancy

With the asymptotic distributional heuristic (16.5.1), we now look at the redundancy and posterior
distribution of θ conditioned on the data Xn

1 when the data are drawn i.i.d. Pθ0 . When Qπn is the
mixture distribution associated with π, the posterior density of θ | Xn

1 is

π(θ | Xn
1 ) =

pθ(X
n
1 )π(θ)

qn(Xn
1 )

.
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By our heuristic calculation of the MLE, this density (assuming the data overwhelms the prior) is
approximately a normal density with mean θ0 and variance (nIθ0)−1, where we have used expres-
sion (16.5.1). Expanding the redundancy, we obtain

Eθ0
[
log

pθ0(Xn
1 )

qn(Xn
1 )

]
= Eθ0

[
log

p
θ̂
(Xn

1 )π(θ̂)

qn(Xn
1 )

]
+ Eθ0

[
log

1

π(θ̂)

]
+ Eθ0

[
log

pθ0(Xn
1 )

p
θ̂
(Xn

1 )

]
. (16.5.2)

Now we use our heuristic. We have that

Eθ0

[
log

p
θ̂
(Xn

1 )π(θ̂)

qn(Xn
1 )

]
≈ log

1

(2π)d/2 det(nIθ0)−1/2
+ Eθ0

[
−1

2
(θ̂ − θ0)>(nIθ0)−1(θ̂ − θ0)

]
,

by the asymptotic normality result, π(θ̂) = π(θ0) + O(1/
√
n) again by the asymptotic normality

result, and

log p
θ̂
(Xn

1 ) ≈ log pθ0(Xn
1 ) +

( n∑
i=1

∇ log pθ0(Xi)

)>
(θ̂ − θ0)

≈ log pθ0(Xn
1 ) +

( n∑
i=1

∇ log pθ0(Xi)

)>
I−1
θ0

(
1

n

n∑
i=1

∇ log pθ0(Xi)

)
.

Substituting these three into the redundancy expression (16.5.2), we obtain

Eθ0
[
log

pθ0(Xn
1 )

qn(Xn
1 )

]
≈ log

1

(2π)d/2 det(nIθ0)−1/2
+ Eθ0

[
−1

2
(θ̂ − θ0)>(nIθ0)−1(θ̂ − θ0)

]
+ log

1

π(θ0)
− Eθ0

[( n∑
i=1

∇ log pθ0(Xi)

)>
I−1
θ0

(
1

n

n∑
i=1

∇ log pθ0(Xi)

)]

=
d

2
log

n

2π
+

1

2
log det(Iθ0) + log

1

π(θ0)
− d+R,

where R is a remainder term. This gives the major terms in the asymptotic result in Theorem 16.4.1.

16.6 Proof of Theorem 16.4.5

In this section, we prove one version of the strong saddle point results associated with the universal
prediction game as given by Theorem 16.4.5 (in the case that X belongs to a finite set). For
shorthand, we recall the definition of the redundancy

Red(Q, θ) := EPθ [− logQ(X) + logPθ(X)] = Dkl (Pθ||Q) ,

where we have assumed that X belongs to a finite set, so that Q(X) is simply the probability of
X. For a given prior distribution π on θ, we define the expected redundancy as

Red(Q, π) =

∫
Dkl (Pθ||Q) dπ(θ).

Our goal is to show that the max-min value of the prediction game is the same as the min-max
value of the game, that is,

sup
π
Iπ(T ;X) = sup

π
inf
Q

Red(Q, π) = inf
Q

sup
θ∈Θ

Red(Q, θ).
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Proof We know that the max-min risk (worst-case Bayes risk) of the game is supπ Iπ(T ;X);
it remains to show that this is the min-max risk. To that end, define the capacity of the family
{Pθ}θ∈Θ as

C := sup
π
Iπ(T ;X). (16.6.1)

Notably, this constant is finite (because Iπ(T ;X) ≤ log |X |), and there exists a sequence πn of prior
probabilities such that Iπn(T ;X)→ C. Now, let Q̄ be any cluster point of the sequence of mixtures
Qπn =

∫
Pθdπn(θ); such a point exists because the space of probability distributions on the finite

set X is compact. We will show that∑
x

Pθ(x) log
Pθ(x)

Q̄(x)
≤ C for all θ ∈ Θ, (16.6.2)

and we claim this is sufficient for the theorem. Indeed, suppose that inequality (16.6.2) holds. Then
in this case, we have

inf
Q

sup
θ∈Θ

Red(Q, θ) ≤ sup
θ∈Θ

Red(Q̄, θ) = sup
θ∈Θ

Dkl

(
Pθ||Q̄

)
≤ C,

which implies the theorem, because it is always the case that

sup
π

inf
Q

Red(Q, θ) ≤ inf
Q

sup
π

Red(Q, π) = inf
Q

sup
θ∈Θ

Red(Q, θ).

For the sake of contradiction, let us assume that there exists some θ ∈ Θ such that inequal-
ity (16.6.2) fails, call it θ∗. We will then show that suitable mixtures (1− λ)π + λδθ∗ , where δθ∗ is
the point mass on θ∗, could increase the capacity (16.6.1). To that end, for shorthand define the
mixtures

πn,λ = (1− λ)πn + λδθ∗ and Qπn,λ = (1− λ)Qπn + λPθ∗

for λ ∈ [0, 1]. Let us also use the notation Hw(X | T ) to denote the conditionaly entropy of
the random variable X on T (when T is distributed as w), and we abuse notation by writing
H(X) = H(P ) when X is distributed as P . In this case, it is clear that we have

Hπn,λ(X | T ) = (1− λ)Hπn(X | T ) + λH(X | T = θ∗),

and by definition of the mutual information we have

Iπn,λ(T ;X) = Hπn,λ(X)−Hπn,λ(X | T )

= H((1− λ)Qπn + λPθ∗)− (1− λ)Hπn(X | T )− λH(X | T = θ∗).

To demonstrate our contradiction, we will show two things: first, that at λ = 0 the limits of both
sides of the preceding display are equal to the capacity C, and second, that the derivative of the
right hand side is positive. This will contradict the definition (16.6.1) of the capacity.

To that end, note that

lim
n
Hπn(X | T ) = lim

n
Hπn(X)− Iπn(T ;X) = H(Q̄)− C,

by the continuity of the entropy function. Thus, we have

lim
n
Iπn,λ(T ;X) = H((1− λ)Q̄+ λPθ∗)− (1− λ)(H(Q̄)− C)− λH(Pθ). (16.6.3)
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It is clear that at λ = 0, both sides are equal to the capacity C, while taking derivatives with
respect to λ we have

∂

∂λ
H((1− λ)Q̄+ λPθ∗) = −

∑
x

(Pθ∗(x)− Q̄(x)) log
(
(1− λ)Q̄(x) + λPθ∗(x)

)
.

Evaluating this derivative at λ = 0, we find

∂

∂λ
lim
n
Iπn,λ(T ;X)

∣∣∣∣
λ=0

= −
∑
x

Pθ∗(x) log Q̄(x) +
∑
x

Q̄(x) log Q̄(x) +H(Q̄)− C +
∑
x

Pθ∗(x) logPθ∗(x)

=
∑
x

Pθ∗(x) log
Pθ∗(x)

Q̄(x)
− C.

In particular, if inequality (16.6.2) fails to hold, then ∂
∂λ limn Iπn,λ(T ;X)|λ=0 > 0, contradicting the

definition (16.6.1) of the channel capacity.
The uniqueness of the result follows from the strict convexity of the mutual information I in

the mixture channel Q̄.

16.7 Exercises

Exercise 16.1 (Minimax redundancy and different loss functions): In this question, we consider

expected losses under the Bernoulli distribution. Assume that Xi
iid∼ Bernoulli(p), meaning that

Xi = 1 with probability p and Xi = 0 with probability 1 − p. We consider four different loss
functions, and their associated expected regret, for measuring the accuracy of our predictions of
such Xi. For each of the four choices below, we prove expected regret bounds on

Redn(θ̂, P, `) :=
n∑
i=1

EP [`(θ̂(Xi−1
1 ), Xi)]− inf

θ

n∑
i=1

EP [`(θ,Xi)], (16.7.1)

where θ̂ is a predictor based on X1, . . . , Xi−1 at time i. Define Si =
∑i

j=1Xj to be the partial sum
up to time i. For each of parts (a)–(c), at time i use the predictor

θ̂i = θ̂(Xi−1
1 ) =

Si−1 + 1
2

i
.

(a) Loss function: `(θ, x) = 1
2(x− θ)2. Show that Redn(θ̂, P, `) ≤ C · log n where C is a constant.

(b) Loss function: `(θ, x) = x log 1
θ + (1− x) log 1

1−θ , the usual log loss for predicting probabilities.

Show that Redn(θ̂, P, `) ≤ C · log n whenever the true probability p ∈ (0, 1), where C is a
constant. Hint: Note that there exists a prior π for which θ̂ is a Bayes strategy. What is this
prior?

(c) Loss function: `(θ, x) = |x − θ|. Show that Redn(θ̂, P, `) ≥ c · n, where c > 0 is a constant,
whenever the true probability p 6∈ {0, 1

2 , 1}.
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(d) Extra credit: Show that there is a numerical constant c > 0 such that for any procedure
θ̂, the worst-case redundancy supp∈[0,1] Redn(θ̂,Bernoulli(p), `) ≥ c

√
n for the absolute loss ` in

part (c). Give a strategy attaining this redundancy.

Exercise 16.2 (Strong versions of redundancy): Assume that for a given θ ∈ Θ we draw
Xn

1 ∼ Pθ. We define the Bayes redundancy for a family of distributions P = {Pθ}θ∈Θ as

Cπn := inf
Q

∫
Dkl (Pθ||Q) dπ(θ) = Iπ(T ;Xn

1 ),

where π is a probability measure on Θ, T is distributed according to π, and conditional on T = θ,
we draw Xn

1 ∼ Pθ, and Iπ denotes the mutual information when T is drawn according to π. Define
the maximin redundancy C∗n := supπ C

π
n as the worst-case Bayes redundancy. We show that for

“most” points θ under the prior π, if Q =
∫
Pθdπ(θ) is the mixture of all the Pθ under the prior π,

then no distribution Q can have subtantially better redundancy that Q.
Consider any distribution Q on the set X and let ε ∈ [0, 1], and define the set of points θ where

Q is ε-better than the worst case redundancy as

Bε := {θ ∈ Θ : Dkl (Pθ||Q) ≤ (1− ε)C∗n} .

(a) Show that for any prior π, we have

π(Bε) ≤
log 2 + C∗n − Iπ(T ;Xn

1 )

εC∗n
.

As an aside, note this implies that if πi is a sequence of priors tending to supπ Iπ(T ;Xn
1 ) and

the redundancy C∗n →∞, then so long as C∗n − Iπi(T ;Xn
1 )� εC∗n, we have πi(Bε) ≈ 0.

(b) Assume that π attains the supremum in the definition of C∗n. Show that

π(Bε) ≤ O(1) · exp(−εC∗n).

Hint: Introduce the random variable Z to be 1 if the random variable T ∈ Bε and 0 otherwise, then
use that Z → T → Xn

1 forms a Markov chain, and expand the mutual information. For part (b),
the inequality 1−x

x log 1
1−x ≤ 1 for all x ∈ [0, 1] may be useful.

Exercise 16.3 (Mixtures are as good as point distributions): Let P be a Laplace(λ) distribution
on R, meaning that X ∼ P has density

p(x) =
λ

2
exp(−λ|x|).

Assume that X1, . . . , Xn
iid∼ P , and let Pn denote the n-fold product of P . In this problem, we

compare the predictive performance of distributions from the normal location family P = {N(θ, σ2) :
θ ∈ R} with the mixture distribution Qπ over P defined by the normal prior distribution N(µ, τ2),
that is, π(θ) = (2πτ2)−1/2 exp(−(θ − µ)2/2τ2).

(a) Let Pθ,Σ be the multivariate normal distribution with mean θ ∈ Rn and covariance Σ ∈ Rn×n.
What is Dkl (Pn||Pθ,Σ)?

(b) Show that infθ∈Rn Dkl (Pn||Pθ,Σ) = Dkl (Pn||P0,Σ), that is, the mean-zero normal distribution
has the smallest KL-divergence from the Laplace distribution.
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(c) Let Qπn be the mixture of the n-fold products in P, that is, Qπn has density

qπn(xn1 ) =

∫ ∞
−∞

π(θ)pθ(x1) · · · pθ(xn)dθ,

where π is N(0, τ2). What is Dkl (Pn||Qπn)?

(d) Show that the redundancy of Qπn under the distribution P is asymptotically nearly as good
as the redundancy of any Pθ ∈ P, the normal location family (so Pθ has density pθ(x) =
(2πσ2)−1/2 exp(−(x− θ)2/2σ2)). That is, show that

sup
θ∈R

EP
[
log

1

qπn(Xn
1 )
− log

1

pθ(X
n
1 )

]
= O(log n)

for any prior variance τ2 > 0 and any prior mean µ ∈ R, where the big-Oh hides terms
dependent on τ2, σ2, µ2.

(e) Extra credit: Can you give an interesting condition under which such redundancy guarantees
hold more generally? That is, using Proposition 16.4.3 in the notes, give a general condition
under which

EP
[
log

1

qπ(Xn
1 )
− log

1

pθ(X
n
1 )

]
= o(n)

as n→∞, for all θ ∈ Θ.
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Chapter 17

Universal prediction with other losses

Thus far, in our discussion of universal prediction and related ideas, we have focused (essentially)
exclusively on making predictions with the logarithmic loss, so that we play a full distribution over
the set X as our prediction at each time step in the procedure. This is natural in settings, such
as coding (recall examples 16.1.2 and 16.2.1), in which the log loss corresponds to a quantity we
directly care about, or when we do not necessarily know much about the task at hand but rather
wish to simply model a process. (We will see this more shortly.) In many cases, however, we have
a natural task-specific loss. The natural question that follows, then, is to what extent it is possible
to extend the results of Chapter 16 to different settings in which we do not necessarily care about
prediction of an entire distribution. (Relevant references include the paper of Cesa-Bianchi and
Lugosi [46], which shows how complexity measures known as Rademacher complexity govern the
regret in online prediction games; the book by the same authors [47], which gives results covering a
wide variety of online learning, prediction, and other games; the survey by Merhav and Feder [140];
and the study of consequences of the choice of loss for universal prediction problems by Haussler
et al. [102].)

17.1 Redudancy and expected regret

We begin by considering a generalization of the redundancy (16.2.3) to the case in which we do not
use the log loss. In particular, we have as usual a space X and a loss function ` : X ×X → R, where
`(x̂, x) is the penalty we suffer for playing x̂ when the instantaneous data is x. (In somewhat more
generality, we may allow the loss to act on X̂ × X , where the prediction space X̂ may be different
from X .) As a simple example, consider a weather prediction problem, where Xi ∈ {0, 1} indicates
whether it rained on day i and X̂i denotes our prediction of whether it will rain. Then a natural
loss includes `(x̂, x) = 1 {x̂ · x ≤ 0}, which simply counts the number of mistaken predictions.

Given the loss `, our goal is to minimize the expected cumulative loss
n∑
i=1

EP [`(X̂i, Xi)],

where X̂i are the predictions of the procedure we use and P is the distribution generating the data
Xn

1 . In this case, if the distribution P is known, it is clear that the optimal strategy is to play the
Bayes-optimal prediction

X∗i ∈ argmin
x∈X̂

EP [`(x,Xi) | Xi−1
1 ] = argmin

x∈X̂

∫
X
`(x, xi)dP (xi | Xi−1

1 ). (17.1.1)
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In many cases, however, we do not know the distribution P , and so our goal (as in the previous chap-
ter) is to simultaneously minimize the cumulative loss simultaneously for all source distributions in
a family P.

17.1.1 Universal prediction via the log loss

As our first idea, we adapt the same strategies as those in the previous section, using a distribution
Q that has redundancy growing only sub-linearly against the class P, and making Bayes optimal
predictions with Q. That is, at iteration i, we assume that Xi ∼ Q(· | Xi−1

1 ) and play

X̂i ∈ argmin
x∈X̂

EQ[`(x,Xi) | Xi−1
1 ] =

∫
X
`(x, xi)dQ(xi | Xi−1

1 ). (17.1.2)

Given such a distribution Q, we measure its loss-based redundancy against P via

Redn(Q,P, `) := EP

[
n∑
i=1

`(X̂i, Xi)−
n∑
i=1

`(X∗i , Xi)

]
, (17.1.3)

where X̂i chosen according to Q(· | Xi−1
1 ) as in expression (17.1.2). The natural question now, of

course, is whether the strategy (17.1.2) has redundancy growing more slowly than n.
It turns out that in some situations, this is the case: we have the following theorem [140, Section

III.A.2], which only requires that the usual redundancy (16.2.3) (with log loss) is sub-linear and the
loss is suitably bounded. In the theorem, we assume that the class of distributions P = {Pθ}θ∈Θ is
indexed by θ ∈ Θ.

Theorem 17.1.1. Assume that the redundancy Redn(Q,Pθ) ≤ Rn(θ) and that |`(x̂, x)−`(x∗, x)| ≤
L for all x and predictions x̂, x∗. Then we have

1

n
Redn(Q,Pθ, `) ≤ L

√
2

n
Rn(θ).

To attain vanishing expected regret under the loss `, then, Theorem 17.1.1 requires only that
we play a Bayes’ strategy (17.1.2) with a distribution Q for which the average (over n) of the
usual redundancy (16.2.3) tends to zero, so long as the loss is (roughly) bounded. We give two
examples of bounded losses. First, we might consider the 0-1 loss, which clearly satisfies |`(x̂, x)−
`(x∗, x)| ≤ 1. Second, the absolute value loss (which is used for robust estimation of location
parameters [145, 108]), given by `(x̂, x) = |x − x̂|, satisfies |`(x̂, x) − `(x∗, x)| ≤ |x̂ − x∗|. If the
distribution Pθ has median θ and Θ is compact, then E[|x̂ −X|] is minimized by its median, and
|x̂− x∗| is bounded by the diameter of Θ.
Proof The theorem is essentially a consequence of Pinsker’s inequality (Proposition 2.2.8). By
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expanding the loss-based redundancy, we have the following chain of equalities:

Redn(Q,Pθ, `) =

n∑
i=1

Eθ[`(X̂i, Xi)]− Eθ[`(X∗i , Xi)]

=

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∫
X
pθ(xi | xi−1

1 )
[
`(X̂i, xi)− `(X∗i , xi)

]
dxidx

i−1
1

=
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∫
X

(pθ(xi | xi−1
1 )− q(xi | xi−1

1 ))
[
`(X̂i, xi)− `(X∗i , xi)

]
dxidx

i−1
1

+
n∑
i=1

∫
X i−1

pθ(x
i−1
1 )EQ[`(X̂i, Xi)− `(X∗i , Xi) | xi−1

1 ]︸ ︷︷ ︸
≤0

dxi−1
1 , (17.1.4)

where for the inequality we used that the play X̂i minimizes

EQ[`(X̂i, Xi)− `(X∗i , Xi) | Xi−1
1 ]

by the construction (17.1.2).
Now, using Hölder’s inequality on the innermost integral in the first sum of expression (17.1.4),

we have ∫
X

(pθ(xi | xi−1
1 )− q(xi | xi−1

1 ))
[
`(X̂i, xi)− `(X∗i , xi)

]
dxi

≤ 2
∥∥Pθ(· | xi−1

1 )−Q(· | xi−1
1 )

∥∥
TV

sup
x∈X
|`(X̂i, x)− `(X∗i , x)|

≤ 2L
∥∥Pθ(· | xi−1

1 )−Q(· | xi−1
1 )

∥∥
TV

,

where we have used the definition of total variation distance. Combining this inequality with (17.1.4),
we obtain

Redn(Q,Pθ, `) ≤ 2L

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥

TV
dxi−1

1

(?)

≤ 2L
n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )dxi−1

1

) 1
2
(∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

= 2L
n∑
i=1

(∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

,

where the inequality (?) follows by the Cauchy-Schwarz inequality applied to the integrands
√
pθ

and
√
pθ ‖P −Q‖TV. Applying the Cauchy-Schwarz inequality to the final sum, we have

Redn(Q,Pθ, `) ≤ 2L
√
n

( n∑
i=1

∫
X i−1

pθ(x
i−1
1 )

∥∥Pθ(· | xi−1
1 )−Q(· | xi−1

1 )
∥∥2

TV

) 1
2

(??)

≤ 2L
√
n

(
1

2

n∑
i=1

∫
X i−1

pθ(x
i−1
1 )Dkl

(
Pθ(· | xi−1

1 )||Q(· | xi−1
1 )

)
dxi−1

1

) 1
2

= L
√

2n
√
Dkl

(
Pnθ ||Q

)
,
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where inequality (??) is an application of Pinsker’s inequality. But of course, we know by that
Redn(Q,Pθ) = Dkl (Pnθ ||Q) by definition (16.2.3) of the redundancy.

Before proceding to examples, we note that in a variety of cases the bounds of Theorem 17.1.1 are
loose. For example, under mean-squared error, universal linear predictors [58, 151] have redundancy
O(log n), while Theorem 17.1.1 gives at best a bound of O(

√
n).

TODO: Add material on redundancy/capacity (Theorem 16.4.5) analogue in general loss case,
which allows playing mixture distributions based on mixture of {Pθ}θ∈Θ.

17.1.2 Examples

We now give an example application of Theorem 17.1.1 with an application to a classification
problem with side information. In particular, let us consider the 0-1 loss `0-1(ŷ, y) = 1 {ŷ · y ≤ 0},
and assume that we wish to predict y based on a vector x ∈ Rd of regressors that are fixed ahead
of time. In addition, we assume that the “true” distribution (or competitor) Pθ is that given x and
θ, Y has normal distribution with mean 〈θ, x〉 and variance σ2, that is,

Yi = 〈θ, xi〉+ εi, εi
iid∼ N(0, σ2).

Now, we consider playing according to a mixture distribution (16.4.3), and for our prior π we choose
θ ∼ N(0, τ2Id×d), where τ > 0 is some parameter we choose.

Let us first consider the case in which we observe Y1, . . . , Yn directly (rather than simply whether
we classify correctly) and consider the prediction scheme this generates. First, we recall as in the
posterior calculation (16.4.4) that we must calculate the posterior on θ given Y1, . . . , Yi at step i+1.
Assuming we have computed this posterior, we play

Ŷi := argmin
y∈R

EQπ [`0-1(y, Yi) | Y i−1
1 ] = argmin

y∈R
Qπ(sign(Yi) 6= sign(y) | Y i−1

1 )

= argmin
y∈R

∫ ∞
−∞

Pθ(sign(Yi) 6= sign(y))π(θ | Y i−1
1 )dθ. (17.1.5)

With this in mind, we begin by computing the posterior distribution on θ:

Lemma 17.1.2. Assume that θ has prior N(0, τ2Id×d). Then conditional on Y i
1 = yi1 and the first

i vectors xi1 = (x1, . . . , xi) ⊂ Rd, we have

θ | yi1, xi1 ∼ N

K−1
i

i∑
j=1

xjyj ,K
−1
i

 , where Ki =
1

τ2
Id×d +

1

σ2

i∑
j=1

xjx
>
j .

Deferring the proof of Lemma 17.1.2 temporarily, we note that under the distribution Qπ, as
by assumption we have Yi = 〈θ, xi〉+ εi, the posterior distribution (under the prior π for θ) on Yi+1

conditional on Y i
1 = yii and x1, . . . , xi+1 is

Yi+1 = 〈θ, xi+1〉+ εi+1 | yi1, x1
i ∼ N

(〈
xi+1,K

−1
i

i∑
j=1

xjyj

〉
, x>i+1K

−1
i xi+1 + σ2

)
.
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Consequently, if we let θ̂i+1 be the posterior mean of θ | yi1, xii (as given by Lemma 17.1.2), the

optimal prediction (17.1.5) is to choose any Ŷi+1 satisfying sign(Ŷi+1) = sign(〈xi+1, θ̂i+1〉). Another
option is to simply play

Ŷi+1 = x>i+1K
−1
i

( i∑
j=1

yjxj

)
, (17.1.6)

which is E[Ŷi+1 | Y i
1 , X

i+1
1 ] = E[〈θ,Xi+1〉 | Y i

1 , X
i
1], because this Ŷi+1 has sign that is most probable

for Yi+1 (under the mixture Qπ).
Let us now evaluate the 0-1 redundancy of the prediction scheme (17.1.6). We first compute

the Fisher information for the distribution Yi ∼ N(〈θ, xi〉, σ2). By a straightforward calculation,
we have Iθ = 1

σ2X
>X, where the matrix X ∈ Rn×d is the data matrix X = [x1 · · · xn]>. Then

for any θ0 ∈ Rd, Theorem 16.4.1 implies that for the prior π(θ) = 1
(2πτ2)d/2

exp(− 1
2τ2
‖θ‖22), we have

(up to constant factors) the redundancy bound

Redn(Qπ, Pθ0) . d log n+ d log τ +
1

τ2
‖θ0‖22 + log det(σ−2X>X).

Thus the expected regret under the 0-1 loss `0-1 is

Redn(Qπ, Pθ0 , `0-1) .
√
n

√
d log n+ d log(στ) +

1

τ2
‖θ0‖22 + log det(X>X) (17.1.7)

by Theorem 17.1.1. We can provide some intuition for this expected regret bound. First, for any θ0,
we can asymptotically attain vanishing expected regret, though larger θ0 require more information
to identify. In addition, the less informative the prior is (by taking τ ↑ +∞), the less we suffer by
being universal to all θ0, but there is logarithmic penalty in τ . We also note that the bound (17.1.7)
is not strongly universal, because by taking ‖θ0‖ → ∞ we can make the bound vacuous.

We remark in passing that we can play a similar game when all we observe are truncated
(signed) normal random variables, that is, we see only sign(Yi) rather than Yi. Unfortunately, in
this case, there is no closed form for the posterior updates as in Lemma 17.1.2. That said, it is
possible to play the game using sampling (Monte Carlo) or other strategies.

Finally, we prove Lemma 17.1.2:
Proof We use Bayes rule, ignoring normalizing constants that do not depend on θ. In this case,
we have the posterior distribution proportional to the prior times the likelihood, so

π(θ | yi1, xi1) ∝ π(θ)
n∏
i=1

pθ(yi | xi) ∝ exp

− 1

2τ2
‖θ‖22 −

1

2σ2

i∑
j=1

(yj − 〈xj , θ〉)2

 .

Now, we complete the square in the exponent above, which yields

1

2τ2
‖θ‖22 +

1

2σ2

i∑
j=1

(yj − 〈xj , θ〉)2 =
1

2
θ>

 1

τ2
Id×d +

1

σ2

i∑
j=1

xjx
>
j

 θ − θ>
i∑

j=1

yjxj + C

=
1

2

θ −K−1
i

i∑
j=1

yjxj

>Ki

θ −K−1
i

i∑
j=1

yjxj

+ C ′,

where C,C ′ are constants depending only on the yi1 and not xi1 or θ, and we have recalled the
definition of Ki = τ−2Id×d + σ−2

∑i
j=1 xjx

>
j . By inspection, this implies our desired result.
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17.2 Individual sequence prediction and regret

Having discussed (in some minor detail) prediction games under more general losses in an expected
sense, we now consider the more adversarial sense of Section 16.3, where we wish to compete against
a family of prediction strategies and the data sequence observed is chosen adversarially. In this
section, we look into the case in which the comparison class—set of strategies against which we
wish to compete—is finite.

As a first observation, in the redundancy setting, we see that when the class P = {Pθ}θ∈Θ has
|Θ| <∞, then the redundancy capacity theorem (Theorem 16.4.5) implies that

inf
Q

sup
θ∈Θ

Redn(Q,Pθ) = inf
Q

sup
θ∈Θ

Dkl (Pnθ ||Q) = sup
π
Iπ(T ;Xn

1 ) ≤ log |Θ|,

where T ∼ π and conditioned on T = θ we draw Xn
1 ∼ Pθ. (Here we have used that I(T ;Xn

1 ) =
H(T )−H(T | Xn

1 ) ≤ H(T ) ≤ log |Θ|, by definition (2.1.3) of the mutual information.) In particular,
the redundancy is constant for any n.

Now we come to our question: is this possible in a purely sequential case? More precisely,
suppose we wish to predict a sequence of variables yi ∈ {−1, 1}, we have access to a finite collection
of strategies, and we would like to guarantee that we perform as well in prediction as any single
member of this class. Then, while it is not possible to achieve constant regret, it is possible to have
regret that grows only logarithmically in the number of comparison strategies. To establish the
setting, let us denote our collection of strategies, henceforth called “experts”, by {xi,j}dj=1, where
i ranges in 1, . . . , n. Then at iteration i of the prediction game, we measure the loss of expert j by
`(xi,j , y).

We begin by considering a mixture strategy that would be natural under the logarithmic loss,
we assume the experts play points xi,j ∈ [0, 1], where xi,j = P (Yi = 1) according to expert j.
(We remark in passing that while the notation is perhaps not completely explicit about this, the
experts may adapt to the sequence Y n

1 .) In this case, the loss we suffer is the usual log loss,
`(xi,j , y) = y log 1

xi,j
+ (1 − y) log 1

1−xi,j . Now, if we assume we begin with the uniform prior

distribution π(j) = 1/d for all j, then the posterior distribution, denoted by πij = π(j | Y i−1
1 ), is

πij ∝ π(j)
i∏
l=1

xyll,j(1− xl,j)
1−yl = π(j) exp

(
−

i∑
l=1

[
yl log

1

xl,j
+ (1− yl) log

1

1− xl,j

])

= π(j) exp

(
−

i∑
l=1

`(xl,j , yl)

)
.

This strategy suggests what is known variously as the multiplicative weights strategy [8], expo-
nentiated gradient descent method [119], or (after some massaging) a method known since the
late 1970s as the mirror descent or non-Euclidean gradient descent method (entropic gradient de-
scent) [142, 22].

In particular, we consider an algorithm for general losses where fix a stepsize η > 0 (as we cannot
be as aggressive as in the probabilistic setting), and we then weight each of the experts j by expo-
nentially decaying the weight assigned to the expert for the losses it has suffered. For the algorithm
to work, unfortunately, we need a technical condition on the loss function and experts xi,j . This
loss function is analogous to a weakened version of exp-concavity, which is a common assumption
in online game playing scenarios (see the logarithmic regret algorithms developed by Hazan et al.
[103], as well as earlier work, for example, that by Kivinen and Warmuth [120] studying regression
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problems for which the loss is strongly convex in one variable but not simultaneously in all). In
particular, exp-concavity is the assumption that

x 7→ exp(−`(x, y))

is a concave function. Because the exponent of the logarithm is linear, the log loss is obviously
exp-concave, but for alternate losses, we make a slightly weaker assumption. In particular, we
assume there are constants c, η such that for any vector π in the d-simplex (i.e. π ∈ Rd+ satisfies∑d

j=1 πj = 1) there is some way to choose ŷ so that for any y (that can be played in the game)

exp

(
−1

c
`(ŷ, y)

)
≥

d∑
j=1

πj exp(−η`(xi,j , y)) or `(ŷ, y) ≤ −c log

 d∑
j=1

πj exp(−η`(xi,j , y))

 .

(17.2.1)
By inspection, inequality (17.2.1) holds for the log loss with c = η = 1 and the choice ŷ =∑d

j=1 πjxi,j , because of the exp-concavity condition; any exp-concave loss also satisfies inequal-

ity (17.2.1) with c = η = 1 and the choice of the posterior mean ŷ =
∑d

j=1 πjxi,j . The idea in
this case is that losses satisfying inequality (17.2.1) behave enough like the logarithmic loss that a
Bayesian updating of the experts works. (Condition (17.2.1) originates with the work of Haussler
et al. [102], where they name such losses (c, η)-realizable.)

Example 17.2.1 (Squared error and exp-concavity): Consider the squared error loss `(ŷ, y) =
1
2(ŷ − y)2, where ŷ, y ∈ R. We claim that if xj ∈ [0, 1] for each j, π is in the simplex, meaning∑
j πj = 1 and πj ≥ 0, and y ∈ [0, 1], then the squared error π 7→ `(〈π, x〉, y) is exp-concave,

that is, inequality (17.2.1) holds with c = η = 1 and ŷ = 〈π, x〉. Indeed, computing the Hessian
of the exponent, we have

∇2
π exp

(
−1

2
(〈π, x〉 − y)2

)
= ∇π

[
− exp

(
−1

2
(〈π, x〉 − y)2

)
(〈π, x〉 − y)x

]
= exp

(
−1

2
(〈π, x〉 − y)2

)(
(〈π, x〉 − y)2 − 1

)
xx>.

Noting that |〈π, x〉 − y| ≤ 1 yields that (〈π, x〉 − y)2 − 1 ≤ 0, so we have

∇2
π exp

(
−1

2
(〈π, x〉 − y)2

)
� 0d×d

under the setting of the example. We thus have exp-concavity as desired. 3

We can also show that the 0-1 loss satisfies the weakened version of exp-concavity in inequal-
ity (17.2.1), but we have to take the constant c to be larger (or η to be smaller).

Example 17.2.2 (Zero-one loss and weak exp-concavity): Now suppose that we use the
0-1 loss, that is, `0-1(ŷ, y) = 1 {y · ŷ ≤ 0}. We claim that if we take a weighted majority vote
under the distribution π, meaning that we set ŷ =

∑d
j=1 πj sign(xj) for a vector x ∈ Rd, then

inequality (17.2.1) holds with any c large enough that

c−1 ≤ log
2

1 + e−η
. (17.2.2)
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Demonstrating inequality (17.2.2) is, by inspection, equivalent to showing that

`0-1(ŷ, y) ≤ −c log

( d∑
j=1

πje
−η`0-1(xj ,y)

)
.

If ŷ has the correct sign, meaning that sign(ŷ) = sign(y), the result is trivial. If sign(ŷ) is not
equal to sign(y) ∈ {−1, 1}, then we know at least (by the weights πj) half of the values xj have
incorrect sign. Thus

d∑
j=1

πje
−η`0-1(xj ,y) =

∑
j:xjy≤0

πje
−η +

∑
j:xjy>0

πj ≤
1

2
e−η +

1

2
.

Thus, to attain

`0-1(ŷ, y) = 1 ≤ −c log

( d∑
j=1

πje
−η`0-1(xj ,y)

)
it is sufficient that

1 ≤ −c log

(
1 + e−η

2

)
≤ −c log

( d∑
j=1

πje
−η`0-1(xj ,y)

)
, or c−1 ≤ log

(
2

1 + e−η

)
.

This is our desired claim (17.2.2). 3

Having given general conditions and our motivation of exponential weighting scheme in the case
of the logarithmic loss, we arrive at our algorithm. We simply weight the experts by exponentially
decaying the losses they suffer. We begin the procedure by initializing a weight vector w ∈ Rd with
wj = 1 for j = 1, . . . , d. After this, we repeat the following four steps at each time i, beginning
with i = 1:

1. Set wij = exp
(
−η
∑i−1

l=1 `(xl,j , yl)
)

2. Set W i =
∑d

j=1w
i
j and πij = wij/W

i for each j ∈ {1, . . . , d}

3. Choose ŷi satisfying (17.2.1) for the weighting π = πi and expert values {xi,j}dj=1

4. Observe yi and suffer loss `(ŷi, yi)

With the scheme above, we have the following regret bound.

Theorem 17.2.3 (Haussler et al. [102]). Assume condition (17.2.1) holds and that ŷi is chosen by
the above scheme. Then for any j ∈ {1, . . . , d} and any sequence yn1 ∈ Rn,

n∑
i=1

`(ŷi, yi) ≤ c log d+ cη
n∑
i=1

`(xi,j , yi).

Proof This is an argument based on potentials. At each iteration, any loss we suffer implies that
the potential W i must decrease, but it cannot decrease too quickly (as otherwise the individual
predictors xi,j would suffer too much loss). Beginning with condition (17.2.1), we observe that

`(ŷi, yi) ≤ −c log

 d∑
j=1

πij exp(−η`(xi,j , yi))

 = −c log

(
W i+1

W i

)
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Summing this inequality from i = 1 to n and using that W 1 = d, we have

n∑
i=1

`(ŷi, yi) ≤ −c log

(
Wn+1

W 1

)
= c log d− c log

 d∑
j=1

exp

(
−η

n∑
i=1

`(xi,j , yi)

)
≤ c log d− c log exp

(
−η

n∑
i=1

`(xi,j , yi)

)
,

where the inequality uses that exp(·) is increasing. As log exp(a) = a, this is the desired result.

We illustrate the theorem by continuing Example 17.2.2, showing how Theorem 17.2.3 gives a
regret guarantee of at most

√
n log d for any set of at most d experts and any sequence yn1 ∈ Rn

under the zero-one loss.

Example (Example 17.2.2 continued): By substituting the choice c−1 = log 2
1+e−η into the

regret guarantee of Theorem 17.2.3 (which satisfies inequality (17.2.1) by our guarantee (17.2.2)
from Example 17.2.2), we obtain

n∑
i=1

`0-1(ŷi, yi)− `0-1(xi,j , yi) ≤
log d

log 2
1+e−η

+

(
η − log 2

1+e−η

)∑n
i=1 `0-1(xi,j , yi)

log 2
1+e−η

.

Now, we make an asymptotic expansion to give the basic flavor of the result (this can be made
rigorous, but it is sufficient). First, we note that

log
2

1 + e−η
≈ η

2
− η2

8
,

and substituting this into the previous display, we have regret guarantee

n∑
i=1

`0-1(ŷi, yi)− `0-1(xi,j , yi) .
log d

η
+ η

n∑
i=1

`0-1(xi,j , yi). (17.2.3)

By making the choice η ≈
√

log d/n and noting that `0-1 ≤ 1, we obtain

n∑
i=1

`0-1(ŷi, yi)− `0-1(xi,j , yi) .
√
n log d

for any collection of experts and any sequence yn1 . 3

We make a few remarks on the preceding example to close the chapter. First, ideally we would
like to attain adaptive regret guarantees, meaning that the regret scales with the performance of
the best predictor in inequality (17.2.3). In particular, we might expect that a good expert would
satisfy

∑n
i=1 `0-1(xi,j , yi)� n, which—if we could choose

η ≈
(

log d∑n
i=1 `0-1(xi,j∗ , yi)

) 1
2

,
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where j∗ = argminj
∑n

i=1 `0-1(xi,j , yi)—then we would attain regret bound√√√√log d ·
n∑
i=1

`0-1(xi,j∗ , yi)�
√
n log d.

For results of this form, see, for example, Cesa-Bianchi et al. [48] or the more recent work on mirror
descent of Steinhardt and Liang [162].

Secondly, we note that it is actually possible to give a regret bound of the form (17.2.3) without
relying on the near exp-concavity condition (17.2.1). In particular, performing mirror descent on
the convex losses defined by

π 7→
∣∣∣∣ d∑
j=1

sign(xi,j)πj − sign(yi)

∣∣∣∣,
which is convex, will give a regret bound of

√
n log d for the zero-one loss as well. We leave this

exploration to the interested reader.
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Chapter 18

Online convex optimization

A related notion to the universal prediction problem with alternate losses is that of online learning
and online convex optimization, where we modify the requirements of Chapter 17 further. In the
current setting, we essentially do away with distributional assumptions at all, including prediction
with a distribution, and we consider the following two player sequential game: we have a space W
in which we—the learner or first player—can play points w1, w2, . . ., while nature plays a sequence
of loss functions `t :W → R. The goal is to guarantee that the regret

n∑
t=1

[
`t(wt)− `t(w?)

]
(18.0.1)

grows at most sub-linearly with n, for any w? ∈ W (often, we desire this guarantee to be uniform).
As stated, this goal is too broad, so in this chapter we focus on a few natural restrictions, namely,
that the sequence of losses `t are convex, and W is a convex subset of Rd. In this setting, the
problem (18.0.1) is known as online convex programming.

18.1 The problem of online convex optimization

Before proceeding, we provide a few relevant definitions to make our discussion easier; we refer to
Appendix B for an overview of convexity and proofs of a variety of useful properties of convex sets
and functions. First, we recall that a set W is convex if for all λ ∈ [0, 1] and w,w′ ∈ W, we have

λw + (1− λ)w′ ∈ W.

Similarly, a function f is convex if

f(λw + (1− λ)w′) ≤ λf(w) + (1− λ)f(w′)

for all λ ∈ [0, 1] and w,w′. The subgradient set, or subdifferential, of a convex function f at the
point w is defined to be

∂f(w) := {g ∈ Rd : f(v) ≥ f(w) + 〈g, v − w〉 for all v},

and we say that any vector g ∈ Rd satisfying f(v) ≥ f(w) + 〈g, v−w〉 for all v is a subgradient. For
convex functions, the subdifferential set ∂f(w) is essentially always non-empty for any w ∈ dom f .1

1Rigorously, we are guaranteed that ∂f(w) 6= ∅ at all points w in the relative interior of the domain of f .
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We now give several examples of convex functions, losses, and corresponding subgradients. The
first two examples are for classification problems, in which we receive data points x ∈ Rd and wish
to predict associated labels y ∈ {−1, 1}.

Example 18.1.1 (Support vector machines): In the support vector machine problem, we
receive data in pairs (xt, yt) ∈ Rd × {−1, 1}, and the loss function

`t(w) = [1− yt〈w, xt〉]+ = max{1− yt〈w, xt〉, 0},

which is convex because it is the maximum of two linear functions. Moreover, the subgradient
set is

∂`t(w) =


−ytxt if yt〈w, xt〉 < 1

−λ · ytxt for λ ∈ [0, 1] if yt〈w, xt〉 = 1

0 otherwise.

3

Example 18.1.2 (Logistic regression): As in the support vector machine, we receive data in
pairs (xt, yt) ∈ Rd × {−1, 1}, and the loss function is

`t(w) = log(1 + exp(−yt〈xt, w〉)).

To see that this loss is convex, note that if h(t) = log(1 + et), then h′(t) = 1
1+e−t and h′′(t) =

e−t

(1+e−t)2 ≥ 0, and `t is the composition of a linear transformation with h. In this case,

∂`t(w) = ∇`t(w) = − 1

1 + eyt〈xt,w〉
ytxt.

3

Example 18.1.3 (Expert prediction and zero-one error): By randomization, it is possible
to cast certain non-convex optimization problems as convex. Indeed, let us assume that there
are d experts, each of which makes a prediction xt,j (for j = 1, . . . , d) at time t, represented
by the vector xt ∈ Rd, of a label yt ∈ {−1, 1}. Each also suffers the (non-convex) loss
`0-1(xt,j , yt) = 1 {xt,jyt ≤ 0}. By assigning a weight wj to each expert xt,j subject to the
constraint that w � 0 and 〈w,1〉 = 1, then if we were to randomly choose to predict using
expert j with probability wj , we would suffer expected loss at time t of

`t(w) =
d∑
j=1

wj`0-1(xt,j , yt) = 〈gt, w〉,

where we have defined the vector gt = [`0-1(xt,j , yt)]
d
j=1 ∈ {0, 1}d. Notably, the expected zero-

one loss is convex (even linear), so that its online minimization falls into the online convex
programming framework. 3

As we see in the sequel, online convex programming approaches are often quite simple, and, in
fact, are often provably optimal in a variety of scenarios outside of online convex optimization. This
motivates our study, and we will see that online convex programming approaches have a number of
similarities to our regret minimization approaches in previous chapters on universal coding, regret,
and redundancy.
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18.2 Online gradient and non-Euclidean gradient (mirror) descent

We now turn to an investigation of the single approach we will use to solve online convex opti-
mization problems, which is known as mirror descent.2 Before describing the algorithm in its full
generality, however, we first demonstrate a special case (though our analysis will be for the general
algorithm).

Roughly, the intuition for our procedures is as follows: after observing a loss `t, we make a
small update to move our estimate wt in a direction to improve the value of the losses we have
seen. However, so that we do not make progress too quickly—or too aggressively follow spurious
information—we attempt to keep new iterates close to previous iterates. With that in mind, we
present (projected) online gradient descent, which requires only that we specify a sequence ηt of
non-increasing stepsizes.

Input: Parameter space W, stepsize sequence ηt.
Repeat: for each iteration t, predict wt ∈ W, receive function `t and suffer loss `t(wt).
Compute any gt ∈ ∂`t(wt), and perform subgradient update

wt+ 1
2

= wt − ηtgt, wt+1 = ProjW(wt+ 1
2
), (18.2.1)

where ProjW denotes (Euclidean) projection onto W.

Figure 18.1: Online projected gradient descent.

An equivalent formulation of the update (18.2.1) is to write it as the single step

wt+1 = argmin
w∈W

{
〈gt, w〉+

1

2ηt
‖w − wt‖22

}
, (18.2.2)

which makes clear that we trade between improving performance on `t via the linear approximation
of `t(w) ≈ `t(wt) + g>t (w−wt) and remaining close to wt according to the Euclidean distance ‖·‖2.
In a variety of scenarios, however, it is quite advantageous to measure distances in a way more
amenable to the problem structure, for example, if W is a probability simplex or we have prior
information about the loss functions `t that nature may choose. With this in mind, we present a
slightly more general algorithm, which requires us to give a few more definitions.

Given a convex differentiable function ψ : Rd → R, we define the Bregman divergence associated
with ψ by

Dψ(w, v) = ψ(w)− ψ(v)− 〈∇ψ(v), w − v〉. (18.2.3)

The Bregman divergence is always non-negative, as Dψ(w, v) is the gap between the true function
value ψ(w) and its linear approximation at the point v (see Figure 18.2). A few examples illustrate
its properties.

Example 18.2.1 (Euclidean distance as Bregman divergence): Take ψ(w) = 1
2 ‖w‖

2
2 to obtain

D(w, v) = 1
2 ‖w − v‖

2
2. More generally, if for a matrix A we define ‖w‖2A = w>Aw, then takin

ψ(w) = 1
2w
>Aw, we have

Dψ(w, v) =
1

2
(w − v)>A(w − v) =

1

2
‖w − v‖2A .

So Bregman divergences generalize (squared) Euclidean distance. 3

2The reasons for this name are somewhat convoluted, and we do not dwell on them.
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(v, ψ(v))

Dψ(w, v)

(w,ψ(w))

Figure 18.2: Illustration of Bregman divergence.

Example 18.2.2 (KL divergence as a Bregman divergence): Take ψ(w) =
∑d

j=1wj logwj .

Then ψ is convex over the positive orthant Rd+ (the second derivative of w logw is 1/w), and
for w, v ∈ ∆d = {u ∈ Rd+ : 〈1, u〉 = 1}, we have

Dψ(w, v) =
∑
j

wj logwj −
∑
j

vj log vj −
∑
j

(1 + log vj)(wj − vj) =
∑
j

wj log
wj
vj

= Dkl (w||v) ,

where in the final equality we treat w and v as probability distributions on {1, . . . , d}. 3

With these examples in mind, we now present the mirror descent algorithm, which is the natural
generalization of online gradient descent.

Input: proximal function ψ, parameter space W, and non-increasing stepsize sequence
η1, η2, . . ..
Repeat: for each iteration t, predict wt ∈ W, receive function `t and suffer loss `t(wt).
Compute any gt ∈ ∂`t(wt), and perform non-Euclidean subgradient update

wt+1 = argmin
w∈W

{
〈gt, w〉+

1

ηt
Dψ(w,wt)

}
. (18.2.4)

Figure 18.3: The online mirror descent algorithm

Before providing the analysis of Algorithm 18.3, we give a few examples of its implementation.
First, by taking W = Rd and ψ(w) = 1

2 ‖w‖
2
2, we note that the mirror descent procedure simply

corresponds to the gradient update wt+1 = wt−ηtgt. We can also recover the exponentiated gradient
algorithm, also known as entropic mirror descent.
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Example 18.2.3 (Exponentiated gradient algorithm): Suppose that we haveW = ∆d = {w ∈
Rd+ : 〈1, w〉 = 1}, the probability simplex in Rd. Then a natural choice for ψ is the negative
entropy, ψ(w) =

∑
j wj logwj , which (as noted previously) gives Dψ(w, v) =

∑
j wj log

wj
vj

.

We now consider the update step (18.2.4). In this case, fixing v = wt for notational simplicity,
we must solve

minimize 〈g, w〉+
1

η

∑
j

wj log
wj
vj

subject to w ∈ ∆d

in w. Writing the Lagrangian for this problem after introducing multipliers τ ∈ R for the
contraint that 〈1, w〉 = 1 and λ ∈ Rd+ for w � 0, we have

L(w, λ, τ) = 〈g, w〉+
1

η

d∑
j=1

wj log
wj
vj
− 〈λ,w〉+ τ(〈1, w〉 − 1),

which is minimized by taking

wj = vj exp(−ηgj + λjη − τη − 1),

and as wj > 0 certainly, the constraint w � 0 is inactive and λj = 0. Thus, choosing τ to
normalize the wj , we obtain the exponentiated gradient update

wt+1,i =
wt,ie

−ηtgt,i∑
j wt,je

−ηtgt,j for i = 1, . . . , d,

as the explicit calculation of the mirror descent update (18.2.4). 3

We now turn to an analysis of the mirror descent algorithm. Before presenting the analysis, we
require two more definitions that allow us to relate Bregman divergences to various norms.

Definition 18.1. Let ‖·‖ be a norm. The dual norm ‖·‖∗ associated with ‖·‖ is

‖y‖∗ := sup
x:‖x‖≤1

x>y.

For example, a straightforward calculation shows that the dual to the `∞-norm is the `1-norm,
and the Euclidean norm ‖·‖2 is self-dual (by the Cauchy-Schwarz inequality). Lastly, we require a
definition of functions of suitable curvature for use in mirror descent methods.

Definition 18.2. A convex function f : Rd → R is strongly convex with respect to the norm ‖·‖
over the set W if for all w, v ∈ W and g ∈ ∂f(w) we have

f(v) ≥ f(w) + 〈g, v − w〉+
1

2
‖w − v‖2 .

That is, the function f is strongly convex if it grows at least quadratically fast at every point in its
domain. It is immediate from the definition of the Bregman divergence that ψ is strongly convex
if and only if

Dψ(w, v) ≥ 1

2
‖w − v‖2 .

As two examples, we consider Euclidean distance and entropy. For the Euclidean distance, which
uses ψ(w) = 1

2 ‖w‖
2
2, we have ∇ψ(w) = w, and

1

2
‖v‖22 =

1

2
‖w + v − w‖22 =

1

2
‖w‖22 + 〈w, v − w〉+

1

2
‖w − v‖22

by a calculation, so that ψ is strongly convex with respect to the Euclidean norm. We also have
the following observation.
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Observation 18.2.4. Let ψ(w) =
∑

j wj logwj be the negative entropy. Then ψ is strongly convex
with respect to the `1-norm, that is,

Dψ(w, v) = Dkl (w||v) ≥ 1

2
‖w − v‖21 .

Proof The result is an immediate consequence of Pinsker’s inequality, Proposition 2.2.8.

With these examples in place, we present the main theorem of this section.

Theorem 18.2.5 (Regret of mirror descent). Let `t be an arbitrary sequence of convex functions,
and let wt be generated according to the mirror descent algorithm 18.3. Assume that the proximal
function ψ is strongly convex with respect to the norm ‖·‖, which has dual norm ‖·‖∗. Then

(a) If ηt = η for all t, then for any w? ∈ W,

n∑
t=1

[`t(wt)− `t(w?)] ≤
1

η
Dψ(w?, w1) +

η

2

n∑
t=1

‖gt‖2∗ .

(b) If W is compact and Dψ(w?, w) ≤ R2 for any w ∈ W, then

n∑
t=1

[`t(wt)− `t(w?)] ≤
1

2ηn
R2 +

n∑
t=1

ηt
2
‖gt‖2∗ .

Before proving the theorem, we provide a few comments to exhibit its power. First, we consider
the Euclidean case, where ψ(w) = 1

2 ‖w‖
2
2, and we assume that the loss functions `t are all L-

Lipschitz, meaning that |`t(w) − `t(v)| ≤ L ‖w − v‖2, which is equivalent to ‖gt‖2 ≤ L for all
gt ∈ ∂`t(w). In this case, the two regret bounds above become

1

2η
‖w? − w1‖22 +

η

2
nL2 and

1

2ηn
R2 +

n∑
t=1

ηt
2
L2,

respectively, where in the second case we assumed that ‖w? − wt‖2 ≤ R for all t. In the former
case, we take η = R

L
√
n

, while in the second, we take ηt = R
L
√
t
, which does not require knowledge

of n ahead of time. Focusing on the latter case, we have the following corollary.

Corollary 18.2.6. Assume that W ⊂ {w ∈ Rd : ‖w‖2 ≤ R} and that the loss functions `t are
L-Lipschitz with respect to the Euclidean norm. Take ηt = R

L
√
t
. Then for all w? ∈ W,

n∑
t=1

[`t(wt)− `t(w?)] ≤ 3RL
√
n.

Proof For any w,w? ∈ W, we have ‖w − w?‖2 ≤ 2R, so that Dψ(w?, w) ≤ 4R2. Using that

n∑
t=1

t−
1
2 ≤

∫ n

0
t−

1
2dt = 2

√
n

gives the result.
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Now that we have presented the Euclidean variant of online convex optimization, we turn to an
example that achieves better performance in high dimensional settings, as long as the domain is
the probability simplex. (Recall Example 18.1.3 for motivation.) In this case, we have the following
corollary to Theorem 18.2.5.

Corollary 18.2.7. Assume that W = ∆d = {w ∈ Rd+ : 〈1, w〉 = 1} and take the proximal function
ψ(w) =

∑
j wj logwj to be the negative entropy in the mirror descent procedure 18.3. Then with the

fixed stepsize η and initial point as the uniform distribution w1 = 1/d, we have for any sequence of
convex losses `t

n∑
t=1

[`t(wt)− `t(w?)] ≤
log d

η
+
η

2

n∑
t=1

‖gt‖2∞ .

Proof Using Pinsker’s inequality in the form of Observation 18.2.4, we have that ψ is strongly
convex with respect to ‖·‖1. Consequently, taking the dual norm to be the `∞-norm, part (a) of
Theorem 18.2.5 shows that

n∑
t=1

[`t(wt)− `t(w?)] ≤
1

η

d∑
j=1

w?j log
w?j
w1,j

+
η

2

n∑
t=1

‖gt‖2∞ .

Noting that with w1 = 1/d, we have Dψ(w?, w1) ≤ log d for any w? ∈ W gives the result.

Corollary 18.2.7 yields somewhat sharper results than Corollary 18.2.6, though in the restricted
setting that W is the probability simplex in Rd. Indeed, let us assume that the subgradients
gt ∈ [−1, 1]d, the hypercube in Rd. In this case, the tightest possible bound on their `2-norm is
‖gt‖2 ≤

√
d, while ‖gt‖∞ ≤ 1 always. Similarly, ifW = ∆d, then while we are only guaranteed that

‖w? − w1‖2 ≤ 1. Thus, the best regret guaranteed by the Euclidean case (Corollary 18.2.6) is

1

2η
‖w? − w1‖22 +

η

2
nd ≤

√
nd with the choice η =

1√
nd
,

while the entropic mirror descent procedure (Alg. 18.3 with ψ(w) =
∑

j wj logwj) guarantees

log d

η
+
η

2
n ≤

√
2n log d with the choice η =

√
2 log d

2
√
n

. (18.2.5)

The latter guarantee is exponentially better in the dimension. Moreover, the key insight is that
we essentially maintain a “prior,” and then perform “Bayesian”-like updating of the posterior
distribution wt at each time step, exactly as in the setting of redundancy minimization.

18.2.1 Proof of Theorem 18.2.5

The proof of the theorem proceeds in three lemmas, which are essentially inductive applications of
optimality conditions for convex optimization problems. The first is the explicit characterization
of optimality for a convex optimization problem. (For a proof of this lemma, see, for example, the
books of Hiriart-Urruty and Lemaréchal [104, 105], or Section 2.5 of Boyd et al. [36].)

Lemma 18.2.8. Let h : Rd → R be a convex function and W be a convex set. Then w? minimizes
h(w) over W if and only if there exists g ∈ ∂h(w?) such that

〈g, w − w?〉 ≥ 0 for all w ∈ W.
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Lemma 18.2.9. Let `t :W → R be any sequence of convex loss functions and ηt be a non-increasing
sequence, where η0 =∞. Then with the mirror descent strategy (18.2.4), for any w? ∈ W we have

n∑
t=1

`t(wt)− `t(w?) ≤
n∑
t=1

(
1

ηt
− 1

ηt−1

)
Dψ(w?, wt) +

n∑
t=1

[
− 1

ηt
Dψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
.

Proof Our proof follows by the application of a few key identities. First, we note that by
convexity, we have for any gt ∈ ∂`t(wt) that

`t(wt)− `t(w?) ≤ 〈gt, wt − w?〉. (18.2.6)

Secondly, we have that because wt+1 minimizes

〈gt, w〉+
1

ηt
Dψ(w,wt)

over w ∈ W, then Lemma 18.2.8 implies

〈ηtgt +∇ψ(wt+1)−∇ψ(wt), w − wt+1〉 ≥ 0 for all w ∈ W. (18.2.7)

Taking w = w? in inequality (18.2.7) and making a substitution in inequality (18.2.6), we have

`t(wt)− `t(w?) ≤ 〈gt, wt − w?〉 = 〈gt, wt+1 − w?〉+ 〈gt, wt − wt+1〉

≤ 1

ηt
〈∇ψ(wt+1)−∇ψ(wt), w

? − wt+1〉+ 〈gt, wt − wt+1〉

=
1

ηt
[Dψ(w?, wt)−Dψ(w?, wt+1)−Dψ(wt+1, wt)] + 〈gt, wt − wt+1〉 (18.2.8)

where the final equality (18.2.8) follows from algebraic manipulations of Dψ(w,w′). Summing
inequality (18.2.8) gives

n∑
t=1

`t(wt)− `t(w?) ≤
n∑
t=1

1

ηt
[Dψ(w?, wt)−Dψ(w?, wt+1)−Dψ(wt+1, wt)] +

n∑
t=1

〈gt, wt − wt+1〉

=
n∑
t=2

(
1

ηt
− 1

ηt−1

)
Dψ(w?, wt) +

1

η1
Dψ(w?, w1)− 1

ηn
Dψ(w?, wn+1)

+

n∑
t=1

[
− 1

ηt
Dψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
as desired.

It remains to use the negative terms −Dψ(wt, wt+1) to cancel the gradient terms 〈gt, wt−wt+1〉.
To that end, we recall Definition 18.1 of the dual norm ‖·‖∗ and the strong convexity assumption
on ψ. Using the Fenchel-Young inequality, we have

〈gt, wt − wt+1〉 ≤ ‖gt‖∗ ‖wt − wt+1‖ ≤
ηt
2
‖gt‖2∗ +

1

2ηt
‖wt − wt+1‖2 .

Now, we use the strong convexity condition, which gives

− 1

ηt
Dψ(wt+1, wt) ≤ −

1

2ηt
‖wt − wt+1‖2 .

Combining the preceding two displays in Lemma 18.2.9 gives the result of Theorem 18.2.5.
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18.3 Online to batch conversions

Martingales!

18.4 More refined convergence guarantees

It is sometimes possible to give more refined bounds than those we have so far provided. As
motivation, let us revisit Example 18.1.3, but suppose that one of the experts has no loss—that
is, it makes perfect predictions. We might expect—accurately!—that we should attain better
convergence guarantees using exponentiated weights, as the points wt be maintain should quickly
eliminate non-optimal experts.

To that end, we present a refined regret bound for the mirror descent algorithm 18.3 with the
entropic regularization ψ(w) =

∑
j wj logwj .

Proposition 18.4.1. Let ψ(w) =
∑

j wj logwj, and assume that the losses `t are such that their
subgradients have all non-negative entries, that is, gt ∈ ∂`t(w) implies gt � 0. For any such
sequence of loss functions `t and any w? ∈ W = ∆d,

n∑
t=1

[`t(wt)− `t(w?)] ≤
log d

η
+
η

2

n∑
t=1

d∑
j=1

wt,jg
2
t,j .

While as stated, the bound of the proposition does not look substantially more powerful than
Corollary 18.2.7, but a few remarks will exhibit its consequences. We prove the proposition in
Section 18.4.1 to come.

First, we note that because wt ∈ ∆d, we will always have
∑

j wt,jg
2
t,j ≤ ‖gt‖

2
∞. So certainly

the bound of Proposition 18.4.1 is never worse than that of Corollary 18.2.7. Sometimes this can
be made tighter, however, as exhibited by the next corollary, which applies (for example) to the
experts setting of Example 18.1.3. More specifically, we have d experts, each suffering losses in
[0, 1], and we seek to predict with the best of the d experts.

Corollary 18.4.2. Consider the linear online convex optimization setting, that is, where `t(wt) =
〈gt, wt〉 for vectors gt, and assume that gt ∈ Rd+ with ‖gt‖∞ ≤ 1. In addition, assume that we know
an upper bound L?n on

∑n
t=1 `t(w

?). Then taking the stepsize η = min{1,
√

log d/
√
L?n}, we have

n∑
t=1

[`t(wt)− `t(w?)] ≤ 3 max
{

log d,
√
L?n log d

}
.

Note that when `t(w
?) = 0 for all w?, which corresponds to a perfect expert in Example 18.1.3,

the upper bound becomes constant in n, yielding 3 log d as a bound on the regret. Unfortunately,
in our bound of Corollary 18.4.2, we had to assume that we knew ahead of time a bound on the
loss of the best predictor w?, which is unrealistic in practice. There are a number of techniques for
dealing with such issues, including a standard one in the online learning literature known as the
doubling trick. We explore some in the exercises.
Proof First, we note that

∑
j wjg

2
t,j ≤ 〈w, gt〉 for any nonnegative vector w, as gt,j ∈ [0, 1]. Thus,

Proposition 18.4.1 gives

n∑
t=1

[`t(wt)− `t(w?)] ≤
log d

η
+
η

2

n∑
t=1

〈wt, gt〉 =
log d

η
+
η

2

n∑
t=1

`t(wt).
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Rearranging via an algebraic manipulation, this is equivalent to(
1− η

2

) n∑
t=1

[`t(wt)− `t(w?)] ≤
log d

η
+
η

2

n∑
t=1

`t(w
?).

Take η = min{1,
√

log d/L?n}. Then if
√

log d/L?n ≤ 1, we have that the right hand side of the
above inequality becomes

√
L?n log d+ 1

2

√
L?n log d. On the other hand, if L?n < log d, then the right

hand side of the inequality becomes log d + 1
2L

?
n ≤ 3

2 log d. In either case, we obtain the desired
result by noting that 1− η

2 ≥
1
2 .

18.4.1 Proof of Proposition 18.4.1

Our proof relies on a technical lemma, after which the derivation is a straightforward consequence
of Lemma 18.2.9. We first state the technical lemma, which applies to the update that the expo-
nentiated gradient procedure makes.

Lemma 18.4.3. Let ψ(x) =
∑

j xj log xj, and let x, y ∈ ∆d be defined by

yi =
xi exp(−ηgi)∑
j xj exp(−ηgj)

,

where g ∈ Rd+ is non-negative. Then

−1

η
Dψ(y, x) + 〈g, x− y〉 ≤ η

2

d∑
i=1

g2
i xi.

Deferring the proof of the lemma, we note that it precisely applies to the setting of Lemma 18.2.9.
Indeed, with a fixed stepsize η, we have

n∑
t=1

`t(wt)− `t(w?) ≤
1

η
Dψ(w?, w1) +

n∑
t=1

[
−1

η
Dψ(wt+1, wt) + 〈gt, wt − wt+1〉

]
.

Earlier, we used the strong convexity of ψ to eliminate the gradient terms 〈gt, wt−wt+1〉 using the
bregman divergence Dψ. This time, we use Lemma 18.2.9: setting y = wt+1 and x = wt yields the
bound

n∑
t=1

`t(wt)− `t(w?) ≤
1

η
Dψ(w?, w1) +

n∑
t=1

η

2

d∑
i=1

g2
t,iwt,i

as desired.
Proof of Lemma 18.4.3 We begin by noting that a direct calculation yields Dψ(y, x) =
Dkl (y||x) =

∑
i yi log yi

xi
. Substituting the values for x and y into this expression, we have

∑
i

yi log
yi
xi

=
∑
i

yi log

(
xi exp(−ηgi)

xi(
∑

j exp(−ηgj)xj)

)
= −η〈g, y〉 −

∑
i

yi log
(∑

j

xje
−ηgj

)
.
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Now we use a Taylor expansion of the function g 7→ log(
∑

j xje
−ηgj ) around the point 0. If we

define the vector p(g) by pi(g) = xie
−ηgi/(

∑
j xje

−ηgj ), then

log
(∑

j

xje
−ηgj

)
= log(〈1, x〉)− η〈p(0), g〉+

η2

2
g>(diag(p(g̃))− p(g̃)p(g̃)>)g,

where g̃ = λg for some λ ∈ [0, 1]. Noting that p(0) = x and 〈1, x〉 = 〈1, y〉 = 1, we obtain

Dψ(y, x) = −η〈g, y〉+ log(1) + η〈g, x〉 − η2

2
g>(diag(p(g̃))− p(g̃)p(g̃)>)g,

whence

− 1

η
Dψ(y, x) + 〈g, x− y〉 ≤ η

2

d∑
i=1

g2
i pi(g̃). (18.4.1)

Lastly, we claim that the function

s(λ) =

d∑
i=1

g2
i

xie
−λgi∑

j xje
−λgj

is non-increasing on λ ∈ [0, 1]. Indeed, we have

s′(λ) =
(
∑

i gixie
−λgi)(

∑
i g

2
i xie

−λgi)

(
∑

i xie
−λgi)2

−
∑

i g
3
i xie

−λgi∑
i xie

−λgi
=

∑
ij gig

2
jxixje

−λgi−λgj −
∑

ij g
3
i xixje

−λgi−λgj

(
∑

i xie
−λgi)2

.

Using the Fenchel-Young inequality, we have ab ≤ 1
3 |a|

3 + 2
3 |b|

3/2 for any a, b, so gig
2
j ≤ 1

3g
3
i + 2

3g
3
j .

This implies that the numerator in our expression for s′(λ) is non-positive. Thus we have s(λ) ≤
s(0) =

∑d
i=1 g

2
i xi, which gives the result when combined with inequality (18.4.1).
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Chapter 19

Exploration, exploitation, and bandit
problems

Consider the following problem: we have a possible treatment for a population with a disease, but
we do not know whether the treatment will have a positive effect or not. We wish to evaluate the
treatment to decide whether it is better to apply it or not, and we wish to optimally allocate our
resources to attain the best outcome possible. There are challenges here, however, because for each
patient, we may only observe the patient’s behavior and disease status in one of two possible states—
under treatment or under control—and we wish to allocate as few patients to the group with worse
outcomes (be they control or treatment) as possible. This balancing act between exploration—
observing the effects of treatment or non-treatment—and exploitation—giving treatment or not as
we decide which has better palliative outcomes—underpins and is the paridigmatic aspect of the
multi-armed bandit problem.1

Our main focus in this chapter is a fairly simple variant of the K-armed bandit problem, though
we note that there is a substantial literature in statistics, operations research, economics, game
theory, and computer science on variants of the problems we consider. In particular, we consider the
following sequential decision making scenario. We assume that there are K distributions P1, . . . , PK
on R, which we identify (with no loss of generality) with K random variables Y1, . . . , YK . Each
random variable Yi has mean µi and is σ2-sub-Gaussian, meaning that

E [exp (λ(Yi − µi))] ≤ exp

(
λ2σ2

2

)
. (19.0.1)

The goal is to find the index i with the maximal mean µi without evaluating sub-optimal “arms”
(or random variables Yi) too often. At each iteration t of the process, the player takes an action
At ∈ {1, . . . ,K}, then, conditional on i = At, observes a reward Yi(t) drawn independently from
the distribution Pi. Then the goal is to minimize the the regret after n steps, which is

Regn :=
n∑
t=1

µi? − µAt , (19.0.2)

1The problem is called the bandit problem in the literature because we imagine a player in a casino, choosing
between K different slot machines (hence a K-armed bandit, as this is a casino and the player will surely lose
eventually), each with a different unknown reward distribution. The player wishes to put as much of his money as
possible into the machine with the greatest expected reward.

424



Lexture Notes on Statistics and Information Theory John Duchi

where i? ∈ argmaxi µi so µi? = maxi µi. The regret Regn as defined is a random quantity, so we
generally seek to give bounds on its expectation or high-probability guarantees on its value. In this
chapter, we generally focus for simplicity on the expected regret,

Regn := E
[ n∑
t=1

µi? − µAt
]
, (19.0.3)

where the expectation is taken over any randomness in the player’s actions At and in the repeated
observations of the random variables Y1, . . . , YK .

19.1 Confidence-based algorithms

A natural first strategy to consider is one based on confidence intervals with slight optimism.
Roughly, if we believe the true mean µi for an arm i lies within [µ̂i − ci, µ̂i + ci], where ci is some
interval (whose length decreases with time t), then we optimistically “believe” that the value of
arm i is µ̂i + ci; then at iteration t, as our action At we choose the arm whose optimistic mean is
the highest, thus hoping to maximize our received reward.

This strategy lies at the heart of the Upper Confidence Bound (UCB) family of algorithms,
due to [12], a simple variant of which we describe here. Before continuing, we recall the standard
result on sub-Gaussian random variables of Corollary 4.1.10 in our context, though we require a
somewhat more careful calculation because of the sequential nature of our process. Let Ti(t) =
card{τ ≤ t : Aτ = i} denote the number of times that arm i has been pulled by time t of the bandit
process. Then if we define

µ̂i(t) :=
1

Ti(t)

∑
τ≤t,Aτ=i

Yi(τ),

to be the running average of the rewards of arm i at time t (computed only on those instances in
which arm i was selected), we claim that for all i and all t,

P

µ̂i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 ∨ P

µ̂i(t) ≤ µi −
√
σ2 log 1

δ

Ti(t)

 ≤ δ. (19.1.1)

That is, so long as we pull the arms sufficiently many times, we are unlikely to pull the wrong arm.
We prove the claim (19.1.1) in the appendix to this chapter.

Here then is the UCB procedure:

Input: Sub-gaussian parameter σ2 and sequence of deviation probabilities δ1, δ2, . . ..
Initialization: Play each arm i = 1, . . . ,K once
Repeat: for each iteration t, play the arm maximizing

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
.

Figure 19.1: The Upper Confidence Bound (UCB) Algorithm
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If we define
∆i := µi? − µi

to be the gap in means between the optimal arm and any sub-optimal arm, we then obtain the
following guarantee on the expected number of pulls of any sub-optimal arm i after n steps.

Proposition 19.1.1. Assume that each of the K arms is σ2-sub-Gaussian and let the sequence
δ1 ≥ δ2 ≥ · · · be non-increasing and positive. Then for any n and any arm i 6= i?,

E[Ti(n)] ≤

⌈
4σ2 log 1

δn

∆2
i

⌉
+ 2

n∑
t=2

δt.

Proof Without loss of generality, we assume arm 1 satisfies µ1 = maxi µi, and let arm i be any
sub-optimal arm. The key insight is to carefully consider what occurs if we play arm i in the UCB
procedure of Figure 19.1. In particular, if we play arm i at time t, then we certainly have

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
≥ µ̂1(t) +

√
σ2 log 1

δt

T1(t)
.

For this to occur, at least one of the following three events must occur (we suppress the dependence
on i for each of them):

E1(t) :=

µ̂i(t) ≥ µi +

√
σ2 log 1

δt

Ti(t)

 , E2(t) :=

µ̂1(t) ≤ µ1 −

√
σ2 log 1

δt

T1(t)

 ,

E3(t) :=

∆i ≤ 2

√
σ2 log 1

δt

Ti(t)

 .

Indeed, suppose that none of the events E1, E2, E3 occur at time t. Then we have

µ̂i(t) +

√
σ2 log 1

δt

Ti(t)
< µi + 2

√
σ2 log 1

δt

Ti(t)
< µi + ∆i = µ1 < µ̂1(t) +

√
σ2 log 1

δt

T1(t)
,

the inequalities following by E1, E3, and E2, respectively.
Now, for any l ∈ {1, . . . , n}, we see that

E[Ti(n)] =

n∑
t=1

E[1 {At = i}] =

n∑
t=1

E[1 {At = i, Ti(t) > l}+ 1 {At = i, Ti(t) ≤ l}]

≤ l +

n∑
t=l+1

P(At = i, Ti(t) > l).

Now, we use that δt is non-increasing, and see that if we set

l? =

⌈
4
σ2 log 1

δn

∆2
i

⌉
,
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then to have Ti(t) > l? it must be the case that E3(t) cannot occur—that is, we would have

2
√
σ2 log 1

δt
/Ti(t) > 2

√
σ2 log 1

δt
/l ≥ ∆i. Thus we have

E[Ti(n)] =

n∑
t=1

E[1 {At = i}] ≤ l? +

n∑
t=l?+1

P(At = i, E3(t) fails)

≤ l? +
n∑

t=l?+1

P(E1(t) or E2(t)) ≤ l? +
n∑

t=l?+1

2δt.

This implies the desired result.

Naturally, the number of times arm i is selected in the sequential game is related to the regret
of a procedure; indeed, we have

Regn =

n∑
t=1

(µi? − µAt) =

K∑
i=1

(µi? − µi)Ti(n) =

K∑
i=1

∆iTi(n).

Using this identity, we immediately obtain two theorems on the (expected) regret of the UCB
algorithm.

Theorem 19.1.2. Let δt = δ/t2 for all t. Then for any n ∈ N the UCB algorithm attains

Regn ≤
∑
i 6=i?

4σ2[2 log n− log δ]

∆i
+
π2 − 2

3

( K∑
i=1

∆i

)
δ +

K∑
i=1

∆i.

Proof First, we note that

E[∆iTi(n)] ≤ ∆i

⌈
4σ2 log

1

δn
/∆2

i

⌉
+ 2∆i

n∑
t=2

δ

t2
≤

4σ2 log 1
δn

∆i
+ ∆i + 2∆i

n∑
t=2

δ

t2

by Proposition 19.1.1. Summing over i 6= i? and noting that
∑

t≥2 t
−2 = π2/6 − 1 gives the re-

sult.

Let us unpack the bound of Theorem 19.1.2 slightly. First, we make the simplifying assumption
that δt = 1/t2 for all t, and let ∆ = mini 6=i? ∆i. In this case, we have expected regret bounded by

Regn ≤ 8
Kσ2 log n

∆
+
π2 + 1

3

K∑
i=1

∆i.

So we see that the asymptotic regret with this choice of δ scales as (Kσ2/∆) log n, roughly linear
in the classes, logarithmic in n, and inversely proportional to the gap in means. As a concrete
example, if we know that the rewards for each arm Yi belong to the interval [0, 1], then Hoeffding’s
lemma (recall Example 4.1.6) states that we may take σ2 = 1/4. Thus the mean regret becomes at
most

∑
i:∆i>0

2 logn
∆i

(1 + o(1)), where the o(1) term tends to zero as n→∞.
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If we knew a bit more about our problem, then by optimizing over δ and choosing δ = σ2/∆,
we obtain the upper bound

Regn ≤ O(1)

[
Kσ2

∆
log

n∆

σ2
+K

maxi ∆i

mini ∆i

]
, (19.1.2)

that is, the expected regret scales asymptotically as (Kσ2/∆) log(n∆
σ2 )—linearly in the number of

classes, logarithmically in n, and inversely proportional to the gap between the largest and other
means.

If any of the gaps ∆i → 0 in the bound of Theorem 19.1.2, the bound becomes vacuous—it
simply says that the regret is upper bounded by infinity. Intuitively, however, pulling a slightly
sub-optimal arm should be insignificant for the regret. With that in mind, we present a slight
variant of the above bounds, which has a worse scaling with n—the bound scales as

√
n rather than

log n—but is independent of the gaps ∆i.

Theorem 19.1.3. If UCB is run with parameter δt = 1/t2, then

Regn ≤
√

8Kσ2n log n+ 4
K∑
i=1

∆i.

Proof Fix any γ > 0. Then we may write the regret with the standard identity

Regn =
∑
i 6=i?

∆iTi(n) =
∑

i:∆i≥γ
∆iTi(n) +

∑
i:∆i<γ

∆iTi(n) ≤
∑

i:∆i≥γ
∆iTi(n) + nγ,

where the final inequality uses that certainly
∑K

i=1 Ti(n) ≤ n. Taking expectations with our UCB
procedure and δ = 1, we have by Theorem 19.1.2 that

Regn ≤
∑

i:∆i≥γ
∆i

8σ2 log n

∆2
i

+
π2 + 1

3

K∑
i=1

∆i + nγ ≤ K 8σ2 log n

γ
+ nγ +

π2 + 1

3

K∑
i=1

∆i,

Optimizing over γ by taking γ =

√
8Kσ2 logn√

n
gives the result.

Combining the above two theorems, we see that the UCB algorithm with parameters δt = 1/t2

automatically achieves the expected regret guarantee

Regn ≤ C ·min

 ∑
i:∆i>0

σ2 log n

∆i
,
√
Kσ2n log n

 . (19.1.3)

That is, UCB enjoys some adaptive behavior. It is not, however, optimal; there are algorithms,
including Audibert and Bubeck’s MOSS (Minimax Optimal in the Stochastic Case) bandit proce-
dure [11], which achieve regret

Regn ≤ C ·min

{√
Kn,

K

∆
log

n∆2

K

}
,

which is essentially the bound specified by inequality (19.1.2) (which required knowledge of the
∆is) and an improvement by log n over the analysis of Theorem 19.1.3. It is also possible to provie
a high-probability guarantee for the UCB algorithms, which follows essentially immediately from
the proof techniques of Proposition 19.1.1, but we leave this to the interested reader.
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19.2 Bayesian approaches to bandits

The upper confidence bound procedure, while elegant and straightforward, has a variety of competi-
tors, including online gradient descent approaches and a variety of Bayesian strategies. Bayesian
strategies—because they (can) incorporate prior knowledge—have the advantage that they sug-
gest policies for exploration and trading between regret and information; that is, they allow us
to quantify a value for information. They often yield very simple procedures, allowing simpler
implementations.

In this section, we thus consider the following specialized setting; there is substantially more
possible here. We assume that there is a finite set of actions (arms) A as before, and we have a
collection of distributions P = {Pθ}θ∈Θ parameterized by a set Θ (often, this is some subset of RK
when we look at K-armed bandit problems with card(A) = K, but we stay in this abstract setting
temporarily). We also have a loss function ` : A × Θ → R that measure the quality of an action
a ∈ A for the parameter θ.

Example 19.2.1 (Classical Bernoulli bandit problem): The classical bandit problem, as in the
UCB case of the previous section, has actions (arms) A = {1, . . . ,K}, and the parameter space
Θ = [0, 1]K , and we have that Pθ is a distribution on Y ∈ {0, 1}K , where Y has independent
coordinates 1, . . . ,K with P (Yj = 1) = θj , that is, Yj ∼ Bernoulli(θj). The goal is to find the
arm with highest mean reward, that is, argmaxj θj , and thus possible loss functions include
`(a, θ) = −θa or, if we wish the loss to be positive, `(a, θ) = 1− θa ∈ [0, 1]. 3

Lastly, in this Bayesian setting, we require a prior distribution π on the space Θ, where π(Θ) = 1.
We then define the Bayesian regret as

Regn(A, `, π) = Eπ
[ n∑
t=1

`(At, θ)− `(A?, θ)
]
, (19.2.1)

where A? ∈ argmina∈A `(a, θ) is the minimizer of the loss, and At ∈ A is the action the player takes
at time t of the process. The expectation (19.2.1) is taken both over the randomness in θ according
to the prior π and any randomness in the player’s strategy for choosing the actions At at each time.

Our approaches in this section build off of those in Chapter 16, except that we no longer fully
observe the desired observations Y—we may only observe YAt(t) at time t, which may provide less
information. The broad algorithmic framework for this section is as follows. We now give several

Input: Prior distribution π on space Θ, family of distributions P = {Pθ}θ∈Θ

Repeat: for each iteration t, choose distribution πt on space Θ (based on history
YA1(1), . . . , YAt−1(t− 1)). Draw

θt ∼ πt.

Play action At ∈ A minimizing
`(a, θt)

over a ∈ A, observe YAt(t).

Figure 19.2: The generic Bayesian algorithm

concrete instantiations of this broad procedure, as well as tools (both information-theoretic and
otherwise) for its analysis.
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19.2.1 Posterior (Thompson) sampling

The first strategy we consider is perhaps the simplest; in Algorithm 19.2, it corresponds to using
πt to be the posterior distribution on θ conditional on the history YA1(1), . . . , YAt−(t− 1). That is,
we let

Ht := {A1, YA1(1), A2, YA2(2), . . . , At, YAt(t)}

denote the history (or the σ-field thereof) of the procedure and rewards up to time t. Then at
iteration t, we use the posterior

πt(θ) = π(θ | Ht−1),

the distribution on θ conditional on Ht−1. This procedure was originally proposed by Thompson
[165] in 1933 in the first paper on bandit problems. There are several analyses of Thompson (and
related Bayesian) procedures possible; our first analysis proceeds by using confidence bounds, while
our later analyses give a more information theoretic analysis.

First, we provide a more concrete specification of Algorithm 19.2 for Thompson (posterior)
sampling in the case of Bernoulli rewards.

Example 19.2.2 (Thompson sampling with Bernoulli penalities): Let us suppose that the
vector θ ∈ [0, 1]K , and we draw θi ∼ Beta(1, 1), which corresponds to the uniform distribution
on [0, 1]d. The actions available are simply to select one of the coordinates, a ∈ A = {1, . . . ,K},
and we observe Ya ∼ Bernoulli(θa), that is, P(Ya = 1 | θ) = θa. That is, `(a, θ) = θa. Let
T 1
a (t) = card{τ ≤ t : At = a, Ya(τ) = 1} be the number of times arm a is pulled and results in

a loss of 1 by time t, and similarly let T 0
a (t) = card{τ ≤ t : At = a, Ya(τ) = 0}. Then, recalling

Example 16.4.2 on Beta-Bernoulli distributions, Thompson sampling proceeds as follows:

(1) For each arm a ∈ A = {1, . . . ,K}, draw θa(t) ∼ Beta(1 + T 1
a (t), 1 + T 0

a (t)).

(2) Play the action At = argmina θa(t).

(3) Observe the loss YAt(t) ∈ {0, 1}, and increment the appropriate count.

Thompson sampling is simple in this case, and it is implementable with just a few counters.
3

We may extend Example 19.2.2 to the case in which the losses come from any distribution with
mean θi, so long as the distribution is supported on [0, 1]. In particular, we have the following
example.

Example 19.2.3 (Thompson sampling with bounded random losses): Let us again consider
the setting of Example 19.2.2, except that the observed losses Ya(t) ∈ [0, 1] with E[Ya | θ] = θa.
The following modification allows us to perform Thompson sampling in this case, even without
knowing the distribution of Ya | θ: instead of observing a loss Ya ∈ {0, 1}, we construct a
random observation Ỹa ∈ {0, 1} with the property that P(Ỹa = 1 | Ya) = Ya. Then the losses
`(a, θ) = θa are identical, and the posterior distribution over θ is still a Beta distribution. We
simply redefine

T 0
a (t) := card{τ ≤ t : At = a, Ỹa(τ) = 0} and T 1

a (t) := card{τ ≤ t : At = a, Ỹa(τ) = 0}.

The Thompson sampling procedure is otherwise identical. 3

Our first analysis shows that Thompson sampling can guarantee performance similar to (or
in some cases, better than) confidence-based procedures, which we do by using a sequence of
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(potential) lower and upper bounds on the losses of actions. (Recall we wish to minimize our
losses, so that we would optimistically play those arms with the lowest estimated loss.) This
analysis is based on that of Russo and Van Roy [155]. Let Lt : A → R and Ut : A → R be an
arbitrary sequence of (random) functions that are measurable with respect to Ht−1, that is, they
are constructed based only on {A1, YA1(1), . . . , At−1, YAt−1(t − 1)}. Then we can decompose the
Bayesian regret (19.2.1) as

Regn(A, `, π) = Eπ
[ n∑
t=1

`(At, θ)− `(A?, θ)
]

(19.2.2)

=
n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

Eπ[`(At, θ)− Ut(At)] +
n∑
t=1

Eπ[Lt(At)− `(A?, θ)]

(i)
=

n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

Eπ[`(At, θ)− Ut(At)] +
n∑
t=1

Eπ[Lt(A
?
t )− `(A?t , θ)],

where in equality (i) we used that conditional on Ht−1, At and A?t = A? have the same distribution,
as we sample from the posterior π(θ | Ht−1), and Lt is a function of Ht−1. With the decomposi-
tion (19.2.2) at hand, we may now provide an expected regret bound for Thompson (or posterior)
sampling. We remark that the behavior of Thompson sampling is independent of these upper and
lower bounds Ut, Lt we have chosen—they are simply an artifact to make analysis easier.

Theorem 19.2.4. Suppose that conditional on the choice of action At = a, the received loss Ya(t)
is σ2-sub-Gaussian with mean `(a, θ), that is,

E [exp (λ(Ya(t)− `(a, θ))) | Ht−1] ≤ exp

(
λ2σ2

2

)
for all a ∈ A.

Then for all δ ≥ 0 we have

Regn(A, `, π) ≤ 4

√
2σ2 log

1

δ

√
|A|n+ 3nδσ|A|.

In particular, choosing δ = 1
n gives

Regn(A, `, π) ≤ 6σ
√
|A|n log n+ 3σ|A|.

Proof We choose the upper and lower bound functions somewhat carefully so as to get a fairly
sharp regret guarantee. In particular, we (as in our analysis of the UCB algorithm) let δ ∈ (0, 1)
and define Ta(t) := card{τ ≤ t : At = a} to be the number of times that action a has been chosen
by iteration t. Then we define the mean loss for action a at time t by

̂̀
a(t) :=

1

Ta(t)

∑
τ≤t,Aτ=a

Ya(τ)

and our bounds for the analysis by

Ut(a) := ̂̀
a(t) +

√
2σ2 log 1

δ

Ta(t)
and Lt(a) := ̂̀

a(t)−

√
2σ2 log 1

δ

Ta(t)
.
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With these choices, we see that by the extension of the sub-Gaussian concentration bound (19.1.1)
and the equality (19.5.1) showing that the sum

∑
τ≤t,Aτ=a Ya(τ) is equal in distribution to the sum∑

τ≤t,Aτ=a Y
′
a(τ), where Y ′a(τ) are independent and identically distributed copies of Ya(τ), we have

for any ε ≥ 0 that

P(Ut(a) ≤ `(a, θ)− ε | Ta(t)) ≤ exp

−Ta(t)
2σ2

(√
2σ2 log 1

δ

Ta(t)
+ ε

)2
 ≤ exp

(
− log

1

δ
− Ta(t)ε

2

2σ2

)
,

(19.2.3)

where the final inequality uses that (a+ b)2 ≥ a2 + b2 for ab ≥ 0. We have an identical bound for
P(Lt(a) ≥ `(a, θ) + ε | Ta(t)).

We may now bound the final two sums in the regret expansion (19.2.2) using inequality (19.2.3).
First, however, we make the observation that for any nonnegative random variable Z, we have
E[Z] =

∫∞
0 P(Z ≥ ε)dε. Using this, we have

n∑
t=1

Eπ [`(At, θ)− Ut(At)] ≤
n∑
t=1

∑
a∈A

Eπ
[
[`(a, θ)− Ut(a)]+

]
=

n∑
t=1

∑
a∈A

Eπ
[∫ ∞

0
P(Ut(a) ≥ `(a, θ) + ε | Ta(t))dε

]
(i)

≤
n∑
t=1

∑
a∈A

δEπ
[∫ ∞

0
exp

(
−Ta(t)ε

2

2σ2

)
dε

]
(ii)
=

n∑
t=1

δ
∑
a∈A

Eπ
[√

πσ2

2Ta(t)

]
,

where inequality (i) uses the bound (19.2.3) and equality (ii) uses that this is the integral of half
of a normal density. Substituting this bound, as well as the identical one for the terms involving
Lt(A

?
t ), into the decomposition (19.2.2) yields

Regn(A, `, π) ≤
n∑
t=1

Eπ[Ut(At)− Lt(At)] +
n∑
t=1

δ
∑
a∈A

Eπ

[√
2πσ2

Ta(t)

]
.

Using that Ta(t) ≥ 1 for each action a, we have
∑

a∈A Eπ[
√

2πσ2/Ta(t)] < 3σ|A|. Lastly, we use
that

Ut(At)− Lt(At) = 2

√
2σ2 log 1

δ

TAt(t)
.

Thus we have

n∑
t=1

Eπ[Ut(At)− Lt(At)] = 2

√
2σ2 log

1

δ

∑
a∈A

Eπ

[ ∑
t:At=a

1√
Ta(t)

]
.

Once we see that
∑T

t=1 t
− 1

2 ≤
∫ T

0 t−
1
2dt = 2

√
T , we have the upper bound

Regn(A, `, π) ≤ 4

√
2σ2 log

1

δ

∑
a∈A

Eπ[
√
Ta(n)] + 3nδσ|A|.

As
∑

a∈A Ta(n) = n, the Cauchy-Scwharz inequality implies
∑

a∈A
√
Ta(n) ≤

√
|A|n, which gives

the result.
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An immediate Corollary of Theorem 19.2.4 is the following result, which applies in the case of
bounded losses Ya as in Examples 19.2.2 and 19.2.3.

Corollary 19.2.5. Let the losses Ya ∈ [0, 1] with E[Ya | θ] = θa, where θi
iid∼ Beta(1, 1) for

i = 1, . . . ,K. Then Thompson sampling satisfies

Regn(A, `, π) ≤ 3
√
Kn log n+

3

2
K.

19.2.2 An information-theoretic analysis

19.2.3 Information and exploration

19.3 Online gradient descent approaches

It is also possible to use online gradient descent approaches to minimize regret in the more standard
multi-armed bandit setting. In this scenario, our goal is to minimize a sequentially (partially)
observed loss, as in the previous section. In this case, as usual we have K arms with non-negative
means µ1, . . . , µK , and we wish to find the arm with lowest mean loss. We build off of the online
convex optimization procedures of Chapter 18 to achieve good regret guarantees. In particular, at
each step of the bandit procedure, we play a distribution wt ∈ ∆K on the arms, and then we select
one arm j at random, each with probability wt,j . The expected loss we suffer is then `t(wt) = 〈wt, µ〉,
though we observe only a random realization of the loss for the arm a that we play.

Because of its natural connections with estimation of probability distributions, we would like
to use the exponentiated gradient algorithm, Example 18.2.3, to play this game. We face one main
difficulty: we must estimate the gradient of the losses, ∇`t(wt) = µ, even though we only observe a
random variable Ya(t) ∈ R+, conditional on selecting action At = a at time t, with the property that
E[Ya(t)] = µa. Happily, we can construct such an estimate without too much additional variance.

Lemma 19.3.1. Let Y ∈ RK be a random variable with E[Y ] = µ and w ∈ ∆K be a probability
vector. Choose a coordinate a with probability wa and define the random vector

Ỹj =

{
Yj/wj if j = a

0 otherwise.

Then E[Ỹ | Y ] = Y .

Proof The proof is immediate: for each coordinate j of Ỹ , we have E[Ỹj | Y ] = wjYj/wj = Yj .

Lemma 19.3.1 suggests the following procedure, which gives rise to (a variant of) Auer et al.’s
EXP3 (Exponentiated gradient for Exploration and Exploitation) algorithm [13]. We can prove
the following bound on the expected regret of the EXP3 Algorithm 19.3 by leveraging our refined
analysis of exponentiated gradients in Proposition 18.4.1.

Proposition 19.3.2. Assume that for each j, we have E[Y 2
j ] ≤ σ2 and the observed loss Yj ≥ 0.

Then Alg. 19.3 attains expected regret (we are minimizing)

Regn =

n∑
t=1

E[µAt − µi? ] ≤
logK

η
+
η

2
σ2Kn.

433



Lexture Notes on Statistics and Information Theory John Duchi

Input: stepsize parameter η, initial vector w1 = [ 1
K · · ·

1
K ]>

Repeat: for each iteration t, choose random action At = a with probability wt,a
Receive non-negative loss Ya(t), and define

gt,j =

{
Yj(t)/wj if At = j

0 otherwise.

Update for each i = 1, . . . ,K

wt+1,i =
wt,i exp(−ηgt,i)∑
j wt,j exp(−ηgt,j)

.

Figure 19.3: Exponentiated gradient for bandit problems.

In particular, choosing η =
√

logK/(Kσ2n) gives

Regn =

n∑
t=1

E[µAt − µi? ] ≤
3

2
σ
√
Kn logK.

Proof With Lemma 19.3.1 in place, we recall the refined regret bound of Proposition 18.4.1. We
have that for w? ∈ ∆K and any sequence of vectors g1, g2, . . . with gt ∈ RK+ , then exponentiated
gradient descent achieves

n∑
t=1

〈gt, wt − w?〉 ≤
logK

η
+
η

2

n∑
t=1

k∑
j=1

wt,jg
2
t,j .

To transform this into a useful bound, we take expectations. Indeed, we have

E[gt | wt] = E[Y ] = µ

by construction, and we also have

E
[ k∑
j=1

wt,jg
2
t,j | wt

]
=

K∑
j=1

w2
t,jE[Yj(t)

2/w2
t,j | wt] =

K∑
j=1

E[Y 2
j ] = E[‖Y ‖22].

This careful normalizing, allowed by Proposition 18.4.1, is essential to our analysis (and fails for
more naive applications of online convex optimization bounds). In particular, we have

Regn =

n∑
t=1

E[〈µ,wt − w?〉] =

n∑
t=1

E[〈gt, wt − w?〉] ≤
logK

η
+
η

2
nE[‖Y ‖22].

Taking expectations gives the result.

When the random observed losses Ya(t) are bounded in [0, 1], then we have the mean regret
bound 3

2

√
Kn logK, which is as sharp as any of our other bounds.
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19.4 Further notes and references

An extraordinarily abbreviated bibliography follows.
The golden oldies: Thompson [165], Robbins [152], and Lai and Robbins [125].
More recent work in machine learning (there are far too many references to list): the books

Cesa-Bianchi and Lugosi [47] and Bubeck and Cesa-Bianchi [40] are good references. The papers
of Auer et al. [13] and Auer et al. [12] introduced UCB and EXP3.

Our approach to Bayesian bandits follows Russo and Van Roy [155, 156, 157]. More advanced
techniques allow Thompson sampling to apply even when the prior is unknown (e.g. Agrawal and
Goyal [2]).

19.5 Technical proofs

19.5.1 Proof of Claim (19.1.1)

We let Y ′i (τ), for τ = 1, 2, . . ., be independent and identically distributed copies of the random
variables Yi(τ), so that Y ′i (τ) is also independent of Ti(t) for all t and τ . We claim that the pairs

(µ̂i(t), Ti(t))
dist
=
(
µ̂′i(t), Ti(t)

)
, (19.5.1)

where µ̂′i(t) = 1
Ti(t)

∑
τ :Aτ=i Y

′
i (τ) is the empirical mean of the copies Y ′i (τ) for those steps when

arm i is selected. To see this, we use the standard fact that the characteristic function of a random
variable completely characterizes the random variable. Let ϕYi(λ) = E[eιλYi ], where ι =

√
−1 is

the imaginary unit, denote the characteristic function of Yi, noting that by construction we have
ϕYi = ϕY ′i . Then writing the joint characteristic function of Ti(t)µ̂i(t) and Ti(t), we obtain

E

[
exp

(
ιλ1

t∑
τ=1

1 {Aτ = i}Yi(τ) + ιλ2Ti(t)

)]
(i)
= E

[
t∏

τ=1

E [exp (ιλ11 {Aτ = i}Yi(τ) + ιλ21 {Aτ = i}) | Hτ−1]

]
(ii)
= E

[
t∏

τ=1

(
1 {Aτ = i} eιλ2E [exp(ιλ1Yi(τ)) | Hτ−1] + 1 {Aτ 6= i}

)]
(iii)
= E

[
t∏

τ=1

(
1 {Aτ = i} eλ2ιϕYi(λ1) + 1 {Aτ 6= i}

)]
(iv)
= E

[
t∏

τ=1

(
1 {Aτ = i} eλ2ιϕY ′i (λ1) + 1 {Aτ 6= i}

)]

= E

[
exp

(
ιλ1

t∑
τ=1

1 {Aτ = i}Y ′i (τ) + ιλ2Ti(t)

)]
,

where equality (i) is the usual tower property of conditional expectations, where Hτ−1 denotes the
history to time τ − 1, equality (ii) because Aτ ∈ Hτ−1 (that is, it is a function of the history),
equality (iii) follows because Yi(τ) is independent of Hτ−1, and equality (iv) follows because Y ′i and
Yi have identical distributions. The final step is simply reversing the steps.
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With the distributional equality (19.5.1) in place, we see that for any δ ∈ [0, 1], we have

P

µ̂i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 = P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)

 = P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

Ti(t)


=

t∑
s=1

P

µ̂′i(t) ≥ µi +

√
σ2 log 1

δ

s
| Ti(t) = s

P(Ti(t) = s)

≤
t∑

s=1

δP(Ti(t) = s) = δ.

The proof for the lower tail is similar.
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Appendix A

Miscellaneous mathematical results

This appendix collects several mathematical results and some of the more advanced mathematical
treatment required for full proofs of the results in the book. It is not a core part of the book, but it
does provide readers who wish to see the measure-theoretic rigor necessary for some of our results,
or otherwise, to dot the appropriate I’s and cross the appropriate T’s.

A.1 The roots of a polynomial

A.2 Measure-theoretic development of divergence measures
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Appendix B

Convex Analysis

In this appendix, we review several results in convex analysis that are useful for our purposes. We
give only a cursory study here, identifying the basic results and those that will be of most use to
us; the field of convex analysis as a whole is vast. The study of convex analysis and optimization
has become very important practically in the last fourty to fifty years for a few reasons, the most
important of which is probably that convex optimization problems—those optimization problems
in which the objective and constraints are convex—are tractable, while many others are not. We
do not focus on optimization ideas here, however, building only some analytic tools that we will
find useful. We borrow most of our results from Hiriart-Urruty and Lemaréchal [104], focusing
mostly on the finite-dimensional case (though we present results that apply in infinite dimensional
cases with proofs that extend straightforwardly, and we do not specify the domains of our functions
unless necessary), as we require no results from infinite-dimensional analysis.

In addition, we abuse notation and assume that the range of any function is the extended real
line, meaning that if f : C → R we mean that f(x) ∈ R ∪ {−∞,+∞}, where −∞ and +∞ are
infinite and satisfy a+∞ = +∞ and a−∞ = −∞ for any a ∈ R. However, we assume throughout
and without further mention that our functions are proper, meaning that f(x) > −∞ for all x, as
this allows us to avoid annoying pathologies.

B.1 Convex sets

We begin with the simplest and most important object in convex analysis, a convex set.

Definition B.1. A set C is convex if for all λ ∈ [0, 1] and all x, y ∈ C, we have

λx+ (1− λ)y ∈ C.

An important restriction of convex sets is to closed convex sets, those convex sets that are, well,
closed.

JCD Comment: Picture

We now consider two operations that extend sets, convexifying them in nice ways.

Definition B.2. The affine hull of a set C is the smallest affine set containing C. That is,

aff(C) :=

{ k∑
i=1

λixi : k ∈ N, xi ∈ C, λ ∈ Rk,
k∑
i=1

λi = 1

}
.
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Associated with any set is also its convex hull:

Definition B.3. The convex hull of a set C ⊂ Rd, denoted Conv(C), is the intersection of all
convex sets containing C.

JCD Comment: picture

An almost immediate associated result is that the convex hull of a set is equal to the set of all
convex combinations of points in the set.

Proposition B.1.1. Let C be an arbitrary set. Then

Conv(C) =

{ k∑
i=1

λixi : k ∈ N, xi ∈ C, λ ∈ Rk+,
k∑
i=1

λi = 1

}
.

Proof Call T the set on the right hand side of the equality in the proposition. Then T ⊃ C
is clear, as we may simply take λ1 = 1 and vary x ∈ C. Moreover, the set T ⊂ Conv(C), as any
convex set containing C must contain all convex combinations of its elements; similarly, any convex
set S ⊃ C must have S ⊃ T .

Thus if we show that T is convex, then we are done. Take any two points x, y ∈ T . Then
x =

∑k
i=1 αixi and y =

∑l
i=1 βiyi for xi, yi ∈ C. Fix λ ∈ [0, 1]. Then (1− λ)βi ≥ 0 and λαi ≥ 0 for

all i,

λ
k∑
i=1

αi + (1− λ)
l∑

i=1

βi = λ+ (1− λ) = 1,

and λx+ (1− λ)y is a convex combination of the points xi and yi weighted by λαi and (1− λ)βi,
respectively. So λx+ (1− λ)y ∈ T and T is convex.

We also give one more definition, which is useful for dealing with some pathalogical cases in
convex analysis, as it allows us to assume many sets are full-dimensional.

Definition B.4. The relative interior of a set C is the interior of C relative to its affine hull, that
is,

relint(C) := {x ∈ C : B(x, ε) ∩ aff(C) ⊂ C for some ε > 0} ,

where B(x, ε) := {y : ‖y − x‖ < ε} denotes the open ball of radius ε centered at x.

An example may make Definition B.4 clearer.

Example B.1.2 (Relative interior of a disc): Consider the (convex) set

C =
{
x ∈ Rd : x2

1 + x2
2 ≤ 1, xj = 0 for j ∈ {3, . . . , d}

}
.

The affine hull aff(C) = R2×{0} = {(x1, x2, 0, . . . , 0) : x1, x2 ∈ R} is simply the (x1, x2)-plane
in Rd, while the relative interior relint(C) = {x ∈ Rd : x2

1 + x2
2 < 1} ∩ aff(C) is the “interior”

of the 2-dimensional disc in Rd. 3

In finite dimensions, we may actually restrict the definition of the convex hull of a set C to
convex combinations of a bounded number (the dimension plus one) of the points in C, rather
than arbitrary convex combinations as required by Proposition B.1.1. This result is known as
Carathéodory’s theorem.
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Theorem B.1.3. Let C ⊂ Rd. Then x ∈ Conv(C) if and only if there exist points x1, . . . , xd+1 ∈ C
and λ ∈ Rd+1

+ with
∑d+1

i=1 λi = 1 such that

x =
d+1∑
i=1

λixi.

Proof It is clear that if x can be represented as such a sum, then x ∈ Conv(C). Conversely,
Proposition B.1.1 implies that for any x ∈ Conv(C) we have

x =
k∑
i=1

λixi, λi ≥ 0,
k∑
i=1

λi = 1, xi ∈ C

for some λi, xi. Assume that k > d+1 and λi > 0 for each i, as otherwise, there is nothing to prove.
Then we know that the points xi − x1 are certainly linearly dependent (as there are k − 1 > d of
them), and we can find (not identically zero) values α2, . . . , αk such that

∑k
i=2 αi(xi−x1) = 0. Let

α1 = −
∑k

i=2 αi to obtain that we have both

k∑
i=1

αixi = 0 and

k∑
i=1

αi = 0. (B.1.1)

Notably, the equalities (B.1.1) imply that at least one αi > 0, and if we define λ∗ = mini:αi>0
λi
αi
> 0,

then setting λ′i = λi − λ∗αi we have

λ′i ≥ 0 for all i,

k∑
i=1

λ′i =

k∑
i=1

λi − λ∗
k∑
i=1

αi = 1, and

k∑
i=1

λ′ixi =

k∑
i=1

λixi − λ∗
k∑
i=1

αixi = x.

But we know that at least one of the λ′i = 0, so that we could write x as a convex combination of
k − 1 elements. Repeating this strategy until k = d+ 1 gives the theorem.

B.1.1 Operations preserving convexity

We now touch on a few simple results about operations that preserve convexity of convex sets.
First, we make the following simple observation.

Observation B.1.4. Let C be a convex set. Then C = Conv(C).

Observation B.1.4 is clear, as we have C ⊂ Conv(C), while any other convex S ⊃ C clearly satisfies
S ⊃ Conv(C). Secondly, we note that intersections preserve convexity.

Observation B.1.5. Let {Cα}α∈A be an arbitrary collection of convex sets. Then

C =
⋂
α∈A

Cα

is convex. Moreover, if Cα is closed for each α, then C is closed as well.
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The convexity property follows because if x1 ∈ C and x2 ∈ C, then clearly x1, x2 ∈ Cα for all
α ∈ A, and moreover λx1 + (1 − λ)x2 ∈ Cα for all α and any λ ∈ [0, 1]. The closure property is
standard. In addition, we note that closing a convex set maintains convexity.

Observation B.1.6. Let C be convex. Then cl(C) is convex.

To see this, we note that if x, y ∈ cl(C) and xn → x and yn → y (where xn, yn ∈ C), then for any
λ ∈ [0, 1], we have λxn + (1 − λ)yn ∈ C and λxn + (1 − λ)yn → λx + (1 − λ)y. Thus we have
λx+ (1− λ)y ∈ cl(C) as desired.

Observation B.1.6 also implies the following result.

Observation B.1.7. Let D be an arbitrary set. Then⋂
{C : C ⊃ D, C is convex} = cl Conv(D).

Proof Let T denote the leftmost set. It is clear that T ⊂ cl Conv(D) as cl Conv(D) is a closed
convex set (by Observation B.1.6) containing D. On the other hand, if C ⊃ D is a closed convex
set, then C ⊃ Conv(D), while the closedness of C implies it also contains the closure of Conv(D).
Thus T ⊃ cl Conv(D) as well.

JCD Comment: Picture

As our last consideration of operations that preserve convexity, we consider what is known as
the perspective of a set. To define this set, we need to define the perspective function, which, given
a point (x, t) ∈ Rd × R++ (here R++ = {t : t > 0} denotes strictly positive points), is defined as

pers(x, t) =
x

t
.

We have the following definition.

Definition B.5. Let C ⊂ Rd ×R+ be a set. The perspective transform of C, denoted by pers(C),
is

pers(C) :=
{x
t

: (x, t) ∈ C and t > 0
}
.

This corresponds to taking all the points z ∈ C, normalizing them so their last coordinate is 1, and
then removing the last coordinate. (For more on perspective functions, see Boyd and Vandenberghe
[35, Chapter 2.3.3].)

It is interesting to note that the perspective of a convex set is convex. First, we note the
following.

Lemma B.1.8. Let C ⊂ Rd+1 be a compact line segment, meaning that C = {λx+ (1− λ)y : λ ∈
[0, 1]}, where xd+1 > 0 and yd+1 > 0. Then pers(C) = {λpers(x) + (1− λ) pers(y) : λ ∈ [0, 1]}.

Proof Let λ ∈ [0, 1]. Then

pers(λx+ (1− λ)y) =
λx1:d + (1− λ)y1:d

λxd+1 + (1− λ)yd+1

=
λxd+1

λxd+1 + (1− λ)yd+1

x1:d

xd+1
+

(1− λ)yd+1

λxd+1 + (1− λ)yd+1

y1:d

yd+1

= θ pers(x) + (1− θ) pers(y),
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where x1:d and y1:d denote the vectors of the first d components of x and y, respectively, and

θ =
λxd+1

λxd+1 + (1− λ)yd+1
∈ [0, 1].

Sweeping λ from 0 to 1 sweeps θ ∈ [0, 1], giving the result.

Based on Lemma B.1.8, we immediately obtain the following proposition.

Proposition B.1.9. Let C ⊂ Rd × R++ be a convex set. Then pers(C) is convex.

Proof Let x, y ∈ C and define L = {λx + (1 − λ)y : λ ∈ [0, 1]} to be the line segment between
them. By Lemma B.1.8, pers(L) = {λ pers(x) + (1 − λ) pers(y) : λ ∈ [0, 1]} is also a (convex) line
segment, and we have pers(L) ⊂ pers(C) as necessary.

B.1.2 Representation and separation of convex sets

JCD Comment: Put normal and tangent cones here

We now consider some properties of convex sets, showing that (1) they have nice separation
properties—we can put hyperplanes between them—and (2) this allows several interesting represen-
tations of convex sets. We begin with the separation properties, developing them via the existence
of projections. Interestingly, this existence of projections does not rely on any finite-dimensional
structure, and can even be shown to hold in arbitrary Banach spaces (assuming the axiom of
choice) [133]. We provide the results in a Hilbert space, meaning a complete vector space for which
there exists an inner product 〈·, ·〉 and associated norm ‖·‖ given by ‖x‖2 = 〈x, x〉. We first note
that projections exist.

Theorem B.1.10 (Projections). Let C be a closed convex set. Then for any x, there exists a
unique point πC(x) minimizing ‖y − x‖ over y ∈ C. Moreover, this point is characterized by the
inequality

〈πC(x)− x, y − πC(x)〉 ≥ 0 for all y ∈ C. (B.1.2)

Proof The existence and uniqueness of the projection follows from the parallelogram identity,
that is, that for any x, y we have ‖x− y‖2 + ‖x+ y‖2 = 2(‖x‖2 + ‖y‖2), which follows by noting
that ‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉. Indeed, let {yn} ⊂ C be a sequence such that

‖yn − x‖ → inf
y∈C
‖y − x‖ =: p?

as n→∞, where p? is the infimal value. We show that yn is Cauchy, so that there exists a (unique)
limit point of the sequence. Fix ε > 0 and let N be such that n ≥ N implies ‖yn − x‖2 ≤ p2

? + ε2.
Let m,n ≥ N . Then by the parallelogram identity,

‖yn − ym‖2 = ‖(x− yn)− (x− ym)‖2 = 2
[
‖x− yn‖2 + ‖x− ym‖2

]
− ‖(x− yn) + (x− ym)‖2 .

Noting that

(x− yn) + (x− ym) = 2

[
x− yn + ym

2

]
and

yn + ym
2

∈ C (by convexity of C),
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we have

‖x− yn‖2 ≤ p2
?+ε

2, ‖x− ym‖2 ≤ p2
?+ε

2, and ‖(x− yn) + (x− ym)‖2 = 4

∥∥∥∥x− yn + ym
2

∥∥∥∥2

≥ 4p2
?.

In particular, we have

‖yn − ym‖2 ≤ 2
[
p2
? + ε2 + p2

? + ε2
]
− 4p2

? = 4ε2.

As ε > 0 was arbitrary, this completes the proof of the first statement of the theorem.
To see the second result, assume that z is a point satisfying inequality (B.1.2), that is, such

that
〈z − x, y − z〉 ≥ 0 for all y ∈ C.

Then we have

‖z − x‖2 = 〈z − x, z − x〉 = 〈z − x, z − y〉︸ ︷︷ ︸
≤0

+〈z − x, y − x〉 ≤ ‖z − x‖ ‖y − x‖

by the Cauchy-Schwarz inequality. Dividing both sides by ‖z − x‖ yields ‖z − x‖ ≤ ‖y − x‖ for
any y ∈ C, giving the result. Conversely, let t ∈ [0, 1]. Then for any y ∈ C,

‖πC(x)− x‖2 ≤ ‖(1− t)πC(x) + ty − x‖2 = ‖πC(x)− x+ t(y − πC(x))‖2

= ‖πC(x)− x‖2 + 2t〈πC(x)− x, y − πC(x)〉+ t2 ‖y − πC(x)‖2 .

Subtracting the projection value ‖πC(x)− x‖2 from both sides and dividing by t > 0, we have

0 ≤ 2〈πC(x)− x, y − πC(x)〉+ t ‖y − πC(x)‖2 .

Taking t→ 0 gives inequality (B.1.2).

As an immediate consequence of Theorem B.1.10, we obtain several separation properties of
convex sets, as well as a theorem stating that a closed convex set (not equal to the entire space in
which it lies) can be represented as the intersection of all the half-spaces containing it.

Corollary B.1.11. Let C be closed convex and x 6∈ C. Then there is a vector v strictly separating
x from C, that is,

〈v, x〉 > sup
y∈C
〈v, y〉.

Moreover, we can take v = x− πC(x).

Proof By Theorem B.1.10, we know that taking v = x− πC(x) we have

0 ≤ 〈y − πC(x), πC(x)− x〉 = 〈y − πC(x),−v〉 = 〈y − x+ v,−v〉 = −〈y, v〉+ 〈x, v〉 − ‖v‖2 .

That is, we have 〈v, y〉 ≤ 〈v, x〉 − ‖v‖2 for all y ∈ C and v 6= 0.

In addition, we can show the existence of supporting hyperplanes, that is, hyperplanes “sepa-
rating” the boundary of a convex set from itself.
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Theorem B.1.12. Let C be a convex set and x ∈ bd(C), where bd(C) = cl(C) \ intC. Then there
exists a non-zero vector v such that 〈v, x〉 ≥ supy∈C〈v, y〉.

Proof Let D = cl(C) be the closure of C and let xn 6∈ D be a sequence of points such that
xn → x. Let us define the sequence of separating vectors sn = xn − πD(xn) and the normalized
version vn = sn/ ‖sn‖. Notably, we have 〈vn, xn〉 > supy∈C〈vn, y〉 for all n. Now, the sequence
{vn} ⊂ {v : ‖v‖ = 1} belongs to a compact set.1 Passing to a subsequence if necessary, let us
assume w.l.o.g. that vn → v with ‖v‖ = 1. Then by a standard limiting argument for the xn → x,
we have

〈v, x〉 ≥ 〈v, y〉 for all y ∈ C,

which was our desired result.

JCD Comment: Picture of supporting hyperplanes and representations

Theorem B.1.12 gives us an important result. In particular, let D be an arbitrary set, and let
C = cl Conv(D) be the closure of the convex hull of D, which is the smallest closed convex set
containing D. Then we can write C as the intersection of all the closed half-spaces containing D;
this is, in some sense, the most useful “convexification” of D. Recall that a closed half-space H is
defined with respect to a vector v and real a ∈ R as

H := {x : 〈v, x〉 ≤ r}.

Before stating the theorem, we remark that by Observation B.1.6, the intersection of all the closed
convex sets containing a set D is equal to the closure of the convex hull of D.

Theorem B.1.13. Let D be an arbitrary set. If C = cl Conv(D), then

C =
⋂
H⊃D

H, (B.1.3)

where H denotes a closed half-space containing D. Moreover, for any closed convex set C,

C =
⋂

x∈bd(C)

Hx, (B.1.4)

where Hx denotes the intersection of halfspaces supporting C at x.

Proof We begin with the proof of the second result (B.1.4). Indeed, by Theorem B.1.12, we
know that at each point x on the boundary of C, there exists a non-zero supporting hyperplane v,
so that the half-space

Hx,v := {y : 〈v, y〉 ≤ 〈v, x〉} ⊃ C

is closed, convex, and contains C. We clearly have the containment C ⊂ ∩x∈bd(C)Hx. Now let
x0 6∈ C; we show that x0 6∈ ∩x∈bd(C)Hx. As x0 6∈ C, the projection πC(x0) of x0 onto C satisfies
〈x0−πC(x0), x0〉 > supy∈C〈x0−πC(x0), y〉 by Corollary B.1.11. Moreover, letting v = x0−πC(x0),
the hyperplane

hx0,v := {y : 〈y, v〉 = 〈πC(x0), v〉}
1In infinite dimensions, this may not be the case. But we can apply the Banach-Alaoglu theorem, which states

that, as vn are linear operators, the sequence is weak-* compact, so that there is a vector v with ‖v‖ ≤ 1 and a
subequence m(n) ⊂ N such that 〈vm(n), x〉 → 〈v, x〉 for all x.
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is clearly supporting to C at the point πC(x0). The half-space {y : 〈y, v〉 ≤ 〈πC(x0), v〉} thus
contains C and does not contain x0, implying that x0 6∈ ∩x∈bd(C)Hx.

Now we show the first result (B.1.3). Let C be the closed convex hull of D and T = ∩H⊃DH.
By a trivial extension of the representation (B.1.4), we have that C = ∩H⊃CH, where H denotes
any halfspace containing C. As C ⊃ D, we have that H ⊃ C implies H ⊃ D, so that

T =
⋂
H⊃D

H ⊂
⋂
H⊃C

H = C.

On the other hand, as C = cl Conv(D), Observation B.1.7 implies that any closed set containing
D contains C. As a closed halfspace is convex and closed, we have that H ⊃ D implies H ⊃ C,
and thus T = C as desired.

B.2 Sublinear and support functions

A special case of convex functions will be sublinear functions, which form the basis of the transition
between convex sets and convex functions. Accordingly, we give a special treatment here. Recall
that f is convex if f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) for all x, y.

Definition B.6. A function f : Rd → R ∪ {+∞} is sublinear if it is convex and positively homo-
geneous, meaning

f(tx) = tf(x) for all x ∈ Rd and t > 0.

Such functions are important in that they give some of the first dualities between convex sets and
convex functions. As we see in the section to come, they also allow us to describe various first-order
smoothness properties of convex functions.

The main result we shall need on sublinear functions is that they can be defined by a dual
construction.

Proposition B.2.1. Let f be a closed sublinear function and define S := {s | 〈s, x〉 ≤ f(x) for all x}.
Then

f(x) = sup
s∈S
〈s, x〉.

Proof As f is closed convex, there exist affine functions minorizing f at each point in its domain
(Theorem B.3.3). That is, for some pair (s, t) ∈ Rd × R, we have 〈s, x〉 − t ≤ f(x) for all x ∈ Rd.
Because necessarily f(0) = 0 by sublinearity, we have t ≥ 0, and by positive homogeneity, we have
〈s, αx〉 − t ≤ f(αx) for all α > 0, that is, 〈s, x〉 − t/α ≤ f(x) for all x. Taking α ↑ ∞ we find that

〈s, x〉 ≤ f(x) for all x ∈ Rd.

Because any closed convex function is the supremum of all affine functions minorizing it (Theo-
rem B.3.7), we evidently have f(x) = sups{〈s, x〉 | 〈s, ·〉 minorizes f}.

To any set S we can associate a particular sublinear function, the support function of S, defining

σS(x) := sup
s∈S
〈s, x〉. (B.2.1)

This function is evidently a closed convex function—it is the supremum of linear functions—and is
positively homogeneous, so that it is sublinear. We thus immediately have the duality
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Corollary B.2.2. Let f be a sublinear function. Then it is the support function of the closed
convex set

Sf := {s | 〈s, x〉 ≤ f(x) for all x ∈ Rd},

and hence if C is closed convex, then

C = {x | 〈s, x〉 ≤ σC(s) for all s ∈ Rd}.

A few other consequences of the definition are immediate. We see that σS has domσS = Rd if
and only if S is bounded: whenever ‖s‖ ≤ L for all s ∈ S, then σS(x) ≤ L ‖x‖. Conversely,
if domσS = Rd then it is locally Lipschitz (Theorem B.3.4) and (by positive homogeneity) thus
globally Lipschitz, so we have 〈s, x〉 ≤ σS(x) ≤ L ‖x‖ for some L < ∞ and taking x = s/ ‖s‖
gives ‖s‖ ≤ L. As another consequence, we see that support functions of a set S are the support
functions of the closed convex hull of S:

Proposition B.2.3. Let S ⊂ Rd. Then

σS(x) = σcl ConvS(x).

Proof Let C = ConvS, and let sn be any sequence with 〈sn, x〉 → sups∈C〈s, x〉. Then there

exist sn,i ∈ S, i = 1, . . . , k(n), such that sn =
∑k(n)

i=1 λisn,i for some λ � 0, 〈λ,1〉 = 1, which
may change with n. But of course, 〈sn, x〉 ≤ maxi〈sn,i, x〉, and thus σS(x) ≥ σC(x). To see that
σC(x) = σclC(x), note that for each ε > 0, for each s ∈ clC there is s′ ∈ C with ‖s− s′‖ < ε. Then
〈s, x〉 ≤ 〈s′, x〉+ ε ‖x‖ and σclC(x) ≤ σC(x) + ε ‖x‖. Take ε ↓ 0.

This proposition, coupled with Corollary B.2.2, shows that if sets S1, S2 have identical support
functions, then they have identical closed convex hulls, and if they are closed convex, they are thus
identical.

Corollary B.2.4. Let S1, S2 ⊂ Rd. If σS1 = σS2, then cl ConvS1 = cl ConvS2.

Proof By Proposition B.2.3, we have σSi = σcl ConvSi for each i, and Corollary B.2.2 shows that
if σC1 = σC2 for closed convex sets C1 and C2, then C1 = C2.

As another corollary, we have

Corollary B.2.5. Let σ1 and σ2 be the support functions of the nonempty closed convex sets S1

and S2. Then if t1 > 0 and t2 > 0,

t1σ1 + t2σ2 = σcl(t1S1+t2S2).

If either of S1 or S2 is compact, then t1σ1 + t2σ2 = σt1S1+t2S2.

Proof Let S = t1S1 + t2S2. In first statement, we have

σclS(x)
(?)
= σS(x) = sup {〈t1s1 + t2s2, x〉 | s1 ∈ S1, s2 ∈ S2} ,

equality (?) following from Proposition B.2.3. As the suprema run independently through their
respective sets S1, S2, the latter quantity is evidently

σS(x) = t1 sup
s1∈S1

〈s1, x〉+ t2 sup
s2∈S2

〈s2, x〉 = t1σS1(x) + t2σS2(x).
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The final result is an immediate consequence of the result that if C is a compact convex set and
S is closed convex, then C + S is closed convex. That C + S is convex is immediate. To see that
it is closed, let xn ∈ C, yn ∈ S satisfy xn + yn → z. Then proceeding to a subsequence, we have
xn(m) → x∞ for some x∞ ∈ C, and thus yn(m) → z − x∞, which is then necessarily in S. As the
subsequence xn(m) + yn(m) → x∞+ (z− x∞) ∈ C + S and xn(m) + yn(m) → z as well, this gives the
result.

Linear transformations of support functions are also calculable. In the result, recall that for a
matrix A and set S, the set AS = {As | s ∈ S}.

Proposition B.2.6. Let S ⊂ Rd and A ∈ Rm×d. Then σclAS(x) = σS(A>x).

Proof We have σAS(x) = sups∈S〈As, x〉 = sups∈S〈s,ATx〉. The closure operation changes noth-
ing (Proposition B.2.3).

Lastly, we show how to use support functions to characterize whether sets have interiors. Recall
that for a set S ⊂ Rd, the affine hull aff(S) (Definition B.2) is the set of affine combinations of a
point in S, and the relative interior of S is its interior relative to its affine hull (Definition B.4).

Proposition B.2.7. Let S ⊂ Rd be non-empty a closed convex set. Then

(i) s ∈ intS if and only if 〈s, x〉 < σS(x) for all x 6= 0.

(ii) s ∈ relintS if and only if 〈s, x〉 < σS(x) for all x with σS(x) + σS(−x) > 0.

(iii) intS is non-empty if and only if σS(x) + σS(−x) > 0 for all x 6= 0.

Proof

(i) Because σS is positively homogeneous, an equivalent statement is that σS(x) > 〈s, x〉 for all
x ∈ Sd−1 = {x ∈ Rd | ‖x‖2 = 1}. If s ∈ intS, we there exists ε > 0 such that s + εx ∈ S for
all x ∈ Sd−1, and so

σS(x) ≥ 〈s+ εx, x〉 = 〈s, x〉+ ε,

so that 〈s, x〉 < σS(x).

Conversely, let s be any point satisfying σS(x) − 〈s, x〉 > 0 for all x ∈ Sd−1. Because σS is
lower semicontinuous, the infimum infx∈Sd−1{σS(x)−〈s, x〉} is attained at some x? ∈ Sd−1 (see
Proposition C.0.1). Then there exists some ε > 0 such that 〈s, x〉+ ε ≤ σS(x) for all x ∈ Sd−1.
Let u be any vector with ‖u‖2 < ε. Then 〈s + u, x〉 = 〈s, x〉+ 〈u, x〉 ≤ 〈s, x〉+ ε ≤ σS(x), so
Corollary B.2.2 implies s+ u ∈ S and s ∈ intS.

(ii) We decompose Rd into subspaces V ⊕ U , where U = V ⊥ and V is parallel to aff(S). Writing
x = xU + xV , where xU ∈ U and xV ∈ V , the function 〈s, xU 〉 is constant for s ∈ S. Repeat
the argument for part (i) in the subspace V .

(iii) Suppose intS is non-empty. Then s ∈ intS implies 〈s, x〉 < σS(x) for all x with ‖x‖ = 1.
Then σS(x)+σS(−x) > 〈s, x−x〉 = 0. Conversely, if intS is empty, there exists a hyperplane
containing S (by a dimension counting argument and that the relative interior of S is never
empty [104, Theorem III.2.1.3]), which we may write as S ⊂ {s | vT s = b} for some v 6= 0.
For this σS(v) + σS(−v) = b− b = 0.
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B.3 Convex functions

epi f

Figure B.1: The epigraph of a convex function.

We now build off of the definitions of convex sets to define convex functions. As we will see,
convex functions have several nice properties that follow from the geometric (separation) properties
of convex sets. First, we have

Definition B.7. A function f is convex if for all λ ∈ [0, 1] and x, y ∈ dom f ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (B.3.1)

We define the domain dom f of a convex function to be those points x such that f(x) < +∞. Note
that Definition B.7 implies that the domain of f must be convex.

An equivalent definition of convexity follows by considering a natural convex set attached to
the function f , known as its epigraph.

Definition B.8. The epigraph epi f of a function is the set

epi f := {(x, t) : t ∈ R, f(x) ≤ t}.

That is, the epigraph of a function f is the set of points on or above the graph of the function itself,
as depicted in Figure B.1. It is immediate from the definition of the epigraph that f is convex if
and only if epi f is convex. Thus, we see that any convex set C ⊂ Rd+1 that is unbounded “above,”
meaning that C = C + {0} × R+, defines a convex function, and conversely, any convex function
defines such a set C. This duality in the relationship between a convex function and its epigraph
is central to many of the properties we exploit.
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B.3.1 Equivalent definitions of convex functions

We begin our discussion of convex functions by enumerating a few standard properties that also
characterize convexity. The simplest of these relate to properties of the derivatives and second
derivatives of functions. We begin by elucidating one of the most basic properties of convexity:
that the slopes of convex functions are increasing. Beginning with functions on R, suppose that
f : R→ R is convex, and let x ∈ dom f and v ∈ R be otherwise arbitrary. Then define the quotient
function

q(t) :=
f(x+ tv)− f(x)

t
, t ≥ 0, (B.3.2)

which we claim is nondecreasing in t ≥ 0 if and only if f is convex. Indeed, let t ≥ s > 0 and define
λ = s

t ∈ [0, 1]. Then

q(t) ≥ q(s) if and only if λ[f(x+ tv)− f(x)] ≥ f(x+ λtv)− f(x)

if and only if λf(x+ tv) + (1− λ)f(x) ≥ f((1− λ)x+ λ(x+ tv)),

the latter holding for all λ if and only if f is convex.
JCD Comment: Draw a picture of increasing quotient

Because the quotient function (B.3.2) is nondecreasing, we can relatively straightforwardly give
first-order characterizations of convexity as well. Indeed, suppose that f : R→ R is differentiable;
then convexity is equivalent to the first-order inequality that for all x, y ∈ R, we have

f(y) ≥ f(x) + f ′(x)(y − x). (B.3.3)

To see that inequality (B.3.3) implies that f is convex follows from algebraic manipulations: let
λ ∈ [0, 1] and z = λx+ (1− λ)y, so that y − z = λ(y − x) and x− z = (1− λ)(x− y). Then

f(y) ≥ f(z) + λf ′(z)(y − x) and f(x) ≥ f(z) + (1− λ)f ′(z)(x− y),

and multiplying the former by (1− λ) and the latter by λ and adding the two inequalities yields

λf(x)+(1−λ)f(y) ≥ λf(z)+(1−λ)f(z)+λ(1−λ)f ′(z)(y−x)+λ(1−λ)f ′(z)(x−y) = f(λx+(1−λ)y),

as desired. Conversely, let v = y − x in the quotient (B.3.2), so that q(t) = f(x+tv)−f(x)
t , which is

non-decreasing. If f is differentiable, we see that q(0) := limt↓0 q(t) = f ′(x)(y − x), and so

q(1) = f(y)− f(x) ≥ q(0) = f ′(x)(y − x)

as desired.
We may also give the standard second order characterization: if f : R→ R is twice differentiable

and f ′′(x) ≥ 0 for all x, then f is convex. To see this, note that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(tx+ (1− t)y)(x− y)2

for some t ∈ [0, 1] by Taylor’s theorem, so that f(y) ≥ f(x) + f ′(x)(y − x) for all x, y because
f ′′(tx + (1 − t)y) ≥ 0. As a consequence, we obtain inequality (B.3.3), which implies that f is
convex.

As convexity is a property that depends only on properties of functions on lines—one dimen-
sional projections—we can straightforwardly extend the preceding results to functions f : Rd → R.
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Indeed, noting that if h(t) = f(x + ty) then h′(0) = 〈∇f(x), y〉 and h′′(0) = y>∇2f(x)y, we have
that a differentiable function f : Rd → R is convex if and only if

f(y) ≥ f(x) +∇f(x)>(y − x) for all x, y,

while a twice differentabile function f : Rd → R is convex if and only if

∇2f(x) � 0 for all x.

Noting that nothing in the derivation that the quotient (B.3.2) was non-decreasing relied on f
being a function on R, we can see that a function f : Rd is convex if and only if it satisfies the
increasing slopes criterion: for all x ∈ dom f and any vector v, the quotient

t 7→ q(t) :=
f(x+ tv)− f(x)

t
(B.3.4)

is nondecreasing in t ≥ 0 (where we leave x, v implicit). An alternative version of the crite-
rion (B.3.4) is that if x ∈ dom f and v is any vector, if we define the one-dimensional convex
function h(t) = f(x+ tv) then for any s < t and ∆ > 0, we have

h(t+ ∆)− h(t)

∆
≥ h(t)− h(s)

t− s
≥ h(t)− h(s−∆)

t− (s−∆)
. (B.3.5)

The proof that either of the inequalities (B.3.5) is equivalent to convexity we leave as an exercise
(Q. C.1).

JCD Comment: Draw pictures of increasing slopes

We summarize each of these implications in a theorem for reference.

Proposition B.3.1 (Convexity). The following are all equivalent:

(i) The function f is convex.

(ii) The function f satisfies the criterion of increasing slopes (B.3.4).

If f is differentiable (respectively, twice differentiable), the following are also equivalent:

(iii) The function f : Rd → R satisfies

f(y) ≥ f(x) + 〈∇f(x), y − x〉 for all x, y.

(iv) The function f has positive semidefinite Hessian: ∇2f(x) � 0 for all x.

JCD Comment: Draw a picture and of strict convexity

A condition slightly stronger than convexity is strict convexity, which makes each of the in-
equalities in Proposition B.3.1 strict. We begin with the classical definition: a function f is strictly
convex if it is convex and

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

whenever λ ∈ (0, 1) and x 6= y ∈ dom f . These are convex functions, but always have strictly in-
creasing slopes—secants lie strictly above f . By tracing through the arguments leading to Propo-
sition B.3.1 (replace appropriate non-strict inequalities with strict inequalities), one obtains the
following corollary describing strictly convex functions.

451



Lexture Notes on Statistics and Information Theory John Duchi

Corollary B.3.2 (Strict convexity). The following are all equivalent:

(i) The function f is strictly convex.

(ii) The function f has strictly increasing slopes (B.3.4).

If f is differentiable (respectively, twice differentiable), the following are also equivalent:

(iii) The function f : Rd → R satisfies

f(y) > f(x) + 〈∇f(x), y − x〉 for all x 6= y.

(iv) The function f has positive definite Hessian: ∇2f(x) � 0 for all x.

B.3.2 Continuity properties of convex functions

We now consider a few continuity properties of convex functions and a few basic relationships of
the function f to its epigraph. First, we give a definition of the subgradient of a convex function.

Definition B.9. A vector g is a subgradient of f at a point x0 if for all x,

f(x) ≥ f(x0) + 〈g, x− x0〉. (B.3.6)

The subdifferential or subgradient set of f at x0 is

∂f(x0) := {g | f(x) ≥ f(x0) + 〈g, x− x0〉 for all x} .

See Figure B.2 for an illustration of the affine minorizing function given by the subgradient of a
convex function at a particular point.

(x0, f(x0))
f(x0) + 〈g, x− x0〉

f(x)

Figure B.2. The tangent (affine) function to the function f generated by a subgradient g at the
point x0.

Interestingly, convex functions have subgradients (at least, nearly everywhere). This is perhaps
intuitively obvious by viewing a function in conjunction with its epigraph epi f and noting that
epi f has supporting hyperplanes, but here we state a result that will have further use.
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Theorem B.3.3. Let f be convex. Then there is an affine function minorizing f . More precisely,
for any x0 ∈ relint dom f , there exists a vector g such that

f(x) ≥ f(x0) + 〈g, x− x0〉.

Proof If relint dom f = ∅, then it is clear that f is either identically +∞ or its domain is a
single point {x0}, in which case the constant function f(x0) minorizes f . Now, we assume that
int dom f 6= ∅, as we can simply always change basis to work in the affine hull of dom f .

We use Theorem B.1.12 on the existence of supporting hyperplanes to construct a subgradient.
Indeed, we note that (x0, f(x0)) ∈ bd epi f , as for any open set O we have that (x0, f(x0)) + O
contains points both inside and outside of epi f . Thus, Theorem B.1.12 guarantees the existence of
a vector v and a ∈ R, not both simultaneously zero, such that

〈v, x0〉+ af(x0) ≤ 〈v, x〉+ at for all (x, t) ∈ epi f. (B.3.7)

Inequality (B.3.7) implies that a ≥ 0, as for any x we may take t → +∞ while satisfying (x, t) ∈
epi f . Now we argue that a > 0 strictly. To see this, note that for suitably small δ > 0, we have
x = x0 − δv ∈ dom f . Then we find by inequality (B.3.7) that

〈v, x0〉+ af(x0) ≤ 〈v, x0〉 − δ ‖v‖2 + af(x0 − δv), or a [f(x0)− f(x0 − δv)] ≤ −δ ‖v‖2 .

So if v = 0, then Theorem B.1.12 already guarantees a 6= 0, while if v 6= 0, then ‖v‖2 > 0 and we
must have a 6= 0 and f(x0) 6= f(x0 − δv). As we showed already that a ≥ 0, we must have a > 0.
Then by setting t = f(x0) and dividing both sides of inequality (B.3.7) by a, we obtain

1

a
〈v, x0 − x〉+ f(x0) ≤ f(x) for all x ∈ dom f.

Setting g = −v/a gives the result of the theorem, as we have f(x) = +∞ for x 6∈ dom f .

Convex functions generally have quite nice behavior. Indeed, they enjoy some quite remarkable
continuity properties just by virtue of the defining convexity inequality (B.3.1). In particular, the
following theorem shows that convex functions are continuous on the relative interiors of their
domains. Even more, convex functions are Lipschitz continuous on any compact subsets contained
in the (relative) interior of their domains. (See Figure B.3 for an illustration of this fact.)

Theorem B.3.4. Let f : Rd → R be convex and C ⊂ relint dom f be compact. Then there exists
an L = L(C) ≥ 0 such that

|f(x)− f(x′)| ≤ L
∥∥x− x′∥∥ .

As an immediate consequence of Theorem B.3.4, we note that if f : Rd → R is convex and defined
everywhere on Rd, then it is continuous. Moreover, we also have that f : Rd → R is continuous
everywhere on the (relative) interior of its domain: let any x0 ∈ relint dom f . Then for small enough
ε > 0, the set cl({x0 + εB} ∩ dom f), where B = {x : ‖x‖2 ≤ 1}, is a closed and bounded—and
hence compact—set contained in the (relative) interior of dom f . Thus f is Lipschitz on this set,
which is a neighborhood of x0. In addition, if f : R → R, then f is continuous everywhere except
(possibly) at the endpoints of its domain.
Proof of Theorem B.3.4 To prove the theorem, we require a technical lemma.
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Figure B.3. Left: discontinuities in int dom f are impossible while maintaining convexity (Theo-
rem B.3.4). Right: At the edge of dom f , there may be points of discontinuity.

Lemma B.3.5. Let f : Rd → R be convex and suppose that there are x0, δ > 0, m, and M such
that

m ≤ f(x) ≤M for x ∈ B(x0, 2δ) := {x : ‖x− x0‖ < 2δ}.

Then f is Lipschitz on B(x0, δ), and moreover,

|f(y)− f(y′)| ≤ M −m
δ

∥∥y − y′∥∥ for y, y′ ∈ B(x0, δ).

Proof Let y, y′ ∈ B(x0, δ), and define y′′ = y′ + δ(y′ − y)/ ‖y′ − y‖ ∈ B(x0, 2δ). Then we can
write y′ as a convex combination of y and y′′, specifically,

y′ =
‖y′ − y‖

δ + ‖y′ − y‖
y′′ +

δ

δ + ‖y′ − y‖
y.

Thus we obtain by convexity

f(y′)− f(y) ≤ ‖y′ − y‖
δ + ‖y′ − y‖

f(y′′) +
δ

δ + ‖y′ − y‖
f(y)− f(y) =

‖y − y′‖
δ + ‖y − y′‖

[f(y′′)− f(y)]

≤ M −m
δ + ‖y − y′‖

∥∥y − y′∥∥ .
Here we have used the bounds on f assumed in the lemma. Swapping the assignments of y and y′

gives the same lower bound, thus giving the desired Lipschitz continuity.

With Lemma B.3.5 in place, we proceed to the proof proper. We assume without loss of
generality that dom f has an interior; otherwise we prove the theorem restricting ourselves to the
affine hull of dom f . The proof follows a standard compactification argument. Suppose that for
each x ∈ C, we could construct an open ball Bx = B(x, δx) with δx > 0 such that

|f(y)− f(y′)| ≤ Lx
∥∥y − y′∥∥ for y, y′ ∈ Bx. (B.3.8)

454



Lexture Notes on Statistics and Information Theory John Duchi

As the Bx cover the compact set C, we can extract a finite number of them, call them Bx1 , . . . , Bxk ,
covering C, and then within each (overlapping) ball f is maxk Lxk Lipschitz. As a consequence, we
find that

|f(y)− f(y′)| ≤ max
k

Lxk
∥∥y − y′∥∥

for any y, y′ ∈ C.
We thus must derive inequality (B.3.8), for which we use the boundedness Lemma B.3.5. We

must demonstrate that f is bounded in a neighborhood of each x ∈ C. To that end, fix x ∈
int dom f , and let the points x0, . . . , xd be affinely independent and such that

∆ := Conv{x0, . . . , xd} ⊂ dom f

and x ∈ int ∆; let δ > 0 be such that B(x, 2δ) ⊂ ∆. Then by Carathéodory’s theorem (Theo-
rem B.1.3) we may write any point y ∈ B(x, 2δ) as y =

∑d
i=0 λixi for

∑
i λi = 1 and λi ≥ 0, and

thus

f(y) ≤
d∑
i=0

λif(xi) ≤ max
i∈{0,...,d}

f(xi) =: M.

Moreover, Theorem B.3.3 implies that there is some affine h function minorizing f ; let h(x) =
a+ 〈v, x〉 denote this function. Then

m := inf
x∈C

f(x) ≥ inf
x∈C

h(x) = a+ inf
x∈C
〈v, x〉 > −∞

exists and is finite, so that in the ball B(x, 2δ) constructed above, we have f(y) ∈ [m,M ] as required
by Lemma B.3.5. This guarantees the existence of a ball Bx required by inequality (B.3.8).

f(x)

epi f

f(x)

Figure B.4. A closed—equivalently, lower semi-continuous—function. On the right is shown the
closed epigraph of the function.

Our final discussion of continuity properties of convex functions revolves around the most com-
mon and analytically convenient type of convex function, the so-called closed-convex functions.

Definition B.10. A function f is closed if its epigraph, epi f , is a closed set.
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Equivalently, a function is closed if it is lower semi-continuous, meaning that

lim inf
x→x0

f(x) ≥ f(x0) (B.3.9)

for all x0 and any sequence of points tending toward x0. See Figure B.4 for an example such
function and its associated epigraph.

Interestingly, in the one-dimensional case, closed convexity implies continuity. Indeed, we have
the following observation (compare Figures B.4 and B.3 previously):

Observation B.3.6. Let f : R → R be a closed convex function. Then f is continuous on its
domain, and for any x0 ∈ bd dom f , limx→x0 f(x) = f(x0) whether or not x0 ∈ dom f .

Proof By Theorem B.3.4, we need only consider the endpoints of the domain of f (the result
is obvious by Theorem B.3.4 if dom f = R); let x0 ∈ bd dom f . Let y ∈ dom f be an otherwise
arbitrary point, and define x = λy + (1− λ)x0. Then taking λ→ 0, we have

f(x) ≤ λf(y) + (1− λ)f(x0)→ f(x0),

so that lim supx→x0 f(x) ≤ f(x0). By the closedness assumption (B.3.9), we have lim infx→x0 f(x) ≥
f(x0), and continuity follows. Note that in this argument, if x0 6∈ dom f , then f(x0) = +∞ by
convention; for epi f to be closed we require that for each t < f(x0) = ∞, we may take a small
enough open interval U = (y, x0) for which f(x) > t for all x ∈ U .

In the full-dimensional case, we do not have quite the same continuity, though Theorem B.3.4
guarantees continuity on the (relative) interior of dom f .

An important characterization of convex functions is as the supremum of all affine functionals
(linear plus an offset) below them, which is one of the keys to duality relationships about functions
to come.

Theorem B.3.7. Let f be closed convex and let A be the collection of affine functions h satisfying
f(x) ≥ h(x) for all x. Then f(x) = suph∈A h(x).

Proof By Theorem B.1.13 that any closed convex set is the intersection of all the halfspaces
containing (even supporting) it, we can write epi f = ∩H∈HH, where H is the collection of closed
halfspaces H ⊃ epi f . We may write any such halfspace as

H = {(x, r) ∈ Rd × R | 〈a, x〉+ br ≤ c}

where (a, b) ∈ Rd × R is non-zero. As H ⊃ epi f , the particular nature of epigraphs (that is, that
if (x, t) ∈ epi f then (x, t + ∆) ∈ epi f for all ∆ > 0) means that b ≤ 0, and so for any b < 0 we
may divide through by b to rewrite H as H = {(x, r) | 〈a/b, x〉 + r ≥ c/b}, while if b = 0 then
H = {(x, r) | 〈a, x〉 ≤ c}. That is, it is no loss of generality to set

H1 := {Halfspaces {(x, r) | 〈a, x〉+ r ≥ c} containing epi f}
H0 := {Halfspaces {(x, r) | 〈a, x〉 ≥ c} containing epi f} ,

which (respectively) correspond to the non-vertical halfspaces containing epi f and the halfspaces
containing dom f ⊂ Rd. We have epi f =

⋂
H∈H1

H ∩
⋂
H∈H0

H.
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Identify the halfspaces H ∈ H0 or H1 with the associated triple (a, 0, c) or (a, 1, c) and abuse
notation to write (a, i, c) ∈ Hi for i ∈ {0, 1}. For any (a, 1, c) ∈ H1, the linear function

l(x) = c− 〈a, x〉 = inf{r | 〈a, x〉+ r ≥ c} satisfies 〈a, x〉+ l(x) ≥ c for all x,

and so necessarily l(x) ≤ f(x) for all x, while for the function h(x) = sup(a,1,c)∈H1
{c − 〈a, x〉} we

have
epih =

⋂
H∈H1

H.

Thus, if we can show that ⋂
H∈H1

H ∩
⋂

H∈H0

H =
⋂

H∈H1

H (B.3.10)

the proof will be complete.
To show the equality (B.3.10), take arbitrary vectors v0 = (a0, 0, c0) ∈ H0 and v1 = (a1, 1, c1) ∈

H1, and let H0 = {(x, r) | 〈a0, x〉 ≥ c0} and H1 = {(x, r) | 〈a1, x〉 + r ≥ c1} be the associated
halfspaces. Consider the conic-like vector

v(t) := (a1 + ta0, 1, c0 + tc0) for t ≥ 0

and associated halfspace H(t) := {(x, r) | 〈a1 + ta0, x〉+ r ≥ c1 + tc0}. Then as 〈a0, x〉 ≥ c0 if and
only if t〈a0, x〉 ≥ tc0 for all t ≥ 0, any point (x, r) ∈ H0 ∩H1 satisfies

〈a1 + ta0, x〉+ r ≥ c1 + tc0 for t ≥ 0,

that is, H(t) ∈ H1 and (x, r) ∈ ∩t≥0H(t). Additionally, taking t = 0 we see that H(0) = H1 and
so ∩t≥0H(t) ⊂ H1, while taking t ↑ ∞ we obtain that each (x, r) ∈ ∩t≥0H(t) satisfies 〈a0, x〉 ≥ c0.
That is, we have ⋂

t≥0

H(t) = H0 ∩H1,

while H(t) ∈ H1 for all t ≥ 0. This shows the equality (B.3.10).

JCD Comment: Show a picture of the above argument

In spite of the continuity of closed convex functions on R, closed convex functions on higher
dimensional spaces need not be continuous. Indeed, it is immediate (see Proposition B.3.9 to follow)
that f(x) := supα∈A{fα(x)} is closed convex whenever fα are all closed convex for any index set
A. We have the following failure of continuity.

Example B.3.8 (A discontinuous closed convex function): Define the function f : R2 → R
by

f(x) := sup

{
αx1 + βx2 |

1

2
α2 ≤ β

}
.

Then certainly f(0) = 0 and f is closed convex. If the supremum is attained then β = 1
2α

2

and so β ≥ 0 and

f(x) = sup
α

{
αx1 +

1

2
α2x2

}
=


0 if x = 0

− x21
2x2

if x2 < 0

+∞ otherwise.

But then along the path x2 = −1
2x

2
1, we always have f(x) = 1, while taking x1 → 0 gives

f(x) = 1 > 0 = f(0). 3
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B.3.3 Operations preserving convexity

We now turn to a description of a few simple operations on functions that preserve convexity.
First, we extend the intersection properties of convex sets to operations on convex functions. (See
Figure B.5 for an illustration of the proposition.)

Proposition B.3.9. Let {fα}α∈A be an arbitrary collection of convex functions indexed by A.
Then

f(x) := sup
α∈A

fα(x)

is convex. Moreover, if for each α ∈ A, the function fα is closed convex, f is closed convex.

Proof The proof is immediate once we consider the epigraph epi f . We have that

epi f =
⋂
α∈A

epi fα,

which is convex whenever epi fα is convex for all α and closed whenever epi fα is closed for all α
(recall Observation B.1.5).

f1(x)

f2(x)

f(x) = max{f1(x), f2(x)}

Figure B.5. The maximum of two convex functions is convex, as its epigraph is the intersection of
the two epigraphs.

Another immediate result is that composition of a convex function with an affine transformation
preserves convexity:

Proposition B.3.10. Let A ∈ Rd×n and b ∈ Rd, and let f : Rd → R be convex. Then the function
g(y) = f(Ay + b) is convex.

Partial minimization of convex functions and some related transformations preserve convexity
as well.
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Proposition B.3.11. Let A ∈ Rd×n, f : Rn → R be convex, and Y ⊂ Rd be convex. Then
g(x) = inf{f(y) | Ay = x, y ∈ Y } is convex. If Y is compact and f is closed convex, then g is
closed convex.

Proof Let x0, x1 ∈ Rn. If Ay = x0 has no solution in y ∈ Y , then g(x0) = +∞, and similarly
if Ay = x1 has no solutions then g(x1) = +∞, and we trivially have g(λx0 + (1 − λ)x1) ≤ +∞ in
either case for all λ ∈ (0, 1). Assuming that the sets {y ∈ Y | Ay = x0} and {y ∈ Y | Ay = x1}
are non-empty, let ε > 0 be arbitrary and y0, y1 satisfy Ayi = xi and that f(yi) ≤ g(xi) + ε. Then
yλ = λy0 + (1− λ)y1 satisfies Ayλ = λx0 + (1− λ)x1, and so

g(λx0 + (1− λ)x1) ≤ f(λy0 + (1− λ)y1) ≤ λf(y0) + (1− λ)f(y1) ≤ λg(x0) + (1− λ)g(x1) + ε

for all λ ∈ [0, 1]. Take ε→ 0.
For the lower semicontinuity (closed convexity) statement, let xn → x; we wish to show that

lim infn g(xn) ≥ g(x). If g(xn) = +∞ for all xn, then we trivially have the result. Otherwise,
assume g(xn) < ∞ for all n, let ε > 0 be arbitrary, and let yn ∈ Y satisfy Ayn = xn and
f(yn) ≤ g(xn) + ε. Then as Y is compact, yn has convergent subsequences; let y be any such limit.
We have Ay = x, and g(x) ≤ f(y) ≤ lim infn f(yn) ≤ lim infn g(xn) + ε. As ε > 0 was arbitrary, we
hav ethe result.

From the proposition we immediately see that if f(x, y) is jointly convex in x and y, then the
partially minimized function infy∈Y f(x, y) is convex whenever Y is a convex set.

Lastly, we consider the functional analogue of the perspective transform. Given a function
f : Rd → R, the perspective transform of f is defined as

pers(f)(x, t) :=

{
tf
(
x
t

)
if t > 0 and x

t ∈ dom f

+∞ otherwise.
(B.3.11)

In analogue with the perspective transform of a convex set, the perspective transform of a function
is (jointly) convex.

Proposition B.3.12. Let f : Rd → R be convex. Then pers(f) : Rd+1 → R is convex.

Proof The result follows if we can show that epi pers(f) is a convex set. With that in mind,
note that

Rd × R++ × R 3 (x, t, r) ∈ epi pers(f) if and only if f
(x
t

)
≤ r

t
.

Rewriting this, we have

epi pers(f) =
{

(x, t, r) ∈ Rd × R++ × R : f
(x
t

)
≤ r

t

}
=
{
t(x′, 1, r′) : x′ ∈ Rd, t ∈ R++, r

′ ∈ R, f(x′) ≤ r′
}

= {t(x, 1, r) : t > 0, (x, r) ∈ epi f} = R++ × {(x, 1, r) : (x, r) ∈ epi f}.

This is a convex cone.
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B.3.4 Smoothness properties, first-order developments for convex functions,
and subdifferentiability

In addition to their continuity properties, convex functions typically enjoy strong differentiability
properties. Some of these interact with the duality properties we present in the section C.2 to
follow. Our main goal will be to show how there exist (roughly) derivative-like objects for convex
functions, so that for some suitably nice object Df (x, v) we have

f(x+ tv) = f(x) +Df (x, v)t+ o(t) (B.3.12)

for t small and any v. In the case that f is differentiable, of course, this must coincide with the
usual derivative, so that Df (x, v) = 〈∇f(x), v〉. For convex functions, a directional derivative
always exists (even if f is non-differentiable), meaning that we can make sense of the first-order
development (B.3.12) in some generality.

As one prototypical result, we leverage Rademacher’s theorem on almost everywhere differen-
tiability of Lipschitz functions to show that convex functions are almost everywhere differentiable:

Theorem B.3.13 (Rademacher). Let U ⊂ Rd be open and f : U → Rk be Lipschitz continuous.
Then f is differentiable almost everywhere on U .

Proofs of this result are standard in measure-theoretic analysis texts; see, e.g., [83, Section 3.5]
or [171, Theorem 10.8(ii)]. As any convex function is locally Lipschitz on its domain (recall Theo-
rem B.3.4), we thus have the following result (where we assume that dom f has an interior).

Corollary B.3.14. Let f : Rd → R be convex. Then it is differentiable except on a set of Lebesgue
measure zero on its domain.

Other differentiability properties of convex functions are also of interest. We begin by consider-
ing directional differentiability properties, after which we expand to consider differentiability and
continuous differentiability of (convex) functions. To begin, recall that the directional derivative of
a function f in direction v at x is

f ′(x; v) := lim
t↓0

f(x+ tv)− f(x)

t
(B.3.13)

when this quantity exists. When f ′(x; v) exists for all directions v and is linear in v, we call the
function Gateaux differentiable. A (stronger in infinite dimensions) notion of differentiability is
Fréchet differentiability : f has Fréchet differential g at x if

f(y) = f(x) + 〈g, y − x〉+ o(‖y − x‖) (B.3.14)

as y → x, which is then uniform in the distance ‖y − x‖. It is immediate that if f is Fréchet
differentiable with derivative g then it is Gateaux differentiable with f ′(x; v) = 〈g, v〉. Conveniently,
in finite dimensions, these notions coincide with the standard gradient, and f ′(x; v) = 〈∇f(x), v〉,
whenever f is locally Lipschitzian.

Proposition B.3.15. Let f : Rd → R be Gateaux differentiable at x, that is, its directional
derivative f ′(x; v) is linear in v, and locally Lipschitz, so that there exists L <∞ such that |f(x)−
f(y)| ≤ L ‖x− y‖ for y near x. Then f is Fréchet differentiable with Fréchet differential

∇f(x) =

[
∂f(x)

∂xj

]d
j=1

,

and f ′(x; v) = 〈∇f(x), v〉 and ‖∇f(x)‖ ≤ L.
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Proof If f is Fréchet differentiable at x with differential g, then we immediately have

f(x+ tv)− f(x)

t
=
t〈g, v〉+ o(t)

t
→ 〈g, v〉

as t→ 0, so that it is Gateaux differentiable.
Conversely, suppose that f ′(x; v) = 〈g, v〉 for all v ∈ Rd for some g ∈ Rd. Assume for the sake

of contradiction that f is not Fréchet differentiable at x, so that

lim sup
‖∆‖↓0

f(x+ ∆)− f(x)− 〈g,∆〉
‖∆‖

= c > 0.

Take any sequence ∆n → 0 achieving this limit supremum, and let ∆n = εnvn for a sequence vn on
the sphere, that is, ‖vn‖ = 1, so εn = ‖∆n‖. Then by passing to a subsequence if necessary, we can
assume w.l.o.g. that vn → v with ‖v‖ = 1. Then

|f(x+ ∆n)− f(x)− 〈g,∆n〉|
εn

=
|f(x+ εnv + εn(vn − v))− f(x)− εn〈g, v〉 − εn〈g, vn − v〉|

εn

≤ |f(x+ εnv)− f(x)− εn〈g, v〉|
εn

+
Lεn ‖vn − v‖+ εn ‖g‖ ‖vn − v‖

εn
.

Both of these terms tend to zero, a contradiction, and so f is Fréchet differentiable at x, and its
Fréchet derivative is g. That Fréchet differentiability implies differentiability follows by noting that
the partial derivatives f ′(x; ej) = ∂f(x)

∂xj
for each coordinate j.

Finally, the Lipschitzian bound on ‖∇f(x)‖ follows by noting that

L ‖∆‖ ≥ |f(x+ ∆)− f(x)| = |〈∇f(x),∆〉|+ o(‖∆‖).

Taking ∆ = tv and t ↓ 0, this implies that L ‖v‖ ≥ 〈∇f(x), v〉 for all v, which is equivalent to
‖∇f(x)‖ ≤ L.

The main consequence of convexity that is important for us is that a convex function is direc-
tionally differentiable at every point in the interior of its domain, though the directional derivative
need not be linear:

Proposition B.3.16. Let f be convex and x ∈ int dom f . Then f ′(x; v) exists and the mapping
v 7→ f ′(x; v) is sublinear, convex, and globally Lipschitz.

Proof If x ∈ int dom f , then the criterion (B.3.4) of increasing slopes guarantees that f ′(x; v) =

limt↓0
f(x+tv)−f(x)

t exists for all x ∈ int dom f , as the quantity is monotone. To see that f ′(x; v) is
convex and sublinear in v, note that positive homogeneity is immediate, as we have 1

t (f(x+αtv)−
f(x)) = α

αt(f(x+ αtv)− f(x)) for all α > 0, and f ′(x; 0) = 0. That it is convex is straightforward
as well: for any u, v we have

f(x+ t(λu+ (1− λ)v))− f(x)

t
≤ λf(x+ tu)− f(x)

t
+ (1− λ)

f(x+ tv)− f(x)

t

and take t ↓ 0. For the global Lipschitz claim, note that f is already locally Lipschitz near
x ∈ int dom f (recall Theorem B.3.4), so that there exists some L < ∞ and ε > 0 such that for
all ‖v‖ = 1 and 0 ≤ t ≤ ε |f(x + tv) − f(x)| ≤ Lt, whence |f ′(x; v)| ≤ L and by homogeneity
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|f ′(x; v)| ≤ L ‖v‖ for all v.

An inspection of the proof shows that the result extends even to all of dom f if we allow f ′(x; v) =
+∞ whenever x + tv 6∈ dom f for all t > 0, though of course we lose that f ′(x; v) is finite-valued.
Then we have the following corollary, showing that f ′(x; v) provides a valid first-order development
of f in all directions from x (where we take ∞ · t =∞ whenever t > 0).

Corollary B.3.17. Let x ∈ dom f . Then

f(x+ tv) = f(x) + f ′(x; v)t+ o(t)

as t ↓ 0 and
f(x+ tv) ≥ f(x) + f ′(x; v)t for all t ≥ 0.

Proof The first part is immediate by definition of f ′(x; v) = limt↓0
f(x+tv)−f(x)

t . The second is
immediate from the criterion (B.3.4) of increasing slopes, as the limit in the directional deriva-

tive (B.3.13) becomes an infimum for convex functions: f ′(x; v) = inft>0
f(x+tv)−f(x)

t .

There are strong connections between subdifferentials and directional derivatives, and hence of
the local developments (B.3.12). The following result makes this clear.

Proposition B.3.18. Let f be convex and x ∈ relint dom f . Then

∂f(x) =
{
s | 〈s, v〉 ≤ f ′(x; v) for all v

}
6= ∅.

Proof For shorthand let S = {s | 〈s, v〉 ≤ f ′(x; v) all v} be the set on the right. If s ∈ S, then
the criterion (B.3.4) of increasing slopes guarantees that

〈s, v〉 ≤ f(x+ tv)− f(x)

t
for all v ∈ Rd, t > 0.

Recognizing that as v is allowed to vary over all of Rd and t > 0, then x + tv similarly describes
Rd, we see that this condition is completely equivalent to the definition (B.3.6) of the subgradient.

That ∂f(x) 6= ∅ is Theorem B.3.3.

We can also extend this to x ∈ dom f—not necessarily the interior—where we see that there is
no loss (even when f may be +∞ valued) to defining

∂f(x) :=
{
s | 〈s, v〉 ≤ f ′(x; v) for all v

}
. (B.3.15)

Notably, the directional derivative function v 7→ f ′(x; v) always exists for x ∈ dom f and is a
sublinear convex function, and thus ∂f(x) above is always a closed convex set whose support
function (recall (B.2.1)) is the closure of v 7→ f ′(x; v). While the subdifferential ∂f(x) is always a
compact convex set when x ∈ int dom f , even when it exists it may not be compact if x is on the
boundary of dom f . To see one important example of this, consider the indicator function

IC(x) :=

{
+∞ if x 6∈ C
0 if x ∈ C
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of a closed convex set C. For simplicity, let C = [a, b] be an interval. Then we have

∂IC(x) =


[0,∞] if x = b

{0} if a < x < b

[−∞, 0] if x = a.

Whether points ±∞ are included is a matter of convenience and whether we work with the extended
real line.

JCD Comment: Draw a picture of this

These representations points to a certain closure property of subgradients, namely, that the
subdifferential is closed under additions of the normal cone to the domain of f :

Lemma B.3.19. Let Ndom f (x) be the normal cone (Definition C.1) to dom f at the point x (where
Ndom f (x) = {0} for x ∈ int dom f and Ndom f (x) = ∅ for x 6∈ dom f). Then

∂f(x) = ∂f(x) +Ndom f (x).

In particular, if x is a boundary point x ∈ bd dom f of the domain of f , then either ∂f(x) = ∅ or
∂f(x) is unbounded.

Proof We only need concern ourselves with points x ∈ bd dom f , where the normal cone N =
Ndom f (x) is non-trivial. If ∂f(x) is empty, there is nothing to prove, so assume that ∂f(x) is
non-empty. Then the definition (B.3.15) of the subdifferential as ∂f(x) = {s | 〈s, u〉 ≤ f ′(x;u)}
allows us to prove the result. First, consider vectors u for which f ′(x;u) = +∞. Then certainly, for
any s ∈ ∂f(x), we have 〈s+ v, u〉 ≤ f ′(x;u) for all v ∈ N . If f ′(x;u) < ∞, then for small enough
t > 0 we necessarily have x+ tu ∈ dom f . In particular, the definition of the normal cone gives that
v ∈ N satisfies 0 ≥ 〈v, x+ tu− x〉 = t〈v, u〉, or that 〈v, u〉 ≤ 0. Thus 〈s+ v, u〉 ≤ 〈s, u〉 ≤ f ′(x;u),
and so s+ v ∈ ∂f(x) once again.

The claim about boundedness is immediate, because Ndom f is a cone.

A more compelling case for the importance of the subgradient set with respect to first-order
developments and differentiability properties of convex functions is the following:

JCD Comment: Add a picture of this as well.

Proposition B.3.20. Let f be convex and x ∈ int dom f . Then

f(y) = f(x) + sup
s∈∂f(x)

〈s, y − x〉+ o(‖y − x‖)

= f(x) + f ′(x; y − x) + o(‖y − x‖).

Proof That sups∈∂f(x)〈s, v〉 = f ′(x; v) is immediate by Theorem B.3.7 and Proposition B.2.1,
because f ′(x; v) is sublinear and closed convex in v when x ∈ int dom f . Certainly the right hand
sides are then equal.

We thus prove the equality f(y) = f(x)+f ′(x; y−x)+o(‖y − x‖), where the argument is similar
to that for Proposition B.3.15. Let yn → x be any sequence and let ∆n = yn−x, so that ‖∆‖ → 0;
as x ∈ int dom f , there exists a (local) Lipschitz constant L such that |f(x + ∆) − f(x)| ≤ L ‖∆‖
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for all small ∆. Similarly, because v 7→ f ′(x; v) is convex (even positively homogeneous and thus
sublinear), it has a Lipschitz constant, and we take this to be L as well. Now, write ∆n = εnvn
where ‖vn‖ = 1 and εn → 0, and moving to a subsequence if necessary let vn → v. Then we have

f(x+ ∆n)− f(x)− f ′(x; ∆n) = f(x+ εnv + εn(vn − v))− f(x)− f ′(x; εnv + εn(vn − v))

= f(x+ εnv)− f(x)− f ′(x; εnv)± 2Lεn ‖vn − v‖
= o(εn)

because ‖vn − v‖ → 0 and f(x + εnv) − f(x) = f ′(x; εn) + o(εn) by definition of the directional
derivative.

Note that convexity only played the role of establishing the local Lipschitz property of f in the
proof of Proposition B.3.20; any locally Lipschitz function with directional derivatives will enjoy a
similar first-order expansion.

As our final result on smoothness properties of convex functions, we connect subdifferentials to
differentiability properties of convex f . First, we give a lemma showing that the subdifferential set
∂f is outer semicontinuous.

Lemma B.3.21 (Closure of the graph of the subdifferential). Let f : Rd → R be closed convex.
Then the graph {(x, s) | x ∈ Rd, s ∈ ∂f(x)} of its subdifferential is closed. Equivalently, whenever
xn → x with sn ∈ ∂f(xn) and sn → s, f has non-empty subdifferential at x with s ∈ ∂f(x).

Proof We prove the second statement, whose equivalence to the first is definitional. Fix any
y ∈ Rd. Then f(y) ≥ f(xn) + 〈sn, y − xn〉, and because f is closed (i.e., lower semicontinuous),
we have lim inf f(xn) ≥ f(x). Let ε > 0 be arbitrary. Then for all large enough n, we have
f(xn) ≥ f(x)− ε, and similarly, ‖sn − s‖ ≤ ε, ‖xn − x‖ ≤ ε, and ‖y − xn‖ ≤ ‖y − x‖+ ε. Then

f(y) ≥ f(xn) + 〈sn, y − xn〉 ≥ f(x) + 〈s, y − xn〉 − ε− ‖s− sn‖ ‖y − xn‖
≥ f(x) + 〈s, y − x〉 − ε− ε ‖y − xn‖ − ‖s‖ ‖x− xn‖
≥ f(x) + 〈s, y − x〉 − ε− ε(1 + ε) ‖y − x‖ − ‖s‖ ε.

As ε was arbitrary we have f(y) ≥ f(x) + 〈s, y − x〉 as desired.

Given the somewhat technical Lemma B.3.21, we can show that if f is convex and differentiable
at a point, it is in fact continuously differentiable at the point.

Proposition B.3.22. Let f be convex and x ∈ int dom f . Then ∂f(x) is a singleton if and only if
f is differentiable at x. If additionally f is differentiable on an open set U , then f is continuously
differentiable on U .

Proof Because x ∈ int dom f , there exists L < ∞ such that f is L-Lipschitz near x by Theo-
rem B.3.4. Suppose that ∂f(x) = {s}. Then the directional derivative f ′(x; v) = 〈s, v〉 for all v,
and Proposition B.3.20 gives

f(y) = f(x) + 〈s, y − x〉+ o(‖y − x‖)

as y → x, that is, f is differentiable. Conversely, assume that f is differentiable at x. Then
taking any vector v, we immediately have f ′(x; v) = 〈∇f(x), v〉 and Proposition B.3.18 gives that
∂f(x) = {∇f(x)}.
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To see that f is in fact continuously differentiable on U , let x ∈ U and f be L-Lipschitz
on a compact set C ⊂ U containing x in its interior. Let xk ∈ C satisfy xk → x and let
sk = ∇f(xk) ∈ ∂f(xk). Then ‖sk‖ ≤ L, and each subsequence has a further convergent sub-
sequence. Lemma B.3.21 implies that any convergent subsequence sk(m) → s ∈ ∂f(x). But as
∂f(x) = {∇f(x)}, we have ∇f(xk(m))→ ∇f(x) and so ∇f(x) is continuous in x.

B.3.5 Calculus rules of subgradients

We close this section with a few calculus results on subdifferentials of of convex functions. These
calculus rules show that we may take the subdifferential plays a similar role to the gradient for
differentiable functions. Additionally, they allow us to take derivatives of various extremal functions.

Our first result shows that subdifferentials of sums are sums of subdifferentials, which relies
on both the representation of sublinear functions as support functions for convex sets and the
characterization of the subdifferential in terms of directional derivatives:

Proposition B.3.23. Let f and g be closed convex functions, and let x ∈ int dom f and g be
subdifferentiable at x, meaning that ∂g(x) 6= ∅. Then

∂(f + g)(x) = ∂f(x) + ∂g(x).

Proof By Proposition B.3.18, the set ∂f(x) is a compact convex set, and the general defi-
nition (B.3.15) of the subdifferential gives that ∂g(x) is closed convex. Let S1 = ∂f(x) and
S2 = ∂g(x). Then immediately S1 + S2 ⊂ ∂(f + g)(x), so that

S := ∂(f + g)(x) =
{
s | 〈s, v〉 ≤ f ′(x; v) + g′(x; v) for all v ∈ Rd

}
is non-empty. Because of the support function equality f ′(x; v) = σS1(v) and g′(x; v) = σS2(v),
Corollary B.2.5 gives

σS(v) = σS1(v) + σS2(v) = σS1+S2(v).

Thus (Corollary B.2.4) S1 + S2 = S.

Other situations that arise frequently are composition with affine mappings and taking maxima
or suprema of convex functions, so that finding a calculus for these is also important.

Corollary B.3.24. Let f : Rm → R be convex and for A ∈ Rm×d and b ∈ Rm, let g(x) = f(Ax+b).
Then

∂g(x) = AT∂f(Ax+ b).

Proof Using the directional derivative, we have g′(x; v) = f ′(Ax + b;Av) for all v ∈ Rd, and
applying Proposition B.2.6 gives that the latter is the support function of the convex compact set
AT∂f(Ax+ b).

It is also useful to be able to compute subdifferentials of maxima and suprema (recall Proposi-
tion B.3.9). Consider a collection {fα}α∈A of convex functions, and define

f(x) := sup
α∈A

fα(x). (B.3.16)
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The function f is certainly convex. For a given x let

A(x) := {α ∈ A | fα(x) = f(x)}

be the indices attaining the suprema, that is, the active index set (though this may be empty).
Then there is an “easy” direction:

Lemma B.3.25. With the notation above,

∂f(x) ⊃ cl Conv
{⋃

∂fα(x) | α ∈ A(x)
}

= cl Conv {g | g ∈ ∂fα(x) for some α ∈ A(x)} .

Proof Let α ∈ A(x) and g ∈ ∂fα(x). Then

f(y) ≥ fα(y) ≥ fα(x) + 〈g, y − x〉 = f(x) + 〈g, y − x〉.

Thus g ∈ ∂f(x), which as a closed convex set must thus include its closed convex hull.

A much more challenging argument is to show that the active index set A(x) exactly charac-
terizes the subdifferential of f at x; we simply state a typical result as a proposition.

Proposition B.3.26. Let A be a compact set (for some metric) and assume that for each x, the
mapping α 7→ fα(x) is upper semi-continuous. Then

∂f(x) = Conv
{⋃

∂fα(x) | α ∈ A(x)
}

= Conv {g | g ∈ ∂fα(x) for some α ∈ A(x)} .

For a proof, see [104, Theorem 4.4.2].

JCD Comment: Draw a picture of this

Finally, we revisit the partial minimization operation in Proposition B.3.11. In this case, we
require a bit more care when defining subdifferentials and subdifferentiability. For A ∈ Rn×m with
m ≥ n, where A has rank n (so that x 7→ Ax is surjective) and f : Rm → R, define the function

fA(x) = inf {f(y) | Ay = x} ,

which is convex. Define the set Y ?(x) := {y | Ay = x and fA(x) = f(y)} to be the set of y
attaining the infimum in the definition of fA, which may be empty. When it is not, however, we
can characterize the subdifferential of fA(x):

Proposition B.3.27. Let x ∈ Rn be a point for which Y ?(x) is non-empty for the function fA.
Then

∂fA(x) =
{
s | AT s ∈ ∂f(y)

}
for any y ∈ Y ?(x), and the set on the right is independent of the choice of y.

Proof A vector s is a subgradient of f at x if and only if

fA(x′) ≥ fA(x) + 〈s, x′ − x〉 for all x′ ∈ Rn,

which (as Ay = x for y ∈ Y ?(x)) is equivalent to

fA(x′) ≥ f(y) + 〈s, x′ −Ay〉 for all x′ ∈ Rn.
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Because A has full row rank, for any x′ ∈ Rn there exists y′ with Ay′ = x′; by definition of fA as
the infimum, the preceding display is thus equivalent to

f(y′) ≥ fA(Ay′) ≥ f(y) + 〈s,Ay′ −Ay〉 for all y′ ∈ Rm.

This holds if and only if AT s is a subgradient of f at y.
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Appendix C

Optimality, stability, and duality

The existence and continuity properties of minimizers of (convex) optimization problems play a
central role in much of statistical theory. They are especially essential in our understanding of loss
functions and the associated optimality properties. In our context, this is especially central for
problems of classification calibration or surrogate risk consistency, as in Chapters 13 and 14. This
appendix records several representative results along these lines, and also builds up the duality
theory associated with convex conjugates, frequently identified as Fenchel-Young duality.

Broadly, throughout this appendix, we shall consider the generic optimization problem

minimize f(x)
subject to x ∈ C (C.0.1)

where C is a closed convex set (we have not yet assumed convexity of f), Throughout (as in the
previous appendix) we assume that f is proper, so that f(x) > −∞ for each x, and that f(x) = +∞
if x 6∈ dom f .

The most basic question we might ask is when minimizers even exist in the problem (C.0.1).
The standard result in this vein is that if minimizers exist whenever C is compact and f is lower
semicontinuous (B.3.9), that is, its epigraph is closed, i.e., lim infx→x0 f(x) ≥ f(x0).

Proposition C.0.1. Let C be compact and f : Rd → R be lower semi-continuous (B.3.9) over C.
Then infx∈C f(x) > −∞ and the infimum is attained.

Proof Let f? = infx∈C f(x), where for now we allow the possibility that f? = −∞. Let xn ∈ C
be a sequence of points satisfying f(xn) → f?. Proceeding to a subseqeunce if necessary, we can
assume that xn → x? ∈ C by the compactness of C. Then lower semi-continuity guarantees that
f? = limn f(xn) ≥ f(x?) ≥ f?, and so f(x?) = f? and so necessarily f? > −∞.

When the domain C is not compact but only closed, alternative conditions are necessary to
guarantee the existence of minimizers. Perhaps the most frequent, and one especially useful with
convexity (as we shall see), is that f is coercive, meaning that

f(x)→∞ whenever ‖x‖ → ∞.

Proposition C.0.2. Let C be closed and f : Rd → R be lower semi-continuous over C and coercive.
Then infx∈C f(x) > −∞ and the infimum is attained.
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Proof Once again, let f? = infx∈C f(x) and let xn ∈ C satisfy f(xn) → f?. Certainly
xn must be a bounded sequence because f is coercive. Thus, it has a subsequent limit, and
w.l.o.g. we assume that xn → x? ∈ C by closedness. Lower semi-continuity guarantees that
f? ≥ lim infn f(xn) = f(x?) ≥ f?, giving the result.

Finally, we make a small remark norms and dual norms, as these will be important for the more
quantitative smoothness guarantees we provide. For a norm ‖·‖, the dual norm ‖·‖∗ has definition

‖y‖∗ := sup
x
{〈x, y〉 | ‖x‖ ≤ 1}.

This is a norm as it is positively homogeneous, ‖y‖∗ = 0 if and only if y = 0, and satisfies the
triangle inequality. A few brief examples follow, which we leave as exercises to the reader.

(i) The `2-norm ‖x‖2 =
√
〈x, x〉 is self-dual, so that its dual is ‖·‖2.

(ii) The `1 and `∞ norms are dual, that is, ‖x‖∞ = sup‖y‖1≤1〈x, y〉 and ‖y‖1 = sup‖x‖∞≤1〈x, y〉.

(iii) For all p ∈ [1,∞], the dual to the `p norm ‖x‖p = (
∑d

j=1 |xj |p)1/p is the `q norm with q = p
p−1 ,

that is, for the q ≥ 1 satisfying 1
p + 1

q = 1.

C.1 Optimality conditions and stability properties

With the basic results on existence of minimizers in place, we turn to convex optimization problems,
where f is closed convex and C is a closed convex set, and we assume essentially without loss of
generality that dom f ⊃ intC (as otherwise, we may replace C with C ∩ cl dom f). The benefits
of convexity appear immediately: f has no local but non-global minimizers, and moreover, if f is
strictly convex, then any minimizers (if they exist) are unique.

Proposition C.1.1. Let f be convex. Then if x is a local minimizer of f over C, it is a global
minimizer of f over C. If f is strictly convex, then x is unique.

Proof To say that x is a local minimizer of f over C is to say that f(x) ≤ f(x′) for all x′ ∈ C
with ‖x′ − x‖ ≤ ε for some ε > 0. Now, consider y ∈ C. By taking λ > 0 small enough, we have
both (1− λ)x+ λy ∈ C and ‖(1− λ)x+ λy − x‖ ≤ ε, and so

f(x) ≤ f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y),

which rearranged yields f(y) ≥ f(x). If f is additionally strictly convex (recall Corollary B.3.2),
then the preceding inequality is strict whenver y 6= x.

C.1.1 Subgradient characterizations for optimality

First-order stationary conditions are sufficient for global optimality in convex problems. We can
say more once we consider subgradients:

Observation C.1.2. Let f be convex and subdifferentiable at x. Then x minimizes f if and only
if 0 ∈ ∂f(x).
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Proof If 0 ∈ ∂f(x), then f(y) ≥ f(x) + 〈0, y − x〉 = f(x) for all y. Conversely, if x minimizes f ,
then we have f(y) ≥ f(x) for all y, and in particular, 0 ∈ ∂f(x).

Things become a bit more complicated when we consider the constraints in the problem (C.0.1),
so that the point x may be restricted. In this case, it is important and useful to consider the normal
cone to the set C, which is (essentially) the collection of vectors pointing out of C.

Definition C.1. Let C be a closed convex set. The normal cone to C at the point x ∈ C is the
collection of vectors

NC(x) := {v | 〈v, y − x〉 ≤ 0 for all y ∈ C} .

So NC(x) is the collection of vectors making an obtuse angle with any direction into the set C from

x.
JCD Comment: Draw a picture, and also, put this earlier in the discussion of convex
sets.

It is clear that NC(x) is indeed a cone: if v ∈ NC(x), then certainly tv ∈ NC(x) for all t ≥ 0.
It is closed convex, being the intersection of halfspaces. Moreover, if x ∈ intC, then we have
NC(x) = {0}, and additionally, we can connect the supporting hyperplanes of C to its normal
cones: Theorem B.1.12 gives the following corollary.

Corollary C.1.3. Let C be closed convex. Then for any x ∈ bd(C), the normal cone NC(x) is
non-trivial and consists of the collection of supporting hyperplanes to C at x.

By a bit of subgradient calculus, we can then write optimality conditions involving the normal
cones to C. If C is a closed convex set, the convex indicator function IC(x) has subdifferentials

∂IC(x) =


{0} if x ∈ intC

NC(x) if x ∈ bd(C)

∅ otherwise.

The only case requiring justification is the boundary case; for this, we note that w ∈ NC(x) if and
only if 〈w, y − x〉 ≤ 0 for all y ∈ C, which in turn occurs if and only if IC(y) ≥ IC(x) + 〈w, y − x〉
for all y.

The subdifferential calculation for IC(x) yields the following general optimality characterization
for problem (C.0.1).

Proposition C.1.4. In the problem (C.0.1), let x ∈ int dom f . Then x minimizes f over C if and
only if

0 ∈ ∂f(x) +NC(x). (C.1.1)

Proof The minimimization problem (C.0.1) is equivalent to the problem

minimize
x

f(x) + IC(x).

As x ∈ int dom f , f has nonempty compact convex subdifferential ∂f(x), and so ∂(f + IC)(x) =
∂f(x) + ∂IC(x) = ∂f(x) +NC(x) by Proposition B.3.23. Apply Observation C.1.2.

Several equivalent versions of Proposition C.1.4 are possible. The first is that

−∂f(x) ∩NC(x) 6= ∅,
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that is, there is a subgradient vector g ∈ ∂f(x) such that −g ∈ NC(x), so that −g points outside the

set C. JCD Comment: Draw a picture

Another variant, frequently used, is to write Proposition C.1.4 as that x solves problem (C.0.1)
if and only if there exists g ∈ ∂f(x) such that

〈g, y − x〉 ≥ 0 for all y ∈ C. (C.1.2)

Indeed, taking g ∈ ∂f(x) to be the element satisfying −g ∈ NC(x), we immediately see that 〈−g, y−
x〉 ≤ 0 for all y ∈ C by definition of the normal cone, which is (C.1.2). JCD Comment: Use picture above

C.1.2 Stability properties of minimizers

The characterizations (C.1.1) and (C.1.2) of optimality for convex optimization problems allow us
to develop some stability properties of the minimizers of convex problems. These, in turn, will
relate to smoothness properties of various dual functions (as we explore in the sequel), which again
become important in the study of consistent losses. Here, we collect a few of the typical results.
Typical results in this vein exhibit a few properties: that solutions are “stable,” meaning that small
tilts of the function f do not change solutions significantly, or that the function f exhibits various
strong growth properties.

For our starting point, we begin by consider strongly convex functions, where a function is
λ-strongly convex with respect to the norm ‖·‖ if for all t ∈ [0, 1] and x, y ∈ dom f ,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− λ

2
t(1− t) ‖x− y‖2 . (C.1.3)

The definition (C.1.3) makes strict convexity quantitative in a fairly precise way, and has several
equivalent characterizations.

Proposition C.1.5 (Equivalent characterizations of strong convexity). Let f be a convex function,
subdifferentiable on its domain. Then the following are equivalent.

(i) f is λ-strongly convex (Eq. (C.1.3)).

(ii) For all y ∈ Rd and g ∈ ∂f(x),

f(y) ≥ f(x) + 〈g, y − x〉+
λ

2
‖x− y‖2 .

(iii) For all x, y ∈ dom f and gx ∈ ∂f(x) and gy ∈ ∂f(y),

〈gx − gy, x− y〉 ≥ λ ‖x− y‖2 .

Proof Let us prove that (ii) if and only if (iii). Let gx ∈ ∂f(x) and gy ∈ ∂f(y) and assume (ii)
holds. Then

f(y) ≥ f(x) + 〈gx, y − x〉+
λ

2
‖y − x‖2

f(x) ≥ f(y) + 〈gy, x− y〉+
λ

2
‖x− y‖2

471



Lexture Notes on Statistics and Information Theory John Duchi

and adding the equations we obtain

0 ≥ 〈gx − gy, y − x〉+ λ ‖x− y‖2 .

Rearranging gives part (iii). Conversely, assume (iii), and for t ∈ [0, 1] let xt = (1 − t)x + ty and
define h(t) = f(x(t)). Then h is convex and hence almost everywhere differentiable (and locally
Lipschitz), so that h(1) = h(0) +

∫ 1
0 h
′(t)dt. Noting that

h′(t) = 〈gt, y − x〉 for some gt ∈ ∂f(xt)

(recall the subgradient characterization of Proposition B.3.18), we have

h′(t) = 〈gt, y − x〉 = 〈gt − gx, y − x〉+ 〈gx, y − x〉 =
1

t
〈gt − gx, (1− t)x+ ty − x〉+ 〈gx, y − x〉

and so as h(1) = f(y) and h(0) = f(x),

f(y) = h(0) +

∫ 1

0

〈gt − gx, (1− t)x+ ty − x〉
t

dt+ 〈gx, y − x〉

≥ f(x) +

∫ 1

0

λ ‖(1− t)x+ ty − x‖2

t
dt+ 〈gx, y − x〉

= f(x) + λ ‖x− y‖2
∫ 1

0
tdt+ 〈gx, y − x〉 = f(x) + 〈gx, y − x〉+

λ

2
‖y − x‖2 .

That (ii) implies (i) is relatively straightforward: we have

f(y) ≥ f(tx+ (1− t)y) + t〈gt, y − x〉+
λ

2
t2 ‖x− y‖2

f(x) ≥ f(tx+ (1− t)y) + (1− t)〈gt, x− y〉+
λ

2
(1− t)2 ‖x− y‖2

for any gt ∈ ∂f(tx + (1 − t)y). Multiply the first inequality by (1 − t) and the second by t, then
add them to obtain

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y) +
λ

2

[
(1− t)t2 + t(1− t)2

]
‖x− y‖2 ,

and note that (1 − t)t2 + t(1 − t)2 = t(1 − t). Finally, let (i) hold, and which is equivalent to the
condition that

f((1− t)x+ ty)− f(x)

t
+
λ

2
(1− t) ‖x− y‖2 ≤ f(y)− f(x)

for t ∈ (0, 1). Taking t ↓ 0 gives f ′(x; y−x) + λ
2 ‖x− y‖

2 ≤ f(y)− f(x), and because f ′(x; y−x) =
sups∈∂f(x)〈s, y − x〉 we obtain (ii).

As a first example application of strong convexity, consider minimizers of the tilted functions

fu(x) := f(x)− 〈u, x〉

as u varies. First, note that minimizers necessarily exist: the function fu(x) → ∞ whenever
‖x‖ → ∞ by condition (ii) in Proposition C.1.5, and so we can restrict to minimizing fu over
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compacta. Moreover, the minimizers xu := argminx fu(x) are unique, as the functions fu are
strongly (and hence strictly) convex. However, we can say more. Indeed, let C be any closed
convex set and let

xu = argmin
x∈C

fu(x). (C.1.4)

We claim the following:

Proposition C.1.6. Let f be λ-strongly convex with respect to the norm ‖·‖ and subdifferentiable
on C. Then the mapping u 7→ xu is 1

λ -Lipschitz continuous with respect to the dual norm ‖·‖∗, that
is, ‖xu − xv‖ ≤ 1

λ ‖u− v‖∗.

Proof We use the optimality condition (C.1.2). We have ∂fu(x) = ∂f(x)− u, and thus for any
u, v we have both

〈gu − u, y − xu〉 ≥ 0 and 〈gv − v, y − xv〉 ≥ 0

for some gu ∈ ∂f(xu) and gv ∈ ∂f(xv) for all y ∈ C. Set y = xv in the first inequality and y = xu
in the second and add them to obtain

〈gu − gv + v − u, xv − xu〉 ≥ 0 or 〈v − u, xv − xu〉 ≥ 〈gv − gu, xv − xu〉.

By strong convexity the last term satisfies 〈gv − gu, xv − xu〉 ≥ λ ‖xu − xv‖2. By definition of the
dual norm, ‖v − u‖∗ ‖xv − xu‖ ≥ 〈v − u, xv − xu〉, so ‖u− v‖∗ ‖xv − xu‖ ≥ λ ‖xu − xv‖2, which is
the desired result.

JCD Comment: Figure for the preceding lemma.

There are alternative versions of strong convexity, typically given the name uniform convexity
in the convex analysis literature, which allow generalizations and similar quantitative stability
properties. In analogy with the strong convexity condition (C.1.3), we say that f is (λ, κ)-uniformly
convex, where κ ≥ 2, over C if it is closed and for all t ∈ [0, 1] and x, y ∈ C,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− λ

2
t(1− t) ‖x− y‖κ

[
(1− t)κ−1 + tκ−1

]
. (C.1.5)

Notably the κ = 2 case is simply the familiar strong convexity.
JCD Comment: Give lemmas and propositions but leave as exercises, filling this out.

JCD Comment: Add some material on strict convexity implying a bit of growth around
a neighborhood, and stability properties of strongly convex functions.

The weakest version of such strong convexity properties is strict convexity, for which a careful
reading of the proof of Proposition C.1.5 (replace all λ with 0 and inequalities with strict inequal-
ities) gives the following characterization of equivalent definitions of strict convexity (recall also
Corollary B.3.2).

Corollary C.1.7. Let f be a convex function subdifferentiable on C. The following are equivalent.

(i) f is strictly convex on C.

(ii) For all x ∈ C, y 6= x, and g ∈ ∂f(x),

f(y) > f(x) + 〈g, y − x〉.
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(iii) For all x, y ∈ C and gx ∈ ∂f(x) and gy ∈ ∂f(y),

〈gx − gy, x− y〉 > 0.

Using Corollary C.1.7, we can then obtain certain smoothness properties of the tilted minimizers
xu of the minimization (C.1.4). We begin with a lemma that guarantees growth of convex functions
over their first-order approximations.

Lemma C.1.8. Let f be convex and subdifferentiable on the closed convex set C, and for any fixed
g ∈ ∂f(x0) define the Bregman divergence

D(x, x0) := f(x)− f(x0)− 〈g, x− x0〉.

Then for all 0 ≤ ε ≤ ε′, δ(ε) := inf{D(x, x0) | x ∈ C, ‖x− x0‖ ≥ ε} is attained, nonnegative, and
δ(ε′) ≥ ε′

ε δ(ε).

Proof Fix x ∈ C. Letting h(t) = D(x0 + t(x − x0), x0), h is convex in t ≥ 0, locally Lipschitz,
and satisfies h(0) = inft h(t) = 0, so we can write h(t) = h(0) +

∫ t
0 h
′(s; 1)ds. Additionally,

s 7→ h′(s; 1) ≥ 0 is nondecreasing by the increasing slopes criterion (B.3.4).
For all ε > 0, then, we may restrict infimum in the definition of δ(ε) to those x ∈ C satisfying

‖x− x0‖ = ε, a compact set, so that the infimum is attained at some xε ∈ C with ‖xε − x0‖ = ε.
Now, let ε′ > ε, and xε′ achieve the infimum in δ(ε). Then setting x′ = ε

ε′ (xε′ − x0) + x0 (implying

xε′ = ε′

ε (x′ − x0) + x0), we have ‖x′ − x0‖ = ε and so D(x′, x0) ≥ D(xε, x0) = δ(ε). Set h(t) =
D(x0 + t(x′ − x0), x0). Rewriting and using the first-order convexity condition,

δ(ε′) = D(xε′ , x0) = D

(
ε′

ε
(x′ − x0) + x0, x0

)
= h

(
ε′

ε

)
≥ h(1) +

[
ε′

ε
− 1

]
h′(1; 1)

= D(x′, x0) +

[
ε′

ε
− 1

]
h′(1; 1).

A minor variant of the criterion of increasing slopes (B.3.4) and that h(0) = 0 then gives h′(1; 1) =

limt↓0
h(1+t)−h(1)

t ≥ h(1)−h(0)
1 = h(1) = D(x′, x0), so we have

δ(ε′) = D(xε′ , x0) ≥ D(x′, x0) +

[
ε′

ε
− 1

]
D(x′, x0) =

ε′

ε
D(x′, x0) ≥ ε′

ε
δ(ε)

as desired.

Whenever f is strictly convex, because the infimum in δ(ε) is attained in Lemma C.1.8, we have
the following guarantee.

Lemma C.1.9. Let the conditions of Lemma C.1.8 hold and additionally let f be strictly convex.
Then δ(ε) > 0 for all ε > 0.

Combining these results yields the following non-quantitative version of Proposition C.1.6:

Proposition C.1.10. Let f be strictly convex and subdifferentiable on the closed convex set C,
and assume that the minimum x0 = argminx∈C f(x) is attained. Then the mapping u 7→ xu is
continuous in a neighborhood of u = 0.
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Proof We show first that xu is continuous at u = 0. By Lemmas C.1.8 and C.1.9, we see that
for x ∈ C we have

f(x) ≥ f(x0) + 〈g, x− x0〉+ δ(‖x− x0‖) ≥ f(x0) + δ(‖x− x0‖),

where g ∈ ∂f(x0) satisfies 〈g, x− x0〉 ≥ 0 for all x ∈ C by the optimality condition (C.1.2). Now,

pick ε > 0, so that if ‖x− x0‖ > ε we have δ(‖x− x0‖) ≥ ‖x− x0‖ δ(ε)ε by Lemma C.1.8. Then if

u satisfies ‖u‖ < δ(ε)
ε , we have

f(x)− 〈u, x〉 = f(x)− 〈u, x− x0〉 − 〈u, x0〉
≥ f(x0)− 〈u, x0〉+ δ(‖x− x0‖)− 〈u, x− x0〉
≥ f(x0)− 〈u, x0〉+ δ(‖x− x0‖)− 〈u, x− x0〉
≥ f(x0)− 〈u, x0〉+ δ(‖x− x0‖)− ‖u‖ ‖x− x0‖

> f(x0)− 〈u, x0〉+
δ(ε)

ε
‖x− x0‖ −

δ(ε)

ε
‖x− x0‖ = f(x0)− 〈u, x0〉.

Thus any minimizer xu of f(x)−〈u, x〉 over x ∈ C must satisfy ‖xu − x0‖ ≤ ε, and strict convexity
guarantees its uniqueness.

The argument that u 7→ xu is continuous in a neighborhood of zero is completely similar once
we recognize that for the divergence Df (x, x0) := f(x) − 〈g, x − x0〉 − f(x0) (where g ∈ ∂f(x0) is
fixed), we have Df = Dfu for fu(x) = f(x)− 〈u, x〉 and xu is near x0 for u small.

C.2 Conjugacy and duality properties

Attached to any function is its convex conjugate, sometimes called the Fenchel or Fenchel-Legendre
conjugate function, defined by

f∗(s) := sup
x
{〈s, x〉 − f(x)} . (C.2.1)

For any f , the conjugate f∗ is a closed convex function, as it is the supremum of linear functions.
This function helps to exibit a duality for convex functions similar to those for convex sets, which
we can describe as the intersection of all halfspaces containing them (recall Theorem B.1.13 and
the equalities (B.1.3)–(B.1.4)).

JCD Comment: Draw a picture of the conjugate

The conjugate function is the largest gap between the linear functional x 7→ 〈s, x〉 and the
function f itself. The remarkable property of such conjugates is that their biconjugates describe
the function f itself, or at least the largest closed convex function below f . To make this a bit
more precise, we state a theorem, and then connect to so-called convex closures of functions.

Theorem C.2.1. Let f be closed convex and f∗ be its conjugate (C.2.1). Then

f∗∗(x) = f(x) for all x.

Proof By definition, we have

f∗∗(x) = sup
s
{〈x, s〉 − f∗(s)} ,
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and we always have 〈x, s〉−f∗(s) ≤ f(x) by definition of f∗(s) = supx{〈s, x〉−f(x)}. So immediately
we see that f∗∗(x) ≤ f(x).

We essentially show that the linear functions hs(x) := 〈x, s〉 − f∗(s) describe (enough) of
the global linear underestimators of f so that f(x) = sups hs(x), allowing us to apply Theo-
rem B.3.7. Indeed, let l(x) = 〈s, x〉 + b be any global underestimator of f . Then we must have
b ≤ f(x)− 〈s, x〉 for all x, that is, b ≤ infx{f(x)− 〈s, x〉} = − supx{〈s, x〉 − f(x)} = −f∗(s), that
is, l(x) ≤ 〈s, x〉 − f∗(s) = hs(x). Apply Theorem B.3.7.

We may visualize f∗∗ as pulling a string up below a function f , yielding the largest closed
convex underestimator of f . (While this is in fact a rigorous statement, we shall not prove it here.)

C.2.1 Gradient dualities and the Fenchel-Young inequality

It is immediate from the definition that for any pair s, x we have the Fenchel-Young inequality

〈s, x〉 ≤ f∗(s) + f(x). (C.2.2)

Even more, combining Theorem C.2.1 with this observation, we can exhibit a duality between
subgradients of f and f∗ with this inequality.

Proposition C.2.2. Let f be closed convex. Then

〈s, x〉 = f∗(s) + f(x) if and only if s ∈ ∂f(x) if and only if x ∈ ∂f∗(s).

Proof If 〈s, x〉 = f∗(s) + f(x), then −f(x) + 〈s, x〉 = f∗(s) ≥ 〈s, y〉 − f(y) for all y, and re-
arranging, we have f(y) ≥ f(x) + 〈s, y − x〉, that is, s ∈ ∂f(x). Conversely, if s ∈ ∂f(x) then
0 ∈ ∂f(x)− s, so that x minimizes f(x)− 〈s, x〉, or equivalently, x maximizes 〈s, x〉 − f(x) and so
〈s, x〉 − f(x) = supx{〈s, x〉 − f(x)} as desired. The final statement is immediate from a parallel
argument and the duality in Theorem C.2.1.

Writing Proposition C.2.2 differently, we see that ∂f and ∂f∗ are inverses of one another. That
is, as set-valued mappings, where

(∂f)−1(s) := {x | s ∈ ∂f(x)},

we have the following corollary.

Corollary C.2.3. Let f and f∗ be subdifferentiable. Then

∂f∗ = (∂f)−1 and ∂f = (∂f∗)−1

and
∂f∗(s) = argmax

x
{〈s, x〉 − f(x)} and ∂f(x) = argmax

s
{〈s, x〉 − f∗(s)} .

Notably, if f and f∗ are differentiable, then ∇f = (∇f∗)−1.

Additionally, we see that the domains and images of ∂f and ∂f∗ are also related, which guar-
antees convexity properties of their images as well.
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Corollary C.2.4. Let f be closed convex. Then

dom ∂f = Im ∂f∗ and dom ∂f∗ = Im ∂f.

Proof Let x ∈ dom ∂f , so that ∂f(x) is non-empty. Then s ∈ ∂f(x) implies that 〈s, x〉 =
f(x) + f∗(s) and x ∈ ∂f∗(s) by Proposition C.2.2. Similarly, if x ∈ Im ∂f∗, then there is some s
for which x ∈ ∂f∗(s) and so 〈s, x〉 = f(x) + f∗(s) and s ∈ ∂f(x).

We can use the identification between the domains of ∂f and the images of ∂f∗ to give a few
additional characterizations of the domains of convex functions and their conjugates; the domain
of f∗ is intimately tied with the growth properties of f , and conversely by the relationship f = f∗∗

when f is closed convex. As one example of how we can make this identification, note that if f∗

is defined everywhere, that is, dom f∗ = Rd, then similarly dom ∂f∗ = Rd, and so in particular the
(sub)gradients of f must cover all of Rd. Even more, as we shall see, this implies certain growth
conditions on f .

To make this more rigorous, we require functions capturing the asymptotic growth of f . To that
end, we present the following proposition, which has the benefit of defining the recession function
(essentially, an asymptotic derivative) of f .

Proposition C.2.5. Let f be a closed convex function and f∗ is convex conjugate. Then for any
x ∈ dom f , we may define

f ′∞(v) := sup
t>0

f(x+ tv)− f(x)

t
= lim

t→∞

f(x+ tv)− f(x)

t
(C.2.3)

independently of x, and moreover,
f ′∞(v) = σdom f∗(v)

where σdom f∗ is the support function (B.2.1) of dom f∗.

Proof That for any fixed x ∈ dom f the limit exists and is equal to the supremum follows
because of the criterion of increasing slopes (B.3.4), making the equality with the supremum im-
mediate. That f ′∞(v) is independent of x will follow once we show the second equality claimed in
the proposition, to which we now turn.

Recall that

dom f∗ =

{
s | sup

x
{〈s, x〉 − f(x)} <∞

}
and f(x) = sup

s
{〈s, x〉 − f∗(s)}

by conjugate duality, as f is closed convex (Theorem C.2.1). Fix x ∈ dom f . Then for any
s ∈ dom f∗, we evidently have

f(x+ tv)− f(x)

t
≥ 〈s, x+ tv〉 − f∗(s)− f(x)

t
→ 〈s, v〉

as t ↑ ∞. Taking a supremum over s ∈ dom f∗ gives that f ′∞(v) ≥ σdom f∗(v). For the opposite
direction, note that

f(x+ tv)− f(x)

t
=

1

t

[
sup

s∈dom f∗
{〈s, x+ tv〉 − f∗(s)} − sup

s∈dom f∗
{〈s, x〉 − f∗(s)}

]
≤ 1

t
sup

s∈dom f∗
{〈s, x+ tv〉 − f∗(s)− (〈s, x〉 − f∗(s))} =

1

t
sup

s∈dom f∗
t〈s, v〉.
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Thus f ′∞(v) ≤ σdom f∗(v), and we have the result.

It is particularly interesting to understand the conditions under which dom f∗ = Rd, that is,
f∗ is finite everywhere, and relatedly, under which the function x 7→ f(x)− 〈s, x〉 has a minimizer.
Recall that f : Rd → R is coercive if f(x) → ∞ whenever ‖x‖ → ∞, so that if f is closed convex,
then the tilted function f(·) − 〈s, ·〉 has a minimizer if and only if it is coercive. We call f super-
coercive if f(x)/ ‖x‖ → ∞ whenever ‖x‖ → ∞, so that f grows more than linearly. These concepts
are central to the existence of minimizers. A priori, any function with compact domain is super-
coercive, because f(x) = +∞ for x 6∈ dom f . For convex functions, we can relate such coercivity
ideas to the recession function f ′∞ associated with f as expression (C.2.3) defines. Particularly
important are those f satisfying

f ′∞(v) = +∞ for all v 6= 0,

a class Rockafellar [153] calls copositive functions, as these exhibit superlinear growth on all rays
toward infinity. We can relate this condition to the domains of f∗ as well: using Proposition B.2.7,
Proposition C.2.5 gives

Corollary C.2.6. Let f : Rd → R be closed convex. Then s ∈ dom f∗ if and only if 〈s, v〉 ≤ f ′∞(v)
for all v 6= 0, and s ∈ int dom f∗ if and only if 〈s, v〉 < f ′∞(v) for all v 6= 0. In particular,

(i) If f ′∞(v) > 0 for all v 6= 0, then 0 ∈ int dom f∗ and f has a minimizer. A sufficient condition
for this is that f be coercive.

(ii) We have f ′∞(v) = +∞ for all v 6= 0 if and only if

dom f∗ = Rd.

A sufficient condition for this is that f be super-coercive.

Proof Combine Propositions B.2.7 and C.2.5: for part (i), note that if f ′∞(v) > 0 for all v 6= 0,
then 0 ∈ int dom f∗, and so f∗ has a non-trivial subdifferential ∂f∗(0) at 0; letting x ∈ ∂f∗(0) we
have x ∈ argmin f . To see that coercivity is sufficient, note that if f(x)→∞ whenever ‖x‖ → ∞,
the criterion of increasing slopes (B.3.4) gives f ′∞(v) > 0 for all v 6= 0. Part (ii) is similarly imme-
diate.

C.2.2 Smoothness and strict convexity of conjugates

The dualities in derivative mappings extend to various smoothness dualities, which can be quite
useful as well. These types of results build from the stability properties of solution mappings, as
in those for tilted minimizers (C.1.4) in Propositions C.1.6 and C.1.10. They also relate different
smoothness properties of f and f∗, as well as their domains of definition, to the existence and
continuity of minimizers of f(x)− 〈s, x〉.

When we assume that f has quantitative strong convexity or smoothness properties, we can
give similar quantitative guarantees for the smoothness and strong convexity of f∗:
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Proposition C.2.7. Let f : Rd → R be λ-strongly convex with respect to the norm ‖·‖ (see
Eq. (C.1.3)) on its domain. Then dom f∗ = Rd and ∇f∗ is 1

λ -Lipschitz continuous with respect to
the dual norm ‖·‖∗, that is,

‖∇f∗(u)−∇f∗(v)‖ ≤ 1

λ
‖u− v‖∗

for all u, v. Conversely, let f : Rd → R be convex with L-Lipschitz gradient with respect to ‖·‖ on Rd.
Then f∗ is 1

L -strongly convex with respect to the dual norm ‖·‖∗ on convex subsets C ⊂ dom ∂f∗,
and in particular,

〈∇f(x)−∇f(y), x− y〉 ≥ 1

L
‖∇f(x)−∇f(y)‖2∗ . (C.2.4)

Proof For the first claim, let C = dom f . Then Proposition C.1.6 shows that if x1 = argminx{f(x)−
〈s1, x〉} and x2 = argminx{f(x) − 〈s2, x〉} (which exist and are necessarily unique), we have
‖x1 − x2‖ ≤ 1

λ ‖s1 − s2‖∗. Then Proposition C.2.2 shows that xi ∈ ∂f∗(si) for i = 1, 2, and
hence ∂f∗(si) is necessarily single-valued and (1/λ)-Lipschitz continuous.

The converse is a bit trickier. Let x and y be arbitrary and sx = ∇f(x) and sy = ∇f(y); we
prove inequality (C.2.4), known as co-coercivity. By the L-Lipschitz continuity of ∇f , we have

f(y) = f(x) +

∫ 1

0
〈∇f(x+ t(y − x)), y − x〉dt

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0
〈∇f(x+ t(y − x))−∇f(x), y − x〉dt

≤ f(x) + 〈sx, y − x〉+

∫ 1

0
Lt ‖y − x‖2 dt = f(x) + 〈sx, y − x〉+

L

2
‖y − x‖2 ,

which is valid for any x, y. Note that f(x)− 〈sx, x〉 = −f∗(sx), so that rearranging we have

f∗(sx) ≤ 〈sx, y〉 − f(y) +
L

2
‖y − x‖2 = 〈s, y〉 − f(y) + 〈sx − s, y〉+

L

2
‖y − x‖2

≤ f∗(s) + 〈sx − s, y〉+
L

2
‖y − x‖2 ,

valid for any vector s and any y. We may in particular take an infimum over y on the right hand
side, where

inf
y
〈sx − s, y〉+

L

2
‖y − x‖2 = inf

y
〈sx − s, y − x〉+

L

2
‖y − x‖2 + 〈sx − s, x〉

(?)
= inf

t

{
t ‖sx − s‖∗ +

Lt2

2

}
+ 〈sx − s, x〉

= − 1

2L
‖sx − s‖2∗ + 〈sx − s, x〉,

where equality (?) follows by definition of the dual norm and we identify t = ‖y − x‖. Thus

f∗(sx) + 〈x, s− sx〉+
1

2L
‖s− sx‖2∗ ≤ f

∗(s)

for all s. As x ∈ ∂f∗(sx), Proposition C.1.5(ii) gives the strong convexity result. The rest is alge-
braic manipulations with sy = ∇f(y) and an application of Proposition C.1.5(iii).

There are more qualitative versions of Proposition C.2.7 that allow us to give a duality between
strict convexity and continuous differentiability of f . Here, we give one typical result.
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Proposition C.2.8. Let f : Rd → R be strictly convex and closed. Then int dom f∗ 6= ∅ and
f∗ is continuously differentiable on int dom f∗. Conversely, let f : Rd → R be differentiable on
Ω := int dom f . Then f∗ is strictly convex on each convex C ⊂ ∇f(Ω).

These results should be roughly expected becaues of the duality that ∇f = (∇f∗)−1 and that
∂f∗(s) = argminx{〈s, x〉 − f(x)}, because strict convexity guarantees uniqueness of minimizers
(Proposition C.1.1) so that ∂f∗ should be a singleton.
Proof To see that int dom f∗ is non-empty, we use the identification f ′∞(v) = σdom f∗(v) in
Proposition C.2.5 and the interior identification in Proposition B.2.7. Because f is strictly convex,
for any x ∈ dom f we have

0 <
f(x− tv)− f(x)

t
+
f(x+ td)− f(x)

t
for t > 0,

and taking t→∞ gives 0 < f ′∞(−v) + f ′∞(v). Proposition B.2.7 then shows that int dom f∗ 6= ∅.
For the claim that f∗ is continuously differentiable, take s ∈ int dom f∗, and suppose for the

sake of contradiction that ∂f∗(s) has distinct points x1, x2. Then Corollary C.2.3 gives that x1

and x2 both minimize f(x) − 〈s, x〉 over x. But Proposition C.1.1 guarantees x1 = x2, so that
∂f∗(s) = {∇f∗(s)} is a singleton, and hence f∗ is continuous differentiable at s (Proposition B.3.22).

For the converse claim, let C be a convex set as stated. Suppose for the sake of contradiction
that f∗ is not strictly convex on C, so that there are distinct points s1, s2 ∈ C for which f∗ is affine
on the line segment [s1, s2] = {ts1 + (1− t)s2 | t ∈ [0, 1]}. As C ⊂ ∇f(Ω) is convex, the midpoint
s = 1

2(s1 + s2) ∈ C and there exists x satisfying ∇f(x) = s, or x ∈ ∂f∗(s). Then because f∗ is
assumed affine on [s1, s2], we have f∗(s) = 1

2f
∗(s1) + 1

2f
∗(s2) and 〈s, x〉 = 1

2〈s1 + s2, x〉, so

0 = f(x) + f∗(s)− 〈s, x〉

=
1

2
[(f(x) + f∗(s1)− 〈s1, x〉) + (f(x) + f∗(s2)− 〈s2, x〉)] .

Each of the terms in parenthesis is 0 if and only if si ∈ ∂f(x), but by assumption ∂f(x) = {∇f(x)}
is a singleton, and we must have s1 = s2.

JCD Comment: Better transition

We close this section by investigating particularly nice classes of functions f , where f and its
conjugate f∗ are strictly convex and smooth. These results are central to the various conjugate
linkage dualities we explore in Chapter 11.3. We therefore make the following definition:

Definition C.2. Let f : Rd → R be closed convex. Then f is of Legendre type if

(i) int dom f 6= ∅

(ii) f is continuously differentiable on int dom f

(iii) f is strictly convex

(iv) f satisfies the gradient boundary conditions

‖∇f(x)‖ → ∞ as x→ bd dom f or ‖x‖ → ∞. (C.2.5)
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Thus, at the boundaries of their domains or as their argument tends off to infinity, functions of
Legendre type have slopes tending to∞. This does not guarantee that f(x)→∞ as x→ bd dom f ,
though it does provide guarantees of regularity that the next theorem highlights.

Theorem C.2.9. Let f be a convex function of Legendre type (Def. C.2). Then f∗ is strictly
convex, continuously differentiable, and dom f∗ = Rd.

The theorem implies a number of results on continuity of minimizers and tilted minimiz-
ers (C.1.4), clarifying some of our earlier results. For example, we have the following corollary.

Corollary C.2.10. Let f : Rd → R be a convex function of Legendre type. Then the tilted
minimizer

xu := argmin{f(x)− 〈u, x〉}

exists for all u, is continuous in u and unique, and xu ∈ int dom f .

We turn to the proof of the theorem.
Proof of Theorem C.2.9 We an intermediate lemma, whose proof we defer.

Lemma C.2.11. Let f : Rd → R be closed convex and satisfy the gradient boundary condition that
‖sn‖ → ∞ for any sequence xn → bd dom f and sn ∈ ∂f(xn). Then

f ′∞(v) =∞ for all v 6= 0

if and only if
‖sn‖ → ∞ whenever ‖xn‖ → ∞ and sn ∈ ∂f(xn).

The theorem follows straightforwardly from Lemma C.2.11. By the boundary conditions (C.2.5)
associated with f , we have f ′∞(v) = ∞ for all v 6= 0 (Lemma C.2.11). Because the support
function of dom f∗ satisfies σdom f∗ = f ′∞ (Proposition C.2.5), we see that dom f∗ = Rd as
dom f∗ = {s | 〈s, v〉 ≤ σdom f∗(v) for all v} (e.g., Proposition B.2.7 or Corollary B.2.2). With
this, f∗ is continuously differentiable and strictly convex on its domain (Proposition C.2.8).

Proof of Lemma C.2.11 As dom f∗ = Rd if and only if f ′∞(v) = ∞ for all v 6= 0 (Corol-
lary C.2.6), it suffices to show the result that int dom f∗ 6= Rd if and only if there exists an
unbounded sequence xn with sn ∈ ∂f(xn) and for which sn is convergent.

Let us begin with the unbounded sequence xn for which sn → s ∈ Rd; assume for the sake
of contradiction that s ∈ int dom f∗. Because sn ∈ ∂f(xn), we have xn ∈ ∂f∗(sn) by Propo-
sition C.2.2. The assumption that s ∈ int dom f∗ means that there exists an ε > 0 such that
s + εB ⊂ int dom f∗ and f∗ is Lipschitz on s + εB (Theorem B.3.4). But then ∂f∗(s + εB) is
bounded, and xn ∈ ∂f∗(sn) ⊂ ∂f∗(s+ εB) for large enough n, contradicting that ‖xn‖ → ∞, and
so s 6∈ int dom f∗ and int dom f∗ 6= Rd.

Now let us assume that int dom f∗ 6= Rd. Let s ∈ bd dom f∗. Then either ∂f∗(s) = ∅ or
∂f∗(s) is unbounded (Lemma B.3.19). If ∂f∗(s) = ∅, take sn → s with sn ∈ relint dom f∗, and
let xn ∈ ∂f∗(sn). We show that xn must be unbounded. If xn is bounded, then by passing to
a subsequence if necessary we may assume xn → x, and the outer semicontinuity of the subdif-
ferential (Lemma B.3.21) gives x ∈ ∂f∗(s), contradicting that ∂f∗(s) = ∅. Thus we must have
xn unbounded, which is thus the desired unbounded sequence. On the other hand, if ∂f∗(s) is
unbounded, we can simply take xn ∈ ∂f∗(s) with s ∈ ∂f(xn) for each n, which is the desired
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convergent sequence.

As a last application of these ideas, in some cases we wish to allow constraints on the functions
f to be minimized, returning to the original convex optimization problem (C.0.1) with f a function
of Legendre type and C a closed convex set. We then have the following corollary.

Corollary C.2.12. Let f be of Legendre type (Definition C.2) and C ⊂ Rd a closed convex set
with int dom f ∩ C 6= ∅. Define fC(x) = f(x) + IC(x). Then

(i) f∗C is continuously differentiable,

(ii) dom f∗C = Rd, and

(iii) the constrained tilted minimizers

xu = argmin
x∈C

{〈u, x〉 − f(x)}

are unique, continuous in u, belong to int dom f , and satisfy

xu = ∇f∗(u− v) and ∇f(xu) = −v

for some vector v ∈ NC(xu).

Proof The function fC := f+IC is closed convex. To show that dom f∗C = Rd, we can equivalently
show that (fC)′∞(v) =∞ for all non-zero v. Because f is Legendre-type, Lemma C.2.11 guarantees
that if x ∈ dom f ∩ C, then

(fC)′∞(v) = lim
t↑∞

f(x+ tv) + IC(x+ tv)− f(x)

t
≥ lim

t↑∞

f(x+ tv)− f(x)

t
= f ′∞(v) =∞.

So dom f∗C = Rd, and thus xu argminx∈C{f(x)− 〈u, x〉} = ∇f∗C(u) exists and is unique and contin-
uous, as f is strictly convex.

By the standard subgradient conditions for optimality, the vector xu is characterized by

0 ∈ ∇f(xu)− u+NC(xu),

and so xu ∈ int dom f (as otherwise ‖∇f(xu)‖ = +∞ by Definition C.2) and

xu = ∇f∗(u− v)

for some vector v ∈ NC(xu).

JCD Comment: Now do the particular case that we define fC = f + IC where C is
an affine space. Then we should still have dom f∗ = Rd, and ∇f∗C exists, and should get
some good dualities. Work it out!

JCD Comment: More smoothness dualities, and write an exercise? Perhaps uniform
convexity versions and strict convexity versions.

a. Closed convex function as a supremum of affine functions minorizing it

b. Fenchel Conjugate functions f∗

c. Fenchel biconjugate
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Further reading

There are a variety of references on the topic, beginning with the foundational book by Rockafellar
[153], which initiated the study of convex functions and optimization in earnest. Since then, a
variety of authors have written (perhaps more easily approachable) books on convex functions,
optimization, and their related calculus. Hiriart-Urruty and Lemaréchal [104] have written two
volumes explaining in great detail finite-dimensional convex analysis, and provide a treatment of
some first-order algorithms for solving convex problems. Borwein and Lewis [33] and Luenberger
[133] give general treatments that include infinite-dimensional convex analysis, and Bertsekas [27]
gives a variety of theoretical results on duality and optimization theory.

There are, of course, books that combine theoretical treatment with questions of convex mod-
eling and procedures for solving convex optimization problems (problems for which the objective
and constraint sets are all convex). Boyd and Vandenberghe [35] gives a very readable treatment
for those who wish to use convex optimization techniques and modeling, as well as the basic results
in convex analytic background and duality theory. Ben-Tal and Nemirovski [23], as well as Ne-
mirovski’s various lecture notes, give a theory of the tractability of computing solutions to convex
optimization problems as well as methods for solving them.

C.3 Exercises

Exercise C.1: Show that the alternative increasing slopes condition (B.3.5) is equivalent to
convexity of f .

Exercise C.2: Do the uniform convexity version of Proposition C.1.5.

Exercise C.3: Do the uniform convexity version of Proposition C.1.6.

483



Bibliography

[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66:671–687, 2003.

[2] S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed bandit prob-
lem. In Proceedings of the Twenty Fifth Annual Conference on Computational Learning
Theory, 2012.

[3] N. Ailon and B. Chazelle. The fast Johnson-Lindenstrauss transform and approximate nearest
neighbors. SIAM Journal on Computing, 39(1):302–322, 2009.

[4] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution
from another. Journal of the Royal Statistical Society, Series B, 28:131–142, 1966.

[5] S. Amari and H. Nagaoka. Methods of Information Geometry, volume 191 of Translations of
Mathematical Monographs. American Mathematical Society, 2000.

[6] A. Andoni, M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing
using stable distributions. In T. Darrell, P. Indyk, and G. Shakhnarovich, editors, Nearest
Neighbor Methods in Learning and Vision: Theory and Practice. MIT Press, 2006.

[7] E. Arias-Castro, E. Candés, and M. Davenport. On the fundamental limits of adaptive
sensing. IEEE Transactions on Information Theory, 59(1):472–481, 2013.

[8] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta algorithm
and applications. Theory of Computing, 8(1):121–164, 2012.

[9] S. Artstein, K. Ball, F. Barthe, and A. Naor. Solution of Shannon’s problem on the mono-
tonicity of entropy. Journal of the American Mathematical Society, 17(4):975–982, 2004.

[10] P. Assouad. Deux remarques sur l’estimation. Comptes Rendus des Séances de l’Académie
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