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Chapter 1

Introduction and setting

This set of lecture notes explores some of the (many) connections relating information theory,
statistics, computation, and learning. Signal processing, machine learning, and statistics all revolve
around extracting useful information from signals and data. In signal processing and information
theory, a central question is how to best design signals—and the channels over which they are
transmitted—to maximally communicate and store information, and to allow the most effective
decoding. In machine learning and statistics, by contrast, it is often the case that there is a
fixed data distribution that nature provides, and it is the learner’s or statistician’s goal to recover
information about this (unknown) distribution.

A central aspect of information theory is the discovery of fundamental results: results that
demonstrate that certain procedures are optimal. That is, information theoretic tools allow a
characterization of the attainable results in a variety of communication and statistical settings. As
we explore in these notes in the context of statistical, inferential, and machine learning tasks, this
allows us to develop procedures whose optimality we can certify—mno better procedure is possible.
Such results are useful for a myriad of reasons; we would like to avoid making bad decisions or false
inferences, we may realize a task is impossible, and we can explicitly calculate the amount of data
necessary for solving different statistical problems.

1.1 Information theory

Information theory is a broad field, but focuses on several main questions: what is information,
how much information content do various signals and data hold, and how much information can be
reliably transmitted over a channel. We will vastly oversimplify information theory into two main
questions with corresponding chains of tasks.

1. How much information does a signal contain?
2. How much information can a noisy channel reliably transmit?
In this context, we provide two main high-level examples, one for each of these tasks.

Example 1.1.1 (Source coding): The source coding, or data compression problem, is to
take information from a source, compress it, decompress it, and recover the original message.
Graphically, we have

Source — Compressor — Decompressor — Receiver
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The question, then, is how to design a compressor (encoder) and decompressor (decoder) that
uses the fewest number of bits to describe a source (or a message) while preserving all the
information, in the sense that the receiver receives the correct message with high probability.
This fewest number of bits is then the information content of the source (signal). <

Example 1.1.2: The channel coding, or data transmission problem, is the same as the source
coding problem of Example 1.1.1, except that between the compressor and decompressor is a
source of noise, a channel. In this case, the graphical representation is

Source — Compressor — Channel — Decompressor — Receiver

Here the question is the maximum number of bits that may be sent per each channel use in
the sense that the receiver may reconstruct the desired message with low probability of error.
Because the channel introduces noise, we require some redundancy, and information theory
studies the exact amount of redundancy and number of bits that must be sent to allow such
reconstruction. <

1.2 Moving to statistics

Statistics and machine learning can—broadly—be studied with the same views in mind. Broadly,
statistics and machine learning can be thought of as (perhaps shoehorned into) source coding and
a channel coding problems.

In the analogy with source coding, we observe a sequence of data points X1, ..., X, drawn from
some (unknown) distribution P on a space X. For example, we might be observing species that
biologists collect. Then the analogue of source coding is to construct a model (often a generative
model) that encodes the data using relatively few bits: that is,

X100 Xn p _
Source (P) “ 5" Compressor — Decompressor — Receiver.

Here, we estimate P—an empirical version of the distribution P that is easier to describe than
the original signal Xi,...,X,, with the hope that we learn information about the generating
distribution P, or at least describe it efficiently.

In our analogy with channel coding, we make a connection with estimation and inference.
Roughly, the major problem in statistics we consider is as follows: there exists some unknown
function f on a space X that we wish to estimate, and we are able to observe a noisy version
of f(X;) for a series of X; drawn from a distribution P. Recalling the graphical description of
Example 1.1.2, we now have a channel P(Y | f(X)) that gives us noisy observations of f(X) for
each X;, but we may (generally) now longer choose the encoder/compressor. That is, we have

X1),ee0n f(Xn I 7
FOX)f (X) Vi,

Source (P) Ko Compressor Channel P(Y | f(X)) ~=3" Decompressor.

The estimation—decompression—problem is to either estimate f, or, in some cases, to estimate
other aspects of the source probability distribution P. In general, in statistics, we do not have
any choice in the design of the compressor f that transforms the original signal X, ..., X,,, which
makes it somewhat different from traditional ideas in information theory. In some cases that we
explore later—such as experimental design, randomized controlled trials, reinforcement learning
and bandits (and associated exploration/exploitation tradeoffs)—we are also able to influence the
compression part of the above scheme.
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Example 1.2.1: A classical example of the statistical paradigm in this lens is the usual linear
regression problem. Here the data X; belong to R?, and the compression function f(z) =6z
for some vector # € R, Then the channel is often of the form

Yi=0"Xi+ &
—~— ~~

signal noise

where ¢; i N(0,0?) are independent mean zero normal perturbations. The goal is, given a
sequence of pairs (X;,Y;), to recover the true € in the linear model.

In active learning or active sensing scenarios, also known as (sequential) experimental design,
we may choose the sequence X; so as to better explore properties of 8. Later in the course we
will investigate whether it is possible to improve estimation by these strategies. As one concrete
idea, if we allow infinite power, which in this context corresponds to letting || X;|| — oco—
choosing very “large” vectors x;—then the signal of 8" X; should swamp any noise and make
estimation easier. <

For the remainder of the class, we explore these ideas in substantially more detail.

1.3 A remark about measure theory

As this book focuses on a number of fundamental questions in statistics, machine learning, and
information theory, fully general statements of the results often require measure theory. Thus,
formulae such as [ f(z)dP(z) or [ f(z)du(z) appear. While knowledge of measure theory is cer-
tainly useful and may help appreciate the results, it is completely inessential to developing the
intuition and, I hope, understanding the proofs and main results. Indeed, the best strategy (for
a reader unfamiliar with measure theory) is to simply replace every instance of a formula such as
du(z) with dr. The most frequent cases we encounter will be the following: we wish to compute
the expectation of a function f of random variable X following distribution P, that is, Ep[f(X)].
Normally, we would write Ep[f(X)] = [ f(z)dP(z), or sometimes Ep[f(X)] = [ f(x)p(z)du(z),
saying that “P has density p with respect to the underlying measure u.” Instead, one may simply
(and intuitively) assume that = really has density p over the reals, and instead of computing the
integral

Epf /f )dP(z) or Ep|f /f (z),

assume we may write
— [ s@ie)ds

Nothing will be lost.

1.4 Outline and chapter discussion

We divide the lecture notes into four distinct parts, each of course interacting with the others,
but it is possible to read each as a reasonably self-contained unit. The lecture notes begin with
a revew (Chapter 2) that introduces the basic information-theoretic quantities that we discuss:
mutual information, entropy, and divergence measures. It is required reading for all the chapters
that follow.

10



Lexture Notes on Statistics and Information Theory John Duchi

Part I of the notes covers what I term “stability” based results. At a high level, this means that
we ask what can be gained by considering situations where individual observations in a sequence
of random variables X1i,..., X, have little effect on various functions of the sequence. We begin
in Chapter 4 with basic concentration inequalities, discussing how sums and related quantities can
converge quickly; while this material is essential for the remainder of the lectures, it does not depend
on particular information-theoretic techniques. We discuss some heuristic applications to problems
in statistical learning—empirical risk minimization—in this section of the notes. We provide a
treatment of more advanced ideas in Chapter 6, including some approaches to concentration via
entropy methods. We then turn in Chapter 5 carefully investigate generalization and convergence
guarantees—arguing that functions of a sample X1, ..., X,, are representative of the full population
P from which the sample is drawn—based on controlling different information-theoretic quantities.
In this context, we develop PAC-Bayesian bounds, and we also use the same framework to present
tools to control generalization and convergence in interactive data analyses. These types of analyses
reflect modern statistics, where one performs some type of data exploration before committing to a
fuller analysis, but which breaks classical statistical approaches, because the analysis now depends
on the sample. Finally, we provide a chapter (Chapter 7) on disclosure limitation and privacy
techniques, all of which repose on different notions of stability in distribution.

Part II studies fundamental limits, using information-theoretic techniques to derive lower bounds
on the possible rates of convergence for various estimation, learning, and other statistical problems.

Part III revisits all of our information theoretic notions from Chapter 2, but instead of sim-
ply giving definitions and a few consequences, provides operational interpretations of the different
information-theoretic quantities, such as entropy. Of course this includes Shannon’s original results
on the relationship between coding and entropy (Chapter 2.4.1), but we also provide an interpreta-
tion of entropy and information as measures of uncertainty in statistical experiments and statistical
learning, which is a perspective typically missing from information-theoretic treatments of entropy
(Chapters TBD). We also relate these ideas to game-playing and maximum likelihood estimation.
Finally, we relate generic divergence measures to questions of optimality and consistency in statisti-
cal and machine learning problems, which allows us to delineate when (at least in asymptotic senses)
it is possible to computationally efficiently learn good predictors and design good experiments.

11



Chapter 2

An information theory review

In this first introductory chapter, we discuss and review many of the basic concepts of information
theory in effort to introduce them to readers unfamiliar with the tools. Our presentation is relatively
brisk, as our main goal is to get to the meat of the chapters on applications of the inequalities and
tools we develop, but these provide the starting point for everything in the sequel. One of the
main uses of information theory is to prove what, in an information theorist’s lexicon, are known
as converse results: fundamental limits that guarantee no procedure can improve over a particular
benchmark or baseline. We will give the first of these here to preview more of what is to come,
as these fundamental limits form one of the core connections between statistics and information
theory. The tools of information theory, in addition to their mathematical elegance, also come
with strong operational interpretations: they give quite precise answers and explanations for a
variety of real engineering and statistical phenomena. We will touch on one of these here (the
connection between source coding, or lossless compression, and the Shannon entropy), and much
of the remainder of the book will explore more.

2.1 Basics of Information Theory

In this section, we review the basic definitions in information theory, including (Shannon) entropy,
KL-divergence, mutual information, and their conditional versions. Before beginning, I must make
an apology to any information theorist reading these notes: any time we use a log, it will always
be base-e. This is more convenient for our analyses, and it also (later) makes taking derivatives
much nicer.

In this first section, we will assume that all distributions are discrete; this makes the quantities
somewhat easier to manipulate and allows us to completely avoid any complicated measure-theoretic
quantities. In Section 2.2 of this note, we show how to extend the important definitions (for our
purposes)—those of KL-divergence and mutual information—to general distributions, where basic
ideas such as entropy no longer make sense. However, even in this general setting, we will see we
essentially lose no generality by assuming all variables are discrete.

2.1.1 Definitions

Here, we provide the basic definitions of entropy, information, and divergence, assuming the random
variables of interest are discrete or have densities with respect to Lebesgue measure.

12
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Entropy: We begin with a central concept in information theory: the entropy. Let P be a distri-
bution on a finite (or countable) set X', and let p denote the probability mass function associated
with P. That is, if X is a random variable distributed according to P, then P(X = x) = p(x). The
entropy of X (or of P) is defined as

Zp ) log p(=

Because p(z) < 1 for all z, it is clear that this quantity is positive. We will show later that if X
is finite, the maximum entropy distribution on X is the uniform distribution, setting p(z) = 1/|X|
for all , which has entropy log(|X]).

Later in the class, we provide a number of operational interpretations of the entropy. The
most common interpretation—which forms the beginning of Shannon’s classical information the-
ory [158]—is via the source-coding theorem. We present Shannon’s source coding theorem in
Section 2.4.1, where we show that if we wish to encode a random variable X, distributed according
to P, with a k-ary string (i.e. each entry of the string takes on one of k values), then the minimal
expected length of the encoding is given by H(X) = — > p(x)log;, p(z). Moreover, this is achiev-
able (to within a length of at most 1 symbol) by using Huffman codes (among many other types of
codes). As an example of this interpretation, we may consider encoding a random variable X with
equi-probable distribution on m items, which has H(X) = log(m). In base-2, this makes sense: we
simply assign an integer to each item and encode each integer with the natural (binary) integer
encoding of length [logm].

We can also define the conditional entropy, which is the amount of information left in a random
variable after observing another. In particular, we define

HX|Y=y)=-)Y pla|ylogp(z|y) and H(X|Y)= Zp H(X|Y =y),

T

where p(x | y) is the p.m.f. of X given that Y = y.
Let us now provide a few examples of the entropy of various discrete random variables

Example 2.1.1 (Uniform random variables): As we noted earlier, if a random variable X is
uniform on a set of size m, then H(X) = logm. <

Example 2.1.2 (Bernoulli random variables): Let ha(p) = —plogp— (1 —p)log(1—p) denote
the binary entropy, which is the entropy of a Bernoulli(p) random variable. <

Example 2.1.3 (Geometric random variables): A random variable X is Geometric(p), for
some p € [0,1], if it is supported on {1,2,...}, and P(X = k) = (1 — p)*!p; this is the
probability distribution of the number X of Bernoulli(p) trials until a single success. The
entropy of such a random variable is

o 0
H(X) == (1-p)"'pl(k — 1)log(1 — p) + logp] = = (1 p)*p[klog(1 — p) + logp].
k=1 k=0
As Yok =1 and L1 = a 1a)2 =>2°  ka*~1 we have

= —p
H(X) = —plog(1—p Zk p)* —plogp- Y (1 —p)* = ——1log(1 —p) — (1 - p) logp.
k=1 =
As p | 0, we see that H(X) 1 co0. <

13
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Example 2.1.4 (A random variable with infinite entropy): While most “reasonable” discrete
random variables have finite entropy, it is possible to construct distributions with infinite
entropy. Indeed, let X have p.m.f. on {2,3,...} defined by

A — 1
k) = here A™' =) ——— < oo,
PR) = FogZ Ve z::klong >

the last sum finite as [, xlog oz de < oo if and only if @ > 1: for a = 1, we have [ “Ogt =
loglog x, while for o > 1, we have

4 log )= = (1 - a)

dx zlog® x

so that feoo tlolga At = 3 To see that the entropy is infinite, note that

1
e(l—a

X):AzlogA—I—logk—i—Qloglogk_AZ log k

——a— — (=00,
klog? k klog” k

k>2 k>2

where C' is a numerical constant. <

KL-divergence: Now we define two additional quantities, which are actually much more funda-
mental than entropy: they can always be defined for any distributions and any random variables,
as they measure distance between distributions. Entropy simply makes no sense for non-discrete
random variables, let alone random variables with continuous and discrete components, though it
proves useful for some of our arguments and interpretations.

Before defining these quantities, we recall the definition of a convex function f : R¥ — R as any
bowl-shaped function, that is, one satisfying

fQz+ (1 =Ny) <Af(z) + (1= A)f(y) (2.1.1)

for all A € [0,1], all z,y. The function f is strictly convex if the convexity inequality (2.1.1) is
strict for A € (0,1) and = # y. We recall a standard result:

Proposition 2.1.5 (Jensen’s inequality). Let f be convex. Then for any random variable X,
FE[X]) < E[f(X)].
Moreover, if f is strictly convex, then f(E[X]) < E[f(X)] unless X is constant.

Now we may define and provide a few properties of the KL-divergence. Let P and () be
distributions defined on a discrete set X. The KL—dz’vergence between them is

D (P|Q) =) plx log
reX

We observe immediately that Dy (P|Q) > 0. To see this, we apply Jensen’s inequality (Propo-
sition 2.1.5) to the function —log and the random variable ¢(X)/p(X), where X is distributed
according to P:

D (PIQ) = -k [los 40| = ~og | 155

)
—tog ( - p(@) 275 ) = ~tos) =0

14
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Moreover, as log is strictly convex, we have Dy (P|Q) > 0 unless P = Q). Another consequence of
the positivity of the KL-divergence is that whenever the set X is finite with cardinality |X| < oo,
for any random variable X supported on X we have H(X) < log |X|. Indeed, letting m = |X|, @

be the uniform distribution on X" so that ¢(x) = %, and X have distribution P on &', we have

.T
0< Dy (P )1 )1 — _H(X)+1 2.1.2
< D (P|Q) = Zp og T8 e Zp ogq(x (X)+logm,  (2.1.2)

so that H(X) < logm. Thus, the uniform distribution has the highest entropy over all distributions
on the set X.

Mutual information: Having defined KL-divergence, we may now describe the information
content between two random variables X and Y. The mutual information I(X;Y) between X and
Y is the KL-divergence between their joint distribution and their products (marginal) distributions.
More mathematically,

_ ) log P(E:Y)
! _xz,y:p( l & p@p(y)’ (2:1.3)

We can rewrite this in several ways. First, using Bayes’ rule, we have p(x,y)/p(y) = p(z | y), so

e Lt L)
Zp ) log? o(2)

*ZZP p(z | y)logp(x +Zp Zp:vlylogp(:ﬁly)
:H(X)— H(X[Y).

Similarly, we have I(X;Y) = H(Y) — H(Y | X), so mutual information can be thought of as the
amount of entropy removed (on average) in X by observing Y. We may also think of mutual infor-
mation as measuring the similarity between the joint distribution of X and Y and their distribution
when they are treated as independent.

Comparing the definition (2.1.3) to that for KL-divergence, we see that if Pxy is the joint
distribution of X and Y, while Px and Py are their marginal distributions (distributions when X
and Y are treated independently), then

I(X,Y) :Dk1 (ny”PX X Py) > 0.

Moreover, we have I(X;Y) > 0 unless X and Y are independent.
As with entropy, we may also define the conditional information between X and Y given Z,
which is the mutual information between X and Y when Z is observed (on average). That is,

I(X;Y | 2): ZIX Y| Z=2)pk)=HX|Z2)-HX|Y,2)=H(Y | 2)-H(Y | X, Z).
Entropies of continuous random variables For continuous random variables, we may define

an analogue of the entropy known as differential entropy, which for a random variable X with
density p is defined by

h(X) = —/p(x) log p(x)dz. (2.1.4)
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Note that the differential entropy may be negative—it is no longer directly a measure of the number
of bits required to describe a random variable X (on average), as was the case for the entropy. We
can similarly define the conditional entropy

WX |Y) = / p(v) / p(x | y)logp(x | y)dzdy.

We remark that the conditional differential entropy of X given Y for Y with arbitrary distribution—
so long as X has a density—is

WX |Y)=E [ [ o1 ¥ vogpt | V]

where p(x | y) denotes the conditional density of X when Y = y. The KL divergence between
distributions P and ) with densities p and ¢ becomes
(z)

Du (P|Q) = / pla)log 4,

and similarly, we have the analogues of mutual information as

V) — p(z,y) _ B
I(X;Y) = /p(a:,y) log @) dxdy = h(X)—h(X |Y)=h(Y)—-h(Y | X).
As we show in the next subsection, we can define the KL-divergence between arbitrary distributions
(and mutual information between arbitrary random variables) more generally without requiring
discrete or continuous distributions. Before investigating these issues, however, we present a few
examples. We also see immediately that for X uniform on a set [a, b], we have h(X) = log(b — a).

Example 2.1.6 (Entropy of normal random variables): The differential entropy (2.1.4) of
a normal random variable is straightforward to compute. Indeed, for X ~ N(u,0?) we have

p(x) = \/2;76)@(_#(% — 1)?), so that

1 1

2
h(X) =~ /p(l”) B logm — Tﬂ(x —p)?| = %1og(27702) + M

1
557 =5 log(2mea?).

For a general multivariate Gaussian, where X ~ N(u,Y) for a vector p € R™ and ¥ > 0 with

density p(z) = m exp(—3(z — p) "2z — p)), we similarly have

1
h(X)= §]E [n log(2m) 4 log det(X) + (X — p) ' 271X — p)
n 1 1 om 1
=5 log(2m) + 3 log det(X) + B tr(EX7) = 5 log(2me) + 5 log det(eX).
&

Continuing our examples with normal distributions, we may compute the divergence between
two multivariate Gaussian distributions:

Example 2.1.7 (Divergence between Gaussian distributions): Let P be the multivariate
normal N(u1,Y), and @ be the multivariate normal distribution with mean uo and identical
covariance ¥ > 0. Then we have that

Dy (P|Q) = %(Nl — p2) 'S (1 — p2). (2.1.5)

We leave the computation of the identity (2.1.5) to the reader. <
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An interesting consequence of Example 2.1.7 is that if a random vector X has a given covari-
ance &, € R™ " then the multivariate Gaussian with identical covariance has larger differential
entropy. Put another way, differential entropy for random variables with second moments is always
maximized by the Gaussian distribution.

Proposition 2.1.8. Let X be a random vector on R™ with a density, and assume that Cov(X) = X.
Then for Z ~ N(0,X), we have

h(X) < h(Z).
Proof Without loss of generality, we assume that X has mean 0. Let P be the distribution of

X with density p, and let ) be multivariate normal with mean 0 and covariance X; let Z be this
random variable. Then

Dy (P|Q) —/ (z)log Egdac —h(X) —i—/p(w) B log(27) — %xTE_lx dx

= —h(X) + h(2),
because Z has the same covariance as X. As 0 < Dy (P|Q), we have h(Z) > h(X) as desired. [
We remark in passing that the fact that Gaussian random variables have the largest entropy has
been used to prove stronger variants of the central limit theorem; see the original results of Barron

[16], as well as later quantitative results on the increase of entropy of normalized sums by Artstein
et al. [9] and Madiman and Barron [134].

2.1.2 Chain rules and related properties

We now illustrate several of the properties of entropy, KL divergence, and mutual information;
these allow easier calculations and analysis.

Chain rules: We begin by describing relationships between collections of random variables
X1,..., X, and individual members of the collection. (Throughout, we use the notation Xf =
(Xi, Xit1,...,X;) to denote the sequence of random variables from indices i through j.)

For the entropy, we have the simplest chain rule:

H(Xy,...,Xn) =H(X))+ H(Xo | X1) +...+ HX, | X7,

This follows from the standard decomposition of a probability distribution p(z,y) = p(x)p(y | ).
to see the chain rule, then, note that

Zp p(y | x)logp(z)p(y | x)
=—Zp Zpy!mlogp Zp Z (y|2)logp(y | x) = H(X) + H(Y | X).

Now set X = X{‘_l, Y = X, and simply induct.
A related corollary of the definitions of mutual information is the well-known result that con-
ditioning reduces entropy:

H(X|Y)<H(X) because I(X;Y)=H(X)-H(X|Y)>0.

So on average, knowing about a variable Y can only decrease your uncertainty about X. That
conditioning reduces entropy for continuous random variables is also immediate, as for X continuous

we have I(X;Y) =h(X)—h(X |Y) >0, so that h(X) > h(X | Y).
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Chain rules for information and divergence: As another immediate corollary to the chain
rule for entropy, we see that mutual information also obeys a chain rule:

n
(XY =) (XY | Y.
=1

Indeed, we have

n n
ICGY) =HY") - HY | X)=) [HY;|Y{ ) -HY | X,Y{ )] =) I(X:Y; | Y{).
i=1 i=1
The KL-divergence obeys similar chain rules, making mutual information and KL-divergence mea-
sures useful tools for evaluation of distances and relationships between groups of random variables.
As a second example, suppose that the distribution P = PixX Py X---X Py, and Q = Q1 X+ - - X Qp,

that is, that P and ) are product distributions over independent random variables X; ~ P; or
X; ~ @;. Then we immediately have the tensorization identity

Dy (P|Q) = Dia (Py X -+ X Pa]Q1 X -+ X Qu) = Y _ Dia (Pi]Q:).
i=1

We remark in passing that these two identities hold for arbitrary distributions F; and ); or random
variables X,Y. As a final tensorization identiy, we consider a more general chain rule for KL-
divergences, which will frequently be useful. We abuse notation temporarily, and for random
variables X and Y with distributions P and @), respectively, we denote

Dy (X|Y) :== D (P|Q).

In analogy to the entropy, we can also define the conditional KL divergence. Let X and Y have
distributions Py, and Py, conditioned on Z = z, respectively. Then we define

Dy (X[Y | Z) = Ez[Du (Pxz|Py|z));
so that if Z is discrete we have Dy (X|Y | Z) = >, p(2) D (PX|Z||Py|Z). With this notation, we
have the chain rule
n .
D (X1,.... X1, ..., Vo) =) D (XY | X{71), (2.1.6)
i=1

because (in the discrete case, which—as we discuss presently—is fully general for this purpose) for
distributions Pxy and @) xy we have

Dy (Pxy|Qxy) = yCZy:p(a:, y) log zg:z; = mzy:p(x)p(y | ) [log SEZ ; g + log S(JU)}

= 5 ol tog 204 5 pt) Sty | ) o 2

qy | )’
where the final equality uses that >° p(y | z) =1 for all z.

Expanding upon this, we give several tensorization identities, showing how to transform ques-
tions about the joint distribution of many random variables to simpler questions about their
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marginals. As a first example, we see that as a consequence of the fact that conditioning de-
creases entropy, we see that for any sequence of (discrete or continuous, as appropriate) random
variables, we have

H(X1,..., X2) <HX) 4+ H(X,) and h(X1,...,Xn) <h(X1)+ ...+ h(Xn).

Both equalities hold with equality if and only if X,..., X, are mutually independent. (The only
if follows because I(X;Y’) > 0 whenever X and Y are not independent, by Jensen’s inequality and
the fact that Dy (P|Q) > 0 unless P = Q.)

We return to information and divergence now. Suppose that random variables Y; are indepen-
dent conditional on X, meaning that

PYi=y,....Yo=yp | X=2)=PV1=n|X=2)--PY,=yn | X =2x).

Such scenarios are common—as we shall see—when we make multiple observations from a fixed
distribution parameterized by some X. Then we have the inequality

I(X:Yy,...,Y,) = Z[H(Yi YY) — H(Y; | X, YY)

=1 (2.1.7)

n n

=D HY YT = HY; | X)) < 3 [HY) = HY; | X)) =3 1(X;Y)),

i=1 =1

where the inequality follows because conditioning reduces entropy.

2.1.3 Data processing inequalities:

A standard problem in information theory (and statistical inference) is to understand the degrada-
tion of a signal after it is passed through some noisy channel (or observation process). The simplest
of such results, which we will use frequently, is that we can only lose information by adding noise.
In particular, assume we have the Markov chain

X =Y = Z.
Then we obtain the classical data processing inequality.

Proposition 2.1.9. With the above Markov chain, we have I(X;Z) < I(X;Y).

Proof We expand the mutual information I(X;Y,Z) in two ways:

I(X:Y. Z)=1(X; 2)+ [(X;Y | Z)
=1(X;Y)+1(X;2|Y),
=0
where we note that the final equality follows because X is independent of Z given Y:

I(X;Z|Y)=H(X|Y)-H(X|Y,Z)=H(X|Y)-H(X|Y)=0.

Since I(X;Y | Z) > 0, this gives the result. O
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There are related data processing inequalities for the KL-divergence—which we generalize in
the next section—as well. In this case, we may consider a simple Markov chain X — Z. If we
let P and P> be distributions on X and @)1 and ()2 be the induced distributions on Z, that is,
Qi(A) = [P(Z € A | x)dP;(x), then we have

Dy (Q1]Q2) < Dw (P1|P2) ,

the basic KL-divergence data processing inequality. A consequence of this is that, for any function
f and random variables X and Y on the same space, we have

D (f(XO)F(Y)) < Dia (X]Y).

We explore these data processing inequalities more when we generalize KL-divergences in the next
section and in the exercises.

2.2 General divergence measures and definitions

Having given our basic definitions of mutual information and divergence, we now show how the
definitions of KL-divergence and mutual information extend to arbitrary distributions P and Q
and arbitrary sets X'. This requires a bit of setup, including defining set algebras (which, we will
see, simply correspond to quantization of the set X’), but allows us to define divergences in full
generality.

2.2.1 Partitions, algebras, and quantizers

Let X be an arbitrary space. A quantizer on X is any function that maps X to a finite collection
of integers. That is, fixing m < oo, a quantizer is any function q : X — {1,...,m}. In particular,
a quantizer q partitions the space X into the subsets of z € X for which q(z) = i. A related
notion—we will see the precise relationship presently—is that of an algebra of sets on X. We say
that a collection of sets A is an algebra on X if the following are true:

1. The set X € A.

2. The collection of sets A is closed under finite set operations: union, intersection, and com-
plementation. That is, A, B € A implies that A€ A, ANBe€ A, and AUB € A.

There is a 1-to-1 correspondence between quantizers—and their associated partitions of the set
X—and finite algebras on a set X', which we discuss briefly.! It should be clear that there is a
one-to-one correspondence between finite partitions of the set X' and quantizers q, so we must argue
that finite partitions of X are in one-to-one correspondence with finite algebras defined over X.

In one direction, we may consider a quantizer q : X — {1,...,m}. Let the sets Aj,..., A,
be the partition associated with q, that is, for z € A; we have q(z) = i, or 4; = q~1({i}). Then
we may define an algebra A4 as the collection of all finite set operations performed on Ay, ..., A4,
(note that this is a finite collection, as finite set operations performed on the partition Aq,..., A,

induce only a finite collection of sets).

For the other direction, consider a finite algebra A over the set X. We can then construct a
quantizer q4 that corresponds to this algebra. To do so, we define an atom of A as any non-empty
set A € A such that if BC A and B € A, then B = A or B = (). That is, the atoms of A are the
“smallest” sets in A. We claim there is a unique partition of X with atomic sets from A; we prove
this inductively.

!Pedantically, this one-to-one correspondence holds up to permutations of the partition induced by the quantizer.
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Base case: There is at least 1 atomic set, as A is finite; call it Aj.

Induction step: Assume we have atomic sets Aj,..., Ay € A. Let B = (A1 U---U Ag)¢ be their
complement, which we assume is non-empty (otherwise we have a partition of X' into atomic sets).
The complement B is either atomic, in which case the sets {A1, As, ..., Ay, B} are a partition of
X consisting of atoms of A, or B is not atomic. If B is not atomic, consider all the sets of the form
AN B for A € A. Each of these belongs to A, and at least one of them is atomic, as there is a
finite number of them. This means there is a non-empty set Ai1 C B such that Ay, is atomic.

By repeating this induction, which must stop at some finite index m as A is finite, we construct
a collection Ay, ..., A, of disjoint atomic sets in A for which and U;4; = X. (The uniqueness is
an exercise for the reader.) Thus we may define the quantizer q4 via

qa(xz) =i when x € A;.

2.2.2 KL-divergence

In this section, we present the general definition of a KL-divergence, which holds for any pair of
distributions. Let P and @) be distributions on a space X. Now, let A be a finite algebra on X
(as in the previous section, this is equivalent to picking a partition of X and then constructing the
associated algebra), and assume that its atoms are atoms(.A). The KL-divergence between P and

Q conditioned on A is
P(A
Du(PIQ| A= Y PA)log D),

A€atoms(A) Q(A)

That is, we simply sum over the partition of X. Another way to write this is as follows. Let
q:X — {1,...,m} be a quantizer, and define the sets 4; = q~!({i}) to be the pre-images of each
i (i.e. the different quantization regions, or the partition of X’ that q induces). Then the quantized
KL-divergence between P and (@) is

D (P|Q|q):=>_ P(A;)log ggiz;
i=1 t

We may now give the fully general definition of KL-divergence: the KL-divergence between P
and @ is defined as

Dy (P|Q) :=sup{Dy (P|Q | A) such that A is a finite algebra on X'}

2.2.1
=sup {Dy (P|Q | q) such that q quantizes X} . ( )

This also gives a rigorous definition of mutual information. Indeed, if X and Y are random variables
with joint distribution Pxy and marginal distributions Px and Py, we simply define

I(X,Y) = Dkl (PX}/”PX X Py) .

When P and @ have densities p and ¢, the definition (2.2.1) reduces to

Du (P|Q) = /R p(x) 1og§§§f§dx,
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while if P and @ both have probability mass functions p and ¢, then—as we see in Exercise 2.6—the
definition (2.2.1) is equivalent to

Dy (P|Q) = Z p(z 108;

precisely as in the discrete case.

We remark in passing that if the set X is a product space, meaning that X = X} x Xp x -+ x X,
for some n < oo (this is the case for mutual information, for example), then we may assume our
quantizer always quantizes sets of the form A = Ay x Ay x --- X A,, that is, Cartesian products.
Written differently, when we consider algebras on X', the atoms of the algebra may be assumed to be
Cartesian products of sets, and our partitions of X' can always be taken as Cartesian products. (See
Gray [94 Chapter 5].) Written slightly differently, if P and @ are distributions on X = X} x---x A&},
and q' is a quantizer for the set X; (inducing the partition A%, ... ,Aini of X;) we may define

P(Ajl.1 X A?2 X - x AT
Q(A;1 X A?Q X oee X A;Ln)

Dy (PHQ ] qt, ... ,q") = Z P(A}1 X A?Q X e X A?n)log
j17-~~7.jn

Then the general definition (2.2.1) of KL-divergence specializes to
Dy (P|Q) = sup {Dkl (P||Q lqb, ..., q”) such that q* quantizes Xi} .

So we only need consider “rectangular” sets in the definitions of KL-divergence.

Measure-theoretic definition of KL-divergence If you have never seen measure theory be-
fore, skim this section; while the notation may be somewhat intimidating, it is fine to always
consider only continuous or fully discrete distributions. We will describe an interpretation that will
mean for our purposes that one never needs to really think about measure theoretic issues.

The general definition (2.2.1) of KL-divergence is equivalent to the following. Let x4 be a measure
on X, and assume that P and () are absolutely continuous with respect to u, with densities p and
q, respectively. (For example, take p = P + Q.) Then

Da(PIQ) = [ pla)log” Hdu(o). (222)
X q\x

The proof of this fact is somewhat involved, requiring the technology of Lebesgue integration. (See

Gray [94, Chapter 5].)

For those who have not seen measure theory, the interpretation of the equality (2.2.2) should be
as follows. When integrating a function f(xz), replace [ f(x)dp(z) with one of two pairs of symbols:
one may simply think of du(x) as dz, so that we are performing standard integration [ f(z)dz, or
one should think of the integral operation [ f(z)du(z) as summing the argument of the integral, so
dp(z) =1 and [ f(x = >, f(x). (This corresponds to u being “counting measure” on X.)

2.2.3 f-divergences

A more general notion of divergence is the so-called f-divergence, or Ali-Silvey divergence [4, 54]
(see also the alternate interpretations in the article by Liese and Vajda [131]). Here, the definition
is as follows. Let P and @ be probability distributions on the set X, and let f : R — R be a
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convex function satisfying f(1) = 0. If X' is a discrete set, then the f-divergence between P and @
is
p(z)
D¢ (P|Q) := q(x)f ( > .
1PIQ) =S a)f (g3

More generally, for any set X and a quantizer q : X — {1,...,m}, letting 4; = q~'({i}) = {z €
X | q(z) = i} be the partition the quantizer induces, we can define the quantized divergence

Py

and the general definition of an f divergence is (in analogy with the definition (2.2.1) of general
KL divergences)

Dy (PIQ | a) = > QA f (
=1

D¢ (P|Q) :=sup{Ds (P|Q | q) such that q quantizes X'}. (2.2.3)

The definition (2.2.3) shows that, any time we have computations involving f-divergences—such
as KL-divergence or mutual information—it is no loss of generality, when performing the compu-
tations, to assume that all distributions have finite discrete support. There is a measure-theoretic
version of the definition (2.2.3) which is frequently easier to use. Assume w.l.o.g. that P and @ are
absolutely continuous with respect to the base measure u. The f divergence between P and @ is
then

Dy (PIQ) = [ ala)s <p“> (). (2.2.4)

x q(x)

This definition, it turns out, is not quite as general as we would like—in particular, it is unclear
how we should define the integral for points x such that ¢(z) = 0. With that in mind, we recall
that the perspective transform (see Appendices B.1.1 and B.3.3) of a function f : R — R is defined
by pers(f)(t,u) = uf(t/u) if w > 0 and by +o0 if v < 0. This function is convex in its arguments
(Proposition B.3.12). In fact, this is not quite enough for the fully correct definition. The closure of
a convex function f is cl f(x) = sup{l(z) | £ < f, ¢ linear}, the supremum over all linear functions
that globally lower bound f. Then [104, Proposition IV.2.2.2] the closer of pers(f) is defined, for
any t' € int dom f, by

uf(t/u) ifu>0
clpers(f)(t,u) = ¢ limy o f(t —t+t/a) fu=0
+00 if u < 0.

(The choice of ¢ does not affect the definition.) Then the fully general formula expressing the
f-divergence is

D1 (PIQ) = [ clpers(f)(pla).a(w)dn(o). (2.2.5)
This is what we mean by equation (2.2.4), which we use without comment.

In the exercises, we explore several properties of f-divergences, including the quantized repre-
sentation (2.2.3), showing different data processing inequalities and orderings of quantizers based
on the fineness of their induced partitions. Broadly, f-divergences satisfy essentially the same prop-
erties as KL-divergence, such as data-processing inequalities, and they provide a generalization of
mutual information. We explore f-divergences from additional perspectives later—they are impor-
tant both for optimality in estimation and related to consistency and prediction problems, as we
discuss in Chapter 14.
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Examples We give several examples of f-divergences here; in Section 8.2.2 we provide a few
examples of their uses as well as providing a few natural inequalities between them.

Example 2.2.1 (KL-divergence): By taking f(¢) = tlogt, which is convex and satisfies
f(1) =0, we obtain D¢ (P|Q) = Du (P|Q). <

Example 2.2.2 (KL-divergence, reversed): By taking f(t) = —logt, we obtain D¢ (P|Q) =
Dy (Q|P). ©

Example 2.2.3 (Total variation distance): The total variation distance between probability
distributions P and () defined on a set X is the maximum difference between probabilities they
assign on subsets of X

[P = Qllpy = sup |[P(A) — Q(A)| = sup (P(A) — Q(4)), (2:2.6)
ACXx ACX

where the second equality follows by considering compliments P(A¢) = 1 — P(A). The total
variation distance, as we shall see later, is important for verifying the optimality of different
tests, and appears in the measurement of difficulty of solving hypothesis testing problems. The
choice f(t) = 5|t — 1|, we obtain the total variation distance, that is, ||[P — Q||pv = D (P|Q).
There are several alternative characterizations, which we provide as Lemma 2.2.4 next; it will
be useful in the sequel when we develop inequalities relating the divergences. <

Lemma 2.2.4. Let P,Q be probability measures with densities p,q with respect to a base measure
1 and f(t) = [t —1|. Then

IP = Qllry = Dy (PIQ) = /@-w )/ dpu(z)
L/w e m«@:i/muﬂ—pun+mxm

= P(dP/dQ > 1) — Q(dP/dQ > 1) = Q(dQ/dP > 1) — P(dQ/dP > 1).

In particular, the set A = {zx | p(x)/q(x) > 1} maximizes P(B)—Q(B) over B C X and so achieves
1P = Qllpy = P(A) — Q(A).

Proof Eliding the measure-theoretic details,? we immediately have
7 (PlQ) = /‘ ‘ /p — q(x)ldp(z)
N z d x) — p(x)| du(x
2LM@N<#<> @)+ [ ) oo dat)
_ ;/[p(m)_Q(CL‘)]eru(x)—i-;/[q(x) — p(x)], dp(x).

Considering the last inegral [[q(x) — p(x)], du(z), we see that the set A = {z : q(x) > p(z)}
satisfies

Q(A)—P(A)Z/A(Q(ff)—p(@)du(l‘) Z[B(q(x)—p(x))du(w)ZQ(B)—P(B)

2To make this fully rigorous, we would use the Hahn decomposition of the signed measure P — Q to recognize that
Jf(dP —dQ) = [ fldP —dQ], — [ f[dQ — dP], for any integrable f.
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for any set B, as any x € B\ A clearly satisfies ¢(x) — p(z) < 0. O

Example 2.2.5 (Hellinger distance): The Hellinger distance between probability distribu-
tions P and @Q defined on a set X is generated by the function f(t) = (vt —1)?2 =t — 2t + 1.
The Hellinger distance is then

ha(P.Q = 5 [(/o(a) = Vaa) Pdu(o (22.7)

The non-squared version dpe (P, @) is indeed a distance between probability measures P and
Q. It is sometimes convenient to rewrite the Hellinger distance in terms of the affinity between
P and Q), as

da(P.Q) = / (0(2) + 9(x) — 2v/p@)a(@)du(x) = 1 - / Vr@a@du(x),  (228)

which makes clear that dne (P, Q) € [0,1] is on roughly the same scale as the variation distance;
we will say more later. &

Example 2.2.6 (y? divergence): The x2-divergence is generated by taking f(t) = (t — 1)2,

so that
X 2 xr 2
D (PlQ) = [ (%—1) o(e)duta) = [ Z((;) dulz) — 1, (2.29)

where the equality is immediate because [ pdp = [qdp=1. ¢

2.2.4 Inequalities and relationships between divergences

Important to our development will come will be different families of inequalities relating the different
divergence measures. These inequalities will be particularly important because, in some cases,
different distributions admit easy calculations with some divergences, such as KL or x? divergence,
but it can be challenging to work with others that may be more “natural” for a particular problem.
Most importantly, replacing a variation distance by bounding it with an alternative divergence is
often convenient for analyzing the properties of product distributions (as will become apparent
in Chapter 8). We record several of these results here, making a passing connection to mutual
information as well.

The first inequality shows that the Hellinger distance and variation distance roughly generate
the same topology on collections of distributions, as they upper and lower bound the other (if we
tolerate polynomial losses).

Proposition 2.2.7. The total variation distance and Hellinger distance satisfy

) (P, Q) < [P = Qllpy < die(P,Q)/2 — diy (P, Q).
Proof We begin with the upper bound. We have by Holder’s inequality that

/Ip — q(z)|du(z /I\/p — V(@) - 1Vp(x) + V(@) ldu(x
< (3 [t - m)zdu(w)f (3 / (Vo) + mﬁdu(mf
= dha(P, Q) (1 + / de(x))é

25



Lexture Notes on Statistics and Information Theory John Duchi

As in Example 2.2.5, we have [ /p(2)q(z)du(z) =1 — dpet(P, Q)?, so this (along with the repre-
sentation Lemma 2.2.4 for variation distance) implies

[N

HP - QHTV = ;/’p(m) - Q(x)‘dﬂ(x) < dhel(Pa Q)(2 - d%lel(Pa Q)) .

For the lower bound on total variation, note that for any a,b € Ry, we have a + b —2vab < |a — b|
(check the cases a > b and a < b separately); thus

1 1
Ba(P.Q) = 5 [ [po) + a(e) ~ 2Vp@)a@)] du(o) < 5 [ Ipta) - a@)ldu(a),
as desired. ]
Several important inequalitites relate the variation distance to the KL-divergence. We state

two important inequalities in the next proposition, both of which are important enough to justify
their own names.

Proposition 2.2.8. The total variation distance satisfies the following relationships.

(a) Pinsker’s inequality: for any distributions P and Q,
1
1P = QI3 < 5P (PlQ). (2.2.10)

(b) The Bretagnolle-Huber inequality: for any distributions P and @,

IP = Qllrv < V1 —exp(~Du (P|Q)) <1~ %exp(*Dkl (P]Q))-

Proof Exercise 2.19 outlines one proof of Pinsker’s inequality using the data processing inequality
(Proposition 2.2.13). We present an alternative via the Cauchy-Schwarz inequality. Using the
definition (2.2.1) of the KL-divergence, we may assume without loss of generality that P and @ are
finitely supported, say with p.m.f.s p1,...,pm and q1, ..., ¢n. Define the negative entropy function
h(p) = 37, pilogp;. Then showing that Dy (P|Q) > 2||P — Q||3v = % [lp — ¢|7 is equivalent to
showing that

h(p) > hia) + (Vh().p — ) + 5 Ip — al, (22.11)

because by inspection h(p) —h(q) —(Vh(q),p—q) = >, pilog %. We do this via a Taylor expansion:
we have
Vh(p) = [logp; +1]{2; and VZh(p) = diag([1/pi]iZ,).

By Taylor’s theorem, there is some p = (1 — t)p + tq, where t € [0, 1], such that

h(p) = h(q) + (Vh(q),p — q) + %(p — ¢, V*h(P)(p — q))-

But looking at the final quadratic, we have for any vector v and any p > 0 satisfying >, p; = 1,

m U2 m U-2 m ‘U‘ 2
0. V(@) =Y =y Zz( z ’)=v2,
(v, V2h(p)v) ;p | Hl;pl_ ;\F\/E ol
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where the inequality follows from Cauchy-Schwarz applied to the vectors [\/p]; and [|v;|/\/Pili-
Thus inequality (2.2.11) holds.

For the claim (b), we use Proposition 2.2.7. Let a = [ v/p(z)q(z)dp(z) be a shorthand for the
affinity, so that d2,(P,Q) = 1 — a. Then Proposition 2.2.7 gives |[P — Q|l;y < V1 —av1+a =
V1 — a2. Now apply Jensen’s inequality to the exponential: we have

[ V@@t - [ mp(@du(%) = [ew (; log Zﬂ) pla)du()

> exp (5 [ toton Z0aute) ) = exp (~30u (P10)) .

In particular, V1 —a? < \/1 — exp(—3 D (P|Q))?, which is the first claim of part (b). For the
second, note that v/I— ¢ <1 — ¢ for ¢ € [0,1] by concavity of the square root. O

We also have the following bounds on the KL-divergence in terms of the y2-divergence.
Proposition 2.2.9. For any distributions P, Q,
Dy (P|Q) <log(1+ Dy (P|Q)) < Dy2 (P|Q).

Proof By Jensen’s inequality, we have

2
D (PIQ) <1og [ T =lox(1 + Dy (PIQ)).

The second inequality is immediate as log(1 +¢) <t for all ¢t > —1. O

It is also possible to relate mutual information between distributions to f-divergences, and even
to bound the mutual information above and below by the Hellinger distance for certain problems. In
this case, we consider the following situation: let V' € {0, 1} uniformly at random, and conditional
on V =wv, draw X ~ P, for some distribution P, on a space X. Then we have that

1 — 1 —
I(X;V) = 5Dn (Po[[P) + 5 Dx (P P)

where P = %Pg + %Pl. The divergence measure on the right side of the preceding identity is a
special case of the Jenson-Shannon divergence, defined for A € [0, 1] by

Disx (P|Q) := ADy (P|AP + (1 = N)Q) + D (QIAP + (1 = N)Q), (2.2.12)

which is a symmetrized and bounded variant of the typical KL-divergence (we use the shorthand
Djs (P|Q) = Dy, 1 (P|Q) for the symmetric case). As a consequence, we also have
2

1 1
I(X;V) = §Df (PolPr) + §Df (P1] Po)

where f(t) = —tlog(% + %) = tlog t%’ so that the mutual information is a particular f-divergence.
This form—as we see in the later chapters—is frequently convenient because it gives an object
with similar tensorization properties to KL-divergence while enjoying the boundedness properties

of Hellinger and variation distances. The following proposition captures the latter properties.
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Proposition 2.2.10. Let (X, V) be distributed as above. Then

. 10g2-HPO—P1H
log?2 - dpey (P, P) < I(X;V) = Djs (Py| P1) < min v
52+ Ea(Po. ) < TXGV) = Dy (RlP) <min{ 80 1 T
Proof The lower bound and upper bound involving the variation distance both follow from
analytic bounds on the binary entropy functional ha(p) = —plogp—(1—p)log(1—p). By expanding
the mutual information and letting py and p; be densities of Py and P} with respect to some base
measure p, we have

2po /
2I(X; V) = 2D;is (Py| P :/ lo du + lo
( ) is (Po|P1) Do gp0+p1 1 D1 gp0+p1

Do Po p1 b1
= 210g2+/ Po + p1 [ log + log
( ) p1+p1 pot+pr1 p1+p1 Po + p1

dp

b
=2lo 2—/ +p1)h ( >
g (po + p1)h2 o1+ 70

We claim that
2log2 - min{p, 1 — p} < ha(p) < 2log2- /p(1 —p)
for all p € [0, 1] (see Exercises 2.17 and 2.18). Then the upper and lower bounds on the information
become nearly immediate.
For the variation-based upper bound on I(X;V), we use the lower bound ha(p) > 2log?2 -
min{p, 1 — p} to write

2 . : po(z) p1(2)
logQI(X’V) <2- /(po(x) + p1(z)) min {po(ai) +p1(z) po(@) + p1(a) } dp()

— 22 [ win{p (o). ;1 (o) ()
=2 [ (p(@) ~ min{po(o). (@) Din(e) =2 [ (pa(o) ~ pole))d).

P1>Po

But of course the final integral is ||[Py — Py||py, giving I(X;V) < log2| Py — Py||py. Conversely,
for the lower bound on Djs (Py|P1), we use the upper bound ha(p) < 2log2-+/p(1 — p) to obtain

! I(X;V)Zl—/(po+p1)\/ Po (1— Po )d,u,

log 2 p1+ Po p1+ po

=1- /\/popldM = ;/(\/17_ VD1 dp = digy (Po, Pr)

as desired.
The Hellinger-based upper bound is simpler: by Proposition 2.2.9, we have

D (RIP1) = 3Dia (Pol(Po + P1)/2) + 3 Dt (PLI(Po + P1) /2

1 1
< 5Dy (Bol(Po + F1)/2) + 5 Dy (B[ (Po + P1)/2)
1 f(po—p)*, 1 [ (P~ vP1) (VDo + vP1)?
S dp = = dp.
2J) potp 2 po +p1
Now note that (a + b)? < 2a? + 2b? for any a,b € R, and so (,/po + /P1)? < 2(po + p1), and thus
the final integral has bound [(,/po — /p1)%dp = 2d} (P, Pr). O
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2.2.5 Convexity and data processing for divergence measures

f-divergences satisfy a number of very useful properties, which we use repeatedly throughout the
lectures. As the KL-divergence is an f-divergence, it of course satisfies these conditions; however,
we state them in fuller generality, treating the KL-divergence results as special cases and corollaries.

We begin by exhibiting the general data processing properties and convexity properties of f-
divergences, each of which specializes to KL divergence. We leave the proof of each of these as
exercises. First, we show that f-divergences are jointly convex in their arguments.

Proposition 2.2.11. Let Py, Py, Q1,Q2 be distributions on a set X and f : Ry — R be conver.
Then for any X € [0, 1],

Dy (AP + (1 = NP2 AQ1 + (1 = A\)Q2) < ADy (P1|Q1) + (1 = A\) Dy (12| Q2) -

The proof of this proposition we leave as Exercise 2.11, which we treat as a consequence of the
more general “log-sum” like inequalities of Exercise 2.8. It is, however, an immediate consequence
of the fully specified definition (2.2.5) of an f-divergence, because pers(f) is jointly convex. As an
immediate corollary, we see that the same result is true for KL-divergence as well.

Corollary 2.2.12. The KL-divergence Dy (P|Q) is jointly convex in its arguments P and Q.

We can also provide more general data processing inequalities for f-divergences, paralleling
those for the KL-divergence. In this case, we consider random variables X and Z on spaces X
and Z, respectively, and a Markov transition kernel K giving the Markov chain X — Z. That
is, K(- | ) is a probability distribution on Z for each z € X, and conditioned on X = z, Z has
distribution K (- | x) so that K(A | z) =P(Z € A| X = x). Certainly, this includes the situation
when Z = ¢(X) for some function ¢, and more generally when Z = ¢(X,U) for a function ¢ and
some additional randomness U. For a distribution P on X, we then define the marginals

Kp(4) = / K(A,2)dP(z).
X
We then have the following proposition.
Proposition 2.2.13. Let P and @ be distributions on X and let K be any Markov kernel. Then
Dy (Kp|Kq) < Dy (P|Q).

See Exercise 2.10 for a proof.
As a corollary, we obtain the following data processing inequality for KL-divergences, where we
abuse notation to write Dy (X|Y) = Dy (P|Q) for random variables X ~ P and Y ~ Q.

Corollary 2.2.14. Let X,Y € X be random variables, let U € U be independent of X and Y, and
let ¢ : X xU — Z for some spaces X, U, Z. Then

Dia (o(X, U)|o(Y, U)) < Da (X[Y).

Thus, further processing of random variables can only bring them “closer” in the space of distribu-
tions; downstream processing of signals cannot make them further apart as distributions.
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2.3 First steps into optimal procedures: testing inequalities

As noted in the introduction, a central benefit of the information theoretic tools we explore is that
they allow us to certify the optimality of procedures—that no other procedure could (substantially)
improve upon the one at hand. The main tools for these certifications are often inequalities gov-
erning the best possible behavior of a variety of statistical tests. Roughly, we put ourselves in the
following scenario: nature chooses one of a possible set of (say) k worlds, indexed by probabil-
ity distributions Py, Ps, ..., Py, and conditional on nature’s choice of the world—the distribution
P* € {Py,...,P;} chosen—we observe data X drawn from P*. Intuitively, it will be difficult to
decide which distribution F; is the true P* if all the distributions are similar—the divergence be-
tween the P; is small, or the information between X and P* is negligible—and easy if the distances
between the distributions P; are large. With this outline in mind, we present two inequalities, and
first examples of their application, to make concrete these connections to the notions of information
and divergence defined in this section.

2.3.1 Le Cam’s inequality and binary hypothesis testing

The simplest instantiation of the above setting is the case when there are only two possible dis-
tributions, P; and P,, and our goal is to make a decision on whether P; or P; is the distribution
generating data we observe. Concretely, suppose that nature chooses one of the distributions Py
or P» at random, and let V' € {1,2} index this choice. Conditional on V' = v, we then observe a
sample X drawn from P,. Denoting by P the joint distribution of V' and X, we have for any test
U : X — {1,2} that the probability of error is then

PU(X) # V) = S PUE(X) # 1) + 5 Po(W(X) #2)

We can give an exact expression for the minimal possible error in the above hypothesis test.
Indeed, a standard result of Le Cam (see [127, 177, Lemma 1]) is the following variational representa-
tion of the total variation distance (2.2.6), which is the f-divergence associated with f(t) = 3|t —1],
as a function of testing error.

Proposition 2.3.1. Let X be an arbitrary set. For any distributions P; and Py on X, we have
inf {A(U(X) #1) + B(Y(X) #2)} =1~ [P = Pollpy

where the infimum is taken over all tests ¥ : X — {1,2}.

Proof Any test ¥: X — {1,2} has an acceptance region, call it A C X', where it outputs 1 and
a region A® where it outputs 2.

Pi(U #1)+ P(¥ #2) = Pi(A°) + P2(A) =1 - Pi(A) + P2(4).
Taking an infimum over such acceptance regions, we have

inf (P1(¥ # 1) + Po(¥ #2)} = inf {1~ (F(4) ~ Po(4))} = 1 — sup (Pi(A) ~ Py(A)),
- ACX

which yields the total variation distance as desired. O
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In the two-hypothesis case, we also know that the optimal test, by the Neyman-Pearson lemma,
is a likelihood ratio test. That is, assuming that P, and P, have densities p; and p2, the optimal

test is of the form
1if 2 >
T(X) = p2(X) =
(X) ) _,

e P1
2 lpr(X)

for some threshold ¢ > 0. In the case that the prior probabilities on P; and P, are each %, then
t =1 is optimal.
We give one example application of Proposition 2.3.1 to the problem of testing a normal mean.

Example 2.3.2 (Testing a normal mean): Suppose we observe X1,...,X, 5P for P = P

or P = P, where P, is the normal distribution N(s,,0?), where py # p2. We would like to
understand the sample size n necessary to guarantee that no test can have small error, that
is, say, that

inf {P(P( X1, ..., Xp) # 1) + Po(U(Xy,. .., Xn) #£2)} 2

N | =

By Proposition 2.3.1, we have that

nf {P(U(X1,. ., Xn) # 1)+ P(U( X0, Xn) #2) 2 1= 1B = By
where P’ denotes the n-fold product of P,, that is, the distribution of X1,..., X, i P,.
The interaction between total variation distance and product distributions is somewhat subtle,
so0 it is often advisable to use a divergence measure more attuned to the i.i.d. nature of the sam-
pling scheme. Two such measures are the KL-divergence and Hellinger distance, both of which

we explore in the coming chapters. With that in mind, we apply Pinsker’s inequality (2.2.10)
to see that || P* — P2"||r2FV < 1Dy (P}|Py) = 2Dy (P |P2), which implies that

1
n( 1 2 V| — po|
— 1 P - p)?) =1 YA T 2l
\/g<202(/l1 ,u2)> 2 o

In particular, if n < 0 >, then we have our desired lower bound of %

o
p1—p2) \
Conversely, a calculation yields that n > (MC_#)Q, for some numerical constant C' > 1, implies

small probability of error. We leave this calculation to the reader. <

N

n n n
L= B = Pl > 1[5 D (Bil )

2.3.2 Fano’s inequality and multiple hypothesis testing

There are of course situations in which we do not wish to simply test two hypotheses, but have
multiple hypotheses present. In such situations, Fano’s inequality, which we present shortly, is
the most common tool for proving fundamental limits, lower bounds on probability of error, and
converses (to results on achievability of some performance level) in information theroy. We write
this section in terms of general random variables, ignoring the precise setting of selecting an index
in a family of distributions, though that is implicit in what we do.

Let X be a random variable taking values in a finite set X', and assume that we observe a
(different) random variable Y, and then must estimate or guess the true value of X. That is, we
have the Markov chain

XY =X ,
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and we wish to provide lower bounds on the probability of error—that is, that X # X. If we let
the function he(p) = —plogp — (1 — p) log(1 — p) denote the binary entropy (entropy of a Bernoulli
random variable with parameter p), Fano’s inequality takes the following form [e.g. 53, Chapter 2]:

Proposition 2.3.3 (Fano inequality). For any Markov chain X —Y — X, we have
ha(P(X # X)) +P(X # X)log(|X| — 1) > H(X | X). (2.3.1)

Proof  This proof follows by expanding an entropy functional in two different ways. Let E be
the indicator for the event that X # X, that is, £ = 1 if X # X and is 0 otherwise. Then we have

HX,E|X)=H(X|E X)+H(E|X)
—P(E=1)H(X|E=1,X)+P(E=0)H(X |E=0,X)+H(E| X),

=0

where the zero follows because given there is no error, X has no variability given X. Expanding
the entropy by the chain rule in a different order, we have

H(X,E|X)=H(X | X)+ H(E|X.X),
—_——
=0
because FE is perfectly predicted by X and X. Combining these equalities, we have
HX|X)=H(X,E|X)=P(E=1)H(X |E=1,X)+ H(E| X).

Noting that H(E | X) < H(E) = ho(P(E = 1)), as conditioning reduces entropy, and that
H(X|E=1X) <log(]X| —1), as X can take on at most |X| — 1 values when there is an error,
completes the proof. O

We can rewrite Proposition 2.3.3 in a convenient way when X is uniform in X. Indeed, by
definition of the mutual information, we have I(X;X) = H(X) — H(X | X), so Proposition 8.4.1
implies that in the canonical hypothesis testing problem from Section 8.2.1, we have

Corollary 2.3.4. Assume that X is uniform on X. For any Markov chain X —-Y — )?,

I(X;Y) +log2
log(|X1)

PX #X)>1- (2.3.2)
Proof Let Peor = P(X # X ) denote the probability of error. Noting that ha(p) < log?2 for any

p € [0,1] (recall inequality (2.1.2), that is, that uniform random variables maximize entropy), then
using Proposition 8.4.1, we have

1082 + Parror 108(|X]) = ha(Parror) + Parror log(1X] — 1) = H(X | X) ¥ H(X) - I(X; X).

Here step (i) uses Proposition 2.3.3 and step (ii) uses the definition of mutual information, that

I(X;X) = H(X)— H(X | X). The data processing inequality implies that I(X;X) < I(X;Y),
and using H(X) = log(|X|) completes the proof. O
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In particular, Corollary 2.3.4 shows that when X is chosen uniformly at random and we observe
Y, we have
I(X;Y) +log2

log|X[
where the infimum is taken over all testing procedures W. Some interpretation of this quantity
is helpful. If we think roughly of the number of bits it takes to describe a variable X uniformly
chosen from X, then we expect that log, |X| bits are necessary (and sufficient). Thus, until we
collect enough information that I(X;Y") ~ log |X|, so that I(X;Y")/log|X| =~ 1, we are unlikely to
be unable to identify the variable X with any substantial probability. So we must collect enough
bits to actually discover X.

inf P(U(Y) # X) > 1 -

Example 2.3.5 (20 questions game): In the 20 questions game—a standard children’s game—
there are two players, the “chooser” and the “guesser,” and an agreed upon universe X. The
chooser picks an element z € X', and the guesser’s goal is to find by using a series of yes/no
questions about . We consider optimal strategies for each player in this game, assuming that
X is finite and letting m = |X| be the universe size for shorthand.

For the guesser, it is clear that at most [log, m]| questions are necessary to guess the item
X that the chooser has picked—at each round of the game, the guesser asks a question that
eliminates half of the remaining possible items. Indeed, let us assume that m = 2! for some
[ € N; if not, the guesser can always make her task more difficult by increasing the size of X
until it is a power of 2. Thus, after k rounds, there are m2~* items left, and we have

k
1
m <2> <1 if and only if k& > logy m.

For the converse—the chooser’s strategy—Ilet Y7, Ys, ..., Y be the sequence of yes/no answers
given to the guesser. Assume that the chooser picks X uniformly at random in X. Then Fano’s
inequality (2.3.2) implies that for the guess X the guesser makes,
I(X;Yl,.. . ,Yk) + log 2

logm '

P(X #X)>1-—

By the chain rule for mutual information, we have

k k k
(XY, V) = Y (XY | Vi) = 3 H(Y | Yiaor) = H(Y; | Yie1, X) < > H(Y)).
=1 =1 =1

As the answers Y; are yes/no, we have H(Y;) < log2, so that I(X;Y1.x) < klog2. Thus we

find k+1)log2 1 1 k
logm logom logo m

so that we the guesser must have & > logy(m/2) to be guaranteed that she will make no
mistakes. <

2.4 A first operational result: entropy and source coding

The final section of this chapter explores the basic results in source coding. Source coding—in its
simplest form—tells us precisely the number of bits (or some other form of information storage)
are necessary to perfectly encode a seqeunce of random variables X1, Xs,... drawn according to a
known distribution P.
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2.4.1 The source coding problem

Assume we receive data consisting of a sequence of symbols Xi, Xs,..., drawn from a known
distribution P on a finite or countable space X'. We wish to choose an encoding, represented by a
d-ary code function C that maps X to finite strings consisting of the symbols {0,1,...,d —1}. We
denote this by C: X — {0,1,...,d — 1}*, where the superscript * denotes the length may change
from input to input, and use ¢c(z) to denote the length of the string C(z).

In general, we will consider a variety of types of codes; we define each in order of complexity of
their decoding.

Definition 2.1. A d-ary code C: X — {0,...,d—1}* is non-singular if for each x,2’ € X we have
Cz) # C(2") ifx#a.

While Definition 2.1 is natural, generally speaking, we wish to transmit or encode a variety of code-
words simultaneously, that is, we wish to encode a sequence X1, Xo, ... using the natural extension
of the code C as the string C(X;)C(X2)C(X3) -+, where C(x1)C(z2) denotes the concatenation of
the strings C(z1) and C(x2). In this case, we require that the code be uniquely decodable:

Definition 2.2. A d-ary code C : X — {0,...,d — 1}* is uniquely decodable if for all sequences
Zl,...,xn € X and 2),. .. 2, € X we have

C(z1)C(x2) - - Cxy) = C(xh)C(ah) - - - C(xh) if and only if x1 = 2, ..., 2, = 2),.

n
That is, the extension of the code C to sequences is non-singular.

While more useful (generally) than simply non-singular codes, uniquely decodable codes may require
inspection of an entire string before recovering the first element. With that in mind, we now consider
the easiest to use codes, which can always be decoded instantaneously.

Definition 2.3. A d-ary code C : X — {0,...,d — 1}* is uniquely decodable or instantaneous if
no codeword is the prefix to another codeword.

As is hopefully apparent from the definitions, all prefix/instantaneous codes are uniquely decodable,
which are in turn non-singular. The converse is not true, though we will see a sense in which—as
long as we care only about encoding sequences—using prefix instead of uniquely decodable codes
has negligible consequences.

For example, written English, with periods (.) and spaces ( ) included at the ends of words
(among other punctuation) is an instantaneous encoding of English into the symbols of the alphabet
and punctuation, as punctuation symbols enforce that no “codeword” is a prefix of any other. A
few more concrete examples may make things more clear.

Example 2.4.1 (Encoding strategies): Consider the encoding schemes below, which encode
the letters a, b, ¢, and d.

Symbol | Ci(z) | Co(x) | Cs(x)

a 0 00 0
b 00 10 10
¢ 000 11 110

d 0000 110 111

By inspection, it is clear that C; is non-singular but certainly not uniquely decodable (does
the sequence 0000 correspond to aaaa, bb, aab, aba, baa, ca, ac, or d?), while C3 is a prefix
code. We leave showing that Cy is uniquely decodable as an exercise. <
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2.4.2 The Kraft-McMillan inequalities

We now turn to a few results on the connections between source-coding and entropy. Our first
result, the Kraft-McMillan inequality, is an essential result that—as we shall see—essentially says
that there is no difference in code-lengths attainable by prefix codes and uniquely decodable codes.

Figure 2.1. Prefix-tree encoding of a set of symbols. The encoding for z; is 0, for x5 is 10, for x3
is 11, for x4 is 12, for x5 is 20, for zg is 21, and nothing is encoded as 1, 2, or 22.

Theorem 2.4.2. Let X be a finite or countable set, and let £ : X — N be a function. If {(x) is the
length of the encoding of the symbol x in a uniquely decodable d-ary code, then

dodt <1 (2.4.1)

zeX

Conversely, given any function ¢ : X — N satisfying inequality (2.4.1), there is a prefix code whose
codewords have length ¢(x) for each v € X.

Proof We prove the first statement of the theorem first by a counting and asymptotic argument.

We begin by assuming that X is finite; we eliminate this assumption subsequently. As a
consequence, there is some maximum length £« such that £(z) < £y  for all z € X. For a sequence
x1,...,T, € X, we have by the definition of our encoding strategy that £(z1,...,z,) = Y iy €(z;).
In addition, for each m we let

En(m) := {x1., € X" such that £(z1.,) = m}

denote the symbols x encoded with codewords of length m in our code, then as the code is uniquely
decodable we certainly have card(FE,(m)) < d™ for all n and m. Moreover, for all x1.,, € X™ we
have (21.,) < nlmax. We thus re-index the sum ) d~%*) and compute

nemax

Z dff(:m,--wl"n) — Z C&I‘d(En(m))dim
1-17.,,,{2”6)(" m=1
nemax

IA

Z A" = nlpax-
m=1
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The preceding relation is true for all n € N, so that

1/n
< §3d4mﬂ> <nb/melfn 1

T1:n EXM

as n — oo. In particular, using that

Z d—r1m) — Z d—te) L g—ten) — <Z d- x)> )

1. EXT L1y, T EXT reX

we obtain ) d—=) < 1.
Returning to the case that card(X’) = oo, by defining the sequence

D= Y a®,

zeX l(x)<k

as each subset {x € X : {(x) < k} is uniquely decodable, we have D) < 1 for all k. Then
1> limg_ oo Di = erX d—4=),

The achievability of such a code is straightforward by a pictorial argument (recall Figure 2.1),
so we sketch the result non-rigorously. Indeed, let 7; be an (infinite) d-ary tree. Then, at each
level m of the tree, assign one of the nodes at that level to each symbol x € X such that ¢(z) = m.
Eliminate the subtree below that node, and repeat with the remaining symbols. The codeword
corresponding to symbol x is then the path to the symbol in the tree.

JCD Comment: Fill out this proof, potentially deferring it. ‘

O]

With the Kraft-McMillan theorem in place, we we may directly relate the entropy of a random
variable to the length of possible encodings for the variable; in particular, we show that the entropy
is essentially the best possible code length of a uniquely decodable source code. In this theorem,
we use the shorthand

Z p(x) logg p(z

reX

Theorem 2.4.3. Let X € X be a discrete random variable distributed according to P and let Lo
be the length function associated with a d-ary encoding C : X — {0,...,d — 1}*. In addition, let C
be the set of all uniquely decodable d-ary codes for X. Then

Hd(X) <inf {Ep[gc(X)] : Ce C} < Hd(X) + 1.

Proof The lower bound is an argument by convex optimization, while for the upper bound
we give an explicit length function and (implicit) prefix code attaining the bound. For the lower
bound, we assume for simplicity that X" is finite, and we identify X = {1,...,|X|} (let m = |X| for
shorthand). Then as C consists of uniquely decodable codebooks, all the associated length functions
must satisfy the Kraft-McMillan inequality (2.4.1). Letting ¢; = ¢(7), the minimal encoding length

is at least
m m
inf Ly dhi<1y.
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By introducing the Lagrange multiplier A > 0 for the inequality constraint, we may write the
Lagrangian for the preceding minimization problem as
n m
LN =p 0+ (Z a-b — 1) with VeL(0,N) =p— A [d—fi log d} |
1=
i=1

_ 0
In particular, the optimal ¢ satisfies ¢; = log, g for some constant 8, and solving Z:L d logg o _ 1

gives # = 1 and £(i) = log, p%_.

To attain the result, simply set our encoding to be ¢(z) = [logd —‘, which satisfies the

1
P(X=x)
Kraft-McMillan inequality and thus yields a valid prefix code with

Epl(X)] = 3 plz) [mgd pu < =Y pla)logap(a) + 1 = Hy(X) +1

zeX reX

as desired. ]

Theorem 2.4.3 thus shows that, at least to within an additive constant of 1, the entropy both
upper and lower bounds the expected length of a uniquely decodable code for the random variable
X. This is the first of our promised “operational interpretations” of the entropy.

2.4.3 Entropy rates and longer codes

Theorem 2.4.3 is a bit unsatisfying in that the additive constant 1 may be quite large relative to
the entropy. By allowing encoding longer sequences, we can (asymptotically) eliminate this error
factor. To that end, we here show that it is possible, at least for appropriate distributions on
random variables X;, to achieve a per-symbol encoding length that approaches a limiting version of
the Shannon entropy of a random variable. We give two definitions capturing the limiting entropy
properties of sequences of random variables.

Definition 2.4. The entropy rate of a sequence X1, Xs, ... of random variables is
1
H({X;}) = lim —H(Xq,...,X,) (2.4.2)
n—oo n

whenever the limit exists.

In some situations, the limit (2.4.2) may not exist. However, there are a variety of situations in
which it does, and we focus generally on a specific but common instance in which the limit does
exist. First, we recall the definition of a stationary sequence of random variables.

Definition 2.5. We say a sequence X1, Xo, ... of random variable is stationary if for all n and all
k € N and all measurable sets Ay, ..., A C X we have

P(Xl €A,.... X, € Ak) = P(Xn+1 € Aq,... ,XnJrk S Ak).

With this definition, we have the following result.
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Proposition 2.4.4. Let the sequence of random variables {X;}, taking values in the discrete space
X, be stationary. Then
H({XZ}) = lim H(Xn | X1, . ,Xn_l)
n—oo

and the limits (2.4.2) and above exist.

Proof We begin by making the following standard observation of Cesaro means: if ¢,, = % Yo a
and a; — a, then ¢, — a.> Now, we note that for a stationary sequence, we have that

H(Xn | Xl:nfl) — H(XnJrl | X2:n)a
and using that conditioning decreases entropy, we have
H(Xn+1 ‘ Xl:n) S H(Xn ‘ Xl:n—l)-

Thus the sequence a,, := H(X,, | X1.,—1) is non-increasing and bounded below by 0, so that it has
some limit limy, 00 H (X, | X1n—1). As H(Xq,...,X,) = >1" | H(X; | X1,-1) by the chain rule
for entropy, we achieve the result of the proposition. ]

Finally, we present a result showing that it is possible to achieve average code length of at most
the entropy rate, which for stationary sequences is smaller than the entropy of any single random
variable X;. To do so, we require the use of a block code, which (while it may be prefix code) treats
sets of random variables (X1,...,X,,) € X™ as a single symbol to be jointly encoded.

Proposition 2.4.5. Let the sequence of random variables X1, Xo, ... be stationary. Then for any
e > 0, there exists an m € N and a d-ary (prefix) block encoder C : X™ — {0,...,d —1}* such that

1
lim —Ep[lc(X10)] < H{X:}) +e=lmH(X, | X1,...,X,-1) + €
n n n

Proof Let C:X™ — {0,1,...,d— 1}* be any prefix code with

le(z1m) < [log P( X1 = !El:m)-‘ '

Then whenever n/m is an integer, we have

Ep [lc(X1n)] = Z Ep [lc(Xmit1s - Xmt1))] < Z [H(Xmit1, - Xingisn)) + 1]
=1 i—1
non

m m

Dividing by n gives the result by taking m suitably large that % + %H(Xl, ooy X)) < e+ H{X,}).

3Indeed, let € > 0 and take N such that n > N implies that |a; — a| < e. Then for n > N, we have

n n

cnfa:lZ(aifa):M+l Z (ai,a)emi&

n 4 n U n
=1 i=N+1

Taking n — oo yields that the term N(cy — a)/n — 0, which gives that ¢, — a € [—¢, €] eventually for any € > 0,
which is our desired result.
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Note that if the m does not divide n, we may also encode the length of the sequence of encoded
words in each block of length m; in particular, if the block begins with a 0, it encodes m symbols,
while if it begins with a 1, then the next [log;m] bits encode the length of the block. This would
yields an increase in the expected length of the code to

< 2n + [logy m]|

n
Ep[lc(X1:0)] < + —H(X1,..., Xm).
m m
Dividing by n and letting n — oo gives the result, as we can always choose m large. O

2.5 Bibliography

The material in this chapter is classical in information theory. For all of our treatment of mutual
information, entropy, and KL-divergence in the discrete case, Cover and Thomas provide an es-
sentially complete treatment in Chapter 2 of their book [53]. Gray [94] provides a more advanced
(measure-theoretic) version of these results, with Chapter 5 covering most of our results (or Chap-
ter 7 in the newer addition of the same book). Csiszar and Korner [55] is the classic reference for
coding theorems and results on communication, including stronger converse results.

The f-divergence was independently discovered by Ali and Silvey [4] and Csiszar [54], and is
consequently sometimes called an Ali-Silvey divergence or Csiszar divergence. Liese and Vajda [131]
provide a survey of f-divergences and their relationships with different statistical concepts (taking
a Bayesian point of view), and various authors have extended the pairwise divergence measures to
divergence measures between multiple distributions [98], making connections to experimental design
and classification [89, 70|, which we investigate later in book. The inequalities relating divergences
in Section 2.2.4 are now classical, and standard references present them [127, 167]. For a proof that
equality (2.2.4) is equivalent to the definition (2.2.3) with the appropriate closure operations, see
the paper [70, Proposition 1]. We borrow the proof of the upper bound in Proposition 2.2.10 from
the paper [132].

2.6 Exercises

Our first few questions investigate properties of a divergence between distributions that is weaker
than the KL-divergence, but is intimately related to optimal testing. Let P, and P» be arbitrary
distributions on a space X. The total variation distance between P; and P is defined as

[P — Pslpy := sup |[P1(A) — P (A)].
Acx

Exercise 2.1: Prove the following identities about total variation. Throughout, let P, and P»
have densities p; and ps on a (common) set X.

() 2|P1 = Pallpy = [ [p1(z) — p2(2)|dz.

(b) For functions f : X — R, define the supremum norm | f||,, = sup,cy |f(x)|. Show that
2P — Pollpy = supjp <1 [y f(2)(p1(z) — p2(2))dz.

(©) Py~ Pally = [ max{pi(2), pala) }dar — 1.
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(@) [P = Pllyy = 1~ [ min{p; (x), pa(a) }da

(e) For functions f,g: X — R,

inf{/f(x)pl(x)d:EJr /g(fv)pz(w)dx tf+g>1,f>0,g2 0} =1—||P = Polpy -

Exercise 2.2 (Divergence between multivariate normal distributions):  Let P, be N(6;,%) and
P, be N(02,X), where 3 > 0 is a positive definite matrix. What is Dy (Py|Ps)?

Exercise 2.3 (The optimal test between distributions):  Prove Le-Cam’s inequality: for any
function ¢ with dom D X and any distributions P, P,

Pi(p(X) # 1) + Po(p(X) # 2) 21— [[PL = Polpy -

Thus, the sum of the probabilities of error in a hypothesis testing problem, where based on a sample
X we must decide whether P; or P, is more likely, has value at least 1 — ||P; — P|py. Given Py
and P is this risk attainable?

Exercise 2.4: A random variable X has Laplace(\, ) distribution if it has density p(z) =
% exp(—A|lz—p|). Consider the hypothesis test of P; versus P, where X has distribution Laplace(A, p1)
under P; and distribution Laplace(\, pu2) under P, where p1 < po. Show that the minimal value
over all tests ¥ of P; versus P; is

it (PL(6(X) # 1)+ Pa(6(X) £ 2} =oxp (5l — ]

Exercise 2.5 (Log-sum inequality): Let ai,...,a, and by,...,b, be non-negative reals. Show
that . .
a; anl a;
a;log — > ( a') log = .
2mboey 2\ e

(Hint: use the convexity of the function x — —log(z).)

Exercise 2.6: Given quantizers g; and g2, we say that g; is a finer quantizer than g, under the
following condition: assume that g; induces the partition Aq,..., A, and gs induces the partition
By, ..., By; then for any of the sets B;, there are exists some k and sets A4; ,...,A;, such that
B; = U;?:lAz'j- We let g1 < go denote that g1 is a finer quantizer than gs. Prove

(a) Finer partitions increase the KL divergence: if g1 < g,
D (P|Q ] g2) < D (P|Q | g1)-

(b) If X is discrete (so P and @ have p.m.f.s p and ¢) then

~—

Du (P|Q) = ;pm) log %

Exercise 2.7 (f-divergences generalize standard divergences): Show the following properties of
f-divergences:
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(a) If f(t) = |t = 1|, then Dy (P|Q) = 2[|P = Q| ry-
(

b) If (t) = tlogt, then D; (P]Q) = Dy (P|Q).

) If f

)

(c) If f(t) = tlogt —logt, then Dy (P|Q) = D (P|Q) + Dy (Q[ P).
)

d) For any convex f satisfying f(1) =0, D, (P|Q) > 0. (Hint: use Jensen’s inequality.
f

Exercise 2.8 (Generalized “log-sum” inequalities): Let f : Ry — R be an arbitrary convex
function.
(a) Let aj,b;,i =1,...,n be non-negative reals. Prove that

(Se)s(Em) =2 (3)

(b) Generalizing the preceding result, let @ : X — Ry and b : X — Ry, and let u be a finite
measure on X with respect to which a is integrable. Show that

fb<z>du<x>> b(x)

axdu:vf( S/amfdux.

[ swios (Fagiaue) = J 0 (s ) o

If you are unfamiliar with measure theory, prove the following essentially equivalent result: let
uw: X — Ry satisfy [u(z)dz < co. Show that

whenever [ a(z)u(z)dz < oo. (It is possible to demonstrate this remains true under appropriate
limits even when [ a(z)u(z)dz = 400, but it is a mess.)

(Hint: use the fact that the perspective of a function f, defined by h(x,t) = tf(x/t) for t > 0, is
jointly convex in x and ¢ (see Proposition B.3.12).

Exercise 2.9 (Data processing and f-divergences I): As with the KL-divergence, given a quantizer
g of the set X, where ¢ induces a partition Aq,..., A, of X, we define the f-divergence between

P and @ conditioned on g as
(A0 _ S oot (Pl 1)
) - 2 QT (@6

Given quantizers g1 and go, we say that g; is a finer quantizer than g under the following condition:
assume that g; induces the partition Aq,..., A, and gs induces the partition By,..., B,,; then for
any of the sets B;, there are exists some k and sets A;,..., A4;, such that B; = Ug’?:lAij. We let
g1 < g2 denote that g; is a finer quantizer than gs.

D (PIQ | 9) = > QA f (g

i=1

(a) Let g1 and g2 be quantizers of the set X', and let g; < g2, meaning that g; is a finer quantization
than go. Prove that

Dy (P|Q | g2) < Dy (P|Q [ g1) -
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Equivalently, show that whenever A and B are collections of sets partitioning X', but A is a
finer partition of X than B, that

P(B) P(A)
an)r (pp)) < X ewis (o)-
Bz:eg Q(B) ; Q(A)
(Hint: Use the result of Question 2.8(a)).
(b) Suppose that X is countable (or finite) so that P and @ have p.m.f.s p and ¢. Show that
- PW)
Dy (P10 = S ().

where on the left we are using the partition definition (2.2.3); you should show that the partition
into discrete parts of X achieves the supremum. You may assume that X’ is finite. (Though
feel free to prove the result in the case that X is infinite.)

Exercise 2.10 (General data processing inequalities):  Let f be a convex function satisfying
f(1) = 0. Let K be a Markov transition kernel from X to Z, that is, K(-,z) is a probability
distribution on Z for each x € X'. (Written differently, we have X — Z, and conditioned on X = z,
Z has distribution K (-, x), so that K(A,x) is the probability that Z € A given X = x.)

(a) Define the marginals Kp(A) = [ K(A,z)p(z)dz and Ko(A) = [ K(A, z)g(x)dz. Show that
Dy (Kp|Kq) < Dy (P|Q).

Hint: by equation (2.2.3), w.l.o.g. we may assume that Z is finite and Z = {1,...,m}; also
recall Question 2.8.

(b) Let X and Y be random variables with joint distribution Pxy and marginals Px and Py.
Define the f-information between X and Y as

If(X;Y) = Df (ny”PX X Py) .

Use part (a) to show the following general data processing inequality: if we have the Markov
chain X - Y — Z, then
It(X; 7)) < Ip(X;Y).
Exercise 2.11 (Convexity of f-divergences): Prove Proposition 2.2.11. Hint: Use Question 2.8.

Exercise 2.12 (Variational forms of KL divergence): Let P and @ be arbitrary distributions on a
common space X. Prove the following variational representation, known as the Donsker-Varadhan
theorem, of the KL divergence:

Dy (P|Q)=  sup  {Ep[f(X)] - logEqlexp(f(X))]}.
FEqlef(X)]<oo

You may assume that P and @ have densities.
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Exercise 2.13: Let P and () have densities p and ¢ with respect to the base measure p over the
set X. (Recall that this is no loss of generality, as we may take y = P + @.) Define the support
supp P := {z € X : p(x) > 0}. Show that

1

Dy (P|Q) = log Qupp P’

Exercise 2.14: Let P; be N(01,%1) and P, be N(62,%53), where ¥; > 0 are positive definite
matrices. Give Dy (Py|P2).

Exercise 2.15: Let {P,},cy be an arbitrary collection of distributions on a space X and p be a
probability measure on V. Show that if V' ~ p and conditional on V = v, we draw X ~ P,, then

(a) I(X;V) = [ D (Py|P) di(v), where P = [ P,du(v) is the (weighted) average of the P,. You
may assume that V is discrete if you like.

(b) For any distribution @ on X, I(X;V) = [ Du(P,|Q)du(v) — D (P|Q). Conclude that
I(X;V) < [ Dy (P,|Q) du(v), or, equivalently, P minimizes [ Dy (P,|Q) dp(v) over all prob-
abilities Q.

Exercise 2.16 (The triangle inequality for variation distance): Let P and @ be distributions
on X' = (Xy,...,X,) € &", and let B5(- | 2'71) be the conditional distribution of X; given
X; ' =21 (and similarly for ;). Show that

1P~ Qlry < Y B[R 16— Qi 1 XE )y ]

i=1
where the expectation is taken over X {_1 distributed according to P.
Exercise 2.17: Let h(p) = —plogp — (1 — p) log(1 — p). Show that h(p) > 2log2 - min{p, 1 — p}.
Exercise 2.18 (Lin [132], Theorem 8):  Let h(p) = —plogp — (1 — p)log(1l — p). Show that

h(p) < 2log2-/p(1 - p).

Exercise 2.19 (Proving Pinsker’s inequality via data processing): ~We work through a proof of
Proposition 2.2.8.(a) using the data processing inequality for f-divergences (Proposition 2.2.13).

(a) Define Dy (p|q) = plog% + (1 —p)log %:Z. Argue that to prove Pinsker’s inequality (2.2.10),

it is enough to show that (p — ¢)* < Di (pg).

(b) Define the negative binary entropy h(p) = plogp + (1 — p)log(1 — p). Show that
h(p) = h(q) + 1 (a)(p — @) + 2(p — )
for any p,q € [0, 1].

(c) Conclude Pinsker’s inequality (2.2.10).

‘ JCD Comment: Below are a few potential questions
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Exercise 2.20: Use the paper “A New Metric for Probability Distributions” by Dominik Endres
and Johannes Schindelin to prove that if V' ~ Uniform{0,1} and X | V = v ~ P,, then \/I(X;V)

is a metric on distributions. (Said differently, Djs (P||Q)1/ % is a metric on distributions, and it
generates the same topology as the TV-distance.)

Exercise 2.21: Relate the generalized Jensen-Shannon divergence between m distributions to
redundancy in encoding.
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Chapter 3

Exponential families and statistical
modeling

Our second introductory chapter focuses on readers who may be less familiar with statistical mod-
eling methodology and the how and why of fitting different statistical models. As in the preceding
introductory chapter on information theory, this chapter will be a fairly terse blitz through the main
ideas. Nonetheless, the ideas and distributions here should give us something on which to hang our
hats, so to speak, as the distributions and models provide the basis for examples throughout the
book. Exponential family models form the basis of much of statistics, as they are a natural step
away from the most basic families of distributions—Gaussians—which admit exact computations
but are brittle, to a more flexible set of models that retain enough analytical elegance to permit
careful analyses while giving power in modeling. A key property is that fitting exponential family
models reduces to the minimization of convex functions—convex optimization problems—an oper-
ation we treat as a technology akin to evaluating a function like sin or cos. This perspective (which
is accurate enough) will arise throughout this book, and informs the philosophy we adopt that once
we formulate a problem as convex, it is solved.

3.1 Exponential family models

We begin by defining exponential family distributions, giving several examples to illustrate a few
of their properties. There are three key objects when defining a d-dimensional exponential family
distribution on an underlying space X: the sufficient statistic ¢ : X — R representing what we
model, a canonical parameter vector € R?, and a carrier h: X — R..

In the discrete case, where X is a discrete set, the exponential family associated with the
sufficient statistic ¢ and carrier h has probability mass function

po(x) = h(z)exp ((0, ¢(z)) — A(0)),
where A is the log-partition-function, sometimes called the cumulant generating function, with
A(0) :=1log Y _ h(z) exp((6, (x)))-
TEX

In the continuous case, py is instead a density on X C R*, and py takes the identical form above
but

A(6) = log /X h(z) exp((6, 6(x)))dz.
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We can abstract away from this distinction between discrete and continuous distributions by making
the definition measure-theoretic, which we do here for completeness. (But recall the remarks in
Section 1.3.)

With our notation, we have the following definition.

Definition 3.1. The exponential family associated with the function ¢ and base measure p is
defined as the set of distributions with densities pg with respect to u, where

po(x) = exp ((0, ¢(x)) — A(0)), (3.1.1)

and the function A is the log-partition-function (or cumulant function)

A(6) = log /X exp (6, 6(x))) du(z) (3.1.2)

whenever A is finite (and is +oo otherwise). The family is regular if the domain
O:={0] A(F) < =}
18 open.

In Definition 3.1, we have included the carrier h in the base measure i, and frequently we will give
ourselves the general notation

po(x) = h(z) exp((0, o(x)) — A(0)).

In some scenarios, it may be convient to re-parameterize the problem in terms of some function
n(f) instead of @ itself; we will not worry about such issues and simply use the formulae that are
most convenient.

We now give a few examples of exponential family models.

Example 3.1.1 (Bernoulli distribution): In this case, we have X € {0,1} and P(X =1)=p
for some p € [0, 1] in the classical version of a Bernoulli. Thus we take p to be the counting
measure on {0, 1}, and by setting 6 = log ﬁ to obtain a canonical representation, we have

P(X =x) = p(x) = p*(1 = p)' ™" = exp(zxlogp — zlog(1 — p))

= exp (x log 1 ﬁp + log(1 —p)> = exp (m@ —log(1 + 60)> .

The Bernoulli family thus has log-partition function A(f) = log(1 + €?). ©

Example 3.1.2 (Poisson distribution): The Poisson distribution (for count data) is usually
parameterized by some A > 0, and for z € N has distribution Py(X = z) = (1/z!)A%e~ A. Thus
by taking u to be counting (discrete) measure on {0, 1,...} and setting § = log \, we find the
density (probability mass function in this case)

— 1 T —>\_ 1 _ 0 1
p(x) = a)\ e " =exp(rlog\ — )\)9 = exp(zf — e )E

Notably, taking h(z) = (2!)~! and log-partition A(#) = €Y, we have probability mass function
po(x) = h(zx)exp(fzx — A(0)). <
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Example 3.1.3 (Normal distribution, mean parameterization): For the d-dimensional normal
distribution, we take p to be Lebesgue measure on R?. If we fix the covariance and vary only
the mean g in the family N(u, X), then X ~ N(u, X) has density

1 1
pu(x) = exp <—2(x — ) N — ) — 3 log det(27r2)> .
Setting h(x) = —%xTZflzL‘ and reparameterizing # = X7, we obtain

1 1 1
po(x) = exp (—2xT21x ~3 log det(27r2)> exp (a;TH - 20T29> .

=:h(z)

In particular, we have carrier h(z) = exp(—%:1:1—2_133)/((27r)d/2 det(X)), sufficient statistic
¢(x) = z, and log partition A(0) = %HTE*W. o

Example 3.1.4 (Normal distribution): TLet X ~ N(u,X). We may re-parameterize this as
as © = X! and = !y, and we have density

polo) sexp ((6.0) - 5as".0) )

where (-, -) denotes the Euclidean inner product. See Exercise 3.1. <

In some cases, it is analytically convenient to include a few more conditions on the exponential
family.

Definition 3.2. Let {Py}pco be an exponential family as in Definition 3.1. The sufficient statistic
¢ is minimal if © = dom A C R? is full-dimensional and there exists no vector u such that

(u,d(x)) is constant p-almost surely.

Definition 3.2 is essentially equivalent to stating that ¢(x) = (¢1(z), ..., ¢4(x)) has linearly inde-
pendent components when viewed as vectors [¢;(x)]zex. While we do not prove this, via a suitable
linear transformation—a variant of Gram-Schmidt orthonormalization—one may modify any non-
minimal exponential family {Fy} into an equivalent minimal exponential family {Q,}, meaning
that the two collections satisfy the equality {Py} = {Qy} (see Brown [39, Chapter 1]).

3.2 Why exponential families?

There are many reasons for us to study exponential families. The first major reason is their
analytical tractability: as the normal distribution does, they often admit relatively straightforward
computation, therefore forming a natural basis for modeling decisions. Their analytic tractability
has made them the objects of substantial study for nearly the past hundred years; Brown [39]
provides a deep and elegant treatment. Moreover, as we see later, they arise as the solutions to
several natural optimization problems on the space of probability distributions, and they also enjoy
certain robustness properties related to optimal Bayes’ procedures (there is, of course, more to
come on this topic).
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Here, we enumerate a few of their key analytical properties, focusing on the cumulant generating
(or log partition) function A(f) = log [ e!®?(@))dy(x). We begin with a heuristic calculation, where
we assume that we exchange differentiation and integration. Assuming that this is the case, we
then obtain the important expectation and covariance relationships that

1

_ /Vee 0.0 dpy(a /¢ PN A0 4y () = Bg[p(X)]

because e(?:¢(@))—A(0)

calculation gives

= py(x). A completely similar (and still heuristic, at least at this point)

V2A(9) = Eg[¢(X)p(X) "] — Eg[6(X)|Eg[¢(X)] " = Covy(¢(X)).

That these identities hold is no accident and is central to the appeal of exponential family models.

The first and, from our perspective, most important result about exponential family models is
their convexity. While (assuming the differentiation relationships above hold) the differentiation
identity that V2A(f) = Covy(4(X)) = 0 makes convexity of A immediate, one can also provide a
direct argument without appealing to differentiation.

Proposition 3.2.1. The cumulant-generating function 0 — A(0) is convez, and it is strictly convex
if and only if Covg(p(X)) is positive definite for all @ € dom A.

Proof Let 8y = A\0;+ (1 — )02, where 01,65 € ©. Then 1/A > 1and 1/(1—X) > 1, and Holder’s

inequality implies

log / exp({0, 6(2)))dp(x) = log / exp((01, 6(z)))* exp((Ba, () dp(z)
1—X

<o | exp<<el,¢<x>>>?du<x>)A ([ etz o0 P aute))
— Mog [ exp((61,6(a)))dia) + (1~ Nlog [ exp((6a, 6(a))du(a),

as desired. The strict convexity will be a consequence of Proposition 3.2.2 to come, as there we
formally show that V2A(0) = Covy(p(X)). O

We now show that A(6) is indeed infinitely differentiable and how it generates the moments of
the sufficient statistics ¢(z). To describe the properties, we provide a bit of notation related to
tensor products: for a vector z € R%, we let

% =r0re---Qu
—_—

k times
denote the kth order tensor, or multilinear operator, that for vy, ..., v, € R? satisfies
k
e (v, o) = (o) - (o) = H(a:,vi>.
i=1

48



Lexture Notes on Statistics and Information Theory John Duchi

When k = 2, this is the familiar outer product 22 = zx . (More generally, one may think of 2®
asa dxdx---xdbox, where the (i,...,i) entry is [z ®k]”,_,,ﬂk = x;, - -+ T;,.) With this notation,
our first key result regards the differentiability of A, where we can compute (all) derivatives of eA®)
by interchanging integration and differentiation.

Proposition 3.2.2. The cumulant-generating function 0 — A(0) is infinitely differentiable on the
interior of its domain © := {f € R : A() < co}. The moment-generating function

M(6) = / exp({8, 6(x)))dp(z)

is analytic on the set Oc¢ := {z € C? | Rez € ©}. Additionally, the derivatives of M are computed
by passing through the integral, that is,

v’gM(e)zv’g/ 0:0(=)) g /vk 0:0@) qpu ()
= [ 6(0)* exp((6, 0(a)du(a).
The proof of the proposition is involved and requires complex analysis, so we defer it to Sec. 3.6.1.

As particular consequences of Proposition 3.2.2, we can rigorously demonstrate the expectation
and covariance relationships that

VAW) = s | T ) = [ o@pete)iuta) = Ealo(x)

and

. _ o

= Ee[¢(X)¢(X) ] - Ee[¢(X)]Ee[¢(X)]T
= Covg(o(X)).

Minimal exponential families (Definition 3.2) also enjoy a few additional regularity properties.
Recall that A is strictly convez if

ANy + (1 = N)B1) < MA(Op) + (1 — N)A(6,)
whenever \ € (0,1) and 6, 60; € dom A. We have the following proposition.

Proposition 3.2.3. Let {Py} be a reqular exponential family. The log partition function A is
strictly convex if and only if { Py} is minimal.

Proof If the family is minimal, then Varg(u' ¢(X)) > 0 for any vector u, while Varg(u' (X)) =
u"V2A(#)u. This implies the strict positive definiteness V2A(f) = 0, which is equivalent to strict
convexity (see Corollary B.3.2 in Appendix B.3.1). Conversely, if V2A(#) = 0 for all § € ©, then
Varg(u'¢(X)) > 0 for all u # 0 and so u' ¢(x) is non-constant in . O
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3.2.1 Fitting an exponential family model

The convexity and differentiability properties make exponential family models especially attractive
from a computational perspective. A major focus in statistics is the convergence of estimates of
different properties of a population distribution P and whether these estimates are computable.
We will develop tools to address the first of these questions, and attendant optimality guarantees,
throughout this book. To set the stage for what follows, let us consider what this entails in the
context of exponential family models.

Suppose we have a population P (where, for simplicity, we assume P has a density p), and for
a given exponential family P with densities {py}, we wish to find the model closest to P. Then it
is natural (if we take on faith that the information-theoretic measures we have developed are the
“right” ones) find the distribution Py € P closest to P in KL-divergence, that is, to solve

- _ p(z)
minimize Dy (P|Fy) = /p(a:) log pg(x)dm’ (3.2.1)

This is evidently equivalent to minimizing

- /p(fﬁ) log pg(z)dz = /p(fv) [—(0,¢(2)) + A(0)] dx = —(0,Ep[p(X)]) + A(0).

This is always a convex optimization problem (see Appendices B and C for much more on this), as A
is convex and the first term is linear, and so has no non-global optima. Here and throughout, as we
mention in the introductory remarks to this chapter, we treat convex optimization as a technology:
as long as the dimension of a problem is not too large and its objective can be evaluated, it is
(essentially) computationally trivial.

Of course, we never have access to the population P fully; instead, we receive a sample
X1,...,X, from P. In this case, a natural approach is to replace the expected (negative) log
likelihood above with its empirical version and solve

n

minimize — D logpe(Xi) = > [—(0,¢(X:)) + A(0)], (3.2.2)
=1

i=1

which is still a convex optimization problem (as the objective is convex in #). The maximum
likelihood estimate is any vector 6,, minimizing the negative log likelihood (3.2.2), which by setting
gradients to 0 is evidently any vector satisfying

VA®L) =B [0(X)] = - > 6(X). (3:23)
=1

In particular, we need only find a parameter 5,1 matching moments of the empirical distribution
of the observed X; ~ P. This 6, is unique whenever Covg(¢(X)) > 0 for all 6, that is, when
the covariance of ¢ is full rank in the exponential family model, because then the objective in the
minimization problem (3.2.2) is strictly convex.

Let us proceed heuristically for a moment to develop a rough convergence guarantee for the
estimator 6,; the next paragraph assumes a comfort with some of classical asymptotic statistics
(and the central limit theorem) and is not essential for what comes later. Then we can see how
minimizers of the problem (3.2.2) converge to their population counterparts. Assume that the data
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X; are i.i.d. from an exponential family model Py«. Then we expect that the maximum likelihood
estimate 6,, should converge to 6*, and so

-~ Z P(X 0n) = VA(6") + (V?A(6*) + 0(1)) (6, — 6.
But of course, VA(6*) = Egp«[¢(X)], and so the central limit theorem gives that

— Z — VA(6*)) ~ N (0,7~ Cove- (6(X))) = N (0,2~ VZA(6")),

where ~ means “is approximately distributed as.” Multiplying by (VZA(6*)+0(1))~! ~ V2A(6*)?
we thus see (still working in our heuristic)

B~ " = (V2A0°) + o)1 2 S(0(x) — va(0)

i=1
~N(0,n7! - V2A(ON) ), (3.2.4)
where we use that BZ ~ N(0, BXBT) if Z ~ N(0,%). (It is possible to make each of these steps
fully rigorous.) Thus the cumulant generating function A governs the error we expect in 6, — 6*.
Much of the rest of this book explores properties of these types of minimization problems: at
what rates do we expect 6, to converge to a global minimizer of problem (3.2.1)? Can we show

that these rates are optimal? Is this the “right” strategy for choosing a parameter? Exponential
families form a particular working example to motivate this development.

3.3 Divergence measures and information for exponential families

Their nice analytic properties mean that exponential family models also play nicely with the in-
formation theoretic tools we develop. Indeed, consider the KL-divergence between two exponential
family distributions Py and Py, where A € R%. Then we have

D (Py|Pora) =Eo [(8, 6(X)) — A(0) — (6 + A, (X)) + A(6 + A)]
= A0+ A) — A(0) — Eo[(A, ¢(X))]
— A0+ A)— AB) — VA®B)TA.

Similarly, we have

Dy (PyralPp) = Eova [(0 4+ A, 6(X)) — A(0 + A) — (0, ¢(X)) + A(0)]
= A(0) — A(6 + A) + Egra[(A, 6(X))]
= A9) — A+ A)—VABO+A)T(—A).

These identities give an immediate connection with convexity. Indeed, for a differentiable convex
function h, the first-order divergence associated with h is

Dy (u,v) = h(u) — h(v) — (Vh(v),u —v), (3.3.1)

which is always nonnegative, and is the gap between the linear approximation to the (convex)
function h and its actual value. In much of the statistical and machine learning literature, the
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divergence (3.3.1) is called a Bregman divergence, though we will use the more evocative first-
order divergence. These will appear frequently throughout the book and, more generally, appear
frequently in work on optimization and statistics.

JCD Comment: Put in a picture of a Bregman divergence ‘

We catalog these results as the following proposition.

Proposition 3.3.1. Let {Fy} be an exponential family model with cumulant generating function
A(0). Then

Dy (Pg”P9+A> = DA(9 +A,0) and Dy (Pg_,_AHPQ) = DA(Q, 0+ A)

Additionally, there exists a t € [0,1] such that

Dit (Po|Pros) = SATV? A0+ 14)A,
and similarly, there exists a t € [0, 1] such that

Dy (PoyalPo) = %ATVQA(Q +tA)A.

Proof We have already shown the first two statements; the second two are applications of Tay-
lor’s theorem. O

When the perturbation A is small, that A is infinitely differentiable then gives that
L To2 3
Dy (Bo[Pora) = 5A VZAWB)A + O(J|A]%),

so that the Hessian V2 A(#) tells quite precisely how the KL divergence changes as 6 varies (locally).
As we saw already in Example 2.3.2 (and see the next section), when the KL-divergence between
two distributions is small, it is hard to test between them, and in the sequel, we will show converses
to this. The Hessian V2A(6*) also governs the error in the estimate 6, — 6* in our heuristic (3.2.4).
When the Hessian V2A(6) is quite positive semidefinite, the KL divergence Dy (Py|Ps,a) is large,
and the asymptotic covariance (3.2.4) is small. For this—and other reasons we address later—for
exponential family models, we call

V2A(0) = Covg(p(X)) = Eg[V log pe(X)V log pa(X)T] (3.3.2)

the Fisher information of the parameter 6 in the model {Py}.

3.4 Generalized linear models and regression

We can specialize the general modeling strategies that exponential families provide to more directly
address prediction problems, where we wish to predict a target Y € ) given covariates X € X.
Here, we almost always have that Y is either discrete or continuous with ) C R. In this case, we
have a sufficient statistic ¢ : X x J — R?, and we model Y | X = z via the generalized linear model
(or conditional exponential family model) if it has density or probability mass function

poly | @) = exp (6, ) 70— A@ | 2)) hly), (3.4.1)
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where as before h is the carrier and (in the case that ) C R¥)

A0 7) = log / exp(é(z, ) T0)h(y)dy

or, in the discrete case,
A0 | x) logZexp z,y) 0)h(y).

The log partition function A(- | x) prov1des the same insights for the conditional models (3.4.1)
as it does for the unconditional exponential family models in the preceding sections. Indeed, as
in Propositions 3.2.1 and 3.2.2, the log partition A(- | ) is always C*> on its domain and convex.
Moreover, it gives the expected moments of the sufficient statistic ¢ conditional on z, as

A0 [ z) = Eg[op(X,Y) | X = a,

from which we can (typically) extract the mean or other statistics of ¥ conditional on z.

Three standard examples will be our most frequent motivators throughout this book: linear
regression, binary logistic regression, and multiclass logistic regression. We give these three, as
well as describing two more important examples involving modeling count data through Poisson
regression and making predictions for targets y known to live in a bounded set.

Example 3.4.1 (Linear regression): In linear regression, we wish to predict Y € R from a
vector X € R?, and assume that Y | X = z follow the normal distribution N(8'x,0?). In this
case, we have

1 1 T )2
= ——(y—z'0
Poly | @) = =5 exp < 52— 0) >
R T 1
= exp <02yx 0 — @9 TT ¢9> exp (—2 2y + - log(27ra )> ,

so that we have the exponential family representation (3.4.1) with qb(a: y) = 12 zy, h(y) =
exp(—ﬁy2 + 3 log(2m0?)), and A(f) = ﬁQTxxTH. As VA0 | z) = Eg[o(X, ) | X = 2] =
%ng[Y | X = ], we easily recover Bg[Y | X =z] =0T2. ©

Frequently, we wish to predict binary or multiclass random variables Y. For example, consider
a medical application in which we wish to assess the probability that, based on a set of covariates
r € R? (say, blood pressure, height, weight, family history) and individual will have a heart attack
in the next 5 years, so that ¥ = 1 indicates heart attack and ¥ = —1 indicates not. The next
example shows how we might model this.

Example 3.4.2 (Binary logistic regression): If Y € {—1,1}, we model

exp(yz ' 0)

po(y | x) = W’

where the idea in the probability above is that if "6 has the same sign as y, then the large
z T 0y becomes the higher the probability assigned the label y; when z "0y < 0, the probability
is small. Of course, we always have pg(y | ) + pg(—y | ) = 1, and using the identity

yz' 6 —log(1+ exp(yz'0)) = ;— 0 —log(1 + exp(z'0))
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we obtain the generalized linear model representation ¢(z,y) = yTHx and A(0 | z) = log(1 +
exp(z'9)).
As an alternative, we could represent Y € {0,1} by

Poly | 2) = exp(ya ')

T z'h
— DT D 0 —log(1 )
1 + eXp(xTQ) eXp <yw Og( + € ) )

which has the simpler sufficient statistic ¢(z,y) = zy. <

Instead of a binary prediction problem, in many cases we have a multiclass prediction problem,
where we seek to predict a label Y for an object z belonging to one of k different classes. For
example, in image recognition, we are given an image x and wish to identify the subject Y of the
image, where Y ranges over k classes, such as birds, dogs, cars, trucks, and so on. This too we can
model using exponential families.

Example 3.4.3 (Multiclass logistic regression): In the case that we have a k-class prediction
problem in which we wish to predict Y € {1,...,k} from X € RY we assign parameters
0, € R? to each of the classes y = 1,..., k. We then model

k
exp(@Jaz) T 0T x
po(y | x) = =exp |0,z —log e’i
S expieye) O\ 2

Here, the idea is that if HJ x> 9]-Tac for all j # y, then the model assigns higher probability to
class y than any other class; the larger the gap between 9; r and HJT:U, the larger the difference
in assigned probabilities. <

Other approaches with these ideas allow us to model other situations. Poisson regression models
are frequent choices for modeling count data. For example, consider an insurance company that
wishes to issue premiums for shipping cargo in different seasons and on different routes, and so
wishes to predict the number of times a given cargo ship will be damaged by waves over a period
of service; we might represent this with a feature vector x encoding information about the ship to
be insured, typical weather on the route it will take, and the length of time it will be in service.
To model such counts Y € {0,1,2,...}, we turn to Poisson regression.

Example 3.4.4 (Poisson regression): When Y € N is a count, the Poisson distribution with
0T

rate A > 0 gives P(Y =y) = 67;)‘21. Poisson regression models A via e’ ¥, giving model

1 T
Poly | x) = yexp (y2To— "),
so that we have carrier h(y) = 1/y! and the simple sufficient statistic y=#. The log partition
function is A(0 | z) = ef'*. O

Lastly, we consider a less standard example, but which highlights the flexibility of these models.
Here, we assume a linear regression problem but in which we wish to predict values Y in a bounded
range.

Example 3.4.5 (Bounded range regression): Suppose that we know Y € [—b, b], but we wish
to model it via an exponential family model with density

poly | z) = exp(yaz' 6 — A0 | 2))1{y € [-b,b]},
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which is non-zero only for —b < y < b. Letting s = = ' # for shorthand, we have

b L1, b
ySd :7|: 8_ _S:|’
/_be y=11¢ e

where the limit as s — 0 is 2b; the (conditional) log partition function is thus

Trie—bGTm

A0 |2y = S8 — 0Tz £0
log(2b) otherwise.

While its functional form makes this highly non-obvious, our general results guarantee that
A(f | x) is indeed C* and convex in . We have VA0 | z) = zE¢[Y | X = z] because
¢(z,y) = zy, and we can therefore immediately recover Eg[Y | X = x]. Indeed, set s = 0 'z,
and without loss of generality assume s # 0. Then

ebs _ efbs b(ebs 4 efbs) 1

0
EY |[270=3s]=—1 - _ 2
Yl sl 0s 8 s ebs — e—bs s’

which increases from —b to b as s = ! 6 increases from —oo to +00. &

3.4.1 Fitting a generalized linear model from a sample

We briefly revisit the approach in Section 3.2.1 for fitting exponential family models in the context
of generalized linear models. In this case, the analogue of the maximum likelihood problem (3.2.2)
is to solve
n n
minimize — ; logpe(Y; | Xi) = ; [—¢>(X,~, )T+ A0 X))

This is a convex optimization problem with C* objective, so we can treat solving it as an (essen-
tially) trivial problem unless the sample size n or dimension d of § are astronomically large. R

As in the moment matching equality (3.2.3), a necessary and sufficient condition for 6,, to
minimize the above objective is that it achieves 0 gradient, that is,

S VAGL | X = Y 6% V),
i=1

i=1

Once again, to find 6, amounts to matching moments, as VA | X;) =E[¢p(X,Y) | X = X;], and
we still enjoy the convexity properties of the standard exponential family models.

In general, we of course do not expect any exponential family or generalized linear model (GLM)
to have perfect fidelity to the world: all models are in accurate (but many are useful!). Nonetheless,
we can still fit any of the GLM models in Examples 3.4.1-3.4.5 to data of the appropriate type. In
particular, for the logarithmic loss ¢(0; x,y) = —log ps(y | ), we can define the empirical loss

1 n
Ln(0) := o Z 0(0; X;,Y;).
i=1

Then, as n — oo, we expect that L, (0) — E[¢(0; X,Y )], so that the minimizing 0 should give the
best predictions possible according to the loss ¢. We shall therefore often be interested in such
convergence guarantees and the deviations of sample quantities (like L,) from their population
counterparts.
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3.5 Lower bounds on testing a parameter’s value

We give a bit of a preview here of the tools we will develop to prove fundamental limits in Part IT of
the book, an hors d’oeuvres that points to the techniques we develop. In Section 2.3.1, we presented
Le Cam’s method and used it in Example 2.3.2 to give a lower bound on the probability of error in
a hypothesis test comparing two normal means. This approach extends beyond this simple case,
and here we give another example applying it to exponential family models.

We give a stylized version of the problem. Let {Py} be an exponential family model with
parameter § € R%. Suppose for some vector v € R%, we wish to test whether v76 >0 or v'6 < 0 in
the model. For example, in the regression settings in Section 3.4, we may be interested in the effect
of a treatment on health outcomes. Then the covariates = contain information about an individual
with first index x1 corresponding to whether the individual is treated or not, while Y measures the
outcome of treatment; setting v = e1, we then wish to test whether there is a positive treatment
effect 61 = e] 0 > 0 or negative.

Abstracting away the specifics of the scenario, we ask the following question: given an exponen-
tial family {Py} and a threshold ¢ of interest, at what separation 6 > 0 does it become essentially
impossible to test

v' o <t versus v’ o >t 467

We give one approach to this using two-point hypothesis testing lower bounds. In this case, we
consider testing sequences of two alternatives

Hy:0 =00 versus Hy, :0 =10,

as n grows, where we observe a sample X" drawn i.i.d. either according to Py, (i.e., Ho) or Py,
(i.e., H1,). By choosing 6, in a way that makes the separation v’ (6,, — ) large but testing Hy
against Hj , challenging, we can then (roughly) identify the separation § at which testing becomes
impossible.

Proposition 3.5.1. Let 0y € R%. Then there exists a sequence of parameters 0, with |6, — 0ol =
O(1y/n), separation
1
v (0, — 6p) = %\/UTVZA(GQ)*U,

inf {5, (W(XT) # 0) + P, (W(X]) # 1)} > 5 +O(n~?),

and for which

Proof Let A € R? be a potential perturbation to #; = 6y + A, which gives separation § =
010 —vTy=vTA. Let Py = Py, and P; = Pp,. Then the smallest summed probability of error
in testing between Py and P; based on n observations X7 is

igf{Po(\P(Xh---’Xn) #0)+ P (V(Xy,...,Xn) # D)} =1~ ||Fy — P"|lpy

by Proposition 2.3.1. Following the approach of Example 2.3.2, we apply Pinsker’s inequal-
ity (2.2.10) and use that the KL-divergence tensorizes to find

2(|Py — Pp||3y < nDiw (Po]Pr) = nDy (Poy | Pay+a) = nDa(f0 + A, 6),

where the final equality follows from the equivalence between KL and first-order divergences for
exponential families (Proposition 3.3.1).
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To guarantee that the summed probability of error is at least 3, that is, [|P} — P}|lpy < 3,
it suffices to choose A satisfying nD4(0p + A, 0y) < % So to maximize the separation v’ A while
guaranteeing a constant probability of error, we (approximately) solve

maximize v'A
subject to DA (6p + A, 6py) < ﬁ

Now, consider that Da(6p + A, 0y) = 1ATV2A(6p)A + O(]|A|?). Ignoring the higher order term,
we consider maximizing v’ A subject to ATVZA(6y)A < % A Lagrangian calculation shows that

this has solution .

90)_1’0.
vIV2A(6p)~ v

With this choice, we have separation § = v'A = /vTV2A(0y) 1v/n, and Da(0p + A,0) =
% + O(1/n3/?). The summed probability of error is at least

1 1
L= |IPf = Py 21—y - + 012 =1 - \/; +O(M) = S+ 0 ?)

as desired. ]

Let us briefly sketch out why Proposition 3.5.1 is the “right” answer using the heuristics in Sec-
tion 3.2.1. For an unknown parameter 6 in the exponential family model Py, we observe X1, ..., X,
and wish to test whether v'6 >t for a given threshold ¢. Call our null Hy : vl < t, and assume
we wish to test at an asymptotic level a > 0, meaning the probability the test falsely rejects Hy is
(as m — 00) is at most a. Assuming the heuristic (3.2.4), we have the approximate distributional
equality

~ . 1 ~
v 0, ~ N <UT9, anVQA(On)_1v> :

Note that we have §n on the right side of the distribution; it is possible to make this rigorous, but
here we target only intuition building. A natural asymptotically level « test is then

T . Reject if 010, >t+ Zl—a\/UTva(é\n)_lv/n
n =
Accept otherwise,

where z1_, is the 1 — a quantile of a standard normal, P(Z > z1_,) = « for Z ~ N(0,1). Let 6y
be such that v 6y = ¢, so Hy holds. Then

Py, (T, rejects) = Py, <\/ﬁ v (B — ) > 210 vTVQA(gn)H)) — a.

At least heuristically, then, this separation § = /v A(fy)~lv/\/n is the fundamental separation
in parameter values at which testing becomes possible (or below which it is impossible).

As a brief and suggestive aside, the precise growth of the KL-divergence Dy (Py,+a|Ps,) =
SATV2A(00)A + O(J|A||?) near 6y plays the fundamental role in both the lower bound and upper
bound on testing. When the Hessian V2A(fp) is “large,” meaning it is very positive definite,
distributions with small parameter distances are still well-separated in KL-divergence, making
testing easy, while when V2A(f) is small (nearly indefinite), the KL-divergence can be small even
for large parameter separations A and testing is hard. As a consequence, at least for exponential
family models, the Fisher information (3.3.2), which we defined as V2A() = Covy(¢(X)), plays a
central role in testing and, as we see later, estimation.
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3.6 Deferred proofs

We collect proofs that rely on background we do not assume for this book here.

3.6.1 Proof of Proposition 3.2.2

We follow Brown [39]. We demonstrate only the first-order differentiability using Lebesgue’s domi-
nated convergence theorem , as higher orders and the interchange of integration and differentiation
are essentially identical. Demonstrating first-order complex differentiability is of course enough to
show that A is analytic.! As the proof of Proposition 3.2.1 does not rely on analyticity of A, we
may use its results. Thus, let © = dom A(-) in R?, which is convex. We assume © has non-empty
interior (if the interior is empty, then the convexity of © means that it must lie in a lower dimen-
sional subspace; we simply take the interior relative to that subspace and may proceed). We claim
the following lemma, which is the key to applying dominated convergence; we state it first for R

Lemma 3.6.1. Consider any collection {01,...,0,,} C O, and let ©g = Conv{6;}", and C C
int ©g. Then for any k € N, there exists a constant K = K(C,k,{0;}) such that for all 0y € C,

|z]|* exp((B0, ) < Kg,tgglcexp(wj,@).

Proof LetB = {u € R?||jul| < 1} be the unit ball in R?. For any € > 0, there exists a K = K (¢)
such that [|z]|® < Kel#ll for all z € R%. As C C int Conv(©y), there exists an ¢ > 0 such that for
all By € C, Oy + 2eB C B¢, and by construction, for any u € B we can write 0y + 2eu = Z;”Zl ;b
for some A € R with 1"\ = 1. We therefore have

lz]|* exp((6o, ) < Hxllksggexp(w() + eu, 7))

= Jll|* exp(e|z]) exp ({8, #)) < K exp(2e ||]]) exp((bo. z))

= K supexp((6y + 2¢eu, x)).
u€B

But using the convexity of ¢t — exp(t) and that 0y + 2eu € Oy, the last quantity has upper bound

sup exp((fo + 2¢eu, 7)) < maxexp((0;,r)).
ueB Jj<m

This gives the desired claim. O

A similar result is possible with differences of exponentials:

Lemma 3.6.2. Under the conditions of Lemma 3.6.1, there exists a K such that for any 0,60y € C

0,x) 0o,x)

ol0) _ o

T < Kmaxel%®,
10 =6l —  s<m

Proof We write

exp((0, z)) — exp({by, z)) _ exp((0 — bp,x)) — 1
16 — 6o 160 — 0ol

exp({bo, 7))

'For complex functions, Osgood’s lemma shows that if A is continuous and holomorphic in each variable individ-
ually, it is holomorphic. For a treatment of such ideas in an engineering context, see, e.g. [92, Ch. 1].
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so that the lemma is equivalent to showing that

070 1] _ ({0, — 00,))

—— < K maxex i —0p,x)).
16— 6ol E

From this, we can assume without loss of generality that 6y = 0 (by shifting). Now note that

by convexity e=* > 1 —a for all a € R, so 1 — e* < |a] when a < 0. Conversely, if a > 0, then

ae® > e% — 1 (note that %(aea) = ae® + e* > %), so dividing by ||z||, we see that

|€<9,x) — 1| < |e<9,x> — 1’ < maX{<97x>e<07x>7 |<07$>|} < e(@,z)

< < < + 1.
161] {l]l (0, z)| (0, z)|
As 0 € C, Lemma 3.6.1 then implies that
el — 1 (0,2) 0,
T <z (€9 + 1) < K max el
g < el (07 1) < Ko
as desired. 0]

With the lemmas in hand, we can demonstrate a dominating function for the derivatives. Indeed,
fix fy € int © and for € ©, define

(6.2) = P20 7)) — xp({b. 7)) — exp({bo, 7)) (z,0 — bo) _ el — ellor) — (vellon) g — g)
T = 16— 6o] - 16— 6o] '

Then limg_g, g(f,x) = 0 by the differentiability of ¢ — e’. Lemmas 3.6.1 and 3.6.2 show that if
we take any collection {0;}72; C © for which 6 € int Conv{6;}, then for C' C int Conv{6;}, there
exists a constant K such that

9(6.0)] < [P ZRURIDL 4 o exp, 1) < B mcexp(85.)

for all € C. As [max;el% " du(x) < Z;-zlfewﬁmdu(x) < 00, the dominated convergence
theorem thus implies that

lim [ g(6, 2)dp(x) =0,

9*)90

and so M (6) = exp(A(0)) is differentiable in 6, as

M(6) = 31(00) + { [ 2 dn(2),6 ~ 0 ) + o(16 ~ tol.
It is evident that we have the derivative

VM) = /Vexp((&,a:))d,u(a:).

Analyticity Over the subset O¢ := {0 +iz | § € ©,2 € R%} (where i = /—1 is the imaginary
unit), we can extend the preceding results to demonstrate that A is analytic on ©¢. Indeed, we
first simply note that for a,b € R, exp(a + ib) = exp(a)exp(ib) and |exp(a + ib)| = exp(a), i.e.
le*| = e* for z € C, and so Lemmas 3.6.1 and 3.6.2 follow mutatis-mutandis as in the real case.
These are enough for the application of the dominated convergence theorem above, and we use that
exp(-) is analytic to conclude that 6 — M (#) is analytic on Oc.
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3.7 Bibliography

3.8 Exercises

Exercise 3.1: In Example 3.1.4, give the sufficient statistic ¢ and an explicit formula for the log
partition function A(¢, ©) so that we can write pg e (z) = exp((0, ¢1(x)) + (O, p2(x)) — A(6,O)).

Exercise 3.2: Consider the binary logistic regression model in Example 3.4.2, and let £(6; x,y) =
—log pp(y | ) be the associated log loss.

(i) Give the Hessian V2/(0;x,y).

(ii) Let (z,v;)™, C R% x {£1} be a sample. Give a sufficient condition for the minimizer of the
empirical log loss

1 n
La(0) = = > (0, )
=1

to be unique that depends only on the vectors {z;}. Hint. A convex function h is strictly
convex if and only if its Hessian V?2h is positive definite.
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Concentration, information, stability,
and generalization
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Chapter 4

Concentration Inequalities

In many scenarios, it is useful to understand how a random variable X behaves by giving bounds
on the probability that it deviates far from its mean or median. This can allow us to give prove
that estimation and learning procedures will have certain performance, that different decoding and
encoding schemes work with high probability, among other results. In this chapter, we give several
tools for proving bounds on the probability that random variables are far from their typical values.
We conclude the section with a discussion of basic uniform laws of large numbers and applications
to empirical risk minimization and statistical learning, though we focus on the relatively simple
cases we can treat with our tools.

4.1 Basic tail inequalities

In this first section, we have a simple to state goal: given a random variable X, how does X
concentrate around its mean? That is, assuming w.l.o.g. that E[X] = 0, how well can we bound

P(X > t)?

We begin with the three most classical three inequalities for this purpose: the Markov, Chebyshev,
and Chernoff bounds, which are all instances of the same technique.
The basic inequality off of which all else builds is Markov’s inequality.

Proposition 4.1.1 (Markov’s inequality). Let X be a nonnegative random variable, meaning that

X >0 with probability 1. Then

P(X >t) < ElX]

t
Proof For any random variable, P(X > t) = E[1{X > t}] < E[(X/t)1{X > t}] < E[X]/t, as
X/t > 1 whenever X > t. O

When we know more about a random variable than that its expectation is finite, we can give
somewhat more powerful bounds on the probability that the random variable deviates from its
typical values. The first step in this direction, Chebyshev’s inequality, requires two moments, and
when we have exponential moments, we can give even stronger results. As we shall see, each of
these results is but an application of Proposition 4.1.1.
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Proposition 4.1.2 (Chebyshev’s inequality). Let X be a random variable with Var(X) < co. Then

Var(X)

Var(X)
12 =

and P(X —E[X] < —t) < 2

P(X — E[X] > t) <

for allt > 0.

Proof We prove only the upper tail result, as the lower tail is identical. We first note that
X —E[X] > t implies that (X —E[X])? > ¢2. But of course, the random variable Z = (X — E[X])?
is nonnegative, so Markov’s inequality gives P(X — E[X] > t) < P(Z > t?) < E[Z]/t?, and
E[Z] = E[(X — E[X])?] = Var(X). O

If a random variable has a moment generating function—exponential moments—we can give
bounds that enjoy very nice properties when combined with sums of random variables. First, we
recall that

ox(\) == E[eM]

is the moment generating function of the random variable X. Then we have the Chernoff bound.

Proposition 4.1.3. For any random variable X, we have

E[B)‘X] B
PX > 1) < — 5= = ox(Ne ™

for all A > 0.

Proof This is another application of Markov’s inequality: for A > 0, we have e*X > e if and
only if X > t, so that P(X > t) = P(e? > eM) < E[eM]/e. O

In particular, taking the infimum over all A > 0 in Proposition 4.1.3 gives the more standard
Chernoff (large deviation) bound

A>

P(X >1t) <exp (in% log ox(A) — /\t) .

Example 4.1.4 (Gaussian random variables): When X is a mean-zero Gaussian variable
with variance o2, we have

ox(A) = E[exp(AX)] = exp ()\20 > . (4.1.1)

To see this, we compute the integral; we have

o 1 1
Elexp(AX)] = / Nore exp (x\:l? — Mﬁ) dx

2202 > 1 1 2 2
=e 2 / exp | —=—5(x — Ao“x)” | dx,
—c0 V2mo? 202

=1

because this is simply the integral of the Gaussian density.
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As a consequence of the equality (4.1.1) and the Chernoff bound technique (Proposition 4.1.3),
we see that for X Gaussian with variance o2, we have

2

t 12
P(X > E[X]+1t) <exp (—w) and P(X <E[X]—t) <exp (—w)
for all £ > 0. Indeed, we have logpx gx)(A) = 222, and infy\ {22 — At} = — b, which is
attained by A = % &

4.1.1 Sub-Gaussian random variables

Gaussian random variables are convenient for their nice analytical properties, but a broader class
of random variables with similar moment generating functions are known as sub-Gaussian random
variables.

Definition 4.1. A random variable X is sub-Gaussian with parameter o2 if

2,2
Elexp(A(X — E[X]))] < exp <)\2 >

for all A € R. We also say such a random variable is o?-sub-Gaussian.

Of course, Gaussian random variables satisfy Definition 4.1 with equality. This would be un-
interesting if only Gaussian random variables satisfied this property; happily, that is not the case,
and we detail several examples.

Example 4.1.5 (Random signs (Rademacher variables)): The random variable X taking
values {—1, 1} with equal property is 1-sub-Gaussian. Indeed, we have

1 1 R LA Ry (5 S LR - CLy O Tl A2
E X)) =er+ e P =22 4 = = < = —
[expAX)] = 57 + 3¢ 2kz_okl +2kz_0 K kz_o(%)! —kZ_O 2k eXp<2>’

as claimed. ©

Bounded random variables are also sub-Gaussian; indeed, we have the following example.

Example 4.1.6 (Bounded random variables): Suppose that X is bounded, say X € [a,b].
Then Hoeffding’s lemma states that

2 2
B[ EXD] < exp <>\ (b8— a) > 7

so that X is (b — a)?/4-sub-Gaussian.

We prove a somewhat weaker statement with a simpler argument, while Exercise 4.1 gives one
approach to proving the above statement. First, let ¢ € {—1,1} be a Rademacher variable,
so that P(e = 1) = P(e = —1) = . We apply a so-called symmetrization technique—a
common technique in probability theory, statistics, concentration inequalities, and Banach
space research—to give a simpler bound. Indeed, let X’ be an independent copy of X, so that

E[X'] = E[X]. We have

px-gx](A) = E [exp(A\(X — E[X"]))] <E [exp(AMX — X))]
=E [exp(Ae(X — X))],
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where the inequality follows from Jensen’s inequality and the last equality is a conseqence of
the fact that X — X’ is symmetric about 0. Using the result of Example 4.1.5,

E [exp(Ae(X — X"))] <E [exp (AQ(X;XI)H < exp <W> )

where the final inequality is immediate from the fact that |[X — X'| <b—a. ¢

While Example 4.1.6 shows how a symmetrization technique can give sub-Gaussian behavior,
more sophisticated techniques involving explicitly bounding the logarithm of the moment generating
function of X, often by calculations involving exponential tilts of its density. In particular, letting
X be mean zero for simplicity, if we let

»(N) = log px (A) = log E[e*],

then
! E[XeM] " E[X?eM]  E[XeM)?
() E[eX] and 97(A) E[e X] E[ X]2

where we can interchange the order of taking expectations and derivatives whenever () is finite.
Notably, if X has density px (with respect to any base measure) then the random variable Y) with

density
e
pa(y) = pr (y)

(with respect to the same base measure) satisfies
¢'(A) =E[Y)] and ¢"(X) = E[YY] — E[Y)]* = Var(Y)).

One can exploit this in many ways, which the exercises and coming chapters do. As a particular
example, we can give sharper sub-Gaussian constants for Bernoulli random variables.

Example 4.1.7 (Bernoulli random variables): Let X be Bernoulli(p), so that X = 1 with
probability p and X = 0 otherwise. Then a strengthening of Hoeffding’s lemma (also, essen-
tially, due to Hoeffding) is that

2 1-2
7w (p) A\ for 02(p) = P

log E[eMX—P)] < S
e El I= QIOgIP%p

Here we take the limits as p — {0, 3,1} and have ¢2(0) = 0, 0(1) = 0, and o%(3) = 1.
Because p +— o2(p) is concave and symmetric about p = %, this inequality is always sharper
than that of Example 4.1.6. Exercise 4.9 gives one proof of this bound exploiting exponential

tilting. <

Chernoff bounds for sub-Gaussian random variables are immediate; indeed, they have the same
concentration properties as Gaussian random variables, a consequence of the nice analytical prop-
erties of their moment generating functions (that their logarithms are at most quadratic). Thus,
using the technique of Example 4.1.4, we obtain the following proposition.

Proposition 4.1.8. Let X be a o?-sub-Gaussian. Then for all t > 0 we have

P(X — E[X] > t) VP(X — E[X] < —t) < exp <_2t;) .
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Chernoff bounds extend naturally to sums of independent random variables, because moment
generating functions of sums of independent random variables become products of moment gener-
ating functions.

Proposition 4.1.9. Let X1, Xs,..., X, be independent J?—sub—Gaussmn random variables. Then

[ - A2 Dot Uz'2
E |exp ()\ > (X - E[X@) < exp <2> for all X € R,
=1

that is, S0 . X; is S . o2-sub-Gaussian.
’ =1 1=1"1

Proof We assume w.l.o.g. that the X; are mean zero. We have by independence that and
sub-Gaussianity that

E [exp <Aix)] = E[exp (A:iXi)}E[exp(AXn)] < exp (AQ;’%> E [exp <A§1X)]

Applying this technique inductively to X,,_1,..., X1, we obtain the desired result. O

Two immediate corollary to Propositions 4.1.8 and 4.1.9 show that sums of sub-Gaussian random
variables concentrate around their expectations. We begin with a general concentration inequality.

Corollary 4.1.10. Let X; be independent o?-sub-Gaussian random variables. Then for all t > 0
n n ")
max P(E(Xi ~E[X;]) > t),P(i;(Xi —~E[X;]) < —t) < exp <_2Z":102> :

Additionally, the classical Hoeffding bound, follows when we couple Example 4.1.6 with Corol-
lary 4.1.10: if X; € [a, b;], then

n

P(Z(Xi - E[X;]) > t> < exp (—M) :

i=1

To give another interpretation of these inequalities, let us assume that X; are indepenent and
o2-sub-Gaussian. Then we have that

IP’(:Z Zn:(xi CEX) > t> < exp (—Zﬁ) ,

i=1

or, for § € (0,1), setting exp(—”—tz) =dort=

\/20%log £

NLD

1 n
- Z(Xi —E[X;]) < with probability at least 1 — 4.
=1

There are a variety of other conditions equivalent to sub-Gaussianity, which we capture in the
following theorem.
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Theorem 4.1.11. Let X be a mean-zero random variable and o > 0 be a constant. The following
statements are all equivalent, meaning that there are numerical constant factors K; such that if one
statement (i) holds with parameter K;, then statement (j) holds with parameter K; < CK;, where
C is a numerical constant.

(1) Sub-gaussian tails: P(|X| > t) < 2exp(—4 ) for allt > 0.

(2) Sub-gaussian moments: E[| X |F]1/F < KQO'\/E for all k.
(3) Super-ezponential moment: Elexp(X?/(K30?))] < e.
(4) Sub-gaussian moment generating function: E[exp(AX)] < exp(KsA\20?) for all X € R.

Particularly, (1) implies (2) with Ki = 1 and Ky < 61 ; (2) implies (3) with Ko = 1 and
K3 =e\/ -2 < 3; (8) implies (4) with K3 =1 and Ky < 3; and (4) implies (1) with Ky = 3 and
K <2

This result is standard in the literature on concentration and random variables, but see Ap-
pendix 4.5.1 for a proof of this theorem.

For completeness, we can give a tighter result than part (3) of the preceding theorem, giving a
concrete upper bound on squares of sub-Gaussian random variables. The technique used in the ex-
ample, to introduce an independent random variable for auxiliary randomization, is a common and
useful technique in probabilistic arguments (similar to our use of symmetrization in Example 4.1.6).

Example 4.1.12 (Sub-Gaussian squares): Let X be a mean-zero o-sub-Gaussian random
variable. Then )

Elexp(AX?)] € ———
[1—202)]2

: (4.1.2)

and expression (4.1.2) holds with equality for X ~ N(0,c?).
To see this result, we focus on the Gaussian case first and assume (for this case) without loss
of generality (by scaling) that 02 = 1. Assuming that \ < %, we have

1 1y, e V2r 1
Elep07) = [ e A= [ e e =

the ﬁnal equality a consequence of the fact that (as we know for normal random variables)
e 37 Py = V2ro2. When \ > 1 , the above integrals are all infinite, giving the equality in
expression (4.1.2).
For the more general inequality, we recall that if Z is an independent N(0, 1) random variable,
then Elexp(tZ)] = exp(%), and so
Elexp(\X2)] = Elexp(v2AX 2)] © E 0 A —
[1—202)]

—+ ol

where inequality (i) follows because X is sub-Gaussian, and inequality (ii) because Z ~ N(0, 1).
<&
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4.1.2 Sub-exponential random variables

A slightly weaker condition than sub-Gaussianity is for a random variable to be sub-exponential,
which—for a mean-zero random variable—means that its moment generating function exists in a
neighborhood of zero.

Definition 4.2. A random variable X is sub-exponential with parameters (72,b) if for all X such
that |\ < 1/b,

2.2
E[e*X XD < exp <)\ T ) .
- 2

It is clear from Definition 4.2 that a o?-sub-Gaussian random variable is (2, 0)-sub-exponential.
A variety of random variables are sub-exponential. As a first example, y2-random variables are
sub-exponential with constant values for 7 and b:

Example 4.1.13: Let X = Z?, where Z ~ N(0,1). We claim that

—_

Elexp(A(X — E[X]))] < exp(2A?) for A < - (4.1.3)

=

Indeed, for A < % we have that
2 2 1 @) 2
Elexp(A(Z* — E[Z7]))] = exp ) log(1—2X) — A ) <exp (A+2)\* = ))

where inequality (i) holds for A < 1, because —log(1 —2X) <2\ +4A? for A < 1. ©

As a second example, we can show that bounded random variables are sub-exponential. It is
clear that this is the case as they are also sub-Gaussian; however, in many cases, it is possible to
show that their parameters yield much tighter control over deviations than is possible using only
sub-Gaussian techniques.

Example 4.1.14 (Bounded random variables are sub- exponential) Suppose that X is a
mean zero random variable taking values in [—b, b] with variance 0> = E[X?] (note that we are
guaranteed that o2 < b? in this case). We claim that

2 2
Efexp(A\X)] < exp (” g

1
< —. N
) for |A| < o (4.1.4)

To see this, note first that for & > 2 we have E[|X|*] < E[X?*~2] = 02b¥=2. Then by an
expansion of the exponential, we find

NE[X?] X AFE[XF] N2 X Neo2bh?
]E[eXp()‘X)]:1+]E[)‘X]+7+ZT§1+ 5 + 7l
k=3 k=3
i )\20.2 /\20.2
-1 AZ 2
+2 + Z k - 2 > "0

inequality (i) holding for A < 5;. Using that 14 x < e” gives the result.
It is possible to give a slightly tlghter result for A > 0 In this case, we have the bound

)\2 5 9 & k 2bk 2 0.2 b
<14+ AL — 1= \b).
Efexp(AX)] < 1+ - + Mo ;3 =1+ <e 1 )\b)
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Then using that 1 + z < e®, we obtain Bennett’s moment generating inequality, which is that
AX o [
E[e**] < exp (112 (e -1- Ab)) for A > 0. (4.1.5)

Inequality (4.1.5) always holds, and for Ab near 0, we have e’ — 1 — \b = %. O
In particular, if the variance 0? < b2, the absolute bound on X, inequality (4.1.4) gives much
tighter control on the moment generating function of X than typical sub-Gaussian bounds based
only on the fact that X € [—b,b] allow.
More broadly, we can show a result similar to Theorem 4.1.11.

Theorem 4.1.15. Let X be a random variable and o > 0. Then—in the sense of Theorem 4.1.11—
the following statements are all equivalent for suitable numerical constants K,..., K4.

(1) Sub-exponential tails: P(|X| > t) < Qexp(fﬁw) forallt >0

(2) Sub-exponential moments: B[| X |F]V/* < Kyok for all k > 1.
(3) Existence of moment generating function: Elexp(X/(K30))] < e.
(4) If, in addition, E[X] = 0, then Elexp(AX)] < exp(K4\20?) for all |\ < K}/o.

In particular, if (2) holds with Ko =1, then (4) holds with K4 = 2¢* and K} = 5.

The proof, which is similar to that for Theorem 4.1.11, is presented in Section 4.5.2.

While the concentration properties of sub-exponential random variables are not quite so nice
as those for sub-Gaussian random variables (recall Hoeffding’s inequality, Corollary 4.1.10), we
can give sharp tail bounds for sub-exponential random variables. We first give a simple bound on
deviation probabilities.

Proposition 4.1.16. Let X be a mean-zero (72, b)-sub-exponential random variable. Then for all
t>0,

1 2
P(X > 1) VP(X < —) < exp (—2mm{g,;}) .
T

Proof The proof is an application of the Chernoff bound technique; we prove only the upper tail
as the lower tail is similar. We have

inequality (i) holding for [A\| < 1/b. To minimize the last term in X, we take A = min{-%,1/b},
which gives the result. ]

Comparing with sub-Gaussian random variables, which have b = 0, we see that Proposition 4.1.16
gives a similar result for small t—essentially the same concentration sub-Gaussian random variables—
while for large ¢, the tails decrease only exponentially in t.

We can also give a tensorization identity similar to Proposition 4.1.9.
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Proposition 4.1.17. Let X4, ..., X, be independent mean-zero sub-exponential random variables,
where X; is (01-2, b;)-sub-exponential. Then for any vector a; € R™, we have

n 2SS 02452 1
E[exp (AZXz) < exp <M> for A< -
i=1 *

2
where b, = max; b;|a;|. That is, {a, X) is (Y1, a?c?, min; ﬁ)—sub—ewponential.

Proof We apply an inductive technique similar to that used in the proof of Proposition 4.1.9.
First, for any fixed i, we know that if |A\| < L, then |a;\| < b%- and so

bi\ai|’

2.2 2
Efexp(Aa;X;)] < exp (AQ") .

Now, we inductively apply the preceding inequality, which applies so long as |\| < b-\1a-| for all 1.
We have
E |exp ()\Z aiXi) = HE[exp()\aiXi)] < Hexp (211) ,
i=1 =1 =1
which is our desired result. O

As in the case of sub-Gaussian random variables, a combination of the tensorization property—
that the moment generating functions of sums of sub-exponential random variables are well-
behaved—of Proposition 4.1.17 and the concentration inequality (4.1.16) immediately yields the
following Bernstein-type inequality. (See also Vershynin [170].)

Corollary 4.1.18. Let X1, ..., X, be independent mean-zero (o2, b;)-sub-exponential random vari-
ables (Definition 4.2). Define b, := max;b;. Then for all t > 0 and all vectors a € R", we
have

" "~ 1 #2 t
P iXi >t | VP X < —t) < — = mi m ; .
<§ >v (g > exp( 2“““{2 0202 b*uanooD

i=1"1"1

It is instructive to study the structure of the bound of Corollary 4.1.18. Notably, the bound
is similar to the Hoeffding-type bound of Corollary 4.1.10 (holding for o?-sub-Gaussian random

variables) that
P( a; X; > t> < exp <—2> )
; 2||all; o

so that for small ¢, Corollary 4.1.18 gives sub-Gaussian tail behavior. For large ¢, the bound is
weaker. However, in many cases, Corollary 4.1.18 can give finer control than naive sub-Gaussian
bounds. Indeed, suppose that the random variables X; are i.i.d., mean zero, and satisfy X; € [—b, b]
with probability 1, but have variance 0% = IE[XZQ] < b? as in Example 4.1.14. Then Corollary 4.1.18

implies that
n
1 5 2 ¢
P a;X;>t) <exp|—-min< = , . 4.1.6
(Sexze) <o (g G s o ) o

=1
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When applied to a standard mean (and with a minor simplification that 5/12 < 1/3) with a; = 1,

we obtain the bound that % Yoy X; <t with probability at least 1 —exp(—n min{?)‘%, ﬁ}). Written
. logi 4blogi .
differently, we take t = max{o1/ 30%, %} to obtain

1< \/3log 5 dplogt | -
— Z X; <max<{ o ) with probability 1 — ¢.
n Vn n

The sharpest such bound possible via more naive Hoeffding-type bounds is b4/2log % /v/n, which
has substantially worse scaling.

Further conditions and examples

There are a number of examples and conditions sufficient for random variables to be sub-exponential.
One common condition, the so-called Bernstein condition, controls the higher moments of a random
variable X by its variance. In this case, we say that X satisfies the b-Bernstein condition if

k!
IE[(X — u)¥]| < 50%’“2 for k =3,4,..., (4.1.7)

where = E[X] and 0? = Var(X) = E[X?] — %, In this case, the following lemma controls
the moment generating function of X. This result is essentially present in Theorem 4.1.15, but it
provides somewhat tighter control with precise constants.

Lemma 4.1.19. Let X be a random variable satisfying the Bernstein condition (4.1.7). Then

2 2

_ Ao
E |:€>\(X N):| S exXp <2(1—())\’)> fO?” |)\| S

1

5

Said differently, a random variable satisfying Condition (4.1.7) is (v/20, b/2)-sub-exponential.
Proof Without loss of generality we assume p = 0. We expand the moment generating function
by noting that

No?2 S NEXF] O N2 NP &
AX7 k—2
E[e*] =1+~ +ZT§1+ >t 3 > |
k=3 k=3
g A2g2 1
2 [1-0bAl,

where inequality (i) used the Bernstein condition (4.1.7). Noting that 142 < e® gives the result. [J

As one final example, we return to Bennett’s inequality (4.1.5) from Example 4.1.14.

Proposition 4.1.20 (Bennett’s inequality). Let X; be independent mean-zero random variables
with Var(X;) = o2 and | X;| < b. Then for h(t) := (1+1t)log(1+t)—t and 0 := > | 02, we have

- N
P<§ Xi2t> < exp (—;h (2)>
ag
=1
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Proof We assume without loss of generality that E[X] = 0. Using the standard Chernoff bound
argument coupled with inequality (4.1.5), we see that

P(i){@tZ) < exp (ii(&b—l—)@ —)\t>.

i=1 =1

Letting h(t) = (1 +t)log(l +t) — ¢ as in the statement of the proposition and o2 = Y"1 o2, we

7

minimize over A > 0, setting A = %log(l + %) Substituting into our Chernoff bound application
gives the proposition. ]

A slightly more intuitive writing of Bennett’s inequality is to use averages, in which case for

02 = 15" 52 the average of the variances,

1 < no? bt
no? bt nt?
—h(=]>—
b \o%) = 202+ 2bt

which gives rise to the classical Bernstein inequality that

P 1ZH:X>t <e nt* (4.1.8)
— P> <exp| ——— 1. 1.
n P 202—1—%bt

=1

It is possible to show that

4.1.3 Orlicz norms

Sub-Gaussian and sub-exponential random variables are examples of a broader class of random
variables belonging to what are known as Orlicz-spaces. For these, we take any convex function
¥Ry — Ry with ¢(0) = 0 and ¥(t) — oo as t T 0o, a class called the Orlicz functions. Then the
Orlicz norm of a random variable X is

1X |, := inf {¢ > 0| E[p(|X]/8)] < 1}. (4.1.9)

That this is a norm is not completely trivial, though a few properties are immediate: clearly
|aX][, = la| [ X[|,, and we have [|X[|, = 0 if and only if X = 0 with probability 1. The key result
is that in fact, [|-[|,, is actually convex, which then guarantees that it is a norm.

Proposition 4.1.21. The function |||, is convez on the space of random variables.

Proof Because v is convex and non-decreasing, = — 1 (|z|) is convex as well. (Convince yourself
of this.) Thus, its perspective transform pers(¢)(t, |x|) := ti(|z|/t) is jointly convex in both ¢t > 0

and z (see Appendix B.3.3). This joint convexity of 1; implies that for any random variables X
and X1 and to,tl,

Elpers(th) (Mo + (1 — A)t1, |AXo + (1 — N)X1])] < AE[pers(t)(to, [ Xol)] + (1 — N E[pers()(t1, | X1])].

Now note that E[o)(|X|/t)] < 1 if and only if tE[¢(|X|/t)] < t. O
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Because |||, is convex and positively homogeneous, we certainly have
X+ Y, = 21X +Y) /2], < [1XI[ly + Y]y,

that is, the triangle inequality holds.
We can recover several standard norms on random variables, including some we have already
implicitly used. The first are the classical LP norms, where we take 1(t) = tP, where we see that

inf{t > 0 | E[|X|P/t"] <1} = E[| X |P)'/*.

We also have what we term the sub-Gaussian and sub-Exponential norms, typically denoted by
considering the functions

Up(x) = exp (Jz[7) — 1.

These induce the Orlicz ¢,-norms, as for p > 1, these are convex (as they are the composition of the
increasing convex function exp(-) applied to the nonnegative convex function |- |). Theorem 4.1.11
shows that we have a natural sub-Gaussian norm

|X |, := inf {t > 0 | Elexp(X?/t*)] < 2}, (4.1.10)
while Theorem 4.1.15 shows a natural sub-exponential norm (or Orlicz 1;-norm)
X1y, := inf {t > 0| Elexp(|X|/t)] < 2} . (4.1.11)

Many relationships follow immediately from the definitions (4.1.10) and (4.1.11). For example,
any sub-Gaussian random variable (whether or not it is mean zero) has a square that is sub-
exponential:

Lemma 4.1.22. A random variable X is sub-Gaussian if and only if X2 is sub-exponential, and

moreover,

1X15, = (127, -

(This is immediate by definition.) By tracing through the arguments in the proofs of Theo-
rems 4.1.11 and 4.1.15, we can also see that an alternative definition of the two norms could
be 1 1

sup —E[| X |¥ /k and sup —E[| X 1/k

keN\/EH i keN k X
for the sub-Gaussian and sub-exponential norms [|X|[,, and [ X]||,,, respectively. They are all
equivalent.

4.1.4 First applications of concentration: random projections

In this section, we investigate the use of concentration inequalities in random projections. As
motivation, consider nearest-neighbor (or k-nearest-neighbor) classification schemes. We have a
sequence of data points as pairs (u;,y;), where the vectors u; € R? have labels y; € {1,...,L},
where L is the number of possible labels. Given a new point u € R% that we wish to label, we find
the k-nearest neighbors to w in the sample {(u;,y;)}l, then assign u the majority label of these
k-nearest neighbors (ties are broken randomly). Unfortunately, it can be prohibitively expensive to
store high-dimensional vectors and search over large datasets to find near vectors; this has motivated
a line of work in computer science on fast methods for nearest neighbors based on reducing the
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dimension while preserving essential aspects of the dataset. This line of research begins with Indyk
and Motwani [112], and continuing through a variety of other works, including Indyk [111] and
work on locality-sensitive hashing by Andoni et al. [6], among others. The original approach is due
to Johnson and Lindenstrauss, who used the results in the study of Banach spaces [117]; our proof
follows a standard argument.

The most specific variant of this problem is as follows: we have n points ui,...,u,, and we
could like to construct a mapping ® : R? — R™, where m < d, such that

[@u; — duj||* € (L £e€) [lug — ]|

Depending on the norm chosen, this task may be impossible; for the Euclidean (¢2) norm, however,
such an embedding is easy to construct using Gaussian random variables and with m = O(}2 logn).
This embedding is known as the Johnson-Lindenstrauss embedding. Note that this size m is
independent of the dimension d, only depending on the number of points n.
Example 4.1.23 (Johnson-Lindenstrauss): Let the matrix ® € R™*? be defined as follows:
;5 7 N(0,1/m),

and let ®; € R? denote the ith row of this matrix. We claim that
8 1) . . 2 2
m > = 2logn + log 5 implies || Pu; — Qu,|; € (1% €) [Jug — u 5

! . . .
05” is sufficient to achieve

for all pairs u;, u; with probability at least 1 —4. In particular, m 2
accurate dimension reduction with high probability.
To see this, note that for any fixed vector wu,

~N(0,1/m), and 22 = Z@’i,u/ ||U”2>2
[[wlly [Jully i=1

is a sum of independent scaled x2-random variables. In particular, we have E[||®u/ Hu||2H§] =1,
and using the y2-concentration result of Example 4.1.13 yields

P([loull3 / l[ul3 = 1| = ) =P (m|Il@ul / Jull} - 1] = me)

9 me>

<2 inf exp (2m/\ — )\me) =2exp|——7],
A<t 8

the last inequality holding for € € [0, 1]. Now, using the union bound applied to each of the

pairs (u;, u;) in the sample, we have

2
P (there exist i £ j .t [||®(w; — uj)||3 — [Jui — ujug‘ > €|lu; — ujug) < 2(2) exp <_m€> .

Taking m > 6% log %2 = % logn + 6% log% yields that with probability at least 1 — §, we have
| ®u; — duyll5 € (1 £ €) [Jui — ujl3. ©

Computing low-dimensional embeddings of high-dimensional data is an area of active research,
and more recent work has shown how to achieve sharper constants [57] and how to use more struc-
tured matrices to allow substantially faster computation of the embeddings ®u (see, for example,
Achlioptas [1] for early work in this direction, and Ailon and Chazelle [3] for the so-called “Fast
Johnson-Lindenstrauss transform”).
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4.1.5 A second application of concentration: codebook generation

We now consider a (very simplified and essentially un-implementable) view of encoding a signal for
transmission and generation of a codebook for transmitting said signal. Suppose that we have a set
of words, or signals, that we wish to transmit; let us index them by i € {1,...,m}, so that there are
m total signals we wish to communicate across a binary symmetric channel (), meaning that given
an input bit € {0,1}, Q outputs a z € {0,1} with Q(Z =z |z)=1—-cand Q(Z =1—x | x) =,
for some € < % (For simplicity, we assume @) is memoryless, meaning that when the channel is
used multiple times on a sequence z1, ..., Ty, its outputs 71, ..., Z, are conditionally independent:
Q(len = Zl:n | xl:n) = Q(Zl = Zz1 | xl) T Q(Zn = Zn | xn))

We consider a simplified block coding scheme, where we for each ¢ we associate a codeword
x; € {0,1}4, where d is a dimension (block length) to be chosen. Upon sending the codeword over
the channel, and receiving some 2™° € {0,1}%, we decode by choosing

i* € argmax Q(Z = 2" | x;) = argmin ||2"z||, , (4.1.12)
1€[m] i€[m
the maximum likelihood decoder. We now investigate how to choose a collection {z1,...,Zm}

of such codewords and give finite sample bounds on its probability of error. In fact, by using
concentration inequalities, we can show that a randomly drawn codebook of fairly small dimension
is likely to enjoy good performance.

Intuitively, if our codebook {z1,...,2,} C {0,1}¢ is well-separated, meaning that each pair of
words x;, x), satisfies ||x; — xx|; > cd for some numerical constant ¢ > 0, we should be unlikely to
make a mistake. Let us make this precise. We mistake word ¢ for word k only if the received signal
Z satisfies || Z — x;||; > ||Z — x|, and letting J = {j € [d] : x;; # zi;} denote the set of at least
¢ - d indices where z; and x; differ, we have

1Z = 2illy > 1 Z = axlly, if and only if > |Z; — xi5] — | Z; — wj| > 0.
jeJ

If x; is the word being sent and x; and x, differ in position j, then |Z; — xi;| — | Z; — x| € {—1,1},
and is equal to —1 with probability (1 — ) and 1 with probability e. That is, we have ||Z — z;||; >
|Z — x|, if and only if

> 125 = wisl = 125 — wgl + | T|(1 = 2€) > | J|(1 = 2€) > ed(1 — 2e),
JjeJ
and the expectation Eq[|Z; — xi;| — |Z; — xkj| | ] = —(1 —2€) when x;; # ;. Using the Hoeffding

bound, then, we have

J|(1 —2¢)? cd(1 — 2¢)?
QUIZ = ail, 2 12 =l [ 3) < xp (U720 ) < (2220,

where we have used that there are at least |J| > ¢d indices differing between z; and zj;. The
probability of making a mistake at all is thus at most mexp(—3cd(1 — 2¢)?) if our codebook has
separation c - d.

For low error decoding to occur with extremely high probability, it is thus sufficient to choose
a set of code words {1, ...,z } that is well separated. To that end, we state a simple lemma.
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Lemma 4.1.24. Let X;, i =1,...,m be drawn independently and uniformly on the d-dimensional
hypercube Hq := {0,1}¢. Then for anyt >0,

d 2

P <3 i,j s.t. | X — X, < 5~ dt> < <7;> exp (—2dt2) < %exp (—2dt2) .

Proof First, let us consider two independent draws X and X’ uniformly on the hypercube. Let
z=y41 {Xj ” X]’.} = dyam(X, X') = || X — X"||,. Then E[Z] = 4. Moreover, Z is an iid.

sum of Bernoulli % random variables, so that by our concentration bounds of Corollary 4.1.10, we

have )
P (HX Sx <t t> < exp <_2§> .

Using a union bound gives the remainder of the result. O

Rewriting the lemma slightly, we may take 6 € (0,1). Then

d 1
P (Ei i, st || X — X, < 3 \/dlog(s —l—dlogm) <.

As a consequence of this lemma, we see two things:

(i) If m < exp(d/16), or d > 16logm, then taking § 1 1, there at least exists a codebook
{x1,..., 2y} of words that are all separated by at least d/4, that is, ||z; — |, > % for all
i,7.

(ii) By taking m < exp(d/32), or d > 32logm, and § = e~%32 then with probability at least
1—e~%/32__exponentially large in d—a randomly drawn codebook has all its entries separated
by at least ||z; — z;|, > 4.

Summarizing, we have the following result: choose a codebook of m codewords x1, . .., Z,, uniformly
at random from the hypercube Hq = {0,1}% with

8log ¥
d 2 max 4 32 log m, m .

Then with probability at least 1 — 1/m over the draw of the codebook, the probability we make a
mistake in transmission of any given symbol ¢ over the channel @ is at most 9.

4.2 Martingale methods

The next set of tools we consider constitute our first look at argument sbased on stability, that is,
how quantities that do not change very much when a single observation changes should concentrate.
In this case, we would like to understand more general quantities than sample means, developing a
few of the basic cools to understand when functions f(X7i, ..., X,,) of independent random variables
X, concentrate around their expectations. Roughly, we expect that if changing the value of one z;
does not significantly change f(z}) much—it is stable—then it should exhibit good concentration
properties.

To develop the tools to do this, we go throuhg an approach based on martingales, a deep subject
in probability theory. We give a high-level treatment of martingales, taking an approach that does
not require measure-theoretic considerations, providing references at the end of the chapter. We
begin by providing a definition.
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Definition 4.3. Let My, Mo, ... be an R-valued sequence of random variables. They are a martin-
gale if there exist another sequence of random variables {Z1, Za, ...} C Z and sequence of functions
fn: Z™ = R such that

E[M, | Z} Y = M,_1 and M, = f,(Z})

for alln € N. We say that the sequence M, is adapted to {Z,}.

In general, the sequence Z1, Zo, ... is a sequence of increasing o-fields Fi, Fo,..., and M, is Fp-
measurable, but Definition 4.3 is sufficienet for our purposes. We also will find it convenient to
study differences of martingales, so that we make the following

Definition 4.4. Let D1, Do, ... be a sequence of random variables. They form a martingale differ-
ence sequence if M, := > """ | D; is a martingale.

Equivalently, there is a sequence of random variables Z,, and functions g, : Z — R such that
E[D, | 27 =0 and D, = g.(Z})

for all n € N.
There are numerous examples of martingale sequences. The classical one is the symmetric
random walk.

Example 4.2.1: Let D,, € {1} be uniform and independent. Then D,, form a martingale
difference sequence adapted to themselves (that is, we may take Z, = D,,), and M, = > " | D;
is a martingale. <

A more sophisticated example, to which we will frequently return and that suggests the potential
usefulness of martingale constructions, is the Doob martingale associated with a function f.

Example 4.2.2 (Doob martingales): Let f : X" — R be an otherwise arbitrary function,
and let Xi,...,X,, be arbitrary random variables. The Doob martingale is defined by the

difference sequence ' ‘
D; :==E[f(X]) | Xi] - E[f(X7) | X{™'].

By inspection, the D; are functions of X}, and we have

E[D; | X{'] = E[E[f(X7) | Xi] | X{'] = E[f(XT) | Xi7']
=E[f(X7?) | X{'] - E[f(X]) | X{"'] =0

by the tower property of expectations. Thus, the D; satisfy Definition 4.4 of a martingale
difference sequence, and moreover, we have

> Di= f(X]) —E[f(XT)],
=1

and so the Doob martingale captures exactly the difference between f and its expectation. <
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4.2.1 Sub-Gaussian martingales and Azuma-Hoeffding inequalities

With these motivating ideas introduced, we turn to definitions, providing generalizations of our
concentration inequalities for sub-Gaussian sums to sub-Gaussian martingales, which we define.

Definition 4.5. Let {D,} be a martingale difference sequence adapted to {Z,}. Then D, is a
o2-sub-Gaussian martingale difference if

)\2 2
Elexp(AD,,) | Z{‘_l] < exp ( ;”)

for alln and X € R.

Immediately from the definition, we have the Azuma-Hoeffding inequalities, which generalize
the earlier tensorization identities for sub-Gaussian random variables.

Theorem 4.2.3 (Azuma-Hoeffding). Let {D,} be a o02-sub-Gaussian martingale difference se-
quence. Then My, =>"" | D; is Y ", J?—sub-Gaussmn, and moreover,
nt?
max {P(M,, > t),P(M, < —t)} <exp | —s=i—— | forallt>0.
2> i1 0;
Proof The proof is essentially immediate: letting Z, be the sequence to which the D, are
adapted, we write

E[exp(AM,,)] = E f[ e)‘Di]

=E|E|[[][e* | 277"
L Li=1
B n—1
—EI|E H e)\DZ | Zn—l E[GADn | Z?_l]
L Li=1
because D1,...,D,_1 are functions of Z{“l. Then we use Definition 4.5, which implies that

E[e*Pn | 1] < e\*97/2, and we obtain

Elexp(AM,)] <E

n—1
)\2 2
H BADi] exp ( 2o-n> )
i=1

Repeating the same argument for n — 1,n — 2,...,1 gives that

N,
log Elexp(AMy)] < - Z; o

as desired.
The second claims are simply applications of Chernoff bounds via Proposition 4.1.8 and that
E[M,] = 0. O

As an immediate corollary, we recover Proposition 4.1.9, as sums of independent random vari-
ables form martingales via M,, = > " ,(X; — E[X;]). A second corollary gives what is typically
termed the Azuma inequality:
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Corollary 4.2.4. Let D; be a bounded difference martingale difference sequence, meaning that
|D;| <ec. Then M, =" | D; satisfies

2

t
P(n~Y2M, > t)VP(nY2M, < —t) < exp (—22> fort > 0.
c

Thus, bounded random walks are (with high probability) within 4++/n of their expectations after
n steps.

There exist extensions of these inequalities to the cases where we control the variance of the
martingales; see Freedman [87].

4.2.2 Examples and bounded differences

We now develop several example applications of the Azuma-Hoeffding inequalities (Theorem 4.2.3),
applying them most specifically to functions satisfying certain stability conditions.
We first define the collections of functions we consider.

Definition 4.6 (Bounded differences). Let f : X™ — R for some space X. Then f satisfies
bounded differences with constants ¢; if for each i € {1,...,n}, all 7 € X", and z}; € X we have

i—1

‘f(x§_17xiax?+l) - f(xl 7'%';7‘7"?—&-1)’ S Ci-

The classical inequality relating bounded differences and concentration is McDiarmid’s inequal-
ity, or the bounded differences inequality.

Proposition 4.2.5 (Bounded differences inequality). Let f : X™ — R satisfy bounded differences
with constants ¢;, and let X; be independent random variables. f(X7)—E[f(X7)] is § Y1, ¢Z-sub-
Gaussian, and

2t2
P(f(XT) = E[f(X])] > ) VP (f(XT) — E[f(XT)] < —t) <exp <—En_162> -

Proof The basic idea is to show that the Doob martingale (Example 4.2.2) associated with f is
c? /4-sub-Gaussian, and then to simply apply the Azuma-Hoeffding inequality. To that end, define
D; = E[f(X]) | Xi]—E[f(X]) | Xi '] as before, and note that Y1 | D; = f(X7) —E[f(X})]. The
random variables

Li = f E[f(XT) | X{™}, Xi = 2] —E[f(X]) | X{']
Us = supE[f(X]) | X{™, X; = 2] — E[f(X]) | X{ 7]

evidently satisfy L; < D; < U;, and moreover, we have

Ui — Li < supsup {B[f(X]) | Xi™' = 217!, X; = 2] - B[f(X]) | Xi™' =217, X; = o]}

I — /
at 1z

= sup Sup/ (f(xliilaxax?—s—l) - f(xliila xla z?—l—l)) dP($?+1) < Ci,

1 — !
x 1z

where we have used the independence of the X; and Definition 4.6 of bounded differences. Conse-
quently, we have by Hoeffding’s Lemma (Example 4.1.6) that E[e*” | XI™!] < exp(A\2c?/8), that
is, the Doob martingale is ¢7/4-sub-Gaussian.
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The remainder of the proof is simply Theorem 4.2.3. O

A number of quantities satisfy the conditions of Proposition 4.2.5, and we give two examples
here; we will revisit them more later.

Example 4.2.6 (Bounded random vectors): Let B be a Banach space—a complete normed
vector space—with norm ||-||. Let X; be independent bounded random vectors in B satisfying
E[X;] = 0 and ||X;|| < c. We claim that the quantity

n

f@%{ﬁz&

=1

satisfies bounded differences. Indeed, we have by the triangle inequality that

o - 1 2c
F @i a) = fi e el < -] < 55
Consequently, if X; are indpendent, we have
1 & nt?
IP’( —E[ H;X } 2t> < 2exp (-262> (4.2.1)

for all ¢ > 0. That is, the norm of (bounded) random vectors in an essentially arbitrary vector
space concentrates extremely quickly about its expectation.

The challenge becomes to control the expectation term in the concentration bound (4.2.1),
which can be a bit challenging. In certain cases—for example, when we have a Euclidean
structure on the vectors X;—it can be easier. Indeed, let us specialize to the case that X; € H,
a (real) Hilbert space, so that there is an inner product (-, -) and the norm satisfies ||z]|* = (z, z)
for z € H. Then Cauchy-Schwarz implies that

n 2 n
B[ x| <E||Tx
i=1 i=1
That is assuming the X; are independent and E[|| X;[?] < 02, inequality (4.2.1) becomes
P[] > 2 ) +P (|Fuf < =2 —t) < 2exp (-2
~—Vn ~— Vn - 2¢?

where X,, = % Yo X ©

n

$x

i=1

n

2
] - ZE[(Xi,Xm = > E[|IX:).

i=1

We can specialize Example 4.2.6 to a situation that is very important for treatments of concen-
tration, sums of random vectors, and generalization bounds in machine learning.

Example 4.2.7 (Rademacher complexities): This example is actually a special case of Ex-
ample 4.2.6, but its frequent uses justify a more specialized treatment and consideration. Let
X be some space, and let F be some collection of functions f : X — R. Let ¢; € {—1,1} be a
collection of independent random sign vectors. Then the empirical Rademacher complexity of

Fis .
sup Z&?z‘f(ﬂﬁz‘)] ,

Ra(F|a}) = 1B
feria
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where the expectation is over only the random signs £;. (In some cases, depending on context
and convenience, one takes the absolute value | . &;f(x;)|.) The Rademacher complexity of
Fis

Ry (F) :=E[Rn(F | X7')],
the expectation of the empirical Rademacher complexities.
If f: X — [bo,b1] for all f € F, then the Rademacher complexity satisfies bounded differences,
because for any two sequences 7 and 27" differing in only element j, we have

n|Ro(F | 2) ~ Ru(F | 20| < E[sup Za(f(wi)—f(z@-»} = Efsup &;((2;) — f(2))] < b1 —bo.
feFr 4 feFx

(b1—bo)* _

Consequently, the empirical Rademacher complexity satisfies Ry, (F | XT') — Ry (F) is “—7;

sub-Gaussian by Theorem 4.2.3. <

These examples warrant more discussion, and it is possible to argue that many variants of these
random variables are well-concentrated. For example, instead of functions we may simply consider
an arbitrary set A C R™ and define the random variable

Z(A) = sup(a, &) = sup Z a;iE;.

acA acA i—1

As a function of the random signs €;, we may write Z(A) = f(e), and this is then a function
satisfying |f(e) — f(¢')] < supgeq|{(a,e —€’)], so that if € and ¢’ differ in index i, we have |f(e) —
f(€)] < 2supye 4 |ail. That is, Z(A) — E[Z(A)] is .| supge 4 |ai|>-sub-Gaussian.

Example 4.2.8 (Rademacher complexity as a random vector): This view of Rademacher
complexity shows how we may think of Rademacher complexities as norms on certain spaces.
Indeed, if we consider a vector space L of linear functions on F, then we can define the F-
seminorm on L by L[|z := supscz|L(f)|. In this case, we may consider the symmetrized
empirical distributions

1< 1<
1= 1=

as elements of this vector space L. (Here we have used 1x, to denote the point mass at Xj.)
Then the Rademacher complexity is nothing more than the expected norm of P, a random
vector, as in Example 4.2.6. This view is somewhat sophisticated, but it shows that any general
results we may prove about random vectors, as in Example 4.2.6, will carry over immediately
to versions of the Rademacher complexity. <

4.3 Uniformity and metric entropy

Now that we have explored a variety of concentration inequalities, we show how to put them to use
in demonstrating that a variety of estimation, learning, and other types of procedures have nice
convergence properties. We first give a somewhat general collection of results, then delve deeper
by focusing on some standard tasks from machine learning.

81



Lexture Notes on Statistics and Information Theory John Duchi

4.3.1 Symmetrization and uniform laws

The first set of results we consider are uniform laws of large numbers, where the goal is to bound
means uniformly over different classes of functions. Frequently, such results are called Glivenko-
Cantelli laws, after the original Glivenko-Cantelli theorem, which shows that empirical distributions
uniformly converge. We revisit these ideas in the next chapter, where we present a number of more
advanced techniques based on ideas of metric entropy (or volume-like considerations); here we
present the basic ideas using our stability and bounded differencing tools.

The starting point is to define what we mean by a uniform law of large numbers. To do so, we
adopt notation (as in Example 4.2.8) we will use throughout the remainder of the book, reminding
readers as we go. For a sample X1,..., X, on a space X, we let

1 n
P, =— 1.
n n; X;

denote the empirical distribution on {X;}!" ;, where 1y, denotes the point mass at X;. Then for
functions f : X — R (or more generally, any function f defined on X'), we let

Puf = Ep [F(X)] = 3 F(X)
=1

denote the empirical expectation of f evaluated on the sample, and we also let

Pf:EﬂﬂXﬂzjfwwmm

denote general expectations under a measure P. With this notation, we study uniform laws of
large numbers, which consist of proving results of the form

sup |P,f — Pf| — 0, (4.3.1)
feF

where convergence is in probability, expectation, almost surely, or with rates of convergence. When
we view P, and P as (infinite-dimensional) vectors on the space of maps from F — R, then we
may define the (semi)norm ||-|| r for any L : 7 — R by

I1L]| 7 == sup [L(f)],
feF

in which case Eq. (4.3.1) is equivalent to proving
| P — Pz — 0.

Thus, roughly, we are simply asking questions about when random vectors converge to their expec-
tations.!

The starting point of this investigation considers bounded random functions, that is, F consists
of functions f : X — [a,b] for some —oco0 < a < b < oco. In this case, the bounded differences
inequality (Proposition 4.2.5) immediately implies that expectations of || P, — P|| » provide strong
guarantees on concentration of || P, — P|| ~.

1Some readers may worry about measurability issues here. All of our applications will be in separable spaces,
so that we may take suprema with abandon without worrying about measurability, and consequently we ignore this
from now on.
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Proposition 4.3.1. Let F be as above. Then

ont?

W) fort > 0.

PP, = Pllr 2 BlIP: = Pl +0) < exo (5

Proof Let P, and P be two empirical distributions, differing only in observation i (with X; and
X!). We observe that

sup |Pf — Pf| —sup|P, f — Pf| < sup {|P.f — Pf| —|P,f — Pf|}
feF feF feF

b—a
< —sup |f(X;) - f(X)] <
n fe]-' n
. . . . . b—
by the triangle inequality. An entirely parallel argument gives the converse lower bound of —>-%,
and thus Proposition 4.2.5 gives the result. O

Proposition 4.3.1 shows that, to provide control over high-probability concentration of || P, — P|| ~,
it is (at least in cases where F is bounded) sufficient to control the expectation E[|| P, — P| z]. We
take this approach through the remainder of this section, developing tools to simplify bounding
this quantity.

Our starting points consist of a few inequalities relating expectations to symmetrized quantities,
which are frequently easier to control than their non-symmetrized parts. This symmetrization
technique is widely used in probability theory, theoretical statistics, and machine learning. The key
is that for centered random variables, symmetrized quantities have, to within numerical constants,
similar expectations to their non-symmetrized counterparts. Thus, in many cases, it is equivalent
to analyze the symmetized quantity and the initial quantity.

Proposition 4.3.2. Let X; be independent random vectors on a (Banach) space with norm |||
and let £;{—1,1} be independent random signs. Then for any p > 1,
p]

1R [

> ei(Xi - E[Xi])
=1

n

Z(Xi - E[X;])

i=1

p
<E

P
< 2PE

Z & iXi
i=1
In the proof of the upper bound, we could also show the bound

P
E < 2PE

p]
so we may analyze whichever is more convenient.
Proof We prove the right bound first. We introduce independent copies of the X; and use
these to symmetrize the quantity. Indeed, let X/ be an independent copy of X;, and use Jensen’s
inequality and the convexity of ||-|[” to observe that
p]

P
=K
Now, note that the distribution of X; — X/ is symmetric, so that X; — X/ st i(X; — X]), and thus

Jerl s

n

Z(Xi - E[Xi])

=1

> ei(Xi — E[Xi])

=1

n

Z(Xi - E[X;])

i=1

n

> (X —E[X]])

=1

n

Z(Xi - Xj)

i=1

p

E <E

n

Z(Xi - E[X:])

i=1

> e X; - X))

i=1

E
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Multiplying and dividing by 2P, Jensen’s inequality then gives

n P 1 n 4
E (| (X —E[Xi])| | <2'E "2Zsi(Xi—X{)
i=1 =1
n p n p
<2 E || eXi| | +E||D aX] ”
i=1 =1

as desired.

For the left bound in the proposition, let ¥; = X; — E[X;] be the centered version of the random
variables. We break the sum over random variables into two parts, conditional on whether ; = +1,
using repeated conditioning. We have

n P p
E|} aYi |=E|||> Yi- > Y
=1 1:6,=1 re=—1
[ P P
<E |2’ 'E Z Y| |e| +2P7'E Z Y; ya”
L''i:g;=1 1:6,—1
[ P p
=2 BRI Y vi+ > EW| e[ +E|| Y vi+ Y EV) |€”
L' i:e;=1 ig=—1 tig;=—1 itg;=1
[ p P
<IEIE|| DY Vi+ ) Y| [e|+E|]| Y Yi+ YV |€”
L' 2:e,=1 i:g;=—1 ig;=—1 i:g;=1
n P
=2E | > _vi|| |
i=1

We obtain as an immediate corollary a symmetrization bound for supremum norms on function
spaces. In this corollary, we use the symmetrized empirical measure

1 1 ¢
1= 1=

The expectation of HPS H 7 1s of course the Rademacher complexity (Examples 4.2.7 and 4.2.8), and
we have the following corollary.

Corollary 4.3.3. Let F be a class of functions f : X — R and X; be i.i.d. Then E[||P,, — P| z] <
2E[|| Ppll].

From Corollary 4.3.3, it is evident that by controlling the expectation of the symmetrized process
E[|| PY|| 7] we can derive concentration inequalities and uniform laws of large numbers. For example,
we immediately obtain that

0 ont?
B (1P, — Plly 2 2B PRI + 1) < exp (~ o

84



Lexture Notes on Statistics and Information Theory John Duchi

for all ¢ > 0 whenever F consists of functions f : X — [a,b].

There are numerous examples of uniform laws of large numbers, many of which reduce to
developing bounds on the expectation E[||P?||#], which is frequently possible via more advanced
techniques we develop in Chapter 6. A frequent application of these symmetrization ideas is to
risk minimization problems, as we discuss in the coming section; for these, it will be useful for us
to develop a few analytic and calculus tools. To better match the development of these ideas, we
return to the notation of Rademacher complexities, so that R,(F) := E[||P?|| 7. The first is a
standard result, which we state for its historical value and the simplicity of its proof.

Proposition 4.3.4 (Massart’s finite class bound). Let F be any collection of functions with f :
X — R, and assume that 02 :=n"'Elmaxscr Y i f(Xi)?] < co. Then

/202 log | F
Ru(F) < V205 log |F|
vn

Proof For each fixed 7, the random variable Y"1 | &; f(x;) is .1, f(x;)?*-sub-Gaussian. Now,
define 02 (z7) := n ' maxser Y iy f(z;)?. Using the results of Exercise 4.7, that is, that E[max <, Z;] <
V/202logn if the Z; are each o-sub-Gaussian, we see that
20%(x7) log | 7|

vn '
Jensen’s inequality that E[/-] < \/E[] gives the result. O

R (F [ 27) <

A refinement of Massart’s finite class bound applies when the classes are infinite but, on a
collection Xy, ..., X, the functions f € F may take on only a (smaller) number of values. In this
case, we define the empirical shatter coefficient of a collection of points x1,...,x, by Sr(z}) :=
card{(f(z1),..., f(zn)) | f € F}, the number of distinct vectors of values (f(z1),..., f(z,)) the
functions f € F may take. The shatter coefficient is the maximum of the empirical shatter coeffi-
cients over zf € X", that is, Sy(n) := sup,n Sp(2f). It is clear that Sr(n) < |F| always, but by
only counting distinct values, we have the following corollary.

Corollary 4.3.5 (A sharper variant of Massart’s finite class bound). Let F be any collection of
functions with f: X — R, and assume that o2 := n 'E[maxser Y iy f(X;)?] < 0o. Then

Ro(F) < 202 log S]-'(TL).
Vn

Typical classes with small shatter coefficients include Vapnik-Chervonenkis classes of functions; we
do not discuss these further here, instead referring to one of the many books in machine learning
and empirical process theory in statistics.

The most important of the calculus rules we use are the comparison inequalities for Rademacher
sums, which allow us to consider compositions of function classes and maintain small complexity
measurers. We state the rule here; the proof is complex, so we defer it to Section 4.5.3

Theorem 4.3.6 (Ledoux-Talagrand Contraction). Let ' C R™ be an arbitrary set and let ¢; : R —
R be 1-Lipschitz and satisfy ¢;(0) = 0. Then for any nondecreasing convex function ® : R — R,

2o (3| Spo0e] )| <o (pia)]
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A corollary to this theorem is suggestive of its power and applicability. Let ¢ : R — R be
L-Lipschitz, and for a function class F define po F = {¢po f | f € F}. Then we have the following
corollary about Rademacher complexities of contractive mappings.

Corollary 4.3.7. Let F be an arbitrary function class and ¢ be L-Lipschitz. Then
Ry (¢ o F) <2LR,(F) +1¢(0)|/v/n.

Proof The result is an almost immediate consequence of Theorem 4.3.6; we simply recenter our
functions. Indeed, we have

n

LS () - o) + 23 W(O)u
i—1

R,(poF |x})=E |sup
fer i
<E |sup L > el f(wi) - ¢(0))' +E ‘1 Z€z’¢(0)u
fer i = N
< 2LR, (F) + 120

v
where the final inequality follows by Theorem 4.3.6 (as g(-) = ¢(-) — ¢(0) is Lipschitz and satisfies
g(0) = 0) and that E[| >, &[] < v/n. 0

4.3.2 Metric entropy, coverings, and packings

When the class of functions F under consideration is finite, the union bound more or less provides
guarantees that P, f is uniformly close to P f for all f € F. When F is infinite, however, we require
a different set of tools for addressing uniform laws. In many cases, because of the application
of the bounded differences inequality in Proposition 4.3.1, all we really need to do is to control
the expectation E[||P||#], though the techniques we develop here will have broader use and can
sometimes directly guarantee concentration.

The basic object we wish to control is a measure of the size of the space on which we work.
To that end, we modify notation a bit to simply consider arbitrary vectors 8 € ©, where © is a
non-empty set with an associated (semi)metric p. For many purposes in estimation (and in our
optimality results in the further parts of the book), a natural way to measure the size of the set is
via the number of balls of a fixed radius § > 0 required to cover it.

Definition 4.7 (Covering number). Let O be a set with (semi)metric p. A d-cover of the set © with
respect to p is a set {01,...,0N} such that for any point 0 € ©, there exists some v € {1,...,N}
such that p(0,0,) < 6. The d-covering number of © is

N(0,0,p) :=inf {N € N : there exists a §-cover 61,...,0n of O}.

The metric entropy of the set © is simply the logarithm of its covering number log N (4§, ©, p).
We can define a related measure—more useful for constructing our lower bounds—of size that
relates to the number of disjoint balls of radius § > 0 that can be placed into the set ©.

Definition 4.8 (Packing number). A d-packing of the set © with respect to p is a set {01,...,0n}
such that for all distinct v,v" € {1,..., M}, we have p(6,,0.) > §. The é-packing number of © is

M(0,0,p) :=sup{M € N : there exists a §-packing 01, ...,0r of O}.
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Figure 4.1. A o-covering of the
elliptical set by balls of radius .

Figure 4.2. A J-packing of the
elliptical set, where balls have ra-
dius §/2. No balls overlap, and
each center of the packing satisfies
||01) - 61)’” > J.

Figures 4.1 and 4.2 give examples of (respectively) a covering and a packing of the same set.
An exercise in proof by contradiction shows that the packing and covering numbers of a set are
in fact closely related:

Lemma 4.3.8. The packing and covering numbers satisfy the following inequalities:
M(26,0,p) < N(6,0,p) < M(5,0,p).

We leave derivation of this lemma to Exercise 4.11, noting that it shows that (up to constant factors)
packing and covering numbers have the same scaling in the radius §. As a simple example, we see
for any interval [a, b] on the real line that in the usual absolute distance metric, N(d, [a,b],]| - |) =<
(b—a)/é.

As one example of the metric entropy, consider a set of functions F with reasonable covering
numbers (metric entropy) in ||| -norm.

Example 4.3.9 (The “standard” covering number guarantee): Let F consist of functions
[+ X — [-b,b] and let the metric p be || f — g||,, = sup,ex |f(x) — g(x)|. Then

2
P sup|P,f—Pf]|>t] <exp <—n2+logN(t/3,]:,||-Hoo)>. (4.3.2)
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So as long as the covering numbers N (t, F, ||-|| ) grow sub-exponentially in t—so that log N (t) <
nt?>—we have the (essentially) sub-Gaussian tail bound (4.3.2). Example 4.4.11 gives one typ-
ical case. Indeed, fix a minimal ¢/3-cover of F in |||, of size N := N(t/3,F,||l), call-
ing the covering functions fi,..., fy. Then for any f € F and the function f; satisfying
I = fillo < /2. we have

Puf = PAI < |Paf = Pufil + |Pufi = PAI +1Pfi = Pl < |Pufi = Pfl + -

The Azuma-Hoeffding inequality (Theorem 4.2.3) guarantees (by a union bound) that

nt?
P <1;%%<|Pnfi - Pfi| > t) < exp (_2b2 +logN> .

Combine this bound (replacing ¢ with ¢/3) to obtain inequality (4.3.2). <

Given the relationships between packing, covering, and size of sets O, we would expect there
to be relationships between volume, packing, and covering numbers. This is indeed the case, as we
now demonstrate for arbitrary norm balls in finite dimensions.

Lemma 4.3.10. Let B denote the unit ||-||-ball in R%. Then

(5 svemins(1+2)"

Proof We prove the lemma via a volumetric argument. For the lower bound, note that if the
points v1,...,vnN are a d-cover of B, then

N
Vol(B) < ) Vol(6B + v;) = N Vol(6B) = N Vol(B)5”.
i=1
In particular, N > 6~¢. For the upper bound on N(6,B,|-|), let V be a d-packing of B with
maximal cardinality, so that |V| = M (9, B, ||-||) > N(4,B,||-||) (recall Lemma 4.3.8). Notably, the
collection of §-balls {0B + v;}£, cover the ball B (as otherwise, we could put an additional element
in the packing V), and moreover, the balls {gB + v;} are all disjoint by definition of a packing.
Consequently, we find that

M (g)dVOI(IB%) = M Vol <2B> < Vol (IEB + glaa> = (1 + g)dVol(]B%).

Rewriting, we obtain
2\ 5\ Vol(B) 2\ ¢
M@GB,|-]]) < | = 14— —(1+2

completing the proof. O

Let us give one application of Lemma 4.3.10 to concentration of random matrices; we explore
more in the exercises as well. We can generalize the definition of sub-Gaussian random variables
to sub-Gaussian random vectors, where we say that X € R? is a o2-sub-Gaussian vector if

Blexp((u X — BLX))] < exp 5l (433)
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for all u € R%. For example, X ~ N(0,I;) is immediately 1-sub-Gaussian, and X € [—b, b]? with
independent entries is b%>-sub-Gaussian. Now, suppose that X; are independent isotropic random
vectors, meaning that E[X;] = 0, E[X;X,[] = I, and that they are also o2-sub-Gaussian. Then by

an application of Lemma 4.3.10, we can give concentration guarantees for the sample covariance
Y, =13" X; X, for the operator norm | Allop = sup{(u, Av) | [|ully = |lv]ly = 1}

Proposition 4.3.11. Let X; be independent isotropic and o®-sub-Gaussian vectors. Then there is
a numerical constant C such that the sample covariance X, := %Z?:l XZ'XiT satisfies

1 1
O0 al—i—logg+ d + log 5
n n

||En - Id”op <

with probability at least 1 — 6.

Proof We begin with an intermediate lemma.

Lemma 4.3.12. Let A be symmetric and {u;}Y, be an e-cover of the unit £z ball BY. Then
(1 —2€) [[Allop < max(ui, Aus) < [[Allop

Proof The second inequality is trivial. Fix any u € BS. Then for the i such that ||u — u;||, < ¢,
we have

(u, Au) = (u — uj, Au) + (ui, Au) = 2(u — u;, Au) + (u, Awg) < 2€|[All, + (us, Aug)

by definition of the operator norm. Taking a supremum over u gives the final result. O

Let the matrix F; = XiXiT — I, and define the average error E,, = %EZ Then with this lemma,
in hand, we see that for any e-cover A of the f5-ball B,

(1= 2¢) | Enll,,, < max(u, Enu).

Now, note that (u, Esu) = (u, X;)2—||u|)3 is sub-exponential, as it is certainly mean 0 and, moreover,
is the square of a sub-Gaussian; in particular, Theorem 4.1.15 shows that there is a numerical
constant C' < oo such that

1

2 4
Elexp(A(u, Esu))] < exp (CA%c*) for |A| < ol

Taking € = + in our covering N, then,
P(||En H >t) <P <m€3/u\}f(<u E,u) > t/2> < |V -Igle%cP ((u,nEnu) > nt/2)

by a union bound. As sums of sub-exponential random variable remain sub-exponential, Corol-

lary 4.1.18 implies
— . nt® nt
IP)(HEnHOp Zt) S ’N‘exp <—len{0_4,o-2}> y

where ¢ > 0 is a numerical constant. Finally, we apply Lemma 4.3.10, which guarantees that

. d+log 3 d+log &
V| < 9% and then take ¢ to scale as the maximum of 02% and o2/ %. O
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4.4 Generalization bounds

We now build off of our ideas on uniform laws of large numbers and Rademacher complexities to
demonstrate their applications in statistical machine learning problems, focusing on empirical risk
minimization procedures and related problems. We consider a setting as follows: we have a sample
Ziy...,Zy € Z drawn i.i.d. according to some (unknown) distribution P, and we have a collection
of functions F from which we wish to select an f that “fits” the data well, according to some loss
measure £ : F x Z — R. That is, we wish to find a function f € F minimizing the risk

L(f) == Epl((f, Z)]. (4.4.1)

In general, however, we only have access to the risk via the empirical distribution of the Z;, and
we often choose f by minimizing the empirical risk

Lu(f) = - S U 7). (14.2)
=1

As written, this formulation is quite abstract, so we provide a few examples to make it somewhat
more concrete.

Example 4.4.1 (Binary classification problems): One standard problem—still abstract—
that motivates the formulation (4.4.1) is the binary classification problem. Here the data Z;
come in pairs (X,Y), where X € X is some set of covariates (independent variables) and
Y € {—1,1} is the label of example X. The function class F consists of functions f : X — R,
and the goal is to find a function f such that

P(sign(f(X)) # Y)

is small, that is, minimizing the risk E[¢(f, Z)] where the loss is the 0-1 loss, ¢(f, (z,y)) =
1{f(z)y<0}. ©

Example 4.4.2 (Multiclass classification): The multiclass classifcation problem is identical
to the binary problem, but instead of Y € {—1,1} we assume that Y € [k] = {1,...,k} for
some k > 2, and the function class F consists of (a subset of) functions f : X — R¥. The
goal is to find a function f such that, if Y = y is the correct label for a datapoint z, then
fy(x) > fi(x) for all I # y. That is, we wish to find f € F minimizing

P (31 #Y such that fi(X) > fy(X)).
In this case, the loss function is the zero-one loss £(f, (z,y)) = 1 {max;z, fi(z) > fy(z)}. <

Example 4.4.3 (Binary classification with linear functions): In the standard statistical
learning setting, the data z belong to R, and we assume that our function class F is indexed
by a set © C R?, so that F = {fy : fo(z) = 02,0 € ©}. In this case, we may use the zero-one
loss, the convex hinge loss, or the (convex) logistic loss, which are variously €, (fy, (z,v)) :=
1 {yGTx < O}, and the convex losses

Ehinge(f% (.CU, y)) = [1 - yxTe} n and glogit(f@a (l‘> y)) = log(l + eXP(—?/fETH))-

The hinge and logistic losses, as they are convex, are substantially computationally easier to
work with, and they are common choices in applications. <
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The main motivating question that we ask is the following: given a sample Zi,..., Zy, if we
choose some f,, € F based on this sample, can we guarantee that it generalizes to unseen data? In
particular, can we guarantee that (with high probability) we have the empirical risk bound

En(F) =+ S Fun Z0) < R(T) + ¢ (143)
=1

for some small €7 If we allow fn to be arbitrary, then this becomes clearly impossible: consider the
classification example 4.4.1, and set f, to be the “hash” function that sets f,,(z) = y if the pair
(z,y) was in the sample, and otherwise f,(z) = —1. Then clearly En( fn) = 0, while there is no
useful bound on R(f,).

4.4.1 Finite and countable classes of functions

In order to get bounds of the form (4.4.3), we require a few assumptions that are not too onerous.
First, throughout this section, we will assume that for any fixed function f, the loss ¢(f,Z) is
o2-sub-Gaussian, that is,

)\20_2
B foxp (617, 2) = L) < exp (%5 ) (140
for all f € F. (Recall that the risk functional L(f) = Ep[¢(f, Z)].) For example, if the loss is the
zero-one loss from classification problems, inequality (4.4.4) is satisfied with o2 = % by Hoeffding’s

lemma. In order to guarantee a bound of the form (4.4.4) for a function f chosen dependent on
the data, in this section we give uniform bounds, that is, we would like to bound

P (there exists f € F s.t. L(f) > Ln(f) —I—t) or P (sup Lo(f) — R(f)’ > t) .
fer

Such uniform bounds are certainly sufficient to guarantee that the empirical risk is a good proxy
for the true risk L, even when f, is chosen based on the data.

Now, recalling that our set of functions or predictors F is finite or countable, let us suppose
that for each f € F, we have a complexity measure c(f)—a penalty—such that

d e < (4.4.5)

feF

This inequality should look familiar to the Kraft inequality—which we will see in the coming
chapters—from coding theory. As soon as we have such a penalty function, however, we have the
following result.

Theorem 4.4.4. Let the loss ¢, distribution P on Z, and function class F be such that ((f,Z) is
o2-sub-Gaussian for each f € F, and assume that the complexity inequality (4.4.5) holds. Then
with probability at least 1 — § over the sample Z1.p,

log% + c(f)
— - 1 :
- forall f e F

L(f) < Lo(f) + \/202
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Proof First, we note that by the usual sub-Gaussian concentration inequality (Corollary 4.1.10)
we have for any t > 0 and any f € F that

~ n 2
P(L(f) = La(f) +1) < exp (—2;2) .
Now, if we replace t by /t? 4+ 202%¢(f)/n, we obtain
R 2
P (L07) 2 L) + VET B ) < exp (~ o =) )

Then using a union bound, we have

~ nt2
P (3 feFst. L(f)>La(f) + V2 + 202c(f)/n) <3 exp <—202 - c(f))
fer
nt?
= exp T952 exp(—c(f))-
ferF
<1
Setting t* = 202 log % /mn gives the result. O

As one classical example of this setting, suppose that we have a finite class of functions F. Then

we can set ¢(f) = log|F|, in which case we clearly have the summation guarantee (4.4.5), and we
obtain

log% + log | F]|

uniformly for f € F
n

L(f) < La(f) + \/202
with probability at least 1 —§. To make this even more concrete, consider the following example.

Example 4.4.5 (Floating point classifiers): ~We implement a linear binary classifier using
double-precision floating point values, that is, we have fo(z) = @'z for all § € R? that may
be represented using d double-precision floating point numbers. Then for each coordinate of
6, there are at most 254 representable numbers; in total, we must thus have | F| < 264 Thus,
for the zero-one loss ,0(fg, (z,y)) = 1 {6 zy < 0}, we have

- log + 4 45d
L(fp) < Lu(fo) + 527n

for all representable classifiers simultaneously, with probability at least 1 — J, as the zero-one
loss is 1/4-sub-Gaussian. (Here we have used that 64log2 < 45.) <

We also note in passing that by replacing 6 with §/2 in the bounds of Theorem 4.4.4, a union
bound yields the following two-sided corollary.

Corollary 4.4.6. Under the conditions of Theorem 4.4.4, we have

log% + c(f)
—0 - I
- forall f € F

%m—um§¢%2

with probability at least 1 —§.
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4.4.2 Large classes

When the collection of functions is (uncountably) infinite, it can be more challenging to obtain
strong generalization bounds, though there still exist numerous tools for these ideas. The most
basic, of which we will give examples, leverage covering number bounds (essentially, as in Exam-
ple 4.3.9). We return in the next chapter to alternative approaches based on randomization and
divergence measures, which provide guarantees with somewhat similar structure to those we present
here.

Let us begin by considering a few examples, after which we provide examples showing how to
derive explicit bounds using Rademacher complexities.

Example 4.4.7 (Rademacher complexity of the f-ball): Let © = {# € R? | ||0], < r}, and
consider the class of linear functionals F := {fy(z) = 072,06 € ©}. Then

because we have

n r
Ru(F | 27) = F

2 n
= 23 a3
= il
2 n\ i3
as desired. <

In high-dimensional situations, it is sometimes useful to consider more restrictive function
classes, for example, those indexed by vectors in an £;-ball.

Example 4.4.8 (Rademacher complexity of the ¢;-ball): In contrast to the previous example,
suppose that © = {6 € R? | |||, < r}, and consider the linear class F := {fs(z) = 0Tx,0 € O}.

Then
n
Z EiT; ] .
=1 oo

Now, each coordinate j of " | gx;iis > i g x?j—sub—Gaussian, and thus using that E[max;<q Z;] <
V/202log d for arbitrary o%-sub-Gaussian Z; (see Exercise 4.7), we have

n r
Rn<f|x1>=nla[

n
2log(2d) max Z aclzj

J =1

R (F [ 27) <

31

To facilitate comparison with Example 4.4.8, suppose that the vectors z; all satisfy |lz;||,, < b.
In this case, the preceding inequality implies that R, (F | z]) < rby/2log(2d)/+/n. In contrast,
the fo-norm of such z; may satisfy |lz;||, = bv/d, so that the bounds of Example 4.4.7 scale
instead as rb\/g/ v/n, which can be exponentially larger. <&

These examples are sufficient to derive a few sophisticated risk bounds. We focus on the case
where we have a loss function applied to some class with reasonable Rademacher complexity, in
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which case it is possible to recenter the loss class and achieve reasonable complexity bounds. The
coming proposition does precisely this in the case of margin-based binary classification. Consider
points (z,y) € X x {£1}, and let F be an arbitrary class of functions f : X — R and £ =
{(z,y) = L(yf(x))}tecr be the induced collection of losses. As a typical example, we might have

0(t) = [1—t],, L(t) = e, or £(t) =log(1 +e~"). We have the following proposition.

Proposition 4.4.9. Let F and X be such that sup,cy |f(2x)| < M for f € F and assume that

¢ is L-Lipschitz. Define the empirical and population risks Ly, (f) := P (Y f(X)) and L(f) =
PUY f(X)). Then

2
P (Jchgwn(f) — L(f)| > ALRn(F) + t) < 2exp (-2;’5]\42) fort > 0.
Proof We may recenter the class £, that is, replace ¢(-) with ¢(-) — £(0), without changing
L (f) — L(f). Call this class Lo, so that ||P, — P, = ||Pn — P|,- This recentered class satisfies
bounded differences with constant 2M L, as [((yf(x)) — (v f(2"))| < Llyf(z) — ' f(2")| < 2LM,
as in the proof of Proposition 4.3.1. Applying Proposition 4.3.1 and then Corollary 4.3.3 and gives
that P(supser |Ln(f) — L(f)] = 2Rn(Lo) +t) < exp(— 52t ) for ¢ > 0. Then applying the con-
traction inequality (Theorem 4.3.6) yields R, (Lo) < 2LR,,(F), giving the result. O

Let us give a few example applications of these ideas.

Example 4.4.10 (Support vector machines and hinge losses): In the support vector machine
problem, we receive data (X;,Y;) € R? x {#1}, and we seek to minimize average of the losses
0; (z,y) = [1- yGTer. We assume that the space X has [|z||, < b for z € & and that

O ={0cR||0], <r} Applying Proposition 4.4.9 gives

2
P (sup | Pol(6: (X, Y)) — PU(O: (X, Y))| > 4Rn(Fo) +1) < exp (-,
PcO 27"2b2

where Fo = {fy(z) = 07 x}pco. Now, we apply Example 4.4.7, which implies that

Ro(6 0 Fo) < 2Rn(Fy) < f}’ﬁb

That is, we have

4rb nt?
P <§1€Jg |Pn€(6a (Xa Y)) - PE(G; (Xv Y))‘ > % + t) < exp <_2(Tb)2> )

so that P, and P become close at rate roughly rb/+/n in this case. <

Example 4.4.10 is what is sometimes called a “dimension free” convergence result—there is no
esxplicit dependence on the dimension d of the problem, except as the radii » and b make explicit.
One consequence of this is that if = and 6 instead belong to a Hilbert space (potentiall infinite
dimensional) with inner product (-,-) and norm ||z||* = (z, ), but for which we are guaranteed
that ||0|| < r and similarly ||z|| < b, then the result still applies. Extending this to other function
classes is reasonably straightforward, and we present a few examples in the exercises.

94



Lexture Notes on Statistics and Information Theory John Duchi

When we do not have the simplifying structure of ¢(y f(z)) identified in the preceding examples,
we can still provide guarantees of generalization using the covering number guarantees introduced
in Section 4.3.2. The most common and important case is when we have a Lipschitzian loss function
in an underlying parameter 6.

Example 4.4.11 (Lipschitz functions over a norm-bounded parameter space): Consider the
parametric loss minimization problem
minimize L(0) :=E[{(0;Z
winmize 1(0) = E[(0; 2)

for a loss function ¢ that is M-Lipschitz (with respect to the norm ||-||) in its argument, where
for normalization we assume infpeg £(0,2) = 0 for each z. Then the metric entropy of ©
bounds the metric entropy of the loss class F := {z — £(0, 2)}ypco for the supremum norm
|-l oo- Indeed, for any pair 6,6’, we have

sup |£(6,2) — L0/, 2)| < M ||6 — ¢’

and so an e-cover of © is an Me-cover of F in supremum norm. In particular,
N(67°F7 HHoo) < N(ﬁ/M7@ﬂ HH)

Assume that © C {6 | ||0|| < b} for some finite b. Then Lemma 4.3.10 guarantees that
log N(€,0,||-|]) < dlog(1+2/€) < dlog L, and so the classical covering number argument in
Example 4.3.9 gives

2

P <sup |Pl(0,2) — PUO, Z)| > t> < exp < b;lMQ

M
+ Cdlog )
0cO

where ¢, C' are numerical constants. In particular, taking t? < % log s gives that

Mb, /dlo
\P0(6,7) — PU(O,Z)| < Mby/dlog 5
with probability at least 1 —§. <

4.4.3 Structural risk minimization and adaptivity

In general, for a given function class F, we can always decompose the excess risk into the approxi-
mation/estimation error decomposition. That is, let

where the preceding infimum is taken across all (measurable) functions. Then we have

L(fa) = L* = L(fa) - J;g]er(f) + ;g]fEL(f) L. (4.4.6)
estimation approximation

There is often a tradeoff between these two, analogous to the bias/variance tradeoff in classical
statistics; if the approximation error is very small, then it is likely hard to guarantee that the esti-
mation error converges quickly to zero, while certainly a constant function will have low estimation
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error, but may have substantial approximation error. With that in mind, we would like to develop
procedures that, rather than simply attaining good performance for the class F, are guaranteed
to trade-off in an appropriate way between the two types of error. This leads us to the idea of
structural risk minimization.

In this scenario, we assume we have a sequence of classes of functions, Fi, Fo, ..., of increasing
complexity, meaning that /3 C F2 C .... For example, in a linear classification setting with
vectors x € R?, we might take a sequence of classes allowing increasing numbers of non-zeros in
the classification vector 6:

Fp o= {fg( ) = 07 such that [§], < 1}7 Fp = {fg( ) = 07 such that [0, < 2}
More broadly, let {Fj}reny be a (possibly infinite) increasing sequence of function classes. We

assume that for each Fj, and each n € N, there exists a constant C,, ;(d) such that we have the
uniform generalization guarantee

P | sup
fE€Fk

For example, by Corollary 4.4.6, if F is finite we may take

La(f) = LS| = %(5)) <527k,

o) = P10

n

(We will see in subsequent sections of the course how to obtain other more general guarantees.)
We consider the following structural risk minimization procedure. First, given the empirical
risk Ln7 we find the model collection k minimizing the penalized risk

k := argmin { inf L,(f)+ cmk((s)} . (4.4.7a)
keN FEFK

We then choose fto minimize the risk over the estimated “best” class F7, that is, set

o~

f := argmin En(f) (4.4.7b)
fE]'-E

With this procedure, we have the following theorem.

Theorem 4.4.12. Let f be chosen according to the procedure (4.4.72)—(4.4.7b). Then with proba-
bility at least 1 — &, we have

L(f) < jnf inf {L(f) +2Cnr(9)}.

Proof First, we have by the assumed guarantee on C,, ;(J) that

P|3dkeNand f € Fi such that sup An
FEFk

o0
< Z]P’ (Ei f € Fi such that sup
k=1 FEFk
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On the event that sup j¢ , \En( f)—L(f)| < Cpnx(6) for all k, which occurs with probability at least
1 — 9, we have

-~

L(F) < La(f) + €, 5(0) = jnf inf {L(f) +Cup(0)} < fnf inf {L(f) +2C(6))

by our choice of f This is the desired result. O

We conclude with a final example, using our earlier floating point bound from Example 4.4.5,
coupled with Corollary 4.4.6 and Theorem 4.4.12.

Example 4.4.13 (Structural risk minimization with floating point classifiers):  Consider
again our floating point example, and let the function class Fj consist of functions defined by
at most k double-precision floating point values, so that log |Fj| < 45d. Then by taking

log 1 + 65k log 2

we have that |L,,(f)—L(f)| < Ch,(9) simultaneously for all f € Fj, and all F,, with probability
at least 1 — ¢. Then the empirical risk minimization procedure (4.4.7) guarantees that

~ 2log i + 91k
L(f) < inf { inf L R
UY= o\ 2RO

Roughly, we trade between small risk L(f)—as the risk inf;cr, L(f) must be decreasing in

k—and the estimation error penalty, which scales as |/ (k + log %) /n. <

4.5 Technical proofs

4.5.1 Proof of Theorem 4.1.11

(1) implies (2) Let K; = 1. Using the change of variables identity that for a nonnegative
random variable Z and any k > 1 we have E[Z*] = k [ t*"'P(Z > t)dt, we find

[ee) [e’e) 2 (e%e]
E[|X|*] = k:/ t*IP(IX| > t)dt < 2k/ tF=Lexp (-2) dt = lmk/ ut e,
0 0 g 0

where for the last inequality we made the substitution u = t? /o2, Noting that this final integral is
I'(k/2), we have E[| X |¥] < ko*T'(k/2). Because I'(s) < s° for s > 1, we obtain

E[|X[F]V* < kV*6\/k/2 < e"°oVk.
Thus (2) holds with Ky = e!/¢.

(2) implies (3) Let o = || X||,, = sup;>, k_%E[\X\k]l/k, so that Ky = 1 and E[| X |¥] < k2o for
all k. For K3 € R, we thus have

o0 2%k © g2k(9f)k (i) 2 e\"
Elexp(X?/(K30?))] = Z ) < Z i (<) Z <f2(§>

| 2k 52k — | 02k 42k —
Py k:.K3 o Py k:.K3 o Py

where inequality (i) follows because k! > (k/e)k, or 1/k! < (e/k)*. Noting that > 7, af = ;1
we obtain (3) by taking K3 =ey/2/(e — 1) ~ 2.933.
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(3) implies (4) Let us take K3 = 1. We claim that (4) holds with K4 = 2. We prove this
result for both small and large A. First, note the (highly non-standard, but true!) inequality that

912
e <x+ei16 for all z. Then we have

Elexp(AX)] < M+E [eXp <9)\12f§(2)]

Now note that for |\ < %, we have 92202 /16 < 1, and so by Jensen’s inequality,
gAZ X2 2,2 2,2
E [exp( 16 >} =K |:6Xp(X2/O'2)9>\15 } < 69/\16 .
C.’I:2

For large A, we use the simpler Fenchel-Young inequality, that is, that Az < /2\—2 + -, valid for all
¢ > 0. Then we have for any 0 < ¢ < 2 that

22,2 X2 2,2
Elexp(AX)] < e 2 E {exp <;2>} < e'% ez,
o

2

where the final inequality follows from Jensen’s inequality. If [\| > %, then % < 3%)\ 0%, and we

have

22
Elexp(AX)] < inf elact 3% — exp <3)\ g ) .
~ c€[0,2] 4

(4) implies (1) This is the content of Proposition 4.1.8, with K4 = § and K; = 2.

4.5.2 Proof of Theorem 4.1.15

(1) implies (2) Asin the proof of Theorem 4.1.11, we use that for a nonnegative random variable
Z we have E[Z*] = k [[°t"'P(Z > t)dt. Let K; = 1. Then

B[ X [¥] = k /0 1B(|X| > £)dt < 2% /0 1L exp(—t /o) dt = 2ko* /O b= exp(—u)du,

where we used the substitution u = t/o. Thus we have E[| X |¥] < 2I'(k+1)o*, and using I'(k+1) <
k¥ yields E[| X|¥]'/F < 21/*ka, so that (2) holds with Ky < 2.

(2) implies (3) Let Ky = 1, and note that

[e'¢) o0 1 @) 00 e k
Elexp(X/(K30))] :ZK&W I; E ;(Kg) 7

where inequality (i) used that k! > (k/e)*. Taking K3 = €?/(e — 1) < 5 gives the result.

(3) implies (1) If Elexp(X/o)] <, then for t >0
P(X > t) < Elexp(X/o)]e "7 < ! 77,
With the same result for the negative tail, we have
P(1X|>t) < 2e} /7 A1 < 2e7 55,

so that (1) holds with K; = 5
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(2) if and only if (4) Thus, we see that up to constant numerical factors, the definition || X || W =
SUPg>1 k~'E[|X|*]*/* has the equivalent statements

P(X] > 1) < 2exp(—t/(Ky1[|X]],,)) and Elexp(X/(K3[[X],,))] <e.

Now, let us assume that (2) holds with Ky = 1, so that o = [|X||,,, and that E[X] = 0. Then we

have E[X*] < k* || X||}, , and

o0 oo o0

AE[X*] po K K

Elexp(AX)] =1+ S S+ STNFxE, S+ SUNF|XE, €,
k=2 k=2 k=2

the final inequality following because k! > (k/e)*. Now, if |\| < , then we have

1
2T,

o0
Elexp(AX)] < 1+ X% [ X, D (A X[y, €)F <1+ 26 X5, A%,
k=0

as the final sum is at most Y jo27% = 2. Using 1 +z < e” gives that (2) implies (4). For
the opposite direction, we may simply use that if (4) holds with K4 = 1 and K} = 1, then
Elexp(X/o)] < exp(1), so that (3) holds.

4.5.3 Proof of Theorem 4.3.6

JCD Comment: I would like to write this. For now, check out Ledoux and Talagrand
[129, Theorem 4.12] or Koltchinskii [122, Theorem 2.2].

4.6 Bibliography

A few references on concentration, random matrices, and entropies include Vershynin’s extraordi-
narily readable lecture notes [170], upon which our proof of Theorem 4.1.11 is based, the compre-
hensive book of Boucheron, Lugosi, and Massart [34], and the more advanced material in Buldygin
and Kozachenko [41]. Many of our arguments are based off of those of Vershynin and Boucheron
et al. Kolmogorov and Tikhomirov [121] introduced metric entropy.

4.7 Exercises

Exercise 4.1 (Concentration of bounded random variables):  Let X be a random variable taking
values in [a, b], where —0o < a < b < oo. In this question, we show Hoeffding’s Lemma, that is,
that X is sub-Gaussian: for all A € R, we have

20— )2
Elexp(A(X — E[X]))] < exp (A(bS)) .

(a) Show that Var(X) < (%52)2 = % for any random variable X taking values in [a, b].

(b) Let
p(A) = log Elexp(A(X — E[X]))].
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Assuming that E[X] = 0 (convince yourself that this is no loss of generality) show that

26tX etX 2
P01 =0, ¢ =0, (0= g~ T

(You may assume that derivatives and expectations commute, which they do in this case.)
(c) Construct a random variable Y;, defined for ¢ € R, such that Y; € [a,b] and
Var(Y;) = ¢”(t).
(You may assume X has a density for simplicity.)

(d) Using the result of part (c), show that ¢(\) < M for all A € R.

Exercise 4.2: In this question, we show how to use Bernstein-type (sub-exponential) inequal-
ities to give sharp convergence guarantees. Recall (Example 4.1.14, Corollary 4.1.18, and inequal-
ity (4.1.6)) that if X; are independent bounded random variables with |X; — E[X]| < b for all i and
Var(X;) < o2, then

1< 1< 1 . (5nt® nt
max{[P(n;XizE[X]—i—t),P(n;XigE[X]—t>}gexp<—2mm{602,2b}>.

We consider minimization of loss functions ¢ over finite function classes F with ¢ € [0, 1], so that if
L(f) =E[((f, Z)] then |£(f,Z) — L(f)| < 1. Throughout this question, we let

L*=min L(f) and f* € argmin L(f).
fer ferF

We will show that, roughly, a procedure based on picking an empirical risk minimizer is unlikely to
choose a function f € F with bad performance, so that we obtain faster concentration guarantees.

(a) Argue that for any f € F

B (E0) 2 20 +4) v (£0) < 207) =) < exp (g min { B B,

(b) Define the set of “bad” prediction functions Feypaq := {f € F : L(f) > L* + €}. Show that for
any fixed € > 0 and any f € Focpad, we have

T * 1 . 5 TL62 ne
P(L(f) <L +6) < exp <_2mm{6L*(1 YT e _6)72}) '

(c) Let f, € argmin e r L(f) denote the empirical minimizer over the class F. Argue that it is
likely to have good performance, that is, for all € > 0 we have

P (L(fn) > L(f*) + 26) < card(F) - exp <—; min {2L*(1 — L?)i o Tg}) .
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(d) Using the result of part (c), argue that with probability at least 1 — 4,

R 17| L* L* 1 IFl
Lf < p+ B 2 V- 1) lor

Why is this better than an inequality based purely on the boundedness of the loss ¢, such as
Theorem 4.4.4 or Corollary 4.4.67 What happens when there is a perfect risk minimizer f*?

Exercise 4.3 (Likelihood ratio bounds and concentration):  Consider a data release problem,
where given a sample x, we release a sequence of data 2y, Zo, ..., Z, belonging to a discrete set Z,
where Z; may depend on Z{lil and x. We assume that the data has limited information about x
in the sense that for any two samples x, 2, we have the likelihood ratio bound

i—1
ICIEE I
pzi | 2',27)

Let us control the amount of “information” (in the form of an updated log-likelihood ratio) released
by this sequential mechanism. Fix x,2’, and define

p(z1,. -y 2n | )
p(z1y .y 2n | )

L(z1,...,2,) :=log

(a) Show that, assuming the data Z; are drawn conditional on z,

2
P(L(Z1,...,Zn) > ne(e® — 1) +1t) <exp <_2n52> .
Equivalently, show that

P (L(Zl, e 7)) > ne(ef — 1) + /20 1og(1/5)) <5

(b) Let v € (0,1). Give the largest value of € you can that is sufficient to guarantee that for any
test W : Z™ — {x,2'}, we have

Pp(W(Z7) # x) + Pu(V(Z]) #2') > 1 -1,

where P, and P, denote the sampling distribution of Z}* under z and 2/, respectively?

Exercise 4.4 (Marcinkiewicz-Zygmund inequality):  Let X; be independent random variables
with E[X;] = 0 and E[|X;[P] < oo, where 1 < p < co. Prove that

] < C,E [(g |Xi\2)p/2]

where C), is a constant (that depends on p). As a corollary, derive that if E[|X;?] < ¢” and p > 2,
then

np/ 2°
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That is, sample means converge quickly to zero in higher moments. Hint: For any fixed x € R", if
g; are i.i.d. uniform signs &; € {#1}, then 'z is sub-Gaussian.

Exercise 4.5 (Small balls and anti-concentration):  Let X be a nonnegative random variable
satisfying P(X <€) < ce for some ¢ < oo and all € > 0. Argue that if X; are i.i.d. copies of X, then

P (; Zn:XZ- > t) > 1 —exp(—2n[1/2 - 2¢t]%)

i=1
for all ¢.
Exercise 4.6 (Lipschitz functions remain sub-Gaussian): Let X be o?-sub-Gaussian and f :

R — R be L-Lipschitz, meaning that |f(z) — f(y)| < L]z — y| for all z,y. Prove that there exists a
numerical constant C' < oo such that f(X) is CL?c2-sub-Gaussian.

Exercise 4.7 (Sub-gaussian maxima): Let X1,...,X,, be o%-sub-gaussian (not necessarily inde-
pendent) random variables. Show that

(a) E[max; X;] < /202 logn.

(b) There exists a numerical constant C' < oo such that E[max; | X;|?] < (Cpo? log k)P/2.

Exercise 4.8: Consider a binary classification problem with logistic loss £(6; (z,y)) = log(1
exp(—y0Tx)), where § € © := {# € R? | ||0]|, < r} and y € {£1}. Assume additionally that the
space X C {z € R?| ||z|| < b}. Define the emplrlcal and population risks Ly, () 1= P,(6; (X,Y))
and L(#) := PL(6;(X,Y)), and let 6, = = argmingcq L(6). Show that with probability at least 1 — &
over (X;,Y;) ~ i ~ P,
rb log%

Vn

where C' < oo is a numerical constant (you need not specify this).

A
L(6,) < elrel(gL(G) +C

Exercise 4.9 (Sub-Gaussian constants of Bernoulli random variables):  In this exercise, we will
derive sharp sub-Gaussian constants for Bernoulli random variables (cf. [106, Thm. 1] or [118, 24]),
showing

1-— 2p

log E[e!XP)] < Tog L

t2 for all ¢t > 0. (4.7.1)

(a) Define o(t) = log(E[e"X~P)]) = log((1 — p)e~* + pe'(1=P)). Show that

¢'(t) =E[V}] and ¢"(t) = Var(¥y)

pet(1—p)
pe =)+ (1=p)e= 77

where Y; = (1 — p) with probability ¢(t) := and Y; = —p otherwise.

(b) Show that ¢/(0) = 0 and that if p > 3, then Var(Y¥;) < Var(Yy) = p(1 — p). Conclude that
o(t) < wﬂ for all ¢ > 0.

(c) Argue that p(1 —p) < =2 for p € [O 1]. Hint: Let p = 32 for § € [0,1], so that the

— 2lo, g
1+5 (1+6) = fo Tradu.

inequality is equivalent to log ;=
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(d) Let C = 2log lp%p and define s = Ct = 2log lp%ps, and let

1-2
f(s) = 5 Pos? + Cps —log(1 — p + pe®®),

so that inequality (4.7.1) holds if and only if f(s) > 0 for all s > 0. Give f’(s) and f"(s).

(e) Show that f(0) = f(1) = f/(0) = f’(1) = 0, and argue that f”(s) changes signs at most twice
and that f”(0) = f”(1) > 0. Use this to show that f(s) > 0 for all s > 0.

JCD Comment: Perhaps use transportation inequalities to prove this bound, and
also maybe give Ordentlich and Weinberger’s “A Distribution Dependent Refinement
of Pinsker’s Inequality” as an exercise.

Exercise 4.10: Let s(p) = 101g712é' Show that s is concave on [0, 1].

P

Exercise 4.11: Prove Lemma 4.3.8.

JCD Comment: Add in some connections to the exponential family material. Some
ideas:

1. A hypothesis test likelihood ratio for them (see page 40 of handwritten notes)

2. A full learning guarantee with convergence of Hessian and everything, e.g., for logistic
regression?

3. In the Ledoux-Talagrand stuff, maybe worth going through example of logistic regres-
sion. Also, having working logistic example throughout? Helps clear up the structure
and connect with exponential families.

4. Maybe an exercise for Lipschitz functions with random Lipschitz constants?
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Chapter 5

Generalization and stability

Concentration inequalities provide powerful techniques for demonstrating when random objects
that are functions of collections of independent random variables—whether sample means, functions
with bounded variation, or collections of random vectors—behave similarly to their expectations.
This chapter continues exploration of these ideas by incorporating the central thesis of this book:
that information theory’s connections to statistics center around measuring when (and how) two
probability distributions get close to one another. On its face, we remain focused on the main
objects of the preceding chapter, where we have a population probability distribution P on a space
X and some collection of functions f : X — R. We then wish to understand when we expect the

empirical distribution
1 n
Py = 2 1X;,
1=

defined by teh sample X; i P, to be close to the population P as measured by f. Following the
notation we introduce in Section 4.3, for Pf := Ep[f(X)], we again ask to have

n
Pof = P =3 (F(X0) ~ Ep[f(X))
i=1
to be small simultaneously for all f.

In this chapter, however, we develop a family of tools based around PAC' (probably approximately
correct) Bayesian bounds, where we slightly perturb the functions f of interest to average them in
some way; when these perturbations keep P, f stable, we expect that P, f ~ Pf, that is, the sample
generalizes to the population. These perturbations allow us to bring the tools of the divergence
measures we have developed to bear on the problems of convergence and generalization. Even more,
they allow us to go beyond the “basic” concentration inequalities to situations with interaction,
where a data analyst may evaluate some functions of P,,, then adaptively choose additional queries
or analyses to do on the sample sample X{'. This breaks standard statistical analyses—which
assume an a priori specified set of hypotheses or questions to be answered—but is possible to
address once we can limit the information the analyses release in precise ways that information-
theoretic tools allow. Modern work has also shown how to leverage these techniques, coupled with
computation, to provide non-vacuous bounds on learning for complicated scenarios and models to
which all classical bounds fail to apply, such as deep learning.
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5.1 The variational representation of Kullback-Leibler divergence

The starting point of all of our generalization bounds is a surprisingly simply variational result,
which relates expectations, moment generating functions, and the KL-divergence in one single
equality. It turns out that this inequality, by relating means with moment generating functions
and divergences, allows us to prove generalization bounds based on information-theoretic tools and
stability.

Theorem 5.1.1 (Donsker-Varadhan variational representation). Let P and @ be distributions on
a common space X. Then

Dia (P|Q) = sup { Erlg(X)] ~log Eqle? ]},

where the supremum is taken over measurable functions g : X — R with Eg [e9X)] < .

We give one proof of this result and one sketch of a proof, which holds when the underlying space
is discrete, that may be more intuitive: the first constructs a particular “tilting” of @ via the
function e9, and verifies the equality. The second relies on the discretization of the KL-divergence
and may be more intuitive to readers familiar with convex optimization: essentially, we expect this
result because the function log(2§:1 €®7) is the convex conjugate of the negative entropy. (See also
Exercise 5.1.)

Proof We may assume that P is absolutely continuous with respect to (), meaning that Q(A) =0
implies that P(A) = 0, as otherwise both sides are infinite by inspection. Thus, it is no loss of
generality to let P and @) have densities p and gq.

Attainment in the equality is easy: we simply take g(x) = log %, so that Eq [e9()] = 1. To
show that the right hand side is never larger than Dy (P|Q) requires a bit more work. To that
end, let g be any function such that Eg[ed®)] < oo, and define the random variable Z,(x) =
9@ /B [e9X)], so that Eg[Z] = 1. Then using the absolute continuity of P w.r.t. Q, we have

Eplion 2] = B o3 + g (2,0 %53 )| = D (P1Q) + B [1ox (2,57 )]

< D (P|Q) + log Ep [fgzg}

= D (P|Q) + log Eq[Zg].
As Eg[Z,] = 1, using that Ep[log Z,] = Ep[g(X)] — log Eg[edX)] gives the result. O

Here is the second proof of Theorem 5.1.1, which applies when X is discrete and finite. That we

can approximate KL-divergence by suprema over finite partitions (as in definition (2.2.1)) suggests
that this approach works in general—which it can—but this requires some not completely trivial
approximations of Ep[g] and Eg[ef] by discretized versions of their expectations, which makes
things rather tedious.
Proof of Theorem 5.1.1, the finite case As we have assumed that P and () have finite
supports, which we identify with {1,...,k} and p.m.f.s p,g € Ay = {p € Ri | (1,p) = 1}. Define
fq(v) = log(zg?:l g;€%), which is convex in v (recall Proposition 3.2.1). Then the supremum in
the variational representation takes the form

h(p) == sup {(p,v) — fo(v)}.

vERF
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If we can take derivatives and solve for zero, we are guaranteed to achieve the supremum. To that
end, note that

) k
Vol(p,v) = fo()} =p - [,f]

2j-195¢" |,
so that setting v; = log % achieves p — V,, fy(v) = p —p = 0 and hence the supremum. Noting that
k j k .
log(327-1 4 exp(log 1)) = log(325_, pj) = 0 gives h(p) = D (plq)- O

The Donsker-Varadhan variational representation already gives a hint that we can use some
information-theoretic techniques to control the difference between an empirical sample and its
expectation, at least in an average sense. In particular, we see that for any function g, we have

Ep[g(X)] < Dy (P|Q) +logEq[e?™)]

for any random variable X. Now, changing this on its head a bit, suppose that we consider a
collection of functions F and put two probability measures m and w9 on F, and consider P, f — P f,
where we consider f a random variable f ~ 7 or f ~ mg. Then a consequence of the Donsker-
Varadhan theorem is that

/ (Puf — Pf)dn(f) < D (o) + log / exp(Puf — P)dmo(f)

for any m,m9. While this inequality is a bit naive—bounding a difference by an exponent seems
wasteful—as we shall see, it has substantial applications when we can upper bound the KL-
divergence Dy (m|mo).

5.2 PAC-Bayes bounds

Probably-approximately-correct (PAC) Bayesian bounds proceed from a perspective similar to that
of the covering numbers and covering entropies we develop in Section 4.3, where if for a collection
of functions F there is a finite subset (a cover) {f,} such that each f € F is “near” one of the
fv, then we need only control deviations of P, f from Pf for the elements of {f,}. In PAC-Bayes
bounds, we instead average functions f with other functions, and this averaging allows a similar
family of guarantees and applications.

Let us proceed with the main results. Let F be a collection of functions f : X — R, and
assume that each function f is o2?-sub-Gaussian, which we recall (Definition 4.1) means that
E[er(X)=PN] < exp(M\202/2) for all A € R, where Pf = Ep[f(X)] = [ f(z)dP(x) denotes the
expectation of f under P. The main theorem of this section shows that averages of the squared
error (P, f — Pf)? of the empirical distribution P, to P converge quickly to zero for all averaging
distributions 7 on functions f € F so long as each f is o?-sub-Gaussian, with the caveat that we
pay a cost for different choices of m. The key is that we choose some prior distribution mg on F
first.

Theorem 5.2.1. Let I be the collection of all probability distributions on the set F and let mg be
a fized prior probability distribution on f € F. With probability at least 1 — 4,

- 8;;2Dk1 (m|mo) + log %
- 3 n

simultaneously for all m € II.

[Pur = papasts
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Proof The key is to combine Example 4.1.12 with the variational representation that Theo-
rem 5.1.1 provides for KL-divergences. We state Example 4.1.12 as a lemma here.

Lemma 5.2.2. Let Z be a o2-sub-Gaussian random variable. Then for A >0,

1

E[eM] < ———
[1—202A]

Without loss of generality, we assume that Pf = 0 for all f € F, and recall that P,f =
%Z?ﬂ f(X;) is the empirical mean of f. Then we know that P,f is 0?/n-sub-Gaussian, and

Lemma 5.2.2 implies that E[exp(A(P,f)?)] < [1 — 2)\02/11] Y2 for any f, and thus for any prior
mo on f we have

E [/ exp()\(Pnf)2)d7T0(f)] < [1 — 2)\02/71];1/2

Consequently, taking A = A, we obtain

827

E [ / exp(An<Pnf>2>dm<f>] —E [ [ew (83 (Puf) ) dm(f)] <2

Markov’s inequality thus implies that
2
B[ om (uput?) dml) = 5) <o (5.2.1)

where the probability is over X; X p.
Now, we use the Donsker-Varadhan equality (Theorem 5.1.1). Letting A > 0, we define the
function g(f) = A(P,f)?, so that for any two distributions 7 and 7y on F, we have

s [otnartn = [pupan(s) < 2etrim) )+ loa ] (Pt o)

This holds without any probabilistic qualifications, so using the application (5.2.1) of Markov’s
inequality with A = A,,, we thus see that with probability at least 1 — § over Xy, ..., X,,, simulta-
neously for all distributions ,

802 Dy (w|mo) + log
/ (Puf)?dn(f) < —- 8.
n
This is the desired result (as we have assumed that Pf =0 w.l.o.g.). t

By Jensen’s inequality (or Cauchy-Schwarz), it is immediate from Theorem 5.2.1 that we also
have

802 D + log 2
/ |P,f — Pfldn(f) < \/g L (W”F;JL) 85 simultaneously for all = € II (5.2.2)

with probability at least 1 — 4§, so that E;[|P,f — Pf|] is with high probability of order 1/y/n. The
inequality (5.2.2) is the original form of the PAC-Bayes bound due to McAllester, with slightly

107



Lexture Notes on Statistics and Information Theory John Duchi

sharper constants and improved logarithmic dependence. The key is that stability, in the form of a
prior my and posterior 7 closeness, allow us to achieve reasonably tight control over the deviations
of random variables and functions with high probability.

Let us give an example, which is similar to many of our approaches in Section 4.4, to illustrate
some of the approaches this allows. The basic idea is that by appropriate choice of prior mg
and “posterior” 7, whenever we have appropriately smooth classes of functions we achieve certain
generalization guarantees.

Example 5.2.3 (A uniform law for Lipschitz functions):  Consider a case as in Section 4.4,
where we let L(0) = P{(0,Z) for some function £: © x Z — R. Let B = {v € R? | ||v||, < 1}
be the f-ball in R?, and let us assume that © C rB¢ and additionally that 6 + £(6, z) is
M-Lipschitz for all z € Z. For simplicity, we assume that ¢(0, z) € [0,2Mr] for all § € © (we
may simply relativize our bounds by replacing ¢ by £(-, z) — infgco £(0, 2) € [0,2M7]).

If L,(0) = P,l(6, Z), then Theorem 5.2.1 implies that

/ Z(0) — L(0)]dr(0) < \/ Sj‘gzﬂ [Dkl (o) —|—log§

for all = with probability at least 1 — §. Now, let y € © be arbitrary, and for € > 0 (to be
chosen later) take mp to be uniform on (r + €)B¢ and 7 to be uniform on 6 + eBY. Then we
immediately see that Dy (7] mo) = dlog(1+%). Moreover, we have [ L,(0)dn(0) € Ly, (60)+Me
and similarly for L(6), by the M-Lipschitz continuity of ¢. For any fixed ¢ > 0, we thus have

-~ 2M2r2 T 2
_ < . zZ
En(60) — L(60)| < 2Me + \/ - [dlog (1+5) +10g 5]

simultaneously for all 8y € ©, with probability at least 1 — 4. By choosing € = %d we obtain

that with probability at least 1 — 6,

~ 2Mrd 8M?2r2 2
sup | L, (0) — L(0)| < =y \/ 3n7“ [dlog <1 + g) + log 5].

CISE) n
Thus, roughly, with high probability we have |L,(6) — L(6)| < O(1)Mr/ dlog 2 for all §. ©

On the one hand, the result in Example 5.2.3 is satisfying: it applies to any Lipschitz function
and provides a uniform bound. On the other hand, when we compare to the results achievable for
specially structured linear function classes, then applying Rademacher complexity bounds—such
as Proposition 4.4.9 and Example 4.4.10—we have somewhat weaker results, in that they depend
on the dimension explicitly, while the Rademacher bounds do not exhibit this explicit dependence.
This means they can potentially apply in infinite dimensional spaces that Example 5.2.3 cannot.
We will give an example presently showing how to address some of these issues.

5.2.1 Relative bounds

In many cases, it is useful to have bounds that provide somewhat finer control than the bounds
we have presented. Recall from our discussion of sub-Gaussian and sub-exponential random vari-
ables, especially the Bennett and Bernstein-type inequalities (Proposition 4.1.20), that if a random
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variable X satisfies |X| < b but Var(X) < o? < b?, then X concentrates more quickly about
its mean than the convergence provided by naive application of sub-Gaussian concentration with
sub-Gaussian parameter b?/8. To that end, we investigate an alternative to Theorem 5.2.1 that
allows somewhat sharper control.

The approach is similar to our derivation in Theorem 5.2.1, where we show that the moment
generating function of a quantity like P, f — Pf is small (Eq. (5.2.1)) and then relate this—via the
Donsker-Varadhan change of measure in Theorem 5.1.1—to the quantities we wish to control. In
the next proposition, we provide relative bounds on the deviations of functions from their means.
To make this precise, let F be a collection of functions f : X — R, and let o2(f) := Var(f(X)) be
the variance of functions in F. We assume the class satisfies the Bernstein condition (4.1.7) with
parameter b, that is,

‘IE [(f(X) - Pf)k} ] < %!JQ(f)bk_Q for k= 3,4, ... (5.2.3)

This says that the second moment of functions f € F bounds—with the additional boundedness-
type constant b—the higher moments of functions in f. We then have the following result.

Proposition 5.2.4. Let F be a collection of functions f : X — R satisfying the Bernstein condi-

tion (5.2.3). Then for any |\ < %, with probability at least 1 — 4,

/\/Pfdw(f) _ A2/gz(f)dﬁ<f) < /\/Pnfdw(f) +% [Dkl (7o) —l—log%

stmultaneously for all w € 11.

Proof We begin with an inequality on the moment generating function of random variables
satisfying the Bernstein condition (4.1.7), that is, that [E[(X — u)*]| < %!O'Qbk_Q for k > 2. In this
case, Lemma 4.1.19 implies that

E[e*X~M] < exp(A26?)

for [A\| < 1/(2b). As a consequence, for any f in our collection F, we see that if we define
An(f,A) = A[Puf = Pf = Ao*(f)],

we have that
Elexp(nAn(f,A)] = Elexp(A(f(X) — Pf) = Xa*(f))]" <1

for all n, f € F, and |\| < i. Then, for any fixed measure 7y on F, Markov’s inequality implies
that

P (/ exp(nAn(f, \))dmo(f) > 2) <5, (5.2.4)

Now, as in the proof of Theorem 5.2.1, we use the Donsker-Varadhan Theorem 5.1.1 (change of
measure), which implies that

n / An(f, N (f) < Dy (nlm0) + log / exp(nAn(f, ))dmo(f)

for all distributions . Using inequality (5.2.4), we obtain that with probability at least 1 — 0,
1 1
An(f? )‘)dﬂ(f) < g Dy (7TH7T0> + IOg g
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for all w. As this holds for any fixed |A| < 1/(2b), this gives the desired result by rearranging. [

We would like to optimize over the bound in Proposition 5.2.4 by choosing the “best” A. If we
could choose the optimal A, by rearranging Proposition 5.2.4 we would obtain the bound

BelPf] < EnlPuf] + Juf {Bclo2(7)] + - [Du (o) + 10g 5]

2
— g0+ 2y =2 [y (rh) + 105
simultaneously for all 7w, with probability at least 1 —¢. The problem with this approach is two-fold:
first, we cannot arbitrarily choose A in Proposition 5.2.4, and second, the bound above depends on
the unknown population variance o2(f). It is thus of interest to understand situations in which
we can obtain similar guarantees, but where we can replace unknown population quantities on the
right side of the bound with known quantities.
To that end, let us consider the following condition, a type of relative error condition related
to the Bernstein condition (4.1.7): for each f € F,

a?(f) < bPf. (5.2.5)

This condition is most natural when each of the functions f take nonnegative values—for example,
when f(X) = (0, X) for some loss function ¢ and parameter 6 of a model. If the functions f are
nonnegative and upper bounded by b, then we certainly have o2(f) < E[f(X)?] < bE[f(X)] = bPFf,
so that Condition (5.2.5) holds. Revisiting Proposition 5.2.4, we rearrange to obtain the following
theorem.

Theorem 5.2.5. Let F be a collection of functions satisfying the Bernstein condition (5.2.3) as in
Proposition 5.2.4, and in addition, assume the variance-bounding condition (5.2.5). Then for any

0<AL %, with probability at least 1 — 9,

Ab 1

1 1
1- % o Dy (m|mo) + log *}

0

for all .

Proof We use condition (5.2.5) to see that
AE[Pf] = NBEx[Pf] < AE[Pf] — NXEx[o® ()],

apply Proposition 5.2.4, and divide both sides of the resulting inequality by A(1 — Ab). O

To make this uniform in A, thus achieving a tighter bound (so that we need not pre-select A),

we choose multiple values of A and apply a union bound. To that end, let 14+7n = ﬁ, orn= %
and )\b(llf ) = (17’)2, so that the inequality in Theorem 5.2.1 is equivalent to

(1+n)%0b

BnlPS) < BxlPuf) + 1 (Puf] + 2 [ Du (rlro) + Tog 5

g .
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Using that our choice of € [0, 1], this implies

b b
E.[Pf] < Ex[Pof] + nEr[Pof] + 717” [Dkl (x[0) + log %} + %[Dkl (o) + 10g% .

Now, take 1 = 1/n,...,n, = 1. Then by optimizing over n € {m,...,n,} (which is equivalent, to
within a 1/n factor, to optimizing over 0 < n < 1) and applying a union bound, we obtain

Corollary 5.2.6. Let the conditions of Theorem 5.2.5 hold. Then with probability at least 1 — 9,

bEr [P f]
n

n

2]+ % (Bxl[Pof] + 56 Dua (xllmo) + log £ )

Ex[Pf] < Ex[Pnf] + 2\/ 5

[Dkl (m|mo) + log

simultaneously for all m on F.
Proof By a union bound, we have

1b n 3b n

ErlPJ] < EelPuf] 4+ 0[P f] + - o | Dia (rlo) +1og | + 7| Dua (ko) + log |

for eachn € {1/n,...,1}. We consider two cases. In the first, assume that E [P, f] < 2(Dy (r|mo)+
log%. Then taking n = 1 above evidently gives the result. In the second, we have E.[P,f] >

%(Dkl (m|mo) + log %), and we can set

€ (0,1).

2Dy (r|mo) + log %)
= Ex [P f]

Choosing 7 to be the smallest value ny in {n1,...,n,} with 9 > n,, so that n, <n <n, + % then
implies the claim in the corollary. O

5.2.2 A large-margin guarantee

Let us revisit the loss minimization approaches central to Section 4.4 and Example 5.2.3 in the
context of Corollary 5.2.6. We will investigate an approach to achieve convergence guarantees that
are (nearly) independent of dimension, focusing on 0-1 losses in a binary classification problem.
Consider a binary classification problem with data (x,5) € R? x {1}, where we make predictions
(0, x) (or its sign), and for a margin penalty v > 0 we define the loss

ly(0; (z,y)) = 1{(0,2)y < ~}.

We call the quantity (0, z)y the margin of 6 on the pair (x,y), noting that when the margin is
large, (0, z) has the same sign as y and is “confident” (i.e. far from zero). For shorthand, let us
define the expected and empirical losses at margin v by

Ly(0) == PL,(0;(X,Y)) and L(0) := P,y (0; (X,Y)).

Consider the following scenario: the data x lie in a ball of radius b, so that ||z|, < b; note that
the losses £, and ¢ satisfy the Bernstein (5.2.3) and self-bounding (5.2.5) conditions with constant
1 as they take values in {0, 1}. We then have the following proposition.
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Proposition 5.2.7. Let the above conditions on the data (z,y) hold and let the margin v > 0 and
radius r < co. Then with probability at least 1 — 9,

r2p? log %

rblog %

YVn

simultaneously for all ||0||, < r, where C is a numerical constant independent of the problem
parameters.

P((6, X)Y < 0) < (1 + ;) Po((0, X)Y <) + V3

Proposition 5.2.7 provides a “dimension-free” guarantee—it depends only on the ¢5-norms ||6||,
and ||z||,—so that it can apply equally in infinite dimensional spaces. The key to the inequality
is that if we can find a large margin predictor—for example, one achieved by a support vector
machine or, more broadly, by minimizing a convex loss of the form

minimize 1 Z »((X;,0)Y;)
=1

lol,<r m <

for some decreasing convex ¢ : R — Ry, e.g. ¢(t) = [1 —t], or ¢(t) = log(1 + e~*)—then we get
strong generalization performance guarantees relative to the empirical margin . As one particular
instantiation of this approach, suppose we can obtain a perfect classifier with positive margin: a
vector 0 with ||6||, < r such that (0, X;)Y; > ~ for each i« = 1,...,n. Then Proposition 5.2.7
guarantees that -
n
P((6, X)Y <0) < C%
v4n

with probability at least 1 — 4. R
Proof Let m be N(0,721) for some 7 > 0 to be chosen, and let = be N(8, 72I) for some 6 € R?
satisfying H§ 2 < 7. Then Corollary 5.2.6 implies that

Ex[L,(0)]

)

< EW[EW(G)] + 2\/W (IFLr [EW(Q)] +C [Dkl (m|mo) + log %D

n 1
[Dkl (7m0 + log g} + -

3

2

< Ex[L,(6)] + 2\/&[%(6)] [27;22 +log 5] + % (EW[MQ)} +C[ oy +log ZD

simultaneously for all § satisfying ||0]|2 < r with probability at least 1 — &, where we have used that
Dy (N(8, 21)IN(0, 721)) = |12 /(272).

Let us use the margin assumption. Note that if Z ~ N(0,72I), then for any fixed 0y, z,y we
have

Co(Bo; (,9)) — P(Z x> ~) <E[(00 + Z; (2,y))] < Lor(Bo; (,9)) + P(Z x> )

where the middle expectation is over Z ~ N(0,72I). Using the 72 ||z||3-sub-Gaussianity of Z 'z, we
can obtain immediately that if ||z|, < b, we have

2

272h2

2
eowo;(a:,y))—exp(— )<E[£fy(90+z;($ay))]<€27(90;($ay))+exp<— il )

272h2
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Returning to our earlier bound, we evidently have that if ||z||, < b for all z € X, then with
probability at least 1 — §, simultaneously for all § € R? with |||, < r,

~ 2 Eg (9) +exp(—7—2) r2 n
Lo(0) < Lay(6) + 2exp (—2:%2) + 2\/ o . 27202 {ﬁ +log g}

1/~ 52 r? n
+ n <L27(0> +exp <_ 27’21)2) + 0{272 +log 5]) '
2

Setting 72 = %ﬁw, we immediately see that for any choice of margin v > 0, we have with
probability at least 1 — § that

~ 2b 11~ b1rr2b?logn n
Lo(@) < LQW(Q) + z + 2\/n |:L2'Y(9) + *:| [72g + log *:|

n 27 1)
1/~ 1 r2b%logn n

for all ||6]|, < .
Rewriting (replacing 2y with 7) and recognizing that with no loss of generality we may take -y
such that rb > v gives the claim of the proposition. O

5.2.3 A mutual information bound

An alternative perspective of the PAC-Bayesian bounds that Theorem 5.2.1 gives is to develop
bounds based on mutual information, which is also central to the interactive data analysis set-
ting in the next section. We present a few results along these lines here. Assume the setting of
Theorem 5.2.1, so that F consists of o%-sub-Gaussian functions. Let us assume the following ob-

servational model: we observe X7’ EY P, and then conditional on the sample X7', draw a (random)
function F' € F following the distribution (- | X7*). Assuming the prior mp is fixed, Theorem 5.2.1
guarantees that with probability at least 1 — ¢ over X7,

e 802 n 2
B[(PuF — PF)? | X7] < S | Dia (n(- | XP)llmo) +log 5 |

where the expectation is taken over F' ~ m(- | X7"), leaving the sample fixed. Now, consider choosing
7o to be the average over all samples X" of 7, that is, mo(-) = Ep[n(- | X7)], the expectation taken

over X7 % P. Then by definition of mutual information,
I(F; X7') = Ep [Dya (n(- | X7)|mo)]

and by Markov’s inequality we have

1

P(Dia (n(- | X7)mo) 2 K- I(F; XT)) < 4+

for all K > 0. Combining these, we obtain the following corollary.
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Corollary 5.2.8. Let F' be chosen according to any distribution 7(- | X{') conditional on the sample
XT'. Then with probability at least 1 — dg — 61 over the sample X' i P,
802 [I(F; XT) 2

— log —| .
3n (50 +log (51

E[(P,F — PF)*| X7 <

This corollary shows that if we have any procedure—say, a learning procedure or otherwise—

that limits the information between a sample X' and an output F', then we are guaranteed that

F generalizes. Tighter analyses of this are possible, though not our focus here, just that already

there should be an inkling that limiting information between input samples and outputs may be
fruitful.

5.3 Interactive data analysis

A major challenge in modern data analysis is that analyses are often not the classical statistics and
scientific method setting. In the scientific method—forgive me for being a pedant—one proposes
a hypothesis, the status quo or some other belief, and then designs an experiment to falsify that
hypothesis. Then, upon performing the experiment, there are only two options: either the experi-
mental results contradict the hypothesis (that is, we must reject the null) so that the hypothesis is
false, or the hypothesis remains consistent with available data. In the classical (Fisherian) statis-
tics perspective, this typically means that we have a single null hypothesis Hy before observing a
sample, we draw a sample X € X, and then for some test statistic T': X — R with observed value
tobserved = T'(X), we compute the probability under the null of observing something as extreme as
what we observed, that is, the p-value p = P, (T(X) > tobserved)-

Yet modern data analyses are distant from this pristine perspective for many reasons. The
simplest is that we often have a number of hypotheses we wish to test, not a single one. For example,
in biological applications, we may wish to investigate the associations between the expression of
number of genes and a particular phenotype or disease; each gene j then corresponds to a null
hypothesis Hy ; that gene j is independent of the phenotype. There are numerous approaches to
addressing the challenges associated with such multiple testing problems—such as false discovery
rate control, familywise error rate control, and others—with whole courses devoted to the challenges.

Even these approaches to multiple testing and high-dimensional problems do not truly capture
modern data analyses, however. Indeed, in many fields, researchers use one or a few main datasets,
writing papers and performing multiple analyses on the same dataset. For example, in medicine,
the UK Biobank dataset [163] has several thousand citations (as of 2023), many of which build
on one another, with early studies coloring the analyses in subsequent studies. Even in situations
without a shared dataset, analyses present researchers with huge degrees of freedom and choice.
A researcher may study a summary statistic of his or her sampled data, or a plot of a few simple
relationships, performing some simple data exploration—which statisticians and scientists have
advocated for 50 years, dating back at least to John Tukey!—but this means that there are huge
numbers of potential comparisons a researcher might make (that he or she does not). This “garden
of forking paths,” as Gelman and Loken [91] term it, causes challenges even when researchers are
not “p-hacking” or going on a “fishing expedition” to try to find publishable results. The problem
in these studies and approaches is that, because we make decisions that may, even only in a small
way, depend on the data observed, we have invalidated all classical statistical analyses.

To that end, we now consider interactive data analyses, where we perform data analyses se-
quentially, computing new functions on a fixed sample Xi,...,X,, after observing some initial
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information about the sample. The starting point of our approach is similar to our analysis of
PAC-Bayesian learning and generalization: we observe that if the function we decide to compute
on the data X7 is chosen without much information about the data at hand, then its value on the
sample should be similar to its values on the full population. This insight dovetails with what we
have seen thus far, that appropriate “stability” in information can be useful and guarantee good
future performance.

5.3.1 The interactive setting

We do not consider the interactive data analysis setting in full, rather, we consider a stylized
approach to the problem, as it captures many of the challenges while being broad enough for
different applications. In particular, we focus on the statistical queries setting, where a data

analyst wishes to evaluate expectations
Ep[o(X)] (5.3.1)
of various functionals ¢ : X — R under the population P using a sample X7 i1 p. Certainly,
numerous problems problems are solvable using statistical queries (5.3.1). Means use ¢(x) = =z,
while we can compute variances using the two statistical queries ¢1(z) = = and ¢o(z) = 22, as
Var(X) = Ep[¢2(X)] — Ep[¢1(X)]*.
Classical algorithms for the statistical query problem simply return sample means P,¢ :=
% o, o(X;) given a query ¢ : X — R. When the number of queries to be answered is not chosen
adaptively, this means we can typically answer a large number relatively accurately; indeed, if we

have a finite collection ® of o?-sub-Gaussian ¢ : X — R, then we of course have

202 2
P P, — Po| > 1/ = (log(2|® ] <e ™ fort>
(glgg\ ¢ ¢|_\/n (log(2] !)+))_e ort>0

by Corollary 4.1.10 (sub-Gaussian concentration) and a union bound. Thus, so long as |®| is not
exponential in the sample size n, we expect uniformly high accuracy.

Example 5.3.1 (Risk minimization via statistical queries): Suppose that we are in the loss-
minimization setting (4.4.2), where the losses ¢(6, X;) are convex and differentiable in 6. Then
gradient descent applied to En(ﬂ) = P40, X) will converge to a minimizing value of L,. We
can evidently implement gradient descent by a sequence of statistical queries ¢(x) = Vyl(0, z),
iterating

gU+1y = gk) — o PR, (5.3.2)

where ¢®) = Vy£(0%) ) and ay, is a stepsize. ©

One issue with the example (5.3.1) is that we are interacting with the dataset, because each
sequential query #¥) depends on the previous k — 1 queries. (Our results on uniform convergence
of empirical functionals and related ideas address many of these challenges, so that the result of
the process (5.3.2) will be well-behaved regardless of the interactivity.)

We consider an interactive version of the statistical query estimation problem. In this version,
there are two parties: an analyst (or statistician or learner), who issues queries ¢ : X — R, and
a mechanism that answers the queries to the analyst. We index our functionals ¢ by ¢t € T for a
(possibly infinite) set 7, so we have a collection {¢; }1e7. In this context, we thus have the following
scheme:
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Input: Sample X" drawn i.i.d. P, collection {¢;}+c7 of possible queries
Repeat: for k=1,2,...

i. Analyst chooses index T}, € 7 and query ¢ := ¢,

ii. Mechanism responds with answer Ay approximating P¢ = Ep[¢(X)] using X7

Figure 5.1: The interactive statistical query setting

Of interest in the iteration 5.1 is that we interactively choose 11,75, ..., Ty, where the choice T;
may depend on our approximations of Ep[¢r,(X)] for j < i, that is, on the results of our previous
queries. Even more broadly, the analyst may be able to choose the index T} in alternative ways
depending on the sample X7, and our goal is to still be able to accurately compute expectations
Por = Ep[¢pr(X)] when the index 7" may depend on X7'. The setting in Figure 5.1 clearly breaks
with the classical statistical setting in which an analysis is pre-specified before collecting data, but
more closely captures modern data exploration practices.

5.3.2 Second moment errors and mutual information

The starting point of our derivation is the following result, which follows from more or less identical
arguments to those for our PAC-Bayesian bounds earlier.

Theorem 5.3.2. Let {¢;}1eT be a collection of o%-sub-Gaussian functions ¢y : X — R. Then for
any random variable T and any A > 0,

El(Padr ~ Por)’) < § [10X15T) - 3 1og 1~ 2007/

> =

and

2
ElPagr] - EPor] < /2 1(X{5 )

where the expectations are taken over T' and the sample X7'.

Proof The proof is similar to that of our first basic PAC-Bayes result in Theorem 5.2.1. Let
us assume w.l.o.g. that P¢; = 0 for all ¢ € T, noting that then P,¢; is 02/n-sub-Gaussian. We

prove the first result first. Lemma 5.2.2 implies that E[exp(A(Pn¢¢)?)] < [1 — 2X0?/n] ;1/ ? for each
t € T. As a consequence, we obtain via the Donsker-Varadhan equality (Theorem 5.1.1) that

sz | [(BaonPanto)] < E[Dy (rlmo)] + E o [ exp(3(Pa)ama(e)

(? E[Dy (7|m0)] + log E [/ eXp(A(Pﬂ(ﬁt)%dm(t)}

(i) 1

< E[Dy (7|mo)] — 5 log [1—2x0%/n] ,

for all distributions 7 on 7, which may depend on P,, where the expectation E is taken over the
sample X7 Y p. (Here inequality (i) is Theorem 5.1.1, inequality (i7) is Jensen’s inequality, and
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inequality (¢i¢) is Lemma 5.2.2.) Now, let 7y be the marginal distribution on 7" (marginally over
all observations X7'), and let m denote the posterior of T' conditional on the sample X7. Then
E[Dy (7| mo)] = (X7 T) by definition of the mutual information, giving the bound on the squared
erTor.

For the second result, note that the Donsker-Varadhan equality implies

\252
on

AE [/ Pn¢td7f(t)] < E[Dy (7]mo)] + log/E[eXp(APn¢t)]dWO(t) < I(X{5T) +

Dividing both sides by X gives E[P,¢r] < /2021(X7; T)/n, and performing the same analysis with
—¢7 gives the second result of the theorem. O

The key in the theorem is that if the mutual information—the Shannon information—I(X;T)

between the sample X and T is small, then the expected squared error can be small. To make this

a bit clearer, let us choose values for A in the theorem; taking A = 57 gives the following corollary.

eo?
Corollary 5.3.3. Let the conditions of Theorem 5.3.2 hold. Then
2e0? 502
E[(Par — Pér)?] < ——I(X]5T) + - —

Consequently, if we can limit the amount of information any particular query T (i.e., ¢7) contains
about the actual sample X', then guarantee reasonably high accuracy in the second moment errors

(Pogr — Por)?.

5.3.3 Limiting interaction in interactive analyses

Let us now return to the interactive data analysis setting of Figure 5.1, where we recall the stylized
application of estimating mean functionals P¢ for ¢ € {¢;}e7. To motivate a more careful ap-
proach, we consider a simple example to show the challenges that may arise even with only a single
“round” of interactive data analysis. Naively answering queries accurately—using the mechanism
P, ¢ that simply computes the sample average—can easily lead to problems:

Example 5.3.4 (A stylized correlation analysis):  Consider the following stylized genetics
experiment. We observe vectors X € {—1, 1}’“, where X; = 1 if gene j is expressed and —1
otherwise. We also observe phenotypes Y € {—1,1}, where Y = 1 indicates appearance of
the phenotype. In our setting, we will assume that the vectors X are uniform on {—1,1}*
and independent of Y, but an experimentalist friend of ours wishes to know if there exists a
vector v with [|v[, = 1 such that the correlation between vTX and Y is high, meaning that
vT X is associated with Y. In our notation here, we have index set {v € R* | ||lv||, = 1}, and
by Example 4.1.6, Hoeffding’s lemma, and the independence of the coordinates of X we have
that v XY is ||v]|3 /4 = 1/4-sub-Gaussian. Now, we recall the fact that if Z;, j = 1,...,k, are
o%-sub-Gaussian, then for any p > 1, we have

E[max | Z;["] < (Cpo® log k)P/?
J

for a numerical constant C. That is, powers of sub-Gaussian maxima grow at most logarith-
mically. Indeed, by Theorem 4.1.11, we have for any ¢ > 1 by Hélder’s inequality that

1/q
E[max |Z;|P] < E[Z |Zj|pq] < kY1(Cpgo®)P/?,
J
J
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and setting ¢ = log k gives the inequality. Thus, we see that for any a priori fixed vy, ..., vk, Vg1,
we have log k
Efmax(v] (P,Y X))?] < O(1)—=.
J n

If instead we allow a single interaction, the problem is different. We issue queries associated
with v = ey, ..., ey, the k standard basis vectors; then we simply set V11 = P,Y X/ || P, Y X]||,.

Then evidently
k

T 2 2
E[(Visr (PaY X))7] = B[ PaY Xl5] =
which is exponentially larger than in the non-interactive case. That is, if an analyst is allowed
to interact with the dataset, he or she may be able to discover very large correlations that are
certainly false in the population, which in this case has PXY =0. <

Example 5.3.4 shows that, without being a little careful, substantial issues may arise in interac-
tive data analysis scenarios. When we consider our goal more broadly, which is to be able to provide
accurate approximations to P¢ for queries ¢ chosen adaptively for any population distribution P
and ¢ : X — [—1,1], it is possible to construct quite perverse situations, where if we compute
sample expectations P, ¢ exactly, one round of interaction is sufficient to find a query ¢ for which
Pug— P > 1.

Example 5.3.5 (Exact query answering allows arbitrary corruption): Suppose we draw a

sample X7 of size n on a sample space X = [m] with X, S Uniform([m]), where m > 2n. Let
® be the collection of all functions ¢ : [m] — [~1, 1], so that P(|P,¢ — Pg| > t) < exp(—nt?/2)
for any fixed ¢. Suppose that in the interactive scheme in Fig. 5.1, we simply release answers
A = P,¢. Consider the following query:

d(x)=n"" forx=1,2,...,m.

Then by inspection, we see that
m .
Pop=> nJcard({X; | X; = j})
j=1

1 1 1
= card{X; | X; =1}) + ﬁcard({XZ- | Xi=1})+---+ n—mcard({Xi | X; =m}).

It is clear that given P, ¢, we can reconstruct the sample counts exactly. Then if we define a

second query ¢2(z) = 1 for z € X7 and ¢2(x) = —1 for x € X7, we see that Pgp < » —1,

while P,¢2 = 1. The gap is thus
E[Pyg2 — Pgo] >2——>1

)

3=

which is essentially as bad as possible. <

More generally, when one performs an interactive data analysis (e.g. as in Fig. 5.1), adapting
hypotheses while interacting with a dataset, it is not a question of statistical significance or mul-
tiplicity control for the analysis one does, but for all the possible analyses one might have done
otherwise. Given the branching paths one might take in an analysis, it is clear that we require
some care.
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With that in mind, we consider the desiderata for techniques we might use to control information
in the indices we select. We seek some type of stability in the information algorithms provide
to a data analyst—intuitively, if small changes to a sample do not change the behavior of an
analyst substantially, then we expect to obtain reasonable generalization bounds. If outputs of a
particular analysis procedure carry little information about a particular sample (but instead provide
information about a population), then Corollary 5.3.3 suggests that any estimates we obtain should
be accurate.

To develop this stability theory, we require two conditions: first, that whatever quantity we
develop for stability should compose adaptively, meaning that if we apply two (randomized) algo-
rithms to a sample, then if both are appropriately stable, even if we choose the second algorithm
because of the output of the first in arbitrary ways, they should remain jointly stable. Second, our
notion should bound the mutual information I(X7;7) between the sample X{" and T". Lastly, we
remark that this control on the mutual information has an additional benefit: by the data process-
ing inequality, any downstream analysis we perform that depends only on 7" necessarily satisfies the
same stability and information guarantees as T, because if we have the Markov chain X{" =T — V
then I(X7; V) < I(X7;T).

We consider randomized algorithms A : X" — A, taking values in our index set A, where
A(X7) € Ais a random variable that depends on the sample XJ'. For simplicity in derivation,
we abuse notation in this section, and for random variables X and Y with distributions P and @)
respectively, we denote

Dy (X[Y) := Dia (P|Q) -

We then ask for a type of leave-one-out stability for the algorithms A, where A is insensitive to the
changes of a single example (on average).

Definition 5.1. Let ¢ > 0. A randomized algorithm A : X™ — A is e-KL-stable if for each
i€{l,...,n} there is a randomized A; : X"~ 1 — A such that for every sample ! e X",

*ZDkl (1) Ai(zs)) <

Examples may be useful to understand Definition 5.1.

Example 5.3.6 (KL-stability in mean estimation: Gaussian noise addition): Suppose we
wish to estimate a mean, and that x; € [—1,1] are all real-valued. Then a natural statistic
is to simply compute A(z}) = %Z?:l x;. In this case, without randomization, we will have
infinite KL-divergence between A(xl) and A;(z\;). If instead we set A(z7]) = IS i mi+Z
for Z ~ N(0,0?), and similarly 4; = 1 Eﬁél xj + Z, then we have (recall Example 2.1.7)

n Z Dia (A()|A(2:)) 2n02 Z n?2 = 20 n2’

so that a the sample mean of a bounded random variable perturbed with Guassian noise is
€= ﬁ—KL—stable. <&

We can consider other types of noise addition as well.

Example 5.3.7 (KL-stability in mean estimation: Laplace noise addition): Let the conditions
of Example 2.1.7 hold, but suppose instead of Gaussian noise we add scaled Laplace noise,
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that is, A(z]) = 23 | @; + Z for Z with density p(z) = 5= exp(—|z|/c), where 0 > 0. Then
using that if L, , denotes the Laplace distribution with shape ¢ and mean p, with density
p() = & exp(—|z — ul /o), we have

1 fler—pol
o) =z [ expl=z/a)m = pol - 2)dz

|1 — pol |y — pol |y — pol?
_eXp<_a -1t e = 9,7

Dy (Ly,

we see that in this case the sample mean of a bounded random variable perturbed with Laplace
noise is € = ﬁ—KL—stable, where o is the shape parameter. <

The two key facts are that KL-stable algorithms compose adaptively and that they bound
mutual information in independent samples.

Lemma 5.3.8. Let A : X" — Ay and A’ : Ay x X — Ay be € and &'-KL-stable algorithms,
respectively. Then the (randomized) composition A’ o A(x]) = A'(A(27),27) is € + &'-KL-stable.
Moreover, the pair (A’ o A(z}), A(x})) is € + &'-KL-stable.

Proof Let A; and A be the promised sub-algorithms in Definition 5.1. We apply the data
processing inequality, which implies for each ¢ that

Dy (A'(A(27), 27)|Ai(Ai(2\;), ;) < Dia (A'(A(2]), 27), A(T) JAL(Ai (), o), Ai(2y;)) -

We require a bit of notational trickery now. Fixing 7, let P4 4 be the joint distribution of
A'(A(27),27) and A(x7) and Q4 4 the joint distribution of Aj(A;(w\;),z\;) and A;(z\;), so that
they are both distributions over A; x Ag. Let Py, be the distribution of A’(t,z}) and similarly
Q arjq is the distribution of Aj(t,z\;). Note that A’, A both “observe” =, so that using the chain
rule (2.1.6) for KL-divergences, we have

Dy (A0 A, A| A} 0 Aj, A;) = Dig (Paar|Qa,ar)
= Dy (Pa|Qa) + /Dkl (Pt Qarpe) dPa(t)
= Dy (A 4i) +Ea[Dia (A'(A, 27) | A7(A, 27))].
Summing this from ¢ = 1 to n yields

1 — / /
_ E E E <
n L Dkl O AHA e} A Dkl A”A + EA|: Dkl A xl)HA (A xl)) <e+e y

=1

as desired. ]

The second key result is that KL-stable algorithms also bound the mutual information of a
random function.

Lemma 5.3.9. Let X; be independent. Then for any random variable A,

(A Xl < ZI A X ’ X\z = /Dkl .Tl)HA (l‘\l)) dP(.fl)
=1
where Ai(w\;) = Az X, x, 1) is the random realization of A conditional on X\; = x\;.
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Proof Without loss of generality, we assume A and X are both discrete. In this case, we have
n n
IAXY) =) IAX | XY =) HX | X{) - H(X; | A X7,
i=1 j

Now, because the X; follow a product distribution, H(X; | XY = H(X;), while H(X; |
A X fl) > H(X; | A, X\;) because conditioning reduces entropy. Consequently, we have

= 1=1

To see the final equality, note that

I(A, Xi ‘ X\z) = /Xn_l I(A,XZ ’ X\l = IL’\Z)dP(:L’\l)

_/ / Dy (A(w?)”A(fl'l;i—lgXiaxi—&-l:n)) dP(:UZ)dP(Z'\z)
xn—1Jx

by definition of mutual information as I(X;Y") = Ex[Di (Py|x|Py)]. O

Combining Lemmas 5.3.8 and 5.3.9, we see (nearly) immediately that KL stability implies
a mutual information bound, and consequently even interactive KL-stable algorithms maintain
bounds on mutual information.

Proposition 5.3.10. Let Aq,..., A be g;-KL-stable procedures, respectively, composed in any
arbitrary sequence. Let X; be independent. Then

k
1
—I(Aq,...,Ap; X7 < i
n ( 1, s A1k, 1)_25

i=1
Proof Applying Lemma 5.3.9,
n k n ]
Ab X <Y TIAN X X) =)0 T4 X | X, AT,
i=1 j=1i=1

Fix an index j and for shorthand, let A = A and A" = (A1,...,A;_1) be the first j — 1 procedures.
Then expanding the final mutual information term and letting v denote the distribution of A’, we
have

I(A; X | X\, A') = /Dkl (A(d, a)[A(d',2)) dP(xi | A = d',\;)dP" " (y;)dv(a’ | 2y;)

where A(a/,27) is the (random) procedure A on inputs z7 and a/, while A(d’,z\;) denotes the
(random) procedure A on input o, T\, Xj, and where the ith example X; follows its disdtribution
conditional on A’ = @' and X\i = x\;, as in Lemma 5.3.9. We then recognize that for each i, we
have

[ D (4@ A 2\0) Pl | ') < [ D (A o)A ) dP(ai | o)

for any randomized function g, as the marginal A in the lemma minimizes the average KL-
divergence (recall Exercise 2.15). Now, sum over ¢ and apply the definition of KL-stability as
in Lemma 5.3.8. O
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5.3.4 Error bounds for a simple noise addition scheme

Based on Proposition 5.3.10, to build an appropriately well-generalizing procedure we must build
a mechanism for the interaction in Fig. 5.1 that maintains KL-stability. Using Example 5.3.6, this
is not challenging for the class of bounded queries. Let ® = {¢;}tc7 where ¢, : X — [—1,1] be
the collection of statistical queries taking values in [—1,1]. Then based on Proposition 5.3.10 and
Example 5.3.6, the following procedure is stable.

Input: Sample X' € X™ drawn i.i.d. P, collection {¢;}ic7 of possible queries ¢; : X —
[_17 1]
Repeat: for k=1,2,...

i. Analyst chooses index T}, € T and query ¢ := ¢r,

ii. Mechanism draws independent Zj ~ N(0, %) and responds with answer

1 n
Ay =P+ Z = - ;axi) + 7.

Figure 5.2: Sequential Gaussian noise mechanism.

This procedure is evidently KL-stable, and based on Example 5.3.6 and Proposition 5.3.10, we

have that
k

202

1
—I(X5Ty, ... Ty, T <
X T T Thtt) < 55

so long as the indices T; € T are chosen only as functions of P,¢ + Z; for j < i, as the classical
information processing inequality implies that

1 1

SHXT T T Thewt) < S I(XT5 Ar - Ag)
because we have X{* — Ay — T3 and so on for the remaining indices. With this, we obtain the
following theorem.

Theorem 5.3.11. Let the indices T;, © = 1,...,k 4+ 1 be chosen in an arbitrary way using the
procedure 5.2, and let 0> > 0. Then
2ek 10

2 2
E [rygg((Aj — Por;) } < P + in +40°(logk + 1).

By inspection, we can optimize over o2 by setting 02 = /k/(logk + 1)/n, which yields the

upper bound
1 v/ k(14 logk
E [max(Aj _ P¢Tj)2:| S 4£ + 10w
n

i<k n

Comparing to Example 5.3.4, we see a substantial improvement. While we do not achieve accuracy
scaling with log k, as we would if the queried functionals ¢; were completely independent of the
sample, we see that we achieve mean-squared error of order

Vvklogk

n
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for k£ adaptively chosen queries.

Proof To prove the result, we use a technique sometimes called the monitor technique. Roughly,
the idea is that we can choose the index T 1 in any way we desire as long as it is a function of the
answers Aq,..., A; and any other constants independent of the data. Thus, we may choose

Tiy1 := Tp+ where k* = argmax{|A; — Por,|},
J<k

as this is a (downstream) function of the k different ¢ = ﬁ—KL-stable queries T,...,T. As
a consequence, we have from Corollary 5.3.3 (and the fact that the queries ¢ are 1-sub-Gaussian)
that for T' = Ty,
2e 5 5 ek 5
E[(P.pr — Pér)?] < —I1(XY T — <2ke+ — = ——5 + —.
Now, we simply consider the independent noise addition, noting that (a + b)? < 2a? + 2b? for any
a,b € R, so that

E |max(4; — Pér, )?| < 2E[(Pgr — Por)®] + 2E [rjr,lgg{zf}]

2ek 10
< 2.3 + i + 40%(logk + 1), (5.3.3)

where inequality (5.3.3) is the desired result and follows by the following lemma.
Lemma 5.3.12. Let W;, j =1,...,k be independent N(0,1). Then E[max; WjQ] <2(logk+1).

Proof We assume that & > 3, as the result is trivial otherwise. Using the tail bound for
Gaussians (Mills’s ratio for Gaussians, which is tighter than the standard sub-Gaussian bound)
that P(W > t) < ﬁe*tzﬂ for t > 0 and that E[Z fo (Z > t)dt for a nonnegative random

variable Z, we obtain that for any tg,
o) (e}
E[max W?] = / P(max W} > t)dt < to +/ P(max W} > t)dt
0 J

J J J to

[e’] 2% o) Ak
<t +2k/ P(Wy > Vt)dt <t +/ e At = tg + ——et0/2,
" (Wh = Vit < fot 5 0" Vor

to to

Setting to = 2log(4k/v/2m) gives E[max; Wf} < 2logk + log \/% + 1. O

5.4 Bibliography and further reading

PAC-Bayes techniques originated with work of David McAllester [135, 136, 137], and we remark
on his excellently readable tutorial [138]. The particular approaches we take to our proofs in
Section 5.2 follow Catoni [44] and McAllester [137]. The PAC-Bayesian bounds we present, that
simultaneously for any distribution © on F, if F' ~ w then

1 1
E[(P,F — PF)? | X} < - Dy (7| mo) + log 5
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with probability at least 1 — § suggest that we can optimize them by choosing 7 carefully. For
example, in the context of learning a statistical model parameterized by 6 € © with losses ¢(0; x,y),
it is natural to attempt to find 7 minimizing

1
EW[PHE(& X, Y) ‘ Pn] +C EDkl (71'”7T0)

*

*, then one is

in m, where the expectation is taken over 6 ~ . If this quantity has optimal value €

immediately guaranteed that for the population P, we have E;[P{(0; X,y)] < e + C4/log % //n.
Langford and Caruana [126] take this approach, and Dziugaite and Roy [79] use it to give (the
first) non-trivial bounds for deep learning models.

The questions of interactive data analysis begin at least several decades ago, perhaps most pro-
foundly highlighted positively by Tukey’s Ezploratory Data Analysis [168]. Problems of scientific
replicability have, conversely, highlighted many of the challenges of reusing data or peeking, even
innocently, at samples before performing statistical analyses [113, 86, 91]. Our approach to for-
malizing these ideas, and making rigorous limiting information leakage, draws from a more recent
strain of work in the theoretical computer science literature, with major contributions from Dwork,
Feldman, Hardt, Pitassi, Reingold, and Roth and Bassily, Nissim, Smith, Steinke, Stemmer, and
Ullman [78, 76, 77, 20, 21]. Our particular treatment most closely follows Feldman and Steinke [82].
The problems these techniques target also arise frequently in high-dimensional statistics, where one
often wishes to estimate uncertainty and perform inference after selecting a model. While we do
not touch on these problems, a few references in this direction include [25, 166, 109].

5.5 Exercises

Exercise 5.1 (Duality in Donsker-Varadhan): Here, we give a converse result to Theorem 5.1.1,
showing that for any function A : X — R,

log Eq[e"™)] = sup {Ep[h(X)] — Du (P|Q)}, (5.5.1)

where the supremum is taken over probability measures. If () has a density, the supremum may be
taken over probability measures having a density.

(a) Show the equality (5.5.1) in the case that X is discrete by directly computing the supremum.
(That is, let |X| = k, and identify probability measures P and @ with vectors p,q € Ri)

(b) Let Q have density ¢. Assume that Eqg[e"X)] < oo and let
Zn(x) = exp(h(z))/Eq[exp(h(X))],
so Eq[Zy(X)] = 1. Let P have density p(xz) = Z,(z)g(z). Show that
log Eq[e"™)] = Ep[h(X)] — D (P[Q) .-
Why does this imply equality (5.5.1) in this case?

(c) If Eg[e"™)] = 400, then monotone convergence implies that lim g, Eqe™™M B} = 400,
Conclude (5.5.1).
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Exercise 5.2 (An alternative PAC-Bayes bound): Let f: © x X — R, and let mp be a density
on 6 € ©. Use the dual form (5.5.1) of the variational representation of the KL-divergence show

that with probability at least 1 — 9 over the draw of X7 id P,

Dy (7| mo) + log %
n

/&mxw@wg/mmwmmmmmwm+

simultaneously for all distributions = on ©, where the expectation Ep is over X ~ P.

Exercise 5.3 (A mean estimator with sub-Gaussian concentration for a heavy-tailed distribu-
tion [45]): In this question, we use a PAC-Bayes bound to construct an estimator of the mean E[X]
of a distribution with sub-Gaussian-like concentration that depends only on the second moments
¥ = E[XX ] of the random vector X (not on any additional dimension-dependent quantitites)
while only assuming that E[|| X||?] < co. Let 1 be an odd function (i.e., ¢(—t) = —(t)) satisfying

—log(1 —t + %) < () <log(l+t+t?).

The function ¢ (¢) = min{1, max{—1,¢}} (the truncation of ¢ to the range [—1, 1]) is such a function.
Let 7y be the normal distribution N(#,0%I) and 7y be N(0, 0>1).

(a) Let A > 0. Use Exercise 5.2 to show that with probability at least 1 — §, for all § € R?

1

- / Pyap(N0, X))mg(0))d0' < (0, E[X]) + A (eTze + o2 tr(E)) +

16113 /20° + log 3
X .

nA

(b) For A > 0, define the “directional mean” estimator

% / Pab (MO, X)) (610

Give a choice of A > 0 such that with probability 1 — 6,

E,(0,)) =

sup |Eq(6,2) — (8, E[X])] < jﬁ\/ (2(1 +log ;) (IS lop + 02 6x(2)),

fesd—1
where S¢7! = {u € R? | ||ul|, = 1} is the unit sphere.
(c) Justify the following statement: choosing the vector i, minimizing

sup | En(6,3) — (8, )]
feSd—1

in p guarantees that with probability at least 1 —

[72n — ELX]l> < f\/ 3oz 4108 5 ) (ISl + 02 e(2)).

(d) Give a choice of the prior/posterior variance o2 so that

~ 4 1
|72n — EIX]l2 < ﬁ\/tr@) +22),log 5

with probability at least 1 — 4.
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Exercise 5.4 (Large-margin PAC-Bayes bounds for multiclass problems):  Consider the following
multiclass prediction scenario. Data comes in pairs (z,y) € bBS x [k] where B = {v € R? | |jv||, <
1} denotes the £»-ball and [k] = {1,...,k}. We make predictions using predictors 61, ...,0; € R?,
where the prediction of y on an example x is

Y(z) := argmax(0;, x).
i<k

We suffer an error whenever y(z) # y, and the margin of our classifier on pair (x,y) is

(0y, ) — max(0;, r) = min(f, — 0;, x).
iy iy

If (8, x) > (0;,x) for all i # y, the margin is then positive (and the prediction is correct).

(a) Develop an analogue of the bounds in Section 5.2.2 in this k-class multiclass setting. To do
so, you should (i) define the analogue of the margin-based loss £, (ii) show how Gaussian
perturbations leave it similar, and (iii) prove an analogue of the bound in Section 5.2.2. You
should assume one of the two conditions

k
(C1) ||6i]ly < r for all ¢ (C2) Z 16112 < kr?
i=1

on your classification vectors ;. Specify which condition you choose.

(b) Describe a minimization procedure—just a few lines suffice—that uses convex optimization to
find a (reasonably) large-margin multiclass classifier.

Exercise 5.5 (A variance-based information bound): Let ® = {¢;};c7 be a collection of functions
¢¢ : X — R, where each ¢; satisfies the Bernstein condition (4.1.7) with parameters o2(¢;) and b,
that is, |E[(¢:(X) — Pée(X))¥]| < Eo?(¢4)bF=2 for all k > 3 and Var(¢(X)) = 02(¢¢). Let T € T
be any random variable, which may depend on an observed sample X{'. Show that for all C' > 0

and |\ < 2%, then

’E [ Py — Por

1 n
maX{C,a(¢T)}] ’ < an(T§ X7) + Al

Exercise 5.6 (An information bound on variance): Let ® = {¢;}+c7 be a collection of functions
¢ : X — R, where each ¢y : X — [—1,1]. Let 0%(¢;) = Var(¢:(X)). Let s2(¢) = P¢? — (Pn¢)? be
the sample variance of ¢. Show that for all C > 0 and 0 < XA < C/4, then

S%L((bT) i L vn
£ [max{c, a2<¢T>}] sy A v

The max{C,0%(¢r)} term is there to help avoid division by 0. Hint: If 0 < z < 1, then
e® < 1+ 2z, and if X € [0,1], then E[eX] < 1 + 2E[X] < ®*X]. Use this to argue that
E[eAnFn(¢=P¢)?/max{Co®}] < ¢2An for any ¢ : X — [—1,1] with Var(¢) < o2, then apply the
Donsker-Varadhan theorem.

Exercise 5.7: Consider the following scenario: let ¢ : X — [—1,1] and let & > 0, 7 > 0. Let
p = P,¢ and s?> = P,¢? — u%. Define 02 = max{as?, 72}, and assume that 72 > 570‘
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(a) Show that the mechanism with answer A defined by
A:=P,p+Z for Z~N(0,0%)

is e-KL-stable (Definition 5.1), where for a numerical constant C' < oo,

2 2

s «
e<C - ——-(14+—= ).
- n?0? (+J2)

(b) Show that if a® < C'72 for a numerical constant C’ < oo, then we can take ¢ < O(1)—4

n2a’
Hint: Use exercise 2.14, and consider the “alternative” mechanisms of sampling from
N(p_;,0%;) where o, = max{as?,, 7°}
for 1 1
H—i = n_1 Z¢(Xj) and 52—i = n—1 Z¢(Xj)2 - Mz—i-
J#i J#

Input: Sample X' € X™ drawn i.i.d. P, collection {¢}e1 of possible queries ¢y : X —
[—1,1], parameters a > 0 and 7 > 0
Repeat: for k=1,2,...

i. Analyst chooses index T}, € T and query ¢ := ¢r,
ii. Set s? := P,¢* — (P,$)? and o7 := max{as;, 72}

iii. Mechanism draws independent Zj, ~ N(0,032) and responds with answer

1 n
Api=Pad+ Z =~ > $(X0) + Z.
k ¢+ Zg n¢=1¢( )+ Z,

Figure 5.3: Sequential Gaussian noise mechanism with variance sensitivity.

Exercise 5.8 (A general variance-dependent bound on interactive queries):  Consider the algo-
rithm in Fig. 5.3. Let 0%(¢;) = Var(¢;(X)) be the variance of ¢;.

(a) Show that for b > 0 and for all 0 <\ < 2,

|Aj — Pér;| 2

1 40é T
E < —I(X". Tk 2log(k \/I X7 TF) + 20 + —.
s | < IO 0 2loslEel S IO T) + 20

(If you do not have quite the right constants, that’s fine.)

(b) Using the result of Question 5.7, show that with appropriate choices for the parameters
a,b, 72, X that for a numerical constant C' < oo

. |Aj = Pér,| < o (klog k)t
<k max{(klogk)1/4/\/ﬁ70(¢Tj)} B vn '

You may assume that k,n are large if necessary.

E

(c) Interpret the result from part (b). How does this improve over Theorem 5.3.117
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Chapter 6

Advanced techniques in concentration
inequalities

6.1 Entropy and concentration inequalities

In the previous sections, we saw how moment generating functions and related techniques could
be used to give bounds on the probability of deviation for fairly simple quantities, such as sums of
random variables. In many situations, however, it is desirable to give guarantees for more complex
functions. As one example, suppose that we draw a matrix X € R™*", where the entries of X are
bounded independent random variables. The operator norm of X, || X| := supum{uTX v ully =
|lv]ly = 1}, is one measure of the size of X. We would like to give upper bounds on the probability
that | X| > E[|X]|]] + ¢ for ¢ > 0, which the tools of the preceding sections do not address well
because of the complicated dependencies on || X]||.

In this section, we will develop techniques to give control over such complex functions. In
particular, throughout we let Z = f(Xy,...,X,) be some function of a sample of independent
random variables X;; we would like to know if Z is concentrated around its mean. We will use
deep connections between information theoretic quantities and deviation probabilities to investigate
these connections.

First, we give a definition.

Definition 6.1. Let ¢ : R — R be a convex function. The ¢-entropy of a random variable X is
Hy (X) == E[¢(X)] — ¢(E[X]), (6.1.1)
assuming the relevant expectations exist.

A first example of the ¢-entropy is the variance:

Example 6.1.1 (Variance as ¢-entropy): Let ¢(t) = t>. Then Hy(X) = E[X?] — E[X]? =
Var(X). ¢

This example is suggestive of the fact that ¢-entropies may help us to control deviations of random
variables from their means. More generally, we have by Jensen’s inequality that Hg(X) > 0 for
any convex ¢; moreover, if ¢ is strictly convex and X is non-constant, then Hy(X) > 0. The
rough intuition we consider throughout this section is as follows: if a random variable X is tightly
concentrated around its mean, then we should have X ~ E[X] “most” of the time, and so Hg(X)
should be small. The goal of this section is to make this claim rigorous.
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6.1.1 The Herbst argument

Perhaps unsurprisingly given the focus of these lecture notes, we focus on a specific ¢, using
¢(t) = tlogt, which gives the entropy on which we focus:

H(Z) :=E[Zlog Z] — E[Z]1log E[Z], (6.1.2)

defined whenever Z > 0 with probability 1. As our particular focus throughout this chapter, we
consider the moment generating function and associated transformation X — e**. If we know the
moment generating function px () := E[e*¥], then ¢y (\) = E[Xe ], and so

H(eM) = Ay (A) — ox (A) log px (A).

This suggests—in a somewhat roundabout way we make precise—that control of the entropy H(e*¥)
should be sufficient for controlling the moment generating function of X.
The Herbst argument makes this rigorous.

Proposition 6.1.2. Let X be a random variable and assume that there exists a constant o? < co

such that 5
H(e’\X) < N0

ox(A). (6.1.3)

for all A € R (respectively, A € Ry ) where ox()\) = E[e?X] denotes the moment generating function
of X. Then

Ao
Elexp(A(X — E[X]))] < exp ( . )
for all X € R (respectively, X € Ry ).

Proof Let ¢ = px for shorthand. The proof procedes by an integration argument, where we
2 .2
show that log p(A) < )‘2" . First, note that

¢'(\) = E[xeM],
so that inequality (6.1.3) is equivalent to
AP’ (A) = p(\) log p(A) = H(eM) < =

and dividing both sides by A\2¢()\) yields the equivalent statement

o'\ 1 o’

N < .
o) N logp(A) = 5

But by inspection, we have

01 Y] 1
AN log ‘P()\) =

Moreover, we have that

_ /
A=0 A A—0 A ©(0)
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Integrating from 0 to any Ag, we thus obtain

1 Mgl Ao 52 o Xo
—1 M) — E[X] = —=1 A d\ < —d\ =
N ogp(ro) — E[X] /0 [aM og ¢( )] _/0 5 5
Multiplying each side by Ag gives
REDY:
log E[e* X —EXD] = 1og B[ X] — ME[X] < 5 0
as desired. O

It is possible to give a similar argument for sub-exponential random variables, which allows us
to derive Bernstein-type bounds, of the form of Corollary 4.1.18, but using the entropy method. In
particular, in the exercises, we show the following result.

Proposition 6.1.3. Assume that there exist positive constants b and o such that

H(e™) < A2 [be'x () + px(A)(0? — BE[X])] (6.1.4a)
for all A € [0,1/b). Then X satisfies the sub-exponential bound
2)\2
log E[e* X EXD] < T2 1.4b
o EICNSH) < T (6.1.40)

for all X > 0.

An immediate consequence of this proposition is that any random variable satisfying the entropy
bound (6.1.4a) is (202,2b)-sub-exponential. As another immediate consequence, we obtain the
concentration guarantee

P(X > E[X] +¢) < exp <_imin{i’2})

as in Proposition 4.1.16.

6.1.2 Tensorizing the entropy

A benefit of the moment generating function approach we took in the prequel is the excellent
behavior of the moment generating function for sums. In particular, the fact that ¢ x, 4.4+ x, (A) =
[T ox, () allowed us to derive sharper concentration inequalities, and we were only required to
work with marginal distributions of the X;, computing only the moment generating functions of
individual random variables rather than characteristics of the entire sum. One advantage of the
entropy-based tools we develop is that they allow similar tensorization—based on the chain rule
identities of Chapter 2 for entropy, mutual information, and KL-divergence—for substantially more
complex functions. Our approach here mirrors that of Boucheron, Lugosi, and Massart [34].

With that in mind, we now present a series of inequalities that will allow us to take this approach.
For shorthand throughout this section, we let

X\Z = (Xla e ,Xi_l,Xi+17 v 7Xn)

be the collection of all variables except X;. Our first result is a consequence of the chain rule for
entropy and is known as Han’s inequality.
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Proposition 6.1.4 (Han’s inequality). Let X1,..., X, be discrete random variables. Then
1 n
n
H(XT) < MZ;H(X\D-
1=

Proof The proof is a consequence of the chain rule for entropy and that conditioning reduces
entropy. We have

H(XT) = H(X; | X\;) + H(X\;) < H(X; | X771 + H(Xy).

Writing this inequality for each ¢ = 1,...,n, we obtain

n

nH(X?) <Y H(X)+ Y HXG | X{7) =) H(X\)+ H(XD),

=1 i=1 i=1

and subtracting H(X7") from both sides gives the result. O

We also require a divergence version of Han’s inequality, which will allow us to relate the entropy
H of a random variable to divergences and other information-theoretic quantities. Let X be an
arbitrary space, and let ) be a distribution over X" and P = P} x--- x P,, be a product distribution
on the same space. For A C X" !, define the marginal densities

QW(A)=Q(X\;€A) and PY(A)=P(X € A).
We then obtain the tensorization-type Han’s inequality for relative entropies.

Proposition 6.1.5. With the above definitions,

n

Du(QIP) <> {Dkl (QIP) — D (Q(i)HP(i)ﬂ :

=1

Proof We have seen earlier in the notes (recall the definition (2.2.1) of the KL divergence as
a supremum over all quantizers and the surrounding discussion) that it is no loss of generality to
assume that X is discrete. Thus, noting that the probability mass functions

q(l) (x\l> = Z q(xil_lwram'?+1) and p x\’L Hp] .’B]
z J#i
we have that Han’s inequality (Proposition 6.1.4) is equivalent to
n
(n—1)> q@logg(a}) > > > ¢ () log g™ (zy,).
JJ? =1 T\;

Now, by subtracting ¢(z)log p(z}) from both sides of the preceding display, we obtain

(n—1)Du (QIP) = (n—1)>_ g logq(x}) — (n— 1)) q(a) log p(})

zf xt
>3 > q (@) log g (xy;) = (n—1) > g(af) log p(at).
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We expand the final term. Indeed, by the product nature of the distributions p, we have

(n—=1)) gD logp(a}) = (n = 1)) q(a}) ) logpi(z)
i=1

=YY a@) > logpi(a) =Y Y g% (@) log pt ().
=1 Jj#i i=1 T\
|
=logp( (z\;)

Noting that

Zq(i) (i) log g (x\i) — Zq(i) (z\:) 10gp(i) (z\i) = D (Q(i) HPU))

and rearranging gives the desired result. O

Finally, we will prove the main result of this subsection: a tensorization identity for the entropy
H(Y') for an arbitrary random variable Y that is a function of n independent random variables.
For this result, we use a technique known as tilting, in combination with the two variants of Han’s
inequality we have shown, to obtain the result. The tilting technique is one used to transform
problems of random variables into one of distributions, allowing us to bring the tools of information
and entropy to bear more directly. This technique is a common one, and used frequently in
large deviation theory, statistics, for heavy-tailed data, amont other areas. More concretely, let
Y = f(X1,...,X,) for some non-negative function f. Then we may always define a tilted density

flze, ... zn)p(T1, ..oy 2n)
Ep[f(X1,...,Xn)]

q(x1, ..., xn) = (6.1.5)

which, by inspection, satisfies [¢(z7) = 1 and ¢ > 0. In our context, if f ~ constant under the
distribution P, then we should have f(z7)p(z}) ~ cp(a]) and so Dy (Q|P) should be small; we
can make this rigorous via the following tensorization theorem.

Theorem 6.1.6. Let X1,..., X, be independent random variables and Y = f(X7), where f is a
non-negative function. Define H(Y | X\;) = E[Y logY | X\;]. Then

H(Y) < E[ZH(Y \ X\i)]. (6.1.6)

i=1

Proof Inequality (6.1.6) holds for Y if and only if holds identically for ¢Y for any ¢ > 0, so
we assume without loss of generality that Ep[Y] = 1. We thus obtain that H(Y) = E[Y logY| =
E[¢(Y')], where assign ¢(t) = tlogt. Let P have density p with respect to a base measure pu. Then
by defining the tilted distribution (density) ¢(z7) = f(27)p(2]), we have Q(X™) = 1, and moreover,
we have

q(z7)
p(a7)

Du (Q|P) = / a(@t) log W) gy = / F@)p(at) log (@) du(x}) = EplY log Y] = H(Y).
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Similarly, if ¢(t) = tlogt, then
Dy <Q(i) ||P(i)>

(@) Th; xi_l,x,m? i(x)du(x) .
:/Xn 1 (/f %%H)pZ( )d,u(a:)> logp ( \)ff( p(i)(w\i)+1)p( et )p(l)(:z\i)d”(x\i)

=E[o(E[Y | X\;])].
The tower property of expectations then yields that

El¢(Y)] - E[¢E[Y | X\i])] = E[E[p(Y) | X\i] — ¢(E[Y" | X\i])] = E[H(Y | Xy,)].

Using Han’s inequality for relative entropies (Proposition 6.1.4) then immediately gives
H(Y) = D (Q|P) < Z [Dkl (QIP) — Du (Q(")IIP(”)} ZE (Y| X\0)l,
i=1

which is our desired result. O

Theorem 6.1.6 shows that if we can show that individually the conditional entropies H(Y | X\;)
are not too large, then the Herbst argument (Proposition 6.1.2 or its variant Proposition 6.1.3)
allows us to provide strong concentration inequalities for general random variables Y.

Examples and consequences

We now show how to use some of the preceding results to derive strong concentration inequalities,
showing as well how we may give convergence guarantees for a variety of procedures using these
techniques.

We begin with our most straightforward example, which is the bounded differences inequality.
In particular, we consider an arbitrary function f of n independent random variables, and we

assume that for all 1., = (x1,...,2,), we have the bounded differences condition:
/
sup ‘f(:zcl, e Ty By g1y ey Tp) — (X1, T, T T, ,mn)‘ <¢; for all xy;.
reX x'eX

(6.1.7)
Then we have the following result.

Proposition 6.1.7 (Bounded differences). Assume that f satisfies the bounded differences condi-
tion (6.1.7), where Y1 ; ¢? < o®. Let X; be independent. Then'Y = f(Xi,...,X,) is 0%-sub-
Gaussian.

Proof We use a similar integration argument to the Herbst argument of Proposition 6.1.2, and
we apply the tensorization inequality (6.1.6). First, let U be an arbitrary random variable taking
values in [a,b]. We claim that if ¢ (\) = E[e*V] and ¥()\) = log py(A) is its cumulant generating
function, then
H(eAV) < A2(b—a)?
EeV] = 8

(6.1.8)
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To see this, note that

A 2 a 9
SE 00 = w0 =), s0 )~ wn) = [ ey < 02

where we have used the homework exercise XXXX (recall Hoeffding’s Lemma, Example 4.1.6), to

argue that " (t) < % for all t. Recalling that

H(eM) = A (A) — oo (Ne(A) = M (A) — ¥(N)] pu(N)

gives inequality (6.1.8).
Now we apply the tensorization identity. Let Z = e*¥. Then we have

" "L 2\2 "L 2\2
H(Z) < E[ZH(Z y X\i)} < E[Z Z?E[&Z | X\i]} =Y ’?E[e’\z].
=1 =1 =1

Applying the Herbst argument gives the final result. O

As an immediate consequence of this inequality, we obtain the following dimension independent
concentration inequality.

Example 6.1.8: Let Xi,...,X, be independent vectors in R? where d is arbitrary, and
assume that ||.X;||, < ¢; with probability 1. (This could be taken to be a general Hilbert space
with no loss of generality.) We claim that if we define

o2 = Zc?, then IP’< > t> < exp <2[0\2/(ﬂJr .
2

i=1
Indeed, we have that Y = ||>°7 | X;||2 satisfies the bounded differences inequality with param-

eters ¢;, and so
) |
2 ; 2

IF’( iXi
=1

n

>

=1

n

>ox

i=1

—E

n
>x
2 i=1

t— RIS X2
=11

Noting that E[| S0, Xilla) < /B[S, Xil3] = /iy E[1X[3] gives the result. ©

>t—F
2

n
DX
i=1

6.1.3 Concentration of convex functions

We provide a second theorem on the concentration properties of a family of functions that are quite
useful, for which other concentration techniques do not appear to give results. In particular, we
say that a function f : R™ — R is separately convex if for each i € {1,...,n} and all z; € R 1
(or the domain of f), we have that

X — f(xl, ey L1, X, L1y - - .,xn)

is convex. We also recall that a function is L-Lipschitz if |f(z) — f(y)| < ||z — y||, for all z,y €
R™; any L-Lipschitz function is almost everywhere differentiable, and is L-Lipschitz if and only if
|V f(x)]l, <L for (almost) all z. With these preliminaries in place, we have the following result.
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Theorem 6.1.9. Let X1, ..., X,, be independent random variables with X; € [a,b] for alli. Assume
that f : R™ — R is separately convex and L-Lipschitz with respect to the |||, norm. Then

Elexp(A(f(X1:) — E[f(X1:)]))] < exp (A2(b— a)*L?)  for all A > 0.

We defer the proof of the theorem temporarily, giving two example applications. The first is to
the matrix concentration problem that motivates the beginning of this section.

Example 6.1.10: Let X € R™*" be a matrix with independent entries, where X;; € [—1,1]
for all 7,7, and let ||| denote the operator norm on matrices, that is, ||A| = supuyv{uTAv :
llull, < 1,]|v]ls < 1}. Then Theorem 6.1.9 implies

2
PO = E[IX] +¢) < exp (_I6>

for all ¢ > 0. Indeed, we first observe that
HXT =V <IX =Y < IX =Yg,

where ||| denotes the Frobenius norm of a matrix. Thus the matrix operator norm is 1-
Lipschitz. Therefore, we have by Theorem 6.1.9 and the Chernoff bound technique that

P(IX] = E[JX]] + ) < exp(4X® — At)
for all A > 0. Taking A = t/8 gives the desired result. <

As a second example, we consider Rademacher complezity. These types of results are important
for giving generalization bounds in a variety of statistical algorithms, and form the basis of a variety
of concentration and convergence results. We defer further motivation of these ideas to subsequent
chapters, just mentioning here that we can provide strong concentration guarantees for Rademacher
complexity or Rademacher chaos.

Example 6.1.11: Let A C R™ be any collection of vectors. The the Rademacher complexity

of the class A is
sup aig; | 6.1.9
3o 019

R,(A):=E

where ¢; are i.i.d. Rademacher (sign) variables. Let R,(A) = SUPge A 2oy ai€; denote the
empirical version of this quantity. We claim that

P(Rn(A) > Rn(A) + 1) < exp <— 16 diam(A)? > ’

where diam(A) := sup,c 4 ||all,- Indeed, we have that & — sup,c 4a'¢ is a convex function,
as it is the maximum of a family of linear functions. Moreover, it is Lipschitz, with Lipschitz
constant bounded by sup,c 4 ||all,. Applying Theorem 6.1.9 as in Example 6.1.10 gives the
result. &

Proof of Theorem 6.1.9 The proof relies on our earlier tensorization identity and a sym-
metrization lemma.
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Lemma 6.1.12. Let X, Y P be independent. Then for any function g : R — R, we have
H(eMX)) < NE[(g(X) — g(¥))?e 1 {g(X) > g(Y)}] for A >0.
Moreover, if g is convex, then
H(eM™X)) < ME[(X ~ Y)* (¢ (X)) for > 0.

Proof For the first result, we use the convexity of the exponential in an essential way. In
particular, we have

H(eMX)) = E[Ag(X)e?X)] — B[] 1og B[]
E\g(X)eM)] — E[MMAg(Y)],

IN

because log is concave and e > 0. Using symmetry, that is, that g(X) — g(Y) has the same
distribution as g(Y) — g(X), we then find

H(eM™) < SENg(X)—g(Y))(e0) =) = E[N(g(X)—g(Y) (M) =M1 {g(X) = g(V)}].

| =

Now we use the classical first order convexity inequality—that a convex function f satisfies f(¢) >
f(s)+f'(s)(t—s) for all t and s, Theorem B.3.3 in the appendices—which gives that e* > e¥+e*(t—s)
for all s and ¢. Rewriting, we have e® —e! < e¥(s—t), and whenever s > ¢, we have (s —t)(e® —e!) <
e®(s — t)2. Replacing s and ¢ with Ag(X) and Ag(Y), respectively, we obtain

Ag(X) = g(V)) (M) — 20N {g(X) > g(V)} < N (g(X) — g(V))?eM N1 {g(X) > g(Y)}.

This gives the first inequality of the lemma.
To obtain the second inequality, note that if ¢ is convex, then whenever g(z) — g(y) > 0, we

have g(y) > g(z) + ¢'(z)(y — z), or ¢'(z)(z — y) > g(x) — g(y) > 0. In particular,
(9(X) = g(¥)*1 {g(X) > g(¥)} < (¢ (X)(X —Y))?,
which gives the second result. O

Returning to the main thread of the proof, we note that the separate convexity of f and the
tensorization identity of Theorem 6.1.6 imply

H(e)\f(Xl:n)) < E[ZH(e’\f(X“") | X\i):| < E[Z NE 0
X
1

1=1 i=

- (5 f<Xm>)zeAf<Xm> | X\i] |

where Y; are independent copies of the X;. Now, we use that (X; —Y;)? < (b—a)? and the definition
of the partial derivative to obtain

H(N 1)) < N2 (b — ) E[[|V £ (X1n) I3 N X2,

Noting that |V f(X )||§ < L?, and applying the Herbst argument, gives the result. O
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Exercise 6.1 (A discrete isoperimetric inequality): Let A C Z? be a finite subset of the d-
dimensional integers. Let the projection mapping 7; : 74 — 7971 be defined by

7Tj(Z1, ceey Zd) = (21, R R B P ,Zd)
so that we “project out” the jth coordinate, and define the projected sets.
Aj =mj(A) ={mj(2) : z € A}
= {z € Z% 1. there exists z, € Z such that (21,22, o3 Zj—1: 20y 2y - -+, Zd—1) € A} .

Prove the Loomis-Whitney inequality, that is, that

1

d—1

d
card(4) < Hcard(Aj)
j=1
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Chapter 7

Privacy and disclosure limitation

In this chapter, we continue to build on our ideas on stability in different scenarios, ranging from
model fitting and concentration to interactive data analyses. Here, we show how stability ideas
allow us to provide a new type of protection: the privacy of participants in studies. Until the mid-
2000s, the major challenge in this direction had been a satisfactory definition of privacy, because
collection of side information often results in unforeseen compromises of private information. The
introduction of differential privacy—a type of stability in likelihood ratios for data releases from
differing samples—alleviated these challenges, providing a firm foundation on which to build private
estimators and other methodology. (Though it is possible to trace some of the definitions and major
insights in privacy back at least to survey sampling literature in the 1960s.) Consequently, in this
chapter we focus on privacy notions based on differential privacy and its cousins, developing the
information-theoretic stability ideas helpful to understand the protections it is possible to provide.

7.1 Disclosure limitation, privacy, and definitions

We begin this chapter with a few cautionary tales and examples, which motivate the coming
definitions of privacy that we consider. A natural belief might be that, given only certain summary
statistics of a large dataset, individuals in the data are protected. Yet this appears, by and large,
to be false. As an example, in 2008 Nils Homer and colleagues [107] showed that even releasing
aggregated genetic frequency statistics (e.g., frequency of single nucleotide polymorphisms (SNP) in
microarrays) can allow resolution of individuals within a database. Consequently, the US National
Institutes of Health (NIH), the Wellcome Trust, and the Broad Institute removed genetic summaries
from public access (along with imposing stricter requirements for private access) [161, 52].

Another hypothetical example may elucidate some of the additional challenges. Suppose that 1
release a dataset that consists of the frequent times that posts are made worldwide that denigrate
government policies, but I am sure to remove all information such as IP addresses, usernames, or
other metadata excepting the time of the post. This might seem a priori reasonably safe, but now
suppose that an authoritarian government knows precisely when its citizens are online. Then by
linking the two datasets, the government may be able to track those who post derogatory statements
about their leaders.

Perhaps the strongest definition of privacy of databases and datasets is due to Dalenius [56], who
suggests that “nothing about an individual should be learnable from the database that cannot be
learned without access to the database.” But quickly, one can see that it is essentially impossible
to reconcile this idea with scientific advancement. Consider, for example, a situation where we

138



Lexture Notes on Statistics and Information Theory John Duchi

perform a study on smoking, and discover that smoking causes cancer. We publish the result, but
now we have “compromised” the privacy of everyone who smokes who did not participate in the
study: we know they are more likely to get cancer.

In each of these cases, the biggest challenge is one of side information: how can we be sure
that, when releasing a particular statistic, dataset, or other quantity that no adversary will be able
to infer sensitive data about participants in our study? We articulate three desiderata that—we
believe—suffice for satisfactory definitions of privacy. In discussion of private releases of data, we
require a bit of vocabulary. We term a (randomized) algorithm releasing data either a privacy
mechanism, consistent with much of the literature in privacy, or a channel, mapping from the input
sample to some output space, in keeping with our statistical and information-theoretic focus. In
no particular order, we wish our privacy mechanism, which takes as input a sample X" € X" and
releases some Z to satisfy the following.

i. Given the output Z, even an adversary knowing everyone in the study (excepting one person)
should not be able to test whether you belong to the study.

ii. If you participate in multiple “private” studies, there should be some graceful degradation
in the privacy protections, rather than a catastrophic failure. As part of this, any definition
should guarantee that further processing of the output Z of a private mechanism X" — Z, in
the form of the Markov chain X7* — Z — Y, should not allow further compromise of privacy
(that is, a data-processing inequality). Additional participation in “private” studies should
continue to provide little additional information.

iii. The mechanism X{* — Z should be resilient to side information: even if someone knows
something about you, he should learn little about you if you belong to X7, and this should
remain true even if the adversary later gleans more information about you.

The third desideratum is perhaps most elegantly phrased via a Bayesian perspective, where an
adversary has some prior beliefs 7 on the membership of a dataset (these prior beliefs can then
capture any side information the adversary has). The strongest adversary has a prior supported on
two samples {x1,...,x,} and {2],..., 2]} differing in only a single element; a private mechanism
would then guarantee the adversary’s posterior beliefs (after the release X{* — Z) should not change
significantly.

Before continuing addressing these challenges, we take a brief detour to establish notation for the
remainder of the chapter. It will be convenient to consider randomized procedures acting on samples

themselves; a sample 27 is cleary isomorphic to the empirical distribution P, = %Z?:l 1., and
for two empirical distributions P,, and P), supported on {z1,...,x,} and {z],..., 2]}, we evidently
have

n||P, — PT'LHTV = dpam({z1, .. 20}, {2, 20 }),

and so we will identify samples with their empirical distributions. With this notational convenience

in place, we then identify
1 n
Pn = {Pn: nz;l““’ | z; ex}
=

as the set of all empirical distributions on n points in X and we also abuse notation in an obvious
way to define dpam(Pr, P),) := n|| Py, — P} ||ty as the number of differing observations in the samples
P, and P) represent. A mechanism M is then a (typically) randomized mapping M : P, — Z,
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which we can identify with its induced Markov channel @) from X" — Z; we use the equivalent
views as is convenient.

The challenges of side information motivate Dwork et al.’s definition of differential privacy [74).
The key in differential privacy is that the noisy channel releasing statistics provides guarantees of
bounded likelihood ratios between neighboring samples, that is, samples differing in only a single
entry.

Definition 7.1 (Differential privacy). Let M : P, — Z be a randomized mapping. Then M is
e-differentially private if for all (measurable) sets S C Z and all P,, P), € Py, with dyam(Pp, P)) <1,

P(M(P,) € S)

BGI(E) €S < et (7.1.1)

The intuition and original motivation for this definition are that an individual has little incentive
to participate (or not participate) in a study, as the individual’s data has limited effect on the
outcome.

The model (7.1.1) of differential privacy presumes that there is a trusted curator, such as a
hospital, researcher, or corporation, who can collect all the data into one centralized location, and
it is consequently known as the centralized model. A stronger model of privacy is the local model,
in which data providers trust no one, not even the data collector, and privatize their individual
data before the collector even sees it.

Definition 7.2 (Local differential privacy). A channel Q from X to Z is e-locally differentially
private if for all measurable S C Z and all x,2' € X,

QZeS|z) _ o

QZes|w) S e (7.1.2)

It is clear that Definition 7.2 and the condition (7.1.2) are stronger than Definition 7.1: when
samples {z1,...,x,} and {z, ..., 2]} differ in at most one observation, then the local model (7.1.2)
guarantees that the densities

dQ(Z7 | {ziy) _ ﬁ dQ(Zi | z:i) _ .

aQzy [{=y) ~ Wagz 2 =
where the inequality follows because only a single ratio may contain z; # JJ;

In the remainder of this introductory section, we provide a few of the basic mechanisms in use

in differential privacy, then discuss its “semantics,” that is, its connections to the three desiderata
we outline above. In the coming sections, we revisit a few more advanced topics, in particular, the

composition of multiple private mechanisms and a few weakenings of differential privacy, as well as
more sophisticated examples.

7.1.1 Basic mechanisms

The basic mechanisms in either the local or centralized models of differential privacy use some type
of noise addition to ensure privacy. We begin with the simplest and oldest mechanism, randomized
response, for local privacy, due to Warner [173] in 1965.

Example 7.1.1 (Randomized response): We wish to have a participant in a study answer
a yes/no question about a sensitive topic (for example, drug use). That is, we would like to
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estimate the proportion of the population with a characteristic (versus those without); call
these groups 0 and 1. Rather than ask the participant to answer the question specifically,
however, we give them a spinner with a face painted in two known areas, where the first
corresponds to group 0 and has area e®/(1 + €°) and the second to group 1 and has area
1/(1 + €f). Thus, when the participant spins the spinner, it lands in group 0 with probability
e®/(1+ e°). Then we simply ask the participant, upon spinning the spinner, to answer “Yes”
if he or she belongs to the indicated group, “No” otherwise.

Let us demonstrate that this randomized response mechanism provides e-local differential
privacy. Indeed, we have

Q(Yes | T = O) _ 675 and Q(NO ‘ xr = 0) _ €€
QYes |z =1) QNo |z =1) ’
so that Q(Z = z | 2)/Q(Z = z | «’) € [e™¢,€°] for all z,z. That is, the randomized response

channel provides e-local privacy. <

The interesting question is, of course, whether we can still use this channel to estimate the
proportion of the population with the sensitive characteristic. Indeed, we can. We can provide
a somewhat more general analysis, however, which we now do so that we can give a complete
example.

Example 7.1.2 (Randomized response, continued): Suppose that we have an attribute of
interest, x, taking the values x € {1,...,k}. Then we consider the channel (of Z drawn
conditional on z)

K with probability ﬁ
| Uniform([k] \ {z}) with probability k_kl__&eg.

This (generalized) randomized response mechanism is evidently e-locally private, satisfying
Definition 7.2.
Let p € R® | p”'1 = 1 indicate the true probabilities p; = P(X =4). Then by inspection, we

have
e 1 e —1 1

P(Z=i)=p—— 4+ (1—n — '
( ) plk—1+ee+( pz)k—1+e€ ple€+k—1+e€—|—/~c—1

Thus, letting ¢, € Rﬁ denote the empirical proportion of the Z observations in a sample of

size n, we have
. e+k—1/_ 1 1
=— |y — ——
b ef —1 "ot k-1

satisfies E[p,] = p, and we also have

R E+k—1\* . . 1 (e +k— )
15— ol3] = (A7) Bl - meg = 2 (CEETY) ZP 1-B(Z = j))
As 3, P(Z = j) = 1, we always have the bound E[||p, — pll3] < L(eE)2,

We may consider two regimes for simplicity: when € < 1 and when € > log k. In the former
case—the high privacy regime—we have 1 SP(Z=1i) S ,16, so that the mean {5 squared error
scales as =%;. When ¢ > log k is large, by contrast, we see that the error scales at worst as l

which is the ‘non-private” mean squared error. <
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While randomized response is essentially the standard mechanism in locally private settings, in
centralized privacy, the “standard” mechanism is Laplace noise addition because of its exponential
tails. In this case, we require a few additional definitions. Suppose that we wish to release some
d-dimensional function f(P,) of the sample distribution P, (equivalently, the associated sample
X7), where f takes values in R?. In the case that f is Lipschitz with respect to the Hamming
metric—that is, the counting metric on X"—it is relatively straightforward to develop private
mechanisms. To better reflect the nomenclature in the privacy literature and easier use in our
future development, for p € [1, 00] we define the global sensitivity of f by

GSp(f) = sup L F(P) = FPDI|, | dam (P P2) <1}
P,,PLeP,
This is simply the Lipschitz constant of f with respect to the Hamming metric. The global sensi-

tivity is a convenient metric, because it allows simple noise addition strategies.

Example 7.1.3 (Laplace mechanisms): Recall the Laplace distribution, parameterized by a
shape parameter 8, which has density on R defined by

p(w) = eXp(—le/ﬁ)

28

and the analogous d-dimensional variant, which has density

p(w) = 1)2exp<— lwll, /8).

(28
If W ~ Laplace(3), W € R, then E[W] = 0 by symmetry, while E[IW?] = 1 fo 20-w/B — 932,
Suppose that f : P, — R? has finite global sensitivity for the ¢;-norm,

Gsl(f) :Sup{Hf(Pn) _f(PTIL)Hl ‘ dham(PmP;/l) < 17Pn,P7/L Gpn}

Letting L = GSi(f) be the Lipschitz constant for simplicity, if we consider the mechanism
defined by the addition of W € R? with independent Laplace(L/c) coordinates,

Z = f(P,)+ W, W; % Laplace(L/e), (7.1.3)

we have that Z is e-differentially private. Indeed, for samples P,, P, differing in at most a
single example, Z has density ratio

q(z | o)

Wz 1Py P (=7 1P = 2l + £ = 21, ) < exp (7 [17(Pa) = FB],) < exple)

by the triangle inequality and that f is L-Lipschitz with respect to the Hamming metric. Thus

Z is e-differentially private. Moreover, we have

2dGS;(f)?
62

E[llZ — f(P)ll3] =

)
so that if L is small, we may report the value of f accurately. &

The most common instances and applications of the Laplace mechanism are in estimation of
means and histograms. Let us demonstrate more carefully worked examples in these two cases.
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Example 7.1.4 (Private one-dimensional mean estimation): Suppose that we have variables
X, taking values in [—b, b] for some b < oo, and wish to estimate E[X]. A natural function to
release is then f(X}) = X, = %Z?:l X;. This has Lipschitz constant 2b/n with respect to
the Hamming metric, because for any two samples z, 2’ € [—b, b|" differing in only entry i, we
have ) 9%
$@) = FG)] = o — 2 < 2
because z; € [—b,b]. Thus the Laplace mechanism (7.1.3) with the choice variance W ~
Laplace(2b/(ne)) yields
— 8?2 b?  8b?

E[(Z ~ BIX]?] = E[(X, ~ E[X])?] + E[(Z - X,)?) = Var(X) + y < 2+ 7

We can privately release means with little penalty so long as € > n=1/2, ©

Example 7.1.5 (Private histogram (multinomial) release): Suppose that we wish to estimate
a multinomial distribution, or put differently, a histogram. That is, we have observations
X € {1,...,k}, where k may be large, and wish to estimate p; := P(X = j) for j =1,... k.
For a given sample 7, the empirical count vector p,, with coordinates p,, ; = % S {X; =5}

satisfies
2

Gsl(ﬁn) = E

because swapping a single example z; for z} may change the counts for at most two coordinates
j,7" by 1. Consequently, the Laplace noise addition mechanism

; P
Z=p,+W, W; % Laplace ()
ne

satisfies ok
~ 2 _
B[IZ - ulldl = 5
and consequently
8k 1 8k 1
EllZ — pl|2] = = *E (1—pi)) < —= + —.
[H pHZ] n252 + nj:1pj( pj) — n2€2 + n

This example shows one of the challenges of differentially private mechanisms: even in the case
where the quantity of interest is quite stable (insensitive to changes in the underlying sample,
or has small Lipschitz constant), it may be the case that the resulting mechanism adds noise
that introduces some dimension-dependent scaling. In this case, the conditions on privacy
levels acceptable for good estimation—in that the rate of convergence is no different from the
non-private case, which achieves E[||p, — p||3] = 2 Z?lej(l —pj) < % are that £ > % Thus,
in the case that the histogram has a large number of bins, the naive noise addition strategy
cannot provide as much protection without sacrificing efficiency.

If instead of £s-error we consider £, error, it is possible to provide somewhat more satisfying
results in this case. Indeed, we know that P(||[W| > t) < kexp(—t/b) for W} i Laplace(b),
so that in the mechanism above we have

t
P(IZ = Bulloe > £) < kexp (—Z) all ¢ > 0,
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so using that each coordinate of p,, is 1-sub-Gaussian, we have

- 2logk 2k tne
E[|Z — < E[|py — pllo] + E < inf il _me
12 = plld < Bl — plocd + BIW < o 258 fo 4 2 e (125

2logk 2logk 2
< + + —.
n ne ne

—-1/2

In this case, then, whenever ¢ > (n/logk) , we obtain rate of convergence at least
v/2log k/n, which is a bit loose (as we have not controlled the variance of p,), but some-
what more satisfying than the k-dependent penalty above. <

7.1.2 Resilience to side information, Bayesian perspectives, and data processing

One of the major challenges in the definition of privacy is to protect against side information,
especially because in the future, information about you may be compromised, allowing various
linkage attacks. With this in mind, we return to our three desiderata. First, we note the following
simple fact: if Z is a differentially private view of a sample X7 (or associated empirical distribution
P,), then any downstream functions Y are also differentially private. That is, if we have the Markov
chain P, — Z — Y, then for any P,, P} € P,, with dyam(Pp, P),) < 1, we have for any set A that

PY eAlx) [P cA|2)q(z]|Podu(z) _ [P € A|2)q(z | Bdp(z) _ .

PV eA|a) [P EA|2)az| Podu(z) ~ [P €Al 2)a(z | Bydu(z) ¢

That is, any type of post-processing cannot reduce privacy.

With this simple idea out of the way, let us focus on our testing-based desideratum. In this
case, we consider a testing scenario, where an adversary wishes to test two hypotheses against one
another, where the hypotheses are

. n__ ,.n . n __ —1 ./ ..n
H() : Xl =7 Vs. Hl : Xl = (xl ,$i,xi+1),

so that the samples under Hy and H; differ only in the ith observation X; € {z;,z}}. Now, for a
channel taking inputs from X" and outputting Z € Z, we define e-conditional hypothesis testing
privacy by saying that

QU(Z)=1|Hy,Z e A)+Q(U(Z)=0|H,Zc A)>1—¢ (7.1.4)

for all sets A C Z satisfying Q(A | Hy) > 0 and Q(A | H;) > 0. That is, roughly, no matter
what value Z takes on, the probability of error in a test of whether Hy or Hj is true—even with
knowledge of x;, j # i—is high. We then have the following proposition.

Proposition 7.1.6. Assume the channel Q is e-differentially private. Then Q is also &€ = 1—e™ % <
2e-conditional hypothesis testing private.

Proof Let U be any test of Hy versus Hy, and let B = {z | ¥(z) = 1} be the acceptance region
of the test. Then
Q(A, B | Hy) QA B°| H)
Q(A | Ho) Q(A [ Hy)
> e_QgQ(AvB ’ Hl) Q(A7 B* ‘ Hl)
B QA | Hy) QA | Hy)
> 6—26Q(A7B ’ Hl) + Q(A7 B* ‘ Hy)
- Q(A | Hy) ’

Q(B|H07ZEA)+Q(BC|H1aZ€A):
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where the first inequality uses e-differential privacy. Then we simply note that Q(A,B | Hy) +
Q(A, B | Hi) = Q(A | H1). =

So we see that (roughly), even conditional on the output of the channel, we still cannot test whether
the initial dataset was x or 2’ whenever z, 2’ differ in only a single observation.

An alternative perspective is to consider a Bayesian one, which allows us to more carefully
consider side information. In this case, we consider the following thought experiment. An adversary
has a set of prior beliefs 7 on X", and we consider the adversary’s posterior 7 (- | Z) induced by
observing the output Z of some mechanism M. In this case, Bayes factors, which measure how
much prior and posterior distributions differ after observations, provide one immediate perspective.

Proposition 7.1.7. A mechanism M : P, — Z is e-differentially private if and only if for any
prior distribution m on P, and any observation z € Z, the posterior odds satisfy

<ef

for all P,, P, € Py, with dyam (P, P)) < 1.

Proof Let ¢ be the associated density of Z = M(-) (conditional or marginal). We have w(F, |
z) =q(z | Py)m(Py)/q(z). Then

w(Py[2) _alz] PIw(PY) _ o7(Py)
(B | z) gz | Pw(E) — w(Fy)
for all z, P,, P! if and only if M is e-differentially private. O

Thus we see that private channels mean that prior and posterior odds between two neighboring
samples cannot change substantially, no matter what the observation Z actually is.

For an an alternative view, we consider a somewhat restricted family of prior distributions,
where we now take the view of a sample 2 € X™. There is some annoyance in this calculation
in that the order of the sample may be important, but it at least gets toward some semantic
interpretation of differential privacy. We consider the adversary’s beliefs on whether a particular
value x belongs to the sample, but more precisely, we consider whether X; = x. We assume that
the prior density m on X" satisfies

m(z7) = mi(z\g)miz:), (7.1.5)

where z\; = (x’fl,xﬁrl) € X", That is, the adversary’s beliefs about person i in the dataset
are independent of his beliefs about the other members of the dataset. (We assume that 7 is
a density with respect to a measure p on X"~ ! x X, where du(s,z) = du(s)du(x).) Under the
condition (7.1.5), we have the following proposition.

Proposition 7.1.8. Let Q be an e-differentially private channel and let w be any prior distribution
satisfying condition (7.1.5). Then for any z, the posterior density m; on X; satisfies

e “mi(x) <mi(x | Z = 2) < em(x).
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1

Proof We abuse notation and for a sample s € "%, where s = (z}7', 27 ,), we let s ®; 2 =

(:L'Tl,:z:,x?ﬂ). Letting i be the base measure on X"~ x X with respect to which 7 is a density
and q(- | z) be the density of the channel @, we have

Jsean— a(z | s @i 2)m(s @ x)du(s)
fsexnfl fz/ex q(z | s ®; ')m(s @ a’)dp(s, x')
Jyens al= | 5 @1 )(s ; 2)du(s)
Jocxn—1 Jper @(z | 8 @i x)m(s @ a')dp(s)dpu(z’)
g Jsean 4z | s ©i z)m;(s)dp(s)mi(x)
Toeonms 0= |5 @ ) (5)n(5) oy el )i
= e“m;(x),

mi(x | Z=2)=

(%)
< e€°

=€

where inequality (x) follows from e-differential privacy. The lower bound is similar. O

Roughly, however, we see that Proposition 7.1.8 captures the idea that even if an adversary has
substantial prior knowledge—in the form of a prior distribution 7 on the ith value X; and everything
else in the sample—the posterior cannot change much.

7.2 Weakenings of differential privacy

One challenge with the definition of differential privacy is that it can sometimes require the addition
of more noise to a desired statistic than is practical for real use. Moreover, the privacy considerations
interact in different ways with geometry: as we saw in Example 7.1.5, the Laplace mechanism
adds noise that introduces dimension-dependent scaling, which we discuss more in Example 7.2.9.
Consequently, it is of interest to develop weaker notions that—at least hopefully—still provide
appropriate and satisfactory privacy protections. To that end, we develop two additional types
of privacy that allow the development of more sophisticated and lower-noise mechanisms than
standard differential privacy; their protections are necessarily somewhat weaker but are typically
satisfactory.

We begin with a definition that allows (very rare) catostrophic privacy breaches—as long as the
probability of this event is extremely small (say, 1072%), these may be acceptable.

Definition 7.3. Let ,6 > 0. A mechanism M : P, — Z is (g,0)-differentially private if for all
(measurable) sets S C Z and all neighboring samples Py, P!,

P(M(P,) € S) < eP(M(P)) € S) + 4. (7.2.1)

One typically thinks of ¢ in the definition above as satisfying § = §,, where 8, < n~* for any
k € N. (That is,  decays super-polynomially to zero.) Some practitioners contend that all real-
world differentially private algorithms are in fact (e,0)-differentially private: while one may use
cryptographically secure random number generators, there is some possibility (call this J) that a
cryptographic key may leak, or an encoding may be broken, in the future, making any mechanism
(e,9)-private at best for some 6 > 0.

An alternative definition of privacy is based on Rényi divergences between distributions. These
are essentially simply monotonically transformed f divergences (recall Chapter 2.2), though their
structure is somewhat more amenable to analysis, especially in our contexts. With that in mind,
we define
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Definition 7.4. Let P and Q be distributions on a space X with densities p and q (with respect to
a measure ). For a € [1,00], the Rényi-a-divergence between P and Q) is

Da(PIQ) = — o | (M)aqmdmx).

a—1 q(x)

Here, the values o € {1,000} are defined in terms of their respective limits.

Rényi divergences satisfy exp((a — 1)Do(P|Q)) = 14 Ds(P[Q), i-e., Do(P|Q) = -5 log(1 +
D¢(P|Q)), for the f-divergence defined by f(t) = t* — 1, so that they inherit a number of the
properties of such divergences. We enumerate a few here for later reference.

Proposition 7.2.1 (Basic facts on Rényi divergence). Rényi divergences satisfy the following.
i. The divergence D, (P|Q) is non-decreasing in «.

ji. Tima 1 Da(P]Q) = Dia (P|Q) and limaga Da(P|Q) = sup{t | Q(p(X)/g(X) > 1) > 0}.

ii. Let K(- | x) be a Markov kernel from X — Z as in Proposition 2.2.13, and let Kp and Kg be
the induced marginals of P and Q under K, respectively. Then Do(Kp|Kqg) < Do(P|Q).

We leave the proof of this proposition as Exercise 7.1, noting that property i is a consequence
of Holder’s inequality, property ii is by L’Hopital’s rule, and property iii is an immediate conse-
quence of Proposition 2.2.13. Rényi divergences also tensorize nicely—generalizing the tensoriza-
tion properties of KL-divergence and information of Chapter 2 (recall the chain rule (2.1.6) for
KL-divergence)—and we return to this later. As a preview, however, these tensorization proper-
ties allow us to prove that the composition of multiple private data releases remains appropriately
private.
With these preliminaries in place, we can then provide

Definition 7.5 (Rényi-differential privacy). Let € > 0 and o € [1,00]. A channel Q from Py, to
output space Z is (e, a)-Rényi private if for all neighboring samples Py, P! € Py,

Da(Q( | P)IQL | P) <. (7.2.2)

Clearly, any e-differentially private channel is also (g, a)-Rényi private for any a > 1; as we soon
see, we can provide tighter guarantees than this.

7.2.1 Basic mechanisms

We now describe a few of the basic mechanisms that provide guarantees of (e, §)-differential privacy
and (e, a)-Rényi privacy. The advantage for these settings is that they allow mechanisms that more
naturally handle vectors in f5, and smoothness with respect to Euclidean norms, than with respect
to ¢1, which is most natural for pure e-differential privacy. A starting point is the following example,
which we will leverage frequently.

Example 7.2.2 (Rényi divergence between Gaussian distributions): Consider normal distri-
butions N(u,>) and N(u1,Y). Then

Da(N(po, Z)[N(p1, X)) = %(No — 1) S (o — ) (7.2.3)
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To see this equality, we compute the appriate integral of the densities. Let p and g be the
densities of N(po,%) and N(u1,X), respectively. Then letting E,, denote expectation over
X ~ N(u1,X), we have

/ (Zg;)a q(z)dz = E,, {exp <—%(X — 1) TS X — o) + %(X ) R — M1))}

(6% _ _
DB [exp (=5 (10 = 1) (a0 = ua) + a0 — )5 HX = )]
(@) o _ a? -~
= exp <—2(#0 — )" (o — ) + ~ (ko = 1) S (o — Ml)) ;

where equality (i) is simply using that (z —a)? — (x — b)? = (a — b)? +2(b — a)(z — b) and
equality (i7) follows because (po — p1)TX X — p1) ~ N(O, (1 — po) TS (1 — o)) under
X ~ N(u1,). Noting that —a + o? = a(a — 1) and taking logarithms gives the result. <

Example 7.2.2 is the key to developing different privacy-preserving schemes under Rényi privacy.
Let us reconsider Example 7.1.3, except that instead of assuming the function f of interest is smooth
with respect to ¢ norm, we use the fo-norm.

Example 7.2.3 (Gaussian mechanisms): Suppose that f : P, — R? has Lipschitz constant
L with respect to the fo-norm (for the Hamming metric dpay), that is, global fe-sensitivity

GS2(f) = sup {[|f(Pn) = f(Py)]], | dham(Pn, Pp) <1} < L.
Then, for any variance o2 > 0, we have that the mechanism
Z = f(Py) + W, W ~N(0,0°I)
satisfies

Da(N(F(Pa). 0")IN(F(P1).0%) = 505 | F(Pa) =SB} < 5517

for neighboring samples P,, P). Thus, if we have Lipschitz constant L and desire (g, a)-Rényi

privacy, we may take o2 LQEO‘, and then the mechanism
L«
Z=f(P,)+W W~N|O, Tel (7.2.4)

satisfies (g, «@)-Rényi privacy. <

Certain spe01al cases can make this more concrete. Indeed, suppose we wish to estimate a mean
E[X] where X; % P for some distribution P such that | Xill, < r with probability 1 for some
radius.

Example 7.2.4 (Bounded mean estimation with Gaussian mechanisms): Letting f(X7') =
n be the sample mean, where X; satisfy ||.X;||, < r as above, we see immediately that

2r
GS =—.
2(f) =~
In this case, the Gaussian mechanism (7.2.4) with L = 2 yields

B[z - X 2] = By = 252
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Then we have

b'e ~ 2 2dria
E[|Z - B{X]3] = E{|X, - EX|3] + E[|Z - X3 < = + 222,

It is not immediately apparent how to compare this quantity to the case for the Laplace mech-
anism in Example 7.1.3, but we will return to this shortly once we have developed connections
between the various privacy notions we have developed. &

7.2.2 Connections between privacy measures

An important consideration in our development of privacy definitions and mechanisms is to un-
derstand the relationships between the definitions, and when a channel ) satisfying one of the
definitions satisfies one of our other definitions. Thus, we collect a few different consequences of
our definitions, which help to show the various definitions are stronger or weaker than others.
First, we argue that e-differential privacy implies stronger values of Rényi-differential privacy.

Proposition 7.2.5. Let ¢ > 0 and let P and Q be distributions such that e < P(A)/Q(A) < €°
for all measurable sets A. Then for any « € [1, 0],

Do(P|Q) < min{‘zaez,a}.

As an immediate corollary, we have

Corollary 7 2.6. Let € > 0 and assume that Q is e-differentially private. Then for any o > 1, Q
is (min{32e? e}, a)-Rényi private.

Before proving the proposition, let us see its implications for Example 7.2.4 versus estimation
under e-differential privacy. Let ¢ < 1, so that roughly to have “similar” privacy, we require
that our Rényi private channels satisfy Do (Q(- | 2)|Q(- | 2')) < 2. The {;-sensitivity of the mean
satisfies ||Z, — 2/n|1 < Vd||T, — 2n|l2 < 2Vdr/n for neighboring samples. Then the Laplace
mechanism (7.1.3) satisfies

IE[”ZLaLplaLce - E[X]Hg] = E[Hyn H n2€2

while the Gaussian mechanism under (2, a)-Rényi privacy will yield

E[HZGauss_E[Xwg] :E[HX” H 2.9
ne

This is evidently better than the Laplace mechanism whenever o < d.
Proof of Proposition 7.2.5  We asume that P and @ have densities p and ¢ with respect to a
base measure p, which is no loss of generality, whence the ratio condition implies that e™¢ < p/q < €°
and D, (P|Q) = =15 log [(p/q)*qdp. We prove the result assuming that o € (1,00), as continuity
gives the result for a € {1, c0}.

First, it is clear that D,(P|Q) < € always. For the other term in the minimum, let us assume
that o < 1+ é and ¢ < 1. If either of these fails, the result is trivial, because for @ > 1 + % we

3

have 50452 > %5 > ¢, and similarly € > 1 implies %aeQ > €.
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Now we perform a Taylor approximation of ¢ — (1+¢)®. By Taylor’s theorem, we have for any
t > —1 that

(a—1)

1+t =1+at+2 1+

for some t € [0,¢] (or [t,0] if t < 0). In particular, if 1 +¢ < ¢, then (1 +t)® < 1+ ot +

% max{1,c*~2}t2. Now, we compute the divergence: we have

(o=~ 1Du(PIQ) = [ (42 a(2)incz)

= / <1+28 - )aq(Z)du(Z)

<t [ (25 1) raut + 7 max(nep(eta -2} [ (4 1) (=)du(2)

ala—1)

5 es[a72]+ . (es _ 1)2

<1+
Now, we know that & —2 < 1/¢ — 1 by assumption, so using that log(1 + z) < x, we obtain
a
Da(PlQ) = 5 (e — 1)? - exp([1 —el,).

Finally, a numerical calculation yields that this quantity is at most 370‘52 for e < 1. O

We can also provide connections from (g, «)-Rényi privacy to (g,¢)-differential privacy, and
then from there to e-differential privacy. We begin by showing how to develop (g, §)-differential
privacy out of Rényi privacy. Another way to think about this proposition is that whenever two
distributions P and @ are close in Rényi divergence, then there is some limited “amplification” of
probabilities that is possible in moving from one to the other.

Proposition 7.2.7. Let P and Q satisfy Do (P|Q) < e. Then for any set A,

a—1

o

P(4) < exp( ) QA

Consequently, for any § > 0,

1

log 5) Q(A) + 0.

P(A) < min {exp <5 o (15) Q(A),é} < exp <e 4

a—1 a—1
As above, we have an immediate corollary to this result.

Corollary 7.2.8. Assume that M is (¢,a)-Rényi private. Then it is also (¢ + =15 logt,6)-
differentially private for any 6 > 0.

Before turning to the proof of the proposition, we show how it can provide prototypical (g, d)-
private mechanisms via Gaussian noise addition.
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Example 7.2.9 (Gaussian mechanisms, continued): Consider Example 7.2.3, where f : P, —
R? has fo-sensitivity L. Then by Example 7.2.2, the Gaussian mechanism Z = f(P,) + W for
W ~ N(0,02I) is (%‘TLj, a)-Rényi private for all & > 1. Combining this with Corollary 7.2.8,
the Gaussian mechanism is also

L? 1 1
<(;‘2 + o_1 log 5 6) -differentially private
for any § > 0 and o > 1. Optimizing first over a by taking a = 1 + /202 logd—1 /L2, we see
that the channel is (% + /2L%log0~1 /52, §)-differentially private. Thus we have that the
Gaussian mechanism

2 2 2 8log 5 1
Z = f(P,)+W, W ~N(0,0°I) for 0 = L* max . (7.2.5)
is (g, 0)-differentially private.
To continue with our /s-bounded mean-estimation in Example 7.2.4, let us assume that
e < 8log 3, in which case the Gaussian mechanism (7.2.5) with L? = r2/n? achieves (e, §)-
differential privacy, and we have

7,,2
El| Zcanss — ELX]I3] = B[ Ko — ELX[3] + O(1) 5 - dlog .

Comparing to the previous cases, we see an improvement over the Laplace mechanism whenever
log% < d, or that § > e~4. ©

Proof of Proposition 7.2.7 We use the data processing inequality of Proposition 7.2.1.iii,

which shows that .
c2 Du(PIQ) 2 1o | (24 o)

Rearranging and taking exponentials, we immediately obtain the first claim of the proposition.
For the second, we require a bit more work. First, let us assume that Q(A) > e ¢d=-1. Then
we have by the first claim of the proposition that

a—1 1 1
P(A)gexp( - E—i—alogQ(A))Q(A)

-1 1 1 1
< exp a e+ —e+ log= | Q(A) =exp | e+
Q@ « 1 )

o —

! 1log§) Q(4).

o —

On the other hand, when Q(A) < e ¢4 %, then again using the first result of the proposition,

-1
PL) < exp (T + 0014
a—1 o'
gexp< (E—€+ log5>> = 4.
« a—1
This gives the second claim of the proposition. ]
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Finally, we develop our last set of connections, which show how we may relate (e,d)-private
channels with e-private channels. To provide this definition, we require one additional weakened
notion of divergence, which relates (g, §)-differential privacy to Rényi-a-divergence with a@ = oo.
We define

5 — P(S) -4
D% (P1Q) = sup {1oe 0 1 P(5) > 8.

where the supremum is over measurable sets. Evidently equivalent to this definition is that
D2 (P|Q) < ¢ if and only if

P(S) <e"Q(S)+ 4 forall S C X.
Then we have the following lemma.
Lemma 7.2.10. Let ¢ > 0 and ¢ € (0,1), and let P and Q be distributions on a space X.

(i) We have DS_(P|Q) < ¢ if and only if there exists a probability distribution R on X such that
1P = Rllpy <0 and Do(R|Q) < e.

(ii) We have D (P|Q) < ¢ and D2 (Q|P) < ¢ if and only if there exist distributions Py and Qq

such that
1 1)

P — Pollpy < Tr e 1Q — Qollpy < T1e
and
Do (Po]|Qo) <e and D (Qo|Pp) <e.

The proof of the lemma, is technical, so we defer it to Section 7.5.1. The key application of the
lemma—which we shall see presently—is that (e, ¢)-differentially private algorithms compose in
elegant ways.

7.2.3 Side information protections under weakened notions of privacy

We briefly discuss the side information protections these weaker notions of privacy protect. For both
(e,9)-differential privacy and (e, a)-Rényi privacy, we revisit the treatment in Proposition 7.1.7,
considering Bayes factors and ratios of prior and posterior divergences, as these are natural for-
mulations of side information in terms of an adversary’s probabilistic beliefs. Our first analogue of
Proposition 7.1.7, applies to the (e, §)-private case.

Proposition 7.2.11. Let M be a (e, )-differentially private mechanism. Then for any neighboring

P,, P!, PTEO) € P, we have with probability at least 1—0 over the draw of Z = M(Bgo)), the posterior

odds satisfy

T(Pol2) _ 3.7(Fn)

w(Fy =) = w(F)
Deferring the proof momentarily, this result shows that as long as two samples x, 2" are neighboring,
then an adversary is extremely unlikely to be able to glean substantially distinguishing information
between the samples. This is suggestive of a heuristic in differential privacy that if n is the sample
size, then one should take ¢ < 1/n to limit the probability of disclosure: by a union bound, we see
that for each individual ¢ € {1,...,n}, we can simultaneously guarantee that the posterior odds
for swapping individual i’s data do not change much (with high probability).

Unsurprisingly at this point, we can also give posterior update bounds for Rényi differential

privacy. Here, instead of giving high-probability bounds—though it is possible—we can show that
moments of the odds ratio do not change significantly. Indeed, we have the following proposition:
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Proposition 7.2.12. Let M be a (e, a)-Rényi private mechanism, where o € (1,00). Then for
any neighboring P, P}, PT(LO) € Py, we have

Eo

<m>a_1] o < T

where By denotes expectation taken over Z = M(PT(LO)).

Proposition 7.2.12 communicates a similar message to our previous results in this vein: even if
we get information from the output of the private mechanism on some sample xy € X™ near the
samples (datasets) of interest x, 2’ that an adversary wishes to distinguish, it is impossible to update
beliefs by much. The parameter o then controls the degree of difficulty of this “impossible” claim,
which one can see by (for example) applying a Chebyshev-type bound to the posterior ratio and
prior ratios.

We now turn to the promised proofs of Propositions 7.2.11 and 7.2.12. To prove the former, we
require a definition.

Definition 7.6. Distributions P and Q on a space X are (g,0)-close if for all measurable A
P(A) <efQ(A)+ 9 and Q(A) <e“P(A)+ 4.

Letting p and q denote their densities (with respect to any shared base measure), they are (e,0)-
pointwise close if the set

A={zeX: e ) <plx)<eqx)}={reX:eplx) <qlx) <epx)}
satisfies P(A) > 1—9§ and Q(A) > 1 — 0.

The following lemma shows the strong relationship between closeness and approximate differ-
ential privacy.

Lemma 7.2.13. If P and Q are (g,0)-close, then for any 8 > 0, the sets
Al = {x:p(x) > M%)} and A = {z: p(x) < e ()}
satisfy

ePes e ¢

max{P(A}),Q(A_)} < 1’ max{P(A-), Q(A4+)} < P _ 1

Conversely, if P and Q are (e,d)-pointwise close, then
P(A) <eQ(A)+0 and Q(A) <e"P(A)+§
for all sets A.
Proof Let A=A, = {z:p(zx)>e*P%g(x)}. Then
P(A) < efQ(A) + 6 < e PEP(A) + 6,

so that P(A) < %. Similarly,

1—

Q(A) < e*(1+5)€P(A) < eiﬁsQ(A) + e*(1+5)€57
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sothat Q(A) < e~ (1+A)eg/(1—e=F2) = €755 /(eP°—1). The set A_ satisfies the symmetric properties.
For the converse result, let B = {z: e “q(x) < p(x) < e°q(x)}. Then for any set A we have

P(A) = P(ANB) + P(AN B%) < “Q(AN B) + 6 < e*Q(A) + 4,

and the same inequalities yield Q(A) < e“P(A) + 0. O
That is, (g, 0)-close distributions are (2¢, eeej'fr d)-pointwise close, and (e, 0)-pointewise close dis-

tributions are (e, d)-close.
A minor extension of this lemma (taking 5 = 1 and applying the lemma twice) yields the
following result.

Lemma 7.2.14. Let Py, P, Py be distributions on a space X, each (e, 0)-close. Then for any i, j, k,
j #k, the set

Ajp = {a: € X :log ija:; > 35} satisfies Pi(Ajx) < Cémax{e~', 1}
pr(T

for a numerical constant C' < 2.

With Lemma 7.2.14 in hand, we can prove Proposition 7.2.11:

Proof of Proposition 7.2.11 Let P,SO) € P, denote the “true” sample. Consider the three
channels Qq, @1, @2, which represent the induced distributions of M (P,(LO)),M (P,), and M(P)),
respectively. Then by Lemma 7.2.14, with probability at least 1 — 2§ max{e~!,1}, Z ~ Qg belongs
to the set A = {z € Z | e ¥q1(2) < q2(2) < €3¢1(2)}. Calculating the odds ratios immediately
gives the result. O

Finally, we provide the proof of Proposition 7.2.12.
Proof of Proposition 7.2.12 Let r = a — 1 for shorthand, and let p = & = -%5 > 1 and

T

Ps = z% = « be its conjugate. As in the proof of Proposition 7.2.11, let Qp, @1, and Q- represent

the distributions of Z = M(P\"), Z = M(P,), and Z = M(P.), respectively. We apply Hélder’s
inequality: letting g; be the density of @); with respect to some base measure dy—which we know
must exist by definition of Rényi differential privacy—we have

EKWH :/<W>T%<z>du
/ <Q1(Z) qu(z)%(z)du

)
) ( (58) wow) (/ (385 o)
)

a—1)2 a—
o (2 pu@ula) + A Da@ilaw)

)Texp ((a— 1)‘;+a— 1€>

as pr = a and p, = a. Taking everything to the 1/(a — 1) power and gives the result. O
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7.3 Composition and privacy based on divergence

One of the major challenges in privacy is to understand what happens when a user participates in
multiple studies, each providing different privacy guarantees. In this case, we might like to under-
stand and control privacy losses even when the mechanisms for information release may depend
on one another. Conveniently, all Rényi divergences provide strong guarantees on composition,
essentially for free, and these then allow us to prove strong results on the composition of multiple
private mechanisms.

7.3.1 Composition of Rényi-private channels

A natural idea to address composition is to attempt to generalize our chain rules for KL-divergence
and related ideas to Rényi divergences. Unfortunately, this plan of attack does not quite work, as
there is no generally accepted definition of a conditional Rényi divergence, and associated chain
rules do not sum naturally. In situations in which individual divergence of associated elements of a
joint distribution have bounded Rényi divergence, however, we can provide some natural bounds.

Indeed, consider the following essentially arbitrary scheme for data generation: we have distri-
butions P and @ on a space Z", where Z' ~ P and Z' ~ Q may exhibit arbitrary dependence. If,
however, we can bound the conditional Rényi divergence between P(Z; | Zi~') and Q(Z; | Z:™1),
we can provide some natural tensorization guarantees. To set notation, let P;(- | z’i_l) be the the
(regular) conditional probability of Z; conditional on Zi~! = 2i~! under P, and similarly for Q;.
We have the following theorem.

Theorem 7.3.1. Let the conditions above hold, g; < oo fori=1,...,n, and a € [1,00]. Assume
that conditional on 2i™1, we have D, (Pi(- | 27NQi( | 27Y) <ei. Then

Dy (P|Q) < Z“:z
=1

Proof We assume without loss of generality that the conditional distributions P;(- | zifl) and
Q; are absolutely continuous with respect to a base measure p on Z.! Then we have

Da(PIQ) = —— log / H (p@ sla ))aqxzi |t (27)

QZZZ|Z )

T a i o8 /g;w [/ (W)a%(% | Z?‘l)du(zn)] ﬁ <§)a qidp" ™

=1

1 n—1 5. |Z ) o 4
log/n_ exp((a — 1)ey) H <pZ : > gi(zi | 27 Hdp (2
1

a—1 i=1 szz‘z )

IN

=ep+ Do(PP QT .

Applying the obvious inductive argument then gives the result. O

!This is no loss of generality, as the general definition of f-divergences as suprema over finite partitions, or
quantizations, of each X; and Y; separately, as in our discussion of KL-divergence in Chapter 2.2.2. Thus we may
assume Z is discrete and p is a counting measure.
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7.3.2 Privacy games and composition

To understand arbitrary composition of private channels, let us consider a privacy “game,” where
an adversary may sequentially choose a dataset—in an arbitrary way—and then observes a private
release Z; of some mechanism applied to the dataset and the dataset with one entry (observation)
modified. The adversary may then select a new dataset, and repeat the game. We then ask whether
the resulting sequence of (private) observations Zf remains private. Figure 7.1 captures this in an

algorithmic form. Letting Zi(b) denote the random observations under the bit b € {0, 1}, whether

Input: Family of channels Q and bit b € {0,1}.
Repeat: for k=1,2,...

i. Adversary chooses arbitrary space X, n € N, and two datasets £ 21 e X" with
dnam (2@, 20) < 1.

ii. Adversary chooses private channel Q € Q.
iii. Adversary observes one sample Zj, ~ Qg (- | 2(%)).

Figure 7.1. The privacy game. In this game, the adversary may not directly observe
the private b € {0,1}.

the distributions of (Z%O), e Z,io)) and (Zfl), Cee Z,gl)) are substantially different. Note that, in
the game in Fig. 7.1, the adversary may track everything, and even chooses the mechanisms Q.

Now, let Z(0) = (Z(O) Z( )) and Z(1) = (Z(l) z1 )) be the outputs of the privacy game
above, and let their respectlve margmal distributions be Q(O]3 and Q). We then make the following
definition.

Definition 7.7. Let ¢ >0, o € [1,00], and k € N.

(i) A collection Q of channels satisfies (£, )-Rényi privacy under k-fold adaptive composition
if, in the privacy game in Figure 7.1, the distributions Q©© and QW on ZO and ZzW,
respectively, satisfy D, (Q(O) HQ(l)) < e and D, (Q(l)”Q(O)) <e.

(ii) Let 6 > 0. Then a collection Q of channels satisfies (g,0)-differential privacy under k-fold
adaptive composition if DS_(Q@ QM) < ¢ and DI (QM Q) < ¢

By considering a special case centered around a particular individual in the game 7.1, we can gain

some intuition for the definition. Indeed, suppose that an individual has some data zg; in each

round of the game the adversary generates two datasets, one containing xy and the other identical

except that xg is removed. Then satisfying Definition 7.7 captures the intuition that an individual’s

privacy remains protected, even in the face of multiple (private) accesses of the individual’s data.
As an immediate corollary to Theorem 7.3.1, we then have the following.

Corollary 7.3.2. Assume that each channel in the game in Fig. 7.1 is (e;, «)-Rényi private. Then
the arbitrary composition of k such channels remains (Zle g, a)-Rényi private.

More sophisticated corollaries are possible once we start to use the connections between privacy
measures we outline in Section 7.2.2. In this case, we can develop so-called advanced composition
rules, which sometimes suggest that privacy degrades more slowly than might be expected under
adaptive composition.
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Corollary 7.3.3. Assume that each channel in the game in Fig. 7.1 is e-differentially private.
Then the composition of k such channels is ke-differentially private. Additionally, the composition

of k such channels is
3k / 1
(25 +4/6klog = 5 e,5>

Proof The first claim is immediate: for Q(©), Q™) as in Definition 7.7, we know that Dy, (Q(O) HQ(U)
ke for all « € [1, 0] by Theorem 7.3.1 coupled with Proposition 7.2.5 (or Corollary 7.2.6).

For the second claim, we require a bit more work. Here, we use the bound 370‘52 in the Rényi
privacy bound in Corollary 7.2.6. Then we have for any a > 1 that

Da(@U1Q") < 202

by Theorem 7.3.1. Now we apply Proposition 7.2.7 and Corollary 7.2.8, which allow us to conclude
(e, 9)-differential privacy from Rényi privacy. Indeed, by the preceding display, setting n = 1 + «,
we have that the composition is (32k g2 + 3’“752 + 1 log 5,6)—differentially private for all 7 > 0 and
0 > 0. Optimizing over 7 gives the second result O

differentially private for all 6 > 0.

We note in passing that it is possible to get slightly sharper results than those in Corollary 7.3.3;

indeed, using ideas from Exercise 4.3 it is possible to achieve (ke(e® —1)+4/2k log 3¢, 6)-differential

privacy under adaptive composition.
A more sophisticated result, which shows adaptive composition for (e, §)-differentially private
channels, is also possible using Lemma 7.2.10.

Theorem 7.3.4. Assume that each channel in the game in Fig. 7.1 is (g,0)-differentially private.
Then the composition of k such channels is (ke, kd)-differentially private. Additionally, they are

3k 4 / 1 ké
(2 + 6klog6 1+€€>

differentially private for all 5o > 0.

Proof Consider the channels Q; in Fig. 7.1. As each satisfies DJ_(Q;(- | 2)|Qi(- | z(V)) < ¢
and D2 (Qi(- | z™M)[Q;(- | () < ¢, Lemma 7.2.10 guarantees the existence (at each sequential
step, which may depend on the preceding i — 1 outputs) of probability measures QEO) and le) such
that Deo(Q1Q") <&, 1QY) = Qi(- | 2®)[|ry < 6/(1 + ) for b € {0, 1}

Note that by constructlon (and Theorem 7.3.1) we have D (le) Qk ||Q11 ) --Qg b))
min{ 3’““52 ke}, where Q) denotes the joint distribution on Z, ..., Z; under bit b. We also have
by the triangle inequality that Hng) : -'Q,(Cb) —QW|py < k§/(1 + €°) for b € {0,1}. (See Exer-
cise 2.16.) As a consequence we see as in the proof of Corollary 7.3.3 that the composition is
(321“52 + 3’“”62 + 1 log 35000 + k6/(1 + €°))-differentially private for all n > 0 and dp. Optimizing
gives the result O
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As a consequence of these results, we see that whenever the privacy parameter ¢ < 1, it is
possible to compose multiple privacy mechanisms together and have privacy penalty scaling only
as the worse of vke and ke2, which is substantially better than the “naive” bound of ke. Of course,
a challenge here—relatively unfrequently discussed in the privacy literature—is that when € > 1,
which is a frequent case for practical deployments of privacy, all of these bounds are much worse
than a naive bound that k-fold composition of e-differentially private algorithms is ke-differentially
private.

7.4 Additional mechanisms and privacy-preserving algorithms

Since the introduction of differential privacy, a substantial literature has grown providing mecha-
nisms for different estimation, learning, and data release problems. Here, we describe a few of those
beyond the basic noise addition schemes we have thus far developed, highlighting a few applications
along the way. One major challenge with the naive approaches is that they rely on global sensitivity
of the functions to be estimated, rather than local sensitivities—a worst case notion that sometimes
forces privacy to add unnecessary noise. In Section 7.4.2, we give one potential approach to this
problem, which we develop further in exercises and revisit in optimality guarantees in sequential
chapters. Our view is necessarily somewhat narrow, but the results here can form a natural starting
point for further work in this area.

7.4.1 The exponential mechanism

In many statistical, learning, and other problems, there is a natural notion of loss (or conversely,
utility) in releasing a potentially noisy result of some computation. We abstract this by considering
the input space P,, of samples of size n (that is, empirical distributions) and output space Z along
with a loss function ¢ : P, x Z — R, where {(P,, z) measures the loss of z on an input P, € P,.
For example, if we wish to compute a function f : P, — R, a natural notion of loss is 4(FP,,z) =
|f(Pn) — z| for z € R. As a more sophisticated and somewhat abstract formulation, suppose we
wish to release a sample distribution P approximating an input sample P, € P,, where we wish P
to be accurate for most statistical queries in some family, that is, 2 37 | ¢(z;) ~ E 5lo(X)] for all

¢ € ®. Then a natural loss is ((P,, P) = supgeq [Ep, 9(X) — Ep[o(X)]].

In scenarios in which we have such a loss, the abstract exponential mechanism provides an
attractive approach. We assume that for each z € Z, the loss (-, z) has (global) sensitivity L, i.e.,
|¢(Pp,z) —{(P),z)| <L for all neighboring P, P, € P,,. We assume we have a base measure y on

Z, and then define the exponential mechanism by

1 g
[ exp(—=74(Pn, 2))dp(z) /AeXp (‘ff(Pm Z)) dp(2), (7.4.1)

assuming [ effe(x’z)d,u(z) is finite for each P, € P,. (Typically, one assumes ¢ takes on values
in Ry and p is a finite measure, making the last assumption trivial.) That is, the exponential
mechanism M releases Z = M (P,) with probability proportional to

P(M(P,) € A) =

exp (—%E(Pn, z)) .

That the mechanism (7.4.1) is 2e-differentially private is immediate: for any neighboring P,, P},
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we have

QA | Py) _ [ exp(=£0(Py. 2))du(z) [ exp(—5E(Pa. 2))dp(2)
=y :

14
QAP [exp(=F(Pn, 2))du(z) [, exp(—F (P}, 2))dp(z)

< sup {exp (F1e0Pu2) = 0Py 2))) } sup {exp (Z160PL2) = (P, 2)]) | < exp(22).

As a first (somewhat trivial) example, we can recover the Laplace mechanism:

Example 7.4.1 (The Laplace mechanism): We can recover Example 7.1.3 through the
exponential mechanism. Indeed, suppose that we wish to release f : P, — R?, where GS;(f) <
L. Then taking z € R £(P,, 2) = || f(P,) — z||;, and g to be the usual Lebesgue measure on
R?, the exponential mechanism simply uses density

a(z | Po) ocexp (=7 1£(Pa) = 211 )

which is the Laplace mechanism. <

One challenge with the exponential mechanism (7.4.1) is that it is somewhat abstract and is
often hard to compute, as it requires evaluating an often high-dimensional integral to sample from.
Yet it provides a nice abstract mechanism with strong privacy guarantees and, as we shall see, good
utility guarantees. For the moment, we defer further examples and provide utility guarantees when
1(Z) is finite, giving bounds based on the measure of “bad” solutions. For notational convenience,

we define the optimal value
0*(P,) = inf U(P,, 2),
z€Z

assuming tacitly that it is finite, and the sublevel sets
Si:={z€ Z|UPy,z) <O (P,) +t}.
With these definitions, we have the following proposition.
Proposition 7.4.2. Let t > 0. Then for the exponential mechanism (7.4.1), if Z ~ Q(- | P,) then
UP,,Z) < l(P,) + 2t

with probability at least 1 — exp (—% + log 5&%)

Proof Assume without loss of generality (by scaling) that the global Lipschitzian (sensitivity)
constant of £ is L = 1. Then for Z ~ Q(- | P,), we have

B ngt exp(—el(P, z))du(z) B fSEt exp(—e(U(Pa, 2) — £5(P)))du(z)
= feXp(—f—Zf(Pn, z))d,u(z) o fexp(_g(ﬁ(Pm Z) _ 5*(Pn)))d,u(z)

P(U(Py, Z) > U*(Py,) + 2t)

. exp(—2et)du(z) c
< ‘[S2t < exp(_&_t)u(SZt)’
Js, exp(=e(U(Pn, 2) — £(Pn)))dpu(2) p(St)
where the last inequality uses that ¢(P,, z) — *(P,) <t on S;. O

We can provide a few simplifications of this result in different special cases. For example, if Z
is finite with cardinality card(Z), then Proposition 7.4.2 implies that taking p to be the counting
measure on Z we have
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Corollary 7.4.3. In addition to the conditions in Proposition 7.4.2, assume that card(Z) is finite.
Then for any u € (0, 1), with probability at least 1 — u,

2L d(Z
UP,, Z) < t*(Pp)+ — logL().
u
That is, with extremely high probability, the loss of Z from the exponential mechanism is at most
logarithmic in card(Z) and grows only linearly with the global sensitivity L.
A second corollary allows us to bound the expected loss of the exponential mechanism, assuming
we have some control over the measure of the sublevel sets S;.

Corollary 7.4.4. Let t > 0 be the smallest scalar such that t > %log 1(Z) and t > L. Then Z
p(St) B

drawn from the exponential mechanism (7.4.1) satisfies

B, 2)] < (P + 1+ 2 < 0P 4302 (R + 0 T 1o (14 427,

1(St)
Proof We ﬁrst recall that if W > 0 is a nonnegative random variable, then by a change of
variables, E[W] = [[P(W > t)dt. Take {(P,,Z) — {*(P,) > 0 as our random variable, fix any

to > 0, and let p = log (( )) Then by Proposition 7.4.2 we have

E[((Py, Z) — ¢*(Pa)] < to + / TPy, Z) — () > 1)t

to

:m+2/ PU(P,, Z) — £(P,) > 2t)dt
t0/2

%0 (Z))
<ty+ 2/ ex (— + 1 dt
R A 7 (1)

o0 et 2L eto
<t 2e” —— Jdt=1t — - —
<to2r [ o (= )ar—to+ Zesn (- 7).

Take ty as in the statement of the corollary to obtain the result. O

Corollary 7.4.4 may seem a bit circular: we require the ratio u(Z2)/u(Sy) to be controlled—but
it is relatively straightforward to use it (and Proposition 7.4.2) with a bit of care and standard
bounds on volumes.

Example 7.4.5 (Empirical risk minimization via the exponential mechanism): We consider
the empirical risk minimization problem, where we have losses £ : © x X — R, where © C R¢
is a parameter space of interest, and we wish to choose

~ 1 &
6,, € argmin {L(Q, P, :=— Zf(@,xi)}
n

0co =

where P, = %Z?zl 1,,. We make a few standard assumptions: first, for simplicity, that n
is large enough that § > e. We also assume that © C R? is an fo-ball of radius R, that
0 — (0, x;) is M-Lipschitz for all z;, and that £(0,x;) € [0,2MR] for all § € ©. (Note that
this last is no loss of generality, as £(0, ;) — infoce £(0, ;) < M supy gce |0 — 0|, < 2MR.)
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Take the empirical loss L(6, P,,) as our criterion function for the exponential mechanism, which
evidently satisfies |L(6, P,) — L(0, P),)| < % whenever dpam (P, Pl) < 1, so that we release
0 with density

ne
2MRL(0’P”)) ‘

Let gn be the empirical minimizer as above; then by the Lipschitz continuity of ¢, the sublevel
set S; evidently satisfies

q(0 | =) x exp (—

~ t
St3{966\||9—0n||2§M}.

Then a volume calculation (with the factor of 2 necessary because we may have c/9\n on the
boundary of ©) yields that for u the Lebesgue measure,

piS) o (1 !

wz) = \2MR) -
As a consequence, by Corollary 7.4.4, whenever ¢ > O(l)% -dlog @, we have E[L(0, P,) |
P,] < L(0,, P,) + 3t. The choice t = O(1)MEd gyffices whenever £ <1, so we obtain

ne

MRd ne

E[L(9, P,)] < L(6y, P,) + O(1) log .

whenever % < 1. Notably, standard empirical risk minimization (recall Chapter 4.4) typically
achieves rates of convergence roughly of M R/+/n, so that the gap of the exponential mechanism

is lower order whenever -4 < 1. &

Ve S

7.4.2 Local sensitivities and the inverse sensitivity mechanism

A particular choice of the exponential mechanism (7.4.1) can provide strong optimality guarantees
for 1-dimensional quantities, and appears to be the “right” mechanism (in principle) when one
wishes to estimate a scalar-valued functional f(P,). A better (in principle) algorithm than noise
addition schemes using the global sensitivity GS(f) = sup |f(P,) — f(P),)| is to use a local notion
of sensitivity: we are only concerned with adding noise commensurate with the changes of f near
P, € P,. With this in mind, define the modulus of continuity of f at P, by

wf(kQPn) = SUP{|f(P7IL) = f(Po)] | dham(PmPrll) < k}7

which measures the amount that changing k£ observations in P, can change the function f. In the
privacy literature, the particular choice k = 1 yields the local sensitivity

LS(f, Pn) :=sup {|f(Pn) — f(PL)] | dham (P}, Pa) = 1} = wy(1; Py). (7.4.2)
A naive strategy, then, would be to release

LS(f, Pn)

Z:f<Pn)+ c

- W for W ~ Laplace(1),
which is analogous to the Laplace mechanism (7.1.3), except that the noise scales with the local

sensitivity of f at F,. The issue, as the next example makes clear, is that the scale of this noise
can compromise privacy.
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Example 7.4.6 (The sensitivity of the sensitivity): Consider estimating a median f(P,) =
med(FP,), where the data = € [0,1], where n = 2m + 1 for simplicity, to make the median
unique. If the sample consists of m points x; = 0 and m + 1 points x; = 1, then the sensitivity
w¢(1,P,) = 1, the maximal value—we simply move one example from z; = 1 to z; = 0,
changing the median from med(P,) = 1 to 0. On the other hand, on the sample P} with m —1
points z; = 0 and m+ 2 points z; = 1, the sensitivity ws(1, P)) = 0, because changing a single
example cannot move the median from f(P)) =1. ¢

Instead of using the inherently unstable quantity w, then, we can instead use, essentially, its
inverse: define the inverse sensitivity

df(tv Pn) ;= inf {dham(Prln Pn) | f(Pr/L) = t} ) (743)

where d¢(t, P,) = 400 if no P}, yields f(P)) =t. So d(t, P,) counts the number of examples that
must be changed in the sample P, to move f(P,) to a target ¢, and by inspection, always satisfies

’df(t’ Pn) - df(tv Pﬁ)’ < dham(PmPr/L)-

Then the inverse sensitivity mechanism releases a value t with probability density proportional to
€
4(t| P,) o exp (—idf(t, Pn)) . (7.4.4)

Implicit in the definition (7.4.4) is a base measure p, typically one of Lebesgue measure or counting
measure on a discrete set. Then a quick calculation (or recognition that the density (7.4.4) is a
particular instance of the exponential mechanism) gives the following proposition.

Proposition 7.4.7. Let M be the inverse sensitivity mechanism with density (7.4.4). Then M is
e-differentially private.

As in the general exponential mechanism (7.4.1), efficiently sampling from the density (7.4.4)
can be challenging. Some cases admit easier reformulations.

Example 7.4.8 (Mean estimation with bounded data):  Suppose the data = € [a,b] are
bounded and we wish to estimate the sample mean f(P,) = Ep,[X] = Z,, where P, =
% > i1 15, Changing a single observation can move the mean by at most bfTa (replace x; = a
with 2 = b). Thus, while discretization issues and that we may have z; ¢ {a, b} make precisely
computing d; tedious, the approximation

nit —
dmean(tapn) = ’V‘b_an‘—‘ y
where we define dpean(t, P,) = +oo for ¢t & [a,b], is both Lipschitz (with respect to the
Hamming metric) in the sample P,, and approximates df(t, P,). (See Exercise 7.8 for a more
general approach justifying this particular approximation.) The approximation

qt | Pn) = —5

2 (7.4.5)
fa exp(—5dmean(s, Pp))ds

to the density (7.4.4) is thus e-differentially private,
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The density (7.4.5) yields a particular step-like density. Define the shells

n

S, = {[mn—kb_a,xn—(kz—l)b_a] u [:z:mt(k—l)b_a,zmuk:b_a”m[a,b]
n n n

corresponding to the amount the mean may change if we modify k examples and let Vol(Sy) be
volume (length) of the intervals making up Si. To sample from the density (7.4.5), note that
the denominator C'(P,) := f; exp(—§dmean(s, Pn))ds = > ), Vol(Sk)ef%. Then we draw an
index I € [n] with probability P(I = k) = Vol(Sk)e~<¥/2/C(P,), and then choose t uniformly
at random within S;. <©

Example 7.4.9 (Median estimation): For the median, the inverse sensitivity takes a par-
ticularly clean form, making sampling from the density (7.4.4) fairly straightforward. In this
case, for a sample P, = %Z?:l 1,,, where z; € R, we have

dg(t, P) = card{i € [n] | zi € [f(Fn),t]},

the number of examples between the median f(P,) and putative target ¢. If the data lie in
a range z € [a,b], then the density ¢ is relatively straightforward to compute. Similar to the
approach to the stepped density in Example 7.4.8, divide [a, b] into the intervals

Sy :=la;,a; ;) and S :=1[a} .af], k=1,...,n/2,
where
a, = inf {f(Pvg) ‘ dham(P;mPn) < k} and CL: = Sup {f(P'I{L) | dham(Pr/an) < k} .

That is, a, is the smallest we can make the median by changing k examples and a;: the largest,
corresponding to the the % — % and % + % quantiles of the sample F,,, where the 0 quantile is
a and 1 quantile is . Then defining the normalization constant

b n
C(P,) ;:/ exp (—Zds(t, Py) ) dt =S Vol(S; USH)exp (— <k
, ( 2/ ) ; k= Pk ( 2)

(where the volume is simply interval length), we may sample from the density (7.4.4) by first
drawing a random index I € {1,...,n} with probability proportional to

Vol(S; U S;h) €

PI=k|P)= —"k ="k’ <7, k)

( | n) C(Pn) €xp 2 ’

then drawing ¢ uniformly at random in the each of the intervals S,” or S,j with probabilities
Vol(S;)/ Vol(S;, US{) or Vol(S;)/ Vol(S, U S;F), respectively. &

The particular sampling strategies—where we construct concentric shells Sy around f(P,) and
sample from these with geometrically decaying probabilities e #¢/2—point toward more general
sampling stratgies and optimality guarantees for the inverse sensitivity mechanism. Define the
“shells”

S = {F(P}) | dam(Pas PL) = k}.
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We focus on sampling from the density (7.4.4) in the case t € R, so sampling is equivalent to
drawing an index I € [n] with probability
1 . “ :
P(I=k|P,)=—5~e 2 for C(P,):=) Vol(Sg)e 2" 7.4.6
( | Pn) cmy’ T o (Pa) :=Y_ Vol(Sg)e 2", (7.4.6)
then choosing ¢t uniformly at random in Sk.
Define the shorthand w(k) = w¢(k, P,). Then the values t € Sy, all satisfy |f(P,) —t| < w(k),
and so the inverse sensitivity mechanism M guarantees

E[|M (P, ] < ZP ) € Sp)w(k).

Now our calculations become heuristic, where we make an effort to give the rough flavor of results
possible, and later apply the care necessary for tighter guarantees. Suppose that the interval lengths
Vol(Sy) are of the same order for k < g, and grow only polynomially quickly for k& > % Then
we have the heuristic bound C(P,) := S.7_; Vol(Sg)e /2 > Vol(Sy) Sop_, e #/2 > =1 Vol(Sy),
while

n Vol Sk —ke/2 heurlstlc
BIM(R,) P} < 2 s e rpoth) 2 e ) € et
=1

where the heuristic inequality is our bound on the normalizing constant C'(P,,), and the final bound
follows because maxima are larger than (weighted) averages. Continuing the heuristic derivation,
the final maximum has is exponentially small weight on w(k) for k > é Thus—and again, this is
highly non-rigorous—we expect roughly that

heuristic heuristic c

E[M(Py) — f(P)]] < maxe " (k) : (7.4.7)

where c¢ is some numerical constant.

To gain some intuition for the claims of optimality we have made, let us revisit the equivalent
definitions of privacy that repose on testing, as in Eq. (7.1.4) and Proposition 7.1.6. By the
definition of differential privacy, the inverse sensitivity mechanism satisfies

P(M(P,) € A) < e*P(M(P)) € A)
for any samples P,, P, satisfying dpam (P, P)) < k. So for k < é, we have
P(M(P,) € ) < exp(IB(OM(P) € A).

and so no procedure exists that can test whether the sample is P,, or P, with probability of error less
than e~2, by Proposition 7.1.6. Thus, at a fundamental level, no procedure can reliably distinguish
the outputs of M(P,) from those of M (P)) when P, and P, differ in only 1/¢ examples. Thus, we
cannot expect to estimate f(P,) to accuracy better than w f( , Pn), and so for any e-differentially
private mechanism M and P, there exists P, € P, with dpam (P, P)) < é and for which

max E[|M(P) - f(P)]] 2w (1,Pn>, (7.4.8)
Pe{P,,P}} €
which the heuristic calculation (7.4.7) achieves.
To provide more rigorous guarantees requires restrictions on the functions f whose values we
wish to release. The simplest is that the function f : P, — R obey a natural ordering property,
where larger changes in the sample distribution P, beget larger changes in f.
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Definition 7.8. A function f : P, — R is sample monotone if for each s,t € f(Py) satisfying
f(Pn) <s<tort<s< f(P,), we have dg(s, Py) < df(t, Pp).

So the mean and median (Examples 7.4.8 and 7.4.9) are both sample monotone. So, too, are
appropriately continuous functions f. For this, we make the obvious identification of f : P, = R
with the induced function on X™ by defining fx(z7) := f(n™* > 1;,). Then we say f: P, — R
is continuous if the induced function fy is.

Observation 7.4.10. Let f : P, — R be continuous and X conver. Then f is sample monotone.

Proof Identify f with its induced function fy for notational simplicity, and let = € X",
f(z) < s <t and P, = n='Y." 1,. be the empirical distribution associated with z. We
show that dy¢(s, P,) < df(t,P,). If ds(t,P,) = +oo, then the desired inequality holds triv-
ially. Otherwise, let 2’ € X" satisfy f(2') = ¢t and dham(z,2’) = dy(t,P,). Then the function
g(A) == f((1 = Nz + Az’) is continuous in A and satisfies g(0) = f(z) < g(1) = f(2/) = t. By the
intermediate value theorem, there exists As € [0,1] with g(As) = s, and as X" is convex the vector
xs = (1 = Ag)x + Az’ € X" satisfies f(xs) = g(As) = s. That x5 is a convex combination of = and
«’ then implies df(s, P,) < dham (2, Ts) < dham(x, @) = df(t, Py). O

With Definition 7.8 in place, we can provide a few stronger guarantees for the inverse sensitivity
mechanism. To avoid pathological sampling issues, one replaces the inverse sensitivity d¢(t, P,) with
a “smoothed” version, where for p > 0 we define

df,p(t) Pn) := inf {dham(PTHP'r/L) | |f(P1,1) - 75| < P} .

(Pathological cases include estimating the median where the sample P, consists of a single point re-
peated n times, which would make the density (7.4.4) uniform.) Then instead of the density (7.4.4),
we define the continuous inverse sensitivity mechanism Mo to have density

exp(—5dy,(t, )

WP = e (Tody (s, Ba)ds (7.4.9)

While the parameter p adds complexity, setting it to be very small (say, p = ,712) is a reasonable
practical default.

The continuous inverse sensitivity enjoys fairly strong error guarantees, as the next two propo-
sitions demonstrate, providing two prototypical results. (Exercises 7.11 and 7.12 show how to prove
the propositions.) The first proposition shows that the inverse sensivity mechanism is essentially
never worse than the Laplace mechanism (7.1.3) when ¢ < 1.

Proposition 7.4.11. Let f be sample monotone (Definition 7.8) and have finite global sensitivity
GS(f) < co. Then taking p =0,

E (| Meon () — f(B)[] < ———GS(f).

T 1—e/2
As Example 7.1.3 shows, the standard Laplace mechanism M has error

B (M(E) — f(P] = )
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the same scaling Proposition 7.4.11 guarantees, because 1 — e~%/2 = ¢/2 + O(&?).

For the next proposition, which provides a more nuanced guarantee, we require local sensitivities
for samples P near P,, and so we define the largest local sensitivity within Hamming distance K
of the sample P, by

L(K) ::]jup {LS fvP/)‘dham(P’mP/ <K}_P§UP {Wfl P)|dham(Pn7P/ <K}

where we recall the definition (7.4.2) of the local sensitivity of f. Then we have the following.

Proposition 7.4.12. Let f be sample monotone (Definition 7.8) and have finite global sensitivity
GS(f) < 0. Then for any p > 0 and K, = {w-‘,

€

E HMcont(Pn) - f(Pn)H < 2[) + Tl_g/QL(Kn)

Unpacking Proposition 7.4.12 a bit, let us make the default substitution p = n—12 Then because

1 —e /2 =¢/2 4+ O(g?), for £ < 1 this yields
1

E (| Meon(Py) ~ F(PO] S 2 sup {LS(F, P2 | dham(Pl Pa) < Ko} + .
€ PLePy n

where K, = 410gGS(f)+1210g" <1 - logn for large sample sizes n. Comparing this to the sketched

lower bound (7.4.8), these quantltles are of the same order whenever the moduli of continu-
ity wg(k; P,) are roughly additive and comparable near P,, so that for & < i there is a chain
P PP, P with diam (P, PYTY) = 1 and wyp(k; ) 2 S8 LS(f, ) and LS(f, P,) =
LS(f, P)) for P satistying dham(Pn, P,) < 10%. Under these conditions—which often require care
to check, but which hold, for example, for mean estimation—we then obtain

E [|Meont(Pa) — f(P)]] < wy (i pn> S

7.5 Deferred proofs

7.5.1 Proof of Lemma 7.2.10

We prove the first statement of the lemma first. Let us assume there exists R such that | P — R||py <
d and Do (R|Q) < e. Then for any set S we have

P(S) < R(S)+ 0 <e*Q(S)+0, ie log——=— P(s

) 9
ToREE
DY,

which is equivalent to DI (P|Q) < e. Now, let us assume that DS (P|Q) < e, whence we must

construct the distribution R.
We assume w.l.o.g. that P and @) have densities p, ¢, and define the sets

S:={z:p(x)>eqx)} and T :={x:p(x)<q(x)}.
On these sets, we have 0 < P(S) —e*Q(S) < 4 by assumption, and we then define a distribution R
with density that we partially specify via
x € S=r(r):=eq(x) <p)
e (TUS) = r(x) :=p(z) <eq(x) and r(x) > q(z).



Lexture Notes on Statistics and Information Theory John Duchi

Now, we note that eq(z) > p(x) > q(x) for z € (SUT)¢, and thus
Q(S)+Q(S°NTe) <efQ(S)+ P(S°NT)
= R(S)+ R(S°NT°) (7.5.1)
=e"Q(S)+ P(S°NT°) < P(S)+ P(S°NTe).
In particular, when = € T', we may take the density r so that p(z) < r(z) < ¢(x), as
R(S)+ R(S°NT )+ P(T) <1 and R(S)+ R(S°NT)+Q(T)>1

by the inequalities (7.5.1), and so that R(X) = 1. With this, we evidently have r(z) < e®q(x) by
construction, and because S C T, we have

R(T)—P(T)=P(T°)—R(T°) = P(SNT°) —R(SNT°)+ P(S°NT°) — R(S°NT*) = P(S)— R(S5),
where we have used that r = p on (T'U S)¢ by construction. Thus we find that

1P~ Rl =5 [r=pl+3 [ Ir=pl = 5(P(S) = R(S) + 3(R(T) = P(T))
— P(S) — R(S) = P(S) — ¢Q

(S) <o

by assumption.

Now, we turn to the second statement of the lemma. We start with the easy direction, where
we assume that Py and Qg satisfy Do (Po|Qo) < € and Do (Qo|Po) < € as well as ||[P — Pyl|py < 0
and ||Q — Qo|lpy < 0. Then for any set S we have

<e*Q(S) + €0+ 0

P(S) < Py(S) + < eQo(S) + e

= Tre =

1+ ef

or D?_(P|Q) < e. The other direction is similar.
We consider the converse direction, where we have both DS (P|Q) < ¢ and DJ_(Q|P) < e. Let
us construct Py and )y as in the statement of the lemma. Define the sets

S:={z:p(x)>e°q(xr)} and S :={x:q(x) > ep(zx)}
as well as the sets
T:={x:eq(x) 2 p(x) 2 q(x)} and T":={x:e q(z) < p(z) < q(2)},

so that S, 8", T, T" are all disjoint, and X = SUS"UTUT’. We begin by constructing intermediate
measures—which end up not being probabilities—P; and @)1, which we modify slightly to actually
construct Py and Qp. We first construct densities similar to our construction above for part (i),
setting

rES = pia)i= Cale), @)= () + (@)
re S = qx):=ep(x), pi(z):= e (p(z) + q(x)).
Now, define the two quantities
o= P(S) — Pi(S) = P(S) — ———(P(8) + Q(s)) = LB, —<Q) 9

1+ e 14 e ~ 14ef’
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and similarly

Q) ~ P(S) _ b
14 ef ~1l4e

o = Q(S") — Q1 (5") =

Note also that we have P(S) — P1(S) = Q1(S) — Q(S) and Q(S’) — Q1(S") = Pi(S") — P(5’) by
construction.

We assume w.l.o.g. that a > o/, so that if 3 =a — o’ > 0, we have § < ljﬁ%, and we have the
sandwiching

Pi(S)+ Pi(S)+ P(TUT) = Py(S) + P (S)+1-P(SUS)=1-8<1
because S and S’ are disjoint and T UTs = (S US')¢, and similarly

Qi1(S)+Q1(S)+QTUT)=Q:1(S)+Q:1(S)+1-Q(SUS)=1+8>1.

Let p; = p on the set TUT’ and similarly for ¢ = q. Then we have P;(X) =1-03, Q1(X) =143,
and [log 2| <e.
Now, note that SUT = {x : ¢i1(x) > p1(z)}, and we have

Q1(S) + Qu(T) = A(S) = A(T) = Qu(S) + Q(T) — A(S) - P(T)
> Q1(S) + Q1(S) + Q(T) + Q(T") — Py(S) — Pi(S') — P(T) — P(T") = 28.

Now, (roughly) we decrease the density ¢; to go on S U T and increase p; to pp on S U T, while
still satisfying gg > po on S UT. In particular, we may choose the densities gy = ¢; on 7 U S’ and
po = p1 on T U S’, while choosing qg, pg so that

p1(x) < po(z) < qo(z) < qi(x) on SUT,

where

Py(SUT)=P(SUT)+ B and Qo(SUT)=Q1(SUT)-p. (7.5.2)

With these choices, we evidently obtain Qo(X) = Py(X) = 1 and that Do (Fo|Qo) < € and
Do (Qo| Py) < € by construction. It remains to consider the variation distances. As pp = p on T”,

we have
IP— Pollpy =+ /rp pol + 2 /\p pol + /rp ol

= 5(P(5) — Fo(9)) + (Po(S) P(5)) + (Po(T) P(T))

2
1
< 5 (2(5) - Pi(9)) +§ (Po(S') — P(S)) +§ (Po(T) — P(T)),
—a —o <5
where the Py(T) — P(T) < f claim follows becase pi(z) = p(z) on T and by the increasing
construction yielding equality (7.5.2), we have Py(T) — P(T) = Py(T) — Pi(T) = B+ Pi(S) —
Py(S) < 8. In particular, we have ||P — Pyllpy < ‘“50‘/ —|—§ =a < 1er5' The argument that

HQ QO HTV W is similar.
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7.6 Bibliography

Given the broad focus of this book, our treatment of privacy is necessarily somewhat brief, and
there is substantial depth to the subject that we do not cover.

The initial development of randomized response began with Warner [173], who proposed ran-
domized response in survey sampling as a way to collect sensitive data. This elegant idea remained
in use for many years, and a generalization to data release mechanisms with bounded likelihood
ratios—essentially, the local differential privacy definition 7.2—is due to Evfimievski et al. [80] in
2003 in the databases community. Dwork, McSherry, Nissim, and Smith [74] and the subsequent
work of Dwork et al. [73] defined differential privacy and its (g, d)-approximate relaxation. A small
industry of research has built out of these papers, with numerous extensions and developments.

Exponential mechanism is McSherry and Talwar [139].

The book of Dwork and Roth [72] surveys much of the field, from the perspective of computer
science, as of 2014. Lemma 7.2.10 is due to Dwork et al. [75], and our proof is based on theirs.

7.7 Exercises

Exercise 7.1: Prove Proposition 7.2.1.
Exercise 7.2: Prove Proposition 7.4.7.

Exercise 7.3 (Laplace mechanisms versus randomized response): In this question, you will
investigate using Laplace and randomized response mechanisms, as in Examples 7.1.3 and 7.1.1-
7.1.2, to perform locally private estimation of a mean, and compare this with randomized-response
based mechanisms.

We consider the following scenario: we have data X; € [0, 1], drawn i.i.d., and wish to estimate
the mean E[X] under local e-differential privacy.

(a) The Laplace mechanism simply sets Z; = X; + W; for W; i Laplace(b) for some b. What choice
of b guarantees e-local differential privacy?

(b) For your choice of b, let Z,, = 3" | Z;. Give E[(Z,, — E[X])?].

(c) A randomized response mechanism for this case is the following: first, we randomly round X;
to {0,1}, by setting
e~ {1 with probability X;
1; g

0 otherwise.

Conditional on )Z'z = x, we then set

. . e
7, — {aj with probability 1=

1 —z with probability /.
What is E[Z;]?

(d) For the randomized response Z; above, give constants a and b so that aZ; — b is unbiased
for E[X], that is, E[aZ; — b] = E[X]. Let 6, = 237 (aZ; — b) be your mean estimator.
What is E[(§, — E[X])?]? Does this converge to the mean-square error of the sample mean
E[(X, — E[X])?] = Var(X)/n as € T oo?
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(e) Now, it is time to compare the simple randomized response estimator from part (d) with the
Laplace mechanism from part (b). For each of the following distributions, generate samples
of size N = 10, 100, 1000, 10000, and then for T' = 25 tests, compute the two estimators, both
with ¢ = 1. Then plot the mean-squared error and confidence intervals for each of the two
methods as well as the sample mean without any privacy.

i. Uniform distribution: X ~ Uniform[0, 1], with E[X] = 1/2.
ii. Bernoulli distribution: X ~ Bernoulli(p), where p = .1.
iii. Uniform distribution: X ~ Uniform[.49,.51], with E[X] = 1/2.

Do you prefer the Laplace or randomized response mechanism? In one sentence, why?

Exercise 7.4 (A more sophisticated randomized response scheme):  Let us consider a more
sophisticated randomized response scheme than that in Exercise 7.3. Define quantized values
1 k-1
bp =0, by = o ooy bt = b = 1. (7.7.1)

Now consider a randomized response estimator that, when X € [b;,b;11] first rounds X randomly
to X € {bj,bj41} so that E[X | X] = X. Conditional on X = j, we then set

;. j with probability ﬁzg
— Uniform({0,...,k}\ {j}) with probability kfeg.

(a) Give a and b so that E[aZ — b] = E[X].

(b) For your values of a and b above, let 8, = LS ((aZ; —b). Give a (reasonably tight) bound
on E[(6,, — E[X])?].

(c) For any given € > 0, give (approximately) the k in the choice of the number of bins (7.7.1) that
optimizes your bound, and (approximately) evaluate E[(6,, — E[X])?] with your choice of k. As
€ 1 00, does this converge to Var(X)/n?

Exercise 7.5 (Subsampling via divergence measures (Balle et al. [14])):  The hockey stick di-
vergence functional, defined for o > 1, is ¢o(t) = [1 — at] . Tt is straightforward to relate this to
(e, 9)-differential privacy via Definition 7.6: two distributions P and @ are (g, d)-close if and only
their ¢.e-divergences are less than ¢, i.e., if and only if

Dy, (PIQ) <5 and Dy (QIP) <.
(In your answer to this question, feel free to use D, (P|Q) as a shorthand for Dy, (P[Q).)

(a) Let Py, P;,Q1 be any three distributions, and for some ¢ € [0,1] and o > 1, define P =
(1—qPy+qP and Q = (1 — )Py + q@Q1. Let @/ = 1+ ¢qla—1) = (1 — q) + ga and
6 = o' /a < 1. Show that
Dy, (P|Q) = gDy, (1 = 0)Po + 6P1[Q1) -
(b) Let £ > 0 and define €(q) = log(1 + g(e® — 1)). Show that

D¢ee(q) (PlQ) < qmaX{D¢es (Po|@1) Dy . (P1|@1)} -
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Exercise 7.6 (Subsampling and privacy amplification (Balle et al. [14])):  Consider the follow-
ing subsampling approach to privacy. Assume that we have a private (randomized) algorithm,
represented by A, that acts on samples of size m and guarantees (e, §)-differential privacy. The
subsampling mechanism is then defined as follows: given a sample X7{' of size n > m, choose a
subsample Xqup of size m uniformly at random from X7, and then release Z = A(Xgup)-

(a) Use the results of parts (a) and (b) in Exercise 7.5 to show that Z is (e(q), dq)-differentially
private, where ¢ = m/n and €(q) = log(1 + gq(e® — 1)).

(b) Show that if ¢ < 1, then Z is ((e — 1)ge, ¢6)-differentially private, and if ¢ < I, then Z is

(2(\/e — 1)ge, gd)-differentially private. Hint: Argue that for any 7" > 0, one has e! — 1 <
(e — 1)L for all ¢ € [0,T].

Exercise 7.7 (Concentration and privacy composition): In this question, we give an alternative
to the privacy composition approaches we exploit in Section 7.3.2. Consider an identical scenario to
that in Fig. 7.1, and begin by assuming that each channel @Q); is e-differentially private with density
gi, and let Q® be shorthand for Q(- | (). Define the log-likelihood ratio

k (b)
q; (2
LO(Z5) =Y tog 4B
=1 7

o' "2

(a) Let P, @ be any two distributions satisfying Dy, (P|Q) < ¢ and D (Q|P) < €, i.e., that

log % € [—e,¢] for all sets A. Show that

Dy (P|Q) < e(e® —1).

(b) Let Q® denote the joint distribution of Zi,...,Z; when bit b holds in the privacy game in
Fig. 7.1. Show that
Eo[LO(Z])] < ke(e® — 1)

where E; denotes expectation under Q(®, and that for all ¢ > 0,

2
QU (L(2) > ke(e* ~ 1) +) < exp <_) |

Conclude that for any & € (0,1), with probability at least 1 — § over Zf ~ QW)

LOZE) < k(e® — 1)e + \/2k:log% ‘€.

(c) Argue that for any (measurable) set A,
QU(zt € A) < WD QUM (Zf € A) + 6

for all § € [0,1], where &(k,8) = ke(e® — 1) + 1/2klog § - €.

(d) Conclude the following tighter variant of Corollary 7.3.3: if each channel in Fig. 7.1 is e-
differentially private, then the composition of k£ such channels is

(ks(es —-1)+ \/2klog% ~5,5>

differentially private for all § > 0.
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As an aside, a completely similar derivation yields the following tighter analogue of Theorem 7.3.4:
if each channel is (e, §)-differentially private, then their composition is

1
(ka(eE — 1) +4/2klog 56 . f_ig)
0

differentially private for all g > 0.

Exercise 7.8 (One-dimensional minimization with inverse sensitivity): = Consider the private
minimization of the one dimensional loss £(6, x) (for § € © C R), where we wish to estimate

(P, € argmln{P 0(0,X) Z€ (0, X;)

where we recall the notation from Chapters 4 and 5. Assume that the loss £ is convex, differentiable
in 0, and that it satisfies the Lipschitz-type guarantees that there exist constants 0 < Lg < L1 < o0

[—Lo, Lo] € {¢'(8, %) }oex C [—L1, L] (7.7.2)

for all 8 € © and that {¢'(0,z)},cx is an interval. (That is, the set of potential derivatives ¢'(6, x)
as x varies includes [—Lg, Lo], is convex, and |¢/(f,x)| < L; for all § € ©,z € X.)

(a) Let the loss ¢ be the Huber loss ¢(6, z) = h, (0 — x) for some fixed u > 0, where
=2 if ] <
hu(t) = {2u 1 | | =

[t|+5 if [t] > u.
When X = R, show that ¢ satisfies the containment (7.7.2) with Ly = L; = 1.

(b) Let the loss ¢ be the absolute value ¢(0,xz) = |6 — x|, where we abuse notation to call
{¢'(0,2)}2—9 = [—1,1] (the subdifferential). When X = R, show that ¢ satisfies the con-
tainment (7.7.2) with Lo = L; = 1.

(c) Let dj be the inverse sensitivity (7.4.3) for the minimizer é\(Pn), which is the solution (in 6) to
Pl (0, X) = 0. Assuming inequality (7.7.2) holds, show that

(d) Show that the function
_ [n|P(0, X))
A8, Pn) := [2L1

is 1-Lipschitz with respect to the Hamming metric in F,.

The Lipschitz behavior of d(6, P,) in part (d) makes this a computationally attractive alternative
to the pure inverse sensitivity (7.4.3) and associated mechanism with density (7.4.4).

Exercise 7.9 (Estimating means with inverse sensitivity mechanisms):  In this question, we
compare behavior of mean estimation under differential privacy with the Laplace mechanism and
the inverse sensitivity-type mechanism in Example 7.4.8. Let X = [—1,1] be the data space and
consider estimating the mean z,, of 21" € X™.
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(a) Implement the Laplace mechanism (7.1.3) for this problem. Fix n = 200 and repeat the
following experiment 50 times. For ¢ = .1,.5,1,2, generate a sample z}' € X" (from whatever
distribution you like), then estimate Z,, using the Laplace mechanism. Give a table of the mean
squared errors (T, — M(x7))>2.

(b) Implement the inverse sensitivity mechanism using the approximation in Example 7.4.8. Repeat
the experiment in part (a).

(c) Compare the results.

Exercise 7.10 (Estimating medians with the inverse sensitivity mechanism): The data at https:
//stats311.stanford.edu/data/salaries.txt contains approximately 250,000 salaries from the
University of California Schools between 2011 and 2014. Assuming that the maximum salary is 3-10°
and minimum is 0 (so the data z € [0,3-10%]), implement the inverse sensitivity mechanism for the
median as in Example 7.4.9. Repeat the following 20 times: for each of ¢ = .0625,.125,.25,.5,1, 2,

estimate the median using the inverse sensitivity mechanism with e-differential privacy. Compute
the mean absolute errors across the 20 experiments for each ¢.

Exercise 7.11 (Shells and accuracy in inverse sensitivity): Let f : P, — R be sample monotone
(Def. 7.8) and p > 0. Let M = Mo be the continuous inverse sensitivity mechanism with
density (7.4.9). Define the upper and lower shells

Sie = {t > F(P) | dpplt, P) =k} and Sy = {t < (Po) | dp,(t, P) = K}
and the upper and lower moduli of continuity (values in the shells S+ )
wh (k) :=sup{t € Sj+} — f(P,) and w (k) := f(P,) —inf{t € S;- }.
Let So ={t e R||f(Pn) —t| < p}.
(a) Justify the inequality

E[|M(P,) — f(P)l]

< P(M(Py) € So)p+ Y P(M(Py) € Spi)(wh (k) + p) + ) B(M(Pn) € Sp-)(w (k) + p)-
k=1 k=1

(b) Bound P(M(P,) € Sj+) and P(M(P,) € Sg-), and using these bounds demonstrate that

IEHAJ(PZ)"f(f%)”

Shoqwt(k) - (wh(k) —wh(k—1))e —ke/2
SO ST ) ot = D)+ (o (= = D)
. S @t (k) - (W () — w0 (k — 1)e*e/?
S B e G D) S (- (- D

(c) Show that

n n

Z [(w_(k) —w (k=1))+ w"‘(k) _ w+(k _ 1)] o ke/2 > (1_6—8/2) (w+(k) + w_(k)) o ke/2.
k=1 k=1
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Exercise 7.12 (Accuracy of the inverse sensitivity mechanism): In this question, we prove
Propositions 7.4.11 and 7.4.12. Let the conditions and notation of Exercise 7.11 hold. Recall the
definition

L(K) := Sup {LS(f, P,) | dnam(Pn, P) < K}.

(a) Use Exercise 7.11.(b) and (c¢) to show that for any K € N,

LK) 5o (wh(k)
1—e /2 > h— (Wt (

GSp(f) i (w+(k:)+w_(k:)) e ke/2

k=K+1

E [|Meont(Pn) — f(Pu)]] < p+

=y
~—

+

(b) Choose values for p and K to show that E[|Meont(Prn) — f(Pn)|] <
sition 7.4.11.

H%DGS(JC) , giving Propo-

(c) Prove Proposition 7.4.12.

Exercise 7.13 (Subsampling and Rényi privacy): We would like to estimate the mean E[X] of
X ~ P, where X € B = {z € R?| ||z||, < 1}, the £>-ball in R%. We investigate the extent to which
subsampling of a dataset can improve privacy by providing some additional anonymity. Consider
the following mechanism for estimating (scaled) multiples of this mean: for a dataset {X1,..., X,},
we let S; € {0,1} be i.i.d. Bernoulli(g), that is, E[S;] = ¢, and then consider the algorithm

Z =Y XiSi+oW, W ~N(O,I). (7.7.3)
=1

In this question, we investigate the Rényi privacy properties of the subsampling (7.7.3). (Recall
the Rényi divergence of Definition 7.4, Do(P|Q) = —L<log [(p/q)%q.)

We consider a slight variant of Rényi privacy, where we define data matrices X and X’ to be
adjacent if X € R and X’ € R¥>"1 where X’ is X with a single column removed. Then a
mechanism is (¢, a)-Rényi private against single removals if and only if

Da(QC 1 X)Q([ X)) <& and Da(Q( | XQ( | X)) <e (7.7.4)
for all neighboring X and X’ consisting of samples of size n and n — 1, respectively.

(a) Let Q(- | X) and Q(- | X’) denote the channels for the mechanism (7.7.3) with data matrices
X =[x - wp_1 o) and X' = [1 -+ z,_1] € R™. Let P, denote the normal distribution
N(u,0I) with mean u and covariance 02T on R?. Show that for any a € (1,00),

Da(Q( | X)IQ( | X)) < DalqPe + (1 = q) Po| Po)

and
Do (Q( | XNQ( | X)) < Da(PolgPs + (1 = q)Fy).
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(b) Show that for the Rényi aw = 2-divergence,
Dy (aPs + (1= ) Fol ) < log (1+¢* (exp(lla]} /o*) = 1)) and

2
Da (Bolafs + (1= )F) < 1o (1+ 1 (expoll /) - 1) )

(Hint: Example 7.2.2.)

Consider two mechanisms for computing a sample mean X, of vectors, where ||z;|, < b for all i.
The first is to repeat the following 7T times: for t =1,2,...,T,

i. Draw S € {0, 1} with S; “> Bernoulli(q)
ii. Set Zy = ;L (XS + oy Wi), where W, % N(0,1), as in (7.7.3).

Then set Zg,, = %Z?:l Z;. The other mechanism is to simply set Zgauss = Xn + 0GaussW for
W ~ N(0,I).

(c) What level of privacy does Zg,, have? That is, Zgp, is (&,2)-Rényi private (against single
removals (7.7.4)). Give a tight upper bound on ¢.

(d) What level of (e,2)-Rényi privacy does Zgauss provide?

(e) Fix € > 0, and assume that each mechanism Zg,;, and Zgauss have parameters chosen so that
they are (g,2)-Rényi private. Optimize over T, q,n,ogp in the subsampling mechanism and
OGauss 1IN the Gaussian mechanism, and provide the sharpest bound you can on

E[|| Zaw — Xoll3) and  E[|| Zcauss — X))

You may assume ||z;|, = b for all . (In your derivation, to avoid annoying constants, you
should replace log(1 + t) with its upper bound, log(1 + t) < ¢, which is fairly sharp for ¢t ~ 0.)
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Part 11

Fundamental limits and optimality
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JCD Comment: Put a brief commentary here. Some highlights:

i. Minimax lower bounds (both local and global) using Le Cam’s, Fano’s, and Assouad’s methods.
Worked out long example with nonparametric regression.

ii. Strong data processing inequalities, along with some bounds on them (constrained risk inequal-
ities).

iii. Functionals for lower bounds perhaps
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Chapter 8

Minimax lower bounds: the Le Cam,
Fano, and Assouad methods

Understanding the fundamental limits of estimation and optimization procedures is important for
a multitude of reasons. Indeed, developing bounds on the performance of procedures can give
complementary insights. By exhibiting fundamental limits of performance (perhaps over restricted
classes of estimators), it is possible to guarantee that an algorithm we have developed is optimal, so
that searching for estimators with better statistical performance will have limited returns, though
searching for estimators with better performance in other metrics may be interesting. Moreover,
exhibiting refined lower bounds on the performance of estimators can also suggest avenues for de-
veloping alternative, new optimal estimators; lower bounds need not be a fully pessimistic exercise.

In this chapter, we define and then discuss techniques for lower-bounding the minimax risk,
giving three standard techniques for deriving minimax lower bounds that have proven fruitful in
a variety of estimation problems [177]. In addition to reviewing these standard techniques—the
Le Cam, Fano, and Assouad methods—we present a few simplifications and extensions that may
make them more “user friendly.” Finally, the concluding sections of the chapter (Sections 8.6
and 8.7) present extensions of the ideas to nonparametric problems, where the effective number of
parameters to estimate grows with the sample size n; this culminates with an essentially geometric
treatment of information and divergence measures directly relating covering and packing numbers
to estimation.

8.1 Basic framework and minimax risk

Our first step here is to establish the minimax framework we use. When we study classical es-
timation problems, we use a standard version of minimax risk; we will also show how minimax
bounds can be used to study optimization problems, in which case we use a specialization of the
general minimax risk that we call minimax ezcess risk (while minimax risk handles this case, it is
important enough that we define additional notation).

Let us begin by defining the standard minimax risk, deferring temporarily our discussion of
minimax excess risk. Throughout, we let P denote a class of distributions on a sample space X,
and let § : P — © denote a function defined on P, that is, a mapping P +— 6(P). The goal is
to estimate the parameter §(P) based on observations X; drawn from the (unknown) distribution
P. In certain cases, the parameter 6(P) uniquely determines the underlying distribution; for
example, if we attempt to estimate a normal mean 6 from the family P = {N(6,0?) : § € R} with
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known variance o2, then §(P) = Ep[X] uniquely determines distributions in P. In other scenarios,
however, 6 does not uniquely determine the distribution: for instance, we may be given a class of
densities P on the unit interval [0, 1], and we wish to estimate 6(P) = fol (p'(t))2dt, where p is the
density of P. Such problems arise, for example, in estimating the uniformity of the distribution
of a species over an area (large §(P) indicates an irregular distribution). In this case, # does not
parameterize P, so we take a slightly broader viewpoint of estimating functions of distributions in
these notes.

The space O in which the parameter 6(P) takes values depends on the underlying statistical
problem; as an example, if the goal is to estimate the univariate mean 0(P) = Ep[X], we have
© C R. To evaluate the quality of an estimator 6, we let p : © x © — R denote a (semi)metric
on the space ©, which we use to measure the error of an estimator for the parameter ¢, and let
® : R, — R, be a non-decreasing function with ®(0) = 0 (for example, ®(t) = t2).

For a distribution P € P, we assume we receive i.i.d. observations X; drawn according to some
P, and based on these {X;}, the goal is to estimate the unknown parameter §(P) € ©. For a
given estimator #—a measurable function 6 : X” — O—we assess the quality of the estimate

=~

0(X1,...,Xy) in terms of the risk
Ep [@(p(B(Xy ..., X,),0(P))]

For instance, for a univariate mean problem with p(6,6’) = |0 — ¢'| and ®(t) = t2, this risk is the
mean-squared error. As the distribution P is varied, we obtain the risk functional for the problem,
which gives the risk of any estimator 6 for the family P.

For any fixed distribution P, there is always a trivial estimator of #(P): simply return 6(P),
which will have minimal risk. Of course, this “estimator” is unlikely to be good in any real sense,
and it is thus important to consider the risk functional not in a pointwise sense (as a function of
individual P) but to take a more global view. One approach to this is Bayesian: we place a prior
7 on the set of possible distributions P, viewing 6(P) as a random variable, and evaluate the risk
of an estimator 6 taken in expectation with respect to this prior on P. Another approach, first
suggested by Wald [172], which is to choose the estimator 6 minimizing the maximum risk

sup Ep [@(p(é(xl LX), e(P)))] .
pPeP

An optimal estimator for this metric then gives the minimaz risk, which is defined as

~

M, (B(P), @ o p) = inf sup Ep [cp(,o( (Xl,...,Xn),G(P)))] , (8.1.1)

where we take the supremum (worst-case) over distributions P € P, and the infimum is taken over
all estimators 6. Here the notation §(P) indicates that we consider parameters 6(P) for P € P and
distributions in P.

In some scenarios, we study a specialized notion of risk appropriate for optimization problems
(and statistical problems in which all we care about is prediction). In these settings, we assume
there exists some loss function ¢ : © x X — R, where for an observation = € X, the value ¢(0;x)
measures the instantaneous loss associated with using 6 as a predictor. In this case, we define the
risk

Lp(0) :=Ep[l(0; X)] = / 0(0; x)dP(x) (8.1.2)
X
as the expected loss of the vector . (See, e.g., Chapter 5 of the lectures by Shapiro, Dentcheva,
and Ruszczynski [159], or work on stochastic approximation by Nemirovski et al. [143].)
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Example 8.1.1 (Support vector machines): In linear classification problems, we observe
pairs z = (x,%), where y € {—1,1} and = € R%, and the goal is to find a parameter § € R?
so that sign((f,x)) = y. A convex loss surrogate for this problem is the hinge loss ¢(6;z) =
[1 — y(0, z)] ; minimizing the associated risk functional (8.1.2) over aset © = {0 € R 6], <
r} gives the support vector machine [51]. <

Example 8.1.2 (Two-stage stochastic programming): In operations research, one often
wishes to allocate resources to a set of locations {1,...,m} before seeing demand for the
resources. Suppose that the (unobserved) sample x consists of the pair x = (C,v), where
C € R™ ™ corresponds to the prices of shipping a unit of material, so ¢;; > 0 gives the cost
of shipping from location i to j, and v € R™ denotes the value (price paid for the good) at
each location. Letting 6 € R denote the amount of resources allocated to each location, we
formulate the loss as

m m m m
0(0; ) = inf {ZCUTU—ZUM |""i:0i+ZTji_ZTija T > 0, ZTij Sei}'
‘ i—1 =1 =1 =1

reR™ TeRm*xm -
2¥)

Here the variables T correspond to the goods transported to and from each location (so Tj; is
goods shipped from i to j), and we wish to minimize the cost of our shipping and maximize
the profit. By minimizing the risk (8.1.2) over a set © = {# € R : 3, 6; < b}, we maximize
our expected reward given a budget constraint b on the amount of allocated resources. <&

For a (potentially random) estimator h: X" >0 given access to a sample X1, ..., X,, we may
define the associated maximum ezxcess risk for the family P by

~

sup {Ep [Lp( (Xl,...,Xn))} —grel(gL(H)},

where the expectation is taken over X; and any randomness in the procedure 9. This expression
captures the difference between the (expected) risk performance of the procedure 9 and the best
possible risk, available if the distribution P were known ahead of time. The minimaz excess risk,
defined with respect to the loss ¢, domain O, and family P of distributions, is then defined by the
best possible maximum excess risk,

M (O, P, 1) = inf sup {Ep [LP(A(Xl, o ,Xn))] - inf Lp(e)} , (8.1.3)

where the infimum is taken over all estimators 6 : X" — © and the risk L p is implicitly defined in
terms of the loss . The techniques for providing lower bounds for the minimax risk (8.1.1) or the
excess risk (8.1.3) are essentially identical; we focus for the remainder of this section on techniques
for providing lower bounds on the minimax risk.

8.2 Preliminaries on methods for lower bounds

There are a variety of techniques for providing lower bounds on the minimax risk (8.1.1). Each of
them transforms the maximum risk by lower bounding it via a Bayesian problem (e.g. [110, 127,
130]), then proving a lower bound on the performance of all possible estimators for the Bayesian
problem (it is often the case that the worst case Bayesian problem is equivalent to the original
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minimax problem [127]). In particular, let {P,} C P be a collection of distributions in P indexed
by v and 7 be any probability mass function over v. Then for any estimator 6, the maximum risk
has lower bound

~ ~

sup Ep [@(p(0(X7), 6(P))| = 3" n(0)Ep, [8(o(B(XT), 0(P,)))]

PeP ”

While trivial, this lower bound serves as the departure point for each of the subsequent techniques
for lower bounding the minimax risk.

8.2.1 From estimation to testing

A standard first step in proving minimax bounds is to “reduce” the estimation problem to a testing
problem [177, 175, 167]. The idea is to show that the probability of error in testing problems lower
bounds the estimation risk, and we can develop tools for the former. We use two types of testing
problems: one a multiple hypothesis test and the second based on multiple binary hypothesis tests.

Given an index set V of finite cardinality, consider a family of distributions {P, },ey contained
within P. This family induces a collection of parameters {0(P,) },cy; we call the family a 20-packing
in the p-semimetric if

p(0(Py),0(Py)) > 26 forall v £
We use this family to define the canonical hypothesis testing problem:

e first, nature chooses V according to the uniform distribution over V;

e second, conditioned on the choice V' = v, the random sample X = X" = (X1,...,X,,) is
drawn from the n-fold product distribution P;".

Given the observed sample X, the goal is to determine the value of the underlying index v. We
refer to any measurable mapping ¥ : X" — V as a test function. Its associated error probability
is P(¥(X]) # V), where P denotes the joint distribution over the random index V and X. In

particular, if we set P = ‘—é' > wey P to be the mixture distribution, then the sample X is drawn

(marginally) from P, and our hypothesis testing problem is to determine the randomly chosen index
V given a sample from this mixture P.
With this setup, we obtain the classical reduction from estimation to testing.

Proposition 8.2.1. The minimaz error (8.1.1) has lower bound
M, (0(P), @ 0 p) > B(6) it PV(X,..., X) £ V), (8.2.1)

where the infimum ranges over all testing functions.

Proof To see this result, fix an arbitrary estimator 0. Suppressing dependence on X throughout
the derivation, first note that it is clear that for any fixed 6, we have

E[®(p(0,0))] = E |0(6)1{p(6,0) = 3 }] = ®(6)P(p(0,0) = 0),

where the final inequality follows because ® is non-decreasing. Now, let us define 6, = 0(FP,), so
that p(6y,0,) > 2§ for v # v'. By defining the testing function

U (6) = argmin{p(,6,)},
veY
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Figure 8.1. Example of a 26-packing of a set. The estimate 0 is contained in at most one of the
d-balls around the points 6,,.

breaking ties arbitrarily, we have that p(8,6,) < & implies that ¥(8) = v because of the triangle
inequality and 2d-separation of the set {6,},cy. Indeed, assume that p(é\, 0,) < 9; then for any
v # v, we have R R

p(@, 97}’) > p(avy 91}’) - p(07 ev) >20—-6=0.

~

The test must thus return v as claimed. Equivalently, for v € V, the inequality U (6) # v implies
p(0,0,) > 6. (See Figure 8.1.) By averaging over V, we find that

~ 1 ~ 1 ~
sup P(p(B,0(P)) = 6) > — S P(p(@,0(P) = 6 |V =v) > — S PW@) £ 0|V =0).
P Vs VI
Taking an infimum over all tests ¥ : ™ — V gives inequality (8.2.1). O

The remaining challenge is to lower bound the probability of error in the underlying multi-way
hypothesis testing problem, which we do by choosing the separation ¢ to trade off between the loss
®(9) (large ¢ increases the loss) and the probability of error (small d, and hence separation, makes
the hypothesis test harder). Usually, one attempts to choose the largest separation ¢ that guarantees
a constant probability of error. There are a variety of techniques for this, and we present three:
Le Cam’s method, Fano’s method, and Assouad’s method, including extensions of the latter two
to enhance their applicability. Before continuing, however, we review some inequalities between
divergence measures defined on probabilities, which will be essential for our development, and
concepts related to packing sets (metric entropy, covering numbers, and packing).

8.2.2 Inequalities between divergences and product distributions

We now present a few inequalities, and their consequences when applied to product distributions,
that will be quite useful for proving our lower bounds. The three divergences we relate are the total
variation distance, Kullback-Leibler divergence, and Hellinger distance, all of which are instances
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of f-divergences (recall Section 2.2.3). We first recall the definitions of the three when applied to
distributions P, Q on a set X', which we assume have densities p, ¢ with respect to a base measure
w. Then we recall the total variation distance (2.2.6) is

1
1P = Qllpy = sup [P(A) = Q(A)| = 2/|P(33) = q(z)|dp(z),
ACX
which is the f-divergence Dy (P|Q) generated by f(t) = 4|t — 1|. The Hellinger distance (2.2.7) is

dhat(P, Q)? / (Vo) — V(@) du(z)

which is the f-divergence D (P|Q) generated by f(t) = (vt — 1)2. We also recall the Kullback-
Leibler (KL) divergence

Du(PIQ) = [ plo)tog 23 duo) (8.2.2)

which is the f-divergence D¢ (P|Q) generated by f(t) = tlogt. As noted in Section 2.2.3, Propo-
sition 2.2.8, these divergences have the following relationships.

Proposition (Proposition 2.2.8, restated). The total variation distance satisfies the following re-
lationships:

(a) For the Hellinger distance,

1
5Ihat(P Q) < |IP = Qllpy < dha(P Q)1 — dnat(P, Q)%/4.
(b) Pinsker’s inequality: for any distributions P, Q,
1P - Qv < Dkl (PlQ)-

We now show how Proposition 2.2.8 is useful, because KL-divergence and Hellinger distance
both are easier to manipulate on product distributions than is total variation. Specifically, consider
the product distributions P = P; X --- X P, and Q = @1 X --- X Q. Then the KL-divergence
satisfies the decoupling equality

D (P|Q) = ZDkl (P]Qi), (8.2.3)

i=1

while the Hellinger distance satisfies

dha(P.QP = [ (Voron) -+ palien) — Var(on) -+ a(e)) dual)
-/ (Hpm + T - 2/nen] o) anlon) ) duat)
i=1 =1

n

=2 QH/ Vpi(x)gi(z)dp(z) =2 — QH <1 - %dhel(Pi, QZ-)2> . (8.2.4)
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In particular, we see that for product distributions P" and ", Proposition 2.2.8 implies that

1

and

IP" = Q" py < dna(P", Q") < v/2 = 2(1 = dna(P,Q)?)".

As a consequence, if we can guarantee that Dy (P|Q) < 1/n or dpe(P,Q) < 1/y/n, then we
guarantee the strict inequality ||P" — Q™| v < 1 — ¢ for a fixed constant ¢ > 0, for any n. We
will see how this type of guarantee can be used to prove minimax lower bounds in the following
sections.

8.2.3 Metric entropy and packing numbers

The second part of proving our lower bounds involves the construction of the packing set in Sec-
tion 8.2.1. The size of the space © of parameters associated with our estimation problem—and
consequently, how many parameters we can pack into it—is strongly coupled with the difficulty of
estimation. The tools we develop in Section 4.3.2 on metric entropies and covering and packing
numbers therefore become central.

Probably the most central construction relies on volume bounds on packing and covering num-
bers, which we recall from Lemma 4.3.10: the covering and packing numbers of a norm ball B in
its own norm ||-|| scale exponentially in the dimension. In particular, for any 6 < 1, there is a
packing V of B such that ||v —v'|| > ¢ for all distinct v,v’ € V and |V| > (1/6)¢, because we know
M(4,B,]-]]) > N(4,B, ||-||) as in Lemma 4.3.8. We thus state the following corollary for later use,
which states that we can construct exponentially large packings of arbitrary norm-balls (in finite
dimensions) where the points have constant distance from one another.

Corollary 8.2.2. Let BY = {v € R? | |jv|| < 1} be the unit ball for the norm ||-||. Then there ewists
V C BY with |V| > 2% and ||v —v'|| > § for each v #v' € V.

Another common packing arises from coding theory, where the technique is to construct well-
separated code-books ({0, 1}-valued bit strings associated to individual symbols to be communi-
cated) for communication. In showing our lower bounds, we show that even if a code-book is
well-separated, it may still be hard to estimate. With that, we now demonstrate that there exist
(exponentially) large packings of the d-dimensional hypercube of points that are O(d)-separated in
the Hamming metric.

Lemma 8.2.3 (Gilbert-Varshamov bound). Let d > 1. There is a subset V of the d-dimensional
hypercube Hq = {—1,1}? of size |V| > exp(d/8) such that the {1-distance

d

d

ool =231 (s £} > 5
j=1

for all v #v" with v,v" € V.

Proof We use the proof of Guntuboyina [97]. Consider a maximal subset V of Hy = {—1,1}¢
satisfying
Hv - v'Hl > d/2 for all distinct v,v" € V. (8.2.5)
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That is, the addition of any vector w € Hq,w ¢ V to V will break the constraint (8.2.5). This
means that if we construct the closed balls B(v,d/2) := {w € Hq: ||v — w||; < d/2}, we must have

U B(v,d/2) =H4 so |V||B(0,d/2)| =D |B(v,d/2)| > 2. (8.2.6)

veY veY

We now upper bound the cardinality of B(v,d/2) using the probabilistic method, which will imply
the desired result. Let S;, i = 1,...,d, be i.i.d. Bernoulli {0, 1}-valued random variables. Then by
their uniformity, for any v € Hg,

274 B(v,d/2)| =P(S1 4+ Sa 4 ... 4+ Sq < d/4) =P(S; + Sy + ...+ Sq > 3d/4)
< E[exp(AS1 + ...+ ASg)] exp(—3Ad/4)

for any A > 0, by Markov’s inequality (or the Chernoff bound). Since E[exp(AS7)] = %(1 +eM), we
obtain
27| B(v,d/2)| < inf {2—d(1 + e/\)dexp(—?))\d/4)}

Choosing A = log 3, we have
|B(v,d/2)| < 4% exp(—(3/4)dlog 3) = 3734444,

Recalling inequality (8.2.6), we have

V[373444 > |V||B(v,d/2)| > 2%, or |V|> d~ = OXP (d [i log3 — log2}> > exp(d/8),

as claimed. O

8.3 Le Cam’s method

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple binary hypoth-
esis testing testing problems. In this section, we explore this connection, showing the connection
between hypothesis testing and total variation distance, and we then show how this can yield
lower bounds on minimax error (or the optimal Bayes’ risk) for simple—often one-dimensional—
estimation problems.

In the first homework, we considered several representations of the total variation distance,
including a question showing its relation to optimal testing. We begin again with this strand of
thought, recalling the general testing problem discussed in Section 8.2.1. Suppose that we have a
Bayesian hypothesis testing problem where V' is chosen with equal probability to be 1 or 2, and
given V = v, the sample X is drawn from the distribution P,. Denoting by P the joint distribution
of V' and X, we have for any test ¥ : X — {1,2} that the probability of error is

P(U(X) £ V) = S Pi(U(X) £ 1) + 3 Po((X) #2)

Recalling Section 8.2.1, we note that Proposition 2.3.1 gives an exact representation of the testing
error using total variation distance. In particular, we have
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Proposition (Proposition 2.3.1, restated). For any distributions Py and Py on X, we have
inf {P(P(X) # 1)+ B(V(X) #2)} =1~ [P = Poflpy (8.3.1)

where the infimum is taken over all tests ¥ : X — {1,2}.

Returning to the setting in which we receive n i.i.d. observations X; ~ P, when V = 1 with
probability % and 2 with probability %, we have

: 1 1 n n
P V(X1 Xa) £ V) = 5 = S|P = Bllry - (8.3.2)

The representations (8.3.1) and (8.3.2), in conjunction with our reduction of estimation to testing
in Proposition 8.2.1, imply the following lower bound on minimax risk. For any family P of
distributions for which there exists a pair Pj, P, € P satisfying p(0(Py),0(F2)) > 26, then the
minimax risk after n observations has lower bound

1 1
(0P o) 2 86 | 3 171~ Pl | (8.3:3)
The lower bound (8.3.3) suggests the following strategy: we find distributions P; and P,

which we choose as a function of §, that guarantee |[Pj" — P?|| < 3. In this case, so long as
p(0(Py),0(P2)) > 24, we have the lower bound

We now give an example illustrating this idea.

Example 8.3.1 (Bernoulli mean estimation): Consider the problem of estimating the mean

6 € [-1,1] of a {41}-valued Bernoulli distribution under the squared error loss (6 — )2, where
X; € {—1,1}. In this case, by fixing some § > 0, we set V = {—1,1}, and we define P, so that

_1+v(5 _17116
2 2

whence we see that the mean 6(P,) = dv. Using the metric p(0,0') = |§—6'| and loss ®(§) = 62,
we have separation 20 of §(P_1) and 6(P;). Thus, via Le Cam’s method (8.3.3), we have that

PU(X = 1)

and P,(X = —-1)

W, (Bermoull([~1, 1)), ()%) 2 38 (1= [|P"y = Pl

We would thus like to upper bound ||P"; — P{*||ry as a function of the separation ¢ and
sample size n; here we use Pinsker’s inequality (Proposition 2.2.8(a)) and the tensorization
identity (8.2.3) that makes KL-divergence so useful. Indeed, we have

1+06
1-46

Noting that dlog =S < 352 for § € [0,1/2], we obtain that |[P", — PP||lpy < &/3n/2 for
0 < 1/2. In particular, we can guarantee a high probability of error in the associated hy-
pothesis testing problem (recall inequality (8.3.2)) by taking 6 = 1/v/6n; this guarantees
| P, — PP!||rv < 5. We thus have the minimax lower bound

n

1
[Py = PPl < 50w (PYIPY) = S (Pl Pr) = S6log

1

9, (Bernoulli([=1,1]), (-)2) > %52 <1 _ 2) _ ﬁ
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While the factor 1/24 is smaller than necessary, this bound is optimal to within constant
factors; the sample mean (1/n) Y"1 | X; achieves mean-squared error (1 — 62)/n.

As an alternative proof, we may use the Hellinger distance and its associated decoupling
identity (8.2.4). We sketch the idea, ignoring lower order terms when convenient. In this case,
Proposition 2.2.7 implies

1P = Pyllpy < V2dya(P, PY) = /2 — 21— dya(PL, B2

Noting that

2
146 1-96 1 — 62 1
dhd(Pl,PQ)?:( 2_¢2) :1_2\/T:1_mz252,

and noting that (1 — 62) ~ ¢%°, we have (up to lower order terms in ) that | Pl = P3|l py <
\/2 — 2exp(—d2n/2). Choosing §2 = 1/(4n), we have /2 — 2 exp(—&2n/2) < 1/2, thus giving
the lower bound

1

M, (Bernoulli([—1, 1]), (-)2) * > %52 <1 - 2)

B 1
~16n’

where the quotations indicate we have been fast and loose in the derivation. <

This example shows the “usual” rate of convergence in parametric estimation problems, that is,
that we can estimate a parameter  at a rate (in squared error) scaling as 1/n. The mean estimator
above is, in some sense, the prototypical example of such regular problems. In some “irregular”
scenarios—including estimating the support of a uniform random variable, which we study in the
homework—faster rates are possible.

We also note in passing that their are substantially more complex versions of Le Cam’s method
that can yield sharp results for a wider variety of problems, including some in nonparametric
estimation [127, 177]. For our purposes, the simpler two-point perspective provided in this section

will be sufficient.
JCD Comment: Talk about Euclidean structure with KL space and information geom-

etry a bit here to suggest the KL approach later.

8.4 Fano’s method

Fano’s method, originally proposed by Has'minskii [100] for providing lower bounds in nonpara-
metric estimation problems, gives a somewhat more general technique than Le Cam’s method, and
it applies when the packing set V has cardinality larger than two. The method has played a central
role in minimax theory, beginning with the pioneering work of Has’'minskii and Ibragimov [100, 110].
More recent work following this initial push continues to the present day (e.g. [28, 177, 175, 29,
149, 97, 43)).

8.4.1 The classical (local) Fano method

We begin by stating Fano’s inequality, which provides a lower bound on the error in a multi-
way hypothesis testing problem. Let V be a random variable taking values in a finite set V
with cardinality |V| > 2. If we let the function ha(p) = —plogp — (1 — p)log(1l — p) denote the
entropy of the Bernoulli random variable with parameter p, Fano’s inequality (Proposition 2.3.3
from Chapter 2) takes the following form:

187



Lexture Notes on Statistics and Information Theory John Duchi

Proposition 8.4.1 (Fano inequality). For any Markov chain V- — X — 17, we have
ha(P(V £ V) +P(V £ V)log(|V| —1) > H(V | V). (8.4.1)

Restating the results in Chapter 2, we also have the following convenient rewriting of Fano’s
inequality when V' is uniform in V (recall Corollary 2.3.4).

Corollary 8.4.2. Assume that V is uniform on V. For any Markov chain V — X — 17,

I(V; X) + log2

PVAV) 21 20

(8.4.2)

In particular, Corollary 8.4.2 shows that we have

Vi X) +1log2
logV|

inf P(U(X) £ V) > 1- K

where the infimum is taken over all testing procedures ¥. By combining Corollary 8.4.2 with the
reduction from estimation to testing in Proposition 8.2.1, we obtain the following result.

Proposition 8.4.3. Let {0(P,)},ey be a 20-packing in the p-semimetric. Assume that' V' is uniform
on the set V, and conditional on V = v, we draw a sample X ~ P,. Then the minimaz risk has
lower bound

M(G(P); @ 0 p) > 2(3) <1 _ IV X) +10g2>

log |V|

To gain some intuition for Proposition 8.4.3, we think of the lower bound as a function of the
separation § > 0. Roughly, as § | 0, the separation condition between the distributions P, is
relaxed and we expect the distributions P, to be closer to one another. In this case—as will be
made more explicity presently—the hypothesis testing problem of distinguishing the P, becomes
more challenging, and the information I(V;X) shrinks. Thus, what we roughly attempt to do
is to choose our packing 6(P,) as a function of §, and find the largest § > 0 making the mutual
information small enough that

I(V; X) +log2 < 1
log |V| -2

In this case, the minimax lower bound is at least ®(J)/2. We now explore techniques for achieving
such results.

(8.4.3)

Mutual information and KL-divergence

Many techniques for upper bounding mutual information rely on its representation as the KL-
divergence between multiple distributions. Indeed, given random variables V' and X as in the
preceding sections, if we let Py, x denote their joint distribution and Py and Px their marginals,
then

I(V;X) = Dkl (PX,VHPX X Pv) s

where Px x Py denotes the distribution of (X, V) when the random variables are independent. By

manipulating this definition, we can rewrite it into a form more convenient for our purposes.
Indeed, focusing on our setting of testing, let us assume that V' is drawn from a prior distribution

7 (this may be a discrete or arbitrary distribution, though for simplicity we focus on the case when
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m is discrete). Let P, denote the distribution of X conditional on V' = v, as in Proposition 8.4.3.
Then marginally, we know that X is drawn from the mixture distribution

P:= Z (V) P,.

v

With this definition of the mixture distribution, via algebraic manipulations, we have

I(V;X) =) 7(v)Dy (Ps|P), (8.4.4)

v

a representation that plays an important role in our subsequent derivations. To see equality (8.4.4),
let p be a base measure over X’ (assume w.l.o.g. that X has density p(- | v) = py(-) conditional on
V = wv), and note that

Pl | v) e [ pla )
1(V; X) Z/ (@ | ) (v)log = du(a) = ©) [ oo | )10 22tz

v

Representation (8.4.4) makes it clear that if the distributions of the sample X conditional
on V are all similar, then there is little information content. Returning to the discussion after
Proposition 8.4.3, we have in this uniform setting that

P=_ ZP and I(V;X)= ZDH (P,|P).
|V‘ veY |V| veY

The mutual information is small if the typical conditional distribution P, is difficult to distinguish—
has small KL-divergence—from P.

The local Fano method

The local Fano method is based on a weakening of the mixture representation of mutual informa-
tion (8.4.4), then giving a uniform upper bound on divergences between all pairs of the conditional
distributions P, and P,s. (This method is known in the statistics literature as the “generalied Fano
method,” a poor name, as it is based on a weak upper bound on mutual information.) In particular
(focusing on the case when V' is uniform), the convexity of — log implies that

I(V; X) =l ZDH (P,|P) < MQZDM (P,|Py). (8.4.5)
veY

In the local Fano method approach, we construct a local packing. This local packing approach
is based on constructing a family of distributions P, for v € V defining a 26-packing (recall Sec-
tion 8.2.1), meaning that p(6(P,),0(Py)) > 26 for all v # v/, but which additionally satisfy the
uniform upper bound

Dy (P,|Py) < k%62 for all v,v" € V, (8.4.6)

where £ > 0 is a fixed problem-dependent constant. If we have the inequality (8.4.6), then so long
as we can find a local packing V such that

log [V| > 2(k%62 + log 2),
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we are guaranteed the testing error condition (8.4.3), and hence the minimax lower bound
1
MO(P), 0 p) > 3B(5).

The difficulty in this approach is constructing the packing set V that allows § to be chosen to obtain
sharp lower bounds, and we often require careful choices of the packing sets V. (We will see how
to reduce such difficulties in subsequent sections.)

Constructing local packings As mentioned above, the main difficulty in using Fano’s method
is in the construction of so-called “local” packings. In these problems, the idea is to construct a
packing V of a fixed set (in a vector space, say R?) with constant radius and constant distance.
Then we scale elements of the packing by § > 0, which leaves the cardinality || identical, but
allows us to scale ¢ in the separation in the packing and the uniform divergence bound (8.4.6). In
particular, Lemmas 8.2.3 and 4.3.10 show that we can construct exponentially large packings of
certain sets with balls of a fixed radius.
We now illustrate these techniques via two examples.

Example 8.4.4 (Normal mean estimation):  Consider the d-dimensional normal location
family Ny = {N(0,02I5xq) | 0 € R?}; we wish to estimate the mean 6§ = 6(P) of a given
distribution P € Ny in mean-squared error, that is, with loss ||§— 0]|3. Let V be a 1/2-packing
of the unit fo-ball with cardinality at least 27, as guaranteed by Lemma 4.3.10. (We assume
for simplicity that d > 2.)

Now we construct our local packing. Fix § > 0, and for each v € V, set 6§, = év € R%. Then
we have

)
10 — O]y =0 Hv — v’H2 > 2

for each distinct pair v,v" € V, and moreover, we note that [|6, — 6,/|, < § for such pairs as
well. By applying the Fano minimax bound of Proposition 8.4.3, we see that (given n normal

: iid
observations X; ~ P)

1 6)\? I(V;X7) +1log2\ 62 I(V; X}) + log 2
JHYy > (Z.2 — ik | = [|1— ikt )
M, (O(Na), |I-115) > (2 2) <1 log V| > 16 (1 dlog 2 >

Now note that for any pair v,v’, if P, is the normal distribution N(6,,,0%Ix4) we have
Dia (P}|P2) = n - Dig (N(6v, 0% Igxa) IN(8V', 0% gxa)) = n. - 2622 |v— U’H;
o
as the KL-divergence between two normal distributions with identical covariance is
Dia (N(B1, 2)IN(2, 2)) = 5 (61— 62) 57 (61 — 62)
as in Example 2.1.7. As [lv — /||, < 1, we have the KL-divergence bound (8.4.6) with x? =

n/202.
Combining our derivations, we have the minimax lower bound

52 ndé?/20? + log 2
n 15H>=(1- : 4.
0N, 1) > g (1- "5 (847
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Then by taking 62 = do?log2/(2n), we see that

nd?/20? +1log2 )

1
1 _Z
dlog?2 d

>

e~ =
=

by assumption that d > 2, and inequality (8.4.7) implies the minimax lower bound
do?log2 1 S 1 do?
32n 4718 n
While the constant 1/185 is not sharp, we do obtain the right scaling in d, n, and the variance
o?; the sample mean attains the same risk. ¢

M (O(N), ||-]13) >

Example 8.4.5 (Linear regression): In this example, we show how local packings can give
(up to some constant factors) sharp minimax rates for standard linear regression problems. In
particular, for fixed matrix X € R™*?, we observe

Y =X0+c¢,

where ¢ € R™ consists of independent random variables ¢; with variance bounded by Var(e;) <
0%, and 6 € R? is allowed to vary over R?. For the purposes of our lower bound, we may
assume that ¢ ~ N(0,0%1,,x,). Let P denote the family of such normally distributed linear
regression problems, and assume for simplicity that d > 32.

In this case, we use the Gilbert-Varshamov bound (Lemma 8.2.3) to construct a local packing
and attain minimax rates. Indeed, let V be a packing of {—1,1}% such that ||v — v'||; > d/2 for
distinct elements of V, and let |V| > exp(d/8) as guaranteed by the Gilbert-Varshamov bound.
For fixed 6 > 0, if we set 6, = dv, then we have the packing guarantee for distinct elements

v, v’ that
d

100 — Ou1l5 = 62 (v — v))? = 482 ||v — /||, > 2d5®.
j=1

Moreover, we have the upper bound

1
Dkl (N(ng’0'2ln><n)”N(X9v’v U2In><n)) = ﬁ ||X(91) - 01)’)”%

52,

2
< T‘Q’Ymax )

() [0 = v'[f; < “5ras (0%,

where Ymax(X) denotes the maximum singular value of X. Consequently, the bound (8.4.6)
holds with k? < 2dv2,.(X)/c?, and we have the minimax lower bound

MO(P), |I|2) >

ds* < - I(V;Y)+log2> _ (1_ %@cmaulogz)

2 log V| 2 d/8

Now, if we choose

2 2 2
52— o . then 1_810g2_ 16d7; 4 (X )0 21_1_1:}7
6472, (X) d d 4 4 2
by assumption that d > 32. In particular, we obtain the lower bound
1 o% 1 o%d 1
MOP),13) > ser 5 = 5mn — 5T
2T 25695, (X) 256 n 42, (5 X)

191



Lexture Notes on Statistics and Information Theory John Duchi

for a convergence rate (roughly) of o?d/n after rescaling the singular values of X by 1/y/n.
This bound is sharp in terms of the dimension, dependence on n, and the variance o2, but
it does not fully capture the dependence on X, as it depends only on the maximum singular
value. Indeed, in this case, an exact calculation (cf. [130]) shows that the minimax value of
the problem is exactly o2 tr((X ' X)™!). Letting A\;j(A) be the jth eigenvalue of a matrix A,
we have

P r((XTX) ) = C (XX ) = T -1
n n = N(EXTX)
> ﬁ min 71 = ﬂil .
2NN T 0 (LX)

Thus, the local Fano method captures most—but not all—of the difficulty of the problem. <

8.4.2 A distance-based Fano method

While the testing lower bound (8.4.2) is sufficient for proving lower bounds for many estimation
problems, for the sharpest results it sometimes requires a somewhat delicate construction of a well-
separated packing (e.g. [43, 69]). To that end, we also provide extensions of inequalities (8.4.1)
and (8.4.2) that more directly yield bounds on estimation error, allowing more direct and simpler
proofs of a variety of minimax lower bounds (see also reference [67]).

More specifically, suppose that the distance function py is defined on V, and we are inter-
ested in bounding the estimation error pV(YA/, V). We begin by providing analogues of the lower
bounds (8.4.1) and (8.4.2) that replace the testing error with the tail probability P(py(V,V) > t).
By Markov’s inequality, such control directly yields bounds on the expectation E[py(‘A/, V)]. As
we show in the sequel and in chapters to come, these distance-based Fano inequalities allow more
direct proofs of a variety of minimax bounds without the need for careful construction of packing
sets or metric entropy calculations as in other arguments.

We begin with the distance-based analogue of the usual discrete Fano inequality in Proposi-
tion 8.4.1. Let V be a random variable supported on a finite set V with cardinality |V| > 2, and let
p:V xV — R be a function defined on V x V. In the usual setting, the function p is a metric on
the space V, but our theory applies to general functions. For a given scalar ¢ > 0, the maximum
and minimum neighborhood sizes at radius t are given by

Nmax ._ d / /<t d Nmin:: s d ! /<t .
f nvleasc{car {v' €V |p,v)<t}} an h gg\r}l{car {v" €V |pv,) < t}}

(8.4.8)
Defining the error probability P, = P(py(V,V) > t), we then have the following generalization of
Fano’s inequality:

Proposition 8.4.6. For any Markov chain V — X — 17, we have

14 Vi +log ™ > H(V | V). (8.4.9)

]’LQ(Pt) + P, log max
t

Before proving the proposition, which we do in Section 8.8.1, it is informative to note that it
reduces to the standard form of Fano’s inequality (8.4.1) in a special case. Suppose that we take
py to be the 0-1 metric, meaning that py(v,v") = 0 if v = v' and 1 otherwise. Setting ¢ = 0 in
Proposition 8.4.6, we have Py = P[V # V] and NJM® = NJ®* = 1, whence inequality (8.4.9) reduces
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to inequality (8.4.1). Other weakenings allow somewhat clearer statements (see Section 8.8.2 for a
proof):

Corollary 8.4.7. If V is uniform on V and (|V| — N/*®) > NP3 then

I(V;X) +log2

V|

P(py(V,V) > 1) >1—
log

(8.4.10)

Inequality (8.4.10) is the natural analogue of the classical mutual-information based form of
Fano’s inequality (8.4.2), and it provides a qualitatively similar bound. The main difference is
that the usual cardinality |V| is replaced by the ratio |V|/Nj*®*. This quantity serves as a rough
measure of the number of possible “regions” in the space V that are distinguishable—that is, the
number of subsets of V for which py(v,v’) > ¢ when v and v’ belong to different regions. While
this construction is similar in spirit to the usual construction of packing sets in the standard
reduction from testing to estimation (cf. Section 8.2.1), our bound allows us to skip the packing set
construction. We can directly compute I(V'; X) where V takes values over the full space, as opposed
to computing the mutual information I(V’; X) for a random variable V'’ uniformly distributed over
a packing set contained within V. In some cases, the former calculation can be much simpler, as
illustrated in examples and chapters to follow.

We now turn to providing a few consequences of Proposition 8.4.6 and Corollary 8.4.7, showing
how they can be used to derive lower bounds on the minimax risk. Proposition 8.4.6 is a generaliza-
tion of the classical Fano inequality (8.4.1), so it leads naturally to a generalization of the classical
Fano lower bound on minimax risk, which we describe here. This reduction from estimation to
testing is somewhat more general than the classical reductions, since we do not map the original
estimation problem to a strict test, but rather a test that allows errors. Consider as in the standard
reduction of estimation to testing in Section 8.2.1 a family of distributions { P, },ey C P indexed by
a finite set V. This family induces an associated collection of parameters {6, := 6(P,)},ey. Given
a function py : V x V — R and a scalar ¢, we define the separation 6(¢) of this set relative to the
metric p on O via

6(t) :==sup {8 | p(6y,0,) > & for all v,v" € V such that py(v,v’) > t}. (8.4.11)

As a special case, when ¢t = 0 and py is the discrete metric, this definition reduces to that of a
packing set: we are guaranteed that p(6,,60,/) > 6(0) for all distinct pairs v # v/, as in the classical
approach to minimax lower bounds. On the other hand, allowing for ¢ > 0 lends greater flexibility
to the construction, since only certain pairs 6, and 6,/ are required to be well-separated.

Given a set V and associated separation function (8.4.11), we assume the canonical estimation
setting: nature chooses V' € V uniformly at random, and conditioned on this choice V' = v, a sample
X is drawn from the distribution P,. We then have the following corollary of Proposition 8.4.6,
whose argument is completely identical to that for inequality (8.2.1):

Corollary 8.4.8. Given V uniformly distributed over V with separation function 6(t), we have

5(t I(X;V) +log 2
M, (0(P), Do p) > @((2)) {1 _ IV l; o8 for all t. (8.4.12)
log Ntmax

Notably, using the discrete metric py(v,v’) = 1 {v # v} and taking ¢t = 0 in the lower bound (8.4.12)
gives the classical Fano lower bound on the minimax risk based on constructing a packing [110, 177,
175]. We now turn to an example illustrating the use of Corollary 8.4.8 in providing a minimax
lower bound on the performance of regression estimators.
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Example: Normal regression model Consider the d-dimensional linear regression model Y =
X0 + ¢, where ¢ € R” is i.i.d. N(0,0%) and X € R™? is known, but 6 is not. In this case, our
family of distributions is

Py = {Y ~ N(X0,02Lsn) | 0 € Rd} - {Y = X0 +¢c|en~NO, 0% L), 0 € Rd} .

We then obtain the following minimax lower bound on the minimax error in squared fo-norm: there
is a universal (numerical) constant ¢ > 0 such that

o2d? o2d
M (0(Px, |]13) >

C
> — 8.4.13
2 X 2 eIV 7 R

where Ymax denotes the maximum singular value. Notably, this inequality is nearly the sharpest
known bound proved via Fano inequality-based methods [43], but our technique is essentially direct
and straightforward.

To see inequality (8.4.13), let the set V = {—1,1}¢ be the d-dimensional hypercube, and define
0, = dv for some fixed & > 0. Then letting py be the Hamming metric on V and p be the usual
fo-norm, the associated separation function (8.4.11) satisfies 6(t) > max{v/t,1}5. Now, for any
t < [d/3], the neighborhood size satisfies

(0 () 2(4)

7=0

Consequently, for t < d/6, the ratio |V|/N/** satisfies

VI

max
Nt

d d 2 d
log > dlog?2 —log2<t> > dlog2 — glog(Ge) —log2 = dlogm > max{ﬁ,logél}

for d > 12. (The case 2 < d < 12 can be checked directly). In particular, by taking ¢ = |d/6] we
obtain via Corollary 8.4.8 that

M, (0(Px), H-H%) > max{|d/6] ,2}5> (1 I(Y;V) +log2 > '

4  max{d/6,2log2}

But of course, for V uniform on V, we have E[VV ] = I;.4, and thus for V,V’ independent and
uniform on V,

1

I(Y;V) <nss > > D (N(X0y, 0% Tsen) IN(X 0, 02 L))
|V‘ veVv'ey
52 52
= o5 [[lxv = xv|3] = = 11 -

Substituting this into the preceding minimax bound, we obtain

max{|d/6] ,2}6> 5% || X3, /o2 + log 2
(0P, 1112) = 4 (1 a maX{Z/G,QlogQ} > '

Choosing 6% < do?/ ||X||12;r gives the result (8.4.13).
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8.5 Assouad’s method

Assouad’s method provides a somewhat different technique for proving lower bounds. Instead of
reducing the estimation problem to a multiple hypothesis test or simpler estimation problem, as
with Le Cam’s method and Fano’s method from the preceding lectures, here we transform the
original estimation problem into multiple binary hypothesis testing problems, using the structure
of the problem in an essential way. Assouad’s method applies only problems where the loss we care
about is naturally related to identification of individual points on a hypercube.

8.5.1 Well-separated problems

To describe the method, we begin by encoding a notion of separation and loss, similar to what we
did in the classical reduction of estimation to testing. For some d € N, let V = {—1, l}d, and let us
consider a family {P,},cy C P indexed by the hypercube. We say that the the family P, induces
a 26-Hamming separation for the loss ® o p if there exists a function V : §(P) — {—1,1}¢ satisfying

d
B(p(8,6(P.))) > 26> 1{[U(6)]; # v} (8.5.1)
j=1

That is, we can take the parameter # and test the individual indices via V.

Example 8.5.1 (Estimation in ¢j-error): Suppose we have a family of multivariate Laplace
distributions on R%—distributions with density proportional to p(x) o exp(— ||z — u||;)—and
we wish to estimate the mean in ¢;-distance. For v € {—1,1}? and some fixed § > 0 let p, be
the density

1
pol) = 3 exp (= llo = Foll),

which has mean 6(P,) = §v. Under the £;-loss, we have for any 6 € R? that

d d
16— 6(P)lly =) 16; — 6v;] = 6y 1 {sign(6;) # v},
j=1 j=1
so that this family induces a J-Hamming separation for the ¢1-loss. <

8.5.2 From estimation to multiple binary tests

As in the standard reduction from estimation to testing, we consider the following random process:
nature chooses a vector V' € {—1,1}% uniformly at random, after which the sample X is drawn
from the distribution P, conditional on V' = v. Then, if we let P1; denote the joint distribution
over the random index V' and X conditional on the jth coordinate V; = £1, we obtain the following
sharper version of Assouad’s lemma [10] (see also the paper [7]); we provide a proof in Section 8.8.3
to follow.

Lemma 8.5.2. Under the conditions of the previous paragraph, we have

d
M(O(P), o p) > 6 inf [P (¥(X) #+1) + P (¥(X) £ ~D)].
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While Lemma 8.5.2 requires conditions on the loss ® and metric p for the separation condi-
tion (8.5.1) to hold, it is sometimes easier to apply than Fano’s method. Moreover, while we will
not address this in class, several researchers [7, 68] have noted that it appears to allow easier ap-
plication in so-called “interactive” settings—those for which the sampling of the X; may not be
precisely i.i.d. It is closely related to Le Cam’s method, discussed previously, as we see that if we
define Py ; = 21-d Zm}j:l P, (and similarly for —j), Lemma 8.5.2 is equivalent to

d
M(O(P), ® o p) > Z 1 1Py — Pojlly] (8.5.2)

There are standard weakenings of the lower bound (8.5.2) (and Lemma 8.5.2). We give one
such weakening. First, we note that the total variation is convex, so that if we define P, ; to be
the distribution P, where coordinate j takes the value v; = 1 (and similarly for P —v, —j), we have

: > Py and P_j:% > Py

P+j = -3
2d
ve{-1,1}4 ve{-1,1}4

Thus, by the triangle inequality, we have

1
27 Z Per] vf]

| P1j — P—jllpy =

ve{—1,1}d v
1
< od Z HPUH-j - P’U,—jHTV < mv%.X ||Pv,+j - Pv7—jHTv .
ve{—1,1}d ’

Then as long as the loss satisfies the per-coordinate separation (8.5.1), we obtain the following:
M(O(P), P op) > dd (1 - mvajx | Py 45 — PM—J’“TV) : (8.5.3)

This most common version of Assouad’s lemma sometimes too brutally controls || Py; — P—j|py-
We also note that by the Cauchy-Schwarz inequality and convexity of the variation-distance,

we have

d d 1/2 3
S Py < V(S iy ) <f(z PP Pl )
j=1 j=1

and consequently we have a not quite so terribly weak version of inequality (8.5.2):

1

d
1 2
M(O(P), ®op)>dd |1- <d S Py - Pv,_juav> : (8.5.4)

J=lve{-1,1}4

Regardless of whether we use the sharper version (8.5.2) or weakened versions (8.5.3) or (8.5.4),
the technique is essentially the same. We seek a setting of the distributions P, so that the probability
of making a mistake in the hypothesis test of Lemma 8.5.2 is high enough—say 1/2—or the variation
distance is small enough—such as [|P}; — P/ < 1/2 for all j. Once this is satisfied, we obtain
a minimax lower bound of the form

MO(P), B o p) > zi:[l—} :dﬁ.
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8.5.3 Example applications of Assouad’s method

We now provide two example applications of Assouad’s method. The first is a standard finite-
dimensional lower bound, where we provide a lower bound in a normal mean estimation problem.
For the second, we consider estimation in a logistic regression problem, showing a similar lower
bound. In Section 8.6 to follow, we show how to use Assouad’s method to prove strong lower
bounds in a standard nonparametric problem.

2

Example 8.5.3 (Normal mean estimation): For some ¢° > 0 and d € N, we consider

estimation of mean parameter for the normal location family
N = {N(G,JQIdxd) 0e Rd}

in squared Euclidean distance. We now show how for this family, the sharp Assouad’s method

implies the lower bound
2

MO, ) = (35.5)

Up to constant factors, this bound is sharp; the sample mean has mean squared error do?/n.
We proceed in (essentially) the usual way we have set up. Fix some § > 0 and define 6, = Jv,
taking P, = N(0,, 0?1 dxd) to be the normal distribution with mean 6,,. In this case, we see that
the hypercube structure is natural, as our loss function decomposes on coordinates: we have
16 — 6,13 > 62 2?21 1 {sign(6;) # v;}. The family P, thus induces a §>-Hamming separation
for the loss ||-||3, and by Assouad’s method (8.5.2), we have

52
M (O, 113) > 5 S0 [ 122 = Py ]
7=1
where PP, = = 2l=dy~ .v,—+1 P 1t remains to provide upper bounds on | P, — Pllrv. By

the convexity of ||- HTV and Pinsker’s inequality, we have

1
|Pp — P max || P — ﬁ”%vgi max Dy (P"|P7).

2
jHTV S am (V,07)< dham (v,0")<1

But of course, for any v and v’ differing in only 1 coordinate,
n 9 2N 4
Dia (PEIP) = 55 60 — O3 = 2542

giving the minimax lower bound

M, (), -13) i 1 V20?02

Choosing 62 = 02/8n gives the claimed lower bound (8.5.5). ©

Example 8.5.4 (Logistic regression): In this example, consider the logistic regression model,
where we have known (fixed) regressors X; € R? and an unknown parameter § € R?; the goal
is to estimate 6 after observing a sequence of Y; € {—1,1}, where for y € {—1,1} we have

1

P(Y; =y | X;,0) = .
( vl ) 1+ exp(—yX,'0)
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Denote this family by Piog, and for P € Pioq, let 0(P) be the predictor vector . We would
like to estimate the vector 6 in squared £y error. As in Example 8.5.3, if we choose some § > 0
and for each v € {—1,1}¢, we set 6, = v, then we have the §%-separation in Hamming metric
|0 — 6, ||2 > 42 E;-lzl 1 {sign(f;) # v;}. Let P denote the distribution of the n independent
observations Y; when 6 = 6,,. Then we have by Assouad’s lemma (and the weakening (8.5.4))
that

52
M, (0(Piog)s ||- || 25

[ 1P _PfjHTV}

(GSs E I ] e

= ve{-1,1}4

d52

It remains to bound || P} ; — P} _; |3 to find our desired lower bound. To that end, use the

shorthands p,(z) = 1/(1 + exp(dz"v)) and let Dy (p|q) be the binary KL-divergence between
Bernoulli(p) and Bernoulli(g) distributions. Then Pinsker’s inequality (recall Proposition 2.2.8)
implies that for any v, v/,

1P = Pyllry < [Dkl (B P) + D (P B

[u—y

- Z Dkl pv pr ( )) + Dy (pv’ (Xl)”pv(XZ))] .
i=1

e

Let us upper bound the final KL-divergence. Let p, = 1/(1 + ¢%) and p, = 1/(1 + ). We
claim that

Dy (pallpe) + Dt (polpa) < (a —b)?. (8.5.7)
Deferring the proof of claim (8.5.7), we immediately see that

62 & 2
1Py = Pilley < 5 3 (X 0 =2))

i=1

Now we recall inequality (8.5.6) for motivation, and we see that the preceding display implies

. . 5 1 d n 52 n d
Qddz Z 1Py = P—JHTV—4d2d Z ZZ(QXU)QZEZZ‘)@

J=love{-1,1}d ve{—1,1}d j=1 i=1 i=1 j=1

Replacing the final double sum with || X ||12;r, where X is the matrix of the X;, we have

M (B(Pog). |-12) > 2 [1— (‘5 ”X‘“)T

Setting 02 = d/4 || X ||3,, we obtain

d52 d? d 1
( Plog) H H 4 ~ T vz . 1 n 2
16X » 164 s X653
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That is, we have a minimax lower bound scaling roughly as d/n for logistic regression, where
“large” X; (in f3-norm) suggest that we may obtain better performance in estimation. This is
intuitive, as a larger X; gives a better signal to noise ratio.

We return to prove the claim (8.5.7). Indeed, by a straightforward expansion, we have

p 17p Db 17pb
Dy (palp) + Dia (polpa) = pa Ing*: + (1 — pa) log = Z + pplog = + (1 — pp) log =
a a
p l-p Pa 1—ps
= (Pa — pp)log "= + (pp — pa) log — = = (pa — p1) log (a> :
Po L=y 1—pa

Now note that p,/(1 — p) = e~® and (1 — py)/pp = €®. Thus we obtain

1 1 —a 1 1
Dia (palpy) + Dia (pollpa) = <1+ea a 1+eb> log (eb ) =b-a <1+ea a 1+€b>

Assume without loss of generality that b > a. Noting that e* > 1 + z by convexity, we have

1 1 el — et el — et

- = < =1-e"t<1-(1 —b)=b-—
1+er 1+4+e  (1+ev)(1+eb) — b © = (1+({a=1)) @

yielding claim (8.5.7). <

8.6 Nonparametric regression: minimax upper and lower bounds

To show further applications of the minimax optimality ideas we have developed, we consider one
of the two the most classical non-parametric (meaning that the number of parameters can grow
with the sample size n) problems: estimating a regression function on a subset of the real line (the
most classical problem being estimation of a density). In non-parametric regression, we assume
there is an unknown function f : R — R, where f belongs to a pre-determined class of functions F;
usually this class is parameterized by some type of smoothness guarantee. To make our problems
concrete, we will assume that the unknown function f is L-Lipschitz and defined on [0, 1]. Let F
denote this class.
In the standard non-parametric regression problem, we obtain observations of the form

where ¢; are independent, mean zero conditional on X;, and E[¢?] < o2, See Figure 8.2 for an
example. We also assume that we fix the locations of the X; as X; = i/n € [0, 1], that is, the X;
are evenly spaced in [0, 1]. Given n observations Y;, we ask two questions: (1) how can we estimate
f?7 and (2) what are the optimal rates at which it is possible to estimate f?

8.6.1 Kernel estimates of the function

A natural strategy is to place small “bumps” around the observed points, and estimate f in a
neighborhood of a point by weighted averages of the Y values for other points near x. We now
formalize a strategy for doing this. Suppose we have a kernel function K : R — Ry, which is
continuous, not identically zero, has support supp K = [—1, 1], and satisfies the technical condition

A K(z)< inf K 8.6.2
0sup (fv)_|x|121/2 (z), (8.6.2)
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Figure 8.2. Observations in a non-parametric regression problem, with function f plotted. (Here
f(z) = sin(2z + cos?(3z)).)

where A\g > 0 (this says the kernel has some width to it). A natural example is the “tent” function
given by Kient(z) = [I — |z, which satisfies inequality (8.6.2) with \g = 1/2. See Fig. 8.3 for two
examples, one the tent function and the other the function

K(z) = 1{|z] < 1} exp (‘@—11)2> exp <_($+11)2> ,

which is infinitely differentiable and supported on [—1, 1].

-15 -1.0 -0.5 0.0 0.5 1.0 15 -1.0 -0.5 0.0 0.5 1.0

Figure 8.3: Left: “tent” kernel. Right: infinitely differentiable compactly supported kernel.

Now we consider a natural estimator of the function f based on observations (8.6.2) known as
the Nadaraya-Watson estimator. Fix a bandwidth h, which we will see later smooths the estimated
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functions f. For all z, define weights

and define the estimated function

i=1

The intuition here is that we have a locally weighted regression function, where points X; in the
neighborhood of z are given higher weight than further points. Using this function fn as our
estimator, it is possible to provide a guarantee on the bias and variance of the estimated function
at each point z € [0, 1].

Proposition 8.6.1. Let the observation model (8.6.1) hold and assume condition (8.6.2). In
addition assume the bandwidth is suitably large that h > 2/n and that the X; are evenly spaced on
[0,1]. Then for any x € [0, 1], we have

202
- )\onh

Proof To bound the bias, we note that (conditioning implicitly on X;)

ZEywm ZIE Xi) Wi () + eiWni(2)] = Y f(X)W,
=1

Thus we have that the bias is bounded as

Elf(@)] - £(@)] < Z\f 2)|Woi(a)

E[fa(z)] = f(2)| < Lh and Var(fu(z)) <

< Y If(Xi) = f@)|Wai(e) < Lh Y Wa(z) = Lh.

it X;—x|<h i=1
To bound the variance, we claim that
2
W’n’L( ) < min {)\Onh, 1} (863)

Indeed, we have that

EICO IS ()

= <
n X;—x Xi—xz\ — P o < s
Sk () S (57~ oo, K@ %~ 7

and because there are at least nh/2 indices satisfying |X; — x| < h, we obtain the claim (8.6.3).
Using the claim, we have

Var(ﬁ@)):l@[(i(lf (X)) Whi(x ))2]:1&[(;@%@-(36))2}

=1
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Noting that Wp;(z) < 2/Xonh and Y ; Wyi(x) = 1, we have

n n
2
; 0 Whi(2)? < 0 max Woi(x) ; Whi(z) < UZW,
1
completing the proof. O

With the proposition in place, we can then provide a theorem bounding the worst case pointwise
mean squared error for estimation of a function f € F.

Theorem 8.6.2. Under the conditions of Proposition 8.6.1, choose h = (02 /L*Xo)"/3n~1/3. Then
there exists a universal (numerical) constant C' < oo such that for any f € F,

~

523 2/3
sup E[(Fo(z) - f(2)?] sc<L> n 3.

z€[0,1] Ao

W

Proof Using Proposition 8.6.1, we have for any x € [0, 1] that

- . 2 ~ ~ 202
E[(fa() = f@)?] = (Elfa(@)] - £(2))" +El(fal@) — Elfa@)])?) < 5 + L2
)\onh
Choosing h to balance the above bias/variance tradeoff, we obtain the thoerem. O

By integrating the result in Theorem 8.6.2 over the interval [0,1], we immediately obtain the
following corollary.

Corollary 8.6.3. Under the conditions of Theorem 8.6.2, if we use the tent kernel Kient, we have

R LO’2 2/3
sup B[ s — FI2] < C () ,
fer n

where C' is a universal constant.

In Proposition 8.6.1, it is possible to show that a more clever choice of kernels—ones that are
not always positive—can attain bias E[f,(z)] — f(z) = O(hP) if f has Lipschitz (3—1)th derivative.
In this case, we immediately obtain that the rate can be improved to

SpE[(Fu(@) = f(@))") < On” 5551,

and every additional degree of smoothness gives a corresponding improvement in convergence rate.
We also remark that rates of this form, which are much larger than n~!, are characteristic of non-
parametric problems; essentially, we must adaptively choose a dimension that balances the sample
size, so that rates of 1/n are difficult or impossible to achieve.
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8.6.2 Minimax lower bounds on estimation with Assouad’s method

Now we can ask whether the results we have given are in fact sharp; do there exist estimators
attaining a faster rate of convergence than our kernel-based (locally weighted) estimator? Using
Assouad’s method, we show that, in fact, these results are all tight. In particular, we prove the
following result on minimax estimation of a regression function f € F, where F consists of 1-
Lipschitz functions defined on [0,1], in the ||-|[3 error, that is, || f — g3 = [, (f(t) — g(t))2dt.

Theorem 8.6.4. Let the observation points X; be spaced evenly on [0, 1], and assume the observa-
tion model (8.6.1). Then there exists a universal constant ¢ > 0 such that

2 . -~ 2 02 3
M (F [13) += inf sup By [I1F = £I3] = e (%)
fn fEF n

Deferring the proof of the theorem temporarily, we make a few remarks. It is in fact possible to
show—using a completely identical technique—that if 3 denotes the class of functions with 8 —1
derivatives, where the (5 — 1)th derivative is Lipschitz, then

28
o2\ 23+1
o Fall ) = e (2)

So for any smoothness class, we can never achieve the parametric o2/n rate, but we can come
arbitrarily close. As another remark, which we do not prove, in dimensions d > 1, the minimax
rate for estimation of functions f with Lipschitz (5 — 1)th derivative scales as

Mol Fa ) 2 e (5 ) (8.6.0

This result can, similarly, be proved using a variant of Assouad’s method or a local Fano method;
see, for example, Gyorfi et al. [99, Chapter 3]. Exercise 8.9 works through a particular case of this
lower bound. This is a striking example of the curse of dimensionality: the penalty for increasing
dimension results in worse rates of convergence. For example, suppose that 8 = 1. In 1 dimension,
we require n > 90 ~ (.05)*3/ 2 observations to achieve accuracy .05 in estimation of f, while we
require n > 8000 = (.05)~(2+9)/2 even when the dimension d = 4, and n > 64-10° observations even
in 10 dimensions, which is a relatively small problem. That is, the problem is made exponentially
more difficult by dimension increases.

We now prove Theorem 8.6.4. To establish the result, we show how to construct a family of
problems—indexed by binary vectors v € {—1,1}*—so that our estimation problem satisfies the
separation (8.5.1), then we show that the information based on observing noisy versions of the
functions we have defined is small. Choosing k& to make our resulting lower bound as high as
possible completes the argument.

Construction of a separated family of functions To construct our separation in Hamming
metric, as required by Eq. (8.5.1), fix some k € N; we will choose k later. This approach is somewhat
different from our standard approach of using a fixed dimensionality and scaling the separation
directly; in non-parametric problems, we scale the “dimension” itself to adjust the difficulty of the
estimation problem. Define the function g(z) = [1/2 — |z — 1/2[],, so that g is 1-Lipschitz and is
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0 outside of the interval [0,1]. Then for any v € {—1,1}*, define the “bump” functions

gj(x) := %9 (k (zv - T)) and f,(z nggg

which we see is 1-Lipschitz. Now, consider any function f : [0,1] — R, and let E; be shorthand for
the intervals E; = [(j — 1)/k,j/k] for j =1,..., k. We must find a mapping identifying a function
f with points in the hypercube {—1,1}*. To that end, we may define a vector V(f) € {—1,1}* by

V;(f) = argmin / (f(t) — sg;(t))* dt.
se{-1,1} JE;
We claim that for any function f,

([ - fv(t))2dt>é =10 b ([ | (0%at) g (86.5)

J

Indeed, on the set E;, we have vjg;(t) = fu(t), and thus ij g;(t)%dt = fE]_ fo(t)?dt. Then by the
triangle inequality, we have

2-14{v;(f) # vj} </E‘gj(t)2dt>é = </E (©;(f) = vj)g; (1)? dt)é

J J

< </E (f(t) _ngj(t))%h:)é + (/E (f(t) —vj(f)gj(t))2dt)

J J

<2 [ o —fv(t))2dt)é,

J

=

by definition of the sign v;(f).
With the definition of V and inequality (8.6.5), we see that for any vector v € {—1,1}*, we have

k
If - fUIIQ—Z/ Z V;(f #vj}/ﬂfv(tfdt.

In particular, we know that

1/k ) 1 1 ) c
/ Fltpdr =gz [ atktpar =g [ atwide = 5,

where c is a numerical constant. In particular, we have the desired separation

k
1f = Folls = 15 D10 # vy (8.6.6)
j=1

204



Lexture Notes on Statistics and Information Theory John Duchi

Bounding the binary testing error Let P' denote the distribution of the n observations
Y: = fu(X;) + &; when f, is the true regression function. Then inequality (8.6.6) implies via
Assouad’s lemma that

k
mkuziz[ P =Pl (8.6.7)

Now, we use convexity and Pinsker’s inequality to note that

< maxH AT < max o Dkl( Py IR ).

Hp—ﬁj JHTV ]HTV

For any two functions f, and f,, we have that the observations Y; are independent and normal
with means f,(X;) or f,/(X;), respectively. Thus

Dy (P} Py)) Z Dia (N(fo(X3), o) IN(fu (X3), 02))
=Z%ﬂmm—mmw. (8.6.8)
1=1

Now we must show that the expression (8.6.8) scales more slowly than n, which we will see must
be the case as whenever dpay,(v,v’) < 1. Intuitively, most of the observations have the same
distribution by our construction of the f, as bump functions; let us make this rigorous.

We may assume without loss of generality that v; = U;- for j > 1. As the X; = i/n, we thus
have that only X; for i near 1 can have non-zero values in the tensorization (8.6.8). In particular,

fo(i/n) = fur(i/n) for all i s.t.

Rewriting expression (8.6.8), then, and noting that f,
we have

n
> 2 qe i> 2
k k

x) € [-1/k,1/k] for all = by construction,

3| =

—~

n 2n/k
,_ 1 2n1  n
> s (X - <222ﬁl fo (X)) < 55573 = e

=1

Combining this with inequality (8.6.8) and the minimax bound (8.6.7), we obtain

n n n
1P = P2illoy < 3/ 57303
c k
M, (F3) kZ[\Q%J.

Choosing k for optimal tradeoffs Now we simply choose k; in particular, setting

n \1/3 1
k:[(w) w then 1—/oms>1—/1/i=2,

o2\ 2/3
GM!_HZ —se 2 (%)

where ¢ > 0 is a universal constant. Theorem 8.6.4 follows.

SO

and we arrive at
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8.7 Global Fano Method

In this section, we extend the techniques of Section 8.4 on Fano’s method (the local Fano method)
to a more global construction. In particular, we show that, rather than constructing a local packing,
choosing a scaling § > 0, and then optimizing over this 4, it is actually, in many cases, possible to
prove lower bounds on minimax error directly using packing and covering numbers (metric entropy
and packing entropy).

8.7.1 A mutual information bound based on metric entropy

To begin, we recall the classical Fano inequality in Corollary 8.4.2, which says that for any Markov
chain V. — X — V, where V is uniform on the finite set V, we have
~ I(V; X) + log2
P(V#AV)>1-— ’
log(|V])

Thus, there are two ingredients in proving lower bounds on the error in a hypothesis test: upper
bounding the mutual information and lower bounding the size |V|. The key in the global Fano
method is an upper bound on the former (the information I(V; X)) using covering numbers.

Before stating our result, we require a bit of notation. First, we assume that V is drawn from a
distribution p, and conditional on V' = v, assume the sample X ~ P,. Then a standard calculation
(or simply the definition of mutual information; recall equation (8.4.4)) gives that

I(V;X) = /Dkl (P,|P) du(v), where P = /Pvd,u(v)

Now, we show how to connect this mutual information quantity to a covering number of a set of
distributions.

Assume that for all v, we have P, € P, where P is a collection of distributions. In analogy
with Definition 4.7, we say that the collection of distributions {Q;}}; form an e-cover of P in
KL-divergence if for all P € P, there exists some 7 such that Dy (P|Q;) < €2. With this, we may
define the KL-covering number of the set P as

Ny (6, P) :=inf {N eN|3Qi,i=1,...,N, supminDy (P|Q;) < 62} , (8.7.1)
pPep t

where Ny (€, P) = +o0 if no such cover exists. With definition (8.7.1) in place, we have the following
proposition.

Proposition 8.7.1. Under conditions of the preceding paragraphs, we have
I(V;X) < ir>1£{62 +log N (¢,P) } . (8.7.2)

Proof First, we claim that

/%wa /%wa) (8.7.3)
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for any distribution ). Indeed, we have

[ a(@aP)ante) = [ [ apoiog Graute) = [ [ ar, o 0% + 105 52 dute
/Dkl (Py]Q) dpu(v //du YdP, log dQ

_ / Dua (P,]Q) dya(v) — Dua (Fn@) < / Dia (P,|Q) dpu(v),

so that inequality (8.7.3) holds. By carefully choosing the distribution @ in the upper bound (8.7.3),
we obtain the proposition.

Now, assume that the distributions @;, i =1,..., N form an €
that

2_cover of the family P, meaning

min Dy (P|Q;) < € for all P € P.
1€[N]
Let p, and ¢; denote the densities of P, and @Q); with respect to some fixed base measure on X (the

choice of based measure does not matter). Then definining the distribution Q@ = (1/N) 3N, Qi
we obtain for any v that in expectation over X ~ P,,

Dy (Py|Q) = Ep, [log p”(X)} =Ep, [log pu(X) ]

9(X) N7 ai(X)
X X
=log N +Ep, |log M <log N +Ep, [log p()]
S ai(X) max; ¢;(X)
<1 . po(X)] . .
<log N + minEp, |log = log N + min Dy (P,|Q;) -
1 %(X) 7
By our assumption that the @; form a cover, this gives the desired result, as ¢ > 0 was arbitrary,
as was our choice of the cover. O

By a completely parallel proof, we also immediately obtain the following corollary.

Corollary 8.7.2. Assume that X1,...,X, are drawn i.i.d. from P, conditional on V = v. Let
Ny (e, P) denote the KL-covering number of a collection P containing the distributions (over a
single observation) P, for allv € V. Then

. . 2
[(V5Xi,..., Xn) < inf {ne® +log N (¢, P)}.

With Corollary 8.7.2 and Proposition 8.7.1 in place, we thus see that the global covering numbers
in KL-divergence govern the behavior of information.

We remark in passing that the quantity (8.7.2), and its i.i.d. analogue in Corollary 8.7.2, is
known as the index of resolvability, and it controls estimation rates and redundancy of coding
schemes for unknown distributions in a variety of scenarios; see, for example, Barron [17] and
Barron and Cover [18]. It is also similar to notions of complexity in Dudley’s entropy integral
(cf. Dudley [71]) in empirical process theory, where the fluctuations of an empirical process are
governed by a tradeoff between covering number and approximation of individual terms in the
process.
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8.7.2 Minimax bounds using global packings

There is now a four step process to proving minimax lower bounds using the global Fano method.
Our starting point is to recall the Fano minimax lower bound in Proposition 8.4.3, which begins
with the construction of a set of points {0(P,)},ey that form a 2§-packing of a set © in some
p-semimetric. With this inequality in mind, we perform the following four steps:

(i) Bound the packing entropy. Give a lower bound on the packing number of the set © with
26-separation (call this lower bound M (0)).

(ii) Bound the metric entropy. Give an upper bound on the KL-metric entropy of the class P of
distributions containing all the distributions P,, that is, an upper bound on log Ny (e, P).

(iii) Find the critical radius. Noting as in Corollary 8.7.2 that with n i.i.d. observations, we have

) : 2
I(V;Xq,...,Xp) < égg {ne + log Ny (6,73)},

we now balance the information I(V; X7") and the packing entropy log M (J). To that end, we
choose ¢, and § > 0 at the critical radius, defined as follows: choose the any €, such that

ne% > lOg Nkl (ena P) )
and choose the largest d§,, > 0 such that
log M (8,) > 4ne2 + 2log2 > 2Ny (€n, P) + 2ne2 4+ 2log2 > 2 (I(V; X7') +log2).

(We could have chosen the ¢, attaining the infimum in the mutual information, but this way
we need only an upper bound on log Ny (€, P).)

(iv) Apply the Fano minimazx bound. Having chosen §, and ¢, as above, we immediately obtain
that for the Markov chain V' — X7 = V,

N (Vi X1, ., Xp) +log?2 11
P(V£AEV)>1-— >1— ===
V#V) 2 log M (4,,) - 2 2

and thus, applying the Fano minimax bound in Proposition 8.4.3, we obtain
1
M, (0(P); P op) > 5(1)(571).

8.7.3 Example: non-parametric regression

In this section, we flesh out the outline in the prequel to show how to obtain a minimax lower
bound for a non-parametric regression problem directly with packing and metric entropies. In
this example, we sketch the result, leaving explicit constant calculations to the dedicated reader.
Nonetheless, we recover an analogue of Theorem 8.6.4 on minimax risks for estimation of 1-Lipschitz
functions on [0, 1].

We use the standard non-parametric regression setting, where our observations Y; follow the
independent noise model (8.6.1), that is, Y; = f(X;) + ;. Letting

F:={f:[0,1] = R, f(0) =0, fis Lipschitz}

be the family of 1-Lipschitz functions with f(0) = 0, we have
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Proposition 8.7.3. There exists a universal constant ¢ > 0 such that
R o2\ 1/3
(P, ) = it sup By 17 = flle] 2 (%)

fn fEF n

where fn is constructed based on the n independent observations f(X;) + ;.

The rate in Proposition 8.7.3 is sharp to within factors logarithmic in n; a more precise analysis of
the upper and lower bounds on the minimax rate yields

o? logn)1/3

n

WP, ) = i sup By [I1F, ~ Sl =
fn feF

See, for example, Tsybakov [167] for a proof of this fact.
Proof Our first step is to note that the covering and packing numbers of the set F in the /o

metric satisfy
1

=5
To see this, fix some § € (0,1) and assume for simplicity that 1/§ is an integer. Define the sets
E; = [6(j — 1),04), and for each v € {—1,1}'/% define h,(z) = Zjl.fl vj1{z € E;}. Then define
the function f,(t) = fg hy(t)dt, which increases or decreases linearly on each interval of width ¢§ in
[0,1]. Then these f, form a 24-packing and a 2d-cover of F, and there are 21/ such f,. Thus the
asymptotic approximation (8.7.4) holds.

‘ JCD Comment: TODO: Draw a picture ‘

log N(6, F, [l o) = log M (6, F, [|[| ) (8.7.4)

Now, if for some fixed = € [0,1] and f, g € F we define Py and P, to be the distributions of the
observations f(z) + e or g(x) + ¢, we have that
1 2 If =gl
D (Pr|Fy) = 55 (f(Xi) = 9(X))” < =572,

and if P}‘ is the distribution of the n observations f(X;) 4+ ¢;, i = 1,...,n, we also have

"1 n

D (PFIP}) =37 55 (F(X0) —9(X0)* < 55 1f gl

i=1

In particular, this implies the upper bound

1
log Nkl (6,73) S -
g€

on the KL-metric entropy of the class P = {Py : f € F}, aslog N(§, F, ||-||..) < 6~ 1. Thus we have
completed steps (i) and (ii) in our program above.

It remains to choose the critical radius in step (iii), but this is now relatively straightforward:
by choosing €, = (1/on)'/3, and whence ne2 =< (n/o?)'/3, we find that taking 6 =< (¢2/n)"/3 is

sufficient to ensure that log N (6, F,||*||..) = 61 > 4ne? + 2log 2. Thus we have

1 0_2 1/3
. > 2> =
MF ) 2005 2 (2)

as desired. ]
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8.8 Deferred proofs

8.8.1 Proof of Proposition 8.4.6

Our argument for proving the proposition parallels that of the classical Fano inequality by Cover
and Thomas [53]. Letting F be a {0, 1}-valued indicator variable for the event p(V,V) < ¢, we

~

compute the entropy H(E,V | V) in two different ways. On one hand, by the chain rule for entropy,
we have

H(E,V|V)=H(V |V)+HE|V,V), (8.8.1)
=0
where the final term vanishes since E is (V, ?)—measurable. On the other hand, we also have

H(E,V|V)=H(E|V)+H(V |E,V)<H(E)+ H(V | E,V),

using the fact that conditioning reduces entropy. Applying the definition of conditional entropy
yields

HV|EV)=P(E=0H(V|E=0,V)+P(E=1H(V | E=1,V),
and we upper bound each of these terms separately. For the first term, we have
H(V | E=0,V) <log(|V| - N"™),

since conditioned on the event £ = 0, the random variable V' may take values in a set of size at
most |V| — N/, For the second, we have

H(V | E=1,V) < log N/*>,

since conditioned on F = 1, or equivalently on the event that ,O(YA/, V) <'t, we are guaranteed that
V belongs to a set of cardinality at most N/"@*.
Combining the pieces and and noting P(E = 0) = P;, we have proved that

H(E,V | V)< H(E) + Plog (|V| = N™) 4 (1 — B;) log N>,
Combining this inequality with our earlier equality (8.8.1), we see that
H(V | V) < H(E) + P,log([V| — N"™™) + (1 — P;) log N,
Since H(E) = ha(P;), the claim (8.4.9) follows.

8.8.2 Proof of Corollary 8.4.7

First, by the information-processing inequality [e.g. 53, Chapter 2], we have I(V; XA/) < I(V; X),
and hence H(V | X) < H(V | V). Since hao(FP;) < log2, inequality (8.4.9) implies that

__ AJmin

H(V | X) —log N™* < H(V | V) — log N < P(p(V,V) > t) log |V|Nmf + log 2.
¢

Rearranging the preceding equations yields
H(V | X) —log N™®* — log 2

log V=N
g Ntmax

B(p(V,V) > t) >

(8.8.2)
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Note that his bound holds without any assumptions on the distribution of V.

By definition, we have I(V;X) = H(V) — H(V | X). When V is uniform on V, we have
H(V) = log|V|, and hence H(V | X) = log|V| — I(V;X). Substituting this relation into the
bound (8.8.2) yields the inequality

1%
log N‘{“LX I(V; X)+ log2 I(V; X) +log2
( (V V) ) Iv|_Ntmin - |v| Nmm — 1 - |V‘
log Ngnax 1Og Nmmx log Ntmax
8.8.3 Proof of Lemma 8.5.2
Fix an (arbitrary) estimator f. By assumption (8.5.1), we have
®(p(6,0(P, >2521{ l; # v}
Taking expectations, we see that
~ 1 ~
sup Ep |@(p(8(X), 0(P)))| = = S Ep, [@(p(6(X),0,)|
PeP VI =,
d
> LS 053 B, [1{w@)]; £
vy 220 B [1L{0 O £ v}

as the average is smaller than the maximum of a set and using the separation assumption (8.5.1).
Recalling the definition of the mixtures P4; as the joint distribution of V' and X conditional on
V; = £1, we swap the summation orders to see that

P ZP (9@)); #v,) = Wl‘zp (@) # ;) + ,},,ZP (9@ # )

= 3P4 (B0 #05) + 32— (FO £ v7)

This gives the statement claimed in the lemma, while taking an infimum over all testing procedures
U: X — {—1,+1} gives the claim (8.5.2).

8.9 Bibliography
For a fuller technical introduction into nonparametric estimation, see the book by Tsybakov [167].
Has’'minskii [100].

The material in Section 8.7 is based on a paper of Yang and Barron [175].

8.10 Exercises

Exercise 8.1 (A generalized version of Fano’s inequality; cf. Proposition 8.4.6): Let V and V be
arbitrary sets, and suppose that 7 is a (prior) probability measure on V, where V _is distributed
according to 7. Let V — X — V be Markov chain, where V takes values in V and V takes values
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in V. Let_ N C V xV denote a measurable subset of V x V (a collection of neighborhoods), and for
any v € )V, denote the slice

N :={veV:(vv) e N}. (8.10.1)

That is, A denotes the neighborhoods of points v for which we do not consider a prediction v for
v to be an error, and the slices (8.10.1) index the neighborhoods. Define the “volume” constants

pri=supm(V € N;) and p™:=infr(V € Np).

Define the error probability Perror = P[(V, Y7) ¢ N and entropy ha(p) = —plogp— (1—p)log(l—p).

(a) Prove that for any Markov chain V — X — V, we have

min

P > og

max max
p p

1 ~
h2(Perror) + Perror 1Og — I(V7 V) (8102)

(b) Conclude from inequality (8.10.2) that

(V3 X) +log 2

inf{)\ lOg m

P(V.V) g N] > 1

(c) Now we give a version explicitly using distances. Let V C R? and define N' = {(v,v') :
|lv —'|| <&} to be the points within § of one another. Let B, denote the ||-||-ball of radius 1
centered at v. Conclude that for any prior 7 on R? that

I(V; X) + log2

1
log sup,, m(0B,)

P(IV-Vl>6)>1-

Exercise 8.2: In this question, we will show that the minimax rate of estimation for the parameter
of a uniform distribution (in squared error) scales as 1/n?. In particular, assume that X; g
Uniform (6,6 + 1), meaning that X; have densities p(z) = 1{z € [0,0 + 1]}. Let X(;) = min{X;}

denote the first order statistic.

(a) Prove that
2

(n+1)(n+2)
(Hint: the fact that E[Z] = [[°P(Z > t)dt for any positive Z may be useful.)

E[(Xq) —0)%] =

(b) Using Le Cam’s two-point method, show that the minimax rate for estimation of # € R for the
uniform family ¢/ = {Uniform(6,6 4+ 1) : § € R} in squared error has lower bound c/n?, where
c is a numerical constant.

Exercise 8.3 (Sign identification in sparse linear regression): In sparse linear regression, we have
n observations Y; = (X;, 0*) + ¢;, where X; € R? are known (fixed) matrices and the vector 6* has

a small number k£ < d of non-zero indices, and ¢; i N(0,c?). In this problem, we investigate the
problem of sign recovery, that is, identifying the vector of signs Sign(@}‘) for j = 1,...,d, where
sign(0) = 0.
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Assume we have the following process: fix a signal threshold 6,;, > 0. First, a vector S €
{-1,0,1}¢ is chosen uniformly at random from the set of vectors Sy, := {s € {—1,0,1}¢: |s||, = k}.
Then we define vectors 6° so that 9;? = Omins;, and conditional on S = s, we observe

Y =X60°+¢, &~N(0,0%Lixn)
(Here X € R™*? is a known fixed matrix.)

(a) Use Fano’s inequality to show that for any estimator S of S, we have

d d 2
unless n >c k log (k)2 Z
[ 2 X7, P

Y

where c is a numerical constant. You may assume that k& > 4 or log (g) > 4log?2.

(b) Assume that X € {—1,1}"*4. Give a lower bound on how large n must be for sign recovery.
Give a one sentence interpretation of o2/62. .

Exercise 8.4 (General minimax lower bounds):  In this exercise, we outline a more general

approach to minimax risk than that afforded by studying losses applied to parameter error. In

particular, we may instead consider losses of the form

LZ@XP%R.F

where P is a collection of distributions and © is a parameter space, where additionally the losses
satisfy the condition

inf L(§,P) =0 forall P € P.
0cO

(a) Consider a statistical risk minimization problem, where we have a distribution P on random
variable X € X, loss function f : © x X — R, and for P € P define the population risk
Fp(0) :=Ep[f(0, X)]. Show that

L(6, P) := Fp(0) — inf Fp(0)

satisfies the conditions above.
(b) For distributions Py, P, define the separation between them (for the loss L) by

L(0, Py) < ¢ implies L(0, P;) > ¢

sepy (o, P1; ©) = sup {6 =0: L(6, Py) < ¢ implies L(6, Py) > ¢

for any 6 € @} . (8.10.3)

That is, having small loss on Py implies large loss on P; and vice versa.

We say a collection of distributions { P, },ecy indexed by V is d-separated if sep 1 (Py, Py;©) > 6.
Show that if {P,},cy is d-separated, then for any estimator 6

veVY v

where PP is the joint distribution over the random index V' chosen uniformly and then X sampled
X ~ P, conditional on V = v.
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(c) Show that if P has a d-separated subset {P,},cy, then
M(P, L) := inf sup Ep[L(0, P)] > §inf PG # V).
9 Pep v

Exercise 8.5 (Optimality in stochastic optimization): In this question, we prove minimax lower
bounds on the convergence rates in stochastic optimization problems based on the size of the
domain over which we optimize and certain Lipschitz conditions of the functions themselves. You
may assume the dimension d in the problems we consider is as large as you wish.

The setting is as follows: we have a domain © C R?, function f: © x X — R, which is convex
in its first argument, and population risks Fp(0) := Ep[f(0, X)], where the expectation is taken
over X ~ P. For any two functions Fy, Fi, let 0V € argming.g F,(6), and define the optimization
distance between Fy and Fi by

dopt (Fo, F1;©) := eigg {Fy(0) + F1(0) — Fy(6°) — F1(0")} .

Define also the loss L(0, P) := Fp(0) — infgpco Fp(0).

(a) Show for any ¢ > 0 that if dop(Fp, F1;0©) > 4§, then sepy (Po, Pi;0) > %, where sep is defined
in Eq. (8.10.3).

We consider lower bounds for stochastic optimization problems with appropriately Lipschitz f.
(b) Let the sample space X = {iej};l:l be the signed standard basis vectors, and for § € R?,
define
T EE
0; +1] if x = —ej.
Let v € {—1,1}¢. For some § > 0 to be chosen, define the distribution P, on X by

e 144

X — Vj€; W.p. 5g
- 1-9
—vi¢  W-P- g

(Note that || X||, = 1.) Give an explicit formula for
Fy(0) :==Ep, [f(0, X)].
(c) Show that ¥ = argmin, F,(6) = v and that F,(6") =1 — 0.

(d) Let V C {£1}? be a d/2-packing in ¢;-distance of cardinality at least exp(d/8) (by Gilbert-
Varshamov, Lemma 8.2.3). Assume that © D [—1, 1]%. Show that dopt(Fy, Fyr) > 6 ||v — /||, /d
for all distinct v,v’ € V.

(e) For our loss L(6, P) = Fp(0) — infgco Fp(#), show that the minimax loss gap

M, (P, O, L) := inf sup Ep[L(0n(X]), P)] = inf sup {EP[FP(@L(X?)) - Fﬁ]}
0, PeP 0, PP

(where Fj, = infypce Fp(f) and X7 Y P) satisfies

M, (P, L) > cmin {ﬁ, 1} :

where ¢ > 0 is a constant. You may assume d > 8 (or any other large constant) for simplicity.
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(f) Show how to modify this construction so that for constants L, R > 0, if © D [~R, R]?, there
are functions f that are L-Lipschitz with respect to the £, norm, meaning

|f(0;2) — f(0';2)| < L]0 -0,

such that for this domain ©, loss f (and induced L), and the same family of distributions P
as above,

M, (P,O,L) > cLRmin {\\/fg, 1} )

(g) Suppose that instead, we have © D {6 € R? | ||0||, < Ra}, the fo-ball of radius Rg, and allow
f to be Lo-Lipschitz with respect to the f3-norm (instead of /). Show that

Lo Ry
Vi

(h) What do these results say about stochastic gradient methods?

mn(Pa 67 L) >c

Exercise 8.6 (Optimality in high-dimensional stochastic optimization): =~ We revisit the setting
in Question 8.5, except that we consider a high-dimensional regime. In particular, we will prove
lower bounds on optimization when the domain © = {# € R? | ||0||, < r}, the ¢;-ball, and the loss
functions f are M-Lipschitz with respect to the ¢;-norm, equivalently, that |Vyf(0,2)||, < M for
all € ©. For distributions P on X, define Fp(0) = Ep[f(0, X)] and F}p = infyce Fp(0).

We now give an explicit construction. Let the sample space X = {—1, 1}d be the hypercube,
and consider linear losses

f(0;2) = M(0, z),

which are evidently M-Lipschitz w.r.t. the £;-norm. Now, for the packing set V = {+e; };l:l of the
standard basis vectors, define the distribution P, on X € {£1}¢ to have independent coordinates

with -
1 wp. —H
Xj = { 1-dv;

-1 wp. —

That is, X ~ P, has independent random sign coordinates except in coordinate j when v = e;,
where Py (X; = +1) = %‘5. Let

Fy(0) = Ep,[f(0, X)] = Mé(v,0).
(a) Give 0" := argmingcg Fy,(0).

(b) Using the optimization distance dopt(Fp, F1;0) = infgee{Fo(0) + F1(0) — Fy — F}}, where
Fy = infgco F,(0), defined in Question 8.5, show the separation

rr;éir} dopt (Fy, Fiyr; ©) = Mor.

(c) Let the loss L(0,P) = Fp(0) — infgco Fp(f) as in Question 8.5, let P be the collection of
distributions supported on [—1,1]%, and define the minimax loss gap

M, (P,0,L) = iaf 1531;17)3 {Ep [FP(@L(X{L)) — Flg}}
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where X7 i P. Show that there exists a numerical constant ¢ > 0 such that

. log(2d)

(You may assume d > 2 to avoid trivial cases.) Hint. Use the result of Question 8.4 part (c).

M,(P,O,L) >

Exercise 8.7: In this question, we study the question of whether adaptivity can give better
estimation performance for linear regression problems. That is, for ¢ = 1,...,n, assume that we
observe variables Y; in the usual linear regression setup,

Yi=(Xi,0) +ei, e % N(0,0?), (8.10.4)
where § € R? is unknown. But now, based on observing Yli_1 ={Y1,...,Y;_1}, we allow an adaptive

choice of the next predictor variables X; € RY. Let £, (F?) denote the family of linear regression
problems under this adaptive setting (with n observations) where we constrain the Frobenius norm
of the data matrix X = [X; --- X,], X € R™% to have bound || X |3, = > 1X;]13 < F2. We
use Assouad’s method to show that the minimax mean-squared error satisfies the following bound:
~ do? 1
M(Liga(F?), [I-113) := inf sup B0 - 0]3] > — - ——. (8.10.5)
6 gcrd 164 F
Here the infimum is taken over all adaptive procedures satisfying [|.X |13 < F2.
In general, when we choose X; based on the observations YZ 1 we are taking X; = F; (YZ Loy,
where U; is a random variable independent of &; and Yf_l and F; is some function. Justlfy the
following steps in the proof of inequality (8.10.5):

(i) Assume that nature chooses v € V = {—1,1}¢ uniformly at random and, conditionally on v,
let 0 = 0,. Justify

M(Loaa(F), 1-112) >1anZEe 16— 6, 13]-

Argue it is no loss of generality to assume that the choices for X; are deterministic based on
the Yffl. Thus, throughout we assume that X; = Fi(Yffl, u?), where u? is a fixed sequence,
or, for simplicity, that X; is a function of Yf_l.

(ii) Fix § > 0. Let v € {—1,1}%, and for each such v, define , = dv. Also let P? denote the joint
distribution (over all adaptively chosen X;) of the observed variables Yi,...,Y,, and define
Pjrlj = Qd—l,l Zm}j:l PP and Pf‘j = 2d D vj——l , so that ﬁj denotes the distribution of
the Y; when v € {—1,1}% is chosen uniformly at random but conditioned on v; = +1. Then

52 &
i o S B0 — 0,131 = 5 3 [1= 1P = Pyl

veEV j=1

(iii) We have

1

52 W o 52d I a0 o 2
52[ 1P P—jHTV} Z 5 1_<dZHP+j_P—jHiV>
=1

Jj=1
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(iv) Let P_(F? be the distribution of the random variable Y; conditioned on v; = +1 (with the other
coordinates of v chosen uniformly at random), and let PJ(:J)( | yi~1, x;) denote the distribution
of Y; conditioned on v; = +1, Yf'_1 = yi_l, and x;. Justify

1
HPQ]' - PﬁjH?[‘V < §Dk1 (Pﬁj”Pﬁj)

1 ¢ i i i i i—1, i
<33 / D (PO Ly )l PO [y ) ) dPS (i ).
=1

(v) Then we have
26*

2
=) Hiﬁiﬂz-

d
> D (PO 1y lPUC i) <
j=1

(vi) We have
- 2 52 5
> NIPss = P2l < SEIX IR
j=1

where the final expectation is over V drawn uniformly in {—1,1}% and all Y;, X;.

(vii) Show how to choose ¢ appropriately to conclude the minimax bound (8.10.5).

Exercise 8.8: Suppose under the setting of Question 8.7 that we may no longer be adaptive,
meaning that the matrix X € R"*¢ must be chosen ahead of time (without seeing any data).
Assuming n > d, is it possible to attain (within a constant factor) the risk (8.10.5)? If so, give an
example construction, if not, explain why not.

Exercise 8.9 (The curse of dimensionality in nonparametric regression): Consider the non-
parametric regression problem in Section 8.6. Let B? be the unit fo-ball in R? and consider the
function class F of 1-Lipschitz functions taking values in [~1,1] on B¢, and consider the error
If —gll3 = Jga(f(z) — g(x))*dz. (Here, 1-Lipschitz means |f(z) — f(2)| < ||z — 2/||, for any z, z'.)
We show the minimax lower bound (8.6.4) for this function class using Fano’s method. Fix § € [0, 1]
to be chosen and let {acj}j]\/il be the centers of a maximal 20-packing of B%, so that M > ()7 (by
Lemma 4.3.10), and define the “bump” functions

g5(x) =8 [1 = llz — =]l /o], ,

which all have disjoint support. Then for a vector v € {il}M , define

M

folz) = vg;(=).

j=1
(a) Show that f, € F.

(b) Show that [ g;(z)*dz = (ﬂ;f%%éﬂd, where SA(d) denotes the surface area of B.

(c) Use the Gilbert-Varshamov bound (Lemma 8.2.3) to show there is a collection V C {£1}M of
cardinality exp(M/8) with || f, — fu H; > cq6? for all v # v' € V, where ¢4 depends only on the
dimension d.
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(d) Prove the minimax lower bound (8.6.4) for 5 = 1.

Exercise 8.10 (Optimal algorithms for memory access): In a modern CPU, memory is
organized in a hierarchy, so that data upon which computations are being actively performed lies
in a very small memory close to the logic units of the processor for which access is extraordinarily
fast, while data not being actively used lies in slower memory slightly farther from the processor.
(Modern processor memory is generally organized into the registers—a small number of 4- or 8-byte
memory locations on the processor—and level 1, 2, (and sometimes 3 or more) cache, which contain
small amounts of data and increasing access times, and RAM (random access memory).) Moving
data—communicating—between levels of the memory hierarchy is both power intensive and very
slow relative to computation on the data itself, so that in many algorithms the bulk of the time of
the algorithm is in moving data from one place to another to be computed upon. Thus, developing
very fast algorithms for numerical (and other) tasks on modern computers requires careful tracking
of memory access and communication, and careful control of these quantities can often yield orders
of magnitude speed improvements in execution. In this problem, you will prove a lower bound on
the number of communication steps that a variety of numerical-type methods must perform, giving
a concrete (attainable) inequality that allows one to certify optimality of specific algorithms.

In particular, we consider matrix multiplication, as it is a proxy for a class of cubic algorithms
that are well behaved. Let A, B € R™" be matrices, and assume we wish to compute C = AB,
via the simple algorithm that for all ¢, j sets

n
Cij =Y _ AuBj;.
=1

Computationally, this forces us to repeatedly execute operations of the form
Mem(Cij) = F(Mem(Ail), Mem(Blj), Mem(Cij)),

where F' is some function—that may depend on i, j,l—and Mem(-) indicates that we access the
memory associated with the argument. (In our case, we have Cj; = Cj; + A;; - Bjj.) We assume
that executing F' requires that Mem(A;;), Mem(B;;), and Mem(Cj;) belong to fast memory, and
that each are distinct (stored in a separate place in flow and fast memory). We assume that the
order of the computations does not matter, so we may re-order them in any way. We call Mem(A;;)
(respectively B or C) and operand in our computation. We let M denote the size of fast/local
memory, and we would like to lower bound the number of times we must communicate an operand
into or out of the fast local memory as a function of n, the matrix size, and M, the fast memory
size, when all we may do is re-order the computation being executed. We let Ngiore denote the
number of times we write something from fast memory out to slow memory and let N oaq the
number of times we load something from slow memory to fast memory. Let N be the total number
of operations we execute (for simple matrix multiplication, we have N = n3, though with sparse
matrices, this can be smaller).

We analyze the procedure by breaking the computation into a number of segments, where each
segment contains precisely M load or store (communication-causing) instructions.

(a) Let Nseg be an upper bound on the number of evaluations with the function F(-) in any given
segment (you will upper bound this in a later part of the problem). Justify that

NStore + NLoad > M LN/Nsng .
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(b)

Within a segment, all operands involved must be in fast memory at least once to be computed
with. Assume that memory locations Mem(A;;), Mem(B;;), and Mem(C;;) do not overlap.
For any operand involved in a memory operation in one of the segments, the operand (1) was
already in fast memory at the beginning of the segment, (2) was read from slow memory, (3)
is still in fast memory at the end of the segment, or (4) is written to slow memory at the end
of the segment. (There are also operands potentially created during execution that are simply
discarded; we do not bound those.) Justify the following: within a segment, for each type of
operand Mem(A4;;), Mem(B;;), or Mem(C};), there are at most ¢ - M such operands (i.e. there
are at most cM operands of type Mem(A4;;), independent of the others, and so on), where c is
a numerical constant. What value of ¢ can you attain?

Using the result of question 6.1, argue that Ngeg < ¢’V M3 for a numerical constant ¢’. What
value of ¢ do you get?

Using the result of part (c), argue that the number of loads and stores satisfies

N
Nstore + Nioad = CHW - M

for a numerical constant ¢’. What is your constant?

JCD Comment: A few additional question ideas:
1. Use the global Fano method technique to give lower bounds for density estimation

2. Curse of dimensionality in high-dimensional regression? The idea would be to take dis-
joint §-balls B; C B¢, where BY = {z | ||z|| < 1} is the unit ball, with centers z;, where
j Tuns from 1 to (1/6)¢, then define the bump function g;(x) = 6 [1 — ||z — ;]| /0],
Then set fy(z) = >_,v;g;(z), which is 1-Lipschitz for the norm ||-||. Then the sepa-
ration is ¢, while the log cardinality is 267(1, giving 6%(1 — nd?*9) as the lower bound.
Take § = n~1/(2+d),
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Chapter 9

Constrained risk inequalities

In this chapter, we revisit our minimax bounds in the context of what we term constrained risk
inequalities. While the minimax risk of provides a first approach for providing fundamental limits
on procedures, its reliance on the collection of all measurable functions as its class of potential
estimators is somewhat limiting. Indeed, in most statistical and statistical learning problems, we
have some type of constraint on our procedures: they must be efficiently computable, they must
work with data arriving in a sequential stream, they must be robust, or they must protect the
privacy of the providers of the data. In modern computational hardware, where physical limits
prevent increasing clock speeds, we may like to use as much parallel computation as possible,
though there are potential tradeoffs between “sequentialness” of procedures and their parallelism.

With this as context, we replace the minimax risk of Chapter 8.1 with the constrained mini-
mazx risk, which, given a collection C of possible procedures—private, communication limited, or
otherwise—defines

MO(P),®op,C):= érelglilé%EP {Cb(p(@\(X),H(P)))} , (9.0.1)

where as in the original defining equation (8.1.1) of the minimax risk, ® : R, — R is a nondecreas-
ing loss, p is a semimetric on the space ©, and the expectation is taken over the sample X ~ P.
In this chapter, we study the quantity (9.0.1) via a few examples, highlighting possibilities and
challenges with its analysis. We will focus on a restricted class of examples—many procedures do
not fall in the framework we consider—that assumes, given a sample X1,..., X, we can represent
the class C of estimators under consideration as acting on some view or processed version Z; of
X;. This allows us to study communication complexity, memory complexity, and certain private
estimators.

9.1 Strong data processing inequalities

The starting point for our results is to consider strong data processing inequalities, which improve
upon the standard data processing inequality for divergences, as in Chapter 2.1.3, to provide more
quantitative versions. The initial setting is straightforward: we have distributions Py and P; on a
space X, and a channel (Markov kernel) @ from X to Z. When @ is contractive on the space of
distributions, we have a strong data processing inequality.

Definition 9.1 (Strong data processing inequalities). Let f : Ry — R U {400} be conver and
satisfy f(1) = 0. For distributions Py, P1 on X and a channel Q from X to a space Z, define
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the marginal distribution M,(A) := [Q(A | z)dP,(z). The channel Q satisfies a strong data
processing inequality with constant o < 1 for the given f-divergence

Dy (Mo|My) < oDy (Pol P1)
for any choice of Py, Py on X. For any such f, we define the f-strong data processing constant

Dy (Ml M)
« = Su e —
S(Q)= s Rl

These types of inequalities are common throughout information and probability theory. Perhaps
their most frequent use is in the development conditions for the fast mixing of Markov chains.
Indeed, suppose the Markov kernel () satisfies a strong data processing inequality with constant «
with respect to variation distance. If 7 denotes the stationary distribution of the Markov kernel )
and we use the operator o to denote one step of the Markov kernel,!

QoPi= [ QU |0)irG)
then for any initial distribution my on the space X we have
1Qo---0Qmo —mllry < o w0 — 7y
———
k times

because Q o m = w by definition of the stationary distribution. Thus, the Markov chain enjoys
geometric mixing.

To that end, a common quantity of interest is the Dobrushin coefficient, which immediately
implies mixing rates.

Definition 9.2. The Dobrushin coefficient of a channel or Markov kernel Q) is

aTv(Q) = Sazlz,ll) HQ( ‘ (L‘) - Q( ’ y)HTV'

The Dobrushin coefficient satisfies many properties, some of which we discuss in the exercises and
others of which we enumerate here. The first is that

Proposition 9.1.1. The Dobrushin coefficient is the strong data processing constant for the vari-
ation distance, that is,

|QoPy— Qo Py
aty(Q) = sup .
Po#Py [P0 — Pillpy

Proof There are two directions to the proof; one easy and one more challenging. For the easy
direction, we see immediately that if 1, and 1, denote point masses at = and y, then

Qo Py— Qo P
sup > p > sup Q(- [ ) — Q( | W)l py
pzpr  1Po— Pillpy 2.y

as |1z — 1y|lpy = 1 for z # y.

!The standard notation is usually to right-multiply the measure P, so that the marginal distribution M = PQ
means M(A) = [ Q(A | z)dP(z); we find our notation more intuitive.
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The other direction—that ||Q o Py — Qo Pi||py < arv ||Po — Pi|lpy—is is more challenging.
For this, recall Lemma 2.2.4 characterizing the variation distance, and let Q,(A) := infy, Q(A4 | y).
Then by definition of the Dobrushin coefficient &« = av(Q), we evidently have |Q(A | ) —Q«(A)| <
a. Let M, = [ Q(- | #)dP,(x) for v € {0,1}. By expanding dPy — dP; into its positive and negative
parts, we thus obtain

My(4) - M(4) = [ QA )Py - dPy)(@)
— [ @]9 rta) - ar). - [ QU | A - dR(a),
< [ @]9 - dP@), - [ QW) P - iR,
- [0 an@ - in@), - [ Q)R - dP@),

where the final equality uses Lemma 2.2.4. But of course we then obtain
Mo(A) — Mi(A) = /(Q(A | 2) = Qu(A)) [dPo(z) — dPr(z)], < 04/ [dPy —dP1], = a|[Fy — Py

where the inequality follows as 0 < Q(A | z) — Qx(A) < a and the equality is one of the character-
izations of the total variation distance in Lemma 2.2.4. O

A more substantial fact is that the Dobrushin coefficient upper bounds every other strong data
processing constant.

Theorem 9.1.2. Let f: Ry — RU{oo} satisfy f(1) =0. Then for any channel Q,

atv(Q) > af(Q).

The theorem is roughly a consequence of a few facts. First, Proposition 9.1.1 holds. Second,
without loss of generality we may assume that f > 0; indeed, replace f(t) with h(t) = f(t) — f/(1)¢
for any f'(1) € 9f(1), we have h > 0 as 0 € Oh(1) and Dj, = Dy. Third, any f > 0 with 0 € 9f(1)

can be approximated arbitrarily accurately with functions of the form h(t) = Zle a; [t —ci], +

Zle bi [d; — 1] +» where ¢; > 1 and d; < 1. For such A, an argument shows that

Dp(Q o Py|Q o Pr) < arv(Q)Du(FPo|Pr),

which follows from the similarities between variation distance, with f(t) = %|¢|, and the positive
part functions [-], .

There is a related result, which we do not prove, that guarantees that strong data processing
constants for x2-divergences are the “worst” constants. In particular, if QP = [Q(- | z)dP(z)
denotes the application of one step of a channel Q to X ~ P, then the x? contraction coefficient is

D2 (QR|QP)
sup
ro£P, Dy2 (PolP1)

Qy2 (Q) =

Then it is possible to show that for any twice continuously differentiable f on R with f”(1) > 0,

0,2(Q) < as(Q), (9.1.1)
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and we also have a,2(Q) = a1a(Q), so that the strong data processing inequalities for KL-divergence
and y2-divergence coincide.

In our context, that of (constrained) minimax lower bounds, such data processing inequalities
immediately imply somewhat sharper lower bounds than the (unconstrained) applications in previ-
ous chapters. Indeed, let us revisit the situation present in the local Fano bound, where we the KL
divergence has a Euclidean structure as in the bound (8.4.6), meaning that Dy (Py| P1) < 262 when
our parameters of interest 6, = 0(F,) satisfy p(6p,01) < §. We assume that the constraints C impose
that the data X; is passed through a channel ) with KL-data processing constant axr,(Q) < 1. In
this case, in the basic Le Cam’s method (8.3.2), an application of Pinsker’s inequality yields that

whenever p(6p,6;) > 2§ then

S)JTTL(Q(P),CD o p,C) Z Q);(S) |:1 — HngI (MOHMI):| Z (I);(S) [1 — \/TLH206KL(Q)(52/2 N

and the “standard” choice of § to make the probability of error constant results in 62 = (2nx2akr(Q))
or the minimax lower bound

1 1
M, (0(P),®opC)> - ——— |,
( ( ) P ) 4 < 27,“{20[KL(Q))

which suggests an effective sample size degradation of n — nakr,(Q). Similarly, in the local Fano
method in Chapter 8.4.1, we see identical behavior and an effective sample size degradation of
n — naky(Q), that is, if without constraints a sample size of n(e) is required to achieve some
desired accuracy €, with the constraint a sample size of at least n(e)/akr(Q) is necessary.

9.2 Local privacy

In Chapter 7 on differential privacy, we define locally private mechanisms (Definition 7.2) as those
for which there is no trust: individuals randomize their own data, and no central curator collects
or analyzes and then privatizes the resulting statistics. With such privacy mechanisms, we can
directly develop strong data processing inequalities, after which we can prove strong lower bounds
on estimation. In this section, we (more or less) focus on one-dimensional quantities and Le Cam’s
two-point method for lower bounds, as they allow the most direct application of the ideas. We will
later develop more sophisticated techniques.

We begin with our setting. We have a e-differentially private channel @ taking inputs x € X
and outputting Z. Here, we allow sequential interactivity, meaning that the ith private variable Z;
may depend on both X; and Zf_l (see the graphical model in Figure 9.1), so that instead of the
basic constraint in Definition 7.2 that Q(A | z) < e*Q(A | 2’) for all z,2’, local differential privacy
instead means

Zic Al Xy =a,20!
Q( 7 € ’ 1 xazli_l) S ez’;‘ (921)
Q(Zi cA | Xi :x’,zl )
for all (measurable) sets A and inputs z, 2’ ,zi_l. The key result is the following contraction
inequality on the space of probabilities.

Theorem 9.2.1. Let () be an e-locally differentially private channel from X to Z. Then for any
distributions Py, Py inducing marginal distributions M,(-) = [ Q(- | z)dP,(z),

Dy (Mo| M) + Dy (M| M) < 4(e — 1) || Py — P1‘|F2fv~
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Figure 9.1. The sequentially interactive private observation model: the ith output Z; may depend
on X; and the previously released Zi™*

Proof Without loss of generality, we assume that the output space Z is finite (by defini-
tion (2.2.3)), and let my(z) and ¢(z | ) be the p.m.f.s of M and @, respectively, and let Py
and P; have densities pg and p; with respect to a measure p. Then

Dy (Mo|My) + Dig (M1 M) = > (o (=) — my(2)) log 2(1)8

z

For any a,b > 0, we have log # = log(1 + ¢ —1) < # — 1, and similarly, logg < g — 1. That is,
la—b]

|log 3| < min{a 5] Substituting above, we obtaln

(mo(2) —my (Z))2
Dia (Mol M) + Dia (Mi[Mo) £ 3 Sme= i

To control the difference mg(z) — m1(z), note that for any fixed g € X we have

/X a(= | 20)(po(x) — p1(2))da(x) = 0.

Thus
mo(z) —ma(z) = / (a(z | ) — a(z | z0))(po(z) — p1(x))dp(z),
X
and so
[mo(2) — ma(z)] <§1€1§\Q(2 | z) — q(z | zo) I/ [po(x (@)|dp(z)

= 2q(c o) sup ((HELE) 1) 1By~ Pillgy -

q(z|z)
q(z[zo)

mo(2) —mi(2)] < 2(e” =1)infq(z [ 2) [[Po = Prllpy -

— 1< e —1, and as xp was arbitrary we obtain

By definition of local differential privacy,

Noting that inf, ¢(z | ) < min{mg(z), m1(z)} we obtain the theorem. O
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To be able to apply this result to obtain minimax lower bounds for estimation as in Sec-
tion 8.3, we need to address samples drawn from product distributions, even with the potential
interaction (9.2.1). In this case, we consider sequential samples Z; ~ Q(- | X;, Zi1) and define

= [Q(- | 27)dP,(z}) to be the marginal distribution over all the Z]'. Then we have the
followmg corollary.

Corollary 9.2.2. Assume that each channel Q(- | X;, Zi_l) 18 g;-differentially private. Then

n
Dia (Mg |M7) <4 (e = 1)% | Py — Pil[3y -
=1

Proof Recalling the chain rule (2.1.6) for the KL-divergence, we have

n
Dy (Mg [M7) = By [Dia (Mou(- | 27 DM | Z2i7H)],
=1

where the outer expectation is taken over Z{fl drawn marginally from Mg, and M, ;(- | 27’ h

denotes the conditional distribution on Z; given Zifl = zl ! when X7 iy P,. Writing this distri-

bution out, we note that Z; is conditionally independent of X\; given X; and Zl ! by construction,
so for any set A

My i(A |7 = / QZi € A| 27, 27 )dP,(2 | 27Y) = / QZi € A | zi, 2P, (o} | 271
= /Q(Zi € Al 2Py ().

Now we know that Q(Z; € - | x;, zi_l) is g;-differentially private by assumption, so Theorem 9.2.1
gives ' ‘
Dia (Mo (- | 27 ) [Mu(- | 2571) < 4(e® — 1)% [Py — Pi|l 3y

for any realization z Lof Z{ ! Tterating this gives the result. O

Local privacy is such a strong condition on the channel @ that it actually “transforms” the
KL-divergence into a variation distance, so that even if two distributions Py and P; have infinite
KL-divergence Dy (FPy|Py) = +o0o—for example, if their supports are not completely overlapping—
their induced marginals have the much smaller divergence Dy (M| M) < 4(ef—1)? ||Py — Py HQTV <
4(ef —1)%. This transformation into a different metric means that even in estimation problems that
should on their faces be easy become quite challenging under local privacy constraints; for example,
minimax squared error for estimating the mean of a random variable with finite variance scales as
1/4/n rather than the typical 1/n scaling in non-private cases (see Exercise 9.4).

Let us demonstrate how to apply Corollary 9.2.2 in a few applications. Our main object of
interest is the private analogue of the minimax risk (8.1.1), where for a parameter § : P — O,
semimetric p, and loss ®, for a family of channels @ we define the channel-constrained minimax
risk R

M(B(P). @ 0 p, Q) 1= inf int sup Epg [#(p(0,(27).0(P))]. (9.2.2)
When we take Q@ = Q. to be the collection of e-locally differentially private (interactive) chan-
nels (9.2.1), we obtain the e-locally private minimax risk.

A few examples showing lower (and upper) bounds for the private minimax risk (9.2.2) in mean
estimation follow.
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Example 9.2.3 (Bounded mean estimation): Let P be the collection of distributions with
supports on [—b,b], where 0 < b < co. Then for any £ > 0, the minimax squared error satisfies

v? b?

M, (0(P), (')2, Q) 2 m + e

The second term in the bound is the classic minimax rate for this collection of distributions.
To see the first term, take Bernoulli distributions Py and P1 € P, where for some § > 0
to be chosen, under Py we have X = b with probability 5% and —b otherwise, while under
P we have X = b with probability ¢ and X = —b othervvlse. Then ||Py — Pi|lpy = 0,
Ei[X] — Eo[X] = 2b4, and by Le Cam’s method (8.3.3), for any e-locally private channel @
and induced marginals Mg, M{* as in Corollary 9.2.2, we have

252 252
M, (0(P). (2. (Q)) = T~ (1 ~\/apu (Mé‘\MF)> > 73 (1= V2t = 0 im - iRy

= 1722(52 (1- V2l —1)28?).

Setting 62 = m gives the claimed minimax bound. <

Effectively, then, we see a reduction in the effective sample size: when ¢ is large, there is no change,

but otherwise, the estimation error is similar to that when we observe a sample of size ne?.

Example 9.2.4 (Estimating the parameter of a uniform distribution): In exercise 8.2, we show
that estimating the parameter 6 of a Uniform(6, 6 + 1) distribution has minimax squared error
scaling as 1/n2. Under local differential privacy, this is impossible. Let P = {Uniform(6,6 +
1),0 € [0,1]} be the collection of uniform distributions with the given supports. Letting Py
and P; be Uniform(0, 1) and Uniform(d,1 + §), respectively, where § > 0 is to be chosen, we
have ||Py — Pi|lpy = 6, while for any e-differentially private channel @ and induced marginals
M() and Ml,
Dy (MJ| M) < 4(ef —1)*n||Py — P53y = 4(eF — 1)%nd>.

1
\/n(es—1)’

the collection of e-locally differentially private channels,

Applying Le Cam’s method (8.3.3) and taking § =< we thus have that if Q. denotes

ot
(ef —1)%n’

When e < 1, the best attainable rate thus scales as n%g &

M, (0(P), ()%, Qe) 2

In both the preceding examples, a number of simple estimators achieve the given minimax rates.
The simplest is one based on the Laplace mechanism (Example 7.1.3): let W; Y Laplace(1), and
set Z; = X; + 2le in Example 9.2.3 and Z; = X; + I/VZ in Example 9.2.4. In the former, define
0, = Z, to be the mean; in the latter, E[Z,] = 9‘51, so 0,, = 27, — 1 achieves the minimax rate.

More extreme examples are possible. Consider, for example, the problem of testing the support
of a distribution, where we care only about distinguishing two distributions.
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Example 9.2.5 (Support testing): Consider the problem of testing between the support of
two uniform distributions, that is, given n observations, we wish to test whether P = Fy =
Uniform[0, 1] or P = P; = Uniform[¢,1] for some 6 € (0,1). We can ask the rate at which
we may take 6 | 0 with n while still achieving non-trivial testing power. Without privacy, a
simple (and optimal) test ¥ is to simply check whether any observation X; < 6, in which case
we can trivially accept Py and reject P;, otherwise accepting P;. Then

Py(X; >0, alli) =(1—0)" while P (X; >0, all i) =1.
So the summed probability of error
Po(U=1)+ P(¥ =0) = (1-0)" < exp(—bn),

and if > 1/n this tends to zero, while 6,, = 6y/n yields lim,, Py(¥ = 1) = e,

Consider now the private case. Then for any e-differentially private channel () and induced
marginals Mo, My, we have Dy (M| M}) < 4n(e® —1)?||Py — Py |3, by Corollary 9.2.2 while
|Po — Pi||py = 0. The Bretagnolle-Huber inequality (Proposition 2.2.8.(b)) thus guarantees
that

Mg — M7|3y < 1 — exp(—Dia (M IM}) < 1 — exp(—4n(e* — 1)%62).

Whenever 6 < ﬁ, we have ||M§ — M{'|| 1, — 0, and so for any test based on the private data
Z7, the probabilities of error

inf {Fo(U(Z]) £ 0) + PL((Z]) £ 1)} > 1= /T — exp(—canf?),

where c. = 4(e® —1)2. In the range that % LI %’ then, there is an essentially exponential
gap between the non-private and private cases. <

9.3 Communication complexity

Communication complexity is a broad field, encompassing results establishing fundamental limits in
streaming and online algorithms, memory-limited procedures, and (of course) in minimal commu-
nication in various fields. Recent connections between communication complexity and information-
theoretic techniques have increased its applicability in statistical problems, which is our main mo-
tivation here, and to which we return in force in Section 9.4 to come. To motivate our approaches,
however, we give a (necessarily limited) overview of communication complexity, along with some
of the basic techniques and approaches, which then extend to statistical problems.

9.3.1 Classical communication complexity problems

The most basic problems in communication complexity are not really statistical, instead asking a
simpler question: two entities (always named Alice and Bob) have inputs z,y and wish to jointly
compute a function f(z,y). The question is then how many bits—or other messages—Alice and
Bob need to communicate to compute this value. Less abstractly, Alice and Bob have input domains
X and Y (often, these are {0,1}"), and Alice receives a vector x € X and Bob y € ), each unknown
to the other, and they jointly exchange messages until they can successfully evaluate f(z,y). To
abstract away any details of the computational model, we assume each has infinite computational
power, which allows a focus on communication. To formulate this as communication, we consider a
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a1(z)

yes no  no yes yes no no  yes

Figure 9.2. A communication tree representing testing equality for 2-dimensional bit strings
z,y € {0,1}?. Internal nodes labeled a; communicate the jth bit a;(z) = x; of z, while internal
nodes labeled b; communicate the jth bit b;(y) = y; of y. The maximum number of messages is 4.
(A more efficient protocol is to have Alice send the entire string = € {0,1}", then for Bob to check
equality = y and output “Yes” or “No.”)

protocol 11, which specifies the messages that each of Alice and Bob send to one another. We view
this as a series of rounds, where at each round, the protocol allows one {0, 1}-valued bit to be sent
and determines who sends this bit, and, at termination time, can compute f(z,y) based on the
communicated message. Then the communication cost of II is the maximum number of messages
sent to (correctly) compute f over all inputs x, y.

A more convenient formulation for analysis is to consider a binary tree:

Definition 9.3. A protocol II over a domain X x Y with output space Z is a binary tree, where
each internal node v is labeled with a mapping a, : X — {0,1} or b, : Y — {0,1} and each leaf is
labeled with a value z € Z.

Then to execute a communication protocol IT on input (z,y), we walk down the tree: beginning
at the root node, for each internal node v labeled a, (an Alice node) we walk left if a,(x) = 0 and
right if a,(x) = 1, and each node v labeled b, (a Bob node) we walk left if b,(y) = 0 and right if
by(y) = 1. Then the communication cost of the protocol II is the height of the tree, which we denote
by depth(II). Figure 9.2 shows an example for testing the equality z = y of two 2-dimensional bit
strings =,y € {0,1}2.

In classical communication complexity, the main questions center around the communication
complexity of a function f : X — ), which is the length of the shortest protocol that computes f
correctly on all inputs: letting I,y (x, y) denote the final output of the protocol II on inputs (z,y),
this is

CC(f) := inf {depth(II) | Moy (x,y) = f(x,y) for all z € X,y € V}.
In many cases, it is useful to allow randomized communication protocols, which tolerate some
probability of error; in this case, we let Alice and Bob each have access to (an arbitrary amount)
of randomness, which we can identify without loss of generality with uniform random variables

U, Uy i Uniform[0, 1], and the nodes a, and b, in Definition 9.3 are then mappings a, : X x[0,1] —

228



Lexture Notes on Statistics and Information Theory John Duchi

{0,1} and b, : Y x [0,1] — {0,1} and they calculate a,(-,U,) and by(-, Up), respectively. Abusing
notation slightly by leaving this randomness implicit, the randomized communication complezity
for an accuracy § is then the length of the shortest randomized protocol that calculates f(z,y)
correctly with probability at least 1 — §, that is,

RCCs(f) := inf {depth(I) | P(Iout(x,y) # f(z,y)) < d for all z € X,y € V}. (9.3.1)

In the definition (9.3.1), we leave the randomization in II implicit, and note that we require that
the tree it induces still have a maximum length. We note that essentially any choice of 6 > 0 is
immaterial, as we always have

RCCs(f) < 0(1>log§ -RCCy3(f),

making all (constant) probability of error complexities essentially equivalent. (See Exercise 9.7.)

There are variants of randomized complexity that allow public randomness rather than pri-
vate randomness, which can yield simpler algorithms and somewhat reduced complexity, but this
improvement is limited, as Alice and Bob can always essentially simulate public randomness (see
Exercise 9.8). Letting Bpu, be the collection of protocols in which both Alice and Bob have access
to a shared random variable U ~ Uniform|0, 1], we make the obvious extension

RCCEub(f) = Heigf {depth(IT) | P(Iout(z,y,U) # f(z,y)) < d for all z € X,y € V}.
pub

Finally, we have distributional communication complexity, which for a probability measure p on
inputs X x Y is the depth of the shortest protocol that succeeds with a given u-probability:

DCC5(f) = inf {depth(II) | u(Mow (X, Y) # f(X,Y)) < 0}, (9.3.2)

where the infimum is taken over deterministic protocols.

The final notion we consider is the information complexity. In this case, we require again that
for each input pair z, y, the (potentially randomized) protocol II(z, y) still compute f(z,y) correctly
with probability at least 1 — 9, but instead of measuring the depth of the tree, we let X, Y be drawn
randomly from some distribution and measure the mutual information Io(X,Y;II(X,Y)). (We use
base-2 logarithms to reflect bit communication.) In this case, we define

ICs(f) :=sup iIl'llf {L(X,Y;I(X,Y)) | P(gue (2, y) # f(z,y)) <dforallz e X,y € YV}, (9.3.3)

where the supremum is taken over joint distributions on (X,Y’), the infimum over randomized
protocols II, and the right probability P is over any randomness in II. There is a subtlety in this
definition: we require IT to be accurate on all inputs (z,y), not just with probability over the
distribution on (X,Y') in the information measure I(X,Y;II(X,Y)). Relaxations to distributional
variants of the information complexity (9.3.3) are also natural, as in the definition (9.3.2). Thus
we sometimes consider the distributional information complexity

1G5 (f) == f {L(X, VI, Y) | p(llow (X, Y) # f(X,Y) < 63,

where the infimum can be taken over deterministic or randomized protocols.

The different notions of communication complexity satisfy a natural ordering, making proving
lower bounds for some notions (or conversely, developing low-communication methods for different
protocols) much easier or harder than others. We record the standard inequalities in the coming
proposition, which essentiall follows immediately from the operational interpretation of entropy as
the average length of the best encoding of a signal (Section 2.4.1).
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Proposition 9.3.1. For any function f, § € (0,1), and probability measure p on X x Y,
CC(f) = RCC5(f) = RCCY™(f) = DCCY(f) > IC(f)

and

RCCs(f) = 1C5(f)-

Proof The first two inequalities are immediate. By Theorem 2.4.3, we have
depth(TT) > Ha(IT) > Hy(IT) — Hy(IT | X,Y) = L(X, Y3 TI(X,Y)),
and so for all § € (0, 1) we have both
RCCs(f) = IC5(f) and DCCL(f) = ICL().

All that remains is to demonstrate RCCY™(f) > DCCY(f). For this, let II be any protocol with
public randomness U such that P(Iloy(x,y,U) # f(z,y)) < § for all z,y. Then by taking an
expectation over (X,Y) ~ p, we obtain

0 Z E;L [P(Hout<X7 Y7 U) 7é f(Xa Y) | X7 Y)] Z i%fu(ﬂout(X7Y7u) 7é f(X,Y)),

that is, there must be at least some u achieving the average error of II, and the protocol II is
deterministic given u. So any protocol II using public randomness to achieve probability of error §
can be modified into a deterministic protocol II(-, -, u) that achieves u-probability of error 6.2 [

Frequently, the first inequality in Proposition 9.3.1 is strict—even exponentially large—while
the randomized complexity and information complexity end up being of roughly the same order.
Understanding these differences is one of the major goals in communication complexity research.

9.3.2 Deterministic communication: lower bounds and structure

Deterministic communication complexity lower bounds often admit fairly elegant and somewhat
elementary arguments, and the gaps between them and the randomized complexity highlight that we
indeed expect providing lower bounds on randomized communication (9.3.1) or information (9.3.3)
complexity to be quite challenging. The starting point, to which we will return when we consider
randomized protocols, is to understand some structural aspects of the inputs and outputs of a
protocol tree.

Recall that a set R C X x )Y is a rectangle if it has the form R = A x B for some A C X and
B C Y. Equivalently, R is a rectangle if (xg,y0) € R and (z1,y1) € R imply that (zg,y1) € R.
As the next proposition shows, rectangular sets provide a key way to understand communication
complexity.

Proposition 9.3.2. Let v be a node in a deterministic protocol 11 and R, be those pairs (z,y)
reaching node v. Then R, is a rectangle.

2This is one direction of Yao’s minimax theorem [176], which states that communication complexity with public
(shared) randomness and worst-case distributional complexity are identical: RCCY"P(f) = sup, DCCK(f).
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Proof We prove the result by induction. Certainly, for the root node v, we have R, = X x Y,
which is a rectangle. Now, let v be an arbitrary (non-root) node in the tree and w its parent; assume
w.l.o.g. that v is the left child of w and that in w, Alice speaks (that is, we use a,, : X — {0,1}.)
Then R,, = A X B by the inductive assumption. If a,,(x) = 0, then

R,={{z} xB|ay(z) =0,z € A} = {{z | aw(z) =0} N A} N B,

which is a rectangle. O

The structure of rectangles for correct protocols thus naturally determines the communication
complexity of a function f. For a set R C X x Y, we say R is f-constant if f(x,y) = f(2,y') for
all (z,y) € R and (2/,y’) € R. Thus, any correct protocol II necessarily partitions X x ) into a
collection of f-constant rectangles, where we identify the rectangles with the leaves [ of the protocol
tree. In particular, Proposition 9.3.2 implies the following corollary.

Corollary 9.3.3. Let N be the size of the minimal partition of X x Y into f-constant rectangles.
Then CC(f) > logy N.

Proof Any correct protocol II partitions X' x ) into the f-constant rectangles {R;} indexed by
its leaves [. The minimal depth of a binary tree with at least IV leaves is logy IV. O

A related corollary follows by considering fooling sets, which are basically sets that rectangles
cannot contain.

Definition 9.4 (Fooling sets). A set S C X'x Y is a fooling set for f if for any two pairs (xo,yo) € S

and (x1,y1) € S satisfying f(xo,y0) = f(x1,y1), at least one of the inequalities f(xo,y1) # f(x0, o)
or f(xla yO) 7é f(x()a yO) holds.

With this definition, the next corollary is almost immediate.
Corollary 9.3.4. Let f have a fooling set S of size N. Then CC(f) > log, N.

Proof By definition, no f-constant rectangle contains more than a single element of S. So the
tree associated with any correct protocol II has a single leaf for each element of S. O

An extension of the fooling set idea is the rectangle measure method, which proves that (for
some probability measure P) the “size” of f-constant rectangles is small. By judicious choice of
the probability, we can then demonstrate lower bounds.

Proposition 9.3.5. Let P be a probability distribution on X x Y. If all f-constant rectangles R
have probability at most P(R) < §, Then CC(f) > log, 5.

Proof By the union bound, any f-constant partition of X x ) into rectangles {Rl}f\i | satisfies
1< Zf\il P(R;) < N§. So N > %, and the result follows by Corollary 9.3.3. O

With these results, we can provide lower bounds on two exemplar problems that will inform
much of our coming development.
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Example 9.3.6 (Equality): Consider the problem of testing equality of two n-bit strings
x,y € {0,1}", letting f = EQ be f(x,y) = 1 if x = y and 0 otherwise. Define the set
S ={(z,z) | x € {0,1}"}, which has cardinality 2", and satisfies f(z,z) =1 for all (z,z) € S.
That S is a fooling set is immediate: for any (z,x) and (2/,2') € S, if  # 2/, then certainly
(x,2') ¢ S. So

n < CC(EQ) <n+1,

where the upper bound follows by letting Alice simply communicate the string x and Bob
check if x = y, outputting lorOasx=yorz #y. &

The second example concerns inner products on o, the field of arithmetic on the integers modulo
2 (that is, with bit strings); one could extend this to inner products in more complicated number
systems (such as floating point), but the basic ideas are cleaner when we deal with bits.

Example 9.3.7 (Inner products on Fy): Consider computing the inner product IPy(z,y) =
(z,y) mod 2 for n-bit strings =,y € {0,1}", where addition is performed modulo 2. Rather
than a constructing a fooling set directly, we use Proposition 9.3.5 and let P be the uniform
distribution on {0,1}" x {0,1}". Let R = A x B be a rectangle with (z,y) = 0 for all
x € A and y € B. The linearity of the inner product guarantees that (x,y) = 0 for all
x € span(A) and y € span(B), the (linear) spans of A and B in F3, respectively. Now
recognize that span(A),span(B) C F§ are orthogonal subspaces of F4, and so their dimensions
dp = dim(span(A)) and d; = dim(span(B)) satisfy do + d; < n.

Noting that if dg = dim(A) then |A| < 29 in F%, we thus obtain |R| < |A|-|B| < 2", which
(under the uniform measure P) satisfies

P(R)SQTn

=27
By Proposition 9.3.5, we thus have
n < CC(IPQ) <n+4 1,

where once again the upper bound follows by letting Alice simply communicate x € {0,1}"
and having Bob output (z,y) mod 2. <
9.3.3 Randomization, information complexity, and direct sums

When we allow randomization, the complexity bounds can, in some cases, drastically change.
Consider again the equality function in Example 9.3.6. When we allow randomization, we can
achieve O(logn) complexity to check equality (with high probability).

Example 9.3.8 (Equality with randomization): Let xz,y € {0,1}" and p be a prime number
satisfying n? < p < 2n? (the Prime Number Theorem guarantees the existence of such a p).
Let Alice choose a uniformly random number U € {0,...,p — 1} and compute the polynomial

a(U) =z + 2oU + 23U 4+ -+ - + 2,U™ 1 mod p.

Then Alice may communicate both U and a(U) to Bob, which requires at most 2logyp <
4logsn + 2log 2 bits. Then Bob checks whether

bU) =y1 + 12U +y3U? + -+ y, U™ mod p

232



Lexture Notes on Statistics and Information Theory John Duchi

satisfies b(U) = a(U). If so, Bob outputs “Yes” (equality), and otherwise, Bob outputs “No.”
This protocol satisfies depth(IT) < 4logy n+ 1. Moreover, if = y, it is always correct, while if
x # y, then the protocol is incorrect only if a(U) = b(U), that is, U is a root of the polynomial

n

p(u) = > (@ — y ™.

i=1
But this is a non-zero degree n — 1 polynomial, which has at most n — 1 roots (on the field Fp;

see Appendix A.1 for a brief review of polynomials). Thus for x # y we have

P(II(z.y) faily) = P(a(U) = b)) < " Lo %

and so RCC, /,,(EQ) < O(1) log n, exponentially improving over deterministic complexity.

In passing, we make two additional remarks. First, this protocol is one-way and non-
interactive: Alice can simply send O(logn) bits. Second, we can achieve essentially any prob-
ability of success in the bound while still only paying logarithmically in communication, as
taking n* < p < 2n* for k > 2 yields RCCy ik (EQ) < 2klogyn + O(1). &

Example 9.3.8 makes clear that any lower bounds on randomized communication complexity,
or, relatedly, information complexity, will necessarily be somewhat more subtle than those we have
presented for CC. We develop a few of the main ideas here. Because our focus is on information
theoretic techniques, we pass over a few of the standard tools for proving lower bounds involving
discrepancy and randomized inputs, touching on these in the bibliographic notes at the end of the
chapter. One of our main goals will be to show that the information complexity of the inner product
is indeed €2(n), a much stronger result than Example 9.3.7. In contrast to the lower bounds we
provide for minimax risk in most of this book, the focus in communication complexity is to take
an a priori accurate estimator and demonstrate that it requires a certain amount of information to
be communicated, rather than the contrapositive result that limited information yields inaccurate
estimators. While these are clearly equivalent, it can be fruitful to use the perspective most relevant
for the problem at hand.

Two main ideas form the basis for information complexity lower bounds: first, direct sum
inequalitites, which show that computing a function on n inputs requires roughly order n more
communication than computing it (or at least, one of the constituent functions making it up)
on one. The second important insight is to provide lower bounds on the information necessary
to compute different primitives, and the particular structure of even randomized communication
protocols makes this possible. For the remainder of Section 9.3.3, we address the first of these,
returning to the information complexity of primitives in Section 9.3.4.

Direct sum bounds and decomposition

To show direct sum inequalities, we demonstrate that computing some function on n inputs requires
roughly n times the communication of single-input computation. In general, we consider functions
f of the form

f(l’?, y?) - g(h(a:ly yl)? h(xQ; y2)7 s 7h(xm yn))a (934)

where ¢ is the global function of the n primitives h, calling such functions decomposable with
primitive h. Several problems have the decomposable structure (9.3.4); focusing on the case that
the inputs z,y € {0,1}" and f(z,y) € {0,1}, we have the following three immediate examples.
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Example 9.3.9 (Composition in equality): The equality function f(x,y) = 1 if z # y and
f(x,y) = 0 otherwise satisfies the decomposition (9.3.4), where h(x;,y;) = 1{x; # y;} and ¢
is the OR function g(z) = 1{(1,z) > 0}, which is 1 if any of zj,..., 2, is non-zero, and 0
otherwise. <

Example 9.3.10 (Decomposition of inner product): The inner product in Fy, f(z,y) = (x,y)
mod 2, where h(z;, i) = z;y;, and g(z) = (1,2z) mod 2, which satisfies g(z) = 01if Y | z; is
even and ¢g(z) = 1 otherwise. <&

Example 9.3.11 (Decomposition of disjointness): The set disjointness function f(z,y) =
DISJ(z,y) := 1{(z,y) > 0} arises when x,y are characteristic vectors of two subsets A, B
of [n], that is, z; = 1{i € A} and y; = 1{i € B}. Then f(z,y) = 1{AN B # @}, which
corresponds to g being the OR g¢(z) = 1{(1,z) > 0} and h the AND function h(x;,y;) = x;y;.
&

While Example 9.3.8 makes clear that the decomposition (9.3.4) is not sufficient to guarantee a
randomized complexity lower bound of order n, it will be useful.

To develop the main information complexity direct sum theorem showing that the information
complexity of f is at least the sum of the complexities of its constituent primitives, we leverage
what we term plantable inputs:

Definition 9.5. Let f : X™ x Y™ — {0,1} have the decomposition (9.3.4), where the primitive h
is {0, 1}-valued. The pair (z,y) € X™ x Y™ admits a planted solution if for each i € {1,...,n}, all
z,,y;, and vectors all

1'/ = (1.17' "7xi—17m;7xi+17' . '7x’rl) and y, = (y17' . '7yi—17y£7yi+17" . 7yn)7
we have f(z',y") = h(x},y.).

The binary inner product in Examples 9.3.7 and 9.3.10 has many plantable inputs: any of the 3™
pairs of vectors z,y € {0,1}" with (z,y) = 0 admit planted solutions, as we have x;y; = 0 for each
1. The set-disjointness problem, Example 9.3.11, has the same plantable inputs. For the equality
function, only the 2™ pairs x = y admit planted solutions.

We outline the key idea to our direct sum lower bounds. Because we define information com-
plexity for protocols II that are correct on all inputs with high probability, we can choose an
arbitrary distribution on inputs (z7,y}") € X" x Y". Thus we choose a fooling distribution u for
f, meaning that for (X;,Y;) x p the pair (X7,Y]") € &A™ x Y™ always admits a planted solution
(Definition 9.5). The next definition says this slightly differently.

Definition 9.6. A distribution p on (z,y) € X x Y is a fooling distribution if all (27, y7) in the
support of the product u™ admit planted solutions (Definition 9.5).

Typically, fooling distributions u require some dependence between X; and Y;—for example, in the
inner product, we require X;Y; = 0, so that if X; = 1 then Y; = 0 and vice versa:

Example 9.3.12 (A fooling distribution for inner products and set disjointness):  Define
the distribution p on pairs (z,y) € {0,1} x {0,1} as follows: let V' be uniform on {0, 1}, and
conditional on V' = 0, set X = 0 and let Y ~ Uniform{0, 1}; conditional on V =1, set Y =0
and let X ~ Uniform{0,1}. Then certainly XY = 0, and any set of pairs (X;,Y;) iS b satisfy
both that the binary inner product IPo(X7,Y{") = (X7, Y{") mod 2 = 0 and set disjointness
DISJ(X™,Y) = 1 {(XP,Y") > 0} = 0. ©
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Fooling distributions, as in Example 9.3.12, make conditioning natural in information com-
plexity. If (X,Y) ~ p, there is always a random variable V' such that X 1 Y | V, that is, X
and Y are conditionally independent given V (trivially, we can take V' = X). Thus, for function
h:X xY —{0,1}, we define the conditional information complezity

CICL (h) = irﬁf sup {I(X,Y;I(X,Y) | V) s.t. P(Iout(z,y) # h(z,y)) <6 forall z € X,y € YV},
1%

where the infimum is over all (randomized) protocols and the supremum is over all random variables
making X and Y conditionally independent with joint distribution (X,Y) ~ p. So if we can find a
variable V' making the mutual information I(X,Y;II(X,Y) | V) large for any correct protocol II,
the conditional information complexity of h is necessarily large.

With this, we obtain our main direct sum theorem for information complexity.

Theorem 9.3.13. Let p be a fooling distribution X x Y for a function f with primitive h. Then
IC5(f) = n - CICE(h).

Proof Let V =V € V" be any random vector with i.i.d. entries making (X;, Y;) conditionally
indpendent given V;. Then for any protocol II, we have

(X7, Y10 = H(I) — H(IT | X7, Y7")
= H(I) — HAT| X7, Y", V) > H(IL| V) — HIL| X7, Y7", V) = I(X7, Y5 1| V)

because we have the Markov chain V' — (X7, Y{") — II. Using the chain rule for mutual informa-
tion, where we recognize that X{* and Y" are independent given V', we have

n
I(XT, Y| V) = ZI(Xz',Yz‘;H VXL Y
i=1

=Y H(X, Y |V, X{ Y ) - HX, Y | VILX] Ly

=1
>N H(X3, Y | V) = H(X, Y | VD) =Y I(X;, Y I V) (9.3.5)
i=1 i=1

because conditioning reduces entropy and (X;,Y;) are independent of X ifl, Yffl given V.

Now we come to the key reduction from the global protocol II to one solving individual prim-
itives. On inputs (z,y) € X x Y, define the simulated protocol II; ,(z,y) so that given the vector
v € V=1 Alice and Bob independently generate (X5,Y]) i p(- | Vi = v;) for j # 4, which
is possible because of the assumed conditional independence given V, yielding Xi*i € X" ! and
Y e Y1 respectively. They then execute the protocol H((Xikl., x), (Y\’;, y)) (where we substitute
x and y into input position ¢ for each). Two key consequences of this simulation follow: that II; ,

is a §-error protocol for the primitive h and that we have the distributional equality
(X4, Y5, Vi T o(X5, Y3)) 1 (X3, Vi, Vi, IUXT, V) | W = o, (9.3.6)

that is, the joint over the simulated protocol is equal to that over the original protocol II conditional
on V; = vy;. The latter claim (9.3.6) is essentially definitional; the former requires a bit more work.
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To see that II; ,, is a d-error protocol for the primitive A, note that by construction, X{i and Y\*; are
in the support of u, and so admit planted solutions. In particular, f((X(‘i,x), (Y\*i,y)) = h(z,y),
and so II; ,, is necessarily a d-error protocol.

The distributional equality (9.3.6) guarantees that for any v we have

(X, Y IXT, YY) | Vi, W = o) = T(XG, Y I, (X6, Y5) | VA,
and as II; , is a d-error protocol for h, we have
v

Substituting in the bound (9.3.5), we obtain

LXP Y5 2 ) I(XG YT V) 2 ) inf 1(XG, Yis (X6, Vi) | Vi) = nCICK(h),
=1 =1

as desired. ]

With Theorem 9.3.13 in hand, we have our desired direct sum result, so that proving informa-
tion complexity lower bounds reduces to providing lower bounds on the (conditional) information
complexity of various 1-bit primitives. The following corollary highlights the theorem’s applications
to inner product and set disjointness (Examples 9.3.10 and 9.3.11).

Corollary 9.3.14. Let f be the binary inner product f(z,y) = (x,y) mod 2 or the disjointness
function f(x,y) = 1{(x,y) > 0}. Let u be the fooling distribution in Example 9.3.12. Then

IC5(f) = n - CIC(h)
where h(a,b) = ab is the product (or AND) function.

Exercise 9.10 explores similar techniques for the entrywise lesser than or equal function, showing
similar complexity lower bounds.

9.3.4 The structure of randomized communication and communication com-
plexity of primitives

Theorem 9.3.13 provides a powerful direct sum result that demonstrates that, at least if a problem
admits planted solutions for (nearly) i.i.d. sampling, then the information complexity must scale
at least linearly in the complexity of the primitives making up the function f. Thus, we turn to
providing information lower bounds for computing different primitive functions. Our main tool
will be to show that even randomized communication protocols essentially partition the input
space X X Y into rectangles—in analogy with Proposition 9.3.2 in the deterministic case—which
allows us to provide lower bounds. The broad idea is simple: if we have an accurate protocol for
computing a certain function h, we must necessarily be able to distinguish between the distribution
of IT on different inputs (x,y), as the fundamental connection between tests and variation distance
(Proposition 2.3.1) reveals.

Our main goal now is to prove the following proposition, which gives a lower bound on the
(conditional) information complexity of computing the AND of two bits.
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Proposition 9.3.15. Let h(z,y) = xy for inputs z,y € {0,1}. Let p be the fooling distribution in
Ezample 9.3.12. Then

cmymzi(y—25u—®)

We prove this proposition in the remainder of this section, noting that as an immediate corollary,
we obtain the following lower bounds on the communication complexity of set disjointness and
binary inner product.

Corollary 9.3.16. Let f be the binary inner product f(z,y) = (x,y) mod 2 or the disjointness
function f(x,y) = 1{(z,y) > 0}. Then

IC5(f) =

(1—2y/5(1—9)).

To control the complexity of computing individual primitives, it proves easier to use metrics
tied more directly to testing. To that end, we recall the connection between Hellinger distance
and the mutual information, or Jensen-Shannon divergence, between a variable X and a single bit
B € {0,1} in Proposition 2.2.10, which gives that if B — Z, where Z ~ P, conditional on B = b,
then

~ 3

15(Z; B) > diy(Po, Py).

To apply this inequality, recall the fooling distribution p for inner products in Example 9.3.12,
where V' ~ Uniform{0, 1} and conditional on V' = 0 we set X = 0 and draw Y ~ Uniform{0, 1}, and
otherwise Y = 0 and X ~ Uniform{0,1}. Then for V' — (X,Y’) from this distribution, we have

1 1

Letting (), denote the (conditional) distribution over II on input bits z,y € {0,1} and noting that
X and Y above are each uniform on {0, 1}, we see that Proposition 2.2.10 applies and so

1 1
L(X,YV;IX,Y) | V) > §d121e1(Q01,Q00) + idiel(Qm?Qoo).

Applying the triangle inequality that (a —b)? < (Ja—c|+|c—b|)? < 2(a—c)? +2(b— c)?, we obtain
the following lemma.

Lemma 9.3.17. Let II be any protocol acting on two bit inputs x,y € {0,1}, and let p be the
fooling distribution in Example 9.3.12. Let Qg be the distribution of II(x,y) on inputs x,y. Then

1
L(X,Y3I(X,Y) | V) 2 3dia(Qor, Quo)-

The last step in the proof of Proposition 9.3.15 is to demonstrate a property of (randomized)
protocols II analogous to the rectangular property of deterministic communcation that Proposi-
tions 9.3.2 and 9.3.5 demonstrate. In analogy with the output leaf in the tree for deterministc
communication complexity, let 7 be the transcript of the communication protocol, that is, its en-
tire communication trace. Then we claim the following analog of Proposition 9.3.2 that the set of
inputs resulting in a particular output in deterministic complexity is a rectangle in X x ).

Lemma 9.3.18. Let I be any randomized protocol with inputs in X x Y. Then there exist functions
¢z and gy such that for any transcript T,

Pl(z,y) = 7) = ¢u(7) - 4y(7)-
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Proof We may view any randomized protocol as a particular instatiation of a deterministic
protocol II(-, -, ug, up), where ug, up € [0, 1] are realizations of the randomness available to Alice and
Bob, respectively, inducing a particular binary communication tree. By Proposition 9.3.2, for any
leaf I, the set

Ri(ug,up) = {(z,y) € X x Y | (x,y, uq, up) reaches [}

is a rectangle, that is, R;j(ug,up) = Aj(ue) X Bj(up) for sets Aj(u) C X and By(u) C Y. Of course,
the leaves [ of the tree are in bijection with the entire transcript 7, so that if 7 ends in leaf [, then

P(Il(z,y) = 7) = P((z,y) € Ri(Ua, Up)) = P(z € Ai(Ua),y € Bi(Uy))

where Uy, Uy Y Uniform|0, 1] are the the randomness Alice and Bob use, respectively.
Expanding this as an integral gives

1 1
Pla € AUa),y € By(Uy) = /0 /0 1{z € Ay(ua)} 1{y € Bi(up)} dugduy
= P(.’E € Al(Ua))P(y S B1<Ub))
Set ¢ (r) = P(z € Ay(U,)) and g,(r) = P(y € Bi(Th)). 0

We thus have the following key cut and paste property, which shows that in some sense, Hellinger
distances respect the “rectangular” structure of communication protocols.

Lemma 9.3.19. Let II be any protocol acting on inputs in X x Y and let Q. be the distribution
of Il(z,y) on inputs x,y. Then

dhel(Qx,ya Qx’,y’) = dhel(Qx,y’a Q:cﬂy)-

Proof Let T be the collection of all possible transcripts the protocol outputs. By Lemma 9.3.18
we have

dﬁol(Qaz,w Qo) = % Z (\/Qacyy(T) - \/Qﬂﬂ’,y’(T))2

TET
1 2
= 5 Z <\/qyc(7-)qy(7-) - \/Q:r’(T)Qy/ (7_)) =1- Z \/qyc(T)Qy(T)qg:’(T)Qy/ (T)
TET T
Rearranging by the trivial modification ¢,qyq./qy = ¢2Gy @Gy, We have the result. O

We now finalize the proof of Proposition 9.3.15. Substituting this cutting and pasting in
Lemma 9.3.17 we have

1 1
L(X,Y;II(X,Y) | V) > Zdﬁel(QOthO) = Zdﬁd(Qoo,Qn)-

Then a simple lemma recalling the testing inequalities in Chapter 2.3.1 completes the proof of the
proposition, because it guarantees that 4I(X,Y;II(X,Y) | V) > 1 — 24/6(1 — §) no matter the
choice of protocol II, and so

CICY () = inf Io(X, Vi II(X,Y) | V) = ! (1 —2/5(1— 5)) .

W |
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Lemma 9.3.20. Let II be any d-accurate protocol for computing h(x,y) = zy and Qy be its
distribution on inputs (x,y). Then d2.(Qoo, @11) > 1 —24/3(1 ).

Proof Assume that II computes the product zy € {0,1} correctly with probability at least
1 — 0, that is, P(Ilous(z,y) # xy) < § for all z,y € {0,1}. By Le Cam’s testing lower bounds
(Proposition 2.3.1), we know that

20 > P(Ilut(0,0) # 0) + P(Toye(1,1) # 1) > 1 — [[Qoo — Q11 |y

(%)
> 1 — dpet(Qoo, Q11) \/2 42 (Qoo, Q11),

where inequality (%) follows from the inequalities in Proposition 2.2.7 relating Hellinger and total-
variation distance. Let d = hel(Q(JO»Qll) for shorthand. Then rearranging gives d(2 — d) >
(1 —26)2. Solving for d in 0 > d? — 2d + (1 — 26)? yields d > 1 — /1 — (1 — 26)2. Recognize that
1—(1—20)? =4(6 — 6%). O

9.4 Communication complexity in estimation

A major application combining strong data processing inequalities and communication is in the
communication and information complexity of statistical estimation itself. In this context, we limit
the amount of information—or perhaps bits—that a procedure may send about individual examples,
and then ask to what extent this constrains the estimator. This has applications in situations in
which the memory available to an estimator is limited, in situations with privacy—as we shall
see—and of course, when we restrict the number of bits different machines storing distributed data
may send.

We consider the following setting: m machines, or agents, have data X;, i = 1,...,m. Com-
munication proceeds in rounds ¢t = 1,2,...,T, where in each round ¢ machine ¢ sends datum Zi(t).
To allow for powerful protocols—with little restriction except that each machine ¢ may send only
D to depend arbitrarily on the previous messages

Z£t),...,Zi(t_)1 as well as Z,ET) for all k € {1,...,m} and 7 < t. We visualize this as a public

a certain amount of information—we allow Zi(

blackboard B, where in each round ¢ each ZZ-(t) is collected into B®, along with the previous public
blackboards B(™) for 7 < ¢, and all machines may read these public blackboards. Thus, in round ¢,
individual ¢ generates the communicated variable Zi(t) according to the channel

Z(t)( |X’LvZ<Z)7B(t 1)) ( ’X Zt))
Here we have used the notation Z.; := (Zy,...,Z;—1), and we will use Z<; := (Z1,...,Z;) and

similarly for superscripts throughout. We will also use the notation ZS)Z = (BW, Zgl) ) to denote
(t)

all the messages coming into communication of Z;
communication scheme.

Figure 9.3 illustrates two rounds of this

We can provide lower bounds on the minimax risk of communication-constrained estimators by
extending the data processing inequality approach we have developed. Our approach to the lower
bounds, which we provide in Sections 9.4.1 and 9.4.2 to follow, is roughly as follows. First, we
develop another direct sum bound, in analogy with Theorem 9.3.13, meaning that the difficulty of
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Figure 9.3. Left: single round of communication of variables, writing to public blackboard B().
Right: two rounds of communication of variables, writing to public blackboards B(*) and B,

solving a d-dimensional problem is roughly d-times that of solving a 1-dimensional version of the
problem; thus, any lower bounds on the error in 1-dimensional problems imply lower bounds for
d-dimensional problems. Second, we provide an extension of the data processing inequalities we
have developed thus far to apply to particular communication scenarios.

The key to our reductions is that we consider families of distributions where the coordinates of
X are independent, which dovetails with Assouad’s method. We thus index our distributions by
v € {0, l}d, and in proving our lower bounds, we assume the typical Markov structure

V - (X17 e 7Xm) — H<an)7

where V is chosen uniformly at random from {—1,1}¢, and II = II(XJ") denotes the protocol of
the entire communication—in this context, this is the entire set of blackboard messages

1n=(BW, ... BM,
(which also encodes the message order). We assume that X follows a d-dimensional product
distribution, so that conditional on V' = v we have
X8 P =P, ®Py,® - ®P,, (9.4.1)
The generation strategy (9.4.1) guarantees that conditional on the jth coordinate V; = v;, the co-
ordinates X; ; are i.i.d. and independent of W ; = (Vi,...,V;_1,Vjy1,..., V) as well as independent
of Xy ; for data points ¢’ # i.

9.4.1 Direct sum communication bounds

Our first step is to argue that, if we can prove a lower bound on the information complexity of
one-dimensional estimation, we can prove a lower bound on d-dimensional problems that scales
with the dimension. To accomplish this reduction, let X<, ; = (X; ;)" be the jth coordinate of
the data, and let X<, \; be the remaining d — 1 coordinates across all i = 1,...,m. Then by the
construction (9.4.1), we have the Markov structure

Vi= Xamj = IXT") = Xampj < W
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In particular, viewing X<, \; as extraneous randomness, we have the simpler Markovian structure
V}. — Xﬁm,j — 11, (942)

so that we may think of the communication II = II(X<,, ;) as acting only on X<, ;. Now, define
M_; and M; to be the marginal distributions over the total communication protocol 1I conditional
on V; = £j, the one-variable model (9.4.2). Then Le Cam’s testing equality (Proposition 2.3.1),
and the equivalence between Hellinger and variation distance (Proposition 2.2.7) imply that

d d d
i%f2ZP(Vj(H) # Vi) = Z(l — [|M-; - M+j||TV Z (1- \[dhel (M_j, M;))
j=1 j=1

>d|1- dzdhel M—j7M+j)

by Cauchy-Schwarz. Summarizing, we have the following

Proposition 9.4.1 (Assouad’s method in communication). Let M, ; be the marginal distribution
over II conditional on V; = 1 and M_; be the marginal distribution of II conditional on V; = —1
in Markov structure (9.4.2) and assume X; follow the product distribution (9.4.1). Then

1\3\&.

d d
DoE) #10) 2 § (1 7 2 a0 )
=1 =1
Recalling Assouad’s method (Lemma 8.5.2) of Chapter 8.5, we see that any time we have a problem
with separation with respect to the Hamming metric (8.5.1), we have a lower bound on its error in
estimation problems. This proposition analogizes Theorem 9.3.13, in that small Hellinger distance
between the individual marginals M ; necessarily makes the testing and estimation problems hard.

9.4.2 Communication data processing

We now revisit the data processing inequalities in Section 9.1, where we consider a variant that
allows us to prove lower bounds for estimation problems with limited communication. It will be
more notationally convenient in this section to use V' € {0,1} rather than {—1,1}, so we do so
without comment. Our starting point is a revised strong data processing inequality.

Definition 9.7. Let Py, P1 be arbitrary distributions on a space X, let V- € {0,1} uniformly at
random, and conditional on V = v, draw X ~ P,. Consider the Markov chain V-— X — Z. The
mutual information strong data processing constant 3(Py, Py) is

) = o, T 7

where the supremum is taken over all conditional distributions (Markov kernels) from X to Z.

In contrast to Definition 9.1, in this definition we have a contraction over the “beginning” of the
chain V' — X rather than the distribution X — Z. Identifying Z with a communication protocol
II(X7™), this makes it possible to develop lower bounds on estimation and testing that then depend
on the information I(X;II).

Distributions with bounded likelihood ratios provide one way to demonstrate a strong data
processing inequality of the form in Definition 9.7, where in analogy with Theorem 9.2.1 we obtain
a contraction inequality involving the total variation distance.
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Proposition 9.4.2. Let V — X — Z, where X ~ P, conditional on V =v. Let Px and Px(-| Z)
denote the marginal and conditional distributions on X given Z, respectively. If |log jlf”/| < «a for

all v,v', then
I(V;Z) <4(e® —1)%Ey || Px(- | Z) — Px|jmy| < 2(e* — 1)2(X; Z).

We leave the proof of this proposition as Exercise 9.12, as it follows by adapting the techniques
we use to prove Theorem 9.2.1, with the main difference being the random variables with bounded
likelihood ratios (X — Z versus V' — X). A brief example illustrates Proposition 9.4.2.

Example 9.4.3 (Bernoulli distributions): Let P, = Bernoulli(}£22) for v € {~1,1}. Then
we have likelihood ratio bound

dP; 146
1 <log ——
Bap | = %15
and so under the conditions of Proposition 9.4.2, for any Z we have

2 2 (@)
I(V;Z2) <2 <1+g — 1) I(X;2)=2 <1265> I(X;Z) < 108%1(X; Z),

where inequality (i) holds for § € [0,1/10]. <

We now give the two main results connecting mutual information and the contraction-type
bounds in Definition 9.7. To provide bounds using Proposition 9.4.1, we wish to control the
Hellinger distance between individual marginals M. ;, so we consider single variables in the Markov
chain

V= (X1,...,Xn) =10,

where V' € {0,1}. To state the coming theorems, we make a restriction on the data generation
V — X, calling distributions Py and P; (¢, 5)-contractive if

B(Po, P1) £ <1 and max{Dy (Py|P1), Do (P1|FP)} < loge, (9.4.3)

where Do, (+|-) denotes the Rényi-co-divergence. Proposition 9.4.2 shows that whenever such a ¢
exists we certainly have (P, P1) < 2(c — 1)2.

The next theorem then provides the basic information contraction inequality for single-variable
communication.

Theorem 9.4.4. Let 1 < c¢ < oo and 8 < 1. Let Py and Py be (¢, 8)-contractive (9.4.3) distributions
on X and M,, v € {0,1} be the marginal distribution of the protocol Il conditional on V- =v. Then

diel(Mo, M) < g(CJr 1B - min {I(X7 I(XT") [V = 0), I(XT TH(XT") [V = 1)}

The proof of Theorem 9.4.4 is quite complicated, so we defer it to Section 9.5.

We can use Theorem 9.4.4 to obtain bounds on the probability of error—detection of d-
dimensional signals—in higher dimensional problems based on mutual information alone. Because
the theorem provides a bound involving the minimum of the conditional mutual informations, we
have substantial freedom to combine the direct-sum lower bounds in Section 9.4.1 to massage it
into the mutual information between the data X{" and the protocol II(X{").

We thus recall the definition (9.4.1) of our product distribution signals, where we assume that
each individual datum X; = (X;1,...,X;4) = (Xi,j)?zl belongs to a d-dimensional set and condi-
tional on V = v € {—1,1}% has independent coordinates distributed as X; ; ~ P,;. With this, we
have the following theorem, which follows by a combination of Assouad’s method (in the context
of communication bounds, i.e. Proposition 9.4.1) and Theorem 9.4.4.
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Theorem 9.4.5. Let I the entire communication protocol in Figure 9.3, V € {—1, 1}d be uniform,

and generate X; i P,, i =1,...,m according to the independent coordinate distribution (9.4.1).
Assume additionally that for each coordinate j = 1,...,d, the coordinate distributions Py, are

(¢, B)-contractive (9.4.3). Then for any estimator 17,

4 ; ;
;P(Vj(ﬂ)%vj) = (1_\/7(c+1)d'I(Xlw-me;H\V)>,

Proof Under the given conditions, Proposition 9.4.1 and Theorem 9.4.4 immediately combine to

give

d ; 5 -

;P(‘G(H)#‘G)Zg 1— c+1Egvergu?l}lXU,...,Xm,j;H|ijv)
Certainly

min I(XLJ,. . .,Xm’j;H ‘ ‘/j = ’U) < I(XLJ‘,...,XWJ;H ’ ‘/j)
ve{—1,1}

Then, using that w.l.o.g. we may assume the X; ; are discrete, we obtain

d

> I((Xig)as 1| V)

J=1

[H((Xij)iz | V5) — H((Xi)i%q | 1L, V)]

<
Il
MR

=l
M= I]=

[H((Xi )% | (Xij)icmgr<iy V) = H(Xi )ity | T V)]

.
I
—

[H((Xi )it | (Xij)i<mjr<is V) — H(Xij)it | (Xij)i<m,jr<js L V)]

<
Il
—

M-

T(Xi )i L | Vi(XGjn)i<m,gr<j) = 1(Xa, oo, X I V),

I
.M&

<
I
—

where equality (i) used the independence of X;; from Vi; and X ; for j' # j given Vj, and the
inequality that conditioning reduces entropy. This gives the theorem. O

9.4.3 Applications: communication and privacy lower bounds

Let us now turn to a few different applications of our lower bounds on communication-constrained
estimators. We evidently require two conditions: first, we must show that the distributions our data
follows satisfy a strong (mutual information) data processing inequality (Definition 9.7). Second,
we must provide a (good enough) upper bound on the mutual information I(Xy,..., X 11| V)
between the data points X; and communication protocol. While there are many strategies to pro-
viding bounds and strong data processing inequalities, we focus mainly on situations with bounded
likelihood ratio, where Proposition 9.4.2 directly provides the type of strong data processing in-
equality we require.

243



Lexture Notes on Statistics and Information Theory John Duchi

Communication lower bounds

Our first set of examples consideres direct communication bounds, where controlling I(X7*;1I) is
relatively straightforward. Assume the setting in the introduction to Section 9.4, where to establish
our communication bounds we assume each machine ¢+ = 1,...,m may send at most B; total bits
of information throughout the entire communication protocol—that is, for each pair i, ¢, we have a
bound
H(Z" | 2%)) < Biy and Y Bjs < B; (9.4.4)
¢

on the message from X; in round ¢. (This is a weaker condition that H (Zi(t)) < By for each i,t.)
With this bound, we can provide minimax lower bounds on communication-constrained estimator.

For our first collection, we consider estimating the parameters of d independent Bernoulli dis-
tributions in squared error. Let Py be the family of d-dimensional Bernoulli distributions, where

we let the parameter 6 € [0, 1]¢ be such that Pp(X; = 1) = 6;. Then we have the following result.

Proposition 9.4.6. Let M,,(0(Py), ||H§ ABi}™,) denote the minimaz mean-square error for es-
timation of a d-dimensional Bernoulli under the information constraint (9.4.4). Then

m . d d
M (0(Pa), ”Hg ABi}i%,) > cmin {mm,d} )

where ¢ > 0 18 a numerical constant.

Proof By the standard Assouad reduction (Section 8.5), when we take coordinate distributions

P,; = Bernoulli( Hgvj ), we have a c§?-separation in Hamming metric. Applying Theorem 9.4.5 and

Example 9.4.3, we obtain the minimax lower bound, valid for 0 < § < 1—10, of

52
M (O(Pa), |12, (B} > cb2d (1 - \/cduxl, e XL V>) .

Now, we note that for any Markov chain V — X — Z,
I(X;Z2|V)=H(Z|V)-H(Z|X,V)=H(Z|V)-H(Z|X)<H(Z)-H(Z| X) =1(X; Z).
Thus we obtain

[(X1,.. X3 T V) < I(X0, o X TD)

m T
SN X 20| 29),

i=1 t=1

As the message Zi(t) satisfies the conditional independence ZZ.(t) 1LXlZ ®

—1?

equals 3, , (X3 2" | Z%). But of course I(X;; 2" | 2%) < H(Z{" | 2)) < By, and so

X, this final quantity

M, (O(Pa), 112, {Bi}1y) > edd | 1 —

Choosing ¢ = min{1/10, ﬁ} gives the result. O
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This result deserves some discussion. It is sharp in the case that the number of bits is of order
d or less from each machine: when we set B; = d, the lower bound becomes

~ d d d
sup Eq[||0(1T) — 0]|5] = min dy=—
ap BafJ (D) — 018] 2 min { £ 5.0 = £

which is certainly achievable (each machine simply sends its entire vector X; € {0,1}%). When
machines communicate fewer than d bits, we have a tighter result; for example, if only k£/m machines
send d bits, and the rest communicate little, we obtain

—~ . d md d
sup Bo[|(11) - 18] 2 min { £ 7. a} &

which is similarly intuitive. The extension of these ideas to the case when each machine has an
individual sample of size n is more challenging, as it requires tensorized variants of the strong data
processing inequality in Definition 9.7; we provide remarks in the bibliographical section.

Lower bounds in locally private estimation

We return to the local privacy setting we consider in Section 9.2, except now we allow substantially
more interaction. We treat local differential privacy in the communication model of Figure 9.3,
where n individuals have data X; which they wish to privatize, and proceed in rounds, releasing
data ZZ-(t) from individual 7 in round ¢. A natural setting is to assume each data release ZZ»(t) is
gi -differentially private: instead of the sequentially interactive model (9.2.1), we have

QZY e A1 X;=a,2" =2D) <explens) QZP e A| X =, 2, = 21V (9.4.5)

—1

()

for each i,t and all possible z,2’, z"),. At a more abstract level, rather than a particular privacy

(®)

guarantee on each individual data release Z;’, we can assume a more global stability guarantee
akin to the (average) KL-stability in interactive data analysis (Definition 5.1). Thus, let II(z7)
be the entire collection of communicated information in the protocol in Figure 9.3 on input data
Z1,...,Tn. Abusing notation to let Dy (Zp|Z1) be the KL-divergence between the distributions of
Zy and Z7, as in Definition 5.1, we make the following definition to capture arbitrary interactions.

Definition 9.8 (Average KL-privacy). Let the samples <, € X™ and :c(gl)n e X"™ differ only in
example i. Then the data release 11 is e1-KL-locally-private on average if

. ZDM (MEO)IM@<) < e

The following observation shows that for appropriate choices of ¢y, this is indeed weaker than
the interactive guarantee (9.4.5).

Lemma 9.4.7. Let the communication Q) satisfy the interactive privacy guarantee (9.4.5) and 11
be the induced communication protocol over roundst <T. Then

—ZDM( DI (<)) < szm{am%}.

i=1 t=1
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Proof Using the chain rule for the KL-divergence, we have for any j that

M=
N

D (M) M(w<n)) = YD [Dua (Q2t € - | o, 202! € - | 2. 28)]

-
Il
—
-
I
—

I
WE

E[Da(Qzte |2, 20z e - | 2;,2))] .

o~
Il
—

where the expectation is taken over Zg)z in the protocol H(xgzl), and the second equality follows

(4)

because x;° = z; for all j except index i. Now let Py and P, be arbitrary distributions whose
densities satisfy po(z)/p1(z) < €. Then

Dy (Py|Py) <& and Dy (Po|Pr) <log (1 + D,z (Po|Pr)) < log (1 + (ef —1)?)

by Proposition 2.2.9. Then by inspection min{e, log(1 + (¢f — 1)?)} < min{e, %52} for all e > 0.
Returning to the initial KL-divergence sum, we thus obtain

ZDH< WIM(z<,)) < ZZT:]E [mln{ezt,g 2 H

i=1 t=1

as desired. ]

The key is that the average Kl-local privacy guarantee is sufficient to provide a mutual infor-
mation bound, thus allowing us to apply Theorem 9.4.5 as in the proof of Proposition 9.4.6.

Proposition 9.4.8. Let II be any ex-KL-locally-private on average protocol and assume that
X1, ..., X, are independent conditional on V. Then Then

I(Xl, ce ,Xn; H(X{L) ‘ V) < ney.
Proof The conditional independence of the X; guarantees that
n . .
I(XTSIXT) | V) =) H(X | X{74 V) = H(X [TLX V)

i=1
n

<Y HX | X, V) - HX | TLX, V) =Y I(X5I(XT) | V, X)),
=1 =1

We abuse notation to let II*(X\;) be the marginal protocol (marginalizing over X;). Then

I(X5T(XT) |V, Xyg) = E [Dyg (TH(X\;, Xi) [T (X)) < E [Dia (II(X, X3) [TI(X0;, X7)) ]

where the first expectation is taken over V' and X; i P, conditional on V' = v and the inequality
uses convexity and draws X/ independently. Summing over ¢ = 1,...,n, Definition 9.8 gives the
result. O

Applying Theorem 9.4.5, we then obtain the following corollary.
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Corollary 9.4.9. Let the conditions of Theorem 9.4.5 hold. If the data release 11 is eyj-private on

average, then
d

ZP(VJ’(H) #Vj) = g (1 —\/T(c+ 1)§n5kl> :

j=1

Specializing to the case that we wish to estimate a d-dimensional Bernoulli vector, where X € {£1}
has coordinates with P(X; = 1) = §;, Example 9.4.3 gives the following minimax lower bound.

Corollary 9.4.10. Let M, ((Py), ||-|5,cx1) denote the minimaz mean-square error for estima-
tion of a d-dimensional Bernoulli under the e-KL-locally-private-on-average constraint in Defini-

tion 9.8. Then 2
M, (O(Pa), |12 €10) > cmin {d, }
nekl

Proof By Corollary 9.4.9 and Example 9.4.3, we have minimax lower bound

52
M (0P 12, 1) > do (1 . W>

for a numerical constant C, which is valid for § < 1. Choose 62 to scale as min{1, %kl} O

When instead of the average KL-privacy we use the pure local differential privacy constraint (9.4.5),
Lemma 9.4.7 implies the following.

Corollary 9.4.11. Let M, (0(Py), -3, €) denote the minimaz mean-square error for estimation
of a d-dimensional Bernoulli where each data release is €; ¢+-locally differentially private (9.4.5), and
Yooicir <e. Then

d2
. 2 > 3 _— .
M (8(Pa), 13 ,2) > cmm{d» n@m)}

9.5 Proof of Theorem 9.4.4

The proof proceeds in stages. The basic ideas are as follows:

1. Relate the Hellinger distance between the marginal distributions My and M; of II conditional

on V =0or 1 to a sum of Hellinger distances between the marginal My and an alternative M/
where X; ~ P; and Xy; © P,.

2. Provide a data processing inequality to relate dye(Mo, M) and the mutual information I(X;;II)
between the individual observation X; and the protocol II.

3. Use the standard chain rules for mutual information to finalize the theorem.

Step 1: sequential modification of marginals

We begin by relating the marginal distributions My and M; by a sequence of one-variable changes.
To that end, for bit vectors b € {0,1}™ define M, to be the marginal distribution over the protocol
II(X7") generated from (X1,...,X,,), where for each i we generate X; by indpendently sampling

X;|b~P,. (9.5.1)
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For the standard basis vectors ey, ..., ey, we expect My to be close to M,,, and thus hope for some
type of tensorization behavior, where we can relate My and M; via one-step changes from My to
Me,. The next lemma realizes this promise.

Lemma 9.5.1. Let My, My, and M., be as above. Then

d}?lel(M()aMl) < 7Zdl%el(M07Mel)- (952)
=1

Proof The proof crucially relies on the Euclidean structures that the Hellinger distance induces
along with analogues of the cut-and-paste (the “rectangular” structure of inputs in communication
protocols) properties from deterministic and randomized two-player communication. We assume
without loss of generality that II is discrete, as the Hellinger distance is an f-divergence and so can
be arbitrarily approximated by discrete random variables.

First, we analogize the “rectangular” probabilistic structure of two-player communication pro-
tocols in Lemmas 9.3.18 and 9.3.19, which yields a multi-player cut-and-paste lemma.

Lemma 9.5.2 (cutting and pasting). Let a,b,c,d € {0,1}"™ be bit vectors satisfying a;+b; = ¢;+d;
foreachi=1,...,m. Then
et (M, My) = diy (M, My).

Proof We claim the following analogue of Lemma 9.3.18: for any X{" = 27" and any communi-
cation transcript 7, we may write

Q") =7 | a7") = [ [ fie:(7) (9.5.3)
i=1
for some functions f;,,. Indeed, letting 7 = {zi(t)}igmgT we have

Q) =7 |2 = [T | a1, 21) = HHQ (= | 2, 2%)
it

i=1t=1

=:fi,;(T)
where we use that message zi(t) depends only on x; and z@i. Then we can write M(II(XT") = 7)
as a product using Eq. (9.5.3): integrating over independent X; ~ P, we have

m

My(IL(XT) = /Q 7| 27 dPy, (1) - - APy, () H/f” 2:)dPy, (z:) = [ [ gip. (7).

=1

~—91,bi( )

Taking M, My, M., My as in the statement of the lemma,

d}21el(Ma7 Mb) =1- Z ng a; gz b )

T

But as a; + b; = ¢; + d; and each is {0, 1}-valued, we certainly have g; 4,0i b, = i.c;9i.d;, and so the
lemma, follows. 0

The second result we require is due to Jayram [115], and is the following:
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Lemma 9.5.3. Let {Pb}be{()’l}m be any collection of distributions satisfying the cutting and pasting
property d (Pa, Py) = d2(Pe, Pq) whenever a,b,c,d € {0,1}™ satisfy a+b=c+d. Let N = 2k
for some k € N. Then for any collection of bit vectors {b}N . {0,1}™ with (6@ b0)) = 0 for
alli# j and b=3 b,

k

[101 - 200 (Po. ) < 3 dia(Po. Byo).
=1 i=1

We defer the technical proof to Section 9.5.1.

A computation shows that Hle(l — 275 > 2. Lemma 9.5.3 nearly gives us our desired re-
sult (9.5.2), except that it requires a power of 2. To that end, let kg be the largest k € N such that
2k0 < m, and construct bit vectors b, ... ,b(2k0) satisfying >, b =1 and 1 < “b(i)|’0 < 2 for
each ¢. Then Lemma 9.5.3, via the cutting-pasting property of the marginals M, implies

9 2ko m
;dﬁel(Mo,Ml) <Y dpa(Mo, Myw) <2 dig (Mo, Me,),
i=1 i=1

where the second inequality again follows from Lemma 9.5.3 as b() = ej or e; + ej for some basis
vectors e;, e}. This gives Lemma 9.5.1. O

Step 2: from Hellinger to Shannon information

Now we relate the strong data processing processing constants for mutual information in Defini-
tion 9.7 to compare Hellinger distances with mutual information. We claim the following lemma.

Lemma 9.5.4. Let the conditions of Theorem 9.4.4 hold. Let My and M, be the marginal distri-
butions over II when X; have the sampling distribution (9.5.1). Then forl € {1,...,m},

c+1 "
dl%el(Me”MO) < TBI(XUH(XI ) ’ V = 0)‘

Proof Consider the following alternative distributions. Let W ~ Uniform{0,1}, and draw X’ €
X" with independent coordinates according to

ii . Py i :
X{m(}PolfW:O or X/~ b i A ifW=1.
P o ifi=1

Then we have the Markov chain W — X’ — II(X’), and moreover,
W — X] — I(X) « X\,

so that additionally W — X — II(X’) is a Markov chain. As a consequence, Definition 9.7 of the
strong data processing inequality gives

I(W;IH(XT)) < BI(XG; TI(XT)).
Using Proposition 2.2.10, we thus have
diel(Me,, Mo) < I(W3TI(X")) < BI(X[;TI(X7)). (9-5.4)
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It remains to relate I(X[;II(X")) to I(X;;II(X) | V = 0). Here we bounded likelihood ratio
between Py by P;. Indeed, we have by the condition (9.4.3) that

2 P+ P
c+1 2

Py > %Pl so (c+1)Ph>Py+ P, or Py >
As a consequence, we have
TG [V =0) = [ Da(QU | X = )|Mo) dPy(a)
dPy(z) + dPi(z)

> z/bmmw&zwww

c+1 2
—. dP, dP;
2 /. /
= mI(Xz,H(X))a

where the second inequality uses that M = [Q(- | X; = a:)w minimizes the integrated
KL-divergence (recall inequality (8.7.3)). Returning to inequality (9.5.4), we evidently have the
result of the lemma. I

Step 3: Completing the proof of Theorem 9.4.4

By combining the tensorization Lemma 9.5.1 with the information bound in Lemma 9.5.4, we obtain

m m
7
ot (Mo, M) < 7zldﬁel(M0,Mei) < glet 1)52}1(}@-;11 |V =0).
1= 1=
By symmetry, we also have

m m
7
dipoy (Mo, M) < 7Z;dﬁel(Mg,Mei) < glet 1)521()@11 |V =1).
1= 1=
Now, we note that as the X; are independent conditional on V' (and w.l.o.g. for the purposes of
mutual information, we may assume they are discrete), for any v € {0,1} we have

m

Z[H(Xi |V =v) - H(X; | ILV = v)]

S IXI |V =)
=1

S
I
—

|

-
Il
—

[H(X; | X{7 V=0 - HX,; |ILV =0)]

[H(X; | X' V=0 -HX,; | X{LILV =v)]

I

@
Il
—

I(XsT [ XNV =0) = I( Xy, X IT | V = ),

I

=1

where the inequality used that conditioning decreases entropy. We thus obtain

dﬁel(Mo,Ml)gz(ch DB min I(Xy,..., X IV =0)
2 ve{0,1}

as desired.
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9.5.1 Proof of Lemma 9.5.3

We prove the result by induction. It is trivially true for m = 1, that is, k = 0, so now we consider
the inductive case, that is, it holds for m = 1,...,2F ! and we consider m = 2.
First, we observe that if {u;}Y, are arbitrary vectors and @ = + SN L u; is their mean, then

N
2 — — 2 —112 — 2 — 2
Sl = w2 = S i — a4+ — gl = 3 g~ w4+ 3 7 - )2 = 283 [ - 2
ij ij i i=1

Y]
Thus, if ug is any other vector, that @ minimizes 3, [|u; — u||3 over all u gives

N N

1 2 —12 2

N > = uglly <Y lus —alls <Y lus = uoll3 - (9.5.5)
=1 =1

1<i<j<N

Now, we return to the Hellinger distances. Evidently Qdﬁel(Pa,Pb) = H\/pa(‘) - \/pb(')H;, SO
that it is a FEuclidean distance. As a consequence, for any pairwise disjoint collection of N bit
vectors b, we have

N
1 1

Y di(Po, Py) > N et (Pytor» By = N > " dip(Po, Py 1)) (9.5.6)

i=1 1<i<j<N 1<i<j<N

where the inequality follows from (9.5.5) and the equality by the assumed cut-and-paste property.
Now, we apply Baranyai’s theorem, which says that we may decompose any complete graph Ky,
where N is even, into N — 1 perfect matchings M; with N/2 edges—necessarily, as they form a
perfect matching—where each M, is edge disjoint. Identifying the pairs ¢ < j with the complete
graph, we thus obtain

N-1
> dia(Po, By yp) = D Y. dia(Po, Py yp)- (9.5.7)
1<i<j<N I=1 (4,5)eM,

Now fix n € {1,..., N—1} and a matching M,,. By assumption we have (b(?) 45 (i) 4p")) =
0 for any distinct pairs (4,7), (¢, j') € M,, and moreover, Z(z‘j)e/\/tn(b(i) +b0)) = b. Thus, our
induction hypothesis gives that for any [ € {1,..., N — 1} and any of our matchings M,,, we have

k—1
> dra(Po, By yp)) = dia(Po, Po) [ (1 =279,
(imj)eM’n l:1

Substituting this lower bound into inequality (9.5.7) and using inequality (9.5.6), we obtain

N k—1 k

1 _ _
> dia(Po, Pyo) = - (N = D (Po, Py) [[(1 = 27) = dia(Po, ) [T (1 = 279),
i=1 =1 =1

where we have used N = 2F.
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9.6 Bibliography

Data processing inequalities originate with Dobrushin’s study of central limit theorems for Markov
chains [62, 63]; Dobrushin first proved Proposition 9.1.1 (see [63, Sec. 3.1]). Cohen et al. [50] show
that the strong data processing constant for variation distance is the largest of the strong data
processing constants (Theorem 9.1.2) for finite state spaces using careful linear algebraic techniques,
also showing the opposite extremality (inequality (9.1.1)) of the x? contraction coefficient [50,
Proposition I1.6.15] for finite state spaces. Del Moral et al. [61] and Polyanskiy and Wu [146] give
related and approachable treatments for general alphabets, and Exercises 9.1 and 9.2 follow [61].
More broadly, strong data processing inequalities arise in many applications in communication,
estimation, and some functional analysis [147, 146].

Communication complexity begins with Yao [176], which introduces the communication com-
plexity setting we discuss in Section 9.3, making the connections between randomized complexities
and public (shared) randomness. The standard classical reference for the subject is Kushilevitz
and Nisan’s book [124]. There are numerous techniques that we do not discuss, including so-called
discrepancy lower bounds, which address both randomized and deterministic communication com-
plexity; for example, these give the stronger lower bound that DCCs(IP2) > n—O(1) [124, Example
3.29 and Exercise 3.30]. Communication complexity has uses far beyond the “standard” commu-
nication setting we have outlined, with more recent research showing how to use the techniques
to provide lower bounds on the performance of algorithms in many computational models, such
as streaming models and memory-limited computation [141, 148]. Our information complexity ap-
proach follows Bar-Yossef et al. [15]. Recent work has shown how communication lower bounds and
strong data processing inequalities can be used to show the necessity of “memorization” in some
natural problems in machine learning, where any learning procedure with good enough performance
necessarily encodes substantial irrelevant information about a dataset [38].

Our treatment of communication complexity and its applications in estimation follows an ap-
proach Zhang et al. [178] originate. The particular techniques we adapt, involving direct sums and
strong data processing in communication, we adapt from Braverman et al. [37] and Garg et al.
[90]. Our results apply most easily to scenarios in which each machine or agent owns only a single
data item, which allows application of Proposition 9.4.2; tensorizing this to multiple observations
requires some care, but can be done with a truncation argument [178, 37] or more careful Sobolev
inequalities [147]. Our extension to private estimation scenarios follows the paper [65], which also
shows how to generalize to other variants of privacy.

9.7 Exercises

Exercise 9.1 (Approximating nonnegative convex functions): Let f : R — Ry U {+oc} be a
closed, nonnegative convex function.

(a) Show that there exists a sequence of piecewise linear functions f, satisfying f,—1 < f, < f for
all n and for which f,(x) 1 f(z) pointwise for all = s.t. f(x) < oo, and f,(x) T co otherwise.
Hint: Let L be the collection of linear functions below f, that is £ = {l | l(z) = a + bz, l(z) <
f(z) for all x}, and note that f(x) =sup{l(z) |l € L}. (See Appendix C.2.) You may replace
L with functions of the form I(z) = f(x0) + g(z — x0), where g € 0f(z0) is a subderivative of
f at xg.

(b) Show that if for some zy € R we have f(z9) = 0, then one may take the functions f, to be of
the form fy,(x) = 311, ai[b; — x], + D711, i [x — d;] ., where b; < 20, d; > 20, and a;, ¢; > 0.
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(c) Conclude that for any measure p on Ry, [ fndpt [ fdpu.

Exercise 9.2 (Proving Theorem 9.1.2):  In this question, we formalize the sketched proof of
Theorem 9.1.2 by filling in details of the following steps. Let a = arv(Q) be the Dobrushin
coefficient of the channel @ and f: R — Ry U {400} be a closed convex function.

(a) There exists a nondecreasing sequence f,, of piecewise linear functions, each of the form f, (x) =
Yo ailbi —x] + Y0 ci[v —di] ., where b; <1, d; > 1, and a;,¢; > 0. Hint: Exercise 9.1.

(b) Let M,(A) = [Q(A | z)dP,(z) for v € {0,1} be the induced marginal distributions. Show
that for any function of the form h(t) = [t — A],, where A > 1,

Dh (M()”Ml) < aDh (P()”Pl) (971)

by the following steps:
i. Define the set X'(A) := {x | dPy(z) < AdPi(x)}. Argue that X'(A) must be non-null (i.e.,

have positive measure).

ii. Define the probability distribution Pa with density

AdP)(x) — dPy(x)

dPa(z) = JTAdPy(z) — dPy(x)],

1{z e X(A)}.

Argue that the measure
G=AP, — (A—-1)Px
is a probability distribution.

ili. Show that
Dy (Po|P1) = [|[Po — G|y -

It may be useful to show that dPy — dG < 0 on X(A).
iv. Conclude that

1
Dy (Po|P1) 2 Qo Py = Qo Gllpy 2 — Dy (Qo PolQo Fr).

Q|+

(c) Using the monotone convergence theorem, show that Dy (Mo| M) < oDy (Po|Pr).

Exercise 9.3 (Markov chain mixing): Consider a Markov chain X, X», ... with transition distri-
bution P(- | ) and stationary distribution 7. Let P¥(- | z) denote the distribution of the Markov
chain initialized in state x after k steps. Assume there exists some (finite) positive integer k € N
such that for any two initial states xg, x1, the Markov chain satisfies

|PEC 1) = PHC ||, <8< 1.

Show that the Markov chain enjoys fast mizing for any f divergence: if there is any n such that
Dy (P"(- | )|m) < oo, the Markov chain mixes exponentially quickly in that it satisfies

1 1
limsup —log Dy (P"(- | z)|7) < %logﬁ < 0.
non
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In brief, as soon as one can demonstrate a constant gap in variation distance, one is guaranteed a
Markov chain mixes geometrically.

Exercise 9.4: For k € [1, 00|, we consider the collection of distributions
P = {P: Ep[|X[F]V/F <1},

that is, distributions P supported on R with kth moment bounded by 1. We consider minimax
estimation of the mean E[X] for these families under e-local differential privacy, meaning that for
each observation X;, we observe a private realization Z; (which may depend on Zi_l) where Z;
is an e-differentially private view of X;. Let Q. denote the collection of all e-differentially private
channels, and define the (locally) private minimax risk

Ma(B(P), (%,€) := inf inf sup Epol(0a(27) — 0(P))?).

(a) Assume that e < 1. For k € [1, o0, show that there exists a constant ¢ > 0 such that

k—1

Mo (O(Py), ()2, 2) > ( ! )

ne?
(b) Give an e-locally differentially private estimator achieving the minimax rate in part (a).

Exercise 9.5: Show that strong data processing inequality in Theorem 9.2.1 is sharp in the
following sense. There exist e-differentially private channels Q). such that for any Bernoulli distri-
butions Py and P; and induced marginal distributions M, =Q(- | X = 1)P,(X =1)+Q(- | X =
O)P v (X = 0)7 )

Dy (MO,EHJ\gl,E) _ e + 0@
1Po = Prllpy 2

as e | 0.

Exercise 9.6: We apply the results of Exercise 9.4 to a problem of estimation of drug use.
Assume we interview a series of individuals ¢ = 1,...,n, asking whether each takes illicit drugs.
Let X; € {0,1} be 1 if person ¢ uses drugs, 0 otherwise, and define §* = E[X] = E[X;] = P(X =1).
Instead of X; we observe answers Z; under differential privacy,

Zi| Xi=2x~Q(- | X; =)

for a e-differentially private Q with e < § (so that (e® — 1)? < 2¢2). Let Q. denote the family of
all e-differentially private channels, and let P denote the Bernoulli distributions with parameter
0(P)=P(X;=1)€]0,1] for P € P.

(a) Use Le Cam’s method and the strong data processing inequality in Theorem 9.2.1 to show that
the minimax rate for estimation of the proportion #* in absolute value satisfies

~

My (0(P),|-|,e) := inf infsupEpg ||0(Z1,...,2,) — 0(P)|] >c
QEQ: § pep

1

b
ne?

where ¢ > 0 is a universal constant.
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(b) Give a rate-optimal estimator for this problem. That is, define an e-differentially private channel
@ and an estimator 6 such that E[|0(Z]) — 6]] < C/vne?, where C is a universal constant.

(c) Download the dataset at http://web.stanford.edu/class/stats311/Data/drugs.txt, which
consists of a sample of 100,000 hospital admissions and whether the patient was abusing drugs
(a 1 indicates abuse, 0 no abuse). Use your estimator from part (b) to estimate the population
proportion of drug abusers: give an estimated number of users for ¢ € {27%, k = 0,1,...,10}.
Perform each experiment several times. Assuming that the proportion of users in the dataset
is the true population proportion, how accurate is your estimator?

Exercise 9.7: Show that the randomized communication complexity (9.3.1) satifies RCCs(f) <
O(1)log $RCCy j3(f) for any f and any & < 1.

Exercise 9.8 (From public to private randomness):  Consider the randomized complexity (9.3.1)
and associated public-randomness complexity RCCEUb. Let Y =Y ={0,1}"and f : XxY — {0,1},
and let II be a protocol using public randomness U such that max, , P(Il(z,y,U) # f(z,y)) <.

(a) Use Hoeffding’s inequality to show that there are k = 1%%271 points uy, . .., uy such that if I € [k]

is chosen uniformly at random, then P(Il(z,y, ur) # f(x,y)) < e+ 4.

(b) Give a protocol that uses no public randomness but whose communication complexity is at
most depth(II) + O(1)log .

(¢) Conclude that RCC4(f) < RCCE™P(f) + O(1) log 2.
Exercise 9.9 (An information lower bound for indexing): In the indexing problem in communi-

cation complexity, Alice receives an n-bit string « € {0,1}" and Bob an index y € [n] = {1,...,n},
and the two communicate to evaluate x,; set f(x,y) = zy.

(a) Show that if Bob can send messages, the communication complexity of indexing satisfies
CC(f) < O(1)logn.

In the one way communication model, only Alice can send messages. Let pu be the uniform
distribution on (X,Y) € {0,1}" x [n]. We will show that DCC{(f) > (1 — ho(d))n, where
ho(p) = —plogyp — (1 — p)logy (1 — p) is the binary entropy.

(b) Fix the index Y = i and let p; = P(X; = X; | Y = i) based on a protocol II. Use Fano’s
inequality (Proposition 8.4.1) to argue that ha(p;) > Ha(X; | II).

(c) Show that if IT is a d-error one-way protocol under p, then

[(X7510) > (1= ho(6))n.

Exercise 9.10 (Information complexity for entrywise less or equal):  Consider the entrywise less
than or equal to function f : {0,1}" x {0,1}" — {0,1} with f(z,y) = 1{x <y}, so that f(z,y) =1
if x; < y; for each 7 and 0 if there exists ¢ such that x; > y;.

(a) Show that f has the decompositional structure (9.3.4). Give the functions g and h.

(b) Give a fooling distribution g on X x Y for f.
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(c¢) Use Theorem 9.3.13 and a modification of the proof of Proposition 9.3.15 to show that 1Cs5(f) >
4(1—24/6(1 —0)). (This is order optimal, because I1C5(f) < CC(f) < n + 1 trivially.)

Exercise 9.11 (Lower bounds for private logistic regression): This question is (likely) challenging.
Consider the logistic regression model for y € {+1}, x € R?, that

_ 1

 Lt+exp(—y(f,z))

For a distribution P on (X,Y) € R% x {£1}, where Y | X = z has logistic distribution, define the
excess risk

po(y | =)

L(0, P) :=Ep[0(0; X,Y)] ~ inf Ep[£(0; X, Y)]

where £(0;z,y) = log(1l + exp(—y(x,#))) is the logistic loss. Let P be the collection of such
distributions, where X is supported on {—1,1}%. Following the notation of Exercise 8.4, for a
channel @ mapping (X,Y) — Z, define

M, (P, L, Q) := inf sup Epg[L(B(Z7), P)],
0 PcpP

where the expectation is taken over Z; ~ Q(- | X, Zf_l). Assume that the channel releases are all
(locally) e-differentially private.

(a) Show that for all n large enough,

m?’b(PJ L7 Q) Z C:-

g d
n eANe?

for some (numerical) constant ¢ > 0.

(b) Suppose we allow additional passes through the dataset (i.e. multiple rounds of communication),
but still require that all data Z; released from X; be e-differentially private. That is, assume
we have the (sequential and interactive) release schemes of Fig. 9.3, and we guarantee that

79~ Q| X, BW, ... .B® 2 71
is e;¢-differentially private, where ), €;; < € for all i. Does the lower bound of part (a) change?
Exercise 9.12: In this question, we prove Proposition 9.4.2.
(a) Show that if p(v) and p(v | ) denote the p.m.f.s of V and V conditional on X = x, then
e “p(v) < p(v | z) < ep(v).

(b) Show that
p(v | 2) =p(v)] < 2(e” = D [[Px (- | 2) = Px()llpy -

(c) Complete the proof of the proposition.

JCD Comment: A few additional exercises to add:
1. Prove Yao’s minimax theorem.

2. Is there a clean “memorization” phenomenon to cover?
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Chapter 10

Testing and functional estimation

When we wish to estimate a complete “object,” such as the parameter 6 in a linear regression
Y = X0+¢, or a density when we observe X7, ..., X, i.i.d. with a density f, the previous chapters
give a number of approaches to proving fundamental optimality results and limits. In many cases,
however, we wish to estimate functionals of a distribution or larger parameter, rather than the
entire distribution or a high-dimensional parameter. Suppose we wish to estimate some statistic
T(P) € R of a probability distribution P. Then a naive estimator is to construct an estimate P
of P, and simply plug it in: use T = T(ﬁ) But frequently—and as we have seen in the preceding
chapters—our ability to estimate P may be limited, while various statistics of P may be easier to
estimate. As a trivial example of this phenomenon, suppose we have an unknown distribution P
supported on [—1,1], and we wish to estimate the statistic T'(P) = Ep[X], its expectation. Then
the trivial sample mean estimator
T,:=X,
satisfies E[(T;, — E[X])?] < % But an estimator that first attempts to approximate the full distri-

~

bution P via some P and then estimate [ mdﬁ(z) is likely to incur substantial additional error.

Alternatively, we might wish to test different properties of distributions. In goodness of fit
testing, we are given a sample Xi,..., X, i.i.d. from a distribution @), and we wish to distinguish
whether Q = P or @ is far from P. In related two-sample tests, we are given samples X' ©p
and Y™ i @, and again wish to test whether ) = P or () and P are far from one another. For
example, in a medical study, we may wish to distinguish whether there are significant differences
between a treated population () and control population P.

More broadly, we wish to develop tools to understand the optimality of different estimators
and tests of functionals, by which we mean scalar valued parameters of a distribution P. Such
parameters could include the norm ||f||, of a regression vector, an estimate of the best possible
expected loss inf; Ep[¢(f(X),Y)] in a prediction problem, the distance || P — Py|ly of a sampled
population P from a reference Py, or the probability mass of outcomes we have not observed in a
study. This chapter develops a few of the tools to understand these problems.

10.1 Le Cam’s convex hull method

Our starting point is to revisit Le Cam’s method from Chapter 8.3, which focused on “two-point”
methods to provide a lower bound on estimation error. We can substantially generalize this by
instead comparing families of distributions that all induce separations between statistics of one

257



Lexture Notes on Statistics and Information Theory John Duchi

another, and then computing the distance between the convex hulls of the families. This leads to
Le Cam’s convex hull method, which we state abstractly and specialize later to different scenarios
of interest. Let P be a collection of distributions on an underlying space X, and let 6 : P — R< be
a parameter of interest. We say that two subsets Py C P and P; are d-separated in ||-|| if

10(Py) — 0(Py)|| =6 for all Py € Py and Py € Py. (10.1.1)

We do not require that all of Py be somehow on one side or the other of the collection {6(F;) |
Py € P1} of parameters associated with Py, just that they be pairwise separate.
Let Conv(P) be the collection of mixtures of elements of P, that is,

Conv(P) = {Z)\ipi lmeN, A =0, (\1)=1, P, € 77} )
=1

Defining the minimax risk
M(O(P), |[|) = inf sup Ep (19 - 6(P)|
0 PcP

(note the temporary lack of sample size n), we then have the following generalization of inequal-
ity (8.3.3).
Theorem 10.1.1 (Le Cam’s Convex Hull Lower Bound). Let Py and Py C P be d-separated in
IIl. Then

MO(P), ) > fsup{[l —||Po - PlHTV] | Po € Conv(Py), P1 € Conv(Py)}
Proof For any parameter 0, the separation ||§(FPy) — 0(Py)|| > 0 and the triangle inequality
guarantees that at least one of ||§ — 0(Fy)|| > /2 or |0 — 6(P1)|| > §/2 holds for all pairs Py € Py

and P, € P;. Let Py = > jLy Py and P = > jey BjQj for P; € Py and Q; € P1, respectively,
where «a, 8 are convex combinations. Then by Markov’s inequality,

Dok py |18 - 0P +§§;5ﬂa@ 1= 0@l

iaﬂapj (117 071 = 5/2)] + 3 g, [1(15 - () = 5/2}”
j=1

3

l\D\'—‘

MEP), [I-) =

Y
N s
|—|Q

afj( p, | dnt, 1010 - 0Bl 2 5/2)] + BB, | int, 11— 0P| > 5723

J=1
< [ inf 1{|]9 0(Po)| > 5/2}] +Ep [ iﬂ% 1{”5—9(P1)H > 5/2}]) .
PiePy
Note that if we define f,(z) = infpep, 1{||§(x) —0(P)|| > 6/2} for v =0,1, then fo+ f1 > 1.
We claim the following lemma, which extends Le Cam’s lemma (Proposition 2.3.1) to give

Lemma 10.1.2. For any two distributions Py and Py,

inf_ Ep[fol +Ep[i] 21 —[F — Pilipy-
fo+fi>
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We leave this form of total variation distance as an exercise (see Exercise 2.1). Substituting it into
the display above, we find that for any P, € Conv(P,), we have

5 _
MOP), 1) = 5 [t = [[Po = Pillyy] -

Taking a supremum over the P, gives the theorem. O

10.1.1 The y?*-mixture bound

Theorem 10.1.1 provides a powerful tool for developing lower bounds between collections of well-
separated distributions. The most typical approach is to take the class Py to consist of a single
“base” distribution Py, and then let P; vary around Py in some prescribed way, so that for an
index set V, we let P = ﬁ > vey Po. Even so, when we have a sample of size n from one of the
distributions, this results in a total variation quantity of the form

HP(? - WHTV where Pn = ’1])’ Z P},
veY
yielding a mixture of product distributions—something frequently quite challenging to control.
The key technique here is to leverage the inequalities relating divergences from Chapter 2, which
allows us to replace the variation distance with something more convenient. In previous chapters,
this was the KL-divergence; now, instead, we use a y2-divergence, as it interacts much more nicely
with the mixture product structure. Essentially, we replace an expectation over X ~ P with two
expectations: one over X ~ P and another over independent samples V, V' ~ Uniform(V). To
obtain the bound, first note that

2||Po — Py, < D (PIRy) < log(1 + D2 (P|Py)) < Dy (P|Py)

by Propositions 2.2.8 and 2.2.9.
We then have the following technical lemma.

Lemma 10.1.3. Let P = ﬁ ZUEV P, and P, and Py have densities p,,py with respect to some
base measure i on a set X. Then

— 1 v (T )Py (T 1 o (X )Py (X
Dx2(P”P0):W Zv/p(pz(pa:)()du(@_lzw Z Eo [p(l%)(];()()]—l,

where the expectation is taken with respect to X ~ Py. More generally, let V € V be a random
variable distributed according to m and conditional on V- = v, let X |V = v ~ P,. Then for the

_ Pu(®)py/(

paired likelihood ratio l(x | v,v") 20 x), the marginal distribution P of X satisfies
0

D, (P|PRy) =Eo [I(X | V,V")] — 1,

where the expectation is taken jointly over X ~ Py and V, V' i
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Proof The starting point is to notice that for any two distributions P and @ we have D, » (P|Q) =
[(dP/dQ —1 2dQ f e’ _ g [ dQ + [dQ = f — 1. Then we proceed by recognizing that
(% Z,fil 7;)? = N2 D xzxj for any sequence z;, and so

_ (1/1V]) ey dPy)? dP,dP,
D, > (P|F 1=
e @)1= [ L e Zv/ e

as desired. The second statement has identical proof to the first except that we replace ‘Tl)| >
with expectations according to .

veY

The applications of this lemma are many, and going through a few examples will best show how
to leverage it. Roughly, our typical approach is the following: we identify V with {+1}% or some
other suitably nice collection of vectors. We then choose distributions P, and Py with densities
suitably nice that the ratios p,/pg “act” like exponentials involving inner products of v € V with
some other quantity; then, because v is uniform in V in Lemma 10.1.3, we can leverage all the
tools we have developed to control moment generating functions and concentration inequalities in
Chapter 4 to bound the y?-divergence and then apply Theorem 10.1.1.

Let us give one example of this approach, where we see the technique we use to prove the
lemma arises frequently. Let Py = N(0,02I;) be the standard normal distribution on R?, and for
V = {-1,1}% and some § > 0 to be chosen, let P, = N(0v,021;). Then we have the following
lemma, which shows that while Dy (P,|FPp) = 95 for each individual P,, the divergence for the

20
average can be much smaller (even quadratically so in the ratio §2/0?).

Lemma 10.1.4. Let Py and P, be Gaussian distributions as above, and define the mizture P =
2% ZvE{il}d —PU- Then

d54

204

Proof The first inequality combines Pinsker’s inequality (Proposmon 2.2.8) with the bound
Dy (P|Q) < log(1 + D2 (P|Q)) in Proposition 2.2.9. Now we expand the y2-divergence, yielding

2Py — P||%, < log(l+ Dy (P|R)) <

_ 1 1 1
1+ D, (P|PR) =E [exp (—202 |V — 5VH§ ~ 5.3 |y — 5V’H§ + e Hyugﬂ ,

where the expectation is over Y ~ N(0, 02I,) and V, V' id Uniform (V). Taking the expectation over
Y first, before averaging over the packing elements, allows more careful control. Indeed, expanding
the squares and recognizing that HU||§ = d for each v € {£1}?, we have

1+Dx2 (?HPo) :E[exp< 0 <YV+V) 7;52 )] :E[exp (;‘QHVJFV/‘E_?:Z)]

52 ,
=B |exp (5 (V,V)
7
=P\ 951 )
where the final key inequality follows because an individual U ~ Uniform({+£1}) is 1-sub-Gaussian,
and (V, V') is thus d-sub-Gaussian. O
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10.1.2 Estimating errors and the norm of a Gaussian vector

JCD Comment: It would probably be good to connect this to some other literatures
and motivate things, e.g.,

1. Signal detection: is there something to discover?

2. Multiple testing: say we have d distinct p-values U;j. Then set Z; = ®~1(U;). Under
the null that U; ~ Uniform[0, 1] these are i.i.d. N(0,1). Alternatives then deviate from
this. Often interesting to consider other alternatives (sparse/dense/etc.)

JCD Comment: Clean this up now, because I moved Lemma 10.1.4 up.

Let us give one example to show how the mixture approach suggested by Lemma 10.1.3 works,
along with showing that a more naive approach using the two point method of Chapter 8.3 fails
to provide the correct bounds. After this we will further develop the techniques. We motivate the
example by considering regression problems, then simplify it to a more stylized and easily workable
form. Suppose we wish to estimate the best possible loss achievable in a regression problem,

nele[(XTe -Y)3.

For simplicity, assume that X ~ N(0, I), and that “base” distribution P is simply that Y ~ N(0, 1),
while the alternatives are that Y = X T6* + (1 — [|60*]|5)e, where ¢ ~ N(0,1) and [|6*]|3 < 1. In
either case we have Y ~ N(0, 1) marginally, while

i%on[(XTe ~Y)’]=1 and inf Eo-[(XT0—-Y)? =1— 673,

so that estimating the final risk is equivalent to estimating the f3-norm ||9*||§
To make the calculations more palatable, let us assume the simpler Gaussian sequence model

Y =0"+e, e~N(0,0%I,) (10.1.2)
where 6* € R" satisfies ||0*||, < r for some radius 7, and we wish to estimate the statistic
T(P) = [|6"]5 .-
Note that E[||Y|3] = ||0*]|5 + n02, so that a natural estimator is the debiased quantity
T, = Y3 — no’.

Using that E[¢5] = 1 and E[z-:?] = 3, we then obtain

?|

That is, the family P, defined as Gaussian sequence models (10.1.2) with variance o2 and ||6*||3 <

r? satisfies
Mo (T(Por), |- ) € V2004 + 1202 < V2no? + ro. (10.1.3)

We first provide the more naive approach. Suppose that we were to use Le Cam’s two-point
method to achieve a lower bound in this case. The minimax risk from inequality (8.3.3) shows that

2 n
Tn - HQ*HSI ] - ZVar ((9; + Gaj)Q) = 2not + HG*HSJQ < 2not + r?o2.
j=1
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(for a numerical constant ¢ > 0), if Py and P; are (respectively) N(6p, 0%I,) and N(61,0%L,), then
for any choice of 6y, 0, we have

1
Mo (T(Por)s |- 1) = 5 {16015 = 10003] - 1= 1P = Prlly ]} (10.1.4)
Recalling Pinsker’s inequality (Proposition 2.2.8), we have
1 1|60 — 6:]],
1—||Py— P, >1— —/Dy(P|P)=1— —————=.
1Po = Prllpy = 7 ki (Pol P1) 5

So whenever |6y — 61|, < o, we have

M (T(Poy), |- 1) 2 5 (16613 — 6113]

Take any 6y such that ||6y]|, = and 6; = (1 — )6y, then choose the largest ¢t € [0, 1] such that
|60 — 01y = tr < 0. The choice t = min{1, ¢} then gives that

Oo\»—t

160]15 — [161]15 = 2(1 — (1 — t)?) = r*(2t — t*) = 2min {r?,ro} — min {r?,0°} > min{r?, or}.
In particular, this application of the two-point approach yields

M, (T (Posr), | |) > %min {r*,or}. (10.1.5)

(A careful inspection of the argument, potentially replacing the application of Pinsker with KL
with a Hellinger distance bound, as in Proposition 2.2.8 shows that this is, essentially, the “best
possible” bound achievable by the two-point approach.) While this bound does capture the second
term in the upper bound (10.1.3) whenever or < 72, that is, 7 > o, we require more sophisticated
techniques to address the scaling with dimension n in the problem.

We therefore turn to using the mixture approach. Let Py = N(0,021I,), and for V = {£1}"
define P, = N(dv,0%1,,). It is immediate that T'(P) = 0 while T'(P,) = §%n, so we have separation
in the values of the statistic. In this case, we apply Theorem 10.1.1 and to obtain

2
M, (TP, |- ]) 2 O {1—\/;1og<1+0x2 (PP0)>}

for P = 2% > wey Po. Substituting the result of Lemma 10.1.4 into the minimax lower bound, we

obtain
5n ndt
N> 2D B e I
M (T(Poy), | 1) > % (1 4J4>

We choose § so that the (implied) probability of error in the hypothesis test from which our
reduction follows is at least %, for which it evidently suffices to take 6 = —77
together, we achieve the minimax lower bound

?n  o%yn
- = . 10.1.6
1 1 ( )
Comparing the result from the upper bound (10.1.3), we see that at least in the regime that the
radius r scales at most as o+/n, the mixture Le Cam method allows us to characterize the minimax
risk of estimation of ||f]|3 in a Gaussian sequence model.
By combining the result (10.1.3) with the more naive two-point lower bound (10.1.5), which is

valid in “large radius” regimes, we have actually characterized the minimax risk.

mn(T(Pa,r)a‘ ’ |) =
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Corollary 10.1.5. Let Py, be the Gaussian sequence model family {N(0,01,) | ||0]l, < r}, and
T6) = ||0H§ Then there is a numerical constant ¢ > 0 such that the minimax absolute error
satisfies

c (02\/ﬁ+ ra) <M (T (Poy)s |- ) < V200t + r2o2.

Proof The only thing to recognize is that ro > o2\/n whenever r > o+/n, in which case
min{r?, or} = or in the bound (10.1.5). O

10.2 Minimax hypothesis testing

In the general hypothesis testing problem, we have a family of potential distributions P, and we
are given a sample X ~ P for some P € P. Then we wish to distinguish between two disjoint
hypotheses Hy and Hi:
Hy: PePy
Hi: PePy,

where the collections Py C P and P; C P are disjoint. Then for a given test statistic ¥ : X — {0, 1},
we define the risk of the test to be

(10.2.1)

R(¥ | Py, P1) := sup P(V #0)+ sup P(¥ # 1),
PePy PeP;

that is, the sum of the worst-case probabilities that the test is correct. (We also use the notation
R(V | Hy, Hy) to denote the same quantity.) In the scenarios we consider, we will assume a metric
p on the family of distributions P, and instead of the general hypothesis test (10.2.1), we will
consider testing whether P € Py or p(P, Py) > € for all Py € P, giving the variant

Hy: PePy

Hy: PePi(e):={PePst. p(P,PR) >ecall Pye Py} (10-2.2)
In this case, we can define the risk at distance € for a sample of size n by
R, (¥,¢) :== sup P(¥(X])#0)+ sup P(¥(XT)#1), (10.2.3)

PePy PePi(e)

leaving Py and P implicit in the definition, and where we let X7 X p. From this, we can define
the minimax test risk

1%fRn(\Il,e).

We then ask for the particular thresholds e at which the minimax test risk becomes small or
large. Thus, while the coming definition allows some ambiguity, we say that a sequence €, is a
minimax threshold or critical testing radius for the testing problem (10.2.2) if there exist numerical
constants 0 < ¢ < C' < oo such that

1 2
1 < — ] > — 2.
1%f R, (¥, Ce,) < 3 and qujf R, (¥, cep) > 3 (10.2.4)

Here, the constants % and % are unimportant, the point being that for separation at most ce,,
no hypothesis test can test whether the distribution P satisfies P € Py or infp,ep, p(P, FPy) > cep,
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with reasonable accuracy. But it is possible to test whether P € Py or infp ecp, p(P, Po) > Cep,
with reasonable accuracy. Moreover, we can make the probability of error exponentially small by
increasing the sample size by a constant factor, as Exercise 10.2 explores.

Conveniently, the minimax test risk has a precise divergence-based form, to which we can apply
the techniques comparing different divergences we have developed. In particular, we have the
following analogue of Le Cam’s convex hull lower bound in Theorem 10.1.1, which provides the
same fundamental quantity (the variation distance between convex hulls of Py and P;) for lower
bounds, except that it applies for testing.

Proposition 10.2.1 (Convex hull lower bounds in testing). For any classes Py and P1, the mini-
mazx test risk satisfies

iI\Il,f R(V | Py, P1) > 1 —sup {Hfo —F1HTV | Po € Conv(Py), P1 € Conv(Py)} .

Proof Let Py € Conv(Py) and Py € Conv(P;). Then for any test W,
R(V | Py, P1) > Po(¥ # 0) + P1 (¥ # 1)

because suprema are always at least as large as averages. Now note that the set A = {x | ¥(x) = 0}
satisfies

Po(¥ #0) + P1(¥ #1) = Po(A%) + P1(A) = 1 — (Po(4) — P1(4)),

and take an infimum over regions A. O

In fact, equality typically holds in Proposition 10.2.1, but this requires the application of (infinite
dimensional) convex duality, which is beyond our scope here.

10.2.1 Detecting a difference in populations

With the generic worst-case hypothesis testing setup in place, we can give a general recipe for
developing tests. We specialize this recipe in the next few sections to different problems, including
signal detection in a Gaussian model, two-sample tests in multinomials, and goodness of fit testing.
The basic approach in all of these problems is frequently the following: to demonstrate achievability
and testability, we develop an estimator T, of the distance p(Py, P1), or some other function of
the distance, where 7T, has reasonable properties. We then develop a test ¥ by thresholding this
estimator. For the converse results that no test can distinguish the families Py and P; at a particular
distance, we use the mixture y? approaches we have outlined.

Let us give the general recipe first. Suppose that we have a statistic T designed to separate
the classes Py and P;. Such a statistic should assign large values for samples X ~ P; for P, € P,
and small values for samples X ~ FPy. A more quantitative version of this, where the separation
E,[T] — Eo[T] is commensurate with the variance of T, is sufficient to test between Py and P; with
high accuracy. To that end, we say that the statistic T" robustly C-separates Py and P if

Ep, [T] — sup Ep,[T] > C< sup +/Varp, (T) 4 /Varp, (T)) : (10.2.5)
PyePo PoePo

for each P, € P;. Typically, we choose statistics T so that Ep,[T] = 0 for each Py in the null Py
(though this is not always possible). The next proposition shows how to define a test that leverages
this to achieve small worst-case test error.
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Proposition 10.2.2. Let the statistic T : X — R robustly C-separate Py from P1. Then for the
threshold T = supp,cp, Ep, [T] + supp,ep, v/ Varp, (T), the test

U(X)=1{T >}

satisfies
2
c?
Proof Without loss of generality we assume sup p,p, Ep,[T] = 0, as the test is invariant to shifts,

so that 7 = supp ep, v/ Varp,(T'). We can also assume that C' > 1, as otherwise the proposition is
vacuous. We control the test error in each case. Under any null Fy, we have

Varg(T) 1

R(\Il ’ {PO}apl) S

For the alternatives under P; € P;, we have

Var1 (T)

PV #1)=P(T<7)=P(T-ET] <7 - E[T]) < EdT] -1

But of course,

Ey[T] — 7 = Ey[T] — sup Ep, [T] — sup v/ Varp, (T) > C/Var,(T) + (C — 1) sup Varp, (T)

Po
by the robust C-separation. As we have assumed w.l.o.g. that C' > 1, this yields

Var (T) 1
Pl(\l'#l) < m—@

as desired. O

10.2.2 Signal detection and testing a Gaussian mean

A common problem in statistics, communication, and information theory is the signal detection
problem, where we observe X ~ P from an unknown distribution P, and wish to detect if there
is some “signal” present in P. To study such a problem, we typically formulate a null model—
indicating absence of signal—and a set of alternatives for which there is some signal, though we
only care to test its existence. The existence of a signal can then justify further investigation or
data collection to actually estimate the signal.

Let us give a few variants of this problem, for which a substantial literature exists.

Example 10.2.3 (Dense Gaussian signal detection): ~We consider testing the null Hy and
alternative Hy given by

HO . P = PO = N(O,Id)

Hy: PePi(r):={N@®1)]|6l,>r} (10.2.6)

That is, we are interested in whether X ~ P has a mean 6 separated by at least r from the all-

zeros vector. The problem is to find the critical radius r at which testing between Py = { Py}
and P; becomes feasible (or infeasible). <&
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Example 10.2.4 (A global null in multiple hypothesis testing): Consider the problem of
testing d distinct null hypotheses Hy ;, j = 1,...,d, where for each we have a p-value Y; and
reject Ho j if Yy ; < 7 for a threshold 7. (Recall that a p value is a random variable Y that is
sub-uniform, meaning that P(Y < u) < P(U < u) for U ~ Uniform|0, 1], so we are less likely
to reject at threshold 7 than a uniform would be.) If we assume the Y; are exact p-values, that
is, P(Y; < u) = for u € [0,1], then testing the global independent null

d
Hy:= n Hy; = each Y} iid Uniform[0, 1]
j=1

is equivalent to Gaussian signal detection. Indeed, let Z; = ®~1(Y;), where ® denotes the
standard Gaussian cumulative distribution. Then under the global null Hy, we have

Z ~N(0, I,).

The question of which alternative class P; to consider is then frequently a matter of applica-
tions. For example, we might be curious about alternatives for which a few nulls Hy ; are false,
that is, sparse alternatives. Example 10.2.3 corresponds to something like dense alternatives.
&

With these as motivation, let us consider Example 10.2.3 more carefully, in effort to find the
critical radius 7 at which minimax testing becomes feasible (or infeasible). While our standard
techniques for estimation tell us that the minimax rate for estimating # in a normal location family
P = {N(0,0%1;) }pega (say, in mean squared error) necessarily scale as

do?
M, (6P, [-13) = -

we can test whether the mean of a Gaussian is zero at a smaller dimensionality—effectively, while
IE[||§— 0||3) — 0 as n — oo if and only if d/n — 0, in the testing case, we can save a dimension-
dependent factor v/d. In particular, the next two examples—one addressing achievability and one
the fundamental limit—show that in the dense Gaussian signal detection problem of Example 10.2.3,
the critical test radius (10.2.4) at which testing is feasible or infeasible scales as

d1/4
We can achieve (asymptotically) accurate testing in the dense signal detection problem (10.2.6) if

and only if vd/n — 0 as n — co.
We first demonstrate achievability in Example 10.2.3, leveraging Proposition 10.2.2.

Tn :

Example 10.2.5 (Achievability in Gaussian mean testing): We wish to test the alterna-
tives (10.2.6). We use the approach of Proposition 10.2.2: find an estimator of ||6]|3, and
then threshold it for our test. The discussion preceding Corollary 10.1.5 (specifically equa-
tion (10.1.3)) shows that given a sample of size n, the estimator T, = || X, ||3 — d/n is unbiased
for ||])5 and satisfies

_1a12)2] — 2d  |10113
Eo [(T,, — 1|6]|5)%] = Vara(T;,) < e (10.2.7)
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Note that Ey[T},] = 0, and so because
E[Ty] — Eo[Tn] = 63

the statistic 7;, robustly 2-separates Py from P;(r) (recall definition (10.2.5)) whenever

1 V2d 2d 1
3 16]]3 > <n + |9||§>

7_|_7
nZ n

for all § with ||0]|, > 7. Immediately we see that if we take radius r? = C% for some C' > 0,
then this separation occurs if Cv/d > 2(v/2d + v/2d + C+/d), which of course happens for large
constant C. Applying Proposition 10.2.2, we thus see that the test ¥(X7) =1 {Tn > \/2d/n2}

satisfies
di/4

%7

which gives the achievability required for the critical test radius (10.2.4). <

1
R,(¥,Crp) < 3 for r, =

Example 10.2.5 shows that at the critical radius r,, = %, it is possible (in a worst-case sense)

to test between the null Hy : N(0, I;) and alternatives H; : N(6, 1) for ||6], > Cry, where C' is a
numerical constant. We can also provide the converse.

Example 10.2.6 (Lower bounds in Gaussian mean testing): Let Pi(r) = {N(0, 13) | ||0]|, > 7}
be a collection of Gaussians with means r away from the origin in 3-norm. We seek the critical
radius r below which it is impossible to distinguish between Py = N(0, I;) and P; € Py (r) given

r2

an i.i.d. sample X?'. Lemma 10.1.4 and Proposition 10.2.1 combine (set o2 = % and 0% = =

in Lemma 10.1.4) to give

inf Ry (¥ | Po,Pi(r) > 1 — L
11\11/ n 0, ~1\1r)) = \@GXP 2% .

In particular, the threshold r? = \/&/n means that there is necessarily constant test error
probability R, > 1 — %(\/E — 1) > .54. Combining the estimation guarantee with this lower
bound shows that the critical radius (10.2.4) for testing Hy : N(0, ;) against the family of
alternatives Hj : N(6, I;) with [|0]|3 > 72 is precisely 7> = v/d/n. ©

10.2.3 Goodness of fit and two-sample tests for multinomials

The basic question in goodness of fit testing—called property testing in the theoretical computer

science literature—is the following. Given a sample Xi,..., X, id P, we wish to test whether
P = P, for a prescribed base distribution Py or P is far from Py. The related two-sample testing
problem generalizes this, where we assume samples Xq,..., X, 5 P and Yi,...,.Y, i @, and wish

to test whether P = ). Each of these falls into the class of hypothesis tests (10.2.2), where the
choice of the metric p can change the character of upper and lower bounds somewhat dramatically.
General methods for developing goodness of fit and two-sample tests typically take the broad
approach in Section 10.2.1, defining a statistic 7' that separates the distribution Py (or the joint
that X; and Y; have the same distribution) from the alternatives about which we are curious, then
thresholding that statistic.
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It turns out that even in what might appear to be a particularly simple case—that of multinomial
distributions, where we identify the distribution P with a probability mass function (p.m.f.) p €
Ag—a surprising amount of complexity arises. We thus work through two examples on testing
distance between discrete distributions by considering two metrics on the probability mass functions:
the fo-metric and the total variation distance (or ¢; metric). Then p(p,q) = ||p — q|| for ||-[| = |||l
or ||| = [I'l;- In the uniformity testing case, we let py = %1 be the uniform distribution on [d],
and we seek the critical threshold e at which testing

lp—poll =0 versus ||p—pol > €

from n i.i.d. observations X; id p becomes feasible or infeasible.

It is simpler (for analyzing procedures) to consider a slight variant of this problem, which
uses the Poissonization trick. To motivate the idea, identify the observations X; with the basis
vectors (so that observing item j € {1,...,d} corresponds to X; = e;). Then that the sample mean
D= % > i, X, is unbiased, but its coordinates exhibit dependence in that (1,p) = 1—an annoyance
for analyses. Thus, we consider an alternative approach, where we assume a two-stage sampling

procedure: we first drawn N ~ Poi(n), and then conditional on N = m, draw X; i p,i=1,...,m.
As E[N] = n and N concentrates around its mean, this is nearly equivalent to simply observing
X; g p for i = 1,...,n, and a standard probabilistic calculation shows that the distribution of
{X;}¥ | conditional on N = m is identical to the distribution of X; i p,i=1,...,m.

Even more, the minimax risk for estimation in this Poissonized sampling scheme is similar to
that for estimation in the original multinomial setting. Indeed, suppose that we wish to estimate
an abstract statistic T'(p) of p € Ay, and assume for simplicity that T'(p) € [—r,r| for some fixed r.
Define the minimax and Poissonized minimax risks

M, := inf sup E, [(Tn(X{l) - T(P)>2]
Tn peny

and
Mpoi(n) := inf sup E, (Tn (X)) = T(»)?] .
{Tm} PEAy
where the latter expectation is taken over the sample size N ~ Poi(n), and {7}, } denotes a sequence
of estimators (defined for all sample sizes m). We have the following proposition, which shows that
if we can provide procedures that work in the poissonized (independent sampling) setting, then the
standard multinomial sampling setting is similarly easy (or challenging).

Proposition 10.2.7. There exist numerical constants 0 < ¢,C' < oo such that
Mpoi(2n) — Cr?exp(—cn) <M, <2- Mpoi(n/2)- (10.2.8)

For a proof, see Exercises 10.3 and 10.4.
Let us leverage these ideas to construct an estimator for the £s-distance between two multinomial

distributions. In this case, suppose we have X; i p and Y; i q, where p,q € Ay, both for
i=1,...,N and N ~ Poi(n), and we define

N
Y Xi, G=
i=1

D=

S|
SHE

N
R (10.2.9)
=1
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This is equivalent to sampling np; nd Poi(np;) and ng; ind Poi(ng;), 7 = 1,...,d, and so we use
the quantities (10.2.9) to define an estimator we can threshold using Proposition 10.2.1. We work
through this in the next (somewhat complicated) example.

Example 10.2.8 (Estimating the fo-distance between multinomials): For the estimators (10.2.9),
define the quantity

Z; == (np; — ngy)* — np; — nd;.
Recalling that if W ~ Poi(\) then E[W] = Var(W) = X, we have E[np;| = p; and Var(np;) =
npj, So

E[Z;] = E[(np;)?] + E[(ng;)*] — 2n°p;q; — np; — ng;
= Var(np;) + Var(ng;) + (np;)? + (ngj)® — 2n°p;q; — np; — ng; = n*|p — q|3 -

In particular, the statistic
1
Tn = 72<1, Z>

n

satisfies E[T},] = |lp — qlI3.

To be able to test whether p and q are identical using Proposition 10.2.2, we must compute the
variance of (1, 7), which—conveniently, by the independence our Poisson sampling gives—is
Z?Zl Var(Z;). Leveraging that for a Poisson W ~ Poi(\) we have (by tedious calculation)
that

EW] =X, E[W? = 1+ A), EW3] = A +302 + 23, E[W?* = XA+ 707 + 623 + )\,
we obtain (see Exercise 10.7)
Var(Z;) = 4n*(pj — ¢;)*(p; + ;) + 2(p; + ¢;)°n® (10.2.10)

and
Var((1, 2)) < 4n®[lp — q|I3 llp + all, + 20 | + g3

Under the (non-point) null Hy : p = ¢, Var((1, Z)) = 2n? ||p + ¢||3 < 8n?, as sup,, [lp +qll, =
2. Proposition 10.2.2 thus shows that if

8 16[lp — gl | 8
lp—ali3>C \/nQJr\/n‘*JrnQ : (10.2.11)

V=1 {Tn > \/é/n}

satisfies Py(¥ # 0) + P(V # 1) < %, where Py is any distribution with p = ¢ and P; is
any distribution with ||p — ¢||, satisfying the separation (10.2.11). As |[p—ql, > |lp — qll4

inequality (10.2.11) a necessary and sufficient condition for inequality (10.2.11) to hold is that
lp—ally 2 1/vn. ©

Summarizing, we see that if we wish to test whether two multinomials are identical or separated
in #o, the critical threshold for the hypothesis test

then the test

Hy: p=gq
10.2.12
Hi: |lp—gly >0 (102.12)
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satisfies § < ﬁ: we can test between Hy and H; at separations that are essentially “independent”
of the dimension or number of categories d. This is in fact sharp, as a relatively straightforward
argument with Le Cam’s two-point lemma demonstrates (see Exercise 10.9). However, if we change
the norm ||-||, into the ¢;-norm ||-||;, the story changes significantly.

Let us change the hypothesis test (10.2.12) to simpler looking—in that we only test goodness of
fit—~¢;1-based variant. Identifying distributions P on {1,...,d} with their p.m.f.s p € Ay, let Py be
the uniform distribution on {1,...,d}, with p.m.f. py = él. Then we consider the testing problem

Hy: p=po

Hy: lp—polly 2 6 10:2:13)
which tests the fi-distance to uniformity. In this case, developing a test that distinguishes these
hypotheses at the optimal rate is quite sophisticated, though we outline an approach to it in the
exercises. To develop the correct order of lower bound—that is, a threshold ¢ for which no test can
reliably distinguish Hy from H;—is possible via the mixture of y2-distributions approach we have
developed in Lemma 10.1.3.

JCD Comment: Should I just do these as lemmas / propositions rather than examples?
They’re a bit involved for examples!

Proposition 10.2.9 (A lower bound for testing ¢1-separated multinomials). In the testing prob-

lem (10.2.13),

1
inf R, (U | Ho, Hy) > 1 — —
l{IgR( | Ho, H1) > 7

Ji/4

NGE

Proof We construct a particular packing of the probability simplex A, € Ri that guarantees
that the divergence between elements of Hy and Hj in the test (10.2.13) is small. For simplicity,
we assume d is even, as it changes nothing. For the base distribution Py take p.m.f. pg = él as
required by the problem (10.2.13). To construct the alternatives, let V C {#1}? be the collection
of 2%/2 vectors of the form v = (v/, —v'), where v/ € {£1}%2, so that (1,v) = 0 for each v € V.
Then for § > 0 to be chosen, define the p.m.f.s p, = 1%‘5”. Identify samples X € {ei,...,eq}. Then
for any z € {e;}, we have P,(X = x) = 3(1+ (v, z)), and so for any pair v,v’ we have

Py(X =2)Py(X =
Po(X = I’)z

whenever 6 <

%) (14 5o, ) (1 + 600/, 2)).

From this key equality, we see that if V, V' id Uniform(V), then for P = ‘—114 > vey Po we have
n
[T +6(v, X))+ 6(V', X3))

=1

E [Eo(1+ 6(V, X))(1+6(V', X)) | V,V']"]
2 n
K [<1+5d<VaV/>> } ,

where the final equality follows because Eo[(v, X)] = (v,1) = 0 for each v € V. Now we use that
1+t <e for all t to obtain

1+ D, (P|Py) = Eg

5 né* 2n4? 4z
1+ Dy (P|P) <E[GXP <d<VaV/>>} =E |exp TZUJ-
j=1
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for U; Y Uniform{+£1}. But of course these U; are 1-sub-Gaussian, so

Now use Pinsker’s inequalities (Propositions 2.2.8 and 2.2.9), which gives 2 HPO — FH,QFV < &d
Choose §* = n%. O

10.3

— n264
1+ D2 (P|Py) < exp <d> .

Geometrizing rates of convergence

JCD Comment: Outline for this section:

1. Introduce modulus of continuity (w.r.t. Hellinger), draw a picture suggesting why it
should be hard or easy

2. Example with Fisher information-type quantity

3. Show that for testing, the rate at which we can test really is this modulus whenever
we have linear functions and convex classes, because of Le Cam’s result on Hellinger
affinities.

‘ JCD Comment: Write this section

10.4

Best possible lower bounds and super-efficiency

‘ JCD Comment: Write this section. Get in super-efficiency stuff.

10.5

Bibliography

‘ JCD Comment: We stole the mixture idea from David Pollard I believe. ‘

Outline

I. Motivation: function values, testing certain quantities (e.g. is || P — Q|| > € or not), entropy
and other quantities, and allows superefficiency guarantees in an elegant way

II. Le Cam’s methods

1. The general form with mixtures

2. The y?-type bounds, with mixtures to a point mass
3.
4

. Examples: Fisher information in classical problems (especially for a one-dimensional quan-

Geometrizing rates of convergence

tity)
Example: testing distance to uniformity (failure from standard two-point bound)
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6. More sophisticated examples:

a. Smooth functionals (as in Birgé and Massart [30]), like differential entropy [ h(z)log h(z)dz
b. Higher-dimensional problems, which are hard

III. “Best possible” lower bounds, super-efficiency and constrained risk inequalities

1. Basic (two-point) constrained risk inequality (cf. [66])

2. Constrained risk inequality when P is actually a mixture (easiest with a functional): means
that any minimax bound around Fj is quite strong

3. Potentially (?): Cai and Low [42] paper on minimax estimation for 1 ||0||; when y = 6+¢ in
a Gaussian sequence model as an example and application of a constrained risk inequality.
This is probably too challenging, though—can we find a case where polynomials actually
allow us to do stuff?

a. Hard because of all the polynomial approximation stuff... but maybe there is a simpler
version that simply shows how approximation via polynomials allows lower bounds.
Approach works for Gaussian stuff, as in Cai and Low [42] or the earlier paper “Effect
of mean on variance function estimation in nonparametric regression” by Wang, Brown,
Cai, Levine.

b. Similar idea gives variation distance bounds for Poisson priors on parameters when seek-
ing lower bounds on estimating entropy H(X) = — " p, logp, of discrete distributions
with (unknown) support; see [174].

10.6 A useful divergence calculation

Now, let us suppose that we define the collection { P, } by tiltings of an underlying base distribution
Py, where each tilting is indexed by a function g, : X — [—1,00), and where

dPy(z) = (1 + go(z))dFo(z),

while f gUdPO =0, so that each P, is a valid distribution. Let P} be the distribution of n observa-

tions X; ~ PU, and let P = \Vl Zvey

Lemma 10.6.1. Define the inner product (f,g)p = [ f(z) dP(x) and let V, V' i Uniform (V).
Then o
D, (P”||Po) + 1 < Elexp(n{gv, gv')p,)]-

Proof The simple technical lemma 10.1.3 essentially gives us the result. We observe that
— i n 1 dP}dP) "
Dy (PIRg) +1= 5 > [0 = > [+ 0@+ guia)an)
VR 2] " arg -5

because P} (z1,...,%n) = [[1-1 (1 + gu(z;))dPo(z;), so that the integral decomposes into a product
of integrals. Then expanding (1 + ¢,)(1 + g,v) and noting that each has zero mean under Py gives

D> (PP|PY) +1= |V1!2 D (1 + Eolgo(X) g (X)) .
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Lastly, we note that (1+¢) < e for all ¢, and so

7 2 (1 Eolg(X)a (X)) < 2 exp (nEolgy(X)av (XD,

IV\2

which is of course equivalent to the result we desired. O

A specialization of Lemma 10.6.1 follows when we choose our functions g to correspond to a
partition of X-space. Here, we define the following.

Definition 10.1. Let k € N and the functions ¢; : X — [=b,b]. Then the functions ¢; are an
admissible partition with variances 0]2 of X with respect to a probability distribution Py if

(i) The supports E; = supp ¢; of each of the functions are disjoint.
(i) Each function has Py mean 0, i.e., Epo [gbj(X)] =0 for each j.
(i4i) Function j has variance O' =Ep,[¢ fgbz )dPo(z).

With such a partition, we can define the functions g,(x) = t(v, ¢(z)) = tzj L v¢;(x) for
|t| < 1/b, and if we take V = {—1,1}*, we obtain the following.

Lemma 10.6.2. Let the functions {qﬁj};?:l be an admissible partition of X with variances O'J2-. Fix
[t| <1 andlet dPy, = (1 + t{v,¢(z)))dPo(z) and P = ‘—11” Y vey Pot- Then

k
Dy (FFIRy) < exp (”2 Za;-*) -1,

- 1 1
and ’Lf |t| S %W’ then

k
Dy (PF|Py) <n?t*) o
Proof First, if ¢(x) = [¢;(x )]J 1> then Eo[p(X)o(X)T] = diag(o ) that is, the diagonal matrix
with 0]2 on its diagonal. By Lemma 10.6.1, we therefore have
k n2t4 k
Dy (P|Po) + 1 <E |exp | nt? Y o3ViVi | | <E Jexp [ —— > o)V}
j=1 =

by Hoeffding’s Lemma (see Example 4.1.6), as V; ey Uniform({£1}) Noting that ‘/}2 = 1 gives the
first part of the lemma. The final statement is immediate once we observe that e* < 14 (e —1)x <
1+2xfor0< oz <1. ]
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10.7 Exercises

Exercise 10.1: Recall the Hellinger distance between distributions P and () with densities p, ¢
is dpet(P,Q)? = [(v/p(x) — \/q(x))?dx. Let P be N(po,%) and Q be N(u1,%). Show that

%dhel(P> Q) =1—exp <—;(M0 — 1) "= (o — m)) :

Exercise 10.2: Suppose that the test W has test risk for testing between Py and P; satisfying
Ry (¥ | Po,P1) < % Let k € N. Show how, given a sample of size kn, we can develop a test U* with

Ry (W™ | Po, P1) < 2exp (—ck),

where ¢ > 0 is a numerical constant. Hint. Split the sample into k& samples of size n, and then
apply ¥ to each.

Exercise 10.3 (Poissonization: lower bounds [174]): Prove the lower bound in Proposition 10.2.7,
inequality (10.2.8), that is, that for numerical constants C, ¢,

Mpoi(2n) — Cr? exp(—cn) < M,,.

Hint. Bound Mpgi(a,) With a weighted sum of M,,. Use the MGF calculation that for X ~ Poi(]),
E[e!X] = exp(A(e! — 1)) to show that N ~ Poi(2n) is concentrated above n.

Exercise 10.4 (Poissonization: upper bounds [174]):  Assume the minimax result that

M, = sup inf B (To(XT) = T(p))?],

where the supremum is over probability distributions (priors m) on p € Ag, and the expectation

is now over the random choice of p and the sample X7’ i p drawn conditional on p. (This is a
standard infinite-dimensional saddle point result generahzmg von-Neumann’s minimax theorem;
cf. [81, 160].) You will show the upper bound in Proposition 10.2.7, Eq. (10.2.8).

Let {T},} be an arbitrary sequence of estimators and define the sequence of averaged risks

rm = E[(Tn(X]") — T(p))?].

Define the modified risks 7,,, = min{ry,...,rn} = min{r,,_1,mn}, and the “corrected” estimators

~ | Tpa (Y iy > T
' T (2) if vy < Tt
E

(a) Show that E[(T,,(X{") — T(p))?] <
(b) Show that
;gle[( W(XT) = T(p)?] < E[(Tn(X7) = T(p)?]
for N ~ Poi(n/2) and p ~ m, then X; drawn i.i.d. conditionally on p.

(c¢) Finalize the proof of the upper bound in inequality (10.2.8).
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Exercise 10.5: Consider the hypothesis testing problem of testing whether a collection of inde-
pendent Bernoulli random variables X1, ..., X, is is fair (Ho, so that P(X; = 1) = 1 for each i) or
that there are unfair subcollections. That is, we wish to test

Hy: X; % Bernoulli(3)
H: X Bernoulli(lgei), 0eC

for a set C' C [—1,1]”. Show that if the set C is orthosymmetric, meaning that whenever 6 € C
then S0 € C for any diagonal matrix S of signs, i.e. diag(S) € {£1}", then no test can reliably
distinguish Hy from H; (in a minimax sense). Hint. Let v € V := {£1}" index coordinate signs
and define 0, = Dv for some diagonal D, where Dv € C. Let P, be the product distribution with
X; ~ Bernoulli(2*2i%). What is o5 >°, ., Po?

Exercise 10.6 (Testing a trend in independent Bernoullis): ~ Consider testing whether a collection
of Bernoulli random variables has an “upward trend” over time, by which we mean that if X; ~
Bernoulli(p;) independently, then

n/4

_ 1 _ 1
Pend = m Z Di > Pheg ‘= m ;pz

i=3n41
Consider the following more quantitative version of this problem: we wish to test
Hy: X; % Bernoulli(})
H: X; ind Bernoulli(p;), Pend — Pheg = O-

(a) Use Le Cam’s two-point method to show that there exists a numerical constant ¢ > 0 such that
for § < —=, no test can reliably distinguish Hy from H;.

(b) Use the statistic

1 & 1 oA
T, = — X,——S°x
" n/4 Z " n/4 Z ‘
1=3n/4+1 =1

to develop a test ¥ (use Proposition 10.2.2) that achieves test risk R, (¥ | Ho, H1) < I whenever
o> %, where C' < oo is a constant.

Exercise 10.7: Prove the identity (10.2.10).

Exercise 10.8 (Unbiased estimators of distance for multinomials): Let X; i p,i=1,...,n, and
Y; id g, 1 =1,...,m, meaning that X{" and Y{™ are multinomial samples for p,q € A4. Define the

empirical estimators p; = £ 37 1{X; =j} and g; = = Y7, 1{Y; = j}.

(a) Give E[[|pl|3].

(b) Show that T, := ||p — ql|3 satisfies

1 1 1 1
BT =llp—ql?+=+——=pl>= = lql?.
(T = lIp =l + - + — = — Ipll3 = — lal
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(c) Modify T,, into a new statistic 7)™ so that E[T"™] = ||p — ¢|)5.

Exercise 10.9: Show that in the hypothesis testing problem (10.2.12), there is a numerical
constant ¢ > 0 such that § < ¢/y/n implies that no test can reliably distinguish Hy from H;.

JCD Comment:
1. Poissonization: remark in main text.
2. Work through Liam’s ¢;-multinomial testing

3. Lower bound for testing whether collection of coins is fair or some number are unfair.
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Part 111

Entropy, predictions, divergences, and
information
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Chapter 11

Predictions, loss functions, and
entropies

In prediction problems broadly construed, we have a random variable X and a label, or target or
response, Y, and we wish to fit a model or predictive function that accurately predicts the value
of Y given X. There are several perspectives possible when we consider such problems, each with
attendant advantages and challenges. We can roughly divide these into three approaches, though
there is considerable overlap between the tools, techniques, and goals of the three:

(1) Point prediction, where we wish to find a prediction function f so that f(X) most accurately
predicts Y itself.

(2) Probabilistic prediction, where we output a predicted distribution P of Y, and we seek P(Y =
y| X =2)~ P(Y =y | X = z), where here P denotes the “true” probability and P the
predicted one. A relaxed version of this is calibration, the subject of the next chapter, where
we ask that P(Y =y | P) = P(Y = y), that is, the distribution of Y given a predicted
distribution P is accurate.

(3) Predictive inference, where for a given level a € (0,1), we seek a confidence set mapping C
such that P(Y e C(X)) = 1 — a.

We focus mostly on the former two, though there is overlap between the approaches.

In this first chapter of the sequence, we focus on the probabilistic prediction problem. Our main
goal will be to elucidate and identify loss functions for choosing probabilistic predictions that are
proper, meaning that the true distribution of Y minimizes the loss, and strictly proper, meaning that
the true distribution of Y uniquely minimizes the loss. As part of this, we will develop mappings
between losses and entropy-type functionals; these will repose on convex analytic techniques for their
cleanest statements, highlighting the links between convex analysis, prediction, and information.
Moreover, we highlight how any proper loss (which will be defined) is in correspondence with a
particular measure of entropy on the distribution P, and how these connect with an object known
as the Bregman divergence central to convex optimization. For the deepest understanding of this
chapter, it will therefore be useful to review the basic concepts of convexity (e.g., convex sets,
functions, and subgradients) in Appendix B, as well as the more subtle tools on optimality and
stability of solutions to convex optimization problems in Appendix C. We give an overview of the
important results in Section 11.1.1.
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11.1 Proper losses, scoring rules, and generalized entropies

As motivation, consider a weather forecasting problem: a meteorologist wishes to prediction the
weather Y; on dayst = 1,2, ..., where Y; = 1 indicates rain and Y; = 0 indicates no rain. At time ¢,
using covariates X; (for example, the weather the previous day, long term trends, or simulations),
the forecaster predicts a probability p; € [0,1]. We would like the forecaster’s predictions to be
as accurate as possible, so that P(Y; = 1) ~ p;. Following the standard dicta of decision theory,
we choose a loss function £(p,y) that scores a prediction p for a given outcome y. Ideally, the
forecaster should have an incentive to make predictions as accurately as possible, so the distribution
minimizing the expected loss should coincide with the true distribution of Y.

This leads to proper losses. In our treatment, we will sometimes allow infinite values, so we work
with the upper and lower extended real lines, recalling that R = R U {+00} and R = RU {—o0}.

Definition 11.1. Let P be a collection of distributions on Y. A loss £ : P x Y — R is proper if,
whenever Y ~ P € P,
E[¢(P,Y)] <E[(Q,Y)] for all Q € P.

The loss is strictly proper if the preceding inequality is strict whenever (Q # P.

In much of the literature on prediction, one instead considers proper scoring rules, which are simply
negative proper losses, that is, functions S : P x Y satisfying S(P,y) = —¢(P,y) for a (strictly)
proper loss. We focus on losses for consistency with the convex analytic tools we develop. In
addition, frequently we will work with discrete distributions, so that Y has a probability mass
function (p.m.f.), in which case we will use p € Ay = {p € R% | (1,p) = 1} to identify the
distribution and #(p,y) instead of (P, y).

Perhaps the two most famous proper losses are the log loss and the squared loss (often termed
Brier scoring). For simplicity let us assume that ) € {1,2,...,k}, and let Ay, = {p € Ri [1Tp =1}
be the probability simplex; we then identify distributions P on ) with vectors p € A, and abuse
notation to write £(p,y) accordingly and when it is unambiguous. The squared loss is then

2
lag(py) = (Dy — 1>+ D 07 =Ip—eyll3,
iy

where e, is the yth standard basis vector, while the log loss (really, the negative logarithm) is
elog(p7 y) = - 10gpy-

Both of these are strictly proper. To this propriety, let Y have p.m.f. p € Ay, so that P(Y = y) = p,.
Then for the squared loss and any ¢ € Ay, we have

Elfsq(q,Y)] = Eltsq(p, Y)] = Elllg — ex[l3] = Elllp — ev 3] = lall — 2(a.p) +2(p.p) = la — pll3-

For the log loss, we have

k k k
p
E[log(0,Y)] = Elliog(p, V)] = =Y pylogay + Y pylogp, = > pylog qu = D (plg) -
y=1 y=1 y=1 v

It is immediate that ¢ = p uniquely minimizes each loss.
That the gap between the expected losses at ¢ and p reduced to a particular divergence-like
measure—the squared fo-distance in the case of the squared loss and the KL-divergence in the
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case of the log loss—is no accident. In fact, for proper losses, we will show that this divergence
representation necessarily holds.

The key underlying our development is a particular construction, which we present in Sec-
tion 11.1.2, that transforms a loss into a generalized notion of entropy. Because it is so central, we
highlight it here, though before doing so, we take a brief detour through a few of the concepts in
convexity we require. Figures representing these results capture most of the mathematical content,
while Chapters B and C in the appendices contain proofs of the results we require.

11.1.1 A convexity primer

Recall that a function f : RY — R is convex if for all z,y € dom f and X € [0, 1], we have

fAz+ (1 =Ny) <Af(x) + (1 =) f(y),

where for z ¢ dom f we define f(z) = +00. We exclusively work with proper convex functions, so
that f(z) > —oo for each x. Typically, we work with closed convex f, meaning that the epigraph
epi f = {(z,t) e REx R | f(z) <t} C R is a closed set; equivalently, f is lower semi-continuous,
so that liminfy_,, f(y) > f(x). A concave function f is one for which —f is convex.

Three main concepts form the basis for our development. The first is the subgradient (see
Appendix B.3). For a function f : R? — R, the subgradient set (also called the subdifferential) at
the point z is

af(z) = {s R | f(y) > f(x)+ (s,y — ) for all y € Rd} . (11.1.1)

If f is a convex function, then at any point x in the relative interior of its domain, df(x) is non-
empty (Theorem B.3.3). Moreover, a quick calculation shows that z minimizes f(x) if and only if
0 € f(x), and (a more challenging calculation) that if 9f(x) = {s} is a singleton, then s = V f(x)
is the usual gradient. See the left plot of Figure 11.1. We shall in some cases allow subgradients to

take values in the extended reals R* and R¥, which will necessitate some additional care.
The second concept is that the supremum of a collection of convex functions is always convex,
that is, if f, is convex for each index « € A, then

f(@) = sup fa(x)

acA

is convex, and f is closed in f, is closed for each «. The closure of f is immediate because
epi f = () epi fa, and convexity follows because

fOr+(1-Ay) < sgg{kfa(w) + (1 =Nfaly)} <A sgafa(x) +(1-=2) Slelafa(y)-

Conveniently, subdifferentiability of individual f, implies the subdifferentiability of f when the
supremum is attained. Indeed, let A(z) = {a | fo(x) = f(z)}. Then

Of(xz) C Conv {sy € Ofa(z) | @ € A(z)} (11.1.2)

because if s = ZaeA(w) AaSq for some Ay > 0 with >° Ay =1, then

f(y)Z Z Aafa(y)z Z )\a[fa(ﬂf)+<5a7y_1?>]:f($)+<5,y_$>-

acA(z) a€A(z)

See the right plot of Figure 11.1.
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Figure 11.1. Left: The quadratic f(z) = %xz and the linear approximation f(x) = f(zo)+s(z—x0),

where 2o = 1 and s = f/(z0). Right: the piecewise quadratic f(z) = max{fo(z), fi(z)} where
fo(x) = 2% and fi(z) = (z + })? + &, intersecting at zo = 1*}1/ﬁ. (a) The function f(z). (b)

~

The linear underestimator f(z) = f(zo) + so(z — x0) for so = f{(xo). (c¢) The linear underestimator
f(@) = f(xo)+s1(x—xg) for s1 = f{(xo). (d) The linear approximation f(z) = f(z1)+f'(x1)(x—x1)

around the point z; = 3.

Lastly, we revisit a special duality relationship that all closed convex functions f enjoy (see
Appendix C.2 for a fuller treatment). The Fenchel-Legendre conjugate or convex conjugate of a

function f is

£1(s) = sup {(s.) = f(a)}. (11.1.3)

The function f* is always convex, as it is the supremum of linear functions of s, and for any x*(s)
maximizing (s,x) — f(z), we have that 2*(s) € d5f*(s) by the relationship (11.1.2); by a bit more
work, we see that if s € 0f(x), then 0 € 0, {f(x) — (s,z)} and so x maximizes (s,z) — f(z). See
Figure 11.2 for a graphical representation of this process. Flipping this argument by replacing
f with f* and = with s, when s € 0f(z) and x maximizes (s,z) — f(z) in x, then x € 9f*(s)
and so s maximizes (s,z) — f*(s) in s. From this development comes the biconjugate, that is,
(x) = sup{(s,z) — f*(s)}, or f** = (f*)*. The biconjugate f**, it turns out, is the supremum
of all linear functionals below f, because (s,z) — f*(s) < f(x) for all s, and if 9f(z) is non-empty,
then the preceding argument guarantees that (s,x) — f*(s) = f(z) for s € df(z). Theorem C.2.1
in the appendices makes this rigorous, and shows that if f is a closed convex function, then

£(a) = 17 (@) = sup {{s.2) = *(s)}

for all . In particular, by passing through the conjugate, we can recover the function f directly
whenever f is closed convex.
We immediately have the Fenchel-Young inequality that

[ (s) + f(x) = (s,2) forall sz,
and (see Proposition C.2.2) if f is a closed convex function, then equality holds if and only if

s€df(x) or wedf(s), (11.1.4)
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which are equivalent. Thus we obtain the identities
of* = (9f)"" and af = (9f*)7",
and we have the characterization

Of(s) = argmin {—(s, z) + f(x)} = argmax {(s, ) — f(2)} .

Figure 11.2. The conjugate function. The line of long dashes is f(z) = sz, while the dotted line
is © — sz — f*(s). The blue line is the largest gap between sz and f(x), which equals f*(s). Note
that x — sz — f*(s) meets the graph of f(x) at exactly the point of maximum difference sz — f(x),
where f'(z) = s.

11.1.2 From a proper loss to an entropy

The key construction underlying all of our proper losses is the optimal value of the expected loss.
To any loss ¢ acting on a family P of distributions, we construct the generalized entropy associated
with the loss £ by
Hy(Y) := inf E[¢(Q,Y)], 11.1.5
oY) := inf E[(Q,Y)] ( )

where we have paralleled the typical notation H(Y') for the Shannon entropy. In many cases, it
will be more convenient to write this entropy directly as a function of the distribution P of Y, in
which case we write

Hi(P) = inf Epl(Q.Y)) (11.1.6)

where Y follows the distribution P; we will use whichever is more convenient. As the nota-
tion (11.1.6) makes clear, H/(P) is the infimum of a collection of linear functions of the form
P — Ep[l(Q,Y)], one for each @ € P), so that necessarily H;(P) is concave in P. The remainder
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of this chapter, and several parts of the coming chapters, highlights the ways that this particular
quantity informs the properties of the loss ¢, and more generally, how we may always view any
concave function H on a family of distributions P as a generalized entropy function.

In Section 11.2, we show how such entropy-type functionals map back to losses themselves,
so for now we content ourselves with a few examples to see why we call these entropies. Let us
temporarily assume that Y has finite support {1,...,k} with P = A ={p € R’j_ | (1,p) = 1} the
collection of probability mass functions on elements {1,...,k}.

Example 11.1.1 (Log loss): Consider the log loss {1¢(p,y) = —logp,. Then

k
Hy,, (p) = inf Ep[~loggy] = inf Zpylogf—Zpy logpy p = — Y _ pylogpy,

the classical Shannon entropy. <

This highlights an operational interpretation of entropy distinct from that arising in coding: the
(Shannon) entropy is the minimal expected loss of a player in a prediction game, where the player
chooses a distribution ) on Y, nature draws Y ~ P, and upon observing Y = y, the player suffers
loss —log Q(Y = y).

Example 11.1.2 (0-1 error): If instead we take the 0-1 loss, that is, o.1(p,y) = 1 if p, < p;
for some j # y and £y.1(p,y) = 0 otherwise, then

Hy,  (p) = qlelgk Eyll(q,y)] =1 - mgxpy.

So Hy, ,(ey) = 0 for any standard basis vector, that is, distribution with all mass on a single
point y, and H . (p) > 0 otherwise. Moreover, the vector p = 1/k maximizes Hy, , (p), with
Hy,, (1/k) = kT. o

,_.o

Example 11.1.3 (Brier scoring and squared error): For the squared error (Brier scoring)
loss lsq(p,y) = |lp — ey||§, where e, € {0,1}* is the yth standard basis vector, let Y have p.m.{.
p € Ag. Then

Hy, (Y) = Ellg(p, Y)] = lIpll; — 2lIpll3 + 1 =1~ [Ip]l5-

So as above, we have Hy, (Y) > 0, with Hy (Y) = 0 if and only if Y is a point mass on one
of {1,...,k}, and the uniform distribution with p.m.f. p = %1 maximizes the entropy, with
Hy, (Uniform([k])) =1 —1/k. &

These examples highlight how these entropy functions are types of uncertainty measures, giving
rise to “maximally uncertain” distributions p, which are typically uniform on Y.

11.1.3 The information in an experiment

In classical information theory, the mutual (Shannon) information between random variables X
and Y is the gap between the entropy of Y and the remaining entropy given X, that is,

I(X;Y)=H(Y)-HY | X).
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In complete analogy with our development in Chapter 2, then, we can define the information
between variables X and Y relative to a particular loss function . Thus, we define the £-conditional
entropy
H(Y | X=2)=inf El(Q,Y)| X =
(Y| z) Jnf, [(Q,Y) | x]

and, in analogy to the definitions in Section 2.1.1, the conditional entropy of Y given X is
HY | X)i= B |t EI6QY) | X]| = [ B | X = 0)ip(a),
€ X

the average minimal expected loss when one observes X.

With this definition, we then can discuss the information in an experiment. This nomenclature
follows classical statistical parlance, where by an experiment, we mean the observation of a variable
X in a Markov chain X — Y, where we think of Y as a hypothesis to be tested or a value to be
predicted, and we ask how much observing X helps to actually allow this prediction. Then we
define

L(X;Y):=HyY)— Hy(Y | X), (11.1.7)

which is nonnegative and is the gap between the prior entropy of Y and its posterior entropy
conditional on the observation X. That is, this information measure is precisely the gap between
the best achievable loss in the prediction of a distribution P for Y a priori, when we observe
nothing, and that achievable a posteriori, when we observe X. In parallel to our alternative view of
the entropy as the (expected) minimal loss of a player in a prediction game, then, the information
between X and Y is the improvement an observation X offers a player in predicting Y when
measuring error with the loss ¢. The information (11.1.7) is typically asymmetrical in X and Y, so
we are careful about the ordering (this lack of symmetric holds, essentially, unless ¢ is the log loss).
The next three examples show different information quantities, where in each we let ) have
finite cardinality k, and thus identify P with the probability simplex Ay = {p € R’i | (1,p) =1}.

Example 11.1.4 (Shannon information): Taking the log loss ¢(p,y) = —log p,, we have
L(X;Y) = Hi(Y) = HAY | X) = H(Y) — H(Y | X) = [(X;Y),
the classical Shannon information. <

Example 11.1.5 (0-1 error):  Consider the 0-1 error fo.1(p,y) = 1 if p, < max;p; and
lo1(p,y) = 0if p, > max;, p;. Then letting y* = argmax, P(Y = y) and y*(r) = argmax, P(Y =
y | X = x), we have

Ipo, (X5Y) =P(Y =¢") —E[P(Y = y*(X) | X)] = P(Y = ¢") - P(Y = y"(X)),

the gap between the prior probability of making a mistake when guessing Y and the posterior
probability given X. <

Example 11.1.6 (Squared error): For the Brier score with squared error ls(p, y) = ||p — ey Hg,
we have Hy (p) =1 — Ipll3, and so

k

k k
L (X;Y) =) E[P(Y =j[X)’] =Y P(Y =)=} Var(P(Y =j| X)),
j=1 j=1 j=1

the summed variances of the random variables P(Y = j | X). The higher the variance of these
quantities, the more information X carries about Y. <
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11.2 Characterizing proper losses and Bregman divergences

With the definition (11.1.5) of the fundamental generalized entropy, we can now proceed to a
characterization of all proper losses. We do this in three settings: in the first (Section 11.2.1),
we give a representation for proper losses when ) is finite and discrete, so we can identify it
with ) = {1,...,k} and distributions P on ) with probability mass functions p € Ay. We then
demonstrate a full characterization of propriety (Section 11.2.2), which requires measure-theoretic
tools and can be skipped. As the final approach to considering propriety, we modify the results for
finite ) to consider cases in which Y is vector-valued and ) ¢ RF is contained in a compact set.
This case transparently generalizes the finite representations of Section 11.2.1 and will form the
basis of our development going forward, as it allows us to more directly apply to tools of convexity
and analysis.

11.2.1 Characterizing proper losses for Y taking finitely many vales

Here, we present the Savage representation of proper losses, which characterizes all proper losses
using the entropies (11.1.5) or, equivalently, (11.1.6). To avoid pathological cases, we work with
regular losses, which always assign a finite value to the correct predicted distribution; we assume
regularity without further comment.

Definition 11.2. Let P be a family of distribution on'Y. The loss £ : P x Y — R is regular for
the family P if Ep[¢(P,Y)] is real valued for all P € P.

We do allow losses to attain infinite values, for example, we can allow £(Q,y) = +o0o if @) assigns
probability 0 to an event y, as in the case of the logarithmic loss. The following theorem then
provides the promised representation of proper losses, and additionally, highlights the centrality of
the generalized entropy functionals.

Theorem 11.2.1 (Proper scoring rules: the finite case). Let Y = {1,...,k} be finite and P C Ay
a convex collection of distributions on Y. Then the following are true.

(i) If the loss £ : P x Y — R satisfies the representation

t(p,y) = —h(p) — (Vh(p), ey — p) (11.2.1)

for a subdifferentiable closed convex function h : P — R, where Vh(p) € 0h(p), then £ is
proper.

(i) Conversely, if £ is proper, then choosing h to be the negative generalized entropy

he(p) := —Hy(p) = Sup {=Ep[t(¢,Y)] | ¢ € P}

satisfies equality (11.2.1) (and h is closed).

Additionally, if £ is real valued, then Vh(p) € R¥ in the representation (11.2.1). If £(p,y) can take
the value +00, then we allow Vh(p) € RF when p ¢ relint Ag. The loss is strictly proper if and only
if the convex h is strictly convez.

Proof If ¢ has the given representation and P(Y = y) = p,, then we have
Elt(q,Y)] = —h(q) = (VA(q),p — q) = —h(p) = E[{(p,Y)]
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by the first-order convexity property of convex functions (that is, the definition (11.1.1)) of a
subdifferential).

Conversely, suppose that the loss is proper, and let h(p) = hy(p). Clearly h is convex, as it is
the supremum of linear functionals of p. Moreover, propriety of £ guarantees that

k

h(p) > —E[t(q, )] = h(q) + > —L(q,y)(x — %)
y=1

That is, for each ¢ € P the vector [—/(q, y)]lgz1 € 0h(q), so h is subdifferentiable. Choosing the

vector Vh(p) = [—K(p,y)]zzl, we have

k
Up,y) = —h(p) + L(p,y) + h(p) = —h(p) = Y _ pil(p,i) + €(p,y) = —h(p) — (VA(p), ey — D)
=1

as desired. Note that ¢(p,y) < oo except when p, = 0, in which case our definition Vh(p) =
[—4(p, y)]’;:1 remains sensible as —(Vh(p), e, — p) = +o0.

As an alternative argument more directly using convexity, definition of h(p) = sup,{—E[¢(¢,Y)] |
g € P} and the immediate calculation (11.1.2) of the subdifferential of the supremum shows that

oh(p) > {[~0(a, y)]i_1 | a € Ay satisfies —B,[¢(,Y)] = h(p) } .

But propriety guarantees that the set of such ¢ includes p, so that dh(p) D [—£(p, y)]5_;.
For the strict inequalities and strict propriety, trace the argument replacing inequalities with
strict inequalities for ¢ # p and use Corollary B.3.2 or C.1.7. O

The negative generalized entropy h in Theorem 11.2.1 is essentially unique and marks an impor-
tant duality between proper losses and convex functions: to each loss, we can assign a generalized
entropy, and from this generalized entropy, we can reconstruct the loss. Exercise 11.2 explores this
connection. We can also give a few examples that show how to recover standard losses. For each,
we begin with a convex function h, then exhibit the associated proper or strictly proper scoring
rule. One thing to notice in this representation is that, typically, we do not expect to achieve a
loss function convex in p, which is a weakness of the representation (11.2.1). In Section 11.3 (and
Chapter 14 in more depth), however, we will show how to convert suitable proper losses into sur-
rogates that are convex in their arguments and which, after a particular transformation based on
convex duality, are proper and yield the correct distributional predictions. We defer this, however,
and instead provide a few examples.

Example 11.2.2 (Logarithmic losses): Consider the negative entropy h(p) = 2521 Dy log py.
We have %h(p) =1+logp, € [0, 1], and

k k
log(P,y) = =D _pjlogp; + Y py(1+logp;) — (1 +logp,) = —logp,,
j=1 j=1

yielding the log loss. Note that for this case, we do require that the gradients Vh(p) take
values in the (downward) extended reals RF. ©
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Example 11.2.3 (Brier scores and squared error): When we have the squared error £y (p, y) =
lp — €y||§, we can directly check that h(p) = ||p||§ gives the loss. Indeed,

2 2 2
—lpllz = 2(p, ey —p) = lIplls = 2(psey) + 1 =1 =llp—eyll5 - 1.
So aside from an additive constant, we have the desired result. &

More esoteric examples exist in the literature, such as the spherical score arising from h(p) =
|lpll, (note the lack of a square).

Example 11.2.4 (Spherical scores): Let h(p) = ||p||,, which is strictly convex on Aj. Then

Vh(p) = p/ Ipll,

and {(p,y) = —||plly — ﬁ(p, ey —p) = —py/ |Ip|l, which is strictly proper but does not retain
2
convexity. &
Bregman divergences

A key aspect of the Savage representation (11.2.1) is that associated to any proper loss is a first-
order divergence (or, less evocatively, the Bregman divergence). Recall from Chapter 3 that for a
function function h : R¥ — R, the first-order divergence associated with h is

Dy (u,v) := h(u) — h(v) — (Vh(v),u — v). (11.2.2)

In typical definitions of the divergence, one requires that h be differentiable; here, we allow non-
differentiable h so long as the choice Vh(v) € Oh(v) is given. In particular, we see that

Dp(u,v) >0
for all v and v, and moreover, if h is strictly convex
Dp(u,v) >0 whenever u # v.

(See, e.g., Corollaries B.3.2 and C.1.7 in the appendices.)
Familiar examples include the squared Euclidean norm h(u) = 3 ||u|3, which by inspection gives

1 2
Dp(u,v) = 3 |u =3,

and the negative entropies h(u) = S*

=1 Uj loguj;, which implicitly encodes the constraint that
u > 0. This gives

k k k k
ws
Dp(u,v) = Zuj logu; — Zvj log v; — Z(l +logvj)(u; —vj) = Zuj log v—] + 1T (u —v).
Jj=1 j=1 j=1 j=1 J

If u,v € Ay, then evidently Dy, (u,v) = Dy (ufv) because 17u = 17v = 1, where we identify v and
v with probability mass functions.

Continuing this identification of distributions on ) with elements p € Ay in the probability
simplex, we can reconsider the gaps between a loss evaluated at a true distribution p and an
alternative ¢. In this case, the representation Theorem 11.2.1 provides allows us to connect proper
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losses with first-order divergences immediately. Indeed, let h : A, — R be a convex function and
loss £ be the associated proper loss, with ¢(p,y) = —h(p) — (Vh(p), ey, — p). Now, suppose that ¥’
has p.m.f. p; then for any ¢ € Ag, the gap

k

E,[(q,Y)] = Bpll(p,Y)] = h(p) — h(q) = >_ py(Vh(q), ey — q)
y=1

= h(p) — h(q) — (Vh(q),p — q) = Du(p,q).

We record this as a corollary to Theorem 11.2.1, highlighting the links between propriety, first-order
divergences, and proper loss functions.

Corollary 11.2.5. Let the conditions of Theorem 11.2.1 hold. Then { is (strictly) proper if and
only if there exists a (strictly) convex h : A — R for which

Epll(q,Y)] = Epll(p,Y)] = Dn(p,q)

for all p,q € Ayg.

11.2.2 General proper losses

More generally, we can consider predicting distributions P on general sets ). For example, recalling
the meteorological motivation of predicting the weather, suppose we wish to predict a distribution
of the (real-valued) amount Y of rainfall on a given day. Many predictions place a point mass
at Y = 0, with a decaying tail for higher amounts of rainfall. Then it is natural to predict a
cumulative distribution function F' : R — [0, 1], measuring error relative to the actual amount of
rain that falls. Several losses are common in the literature; one common example is the continuous
ranked probability score.

Example 11.2.6 (Continuous ranked probability score (CRPS)): The CRPS loss for a CDF
Fatyis

Cerps(Fyy) = /(F(t) —1{y < t})%dt. (11.2.3)

This is a strictly proper scoring rule: let G be any cumulative distribution function, meaning
that lim, o G(t) = 0 and lim;_,o, G(t) = 1, and let Y have CDF F. Then

E[lerps(G,Y)] — Ellerps(F,Y)] = / (G(t)* = F(t)* —2(G(t) — F()E[1 {Y < t}]) dt
- [(Go - Foa

because E[1{Y < t}] = F(t). This is the (squared) Cramér-von-Mises distance between F' and
G, and which is positive unless F' = G. Unfortunately, computing the CRPS loss (11.2.3) is
often challenging except for specially structured F. <

Because the computation of the continuous ranked probability score is challenging, it can be
advantageous to consider other losses on probability distributions, which can allow more flexibility
in modeling. To that end, we define the quantile loss: for a probability distribution P on Y, let

Quant, (Y) = Quant,(P) :=inf {t | P(Y <t) > a}
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to be the a-quantile of the distribution P. (When Y has cumulative distribution F', this is the
inverse CDF mapping F'~'(a) = inf{t | F(t) > a}.) Defining the quantile penalty

pa(t) = a [t]+ +(1-a) [_t]Jr )

for a collection A of values in [0, 1], the quantile loss is

Lauant A(P,y) = > pa(y — Quant, (P)). (11.2.4)
acA

The propriety of the quantile loss is relatively straightforward; it is, however, not strictly proper.

Example 11.2.7 (Quantile loss): To see that the quantile loss (11.2.4) is proper, consider the
single quantile penalty po: let g(t) = E[po (Y —t)] = aE[[Y — ] ] + (1 — «)E[[t — Y], |, which
we claim is minimized by Quant,(Y'). Indeed, g is convex, and it has left and right derivatives

0 gt) =tim 2 =90 by s (1 )Py <) =P(Y <t)—a and

st s—1t
0+g(t) :== I;EL ‘(w =—aPY >t)+(1-a)P(Y <t)=P(Y <t)—a.

Indeed, for t = Quant,(Y'), we have 0_g(t) = P(Y <t)—a <0and 0;g(t) =P(Y <t)—a >0,
because ¢t — P(Y < t) is right continuous. So convexity yields

Elpa(Y — Quant,(Y))] < Elpa(Y —1)]
for all t. Applying this argument for each o € A, we thus have
E[£quant,A(Q7 Y)] > E[gquant,A(Py Y)]

for any () whenever Y ~ P, and equality holds whenever () and P have identical o quantile
for each o € A. ©

The general case of Theorem 11.2.1 allows us to address such scenarios, though it does require
measure theory to properly define. Happily, the generality does not require a particularly more
sophisticated proof. For a (convex) function h : P — R on a family of distributions P on a set ),
we say h/(P;-): Y — R is a subderivative of h at P € P whenever

hQ) > h(P)+ /y W (P,y)(dQ(y) — dP(y))
— I(P) + Egll(P,Y)] — Ep[t(P,Y)

for all Q € P. (11.2.5)

When )Y is discrete and we can identify P with the simplex Ay, the inequality (11.2.5) is simply
the typical subgradient inequality (11.1.1) that h(q) > h(p) + (Vh(p),q — p) for p,q € Ay, where
Vh(p) € 0h(p). We then have the following generalization of Theorem 11.2.1.

Theorem 11.2.8. Let P be a convex collection of distributions on ). Then the following are true.

(i) If the loss £ : P x Y — R satisfies the representation
U(P,yo) = —h(P) = W' (P, yo) + /h/(P, y)dP(y), forallyy €Y, (11.2.6)
where h'(P,-) : Y — R is a subderivative of h at P € P, then it is proper.
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(i) Conversely, if £ is proper, then choosing h to be the negative generalized entropy hy(P) =
—Hy(P) =sup{—Ep[l(Q,Y)] | Q € P} satisfies equality (11.2.6).

The loss is strictly proper if and only if the convex h is strictly convex.

Proof If / has the representation (11.2.6), then we have

“Ep[U(P,Y)] = h(P) > h(Q) + / 1(Q.y)(dP(y) — dQ(y)) = ~Ep[((Q.Y)]

for any Q € P by the definition (11.2.5) of a subderivative. Rewriting, we have Ep[{(P,Y)] <
Ep[¢(Q,Y)] and ¢ is proper.
Conversely, if £ is proper and regular, then as in the proof of Theorem 11.2.1 we define

h(P) := sup —Ep[l(Q,Y)] = —Ep[{(P,Y)],
QcP

which is the supremum of linear functionals of P and hence convex. If we let h/(P,y) = —¢(P,y) € R
for P € P, then

h(P) > =Ep[l(Q,Y)] = h(Q) + E[((Q,Y)] - Ep[l(Q,Y)] = h(Q) +/h’(P, y)(dP(y) — dQ(y))

by propriety, so that evidently h'(P,y) is a subderivative of h at P € P. That L(P,y9) = —h(P) —
W (P,yo) + [ W (P,y)dP(y) is then immediate.
The arguments for strict propriety/convexity are similar. O

The obvious corollary to Theorem 11.2.8 follows.

Corollary 11.2.9. Let P be a convex collection of probability distributions on Y. Then the loss
£:PxY — R is proper if and only if there exists a convex function h : P — R with subderivatives
R'(P,-) : Y — R such that

E(Pa yO) = _h(P) - h‘/(Pa yO) +]EP[h/(P7 Y)} fO’f’ all Yo € y
The loss £ is strictly proper if and only if h is strictly concave.

The subdifferentials and differentiability in this potentially infinite dimensional case can make
writing the particular representation (11.2.6) challenging; for example, the representation of the
quantile loss in Example 11.2.7 is quite complex. In the case of predictions involving the cumulative
distribution function F', however, one can obtain the subderivative by taking directional (Gateaux)
derivatives in directions G — F' for cumulative distributions G. In this case, for the point cumulative
distribution G, with Gy(t) = 1 {y < t}, we define

, . h(F+eGy—F))—h(F)
N(F,y) = lelﬁ)l - .

The continuous ranked probability score (Example 11.2.6) admits this expansion.
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Example 11.2.10 (CRPS (Example 11.2.6) continued): The strict propriety of the CRPS
loss (11.2.3) means that the generalized entropy

h(F) = sup ~E[U(G. V)] = ~Elfem(P.Y)] = [ (F(6) - Dt
by definition. Expanding h(F + ¢(G — F')) for small € as in the recipe above, we have
hF +¢eG—F))=h(F)— e/(G(t) — F(t))dt + 26/F(t)(G(t) — F(t))dt + O(é%).

to obtain the y-based derivative h/(F,y), we choose Gy(t) = 1{y <t} to obtain directional
derivative

(R =l h(F + ¢(Gy - F)) — h(F)

~ [at<g-Fo)e-2 [FOO < O-Fe)
By inspection, when Y has cumulative distribution function F, E[h/(F,Y)] = 0 and so

_ / (—F()? + F(t) — F(t) + 1{y < t} + 2F(t)* — 2F(t)1 {y < t}) dt
—— [ (P~ 1y < 1)) dt = Comn(Po),
as desired. <&

11.2.3 Proper losses and vector-valued Y

The final variant of propriety we consider generalizes that when ) is finite and identified with
{1,...,k} in Section 11.2.1. Now, we assume that Y is vector-valued, with Y C R¥, and assume

the convex hull
Conv(Y) = {Ep[Y] | P is a distribution on YV}

is bounded. (Typically, it will also be compact, though this will not be central to our development,
and pathological cases, such as ) = {1/n},en, exist.) An example showing how to use this
representation for multinomial Y € {1,...,k} may be clarifying.

Example 11.2.11 (Multinomial Y as vectors): If Y is a multinomial taking values in a
discrete set of size k, we can instead identify Y with the first k& standard basis vectors eq, . . ., €.
Then p = E[Y] € Ag is the p.m.f. of Y, and Conv(Y) = Ag. <&

Example 11.2.12 (Binary Y as a scalar): When Y € {0,1} is a Bernoulli random variable,
we identify Y with itself, so that p =E[Y] =P(Y =1) € [0, 1] and Conv(}) = [0,1]. <

Example 11.2.13 (Ordinal Y as a scalar): Consider a rating problem of predicting the
rating Y of a movie from 1 to 5 stars. In this case, Y takes values {1,...,5} C R, but the
ordering between the elements is important; it is unnatural to treat Y as a multinomial. More
generally, Y may take values in {y1,...,yx} C R, where y; < --- < yi. As in the binary case,
we identify Y with its scalar value, so that E[Y] € [y1, yx] and Conv(Y) = [y1,yx]. <
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In this vector-valued Y case, instead of prediction distributions P, the goal is to predict the
mean mapping
u(P) :=Ep[Y] € Conv(}),
so that p : P — R for the collection P of distributions on Y. Our goal is to reward predictions of
the correct expectation, leading to the following definition.

Definition 11.3. Let C = clConv())) be a convex set. Then £ :C x Y — R is proper if
Ep[l(n,Y)] 2 Ep[t(Ep[Y],Y)] for all p € C,
and strictly proper if the inequality is strict whenever p # Ep[Y].

Definition 11.3 generalizes Definition 11.2 in the multinomial case, where ) is a discrete set that
we may identify with the basis vectors {eq,...,er}, as Example 11.2.11 makes clear.

With this definition, we can extend Theorem 11.2.1 to a more general case, where as usual we
say that ¢ is regular if Ep[¢(Ep[Y],Y)] < oo for all distributions P on ).

Theorem 11.2.14. Let ) C R* be finite, P be the collection of distributions on Y, and C =
Conv(Y) ={Ep[Y] | P € P}. A regular loss £ : C x Y — R is proper if and only if there exists a
closed conver h : C — R such that

U, y) = —h(p) — (Vh(u),y — w)

for some subgradient Vh(u) € Oh(u) C R*. Additionally, if £ : C x Y — R, then 0h(p) C R¥, and
if p € relint C, we have Oh(p) C R¥. The loss is strictly proper if and only if the associated h is
strictly convex.

With this theorem, we have an essentially complete analogy with Theorem 11.2.1. There are
subtleties in the proof because the mapping from probabilities P to Ep[Y] can be many-to-one,
necessitating some care in the calculations, and making infinite losses somewhat challenging. A few
examples centered around ordinal regression illustrate the scenarios.

Example 11.2.15 (Ordinal regression, Example 11.2.13 continued): Let Y € {0,1,...,k} be
a value to be predicted, where the ordering on Y is important, as in ratings of items. In this
case, the set C'= Conv()) = [0, k], and any strictly convex loss with domain [0, k] gives rise to
a proper loss via the construction €5,(p,y) = —h(p) — h'(p)(y — p). First, we take h(p) = 342
This gives rise to a (modified) squared error

1 1
Cn(py) = 51— y)? — §y27

which is strictly convex and proper.
Other choices of h are possible. One natural choice is a variant of the negative binary
entropy, and we define

h(p) = (k — p)log(k — p) + plog p,
which is convex in p € [0, k], with h(u) = +oo for > k or u < 0, while h(0) = h(k) = klogk.
We have h'(p) = log z£, and so
th(p,y) = —ylog p+ (y — k) log(k — p),

for y € {0,...,k}. Here, however, note the importance of allowing infinite values in the loss ¢
when p — {0,k}. <
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Proof One direction is, as in the previous cases, straightforward. Let £ have the given represen-
tation. Then for pu(P) = Ep[Y],

Ep[l(p,Y)] = —h(p) — (Vh(n), p(P) — p) = —h(u(P)) = Ep[(n(P),Y)],

and the inequality is strict if A is strictly convex.

The converse direction (from a proper loss to function h) is more subtle. We first give the
argument in the case that the losses ¢ are finite-valued, so that ¢(u,y) < oo for each p € C and
y € Y, deferring the proof of the general case to Section 11.5.1 as it yields little additional intuition.
Let Y = {y1,...,ym} C R¥ and assume w.l.o.g. that that the matrix A = [y; --- y,,] with columns
y; has rank k (otherwise, we simply work in a subspace). We may identify P with the probability
simplex A,,, and then the mean mapping p(p) = > ., piyi for p € R™ is surjective. Now for
p € R¥ define

*

Plp) = Tnf sup{=E,[¢{e, )]} = b {=Ep 6w, YOI | n(p) = i},

where the equality (x) follows because ¢ is proper. The function h is closed convex, as it is the partial
infimum of the closed convex function p — —E,[¢(x,Y)] + Ia,,(p), where we recall In,, (p) = 0 if
p € A, and +oo otherwise (see Proposition B.3.11).

We compute 0h(u) directly now. The infimum over p in the definition of h(u) is attained, as
Ay, is compact and g(p) := —E,[¢(u, Y')] is necessarily continuous in p satisfying p(p) = p, because
regularity of the loss guarantees ¢(u,y;) € R whenever p; > 0 is feasible in the mean mapping
constraint p(p) = p. Moreover, it is immediate that

—l(p, 1)
Vy(p) = : €R™.

O ym)

Let p*(u) be any p attaining the infimum. By Proposition B.3.27 on the subgradients of partial
minimization, we thus obtain

Oh(p) = {seRk]yiTs:—Z(u,yi) forizl,...,m},

and moreover, this set is necessarily non-empty for all u € relint C = {u(p) | p > 0,p € A, }. Using
this equality, we have

s y) = —h(p) + k(i) + €, y) = —h(1) + Epe oy [—0(1, Y] + €11, y)
= —h(p)+ > _piwys —y"s
=1

= —h(p) + (8. Bpe Y] = 9) = =h(n) = (5,9 — )

for any s € Oh(p), as E,[Y] = pu(p) = p by construction.
Lastly, to obtain strict convexity of h, note that if E,[Y] = u, then we can use the representation

Epll(1',Y)] = Ep[l(p, Y)] = —=h(p) = (Vh(1'), p — 1) + h(p) = Dp(p, 1)

which is positive whenever p # i if and only if & is strictly convex. O
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11.3 From entropies to convex losses, arbitrary predictions, and
link functions

Frequently, when we fit models, it is inconvenient to directly model or predict probabilities, that is,
to minimize over probabilistic predictions. Instead, we often wish to fit some real-valued prediction
and then transform it into a probabilistic prediction. This is perhaps most familiar from binary
and multiclass logistic regression, where a link function transforms real-valued predictions into
probabilistic predictions. For the binary logistic regression case with Y € {—1, 1}, we assume that
we predict a score s € R, where s > 0 indicates a prediction that Y is more likely to be 1 and s < 0
that it is more likely negative. The implied (modelled) probability that Y = y is then

1

=— — f —1,1}.
1 + exp(—ys) orye{-11}

p(y | s)
Similarly, for k-class classification problems, when using multiclass logistic regression, we predict a
score vector s € R¥, where sy indicates a score associated to one of the £ potential class labels y;
this then implies the probabilites

(1) = i 1
ply | s) = = ,
Zle exp(s;) 1+ Z#y exp(s; — sy)

where we clearly have > p(y | s) = 1.

In binary and logistic regression, instead of directly minimizing negative log probabilities of
error over the probability simplex (though one does this implicitly), instead we use surrogate logistic
losses whose arguments can range over all of R or R*. In the case of binary logistic regression with
y € {—1,1}, this is

o(s,y) = log(1 + exp(—sy)),

while in the multiclass case we use the multiclass logistic loss

k
p(s,y) = —sy + log (Z eXP(Si))) =log [ 14+ ) exp(s;i — sy)

i=1 i#y

Note that for each of these, we have a direct relationship between the probabilistic predictions and
derivatives of . In the binary logistic regression case, we have

1 1
"~ 14exp(ys) 1+ exp(—ys)’

0
pyls) = 1+$<p(87y) =1

while in the multiclass case we similarly have

o exp(sy)
S) = 1 ~N 87 <k .\
p(y | s) +asy‘P( 2 S exp(s;)

11.3.1 Convex conjugate linkages

These dualities turn out to hold in substantially more generality, and they are the key to trans-
forming proper losses (as applied on probabilities) into proper surrogate losses that apply directly
to real-valued scores and which are convex in their arguments, allowing us to bring the tools of
convex optimization to bear on actually fitting predictive models. We work in the general setting of

294



Lexture Notes on Statistics and Information Theory John Duchi

Section 11.2.3 of losses for vector-valued y where J) C R¥, so that instead of predicting probability
distributions on Y itself we predict elements p of the set {Ep[Y]} = Conv(}), and let £ be a strictly
proper loss. Theorems 11.2.1 and 11.2.14 demonstrate that if the loss £ is proper, there exists a
(negative) generalized entropy, which in the case of Theorem 11.2.1 is h(p) = sup,{—E,[{(q,Y)]},
for which

Cpsy) = —h(p) — (Vh(p),y — p).

Note that h is always a closed convex function, meaning that it is lower semicontinuous or that its
epigraph epih = {(u,t) | h(p) < t} is closed.

Let us suppose temporarily that we have any such entropy. Recalling the convex conju-
gate (11.1.3), the negative generalized entropy h is closed convex, and so its conjugate h*(s) =
sup{(s, u) — h(p)} satisfies h**(u) = h(p). In particular, if we define the surrogate loss

p(s,y) == h'(s) = (s,9),
which is defined for all s € R* (instead of Conv()))), then
Eplip(s, V)] = h*(s) — (5, Ep[Y]) = h*(s) — {5, u(P)
for the mean mapping p(P) = Ep[Y]. Moreover,
inf Eplp(s, V)] = inf {h*(s) — (s, u(P))} = ~h™(u(P)) = ~h(u(P)).
and so it generates the same negative entropy as the original loss /¢, as

inf Ep[((1,Y)] = inf{~h(s) — (Vh(u),n(P) = 1)} = ~h(u(P)).

This identification of (generalized) entropies will underpin much of our development of the consis-
tency of losses in sections to come. For now, we content ourselves with addressing how to under-
stand propriety of the surrogate loss ¢ and how to transform predictions s € R¥ into probabilistic
predictions pu.

The key will be to consider what we term convezx-conjugate-linkages, or conjugate linkages for
short. Recall the duality relationships (11.1.4) from the Fenchel-Young inequality we present in
the convexity primer in Section 11.1.1. The negative generalized entropy h is convex, and the
dualities associated with its conjugate h*(s) = sup,{(s,u) — h(p)} will form the basis of our
transformations. We first give a somewhat heuristic presentation, as the intuition is important
(but details to make things precise can be a bit tedious). Essentially, we require that h* and h are
continuously differentiable, in which case we have

Vh(p) = s if and only if VA*(s) = p if and only if h*(s) + h(p) = (s, )

by the Fenchel-Young inequalities (11.1.4). That is, the gradient VA* of the conjugate transforms
a score vector s € R¥ into elements ¢ to predict V: we transform s into a prediction p via the
conjugate link function

pred; (s) = arglrtnax{<s, w) —h(w)} = Vh*(s) = (Vh)"(s), (11.3.1)

which finds the p that best trades having maximal “entropy” —h(u), or uncertainty, with alignment
with the scores (s, p).
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With this, it is then natural to consider the function substituting the prediction p = pred;(s)
into £(u,y), and so we consider

{(pred,(s), y)-

Immediately, if © = pred;,(s) = Vh*(s), we have s = Vh(u) by construction (or the Fenchel-Young
inequality (11.1.4)), and so h(u) = (s,u) — h*(s) for this particular pair (s,u), and Vh(u) =
Vh(Vh*(s)) = s because Vh and Vh* are inverses. Substituting, we obtain

(predy(s),y) = —h(pred,(s)) — (Vh(pred;(s)),y — pred;,(s)) = —h(p) — (s,y — 1)
=h*(s) = (s,1) — (8,9 — 1),

that is, we have recovered the surrogate

o(s,y) =h*(s) — (s,y). (11.3.2)

The surrogate loss (11.3.2) constructed from the negative entropy h is the key transformation of
the loss ¢ into a convex loss, and (no matter the properties of ¢) is always convex.

As we have already demonstrated, the construction (11.3.2) is more general than we have
presented; certainly, h* is always convex, and so ¢ is always convex in s. Moreover, if Y has
expectation E[Y] = p, then

inf Elp(s, 1)) = mf{h"(s) = (s, )} = —h(p)

by conjugate duality, so the surrogate ¢ always recovers the negative entropy h; without some type
of differentiability conditions, however, the construction of the prediction mapping pred;, requires
more care. Chapter 14 more deeply investigates these connections.

All that remains is to give more precise conditions under which the prediction (11.3.1) is always
unique and exists for all possible score vectors s € R¥. To that end, we make the following definition.

Definition 11.4. Let h: R¥ — R. Then h is a Legendre negative entropy if it is strictly convez,
continuously differentiable, and

h
@ — bddomh or (11.3.3)

IVRh(p)|| = oo if either
[l = o0

This is precisely the condition we require to make each step in the development of the surro-
gate (11.3.2) airtight; as a corollary to Theorem C.2.9 in the appendices, we have the following.

Corollary 11.3.1. Let h be a Legendre negative entropy. Then the conjugate link prediction (11.3.1)
is unique and exists for all s € R¥. In particular, the conjugate h* is strictly convex, continuously
differentiable, satisfies dom h* = R¥, and Vh* = (Vh)~L.

With this corollary in place, we can then give a theorem showing the equivalence of the strictly
proper loss £ and its surrogate.

Theorem 11.3.2. Let £ : C x Y — R be the strictly proper loss associated with the Legendre
negative entropy h. Then

{(predy,(s),y) = @(s,y) := h*(s) = (s,y).
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Moreover, the convex surrogate @ satisfies the consistency that if

Elp(sn, Y)] = inf E[p(s, V)]

then i, = predy(s,) satisfies
El(pin, Y)] = inf E[((p, Y)].
w

Proof The first equality we have already demonstrated. For the minimization claim, we note
that if 4 = E[Y], then E[p(s,Y)] = h*(s) — (i, s) and infs{h*(s) — (i, s)} = —h(u). Strict propriety
of £ then gives inf,, E[¢(1/,Y)] = —h(p). O

Said differently, the surrogate ¢ is consistent with the loss ¢ and (strictly) proper, in that
if s minimizes E[p(s,Y)], then pred;,(s) minimizes E[¢(p,Y)]. The statement in terms of limits
is necessary, however, as simple examples show, because with some link functions it is in fact
impossible to achieve the extreme points of Conv()), as in logistic regression. We provide a few
example applications (and non-applications) of Theorem 11.3.2. For the first, let us consider binary
logistic regression.

Example 11.3.3 (Binary logistic regression): For alabel Y € {0, 1} and predictions p € [0, 1],
take the generalized entropy

h(p) = plogp + (1 — p) log(1 — p).

By inspection, domh = [0,1], and A/(p) = logl%p satisfies |h/(p)] — oo as p — {0,1}. For
s € R, the conjugate is

h*(s) = Sl;p{Sp —plogp — (1 —p)log(1l —p)} = log(1 + €°),

Then we have

where the supremum is achieved by p = pred;,(s) = %

©(s,y) =log(1l +¢€°) — sy = —logp(y | s),

where p(y | s) = fi; is the binary logistic probability of the label y € {0, 1}.

For the induced loss ¢(p,y) = —ylogp — (1 — y)log(1 — p) (the log loss), if P(Y = 1) = 1,
then p = 1 minimizes E[{(p,Y")]. Similarly, if P(Y = 0) = 1, then p = 0 minimizes E[{(p,Y)].
Neither of these is achievable by a finite ¢ in p(y | s) = &=, showing how the limiting argument

&
Tfes”
in Theorem 11.3.2 is necessary. <

The next example shows that we sometimes need to elaborate the setting of Theorem 11.3.2 to deal
with constraints.

Example 11.3.4 (Multiclass logistic regression): Identify the set Y = {eq,..., e} with the
k standard basis vectors, and for p € Ay = {p € R’i | 17p = 1}, consider the negative entropy

k
h(p) = Zpy lngy-
y=1
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This function is strictly convex and of Legendre type for the positive orthant Ri but not for
Ayj. Shortly, we shall allow linear constraints on the predictions to address this shortcoming.
As an alternative, take ) = {0, e1,...,ex_1}, so that Conv(Y) = {p € ]R]_fl | 17p < 1}, which
has an interior and so more easily admits a conjugate duality relationship. In this case, the
negative entropy-type function

k—1
h(p) =Y _pylogpy + (1 — 17p)log(1 — 17p) (11.3.4)
y=1
is of Legendre type. A calculation for s € R~ yields
k—1
h*(s)=log | 1+ Zesy ,
y=1

with

J ( ) es1 eSk—1
pred; (s) = — — .
e T e e
Letting p denote the entries of this vector, we can then assign a probability to class k& via
k—1
pr=1-— 2j:1pj- <&

In Section 11.4 we revisit exponential families in the (proper) loss minimization framework we
have thus far developed, which gives some additional perspective on these problems.

11.3.2 Convex conjugate linkages with affine constraints

As Example 11.3.4 shows, in some cases a “natural” formulation fails to satisfy the desiderata of our
link functions. Accordingly, we make a slight modification to the Legendre type (11.3.3) negative
entropy h to allow for affine constraints, which still allows us to develop the precise convexity
dualities with proper losses we require. Continuing to work in the scenario in which ) C RF,
suppose now that the affine hull

A =aff(y) := Zajyj ly; €V,a’1=1,meN
j=1

is a proper subspace of R¥. The key motivating example here is the “failure” case of Example 11.3.4
on multiclass logistic regression, where ) = {e1, ..., ex}, whose affine hull is exactly those vectors
p € R¥ satisfying (p, 1) = 1. Naturally, in this case we wish to predict probabilities, and so given a
score vector s € RF and using the negative entropy h(p) = 25:1 pylog py, we let

. k

pred(s) = argmin {h(p) — (s, p) | 17p = 1} = esy/Zesﬂ'
P i=1 _

y=1

Generalizing this approach to arbitrary regularizers h, we modify the prediction (11.3.1) to be

pred, 4(s) = argmax {{s, u) — h(s1)}
pneA
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Then for the loss ¢(p,y) = —h(p) — (Vh(n), y — p) associated with the negative entropy h, we define
the surrogate

©(s,y) = £(predy, _4(s),y)-

Perhaps remarkably, this construction still yields a well-defined convex loss with the same consis-
tency properties as those in Theorem 11.3.2. Indeed, defining

ha(p) = h(p) +Ta(p)

and the associated conjugate h*(s) = sup{(s, ) — h(u) | p € A}, we have the following theorem.

Theorem 11.3.5. Let £ : C x Y — R be the strictly proper loss associated with the Legendre
negative entropy h and A = aff()) be the affine hull of Y. Then

(s, y) := L(predy, a(s),y) = hia(s) — (s,9)-
Moreover, the convexr surrogate @ satisfies the consistency that if
Elp(sn, Y)] = nf E[p(s, Y)]
then p, = pred, 4(sn) satisfies
E[(un, Y)] — inf E[e(p, Y)].
We return to proving the theorem presently, focusing here on how it applies to Example 11.3.4.

Example 11.3.6 (Multiclass logistic regression): Consider Example 11.3.4, where we identify
Y = {e1,...,ex} C RF which has affine hull A = {p € R¥ | (1,p) = 1}. Then taking
h(p) = 25:1 pi log pg, a calculation with a Lagrangian shows that

k
pred;, 4(s) = argmin {—(s,p) + h(p)} = |e*/ Z e’
PEAL j=1

In turn, this gives surrogate logistic loss

k
p(s,y) =log | Y e
=1

Notably, the logistic loss is not strictly convex, as ¢(s +t1,y) = p(s,y) for t e R. If Y is a
multinomial random variable with P(Y" = e,) = p,, then by another calculation, the vector
with entries

s, = log py

minimizes E[¢(s, Y)], which in turn gives pred, 4(s*) = p, maintaining propriety. <
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Proof of Theorem 11.3.5

Before proving the theorem proper, we show how the key identity that s = Vh(c) we use to develop
equality (11.3.2) generalizes in the presence of the affine constraint. The function h 4 is strictly
convex on its domain domh N A, and moreover, VA’ exists and is continuous. The following
corollary (a consequence of Corollary C.2.12 in Appendix C.2) extends Corollary 11.3.1 and allows
us to address equality (11.3.2).

Corollary 11.3.7. The conjugate h’ is continuously differentiable with domh’ = R*, and if
p = VhY(s), then p € intdom h and
Vh(p) =s+v

for some vector v normal to A, that is, a vector v € RF satisfying (v, po—p1) = 0 for all g, py € A.

While the proof of the corollary requires some care to make precise, a sketch can give intuition.
Sketch of Proof Because h is strictly convex and its derivatives Vh(u) explode as pu —
bd dom h, the minimizer of —(s, u) + h(u) over u € A exists and is unique. Let A = {yu | Au = b}
for shorthand, where A € R"*¥ for some n < k. Then introducing Lagrange multiplier w € R™ for
the constraint y € A, the Lagrangian for finding pred, 4(s) = argmin, {h(u) — (s, u) | 1 € A} is

L(p,w) = h(p) — (s, 1) +w” (Ap —b).
Minimizing out p by setting V,L(p, w) = 0, we obtain
Vh(p) — s+ ATw = 0.

But if g, 1 € A, then v = ATw satisfies (v, g — p1) = w’ A(po — p1) = w? (b —b) = 0, so that v
is normal to A. O

Finally, we return to prove the theorem. Take any vector s € R¥. Then because pred hoa(s) =
Vh*(s), we have

p(s,y) = Llpredy, a(s), y) = =h(Vhiy(s)) = (VA(Vh,(s)),y = Vh(s)).

As Vh*(s) € A and using the shorthand p = Vh%(s) € A, we have Vh(u) = s + v for some v
normal to A. Moreover, h(u) = ha(p), and so the Fenchel-Young inequality (11.1.4) guarantees
—h () = h*(s) — (s, ). Substituting in the expression for ¢, we obtain

@(s,y) = hi(s) = (s, 1) — (s + v,y — )
= hu(s) = (s, 1) + (s, 11— y) = hix(s) — (s, y)
where the second equality follows because v L p — y.
For the consistency argument, let u, = pred, 4(sn). Then E[l(u,,Y)] = Elp(sn,Y)] and if

, E
p = E[Y], then E[p(s,Y)] = h%(s) — (1, s) and inf, E[p(s,Y)] = —ha(p) = —h(p). Strict propriety
of £ gives inf,, E[((1/,Y)] = —h(u).
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11.4 Exponential families, maximum entropy, and log loss

Realistically, making predictions using an arbitrary distribution P on an arbitrary space X is sta-
tistically infeasible: we could never collect enough data to accurately model complex phenomena
without any assumptions on P. Accordingly, we may seek more tractable models to make predic-
tions feasible, and we can then investigate the consequences of moving from the entire family P
of distributions on X to smaller families is. A particularly important class of distributions, which
allows us to study these questions in great detail, are the exponential families from Chapter 3; here,
we investigate them in the framework that we have developed for proper losses.

Let {Py} be a regular exponential family indexed by 6 on a space X with sufficient statistic
¢ : X — R4, where for a base measure v on X, Py has density

pe(x) = exp((0, o(x)) — A(0))
with respect to v, where A(f) = log [ e!®*@))dy(z) is the log partition function. (Recall that
regularity means that the domain

©:=domA = {0 | A() < o0}

is open, as in Definition 3.1). Consider the log loss — log pg(z), which we suggestively denote with
the surrogate ¢ as a function of 6,

@(0, ) == —logpy(z) = A(0) — (0, d(z)).

Proposition 3.2.1 guarantees this is always convex in 6 because the log partition function is convex,
and it is C*° (Proposition 3.2.2). While the log loss —logp(x) is proper, the exponential family
{Py} can capture only a subset of the distributions on X

The mean mapping u(P) := Ep[p(X)] € R? will be of central importance to the development
of proper losses, exponential families, and the duality relationships between maximum likelihood
and entropy that we explore here. Accordingly, throughout this section we let

P := {distributions P < v} = {distributions P with a density p w.r.t. v}

be the collection of distributions with densities with respect to v (as Py by definition has), and we
define the set of potential mean parameters

M= {M(P) — Ep[p(X)] R | P < y} — {u(P) | PeP). (11.4.1)

Now, for any distribution P € P with mean vector u = u(P), the associated generalized negative
entropy is

h(p) = Sl;p{*ﬂ*ip[@(& X} = sup {0, u(P)) — A(0)} = A" (),

the convex conjugate of A. At this point, the centrality of the duality relationships (via gradients
VA and VA*) between © and M to fitting and modeling should come as no surprise, and so we
elucidate a few of the main properties. Because VA(#) = Ey[¢(X)] in the exponential family, we
immediately see that

VA(O) :={VA0)}pco C M.
Recalling the duality relationship (11.1.4) that

0 € 0A*(pn) if and only if VA(0) = p,

we can say much more.
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Proposition 11.4.1. Let M° = relint M. Then VA(©) = M°. Additionally:

(i) If the family is minimal, then M has non-empty interior and h is continuously differentiable

on M°, with @ = Vh(u) if and only if VA(O) = p.

(ii) If the family is non-minimal, then h is continuously differentiable relative to aff (M), meaning
that there exists a continuous mapping Vh(p) € © such that for all p € M°,

Oh(u) = {Vh(u) + aff(M)i} .

Moreover, © = © + aff(M)*.

The proof of the proposition relies on the more sophisticated duality theory we develop in Appen-
dices B and C, so we defer it to Section 11.5.2.

We can summarize the proposition by considering minimizers and maximizers: suppose we wish
to choose 6 to minimize

Eplp(0, X)] = Ep[—logps(X)] = A(0) — (u(P),0).

Then so long as the distribution P is not extremal in that u(P) = Ep[¢(X)] € relint M, there
exists a parameter #(P), unique up to translation in the subspace perpendicular to aff(M), for
which

0(P) € argmin Eplp(6, X)) = argmin{ A(9) ~ (4(P).0)}

Moreover, this parameter satisfies the mean matching condition

which is of course sufficient to be a minimizer of the expected log loss. As the statements in the
proposition evidence, calculations become more challenging when we must perform them all in an
affine subspace, though sometimes this care is unavoidable.

Example 11.4.2 (Gaussian estimation):  Assume we fit a distribution assuming X has a
Gaussian distribution with mean g and covariance % >~ 0, both to be estimated. Performing
the transformation to the exponential family form with precision K = ! and § = 71y, we
have

1 1 1
Po, k() = exp ((0,x> - §<ajajT,K> - A(G,K)) for A(0,K) = §9TK_10 - ilogdet(ZwK).
The log partition function has gradients
1 1
VA0, K) =K '0 and VA0, K) = —iK’léﬂTK’l — 51{*1.

Matching moments for a distribution P with second moment matrix M = E[XX '] = 0 and
mean E[X], we obtain

EX]=K 10 and M=K '00" K '+ K.

Setting § = KE[X] and noting that M = Cov(X) — E[X]|E[X]", we solve M = E[X|E[X]" +
K~ by setting K1 = Cov(X).
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When Cov(X) # 0, the solution K = Cov(X)~! does not exist, so we must rely instead
on part (i) of Proposition 11.4.1. With some care, one may check that we can work in the
subspace spanned by the eigenvectors of Cov(X), that is, if Cov(X) = UAU" and U € R,
the collection of symmetric matrices K whose column space belongs to span(U). Then the
pseudo-inverse K = Cov(X )T is the appropriate solution, and it recovers the covariance ¥ =
KT =Cov(X) =0. ¢

Finally, let us give a last result that shows the duality relationships between the negative
generalized entropy h(u) and log partition A, which allows us to also capture a few of the nuances
of minimization of the surrogate log loss ¢(0,x) = —log pp(x) when we encounter distributions P
for which the mean mapping p(P) is on the boundary of M or even outside it.

Proposition 11.4.3. Let {Py} be a regular exponential family with log partition A(0) with domain
O, and let M be the associated mean parameter space with relative interior M° = relint M. Let
h(p) = A*(u) be the associated negative generalized entropy. Then

(i) A(6) = h*(0) = A*(0) for all 6.

(i) If p € M°, there exists O(u) € © such that the negative entropy satisfies h(p) = A*(n) =
(O(p), 1) — A(O(p)) < 00. If pp & I M, then h(u) = +o0.

(153) If p € bd M = cl M\ M°, then for any po € M°, h(u) = limy_o h(tpo + (1 —t)p), and there
exist 0, € © with

VAW®) = tpo + (1~ and Tm{A(0) — (1,00} = inf {A(0) — (1,0)}

In particular, there exist sequences of dual pairs (pin, 0n) with p, € M° and 0,, € © satisfying
fin =V AWOn), pn = p, h(pn) = h(p), and A(0n) — (p, 0n) — infe{ A(0) — (11, 0)}.

See Section 11.5.2 for the deferred proof.

While the statement of Proposition 11.4.3 is somewhat complex, considering minimizers of
E[¢(0, X)] can give some understanding. If P is a distribution such that u(P) € M?, then there
exists a parameter #(P) minimizing Ep[p(0, X)]. If u(P) € bd M, then either there exists a
minimizer (P) of the loss, or there is a sequence of points 6,, such that

Eplp(0n, X)] = inf Eplp(0, X)] = —h(u(P)), and p(Fp,) — u(P),

so that they asymptotically satisfy the mean identiy. Finally, if u(P) ¢ cl M, then infy E[p(0, X )] =
—o00, making the choice of exponential family model poor, as it cannot capture the mean parameters
at all.

11.4.1 Maximizing entropy

As we have seen, our notion of generalized entropies as the minimal values of expected losses can
recapture the classical entropy H(P) = — ) p(x)logp(x) when P has a probability mass function
p, as in the case of multiclass prediction. For exponential family models, this connection goes much
futher, and the (negative) generalized entropy h(u) for u € M coincides with a more general notion
of entropy known as the Shannon entropy. We begin with the definition:
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Definition 11.5. Let v be a base measure on X and assume P has density p with respect to v.
Then the Shannon entropy of P is

H(P) =~ [ plo)logpla)dv(a).

For a distribution P with probability mass function p, the base measure v is counting measure,
yielding the classical entropy H(P) = — ) p(z)logp(z), while for a distribution P with density
(for Lebesgue measure v, so that dv(z) = dx for € R?), we recover the differential entropy

P) = — [ p(z)logp(x)dx.

Example 11.4.4: Let P be the uniform distribution on [0, a]. Then the differential entropy
H(P) = —1log(1/a) =loga. &

Example 11.4.5: Let P be the normal distribution N(x,¥) and v be Lebesgue measure.
Then

H(P) = %10g(det(2772)) + %E[(X — ) THX — )] = glog(%re) + %log det(X).

because p(x) = \/ﬁ exp(—3(z — p) "=z — p)). ©

For exponential families, the log partition determines the Shannon entropy directly, highlighting
that —h is indeed a familiar entropy-like object.

Proposition 11.4.6. Let {Py} be a reqular exponential family with respect to the base measure v.
Then for any 0 € O,
H(Py) = —h(u(Fy)) = A(0) — (u(Fp), 0),

where h(p) = sup{(p,0) — A(0)} = A™(n).

Proof Using logpg(x) = (0, ¢(z)) — A(G) we obtain H(Fy) = —Eg[(0, ¢(X)) — A(0)] = A(f) —
(u(Py),0), where as usual u(P) = Ep[p(X)]. As 0 and pu(Py) have the duality relationship
VA(0) = u(Py), we obtain A(0) — (u(Fy),0) = —h(u(Py)) as desired. O

The mazimum entropy principal, which Jaynes [114] first elucidated in the 1950s, originates in
statistical mechanics, where Jaynes showed that (in a sense) entropy in statistical mechanics and
information theory were equivalent. The maximum entropy principle is this: given some constraints
(prior information) about a distribution P, we consider all probability distributions satisfying said
constraints. Then to encode our prior information while being as “objective” or “agnostic” as
possible (essentially being as uncertain as possible), we should choose the distribution P satisfying
the constraints to maximize the Shannon entropy. This principal naturally gives rise to exponential
family models, and (as we revisit later) allows connections to Bayesian and minimax procedures.
One caveat throughout is that the base measure v is essential to all our derivations: it radically
effects the distributions P we consider.

With all this said, suppose (without making any exponential family assumptions yet) we are
given ¢ : X — R% and a mean vector € R? and we wish to solve

maximize H(P) subject to Ep[¢(X)] =p (11.4.2)
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over all distributions P € P, the collection of distributions having densities with respect to the
base measure v, that is, P < v. Rewriting problem (11.4.2), we see that it is equivalent to

maximize — /p(x) log p(z)dv(x)
subject to /p(:z:)qb(:c)du(:v) =pu, plx)>0forxe X, /p(x)du(x) =1.
Let

Pl m (P < v | Ep[p(X)] = u}

be distributions with densities w.r.t. v satisfying the expectation (linear) constraint E[¢(X)] = p.
We then obtain the following theorem.

Theorem 11.4.7. For 6 € R?, let Py have density
po(x) = exp((0, ¢(x)) — A(0)), A(0) = 10g/exp(<9,¢(w)>)dV($),

with respect to the measure v. If Ep [¢(X)] = p, then Py mazimizes H(P) over Plljn; moreover, the
distribution Py is unique (though 6 need not be).

Proof We first give a heuristic derivation—which is not completely rigorous—and then check to
verify that our result is exact. First, we write a Lagrangian for the problem (11.4.2). Introducing
Lagrange multipliers A\(x) > 0 for the constraint p(z) > 0, 6y € R for the normalization constraint
that P(X) = 1, and # € R? for the constraints that Ep[¢(X)] = p, we obtain the following
Lagrangian:

£lp.0.00.0) = [ p(@)logpla)a +Ze (1 [poreit@ians))

+ 0, ( / p(@)dv(z) — 1) _ / MN@)p(z)dv(z).

Now, heuristically treating the density p = [p(x)]zex as a finite-dimensional vector (in the case
that X is finite, this is completely rigorous), we take derivatives and obtain

31;3(96)£(p, 6,60, \) = 1+ log p(w 2«9 ¢i(2) + 00 — A(z) =1 +logp(z) — (0, $()) + b — A(2)-

To find the minimizing p for the Lagrangian (the function is convex in p), we set this equal to zero
to find that

p(x) = exp ((0, ¢(x)) — 1 = 0o — A(z)).

Now, we note that with this setting, we always have p(x) > 0, so that the constraint p(z) > 0
is unnecessary and (by complementary slackness) we have A(z) = 0. In particular, by taking
0p = —1+A(0) = —1+log [ exp({0, ¢(x)))dv(x), we have that (according to our heuristic derivation)
the optimal density p should have the form

po(x) = exp ({0, 9(x)) — A(0)) .

So we see the form of distribution we would like to have.
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Consider any distribution P € 77}}“, and assume that we have some 6 satisfying Ep, [¢(X)] = p.
In this case, we may expand the entropy H(P) as

H(P) = —/plogpdy: —/plog;:gdy—/plogpgdu

— Du(P|Py) - / P(@)[(60, 6(x)) — A(®))dv(z)

DD (PIR) - [ po(@)(6. 6(0)) — Bl

= —Du (P|Py) + H(Fp),

where in the step (x) we have used the fact that [ p(z)é(z)dv(z) = [pe(z)d(z)dv(z) = p. As
Dy (P|Py) > 0 unless P = Py, we have shown that P is the unique distribution maximizing the
entropy, as desired. ]

We obtain the following immediate corollary, which shows the direct connection between max-
imum entropy and minimizing expected logarithmic loss.

Corollary 11.4.8. Let {Py} be the exponential family with densities pg(x) = exp((0, p(x)) — A(H))
with respect to v. For any p € M, if there exists 0 satisfying Ep,[¢(X)], then Py solves

minimize Ep[— log p(z)]
P

over all densities p satisfying [ ¢(z)p(z)dv(z) = p.

So if we consider minimizing the negative log loss (which is strictly proper) but wish to guarantee
that the predictive distribution satisfies Ep[¢(X)] = p, then the exponential family model is the
unique minimizer.

We give three examples of maximum entropy, showing how the choice of the base measure v
effects the resulting maximum entropy distribution. For all three, we assume that the space X = R
is the real line. We consider maximizing the entropy over all distributions P satisfying

Ep[X?] = 1.

Example 11.4.9: Assume that the base measure v is counting measure on the support
{—1,1}, so that v({—1}) = v({1}) = 1. Then the maximum entropy distribution is given by
P(X =z)=13forze{-1,1} ©

Example 11.4.10: Assume that the base measure v is Lebesgue measure on X = R, so that
v([a,b]) = b —a for b > a. Then by Theorem 11.4.7, we have that the maximum entropy
distribution has the form pg(x) o exp(—6x?); recognizing the normal, we see that the optimal
distribution is simply N(0,1). <

Example 11.4.11: Assume that the base measure v is counting measure on the integers
Z={..,-2,-1,0,1,...}. Then Theorem 11.4.7 shows that the optimal distribution is a
discrete version of the normal: we have pg(z) oc exp(—6z?) for 2 € Z. That is, we choose 6 > 0
so that the distribution py(z) = exp(—0x2)/ P, exp(—0352) has variance 1. ©
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We remark in passing that in some cases, it is interesting to instead consider inequality rather than
equality constraints in the linear constraints defining the family P'". Exercises 11.10 and 11.11
explore these ideas.

Lastly, we consider the empirical variant of minimizing the log loss, equivalently, of maximum
likelihood, where we maximize the likelihood of a given sample X7, ..., X,,. Consider the sample-
based maximum likelihood problem of solving

n n
1
imi X;) = minimi ——E 1 X 11.4.
maximize 21:[1 po(X;) = minimize "2 ogpe(Xi), ( 3)

for the exponential family model pg(x) = exp((8, ¢(x)) — A(f)). We have the following result.

Proposition 11.4.12. Let i, = 1 3" | ¢(X;). Then any 6 solving Ep,[¢(X)] = [i, is a mazimum

likelihood solution, which exists if and only if i, € relint M. If the sample is drawn X; X P where
P < v and p(P) € relint M, then with probability 1, [i, € relint M eventually.

Proof Define the empirical negative log likelihood
~ 1<
L,(0):=—— 1 X;) = —{(jin, 0) + A(09),
(0) ngogm( ) = —(iin, 0) + A(0)

which is convex. Taking derivatives and using that ® = dom A is open, the parameter 6 is a mini-
mizer if and only if vin(e) = i, — VA(#) = 0 if and only if VA(#) = fi,,. Apply Proposition 11.4.1.

For the final statement, note that i € aff (M) with probability 1. Then because p(P) € relint M
and i, — p(P) with probability 1, we see that for any e > 0 there is some (random, but finite) N
such that n > N implies ||iz, — p(P)|| < € and p,, € aff (M), so that i, € relint M. O

As a consequence of the result, we have the following rough equivalences tying together the
preceding material. In short, maximum entropy subject to (linear) empirical moment constraints
(Theorem 11.4.7) is equivalent to maximum likelihood estimation in exponential families (Propo-
sition 11.4.12), and these are all equivalent to minimizing the (surrogate) log loss E[p(6, X)].

11.4.2 I-projections and maximum likelihood

Certainly exponential family models cannot capture all possible distributions on X or even distri-
butions P < v on X. As Corollary 11.4.8 shows, exponential family models minimize the log loss.
They also solve certain projection-like problems onto different families of distributions. First, sup-
pose that we have a family II of distributions and some fixed distribution P. Then the I-Projection
(for information projection) of the distribution P onto the family II is

P* := argmin Dy (Q|P), (11.4.4)
Qell

when such a distribution exists.

By making a small tweak to the exponential family models we consider, we can show that
exponential family models also solve the I-projection problem. Indeed, if we assume P has density
p with respect to v and let Py have density

po(x) = p(x) exp({0, ¢(x)) — A(0)) for A(0) := 10g/eXp((9,¢($)>)p(w)dV($)
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so that p is the carrier of Py (recall Chapter 3). The next proposition uses this to show, perhaps
unsurprisingly given our derivations thus far, that I-Projection is essentially the same as maximum
entropy, and the projection of a distribution P onto a family of linearly constrained distributions
yields exponential family distributions.

Proposition 11.4.13. Let IT = P}jn. If po(z) = p(x) exp((0, ¢(x)) — A(0)) satisfies Ep,[p(X)] = p,
then Py solves the I-projection problem (11.4.4). Moreover we have the Pythagorean identity

Dy (Q|P) = Dy (Py| P) + D1 (Q| FPo)
for Q € PIm.

Proof We perform an expansion of the KL-divergence parallels that in the proof of Theo-
rem 11.4.7. Indeed, for any Q < v, we have

Dy (QP) = /qlog %dV = /qlog %dV + D (Q| Pp) = /Q(x) [0, ¢(x)) — A(0)] dv(z) + D1 (Q| Po)

because p@( ) = p(z)exp({0,¢(x)) — A(#)). Then because Q € 77}2“, we have [q(z)[(0, ¢(x)) —
A(0)|dv(z) = [ po log 22dv = Dy (Py| P), giving the proposition. O

In brief, the exponential family model is the projection—in the sense of the KL divergence—of
a distribution P onto the collection of distributions satisfying E[¢(X)] = u.

11.5 Technical and deferred proofs

11.5.1 Finalizing the proof of Theorem 11.2.14

The issue remaining in the proof of Theorem 11.2.14 occurs when £(u, y;) = 400 for some i. In this
case, we necessarily have p; = 0 for all p € A, satisfying E,[Y] = p; define the set of infinite loss
indices Z(u) := {i | L(p,y;) = +oc}, which is evidently in the set {i | p; = 0 whenever Ap = 0}.
Because of this containment, we vectors {yi}zez(# are independent and independent of {yz}zgz
In particular, there exists A € R* such that y] A = 0 for all i ¢ Z(u) but for which y/'A > 0 for
each i € Z(u). Working on the subspace {p € A,, | pi = 0,7 € Z(u)}, we can perform precisely the
same derivation except that G(u) = {s € R¥ | yT's = —¢(u,y;) for i ¢ Z(u)} is non-empty. Then
we have
(@) Ui
(') = =Epe () (01, V)] 2 =B (uny [, V)] = =B () [0, Y] + Y €1 93) (05 (1) — P} (1)),
i=1

where inequality (i) follows because ¢ is proper. We then have

< \ oy () “
S 0y (0 () = pE() =Y Ly (0 () — pE () = > e yi)pi (u
i=1 1ZZ(p) i€Z(p)
= > sTupl(p) - — > i)k (e
i2Z() i€Z(n)
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for any s € G(u), where equality (i¢) follows because p}(p) = 0 for i € Z(u). As we allow extended
reals, replace s with soo = limy_,oo(s + tA), which satisfies (s, y;) = 00 = €(p,y;) for i € Z(p),
and we finally obtain

h(p') = h(u) + > sLyipi () — i (1) = h(p) + (S00, i1 — 1)
i=1
The equality of the loss is as before.

11.5.2 Proof of Proposition 11.4.1

We first give the proof in the case that { Py} is a minimal exponential family, meaning that (u, ¢(z))
is non-constant in x for each u # 0, addressing the non-minimal case at the end. Then A is strictly
convex (Proposition 3.2.3). As part of this proof, we will show that M° is indeed open in this case.
We show both inclusions M°® C VA(O) and that VA(O) C M°.

Showing that VA(©) C M°. Fix 0y € O, and let p = VA(fy). We must show that there
exists € > 0 such that for all ||u|| < ¢, the point u+ u € M. Let 6, = argming{A(0) — (u + u,0)}
whenever the minimizer exists, where evidently 6y does exist because ;1 = VA(6p). Note that the
strict convexity of A guarantees 6, is unique if it exists. But now, we may use the convex analyitic
fact (Proposition C.1.10 in Appendix C.1.2) that u — 6, is continuous in u in a neighborhood of
0. These minimizers necessarily satisfy VA(0,) = p + u, that is, Eg, [¢(X)] = p+u € M.

Showing that M° C VA(O). Let u € M°, so that there exists an € > 0 such that u+eB C M°.
It is enough to show that A(6) — (i, ) is coercive in 6, as then there necessarily exists a (unique)
minimizer 6(u) of A(f) — (u,0), and this minimizer satisfies VA(6(n)) = p, so that u € VA(O).
For this, it is sufficient to show that for any non-zero vector v the recession function of the tilted
version f(0) := A(0) — (u,0) of A,

7 () = tim ACF ) = {6+ 1) — (A(6) = (1,6))

t—o00 t

where 6 € O is otherwise arbitrary, satisfies f. (v) > 0 for all v # 0, which guarantees that
A(-) = (i, -) has a minimizer. (See Proposition C.2.5 and Corollary C.2.6 in Appendix C.2.1).
To that end, for vectors v € R?, define the essential supremum of ¢(x) in the direction v by

V(¢ v) = esssup(¢(x),v) =inf {t €R[v({z € X[ {v,¢(x)) = t}) = 0}

Now as pu € M°, for any vector v # 0 we have (v, u) < v*(¢,v). Let € > 0 satisfy (v, u) < v*(¢,v)—e
be otherwise arbitrary, fix § € O, and let X. = {z | (v,¢(x)) > v*(¢,v) — €}, which satisfies
v(X,) > 0. Then

A0+ tv) — (u, 0 + tv) = log/exp((qﬁ(z), 0 + tv))dv(x) — (u, 0 + tv)

> log / exp((6(x), 0)e" " ~Odu(w) — (1, 6) — t{n, v)

€

— 10" ($v) — €) + log v(X.) — t{p1,0) + log / @0 dy () — (u,6).

€

If v(X,) = +oo, then A(6 + tv) = +00 and so AL (v) > 0 certainly. If v(X,.) < oo, then note that
v*(p,v) — € — (u,v) > 0, and so

A0+ tv) — (1, 0+ tv) > t(* (¢, v) — € — (i, v)) — log v(X,) + log / @0 qu () — (u, 0)

(&
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and thus

A6+ tv) — (6 + to) — (A(9) — {1,0))

; > v*(¢,v) — € — (u,v) + o(1) (11.5.1)

as t — oo.

Extending to the non-minimal case. If the exponential family is not minimal, there exists
a unit vector u and constant ¢ such that (u,(x)) = c for v-almost all z. Let U € R™¥ be an
orthonormal basis for all such vectors, where k is the dimension of this collection. Then there exists
a vector ¢ € R such that ¢ = U ¢(z) for v-almost all , and we see that A(6+Uv) = A(6) + (c,v)
as (0 + Uv,¢(z)) = (0,¢(x)) + (c,v) for v-almost all xz. We show both inclusions as above. Let
U, € R4 be an orthonormal basis for the orthogonal subspace to U, so that UTU = I, and
UlU, = I, and for any u € M, we have aff(M) = p + span(U ).

Showing that VA(O) C M°. Fix 0y € © and let p = VA(6p). We must show that there
exists € > 0 such that for all u € span(U ) satisfying |lu|| < €, the point p+u € M. To that end,
note that for any vectors v € R* and w € R¥, we have

Ao+ Uv+Uw) — (p+u,Uv+Uw) = A(0g+ U v) — (p+u,Upv)

because U'u = 0 and Uy = ¢ for each u € span(U,) and p € M. The function g(v) :=
A0 + Uyv) — (u, Uy v) is strictly convex as VZg(v) = U] V2A(0y + U v)U, = 0, because we
know that u' ¢(z) is non-constant for all u € span(U,). Define f(v) = A(6y + Uv) — {u, U v).
Then applying Proposition C.1.10 as in the minimal representation case, there exists € > 0 such
that v, = argmin, {f(v) — (u, U, v)} exists and is continuous in u € span(U, ), where by inspection
vg = 0. Then 60, := 6y + U, v, minimizes A(0) — (i + u, 0), satisfying VA(0,) = p + u.

Showing that M° C VA(©). We again follow the logic of the minimal representation case.
Let p € M° = relint M, and recall v*(¢, U, v) = esssup,(¢(z), Uiv). Then there exists e > 0 such
that u 4+ u € M for each u € span(U, ) with ||u|| <, so that

(u, Uv) < sup (4 u,Uv) <v*(p,Upv).
[[ull,<e.uespan(U.)

Define g(v) = A0 + U v) — (u, U v). Then because A0 + Uw + U v) — (u,Uv — Uw) =
A0 + Uyv) — {u, U v) for all w € R¥ v € R¥*_ it is enough to show that g, (v) > 0 for all
v # 0. Following the same argument, mutatis mutandis, as that leading to inequality (11.5.1)
yields that ¢/ (v) > 0 for all v # 0. That is, v — A(6 + U v) — (i, U, v) has a minimizer v(u)
(Corollary C.2.6), which is unique by the strict convexity of v — A(6+ U v), and which necessarily
satisfies U VA + U v(u)) = U p. As UTVA(G) = c for all @ and U = ¢ for all u € M, this
shows that there exists (u) such that VA(6O(p)) = p as desired. Moreover, fixing an arbitrary 6
and letting v(p) be the unique minimizer of A(0 + U, v) — (u, U, v), the set of all minimizers

O* (1) = argmin{A(8) — (u,0)} = {e YU w(p) +Uw |we Rk} .
0
This gives Proposition 11.4.1.

11.5.3 Proof of Proposition 11.4.3

For part (i), because © = dom A C R? is open and A is C* on its domain, A is necessarily a closed
convex function and so A**() = A(6) for all § € RY. (See Theorem C.2.1.) For part (ii), note
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that if € M°, there exists 6(u) € © such that VA(6(r)) = p by Proposition 11.4.1. This 6(u)
maximizes (0, u) — A(6) over all 8, and so h(u) = (#(u), u) — A(6(u)) < co. By Corollary C.2.4 in
Appendix C.2.1 and Proposition 11.4.1, dom 0h = M°, and as h is subdifferentiable on the relative
interior of its domain, we have dom h C cl M° = cl M. As h is closed convex, any point p outside
its domain necessarily satisfies h(u) = +o0.

Finally, for part (iii), we note that the function g(t) = h(tug + (1 — t)u) is a one-dimensional
closed convex function. One-dimensional closed convex functions are continuous on their domains
(Observation B.3.6 in Appendix B.3.2), and so ¢ is necessarily continuous. Thus lim¢ o g(t) = ¢(0).
The existence of 6; follows from Proposition 11.4.1.

Bibliography
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Gneiting and Raftery [93]

11.6 Exercises

Exercise 11.1 (Strict propriety of the log loss): Let Ag = {p € Rﬁ | 17p = 1} be the probability
simplex. Show that if ¢(¢,y) = —log g, and P(Y = y) = py, then

argmin E[¢(q,Y')] = p,
qEAY

where we treat 0log 0 as 0 (which is the natural limit of ¢logt as ¢t | 0).

Exercise 11.2 (Uniqueness of generalized entropies): Here we give an alternative perspective
on the generalized entropies associated with losses, showing when they are unique. For a concave
function f : Ay — R, define the perspective-type transform fper(p) = (1,p)f(p/(1,p)), where
fper(0) = 0, and which gives fper : R’i — R.

(a) Let £: Ax — R be strictly proper and let Y have p.m.f. p. Show that H(p) = inf,ea, E[¢(q,Y)]
is strictly concave, and that Hp, is strictly concave and continuously differentiable on le_ 4

(b) Show the converse that if H : A — R is strictly concave and its perspective Hpe, is differen-
tiable on Ri 1, then there exists a proper scoring loss ¢ satisfying

and that ((q,y) = VyHper(q) for all ¢ € dom V Hper.

Exercise 11.3: Give the details in the computations for Example 11.3.4.

Exercise 11.4: Let y € {0,1} and take the regularization function h(p) = —logp — log(1 — p).
(a) Verify that the entropy is of Legendre type (Definition 11.4).

(b) Give the associated loss ¢ and surrogate loss ¢ in the sense of Section 11.3.

(c) Plot the surrogate ¢(s,y) + log8 and the logistic regression surrogate log(l + e®) — sy for
y € {0,1}, each as function of s. (The shift by log 8 guarantees the losses coincide at s = 0.)
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(d) Give pred,,(s) for s € R, verifying that pred,(s) € [0, 1].

Exercise 11.5: For h(p) = —logp —log(1 —p) as in Exercise 11.4, show that h is self-concordant,
meaning that b (p) < 2(h"(p))3/? for all p € (0,1). (Such functions are important in optimization;
the conjugate h* is then also guaranteed to be self-concordant.)

Exercise 11.6 (Surrogates for regression):  Define h(c) = 1c.
(a) Give the conjugate h*(s) to h.

(b) Show directly that the surrogate loss ¢(s,y) = h*(s)— sy satisfies that if § = argmin, E[p(s,Y)],
then pred; (3) = E[Y].

Exercise 11.7: Let P be a predicted distribution and for a € [0, %], define the lower and upper
quantiles [, = Quant,(P) and u, = Quant;_,(P). Given these quantiles, for a finite set A C [0, 5],

define the weighted interval loss

W(P,y) := Z [a(uq — lo) + dist(y, [la, ual)],
acA

which penalizes P using both the size (u, — ly) of the quantile intervals and the distance of the
outcome y from the predicted quantiles. Define the symmetrized set As = AU{l —«a | a € A}.
Show that

W(P’ y) = Equant,fls (P’ y)7
where lquant 1s the quantile loss (11.2.4).

Exercise 11.8: We explore a particularization of the results in Section 11.4. Let Y ~ Poi(e?), so
that Y has p.m.f. pg(y) = exp(fy — ) /y! for y € N. Let A(0) = € be the log-partition function.
Define the “surrogate” loss ¢(0,y) = —logpg(y).

(a) Give the associated negative generalized entropy h(u) for u € (0,00).

(b) Give the associated loss ¢(j, y) in the proper representation of Theorem 11.2.14. Directly verify
that it is strictly proper, in that argmin, E[¢(u,Y’)] = E[Y] for any Y supported on R, .

Exercise 11.9: We explore a particularization of Example 11.4. Let X ~ N(0,) for a co-
variance ¥ > 0, and let K = £~! be the associated precision matrix. Then X has density
pr(z) = exp(—3(zzT, K) + 3 logdet(K)) with respect to (a scaled) Lebesgue measure, and log
partition A(K) = —3logdet(K), which has domain the positive definite matrices K > 0 (and is
+00 elsewhere).

(a) Give the associated negative generalized entropy h(M) for symmetric matrices M. Specify the
domain of h.

(b) Give the associated loss ¢(M,z) in the proper representation of Theorem 11.2.14. Directly
verify that it is strictly proper, in that if the second moment matrix C := E[XX7] of X
satisfies C' > 0, then argmin,; E[¢/(M, X)] = C.
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Exercise 11.10: In this extended exercise, we generalize Theorem 11.4.7 to apply to general
(finite-dimensional) convex cone constraints. A set C is a convex cone if for any two points z,y € C,
we have Az + (1 — A)y € C for all A € [0, 1], and C is closed under positive scaling: x € C implies
that tx € C for all ¢t > 0. The following are standard examples (the positive orthant and the
semi-definite cone):

i. The orthant. Take C = Ri = {z € R%: xj > 0,7 =1,...,d}. Then clearly C is convex and
closed under positive scaling.

ii. The semidefinite cone. Take C = {X € R¥™4: X = XT X = 0}, where a matrix X = 0 means
that a' Xa > 0 for all vectors a. Then C is convex and closed under positive scaling as well.

Given a convex cone C, we associate a cone ordering = with the cone and say that for two elements
z,y € C, we have x = y if x —y > 0, that is, z — y € C. In the orthant case, this simply means that
x is component-wise larger than y. For a given inner product (-,-), define the dual cone

C*:={y:(y,z) >0forall z €C}.

For the standard (Euclidean) inner product, the positive orthant is thus self-dual, and similarly
the semidefinite cone is also self-dual. For a vector y, we write y =4 0 if y € C* is in the dual cone.
With this setup, consider the following linearly constrained maximum entropy problem, where the
cone ordering = derives from a cone C:

maximize H(P) subject to Ep[¢(X)] =u, Ep[(X)] <5, (11.6.1)

where the base measure v is implicit. Let P}j‘/}j be the collection of distributions P < v satisfying
the constraints in problem (11.6.1).
Prove the following theorem:

Theorem 11.6.1. For 6 € R¢ and K € C*, the dual cone to C, let Py i have density

pG,K($) = exp <<97 ¢($>> - <K7 1/1(95» - A<97K)> ’ A(ev K) = log/exp((e, ¢<$)>—<K,w($)>)dl/(x),
with respect to the measure v. If

Epy e [0(X)] = and Ep, . [(X)] = 5,

then Py g mazximizes H(P) over PLmﬁ Moreover, the distribution Py i is unique.

Exercise 11.11 (An application of Theorem 11.6.1): Let the cone C be the positive semidefinite
cone in R4, 1 be the Lebesgue measure dv(z) = dz and define ¢)(z) = fza’ € R¥*? Let ¥ > 0.
Give the density solving

maximize — /p(:r) log p(x)dxz subject to EP[XXT] <.

Exercise 11.12: Prove that the log determinant function is concave over the positive semidefinite
matrices. That is, show that for X,Y € R%*¢ gatisfying X > 0 and Y > 0, we have

logdet(AX + (1 = A\)Y) > Aogdet(X) + (1 — ) logdet(Y)
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for any A € [0,1]. Hint: think about log-partition functions.

Exercise 11.13 (Entropy and log-determinant maximization): Consider the following optimiza-
tion problem over symmetric positive semidefinite matrices in R4*:

ma%(i}n(f)lize logdet(X) subject to ¥;; = 0y

where o;; are specified only for indices 4, j € S (but we know that o;; = 0j; and (¢,4) € S for all 7).
Let ¥* denote the solution to this problem, assuming there is a positive definite matrix ¥ satisfying
Y = o5 for i,j € S. Show that for each unobserved pair (i,j) ¢ S, the (i,j) entry [X*71];; of
the inverse £*1 is 0. Hint: The distribution maximizing the entropy H(X) = — [ p(x)log p(x)dx
subject to E[X;X}] = 0i; has Gaussian density of the form p(z) = exp(}_; jes Aijziz; — Ao)-

Exercise 11.14: ‘ JCD Comment: Finish this.

Equivalence of integrated quantile losses and continuous ranked probability score.
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Chapter 12

Calibration and Proper Losses

In Chapter 11, we encountered proper losses, in which we assume we predict probability distribu-
tions on outcomes Y. In typical problems, we wish to predict things about Y from a given set of
covariates or inputs X, and in focusing exclusively on the losses ¢ themselves, we implicitly assume
that we can model Y | X basically perfectly. Here, we move away from this focus exclusively on
the loss itself to incorporate discussion of predictions, where we seek a function f : X — ) (or
some other output space) that yields the most accurate predictions.

In this chapter, we adopt the view of Section 11.2.3, where the target Y C R* is vector-valued,
and we wish to predict its expectation E[Y | X] as accurately as possible. For binary prediction,
we have Y € {0,1}, so that E[Y | X] =P(Y = 1| X); in the case of multiclass prediction problems,
it is easy to represent Y as an element of the k standard basis vectors {e1,...,e,} C RF, so that
p = E[Y | X] is simply the p.m.f. of ¥ given X with entries p, = P(Y =y | X). We focus here,
therefore, on choosing functions to minimize the risk, or expected population loss,

L(f) == E[L(f(X),Y)].

When f is chosen from a collection F C {X — R} of functions, for example, to guarantee that we
can generalize, we do not expect to be able to perfect minimize the population loss. Accordingly,
even though the loss is proper and hence minimized by f*(z) = E[Y | X = z], we cannot perfectly
model reality, and so it is unrealistic to expect to be able to find f satisfying f(z) = E[Y | X = z],
even approximately, for all x.

We therefore depart from the goal of perfection to address a somewhat simpler criterion: that
of calibration. Here, the idea is that a predictor should be accurate on average conditional on its
own predictions. Consider again a weather forecasting problem, where Y; = 1 indicates it rains on
day t and Y; = 0 indicates no rain, and we wish to predict Y; based on observable covariates X;
at time ¢. While we would like a forecaster to have perfect predictions p; = E[Y; | X¢], we instead
ask that on days where the forecaster makes a given prediction, it should rain (roughly) with that
given frequency. In particular, we seek calibration, which is that

F(X) =E[Y | £ (12.0.1)
That is, given that the forecaster makes a prediction with value p = f(X), we should have
E[Y | f(X) =p] = p.

While in general it is challenging to achieve this perfect calibration, in this chapter we investigate
several variants of the desideratum (12.0.1) that allow for more elegant statistical and information-
theoretic approaches, as well as procedures to achieve calibration.
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This chapter therefore proceeds as follows. The first goal is to

JCD Comment: Fix notation. Also add a transition here to make clearer why we are
doing this and what we are doing.

1. First show what we want to measure.

2. Show how to measure it, specifically using partitioned methods. I think that parti-
tioned ones should be better than non-partitioned approaches, because we can estimate
the binned / partitioned calibration error

3. Show a few ways to achieve it (population and finite-sample level).

It is important to note that the literature on calibration is broad, and there are several distinct
strands. We take the particular focus that most dovetails with our treatment of proper losses and
scoring rules, basing our development around random variables and finite-dimensional probabilities.
So, for example, if a logistic regression model (as in Example 3.4.2 or 3.4.3) for image classification
assigns a probability of 80% that an image is, say, a dog, then the model is (approximately)
calibrated if in the population of all images in the world to which the model assigns probabilty
80%, (approximately) 80% are dogs. The first direction of research that we essentially do not
touch are the following: in the forecasting literature, one often considers predicting the distribution
of a (potentially continuous) random variable Y, such as the amount of rainfall; if we predict a
cumulative distribution F' as in Example 11.2.6, then perfect calibration (12.0.1) becomes that

P(Y <u|F)=F(u) forall ueR.

This is far too stringent a condition to be achievable, so that one relaxes to various forms of marginal
or average calibration. See the bibliographic notes for some discussion of the approaches here.

The second strand of research on calibration that, again, we do not address, considers more
adversarial and sequential settings, where instead of any probabilistic underpinnings, nature (an
adversary) plays a game against the player (or predictor). Philosophically, this approach elegantly
does away with the need for probabilities: there is a physical world where whether it rains tomorrow
is essentially deterministic, and we use probability as a crutch to model things we cannot measure,
so calibration means that of the days on which we predict rain with a chance of 50%, it rains on
roughly 50% of those days. In this sequential setting, at times ¢ = 1,2,...,T, the player makes
a prediction p; of the outcome, and then nature may choose the outcome Y;. Without giving the
player a bit more leeway, calibration is impossible: say that Y € {0, 1}, and nature plays ¥; = 1
if pp < .5 and Y, = 0 if p > .5. Then any player is miscalibrated at least by an amount .5.
Astoundingly, Foster and Vohra [84] show that if the player is allowed to randomize, then the
forecasted probabilities p; can be made arbitrarily close to the empirical averages of the observed
Y;. While many of the techniques we consider and develop arise from this adversarial setting in the
literature, we shall mostly address the scenarios in which Y is indeed random.

12.1 Proper losses and calibration error

When we use a proper loss to measure the error £(f(x), y) in making the prediction f(x) for the value
Y, it turns out we can always improve the losses by modifying f to be a calibrated version of itsef:
calibration is always useful. To make this precise, assume we are making predictions in the convex
hull of Y, that is, that can be represented as E[Y] for some distribution, so f : X — M = Conv(}).
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Then by Theorems 11.2.1 and 11.2.14, there exists a convex function h such that

U y) = —h(p) — (Vh(u),y — 1) (12.1.1)
for all p € M,y € Y. Recall the Bregman divergence (11.2.2)
Di(u,v) = h(u) = h(v) = (VA(v),u = v),

which is nonnegative for all convex h (and strictly positive whenever h is strictly convex and u # v),
and Corollary 11.2.5. Then for any prediction function f, if we condition on the predicted value
S = f(X), then

E[((S,Y) | S] =E[E]Y | S,Y) | S+ E[L(S,Y) - (E[Y | S],Y) [ S]
= E[UE[Y [ S],Y) [ S]+E[Dy(E[Y | S],5) | 5],
where we use the linearity E[¢(s,Y)] = £(s, E[Y]) for any distribution on Y and fixed s € R* in the
second equality. We record this as a theorem.

Theorem 12.1.1. Let ¢ be a proper loss with representation (12.1.1). Then for any f : X — RF,

E[e(f(X),Y)] = ELEY | f(X)],Y)] +E[Dp(E[Y | f(X)], f(X))]-
In particular, the predictor g : RF — R* defined by

9(s) :==E[Y | f(X) = s]

is calibrated and satisfies

E[f(go f(X),Y)] = E[(E] | f(X)],Y)] <E[L(f(X),Y)],
and the inequality is strict whenever f is not calibrated and ¢ is strictly proper.

Proof The first statement we have already proved. For the second, note that

9(s) =E[Y'| f(X) = ]

by construction of g, so that E[¢(g o f(X),Y)] = E[(E]Y | f(X)],Y)]. The inequality and its
strictness are immediate because h is strictly convex if and only if £ is strictly proper. O

To interpret this result, it essentially says that if we can post-process f to make it calibrated,
then we can only improve its risk, or expected loss, when ¢ is a proper loss. We can give an alter-
native version of Theorem 12.1.1, where we instead consider the conjugate linkages in Section 11.3,
which can be useful when we wish to find f via convex optimization (instead of by directly min-
imizing a proper loss). To that end, assume that h is a strictly convex function, differentiable on
the interior of its domain, satisfying the Legendre conditions (11.3.3), and define the surrogate loss
(linked via duality and the negative generalized entropy h to /)

o(s,y) = h*(s) = (s,y) = £(pred,,(s), v),
where £(p1,y) = —h(p) — (Vh(u),y — p) and
predy(s) = argflin{%s, m) + h(p)} = Vh*(s).

Then we have the following decomposition of the population surrogate loss, which follows similarly
to Theorem 12.1.1.

317



Lexture Notes on Statistics and Information Theory John Duchi

Theorem 12.1.2. Let ¢ be the surrogate loss defined above. Then for any f: X — R*, we have
Elp(f(X),Y)] = E(EY | f(X)],Y)] + E[Dn(E[Y | f(X)], pred, (f(X)))].

Proof The key is to rely on the duality relationships inherent in the definition of the surrogate
o(s,y) = h*(s) — (s,y). We fix z and work in exclusively in the space of the scores (predictions)
5= f(x) € R¥ as

Elp(f(X),Y) | X = a] = o(f(2), E[Y | X = x])

by definition. Let u € M = Conv(Y). Then ¢(s, u) = h*(s) — (s, u), and
inf (s, ) = —sup{(s, ) — h*(s)} = —h(p)

because h is (closed) convex. Additionally, if u*(s) = Vh*(s) = pred,,(s), then the conjugate duality
relationships (11.1.4) guarantee h*(s) = (s, u*(s)) — h(p*(s)) and s = Vh(u*(s)). Thus

(s, 1) —inf o(s, p) = 1" (s) = (s, 1) + hp) = h(p) = h(p"(s)) = (s, p = 1 (5))
= h(p) = h(p*(s)) = (VA("), p = 17 (s)) = D (p, " (5))-
Taking the expectation over X and using the shorthand S = f(X), we thus obtain

Elp(S,Y)] = Elp(S,E[Y | 5))
=E |inf (s, E[Y | S])] +E[Dy(E[Y | 5] pred(s))].

Lastly, we use that £(u,y) = —h(u) — (Vh(u),y — p) is proper, so infs ¢(s, u) = —h(p) = €(u, p),
giving the first claim of the theorem. O

As in Theorem 12.1.1, Theorem 12.1.2 shows that calibrating a predictor f can only improve
the surrogate loss associated with h. Any predictor f : X — R* has unnecessary error arising from
the average divergence of the prediction from being calibrated,

E[Dn (E[Y | f(X)], pred,(f(X)))]-

In both cases, we see that any proper (or derived proper) loss has a natural decomposition into
an error term relating to the typical error in predicting Y from E[Y | f(X)], which one frequently
refers to as sharpness of the predictor. Replacing f(X) with the expectation of Y given f(X) (or a
particular transformation thereof) does not increase this first term, but improves the second term,
which measures the typical error of a prediction from calibration.

Let us consider an example with squared error:

Example 12.1.3 (Squared error and calibration): In the case that h(p) = 1 Ip|l5, We have
h* = hand Vh = VA" is the identity. Then Theorems 12.1.1 and 12.1.2 reduce to the statement
that

B[y — 703 =& |y B[y | X)12] +E [IBlY | X] - 7(0I3]

so we may also see the decompositions of the theorems as bias/variance expansions. <
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12.2 Measuring calibration

The first step to building a practicable theory of calibration is to define and measure the calibration
of a predictor f. The first step, defining a calibrated predictor, is relatively easy, but measuring
how “close” a particular predictor f is to being calibrated raises several challenges, as typical and
naive measures of calibration are impossible to estimate. Thus, in this section, we develop several
quantities to measure calibration, providing a main theorem relating the different quantities to one
another and demonstrating a simple technique to estimate one of them, returning in Section 12.5.2
to show the equivalences between the measures.

We begin with a natural candidate for calibration: the expected difference, or expected calibra-
tion error,

ece(f) := E[[[E[Y"| f(X)] = fF(X)]]. (12.2.1)

The calibration error (12.2.1) is 0 if and only if f is perfectly calibrated, as then E[Y | f(X)] = f(X),
and it is positive otherwise. Unfortunately, while the next lemma guarantees that ece is lower semi-
continuous, it is not continuous.

Lemma 12.2.1. The exzpected calibration error ece is lower semi-continuous with respect to L' (P)
on F, that is, if E[|| fn(X) — f(X)|]] = 0 and f € L*(P), then

limninf ece(f,) > ece(f).

This result requires some delicate measure-theoretic arguments, so we defer it to the technical
proofs (see Section 12.6.1). The disctontinuity of ece is relatively easy to show, however, even in
very simple cases.

Example 12.2.2 (Discontinuity of the calibration error): Let Y € {0,1} be a Bernoulli
random variable, and let X € {0,1}. Take Y = X with probability 1. Then the predictor that
always predicts % is perfectly calibrated, but if for € € [0, %] we define f. by

1 1

f(0)==—¢€¢ and f(l)==+c¢

2 2
then we see that ece(f.) = % — €, while ece(fp) = 0. Certainly f. — fp in any LP distance on
functions, while lim¢_,gece(fe) = % O

12.2.1 The impossibility of measuring calibration

The discontinuity Example 12.2.2 highlights suggests that estimating calibration ece(f) for a fixed
function f should be nontrivial, and indeed, using the tools on functional estimation and testing
we develop in Chapter 10, we can show strong lower bounds for estimating the calibration error
unless one makes unjustifiable assumptions about the distribution of Y | f(X). The precise reasons
differ a bit from the discontinuity of ece(f) in f, though the intuition is relatively straightforward:
if f(X) has a density, then even given a very large sample (X7, Y7"), all the observations f(X;) will
be distinct, and we have no a priori reason to assume that E[Y | f(X)] should be continuous in
the predicted value f(X).

To make this more precise, fix a function f whose calibration error we wish to evaluate, and
consider a hypothesis test of Hy : ece(f) = 0 against alternatives that f is miscalibrated, H; :
ece(f) > v for some v > 0. We observe predictions f(X;) and outcomes Y;, that is, pairs

Zi = (§(X,).Y)
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drawn i.i.d.; the coming lower bound holds if X = [0, 1] and f(z) = z, so in many cases, observing
X is of no help. Recall the (worst-case) test risk from Section 10.2, that for the testing problem
between classes Hy : P € Py and Hy : P € P; of distributions,

Rn (¥ | Po, P1) := sup P(¥(Z7) #0) + sup P(¥(Z7) # 1).
PePy PePy
Because we consider the function f fixed and ask only whether we can evaluate its calibration error
under an (unknown) distribution P, we denote the expected calibration error of f under P via
ecep(f) =Ep[|Ep[Y | f(X)] — f(X)|]]. We thus consider testing perfect calibration Hy : ece(f) =
0 against alternatives Hj : ece(f) > v of miscalibration for v > 0, defining

P, = {distributions P on (X,Y) | ecep(f) > v}
as the collection of distributions for which f is (3 —~) mis-calibrated.

Theorem 12.2.3. Let f : X — [0,1] be a predictor of Y € {0,1}. Assume for some 0 < ¢ < & that
f(X)N e, 1 — ¢ has cardinality at least N. Then there is a distribution Py such that ecep,(f) =0
and for any 0 < v <,

ny? 1

2v/Nc(l—c)

Before proving Theorem 12.2.3, we note the following immediate corollary; part (ii) follows from
part (i), which follows by taking N 1 co in the theorem.

inf R (¥ | {Ro},Py) > 1

Corollary 12.2.4. Let the conditions of Theorem 12.2.3 hold and let Py = {P | ecep(f) = 0}.

(i) If there exists 0 < ¢ < 3 such that f(X)N[c, 1—c] has infinite cardinality, then Py is non-empty
and for any 0 < vy <,
liminfir\lllfR(\I/ | Po, Py) = 1.

(it) If there exists a neighborhood U of 4 such that U C f(X), then Py is non-empty and for any
v < %, the minimaz test risk satisfies

liminfigf R(Y | Py, P,) = 1.

In brief, no test exists that is better than random guessing for testing between
Hp:ece(f) =0 and Hj:ece(f) >c

given access to the predictions f(X;) and observed outcomes Y;. The theorem and corollary apply to
binary prediction models with Y € {0, 1}, but the results immediately extend to more complicated
prediction problems where Y is vector-valued or multiclass.
Proof The proof relies on the convex hull testing lower bound from Proposition 10.2.1. Without
loss of generality, we can assume that X C [0,1] and that f(z) = z by transforming the input
space. Let S = f(X) be the (random) scores that f outputs.

We first construct the perfectly calibrated distribution Py and miscalibrated family P,. Define
the distribution Py so that S is uniform on distinct points s1,...,sy € [c,1 —cJand Y | S = s ~
Bernoulli(s), that is, given S = s, Y = 1 with probability s and Y = 0 with probability 1 — s. By
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construction, ecep,(f) = 0. To construct the particular members of the alternative family P, for
each j € [N], define the “tilting” function

o5 = (L= 2L ) 1t =s),

Sj 1—sj

Y 1-Y 2‘5 L/t 1 1 1
s; s J N \s; 1—s; N sj(1 —s;)

Note that |<by(y, s)| < l as ¢ < %, and if we define the vector ¢(y, s) = (61(y, 8),...,dn(y,s)), then
oy, s)llp < 1 (that 1s the number of non-zero entries is at most 1). Now as v € [0, c|, for each
ve{-1, 1}N we may define the tilted distribution P, with

PU(Y =y,S5 = S) = (1 +7<Ua¢(y’8)>)PO(Y =y, 5= S),

which is a valid distribution whenever v < ¢, as |(v, ¢(y, s))| < 1. We compute the calibration error
for distributions P € {P,}. Noting that S is still uniform on {s1,...,sy} under P,, we have

E,[Y | S = s;] = s +y0;E[p;(Y,s;)Y | S = s5] = 55 + 05,

Then Eo[¢;(Y, S)] = 0 while

Varo(6; (Y, ) = %EO

and so ecep, (f) = + Zjvzl v|vj| = ~. In particular, we have P, € P,.
Lastly, we compute a bound on the testing error. For this, we recall Lemma 10.1.3. Letting

pn 2N >, P, we have

Dy (P7|P}) +1= 22% D Eo [(1 4 y(v, (Y, 9)) (1 + (', 6(Y, 9)))]"

v,

= oo 2 (14777 Covol6(v, $))v')”

because the sampling is i.i.d. By our variance calculation for ¢ and that each ¢; has disjoint
support, we have Covo(¢(Y, S)) = + dlag([ﬁ]é\f 1), and so

9 N VV/ n 2 N V.V!
=1 D fy ny 73
Dy (P7|F}") +1= ( NZ 1_%) <EGXP<NZM)
j=1 J=1

where the expectation is over V, V’ Y Uniform({£1}"). But of course V;V/ iid. random signs, and
hence 1-sub-Gaussian, so that

Do (PR + 1 <exp [ L) e (2
ex ex "o, . 5
X 0 =P N2 21— ) = P\ 2N 2(1- o)

because ¢ < s; < 1 —c. Apply Proposition 10.2.1 and Pinsker’s inequality (Propositions 2.2.8
and 2.2.9) to see that

n2+y4 1
AN 2(1—¢)?

iI\Iljf R(¥ | {Po},Py) >1— \/; log (14 D2 (P*|Ry)) > 1 — \/

Taking square roots gives the result. O
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12.2.2 Alternative calibration measures

The fundamental impossibility results in Theorem 12.2.3 and Corollary 12.2.4, even in the binary
prediction case, suggest that we should choose some more easily estimable measure for calibration.
In Section 12.5 we provide formal definitions for calibration measures to be continuous (or Lipschitz
continuous) and equivalent to one another. Here, we provide the alternative definitions of calibration
we consider, giving a corollary that captures their relationships for multiclass classification, and
then describing how to estimate one of them. Let us take the general setting of this chapter, where
the label space Y C R* and P is a distribution on X x ). Let F be a collection of functions
mapping X — R* and integrable with respect to P, that is, E[|| f(X)]|] < oo for each f € F.

In brief, we require that a calibration measure M : F — Ry be sound (in analogy with proof
systems, where soundness means nothing false can be proved), meaning that

M(f) =0 implies E[Y" | f(X)] = f(X) (12.2.2a)
and complete (continuing the analogy, that everything true can be proved), meaning that
E[Y [ f(X)] = f(X) implies M(f) = 0. (12.2.2b)

We begin by considering types of distance to calibration. Let C(P) denote those functions g
that are perfectly calibrated for P, that is, C(P) = {g: X — R¥ | Ep[Y | g¢(X)] = g(X)} (where
the defining equality holds with P-probability 1 over X). The set P always consists at least of the
constant function g(X) = Ep[Y] and so is non-empty (but is typically larger). Then we call the
minimum L!(P) distance of a function f to the set C(P) the distance to calibration

dear(f) = f {E[|lg(X) — f(X)[l] s.t. g € C(P)} - (12.2.3)

It is not always clear how to estimate the distance d.,(f), making using it sometimes challenging.

We also consider a complementary quantity that relies on an alternative variational character-
ization. Let W C {R* — RF} be a symmetric collection of functions, meaning that w € W implies
—w € W. We can view any such collection as potential witnesses of miscalibration, in that

E[(w(f(X)),Y = f(X))] = E[{(w(f (X)), E[Y | £(X)] = f(X))]

and so if w can “witness” the portions of space where f(X) # E[Y | f(X)], it can certify miscali-
bration. We then arrive at what we term the calibration error relative to the class W,

CE(f,W) := SE%EKw(f(X)),Y — f(X))]: (12.2.4)

Depending on the class W, this is sometimes called the weak calibration error, and with large
enough classes, we can recover the classical expected calibration error (12.2.1).

Example 12.2.5 (Recovering expected calibration error): For a norm ||-||, let the set W be
the collection of all functions w with bound sup, ||w(s)||, < 1. Then

CE(f,W)=E| sup (w,E[Y | f(X)] = f(X))| =E[[E[}Y [ f(X)] - fF(X)|] = ece(f),

[[w][, <1

the expected calibration error. <
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It is more interesting to consider restricted classes; one of particular interest to us is that of bounded
Lipschitz functions. Let

Wi = {w :RF = R* | lw(so) — w(s1)], <llso—s1]| and |Jw(s)|, <1 for all s,so,sl} (12.2.5)

denote the collection of functions bounded by 1 in ||-||, and that are 1-Lipschitz with respect to
I-ll. Then (as we see presently) we can at least estimate the calibration error relative to the class
W in the definition (12.2.4).

The final calibration measure we consider reposes on the idea of quantizing or partitioning the
output space, which relates to the idea of “binning” predictions that the literature on calibration
frequently considers. Here, we consider averages of Y conditioned on predictions in larger sets.
Thus, instead of evaluating the precise conditioning E[Y | f(X)] we to look instead at the expec-
tation of Y conditional on f(X) € A for a set A, so that a predicted score is (nearly) calibrated
if the diameter diam(A) is small, and E[Y | f(X) € A] ~ s for some s € A. Given a partition
A of the space M = Conv(}), it is then natural to evaluate the average error for each element
of A (weighting by the probability of A), and consider the calibration error (12.2.4) for indicator
functions of A € A, where we abuse notation slightly to define

CE(f,4) = Y E[(f(X) =Y)L{f(X) € A}]l = D [E[f(X) - Y | f(X) € 4| P(f(X) € A).

AcA AcA

Indeed, taking a supremum over all such partitions gives sup 4 CE(f | A) = E[||E[Y | f(X)] — f(X)]l],
the original expected calibration error (12.2.1). Additionally, and here we elide details, if f(X) is

a continuous random variable with suitably nice density and A,, denotes any partition satisfying

diam(A) < 1/n for A € A,, then lim,, CE(f, A,)) = E[|E[Y | f(X)] — f(X)||]. Instead of consider-

ing CE(f,.A) directly, we optimize over all partitions, but penalize the average size of elements of

A, giving the partitioned calibration error

pce(f) == ig\f {CE(f, A) + Z diam(A)P(f(X) € A)} . (12.2.6)

AeA

Each of these is equivalent to within polynomial scaling.

Corollary 12.2.6. Let Y C R* have finite diameter and ||-|| be any norm. Then each of the
calibration measures dc., CE(-,W.|), and pce in definitions (12.2.3), (12.2.4), and (12.2.6) is
sound and complete (12.2.2). Additionally, let Y = {e1,...,ex} and ||| = ||-||; be the £1-norm.
Then for any f: X — M = Conv(})),

%CE(f, WH'H) < dca(f) < CE(f, W||~H) + QM

dcal(f) < Pce(f) < dcal(f) +2 V kdcal(f)'

Corollary 12.2.6 will come as a consequence of the deeper development we purse in Section 12.5.
Here, we take Corollary 12.2.6 as motivation to give the type of typical result that justifies cali-

bration estimates. As any of the calibration measures is roughly equivalent (except ece), measuring

any of them on a sample can provide evidence for or against calibration of a predictor f. We focus

and
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on the simpler binary case in which f : X — [0,1] and let Wi, be bounded Lipschitz functions
w : [0,1] = [—1,1]. Given a sample (X', Y]"), the empirical variant of CE(f, W) is

CEn(f) = e {i N wil — F(X0)) st Jwi —wjl < F(X0) — f(X;)] for i,j < n} :
w|| < i—1

By combining uniform covering bounds for the class of Lipschitz functions with a standard concen-
tration inequality, we then have the following convergence guarantee for CE,,.

Proposition 12.2.7. There exists a numerical constant C' such that for any 6 > 0,

S

—~ log
CEn(f) — CE(/, WLip)’ <C Ve

with probability at least 1 — 4.

Proof Fix e > 0and let A(¢) be a minimal e-cover of the set Wy, in uniform norm, meaning that
Hw - w(j)Hoo < ¢ for each w9 € N(e), and let N () be its (minimal) cardinality. Then log N(¢) <
%log% (recall Proposition 8.7.3 and Eq. (8.7.4)). For shorthand, let the error vector F € [—1,1]"

have entries E; = Y; — f(X;), and abusing notation, for w € Wy, let (w, E),, = £ 3% w(f(X;))E;.
Then for any w € Wiy, there exists i < N(e) such that

[(w, B} — (0, B)n| < ¢,

while él\En(f) = SUPyep,, (W, E)n. In particular, we have

CEW(f) = CE(f,Wiip)| < swp |(w, B}y —El(w, E)al] < max |(w, B} — E[(w, E)u]| + 2.
wWEWLip weN (e)

Thus for any t > 0, we have

P (‘@n(f) — CE(f, wmp)] > t) <P (Jélﬁf@ |

< 2N (e) exp (n[t—je]i)

(w, E)y, — E[{(w, E),]| >t — 2e>

by the Azuma-Hoeffding inequality and a union bound. Take e = n~'/% and t = Cn~'/3, /log 5 for
an appropriate numerical constant C' to obtain the proposition. ]

Summarizing, while the expected calibration error is fundamentally inestimable, there are alter-
native measures that are both sound and complete, and they can admit reasonable estimators. As
the class size k grows, however, it can become statistically infeasible to estimate the calibration of
predictors f, so that one must consider alternative metrics. The exercises and bibliography explore
these questions in more detail.
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12.3 Auditing and improving calibration at the population level

Theorems 12.1.1 and 12.1.2 provide decompositions of the expected loss of a predictor
Ele(f(X), Y)] =ELE | f(X)],Y)]+E[Dy (E[Y | f(X)], f(X))]

into an average loss and an expected divergence between f(X) and E[Y | f(X)], where h is the
negative (generalized) entropy (11.1.6) associated with the loss ¢, so that the loss has representation
O, y) = —h(p) — (Vh(p),y — p). This suggests an approach to improving a predictor f : X — R¥
without compromising its average loss: make it closer to being calibrated, so that E[Y | f(X)] ~
f(X). Here, we make this idea precise by using the weak calibration (12.2.4): if there exists a
witness function w certifying that E[{(w(f(X)),Y — f(X))] > 0, then we can post-process f to
f(X) 4+ nw(f(X)) for some stepsize n > 0 and only improve the expected loss. We first develop
the idea in the context of the squared error, where the calculations are cleanest, and extend it to
general proper losses based on convex conjugates (as in Section 11.3) immediately after. Combining
the ideas we develop, we also provide a (population-level) algorithm to transform a function f
by post-processing its outputs that guarantees the result is nearly calibrated relative to a class
W of witnesses. This provides an algorithmic proof quantitatively relating the calibration error
CE(f,W) relative to a class W to the improvement achievable in minimizing E[¢(f(X),Y)] by
post-composition g o f.

12.3.1 The post-processing gap and calibration audits for squared error

Consider a thought experiment: instead of using f to make predictions, we use a postprocessing go f,
where g : R¥ — R* has the (suggestively chosen) form g(v) = v + w(v), where w(v) = (g(v) — v).
Then using the representation ¢(u,y) = —h(n) — (Vh(p),y — p) for the proper loss, we recall
Theorem 12.1.1 and for pu(f(X)) :=E[Y | f(X)] expand

Elt(go f(X),Y)] = E[-h(g o f(X)) = (Vh(go f(X)),Y —go f(X))]
E[=h(p(f(X)OD] + ER(u(f (X)) = (Vh(g o f(X)),Y — g o f(X))]
E[LEN | f(X)],Y)] + E[Du(E[Y | f(X)], g0 f(X))];

where the final equality uses the linearity of y — ¢(u,y), that is,
E[f(go f(X), V)] =E[EY | F(X).Y)]+E[Dy (E[Y | f(X)], f(X) +w(f(X)))].  (12.3.1)

We have decomposed the expected loss E[¢(go f(X),Y)] into a term that post-processing does not
change, which measures the sharpness with which E[Y | f(X)] predicts Y, and a divergence term
Dj, measuring the error in calibration of g o f(X) = f(X) + w(f(X)) for E[Y | f(X)].

The expansion (12.3.1) points toward an ability to postprocess any prediction function f : X —
R* to both (i) obtain calibration relative to a class of functions W, as in Definition (12.2.4), and (ii)
improve the expected loss E[¢(f(X),Y)]. Moreover, this improvement is monotone, in that changes
“toward” calibration guarantee smaller expected loss, an improvement over the less refined results
in Theorems 12.1.1 and 12.1.2. To that end, define the post-processing gap for the (proper) loss ¢
and function f relative to the class W of functions R¥ — R* by

gap(t, £, W) = E[(f(X),Y)] = inf E[6(f(X) +w(f(X)),Y)]. (12.3.2)

The gap (12.3.2) is fundamentally tied to the calibration error relative to the class W.
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We specialize here to the simpler case of the squared error, as the statements are most transpar-
ent. We focus exclusively on symmetric convex collections of functions W, meaning that if w € W,
then —w € W, and W is convex.

Proposition 12.3.1. Let {(u,y) = 3 ||y — ,qu be the squared error (Brier score), and let W be a
symmetric convex collection of functions, each 1-Lipschitz with respect to the la-norm ||-||5. Define

R*(f) = supyey Elw(f(X))|3]. Then
CE(f, W)?
R(f)

Proof Fixx andlet u=E[Y | f(X) = f(z)] € Conv()) and w = w(f(z)) be a potential update
to f(z). Then because £(u1,y) = 5 || — yl|3, for any y € Y

%min {CE(f, W), } < gap(¢, f, W) < CE(f,W)

)+ (Ve ), 0) + 5 ol = L+ w,).

Recognizing that V(u,y) = (u — y), for any w € W we therefore have

—E[(f(X) =Y, w(f(X)))] - %E[Hw(f(X))Hg] < E[(f(X), V)] = E[((f(X) + w(f(X)),Y)]
< —E[(f(X) = Y, w(f(X)))]-

Taking suprema over w on each side of the preceding inequalities and using the symmetry of W
gives

sup {BI(7(X) = Y w(FCON] - 5B (X1} < goplt, £, )

wew
< sup E[(f(X) =Y, w(f(X)))]-
wew
Because CE(f,W) = sup,ec E[(f(X) — Y,w(f(X)))], we can use the convexity of W and the
definition R%(f) := sup,ew E[lw(f(X))|[3] to see that for any 7 € [0,1], we may replace w with
n-w € W, and we have

sup |nCE(f,W) — anz(f) < gap(l, f,W) < CE(f,W).
nel0,1] 2

Maximizing over 7 on the left side, we choose 71 = min{1, CIE%(QJE%V)} to obtain the proposition. [

As an immediate corollary, we see that if W = W, consists of the 1-Lipschitz functions with
lw(-)||y < 1, we have a cleaner guarantee.

Corollary 12.3.2. Let W = W), and the conditions of Proposition 12.3.1 hold. Then

1

——_CE(f,W)? < gap(t, f,W) < CE(f,W).

Thus, the calibration error upper and lower bounds the gap between the expected loss of f and a
post-processed version of f. This yields a nearly operational interpretation of the calibration error
relative to the class W: it is, to within a square, exactly the amount we could improve the expected
loss of the function f by postprocessing f itself.
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12.3.2 Calibration audits for losses based on conjugate linkages

Recall as in Section 11.3.1 that, by a transformation tied to the loss ¢ via its associated generalized
negative entropy, we may define the surrogate

e(s,y) == h"(s) — (s,9),

and we may transform arbitrary scores s € R¥ to predictions via the conjugate link (11.3.1), that
is,
predy (s) = argmin {—(s, 1) + h(p)} = Vh*(s).
o
So long as h is appropriately smooth, these satisfy ¢(pred;(s),y) = ¢(s,y). In complete analogy
with the post-processing gap (12.3.2) when we assume f makes predictions in (the affine hull of)
Y, we can define the surrogate post-processing gap

gap(p, £, W) = Elp(f(X), V)] - inf Elp(f(X)+w(f(X)),Y)]. (12.3.3)

In spite of the similarity with definition (12.3.2), the actual predictions of Y from f in this case
come via the link pred, (f(X)). Thus, in this case we instead consider the calibration error relative
to a class W but after the composition of f with pred, = VA*, so that

CE(pred), o f,WV) = uS}lélng[<w(f(X))» Y — pred, (f(X)))] = slelngKw(f(X)), Y = VA (f(X))];

where as always we assume that the class of witness functions satisfies W = —W. When the
prediction function is continuous enough in s, we can give an analogue of Proposition 12.3.1 to the
more general surrogate case. To that end, we assume that the conjugate h* has Lipschitz continuous
gradient with respect to the dual norm |-||,, meaning that

IVh*(s0) = VA (s1)| < [ls0 — s,

for all sg,s; € R¥. This is equivalent (see Proposition C.2.7) to the negative entropy h being
strongly convex with respect to the norm [|-||, and also immediately implies that

]

plstw,y) < ¢s,y) + (Vsp(s, y),w) + —

Example 12.3.3 (Multiclass logistic regression): For multiclass logistic regression, where we
take h(p) = Z§:1 pjlog pj, we know that h is strongly convex with respect to the ¢; norm (this

is Pinsker’s inequality; see inequality (2.2.11)). Thus, the conjugate h*(s) = log(Z;?:l e®) has
Lipschitz gradient with respect to the ¢, norm, meaning that for the prediction link

k
e’y
predh(s) = [ k ] )
Zj:l e y=1

we have
Hpredh(s) — predh(s’)H1 < Hs — S/HOO

for all 5,5’ € RF. ©
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Example 12.3.4 (The squared error): When we measure the error of a predictions in Rk
by the squared fo-norm % | f(x) — y||§, this corresponds to the generalized negative entropy
h(p) = 3 |pll3. In this case, the norm ||| = ||-||, = ||, and we have the self duality h* = h,

so that the prediction mapping pred;, is the identity. ¢

With these examples as motivation, we then have the following generalization of Proposi-
tion 12.3.1.

Proposition 12.3.5. Let the negative generalized entropy h be strongly convex with respect to the
norm ||-|| and consider surrogate loss (s, y) = h*(s)—(s,y). Define R2(f) := supyew E[|w(f(X))||Z].
Then

CE(pred,, o f,W)?
R:(f)

Proof Fix z and let s = f(x) and w = w(f(x)), and notice that for any y we have

L min {CE(predh o f, W),

2 } < gap(yp, f,W) < CE(pred;, o f,W).

o(s,y) +(Vp(s,y), w) < o(s+w,y) < o(s,y) + (Vo(s,y), w) + % lwl? .

Recognizing that V(s,y) = Vh*(s) — y, for any w € YW we have

—E[{(Ve(f(X),Y), w(f(X)))] = %E[Ilw(f(X))Hi] < Elp(f(X),Y)] = Elp(f(X) + w(f(X)),Y)]
< —E[(Ve(f(X),Y), w(f(X))].

Taking suprema over w on each side and using the symmetry of W gives

sup {BI(V1(70) = Yo w( )] - Bl CO)E | < gaplio. 1)

wew
< sup E[(VA*(f(X)) =Y, w(f(X)))].
weWW
Because CE(pred;, o f, W) = sup,,eyy E(VA*(f(X)) — Y, w(f(X)))], we can use the convexity of W
and the definition R2(f) := sup,epw E[|[w(f(X))||?], to see that for any 7 € [0,1], we may replace
w with - w € W and

2
s%pl] nCE(pred;, o f, W) — %Rf(f) < gap(y, f, W) < CE(pred;, o f,W).
TIE b

. C red, of,
Set 7 = min{1, %}JW)}‘ O

A corollary specializing to the case of bounded witness functions allows a somewhat cleaner
statement, in analogy with Corollary 12.3.2. It provides the same operational interpretation: the
calibration error CE(f, W) of f relative to WW upper and lower bounds improvement possible through
postprocessing f.

Corollary 12.3.6. Let the conditions of Proposition 12.3.5 hold, and additionally assume that the
witness functions W satisfy ||w(s)||, <1 for all s € R¥. Then

1
2 diam(dom h)

2 CE(predh © fa W)2 S gap(‘ﬂ» f’ W) S CE(predh ° fa W)

328



Lexture Notes on Statistics and Information Theory John Duchi

We can give an alternative perspective for this section by focusing on the definitions (12.3.2)
and (12.3.3) of the post-processing gap. Suppose we have a proper loss ¢ and we wish to improve the
expected loss of a predictor f by post-processing f. When there is little to be gained by replacing
f with an adjusted version f(z)+w(f(z)) for some w € W, then f must be calibrated with respect
to the class W. So, for example, for a surrogate ¢, the function f (really, its associated prediction
function pred; o f) is calibrated with respect to W if and only if E[o(f(X) + w(f(X)),Y)] <
Elp(f(X),Y)] for all w e W.

As a particular special case to close this section, the standard multiclass logistic loss provides
a clean example.

Example 12.3.7 (Multiclass logistic losses, continued): Let h be the negative entropy h(p) =
Z?Zl pjlogp; restricted to the probability simplex A, = {p € R’j_ | (1,p) = 1} and the
surrogate ¢(s,y) = log(z‘};:1 e%) — sy. Then for any class WV consisting of functions with
w(s)|l, <1 forall s € RF and any function f: X — RF,

S CB(pred; o f, W)? < E[p(£(X), Y)] ~ inf Elp(f(X) + w(f(X)), V)]

(Note that dom h has diameter 1 in the ¢;-norm.) <

12.3.3 A population-level algorithm for calibration

Implicit in each of the calibration gap bounds in Propositions 12.3.1 and 12.3.5 is bound on the
improvement of a predictor f relative to processing outputs with a class W of functions. This
suggests an algorithm for updating the predictions of f to make them calibrated, after which no
improvement is possible. While we work at the population level here, similar procedures can allow
calibration given access to additional data.

Working in the more general setting of surrogate losses based on the generalized negative entropy
h, as these include the standard squared error as a special case, the key idea is that if we find the
witness w maximizing E[(w(f(X)),Y — pred, (f(X)))] we can update f with f —n-wo f for some
stepsize 7, thus improving the calibration of f relative to the class W of potential witnesses. In
Figure 12.1, we present a prototypical algorithm for achieving this.

The following theorem bounds the convergence of the algorithm.

Theorem 12.3.8. Assume that the surrogate loss ¢ is nonnegative and that the class of witnesses
W satisfies Ry = supy |[w(s)||, < co. Then the algorithm in Figure 12.1 guarantees that

2
r71_1<1£1 CE(pred;, o f-, W) < \/2R*E[‘P\(/§O(X)7Y)]7

and in particular terminates with CE(pred,, o f;, W) < € for some t with

_ 2RZE[p(fo(X),Y)]
> 62 '

t

Proof We begin by showing a one-step progress guarantee beginning from a fixed function f.
For any w : R¥ — R* and any f, we have

Elp(f(X) +nw(f(X)), Y)] < Elp(f(X), )]+ nE[(w(f (X)), VA*(f(X)) = V)] + %E[HW(f(X))Hf]-
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Input: Population distribution P, collection of bounded witness functions W, general-
ized negative entropy h strongly convex w.r.t. norm |||, initial predictor fo : X — R¥,
calibration tolerance € > (
Initialize: set R? := sup, [|w(s)||
Repeat: fort =0,1,...

2

*

i. Find witness wy maximizing E[{(w(f:(X)),Y — pred;, (f:(X)))]

E[(“’t(ft(X))’Y_QPredh(ft(X))>]

*

ii. Set e =

iii. Update fi41 = ft —n¢-wio fi

iv. Terminate if

CE(pred;, o f;, W) < e.

Figure 12.1: Improving calibration relative to the class W

Let w maximize E[{(w(f(X)), VA*(f(X)) —Y)], so that

2
Eljp(/(X) — nu(F(X), V)] < Elp(/(X), Y)] — nCE(predy o f. W) + T R

Choose 1y = w to obtain
1 CE(predy, o f, W)?

Elp(F(X) = npw(F(X)), V)] £ Elp(F(X), V)] - 5 =Pt

(12.3.4)

Now we apply the obvious inductive argument. Let f; be a function in the iteration of Algo-
2
rithm 12.1. Then inequality (12.3.4) guarantees that if 67 := %w, then

Elp(fis1(X),Y)] < Elp(fi(X),Y)] - 67.

In particular,
t—1
0 < Elp(f(X),Y)] < Elp(fo(X),Y)] - Y _ 62
7=0

In particular,
tm<i§153 < Elp(fo(X),Y)],

so that min,<; 6, < \/E[p(fo(X),Y)]/t. Replacing &, with its definition gives the theorem. O

12.4 Calibeating: improving squared error by calibration

Sections 12.1 and 12.3 show that at least at the population level, taking a predictor f and modifying
(or postprocessing) it to guarantee its calibration can only improve the losses it suffers, whether
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those are squared error or general proper losses. That is, by calibrating we can beat (and hence,
calibeat) a given predictor. These arguments have exclusively been at the population level, leaving
it unclear whether this approach might actually work given a finite sample. While employing
these ideas for general losses and general decision settings, where we only guarantee ) C RF, is
challenging because of dimensionality issues, here we show how to improve calibration in finite
samples while simultaneously losing little in squared error for binary predictions with Y € {0, 1}.
That is, we have calibeating: from any potential predictor f, we can construct a predictor g with
both small calibration error and with (asymptotically) no larger squared error than f, realizing
Theorem 12.1.1 but in finite samples.

Let f : X — [0,1] be any predictor of ¥ € {0,1}, and consider the squared error loss
{(s,y) = (s — y)? with population loss L(f) = E[(Y — f(X))?]. The idea to improve calibra-
tion of f without losing much in accuracy (squared error) is fairly straightforward: we discretize
f by binning its predictions so that the number of X; for which f(X;) is in a bin is equal; such
binning ideas are central to the theory of calibration. Then we choose the postprocessed func-
tion g by averaging observed Y values over those bins. This transforms the (population level)
idea present in Theorem 12.1.1, which says to choose the post-processing conditional expectation
g(z) =E[Y | f(X) = f(x)], into one implementable in finite samples, which approximately sets

g9(x) = E[Y | I(z) < f(X) < u(z)],

where [ and u are lower and upper bounds over which to average the predictions of f.
To make the ideas concrete, assume we have a sample (X, Yi)?zl of size 2n drawn i.i.d. according
to P (where we choose 2n for notational convenience), which we divide into samples {(X;,Y;)}"

and {(X;,Y;)}7",. 1, letting PV denote the empirical distribution on the first sample and P2 that
on the second. We use the first to choose the binning (quantization) of f and the second to actually
choose values for the binned function. Fix a number of bins b € N to be chosen, for convenience

assuming that b divides n. Let the indices i1, ..., i, sort f(X;), so that

F(Xa) < f(XG,) <o < f(XG,),

and construct index partitions I;, j = 1,...,b, by I := {ib(j—1)+1> ...,1p;}. Here, we have assumed
(essentially) without loss of generality that the predictions f(X;) are distinct with probability
1.} Given this partitioning of indices Iy,..., I, for j = 1,...,b define the lower and upper bin
boundaries R

lj = X; d u;= X;

i ig?if( i) and u; Iirggf( i)

except that lAl = 0 and U, = 1, and define the bins
By = [ﬂﬁl) , Ba= P\Q;ib) yoeey By = [lAbﬁb}
to partition [0, 1]. These partition [0, 1] evenly in the empirical probabilities of f(X;),i=1,...,n,

not evenly in the widths u; — I;.
To construct the recalibrated and binned version g of f, for each x € X', define the bin mapping

bin(z) := the bin j such that f(z) € Bj,

'If this distinctness fails, we can add random dithering by letting U % Uniform[—%7 %} and replacing the ob-

servations X; with pairs (X;,U;) and f(X;) with fext(X:,Us) := f(X;) + eU; for some € > 0. Then L(fext) =

e

E[(Y — f(X) —eU)’] = E[(Y — f(X))?] + 5 and £(fext(z,u),y) < £(f(x),y) + 2¢ for all z,u,y, so that we lose little.
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which implicitly depends on the first sample (X7, Y{"). The partitioning of [0, 1] into the bins B;
also induces a partition on X = U?:l f _1(Bj), where elements z, 2’ belong to the same partition
set if bin(z) = bin(a’). Once we have this mapping from z to the associated prediction bin, we can
use the second sample (its empirical distribution) to define the binned function g by the average of

the second sample distribution P,(LQ) over those examples falling into each bin. Formally, we define
g to be the the piecewise constant function

g(z) = EP,§2> [Y | bin(X) = bin(z)], (12.4.1)
or equivalently, for each x € Bj, we have

g9(x) :=Epo[Y | f(X) € Bj]
1 2n

N bin(X;) =35}1Y;
S 1 1{bin(X;) = j} i%;l 1{bin(X;) = j}Y;

where we assign g(x) an arbitrary value if no X; satisfies f(X;) € B; for the index j = bin(x).

Informally, this function g partitions X space into regions of roughly equal (small) probability
1/b, and for which f(z) belongs to a given interval on each region. Then recalibrating f on that
region changes the prediction error (Y — f(X))? little, but improves the calibration. Formally, we
can show the following theorem.

Theorem 12.4.1. Let g be the binned and recalibrated estimator (12.4.1). Assume that the number
of bins b and sample size n satisfy & > b. Then there exists a numerical constant ¢ > 0 such
that for all 6 € (0,1), with probability at least 1 — 2exp(—cy) — 0,

3 2blog%

Lig) S L)+ + E[(E[Y | bin(X)] ~ E[f(X) | bin(X)))*]

n

and g has expected calibration error (12.2.1) at most

|2blog %
n

JCD Comment: Put in some figures here. ‘

The proof of Theorem 12.4.1 is long, so we defer it to Section 12.4.1. To interpret the theorem,

consider the terms in it. Roughly, we see that if we choose the number of bins to be /nlog %, then
the calibeating predictor g guarantees

Lig) < I(f) + 055 & [(BIY | bin(X)] ~ E[f(X) | bin(X)))?].

while the expected calibration error is of order n~'/4, ignoring the logarithmic factors. So we
improve the loss L(f) by a factor involving the calibration error of f (relative to the random

binning)—the less calibrated f is, the more improvement we can provide—and with a penalty

tending to 0 at rate /logn/n.
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12.4.1 Proof of Theorem 12.4.1

Throughout the proof we use the shorthands that P(B;) = P(f(X) € Bj) and P,(B;) =
P(f(X) e B;) =131 1{f(X;) € Bj} to mean the (empirical) probability that f(X) € B;, and
Pél) and PT(L ) denote empirical probabilities with respect to the samples (X", Y{") and (Xfffrl, Yfﬁl),
respectively. The key to the argument is to show three things:

1. With high probability, each bin B; has the approximately correct probab1hty 55 < P(Bj) < lb

2. With similarly high probability, the empirical probabilities on the second sample P,(LZ)

2
L < PP (B;) < 2.

satisfy

3. Conditional on P7(L2)(Bj) being large enough, the expectations E ) [Y" | f(X) € B;] are accurate,
so that g(z) = E[Y | f(X) € B;] for x satisfying f(x) € B;.

Once we have each of these three, we can show that L(g) is essentially no larger than L(f), up
to diminishing error terms in n, and that g itself is well-calibrated. We proceed through each step
in turn, stating the results as lemmas whose proofs we provide at the end of this section.

Lemma 12.4.2. Let @ >b. For a numerical constant ¢ > 0, we have

1

P<%§P(B)<f0rall]—1 b>21—2exp<—c1;).

With Lemma 12.4.2 in hand, the second step of the proof of Theorem 12.4.1 is relatively
(1)

straightforward. In the lemma, conditioning on P,
(X{L7Y1n)'

indicates conditioning on the first sample

Lemma 12.4.3. Let g > b. Assume the first sample P( ) is such that 5 < P(B)) < 4lb for each
selected bin Bj, j =1,...,b. Then there exists a numerical constant ¢ > 0 such that

1 2 n
< (2) — (1) > — —c— ).
P<4b P\ (B;) < b|Pn 1 2exp( Cb)

Lemma 12.4.4. Let the conditions of Lemma 12.4.3 hold. Then there exists a numerical constant
¢ > 0 such that for any § € (0,1)

Pmax swp o) ~EY | 7(X) € Bl > /2o 2 | PO | <2exp (<) 44
3<b:1:f(:1:)€B b

With the three lemmas in place, we can now expand the squared error to obtain the calibeating
theorem. Recalling the population squared error L(g) = E[(Y — ¢g(X))?], let us suppose that the
consequences of Lemmas 12.4.2-12.4.4 hold, so that |g(z) — E[Y | f(X) € Bj]|?> < ZlogZ and
P(Bj) < 4b for each j. By the lemmas, these hold with probability 1 —2exp(—c%) — (5 Deﬁne the
average function values and conditional expectations

7; =E[f(X)| f(X) € B;] and E;:=E[Y | f(X) € By].

Then we have
b

Y P(B)E[Y — E; + Ej — g(X))* | F(X) € Bjl.

j=1

=
s
I
=
=
<
o
LY
I
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Considering the expectation term, note that g(X) is constant for f(X) € B; by construction of the
binning, and so for any x € f~1(B;), we have

E[(Y —E; +E; — g(X))? | f(X) € Bj]
=E[(Y —E[Y | f(X) € Bj])* | f(X) € Bj] + (9(z) —E[Y | f(X) € Bj])?

<E(Y ~E[Y | f(X) € B)? | 1(X) € B+ 2 log 2.

Now, using that E[Y | f(X) € B;] = E;, we see that
E[(Y - E;)* | f(X) € Bj] = E[(Y — f;)* | f(X) € Bj] - (Ej — [;)?

by adding and subtracting ?j and expanding the square. Summarizing, we have shown so far that

b
Z (Y —F;)% | F(X) € Bj] + mf—ZP T (1242)

We can directly relate the first term in the expansion (12.4.2) to the expected error E[(Y —
f(X))?]. Indeed, by expanding out the square, we have

E[(Y — f;)* | f(X) € Bj]

=E[(Y - f(X) + f(X) = £;)* | f(X) € B]

=E[(Y — f(X))* | f(X) € Bj] + 2E[(Y — f(X))(f(X) — ;) | f(X) € Bj] + Var(f(X) | f(X) € By)
<E[Y - f(X)? | f(X )GBj]+2\/Var(f(X)If(X)EBj)+Var(f(X)If(X)EBj%

where the inequality is Cauchy-Schwarz, as |Y — f(X)| < 1. Finally, we recognize that B; C [/l\j, u;],
so Var(f(X) | f(X) € B;) < (@; — ;)% and thus

~

E[(Y — F,)7 | F(X) € B SE[(Y ~ F(X)) | (X) € B + (@~ Ty).
Substituting in the bound (12.4.2) and recognizing that Y__, P(B;)E[(Y — f(X))? | f(X) € B;] =
E((Y — f(X))?] = L(f), we have

b b
. ~, 2b. 2b —=
L(g) < L(f) + 7 > _ P(B))(@; — j) + —log = —Z (B; - 1,)%
J=1 =1
by the assumed conclusions of Lemma 12.4.2, and so Z L P(By)(u; —

But of course, P(B;) <
1. —1;) = 1. This gives the final inequality

7
1

b

§) < gpas Y (U - 1) =

L(g) < L) + 1+ 2log 2 — S P(B))(E; — T,)%

proving the first claim of the theorem. The bound on calibration error is immediate because
lg(z) —E[Y | f(X) € Bj]|* < 2Zblog%b for each x € f~1(B;) with the prescribed probability, by
Lemma 12.4.4.
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Proof of Lemma 12.4.2  We follow the notational shorthand P, (4) = 1 > | 1{f(X;) € A}.
Fix a pair 0 < [ < u < 1 and define the interval A = [l,u]. Then Bernstein’s inequality (4.1.8)

shows that
1 nv?
P(|-P,(A) — P(A)| > <2 _——
<‘n (4) ( )‘ _U) - exp( 2P(A)+§v>

for all v > 0. Partition [0, 1] into intervals A1, ..., Ay, A; = [I;, u;], each of probability P(A;) = ﬁ.
Now, fix an index j* € [b] and consider the (empirically constructed) bin Bjs = [lj*,u;+). Then

there exist some j,k € N such that
AjU"'UAj+k D By« DAj+1U~-'UAj+k_1.

We provide upper and lower bounds on & as a function of the error in P,(A;). Suppose that
for some t > 0, we have

% < Py(4;) < % for j =1,...,4b. (12.4.3)
Then 141 1
?(k+1)>Pn(AJU ~UA]+;€)2P”(BJ*):B,
and similarly
14;;(1@—1) < Pu(Ajor U---UA;1p) < Ba(Bje) = %

implying the bounds A A
— —1<k<—+41.
1+1¢ t—1

In particular, if ¢ < % then 3 < k < 6, and so when the bounds (12.4.3) hold with ¢ = % we obtain

1 k—1 k+1 7
o5 <y = PA U Udjp1) S P(Bj) < P(A; U Udjip) = — = <

Apply Bernstein’s inequality for using ¢t = %, orv= %, with variance bound o2 < P(A;) < ﬁ

to obtain that for each j =1,...,4b, we have

n/(120)2 )
P (IPn(Aj) P(Aj)| = m) Zexp <_2/<46)+§1> = 2exp (‘@)

Apply a union bound to obtain the lemma once we recognize that n/b — logb = n/b whenever
n/logn > b. O

Proof of Lemma 12.4.3 Assume that P(B;) < %. Then applying Bernstein’s inequal-
ity (4.1.8), and using that 1{f(X) € B;} is a Bernoulli random variable with mean (and hence
variance) at most %, we have

(12 2) o (31907 o () <o (0.

Similarly, we have IP’(P,(LQ) (Bj) < #;) < exp(—% %) as P(B;) > 5;. Applying a union bound over
j=1,...,b, then noting that n/b logb 2 n/b whenever n/logn > b, we again obtain O
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Proof of Lemma 12.4.4  Recall that g(z) = E,»[Y | bin(X) = bin(z)], and note that g is

constant on x € f~1(B;). Fix a bin j, and let I(j) = {i € {n+1,...,2n} | f(Xnti) € B;} denote
the indices in the second sample for which f(X,;) falls in bin B;. Then conditional on i € I(j),
we have Y; ~ P(Y € - | f(X) € Bj), so that

> t]1(j) | < 2exp (~2card(I(5))t?)

1
(|7 > ¥EW | f() € 5]

by Hoeffding’s inequality. Then (conditioning on the bins {B;} chosen using P,gl), which by as-
sumption satisfy P(B;) € [4, 2], we have for any fixed z € f~(B;) that

P ( sup [g(z) —E[Y | f(X) € Bj][ > | Pé”)
z€f~1(Bj)
= > P(lgl@) ~ElY | f(X) € Bj)l > ,1() =T | P{V)
I1C[n]
< P (card(I(j)) < 4% | P}Ll)) + 3 P <|g(:1c) —E[Y | f(X) € Bj]| > t,1(j) =1 | Pé”)
IC[n],card(I)>n/4b

1 nt?
< 2)(B. "
_P(Pn (Bj) < 4b>+2exp< 21))’

26
where the final line applies Hoeffding’s inequality. Taking t? = %b% and applying Lemma 12.4.3
and a union bound gives Lemma 12.4.4. O

12.5 Continuous and equivalent calibration measures

We finally return to constructing a calculus and tools with which to measure calibration, addressing
the issues of discontinuity of ece that Example 12.2.2 highlights, and building to a combination
of results that imply Corollary 12.2.6. In the end, we will see that for appropriate classes F of
predictors, several potential measures M : F — R, are roughly equivalent sound and complete
calibration measures, all enjoying similar continuity properties. We begin with two definitions.

Definition 12.1. A function M : F — R, is a continuous calibration measure for the distribution
PonXxYif

(i) it is sound and complete (12.2.2), that is, M(f) = 0 if and only if f is calibrated for P, and

(ii) it is continuous with respect to the L'(P) metric on F, that is, for any f, if fa is a sequence
of functions with E[|| f(X) — fn(X)|] — 0, then

M(f) = M(fn) = 0.

A stronger definition replaces continuity with a Lipschitz requirement.
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Definition 12.2. A function M : F — Ry is a Lipschitz calibration measure for the distribution
P on X x Y if it is sound and complete (Definition 12.1, part (i)), and instead of part (ii) satisfies

(iii) it is Lipschitz continuous with respect to the L'(P) metric on F, that is, for some C' < oo

IM(fo) = M(f1)| < C-Ep[||fo(X) — f1(X)]]
for all fo, f1 € F.

If conditions (i) and (ii) (respectively (iii)) hold for all P in a collection of distributions P on X' x ),
we will say that M is a continuous (respectively, Lipschitz) calibration measure for P.

The desiderata (ii) and (iii) are matters of taste; the central idea is that some type of continuity
is essential for efficient modeling, estimation, and analysis. We leave the norm ||-|| implicit in the
definition, and we typically omit the distribution P from the calibration metric as it is clear from
context. The two parts of Definition 12.2 admit many possible calibration measures. We consider
two types of measures, which are (almost) dual to one another, as examples. Both use a variational
representation, where in one we essentially look for the “closest” function that is calibrated, while
in the other, we investigate the ease with which we can (quantitatively) certify that a predictor f
is uncalibrated.

A key concept will be the equivalence of calibration measures, where we target a quantitative
equivalence. To define this, let 0 < a, 8 < co. Then we say that two candidate calibration measures
Mg and My on F C X — RF are (a, 3)-equivalent if there exist constants cg, c; (which may depend
on Y) such that

Mo(f) < o Mi(f) +Mi(f)%] and Mi(f) < e1 [Mo(f) +Mo(f)?] (12.5.1)

Then in a strong sense, Mo(f) — 0 if and only if M;(f) — 0.

12.5.1 Calibration measures

We revisit the potential calibration measures in Section 12.2.2 here to recapitulate definitions,
providing initial results on their soundness and completeness. We focus on the distance to calibra-
tion (12.2.3) and relative calibration errors (12.2.4), as the partitioned calibration error (12.2.6) we
use more as a proof device.

Distances to calibration. Recall the distance to calibration (12.2.3), which for C(P) = {g :
X — RF | Ep[Y | g(X)] = g(X)} (where the defining equality holds with P-probability 1
over X) has definition dc,(f) = infy {E[||g(X) — f(X)]||] s.t. g € C(P)}. The measure (12.2.3)
is, after appropriate normalization, the largest Lipschitz measure of calibration: if M is any Lip-
schitz calibration measure (with constant C' = 1 in Definition 12.2 part (iii)), then taking a per-
fectly calibrated g with ece(g) = 0, we necessarily have M(g) = 0. Then for any f we have
M(f) =M(f) —M(g) < E[||f(X) — g(X)||], and taking an infimum over such g guarantees

M(f) S dcal(f)'

The second related quantity, which sometimes admits cleaner properties for analysis, is the penalized
calibration distance, which we define as

Pear(f) == inf {E[| £(X) — g(X)[[] + E[IE[Y | 9(X)] — g(X)II]} - (12.5.2)
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These quantities are strongly related, and in the sequel (see Corollary 12.5.8), we show that

pcal(f) < dcal(f) < pcal(f) + Cy V pcal(f)7

where C'y is a constant depending only on the set ) whenever ) has finite diameter.

To build intuition for the definition (12.5.2), consider the two quantities. The first measures
the usual L' distance between the function f and a putative alternative g. The second is the
expected calibration error of g. By restricting the infimum in definition (12.2.3) to functions g
with ece(g) = 0, we simply have the L' distance to the nearest calibrated function; as is, the
additional term in (12.5.2) allows trading between the distance to a calibrated function and the
actual calibration error. We also have the following proposition.

Proposition 12.5.1. The functions de, and peay are Lipschitz calibration measures.

Proof If f is calibrated, then pea(f) = deai(f) = 0 immediately. Conversely, if peai(f) = 0, there
exists a sequence of functions g, satisfying E[||f(X) — g.(X)||]] — 0, as each term in the defini-
tion (12.5.2) is nonnegative. Additionally, we must have that ece(gy,) = E[||E[Y | gn(X)] — gn(X)|]] —
0. Applying Lemma 12.2.1 we have 0 > liminf,, ece(g,) > ece(f). If dea(f) = 0, then there ex-
ists a sequence of functions g, with ece(g,) = 0 and E[||f(X) — gn(X)||] — 0. Again, the lower
semicontinuity of ece from Lemma 12.2.1 gives 0 = liminf,, ece(g,) > ece(f).

To see that pea is Lipschitz in f, let fo, fi : X — R¥, and let g, g1 be within € > 0 of achieving
the infima in definition (12.5.2) for fy and f1, respectively. Then

Peat(fo) = pear(f1) < inf {E[[ fo(X) — g(X)] + E[IEL" | 9(X)] — g(X)II]}

—E[lA(X) = g1 (X)] + E[IEY | g1(X)] = g1 (X)[|] + €
< E[[[fo(X) = g1 (XM = B[l /1(X) = g1 (X)[[] + €
<E[[[fo(X) = A(X)I] + e

Take € | 0. The lower inequality is similar, as is the proof for dca. ]

Weak calibration. The calibration error (12.2.4) relative to a class W,

CE(f, W) := sup E[(w(f(X),Y — f(X))]
wew
admits similar properties, as it also satisfies our desiderata for a calibration measure. In particular,
if we take W to be the class W), of bounded Lipschitz witness functions (12.2.5), we have the next
two propositions.

Proposition 12.5.2. Let F consist of functions with E[|| f(X)]]] < co and assume E[||Y ] < oo.
Then CE(-, W) is a continuous calibration measure over F.

Because continuity is such a weak requirement, the proof of this result relies on measure theoretic
results, so we defer it to Section 12.6.2.

When we assume the collection F consists of bounded functions and Y itself is bounded, we
can give a stronger guarantee for the weak calibration, and we no longer need to rely on careful
arguments considering the order of various limits.
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Proposition 12.5.3. Assume that diam()) is finite and that F is a collection of bounded functions
X — RF. Then CE(-,W).) is a Lipschitz calibration measure over F.

Proof Let W = W), for shorthand. That CE(f,W) = 0 when f is calibrated is immediate, as
by definition of conditional expectation we have

E[(w(f(X)),Y = f(X)] = E[w(f (X)), E[Y' | f(X)] = f(X))] = 0.

To obtain the converse that CE(f,W) = 0 implies f is calibrated, we require an intermediate
lemma, which leverages the density of Lipschitz functions in IP spaces. As was the case for the
lower semi-continuity lemma 12.2.1 central to the proof of the converse in Proposition 12.5.1, this
lemma requires measure-theoretic approximation arguments, so we defer its proof to Section 12.6.3.

Lemma 12.5.4. Let S € R¥ be a random variable and E[||g(S)||] < co. If E[{w(S), g(S))] = 0 for
all bounded and 1-Lipschitz functions w, then g(S) = 0 with probability 1.

The converse is now trivial: let S = f(X), and note that CE(f, W) = sup,cy E[(w(S),E[Y |
S] — S)], and take g(S) =E[Y | S] — S in Lemma 12.5.4.

To see that CE is Lipschitz, let wg € W be such that CE(fo, W) > E[{wo(fo(X)),Y — fo(X))]—e¢,
and let C' < oo satisfy C' > supycy zex rer |y — f(2)||. Then

CE(fo, W) — CE(f1, W) < E[(wo(fo(X)),Y — fo(X))] — E[<wo(f1( ), Y = fi(X))] + €

< E[{wo(fo(X)) — wo(f1(X)), Y — fo(X))] + E[{wo(f1(X)), f1(X) — fo(X))] + €
< CE[[[wo(fo(X)) — wo(f1(X ))II*HE[Hfl( ) = fo(X)[[] +€

<

(1+ ORE[[f1(X) = fo(X)[] + e

Repeating the same argument, mutatis mutandis, for the lower bound gives the Lipschitz continuity

as desired. ]

The family of weak calibration measures CE(f, V) as we vary the collection of potential witness
functions W yields a variety of behaviors. Different choices of W can give different continuous
calibration measures, where we may modify Definition 12.1 part (ii) to other notions of continuity,
such as Lipschitzness with respect to L?(P) norms. We explore a few of these in the exercises at
the end of the chapter.

12.5.2 Equivalent calibration measures

That all three measures dcai(f), peal(f), CE(f, W) are Lipschitz calibration measures when the
label space ) is bounded suggests deeper relationships between these and other notions of calibra-
tion, such as the equivalence (12.5.1). We elucidate this here, showing that each of the measures
deal, Peal, and CE are equivalent. Indeed, the main consequence of the results in this chapter is that
this equivalence holds for multiclass classification.

Theorem 12.5.5. Let Y = {e1,...,ex} and W, be the collection (12.2.5) of bounded Lipschitz
functions for a norm ||-| on R*. Then dear, peat, and CE(-, W) are each (3, 3)- equwalent More-
over, this equivalence is sharp, in that they are not (o, B)-equivalent for any «, 3 > 5
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The theorem follows as a compilation of the other results in this section. Along the way to demon-
strating this theorem, we introduce a few alternative measures of calibration we use as stepping
stones toward our final results. While many of our derivations will apply for general sets ), in
some cases we will restrict to multiclass classification problems, so that Y = {ej,...,e;} C RF
are the k standard basis vectors. We present two main results: the first, Theorem 12.5.6, shows
an equivalence (up to a square root) between the penalized calibration distance (12.5.2) and the
partitioned calibration error (12.2.6). As a corollary of this result, we obtain the equivalence of the
distance to calibration (12.2.3) and penalized distance to calibration (12.5.2). The second main
result, Theorem 12.5.9, gives a similar equivalence between the penalized distance (12.5.2) and
the calibration error relative to Lipschitz functions (12.2.4). Throughout, to make the calculations
cleaner and more transparent, we restrict our functions to make predictions in M = conv(}).

Partition-based calibration measures and lifting to random variables

It is easier to work directly in the space of predictions f(X) € R* rather than addressing the
underlying space X'. To that end, let S = f(X) be the random vector (use the mnemonic that S is
for “scores”) induced by f(X) and taking values in Conv()’), which has a joint distribution (5,Y")
with the label Y. Then, for example, the expected calibration error of f is simply

ece(f) = E[|[E[Y | 5] - S][].

Once we work exclusively in the space of random scores S = f(X), we may define alternative
distances to calibration in analogy with the (penalized) distances to calibration, which will allow
us to more easily relate distances to the partitioned error (12.2.6). Thus, we define

deatjow(f) := ME{E[|S — V][] s.t. E[Y |V]=V} (12.5.3a)

and
Pealjow(f) := inf {E[|S = VI|] + E[|E[Y | V] = V|]}, (12.5.3b)

where the infimum are over all random variables V' taking values in Conv())), which can have
arbitrary distribution with (S,Y") (but do not modify the joint (S,Y’)), and in case (12.5.3a) are
calibrated. This formulation is convenient in that we can represent it as a convex optimization
problem, allowing us to bring the tools of duality to bear on it, though we defer this temporarily. By
considering V' = g(X) for functions g : X — Conv()’), we immediately see that peai(f) > Deallow (f)-
We can also consider upper distances

dealup(f) = iI;f {E[||S = g(S)||] st. E[Y |g(S)]=g(5)}

and

peap(f) = inf (IS~ ()] + ENELY | o(S)] ~ (S}

which restrict the definitions (12.2.3) and (12.5.2) to compositions. We therefore have the inequal-
ities
dcal,low(f) < dcal(f) < dcal,up(f) and pcal,low(f) < pcal(f) < pcal,up(f)- (1254)

The partitioned calibration error (12.2.6) allows us to provide a bound relating the calibration
error and the lower and upper calibration errors. To state the theorem, we make a normalization
with [|-]|, assuming without loss of generality that |||, < ||-]|.
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Theorem 12.5.6. Let ) C R* have finite diameter diam(Y) in the norm ||-||. Let S = f(X) € R¥.
Then for all € > 0,

Pealup(f) < deatup(f) < pee(S) < (1 + Mz_“m

< (1 N 2k diam())

3

> pcal,low(f) + ||1k||* €

) deation (F) + 1141l &

While the first inequality in Theorem 12.5.6 is relatively straightforward to prove, the second
requires substantially more care, so we defer the proof of the theorem to Section 12.6.4.

We record a few corollaries, one consequence of which is to show that the partitioned calibration
error (12.2.6) is at least a calibration measure in the sense of Definition 12.2.(i). Theorem 12.5.6
also shows that the penalized calibration distance pc,1(f) is equivalent, up to taking a square root,
to the upper and lower calibration “distances”. In each corollary, we let Cj, = ||1x]|, for shorthand.

Corollary 12.5.7. Let the conditions of Theorem 12.5.6 hold. Then

pcal,low(f) < pcal(f) < pcal,low(f) +2 V Cik diam(y)\/ pcal,low(f)

and
dcal,low(f) < dcal(f) < dcal,low(f) +2 \V Ckk dlam(y>\/ dcal,low(f)-

Proof The first lower bound is immediate (recall the naive inequalitites (12.5.4)). Now set
€= \/2l<: diam()Y)peal tow (f)/Ck in Theorem 12.5.6, and recognize that pealiow(f) < Pealup(f). O

We also obtain an approximate equivalence between the calibration distance d., and penalized
calibration distance pc, from definitions (12.2.3) and (12.5.2).

Corollary 12.5.8. Let the conditions of Theorem 12.5.6 hold. Then
pcal(f) < dcal(f) < paal(f) + 2\/Ckk dlam(y) \/pcal(f)~

Proof The first inequality is immediate by definition. For the second, note (see Lemma 12.6.4
in the proof of Theorem 12.5.6 in Section 12.6.4) that peajiow(f) < pce(S) for S = f(X). Then
apply Theorem 12.5.6 with ¢ = /2k diam(Y)pcat jow(f)/cx as in Corollary 12.5.7, and recognize
that Pcal,low < Dcal- 0

Let us instantiate the theorem and its corollaries in a few special cases. If we make binary
predictions with ) = {0, 1}, then Cy = k = diam()) = 1, and Theorem 12.5.6 implies that

pcal,low(f) < pcal(f) < pcal,low(f) +2 \/ pcaLlow(f)'

For k-class multiclass classification, where we identify ) = {ey,...,er} with the k standard basis
vectors, we have the bounds

pcal,low(f) S pcal(f) S pcal,low(f) + 2 \/ kpcal,low(f)7

so long as we measure calibration errors with respect to the ¢;-norm, that is, ||y — f(z)||,, because
diam()) <1and Cp = |1 = 1.
‘ JCD Comment: Remark on sharpness here. ‘
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The equivalence between calibration error and the calibration distance

We can rewrite the calibration error CE(S, .A) relative to partitions in the definition (12.2.6) as the
supremum over a collection Y4 of functions of the form w(s) = vl {s € A}, where ||v||, < 1, so that
CE(S,W4) = supyew, E[(w(S),Y —=95)] = > 4c 4 E[[[E[Y | S] — S||]. Relaxing this supremum, and
removing the infimum over partitions, we might expect a similar relationship to Theorem 12.5.6
to hold. Via a duality argument that the definition (12.5.3) of the lower calibration error as an
infimum over joint distributions makes possible, we can directly relate the measures.

Theorem 12.5.9. Let Y C R¥ have finite diameter in the norm |-|| and W be the collec-
tion (12.2.5) of bounded Lipschitz functions. Then

CE(f, WH'”) < (1 + diam())) ‘pcal,low(f)‘
Conversely, let Y ={ei,...,er} and define Cy := ||1x||, max{1, diam(})}. Then
deatow(f) < Ci - CE(f,W).

This proof, while nontrivial, is more elementary than the others in this chapter, so we present it
here. Before giving it, however, we give a few corollaries that give a fuller picture of the relationships
between the different calibration measures we have developed. These show how, for the case of k-
class multiclass classification where we identify ) = {ej,...,ex} with the standard basis vectors,
the distance to calibration (12.2.3) and penalized calibration (12.5.2) provide essentially equivalent
measures of calibration error, and that these in turn are equivalent to the calibration error with
respect to the collection of bounded Lipschitz functions.

We first give a corollary for the penalized calibration (12.5.2).

Corollary 12.5.10. Let Y = {e1,...,ex} and ||| = ||-||; be the ¢1-norm. Then for any f : X —

Conv()), we have
SOE(, W) < peat(f) < CE(S, W) + 2, /ROE(F, Wy,

Proof Let W = W) for shorthand. Theorem 12.5.9 gives CE(f,W) < 2pcaliow(f), and
Peallow(f) < Deal(f), giving the lower bound. For the upper bound, Corollary 12.5.7 gives peai(f) <

pcal,low(f) =+ 2\/E\/ pcal,low(f)a then using that pcal,low(f) < dcal,low(f) and the second part of Theo-
rem 12.5.9 gives the corollary. O

The same argument implies the following analogue for the distance to calibration (12.2.3).

Corollary 12.5.11. Let Y = {e1,...,ex} and ||| = ||-||; be the ¢1-norm. Then for any f : X —

Conv()), we have
%CE(f, W) < dear(f) < CE(f, W) + QM'

Proof of Theorem 12.5.9

The proof of the upper bound is fairly straightforward. For any w € W, we have

E[(w(5),Y = 5)] = E[{w(S5),V = S)] + E[(w(S) —w(V),Y = V)] + E[{w(V),Y — V)]
<E[|[V = S[] + diam)E[|[V' = S|[] + E[(w(V),E[Y | V] = V)]
< (1+ diam(V))E[|V = S| + E[|[E[Y" | V] = V]].
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To prove the converse requires more; we present most of the argument for an arbitrary discrete
space ) and specialize to the multiclass setting only at the end. The starting point is to reduce the
problem to a discrete problem over probability mass functions rather than general distributions, as
then it is much easier to apply the standard tools of convex duality. Consider the value

deatiow(8) = W {E[|S — V]| st B[Y | V] =V},

Let b € N and S be a (minimal) 1/b covering {s1,...,sy} of Conv(})), and define S, to be the
projection of S to the nearest s;. Then ||S — V| =S, — V| £+ %, and

. 1
dcal,low(S) = H‘}f {E[H‘Sb - VH] s.t. E[Y | V] = V} == g

Now, if we replace the infimum over arbitrary joint distributions of (Sp, Y, V') leaving the marginal
(Sp, Y') unchanged (with V calibrated) with an infimum over only discrete distributions on V', we
have

dcal,low (S) <

< inf
V finitely supported

(E[|S, - V] st. E[Y |V]=V}+ % (12.5.5)

Notably, the infimum is non-empty, as we can always choose V =Y.

With the problem (12.5.5) in hand, we can write a finite dimensional optimization problem
whose optimal value is the discretized infimum on the right side. Without loss of generality assuming
that S is finitely supported, we let psy, = P(S = 5,Y = y) be the probability mass function of
(S,Y). Then introducing the joint distribution @ with p.m.f. gy = Q(S = 5,Y =y, V = v), the
infimum (12.5.5) has the constraint that 3, gsyv = psy- Then E[||S = V] =3, ¢syv |5 — v[| and
the calibration constraint E[Y | V] =V is equivalent to the equality constraint that »_ gsyv(y —
v) = 0 for each v. This yields the convex optimization problem

minimize Zs,yw qsyv s — vl

: 12.5.6
subject to Y, Geyv = Psy, ¢ = 0, Ey’q Qsyo(y —v) =0 for all v ( )

in the variable g. We take the dual of this problem. Taking Lagrange multipliers A, for each
equality constraint that ), gsyo = Psy, Osyo > 0 for the nonnegativity constraints on ¢, and 3, € RF
for each equality constraint that 0 = sy ¢syv(y — v), we have Lagrangian

L(q,z,A,0,0)
= Z Qsyv HS - U” + Z QSvaZ(y - U) - Z)\sy<ZQSyv _psy> - <97Q>'
$,Y,v S,Y,v S,y v

Taking an infimum over ¢, we see that unless
”S_UH‘{'B'Z(y_U)_)\sy_esyv =0

for each triple (s,y,v), we have inf, £(g, A, 0, 5) = —oo. The equality in the preceding display is
equivalent to ||s — v|| + 8L (y — v) > Agy, so that eliminating 6 = 0 variables, we have the dual

maximize Zs,y AsyDsy
subject to  Agy < |ls —v|| + BL(y —v), all s,y,v
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to problem (12.5.6). Equivalently, recognizing that at the optimum we must saturate the constraints
on A via Agy = min,{|[s — v + 57 (y — v)}, we have

maximize Zpsy mvin {lls — vl +BL(y —v)} (12.5.7)
5,y

in the variables (3,, and strong duality obtains.

The dual problem (12.5.7) is the key to the final step in the proof. To make the functional
notation clearer, let us fix any collection of vectors 3, and define Ay(s) = min,{||s — v||+ 5L (y—v)}
for each y € ). If we can exhibit a C-Lipschitz function s — w(s) that satisfies

(w(s),y —s) > Ay(s) (12.5.8)

for each y € Y and ||w(s)]|, < C, we will evidently have shown that

1
sup E[(’LU(S), Y — S>] > adcal,low(s)7
weW,

by the dual formulation (12.5.7).

The functions A, are each 1-Lipschitz with respect to ||-||, as
Ay(s) = Ay(s') = min {||s — vl + By (y —v) = [|s" = v]| = B (y —v)}
i s — ol = | o} 2~ s — 1.

and similarly
Ay() = Ay () < max {Jls — o] + 87y —v) — |’ —ol| — 8w — )} < [|s — |

by the triangle inequality. Here, we specialize to the particular multiclass classification case in which
the set ) = {e1,...,ex} consists of extreme points of the probability simplex, so that s € Conv())
means that (1,s) = 1 and s > 0. Abusing notation slightly, let \; = A, for i = 1,...,k. Then
define the function

)\1(8)
w(s)=|
Ak (s)
By inspection, we have
[ws) =w(), < [llls = <1 L]l = 120l fls = 1] -

Additionally, because A\;(s) < [|s — ;|| (take v = e; in the definition of );), we have [|w(s)||, <
|I1]|, diam(}’). Finally, we have

(w(s), e — s) = (L= s)hils) — 3 s (s)
j#i

> (1 —s;)Ni(s) — Z%‘(ﬁs, €j — s)
J#
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because Aj(s) < (Bs,e; — s) by taking v = s in the definition of ;. Adding and subtracting
si{fBs, e; — s), we obtain

Ea

(w(s),ei —s) > (1 —s;)Ni(s) — 5i(Bs,ej — 8) + 5i(Bs, €i — 5)
1

= (1 — si))\i(s) + si<ﬁs,ei — S> Z /\i(s),

because s = 0 and (s, e; — s) > \;(s). This is the desired inequality (12.5.8).

12.6 Deferred technical proofs

Several of the proofs in this chapter rely on standard results from analysis and measure theory; we
give these as base lemmas, as any book on graduate level real analysis (implicitly) contains them
(see, e.g., Tao [164, Chapters 1.3 and 1.13] or Royden [154]).

Lemma 12.6.1 (Egorov’s theorem). Let f, — f in LP(P) for some p > 1. Then for each € > 0,
there exists a set A of measure at least P(A) > 1 — € such that f, — f uniformly on A.

Lemma 12.6.2 (Monotone convergence). Let f, : X — Ry be a monotone increasing sequence of
functions and f(z) = lim, fn(x) (which may be infinite). Then [ f(z)dp(z) = lim, [ fo(z)dp(z)
for any measure p.

Lemma 12.6.3 (Density of Lipschitz functions). Let CH'P be the collection of compactly supported
Lipschitz functions on R* and P a probability distribution on RF. Then C(I;lp is dense in LP(P), that
is, for each e > 0 and f with Ep[|f(X)|P] < oo, there exzists g € Co'P with Ep[|g(X)— f(X)[P]}/P < e.

12.6.1 Proof of Lemma 12.2.1

Let W, be the collection of k-Lipschitz functions w with ||w(s)]|, < 1 for all s, and let W denote the
collection of measurable functions with ||w(s)||, <1 for all s. Recall the defininition CE(g, W) =
sup,ew, E(w(g(X)),Y — g(X))]. Then if f, — f in L'(P), by Egorov’s theorem (Lemma 12.6.1),
for each € > 0 there exists a set A with P(A) > 1 — € and f, — f uniformly on A. Then

E[(w(fn(X)),Y = fa(X)1{X € A} + E[(w(fn(X)),Y = fu(X))1{X € A%}]
> E[(w(fn(X)),Y = fu(X)1{X € A} - E[|Y — fu(X)[ 1{X € A°}] (12.6.1)

because [lw(s)[, < 1. As [[ly — fu(2)[[1{z € A%} —[ly — f(2)[[ 1{z € A} <|[f(z) — fu(z)] Dy the
triangle inequality, the last term in inequality (12.6.1) converges to E[||Y — f(X)|1{X € A°}] as
n — oo. Focusing on the first term in (12.6.1), for any €; > 0 the uniform convergence of f,, to f
on A guarantees that for large enough n, we have

E[(w(fn(X)),Y = fu(X))]

— E[(w(f(X)),Y — fu(X)1{X € A}] + E[(w(fu(X)) — w(f(X)),Y — fu(X))1{X € A}]
> El{w(f(X)).Y = FX)1{X € )] ~ ksup | (@) = fula) | E]IY ~ Fu(X0)]
> B[(w(f(X)),Y — fa(X)1{X € A}] — &1
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Adding and subtracting f(X) in the final expectation, we have

E[(w(f(X)),Y = fu(X))1{X € A}]

= E[(w(f(X)),Y = F(X)1{X € A} + E[{w(f(X)), f(X) = fu(X))1{X € A}]
E[{w(f(X)),Y — fF(X)] = E[lY = F(X)[1{X € A%} - E[[|f(X) — fu(X)]]

E[{w(f(X)),Y = F(X)] —E[lY = fF(X)[1{X € A°}].

Substituting these bounds into inequality (12.6.1), we have for any € > 0 that there exists a set A,
with P(A¢) > 1 — € and for which

lim inf Ef{uw(f,(X)), Y — f2(X))]
> El(w(f(X)),Y = f(X))] - 2E[|Y — F(X)]| 1{X € AZ}].

For each m € N, let B, = U, <, A1/n- Certainly P(By,) > 1~ 1/m, and f, — f uniformly on
By, (as the guarantees on A, from Egorov’s theorem apply); the same argument thus gives

w

w

¢|\/

hn}linfEKw(fn(X))? Y - fn(X)>]
> E[(w(f(X)),Y — £(X))] - 2E[|Y — F(X)[ 1{X € BS}].

Because B, is an increasing sequence of sets with P(By,) > 1 — 1/m, the limit B, = ,,, Bm
satisfies P(By,) = 1. For any x € B, we see that © € B, for some finite m; trivially, for
x € By we thus have ||y — f(z)||1{x & B} — |ly— f(2)||1{x € B} = 0 as m — oo. Said
differently, except on a null set, we have ||y — f(x)||1{z € B,,} — 0 for P-almost all (x,y), and
this is certainly dominated by ||y — f(x)||. Lebesgue’s dominated convergence theorem then implies
E[llY — f(X)||1{X & Bn}] — 0 as m — oco. Summarizing, we have shown that for any w € W,
we have

lim inf E[(w(f,(X)), Y = fo(X))] = E[{w(f(X)),Y = f(X))].

By taking a supremum over w € Wy in the last display and recognizing that ¢ > 0 was arbitrary,
we have shown that
lim inf CE( f,, Wx) > CE(f, Wk)
n

for all k < co. By Lemma 12.6.3, for any integrable f and for each € > 0 there exists k£ such that

sup E[{w(f(X)),Y — f(X))] = sup E[{w(f(X)),Y — f(X))] —e

wEW) weWw

and for this k£ we have
lim inf CE( o, Wy) > CE(f, Wy) > CE(f, W) —
n
Noting that CE(f,, W) > CE(f,, W) for any k and taking € — 0 gives the lemma.

12.6.2 Proof of Proposition 12.5.2

The proof that CE(-, W),|) identifies calibration (Definition 12.1, part (i)) is identical to the argu-
ment for Proposition 12.5.3, so we omit it.
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Let W = W for shorthand, and consider a sequence of functions f, — f. Then
CE(f, W) = CE(fn, W) < sup E[(w(f(X)),Y = f(X)) = (w(fa(X)),¥ = fa(X))]
and
CE(fn, W) = CE(f, W) < sup Bl{w(fa(X)),Y = fa(X)) = (w([(X)),¥ = F(X))).

We focus on bounding the first display, as showing that the second tends to zero requires, mutatis
mutandis, an identical argument.
Fix any w € W. Then

E[(w(f(X)),Y = f(X)) = (w(fn(X)),Y = fn(X))]
= E[(w(f(X)) —w(fu(X)),Y = F(X)] + E[w(fn(X)), fu(X) = F(X))]
< Emin{2, [|£(X) = fu(X) Y = FX] + E[[[ fu(X) = fF(X)I],
where the inequality follows because ||w(s) —w(s')|, < 2 and ||w(s) —w(s)|, < ||s — §|| for any

s, s’ by construction. The second expectation certainly tends to zero as n — oo, so we consider the

first. Define g, (z,y) = min{2, || f(z) — fu(@)[|} [ly — f(@)]. Then gn(z,y) < g(z,y) = |y — f(2)]],
which has finite expectation by assumption. Moreover, Egorov’s theorem (Lemma 12.6.1) guaran-

tees that for each k, there is a set Ay with P(A;) > 1 — 1/k and for which g, — 0 uniformly on
Ay, (because E[|| f(X) — fu(X)|]] = 0). Define Ass = |, Ak, so that P(Ax) =1, and gn(z,y) = 0
pointwise on A,,. Then the dominated convergence theorem guarntees that

Elgn(X,Y)] = Elgn(X,YV)1{(X,Y) € A} + E[gn (X, Y)1{(X,Y) & Asc}| — 0.

=0

Notably, this convergence is independent of w, and so we obtain

lim sup {CE(f, W) — CE(f,., W)} < 0.

A similar argument gives the converse bound.

12.6.3 Proof of Lemma 12.5.4

Define f(s) = g(s)/ max{1,|g(s)||}, so that E[||g(s)|s] = E[(f(s),g(s))]. Using Lemma 12.6.3,
we see that for each n € N there exists a C' = C),-Lipschitz function (where C' < o0) w, with
Ef|wn(S) — f(9)]]] £ 2, and w.lo.g. we may assume |[wy(s)|l, < 1 (by projection if necessary,

which is Lipschitzian). Then
Elllg(9)llo] = E[(£(5), 9(5))] = E[{f(S) = wn(S), g(SN] + El(wn(5), 9(5))] -

~~

=0

Note that w, — f in L'(P). Then for any ¢ > 0, an application of Egorov’s theorem
(Lemma 12.6.1) and that E[||g(S)|]] < oo gives that we can find sets A, with P(A¢) > 1 — ¢
and for which w, — f uniformly on A.. Then

Elllg(S)l) = E[(F(S) = wn(5),9(5))1{S € A} + E[[lg(S)[l, 1 {S & Ac}]
sup [|f(s) — wn(s)[ly [l9(5)lly 1{S € A} | + E[llg(S)[;1{S & Ac}]

SGAE

<E
= Efllg(S)ll, 1{S & Ac}].

347



Lexture Notes on Statistics and Information Theory John Duchi

as n T oco. We now employ the same device we use in the proof of Lemma 12.2.1. For m € N,

let By, = U< A1/n- Then wy, — f uniformly on B, and so E[[|g(S)|l,] < E[[[g(S)[l, 1{S & Bm}],

that is, E[||g(5)]|4 1{S € B }] = 0. Monotone convergence implies 0 = limy,—, E[||g(5)[l, 1{S € Bn}| =
Elllg(S)|ly 1 {S € Bs}] where By = |,, Bn. As P(Bs) = 1 by continuity of measure, we have
E[|lg(S)|l5] = 0, giving the lemma.

12.6.4 Proof of Theorem 12.5.6

The following lemma gives the lower bound in the theorem and is fairly straightforward.

Lemma 12.6.4. For S = f(X), we have

pcal,up(f) < dcal,up(f) < pCG(S). (12.6.2)

Proof Fix any partition A, and define q4(s) to be the (unique) set A such that s € A (so we
quantize s). Then set g(s) = E[Y | S € q.4(s)] to be the expectation of Y conditional on S being in
the same partition element as s. Then g(S) = E[Y | g(S)] with probability 1, so that g is perfectly
calibrated, and

Peatup(f) < dealup(f) < E[[[S — g(S)]]
= Y E[IS—E[Y | S € A]| 1{S € A}]

AeA
<Y E[(IS~E[S|SeAll+|ES-Y|SeAl)1{Se A}
AeA
< diam(A)P(S € A) + > [IE[(S - Y)1{S € A}]|.
AeA AcA
Taking an infimum gives the claim (12.6.2). O

To prove the claimed upper bound requires more work. For pedagogical reasons, let us attempt
to prove a similar upper bound relating pce(S) to peallow(f). We might begin with a partition A
with maximal diameter diam(A) < € for A € A, and for random variables (S, V,Y), begin with the
first term in the partition error, whence

CE(S,4) < D [E[(S — V)1{S € A}]|| + |[E[(V - Y)1{S € A}]|

AcA
<E[IS - VII+ DBV —Y)1{V e A+ > |E(V - Y)(1{S € A} - 1{V € A})]|
AeA AeA
<E[|S - VI]+E[EY | V] = V] + ) [IE[(V - Y)(1{S € A} - 1{V € A})]|
AcA

by Jensen’s inequality applied to conditional expectations, once we recognize E[(Y—=V)1{V € A}]| =
E[(E[Y | V] = V)1{V € A}]. For the final term, a straightforward computation yields

Z IE[(V =Y)(1{S e A} —1{V € A})]|| < diam(}) Z P(Se AV A +P(SEAV &A)

AcA AcA
= 2diam(Y)P(S and V belong to different A € A).
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If S and V had continuous distributions, we would expect the probability that they fail to belong
to the same partition elements to scale as E[||.S — V||]. This may fail, but to rectify the issue, we
can randomize.

Consequently, let us consider the randomized partition error, which we index with € > 0 and
for U ~ Uniform[—1, 1]* define as

rpce.(S) := iﬁf { Z |IE[(S = Y)1{S +¢eU € A}]|| + Z diam(A)P(S € A)} . (12.6.3)
AcA AcA

(The choice of uniform [—1, 1]* is only made for convenience in the calculations to follow.) Letting
cx = ||1x|l,, we see immediately that

pce(S) < rpce.(S) + cre
for all £ > 0. We can say more.

Lemma 12.6.5. Let € > 0. Then for any random variable V,

rpce. (S) < E[[|S — V[ + E[[E[Y | V] = VI|] + %E[IIY = S[HIV = Slle]-

Note that by combining Lemma 12.6.5 with the display above and recognizing that ||Y — S| <
diam())) with probability 1, we have the theorem.

Proof We replicate the calculation bounding CE(S,.4) above, but while allowing the random-
ization. Let A be a partition of R¥ into hypercubes of width ¢, that is, [—¢, £]* + ez, where z € 2ZF
ranges over integer vectors with even entries. Then diam(A) < ¢xe, and

IE[(S — Y)1{S + U € A}]]
< |E[(S = V)1{S +cU € A}]| + |[E[(V — Y)1{V + U € A}]|

FIE[(V = Y)(1{S+eU € A} —1{S+cU € A})]|
< |E[(S = V)1{S +<cU € A} + |[E[(V — V)1{V + U € A}]|

FE[V-Y| (B(V+eU€AS+eUZA|V,S)+P(S+eUc AV +eUgA|V,S,Y))

Summing over sets A and using the triangle inequality and that S + eU € A for some A, we find

Y B[S = Y)1{S +U € A}]|| <E[|S — VI + E[IE)Y | V] - V] (12.6.4)
AcA

+2E[||V—Y] Y P(V+eU€AS+eUgA|V,SY)]|.
AeA

We now may bound the probability in inequality (12.6.4). Recall that A = [—¢,¢]* + ez for
some z € 2ZF, and fix v,s € R¥. Let B = [~1,1]* be the /., ball. Then

Plv+eU € B,s+cU & B)=P(U¢gec Y (B-35)|Uce ' (B-v)Pv+eU € B)

k —
< HSg””OOP(v +eU € B), (12.6.5)

where inequality (12.6.5) follows because if s,v € R¥ are the centers of two £ balls By and B,
of radius 1, and if § = ||s — v, then the volume of B, \ B; is at most ké*/6*1 = ké. (See
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o ™
! /
! /
4 !
v
I
: : 6’%1 hypercubes
s b- -1 L—-.-.—-_-I
—l
)

Figure 12.2. The volume argument in inequality (12.6.5). In k dimensions, the hypercube of
side-length & can be replicated 1/6*~! times on each exposed base of the cube centered at v, where
§ = ||s — v||,. There are at most k such faces, giving volume at most kd"*/6*~1 = k¢ to the gray
region.

Figure 12.2. The k-dimensional surface area of one side of a hypercube of radius ¢ is 2k6*~!, and
we can put at most 1/6*~! boxes in each facial part of the grey region.)

Substituting inequality (12.6.5) into the bound (12.6.4) and conditioning and deconditioning on
V., S, we find that

D IE[S = Y)1{S + U € A}]|
AeA

2k
<E[|S-VI[]+E[EY | V]-VI[]+ EE[HV — Y[ YV =S|l 1{V +U € A}
AeA

=E[||S = VI] + E[E}Y [ V] = V] + %E[HY = VIV = Sl]-

Taking an infimum over partitions A gives the lemma. O

12.7 Bibliography

Draft: Calibration remains an active research area. The initial references for online calibration are
Foster and Vohra [84], Dawid and Vovk [59]. The idea of calibeating is most present in Foster and
Hart [85]. Our proof of calibeating is based on Kumar et al. [123]. Blasiok et al. [31] demonstrate
the equivalence of the different metrics for measuring calibration, focusing on the case of binary
prediction; the extension to vector-valued Y appears to be new. The ideas of the postprocessing
gap and also descend from Blasiok et al. [32], and the connections with general proper losses also
appear to be new. Propositions 12.5.1, 12.5.2, and 12.5.3 are new in that they are the first to
demonstrate that the measures are valid calibration measures (Definition 12.1, part (i)).
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JCD Comment: A few more things to add either in the bibliography or the introduction
to the section:

1. We only really do calibration for binary/multiclass things. One would also really like to
predict full distributions P, on general outcomes Y, which is harder (nearly impossible)
to do in any conditional sense.

2. It’s much easier to do predictive inference (cover) because don’t need accuracy

3. Maybe comment on variants for top entry (from multiclass to binary) classification
and why that is important. Maybe in the middle, maybe here.

12.8 Exercises

‘ JCD Comment: Add a uniform convexity version of Proposition 12.3.5 as an exercise.

JCD Comment: Can we add an exercise about achieving weak calibration for different
classes of functions?

JCD Comment: A few potential exercises:

(i) Deal with any class W for which E[(w, f)] = 0 for all w € W means f = 0, then
still get a continuous calibration measure

‘ JCD Comment: Exercise: do Aaditya’s top-class calibration approach.

JCD Comment: Do we need more commentary on calibeating? Maybe an exercise on
empirics? Project ideas: calibeating with witnesses in higher dimensions, doing calibeat-
ing in higher dimensions, optimality results / lower bounds.

‘ JCD Comment: Do Example 3.2 of Kumar et al. [123] as exercise ‘

‘ JCD Comment: Coding and empirical exercises on calibration? ‘

JCD Comment: Remark on impossibility of inference of ece? Exercises on its impos-
sibility too, perhaps, and one-sided estimation of it. And maybe some minimax lower
bounds on the Lipschitz one as well I think.

JCD Comment: Exercise potential: let WW be a collection from an RKHS
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Chapter 13

Surrogate Risk Consistency: the
Classification Case

I. The setting: supervised prediction problem

(a) Have data coming in pairs (X,Y) and aloss L : R x )Y — R (can have more general losses)
(b) Often, it is hard to minimize L (for example, if L is non-convex), so we use a surrogate ¢
(c) We would like to compare the risks of functions f: X — R:

Ro(f) = E[p(f(X),Y)] and  R(f) :=E[L(f(X),Y)]

In particular, when does minimizing the surrogate give minimization of the true risk?
(d) Our goal: when we define the Bayes risks R}, and R*

Definition 13.1 (Fisher consistency). We say the loss ¢ is Fisher consistent if for any
sequence of functions f,

Ry(fn) — Ry, implies R(fn) — R*
II. Classification case

(a) We focus on the binary classification case so that ¥ € {—1,1}
1. Margin-based losses: predict sign correctly, so for s € R,
L(s,y) = 1{sy <0} and ©(s,y) = ¢(ys).

2. Consider conditional version of risks. Let n(z) = P(Y = 1| X = z) be conditional
probability, then

R(f) = E[L{f/(X)Y < 0}] = P(sign(f(X)) #Y)

—E Y <
= En(X)1{f(X) < 0} + (1 - n(X))1 {f(X) > 0}] = E[¢(f(X),n(X))]

and

Ry(f) = Elp(Y f(X))]
=En(X)o(f(X)) + (1 = n(X))o(=f(X))] = Els(f(X), n(X))]

where we have defined the conditional risks

Us,m) =nl{s <0} +(1—n)1{s >0} and Ly(s,n) =ne(s)+ (1 —n)d(—s).
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3. Note the minimizer of ¢: we have s*(n) = sign(n—1/2), and f*(X) = sign(n(X)—1/2)
minimizes risk R(f) over all f
4. Minimizing f can be achieved pointwise, and we have

R* = E[igfﬁ(s, n(X))] and Rj= E[irslf ly(s,m(X))].

(b) Example 13.0.1 (Exponential loss): Consider the exponential loss, used in Ad-
aBoost (among other settings), which sets ¢(s) = e™*. In this case, we have

0
because ——{ly(s,m) =—ne * + (1 —n)e’.

1 n
in /¢ =-1
argimn o(s,m) 5 log p P

Thus f7 (x) = %log 1257%), and this is Fisher consistent. <
(c) Classification calibration
1. Consider pointwise versions of risk (all that is necessary, turns out)
2. Define the infimal conditional ¢-risks as
5 (n) = inf £y(s, d 27" (n):= inf  Lly(s,n).
) =i o) and ) = (s

wrong

3. Intuition: if we always have £7(n) < £;"°(n) for all n, we should do fine
4. Define the sub-optimality function H : [0,1] - R

Wron, 1 + 5 * 1 + 6
= e (1) - (157,

Definition 13.2. The margin-based loss ¢ is classification calibrated if H(d) > 0 for
all § > 0. Equivalently, for any n # %, we have E;@(n) < Egrong(n).

5. Example (Example 13.0.1 continued): For the exponential loss, we have

Wrong - . —s o s1 0
() _3(27111—1{)@ {ne"+(1—ne’} =€’ =1

while the unconstrained minimal conditional risk is

eg(m:m/l;%(l—n) T =2l =),

so that H(§) =1 —V1—42 > 6% ©

Example 13.0.2 (Hinge loss): We can also consider the hinge loss, which is
defined as ¢(s) = [1 —s|,_. We first compute the minimizers of the conditional
risk; we have

bo(s,m)=n[l—s], +(1—-n)[1+s],,

whose unique minimizer (for n ¢ {0, 3,1}) is s(n) = sign(2n — 1). We thus have

Ci(n) =2min{n,1 —n} and L") =n+(1-n) =1.

We obtain H(§) =1 —min{l +4,1 -0} =9. &

Comparing to the sub-optimality function for exp-loss, is tighter.
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6. Pictures: use exponential loss, with 1 and without.

(d) Our goal: using classification calibration, find some function t such that 1 (Ry(f) — R}) <
R(f) — R*, where 1(0) > 0 for all 6 > 0. Can we get a convex version of H, them maybe
use Jensen’s inequality to get the results? Turns out we will be able to do this.

III. Some necessary asides on convex analysis

(a) Epigraphs and closures

1. For a function f, the epigraph epi f is the set of points (z,t) such that f(x) <t

2. A function f is said to be closed if its epigraph is closed, which for convex f occurs if
and only if f is lower semicontinuous (meaning liminf,_,,, f(x) > f(zo))

3. Note: a one-dimensional closed convex function is continuous

Lemma 13.0.3. Let f : R — R be convex. Then f is continuous on the interior of its
domain.

(Proof in notes; just give a picture)
Lemma 13.0.4. Let f : R — R be closed convex. Then f is continuous on its domain.
4. The closure of a function f is the function cl f whose epigraph is the closed convex
hull of epi f (picture)
(b) Conjugate functions (Fenchel-Legendre transform)

1. Let f : R* — R be an (arbitrary) function. Its conjugate (or Fenchel-Legendre conju-
gate) is defined to be

I (s) = sup {{t,s) = F(1)} -

(Picture here) Note that we always have f*(s) + f(t) > (s,t), or f(t) > (s,t) — f*(s)
2. The Fenchel biconjugate is defined to be f**(t) = sup,{(t,s) — f*(s)}
noting that f’(t) = —s implies f*(t) = ts — f(t))
3. In fact, the biconjugate is the largest closed convex function smaller than f:
Lemma 13.0.5. We have

[ (x)= sup {{a,z) —=b:{a,t) —b< f(t) for all t}.
a€R? beR

(Picture here,

Proof Let A C R? x R denote all the pairs (a,b) minorizing f, that is, those pairs
such that f(t) > (a,t) — b for all t. Then we have

(a,b) € A< f(t) > (a,t) — b for all ¢
< b>(a,t)— f(t)allt
< b> f*(a) and a € dom f*.

Thus we obtain the following sequence of equalities:

sup {(a,t) — b} =sup{{a,t) —b:a € dom f*,—b < —f*(a)}
(a,b)eA

= sup{(a,t) — f*(a)}.
So we have all the supporting hyperplanes to the graph of f as desired. O
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4. Other interesting lemma:

Lemma 13.0.6. Let h be either (i) continuous on [0,1] or (i) non-decreasing on [0, 1].
(And set h(1 + 6) = 400 for § > 0.) If h satisfies h(t) > 0 for t > 0 and h(0) = 0,
then f(t) = h**(t) satisfies f(t) > 0 for any t > 0.

(Proof by picture)

IV. Classification calibration results:

(a) Getting quantitative bounds on risk: define the i-transform via
(8 = H*™(5). (13.0.1)

(b) Main theorem for today:

Theorem 13.0.7. Let ¢ be a margin-based loss function and i the associated 1-transform.
Then for any f: X — R,

(R(S) = B) < Ry(f) - R}, (13.02)

Moreover, the following three are equivalent:

1. The loss ¢ is classification-calibrated
2. For any sequence d,, € [0, 1],

V() -0 & 6, —0.
3. For any sequence of measurable functions f, : X — R,
Ry(fn) — Ry implies  R(fn) — R*.

1. Some insights from theorem. Recall examples 13.0.1 and 13.0.2. For both of these, we
have that (0) = H(d), as H is convex. For the hinge loss, ¢(s) = [1 — s]__, we obtain
for any f that

P(YF(X) < 0) — inf P(YS(X) £0) SE[[L - YS(X)),] ~inf E[[L - YS(X)L.].

On the other hand, for the exponential loss, we have

1

2
. (P(Yf(X) <0) —inf P(Y f(X) < o>) < Efexp(~Y £(X))] — inf E fexp(~Y £(X))].

The hinge loss is sharper.

2. Example 13.0.8 (Regression for classification): What about the surrogate loss

%(f(m) —¥)?? In the homework, show which margin ¢ this corresponds to, and

moreover, H(J) = %52. So regressing on the labels is consistent. &
(¢) Proof of Theorem 13.0.7 The proof of the theorem proceeds in several parts.

1. We first state a lemma, which follows from the results on convex functions we have
already proved. The lemma is useful for several different parts of our proof.

Lemma 13.0.9. We have the following.

a. The functions H and v are continuous.
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b. We have H >0 and H(0) = 0.
c. If H(8) > 0 for all 6 > 0, then ¥(5) > 0 for all 6 > 0.
Because H(0) =0 and H > 0: we have

ggrong(1/2) — S(llrllf)§0€¢(57 1/2) = irslfﬁqg(s, 1/2) = 62(1/2)7

so H(0) = £7(1/2) — £3(1/2) = 0. (It is clear that the sub-optimality gap H > 0 by
construction.)

2. We begin with the first statement of the theorem, inequality (13.0.2). Consider first
the gap (for a fixed margin s) in conditional 0-1 risk,

€(s,n) —inf £(s,n) =11 {s <0} + (1 =n)l{s > 0} —nl{n <1/2} = (1 =n)1{n > 1/2}
_ {0 if sign(s) = sign(n — %)
nVvV(@l—n)—nA(l—n)=2n—1] if sign(s) # sign(n — 3).

In particular, we obtain that the gap in risks is

R(f) = R* = E[1 {sign(f (X)) # sign(2n(X) — 1)} [2n(X) — 1] (13.0.3)

Now we use expression (13.0.3) to get an upper bound on R(f) — R* via the ¢-risk.
Indeed, consider the -transform (13.0.1). By Jensen’s inequality, we have that

P(R(f) = R") < E (1 {sign(f(X)) # sign(2n(X) — 1)} [2n(X) — 1])].

Now we recall from Lemma 13.0.9 that ¢(0) = 0. Thus we have

(R(f) — BY) <E[p(1{sign(f(X)) # sign(2n(X) — 1)} |2n(X) — 1])]
= E[1 {sign(f(X)) # sign(2n(X) — D} (|2n(X) = 1)]  (13.0.4)

Now we use the special structure of the suboptimality function we have constructed.
Note that ¥ < H, and moreover, we have for any s € R that

1 {sign(s) # sign(2n — 1)} H(|2n — 1|) = 1 {sign(s) # sign(2n — 1)} S(Qni{l{)go%(s,n) — £5(n)
< Ly(s,m) —L5(n), (13.0.5)

because (1 + |2n —1|)/2 = max{n,1 —n}.
Combining inequalities (13.0.4) and (13.0.5), we see that

Y(R(f) — R*) <E[1 {sign(f(X)) # sign(2n(X) — 1)} H(|2n(X) — 1|)]
<E [Ls(f(X),n(X)) = £5(n(X))]
= Ry(f) — Ry,

which is our desired result.

3. Having proved the quantitative bound (13.0.2), we now turn to proving the second
part of Theorem 13.0.7. Using Lemma 13.0.9, we can prove the equivalence of all three
items.
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We begin by showing that IV(b)1 implies IV(b)2. If ¢ is classification calibrated, we
have H(J§) > 0 for all 6 > 0. Because % is continuous and ¥(0) = 0, if § — 0, then
¥(9) — 0. It remains to show that ¢(d) — 0 implies that § — 0. But this is clear
because we know that ¢(0) = 0 and(d) > 0 whenever 6 > 0, and the convexity of ¢
implies that ¢ is increasing.

To obtain IV(b)3 from IV(b)2, note that by inequality (13.0.2), we have

w(R(fn) - R*) < qu(fn) - R:;; — 0,

so we must have that 6, = R(f,) — R* — 0.
Finally, we show that IV (b)1 follows from IV(b)3. Assume for the sake of contradiction
that IV(b)3 holds but IV (b)1 fails, that is, ¢ is not classification calibrated. Then there
must exist n < 1/2 and a sequence s, > 0 (i.e. a sequence of predictions with incorrect
sign) satisfying

£g(5mm) = €5(1).

Construct the classification problem with a singleton X = {z}, and set P(Y =1) =
Then the sequence f,(z) = sy satisfies Ry(f,) — R}, but the true 0-1 risk R( fn) > R

V. Classification calibration in the convex case

a.

b.

Suppose that ¢ is convex, which we often use for computational reasons

Theorem 13.0.10 (Bartlett, Jordan, McAuliffe [19]). If ¢ is convez, then ¢ is classification
calibrated if and only if ¢'(0) exists and ¢'(0) < 0.

Proof First, suppose that ¢ is differentiable at 0 and ¢’(0) < 0. Then

Ly(s,m) = no(s) + (1 —n)p(—s)

satisfies £4(0,m) = (2n — 1)¢'(0), and if ¢/(0) < 0, this quantity is negative for n > 1/2.
Thus the minimizing s(n) € (0, 00]. (Proof by picture, but formalize in full notes.)

For the other direction assume that ¢ is classification calibrated. Recall the definition of
a subgradient g5 of the function ¢ at s € R is any g5 such that ¢(t) > ¢(s) + gs(t — s) for
all ¢ € R. (Picture.) Let g1, g2 be such that ¢(s) > £(0) + g1s and £(s) > ¢(0) + g2s, which
exist by convexity. We show that both g1, g2 < 0 and g1 = g2. By convexity we have

y(s,m) = 1(4(0) + g15) + (1 —n)(¢(0) — g25)
= [ng1 — (1 = n)g2] s + ¢(0). (13.0.6)

We first show that g1 = go, meaning that ¢ is differentiable. Without loss of generality,
assume g1 > go. Then for n > 1/2, we would have ng; — (1 — n)g2 > 0, which would imply
that

lo(s,m) = 6(0) = Taf {né(s') + (1 = m)é (=)} = ™),
for all s > 0 by (13.0.6), by taking s’ = 0 in the second inequality. By our assumption of
classification calibration, for n > 1/2 we know that

inf (y(s,1) < nf Co(s,n) = (5""%(n) s0 £3(n) = inf Ly(s.m),
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and under the assumption that g1 > go we obtain £} (n) = infs>0 £y(s,1) > £5"°"*(n), which
is a contradiction to classification calibration. We thus obtain g; = gs, so that the function
¢ has a unique subderivative at s = 0 and is thus differentiable.

Now that we know ¢ is differentiable at 0, consider
np(s) + (1 —=n)p(=s) > (2n — 1)¢'(0)s + ¢(0).

If ¢/(0) > 0, then for s > 0 and 7 > 1/2 we must have the right hand side is at least
¢(0), which contradicts classification calibration, because we know that (7 (n) < €gr°ng(77)
exactly as in the preceding argument. O

13.1 General results

JCD Comment: Here we should have some more general results on surrogate risk

consistency.

I. Setting: we have a loss (risk) L : R¥ x ) — R, and instead wish to minimize a surrogate

(Yol

a.

RF x Y — R for it

Say it’s Fisher consistent (or infinite sample consistent) if Ry (fn) — Ry, implies R(f,) —
R*

Reduce to pointwise cases, compare non-uniform to uniform results (noting that in cases
where L is discrete, they are the same—requires a proof)

Basically, this is Question 13.4, except we will use finite )’ I think (can still leave the super
general version in)

13.2 Proofs of convex analytic results

13.2.1 Proof of Lemma 13.0.4

First, let (a,b) C dom f and fix z¢ € (a,b). Let x 1 xo, which is no loss of generality, and we may
also assume x € (a,b). Then we have

r=sa+(l—s)zg and x9=pb+ (1—pP)x

for some s, 8 € [0,1]. Rearranging by convexity,

and

f(z) < sfla) + (1 —s)f(xo) = f(wo) + s(f(a) — f(z0))

f@0) < BI) + (1= B)f(a), o =) < fla) + 50

Taking s, 8 — 0, we obtain

liminf f(z) > f(xg) and limsup f(z) < f(zo)

T—=T0 T—T0

as desired.
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13.2.2 Proof of Lemma 13.0.4

We need only consider the endpoints of the domain by Lemma 13.0.3, and we only need to show
that limsup,_,, f(z) < f(xo). But this is obvious by convexity: let x = ty + (1 — t)zo for any
y € dom f, and taking t — 0, we have f(x) <tf(y)+ (1 —1t)f(z0) — f(z0).

13.2.3 Proof of Lemma 13.0.6

We begin with the case (i). Define the function higy (t) := infs>¢ h(s). Then because h is continuous,
we know that over any compact set it attains its infimum, and thus (by assumption on h) Ao () > 0
for all t > 0. Moreover, hioy is non-decreasing. Now define fiow(t) = hix (t) to be the biconjugate
of hiow; it is clear that f > fiow as h > hjoyw. Thus we see that case (ii) implies case (i), so we turn
to the more general result to see that fioy () > 0 for all ¢ > 0.

For the result in case (ii), assume for the sake of contradiction there is some z € (0, 1) satisfying
h*(z) = 0. It is clear that A**(0) = 0 and A** > 0, so we must have h**(2/2) = 0. Now, by
assumption we have h(z/2) = b > 0, whence we have h(1) > b > 0. In particular, the piecewise

linear function defined by
0 ift <z/2
g(t) = {

1_#;/2(75 —2/2) ift>z/2

is closed, convex, and satisfies g < h. But g(z) > 0 = h**(2), a contradiction to the fact that h**
is the largest (closed) convex function below h.

13.3 Exercises

Exercise 13.1: Find the suboptimality function Hy and ¢-transform for the binary classification
problem with the following losses.

(a) Logistic loss. That is,
¢(s) = log(1 +e77)

(b) Squared error (ordinary regression). The surrogate loss in this case for the pair (z,y) is 3 (f(z)—
y)2. Show that for y € {—1,1}, this can be written as a margin-based loss, and compute the
associated suboptimality function Hy and ¢-transform. Is the squared error classification

calibrated?

Exercise 13.2: Suppose we have a regression problem with data (independent variables) z € X
and y € R. We wish to find a predictor f : X — R minimizing the probability of being far away
from the true y, that is, for some ¢ > 0, our loss is of the form

L(f(z),y) = 1{ly = f(x)| = c}.

Show that no loss of the form ¢(s,y) = |s — y|P, where p > 1, is Fisher consistent for the loss L,
even if the distribution of Y conditioned on X = x is symmetric about its mean E[Y | X|. That is,
show there exists a distribution on pairs X, Y such that the set of minimizers of the surrogate

Ry(f) = Elp(f(X),Y)]

is not included in the set of minimizers of the true risk, R(f) = P(|Y — f(X)| > ¢), even if the
distribution of Y (conditional on X) is symmetric.

359



Lexture Notes on Statistics and Information Theory John Duchi

Exercise 13.3 (Empirics of classification calibration): In this problem you will compare the
performance of hinge loss minimization and an ordinary linear regression in terms of classifica-
tion performance. Specifically, we compare the performance of the hinge surrogate loss with the
regression surrogate when the data is generated according to the model

y =sign((0*,z) +oZ), Z ~N(0,1) (13.3.1)

where 6* € R? is a fixed vector, ¢ > 0 is an error magnitude, and Z is a standard normal random
variable. We investigate the model (13.3.1) with a simulation study.
Specifically, we consider the following set of steps:

(i) Generate two collections of n datapoints in d dimensions according to the model (13.3.1),
where 6 € R? is chosen (ahead of time) uniformly at random from the sphere {§ € R?: ||0||, =
R}, and where each z; € R? is chosen as N(0, Ixq). Let (;,y;) denote pairs from the first

collection and (2}, y;*") pairs from the second.

(ii) Set

n

~ 1
ehinge = argmin — Z [1 —Yi <5Ci> 9>]+
o:(l0],<R " ST

and
n

~

1
Oreg = arggnin o Z;(yZ — (z;,0))* = argénin 1X6 - yl3.
1=

(iii) Evaluate the 0-1 error rate of the vectors fpinge and freg on the held-out data points { (1%, yfest)

Perform the preceding steps (i)—(iii), using any n > 100 and d > 10 and a radius R = 5, for
different standard deviations o = {0, 1,...,10}; perform the experiment a number of times. Give
a plot or table exhibiting the performance of the classifiers learned on the held-out data. How do
the two compare? Given that for the hinge