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Notation

We use standard notation for probabilities, random variables, entropy, mu-
tual information, and so forth. Table 0.1 lists notation, some of it developed
in the appendices, and we use this without further explanation in the main
body of the text. We introduce the remaining notation as we go along.
The reader is referred to the appendices for a review of relevant probability
theory concepts.

Table 0.1.: Probability and Information Theory Notation.
Sets

Ω sample space
Ac complement of the set A in Ω
N0 and N1 natural numbers {0, 1, 2, . . .} and {1, 2, . . .}
Z, R, C integers, real numbers, complex numbers

Strings, Vectors, Matrices
xn the string x1x2 . . . xn or x1, x2, . . . , xn

xnym string concatenation: x1x2 . . . xny1y2 . . . ym

x the vector [x1, x2, . . . , xn]
xT , x† transpose of x, complex-conjugate transpose of x
H, HT , H† a matrix, its transpose, and its complex-conjugate transpose
|Q| determinant of the matrix Q

Probability
Pr [A] probability of the event A
Pr [A|B] probability of event A conditioned on event B
PX(·) probability distribution of the random variable X
PX|Y (·) probability distribution of X conditioned on Y
supp(PX) support of PX , i.e., the set of a such that PX(a) > 0
pX(·) probability density of the random variable X
pX|Y (·) probability density of X conditioned on Y

Expectation and Variance
E[X] expectation of the real-valued X
E[X|A] expectation of X conditioned on event A
E[X|Y ] random variable that takes on the value E[X|Y = y] if Y = y
Var[X] variance of the real-valued X
Var[X|A] variance of X conditioned on event A
Var[X|Y ] random variable that takes on the value Var[X|Y = y] if Y = y
Cov[X,Y ] covariance of X and Y
QX covariance matrix of X
Cov[X,Y ] covariance matrix of X and Y

Information Theory
H(X) entropy of the discrete random variable X
H(X|Y ) entropy of X conditioned on Y
I(X;Y ) mutual information between X and Y
I(X;Y |Z) mutual information between X and Y conditioned on Z
D(PX‖PY ) informational divergence between PX and PY

D(PX‖PY |PZ) informational divergence between PX and PY conditioned on Z
h(X) differential entropy of X
h(X|Y ) differential entropy of X conditioned on Y
H2(·) binary entropy function





Chapter 1.

Information Theory for
Discrete Variables

1.1. Message Sets

Information theory was born as A Mathematical Theory of Communication
as developed by Shannon in [1]. Shannon was particularly interested in
messages and he wrote that:

The fundamental problem of communication is that of repro-
ducing at one point either exactly or approximately a message
selected at another point.

But what is a message? Shannon suggested that a message has to do with
choice and sets. In his words:

The significant aspect is that the actual message is one selected
from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will
actually be chosen since this is unknown at the time of design.

For example, suppose we wish to communicate the local weather to a friend.
Suppose that our message set is

{sunny, cloudy, rain, thunderstorm}.

We could, e.g., communicate the weather “sunny” by transmitting this word.
However, from an engineering perspective this approach is inefficient. We
could instead represent the four elements in the message set by using only
binary digits or bits:

{00, 01, 10, 11}
where 00 represents “sunny”, 01 represents “cloudy”, and so forth. The
main point is, again in Shannon’s words, that although

the messages have meaning ... these semantic aspects of com-
munication are irrelevant to the engineering problem.

1



2 Chapter 1. Information Theory for Discrete Variables

1.2. Measuring Choice

Shannon was interested in defining

a quantity which will measure, in some sense, how much infor-
mation is “produced” by

choosing messages [1, Sec. 6]. He suggested that the logarithm of the number
of elements in the message set

can be regarded as a measure of the information produced when
one message is chosen from the set, all choices being equally
likely.

This logarithmic measure of information was also suggested by Hartley [2].
For example, consider a fair coin that takes on values in {Heads, Tails} and
suppose we flip the coin n times. The string of coin flips takes on one of 2n
values, all equally likely, and the information produced is

log2 2n = n bits.

Note that the base of the logarithm simply defines the units of measurement.

For non-equally likely choices Shannon developed a measure that has the
same form as the entropy in statistical mechanics. For example, consider a
biased coin that takes on the value Heads with probability p and Tails with
probability 1 − p. Shannon proposed that the information produced when
flipping the coin n times is

n

(
p log2

1
p

+ (1− p) log2
1

1− p

)
bits.

One motivation for this choice is as follows: approximately np of the n coin
flips should take on the value Heads. Furthermore, each string of coin flips
with approximately np Heads will be equally likely. If we take the logarithm
of the number of such strings we obtain

log2

(
n

np

)
≈ n

(
p log2

1
p

+ (1− p) log2
1

1− p

)
bits. (1.1)

where we have used Stirling’s approximation1 to write(
n

np

)
= n!

(np)!(n(1− p))! ≈
1√

2πp(1− p)n
· 1
ppn(1− p)(1−p)n .

For instance, if p = 1/2 then the right-hand side of (1.1) gives n bits, as
expected. But if p = 0.11 then we compute n/2 bits.

More generally, consider an experiment that has m possible outcomes with
probabilities pi, i = 1, 2, . . . ,m. Suppose we repeat the experiment n times.

1Stirling’s approximation is n! ≈
√

2πn(n/e)n.

Advanced Information Theory LNT, TUM



1.3. Entropy 3

We expect outcome i to occur approximately npi times for all i, and the
logarithm of the number of expected strings is

log2

(
n

np1, np2, . . . , npm

)
≈ n

m∑
i=1
−pi log2 pi. (1.2)

The amount of information obtained by observing the outcomes of the ex-
periments thus seems to grow at the rate ∑m

i=1−pi log2 pi.

1.3. Entropy

The word “entropy” was invented by Clausius [3, p. 390] from the Greek
� trop� for “turn” or “change”. Clausius was attempting to find a Greek
word

• that was related to the German “Verwandlungsinhalt” which trans-
lates literally to “transformation content”;

• for which the German version, in this case “Entropie”, sounds similar
to the German word for energy, in this case “Energie”.

Calusius had a physical notion of “transformation content.” Shannon instead
related entropy to messages and sets. In other words, Shannon entropy is
not necessarily physical: it has to do with choice and uncertainty in a broader
sense than envisioned by Clausius.

We now become more formal in our treatment. Let supp(f) be the support
set of the function f , i.e., the set of a such that f(a) > 0. We define the
entropy or uncertainty of the discrete random variable X as

H(X) =
∑

a∈supp(PX)
−PX(a) log2 PX(a) . (1.3)

We remark that by taking the sum over the support of PX(·) we avoid
dealing with the expression 0 · log2 0. Many authors simply define 0 · log2 0
to be zero because limx→0+ x log2 x = 0, where the notation ”0+” means that
limit is taken from above. However, it is often instructive to be concerned
about events with probability zero, see Sec. 1.7 below.

Example 1.1. The entropy H(X) depends only on the probability distri-
bution PX(·), and not on what we call the letters a in the alphabet X of X.
This idea is consistent with our discussion in Sec. 1.1. We thus have

H(X) = H(g(X)) (1.4)

for any invertible function g(·), since g(·) simply relabels the letters in X .

We can express (1.3) in an insightful way by considering Y = − log2 PX(X)
to be a random variable that is a function of X. The entropy H(X) is then

LNT, TUM Advanced Information Theory
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Figure 1.1.: The binary entropy function H2(·).

the expectation of Y :

H(X) = E[− log2 PX(X)] . (1.5)

In cases where the distribution PX is a variable, we may use the notation
H(PX) rather than H(X) (see Sec. 1.10). We have chosen to evaluate the
logarithm using the base 2, and we continue to follow this convention for
discrete random variables. Our entropy units are, therefore, bits.

Example 1.2. Consider the Bernoulli distribution that has X = {0, 1}
and PX(0) = 1− p. The entropy of X is

H(X) = H2(p) = −p log2 p− (1− p) log2(1− p) (1.6)

and H2(·) is called the binary entropy function.

The binary entropy function is plotted in Fig. 1.1. Observe that H2(0) =
H2(1) = 0, H2(0.11) = H2(0.89) ≈ 1/2, H2(1/2) = 1, and H2(p) is maxi-
mized by p = 1/2. More generally, we have the following important result
where we recall that |X | is the number of values in X .

Advanced Information Theory LNT, TUM
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Figure 1.2.: Illustration that ln(x) ≤ x− 1 for x ≥ 0.

Theorem 1.1.

0 ≤ H(X) ≤ log2 |X | (1.7)

with equality on the left if and only if there is one letter a in X with
PX(a) = 1, and with equality on the right if and only if PX(a) = 1/|X | for
all a ∈ X , i.e., X is uniform over X .

Proof. Consider (1.3) and note that for 0 < p ≤ 1 we have −p log2 p ≥ 0
with equality if and only if p = 1. Thus, we have H(X) ≥ 0 with equality if
and only if there is one letter a in X with PX(a) = 1. Consider next (1.5)
and observe that

H(X) = E
[
log2

1
|X |PX(X)

]
+ log2 |X |. (1.8)

But we have the inequality (see Fig. 1.2)

log2(x) = ln(x) log2(e) ≤ (x− 1) log2(e) (1.9)

LNT, TUM Advanced Information Theory
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where ln(x) is the natural logarithm of x, and where equality holds if and
only if x = 1. Applying (1.9) to (1.8) we have

H(X)
(a)
≤ E

[
1

|X |PX(X) − 1
]

log2(e) + log2 |X |

=
∑

a∈supp(PX)
PX(a)

(
1

|X |PX(a) − 1
)

log2(e) + log2 |X |

=
(
|supp(PX)|
|X |

− 1
)

log2(e) + log2 |X |

(b)
≤ log2 |X | (1.10)

with equality in (a) if and only if X is uniform over X , and with equality
in (b) if and only if supp(PX) = X . �

The two bounds in (1.7) are intuitively pleasing: uncertainty should not
be negative (what would negative uncertainty mean?) and the maximum
uncertainty is when all possibilities are equally likely.

Example 1.3. Consider a fair die with X = {1, 2, 3, 4, 5, 6} and PX(a) =
1/6 for all a ∈ X . Theorem 1.1 tells us that

H(X) = log2 6 ≈ 2.585 bits. (1.11)

Furthermore, an unfair six-sided die has smaller entropy or uncertainty.

Example 1.4. Consider X = {0, 1, 2} and PX(0) = PX(1) = p/2 and
PX(2) = 1− p. We have

H(X) = −p2 log2
p

2 −
p

2 log2
p

2 − (1− p) log2(1− p)

= p+H2(p) (1.12)

and entropy is maximized at H(X) = log2(3) if p = 2/3.

Advanced Information Theory LNT, TUM
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1.4. Example Distributions

1.4.1. Binomial Distribution

Consider the random variable

X =
n∑
i=1

Xi (1.13)

where the Xi, i = 1, 2, . . . , n, are independent binary random variables with
the distribution of Example 1.2. The alphabet of X is X = {0, 1, 2, . . . , n}
and PX(·) is called the binomial distribution with

PX(k) =
(
n

k

)
pk(1− p)n−k, k ∈ X . (1.14)

A plot of the distribution with p = 0.5 and n = 20 is shown in Fig. 1.3. We
compute E[X] = n p, Var[X] = n p (1− p) and

H(X) =
n∑
k=0
−
(
n

k

)
pk(1− p)n−k log2

((
n

k

)
pk(1− p)n−k

)
. (1.15)

The expression (1.15) seems not to have a simple closed form for general n.
We instead use a Gaussian approximation for large n:

PX(k) ≈ 1√
2πVar[X]

e−
(k−E[X])2

2Var[X] (1.16)

which gives

H(X) ≈ E
− log2

 1√
2πVar[X]

e−
−(X−E[X])2

2Var[X]


= 1

2 log2 (2πe · np(1− p)) . (1.17)

1.4.2. Poisson Distribution

The Poisson distribution is2

PX(k) = λk

k! e
−λ, k ∈ N0 = {0, 1, 2, . . .}. (1.18)

Note that the range of X is discrete but infinite. A plot of the distribution
with λ = 5 is shown in Fig. 1.4. We compute E[X] = λ and Var[X] = λ. We
define H(X) as in (1.3), and H(X) again seems not to have a simple closed

2The notation N refers to the so-called natural numbers {1, 2, 3, . . .} or {0, 1, 2, 3, . . .}.
To avoid ambiguity, we refer to the former set as N1 and to the latter as N0.

LNT, TUM Advanced Information Theory
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Figure 1.3.: The binomial distribution for p = 0.5 and n = 20. The Gaus-
sian approximation with E[X] = 10 and Var[X] = 5 is the solid
curve.

form for general n. However, if λ is large then PX(·) is approximately the
binomial distribution with variance λ and mean shifted to λ so we have

H(X) ≈ 1
2 log2 (2πeλ) . (1.19)

1.4.3. Geometric Distribution

The geometric distribution arises when counting the number of Bernoulli
trials needed for observing a 1. The distribution is

PX(k) = p (1− p)k−1, k ∈ N1 = {1, 2, 3, . . .}. (1.20)

A plot of the distribution with p = 0.25 is shown in Fig. 1.5. We compute
(see Problem 1.5) E[X] = 1/p, Var[X] = (1− p)/p2, and

H(X) = H2(p) E[X] . (1.21)
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Figure 1.4.: The Poisson distribution for λ = 5. The Gaussian approxima-
tion with E[X] = 5 and Var[X] = 5 is the solid curve.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

k

P X
(k

)

Figure 1.5.: The geometric distribution for p = 0.25.
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10 Chapter 1. Information Theory for Discrete Variables

1.5. Conditional Entropy

Consider a joint distribution PXY (·) where the random variables X and
Y take on values in the discrete and finite alphabets X and Y , respec-
tively. The conditional entropy of X given the event Y = b with probability
Pr [Y = b] > 0 is

H(X|Y = b) =
∑

a∈supp(PX|Y (·|b))
−PX|Y (a|b) log2 PX|Y (a|b)

= E
[
− log2 PX|Y (X|Y )

∣∣∣Y = b
]
. (1.22)

Using the same steps as in the proof of Theorem 1.1, one can show that

0 ≤ H(X|Y = b) ≤ log2 |X | (1.23)

with equality on the left if and only if PX|Y (a|b) = 1 for some a, and with
equality on the right if and only if PX|Y (a|b) = 1/|X | for all a.

The conditional entropy of X given Y is the average of the values (1.22),
i.e., we define

H(X|Y ) =
∑

b∈supp(PY )
PY (b)H(X|Y = b) . (1.24)

Alternatively, we have

H(X|Y ) =
∑

(a,b)∈supp(PXY )
−PXY (a, b) log2 PX|Y (a|b)

= E
[
− log2 PX|Y (X|Y )

]
. (1.25)

Example 1.5. Consider the joint distribution

PXY (a, b) a = 0 a = 1
b = 0 1/3 1/3
b = 1 1/3 0

(1.26)

We compute H(X|Y = 0) = 1, H(X|Y = 1) = 0, and H(X|Y ) = 2/3.

One can show that (try Exercise 1.7)

0 ≤ H(X|Y ) ≤ log2 |X | (1.27)

with equality on the left if and only if for every b in supp(PY ) there is an
a such that PX|Y (a|b) = 1, and with equality on the right if and only if for
every b in supp(PY ) we have PX|Y (a|b) = 1/|X | for all a. We say that Y
essentially determines X if H(X|Y ) = 0.
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1.5. Conditional Entropy 11

The above definitions and bounds extend naturally to more than two ran-
dom variables. For example, consider the distribution PXY Z(·). We de-
fine the conditional entropy of X given Y and the event Z = c with
Pr [Z = c] > 0 as

H(X|Y, Z = c) =
∑

(a,b)∈supp(PXY |Z(·|c))
−PXY |Z(a, b|c) log2 PX|Y Z(a|b, c)

= E
[
− log2 PX|Y Z(X|Y, Z)

∣∣∣Z = c
]
. (1.28)
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1.6. Joint Entropy

The joint entropy of X and Y is defined by considering the concatenation
XY of X and Y as a new discrete random variable, i.e., we have

H(XY ) =
∑

(a,b)∈supp(PXY )
−PXY (a, b) log2 PXY (a, b)

= E[− log2 PXY (X, Y )] . (1.29)

Note that we have written H(XY ) rather than H(X, Y ) and the reader
should not confuse XY with “X multiplied by Y ”. Some authors prefer
H(X, Y ) and this is a matter of taste. For example, if one considers XY as
a vector [X, Y ] then the notation H(X, Y ) makes sense. We will follow the
convention of not using punctuation if no confusion arises.3

Using Bayes’ rule in (1.29) we have

H(XY ) = E
[
− log2

(
PX(X)PY |X(Y |X)

)]
= E[− log2 PX(X)] + E

[
− log2 PY |X(Y |X)

]
= H(X) +H(Y |X). (1.30)

We similarly have

H(XY ) = H(Y ) +H(X|Y ). (1.31)

More generally, we have the chain rule for entropy

H(X1X2 . . . Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1X2 · · ·Xn−1)

=
n∑
i=1

H(Xi|X i−1). (1.32)

where Xj = X1X2 . . . Xj (see Sec. A.2) and X0 is a constant.

Example 1.6. Consider the joint distribution of Example 1.5. We compute

H(XY ) = log2(3) ≈ 1.585 bits
H(X) = H(Y ) = H2(1/3) ≈ 0.918 bits
H(X|Y ) = H(Y |X) = 2/3 bits

and one may check that (1.30) and (1.31) are satisfied.

Theorem 1.1 and (1.27) give

max (H(X), H(Y )) ≤ H(XY ) ≤ log2(|X | · |Y|) (1.33)

3We are not entirely consistent with this approach, e.g., we write PXY (a, b) without
punctuation in the subscript and with punctuation in the argument.
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1.6. Joint Entropy 13

with equality on the left if and only if X essential determines Y , or Y
essentially determines X, or both, and with equality on the right if and
only if PXY (a, b) = 1/(|X | |Y|) for all (a, b).

Example 1.7. Using (1.33), (1.30), and that X essentially determines
f(X) we have

H(f(X)) ≤ H(Xf(X)) = H(X) . (1.34)

LNT, TUM Advanced Information Theory
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1.7. Informational Divergence

Suppose we wish to measure how close two distributions are to each other.
A natural approach is to use the `1 distance

d(PX , PY ) =
∑
a∈X
|PX(a)− PY (a)| (1.35)

where PX(·) and PY (·) have the same domain X . This distance is sometimes
called the variational distance and it measures additive differences.

Another useful approach is the following that considers logarithmic differ-
ences. The informational divergence (or relative entropy or Kullback-Leibler
distance) between PX(·) and PY (·) is defined as

D(PX‖PY ) =
∑

a∈supp(PX)
PX(a) log2

PX(a)
PY (a) (1.36)

which is the same as

D(PX‖PY ) = E
[
log2

PX(X)
PY (X)

]
. (1.37)

We define D(PX‖PY ) = ∞ if PY (a) = 0 for some a ∈ supp(PX). Ob-
serve that the definition is not symmetric in PX and PY , i.e., we have
D(PX‖PY ) 6= D(PY ‖PX) in general.

Example 1.8. Consider X = {0, 1} and the Bernoulli distributions with
PX(0) = p, PY (0) = q. If 0 < p < 1 then we have

D(PX‖PY ) = p log p
q

+ (1− p) log 1− p
1− q . (1.38)

If q = 1/2 then we compute D(PX‖PY ) = 1−H2(p). If q = 0 or q = 1 then
we have D(PX‖PY ) =∞.

To avoid the case D(PX‖PY ) =∞ we introduce the notation PX � PY (or
PY � PX) to mean that PY (a) = 0 ⇒ PX(a) = 0 for all a ∈ X . In other
words, PX � PY is the same as saying that supp(PX) ⊆ supp(PY ), or that
D(PX‖PY ) < ∞ for finite sets. The measure-theoretic terminology is that
PX is absolutely continuous with respect to PY .

Example 1.9. Consider a joint distribution PXY and its marginals PX and
PY . We use the notation PXPY (·) to refer to the distribution for which

PXPY (a, b) = PX(a)PY (b) for all a and b. (1.39)

Observe that PX(a) = 0 implies PXY (a, b) = 0. However, we may have
PXY (a, b) = 0 even though PX(a) > 0 and PY (b) > 0 (see Example 1.5). In
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other words, we always have

PXY � PXPY (1.40)

but the statement PXY � PXPY is not necessarily true.

The following result is fundamentally important.

Theorem 1.2.

D(PX‖PY ) ≥ 0 (1.41)

with equality if and only if PX(a) = PY (a) for all a ∈ supp(PX).4

Proof. Apply the inequality (1.9) to the negative of (1.37):

−D(PX‖PY ) = E
[
log2

PY (X)
PX(X)

]
(a)
≤ E

[
PY (X)
PX(X) − 1

]
log2(e)

=
∑

a∈supp(PX)
PX(a)

[
PY (a)
PX(a) − 1

]
log2(e)

=
 ∑

a∈supp(PX)
PY (a)

− 1
 log2(e)

(b)
≤ 0 (1.42)

with equality in (a) if and only if PY (a) = PX(a) for all a ∈ supp(PX), and
with equality in (b) if and only if PY � PX . �

Example 1.10. Suppose PY (·) is uniform on X . We compute

D(PX‖PY ) = log2 |X | −H(X) (1.43)

and so Theorem 1.2 gives H(X) ≤ log2 |X | with equality if and only if PX
is uniform. This reproves the interesting part of Theorem 1.1.

Example 1.11. If PX(·) is uniform on X then we have

D(PX‖PY ) = − log2 |X | −
1
|X |

∑
a∈X

log2 PY (a). (1.44)

4This is the same as requiring PX(a) = PY (a) for all a ∈ X .
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Example 1.12. Suppose PX(a) = 1 for some a ∈ X . We then have

D(PX‖PY ) = − log2 PY (a). (1.45)

As in (1.37), given a third discrete random variable Z, we define the condi-
tional informational divergence between PX|Z(·) and PY |Z(·) as

D(PX|Z‖PY |Z |PZ) =
∑

b∈supp(PZ)
PZ(b)D

(
PX|Z(·|b)‖PY |Z(·|b)

)

=
∑

(a,b)∈supp(PXZ)
PXZ(a, b) log2

PX|Z(a|b)
PY |Z(a|b)

= E
[
log2

PX|Z(X|Z)
PY |Z(X|Z)

]
. (1.46)

Similar to (1.41), we have

D(PX|Z‖PY |Z |PZ) ≥ 0 (1.47)

with equality if and only if PX|Z(a|b) = PY |Z(a|b) for all (a, b) ∈ supp(PXZ).

Problem 1.16 develops a chain rule for informational divergence similar to
the chain rule (1.32) for entropy, namely

D(PXn‖PY n) =
n∑
i=1

D(PXi|Xi−1‖PYi|Y i−1|PXi−1). (1.48)
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1.8. Mutual Information

The mutual information I(X;Y ) between two random variables X and Y
with respective discrete and finite alphabets X and Y is defined as

I(X;Y ) = D(PXY ‖PXPY ) . (1.49)

More explicitly, we have

I(X;Y ) =
∑

(a,b)∈supp(PXY )
PXY (a, b) log2

PXY (a, b)
PX(a)PY (b) . (1.50)

Note that PXY = PXPY means that X and Y are statistically indepen-
dent. Thus, I(X;Y ) measures the dependence of X and Y . Recall from
Example 1.9 that PXY � PXPY so that I(X;Y ) is finite for finite-alphabet
random variables.

The term “mutual” describes the symmetry in the arguments of I(X;Y ).
By using Bayes’ rule and expanding the logarithm in (1.50) in various ways
we may write

I(X;Y ) = H(X)−H(X|Y )
= H(Y )−H(Y |X)
= H(X) +H(Y )−H(XY )
= H(XY )−H(X|Y )−H(Y |X) (1.51)

The definition (1.49) and Theorem 1.2 imply the following inequalities.

Theorem 1.3. We have the bounds

I(X;Y ) ≥ 0 (1.52)
H(X|Y ) ≤ H(X) (1.53)
H(XY ) ≤ H(X) +H(Y ) (1.54)

with equality in (1.52)-(1.54) if and only if X and Y are statistically inde-
pendent.

The inequality (1.53) means that conditioning cannot increase entropy, or
colloquially that conditioning reduces entropy. Note, however, that
H(X|Y = b) can be larger than H(X).

Example 1.13. Consider Example 1.5 for which we compute

H(X) = H(Y ) = H2(1/3) ≈ 0.918.

We thus have H(X|Y ) ≤ H(X) in accordance with (1.53), but observe that
H(X|Y = 0) > H(X).
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The conditional mutual information between X and Y given a random vari-
able Z is defined as

I(X;Y |Z) =
∑

c∈supp(PZ)
PZ(c) I(X;Y |Z = c) (1.55)

where we define

I(X;Y |Z = c) = D
(
PXY |Z(·|c)

∥∥∥PX|Z(·|c)PY |Z(·|c)
)
. (1.56)

From (1.46) we may write

I(X;Y |Z) = D(PXY |Z‖PX|ZPY |Z |PZ). (1.57)

Using (1.56) and Theorem 1.2, we have

I(X;Y |Z = c) ≥ 0 (1.58)
I(X;Y |Z) ≥ 0 (1.59)

with equality in (1.58) if and only if X and Y are statistically independent
conditioned on the event Z = c, and with equality in (1.59) if and only if X
and Y are statistically independent when conditioned on any event Z = c
with positive probability. Equality in (1.59) is thus the same as saying that
X − Z − Y forms a Markov chain (see Sec. A.3).

We compute

I(X;Y |Z) = H(X|Z)−H(X|Y Z)
= H(Y |Z)−H(Y |XZ). (1.60)

We thus have

0 ≤ I(X;Y |Z) ≤ min (H(X|Z), H(Y |Z)) (1.61)

with equality on the left if and only if X−Z−Y forms a Markov chain, and
with equality on the right if and only if Y Z essentially determines X, or
XZ essentially determines Y , or both. The left-hand side of (1.61) implies

H(X|Y Z) ≤ H(X|Z) (1.62)

with equality if and only if X − Z − Y forms a Markov chain.

We can expand mutual information as follows:

I(X1X2 . . . Xn;Y ) = I(X1;Y ) + I(X2;Y |X1) + . . .

+ I(Xn;Y |X1X2 · · ·Xn−1)

=
n∑
i=1

I(Xi;Y |X i−1). (1.63)

The expansion (1.63) is called the chain rule for mutual information.
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Example 1.14. Using the chain rule for mutual information and the left-
hand side of (1.61), we have

I(X;Y ) ≤ I(X;Y Z)
I(X;Y ) ≤ I(XZ;Y ). (1.64)
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1.9. Inequalities

1.9.1. Log-Sum Identity and Inequality

Theorem 1.4. (Log-sum Identity and Inequality) Consider positive
ai and non-negative bi, i = 1, 2, . . . , n, and suppose that at least one of the
bi is positive. Let Sa = ∑n

i=1 ai, Sb = ∑n
i=1 bi, and define PX(i) = ai/Sa and

PY (i) = bi/Sb for i = 1, 2, . . . , n. We have
n∑
i=1

ai log ai
bi

= SaD(PX‖PY ) + Sa log Sa
Sb

(1.65)

≥ Sa log Sa
Sb

(1.66)

with equality if and only if ai/bi = Sa/Sb for all i.

Proof. If bi = 0 for some i then the left-hand side of (1.65) is infinity and
the identity and the inequality are valid. Now suppose that bi > 0 for all i.
The identity (1.65) follows by substitution. The inequality (1.66) and the
condition for equality follow by Theorem 1.2. �

Example 1.15. Consider n = 2 for which the log-sum inequality is

a1 log a1

b1
+ a2 log a2

b2
≥ (a1 + a2) log a1 + a2

b1 + b2
(1.67)

with equality if and only if a1/b1 = a2/b2 = (a1 + a2)/(b1 + b2).

1.9.2. Data Processing Inequalities

Theorem 1.5. (Data Processing Inequalities) If X − Y − Z forms a
Markov chain, then we have

I(X;Z) ≤ I(X;Y ) and I(X;Z) ≤ I(Y ;Z). (1.68)

If Y1 and Y2 are the outputs of a channel PY |X(·) with inputs X1 and X2,
respectively, then we have

D(PY1‖PY2) ≤ D(PX1‖PX2). (1.69)

Proof. We have

I(X;Z)
(a)
≤ I(X;Y Z)
(b)= I(X;Y ) + I(X;Z|Y )
(c)= I(X;Y ). (1.70)
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where (a) follows by (1.64), (b) follows by the chain rule (1.63), and (c)
follows because X−Y −Z forms a Markov chain. One can prove I(X;Z) ≤
I(Y ;Z) in the same way. Next, by the chain rule (1.48) we have the two
expansions

D(PX1Y1‖PX2Y2) = D(PX1‖PX2) +D(PY1|X1‖PY2|X2|PX1)︸ ︷︷ ︸
=0

(1.71)

D(PX1Y1‖PX2Y2) = D(PY1‖PY2) +D(PX1|Y1‖PX2|Y2|PY1) (1.72)

which gives

D(PY1‖PY2) = D(PX1‖PX2)−D(PX1|Y1‖PX2|Y2|PY1). (1.73)

and which implies (1.69). �

Example 1.16. Suppose PY |X has the special property that a PX uniform
on X produces a PY uniform on Y . So choosing PX2 uniform in (1.69) makes
PY2 uniform. Using (1.43) we find that

H(X1) ≤ H(Y1). (1.74)

In other words, such a channel PY |X does not decrease entropy.
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1.9.3. Fano’s Inequality

A useful lower bound on error probability is the following.

Theorem 1.6. (Fano’s Inequality) Suppose both X and X̂ take on
values in the alphabet X , and let Pe = Pr

[
X̂ 6= X

]
. We have

H2(Pe) + Pe log2(|X | − 1) ≥ H(X|X̂) (1.75)

with equality if and only if, for all a and b in X , we have

PX|X̂(a|b) =
{

1− Pe if b = a
Pe
|X |−1 if b 6= a

. (1.76)

Proof. Let E = 1(X̂ 6= X), where 1(·) is the indicator function. We use the
chain rule to expand H(EX|X̂) in two ways as

H(EX|X̂) = H(X|X̂) +H(E|X̂X)
(a)= H(X|X̂)

H(EX|X̂) = H(E|X̂) +H(X|X̂E)
= H(E|X̂) + Pr [E = 0]H(X|X̂, E = 0)

+ Pr [E = 1]H(X|X̂, E = 1)
= H(E|X̂) + PeH(X|X̂, E = 1)
(b)
≤ H(E|X̂) + Pe log2(|X | − 1)
(c)
≤ H(E) + Pe log2(|X | − 1)
= H2(Pe) + Pe log2(|X | − 1)

where (a) follows because X̂ andX essentially determine E. Step (b) follows
because, given X̂ and E = 1, X takes on at most |X | − 1 values. Further-
more, by Theorem 1.1 equality holds in (b) if and only if, conditioned on X̂,
X is uniform over the set of X not including X̂, i.e., if and only if (1.76) is
satisfied for all a and b in X . Inequality (c) holds with equality if (1.76) is
satisfied for all a and b in X . �

Example 1.17. Consider X = {0, 1} for which Fano’s inequality is

H2(Pe) ≥ H(X|X̂). (1.77)

Equality holds if and only if X = X̂ ⊕ Z where Z is independent of X̂,
PZ(0) = 1−Pe, PZ(1) = Pe, and “⊕” denotes addition modulo-2 (or XOR).
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Figure 1.6.: Fano upper bound on H(X|X̂) for |X | = 3.

Example 1.18. Consider X = {0, 1, 2} and X = X̂ + Z where Z is
independent of X̂, “+” denotes addition modulo-3, and PZ(i) = pi, i =
0, 1, 2. Fano’s inequality is

H2(1− p0) + (1− p0) ≥ H(X|X̂) (1.78)

and one can check that equality holds if and only if p1 = p2 (see (1.12)).

A plot of the left-hand side of (1.75) as a function of Pe is shown in Fig. 1.6
for |X | = 3. We can interpret (1.75) as follows: Pe cannot be driven to zero
if H(X|X̂) is bounded from below by some positive number.
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1.9.4. Pinsker’s Inequality

Suppose P (·) and Q(·) are probability distributions with discrete and finite
domain X . Recall that the variational distance between P (·) and Q(·) is

d(P,Q) =
∑
a∈X
|P (a)−Q(a)| . (1.79)

Oberve that

0 ≤ d(P,Q) ≤ 2 (1.80)

where the right inequality follows by |P (a) − Q(a)| ≤ P (a) + Q(a). We
have equality on the left if and only if P (a) = Q(a) for all a, and we have
equality on the right if and only if supp(P ) ∩ supp(Q) = ∅.

Theorem 1.7. (Pinsker’s Inequality)

D(P‖Q) ≥ 1
2 ln(2) d

2(P,Q) (1.81)

Proof. Partition X into two sets:

X1 = {a : P (a) ≥ Q(a)} (1.82)
X2 = {a : P (a) < Q(a)}. (1.83)

Define

p =
∑
a∈X1

P (a) and q =
∑
a∈X1

Q(a) (1.84)

so that p ≥ q. We have d(P,Q) = 2(p− q) and the log-sum inequality gives

D(P‖Q) ≥ p log2
p

q
+ (1− p) log2

1− p
1− q . (1.85)

We thus have

D(P‖Q)− 1
2 ln(2) d(P,Q)2 ≥

[
p log2

p

q
+ (1− p) log2

1− p
1− q

]

− 2
ln(2) (p− q)2. (1.86)

If q = p then the right-hand side of (1.86) is zero, so suppose q < p. The
derivative of (1.86) with respect to q is

p− q
ln(2)

(
−1

q(1− q) + 4
)
≤ 0. (1.87)

Thus, as q decreases the right-hand side of (1.86) increases from its (mini-
mum) value of 0. �
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1.10. Convexity Properties

Entropy, informational divergence, and mutual information have convexity
properties that are useful for proving capacity theorems. We list and prove
some of these below.

Recall (see Appendix A.12) that a real-valued function f(·) whose domain
is a non-empty convex set S in Rn is convex on S if for every point every
x1 and x2 in S we have

λf(x1) + (1− λ)f(x2) ≥ f (λx1 + (1− λ)x2) for 0 < λ < 1. (1.88)

We say that f(·) is concave (or convex-∩) on S if −f(·) is convex on S.
A useful tool for convex and concave functions is Jensen’s inequality (see
Theorem A.3).

For the following, it is useful to think of PX as being a real-valued n-
dimensional vector that is in the convex set of vectors with non-negative
entries and for which ∑

a PX(a) = 1. Similarly, we view PY |X as being a
n × m real matrix, or rather a long vector of length n · m, that is in the
convex set of matrices, or long vectors, with non-negative entries and for
which ∑b PY |X(b|a) = 1 for all a.

Theorem 1.8. (Convexity of Informational Divergence) D(PX‖PY )
is convex (or convex-∪) in the pair (PX , PY ). That is, for distributions PX ,
PY , QX , QY with the same domain X we have

λD(PX‖PY ) + (1− λ)D(QX‖QY )
≥ D (λPX + (1− λ)QX‖λPY + (1− λ)QY ) (1.89)

for any λ satisfying 0 < λ < 1.

Proof. Consider PX(a) > 0 and QX(a) > 0. The log-sum inequality gives

λPX(a) log2
λPX(a)
λPY (a) + (1− λ)QX(a) log2

(1− λ)QX(a)
(1− λ)QY (a)

≥ [λPX(a) + (1− λ)QX(a)] log2
λPX(a) + (1− λ)QX(a)
λPY (a) + (1− λ)QY (a)

where 0 < λ < 1. If PX(a) > 0 and QX(a) = 0 then we have

λPX(a) log2
λPX(a)
λPY (a) ≥ λPX(a) log2

λPX(a)
λPY (a) + (1− λ)QY (a) .

A similar bound results when PX(a) = 0 and QX(a) > 0. Now sum the
appropriate bounds over supp(PX) and supp(QX) to obtain (1.89). �
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Theorem 1.9. (Concavity of Entropy) We write H(X) as H(PX). The
entropyH(PX) is concave (or convex-∩) in PX . That is, for two distributions
PX and QX with the same domain X we have

λH(PX) + (1− λ)H(QX) ≤ H (λPX + (1− λ)QX) (1.90)

for any λ satisfying 0 < λ < 1.

Proof. From (1.43) we can write H(X) = log2 |X | − D(PX‖PY ) where PY
is uniform. Theorem 1.8 thus gives the desired result by fixing PY as the
uniform distribution, i.e., use (1.89) with QY = PY . �

Example 1.19. For H2(p) we compute

d

dp
H2(p) = log2

1− p
p

(1.91)

d2

dp2H2(p) = −1
ln(2) p(1− p) < 0. (1.92)

H2(p) is therefore concave in p.

Theorem 1.10. (Convexity of Mutual Information)We write I(X;Y )
as I(PX , PY |X). The function I(PX , PY |X) is concave in PX if PY |X is fixed,
and I(PX , PY |X) is convex in PY |X if PX is fixed. That is, we have

λI(PX , PY |X) + (1− λ)I(QX , PY |X) ≤ I
(
λPX + (1− λ)QX , PY |X

)
(1.93)

λI(PX , PY |X) + (1− λ)I(PX , QY |X) ≥ I
(
PX , λPY |X + (1− λ)QY |X

)
(1.94)

or any λ satisfying 0 < λ < 1.

Proof. Suppose PY |X is fixed and consider I(X;Y ) = H(Y ) − H(Y |X).
Note that H(Y ) is concave in PY . But PY and H(Y |X) are linear in PX .
Thus, I(X;Y ) is concave in PX .

Suppose next that PX is fixed and consider I(X;Y ) = D(PXPY |X‖PXPY ).
PY is linear in PY |X so that D(PXPY |X‖PXPY ) is convex in PY |X . �
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1.11. Problems

1.1. Expectation

Consider random variables X and Y with

PX(0) = PX(1) = 1
2 , PX(2) = 0

PY (0) = PY (1) = PY (2) = 1
3 .

a) Determine E
[

1
PX(X)

]
, E
[

1
PX(Y )

]
, E
[

1
PY (X)

]
, and E

[
1

PY (Y )

]
.

b) Compute E[− log2 PX(X)] and E[− log2 PY (X)].
c) Compute E

[
log2

PX(X)
PY (X)

]
and E

[
log2

PY (Y )
PX(Y )

]
.

1.2. Maximum Entropy

Prove the inequality on the right-hand side of (1.7) by using Jensen’s in-
equality (A.71) and the concavity of log2(x) in x for x > 0. What are the
conditions for equality?

1.3. Binomial Distribution 1

Show that

(a+ b)n =
n∑
i=0

(
n

i

)
ai bn−i (1.95)

and use this identity to show that the PX(k), k = 0, 1, 2, . . . , n specified in
(1.14) give a probability distribution.

1.4. Binomial Distribution 2

Consider a binomial probability distribution PX(k) for n = 5 and p = 1/3.

a) Plot PX .
b) Compute E[X] and Var[X] and overlay the Gaussian approximation

(1.16) on the plot in part (a).
c) Compute H(X) and compare with the approximation (1.17).

1.5. Geometric Distribution

Consider a geometric distribution PX and verify the equations for E[X],
Var[X], and H(X) given in Sec. 1.4.3.
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1.6. Conditional Entropy

Consider a jar in which there is a fair coin c1 and an unfair coin c2. The fair
coin takes on the values H and T with probability 1/2 each and the unfair
coin always takes on the value H. Suppose we reach into the jar, choose
one of the coins, and flip it. Let X be the random variable that represents
the outcome H or T .

a) Let C be a random variable that represents the choice of coin, i.e., C
takes on the values c1 and c2 each with probability 1/2. Determine
H(X|C = c1) and H(X|C = c2).

b) Compute H(X|C).
c) Determine PX(·) and compute H(X).
d) Compare the four entropies you computed by ordering them.

Can conditioning increase entropy?

1.7. Bounds on Conditional Entropy

Verify (1.27) including the conditions for equality.

1.8. Entropy of a Single Parity Check Code

A single parity check code of length 3 has codewords X1X2X3 that take on
the values 000, 011, 101, 110 each with probability 1/4.

a) Compute H(Xi) for i = 1, 2, 3.
b) Compute H(X1X2), H(X1X3), and H(X2X3).
c) Compute H(X1X2X3).
d) Compute H(X1|X2X3 = ab) for ab = 00, 01, 01, 11.

Now compute H(X1|X2X3).

1.9. Functions of Variables

Let f(·) and g(·) be functions whose domains are the ranges of [X, Y ] and
Y , respectively. Show that

H(Xf(X, Y )|Y g(Y )) = H(X|Y ). (1.96)

Interpret the result.
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1.10. Calculation of Joint Entropy

Suppose X is binary with alphabet X = {0, 1}. Consider the Binary Sym-
metric Channel or BSC for which Y = {0, 1} and

PY |X(b|a) =
{

1− p, if b = a
p, if b 6= a. (1.97)

a) Show that

H(X) = H2(PX(0))
H(Y |X) = H2(p).

b) Defining q ∗ p = q(1− p) + (1− q)p, verify that

H(Y ) = H2 (PX(0) ∗ p)
H(X|Y ) = H2(PX(0)) +H2(p)−H2 (PX(0) ∗ p) .

c) Show that H(Y ) is maximized by PX(0) = 1/2.

1.11. Binary Channels

Verify the following claims where the inverse function H−1
2 (·) is defined with

domain the interval [0, 1] and range the interval [0, 1/2].

a) Show that H2
(
H−1

2 (x)
)

= x for 0 ≤ x ≤ 1 but H−1
2 (H2(x)) 6= x can

happen (for which x?).
b) Show that [λa + (1 − λ)b] ∗ p = λ(a ∗ p) + (1 − λ)(b ∗ p), where

q ∗ p = q(1− p) + (1− q)p.
c) Show that H2(a) ∗ p ≤ H2(a ∗ p) for 0.11 ≤ a ≤ 0.5 and 0 ≤ p ≤ 1.
d) Using the above two results and H2

(
H−1

2 (a)
)

= a, show that

[λa+ (1− λ)b] ∗ p ≤ H2
(
λH−1

2 (a) ∗ p+ (1− λ)H−1
2 (b) ∗ p

)
for the range of a and p of problem (c).
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1.12. Mrs. Gerber’s Lemma

The following problem makes use of the fact that H2
(
p ∗H−1

2 (h)
)
is convex

in h, 0 ≤ h ≤ 1, for p satisfying 0 ≤ p ≤ 1 [4, Sec. 2].

a) Consider the BSC of Problem 1.10. Show that for any discrete random
variable U for which U −X − Y forms a Markov chain we have

H(Y |U) ≥ H2(p ∗H−1
2 (H(X|U)). (1.98)

b) Suppose the BSC is used n times with input Xi and output Yi for
i = 1, 2, . . . , n. The {Xi}ni=1 could be dependent. Show that

H(Y n) ≥
n∑
i=1

H(Yi|X i−1) (1.99)

with equality if and only if the {Xi}ni=1 are independent or p = 1/2.
c) Use (1.98) and (1.99) to show that

H(Y n)/n ≥ H2
(
p ∗H−1

2 (H(Xn)/n)
)

(1.100)

with equality if and only if the {Xi}ni=1 are independent or p = 1/2.
This result is known as Mrs. Gerber’s Lemma [4].

d) Now show that for any discrete random variable V we have

H(Y n|V )/n ≥ H2
(
p ∗H−1

2 (H(Xn|V )/n)
)
. (1.101)

1.13. Informational Divergence 1

Prove the inequality (1.41) by using Jensen’s inequality (A.71) and the
concavity of log2(x) in x for x > 0. What are the conditions for equality?

1.14. Informational Divergence 2

a) Verify that D(P1P2‖Q1Q2) = D(P1‖Q1) +D(P2‖Q2).
b) Verify the “parallelogram identity” for probability distributions P,Q,R:

D(P‖R) +D(Q‖R) = D
(
P‖P +Q

2

)
+D

(
Q‖P +Q

2

)
+ 2D

(
P +Q

2 ‖R
)
. (1.102)
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1.15. Informational Divergence 3

Consider X = {0, 1} and PX(0) = PY (0)(1 + ε) where 0 ≤ ε ≤ 1/PY (0)− 1.
a) Verify that

D(PX‖PY ) = PY (0)(1 + ε) log2(1 + ε)

+ [1− PY (0)(1 + ε)] log2

(
1− PY (0)(1 + ε)

1− PY (0)

)
(1.103)

and we have D(PX‖PY ) ≥ 0 with equality if and only if ε = 0.
b) Show that D(PX‖PY ) in (1.103) is convex in ε.

1.16. Chain Rule for Informational Divergence

Verify the chain rule (1.48) for informational divergence.

1.17. Mutual Information

a) Verify the following identities:

I(X;Y ) = D(PX|Y ‖PX |PY ) (1.104)
= D(PY |X‖PY |PX) (1.105)
= D(PY |X‖QY |PX)−D(PY ‖QY ) (1.106)

= E
[
log QY |X(Y |X)

QY (Y )

]
+D(PXY ‖PYRX|Y ) (1.107)

where QY is any distribution on Y , QY |X is an auxiliary channel with
QY |X = QY /PX , RX|Y = PXQY |X/QY is a reverse channel, and the
expectation in (1.107) is over PXY .

b) What happens if QY |X = PY |X? What happens if QY |X 6= PY |X?
c) Argue that if PY |X can be simulated, but not computed, then one can

compute a lower bound on I(X;Y ) as follows. Generate a long string
of independent and identically distributed (i.i.d.) inputs xn by using
PX , simulate the outputs yn by passing xn through the channel PY |X ,
choose a QY |X to compute QY |X(yi|xi) for i = 1, 2, . . . , n, and then
estimate the expectation in (1.107) by averaging.

d) Similarly, argue that one can compute an upper bound on I(X;Y ) by
using (1.106).

1.18. Bounds on Conditional Mutual Information

Verify (1.61) including the conditions for equality.

1.19. Chain Rule for Mutual Information 1

Show that

I(Xn;Y |Z) =
n∑
i=1

I(Xi;Y |ZX i−1). (1.108)
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1.20. Chain Rule for Mutual Information 2

Define Xn
i+1 = Xi+1Xi+2 . . . Xn and consider X0 and Xn

n+1 to be constants.

a) Establish the telescoping identity
n∑
i=1

I(X i;Y n
i+1) =

n∑
i=1

I(X i−1;Y n
i ). (1.109)

b) Establish the Csiszár sum identity
n∑
i=1

I(Xi;Y n
i+1|X i−1) =

n∑
i=1

I(X i−1;Yi|Y n
i+1). (1.110)

Hint: Use (1.109) and use the chain rule (1.63) to show that

I(X i;Y n
i+1) = I(X i−1;Y n

i+1) + I(Xi;Y n
i+1|X i−1)

I(X i−1;Y n
i ) = I(X i−1;Y n

i+1) + I(X i−1;Yi|Y n
i+1).

1.21. Functional Dependence and Mutual Information

Let f(·), g(·), and h(·) be functions whose domains are the ranges of [X,Z],
[Y, Z], and Z, respectively. Show that

I(X;Y |Z) = I(Xf(X,Z);Y g(Y, Z)|Zh(Z)). (1.111)

1.22. Conditional Convexity

This exercise develops conditional versions of Theorems 1.8-1.10.

a) Verify that the conditional informational divergenceD(PX|Z‖PY |Z |PZ)
is convex in the pair (PX|Z , PY |Z).
Is D(PX|Z‖PY |Z |PZ) convex in (PXZ , PY Z)?
Is D(PX|Z‖PY |Z |PZ) convex in PXY Z?

b) Verify that H(X|Z) is concave in PX|Z . Is H(X|Z) concave in PXZ?
c) Verify that I(X;Y |Z) is concave in PX|Z for fixed PY |XZ , and is convex

in PY |XZ for fixed PX|Z .

1.23. Data Processing Inequality

Prove (1.69) by using the log-sum inequality (see Theorem 1.4).
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Chapter 2.

Information Theory for
Continuous Variables

2.1. Differential Entropy

Consider a real-valued random variable X with density pX(·). The differen-
tial entropy of X is defined in a similar manner as the entropy of a discrete
random variable:

h(X) =
∫

supp(pX)
−pX(a) log pX(a) da (2.1)

assuming this integral exists. We can alternatively write

h(X) = E[− log pX(X)] . (2.2)

Example 2.1. Consider the uniform distribution with pX(a) = 1/A for
a ∈ [0, A) where [0, A) = {x : 0 ≤ x < A} (see Fig. 2.1). We compute

h(X) = log(A). (2.3)

We find that h(X) is negative for A < 1. A natural next question is how we
should interpret h(X): what does “negative uncertainty” mean? We shall
give one interpretation in Sec 2.5.1.

A = 1/2, h(X) = −1 bit

0.5 1 a

0.5

1

1.5

2

0

pX(a)

A = 1, h(X) = 0

Figure 2.1.: Densities of uniform distributions.
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The joint differential entropy of real-valued and continuous random vari-
ables X1, X2, . . . , Xn with joint density pXn(·) is defined as

h(Xn) =
∫

supp(pXn )
−pXn(a) log pXn(a) da. (2.4)

We can alternatively write (2.4) as h(X) where X = [X1, X2, . . . , Xn].

Simple exercises show that for a non-zero real number c we have

Translation rule: h(X + c) = h(X)
Scaling rule: h(cX) = h(X) + log |c|. (2.5)

Similarly, for a real-valued column vector c of dimension n and an invertible
n× n matrix C we have

Translation rule: h(X + c) = h(X)
Scaling rule: h(CX) = h(X) + log | det C| (2.6)

where det C is the determinant of C. We will, however, use the notation
|C| for the determinant of C below.

Consider a joint density pXY (·) and its conditional density pY |X(·) = pXY (·)/pX(·).
We define

h(Y |X = a) =
∫

supp(pY |X(·|a))
−pY |X(b|a) log pY |X(b|a) db (2.7)

and if X has a density then

h(Y |X) =
∫

supp(pX)
pX(a)h(Y |X = a) da . (2.8)

We thus have h(Y |X) = h(XY )− h(X). If X is discrete, then we define

h(Y |X) =
∑

a∈supp(PX)
PX(a)h(Y |X = a). (2.9)

Note that by conditioning on X = a and using the translation rule in (2.5),
for any real constant c we obtain

h(Y + cX|X) = h(Y |X). (2.10)
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0

pX(a)

0.5 1 a

0.25

0.5

0.75

1
FX(a)

0.5 1 a

0.25

0.5

0.75

1

0

Figure 2.2.: A cumulative distribution and its density.

2.2. Mixed Distributions

One often encounters problems with random variables having both discrete
and continuous components. For example, consider a real-valued random
variable X with cumulative distribution (see Fig. 2.2)

FX(a) =


0, a < 0
3a/4, 0 ≤ a < 1/2
(3a+ 1)/4, 1/2 ≤ a < 1
1, a ≥ 1.

(2.11)

Observe that FX(·) has a discontinuity that represents a probability mass.
A common way of writing the “density” for such a mixed distribution is as
a sum of a discrete part and a continuous part, in this case (see Fig. 2.2)

pX(a) = 3
4pU(a) + 1

4δ(a− 1/2) (2.12)

where pU(·) is the uniform density in the interval [0, 1) and where δ(·) is the
“Dirac-δ” (generalized) function defined indirectly by taking integrals over
proper1 intervals I:

∫
I
f(x)δ(x)dx =

{
f(0), 0 ∈ I
0, otherwise. (2.13)

More generally, if there are probability mass points at ai, i = 1, 2, . . . , J ,
with probabilities PX(ai), then we may write the “density” as

pX(x) = pX̃(x) +
J∑
i=1

PX(ai)δ(x− ai) (2.14)

where pX̃(·) is a normalized density of a continuous random variable X̃.

We will see below that h(X) = −∞ for a mixed random variable with a
non-zero probability mass. Hence one should exercise caution when dealing
with such random variables and using differential entropy.

1An interval is proper if it is non-empty and does not have just one point.
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(1, 1/2)(−1, 1/2)
x2

x1

pX(a)

Figure 2.3.: A probability density function for a two-dimensional random
vector.

One can extend the above ideas to random vectors. For instance, consider
X = [X1, X2] that takes on values in R2, and suppose X has a

• 0-dimensional part: probability mass 1/4 at the point (1, 1/2);
• 1-dimensional part: probability mass 1/2 on the interval defined by
x1 = −1 and x2 ∈ [0, 1/2);

• 2-dimensional part: uniform probability density on the rectangle (x1, x2) ∈
[−1, 1)× [−1/2, 1/2) (so the 2-dimensional probability mass is 1/4).

A plot of the “density” is shown in Fig. 2.3. We have h(X) = −∞ due
to the 0-dimensional and 1-dimensional parts. However, if we condition on
the event E = {X1 = −1, X2 ∈ [0, 1/2)} then we compute h(X|E) = −1 bit
because X is uniform given E .

Advanced Information Theory LNT, TUM



2.3. Example Distributions 39

2.3. Example Distributions

2.3.1. Discrete Random Variables

Consider again the uniform density with pX(a) = 1/A for a ∈ [0, A) and
let A → 0. We thus have h(X) → −∞. We can interpret such limiting
densities as Dirac-δ functions representing discrete random variables. For
instance, suppose that pX(a) = pi/A for some integers i, a ∈ [i, i+A), and
0 ≤ A ≤ 1. As A → 0, this density represents a discrete random variable
X̃ with PX̃(i) = pi. We compute

h(X) =
∑
i

−pi log (pi/A) = log(A) +H
(
X̃
)

(2.15)

so h(X) has increased as compared to (2.3). However, h(X) still approaches
−∞ for small A.

In general, one must exercise caution when dealing with h(X) where X has
discrete components. For example, we have h(Xf(X)) = h(X)+h(f(X)|X)
and h(f(X)|X) = −∞.

2.3.2. Exponential Distribution

The exponential density is

pX(a) =
{

1
m
e−a/m a ≥ 0

0 a < 0 (2.16)

where m = E[X]. We compute Var[X] = m2 and

h(X) = log(em) . (2.17)

We find that h(X) < 0 if m < 1/e and h(X)→ −∞ as m→ 0.

2.3.3. Gaussian Distribution

The scalar Gaussian density is

pX(a) = 1√
2πσ2

e−
1

2σ2 (a−m)2 (2.18)

where m = E[X] and σ2 = Var[X] is the variance of X. Inserting (2.18)
into (2.1), we compute

h(X) = 1
2 log

(
2πeσ2

)
. (2.19)
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We find that h(X) < 0 if σ2 < 1/(2πe). We further have h(X) → −∞ as
σ2 → 0.

More generally, consider a random column vector X of dimension n, mean
E[X] = m and covariance matrix

QX = E
[
(X −m)(X −m)T

]
(2.20)

where the superscript “T” denotes transposition. Suppose X is Gaussian
distributed, i.e., the density of X is

pX(a) = 1

(2π)n/2
∣∣∣QX

∣∣∣1/2 exp
(
−1

2(a−m)TQ−1
X (a−m)

)
(2.21)

where we recall that
∣∣∣QX

∣∣∣ is the determinant of QX . Inserting (2.21) into
(2.1), we compute (see Problem 2.2)

h(X) = 1
2 log

(
(2πe)n

∣∣∣QX

∣∣∣) . (2.22)

Note that h(X) is negative for small
∣∣∣QX

∣∣∣.

Example 2.2. Consider (2.21) with X = [X Y ]T and

QXY =
[
σ2
X ρ σXσY
ρ σXσY σ2

Y

]
(2.23)

so that ρ = E[XY ] /(σXσY ) is the correlation coefficient of X and Y . The
differential entropy (2.22) is

h(XY ) = 1
2 log

(
(2πe)2 σ2

Xσ
2
Y (1− ρ2)

)
. (2.24)

X and Y are uncorrelated if ρ = 0, in which case X and Y are independent
and h(XY ) = h(X) + h(Y ). On the other hand, if X = a · Y + b for
some constants a and b then we have ρ = 1 and h(XY ) = −∞. We must
therefore be cautious with Gaussian vectors: if one entry is a function of
the other entries then we have |QX | = 0 and h(X) = −∞.

Finally, suppose pX Y (·) is Gaussian, where X has dimension n and Y has
dimension m. Let QX Y be the covariance matrix of the stacked vector
[XT Y T ]T . We compute

h(Y |X) = h(X Y )− h(X) = 1
2 log

(
(2πe)m

∣∣∣QX Y

∣∣∣ / ∣∣∣QX

∣∣∣) . (2.25)
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Example 2.3. Consider (2.23) for which we compute

h(Y |X) = 1
2 log

(
2πe σ2

Y (1− ρ2)
)
. (2.26)
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2.4. Informational Divergence
The informational divergence between the densities pX and pY is

D(pX‖pY ) =
∫

supp(pX)
pX(a) log pX(a)

pY (a) da (2.27)

assuming this integral exists. If pX and pY are mixed distributions of the
form (2.14), then we partition the events that can occur into events with
probability mass on points (0-dimensional parts), curves (1-dimensional
parts), and so forth. The informational divergence is defined by summing
informational divergences of the parts. For example, if pX has 0-dimensional
and 1-dimensional parts then we write

D(pX‖pY ) =
 ∑
a∈supp(PX)

PX(a) log PX(a)
PY (a)


+
∫

supp(pX̃)
pX̃(a) log pX̃(a)

pỸ (a) da. (2.28)

A similar generalization is possible for vectors X and Y .
The mutual information between continuous random variables X and Y is

I(X;Y ) = D(pXY ‖pXpY ) . (2.29)

We can derive natural bounds on informational divergence for continuous
random variables. For instance, the bound ln(x) ≤ x− 1 implies

D(pX‖pY ) ≥ 0 (2.30)

with equality if and only if pX(a) = pY (a) for (almost) all a ∈ supp(pX).
This means that

I(X;Y ) ≥ 0 (2.31)
h(X|Y ) ≤ h(X) (2.32)
h(XY ) ≤ h(X) + h(Y ) (2.33)

with equality if and only if X and Y are independent.
The conditional informational divergence between pX|Z(·) and pY |Z(·) is
defined as (see (1.46))

D(pX|Z‖pY |Z |pZ) =
∫

supp(pZ)
pZ(b)D(pX|Z(·|b)‖pY |Z(·|b)) db

=
∫

supp(pXZ)
pXZ(a, b) log pX|Z(a|b)

pY |Z(a|b) db

= E
[
log pX|Z(X|Z)

pY |Z(X|Z)

]
(2.34)

assuming the integrals exist. We have D(pX|Z‖pY |Z |pZ) ≥ 0 with equality
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if and only if pX|Z(a|b) = pY |Z(a|b) for (almost) all (a, b) ∈ supp(pXZ).
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2.5. Maximum Entropy

2.5.1. Alphabet or Volume Constraint

Recall that the uniform distribution maximizes the entropy of discrete ran-
dom variables with alphabet X . Similarly, the uniform density maximizes
the differential entropy of continuous random variables with a support of
finite volume. To prove this, suppose that X is confined to a set S in Rn.
Let |S| be the volume of S, i.e., |S| =

∫
supp(pX) 1 dx, and let U be uniform

over S. We use (2.30) and compute

0 ≤ D(pX‖pU) =
∫

supp(pX)
pX(a) log

(
pX(a)|S|

)
da

= −h(X) + log |S|. (2.35)

We thus find that if X is limited to S then

h(X) ≤ log |S| (2.36)

with equality if and only if pX(a) = 1/|S| for (almost) all a ∈ S.

Alternatively, we have 2h(X) ≤ |S|. This bound justifies having negative
differential entropy, namely that 2h(X) for a uniform X measures the volume
of the support set S.

2.5.2. First Moment Constraint

For continuous random variables, one is often interested in moment con-
straints rather than alphabet constraints. For example, suppose that the
alphabet of X is all of Rn and we wish to maximize h(X) under the first-
moment constraint (2.37)

E[X] ≤ m (2.37)

where the inequality a ≤ b means that ai ≤ bi for all entries ai and bi of the
respective a and b.

Without further constraints we can choose X to be uniform over the interval
[−A, 0) for large positive A and make h(X) arbitrarily large. We hence
further restrict attention to non-negative X, i.e., every entry Xi of X must
be non-negative.

Let E have independent entries Ei that are exponentially distributed with
mean mi, i.e., we choose

pEi(a) =
{ 1

mi
e−a/mi a ≥ 0

0 a < 0. (2.38)
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We use the same approach as in (2.35) to compute

0 ≤ D(pX‖pE) =
∫

supp(pX)
pX(a) log pX(a)

pE(a) da

= −h(X)−
∫

supp(pX)
pX(a) log pE(a) da

= −h(X)−
∫

supp(pX)
pX(a)

∑
i

[
− ai
mi

log e− logmi

]
da

= −h(X) +
∑
i

log(emi) (2.39)

We thus have

h(X) ≤
∑
i

log(emi) (2.40)

with equality if and only if pX(x) = pE(x) for almost all x. Independent ex-
ponential random variables therefore maximize (differential) entropy under
first moment and non-negativity constraints.

2.5.3. Second Moment Constraint

Suppose we wish to maximize h(X) under the second-moment constraint

|QX | ≤ D (2.41)

where D is some constant. For example, the constraint (2.41) occurs if we
are restricting attention to X that satisfy

QX � Q (2.42)

for some positive semidefinite Q with |Q| = D, where A � B means that
B−A is positive semi-definite (and hence |A| ≤ |B|; see [1, p. 471]).

Let G be Gaussian with the same mean m and covariance matrix QX as X.
We repeat the approach of (2.35) and (2.39) and compute

0 ≤ D(pX‖pG) =
∫

supp(pX)
pX(a) log pX(a)

pG(a) da

= −h(X)−
∫

supp(pX)
pX(a) log pG(a) da

= −h(X)−
∫

supp(pX)
pX(a)

[
−1

2 log
(
(2π)n|QX |

)
−1

2(a−m)TQ−1
X (a−m) log e

]
da

= −h(X) + 1
2 log

(
(2πe)n|QX |

)
. (2.43)
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We thus have

h(X) ≤ 1
2 log

(
(2πe)n|QX |

)
(2.44)

with equality if and only if pX(x) = pG(x) for almost all x. Gaussian random
variables thus maximize (differential) entropy under the second moment
constraint (2.41).

Example 2.4. The constraint (2.41) for scalars (n = 1) is Var[X] ≤ D and
the bound (2.44) implies

h(X) ≤ 1
2 log (2πeD) . (2.45)

A Gaussian random variable X with variance D (and any mean) thus max-
imizes differential entropy under the variance constraint.

Finally, we prove a conditional version of the maximum entropy theorem.
Consider a density pX Y (·) that has the conditional density pY |X(·) and co-
variance matrix QX Y . Suppose that (G,H) is Gaussian with the same
covariance matrix. We compute

0 ≤ D
(
pY |X

∥∥∥pH|G∣∣∣pX)
= −h(Y |X)−

∫
supp(pX Y )

pX Y (a, b) log pH|G(b|a) da db.

= −h(Y |X) + 1
2 log

(
(2πe)m

∣∣∣QX Y

∣∣∣ / ∣∣∣QX

∣∣∣) . (2.46)

We thus have

h(Y |X) ≤ 1
2 log

(2πe)m
∣∣∣QX Y

∣∣∣
|QX |

 (2.47)

with equality if and only if pY |X(x) = pH|G(x) for almost all x.
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2.6. Problems

2.1. Translation and Scaling

Verify equations (2.5) and (2.6).

2.2. Entropy for Gaussian Random Vectors

Verify equation (2.22).
Hint: use tr (AB) = tr (BA) where tr (A) is the trace of matrix A.

2.3. Informational Divergence

a) Verify (2.30) and show that this bound holds with equality if and only
if pX(a) = pY (a) for (almost) all a ∈ supp(pX).

b) Verify thatD(pX|Z‖pY |Z |pZ) ≥ 0 with equality if and only if pX|Z(a|b) =
pY |Z(a|b) for (almost) all (a, b) ∈ supp(pXZ).

2.4. Conditional Entropy-Power Inequality

The entropy power of a real random variable X with differential entropy
h(X) is defined as e2h(X). The entropy power inequality states that the sum
X + Y of two independent random variables X and Y having differential
entropies satisfies

22h(X+Y ) ≥ 22h(X) + 22h(Y ) (2.48)

Prove that f(x) = log(ex+c), where c is a non-negative constant, is convex-
∪ in x. Now use the entropy power inequality to prove that

22h(X+Y |U) ≥ 22h(X|U) + 22h(Y |U) (2.49)

if U and Y are independent (assume that U has a density).

2.5. Polar Coordinates

Consider a complex random variable X = XR + jXI where j =
√
−1 and

XR and XI are real random variables. We can view X as a vector [XR, XI ]
(or as a string XRXI) and we define

h(X) = h(XRXI). (2.50)

Suppose that we wish to represent X in polar coordinates via the vector
[AX ,ΦX ] where AX = |X| and ΦX is the phase of X. Show that

h(X) = h(AXΦX) + E[logAX ] (2.51)
= h(A2

X) + h(ΦX |AX)− log 2. (2.52)
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2.7. Appendix: Table of Differential
Entropies

The constant γ ≈ 0.57721566 is Euler’s constant.

Distribution Density p(x) Support Entropy (in nats)
Uniform 1

b−a a ≤ x < b ln(b− a)
Exponential λe−λx, λ > 0 x ≥ 0 1− ln λ
Gaussian 1√

2πσ2 e
− (x−m)2

2σ2 x ∈ R 1
2 ln(2πeσ2)

Rayleigh x
σ2 e
− x2

2σ2 x ≥ 0 1 + γ
2 + ln σ√

2
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Chapter 3.

Channel Coding

3.1. Rate, Reliability, and Cost

Channel coding is concerned with transmitting data reliably from a source to
a sink. One can anticipate that by reducing rate, one can increase reliability.
For example, if your conversation partner does not understand what you say,
simply repeat the message until you receive an acknowledgment. We thus
expect a rate-reliability tradeoff and would like to determine the frontier of
this tradeoff.

As a great surprise, Shannon showed that the tradeoff exhibits a sharp be-
havior: below a certain rate he called capacity one can achieve as reliable
communication as desired! And above capacity one has a positive lower
bound on reliability that increases very rapidly with increasing rate. More-
over, reliability is in general possible only by coding over long sequences of
symbols.

But Shannon discovered more. First, one can control reliability by applying
a lossy compression code followed by a channel code. Second, this separation
of compression and reliability coding incurs no loss in rate. Third, if one
introduces a cost S associated with transmission then there is a capacity-
cost tradeoff. For example, a symbol with large energy generally costs
more to transmit than one with small energy. Capacity naturally increases
with increasing cost, and this suggests capacity-cost shapes such as those
depicted in Fig. 3.1. We shall find that the uppermost shape is the correct
one for the cost functions that we are interested in.

0

Rmax

S

R

Figure 3.1.: Three possible shapes for increasing curves.
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Encoder Decoder

Channel

Sink

Source
Noise

Message
Source

ŴXnW

Zn

Yi = f(Xi, Zi)
Y n

Figure 3.2.: The channel coding problem: the channel is defined by a func-
tion f(·) and a noise source PZ(·).

X2X1

Y1

Z1 Z3 Y3Z2 Y2

X3

Ŵ

W

Figure 3.3.: FDG for a memoryless channel with n = 3. The hollow vertices
represent mutually statistically independent random variables.

3.2. Memoryless Channels

A memoryless channel is the basic model for channel coding, and it is
depicted in Fig. 3.2. The functional dependence graph (FDG) shown in
Fig. 3.3 specifies the relationships between the random variables.1 There
are five types of variables: a source message W , channel inputs Xi, channel
outputs Yi, noise Zi, i = 1, 2, . . . , n, and a message estimate Ŵ .

A source puts out the message w, w ∈ {1, 2, . . . ,M}. An encoder maps w
to a string xn in X n. We assume that H(W ) = nR and nR is an integer for
simplicity. We may thus view W as being a string V nR of independent bits
Vi, i = 1, 2, . . . , nR, where PVi(0) = PVi(1) = 1/2. The rate R measures
how many information bits are sent per channel input symbol.

The channel puts out

yi = f(xi, zi), i = 1, 2, . . . , n (3.1)

for some function f(·) with range Y , and where each zi is a different re-
alization of a noise random variable Z with alphabet Z. In other words,

1A FDG is a graph where the vertices represent random variables and the edges repre-
sent functional dependencies, see Sec. A.5.
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Source
Message

Channel

SinkDecoderEncoder PY |X(·)
W Xn Y n Ŵ

Figure 3.4.: The channel coding problem: the channel is a conditional prob-
ability distribution PY |X(·).

the Z1, Z2, . . . , Zn all have the same distribution PZ and are statistically
independent. Furthermore, the noise string Zn is statistically independent
of W and Xn. The channel is memoryless because yi is a function of xi
and zi only. The channel is time invariant because f(·) and PZ(·) do not
depend on time. If the alphabets X and Y are discrete and finite, then the
channel is called a discrete memoryless channel (DMC).

The decoder maps yn to an estimate ŵ of w, where Ŵ = W . The goal is
to find the maximum rate R for which, by choosing n sufficiently large, one
can make Pe = Pr

[
Ŵ 6= W

]
arbitrarily close to zero (but not necessarily

exactly zero). This maximum rate is called the capacity C.

Observe that capacity does not account for the delay due to encoding and
decoding, or for the complexity of encoding and decoding. Delay and com-
plexity are, of course, of great engineering relevance. We are therefore trying
to find only the limits that we should try to approach if we we are willing to
delay information transfer, and if we are willing to build complex devices.

The above functional definitions can alternatively be written by using prob-
ability distributions. In particular, for a DMC we may write the channel
(3.1) as a conditional probability distribution PY |X(·) as in Fig. 3.4. The
joint distribution of the random variables (other than the noise) satisfies

P (w, xn, yn, ŵ) = P (w)P (xn|w)
[
n∏
i=1

PY |X(yi|xi)
]
P (ŵ|yn) (3.2)

where both P (xn|w) and P (ŵ|yn) are either 0 or 1.

As done here, we will often remove the subscripts on the probability dis-
tributions if the arguments are lower-case versions of the random variables.
For instance, we write P (w) for PW (w). Similarly, we could write P (yi|xi)
for PYi|Xi(yi|xi) but we prefer to write this as PY |X(yi|xi) to emphasize that
the channel PY |X is time-invariant.

Example 3.1. A binary symmetric channel (BSC) has X = Y = Z =
{0, 1} and

f(x, z) = x+ z (3.3)

where addition is modulo-2. A diagram representing the BSC is shown in
Fig. 3.5 where PZ(1) = p. The parameter p is called the channel crossover
probability and we usually have p ≤ 1/2. The channel conditional probabil-
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0

1

X

1 − p

1 − p

p

p

0

1

Y

Figure 3.5.: BSC with crossover probability p.

0

1

X

1 − p1

1 − p0

p1

p0

0

1

Y

Figure 3.6.: Binary channel with asymmetric crossover probabilities.

ity distribution is

P (y|x) =
{

1− p if y = x
p if y 6= x

}
. (3.4)

Example 3.2. An asymmetric version of the BSC has Z = {00, 01, 10, 11}
and

f(x, z0z1) =
{
z0 if x = 0
1 + z1 if x = 1

}
= x+ zx (3.5)

where the noise is now a pair Z = Z0Z1 of binary random variables. The
variablesX and Z are independent, butX and ZX are dependent in general.
A diagram representing the BSC is shown in Fig. 3.6 where px = PZx(1).
The channel conditional probability distribution is

P (y|x) =
{

1− px if y = x
px if y 6= x

}
. (3.6)

Example 3.3. A binary erasure channel (BEC) has X = {0, 1}, Y =
{0, 1,∆}, Z = {0,∆}, and

f(x, z) =
{
x if z = 0
∆ if z = ∆

}
. (3.7)

A diagram representing the BEC is shown in Fig. 3.7 where PZ(∆) = p.
Observe that receiving y = 0 or y = 1 gives full knowledge of x. The channel
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0
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X
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1

∆
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1 − p
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1 − p

Figure 3.7.: BEC with erasure probability p.

0
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∆

1

2
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1 − p
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0

1

3

2

Y

Figure 3.8.: PEC with b = 2 and erasure probability p.

conditional probability distribution is

P (y|x) =


1− p if y = x
p if y = ∆
0 if x = 0 and y = 1 or if x = 1 and y = 0

 . (3.8)

Example 3.4. A packet erasure channel (PEC) with packets of length b
bits has X = {0, 1, . . . , 2b − 1}, Y = {0, 1, . . . , 2b − 1,∆}, Z = {0,∆}, and
f(x, z) having the same form as (3.7). The PEC with b = 1 is thus a BEC.
A diagram representing the PEC with b = 2 is shown in Fig. 3.8 where
PZ(∆) = p. Receiving y, y 6= ∆, again gives full knowledge of x. The
channel conditional probability distribution is

P (y|x) =


1− p if y = x
p if y = ∆
0 if y 6= ∆ and y 6= x

 . (3.9)

Example 3.5. An additive channel has

f(x, z) = x+ z (3.10)

where the “+” denotes addition in a field with alphabets X = Y = Z. For
example, a BSC is additive over the Galois field GF(2). If the field is the set
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of real numbers and Z is a Gaussian random variable with zero mean then
we have an additive white Gaussian noise (AWGN) channel. Of course,
an AWGN channel is not a DMC. We must therefore replace PY |X(y|x)
in (3.2) with a channel conditional probability density function p(y|x). If Z
has variance N then we have

p(y|x) = pZ(y − x) = 1√
2πN

e
−(y−x)2

2N . (3.11)
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3.3. Cost Functions

The transmission and reception of symbols often incurs costs, e.g., power
or energy costs. We therefore refine the capacity problem by adding a cost
constraint. Suppose that transmitting xn and receiving yn incurs a cost of
sn(xn, yn) units. We require that the average cost satisfy

E[sn(Xn, Y n)] ≤ S. (3.12)

We consider sn(·) that are averages of a per-letter cost function s(·):

sn(xn, yn) = 1
n

n∑
i=1

s(xi, yi). (3.13)

The largest rate C as a function of the cost S is called the capacity cost
function, and is denoted C(S).

Example 3.6. Suppose X = {0, 1} and

s(x, y) =
{

0 if x = 0
E if x = 1 (3.14)

so that sending x = 1 costs E units of energy. This situation might occur for
an optical channel where transmitting a 1 represents light while transmitting
a 0 represents dark. A cost constraint with 0 ≤ S < E/2 will bias the best
transmission scheme towards sending the symbol 1 less often.

Example 3.7. Suppose X = R and s(x, y) = x2 so that

E[sn(Xn, Y n)] = 1
n

n∑
i=1

E
[
X2
i

]
≤ P (3.15)

where we have chosen S = P to emphasize that we interpret P as the
average transmit power. The energy is thus at most nP . The constraint
(3.15) is called an average block power constraint. Another interesting choice
is s(x, y) = y2 which limits the average receive power.

Example 3.8. A more stringent constraint than (3.12) is that the cost be
bounded with probability 1:

Pr [sn(Xn, Y n) ≤ S] = 1. (3.16)

For example, with s(x, y) = x2 and S = P we obtain the power constraints

1
n

n∑
i=1

xi(w)2 ≤ P, for all w = 1, 2, . . . ,M . (3.17)
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3.4. Block and Bit Error Probability

ConsiderW = V b where the Vi are independent bits with PVi(0) = PVi(1) =
1/2, i = 1, 2, . . . , b. We thus have M = 2b and R = b/n bits per channel
symbol. We have defined the channel coding by requiring that the block
error probability

Pe = Pr
[
Ŵ 6= W

]
(3.18)

be small. However, one is sometimes interested in minimizing the average
bit error probability

Pb = 1
b

b∑
i=1

Pr
[
V̂i 6= Vi

]
. (3.19)

We have the following relations between Pb and Pe:

Pb
(a)
≤ Pe

(b)
≤ b Pb. (3.20)

The bound (a) is because a bit error implies a block error, and the bound
(b) is because a block error implies at least 1 bit error for the b bits. One
has equality on the left if all bits in an erroneous block are incorrect, and
one has equality on the right if exactly one bit is incorrect in each erroneous
block. The bounds (3.20) imply that if Pb is positive so is Pe. Similarly, if
Pe is small so is Pb. This is why coding theorems should upper bound Pe
and converse theorems should lower bound Pb. For example, a code with
large Pe can have small Pb.

We next develop lower bounds on Pe and Pb. Consider first Pe. Using
Fano’s inequality and |W| = M = 2nR we have

H(W |Ŵ ) ≤ H2(Pe) + Pe log2(|W| − 1)
< H2(Pe) + Pe nR (3.21)

We also have H(W |Ŵ ) = H(W )− I(W ; Ŵ ) and H(W ) = nR so that2

nR <
I(W ; Ŵ ) +H2(Pe)

1− Pe
. (3.22)

The bound (3.22) gives a rate-reliability tradeoff, i.e., nR is at most I(W ; Ŵ )
if reliability is good (Pe is small) and nR can become larger if reliability is
poor (Pe is large). The tradeoff is parameterized by I(W ; Ŵ ). We empha-
size that (3.22) is valid for any choice of Pe.

2The bounds (3.22) and (3.25) are valid for any channel: discrete or continuous, mem-
oryless or with memory. An improved lower bound on the block error probability Pe

for memoryless channels is called a strong converse and is developed in Problem 3.6.
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Consider next Pb for which we bound

H2(Pb) = H2

(
1
b

b∑
i=1

Pr
[
V̂i 6= Vi

])
(a)
≥ 1
b

b∑
i=1

H2
(
Pr
[
V̂i 6= Vi

])
(b)
≥ 1
b

b∑
i=1

H(Vi|V̂i) (3.23)

where (a) follows by the concavity of H2(·), and (b) by Fano’s inequality.
We continue the chain of inequalities by using H(Vi|V̂i) ≥ H(Vi|V i−1V̂ b) so
that

H2(Pb) ≥ 1
b

b∑
i=1

H(Vi|V i−1V̂ b)

= 1
b
H(V b|V̂ b)

= 1
b

(
H(V b)− I(V b; V̂ b)

)
= 1− I(W ; Ŵ )

nR
. (3.24)

We thus have the following counterpart to (3.22):

nR ≤ I(W ; Ŵ )
1−H2(Pb) . (3.25)

We again have a rate-reliability tradeoff with 0 ≤ Pb ≤ 1/2, and we essen-
tially require nR ≤ I(W ; Ŵ ) if Pb is small.

Observe that we can write

Pe =
M∑
w=1

P (w) Pr
[
Ŵ 6= w

∣∣∣ W = w
]

(3.26)

and the probabilities Pr
[
Ŵ 6= w

∣∣∣ W = w
]
can be different. An interesting

parameter is therefore the maximum block error probability

Pm = max
1≤w≤M

Pr
[
Ŵ 6= w

∣∣∣ W = w
]
. (3.27)

We clearly have Pb ≤ Pe ≤ Pm so that a lower bound on Pb is a lower bound
on Pm and an upper bound on Pm is also an upper bound on Pb and Pe.
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ŴY n
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Xn(2nR)

...

Xn(W )

Figure 3.9.: Random coding experiment for channel coding.

3.5. Random Coding

We construct a random code book for the DMC with a cost constraint. We
begin by choosing a distribution PX .

Code Construction: GenerateM = 2nR codewords xn(w), w = 1, 2, . . . , 2nR,
by choosing the n · 2nR symbols xi(w) in the code book

xn = [xn(1), xn(2), . . . , xn(M)] (3.28)

independently using PX .

Encoder: Given w, transmit xn(w).

Decoder: Given yn, choose ŵ as (one of) the message(s) w that maximizes

P (w|yn) = P (w)P (yn|w)
P (yn) = P (w)P (yn|xn(w))

P (yn) . (3.29)

This decoder is called amaximimum a-posteriori probability (MAP) decoder.
Since all messages are equally likely, the MAP decoder is the same as the
maximum likelihood (ML) decoder that chooses ŵ as (one of) the message(s)
w that maximizes the P (yn|xn(w)).

Analysis: The random coding experiment is shown in Fig. 3.9 where the
random variables W , Xn(1), Xn(2), . . . , Xn(2nR) are mutually statistically
independent. The joint distribution of the random variables is

P (w, xn(1), . . . , xn(2nR), yn, ŵ)

= P (w)
2nR∏
i=1

P n
X (xn(i))

P n
Y |X (yn|xn(w)) 1(ŵ = f(yn)) (3.30)

where 1(·) is the indicator function that takes on the value 1 if its argu-
ment is true and is 0 otherwise. We compute the error probability for this
experiment. We have two error events

E = {Ŵ 6= W} (3.31)
F = {E[sn(Xn, Y n)] > S} (3.32)
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and the error probability can be written as the code book average

Pr [E ∪ F ] =
∑
xn
P (xn) Pr [E ∪ F |Xn = xn] . (3.33)

We wish to find conditions so that for any positive δ there is a sufficiently
large n such that Pr [E ∪ F ] ≤ δ. If we are successful, then (3.33) guarantees
there must exist a code book xn for which Pr [E ∪ F |Xn = xn] ≤ δ.

3.5.1. Block Error Probability

The union bound gives Pr [E ∪ F ] ≤ Pr [E ] +Pr [F ] so we may upper bound
the probability of each error event separately. We begin with

Pr [E ] =
∑
w

P (w) Pr
[
Ŵ 6= w |W = w

]
. (3.34)

By symmetry, we have Pr
[
Ŵ 6= w |W = w

]
= Pr

[
Ŵ 6= 1 |W = 1

]
so we

proceed to bound Pr
[
Ŵ 6= 1 |W = 1

]
.

Consider the events

E(w̃) = {PY n|Xn(Y n|Xn(1)) ≤ PY n|Xn(Y n|Xn(w̃))} (3.35)

for w̃ 6= 1. The event {Ŵ 6= 1} occurs only if E(w̃) occurs for at least one
w̃ with w̃ 6= 1. Furthermore, for such a w̃ the likelihood ratio

L(w̃) = PY n|Xn(Y n|Xn(w̃))
PY n|Xn(Y n|Xn(1)) (3.36)

must be at least 1. We thus have L(w̃)s ≥ 1 for any s ≥ 0 and also
{∑w̃ 6=1 L(w̃)s}ρ ≥ 1 for any s ≥ 0 and any ρ ≥ 0. These results imply

Pr
[
Ŵ 6= 1 |W = 1

] (a)
≤ Pr

∑
w̃ 6=1

L(w̃)s

ρ

≥ 1
∣∣∣∣∣∣ W = 1


(b)
≤ E

∑
w̃ 6=1

L(w̃)s

ρ ∣∣∣∣∣∣ W = 1

 (3.37)

where (a) is because A ⇒ B implies Pr [A] ≤ Pr [B], and (b) follows by the
Markov inequality (A.65).

The expectation in (3.37) is with respect to the Xn(w), w = 1, 2, . . . ,M ,
and Y n. Since we have W = 1, the pair (Xn(1), Y n) is jointly distributed
according to the channel distribution PY |X . The Xn(w̃), w̃ 6= 1, are statis-
tically independent of (Xn(1), Y n). If we take the expectation over the pair
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(Xn(1), Y n), then the right-hand side of (3.37) is

∑
xn,yn

P (xn, yn) · E
∑

w̃ 6=1

(
PY n|Xn(yn|Xn(w̃))

P (yn|xn)

)s
ρ∣∣∣∣∣∣Xn(1) = xn, Y n = yn


(a)=

∑
xn,yn

P (xn)P (yn|xn)1−sρ · E
∑

w̃ 6=1
PY n|Xn(yn|Xn(w̃))s


ρ (3.38)

where we removed the conditioning on W = 1 because (Xn(1), Y n) and the
Xn(w̃), w̃ 6= 1, are independent of {W = 1}. Step (a) follows because the
Xn(w̃), w̃ 6= 1, are independent of (Xn(1), Y n). For 0 ≤ ρ ≤ 1, Jensen’s in-
equality gives E[Xρ] ≤ E[X]ρ so the expectation in (3.38) is upper bounded
by∑

w̃ 6=1
E
[
PY n|Xn(yn|Xn(w̃))s

]
ρ

=
{

(M − 1)
∑
xn
P (xn)P (yn|xn)s

}ρ
. (3.39)

Now substitute s = 1/(1 + ρ) and insert (3.39) into (3.38) to obtain

Pr
[
Ŵ 6= 1 |W = 1

]
≤ (M − 1)ρ

∑
yn

{∑
xn
P (xn)P (yn|xn)

1
1+ρ

}1+ρ

. (3.40)

We remark that (3.40) is valid for channels withmemory and any P (xn). It is
also valid for continuous channels by replacing P (yn|xn) with the conditional
density p(yn|xn).
Using (M − 1)ρ ≤ Mρ = 2nRρ, random coding with P (xn) = ∏n

i=1 PX(xi),
and the memoryless property P (yn|xn) = ∏n

i=1 PY |X(yi|xi), the bound (3.40)
becomes

Pr
[
Ŵ 6= 1 |W = 1

]
≤ 2−n[E0(ρ,PX)−ρR] (3.41)

for all 0 ≤ ρ ≤ 1 where

E0(ρ, PX) = − log2
∑
y

{∑
x

P (x)P (y|x)
1

1+ρ

}1+ρ

. (3.42)

Optimizing over ρ, we have

Pr
[
Ŵ 6= 1 |W = 1

]
≤ 2−nEG(R,PX) (3.43)

where EG(R,PX) is the Gallager exponent3

EG(R,PX) = max
0≤ρ≤1

[E0(ρ, PX)− ρR] . (3.44)

One may prove the following properties of EG(R,PX) (see Problem 3.5):
a) EG(0, PX) = E0(1, PX).

3The Gallager exponent optimized over PX is written as EG(R) = maxPX
EG(R,PX).
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E0(1, PX)
0

R

EG(R, PX)

E0(1, PX)

I(X ; Y )Rc(PX)

Figure 3.10.: Gallager exponent EG(R,PX) for a fixed PX .

b) EG(R,PX) is linear with slope -1 for 0 ≤ R ≤ Rc(PX) where

Rc(PX) = ∂E0(ρ, PX)
∂ρ

∣∣∣∣∣
ρ=1

. (3.45)

c) EG(R,PX) is convex and positive in the interval 0 ≤ R < I(X;Y ) if
I(X;Y ) is positive.

The shape of EG(R,PX) is shown in Fig. 3.10. We see that as long as we
choose R and PX so that

R < I(X;Y ) (3.46)

then we can make Pr
[
Ŵ 6= W

]
≤ δ for any δ > 0 by choosing large n.

3.5.2. Capacity-Cost Function

For the cost constraint we have

Pr [F ] = 1 (E[sn(Xn(W ), Y n)] > S) (3.47)

where 1(.) is the indicator function that takes on the value 1 if its argu-
ment is true and is zero otherwise. We must therefore choose PX so that
E[sn(Xn, Y n)] ≤ S over the ensemble of code books. We easily compute

E[sn(Xn(W ), Y n)] = 1
n

n∑
i=1

E[s(Xi(W ), Yi)] = E[s(X, Y )] . (3.48)

Thus, we must choose PX so that

E[s(X, Y )] ≤ S . (3.49)

Combining the above results, for large n there is a code in the random
ensemble of codes that has small Pe, expected cost at most S, and with a
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rate that approaches the capacity-cost function

C(S) = max
PX : E[s(X,Y )]≤S

I(X;Y ). (3.50)

If there is no cost constraint, then we can approach the rate

C = max
PX

I(X;Y ). (3.51)

3.5.3. Maximum Error Probability

Consider the maximum error probability (3.27). Suppose we have a fixed
code for which

Pr [E ∪ F ] ≤ δ. (3.52)

For example, we might have found this code by using the random coding
method described above. We may write

Pr [E ∪ F ] =
M∑
w=1

P (w)Pr [E ∪ F |W = w] . (3.53)

Now re-index the codewords by ordering them so that the error probability
increases as w increases, i.e., re-index so that

Pr [E ∪ F |W = w1] ≤ Pr [E ∪ F |W = w2] (3.54)

if w1 ≤ w2. Now consider the code book having only the firstM/2 messages
(suppose M is even) of the re-indexed code book. The rate is reduced by
1/n bits as compared to the original code book, but the maximum error
probability satisfies

Pm = max
1≤w≤M/2

Pr [E| W = w]

≤ max
1≤w≤M/2

Pr [E ∪ F| W = w]

= Pr [E ∪ F| W = M/2]
(a)
≤ 2δ (3.55)

where (a) follows by (3.53) since no more than half of the terms in the sum
can be larger than 2δ. In other words, by expurgating our codes we obtain
codes with a maximum error probability as close to zero as desired and rates
as close to C(S) as desired.
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C(S3)
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C(S1)
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Figure 3.11.: Concavity of the capacity-cost function.

3.6. Concavity and Converse

The function C(S) in (3.50) is non-decreasing in S because increasing S
permits using a larger class of PX . We show that C(S) is concave in S.

Consider two distinct points (S1, C(S1)) and (S2, C(S2)) and suppose the
distributions PX1 and PX2 achieve these respective points (see Fig. 3.11).
That is, we have

S1 = E[s(X1, Y1)] , C(S1) = I(X1;Y1)
S2 = E[s(X2, Y2)] , C(S2) = I(X2;Y2) (3.56)

where Y1 and Y2 are the respective outputs of the channel PY |X when the
input is X1 and X2. Consider the mixture distribution

PX3(x) = λPX1(x) + (1− λ)PX2(x) (3.57)

for all x, where 0 ≤ λ ≤ 1. We have

S3 =
∑

(x,y)∈suppPX3Y

PX3(x) P (y|x) s(x, y)

=
∑

(x,y)∈suppPX3Y

(λPX1(x) + (1− λ)PX2(x)) P (y|x) s(x, y)

= λS1 + (1− λ)S2. (3.58)

We thus have

C(λS1 + (1− λ)S2) = C(S3)
(a)
≥ I(X3;Y3)
(b)
≥ λ I(X1;Y1) + (1− λ) I(X2;Y2)
= λC(S1) + (1− λ)C(S2). (3.59)

where (a) follows because PX3 might not give the maximum mutual infor-
mation for the cost S3, and (b) follows by the concavity of I(X;Y ) in PX
when PY |X is held fixed (see Thm. 1.10). The bound (3.59) means that
C(S) is concave in S.
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We now show that C(S) in (3.50) is the capacity cost function. We have

I(W ; Ŵ )
(a)
≤ I(Xn;Y n)

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|Xi)

≤
n∑
i=1

H(Yi)−H(Yi|Xi)

=
n∑
i=1

I(Xi;Yi). (3.60)

where (a) follows by the data processing inequality. If there is no cost
constraint then we can use the simple bound

I(Xi;Yi) ≤ max
PX

I(X;Y ) = C. (3.61)

Inserting (3.61) into (3.60) and then into (3.22) and (3.25) we obtain R ≤ C
for small Pe and Pb.

More generally, with a cost constraint we must use the concavity of C(S) in
S. We have I(Xi;Yi) ≤ C(E[s(Xi, Yi)]) because C(E[s(Xi, Yi)]) maximizes
mutual information for the cost E[s(Xi, Yi)]. We thus have

n∑
i=1

I(Xi;Yi) ≤ n
n∑
i=1

1
n
C (E[s(Xi, Yi)])

(a)
≤ nC

(
1
n

n∑
i=1

E[s(Xi, Yi)]
)

= nC(E[sn(Xn, Y n)])
(b)
≤ nC(S) (3.62)

where (a) follows by the concavity of C(S) and (b) follows because we require
E[sn(Xn, Y n)] ≤ S and because C(S) is non-decreasing in S. Inserting
(3.62) into (3.60) and then into (3.22) and (3.25) we have

R <
C(S) +H2(Pe)/n

1− Pe
. (3.63)

and

R ≤ C(S)
1−H2(Pb) . (3.64)

Thus, we find that R can be at most C(S) for reliable communication and
E[sn(Xn, Y n)] ≤ S.
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Figure 3.12.: Capacity-cost function for a BSC with p = 0.11 and E = 1.

3.7. Discrete Alphabet Examples

3.7.1. Binary Symmetric Channel

The binary symmetric channel (BSC) has X = Y = {0, 1} and Pr [Y 6= X] =
p. In the absence of a cost constraint, we have

I(X;Y ) = H(Y )−H(Y |X)
= H2(PX(1) ∗ p)−H2(p) (3.65)

where q∗p = q(1−p)+(1−q)p. The best choice for PX is PX(0) = PX(1) =
1/2 so that

C = 1−H2(p) . (3.66)

Suppose next that we have the cost function (3.14). We compute

E[s(X)] = PX(1) · E. (3.67)

The capacity cost function is thus

C(S) = H2(min(S/E, 1/2) ∗ p)−H2(p) (3.68)

and for S ≥ E/2 we have C = 1 − H2(p). A plot of C(S) is shown in
Fig. 3.12 for the case p = 0.11 and E = 1.
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3.7.2. Binary Erasure Channel

The binary erasure channel (BEC) has X = {0, 1}, Y = {0, 1,∆}, and
Pr [Y = X] = 1−p and Pr [Y = ∆] = p. For no cost constraint, we compute

C = max
PX

H(X)−H(X|Y )

= max
PX

H(X) (1− p) (3.69)

and choosing PX to be coin-flipping we have

C = 1− p . (3.70)

3.7.3. Strongly Symmetric Channels

Many practical channels exhibit symmetries. Two symmetries that we con-
sider in detail are:

• Uniformly dispersive: for every input letter x the list of probabilities
{P (y|x) : y ∈ Y}, is the same.

• Uniformly focusing: for every output letter y the list of probabilities
{P (y|x) : x ∈ X}, is the same.

For example, a BSC is both uniformly dispersive and uniformly focusing.
A BEC is uniformly dispersive but not uniformly focusing.

Uniformly dispersive channels have the special property that H(Y |X) does
not depend on PX . To see this, observe that

H(Y |X = x) =
∑
y∈Y
−P (y|x) log2 P (y|x) (3.71)

is the same for all x. Hence H(Y |X) is given by (3.71) and determining the
capacity-cost function reduces to a constrained maximum-entropy problem:

C(S) =
[

max
PX : E[s(X,Y )]≤S

H(Y )
]
−H(Y |X). (3.72)

On the other hand, uniformly focusing channels have the special property
that a uniform PX results in a uniform PY . To see this, observe that if
P (x) = 1/|X | for all x then we have

P (y) =
∑
x∈X

1
|X |

P (y|x) (3.73)

which is the same for all b. Thus, PY is uniform which maximizes H(Y ).

A channel is said to be strongly symmetric if it is both uniformly dispersive
and uniformly focusing. In the absence of a cost constraint, this means that

Advanced Information Theory LNT, TUM



3.7. Discrete Alphabet Examples 67
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Figure 3.13.: A BEC decomposed into two strongly symmetric channels.

a strongly symmetric channel has capacity

C = log2 |Y| −
∑
y∈Y
−P (y|x) log2 P (y|x) (3.74)

for any choice of x, and capacity is achieved by a uniform PX . For example,
a BSC is strongly symmetric and has capacity C = 1−H2(p) which matches
(3.74).

3.7.4. Symmetric Channels

Strongly symmetric channels are somewhat restrictive, e.g., they do not
include the BEC. We now consider the more interesting class of symmetric
channels that have the special property that they can be decomposed into
strongly symmetric channels. By this we mean that one can partition the
output symbols in Y into L sets Y1,Y2, . . . ,YL such that the channel from
X to Yi is strongly symmetric (uniformly dispersive and uniformly focusing)
for all i = 1, 2, . . . , L.

Example 3.9. The BEC can be decomposed into L = 2 strongly symmetric
channels with Y1 = {0, 1} and Y2 = {∆}, i.e., we have

Channel 1 :
{
{P (y|x) : y ∈ Y1} = {0, 1− p} is the same for all x ∈ X
{P (y|x) : x ∈ X} = {0, 1− p} is the same for all y ∈ Y1

Channel 2 :
{
{P (y|x) : y ∈ Y2} = {p} is the same for all x ∈ X
{P (y|x) : x ∈ X} = {p, p} is the same for all y ∈ Y2.

The decomposition is shown in Fig. 3.13. Observe that each input symbol
X goes through either a BSC with crossover probability 0 (Channel 1) or
through a channel that maps both inputs to ∆ with probability 1 (Channel
2). The former channel is chosen with probability 1− p and the latter with
probability p. Observe that Y specifies which sub-channel was chosen.

Many channels in practice are symmetric. Furthermore, it turns out that
(in the absence of a cost constraint) the capacity of a symmetric DMC is
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easily computed from the capacities of the sub-channels:

C =
L∑
i=1

qi Ci (3.75)

where qi = ∑
y∈Yi P (y|x) for any x ∈ X is the probability that sub-channel

i is chosen, and Ci is the capacity of this sub-channel. Moreover, a uniform
PX achieves capacity. For example, the BEC has q1 = 1−p, q2 = p, C1 = 1,
and C2 = 0.

To prove (3.75), let A be a random variable that represents the sub-channel,
i.e., we have PA(i) = qi for i = 1, 2, . . . , L. We have

I(X;Y ) (a)= I(X;Y A)
(b)= I(X;A) + I(X;Y |A)
(c)= I(X;Y |A) (3.76)

where (a) is because A is a function of Y (see (1.111)), (b) follows by the
chain rule for mutual information (see (1.63)), and (c) is because X and A
are independent. We further have

I(X;Y |A) =
L∑
i=1

qi I(Xi;Yi|A = i)

(a)
≤

L∑
i=1

qi Ci (3.77)

where (a) follows by the definition of Ci. Finally, a uniform PX simultane-
ously maximizes I(Xi;Yi|Ai) for all i = 1, 2, . . . , L so that we can achieve
equality in (a).

Example 3.10. Consider an AWGN channel where Z is Gaussian with zero
mean and variance N . Suppose we use binary phase shift keying (BPSK)
with X = {−

√
P ,
√
P} and a uniform quantizer that maps Y to the nearest

value in the set Ỹ = {−L+ 1,−L+ 3, . . . , L− 3, L− 1}. Call the resulting
discrete output Ỹ . The X-to-Ỹ channel is a symmetric DMC that can be
decomposed into dL/2e strongly symmetric channels. If L is even then all
sub-channels are BSCs. If L is odd then all sub-channels are BSCs except
one sub-channel that maps both inputs to Ỹ = 0. Either way, the capacity
is given by (3.75).

For instance, suppose we have
√
P ≤ 2. We choose L = 4 so that Ỹ takes

on values in the set Ỹ = {−3,−1, 1, 3} (see Fig. 3.14 where the quantizer
boundaries are shown with dashed lines). There are two sub-channels whose
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ï5 ï4 ï3 ï2 ï1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

p
Y | X

(y | ⌧1.5) p
Y | X

(y | 1.5)

Figure 3.14.: Conditional probability densities for an AWGN channel with
N = 1 and BPSK with

√
P = 1.5. The channel output is

quantized to values in the set {−3,−1, 1, 3}.

probabilities and capacities are:

q1 = Q
(
(2−

√
P )/
√
N
)

+Q
(
(2 +

√
P )/
√
N
)

q2 = 1− q1

C1 = 1−H2

(
Q((2+

√
P )/
√
N)

q1

)
C2 = 1−H2

Q

(√
P/N

)
−Q((2+

√
P )/
√
N)

q2


(3.78)

where

Q(x) =
∫ ∞
x

1√
2π

e−y
2/2 dy. (3.79)
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3.8. Continuous Alphabet Examples

3.8.1. AWGN Channel

Consider the additive white Gaussian noise (AWGN) channel with

Y = X + Z (3.80)

where Z is a zero-mean, variance N , Gaussian random variable that is
independent of X. We consider the cost function s(x, y) = x2 and S = P .

At this point, we have not shown that the capacity-cost function (3.50) gives
a rate that we can approach for continuous-alphabet channels. However,
one can check that the arguments in Sec. 3.5 extend to AWGN and other
continuous-alphabet channels. We compute

C(P ) = max
PX : E[X2]≤P

[h(Y )− h(Y |X)]

=
[

max
PX : E[X2]≤P

h(Y )
]
− 1

2 log(2πeN)

(a)= 1
2 log(2πe(P +N))− 1

2 log(2πeN) (3.81)

where (a) follows by

Var[Y ] = Var[X] +N ≤ E
[
X2
]

+N ≤ P +N (3.82)

and the maximum entropy result (2.44). We thus have

C(P ) = 1
2 log

(
1 + P

N

)
. (3.83)

Furthermore, we achieve C(P ) by choosing X to be Gaussian with zero-
mean and variance P . Observe that C(P ) depends only on the signal-to-
noise ratio (SNR) P/N . The function (3.83) is plotted in Fig. 3.15 forN = 1
(and therefore P = P/N) as the curve labeled “Gauss”. We have taken the
logarithm to the base 2 so that the rate units are bits per channel symbol.

3.8.2. AWGN Channel with BPSK

Consider the additive white Gaussian noise (AWGN) channel (3.80) but
suppose we use BPSK with X = {−

√
P ,
√
P}. From Example 3.10 it is

clear that we should choose PX to be uniform even if Y is not quantized.
The capacity is therefore

C(P ) = I(X;Y ) = h(Y )− 1
2 log(2πeN) (3.84)
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Figure 3.15.: Capacity-cost functions for an AWGN channel with N = 1.
The rate units are bits per channel symbol.

where the density of y is

p(y) = 1
2 pY |X

(
y
∣∣∣−√P )+ 1

2 pY |X
(
y
∣∣∣√P )

= 1
2

1√
2πN

e−(y+
√
P )2/(2N) + 1

2
1√

2πN
e−(y−

√
P )2/(2N). (3.85)

The differential entropy h(Y ) can be computed numerically from (3.85).
The function (3.84) is plotted in Fig. 3.15 as the curve labeled “BPSK”. As
should be expected, the capacity saturates at 1 bit per symbol for large P .
A more interesting result is that BPSK almost achieves capacity for small
P (say P ≤ 2).

We may alternatively compute capacity by expanding I(X;Y ) differently:

C(P ) = H(X)−H(X|Y )

= 1−
∫ ∞
−∞

p(y)H2
(
PX|Y

(
−
√
P
∣∣∣ y)) dy (3.86)

where

PX|Y
(
−
√
P
∣∣∣ y) =

PX
(
−
√
P
)
pY |X

(
y
∣∣∣−√P )

p(y)

= 1
2p(y)

1√
2πN

e−(y+
√
P )2/(2N). (3.87)

The integral (3.86) must again be computed numerically.
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3.8.3. Complex AWGN Channel

The complex AWGN channel has

Y = X + Z (3.88)

where X = XR+jXI , Y = YR+jYI , and Z = ZR+jZI are complex random
variables with j =

√
−1. The noise variables ZR and ZI are Gaussian with

zero mean. One usually chooses ZR and ZI to be independent with the same
variance in which case the noise Z is said to be proper complex or circularly
symmetric. We choose E[Z2

R] = E[Z2
I ] = N/2 so that E[|Z|2] = N .

In communications engineering, complex AWGN channels usually model
bandpass channels. The symbol XR represents the sign and amplitude of
the transmit component that is in-phase with a carrier

√
2 cos(2πfct) at

frequency fc. The symbol XI represents the sign and amplitude of the
transmit component in quadrature with this carrier, i.e., the component
that is in-phase with

√
2 sin(2πfct).

The power constraint is usually taken to be E[|X|2] = E[X2
R] + E[X2

I ] ≤ P .
We may view this channel as a parallel Gaussian channel with two sub-
channels and a sum power constraint. We define PR = E[X2

R] and PI =
E[X2

I ] and compute

C(P ) = max
PXRXI : PR+PI≤P

[h(YRYI)− h(YRYI |XRXI)]

=
[

max
PXRXI : PR+PI≤P

h(YRYI)
]
− log(πeN)

(a)
≤
[

max
PXRPXI : PR+PI≤P

h(YR) + h(YI)
]
− log(πeN)

(b)
≤ max

PR+PI≤P

(1
2 log(1 + 2PR/N) + 1

2 log(1 + 2PI/N)
)

(3.89)

with equality in (a) if XR and XI are independent, and with equality in
(b) if XR and XI are Gaussian with zero mean. It is clearly best to choose
PR + PI = P and direct differentiation shows that the best choice of power
allocation is PR = PI = P/2. We thus have

C(P ) = log
(

1 + P

N

)
. (3.90)

C(P ) again depends only on the SNR and the capacity is twice that of the
real case (3.83) where E[X2] ≤ P and E[Z2] = N . We achieve C(P ) by
choosing XR and XI to be independent Gaussian random variables with
zero-mean and variance P/2.

The capacity-cost function C(P ) is clearly concave in P . However, there
are two different and more common ways of plotting C(P ). First, one
considers a bandlimited channel with bandwidth W Hz and transmits 2W
real symbols per second that are represented as W complex symbols per
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Figure 3.16.: C(Es/N0) for an AWGN channel in terms of (Es/N0)dB. The
rate units are bits per channel symbol.

second. The received signal is sampled at the rate W complex symbols per
second. If the transmit signal has a power constraint P and the noise is
modeled as AWGN with power N = N0W , where N0 is a constant with
units of Watts/Hz, then the capacity is

C̃(P ) = W log2

(
1 + P

N0W

)
bits/second. (3.91)

The tilde on C̃(P ) emphasizes that the units are bits per second. The
transmit energy with transmit intervals of length 1/W seconds is Es = P/W
Joules. We can also express the capacity in units of bits per second per Hertz
(which are units of spectral efficiency) or in units of bits per symbol:

C(Es/N0) = log2

(
1 + Es

N0

)
bits/symbol. (3.92)

The expression (3.92) is basically the same as (3.90) but now the SNR is
measured in terms of an energy ratio rather than a power ratio. One usually
plots C(Es/N0) by measuring the SNR in decibels:

(Es/N0)dB = 10 log10Es/N0. (3.93)

The resulting curve is labeled “Gauss” in Fig. 3.16 The two other curves
show the capacities of BPSK and quaternary phase shift keying (QPSK),
respectively, where QPSK has the modulation alphabet

X = {
√
P ,
√
P j,−

√
P ,−
√
P j}. (3.94)
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Figure 3.17.: Capacity for an AWGN channel in terms of (Eb/N0)dB. The
rate units are bits per channel symbol.

The QPSK capacity is computed by doubling the BPSK capacity and then
shifting the curve to the right by 3 dB (since the energy per dimension is
Es/2). Both modulations almost achieve capacity at low SNR.

Yet another way of plotting the capacity is to measure the SNR in terms of
the energy per information bit: Eb = Es/R where R is the rate in bits per
symbol. We require

R ≤ log2

(
1 + Es

N0

)
= log2

(
1 + Eb

N0
·R
)

(3.95)

so we say that the capacity is the largest R that satisfies (3.95).4 One
usually plots this capacity against

(Eb/N0)dB = 10 log10Eb/N0. (3.96)

The resulting curve is shown in Fig. 3.17. Observe that the smallest Eb/N0
as R→ 0 is Eb/N0 = ln(2) which is

(Eb/N0)dB = 10 log10(ln 2) ≈ −1.6 dB. (3.97)

Thus, there is an ultimate minimum energy (per information bit) required
to transmit reliably over an AWGN channel. Moreover, we now find that the
QPSK capacity is exactly double the BPSK capacity. BPSK is poor at low
SNR because it uses only 1 of the 2 complex dimensions available for each
symbol. One trick to improve BPSK is to use single sideband modulation
(SSB) to reduce the number of dimensions per symbol back to 1. Thus,
BPSK with SSB achieves the same rates as QPSK.

4Alternatively, the smallest SNR that satisfies (3.95) is Eb/N0 = (2R − 1)/R.
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3.8.4. Parallel AWGN Channels

Suppose we have L AWGN sub-channels:

Yi = hiXi + Zi, i = 1, 2, . . . , L, (3.98)

where the hi are constants and the Zi are Gaussian random variables with
zero-mean and variance Ni. The Zi, i = 1, 2, . . . , L, are mutually statisti-
cally independent of each other and of the input variablesXi, i = 1, 2, . . . , L.
For example, the complex Gaussian channel treated in Sec. 3.8.3 effectively
has L = 2, h1 = h2 = 1, and N1 = N2 = N/2. We may write the overall
channel in vector form as

Y = HX + Z (3.99)

where H is a L × L diagonal matrix, and where the X, Y , and Z have as
their ith entries the random variables Xi, Yi, and Zi, respectively.

If each sub-channel had its own power constraint si(xi, yi) = x2
i then the

capacity is simply the sum of the capacities of the L sub-channels. The
situation is more interesting if we have a sum power constraint

s(x, y) = ‖x‖2 =
L∑
i=1

x2
i . (3.100)

We define Pi = E[X2
i ] and compute

C(P ) = max
PX : E[‖X‖2]≤P

I(X; HX + Z)

(a)= max∑L

i=1 Pi≤P

L∑
i=1

1
2 log

(
1 + h2

iPi
Ni

)
(3.101)

where (a) follows by the maximum entropy result (2.44) (see Problem 3.4).
We have thus arrived at a power allocation problem.

We may solve the problem by using standard optimization methods. The
problem is concave in P = [P1, P2, . . . , PL], and the Lagrangian is

Λ =
[
L∑
i=1

1
2 log

(
1 + h2

iPi
Ni

)]
+
[
L∑
i=1

γiPi

]
+ λ

[
P −

L∑
i=1

Pi

]
(3.102)

where the γi, i = 1, 2, . . . , L, and λ are Lagrange multipliers. The Karush-
Kuhn-Tucker (KKT) conditions for the optimal solution are

γi ≥ 0, Pi ≥ 0, γi · Pi = 0, i = 1, 2, . . . , L

λ ≥ 0,
L∑
i=1

Pi ≤ P, λ ·
[
P −

L∑
i=1

Pi

]
= 0

∂Λ
∂Pi

= 1
2

1
Ni/h2

i + Pi
+ γi − λ = 0, i = 1, 2, . . . , L (3.103)
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Table 3.1.: Sub-channel parameters
i 1 2 3 4
hi 2

√
2 1

√
2

Ni 1 1 2 2
Ni/h

2
i 1/4 1/2 2 1

1 2 3 4

1

2
1/(2λ)

i

1/(2λ) = 1.25

P = 2

Figure 3.18.: Waterfilling for L = 4 sub-channels.

where we have used the natural logarithm for the derivative. The γi are slack
variables that we may choose to achieve equality in the last L conditions
above. Furthermore, we cannot choose λ = 0 so we must have ∑L

i=1 Pi = P .
The KKT conditions thus reduce to

Pi ≥ 0,
[
λ− 1

2
1

Ni/h2
i + Pi

]
· Pi = 0, i = 1, 2, . . . , L (3.104)

λ > 0,
L∑
i=1

Pi = P. (3.105)

Now if λ > h2
i /(2Ni) or 1/(2λ) < Ni/h

2
i then (3.104) requires Pi = 0. We

must thus choose

Pi = max
(

1
2λ −

Ni

h2
i

, 0
)
, i = 1, 2, . . . , L. (3.106)

This solution is often called waterfilling because one visualizes pouring water
up to a level 1/(2λ) when the ground level is at Ni/h

2
i . One stops pouring

once the water “volume” is P . The capacity is given by (3.101), namely

C(P ) =
L∑
i=1

1
2 log

(
1 + h2

i

Ni

· Pi
)
. (3.107)

Example 3.11. Consider L = 4 sub-channels with the parameters given
in Table 3.1. Suppose P = 2 in which case we need to set 1/(2λ) = 5/4 so
that P1 = 1, P2 = 3/4, P3 = 0, P4 = 1/4 (see Fig. 3.18). The capacity is
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C(2) = 1
2 log (1 + 4P1) + 1

2 log (1 + 2P2) + 1
2 log (1 + P4)

= 1
2 log(5) + 1

2 log(2.5) + 1
2 log(1.25)

≈ 1.98 bits. (3.108)

Example 3.12. Suppose the L sub-channels are proper complex AWGN
channels, i.e., Zi is circularly symmetric for all i. Repeating the above
analysis requires only slight modifications to (3.106) and (3.107): choose λ
so that ∑L

i=1 Pi = P where

Pi = max
(

1
λ
− Ni

|hi|2
, 0
)
, i = 1, 2, . . . , L. (3.109)

The resulting capacity is

C(P ) =
L∑
i=1

log
(

1 + |hi|
2

Ni

· Pi
)
. (3.110)
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3.8.5. Vector AWGN Channels

Consider the complex vector AWGN channel with nt × 1 input X, nr × nt
matrix H, and nr × 1 output

Y = HX + Z (3.111)

where Z is a nr × 1 Gaussian vector with independent and identically dis-
tributed (i.i.d.) proper complex entries of unit variance. This problem
is also known as a multi-antenna, or multi-input, multi-output (MIMO)
AWGN channel. We choose the cost function s(x, y) = ‖x‖2 and compute

C(P ) = max
PX : E[‖X‖2]≤P

I(X; HX + Z)

=
[

max
PX : E[‖X‖2]≤P

h(HX + Z)
]
− nr log(πe)

(a)= max
tr(QX)≤P

log
∣∣∣I + HQXH†

∣∣∣ (3.112)

where (a) follows by the maximum entropy result (2.44). Suppose H has
the singular-value decomposition H = UDV† where U and V are unitary
matrices (with UU† = I and VV† = I) and where D is a real, diagonal
nr × nt matrix with the singular values of H on the diagonal. We write
(3.112) as

C(P ) = max
tr(QX)≤P

log
∣∣∣I + DQXDT

∣∣∣
(a)= max∑min(nt,nr)

i=1 Pi≤P

min(nt,nr)∑
i=1

log
(
1 + d2

iPi
)

(3.113)

where the di, i = 1, 2, . . . ,min(nt, nr), are the singular values of H, and
where we have used Hadamard’s inequality for matrices for (a). The re-
maining optimization problem is the same as for parallel Gaussian channels
with Ni = 1 for all i. The waterfilling solution is to choose the water level
λ̃ so that ∑min(nt,nr)

i=1 Pi = P where

Pi = max
(
λ̃− 1

d2
i

, 0
)
. (3.114)

The capacity is

C(P ) =
min(nt,nr)∑

i=1
log

(
1 + d2

i · Pi
)
. (3.115)
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3.8.6. AWGN Channels with Receiver Channel
Information

Consider the following complex channel with a vector output:

Y = [H X + Z, H] (3.116)

where Z is proper complex Gaussian, and H is a random variable with
density pH that is independent of X and Z. This problem models a fad-
ing channel where the receiver, but not the transmitter, knows the fading
coefficient H. We choose the cost function s(x, y) = |x|2 and compute

C(P ) = max
PX : E[|X|2]≤P

I(X; [H X + Z, H])

= max
PX : E[|X|2]≤P

I(X;H) + I(X;H X + Z|H)

= max
PX : E[|X2]≤P

I(X;H X + Z|H)

= max
PX : E[|X|2]≤P

∫
a
pH(a)h(aX + Z) da− log(πeN)

=
∫
a
pH(a) · log(1 + |a|2P/N) da (3.117)

where the last step follows by the maximum entropy result (2.44), i.e.,
a Gaussian X with zero mean and variance P simultaneously maximizes
h(aX + Z) for all values of a.

If the fading coefficient H does not have a density then the analysis hardly
changes. For example, suppose that H is a discrete random variable with:
PH(1/2) = 1/4, PH(1) = 1/2, and PH(2) = 1/4. The capacity is

C(P ) = 1
4 log

(
1 + P

4N

)
+ 1

2 log
(

1 + P

N

)
+ 1

4 log
(

1 + 4P
N

)
. (3.118)

We remark that QPSK may perform poorly for fading channels because the
information rate I(X; aX + Z) saturates at 2 bits per symbol even if the
fading coefficient H = a has a large amplitude. Thus, for fading channels it
can be important to use a large modulation set X to approach the capacity
(3.117) that is achieved with a Gaussian distribution.
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3.9. Source and Channel Coding

3.9.1. Separate Coding

Suppose we wish to communicate the output of a DMS PU with entropy
H(U) across a DMC with capacity-cost function C(S). A natural approach
is to separate source and channel coding: compress the DMS output to a
rate close to H(U) bits per source symbol and then communicate these bits
across the DMC reliably at a rate close to C(S) bits per channel symbol.
The overall rate is C(S)/H(U) source symbols per channel symbol.

We wish to prove that other techniques cannot do better. Suppose the
source puts out m symbols Um and we communicate over n channel uses.
A simple modification of Fano’s inequality (3.21) gives

H(Um|Ûm) ≤ H2(Pe) + Pe log2(|U|m − 1)
< H2(Pe) + Pem log2 |U|. (3.119)

We also have H(Um|Ûm) = H(Um)− I(Um; Ûm) and H(Um) = mH(U) so
that

m <
I(Um; Ûm) +H2(Pe)
H(U)− Pe log2 |U|

(a)
≤ I(Xn;Y n) +H2(Pe)

H(U)− Pe log2 |U|
(b)
≤ nC(S) +H2(Pe)
H(U)− Pe log2 |U|

(3.120)

where (a) follows by the data processing inequality and (b) by (3.60)-(3.62).
Now if Pe → 0 then we have the desired bound

m

n
≤ C(S)
H(U) (3.121)

source symbols per channel symbol. Thus, separate source and channel
coding achieves the best possible performance (if we can permit n→∞).

3.9.2. Rates Beyond Capacity

Suppose we permit an average bit error probability

Pb = 1
m

m∑
i=1

Pr
[
Ûi 6= Ui

]
. (3.122)

It turns out that there are source codes that can compress coin-tossing bits
Um to m(1−H2(Pb)) bits from which we can recover a string Ûm that has
an average bit error probability Pb. But we can send the m(1 − H2(Pb))
bits reliably (with average bit error probability near zero) over the channel
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Figure 3.19.: Average bit error probability Pb as a function of (Eb/N0)dB for
a complex AWGN channel. The blue curves are lower bounds
on the best possible Pb given R.

in approximately n = m(1 −H2(Pb))/C(S) channel uses. The overall rate
R = m/n is

R = C(S)
1−H2(Pb) (3.123)

so that we can approach equality in (3.64). For instance, if we permit
Pb = 0.11 then we can approach R = 2C(S) as closely as desired. Moreover,
we can accomplish this task by separate source coding and channel coding.

We further explore the impact of this result. Consider a complex AWGN
channel and suppose we wish to communicate R bits per symbol. We use
(3.64), (3.92), and Es = EbR to compute

Eb
N0
≥ 1
R

(
2R(1−H2(Pb)) − 1

)
. (3.124)

As argued above, we can approach equality in (3.124) by using separate
source and channel coding. For example, for Pb = 0 and R = 1 we compute
Eb/N0 = 1 or (Eb/N0)dB = 0 dB. The minimum (Eb/N0)dB for positive
Pb and R = 1 and R = 2 are plotted in Fig. 3.19 as the curves labeled
“Gauss Lower Bounds”. For instance, if we permit Pb ≈ 0.1 then for R = 1
we can save over 3 dB, or over half, the energy as compared to Pb → 0.
Alternatively, for a fixed Eb/N0, if we increase Pb we may increase R.
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Now suppose we transmit using BPSK without coding. We have R = 1 and

Pb = Q

(√
P

N/2

)
= Q

(√
2Eb
N0

)
(3.125)

since Eb = Es = P/W and N = N0W . Similarly, QPSK has R = 2 and

Pb = Q


√√√√P/2
N/2

 = Q

(√
2Eb
N0

)
(3.126)

since Eb = Es/2 = P/(2W ). Thus, QPSK achieves the same Pb as BPSK
but at double the rate. The resulting Pb are shown in Fig. 3.19 as the
curve labeled “Uncoded BPSK and QPSK”. For instance, uncoded BPSK
and QPSK require (Eb/N0)dB ≈ 9.6 dB for Pb = 10−5, while coding and
Gaussian modulation require only (Eb/N0)dB = 0 dB and (Eb/N0)dB ≈ 1.8
dB for R = 1 and R = 2, respectively. The potential energy savings of
coding and modulation are therefore up to 9.6 dB, or over a factor of 9, as
compared to uncoded BPSK, and up to 7.8 dB, or over a factor of 6, as
compared to uncoded QPSK.
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Figure 3.20.: The capacity-cost problem with feedback.
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Figure 3.21.: FDG for a memoryless channel with feedback. The message
estimate Ŵ is not shown.

3.10. Feedback

Feedback is usually used in communications to improve performance. One
might expect that feedback can increase capacity. To check this, consider a
memoryless channel with feedback in the sense that Xi can be a function of
the message W and a function of the past channel outputs Y i−1. The most
informative feedback would thus be that the transmitter is aware of Y i−1,
as shown in Fig. 3.20 and Fig. 3.21 (the latter figure is also in Sec. A.5).
We slightly modify (3.60) and bound

I(W ; Ŵ ) ≤ I(W ;Y n)

=
n∑
i=1

H(Yi|Y i−1)−H(Yi|WY i−1)

(a)=
n∑
i=1

H(Yi|Y i−1)−H(Yi|WY i−1Xi)

(b)=
n∑
i=1

H(Yi|Y i−1)−H(Yi|Xi)

≤
n∑
i=1

I(Xi;Yi) (3.127)

where (a) follows because Xi is a function ofW and Y i−1, and (b) is because
the channel is memoryless. We have thus arrived at (3.60) and find the
surprising result that feedback does not improve the capacity-cost function
of a discrete memoryless channel [1, 2]. However, we emphasize that feed-
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back can help to reduce complexity and improve reliability, as the following
example shows. Feedback can also increase the capacity of channels with
memory and the capacity of multi-user channels.

Example 3.13. Consider the BEC with feedback of the channel outputs.
The encoder can use a variable-length encoding scheme where each message
bit is repeated until the decoder receives this bit without erasure. The
number N of times that each bit must be transmitted has the geometric
distribution

PN(k) = (1− p)pk−1, k = 1, 2, 3, . . . (3.128)

whose mean is E[N ] = 1/(1 − p). The average rate R is the number of in-
formation bits transmitted divided by the average number of trials, giving
R = 1 − p = C. The benefit of feedback is therefore not in increasing ca-
pacity but in giving a simple (variable-length) coding method that achieves
capacity. In fact, the error probability is zero if one permits infinite delay.
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3.11. Problems

3.1. Block and Bit Error Probability

Prove the relations (3.20).
Hint: Observe that {Ŵ 6= W} = ∪bi=1{V̂i 6= Vi}. Now use the union bound
to upper bound Pe. Finally, try to upper bound 1− Pe.

3.2. BSC with Output Cost

a) Compute the capacity-cost function C(S) for the binary symmetric
channel (BSC) with alphabets X = Y = {0, 1}, crossover probability
Pr [Y 6= X] = p, and the cost function s(x, y) = 2y.

b) Plot C(S) as a function of S for p = 1/3. Is C(S) concave? Explain
what happens when S ∈ [0, 2/3].

3.3. Z-Channel with Sum Cost

a) Compute the capacity-cost function C(S) for the binary “Z-channel”
with

PY |X(0|0) = 1, PY |X(1|0) = 0
PY |X(0|1) = 1/2, PY |X(1|1) = 1/2 (3.129)

and the cost constraint E[X + Y ] ≤ S.
b) Plot C(S) as a function of S.

3.4. Parallel Channel Power Allocation

Prove step (a) in (3.101).

3.5. Gallager Exponent

Prove the three properties of EG(R,PX) given after (3.44).
Hint: Use the result:

d

dx
f(x)g(x) = d

dx
eg(x) ln f(x) =

[
g(x)
f(x)

df(x)
dx

+ dg(x)
dx

ln f(x)
]
f(x)g(x).

3.6. Strong Converse

Consider a code book xn as in (3.28). The ML decoder chooses as its
estimate ŵ = i one of the messages that maximizes PY n|Xn(yn|xn(i)). The
ML decoder thus partitions the set of channel output sequences yn into M
disjoint decoding regions.
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a) Show that the error probability of an ML decoder for any code with
M equally-likely codewords is given by

Pr [E ] = 1−
∑
yn

1
M

max
i
PY n|Xn(yn|xn(i)). (3.130)

b) Now use a = {as}1/s to show that for any s > 0 we have

Pr [E ] ≥ 1−
∑
yn

1
M

{
M∑
i=1

PY n|Xn(yn|xn(i))s
}1/s

. (3.131)

c) Argue that Pr [E ] does not change by permuting the indexes i =
1, 2, . . . ,M . Take the expectation of Pr [E ] over all permutations, each
with probability 1/M !, to show that for s ≥ 1 we have

Pr [E ] ≥ 1−
∑
yn

1
M

{
M∑
i=1

E
[
PY n|Xn(Y n|Xn(i))s

]}1/s

≥ 1−M (1−s)/s max
PXn

∑
yn

{∑
xn
PXn(xn)PY n|Xn(yn|xn)s

}1/s

.

(3.132)

d) Since the channel is memoryless, show that (3.132) reduces to

Pr [E ] ≥ 1−M (1−s)/s max
PX

∑
y

{∑
x

PX(x)P (y|x)s
}1/s

n
(a)= 1− 2−n[−ρR+minPX E0(ρ,PX)] (3.133)

where (a) follows by choosing s = 1/(1 + ρ) for −1 ≤ ρ < 0 and
defining minPX E0(−1, PX) = limρ→−1 minPX E0(ρ, PX).

e) Define

E(R) = max
−1≤ρ<0

[
−ρR + min

PX
E0(ρ, PX)

]
(3.134)

Show that if R > C then we have E(R) > 0. In other words, for large
n the block error probability approaches 1. This result is known as a
strong converse because it shows that the block error probability must
approach 1 as n grows.

3.7. Frame Error Rate

A frame is a block V = [V1, V2, . . . , Vb] of b bits. We map each frame
into a block Xn of n channel symbols. Suppose we send L blocks V i,
i = 1, 2, . . . , L, so the total number of bits and channel symbols is B = L b
and N = Ln, respectively. The rate is R = B/N = b/n and the frame
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error rate (FER) is

PF = 1
L

L∑
i=1

Pr
[
V̂ i 6= V i

]
. (3.135)

a) Suppose we permit coding across frames, i.e., XN is a function of
W = V L. Use Fano’s inequality as in Sec. 3.4 to show that

NR ≤ I(W ; Ŵ )
1−H2(PF )/b− PF log2(2b − 1)/b. (3.136)

We recover (3.25) for b = 1, as should be expected. Show that for
large b we essentially have

R .
I(W ; Ŵ )/N

1− PF
≤ C(S)

1− PF
. (3.137)

b) Show that on can approach equality in (3.137) by discarding a fraction
PF of the frames and transmitting the remaining fraction 1 − PF of
the frames reliably. Is coding across frames required?

c) The above shows that one may transmit at rates above capacity with-
out having PF approach one. How does this result relate to the strong
converse of Problem 3.6? Which result is relevant in practice?
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Chapter 4.

Typical Sequences and Sets

4.1. Typical Sequences

Shannon considered “typical sequences” in his 1948 paper [1]. To illustrate
the idea, consider a discrete memoryless source (DMS), which is a device
that emits symbols from a discrete and finite alphabet X in an independent
and identically distributed (i.i.d.) manner (see Fig. 4.1). Suppose the source
probability distribution is PX(·) where

PX(0) = 2/3 and PX(1) = 1/3. (4.1)

Consider the following experiment: we generated a sequence of length 18
by using a random number generator with the distribution (4.1). We write
this sequence below along with three other sequences that we generated
artificially.

(a) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(b) 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0
(c) 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0
(d) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.

(4.2)

If we compute the probabilities that these sequences were emitted by the
source (4.1), we have

(a) (2/3)18 · (1/3)0 ≈ 6.77 · 10−4

(b) (2/3)9 · (1/3)9 ≈ 1.32 · 10−6

(c) (2/3)11 · (1/3)7 ≈ 5.29 · 10−6

(d) (2/3)0 · (1/3)18 ≈ 2.58 · 10−9.

(4.3)

Thus, the first sequence is the most probable one by a large margin. How-
ever, the reader will likely not be surprised to find out that it is sequence

DMS

PX(·)
. . . , X3, X2, X1

Figure 4.1.: A discrete memoryless source with distribution PX(·).
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90 Chapter 4. Typical Sequences and Sets

(c) that was actually put out by the random number generator. Why is this
intuition correct? To explain this, we must define more precisely what one
might mean by a “typical” sequence.

4.2. Entropy-Typical Sequences

Let xn be a finite sequence whose ith entry xi takes on values in X . We write
X n for the Cartesian product of the set X with itself n times, i.e., we have
xn ∈ X n. Let N(a|xn) be the number of positions of xn having the letter a,
where a ∈ X . For instance, the sequence (c) in (4.2) has N(0|xn) = 11 and
N(1|xn) = 7.

There are several natural definitions for typical sequences. Shannon in [1,
§7] chose a definition based on the entropy of a random variable X. Sup-
pose that Xn is a sequence put out by the DMS PX(·), which means that
PXn(xn) = ∏n

i=1 PX(xi) is the probability that xn was put out by the DMS
PX(·). More generally, we will use the notation

P n
X(xn) =

n∏
i=1

PX(xi). (4.4)

We have P n
X(xn) = 0 if N(a|xn) > 0 for some a /∈ supp(PX) and otherwise

P n
X(xn) =

∏
a∈supp(PX)

PX(a)N(a|xn) (4.5)

Intuitively (see also Example A.15), we know that N(a|xn) ≈ nPX(a) so
that P n

X(xn) ≈ Πa∈supp(PX)PX(a)nPX(a) or

− 1
n

log2 P
n
X(xn) ≈ H(X).

We make this intuition precise by observing that

− 1
n

log2 P
n
X(Xn) = 1

n

n∑
i=1

Yi (4.6)

where Yi = − log2 PX(Xi). We compute E[Yi] = H(X) and note that Var[Yi]
is a finite number, let’s call it σ2. The quantitative version of the weak law
of large numbers (A.78) gives

Pr
[∣∣∣∣− 1

n
log2 P

n
X(Xn)−H(X)

∣∣∣∣ < ε
]
≥ 1− σ2

nε2
(4.7)

Shannon thus defined xn to be typical with respect to ε and PX(·) if∣∣∣∣− 1
n

log2 P
n
X(xn)−H(X)

∣∣∣∣ < ε (4.8)
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for some small positive ε. Alternatively, we can write

H(X)− ε < − 1
n

log2 P
n
X(xn) < H(X) + ε (4.9)

The sequences satisfying (4.8) or (4.9) are sometimes called weakly typical
sequences or entropy-typical sequences [2, p. 40].

Example 4.1. Consider a binary source such as (4.1) but with PX(0) = p
and PX(1) = 1− p. The test (4.8) can be written as

ε >

∣∣∣∣∣−N(0|xn) log2 p−N(1|xn) log2(1− p)
n

−H2(p)
∣∣∣∣∣

=
∣∣∣∣∣
(
N(0|xn)

n
− p

)
log2

1− p
p

∣∣∣∣∣ . (4.10)

where we have used N(1|xn) = n − N(0|xn). For instance, for p = 2/3 as
in (4.1) the bound (4.10) is ∣∣∣∣∣N(0|xn)

n
− 2

3

∣∣∣∣∣ < ε. (4.11)

For example, if n = 18 and ε = 1/9 then only x18 with N(0|x18) = 11, 12, 13
are entropy-typical. If instead ε = 1/18 then only x18 with N(0|x18) = 12
are entropy-typical.

Example 4.2. The source (4.1) has H(X) ≈ 0.9183 and the four sequences
in (4.2) are entropy-typical with respect to ε and PX(·) if (4.11) is satisfied
with n = 18. The required values of ε are as follows:

(a) N(0|x18) = 18 ⇒ ε > 1/3
(b) N(0|x18) = 9 ⇒ ε > 1/6
(c) N(0|x18) = 11 ⇒ ε > 1/18
(d) N(0|x18) = 0 ⇒ ε > 2/3.

(4.12)

Note that sequence (c) permits the smallest ε. The ε values required for
other values of N(0|x18) can be inferred from the last column of Table 4.1.
Observe that if N(0|x18) = 12 then we may choose ε as close to zero as
desired (but not exactly zero).

Example 4.3. If PX(·) is uniform then for any xn we have

P n
X(xn) = |X |−n = 2−n log2 |X | = 2−nH(X) (4.13)

and all sequences in X n are entropy-typical. For example, one can check
that for p = 1/2 the condition (4.10) is always satisfied for positive ε.
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Let T̃ nε (PX) be the set of entropy-typical sequences. The following theorem
describes some of the most important properties of these sequences.

Theorem 4.1. Suppose ε > 0, xn ∈ T̃ nε (PX), and Xn is emitted by the
DMS PX(·). Let σ2 = Var[− log2 PX(X)]. We have

2−n(H(X)+ε) < P n
X(xn) < 2−n(H(X)−ε) (4.14)(

1− σ2

nε2

)
2n(H(X)−ε) < |T̃ nε (PX)| < 2n(H(X)+ε) (4.15)

1− σ2

nε2
≤ Pr

[
Xn ∈ T̃ nε (PX)

]
≤ 1. (4.16)

Proof. The expression (4.14) is the same as (4.8), and the left-hand side of
(4.16) is simply (4.7). For (4.15) observe that

Pr
[
Xn ∈ T̃ nε (PX)

]
=

∑
xn∈T̃nε (PX)

P n
X(xn)

< |T̃ nε (PX)| 2−n(H(X)−ε) (4.17)

where the inequality follows by (4.14). Using (4.16) we thus have

|T̃ nε (PX)| >
(

1− σ2

nε2

)
2n(H(X)−ε). (4.18)

We may similarly derive the right-hand side of (4.15). �

Theorem 4.1 gives quantitative bounds on typical sequences and sets. For
example, the source (4.1) hasH(X) ≈ 0.9183 and σ2 = 2/11, and for n = 18
and ε = 1/6 the bounds of Theorem 4.1 are

0.00000132 < P n
X(xn) < 0.0000846 (4.19)

6, 568 < |T̃ nε (PX)| < 756, 681 (4.20)
5/11 ≤ Pr

[
Xn ∈ T̃ nε (PX)

]
≤ 1. (4.21)

However, it is usually easier to remember the qualitative statements:

P n
X(xn) ≈ 2−nH(X) (4.22)
|T̃ nε (PX)| ≈ 2nH(X) (4.23)
Pr
[
Xn ∈ T̃ nε (PX)

]
≈ 1. (4.24)

Of course, these qualitative statements should be used to guide intuition
only; they are no substitutes for the precise quantitative bounds.
Finally, we remark that entropy typicality applies to continuous random
variables with a density with finite variance if we replace the probability
P n
X(xn) in (4.8) with the density value pnX(xn), and if we replace the entropy
H(X) with the differential entropy h(X) treated in Chapter 2. In contrast,
the next definition can be used only for discrete random variables.
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Table 4.1.: Example with k = N(0|xn), n = 18, p = 2/3.
Seq. k

(
n
k

)
≈ pk(1− p)n−k ≈

(
n
k

)
pk(1− p)n−k − 1

n
log2 P

n
X(xn)−H(X)

(d) 0 1 0.00000000258 0.00000000258 2/3
1 18 0.00000000516 0.0000000929 11/18
2 153 0.0000000103 0.00000158 5/11
3 816 0.0000000206 0.0000169 1/2
4 3,060 0.0000000413 0.000126 4/11
5 8,568 0.0000000826 0.000708 7/18
6 18,564 0.000000165 0.00307 1/3
7 31,824 0.000000330 0.0105 5/18
8 43,758 0.000000661 0.0289 2/11

(b) 9 48,620 0.00000132 0.0643 1/6
10 43,758 0.00000264 0.116 1/11

(c) 11 31,824 0.00000529 0.168 1/18
∗ 12 18,564 0.0000106 0.196 0

13 8,568 0.0000211 0.181 -1/18
14 3,060 0.0000432 0.129 -1/11
15 816 0.0000846 0.0690 -1/6
16 153 0.000169 0.0259 -2/11
17 18 0.000338 0.00609 -5/18

(a) 18 1 0.000677 0.000677 -1/3
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4.3. Letter-Typical Sequences

A perhaps more natural definition for discrete random variables than (4.8)
is the following. For ε ≥ 0, we say that a sequence xn is ε-letter typical with
respect to ε and PX(·) if the empirical probability distribution N(·|xn)/n is
close to PX(·). More precisely, we require∣∣∣∣∣N(a|xn)

n
− PX(a)

∣∣∣∣∣ ≤ ε · PX(a) for all a ∈ X (4.25)

or, alternatively, we require that for all a ∈ X we have

(1− ε) · PX(a) ≤ N(a|xn)
n

≤ (1 + ε) · PX(a). (4.26)

The set of xn satisfying (4.25) is called the ε-letter-typical set with respect
to ε and PX(·) and is denoted T nε (PX).

Example 4.4. Consider again a binary source with PX(0) = 1 − p and
PX(1) = p. The two tests (4.25) are∣∣∣∣∣N(1|xn)

n
− p

∣∣∣∣∣ ≤ ε ·min {1− p, p} (4.27)

where we have used N(0|xn) = n − N(1|xn). The rule (4.27) looks similar
to (4.10). For instance, for p = 1/3 as in (4.1) the sequences in (4.2) are
letter-typical with respect to ε and PX(·) if

(a) ε ≥ 1
(b) ε ≥ 1/2
(c) ε ≥ 1/6
(d) ε ≥ 2.

(4.28)

The numbers are thus increased by a factor of 3 as compared to (4.12).

Example 4.5. If PX(·) is uniform then ε-letter typical xn satisfy

(1− ε)n
|X |

≤ N(a|xn) ≤ (1 + ε)n
|X |

, for all a ∈ X . (4.29)

But if ε < |X | − 1, as is usually the case, then not all xn are letter-typical.
The definition (4.25) is then more restrictive than (4.8) (see Example 4.3).

Example 4.6. If PX(a) = 0 then (4.25) requires N(a|xn) = 0.
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Example 4.7. If PX(a) > 0 but N(a|xn) = 0 then (4.25) requires

PX(a) ≤ ε · PX(a). (4.30)

Typical sequences with ε < 1 must therefore have all non-zero probability
letters appearing at least once in xn.

We will rely on letter typicality for discrete random variables and entropy
typicality for continuous random variables. We remark that one often finds
small variations of the conditions (4.25). For example, for strongly typical
sequences one replaces the εPX(a) on the right-hand side of (4.25) with
ε or ε/|X | (see [2, p. 33] and [3, p. 288 and p. 358]). One further adds
the condition that N(a|xn) = 0 if PX(a) = 0 so that typical sequences
cannot have zero-probability letters. Observe that this condition is already
included in (4.25) (see Example 4.6). Letter-typical sequences are simply
called “typical sequences” in [4] and “robustly typical sequences” in [5]. In
general, by the label “letter-typical” we mean any choice of typicality where
one performs a per-alphabet-letter test on the empirical probabilities.
We next develop a counterpart to Theorem 4.1 but with a bound on the
probability that sequences are typical that is exponential in n. Let µX =
mina∈supp(PX) PX(a) and define

δε(PX , n) = 2|X | · e−2nε2µ2
X . (4.31)

Observe that δε(PX , n)→ 0 for fixed PX , fixed ε with ε > 0, and n→∞.

Theorem 4.2. Suppose ε ≥ 0, xn ∈ T nε (PX), and Xn is emitted by the
DMS PX(·). We have

2−n(1+ε)H(X) ≤ P n
X(xn) ≤ 2−n(1−ε)H(X) (4.32)

(1− δε(PX , n)) 2n(1−ε)H(X) ≤ |T nε (PX)| ≤ 2n(1+ε)H(X) (4.33)
1− δε(PX , n) ≤ Pr [Xn ∈ T nε (PX)] ≤ 1. (4.34)

Proof. Consider (4.32). For xn ∈ T nε (PX), we have

P n
X(xn) (a)=

∏
a∈supp(PX)

PX(a)N(a|xn)

(b)
≤

∏
a∈supp(PX)

PX(a)nPX(a)(1−ε)

= 2
∑

a∈supp(PX ) n(1−ε)PX(a) log2 PX(a)

= 2−n(1−ε)H(X) (4.35)

where (a) follows because a with PX(a) = 0 cannot appear in typical xn,
and where (b) follows because xn satisfies N(a|xn)/n ≥ PX(a)(1− ε). One
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can similarly prove the left-hand side of (4.32). We prove (4.34) in Ap-
pendix 4.10. For (4.33) we may use the same steps as in (4.17). �

As does Theorem 4.1, Theorem 4.2 gives quantitative bounds on typical
sequences and sets. The corresponding qualitative statements are basically
the same as in (4.22)-(4.24):

P n
X(xn) ≈ 2−nH(X) (4.36)
|T nε (PX)| ≈ 2nH(X) (4.37)
Pr [Xn ∈ T nε (PX)] ≈ 1. (4.38)
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Source Encoder
Source Decoder Sink

PX(·)
WXn X̂n(W )

Figure 4.2.: The source coding problem.

4.4. Source Coding with Typical Sequences

The source coding problem is depicted in Fig. 4.2. A DMS PX(·) emits a
string xn of symbols that are passed to an encoder. The source encoder
puts out an index w and sends w to the decoder. The decoder reconstructs
xn from w as x̂n(w), and is said to be successful if x̂n(w) = xn.
The source encoding can be done in several ways, as we have already seen
in earlier chapters. For example, we may use

• block-to-block coding
• block-to-variable-length coding
• variable-length-to-block coding
• variable-length to variable-length coding.

We here consider the first two approaches. Let L(xn) be the number of
bits transmitted for xn. The goal is to minimize the average rate R =
E[L(Xn)] /n.
Consider first a block-to-variable-length encoder. We treat the sequences
xn differently depending on whether they are typical or not.

• Assign each sequence in T nε (PX) a unique positive integer w. Accord-
ing to (4.33), w can be represented by at most dn(1 + ε)H(X)e bits.
If a typical xn is put out by the source, then the encoder sends a “0”
followed by the dn(1 + ε)H(X)e bits that represent xn.

• If a non-typical xn is put out by the source, then the encoder sends a
“1” followed by dn log2 |X |e bits that represent xn.

The idea is that xn is typical with high probability, and there are about
2nH(X) such sequences that we can represent with H(X) bits per source
symbol. In fact, the average compression rate is upper bounded by

R = E[L] /n = Pr [Xn ∈ T nε (PX)] E[L|Xn ∈ T nε (PX)] /n
+ Pr [Xn /∈ T nε (PX)] E[L|Xn /∈ T nε (PX)] /n
≤ Pr [Xn ∈ T nε (PX)] [(1 + ε)H(X) + 2/n]

+ Pr [Xn /∈ T nε (PX)] (log2 |X |+ 2/n)
≤ (1 + ε)H(X) + 2/n+ δε(PX , n)(log2 |X |+ 2/n). (4.39)

But since δε(PX , n) → 0 as n → ∞, we can transmit at any rate above
H(X) bits per source symbol, as expected.
Suppose next that we use a block-to-block encoder. We use the same en-
coding as above if xn is typical, but we now declare an error if xn is not
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typical, and for this we reserve the all-zeros sequence. The rate is therefore
bounded by

R ≤ 1
n

(dn(1 + ε)H(X)e+ 1)

≤ (1 + ε)H(X) + 2/n. (4.40)

The error probability is upper bounded by δε(PX , n). By making ε small
and n large, we can transmit at any rate above H(X) bits per source symbol
with a vanishing error probability .

But what about a converse result? Can one compress with a small er-
ror probability, or even zero error probability, at rates below H(X)? We
will prove a converse for block-to-block encoders only, since the block-to-
variable-length case requires somewhat more work.

Consider Fano’s inequality which ensures us that

H2(Pe) + Pe log2(|X |n − 1) ≥ H(Xn|X̂n) (4.41)

where Pe = Pr
[
X̂n 6= Xn

]
. Recall that there are at most 2nR different

sequences x̂n, and that x̂n is a function of xn. We thus have

nR ≥ H(X̂n)
= H(X̂n)−H(X̂n|Xn)
= I(Xn; X̂n)
= H(Xn)−H(Xn|X̂n)
= nH(X)−H(Xn|X̂n)
(a)
≥ n

[
H(X)− H2(Pe)

n
− Pe log2 |X |

]
(4.42)

where (a) follows by (4.41). Since we require that Pe be zero, or to be very
small, we find that R ≥ H(X) for block-to-block encoders. This is the
desired converse.

We remark that the above method constructs a code that achieves the best-
possible compression rate. However, implementing such a code requires a
look-up table of size 2dn(1+ε)H(X)e that grows exponentially with n, and an
exponential growth rate is completely impractical even for relatively small
n. For example, if H(X) = 1/2 and n = 1000 symbols, then the table has
over 2500 entries. As a comparison, an estimate of the number of hydrogen
atoms in the visible universe is “only” about 1080 ≈ 2266. This example
demonstrates the importance of having simple encoders (functions mapping
xn to w) and simple decoders (functions mapping w to xn) that approach
the rate of H(X) bits per source symbol.

Yet another important task is to develop universal encoders and decoders
that can compress a sequence Xn with memory and unknown statistics to
a small number of bits per source symbol. A natural approach to such
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problems is to have the encoders and decoders effectively learn the source
statistics before or during compression and decompression, respectively.
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4.5. Jointly Typical Sequences

Let N(a, b|xn, yn) be the number of times the pair (a, b) occurs in the se-
quence of pairs (x1, y1), (x2, y2), . . . , (xn, yn). The jointly ε-letter typical set
with respect to PXY (·) is simply

T nε (PXY ) =
{

(xn, yn) :
∣∣∣∣ 1nN(a, b|xn, yn)− PXY (a, b)

∣∣∣∣
≤ ε · PXY (a, b) for all (a, b) ∈ X × Y} . (4.43)

The reader can check that (xn, yn) ∈ T nε (PXY ) implies both xn ∈ T nε (PX)
and yn ∈ T nε (PY ) (see Problem 4.3).

Example 4.8. Consider the joint distribution

PXY (0, 0) = 1/3, PXY (0, 1) = 1/3
PXY (1, 0) = 1/3, PXY (1, 1) = 0 (4.44)

and choose ε = 0. The joint typicality tests in (4.43) are simply

N(a, b|xn, yn)
n

= PXY (a, b) (4.45)

and the empirical distribution must match the desired distribution exactly.
Thus n must be a multiple of 3 and T n0 (PXY ) is the set of all n!/[(n/3)!]3
strings of pairs with exactly n/3 pairs being (0, 0), (0, 1), and (1, 0). For
example, for n = 18 this gives |T 18

0 (PXY )|=17,153,136 strings of pairs.

Joint typicality is a special case of the usual typicality since we can view the
wordXY as a random variable Z. However, an interesting experiment is the
following. Suppose X̃n and Ỹ n are output by the statistically independent
sources PX(·) and PY (·), as shown in Fig. 4.3. We are interested in the
probability that (X̃n, Ỹ n) ∈ T nε (PXY ) for some joint distribution PXY (·)
that has marginals PX(·) and PY (·). We use Theorem 4.2 to bound

Pr
[
(X̃n, Ỹ n) ∈ T nε (PXY )

]
=

∑
(x̃n,ỹn)∈Tnε (PXY )

P n
X(x̃n)P n

Y (ỹn)

≤ 2n(1+ε)H(XY ) 2−n(1−ε)H(X) 2−n(1−ε)H(Y )

= 2−n[I(X;Y )−ε(H(XY )+H(X)+H(Y ))]. (4.46)

We similarly have

Pr
[
(X̃n, Ỹ n) ∈ T nε (PXY )

]
≥ (1− δε(PXY , n)) 2−n[I(X;Y )+ε(H(XY )+H(X)+H(Y ))] (4.47)

so that

Pr
[
(X̃n, Ỹ n) ∈ T nε (PXY )

]
≈ 2−nI(X;Y ). (4.48)
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Ỹ n

PX

PY

X̃n

Figure 4.3.: A random experiment with two independent sources.

The result (4.48) has important consequences for source and channel coding.
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4.6. Conditionally Typical Sequences

We next study conditional typicality which is more subtle than joint typi-
cality. Consider the conditional distribution PY |X(·) and define

P n
Y |X(yn|xn) =

n∏
i=1

PY |X(yi|xi) (4.49)

T nε (PXY |xn) = {yn : (xn, yn) ∈ T nε (PXY )} . (4.50)

Observe that T nε (PXY |xn) = ∅ if xn is not in T nε (PX).

Example 4.9. Consider the joint distribution of Example 4.8. The distri-
bution PX(·) is (4.1) and for ε = 0 and n = 18 the set T 18

0 (PX) has the
(

18
6

)
sequences with 12 zeros and 6 ones. Consider the typical sequence

x18 = 000000000000111111. (4.51)

We find that T 18
0 (PXY |x18) is the set of

(
12
6

)
strings y18 with 6 zeros and

6 ones in the first twelve positions, followed by 6 zeros. For example, the
following string is in T 18

0 (PXY |x18):

y18 = 000000111111000000. (4.52)

The joint empirical distribution N(·|x18, y18)/18 is thus exactly PXY (·).

We shall need the following counterpart of δε(PX , n) in (4.31):

δε1,ε2(PXY , n) = 2|X ||Y| exp
(
−2n · (1− ε1) ·

(
ε2 − ε1
1 + ε1

)2
· µ2

XY

)
(4.53)

where µXY = min(a,b)∈supp(PXY ) PXY (a, b) and 0 ≤ ε1 < ε2. Note that
δε1,ε2(PXY , n)→ 0 as n→∞. Also note from (4.31) that

δε2(PXY , n) ≤ δε1,ε2(PXY , n). (4.54)

In the Appendix, we prove the following theorem that generalizes Theo-
rem 4.2 to include conditioning.

Theorem 4.3. Suppose 0 ≤ ε1 < ε, (xn, yn) ∈ T nε1(PXY ), and (Xn, Y n) was
emitted by the DMS PXY (·). We have

2−nH(Y |X)(1+ε1) ≤ P n
Y |X(yn|xn) ≤ 2−nH(Y |X)(1−ε1) (4.55)

(1− δε1,ε(PXY , n)) 2nH(Y |X)(1−ε) ≤ |T nε (PXY |xn)| ≤ 2nH(Y |X)(1+ε) (4.56)
1− δε1,ε(PXY , n) ≤ Pr [Y n ∈ T nε (PXY |xn) |Xn = xn] ≤ 1. (4.57)
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Consider now the probability in (4.57) except without conditioning on the
event Xn = xn. This means that Y n is generated independent of xn.

Theorem 4.4. Consider PXY (·) and suppose 0 ≤ ε1 < ε, Y n is emitted by
a DMS PY (·), and xn ∈ T nε1(PX). We have

(1− δε1,ε(PXY , n)) 2−n[I(X;Y )+2εH(Y )]

≤ Pr [Y n ∈ T nε (PXY |xn)] ≤ 2−n[I(X;Y )−2εH(Y )]. (4.58)

Proof. The upper bound follows by (4.55) and (4.56):

Pr [Y n ∈ T nε (PXY |xn)] =
∑

yn∈Tε(PXY |xn)
P n
Y (yn)

≤ 2nH(Y |X)(1+ε) 2−nH(Y )(1−ε)

≤ 2−n[I(X;Y )−2εH(Y )] (4.59)

The lower bound also follows from (4.55) and (4.56). �

For small ε1 and ε, large n, typical (xn, yn), and (Xn, Y n) emitted by a DMS
PXY (·), we thus have the qualitative statements:

P n
Y |X(yn|xn) ≈ 2−nH(Y |X) (4.60)
|T nε (PXY |xn)| ≈ 2nH(Y |X) (4.61)
Pr [Y n ∈ T nε (PXY |xn) |Xn = xn] ≈ 1 (4.62)
Pr [Y n ∈ T nε (PXY |xn)] ≈ 2−nI(X;Y ). (4.63)

We remark that the probabilities in (4.57) and (4.58) (or (4.62) and (4.63))
differ only in whether or not one conditions on Xn = xn.

Example 4.10. Suppose X and Y are independent, in which case the
approximations (4.62) and (4.63) both give

Pr [Y n ∈ T nε (PXY |xn)] ≈ 1. (4.64)

However, the precise version (4.58) of (4.63) is trivial for I(X;Y ) = 0 and
large n. One must therefore exercise caution when working with approxi-
mations such as (4.36)-(4.38) or (4.60)-(4.63).

Example 4.11. Suppose that X = Y so that (4.63) gives

Pr [Y n ∈ T nε (PXY |xn)] ≈ 2−nH(X). (4.65)

This result should not be surprising because |T nε (PX)| ≈ 2nH(X) and we are
computing the probability of the event Xn = xn for some xn ∈ T nε1(PX) (the
fact that ε is larger than ε1 does not play a role for large n).
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4.7. Mismatched Typicality

Consider the event that a DMS PX(·) happens to put out a sequence x̃n in
T nε (PX̃) where PX̃(·) could be different than PX(·). We refer to this situation
as mismatched typicality.

Suppose first there is a letter a with PX(a) = 0 but PX̃(a) > 0. Example 4.7
shows that if ε < 1 then x̃n ∈ T nε (PX̃) implies that N(a|xn) > 0. But such
x̃n have zero-probability of being put out by the DMS PX(·). Hence we
have Pr [Xn ∈ T nε (PX̃)] = 0 for ε < 1. More interestingly, we next consider
PX̃ � PX (see Sec. 1.7).

Theorem 4.5. Suppose ε ≥ 0, Xn is emitted by the DMS PX(·), and
PX̃ � PX . We then have

(1− δε(PX̃ , n)) 2−n[D(PX̃‖PX)−ε log2(µX̃µX)]

≤ Pr [Xn ∈ T nε (PX̃)] ≤ 2−n[D(PX̃‖PX)+ε log2(µX̃µX)]. (4.66)

Proof. Consider x̃n ∈ T nε (PX̃) and compute

P n
X(x̃n) =

∏
a∈supp(PX̃)

PX(a)N(a|x̃n)

≤
∏

a∈supp(PX̃)
PX(a)nPX̃(a)(1−ε)

= 2
∑

a∈supp(P
X̃

) n(1−ε)PX̃(a) log2 PX(a)
. (4.67)

Note that the sum is over supp(PX̃) and not supp(PX). A similar lower
bound on P n

X(x̃n) follows as above. We use (4.33) and (4.67) to bound

Pr [Xn ∈ T nε (PX̃)] =
∑

x̃n∈Tnε (PX̃)
P n
X(x̃n)

≤ 2n(1+ε)H(X̃) 2
∑

a∈supp(P
X̃

) n(1−ε)PX̃(a) log2 PX(a)

≤ 2−n
∑

a∈supp(P
X̃

)(1+ε)PX̃(a) log2 PX̃(a)−(1−ε)PX̃(a) log2 PX(a)

≤ 2−n[D(PX̃‖PX)+ε log2(µX̃µX)]. (4.68)

The lower bound in (4.66) follows similarly. �

For small ε, large n, and Xn emitted by a DMS PX(·), we thus have the
qualitative result

Pr [Xn ∈ T nε (PX̃)] ≈ 2−nD(PX̃‖PX) . (4.69)

Note that (4.69) is true for small ε whether PX̃ � PX or PX̃ � PX .
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Example 4.12. Suppose PX̃ = PX so that (4.69) gives

Pr [Xn ∈ T nε (PX̃)] ≈ 1 (4.70)

as expected. Note, however, that the precise version (4.66) is trivial for
large n. This example shows that one must exercise caution when working
with the approximation (4.69).

Example 4.13. Suppose a vector source PXPY puts out the pair XnY n.
We wish to determine the probability that XnY n is typical with respect to
the joint distribution PXY . Theorem 4.5 gives

(1− δε(PXY , n)) 2−n[I(X;Y )−ε log2(µXY µXµY )]

≤ Pr [(Xn, Y n) ∈ T nε (PXY )] ≤ 2−n[I(X;Y )+ε log2(µXY µXµY )]. (4.71)

Thus, Theorem 4.5 effectively generalizes (4.46)-(4.47) and Theorem 4.4.

Example 4.14. Suppose PX is uniform so that PX̃ � PX for any PX̃ . We
have

D(PX̃‖PX) = log2 |X | −H(X̃) (4.72)

and (4.69) gives

Pr [Xn ∈ T nε (PX̃)] ≈ 2nH(X̃)

|X |n
. (4.73)

The entropy H(X̃) is thus a simple measure for the probability that a
uniform X is empirically like X̃.
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4.8. Entropy-Typicality for Gaussian
Variables

As mentioned at the end of Sec. 4.2, we cannot use letter-typicality for
continuous random variables. For example, consider a Gaussian random
variable X with density (see (2.18))

pX(a) = 1√
2πσ2

e−
1

2σ2 (a−m)2 (4.74)

where m = E[X] and σ2 = Var[X] is the variance of X. The trouble with
applying a letter-typicality test is that the probability mass function PX(x)
is zero for any letter x. However, we can use entropy-typicality if we replace
distributions PX(·) with densities pX(·), and if we replace the entropy H(X)
with the differential entropy h(X).

For example, we find that xn is entropy-typical with respect to the Gaussian
density (4.74) if∣∣∣∣∣− 1

n
log

(
n∏
i=1

1√
2πσ2

e−
(xi−m)2

2σ2

)
− 1

2 log(2πeσ2)
∣∣∣∣∣ < ε

⇔
∣∣∣∣∣
(

1
n

n∑
i=1

(xi −m)2
)
− σ2

∣∣∣∣∣ < 2σ2

log(e)ε. (4.75)

We can interpret (4.75) as follows for small ε: an ”empirical variance” of xn
is close to σ2.1 Alternatively, if m = 0 the power of xn is close to σ2.

Consider next joint entropy-typicality. We will say that (xn, yn) is jointly
entropy-typical with respect to the density pXY (·) if the following three
conditions are satisfied:∣∣∣∣∣− log pnX(xn)

n
− h(X)

∣∣∣∣∣ < ε (4.76)∣∣∣∣∣− log pnY (yn)
n

− h(Y )
∣∣∣∣∣ < ε (4.77)∣∣∣∣∣− log pnXY (xn, yn)

n
− h(XY )

∣∣∣∣∣ < ε (4.78)

The reason we require three conditions rather than one is because (4.78)
does not necessarily imply (4.76) or (4.77).

Consider a Gaussian density (see (2.21))

pXY (a) = 1
2π |QXY |1/2

exp
(
−1

2(a−m)TQ−1
XY (a−m)

)
(4.79)

1The name ”empirical variance” is not really a good choice, because this would naturally
be interpreted to be 1

n

∑n
i=1(xi − m(xn))2 where m(xn) = 1

n

∑n
i=1 xi. Instead, in

(4.75) we are using the random variable mean m = E[X] rather than the empirical
mean m(xn).
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with covariance matrix (see (2.23))

QXY =
[
σ2
X ρ σXσY
ρ σXσY σ2

Y

]
. (4.80)

Suppose that ε is small. We know that (4.76) means ∑n
i=1 x

2
i ≈ nσ2

X , and
similarly (4.77) means ∑n

i=1 y
2
i ≈ nσ2

Y . For (4.78) we compute∣∣∣∣∣
(

1
n

n∑
i=1

[xi yi] Q−1
XY

[
xi
yi

])
− 2

∣∣∣∣∣ < 2
log(e)ε. (4.81)

For example, suppose that Y = X +Z where Z is independent of X and Z
is a Gaussian random variable with zero mean and variance σ2

Z . We have

QXY =
[
σ2
X σ2

X

σ2
X σ2

X + σ2
Z

]
(4.82)

and (4.81) becomes∣∣∣∣∣ 1n
n∑
i=1

(
(yi − xi)2

σ2
Z

+ x2
i

σ2
X

)
− 2

∣∣∣∣∣ < 2
log(e)ε. (4.83)

We thus find that, in combination with (4.76), the sequences xn and yn

must have a Euclidean distance ∑n
i=1(yi − xi)2 ≈ nσ2

z (or ∑n
i=1 z

2
i ≈ nσ2

z).

Example 4.15. Consider n = 1, mX = mZ = 0, σ2
X = σ2

Z = 1, and
ε = 0.4. We use the logarithm to the base 2. The conditions (4.76)-(4.78)
are satisfied if

|x2 − 1| < 0.55 ... see (4.75) (4.84)
|y2 − 2| < 1.1 (4.85)
|(y − x)2 + x2 − 2| < 0.55 ... see (4.83). (4.86)

The contours of the first two regions are shown in Fig. 4.4 as vertical and hor-
izontal lines. The contours of the third region are ellipses. The jointly typ-
ical points (x, y) where all three conditions are satisfied are shaded. These
are the points that we expect to observe.
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Figure 4.4.: Contour plot for the entropy-typicality conditions.
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4.9. Problems

4.1. Entropy Typicality 1

Let T̃ nε (PX) and T̃ nε (PXY ) be the sets of entropy-typical sequences:

T̃ nε (PX) =
{
x̃n :

∣∣∣∣∣− log2 P
n
X(x̃n)

n
−H(X)

∣∣∣∣∣ < ε

}
(4.87)

T̃ nε (PXY ) =
{

(x̃n, ỹn) :
∣∣∣∣∣− log2 P

n
XY (x̃n, ỹn)
n

−H(XY )
∣∣∣∣∣ < ε

}
. (4.88)

Consider yi = f(xi) for some function f(·) and all i = 1, 2, . . . , n. Let
Y = f(X).

a) Show that, for entropy-typical sequences, joint typicality (4.88) does
not always imply marginal typicality (4.87), i.e., show that there are
(xn, yn) ∈ T̃ nε (PXY ) for which xn /∈ T̃ nε (PX).
Hint: Try binary X and Y and n = 1.

b) Prove that xn ∈ T̃ nε (PX) if and only if (xn, yn) ∈ T̃ nε (PXY ).
Also prove that ỹn 6= yn implies (xn, ỹn) /∈ T̃ nε (PXY ).

4.2. Entropy Typicality 2

Verify (4.81)-(4.83).

4.3. Letter Typicality

a) Let T nε (PX) and T nε (PXY ) be ε-letter typical sets. Consider X =
{0, 1} and PX(0) = PX(1) = 1/2. What is T 1

1/3(PX), T 2
1/3(PX), and

T 3
1/3(PX)?

b) Prove that joint typicality implies marginal typicality.
c) Let yn satisfy yi = f(xi) for some function f(·) and all i = 1, 2, . . . , n.

Prove that xn ∈ T nε (PX) if and only if (xn, yn) ∈ T nε (PXY ) where
Y = f(X).

4.4. Letter Typicality with ε instead of ε PX(a)

Let T̃ nε (PX) and T̃ nε (PXY ) now be the sets

T̃ nε (PX) =
{
xn :

∣∣∣∣∣N(a|xn)
n

− PX(a)
∣∣∣∣∣ < ε

}
(4.89)

T̃ nε (PXY ) =
{

(xn, yn) :
∣∣∣∣∣N(a, b|xn, yn)

n
− PXY (a, b)

∣∣∣∣∣ < ε

}
. (4.90)

Show that joint typicality does not necessarily imply marginal typicality,
i.e., show that there are (xn, yn) ∈ T̃ nε (PXY ) for which xn /∈ T̃ nε (PX).
Hint: Try binary X and Y , uniform PXY (·), n = 2, and ε = 1/4.
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4.5. Sequence Typicality

A per-letter typicality test can be converted into a single test by adding the
tests over all letters. For instance, consider the sum of (4.25) over all letters
a which is

∑
a∈X

∣∣∣∣ 1nN(a|xn)− PX(a)
∣∣∣∣ ≤ ε. (4.91)

Does property (4.25) (or (4.32)) remain valid for xn satisfying (4.91)?

4.6. Typicality is Typical

Verify the steps of the proof of (4.34) given in Appendix 4.10.
Similarly verify the steps of the proof of Theorem 4.3 given in Appendix 4.10.

4.7. A Simpler Bound

Use Tchebycheff’s inequality to prove another version of (4.34), namely

Pr [Xn ∈ T nε (PX)] ≥ 1− |X |
nε2µX

. (4.92)

Next, use (4.92) and (4.32) to derive a bound on |T nε (PX)| and compare this
with (4.33).
Hint: To prove (4.92), you can use N(a|xn) = ∑n

i=1 1(Xi = a) where 1(·) is
the indicator function that takes on the value 1 if its argument is true, and
otherwise is 0. Now show that Var[1(Xi = a)] = PX(a)(1− PX(a)).

4.8. Source Coding with Side Information

Consider the source coding problem of Fig. 4.2 but now suppose the DMS
is PXY , the source encoder is given Xn and Y n, and the decoder is given
Y n. Use Theorem 4.3 to show that there are variable-length encoders for
which R is close to H(X|Y ) and the decoder can recover Xn. Next, show
that H(X|Y ) is the best possible rate for low-error block-to-block encoding.
(Note: the Y n for this problem is often called “side information”.)

4.9. Mismatched Typicality

Suppose Xn, Y n, Zn are output by the statistically independent sources
PX(·), PY (·), PZ(·).

a) Bound the probability that (Xn, Y n, Zn) ∈ T nε (PXY Z) if PXY Z(·) has
marginals PX(·), PY (·), PZ(·).
Hint: Use Theorem 4.5.

b) Simplify the expression if PXY Z(·) = PXPY |XPZ|X .
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4.10. Typicality-Testing Decoders

The proof of the channel coding theorem is often done by using decoders
that test for typicality rather than ML decoders. Suppose that, given yn,
the decoder chooses ŵ as (one of) the message(s) w for which

(xn(w), yn) ∈ T nε (PXY ). (4.93)

If no such w exists, then the decoder puts out the default value ŵ = 1.

a) Consider the events

E(w̃) = {(Xn(w̃), Y n) ∈ T nε (PXY )}. (4.94)

Show that

Pr [E(1)|W = 1] ≥ 1− δε(PXY , n) (4.95)
Pr [E(w̃)|W = 1] ≤ 2−n[I(X;Y )−ε(H(XY )+H(X)+H(Y ))] (4.96)

for w̃ 6= 1, where (see (4.31))

δε(PXY , n) = 2|X ||Y| · e−2nε2µ2
XY . (4.97)

b) Now show that

Pr [E ] ≤ δε(PXY , n) + (2nR − 1) · 2−n[I(X;Y )−ε(H(XY )+H(X)+H(Y ))].
(4.98)

Thus, we may replace the ML decoder with a decoder that tests (4.93).
Both decoders show that if (3.46) is satisfied then one can make the
block error probability small for large n.

c) Using (4.98), find the largest ET (R,PX) for which we can write

Pr [E ] ≤ a · 2−nET (R,PX) (4.99)

for some constant a that is independent of R and PX . Compare this
ET (R,PX) to EG(R,PX). Which is better?
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4.10. Appendix: Proofs

Proof of (4.34)

The right-hand side of (4.34) is trivial. For the left-hand side, consider first
PX(a) = 0 for which we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
= 0. (4.100)

Next, suppose that PX(a) > 0. Using the Chernoff bound, we have

Pr
[
N(a|Xn)

n
> PX(a)(1 + ε)

]
≤ Pr

[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ E

[
eνN(a|Xn)/n

]
e−νPX(a)(1+ε) ν > 0

=
[

n∑
m=0

Pr [N(a|Xn) = m] eνm/n
]
e−νPX(a)(1+ε)

=
[

n∑
m=0

(
n

m

)
PX(a)m(1− PX(a))n−meνm/n

]
e−νPX(a)(1+ε)

=
[
(1− PX(a)) + PX(a)eν/n

]n
e−νPX(a)(1+ε). (4.101)

Optimizing (4.101) with respect to ν, we find that

ν =∞ if PX(a)(1 + ε) ≥ 1
eν/n = (1−PX(a))(1+ε)

1−PX(a)(1+ε) if PX(a)(1 + ε) < 1. (4.102)

In fact, the Chernoff bound correctly identifies the probabilities to be 0 and
PX(a)n for the cases PX(a)(1 + ε) > 1 and PX(a)(1 + ε) = 1, respectively.
More interestingly, for PX(a)(1 + ε) < 1 we insert (4.102) into (4.101) and
obtain

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ 2−nD(PB‖PA) (4.103)

where A and B are binary random variables with

PA(0) = 1− PA(1) = PX(a)
PB(0) = 1− PB(1) = PX(a)(1 + ε). (4.104)

We can write PB(0) = PA(0)(1 + ε) and hence

D (PB‖PA) = PA(0)(1 + ε) log2(1 + ε)

+ [1− PA(0)(1 + ε)] log2

(
1− PA(0)(1 + ε)

1− PA(0)

)
. (4.105)

We wish to lower bound (4.105). A convenient bound is Pinsker’s inequality
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(see Theorem 1.7) which states that for any distributions PA and PB with
the same alphabet X we have

D(PB‖PA) ≥ log2(e)
2

[∑
a∈X
|PB(a)− PA(a)|

]2

(4.106)

Using (4.106) for our problem, we have

D (PB‖PA) ≥ 2ε2PX(a)2 log2(e) (4.107)

and combining (4.103) and (4.107) we arrive at

Pr
[
N(a|Xn)

n
≥ PX(a)(1 + ε)

]
≤ e−2nε2PX(a)2

. (4.108)

One can similarly bound

Pr
[
N(a|Xn)

n
≤ PX(a)(1− ε)

]
≤ e−2nε2PX(a)2

. (4.109)

Note that (4.108) and (4.109) are valid for all a ∈ X including a with
PX(a) = 0, but we can improve the above bounds for the case PX(a) = 0
(see (4.100)). This observation lets us replace PX(a) in (4.108) and (4.109)
with µX . Therefore, we get

Pr
[∣∣∣∣∣N(a|Xn)

n
− PX(a)

∣∣∣∣∣ > εPX(a)
]
≤ 2 · e−2nε2µ2

X (4.110)

where µX = mina∈supp(PX) PX(a). The union bound further gives

Pr [Xn /∈ T nε (PX)] = Pr
[ ⋃
a∈X

{∣∣∣∣∣N(a|Xn)
n

− PX(a)
∣∣∣∣∣ > εPX(a)

}]

≤
∑
a∈X

Pr
[∣∣∣∣∣N(a|Xn)

n
− PX(a)

∣∣∣∣∣ > εPX(a)
]

≤ 2|X | · e−2nε2µ2
X . (4.111)

Proof of Theorem 4.3

Suppose that (xn, yn) ∈ T nε1(PXY ). We prove (4.55) by bounding

P n
Y |X(yn|xn) =

∏
(a,b)∈supp(PXY )

PY |X(b|a)N(a,b|xn,yn)

≤
∏

(a,b)∈supp(PXY )
PY |X(b|a)nPXY (a,b)(1−ε1)

= 2n(1−ε1)
∑

(a,b)∈supp(PXY ) PXY (a,b) log2 PY |X(b|a)

= 2−n(1−ε1)H(Y |X). (4.112)
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This gives the lower bound in (4.55) and the upper bound is proved similarly.

Next, suppose that xn ∈ T nε1(PX) and (Xn, Y n) was emitted by the DMS
PXY (·). We prove (4.57) with 0 ≤ ε1 < ε as follows (here ε plays the role of
ε2 in Theorem 4.3). Consider first PXY (a, b) = 0 for which we have

Pr
[
N(a, b|Xn, Y n)

n
> PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]

= 0. (4.113)

Now consider PXY (a, b) > 0. If N(a|xn) = 0, then N(a, b|xn, yn) = 0 and

Pr
[
N(a, b|Xn, Y n)

n
> PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]

= 0. (4.114)

More interestingly, if N(a|xn) > 0 then the Chernoff bound gives

Pr
[
N(a, b|Xn, Y n)

n
> PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]

≤ Pr
[
N(a, b|Xn, Y n)

n
≥ PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]

= Pr
[
N(a, b|Xn, Y n)

N(a|xn) ≥ PXY (a, b)
N(a|xn)/n(1 + ε)

∣∣∣∣∣Xn = xn
]

≤ E
[
eνN(a,b|Xn,Y n)/N(a|xn)

∣∣∣Xn = xn
]
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n

=
N(a|xn)∑

m=0

(
N(a|xn)

m

)
PY |X(b|a)m(1− PY |X(b|a))N(a|xn)−m

eνm/N(a|xn)
]
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n

=
[
(1− PY |X(b|a)) + PY |X(b|a)eν/N(a|xn)

]N(a|xn)
e−ν

PXY (a,b)(1+ε)
N(a|xn)/n . (4.115)

Minimizing (4.115) with respect to ν, we find that

ν =∞ if PXY (a, b)(1 + ε) ≥ N(a|xn)/n
eν/N(a|xn) = PX(a)(1−PY |X(b|a))(1+ε)

N(a|xn)/n−PXY (a,b)(1+ε) if PXY (a, b)(1 + ε) < N(a|xn)/n.
(4.116)

Again, the Chernoff bound correctly identifies the probabilities to be 0 and
PY |X(b|a)n for the cases PXY (a, b)(1 + ε) > N(a|xn)/n and PXY (a, b)(1 +
ε) = N(a|xn)/n, respectively. More interestingly, for PXY (a, b)(1 + ε) <
N(a|xn)/n we insert (4.116) into (4.115) and obtain

Pr
[
N(a, b|Xn, Y n)

n
≥ PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]
≤ 2−N(a|xn)D(PB‖PA)

(4.117)
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where A and B are binary random variables with

PA(0) = 1− PA(1) = PY |X(b|a)

PB(0) = 1− PB(1) = PXY (a, b)
N(a|xn)/n(1 + ε). (4.118)

We again use Pinsker’s inequality (4.106) to bound

D (PB‖PA) ≥ 2
(
ε− ε1
1 + ε1

)2
PY |X(b|a)2 log2(e) (4.119)

where we have used (1 − ε1)PX(a) ≤ N(a|xn)
n

≤ (1 + ε1)PX(a) since xn ∈
T nε1(PX).

Combining (4.117) and (4.119) we arrive at

Pr
[
N(a, b|Xn, Y n)

n
≥ PXY (a, b)(1 + ε)

∣∣∣∣∣Xn = xn
]
≤ e

−2N(a|xn)
(
ε−ε1
1+ε1

)2
PY |X(b|a)2

.

(4.120)

One can similarly bound

Pr
[
N(a, b|Xn, Y n)

n
≤ PXY (a, b)(1− ε)

∣∣∣∣∣Xn = xn
]
≤ e

−2N(a|xn)
(
ε−ε1
1+ε1

)2
PY |X(b|a)2

.

(4.121)

For simplicity, we use PY |X(b|a) ≥ PXY (a, b) to replace PY |X(b|a) with
PXY (a, b) so that our bound becomes

Pr
[∣∣∣∣∣N(a, b|Xn, Y n)

n
− PXY (a, b)

∣∣∣∣∣ > εPXY (a, b)
∣∣∣∣∣Xn = xn

]

≤ 2e−2n(1−ε1)PX(a)
(
ε−ε1
1+ε1

)2
PY |X(b|a)2

= 2e−2n(1−ε1)
(
ε−ε1
1+ε1

)2
PXY (a,b)PY |X(b|a)

≤ 2e−2n(1−ε1)
(
ε−ε1
1+ε1

)2
PXY (a,b)2

. (4.122)

We thus have

Pr [Y n /∈ T nε (PXY |xn)|Xn = xn]

= Pr
⋃
a,b

{∣∣∣∣∣N(a, b|Xn, Y n)
n

− PXY (a, b)
∣∣∣∣∣ > εPXY (a, b)

}∣∣∣∣∣∣Xn = xn


≤

∑
(a,b)∈supp(PXY )

Pr
[∣∣∣∣∣N(a, b|Xn, Y n)

n
− PXY (a, b)

∣∣∣∣∣ > εPXY (a, b)
∣∣∣∣∣Xn = xn

]

≤ 2|X ||Y| · e−2n(1−ε1)
(
ε−ε1
1+ε1

)2
µ2
XY . (4.123)
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where we have used the union bound and PXY (a, b) ≥ µXY for all (a, b) ∈
supp(PXY ). The result is the left-hand side of (4.57).

Finally, for xn ∈ T nε1(PX) and 0 ≤ ε1 < ε we have xn ∈ T nε (PX) and

Pr [Y n ∈ T nε (PXY |xn)|Xn = xn] =
∑

yn∈Tnε (PXY |xn)
P n
Y |X(yn|xn)

≤ |T nε (PXY |xn)| 2−n(1−ε)H(Y |X) (4.124)

where the inequality follows by (4.112). We thus have

|T nε (PXY |xn)| ≥ (1− δε1,ε(PXY , n)) 2n(1−ε)H(Y |X). (4.125)

We similarly have

|T nε (PXY |xn)| ≤ 2n(1+ε)H(Y |X). (4.126)
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Chapter 5.

Lossy Source Coding

5.1. Quantization

Digital communications relies on converting source signals into bits. If the
source signal is a waveform, then this waveform is digitized, i.e., it is sampled
in time and quantized in value. Sampling theorems guarantee that if the
waveform energy is located in a limited amount of (contiguous or discon-
tiguous) bandwidth, then we can sample the signal at twice this bandwidth
without losing information about the signal. However, one inevitably loses
information by quantizing analog sampled values to bits. Rate distortion
theory characterizes the limits of quantization.

Quantization is the process of representing fine (analog) signals by a finite
number of bits. From this perspective, quantization is the same as lossy
source coding or lossy compression. For example, suppose we have a speech
signal with a bandwidth of 4 kHz. We sample this signal at 8 kHz and
represent each sample with 8 bits, giving a bit rate of 64 kbit/s. In fact, the
signal can often be represented with adequate distortion at a much slower
rate. As a second example, suppose we transmit a string of bits but we
permit some fraction, say 11%, of the bits to be received in error. It turns
out that this distortion of the original bit stream lets us cut the transmission
rate in half. This remarkable rate reduction is achieved by coding over long
sequences of bits.

The smallest required rate decreases with increasing distortion, and this
suggests shapes such as those shown in Fig. 5.1. We have a rate-distortion
tradeoff and we are interested in determining the frontier of this tradeoff.

R

Rmax

Dmax

D

Figure 5.1.: Possible shapes of rate-distortion curves.
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Source Encoder
Source Decoder Sink

PX(·)
WXn X̂n(W )

Figure 5.2.: The rate distortion problem.

X̂3

W
X2

X3

X̂1X1

X̂2

Figure 5.3.: FDG for the rate distortion problem.

We shall find that the lowest shape is the correct one for the distortion
functions that we are interested in.

5.2. Problem Description

Consider the problem shown in Fig. 5.2. The FDG is depicted in Fig. 5.3
for n = 3 source symbols. A DMS PX(·) with alphabet X emits a sequence
xn that is passed to a source encoder. The encoder “quantizes” xn into
one of 2nR sequences x̂n(w), w = 1, 2, . . . 2nR, and sends the index w to the
decoder (we assume that 2nR is a positive integer). Finally, the decoder
puts out the reconstruction x̂n(w) of xn. The letters x̂i take on values in
the alphabet X̂ , which is often the same as X . The goal is to ensure that a
non-negative and real-valued distortion dn(xn, x̂n) is within some specified
value D. A less restrictive version of the problem requires only that the
average distortion E

[
dn(Xn, X̂n)

]
is at most D.

Example 5.1. Suppose that we have X = X̂ . A commonly-used distortion
function is the Hamming distance

dn(xn, x̂n) = 1
n

n∑
i=1

1(xi 6= x̂i) (5.1)

where 1(·) is the indicator function that takes on the value 1 if the argument
is true and is 0 otherwise. The distortion (5.1) measures the average symbol
error probability of xn due to the reconstruction x̂n.

Example 5.2. Suppose that X = X̂ = R. A commonly-used distortion
function is the Euclidean distance or squared error distortion

dn(xn, x̂n) = 1
n

n∑
i=1

(xi − x̂i)2. (5.2)
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As in Examples 5.1 and 5.2, we consider sequence distortion functions of
the form

dn(xn, x̂n) = 1
n

n∑
i=1

d(xi, x̂i) (5.3)

so that dn(·) is the average of a per-letter distortion function d(·). For
instance, for Hamming distance we have

d(x, x̂) =
{

0 if x̂ = x
1 else. (5.4)

For real sources and squared error distortion we have

d(x, x̂) = (x− x̂)2. (5.5)

The functions (5.4) and (5.5) happen to be the same for binary (0, 1) sources.
Choosing distortion functions of the form (5.3) is not appropriate for all
applications, but we consider only such distortion functions.

As a technicality, we assume that there is a letter a ∈ X̂ such that E[d(X, a)] =
dmax ≤ ∞. For example, for a finite-variance source and squared error dis-
tortion we may choose a = E[X] to get E[d(X,E[X])] = Var[X] <∞.

The rate distortion (RD) problem is the following: find the set of pairs
(D,R) that one can approach with source encoders for sufficiently large n
(see [1, Part V], [2]). We ignore the practical difficulties associated with
large n but the theory will provide useful bounds on the distortion achieved
by finite length codes too. The smallest rate R as a function of the distortion
D is called the rate distortion function. The smallest D as a function of R
is called the distortion rate function.
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...

x̂n(2nR) = x̂1(2
nR) . . . x̂n(2nR)

x̂n(1) = x̂1(1) x̂2(1) . . . x̂n(1)

...

x̂n(2) = x̂1(2) x̂2(2) . . . x̂n(2)

Figure 5.4.: A code book for the RD problem.

Decoder SinkEncoder

PX̂

...

X̂n(1)

Xn

...

PX

PX̂

PX̂

X̂n(2)

X̂n(2nR)

W X̂n(W )

Figure 5.5.: Random coding experiment for lossy source coding.

5.3. Achievable Region for Discrete Sources

We construct a random code book as for the channel coding problem. We
begin by choosing a “channel” PX̂|X(·) and compute PX̂(·) as the marginal
distribution of PXX̂(·).

Code Construction: Generate 2nR codewords x̂n(w), w = 1, 2, . . . , 2nR,
by choosing each of the n · 2nR symbols x̂i(w) independently using PX̂(·)
(see Fig. 5.4). Choose a default codeword x̂i(2nR + 1) = a for all i, where
a is the letter such that E[d(X, a)] = dmax. The overall rate is therefore
reduced by the factor 2nR/(2nR + 1) which rapidly approaches 1 for large n.

Encoder: Given xn, choose w as (one of) the message(s) that minimizes
dn(xn, x̂n(w)). Send this w to the decoder.

Decoder: Put out the reconstruction x̂n(w).

Analysis: The random coding experiment is shown in Fig. 5.5 where the
random variables Xn, X̂n(1), X̂n(2), . . . , X̂n(2nR) are mutually statistically
independent. We will work with typical sequences and choose the code book
size (in terms of R) sufficiently large so that there is a x̂n(w) that is jointly
typical with xn. We then show that this x̂n(w) gives a bounded distortion.
The encoder that minimizes distortion gives the same or smaller distortion.

So consider the event that there is no X̂n(w) that is jointly typical with Xn:

E =
2nR+1⋂
w=1

{
(Xn, X̂n(w)) /∈ Tε(PXX̂)

}
. (5.6)
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The Theorem on Total Expectation gives

E
[
dn(Xn, X̂n)

]
= Pr [E ] E

[
dn(Xn, X̂n)|E

]
+ Pr [Ec] E

[
dn(Xn, X̂n)|Ec

]
(5.7)

where Ec is the complement of E . We consider each term in (5.7) separately.

• Let 0 < ε1 < ε. We have

Pr [E ] =
∑
xn
P n
X(xn) Pr [E |Xn = xn ]

= Pr
[
Xn /∈ T nε1(PX)

]
· Pr

[
E
∣∣∣Xn /∈ T nε1(PX)

]
+

∑
xn∈Tnε1 (PX)

P n
X(xn) · Pr

2nR+1⋂
w=1

{
(xn, X̂n(w)) /∈ T nε (PXX̂)

}∣∣∣∣∣∣Xn = xn

 .
(5.8)

We may upper bound the first product in (5.8) by δε1(PX , n), and for
simplicity we write this as δε1(n). Observe that the conditioning on
Xn = xn can be removed in (5.8) because X̂n(w) is statistically inde-
pendent of Xn for all w. Moreover, the 2nR events in the intersection
in (5.8) are independent because each X̂n(w) is generated indepen-
dently. The probability of the intersection of events in (5.8) is thus
upper bounded as

[
1− Pr

[
(xn, X̂n) ∈ T nε (PXX̂)

]]2nR
(a)
≤
[
1− (1− δε1,ε(n)) 2−n[I(X;X̂)+2εH(X̂)]

]2nR
(b)
≤ exp

(
−(1− δε1,ε(n)) 2n[R−I(X;X̂)−2εH(X̂)]

)
(5.9)

where (a) follows by Theorem 4.4, and (b) follows by (1−x)m ≤ e−mx.
Inequality (5.9) implies that we can choose large n and

R > I(X; X̂) + 2εH(X̂) (5.10)

to drive the right-hand side of (5.9) to zero. In addition, observe that
the bound is valid for any xn in T nε1(PX), and the error probability
decreases doubly exponentially in n. Denote the quantity on the right-
hand side of (5.9) as δε1,ε(n,R).

• If E occurs then the encoder could send w = 2nR + 1 and achieve

E
[
dn(Xn, X̂n)|E

]
= dmax (5.11)

But our encoder chooses a codeword that minimizes dn(xn, x̂n(w)) and
thus achieves an average distortion at most dmax.
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• For E
[
dn(Xn, X̂n)|Ec

]
, observe that (xn, x̂n(w)) ∈ T nε (PXX̂) implies

dn(xn, x̂n(w)) = 1
n

n∑
i=1

d(xi, x̂i(w))

= 1
n

∑
a,b

N(a, b|xn, x̂n(w)) d(a, b)

(a)
≤
∑
a,b

PXX̂(a, b)(1 + ε) d(a, b)

= E
[
d(X, X̂)

]
(1 + ε) (5.12)

where (a) follows by the definition of typical pairs. Thus, if Ec occurs
then the message w that minimizes dn(xn, x̂n(w)) has distortion at
most dn(xn, x̂n(w)) = E

[
d(X, X̂)

]
(1 + ε).

Combining the above results using (5.7), we have

E
[
dn(Xn, X̂n)

]
≤ (δε1(n) + δε1,ε(n,R)) dmax + E

[
d(X, X̂)

]
(1 + ε). (5.13)

As a final step, we choose small ε, large n, R satisfying (5.10), and PX̂|X
so that E

[
d(X, X̂)

]
< D, assuming this is possible. A random code thus

achieves the rates R satisfying

R > min
PX̂|X : E[d(X,X̂)]<D

I(X; X̂) (5.14)

as long as the constraint E
[
d(X, X̂)

]
< D can be satisfied by some PX̂|X .

Alternatively, we say that a random code approaches the rate

R(D) = min
PX̂|X : E[d(X,X̂)]≤D

I(X; X̂) (5.15)

as long as the constraint can be satisfied, and R(D) is undefined otherwise.
The words achieves and approaches are often used interchangeably both
here and in the literature.

We remark that there is a subtlety in the above argument: the expectation in
(5.7) is over source stringXn and the code book X̂n(1), X̂n(2), . . . , X̂n(2nR).
The reader might therefore wonder whether there is one particular code
book for which the average distortion is D if the average distortion over all
code books is D. A simple argument shows that this is the case: partition
the sample space based on the code books, and the Theorem on Total
Expectation tells us that at least one of the codebooks must have a distortion
at most the average.
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R(D3)

D

R(D1)

R(D)

D1 D3 D2

R(D2)

0

Figure 5.6.: Convexity of the rate-distortion function.

5.4. Convexity and Converse

The function R(D) in (5.15) is non-increasing in D because increasing D
lets us use a larger class of channels PX̂|X . We show that R(D) is convex
in D [2]. Consider two distinct points (D1, R(D1)) and (D2, R(D2)) and
suppose the channels PX̂1|X(·) and PX̂2|X(·) achieve these respective points
(see Fig. 5.6). That is, we have

D1 = E
[
d(X, X̂1)

]
, R(D1) = I(X; X̂1)

D2 = E
[
d(X, X̂2)

]
, R(D2) = I(X; X̂2).

(5.16)

Consider the mixture distribution

PX̂3|X(x̂|x) = λPX̂1|X(x̂|x) + (1− λ)PX̂2|X(x̂|x) (5.17)

for all x, x̂, where 0 ≤ λ ≤ 1. We have

D3 =
∑

(x,x̂)∈suppPXX̂3

PX(x) PX̂3|X(x̂|x) d(x, x̂)

=
∑

(x,x̂)∈suppPXX̂3

PX(x)
(
λPX̂1|X(x̂|x) + (1− λ)PX̂2|X(x̂|x)

)
d(x, x̂)

= λD1 + (1− λ)D2. (5.18)

We thus have

R(λD1 + (1− λ)D2) = R(D3)
(a)
≤ I(X; X̂3)
(b)
≤ λ I(X; X̂1) + (1− λ) I(X; X̂2)
= λR(D1) + (1− λ)R(D2). (5.19)

where (a) follows because PX̂3|X might not minimize the mutual information
for the distortion D3, and (b) follows by the convexity of I(X;Y ) in PY |X
when PX is held fixed (see Thm. 1.10). Thus, R(D) is convex in D.

We now show that R(D) in (5.15) is the rate distortion function. The code
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book has 2nR sequences x̂n, and x̂n is a function of xn. We thus have

nR ≥ H(X̂n)
= H(X̂n)−H(X̂n|Xn)
= I(Xn; X̂n)
= H(Xn)−H(Xn|X̂n)

=
n∑
i=1

[
H(Xi)−H(Xi|X̂nX i−1)

]
≥

n∑
i=1

[
H(Xi)−H(Xi|X̂i)

]
=

n∑
i=1

I(Xi; X̂i). (5.20)

But we have I(Xi; X̂i) ≥ R(E
[
d(Xi, X̂i)

]
) because R(E

[
d(Xi, X̂i)

]
) mini-

mizes mutual information for the distortion E
[
d(Xi, X̂i)

]
. We thus have

R ≥
n∑
i=1

1
n
R
(
E
[
d(Xi, X̂i)

])
(a)
≥ R

(
1
n

n∑
i=1

E
[
d(Xi, X̂i)

])
= R(E

[
dn(Xn, X̂n)

]
)

(b)
≥ R(D) (5.21)

where (a) follows by (5.19) and (b) follows because R(D) is non-increasing
in D. Thus, R must be larger than R(D), and this is called a converse. But
we can achieve R(D) so the rate distortion function is R(D).
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5.5. Discrete Alphabet Examples

5.5.1. Binary Symmetric Source and Hamming
Distortion

Consider the binary symmetric source (BSS) with the Hamming distortion
function and desired average distortion D, where D ≤ 1/2. We then require
Pr
[
X 6= X̂

]
≤ D, and can bound

I(X; X̂) = H(X)−H(X|X̂)
= 1−H(X ⊕ X̂|X̂)
≥ 1−H(X ⊕ X̂)
≥ 1−H2(D) (5.22)

where the last step follows because E = X ⊕ X̂ is binary with PE(1) ≤ D,
and we recall that H2(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary
entropy function. But we “achieve” R(D) = 1−H2(D) by choosing PX̂|X(·)
to be the binary symmetric channel (BSC) with crossover probability D.

5.5.2. Scalar Quantization

Scalar quantization has X̂ = f(X) for some function f(·). The “rate-
distortion” function with scalar quantization is therefore

R1(D) = min
f : E[d(X,f(X))]≤D

H(f(X)). (5.23)

Scalar quantizers designed to approach the rate (5.23), or alternatively to
minimize distortion under a rate constraint, are called entropy-coded quan-
tizers. For example, consider a BSS and Hamming distance. The interesting
functions are f(0) = 0, f(1) = 1 and f(0) = f(1) = 0 (or f(0) = f(1) = 1)
so that we have

R1(D) =
{

1, 0 ≤ D < 1/2
0, D ≥ 1/2. (5.24)

We find that R(D) ≤ R1(D), as should be expected. Furthermore, R1(D)
is discontinuous in D.
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5.5.3. Binary Symmetric Source and Erasure
Distortion

As a second example, consider again the BSS but with X̂ = {0, 1,∆}, where
∆ represents an erasure, and where we use the erasure distortion function

d(x, x̂) =


0, if x = x̂
1, if x̂ = ∆
∞, if x̂ = x⊕ 1.

(5.25)

Note that the letter ∆ ∈ X̂ gives E[d(X,∆)] = 1 <∞ so that dmax = 1. To
achieve finite distortion D, we must choose PX̂|X(1|0) = PX̂|X(0|1) = 0 and
Pr
[
X̂ = ∆

]
≤ D. We thus have

I(X; X̂) = 1−H(X|X̂)
= 1−

∑
b∈X̂

PX̂(b)H(X|X̂ = b)

≥ 1−D. (5.26)

We can achieve R(D) = 1−D by simply sending w = x(1−D)n. The decoder
puts out as its reconstruction x̂n = [ x(1−D)n ∆Dn ], where ∆m is a string of
m successive ∆s.

5.6. Gaussian Source and Squared Error
Distortion

We can approach the rate (5.15) for the memoryless Gaussian source with
squared error distortion. We will not prove this here, see [3, Ch. 9]. We
require E

[
(X − X̂)2

]
≤ D, and bound

I(X; X̂) = h(X)− h(X|X̂)

= 1
2 log2(2πeσ2)− h(X − X̂|X̂)

≥ 1
2 log2(2πeσ2)− h(X − X̂)

(a)
≥ 1

2 log2(2πeσ2)− 1
2 log2

(
2πeE

[
(X − X̂)2

])
≥ 1

2 log2(2πeσ2)− 1
2 log2(2πeD)

= 1
2 log2(σ2/D) (5.27)

where σ2 is the source variance, and where (a) follows by the maximum
entropy theorem (see [3, p. 234]). We can achieve R(D) = 1

2 log2(σ2/D)
bits by choosing PX|X̂ (note that this is not PX̂|X) to be the additive white
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Gaussian noise (AWGN) channel with noise variance D. Alternatively, we
can achieve the distortion

D(R) = σ22−2R, (5.28)

i.e., we can gain 6 dB per quantization bit.

5.7. Problems

5.1. Gaussian Source, Mean-Squared-Error Distortion

a) For the Gaussian example of Sec. 2.4 withD ≤ σ2, show that choosing
X = X̂ + Z where Z is Gaussian, zero-mean, variance D, and inde-
pendent of X̂, gives I(X; X̂) = 1

2 log(σ2/D) and E
[
(X − X̂)2

]
= D.

b) For the Gaussian example of Sec. 2.4 with D ≤ σ2, suppose we choose
X̂ = aX + Z where a is a constant and Z is independent of X. Find
a and Z that achieve I(X; X̂) = 1

2 log(σ2/D) and E
[
(X − X̂)2

]
= D.

Is your choice for a and Z unique?

5.2. Vector Gaussian Source

Consider a vector Gaussian source that puts out X = [X1, X2, . . . , XM ]
where the Xm, m = 1, 2, . . . ,M , are independent Gaussian random vari-
ables, and where Xm has variance Nm. Suppose the per-source-letter dis-
tortion function is d(x, x̂) = ∑M

m=1(xm−x̂m)2. Determine the rate-distortion
function R(D).
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Chapter 6.

Distributed Source Coding

6.1. Problem Description

The distributed source coding problem is the first multi-terminal problem
we consider, in the sense that there is more than one encoder or decoder.
Suppose a DMS PXY (·) with alphabet X × Y emits two sequences xn and
yn, where xi ∈ X and yi ∈ Y for all i (see Fig. 6.1 and the FDG in Fig. 6.2).

There are two encoders: one encoder maps xn into one of 2nR1 indexes
w1, and the other encoder maps yn into one of 2nR2 indexes w2. A de-
coder receives both w1 and w2 and produces the sequences x̂n(w1, w2) and
ŷn(w1, w2), where x̂i ∈ X and ŷi ∈ Y for all i. The problem is to find the
set of rate pairs (R1, R2) for which one can, for sufficiently large n, design
encoders and a decoder so that the error probability

Pe = Pr
[
(X̂n, Ŷ n) 6= (Xn, Y n)

]
(6.1)

can be made an arbitrarily small positive number.

This type of problem might be a simple model for a scenario involving
two sensors (the encoders) that observe dependent measurement streams
Xn and Y n, and that must send these to a “fusion center” (the decoder).
The sensors usually have limited energy to transmit their data, so they are
interested in communicating both efficiently and reliably. For example, an
obvious strategy is for both encoders to compress their streams to entropy so
that one achieves (R1, R2) ≈ (H(X), H(Y )). On the other hand, an obvious
outer bound on the set of achievable rate-pairs is R1 +R2 ≥ H(XY ), since
this is the smallest possible sum-rate if both encoders cooperate.

Decoder

Encoder 1

Encoder 2
Source Sink

W1

W2

Xn

Y n

PXY (·)

Ŷ n

X̂n

Figure 6.1.: A distributed source coding problem.
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(X3, Y3)

X̂1

X̂2

X̂3

Ŷ1

Ŷ2

Ŷ3

W1

W2

X3

X2

X1

Y1

Y2

Y3

(X1, Y1)

(X2, Y2)

Figure 6.2.: FDG for the distributed source coding problem.

bin 2

bin

bin 1

...

2nR1

xn(1, 2nR′
1)

xn(1, 1)

xn(1, 2)
...

xn(2, 1)
...

xn(2, 2nR′
1)

xn(2nR1, 1)
...

xn(2nR1, 2nR′
1)

Figure 6.3.: Binning for the xn sequences.

The problem of Fig. 6.1 was solved by D. Slepian and J. K. Wolf in a
fundamental paper in 1973 [1]. They found the rather surprising result
that the sum-rate R1 + R2 = H(XY ) is, in fact, approachable! Moreover,
their encoding technique involves a simple and effective trick similar to
hashing, and this trick has since been applied to many other communication
problems. The Slepian-Wolf encoding scheme can be generalized to ergodic
sources [2], and is now widely known as partitioning, binning, or hashing.

6.2. An Achievable Region

We will consider only block-to-block encoders, although one could also use
variable-length encoders. The code construction is depicted in Fig. 6.3 and
Fig. 6.4 (see also [3, p. 412]). We use random coding that makes use of a
method sometimes called binning.
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codewords

codewords

21 3 21 3 21 3

2

...

...

1 w2

2n(R2+R′
2)

2nR2

1

1
2

2

(xn(w1, 2), yn(w2, 1)) ∈ Tn
ε (PXY )

1
1

w1

2nR1

2n(R1+R′
1)

Figure 6.4.: Binning for xn and yn. A dot indicates (xn, yn) in T nε (PXY ).
There should be at most one dot for every bin pair (w1, w2).

Code Construction: Let R1, R′1, R2, R′2, be fixed rates, the choice
of which will be specified later. Generate 2n(R1+R′1) codewords xn(w1, v1),
w1 = 1, 2, . . . , 2nR1 , v1 = 1, 2, . . . , 2nR′1 , by choosing the n ·2n(R1+R′1) symbols
xi(w1, v1) independently using PX(·). Similarly, generate 2n(R2+R′2) code-
words yn(w2, v2), w2 = 1, 2, . . . , 2nR2 , v2 = 1, 2, . . . , 2nR′2 , by choosing the
n · 2n(R2+R′2) symbols yi(w2, v2) independently using PY (·).

Encoders: Encoder 1 tries to find a pair (w̃1, ṽ1) such that xn = xn(w̃1, ṽ1).
If there is one or more such pair, then Encoder 1 chooses one by using a
pre-defined function with (w1, v1) = f1(xn, xn(·))). If unsuccessful, Encoder
1 chooses (w1, v1) = (1, 1). Encoder 2 proceeds in the same way with yn

and a pre-defined function f2(·) and transmits w2.

Decoder: Given (w1, w2), try to find a pair (ṽ1, ṽ2) such that
(xn(w1, ṽ1), yn(w2, ṽ2)) ∈ T nε (PXY ). If successful, put out the corresponding
sequences. If unsuccessful, put out (xn(w1, 1), yn(w2, 1)).

Analysis: The random coding experiment has the joint probability distri-
bution

P n
XY (xn, yn)

 ∏
w̃1,ṽ1

P n
X(xn(w̃1, ṽ1))

 ∏
w̃2,ṽ2

P n
Y (yn(w̃2, ṽ2))


· 1((W1, V1) = f1(xn, xn(·))) · 1((W2, V2) = f2(yn, yn(·)))
· 1((V̂1, V̂2) = g(W1,W2, x

n(·), yn(·)))
· 1
((
X̂n(W1, V̂1), Ŷ n(W2, V̂2)

)
= (xn(W1, V̂1), yn(W2, V̂2)))

)
(6.2)

where f1(·) and f2(·) are the encoding functions at Encoder 1 and Encoder
2, respectively, and g(·) is a decoder function. We wish to bound Pe =
Pr
[
(X̂n, Ŷ n) 6= (Xn, Y n)

]
, which is the average error probability over all

code books. We again use the Theorem on Total Expectation in two ways
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based on

a) events Ei: Pe = ∑
i Pr [Ei] Pr

[
(X̂n, Ŷ n) 6= (Xn, Y n)|Ei

]
b) code books Cj: Pe = ∑

j Pr [Cj] Pr
[
(X̂n, Ŷ n) 6= (Xn, Y n)|Cj

]
.

For the first approach, we consider four error events.

a) The source sequences are not jointly typical:

E1 = {(Xn, Y n) /∈ T nε (PXY )} . (6.3)

b) Encoder 1 cannot find a Xn(w̃1, ṽ1) that is Xn:

E2 =
⋂
w̃1,ṽ1

{Xn(w̃1, ṽ1) 6= Xn} . (6.4)

c) Encoder 2 cannot find a Y n(w̃2, ṽ2) that is Y n:

E3 =
⋂
w̃2,ṽ2

{Y n(w̃2, ṽ2) 6= Y n} . (6.5)

d) The decoder may choose the wrong pair (ṽ1, ṽ2). For this case we
consider the event

E4(w1, w2, v1, v2) =
⋃

(ṽ1,ṽ2)6=(v1,v2)
{(Xn(w1, ṽ1), Y n(w2, ṽ2)) ∈ T nε (PXY )} .

(6.6)

The overall error event is ⋃4
i=1 Ei and using the union bound we have

Pe ≤ Pr [E1] + Pr [E2 ∩ Ec1 ] + Pr [E3 ∩ Ec1 ] + Pr [E4] . (6.7)

We next consider the four probabilities on the right-hand side of (6.7).

a) We already know that Pr [E1] ≤ δε(n, PXY ).
b) The event Ec1 implies the event {Xn ∈ T nε (PX)}. We use the Theorem

on Total Expectation to write

Pr [E2 ∩ Ec1 ] ≤ Pr [E2 ∩ {Xn ∈ T nε (PX)}]
=

∑
xn∈Tε(PX)

P n
X(xn) Pr [E2 |Xn = xn ]

=
∑

xn∈Tε(PX)
P n
X(xn) Pr

 ⋂
w̃1,ṽ1

{Xn(w̃1, ṽ1) 6= xn}

∣∣∣∣∣∣Xn = xn

 . (6.8)

We can remove the conditioning onXn = xn becauseXn andXn(w̃1, ṽ1)
are statistically independent for all (w̃1, ṽ1). Furthermore, the events
in the intersection are mutually statistically independent because the
Xn(w̃1, ṽ1) are mutually statistically independent for all (w̃1, ṽ1). The
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probability of the intersection above is thus upper bounded by

Pr [Xn(w̃1, ṽ1) 6= xn]2
n(R1+R′1)

= (1− PX(xn))2n(R1+R′1)

≤ exp
(
−2n[R1+R′1−H(X)(1+ε)]

)
(6.9)

where we have used (1− α) ≤ e−α. We may thus drive Pr [E2 ∩ Ec1 ] to
zero by choosing large n and

R1 +R′1 > H(X)(1 + ε) (6.10)

c) Similarly, Pr [E3 ∩ Ec1 ] becomes small by choosing large n and

R2 +R′2 > H(Y )(1 + ε). (6.11)

d) We have

Pr [E4(W1,W2, V1, V2)]
=

∑
w1,w2,v1,v2

Pr [E4(w1, w2, v1, v2) ∩ {(W1,W2, V1, V2) = (w1, w2, v1, v2)}]

=
∑

w1,w2,v1,v2

Pr [E4(w1, w2, v1, v2)]

· Pr [(W1,W2, V1, V2) = (w1, w2, v1, v2) |E4(w1, w2, v1, v2) ] . (6.12)

We further have

Pr [E4(w1, w2, v1, v2)] ≤ Pr
 ⋃
ṽ1,ṽ2

{(Xn(w1, ṽ1), Y n(w2, ṽ2)) ∈ T nε (PXY )}


(a)
≤
∑
ṽ1,ṽ2

Pr [(Xn(w1, ṽ1), Y n(w2, ṽ2)) ∈ T nε (PXY )]

(b)
≤ 2n(R′1+R′2)2−n[I(X;Y )−3εH(XY )] (6.13)

where (a) follows by the union bound and (b) follows by (4.46). Insert-
ing (6.13) into (6.12), we find that Pr [E4(W1,W2, V1, V2)] approaches
zero by choosing large n and

R′1 +R′2 < I(X;Y )− 3εH(XY ) (6.14)

The bounds (6.10), (6.11), and (6.14) imply that we can choose large n and

R1 > H(X|Y ) + 4εH(XY ) (6.15)
R2 > H(Y |X) + 4εH(XY ) (6.16)
R1 +R2 > H(XY ) + 5εH(XY ) (6.17)

and thereby ensure that all error events have small probability. We can thus
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R1

R2

H(Y )

H(Y |X)

H(X)H(X|Y )

Figure 6.5.: The Slepian-Wolf source coding region.

approach the rate pairs (R1, R2) in the region

R =

(R1, R2) :
R1 ≥ H(X|Y )
R2 ≥ H(Y |X)
R1 +R2 ≥ H(XY )

 . (6.18)

The form of this region is depicted in Fig. 6.5. We remark again that sep-
arate encoding of the sources achieves the point (R1, R2) = (H(X), H(Y )),
and the resulting achievable region is shown as the shaded region in Fig. 6.5.
Note the remarkable fact that one can approach R1 +R2 = H(XY ), which
is the minimum sum-rate even if both encoders could cooperate!

Finally, we remark again that we can find a specific code book, encoders,
and a decoder, that achieves the above rate region. One can see this by
expanding Pe as an average over the code books, and observing that at
least one code book must give an error probability at most the average.

6.3. Example

Suppose PXY (·) is defined via

Y = X ⊕ Z (6.19)

where PX(0) = PX(1) = 1/2, and Z is independent of X with PZ(0) = 1−p
and PZ(1) = p. The region of achievable (R1, R2) is therefore

R1 ≥ H2(p)
R2 ≥ H2(p)

R1 +R2 ≥ 1 +H2(p). (6.20)

For example, if p ≈ 0.11 we have H2(p) = 0.5. The equal rate boundary
point is R1 = R2 = 0.75, which is substantially better than the R1 = R2 = 1
achieved with separate encoding and decoding.

Continuing with this example, suppose we wish to approach the corner point
(R1, R2) = (1, 0.5). We can use the following encoding procedure: transmit
xn without compression to the decoder, and compress yn by multiplying yn
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Nodes
Variable
Nodes

Check

Figure 6.6.: A linear source encoder for binary yn.

on the right by HT where H is a (n/2)× n parity-check matrix of a binary
linear code (we use matrix operations over the Galois field GF(2)). The en-
coding can be depicted in graphical form as shown in Fig. 6.6. Furthermore,
the decoder can consider the xn to be outputs from a binary symmetric chan-
nel (BSC) with inputs yn and crossover probability p ≈ 0.11. One must,
therefore, design the linear code to approach capacity on such a channel,
and techniques for doing this are known [4, 5]. This example shows how
channel coding techniques can be used to solve a source coding problem.

6.4. Converse

We show that the rates of (6.18) are, in fact, the best rates we can hope to
achieve for block-to-block encoding. Recall that there are 2nR1 indexes w1,
and that w1 is a function of xn. We thus have

nR1 ≥ H(W1)
≥ H(W1|Y n)
= H(W1|Y n)−H(W1|XnY n)
= I(Xn;W1|Y n)
= H(Xn|Y n)−H(Xn|Y nW1). (6.21)

Next, note that H(Xn|Y n) = nH(X|Y ), that w2 is a function of yn, and
that x̂n and ŷn are functions of w1 and w2. We continue the above chain of
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inequalities as

nR1 ≥ nH(X|Y )−H(Xn|Y nW1)
= nH(X|Y )−H(Xn|Y nW1W2X̂

nŶ n)
≥ nH(X|Y )−H(XnY n|X̂nŶ n)
≥ nH(X|Y )− n [Pe log2(|X | · |Y|) +H2(Pe)/n] (6.22)

where the final step follows by Fano’s inequality. We thus find that R1 ≥
H(X|Y ) for (block-to-block) encoders with arbitrarily small positive Pe.
Similar steps show that

R2 ≥ H(Y |X)− [Pe log2(|X | · |Y|) +H2(Pe)/n]
R1 +R2 ≥ H(XY )− [Pe log2(|X | · |Y|) +H2(Pe)/n] . (6.23)

This completes the converse.

6.5. Problems

6.1. Multiplicative Noise

Compute and plot the Slepian-Wolf region for the source PXY (·) where
Y = X · Z, PX and PZ are independent binary symmetric sources, and “·”
denotes multiplication modulo-2.

6.2. Three Encoders

Suppose the source PXY Z(·) puts out three sequences xn, yn, zn, each of
which is available to a different encoder. Encoders 1, 2, and 3 put out the
respective indexes W1, W2, W3 as functions of xn, yn, zn. The three rates
are R1, R2, R3. The decoder receives all three indexes.

Show that the region of triples (R1, R2, R3) at which the decoder can recover
the three sequences with high probability is given by

R =


(R1, R2, R3) :

R1 ≥ H(X|Y Z)
R2 ≥ H(Y |XZ)
R3 ≥ H(Z|XY )
R1 +R2 ≥ H(XY |Z)
R1 +R3 ≥ H(XZ|Y )
R2 +R3 ≥ H(Y Z|X)
R1 +R2 +R3 ≥ H(XY Z)


. (6.24)

What do you expect the region for K sequences to be for K > 3?
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Chapter 7.

Multiaccess Channels

7.1. Problem Description

The multiaccess channel (MAC) with two transmitters and three sources
is depicted in Fig. 7.1 and the FDG for n = 3 channel uses in Fig. 7.2.
The sources put out statistically independent messages W0,W1,W2 with
nR0, nR1, nR2 bits, respectively. The message W0 is seen by both encoders,
and is called the common message. The messages W1 and W2 appear only
at the respective encoders 1 and 2. Encoder 1 maps (w0, w1) to a xn1 ∈ X n

1 ,
encoder 2 maps (w0, w2) to xn2 ∈ X n

2 , and the channel PY |X1X2(·) puts out
the sequence yn ∈ Yn.

We now must be concerned with the synchronization of transmission since
we require that yi is a noisy function of x1i and x2i only. In other words,
we are modeling the transmissions as taking place synchronously. We take
the point of view that there is a central clock that governs the operation of
the nodes. The clock ticks n times, and nodes 1 and 2 apply the respective
inputs X1i and X2i to the channel at clock tick i. The receiving node sees
its channel output Yi at clock tick i, or perhaps shortly thereafter.

We remark that the common message W0 might seem strange. One may
view this message as being the clock information (in which case one may
set R0 = 0) or simply another message that is available to both nodes.

The decoder uses yn to compute its estimate (ŵ0, ŵ1, ŵ2) of (w0, w1, w2),
and the problem is to find the set of rate-tuples (R0, R1, R2) for which one

SinkDecoderSource 0

Encoder 2Source 2

Encoder 1Source 1

MAC
PY |X1X2

(·) Y n Ŵ0

Ŵ2

W0

W2

W1

Xn
2

Xn
1

Ŵ1

Figure 7.1.: The two-transmitter MAC with a common message.
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X12

W0 W1 W2

X23

Ŵ2Ŵ1Ŵ0

Y1Z1

X11

Y2 Y3Z2 Z3

X22 X13X21

Figure 7.2.: FDG for the two-transmitter MAC with a common message.

can make

Pe = Pr
[
(Ŵ0, Ŵ1, Ŵ2) 6= (W0,W1,W2)

]
(7.1)

an arbitrarily small positive number. The closure of the region of achievable
(R0, R1, R2) is the MAC capacity region CMAC.

The MAC can be viewed as being the reverse link of a cellular radio system,
if one views the broadcast channel as being the forward link (other popular
names are uplink for the MAC and downlink for the broadcast channel). If
there are two mobile stations, the model of Fig. 7.1 describes the essence of
the coding problem. One can easily extend the model to include three or
more mobile stations, but we will study only the two-transmitter problem.
The common message might represent a common time reference that lets
the mobile stations synchronize their transmissions, in which case we have
R0 = 0. Alternatively, this message might represent information the mobile
stations are “relaying” from one base station to the next.

7.2. The MAC Capacity Region

The MAC was first considered by Shannon in [1, §17]. The capacity region
of the MAC with R0 = 0 was found by Ahlswede [2] and Liao [3]. The
capacity region with R0 > 0 was found by Slepian and Wolf [4], who used
superposition coding. We consider the general problem, where the main
trick is to introduce an auxiliary random variable U that represents the
code book for W0 (see Fig. 7.3). Consider a distribution PUX1X2Y that
factors as PUPX1|UPX2|UPY |X1X2 .

Code Construction: Consider PU(·), where the alphabet of U is U .
Generate 2nR0 codewords un(w0), w0 = 1, 2, . . . , 2nR0 , by choosing the ui(w0)
independently using PU(·) for i = 1, 2, . . . , n. For each un(w0), generate
2nR1 codewords xn1 (w0, w1), w1 = 1, 2, . . . , 2nR1 , by choosing the x1i(w0, w1)

Advanced Information Theory LNT, TUM



7.2. The MAC Capacity Region 141

Cloud Centers

Satellites

un(2nR0)

un(2)
...

un(1)

xn
1(1, 1)

xn
1(1, 2)
...

xn
1(1, 2nR1)

xn
2(1, 1)

xn
2(1, 2)
...

xn
2(1, 2nR2)

Figure 7.3.: A codebook for the MAC with a common message.

independently using PX1|U(·|ui(w0)) for i = 1, 2, . . . , n. Similarly, generate
2nR2 codewords xn2 (w0, w2) by using PX2|U(·|ui(w0)) for i = 1, 2, . . . , n.

Encoders: Given (w0, w1), encoder 1 transmits xn1 (w0, w1). Given (w0, w2),
encoder 2 transmits xn2 (w0, w2).

Decoder: Given yn, try to find a triple (w̃0, w̃1, w̃2) such that

(un(w̃0), xn1 (w̃0, w̃1), xn2 (w̃0, w̃2), yn) ∈ T nε (PUX1X2Y ). (7.2)

If one or more such triple is found, choose one and call it (ŵ0, ŵ1, ŵ2). If no
such triple is found, set (ŵ0, ŵ1, ŵ2) = (1, 1, 1).

Analysis: We know that, with probability close to one, we will have

(un(w0), xn1 (w0, w1), xn2 (w0, w2), yn) ∈ T nε (PUX1X2Y ) (7.3)

for the transmitted triple (w0, w1, w2) as long as PUX1X2Y (·) factors as spec-
ified above. The remaining analysis is similar to that for the degraded
broadcast channel, i.e., one splits the error probability into seven disjoint
events that correspond to the seven different ways in which one or more of
the ŵi, i = 0, 1, 2, is not equal to wi.

For example, consider the event that there was a w̃0 6= w0 such that

(un(w̃0), xn1 (w̃0, w1), xn2 (w̃0, w2), yn) ∈ T nε (PUX1X2Y ). (7.4)

Note that all three codewords in (7.4) were chosen independent of the ac-
tually transmitted codewords. We can upper bound the probability of the
event (7.4) by ∑

w̃0 6=w0

2−n[I(UX1X2;Y )−δ] < 2n[R0−I(UX1X2;Y )+δ] (7.5)

where δ → 0 as ε → 0. We leave the details of the remaining (and by now
familiar) analysis to the reader, and simply state the seven rate bounds for
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R2

R1

R0

Figure 7.4.: The form of R(PU , PX1|U , PX2|U).

reliable communication:

R0 ≤ I(X1X2;Y ) (7.6)
R0 +R1 ≤ I(X1X2;Y ) (7.7)
R0 +R2 ≤ I(X1X2;Y ) (7.8)

and

R1 ≤ I(X1;Y |X2U) (7.9)
R2 ≤ I(X2;Y |X1U) (7.10)

R1 +R2 ≤ I(X1X2;Y |U) (7.11)
R0 +R1 +R2 ≤ I(X1X2;Y ) (7.12)

where X1 − U − X2 and U − X1X2 − Y form Markov chains. Note that
we are stating the bounds with non-strict inequalities, so we are already
considering approachable rates. Note also that the bounds (7.6)–(7.8) are
redundant because of (7.12), so that we need consider only (7.9)–(7.12).
One can further restrict attention to |U| ≤ min(|Y| + 3, |X1| · |X2| + 2)
(see [5, p. 293 and p. 310–312], [6, Appendix B], [7, p. 18]).

The bounds (7.9)–(7.12) describe a region R(PU , PX1|U , PX2|U) with seven
faces, four of which arise from (7.9)–(7.12), and three of which are non-
negativity constraints on the rates (see Fig. 7.4). We can further achieve
the union of such regions, i.e., we can achieve

CMAC =
⋃

PU ,PX1|U ,PX2|U

R(PU , PX1|U , PX2|U) (7.13)

where U − X1X2 − Y forms a Markov chain and |U| ≤ min(|Y| + 3, |X1| ·
|X2|+ 2). We show below that (7.13) is the capacity region.
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7.3. Converse

For reliable communication, the rate R1 must satisfy

nR1 ≤ I(W1;Y n)
≤ I(W1;Y nW0W2)
= I(W1;Y n|W0W2)

=
n∑
i=1

H(Yi|Y i−1W0W2)−H(Yi|Y i−1W0W1W2)

=
n∑
i=1

H(Yi|Y i−1W0W2X
n
2 )−H(Yi|X1iX2iW0)

≤
n∑
i=1

H(Yi|X2iW0)−H(Yi|X1iX2iW0)

=
n∑
i=1

I(X1i;Yi|X2iW0). (7.14)

We introduce the random variable U = [W0, I], where I is independent of
all other random variables (except U) and has distribution PI(a) = 1/n for
a = 1, 2, . . . , n. We further define X1 = X1I , X2 = X2I and Y = YI so that
PUX1X2Y (·) factors as

PU([a, i])PX1|U(b | [a, i])PX2|U(c | [a, i])PY |X1X2(d | b, c) (7.15)

for all a, b, c, d. In other words, both X1 − U −X2 and U −X1X2 − Y are
Markov chains. We can now write the bound (7.14) as

R1 ≤ I(X1;Y |X2U). (7.16)

We similarly have

R2 ≤ I(X2;Y |X1U) (7.17)
R1 +R2 ≤ I(X1X2;Y |U) (7.18)

R0 +R1 +R2 ≤ I(X1X2;Y ). (7.19)

The expressions (7.15)–(7.19) specify that every achievable (R0, R1, R2)
must lie in CMAC . Thus, CMAC is the capacity region.

We remark that CMAC must be convex since time-sharing is permitted,
i.e, one can use one codebook for some fraction of the time and another
codebook for another fraction of the time. One can check that the union of
regions (7.13) is indeed convex (see Problem 7.1).
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7.4. Gaussian MAC

Consider the additive white Gaussian noise (AWGN) MAC with

Y = X1 +X2 + Z (7.20)

where Z is Gaussian, zero mean, has variance N , and is independent of
the real random variables X1 and X2. We impose the power (or energy)
constraints ∑n

i=1 E[X2
1 ] ≤ nP1 and ∑n

i=1 E[X2
2 ] ≤ nP2.

Our first task is to show that the best choice for UX1X2 is jointly Gaussian.
A natural approach is to replace the (perhaps non-Gaussian) UX1X2 with
a Gaussian triple UGX1GX2G having the same covariance matrix QUX1X2 .
However, it turns out that X1 − U − X2 being a Markov chain does not
imply that X1G − UG −X2G is a Markov chain. Hence it is not clear that
the usual Gaussian substitution results in an achievable region.

Instead, consider V = E[X1|U ] that is a function of U and note that

h(Y |X1U) (a)= h(Y |X1UV ) ≤ h(Y |X1V ) (7.21)

h(Y |X2U) (a)= h(Y |X2UV ) ≤ h(Y |X2V ) (7.22)

where (a) follows because V is a function of U . We thus find that

a) replacing U with V does not shrink the rate region;
b) replacing V X1X2 with VGX1GX2G having the same covariance matrix

QV X1X2 does not shrink the rate region either;
c) the chain X1−V −X2 is not necessarily Markov but X1G−VG−X2G

is Markov.

Summarizing, we find that Gaussian UX1X2 are optimal. So let U , V1 and
V2 be independent, unit variance, Gaussian random variables, and define

X1 = (
√
P1ρ1)U +

√
P1(1− ρ2

1)V1 (7.23)

X2 = (
√
P2ρ2)U +

√
P2(1− ρ2

2)V2. (7.24)

We have E[UX1]/
√
P1 = ρ1 and E[UX2]/

√
P2 = ρ2, and compute

I(X1;Y |X2U) = 1
2 log

(
1 + P1(1− ρ2

1)
N

)
(7.25)

I(X2;Y |X1U) = 1
2 log

(
1 + P2(1− ρ2

2)
N

)
(7.26)

I(X1X2;Y |U) = 1
2 log

(
1 + P1(1− ρ2

1) + P2(1− ρ2
2)

N

)
(7.27)

I(X1X2;Y ) = 1
2 log

(
1 + P1 + P2 + 2

√
P1P2 ρ1ρ2

N

)
. (7.28)

CMAC is found by considering all ρ1 and ρ2 with 0 ≤ ρ1 ≤ 1 and 0 ≤ ρ2 ≤ 1.
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7.5. The MAC with R0 = 0

The MAC is usually treated with R0 = 0, in which case the capacity region
reduces to

CMAC =
⋃(R1, R2) :

0 ≤ R1 ≤ I(X1;Y |X2U)
0 ≤ R2 ≤ I(X2;Y |X1U)
R1 +R2 ≤ I(X1X2;Y |U)

 (7.29)

where the union is over joint distributions that factor as

PUX1X2Y = PU PX1|U PX2|U PY |X1X2 . (7.30)

The third inequality in (7.29) follows from (7.11) and (7.12) with R0 = 0;
since U−X1X2−Y is Markov, I(X1X2;Y |U) ≤ I(UX1X2;Y ) = I(X1X2;Y )
so inequality (7.12) is redundant when R0 = 0.
Recall that we have |U| ≤ min(|Y|+ 3, |X1| · |X2|+ 2). However, for R0 = 0
it turns out that one can restrict attention to |U| ≤ 2 [5, p. 278].
One often encounters the following equivalent formulation of CMAC :

RMAC = co

⋃
(R1, R2) :

0 ≤ R1 ≤ I(X1;Y |X2)
0 ≤ R2 ≤ I(X2;Y |X1)
R1 +R2 ≤ I(X1X2;Y )


 (7.31)

where the union is over joint distributions that factor as

PX1X2Y = PX1 PX2 PY |X1X2 (7.32)

and where co(S) is the convex hull of a set S. Proving that RMAC = CMAC

requires some additional work, and we refer to [7, §3.5] for a discussion on
this topic. Some authors prefer (7.31) for historical reasons, and because
(7.31) has no U . Other authors prefer (7.29) because it requires no convex
hull operation. We do point out, however, that for some channels (other
than MACs) a time-sharing random variable U gives larger regions than the
convex hull operator (see [5, pp. 288-290]).

Example 7.1. The binary adder channel or BAC has X1 = X2 = {0, 1},
Y = {0, 1, 2}, and Y = X1 + X2. The channel is deterministic so that the
mutual information expressions in (7.30) become conditional entropies. One
can easily check that the best X1 and X2 are uniformly distributed and

CMAC =

(R1, R2) :
0 ≤ R1 ≤ 1
0 ≤ R2 ≤ 1
R1 +R2 ≤ 1.5

 . (7.33)

Example 7.2. Consider the AWGN MAC with block or per-symbol power
constraints P1 and P2 for the respective transmitters 1 and 2. The maximum
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Figure 7.5.: CMAC for the AWGN MAC with P1 ≈ P2.

entropy theorem ensures that

CMAC =

(R1, R2) :
0 ≤ R1 ≤ 1

2 log
(
1 + P1

N

)
0 ≤ R2 ≤ 1

2 log
(
1 + P2

N

)
R1 +R2 ≤ 1

2 log
(
1 + P+P2

N

)
 . (7.34)

The resulting region is plotted in Fig. 7.5.

Example 7.3. An important coding method for block power constraints is
to use time-division multiplexing (TDM) or frequency-division multiplexing
(FDM). For example, suppose that transmitters 1 and 2 use the fractions α
and 1− α of the available bandwidth, respectively. The resulting rates are

R1 = α

2 log
(

1 + P1

αN

)
R2 = 1− α

2 log
(

1 + P2

(1− α)N

)
(7.35)

where the transmitters boost their powers in their frequency bands. The
resulting rate pairs are plotted in Fig. 7.5. In particular, by choosing α =
P1/(P1 + P2) one achieves a boundary point with

R1 +R2 = 1
2 log

(
1 + P1 + P2

N

)
. (7.36)

Example 7.4. The above example shows that TDM and FDM can be effec-
tive techniques for the MAC. However, Fig. 7.5 can be misleading because
it is plotted with P1 ≈ P2. Suppose instead that there is a 20 dB difference
in the received powers, which we can model with a 20 dB difference in P1
and P2. For example, suppose that P1/N = 100, P2/N = 1, a situation that
could very well occur in wireless problems. The resulting rate region (7.34)
and TDM/FDM rates (7.35) are shown in Fig. 7.6.
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Figure 7.6.: CMAC for the AWGN MAC with P1/N = 100 and P2/N = 1.

TDM/FDM achieves the sum-rate capacity at (R1, R2) ≈ (3.303, 0.033)
with α = 100/101 which makes R2 is rather small. But if transmitter 1
is willing to give up 1/2 bit of its throughput, we can choose α = 0.8 and
the TDM/FDM rate is (R1, R2) ≈ (2.79, 0.26). Transmitter 2’s rate has
increased by about a factor of 8. The “user experience” of transmitter 2 at
this point is much preferable over the maximum sum-rate point for many
applications.

We can improve the situation further by using better codes and decoders,
e.g., the methods described in Sec. 7.6. The corner point marked with a
solid circle in Fig. 7.6 has (R1, R2) ≈ (2.84, 0.50) which almost doubles the
rate of transmitter 2 over TDM/FDM.

7.6. Decoding Methods

7.6.1. Single-User Decoding and Rate-Splitting

The capacity expression (7.31) is suggestive for code design. Consider, e.g.,
the AWGN MAC and the marked corner points in Fig. 7.5 and Fig. 7.6. The
decoder can proceed in two stages: first, decode w1 by considering xn2 (w2)
as AWGN with variance P2; second, subtract xn1 (w1) from yn and decode
w2. The capacities of the second and first channels are the respective

R1 = 1
2 log

(
1 + P1

N + P2

)
R2 = 1

2 log
(

1 + P2

N

)
. (7.37)

This type of decoding is known as single-user decoding via interference
cancellation (or also as stripping, onion peeling, or step-by-step decoding).

One difficulty with (this form of) single-user decoding is that one can achieve
only the corner points of the pentagon in Fig. 7.5 and Fig. 7.6. The other
points of the face with maximal R1 +R2 must be achieved by time-sharing
between these two corner points. However, there is a simple trick known as
rate-splitting by which one can achieve the other rate points by single-user
decoding [9, 10]. The idea is to split encoder 1 into two encoders operating
at the respective rates R11 and R12 with R1 = R11 + R12. Suppose these
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encoders transmit with respective powers P11 and P12, where P1 = P11+P12,
and that the output of the first transmitter is the sum of the two encoded
signals. The decoder performs single-user decoding in three stages: first,
decode the R11 code; second, decode the R2 code; third, decode the R12
code. The rates are

R1 = R11 +R12 = 1
2 log

(
1 + P11

N + P12 + P2

)
+ 1

2 log
(

1 + P12

N

)
R2 = 1

2 log
(

1 + P2

N + P12

)
Note that by choosing P12 = 0 we recover (7.37), while if we choose P12 = P1
we obtain the other corner points of the pentagons in Fig. 7.5 and Fig. 7.6.
By varying P12 from 0 to P1, we thus achieve any rate point on the boundary
of that face of the pentagon with maximum sum-rate.

7.6.2. Joint Decoding

Joint decoding refers to decoding both messages simultaneously. For the
MAC, an “optimal” joint decoder is much more complex than an “optimal”
single-user decoder because one must consider all codeword pairs. However,
by using iterative decoding, joint decoders can be implemented almost as
easily as single-user decoders [11].

For example, suppose that both messages are encoded with a low-density
parity-check (LDPC) code. An example of a decoding graph (or factor
graph) for the decoders and the MAC is depicted in Fig. 7.7. The iterative
decoder is initialized by giving the nodes labeled x1i + x2i a log-likelihood
ratio (LLR) based on the yi, i = 1, 2, . . . , n. The remaining operation of the
decoder is similar to that for a DMC or a point-to-point AWGN channel.
This type of approach is also called soft interference cancellation.

Decoder 2Decoder 1

x12 + x22
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x15 + x25

x16 + x26

x17 + x27

x18 + x28

x11 + x21

x22

x23

x24

x25

x26

x27

x28

x21

x12

x13

x14

x15

x16

x17

x18

x11

Figure 7.7.: Graph for an iterative joint decoder for the AWGN MAC.
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7.7. Problems

7.1. CMAC is Convex

Show that the region CMAC in (7.13) is a convex set.

7.2. AWGN MAC and BC Capacity Regions

a) Consider the additive-white Gaussian noise (AWGN) multiaccess
channel

Y =
√
N

N1
X1 +

√
N

N2
X2 + Z (7.38)

where Z is zero-mean Gaussian noise with variance N , N1 and N2 are
some positive numbers with N1 ≤ N2, and Z is independent of X1
and X2. However, suppose now that there is a sum power constraint
E[X2

1 +X2
2 ] ≤ P (and not the constraints E[X2

1 ] ≤ P1 and E[X2
2 ] ≤

P2). Compute the two-dimensional capacity region when R0 = 0.
b) Plot this region and explain how it is related to the capacity region

of the AWGN broadcast channel with the noise variances E[Z2
1 ] = N1

and E[Z2
2 ] = N2, N1 ≤ N2, and with the power constraint E[X2] ≤ P .
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Appendix A.

Discrete Probability

A.1. Events, Sample Space, and Probability
Measure

We begin with basic definitions. A discrete sample space Ω = {ω1, . . . , ωN}
is the set of possible outcomes of a random experiment. An event is a subset
of Ω including the empty set ∅ and the certain event Ω. The probability
measure Pr [·] assigns each event a number in the interval [0, 1] = {x : 0 ≤
x ≤ 1} such that

Pr [Ω] = 1 (A.1)
Pr [A ∪ B] = Pr [A] + Pr [B] if A ∩ B = ∅. (A.2)

The atomic events are the events {ωi}, i = 1, 2, . . . , N , so we have

Pr [A] =
∑
ωi∈A

Pr [ωi] (A.3)

where we have written Pr [ωi] as a shorthand for Pr [{ωi}]. The complement
Ac (or Ā) of event A is the set of all ωi that are not in A.

Example A.1. Consider a six-sided die and define Ω = {1, 2, 3, 4, 5, 6} (see
Fig. A.1). A fair die has Pr [ωi] = 1/6 for all i. The probability of the event
A is therefore |A|/|Ω|, where |A| is the number of elements in A.

We say that “event A implies event B”, or A ⇒ B, if and only if A ⊆ B.
By using (A.3), we thus find that A ⇒ B gives Pr [A] ≤ Pr [B]. Equation
(A.3) also implies that

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B] . (A.4)

We thus have

Pr [A ∪ B] ≤ Pr [A] + Pr [B] . (A.5)

which is known as the union bound. Equality holds in (A.5) if and only if
Pr [A ∩ B] = 0 (this does not necessarily mean that A ∩ B = ∅).
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Sample Space
B

A Ω

Figure A.1.: A sample space with six atomic events.

The events A and B are said to be independent if

Pr [A ∩ B] = Pr [A] · Pr [B] . (A.6)

More generally, the sets Ai, i = 1, 2, . . . , n, are independent if

Pr
[
n⋂
i=1
Ai
]

=
n∏
i=1

Pr [Ai] . (A.7)

The conditional probability of the event B given the occurrence of the event
A with Pr [A] > 0 is

Pr [B|A] = Pr [A ∩ B]
Pr [A] . (A.8)

Thus, if Pr [A] > 0 then using (A.8) the events A and B are independent if
Pr [B|A] = Pr [B].1

Example A.2. Consider our fair die and the events A = {1, 3, 5} and
B = {1, 2} in Fig. A.1. We find that (A.6) is satisfied so A and B are
independent. We further have Pr [A] > 0 and compute

Pr [B|A] = Pr [{1}]
Pr [A] = 1/6

1/2 = 1
3 . (A.9)

1The reader may now wonder what happens if Pr [A] = 0. We then have Pr [A ∩ B] = 0
so that (A.6) is satisfied. Thus, if Pr [A] = 0 then A and B are always independent.

Advanced Information Theory LNT, TUM



A.2. Discrete Random Variables 153

A.2. Discrete Random Variables

A discrete random variable X is a mapping from Ω into a discrete and
finite set X and its range is denoted by X(Ω) (we usually consider random
variables with X(Ω) = X ). The preimage (or inverse image) of a point a,
a ∈ X , is written as

X−1(a) = {ω : X(ω) = a}. (A.10)

More generally, for a subset A of X we write X−1(A) = {ω : X(ω) ∈ A}.
The probability distribution PX(·) is a mapping from X(Ω) into the interval
[0, 1] such that

PX(a) = Pr
[
X−1(a)

]
(A.11)

or simply PX(a) = Pr [X = a]. We thus have

PX(a) ≥ 0 for all a ∈ X(Ω) (A.12)∑
a∈X(Ω)

PX(a) = 1. (A.13)

Example A.3. Consider the sample space of Example A.1 and choose
X = {odd, even}. We define the mapping X(·) as follows:

X(1) = X(3) = X(5) = odd
X(2) = X(4) = X(6) = even.

We compute PX(odd) = PX(even) = 1/2.

Consider next n random variables Xn = X1, X2, . . . , Xn with domain Ω
and range Xn(Ω) = X1(Ω) × X2(Ω) × · · · × Xn(Ω). The joint probability
distribution PXn(·) of these random variables is the mapping from Xn(Ω)
into the interval [0, 1] such that

PXn(an) = Pr
[
n⋂
i=1
{Xi = ai}

]
. (A.14)

We thus have

PXn(an) ≥ 0 for all an ∈ Xn(Ω) (A.15)∑
an∈Xn(Ω)

PXn(an) = 1. (A.16)

We further have

PXn−1(an−1) = PX1X2...Xn−1(a1, a2, . . . , an−1)
=

∑
an∈Xn(Ω)

PX1X2...Xn−1Xn(a1, a2, . . . , an−1, an). (A.17)
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The marginal distributions of PXn are the distributions PX1 , PX2 , . . . , PXn .
The process of “removing” a random variable as in (A.17) by summing a
joint distribution over the range of the random variable is called marginal-
ization.

The support of a random variable X is the set

supp(PX) = {a : a ∈ X , PX(a) > 0}. (A.18)

The conditional probability distribution PY |X(·) is a mapping from X(Ω)×
Y (Ω) into the interval [0, 1] such that

PY |X(b|a) =
{

PXY (a,b)
PX(a) , PX(a) > 0

undefined, else.
(A.19)

The value “undefined” is sometimes chosen as a number in the interval [0, 1].
An alternative (but indirect) way of defining PY |X(·) is as any function from
X(Ω)× Y (Ω) into the interval [0, 1] such that

PY |X(b|a)PX(a) = PXY (a, b) (A.20)

for all (a, b) ∈ X(Ω) × Y (Ω). This alternative approach recovers the usual
definition if PX(a) > 0, and it motivates choosing PY |X(b|a) to be “unde-
fined” otherwise.
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A.3. Independent Random Variables

The random variables X1, X2, . . . , Xn are statistically independent if

PXn(an) =
n∏
i=1

PXi(ai) for all an ∈ Xn(Ω). (A.21)

Similarly, X1, X2, . . . , Xn are statistically independent conditioned on the
event A with Pr [A] > 0 if, for all an ∈ Xn(Ω), we have

Pr
[

n⋂
i=1
{Xi = ai}

∣∣∣∣∣A
]

=
n∏
i=1

Pr [Xi = ai|A] . (A.22)

Thus, using (A.21) we find that X and Y are statistically independent if
and only if

PY |X(b|a) = PY (b) for all (a, b) ∈ supp(PX)× Y (Ω). (A.23)

Similarly, we say that X and Y are statistically independent conditioned
on Z if

PXY |Z(a, b|c) = PX|Z(a|c)PY |Z(b|c) (A.24)

for all (a, b, c) ∈ X(Ω)×Y (Ω)× supp(PZ). Thus, we find that X and Y are
statistically independent conditioned on Z if and only if

PY |XZ(b|a, c) = PY |Z(b|c) (A.25)

for all (a, b, c) ∈ supp(PX)× Y (Ω)× supp(PZ). Alternatively, X and Y are
statistically independent conditioned on Z if and only if

PX|Y Z(a|b, c) = PX|Z(a|c) (A.26)

for all (a, b, c) ∈ X(Ω)× supp(PY Z).

A common way of expressing that X and Y are statistically independent
given Z is to say that

X − Z − Y (A.27)

forms a Markov chain.
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PZ1

X

a1

a2

b1

b2

b3

b4

Y

PZ2

Figure A.2.: Graph representation of PXY (·). The statistics of Zi depend
on i but Z = Z1Z2 is statistically independent of X.

A.4. Probabilistic Dependence via
Functional Dependence

Consider a joint distribution PXY (·). We claim that there is a random
variable Ỹ having PXỸ (·) = PXY (·) and where

Ỹ = f(X,Z) (A.28)

for some function f(·) and some random variable Z that is statistically
independent of X and that has alphabet Z of size at most |Z| = |X | · |Y|.

Suppose X = {a1, a2, . . . , a|X |} and Y = {b1, b2, . . . , b|Y|}. Consider the
graph representation of PXY (·), as depicted in Fig. A.2 for |X | = 2 and |Y| =
4. Let Z be a word with |X | letters whose ith letter Zi, i = 1, 2, . . . , |X |,
takes on the value bj with probability PZi(bj) = PY |X(bj|ai) as long as
PX(ai) > 0. If PX(ai) = 0 then we leave PZi(·) unspecified. We define the
function index(ai) = i, i = 1, 2, . . . , |X |, and choose Z independent of X
(the Zi, i = 1, 2, . . . , |X |, could be dependent). We claim that the function

Ỹ = Zindex(X) (A.29)

makes XỸ have the joint distribution PXY (·). Indeed, by construction have

PỸ |X(bj|ai) = PZi(bj) = PY |X(bj|ai). (A.30)

The purpose of the above exercise is to show that we may as well represent
any channel PY |X(·) by a functional relation Y = f(X,Z) where the “noise”
Z is independent of the channel input X. This result forms the basis of the
ideas in the next section.

Example A.4. Consider binary X and Y for which

PXY (0, 0) = p00, PXY (0, 1) = p01,
PXY (1, 0) = p10, PXY (1, 1) = p11.

(A.31)
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We define a1 = 0, a2 = 1, b1 = 0, b2 = 1, and Z = Z1Z2 where

PZ1(0) = PY |X(0|0) = p00
p00+p01

PZ2(0) = PY |X(0|1) = p10
p10+p11

.
(A.32)

We choose Ỹ = Z1 if X = 0 and Ỹ = Z2 if X = 1.

Example A.5. Consider Example A.4 with p00 = p11 and p01 = p10. The
symmetry lets us simplify f(·) and Z. We may define Ỹ = X ⊕ Z where
PX(0) = PX(1) = 1/2, Z is independent of X, and PZ(0) = p00 + p11,
PZ(1) = 1− PZ(0). We see that |Z| = 2 suffices in this case.
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Y2Z2 Y3Z3Z1

Y1

X3X1 X2

W

Figure A.3.: FDG for a memoryless channel with feedback.

A.5. Establishing Conditional Statistical
Independence

Graphs can help us to understand relationships between random variables
and to prove conditional statistical independence results. We will use func-
tional dependence graphs or FDGs.

An FDG has vertices that represent random variables and edges that rep-
resent the functional dependencies between the random variables. For in-
stance, suppose we have NRV random variables that are defined by SRV
independent (source) random variables by NRV functions. The correspond-
ing FDG G is a directed graph having NRV +SRV vertices and where edges
are drawn from one vertex to another if the random variable of the former
vertex is an argument of the function defining the random variable of the
latter vertex.

Example A.6. Fig. A.3 depicts the FDG for the first three uses of a
channel with feedback. In this graph the channel input symbol Xi, i =
1, 2, 3, is a function of the message W and the past channel outputs Y i−1.
We have drawn the feedback links using dashed lines to emphasize the
role that feedback plays. The output Yi is a function of Xi and a noise
random variable Zi. The graph has NRV = 6 random variables defined by
SRV = 4 independent random variables. The SRV vertices representing the
independent W,Z1, Z2 and Z3 are distinguished by drawing them with a
hollow circle.

The precise structure of FDGs lets one establish the conditional statisti-
cal independence of sets of random variables by using graphical procedures
called d-separation and fd-separation (“d” for dependence and “fd” for func-
tional dependence). By d-separation we mean the following.

Definition A.1 Let X , Y and Z be disjoint subsets of the vertices of an
FDG G. Z is said to d-separate X from Y if there is no path between a
vertex in X and a vertex in Y after the following manipulations of the graph
have been performed.
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a) Consider the subgraph GXYZ of G consisting of the vertices in X , Y
and Z, as well as the edges and vertices encountered when moving
backward one or more edges starting from any of the vertices in X or
Y or Z.

b) In GXYZ delete all edges coming out of the vertices in Z. Call the
resulting graph GXY|Z .

c) Remove the arrows on the remaining edges of GXY|Z to obtain an undi-
rected graph.

A fundamental result of [1, Sec. 3.3] is that d-separation establishes con-
ditional independence in FDGs having no directed cycles. That is, if G is
acyclic, Z d-separates X from Y in G, and we collect the random variables
of the vertices in X , Y and Z in the respective vectors X, Y and Z, then
PX Y |Z = PX|ZPY |Z . This is the same as saying that X − Z − Y forms a
Markov chain.

Example A.7. Consider Fig. A.3 and choose X = {W}, Y = {Y2}, and
Z = {X1, X2}. We find that Z d-separates X from Y so thatW−X1X2−Y2
forms a Markov chain.

A simple extension of d-separation is known as fd-separation which uses
the fact that the FDG represents functional relations, and not only Markov
relations as in Bayesian networks [2, Ch. 2],[3]. For fd-separation, after the
second step above one removes all edges coming out of vertices to which
there is no path (in a directed sense) from the SRV source vertices. We
remark that fd-separation applies to an FDG G with cycles, as long as all
subgraphs of G are also FDGs (see [2, Ch. 2]).
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A.6. Expectation

Expectation is an integral and usually involves continuous real-valued ran-
dom variables. However, (real-valued) discrete random variables have all
the important properties we shall need for the continuous cases.

Consider a real-valued function f(·) with domain X(Ω). The expectation of
the random variable Y = f(X) is

E[Y ] = E[f(X)] =
∑

a∈supp(PX)
PX(a) f(a). (A.33)

One sometimes encounters the notation EX [·] if it is unclear which of the
letters in the argument of E[·] are random variables.

Example A.8. The random variable Y = f(X) = 1(X = a) has

E[Y ] = PX(a). (A.34)

Similarly, Y = f(X) = 1(X ∈ A) for A ⊆ X(Ω) has

E[Y ] =
∑
a∈A

PX(a). (A.35)

The conditional expectation of f(X) given that the event A with Pr [A] > 0
occurred is

E[f(X)|A] =
∑

a:Pr[{X=a}∩A]>0
Pr [X = a|A] f(a) (A.36)

where the conditional probability Pr [X = a|A] is defined as in (A.8). In
particular, if A = {Z = c} and PZ(c) > 0 we have

E[f(X)|Z = c] =
∑

a∈supp(PX|Z(·|c))
PX|Z(a|c) f(a). (A.37)

We can re-write the above definitions slightly differently. Let {B1,B2, . . . ,BM}
be a collection of events that partition the sample space, i.e., we have

M⋃
m=1
Bm = Ω and Bi ∩ Bj = ∅, i 6= j. (A.38)
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We can then write (A.33) as

E[f(X)] =
∑

i,a:Pr[Bi∩{X=a}]>0
Pr [Bi ∩ {X = a}] f(a)

=
∑

i:Pr[Bi]>0
Pr [Bi]

∑
a:Pr[Bi∩{X=a}]>0

Pr [Bi ∩ {X = a}]
Pr [Bi]

f(a)

=
∑

i:Pr[Bi]>0
Pr [Bi]

∑
a:Pr[Bi∩{X=a}]>0

Pr [X = a|Bi] f(a)

=
∑

i:Pr[Bi]>0
Pr [Bi] E[f(X)|Bi] (A.39)

and (A.36) as

E[f(X)|A] =
∑

i:Pr[Bi∩A]>0
Pr [Bi|A] E[f(X)|Bi ∩ A] . (A.40)

Example A.9. For a discrete random variable Y we can choose Bb = {Y =
b} and write

E[f(X)] =
∑

b∈supp(PY )
PY (b) E[f(X)|Y = b] (A.41)

E[f(X)|A] =
∑

b:Pr[{Y=b}∩A]>0
Pr [Y = b|A] E[f(X)|{Y = b} ∩ A] . (A.42)

The identities (A.39)-(A.42) are called the Theorem on Total Expectation.
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A.7. Second-Order Statistics for Scalars

The m’th moment, m = 1, 2, 3, . . ., of a real-valued random variable Y is
E[Y m]. The variance of Y is

Var[Y ] = E
[
(Y − E[Y ])2

]
= E

[
Y 2
]
− E[Y ]2 . (A.43)

The covariance of real-valued X and Y is

Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]
= E[XY ]− E[X] E[Y ] . (A.44)

We thus have Var[X] = Cov[X,X]. We say that X and Y are uncorrelated
if Cov[X, Y ] = 0 or, alternatively, if E[XY ] = E[X] E[Y ].

Example A.10. Statistically independent X and Y are uncorrelated.

Example A.11. Consider random variables X1, X2, . . . , Xn. We compute

Var
[
n∑
i=1

Xi

]
=

n∑
i=1

n∑
j=1

Cov[Xi, Xj] . (A.45)

If the {Xi}ni=1 are pairwise uncorrelated then (A.45) is ∑n
i=1 Var[Xi].

The correlation coefficient of X and Y is the normalized covariance

ρ = E[(X − E[X])(Y − E[Y ])]√
Var[X] Var[Y ]

(A.46)

as long as the variances are positive; otherwise we say ρ = 0. One can show
that −1 ≤ ρ ≤ 1.
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A.8. Second-Order Statistics for Vectors

The definitions of the previous section extend naturally to random vectors.
The covariance matrix of the real-valued column vectors X = [X1 . . . X`]T
and Y = [Y1 . . . Ym]T is

Cov[X, Y ] = E
[
(X − E[X])(Y − E[Y ])T

]
= E

[
X Y T

]
− E[X] E[Y ]T . (A.47)

The covariance matrix of X is QX = Cov[X,X]. We say that X and Y are
uncorrelated if Cov[X, Y ] = 0.

Example A.12. For the random vectors X1, X2, . . . , Xn we compute

Q∑n

i=1 Xi
=

n∑
i=1

n∑
j=1

Cov
[
X i, Xj

]
. (A.48)

If the {X i}ni=1 are pairwise uncorrelated then (A.48) is ∑n
i=1 QXi

.

The correlation matrix of X and Y is the normalized covariance matrix

R = E
[
X̃ Ỹ

T
]

(A.49)

where the ith entry of X̃ is

X̃i = Xi − E[Xi]√
Var[Xi]

(A.50)

as long as the variance is positive; otherwise we set X̃i = 0. The entries of
Ỹ are similarly defined. In other words, the entry of row i and column j of
R is simply the correlation coefficient of Xi and Yj.
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A.9. Conditional Expectation Random
Variables

The conditional expectation (A.37) motivates defining the random variable
E[Y |X] that takes on the value E[Y |X = a] when X = a. E[Y |X] is there-
fore a deterministic function of X and we have

PE[Y |X](b) =
∑

a: E[Y |X=a]=b
PX(a). (A.51)

We similarly define Var[Y |X] as the random variable that takes on the value
Var[Y |X = a] when X = a.

We next list several simple properties of conditional expectation.

• E[f(X)|X] = f(X)
• E[E[Y |X]] = E[Y ] and more generally E[E[Y |X] |Z] = E[Y |Z]
• E[Y Z] = E[Y E[Z|Y ]] and more generally E[Y Z|X] = E[Y E[Z|XY ] |X]
• If Y −X − Z forms a Markov chain then E[Z|XY ] = E[Z|X]
• If Y −X − Z forms a Markov chain then E[Y Z|X] = E[Y |X] E[Z|X]
• Var[Y |X] = E[Y 2|X]−E[Y |X]2 and E[Var[Y |X]] = E[Y 2]−E

[
E[Y |X]2

]
An important property of conditional expectation concerns minimum-mean
square-error (MMSE) estimation. Consider the error S = X − X̂ and
suppose that, given Y = y, we wish to find the estimate X̂(y) that minimizes

Var[S|Y = y] = E
[(
X − X̂(y)

)2
∣∣∣∣Y = y

]
. (A.52)

A simple optimization gives X̂(y) = E[X|Y = y] and the MMSE is

Var[S|Y = y] = E
[
X2|Y = y

]
− E[X|Y = y]2 . (A.53)

Hence, the MMSE estimate is the random variable

X̂(Y ) = E[X|Y ] (A.54)

and the MMSE is the random variable Var[S|Y ] = E[X2|Y ] − E[X|Y ]2.
We caution that E[Var[S|Y ]] 6= Var[S] in general. In fact, using Jensen’s
inequality and the strict convexity of the function f(x) = x2, we have

E[Var[S|Y ]] = E
[
X2
]
− E

[
E[X|Y ]2

]
≤ E

[
X2
]
− E[X]2

= Var[S] (A.55)

with equality if and only if E[X|Y ] is the constant E[X].
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A.10. Linear Estimation

This section is concerned with linearminimum-mean square-error (LMMSE)
estimators. Consider the zero-mean random variables X and Y . (For non-
zero mean X and Y , simply subtract the means to give zero-mean random
variables. One may add E[X] to the final estimate without affecting the
estimator performance.) Given Y , we estimate X̂ = c Y where c is chosen
to minimize

E
[(
X − X̂

)2
]
. (A.56)

Simple calculations give

c = E[XY ] /E
[
Y 2
]

(A.57)

E
[(
X − X̂

)2
]

= E
[
X2
]
− E

[
X̂2
]

(A.58)

E
[(
X − X̂

)
· Y
] (a)= 0 (A.59)

and (a) is called the orthogonality principle.

More generally, for (zero-mean column) vectors the LMMSE estimator is
X̂ = CY where C minimizes

E
[∥∥∥X − X̂∥∥∥2

]
. (A.60)

Suppose that X and Y have zero mean and QY = E
[
Y Y T

]
is invertible.

We compute

C = E
[
X Y T

]
Q−1
Y (A.61)

E
[∥∥∥X − X̂∥∥∥2

]
= E

[
‖X‖2

]
− E

[∥∥∥X̂∥∥∥2
]

(A.62)

E
[(
X − X̂

)
· Y T

] (a)= 0 (A.63)

and (a) is again called the orthogonality principle.

Summarizing, the vector LMMSE estimator can be written as

X̂(Y ) = E
[
X Y T

]
Q−1
Y Y . (A.64)
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A.11. Markov Inequalities

We state and prove several useful inequalities.

Theorem A.2. (Markov Inequality) Let X be a non-negative real-
valued random variable with mean E[X]. For a > 0, we have

Pr [X ≥ a] ≤ E[X]
a

. (A.65)

Proof. We have Pr [X ≥ a] = E[1(X ≥ a)], where 1(·) is the indicator func-
tion that takes on the value 1 if its argument is true and is 0 otherwise.
We further note that a 1(X ≥ a) ≤ X. We thus have aPr [X ≥ a] =
E[a 1(X ≥ a)] ≤ E[X]. �

Example A.13. Suppose we set X = |Y − E[Y ] |. Markov’s inequality
then gives Tchebycheff’s inequality

Pr [|Y − E[Y ] | ≥ a] = Pr
[
|Y − E[Y ] |2 ≥ a2

]
≤ Var[Y ]

a2 (A.66)

where Var[Y ] is the variance of Y and a > 0.

Example A.14. Suppose we set X = eνY and a = eνb. Markov’s inequality
then gives the Chernoff bounds

Pr [Y ≥ b] ≤ E
[
eνY

]
e−νb for ν ≥ 0

Pr [Y ≤ b] ≤ E
[
eνY

]
e−νb for ν ≤ 0. (A.67)
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A.12. Jensen Inequalities

A real-valued function f(·) with domain an interval I of non-zero length on
the real line is convex (or convex-∪) on I if, for every interior point x0 of
I, there exists a real number m (that may depend on x0) such that

f(x) ≥ f(x0) +m(x− x0) for all x ∈ I. (A.68)

The convexity is strict if the inequality (A.68) is strict whenever x 6= x0.
An alternative and equivalent definition is that f(·) is convex on I if for
every x1 and x2 in I we have

f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for 0 < λ < 1. (A.69)

We say that f(·) is concave (or convex-∩) on I if −f(·) is convex on I.

Theorem A.3. (Jensen’s Inequality) Let X be a real-valued random
variable taking values in I and suppose f(·) is convex on I. We have

f(E[X]) ≤ E[f(X)] . (A.70)

Similarly, if f(·) is concave on I then we have

f(E[X]) ≥ E[f(X)] . (A.71)

If f(·) is strictly convex (or concave) then equality holds in (A.70) (or
(A.71)) if and only if X is a constant.

Instead of proving Theorem A.3, we prove a more general result for vectors.
Consider a real-valued function f(·) whose domain is a non-empty convex
set S in the n-dimensional vector space Rn. We say that f(·) is convex (or
convex-∪) on S if, for every interior point x0 of S, there exists a real vector
m (that may depend on x0) such that

f(x) ≥ f(x0) +mT (x− x0) for all x ∈ S. (A.72)

The convexity is strict if the inequality (A.72) is strict whenever x 6= x0.
An alternative and equivalent definition is that f(·) is convex on S if for
every x1 and x2 in S we have

f (λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) for 0 < λ < 1. (A.73)

We say that f(·) is concave (or convex-∩) on S if −f(·) is convex on S.

Theorem A.4. (Jensen’s Inequality for Vectors) Let X be a vector-
valued random variable taking values in S and suppose f(·) is convex on S.
We have

f(E[X]) ≤ E[f(X)] . (A.74)
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Similarly, if f(·) is concave on S then we have

f(E[X]) ≥ E[f(X)] . (A.75)

If f(·) is strictly convex (or concave) then equality holds in (A.74) (or
(A.75)) if and only if X is a constant.

Proof. Choose x0 = E[X] in (A.72), choose an m that satisfies (A.72) for
this x0, replace x with the random variable X, and take expectations of
both sides of (A.72). The result is (A.74). If f(·) is concave on S, then we
similarly obtain (A.75). Furthermore, if f(·) is strictly convex (or concave),
equality holds in (A.74) (or (A.75)) if and only if X is a constant. �
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A.13. Weak Law of Large Numbers

Laws of large numbers are concerned with n repeated trials of the same
random experiment. Let X1, X2, . . . , Xn be independent and identically
distributed (i.i.d.) real-valued random variables with PXi(·) = PX(·) for all
i. The sample mean Sn is

Sn = 1
n

n∑
i=1

Xi. (A.76)

We clearly have E[Sn] = E[X] and Var[Sn] = Var[X] /n. Applying Tcheby-
cheff’s inequality (A.66), we have

Pr [|Sn − E[X] | ≥ ε] ≤ Var[X]
nε2

. (A.77)

Alternatively, we have

Pr [|Sn − E[X] | < ε] ≥ 1− Var[X]
nε2

(A.78)

which is a quantitative version of the Weak Law of Large Numbers. The
Weak Law thus states that the sample mean of n independent samples of
X is almost certain to be near E[X] when n is large. Qualitatively, we can
write (A.78) as a “limit in probability”:

plim
n→∞

Sn = E[X] . (A.79)

Example A.15. Consider a (perhaps non-real) random variable X with
alphabet X = {a1, a2, . . . , a|X |}. Let 1(·) be the indicator function that is
1 if its argument is true and is 0 otherwise. Let Y = 1(Xi = aj) for some
1 ≤ j ≤ |X | for which we compute

E[Y ] = PX(aj) (A.80)
Var[Y ] = PX(aj) (1− PX(aj)) . (A.81)

Now consider n independent trials X1, X2, . . . , Xn of X which generate n
independent trials of real-valued Y1, Y2, . . . , Yn of Y . We form the sum
(A.76) with Yi replacing Xi. Note that this sum is 1/n multiplying the
number N(aj|Xn) of times that the letter aj occurs in Xn. Using the weak
law (A.78) we find that

Pr
[∣∣∣∣∣N(aj|Xn)

n
− PX(aj)

∣∣∣∣∣ < ε

]
≥ 1− PX(aj) (1− PX(aj))

nε2
. (A.82)

In other words, for large n the letter aj occurs about nPX(aj) times in Xn.
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A.14. Strong Law of Large Numbers

The Weak Law of Large Numbers required only the Tchebycheff bound that
is based on Var[X]. We next wish to derive a stronger result that concerns
the semi-infinite sequence of sums S1, S2, S3, . . .. The Chernoff bound (A.67)
with Y = Sn − E[X] gives

Pr [(Sn − E[X]) ≥ ε] ≤ E
[
eν(Sn−E[X])

]
e−νε

(a)= E
[
e(ν/n)(X−E[X])

]n
e−νε (A.83)

where ν ≥ 0 and (a) follows by the independence of the trials. We should
now optimize over ν but instead choose ν = n δ for some small constant δ.
Suppose the magnitudes of all moments of X are bounded from above as
follows: ∣∣∣E[(X − E[X])i

]∣∣∣ ≤ mi (A.84)

for i = 2, 3, 4, . . . and for some positive m. The right-hand side of (A.83) is

E
[
e(ν/n)(X−E[X])

]n
e−νε = E

[
1 +

∞∑
i=2

δi

i! (X − E[X])i
]n

e−nδε

≤
(

1 +
∞∑
i=2

δi

i! m
i

)n
e−nδε

=
(
emδ −mδ

)n
e−nδε

= en[log(emδ−mδ)−δε]. (A.85)

The term in square brackets in (A.85) evaluates to zero at δ = 0 and its
derivative with respect to δ is −ε at δ = 0. Hence we can find a small δ for
which the term in square brackets is negative. We thus find that

Pr [(Sn − E[X]) ≥ ε] ≤ βn (A.86)

where β depends on ε and m and satisfies 0 < β < 1. Combining (A.86)
with a similar bound on Pr [Sn − E[X] ≤ −ε] we have

Pr [|Sn − E[X] | ≥ ε] ≤ 2βn. (A.87)

Now consider the following result on the behavior of {Si}∞i=1 for i ≥ n:

Pr
[
sup
i≥n
|Si − E[X] | ≥ ε

]
= Pr

⋃
i≥n
{|Si − E[X] | ≥ ε}


(a)
≤
∞∑
i=n

Pr [|Sn − E[X] | ≥ ε]

(b)
≤ 2βn

1− β (A.88)
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where (a) follows by the union bound, and (b) follows by the Chernoff bound
(A.87). Note that step (b) does not work with the Tchebycheff bound (A.77)
because the probabilities decrease only as 1/n rather than exponentially
with n. The bound (A.88) implies the Strong Law of Large Numbers, namely

lim
n→∞

Pr
[
sup
i≥n
|Si − E[X] | < ε

]
= 1 . (A.89)

A.15. Problems

A.1. Borel-Kolmogorov “Paradox”

Consider a 3-dimensional sphere centered at the origin and label the points
on its surface by using the spherical coordinates longitude φ, −π ≤ φ < π,
and latitude θ, −π/2 ≤ θ ≤ π/2. Suppose X is a point that is uniformly
distributed on the sphere, i.e., we write X(φ, θ) and consider the joint den-
sity

pΦΘ(φ, θ) = 1
4π cos θ. (A.90)

a) Determine the marginal densities pΦ(·) and pΘ(·).
b) Determine the density of a point on the great circle defined by θ = 0,

i.e., determine pΦ|Θ(·|0).
c) Determine the density of a point on the great circle defined by φ = 0,

i.e., determine pΘ|Φ(·|0). Compare your answer to the previous result
and interpret.

A.2. Strong Law with Fourth Central Moment Constraint

This exercise proves the strong law of large numbers but replaces (A.84)
with the weaker constraint that X has a finite fourth central moment

E
[
(X − E[X])4

]
≤ m (A.91)

for some non-negative m.

a) Use Jensen’s inequality to show that

Var[X]2 ≤ E
[
(X − E[X])4

]
(A.92)

so that (A.91) implies Var[X] ≤
√
m.

b) Use the Markov inequality to show that

Pr [(Sn − E[X]) ≥ ε] ≤ E[(Sn − E[X])4]
ε4

. (A.93)
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c) Show by direct computation or induction that for zero-mean and i.i.d.
Y1, Y2, Y3, . . . with common distribution PY , we have

E
( n∑

i=1
Yi

)4
 = nE

[
Y 4
]

+ 3n(n− 1)E
[
Y 2
]2
. (A.94)

d) Now use Y = X − E[X] and show that

E
[
(Sn − E[X])4

]
≤ (3n2 − 2n)m

n4 ≤ 3m
n2 . (A.95)

e) Insert (A.95) into (A.93) and modify the steps (A.86)-(A.88) to show
that

Pr
[
sup
i≥n
|Si − E[X] | ≥ ε

]
≤
∞∑
i=n

3m
i2ε4
≤ 3m

ε4

∫ ∞
n

1
x2dx = 3m

nε4
(A.96)

Explain why the result (A.96) proves the strong law of large numbers.
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