
A First Course in Object Oriented
Development

A Hands-On Approach

Leif Lindbäck

June 7, 2016

Revision History

Date Description Page(s) (at
time of
revision)

2016-02-25 First published version. Sections 6.6-6.10 and chapter 7
are not yet written.

All

2016-04-01 Fixed typos Section 5.6

2016-04-05 Class Amount was kept, by misstake, after it had been
stated that it should be removed.

29-31

2016-04-05 Small changes to make the text clearer. 69-71

2016-04-05 Improved table layout 26

2016-04-15 Create stereotype was missing in some classes in design
class diagrams.

64, 68, 71,
75, 77

2016-04-15 Added section 6.6 103-118

2016-04-15 Added section 6.7 118-119

2016-04-15 Moved testing to a separate chapter 120

2016-04-15 Improved layout of table 6.1 81

2016-06-02 Clarified description of naïv domain model. 31

2016-06-07 Added chapter seven. 130-149

2016-06-07 Split chapter eight. 150-153

i

License

Except for figures 5.7, 5.8, 5.11, 5.14, 7.1, 7.2, and 7.6, A First Course in Object Oriented
Development, A Hands-On Approach by Leif Lindbäck is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License, see http://creativecommons.org/
licenses/by-sa/4.0/.

ii

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Preface

This text replaces lecture notes for the course IV1350, Object Oriented Design.
It is assumed that the reader has basic knowledge of Java programming, corresponding to

one 7.5 hp course, for example ID1018, Programming I. Important concepts, in particular
objects and references, are repeated in chapter 1.

Each chapter has an initial section indicating parts of [LAR] covering the same topics. That
is not mandatory reading, this text contains all course material. It is intended only for those
who wish to dig deeper in a particular subject.

Paragraphs that are crucial to remember when solving seminar tasks are marked with an
exclamation mark, like this paragraph. Forgetting the information in such paragraphs might
lead to severe misunderstandings.

!
Paragraphs warning for typical mistakes are marked NO!, like this paragraph. Such para-

graphs warn about mistakes frequently made by students previous years. NO!
There are Java implementatons of all UML design diagrams in Appendix C. The purpose

is to make clearer what the diagrams actually mean. The analysis diagrams can not be imple-
mented in code, since they do not represent programs. There is a NetBeans project with all
Java code in this book, that can be downloaded from the course web [CW].

iii

Contents

Revision History . i

License . ii

Preface . iii

I Background 1

1 Java Essentials . 2
1.1 Further Reading . 2
1.2 Objects . 2
1.3 References . 4
1.4 Arrays and Lists . 5
1.5 Exceptions . 6
1.6 Javadoc . 7
1.7 Annotations . 9
1.8 Interfaces . 9
1.9 Inheritance . 10

2 Introduction . 13
2.1 Further Reading . 13
2.2 Why Bother About Object Oriented Design? 13
2.3 Software Development Methodologies . 13
2.4 Activities During an Iteration . 14
2.5 Unified Modeling Language, UML . 16

3 The Case Study . 17
3.1 Basic Flow . 17
3.2 Alternative Flows . 18

II Course Content 19

4 Analyses . 20
4.1 Further Reading . 20
4.2 UML . 20

iv

Contents

4.3 Domain Model . 24
4.4 System Sequence Diagram . 33

5 Design . 39
5.1 Further Reading . 39
5.2 UML . 39
5.3 Design Concepts . 43
5.4 Architecture . 50
5.5 A Design Method . 57
5.6 Designing the RentCar Case Study . 58
5.7 Common Mistakes . 78

6 Programming . 80
6.1 Further Reading . 80
6.2 Dividing the Code in Packages . 80
6.3 Code Conventions . 81
6.4 Comments . 82
6.5 Code Smell and Refactoring . 83
6.6 Coding Case Study . 104
6.7 Common Mistakes When Implementing the Design 119

7 Testing . 121
7.1 Unit Tests and The JUnit Framework . 122
7.2 Unit Testing Best Practices . 127
7.3 When Testing is Difficult . 129
7.4 Unit Testing Case Study . 130
7.5 Common Mistakes When Writing Unit Tests 148

8 Exception Handling . 150

9 Polymorphism and Design Patterns . 151

10 Inheritance . 152

11 Inner Classes . 153

III Appendices 154

A English-Swedish Dictionary . 155

B UML Cheat Sheet . 157

C Implementations of UML Diagrams . 161

v

Contents

Bibliography . 254

Index . 255

vi

Part I

Background

1

Chapter 1

Java Essentials

This text assumes previous knowledge of an object oriented programming language. All code
listings are written in Java. This chapter repeats important concepts of Java, but does not cover
the whole language.

1.1 Further Reading

The code examples are available in a NetBeans project, which can be downloaded from the
course web [CW]. Video lectures, which, in addition to explaining concepts, give an introduc-
tion to NetBeans, are also available on the course web [CW].

1.2 Objects

The goal of object-oriented programming is to declare classes, which are groups of data and
methods operating on that data. A class represents an abstraction, for example person. An
object represents a specific instance of that abstraction, for example the person you. Whenever
a new person shall be represented in the program, a new object of the Person class is created.
This is done with the operator new, as illustrated on lines one and five in listing 1.1.

1 Person alice = new Person("Main Street 2");
2 System.out.println("Alice lives at " +
3 alice.getHomeAddress());
4
5 Person bob = new Person("Main Street 1");
6 System.out.println("Bob lives at " + bob.getHomeAddress());
7
8 alice.move("Main Street 3");
9 System.out.println("Alice now lives at " +

10 alice.getHomeAddress());
11 System.out.println("Bob still lives at " +
12 bob.getHomeAddress());

Listing 1.1 Creating and calling objects.

2

Chapter 1 Java Essentials

Two different objects, representing the persons Alice and Bob, are created in listing 1.1.
Note that when Alice moves to another address, line eight, Bobs address remains unchanged,
since alice and bob are different objects. The output when running the program is provided
in listing 1.2, and the source code for the Person class is in listing 1.3.

1 Alice lives at Main Street 2
2 Bob lives at Main Street 1
3 Alice now lives at Main Street 3
4 Bob still lives at Main Street 1

Listing 1.2 Output of program execution

1 public class Person {
2 private String homeAddress;
3
4 public Person() {
5 this(null);
6 }
7
8 public Person(String homeAddress) {
9 this.homeAddress = homeAddress;

10 }
11
12 public String getHomeAddress() {
13 return this.homeAddress;
14 }
15
16 public void move(String newAddress) {
17 this.homeAddress = newAddress;
18 }
19 }

Listing 1.3 The Person class

A constructor is used to provide initial values to an object. In listing 1.3, the value passed to
the constructor is saved in the object’s field on line nine. Sending parameters to a constructor
is just like sending parameters to a method. More than one constructor is needed if it shall
be possible to provide different sets of initialization parameters. The constructor on lines four
to six is used if no home address is specified when the object is created, the constructor on
lines eight to ten is used when a home address is specified. Note that, on line five, the first
constructor calls the second constructor, using null as the value of the home address.

The variable this always refers to the current object. The variable this.homeAddress
on line nine in listing 1.3 is the field declared on line two, homeAddress on line nine is the
constructor parameter homeAddress declared on line eight. These two are different variables.

A word of warning: use static fields and methods very restrictively! Static fields are shared

3

Chapter 1 Java Essentials

by all objects of the class. If for example the person’s address was static, all persons would
have the same address. Such a program would be useless. Since fields can not be static, neither
can methods since static methods can access only static fields. Static fields and methods are
normally not used at all, except in a few, very special, cases.

1.3 References

When the new operator is used to create an object, it returns a reference to that object. A
reference can, like any other value, be stored in variables, sent to methods, sent to constructors,
etc. This is illustrated in listing 1.4, which contains a program where a person places food in a
dog’s bowl. First, a Bowl object is created on line three. The reference to that object is stored
in the bowl variable and passed to the constructor of a Person object on line four. On line
16, the Person object stores the reference in the bowl field, declared on line 12. Then, on
line six, the main method calls the feedDog method in person. In feedDog, the method
addFood is called in the previously created bowl, on line 20. This shows how an object
(bowl) can be created in one place (main), passed to another object (person) and used there.

1 public class Startup {
2 public static void main(String[] args) {
3 Bowl bowl = new Bowl();
4 Person person = new Person(bowl);
5 for (int i = 0; i < 9; i++) {
6 person.feedDog();
7 }
8 }
9 }

10
11 public class Person {
12 private Bowl bowl;
13 private int gramsToAdd = 200;
14
15 public Person(Bowl bowl) {
16 this.bowl = bowl;
17 }
18
19 public void feedDog() {
20 bowl.addFood(gramsToAdd);
21 }
22 }
23
24 public class Bowl {
25 private int gramsOfFoodInBowl;
26
27 public void addFood(int grams) throws Exception {
28 gramsOfFoodInBowl = gramsOfFoodInBowl + grams;

4

Chapter 1 Java Essentials

29 }
30 }

Listing 1.4 The bowl object is created in the main method and a reference to it is passed
to the person object, where it is used.

1.4 Arrays and Lists

An ordered collection of elements can be represented both as the language construct array
and as an instance of java.util.List. An array is appropriate if the number of elements is
both fixed and known, see listing 1.5, where there are exactly five elements.

1 int[] myArray = new int[5];

Listing 1.5 An array has an exact number of elements, five in this case.

It is better to use a java.util.List if the number of elements is not both fixed and
known, see listing 1.6.

1 import java.util.ArrayList;
2 import java.util.List;
3 ...
4 List myList = new ArrayList();
5 myList.add("Hej");
6 myList.add(3);

Listing 1.6 Any number of elements can be added to a List.

A List can contain objects of any class, listing 1.6 stores a String on line five and an
Integer on line six. This means that when reading from the List, the type of the read
element will always be java.lang.Object. It is up to the programmer to know the actual
type of the element and cast it to that type. This procedure is error-prone, it is better to
restrict list elements to be objects of one specific type. This is done in listing 1.7, where
adding <String> on line four specifies that the list may contain only objects of type String.
Adding <> specifies that this holds also for the created ArrayList.

1 import java.util.ArrayList;
2 import java.util.List;
3 ...
4 List<String> myList = new ArrayList<>();
5 myList.add("Hej");
6 myList.add("Hopp");

Listing 1.7 A List allowed to contain only objects of type String.

5

Chapter 1 Java Essentials

When list content is restricted to one type, it is possible to iterate the list using a for-each
loop, see lines eight to ten in listing 1.8.

1 import java.util.ArrayList;
2 import java.util.List;
3 ...
4 List<String> myList = new ArrayList<>();
5 myList.add("Hej");
6 myList.add("Hopp");
7
8 for(String value : myList) {
9 System.out.println(value);

10 }

Listing 1.8 Iterating a List with a for-each loop

1.5 Exceptions

Exceptions are used to report errors. When an exception is thrown, the method throwing it
is immediately interrupted. Execution is resumed in the nearest calling method with a try

block. This is illustrated in listing 1.9. On line 34, the addFood method checks if the bowl
would become overfull when more food is added. If so, instead of adding food, it throws an
exception (lines 35-40). This means line 42 is not executed. Instead, the program returns to
the calling statement, which is on line 24, in the feedDog method. However, that line is not
in a try block, which means execution returns to the statement where feedDog was called.
That call is made on line eight, which is in a try block. Execution then jumps immediately
to the corresponding catch block. This means line eleven is the line executed immediately
after throwing the exception on line 35.

1 public class Startup {
2 public static void main(String[] args) {
3 Bowl bowl = new Bowl();
4 Person person = new Person(bowl);
5 try {
6 for (int i = 0; i < 9; i++) {
7 System.out.println("Feeding dog");
8 person.feedDog();
9 }

10 } catch (Exception e) {
11 e.printStackTrace();
12 }
13 }
14 }

6

Chapter 1 Java Essentials

15 public class Person {
16 private Bowl bowl;
17 private int gramsToAdd = 200;
18
19 public Person(Bowl bowl) {
20 this.bowl = bowl;
21 }
22
23 public void feedDog() throws Exception {
24 bowl.addFood(gramsToAdd);
25 }
26
27 }
28
29 public class Bowl {
30 private int gramsOfFoodInBowl;
31 private static final int MAX_CAPACITY = 500;
32
33 public void addFood(int grams) throws Exception {
34 if (gramsOfFoodInBowl + grams > MAX_CAPACITY) {
35 throw new Exception("Bowl is overfull. " +
36 "Trying to add " +
37 grams + " grams of " +
38 food when there are " +
39 gramsOfFoodInBowl +
40 " grams in bowl.");
41 }
42 gramsOfFoodInBowl = gramsOfFoodInBowl + grams;
43 }
44 }

Listing 1.9 An exception is thrown if food is added to the bowl when it is already full.

All methods in listing 1.9 that may throw an exception declare that, with throws Exception

in the method declaration. This is required if the thrown exception is a checked exception, but
not if it is a runtime exception. An exception is a runtime exceptions if it inherits the class
java.lang.RuntimeException.

1.6 Javadoc

Javadoc is used to generate html pages with code documentation, like the documentation of
the Java APIs at http://docs.oracle.com/javase/8/docs/api/. It is strongly rec-
ommended to write Javadoc for all declarations (classes, methods, fields, etc) that are not
private. A Javadoc comment is written between /** and */. The tags @param and @return

are used to document method parameters and return values. See listing 1.10 for examples.

7

Chapter 1 Java Essentials

1 /**
2 * A person that lives at the specified address.
3 */
4 public class Person {
5 private String homeAddress;
6
7 /**
8 * Creates a new <code>Person</code>.
9 */

10 public Person() {
11 this(null);
12 }
13
14 /**
15 * Creates a new <code>Person</code> that lives at the
16 * specified address.
17 *
18 * @param homeAddress The newly created
19 * <code>Person</code>’s home address.
20 */
21 public Person(String homeAddress) {
22 this.homeAddress = homeAddress;
23 }
24
25 /**
26 * @return The <code>Person</code>’s home address.
27 */
28 public String getHomeAddress() {
29 return this.homeAddress;
30 }
31
32 /**
33 * The the <code>Person</code> moves to the specified
34 * address.
35 *
36 * @param newAddress The <code>Person</code>’s new
37 * home address.
38 */
39 public void move(String newAddress) {
40 this.homeAddress = newAddress;
41 }
42 }

Listing 1.10 Class with javadoc comments

8

Chapter 1 Java Essentials

1.7 Annotations

Annotations are code statements that are not executed. Instead, they provide information
about a piece of source code for the compiler, JVM or something else. Annotations are usu-
ally used for properties unrelated to the functionality of the source code, for example to con-
figure security, networking or tests. An annotation starts with the at sign, @, for example
@SomeAnnotation. Annotations may take parameters, for example @SomeAnnotation(

someString = "abc"). An example is found on line 20 in listing 1.11.

1.8 Interfaces

An interface is a contract, specified in the form of method declarations. A class implementing
the interface must fulfill the contract, by providing implementations of the methods. The
method implementations in the implementing class must do what is intended in the method
declarations in the interface. This should be documented in javadoc comments. Note that
the interface contains only declarations of methods, there are no method bodies. Listing 1.11
shows an interface that defines the contract Print the specified message to the log, lines one to
eleven. It also shows a class that implements the interface and fulfills the contract, lines 12-24.

1 /**
2 * An object that can print to a log.
3 */
4 public interface Logger {
5 /**
6 * The specified message is printed to the log.
7 * @param message The message that will be logged.
8 */
9 void log(String message);

10 }
11
12 /**
13 * Prints log messages to <code>System.out</code>.
14 */
15 public class ConsoleLogger implements Logger {
16 /**
17 * Prints the specified string to <code>System.out</code>.
18 * @param message The string that will be printed.
19 */
20 @Override
21 public void log(String message) {
22 System.out.println(message);
23 }
24 }

Listing 1.11 Interface and implementing class

9

Chapter 1 Java Essentials

The @Override annotation on line 20 in listing 1.11 specifies that the annotated method
should be inherited from a superclass or interface. Compilation will fail if the method is
not inherited. Always use @Override for inherited methods since it eliminates the risk of
accidentally specifying a new method, for example accidentally naming the method logg

instead of log in the implementing class in listing 1.11.

1.9 Inheritance

When a class inherits another class, everything in the inherited class that is not private becomes
a part also of the inheriting class. The inherited class is often called superclass and the inherit-
ing class is called subclass. This is illustrated in listing 1.12, where methodInSuperclass
is declared in Superclass on line two, but called on line eleven as if it was a member of
Subclass. Actually, it has become a member also of Subclass, because it has been in-
herited.

1 public class Superclass {
2 public void methodInSuperclass() {
3 System.out.println(
4 "Printed from methodInSuperclass");
5 }
6 }
7
8 public class Subclass extends Superclass {
9 public static void main(String[] args) {

10 Subclass subclass = new Subclass();
11 subclass.methodInSuperclass();
12 }
13 }

Listing 1.12 methodInSuperclass exists also in the inheriting class, Subclass.

A method in the subclass with the same signature as a method in the superclass will override
(omdefiniera) the superclass’ method. This means that the overriding method will be executed
instead of the overridden. A method’s signature consists of its name and parameter list. In
listing 1.13, the call to overriddenMethod on line 16 goes to the method declared on line
nine, not to the method declared on line two.

1 public class Superclass {
2 public void overriddenMethod() {
3 System.out.println("Printed from overriddenMethod" +
4 " in superclass");
5 }
6 }

10

Chapter 1 Java Essentials

7 public class Subclass extends Superclass {
8 @Override
9 public void overriddenMethod() {

10 System.out.println("Printed from overriddenMethod" +
11 " in subclass");
12 }
13
14 public static void main(String[] args) {
15 Subclass subclass = new Subclass();
16 subclass.overriddenMethod();
17 }
18 }

Listing 1.13 overriddenMethod in Superclass is overridden by the method with
the same name in Subclass. The printout of this program is Printed from overridden-
Method in subclass

Do not confuse overriding with overloading, which is to have methods with same name but
different signatures, due to different parameter lists. This has nothing to do with inheritance.

The keyword super always holds a reference to the superclass. It can be used to call the
superclass from the subclass, as illustrated on line ten in listing 1.14.

1 public class Superclass {
2 public void overridenMethod() {
3 System.out.println("Printed from Superclass");
4 }
5 }
6
7 public class Subclass extends Superclass {
8 public void overridenMethod() {
9 System.out.println("Printed from Subclass");

10 super.overridenMethod();
11 }
12
13 public static void main(String[] args) {
14 Subclass subclass = new Subclass();
15 subclass.overridenMethod();
16 }
17 }

Listing 1.14 Calling the superclass from the subclass. This program prints Printed from
Subclass, followed by Printed from Superclass

To declare a class means to define a new type, therefore, the class named Subclass of
course has the type Subclass. When inheriting, the subclass will contain all methods and
fields of the superclass. Thus, the subclass will also have the type of the superclass, the
subclass in fact becomes also the superclass. This means that an instance of the subclass can

11

Chapter 1 Java Essentials

be assigned to a variable of the superclass’ type, see line 18 in listing 1.15. When a method is
called, as on line 19, the assigned instance is executed, not the declared type. This means the
method call goes to the method declared on line ten, not to the method declared on line two.

1 public class Superclass {
2 public void overriddenMethod() {
3 System.out.println("Printed from overriddenMethod" +
4 " in superclass");
5 }
6 }
7
8 public class Subclass extends Superclass {
9 @Override

10 public void overriddenMethod() {
11 System.out.println("Printed from overriddenMethod" +
12 " in subclass");
13 }
14
15 public static void main(String[] args) {
16 Subclass subclass = new Subclass();
17 subclass.overriddenMethod();
18 Superclass superclass = new Subclass();
19 superclass.overriddenMethod();
20 }
21 }

Listing 1.15 Calling a method in an instance of the subclass, that is stored in a field of
the superclass’ type. This program prints Printed from overriddenMethod in subclass,
followed by Printed from overriddenMethod in subclass

12

Chapter 2

Introduction

Before starting with object oriented analysis and design, it is necessary to understand how
those activities fit in the software development process. This chapter gives a general under-
standing of different activities performed in a programming project, and explains when and
why to do analysis and design.

2.1 Further Reading

These topics are covered in chapters one to eight in [LAR], but those chapters are much more
extensive than what is required for this course.

2.2 Why Bother About Object Oriented Design?

Being able to change the front door of my house does not make me a carpenter, being able
to change spark plugs of my car does not make me a car-mechanic. Similarly, being able to
write a program that works when run by myself, on my own computer, does not have much
to do with being a professional software developer. On the contrary, professional software
development means to write code that can be maintained, changed and extended, in order to
meet the user’s expectations for a long period of time. This should hold even if developers
working with the code leave, and new developers arrive. To write such code, we need the
principles of object oriented design.

To be more specific, the goal of object oriented design is to write code that enables changing
the application’s behavior by changing as little code as possible, and absolutely only code
performing the task that shall be changed. It shall also be possible to extend the application’s
functionality without having to modify existing code. To reach this goal, the code must have
two important properties. First, it must be flexible, which means changes in one part of the
code does not require further changes in other parts of the program. Second, it must be easily
understood, structure and function shall be evident to anyone who reads the code.

2.3 Software Development Methodologies

Many software development projects have faced serious problems, for example being too ex-
pensive, being delayed or producing bad software due to bugs or lack of functionality. To

13

Chapter 2 Introduction

remedy these problems, there are many different sets of guidelines describing how to organize
a programming project the best way. Such a set of guidelines is called a software development
methodology. This section covers some important principles agreed on by all commonly used
software development methodologies.

Software development must be iterative. During an iteration a limited amount of new
functionality is developed, or existing functionality is modified, or bugs in the code are cor-
rected, or some combination of these. What is important is that the work is completely finished
when the iteration is over. Iterations shall be relatively short, typically one or two weeks. The
reason for working like this is that it is only at the end of an iteration we really know the status
of the program being developed. There is no point in claiming that something is almost done,
either it is done, 100 percent ready, or it is not done. Each iteration is like a mini project,
which contains modifying requirements on the program, analysis, design, coding, testing, in-
tegrating new code with previously developed code, and evaluating the result together with
clients and/or users.

Manage risks early in the project. Code that is difficult to develop must be developed
during the first iterations. If not, it will be very difficult to make a reliable time plan for the
rest of the project, since we postpone work we do not really know how to perform. It might
even be impossible to write the difficult code. In that case, all work done in the project before
this is discovered is wasted, since either the project must be canceled or the program must be
rewritten.

Be prepared for changes. It is not possible to write a perfect specification of the program
before development starts. Both clients and the developers will come up with new, or changed,
ideas when they see the program. Therefore, there must be a procedure for managing changing
requirements. Actually, changes should be encouraged by working close to the client and
regularly demonstrating and discussing the program. This way the final result will be much
better and clients much happier than if developers try to oppose changes and force clients to
make up their minds once and for all.

Write extensive tests, and run them often. To make it easy and quick to run tests, they
should be automated. That means there should be a test program which gives input to the
program under test, and also evaluates the output. If a test passes, the test program does not
do anything. If a test fails, it prints an informative message about the failure. With extensive
tests that cover all, or most, possible execution paths through the program with all, or most,
possible variable values, it is guaranteed that the program works if all tests pass. This is a very
good situation, one command starts the test, which tells if the program under test works or, if
not, exactly which problems there are. This makes it easy to change the program, the test will
immediately tell if it still works after the change. Without tests, on the other hand, it will be a
nightmare to change the code since there is no certain way to tell if it still works.

2.4 Activities During an Iteration

Independent of software development methodology being used, the following activities are
typically performed during each iteration.

Requirements analyses is the process of identifying required functionality of the software

14

Chapter 2 Introduction

being developed. This process can not be finished early on in the project, but must be contin-
ued in each iteration. This is because clients can not be expected to know in detail what the
program shall do, before development starts. Both users and developers will come up with
new, or changed, ideas when trying early versions of the program. Therefore, it is import to
work close to users and frequently discuss the functionality. In particular, each iteration shall
start with discussing requirements. Requirements analyses is not covered further in this text.

Analysis means to create a model, a simplified view, of the reality in which the system
under development shall operate. That model will consist of classes, attributes, etc. However,
it shall not describe the program that shall be developed, but rather describe the reality in
which the program shall operate. The purpose is to gain a better understanding of this reality,
before thinking about the program. Analysis is covered in chapter 4.

Design is an activity where we reflect on the code that shall be developed and create a plan
that gives a clear understanding of which classes and methods the code will contain, and how
they will communicate. To write a program without a plan is as inadequate as building a house
without a plan. Design is introduced in chapter 5.

Coding is of course the most important part of development, it is code quality alone that
decides if the program works a intended. The other activities have no other purpose than to
improve the quality of the code. This does not mean that the other activities can be neglected, it
is impossible to develop code of high quality without carefully performing all other activities.
Guidelines for writing high-quality code are covered in chapter 6.

Testing shall, as described above, be automated and extensive. Tests that are easy to execute
and clearly tell the state of the program are extremely valuable. They facilitate development
immensely since they make developers confident that the program works, also when changing
or adding code. Testing is covered in chapter 7.

Integrate means to add newly developed code to a repository with all previously devel-
oped code, and to verify that both new and previously developed code still work as intended.
The bigger the program and the more developers involved, the harder this process is and the
more important that it is well defined how to do it. Extensive and automated tests help a lot.
Integration is not covered further in this text.

Evaluation of code that was written during an iteration, is an important last activity of the
iteration. An iteration can not be ended without demonstrating the program to the clients and
gathering their opinions. The client’s opinions are added to the requirements and are managed
in coming iterations. This is not covered further in this text.

These are the main activities performed during each iteration, a typical iteration length is
one or two weeks. However, each developer shall also have a smaller, personal iteration,
which consists of designing, coding, testing and integrating. These four activities make an
indivisible unit of work, coding shall never be done alone without the other three activities.
Design is needed to organize the code and make sure it has the two required properties being
easy to modify and being easy to understand. Testing is needed to make sure the code works
as intended. Tests are also needed to show if the code still works as intended after coming
iterations. Integration with other code is needed because code parts are of no use unless they
work together.

15

Chapter 2 Introduction

2.5 Unified Modeling Language, UML

Both analysis and design result in plans. The results of analysis are plans of the reality modeled
by the program and the results of design are plans of the code that shall be written. These
plans must contain symbols of classes, methods, etc, and to understand each other’s plans we
must agree on the symbols being used. To define those symbols is the purpose of the unified
modeling language, UML. UML is a vast standard, this text covers only the small fraction
needed to draw the plans that will be developed here.

UML defines different types of diagrams and the symbols that can be used in each of those
diagrams. Here, we will use class diagrams to give a static picture of something, and sequence
or communication diagrams to illustrate events following each other in time. When using
UML, it is important to understand that it does not say anything about the meaning of the
diagrams or symbols. For example, during analysis we use classes in a class diagram to
illustrate things in the reality. During design we use the same class symbols in class diagrams
to illustrate classes in an object oriented program. Thus, a class symbol can represent an
abstraction in the reality, a class in an object oriented program, or any other thing we choose
to let it represent. UML just defines what the symbol looks like.

16

Chapter 3

The Case Study

This text uses a car rental as case study to illustrate concepts and activities. More specifically,
the implemented functionality is RentCar, which describes what happens when a customer
arrives at the car rental office to rent a car. The requirements specification follows below.

3.1 Basic Flow

The basic flow, also called main success scenario, describes a sequence of events that together
make up a successful execution of the desired functionality, see figure 3.1.

1. The customer arrives and asks to rent a car.
2. The customer describes the desired car.
3. The cashier registers the customer’s wishes.
4. The program tells that such a car is available.
5. The cashier describes the car to the customer.
6. The customer agrees to rent the described car.
7. The cashier asks the customer for name and address, and also for the driving license.
8. The cashier registers the customer’s name, address and driving license number.
9. The cashier books the car.

10. The program registers that the car is rented by the customer.
11. The customer pays, using cash.
12. The cashier registers the amount payed by the customer.
13. The program prints a receipt and tells how much change the customer shall have.
14. The program updates the balance.
15. The customer receives receipt, change and car keys.
16. The customer leaves.

Figure 3.1 The basic flow of the RentCar case study.

17

Chapter 3 The Case Study

3.2 Alternative Flows

An alternative flow describes a deviation from the basic flow. This requirements specification
has currently only one alternative flow, figure 3.2, which describes what happens if there is no
car matching the customer’s wishes.

4a. The program tells that there is no such car available.
1. The cashier tells the customer that there is no matching car.
2. The customer specifies new wishes.
3. Execution continues from bullet three in basic flow.

Figure 3.2 An alternative flow for the RentCar case study.

18

Part II

Course Content

19

Chapter 4

Analyses

The purpose of analysis is to create a model, a simplified view, of the reality in which the
system under development shall operate. That model will consist of classes, attributes, method
calls, etc. However, it shall not describe the program being developed, but rather the reality
in which that program operates. The purpose is to gain a better understanding of this reality
before thinking about the program. This chapter shows how to develop a domain model and a
system sequence diagram. It also covers the UML needed for those two diagrams.

4.1 Further Reading

Analysis is covered in chapters nine and ten in [LAR].

4.2 UML

This section introduces the UML needed for the domain models and system sequence dia-
grams drawn in this chapter. The UML diagrams used are class diagram and sequence dia-
gram. More features of these diagrams are covered in following chapters.

It can not be stressed enough that UML does not say anything about the meaning of dia-
grams or symbols. For example, a UML class in a UML class diagram is just that: A UML
class. It can represent something in the real world, like a chair, it can represent something in
a program, like a Java class, or it can represent something completely different.

!
When drawing a UML diagram, the meaning of the diagram and its symbols must be de-

fined. That is why specific diagrams have specific names, for example domain model. When
a diagram is given a well-defined name, everyone knows what it depicts and what its symbols
represent.

Class Diagram

A class diagram gives a static picture of something. It shows no flow or progress in time,
but only what classes there are, what they contain and how they are connected to each other.
There is no notion at all of time in a class diagram.

!
The content of a class diagram might be a snapshot showing how things look at a particular

instant in time, or it might be the sum of everything that has existed during a specific time

20

Chapter 4 Analyses

interval, or it might be everything that will ever exist. This must be defined by the diagram
author.

(a) (b) (c)

Figure 4.1 Symbols for a class in a class diagram.
(a) Without attribute and operation compartments.
(b) Empty attribute and operation compartments.
(c) With an attribute.

A class in UML means the same thing
as a class in an object oriented program,
a concept or idea not associated with any
specific instance of that concept. A class
name is always a noun in singular. A class
Person specifies what a person contains.
It does not say anything about specific in-
stances, like the persons me or you. Fig-
ure 4.1 shows three possible ways to draw
a class in a class diagram. The first exam-

ple, figure 4.1a, specifies only the name of the class, MyClass. The second, figure 4.1b,
also specifies only the name. Here, however, there are two empty compartments below the
name. The upper of these is for specifying attributes. As in object oriented programming,
an attribute defines a value that can be attached to an instance of the class. The bottom com-
partment, which is empty in all classes in figure 4.1, is for operations. During analysis, there
will not be any operations, therefore this compartment will always be empty in this chapter.
Finally, figure 4.1c shows a class that has the attribute myAttribute.

(a)

(b)

(c)

(d)

Figure 4.2 Associations
(a) Unidirectional
(b) Unidirectional named
(c) With name direction
(d) With multiplicity

Classes can have associations with other classes.
An association between two classes means that in-
stances (objects) of those classes are linked. If the
classes depicts classes in an object oriented program,
it means that one object has a reference to the other
object. If the classes depicts entities in the real world,
it means that instances have some kind of relation.

Figure 4.2 shows some ways an association can be
illustrated in a class diagram. Figure 4.2a shows an
association with a direction. When drawn like that,
with an arrow, the association exists only in the di-
rection of the arrow, Flight has an association with
Passenger, but not vice versa. There can be arrows
on both ends, meaning that both classes have an as-
sociation with the other class. There can also be no
arrow at all, which means that direction is not consid-
ered. If there is no arrow at all, the diagram author
chose not to tell the direction of the association.

In figure 4.2b, the association has a name, to clar-
ify its meaning. If there is a name, the sequence ori-
gin class name, association name, target class name
should make sense and convey a message illustrating

the interaction of those three elements. This means the association name shall be a verb. In
figure 4.2b, the message is Flight transports Passenger.

The black triangular arrow in figure 4.2c shows in which direction the class-association-

21

Chapter 4 Analyses

class sequence shall be read, it does not tell anything about the association’s direction. It is
up to the diagram author to decide if such black triangles shall be used or not. They are most
commonly used if class-association-class shall be read from right to left, or bottom up.

UML has different arrows, with different meaning. The arrows must look exactly as in
figure 4.2. !

Figure 4.2d tells how many instances of each class are involved in the association. In this
example, there is exactly one instance of Flight, and five to fifty instances of Passenger.
This means the passengers travel with the same flight, which can take a maximum of fifty
passengers. Also, the flight will not take place if there are less than five passengers. It is pos-
sible to use the wildcard, *, when specifying the number of instances. It means any number,
including zero.

Sequence Diagram

A sequence diagram shows how instances send messages to each other. The UML term is
message, not method call. The messages in the diagram form a sequence of events, that
happen in a specified order in time.

(a) (b) (c)

Figure 4.3 Instances and messages in sequence diagram
(a) The instance myObj of MyClass
(b) Messages with activation bar
(c) Messages without activation bar

Figure 4.3a shows how to draw an instance. The word before the colon, myObj, is the name
of the instance and the word after the colon, MyClass, is the name of the class. Both names
are optional. The dashed line, called lifeline, is where messages to and from the instance are
anchored.

Figure 4.3b shows communication between two objects. Time flows from top to bottom, the
first message is bookSeat, which is followed by checkInLuggage. The message bookSeat
has a return value, which has the name accepted. The message checkInLuggage has a pa-
rameter, which has the name wheight. The thicker parts of the lifelines are called activation
bar, and means the instance is active during that period in time. If the sequence diagram de-
picts an object oriented program, the extent of an activation bar corresponds to execution of
a method. Figure 4.3c illustrates exactly the same as 4.3b, but without activation bars. This
format is preferred if it is not important to show when instances are active.

22

Chapter 4 Analyses

Remember that different arrows have different meaning. The arrows must look exactly as
in figure 4.3. Generally, most things in UML are optional, but if used they must look exactly
as defined in the specification.

!

(a) (b)

(c)

Figure 4.4 Conditions and loops in sequence diagram
(a) An if statement (b) An if else statement (c) A loop

Flow control is illustrated with combined fragments, which are the boxes drawn around
the messages in figure 4.4. A combined fragment consists of an interaction operator and an
interaction operand. The operators used here are opt, which illustrates an if statement, see
figure 4.4a; alt, which illustrates an if else statement, see figure 4.4b; and loop, which
illustrates an iteration, see figure 4.4c. The operands are the boolean expressions in square
brackets. In this example, figure 4.4a says that the passenger checks in luggage if the operand
hasLuggage is true. Figure 4.4b says that the passenger checks in luggage if hasLuggage
is true, and checks in without luggage if hasLuggage is false. Finally, figure 4.4c says that
the steward continues to serve meals while unservedPassengers is true. UML does not
specify operand syntax, any text is allowed in an operand.

To avoid confusion, it is always important to follow naming conventions. UML has mul-
tiple sets of naming conventions, the conventions used here are the same as in Java. Class
names are written in pascal case, LongDisctanceFlight; object names, attribute names,
method names and variable names are written in camel case, economyClassPassenger,
luggageCount, checkInLuggage, unservedPassengers.

!

23

Chapter 4 Analyses

Notes

Figure 4.5 A UML comment

Both class and sequence diagrams (and all other UML dia-
grams) can have comments, see figure 4.5. A comment is an
explaining text, a note to the reader, that is not part of any of
the elements in the diagram. Comments are often called notes
in UML. A note is anchored to the element it explains with a
dashed line, as in figure 4.5.

4.3 Domain Model

The domain model, DM, is a model of the reality that shall be represented in the program under
development. A UML class diagram is used to construct the domain model. The elements in
the DM are not classes in an object oriented program, but instead things that exist in reality.
Therefore, it might be better to call them entities instead of classes. The DM is a very good
tool for discussions about the program that is being developed. It can ensure that all parties
(developers, clients, users, etc) share a common view of the tasks of the program. Although
the DM does not depict the program, it will still prove to be very useful when constructing the
program. Since it is a model of the reality being modeled in software, it is highly likely that
the program will, when ready, have many things in common with the domain model.

Step 1, Use Noun Identification to Find Class Candidates

The first, and most important, step when creating a domain model, is to find as many class can-
didates as possible. Two complementary methods are used to find classes, noun identification
and category list, use both methods.

It is far more common to have too few classes than to have too many. It is also far more
problematic to have too few classes, since it is much easier to cancel existing classes than to
find new ones.

!
The first method for finding class candidates, noun identification, means simply to identify

all nouns in the requirements specification, they are all class candidates. Below, in figure 4.6,
is the requirements specification for the Rent Car case study with all nouns in bold.

Since all words in bold are possible classes, each of them is drawn as a class in the first draft
of the domain model, figure 4.7. Remember that class names shall always be in singular.

Step 2, Use a Category List to Find More Class Candidates

The second method to find class candidates is to use a category list. It is a table where each
row specifies a category a class may belong to. The purpose is to stimulate the fantasy, thereby
to help find classes that are not nouns in the requirements specification.

The purpose of the category list is not to sort classes. There is no point in entering classes
already found during noun identification. There is also no point in spending time thinking
about which row is correct for a certain class candidate.

NO!

24

Chapter 4 Analyses

1. The customer arrives and asks to rent a car.
2. The customer describes the desired car.
3. The cashier registers the customer’s wishes.
4. The program tells that such a car is available.
5. The cashier describes the car to the customer.
6. The customer agrees to rent the described car.
7. The cashier asks the customer for name and address, and also for the driving

license.
8. The cashier registers the customer’s name, address and driving license number.
9. The cashier books the car.

10. The program registers that the car is rented by the customer.
11. The customer pays, using cash.
12. The cashier registers the amount payed by the customer.
13. The program prints a receipt and tells how much change the customer shall have.
14. The program updates the balance.
15. The customer receives receipt, change and car keys.
16. The customer leaves.

4a. The program tells that there is no such car available.
1. The cashier tells the customer that there is no matching car.
2. The customer specifies new wishes.
3. Execution continues from bullet three in basic flow.

Figure 4.6 The RentCar scenario, with nouns in bold.

Figure 4.7 The first draft of the domain model, after noun identification

There are many different proposals for categories. Here, the following quite short and
simple set is used,

• Transactions, selling or buying a product or service
• Products or services, what is sold or bought in the transaction
• Roles of peoples and organizations involved in the transaction
• Places, maybe where a transaction is performed
• Records of a transaction, for example contract, receipt
• Events, often with a time and place
• Physical objects

25

Chapter 4 Analyses

• Devices, are probably physical objects
• Descriptions of things
• Catalogs, where the descriptions are stored
• Systems, software or hardware that is collaborating with the system for which we are

creating the DM
• Quantities and units, for example length, meter, currency, fee
• Resources, for example time, information, work force

The best way to create a category list is to simply consider each row in the category list
and try to imagine class candidates belonging to that category. Write down all classes that are
found, at this stage it is not interesting if the class is already listed or if it is relevant. Table 4.1
is a category list for the Rent Car case study.

Category Class Candidates
Transactions Rental, Payment, Insurance
Products, Services Car, CarKey, Rental
Roles, People, Organizations RentalCompany, Customer, Cashier

Places
OfficeAddress, CustomerAddress,
CarPickupLocation, CarLeaveLocation

Records RentalAgreement, Receipt
Events Rental
Physical objects Car, CarKey, Office
Devices
Descriptions RentalCondition, CarDescription
Catalogs CarCatalog, RentalCatalog
Systems

Quantities, units
DrivenDistance, Kilometer, FixedCost,
KilometerCost, InsuranceCost, Amount, Currency

Resources

Table 4.1 Category list for the Rent Car case study.

Next, all class candidates are added to the domain model, which now looks like figure 4.8.

Step 3, Choose Which Class Candidates to Keep

A question that always tends to be raised is how much it is meaningful to add to the require-
ments specification. For example, the Rent Car specification does not say anything about
insurances, which seems to make it a bit far-fetched to include the classes Insurance and
InsuranceCost. In a real project, this should be discussed with the customer. It might be
that something is missing in the specification. Here, there is no customer, we have to decide
on our own. Remember that it is much better to have too many than too few classes in the DM.

26

Chapter 4 Analyses

Figure 4.8 The domain model, with classes from the category list added

Also remember that it is impossible to create a perfect model, there is a limit to how much
time it is meaningful to spend. Therefore, if it is really unclear if a class shall be removed or
not, just let it stay, at least for now.

Now consider figure 4.8, is there something that ought to be changed, in order to make the
DM clearer?

• The class Address is no longer needed, since there are the classes OfficeAddress
and CustomerAddress, and no more addresses need to be specified.

• The class Program was created since the requirements specification stated what the
program under development should do, but should it really be included in the DM?
The argument against is that the DM shall show only the reality, if Program is kept,
we have started to think about programming. In fact, all the other classes are a model
that shall be present inside the program. The argument for, on the other hand, is that
the program is in fact present in the reality. If a person, completely ignorant regarding
programming, where to write down all entities present in the rental office, the list would
include program (or system or something similar), since the cashier obviously interacts
with the computer.

This problem has no definite answer, it can be discussed endlessly. However, since this
text is a first course in analysis, Program is removed. The unexperienced developer
easily falls into the trap of modeling the program, instead of the reality, if the class
Program is present.

That is enough for now. If there are more irrelevant classes, they can be removed later,
before the DM is finalized.

27

Chapter 4 Analyses

Step 4, Decide Which Classes Fit Better as Attributes

An attribute is not an entity of its own, but instead a property of an entity. Some classes should
not remain classes, but instead be turned into attributes. A simple, but very useful, guideline is
that an attribute is a string, number, time or boolean value. A class that contain just one such
value is a strong candidate to become an attribute. Another important rule is that an attribute
can not have an attribute. Consider for example a class Address. It can be represented as
a string, and is therefore a candidate to become an attribute. On the other hand, it might be
convenient to split it into street, zip code and city. If that is preferred, Address must remain
a class, to be able to contain the attributes street, zipCode and city. A third rule is that
when it is hard to decide if something is an attribute or a class, let it remain a class. Better to
have too many classes than too few.

Now consider the domain model of figure 4.8 (remember Address and Program where
removed). Which classes fit better as attributes?

• DrivingLicenseNumber is a number (or a string), it can become an attribute of
DrivingLicense.

• Name is a string. Unless it is relevant to split it into first name and last name, it can be
an attribute of Customer. It can also be an attribute of Cashier, if needed.

• Should CarKey be an attribute of Car? It is true that CarKey can be considered to be
strongly associated with Car, but it is not obvious that CarKey is a string, number, time
or boolean. Therefore, it remains a class.

• Amount is a number, and could become an attribute of Cash and Balance. But then
what about Currency? Is that not a string that should be an attribute of Amount? This
is something that should be discussed with the customer, but now let’s just decide we
do not need to keep track of currencies. Therefore, Currency is removed and Amount

becomes attributes of Cash and Balance, and also of Change, Payment, FixedCost,
KilometerCost and InsuranceCost.

• OfficeAddress and CustomerAddress could be attributes of Office and Customer,
but according to the reasoning above about addresses, we keep them as classes. These
classes should be associated with Office and Customer, respectively. That will be
done below, when considering associations. However, there is no point in creating a
new class for each new address. Instead, OfficeAddress and CustomerAddress are
removed, and the single class Address is reintroduced.

• Is CarDescription an attribute of Car? No, since it most likely contains quite a lot
of information, like model, model year, size, etc. All this can not be represented as a
single string.

• Kilometer is is the unit of the quantity DrivenDistance. Provided there are no
other units, it can be removed. DrivenDistance is a number, it becomes an attribute
of Rental.

28

Chapter 4 Analyses

• InsuranceCost is a number, it becomes an attribute of Insurance. KilometerCost
and FixedCost are also numbers, they are turned into attributes of RentalCondition.

Figure 4.9 The domain model with attributes

That is enough, remember that there is no point in minimizing the number of classes. The
domain model with attributes is depicted in figure 4.9.

Step 5, Add Associations

The purpose of associations in the domain model is only to clarify. Therefore, add only associ-
ations that actually do clarify the DM. It is almost always possible to find more, no matter how
many there are already. At some point, where more associations are just confusing, it is simply
necessary to stop. Try always to name the association, without name it hardly clarifies at all.
Try to avoid the names has and hasA since it quite obvious that a class with an association to
another class has an instance of that class. More or less all associations could be named has.
It is strictly forbidden to create names that must be read as parts of a chain of associations, for
example Passenger checksIn Luggage at Counter, which is class-association-class-
association-class. It is impossible for the reader to now where such sentences start and end, the
reader would probably try to read just Luggage at Counter, which does not make sense.
The sequence must always be exactly class-association-class, and the association name must
start with a verb.

Multiplicity is often just confusing, add multiplicity only if it clarifies the DM. Do not
specify direction, trying to understand the direction of an association in the DM often leads
to long and meaningless discussions. Also, if two entities in the reality are associated, it is
almost always bidirectionally. Finally, there should be at least one association to each class.
If it is hard to find an association to a certain class, or if there are different sets of internally
associated classes that are not joined by associations, it is a sign that there is something wrong
with the DM.

29

Chapter 4 Analyses

Start with the most central associations. Since it is all about renting a car, that could be for
example Customer performs Rental, Car isRentedIn Rental, Payment pays Rental

and Car isOwnedBy RentalCompany. Then continue, following the guidelines above. The
result can be seen in figure 4.10.

Figure 4.10 The domain model with associations

Insurance, CarPickupLocation and CarLeaveLocation were removed since they
were not mentioned in the requirements specification, and the DM is becoming quite big and
messy. Also Cash was removed. Whether to include it or not is a question of how detailed
a payment record shall be. Is it of interest to know how much cash the customer gave to the
cashier?

The class Address has no association. This is OK for classes that exist just to group data,
and do not have a specific meaning but are used in many places. Examples of such classes are
Address, Name, Amount and Coordinate. The reason is that the DM would be unclear if
associations where added to all classes using such data containers. Instead, usage is illustrated
by adding the data containers as attributes to classes using them. In figure 4.10, for example
Office and Customer has an attribute address, showing that they use the Address class.

30

Chapter 4 Analyses

Step 6, Anything To Change?

To create the domain model is an iterative process. New classes might be found while con-
sidering attributes and associations, attributes might be changed while adding associations, etc.
This case study was also performed iteratively, for example was the need for the RentalCatalog
class discovered when adding the association between CarDescription and CarCatalog.
Therefore, it is good practice to reconsider the entire DM when done with associations. Here,
there is no obvious need for changes, the DM of figure 4.10 becomes the final version.

Common Mistakes

Since creating a domain model is a matter of discussion and, at least to some extent, a matter
of opinion, it might be difficult to assess the quality of the resulting DM. There are many
ways to create a good model, but also many ways to create a bad model. This section explains
two typical mistakes, resulting in a model of low quality. Such a model might not be plainly
wrong, but is of little help to the developers. This section presents three common mistakes,
resulting in an undesired domain model.

The first, and most obvious, mistake is not to model reality, but instead regard the DM
as a model of a program. This normally also means that some notion of time is assigned
to the DM. Things are thought happen in a sequential order, whereas a DM (or any UML
class diagram) says absolutely nothing about time or order of events. A class Program or
System often becomes essential in such a “programmatic DM”, but be aware that the role
of the program can be assigned to any other class as well. Also, an association is considered
to be some kind of method call, instead of a relation. Finally, the actor, which is the cashier
in the case study, becomes the user of the program. Figure 4.11 shows an example of a
“programmatic domain model” where the class Office represents the program.

NO!

The second, and less obvious, mistake, is to create a DM that correctly models the reality,
but does not convey any information besides what is already in the requirements specification.
In such a “naïve domain model”, the actors, customer and cashier in the case study, become
central classes with many outgoing associations. Other classes tend to be associated only with
one of the actors. This kind of DM is in fact just a visual representation of the specification.
It focuses on what the actors do, modelling flow, instead of giving a static picture of what
exists. This might not be completely wrong, but adds little value to what already exists, in
text. Figure 4.12 is an example of a naïve DM, compared to the DM of figure 4.10, it does
not say much.

NO!

31

Chapter 4 Analyses

Figure 4.11 This is not a correct domain model. The modeler has tried to create a program, instead of modeling
the reality in which the program acts.

NO!

Figure 4.12 This domain model does not add any extra value, or new information.

NO!

32

Chapter 4 Analyses

Figure 4.13 This extract of the RentCar case study has a class, Rental, with unnecessarily many associa-
tions.

NO!

The third, less serious, mistake, is that there is a “spider-in-the-web” class. Such a class has
associations to many other classes, while other classes have few associations, especially to
classes besides the spider class. A DM with a spider-in-the-web class may still be valuable,
but would probably be of higher value if associations were more evenly distributed. The
central class, with many associations, is often difficult to understand, since it seems to have
many different roles. Also the roles of the peripheral classes, with very few association,
might be difficult to understand. They seem to be just “data containers”, like primitive values,
without any real role to play. It is very difficult to give a definite rule for when a class has
become a spider class. A coarse guideline could be that a class should not have more than
four or five associations, but that depends on the size and layout of the entire DM. A spider
class is made less central by moving an association from it to another class, which is in turned
associated with the spider class. As an example, consider the Rental class in figure 4.10. It
has four associations, but had five in a previous version of the DM, where it looked as in figure
4.13. The association with RentalCondition was moved to RentalAgreement.

NO!

4.4 System Sequence Diagram

The system sequence diagram, SSD, is a sequence diagram that shows the interaction between
the system under development and the actors using it. An actor is any person or other system
giving input to or receiving output from the system. The SSD must not show anything about
the system’s internal structure, the entire system must be modeled as one single object. Apart
from this System object, there is one object for each type of actor. The messages, that is oper-
ation that actors can perform on the system, are called system operations. A well constructed
SSD simplifies development a lot, since it shows exactly what the system can be told to do,
and what response it shall give. Strictly speaking, creating an SSD is not part of the analysis,
but instead belongs to gathering requirements. Here, we consider it under the analysis section

33

Chapter 4 Analyses

since it is a preparation for program construction.
Do not confuse system sequence diagram with sequence diagram. Although the names

are similar and an SSD is created using a sequence diagram, they are far from synonyms.
Sequence diagram is the UML name of a kind of diagram used to illustrate how objects
exchange messages, as explained above. It can be used to illustrate any kind of interaction.
One specific way to use a sequence diagram is to create an SSD, which is a diagram that
illustrates how actors interact with a program, and nothing else.

!

While the domain model is very much a matter of discussion, the SSD is more straight
forward to create. It shall reflect the interactions of the requirements specification, no less and
no more. It is common to find errors or ambiguities in the specification when constructing the
SSD. In that case it might have to be revised, but it is not allowed to let the SSD deviate from
the specification.

Since the SSD shall show the interaction between the system and its actors, therefore the
first step is to define where the system ends, and which the actors are. In the case study, it is
obvious that we are not developing the cashier, but we are developing the thing the cashier in-
teracts with. Thus, the cashier becomes the actor. Then, look at the requirements specification
and identify what the cashier can tell the system to do, and how it responds. The specification
is repeated here, in figure 4.14, for the sake of convenience.

1. The customer arrives and asks to rent a car.
2. The customer describes the desired car.
3. The cashier registers the customer’s wishes.
4. The program tells that such a car is available.
5. The cashier describes the car to the customer.
6. The customer agrees to rent the described car.
7. The cashier asks the customer for name and address, and also for the driving license.
8. The cashier registers the customer’s name, address and driving license number.
9. The cashier books the car.

10. The program registers that the car is rented by the customer.
11. The customer pays, using cash.
12. The cashier registers the amount payed by the customer.
13. The program prints a receipt and tells how much change the customer shall have.
14. The program updates the balance.
15. The customer receives receipt, change and car keys.
16. The customer leaves.

4a. The program tells that there is no such car available.
1. The cashier tells the customer that there is no matching car.
2. The customer specifies new wishes.
3. Execution continues from bullet three in basic flow.

Figure 4.14 The requirements specification for the RentCar case study.

Bullets one and two do not contain any interaction between the actor (cashier) and the

34

Chapter 4 Analyses

system. Remember that it is completely uninteresting for the SSD what happens “outside” the
actor. Therefore, it would be wrong to include the customer.

In bullet three, there is an interaction that shall be included. A system operation shall
have a name that starts with a verb, and describes what is done. The system operation in
bullet three can be named searchMatchingCar. The name shall not describe what happens
internally, in the system, searchInDatabase is therefore not an adequate name. This system
operation also takes parameters, namely the customer’s description of the desired car. We
could write a long list with these parameters, e.g., size, price, model, desired features (for
example air condition), etc. The downside of such a solution is that a lot of time would be spent
deciding exactly which parameters to include. Also, if the set of parameters would change,
we would have to change this system operation. And the set of parameters likely will change,
as development continues and the needs the system shall meet become clearer. Therefore,
it is better to use an object as parameter. This object, which can be called wishedCar, has
attributes that define the set of possible wishes. Note that types, whether primitive or classes,
are not of interest in the SSD. Now, exactly which the wishes are is not necessary to decide.
Also, if the set of possible wishes changes, that is an internal matter for the class of this object,
no changes are required to the system operation.

Now the system operation and its parameters are identified. Next, it must be decided if the
operation has a return value, and, if so, which return value? The answer is found in bullet four,
which tells that the system gives a positive answer to the search, and in bullet five, which tells
that the cashier describes the found car. Considering only bullet four, it might seem adequate
to use a boolean return value, but bullet five clearly states that the return value must include a
description of the found car. Therefore, also the return value can be an object, which can be
called foundCar. The system sequence diagram with this first system operation is depicted
in figure 4.15. Note that activation bars are omitted, which is practice in system sequence
diagrams. It is not relevant to know when actors and systems are active. Also, trying to decide
this tends to lead to long and quite meaningless discussions.

Figure 4.15 The system sequence diagram, after the first system operation has been created.

Continuing the same way, bullet six in the requirement specification does not involve any
interaction with the system, neither does bullet seven. Bullet eight defines the second sys-
tem operation, which can be called registerCustomer. An alternative name could be
registerCustomerData, but it is usually unnecessary to include the word data, since more
or less all operations include data in some way. The parameters of this operation are name,
address and driving license number. These could very well be joined in an object, customer,

35

Chapter 4 Analyses

according to the reasoning above, for the searchMatchingCar system operation. But since
this parameter list is defined exactly in the specification, it is less likely that it changes in the
future. The latter alternative is chosen, since that clearly shows that the parameters are known.

Bullet nine is a system operation, bookCar. It is a bit unclear if it shall take any parameters.
It could be argued that it does not take any parameters, in which case the system must keep
track of the car returned in the searchMatchingCar operation, and book that same car. It can
also be argued that the car to book shall be specified in the bookCar operation. If so, the name
of the parameter shall be the same as the name of the return value of searchMatchingCar,
to show that it is in fact the same car. The latter alternative is chosen, mostly since the for-
mer would require us to remember that the car returned from searchMatchingCar must be
stored, and is therefore a bit unclear.

Bullet ten is no system operation. It describes work done internally, inside the system, and
does not involve any interaction with an actor. Bullet eleven also is no system operation, since
it takes place only between customer and cashier. Bullet twelve is a system operation, it can
be called simply pay, and take the parameter amount. The SSD now looks as in figure 4.16.

Figure 4.16 The system sequence diagram, with more system operations added.

In bullet 13, a receipt is printed as a result of the pay operation. Does this mean receipt

is a return value of pay? The answer depends on if the printer is considered to be part of the
system under development (SUT), or not. If the printer is part of the system, the printing is an
internal matter and shall not be included in the SSD. The receipt then becomes a return value.
On the other hand, if the printer is not part of the SUT, it becomes an external system, called
from the SUT. This means there is an interaction between the SUT and an external entity,
which shall be included in the receipt. The latter alternative is chosen, mainly to illustrate how
such an interaction looks in the SSD, se figure 4.17.

Continuing, bullets 14-16 are either internal or external, and to not bring any interaction
between the SUT and its actors. Therefore, they do not generate any system operation. That
concludes the basic flow, next the alternative flow is considered. The alternative flow specifies
a loop, including bullets two, three and four in the basic flow. The iteration around these
bullets continues until a matching car is found. Note that the specification is incomplete, it
does not allow the customer to give up and leave without renting a car. Of course this must be

36

Chapter 4 Analyses

Figure 4.17 The system sequence diagram, with call to external system.

changed in coming iterations of the development. The loop can be modeled as in figure 4.18.

Figure 4.18 The system sequence diagram, with a loop reflecting the alternative flow.

There are a two things worth highlighting regarding the loop. First, the guard noMatchingCar
is a free text boolean condition, it does not correspond to a boolean expression in the program.
The condition can become true because of an action taken by the system, the actor or some-
thing completely independent of both system and actor. Second, drawing the return value
foundCar inside the loop, as in figure 4.18, implies it can indicate both that a matching car
was found and that such a car was not found. How this is done is not shown is the SSD.

37

Chapter 4 Analyses

Common Mistakes

As mentioned above, there is not so much freedom in drawing the system sequence diagram
as there is in drawing the domain model. Many mistakes do not lead to a correct diagram of
less value, but instead to one that is plainly wrong. Before leaving the SSD, it is therefore wise
to make sure that none of the following common mistakes are made.

• Wrong kind of arrow.
• System operation, return value or parameter is missing.
• Operation name does not start with a verb.
• Operation name describes the system’s internal design, for example
searchInDatabase instead of search.

• Entities outside the actor are included. A typical version of this mistake would be to
include an object :Customer in the case study’s SSD.

• The object :System is split into more objects, showing the system’s internal design.
As an example, it would be wrong to include an object :Car, :Rental or :Balance
in the case study.

• Loops or if-statements are not correctly modeled.
• External systems, like :Printer in the case study, are missing.
• To draw activation bars is not wrong, but it is discouraged since it tends to confuse,

rather than clarify.

NO!

38

Chapter 5

Design

The purpose of design is to reflect on the code that shall be developed and create a plan that
gives a clear understanding of which classes and methods the code will contain, and how they
will communicate. To write a program without a plan is as inadequate as building a house
without a plan. The created plan, that is the design, shall guarantee that the program becomes
flexible and easy to understand. Flexible means that it shall be possible to add new func-
tionality without having to change existing code, and to change existing functionality without
having to change any code besides that handling the actual functionality being changed. Easy
to understand means that developers not involved in originally creating the program, shall
be able to understand and maintain it, without rewriting anything or destroying the program
structure.

The result of the design is a plan in the form of UML diagrams, illustrating the details of
the program. Before those can be created, this chapter covers the necessary UML. After that,
three concepts are covered, that are necessary requirements for a design that is flexible and
easy to understand. Next comes an introduction to architecture, or, more specifically, how to
organize the program in subsystems. The last thing before doing the design of the RentCar
case study, is to present a step-by-step method for design.

It is not possible to create a design of a program without understanding how the design
can be implemented in code. Make sure you fully understand sections 1.2 and 1.3 before
reading this chapter.

!

5.1 Further Reading

The topics of this chapter are covered mainly in chapters 13, 15, 17 and 18 in [LAR].

5.2 UML

This section introduces the UML needed for the design diagrams. Two new diagram types are
introduced, package diagram and communication diagram. Also, more features of class and
sequence diagrams, which where introduced in chapter 4.2, are covered.

39

Chapter 5 Design

Class Diagram

(a)

(b)

(c)

Figure 5.1 Class diagram, illustrating:
(a) method (b) static members
(c) public and private visibility

To create a design class diagram, some features are
needed that have not been used previously in this text,
namely methods, visibility and types. Methods are de-
clared in the lowest compartment of the class symbol.
A method parameter’s type is written after the param-
eter, separated from the parameter by a colon. The
methods return type is written the same way, but af-
ter the entire method, see figure 5.1a. Static methods
(and attributes) are underlined, see figure 5.1b. The
visibility of a class member (method, attribute or any-
thing else defined in the class) defines an object’s level
of access to that member. For now, only two kinds of
visibility are considered, public and private. Any code
has access to a member with public visibility, while
only code in the declaring class has access to a mem-
ber with private visibility. The symbols + and - are
used in uml to indicate public and private visibility,
respectively, see figure 5.1c.

Package Diagram

Figure 5.2 A package diagram

The UML symbol package means just a grouping of
something. In a class diagram of a Java program, the
package symbol can mean a Java package. It can also
be used to illustrate a larger grouping, like a subsystem
consisting of many Java packages. Figure 5.2 shows
an example of a package diagram. The dashed line
means that something in somePackage is dependent
on something in someOtherPackage. The diagram
does say anything about the extent or type of this dependency.

Sequence Diagram

This section explains some previously not covered features, needed to create design sequence
diagrams. Figure 5.3 illustrates some of these. First, the call to firstMethod is a found
message, which is specific in the sense that the caller is unspecified. This is normally used
when the origin of the message is outside the scope of the diagram, and shall not be described
in detail. The scope of the diagram is to describe what happens as a consequence of the call to
firstMethod, not to describe when or why that call is made.

Second, types are depicted as in a class diagram, following the parameter or method, sepa-
rated by a colon.

40

Chapter 5 Design

Figure 5.3 Found message, types, activation bars, message to caller, constructor

Third, note the use of activation bars, which show the duration of a method. The bar begins
on the first line of a method and ends when returning from the method. There can be any num-
ber of activation bars overlapped simultaneously on the same object, since execution might be
inside any number of methods in the same object. For example, firstMethod in the object
someObj in figure 5.3 calls aMethod in otherObj, which in its turn calls someMethod in
someObj. Since at this point firstMethod has not yet returned, execution is inside both
firstMethod and someMethod, illustrated by the double activation bar of someObj.

Fourth, the call to methodInSelf illustrates a call where the caller and callee are the
same object. Also in this case there is a double activation bar, since execution is inside both
firstMethod and methodInSelf.

Figure 5.4 Static method and interaction use

Last, a constructor call is illustrated with the
creation of newObj. This method must be called
ThirdClass, since a constructor always has the
same name as the class in which it is located.
Also, the return type must be ThirdClass, since
the newly created object of that type is returned
by the constructor. The text «create» above the
constructor call is a stereotype, which tells that
the element with the stereotype belong to a cer-
tain category of such elements. Here, it says that
the method ThirdClass belongs to the create
category, which means it is a constructor. A stereotype can contain any text, the diagram author
is free to invent new stereotypes. However, there are conventions, for example constructors
have, by convention, the stereotype «create» . It would seem that «constructor» would
be a more logical stereotype, but unfortunately «create» is used instead.

Figure 5.4 illustrates two more features of a sequence diagram. First, met2 is a static
method, which is illustrated with the stereotype «static» . Second, the box labeled ref is
an example of an interaction use. It tells there are more method calls where the box i placed,
those can be seen in a sequence diagram named SomeTask. A diagram should be split like
this when it becomes difficult to understand, or fit in a page, because of its size.

41

Chapter 5 Design

Communication Diagram

A communication diagram serves exactly the same purpose as a sequence diagram, to il-
lustrate a flow of messages between objects. Both these types of diagrams are interaction
diagrams. Which type of interaction diagram to use is completely up to the creator, ev-
erything relevant for design can be illustrated in both types. The advantage of a sequence

Figure 5.5 A communication diagram

diagram is that time is clear, since there is a time
axis (downwards), whereas a communication dia-
gram does not have a time axis but illustrates mes-
sage order by numbering the messages. The ad-
vantage of a communication diagram is that ob-
jects can be added both horizontally and verti-
cally, whereas a sequence diagram has all objects
beside each other and therefore tend to become
very wide.

Figure 5.5 shows a communication diagram. A
caller and callee are connected by a line, called
link. A message (method call) is illustrated by an
arrow along the link and the name of the message
(method), its parameters, types and return value.
The first call, metA, has index 1. If a called is
made from the method metA, it has number 1.1,
as illustrated by metB in figure 5.5. A second call
from metA has index 1.2 and so on. The order of
execution in figure 5.5 is thus 1, 1.1, 1.2, 1.2.1,
2, 3, 3.1. If there are more than one messages
between the same pair of objects, they are still connected by only one link, see calls 2, 3 and
3.1. Message 1.2 illustrates a constructor call and message 1.2.1 shows a message where caller
and callee are the same object.

Figure 5.6 Conditional call and iteration in com-
munication diagram

Figure 5.6 illustrates conditional calls in mes-
sage 1 and 2, and iteration in message 2.1. A con-
dition is called guard and is specified in square
brackets. UML does not specify guard syntax,
any text or program statement is allowed. The as-
terisk in message 2.1 indicates iteration. It shall
be placed before the square bracket, *[i=1..n],
but that is unfortunately not possible in astah.
Therefore, it is included in the guard statement,
which is not correct UML.

42

Chapter 5 Design

5.3 Design Concepts

Much is written and said about software design in general and object-oriented design specifi-
cally, and there are many more or less complex solutions to various problems. Still, virtually
all design considerations and solutions are based on a few principles. The first and most fun-
damental of those, encapsulation, high cohesion and low coupling, are covered here.

Encapsulation

Encapsulation means that irrelevant internal details are hidden. In order to use a certain item,

Figure 5.7 If you would have to understand all the
internals of a clock to tell the time, it would
be very bad encapsulation. Image by FreeIm-
ages.com/Colin Adamson

for example a clock, it is not required to under-
stand exactly how it works internally, as in figure
5.7. Instead, it exposes an interface with every-
thing the user has to know. In case of the clock,
this is the current time.

To understand encapsulation in software, the
concept visibility must be clear. The visibility of
a declaration states where that declaration is visi-
ble. For now, it is enough to understand two kinds
of visibility, public and private. Public visibil-
ity, specified in Java with the modifier public,
makes the declaration visible to all parts of the
program. Any piece of code, anywhere in the
entire program, can use a declaration with pub-
lic visibility, no matter what is declared or where
it is declared. Private visibility, specified in Java

with the modifier private, means the declaration is visible only to code in the class in which
the declaration is placed.

1 public class TheClass {
2 private int var;
3
4 public TheClass(int var) {
5 this.var = var;
6 }
7
8 public void
9 doSomething(String s) {

10 anotherMethod(s);
11 }
12
13 private void
14 anotherMethod(String s) {
15 //Some code
16 }
17 }

Listing 5.1 A first example of public interface, in blue
italic print, and implementation.

Encapsulation relies on the difference
between public interface and implemen-
tation. The public interface is code that
is visible to all other code, that is, the
declarations with public visibility. The
implementation consists of code not vis-
ible to all other code, that is, method
bodies and declarations with private vis-
ibility. Something is part of the im-
plementation when access to that some-
thing can be controlled. It is possible to
tell exactly which code can access a cer-
tain part of the implementation, it is not
required that no other code at all can ac-
cess it. Also, there is no “neutral” code,
all code is either public interface or im-

43

Chapter 5 Design

plementation. As a first example, consider listing 5.1, where the public interface is marked
with blue italic print. The defining question is if this code is changed, can code anywhere in
the entire program be affected? If the answer is yes, it is part of the public interface. That is
why parameter and return value of the public method is marked in listing 5.1.

Continuing with slightly more complicated examples, consider listing 5.2. The static

modifier of PI is part of the public interface, since PI might be used in a statement like
MyClass.PI. If static is removed, that statement will not work. The status of the modifier
final is quite subtle. If a non-final field is made final, code might definitely break since it
will no longer be allowed to write to that field. If a final field becomes non-final, it is not
obvious that code will break. However, it would be very surprising if a (previously) final field
suddenly changed value. The conclusion of this reasoning is that it is safest to consider the
final modifier to be part of the public interface.

The type and name of PI are of course part of the public interface, but why not the value?
The answer lies in the promise of this field, which is specified in the comment. Whether the
value is 3.14, 3.1416 or has some other precision, it would still fulfill its contract, to be the
constant pi. If the comment had said “The constant pi with two decimals”, the value would
have been part of the public interface. Is this a bit of hairsplitting? Maybe, but then at least it
illustrates how one can reason when identifying the public interface.

The private constructor on line seven is not public interface, what matters is that it is pri-
vate. That it is a constructor is of no importance. Finally, the exception list on line eleven is
definitely part of the public interface. If it is changed, exception handling code might break.
This holds both for checked and unchecked exceptions.

1 public class MyClass {
2 /**
3 * The constant pi.
4 */
5 public static final double PI = 3.14;
6
7 private MyClass() {
8 //Some code.
9 }

10
11 public void aMethod() throws SomeException {
12 //Some code.
13 }
14 }

Listing 5.2 Illustration of public interface, which is in blue italic print.

44

Chapter 5 Design

The point in making this distinction between public interface and implementation is that
the implementation can be changed anytime, without any risk of unwanted consequences.
Changing the public interface, on the other hand, is very dangerous since any code anywhere
might break. That might not be a big issue in a small program with only one developer.
However, in programs just slightly bigger, with more than one developer, changing the public
interface immediately becomes challenging. Those whose code break will not be very happy,
especially if it happens regularly or without notice. This is even more disastrous if the code
is part of a published API, where it is impossible to know who is using it.

!

As an example, consider the two methods in listing 5.3. They both have exactly the same
public interface, but implementations differ. It would be no problem at all to change between
the two implementations, code that calls multiplyWithTwo is completely independent of
whether the multiplication is done by straightforward multiplication or by shifting. The same
way, it is without any risk to change other parts of the implementation, for example name or
parameter types of a private method. It could be argued that it is not allowed to change the
implementation of multiplyWithTwo at free will, for example not to return operand

* 5. It is true that such a change can not be made, but that is because it changes the public
interface, since both name and comment become erroneous by such a change.

1 /**
2 * Doubles the operand and returns the result.
3 */
4 public int multiplyWithTwo(int operand) {
5 return operand * 2;
6 }
7
8 /**
9 * Doubles the operand and returns the result.

10 */
11 public int multiplyWithTwo(int operand) {
12 return operand << 1;
13 }

Listing 5.3 Two methods with the same public interface, but different implementations.

In conclusion, it is essential that a public interface is well designed and as small as possible.
As soon as a program grows to any reasonable size, it becomes very difficult to change any
part of its public interface, to say the least. Many programs suffer from strange constructs
originating in public interfaces impossible to change.

45

Chapter 5 Design

High Cohesion

Figure 5.8 When there is high cohesion, the parts
fit together and create a whole that is easy to
understand. Image by unknown creator [Public do-
main], via https://pixabay.com

Cohesion is a measurement of how well defined a
class’ knowledge and its tasks are, and how well
they fit together. The goal is that a class shall
represent one single abstraction, which is clearly
identified by the class name. Furthermore, the
class shall have knowledge about that abstraction,
not about anything else, and perform tasks related
to that abstraction, not anything else. When this
important goal is reached, the class has high co-
hesion.

Figure 5.9 shows two different designs of the
same program, one with low cohesion (figure
5.9a) and one with high cohesion (figure 5.9b). In
the low cohesion design, the Employee class has
the method getAllEmployees, which returns a

list of all employees. This means an Employee instance, which represents one single em-
ployee, knows all employees in the department. That is not relevant knowledge, instead, that
information fits better in a Department class, which reasonably shall know all employees
working at the department. This latter design, with higher cohesion, is illustrated in figure
5.9b. Also, the Employee in figure 5.9a has a method changeSalaryOfEmployee, which
can change the salary of any employee, not just that particular instance. The better design,
in figure 5.9b, has another version of this method, which means an instance can change only
its own salary. In conclusion, in the better design, an Employee instance knows about, and
performs operations on, only itself, while in the worse design, an instance knows about, and
performs operations on, any instance.

(a)

(b)

Figure 5.9 Two different designs of the same program:
(a) with low cohesion (b) with high cohesion

46

Chapter 5 Design

Another example is given in figure 5.10, which illustrates a Car class. In the design with
lower cohesion, figure 5.10a, Car has methods and attributes which are more related to the
abstractions radio and engine. In the design with higher cohesion, figure 5.10b, those attributes
and methods are moved to the new, appropriately named, classes Radio and Engine. Of
course, as is the case with all designs, it can be argued that there are problems also with the
designs in figures 5.9b and 5.10b. Still, those two definitely have higher cohesion than their
low cohesion counterparts in figures 5.9a and 5.10a.

(a)

(b)

Figure 5.10 Two different designs of the same program:
(a) with low cohesion (b) with high cohesion

It is absolutely mandatory to always strive for high cohesion. If not, the program will be
difficult to understand, and also difficult to change, since code that is not really related will
be mixed together in the same class. The programmer can not relax even if the program, at
some point in time, has high cohesion. As more code is added, the program will eventually
get low cohesion if classes are not split. Therefore, always be on the guard for the possibility
to improve the design by introducing new classes, with a clearer responsibility.

!

Finally, although only classes have been discussed in this section, exactly the same rea-
soning applies to programming constructs of all other granularities as well. Also subsystems,
packages, methods and even fields must be continuously scrutinized regarding cohesion.

47

Chapter 5 Design

Low Coupling

Figure 5.11 If the UML diagram looks like a
bowl of spaghetti, there is too high cou-
pling. Image by Katrin Baustmann [Public domain], via
https://pixabay.com

Coupling defines to which extent a class depends
on other classes. What is interesting is primarily
on how many other classes it depends, the type
of dependency is not of great interest; whether
method call, parameter, return value or something
else does not matter much. Low coupling means
there are as few dependencies as possible in the
program. It is not possible to tell a maximum al-
lowed number, what matters is that there are no
dependencies which are not required.

The main reason to strive for low coupling
is that if a class (depender) depends on another
class (dependee), there is a risk that the depender
must be changed as a consequence of a change in
the dependee. If for example a method name is
changed, also all classes calling that method must

be changed. The problem is bigger the less control the developer has of the dependee. For
example, it is a quite small problem if the program is small and developed by only one person,
but much bigger in a large program where developers far away might change the dependee.
The size of the problem is also defined by the stability of the dependee. The more often a class
is changed, the bigger problem to depend on it. For example, it is completely safe to depend on
classes in the APIs in the JDK, in the java.* packages, since they change extremely seldom.

Figure 5.12 shows two different designs of the same program, one with high coupling
and one with low coupling. In the version with unnecessarily high coupling, figure 5.12a,
HighCouplingOrder has a reference to HighCouplingShippingAddress. This is not
required since Order can get ShippingAddress from Customer. Therefore, this reference
can be omitted, as illustrated in figure 5.12b.

(a) (b)

Figure 5.12 Two different designs of the same program:
(a) with high coupling (b) with low coupling

Another example of unnecessarily high coupling is found in figure 5.13a, which depicts a
typical “spider in the web” design, with a “spider” class that has references to many other,
peripheral, classes. The peripheral classes in such a design tends to have none or very few ref-
erences to other classes. The problem here is that the spider class normally becomes involved

48

Chapter 5 Design

in all operations, thereby getting messy code with bad cohesion. The peripheral classes, on
the other hand, tends to become just data containers, doing nothing at all, which makes their
purpose unclear. A spider in the web design can normally be improved by moving some of
the peripheral classes further away from the spider class, as is done with Guest and Room in
figure 5.13b. This, improved, design does not have a spider class with references to all other
classes. Also, there is not a huge set of peripheral classes without references. Note that the
total number of references is the same in both designs in figure 5.13. Still, coupling is lowered
since the better design does not include a spider class with high coupling.

(a)

(b)

Figure 5.13 Two different designs of the same program:
(a) with high coupling (b) with low coupling

Just as is the case for high cohesion, low coupling is not something that can be achieved
once and for all. It is absolutely mandatory to always try to minimize the coupling. Also
parallel to high cohesion, low coupling does not apply only to classes, but to programming
constructs of all granularity, for example subsystems, packages and methods.

49

Chapter 5 Design

5.4 Architecture

Figure 5.14 An architectural plan does not show
any details of the construction. Image by Gunnar
Way-Matthiesen (stockholmskällan) [Public domain], via
Wikimedia Commons

The architecture gives the big picture of the sys-
tem under development, it shows how the system
is divided into subsystems. It tells which prob-
lems the system can solve, and where in the sys-
tem each problem is solved. It does not, however,
tell exactly how the problem is solved, that be-
longs to design and coding. As an analogy, con-
sider the architectural plan of a building in figure
5.14. It ensures that the problem of moving be-
tween floors can be solved, since there is a stair.
It does not tell exactly how to construct the stair,
which materials to use, etc. And it most certainly
is not a real, usable, stair. It is just a plan. Sim-
ilarly, an architectural plan of a software system
could ensure that for example data storage can be
handled, by including a database and a class or

package that calls the database. However, the architecture of the software system would not
be a detailed design of the database or the calling package, and it would definitely not be an
actual database or program, but instead a UML diagram or something similar.

Patterns

This section will cover architectural patterns, but first, let us make clear what a pattern is.
A pattern is a common and proven solution to a reoccurring problem. Typically, developers
realize that a particular problem in software development is solved many times, in different
programs, but the solution is always more or less the same. If this solution works well, it is
worth creating a formalized description covering the problem, variants of the solution, advan-
tages and disadvantages of the solution, etc. This formalized description is a pattern. If it
concerns architecture, it is an architectural pattern, if it concerns design it is a design pattern,
and so on. A collection of patterns is like a cookbook for software development. Knowledge
of patterns becomes a common vocabulary for software developers, that can be used to discuss
possible ways to solve a particular problem.

Packages and Package Private Visibility

Figure 5.15 Package private visibility.

Now that we are about to divide the system into
smaller subsystems, it is important to start using
packages and package private visibility. This is
how logical parts of the program are represented
in the Java language, without it, the division into
subsystems exists only in the minds of the pro-
grammers. Package private visibility means that

50

Chapter 5 Design

a particular declaration (field, method, class, etc) is visible only to code in the same package
as that declaration. In UML, it is illustrated with the tilde character, see figure 5.15. In Java, it
is declared by omitting visibility modifier, do not write neither public, nor private (or any-
thing else). See appendix C.11, showing the implementation of figure 5.15. Note that package
private visibility is closely related to private visibility. Both are part of the implementation
and impose a strong limit on the visibility. Both make it possible to tell exactly which code
can see the declaration.

The MVC (Model-View-Controller) Architectural Pattern

The architectural pattern MVC (Model-View-Controller) tells that the system must be divided
into the subsystems Model, View and Controller, to avoid mixing code doing completely dif-
ferent things. Without such a division into subsystems, it would easily happen to mix user
interface code and business logic code in the same method. Say that we are coding, for ex-
ample, a bank account. A straightforward solution is to have a class Account that has a
field balance and methods deposit and withdraw. That is fine, such a class contains
only business logic (the actual functionality of the program) and its current state (the val-
ues of all variables). However, we also want to present the state of the account, for ex-
ample its balance, to the user. Therefore, it might seem adequate to add code handling for
example a HTML user interface to the Account class. This, however, would be a disas-
ter! HTML user interfaces and business rules for withdrawing money are two completely
different things. Mixing them just because they both use the same data, namely the ac-
count balance, would lead to extremely low cohesion and high coupling. Low cohesion

Figure 5.16 The view and model packages.

because the very same method would handle such
different things as UI and business logic, high
coupling because UI code and business logic code
would be inseparable, placed in the same method.
As a consequence, a HTML designer would have
to know Java and understand the business rules,
and a Java developer would have to understand
the web based user interface created with HTML
and CSS. Furthermore, it would be impossible to
reuse the HTML for other web pages, not to men-
tion the nightmare of changing to another user in-
terface, or having multiple user interfaces to the
same program. Maybe a customer using the in-

ternet bank needs a web based UI and a bank clerk needs a UI of a Java program run locally.
To avoid such a disastrous mess, the MVC pattern tells us to create the subsystems view,
containing all code managing the user interface, and model, with the business logic code, see
figure 5.16.

Having separated the system into view and model, the two separate tasks user interface and
business logic are clearly separated into two subsystems, each with high cohesion. There is,
however, still a remaining problem. To understand it, let us first consider an analogy, namely
to build a new school. The school will be used by a large number of people in many different

51

Chapter 5 Design

(a)

(b)

Figure 5.17 People involved in constructing
a new school. The orange persons sym-
bolize the construction workers (carpen-
ters, electricians, plumbers, etc). The
blue persons symbolize people that will
use the school (teachers, students, admin-
istrative staff, etc), and therefore give di-
rectives to the construction workers.
(a) Chaotic organization without steering
committee.
(b) Well-functioning organization with
steering committee (green person).

roles, for example students, teachers, headmasters, it
staff. All these may have ideas about the construc-
tion that they want to communicate to the construction
workers. There is also a large number of construction
workers in many roles, for example carpenters, elec-
tricians, plumbers. This is illustrated in figure 5.17,
which depicts two different organizations. The upper
organization, figure 5.17a, is quite chaotic since any-
one with an opinion about the construction is allowed
to give input to any construction worker. It is easy
to understand that no usable school will ever be built
with such an organization. The lower image, figure
5.17b, on the other hand, illustrates a better organiza-
tion. Here, there is a steering committee (green per-
son) organizing the input. No-one talks directly with a
construction worker, instead all input goes to the steer-
ing committee person, who filters the input and de-
cides what to forward and to which worker.

The analogy to the MVC pattern is that the blue per-
sons represent classes in the view package, since they
give input, and the orange persons represent classes
in the model, since they perform the desired work.
The architecture depicted in figure 5.16 would lead
to an organization of the software similar to figure
5.17a. Any object in the view would call methods
in any object in the model. Such a system would
have very high coupling. A change to a class in the
model could affect any class in the view. Also, to
change or update the view would be very difficult
since it would not be clear how replacing or chang-
ing a class in the view would affect the work actually
performed in the model. The solution is to introduce
a class (or some classes) corresponding to the steer-

ing committee. Such a class is called a controller and is placed in the third layer of the
MVC pattern, the controller layer. Figure 5.18 shows all three MVC layers and the
Controller class. The controller shall contain the system operations, that is, the oper-
ations in the system sequence diagram made during analysis. A user action, for example
to click a button in the user interface, will result in one call from an object in the view
to a system operation in the controller. That operation in the controller shall call the cor-
rect methods in the correct objects in the model, in the correct order. This way, the work is
done in the model and it is the controller’s responsibility to know which object in the model
does what. The view will not have any knowledge about the model or dependence on it.

52

Chapter 5 Design

Figure 5.18 The MVC layers and the
Controller class.

To summarize, the MVC pattern tells us to di-
vide the system into three subsystems. The first
is view, which is responsible for presenting the
user interface and for interpreting the user’s in-
put. There must not be any code related to any
kind of user interface outside the view. The sec-
ond subsystem is controller. As stated above,
the controller’s responsibility is to call the correct
methods in the correct objects in the model, in
the correct order. The last subsystem is model,
which contains the program’s representation of
real world entities and is responsible for the actual
functionality of the system, the business logic.
Figure 5.19 is a sequence diagram showing the
flow from view, via controller, to model.
The advantages of the MVC pattern are that each
subsystem has high cohesion, and that there is low
coupling between user interface code and busi-
ness logic code since they are separated in dif-
ferent subsystems. The view and the model can
now be developed separately, by different teams.

It is in fact possible to completely replace the view, or to have multiple views simultaneously,
without affecting the model in any way.

Figure 5.19 Method calls from view, via controller, to model.

Before leaving the MVC pattern, it is worth considering interaction between the three sub-
systems a bit more. Regarding view and controller, a remaining question is who handles flow
control between views. Suppose for example the the user interface shows a list with summary
information about different items. If the user clicks an item, a new view shall be displayed,
with detailed information about the clicked item. Which object knows that the list view shall
be replaced by the detailed view? Flow control is the responsibility of the controller, not
the view, but the controller does not know which view is currently displayed. The answer

53

Chapter 5 Design

is that managing flow control between views is a task complex enough to give low cohesion
to whatever class it is placed in. It is best to introduce a new class, which has exactly this
responsibility. This object could be placed in the controller layer, but note that it is not a
Controller class.

Regarding communication between view and model, it is best that, as in figures 5.18 and
5.19, there is no such communication at all. That makes these two layers are completely
independent, reducing coupling as much as possible. If so, the only way to send data from
model to view, for showing to the user, is as return values to method calls from view, via
controller, to model. If that is possible, everything is fine. Unfortunately, it is often not
possible, since one method call might require many different return values. It might also be
that a view shall be updated when no call to the model has been made, for example as a result
of the model being updated by a call from another program, or because of a timer updating the
model regularly. An option could be to add lots of getter methods to the model, and let the view
use those to retrieve the required data. This solution has some big disadvantages, for example

Figure 5.20 Often used layers.

that corresponding getter methods must be added
to the controller, which will make it terribly
bloated and messy. Also, the view can not know
exactly when to call those getters, since it can not
know when the model changes state, if the state
change is not initiated by the view itself. There
is an elegant solution to this problem, that will be
covered later. For now, all considered scenarios
will allow data to be passed from model to view
as return values to method calls via controller.

The Layer Architectural Pattern

The Layer architectural pattern is more general
than the MVC pattern. While MVC concerns the
model, view and controller layers in particular,
the layer pattern just says that the system shall be
divided in layers. MVC solves the problem that
user interface and business logic risk to be mixed.
Layer applies the same reasoning, but to any two
different kinds of code. Just as mixing user inter-
face and business logic brings low cohesion and
high coupling, so does mixing for example busi-
ness logic and database calls. Calling a database
is a separate task, in no way related to perform-
ing business logic on objects in the model. This
means there shall be a separate layer dedicated to database calls. Continuing this reasoning, it
is important to always be prepared to add a new layer. That must be done whenever writing
code that will give low cohesion to whatever existing layer it is placed in. As an example,
consider the main method. Its task is to start the program, which is not related to any of the

54

Chapter 5 Design

layers that have been mentioned so far. Therefore, yet a new layer must be introduced, whose
responsibility is to start the application.

Exactly which layers there shall be in a system is a matter of discussion, and it also differs
from system to system. However, all layers that have been mentioned here are often present.
Those layers are depicted in figure 5.20, they are view, controller, model, dbhandler
(sometimes called integration, responsible for calling the database), data (the actual
database) and startup, which includes the main method and all other code required to start
the application.

Always strive to keep dependencies in the direction illustrated in figure 5.20, that is from
higher (closer to the user) layers to lower (further from the user) layers. Those dependencies
are unavoidable, since execution is initiated by the user, and to call lower layers there must
be dependencies. Dependencies in the opposite direction are, however, not needed. There is
nothing forcing lower layers to call higher layers. Since such dependencies are unnecessary,
introducing them means unnecessarily high coupling. Also, higher layers tend to be less stable
than lower layers. For example, it is more common to change user interface layout than it is
to change business rules, and yet less common than to change those rules is to remove entities
represented in the database.

To conclude, the layer pattern has important advantages. If layers are correctly designed,
they form subsystems with high cohesion and low coupling. Also encapsulation applies to
layers, the public interface of a layer shall be as small as possible, not revealing more than
required of the layers internal workings. When encapsulation, cohesion and coupling are used
to make layers independent, it becomes easy to maintain the layers and to divide development
of different layers between different developers or teams of developers. It is also easy to reuse
code, since a layer can provide a well-designed public interface, callable from any code in a
higher layer.

The DTO (Data Transfer Object) Design Pattern

As the number of layers increase, so does the need to pass data between layers. This often
leads to long parameter lists in many methods as data is passed through the layers. Consider
for example registering a new user in some community. Say that registration means to enter
name, street address, zip code, city, country, phone number and email address. These are
seven string parameters that shall be passed though all layers from user interface to database,
which means there will be (at least) method declarations similar to those in listing 5.4.

1 //In the controller layer
2 public void registerUser(String name, String streetAddress,
3 String zipCode, String city, String country,
4 String phone, String email) {
5 //Call to model
6 }
7
8 //In the model layer
9 public void registerUser(String name, String streetAddress,

55

Chapter 5 Design

10 String zipCode, String city, String country,
11 String phone, String email) {
12 //Call to dbhandler
13 }
14
15 //In the dbhandler layer
16 public void registerUser(String name, String streetAddress,
17 String zipCode, String city, String country,
18 String phone, String email) {
19 //Call to database
20 }

Listing 5.4 The same method signature often appears in many different layers. This is
problematic if the method has a long parameter list.

Just to make many method calls is not a problem, but the long parameter list is. First, it is
difficult to remember the meaning of each parameter, especially when they all have the same
type, as is the case here. Second, a long parameter list means a large public interface, and
thereby a bigger risk that it is changed. An often used method to get rid of the parameter list
is to use a data transfer object, DTO. Such an object is a just data container, without any logic.
Its only purpose is to group data in the same class, see listing 5.5.

1
2 //The DTO
3 public class UserDTO {
4 private String name;
5 private String streetAddress;
6 private String zipCode;
7 private String city;
8 private String country;
9 private String phone;

10 private String email;
11
12 public UserDTO(String name, String streetAddress, String zipCode,
13 String city, String country, String phone,
14 String email) {
15 this.name = name;
16 this.streetAddress = streetAddress;
17 ...
18 }
19
20 public String getName() {
21 return name;
22 }
23
24 public String getStreetAddress() {
25 return streetAddress;

56

Chapter 5 Design

26 }
27
28 ...
29 }
30
31 //In the controller layer
32 public void registerUser(UserDTO user) {
33 //Call to model
34 }
35
36 //In the model layer
37 public void registerUser(UserDTO user) {
38 //Call to dbhandler
39 }
40
41 //In the dbhandler layer
42 public void registerUser(UserDTO user) {
43 //Call to database
44 }

Listing 5.5 Here, the problematic parameter list of listing 5.4 has been removed by intro-
ducing a DTO

An obvious objection is that the long parameter list is not gone, it is just moved to the
constructor of the DTO, UserDTO, on lines 12-14 in listing 5.5. However, it now appears only
in one place. If it is changed, only one public interface is changed, not one in each layer. Also,
it is now obvious that all user related data belongs together.

5.5 A Design Method

Finally, all the theoretical background is covered. Having sufficient knowledge about UML
class, sequence, and communication diagrams; the design concepts encapsulation, cohesion
and coupling; and the architectural patterns MVC and layer, it is time to look at how to actually
design a program. This section describes a step-by-step method for design, which will be used
to design the RentCar case study in the next section.

1. Use the patterns MVC and layer. This means to create one package for each layer
that is supposed to be needed. Exactly which layers that is, is a matter of discussion.
An educated guess that is valid for many programs is to use the layers depicted in figure
5.20. The class Controller can also be created already now. Illustrate the packages
and Controller in a class diagram.

2. Design one system operation at a time. The system sequence diagram shall guide our
design, it shows exactly which input and output the program shall have. Also design
enough of the system’s start sequence (initiated by the main method) to be able to test

57

Chapter 5 Design

run the newly designed system operation. When deciding which classes and methods
there shall be, use interaction diagrams. An interaction diagram shows the flow through
the program, how methods call each other. Whether to use sequence or communication
diagrams is a matter of taste.

3. Strive for encapsulation with a small, well-defined public interface, high cohesion
and low coupling. When adding new functionality, create the required methods in a
way that these goals are met to the highest reasonable degree. This is much easier said
than done, and often requires much thought and discussion. It helps to remember that an
operation shall be placed in a class representing the abstraction to which the operation is
associated, and that has the data required for the operation. The domain model helps to
find new classes that can be introduced. Also, always be prepared to change previously
designed system operations if that improves the overall design.

When designing, favor objects over primitive data and avoid static members, since nei-
ther primitive data nor static members are object oriented. When using these, the entire
object concept is completely ignored, and the prime tool (objects) to handle encapsula-
tion, cohesion and coupling is thrown away.

4. Maintain a class diagram with all classes. When done designing a system operation,
summarize the design in the class diagram created in bullet 1, which will contain all
classes in the program. Such a diagram gives a good overview.

5. Implement the new design in code. Design is not an up front activity that can be done
once and for all for the entire program. Instead, it shall be done in iterations, as soon as
a design is ready it shall be implemented in code, and thus evaluated. Here, this step is
postponed until the next chapter. The reason is that seminar two would otherwise be
far too big. Also, postponing programming allows focusing on design without getting
lost in code. However, when designing, it is important to have an understanding of how
the design can be implemented in code.

6. Start over from bullet 2 and design the next system operation.

5.6 Designing the RentCar Case Study

As an example, the RentCar case study is designed in this section. For convenience, the
specification, SSD and domain model are repeated below, in figures 5.21, 5.22 and 5.23. When
creating the design, be sure to have an understanding of how it may be implemented in code. If
that is not clear, now is the time to repeat Java programming, for example by reading chapter 1,
especially sections 1.2 and 1.3.

Step 1, Use the Patterns MVC and Layer

Following the method described in section 5.5, the first thing to do is to create a class diagram
with the anticipated layers. There is no reason to deviate from the typical architecture of figure

58

Chapter 5 Design

1. The customer arrives and asks to rent a car.
2. The customer describes the desired car.
3. The cashier registers the customer’s wishes.
4. The program tells that such a car is available.
5. The cashier describes the car to the customer.
6. The customer agrees to rent the described car.
7. The cashier asks the customer for name and address, and also for the driving license.
8. The cashier registers the customer’s name, address and driving license number.
9. The cashier books the car.

10. The program registers that the car is rented by the customer.
11. The customer pays, using cash.
12. The cashier registers the amount payed by the customer.
13. The program prints a receipt and tells how much change the customer shall have.
14. The program updates the balance.
15. The customer receives receipt, change and car keys.
16. The customer leaves.

4a. The program tells that there is no such car available.
1. The cashier tells the customer that there is no matching car.
2. The customer specifies new wishes.
3. Execution continues from bullet three in basic flow.

Figure 5.21 The RentCar scenario.

Figure 5.22 The RentCar system sequence diagram.

59

Chapter 5 Design

Figure 5.23 The RentCar domain model.

5.20. Therefore, after having introduced the Controller class, the design looks as in figure
5.24.

Figure 5.24 The first version of the RentCar design class diagram.

60

Chapter 5 Design

Step 2, Design One System Operation at a Time

The view will not be designed here, instead there will be a single class, View, in the view

package. This class is a placeholder for the real view, which certainly would consist of more
than one class. This way, there is no need to bother about view technologies like window
management, console IO or HTTP. Also, as far as design is concerned, there is nothing con-
ceptually different in designing the view than there is in designing any other layer; exactly the
same reasoning as here is followed when the view is designed.

The system operations are designed in the order they are executed according to the SSD,
figure 5.22. The first operation in the SSD is searchMatchingCar, which takes the param-
eter searchedCar and returns the value foundCar. The first step is to create an interaction
diagram. Since the MVC pattern says the controller shall contain the system operations, the
method searchMatchingCar can be added to the controller right away. Here, however,
comes the first design decision. Which is the type of the parameter searchedCar and the
return value foundCar?

Step 3, Strive for encapsulation with a small, well-defined public
interface, high cohesion and low coupling

The question, which is the type of the parameter searchedCar and the return value foundCar,
is the first of a large number of design decisions, let’s consider it carefully. The answer shall be
guided by the concepts encapsulation, cohesion and coupling. The purpose of searchedCar
is to represent the customer’s requirements on the car to rent, and the purpose of foundCar
is to describe the available car that best matches those requirements. The design currently
contains only two classes, View and Controller. Obviously, it would be lousy cohesion to
let any of those represent the customer’s requirements or the matching car. The features of
a car is not just one value, but a quite large set. The requirements specification, figure 5.21,
does not tell exactly which features the customer can specify. This is definitely something
we would have to ask about if the program should be used for real. In this exercise, we have
to decide on our own, let’s say that the customer can wish for price, size, air condition, four
wheel drive and/or color. These values clearly belong together, as they describe the same ab-
straction, a car. Therefore, they should be fields in the same class, which must be introduced
to the design. Can the domain model, figure 5.23, give any inspiration about this new class?
Yes, it shows the class Car, which seems to be an important abstraction since it has many
associations. The Car class can also be used for the return value, foundCar. This object,
however, represents a specific car, not just any car matching the specified criteria. Therefore,
the registration number must also be a field in this class. Now, having decided on the rep-
resentation of searchedCar and foundCar, it is possible to create the first version of the
searchMatchingCar interaction diagram, figure 5.25.

There are a few things worth noting in this diagram. First, the name searchedCar appears
in three different places, the object name, method call one and method call two. The fact
that the same name is used implies that it is in fact the very same object in all three places,
which is important information for the reader. Second, data can not appear out of nothing,
since searchedCar is a parameter in method call two, it must be clear from where this object

61

Chapter 5 Design

Figure 5.25 The first version of the searchMatchingCar design interaction diagram.

comes. This is illustrated in method call one, where it is created. But what is the origin of the
parameters in method call one? That is explained in the note, they are entered by the user in
the user interface. Last, the diagram does not tell in which layer the Car class is located. It is
quite OK not to show layers in the interaction diagram, but we still must decide the location
of Car. In fact, all layers are candidates, since it already appears in view and controller,
and we can guess that it will be passed through model to dbhandler, since a search in the
database for a matching car is probably required. A rule of thumb is to place a class in the
lowest layer where it is used, in order to avoid dependencies from lower to higher layers. This
would indicate that Car should be placed in dbhandler. However, there are other questions
as well, is Car a DTO or is it the actual model object, the entity, with the business logic?
Also, does the entity (in the model) contain any business logic at all, or has it only got getter
methods? In the latter case, there is no real need to introduce both a DTO and an entity, since
they would be identical. Instead, the Car class in the model could be considered to be a DTO.
These questions can not be answered until more of the system is designed. For now, we just
choose the simplest solution, namely to let Car be a DTO, place it in dbhandler, and not
add an entity. This decision might have to be changed later. Note that if we had decided to
turn Car into an entity object, it could no longer have been created by the view, since model
objects shall only be called by the controller. Let’s change the name to CarDTO to make clear
it is a DTO, this makes the communication diagram look as in figure 5.26.

Figure 5.26 Car is renamed to CarDTO.

62

Chapter 5 Design

Next, it is time to decide which object is called by Controller. Shall some object in the
model be created or shall the controller just make a search in the database? The answer is that
a model object shall be created if it is of any use after this call. For example if it later shall be
stored in the database or if it will be used in a future system operation. As far as we know now,
none of these cases apply, there is no future use for a model object representing the search.
Therefore, Controller will just call an object responsible for searching in the database. This
object, let’s call it CarRegistry, will reside in the dbhandler layer, since the purpose of
that layer is exactly this, to call the database. The database itself, represented by the data

layer, would normally be another system, called by the CarRegistry class. Here, however,
there is no database. Thus, instead of calling the database, CarRegistry will just look in an
array of available cars. The final design of searchMatchingCar is in figure 5.27. Note that
this diagram has no notion at all of the loop around the system operation, that is drawn in the
system sequence diagram. This is because the loop condition, noMatchingCar is not visible
in the program, but is completely decided by the cashier (after talking with the customer).
Exactly the same flow, depicted in figure 5.27, is executed again and again, until the customer
is satisfied.

Figure 5.27 Call to dbhandler layer is added.

Figure 5.28 The start sequence in the main method.

The next task is to design as much of
the start sequence, in the main method, as
is needed to run the newly designed sys-
tem operation. That start sequence must
create all objects that are not created dur-
ing execution of the system operation it-
self. There exists currently four objects
in total, searchedCar and nameless ob-
jects of the classes View, Controller

and CarRegistry. Of these, only
searchedCar is created in the design of
the system operation, the other three must be

63

Chapter 5 Design

created by main. But not only must they be created, they must also be given references to
each other to be able to call each other. In particular, View calls Controller and must there-
fore have a reference to Controller. Also, Controller calls CarRegistry and must
thus have a reference to CarRegistry. One option is that main creates all three objects and
passes references as needed. Another option is that main creates fewer objects, for example
only View, which in turn creates Controller, which finally creates CarRegistry. Let’s
chose the former alternative, main creates all three objects, see figure 5.28. The other solution
could be problematic if in the future there is the need to create for example a Controller

without a CarRegistry. This might also indicate that the controller gets low cohesion if it
creates CarRegistry.

Step 4, Maintain a Class Diagram With All Classes

Figure 5.29 RentCar design class diagram after designing searchMatchingCar.

The last task in the design of searchMatchingCar is to summarize what has been done in

64

Chapter 5 Design

a class diagram, see figure 5.29. Note that it is not mandatory to include all attributes, methods
and references if they do not add any important information, but only obscure the diagram.
For example, it is common not to include references to DTOs, since they are used in many
different layers and are considered as data types. Not including references to DTOs is similar
to not including references to java.lang.String, which can also be considered a data type.

Before leaving searchMatchingCar, we evaluate it according to the criteria encapsula-
tion, cohesion and coupling. To start with encapsulation, all methods are public. This is not
exactly an ideal situation, but often quite unavoidable early in the design. We are creating the
different layers and tying them together. In fact, all methods are called across layer borders,
and it has to be that way. Otherwise, it would not be possible to communicate between lay-
ers, since there are still very few methods. All fields, on the other hand, are private, which
is very good. Looking at cohesion, we can safely say that all classes do what they are meant
for, nothing more. Main starts the program, View just calls the controller, Controller has
a system operation that calls a search method in the CarRegistry. CarRegistry has only
this search method and CarDTO, finally, has no methods at all. Regarding coupling, there is
a chain of dependencies from higher to lower layers, that is from view to controller to
dbhandler, which is exactly the purpose of the layer pattern. Also, it is perfectly in order
to have dependencies from Main to the other layers, since the task of Main is to start the
other layers. It would most likely not be appropriate if Main had references to many classes
in the same layer, that would probably be too high coupling. For the moment, however, Main
references only one class in each layer.

That concludes the design of the searchMatchingCar system operation. The question
naturally arises, whether all this designing is really necessary just to fetch an element from
an array? The answer is yes, most definitely yes. A professional programmer should, and
normally does, make this kind of considerations all the time. However, having gained more
experience by designing more programs, the reasoning made in this section can often be done
quite quickly.

The registerCustomer System Operation

The next system operation is registerCustomer. The first thing to do is to introduce the
system operation as a method in the controller, since all system operations shall appear as
controller methods. What objects shall the registerCustomer method call? This is the
time to introduce model objects, since the result of customer registration is needed in future
system calls, for example when a rented car is associated with the renting customer. It seems
quite natural to add a Customer class, there is also such a class in the domain model. Again
comes the same consideration as for the Car class, is this a DTO or an entity or is there no
difference between the two? That question can not be properly answered until more is known
about the program. For the moment, we choose an easy solution and treat it as we treated
the car object. Make the class a DTO, place it in the lowest layer where it is used, namely
model, and create the object in view. Treating car and customer the same way should
also make it easier to understand the program. We must, however, be aware that these choices
might have to be changed later on, as designing proceeds. Having solved this problem, at
least temporarily, another question immediately appears. According to both domain model

65

Chapter 5 Design

and SSD, CustomerDTO has the attributes name, address and drivingLicense. Shall
these be strings or new classes? In order to shorten the discussion, the domain model is
followed without further consideration. This means name becomes a string, while the other
two becomes new classes, AddressDTO and DrivingLicenseDTO. Now it is possible to
draw a UML diagram illustrating the call of the registerCustomer method, figure 5.30.

Figure 5.30 The customer object and the registerCustomer method.

We are not done yet, sending a DTO to the controller does not serve any purpose on its own.
Remember that a DTO shall be considered a data type, like int or String. To complete
customer registration, customer data should reasonably be stored somewhere in the model
(or database). This is a good time to add the Rental class, which is a central class in the
domain model. High cohesion is achieved by letting a rental object represent the entire
rental transaction. This object will know which customer performed the rental, which car was
rented, and other facts related to the rental, by having references to appropriate other objects.
The final design of the registerCustomer system operation look as in figure 5.31.

There is no need to add anything to the main method, since all new objects that were
introduced in this system operation are created in the interaction diagram in figure 5.31. These
objects are address, drivingLicense, customer and the unnamed Rental object.

A word of caution before proceeding to the next system operation. There are now three
different DTOs stored in the model, in the Rental object, and there will likely be even more
as we proceed. We have not considered how these are handled in the model. Are they simply
kept or is all data copied to some other object? This question will be left unanswered until the
design is implemented in code. However, it is a problem that the DTO objects are referenced,
and therefore potentially updated, by both view and model. Once view has passed a DTO as
parameter to controller, it should never be updated again by view. To make sure this does
not happen, all fields, and also the classes themselves, shall be final. This makes the DTO

66

Chapter 5 Design

immutable, which means none of its fields can ever change value. There is no UML symbol
for this, it is illustrated with a note in the class diagram, figure 5.32.

Figure 5.31 The Rental class symbolizes the entire rental transaction.

The bookCar System Operation

The purpose of the bookCar system operation is to register which car will be rented. Note
bullet ten in the specification, The program registers that the car is rented by the customer.
This is not illustrated in the system sequence diagram. Correctly, since it is an operation
internal in the system, but still it must appear in the design.

The name of the parameter that specifies the car in the SSD is foundCar, which is the same
name as the variable that was returned from the searchMatchingCar system operation. This
indicates that these two are the same object. This information will be kept in the design, by
using the same name, foundCar, for both objects also here.

The foundCar object must be passed to the rental object in the model, to be associated
with the current rental and thereby the current customer. That is not enough however, the car
database must also be updated to show that the car is now booked, to prevent other customers
from renting it. This raises the question, what to store in the database? Just the fact that
the car is now booked, or all information in the entire rental object? The latter must be the
correct choice, otherwise the information about this rental will be lost when the next rental is
initiated. Of course, in a real project, this would be discussed with a domain expert (someone
working at the car rental company), but here we have to decide on our own. The decision to
store all rental information creates a new problem, shall a rental be stored in a database named
carRegistry? Isn’t that name a bit misleading? Either the name carRegistry must be

67

Chapter 5 Design

Figure 5.32 RentCar design class diagram after designing registerCustomer.

68

Chapter 5 Design

changed, or a new data store must be created. Let’s try to get inspiration from the domain
model, it shows a RentalCatalog and a CarCatalog. This indicates that there should be
different data stores for cars and rentals. It can also be argued that separating these two classes
creates higher cohesion. However, these two are not exactly what we are looking for, in the
DM they contain specifications of rentals and cars, but in the design we are handling particular
instances of rentals and cars. Also, comparing the DM and the design diagrams, it becomes
clear that the design so far contains no rental or car specification stores, is that a problem? This
is again something that should be discussed with the domain expert. But let’s not deviate to
much from the SSD we are implementing now, we will not consider car or rental specifications
here, since they are not mentioned in the specification.

Figure 5.33 The bookCar design interaction diagram.

With the cohesion argument, a RentalRegistry is added, this gives higher cohesion than
storing rentals and cars in the same data store. This results in the design in figure 5.33. Re-
member that CarRegistry and RentalRegistry are not the actual databases, but classes
calling the database. There is nothing stopping us from letting both those call the same under-
lying database if that would be appropriate. In this course, we do not implement any database,
so we do not have to consider that problem.

It is a quite interesting decision to let Rental, instead of Controller call bookCar. The
motive is that the controller should not have detailed knowledge about all details of all system
operations. That would lead towards spider-in-the-web design, with the controller as spider.
Now that calls to registers are being made from Rental, it might be adequate to move more
register calls from Controller to Rental. Then there would of course be the risk that, in the
end, Controller does nothing but forward calls to Rental, which then becomes the spider
class. This reasoning is not an unimportant academic exercise, it is quite common design
problems both to have a controller doing all work itself, and to have a controller doing nothing
but forwarding method calls to another class. To shorten this discussion a bit, the design is
kept as in figure 5.33.

The RentalRegistry object is not created in any design diagram, it must therefore be
created when the system is started. Figure 5.34 shows program startup with instantiation of
RentalRegistry added. With this modification, main creates two objects in the dbhandler

69

Chapter 5 Design

layer. This is a warning sign that it might be getting unnecessarily high coupling to that layer.
Also, the dbhandler layer might have a bit bad encapsulation, since it has to reveal the ex-
istence of CarRegistry and RentalRegistry to main. These problems can be solved by
changing that startup design to the one in figure 5.35, where the class RegistryCreator is
responsible for creating the registries, and thereby hides their existence to main. This solution
will be discussed and improved further in chapter 9. For now, we conclude that the design
in any of figures 5.34 or 5.35 can be used, since the problem regarding encapsulation in the
dbhandler layer is not yet very big. But it might grow in the future, if more registries are
added.

Figure 5.34 The start sequence in the main method.

The design class diagram, figure 5.36, is now becoming quite big. In order to reduce it, the
DTOs are omitted. Another option would have been to split it into more, smaller diagrams.
This class diagram illustrates the start sequence in figure 5.35, not 5.34. Note that the con-
structors of CarRegistry and RentalRegistry are package private, since they are called
only by RegistryCreator, which is located in the same package as those registries.

70

Chapter 5 Design

Figure 5.35 The start sequence when RegistryCreator is added.

Figure 5.36 RentCar design class diagram after designing bookCar.

71

Chapter 5 Design

The pay System Operation

Figure 5.37 The pay system operation.

Only cash payment is implemented in the current
iteration. Just as is the case for any system opera-
tion, there will be a method in the controller with
the same signature as the operation in the SSD,
that is void pay(amount). What is the type of
the parameter amount? So far, int has been used
to represent amounts, for example the price of a
rental. Looking in the domain model, however, there is a class called Amount that represents
an amount of money. It is most likely a good idea to change the design to use that type instead.
Generally, it is a bit dangerous to force an amount to have a specific primitive type. For ex-
ample it is not clear whether an amount can have decimals or not. By introducing the Amount
class, the primitive type of the amount is encapsulated inside that class, and can thus easily be
changed. It is a great joy to see that the introduction of Amount only requires changes from
int to Amount in one single class, CarDTO. This is due to the encapsulation of car properties
in CarDTO. The pay interaction diagram now looks as in figure 5.37.

Figure 5.38 Payment and CashRegister handling the pay system operation.

Which object in the model shall handle a payment? Rental is the only class that can come
under consideration without completely ruining cohesion. Is it reasonable that Rental shall
prepare the receipt and perform the task listed in bullet 14 in the scenario, namely to update
the balance? The answer must be no, Rental represents a particular rent transaction, it is not
responsible for receipt creation or for maintaining the balance of the cashier’s cash register.
This means a new class must be created. The DM has no really good candidate for this class,
which probably means something was missed when it was created. Possible classes in the DM
are Payment and Cashier. The former is associated to Receipt, which in turn is associated
to Change, and seems to be a good candidate for handling one specific payment. One specific
payment is, however, not related to the balance in a cash register. Therefore, Payment shall
not handle the balance. Looking in the DM, Cashier is the only possible candidate for

72

Chapter 5 Design

handling the balance, but is a balance really an attribute of the cashier that worked at the cash
register where the balance was generated? The answer must be no, which means none of
the classes in the DM can be used. The most reasonable solution seems to be to introduce a
new class CashRegister, representing the cash register that has the particular balance. The
pay design, after introducing the Payment and CashRegister, is depicted in figure 5.38.
The payment class is called CashPayment instead of Payment, because we are anticipating
that future handling of credit card payments will be quite different and therefore be placed
in a different class. The rental that is being paid is passed to calculateCost, call 1.2.1,
since CashPayment will have to ask the payment about information when calculating the
total rental cost.

Figure 5.39 Receipt printout is added.

As a result of pay, a receipt shall be printed on the printer, which, according to the SSD,
is an external system. Calling an external system is normally handled by a specific class,
which represents the external system and handles all communication with it. This class can
be named after the external system, here, it will be called Printer. This class is not the
actual printer, but a representation of the printer in the program being developed. In which
layer shall this class be placed? Actually, it does not fit in any of the current layers without
giving bad cohesion to the layer where it is placed. There are two main options, either to
create a new layer or to extend (and rename) dbhandler to handle interaction with any other
system, so far databases and printers. The former seems like a road to fragmentation of the
system into many small layers, to high coupling with many references, and to less possibility
for encapsulation, given the many small units. The latter option seems to be a road to low
cohesion in dbhandler. With the current knowledge about the system, it is quite impossible
to tell which option is the best. More or less by chance, the latter option is chosen and the
dbhandler layer is renamed to integration, which is a relatively commonly used name

73

Chapter 5 Design

for a layer responsible for interaction with external systems. The resulting pay design can
be seen in figure 5.39. This design is a bit underspecified, for example it is not clear exactly
how Receipt will gather the receipt information. Actually, it is not even clear exactly which
information the receipt shall contain. However, it is clear that what is designed is sufficient to
allow Receipt to gather the information from Rental. The remaining details will be decided
when the design is implemented in code.

Two objects were introduced without being created, namely the Printer and CashRegister
objects, which must therefore be created during startup. Shall Printer be created by Registry
Creator (which must then be renamed), or shall it be created directly by main? Let’s not
include it in RegistryCreator, since, after all, a printer connection is completely different
from a database connection. The RegsitryCreator will be responsible only for connecting
to the database. Perhaps the same connection can be used for both the car and rental registries,
but most certainly not for the printer. This decision gives the final startup design of figure
5.40.

Figure 5.40 The complete startup design.

Why is the CashRegister object created by Controller, when all other objects are
created by main and sent to Controller? This is a trade-off between two contradicting
arguments. On one hand, coupling is lowered if main is not associated to all other objects cre-
ated during startup. On the other hand, cohesion of the Controller constructor is increased
if it does not create loads of other objects, besides controller. The design of figure 5.40
balances these arguments. Since Controller is the entry point to model, it makes sense that

74

Chapter 5 Design

it creates the model objects, like CashRegister. The main method creates central objects
in the integration, controller and view layers, but nothing more.

The last thing to do is to draw the design class diagram, which can be seen in figure 5.41.
Note that there is no data layer, it is not needed since there is no database.

Figure 5.41 The class diagram after pay is designed.

75

Chapter 5 Design

Evaluate the Completed RentCar Design

Before leaving the design, it should be evaluated according to the concepts encapsulation,
cohesion, and coupling. Starting with encapsulation, is there any method, class, package or
layer that has bad encapsulation? Bad encapsulation means that there is a member with too
high visibility, public instead of package private or private. With the current design, there is
no visibility that can be lowered. Still, there are very few methods that are not public, which
is not the desired result. Also, there is quite high coupling. For example Controller is
associated with all classes in model and most classes in integration. This situation would
be improved if model classes called each other instead of passing through controller. One
thing that can be done is to change the Rental method Receipt getReceipt() to void

printReceipt(Printer printer). This moves the printer call from Controller to
Rental, removes the association from Controller to Receipt and makes the Printer

constructor package private. This gives the pay design in figure 5.42 class diagram in figure
5.43. This is at least a bit better. Further improvements could be considered, for example
to somehow let CashPayment call CashRegister (or vice versa). This would remove one
more association from controller. However, the current design is quite acceptable, let’s
leave it like that. It is normal that early in development, a large part of the created members
belong to the public interface. The last thing to do is to consider cohesion. There seems to
be no issues related to cohesion, all layers, classes and methods do what they shall, nothing
more.

Figure 5.42 Improved pay design, with less coupling from Controller.

76

Chapter 5 Design

Figure 5.43 The final design class diagram.

77

Chapter 5 Design

5.7 Common Mistakes

Below follows a list of common design mistakes.

• The design has a spider-in-the-web class, which is often the controller. The solution is
to remove associations between the spider and some peripheral classes, and instead add
associations between peripheral classes. This has been covered in detail previously.

• Objects are not used sufficiently, instead primitive data is passed in method calls. It is
not forbidden to use primitive data, but always consider introducing objects, especially
if there are long lists of parameters in a method or attributes in a class. Not using objects
means that the prime tool (objects) to handle encapsulation, cohesion and coupling is
thrown away.

• There are unwarranted static methods or fields. It is not forbidden to use static mem-
bers, but there must be a very god reason why there are such. Static members do not
belong to any object, and are therefore, just as is the case for primitive members, us-
ing them means that the prime tool (objects) to handle encapsulation, cohesion and
coupling is thrown away.

• There a too few classes. It is of course very difficult to tell how many classes there
should be in a certain design, but in some cases there are clearly too few. An example
is if the model consists of only one class, which performs all business logic. Cohesion
is the prime criteria used to decide if there is a sufficient number of classes, too few
classes normally means that some existing class(es) has low cohesion.

• Too few layers is perhaps a less disastrous mistake than too few classes, especially
early in the development, when the program is relatively small. Still, if one of the
layers view, controller, model, startup or integration is missing, there
must be a reason why that is the case. If one or more of those layers has another name
is probably no problem, what matters is that they exist.

• There can also be too few methods. This can be discovered by evaluating if existing
methods have high cohesion. A method should have one specific task, explained by
its name. However, there can be too few methods even if all existing methods do have
high cohesion. This is the case if some of the program’s tasks is simply not performed
in any method. If so, the design is not complete and a new method must be introduced,
performing the missing task.

• The MVC pattern might be used the wrong way. Under no circumstance must there be
any form of input or output outside the view.

• Also the layer pattern might be used the wrong way. All layers must have high cohesion
and there should be calls only from higher (closer to the user) layers to lower layers.

NO!

78

Chapter 5 Design

• Data appears out of nothing. Always consider if it is possible to implement the design
in code. That is not possible if a certain variable is passed in a method call, but the
variable does not exist in the calling method.

• The class diagram is too big and is therefore unreadable. The diagram might be un-
readable because it is messy, showing many details, or because it has been shrunk to fit
on a printed page, making the text too small. The solution is to either split it in more,
smaller, diagrams, or to remove details that are not needed to understand the design.
Examples of things to remove are DTOs, private members and/or attributes. Remem-
ber that the goal of removing details is to make it easier to understand the diagram, do
not remove things that are required for understanding. After having removed details, it
might become difficult to use the class diagram as a template when coding. However,
there should still be a complete design of each class in the design tool, this can be used
when programming.

NO!

79

Chapter 6

Programming

This chapter describes how to implement the design in code, and how to test the code. Coding
is never a straightforward translation of the design diagrams. Most likely there are coding
details that were not considered during design. It is also quite likely to discover actual design
mistakes. This means there is no sharp line between the design and implementation activities,
there will be need for decisions regarding program structure, encapsulation, cohesion, cou-
pling and so on also when coding. In addition to this, there will also be questions regarding
code quality, that are not really design issues, for example how to name variables and how to
write comments in the code.

As soon as a certain functionality is implemented in code, it should be tested. This chapter
covers fundamentals of unit testing. This includes guidelines about what, when and how to
test, and an introduction to technologies that facilitate testing.

6.1 Further Reading

6.2 Dividing the Code in Packages

A package name consists of components, separated by dots. The first components shall always
be the reversed internet domain of the organization, e.g., se.kth. This is to avoid name con-
flicts with packages created by other organizations. Following that, there are normally com-
ponents that uniquely identifies the product within the organization, e.g., department and/or
project names, iv1201.carRental. Finally, there are the components that identify a par-
ticular package within the product. This part could start with layer name, e.g., model. If the
layer is large, a single package containing everything in that layer might get low cohesion.
If so, the package can be divided according to functionality, e.g., payment. When following
all these rules and guidelines, a package in the model of the car rental application, handling
payment, shall be named se.kth.iv1201.carRental.model.payment

Sometimes, a class does not clearly belong to a specific package, but is needed in many
different packages. This behavior of a class gives important information, often that the class
does not really fit in the layer structure of the program. This might be because of a design
mistake, but another common reason is that the class is a utility class. These are normally
not application specific, but provide some kind of general service, for example string parsing
or file handling. Such utility classes are often placed in a package that does not belong to a

80

Chapter 6 Programming

specific layer, but is instead called for example util. The full name of that package in the car
rental application would be se.kth.iv1201.carRental.util.

6.3 Code Conventions

It is essential that code is easy to understand, since it will, most likely, be read and changed by
many more developers than the original creator. To make the code easy to understand, every-
one must agree on a set of rules for formatting, naming, commenting, etc. These rules form
a code convention. Originally, there was a Java code convention published by Sun Microsys-
tems. It is no longer maintained by Oracle, but is still available at [JCC]. A good summary
of Java coding standards, which is close to the original code convention, is available at [JCS].
In addition to these documents, organizations that produce code often have their own code
convention. It is essential to agree on which code convention to follow in a particular project.

Below, in table 6.1, follows a brief summary on very frequently used naming conventions
for Java. Note, however, that a full code convention is much more extensive than these short
rules. It is a good idea to read through one of the documents mentioned above.

Name
Type

Description Example

package First letter of each part lowercase. Start with
reversed internet domain, continue with product
name and end with unique package name

se.kth.iv1201.
rentCar.model or
se.kth.iv1201.
rentcar.model

class and
interface

Full description, first letter of each word
uppercase

CashRegister

method Full description, first letter lowercase, first letter
of non-initial words uppercase.

calculateTotalCost

variable,
field,
parameter

Full description, first letter lowercase, first letter
of non-initial words uppercase.

paidRental

constant This applies to final static fields. Only
uppercase letters, words separated by underscores.

MILES_PER_KM

Table 6.1 A few, very commonly used, Java naming conventions.

81

Chapter 6 Programming

6.4 Comments

There should be one javadoc comment for each declaration that belongs to a public interface.
Javadoc comments start with /** and end with */. These are used to generate html files with
api documentation using the javadoc jdk command. Most IDEs (for example NetBeans and
Eclipse) provide a graphical user interface to the javadoc command.

The javadoc comment shall describe what the commented unit does, but not how it is done.
How belongs to the implementation, not to the public interface. Method comments shall
explain not only what the method does, but also its parameters and return value. These are
commented using the @param and @return javadoc tags. The <code> tag shall be used for
Java keywords, names and code samples. This is illustrated in listing 6.1. The @param tag is
used on lines 11 and 23, the @return tag on line 24 and the <code> tag on lines 19, 20 and
23. The html file generated with the javadoc command is, in part, depicted in figure 6.1.

1 /**
2 * Represents an amount of money. Instances are immutable.
3 */
4 public final class Amount {
5 private final int amount;
6
7 /**
8 * Creates a new instance, representing the specified
9 * amount.

10 *
11 * @param amount The amount represented by the newly
12 * created instance.
13 */
14 public Amount(int amount) {
15 this.amount = amount;
16 }
17
18 /**
19 * Subtracts the specified <code>Amount</code> from
20 * this object and returns an <code>Amount</code>
21 * instance with the result.
22 *
23 * @param other The <code>Amount</code> to subtract.
24 * @return The result of the subtraction.
25 */
26 public Amount minus(Amount other) {
27 return new Amount(amount - other.amount);
28 }
29 }

Listing 6.1 Code with javadoc comments.

82

Chapter 6 Programming

Figure 6.1 Part of the javadoc generated from the code in listing 6.1.

It is seldom meaningful to add more comments, inside methods. To make sure such com-
ments are up to date is often burdensome extra work, that far too often is simply not done. If
comments are not maintained, they will not correctly describe the code, which will result in
developers not trusting the comments. Low trust in comments is a very unproductive state of
a program. It means both that the commenting work was in vain, and that unnecessary time is
spent reading code instead of comments. Therefore, avoid placing comments inside methods.
Instead, the need for comments inside a method should be seen as a signal that the method is
too long, and ought to be split into shorter methods. More on this below.

6.5 Code Smell and Refactoring

The concept code smell describes the state of a particular piece of code. It originates from
[FOW], which, despite its age, is still very relevant. This book describes certain unwanted
states (smells) of a code and how to get rid of them. The way to remove a code smell is to
refactor the code, which means to improve it without changing its functionality. A refactoring
is a well-defined way to change a specific detail of the code, for example to change a method’s

83

Chapter 6 Programming

name. [FOW] lists numerous refactorings and tells how to use them to remove different code
smells. This section describes a small number of the many code smells and refactorings men-
tioned in the book. It is of course not necessary to first introduce a smell by making make the
corresponding mistake, and then refactor the code. Better is to learn from the particular smell
and never make the mistake.

The amount of code smell in a program is a quite sure sign of the programmer’s skills.
Novice programmers reveal their lack of knowledge by writing code that has several code
smells. It is relatively common for employers to test the ability to find such problems in a
piece of code when hiring new programmers.

Duplicated Code

Identical code in more than one place in the program is a really bad smell. It means whenever
that piece of code shall be changed, exactly the same editing must be done in all locations
where the duplicated code exists. This is of course inefficient since more writing is needed,
but far worse is that it is easy to miss one or more code locations, which means the code will
not work as expected after the (incomplete) change is made. This will lead to long and boring
searches for lines in the program where the duplicated code was not changed as intended.

How sensitive to duplicated code shall one be? The answer is very sensitive! The goal must
always be that not a single statement shall be repeated anywhere in the program. Allowing
duplicated code is to enter a road that leads to disaster. Duplicated code is normally introduced
by copying previously written code. You should hear a loud warning bell ring if you ever type
ctrl-c ctrl-v when programming.

As an example, consider the code in listing 6.2, where the printout of the contents of the
names array is duplicated. In fact, also the javadoc comment to the three methods is dupli-
cated. Duplicated comments introduce exactly the same complications as duplicated code.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class has bad smell since it contains duplicated code.
5 * The duplicated code is the loop printing the contents of
6 * the <code>names</code> array.
7 */
8 public class ClassWithDuplicatedCode {
9 private String[] names;

10
11 /**
12 * To perform its task, this method has to print the
13 * contents of the <code>names</code> array.
14 */
15 public void aMethodThatShowsNames() {
16 //some code.
17 for (String name : names) {
18 System.out.println(name);

84

Chapter 6 Programming

19 }
20 //some code.
21 }
22
23 /**
24 * To perform its task, this method has to print the
25 * contents of the <code>names</code> array.
26 */
27 public void otherMethodThatShowsNames() {
28 //some code.
29 for (String name : names) {
30 System.out.println(name);
31 }
32 //some code.
33 }
34
35 /**
36 * To perform its task, this method has to print the
37 * contents of the <code>names</code> array.
38 */
39 public void thirdMethodThatShowsNames() {
40 //some code.
41 for (String name : names) {
42 System.out.println(name);
43 }
44 //some code.
45 }
46 }

Listing 6.2 The loop with the printout of the names array is duplicated.

Suppose the printout in listing 6.2 has to be modified, say that lines 18, 30 and 42 shall
be changed to System.out.println("name: " + name);. This change has to be per-
formed on all three lines. Also, as mentioned above, the fact that there is duplicated code
makes it quite difficult to be sure all lines where the code exists where actually changed,
especially if the program is large.

This smell is removed by using the refactoring Extract Method, which means to move code
from an existing method into a new method, which contains this particular code. In the current
example, it is the printout loop that shall be placed in the newly created method. This new
method is then called on all lines where the printout is required. Listing 6.3 shows the code
after applying this refactoring. Here, there is no duplicated code, the desired change is done
by editing only line 43.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**

85

Chapter 6 Programming

4 * This class does not contain duplicated code. The
5 * previously duplicated code has been extracted to
6 * the method <code>printNames</code>
7 */
8 public class ClassWithoutDuplicatedCode {
9 private String[] names;

10
11 /**
12 * To perform its task, this method has to print the
13 * contents of the <code>names</code> array.
14 */
15 public void aMethodThatShowsNames() {
16 //some code.
17 printNames();
18 //some code.
19 }
20
21 /**
22 * To perform its task, this method has to print the
23 * contents of the <code>names</code> array.
24 */
25 public void otherMethodThatShowsNames() {
26 //some code.
27 printNames();
28 //some code.
29 }
30
31 /**
32 * To perform its task, this method has to print the
33 * contents of the <code>names</code> array.
34 */
35 public void thirdMethodThatShowsNames() {
36 //some code.
37 printNames();
38 //some code.
39 }
40
41 private void printNames() {
42 for (String name : names) {
43 System.out.println("name: " + name);
44 }
45 }
46 }

Listing 6.3 When the Extract Method refactoring has been applied, the loop with the
printout of the names array is no longer duplicated.

86

Chapter 6 Programming

Listing 6.4 shows a more subtle example of duplicated code. The problem here is the code
sequence[1], which is used to access the first element in the array sequence. This code is
wrong, since the first element is located at index zero, not one. To fix this bug, both lines 16
and 23 must be changed. The situation would be even worse in a larger program, where the
indexing mistake would occur on numerous lines. Just as in the previous example, the solution
is to extract a method containing the duplicated code, see listing 6.5.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class has bad smell since it contains duplicated code.
5 * The duplicated code is <code>sequence[1]</code> to access
6 * the first element in the <code>sequence</code> array.
7 */
8 public class ClassWithUnobviousDuplicatedCode {
9 private int[] sequence;

10
11 /**
12 * @return <code>true</code> if the the specified value is
13 * equal to the first element in the sequence.
14 */
15 public boolean startsWith(int value) {
16 return sequence[1] == value;
17 }
18
19 /**
20 * @return The first element in the sequence array.
21 */
22 public int getFirstElement() {
23 return sequence[1];
24 }
25 }

Listing 6.4 The duplicated code in this class is the usage of sequence[1] to access the
first element in the array

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class does not contain duplicated code. The previously
5 * duplicated code has been extracted to the method
6 * <code>firstElement</code>
7 */
8 public class ClassWithoutUnobviousDuplicatedCode {
9 private int[] sequence;

10

87

Chapter 6 Programming

11 /**
12 * @return <code>true</code> if the the specified value is
13 * equal to the first element in the sequence.
14 */
15 public boolean startsWith(int value) {
16 return firstElement() == value;
17 }
18
19 /**
20 * @return The first element in the sequence array.
21 */
22 public int getFirstElement() {
23 return firstElement();
24 }
25
26 private int firstElement() {
27 return sequence[0];
28 }
29 }

Listing 6.5 The introduction of the method firstElement has removed the duplicated
code.

All occurrences of the duplicated code were located in the same class in both examples
above. This is certainly not always the case, the same code might just as well exist in different
classes. Also in this case, the solution is to extract a method with the duplicated code, and
replace all occurrences of that code with calls to the newly created method. The specific issue
when multiple classes are involved, is where to place the new method. One option is to place
it in one of the classes that had the duplicated code, another option is to place it in a new class.
In either case, the classes that do not contain the new method, must call the new method in the
class where it is placed. The best placement must be decided in each specific case, based on
how cohesion, coupling and encapsulation are affected by the different alternatives.

Long Method

It is easier to understand the code if all methods have names that clearly explain what the
method does. A guideline for deciding if a method is too long is does the method name tell
everything that is needed to fully understand the method body? If there seems to be need for
comments inside a method, that is clearly not the case. In fact, comments or need of comments
inside a method is a clear sign that the method is too long. Thus, what matters is not primarily
the number of lines in a method, but how easy it is to understand the method body. Consider
the method in listing 6.6, which is quite short but still not easy to understand. What is the
meaning of the numbers 65 and 90 on line 13? The answer is that the ASCII numbers of upper
case letters are between 65 and 90. This becomes clear if a new method, with an explaining
name, is introduced, see listing 6.7. To introduce a new method with an explaining name is
almost always the best way to shorten and explain a method that is too long.

88

Chapter 6 Programming

1 /**
2 * Counts the number of upper case letters in the specified
3 * string.
4 *
5 * @param source The string in which uppercase letters are
6 * counted.
7 * @return The number of uppercase letters in the specified
8 * string.
9 */

10 public int countUpperCaseLetters(String source) {
11 int noOfUpperCaseLetters = 0;
12 for (char letter : source.toCharArray()) {
13 if (letter >= 65 && letter <= 90) {
14 noOfUpperCaseLetters++;
15 }
16 }
17 return noOfUpperCaseLetters;
18 }

Listing 6.6 In spite of the few lines, this method is too long since it is not clear what line
13 does.

1 /**
2 * Counts the number of upper case letters in the specified
3 * string.
4 *
5 * @param source The string in which uppercase letters are
6 * counted.
7 * @return The number of uppercase letters in the specified
8 * string.
9 */

10 public int countUpperCaseLetters(String source) {
11 int noOfUpperCaseLetters = 0;
12 for (char letter : source.toCharArray()) {
13 if (isUpperCaseLetter(letter)) {
14 noOfUpperCaseLetters++;
15 }
16 }
17 return noOfUpperCaseLetters;
18 }
19
20 private boolean isUpperCaseLetter(char letter) {
21 return letter >= 65 && letter <= 90;
22 }

Listing 6.7 Here, each method body is explained by the method’s name.

89

Chapter 6 Programming

It is sometimes argued that the program becomes slower if there are many method calls.
This is simply not true, to perform a method call is not significantly slower than any other
statement. Trying to decrease execution time by minimizing the number of method calls is not
any smarter than trying to minimize the number of statements in the program.

Large Class

Just as is the case for methods, whether a class is too large is not primarily decided by the
number of lines. The main criteria is instead cohesion, a class is too large if it has bad cohesion.
Cohesion was covered extensively above, in section 5.3. The class in listing 6.8 shows that
cohesion can be improved also by splitting small classes. This listing contains the Meeting
class, which represents a meeting in a calendar. It has the fields startTime and endTime

that together define the meeting’s duration. These two fields are more closely related to each
other, than to other fields in the class. The fact that they have a common suffix, Time, helps us
see this. Cohesion is improved in listing 6.9, by extracting a class with these two fields. This
is a quite common way to realize that a new class is appropriate. As programming continues,
the new class will probably get more fields and methods.

1 package se.kth.ict.oodbook.prog.smell;
2
3 import java.util.Date;
4
5 /**
6 * This class represents a meeting in a calendar.
7 */
8 public class MeetingLowerCohesion {
9 private Date startTime;

10 private Date endTime;
11 private String name;
12 private boolean alarmIsSet;
13
14 //More fields and methods.
15 }

Listing 6.8 This class has two fields that are more closely related than other fields. This is
an indication that cohesion can be improved by extracting a new class, with these fields.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class represents a meeting in a calendar.
5 */
6 public class MeetingHigherCohesion {
7 private TimePeriod period;
8 private String name;

90

Chapter 6 Programming

9 private boolean alarmIsSet;
10
11 //More fields and methods.
12 }
13
14
15 package se.kth.ict.oodbook.prog.smell;
16
17 import java.util.Date;
18
19 /**
20 * Represents a period in time, with specific start
21 * and end time.
22 */
23 class TimePeriod {
24 private Date startTime;
25 private Date endTime;
26
27 //More fields and methods.
28 }

Listing 6.9 Here, cohesion is improved by moving the related fields to a new class.

Long Parameter List

Long parameter lists are hard to understand, because it is difficult to remember the meaning of
each parameter, especially if there are many parameters of the same type. It is also very likely
that a long parameter list changes, and changed parameters means changed public interface.
The need to change the list often arises because it is long since it consists of primitive data, not
objects. This means there is no encapsulation in the list, whenever the need of data changes in
the method, it is reflected in its parameter list.

This bad smell can often be removed with the refactorings Preserve Whole Object or In-
troduce Parameter Object, which both replace primitive data with objects. The former is
illustrated in listing 6.10, that has a long parameter list (line 22), and listing 6.11, where the
parameter list is shortened by passing an entire object instead of the fields in that object (line
21). The latter is illustrated in listing 6.12, which has a long parameter list (line 16), and list-
ing 6.13, where the list is shortened by introducing a new object that encapsulates parameters
(line 15). It is quite common to discover that this newly created class was needed, and that
either existing or new methods belong there.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class represents a person. The call to
5 * <code>dbHandler</code> does not preserve the

91

Chapter 6 Programming

6 * <code>Person</code> object. The fields are instead passed as
7 * primitive parameters.
8 */
9 public class PersonObjectNotPreserved {

10 private String name;
11 private String address;
12 private String phone;
13
14 /**
15 * Saves this <code>Person</code> to the specified
16 * database.
17 *
18 * @param dbHandler The database handler used to save the
19 * <code>Person</code>.
20 */
21 public void savePerson(DBHandler dbHandler) {
22 dbHandler.savePerson(name, address, phone);
23 }
24 }

Listing 6.10 The call to dbHandler does not preserve the Person object. The fields
are instead passed as primitive parameters.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class represents a person. The call
5 * to <code>dbHandler</code> preserves the
6 * <code>Person</code> object.
7 */
8 public class PersonObjectPreserved {
9 private String name;

10 private String address;
11 private String phone;
12
13 /**
14 * Saves this <code>Person</code> to the specified
15 * database.
16 *
17 * @param dbHandler The database handler used to save the
18 * <code>Person</code>.
19 */
20 public void savePerson(DBHandler dbHandler) {
21 dbHandler.savePerson(this);
22 }
23 }

92

Chapter 6 Programming

Listing 6.11 The call to dbHandler preserves the Person object.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class represents a bank account. The
5 * <code>deposit</code> method takes primitive parameters
6 * instead of using a parameter object.
7 */
8 public class AccountWithoutParameterObject {
9 /**

10 * Adds the specified amount of the specified currency to
11 * the balance.
12 *
13 * @param currency The currency of the deposited amount.
14 * @param amount The amount to deposit.
15 */
16 public void deposit(String currency, int amount) {
17 }
18 }

Listing 6.12 The deposit method takes primitive parameters instead of using a param-
eter object.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * This class represents a bank account. The parameters of the
5 * <code>deposit</code> method are encapsulated in an object.
6 */
7 public class AccountWithParameterObject {
8 /**
9 * Adds the specified amount of the specified currency to

10 * the balance.
11 *
12 * @param currency The currency of the deposited amount.
13 * @param amount The amount to deposit.
14 */
15 public void deposit(Amount amount) {
16 }
17 }
18
19 package se.kth.ict.oodbook.prog.smell;
20

93

Chapter 6 Programming

21 /**
22 * Represents an amount
23 */
24 class Amount {
25 private String currency;
26 private int amount;
27
28 //Methods
29 }

Listing 6.13 The Amount class has been created and encapsulates the parameters of the
deposit method.

In some cases, there are parameters that are simply not needed, because the called method
itself can find the data by making a request to an object it already knows. This refactoring
is called Replace Parameter With Method, and is illustrated in listing 6.14, which has the
unnecessary parameter (lines 19 and 39), and listing 6.15, where the called method gets the
data instead of using a parameter (lines 18 and 39).

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * The bank application’s controller. The call to
5 * <code>withdraw</code> passes the <code>fee</code> parameter
6 * that is not needed.
7 */
8 public class ControllerPassingExtraParameter {
9 private AccountWithExtraParameter account;

10 private AccountCatalog accts;
11
12 /**
13 * Withdraws the specified amount.
14 *
15 * @param amount The amount to withdraw.
16 */
17 public void withdraw(Amount amount) {
18 Amount fee = accts.getWithDrawalFeeOfAccount(account);
19 account.withdraw(amount, fee);
20 }
21 }
22
23 package se.kth.ict.oodbook.prog.smell;
24
25 /**
26 * Represents a bank account. The method <code>withdraw</code>
27 * takes the <code>fee</code> parameter that is not needed.
28 */

94

Chapter 6 Programming

29 public class AccountWithExtraParameter {
30 // Needed for some unknown purpose.
31 private AccountCatalog acctSpecs;
32
33 /**
34 * Withdraws the specified amount.
35 *
36 * @param amount The amount to withdraw.
37 * @param fee The withdrawal cost.
38 */
39 public void withdraw(Amount amount, Amount fee) {
40 }
41 }

Listing 6.14 The call to withdraw passes the fee parameter that is not needed.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * The bank application’s controller. The call to
5 * <code>withdraw</code> does not pass the
6 * <code>fee</code> parameter.
7 */
8 public class ControllerNotPassingExtraParameter {
9 private AccountWithoutExtraParameter account;

10 private AccountCatalog accts;
11
12 /**
13 * Withdraws the specified amount.
14 *
15 * @param amount The amount to withdraw.
16 */
17 public void withdraw(Amount amount) {
18 account.withdraw(amount);
19 }
20 }
21
22 package se.kth.ict.oodbook.prog.smell;
23
24 /**
25 * Represents a bank account. The <code>fee</code> parameter
26 * is not passed to <code>withdraw</code>, since it can be
27 * retrieved in that method itself.
28 */
29 public class AccountWithoutExtraParameter {
30 // Needed for some unknown purpose, besides getting the

95

Chapter 6 Programming

31 // withdrawal fee.
32 private AccountCatalog acctSpecs;
33
34 /**
35 * Withdraws the specified amount.
36 *
37 * @param amount The amount to withdraw.
38 */
39 public void withdraw(Amount amount) {
40 acctSpecs.getWithDrawalFeeOfAccount(this);
41 }
42 }

Listing 6.15 The call to withdraw does not pass the fee parameter, since it is retrieved
by the withdraw method.

Excessive Use of Primitive Variables

This code smell is called Primitive Obsession in [FOW]. Many advantages of using objects
instead of primitive data have already been mentioned. Primitive data is not forbidden, but
should be used with care. Excessive primitive data means that everything related to object
oriented development is just thrown in the wastebin. There is no encapsulation at all, no
cohesion, no possibility to minimize coupling, etc.

A long list of fields in a class is a sign that there are too few classes in the program. The
class with the many fields probably has low cohesion, and some of the fields fit better together,
in a new class. This refactoring, Extract Class, is illustrated in listings 6.16, where there are
many fields on lines 8-13, and 6.17, where some of the fields are encapsulated in a new class.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * Represents a person. This class has excessive primitive
5 * data, since it has fields that fit better as an object.
6 */
7 public class PersonManyFields {
8 private String name;
9 private String street;

10 private int zip;
11 private String city;
12 private String phone;
13 private String email;
14
15 // More code in the class.
16 }

96

Chapter 6 Programming

Listing 6.16 This class has excessive primitive data, since it has fields that fit better as an
object.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * Represents a person. This class uses objects for the fields.
5 */
6 public class PersonFewerFields {
7 private String name;
8 private Address address;
9 private String phone;

10 private String email;
11
12 // More code in the class.
13 }
14
15 package se.kth.ict.oodbook.prog.smell;
16
17 /**
18 * An address where a person lives.
19 */
20 class Address {
21 private String street;
22 private int zip;
23 private String city;
24
25 // More code in the class.
26 }

Listing 6.17 This Person class uses objects for the fields.

It might be that a class has not only fields, but field(s) and one or more methods that are
closer related than other fields and methods in the class. Also in this case, cohesion can be
improved by introducing a new class. The new class shall contain the field(s) and methods of
the original class that belong closely together. This refactoring is called Replace Data Value
With Object. The code before the applying the refactoring is listed in listing 6.18. It shows the
class Person, which has the pnr field (line 10) that holds a person number. The class also
has the method validatePnr (line 17), that checks if the control digit of the person number
is correct. This method really belongs to the pnr field, not to the Person class. Cohesion is
improved in listing 6.19, by introducing the PersonNumber class, which shall always be used
to represent person numbers. Note that validatePnr (line 30) is called in the constructor of
PersonNumber (line 26). That way, there can never exist any invalid person numbers in the
program, they are immediately revealed when a PersonNumber is created.

97

Chapter 6 Programming

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * Represents a person. This class has low cohesion since the
5 * method <code>validatePnr</code> belongs to the
6 * <code>pnr</code> field, rather than to this class.
7 */
8 public class PersonWithoutPnrClass {
9 private String name;

10 private String pnr;
11
12 public PersonWithoutPnrClass(String name, String pnr) {
13 this.name = name;
14 this.pnr = pnr;
15 }
16
17 private void validatePnr(String pnr) {
18 }
19 }

Listing 6.18 This class has low cohesion since the method validatePnr belongs to the
pnr field, rather than to this class.

1 package se.kth.ict.oodbook.prog.smell;
2
3 /**
4 * Represents a person. The method <code>validatePnr</code>
5 * has been moved to <code>PersonNumber</code>.
6 */
7 public class PersonWithPnrClass {
8 private String name;
9 private PersonNumber pnr;

10
11 public PersonWithPnrClass(String name, PersonNumber pnr) {
12 this.name = name;
13 this.pnr = pnr;
14 }
15 }
16
17 package se.kth.ict.oodbook.prog.smell;
18
19 /**
20 * Represents a person number.
21 */
22 public class PersonNumber {
23 private String pnr;

98

Chapter 6 Programming

24
25 public PersonNumber(String pnr) {
26 validatePnr(pnr);
27 this.pnr = pnr;
28 }
29
30 private void validatePnr(String pnr) {
31 }
32 }

Listing 6.19 The method validatePnr has been moved to PersonNumber.

A far too common mistake is to use an array of primitive data instead of an object. If arrays
are used correctly, all elements in the same array means the same thing. It is not correct if
different elements in an array means different things, as is the case with the stats array in
listing 6.20. In this code, there is absolutely nothing showing that the first element is the name
of a football team, the second the number of wins, the third the number of draws and the fourth
the number of losses. This information exists only in the mind of the developer, and it is of
course easy to confuse the meaning of the array positions. The code has been improved in
listing 6.21, where an object is used instead of the array. The meaning of each value is now
clear from the names of the fields in the object.

1 String[] stats = new String[3];
2 stats[0] = "Hammarby";
3 stats[1] = "2";
4 stats[2] = "1";
5 stats[3] = "2";
6 printStatistics(stats);

Listing 6.20 This code smells, because of the array stats where different positions have
different meaning.

1 Stats stats = new Stats("Hammarby", 2, 1, 2);
2 printStatistics(stats);
3
4 public class Stats {
5 private String name;
6 private int wins;
7 private int draws;
8 private int losses;
9

10 public Stats(String name, int wins, int draws,
11 int losses) {
12 this.name = name;
13 this.wins = wins;
14 this.draws = draws;

99

Chapter 6 Programming

15 this.losses = losses;
16 }
17 }

Listing 6.21 This code encapsulates the values in an object.

Many programming languages, including Java, has enumerations. This enables defining a
custom type and the possible values of that type. As an example, consider listing 6.22 that
does not use an enumerator. Instead, the possible results of the call to connect are strings.
With such code, nasty bugs can appear because of misspelling the result string. An equally
bad alternative is to use integers for the outcomes of connect. In this case, bugs might appear
bescause of confusing which number means what. A much better alternative is to introduce a
new type for the outcomes, using an enumeration. This is illustrated in listing 6.23. The new
type, ResultCode, can take the values SUCCESS, PENDING and FAILURE. The meaning of
each outcome is obvious from the value and misspelled values will generate a compiler error.

1 String result = connect();
2
3 if (result.equals("SUCCESS")) {
4 // Handle established connection.
5 } else if (result.equals("PENDING")) {
6 // Handle pending connection.
7 } else if (result.equals("FAILURE")) {
8 // Handle connection failure.
9 } else {

10 // Something went wrong.
11 }

Listing 6.22 Using strings to represent constants.

1 Outcome result = connect();
2
3 if (result == Outcome.SUCCESS) {
4 // Handle established connection.
5 } else if (result == Outcome.PENDING) {
6 // Handle pending connection.
7 } else if (result == Outcome.FAILURE) {
8 // Handle connection failure.
9 } else {

10 // Something went wrong.
11 }
12
13 /**
14 * Defines possible outcomes of a connection attempt.
15 */
16 public enum Outcome {

100

Chapter 6 Programming

17 SUCCESS, PENDING, FAILURE
18 }

Listing 6.23 Using an enum to represent constants.

Meaningless Names

This is not mentioned as a particular smell in [FOW], but should still be avoided at all costs.
Everything that is declared in a program (packages, classes, interfaces, methods, fields, pa-
rameters, local variables, etc) must have a meaningful name. This can not be stressed enough.
The following list provides a few naming guidelines.

• Do not use one-letter identifiers like Person p = new Person();, instead write
Person person = Person();. There are two exceptions to this guideline. The
first is when the full name of the abstraction is just one letter long, it is for example
appropriate to use the identifier x for an x coordinate. The second exception is that a
one letter identifier is accepted for a loop variable, which is normally named i. Nested
loops are named using following letters in alphabetical order, j, k, etc.

• Do not name a temporarily used variable tmp or temp (unless it represents a tempera-
ture). For example do not swap two values as in listing 6.24, instead use variable names
like in listing 6.25.

• Never distinguish similar identifiers by appending numbers. As an example, when trans-
ferring money between two bank accounts, they could be named fromAccount and
toAccount, but not account1 and account2.

• Do not be afraid of long names, what matters is that the identifier correctly explain
the purpose of what is named. Say for example that some reward is given to the first
customer buying a particular item in some campaign in a shop. An adequate name for a
variable holding that customer could be firstCustomerBuyingCampaignItem.

1 int tmp = varsToSwap[0];
2 varsToSwap[0] = varsToSwap[1];
3 varsToSwap[1] = tmp;

Listing 6.24 A variable is erronously named tmp, just because it is used temporarily.

1 int valAtIndexZero = varsToSwap[0];
2 varsToSwap[0] = varsToSwap[1];
3 varsToSwap[1] = valAtIndexZero;

Listing 6.25 The temporary variable has, correctly, a name describing its purpose.

101

Chapter 6 Programming

Unnamed Values

This is not mentioned as a particular smell in [FOW], but should still be avoided at all costs.
All values in a program shall have an explaining name. Never introduce a value in a statement
without naming it first, even if that statement is the only place the value is used. Without a
name it can be very hard to understand the purpose of the value. Naming the value is a better
practice than writing a comment to explain it. A name is part of the program, the compiler
helps to ensure that the name is used correctly. A comment, on the other hand, is a kind of
duplicated information that exists besides the program. There is always the risk that comments
are not maintained when the program changes. Below is a list with some examples of naming
values.

• Say that the method connect(int timeout) tries to connect for timeout number
of milliseconds before stopping. Say also that we want to make it try for ten sec-
onds. A straightforward way to write this could be connect(10000), but then the
reader gets no information about the purpose of the value 10000. A better way is to
write connect(10 * MILLIS_PER_SECOND), and defining the constant private
static final int MILLIS_PER_SECOND = 1000;. Still, however, the purpose
of the value 10 might not be clear. The best way to code this is to also define a constant
private static final int CONNECT_TIMEOUT_SECS = 10;, or, if it is not a
constant, the variable int connectTimeoutSecs = 10;. Now, the code becomes
connect(CONNECT_TIMEOUT_SECS * MILLIS_PER_SECOND) or
connect(connectTimeoutSecs * MILLIS_PER_SECOND).

• The practice of naming values applies (at least) to all primitive types, and also to strings,
since a string can be written as a primitive value, without using the keyword new. Con-
sider for example opening a file, whose name is in the variable fileName, located in
the directory whose name is in the variable dirName. Assuming that there is a method
openFile, that opens a file, this might be done with the statement openFile(dirName
+ "\" + fileName);. The meaning of the value "\" might seem clear, still, it is
even clearer to introduce the constant private static final String

PATH_SEPARATOR = "\";, and write openFile(dirName + PATH_SEPARATOR

+ fileName);. Using this constant everywhere a path separator is needed also gives
the advantage that it is easy to change path separator, if running on a system where the
path separator is not a backslash. Using the constant, only one line has to be changed,
the declaration of the constant.

• It is not required to use a variable or constant to name the value, sometimes a method
suits better. This is often the case when naming values that occur in if statements. As
an example, consider an if statement checking for end of line (EOL) in a string. EOL
in a unix file is represented by a character with ASCII code 10, therefore, the code in
listing 6.26 might be used. This code is unclear, why check for the value 10? A better
solution is to introduce the method isUnixEol, and use the code in figure 6.27.

102

Chapter 6 Programming

1 /**
2 * Finds the index of the first Unix EOL in the specified
3 * string.
4 *
5 * @param source The string in which to look for EOL.
6 * @return The index of the first EOL, or -1 if there was
7 * no EOL in the specified string.
8 */
9 public int findIndexOfFirstEolWorse(String source) {

10 char[] sourceChars = source.toCharArray();
11 for (int i = 0; i < sourceChars.length; i++) {
12 if (sourceChars[i] == 10) {
13 return i;
14 }
15 }
16 return -1;
17 }

Listing 6.26 It is quite difficult to understand the meaning of an unnamed value, like the
value 10 on line 12

1 private boolean isUnixEol(char character) {
2 return character == 10;
3 }
4
5 /**
6 * Finds the index of the first Unix EOL in the specified
7 * string.
8 *
9 * @param source The string in which to look for EOL.

10 * @return The index of the first EOL, or -1 if there was
11 * no EOL in the specified string.
12 */
13 public int findIndexOfFirstEolBetter(String source) {
14 char[] sourceChars = source.toCharArray();
15 for (int i = 0; i < sourceChars.length; i++) {
16 if (isUnixEol(sourceChars[i])) {
17 return i;
18 }
19 }
20 return -1;
21 }

Listing 6.27 The purpose of the value 10 on line 2 is explained by the name of the method,
isUnixEol

103

Chapter 6 Programming

6.6 Coding Case Study

Now, it is finally time to write the RentCar program. This section does not include a complete
listing of the entire program. That can be found in the accompanying NetBeans project, which
can be downloaded from the course web [CW]. Here follows a description of the first parts
of the code, parts where particular afterthought was needed, and where the design was not
followed.

Even though this is a quite small program, the design is still big enough to make it difficult
to decide where to start coding. This is a result of having designed the entire requirements
specification in one go, without any intermediate coding. Normally, each system operation
would have been coded as soon as the design was finished. To implement a design in code
is the only way to get a full understanding of its strengths and weaknesses. The best way
to implement the design is still to code one system operation at a time, in the order they are
executed. That makes it possible to test run each part of the program as soon as it is written.
However, there is of course no reason to reiterate all the considerations made during design.
Therefore, the final version of each system operation is implemented.

The searchMatchingCar system operation

The first system operation is searchMatchingCar, and the final design is in figure 5.27.
The final version of the start sequence, however, is not in figure 5.28. It was changed in
figure 5.35, where the class RegistryCreator was added. Most of the coding is a very
straightforward implementation of those diagrams, listed in figures below, but three things
require extra attention. First, nothing has been decided on the implementation of the car
registry. Where are the cars stored? The solution is to use a list with some hard coded cars,
see lines 11, 14 and 46-53 in figure 6.31. This is enough for testing purposes. Second, neither
requirements specification, nor design, are very specific on the search algorithm when looking
for a matching car. To which extent must the search criteria be met to consider a car to
match them? Can search criteria be ignored or must they all be specified? This should of
course be discussed with the customer. The chosen implementation, se lines 49-69 in figure
6.30, requires exact match of all specified parameters, but gives the possibility to leave all
parameters except AC and four wheel drive unspecified. Third, and last, what shall happen
when the program is executed? Since there is no view, to get some output and be able to verify
the functionality, the method sampleExecution is added to View, as can be seen on lines
27-44 in figure 6.28. This method contains hard coded calls to all system operations and prints
the result of those calls. Also, a toString method has been added to CarDTO to provide an
informative printout of objects of that class, see lines 71-81 in figure 6.30.

1 package se.kth.ict.rentcar.view;
2
3 import se.kth.ict.rentcar.controller.Controller;
4 import se.kth.ict.rentcar.integration.CarDTO;
5
6 /**

104

Chapter 6 Programming

7 * This program has no view, instead, this class is a
8 * placeholder for the entire view.
9 */

10
11 public class View {
12 private Controller contr;
13
14 /**
15 * Creates a new instance.
16 *
17 * @param contr The controller that is used for all
18 * operations.
19 */
20 public View(Controller contr) {
21 this.contr = contr;
22 }
23
24 /**
25 * Simulates a user input that generates calls to all
26 * system operations.
27 */
28 public void sampleExecution() {
29 CarDTO unavailableCar =
30 new CarDTO(1000, "nonExistingSize", true, true,
31 "red", null);
32 CarDTO availableCar =
33 new CarDTO(1000, "medium", true, true, "red",
34 null);
35
36 CarDTO foundCar =
37 contr.searchMatchingCar(unavailableCar);
38 System.out.println(
39 "Result of searching for unavailable car: " +
40 foundCar);
41 foundCar = contr.searchMatchingCar(availableCar);
42 System.out.println(
43 "Result of searching for available car: " +
44 foundCar);
45 }
46 }

Listing 6.28 The class View when only the searchMatchingCar system operation
has been implemented.

1 package se.kth.ict.rentcar.controller;
2

105

Chapter 6 Programming

3 import se.kth.ict.rentcar.integration.CarRegistry;
4 import se.kth.ict.rentcar.integration.CarDTO;
5 import se.kth.ict.rentcar.integration.RegistryCreator;
6
7 /**
8 * This is the application’s only controller class. All
9 * calls to the model pass through here.

10 */
11
12 public class Controller {
13 private CarRegistry carRegistry;
14
15 /**
16 * Creates a new instance.
17 *
18 * @param regCreator Used to get all classes that
19 * handle database calls.
20 */
21 public Controller(RegistryCreator regCreator) {
22 this.carRegistry = regCreator.getCarRegistry();
23 }
24
25 /**
26 * Search for a car matching the specified search criteria.
27 *
28 * @param searchedCar This object contains the search
29 * criteria. Fields in the object that
30 * are set to <code>null</code> or
31 * <code>0</code> are ignored.
32 * @return The best match of the search criteria.
33 */
34 public CarDTO searchMatchingCar(CarDTO searchedCar) {
35 return carRegistry.findCar(searchedCar);
36 }
37 }

Listing 6.29 The class Controller when only the searchMatchingCar system
operation has been implemented.

1 package se.kth.ict.rentcar.integration;
2 /**
3 * Contains information about one particular car.
4 */
5 public final class CarDTO {
6 private final int price;
7 private final String size;

106

Chapter 6 Programming

8 private final boolean AC;
9 private final boolean fourWD;

10 private final String color;
11 private final String regNo;
12
13 /**
14 * Creates a new instance representing a particular car.
15 *
16 * @param price The price paid to rent the car.
17 * @param size The size of the car, e.g.,
18 * <code>medium</code>.
19 * @param AC <code>true</code> if the car has air
20 * condition.
21 * @param fourWD <code>true</code> if the car has four
22 * wheel drive.
23 * @param color The color of the car.
24 * @param regNo The car’s registration number.
25 */
26 public CarDTO(int price, String size, boolean AC,
27 boolean fourWD, String color, String regNo) {
28 this.price = price;
29 this.size = size;
30 this.AC = AC;
31 this.fourWD = fourWD;
32 this.color = color;
33 this.regNo = regNo;
34 }
35
36 /**
37 * Checks if the specified car has the same features as
38 * this car. Fields that are set to <code>null</code> or
39 * <code>0</code> are ignored. Note that the check is
40 * for matching features, not for identity. Therefore,
41 * registration number is ignored.
42 *
43 * @param searched Contains search criteria.
44 * @return <code>true</code> if this object has the same
45 * features as <code>searched</code>,
46 * <code>false</code> if it has not.
47 */
48 boolean matches(CarDTO searched) {
49 if (searched.getPrice() != 0 &&
50 searched.getPrice() != price) {
51 return false;
52 }
53 if (searched.getSize() != null &&

107

Chapter 6 Programming

54 !searched.getSize().equals(size)) {
55 return false;
56 }

108

Chapter 6 Programming

57 if (searched.getColor() != null &&
58 !searched.getColor().equals(color)) {
59 return false;
60 }
61 if (searched.isAC() != AC) {
62 return false;
63 }
64 if (searched.isFourWD() != fourWD) {
65 return false;
66 }
67 return true;
68 }
69
70 @Override
71 public String toString() {
72 StringBuilder builder = new StringBuilder();
73 builder.append("regNo: " + regNo + ", ");
74 builder.append("size: " + size + ", ");
75 builder.append("price: " + price + ", ");
76 builder.append("AC: " + AC + ", ");
77 builder.append("4WD: " + fourWD + ", ");
78 builder.append("color: " + color);
79 return builder.toString();
80 }
81
82 // Getters are not listed.
83
84 }

Listing 6.30 The class CarDTOwhen only the searchMatchingCar system operation
has been implemented.

1 package se.kth.ict.rentcar.integration;
2
3 import java.util.ArrayList;
4 import java.util.List;
5
6 /**
7 * Contains all calls to the data store with cars that may be
8 * rented.
9 */

10 public class CarRegistry {
11 private List<CarDTO> cars = new ArrayList<>();
12

109

Chapter 6 Programming

13 CarRegistry() {
14 addCars();
15 }
16
17 /**
18 * Search for a car matching the specified search criteria.
19 *
20 * @param searchedCar This object contains the search
21 * criteria. Fields in the object that
22 are set to <code>null</code> or
23 * <code>0</code> are ignored.
24 * @return <code>true</code> if a car with the same
25 * features as <code>searchedCar</code> was found,
26 * <code>false</code> if no such car was found.
27 */
28 public CarDTO findCar(CarDTO searchedCar) {
29 for (CarDTO car : cars) {
30 if (car.matches(searchedCar)) {
31 return car;
32 }
33 }
34 return null;
35 }
36
37 private void addCars() {
38 cars.add(new CarDTO(1000, "medium", true, true, "red",
39 "abc123"));
40 cars.add(new CarDTO(2000, "large", false, true, "blue",
41 "abc124"));
42 cars.add(new CarDTO(500, "medium", false, false, "red",
43 "abc125"));
44 }
45 }

Listing 6.31 The class CarRegistry when only the searchMatchingCar system
operation has been implemented.

1 package se.kth.ict.rentcar.integration;
2 /**
3 * This class is responsible for instantiating all registries.
4 */
5 public class RegistryCreator {
6 private CarRegistry carRegistry = new CarRegistry();
7
8 /**
9 * Get the value of carRegistry

110

Chapter 6 Programming

10 *
11 * @return the value of carRegistry
12 */
13 public CarRegistry getCarRegistry() {
14 return carRegistry;
15 }
16 }

Listing 6.32 The class RegistryCreator when only the searchMatchingCar
system operation has been implemented.

1 package se.kth.ict.rentcar.startup;
2
3 import se.kth.ict.rentcar.controller.Controller;
4 import se.kth.ict.rentcar.integration.RegistryCreator;
5 import se.kth.ict.rentcar.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup
9 * of the application.

10 */
11 public class Main {
12 /**
13 * Starts the application.
14 *
15 * @param args The application does not take any command
16 * line parameters.
17 */
18 public static void main(String[] args) {
19 RegistryCreator creator = new RegistryCreator();
20 Controller contr = new Controller(creator);
21 new View(contr).sampleExecution();
22 }
23 }

Listing 6.33 The class Main when only the searchMatchingCar system operation
has been implemented.

The registerCustomer system operation

The code for the registerCustomer system operation is a very straightforward implemen-
tation of figure 5.31. There is only one thing that requires a bit of consideration, namely what
to do with the DTOs in the Rental constructor. For now, there is no reason to do anything
at all, except to save them as fields in the constructed Rental object. Since all DTOs are
immutable, there is no risk that any other object changes the content of a DTO. Remember
that being immutable means an object can not change state, for example because the class

111

Chapter 6 Programming

itself and all its fields are final. If DTOs had not been final, it would have been suicide to just
keep them in Rental. In that case, the object that sent the DTO to Rental could have kept a
reference to the same DTO object, and later updated it.

There is also another issue with keeping the DTOs. Is it really sure they are just DTOs,
having no logic at all? If, for example, there is the need to validate the driving license number,
or to calculate a person’s age based on the driving license number, the methods performing this
would, with the argument of cohesion, be placed in DrivingLicenseDTO or CustomerDTO.
This would turn that object into an entity object, with business logic, instead of a DTO. This
change is not just a matter of renaming, e.g., from CustomerDTO to Customer, but also
concerns how the object is handled. A DTO may be used in the view, but an entity object may
not. To conclude this discussion, it is obvious that att objects named DTO are, at least for the
moment, DTOs. Therefore, it is perfectly safe to leave them like that now, but we must be
aware that this might have to be changed in the future.
Rental is listed in listing 6.34, to illustrate the reasoning above. The rest of the register

Customer implementation can be found in the accompanying NetBeans project.

1 package se.kth.ict.rentcar.model;
2
3 /**
4 * Represents one particular rental transaction, where one
5 * particular car is rented by one particular customer.
6 */
7 public class Rental {
8 private CustomerDTO customer;
9

10 /**
11 * Creates a new instance, representing a rental made by
12 * the specified customer.
13 *
14 * @param customer The renting customer.
15 */
16 public Rental(CustomerDTO customer) {
17 this.customer = customer;
18 }
19 }

Listing 6.34 The class Rental, after implementing the registerCustomer system
operation.

The bookCar system operation

The bookCar design can be found in figures 5.33 and 5.35. Implementing this system opera-
tion reveals one serious problem, the implementation of the bookCarmethod in CarRegistry.
The cars in the registry are currently stored in a list of CarDTOs. How to mark that one of them
is booked, and not available for rental? This problem reveals a flaw in the implementation of

112

Chapter 6 Programming

CarRegistry. That class is supposed to call a database or some other system that stores car
data persistently. Such a datastore does not hold a list of immutable DTOs, but instead raw,
mutable data. This data shall not be object-oriented, since it mimics a store with primitive
data. Instead of having methods, objects shall have only primitive variables. Therefore, the
list in CarRegistry is changed, to hold objects of a class CarData, which has just primitive
fields, no methods at all. This class shall not be used anywhere outside CarRegistry, since
it mimics the contents of the CarRegistry datastore. To ensure it is not used anywhere else,
it is a private inner class, see lines 91-111 in listing 6.35.

1 package se.kth.ict.rentcar.integration;
2
3 import java.util.ArrayList;
4 import java.util.List;
5
6 /**
7 * Contains all calls to the data store with cars that may be
8 * rented.
9 */

10 public class CarRegistry {
11 private List<CarData> cars = new ArrayList<>();
12
13 CarRegistry() {
14 addCars();
15 }
16
17 /**
18 * Search for a car matching the specified search criteria.
19 *
20 * @param searchedCar This object contains the search
21 * criteria. Fields in the object
22 * that are set to <code>null</code>
23 * or <code>0</code> are ignored.
24 * @return <code>true</code> if a car with the same
25 * features as <code>searchedCar</code> was found,
26 * <code>false</code> if no such car was found.
27 */
28 public CarDTO findAvailableCar(CarDTO searchedCar) {
29 for (CarData car : cars) {
30 if (matches(car, searchedCar) && !car.booked) {
31 return new CarDTO(car.regNo, car.price,
32 car.size, car.AC,
33 car.fourWD, car.color);
34 }
35 }
36 return null;
37 }

113

Chapter 6 Programming

38
39 /**
40 * Books the specified car. After calling this method, the
41 * car can not be booked by any other customer.
42 *
43 * @param car The car that will be booked.
44 */
45 public void bookCar(CarDTO car) {
46 CarData carToBook = findCarByRegNo(car);
47 carToBook.booked = true;
48 }
49
50 private void addCars() {
51 cars.add(new CarData("abc123", 1000, "medium", true,
52 true, "red"));
53 cars.add(new CarData("abc124", 2000, "large", false,
54 true, "blue"));
55 cars.add(new CarData("abc125", 500, "medium", false,
56 false, "red"));
57 }
58
59 private boolean matches(CarData found, CarDTO searched) {
60 if (searched.getPrice() != 0 &&
61 searched.getPrice() != found.price) {
62 return false;
63 }
64 if (searched.getSize() != null &&
65 !searched.getSize().equals(found.size)) {
66 return false;
67 }
68 if (searched.getColor() != null &&
69 !searched.getColor().equals(
70 found.color)) {
71 return false;
72 }
73 if (searched.isAC() != found.AC) {
74 return false;
75 }
76 if (searched.isFourWD() != found.fourWD) {
77 return false;
78 }
79 return true;
80 }
81

114

Chapter 6 Programming

82 private CarData findCarByRegNo(CarDTO searchedCar) {
83 for (CarData car : cars) {
84 if (car.regNo.equals(searchedCar.getRegNo())) {
85 return car;
86 }
87 }
88 return null;
89 }
90
91 private static class CarData {
92 private String regNo;
93 private int price;
94 private String size;
95 private boolean AC;
96 private boolean fourWD;
97 private String color;
98 private boolean booked;
99

100 public CarData(String regNo, int price, String size,
101 boolean AC, boolean fourWD,
102 String color) {
103 this.regNo = regNo;
104 this.price = price;
105 this.size = size;
106 this.AC = AC;
107 this.fourWD = fourWD;
108 this.color = color;
109 this.booked = false;
110 }
111 }
112 }

Listing 6.35 The class CarRegistry, after implementing the bookCar system opera-
tion.

With the above change to CarRegistry, it becomes necessary to change the CarDTO

method matches, which compares the features the customer wishes with the features of an
available car. It must now compare fields in a CarDTO with fields in a CarData, and the latter
must not be used outside CarRegistry. This is solved by removing matches from CarDTO

and instead making it a private method in CarRegistry, see lines 59-80 in listing 6.35. This
is in fact a better location for matches. First, the total public interface decreases since a pub-
lic method becomes private. Second, it was never a very good idea to have such a method in
a DTO. A DTO shall not have any business logic, and matches can be regarded as business
logic, it performs a matching algorithm and is not just a simple data comparison.

Since a booked car can not be rented by other customers, the findCar method must not
return a booked car, even if it matches the search criteria. This results in the if-statement

115

Chapter 6 Programming

on line 30 in listing 6.35. To clarify this new behavior, the method name is changed to
findAvailableCar.

Another refactoring was to change the order of the parameters in the CarDTO constructor,
regNo is now the first parameter. This was done because every time that constructor was
called, the first thought was to place regNo first. This is a clear sign that this is a more logical
ordering of the parameters.

Also the Rental constructor had to be changed, according to figure 5.36, to include a
reference to CarRegistry. This is needed since Rental will call the method bookCar in
CarRegistry.

There is one unhandled issue left in the current CarRegistry implementation, what hap-
pens if the car that shall be booked, in bookCar, is already booked? This situation is not
handled yet, but should be addressed before the program is completed. That concludes the
implementation of bookCar, the rest of the code can be downloaded in the accompanying
NetBeans project.

The pay system operation

The final system operation, pay, is designed in figures 5.40 and 5.42. Here, there are two
questions that were left unanswered during design. The first is how the receipt text is created,
the design only shows that a Receipt object is created and passed to the printer. The chosen
solution is to add a method createReceiptString to Receipt, see lines 26-47 in listing
6.36. The printer will call this method to get a a formatted string with the entire receipt text.
This string is then printed to System.out, since there is no real printer in this program. To
create this receipt string, Receipt must gather information from Rental, which leads to the
question what information Rental shall reveal. It has three objects with data, a customer
object, a car object and a payment object. Either we create methods that hand out these
objects, like getRentedCar, or we create methods that hand out the data in the objects, like
getRegNoOfRentedCar. The former alternative, to hand out whole objects, is normally to
prefer. That way objects are kept intact, instead of breaking them up and passing primitive
data. By handing out the whole object, the receiver can call any method in the received object,
not just use its data. This alternative is chosen here, which means, for example, that Receipt
calls rental.getPayment().getTotalCost() to get the cost of the rental.

The other unresolved issue left from design is the method calculateTotalCost in Cash
Payment. Actually, we have no idea how a total cost is calculated. A very simple solution is
chosen, but it would certainly have to be improved if development were to continue to a com-
plete car rental system. This simple solution is to just use the price in CarDTO as total cost,
which means mileage and insurance costs are ignored, and also that there can be no discounts
or campaigns. To implement this solution, CashPayment uses paidRental.getRentedCar().
getPrice() as total cost, line 29 in listing 6.37. This might seem a strange solution. Why
shall Rental call CashPayment, which then only calls back to Rental to get the cost. Why
not just let Rental pass the cost to CashPayment? The reason is that it is assumed that,
as the program grows, CashPayment will have to gather more information, like driven dis-
tance and possible discounts. It is CashPayment who has this knowledge about what data is
needed, from where to get it, and how to use it to calculate the total cost.

116

Chapter 6 Programming

1 package se.kth.ict.oodbook.rentcar.model;
2
3 import java.util.Date;
4
5 /**
6 * The receipt of a rental
7 */
8 public class Receipt {
9 private final Rental rental;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param rental The rental proved by this receipt.
15 */
16 Receipt(Rental rental) {
17 this.rental = rental;
18 }
19
20 /**
21 * Creates a well-formatted string with the entire content
22 * of the receipt.
23 *
24 * @return The well-formatted receipt string.
25 */
26 public String createReceiptString() {
27 StringBuilder builder = new StringBuilder();
28 appendLine(builder, "Car Rental");
29 endSection(builder);
30
31 Date rentalTime = new Date();
32 builder.append("Rental time: ");
33 appendLine(builder, rentalTime.toString());
34 endSection(builder);
35
36 builder.append("Rented car: ");
37 appendLine(builder, rental.getRentedCar().getRegNo());
38 builder.append("Cost: ");
39 appendLine(builder, rental.getPayment().getTotalCost().
40 toString());
41 builder.append("Change: ");
42 appendLine(builder, rental.getPayment().getChange().
43 toString());
44 endSection(builder);
45
46 return builder.toString();

117

Chapter 6 Programming

47 }
48
49 private void appendLine(StringBuilder builder,
50 String line) {
51 builder.append(line);
52 builder.append("\n");
53 }
54
55 private void endSection(StringBuilder builder) {
56 builder.append("\n");
57 }
58
59 }

Listing 6.36 The class Receipt, after implementing the pay system operation.

1 package se.kth.ict.oodbook.rentcar.model;
2
3 /**
4 * Represents one specific payment for one specific rental. The
5 * rental is payed with cash.
6 */
7 public class CashPayment {
8 private Amount paidAmt;
9 private Amount totalCost;

10
11 /**
12 * Creates a new instance. The customer handed over the
13 * specified amount.
14 *
15 * @param paidAmt The amount of cash that was handed over
16 * by the customer.
17 */
18 public CashPayment(Amount paidAmt) {
19 this.paidAmt = paidAmt;
20 }
21
22 /**
23 * Calculates the total cost of the specified rental.
24 *
25 * @param paidRental The rental for which the customer is
26 * paying.
27 */
28 void calculateTotalCost(Rental paidRental) {
29 totalCost = paidRental.getRentedCar().getPrice();
30 }

118

Chapter 6 Programming

31
32 /**
33 * @return The total cost of the rental that was paid.
34 */
35 Amount getTotalCost() {
36 return totalCost;
37 }
38
39 /**
40 * @return The amount of change the customer shall have.
41 */
42 Amount getChange() {
43 return paidAmt.minus(totalCost);
44 }
45 }

Listing 6.37 The class CashPayment, after implementing the pay system operation.

6.7 Common Mistakes When Implementing the Design

Below follows a list of common coding mistakes.

• Incomplete comments. Each public declaration (class, method, etc) shall have a
javadoc comment. Method comments shall cover parameters and return values, us-
ing the javadoc tags @param and @return. It is often argued that it is unnecessary
to comment getter and setter methods. That might very well be the case, but how long
does it take to add a one line comment to a getter or setter? It might even be that the
IDE can generate the comment. If every public declaration has a comment, there is no
risk of missing to comment something by mistake, or by pure laziness.

• Excessive comments. There should be no comments besides the above mentioned
javadoc comments. If there is a need for more comments to explain the code, it proba-
bly means the code is too complex, and has low cohesion.

• Comments written too late. Write the comments together with the code that is com-
mented, maybe even before. That way, writing the comment makes it necessary to
clarify what the code shall do, before (or immediately after) it is written. Also, if com-
ments are written together with the code, they will be of use in future development
of the program. If comments are written last, when the program is already working,
commenting is just a burden, and probably quite a heavy burden.

NO!

119

Chapter 6 Programming

• Many of the common design mistakes can be introduced when programming, even if
they were avoided during design. For example, there is the risk to use primitive data
instead of objects, to use static declarations when they are not appropriate or to place
input or output outside the view. See the text on common design mistakes in section
5.7 for more details on this.

• Section 6.5, on code smell and refactorings, covers many things that shall be avoided
when coding. Maybe the most common of those possible mistakes are meaningless
names and unnamed values.

NO!

120

Chapter 7

Testing

Figure 7.1 Lack of tests will bring fear, uncertainty
and doubt, since programmers can not trust the
program. Image by unknown creator [Public domain],
via https://pixabay.com

How is it possible to know if a program works?
The answer to that question makes a very big dif-
ference. If it is complicated to verify that the pro-
gram works as intended, developers will be ex-
tremely reluctant to make changes. They will nei-
ther be willing to apply refactorings to improve
the design of existing code, nor to change existing
functionality. Instead they will argue against cus-
tomer’s requirement changes, and solve all prob-
lems by adding new code. This is a disastrous
state of development, characterized by fear, un-
certainty and doubt. Because of the reluctance to
work with existing code, developers will have lit-
tle knowledge about the code and the code will be
in bad state. This will make them even more re-
luctant to make changes, which will lead to even

less knowledge and worsen code state even more. This is exactly the opposite of the flexibility
we want to achieve. The code will constantly become less flexible.

Figure 7.2 Complete tests will bring confi-
dence, since programmers can trust the pro-
gram. Image by unknown creator [Public domain], via
https://pixabay.com

If, on the other hand, it is very easy to ver-
ify that the code works as intended, developers
will be happy to change it. They will constantly
improve its design with refactorings. They will
also be glad to improve customer satisfaction by
adjusting to changing requirements. This is the
flexibility of well-designed software! Code qual-
ity constantly improves, developers gets better
knowledge about the code, and thereby becomes
even more willing to change it.

The difference between the two scenarios
above is automated tests. There should be a test
program which gives input to the program under
test, and also evaluates the output. If a test passes,
the test program does not do anything. If a test

121

Chapter 7 Testing

fails, it prints an informative message about the failure. With extensive tests that cover all, or
most, possible execution paths through the program with all, or most, possible variable val-
ues, it is guaranteed that the program works if all tests pass. This is a very good situation, one
command starts the test, which tells if the program under test works or, if not, exactly which
problems there are.

7.1 Unit Tests and The JUnit Framework

A unit test is a test of the smallest possible piece of code that makes sence on its own, typically
a method. Unit tests constitute, by far, the most common way for developers to verify that their
code works as intended. Listings 7.1 and 7.2 show a first example of a unit test. The first of
those listings contains the system under test, SUT. It is a method equals, in a class Amount.
The method shall compare two Amount instances and return true if they represent the same
amount, or false if they represent different amounts. Listing 7.2 contain a unit test for that
method. It creates two Amount instances representing the same amount (lines four and five),
calls the equals method (line 7) and verifies that the result is as expected (lines eight to ten).
This test is written using the JUnit 4 framework. It will be covered in more detail below, when
JUnit has been introduced.

1 public boolean equals(Object other) {
2 if (!(other instanceof Amount)) {
3 return false;
4 }
5 Amount otherAmount = (Amount) other;
6 return amount == otherAmount.amount;
7 }

Listing 7.1 The SUT is the equals method in the class Amount

1 @Test
2 public void testEqual() {
3 int amount = 3;
4 Amount instance = new Amount(amount);
5 Amount other = new Amount(amount);
6 boolean expResult = true;
7 boolean result = instance.equals(other);
8 assertEquals(
9 "Amount instances with same states are not equal.",

10 expResult, result);
11 }

Listing 7.2 A unit test for the code in listing 7.1

122

Chapter 7 Testing

Frameworks

There are many frameworks that facilitate unit testing, since it is an extremely common testing
approach. JUnit was one of the first, and is also very frequently used. But why use a framework
at all? And exactly what is a framework? A framework provides some functionality that is

Figure 7.3 The application fits in the framework like a piece in a
puzzle. Execution, the colored lines, enter the application via
method calls from the framework.

not specific for a particular applica-
tion, but is needed in different ap-
plications. Think of the Java APIs
from Oracle, they provide function-
ality for common tasks, and can
be used in many different appli-
cations. In contrast to an API, a
framework not only provides code,
but also flow control. This means
the main method is in the frame-
work, not in application code writ-
ten by application developers. The
framework is responsible for call-
ing application code at the right
time. This fact, that the application
is relieved of flow control responsi-
bility, is very important. Consider
for example a framework providing some security control. It would be very hard for applica-
tion developers to always remember, and never forget, to call the framework in all necessary
places. Just one miss would introduce a security hole. If, instead, the framework itself has
the main method and is responsible for when to handle security, application code will be com-
pletely relieved of everything related to security control. This is illustrated in figure 7.3, where
the blue piece, representing the application, is placed inside the framework, represented by all
the white pieces. The colored lines are different executions through the program. Execution
may start in a main method inside the framework, as is the case for the black and green lines.
Execution may also enter the framework from the outside, for example via a network call, as
is the case for the red line. But execution never starts in the application. When the colored
lines enter the application piece, it typically means the framework has called a method in the
application. When the lines exit the application piece, that method has returned.

There are many good reasons to use a framework whenever one can be found. First, a
framework is thoroughly tested and proven to work well. If it did not work well, it would
not be used. Second, if there are many developers using the same framework, there will be
lots of documentation, and it will be easy to get help. Third, the fact that the framework is
responsible for flow control makes sure all code is executed in correct order. Last, not using a
framework means writing new code, which means introducing new bugs.

123

Chapter 7 Testing

JUnit

JUnit[JU] is one of the most popular unit testing frameworks for Java. It is based on anno-
tations. An annotation is a part of a Java program that is not executed, but instead provides
information about the program for the compiler, or for the JVM, or, as is the case here, for a
framework (JUnit). An annotation is usually used for properties unrelated to the functionality
of the source code, for example to configure security, networking, multithreading or testing.
It starts with the at sign, @, for example @SomeAnnotation. It may take parameters, for
example @SomeAnnotation(someString = "abc", someBoolean = true). When
writing tests with JUnit, annotations are used to specify the content of methods in the test
code, for example that a certain method contains a test. Some of the most common JUnit
annotations are explained in table 7.1

Annotation Example Explanation
@Test
public void aTest()

aTest contains tests and will be
executed when tests are run.

@Test(expected=Exception.class)
public void aTest()

Test fails if aTest does not throw an
exception of class Exception

@Ignore(“Not implemented”)
@Test
public void aTest()

aTest will not be executed.

@Before
public void prepareTest()

prepareTest is executed before each
test method.

@After
public void cleanup()

cleanup is executed after each test
method.

@BeforeClass
public void prepareTests()

prepareTests is executed once
before the first test in this class.

@AfterClass
public void cleanup()

cleanup is executed once after the last
test in this class.

Table 7.1 Some of the most common JUnit annotations

A fully automated test must not only call the SUT, but also evaluate if the result of the call
is the expected, that is, if the test passed or failed. This evaluation is done with assert methods
in JUnit. An assert method verifies that its parameters meet some contraint, for example that
they are equal. If the constraint is met, the test passes and nothing is printed to the console. If
the parameters do not meet the constraint, the test fails and the specified explaining message
is printed. Some of the most common assert methods are explained in table 7.2.

With this knowledge about frameworks and JUnit, we can understand the first example in
listing 7.2 in more detail. The complete test class is listed in listing 7.3.

124

Chapter 7 Testing

Assertion Example Explanation
fail(“explanation”) Always fails. Can be placed at a

code line that should never be
reached.

assertTrue(“explanation”, condition) Passes if condition is true.

assertFalse(“explanation”, condition) Passes if condition is false.

assertEquals(“explanation”, expected,
actual)

Passes if expected and
actual are equal. expected
and actual can be of any Java
type.

assertNull(“explanation”, object) Passes if object is null.

assertNotNull(“explanation”, object) Passes if object is not null.

Table 7.2 Some of the most common JUnit assert methods

1 package se.kth.ict.oodbook.tests.firstexample;
2
3 import org.junit.After;
4 import org.junit.Before;
5 import org.junit.Test;
6 import static org.junit.Assert.*;
7
8 public class AmountTest {
9 private Amount amtNoArgConstr;

10 private Amount amtWithAmtThree;
11
12 @Before
13 public void setUp() {
14 amtNoArgConstr = new Amount();
15 amtWithAmtThree = new Amount(3);
16 }
17
18 @After
19 public void tearDown() {
20 amtNoArgConstr = null;
21 amtWithAmtThree = null;
22 }
23
24 @Test
25 public void testEqualsNull() {

125

Chapter 7 Testing

26 Object other = null;
27 boolean expResult = false;
28 boolean result = amtNoArgConstr.equals(other);
29 assertEquals("Amount instance equal to null.",
30 expResult, result);
31 }
32
33 @Test
34 public void testEqualsJavaLangObject() {
35 Object other = new Object();
36 boolean expResult = false;
37 boolean result = amtNoArgConstr.equals(other);
38 assertEquals("Amount instance equal to " +
39 "java.lang.Object instance.",
40 expResult, result);
41 }
42
43 @Test
44 public void testNotEqualNoArgConstr() {
45 int amountOfOther = 2;
46 Amount other = new Amount(amountOfOther);
47 boolean expResult = false;
48 boolean result = amtNoArgConstr.equals(other);
49 assertEquals("Amount instances with different " +
50 "states are equal.",
51 expResult, result);
52 }
53
54 @Test
55 public void testNotEqual() {
56 int amountOfOther = 2;
57 Amount other = new Amount(amountOfOther);
58 boolean expResult = false;
59 boolean result = amtWithAmtThree.equals(other);
60 assertEquals("Amount instances with different " +
61 "states are equal.",
62 expResult, result);
63 }
64
65 @Test
66 public void testEqual() {
67 int amountOfOther = 3;
68 Amount other = new Amount(amountOfOther);
69 boolean expResult = true;
70 boolean result = amtWithAmtThree.equals(other);
71 assertEquals("Amount instances with same states " +

126

Chapter 7 Testing

72 "are not equal.",
73 expResult, result);
74 }
75
76 }

Listing 7.3 Complete unit test for the equals method in listing 7.1

On line 12 in listing 7.3, the setUp method is annotated @Before. This means it is exe-
cuted before each test method. That way, each test is performed on the two new Amount ob-
jects created in setUp. In a similar way, the tearDown method, which is annotated @After

on line 18, is executed after each test method. That way, the Amount instances on which the
test was performed are dropped, and will not be used for any more test. Each method contain-
ing a test is annotated @Test, see lines 24, 33, 43, 54, and 65. Each of these methods will be
called by JUnit when the tests are executed. All test methods follow the same pattern. First,
they set up the test creating required objects. Second, they define the expected result of the
call to the SUT. Third, the SUT is called and the actual result is saved. Finally, the expected
and actual results are evaluated to check if the test passed. This is a very typical layout of a
test method, but there are other alternatives, as we will see below.

7.2 Unit Testing Best Practices

Figure 7.4 Most important is that tests are written. Noth-
ing beats the feeling of seeing all tests pass and
knowing that the program works.

Much can be said about best practices for
unit tests, but absolutely most important is
to get started writing them. Any test, no mat-
ter what shortcomings it has, is better than no
test at all. Therefore, do not spend so much
time planning tests that the burden of writing
them becomes so big that they are not writ-
ten, or that they cover only a small part of
the code. Better to start writing and improve
them later, when need is discovered. Below
follows a collection of best practices for unit
testing.

Write tests! Preferably a lot of them. It is essential to have a large and increasing number of
unit tests. To reach this goal, make it a habit never to test anything manually. Whenever
program functionality shall be verified, write a test. Never give input and evaluate output
manually without having first written a unit test. Also never remove a test. If a certain
test seems unnecessary, add an @Ignore annotation instead of deleting it. A test that
at some point seems meaningless might very well later turn out to be useful.

Tests for every known bug When a bug is found, immediately add a test that fails because
of the bug. Only when that test is in place may bug-fixing start. That way, there will
always be a test for everything in the program that we know can go wrong.

127

Chapter 7 Testing

Do not over-design There is no need to design or document test code as thoroughly as the
product that is tested. Allow a certain amount of hacking when writing tests. In test
code, we can play around a bit and write some of those funny and interesting hacks that
never really seem to fit in production code.

Testing takes time, but it is worth that time A rough estimate, which is true remarkably of-
ten, is that test code has about the same length as the tested code, and takes about the
same time to write. This means it is quite time consuming to write tests. However, it
is also true remarkably often that once the tests are in place, they give immediate return
on the time invested in writing them. This return comes as confidence that the code is
really working, and that it will be easy to verify that it is still working if we have to
make changes.

Independent and self-evaluating To get highest possible value from the tests, they shall be
quick and easy to execute. This means they shall start with one command (or one click in
an IDE), no complex manual setup shall be required. Also, they must be self-evaluating.
Either a test passes, and prints nothing, or it fails and gives a short informative message
about the failure. It must not be required to manually evaluate return values from calls
to the SUT. Finally, all tests must be independent. Do not rely on them being executed
in a specific order, or on previous tests having passed. All test executions must give the
same result.

Figure 7.5 A test class is placed in the same
package as the class it tests, but in a differ-
ent directory.

Organization Place a test class in the same pack-
age as the class it tests. This enables test-
ing of package private methods. However, do
not mix test classes with the SUT. It is better
to maintain two different directory structures,
one for the program itself and one for the tests,
figure 7.5. That way it is easy to see which
code is tests and which is the SUT. It is also
easy to deliver only the product itself, without
tests. These two parallel directory structures
are maintained by all common IDEs, it is not
required to arrange them manually.
It is common to write one test class per tested
class, and give it the same name as the tested
class, but appending Test to the name. For
example, the tests for a class called Person are in a class called PersonTest. This
makes it easy to find the tests for a certain class. Names of test methods normally
start with test, followed by a description of the test. For example, the method
testNotEqual on line 55 in listing 7.3 tests that the equals method returns false
for two objects that are not equal. It is possible to write any number of assertions in the
same test method, but execution will stop after first failed assertion. Also, test results
are listed per method, individual assertions are not shown. Therefore, it is best to write
few assertions in each method, and instead write more methods.

128

Chapter 7 Testing

What to test? Test public, protected and package private code, but not private. A private
method can not be tested, since it can not be called from the test class. Also, if methods
with all other accessibilities work, also private methods work. It is normally not needed
to test setters or constructors that only save values, nor getters that only return a value.
Unless bugs appear, we can take for granted that such methods work as intended. Tests
shall cover as much as possible of the code in the SUT. Try to cover all branches of
if statements. Also, try to test boundary conditions and extreme parameter values, like
null, zero, negative values, objects of wrong type etc. It is also important to test that
a method fails the correct way if illegal parameter values are given, or if some other
precondition is not met.

Never worsen SUT design! Try to never, under any condition, worsen the design of the SUT
just to enable testing. This is a slightly controversial statement. It is often suggested,
for example, to break encapsulation by adding get methods to enable retrieving the state
of an object. The only purpose of breaking encapsulation would be to verify that the
state is correct after a method in the object is tested. This is, however, practically never
necessary. Using hard work, a lot of fantasy, and pragmatically testing more than one
method together, we can almost always write tests without worsening SUT design. A
method must have some effect somewhere, otherwise it is useless. To test it, we just
have to find a way to dig out that effect. As an example, consider a class that can create,
read, update and delete values in some storage that can not be accessed by test code.
These methods can be tested together, for example create a value, read it, and check that
the read value equals the created value. Then create a value, delete it and verify that
it can not be read. The create, update, read, etc. More on testing in difficult situations
follows below.

7.3 When Testing is Difficult

Figure 7.6 Testing can be very complicated
and frustrating, but with hard work, a
lot of fantasy, and pragmatically testing
more than one method together, we can
almost always write tests without wors-
ening SUT design. Image by unknown creator
[Public domain], via https://pixabay.com

Some methods are very complicated to test, but it is
almost always possible! This section covers three dif-
ferent situations when testing might be difficult. One,
it is hard to give input to the SUT. Two, it is hard to
read the test result. Three, the SUT has complex de-
pendencies on other objects and is therefore hard to
start.

Hard to give input The SUT might not get input from
method parameters, but from a file, a database, a
complex set of objects or another source. In this
case, it is not obvious how the test shall provide
the input. If the SUT reads from file, the test
can write a file with appropriate content. If the SUT reads from a database, the test can
create a database or insert data into an existing database. If the SUT gets data from other
objects, the test can create all objects needed and somehow make them available to the

129

Chapter 7 Testing

SUT. It is quite common to write a large amount of test code in order to create files,
databases, etc required for testing. Whatever test structure is created, must be deleted
after the test is executed. Remember that tests must be completely independent and
repeatable. A test must leave no traces of its execution.

Hard to read output It might be that no usable result
is returned by the tested method, nor is there
any getter that can be used to read the result.
In this situation, do never write a getter to fa-
cilitate testing, since it breaks encapsulation of
the SUT. Fact is that the SUT must update some-
thing somewhere, or it would be useless. Maybe
the problematic method can not be tested alone,
but there is often some combination of method
calls that will show if the test passed. This rea-
soning is expanded above, in the paragraph la-
beled Never worsen SUT design in section 7.2.

Figure 7.7 The SUT might be
hard to test since it depends
on many other objects.

Complex dependencies Classes in higher layers depend on
classes in lower layers. The controller in figure 7.7, to the
right, depends on the model, the database integration layer
and the database itself. If a test for the controller fails, we
do not know which of these layers has the bug. A simple
solution to this problem is to write unit tests as usual for all
classes, and let all tests execute code all the way down to
the database. The lowest class with a failed test is the class
with the bug. This is not a pure unit test, since a call to the
controller will execute code also in the model and integra-
tion layers. However, this does not matter very much since
all code is tested and it is possible to locate bugs. What is
more important, is that this strategy leaves the SUT com-
pletely unchanged!

Finally, it can not be stated often enough, whatever the problem
is, do not worsen SUT design just to enable testing.

7.4 Unit Testing Case Study

This section does not include a complete listing of all unit tests. That can be found in the
accompanying NetBeans project, which can be downloaded from the course web [CW]. Here
follows a description of the first tests that were written, and of tests where particular af-
terthought was needed.

130

Chapter 7 Testing

NetBeans Support for Unit Testing

NetBeans [NB] is used when developing this unit test case study. This section illustrates how
NetBeans facilitates creating the tests. Similar functionality is available in all major IDEs.

To generate a new test class in NetBeans, right-click the project and choose New→ Test

for Existing Class.... This will display the New Test For Existing Class di-
alog, which is depicted in figure 7.8. Click the Browse... button, marked with a red cir-
cle, to choose for which class tests shall be generated. In this example, the chosen class is
CarRegistry, from the rent car case study. Last, click Finish, and NetBeans will generate
test code similar to listing 7.4.

Figure 7.8 NetBeans’ New Test For Existing Class dialog. The Browse... button, marked with a
red circle, is used to decide for which class tests shall be generated.

1 package se.kth.ict.oodbook.rentcar.integration;
2
3 import org.junit.After;
4 import org.junit.AfterClass;
5 import org.junit.Before;
6 import org.junit.BeforeClass;
7 import org.junit.Test;
8 import static org.junit.Assert.*;

131

Chapter 7 Testing

9
10 public class CarRegistryTest {
11 @BeforeClass
12 public static void setUpClass() {
13 }
14
15 @AfterClass
16 public static void tearDownClass() {
17 }
18
19 @Before
20 public void setUp() {
21 }
22
23 @After
24 public void tearDown() {
25 }
26
27 @Test
28 public void testFindAvailableCar() {
29 System.out.println("findAvailableCar");
30 CarDTO searchedCar = null;
31 CarRegistry instance = new CarRegistry();
32 CarDTO expResult = null;
33 CarDTO result = instance.findAvailableCar(searchedCar);
34 assertEquals(expResult, result);
35 // TODO review the generated test code and remove the
36 // default call to fail.
37 fail("The test case is a prototype.");
38 }
39
40 @Test
41 public void testBookCar() {
42 System.out.println("bookCar");
43 CarDTO car = null;
44 CarRegistry instance = new CarRegistry();
45 instance.bookCar(car);
46 // TODO review the generated test code and remove the
47 // default call to fail.
48 fail("The test case is a prototype.");
49 }
50 }

Listing 7.4 Skeleton code for a test class, generated by NetBeans.

The class has the same name as the tested class, but with Test appended to the
class name (line 10). All four before and after methods are generated (lines 11-

132

Chapter 7 Testing

25), but they are empty. If some code is needed to prepare a test or to clean up
after a test, it shall be added here. Methods that remain empty can be removed.
One test method is generated for each public, protected or package private method in
the SUT (lines 27-49). These methods contain a printout (lines 29 and 42), which
should be removed since tests are not supposed to produce any output if they pass.

Figure 7.9 To run the tests, right-click the Net-
Beans project and chose Test.

After this, the test methods create an instance of
the SUT (lines 31 and 44) and of other objects that
are necessary to perform the test (lines 30 and 43).
There is no guarantee these objects are created
correctly, always check if changes are required.
Next, the tested method is called and the result
is saved in a variable (lines 33 and 45). Then
an assertion is called to evaluate the test result
(line 34). The testBookCar method contains
no assertion, since bookCar is void. In this case,
NetBeans does not know how to evaluate the out-
come. Again. even if the assertion is generated,
there is no guarantee it is correct. Finally, there is
a TODO comment and a call to fail (lines 35-37
and 46-48), which should both be removed when
the test is completed.

To execute the tests, right-click the NetBeans
project and chose Test, as depicted in figure 7.9.
The test result will be displayed in a window sim-
ilar to figure 7.10. Currently, none of the two
auto-generated tests, testFindAvailableCar
and testBookCar, are implemented. As a re-
sult, they both fail.

Figure 7.10 NetBeans’ test result window. The auto-generated code always makes a test fail.

133

Chapter 7 Testing

Writing the Tests

Tests will be written in bottom-up order, first for classes with no dependencies on other classes,
then for classes with dependencies. This means we will only write tests for classes without
dependencies, or for classes that are already tested. That way, it becomes possible to run a test
as soon as it is written, and immediately know if the tested class works as intended.

It must be emphasized that the workflow followed here is very unnatural. We first wrote
the entire program and then started to write tests. Normally, a test is written either before or
immediately after the method that shall be tested. The only reason for this workflow is to mix
theory and practice, by using programming best practices as soon as they were introduced.

!
This odd workflow means the first task is to identify a class with no dependency on any other

class. A natural place to start looking for such a class is in the lowest layer, integration.
That layer contains CarDTO, which depends on Amount; CarRegistry, which depends
on CarDTO; RegistryCreator, which depends on CarRegistry and RentalRegistry;
RentalRegistry, which depends on Rental; and Printer, which depends on Receipt.
No suitable class was found in the integration layer, next candidates will be classes on
which the classes in the integration layer depends. The first that was mentioned was
Amount, which in fact has no dependency. It will be the first class to test.

The First Tested Class, Amount

All public, protected and package private methods shall be tested, but not private. The Amount
class has only public methods and constructors, so they shall all be tested. The constructors,
however, contain no logic, they only set a value. Therefore, they will not be tested. The first
method that is tested is equals, since other tests will use it, as will soon be clear. The equals
method is listed in listing 7.5.

1 /**
2 * Two <code>Amount</code>s are equal if they represent the
3 * same amount.
4 *
5 * @param other The <code>Amount</code> to compare with this
6 * amount.
7 * @return <code>true</code> if the specified amount is equal
8 * to this amount, <code>false</code> if it is not.
9 */

10 @Override
11 public boolean equals(Object other) {
12 if (other == null | | !(other instanceof Amount)) {
13 return false;
14 }
15 Amount otherAmount = (Amount) other;
16 return amount == otherAmount.amount;
17 }

Listing 7.5 The equals method of the Amount class

134

Chapter 7 Testing

To take the branch other == null, on line 12, the method must be called with a
null parameter. To take the !(other instanceof Amount) branch, also on line 12,
the parameter must be an object that is not an instance of Amount. An easy choice
is to use a java.lang.Object instance. Finally, there are two different executions
of line 16, one where amount == otherAmount.amount and one where amount !=

otherAmount.amount. These tests can be found in listing 7.6.

1 package se.kth.ict.oodbook.rentcar.model;
2
3 import org.junit.After;
4 import org.junit.Before;
5 import org.junit.Test;
6 import static org.junit.Assert.*;
7
8 public class AmountTest {
9 private Amount amtNoArgConstr;

10 private Amount amtWithAmtThree;
11
12 @Before
13 public void setUp() {
14 amtNoArgConstr = new Amount();
15 amtWithAmtThree = new Amount(3);
16 }
17
18 @After
19 public void tearDown() {
20 amtNoArgConstr = null;
21 amtWithAmtThree = null;
22 }
23
24 @Test
25 public void testEqualsNull() {
26 Object other = null;
27 boolean expResult = false;
28 boolean result = amtNoArgConstr.equals(other);
29 assertEquals("Amount instance equal to null.",
30 expResult, result);
31 }
32
33 @Test
34 public void testEqualsJavaLangObject() {
35 Object other = new Object();
36 boolean expResult = false;
37 boolean result = amtNoArgConstr.equals(other);
38 assertEquals("Amount instance equal to " +
39 "java.lang.Object instance.",

135

Chapter 7 Testing

40 expResult, result);
41 }
42
43 @Test
44 public void testNotEqualNoArgConstr() {
45 int amountOfOther = 2;
46 Amount other = new Amount(amountOfOther);
47 boolean expResult = false;
48 boolean result = amtNoArgConstr.equals(other);
49 assertEquals("Amount instances with different states" +
50 " are equal.", expResult, result);
51 }
52
53 @Test
54 public void testNotEqual() {
55 int amountOfOther = 2;
56 Amount other = new Amount(amountOfOther);
57 boolean expResult = false;
58 boolean result = amtWithAmtThree.equals(other);
59 assertEquals("Amount instances with different states" +
60 " are equal.", expResult, result);
61 }
62
63 @Test
64 public void testEqual() {
65 int amountOfOther = 3;
66 Amount other = new Amount(amountOfOther);
67 boolean expResult = true;
68 boolean result = amtWithAmtThree.equals(other);
69 assertEquals("Amount instances with same states are" +
70 " not equal.", expResult, result);
71 }
72 }

Listing 7.6 Tests for all possible paths through the equals method of the Amount class

Next thing to look for is extreme values of the parameters. All obvious extreme values,
like null, are already covered. However, since this is our first test, we might be extra careful
and test also with an Amount object representing zero. That way, also the default constructor
will be executed in a test. Theoretically, we could test with Amounts representing positive,
negative, Integer.MAX_VALUE and Integer.MIN_VALUE amounts, but there is really no
reason to suspect that the method would behave differently for such values. Listing 7.7 shows
the test for an Amount with the value zero.

136

Chapter 7 Testing

1 @Test
2 public void testEqualNoArgConstr() {
3 int amountOfOther = 0;
4 Amount other = new Amount(amountOfOther);
5 boolean expResult = true;
6 boolean result = amtNoArgConstr.equals(other);
7 assertEquals("Amount instances with same states are" +
8 " not equal.", expResult, result);
9 }

Listing 7.7 Test for the equals method of an Amount representing the amount zero.

Finally, is there any way the parameter can have an illegal value, or is there some precon-
dition that must be met for method to work properly? The answer is “no, the method should
function the same way for all possible parameter values”. That means we are done testing it.
Remember to run the tests and check that they all pass, figure 7.11. Our first green bar!!

Figure 7.11 All tests for the equals method pass.

The other Amount methods, namely minus, plus and toString, are independent, neither
any of the methods, nor its test, will use any of the other methods. Therefore, they can be
written in any order. Let’s start with minus, which is listed in listing 7.8.

1 /**
2 * Subtracts the specified <code>Amount</code> from this
3 * object and returns an <code>Amount</code> instance with
4 * the result.
5 *
6 * @param other The <code>Amount</code> to subtract.
7 * @return The result of the subtraction.
8 */
9 public Amount minus(Amount other) {

10 return new Amount(amount - other.amount);
11 }

Listing 7.8 The minus method of the Amount class

137

Chapter 7 Testing

This method has only one execution path, since there are no flow control statements. There
are no illegal parameter values, but the subtraction may overflow. If, for example, -1 is sub-
tracted from Integer.Min_VALUE, the result is a negative integer with a magnitude too big
to fit in an int. In fact, we have discovered a flaw in the design. The method ought to check
if an overflow occurred, and, if so, throw an exception. However, since exception handling is
covered later in a later chapter, this check is not introduced here. Instead, an explaining text
is added to the javadoc comment, saying that The operation will overflow if the

result is smaller than <code>Integer.MIN_VALUE</code>. What can then be
tested regarding overflow? Nothing in fact, the method might fail, but the failure is not han-
dled in any way. The conclusion is that one test would probably be enough, just perform a
subtraction and check that the result is correct. However, since we have just started, let’s be a
bit overambitious and test positive, negative and zero results, see listing 7.9. Once the first test
for minus is written, it takes about thirty seconds to add the other two, and the more tests that
pass, the greater the pleasure to see them pass. Note that assertEquals, which is called on
lines 10, 23 and 35, will use the equals method in Amount to verify that the two specified
Amount instances are equal. This is why it was important to know that equals worked when
minus was tested. It is now clear that if a test for minus fails, it is because of a bug in minus,
not in equals.

1 @Test
2 public void testMinus() {
3 int amountOfOperand1 = 10;
4 int amountOfOperand2 = 3;
5 Amount operand1 = new Amount(amountOfOperand1);
6 Amount operand2 = new Amount(amountOfOperand2);
7 Amount expResult = new Amount(amountOfOperand1 -
8 amountOfOperand2);
9 Amount result = operand1.minus(operand2);

10 assertEquals("Wrong subtraction result",
11 expResult, result);
12 }
13
14 @Test
15 public void testMinusNegResult() {
16 int amountOfOperand1 = 3;
17 int amountOfOperand2 = 10;
18 Amount operand1 = new Amount(amountOfOperand1);
19 Amount operand2 = new Amount(amountOfOperand2);
20 Amount expResult = new Amount(amountOfOperand1 -
21 amountOfOperand2);
22 Amount result = operand1.minus(operand2);
23 assertEquals("Wrong subtraction result",
24 expResult, result);
25 }
26 @Test

138

Chapter 7 Testing

27 public void testMinusZeroResultNegOperand() {
28 int amountOfOperand1 = -3;
29 int amountOfOperand2 = -3;
30 Amount operand1 = new Amount(amountOfOperand1);
31 Amount operand2 = new Amount(amountOfOperand2);
32 Amount expResult = new Amount(amountOfOperand1 -
33 amountOfOperand2);
34 Amount result = operand1.minus(operand2);
35 assertEquals("Wrong subtraction result",
36 expResult, result);
37 }

Listing 7.9 The tests for the minus method of the Amount class

The tests for plus are created exactly the same way as the tests for minus, and are therefore
not covered here. Finally, there is the toString method, which returns a string representa-
tion of the amount, listing 7.10. Also this method is tested with positive, negative, and zero
amounts, see listing 7.11. That concludes testing Amount. There are 15 tests in total, and all
pass, brilliant!

1 @Override
2 public String toString() {
3 return Integer.toString(amount);
4 }

Listing 7.10 The toString method of the Amount class

1 @Test
2 public void toStringPosAmt() {
3 int representedAmt = 10;
4 Amount amount = new Amount(representedAmt);
5 String expResult = Integer.toString(representedAmt);
6 String result = amount.toString();
7 assertEquals("Wrong string returned by toString",
8 expResult, result);
9 }

10
11 @Test
12 public void toStringNegAmt() {
13 int representedAmt = -10;
14 Amount amount = new Amount(representedAmt);
15 String expResult = Integer.toString(representedAmt);
16 String result = amount.toString();
17 assertEquals("Wrong string returned by toString",
18 expResult, result);
19 }

139

Chapter 7 Testing

20
21 @Test
22 public void toStringZeroAmt() {
23 int representedAmt = 0;
24 Amount amount = new Amount(representedAmt);
25 String expResult = Integer.toString(representedAmt);
26 String result = amount.toString();
27 assertEquals("Wrong string returned by toString",
28 expResult, result);
29 }

Listing 7.11 The tests for the toString method of the Amount class

The First Problematic Test, a void Method

Following the same reasoning as when testing Amount, tests are written also for CarDTO.
This is quite straightforward, just remember that object parameters must be tested with null,
and string parameters also with an empty string. The code for these tests can be found in
the accompanying NetBeans project. The next class to test is CarRegistry, which is a bit
more challenging since it has a void method, namely bookCar. Remember the strategy,
the method must have some effect somewhere, just locate that effect. Here the effect is that
a booked car will not be returned by findAvailableCar, even if the description matches.
Therefore, bookCar can be tested together with findAvailableCar, as illustrated in listing
7.13. Listing 7.12 shows bookCar and findAvailableCar. There is an interesting problem
here, the calls to assertEquals, for example on line nine in listing 7.13, will use the equals
method in CarDTO to evaluate if two instances are equal. But there is no such method, which
means the default instance of equals, in java.lang.Object, will be used! That method
considers two objects to be equal only if they are exactly the same object, residing in the same
memory location. Since this is not appropriate here, an equals method is added to CarDTO,
and of course it is also tested. It could be argued that the SUT is now changed, only to facilitate
testing. That might be the case, but what really matters is that the design of the SUT is not
worsened. Furthermore, an equals method might very well turn out to be appropriate f the
SUT itself.

1 /**
2 * Search for a car matching the specified search criteria.
3 *
4 * @param searchedCar This object contains the search criteria.
5 * Fields in the object that are set to
6 * <code>null</code> or <code>0</code> are
7 * ignored.
8 * @return <code>true</code> if a car with the same features
9 * as <code>searchedCar</code> was found,

10 * <code>false</code> if no such car was found.

140

Chapter 7 Testing

11 */
12 public CarDTO findAvailableCar(CarDTO searchedCar) {
13 for (CarData car : cars) {
14 if (matches(car, searchedCar) && !car.booked) {
15 return new CarDTO(car.regNo, new Amount(car.price),
16 car.size, car.AC, car.fourWD,
17 car.color);
18 }
19 }
20 return null;
21 }
22
23 /**
24 * Books the specified car. After calling this method, the car
25 * can not be booked by any other customer.
26 *
27 * @param car The car that will be booked.
28 */
29 public void bookCar(CarDTO car) {
30 CarData carToBook = findCarByRegNo(car);
31 carToBook.booked = true;
32 }

Listing 7.12 The bookCar and findAvailableCar methods of the CarRegistry
class

1 @Test
2 public void testBookCar() {
3 CarDTO bookedCar = new CarDTO("abc123", new Amount(1000),
4 "medium", true, true, "red");
5 CarRegistry instance = new CarRegistry();
6 instance.bookCar(bookedCar);
7 CarDTO expResult = null;
8 CarDTO result = instance.findAvailableCar(bookedCar);
9 assertEquals("Booked car was found", expResult, result);

10 }

Listing 7.13 The tests for the bookCar method of the CarRegistry class

More Difficult Tests

No tests are needed for CustomerDTO, AddressDTO or DrivingLicenseDTO, since they
contain only setters, getters and constructors that do nothing but save or return values.
CashRegister and RentalRegistry can, in fact, not be properly tested. They contain
one void method each, that only updates a field in the same object. This is not a proof that

141

Chapter 7 Testing

there are untestable methods, instead, it shows that the program is not complete. When devel-
oping continues, it will certainly be possible to read the balance of the cash register and to see
which rentals have been made. Thereby, it will also possible to test those classes. For now,
however, all that can be done is to call those methods in their tests, there is no way to evaluate
their outcome. The next class that is tested is RegistryCreator, tests are available in the
accompanying NetBeans project.

After that it is not possible to continue in pure bottom-up order any more, since there are no
remaining classes without dependencies or depending only on tested classes. The only thing
to do is to write tests for all remaining classes in model and integration, and then run all
of them. Writing tests for these classes clearly shows, as was already known, that there is no
error handling in this program. For example, there are many methods which should check that
they are not called with null parameters, but they do not. This lack of error handling makes
it meaningless to test those erroneous conditions. That must be postponed until later, when
error handling is added.

The test environment for some methods, for example createReceiptString in Receipt
(listing 7.14), require quite a lot of work to set up. This is quite normal, and should be expected
to happen. Listing 7.15 shows testCreateReceiptString, which illustrates that with
some fantasy and quite a lot of code, it is possible to test also methods depending on many
other objects or methods. Note that the string that makes up the expected result (line 19-24)
does not, in any way, depend on createReceiptString or any other method in Receipt.
This eliminates the risk that the test has the same bug as the SUT.

1 /**
2 * Creates a well-formatted string with the entire content of
3 * the receipt.
4 *
5 * @return The well-formatted receipt string.
6 */
7 public String createReceiptString() {
8 StringBuilder builder = new StringBuilder();
9 appendLine(builder, "Car Rental");

10 endSection(builder);
11
12 Date rentalTime = new Date();
13 builder.append("Rental time: ");
14 appendLine(builder, rentalTime.toString());
15 endSection(builder);
16
17 builder.append("Rented car: ");
18 appendLine(builder, rental.getRentedCar().getRegNo());
19 builder.append("Cost: ");
20 appendLine(builder, rental.getPayment().getTotalCost().
21 toString());
22 builder.append("Change: ");
23 appendLine(builder, rental.getPayment().getChange().

142

Chapter 7 Testing

24 toString());
25 endSection(builder);
26
27 return builder.toString();
28 }
29
30 private void appendLine(StringBuilder builder, String line) {
31 builder.append(line);
32 builder.append("\n");
33 }
34
35 private void endSection(StringBuilder builder) {
36 builder.append("\n");
37 }

Listing 7.14 The createReceiptString method of the Receipt class, and its pri-
vate helper methods.

1 @Test
2 public void testCreateReceiptString() {
3 Amount price = new Amount(100);
4 String regNo = "abc123";
5 String size = "medium";
6 boolean AC = true;
7 boolean fourWD = true;
8 String color = "red";
9 CarDTO rentedCar = new CarDTO(regNo, price, size, AC,

10 fourWD, color);
11 Amount paidAmt = new Amount(500);
12 CashPayment payment = new CashPayment(paidAmt);
13 Rental paidRental = new Rental(null, new RegistryCreator().
14 getCarRegistry());
15 paidRental.setRentedCar(rentedCar);
16 paidRental.pay(payment);
17 Receipt instance = new Receipt(paidRental);
18 Date rentalTime = new Date();
19 String expResult = "Car Rental\n\nRental time: "
20 + rentalTime.toString()
21 + "\n\nRented car: " + regNo
22 + "\nCost: " + price
23 + "\nChange: " + paidAmt.minus(price)
24 + "\n\n";
25 String result = instance.createReceiptString();
26 assertEquals("Wrong receipt content.", expResult, result);
27 }

Listing 7.15 The test for the createReceiptString method of the Receipt class

143

Chapter 7 Testing

Testing User Interface

printReceipt in Printer (listing 7.16) is an interesting method. It is void, but calling it
has an effect, though only on the screen. It produces output to System.out. Luckily, it is
easy to test such output, since it is possible to replace the stream System.out with another
stream, that prints to a buffer in memory instead of the screen. This is done on line seven
in listing 7.17. The content of this in-memory buffer becomes the outcome of the SUT call,
which is compared with the expected result on line 43.

This is the only user interface test that is written, since development of user interfaces is not
included in the course. However, testing System.in should be done exactly the same way
as testing System.out, by reassigning the stream and let it read from an in-memory buffer
instead of the keyboard. This strategy only works for command line user interfaces, not for
graphical or web-based user interface. Still, it is very much possible to test also such user
interfaces, since there are many frameworks which makes it possible to give input to, and read
output from, different kinds of UIs.

1 /**
2 * Prints the specified receipt. This dummy implementation
3 * prints to <code>System.out</code> instead of a printer.
4 *
5 * @param receipt
6 */
7 public void printReceipt(Receipt receipt) {
8 System.out.println(receipt.createReceiptString());
9 }

Listing 7.16 The createReceiptString method of the Receipt class, and its pri-
vate helper methods.

1 public class PrinterTest {
2 ByteArrayOutputStream outContent;
3
4 @Before
5 public void setUpStreams() {
6 outContent = new ByteArrayOutputStream();
7 System.setOut(new PrintStream(outContent));
8 }
9

10 @After
11 public void cleanUpStreams() {
12 outContent = null;
13 System.setOut(null);
14 }
15
16 @Test
17 public void testCreateReceiptString() {

144

Chapter 7 Testing

18 Amount price = new Amount(1000);
19 String regNo = "abc123";
20 String size = "medium";
21 boolean AC = true;
22 boolean fourWD = true;
23 String color = "red";
24 CarDTO rentedCar = new CarDTO(regNo, price, size, AC,
25 fourWD, color);
26 Amount paidAmt = new Amount(5000);
27 CashPayment payment = new CashPayment(paidAmt);
28 Rental paidRental = new Rental(null,
29 new RegistryCreator().
30 getCarRegistry());
31 paidRental.setRentedCar(rentedCar);
32 paidRental.pay(payment);
33 Receipt receipt = new Receipt(paidRental);
34 Printer instance = new Printer();
35 instance.printReceipt(receipt);
36 Date rentalTime = new Date();
37 String expResult = "Car Rental\n\nRental time: "
38 + rentalTime.toString()
39 + "\n\nRented car: " + regNo
40 + "\nCost: " + price
41 + "\nChange: "
42 + paidAmt.minus(price) + "\n\n\n";
43 String result = outContent.toString();
44 assertEquals("Wrong printout.", expResult, result);
45 }
46 }

Listing 7.17 The test for the createReceiptString method of the Receipt class

The last classes, Controller and Main

As was mentioned above, user interface testing is not included in the course. Thus, the only
remaining classes are Controller and Main. The tests for Controller once again re-
veals the lack of a possibility to read from the rental registry, it is impossible to check any
property of the rental that is created by the Controller methods. In fact, a “read-only reg-
istry” is a very strange thing, why store anything in the registry if it can not later be read? It
is impossible to claim that the design is worsened by a read method in RentalRegistry.
Rather, it is a bug that there is no such method. According to this reasoning, the method
findRentalByCustomerName is added to the RentalRegistry. It returns all rentals made
by a customer with the specified name. Having added this method, the test of saveRental
in RentalRegistry can be extended to verify that the Rental is actually saved. According
to the same reasoning, the method getRentingCustomer is added to Rental. What point

145

Chapter 7 Testing

is there to store information about the renting customer, if that information can not be read?
Testing the controller is a bit tricky. Since it is high up in the layer stack, both setting

up test environment, giving input, and reading output, involves many other objects. As an
example, consider the method testRentalWithBookedCarIsStored on line 26 in listing
7.19, which tests that the method bookCar (listing 7.18) correctly stores the current rental to
the rental registry. First, lines 27-36 creates objects that are required input to the SUT. Next,
line 37 prepares the SUT. Only after this call can the tested method, bookCar be called. Lines
39-41 and 47 extracts the result, namely the stored Rental object. The assertEqual call
on lines 44-46 assures that the correct number of rentals (one) is stored. If this is not the case,
there is no pint in continuing the test, it has already failed. Lines 48-54 checks that the correct
rental was stored in the registry. The only way to do this is to print the receipt and check
that the rented car is specified there. A more straightforward way would have been to get the
rented car by calling getRentedCar in Rental, but that method can not be reached by the
test since it is package private. We do not want to worsen the design by making it public, and
thus part of the public interface.

1 /**
2 * Books the specified car. After calling this method, the car
3 * can not be booked by any other customer. This method also
4 * permanently saves information about the current rental.
5 *
6 * @param car The car that will be booked.
7 */
8 public void bookCar(CarDTO car) {
9 rental.setRentedCar(car);

10 rentalRegistry.saveRental(rental);
11 }

Listing 7.18 The bookcar method of the Controller class.

1 public class ControllerTest {
2 private Controller instance;
3 private RegistryCreator regCreator;
4 ByteArrayOutputStream outContent;
5 PrintStream originalSysOut;
6
7 @Before
8 public void setUp() {
9 originalSysOut = System.out;

10 outContent = new ByteArrayOutputStream();
11 System.setOut(new PrintStream(outContent));
12 Printer printer = new Printer();
13 regCreator = new RegistryCreator();
14 instance = new Controller(regCreator, printer);
15 }

146

Chapter 7 Testing

16
17 @After
18 public void tearDown() {
19 outContent = null;
20 System.setOut(originalSysOut);
21 instance = null;
22 regCreator = null;
23 }
24
25 @Test
26 public void testRentalWithBookedCarIsStored() {
27 String customerName = "custName";
28 CustomerDTO rentingCustomer =
29 new CustomerDTO(customerName,
30 new AddressDTO("street", "zip",
31 "city"),
32 new DrivingLicenseDTO("1234567"));
33 String regNo = "abc123";
34 CarDTO rentedCar = new CarDTO(regNo, new Amount(1000),
35 "medium", true,
36 true, "red");
37 instance.registerCustomer(rentingCustomer);
38 instance.bookCar(rentedCar);
39 List<Rental> savedRentals =
40 regCreator.getRentalRegistry().
41 findRentalByCustomerName(customerName);
42 int expectedNoOfStoredRentals = 1;
43 int noOfStoredRentals = savedRentals.size();
44 assertEquals("Wrong number of stored rentals.",
45 expectedNoOfStoredRentals,
46 noOfStoredRentals);
47 Rental savedRental = savedRentals.get(0);
48 Amount paidAmt = new Amount(5000);
49 CashPayment payment = new CashPayment(paidAmt);
50 savedRental.pay(payment);
51 savedRental.printReceipt(new Printer());
52 String result = outContent.toString();
53 assertTrue("Saved rental does not contain rented car",
54 result.contains(regNo));
55 }
56 }

Listing 7.19 The test for the bookcar method of the Controller class

The last class is Main, which has only the method main. This is very hard to test, since it
does nothing but create some objects. When the program is ready, it will most likely start a

147

Chapter 7 Testing

user interface, then it will be possible to verify that something happens on the screen. While
this can not be done now, since no user interface is created, it is still possible to verify that
some chosen part of the output from the test run in View.sampleExecution appears on the
screen. It is also possible to inspect the JVM to see that the expected objects are created, but
this involves starting a debugger in another JVM, and attaching it to the inspected JVM, which
is too complicated for this course. Maybe even too complicated to be meaningful at all, if the
only purpose is to see that some new statements behave as expected.

That concludes the rent car testing case study. A total of 56 test methods were created,
which should be acceptable for such a small program, completely lacking exception handling.
All 56 tests pass, which gives the joyful sight presented in figure 7.12. Quite amazingly, the
SUT consists of 1351 lines of code in total, and the tests of 1322 (no cheating). A difference
of only two percent!

Figure 7.12 All 56 tests of the case study pass.

7.5 Common Mistakes When Writing Unit Tests

Below follows a list of common mistakes made when writing unit tests.

Too few tests Both the most common and most severe mistake is probably not to write
enough tests. Try to cover all possible branches of if statements and loops. Also
try to write tests for extreme and illegal parameter values.

NO!

148

Chapter 7 Testing

Too many assertions in the same test method Place as few assertions as possible in each
test method. It is clearer what happens and easier to give an explaining name to a test
method if it has few assertions. Ideally, there should only be one assertion per test
method, but it is not always possible to evaluate the outcome of a call to the SUT in
one single assertion. Sometimes more than one are actually required.

Not self-evaluating Test result should be evaluated using assertions, not with if statements
in the test methods, nor by forcing the tester to read output.

Producing output A test shall not write to System.out. The more tests there are, the
more confusing it becomes if they print some kind of status messages.

Worsen SUT design The design of the SUT shall not be worsened just to facilitate testing.
It is practically always possible to test without changing the SUT, even though it often
requires extra work.

NO!

149

Chapter 8

Exception Handling

150

Chapter 9

Polymorphism and Design Patterns

151

Chapter 10

Inheritance

152

Chapter 11

Inner Classes

153

Part III

Appendices

154

Appendix A

English-Swedish Dictionary

This appendix contains translations to Swedish of some English terms in the text. Be aware
that these translations are terms commonly used in software development, and have a defined
meaning. To know a general translation because of skills in English language is not enough,
exactly the correct term must be used, not a synonym. Having said that, it is also important to
point out that there is no universal agreement on these terms, do not be surprised when finding
other words meaning the same thing.

English Swedish
analysis analys
architectural pattern arkitekturellt mönster
architecture arkitektur
class diagram klassdiagram
code convention kodkonvention
communication diagram kommunikationsdiagram
design . design
design pattern designmönster
domain model domänmodell
encapsulation inkapsling
entity . entitet
enumeration uppräkningsbar typ
high cohesion hög sammanhållning
implement implementera
instance instans
layer . lager
low coupling låg koppling
modifier modifierare
overload överlagra
override omdefiniera
package diagram paketdiagram
pattern . mönster

155

Appendix A English-Swedish Dictionary

English Swedish
refactoring omstrukturering, refaktorering, refaktorisering
sequence diagram sekvensdiagram
system operation systemoperation
system sequence diagram . . . systemsekvensdiagram
visibility åtkomst

156

Appendix B

UML Cheat Sheet

Class Diagram

Figure B.1 Class diagram

157

Appendix B UML Cheat Sheet

Figure B.2 Packages in class diagram

Sequence Diagram

Figure B.3 Sequence diagram

158

Appendix B UML Cheat Sheet

Figure B.4 Flow control in sequence diagram

Figure B.5 Reference to other sequence diagram

159

Appendix B UML Cheat Sheet

Communication Diagram

Figure B.6 Communication diagram

Figure B.7 Flow control in communication diagram

160

Appendix C

Implementations of UML Diagrams

This appendix contains Java implementations of all UML design diagrams in the text. The
purpose is to make clearer what the diagrams actually mean. The analysis diagrams can not
be implemented in code, since they do not represent programs.

C.1 Figure 5.1

Package names are not shown in the diagram, but have been added in the code.

1 package se.kth.ict.oodbook.design.uml;
2
3 public class AClass {
4 public void aMethod(int aParam) {
5 }
6 }

Listing C.1 Java code implementing the AClass class in figure 5.1a

1 package se.kth.ict.oodbook.design.uml;
2
3 public class AnotherClass {
4 private static int aStaticAttribute;
5
6 public static String aStaticMethod() {
7 }
8 }

Listing C.2 Java code implementing the AnotherClass class in figure 5.1b

1 package se.kth.ict.oodbook.design.uml;
2
3 public class YetAnotherClass {
4 private int privateAttribute;
5 public int publicAttribute;

161

Appendix C Implementations of UML Diagrams

6
7 private String privateMethod() {
8 }
9

10 public int publicMethod() {
11 }
12 }

Listing C.3 Java code implementing the YetAnotherClass class in figure 5.1c

C.2 Figure 5.2

The diagram tells somePackage in some way depends on someOtherPackage, but that can
not be implemented in code since it does not tell how.

1 package somePackage;

Listing C.4 Java code implementing the somePackage package in figure 5.2

1 package someOtherPackage;

Listing C.5 Java code implementing the someOtherPackage package in figure 5.2

C.3 Figure 5.3

Package names are not shown in the diagram, but have been added in the code. Visibility is
also not shown in the diagram. Here, attributes and methods called by objects where they
are located have been assigned private visibility, while constructors and other methods have
public visibility.

1 package se.kth.ict.oodbook.design.uml;
2
3 public class SomeClass {
4 private OtherClass otherObj;
5
6 public void firstMethod() {
7 otherObj.aMethod();
8 methodInSelf();
9 }

10
11 public void someMethod() {
12 }

162

Appendix C Implementations of UML Diagrams

13
14 private void methodInSelf() {
15 }
16 }

Listing C.6 Java code implementing the SomeClass class in figure 5.3

1 package se.kth.ict.oodbook.design.uml;
2
3 public class OtherClass {
4 private SomeClass someObj;
5
6 public void aMethod() {
7 someObj.someMethod();
8 ThirdClass newObj = new ThirdClass();
9 }

10 }

Listing C.7 Java code implementing the OtherClass class in figure 5.3

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ThirdClass {
4 public ThirdClass() {
5 }
6 }

Listing C.8 Java code implementing the ThirdClass class in figure 5.3

C.4 Figure 5.4

Package names are not shown in the diagram, but have been added in the code. Visibility is
also not shown in the diagram. Here, attributes and methods called by objects where they are
located have been assigned private visibility, while other methods have public visibility.

1 package se.kth.ict.oodbook.design.uml;
2
3 public class A {
4 private B b;
5 // Somewhere in some method the following call is made:
6 // b.met1();
7 }

Listing C.9 Java code implementing the A class in figure 5.4

163

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.uml;
2
3 public class B {
4 public void met1() {
5 C.met2();
6 }
7 /*
8 * Code illustrated in a sequence diagram named ’SomeTask’.
9 */

10 }

Listing C.10 Java code implementing the B class in figure 5.4

1 package se.kth.ict.oodbook.design.uml;
2
3 public class C {
4 public static void met2() {
5
6 }
7 /*
8 * Code illustrated in a sequence diagram named ’SomeTask’.
9 */

10 }

Listing C.11 Java code implementing the C class in figure 5.4

C.5 Figure 5.5

Package names are not shown in the diagram, but have been added in the code. Visibility is
also not shown in the diagram. Here, attributes and methods called by objects where they
are located have been assigned private visibility, while constructors and methods have public
visibility.

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassA {
4 private ClassB objB;
5 private ClassE objE;
6
7 public void metF() {
8 }
9 /* The following lines appear somwhere in the code, in the

10 * order they are written here.

164

Appendix C Implementations of UML Diagrams

11 * objB.metA(2);
12 * int retVal = objE.metD();
13 * objE.metE();
14 */
15 }

Listing C.12 Java code implementing the ClassA class in figure 5.5

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassB {
4 private ClassC objC;
5
6 public void metA(int aParam) {
7 objC.metB();
8 ClassD objD = new ClassD();
9 }

10 }

Listing C.13 Java code implementing the ClassB class in figure 5.5

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassC {
4 public void metB() {
5 }
6 }

Listing C.14 Java code implementing the ClassC class in figure 5.5

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassD {
4 public ClassD() {
5 myMethod();
6 }
7
8 private void myMethod() {
9 }

10 }

Listing C.15 Java code implementing the ClassD class in figure 5.5

165

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassE {
4 private ClassA objA;
5
6 public void metE() {
7 objA.metF();
8 }
9

10 public int metD() {
11 return 0;
12 }
13 }

Listing C.16 Java code implementing the ClassE class in figure 5.5

C.6 Figure 5.6

Package names are not shown in the diagram, but have been added in the code. Visibility is
also not shown in the diagram. Here, attributes and methods called by objects where they
are located have been assigned private visibility, while constructors and methods have public
visibility.

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassF {
4 private int count;
5 private ClassG classG;
6 private ClassH classH;
7
8 /* The following code appears somewhere, in some method:
9 * if (count == 3) {

10 * classG.aMethod();
11 * } else {
12 * classH.aMethod();
13 * }
14 */
15 }

Listing C.17 Java code implementing the ClassF class in figure 5.6

1 package se.kth.ict.oodbook.design.uml;
2

166

Appendix C Implementations of UML Diagrams

3 public class ClassG {
4 public void aMethod() {
5 }
6 }

Listing C.18 Java code implementing the ClassG class in figure 5.6

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassH {
4 private int n;
5 private ClassK classK;
6
7 public void aMethod() {
8 for (int i = 1; i <= n; i++) {
9 classK.aMet();

10 }
11 }
12 }

Listing C.19 Java code implementing the ClassH class in figure 5.6

1 package se.kth.ict.oodbook.design.uml;
2
3 public class ClassK {
4 public void aMet() {
5 }
6 }

Listing C.20 Java code implementing the ClassK class in figure 5.6

C.7 Figure 5.9

The method bodies on line 17 in listing C.22 and line 17 in listing C.23 are not shown in the
diagram in figure 5.9b. The code on those lines is included here since there is no reasonable
alternative. The attribute on line eleven in listing C.23 is illustrated by the association in figure
5.9b. Package names are not shown in the diagram, but has been added in the code.

1 package se.kth.ict.oodbook.design.cohesion;
2
3 import java.util.List;
4
5 /**

167

Appendix C Implementations of UML Diagrams

6 * Represents an employee.
7 */
8 public class BadDesignEmployee {
9 private String name;

10 private Address address;
11 private Amount salary;
12
13 /**
14 * Changes the salary of <code>employee</code> to
15 * <code>newSalary</code>.
16 *
17 * @param employee The <code>Employee</code> whose salary will be
18 * changed.
19 * @param newSalary The new salary of <code>employee</code>.
20 */
21 public void changeSalary(BadDesignEmployee employee,
22 Amount newSalary) {
23 }
24
25 /**
26 * Returns a list with all employees working in the same
27 * department as this employee.
28 */
29 public List<BadDesignEmployee> getAllEmployees() {
30 }
31 }

Listing C.21 Java code implementing the UML diagram in figure 5.9a

1 package se.kth.ict.oodbook.design.cohesion;
2
3 /**
4 * Represents an employee.
5 */
6 public class Employee {
7 private String name;
8 private Address address;
9 private Amount salary;

10
11 /**
12 * Changes the salary to <code>newSalary</code>.
13 *
14 * @param newSalary The new salary.
15 */
16 public void changeSalary(Amount newSalary) {
17 this.salary = newSalary;

168

Appendix C Implementations of UML Diagrams

18 }
19 }

Listing C.22 Java code implementing the Employee class in figure 5.9b

1 package se.kth.ict.oodbook.design.cohesion;
2
3 import java.util.ArrayList;
4 import java.util.List;
5
6 /**
7 * Represents a department.
8 */
9 public class Department {

10 private String name;
11 private List<Employee> employees = new ArrayList<>();
12
13 /**
14 * Returns a list with all employees working in this department.
15 */
16 public List<Employee> getEmployees() {
17 return employees;
18 }
19 }

Listing C.23 Java code implementing the Department class in figure 5.9b

C.8 Figure 5.10

The method body on line 15 in listing C.24 is not shown in the diagram in figure 5.10a. The
code on that line is included here since there is no reasonable alternative.

The method body on line 16 in listing C.25 is not shown in the diagram in figure 5.10b. The
code on that line is included here since there is no reasonable alternative. The attributes on
lines nine and ten in listing C.25 are illustrated by the associations in figure 5.10b. Package
names are not shown in the diagram, but has been added in the code.

1 package se.kth.ict.oodbook.design.cohesion;
2
3 /**
4 * Represents a car.
5 */
6 public class BadDesignCar {
7 private String regNo;
8 private Person owner;

169

Appendix C Implementations of UML Diagrams

9 private String ownersPreferredRadioStation;
10
11 /**
12 * Returns the registration number of this car.
13 */
14 public String getRegNo() {
15 return regNo;
16 }
17
18 /**
19 * Accelerates the car.
20 */
21 public void accelerate() {
22
23 }
24
25 /**
26 * Breaks the car.
27 */
28 public void brake() {
29
30 }
31
32 /**
33 * Sets the car’s radio to the specified station.
34 * @param station The station to which to listen.
35 */
36 public void changeRadioStation(String station) {
37
38 }
39 }

Listing C.24 Java code implementing the BadDesignCar class in figure 5.10a

1 package se.kth.ict.oodbook.design.cohesion;
2
3 /**
4 * Represents a car.
5 */
6 public class Car {
7 private String regNo;
8 private Person owner;
9 private Engine engine;

10 private Radio radio;
11
12 /**

170

Appendix C Implementations of UML Diagrams

13 * Returns the registration number of this car.
14 */
15 public String getRegNo() {
16 return regNo;
17 }
18 }

Listing C.25 Java code implementing the Car class in figure 5.10b

1 package se.kth.ict.oodbook.design.cohesion;
2
3 /**
4 * Represents a car radio.
5 */
6 public class Radio {
7 private String ownersPreferredStation;
8 /**
9 * Sets the radio to the specified station.

10 * @param station The station to which to listen.
11 */
12 public void changeStation(String station) {
13 }
14 }

Listing C.26 Java code implementing the Radio class in figure 5.10b

1 package se.kth.ict.oodbook.design.cohesion;
2
3 /**
4 * Represents a car engine.
5 */
6 public class Engine {
7 /**
8 * Accelerates the car.
9 */

10 public void accelerate() {
11 }
12
13 /**
14 * Breaks the car.
15 */
16 public void brake() {
17 }
18 }

Listing C.27 Java code implementing the Engine class in figure 5.10b

171

Appendix C Implementations of UML Diagrams

C.9 Figure 5.12

Package names are not shown in the diagram, but have been added in the code.

1 package se.kth.ict.oodbook.design.coupling;
2
3 public class HighCouplingOrder {
4 private HighCouplingCustomer customer;
5 private HighCouplingShippingAddress shippingAddress;
6 }

Listing C.28 Java code implementing the HighCouplingOrder class in figure 5.12a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingCustomer {
4 private HighCouplingShippingAddress shippingAddress;
5 }

Listing C.29 Java code implementing the HighCouplingCustomer class in figure
5.12a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingShippingAddress {
4 }

Listing C.30 Java code implementing the HighCouplingShippingAddress class
in figure 5.12a

1 package se.kth.ict.oodbook.design.coupling;
2
3 public class Order {
4 private Customer customer;
5 }

Listing C.31 Java code implementing the Order class in figure 5.12b

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Customer {
4 private ShippingAddress shippingAddress;
5 }

Listing C.32 Java code implementing the Customer class in figure 5.12b

172

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.coupling;
2
3 class ShippingAddress {
4 }

Listing C.33 Java code implementing the ShippingAddress class in figure 5.12b

C.10 Figure 5.13

Package names are not shown in the diagram, but have been added in the code.

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingBooking {
4 }

Listing C.34 Java code implementing the HighCouplingBooking class in figure
5.13a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingGuest {
4 }

Listing C.35 Java code implementing the HighCouplingGuest class in figure 5.13a

1 package se.kth.ict.oodbook.design.coupling;
2
3 public class HighCouplingHotel {
4 private HighCouplingBooking booking;
5 private HighCouplingGuest guest;
6 private HighCouplingAddress address;
7 private HighCouplingFloor floor;
8 private HighCouplingRoom room;
9 }

Listing C.36 Java code implementing the HighCouplingHotel class in figure 5.13a

173

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingAddress {
4 }

Listing C.37 Java code implementing the HighCouplingAddress class in figure
5.13a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingFloor {
4 }

Listing C.38 Java code implementing the HighCouplingFloor class in figure 5.13a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class HighCouplingRoom {
4 }

Listing C.39 Java code implementing the HighCouplingRoom class in figure 5.13a

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Booking {
4 private Guest guest;
5 }

Listing C.40 Java code implementing the Booking class in figure 5.13b

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Guest {
4 }

Listing C.41 Java code implementing the Guest class in figure 5.13b

1 package se.kth.ict.oodbook.design.coupling;
2
3 public class Hotel {
4 private Booking booking;
5 private Address address;
6 private Floor floor;

174

Appendix C Implementations of UML Diagrams

7 }

Listing C.42 Java code implementing the Hotel class in figure 5.13b

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Address {
4 }

Listing C.43 Java code implementing the Address class in figure 5.13b

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Floor {
4 private Room room;
5 }

Listing C.44 Java code implementing the Floor class in figure 5.13b

1 package se.kth.ict.oodbook.design.coupling;
2
3 class Room {
4 }

Listing C.45 Java code implementing the Room class in figure 5.13b

175

Appendix C Implementations of UML Diagrams

C.11 Figure 5.15

Package name is not shown in the diagram, but has been added in the code.

1 package se.kth.ict.oodbook.architecture.packPriv;
2
3 /**
4 * Illustrates package private field and method. Note that it is
5 * not required to write javadoc for these, since they are not
6 * part of the public interface.
7 */
8 public class PackPriv {
9 int packagePrivateAtribute;

10
11 void packagePrivateMethod() {
12 }
13 }

Listing C.46 Java code implementing the PackPriv class in figure 5.15

C.12 Figure 5.18

1 package se.kth.ict.oodbook.architecture.mvc.controller;
2
3 /**
4 * This is the application’s controller. All calls from view to model
5 * pass through here.
6 */
7 public class Controller {
8 /**
9 * A system operation, which means it appears in the system sequence

10 * diagram.
11 */
12 public void systemOperation1() {
13 }
14
15 /**
16 * A system operation, which means it appears in the system sequence
17 * diagram.
18 */
19 public void systemOperation2() {
20 }
21 }

Listing C.47 Java code implementing the Controller class in figure 5.18

176

Appendix C Implementations of UML Diagrams

C.13 Figure 5.19

1 package se.kth.ict.oodbook.architecture.mvc.view;
2
3 import se.kth.ict.oodbook.architecture.mvc.controller.Controller;
4
5 /**
6 * A class in the view.
7 */
8 public class ClassInView {
9 private Controller contr;

10
11 //Somewhere in some method.
12 contr.systemOperation1();
13 }

Listing C.48 Java code implementing the ClassInView class in figure 5.19

1 package se.kth.ict.oodbook.architecture.mvc.controller;
2
3 import se.kth.ict.oodbook.architecture.mvc.model.OtherClassInModel;
4 import se.kth.ict.oodbook.architecture.mvc.model.SomeClassInModel;
5
6 /**
7 * This is the application’s controller. All calls from view to model
8 * pass through here.
9 */

10 public class Controller {
11 private SomeClassInModel scim;
12 private OtherClassInModel ocim;
13
14 /**
15 * A system operation, which means it appears in the system sequence
16 * diagram.
17 */
18 public void systemOperation1() {
19 scim.aMethod();
20 ocim.aMethod();
21 }
22 }

Listing C.49 Java code implementing the Controller class in figure 5.19

177

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.architecture.mvc.model;
2
3 /**
4 * A class in the model, performing some business logic.
5 */
6 public class SomeClassInModel {
7
8 /**
9 * Performs some business logic.

10 */
11 public void aMethod() {
12 }
13 }

Listing C.50 Java code implementing the SomeClassInModel class in figure 5.19

1 package se.kth.ict.oodbook.architecture.mvc.model;
2
3 /**
4 * A class in the model, performing some business logic.
5 */
6 public class OtherClassInModel {
7
8 /**
9 * Performs some business logic.

10 */
11 public void aMethod() {
12 }
13 }

Listing C.51 Java code implementing the OtherClassInModel class in figure 5.19

C.14 Figure 5.25

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.Car;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.

178

Appendix C Implementations of UML Diagrams

9 */
10 public class View {
11 // Somewhere in the code. Note that the arguments to the
12 // Car constructor are not specified in the UML diagram.
13 Car searchedCar = new Car(0, null, false, false,
14 null, null);
15 Car foundCar = contr.searchMatchingCar(searchedCar);
16 }
17
18 }

Listing C.52 Java code implementing the View class in figure 5.25

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.Car;
4
5 /**
6 * This is the application’s only controller class. All calls to
7 * the model pass through here.
8 */
9 public class Controller {

10 public Car searchMatchingCar(Car searchedCar) {
11 }
12 }

Listing C.53 Java code implementing the Controller class in figure 5.25

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains information about one particular car.
5 */
6 public class Car {
7
8 private int price;
9 private String size;

10 private boolean AC;
11 private boolean fourWD;
12 private String color;
13 private String regNo;
14
15 /**
16 * Creates a new instance representing a particular car.
17 *

179

Appendix C Implementations of UML Diagrams

18 * @param price The price paid to rent the car.
19 * @param size The size of the car, e.g., <code>medium
20 hatchback</code>.
21 * @param AC <code>true</code> if the car has air
22 condition.
23 * @param fourWD <code>true</code> if the car has four
24 wheel drive.
25 * @param color The color of the car.
26 * @param regNo The car’s registration number.
27 */
28 public Car(int price, String size, boolean AC, boolean fourWD,
29 String color, String regNo) {
30 this.price = price;
31 this.size = size;
32 this.AC = AC;
33 this.fourWD = fourWD;
34 this.color = color;
35 this.regNo = regNo;
36 }
37
38 /**
39 * Get the value of regNo
40 *
41 * @return the value of regNo
42 */
43 public String getRegNo() {
44 return regNo;
45 }
46
47 /**
48 * Get the value of color
49 *
50 * @return the value of color
51 */
52 public String getColor() {
53 return color;
54 }
55
56 /**
57 * Get the value of fourWD
58 *
59 * @return the value of fourWD
60 */
61 public boolean isFourWD() {
62 return fourWD;
63 }

180

Appendix C Implementations of UML Diagrams

64
65 /**
66 * Get the value of AC
67 *
68 * @return the value of AC
69 */
70 public boolean isAC() {
71 return AC;
72 }
73
74 /**
75 * Get the value of size
76 *
77 * @return the value of size
78 */
79 public String getSize() {
80 return size;
81 }
82
83 /**
84 * Get the value of price
85 *
86 * @return the value of price
87 */
88 public int getPrice() {
89 return price;
90 }
91
92 }

Listing C.54 Java code implementing the Car class in figure 5.25

C.15 Figure 5.26

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {

181

Appendix C Implementations of UML Diagrams

11 // Somewhere in the code. Note that the arguments to the
12 // CarDTO constructor are not specified in the UML
13 // diagram.
14 CarDTO searchedCar = new CarDTO(0, null, false, false,
15 null, null);
16 CarDTO foundCar = contr.searchMatchingCar(searchedCar);
17 }
18
19 }

Listing C.55 Java code implementing the View class in figure 5.26

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4
5 /**
6 * This is the application’s only controller class. All calls to
7 * the model pass through here.
8 */
9 public class Controller {

10 public CarDTO searchMatchingCar(CarDTO searchedCar) {
11 }
12 }

Listing C.56 Java code implementing the Controller class in figure 5.26

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains information about one particular car.
5 */
6 public class CarDTO {
7
8 private int price;
9 private String size;

10 private boolean AC;
11 private boolean fourWD;
12 private String color;
13 private String regNo;
14
15 /**
16 * Creates a new instance representing a particular car.
17 *
18 * @param price The price paid to rent the car.

182

Appendix C Implementations of UML Diagrams

19 * @param size The size of the car, e.g., <code>medium
20 hatchback</code>.
21 * @param AC <code>true</code> if the car has air
22 condition.
23 * @param fourWD <code>true</code> if the car has four
24 wheel drive.
25 * @param color The color of the car.
26 * @param regNo The car’s registration number.
27 */
28 public CarDTO(int price, String size, boolean AC,
29 boolean fourWD, String color, String regNo) {
30 this.price = price;
31 this.size = size;
32 this.AC = AC;
33 this.fourWD = fourWD;
34 this.color = color;
35 this.regNo = regNo;
36 }
37
38 /**
39 * Get the value of regNo
40 *
41 * @return the value of regNo
42 */
43 public String getRegNo() {
44 return regNo;
45 }
46
47 /**
48 * Get the value of color
49 *
50 * @return the value of color
51 */
52 public String getColor() {
53 return color;
54 }
55
56 /**
57 * Get the value of fourWD
58 *
59 * @return the value of fourWD
60 */
61 public boolean isFourWD() {
62 return fourWD;
63 }
64

183

Appendix C Implementations of UML Diagrams

65 /**
66 * Get the value of AC
67 *
68 * @return the value of AC
69 */
70 public boolean isAC() {
71 return AC;
72 }
73
74 /**
75 * Get the value of size
76 *
77 * @return the value of size
78 */
79 public String getSize() {
80 return size;
81 }
82
83 /**
84 * Get the value of price
85 *
86 * @return the value of price
87 */
88 public int getPrice() {
89 return price;
90 }
91
92 }

Listing C.57 Java code implementing the CarDTO class in figure 5.26

C.16 Figure 5.27

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 // Somewhere in the code. Note that the arguments to the

184

Appendix C Implementations of UML Diagrams

12 // CarDTO constructor are not specified in the UML
13 // diagram.
14 CarDTO searchedCar = new CarDTO(0, null, false, false,
15 null, null);
16 CarDTO foundCar = contr.searchMatchingCar(searchedCar);
17 }
18
19 }

Listing C.58 Java code implementing the View class in figure 5.27

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4
5 /**
6 * This is the application’s only controller class. All calls to
7 * the model pass through here.
8 */
9 public class Controller {

10 public CarDTO searchMatchingCar(CarDTO searchedCar) {
11 return carRegistry.findCar(searchedCar);
12 }
13 }

Listing C.59 Java code implementing the Controller class in figure 5.27

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains information about one particular car.
5 */
6 public class CarDTO {
7
8 private int price;
9 private String size;

10 private boolean AC;
11 private boolean fourWD;
12 private String color;
13 private String regNo;
14
15 /**
16 * Creates a new instance representing a particular car.
17 *
18 * @param price The price paid to rent the car.

185

Appendix C Implementations of UML Diagrams

19 * @param size The size of the car, e.g., <code>medium
20 hatchback</code>.
21 * @param AC <code>true</code> if the car has air
22 condition.
23 * @param fourWD <code>true</code> if the car has four
24 wheel drive.
25 * @param color The color of the car.
26 * @param regNo The car’s registration number.
27 */
28 public CarDTO(int price, String size, boolean AC,
29 boolean fourWD, String color, String regNo) {
30 this.price = price;
31 this.size = size;
32 this.AC = AC;
33 this.fourWD = fourWD;
34 this.color = color;
35 this.regNo = regNo;
36 }
37
38 /**
39 * Get the value of regNo
40 *
41 * @return the value of regNo
42 */
43 public String getRegNo() {
44 return regNo;
45 }
46
47 /**
48 * Get the value of color
49 *
50 * @return the value of color
51 */
52 public String getColor() {
53 return color;
54 }
55
56 /**
57 * Get the value of fourWD
58 *
59 * @return the value of fourWD
60 */
61 public boolean isFourWD() {
62 return fourWD;
63 }
64

186

Appendix C Implementations of UML Diagrams

65 /**
66 * Get the value of AC
67 *
68 * @return the value of AC
69 */
70 public boolean isAC() {
71 return AC;
72 }
73
74 /**
75 * Get the value of size
76 *
77 * @return the value of size
78 */
79 public String getSize() {
80 return size;
81 }
82
83 /**
84 * Get the value of price
85 *
86 * @return the value of price
87 */
88 public int getPrice() {
89 return price;
90 }
91
92 }

Listing C.60 Java code implementing the CarDTO class in figure 5.27

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 public CarDTO findCar(CarDTO searchedCar) {
9 }

10 }

Listing C.61 Java code implementing the CarRegistry class in figure 5.27

187

Appendix C Implementations of UML Diagrams

C.17 Figure 5.28

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup of
9 * the application.

10 */
11 public class Main {
12 public static void main(String[] args) {
13 CarRegistry carRegistry = new CarRegistry();
14 Controller contr = new Controller(carRegistry);
15 new View(contr);
16 }
17 }

Listing C.62 Java code implementing the Main class in figure 5.28

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 }

Listing C.63 Java code implementing the CarRegistry class in figure 5.28

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * This is the application’s only controller class. All calls to
8 * the model pass through here.
9 */

10 public class Controller {
11 public Controller(CarRegistry carRegistry) {

188

Appendix C Implementations of UML Diagrams

12 }
13 }

Listing C.64 Java code implementing the Controller class in figure 5.28

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 public View(Controller contr) {
12 }
13 }

Listing C.65 Java code implementing the View class in figure 5.28

C.18 Figure 5.29

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 private Controller contr;
12
13 /**
14 * Creates a new instance.
15 *
16 * @param contr The controller that is used for all operations.
17 */
18 public View(Controller contr) {
19 }
20 }

189

Appendix C Implementations of UML Diagrams

Listing C.66 Java code implementing the View class in figure 5.29

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * This is the application’s only controller class. All calls to
8 * the model pass through here.
9 */

10 public class Controller {
11 private CarRegistry carRegistry;
12
13 /**
14 * Creates a new instance.
15 *
16 * @param carRegistry Used to access the car data store.
17 */
18 public Controller(CarRegistry carRegistry) {
19 }
20
21 /**
22 * Search for a car matching the specified search criteria.
23 *
24 * @param searchedCar This object contains the search criteria.
25 * Fields in the object that are set to
26 * <code>null</code> or
27 * <code>false</code> are ignored.
28 * @return The best match of the search criteria.
29 */
30 public CarDTO searchMatchingCar(CarDTO searchedCar) {
31 }
32
33 /**
34 * Registers a new customer. Only registered customers can
35 * rent cars.
36 *
37 * @param customer The customer that will be registered.
38 */
39 public void registerCustomer(CustomerDTO customer) {
40 }
41 }

190

Appendix C Implementations of UML Diagrams

Listing C.67 Java code implementing the Controller class in figure 5.29

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup
9 * of the application.

10 */
11 public class Main {
12 public static void main(String[] args) {
13 }
14 }

Listing C.68 Java code implementing the Main class in figure 5.29

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 /**
9 * Creates a new instance.

10 */
11 public CarRegistry() {
12 }
13
14 /**
15 * Search for a car matching the specified search criteria.
16 *
17 * @param searchedCar This object contains the search criteria.
18 * Fields in the object that are set to
19 * <code>null</code> or
20 * <code>false</code> are ignored.
21 * @return The best match of the search criteria.
22 */
23 public CarDTO findCar(CarDTO searchedCar) {
24 }

191

Appendix C Implementations of UML Diagrams

25 }

Listing C.69 Java code implementing the CarRegistry class in figure 5.29

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains information about one particular car.
5 */
6 public class CarDTO {
7
8 private int price;
9 private String size;

10 private boolean AC;
11 private boolean fourWD;
12 private String color;
13 private String regNo;
14
15 /**
16 * Creates a new instance representing a particular car.
17 *
18 * @param price The price paid to rent the car.
19 * @param size The size of the car, e.g.,
20 * <code>medium hatchback</code>.
21 * @param AC <code>true</code> if the car has
22 * air condition.
23 * @param fourWD <code>true</code> if the car has four
24 * wheel drive.
25 * @param color The color of the car.
26 * @param regNo The car’s registration number.
27 */
28 public CarDTO(int price, String size, boolean AC,
29 boolean fourWD, String color, String regNo) {
30 }
31
32 /**
33 * Get the value of regNo
34 *
35 * @return the value of regNo
36 */
37 public String getRegNo() {
38 }
39
40 /**
41 * Get the value of color
42 *

192

Appendix C Implementations of UML Diagrams

43 * @return the value of color
44 */
45 public String getColor() {
46 }
47
48 /**
49 * Get the value of fourWD
50 *
51 * @return the value of fourWD
52 */
53 public boolean isFourWD() {
54 }
55
56 /**
57 * Get the value of AC
58 *
59 * @return the value of AC
60 */
61 public boolean isAC() {
62 }
63
64 /**
65 * Get the value of size
66 *
67 * @return the value of size
68 */
69 public String getSize() {
70 }
71
72 /**
73 * Get the value of price
74 *
75 * @return the value of price
76 */
77 public int getPrice() {
78 }
79
80 }

Listing C.70 Java code implementing the CarDTO class in figure 5.29

C.19 Figure 5.30

1 package se.kth.ict.oodbook.design.casestudy.view;

193

Appendix C Implementations of UML Diagrams

2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5 import se.kth.ict.oodbook.design.casestudy.model.AddressDTO;
6 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
7 import se.kth.ict.oodbook.design.casestudy.model.DrivingLicenseDTO;
8
9 /**

10 * This program has no view, instead, this class is a placeholder
11 * for the entire view.
12 */
13 public class View {
14 private Controller contr;
15
16 // Somewhere in the code. Note that the arguments to the
17 // DTO constructors are not specified in the UML
18 // diagram.
19 AddressDTO address = new AddressDTO("Storgatan 2", "12345",
20 "Hemorten");
21 DrivingLicenseDTO drivingLicense = new DrivingLicenseDTO(
22 "982193721937213");
23 CustomerDTO customer = new CustomerDTO("Stina", address,
24 drivingLicense);
25 contr.registerCustomer(customer);
26 }

Listing C.71 Java code implementing the View class in figure 5.30

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a post address.
5 */
6 public final class AddressDTO {
7 private final String street;
8 private final String zip;
9 private final String city;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param street Street name and number.
15 * @param zip Zip code
16 * @param city City (postort)
17 */
18 public AddressDTO(String street, String zip, String city) {

194

Appendix C Implementations of UML Diagrams

19 this.street = street;
20 this.zip = zip;
21 this.city = city;
22 }
23
24 /**
25 * Get the value of city
26 *
27 * @return the value of city
28 */
29 public String getCity() {
30 return city;
31 }
32
33 /**
34 * Get the value of zip
35 *
36 * @return the value of zip
37 */
38 public String getZip() {
39 return zip;
40 }
41
42 /**
43 * Get the value of street
44 *
45 * @return the value of street
46 */
47 public String getStreet() {
48 return street;
49 }
50
51 }

Listing C.72 Java code implementing the AddressDTO class in figure 5.30

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a driving license
5 */
6 public class DrivingLicenseDTO {
7 private final String licenseNo;
8
9 /**

10 * Creates a new instance.

195

Appendix C Implementations of UML Diagrams

11 *
12 * @param licenseNo The driving license number.
13 */
14 public DrivingLicenseDTO(String licenseNo) {
15 this.licenseNo = licenseNo;
16 }
17
18 /**
19 * Get the value of licenseNo
20 *
21 * @return the value of licenseNo
22 */
23 public String getLicenseNo() {
24 return licenseNo;
25 }
26
27 }

Listing C.73 Java code implementing the DrivingLicenseDTO class in figure 5.30

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a customer of the car rental company.
5 */
6 public class CustomerDTO {
7 private final String name;
8 private final AddressDTO address;
9 private final DrivingLicenseDTO drivingLicense;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param name The customer’s name.
15 * @param address The customer’s address.
16 * @param drivingLicense The customer’s driving license.
17 */
18 public CustomerDTO(String name, AddressDTO address,
19 DrivingLicenseDTO drivingLicense) {
20 this.name = name;
21 this.address = address;
22 this.drivingLicense = drivingLicense;
23 }
24
25 /**
26 * Get the value of drivingLicense

196

Appendix C Implementations of UML Diagrams

27 *
28 * @return the value of drivingLicense
29 */
30 public DrivingLicenseDTO getDrivingLicense() {
31 return drivingLicense;
32 }
33
34 /**
35 * Get the value of address
36 *
37 * @return the value of address
38 */
39 public AddressDTO getAddress() {
40 return address;
41 }
42
43 /**
44 * Get the value of name
45 *
46 * @return the value of name
47 */
48 public String getName() {
49 return name;
50 }
51
52 }

Listing C.74 Java code implementing the CustomerDTO class in figure 5.30

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
6 import se.kth.ict.oodbook.design.casestudy.model.Rental;
7
8 /**
9 * This is the application’s only controller class. All calls to

10 * the model pass through here.
11 */
12 public class Controller {
13 /**
14 * Registers a new customer. Only registered customers can
15 * rent cars.
16 *
17 * @param customer The customer that will be registered.

197

Appendix C Implementations of UML Diagrams

18 */
19 public void registerCustomer(CustomerDTO customer) {
20 }
21 }

Listing C.75 Java code implementing the Controller class in figure 5.30

C.20 Figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5 import se.kth.ict.oodbook.design.casestudy.model.AddressDTO;
6 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
7 import se.kth.ict.oodbook.design.casestudy.model.DrivingLicenseDTO;
8
9 /**

10 * This program has no view, instead, this class is a placeholder
11 * for the entire view.
12 */
13 public class View {
14 private Controller contr;
15
16 // Somewhere in the code. Note that the arguments to the
17 // DTO constructors are not specified in the UML
18 // diagram.
19 AddressDTO address = new AddressDTO("Storgatan 2", "12345",
20 "Hemorten");
21 DrivingLicenseDTO drivingLicense = new DrivingLicenseDTO(
22 "982193721937213");
23 CustomerDTO customer = new CustomerDTO("Stina", address,
24 drivingLicense);
25 contr.registerCustomer(customer);
26 }

Listing C.76 Java code implementing the View class in figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a post address.
5 */

198

Appendix C Implementations of UML Diagrams

6 public final class AddressDTO {
7 private final String street;
8 private final String zip;
9 private final String city;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param street Street name and number.
15 * @param zip Zip code
16 * @param city City (postort)
17 */
18 public AddressDTO(String street, String zip, String city) {
19 this.street = street;
20 this.zip = zip;
21 this.city = city;
22 }
23
24 /**
25 * Get the value of city
26 *
27 * @return the value of city
28 */
29 public String getCity() {
30 return city;
31 }
32
33 /**
34 * Get the value of zip
35 *
36 * @return the value of zip
37 */
38 public String getZip() {
39 return zip;
40 }
41
42 /**
43 * Get the value of street
44 *
45 * @return the value of street
46 */
47 public String getStreet() {
48 return street;
49 }
50
51 }

199

Appendix C Implementations of UML Diagrams

Listing C.77 Java code implementing the AddressDTO class in figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a driving license
5 */
6 public class DrivingLicenseDTO {
7 private final String licenseNo;
8
9 /**

10 * Creates a new instance.
11 *
12 * @param licenseNo The driving license number.
13 */
14 public DrivingLicenseDTO(String licenseNo) {
15 this.licenseNo = licenseNo;
16 }
17
18 /**
19 * Get the value of licenseNo
20 *
21 * @return the value of licenseNo
22 */
23 public String getLicenseNo() {
24 return licenseNo;
25 }
26
27 }

Listing C.78 Java code implementing the DrivingLicenseDTO class in figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a customer of the car rental company.
5 */
6 public class CustomerDTO {
7 private final String name;
8 private final AddressDTO address;
9 private final DrivingLicenseDTO drivingLicense;

10
11 /**

200

Appendix C Implementations of UML Diagrams

12 * Creates a new instance.
13 *
14 * @param name The customer’s name.
15 * @param address The customer’s address.
16 * @param drivingLicense The customer’s driving license.
17 */
18 public CustomerDTO(String name, AddressDTO address,
19 DrivingLicenseDTO drivingLicense) {
20 this.name = name;
21 this.address = address;
22 this.drivingLicense = drivingLicense;
23 }
24
25 /**
26 * Get the value of drivingLicense
27 *
28 * @return the value of drivingLicense
29 */
30 public DrivingLicenseDTO getDrivingLicense() {
31 return drivingLicense;
32 }
33
34 /**
35 * Get the value of address
36 *
37 * @return the value of address
38 */
39 public AddressDTO getAddress() {
40 return address;
41 }
42
43 /**
44 * Get the value of name
45 *
46 * @return the value of name
47 */
48 public String getName() {
49 return name;
50 }
51
52 }

Listing C.79 Java code implementing the CustomerDTO class in figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.controller;
2

201

Appendix C Implementations of UML Diagrams

3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
6 import se.kth.ict.oodbook.design.casestudy.model.Rental;
7
8 /**
9 * This is the application’s only controller class. All calls to

10 * the model pass through here.
11 */
12 public class Controller {
13 /**
14 * Registers a new customer. Only registered customers can
15 * rent cars.
16 *
17 * @param customer The customer that will be registered.
18 */
19 public void registerCustomer(CustomerDTO customer) {
20 rental = new Rental(customer);
21 }
22 }

Listing C.80 Java code implementing the Controller class in figure 5.31

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one particular rental transaction, where one
5 * particular car is rented by one particular customer.
6 */
7 public class Rental {
8 private CustomerDTO customer;
9

10 /**
11 * Creates a new instance, representing a rental made by the
12 * specified customer.
13 *
14 * @param customer The renting customer.
15 */
16 public Rental(CustomerDTO customer) {
17 this.customer = customer;
18 }
19 }

Listing C.81 Java code implementing the Rental class in figure 5.31

202

Appendix C Implementations of UML Diagrams

C.21 Figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 private Controller contr;
12
13 /**
14 * Creates a new instance.
15 *
16 * @param contr The controller that is used for all operations.
17 */
18 public View(Controller contr) {
19 }
20 }

Listing C.82 Java code implementing the View class in figure 5.32

203

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * This is the application’s only controller class. All calls to
8 * the model pass through here.
9 */

10 public class Controller {
11 private CarRegistry carRegistry;
12
13 /**
14 * Creates a new instance.
15 *
16 * @param carRegistry Used to access the car data store.
17 */
18 public Controller(CarRegistry carRegistry) {
19 }
20
21 /**
22 * Search for a car matching the specified search criteria.
23 *
24 * @param searchedCar This object contains the search criteria.
25 * Fields in the object that are set to
26 * <code>null</code> or
27 * <code>false</code> are ignored.
28 * @return The best match of the search criteria.
29 */
30 public CarDTO searchMatchingCar(CarDTO searchedCar) {
31 }
32
33 /**
34 * Registers a new customer. Only registered customers can
35 * rent cars.
36 *
37 * @param customer The customer that will be registered.
38 */
39 public void registerCustomer(CustomerDTO customer) {
40 }
41 }

Listing C.83 Java code implementing the Controller class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.startup;

204

Appendix C Implementations of UML Diagrams

2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup
9 * of the application.

10 */
11 public class Main {
12 public static void main(String[] args) {
13 }
14 }

Listing C.84 Java code implementing the Main class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 /**
9 * Creates a new instance.

10 */
11 public CarRegistry() {
12 }
13
14 /**
15 * Search for a car matching the specified search criteria.
16 *
17 * @param searchedCar This object contains the search
18 * criteria. Fields in the object that
19 * are set to <code>null</code> or
20 * <code>false</code> are ignored.
21 * @return The best match of the search criteria.
22 */
23 public CarDTO findCar(CarDTO searchedCar) {
24 }
25 }

Listing C.85 Java code implementing the CarRegistry class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;

205

Appendix C Implementations of UML Diagrams

2
3 /**
4 * Contains information about one particular car.
5 */
6 public class CarDTO {
7
8 private int price;
9 private String size;

10 private boolean AC;
11 private boolean fourWD;
12 private String color;
13 private String regNo;
14
15 /**
16 * Creates a new instance representing a particular car.
17 *
18 * @param price The price paid to rent the car.
19 * @param size The size of the car, e.g.,
20 * <code>medium hatchback</code>.
21 * @param AC <code>true</code> if the car has
22 * air condition.
23 * @param fourWD <code>true</code> if the car has four
24 * wheel drive.
25 * @param color The color of the car.
26 * @param regNo The car’s registration number.
27 */
28 public CarDTO(int price, String size, boolean AC,
29 boolean fourWD, String color, String regNo) {
30 }
31
32 /**
33 * Get the value of regNo
34 *
35 * @return the value of regNo
36 */
37 public String getRegNo() {
38 }
39
40 /**
41 * Get the value of color
42 *
43 * @return the value of color
44 */
45 public String getColor() {
46 }
47

206

Appendix C Implementations of UML Diagrams

48 /**
49 * Get the value of fourWD
50 *
51 * @return the value of fourWD
52 */
53 public boolean isFourWD() {
54 }
55
56 /**
57 * Get the value of AC
58 *
59 * @return the value of AC
60 */
61 public boolean isAC() {
62 }
63
64 /**
65 * Get the value of size
66 *
67 * @return the value of size
68 */
69 public String getSize() {
70 }
71
72 /**
73 * Get the value of price
74 *
75 * @return the value of price
76 */
77 public int getPrice() {
78 }
79
80 }

Listing C.86 Java code implementing the CarDTO class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one particular rental transaction, where one
5 * particular car is rented by one particular customer.
6 */
7 public class Rental {
8 private CustomerDTO customer;
9

10 /**

207

Appendix C Implementations of UML Diagrams

11 * Creates a new instance, representing a rental made by
12 * the specified customer.
13 *
14 * @param customer The renting customer.
15 */
16 public Rental(CustomerDTO customer) {
17 }
18 }

Listing C.87 Java code implementing the Rental class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a driving license
5 */
6 public class DrivingLicenseDTO {
7 private final String licenseNo;
8
9 /**

10 * Creates a new instance.
11 *
12 * @param licenseNo The driving license number.
13 */
14 public DrivingLicenseDTO(String licenseNo) {
15 }
16
17 /**
18 * Get the value of licenseNo
19 *
20 * @return the value of licenseNo
21 */
22 public String getLicenseNo() {
23 }
24
25 }

Listing C.88 Java code implementing the DrivingLicenseDTO class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a customer of the car rental company.
5 */
6 public class CustomerDTO {

208

Appendix C Implementations of UML Diagrams

7 private final String name;
8 private final AddressDTO address;
9 private final DrivingLicenseDTO drivingLicense;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param name The customer’s name.
15 * @param address The customer’s address.
16 * @param drivingLicense The customer’s driving license.
17 */
18 public CustomerDTO(String name, AddressDTO address,
19 DrivingLicenseDTO drivingLicense) {
20 }
21
22 /**
23 * Get the value of drivingLicense
24 *
25 * @return the value of drivingLicense
26 */
27 public DrivingLicenseDTO getDrivingLicense() {
28 }
29
30 /**
31 * Get the value of address
32 *
33 * @return the value of address
34 */
35 public AddressDTO getAddress() {
36 }
37
38 /**
39 * Get the value of name
40 *
41 * @return the value of name
42 */
43 public String getName() {
44 }
45
46 }

Listing C.89 Java code implementing the CustomerDTO class in figure 5.32

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**

209

Appendix C Implementations of UML Diagrams

4 * Represents a post address.
5 */
6 public final class AddressDTO {
7 private final String street;
8 private final String zip;
9 private final String city;

10
11 /**
12 * Creates a new instance.
13 *
14 * @param street Street name and number.
15 * @param zip Zip code
16 * @param city City (postort)
17 */
18 public AddressDTO(String street, String zip, String city) {
19 }
20
21 /**
22 * Get the value of city
23 *
24 * @return the value of city
25 */
26 public String getCity() {
27 }
28
29 /**
30 * Get the value of zip
31 *
32 * @return the value of zip
33 */
34 public String getZip() {
35 }
36
37 /**
38 * Get the value of street
39 *
40 * @return the value of street
41 */
42 public String getStreet() {
43 }
44
45 }

Listing C.90 Java code implementing the AddressDTO class in figure 5.32

210

Appendix C Implementations of UML Diagrams

C.22 Figure 5.33

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5 import se.kth.ict.oodbook.design.casestudy.model.AddressDTO;
6 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
7 import se.kth.ict.oodbook.design.casestudy.model.DrivingLicenseDTO;
8
9 /**

10 * This program has no view, instead, this class is a placeholder
11 * for the entire view.
12 */
13 public class View {
14 private Controller contr;
15
16 //Somewhere in the code.
17 contr.bookCar(foundCar);
18 }

Listing C.91 Java code implementing the View class in figure 5.33

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.dbhandler.RentalRegistry;
6 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
7 import se.kth.ict.oodbook.design.casestudy.model.Rental;
8
9 /**

10 * This is the application’s only controller class. All calls to the
11 * model pass through here.
12 */
13 public class Controller {
14 private RentalRegistry rentalRegistry;
15 private Rental rental;
16
17 /**
18 * Books the specified car. After calling this method, the car
19 * can not be booked by any other customer. This method also
20 * permanently saves information about the current rental.
21 *
22 * @param car The car that will be booked.

211

Appendix C Implementations of UML Diagrams

23 */
24 public void bookCar(CarDTO car) {
25 rental.setRentedCar(car);
26 rentalRegistry.saveRental(rental);
27 }
28 }

Listing C.92 Java code implementing the Controller class in figure 5.33

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * Represents one particular rental transaction, where one
8 * particular car is rented by one particular customer.
9 */

10 public class Rental {
11 private CarDTO rentedCar;
12 private CarRegistry carRegistry;
13 /**
14 * Specifies the car that was rented.
15 *
16 * @param rentedCar The car that was rented.
17 */
18 public void setRentedCar(CarDTO rentedCar) {
19 this.rentedCar = rentedCar;
20 carRegistry.bookCar(rentedCar);
21 }
22 }

Listing C.93 Java code implementing the Rental class in figure 5.33

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 /**

10 * Saves the specified rental permanently.
11 *

212

Appendix C Implementations of UML Diagrams

12 * @param rental The rental that will be saved.
13 */
14 public void saveRental(Rental rental) {
15 }
16 }

Listing C.94 Java code implementing the RentalRegistry class in figure 5.33

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may
5 * be rented.
6 */
7 public class CarRegistry {
8 /**
9 * Books the specified car. After calling this method,

10 * the car can not be booked by any other customer.
11 *
12 * @param car The car that will be booked.
13 */
14 public void bookCar(CarDTO car) {
15 }
16 }

Listing C.95 Java code implementing the CarRegistry class in figure 5.33

C.23 Figure 5.34

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup of
9 * the application.

10 */
11 public class Main {
12 public static void main(String[] args) {
13 CarRegistry carRegistry = new CarRegistry();
14 RentalRegistry rentalRegistry = new RentalRegistry();

213

Appendix C Implementations of UML Diagrams

15 Controller contr = new Controller(carRegistry,
16 rentalRegistry);
17 new View(contr);
18 }
19 }

Listing C.96 Java code implementing the Main class in figure 5.34

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 }

Listing C.97 Java code implementing the CarRegistry class in figure 5.34

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 }

Listing C.98 Java code implementing the RentalRegistry class in figure 5.34

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * This is the application’s only controller class. All calls to
8 * the model pass through here.
9 */

10 public class Controller {
11 /**
12 * Creates a new instance.
13 *

214

Appendix C Implementations of UML Diagrams

14 * @param carRegistry Used to access the car data store.
15 * @param rentalRegistry Used to access the rental data store.
16 */
17 public Controller(CarRegistry carRegistry,
18 RentalRegistry rentalRegistry) {
19 }
20 }

Listing C.99 Java code implementing the Controller class in figure 5.34

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 /**
12 * Creates a new instance.
13 *
14 * @param contr The controller that is used for all
15 * operations.
16 */
17 public View(Controller contr) {
18 }
19 }

Listing C.100 Java code implementing the View class in figure 5.34

C.24 Figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup of
9 * the application.

215

Appendix C Implementations of UML Diagrams

10 */
11 public class Main {
12 public static void main(String[] args) {
13 RegistryCreator creator = new RegistryCreator();
14 Controller contr = new Controller(creator);
15 new View(contr);
16 }
17 }

Listing C.101 Java code implementing the Main class in figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 }

Listing C.102 Java code implementing the CarRegistry class in figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 }

Listing C.103 Java code implementing the RentalRegistry class in figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * This class is responsible for instantiating all registries.
5 */
6 public class RegistryCreator {
7 private CarRegistry carRegistry = new CarRegistry();
8 private RentalRegistry rentalRegistry = new RentalRegistry();
9

10 /**

216

Appendix C Implementations of UML Diagrams

11 * Get the value of rentalRegistry
12 *
13 * @return the value of rentalRegistry
14 */
15 public RentalRegistry getRentalRegistry() {
16 return rentalRegistry;
17 }
18
19 /**
20 * Get the value of carRegistry
21 *
22 * @return the value of carRegistry
23 */
24 public CarRegistry getCarRegistry() {
25 return carRegistry;
26 }
27 }

Listing C.104 Java code implementing the RegistryCreator class in figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * This is the application’s only controller class. All calls to
8 * the model pass through here.
9 */

10 public class Controller {
11 /**
12 * Creates a new instance.
13 *
14 * @param regCreator Used to get all classes that handle
15 * database calls.
16 */
17 public Controller(RegistryCreator regCreator) {
18 }
19 }

Listing C.105 Java code implementing the Controller class in figure 5.35

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;

217

Appendix C Implementations of UML Diagrams

4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 /**
12 * Creates a new instance.
13 *
14 * @param contr The controller that is used for all
15 * operations.
16 */
17 public View(Controller contr) {
18 }
19 }

Listing C.106 Java code implementing the View class in figure 5.35

C.25 Figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4
5 /**
6 * This program has no view, instead, this class is a placeholder
7 * for the entire view.
8 */
9 public class View {

10 private Controller contr;
11
12 /**
13 * Creates a new instance.
14 *
15 * @param contr The controller that is used for all
16 * operations.
17 */
18 public View(Controller contr) {
19 }
20 }

Listing C.107 Java code implementing the View class in figure 5.36

218

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.dbhandler.RegistryCreator;
6 import se.kth.ict.oodbook.design.casestudy.dbhandler.RentalRegistry;
7 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
8 import se.kth.ict.oodbook.design.casestudy.model.Rental;
9

10 /**
11 * This is the application’s only controller class. All calls to
12 * the model pass through here.
13 */
14 public class Controller {
15 private CarRegistry carRegistry;
16 private RentalRegistry rentalRegistry;
17 private Rental rental;
18
19 /**
20 * Creates a new instance.
21 *
22 * @param regCreator Used to get all classes that handle
23 * database calls.
24 */
25 public Controller(RegistryCreator regCreator) {
26 }
27
28 /**
29 * Search for a car matching the specified search criteria.
30 *
31 * @param searchedCar This object contains the search criteria.
32 * Fields in the object that are set to
33 * <code>null</code> or
34 * <code>false</code> are ignored.
35 * @return The best match of the search criteria.
36 */
37 public CarDTO searchMatchingCar(CarDTO searchedCar) {
38 }
39
40 /**
41 * Registers a new customer. Only registered customers can
42 * rent cars.
43 *
44 * @param customer The customer that will be registered.
45 */
46 public void registerCustomer(CustomerDTO customer) {

219

Appendix C Implementations of UML Diagrams

47 }
48
49 /**
50 * Books the specified car. After calling this method, the car
51 * can not be booked by any other customer. This method also
52 * permanently saves information about the current rental.
53 *
54 * @param car The car that will be booked.
55 */
56 public void bookCar(CarDTO car) {
57 }
58 }

Listing C.108 Java code implementing the Controller class in figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.RegistryCreator;
5 import se.kth.ict.oodbook.design.casestudy.view.View;
6
7 /**
8 * Contains the <code>main</code> method. Performs all startup of
9 * the application.

10 */
11 public class Main {
12 /**
13 * Starts the application.
14 *
15 * @param args The application does not take any command line
16 * parameters.
17 */
18 public static void main(String[] args) {
19 }
20 }

Listing C.109 Java code implementing the Main class in figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**
7 * Represents one particular rental transaction, where one

220

Appendix C Implementations of UML Diagrams

8 * particular car is rented by one particular customer.
9 */

10 public class Rental {
11 private CarRegistry carRegistry;
12
13 /**
14 * Creates a new instance, representing a rental made by the
15 * specified customer.
16 *
17 * @param customer The renting customer.
18 * @param carRegistry The data store with information about
19 * available cars.
20 */
21 public Rental(CustomerDTO customer, CarRegistry carRegistry) {
22 }
23
24 /**
25 * Specifies the car that was rented.
26 *
27 * @param rentedCar The car that was rented.
28 */
29 public void setRentedCar(CarDTO rentedCar) {
30 }
31 }

Listing C.110 Java code implementing the Rental class in figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * This class is responsible for instantiating all registries.
5 */
6 public class RegistryCreator {
7 /**
8 * Get the value of rentalRegistry
9 *

10 * @return the value of rentalRegistry
11 */
12 public RentalRegistry getRentalRegistry() {
13 }
14
15 /**
16 * Get the value of carRegistry
17 *
18 * @return the value of carRegistry
19 */

221

Appendix C Implementations of UML Diagrams

20 public CarRegistry getCarRegistry() {
21 }
22 }

Listing C.111 Java code implementing the RegistryCreator class in figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 CarRegistry() {
9 }

10
11 /**
12 * Search for a car matching the specified search criteria.
13 *
14 * @param searchedCar This object contains the search criteria.
15 * Fields in the object that are set to
16 * <code>null</code> or <code>false</code>
17 * are ignored.
18 * @return The best match of the search criteria.
19 */
20 public CarDTO findCar(CarDTO searchedCar) {
21 }
22
23 /**
24 * Books the specified car. After calling this method, the car
25 * can not be booked by any other customer.
26 *
27 * @param car The car that will be booked.
28 */
29 public void bookCar(CarDTO car) {
30 }
31 }

Listing C.112 Java code implementing the CarRegistry class in figure 5.36

1 package se.kth.ict.oodbook.design.casestudy.dbhandler;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**

222

Appendix C Implementations of UML Diagrams

6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 RentalRegistry() {

10 }
11
12 /**
13 * Saves the specified rental permanently.
14 *
15 * @param rental The rental that will be saved.
16 */
17 public void saveRental(Rental rental) {
18 }
19 }

Listing C.113 Java code implementing the RentalRegistry class in figure 5.36

C.26 Figure 5.37

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.model.Amount;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 private Controller contr;
12
13 // Somewhere in the code. The used amount (100) is not
14 // specified in the diagram.
15 Amount paidAmount = new Amount(100);
16 contr.pay(paidAmount);
17 }

Listing C.114 Java code implementing the View class in figure 5.37

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.model.Rental;

223

Appendix C Implementations of UML Diagrams

5
6 /**
7 * This is the application’s only controller class. All
8 * calls to the model pass through here.
9 */

10 public class Controller {
11 /**
12 * Handles rental payment. Updates the balance of
13 * the cash register where the payment was
14 * performed. Calculates change. Prints the receipt.
15 *
16 * @param amount The paid amount.
17 */
18 public void pay(Amount paidAmt) {
19 }
20 }

Listing C.115 Java code implementing the Controller class in figure 5.37

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents an amount of money
5 */
6 public final class Amount {
7 private final int amount;
8
9 public Amount(int amount) {

10 this.amount = amount;
11 }
12 }

Listing C.116 Java code implementing the Amount class in figure 5.37

C.27 Figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.model.Amount;
5
6 /**
7 * This program has no view, instead, this class is a placeholder

224

Appendix C Implementations of UML Diagrams

8 * for the entire view.
9 */

10 public class View {
11 private Controller contr;
12
13 // Somewhere in the code. The used amount (100) is not
14 // specified in the diagram.
15 Amount paidAmount = new Amount(100);
16 contr.pay(paidAmount);
17 }

Listing C.117 Java code implementing the View class in figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.model.Rental;
5
6 /**
7 * This is the application’s only controller class. All
8 * calls to the model pass through here.
9 */

10 public class Controller {
11 /**
12 * Handles rental payment. Updates the balance of
13 * the cash register where the payment was
14 * performed. Calculates change. Prints the receipt.
15 *
16 * @param amount The paid amount.
17 */
18 public void pay(Amount paidAmt) {
19 CashPayment payment = new CashPayment(paidAmt);
20 rental.pay(payment);
21 cashRegister.addPayment(payment);
22 }
23 }

Listing C.118 Java code implementing the Controller class in figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a cash register. There shall be one instance of
5 * this class for each register.
6 */

225

Appendix C Implementations of UML Diagrams

7 public class CashRegister {
8 public void addPayment(CashPayment payment) {
9 }

10 }

Listing C.119 Java code implementing the CashRegister class in figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one specific payment for one specific rental. The
5 * rental is payed with cash.
6 */
7 public class CashPayment {
8 private Amount paidAmt;
9

10 /**
11 * Creates a new instance. The customer handed over the
12 * specified amount.
13 *
14 * @param paidAmt The amount of cash that was handed over
15 * by the customer.
16 */
17 public CashPayment(Amount paidAmt) {
18 this.paidAmt = paidAmt;
19 }
20
21 /**
22 * Calculates the total cost of the specified rental.
23 *
24 * @param paidRental The rental for which the customer is
25 * paying.
26 */
27 void calculateTotalCost(Rental paidRental) {
28 }
29 }

Listing C.120 Java code implementing the CashPayment class in figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.dbhandler.CarRegistry;
5
6 /**

226

Appendix C Implementations of UML Diagrams

7 * Represents one particular rental transaction, where one
8 * particular car is rented by one particular customer.
9 */

10 public class Rental {
11 /**
12 * This rental is paid using the specified payment.
13 *
14 * @param payment The payment used to pay this rental.
15 */
16 public void pay(CashPayment payment) {
17 payment.calculateTotalCost(this);
18 }
19 }

Listing C.121 Java code implementing the Rental class in figure 5.38

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents an amount of money
5 */
6 public final class Amount {
7 private final int amount;
8
9 public Amount(int amount) {

10 this.amount = amount;
11 }
12 }

Listing C.122 Java code implementing the Amount class in figure 5.38

C.28 Figure 5.39

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.model.Amount;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {

227

Appendix C Implementations of UML Diagrams

11 private Controller contr;
12
13 // Somewhere in the code. The used amount (100) is not
14 // specified in the diagram.
15 Amount paidAmount = new Amount(100);
16 contr.pay(paidAmount);
17 }

Listing C.123 Java code implementing the View class in figure 5.39

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.model.CashPayment;
6 import se.kth.ict.oodbook.design.casestudy.model.CashRegister;
7 import se.kth.ict.oodbook.design.casestudy.model.Rental;
8 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
9

10 /**
11 * This is the application’s only controller class. All
12 * calls to the model pass through here.
13 */
14 public class Controller {
15 private Rental rental;
16 private CashRegister cashRegister;
17 private Printer printer;
18
19 /**
20 * Handles rental payment. Updates the balance of
21 * the cash register where the payment was
22 * performed. Calculates change. Prints the receipt.
23 *
24 * @param amount The paid amount.
25 */
26 public void pay(Amount amount) {
27 CashPayment payment = new CashPayment(paidAmt);
28 rental.pay(payment);
29 cashRegister.addPayment(payment);
30 Receipt receipt = rental.getReceipt();
31 printer.printReceipt(receipt);
32 }
33 }

Listing C.124 Java code implementing the Controller class in figure 5.39

228

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a cash register. There shall be one instance of
5 * this class for each register.
6 */
7 public class CashRegister {
8 public void addPayment(CashPayment payment) {
9 }

10 }

Listing C.125 Java code implementing the CashRegister class in figure 5.39

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one specific payment for one specific rental. The
5 * rental is payed with cash.
6 */
7 public class CashPayment {
8 private Amount paidAmt;
9

10 /**
11 * Creates a new instance. The customer handed over the
12 * specified amount.
13 *
14 * @param paidAmt The amount of cash that was handed over
15 * by the customer.
16 */
17 public CashPayment(Amount paidAmt) {
18 this.paidAmt = paidAmt;
19 }
20
21 /**
22 * Calculates the total cost of the specified rental.
23 *
24 * @param paidRental The rental for which the customer is
25 * paying.
26 */
27 void calculateTotalCost(Rental paidRental) {
28 }
29 }

Listing C.126 Java code implementing the CashPayment class in figure 5.39

229

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one particular rental transaction, where one
5 * particular car is rented by one particular customer.
6 */
7 public class Rental {
8 /**
9 * This rental is paid using the specified payment.

10 *
11 * @param payment The payment used to pay this rental.
12 */
13 public void pay(CashPayment payment) {
14 payment.calculateTotalCost(this);
15 }
16
17 /**
18 * Returns a receipt for the current rental.
19 */
20 public Receipt getReceipt() {
21 return new Receipt(this);
22 }
23 }

Listing C.127 Java code implementing the Rental class in figure 5.39

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * The receipt of a rental
5 */
6 public class Receipt {
7
8 /**
9 * Creates a new instance.

10 *
11 * @param rental The rental proved by this receipt.
12 */
13 Receipt(Rental rental) {
14 }
15
16 }

Listing C.128 Java code implementing the Receipt class in figure 5.39

230

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
4
5 /**
6 * The interface to the printer, used for all printouts initiated
7 * by this program.
8 */
9 public class Printer {

10 public void printReceipt(Receipt receipt) {
11
12 }
13 }

Listing C.129 Java code implementing the Printer class in figure 5.39

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents an amount of money
5 */
6 public final class Amount {
7 private final int amount;
8
9 public Amount(int amount) {

10 this.amount = amount;
11 }
12 }

Listing C.130 Java code implementing the Amount class in figure 5.39

C.29 Figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
6 import se.kth.ict.oodbook.design.casestudy.view.View;
7
8 /**
9 * Contains the <code>main</code> method. Performs all startup of the

231

Appendix C Implementations of UML Diagrams

10 * application.
11 */
12 public class Main {
13 /**
14 * Starts the application.
15 *
16 * @param args The application does not take any command line
17 * parameters.
18 */
19 public static void main(String[] args) {
20 RegistryCreator creator = new RegistryCreator();
21 Printer printer = new Printer();
22 Controller contr = new Controller(creator, printer);
23 new View(contr).sampleExecution();
24 }
25 }

Listing C.131 Java code implementing the Main class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 }

Listing C.132 Java code implementing the CarRegistry class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 }

Listing C.133 Java code implementing the RentalRegistry class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.integration;
2

232

Appendix C Implementations of UML Diagrams

3 /**
4 * This class is responsible for instantiating all registries.
5 */
6 public class RegistryCreator {
7 private CarRegistry carRegistry = new CarRegistry();
8 private RentalRegistry rentalRegistry = new RentalRegistry();
9

10 /**
11 * Get the value of rentalRegistry
12 *
13 * @return the value of rentalRegistry
14 */
15 public RentalRegistry getRentalRegistry() {
16 return rentalRegistry;
17 }
18
19 /**
20 * Get the value of carRegistry
21 *
22 * @return the value of carRegistry
23 */
24 public CarRegistry getCarRegistry() {
25 return carRegistry;
26 }
27 }

Listing C.134 Java code implementing the RegistryCreator class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * The interface to the printer, used for all printouts
5 * initiated by this program.
6 */
7 public class Printer {
8 }

Listing C.135 Java code implementing the Printer class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a cash register. There shall be one
5 * instance of this class for each register.
6 */

233

Appendix C Implementations of UML Diagrams

7 public class CashRegister {
8 }

Listing C.136 Java code implementing the CashRegister class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.integration.CarRegistry;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
6 import se.kth.ict.oodbook.design.casestudy.integration.RentalRegistry;
7 import se.kth.ict.oodbook.design.casestudy.model.CashRegister;
8
9 /**

10 * This is the application’s only controller class. All calls to the
11 * model pass through here.
12 */
13 public class Controller {
14 private CarRegistry carRegistry;
15 private RentalRegistry rentalRegistry;
16 private CashRegister cashRegister;
17 private Printer printer;
18
19 /**
20 * Creates a new instance.
21 *
22 * @param regCreator Used to get all classes that handle database
23 * calls.
24 * @param printer Interface to printer.
25 */
26 public Controller(RegistryCreator regCreator, Printer printer) {
27 this.carRegistry = regCreator.getCarRegistry();
28 this.rentalRegistry = regCreator.getRentalRegistry();
29 this.printer = printer;
30 this.cashRegister = new CashRegister();
31 }
32 }

Listing C.137 Java code implementing the Controller class in figure 5.40

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4
5 /**

234

Appendix C Implementations of UML Diagrams

6 * This program has no view, instead, this class is a placeholder
7 * for the entire view.
8 */
9 public class View {

10 private Controller contr;
11
12 /**
13 * Creates a new instance.
14 *
15 * @param contr The controller that is used for all operations.
16 */
17 public View(Controller contr) {
18 this.contr = contr;
19 }
20 }

Listing C.138 Java code implementing the View class in figure 5.40

C.30 Figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4
5 /**
6 * This program has no view, instead, this class is a placeholder
7 * for the entire view.
8 */
9 public class View {

10 private Controller contr;
11
12 /**
13 * Creates a new instance.
14 *
15 * @param contr The controller that is used for all
16 * operations.
17 */
18 public View(Controller contr) {
19 }
20 }

Listing C.139 Java code implementing the View class in figure 5.41

235

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.integration.CarDTO;
5 import se.kth.ict.oodbook.design.casestudy.integration.CarRegistry;
6 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
7 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
8 import se.kth.ict.oodbook.design.casestudy.integration.RentalRegistry;
9 import se.kth.ict.oodbook.design.casestudy.model.CashPayment;

10 import se.kth.ict.oodbook.design.casestudy.model.CashRegister;
11 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
12 import se.kth.ict.oodbook.design.casestudy.model.Rental;
13 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
14
15 /**
16 * This is the application’s only controller class. All calls to
17 * the model pass through here.
18 */
19 public class Controller {
20 private CarRegistry carRegistry;
21 private RentalRegistry rentalRegistry;
22 private Rental rental;
23
24 /**
25 * Creates a new instance.
26 *
27 * @param regCreator Used to get all classes that handle
28 * database calls.
29 */
30 public Controller(RegistryCreator regCreator) {
31 }
32
33 /**
34 * Search for a car matching the specified search criteria.
35 *
36 * @param searchedCar This object contains the search criteria.
37 * Fields in the object that are set to
38 * <code>null</code> or
39 * <code>false</code> are ignored.
40 * @return The best match of the search criteria.
41 */
42 public CarDTO searchMatchingCar(CarDTO searchedCar) {
43 }
44
45 /**
46 * Registers a new customer. Only registered customers can

236

Appendix C Implementations of UML Diagrams

47 * rent cars.
48 *
49 * @param customer The customer that will be registered.
50 */
51 public void registerCustomer(CustomerDTO customer) {
52 }
53
54 /**
55 * Books the specified car. After calling this method, the car
56 * can not be booked by any other customer. This method also
57 * permanently saves information about the current rental.
58 *
59 * @param car The car that will be booked.
60 */
61 public void bookCar(CarDTO car) {
62 }
63
64 /**
65 * Handles rental payment. Updates the balance of the cash register
66 * where the payment was performed. Calculates change. Prints the
67 * receipt.
68 *
69 * @param paidAmt The paid amount.
70 */
71 public void pay(Amount paidAmt) {
72 }
73 }

Listing C.140 Java code implementing the Controller class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.startup;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
6 import se.kth.ict.oodbook.design.casestudy.view.View;
7
8 /**
9 * Contains the <code>main</code> method. Performs all startup of

10 * the application.
11 */
12 public class Main {
13 /**
14 * Starts the application.
15 *
16 * @param args The application does not take any command line

237

Appendix C Implementations of UML Diagrams

17 * parameters.
18 */
19 public static void main(String[] args) {
20 }
21 }

Listing C.141 Java code implementing the Main class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 import se.kth.ict.oodbook.design.casestudy.integration.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.integration.CarRegistry;
5
6 /**
7 * Represents one particular rental transaction, where one
8 * particular car is rented by one particular customer.
9 */

10 public class Rental {
11 private CarRegistry carRegistry;
12
13 /**
14 * Creates a new instance, representing a rental made by the
15 * specified customer.
16 *
17 * @param customer The renting customer.
18 * @param carRegistry The data store with information about
19 * available cars.
20 */
21 public Rental(CustomerDTO customer, CarRegistry carRegistry) {
22 }
23
24 /**
25 * Specifies the car that was rented.
26 *
27 * @param rentedCar The car that was rented.
28 */
29 public void setRentedCar(CarDTO rentedCar) {
30 }
31
32 /**
33 * This rental is paid using the specified payment.
34 *
35 * @param payment The payment used to pay this rental.
36 */
37 public void pay(CashPayment payment) {
38 }

238

Appendix C Implementations of UML Diagrams

39
40 /**
41 * Returns a receipt for the current rental.
42 */
43 public Receipt getReceipt() {
44 }
45 }

Listing C.142 Java code implementing the Rental class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * The receipt of a rental
5 */
6 public class Receipt {
7 /**
8 * Creates a new instance.
9 *

10 * @param rental The rental proved by this receipt.
11 */
12 Receipt(Rental rental) {
13 }
14 }

Listing C.143 Java code implementing the Receipt class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one specific payment for one specific rental.
5 * The rental is payed with cash.
6 */
7 public class CashPayment {
8 /**
9 * Creates a new instance. The customer handed over

10 * the specified amount.
11 *
12 * @param paidAmt The amount of cash that was handed
13 * over by the customer.
14 */
15 public CashPayment(Amount paidAmt) {
16 }
17
18 /**

239

Appendix C Implementations of UML Diagrams

19 * Calculates the total cost of the specified rental.
20 *
21 * @param paidRental The rental for which the customer
22 * is paying.
23 */
24 void calculateTotalCost(Rental paidRental) {
25 }
26 }

Listing C.144 Java code implementing the CashPayment class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a cash register. There shall be one instance
5 * of this class for each register.
6 */
7 public class CashRegister {
8 public void addPayment(CashPayment payment) {
9 }

10 }

Listing C.145 Java code implementing the CashRegister class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
4
5 /**
6 * The interface to the printer, used for all printouts
7 * initiated by this program.
8 */
9 public class Printer {

10 public void printReceipt(Receipt receipt) {
11 }
12 }

Listing C.146 Java code implementing the Printer class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * This class is responsible for instantiating all registries.
5 */

240

Appendix C Implementations of UML Diagrams

6 public class RegistryCreator {
7 /**
8 * Get the value of rentalRegistry
9 *

10 * @return the value of rentalRegistry
11 */
12 public RentalRegistry getRentalRegistry() {
13 }
14
15 /**
16 * Get the value of carRegistry
17 *
18 * @return the value of carRegistry
19 */
20 public CarRegistry getCarRegistry() {
21 }
22 }

Listing C.147 Java code implementing the RegistryCreator class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 CarRegistry() {
9 }

10
11 /**
12 * Search for a car matching the specified search criteria.
13 *
14 * @param searchedCar This object contains the search criteria.
15 * Fields in the object that are set to
16 * <code>null</code> or <code>false</code>
17 * are ignored.
18 * @return The best match of the search criteria.
19 */
20 public CarDTO findCar(CarDTO searchedCar) {
21 }
22
23 /**
24 * Books the specified car. After calling this method, the car
25 * can not be booked by any other customer.
26 *

241

Appendix C Implementations of UML Diagrams

27 * @param car The car that will be booked.
28 */
29 public void bookCar(CarDTO car) {
30 }
31 }

Listing C.148 Java code implementing the CarRegistry class in figure 5.41

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 RentalRegistry() {

10 }
11
12 /**
13 * Saves the specified rental permanently.
14 *
15 * @param rental The rental that will be saved.
16 */
17 public void saveRental(Rental rental) {
18 }
19 }

Listing C.149 Java code implementing the RentalRegistry class in figure 5.41

C.31 Figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.model.Amount;
5
6 /**
7 * This program has no view, instead, this class is a placeholder
8 * for the entire view.
9 */

10 public class View {
11 private Controller contr;

242

Appendix C Implementations of UML Diagrams

12
13 // Somewhere in the code. The used amount (100) is not
14 // specified in the diagram.
15 Amount paidAmount = new Amount(100);
16 contr.pay(paidAmount);
17 }

Listing C.150 Java code implementing the View class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.model.CashPayment;
6 import se.kth.ict.oodbook.design.casestudy.model.CashRegister;
7 import se.kth.ict.oodbook.design.casestudy.model.Rental;
8
9 /**

10 * This is the application’s only controller class. All
11 * calls to the model pass through here.
12 */
13 public class Controller {
14 private Rental rental;
15 private CashRegister cashRegister;
16 private Printer printer;
17
18 /**
19 * Handles rental payment. Updates the balance of the cash
20 * register where the payment was performed. Calculates
21 * change. Prints the receipt.
22 *
23 * @param paidAmt The paid amount.
24 */
25 public void pay(Amount paidAmt) {
26 CashPayment payment = new CashPayment(paidAmt);
27 rental.pay(payment);
28 cashRegister.addPayment(payment);
29 rental.printReceipt(printer);
30 }
31 }

Listing C.151 Java code implementing the Controller class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.model;
2

243

Appendix C Implementations of UML Diagrams

3 /**
4 * Represents a cash register. There shall be one instance of
5 * this class for each register.
6 */
7 public class CashRegister {
8 public void addPayment(CashPayment payment) {
9 }

10 }

Listing C.152 Java code implementing the CashRegister class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents one specific payment for one specific rental. The
5 * rental is payed with cash.
6 */
7 public class CashPayment {
8 private Amount paidAmt;
9

10 /**
11 * Creates a new instance. The customer handed over the
12 * specified amount.
13 *
14 * @param paidAmt The amount of cash that was handed over
15 * by the customer.
16 */
17 public CashPayment(Amount paidAmt) {
18 this.paidAmt = paidAmt;
19 }
20
21 /**
22 * Calculates the total cost of the specified rental.
23 *
24 * @param paidRental The rental for which the customer is
25 * paying.
26 */
27 void calculateTotalCost(Rental paidRental) {
28 }
29 }

Listing C.153 Java code implementing the CashPayment class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.model;
2

244

Appendix C Implementations of UML Diagrams

3 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
4
5 /**
6 * Represents one particular rental transaction, where one
7 * particular car is rented by one particular customer.
8 */
9 public class Rental {

10 /**
11 * This rental is paid using the specified payment.
12 *
13 * @param payment The payment used to pay this rental.
14 */
15 public void pay(CashPayment payment) {
16 payment.calculateTotalCost(this);
17 }
18
19 /**
20 * Prints a receipt for the current rental on the
21 * specified printer.
22 */
23 public void printReceipt(Printer printer) {
24 Receipt receipt = new Receipt(this);
25 printer.printReceipt(receipt);
26 }
27 }

Listing C.154 Java code implementing the Rental class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * The receipt of a rental
5 */
6 public class Receipt {
7
8 /**
9 * Creates a new instance.

10 *
11 * @param rental The rental proved by this receipt.
12 */
13 Receipt(Rental rental) {
14 }
15
16 }

Listing C.155 Java code implementing the Receipt class in figure 5.42

245

Appendix C Implementations of UML Diagrams

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
4
5 /**
6 * The interface to the printer, used for all printouts initiated
7 * by this program.
8 */
9 public class Printer {

10 public void printReceipt(Receipt receipt) {
11
12 }
13 }

Listing C.156 Java code implementing the Printer class in figure 5.42

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents an amount of money
5 */
6 public final class Amount {
7 private final int amount;
8
9 public Amount(int amount) {

10 this.amount = amount;
11 }
12 }

Listing C.157 Java code implementing the Amount class in figure 5.42

C.32 Figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.view;
2
3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4
5 /**
6 * This program has no view, instead, this class is a placeholder
7 * for the entire view.
8 */
9 public class View {

246

Appendix C Implementations of UML Diagrams

10 private Controller contr;
11
12 /**
13 * Creates a new instance.
14 *
15 * @param contr The controller that is used for all
16 * operations.
17 */
18 public View(Controller contr) {
19 }
20 }

Listing C.158 Java code implementing the View class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.controller;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Amount;
4 import se.kth.ict.oodbook.design.casestudy.integration.CarDTO;
5 import se.kth.ict.oodbook.design.casestudy.integration.CarRegistry;
6 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
7 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
8 import se.kth.ict.oodbook.design.casestudy.integration.RentalRegistry;
9 import se.kth.ict.oodbook.design.casestudy.model.CashPayment;

10 import se.kth.ict.oodbook.design.casestudy.model.CashRegister;
11 import se.kth.ict.oodbook.design.casestudy.model.CustomerDTO;
12 import se.kth.ict.oodbook.design.casestudy.model.Rental;
13 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
14
15 /**
16 * This is the application’s only controller class. All calls to
17 * the model pass through here.
18 */
19 public class Controller {
20 private CarRegistry carRegistry;
21 private RentalRegistry rentalRegistry;
22 private Rental rental;
23
24 /**
25 * Creates a new instance.
26 *
27 * @param regCreator Used to get all classes that handle
28 * database calls.
29 */
30 public Controller(RegistryCreator regCreator) {
31 }
32

247

Appendix C Implementations of UML Diagrams

33 /**
34 * Search for a car matching the specified search criteria.
35 *
36 * @param searchedCar This object contains the search criteria.
37 * Fields in the object that are set to
38 * <code>null</code> or
39 * <code>false</code> are ignored.
40 * @return The best match of the search criteria.
41 */
42 public CarDTO searchMatchingCar(CarDTO searchedCar) {
43 }
44
45 /**
46 * Registers a new customer. Only registered customers can
47 * rent cars.
48 *
49 * @param customer The customer that will be registered.
50 */
51 public void registerCustomer(CustomerDTO customer) {
52 }
53
54 /**
55 * Books the specified car. After calling this method, the car
56 * can not be booked by any other customer. This method also
57 * permanently saves information about the current rental.
58 *
59 * @param car The car that will be booked.
60 */
61 public void bookCar(CarDTO car) {
62 }
63
64 /**
65 * Handles rental payment. Updates the balance of the cash register
66 * where the payment was performed. Calculates change. Prints the
67 * receipt.
68 *
69 * @param paidAmt The paid amount.
70 */
71 public void pay(Amount paidAmt) {
72 }
73 }

Listing C.159 Java code implementing the Controller class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.startup;
2

248

Appendix C Implementations of UML Diagrams

3 import se.kth.ict.oodbook.design.casestudy.controller.Controller;
4 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
5 import se.kth.ict.oodbook.design.casestudy.integration.RegistryCreator;
6 import se.kth.ict.oodbook.design.casestudy.view.View;
7
8 /**
9 * Contains the <code>main</code> method. Performs all startup of

10 * the application.
11 */
12 public class Main {
13 /**
14 * Starts the application.
15 *
16 * @param args The application does not take any command line
17 * parameters.
18 */
19 public static void main(String[] args) {
20 }
21 }

Listing C.160 Java code implementing the Main class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 import se.kth.ict.oodbook.design.casestudy.integration.CarDTO;
4 import se.kth.ict.oodbook.design.casestudy.integration.CarRegistry;
5 import se.kth.ict.oodbook.design.casestudy.integration.Printer;
6
7 /**
8 * Represents one particular rental transaction, where one
9 * particular car is rented by one particular customer.

10 */
11 public class Rental {
12 private CarRegistry carRegistry;
13
14 /**
15 * Creates a new instance, representing a rental made by the
16 * specified customer.
17 *
18 * @param customer The renting customer.
19 * @param carRegistry The data store with information about
20 * available cars.
21 */
22 public Rental(CustomerDTO customer, CarRegistry carRegistry) {
23 }
24

249

Appendix C Implementations of UML Diagrams

25 /**
26 * Specifies the car that was rented.
27 *
28 * @param rentedCar The car that was rented.
29 */
30 public void setRentedCar(CarDTO rentedCar) {
31 }
32
33 /**
34 * This rental is paid using the specified payment.
35 *
36 * @param payment The payment used to pay this rental.
37 */
38 public void pay(CashPayment payment) {
39 }
40
41 /**
42 * Prints a receipt for the current rental on the specified
43 * printer.
44 */
45 public void printReceipt(Printer printer) {
46 }
47 }

Listing C.161 Java code implementing the Rental class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * The receipt of a rental
5 */
6 public class Receipt {
7 /**
8 * Creates a new instance.
9 *

10 * @param rental The rental proved by this receipt.
11 */
12 Receipt(Rental rental) {
13 }
14 }

Listing C.162 Java code implementing the Receipt class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.model;
2

250

Appendix C Implementations of UML Diagrams

3 /**
4 * Represents one specific payment for one specific rental.
5 * The rental is payed with cash.
6 */
7 public class CashPayment {
8 /**
9 * Creates a new instance. The customer handed over

10 * the specified amount.
11 *
12 * @param paidAmt The amount of cash that was handed
13 * over by the customer.
14 */
15 public CashPayment(Amount paidAmt) {
16 }
17
18 /**
19 * Calculates the total cost of the specified rental.
20 *
21 * @param paidRental The rental for which the customer
22 * is paying.
23 */
24 void calculateTotalCost(Rental paidRental) {
25 }
26 }

Listing C.163 Java code implementing the CashPayment class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.model;
2
3 /**
4 * Represents a cash register. There shall be one instance
5 * of this class for each register.
6 */
7 public class CashRegister {
8 public void addPayment(CashPayment payment) {
9 }

10 }

Listing C.164 Java code implementing the CashRegister class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Receipt;
4
5 /**

251

Appendix C Implementations of UML Diagrams

6 * The interface to the printer, used for all printouts
7 * initiated by this program.
8 */
9 public class Printer {

10 public void printReceipt(Receipt receipt) {
11 }
12 }

Listing C.165 Java code implementing the Printer class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * This class is responsible for instantiating all registries.
5 */
6 public class RegistryCreator {
7 /**
8 * Get the value of rentalRegistry
9 *

10 * @return the value of rentalRegistry
11 */
12 public RentalRegistry getRentalRegistry() {
13 }
14
15 /**
16 * Get the value of carRegistry
17 *
18 * @return the value of carRegistry
19 */
20 public CarRegistry getCarRegistry() {
21 }
22 }

Listing C.166 Java code implementing the RegistryCreator class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 /**
4 * Contains all calls to the data store with cars that may be
5 * rented.
6 */
7 public class CarRegistry {
8 CarRegistry() {
9 }

10

252

Appendix C Implementations of UML Diagrams

11 /**
12 * Search for a car matching the specified search criteria.
13 *
14 * @param searchedCar This object contains the search criteria.
15 * Fields in the object that are set to
16 * <code>null</code> or <code>false</code>
17 * are ignored.
18 * @return The best match of the search criteria.
19 */
20 public CarDTO findCar(CarDTO searchedCar) {
21 }
22
23 /**
24 * Books the specified car. After calling this method, the car
25 * can not be booked by any other customer.
26 *
27 * @param car The car that will be booked.
28 */
29 public void bookCar(CarDTO car) {
30 }
31 }

Listing C.167 Java code implementing the CarRegistry class in figure 5.43

1 package se.kth.ict.oodbook.design.casestudy.integration;
2
3 import se.kth.ict.oodbook.design.casestudy.model.Rental;
4
5 /**
6 * Contains all calls to the data store with performed rentals.
7 */
8 public class RentalRegistry {
9 RentalRegistry() {

10 }
11
12 /**
13 * Saves the specified rental permanently.
14 *
15 * @param rental The rental that will be saved.
16 */
17 public void saveRental(Rental rental) {
18 }
19 }

Listing C.168 Java code implementing the RentalRegistry class in figure 5.43

253

Bibliography

[LAR] Larman, Craig: Applying UML and Patterns, third edition, Prentice-Hall
2004, ISBN:0-13-148906-2

[CW] Course web for Object Oriented Design, IV1350 http://www.kth.
se/social/course/IV1350/page/lecture-notes-60/

[JCC] The original Java code convention http://www.oracle.
com/technetwork/java/javase/documentation/
codeconvtoc-136057.html

[JCS] Java Coding Standars from Ambysoft Inc. http://www.ambysoft.
com/downloads/javaCodingStandardsSummary.pdf

[FOW] Fowler, Martin: Refactoring: Improving the Design of Existing Code,
Addison-Wesley 1999, ISBN: 978-0201485677

[JU] Home page for the JUnit unit testing framework http://junit.org/
junit4/

[NB] Home page for the NetBeans IDE http://netbeans.org/

254

http://www.kth.se/social/course/IV1350/page/lecture-notes-60/
http://www.kth.se/social/course/IV1350/page/lecture-notes-60/
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.ambysoft.com/downloads/javaCodingStandardsSummary.pdf
http://www.ambysoft.com/downloads/javaCodingStandardsSummary.pdf
http://junit.org/junit4/
http://junit.org/junit4/
http://netbeans.org/

Index

@Override, 10

activation bar, 22, 40
actor, 33
alternative flow, 18
analyses, 15, 20
anchor, 24
annotation, 9, 124
architectural pattern, 50
architecture, 50
array, 5
assert, 124
association, 21, 29

direction of, 21
multiplicity, 22, 29
name, 21

attribute, 21, 28

basic flow, 17
business logic, 51

category list, 24
class, 2, 21, 24
class candidate, 24
class diagram, 20
code convention, 81
code smell, 83
coding, 15, 58

mistake, 119
cohesion, 46
collection, 5
combined fragment, 23
comment, 24
communication diagram, 42
constant, 102
constructor, 3, 41, 42

controller, 52
coupling, 48

design, 15, 39
concept, 43
method, 57
mistake, 78

dictionary, 155
domain model, 24

naïve, 31
programmatic, 31

DTO, 55
duplicated code, 84

encapsulation, 43
exception, 6

checked, 7
runtime, 7

found message, 40
framework, 123

guard, 37

high cohesion, 46

immutable, 67
implementation, 43
inheritance, 10
integration, 15
interaction diagram, 42, 58, 61
interaction operand, 23
interaction use, 41
intercation operator, 23
interface, 9
iteration, 14

255

Index

javadoc, 7
@param, 7
@return, 7

JUnit, 122, 124

large class, 90
layer, 54
lifeline, 22
list, 5
long method, 88
long parameter list, 91
low coupling, 48

meaningless name, 101
member, 40
message, 22
methodologies, 13
model, 51
MVC, 51

naming convention, 23
naming identifier, 101
NetBeans, 131
new, 4
note, 24
noun identification, 24

object, 2, 22
operation, 21
overload, 11

package, 50
package diagram, 40
package private, 50
pattern, 50, 51, 54, 55
primitive variables, excessive use, 96
programming, see coding
public interface, 43

refactoring, 83
reference, 4
requirements analyses, 14

sequence diagram, 22, 40
spider-in-the-web, 33, 48, 69, 78
state, 51

static, 3, 40, 41
stereotype, 41
subclass, 10
super, 11
superclass, 10
SUT, 122
system operation, 33, 52, 57, 61
system sequence diagram, 33
system under test, 122

test, 14, 15, 121
this, 3
type, 11

UML, 16, 20, 39
unit test, 122
unnamed values, 102
utility class, 80

view, 51
visibility, 40, 43, 50

256

	Revision History
	License
	Preface
	Background
	Java Essentials
	Introduction
	The Case Study

	Course Content
	Analyses
	Design
	Programming
	Testing
	Exception Handling
	Polymorphism and Design Patterns
	Inheritance
	Inner Classes

	Appendices
	English-Swedish Dictionary
	UML Cheat Sheet
	Implementations of UML Diagrams
	Bibliography
	Index

