
Johnny Wei-Bing Lin

Lecture Notes on Programming Theory for

Management Information Systems

Version 8

http://www.johnny-lin.com/infosys

2019

http://www.johnny-lin.com/infosys

© 2012–2019 Johnny Wei-Bing Lin. All rights reserved.

Contents

Preface v

Notices viii

I Basic Business Data Analysis 1

1 Python as a Basic and Business Calculator 2

1.1 Starting a Python interpreter session . 2

1.1.1 The Canopy IDE . 3

1.1.2 Using a terminal window . 3

1.1.3 Ï Python Sidebar: Arithmetic operators in Python 7

1.2 Using functions . 8

1.2.1 Ï Python Sidebar: Optional input into functions 10

1.2.2 Ï Python Sidebar: Importing modules and using module items 10

1.2.3 Ï Python Sidebar: Writing and using your own functions 11

1.2.4 Ï Python Sidebar: Keyword input parameters 13

1.3 Saving values . 13

1.3.1 Ï Python Sidebar: Naming, creating, and deleting variables 14

1.3.2 Ï Python Sidebar: A quick introduction to strings 15

1.3.3 Ï Python Sidebar: A programmable calculator 17

1.4 Summary . 19

2 X-Y Plots 20

2.1 Matplotlib: Python’s basic plotting package . 21

2.2 My first X-Y plot . 21

2.2.1 A line plot . 21

2.2.2 A scatter plot . 22

2.3 Ï Python Sidebar: Lists and tuples . 23

2.4 Customizing an X-Y plot . 26

2.4.1 Controlling the axes ranges . 27

2.4.2 Controlling line and marker formatting 27

2.4.3 Annotation and adjusting the font size of labels 28

2.4.4 Plotting multiple figures . 28

2.4.5 Plotting multiple curves . 30

i

2.4.6 Adding a legend . 30

2.4.7 Adjusting the plot size . 30

2.4.8 Saving figures to a file . 31

2.5 Ï Python Sidebar: Commenting . 31

2.6 Summary . 32

3 Simple Data Analysis 33

3.1 My first dataset . 33

3.2 Choosing which groups of the data to examine and manipulate 35

3.3 Ï Python Sidebar: More on for looping . 36

3.4 Asking questions of the data . 36

3.5 Ï Python Sidebar: Booleans . 37

3.6 Ï Python Sidebar: Looping an indefinite number of times 40

3.7 Changing the data . 41

3.8 Analyzing data . 41

3.9 Ï Python Sidebar: Docstrings . 43

3.10 Ï Python Sidebar: Writing code a little bit at a time 44

3.11 Summary . 44

4 Manipulating Data and More Complex Data Analysis 45

4.1 Revisiting the gasoline retail dataset . 46

4.2 Basic statistics . 48

4.3 Ï Python Sidebar: More on creating and using NumPy arrays 49

4.3.1 Creating arrays . 49

4.3.2 Array indexing . 52

4.3.3 Array inquiry . 53

4.3.4 Array manipulation . 54

4.3.5 Calculations using array contents . 55

4.4 Correlation and lag autocorrelation . 58

4.5 More complicated manipulations . 61

4.6 Ï Python Sidebar: Testing inside an array . 62

4.6.1 Testing inside an array: Method 1 (loops) 62

4.6.2 Testing inside an array: Method 2 (array syntax) 63

4.6.3 Additional array functions . 68

4.7 Ï Python Sidebar: Floating point comparison 68

4.8 Ï Python Sidebar: String indexing . 69

4.9 Ï Python Sidebar: A simple way of seeing how fast your code runs 70

4.10 Summary . 71

5 Reading In and Writing out Text Data 72

5.1 File objects . 73

5.2 Reading a file . 73

5.3 Ï Python Sidebar: An introduction to objects 74

5.3.1 The nuts and bolts of objects . 74

5.3.2 Example of how objects work: Strings . 75

ii

5.3.3 Example of how objects work: Arrays . 75

5.4 Writing a file . 77

5.5 Processing file contents . 77

5.6 Catching file opening errors . 80

5.7 Ï Python Sidebar: More on exception handling 81

5.8 Better ways of reading a file . 83

5.9 Summary . 84

II Automating and Managing Information Systems 86

6 Managing Files 87

6.1 Segue: Creating a lot of files . 88

6.2 Moving and filing lots of files . 89

6.3 Renaming lots of files . 91

6.4 Copying lots of files . 91

6.5 Deleting lots of files . 92

6.6 Another segue: Testing to see what kind of file something is 92

6.7 Summary . 93

7 Managing Collections of Files: Directories 94

7.1 Prelude: Specifying directory paths . 95

7.2 Creating and removing empty directories . 97

7.3 Renaming and moving directories . 98

7.4 Copying and deleting directories . 99

7.5 Returning and changing the working directory . 99

7.6 Listing the contents of a directory . 100

7.7 Ï Python Sidebar: Dictionaries . 101

7.8 Summary . 104

8 Managing Collections of Files: Searching 105

8.1 Review of Python routines for searching . 105

8.2 Searching in a directory tree . 108

8.3 Searching using recursion . 110

8.3.1 What is recursion? . 110

8.3.2 Implementing a search using recursion . 112

8.4 Summary . 115

9 Designing Power Programs 116

9.1 What is object-oriented programming . 116

9.2 Case Study: Managing a bookstore’s inventory 117

9.3 Ï Python Sidebar: The NoneType data type 124

9.4 Summary . 124

Glossary 126

iii

Acronyms 129

Bibliography 130

iv

Preface

Why this book and who it is for

This book is for management and information systems (MIS) students who are taking a second

course in programming. In it, I aim to teach the programming principles (structured programming,

classes, data structures, search and sorting, and recursion) through learning how to solve MIS prob-

lems. As a result, this book does not workwell as a computer science reference, as the programming

theory is embedded inside MIS problems.

But, if you’re an MIS student, I figure that this way of approaching the topic is a plus. After

all, if you wanted to become a programmer, you would have majored in Computer Science instead

of MIS. (When I was in college, I certainly did not want to become a programmer, which is why

I took only one CS course and majored in Mechanical Engineering. How I ended up teaching

programming for a living is a funny story ,.) This book, then, is a book on Python programming

for students who are interested in learning Python but who want to learn first and foremost how

Python will help them in their own work. The computer science will just come along for the ride.

I assume that readers will have had some background in procedural programming (perhaps

Java or C++) and so already understand variables, arrays, looping, conditionals (if/then), sim-
ple input/output, and subroutines/functions. I also assume that in their work, most readers use a

procedural programming methodology, writing programs that are broken up into subroutines and

functions where input is passed in and out using argument lists (or common blocks or modules).

Software you’ll need

I assume that you are running Python 3.x through an installation of the Anaconda or Canopy dis-

tributions. If not, see:

• Anaconda: https://www.anaconda.com/download/

• Canopy: https://www.enthought.com/products/canopy/

Both distributions have a version that is free and can be installed without administrator privileges.

Typesetting and coloring conventions

Throughout the book, I use different forms of typesetting and coloring to provide additional clarity

and functionality (text coloring is available in only some versions of the book; later on in this

v

https://www.anaconda.com/download/
https://www.enthought.com/products/canopy/

preface I discuss the different versions of the book). Some of the special typesetting conventions I

use include:

• Source code: Typeset in a serif, non-proportional font, as in a = 4.

• Commands to type on your keyboard or printed to the screen: Typeset in a serif, non-proportional

font, as in print('hello').

• Generic arguments: Typeset in a serif, proportional, italicized font, in between a less than

sign and a greater than sign, as in <condition>.

• File, directory, and executable names: Typeset in a serif, proportional, italicized font, as in

/usr/bin.

Please note that general references to application, library, module, and package names are not

typeset any differently from regular text. Thus, references to the matplotlib package are typeset

just as in this sentence. As most packages have unique names, this should not be confusing. In the

few cases where the package names are regular English words (e.g., the time module), references

to the module will hopefully be clear from the context.

Usually, the first time a key word is used and/or explained, it will be bold in the text like this.

Key words are found in the glossary, and when useful, occurrences of those words are hyperlinked

to the glossary. Many acronyms are hyperlinked to the acronym list. The glossary and acronym

lists start on p. 126.

All generic text is in black. All hyperlinks (whether to locations internal or external to the

document), if provided, are in blue.

Finally, because the focus on this book is on how to do MIS using Python, not on the Python

language itself, when I do focus on the nitty-gritty of the Python language as a language, it will be

in sections with headers beginning with “Ï Python Sidebar.” The symbol in front is a keyboard

,. This will make it easier to find these sections in the Table of Contents, if you’re looking only

for the parts where I focus in on Python syntax and structure.

Updates to this book

The book’s website, http://www.johnny-lin.com/infosys, contains any updates, links to resources,

etc. available for the book. This includes a link to a list of addenda and errata.

Personal Acknowledgments

While I often use first person throughout this book, I am acutely aware of the debt I owe to family,

friends, and colleagues who, over many years, generously nurtured many of the ideas in this book:

Indeed, we all do stand on the shoulders of giants, as Newton said. All praise I happily yield to

them; any mistakes and errors are my own. Much of this book is based on my book, A Hands-On

Introduction to Using Python in the Atmospheric and Oceanic Sciences,1 and the acknowledgments

I made there equally apply to this text.

1Lin (2012)

vi

http://www.johnny-lin.com/infosys

In addition to those people, I also want to acknowledge Hannah Aizenman for her contributions

to the present work. Thanks to Evangeline Abrigo for correction help and to students who provided

anonymous feedback.

I am personally grateful for those who gave me permission to use material they created: These

are acknowledged in the Notices section starting on p. viii and in the captions of the included or

adapted figures.

Finally, I thank my wife Karen, my children Timothy, James, and Christianne, for their encour-

agement and love, and my Lord and Savior Jesus Christ for giving me life itself, both physically

and spiritually: “… I have come that they may have life, and have it to the full” (John 10:10b,

NIV).

Johnny Wei-Bing Lin

Bellevue, Washington

August 30, 2019

vii

Notices

Trademark Acknowledgments

ArcGIS is a registered trademark of Environmental Systems Research Institute, Inc. Debian is

a registered trademark of Software in the Public Interest, Inc. IDL is a registered trademark of

Exelis Corporation. Linux is a trademark owned by Linus Torvalds. Mac, Mac OS, and OS X are

registered trademarks of Apple Inc. Mathematica is a trademark of Wolfram Research, Inc. Matlab

andMathWorks are registered trademarks of The MathWorks, Inc. Perl is a registered trademark of

Yet Another Society. Python is a registered trademark of the Python Software Foundation. Solaris is

a trademark of Oracle. Swiss Army is a registered trademark of Victorinox AG, Ibach, Switzerland

and its related companies. Ubuntu is a registered trademark of Canonical Ltd. PowerShell and

Windows are registered trademarks of Microsoft Corporation in the United States and/or other

countries. All other marks mentioned in this book are the property of their respective owners. Any

errors or omissions in trademark and/or other mark attribution are not meant to be assertions of

trademark and/or other mark rights.

Copyright Acknowledgments

Scripture taken from the HOLY BIBLE, NEW INTERNATIONAL VERSION®. Copyright ©

1973, 1978, 1984 Biblica. Used by permission of Zondervan. All rights reserved. The “NIV” and

“New International Version” trademarks are registered in the United States Patent and Trademark

Office by Biblica. Use of either trademark requires the permission of Biblica.

All figures not created by myself are used by permission and are noted either in this acknowl-

edgments section or in the respective figure captions. Use in this book of information from all other

resources is believed to be covered under Fair Use doctrine.

viii

Part I

Basic Business Data Analysis

1

Chapter 1

Python as a Basic and Business Calculator

Chapter Contents

1.1 Starting a Python interpreter session . 2

1.1.1 The Canopy IDE . 3

1.1.2 Using a terminal window . 3

1.1.3 Ï Python Sidebar: Arithmetic operators in Python 7

1.2 Using functions . 8

1.2.1 Ï Python Sidebar: Optional input into functions 10

1.2.2 Ï Python Sidebar: Importing modules and using module items 10

1.2.3 Ï Python Sidebar: Writing and using your own functions 11

1.2.4 Ï Python Sidebar: Keyword input parameters 13

1.3 Saving values . 13

1.3.1 Ï Python Sidebar: Naming, creating, and deleting variables 14

1.3.2 Ï Python Sidebar: A quick introduction to strings 15

1.3.3 Ï Python Sidebar: A programmable calculator 17

1.4 Summary . 19

Python is amulti-paradigm language, which is a computer science-ese way of saying that you

can use it in a bunch of ways. The simplest (and sometimes most useful) way is as a calculator. In

fact, when I’m on my laptop, I don’t usually bother with firing up a calculator app if all I need is

to do some simple (or not-so-simple) arithmetic. Instead, I start a Python session and just type in

what I want to calculate. In the process, if I need to do more heavy-duty calculations, I have all the

power of Python’s mathematical and statistical libraries at my disposal.

1.1 Starting a Python interpreter session

Python is an interpreted language, meaning that you just type in a command in Python’s inter-

preter, press Enter, and Python will execute that command right then and there. It’s not like a

2

1.1. STARTING A PYTHON INTERPRETER SESSION

compiled language like Java where you have to write the code, process the code using the com-

piler, then run the code. In Python, it’s instant gratification ,.

But, you have to first start up the Python interpreter. I’ll describe two ways of getting Python’s

interpreter up and running: Using the Canopy environment’s Interactive Development Environ-

ment (IDE) and running a session in a terminal window.

1.1.1 The Canopy IDE

Canopy comeswith its own IDE consisting of a code editor and an interpreter environment. (Though,

you don’t have to use Canopy’s IDE with Canopy’s version of Python.) For those who have used

other IDEs such as BlueJ (for Java), you’re used to how this works. You start up the IDE, open

a window to edit code, and compile and run the code from the IDE application (usually a menu

choice). In a Python IDE, you do the same thing except you don’t have to compile. Once you write

the code, you just select the menu option to run the code and an interpreter opens up and runs the

code.

When you use Python as a calculator, you don’t even have code to run, so instead of writing

code then running it, use the IDE to start an interpreter and type the code in the interpreter; pressing

Enter will run the code. Here’s how it works in Canopy:

1. Start Canopy the usual way, by finding the application on your computer and double clicking

it to start it. You should get a welcome window similar to Figure 1.1. Click the Editor button

in the welcome window.

2. Next, you’ll get a window that says “Create a new file” or “Select files from your computer”.

Instead, select the menu choice View→ Python. In the bottom window, you’ll get a Python

interpreter, as shown in Figure 1.2.

3. In the interpreter, you can type in Python commands where it says In (e.g., In [1]). When

you press Enter, the Python calculation run and the result is printed out after the Out prompt
(e.g., Out [1]). Figure 1.3 gives an example.

One final note: We’ll find later on when we discuss saving and reading files and modules

that the default location where we save and read files is somewhere called the “current working

directory.” In Canopy, that location is set by a drop-down menu in the upper-right corner of the

Python shell, as shown in Figure 1.4.

1.1.2 Using a terminal window

When you log in to your Windows or Mac OS X computer what do you see? Chances are, a whole

bunch of icons. Those icons represent files or programs and most of us are used to double-clicking

them in order to open a file or run a program.

That’s not how people used to use computers. In the olden days, the computer presented a

cursor where you could type in a command (e.g., mkdir NewDirectory) that told the computer
what you wanted it to do, in the previous example, making a directory called NewDirectory.

You can still do this today. To do so, you first open up a terminal window, which gives puts a

window on your desktop that has a cursor awaiting you to type in your command to the computer.

3

1.1. STARTING A PYTHON INTERPRETER SESSION

Figure 1.1: The Canopy welcome window.

4

1.1. STARTING A PYTHON INTERPRETER SESSION

Figure 1.2: The Canopy Python interpreter.

Figure 1.3: Using the Canopy Python interpreter as a simple calculator.

5

1.1. STARTING A PYTHON INTERPRETER SESSION

Figure 1.4: Canopy’s current working directory and drop-down menu to control changing the cur-

rent working directory is circled in red.

Figure 1.5: Starting the Python interpreter in a terminal window.

Terminal windows are created on a Mac OS X computer by running the Terminal application and

on a Linux machine by running xterm, GNOME Terminal, or any of a number of other terminal

creating applications. On a Windows computer, you’d start an MS-DOS shell.

Why would you want to do this? We’ll talk more about this later when we discuss automating

Management Information Systems (MIS) tasks. For now, using a terminal is a quick way of getting

access to the Python interpreter. In contrast with starting up and IDE, which sometimes takes a

while, a terminal window usually pops up quickly.

To start the Python interpreter using a terminal window, after you’ve opened that window, do

the following (everything you type will be in that window):

1. Type python. You should get something that looks like Figure 1.5. If this doesn’t happen,
here are some possible fixes:

• You may have to type in the full path name to your Python application. On mymachine,

6

1.1. STARTING A PYTHON INTERPRETER SESSION

Operation Symbol

Add +
Subtract −
Multiply ∗
Divide /

Exponentiation ∗∗

Table 1.1: Arithmetic operators.

my Anaconda Python is at /home/jlin/anaconda/bin/python.

• Information regarding the Canopy Python path is available here: https://support.enthought.

com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-

i-e-on-the-PATH-.

• On some installations, you may have to type in the version of Python you want, e.g.,

python2.7.

The three greater-than signs (>>>) on the left of the line tells you you are now in the Python

interpreter.

2. An alternate way of opening a terminal that you can use to run Canopy is to open the Canopy

application and then select the Tools → Canopy Terminal menu option. This will open up

a terminal window that has Canopy set as the default Python. If you type python in that

terminal window, you’ll launch Canopy’s Python.1

3. You can now type in whatever you want to calculate, press Enter, and the answer will output.

For instance:

>>> (4+5)*3
27
>>>

4. The interpreter immediately executes the command, printing the string hello world! to

screen.

5. To exit the Python interpreter, type Ctrl-d. To exit from the terminal window, type exit once
you’re outside the Python interpreter. Typing exit while you’re in the Python interpreter

will do nothing but tell you what you need to do to leave the Python interpreter.

1.1.3 Ï Python Sidebar: Arithmetic operators in Python

Table 1.1 lists the arithmetic operators Python uses: Parentheses are the normal characters and arith-

1https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-

Python-i-e-on-the-PATH- (accessed September 1, 2016).

7

https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-i-e-on-the-PATH-
https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-i-e-on-the-PATH-
https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-i-e-on-the-PATH-
https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-i-e-on-the-PATH-
https://support.enthought.com/hc/en-us/articles/204469730-Make-Canopy-User-Python-be-your-default-Python-i-e-on-the-PATH-

1.2. USING FUNCTIONS

metic operation order in Python follows the standard order of parenthetical blocks first, then ex-

ponentiation, then multiplication/division, and finally addition/subtraction. Operations at the same

level of priority are executed left-to-right. See https://en.wikibooks.org/wiki/Python_Programming/

Operators for more details.

Note that in Python 2.7.x, division of two integers will default to integer division. That is, it

will return the quotient and discard the remainder and the output will be of integer type:

>>> 1/2
0
>>> 3/2
1
>>> 7/3
2
>>> type(7/3)
<type 'int'>

To force Python to use the kind of division we’re all used to (floating point division), make at least

one of the numbers floating point by putting a period (or a period and a decimal) after it:

>>> 1./2
0.5
>>> 1.0/2
0.5

In Python 3.x, the default is to include the remainder in the output, with the output being floating

point type:

>>> 1/2
0.5
>>> 3/2
1.5
>>> 7/3
2.3333333333333335
>>> type(7/3)
<class 'float'>

To do integer division in Python 3.x, use “//” instead of “/”.2 Note that the // operator also works
as integer division in Python 2.7.x.

1.2 Using functions

Any scientific, business, or financial calculator worth its salt does more than arithmetic. These

calculators have specialized functions that enable you to quickly calculate quantities such as sines,

logarithms, and future values.

2http://stackoverflow.com/a/5365702 (accessed September 2, 2016).

8

https://en.wikibooks.org/wiki/Python_Programming/Operators
https://en.wikibooks.org/wiki/Python_Programming/Operators
http://stackoverflow.com/a/5365702

1.2. USING FUNCTIONS

Python also has such function, but instead of typing in some numbers then pressing a button,

you type in the name of these functions to execute them. Thus, to take the sine of π/2 radians (i.e.,
90◦):

>>> sin(3.1415/2)
0.99999999892691405

The sine function is called sin and the input into the function is put in between two parentheses
immediately after the name of the function. After you press Enter, the answer or result of calling

the sine function is returned.

But wait, don’t type that in! What I wrote above is not what will happen; what will happen if

you type in what I wrote above is:

>>> sin(3.1415/2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'sin' is not defined

Hmmm, so Python doesn’t know anything about the sine function. The sine function, it turns out,

is not built-in into the interpreter but rather is part of a module called SciPy (the name used in the

interpreter is “scipy”, without capitalization). In order to use sin I first need to import it. If I add
an import line before the call to sin, everything works fine:

>>> from scipy import sin
>>> sin(3.1415/2)
0.99999999892691405

If there is more than one input in a function call, each input is listed one at a time, separated by

commas. Each input is called a “parameter” (or “positional input parameter”) and the sequence of

multiple inputs is called a “parameter list.” The fv function in SciPy which calculates future value
takes four required inputs, in this order: the interest rate, the number of compounding periods, the

payment paid (by default) at the end of each period, and the present value.3 Thus, if you have an

investment account with an annual interest rate of 3% (compounded annually), worth $1000 now,

and you add $500 every year for ten years, how much will have you at the end of the ten years?

>>> from scipy import fv
>>> fv(0.03, 10, -500, -1000)
7075.8560350794924

Note the negative sign means “cash flow out (i.e. money not available today).”4

By the way, if you want to learn more about a function, you can use the help command. In the
case of fv, you can type in help(fv) in the Python interpreter and Python will tell you about the
function and how to use it. If you are running the interpreter from the command-line, type Space to

page down the help display, j to scroll down the display, k to scroll up the display, and q to leave
the display.

3http://docs.scipy.org/doc/numpy/reference/generated/numpy.fv.html (accessed September 1, 2016).
4http://docs.scipy.org/doc/numpy/reference/generated/numpy.fv.html (accessed September 1, 2016).

9

http://docs.scipy.org/doc/numpy/reference/generated/numpy.fv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.fv.html

1.2. USING FUNCTIONS

1.2.1 Ï Python Sidebar: Optional input into functions

In the future value function (fv) example above, we noted that by default, the payment paid each
period is assumed to be paid at the end of each period. For this function, Python enables you to set

a the payment to occur at the beginning of the period instead of the end, and if you do not explicitly

set that differently, it defaults to the end of the period. Python accomplishes this through keyword

input parameters.

In a regular parameter, the function knows what each value in the parameter list corresponds

to based upon the position of the parameter. Thus, for instance, in a call of the fv function, the
function knows the second parameter will be the the number of compounding periods. Keywords

are set using the assignment syntax; if a function has a keyword input parameter called k you want
set to 4, you do so by adding k=4 in the calling line.

Thus, if we wanted to change our previous future value problem to have payments happen at

the beginning of the periods, the code would be:

>>> from scipy import fv
>>> fv(0.03, 10, -500, -1000, when='begin')
7247.8142247515543

In this case, when is the keyword input parameter and we set it to the string 'begin'. (We’ll talk

more about strings in Section 1.3.2.) In Section 1.3, we talk more about setting variables.

Keyword input parameter’s are nice for inputs to functions that are optional rather than required.

Since they have a default setting, you only need to specify them in the function’s calling line if

you want to pass in a value different than the default. (Positional input parameters are used for

required inputs.) The function’s documentation will tell you what is required (positional) and what

is optional (keyword) input.

1.2.2 Ï Python Sidebar: Importing modules and using module items

In the fv example above, we imported the function by typing in:

from <module> import <function>

where module is the name of the module the function resides in and function is the name of the

function we’re interested in being able to use from the module.

But what if we wanted to make use of more than one function in a module? Would we have

to use from...import... everytime we wanted access to the function? Thankfully, no ,! The

following import command:

import <module>

will make all the functions of the module available by typing <module>.<function>. That is:

>>> import scipy
>>> scipy.fv(0.03, 10, -500, -1000, when='begin')
7247.8142247515543

is the same as:

10

1.2. USING FUNCTIONS

>>> from scipy import fv
>>> fv(0.03, 10, -500, -1000, when='begin')
7247.8142247515543

If we are lazy typists, we can use:

import <module> as <alias>

to make an even shorter reference to the module. That is:

>>> import scipy as sp
>>> sp.fv(0.03, 10, -500, -1000, when='begin')
7247.8142247515543

is the same as:

>>> import scipy
>>> scipy.fv(0.03, 10, -500, -1000, when='begin')
7247.8142247515543

Finally, modules do not only contain functions but may also contain variables set to certain

values. For instance, the SciPy module has a variable called pi that is set to the value of π. When

you import a module using import, you can reference the variables defined in the module in a way
similar to how you reference functions, by using the period notation:

>>> import scipy
>>> scipy.pi
3.141592653589793

Notice that when we make use of pi, we do not put parenthesis after the variable name whereas
when we use a function (like fn), we do put parenthesis after the function name. This is because
with the function, we are calling the function. Python conveys this through appending the parameter

list (in a pair of parentheses) to the function name. In the case of pi, because it’s a variable, it
isn’t being called. (Remember that calling a function means giving input to a function, running the

function, and getting whatever’s returned.) In Section 1.3, we talk more about setting variables,and

when we talk about objects in more detail on Section 5.3, we’ll see some more of how this period

notation is used.

1.2.3 Ï Python Sidebar: Writing and using your own functions

So far we’ve talked about how to access functions someone else has written. What if we want to

use functions we’ve written? Here we’ll describe two ways of doing so.

First, we can define the function in the interpreter session. Here is an example of a function

percent_to_decimal which converts a percentage into its decimal or ratio form:

11

1.2. USING FUNCTIONS

>>> def percent_to_decimal(input):
... output = input / 100.
... return output
...
>>> percent_to_decimal(42)
0.42

When defining a function, the first line begins with def, followed by the function name, then
the parameter list. The number of variables in the parameter list is the number of parameters we

need to provide when we call the function. In the above example, there is one parameter named

input. All references in the body of the function definition with the name input refers to whatever
value is passed into the function when it is called. The def line ends with a colon.

The second thing to note in the above function definition is that the body of the definition is

delineated by an indentation of four spaces (which pressing Tabwill givemewhen I’m in the Python

interpreter). The “...” characters are automatically included by the interpreter as I’m typing; they

just mean that Python recognizes you’re typing in a function definition and is waiting for you to

provide the body of the function.

Finally, in the example we see that the return value of a function is given by the return followed
by whatever is being returned. In the above example, the variable output is returned, but the return
value can itself be an expression. For instance, the code below works exactly the same:

>>> def percent_to_decimal(input):
... return input / 100.
...
>>> percent_to_decimal(42)
0.42

and saves us an extra line of typing. (Note that we make the 100. a decimal to ensure we never
have integer division operating on input.

Typing in a function in an interpreter is easy and straightforward but as soon as you exit the

interpreter, the function definition is lost. Thus, it often makes sense to instead define a function in

a file and then use import to give you access to the function.
In our percent_to_decimal example, we put the code we would have typed into the inter-

preter in a file calledmyfuncs.py, as seen in Figure 1.6. Then, as long asmyfuncs.py is in the current

working directory for the Python interpreter,5 I can import myfuncs.py and use its contents:

>>> import myfuncs
>>> myfuncs.percent_to_decimal(42)
0.42

But wait, isn’t import used for importing modules? Well, yes, it is. But what this shows us is

that a module is just a file containing Python commands. If you have a bunch of function, variable,

5The more complete answer is that myfuncs.py has to be on the path specified by the PYTHONPATH environment

variable, but for our purposes right now, as long asmyfuncs.py is in the same directory we started python in, it’ll work.

12

1.3. SAVING VALUES

def percent_to_decimal(input):
return input / 100.

Figure 1.6: Contents of myfuncs.py.

or class definitions, just put them into a file and voilà, you have a module you can import and use!

It’s that easy to create a library of your own functions.6

1.2.4 Ï Python Sidebar: Keyword input parameters

In Section 1.2.1, we introduced using keyword input parameters in a function call. How do we

define keyword input parameters in functions we write? Let’s say we wanted to write a function

annual_percent_to_period_decimal that converts an annual percentage rate to a decimal for a
given sub-annual period (e.g., a week, month, etc.). Most of the time, we expect function the sub-

annual period will be a month, but we want to be able to change that period if it’s not a month. We

create a keyword input parameter num_periods_per_year to define the sub-annual period. By
default, num_periods_per_year will equal 12, i.e., that the sub-annual period will be a month.
The code is then:

def annual_percent_to_period_decimal(input, num_periods_per_year=12):
return input / 100. / num_periods_per_year

If we call annual_percent_to_period_decimalwithout specifying num_periods_per_year,
the function will do the calculation assuming num_periods_per_year is 12:

>>> annual_percent_to_period_decimal(6)
0.005

On the other hand, if we want to specify a different value for num_periods_per_year, we can
do so in the call to annual_percent_to_period_decimal. In the case below, we assume the
sub-annual period is a half-year:

>>> annual_percent_to_period_decimal(6, num_periods_per_year=2)
0.03

1.3 Saving values

On a calculator, you save values in memory using an “M+” key or something similar. You can
usually only save one value or add to a value previously saved. In Python, you save values by

setting them to variable names. You can then use the values by name. For instance:

6This is in contrast, for instance, with Fortran where you have to compile your function’s source code into an object

file, create a library from multiple object files, and link other compiled code to the library file to make use of the

functions defined in the library. Whew! Even describing the Fortran process sounds horrible ,!

13

1.3. SAVING VALUES

>>> a = 2
>>> 3*a
6
>>> b = 5
>>> a*b
10

To see what the contents of a variable are, just type in the name of the variable:

>>> a = 2
>>> a
2

You can have any number of variables. You do not need the blank spaces on either side of the

equal sign. Thus, a = 2 and a=2 work equally well (pun intended ,).

1.3.1 Ï Python Sidebar: Naming, creating, and deleting variables

When using Python as a calculator, you probably won’t have too many variables, so it’s probably

fine to use a single letter for your variable names. But, as you might expect, it makes more sense

to name variables something descriptive, such as rate_of_return, in order to make it easier to
understand your code.

Python variable names must begin with a letter. Python is also case-sensitive, so the variable

name Rate and rate refer to two different variables.
Generally speaking, when you have multiple words in a Python variable name, you separate

them by underscores rather than capitalizing the first letter of each word after the first (as is the

convention in Java). That is, Python variables are usually written rate_of_return instead of

rateOfReturn. Class names follow the CapWords convention, where every word in the name

is capitalized. These are all conventions, however, so your program will work fine even if you

choose a different naming convention. All style conventions for Python are given in PEP 8 (https:

//www.python.org/dev/peps/pep-0008/), the official style guide for Python code. (“PEP” stands

for “Python Enhancement Proposal.”)

Folks who come to Python from a compiled language like Java or C++ will notice that when

we create a variable we don’t have to declare the variable’s type. That is, instead of the following

in Java:

int a = 4;

in Python you just write:

a = 4

In contrast with Java, Python is a dynamically typed language, meaning that the type of a

variable can change with time. The type of a variable is automatically set by Python based upon

whatever is on the left-hand side. Thus, in the code below:

14

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

1.3. SAVING VALUES

>>> a = 3
>>> type(a)
<type 'int'>
>>> a = 6.4
>>> type(a)
<type 'float'>
>>> a = "hello"
>>> type(a)
<type 'str'>

we see from our calls to the type function that the type of the variable a changes each time we
assign a to a new value.

If you want to delete a variable so that Python doesn’t recognize it, use the built-in del com-
mand:

>>> a = 3
>>> a
3
>>> del(a)
>>> a
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

1.3.2 Ï Python Sidebar: A quick introduction to strings

We’ve seen integers and floating point numbers. Strings are combinations of characters that are set

between matching apostrophes, quotation marks, or triple apostrophers/quotation marks. You can

set a variable to them just as with numbers:

>>> a = 'hello there'
>>> a
'hello there'
>>> type(a)
<type 'str'>

Note that all of these will give you a string:

'hello there'
"hello there"
"""hello there"""
'''hello there'''

So, why are there multiple ways of specifying a string? Having both single quotes and quotation

marks is useful to when your string needs to include the other kind of punctuation mark:

15

1.3. SAVING VALUES

>>> a = "She'll be coming 'round the mountain when she comes."
>>> a
"She'll be coming 'round the mountain when she comes."
>>> b = '"Who is that?" he asked.'
>>> b
'"Who is that?" he asked.'

The triple quotes allow you to include newline characters and spaces through typing Enter and

pressing the space bar and having those remembered as part of the string. This makes it easier to

enter in more complexly formatted strings:

>>> a = '''Toy boat.
... Toy boat.
... I said, "Toy boat."'''
>>> a
'Toy boat.\n Toy boat.\nI said, "Toy boat."'
>>> print(a)
Toy boat.

Toy boat.
I said, "Toy boat."

The character “\n” is the newline character. Tab is “\t”. The print function prints out the contents
of the string variable to the screen but represents formatting characters (such as newline) as they

way they should look.

Two final points about strings to mention, and then we’ll leave more about strings to the discus-

sion in Section 5.3.2. First, if you want to concatenate two strings together, use the “+” operator:

>>> a = "Boeing"
>>> b = "Airbus"
>>> a + " or " + b
'Boeing or Airbus'

Second, if you want to convert a number into a string, use the built-in str function:

>>> a = "Boeing"
>>> b = "Airbus"
>>> i = 1
>>> a + " or " + b + " is number " + str(i)
'Boeing or Airbus is number 1'
>>> a + " or " + b + " is number " + i
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects

If you leave out the str call, Python doesn’t know how to “add” together a string and an integer,

and so complains to you.

16

1.3. SAVING VALUES

import myfuncs
myfuncs.percent_to_decimal(42)
myfuncs.percent_to_decimal(2)
myfuncs.percent_to_decimal(83)
myfuncs.percent_to_decimal(12)

Figure 1.7: Contents of myscript1.py.

1.3.3 Ï Python Sidebar: A programmable calculator

In Section 1.2.3, we saw how we could write (and use) our own functions in our Python calcu-

lator. We also saw that all we had to do was to copy-and-paste what we typed at the interpreter

prompt and put it in a file, then import that file to use the functions defined in the file (i.e., mod-

ule). We’ll now see that we can use this copy-and-paste methodology (with minor adjustments) to

“record” our entire calculator session, including the setting of variables and the use or calling of

functions, so that we can run the calculator session again. This record of what would have been

an interactive calculator session is often referred to as a “script” and the writing of those lines of

code “scripting..” The neat thing about scripting is that we can use the script over-and-over again,

without typing it in again.

Let’s saywe have four percentages that wewish to convert to decimals using our percent_to_decimal
function (that is defined in myfuncs.py, in Figure 1.6). In an interpreter we would type this in:

>>> import myfuncs
>>> myfuncs.percent_to_decimal(42)
0.42
>>> myfuncs.percent_to_decimal(2)
0.02
>>> myfuncs.percent_to_decimal(83)
0.83
>>> myfuncs.percent_to_decimal(12)
0.12

But if we exited the interpreter and wanted to later redo these four recalculations, we’d have to

type it in again. So, let’s copy-and-paste these lines into a file, as seen in Figure 1.7. (We don’t

copy-and-paste the output or the interpreter prompt >>>.) We’ll call this file myscript1.py.

To run the script from the terminal, type in:

python myscript1.py

(Using Canopy, to do the same thing, you would first open the file myscript1.py and then choose

the menu item Run→ Run File. Or, you can just click the green arrowhead icon in the task bar.)

But nothing happens! The results of the percent_to_decimal calls are not printed to screen!
This is one of the adjustments you have tomakewhenwriting a script instead of typing in commands

at the interpreter prompt. In the interpreter, when you type the name of a variable or call a function,

the value of the variable or the function’s return value are automatically displayed to the screen. In

17

1.3. SAVING VALUES

import myfuncs
print(myfuncs.percent_to_decimal(42))
print(myfuncs.percent_to_decimal(2))
print(myfuncs.percent_to_decimal(83))
print(myfuncs.percent_to_decimal(12))

Figure 1.8: Contents of myscript2.py.

def percent_to_decimal(input):
return input / 100.

print(percent_to_decimal(42))
print(percent_to_decimal(2))
print(percent_to_decimal(83))
print(percent_to_decimal(12))

Figure 1.9: Contents of myscript3.py.

a script, this does not occur. In order to see the contents of the return value, you have to pass the

function call as an argument to the print function, as seen in the myscript2.py file in Figure 1.8.
Now, when you run the revised script, the expected output is produced:

$ python myscript2.py
0.42
0.02
0.83
0.12

Notice that when we run the script in the terminal, we automatically leave the Python interpreter

at the end of running the script. If you want to stay in the interpreter at the end of running the script,

add a “-i” between python and the script filename, as in:

$ python -i myscript2.py
0.42
0.02
0.83
0.12
>>>

Finally, if we don’t want to keep the percent_to_decimal function in a separate file from our

script, that’s fine too. We can define functions and use them in the same script, as well as setting

variables, etc. By putting the function in our script, we also do not need to import the myfuncs

module. Figure 1.9 shows this revised script, myscript3.py.

18

1.4. SUMMARY

1.4 Summary

Well, that’s it! We now know how to use Python as a really fancy programmable business and

financial calculator! As we’ll see later on in this book, this is only a fraction of the powers of

Python, but it’s still very useful nonetheless!

19

Chapter 2

X-Y Plots

Chapter Contents

2.1 Matplotlib: Python’s basic plotting package 21

2.2 My first X-Y plot . 21

2.2.1 A line plot . 21

2.2.2 A scatter plot . 22

2.3 Ï Python Sidebar: Lists and tuples . 23

2.4 Customizing an X-Y plot . 26

2.4.1 Controlling the axes ranges . 27

2.4.2 Controlling line and marker formatting 27

2.4.3 Annotation and adjusting the font size of labels 28

2.4.4 Plotting multiple figures . 28

2.4.5 Plotting multiple curves . 30

2.4.6 Adding a legend . 30

2.4.7 Adjusting the plot size . 30

2.4.8 Saving figures to a file . 31

2.5 Ï Python Sidebar: Commenting . 31

2.6 Summary . 32

It is easy to underestimate the power of graphs. When we first learn about graphing, it’s easy

to think graphs are “merely” picture representations of functions or equations. In reality, graphs

or visualizations are a key way of enabling us to understand what the data is telling us. If you

have millions of point-of-sale customer transactions you are analyzing, it is unlikely you can find

a single function to describe that data (or that that function will tell you much about the patterns in

the data). If you need to display the raw data, you either have to do so in a table or in a graph that

provides you insight as to the meaning of the data. Thus, graphs are essential analytical tools for

business data.

Beforewe begin, credit where credit is due: I owe thematplotlib documentation (http://matplotlib.

org) for a lot of the material in this chapter.

20

http://matplotlib.org
http://matplotlib.org

2.1. MATPLOTLIB: PYTHON’S BASIC PLOTTING PACKAGE

2.1 Matplotlib: Python’s basic plotting package

Python’s basic plotting package is called matplotlib. It consists of a main module and a bunch of

submodules. The submodule pyplot defines the functional interface for matplotlib. Pyplot is often

imported by:

import matplotlib.pyplot as plt

Unless otherwise stated, you may assume in the examples in this chapter that the above import has

been done prior to any matplotlib calls being run.

The online pyplot tutorial is very good. After we’ve covered a little more about Python, I’d

encourage you to go through it all on your own: http://matplotlib.org/users/pyplot_tutorial.html.

The online gallery of examples is also very illuminating: http://matplotlib.org/gallery.html.

2.2 My first X-Y plot

We’ll look at two basic x-y plots: a line plot (where the points are connected together) and a scatter
plot (where the points are not connected together).

2.2.1 A line plot

Let’s say you have the following list of point-of-sale customer transactions:

Decimal Hour in Day Amount ($)

9.25 2.54

11 4.10

13.5 1.21

15 3.90

15.75 4.00

(A decimal hour representation of 1:30 pm is 13.5.) The following will create a line plot of amount

versus decimal hour in day:

1 import matplotlib.pyplot as plt
2 plt.plot([9.25, 11, 13.5, 15, 15.75], [2.54, 4.1, 1.21, 3.9, 4])
3 plt.xlabel('Decimal Hour in Day')
4 plt.ylabel('Amount ($)')
5 plt.show()

The graph created is shown in Figure 2.1. You can either type in each line of code in a Python

interpreter or in a file and run the script file (see Section 1.3.3 on how to write and run a script). If

you do run the lines of code as a script from a terminal window, you have to keep the interpreter

session open in order to see the plot.

Based on what the lines of code above say, what do you think each line does? Here’s my

description:

• Line 1: Import the pyplot module.

21

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/gallery.html

2.2. MY FIRST X-Y PLOT

Figure 2.1: Graph created by the code in Section 2.2.1.

• Line 2: Create the plot. The first argument is the list of x-values (the decimal times) and the
second argument is the list of the corresponding y-values. See Section 2.3 for a discussion
of what is a list.

• Line 3: Write the x-axis label.

• Line 4: Write the y-axis label.

• Line 5: Show the plot.

Once a plot is created (line 2), matplotlib keeps track of what plot is the “current” plot. Subsequent

commands (e.g., to make a label) are applied to the current plot.

Line 5 indicates that as you put each element of a graph onto matplotlib’s virtual canvas, mat-

plotlib does not render your addition but instead waits until you call the show command. Usually,
you care only about how a plot looks when it’s all done. By waiting until show is called, matplotlib
avoids the extra computation involved in rendering intermediate steps. (If you have more than one

figure, call show after all plots are defined to visualize all the plots at once.)
Matplotlib does pretty well using intelligent defaults for the graphs you ask it tomake. Butmuch

of the time, we’ll want to customize what our graphs look like. We’ll talk about such customization

in a second, but first we take a side-trip to introduce Python lists.

2.2.2 A scatter plot

Let’s take the same data in Section 2.2.1 and make a scatter plot. This code will do the trick:

22

2.3. PYTHON SIDEBAR: LISTS AND TUPLES

Figure 2.2: Graph created by the code in Section 2.2.2.

1 import matplotlib.pyplot as plt
2 plt.plot([9.25, 11, 13.5, 15, 15.75], [2.54, 4.1, 1.21, 3.9, 4], \
3 linestyle=' ', marker='o')
4 plt.xlabel('Decimal Hour in Day')
5 plt.ylabel('Amount ($)')
6 plt.show()

The linestyle keyword is set to an empty space while the marker keyword input parameter is
set to an "o", the symbol for a circle plot marker. The graph created is shown in Figure 2.2.

One final note: In the code above, the end of line 2 terminates with a backslash (“\”) character.
The backslash at the very end of a line is Python’s way of noting when a line continues on on the

next line. Thus:

a = "Hello " + \
"there " + \
"everyone!"

is the same as:

a = "Hello " + "there " + "everyone!"

2.3 Ï Python Sidebar: Lists and tuples

We’ve seen a few times now this Python construct we call a “list.” In the times we’ve seen it, it

appears to be a sequence of numbers. It can be, but it’s more than that.

23

2.3. PYTHON SIDEBAR: LISTS AND TUPLES

Lists are ordered sequences. What that means is they are a collection of items where the first

item has the first position, the second the second position, and so on. They are like arrays, except

each of the items in the list do not have to be of the same type. A given list element can also be

set to anything, even another list. Square brackets (“[]”) delimit (i.e., start and stop) a list, and

commas between list elements separate elements from one another.

List element addresses start with zero, so the first element of list a is a[0], the second is a[1],
etc. Because the ordinal value (i.e., first, second, third, etc.) of an element differs from the address

of an element (i.e., zero, one, two, etc.), when we refer to an element by its address we will append

a “th” to the end of the address. That is, the “zeroth” element by address is the first element by

position in the list, the “oneth” element by address is the second element by position, the “twoth”

element by address is the third element by position, and so on.

Finally, the length of a list can be obtained using the built-in len function, e.g., len(a) to find
the length of the list a.

Example 1 (A list):

Type in the following in the Python interpreter:

a = [2, 3.2, 'hello', [-1.2, 'there', 5.5]]

What is len(a)? What does a[1] equal to? How about a[3]? a[3][1]?

Solution and discussion: The len(a) is 4, a[1] equals 3.2, a[3] equals the list [-1.2, 'there', 5.5],
and a[3][1] equals the string 'there'. I find the easiest way to read a complex reference like
a[3][1] is from left to right, that is, “in the threeth element of the list a, take the oneth element.”

In Python, list elements can also be addressed starting from the end; thus, a[-1] is the last

element in list a, a[-2] is the next to last element, etc.
You can create new lists that are slices of an existing list. Slicing follows these rules:

• Element addresses in a range are separated by a colon.

• The lower limit of the range is inclusive, and the upper limit of the range is exclusive.

Example 2 (Slicing a list):

Consider again the list a that you just typed in for Example 1. What would a[1:3] return?

Solution and discussion: You should get the following if you print out the list slice a[1:3]:

>>> print a[1:3]
[3.2, 'hello']

24

2.3. PYTHON SIDEBAR: LISTS AND TUPLES

Because the upper-limit is exclusive in the slice, the threeth element (i.e., the fourth element) is not

part of the slice; only the oneth and twoth (i.e., second and third) elements are part of the slice.

Lists aremutable (i.e., you can add and remove items, change the size of the list). One way of

changing elements in a list is by assignment (just like you would change an element in an array):

Example 3 (Changing list element values by assignment):

Let’s go back to the list in Example 1:

a = [2, 3.2, 'hello', [-1.2, 'there', 5.5]]

How would we go about replacing the value of the second element with the string 'goodbye'?

Solution and discussion: We refer to the second element as a[1], so using variable assignment,
we change that element by:

a[1] = 'goodbye'

The list a is now:

[2, 'goodbye', 'hello', [-1.2, 'there', 5.5]]

Python lists, however, also have special “built-in” functions that allow you to insert items into

the list, pop off items from the list, etc. We’ll discuss the nature of those functions (which are called

methods; this relates to object-oriented programming) in more detail in Ch. 5. Even without that

discussion, however, it is still fruitful to consider a few examples of using list methods to alter lists:

Example 4 (Changing and examining lists using list methods):

Assume we have the list we defined in Example 1:

a = [2, 3.2, 'hello', [-1.2, 'there', 5.5]]

What do the following commands give you when typed into the Python interpreter?:

• a.insert(2,'everyone')

• a.remove(2)

• a.append(4.5)

• a.index('hello')

• a.count('hello')

25

2.4. CUSTOMIZING AN X-Y PLOT

Solution and discussion: The first command insert inserts the string 'everyone' into the
list after the twoth (i.e., third) element of the list. The second command remove removes the first
occurrence of the value given in the argument. The third command append adds the argument to
the end of the list.

For the list a, if we printed out the contents of a after each of the first three lines above were
executed one after the other, we would get:

[2, 3.2, 'everyone', 'hello', [-1.2, 'there', 5.5]]
[3.2, 'everyone', 'hello', [-1.2, 'there', 5.5]]
[3.2, 'everyone', 'hello', [-1.2, 'there', 5.5], 4.5]

The fourth command, after running the first three commands, would then return the location in

the list awhose value was 'hello'; that index is 2. The indexmethod returns the first occurrence
of a match in the list with the value that is passed in via the parameter list of the method’s call. The

final command counts the number of occurrences of 'hello' and returns the value 1. If any list
elements are themselves lists (such as the last element of a), count does not look into the sub-lists
to match the search target.

A little on tuples and strings: Tuples are nearly identical to lists with the exception that tuples

cannot be changed (i.e., they are immutable). That is to say, if you try to insert an element in a

tuple, Python will return an error. Tuples are defined exactly as lists except you use parenthesis as

delimiters instead of square brackets, e.g., b = (3.2, 'hello').
You can, to an extent, treat strings as lists. Thus, if:

a = "hello"

then:

"h" in a

will return True. The command:

"el" in a

will also return True, because the membership operator in will work on contiguous substrings.

You can also slice strings as if each character were a list element. a[1:3] will return the substring
"el". See Section 4.8 for more on indexing strings.

2.4 Customizing an X-Y plot

Let’s revisit our Figure 2.1 plot. It’s fine and all, what if I’d like to change some things? Here, we

discuss ways of making the most common changes.

26

2.4. CUSTOMIZING AN X-Y PLOT

Figure 2.3: Graph created by the code in Section 2.2.1, resized.

2.4.1 Controlling the axes ranges

I’d like to re-center the plot so that the x and y axes ranges are different. In particular, because the
hours my store is open is 8 am through 5 pm, I’d like the x-axis to go from 8 to 17. I’d also like

someone looking at the graph to have a sense of the absolute point-of-sale amount fluctuations, so

I’d like the y-axis to vary from 0 to 5. To do this, I just slip in an axis command in line 3 of the
script below:

1 import matplotlib.pyplot as plt
2 plt.plot([9.25, 11, 13.5, 15, 15.75], [2.54, 4.1, 1.21, 3.9, 4])
3 plt.axis([8, 17, 0, 5])
4 plt.xlabel('Decimal Hour in Day')
5 plt.ylabel('Amount ($)')
6 plt.show()

The single argument to the axis function is a list where the first two elements are the lower and
upper x-axis bounds and the third and fourth elements are the lower and upper y-axis bounds. The
resulting graph is shown in Figure 2.3.

2.4.2 Controlling line and marker formatting

To control line and marker features, you can use the appropriate keyword input parameters with

the plot function, e.g.:

27

2.4. CUSTOMIZING AN X-Y PLOT

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3],
linestyle='--', linewidth=5.0,
marker='*', markersize=20.0,
markeredgewidth=2.0,
markerfacecolor='w')

Note how linestyle, marker, and markerfacecolor use special string codes to specify the line
and marker type and formatting. The plot call above uses a dashed line and a white star for the
marker. Linewidth, marker size, and marker edge width are in points.

Instead of using keyword input parameters, you can also specify line color and type and marker

color and type as a string third argument, e.g.:

plt.plot([1, 2, 3, 4], [1, 2.1, 1.8, 4.3], 'r*--')

Notice that this third argument contains all the codes to specify line color, line type, marker color,

and marker type. That is to say, all these codes can be specified in one string. In the above example,

the color of the marker and connecting line is set to red, the marker is set to star, and the linestyle

is set to dashed. (The marker edge color is still the default, black, however.)

Tables 2.1 and 2.2 list some of the basic linestyles and marker codes.1

2.4.3 Annotation and adjusting the font size of labels

We introduced the xlabel and ylabel functions in Section 2.2.1 to annotate the x- and y-axes,
respectively. To place a title at the top of the plot, use the title function, whose basic syntax is
the same as xlabel and ylabel. General annotation uses the text function, whose syntax is:

plt.text(<x-location>,<y-location>,<string to write>)

The x- and y-locations are, by default, in terms of data coordinates. For all four functions (xlabel,
ylabel, title, and text), font size is controlled by the size keyword input parameter. When set

to a floating point value, size specifies the size of the text in points.

2.4.4 Plotting multiple figures

If you have have multiple independent figures (not multiple curves on one plot), call the figure
function before you call plot to label the figure accordingly. A subsequent call to that figure’s

number makes that figure current. For instance, consider this code:

1 plt.figure(3)
2 plt.plot([5, 6, 7, 8], [1, 1.8, -0.4, 4.3], \
3 marker='o')
4 plt.figure(4)
5 plt.plot([0.1, 0.2, 0.3, 0.4], [8, -2, 5.3, 4.2], \
6 linestyle='-.')
7 plt.figure(3)
8 plt.title('First Plot')

1See http://stackoverflow.com/a/13360032 for a way of listing all the linestyle and marker codes. A list of basically

all the line and marker properties can be found here: http://matplotlib.org/api/lines_api.html.

28

http://stackoverflow.com/a/13360032
http://matplotlib.org/api/lines_api.html

2.4. CUSTOMIZING AN X-Y PLOT

Linestyle String Code

Solid line -
Single dashed line --
Single dashed-dot line -.
Dotted line :

Table 2.1: Some linestyle codes in pyplot and a high-resolution line plot showing the lines generated

by the linestyle codes. See http://matplotlib.sourceforge.net/api/pyplot_api.html.

Marker String Code

Circle o
Diamond D
Point .
Plus +
Square s
Star *
Up Triangle ̂
X x

Table 2.2: Some marker codes in pyplot and a high-resolution line plot showing the markers gen-

erated by the marker codes. See http://matplotlib.sourceforge.net/api/pyplot_api.html.

Color String Code

Black k
Blue b
Green g
Red r
White w

Table 2.3: Some color codes in pyplot. See http://matplotlib.sourceforge.net/api/colors_api.html

for a full list of the built-in colors codes as well as for ways to access other colors.

29

http://matplotlib.sourceforge.net/api/pyplot_api.html
http://matplotlib.sourceforge.net/api/pyplot_api.html
http://matplotlib.sourceforge.net/api/colors_api.html

2.4. CUSTOMIZING AN X-Y PLOT

Line 1 creates a figure and gives it the name “3”. Lines 2–3 (which is a single logical line to the

interpreter) makes a line plot with a circle as the marker to the figure named “3”. Line 4 creates

a figure named “4”, and lines 5–6 make a line plot with a dash-dot linestyle to that figure. Line 7

makes figure “3” the current plot again, and the final line adds a title to figure “3”.

2.4.5 Plotting multiple curves

To plot multiple curves on a single plot, you can make repeated calls to plot. The lines for each call
will be added to the same figure. Alternately, you can string the set of three arguments (x-locations,
y-locations, and line/marker properties) for each plot one right after the other. For instance, consider
this code:

plt.plot([0, 1, 2, 3], [1, 2, 3, 4], '--o',
[1, 3, 5, 9], [8, -2, 5.3, 4.2], '-D')

The first three arguments specify the x- and y-locations of the first curve, which will be plot using
a dashed line and a circle as the marker. The second three arguments specify the x- and y-locations
of the second curve, which will be plot with a solid line and a diamond as the marker. Both curves

will be on the same figure.

2.4.6 Adding a legend

Adding a legend, with the default settings, is pretty straightforward: Just call the legend function
(with no arguments) after you’ve made the plots. When you plot each curve, however, you have to

set the label keyword input parameter to what the text for that curve should be in the legend. For
instance:

plt.plot([0, 4, 7, 8], [1, 2, 3, 4], 'r--o', label="Curve 1")
plt.plot([1, 3, 5, 9], [8, -2, 5.3, 4.2], 'b-D', label="Curve 2")
plt.legend()

produces the plot in Figure 2.4.6. Note the "r" and "b" strings in the plot calls produce a red
and blue line/marker, respectively. For more information on legends, see http://matplotlib.org/api/

axes_api.html#matplotlib.axes.Axes.legend (the documentation is pretty verbose, though, so you

might find it a more fruitful experience after some more experience with Python).

2.4.7 Adjusting the plot size

One easy way of adjusting the plot size is to set the figsize and dpi keyword input parameters in
the figure command.2 For instance, this call to figure:

plt.figure(1, figsize=(3,1), dpi=300)

before the call to the plot command, will make figure “1” three inches wide and one inch high,
with a resolution of 300 dots per inch (dpi). Note that the figsize keyword is set to a two-element
tuple.

2http://stackoverflow.com/a/638443 (accessed August 13, 2012).

30

http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.legend
http://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes.legend
http://stackoverflow.com/a/638443

2.5. PYTHON SIDEBAR: COMMENTING

Figure 2.4: Graph created by the code in Section 2.4.6.

2.4.8 Saving figures to a file

To write the plot out to a file, you can use the savefig function. For example, to write out the
current figure to a PNG file called testplot.png, at 300 dpi, type:

plt.savefig('testplot.png', dpi=300)

Here we specify an output resolution using the optional dpi keyword parameter; if left out, the

matplotlib default resolution will be used. Note that it is not enough for you to set dpi in your

figure command to get an output file at a specific resolution. The dpi setting in figure will

control what resolution show displays at while the dpi setting in savefig will control the output
file’s resolution; however, the figsize parameter in figure controls the figure size for both show
and savefig.

You can also save figures to a file using the graphical user interface (GUI) save button that is

part of the plot window displayed on the screen when you execute the show function. If you save
the plot using the save button, it will save at the default resolution, even if you specify a different

resolution in your figure command; use savefig if you want to write out your file at a specific
resolution.

2.5 Ï Python Sidebar: Commenting

We’re starting to write scripts that are longer and longer. While Python is a very clear language, at

some point we’ll want to put explanatory notes in our code to help explain why our code is written

a certain way, what the code does, and what is the source of our information. Comments in Python

31

2.6. SUMMARY

are begin with the hash symbol (“#”). Whether the hash is found at the beginning of a line or mid-

way through a line, the Python interpreter considers everything after and including the hash as a

comment.

Let’s take the code from Section 2.4.4 and add some commenting to it:

1 #- Create figure 3 as a scatter plot:
2 plt.figure(3) #+ Go to figure 3
3 plt.plot([5, 6, 7, 8], [1, 1.8, -0.4, 4.3], \
4 marker='o')
5

6 #- Create figure 4 as a line plot:
7 plt.figure(4) #+ Go to figure 4
8 plt.plot([0.1, 0.2, 0.3, 0.4], [8, -2, 5.3, 4.2], \
9 linestyle='-.')
10

11 #- Return to figure 3 and add a title:
12 plt.figure(3) #+ Go to figure 3
13 plt.title('First Plot')

These comment lines don’t really say much than is already clear from the code, but they illustrate

how the comment symbol works.

2.6 Summary

Matplotlib makes it easy to make x-y plots of various types. We’ll be using this package a lot as

we learn more data analysis tools.

32

Chapter 3

Simple Data Analysis

Chapter Contents

3.1 My first dataset . 33

3.2 Choosing which groups of the data to examine and manipulate 35

3.3 Ï Python Sidebar: More on for looping 36

3.4 Asking questions of the data . 36

3.5 Ï Python Sidebar: Booleans . 37

3.6 Ï Python Sidebar: Looping an indefinite number of times 40

3.7 Changing the data . 41

3.8 Analyzing data . 41

3.9 Ï Python Sidebar: Docstrings . 43

3.10 Ï Python Sidebar: Writing code a little bit at a time 44

3.11 Summary . 44

Calculations that are suitable for a handheld calculator, even a programmable one, represent

only a smattering of the kinds of calculations we can do today and are interested in with regards

to business data. Full-fledged programming language like Python have the capability to bring

business insights from large collections of data, whether they be from finance, human resources,

manufacturing, sales, operations, or any aspect of a business. In this chapter, we make our first

foray in using Python as a data analysis tool.

3.1 My first dataset

Let’s look at some real data. Below are the adjusted (for season, holiday, and trading-days) total

monthly sales at gasoline stations, for the U.S. as a whole, during calendar year 2015 (in millions

of dollars). The first number is for January, the second for February, and so on:1

1https://www.census.gov/retail/marts/www/adv44700.txt (accessed September 8, 2016).

33

https://www.census.gov/retail/marts/www/adv44700.txt

3.1. MY FIRST DATASET

35384
36453
36644
36211
37208
37727
37436
36568
34945
34517
33834
33703

Let’s first calculate the mean of these values. A function for calculating the mean is called, not

surprisingly, mean, and is part of the SciPy package. It takes a single list of input values (see

Section 2.3 for more on lists) as an input parameter. Thus, to calculate the mean and save the value

as the variable mean_2015 we would type:

import scipy
mean_2015 = scipy.mean([35384, 36453, 36644, 36211, 37208, 37727, \

37436, 36568, 34945, 34517, 33834, 33703])

We could also first save the year’s worth of input values as a list variable and pass the variable into

the function:

import scipy
data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \

37436, 36568, 34945, 34517, 33834, 33703]
mean_2015 = scipy.mean(data_2015)

This is all fine and good, but what if we want to do more than just pass the data into a function?

What if we want to manipulate or change the data values in some way to help us get the calculations

we are interested in? That is to say, how do we go about:

• Choosing which groups of the data to examine and manipulate (e.g., “each item, one at a

time,” “just the first five items,” etc.).

• Asking questions of the data (e.g., “which values are greater than $36,000 million,” “what

months are sales less than $37,000 million,” etc.).

• Changing the data.

Let’s go through each of these tasks on this first dataset.

34

3.2. CHOOSING WHICH GROUPS OF THE DATA TO EXAMINE AND MANIPULATE

3.2 Choosing which groups of the data to examine and manip-

ulate

In Section 2.3, we saw how to examine a single element (by specifying the index) and how to extract

a subset of elements (by a range of indices). When we have a collection of items, however, what

we really want to be able to do is not just examine an element or set of elements but to repeatedly

examine an element or set of elements. That

Let’s first consider the case of examining each element in a list of data, one element at a time.

Here’s the code to print the above data_2015 list, one element at a time:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for idata in data_2015:
4 print(idata)

Let’s unpack this. The for statement in line 2 tells Python to go through each element of data_2015
and set the variable idata to that element, one at a time, in the order they are given in the list

data_2015. Once that is done, Python executes the contents of the body of the loop, that is, all the
lines of code that are indented in four spaces under the for line. In this case, there is only one line
in the body of the loop (that is, that are indented in four spaces), and so nothing else is done except

printing idata.
What if you want to go through the list in a different order? You can loop through the list by

referencing the indices of the list elements rather than the elements themselves. For instance, if

you wanted to print out each element of data_2015, backwards (i.e., starting with the December
value and ending with the January value), you could do the following:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in [11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]:
4 print(data_2015[i])

We could also store the list of indices as a list variable and loop through that list in the for loop
immediately above. Remember the first element of a list has index 0.

We can use the same strategy of looping through indices to enable us to examine only a subset

of the data. For instance, to print out only the data for February and March:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in [1, 2]:
4 print(data_2015[i])

Because going through a list of indices is such a common operation, Python includes a built-in

function called range which produces such a list: range(n) returns the list [0, 1, 2, …, n − 1].
Thus:

35

3.3. PYTHON SIDEBAR: MORE ON FOR LOOPING

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in range(3):
4 print(data_2015[i])

prints out only the data for January, February, and March:

Here, we covered just the basics on loops. See Section 3.3 for some more on looping.

3.3 Ï Python Sidebar: More on for looping

We went over basic looping in Section 3.2. Here we provide some more of the “computer science”

behind basic looping.

The standard loop in Python begins with for and has the syntax:

for <index> in <list>:

followed by the contents of the loop. (Don’t forget the colon at the end of the for line.) The for
loop is kind of different compared to the Java for loops you might be familiar with. In Java, etc.
you specify a beginning value and an ending value (often 1 and an integer n) for an index, and the
loop runs through all integers from that beginning value to that ending value, setting the index to

that value. In Python, the loop index runs through a list of items, and the index is assigned to each

item in that list, one after the other, until the list of items is exhausted.

Recall that elements in a Python list can be of any type, and that list elements do not all have to

be of the same type. Also remember that Python is dynamically typed, so that a variable will change

its type to reflect whatever it is assigned to at any given time. Thus, in a loop, the loop index could,

potentially, be changing in type as the loop runs through all the elements in a list. Since the loop

index does not have to be an integer, it doesn’t really make sense to call it an “index;” in Python,

it’s called an iterator. When we talk about objects and methods, we’ll see how the fact the loop

index is not a number but an object makes Python loops more powerful.

A lot of the time you will loop through lists. Technically, however, Python loops can loop

through any data structure that is iterable, i.e., a structure where after you’ve looked at one element

of it, it will move you onto the next element. Arrays (whichwe’ll cover in Ch. 4) are another iterable

structure.

3.4 Asking questions of the data

Loops enable us to go through the data, one at a time. We’re now in a position to ask questions of

the data. Let’s consider our gasoline retail data again. Instead of printing every value to screen,

let’s say we only want to print out amounts that are greater than $35,000 million. The code to do

that would be:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for idata in data_2015:
4 if idata > 35000:
5 print(idata)

36

3.5. PYTHON SIDEBAR: BOOLEANS

In line 4, we have a branching statement or if statement. It takes the value of idata, checked to
see if idata is greater than 35000, and if so, prints the value of idata to the screen.

Note that as with a for loop, if the true/false test the if statement examines is true, the statement
executes the block of lines after the if statement, and this block of lines is denoted by four spaces
of indentation. In the above code, there is only one line executed when idata is greater than 35000;
if we had more lines, we’d list them one after the other, all indented four spaces in.

What if we decided we wanted to check to see which values of the data are over 35000 and for

those values to print both the value of the data and the month number? To do this, we’ll make use

of the indices of the list, since the index values are the same as the month number, minus one. We

thus loop over the indices instead of the data values themselves:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in range(len(data_2015)):
4 if data_2015[i] > 35000:
5 print(str(i+1) + " " + str(data_2015[i]))

Note that in line 3, the input parameter for range is the return value of the call to len, using
data_2015 as the input parameter to that call. This way, if the length of data_2015 changes, we
don’t have to change the for loop. Also remember that the print statement is looking for a string
as input and you have to use the str function to convert the month number (i.e., i+1 in line 6) and
the value from data_2015 (i.e., data_2015[i] in line 6).

Finally, what if we wanted to ask a question, do one thing if the answer is true adn something

else if the answer to the question is false? To do so, we use if paired with else. In the code below,
we print the month number and amount if the value of the data is greater than 35000 and print a

message "Too low" otherwise:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in range(len(data_2015)):
4 if data_2015[i] > 35000:
5 print(str(i+1) + " " + str(data_2015[i]))
6 else:
7 print("Too low")

Note that there is a colon after the else, and the lines of code youwant to execute if the if condition
is false is also indented in four spaces. As you’ve noticed, all blocks of code that are in a distinct

grouping (e.g., a function definition, a for loop body, an if statement body) have their first lines
of that body indented in one indentation level of four spaces.

3.5 Ï Python Sidebar: Booleans

In our description of if statements in Section 3.4, we just presented the questions we asked (e.g.,
idata > 35000) as if it was obvious they are questions. Here we make our description a little
more precise, to give us tools for dealing with more complex questions.

37

3.5. PYTHON SIDEBAR: BOOLEANS

Expressions like idata > 35000 are called boolean expressions because the Python inter-

preter returns a “true” or “false” value after evaluating the expression. For instance, in the inter-

preter typing the following will obtain:

>>> idata = 40000
>>> idata > 35000
True
>>> idata > 50000
False

Notice that the values that are returned from evaluating the true/false expression are the values True
and False. (The capitalized first letter is meaningful here, as in all Python code because Python is
case-sensitive.) These are actual values, just like a number or a string. And like actual values, you

can set variables to them:

>>> idata = 40000
>>> test_result = idata > 35000
>>> print(test_result)
True
>>> type(test_result)
<type 'bool'>

Variables whose values are either True or False are called boolean variables. You can set a

variable directly to one of those values or, as we did above, set them to the result of a boolean

expression.

The operators we use to operate on boolean variables are called logical or boolean operators.

The main ones are: and, or, and not.

Example 5 (Operations with boolean variables):

Try this in a Python interpreter:

a = True
b = False
print(a and b)
print(a or b)
print(not a)

What did you get?

Solution and discussion: The first two lines assign a and b as boolean variables. The first two
print statements return False and True, respectively. Remember that and requires both operands
to be True in order to return True, while or only requires one of the operands be True to return

38

3.5. PYTHON SIDEBAR: BOOLEANS

True. The not operator is a unary operator, meaning it operates on one token rather than two (like
and and or).

Membership testing: The in operator is another useful logical operator, though not as well-
known as the traditional logical operators like equality, greater than, etc. The in operator can be
used in Python lists and strings to check to see if some value is one of the elements (for a list) or is

at least a substring (for a string).

Example 6 (Checking list membership):

Assume we have the following list:

words = ['hi', 'bye', 'yes', 'no']

What do the following commands give you when typed into the Python interpreter?:

• 'hi' in words

• 'okay' in words

• 'y' in words

• 'bye' not in words

Solution and discussion: An expression using the in operator returns a boolean value. The
first command returns True because the string “hi” is in the list words. The next two commands
return False because neither the strings “okay” nor “y” are elements in the list. Note that “y” exists
as a substring of “yes”, but that doesn’t count as far as the in operator is concerned in the above
commands, since we’re using the operator on a list; the value to the left of in has to completely

match at least one of the elements of the list to the right of in. The final command returns False.
Since “bye” is in the list, it is false that “bye” is not in words. Note that the syntax to say “not in”
is not in and not a not applied to the return of the in expression (boy, that’s a tongue twister!).

String membership: When in is used on strings, Python looks for any occurrence of the entire
string to the left of in anywhere in the string to the right of in. Thus:

>>> 'us' in 'business'

will return True but:

>>> 'using' in 'business'

will return False.
Note that the syntax of in for membership testing is not the same as in in a for…in statement.

Even though the same term (“in”) is being used, in the latter case the in functions to tell Python to
iterate through what is to the right of the in.

39

3.6. PYTHON SIDEBAR: LOOPING AN INDEFINITE NUMBER OF TIMES

3.6 Ï Python Sidebar: Looping an indefinite number of times

With the introduction of boolean variables in Section 3.5, we can discuss another way of looping

that enables us to do a task without knowing ahead of time how many times we will do that task.

With lists of data, if you want to loop through all elements in that list, you do know ahead of time

how many times you will want to loop through that list, so a for loop is the best approach. When

you don’t know that ahead of time, the while loop is the best approach.
The Python while loop begins with the syntax:

while <condition>:

The code block (indented four spaces) that follows the while line is executed while <condition>
evaluates as True. Here’s a simple example:

Example 7 (A while loop):

Type in the following into a file (or the interpreter):

a = 1
while a < 10:

print(a)
a = a + 1

What did you get?

Solution and discussion: This will print out the integers one through nine, with each integer

on its own line. Prior to executing the code block underneath the while statement, the interpreter
checks whether the condition (a < 10) is true or false. If the condition evaluates as True, the code
block executes; if the condition evaluates as False, the code block is not executed. Thus:

a = 10
while a < 10:

print(a)
a = a + 1

will do nothing. Likewise:

a = 10
while False:

print(a)
a = a + 1

will also do nothing. In this last code snippet, the value of the variable a is immaterial; as the

condition is always set to False, the while loop will never execute. (Conversely, a while True:
statement will never terminate. It is a bad idea to write such a statement ,.)

Please see your favorite Python reference if you’d like more information about while loops.

40

3.7. CHANGING THE DATA

3.7 Changing the data

There are two main ways we can “change” the values in a list of data, which we saw in Section 2.3.

The first way is to loop through the indices of each element in the list of data and change each

element’s values via assignment. For instance, the following goes through data_2015 and changes
every value greater than 35000 to 0, by looping through the list element indices:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 for i in range(len(data_2015)):
4 if data_2015[i] > 35000:
5 data_2015[i] = 0

The second way is to create a separate, new list, loop through the elements of the old list, make

changes to the values of the old list, then save the changed values into the new list. The following

does the same as the previous code snippet except the “changed” list of data is in a list called

new_data_2015. Note that the old list of data data_2015 is unchanged:

1 new_data_2015 = []
2 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
3 37436, 36568, 34945, 34517, 33834, 33703]
4 for idata in data_2015:
5 if idata > 35000:
6 new_data_2015.append(0)
7 else:
8 new_data_2015.append(idata)

In line 1, we create a new list as an empty list. In lines 6 and 8, we use the append method to add
either 0 or the value of idata into the new list new_data_2015.

3.8 Analyzing data

We now can look at data and do things with it. Let’s use these tools to analyze data. In Ch. 1,

we learned about some functions in the SciPy package. We’ll use some other SciPy functions to

do basic statistical analysis on our data from Section 3.1. We’ll use functions provided by Python

as well as implement our own calculation of a function. The functions we’ll use are at the SciPy

module level (i.e., they can be used by an import scipy command).
Recall the moments2 mean and standard deviation are defined as:3

x =
1

N

N∑
i=1

xi

2https://en.wikipedia.org/wiki/Moment_(mathematics) (accessed September 13, 2016).
3https://en.wikipedia.org/wiki/Mean and https://en.wikipedia.org/wiki/Standard_deviation (both accessed Septem-

ber 13, 2016).

41

https://en.wikipedia.org/wiki/Moment_(mathematics)
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Standard_deviation

3.8. ANALYZING DATA

and

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2

respectively.

We can, of course, use the SciPy mean and std functions to calculate the mean and standard
deviation, respectively:

import scipy
data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \

37436, 36568, 34945, 34517, 33834, 33703]
data_mean = scipy.mean(data_2015)
data_std = scipy.std(data_2015)
print(data_mean)
print(data_std)

The code above produces the following as output:

35885.8333333
1322.68998845

which are the annual mean and standard deviation of U.S. gasoline retail sales (adjusted) for 2015.

But, using a pre-written function isn’t very instructive. Let’s start with the definition of mean

given above and calculate the 2015 annual mean directly from the mathematical definition, using

what we’ve learned about looping.

In our previous loops, we hadn’t done anything arithmetic with the numbers. To calculating the

mean, we see from the presence of a summation operator that we need to create a running sum of

the data values as well as figure out how many points there are we’re averaging over (N). To do

the former, we create a variable called running_sum, initialize it to 0, and add to it in the loop. To
do the latter, we can use the len function on the list of data:

1 data_2015 = [35384, 36453, 36644, 36211, 37208, 37727, \
2 37436, 36568, 34945, 34517, 33834, 33703]
3 running_sum = 0
4 for idata in data_2015:
5 running_sum = running_sum + idata
6 data_mean = float(running_sum) / len(data_2015)
7 print(data_mean)

which gives 35885.8333333, just as the SciPy function mean did. Note that Python supports the
+=, etc. operator, so we could rewrite line 5 as:

running_sum += idata

Of course, SciPy has many more statistical functions. Some are at the SciPy module level like

meanwhile others are in the stats submodule of SciPy (and are accessed by an import scipy.stats

42

3.9. PYTHON SIDEBAR: DOCSTRINGS

command). To learn more about all that SciPy has to offer, see the SciPy Reference Guide (http:

//docs.scipy.org/doc/scipy/reference/) and the NumPy Reference Guide (http://docs.scipy.org/doc/

numpy/reference/). Many of the NumPy functions (such as mean) are available at the SciPy module
level, but the documentation is in the NumPy Reference Guide. (We’ll talk more about the NumPy

package in Ch. 4.)

3.9 Ï Python Sidebar: Docstrings

In Section 2.5, we looked at how to write comments in the code. Another way of “commenting”

is the use of docstrings. Docstrings describe functions. What makes them special is that if you

follow the standardized format for docstrings, Python’s help function will automatically turn the
docstring into a manual page, with the proper formatting. Let’s look at an example. We’ll write a

docstring for the function we presented in Figure 1.6:

def percent_to_decimal(input):
"""Convert a percent to its decimal equivalent.

The decimal equivalent is computed by dividing the input by 100.
The result will be float, regardless of whether or not the input
is float or integer. input is assumed to be scalar; no testing
is done to see whether this is true.

Positional Input Parameter:
input : float or int

Numerical value of a percent. Scalar.

Keyword Input Parameters:
None

Examples:
>>> percent_to_decimal(42)
0.42
"""
return input / 100.

The docstring is a triple-quote string (see Section 1.3.2 regarding triple-quote strings) that imme-

diately follows the def line of the function. Note that the docstring is indented in four spaces, so
Python knows it’s part of the function’s definition block.

The first line of the docstring is a single sentence summarizing what the function does. This

line is followed by a blank line and then one or more paragraphs describing the algorithm used in

the function, general details about dependencies, general details about the return value, etc. (In

this case, we wouldn’t normally say how the decimal equivalent is calculated since it’s a trivial

calculation, but we put such a description here for illustrative purposes.) Finally, the docstring

has sections that describe the input parameters, provide examples of how to use the function, etc.

Information is provided on the type of variables, what those variables correspond to, etc.

43

http://docs.scipy.org/doc/scipy/reference/
http://docs.scipy.org/doc/scipy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/

3.10. PYTHON SIDEBAR: WRITING CODE A LITTLE BIT AT A TIME

Notice how we put returns in the docstring to make the text nicely formatted if the code were

printed on a piece of letter-sized paper. (The triple-quotes make this automatic.) I highly recom-

mend this practice! It makes your documentation much easier to read for someone who is looking

through your code file.

3.10 Ï Python Sidebar: Writing code a little bit at a time

As we start writing more and more complex programs, I want to encourage you to write your code

a little bit at a time. What I mean by that is that you should write one or two lines of code at a time,

run the code (or code snippet), and print out whether the variables and results are what you expect

them to be. If everything looks good, write two more lines of code. If you do not get what you

expect, find what’s going wrong and fix it.

This sounds like a lot of work but this “small bits” approach makes it much more likely that

your code will work and work correctly. The time you spend testing the one to two lines of code

you write will pay off in the time you save by not having so many bugs to hunt down and fix. This

“small bits” approach works particularly well with Python. Because the code does not need to be

compiled, you can write a snippet, cut-and-paste it into the Python interpreter, and see if it works

the way you expect.

3.11 Summary

With looping and branching, we can efficiently examine datasets and manipulate the data. Vari-

ables, looping, and branching are the there core constructs of a programming language. With these,

you can get the computer to do incredibly complex calculations. How to do so, and to see the ad-

ditional tools Python gives to make our lives easier in more advanced data analysis, is the topic of

the next chapter.

44

Chapter 4

Manipulating Data and More Complex

Data Analysis

Chapter Contents

4.1 Revisiting the gasoline retail dataset . 46

4.2 Basic statistics . 48

4.3 Ï Python Sidebar: More on creating and using NumPy arrays 49

4.3.1 Creating arrays . 49

4.3.2 Array indexing . 52

4.3.3 Array inquiry . 53

4.3.4 Array manipulation . 54

4.3.5 Calculations using array contents . 55

4.4 Correlation and lag autocorrelation . 58

4.5 More complicated manipulations . 61

4.6 Ï Python Sidebar: Testing inside an array 62

4.6.1 Testing inside an array: Method 1 (loops) 62

4.6.2 Testing inside an array: Method 2 (array syntax) 63

4.6.3 Additional array functions . 68

4.7 Ï Python Sidebar: Floating point comparison 68

4.8 Ï Python Sidebar: String indexing . 69

4.9 Ï Python Sidebar: A simple way of seeing how fast your code runs 70

4.10 Summary . 71

Taking a list of data and processing it is useful. But most of the time, we’re interested in not

only a single list of data but a whole table (or bunch of tables) of data. Many times in business

scenarios, we are looking to see how many factors (e.g., costs from many suppliers, pricing in

different markets, etc.) relate to each other and tell us about how a business is doing and how to

grow the business. Clearly, single lists of data won’t get us very far.

45

4.1. REVISITING THE GASOLINE RETAIL DATASET

The key to using Python to wrangle these kinds of business datasets is the Numpy array. NumPy

arrays (which we’ll just call arrays from now on) are tables of numbers. These tables can be one-

dimensional (as in a list of data), two-dimensional (like a spreadsheet), three-dimensional (like a

workbook of spreadsheets), or four, five, or more-dimensional. Arrays differ from lists in mainly

two ways: every element in a given array has to be of the same type and the syntax for dealing with

multi-dimensional arrays is a lot more straightforward and powerful.

In this chapter, we’ll look at data analysis that deals with this more complex data. Along the

way, we’ll describe how we create and manipulate arrays.

4.1 Revisiting the gasoline retail dataset

Of course, the total dataset of monthly gasoline station adjusted retail sales data, which we showed

part of in Section 3.1, includes more than just calendar year 2015. Table 4.1 shows all the data from

1992–2016.

46

4
.1
.
R
E
V
IS
IT
IN
G
T
H
E
G
A
S
O
L
IN
E
R
E
T
A
IL

D
A
T
A
S
E
T

YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

1992 12803 12601 12639 12710 12870 12886 12966 13092 13246 13304 13358 13475
1993 13398 13596 13487 13539 13521 13461 13502 13372 13416 13755 13754 13627
1994 13656 13875 13911 13867 13773 14059 14322 14685 14649 14709 14878 14885
1995 14915 14963 14921 15021 15215 15333 15249 15227 15194 15007 14981 15246
1996 15479 15457 15951 16252 16488 16352 16075 16066 16088 16360 16602 16759
1997 16938 16984 16969 16613 16367 16378 16396 16682 16757 16711 16638 16536
1998 16225 16054 15703 15798 16057 15933 16087 15851 15812 15948 16014 16399
1999 16394 16309 16529 17115 17186 17070 17704 18135 18339 18632 18992 20095
2000 19358 20214 20819 19907 20242 20885 20905 20574 21327 21412 21906 22124
2001 21931 21615 20652 21618 22628 21928 20686 20878 21336 20033 19245 18950
2002 19130 19068 19813 20856 20930 20733 21438 21182 21272 21659 22009 22464
2003 23073 23885 23968 22581 21810 21777 22196 23073 23214 22714 23472 23994
2004 24889 25256 25679 25518 27011 27050 26745 26552 27161 28656 29349 29046
2005 28438 29015 29528 29950 29113 29917 30976 33368 36008 36088 33185 33119
2006 34298 34174 34126 35752 36126 36127 37064 37765 34865 33010 33393 34858
2007 34168 34973 35963 36386 38031 37207 36996 37155 38327 39425 41897 41637
2008 42425 42411 43140 43025 44313 46429 46869 45701 45747 40640 31890 27952
2009 28768 29910 28811 28848 30507 33241 33057 34781 34868 34955 36655 37232
2010 37372 37009 37184 37208 36700 35761 35778 36261 37423 38534 39269 41172
2011 41731 42226 43654 44506 45191 44501 44638 45047 44935 44755 45596 45142
2012 45673 47216 47358 47023 45918 43711 43467 46411 47115 48015 46690 45827
2013 45932 48776 47161 45760 45212 45471 45384 44847 45035 44381 43963 45909
2014 46399 46816 46041 46317 45976 44973 44563 44416 44220 43305 42282 39199
2015 35384 36453 36644 36211 37208 37727 37436 36568 34945 34517 33834 33703
2016 32653 30967 32113 32984 33538 34265 33329

Table 4.1: Adjusted (for season, holiday, and trading-days) total monthly sales at gasoline stations, for the U.S. as a whole, from calendar

years 1992–2016 (inmillions of dollars). Source: https://www.census.gov/retail/marts/www/adv44700.txt (accessed September 8, 2016).

4
7

https://www.census.gov/retail/marts/www/adv44700.txt

4.2. BASIC STATISTICS

Immediately, we see that this table of data is best understood as a two-dimensional grid, rather

than a list. How do we hold all this data into a single variable in Python? We could make a list of

lists, but the syntax of specifying elements of such a variable sounds like it’d be a little hairy.

Instead, Python has a nice data structure called a NumPy array that makes handling two- (and

higher) dimensional data very straightforward. They are similar to Java arrays but are much more

useful and powerful. Because “NumPy arrays” is a mouthful, we’ll often just call them “arrays.”

In the next section, we’ll take a look at some basic statistical calculations using the gasoline re-

tail data from calendar years 1992–2015 (since the 2016 data ends with July in Table 4.1). Through

that example, and later ones, we’ll see how to create and manipulate arrays.

4.2 Basic statistics

Let’s take a few years from the Table 4.1 data, say 2012–2015, and do the following with that data:

(1) calculate the annual mean retail sales for each year in the period, and (2) calculate the monthly

mean retail sales for each month in the period.

The first step to doing either calculation is to put the data into a NumPy array variable. In Ch. 5,

we’ll discuss how to read-in large amounts of data from files and put their contents into an array

automatically. Here, we’ll just type it in:

1 import numpy as np
2 data_as_list = [\
3 [45673, 47216, 47358, 47023, 45918, 43711, 43467, 46411, 47115, 48015, 46690, 45827], \
4 [45932, 48776, 47161, 45760, 45212, 45471, 45384, 44847, 45035, 44381, 43963, 45909], \
5 [46399, 46816, 46041, 46317, 45976, 44973, 44563, 44416, 44220, 43305, 42282, 39199], \
6 [35384, 36453, 36644, 36211, 37208, 37727, 37436, 36568, 34945, 34517, 33834, 33703]]
7 data_as_array = np.array(data_as_list)

To utilize the NumPy array functions, we need to first import the NumPy package, as shown in line

1. We give an alias to the package, so instead of having to type numpy before each NumPy function
we use, we only need to type np. We enter in the values as list of lists, in lines 2–6. Finally, we

create an array version of data_as_list in the last line, by using the array function.
With our data in array form, we can more easily slice and dice the data to do the calcuations

we want. To calculate the annual means for each year in this dataset, we need to go through each

row of the array (since each row holds a year of data), and calculate the mean of all the values in

that row. The following code will make these calculations, using the data_as_array array, and
fill the lists annual_means and monthly_means with the respective means:

1 import numpy as np
2

3 annual_means = []
4 num_rows = np.shape(data_as_array)[0]
5 for irow in range(num_rows):
6 annual_means.append(np.mean(data_as_array[irow,:])
7

8 monthly_means = []
9 num_cols = np.shape(data_as_array)[1]
10 for icol in range(num_cols):
11 monthly_means.append(np.mean(data_as_array[:,icol])

48

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

You might be looking at the code above and be saying, “Whoa!” It is a bit dense. But based on the

names of the variables, we can make some reasoned guesses as to what is going on in the code.

In line 3, we initialize an empty list to hold all the values of the annual means that we will

calculate below. Line 4 appears to calculate the number of rows in data_as_array, but how does

it do that? It makes use of a function shape which, when we compare to line 9, apparently returns
a list that gives the number of rows then the number of columns. We’ll talk more about shape and
an array’s shape in Section 4.3.

Oncewe know howmany rows there are, we iterate through the indices of the rows of data_as_array,
starting with the loop definition in line 5. The loop body, in line 6, needs a little unpacking. In

Python, you’ll often see these kinds of seemingly complicated, composite statements, because you

can use the return value of an operation or function call as input into another operation or function

call. The way to read these composite statements is to start in the inner-most parenthesis or oper-

ation nesting level and work outwards from there. In line 6, this is the data_as_array[irow,:]
statement. We’ll talk more about this in Section 4.3, but what this statement does is select the row

with index irow and returns all elements of that row as a subarray. That return value is then fed

into the NumPy mean function, which takes the mean of that subarray. The return value from the

mean function call is a scalar that is appended to the annual_means list.
Lines 8–11 behave similarly as lines 2–7. The difference here is in line 10 we iterate over all the

indices of the columns of data_as_array and the subarraywe create using data_as_array[:,icol]
in line 11 is an array consisting of all the elements in the column icol (i.e., all the Januarys, all the
Februarys, etc.).

As we can see, arrays are like lists but also different, and provide additional functionality that

makes our codemore compact and powerful. We now turn to Section 4.3 to spendmore time talking

about making and using NumPy arrays and to do so with a little more structure.

4.3 Ï Python Sidebar: More on creating and using NumPy

arrays

An array is like a list except: All elements are of the same type, so operations with arrays are much

faster; multi-dimensional arrays are more clearly supported; and array operations are supported.

To utilize NumPy’s functions and attributes, you import the package numpy, often as the alias np.

4.3.1 Creating arrays

The most basic way of creating an array is to take an existing list and convert it into an array using

the array function in NumPy. Here is a basic example:

Example 8 (Using the array function on a list):

Assume you have the following list:

mylist = [[2, 3, -5],[21, -2, 1]]

then you can create an array a with:

49

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

import numpy as np
a = np.array(mylist)

The array function will match the array type to the contents of the list. Note that the elements of
mylist have to be convertible to the same type. Thus, if the list elements are all numbers (floating
point or integer), the array function will work fine. Otherwise, things could get dicey.

Sometimes you will want to make sure your NumPy array elements are of a specific type. To

force a certain numerical type for the array, set the dtype keyword to a type code:

Example 9 (Using the dtype keyword):

Assume you have a list mylist already defined. To make an array a from that list that is

double-precision floating point, you’d type:

import numpy as np
a = np.array(mylist, dtype='d')

where the string 'd' is the typecode for double-precision floating point. Some common typecodes
(which are all strings) include:

• 'd': Double precision floating

• 'f': Single precision floating

• 'i': Short integer

• 'l': Long integer

Often you will want to create an array of a given size and shape, but you will not know in

advance what the element values will be. To create an array of a given shape filled with zeros,

use the zeros function, which takes the shape of the array (a tuple) as the single positional input
argument (with dtype being optional, if you want to specify it):

Example 10 (Using the zeros function):

Let’s make an array of zeros of shape (3,2), i.e., three rows and two columns in shape. Type

in:

import numpy as np
a = np.zeros((3,2), dtype='d')

Print out the array you made by typing in print(a). Did you get what you expected?

Solution and discussion: You should have gotten:

50

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

>>> print(a)
[[0. 0.]
[0. 0.]
[0. 0.]]

Note that you don’t have to type import numpy as np prior to every use of a function from
NumPy, as long as earlier in your source code file you have done that import. In the examples in this

section, I will periodically include this line to remind you that np is now an alias for the imported

NumPy module. However, in your own code file, if you already have the import numpy as np
statement near the beginning of your file, you do not have to type it in again as per the example.

Likewise, if I do not tell you to type in the import numpy as np statement, and I ask you to use
a NumPy function, I’m assuming you already have that statement earlier in your code file.

Also note that while the input shape into zeros is a tuple, which all array shapes are, if you
type in a list, the function call will still work.

Another array you will commonly create is the array that corresponds to the output of range,
that is, an array that starts at 0 and increments upwards by 1. NumPy provides the arange function
for this purpose. The syntax is the same as range, but it optionally accepts the dtype keyword
parameter if you want to select a specific type for your array elements:

Example 11 (Using the arange function):

Let’s make an array of 10 elements, starting from 0, going to 9, and incrementing by 1. Type

in:

a = np.arange(10)

Print out the array you made by typing in print(a). Did you get what you expected?

Solution and discussion: You should have gotten:

>>> print(a)
[0 1 2 3 4 5 6 7 8 9]

Note that because the argument of arange is an integer, the resulting array has integer elements.
If, instead, you had typed in arange(10.0), the elements in the resulting array would have been
floating point. You can accomplish the same effect by using the dtype keyword input parameter,
of course, but I mention this because sometimes it can be a gotcha: you intend an integer array but

accidentally pass in a floating point value for the number of elements in the array, or vice versa.

51

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

4.3.2 Array indexing

Like lists, element addresses start with zero, so the first element of a 1-D array a is a[0], the second
is a[1], etc. Like lists, you can also reference elements starting from the end, e.g., element a[-1]
is the last element in a 1-D array a.

Array slicing follows rules very similar to list slicing:

• Element addresses in a range are separated by a colon.

• The lower limit is inclusive, and the upper limit is exclusive.

• If one of the limits is left out, the range is extended to the end of the range (e.g., if the lower

limit is left out, the range extends to the very beginning of the array).

• Thus, to specify all elements, use a colon by itself.

Here’s an example:

Example 12 (Array indexing and slicing):

Type the following in a Python interpreter:

a = np.array([2, 3.2, 5.5, -6.4, -2.2, 2.4])

What does a[1] equal? a[1:4]? a[2:]? Try to answer these first without using the interpreter.

Confirm your answer by using print.

Solution and discussion: You should have gotten:

>>> print(a[1])
3.2
>>> print a[1:4]
[3.2 5.5 -6.4]
>>> print(a[2:])
[5.5 -6.4 -2.2 2.4]

For multi-dimensional arrays, indexing between different dimensions is separated by commas.

Note that the fastest varying dimension is always the last index, the next fastest varying dimension

is the next to last index, and so forth (this follows C convention).1 Thus, a 2-D array is indexed

[row, col]. Slicing rules also work as applied for each dimension (e.g., a colon selects all elements

in that dimension). Here’s an example:

Example 13 (Multidimensional array indexing and slicing):

Consider the following typed into a Python interpreter:

1See http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html and the definition of “row-major” in http:

//docs.scipy.org/doc/numpy/glossary.html (both accessed August 9, 2012).

52

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://docs.scipy.org/doc/numpy/glossary.html
http://docs.scipy.org/doc/numpy/glossary.html

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

import numpy as np
a = np.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],
[3, 1, 2.1, 21, 1.1, -2]])

What is a[1,2] equal to? a[:,3]? a[1,:]? a[1,1:4]?

Solution and discussion: You should have obtained:

>>> print(a[1,2])
4.0
>>> print(a[:,3])
[-6.4 0.1 21.]
>>> print(a[1,:])
[1. 22. 4. 0.1 5.3 -9.]
>>> print(a[1,1:4])
[22. 4. 0.1]

Note that when I typed in the array I did not use the line continuation character at the end of

each line because I was entering in a list, and by starting another line after I typed in a comma,

Python automatically understood that I had not finished entering the list and continued reading the

line for me.

4.3.3 Array inquiry

Some information about arrays comes through functions that act on arrays; other information comes

through attributes attached to the array object. Let’s look at some array inquiry examples:

Example 14 (Array inquiry):

Import NumPy as the alias np and create a 2-D array a. Below are some array inquiry tasks and

the Python code to conduct these tasks. Try these commands out in your interpreter and see if you

get what you expect.

• Return the shape of the array: np.shape(a)

• Return the number of dimensions of the array: np.ndim(a)

• Return the number of elements in the array: np.size(a)

• Typecode of the array: a.dtype.char

Solution and discussion: Here are some results using the example array from Example 13:

53

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

>>> print(np.shape(a))
(3, 6)
>>> print(np.ndim(a))
2
>>> print(np.size(a))
18
>>> print(a.dtype.char)
d

Note that you should not use len for returning the number of elements in an array. Also,

the size function returns the total number of elements in an array. Finally, a.dtype.char is an
example of an array attribute; notice there are no parentheses at the end of the specification because

an attribute variable is a piece of data, not a function that you call.

The neat thing about array inquiry functions (and attributes) is that you can write code to operate

on an array in general instead of a specific array of given size, shape, etc. This allows you to write

code that can be used on arrays of all types, with the exact array determined at run time.

4.3.4 Array manipulation

In addition to finding things about an array, NumPy includes many functions to manipulate arrays.

Some, like transpose, come from linear algebra, but NumPy also includes a variety of array ma-

nipulation functions that enable you to massage arrays into the form you need to do the calculations

you want. One common such function is the reshape function which, as you might expect, takes
an array and gives it a new shape (but doesn’t change its total number of elements). For instance,

re-consider this 2-D array:

import numpy as np
a = np.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],

[1, 22, 4, 0.1, 5.3, -9],
[3, 1, 2.1, 21, 1.1, -2]])

If we type np.shape(a), we find this is a (3, 6) shape array (i.e., three rows and six columns).
That equals 18 elements. We can reshape this into a 2 slice, 3 row, and 3 column array using

reshape. This reshaped array has the shape (2, 3, 3). Note that the total number of elements
of this reshaped array is the same as the original array, i.e., 18 elements. The syntax for using

reshape is reshape(input_array, new_shape). Thus, the example described in this paragraph,
when typed into the interpreter, would be:

54

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

>>> import numpy as np
>>> a = np.array([[2, 3.2, 5.5, -6.4, -2.2, 2.4],
... [1, 22, 4, 0.1, 5.3, -9],
... [3, 1, 2.1, 21, 1.1, -2]])
>>> b = np.reshape(a, (2, 3, 3))
>>> b
array([[[2. , 3.2, 5.5],

[-6.4, -2.2, 2.4],
[1. , 22. , 4.]],

[[0.1, 5.3, -9.],
[3. , 1. , 2.1],
[21. , 1.1, -2.]]])

Note that when you re-shape an array, you do not move the elements around in memory. All

reshaping does is change when you decide to stop a row, a slice, etc. Put another way, the 4 and

0.1 in array a above are stored next to each other in the computer’s memory, but so too are the 4
and 0.1 in array b, even though in array b the 4 ends a row and slice. In that sense, row, slice, etc.

breaks are not “hard-wired” into the way the computer stores the array but are rather “bookmarks”

the computer keeps track of to allow us to use array slicing (as we saw in Example 13).

4.3.5 Calculations using array contents

So far we’ve learned how to make arrays and ask arrays to tell us about themselves. Here we talk

about making calculations of the contents of an array. We’ll talk about two ways of doing so. The

first method uses for loops, and we saw this being used in Section 4.2. The second method uses

something called array syntax, where looping over array elements happens implicitly. The first

method is what Java uses. This will probably be the first time you’ve seen the second method.

You’ll see that the second method, however, is very powerful.

Calculations using array contents: Method 1 (loops)

The tried-and-true method of doing arithmetic operations on arrays is to use loops to examine each

array element one-by-one, do the operation, and then save the result. Depending on what the result

is, the result might be saved in a scalar variable (i.e., just a number) or in a results array. Here’s an

example:

Example 15 (Multiply two arrays, element-by-element, using loops):

Consider this code:

55

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

1 import numpy as np
2 a = np.array([[2, 3.2, 5.5, -6.4],
3 [3, 1, 2.1, 21]])
4 b = np.array([[4, 1.2, -4, 9.1],
5 [6, 21, 1.5, -27]])
6 shape_a = np.shape(a)
7 product_ab = np.zeros(shape_a, dtype='f')
8 for i in range(shape_a[0]):
9 for j in range(shape_a[1]):
10 product_ab[i,j] = a[i,j] * b[i,j]

Can you describe what is happening in each line?

Solution and discussion: In the first four lines after the import line (lines 2–5), I create arrays
a and b. They are both two row, four column arrays. In the sixth line, I read the shape of array a and
save it as the variable shape_a. Note that shape_a is the tuple (2,4). In the seventh line, I create
a results array of the same shape of a and b, of single-precision floating point type, and with each
element filled with zeros. In the last three lines (lines 8–10), I loop through all rows (the number of

which is given by shape_a[0]) and all columns (the number of which is given by shape_a[1]),
by index. Thus, i and j are set to the element addresses for rows and columns, respectively, and
line 10 does the multiplication operation and sets the product in the results array product_ab using
the element addresses.

One other note: In this example, I make the assumption that the shape of a and the shape of b
are the same, but I should instead add a check that this is actually the case. While a check using an

if statement condition such as:

np.shape(a) != np.shape(b)

will work, because equality between sequences is true if all corresponding elements are equal,2

things get tricky, fast, if you are interested in more complex logical comparisons and boolean oper-

ations for arrays. For instance, the logic that works for != doesn’t apply to built-in Python boolean
operators such as and. We’ll see later on in Section 4.6.2 how to do element-wise boolean opera-

tions on arrays.

So, why wouldn’t you want to use the looping method for general array operations? In three

and a half words: Loops are (relatively) s-l-o-w. Thus, if you can at all help it, it’s better to use

array syntax for general array operations: your code will be faster, more flexible, and easier to read

and test.

Calculations using array contents: Method 2 (array syntax)

The basic idea behind array syntax is that, much of the time, arrays interact with each other on a

corresponding element basis, and so instead of requiring the user to write out the nested for loops
2See the “Built-in Types” entry in the online Python documentation at http://docs.python.org/library/stdtypes.html#

sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange (accessed March 26, 2012).

56

http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange
http://docs.python.org/library/stdtypes.html#sequence-types-str-unicode-list-tuple-bytearray-buffer-xrange

4.3. PYTHON SIDEBAR: MORE ON CREATING AND USING NUMPY ARRAYS

explicitly, the loops and element-wise operations are done implicitly in the operator. That is to say,

instead of writing this code (assume arrays a and b are 1-D arrays of the same size):

c = np.zeros(np.shape(a), dtype='f')
for i in range(np.size(a)):

c[i] = a[i] * b[i]

array syntax means you can write this code:

c = a * b

Let’s try this with a specific example using actual numbers:

Example 16 (Multiply two arrays, element-by-element, using array syntax):

Type the following in a file and run it using the Python interpreter:

import numpy as np
a = np.array([[2, 3.2, 5.5, -6.4],

[3, 1, 2.1, 21]])
b = np.array([[4, 1.2, -4, 9.1],

[6, 21, 1.5, -27]])
product_ab = a * b

What do you get when you print out product_ab?

Solution and discussion: You should get something like this:

>>> print(product_ab)
[[8. 3.84 -22. -58.24]
[18. 21. 3.15 -567.]]

In this example, we see that arithmetic operators are automatically defined to act element-wise

when operands are NumPy arrays or scalars. (Operators do have function equivalents in NumPy,

e.g., product, add, etc., for the situations where you want to do the operation using function syn-
tax.) Additionally, the output array c is automatically created on assignment; there is no need to
initialize the output array using zeros.

There are three more key benefits of array syntax. First, operand shapes are automatically

checked for compatibility, so there is no need to check for that explicitly. Second, you do not need

to know the number of dimensions of the arrays ahead of time, so the same line of code works

on 1-D, 2-D, 3-D, etc. arrays. Finally, the array syntax formulation runs faster than the equivalent

code using loops! Simpler, better, faster: pretty cool, eh? ,
Let’s try another array syntax example:

Example 17 (Another array syntax example):

Type the following in a Python interpreter:

57

4.4. CORRELATION AND LAG AUTOCORRELATION

import numpy as np
a = np.arange(10)
b = a * 2
c = a + b
d = c * 2.0

What results? Predict what you think a, b, and c will be, then print out those arrays to confirm
whether you were right.

Solution and discussion: You should get something like this:

>>> print(a)
[0 1 2 3 4 5 6 7 8 9]
>>> print(b)
[0 2 4 6 8 10 12 14 16 18]
>>> print(c)
[0 3 6 9 12 15 18 21 24 27]
>>> print(d)
[0. 6. 12. 18. 24. 30. 36. 42. 48. 54.]

Arrays a, b, and c are all integer arrays because the operands that created those arrays are all
integers. Array d, however, is floating point because it was created by multiplying an integer array
by a floating point scalar. Python automatically chooses the type of the new array to retain, as much

as possible, the information found in the operands.

4.4 Correlation and lag autocorrelation

The correlation coefficient between two sets of data (rxy) is given as:
3

rxy =
cov(x, y)

σxσy

=

n∑
i=1

(xi − x) (yi − y)√
n∑

i=1

(xi − x)2
n∑

i=1

(yi − y)2

The correlation coefficient tells us the degree to which two variables are linearly related to

each other. If the value of the correlation coefficient is 1, the two variables are tightly related and

increases in one variable are connected to increases in the other (“correlated”). If the value of the

correlation coefficient is −1, the two variables are also tightly related but where increase in one

3https://en.wikipedia.org/w/index.php?title=Correlation_and_dependence&oldid=739479314 (accessed Septem-

ber 24, 2016)

58

https://en.wikipedia.org/w/index.php?title=Correlation_and_dependence&oldid=739479314

4.4. CORRELATION AND LAG AUTOCORRELATION

variable are connected to decreases in the other (“anti-correlated”). If the value of the correlation

coeffience is 0, the two variables are not tightly related to each other (“uncorrelated”).

SciPy has a function called corrcoef that returns the correlation matrix. In the case of two one-
dimensional timeseries (that is, two single sequences of data values), the correlation coefficient is

the value of the “off-diagonal” elements, of which there are two, and both of which are the same

value. Thus, the following code returns the correlation coefficient between two one-dimensional

arrays x and y (both arrays of the same length):

import scipy
scipy.corrcoef(x, y)[0,1]

You can verify that this result is the same as generated by the equation above.

In this chapter, however, we are dealing with the question of how to do NumPy arrays to help

us do more complex data analysis; calling a function isn’t really more “complex.” Well, the reason

we introduced the idea of correlation is to provide background for something that is a little more

complex, and illustrates another use of slicing. And that something is lag autocorrelation.

The definition of the correlation coefficient above gives us the correlation coefficient between

two variables, x and y. But what if x and y weren’t two different variables but the same variable,
except shifted in time? That is to say, what if x and y were time series but where y were values of
x shifted earlier or later? Then, the correlation coefficient we calculated would tell us the degree

to which an earlier value is related to a later value. If we calculated the correlation coefficient for

various degrees of shifting, we would have calculated the lag autocorrelation for the time series.

(Whenwe do this correlation calculation between two different shifted time series x and y it is called
lag correlation. The “auto” in “lag autocorrelation” means “same time series. For our purposes,

we’ll focus on lag autocorrelation, but the more interesting and useful measure is lag correlation. I

encourage you to learn more about that technique someday on your own.)

Let’s take the subset of gasoline retail data in Section 4.2 and calculate and plot the lag au-

tocorrelation for various number of months of lag. Here is code that would do the trick, using

loops:

1 import numpy as np
2 import scipy
3 data_flat = np.ravel(data_as_array)
4 lags = np.arange(6)
5 correl = []
6 for ilag in lags:
7 x = np.zeros((np.size(data_flat)-ilag))
8 y = np.zeros((np.size(data_flat)-ilag))
9 for imonth in range(np.size(x)):
10 x[imonth] = data_flat[imonth]
11 y[imonth] = data_flat[imonth+ilag]
12 correl.append(np.corrcoef(x, y)[0,1])

In line 3, we use the ravel function to turn the two-dimensional array into a one-dimensional array.
In line 4 we make the lags we’re considering to be 0–5 months. The correlation coefficient will

be between f(t) vs. f(t + lag), and we hold the correlation coefficient values in the list correl.

59

4.4. CORRELATION AND LAG AUTOCORRELATION

Figure 4.1: Lag autocorrelation plot for the data set in Section 4.4.

In lines 6–11, we loop through each lag value and make the temporary variables x and y values of
data_flat, shifted by the lag value. Once we have the x and y arrays, we calculate the correlation
coefficient for that lag.

A graph of the lag autocorrelation coefficient vs. the lag value is given in Figure 4.1. As ex-

pected, at no lag, the correlation coefficient is 1, since a time series is perfectly related to itself at

the same time. As the lag increases, the correlation drops. This is consistent with what we’d expect,

that is, that the relationship between the current month’s gasoline retail sales with sales in the future

will become weaker the farther out in the future you go. (Note, however, that we can’t really say

what these coefficient valuesmeanwithout conducting a test of statistical significance. When doing

statistical calculations, only statistically significant values compared to some reasonable baseline

have meaning, in the statistical sense.)

Here’s the solution using array slicing:

60

4.5. MORE COMPLICATED MANIPULATIONS

1 import numpy as np
2 import scipy
3 data_flat = np.ravel(data_as_array)
4 lags = np.arange(6)
5 correl = []
6 for ilag in lags:
7 if ilag == 0:
8 correl.append(1.0)
9 else:
10 x = data_flat[0:-ilag]
11 y = data_flat[ilag:]
12 correl.append(np.corrcoef(x, y)[0,1])

It’s similar to the solution using loops except the portionwherewe select the values from data_flat
are done using array slicing, with adjustments for the lag value. Note that we pre-calculate the lag

0 case because the lag autocorrelation for no lag is always 1. We have to do this because the slicing

syntax in lines 10–11 do not work if ilag equals 0. The slicing syntax in lines 10–11, however, are
cleaner than the code in the loops solution (lines 7–11 in that solution), which does the same thing.

4.5 More complicatedmanipulations of the data for customized

analyses

We can do a lot of analysis by using NumPy and SciPy functions on arrays and subarrays of data.

Often times, however, we’ll want to do more than extract the data or do simple operations on the

data. Instead, we’ll want to something more complicated. How can we use Python arrays to help

us do this kind of analysis?

Let’s pretend we wanted to take the subset of gasoline retail data in Section 4.2 and extract only

the values meeting a certain criteria, say the monthly sales is greater than $40,000 million. The

code below does this, and the list data_gt_40k contains only those values that are greater than
40,000:

1 import numpy as np
2 data_gt_40k = []
3 data_shape = np.shape(data_as_array)
4 for iyear in range(data_shape[0]):
5 for imonth in range(data_shape[1]):
6 if data_as_array[iyear, imonth] > 40000:
7 data_gt_40k.append(data_as_array[iyear, imonth])

In this code, wemake use of nested loops. That is, the loop defined in line 5 is run for every iteration

of the loop defined in line 4. In this way we go through all the data in the two-dimensional array

data_as_array. The if test in line 6 is conducted on every element in data_as_array. Note
that in Python, the nesting of loops is defined by the indentation. If you do not indent the inner

loop, you won’t have a nested loop but rather two separate loops.

61

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

Note that the above code would also work on the full data in Table 4.1, if that data was set to

data_as_array, since we make use of array inquiry functions to determine how many times to

loop through the array.

We saw in Section 4.3.5 that with array syntax we can implicitly loop through all elements of an

array and make calculations with each element of the array, one element at a time, without writing

an actual for statement. But what about if tests? Is there a way we can do testing inside an array
while using array syntax? That way, we can get the benefits of simpler code, the flexibility of code

that works on arrays of any number of dimensions, and speed. The answer is, yes! NumPy has

comparison and boolean operators that act element-wise and array inquiry and selection functions.

Here’s the code to do the above task without explicit for loops:

1 import numpy as np
2 is_gt_40k_indices = np.where(data_as_array > 40000)
3 data_gt_40k = data_as_array[is_gt_40k_indices]

The expression data_as_array > 40000 produces an array of the same size and shape as data_as_array
but whose elements are either True or False, depending on whether or not the corresponding el-
ement in data_as_array is greater than 40000. The NumPy where function, when called with
a single boolean array as a parameter, returns a data structure that specifies the indices where the

input parameter is true. That data structure can then be used when specifying indices in an array

(line 3) to select those elements elements of the array.

This use of boolean array expressions and where only touches on ways we can do tests while
using array syntax. Section 4.6.2 goes into more detail on this topic.

4.6 Ï Python Sidebar: Testing inside an array

We’ve seen there are two ways of doing calculations or manipulations of an array that involves

conditionals. The first is to implement this in a loop. A second way is to use array syntax and take

advantage of comparison operators and specialized NumPy search functions. In this section we

dive more deeply into these methods.

4.6.1 Testing inside an array: Method 1 (loops)

In this method, you apply a standard conditional (e.g., if statement) while inside the nested for
loops running through the array. This is similar to traditional Fortran syntax. Here’s is an example:

Example 18 (Using looping to test inside an array):

Say you have a 2-D array a and you want to return an array answer which is double the value
of the corresponding element in a when the element is greater than 5 and less than 10, and zero
when the value of that element in a is not. What’s the code for this task?

Solution and discussion: Here’s the code:

62

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

answer = np.zeros(np.shape(a), dtype='f')
for i in range(np.shape(a)[0]):

for j in range(np.shape(a)[1]):
if (a[i,j] > 5) and (a[i,j] < 10):

answer[i,j] = a[i,j] * 2.0
else:

pass

The pass command is used when you have a block statement (e.g., a block if statement, etc.)

where you want the interpreter to do nothing. In this case, because answer is filled with all zeros
on initialization, if the if test condition returns False, we want that element of answer to be zero.
But, all elements of answer start out as zero, so the else block has nothing to do; thus, we pass.

Again, while this code works, loops are slow, and the if statement makes it even slower. The
nested for loops also mean that this code will only work for a 2-D version of the array a.

4.6.2 Testing inside an array: Method 2 (array syntax)

As we’ve seen, because NumPy has comparison and boolean operators that act element-wise and

array inquiry and selection functions, we can write a variety of ways of testing and selecting inside

an array while using array syntax. Before we discuss some of those ways, we need some context

about using NumPy comparison operators and boolean array functions.

NumPy comparison operators and boolean array functions

NumPy has defined the standard comparison operators in Python (e.g., ==, <) to work element-wise
with arrays. Thus, if you run these lines of code:

import numpy as np
a = np.arange(6)
print(a > 3)

the following array is printed out to the screen:

[False False False False True True]

Each element of the array a that was greater than 3 has its corresponding element in the output
set to True while all other elements are set to False. You can achieve the same result by using the
corresponding NumPy function greater. Thus:

print(np.greater(a, 3))

gives you the same thing. Other comparison functions are similarly defined for the other standard

comparison operators; those functions also act element-wise on NumPy arrays.

63

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

Once you have arrays of booleans, you can operate on them using boolean operator NumPy

functions. You cannot use Python’s built-in and, or, etc. operators; those will not act element-
wise. Instead, use the NumPy functions logical_and, logical_or, etc. Thus, if we have this
code:

a = np.arange(6)
print(np.logical_and(a>1, a<=3))

the following array will be printed to screen:

[False False True True False False]

The logical_and function takes two boolean arrays and does an element-wise boolean “and”

operation on them and returns a boolean array of the same size and shape filled with the results.

With this background on comparison operators and boolean functions for NumPy arrays, we

can talk about ways of doing testing and selecting in arrays while using array syntax. Here are two

methods: using the where function and using arithmetic operations on boolean arrays.

The where function

The Python version of where, can be used in two ways: To directly select corresponding values
from another array (or scalar), depending on whether a condition is true, and to return a list of array

element indices for which a condition is true (which then can be used to select the corresponding

values by selection with indices).

The syntax for using where to directly select corresponding values is the following:

np.where(<condition>, <value if true>, <value if false>)

If an element of <condition> is True, the corresponding element of <value if true> is used

in the array returned by the function, while the corresponding element of <value if false> is used

if <condition> is False. The where function returns an array of the same size and shape as

<condition> (which is an array of boolean elements). Here is an example to work through:

Example 19 (Using where to directly select corresponding values fromanother array or scalar):

Consider the following case:

import numpy as np
a = np.arange(8)
condition = np.logical_and(a>3, a<6)
answer = np.where(condition, a*2, 0)

What is condition? answer? What does the code do?

Solution and discussion: You should get:

64

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

>>> print(a)
[0 1 2 3 4 5 6 7]
>>> print(condition)
[False False False False True True False False]
>>> print(answer)
[0 0 0 0 8 10 0 0]

The array condition shows which elements of the array a are greater than 3 and less than 6. The
where call takes every element of array a where that is true and doubles the corresponding value
of a; elsewhere, the output element from where is set to 0.

The secondway of using where is to return a tuple of array element indices for which a condition
is true, which then can be used to select the corresponding values by selection with indices.4 For

1-D arrays, the tuple is a one-element tuple whose value is an array listing the indices where the

condition is true. For 2-D arrays, the tuple is a two-element tuple whose first value is an array

listing the row index where the condition is true and the second value is an array listing the column

index where the condition is true. In terms of syntax, you tell where to return indices instead of an
array of selected values by calling where with only a single argument, the <condition> array. To

select those elements in an array, pass in the tuple as the argument inside the square brackets (i.e.,

[]) when you are selecting elements. Here is an example:

Example 20 (Using where to return a list of indices):

Consider the following case:

import numpy as np
a = np.arange(8)
condition = np.logical_and(a>3, a<6)
answer_indices = np.where(condition)
answer = (a*2)[answer_indices]

What is condition? answer_indices? answer? What does the code do?

Solution and discussion: You should have obtained similar results as Example 19, except the

zero elements are absent in answer and now you also have a tuple of the indices where condition
is true:

4This is like the behavior of IDL’s WHERE function.

65

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

>>> print(a)
[0 1 2 3 4 5 6 7]
>>> print(condition)
[False False False False True True False False]
>>> print(answer_indices)
(array([4, 5]),)
>>> print(answer)
[8 10]

The array condition shows which elements of the array a are greater than 3 and less than 6. The
where call returns the indices where condition is true, and since condition is 1-D, there is only
one element in the tuple answer_indices. The last line multiplies array a by two (which is also
an array) and selects the elements from that array with addresses given by answer_indices.

Note that selection with answer_indices will give you a 1-D array, even if condition is not
1-D. Let’s turn array a into a 3-D array, do everything else the same, and see what happens:

import numpy as np
a = np.reshape(np.arange(8), (2,2,2))
condition = np.logical_and(a>3, a<6)
answer_indices = np.where(condition)
answer = (a*2)[answer_indices]

The result now is:

>>> print(a)
[[[0 1]

[2 3]]

[[4 5]
[6 7]]]

>>> print(condition)
[[[False False]

[False False]]

[[True True]
[False False]]]

>>> print(answer_indices)
(array([1, 1]), array([0, 0]), array([0, 1]))
>>> print(answer)
[8 10]

Note how condition is 3-D and the answer_indices tuple now has three elements (for the

three dimensions of condition), but answer is again 1-D.

66

4.6. PYTHON SIDEBAR: TESTING INSIDE AN ARRAY

Arithmetic operations using boolean arrays

You can also accomplish much of what the where function does in terms of testing and selecting
by taking advantage of the fact that arithmetic operations on boolean arrays treat True as 1 and

False as 0. By using multiplication and addition, the boolean values become selectors, because
any value multiplied by 1 or added to 0 is that value. Let’s see an example of how these properties

can be used for selection:

Example 21 (Using arithmetic operators on boolean arrays as selectors):

Consider the following case:

import numpy as np
a = np.arange(8)
condition = np.logical_and(a>3, a<6)
answer = ((a*2)*condition) + \

(0*np.logical_not(condition))

Solution and discussion: The solution is the same as Example 19:

>>> print(a)
[0 1 2 3 4 5 6 7]
>>> print(condition)
[False False False False True True False False]
>>> print(answer)
[0 0 0 0 8 10 0 0]

But how does this code produce this solution? Let’s go through it step-by-step. The condition
line is the same as in Example 19, so we won’t say more about that. But what about the answer
line? First, we multiply array a by two and then multiply that by condition. Every element that is
True in conditionwill then equal double of a, but every element that is False in conditionwill
equal zero. We then add that to zero times the logical_not of condition, which is condition
but with all Trues as Falses, and vice versa. Again, any value that multiplies by True will be that
value and any value that multiplies by Falsewill be zero. Because condition and its “logical not”
are mutually exclusive—if one is true the other is false—the sum of the two terms to create answer
will select either a*2 or 0. (Of course, the array generated by 0*np.logical_not(condition) is
an array of zeros, but you can see how multiplying by something besides 0will give you a different
replacement value.)

Also, note the continuation line character is a backslash at the end of the line (as seen in the line

that assigns answer).

This method of testing inside arrays using arithmetic operations on boolean arrays is also faster

than loops.

67

4.7. PYTHON SIDEBAR: FLOATING POINT COMPARISON

4.6.3 Additional array functions

The functions SciPy and NumPy provide that act on scalars also act on arrays, element-wise.

These include basic mathematical functions (sin, exp, interp, etc.) and basic statistical func-

tions (correlate, histogram, hamming, fft, etc.). For more complete lists of array functions,
see the SciPy and NumPy manuals: http://docs.scipy.org/doc/. From the Python interpreter, you

can also use help(numpy) as well as help(numpy.x), where x is the name of a function, to get
more information. (The syntax is equivalent for SciPy.)

4.7 Ï Python Sidebar: Floating point comparison

It turns out that when testing to see whether two numbers are the same, it it important to know

whether the two numbers are integers or floating point numbers. Integers are exactly represented

by a binary computer and so a test of equality between two integers will also work correctly. Float-

ing point numbers on any binary computer, however, in general are not represented exactly.5 For

instance, if you type in:

>>> 3.5 * (-2.1)
-7.3500000000000005

The answer is not −7.35, as you’d expect. The inexactness of floating point representation in a
computer can cause real problems when doing tests for equality. Consider these three tests:

>>> 3.0 == 3.0
True
>>> 3.0 == 3.00001
False
>>> 3.0 == 3.00000000000000000001
True

The computer may think that two floating point numbers, if they’re close enough to each other, are

the same. And, this behavior is not consistent between different computers and operating systems.

What then should we do?

The answer is to never do logical equality comparisons between floating point numbers, but

instead, we should compare whether two floating point numbers are “close to” each other. The

NumPy array package has a function allclose that does this. The allclose function allows you
to set what constitutes two numbers being “close,” so you can do the closeness testing the same

way everytime, regardless of what computer you’re using. Here’s an example:

5See Bruce Bush’s article “The Perils of Floating Point,” http://www.lahey.com/float.htm (accessed March 17,

2012).

68

http://docs.scipy.org/doc/
http://www.lahey.com/float.htm

4.8. PYTHON SIDEBAR: STRING INDEXING

>>> import numpy as np
>>> np.allclose(3.0, 3.0)
True
>>> np.allclose(3.0, 3.00001)
True
>>> np.allclose(3.0, 3.00001, atol=1e-6, rtol=1e-6)
False

When the two input values to allclose are arrays, the comparison is done element-wise between
corresponding elements of the two arrays. If all such comparisons yield True, the function returns
True. If even one of the element pairs are not close to each other, the function returns False:

>>> import numpy as np
>>> a = np.array([3., 6., -4.])
>>> b = np.array([3., 6., -4.001])
>>> np.allclose(a, b)
False
>>> b = np.array([3., 6., -4.000001])
>>> np.allclose(a, b)
True

To find out which element(s) is not “close” between the two arrays, use the NumPy function

isclose:

>>> import numpy as np
>>> a = np.array([3., 6., -4.])
>>> b = np.array([3., 6., -4.001])
>>> np.isclose(a, b)
array([True, True, False], dtype=bool)
>>> b = np.array([3., 6., -4.000001])
>>> np.isclose(a, b)
array([True, True, True], dtype=bool)

The resulting boolean array tells us which corresponding elements in the two arrays are close to

each other. It takes the same atol and rtol keyword input parameters to change what counts as
“close.” See the documentation for the two routines for details as to how these parameters work.6

4.8 Ï Python Sidebar: String indexing

In Section 4.3.2, we found that we can select individual elements and slices of arrays using the

list/tuple indexing notation. It turns out, we can do the same with strings. That is, we can think of

a string as a little 1-D array where each element is a character.

6See https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html and https://docs.scipy.org/doc/

numpy/reference/generated/numpy.isclose.html.

69

https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isclose.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.isclose.html

4.9. PYTHON SIDEBAR: A SIMPLE WAY OF SEEING HOW FAST YOUR CODE RUNS

Example 22 (String indexing):

Say you have the following string mysaying:

mysaying = "Buy low, sell high, and you'll do fine."

What is mysaying[2]? mysaying[0:5]? mysaying[-5:]? How would you extract the word

“you’ll”?

Solution and discussion: mysaying[2] returns a “y”. mysaying[0:5] returns “Buy l”. And
mysaying[-5:] returns “fine.”. To extract the word “you’ll’, mysaying[24:30] will work. The
indexing syntax is the same for substrings as for 1-D arrays, including the meaning of ranges (the

colon) and negative indices. Remember blank spaces and the apostrophe are all each characters in

the string mysaying.

4.9 Ï Python Sidebar: A simple way of seeing how fast your

code runs

The time module has a function time that returns the current system time relative to the Epoch (a

date that is operating system dependent). If you save the current time as a variable before and after

you execute your function/code, the difference is the time it took to run your function/code.

Example 23 (Using time to do timings):

Type in the following and run it in a Python interpreter:

import time
begin_time = time.time()
for i in range(1000000L):

a = 2*3
print(time.time() - begin_time)

What does the number that is printed out represent?

Solution and discussion: The code prints out the amount of time (in seconds) it takes to mul-

tiply two times three and assign the product to the variable a one million times. (Of course, it also
includes the time to do the looping, which in this simple case probably is a substantial fraction of

the total time of execution.)

70

4.10. SUMMARY

4.10 Summary

The NumPy array is a really powerful tool. It enables us to slice-and-dice data in any number of

ways, enabling us to analyze data quickly. Especially for datasets that are more complicated than

a single sequence of values, NumPy arrays enable us to get a handle on that data.

71

Chapter 5

Reading In and Writing out Text Data

Chapter Contents

5.1 File objects . 73

5.2 Reading a file . 73

5.3 Ï Python Sidebar: An introduction to objects 74

5.3.1 The nuts and bolts of objects . 74

5.3.2 Example of how objects work: Strings 75

5.3.3 Example of how objects work: Arrays 75

5.4 Writing a file . 77

5.5 Processing file contents . 77

5.6 Catching file opening errors . 80

5.7 Ï Python Sidebar: More on exception handling 81

5.8 Better ways of reading a file . 83

5.9 Summary . 84

We’re almost done with the foundations of doing business data analysis using the tools in

Python. In the previous chapters, the datasets we’ve looked at have been pretty small. Partly,

this is because it’s easier to get a handle on small datasets, and when you’re learning a new tool,

this helps out a lot. However, what makes using a programming language (as opposed to Excel) to

analyze data is the ease with which a program written in a programming language can be scaled up

to handle a large dataset. In Excel, it’s not so easy to go from, say 500 rows of data to 500 million

rows of data.

The key to getting a computer to operate on large amounts of data is in storing the data in a file

and reading the data into an array (or similar variable). After you’ve put the data into an array, you

can manipulate and do calculations on that data. For really large datasets, the data will be stored in

a database in a format that helps you manage the data. SQL is perhaps the best-known general use

database language, but there are plenty of others, customized for use in other use-cases.

In this chapter, we’ll look at reading data that is stored in a text file. Text files are handy for

storing files on the order of tens to hundreds of thousands of lines. Once you start hitting millions

72

5.1. FILE OBJECTS

of lines, text files will still work, but they start becoming cumbersome. The ideas behind handling

data in text files, however, are similar to other file formats. In addition, this gives us an opportunity

to revisit string handling in Python, which in and of itself is one of Python’s “superpowers.”

5.1 File objects

A file object is a “variable” that represents the file to Python. (In Section 5.3, we’ll talk in more

detail about what an object is in a programming language.)

File objects are created like any other object in Python, that is, by assignment. For text files,

you instantiate a file object with the built-in open statement:

fileobj = open('foo.txt', 'r')

The first argument in the open statement gives the filename. The second argument sets the mode
for the file: 'r' for reading-only from the file, 'w' for writing a file, and 'a' for appending to the
file.

Once you’ve created the text file object, you can use various methods attached to the file object

to interact with the file.

When you are done reading from or writing to a file, you can close it using the close method.
Thus, to close a file object fileobj, execute:

fileobj.close()

5.2 Reading a file

To read one line from the file, use the readline method:

aline = fileobj.readline()

Because the file object is connected to a text file, aline will be a string. Note that aline contains
the newline character, because each line in a file is terminated by the newline character.

To read the rest of a file that you already started reading, or to read an entire file you haven’t

started reading, and then put the read contents into a list, use the readlines method:

contents = fileobj.readlines()

Here, contents is a list of strings, and each element in contents is a line in the fileobj file.
Each element also contains the newline character, from the end of each line in the file.

Note that the variable names aline and contents are not special; use whatever variable name
you would like to hold the strings you are reading in from the text file.

73

5.3. PYTHON SIDEBAR: AN INTRODUCTION TO OBJECTS

5.3 Ï Python Sidebar: An introduction to objects

One good way of describing something new is to compare it with something old. Everyone who has

taken a first term programming course has had experience with procedural programming, so we’ll

start there. Procedural programs look at the world in terms of two entities, “data” and “functions.”

In a procedural context, the two entities are separate from each other. A function takes data as

input and returns data as output. Additionally, there’s nothing customizable about a function with

respect to data. As a result, there are no barriers to using a function on various types of data, even

inappropriately.

In the real world, however, we don’t think of things or objects as having these two features

(data and functions) as separate entities. That is, real world objects are not (usually) merely data

nor merely functions. Real world objects instead have both “state” and “behaviors.” For instance,

people have state (tall, short, etc.) and behavior (playing basketball, running, etc.), often both at

the same time, and, of course, in the same person.

The aim of object-oriented programming is to imitate this in terms of software, so that “objects”

in software have two entities attached to them, states and behavior. This makes the conceptual leap

from real-world to programs (hopefully) less of a leap and more of a step. As a result, we can more

easily implement ideas into instructions a computer can understand.

5.3.1 The nuts and bolts of objects

What do objects consist of? An object in programming is an entity or “variable” that has two en-

tities attached to it: data and things that act on that data. The data are called attributes (also called

instance variables) of the object, and the functions attached to the object that can act on the data

are called methods of the object. Importantly, you design these methods to act on the attributes;

they aren’t random functions someone has attached to the object. In contrast, in procedural pro-

gramming, variables have only one set of data, the value of the variable, with no functions attached

to the variable.

How are objects defined? In the real world, objects are usually examples or specific realiza-

tions of some class or type. For instance, individual people are specific realizations of the class

of human beings. The specific realizations, or instances, differ from one another in details but

have the same pattern. For people, we all have the same general shape, organ structure, etc. In

object-oriented programming (OOP), the specific realizations are called object instances, while

the common pattern is called a class. In Python, this common pattern or template is defined by the

class statement. (We describe the class statement in Section 9.2.)
So, in summary, objects are made up of attributes and methods, the structure of a common

pattern for a set of objects is called its class, and specific realizations of that pattern are called

“instances of that class.”

All the Python “variables” we introduced earlier are actually objects. (In fact, basically every-

thing in Python is an object.) Let’s look at a number of different Python objects to illustrate how

objects work.

74

5.3. PYTHON SIDEBAR: AN INTRODUCTION TO OBJECTS

5.3.2 Example of how objects work: Strings

In Section 1.3.2 we were introduced to strings. What we didn’t mention then is that Python strings

(like nearly everything else in Python) are objects. Thus, built into Python, there (implicitly) is a

class definition of the string class, and every time you create a string, you are using that definition as

your template. That template defines both attributes and methods for all string objects, so whatever

string you’ve created, you have that set of data and functions attached to your string which you can

use. Let’s look at a specific case:

Example 24 (Viewing attributes and methods attached to strings and trying out a few meth-

ods):

In the Python interpreter, type in:

a = "hello"
Now type: dir(a). What do you see? Type a.title() and a.upper() and see what you get.

Solution and discussion: The dir(a) command gives a list of (nearly) all the attributes and
methods attached to the object a, which is the string "hello". (An Internet search for “python
string attributes methods” would also probably give you a similar list.) Note that there is more data

attached to the object than just the word “hello”, e.g., the attributes a.__doc__ and a.__class__
also show up in the dir listing.

Methods can act on the data in the object. Thus, a.title() applies the title method to the
data of a and returns the string "hello" in title case (i.e., the first letter of the word capitalized);
a.upper() applies the uppermethod to the data of a and returns the string all in uppercase. Notice
these methods do not require additional input arguments between the parenthesis, because all the

data needed is already in the object (i.e., "hello").

The syntax for objects looks very similar to the syntax for data and functions in modules. First,

to refer to attributes or methods of an instance, you add a period after the object name and then

put the attribute or method name. To set an attribute, the reference should be on the lefthand side

of the equal sign; the opposite is the case to read an attribute. Method calls require you to have

parentheses after the name, with or without arguments, just like a function call. Finally, methods

can produce a return value (like a function), act on attributes of the object in-place, or both.

5.3.3 Example of how objects work: Arrays

We’ve already been introduced to arrays, but most of our discussion of arrays has focused on func-

tions that create and act on arrays. Arrays, however, are objects like any other object and have

attributes and methods built-in to them; arrays are more than just a sequence of numbers. Let’s

look at an example list of all the attributes and methods of an array object:

Example 25 (Examining array object attributes and methods):

In the Python interpreter, type in:

75

5.3. PYTHON SIDEBAR: AN INTRODUCTION TO OBJECTS

a = np.reshape(np.arange(12), (4,3))

Now type: dir(a). What do you see? Based on their names, and your understanding of what

arrays are, what do you think some of these attributes and methods do?

Solution and discussion: The dir command should give you a list of a lot of stuff. I’m not

going to list all the output here but instead will discuss the output in general terms.

We first notice that there are two types of attribute and method names: those with double-

underscores in front and in back of the name and those without any pre- or post-pended double-

underscores. We consider each type of name in turn.

A very few double-underscore names sound like data. The a.__doc__ variable is one such

attribute and refers to documentation of the object. Most of the double-underscore names suggest

operations on or with arrays (e.g., add, div, etc.), which is what they are: Those names are of the

methods of the array object that define what Python will do to your data when the interpreter sees

a “+”, “/”, etc. Thus, if you want to redefine how operators operate on arrays, you can do so. It is

just a matter of redefining that method of the object.

That being said, I do not, in general, recommend you do so. In Python, the double-underscore in

front means that attribute or method is “very private.” (A variable with a single underscore in front

is private, but not as private as a double-underscore variable.) That is to say, it is an attribute or

method that normal users should not access, let alone redefine. Python does not, however, do much

to prevent you from doing so, so advanced users who need to access or redefine those attributes

and methods can do so.

The non-double-underscore names are names of “public” attributes and methods, i.e., attributes

and methods normal users are expected to access and (possibly) redefine. A number of the methods

and attributes of a are duplicates of functions (or the output of functions) that act on arrays (e.g.,
transpose, T), so you can use either the method version or the function version.

And now let’s look at some examples of accessing and using array object attributes andmethods:

Example 26 (Using array attributes and methods):

In the Python interpreter, type in:

a = np.reshape(np.arange(12), (4,3))
print(a.astype('c'))
print(a.shape)
print(a.cumsum())
print(a.T)

What do each of the print lines do? Are you accessing an attribute or method of the array?:

Solution and discussion: The giveaway as to whether we are accessing attributes or calling

methods is whether there are parenthesis after the name; if not, it’s an attribute, otherwise, it’s a

method. Of course, you could type the name of the method without parentheses following, but then

the interpreter would just say you specified the method itself, as you did not call the method:

76

5.4. WRITING A FILE

>>> print(a.astype)
<built-in method astype of numpy.ndarray object at 0x20d5100>

That is to say, the above syntax prints the method itself; since you can’t meaningfully print the

method itself, Python’s print command just says “this is a method.”
The astype call produces a version of array a that converts the values of a into single-character

strings. The shape attribute gives the shape of the array. The cumsum method returns a flattened
version of the array where each element is the cumulative sum of all the elements before. Finally,

the attribute T is the transpose of the array a.

While it’s nice to have a bunch of array attributes and methods attached to the array object, in

practice, I find I seldom access array attributes and find it easier to use NumPy functions instead

of the corresponding array methods. One exception with regards to attributes is the dtype.char
attribute, which we’ve already seen; that’s very useful since it tells you the type of the elements of

the array.

5.4 Writing a file

Towrite a string to the file that is defined by the file object fileobj, use the writemethod attached
to the file object:

fileobj.write(astr)

Here, astr is the string you want to write to the file. Note that a newline character is not automat-
ically written to the file after the string is written. If you want a newline character to be added, you

have to append it to the string prior to writing (e.g., astr+'\n').
To write a list of strings to the file, use the writelines method:

fileobj.writelines(contents)

Here, contents is a list of strings, and, again, a newline character is not automatically written after
the string (so you have to explicitly add it if you want it written to the file).

5.5 Processing file contents

Let’s say you’ve read-in the contents of a file from the file and now have the file contents as a list

of strings. How do you do things with them? In particular, how do you turn them into numbers

(or arrays of numbers) that you can analyze? Python has a host of string manipulation methods,

built-in to string variables (a.k.a., objects), which are ideal for dealing with contents from text files.

We will mention only a few of these methods.

The split method of a string object takes a string and breaks it into a list using a separator.
For instance:

77

5.5. PROCESSING FILE CONTENTS

a = '3.4 2.1 -2.6'
print(a.split(' '))
['3.4', '2.1', '-2.6']

will take the string a, look for a blank space (which is passed in as the argument to split, and use
that blank space as the delimiter or separator with which one can split up the string. If split has no
parameters, the method removes all whitespace of any kind between the non-whitespace characters

of the string.

The join method takes a separator string and puts it between items of a list (or an array) of
strings. For instance:

a = ['hello', 'there', 'everyone']
'\t'.join(a)
'hello\tthere\teveryone'

will take the list of strings a and concatenate these elements together, using the tab string ('\t')
to separate two elements from each other.

Finally, once we have the strings we desire, we can convert them to numerical types in order to

make calculations. Here are two ways of doing so:

• If you loop through a list of strings, you can use the float and int functions on the string
to get a number. For instance:

import numpy as np
a = ['3.4', '2.1', '-2.6']
anum = np.zeros(len(a), 'd')
for i in range(len(a)):

anum[i] = float(a[i])

takes a list of strings a and turns it into a NumPy array of double-precision floating point

numbers anum.1

• If you make the list of strings a NumPy array of strings, you can use the astype method for
type conversion to floating point or integer. For instance:

anum = np.array(a).astype('d')

takes a list of strings a, converts it from a list to an array of strings using the array function,
and turns that array of strings into an array of double-precision floating point numbers anum
using the astype method of the array of strings.

1Note that you can specify the array dtypewithout actually writing the dtype keyword; NumPy array constructors
like zeros will understand a typecode given as the second positional input parameter.

78

5.5. PROCESSING FILE CONTENTS

A gotcha: Different operating systems may set the end-of-line character to something besides

'\n'. Make sure you know what your text file uses. (For instance, MS-DOS uses '\r\n', which
is a carriage return followed by a line feed.) By the way, Python has a platform independent way

of referring to the end-of-line character: the attribute linesep in the module os. If you write

your program using that variable, instead of hard-coding in '\n', your program will write out the

specific end-of-line character for the system you’re running on.

Example 27 (Writing and reading a single column file):

Take the following list of prices prices:

prices = [1.99, 24.95, 4.99, 17.95]

write it to a file one-col_prices.txt, then read the file back in.

Solution and discussion: This code will do the trick (note I use comment lines to help guide

the reader):

1 import numpy as np
2

3 outputstr = ['\n']*len(prices) #- Convert to string
4 for i in range(len(prices)): # and add newlines
5 outputstr[i] = \
6 str(prices[i]) + outputstr[i]
7

8 fileout = open('one-col_prices.txt', 'w') #- Write out
9 fileout.writelines(outputstr) # to the
10 fileout.close() # file
11

12 filein = open('one-col_prices.txt', 'r') #- Read in
13 inputstr = filein.readlines() # from the
14 filein.close() # file
15

16 prices_new = np.zeros(len(inputstr), 'f') #- Convert
17 for i in range(len(inputstr)): # string to
18 prices_new[i] = float(inputstr[i]) # numbers

Note you don’t have to strip off the newline character before converting the number to floating

point using float.

While a multi-column text file of data seems more formidable than a single column text file,

with the split method, it’s not all that more complex, as we see in the following example.

Example 28 (Reading in a multi-column text file):

Let’s look again at the gasoline sales dataset given in Table 4.1. That dataset is available as

a file here: http://www.johnny-lin.com/infosys/adv44700_sales_only.txt. How would we read the

79

http://www.johnny-lin.com/infosys/adv44700_sales_only.txt

5.6. CATCHING FILE OPENING ERRORS

file in and put the data into an two-dimensional array? To keep things simple, we’ll discard the

2016 data, since the file does not cover that year completely.

Solution and discussion: In preparing to write our code, we first note that the first two lines

contain header information rather than data. Second, we note that columns are separated by variable

amounts of whitespace. That won’t pose a problem because the split method will intelligently
eliminate the whitespace between the columns.

With this as background, here’s a solution:

1 import numpy as np
2

3 fileobj = open('adv44700_sales_only.txt', 'r')
4 data_str = fileobj.readlines()
5 fileobj.close()
6

7 data = np.zeros((len(data_str)-3, 13), dtype='l')
8 for i in range(len(data_str)-3):
9 split_istr = data_str[i+2].split()
10 data[i,:] = split_istr[:]

The array data holds all the numerical data in the file from 1992–2015 and has the same structure as

Table 4.1, without the headers. The first column of data are the years, and the subsequent columns
are the data for each month over all the years.

A few items: In lines 7 and 8, the number of rows in the data array and, subsequently, the

number of rows we loop through are three less than the number of lines in the file. This is because

we discard the first two lines as headers and the last line as an incomplete year. In line 9, the row

index we are examining is not i but i+2 because we are skipping the first two elements (i.e., rows)
in data_str.

5.6 Catching file opening errors

What happens if you try to open a file and that file doesn’t exist? Python sends you a message

telling you what’s wrong and stops the normal execution of the program. This process is called

throwing an exception. For instance, if we tried to execute this line of code:

fileobj = open('not_a_file.txt', 'r')

and the file not_a_file.txt does not exist, the following will be returned by the interpreter:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IOError: [Errno 2] No such file or directory: 'not_a_file.txt'

80

5.7. PYTHON SIDEBAR: MORE ON EXCEPTION HANDLING

and the program will stop.

For many purposes, this works fine. If you run a program and get this message, you probably

will go in and change the filename in the code and re-run the program. But what if you expected

this error to occur and had a plan to deal with the error? For instance, what if you knew that a data

file you wanted to open was named either data.txt or DATA.TXT, but you didn’t know beforehand

which it would be? This might occur because the program that generated the data named the file

differently depending on what computer it was run on (historically, some programming languages

were in all-caps). In such a situation, in Python you can use the try…except structure to gracefully
handle the exception. This code:

try:
fileobj = open('data.txt', 'r')

except IOError:
fileobj = open('DATA.TXT', 'r')

will try to open data.txt and if it fails with an IOError, will execute the code in the except block,
which tries to open the file DATA.TXT.

The try…except structure is a useful way of gracefully handling errors of many kinds, not
just file errors. In Section 5.7 below, we look a little more closely at Python’s exception handling

mechanism.

5.7 Ï Python Sidebar: More on exception handling

Let’s say you’re writing a program and want the execution of the program to stop when a certain

condition occurs. How can you manually raise an error? In Python, you do this with a raise
statement. Here’s an example:

Example 29 (Using raise):
Consider a function to calculate the area of a circle given a user-inputted radius. How would

we put in a test to ensure the user would not pass in a negative radius? One answer: We could put

in an if test for a negative radius and if true, execute a raise statement:

def area(radius, pi=3.14):
if radius < 0:

raise ValueError('radius negative')
area = pi * (radius**2)
return area

The syntax for raise is the command raise followed by an exception class (in this case I used
the built-in exception class ValueError, which is commonly used to denote errors that have to do

81

5.7. PYTHON SIDEBAR: MORE ON EXCEPTION HANDLING

with bad variable values), then a comma and a string that will be output by the interpreter when the

raise is thrown.

So far, I’ve been loosely saying that an exception “stops” the execution of a program. Actually,

raising an exception is not exactly the same as stopping the execution of a program. In a traditional

“stop,” execution of the program terminates and you are returned to the operating system level.

The program can’t do anything more. When an exception is raised, execution stops and sends

the interpreter up one level to see if there is some code that will properly handle the error. This

means that in using raise, you can gracefully handle expected errors without terminating the entire
program.

In Section 5.6, we saw how to handle a file opening exception using the try…except handler.
In that handler, you execute the block under the try, then execute the excepts if an exception is
raised. Here’s another non-file opening example:

Example 30 (Handling an exception):

Assume we have the function area as defined in Example 29 (i.e., with the test for a negative
radius). Here is an example of calling the function area using try…except that will gracefully
recognize a negative radius and call area again with the absolute value of the radius instead as

input:

rad = -2.5
try:

a = area(rad)
except ValueError:

a = area(abs(rad))

When the interpreter enters the try block, it executes all the statements in the block one by one. If
one of the statements returns an exception (as the first area call will because rad is negative), the
interpreter looks for an except statement at the calling level (one level up from the first area call,
which is the level of calling) that recognizes the exception class (in this case ValueError). If the
interpreter finds such an except statement, the interpreter executes the block under that except.
In this example, that block repeats the area call but with the absolute value of rad instead of rad
itself. If the interpreter does not find such an except statement, it looks another level up for a

statement that will handle the exception; this occurs all the way up to the main level, and if no

handler is found there, execution of the entire program stops.

In the examples in this chapter, I used the exception classes IOError and ValueError. These
are examples of built-in exception classes; you can find these and other built-in exception classes

listed in a good Python reference (e.g., TypeError, ZeroDivisionError, etc.) and which you

82

5.8. BETTER WAYS OF READING A FILE

can use to handle the specific type of error you are protecting against.2 I should note, however, the

better and more advanced approach is to define your own exception classes to customize handling,

but this topic is beyond the scope of this book.

5.8 Better ways of reading a file

Everything we’ve seen so far about reading in and writing out a text file works fine. And, just as

important, we’ve seen how powerful Python’s string objects are. But, in the real-world, instead

of writing our own string parsers to access a file, we make use of pre-written routines to read a

data file into an array. In this section, we’ll mention the SciPy function genfromtxt and the csv
module, which work well (respectively) for text files that only (mostly) have numbers and text files

made from comma-separated values. (For a discussion of many other pre-written ways of reading

in input, see the SciPy Cookbook’s “Input and output” page: http://scipy-cookbook.readthedocs.

io/items/InputOutput.html.)

Files with only (mostly) numbers: The genfromtxt function works well for files that are

mostly filled with numbers. Howwould we use genfromtxt to read the data file from Example 28?

The code below will produce the array data, just as in Example 28:

from scipy import genfromtxt
data = genfromtxt('adv44700_sales_only.txt',

skip_header=2, skip_footer=1, dtype='l')

The skip_header keyword input parameter sets how many lines at the beginning of the file to

ignore and the skip_footer keyword input parameter does the same for the bottom of the file. The

dtype keyword input parameter tells me to convert the file’s values to long integer; if I had left out
that keyword input parameter, the function would have converted the values to double-precision

floating point type. Details about using genfromtxt are found here: http://docs.scipy.org/doc/

numpy/user/basics.io.genfromtxt.html. You might also find the function’s reference manual entry

to be useful: http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html.

Files with comma-separated values: We might think, at first glance, that to read in a comma-

separated values (CSV) file, all we need to do is apply the string method split using the comma
(',') as the delimiter. And this wouldwork fine, if CSV files contained only numbers. In fact, often

times you’ll find CSV files that have fields that themselves have newline characters or commas

inside them. For instance, consider the following lines that might be the first four lines from a CSV

file:

1 Date Sold,Item and Details,Purchase Price,Retail Price
2 01/01/2015,"Party Mix: Nuts, chips, and salsa",2.14,8.19
3 02/04/2016,"Game: Rock, scissors, and paper",3.43,9.99
4 01/22/2013,"Stack-Of-Cars: Chevy\nHonda\nKia\nJeep",2.33,6.87

The first line is a header that gives the names for each column. Lines 2–4 are data lines. The quota-

tionmarks tell us that the second element in that list is a string "Party Mix: Nuts, chips, and salsa"
2See http://docs.python.org/library/exceptions.html for a listing of built-in exception classes (accessed August 17,

2012).

83

http://scipy-cookbook.readthedocs.io/items/InputOutput.html
http://scipy-cookbook.readthedocs.io/items/InputOutput.html
http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html
http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html
http://docs.python.org/library/exceptions.html

5.9. SUMMARY

and not three separate items, "Party Mix: Nuts", "chips", "and salsa". Unfortunately, a

plain-old split(',') call won’t figure that out. Note that in a CSV file, there is no whitespace

between commas. If there were, the whitespace would be considered part of the values for the

column after the comma.

We could, using string variables and Python’s programming constructs, write a parser that would

properly deal with these and similar special cases. It would, however, be a lot of work. Fortunately,

there is a module called csv that handles these special cases for us.

Below is code that will read the contents of a CSV text file myfile.csv and put the contents into

the list data:

1 import csv
2 fileobj = open('myfile.csv', 'r')
3 readerobj = csv.reader(fileobj)
4 data = []
5 for row in readerobj:
6 data.append(row)
7 fileobj.close()

Note that the list data is not a list of strings but a list of lists. That is, each element in data is a
single row in myfile.csv, parsed so that each column is a separate element.

Underneath the hood, what’s happening in the above code is that the reader function creates
the iterable readerobj. Iterables are objects that you can loop through using a for loop (as in
line 5 in the code above). The syntax of looping through an iterable is the same as looping through

a list (which itself is an iterable).

If the CSV text filemyfile.csv was the data lines earlier on p. 83, printing each row would result

in:

['Date Sold', 'Item and Details', 'Purchase Price', 'Retail Price']
['01/01/2015', 'Party Mix: Nuts, chips, and salsa', '2.14', '8.19']
['02/04/2016', 'Game: Rock, scissors, and paper', '3.43', '9.99']
['01/22/2013', 'Stack-Of-Cars: Chevy\\nHonda\\nKia\\nJeep', '2.33', '6.87']

Note that every element in these lists are strings. If we want to do arithmetic on the prices, we

have to convert the prices into floating point values. But, we were able to handle nicely the string

elements in the file that had commas and newline characters in them. Details on the csv module

are available here: https://docs.python.org/3.5/library/csv.html.3

5.9 Summary

In this chapter we saw that Python conceptualizes files as objects, with attributes and methods

attached to them. To manipulate and access those files, you use the file object’s methods. For the

contents of text files, we found string methods to be useful. For most daily work, however, we’ll

3The discussion in this section also owes credit to http://stackoverflow.com/a/13472940 (accessed October 13,

2016).

84

https://docs.python.org/3.5/library/csv.html
http://stackoverflow.com/a/13472940

5.9. SUMMARY

want to use special packages designed for reading in data, such as found in NumPy (which we

discussed above).

As a postscript: Though we won’t talk about it in this course, if you decide you really want

to use Python to do data analysis, the package you actually want to use is pandas (http://pandas.

pydata.org/). It handles Excel workbook files really well. (The openpyxl module also enables you

access Excel workbooks.4) Pandas is amazingly powerful, but its learning curve is a little steep.

For the purposes of this course, we won’t need to use the power it offers, but I wanted to give you

a heads-up as to something to learn in the future.

4http://openpyxl.readthedocs.io/en/default/ (accessed October 7, 2016).

85

http://pandas.pydata.org/
http://pandas.pydata.org/
http://openpyxl.readthedocs.io/en/default/

Part II

Automating and Managing Information

Systems

86

Chapter 6

Managing Files

Chapter Contents

6.1 Segue: Creating a lot of files . 88

6.2 Moving and filing lots of files . 89

6.3 Renaming lots of files . 91

6.4 Copying lots of files . 91

6.5 Deleting lots of files . 92

6.6 Another segue: Testing to see what kind of file something is 92

6.7 Summary . 93

You’ve done a bunch of data analysis and have generated a host of files. Some are data files,

some are plots, and maybe some others are text. Or, maybe the various parts of your company are

generating data—point of sale logs, invoices and expenses, customer surveys databases, etc.—and

all those other units are sending files your way (perhaps automatically) to manage. How do we

handle all these files?

Today’s graphically-based operating systems (Windows, Mac OS X) are easy to use because

they make sense, visually and kinesthetically. If you want to move a file from one folder to another

folder, you click the file’s icon with your mouse and drag the icon to the destination folder. Drag

means “move.” But, this operation no longer is easy when you have thousands of files to move

into hundreds of different folders.

In this chapter, we exam some common file management tasks and describe how Python can

help us automate these tasks. We won’t cover tasks dealing with directories (e.g., getting a list of

files in a directory, directory paths, creating and deleting directories, etc.), instead waiting until

Chapter 7 to cover those operations; in the present chapter, we’ll assume the directories we’re

interested in already exist. We’ll find both in the present chapter and in future chapters that with

very few lines of code, Python can tackle the management of five or five million files, and can do

so in an operating system independent way. That is, the Python code we write to manage files on

a Windows system can also work on a Mac OS X system, with no change. Very cool!

A note of warning: Before you begin using Python’s file and directory manipulation tools, I

strongly encourage you to create a scratch directory and do all your work in there, until you’ve

gotten the hang of using these functions and commands. Change your current working directory

87

6.1. SEGUE: CREATING A LOT OF FILES

to this scratch directory. If you’re running Python from a terminal, just change to this newly created

scratch directory and start Python from in there. If you’re using Canopy, Figure 7.2 shows where

the switch is to change the working directory. This will help decrease the potential of inadvertently

messing up your file system.

6.1 Segue: Creating a lot of files

In Chapter 5, we saw how to write out data to a single file. Before we talk about how to manage

files, let’s first describe how to write out a bunch of files, so we have some files to manage.

Whenever we think about making a lot of something, we should think about doing something

over-and-over. After all, doing one task over and over is easier than doing a million different kinds

of tasks. When we think of repetition, loops come to mind, so one way of creating a bunch of files

is to do so in a loop.

Consider the following made-up example.1 Let’s say you’re the owner of an ice cream cart in a

local park. You open from 11 am to 7 pm and find your number of customers every hour follows the

central part of the first half of a sine function, with the peak number of customers coming between

3–4 pm. That is:

1 import numpy as np
2 hours = np.array([11, 12, 13, 14, 15, 16, 17, 18, 19], dtype='d')
3 norm_customers = np.sin((hours-hours[0]+1)/(hours[-1]-hours[0]+2)*np.pi)

where hours is the first time in an hour range, based on a 24-hour clock (thus, hour “13” represents
the hour from 1–2 pm) and norm_customers is the normalized number of customers, which varies
from 0 to 1, with 1 being the maximum number of customers in any given day.

Through trial-and-error, you also discover that the number of customers per hour scales with

the day’s high temperature in the following way:

Temperature Scaling Factor

50◦F 6

60◦F 10

70◦F 25

80◦F 41

90◦F 55

100◦F 64

For the temperatures listed above, you can obtain the number of actual customers for each hour in

hours by multiplying norm_customers by the scaling factor above. Thus, when it is 50◦F, the
actual number of customers per hour is:

>>> norm_customers * 6
array([1.85410197, 3.52671151, 4.85410197, 5.7063391 , 6. ,

5.7063391 , 4.85410197, 3.52671151, 1.85410197])

1This example is entirely ficticious. Don’t try to create a business based upon these numbers.

88

6.2. MOVING AND FILING LOTS OF FILES

Give this model of customers at the ice cream cart, what would be the code to write out files

listing the hour in the day and the actual customers for each hour (i.e., each file has two columns),

for each temperature value we’re given above? We’ll want to give the files names that are related

to the temperature they describe, such as hrly_customers-50F.txt. The code to do so is below, using

tabs as delimiters:

import numpy as np
temps = [50, 60, 70, 80, 90, 100]
scaling_factors = [6, 10, 25, 41, 55, 64]

hours = np.array([11, 12, 13, 14, 15, 16, 17, 18, 19], dtype='d')
norm_customers = np.sin((hours-hours[0]+1)/(hours[-1]-hours[0]+2)*np.pi)
for i in range(len(temps)):

fileobj = open("hrly_customers-" + str(temps[i]) + "F.txt", 'w')
actual_customers = norm_customers * scaling_factors[i]
for j in range(len(hours)):

fileobj.write(str(hours[j]) + '\t' + str(actual_customers[j]) + "\n")
fileobj.close()

And instantly we have six files of data! The same idea of using loops to generate multiple files can

be used to create any number of files. And, now we have a bunch of files that we can manage in

the rest of this chapter ,.

6.2 Moving and filing lots of files

Now that we’ve created a lot of files, how do we go about moving them and putting them into sub-

directories? Again, let’s assume that the sub-directories already exist (we’ll create the directories

in Chapter 7).

Let’s consider the files we created in Section 6.1. Let’s say I have two sub-directories, mild

and warm, and I want all files for temperatures less than 65◦F to be in mild and all files hotter than

65◦F to be in warm. The following code would accomplish this, given the names of the files is in

the list filenames (assuming the files are in the same directory as the Python script):

89

6.2. MOVING AND FILING LOTS OF FILES

1 import shutil
2

3 filenames = ['hrly_customers-50F.txt',
4 'hrly_customers-60F.txt',
5 'hrly_customers-70F.txt',
6 'hrly_customers-80F.txt',
7 'hrly_customers-90F.txt',
8 'hrly_customers-100F.txt']
9

10 for ifile in filenames:
11 iafter_hyphen = ifile.split('-')[1]
12 itemp = int(iafter_hyphen.split('.')[0][:-1])
13 if itemp <= 65:
14 shutil.move(ifile, 'mild')
15 else:
16 shutil.move(ifile, 'warm')

The shutil module (imported in line 1) has a number of functions that simulate shell commands. A

shell is a text-based interface to an operating system, the software that manages your files, directo-

ries, etc.2 Shells contain commands to enable you to copy, move, delete, etc. your files. In shutil,

the move function (lines 14 and 16) moves files. The function takes two arguments, the source

and its destination (both strings). If the destination is a directory, the source file is moved into the

destination directory. If the destination is not a directory, the file is renamed.3

Lines 3–8 define the names of the files we will be managing. In this program, we write the

names of the files by hand. But what if there were a way to get a list of the files in the current

directory without typing them in? We’ll talk about such ways in Chapter 7.

In lines 11–12, we use Python’s string manipulation methods to extract the temperature value

corresponding to the file. The if statement in lines 13–16 enables us to move the file to the correct
location.

What general lessons can we take from this example? First, file management commands use

the string representations of filenames to operate on the files. This means we can use Python’s

powerful string manipulation tools to work with files. Second, because Python is a full-fledged

programming language, we can make use of constructs like loops and if statements to help us

intelligently manage our files.4 Finally, we see in this short program that Python has packages that

give us the ability to interface with the operating system. This means we aren’t stuck with managing

files by hand nor with writing a separate program (called a shell script) to do this managing. Instead,

we can do this in one environment!

2A common shell for Windows is PowerShell. For Linux, bash (or the Bourne Again SHell) is a widely used. Mac

OS X, as a Unix-based operating system, also has access to the common shells available to Linux.
3Reference for parts of this paragraph: https://docs.python.org/2/library/shutil.html (accessed November 7, 2016).
4Shells also have this ability, but the syntax of many shells are much less readable than Python’s.

90

https://docs.python.org/2/library/shutil.html

6.3. RENAMING LOTS OF FILES

6.3 Renaming lots of files

We noted in Section 6.2 that the move function can also be used for renaming files. In the example
below, we take the same files as in our Section 6.2 example and rename them so they only have the

temperature, then .txt (e.g., 50F.txt). The script assumes the source files are in the same directory

as the script:

1 import shutil
2

3 filenames = ['hrly_customers-50F.txt',
4 'hrly_customers-60F.txt',
5 'hrly_customers-70F.txt',
6 'hrly_customers-80F.txt',
7 'hrly_customers-90F.txt',
8 'hrly_customers-100F.txt']
9

10 for ifile in filenames:
11 iafter_hyphen = ifile.split('-')[1]
12 shutil.move(ifile, iafter_hyphen)

In line 11, the splitmethod separates the filename based upon the presence of the hyphen. Because
the filenames have only one hyphen, the filenames are separated into two parts. These two parts

are returned as elements in a list (which has two elements). Everything to the left of the hyphen

is the zeroth element of the list and everything to the right of the hyphen is the oneth element of

the list. The hyphen itself does not appear in the list. Thus, when we use the list indexing syntax

to select the oneth element of the list generated from the split, we get only that portion with the

temperature and the “.txt” extension.

6.4 Copying lots of files

To copy a file, we can use shutil’s copy2 function. Like move, copy2 also takes two arguments,
the name of the source and then the name of the destination. To take our Section 6.2 example, the

following would make copies of all the files in filenames with the prefix copy- appended to the

front of each filename:

1 import shutil
2

3 filenames = ['hrly_customers-50F.txt',
4 'hrly_customers-60F.txt',
5 'hrly_customers-70F.txt',
6 'hrly_customers-80F.txt',
7 'hrly_customers-90F.txt',
8 'hrly_customers-100F.txt']
9

10 for ifile in filenames:
11 shutil.copy2(ifile, 'copy-' + ifile)

91

6.5. DELETING LOTS OF FILES

In the above example, the copies will be in the same directory as the original files.

However, as powerful as copy2 is, some metadata attached to the file will not transfer. This
can include, for instance, ACLs (Access Control Lists) on Mac OS X.5

6.5 Deleting lots of files

The os module contains a remove function that will do the trick. Note, however, this function does
not work on directories. We’ll talk about remove directories (empty or not) in Chapter 7. In the

example below, we take the same files as in our Section 6.2 example and delete them. Again, the

script assumes the files are in the same directory as the script:

1 import os
2

3 filenames = ['hrly_customers-50F.txt',
4 'hrly_customers-60F.txt',
5 'hrly_customers-70F.txt',
6 'hrly_customers-80F.txt',
7 'hrly_customers-90F.txt',
8 'hrly_customers-100F.txt']
9

10 for ifile in filenames:
11 os.remove(ifile)

Note how we import a different module in line 1, and use a different function in the for loop.

6.6 Another segue: Testing to see what kind of file something is

I’ve made reference to Chapter 7 on directories so many times you’re probably wondering when

will we get there ,. That chapter’s coming right up, but before we get there, let me introduce one

final set of functions: those that test what kind of file something is.

These functions are in the os.path submodule. All of these functions take the filename, as a

string, as input:6

• isdir: Returns True if the file is a directory.

• isfile: Returns True if the file is a regular file.

• islink: Returns True if the file is a symbolic link (i.e., an alias).

For both isfile and isdir, if the file is a link, the link is followed until its termination. (You can,
for instance, make an alias of an alias of an alias, etc. Following a link means following that chain

until you reach the original file or directory.) If there is a file or directory at the end of the chain,

the function will return True or False as appropriate.
5Reference for parts of this paragraph: https://docs.python.org/2/library/shutil.html (accessed November 7, 2016).
6Reference for parts of this paragraph: https://docs.python.org/2/library/os.path.html (accessedNovember 7, 2016).

92

https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/os.path.html

6.7. SUMMARY

Here are the results from using these functions in the Python interpreter on the hrly_customers-

50F.txt file and the mild directory, as from our Section 6.2 example. Remember, the script assumes

the files are in the same directory as the script:

1 >>> import os.path
2 >>> os.path.isfile('hrly_customers-50F.txt')
3 True
4 >>> os.path.isfile('mild')
5 False
6 >>> os.path.isdir('mild')
7 True
8 >>> os.path.islink('mild')
9 False
10 >>> os.path.islink('hrly_customers-50F.txt')
11 False

Both the file and directory are regular items, not links (i.e., not aliases), and so the islink call

returns False.
Why do we care about testing what a file is? Now, as we go into Chapter 7, we can test to see

whether a file is a directory or not and choose the right file/directory handling function to use.

6.7 Summary

We’ve seen that functions in the shutil, os, and os.path modules can be used to manage files, and

that the use of looping gives us a powerful way of managing many files in very few lines of code. In

addition, the commands we’ve seen are the same regardless of the operating system we’re on. File

management using Python, as a result, has the potential of enabling us to write a single program

that can manage our files whether the computer we’re on is running Windows, Mac OS X, Linux,

or any one of a number of other operating systems. While a pure and complete “write once, run

anywhere” ability is hard to come by, the file management features in Python help move us in that

direction.

(For more details on these modules, please see the Python documentation: https://docs.python.

org/2/library/shutil.html, https://docs.python.org/2/library/os.html, and https://docs.python.org/2/

library/os.path.html.)

One final note: As powerful as automation is, it’s not always worth doing. Here are two xkcd

comics to help us think more clearly about when to automate and when not to,: https://xkcd.com/

1205/ and https://xkcd.com/1319/.

93

https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/os.path.html
https://docs.python.org/2/library/os.path.html
https://xkcd.com/1205/
https://xkcd.com/1205/
https://xkcd.com/1319/

Chapter 7

Managing Collections of Files: Directories

Chapter Contents

7.1 Prelude: Specifying directory paths . 95

7.2 Creating and removing empty directories . 97

7.3 Renaming and moving directories . 98

7.4 Copying and deleting directories . 99

7.5 Returning and changing the working directory 99

7.6 Listing the contents of a directory . 100

7.7 Ï Python Sidebar: Dictionaries . 101

7.8 Summary . 104

In Chapter 6, we took a look at some of the functions Python has that we can use to move,

rename, copy, and delete files. These functions are particularly useful because we can embedded

calls to them in a loop and automatically operate on many files.

No one today (or at least no one should ,), however, stores all of their files on their desktop.

Instead, we put collections of files into directories or folders and place groups of folders into other

folders, and so on. Using directories, we’re able to group related files with each other and move

entire collections of files around at one time.

But, what if you have a large collection of directories? We then have the same problem as in

Chapter 6, except in this case instead of needing to manage many files we need to manage many

directories (which may in turn contain many files). Can Python help us with this task?

In this chapter, we look at some of the tools Python provides to help us manage directories and

their contents. There are two classes of tools we’ll look at: those used in creating, naming, moving,

and copying directories and those used in accessing the contents of the directory. We start, however,

with something of a prelude: how can we use Python to help us specify the path to a directory?

Before we do, I want to reiterate what I said at the beginning of Chapter 6: Before you begin

using Python’s file and directory manipulation tools, I strongly encourage you to create a scratch

directory and do all your work in there, until you’ve gotten the hang of using these functions and

commands. Change your current working directory to this scratch directory. This will help decrease

the potential of inadvertently messing up your file system.

94

7.1. PRELUDE: SPECIFYING DIRECTORY PATHS

Figure 7.1: A directory tree.

7.1 Prelude: Specifying directory paths

The path to a directory is the list or sequence of directories you need to go through to reach file or

directory at the end of that list/sequence.1 Figure 7.1 shows a tree of files starting from the directory

MyFiles. To reach the file Day15.txt, the path would start withMyFiles, go into BusinessData, and

then into June, ending with the file of interest, Day15.txt. On a Linux system, this path would be

written as:

MyFiles/BusinessData/June/Day15.txt

while on a Windows system, this path would be written as:

MyFiles\BusinessData\June\Day15.txt

Immediately, we see that depending on the operating systemwe use, the character that separates

different directories in the path may differ. OnWindows, the character is a backslash while in Linux

the character is a forward slash. (Note that a backslash, when represented in a string, is a “backslash

backslash”, i.e., “\\”. When the string is printed out, only a single backslash occurs:

>>> a = "\\"
>>> print(a)
\

1Here “list” does not mean a Python list but a sequence or listing of directories.

95

7.1. PRELUDE: SPECIFYING DIRECTORY PATHS

In the next paragraph we’ll see how the os.path module helps us to avoid having to think about

this.)

Python’s os.path module (the path submodule of the os module) provides tools to enable us

to construct and manipulate paths that account for the difference between the directory separation

characters used in different operating systems. The join function of os.path takes a set of string
arguments and joins them together into a single string with the correct character separating direc-

tories for the operating system being used. For instance, for our Day15.txt path example above,

join would give:

>>> import os.path
>>> os.path.join("MyFiles", "BusinessData", "June", "Day15.txt")
'MyFiles/BusinessData/June/Day15.txt'

The above code was executed on a Linux system, so the path separation character used is a forward

slash.

In addition to having functions to create a path, the os.path module also has functions to ma-

nipulate paths (quite a few, in fact). Some functions include: abspath, which gives the absolute
path (a.k.a. full path) for a given path:

>>> import os.path
>>> mypath = os.path.join("MyFiles", "BusinessData", "June", "Day15.txt")
>>> os.path.abspath(mypath)
'/home/jlin/MyFiles/BusinessData/June/Day15.txt'

In this example, the path given by mypath is a relative path, that is, a path specification relative
to the present location (called the current working directory). By default, when you start Python

from the command line, the current working directory is the location you were in when you started

Python. In this example, I started Python while I was in the /home/jlin directory, so the full path

to mypath is /home/jlin/MyFiles/BusinessData/June/Day15.txt, which is what abspath gives. In
Canopy, you can set the working directory via the Python interpreter window. Figure 7.2 shows

the Canopy Python interpreter of Figure 1.2, except with the working directory status bar and edit

menu switch circled by a red circle. The status bar shows what the current working directory in

Canopy is set to and the edit menu (accessed by a right-click) gives you options for changing that

working directory. You can, however, get and change the current working directory from within

Python, while a Python program is running; we discuss how in Section 7.5.

The function basename returns the file or directory that is at the end of the path. For the above
example:

>>> import os.path
>>> mypath = os.path.join("MyFiles", "BusinessData", "June", "Day15.txt")
>>> os.path.basename(mypath)
'Day15.txt'

If you are looking for a straightforward way to figure out what kind of file is specified by path,

via the file’s extension, you can use the splitext function to split off the file extension from the

rest of the path. For example:

96

7.2. CREATING AND REMOVING EMPTY DIRECTORIES

Figure 7.2: The Canopy Python interpreter, with the working directory status bar and edit menu

switch shown. Right-click the switch to get menu options that include changing the working direc-

tory.

>>> import os.path
>>> mypath = os.path.join("MyFiles", "BusinessData", "June", "Day15.txt")
>>> os.path.splitext(mypath)
('MyFiles/BusinessData/June/Day15', '.txt')

splitext returns a two-element tuple with the extension in the second element and the rest of the
path in the first. If the path does not have a file extension, the second element of the tuple is an

empty string. You can run tests on what file extension is returned and have your program respond

accordingly.

The Python documentation on os.path is a must read if you want to see all the different tools

you have at your disposal for handling paths: https://docs.python.org/2/library/os.path.html.

7.2 Creating and removing empty directories

To create a new, empty directory, you can use the mkdir command from the os module. In this ex-

ample, I create the August directory in the BusinessData directory in the directory tree of Figure 7.1

(assuming MyFiles is relative to the current working directory):2

>>> import os
>>> import os.path
>>> mypath = os.path.join("MyFiles", "BusinessData", "August")
>>> os.mkdir(mypath)

2Reference for parts of this paragraph: https://docs.python.org/2/library/os.html (accessed November 9, 2016).

97

https://docs.python.org/2/library/os.path.html
https://docs.python.org/2/library/os.html

7.3. RENAMING AND MOVING DIRECTORIES

The mkdir command, however, assumes that all intermediate directories to the directory you are
creating already exist. In the above example, if the MyFiles and BusinessData directories do not

already exist, the call to mkdir will fail and return an error.
If you want to create all the intermediate directories in addition to the final (or leaf directory),

you should use makedirs:3

>>> import os
>>> import os.path
>>> mypath = os.path.join("MyFiles", "Car", "Manuals")
>>> os.makedirs(mypath)

In this example above, the makedirs command creates not only the leaf directory, Manuals, but

also the intermediate directoryCar, which does not exist in the Figure 7.1 directory tree. makedirs
does all this in one fell swoop.

Notice for both the mkdir and makedirs calls above, no message is printed in the interpreter.
The commands create the directories on you file system and that’s that. No news means the com-

mand executed “successfully.” Of course, you have to make sure that you typed everything in

correctly, in order for “successful” to be the same as “desired outcome” ,.

Of course, for both mkdir and makedirs, we’re creating empty directories that have nothing
inside them (except directories that are part of the path). We’ll address the case of copying and

deleting directory trees with files in them in Section 7.4.

Given makedirs, why would you use ever want to use mkdir? Admittedly, makedirs is pow-
erful, but with such power comes the potential to mess things up. Unless I know that I want to

create all the intermediate directories in a path, I’d use mkdir to limit any inadvertent mistakes.

7.3 Renaming and moving directories

In Section 6.3, we saw how the shutil module’s move function could be used to move and rename
files. It also works for renaming directories. In this example, I rename the June directories in

BusinessData to PastJune:4

>>> import os.path
>>> import shutil
>>> june_path = os.path.join("MyFiles", "BusinessData", "June")
>>> new_june_path = os.path.join("MyFiles", "BusinessData", "PastJune")
>>> shutil.move(june_path, new_june_path)

If I’m in the BusinessData directory, that is, if my current working directory is the BusinessData

directory in Figure 7.1, the rename is even easier (with the imports removed):

>>> shutil.move("June", "PastJune")

3Reference for parts of this paragraph: https://docs.python.org/2/library/os.html (accessed November 9, 2016).
4Reference for parts of this paragraph: https://docs.python.org/2/library/shutil.html (accessed November 9, 2016).

98

https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/shutil.html

7.4. COPYING AND DELETING DIRECTORIES

There’s no need to bother with os.path.join since I’m only referring to paths made up of a single

directory name and level.

In addition to renaming directories, we can also use shutil’s move to move directories (and

everything in that directory) into another directory. Thus, if we wanted to create a directory called

Media inside MyFiles (in the Figure 7.1 tree) and move AudioClips and VideoClips into Media,

we’d execute the following code (I’m assuming our current working directory is MyFiles):

>>> import os
>>> import shutil
>>> os.mkdir("Media")
>>> shutil.move("AudioClips", "Media")
>>> shutil.move("VideoClips", "Media")

7.4 Copying and deleting directories

Copying and deleting directories is a more complicated task than creating empty directories or

moving directories around because copying and deleting need to operate on the entire directory

tree in question. That is, if we wanted to copy BusinessData in the Figure 7.1 tree, we need to copy

everything contained in BusinessData, going down into the June and July directories too. This is

called a recursive copy. (We’ll talk more about recursion in Chapter 8.)

To make the copy, we use the shutil function copytree. Like move, it takes two arguments,
strings that specify the source and the destination of the copy. The following will make a copy of

BusinessData called BusinessDataCopy. Both the original and copy will be in the same directory

(the current working directory):5

>>> import shutil
>>> shutil.copytree("BusinessData", "BusinessDataCopy")

Note that copytree does not copy over all the metadata. (If you care about copying all the meta-
data, you’ll probably have to write a shell script.)

To remove a directory and all sub-directories and files, use the shutil function rmtree. The
followingwill removeBusinessDataCopy and everything in it from the current working directory:6

>>> import shutil
>>> shutil.rmtree("BusinessDataCopy")

7.5 Returning and changing the working directory

Earlier in Section 7.1, we talked about relative paths and how they are relative to where you’re

currently at in the directory tree, i.e., the current working directory. From that discussion, it may

have sounded like the current working directory is set in stone for any given Python session. In

actuality, you can change the current working directory at any time during a Python session.

Before you change the current working directory, however, you might be interested in knowing

what it’s currently set to. The getcwd function in the os module does this:
5Reference for parts of this paragraph: https://docs.python.org/2/library/shutil.html (accessed November 9, 2016).
6Reference for parts of this paragraph: https://docs.python.org/2/library/shutil.html (accessed November 9, 2016).

99

https://docs.python.org/2/library/shutil.html
https://docs.python.org/2/library/shutil.html

7.6. LISTING THE CONTENTS OF A DIRECTORY

>>> import os
>>> os.getcwd()
'/home/jlin'

Remember that getcwd is a function so you have to put the empty set of parenthesis in order to call
the function. In the example above, I had started Python in a terminal window while I was in my

home directory, /home/jlin, so this is the value of my current working directory.

To change my current working directory, I use the chdir function in the os module. The fol-
lowing will change my current working directory to the temp directory in my home directory:

>>> import os
>>> os.chdir("/home/jlin/temp")

In the above example, I specified the full or absolute path for my own computer, which runs Linux.

Since I had started my Python session frommy home directory, and I’m trying to change my current

working directory to a sub-directory of my home directory, the following would have also worked:

>>> import os
>>> os.chdir("temp")

So, I can specify a directory in chdir using a relative path instead of an absolute path.

7.6 Listing the contents of a directory

Thus far, we’ve talked about how to create, move, and delete directories, as well as changing our

current working directory. Once we’re at or know how to get to a directory we’re interested in,

how do we list the contents of that directory? The os module’s listdir function will do the trick.
If I’m in the MyFiles directory of the directory tree in Figure 7.1, I’ll get the following:7

>>> import os
>>> os.listdir('.')
['AudioClips', 'Report.pdf', 'Flier.pdf', 'VideoClips', 'BusinessData']
>>> os.listdir(os.getcwd())
['AudioClips', 'Report.pdf', 'Flier.pdf', 'VideoClips', 'BusinessData']

In the first example of listdir, I pass in the current directory symbol in Linux (a period) and the
function returns me the list of the contents of the directory I am currently in (which isMyFiles). In

the second example, I pass in the return value of a call to the getcwd function, which returns the
full path of the directory I am currently in.

Sometimes, I’m interested in listing only a subset of the contents of a directory. The globmodule

has a function called glob that will do basic pattern matching when doing a directory listing. If
I’m in the MyFiles directory of the directory tree in Figure 7.1, I’ll get the following:8

7Reference for parts of this paragraph: https://docs.python.org/2/library/os.html (accessed November 10, 2016).
8Reference for parts of this paragraph: https://docs.python.org/2/library/glob.html (accessed November 10, 2016).

100

https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/glob.html

7.7. PYTHON SIDEBAR: DICTIONARIES

1 >>> import glob
2 >>> glob.glob('*')
3 ['AudioClips', 'Report.pdf', 'Flier.pdf', 'VideoClips', 'BusinessData']
4 >>> glob.glob('*.pdf')
5 ['Report.pdf', 'Flier.pdf']

In both calls to glob, the asterisk is a wildcard character meaning “any character or set of char-
acters.” Thus, in the line 2 glob call, the function looks for all contents of MyFiles, i.e., items

of any name. In the line 4 call, the function looks for all contents whose name ends in .pdf.

More complex pattern matching is possible; see the glob module documentation for details (https:

//docs.python.org/2/library/glob.html).

7.7 Ï Python Sidebar: Dictionaries

So far, when we have needed to store more than one piece of information, we’ve put them into

lists/tuples or arrays. Once in those list-like structures, we pick out one ormore values by specifying

an index or range of indices (via slicing). But when you think about, an index doesn’t tell you very

much about what an element holds. All it says is that this is the position of the element.

It turns out that many times, it’s more useful for us to reference values not by a positional index

but by something more meaningful. For instance, say you had a variable files that is the list of
the files in the June subdirectory in the Figure 7.1 directory tree:

files = ['Day1.txt', 'Day15.txt', 'Day30.txt']

How would you store the number of lines in these files? You could construct a list (let’s call it

num_lines and store the values in that list, and arrange the items so values in a given element

correspond to the element in files at the same location. That is, if:

num_lines = [12, 35, 92]

then this means Day1.txt has 12 lines, Day15.txt has 35 lines, and Day30.txt has 92 lines. To print

out the filenames and the number of lines corresponding to them, we could write the following:

files = ['Day1.txt', 'Day15.txt', 'Day30.txt']
num_lines = [12, 35, 92]
for i in range(len(files)):

print(files[i] + ": " + str(num_lines[i]))

But isn’t this a little cumbersome? If we make any changes to one variable we have to be very

careful to synchronize the change with the other variable. If files changes but num_lines does
not, there’s no way for us to connect the two together again. Wouldn’t it be nice if there was a

way to directly associate the filename with the number of lines value? The dictionary can solve

this problem. We’ll first look at what are dictionaries, how to create them, and what kinds of tools

they offer us. Then we’ll come back to our files and num_lines example above and store the
information in a dictionary.

Like lists and tuples, dictionaries are also collections of elements, but dictionaries, instead of

being ordered, are unordered lists whose elements are referenced by keys, not by position. Keys

101

https://docs.python.org/2/library/glob.html
https://docs.python.org/2/library/glob.html

7.7. PYTHON SIDEBAR: DICTIONARIES

can be anything that can be uniquely named and sorted. In practice, keys are usually integers or

strings. Values can be anything. (And when I say “anything,” I mean anything, just like lists and

tuples.)

Curly braces (“{}”) delimit a dictionary. The elements of a dictionary are “key:value” pairs,

separated by a colon. Dictionary elements are referenced like lists, except the key is given in place

of the element address. The example below will make this all clearer:

Example 31 (A dictionary):

Type the following in the Python interpreter:

a = {'a':2, 'b':3.2, 'c':[-1.2, 'there', 5.5]}

For the dictionary a:

• What does a['b'] return?

• What does a['c'][1] return?

Solution and discussion: a['b'] returns the floating point number 3.2. a['c'] returns the list
[-1.2, 'there', 5.5], so a['c'][1] returns the oneth element of that list, the string 'there'.

Like lists, dictionaries come with methods that enable you to find out all the keys in the dictio-

nary, find out all the values in the dictionary, etc. Here are some useful dictionary methods:

Example 32 (A few dictionary methods):

Assume we have the dictionary from Example 31 already defined in the Python interpreter:

a = {'a':2, 'b':3.2, 'c':[-1.2, 'there', 5.5]}

If you typed the following into the Python interpreter, what would you get for each line?:

• d = a.keys()

• d = a.values()

• a.has_key('c')

Solution and discussion: The first line executes the command keys, which returns a list of
all the keys of a, and sets that list to the variable d. The second command does this same thing
as the first command, except d is a list of the values in the dictionary a. The third command tests
if dictionary a has an element with the key 'c', returning True if true and False if not. For the
dictionary a, the first line returns the list ['a', 'c', 'b'] and sets that to the variable d while
the second line returns True.

102

7.7. PYTHON SIDEBAR: DICTIONARIES

Note that the keys and valuesmethods do not return a sorted list of items. Because dictionaries
are unordered collections, you must not assume the key:value pairs are stored in the dictionary in

any particular order. If you want to access the dictionary values in a specific order, you should first

order the dictionary’s keys (or, in some cases, values) in the desired order using a sorting function

like sorted.

Once a dictionary is created, you can add key:value pairs to the dictionary by assignment. Thus,

if we wanted to add the value 'goodbye' with the key 'd' to the dictionary in Example 31 (repro-
duced below as a reminder), we would type:

>>> a = {'a':2, 'b':3.2, 'c':[-1.2, 'there', 5.5]}
>>> a['d'] = 'goodbye'
>>> a
{'a': 2, 'c': [-1.2, 'there', 5.5], 'b': 3.2, 'd': 'goodbye'}

To replace the value of an existing dictionary entry, we use the same assignment syntax. To delete

an entry, we use the del command. On the above dictionary:

>>> del(a['c'])
>>> a
{'a': 2, 'b': 3.2, 'd': 'goodbye'}

Let’s return to the file system example we were looking at at the beginning of this section. How

might we use dictionaries to connect the number of lines in each file with the file’s name? By using

the filename as the key and the number of lines as the value. That is, we can define this dictionary

num_lines_dict:

num_lines_dict = {'Day1.txt':12, 'Day15.txt':35, 'Day30.txt':92}

We obtain the number of lines values by referencing a filename, which is a key, such as:

>>> num_lines_dict = {'Day1.txt':12, 'Day15.txt':35, 'Day30.txt':92}
>>> num_lines_dict['Day15.txt']
35

and we can add new elements by assignment. For instance, let’s say a new file Day10.txt was

created in this directory and that the file was 103 lines long. We add the entry to the dictionary by

typing in:

num_lines_dict['Day10.txt'] = 103

If we want to loop through all the files and print out the number of lines for each file, the

following code will do the trick:

for ikey in num_lines_dict.keys():
print(ikey + ": " + str(num_lines_dict[ikey]))

103

7.8. SUMMARY

Note, however, the files will not be printed in any (humanly discernable) order. As dictionaries are

unordered collections, we must think of the keys method as returning the dictionary’s keys in any
way it wants to. If we want to go through the keys in a particular order, we have to sort the keys

first:

for ikey in sorted(num_lines_dict.keys()):
print(ikey + ": " + str(num_lines_dict[ikey]))

The above code uses the built-in sorted function to sort the keys using sorted’s default ordering
algorithm.

What does this use of dictionaries buy us? Some thoughts regarding the above example:

• We can now refer to elements associated with a filename by the filename itself. There’s no

ambiguity, for instance, as to what the “threeth” element refers to.

• Instead of dealing with two lists andmaking sure we keep them synchronized with each other,

all the information is now stored in a single variable.

• We can add and remove items from this collection of data without having to worry about

messing up the order of the collection because the data is stored unordered and referenced

without respect to order.

One final note: If we want to store more data about a file than a single number, we can make the

value part of the dictionary’s key:value pairs to be a collection of some sort, say a list or another

dictionary. Dictionaries are very flexible! If the structure of the data we want to store is even more

complex, it’s probably a good idea to starting thinking about defining our own classes of objects to

store the data. We’ll talk some about this topic in Chapter 9.

7.8 Summary

Through the os, shutil, and glob modules, Python gives us many of the file and directory manage-

ment tools that a shell gives us. However, because Python is a full-fledged programming language

with many scientific, mathematical, and business packages, we can write much more complex

programs for managing and interacting with our files and directories than are possible in a shell

language. The dictionary data structure is an example of a tool that makes storing information

related to files (whose names are straightforwardly represented by strings) a piece of cake (well,

maybe two pieces ,). One common application of these tools is searching for files on a computer,

and it’s to that topic we turn to in Chapter 8.

104

Chapter 8

Managing Collections of Files: Searching

Chapter Contents

8.1 Review of Python routines for searching . 105

8.2 Searching in a directory tree . 108

8.3 Searching using recursion . 110

8.3.1 What is recursion? . 110

8.3.2 Implementing a search using recursion 112

8.4 Summary . 115

We’ve talked about creating, copying, and moving files. We have one more foundational MIS

file and directory management activity to discuss: searching. File systems can contain hundreds of

thousands to millions of files and directories. How do we find the file or files we want? It could

be that set of sales data files or the brochures from that ad campaign ten years ago.

In this chapter, we describe some of the tools Python provides to help us find files on our

computer, automatically. We’ll start out by reviewing searching tools we’ve already seen in Python

and how they can be used to search for files (among other things). Next, we’ll look at Python tools

specifically designed for searching directory trees. Finally, we’ll examine another way of searching

directory trees using the concept of recursion.

8.1 Review of Python routines for searching

While we haven’t specifically considered how do you find something in a collection of items in

Python, it turns out we’ve already seen quite a few ways of doing just that. Here’s a quick review.

Testing in a loop: You can loop through a list of items and use an if statement to find what
you’re looking for. Here we take some numbers and store the index in the list where the number

six is found in the variable loc:

data = [3, 6, 1, -8, 9]
for i in range(len(data)):

if data[i] == 6:
loc = i

105

8.1. REVIEW OF PYTHON ROUTINES FOR SEARCHING

Note that in the above code, loc will be set to the index of the last occurrence of the number six.
The index method of a list: As we saw in Example 4, the index method of a list will return

the index where the first occurrence of the search target is found. Below, we search the data list
for the index where the first occurrence of the number six is located and store that index in loc:

data = [3, 6, 1, -8, 9]
loc = data.index(6)

The count method of a list: As we also saw in Example 4, the count method of a list will
count the number of occurrences in the list of a search target. Below, we search the data list to
find how many times the number six occurs and store that number in count_six:

data = [3, 6, 1, -8, 9]
count_six = data.count(6)

Array syntax and testing for equality: Array syntax automatically applies logical operators

like equality element-wise across an array. Below we look in data for where it equals the number
six:

import numpy as np
data = np.array([3, 6, 1, -8, 9])
mask = data == 6

The variable mask is a boolean array showing which elements of data equal the number six and
which do not:

>>> mask
array([False, True, False, False, False], dtype=bool)

This only works with NumPy arrays and not lists.

The where function on arrays: We saw this searching method in Section 4.6.2. Below we

search data for the number six and return an array where elements equal to six are set to its index
and −1 otherwise:

import numpy as np
data = np.array([3, 6, 1, -8, 9])
mask = np.where(data == 6, np.arange(np.size(data)), -1)

The result of the where call is stored in mask which is:

>>> mask
array([-1, 1, -1, -1, -1])

The isclose function on arrays: We saw how to use allclose and isclose in Section 4.7
to do “equality” tests on floating point numbers. Below we look in data for where it is close to the
number six:

106

8.1. REVIEW OF PYTHON ROUTINES FOR SEARCHING

import numpy as np
data = np.array([3., 6., 1., -8., 9.])
mask = np.isclose(data, 6.0)

and, as earlier, the variable mask is a boolean array showing which elements of data are close to
the number six and which are not:

>>> mask
array([False, True, False, False, False], dtype=bool)

Membership testing: Starting on p. 39, we discussed how the in operator can be used for

membership testing in lists and strings. This doesn’t tell us where a search target is in the list or

string but it does tell us if the target is present in the list or string. Belowwe test whether the number

six is in the list data:

>>> data = [3, 6, 1, -8, 9]
>>> 6 in data
True

If a dictionary has a specific key: The has_key method, as we saw in Example 32, let’s us

see if the dictionary has a given key. Below we construct a dictionary data and ask whether the
dictionary has a key named 'six':

>>> data = {'three':3, 'six':6, 'one':1, 'neg_eight':-8, 'nine':9}
>>> data.has_key('six')
True

You can also use the dictionary method values to obtain all the values in data as a list and use
the list index method to get the location of the search target. The values are not in any human-
understood order, but the index will work to get the value of interest. Here, we look for the number

six:

>>> data = {'three':3, 'six':6, 'one':1, 'neg_eight':-8, 'nine':9}
>>> data_values = data.values()
>>> loc = data_values.index(6)
>>> data_values[loc]
6

The glob function for wildcard searching in a directory: In Section 7.6, we saw that the

glob module function glob can search a directory for filenames matching a given pattern. The

following searches the current working directory for all files that have the number six somewhere

in their name and returns the list of those files as files6:

import glob
files6 = glob.glob("*6*")

107

8.2. SEARCHING IN A DIRECTORY TREE

8.2 Searching in a directory tree

In Section 7.6, we saw how to get a list of all the contents of a directory. Using some of the methods

we’ve just reviewed, we can search through that listing to find the file we are interested in.

But, often times, what we’re interested in is not whether a file is in a single given directory

but all sub-directories of that given directory, and their sub-directories, and so on until there are

no more sub-directories to search. That is, we are interested in finding a file in a directory tree

(an example is shown in Figure 7.1). At the most extreme, if our current directory is the top-most

directory of our filesystem, a directory tree search means searching through every file and directory

on our computer. The os module’s listdir function won’t do that kind of search for us.
Instead, if you want to descend into a directory tree to search for a file, you can use the os

module’s walk function.1 The walk function, however, is a little different than most functions.

Most functions take an input and produce an output. The output is usually something you can save

to a variable, such as a number, string, list, or, array. What walk produces, however, is something
called a generator. For our purposes, what a generator exactly is isn’t that important.2 Instead,

we’re going to focus on how to use a generator. In short, a generator is an object whose purpose is

to give you something to iterate through and return you something as you do the iteration. Thus,

generators are often used in loops.

Let’s look at an example. Let’s pretend the current working directory holds the folderMyFiles,

which is the topmost directory of the Figure 7.1 directory tree. The following code:

import os
for dirpath, dirnames, filenames in os.walk("MyFiles"):

print(str(dirpath) + ":\n " + str(dirnames) + \
"\n " + str(filenames))

will produce this output:

1Reference for parts of this section: https://docs.python.org/2/library/os.html. See also http://stackoverflow.com/

a/1724723. (Both accessed November 11, 2016.)
2See https://wiki.python.org/moin/Generators if you’re interested in learning about generators.

108

https://docs.python.org/2/library/os.html
http://stackoverflow.com/a/1724723
http://stackoverflow.com/a/1724723
https://wiki.python.org/moin/Generators

8.2. SEARCHING IN A DIRECTORY TREE

1 MyFiles:
2 ['AudioClips', 'VideoClips', 'BusinessData']
3 ['Report.pdf', 'Flier.pdf']
4 MyFiles/AudioClips:
5 []
6 ['Jingle.mp3', 'Testimony.mp3']
7 MyFiles/VideoClips:
8 []
9 ['Ad.mov', 'Poster.jpg']
10 MyFiles/BusinessData:
11 ['July', 'June']
12 ['Old.txt']
13 MyFiles/BusinessData/July:
14 []
15 ['Day1.txt']
16 MyFiles/BusinessData/June:
17 []
18 ['Day15.txt', 'Day1.txt', 'Day30.txt']

Let’s interpret this. Each iteration of the for loop, the variables dirpath, dirnames, and
filenames are filled. On the first iteration of the loop, dirpath is set to 'MyFiles', dirnames
is set to the list ['AudioClips', 'VideoClips', 'BusinessData'], and filenames is set to
the list ['Report.pdf', 'Flier.pdf']. (These contents are shown in lines 1–3 above.) That
is to say, on the first iteration, dirpath is set to the topmost directory in the tree (MyFiles) and

dirnames and filenames are set to the names of the sub-directories and files that are inMyFiles.

On the second iteration, dirpath is set to MyFiles/AudioClips, that is, the AudioClips sub-

directory in MyFiles. The dirnames variable is set to an empty list, and the filenames variable
is set to the list ['Jingle.mp3', 'Testimony.mp3']. (These contents are shown in lines 4–6
above.) That is, because there are no sub-directories in AudioClips, the dirnames list has nothing
in it and only the files in AudioClips show up (in the list filenames).

The third iteration sets dirpath, dirnames, filenames to what’s shown in lines 7–9 above,
and so on until all sub-directories in theMyFiles directory tree are visited. As a side note, from the

output, we see that when we reach a “leaf” directory, i.e., a directory that only contains files, the

dirnames list will be empty (and thus have a length of zero). If we’re interested in looking only at
leaf directories, we can use len(dirnames) as a test to see whether we’re in a leaf directory.

Now, let’s use walk to search for a file. Let’s say we want to find the location of all occurrences
of a file named Day1.txt. From Figure 7.1, we know there are two files in this tree by that name.

The following code will store the directory paths to all occurrences of Day1.txt:

import os
file_occurrence_locations = []
for dirpath, dirnames, filenames in os.walk("MyFiles"):

if 'Day1.txt' in filenames:
file_occurrence_locations.append(dirpath)

and the file_occurrence_locations list will have the following values:

109

8.3. SEARCHING USING RECURSION

>>> file_occurrence_locations
['MyFiles/BusinessData/July', 'MyFiles/BusinessData/June']

which are the paths of the sub-directories where there are files named Day1.txt.

One final note about finding files: It is an unfortunate truth that different operating systems not

only have different directory separation characters but also different rules about case-sensitivity. On

some operating systems (like Linux), filenames can be made from upper- or lower-case characters.

On other operating systems (like Mac OS X), there is no real distinguishing between a file named

Foo.txt and one named foo.txt.3 This issue with case makes it possible that a plain string equality

or membership test will fail, if you’re working across operating systems. Python provides the

fnmatch module to enable pattern matching for filenames that takes into account the case handling

features of the operating system one is working on. See the fnmatch documentation for details

(https://docs.python.org/2/library/fnmatch.html).

8.3 Searching using recursion

Using the walk generator in a loop is a great way of searching through a directory tree. It’s concise,
flexible, and robust. By all means, use it when you want to access the contents of a directory tree!

However, while we could end the topic of walking through a directory tree right here and go on

to the next chapter without any loss in our ability to handle directory trees, it turns out the directory

tree searching problem very naturally lends itself to being solved by a programming concept called

recursion. While walkmeans you don’t have to use recursion to traverse a directory tree, it’s worth
using the tree traversal problem to learn about how recursion works, because recursion is a really

useful concept that can help you write more concisely what would otherwise be really complex

functions or programs. In my own work, I seldom use recursion—in fact, I can only think of one

time—but in that one time, there really was no other way to write the program in a clear and simple

way. In the rest of this section, we’ll discuss what is recursion and use recursion to implement a

simple file search in a directory tree.

8.3.1 What is recursion?

So, what is this mysterious programming technique called recursion? In a nutshell, recursion, or

more specifically recursive functions, are functions whose definitions include calls to itself. That

is to say, if I have a function calculate, within the definition of calculate there is at least one
call of calculate.

I don’t know about you, but that seems weird to me. How can you use a function while you’re

defining it? It sounds like an infinite regress: use a function you’re defining using a function you’re

defining using a function you’re defining, and so on without end. At least, that’s how I felt the first

time (and second, and third, and more) I learned about it.

3The real situation is a little more complex. The issue is with the filesystem format you choose and not with

the Mac version of Unix itself. In addition, case-insensitive here does not mean it is not case-preserving. See http:

//apple.stackexchange.com/a/22304 for a nice discussion of the issue (accessed November 11, 2016).

110

https://docs.python.org/2/library/fnmatch.html
http://apple.stackexchange.com/a/22304
http://apple.stackexchange.com/a/22304

8.3. SEARCHING USING RECURSION

Amathematical example might be helpful to describe both what recursion is and why it doesn’t

have to lead to infinite regress. Let’s say you want to write a function that takes a list of numbers

and adds the numbers up. Using a for loop, the function add_up would be:

def add_up(input_list):
total = 0.0
for i in input_list:

total = total + i
return total

When we go through the logic of this code in our head, we probably hear something like, “take

one number, add it to total, take another number, add it to total, and so on until we’re out of
numbers.”

But, we could think of the process of adding up these numbers in another way: “the sum of a

list of numbers is the sum of the list of numbers not including the last number plus the last number.”

But how do we get the “sum of the list of numbers not including the last number?” Using the same

logic, that sum is also, “the sum of the list of numbers not including the last number plus the last

number,” but the “list of numbers” isn’t the original list of numbers but the original list without the

last item on the list. The logic would continue until “the sum of the list of numbers not including

the last number” is zero, because there are no numbers left in such a list.

In Python, this would look like:

1 def add_up(input_list):
2 if len(input_list) == 0:
3 return 0.0
4 else:
5 return add_up(input_list[:-1]) + input_list[-1]

Some things to point out in this code. First, we see that our recursive call, i.e., our call to the add_up
function inside the add_up definition, occurs in line 5. It’s important to note, however, that while
we are calling add_up in line 5, the input parameter is not the same as the original, full list of

numbers. (If it were, we would have to get infinite regress.) Instead, the input argument we’re

passing into the line 5 call to add_up is the current input_list without the last element. This is
how we implement the “not including the last number” phrase in our above word description of our

logic.

Second, our worries about infinite regress are solved by lines 2–3. The if statement checks to
see whether the list of numbers input_list actually has any numbers in it and if not, the function
returns zero. This makes sense because the sum of nothing is zero. But from the standpoint of infi-

nite regress, this means that there comes a point when we no longer will make calls to add_up. The
situation tested for in lines 2–3 and called the stopping case or base case. As the name suggests,

this condition terminates recursive calls to the function preventing infinite regress. Every recursive

function has to have at least one stopping case. The lack of one (or enough) stopping cases will

result in a recursive function eventually failing and causing a “stack overflow.” We’re not going

to go into what a stack overflow is beyond saying if it happens, your program will terminate. So

you’ll know you made a mistake ,.

111

8.3. SEARCHING USING RECURSION

In this example, the recursive function doesn’t seemmore concise than the one using a loop. It’s

not. For simple problems, this is typical: the looping solution is more straightforward and shorter

than the recursive version. For more complex problems, however, this is not the case. In the next

section, Section 8.3.2, we look at a more complex problem and compare a recursive solution with

pieces of an iterative solution that doesn’t have the benefit of the os module’s walk generator.
Recursion is, at least to me, a tough idea to grasp. I’d encourage you to read more resources on

recursion and, most importantly, to practice writing recursive functions. Here are a few resources

I’d recommend:

• Python Course: A reasonably accessible introduction, but its even more mathematical exam-

ples may not be motivating to MIS professionals: http://www.python-course.eu/recursive_

functions.php.

• CodeStepByStep: Scroll down for two recursion practice problems: http://www.codestepbystep.

com/problem/list.

• PythonData Structures andAlgorithms: Recursion—Exercises, Practice, Solution: A bunch

of exercises with solutions: http://www.w3resource.com/python-exercises/data-structures-

and-algorithms/python-recursion.php.

• Recursion Examples (Python): A bunch of small problems with solutions: https://frankanya.

wordpress.com/2013/04/18/recursion-examples-python/.

8.3.2 Implementing a search using recursion

Let’s say we want to return a list of all files in the Figure 7.1 directory tree that ends in .txt. We’ll do

this first recursively then (try to) iteratively without the benefit of the os module’s walk generator.

A recursive solution

How might we do this recursively? In terms of logic, we might say, “look into the directory, return

a list of all .txt files and if you find a directory, look into the directory, etc.” In terms of code, we

could write the following find_txt function which would implement that logic:

1 import os
2 import os.path
3

4 def find_txt(top_dir):
5 list_items = os.listdir(top_dir)
6 list_txt = []
7 for item in list_items:
8 item_path = os.path.join(top_dir, item)
9 if os.path.isdir(item_path):
10 list_txt = list_txt + find_txt(item_path)
11 else:
12 if os.path.splitext(item)[-1].lower() == '.txt':
13 list_txt = list_txt + [item_path]
14 return list_txt

112

http://www.python-course.eu/recursive_functions.php
http://www.python-course.eu/recursive_functions.php
http://www.codestepbystep.com/problem/list
http://www.codestepbystep.com/problem/list
http://www.w3resource.com/python-exercises/data-structures-and-algorithms/python-recursion.php
http://www.w3resource.com/python-exercises/data-structures-and-algorithms/python-recursion.php
https://frankanya.wordpress.com/2013/04/18/recursion-examples-python/
https://frankanya.wordpress.com/2013/04/18/recursion-examples-python/

8.3. SEARCHING USING RECURSION

and a call to find_txt("MyFiles") yields the following list:

['MyFiles/BusinessData/Old.txt',
'MyFiles/BusinessData/July/Day1.txt',
'MyFiles/BusinessData/June/Day15.txt',
'MyFiles/BusinessData/June/Day1.txt',
'MyFiles/BusinessData/June/Day30.txt']

(I hand-formatted the output above so it’d look readable but the values are what a print statement
produces on the return value from the call. Also, my solution assumes there are no symbolic links

in the directory tree.)

Let’s go through each line of find_txt and describe what’s happening. In lines 1–2 we import
the modules we’ll need. Line 4 defines the function. Note that the function takes a single input

string, top_dir, which is the name of the directory in which we will look for all .txt files. Line 5
saves a listing of all the items (files and directories) in top_dir. Note that the listdir method
only gives the names (i.e., the basename) of the items; it does not provide the absolute path to the

items. In line 6 I initialize an empty list of all the .txt files in top_dir. For a given top_dir, this
list will be initially empty since we haven’t processed the listing of the items in top_dir yet. (You
may ask how we’ll account for .txt files in sub-directories of top_dir; I’ll discuss that in just a
sec.)

In line 7, we loop through each item and for each item that ends in .txt (line 12), we add that

to list_txt (line 13). Note that in the test in line 12, we use the lower string method to ensure
our comparison with the .txt suffix will work, even if the operating system is case-sensitive (e.g.,

we’re considering .txt and .TXT files as both .txt text files). Remember that the splitext function
breaks any path into the file extension portion and the non-extension portion, with the extension

portion being the last item of the list.

If an item in top_dir is a directory, we make a call to find_txt (this is the recursive call)

to obtain the list of .txt files from that directory. Note that the path you pass into the recursive

find_txt call (as well as in the line 9 check with isdir has to start with the initial top_dir. That
is, it has to start with the top_dir you passed in on the original call to find_txt; in the example
above, that was find_txt("MyFiles"). The reason the path needs to begin with MyFiles is be-

cause the function doesn’t change the current working directory. As a result, the current working

directory is still the parent directory ofMyFiles, and any item inside the directory tree will remain

hidden if the path doesn’t go through MyFiles.

Note also that line 8 will automatically keep on adding whatever the current item is to the

directory path that began with MyFiles and continues to whatever sub-directory contains the item

refered to in item_path. This is because the line 10 find_txt call’s argument becomes the new
top_dir in that recursive find_txt call, and join adds on new sub-directories to that top_dir
in line 8.

In lines 10 and 13, we don’t use append to extend the list_txt list because the list returned
from the line 10 find_txt call in line 10 may be more than one element. The addition sign con-
catenates two lists, which is why we use that in lines 10 and 13. (We could use append in line

13, but we use the addition operator for the sake of symmetry.) Here’s a simpler example of list

concatenation versus appending:

113

8.3. SEARCHING USING RECURSION

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> a + b
[1, 2, 3, 4, 5, 6]
>>> a.append(b)
>>> a
[1, 2, 3, [4, 5, 6]]

from which we see that appending a list to a list does not concatenate the two lists together.

Finally, in line 14, we return the output from find_txt, which is the list of all .txt files in the
directory tree given by top_dir.

An attempt at an iterative solution

We’ve seen that recursion will solve our problem in 14 lines of code. What if we took an iterative

approach (i.e., used loops instead of recursion)? Now, in asking this, we have to caveat it with the

constraint that we aren’t allowed to use the os module’s walk function. With the walk function,
we can write a very simple loop that will solve the problem.

The first issue we encounter when trying to write this using only loops is how to deal with

sub-directories. We could, for instance, write the following:

import os
import os.path

def find_txt(top_dir):
list_items = os.listdir(top_dir)
list_txt = []
for item in list_items:

item_path = os.path.join(top_dir, item)
if os.path.isdir(item_path):

list_items_2 = os.listdir(item_path)
for item_2 in list_items_2:

item_2_path = os.path.join(top_dir, item_2)
[... more code ...]

In lines 9–12, when we hit a sub-directory, we create another for loop to go through those items.
If that list of items includes another directory, we would add another nested for loop to go through
that sub-directory, and so on.

The problem with this approach is that we don’t know, ahead of time, how many levels of

directories there are. With two directory levels we need two nested loops, with three directory

levels we need three nested loops, and so on. But there could be one level of directories, or two

levels, or twenty levels. Do we write a twenty-level nested for loop structure in case there are that
many directory levels? And how does one write a twenty-level nested for loop structure? I can’t
imagine any way of doing so that is remotely readable.

So, what are the pluses and minuses for recursion versus loops? Loops are generally more

readable and understandable and the number of iterations you can make with loops is more or less

unlimited. Recursive solutions, in contrast, can be confusing and there is a limit to the number

114

8.4. SUMMARY

of recursion levels available (on my computer it’s 1000).4 However, we’ve seen there are some

problems where the loops-only solution is so complex that recursion is, by far, the best way to

go. For the walk-through-a-directory tree problem, Python provides a generator function walk that
makes recursion unnecessary for most such uses of directory trees, but there are other problems

besides directory traversal ones where recursion is the only way to solve the problem in a reasonable

number of lines of code. If it only makes sense to state the problem logic in such a way that there

is an element where an action is defined in terms of itself, it’s worth trying a recursive solution.

8.4 Summary

Python provides a number of tools to help us find things, whether in a list of items or a tree of items.

With directory trees, the os module’s walk function makes it possible to loop through the entire tree
using a single for loop. Directory trees, however, can also be accessed using a recursive solution.
The recursive technique, while somewhat tricky to understand, can enable us to solve certain kinds

of problems with concise and elegant code instead of a spaghetti-like mess a loops-only solution

would force on us.

4The sys module has a function getrecursionlimit that tells you what that limit is. See https://docs.python.org/
2/library/sys.html (accessed November 14, 2016).

115

https://docs.python.org/2/library/sys.html
https://docs.python.org/2/library/sys.html

Chapter 9

Designing Power Programs

Chapter Contents

9.1 What is object-oriented programming . 116

9.2 Case Study: Managing a bookstore’s inventory 117

9.3 Ï Python Sidebar: The NoneType data type 124

9.4 Summary . 124

With what we’ve learned so far—using Python to make calculations, plot graphs, access data

in files, manage files and file processes—we can write powerful Python functions and programs to

provide the kinds of data analysis, business intelligence, and information system management that

can contribute towards all aspects of a business. However, for highly complex tasks, our current

toolkit, while very powerful, could use a little boost. It’s like building a house with a hammer and

hand saw. You can do it, and human beings did exactly that for thousands of years, but it really

makes a difference if you have a nail gun and power saw with you.

In this chapter, we will be given these power tools through learning about and how to use OOP

to help us create more complex programs. In Chapter 5, we learned about objects and how to use

them. Here, we’ll learn how to write our own objects in Python and, more importantly, see how to

use these objects to manage more involved information system-related tasks.

9.1 What is object-oriented programming

Object-oriented programming (OOP), deservedly or not, has something of a reputation as an obtuse

and mysterious way of programming. You may have heard that it is a powerful way of writing

programs, but you probably haven’t heard a clear and concise description of how it works to help

you write better business programs. Unfortunately, I also cannot give you a clear and concise

description of how OOP works to help you program.

The problem is not that I cannot describe to youwhat an object is or give you a definition of OOP,

but rather that any description of the mechanics and use of OOP does not really capture how OOP

makes your life easier as a business analytics programmer. It’s like thinking that a description of

oil pigments and poplar surfaces will somehow enable you to “get” how the Mona Lisa works. For

both OOP and art, you can’t describe the forest in terms of the trees. Instead, what we’ll do is look

116

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

at OOP in action; from that description, hopefully some sense of how OOP makes programs more

organized, readable, maintainable, and usable will come through. Through these examples, I hope

to describe both how to write object-oriented programs as well as why object-oriented programs

work the way they do.

9.2 Case Study: Managing a bookstore’s inventory

In Section 5.3.1, we said that objects are instances of a class. That is to say, they are specific

realizations of a general pattern and their bulk characteristics are defined by a template. Each

individual person is an instance of the class “human being” and somewhere there’s a template that

says each person has one head, two eyes, etc. Each specific Honda, Chevy, Kia, etc. is an instance

of the class “car,” and somewhere there’s a template that says each car has four wheels, a steering

wheel, at least one door, etc. And in the string and array examples in Section 5.3, each string is

an instance of the class “string” and each array is an instance of the class “array,” and somewhere

there are templates that tell us strings have a split method and arrays have an astype method.
In the present section, we will create objects that represent the inventory of a bookstore. The

inventory of a bookstore (or any other store) does not consist of items that are each completely

different from every other item in the store. Rather, there are commonalities to groups of those

items, and those groups we can call a “class” of items of objects. (If this weren’t the case, there

would be no way to organize items on selves or aisles.) Here we define two classes of objects in

this bookstore (there are, of course, many others): books and magazines. The Python name for

these classes of objects will be called (no surprise): Book and Magazine. (In Python, class names
follow the CapWords convention, where each word in the name is capitalized.)

Before we start writing code, let’s think a little bit about what characteristics these classes of

objects would have. The class of the object is the template that defines the characteristics of the

specific realizations or instances of that object. Those characteristics are either data or information

(attributes) or functions that act on that data (methods). Both attributes and methods are bound to

an object; they are elements or characteristics of the object.

What might be some characteristics of a book? Attributes of a book might include:

• Title

• Author

• Publisher

• Year

• Price

• Sale discounts (if any)

• Number of pages

• Linear dimensions

• Weight

117

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

and some methods that might act on those and related attributes might include:

• Return a summary description of the book

• Return the retail price

• Return the discounted price

• Calculates the volume the book occupies

How about for a magazine? Attributes might include information similar to a book but will

probably also include:

• Volume number

• Issue

• Publication date

In terms of methods, besides those associated with a book, we might also have methods that:

• Return the per year subscription rate

• Return the address of the publisher’s subscription department

With that as background, let’s write our class definitions. Here is a definition of the Book class
that about a book. The class definition provides a single method (besides the initialization method)

that returns a formatted summary description for Book objects. In addition, the code below creates

two instances of the class (note line continuations are added to fit the code on the page):

118

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

1 class Book(object):
2 def __init__(self, authorlast, authorfirst, \
3 title, place, publisher, year):
4 self.authorlast = authorlast
5 self.authorfirst = authorfirst
6 self.title = title
7 self.place = place
8 self.publisher = publisher
9 self.year = year
10

11 def summary_descrip(self):
12 return self.authorlast \
13 + ', ' + self.authorfirst \
14 + ', ' + self.title \
15 + ', ' + self.place \
16 + ': ' + self.publisher \
17 + ', ' + self.year + '.'
18

19 beauty = Book("Dubay", "Thomas" \
20 , "The Evidential Power of Beauty" \
21 , "San Francisco" \
22 , "Ignatius Press", "1999")
23 pynut = Book("Martelli", "Alex" \
24 , "Python in a Nutshell" \
25 , "Sebastopol, CA" \
26 , "O'Reilly Media, Inc.", "2003")

What does each line do? Line 1 begins the class definition. Class definitions start with class
statement. The block following the class line is the class definition.

The argument in the class statement is a special class called object. This has to do with the
OOP idea of inheritance, which is a topic beyond the scope of this book. Suffice it to say that classes

you create can inherit or incorporate attributes and methods from other classes. Base classes (class

that do not depend on other classes) inherit from object, which is a built-in class in Python that
provides the foundational tools for all other classes.

Notice how attributes and methods are defined, set, and used in the class definition. Within the

class definition, you refer to the instance of the class as self. So, for example, the instance attribute
year is called self.year in the class definition. If I decided to make use of the summary_descrip
method elsewhere in the class, I’d refer to it as self.summary_descrip in the class definition (and
it would be called by self.summary_descrip()).

When you actually create an instance, the instance name is the name of the object (e.g., beauty,
pynut), so the instance attribute title of the instance beauty is referred to as beauty.title,
and every instance attribute is separate from every other instance attribute (e.g., beauty.title
and pynut.title are separate variables, not aliases for one another).

Attributes are created and set by assignment. If you want to create and set the title attribute,
type in:

119

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

self.title =

and then put what you want it to equal to on the right-hand side of the equal sign. Methods are

defined using the def statement. The first parameter in any method definition is self; this syntax
is how Python tells a method “make use of all the previously defined attributes and methods in this

instance.” However, you never type self in the parameter list when you call the method. So, the
summary_descrip method definition in lines 11–17 has self in the parameter list but if we call
that method, the parameter list will be empty.

Usually, the first method you define will be the __init__method. This method is called when-
ever you create an instance of the class, and so you usually put code that handles the arguments

present when you create (or instantiate) an instance of a class and conduct any kind of initialization

for the object instance. The arguments list of __init__ is the list of arguments passed in to the
constructor of the class, which is called when you use the class name with calling syntax.

Thus, in lines 4–9, I assign each of the positional input parameters in the def __init__ line
to an instance attribute of the same name. (The attributes and input parameters don’t have to be

of the same name, but it’s convenient here to do so.) Once assigned, these attributes can be used

anywhere in the class definition by reference to self, as in the definition of the summary_descrip
method.

In lines 19–22, I create an instance beauty of the Book class. Note how the arguments that are

passed in are the same arguments as in the def __init__ argument list. In the last four lines, I
create another instance of the Book class, the object pynut. Both beauty and pynut are instances
or specific realizations of the class (or template) Book.

Now that we’ve seen an example of defining a class, let’s look at an example of using instances

of the Book class:

Example 33 (Using instances of Book):
Consider the Book definition given above. Here are some questions to test your understanding

of what it does:

1. How would you print out the author attribute of the pynut instance (at the interpreter, after
running the file)?

2. If you type print(beauty.summary_descrip()) at the interpreter (after running the file),
what will happen?

3. How would you change the publication year for the beauty book to "2010"?

Solution and discussion: My answers:

1. Type: print(pynut.author). Remember that once an instance of Book is created, the

attributes are attached to the actual instance of the class, not to self. The only time self
exists is in the class definition.

2. You will print out the the bibliography formatted version of the information in beauty.

120

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

3. Type: beauty.year = "2010". Remember that you can change instance attributes of classes
you have designed just like you can change instance attributes of any class; just use assign-

ment.

Note that in Python, you don’t generally have to write getters and setters (special methods to

return and set the values of attributes) like you do in languages like Java, where privacy is typically

strongly controlled.

Now let’s define the Magazine class:

1 class Magazine(object):
2 def __init__(self, journaltitle, \
3 volume, monthday, year):
4 self.journaltitle = journaltitle
5 self.volume = volume
6 self.monthday = monthday
7 self.year = year
8

9 def summary_descrip(self):
10 return self.journaltitle \
11 + ', ' + self.volume \
12 + ', ' + self.monthday \
13 + ', ' + self.year + '.'

This code is similar to that for the Book class, with these exceptions: some attributes differ between
the two classes (books, for instance, do not havemonths and days) and themethod summary_descrip
is different between the two classes (to accommodate the different formatting between book and

magazine entries).

So, using OOP, we now have objects that store elements of our bookstore’s inventory. That’s

handy, in and of itself. While lists of numbers lend themselves nicely to arrays, most objects in the

real world are described by a motley assortment of characteristics. Python objects allow us to store

all these characteristics and operate on them in a clear and tidy way.

But let’s not just let the objects sit there; let’s do something with these objects. Since we have

a method to return a summary description of each objects, let’s write some code to print out that

summary description. In the code below, I first define some Book objects and Magazine objects,
the print out summary descriptions of the objects (I didn’t duplicate the Book and Magazine defi-
nitions):

121

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

1 beauty = Book("Dubay", "Thomas" \
2 , "The Evidential Power of Beauty" \
3 , "San Francisco" \
4 , "Ignatius Press", "1999")
5 pynut = Book("Martelli", "Alex" \
6 , "Python in a Nutshell" \
7 , "Sebastopol, CA" \
8 , "O'Reilly Media, Inc.", "2003")
9 good = Magazine("Really Good Magazine", "39" \
10 , "April 1", "2001")
11 world = Magazine("The World Today Magazine", "11" \
12 , "September 19", "2016")
13

14 inventory = [beauty, pynut, good, world]
15 for item in inventory:
16 print(item.summary_descrip())

What are we to make of this bit of code? What does using objects buy us? To answer this, let’s

ask how would we have written a program without objects that did the exact task of writing out the

summary descriptions of these items in our bookstore inventory that we do in lines 14–16. Let’s

say the information for each book or magazine, instead of being stored in an object, was stored in

a list. For instance, pynut and good might be given as:

1 pynut = ["Martelli", "Alex", "Python in a Nutshell" \
2 , "Sebastopol, CA", "O'Reilly Media, Inc.", "2003"]
3 good = ["Really Good Magazine", "39", "April 1", "2001"]

But in order to properly write out the summary description for each item, we need to know what

kind of item it is. Then, when we loop through all the items to write out the summary descriptions,

we can use an if test to see what kind of item it is and choose the correct format to write out the

descriptions. Thus, our code might look like this:

122

9.2. CASE STUDY: MANAGING A BOOKSTORE’S INVENTORY

1 beauty = ["Book", "Dubay", "Thomas" \
2 , "The Evidential Power of Beauty" \
3 , "San Francisco", "Ignatius Press", "1999"]
4 pynut = ["Book", "Martelli", "Alex", "Python in a Nutshell" \
5 , "Sebastopol, CA", "O'Reilly Media, Inc.", "2003"]
6 good = ["Magazine", "Really Good Magazine", "39", "April 1" \
7 , "2001"]
8 world = ["Magazine", "The World Today Magazine", "11" \
9 , "September 19", "2016"]
10

11 inventory = [beauty, pynut, good, world]
12 for item in inventory:
13 if item[0] == "Book":
14 print(item[1] \
15 + ', ' + item[2] \
16 + ', ' + item[3] \
17 + ', ' + item[4] \
18 + ': ' + item[5] \
19 + ', ' + item[6] + '.')
20 elif item[0] == "Magazine":
21 print(item[1] \
22 + ', ' + item[2] \
23 + ', ' + item[3] \
24 + ', ' + item[4] + '.'
25 else:
26 raise ValueError("item type does not exist")

How does this code compare to our previous solution using objects? For starters, the code is

much less readable. Who knows what item[2] corresponds to? But more importantly, let’s look

at the if statement. If we don’t use OOP to break-down and organize our data and methods, we

have to use an if statement to enable us to properly treat different kinds of items in our bookstore’s
inventory. That’s okay if our inventory has just two kinds of items, but what if there are hundreds or

thousands? If we don’t use OOP, we’ll have to write an if statement with hundreds or thousands of
branches. And we have to do that every time we want to do something with those inventory items,

whether that’s printing out a summary list, calculating the shipping weight of a collection of items,

etc. This scenario is a nightmare!

But with OOP, this crazy if statement goes away! It doesn’t matter if we have two kinds

of inventory items or two million. As long as the class definitions for each of those two million

inventory items has a summary_descrip method, the code to print out summary descriptions of
all items in the bookstore’s inventory remains unchanged:

for item in inventory:
print(item.summary_descrip())

Wow! That saves a lot of work and makes the program so much clearer, less buggy, and extendable

,!

123

9.3. PYTHON SIDEBAR: THE NONETYPE DATA TYPE

9.3 Ï Python Sidebar: The NoneType data type

This is a data type you probably have not seen before. A variable of NoneType can have only a

single value, the value None. (Yes, the word “None,” capitalized as shown, is defined as an actual
value in Python, just like True and False.)

Example 34 (Operations with NoneType):

Try this in a Python interpreter:

a = None
print(a is None)
print(a == 4)

What did you get?

Solution and discussion: The first print statement will return True while the second print
statement will return False.

The is operator compares “equality” not in the sense of value (like == does) but in the sense
of memory location. You can type in “a == None”, the better syntax for comparing to None is “a
is None”.1 The a == 4 test is false because the number 4 is not equal to None.

So what is the use of a variable of NoneType? I use it to “safely” initialize a keyword input

parameter or attribute. That is to say, I initialize a variable to None, and if later on my program tries

to do an operation with the variable before the variable has been reassigned to a non-NoneType

variable, Python will give an error. This is a simple way to make sure I did not forget to set the

variable to a real value. Remember variables are dynamically typed, so replacing a NoneType

variable with some other value later on is no problem!

9.4 Summary

You could, I think, fairly summarize this chapter as addressing one big question: Why should an

MIS student bother with object-oriented programming? In short, code written using OOP is less

prone to error. OOP enables you to mostly eliminate lengthy argument lists, and it is much more

difficult for a function to accidentally process data it should not process. Additionally, OOP deals

with long series of conditional tests much more compactly; there is no need to duplicate if tests in
multiple places. Finally, objects enable you to test smaller pieces of your program (e.g., individual

attributes and methods), which makes your tests more productive and effective.

Second, programs written using OOP are more easily extended. New cases are easily added by

creating new classes that have the interface methods defined for them. Additional functionality is

1The reason is a little esoteric; see the web page http://jaredgrubb.blogspot.com/2009/04/python-is-none-vs-none.

html if you’re interested in the details (accessed August 16, 2012).

124

http://jaredgrubb.blogspot.com/2009/04/python-is-none-vs-none.html
http://jaredgrubb.blogspot.com/2009/04/python-is-none-vs-none.html

9.4. SUMMARY

also easily added by just adding new methods/attributes. Finally, any changes to class definitions

automatically propagate to all instances of the class.

For short, quick-and-dirty programs, procedural programming is still the better option; there

is no reason to spend the time coding the additional OOP infrastructure. But for more involved

business applications, things can very quickly become complex. As soon as that happens, the

object decomposition can really help. Here’s the rule-of-thumb I use: For a one-off, short program,

I write it procedurally, but for any program I may extend someday (even if it is a tentative “may”),

I write it using objects.

125

Glossary

absolute path the path to a directory or file starting from the root directory (on Linux) or the drive

letter.

argument an item passed into a function as input; there is a subtle distinction from a parameter,

but the two have similar meanings.

attribute data bound to an object that are designed to be acted on by methods also bound to that

object; sometimes attributes are called “instance variables”.

calling execute or run a function.

class the template or “pattern” all instances of that class follow.

current working directory the directory you are currently in and that Python will base all relative

file and directory references from.

data coordinates a coordinate system for a plot where locations are specified by the values of the

x- and y-axes data ranges.

delimit show where a sequence or collection begins and ends.

docstring a triple-quote delimited string that goes right after the def statement (or similar con-
struct) and which provides a “help”-like description of the function.

dynamically typed variables take on the type of whatever value they are set to when they are

assigned.

exception an error state in the program that cannot be processed by the current scope.

filesystem the collection and arrangement of all the files on a computer.

immutable a variable/object that cannot be changed.

inherit incorporate the attribute and method definitions of another class into a definition of a new

class of objects.

inheritance dealing with inheriting attribute and method definitions of another class into a defini-

tion of a new class of objects.

126

Glossary

instance an object that is the specific realization of a class of objects.

instantiate create an instance of a class.

interpreter the execution environment for Python commands.

iterable a data structure that one can go through, one element at a time; in such a structure, after

you’ve looked at one element of it, it will move you on to the next element.

keyword input parameter a parameter set by reference to a name or keyword rather than by po-

sition in a list.

leaf directory the final directory in a directory path.

method functions bound to an object that are designed to act on the data also bound to that object.

module an importable Python source code file that typically contains function, class, and variable

object definitions.

multi-paradigm language a computer language that supports multiple programming methodolo-

gies, for instance, object-oriented programming and procedural programming.

mutable a variable/object that can be changed.

newline character a special text code that specifies a new line; the specific code is operating

system dependent.

object a “variable” that has attached to it both data (attributes) and functions designed to act on

that data (methods).

package a directory of importable Python source code files (and, potentially, subpackages) that

typically contains function, class, and variable object definitions.

parameter an item passed into a function as input.

parameter list an list of items passed into a function as input.

path the listing of what directories you need to go through to reach the file or directory at the end

of the path.

recursion a realization of something recursive.

recursive related to the idea that we can define some tasks in terms of themselves; this is expressed

in terms of a function partially being defined by calls to itself.

relative path the path to a directory or file starting from the current directory.

script a file of Python commands or instructions.

127

Glossary

scripting writing a script.

shape a tuple whose elements are the number of elements in each dimension of an array; in Python,

the elements are arranged so the fastest varying dimension is the last element in the tuple and

the slowest varying dimension is the first element in the tuple.

shell a text-based interface to an operating system, the software that manages your files, directo-

ries, etc..

terminal window a text window in which you can directly type in operating system and other

commands.

typecode a single character string that specifies the type of the elements of a NumPy array.

128

Acronyms

CSV comma-separated values.

dpi dots per inch.

GUI graphical user interface.

IDE Interactive Development Environment.

MIS Management Information Systems.

OOP object-oriented programming.

129

Bibliography

Lin, J. W.-B. (2012). A Hands-On Introduction to Using Python in the Atmospheric and Oceanic

Sciences. Chicago, IL.

130

	Preface
	Notices
	I Basic Business Data Analysis
	Python as a Basic and Business Calculator
	Starting a Python interpreter session
	The Canopy IDE
	Using a terminal window
	207 Python Sidebar: Arithmetic operators in Python

	Using functions
	207 Python Sidebar: Optional input into functions
	207 Python Sidebar: Importing modules and using module items
	207 Python Sidebar: Writing and using your own functions
	207 Python Sidebar: Keyword input parameters

	Saving values
	207 Python Sidebar: Naming, creating, and deleting variables
	207 Python Sidebar: A quick introduction to strings
	207 Python Sidebar: A programmable calculator

	Summary

	X-Y Plots
	Matplotlib: Python's basic plotting package
	My first X-Y plot
	A line plot
	A scatter plot

	207 Python Sidebar: Lists and tuples
	Customizing an X-Y plot
	Controlling the axes ranges
	Controlling line and marker formatting
	Annotation and adjusting the font size of labels
	Plotting multiple figures
	Plotting multiple curves
	Adding a legend
	Adjusting the plot size
	Saving figures to a file

	207 Python Sidebar: Commenting
	Summary

	Simple Data Analysis
	My first dataset
	Choosing which groups of the data to examine and manipulate
	207 Python Sidebar: More on for looping
	Asking questions of the data
	207 Python Sidebar: Booleans
	207 Python Sidebar: Looping an indefinite number of times
	Changing the data
	Analyzing data
	207 Python Sidebar: Docstrings
	207 Python Sidebar: Writing code a little bit at a time
	Summary

	Manipulating Data and More Complex Data Analysis
	Revisiting the gasoline retail dataset
	Basic statistics
	207 Python Sidebar: More on creating and using NumPy arrays
	Creating arrays
	Array indexing
	Array inquiry
	Array manipulation
	Calculations using array contents

	Correlation and lag autocorrelation
	More complicated manipulations
	207 Python Sidebar: Testing inside an array
	Testing inside an array: Method 1 (loops)
	Testing inside an array: Method 2 (array syntax)
	Additional array functions

	207 Python Sidebar: Floating point comparison
	207 Python Sidebar: String indexing
	207 Python Sidebar: A simple way of seeing how fast your code runs
	Summary

	Reading In and Writing out Text Data
	File objects
	Reading a file
	207 Python Sidebar: An introduction to objects
	The nuts and bolts of objects
	Example of how objects work: Strings
	Example of how objects work: Arrays

	Writing a file
	Processing file contents
	Catching file opening errors
	207 Python Sidebar: More on exception handling
	Better ways of reading a file
	Summary

	II Automating and Managing Information Systems
	Managing Files
	Segue: Creating a lot of files
	Moving and filing lots of files
	Renaming lots of files
	Copying lots of files
	Deleting lots of files
	Another segue: Testing to see what kind of file something is
	Summary

	Managing Collections of Files: Directories
	Prelude: Specifying directory paths
	Creating and removing empty directories
	Renaming and moving directories
	Copying and deleting directories
	Returning and changing the working directory
	Listing the contents of a directory
	207 Python Sidebar: Dictionaries
	Summary

	Managing Collections of Files: Searching
	Review of Python routines for searching
	Searching in a directory tree
	Searching using recursion
	What is recursion?
	Implementing a search using recursion

	Summary

	Designing Power Programs
	What is object-oriented programming
	Case Study: Managing a bookstore's inventory
	207 Python Sidebar: The NoneType data type
	Summary

	Glossary
	Acronyms
	Bibliography

