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Chapter 1

Introduction

1.1 What is a compiler?

In order to reduce the complexity of designing and building computers, nearly all
of these are made to execute relatively simple commands (but do so very quickly).
A program for a computer must be built by combining these very simple commands
into a program in what is called machine language. Since this is a tedious and error-
prone process most programming is, instead, done using a high-level programming
language. This language can be very different from the machine language that the
computer can execute, so some means of bridging the gap is required. This is where
the compiler comes in.

A compiler translates (or compiles) a program written in a high-level program-
ming language that is suitable for human programmers into the low-level machine
language that is required by computers. During this process, the compiler will also
attempt to spot and report obvious programmer mistakes.

Using a high-level language for programming has a large impact on how fast
programs can be developed. The main reasons for this are:

e Compared to machine language, the notation used by programming lan-
guages is closer to the way humans think about problems.

e The compiler can spot some obvious programming mistakes.

e Programs written in a high-level language tend to be shorter than equivalent
programs written in machine language.

Another advantage of using a high-level level language is that the same program
can be compiled to many different machine languages and, hence, be brought to
run on many different machines.
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On the other hand, programs that are written in a high-level language and auto-
matically translated to machine language may run somewhat slower than programs
that are hand-coded in machine language. Hence, some time-critical programs are
still written partly in machine language. A good compiler will, however, be able
to get very close to the speed of hand-written machine code when translating well-
structured programs.

1.2 The phases of a compiler

Since writing a compiler is a nontrivial task, it is a good idea to structure the work.
A typical way of doing this is to split the compilation into several phases with
well-defined interfaces. Conceptually, these phases operate in sequence (though in
practice, they are often interleaved), each phase (except the first) taking the output
from the previous phase as its input. It is common to let each phase be handled by a
separate module. Some of these modules are written by hand, while others may be
generated from specifications. Often, some of the modules can be shared between
several compilers.

A common division into phases is described below. In some compilers, the
ordering of phases may differ slightly, some phases may be combined or split into
several phases or some extra phases may be inserted between those mentioned be-
low.

Lexical analysis This is the initial part of reading and analysing the program text:
The text is read and divided into fokens, each of which corresponds to a sym-
bol in the programming language, e.g., a variable name, keyword or number.

Syntax analysis This phase takes the list of tokens produced by the lexical analysis
and arranges these in a tree-structure (called the syntax tree) that reflects the
structure of the program. This phase is often called parsing.

Type checking This phase analyses the syntax tree to determine if the program
violates certain consistency requirements, e.g., if a variable is used but not
declared or if it is used in a context that does not make sense given the type
of the variable, such as trying to use a boolean value as a function pointer.

Intermediate code generation The program is translated to a simple machine-
independent intermediate language.

Register allocation The symbolic variable names used in the intermediate code
are translated to numbers, each of which corresponds to a register in the
target machine code.
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Machine code generation The intermediate language is translated to assembly
language (a textual representation of machine code) for a specific machine
architecture.

Assembly and linking The assembly-language code is translated into binary rep-
resentation and addresses of variables, functions, efc., are determined.

The first three phases are collectively called the frontend of the compiler and the last
three phases are collectively called the backend. The middle part of the compiler is
in this context only the intermediate code generation, but this often includes various
optimisations and transformations on the intermediate code.

Each phase, through checking and transformation, establishes stronger invari-
ants on the things it passes on to the next, so that writing each subsequent phase
is easier than if these have to take all the preceding into account. For example,
the type checker can assume absence of syntax errors and the code generation can
assume absence of type errors.

Assembly and linking are typically done by programs supplied by the machine
or operating system vendor, and are hence not part of the compiler itself, so we will
not further discuss these phases in this book.

1.3 Interpreters

An interpreter is another way of implementing a programming language. Interpre-
tation shares many aspects with compiling. Lexing, parsing and type-checking are
in an interpreter done just as in a compiler. But instead of generating code from
the syntax tree, the syntax tree is processed directly to evaluate expressions and
execute statements, and so on. An interpreter may need to process the same piece
of the syntax tree (for example, the body of a loop) many times and, hence, inter-
pretation is typically slower than executing a compiled program. But writing an
interpreter is often simpler than writing a compiler and the interpreter is easier to
move to a different machine (see chapter(13), so for applications where speed is not
of essence, interpreters are often used.

Compilation and interpretation may be combined to implement a programming
language: The compiler may produce intermediate-level code which is then inter-
preted rather than compiled to machine code. In some systems, there may even be
parts of a program that are compiled to machine code, some parts that are compiled
to intermediate code, which is interpreted at runtime while other parts may be kept
as a syntax tree and interpreted directly. Each choice is a compromise between
speed and space: Compiled code tends to be bigger than intermediate code, which
tend to be bigger than syntax, but each step of translation improves running speed.

Using an interpreter is also useful during program development, where it is
more important to be able to test a program modification quickly rather than run
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the program efficiently. And since interpreters do less work on the program before
execution starts, they are able to start running the program more quickly. Further-
more, since an interpreter works on a representation that is closer to the source code
than is compiled code, error messages can be more precise and informative.

We will discuss interpreters briefly in chapters [5] and but they are not the
main focus of this book.

1.4 Why learn about compilers?

Few people will ever be required to write a compiler for a general-purpose language
like C, Pascal or SML. So why do most computer science institutions offer compiler
courses and often make these mandatory?

Some typical reasons are:

a) It is considered a topic that you should know in order to be “well-cultured”
in computer science.

b) A good craftsman should know his tools, and compilers are important tools
for programmers and computer scientists.

¢) The techniques used for constructing a compiler are useful for other purposes
as well.

d) There is a good chance that a programmer or computer scientist will need to
write a compiler or interpreter for a domain-specific language.

The first of these reasons is somewhat dubious, though something can be said for
“knowing your roots”, even in such a hastily changing field as computer science.

Reason “b” is more convincing: Understanding how a compiler is built will al-
low programmers to get an intuition about what their high-level programs will look
like when compiled and use this intuition to tune programs for better efficiency.
Furthermore, the error reports that compilers provide are often easier to understand
when one knows about and understands the different phases of compilation, such
as knowing the difference between lexical errors, syntax errors, type errors and so
on.

The third reason is also quite valid. In particular, the techniques used for read-
ing (lexing and parsing) the text of a program and converting this into a form (ab-
stract syntax) that is easily manipulated by a computer, can be used to read and
manipulate any kind of structured text such as XML documents, address lists, etc..

Reason “d” is becoming more and more important as domain specific languages
(DSLs) are gaining in popularity. A DSL is a (typically small) language designed
for a narrow class of problems. Examples are data-base query languages, text-
formatting languages, scene description languages for ray-tracers and languages
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for setting up economic simulations. The target language for a compiler for a DSL
may be traditional machine code, but it can also be another high-level language
for which compilers already exist, a sequence of control signals for a machine,
or formatted text and graphics in some printer-control language (e.g. PostScript).
Even so, all DSL compilers will share similar front-ends for reading and analysing
the program text.

Hence, the methods needed to make a compiler front-end are more widely ap-
plicable than the methods needed to make a compiler back-end, but the latter is
more important for understanding how a program is executed on a machine.

1.5 The structure of this book

The first part of the book describes the methods and tools required to read program
text and convert it into a form suitable for computer manipulation. This process
is made in two stages: A lexical analysis stage that basically divides the input text
into a list of “words”. This is followed by a syntax analysis (or parsing) stage
that analyses the way these words form structures and converts the text into a data
structure that reflects the textual structure. Lexical analysis is covered in chapter 2
and syntactical analysis in chapter 3.

The second part of the book (chapters [d]—[I0) covers the middle part and back-
end of interpreters and compilers. Chapter 4] covers how definitions and uses of
names (identifiers) are connected through symbol tables. Chapter [5|shows how you
can implement a simple programming language by writing an interpreter and notes
that this gives a considerable overhead that can be reduced by doing more things be-
fore executing the program, which leads to the following chapters about static type
checking (chapter [6)) and compilation (chapters [7]—[I0} In chapter [7] it is shown
how expressions and statements can be compiled into an intermediate language,
a language that is close to machine language but hides machine-specific details.
In chapter [§] it is discussed how the intermediate language can be converted into
“real” machine code. Doing this well requires that the registers in the processor
are used to store the values of variables, which is achieved by a register allocation
process, as described in chapter [9] Up to this point, a “program” has been what
corresponds to the body of a single procedure. Procedure calls and nested proce-
dure declarations add some issues, which are discussed in chapter[I0} Chapter [IT]
deals with analysis and optimisation and chapter[I2]is about allocating and freeing
memory. Finally, chapter [I3] will discuss the process of bootstrapping a compiler,
i.e., using a compiler to compile itself.

The book uses standard set notation and equations over sets. Appendix A con-
tains a short summary of these, which may be helpful to those that need these
concepts refreshed.

Chapter [IT] (on analysis and optimisation) was added in 2008 and chapter [3]
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(about interpreters) was added in 2009, which is why editions after April 2008 are
called “extended”. In the 2010 edition, further additions (including chapter [I2]and
appendix A) were made. Since ten years have passed since the first edition was
printed as lecture notes, the 2010 edition is labeled “anniversary edition”.

1.6 To the lecturer

This book was written for use in the introductory compiler course at DIKU, the
department of computer science at the University of Copenhagen, Denmark.

At DIKU, the compiler course was previously taught right after the introduc-
tory programming course, which is earlier than in most other universities. Hence,
existing textbooks tended either to be too advanced for the level of the course or be
too simplistic in their approach, for example only describing a single very simple
compiler without bothering too much with the general picture.

This book was written as a response to this and aims at bridging the gap: It
is intended to convey the general picture without going into extreme detail about
such things as efficient implementation or the newest techniques. It should give the
students an understanding of how compilers work and the ability to make simple
(but not simplistic) compilers for simple languages. It will also lay a foundation
that can be used for studying more advanced compilation techniques, as found e.g.
in [35)]. The compiler course at DIKU was later moved to the second year, so
additions to the original text has been made.

At times, standard techniques from compiler construction have been simplified
for presentation in this book. In such cases references are made to books or articles
where the full version of the techniques can be found.

The book aims at being “language neutral”. This means two things:

o Little detail is given about how the methods in the book can be implemented
in any specific language. Rather, the description of the methods is given
in the form of algorithm sketches and textual suggestions of how these can
be implemented in various types of languages, in particular imperative and
functional languages.

o There is no single through-going example of a language to be compiled. In-
stead, different small (sub-)languages are used in various places to cover ex-
actly the points that the text needs. This is done to avoid drowning in detail,
hopefully allowing the readers to “see the wood for the trees”.

Each chapter (except this) has a section on further reading, which suggests
additional reading material for interested students. All chapters (also except this)
has a set of exercises. Few of these require access to a computer, but can be solved
on paper or black-board. In fact, many of the exercises are based on exercises that
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have been used in written exams at DIKU. After some of the sections in the book, a
few easy exercises are listed. It is suggested that the student attempts to solve these
exercises before continuing reading, as the exercises support understanding of the
previous sections.
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Chapter 2

Lexical Analysis

2.1 Introduction

The word “lexical” in the traditional sense means “pertaining to words”. In terms of
programming languages, words are objects like variable names, numbers, keywords
etc. Such words are traditionally called tokens.

A lexical analyser, or lexer for short, will as its input take a string of individual
letters and divide this string into tokens. Additionally, it will filter out whatever
separates the tokens (the so-called white-space), i.e., lay-out characters (spaces,
newlines efc.) and comments.

The main purpose of lexical analysis is to make life easier for the subsequent
syntax analysis phase. In theory, the work that is done during lexical analysis can
be made an integral part of syntax analysis, and in simple systems this is indeed
often done. However, there are reasons for keeping the phases separate:

e Efficiency: A lexer may do the simple parts of the work faster than the more
general parser can. Furthermore, the size of a system that is split in two may
be smaller than a combined system. This may seem paradoxical but, as we
shall see, there is a non-linear factor involved which may make a separated
system smaller than a combined system.

e Modularity: The syntactical description of the language need not be cluttered
with small lexical details such as white-space and comments.

e Tradition: Languages are often designed with separate lexical and syntacti-
cal phases in mind, and the standard documents of such languages typically
separate lexical and syntactical elements of the languages.

It is usually not terribly difficult to write a lexer by hand: You first read past initial
white-space, then you, in sequence, test to see if the next token is a keyword, a
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number, a variable or whatnot. However, this is not a very good way of handling
the problem: You may read the same part of the input repeatedly while testing
each possible token and in some cases it may not be clear where the next token
ends. Furthermore, a handwritten lexer may be complex and difficult to main-
tain. Hence, lexers are normally constructed by lexer generators, which transform
human-readable specifications of tokens and white-space into efficient programs.

We will see the same general strategy in the chapter about syntax analysis:
Specifications in a well-defined human-readable notation are transformed into effi-
cient programs.

For lexical analysis, specifications are traditionally written using regular ex-
pressions: An algebraic notation for describing sets of strings. The generated lexers
are in a class of extremely simple programs called finite automata.

This chapter will describe regular expressions and finite automata, their prop-
erties and how regular expressions can be converted to finite automata. Finally, we
discuss some practical aspects of lexer generators.

2.2 Regular expressions

The set of all integer constants or the set of all variable names are sets of strings,
where the individual letters are taken from a particular alphabet. Such a set of
strings is called a language. For integers, the alphabet consists of the digits 0-9 and
for variable names the alphabet contains both letters and digits (and perhaps a few
other characters, such as underscore).

Given an alphabet, we will describe sets of strings by regular expressions, an
algebraic notation that is compact and easy for humans to use and understand. The
idea is that regular expressions that describe simple sets of strings can be combined
to form regular expressions that describe more complex sets of strings.

When talking about regular expressions, we will use the letters (, s and f) in
italics to denote unspecified regular expressions. When letters stand for themselves
(i.e., in regular expressions that describe strings that use these letters) we will use
typewriter font, e.g., a or b. Hence, when we say, e.g., “The regular expression
s” we mean the regular expression that describes a single one-letter string “s”, but
when we say “The regular expression s, we mean a regular expression of any form
which we just happen to call s. We use the notation L(s) to denote the language
(i.e., set of strings) described by the regular expression s. For example, L(a) is the
set {“a”}.

Figure [2.1] shows the constructions used to build regular expressions and the
languages they describe:

o A single letter describes the language that has the one-letter string consisting
of that letter as its only element.
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Regular Language (set of strings) Informal description
expression
a {“a”} The set consisting of the one-
letter string “a”.
€ {’} The set containing the empty
string.
S|t L(s) U L(?) Strings from both languages
st {w |veL(s),weL(r)} Strings constructed by con-

catenating a string from the
first language with a string
from the second language.
Note: In set-formulas, “|” is
not a part of a regular ex-
pression, but part of the set-
builder notation and reads as
“where”.

{}u{ww|vel(s),weL(s*)}

Each string in the language is
a concatenation of any num-
ber of strings in the language
of s.

Figure 2.1: Regular expressions
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e The symbol € (the Greek letter epsilon) describes the language that consists
solely of the empty string. Note that this is not the empty set of strings (see
exercise 2[10).

e 5|t (pronounced “s or £”) describes the union of the languages described by s
and 1.

e st (pronounced “s £”) describes the concatenation of the languages L(s) and
L(?), i.e., the sets of strings obtained by taking a string from L(s) and putting
this in front of a string from L(¢). For example, if L(s) is {“a”, “b”} and L(¢)
is {“c”, “d”}, then L(s?) is the set {*“ac”, “ad”, “bc”, “bd”}.

e The language for s* (pronounced “s star”) is described recursively: It consists
of the empty string plus whatever can be obtained by concatenating a string
from L(s) to a string from L(s*). This is equivalent to saying that L(s*) con-
sists of strings that can be obtained by concatenating zero or more (possibly
different) strings from L(s). If, for example, L(s) is {“a”, “b”} then L(s*) is
{*7, “a”, “b”, “aa”, “ab”, “ba”, “bb”, “aaa”, ...}, i.e., any string (including
the empty) that consists entirely of as and bs.

Note that while we use the same notation for concrete strings and regular expres-
sions denoting one-string languages, the context will make it clear which is meant.
We will often show strings and sets of strings without using quotation marks, e.g.,
write {a, bb} instead of {“a”, “bb”}. When doing so, we will use € to denote the
empty string, so the example from L(s*) above is written as {&, a, b, aa, ab, ba, bb,
aaa, ... }. The letters u, v and w in italics will be used to denote unspecified single
strings, i.e., members of some language. As an example, abw denotes any string
starting with ab.

Precedence rules

When we combine different constructor symbols, e.g., in the regular expression
alab*, it is not a priori clear how the different subexpressions are grouped. We
can use parentheses to make the grouping of symbols explicit such as in (a|(ab))*.
Additionally, we use precedence rules, similar to the algebraic convention that 3 +
4 %5 means 3 added to the product of 4 and 5 and not multiplying the sum of 3
and 4 by 5. For regular expressions, we use the following conventions: * binds
tighter than concatenation, which binds tighter than alternative (|). The example
ajab* from above, hence, is equivalent to a|(a(b*)).

The | operator is associative and commutative (as it corresponds to set union,
which has these properties). Concatenation is associative (but obviously not com-
mutative) and distributes over |. Figure shows these and other algebraic prop-
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erties of regular expressions, including definitions of some of the shorthands intro-
duced below.

2.2.1 Shorthands

While the constructions in figure [2.1] suffice to describe e.g., number strings and
variable names, we will often use extra shorthands for convenience. For example,
if we want to describe non-negative integer constants, we can do so by saying that
it is one or more digits, which is expressed by the regular expression

(0]1]2[3[4(5|6[7(8|9)(0[12|3]4[5]6|7|8(9)"

The large number of different digits makes this expression rather verbose. It gets
even worse when we get to variable names, where we must enumerate all alphabetic
letters (in both upper and lower case).

Hence, we introduce a shorthand for sets of letters. Sequences of letters within
square brackets represent the set of these letters. For example, we use [ab01] as
a shorthand for a|b|0|1. Additionally, we can use interval notation to abbreviate
[0123456789] to [0-9]. We can combine several intervals within one bracket and
for example write [a-zA-Z] to denote all alphabetic letters in both lower and upper
case.

When using intervals, we must be aware of the ordering for the symbols in-
volved. For the digits and letters used above, there is usually no confusion. How-
ever, if we write, e.g., [0-z] it is not immediately clear what is meant. When using
such notation in lexer generators, standard ASCII or ISO 8859-1 character sets are
usually used, with the hereby implied ordering of symbols. To avoid confusion, we
will use the interval notation only for intervals of digits or alphabetic letters.

Getting back to the example of integer constants above, we can now write this
much shorter as [0-9][0-9]*.

Since s* denotes zero or more occurrences of s, we needed to write the set
of digits twice to describe that one or more digits are allowed. Such non-zero
repetition is quite common, so we introduce another shorthand, s, to denote one
or more occurrences of s. With this notation, we can abbreviate our description of
integers to [0-9]". On a similar note, it is common that we can have zero or one
occurrence of something (e.g., an optional sign to a number). Hence we introduce
the shorthand s? for s|e. * and ? bind with the same precedence as *.

We must stress that these shorthands are just that. They do not add anything
to the set of languages we can describe, they just make it possible to describe a
language more compactly. In the case of s, it can even make an exponential
difference: If T is nested n deep, recursive expansion of s* to ss* yields 2" — 1
occurrences of * in the expanded regular expression.
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(rls)|t = r|s|t = r|(s|t) |is associative

st = tls | is commutative
sls = s | is idempotent
s? = sle by definition
(rs)t = rst = r(st)  concatenation is associative
S€ = § = €S € is a neutral element for concatenation
r(slt) = rs|rt concatenation distributes over |
(rls)t = rt|st concatenation distributes over |
(s)* = s* * is idempotent
stst = " 0 or more twice is still 0 or more
ss* = st = s*s by definition

Figure 2.2: Some algebraic properties of regular expressions

2.2.2 Examples

We have already seen how we can describe non-negative integer constants using
regular expressions. Here are a few examples of other typical programming lan-
guage elements:

Keywords. A keyword like if is described by a regular expression that looks ex-
actly like that keyword, e.g., the regular expression if (which is the concatenation
of the two regular expressions i and f).

Variable names. In the programming language C, a variable name consists of
letters, digits and the underscore symbol and it must begin with a letter or under-
score. This can be described by the regular expression

[a-zA-Z_][a-zA-Z_0-9]".

Integers. An integer constant is an optional sign followed by a non-empty se-
quence of digits: [+-]?[0-9]". In some languages, the sign is a separate symbol
and not part of the constant itself. This will allow whitespace between the sign and
the number, which is not possible with the above.

Floats. A floating-point constant can have an optional sign. After this, the man-
tissa part is described as a sequence of digits followed by a decimal point and then
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another sequence of digits. Either one (but not both) of the digit sequences can be
empty. Finally, there is an optional exponent part, which is the letter e (in upper or
lower case) followed by an (optionally signed) integer constant. If there is an ex-
ponent part to the constant, the mantissa part can be written as an integer constant
(i.e., without the decimal point). Some examples:
3.14 -3. .23 3et+4d 11.22e-3.

This rather involved format can be described by the following regular expres-
sion:

[+-12((([0-9]".[0-9]"|. [0-9] ") ([eE][+-]?[0-9] ") ?)|[0-9] " [eE] [+-]?[0-9] ")

This regular expression is complicated by the fact that the exponent is optional if
the mantissa contains a decimal point, but not if it does not (as that would make the
number an integer constant). We can make the description simpler if we make the
regular expression for floats also include integers, and instead use other means of
distinguishing integers from floats (see section [2.9] for details). If we do this, the
regular expression can be simplified to

[+-12(([0-9]" (-[0-9])?[.[0-9] ") ([eE][+-]?[0-9]")?)

String constants. A string constant starts with a quotation mark followed by a
sequence of symbols and finally another quotation mark. There are usually some
restrictions on the symbols allowed between the quotation marks. For example,
line-feed characters or quotes are typically not allowed, though these may be rep-
resented by special “escape” sequences of other characters, such as "\n\n" for a
string containing two line-feeds. As a (much simplified) example, we can by the
following regular expression describe string constants where the allowed symbols
are alphanumeric characters and sequences consisting of the backslash symbol fol-
lowed by a letter (where each such pair is intended to represent a non-alphanumeric
symbol):

"([a-zA-Z0-9]|\[a-zA-Z])""
Suggested exercises: a).

2.3 Nondeterministic finite automata

In our quest to transform regular expressions into efficient programs, we use a
stepping stone: Nondeterministic finite automata. By their nondeterministic nature,
these are not quite as close to “real machines” as we would like, so we will later see
how these can be transformed into deterministic finite automata, which are easily
and efficiently executable on normal hardware.
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A finite automaton is, in the abstract sense, a machine that has a finite number
of states and a finite number of transitions between these. A transition between
states is usually labelled by a character from the input alphabet, but we will also
use transitions marked with €, the so-called epsilon transitions.

A finite automaton can be used to decide if an input string is a member in some
particular set of strings. To do this, we select one of the states of the automaton
as the starting state. We start in this state and in each step, we can do one of the
following:

e Follow an epsilon transition to another state, or

e Read a character from the input and follow a transition labelled by that char-
acter.

When all characters from the input are read, we see if the current state is marked
as being accepting. If so, the string we have read from the input is in the language
defined by the automaton.

We may have a choice of several actions at each step: We can choose between
either an epsilon transition or a transition on an alphabet character, and if there
are several transitions with the same symbol, we can choose between these. This
makes the automaton nondeterministic, as the choice of action is not determined
solely by looking at the current state and input. It may be that some choices lead to
an accepting state while others do not. This does, however, not mean that the string
is sometimes in the language and sometimes not: We will include a string in the
language if it is possible to make a sequence of choices that makes the string lead
to an accepting state.

You can think of it as solving a maze with symbols written in the corridors. If
you can find the exit while walking over the letters of the string in the correct order,
the string is recognized by the maze.

We can formally define a nondeterministic finite automaton by:

Definition 2.1 A nondeterministic finite automaton consists of a set S of states.
One of these states, sy € S, is called the starting state of the automaton and a subset
F C S of the states are accepting states. Additionally, we have a set T of transitions.
Each transition t connects a pair of states s and sy and is labelled with a symbol,
which is either a character c from the alphabet ¥, or the symbol €, which indicates
an epsilon-transition. A transition from state s to state t on the symbol c is written
as st.

Starting states are sometimes called initial states and accepting states can also be
called final states (which is why we use the letter F' to denote the set of accepting
states). We use the abbreviations FA for finite automaton, NFA for nondeterministic
finite automaton and (later in this chapter) DFA for deterministic finite automaton.
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We will mostly use a graphical notation to describe finite automata. States are
denoted by circles, possibly containing a number or name that identifies the state.
This name or number has, however, no operational significance, it is solely used
for identification purposes. Accepting states are denoted by using a double circle
instead of a single circle. The initial state is marked by an arrow pointing to it from
outside the automaton.

A transition is denoted by an arrow connecting two states. Near its midpoint,
the arrow is labelled by the symbol (possibly €) that triggers the transition. Note
that the arrow that marks the initial state is not a transition and is, hence, not marked
by a symbol.

Repeating the maze analogue, the circles (states) are rooms and the arrows
(transitions) are one-way corridors. The double circles (accepting states) are exits,
while the unmarked arrow to the starting state is the entrance to the maze.

Figure [2.3] shows an example of a nondeterministic finite automaton having
three states. State 1 is the starting state and state 3 is accepting. There is an epsilon-
transition from state 1 to state 2, transitions on the symbol a from state 2 to states 1
and 3 and a transition on the symbol b from state 1 to state 3. This NFA recognises
the language described by the regular expression a*(a|b). As an example, the string
aab is recognised by the following sequence of transitions:

from | to | by
1 2| ¢
2 1| a
1 2| ¢
2 1| a
1 3| b

At the end of the input we are in state 3, which is accepting. Hence, the string is
accepted by the NFA. You can check this by placing a coin at the starting state and
follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we are in state

Figure 2.3: Example of an NFA
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2 and the next symbol is an a, we can, when reading this, either go to state 1 or
to state 3. Likewise, if we are in state 1 and the next symbol is a b, we can either
read this and go to state 3 or we can use the epsilon transition to go directly to
state 2 without reading anything. If we in the example above had chosen to follow
the a-transition to state 3 instead of state 1, we would have been stuck: We would
have no legal transition and yet we would not be at the end of the input. But, as
previously stated, it is enough that there exists a path leading to acceptance, so the
string aab is still accepted.

A program that decides if a string is accepted by a given NFA will have to
check all possible paths to see if any of these accepts the string. This requires either
backtracking until a successful path found or simultaneously following all possible
paths, both of which are too time-consuming to make NFAs suitable for efficient
recognisers. We will, hence, use NFAs only as a stepping stone between regular
expressions and the more efficient DFAs. We use this stepping stone because it
makes the construction simpler than direct construction of a DFA from a regular
expression.

2.4 Converting a regular expression to an NFA

We will construct an NFA compositionally from a regular expression, i.e., we will
construct the NFA for a composite regular expression from the NFAs constructed
from its subexpressions.

To be precise, we will from each subexpression construct an NFA fragment and
then combine these fragments into bigger fragments. A fragment is not a complete
NFA, so we complete the construction by adding the necessary components to make
a complete NFA.

An NFA fragment consists of a number of states with transitions between these
and additionally two incomplete transitions: One pointing into the fragment and
one pointing out of the fragment. The incoming half-transition is not labelled by
a symbol, but the outgoing half-transition is labelled by either € or an alphabet
symbol. These half-transitions are the entry and exit to the fragment and are used
to connect it to other fragments or additional “glue” states.

Construction of NFA fragments for regular expressions is shown in figure 2.4]
The construction follows the structure of the regular expression by first making
NFA fragments for the subexpressions and then joining these to form an NFA frag-
ment for the whole regular expression. The NFA fragments for the subexpressions
are shown as dotted ovals with the incoming half-transition on the left and the out-
going half-transition on the right.

When an NFA fragment has been constructed for the whole regular expression,
the construction is completed by connecting the outgoing half-transition to an ac-
cepting state. The incoming half-transition serves to identify the starting state of
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st

S|t

Figure 2.4: Constructing NFA fragments from regular expressions

19



20 CHAPTER 2. LEXICAL ANALYSIS

Figure 2.5: NFA for the regular expression (a|b)*ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)*ac is shown in
figure We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure [2.4] for any regular expression by expanding
out all shorthand, e.g. converting s to ss*, [0-9] to 0|1]2|---|9 and s? to s|g, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression €. This construction does not quite follow
the formula used in figure [2.4] as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for € just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|e will do fine if we use the optimised construction
for €.

The optimised constructions are shown in figure [2.6] As an example, an NFA
for [0-9]" is shown in ﬁgure Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: [22]a), b).
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Regular expression NFA fragment

Figure 2.6: Optimised NFA construction for regular expression shorthands

Figure 2.7: Optimised NFA for [0-9]"
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a
‘a b

Figure 2.8: Example of a DFA

2.5 Deterministic finite automata

Nondeterministic automata are, as mentioned earlier, not quite as close to “the ma-
chine” as we would like. Hence, we now introduce a more restricted form of finite
automaton: The deterministic finite automaton, or DFA for short. DFAs are NFAs,
but obey a number of additional restrictions:

e There are no epsilon-transitions.

e There may not be two identically labelled transitions out of the same state.

This means that we never have a choice of several next-states: The state and the
next input symbol uniquely determine the transition (or lack of same). This is why
these automata are called deterministic. Figure [2.8]shows a DFA equivalent to the
NFA in figure[2.3]

The transition relation if a DFA is a (partial) function, and we often write it as
such: move(s,c) is the state (if any) that is reached from state s by a transition on
the symbol c. If there is no such transition, move(s, c) is undefined.

It is very easy to implement a DFA: A two-dimensional table can be cross-
indexed by state and symbol to yield the next state (or an indication that there is no
transition), essentially implementing the move function by table lookup. Another
(one-dimensional) table can indicate which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special case of
NFA and any NFA can (as we shall shortly see) be converted to an equivalent DFA.
However, this comes at a cost: The resulting DFA can be exponentially larger than
the NFA (see section[2.10). In practice (i.e., when describing tokens for a program-
ming language) the increase in size is usually modest, which is why most lexical
analysers are based on DFAs.

Suggested exercises: [2][7(a,b),
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2.6 Converting an NFA to a DFA

As promised, we will show how NFAs can be converted to DFAs such that we,
by combining this with the conversion of regular expressions to NFAs shown in
section [2.4] can convert any regular expression to a DFA.

The conversion is done by simulating all possible paths in an NFA at once. This
means that we operate with sets of NFA states: When we have several choices of a
next state, we take all of the choices simultaneously and form a set of the possible
next-states. The idea is that such a set of NFA states will become a single DFA
state. For any given symbol we form the set of all possible next-states in the NFA,
so we get a single transition (labelled by that symbol) going from one set of NFA
states to another set. Hence, the transition becomes deterministic in the DFA that
is formed from the sets of NFA states.

Epsilon-transitions complicate the construction a bit: Whenever we are in an
NFA state we can always choose to follow an epsilon-transition without reading
any symbol. Hence, given a symbol, a next-state can be found by either following
a transition with that symbol or by first doing any number of epsilon-transitions
and then a transition with the symbol. We handle this in the construction by first
extending the set of NFA states with those you can reach from these using only
epsilon-transitions. Then, for each possible input symbol, we follow transitions
with this symbol to form a new set of NFA states. We define the epsilon-closure
of a set of states as the set extended with all states that can be reached from these
using any number of epsilon-transitions. More formally:

Definition 2.2 Given a set M of NFA states, we define €-closure(M) to be the least
(in terms of the subset relation) solution to the set equation

e-closure(M)
=MU{t|s € e-closure(M) and st € T}

Where T is the set of transitions in the NFA.

We will later on see several examples of set equations like the one above, so
we use some time to discuss how such equations can be solved.

2.6.1 Solving set equations

The following is a very brief description of how to solve set equations like the
above. If you find it confusing, you can read appendix [A] and in particular sec-
tion [A. 4] first.

In general, a set equation over a single set-valued variable X has the form

X =F(X)



24 CHAPTER 2. LEXICAL ANALYSIS

where F is a function from sets to sets. Not all such equations are solvable, so we
will restrict ourselves to special cases, which we will describe below. We will use
calculation of epsilon-closure as the driving example.

In definition 2.2] €-closure(M) is the value we have to find, so we make an
equation such that the value of X that solves the equation will be e-closure(M):

X=MU{r|seXandstcT}
So, if we define Fj; to be
Fu(X)=MU{t|seXands*reT}

then a solution to the equation X = Fjy;(X) will be e-closure(M).

Fy has a property that is essential to our solution method: If X C Y then
Fu(X) C Fy(Y). We say that Fy is monotonic.

There may be several solutions to the equation X = Fj;(X). For example, if the
NFA has a pair of states that connect to each other by epsilon transitions, adding this
pair to a solution that does not already include the pair will create a new solution.
The epsilon-closure of M is the least solution to the equation (i.e., the smallest X
that satistifes the equation).

When we have an equation of the form X = F(X) an