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I
P A R T

This part introduces the reader to the basic principles used throughout this book to

understand the structure and function of the musculoskeletal system. Biomechanics

is the study of biological systems by the application of the laws of physics. The pur-

poses of this part are to review the principles and tools of mechanical analysis and

to describe the mechanical behavior of the tissues and structural units that compose

the musculoskeletal system. The specific aims of this part are to

■ Review the principles that form the foundation of biomechanical

analysis of rigid bodies

■ Review the mathematical approaches used to perform biomechanical

analysis of rigid bodies

■ Examine the concepts used to evaluate the material properties of

deformable bodies

■ Describe the material properties of the primary biological tissues

constituting the musculoskeletal system: bone, muscle, cartilage, and

dense connective tissue

■ Review the components and behavior of joint complexes

By having an understanding of the principles of analysis in biomechanics and the bio-

mechanical properties of the primary tissues of the musculoskeletal system, the reader

will be prepared to apply these principles to each region of the body to understand

the mechanics of normal movement at each region and to appreciate the effects of

impairments on the pathomechanics of movement.
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Although the human body is an incredibly complex biological system composed of trillions

of cells, it is subject to the same fundamental laws of mechanics that govern simple metal

or plastic structures. The study of the response of biological systems to mechanical forces is

referred to as biomechanics. Although it wasn’t recognized as a formal discipline until the

20th century, biomechanics has been studied by the likes of Leonardo da Vinci, Galileo Galilei,

and Aristotle. The application of biomechanics to the musculoskeletal system has led to a

better understanding of both joint function and dysfunction, resulting in design improve-

ments in devices such as joint arthroplasty systems and orthotic devices. Additionally, basic

musculoskeletal biomechanics concepts are important for clinicians such as orthopaedic sur-

geons and physical and occupational therapists.

Biomechanics is often referred to as the link between structure and function. While a ther-

apist typically evaluates a patient from a kinesiologic perspective, it is often not practical

or necessary to perform a complete biomechanical analysis. However, a comprehensive
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completely useless. If a patient was told to perform a series
of exercises for two, the patient would have no idea if that
meant two days, weeks, months, or even years.

The units used in biomechanics can be divided into two
categories. First, there are the four fundamental units of
length, mass, time, and temperature, which are defined on
the basis of universally accepted standards. Every other unit
is considered a derived unit and can be defined in terms of
these fundamental units. For example, velocity is equal to
length divided by time and force is equal to mass multiplied
by length divided by time squared. A list of the units needed
for biomechanics is found in Table 1.1.

Trigonometry
Since angles are so important in the analysis of the muscu-
loskeletal system, trigonometry is a very useful biomechanics
tool. The accepted unit for measuring angles in the clinic is

MATHEMATICAL OVERVIEW

This section is intended as a review of some of the basic math-
ematical concepts used in biomechanics. Although it can be
skipped if the reader is familiar with this material, it would
be helpful to at least review this section.

Units of Measurement
The importance of including units with measurements cannot
be emphasized enough. Measurements must be accompanied
by a unit for them to have any physical meaning. Sometimes,
there are situations when certain units are assumed. If a
clinician asks for a patient’s height and the reply is “5-6,” it
can reasonably be assumed that the patient is 5 feet, 6 inches
tall. However, that interpretation would be inaccurate if the
patient was in Europe, where the metric system is used. There
are also situations where the lack of a unit makes a number

Part I  | BIOMECHANICAL PRINCIPLES

TABLE 1.1 Units Used in Biomechanics

Quantity Metric British Conversion

Length meter (m) foot (ft) 1 ft � 0.3048 m

Mass kilogram (kg) slug 1 slug � 14.59 kg

Time second (s) second (s) 1 s � 1 s

Temperature Celsius (°C) Fahrenheit (°F) °F � (9/5) � °C � 32°

Force newton (N � kg � m/s2) pound (lb � slug � ft/s2) 1 lb � 4.448 N

Pressure pascal (Pa � N/m2 ) pounds per square inch (psi � lb/in2) 1 psi � 6895 Pa

Energy joule (J � N � m) foot pounds (ft-lb) 1 ft-lb � 1.356 J

Power watt (W � J/s) horsepower (hp) 1 hp � 7457 W

knowledge of both biomechanics and anatomy is needed to understand how the muscu-

loskeletal system functions. Biomechanics can also be useful in a critical evaluation of

current or newly proposed patient evaluations and treatments. Finally, a fundamental

understanding of biomechanics is necessary to understand some of the terminology

associated with kinesiology (e.g., torque, moment, moment arms).

The purposes of this chapter are to

■ Review some of the basic mathematical principles used in biomechanics

■ Describe forces and moments

■ Discuss principles of static analysis

■ Present the basic concepts in kinematics and kinetics

The analysis is restricted to the study of rigid bodies. Deformable bodies are discussed in

Chapters 2–6. The material in this chapter is an important reference for the force analysis

chapters throughout the text.
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Trigonometric functions:

Pythagorean theorem:

a2 + b2 = c2

Law of cosines:

a2 + b2 – 2abcos(θ) = c2

Law of sines:

sin (θ) = bc

cos (θ) = ac

atan (θ) = b

b     = a     =     c
sin(ψ)   sin(φ)     sin(θ)

Figure 1.1: Basic trigonometric relationships. These are some
of the basic trigonometric relationships that are useful for
biomechanics. A. A right triangle. B. A general triangle.

Vector Analysis
Biomechanical parameters can be represented as either
scalar or vector quantities. A scalar is simply represented by
its magnitude. Mass, time, and length are examples of scalar
quantities. A vector is generally described as having both
magnitude and orientation. Additionally, a complete de-
scription of a vector also includes its direction (or sense) and
point of application. Forces and moments are examples of
vector quantities. Consider the situation of a 160-lb man sit-
ting in a chair for 10 seconds. The force that his weight is ex-
erting on the chair is represented by a vector with magnitude
(160 lb), orientation (vertical), direction (downward), and
point of application (the chair seat). However, the time spent
in the chair is a scalar quantity and can be represented by its
magnitude (10 seconds).

To avoid confusion, throughout this text, bolded notation
is used to distinguish vectors (A) from scalars (B). Alternative
notations for vectors found in the literature (and in class-
rooms, where it is difficult to bold letters) include putting a
line under the letter (A), a line over the letter (A�), or an ar-
row over the letter (A�). The magnitude of a given vector (A)
is represented by the same letter, but not bolded (A).

By far, the most common use of vectors in biomechanics
is to represent forces, such as muscle and joint reaction and
resistance forces. These vectors can be represented graphi-
cally with the use of a line with an arrow at one end
(Fig. 1.2A). The length of the line represents its magnitude,

the degree. There are 360° in a circle. If only a portion of a
circle is considered, then the angle formed is some fraction
of 360°. For example, a quarter of a circle subtends an angle
of 90°. Although in general, the unit degree is adopted for
this text, angles also can be described in terms of radians.
Since there are 2π radians in a circle, there are 57.3° per ra-
dian. When using a calculator, it is important to determine if
it is set to use degrees or radians. Additionally, some com-
puter programs, such as Microsoft Excel, use radians to per-
form trigonometric calculations. 

Trigonometric functions are very useful in biomechanics
for resolving forces into their components by relating angles
to distances in a right triangle (a triangle containing a 90° an-
gle). The most basic of these relationships (sine, cosine, and
tangent) are illustrated in Figure 1.1A. A simple mnemonic
to help remember these equations is sohcahtoa—sine is the
opposite side divided by the hypotenuse, cosine is the adja-
cent side divided by the hypotenuse, and tangent is the op-
posite side divided by the adjacent side. Although most
calculators can be used to evaluate these functions, some
important values worth remembering are

sin (0°) � 0, sin (90°) � 1 (Equation 2.1)

cos (0°) � 1, cos (90°) � 0 (Equation 2.2)

tan (45°) � 1 (Equation 2.3)

Additionally, the Pythagorean theorem states that for a right
triangle, the sum of the squares of the sides forming the right
angle equals the square of the hypotenuse (Fig. 1.1A). Al-
though less commonly used, there are also equations that
relate angles and side lengths for triangles that do not contain
a right angle (Fig. 1.1B).

Figure 1.2: Vectors. A. In general, a vector has a magnitude,
orientation, point of application, and direction. Sometimes the
point of application is not specifically indicated in the figure. 
B. A polar coordinate representation. C. A component
representation.

θ

Direction

Magnitude

Orientation

Point of
application

A A = 5 N
θ = 37°

Ax = 4 N
Ay = 3 N

Ax

Ay

A. Graphical

B. Polar coordinates

C. Components
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the angular position of the line represents its orientation, the
location of the arrowhead represents its direction, and the
location of the line in space represents its point of applica-
tion. Alternatively, this same vector can be represented
mathematically with the use of either polar coordinates or
component resolution. Polar coordinates represent the
magnitude and orientation of the vector directly. In polar co-
ordinates, the same vector would be 5 N at 37° from hori-
zontal (Fig. 1.2B). With components, the vector is resolved
into its relative contributions from both axes. In this exam-
ple, vector A is resolved into its components: AX � 4 N and
AY � 3 N (Fig. 1.2C). It is often useful to break down vectors
into components that are aligned with anatomical directions.
For instance, the x and y axes may correspond to superior
and anterior directions, respectively. Although graphical rep-
resentations of vectors are useful for visualization purposes,
analytical representations are more convenient when adding
and multiplying vectors.

Note that the directional information (up and to the right)
of the vector is also embedded in this information. A vector
with the same magnitude and orientation as the vector
represented in Figure 1.2C, but with the opposite direction
(down and to the left) is represented by AX � �4 N and
AY � �3 N, or 5 N at 217°. The description of the point-of-
application information is discussed later in this chapter.

VECTOR ADDITION

When studying musculoskeletal biomechanics, it is common
to have more than one force to consider. Therefore, it is
important to understand how to work with more than one
vector. When adding or subtracting two vectors, there are
some important properties to consider. Vector addition is
commutative:

A � B � B � A (Equation 2.4)

A � B � A � (�B) (Equation 2.5)

Vector addition is associative:

A � (B � C) � (A � B) � C (Equation 2.6)

Unlike scalars, which can just be added together, both the
magnitude and orientation of a vector must be taken into
account. The detailed procedure for adding two vectors
(A � B � C) is shown in Box 1.1 for the graphical, polar
coordinate, and component representation of vectors. The
graphical representation uses the “tip to tail” method. The
first step is to draw the first vector, A. Then the second vector,
B, is drawn so that its tail sits on the tip of the first vector.
The vector representing the sum of these two vectors (C) is
obtained by connecting the tail of vector A and the tip of
vector B. Since vector addition is commutative, the same so-
lution would have been obtained if vector B were the first
vector. When using polar coordinates, the vectors are drawn
as in the graphical method, and then the law of cosines is used
to determine the magnitude of C and the law of sines is used

ADDITION OF TWO VECTORS

EXAMINING THE FORCES BOX 1.1

B

A

C

A2 + B2 – 2ABcos(θ + φ) = C2

C = 5.4 N

θφ

φ
θ

θ

B

A

C

B

A

A

θ

ψ

φ

C

BBy

Ay

Ax

Cx

Bx

Cy

Law of cosines:

sin ψ =
sin (θ + φ)

ψ = 31°

Ax = Acos(θ) = 4 N
Ay = Asin(θ) = 3 N

Bx = -Bcos(φ) = -2 N
By = Bsin(φ) = 2 N

Cx = Ax + Bx  = 2 N
Cy = Ay + By  = 5 N

A = 5 N
B = 2.8 N
θ = 37°
φ = 45° 

Law of sines:
CB

Addition of 2 vectors: A + B

Case A: Graphical

Case B: Polar

Case C: Components

to determine the direction of C (see Fig 1.1 for definitions of
these laws). 

For the component resolution method, each vector is
broken down into its respective x and y components. The
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components represent the magnitude of the vector in that
direction. The x and y components are summed:

CX � AX � BX (Equation 2.7)

CY � AY � BY (Equation 2.8)

The vector C can either be left in terms of its components,
CX and CY, or be converted into a magnitude, C, using the
Pythagorean theorem, and orientation, �, using trigonometry.
This method is the most efficient of the three presented and
is used throughout the text.

VECTOR MULTIPLICATION

Multiplication of a vector by a scalar is relatively straightfor-
ward. Essentially, each component of the vector is individu-
ally multiplied by the scalar, resulting in another vector. For
example, if the vector in Figure 1.2 is multiplied by 5, the re-
sult is AX � 5 � 4 N � 20 N and AY � 5 � 3 N � 15 N.
Another form of vector multiplication is the cross product,
in which two vectors are multiplied together, resulting in an-
other vector (C � A � B). The orientation of C is such that
it is mutually perpendicular to A and B. The magnitude of C
is calculated as C � A � B � sin (�), where � represents the
angle between A and B, and � denotes scalar multiplication.
These relationships are illustrated in Figure 1.3. The cross
product is used for calculating joint torques below in this
chapter.

Coordinate Systems
A three-dimensional analysis is necessary for a complete rep-
resentation of human motion. Such analyses require a coor-
dinate system, which is typically composed of anatomically
aligned axes: medial/lateral (ML), anterior/posterior (AP), and
superior/inferior (SI). It is often convenient to consider only
a two-dimensional, or planar, analysis, in which only two of
the three axes are considered. In the human body, there are
three perpendicular anatomical planes, which are referred to
as the cardinal planes. The sagittal plane is formed by the
SI and AP axes, the frontal (or coronal) plane is formed
by the SI and ML axes, and the transverse plane is formed
by the AP and ML axes (Fig. 1.4).

Superior

Inferior

Posterior

AnteriorTransverse

Frontal Sagittal

Lateral

Medial

Figure 1.4: Cardinal planes. The cardinal planes, sagittal,
frontal, and transverse, are useful reference frames in a 
three-dimensional representation of the body. In two-
dimensional analyses, the sagittal plane is the common
reference frame.

The motion of any bone can be referenced with respect
to either a local or global coordinate system. For example,
the motion of the tibia can be described by how it moves
with respect to the femur (local coordinate system) or how

B

A

C Magnitude of C: C = ABsin(θ)

Orientation of C: perpendicular to 
both A and B 

θ

Figure 1.3: Vector cross product. C is shown as the cross product
of A and B. Note that A and B could be any two vectors in the
indicated plane and C would still have the same orientation.
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it moves with respect to the room (global coordinate system).
Local coordinate systems are useful for understanding
joint function and assessing range of motion, while global
coordinate systems are useful when functional activities are
considered.

Most of this text focuses on two-dimensional analyses, for
several reasons. First, it is difficult to display three-dimensional
information on the two-dimensional pages of a book. Addi-
tionally, the mathematical analysis for a three-dimensional
problem is very complex. Perhaps the most important reason
is that the fundamental biomechanical principles in a two-
dimensional analysis are the same as those in a three-dimen-
sional analysis. It is therefore possible to use a simplified
two-dimensional representation of a three-dimensional prob-
lem to help explain a concept with minimal mathematical
complexity (or at least less complexity).

FORCES AND MOMENTS

The musculoskeletal system is responsible for generating
forces that move the human body in space as well as prevent
unwanted motion. Understanding the mechanics and patho-
mechanics of human motion requires an ability to study the
forces and moments applied to, and generated by, the body
or a particular body segment. 

Forces
The reader may have a conceptual idea about what a force
is but find it difficult to come up with a formal definition.
For the purposes of this text, a force is defined as a “push
or pull” that results from physical contact between two ob-
jects. The only exception to this rule that is considered in
this text is the force due to gravity, in which there is no direct
physical contact between two objects. Some of the more com-
mon force generators with respect to the musculoskeletal
system include muscles/tendons, ligaments, friction, ground
reaction, and weight.

A distinction must be made between the mass and the
weight of a body. The mass of an object is defined as the
amount of matter composing that object. The weight of an
object is the force acting on that object due to gravity and is
the product of its mass and the acceleration due to gravity
(g � 9.8 m/s2). So while an object’s mass is the same on Earth
as it is on the moon, its weight on the moon is less, since the
acceleration due to gravity is lower on the moon. This dis-
tinction is important in biomechanics, not to help plan a trip
to the moon, but for ensuring that a unit of mass is not treated
as a unit of force.

As mentioned previously, force is a vector quantity with
magnitude, orientation, direction, and a point of application.
Figure 1.5 depicts several forces acting on the leg in the
frontal plane during stance. The forces from the abductor
and adductor muscles act through their tendinous insertions,

FAB

FJR

FAD

FGR

FAB - Abductor muscle force

FAD - Adductor muscle force

FJR - Joint reaction force

FGR - Ground reaction force

Figure 1.5: Vectors in anatomy. Example of how vectors can be
combined with anatomical detail to represent the action of
forces. Some of the forces acting on the leg are shown here.

while the hip joint reaction force acts through its respective
joint center of rotation. In general, the point of application
of a force (e.g., tendon insertion) is located with respect to
a fixed point on a body, usually the joint center of rotation.
This information is used to calculate the moment due to
that force.
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F

M
r

Figure 1.6: Three-dimensional moment analysis. The moment
acting on the elbow from the force of the biceps is shown as
a vector aligned with the axis of rotation. F, force vector; r,
distance from force vector to joint COR; M, moment vector.

Moments
In kinesiology, a moment (M) is typically caused by a force
(F) acting at a distance (r) from the center of rotation of a
segment. A moment tends to cause a rotation and is defined
by the cross product function: M � r � F. Therefore, a mo-
ment is represented by a vector that passes through the point
of interest (e.g., the center of rotation) and is perpendicular
to both the force and distance vectors (Fig. 1.6). For a two-
dimensional analysis, both the force and distance vectors are
in the plane of the paper, so the moment vector is always di-
rected perpendicular to the page, with a line of action through
the point of interest. Since it has only this one orientation and
line of action, a moment is often treated as a scalar quantity
in a two-dimensional analysis, with only magnitude and
direction. Torque is another term that is synonymous with a
scalar moment. From the definition of a cross product, the
magnitude of a moment (or torque) is calculated as M � r �
F � sin (�). Its direction is referred to as the direction in
which it would tend to cause an object to rotate (Fig. 1.7A).

Although there are several different distances that can be
used to connect a vector and a point, the same moment is
calculated no matter which distance is selected (Fig. 1.7B).

A

F

r

Rotation

θ

M = Frsin(θ)

r1

r2

r3

r4

r1

θ1

M = Fr1sin(θ1)
M = Fr2sin(θ2) = F*MA

M = Fr3sin(θ3)
M = Fr4sin(θ4)

θ2

θ3

θ4

F

B
Figure 1.7: Continued



10 Part I  | BIOMECHANICAL PRINCIPLES

The distance that is perpendicular to the force vector is re-
ferred to as the moment arm (MA) of that force (r2 in Fig.
1.7B). Since the sine of 90° is equal to 1, the use of a moment
arm simplifies the calculation of moment to M � MA � F.
The moment arm can also be calculated from any distance as
MA � r � sin (�). Additionally, although there are four sep-
arate angles between the force and distance vectors, all four
angles result in the same moment calculation (Fig. 1.7C).

The examples in Figures 1.6 and 1.7 have both force and
moment components. However, consider the situation in
Figure 1.8A. Although the two applied forces create a
moment, they have the same magnitude and orientation but
opposite directions. Therefore, their vector sum is zero. This
is an example of a force couple. A pure force couple results
in rotational motion only, since there are no unbalanced
forces. In the musculoskeletal system, all of these conditions
are seldom met, so pure force couples are rare. In general,
muscles are responsible for producing both forces and mo-
ments, thus resulting in both translational and rotational

motion. However, there are examples in the human body in
which two or more muscles work in concert to produce a mo-
ment, such as the upper trapezius and serratus anterior (Fig.
1.8B). Although these muscles do not have identical magni-
tudes or orientations, this situation is frequently referred to
as a force couple.

Muscle Forces
As mentioned previously, there are three important parame-
ters to consider with respect to the force of a muscle: orien-
tation, magnitude, and point of application. With some care,
it is possible to measure orientation and line of action from
cadavers or imaging techniques such as magnetic resonance
imaging (MRI) and computed tomography (CT) [1,3]. This in-
formation is helpful in determining the function and efficiency
of a muscle in producing a moment. As an example, two mus-
cles that span the glenohumeral joint, the supraspinatus and
middle deltoid, are shown in Box 1.2. From the information
provided for muscle orientation and point of application in this
position, the moment arm of the deltoid is approximately equal
to that of the supraspinatus, even though the deltoid insertion
on the humerus is much farther away from the center of
rotation than the supraspinatus insertion.

F1

F1

F2

F2

Serratus anterior 

Upper trapezius

COR

COR

d d

A. Idealized

B. Actual

F1 = F2-

F1 ≠ F2-

Figure 1.8: Force couples. Distinction between an idealized force
couple (A) and a more realistic one (B). Even though the
scapular example given is not a true force couple, it is typically
referred to as one. COR, center of rotation.

Figure 1.7: Two-dimensional moment analysis. A. Plantar flexion
moment created by force at the Achilles tendon. B. Note that
no matter which distance vector is chosen, the value for the
moment is the same. C. Also, no matter which angle is chosen,
the value for the sine of the angle is the same, so the moment
is the same. 

r1

θ2

θ4

F

θ1

θ3

sin(θ1) = sin(θ3)
= sin(180° – θ1) = sin(θ2)
= sin(180° – θ1) = sin(θ4)

r

C
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many simplifying assumptions, such methods can be very use-
ful in understanding joint mechanics, and they are presented
in the next section.

STATICS

Statics is the study of the forces acting on a body at rest or
moving with a constant velocity. Although the human body is
almost always accelerating, a static analysis offers a simple
method of addressing musculoskeletal problems. This analy-
sis may either solve the problem or provide a basis for a more
sophisticated dynamic analysis.

Newton’s Laws
Since the musculoskeletal system is simply a series of objects
in contact with each other, some of the basic physics princi-
ples developed by Sir Isaac Newton (1642–1727) are useful.
Newton’s laws are as follows:

First law: An object remains at rest (or continues moving
at a constant velocity) unless acted upon by an unbal-
anced external force.

Second law: If there is an unbalanced force acting on a
object, it produces an acceleration in the direction of
the force, directly proportional to the force (f � ma).

Third law: For every action (force) there is a reaction
(opposing force) of equal magnitude but in the oppo-
site direction.

From the first law, it is clear that if a body is at rest, there
can be no unbalanced external forces acting on it. In this sit-
uation, termed static equilibrium, all of the external forces
acting on a body must add (in a vector sense) to zero. An ex-
tension of this law to objects larger than a particle is that the
sum of the external moments acting on that body must also
be equal to zero for the body to be at rest. Therefore, for a
three-dimensional analysis, there are a total of six equations
that must be satisfied for static equilibrium:

�FX � 0 �FY � 0 �FZ � 0

�MX � 0 �MY � 0 �MZ � 0 (Equation 2.9)

For a two-dimensional analysis, there are only two in-plane
force components and one perpendicular moment (torque)
component:

�FX � 0 �FY � 0 �MZ � 0 (Equation 2.10)

Under many conditions, it is reasonable to assume that all
body parts are in a state of static equilibrium and these
three equations can be used to calculate some of the forces
acting on the musculoskeletal system. When a body is not in
static equilibrium, Newton’s second law states that any
unbalanced forces and moments are proportional to the
acceleration of the body. That situation is considered later
in this chapter.

CLINICAL RELEVANCE: MUSCLE FORCES
In addition to generating moments that are responsible
for angular motion (rotation), muscles also produce forces
that can cause linear motion (translation). This force can
be either a stabilizing or a destabilizing force. For exam-
ple, since the supraspinatus orientation shown in Box 1.2
is primarily directed medially, it tends to pull the humeral
head into the glenoid fossa. This compressive force helps
stabilize the glenohumeral joint. However, since the del-
toid orientation is directed superiorly, it tends to produce
a destabilizing force that may result in superior translation
of the humeral head.

These analyses are useful, since they can be performed even
if the magnitude of a muscle’s force is unknown. However, to
understand a muscle’s function completely, its force magni-
tude must be known. Although forces can be measured with
invasive force transducers [12], instrumented arthroplasty
systems [6], or simulations in cadaver models [9], there are
currently no noninvasive experimental methods that can be
used to measure the in vivo force of intact muscles. Conse-
quently, basic concepts borrowed from freshman physics can
be used to predict muscle forces. Although they often involve

MOMENT ARMS OF THE DELTOID (MAd) AND
THE SUPRASPINATUS (MAs)

EXAMINING THE FORCES BOX 1.2

Fd

θs

Fs

rs

rd

θd

MAd = rdsin(θd) = (20 cm)sin(5°) ≈ 2 cm

MAs = rssin(θs) = (2 cm)sin(80°) ≈ 2 cm
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A FREE BODY DIAGRAM

EXAMINING THE FORCES BOX 1.3

W

F

Free body diagram

x

ΣFy = 0

T – F – F = 0

T = 2F = 2 (10 N) 

=10 N 

T = 20 N

F

y

F = mg = (1 kg)(9.8 m )
s2

1 Kg

1 Kg

T

Solving Problems
A general approach used to solve for forces during static equi-
librium is as follows:

Step 1 Isolate the body of interest.
Step 2 Sketch this body and all external forces

(referred to as a free body diagram).
Step 3 Sum the forces and moments equal to zero.
Step 4 Solve for the unknown forces.

As a simple example, consider the two 1-kg balls hanging
from strings shown in Box 1.3. What is the force acting on
the top string? Although this is a very simple problem that
can be solved by inspection, a formal analysis is presented.
Step 1 is to sketch the entire system and then place a dotted
box around the body of interest. Consider a box that encom-
passes both balls and part of the string above the top one, as
shown in Box 1.3.

Proceeding to step 2, a free body diagram is sketched. As
indicated by Newton’s first law, only external forces are con-
sidered for these analyses. For this example, everything in-
side the dotted box is considered part of the body of interest.
External forces are caused by the contact of two objects, one
inside the box and one outside the box. In this example, there
are three external forces: tension in the top string and the
weight of each of the balls.

Why is the tension on the top string considered an exter-
nal force, but not the force on the bottom string? The reason
is that the tension on the top string is an external force (part
of the string is in the box and part is outside the box), and
the force on the bottom string is an internal force (the entire
string is located inside the box). This is a very important dis-
tinction because it allows for isolation of the forces on spe-
cific muscles or joints in the musculoskeletal system. 

Why is the weight of each ball considered an external
force? Although gravity is not caused by contact between two
objects, it is caused by the interaction of two objects and is
treated in the same manner as a contact force. One of the ob-
jects is inside the box (the ball) and the other is outside the
box (the Earth). In general, as long as an object is located
within the box, the force of gravity acting on it should be
considered an external force.

Why is the weight of the string not considered an external
force? To find an exact answer to the problem, it should be
considered. However, since its weight is far less than that of
the balls, it is considered negligible. In biomechanical analy-
ses, assumptions are often made to ignore certain forces, such
as the weight of someone’s watch during lifting.

Once all the forces are in place, step 3 is to sum all the
forces and moments equal to zero. There are no forces in
the x direction, and since all of the forces pass through the
same point, there are no moments to consider. That leaves
only one equation: sum of the forces in the y direction equal
to zero. The fourth and final step is to solve for the unknown
force. The mass of the balls is converted to force by multi-
plying by the acceleration of gravity. The complete analysis is
shown in Box 1.3.

Simple Musculoskeletal Problems
Although most problems can be addressed with the above
approach, there are special situations in which a problem is
simplified. These may be useful both for solving problems an-
alytically and for quick assessment of clinical problems from
a biomechanical perspective.

LINEAR FORCES

The simplest type of system, linear forces, consists of forces
with the same orientation and line of action. The only things
that can be varied are the force magnitudes and directions.
An example is provided in Box 1.3. Notice that the only equa-
tion needed is summing the forces along the y axis equal to
zero. When dealing with linear forces, it is best to align either
the x or y axis with the orientation of the forces.

PARALLEL FORCES

A slightly more complicated system is one in which all the
forces have the same orientation but not the same line of ac-
tion. In other words, the force vectors all run parallel to each
other. In this situation, there are still only forces along one
axis, but there are moments to consider as well.

Levers

A lever is an example of a parallel force system that is very
common in the musculoskeletal system. Although not all
levers contain parallel forces, that specific case is focused on
here. A basic understanding of this concept allows for a rudi-
mentary analysis of a biomechanical problem with very little
mathematics.
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A lever consists of a rigid body with two externally applied
forces and a point of rotation. In general, for the muscu-
loskeletal joint, one of the forces is produced by a muscle,
one force is provided by contact with the environment (or by
gravity) and the point of rotation is the center of rotation of
the joint. The two forces can either be on the same side or
different sides of the center of rotation (COR).

If the forces are on different sides of the COR, the system
is considered a first class lever. If the forces are on the same
side of the COR and the external force is closer to the COR
than the muscle force, it is a second class lever. If the forces
are on the same side of the COR and the muscle force is
closer to the COR than the external force, it is a third class
lever. There are several cases of first class levers; however,
most joints in the human body behave as third class levers.
Second class levers are almost never observed within the body.
Examples of all three levers are given in Figure 1.9.

If moments are summed about the COR for any lever, the
resistive force is equal to the muscle force times the ratio of
the muscle and resistive moment arms:

FR � FM � (MAM�MAR) (Equation 2.11)

The ratio of the muscle and resistive moment arms 
(MAM�MAR) is referred to as the mechanical advantage
of the lever. Based on this equation and the definition of
levers, the mechanical advantage is greater than one for a
second class lever, less than one for a third class lever, and
either for a first class lever. A consequence of this is that since
most joints behave as third class levers, muscle forces must
always be greater than the force of the resistive load they are
opposing. Although this may appear to represent an ineffi-
cient design, muscles sacrifice their mechanical advantage
to produce large motions and high-velocity motions. This
equation is also valid in cases where the two forces are not

F

COR

R

A

F

COR

R

B

Figure 1.9: Classification of lever systems. Examples of the three different classes of levers, where F is the exerted force, R is the
reaction force, and COR is the center of rotation. Most musculoskeletal joints behave as third class levers. A. First class lever.
B. Second class lever. C. Third class lever.

C

COR

R
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Figure 1.10: Center of gravity. For the man in the figure to
maintain his balance, his center of gravity must be maintained
within his base of support. This is not a problem in normal
standing (A). When he bends over at the waist, however, his
center of gravity may shift anterior to the base of support,
creating an unstable situation (B). The man needs to plantarflex
at the ankles to maintain his balance (C).

parallel, as long as their moment arms are known. The ef-
fects of a muscle’s moment arm on joint motion is discussed
in Chapter 4.

Center of Gravity and Stability

Another example of a parallel force system is the use of the
center of gravity to determine stability. The center of grav-
ity of an object is the point at which all of the weight of that
body can be thought to be concentrated, and it depends on
a body’s shape and mass distribution. The center of gravity of
the human body in the anatomical position is approximately
at the level of the second sacral vertebra [8]. This location
changes as the shape of the body is altered. When a person
bends forward, his or her center of gravity shifts anteriorly
and inferiorly. The location of the center of gravity is also af-
fected by body mass distribution changes. For example, if a
person were to develop more leg muscle mass, the center of
mass would shift inferiorly.

The location of a person’s center of gravity is important in
athletics and other fast motions because it simplifies the use
of Newton’s second law. More important from a clinical point
of view is the effect of the center of gravity on stability. For
motions in which the acceleration is negligible, it can be
shown with Newton’s first law that the center of gravity must
be contained within a person’s base of support to maintain
stability. 

Consider the situation of a person concerned about falling
forward. Assume for the moment that there is a ground
reaction force at his toes and heel. When he is standing
upright, his center of gravity is posterior to his toes, so there
is a counterclockwise moment at his toes (Fig. 1.10A). This
is a stable position, since the moment can be balanced by the
ground reaction force at his heel. If he bends forward at his
hips to touch the ground and leans too far forward, his cen-
ter of gravity moves anterior to his toes and the weight of his
upper body produces a clockwise moment at his toes (Fig.
1.10B). Since there is no further anterior support, this mo-
ment is unbalanced and the man will fall forward. However,
if in addition to hip flexion he plantarflexes at his ankles while
keeping his knee straight, he is in a stable position with his
center of gravity posterior to his toes (Fig. 1.10C).

Advanced Musculoskeletal Problems
One of the most common uses of static equilibrium applied
to the musculoskeletal system is to solve for unknown mus-
cle forces. This is a very useful tool because as mentioned
above, there are currently no noninvasive experimental meth-
ods that can be used to measure in vivo muscle forces. There
are typically 3 types of forces to consider in a musculoskele-
tal problem: (a) the joint reaction force between the two ar-
ticular surfaces, (b) muscle forces and (c) forces due to the
body’s interaction with the outside world. So how many un-
known parameters are associated with these forces? To an-
swer this, the location of all of the forces with their points of

application must be identified. For the joint reaction force
nothing else is known, so there are two unknown parameters:
magnitude and orientation. The orientation of a muscle force
can be measured, so there is one unknown parameter, mag-
nitude. Finally, any force interaction with the outside world
can theoretically be measured, possibly with a handheld dy-
namometer or by knowing the weight of the segment, so there
are no unknown parameters (Table 1.2) [5,8].

Consequently, there are two unknown parameters for the
joint reaction force and one unknown parameter for each
muscle. However, there are only three equations available
from a two-dimensional analysis of Newton’s first law. There-
fore, if there is more than one muscle force to consider, there
are more unknown parameters than available equations. This
situation is referred to as statically indeterminate, and
there are an infinite number of possible solutions. To avoid
this problem, only one muscle force can be considered. Al-
though this is an oversimplification of most musculoskeletal
situations, solutions based on a single muscle can provide a
general perspective of the requirements of a task. Options
for solving the statically indeterminate problem are briefly
discussed later.
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STATIC EQUILIBRIUM EQUATIONS
CONSIDERING ONLY THE SUPRASPINATUS

EXAMINING THE FORCES BOX 1.4

FJ

COR

FG = 28 N

FS

ΣM = 0 (at COR) 
(FS)(RS)sin(90°) – (FG)(RG)sin(30°) = 0

FS =
(28N)(29 cm)sin 30° 

= 203 N

ΣFX = 0 
FS + FJX = 0

FJX = -FS = -203 N

ΣFY = 0 
-FG + FJY = 0
FJY = FG = 28 N

30°

R G
= 

29
 c

m

RS = 2 cm

2 cm

FORCE ANALYSIS WITH A SINGLE MUSCLE

There are additional assumptions that are typically made to
solve for a single muscle force: 

• Two-dimensional analysis
• No deformation of any tissues
• No friction in the system
• The single muscle force that has been selected can be con-

centrated in a single line of action
• No acceleration

The glenohumeral joint shown in Box 1.2 is used as an
example to help demonstrate the general strategy for ap-
proaching these problems. Since only one muscle force can
be considered, the supraspinatus is chosen for analysis. The
same general approach introduced earlier in this chapter for
addressing a system in static equilibrium is used.

Step one is to isolate the body of interest, which for this
problem is the humerus. In step two, a free body diagram
is drawn, with all of the external forces clearly labeled: the
weight of the arm (FG), the supraspinatus force (FS), and
the glenohumeral joint reaction force (FJ) in Box 1.4. Note
that external objects like the scapula are often included in
the free body diagram to make the diagram complete. How-
ever, the scapula is external to the analysis and is only in-
cluded for convenience. It is important to keep track of
which objects are internal and which ones are external to
the isolated body.

The next step is to sum the forces and moments to zero
to solve for the unknown values. Since the joint reaction force
acts through the COR, a good strategy is to start by summing
the moments to zero at that point. This effectively eliminates

TABLE 1.2 Body Segment Parameters Derived from Dempster [4]

Location of the Center of Moment of Inertia 
Percentage of Total Mass (% of limb segment about the Center of

Body Weight (%) length from proximal end) Mass (kg � m2)

Head and neck 7.9 43.3 0.029

Trunk 48.6 n.a. n.a.

Upper extremity 4.9 51.2a 0.335

Arm 2.7 43.6 0.040

Forearm and hand 2.2 67.7 0.058

Forearm 1.6 43.0 0.018

Hand 0.6 50.6b 0.002

Lower extremity 15.7 43.4c 1.785

Thigh 9.6 43.3 0.298

Leg and foot 5.9 43.3 0.339

Leg 4.5 43.4 0.143

Foot 1.4 43.8d 0.007

a Measured from axis of shoulder to ulnar styloid process.
b Measured to PIP joint of long finger.
c Measured to medial malleolus.
d Measured from heel.
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The problem can be solved again by considering the mid-
dle deltoid instead of the supraspinatus. For those conditions,
Box 1.5 shows that the deltoid muscle force is 233 N and the
force of the humerus acting on the scapula is 191 N medial
and 106 N superior. Notice that although the force required
of each muscle is similar (supraspinatus, 203 N vs. deltoid,
230 N), the deltoid generates a much higher superior force
and the supraspinatus generates a much higher medial force.

CLINICAL RELEVANCE: SUPRASPINATUS AND
DELTOID MUSCLE FORCES
A clinical application of these results is that under normal
conditions the supraspinatus serves to maintain joint sta-
bility with its medially directed force. However, if its
integrity is compromised, as occurs with rotator cuff dis-
ease, and the deltoid plays a larger role, then there is a
lower medial stabilizing force and a higher superior force
that may cause impingement of the rotator cuff in the sub-
acromial region.

The analysis presented above serves as a model for analyzing
muscle and joint reaction forces in subsequent chapters.
Although some aspects of the problem will clearly vary from
joint to joint, the basic underlying method is the same.

FORCE ANALYSIS WITH MULTIPLE MUSCLES

Although most problems addressed in this text focus on solv-
ing for muscle forces when only one muscle is taken into con-
sideration, it would be advantageous to solve problems in
which there is more than one muscle active. However such
systems are statically indeterminate. Additional information
is needed regarding the relative contribution of each muscle
to develop an appropriate solution.

One method for analyzing indeterminate systems is the
optimization method. Since an indeterminate system al-
lows an infinite number of solutions, the optimization ap-
proach helps select the “best” solution. An optimization
model minimizes some cost function to produce a single so-
lution. This function may be the total force in all of the
muscles or possibly the total stress (force/area) in all of the
muscles. While it might make sense that the central nervous
system attempts to minimize the work it has to do to per-
form a function, competing demands of a joint must also be
met. For example, in the glenohumeral example above, it
might be most efficient from a force production standpoint
to assume that the deltoid acts alone. However, from a
stability standpoint, the contribution of the rotator cuff is
essential.

Another method for analyzing indeterminate systems is the
reductionist model in which a set of rules is applied for the
relative distribution of muscle forces based on electromyo-
graphic (EMG) signals. One approach involves developing
these rules on the basis of the investigator’s subjective knowl-
edge of EMG activity, anatomy, and physiological constraints

the joint reaction force from this equation because its mo-
ment arm is equal to zero. The forces along the x and y axes
are summed to zero to find those components of the joint re-
action force. The fourth and final step is to solve for the un-
known parameters in these three equations. The details of
these calculations are given in Box 1.4. In this example, the
magnitude of the supraspinatus force is 203 N, and the joint
reaction force is 203 N lateral and 28 N superior. Those com-
ponents represent the force of the scapula acting on the
humerus. Newton’s third law can then be used to find the
force of the humerus acting on the scapula: 203 N medial and
28 N inferior.

Note that the muscle force is much larger than the weight
of the arm. This is expected, considering the small moment
arm of the muscle compared with the moment arm of the
force due to gravity. While this puts muscles at a mechanical
disadvantage for force production, it enables them to amplify
their motion. For example, a 1-cm contraction of the
supraspinatus results in a 20-cm motion at the hand. This is
discussed in more detail in Chapter 4.

STATIC EQUILIBRIUM EQUATIONS
CONSIDERING ONLY THE DELTOID MUSCLE

EXAMINING THE FORCES BOX 1.5

FJ

COR

FG = 28N

FD

Y

X

ΣM = 0 (at COR) 

(FD)(RD)sin(5°) – (FG)(RG)sin(30°) = 0

ΣFX = 0 

FDcos(35°) + FJX = 0

FJX = -233cos(35°) = -191 N

ΣFY = 0 

-FG + FJY + FDsin(40°)= 0

FJY = 28 – 233sin(40°) = -106 N

FD = (28 N)(29 cm)sin(30°) = 233 N
(20 cm)sin(5°)

5°

30°

RG = 29 cm

RD = 20 cm
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Figure 1.12: Translations and rotations within a joint. For both
of these examples, it is fairly straightforward to describe the
rotational motion of the humerus—it rotates 90°. However,
translational motion is more complicated, and it is important to
refer to a specific point. Consider the superior/inferior (SI)
translation of two points: point 1 is located at the center of the
humeral head and point 2 sits closer to the articular surface.
A. The center of the rotation of the motion is at point 1,
so there is no translation at point 1, but point 2 moves
inferiorly. B. Point 1 moves superiorly, and point 2 moves
inferiorly.

[4]. Another approach is to have subjects perform isometric
contractions at different force levels while measuring EMG
signals and to develop an empirical relationship between
EMG and force level [2,7]. Perhaps the most common
approach is based on the assumption that muscle force is pro-
portional to its cross-sectional area and EMG level. This
method has been attempted for many joints, such as the
shoulder [10], knee and hip. One of the key assumptions in
all these approaches is that there is a known relationship
between EMG levels and force production.

KINEMATICS

Until now, the focus has been on studying the static forces
acting on the musculoskeletal system. The next section deals
with kinematics, which is defined as the study of motion
without regard to the forces that cause that motion. As with
the static force analysis, this section is restricted to two-
dimensional, or planar, motion.

Rotational and Translational Motion
Pure linear, or translatory, motion of an entire object oc-
curs when all points on that object move the same distance
(Fig. 1.11A). However, with the possible exception of pas-
sive manipulation of joints, pure translatory motion does not
often occur at musculoskeletal articulations. Instead, rota-
tional motion is more common, in which there is one point
on a bone that remains stationary (the COR), and all other
points trace arcs of a circle around this point (Fig. 1.11B).
For three-dimensional motion, the COR would be replaced
by an axis of rotation, and there could also be translation
along this axis.

Consider the general motion of a bone moving from an
initial to a final position. The rotational component of this
motion can be measured by tracking the change in orienta-
tion of a line on the bone. Although there are an infinite
number of lines to choose from, it turns out that no matter
which line is selected, the amount of rotation is always the

A B

COR

Figure 1.11: Translations and rotations. In biomechanics, motion
is typically described in terms of translations and rotations.
A. In translatory motion, all points on the object move the
same distance. B. In rotational motion, all points on the object
revolve around the center of rotation (COR), which is fixed
in space.

same. Similarly, the translational component of this motion
can be measured by tracking the change in position of a point
on the bone. In this case, however, the amount of translatory
motion is not the same for all points. In fact, the displace-
ment of a point increases linearly as its distance from the
COR increases (Fig. 1.11B). Therefore, from a practical
standpoint, if there is any rotation of a bone, a description
of joint translation or displacement must refer to a specific
point on the bone.

Consider the superior/inferior translation motion of the
humerus in Figure 1.12A, which is rotated 90°. Point 1 rep-
resents the geometric center of the humeral head and does
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Inertial Forces
Kinematics and kinetics are bound by Newton’s second law,
which states that the external force (f) on an object is pro-
portional to the product of that object’s mass (m) and linear
acceleration (a):

f � ma (Equation 2.12)

For conditions of static equilibrium, there are no external
forces because there is no acceleration, and the sum of the
external forces can be set equal to zero. However, when an
object is accelerating, the so-called inertial forces (due to
acceleration) must be considered, and the sum of the forces
is no longer equal to zero. 

Consider a simple example of a linear force system in
which someone is trying to pick up a 20-kg box. If this is per-
formed very slowly so that the acceleration is negligible, static
equilibrium conditions can be applied (sum of forces equal
zero), and the force required is 200 N (Box 1.6). However, if
this same box is lifted with an acceleration of 5 m/s2, then the
sum of the forces is not equal to zero, and the force required
is 300 N (Box 1.6).

There is an analogous relationship for rotational motion,
in which the external moment (M) on an object is proportional
to that object’s moment of inertia (I) and angular accel-
eration (�):

M � I� (Equation 2.13)

Just as mass is a measure of a resistance to linear accelera-
tion, moment of inertia is a measure of resistance to angular
acceleration (Table 1.2). It is affected both by the total mass
and the distance that mass is from the COR, r, as follows:

I � mr2 (Equation 2.14)

So the farther the mass of an object is from the COR, the
larger its moment of inertia. For example, for a given rota-
tional moment, a figure skater can reduce her moment of
inertia by tucking her arms into her body, where they are
closer to the COR for that motion. This serves to increase her
angular acceleration.

Work, Energy, and Power
Another combination of kinematics and kinetics comes in
the form of work, which is defined as the force required to
move an object a certain distance (work � force � distance).

not translate from position 1 to 2. However, point 2 on the
articular surface of the humeral head translates inferiorly. The
motion in Figure 1.12B is similar, except now point 1 trans-
lates superiorly, while point 2 still translates inferiorly. This
example demonstrates how important the point of reference
is when describing joint translations.

Displacement, Velocity,
and Acceleration
Both linear and angular displacements are measures of dis-
tance. Position is defined as the location of a point or object
in space. Displacement is defined as the distance traveled
between two locations. For example, consider the knee joint
during gait. If its angular position is 10° of flexion at heel
strike and 70° of flexion at toe off, the angular displacement
from heel strike to toe off is 60° of flexion. 

Change in linear and angular position (displacement) over
time is defined as linear and angular velocity, respectively.
Finding the instantaneous velocity at any given point in time,
requires the use of calculus. Instantaneous velocity is defined
as the differential of position with respect to time. Average
velocity may be calculated by simply considering two sepa-
rate locations of an object and taking the change its position
and dividing by the change in time (Table 1.3). As the time
interval becomes smaller and approaches zero, the average
velocity approaches the instantaneous velocity.

Similarly, changes in linear and angular velocity over time
are defined as linear and angular acceleration. Instantaneous
acceleration is defined as the differential of velocity with
respect to time. Average acceleration may be calculated by
simply considering two separate locations of an object and
taking the change in its velocity and dividing by the change
in time (Table 1.3). An example of the effect of constant ac-
celeration on velocity and position is shown in Figure 1.13.

KINETICS

Until now, forces and motion have been discussed as sepa-
rate topics. Kinetics is the study of motion under the action
of forces. This is a very complex topic that is only introduced
here to give the reader some working definitions. The only
chapter in this text that deals with these terms in any detail
is Chapter 48 on gait analysis.

TABLE 1.3 Kinematic Relationships

Position Velocity Acceleration
Instantaneous Average Instantaneous Average

Linear P v � v � a � a � 

Angular � � � � � � � � � 
�2 � �1�
t2 � t1

d�
�
dt

�2 � �1�
t2 � t1

d�
�
dt

v2 � v1�
t2 � t1

dv
�
dt

P2 � P1�
t2 � t1

dP
�
dt
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STATIC AND DYNAMIC EQUILIBRIUM

EXAMINING THE FORCES BOX 1.6
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Figure 1.13: Acceleration, velocity, and displacement. Schematic
representation of the motion of an object traveling at constant
acceleration. The velocity increases linearly with time, while the
position increases nonlinearly.

The standard unit of work in the metric system is a joule
(J; newton � meter). For example, if the 20-kg box in Box
1.6 is lifted 1 m under static equilibrium conditions, the work
done is equal to 200 joules (200 N � 1 m). By analogy with
the analysis in Box 1.6, under dynamic conditions, the work
done is equal to 300 J (300 N � 1 m).

Power is defined as the rate that work is being done
(power � work�time). The standard unit of power is a watt
(W; watt � newton � meter/second). Continuing with the
above example, if the box were lifted over a period of 2 sec-
onds, the average power would be 100 W under static con-
ditions and 150 W under dynamic conditions. In practical
terms, the static lift is generating the same amount of power
needed to light a 100 W light bulb for 2 seconds.

The energy of a system refers to its capacity to perform
work. Energy has the same unit as work (J) and can be di-
vided into potential and kinetic energy. While potential en-
ergy refers to stored energy, kinetic energy is the energy
of motion.

Friction
Frictional forces can prevent the motion of an object when it
is at rest and resist the movement of an object when it is in
motion. This discussion focuses specifically on Coulomb fric-
tion, or friction between two dry surfaces [11]. Consider a box
with a weight (W) resting on the ground (Fig. 1.14). If a force
(F) applied along the x axis is equal to the frictional force (Ff),
the box is in static equilibrium. However, if the applied force
is greater than the frictional force, the box accelerates to the
right because of an unbalanced external force. 
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The frictional force matches the applied force until it
reaches a critical value, F � 	sN, where N is the reaction
force of the floor pushing up on the box and 	s is the coeffi-
cient of static friction. In this example, N is equal to the mag-
nitude of the force due to the weight of the box. Once this
critical value is reached, there is still a frictional force, but it
is now defined by: F � 	kN, where 	k is the coefficient of
dynamic friction.

The values for the coefficient of friction depend on sev-
eral parameters, such as the composition and roughness of
the two surfaces in contact. In general, the dynamic coeffi-
cient of friction is lower than the static coefficient of friction.
As a consequence, it would take less force the keep the box
in Figure 1.14 moving than it would take to start it moving.

SUMMARY

This chapter starts with a review of some important mathe-
matical principles associated with kinesiology and proceeds to
cover statics, kinematics, and kinetics from a biomechanics
perspective. This information is used is used throughout the
text for analysis of such activities as lifting, crutch use, and
single-limb stance. The reader may find it useful to refer to
this chapter when these problems are addressed.
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Figure 1.14: Friction. A. Under static conditions (no motion),
the magnitude of the frictional force (Ff) exerted on the box is
the same as the applied force (F) and cannot be larger than the
coefficient of static friction (	s) multiplied by the normal force
(N). If the applied force exceeds the maximum static frictional
force, the box will move and shift to dynamic conditions. 
B. Under dynamic conditions, the friction force is equal to the
coefficient of dynamic friction (	k) multiplied by the normal
force.


