GENERAL POLYMER CHEMISTRY (KJM 5500)

Part II-Macromolecules in solution

Lecture notes

By Bo Nyström

Institute of Chemistry, University of Oslo

Translation by Anna-Lena Kjøniksen

MACROMOLECULES IN SOLUTION

- Macromolecules size, conformation and statistics in dilute solutions
- The thermodynamics of polymer solutions
- Characterization of polymer molecules in dilute polymer solutions
a) End-group analysis
b) Osmotic pressure
c) Light scattering (static)
d) Ultra centrifugation (equilibrium - and velocity sedimentation)
e) Diffusion
f) Viscosity
g) Gel permeation chromatography (GPC)
- Introduction of the scaling notion

The size, conformation and statistics of random coils

In order to describe the conformation of random coils two parameters are used:

- End-to-end Distance
- Radius of Gyration

With experimental measurements one may measure the radius of gyration, but not the end-to-end distance. The end-to-end distance is though of theoretical interest in connection with polymer statistics.

End-to end distance, r, for a conformation of a random coil.

Radius of gyration, R_{G} : The distance from the center of gravity that all the mass can be gathered into without changing the moment of inertia of the molecule

Moment of inertia $=$ mass $\cdot R_{G}^{2}$

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}^{2}=\frac{\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}}{\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}} \tag{1a}
\end{equation*}
$$

$$
\begin{align*}
& \overline{R_{G}^{2}}=\frac{\overline{\sum_{i} m_{i} r_{i}^{2}}}{\sum_{i} m_{i}} \tag{1b}\\
& \left.\overline{\mathrm{R}_{\mathrm{G}}}={\left.\overline{\left(\mathrm{R}_{\mathrm{G}}^{2}\right.}\right)^{1 / 2}=\left(\overline{\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}}\right.}_{\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}}\right)^{1 / 2} \tag{1c}
\end{align*}
$$

If all mass points have an identical mass, M_{0} :

$$
\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}=\mathrm{M}_{0} \sum_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \text { and } \sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{M}_{0}
$$

($\mathrm{n}=$ number of monomer units)

From equ. (1c):

$$
\begin{equation*}
\mathrm{R}_{\mathrm{G}}=\left(\frac{\sum_{\mathrm{i}}^{-2} \mathrm{r}_{\mathrm{i}}}{\mathrm{n}}\right)^{1 / 2} \tag{2a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{R}_{\mathrm{G}}=\frac{\left(\sum_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}^{2}}\right)^{1 / 2}}{\mathrm{n}^{1 / 2}} \tag{2b}\\
& \mathrm{R}_{\mathrm{G}}^{2}=\frac{\sum_{\mathrm{i}}^{\mathrm{r}_{\mathrm{i}}}}{\mathrm{n}} \tag{2c}
\end{align*}
$$

The molecular weight dependency of the radius of gyration

Sphere:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{G}}^{2}=\frac{\sum_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \mathrm{~m}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}} \\
\sum_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \cdot \mathrm{~m}_{\mathrm{i}}=\int_{0}^{\mathrm{R}} \mathrm{r}^{2} \mathrm{dm}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{dm}=4 \cdot \pi \mathrm{r}^{2} \cdot \rho \cdot \mathrm{dr}\left(\rho=\frac{\mathrm{m}}{\mathrm{~V}}\right) ;\left(\mathrm{V}=4 \pi \mathrm{r}^{2} \mathrm{dr}\right) \\
\sum_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2} \cdot \mathrm{~m}_{\mathrm{i}}=\int_{0}^{\mathrm{R}} 4 \cdot \pi \cdot \mathrm{r}^{4} \cdot \rho \cdot \mathrm{dr}=\frac{4 \cdot \pi \cdot \rho \cdot \mathrm{R}^{5}}{5} \\
\left\langle\int^{n} d x=\frac{x^{(n+1)}}{n+1}+\text { const. }\right\rangle \\
\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}=\int_{0}^{\mathrm{R}} 4 \cdot \pi \cdot \rho \cdot \mathrm{r}^{2} \cdot \mathrm{dr}=\frac{4 \cdot \pi \cdot \rho \cdot \mathrm{R}^{3}}{3} \\
\mathrm{R}_{\mathrm{G}}^{2}=\frac{\frac{4}{5} \cdot \pi \cdot \rho \cdot \mathrm{R}^{5}}{\frac{4}{3} \cdot \pi \cdot \rho \cdot \mathrm{R}^{3}} \\
\mathrm{R}_{\mathrm{G}}^{2}=\frac{3 \mathrm{R}^{2}}{5} ; \mathrm{R}_{\mathrm{G}}=\mathrm{R} \cdot\left(\frac{3}{5}\right)^{1 / 2} \\
\text { V(volume })=\bar{v} \cdot \frac{M}{N_{A}} ; \bar{v}=\text { the partial spesific volume } \\
\mathrm{V}=\frac{4 \cdot \pi \cdot \mathrm{R}^{3}}{3} ; \mathrm{R}^{3}=\frac{3 \cdot \overline{\mathrm{v}} \cdot \mathrm{M}}{4 \cdot \pi \cdot \mathrm{~N}_{\mathrm{A}}}
\end{gathered}
$$

$$
\mathrm{R}_{\mathrm{G}}=\left(\frac{3}{5}\right)^{1 / 2} \cdot\left(\frac{3 \overline{\mathrm{v}}}{4 \cdot \pi \cdot \mathrm{~N}_{\mathrm{A}}}\right)^{1 / 3} \cdot \mathrm{M}^{1 / 3}
$$

$$
\begin{equation*}
R_{G}=\text { const }: M^{1 / 3} \tag{3}
\end{equation*}
$$

Rod:

The rod has a cross section with an area A.

$$
\begin{aligned}
& \sum_{i} r_{i}^{2} m_{i}=\int_{0}^{L / 2} \rho \cdot r^{2} \cdot d r \cdot A=\frac{A \cdot \rho \cdot L^{3}}{24} \\
& \sum_{i} m_{i}=\int_{0}^{L / 2} A \cdot \rho \cdot d r=\frac{A \cdot \rho \cdot L}{2} \\
& R_{G}^{2}=\frac{\frac{A \cdot \rho \cdot L^{3}}{24}}{\frac{A \cdot \rho \cdot L}{2}}=\frac{L^{2}}{12}
\end{aligned}
$$

$$
R_{G}=\text { const } . L
$$

$$
\begin{equation*}
R_{G}=\text { const }: M \tag{4}
\end{equation*}
$$

Random coil

Thermodynamic good conditions:
$\mathrm{R}_{\mathrm{G}} \propto \mathrm{M}^{0.60} \quad$ ("'Mean-field" approximation)
$\mathrm{R}_{\mathrm{g}} \propto \mathrm{M}^{0.588} \quad$ ("Renormalization group theory")

- Conditions: $\mathrm{R}_{\mathrm{g}} \propto \mathrm{M}^{0.50}$

The relation between \underline{R}_{G} and the end-to-end distance, $\underline{r}_{\underline{i}}$ in the molecule

For linear flexible polymers the following relation between chain distance (r) and the radius of gyration is valid:
$(---)^{1 / 2}$ Root-mean-square (r.m.s.)-average.

$$
\left(\overline{\mathrm{r}^{2}}\right)^{1 / 2}=\left[\frac{\mathrm{n}_{1} \mathrm{r}_{1}^{2}+\mathrm{n}_{2} \mathrm{r}_{2}^{2}+\bullet \bullet \mathrm{n}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}+\bullet \bullet \mathrm{n}_{\mathrm{i}}}\right]^{1 / 2}
$$

Models for random coils

1) Chain molecules with a kind of given, locked,
rigid structure.
a) Totally extended chain:

$\mathrm{L}_{\mathrm{K}}=1 \cdot \mathrm{n}$
$\mathrm{n}=$ number of bonds; $\mathrm{l}=$ bond length; $\mathrm{L}_{\mathrm{K}}=$ contour length
b) Chain with a zigzag structure

$$
\begin{aligned}
& \mathrm{r}=\mathrm{n} \cdot \mathrm{l} \cdot \sin \left(\frac{\theta}{2}\right)
\end{aligned}
$$

This chain has a locked bond angle that assures that the chain may have only one conformation, and that it is completely rigid.
2) Chain without restrictions
(bonds that may assume every possible direction with the same probability)

This kind of chain is called freely joint chain, and it exhibits statistics that is called random walk, or drunk mans walk.

$r($ the resultant vector $)=\left(l_{1}+1_{2}+l_{3}+\bullet \bullet \bullet l_{n}\right)=\sum_{i=1}^{n} l_{i}$
$\overline{\mathrm{r}}=\overline{\underline{r} \cdot \underline{r}}=\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \overline{\underline{1}_{\mathrm{i}}}\right) \cdot\left(\sum_{\mathrm{j}=1}^{\mathrm{n}} \overline{\underline{1}_{\mathrm{j}}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \overline{\underline{1}_{\mathrm{i}} \cdot \underline{\underline{1}}_{\mathrm{j}}}$
$\mathrm{r}^{2}=\left(\mathrm{l}_{1}+\mathrm{l}_{2}+\mathrm{l}_{3}\right) \cdot\left(\mathrm{l}_{1}+\mathrm{l}_{2}+\mathrm{l}_{3}\right)=$
$\left(l_{1} \cdot l_{1}\right)+l_{1} \cdot l_{2}+l_{1} \cdot l_{3}+l_{1} \cdot l_{2}+$
$\left(\underline{1}_{2} \cdot \underline{1}_{2}\right)+\underline{1}_{2} \cdot \underline{1}_{3}+\underline{1}_{1} \cdot \underline{1}_{3}+\underline{1}_{2} \cdot \underline{1}_{3}+\left(\underline{1}_{3} \cdot \underline{1}_{3}\right)$
() represents $\mathrm{i}=\mathrm{j}$
When $i=j ; l_{i} \cdot l_{i}=l^{2}(l$ is the lenght of the vector $)$

If we have n monomers in the chain, we have $(\mathrm{n}-1) \approx \mathrm{n}$ vectors. We assume that all bonds is of the same length 1 and multiply out all $i=j$, we get the squareaverage of the end-to-end-distance
$\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot \mathrm{l}^{2}+\sum_{\mathrm{i}=1 \mathrm{j}=1}^{\mathrm{n}} \sum_{\mathrm{n}}^{\mathrm{n}}\left\langle\mathrm{l}_{\mathrm{i}} \cdot \mathrm{l}_{\mathrm{j}}\right\rangle \quad(\mathrm{i} \neq \mathrm{j})$

For $\mathrm{l}_{\mathrm{i}} \cdot \mathrm{l}_{\mathrm{j}}$ with $\mathrm{i} \neq \mathrm{j}$, we get:
$\left\langle l_{i} \cdot l_{j}\right\rangle=l^{2} \cdot\langle\cos \theta\rangle$; where θ is the angle between the vectors.
For a random coil all values of θ are equally probable

$$
\langle\cos \theta\rangle=0 ; \quad\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot \mathrm{l}^{2}
$$

$\langle r\rangle=n^{1 / 2} \cdot 1$

For a rod like particle the equivalent expression is:

$$
\begin{equation*}
\mathrm{r}=\mathrm{n} \cdot \mathrm{l} \tag{8}
\end{equation*}
$$

3) Free rotation, fixed bond angle

In this case one lets the bond angle be set at a fixed value. One allows free rotation around the bond.

In this case, the last part of the equ. (6) is not zero due to the fixed bond angle.

$$
\begin{equation*}
\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot \mathrm{l}^{2} \cdot \frac{1+\cos \theta}{1-\cos \theta} \tag{9}
\end{equation*}
$$

(This locking of the bond angle gives an increase of $\langle r\rangle$).

Equ. (8) and (9) is only valid when the end-to-end distance exhibits a Gauss distribution.

If we identify this bond angle with the tetraeder-angle $\left(\theta=109^{\circ}\right)$ we get equ. (9):
$\left\langle\mathrm{r}^{2}\right\rangle=2.00 \cdot \mathrm{n} \cdot \mathrm{l}^{2}$

If we compare this result with the experimental result for polyethylene:
$\left\langle\mathrm{r}^{2}\right\rangle=(6.7 \pm 0.3) \cdot \mathrm{n} \cdot \mathrm{l}^{2}$
we observe that this model gives too small values.
4) Hindered rotation

We will now take into consideration a fact that is often the case for polymer chains, namely when the rotation around the single bonds is not free.

For a complete description of the conformation of a model chain, we have to have information of both the bond angle (θ) and the rotation angle (ϕ) (torsion angle).
$\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot 1^{2} \cdot \frac{1+\cos \theta}{1-\cos \theta} \cdot \frac{1+\langle\cos \phi\rangle}{1-\langle\cos \phi\rangle}$
$\langle\cos \phi\rangle=0$ (free rotation) $;\langle\cos \phi\rangle \neq 0$ (hindered rotation)

Equ. (11) takes into account trans- and gaucheconformations. If the gauche- and transconformations have the same energy: $\cos \phi=0$

Real polymer chains (short-range interactions)

The end-to-end distance, r, for a polymer chain with a fixed bound angle, θ, and the rotation angle, ϕ, may be written as:

$$
\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot 1^{2} \cdot \frac{1+\cos \theta}{1-\cos \theta} \cdot \frac{1+\langle\cos \phi\rangle}{1-\langle\cos \phi\rangle}
$$

Let us now replace the real bound length 1 with a fictive bound length, β, which is called the effective bound length:

$$
\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{n} \cdot \beta^{2}
$$

The ratio $\frac{\beta}{1}$ is a measure of the stiffness of the
polymer chain.
$C=\frac{\beta^{2}}{1^{2}}$: the characteristic ratio.

Ex.:

Polymer	\underline{C}
Polyethylene	6.8
Polystyrene	9.9
Polyethylene oxide	4.1
Polybuthadiene	4.8

Definition of the Kuhn length 1_{ku}
We may generally describe a statistic chain molecule with the aid of the concept equivalent statistic segment. In this case we imagine that instead of contemplating a chain that consists of real segments with a hindered rotation around the bonds and fixed bond angles, we make a hypothetical statistic chain
with the same chain length and the same end-to-end distance as the real chain. $\left(\mathrm{n}=30, \mathrm{~N}_{\mathrm{k}}=5\right)$

Model:

We got the following equation: $\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{Cnl}^{2}$
By using the Kuhn-model, we get

$$
\left\langle\mathrm{r}^{2}\right\rangle=\mathrm{N}_{\mathrm{ku}} \cdot \mathrm{l}_{\mathrm{ku}}^{2}
$$

For a fully outstretched chain, we get the contour length L_{k}

$$
\mathrm{L}_{\mathrm{k}}=\mathrm{n} \cdot \mathrm{l}
$$

For the hypothetical chain

$$
\mathrm{L}_{\mathrm{k}}=\mathrm{N}_{\mathrm{ku}} \cdot \mathrm{l}_{\mathrm{ku}}
$$

We got: $\mathrm{n} \cdot \mathrm{l}=\mathrm{N}_{\mathrm{ku}} \cdot \mathrm{l}_{\mathrm{ku}}$

$$
\begin{aligned}
& \mathrm{l}_{\mathrm{ku}} \cdot \mathrm{n} \cdot \mathrm{l}=\mathrm{N}_{\mathrm{ku}} \cdot \mathrm{l}_{\mathrm{ku}}^{2}=\mathrm{C} \cdot \mathrm{n} \cdot 1^{2} \\
& \mathrm{l}_{\mathrm{ku}}=\mathrm{C} \cdot 1
\end{aligned}
$$

$\mathrm{N}_{\mathrm{ku}}=\frac{\mathrm{n}}{\mathrm{C}}$
We see from these two equations that the stiffer the molecule, the longer is the Kuhn-segment, while there will be a smaller number of Kuhn-segments.

Polymer chains and excluded volume effects

("long-range"-interactions)

Non-perturbed Chain (θ-conditions)

Excluded Volume Effect
(Good conditions)

$$
\begin{aligned}
& \left\langle\mathrm{r}^{2}\right\rangle=\alpha^{2} \cdot \beta^{2} \cdot \mathrm{n} \\
& \alpha=\frac{\left\langle\mathrm{r}^{2}\right\rangle^{1 / 2}}{\left\langle\mathrm{r}^{2}\right\rangle_{0}^{1 / 2}}
\end{aligned}
$$

$\alpha=$ expansion coefficient.
$\left\langle\mathrm{r}^{2}\right\rangle_{0}^{1 / 2}=$ the ideal conformation or the non-perturbed
dimension.
Polymer molecules have the dimension $\left\langle\mathrm{r}^{2}\right\rangle_{0}^{1 / 2}$ in a θ solvent (ideal solvent).

Thermodynamic good solvents: $\quad \alpha>1$

$$
\theta \text {-solvents: } \quad \alpha=1
$$

Thermodynamic poor solvents: $\quad \alpha<1$

Interactions and size of chain molecules at different

 thermodynamic conditions.Potential curve

Lennard-Jones

potential: $\mathrm{V}(\mathrm{r})=4 \mathrm{~V}_{\mathrm{e}}\left[\left(\frac{\mathrm{r}}{\mathrm{r}_{0}}\right)^{-12}-\left(\frac{\mathrm{r}}{\mathrm{r}_{0}}\right)^{-6}\right]$

1. At short distances repulsion between the monomers
2. At long distances attractive interactions between the monomers

$$
\mathrm{R}_{\mathrm{G}} \propto \mathrm{M}^{1 / 3}
$$

$R_{G} \propto M^{1 / 2}$
$\mathrm{R}_{\mathrm{G}} \propto \mathrm{M}^{0.6}$

"Globule"	The attractive and	Repulsive
attractive mon.-	repulsive	interactions leads
mon. interactions.	interactions	to an expansion of
$\alpha<1 ; \mathrm{v}<0$	compensate each	the chain.
v is the excluded	other.	$\alpha>1 ; \mathrm{v}>0$
volume parameter	Ideal chain	Excluded volume
	$\alpha=1 ; \mathrm{v}=0$	statistics
	Gaussian statistics	

Look at how the thermodynamic conditions change

with temperature. (e.g. Polystyrene/cyclohexane; θ temperature $35^{\circ} \mathrm{C}$)

a) Good conditions
b) θ-conditions
c) "Collapse" region

$$
\mathrm{v}=\mathrm{a}^{3}\left(1-2 \varepsilon_{1}\right)
$$

$\mathrm{v}=$ Excluded volume parameter
$\mathrm{a}=$ Monomer radius
$\varepsilon_{1}=$ Flory-Huggins interaction parameter

At θ-conditions, $\mathrm{v}=0$ and $\varepsilon_{1}=0.50$.

Microscopic structure and macromolecular

conformations

a) Microscopic structure of PE
b) Macroscopic conformation of PE

Different conformations of polymers.

Branched chain

Random coil

Rigid Chain

Conformation of branched polymers

$$
\mathrm{g}=\frac{\left\langle\mathrm{R}_{\mathrm{G}}^{2}\right\rangle(\text { branched })}{\left\langle\mathrm{R}_{\mathrm{G}}^{2}\right\rangle(\text { linear })} ; \mathrm{g}<0.9
$$

Ex.: Star shaped polymer with function $=6$

$$
\mathrm{g}(\mathrm{star})=\frac{3 \mathrm{f}-2}{\mathrm{f}^{2}}=0.4(\mathrm{f}=6)
$$

The thermodynamic properties of polymer

solutions

Thermodynamic functions for mixtures:
The total Gibbs energy for a solution: $\mathrm{G}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \cdot \mu_{\mathrm{i}}$
$\mathrm{n}_{\mathrm{i}}=$ number of mol of the component i
$\mu_{\mathrm{i}}=$ chemical potential of the component i

Change in Gibbs molar energy for a mixture:
$\Delta \mathrm{G}_{\mathrm{m}}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}\left(\mu_{\mathrm{i}}-\mu_{\mathrm{i}}^{0}\right)=\mathrm{G}-\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \mu_{\mathrm{i}}^{0}$
$\mu_{\mathrm{i}}^{0}=$ chemical potential in the standard condition (pure substance).

In the same way the change in mixing enthalpy is defined:

$$
\Delta \mathrm{H}_{\mathrm{m}}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}\left(\mathrm{H}_{\mathrm{i}}-\mathrm{H}_{\mathrm{i}}^{0}\right)=\mathrm{H}-\sum \mathrm{n}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}^{0}
$$

and mixing entropy:

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{m}}=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}\left(\mathrm{~S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}^{0}\right)=\mathrm{S}-\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \mathrm{~S}_{\mathrm{i}}^{0} \\
& \Delta \mathrm{G}_{\mathrm{m}}=\Delta \mathrm{H}_{\mathrm{m}}-\mathrm{T} \Delta \mathrm{~S}_{\mathrm{m}} \quad \text { (Gibbs - Helmholz) }
\end{aligned}
$$

Ex.: Look at a two-component system

$\Delta \mathrm{G}_{\mathrm{m}}=\mathrm{G}-\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right) ; \Delta \mathrm{H}_{\mathrm{m}}=\mathrm{H}-\left(\mathrm{H}_{1}+\mathrm{H}_{2}\right)$
$\Delta \mathrm{S}_{\mathrm{m}}=\mathrm{S}-\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right)$

These quantities is related in the usual way:

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{m}}=\Delta \mathrm{H}_{\mathrm{m}}-\mathrm{T} \cdot \Delta \mathrm{~S}_{\mathrm{m}} \tag{12}
\end{equation*}
$$

Partial molar and partial specific quantities

Intensive quantities: Quantities that are independent
of the size of the system (e.g. temperature and
pressure).

Extensive quantities: Quantities that are dependent of
the size of the system (e.g. weight, volume, Gibbs
energy, enthalpy and entropy).

Partial molar quantities
$\bar{Y}_{i}=\left(\frac{\partial \mathrm{Y}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}_{\mathrm{j} \neq \mathrm{i}}}$
Partial molar volume:
$\overline{\mathrm{V}}_{\mathrm{i}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}_{\mathrm{i} \neq \mathrm{j}}}$
$\overline{\mathrm{V}}_{1}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{T}, \mathrm{P}}$

Partial molar Gibbs energy:

$$
\mu_{\mathrm{i}}-\mu_{\mathrm{i}}^{0}=\overline{\mathrm{G}}_{\mathrm{i}}=\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{n}_{\mathrm{j} \neq \mathrm{i}}}
$$

$$
\left(\frac{\partial \mathrm{G}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{T}, \mathrm{P}}=\mu_{1}-\mu_{1}^{0}=\mathrm{RT} \ln \mathrm{X}_{1}=-\Pi \cdot \overline{\mathrm{V}}_{1} ; \Pi=\text { osmotic pressure }
$$

$$
\mathrm{X}_{1}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}} ; \text { mol fraction }
$$

Partial specific quantities:

$\bar{y}_{i}=\left(\frac{\partial Y}{\partial g_{i}}\right)_{T, P, g_{j \neq i}}$
g_{i} is the weight of component i.

Partial specific volume:
$\overline{\mathrm{V}}_{\mathrm{i}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{g}_{\mathrm{i}}}\right)_{\mathrm{T}, \mathrm{P}, \mathrm{g}_{\mathrm{j} \neq \mathrm{i}}}$
The relation between partial molar and partial specific quantities is:
$\overline{\mathrm{V}}_{\mathrm{i}}=\frac{\mathrm{V}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{i}}}$; where M_{i} is the molecular weight of component i

Calculation of the ideal statistic contribution to $\underline{\Delta \mathbf{S}_{\underline{m}}}$

$\mathrm{S}=\mathrm{k} \cdot \ln \Omega$
$\Omega=$ Number of different micro conditions
$\mathrm{k}=$ Boltzman's constant

This equation gives the basis for a molecular understanding of macroscopic conditions

Statistical considerations of a two/component system

$\mathrm{N}_{0}=\mathrm{N}_{1}+\mathrm{N}_{2}$
$\mathrm{N}_{0}=$ total number of lattice positions
$\mathrm{N}_{1}=$ number of solvent molecules
$\mathrm{N}_{2}=$ number of molecules of the dissolved substance

There are N_{0} ways to arrange the first molecule, and
$\mathrm{N}_{0}-1$ ways to arrange the second molecule in the
lattice. There are $\mathrm{N}_{0}\left(\mathrm{~N}_{0}-1\right)$ ways to arrange the two
first molecules etc.

$$
\Omega^{\prime}=\mathrm{N}_{0}\left(\mathrm{~N}_{0}-1\right) \cdot\left(\mathrm{N}_{0}-2\right) \cdot\left(\mathrm{N}_{0}-3\right) \cdots=\mathrm{N}_{0}!
$$

We have to correct Ω^{\prime} with the number of ways N_{1}
and N_{2} molecules may be permutated

$$
\begin{equation*}
\Omega=\frac{\mathrm{N}_{0}!}{\mathrm{N}_{1}!\mathrm{N}_{2}!} \tag{16}
\end{equation*}
$$

For the pure components:

$$
\Omega_{1}=\Omega_{2}=\frac{\mathrm{N}_{1}!}{\mathrm{N}_{1}!}=\frac{\mathrm{N}_{2}!}{\mathrm{N}_{2}!}=1
$$

Ex 1

$\mathrm{N}_{0}=3 ; \mathrm{N}_{1}=1 ; \mathrm{N}_{2}=2$

1 molecule A and 2 molecules B
$\Omega=\frac{1 \cdot 2 \cdot 3}{1 \cdot 1 \cdot 2}=3 ; \mathrm{ABB} ; \mathrm{BAB} ; \mathrm{BBA}$

Ex $2 \mathrm{~N}_{0}=4 ; \mathrm{N}_{1}=2 ; \mathrm{N}_{2}=2$
2 molecules A and 2 molecules B
$\Omega=\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 1 \cdot 2}=6 ; \mathrm{AABB} ; \mathrm{ABAB} ; \mathrm{BAAB} ; \mathrm{BABA} ;$
ABBA; BBAA
$\Delta \mathrm{S}_{\mathrm{m}}=\mathrm{S}-\mathrm{S}_{1}-\mathrm{S}_{2}$
$\Delta \mathrm{S}_{\mathrm{m}}=\mathrm{k} \cdot \ln \Omega-\mathrm{k} \cdot \ln \Omega_{1}-\mathrm{k} \cdot \ln \Omega_{2}$

From combination of equ. (15) and (16):
$\Delta \mathrm{S}_{\mathrm{m}}=\mathrm{k}\left(\ln \mathrm{N}_{0}!-\ln \mathrm{N}_{1}!-\ln \mathrm{N}_{2}!\right)$

Since all N are large numbers, we may use Stirlings approximation.
$\ln \mathrm{N}!=\mathrm{N} \cdot \ln \mathrm{N}-\mathrm{N}$
$\Delta \mathrm{S}_{\mathrm{m}}=\mathrm{k} \cdot\left[\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right) \cdot \ln \left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)-\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right)-\right.$
$\left.-\mathrm{N}_{1} \cdot \ln \mathrm{~N}_{1}+\mathrm{N}_{1}-\mathrm{N}_{2} \cdot \ln \mathrm{~N}_{2}+\mathrm{N}_{2}\right]$

$$
\begin{align*}
& \Delta \mathrm{S}_{\mathrm{m}}=\mathrm{k} \cdot\left[\mathrm{~N}_{1} \cdot \ln \left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)+\mathrm{N}_{2} \cdot \ln \left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)-\right. \\
& \left.-\mathrm{N}_{1}-\mathrm{N}_{2}-\mathrm{N}_{1} \cdot \ln \mathrm{~N}_{1}+\mathrm{N}_{1}-\mathrm{N}_{2} \cdot \ln \mathrm{~N}_{2}+\mathrm{N}_{2}\right] \\
& \Delta \mathrm{S}_{\mathrm{m}}=-\mathrm{k} \cdot\left[-\mathrm{N}_{1} \cdot \ln \left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)-\mathrm{N}_{2} \cdot \ln \left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)+\right. \\
& \left.+\mathrm{N}_{1} \cdot \ln \mathrm{~N}_{1}+\mathrm{N}_{2} \cdot \ln \mathrm{~N}_{2}\right] \\
& \Delta \mathrm{S}_{\mathrm{m}}=-\mathrm{k}\left[\mathrm{~N}_{1} \ln \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}+\mathrm{N}_{2} \ln \frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}\right] \tag{18}\\
& \mathrm{R}=\mathrm{N}_{\mathrm{A}} \cdot \mathrm{k} ; \mathrm{N}_{\mathrm{i}}=\mathrm{N}_{\mathrm{A}} \cdot \mathrm{n}_{\mathrm{i}} ; \mathrm{X}_{\mathrm{i}}=\frac{\mathrm{n}_{\mathrm{i}}}{\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}} \\
& \mathrm{X}_{1}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{n}_{2}} ; \mathrm{X}_{2}=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}} \\
& \Delta \mathrm{~S}_{\mathrm{m}}=-\mathrm{R}\left(\mathrm{n}_{1} \ln \mathrm{X}_{1}+\mathrm{n}_{2} \cdot \ln \mathrm{X}_{2}\right) \tag{19}
\end{align*}
$$

If we assume that the solution is ideal, then $\Delta \mathrm{H}_{\mathrm{m}}=0$.
From equ. (12):
$\Delta \mathrm{G}_{\mathrm{m}}=\mathrm{R} \cdot \mathrm{T} \cdot\left(\mathrm{n}_{1} \cdot \ln \mathrm{X}_{1}+\mathrm{n}_{2} \cdot \ln \mathrm{X}_{2}\right)$

Flory-Huggins model ('mean-field" consideration)

for binary polymer solutions

In this case, the x chain segments are coupled together
with each other. Except from this, the deduction will be analog with the earlier case.

- Solvent $\begin{gathered}\text { Polymer } \\ \text { segment }\end{gathered}$
$\mathrm{N}_{0}=\mathrm{N}_{1}+\mathrm{x} \cdot \mathrm{N}_{2}$
$\Delta \mathrm{S}_{\mathrm{m}}=-\mathrm{k}\left[\mathrm{N}_{1} \cdot \ln \frac{\mathrm{~N}_{1}}{\mathrm{~N}_{1}+\mathrm{x} \cdot \mathrm{N}_{2}}+\mathrm{N}_{2} \cdot \ln \frac{\mathrm{xN}}{2} \mathrm{~N}_{1}+\mathrm{x} \cdot \mathrm{N}_{2}\right]$
Compare with equ. (18).

The volume fraction for the solvent $\left(\Phi_{1}\right)$ and for the polymer $\left(\Phi_{2}\right)$.

$$
\Phi_{1}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{1}+\mathrm{x} \cdot \mathrm{~N}_{2}} ; \Phi_{2}=\frac{\mathrm{x} \cdot \mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathrm{x} \cdot \mathrm{~N}_{2}}
$$

$$
\begin{equation*}
\Delta \mathrm{S}_{\mathrm{m}}=-\mathrm{R}\left(\mathrm{n}_{1} \cdot \ln \Phi_{1}+\mathrm{n}_{2} \cdot \ln \Phi_{2}\right) \tag{22}
\end{equation*}
$$

It is important to point out equ. (22) only represent the configuration entropy of the mixture.

In addition there may exist an other type of entropy that is due to specific interactions between polymerand solvent molecules.

In Flory-Huggins theory we assume that $\partial \mathrm{H} \neq 0$ because the polymer-solvent interaction energies are different from the polymer-polymer and solventsolvent interaction energies.

Mixing enthalpy for polymer and solvent

Type of contacts

Solvent-solvent
$(1,1)$
W_{11}
Polymer-polymer
$(2,2)$
W_{22}
Solvent-polymer
$(1,2)$
W_{12}

The dissolving process may be written as the change of these contacts:
$(1,1) \cdot 1 / 2+(2,2) \cdot 1 / 2 \rightarrow(1,2)$
The difference in energy, Δ_{w}, is:
$\Delta_{\mathrm{w}}=\mathrm{w}_{12}-\left(\mathrm{w}_{11}+\mathrm{w}_{22}\right) \cdot 1 / 2$

If the average number of 1,2 contacts in the solution is
$\mathrm{P}_{1,2}$ (over all lattice configurations), the mixing
enthalpy is:
$\Delta \mathrm{H}_{\mathrm{m}}=\Delta \mathrm{w} \cdot \mathrm{P}_{1,2}$
$\mathrm{P}_{1,2}=\mathrm{x} \cdot \mathrm{N}_{2} \cdot \Phi_{1} \cdot \mathrm{Z}$
$\Delta \mathrm{H}_{\mathrm{m}}=\mathrm{x} \cdot \mathrm{N}_{2} \cdot \Phi_{1} \cdot \mathrm{Z} \cdot \Delta \mathrm{w}$
$\Phi_{1}=$ the probability of 1,2 contacts
$Z=$ the coordination number for a certain lattice
position

From the definition of volume fraction, we get (by dividing these with each other):
$\mathrm{x} \cdot \mathrm{N}_{2} \cdot \Phi_{1}=\mathrm{N}_{1} \cdot \Phi_{2} ; \Delta \mathrm{H}_{\mathrm{m}}=\mathrm{N}_{1} \cdot \Phi_{2} \cdot \mathrm{Z} \cdot \Delta \mathrm{w}$

Let us now define a new parameter ε_{1} (Flory-Huggins parameter) that expresses polymer-solvent interactions:
$\mathrm{Z} \cdot \Delta \mathrm{W}=\varepsilon_{1} \cdot \mathrm{k} \cdot \mathrm{T} ; \quad \varepsilon_{1}=\frac{\mathrm{Z} \cdot \Delta \mathrm{W}}{\mathrm{k} \cdot \mathrm{T}}$
$\Delta \mathrm{H}_{\mathrm{m}}=\mathrm{N}_{1} \cdot \Phi_{2} \cdot \varepsilon_{1} \mathrm{k} \cdot \mathrm{T}=\mathrm{n}_{1} \Phi_{2} \cdot \varepsilon_{1} \cdot \mathrm{R} \cdot \mathrm{T}$

We now got equations for $\Delta \mathrm{S}_{\mathrm{m}}$ (equ. 22) and $\Delta \mathrm{H}_{\mathrm{m}}$:

$$
\begin{equation*}
\Delta \mathrm{G}_{\mathrm{m}}=\mathrm{R} \cdot \mathrm{~T}\left(\mathrm{n}_{1} \cdot \Phi_{2} \cdot \varepsilon_{1}+\mathrm{n}_{1} \ln \Phi_{1}+\mathrm{n}_{2} \ln \Phi_{2}\right) \tag{24}
\end{equation*}
$$

This equation transforms into equ. (20) when $\mathrm{x}=1$ and $\varepsilon_{1}=0$.

The use of Flory-Huggins theory to calculate the

partial molar Gibbs energy

$\Delta \overline{\mathrm{G}}_{1}=\left(\frac{\partial\left(\Delta \mathrm{G}_{\mathrm{m}}\right)}{\partial \mathrm{n}_{1}}\right)_{\mathrm{T}, \mathrm{P}} ;$ diff.equ. (24)
$\Delta \overline{\mathrm{G}}_{1}=\mathrm{RT} \cdot\left[\left(\frac{\partial \Phi_{1}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{n}_{2}} \cdot \frac{\mathrm{n}_{1}}{\Phi_{1}}+\ln \Phi_{1}+\left(\frac{\partial \Phi_{2}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{n}_{2}} \cdot \frac{\mathrm{n}_{2}}{\Phi_{2}}+\varepsilon_{1} \cdot \Phi_{2}+\varepsilon_{1} \cdot \mathrm{n}_{1} \cdot\left(\frac{\partial \Phi_{2}}{\partial \mathrm{n}_{1}}\right)_{\mathrm{n}_{2}}\right]$
(25)

Use $\Phi_{1}+\Phi_{2}=1$ and differentiate:
$\left(\frac{d}{d x}(u \cdot v)=u \cdot \frac{d v}{d x}+v \frac{d u}{d x}\right)$
$\left(\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{u}}{\mathrm{v}}\right)=\frac{\mathrm{v}(\mathrm{du} / \mathrm{dx})-\mathrm{u}(\mathrm{dv} / \mathrm{dx})}{\mathrm{v}^{2}}\right)$

$$
\Phi_{1}=\frac{\mathrm{n}_{1}}{\mathrm{n}_{1}+\mathrm{x} \cdot \mathrm{n}_{2}} ; \Phi_{2}=\frac{\mathrm{x} \cdot \mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{x} \cdot \mathrm{n}_{2}}
$$

$$
\begin{equation*}
\Delta \overline{\mathrm{G}}_{1}=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\ln \left(1-\Phi_{2}\right)+\left(1-\frac{1}{\mathrm{x}}\right) \cdot \Phi_{2}+\varepsilon_{1} \cdot \Phi_{2}^{2}\right] \tag{26}
\end{equation*}
$$

For dilute solutions: $\Phi_{2} \ll 1$. We may use a polynomial approximation (Mac-Laurin)
$\ln \left(1-\Phi_{2}\right) \approx-\Phi_{2}-\frac{\Phi_{2}^{2}}{2}-\frac{\Phi_{2}^{3}}{3}-\ldots \ldots$.
$\Delta \overline{\mathrm{G}}_{1}=\mathrm{R} \cdot \mathrm{T} \cdot\left[-\frac{\Phi_{2}}{\mathrm{x}}-\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \Phi_{2}^{2}-\frac{\Phi_{2}^{3}}{3}-\ldots ..\right]$ (26a)
(see equation 14)
$-\pi \cdot \overline{\mathrm{V}}_{1}=\mu_{1}-\mu_{0}=\mathrm{R} \cdot \mathrm{T} \cdot\left[-\frac{\Phi_{2}}{\mathrm{x}}-\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \Phi_{2}^{2}-\frac{\Phi_{2}^{3}}{3}\right]$

When
$\mathrm{x}=\frac{\overline{\mathrm{V}}_{2}}{\overline{\mathrm{~V}}_{1}} ; \Phi_{2}=\mathrm{n}_{2} \cdot \frac{\mathrm{~V}_{2}}{\mathrm{n}_{1} \cdot \mathrm{~V}_{1}+\mathrm{n}_{2} \cdot \mathrm{~V}_{2}}=\mathrm{c} \cdot \frac{\overline{\mathrm{V}}_{2}}{\mathrm{M}_{2}} \mathrm{c}=$ cons. $\left(\frac{\text { mass }}{\mathrm{V}}\right)$
$v_{i}=\frac{\bar{V}_{i}}{M_{i}}=\frac{1}{\rho_{i}}\left(\rho_{i}=\right.$ density $)$

$$
\begin{equation*}
-\pi=\left[-\frac{\mathrm{c} \cdot \overline{\mathrm{~V}}_{1}}{\mathrm{M}_{2}}-\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \frac{\mathrm{c}^{2} \overline{\mathrm{~V}}_{2}^{2}}{\mathrm{M}_{2}^{2}}-\cdot \cdot\right] \frac{\mathrm{R} \cdot \mathrm{~T}}{\overline{\mathrm{~V}}_{1}} \tag{27}
\end{equation*}
$$

$$
\begin{aligned}
& A_{2}=\frac{\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot M_{2}^{2} \cdot \rho_{1}}{\rho_{2}^{2} \cdot M_{2}^{2} \cdot M_{1}} \\
& A_{2}=\frac{\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \rho_{1}}{\rho_{2}^{2} \cdot M_{1}}
\end{aligned}
$$

A_{2} is the second virial coefficient.

$$
\begin{equation*}
\Pi=\mathrm{c} \cdot \mathrm{R} \cdot \mathrm{~T}\left(\frac{1}{\mathrm{M}_{2}}+\mathrm{A}_{2} \mathrm{c}+\ldots\right) \tag{27a}
\end{equation*}
$$

Discussion of Flory-Huggins interaction parameter

- ε_{1} is often dependent of the polymer concentration
- ε_{1} is also temperature dependent
- The experimental value of ε_{1} often diverges from the theoretical value. This is related to the fact that the Flory-Huggins parameter, ε_{1}, consists of both an enthalpy part and an entropy part.
$\varepsilon=\varepsilon_{\mathrm{H}}+\varepsilon_{\mathrm{S}} ; \varepsilon_{\mathrm{S}}$ is constant
and
$\varepsilon_{H}=-T \cdot \frac{\partial \varepsilon}{\partial T}$; the enthalpy is dependent of T

Flory-Krigbaum theory of dilute polymer solutions

Dilute Solution

The factor $\frac{1}{2}-\varepsilon_{1}$ may be viewed as a measure of the deviation from the properties of an ideal solution.

This contribution to Gibbs molar energy is called
$\Delta \mathrm{G}_{1}^{\mathrm{E}}$, and may consist of both enthalpy- and entropy
components:

$$
\begin{align*}
& \Delta \overline{\mathrm{G}}_{1}^{\mathrm{E}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left(\psi_{1}-\tau_{1}\right) \cdot \Phi_{2}^{2} \tag{28}\\
& E=\text { "excess" } \\
& \tau_{1}=\text { enthalpy parameter } \\
& \psi_{1}=\text { entropy parameter } \\
& -\Delta \mathrm{G}_{1}^{\mathrm{E}}=-\Delta \mathrm{H}_{1}^{\mathrm{E}}+\mathrm{T} \cdot \Delta \mathrm{~S}_{1}^{\mathrm{E}} \tag{29}
\end{align*}
$$

$$
\begin{equation*}
\Delta \mathrm{H}_{1}^{\mathrm{E}}=\mathrm{R} \cdot \mathrm{~T} \cdot \tau_{1} \cdot \Phi_{2}^{2} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \mathrm{S}_{1}^{\mathrm{E}}=\mathrm{R} \cdot \psi_{1} \cdot \Phi_{2}^{2} \tag{31}
\end{equation*}
$$

$$
\left(\psi_{1}-\tau_{1}\right)=\frac{1}{2}-\varepsilon_{1}
$$

$$
\Delta \mathrm{G}_{1}^{\mathrm{E}}=0 \rightarrow \theta \cdot \Delta \mathrm{~S}_{1}^{\mathrm{E}}=\Delta \mathrm{H}_{1}^{\mathrm{E}}
$$

$$
\theta \cdot \mathrm{R} \cdot \psi_{1} \cdot \Phi_{2}^{2}=\mathrm{R} \cdot \mathrm{~T} \cdot \tau_{1} \cdot \Phi_{2}^{2}
$$

$$
\theta=\frac{\mathrm{T} \cdot \tau_{1}}{\psi_{1}}
$$

$$
\begin{equation*}
\psi_{1}-\tau_{1}=\psi_{1} \cdot\left(1-\frac{\theta}{\mathrm{T}}\right)=\frac{1}{2}-\varepsilon_{1} \tag{32}
\end{equation*}
$$

One may express the expansion factor α in terms of the Flory-temperature θ

$$
\begin{equation*}
\alpha^{5}-\alpha^{3}=2 \cdot \mathrm{C}_{\mathrm{m}} \cdot \psi_{1} \cdot\left(1-\frac{\theta}{\mathrm{T}}\right) \cdot \mathrm{M}^{1 / 2} \tag{33}
\end{equation*}
$$

C_{m} is a constant.

We see that at the θ-temperature $(T=\theta), \alpha=1$. For high molecular weights, equ 33 gives $\alpha^{5} \propto \mathrm{M}^{1 / 2} \Rightarrow$

$$
\alpha \propto \mathrm{M}^{0.1} \quad \alpha=\frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{R}_{\mathrm{G}, \theta}} \propto \frac{\mathrm{R}_{\mathrm{G}}}{\mathrm{M}^{0.5}} ; \mathrm{R}_{\mathrm{G}}(\text { good }) \propto \mathrm{M}^{0.6}
$$

Phase equilibriums

Let us consider a two-component system that consists of a polymer dissolved in a thermodynamic poor solvent that gets better with increasing temperature.

Two phases α and β shares a common tangent. A
homogenous phase is stabile if $\mathrm{X}_{2}<\alpha$ or $\mathrm{X}_{2}>\beta$.

Thermodynamically unstable in the area $\alpha \leq \mathrm{X}_{2} \leq \beta$.
At T_{3} one has a system that is completely mixable.
$\mathrm{T}_{\mathrm{kr}}=$ critical temperature for solubility.
D and E represents inflection points on the curve.

The striped red curve (the turbidity curve) represents the heterogeneous two-phase region.

For the inflection points D and E the following mathematical relation is valid:
$\frac{\partial^{2}\left(\Delta \mathrm{G}_{\mathrm{m}}\right)}{\partial \Phi_{2}^{2}}=0 \quad$ and $\quad \frac{\partial^{3}\left(\Delta \mathrm{G}_{\mathrm{m}}\right)}{\partial \Phi_{2}^{3}}=0$
because D and E converge in the critical point. We have used volume fraction, but the same is valid if one uses mol fraction X.
$\Delta \mathrm{G}_{\mathrm{i}}=\frac{\partial\left(\Delta \mathrm{G}_{\mathrm{m}}\right)}{\partial \Phi_{\mathrm{i}}}=\mu_{\mathrm{i}} ; \quad \frac{\partial \mu_{1}}{\partial \Phi_{2}}=0 \quad$ and $\quad \frac{\partial^{2} \mu_{1}}{\partial \Phi_{2}^{2}}=0$
We got: (see equ. 26)
$\frac{\mu_{1}-\mu_{0}}{\mathrm{RT}}=\ln \left(1-\Phi_{2}\right)+\left(1-\frac{1}{\mathrm{x}}\right) \cdot \Phi_{2}+\varepsilon_{1} \Phi_{2}^{2}$
$\frac{\partial \mu_{1}}{\partial \Phi_{2}}=-\frac{1}{1-\Phi_{2, \mathrm{c}}}+\left(1-\frac{1}{\mathrm{x}}\right)+2 \cdot \varepsilon_{1, \mathrm{c}} \Phi_{2, \mathrm{c}}=0$
$\frac{\partial^{2} \mu_{1}}{\partial \Phi_{2}^{2}}=\frac{(-1) \cdot(-1)}{\left(1-\Phi_{2, \mathrm{c}}\right)^{2}}-2 \cdot \varepsilon_{1, \mathrm{c}}=0$

We may write the equations above in the following way:
$\frac{1}{1-\Phi_{2, \mathrm{c}}}-\left(1-\frac{1}{\mathrm{x}}\right)-2 \cdot \varepsilon_{1, \mathrm{c}} \Phi_{2, \mathrm{c}}=0$
$\frac{1}{\left(1-\Phi_{2, \mathrm{c}}\right)^{2}}-2 \cdot \varepsilon_{1, \mathrm{c}}=0$
By combining equation (a) and (b), we can derive the following relations:
$\Phi_{2, \mathrm{c}}=\frac{1}{1+\mathrm{x}^{1 / 2}}$
$\varepsilon_{1, \mathrm{c}}=\frac{1}{2} \cdot\left(1+\frac{1}{\mathrm{x}^{1 / 2}}\right)^{2}=\frac{1}{2}+\frac{1}{2 \mathrm{x}}+\frac{1}{\mathrm{x}^{1 / 2}}$

When $\quad \mathrm{x} \rightarrow \infty ; \Phi_{2, \mathrm{c}}=\frac{1}{\mathrm{x}^{1 / 2}}$ and $\varepsilon_{1, \mathrm{c}}=\frac{1}{2}$

From equ. (32): $\quad \psi_{1}-\tau_{1}=\psi_{1} \cdot\left(1-\frac{\theta}{\mathrm{T}}\right)=\frac{1}{2}-\varepsilon_{1}$

$$
\begin{align*}
& \psi_{1} \cdot\left(1-\frac{\theta}{\mathrm{T}_{\mathrm{c}}}\right)=\frac{1}{2}-\frac{1}{2}-\frac{1}{2 \mathrm{x}}-\frac{1}{\mathrm{x}^{1 / 2}} \\
& \frac{\theta}{\mathrm{~T}_{\mathrm{c}}}=1+\frac{\frac{1}{2 \mathrm{x}}+\frac{1}{\mathrm{x}^{1 / 2}}}{\psi_{1}} \\
& \frac{1}{\mathrm{~T}_{\mathrm{c}}}=\frac{1}{\theta} \cdot\left(1+\frac{\frac{1}{2 \mathrm{x}}+\frac{1}{\mathrm{x}^{1 / 2}}}{\psi_{1}}\right) \tag{3}
\end{align*}
$$

When $\quad \mathrm{x} \rightarrow \infty, \mathrm{T}_{\mathrm{c}}=\theta$

$\frac{1}{\mathrm{~T}_{\mathrm{c}}}=\frac{1}{\theta} \cdot\left[1+\frac{\frac{1}{2 \mathrm{x}}+\frac{1}{\mathrm{x}^{1 / 2}}}{\Psi_{1}}\right]$

Plot of $\quad \frac{1}{\mathrm{~T}_{\mathrm{c}}}$ against $\frac{1}{\mathrm{x}^{1 / 2}}+\frac{1}{2 \mathrm{x}}$

$$
\begin{aligned}
& 1 / T_{c} \cdot 10^{3} \\
& \text { - ps/cykloh. } \\
& 3,5
\end{aligned}
$$

Upper critical solution temperature (UCST) and

Lower critical solution temperature (LCST)

Illustration with example:

$$
w_{2} \text { (weight fraction) }
$$

Characterizing polymer solutions

Analyses of end groups:

- Estimation of the number of end groups. If the chemical structure of the molecule is known, $\overline{\mathrm{M}}_{\mathrm{n}}$ can be determined.

Methods that are used for analyses:

a) Chemical: Titration methods is often used (carboxyl, hydroxyl, amino groups) (polyester and polyamides)
b) Radio chemical: Introduction of radioactive groups under polymerization in order to measure the radioactivity of the produced polymer
c) Spectroscopic: (IR and UV)

These methods may be used together with e.g. osmometry in order to gain information of polymerization mechanisms and branching reactions.

Osmotic pressure (П)

α-side: Pure solvent; component 1
β-side: Polymer solution; polymer (component 2)

+ solvent (component 1)

At start: $\quad \mu_{1}^{\alpha}=\mu_{1}^{0}(1 \mathrm{~atm})$

$$
\mu_{1}^{\beta}<\mu_{1}^{0}
$$

At equilibrium: $\mu_{1}^{\alpha}=\mu_{1}^{\beta}+\int_{\mathrm{P}_{0}}^{\mathrm{P}}\left(\frac{\partial \mu_{1}}{\partial \mathrm{P}}\right)_{\mathrm{T}} \cdot \partial \mathrm{P}$

From thermodynamics:
$\left(\frac{\partial \mu_{1}}{\partial \mathrm{P}}\right)_{\mathrm{T}, \mathrm{n}_{1} \mathrm{n}_{2}}=\overline{\mathrm{V}}_{1}$ (mol.vol. of solvent)

$$
\begin{aligned}
& \mu_{1}^{\alpha}-\mu_{1}^{\beta}=V_{1}\left(P-P_{0}\right) \\
& \Delta \overline{\mathrm{G}}_{1}=\mu_{1}^{\beta}-\mu_{1}^{0}=-\Pi \cdot \overline{\mathrm{V}}_{1}
\end{aligned}
$$

From equ. (26):

$$
\Delta \overline{\mathrm{G}}_{1}=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\ln \left(1-\Phi_{2}\right)+\left(1-\frac{1}{\mathrm{x}}\right) \cdot \Phi_{2}+\varepsilon_{1} \cdot \Phi_{2}^{2}\right]
$$

Polynomial approximation:

$$
\begin{gathered}
\ln \left(1-\Phi_{2}\right)=-\Phi_{2}-\frac{\Phi_{2}^{2}}{2}-\frac{\Phi_{2}^{3}}{3}-\ldots \\
\left(\Phi_{2} \ll 1\right) \\
\Pi=\left[\Phi_{2}+\frac{\Phi_{2}^{2}}{2}+\frac{\Phi_{2}^{3}}{3}-\Phi_{2}+\frac{\Phi_{2}}{\mathrm{x}}-\varepsilon_{1} \cdot \Phi_{2}^{2}\right] \cdot \frac{\mathrm{R} \cdot \mathrm{~T}}{\overline{\mathrm{~V}}_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& \Pi=\left[\frac{\Phi_{2}}{\mathrm{x}}+\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \Phi_{2}^{2}+\frac{\Phi_{2}^{3}}{3}\right] \cdot \frac{\mathrm{R} \cdot \mathrm{~T}}{\overline{\mathrm{~V}}_{1}} \\
& \Phi_{2}=\mathrm{c} \cdot \mathrm{v}_{2} ; \mathrm{x}=\frac{\overline{\mathrm{V}}_{2}}{\overline{\mathrm{~V}}_{1}} ; \mathrm{v}_{\mathrm{i}}=\frac{\overline{\mathrm{V}}_{\mathrm{i}}}{\mathrm{M}_{\mathrm{i}}}
\end{aligned}
$$

$\mathrm{c}=$ polymer concentration; $\mathrm{v}_{2}=$ partial specific volume of the polymer.

$$
\begin{aligned}
& \Pi=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\frac{\mathrm{cv}_{2} \overline{\mathrm{~V}}_{1}}{\overline{\mathrm{~V}}_{1} \overline{\mathrm{~V}}_{2}}+\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \frac{\mathrm{v}_{2}^{2}}{\overline{\mathrm{~V}}_{1}} \cdot \mathrm{c}^{2}+\frac{1}{3} \cdot \mathrm{v}_{2}^{3} \cdot \mathrm{\bar{V}}_{1} \cdot \mathrm{c}^{3}\right](35 \mathrm{a}) \\
& \Pi=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\frac{\mathrm{c} \overline{\mathrm{~V}}_{2}}{\mathrm{M}_{2} \overline{\mathrm{~V}}_{2}}+\frac{\overline{\mathrm{V}}_{2}^{2}}{\mathrm{M}_{2}^{2} \overline{\mathrm{~V}}_{1}} \cdot\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \mathrm{c}^{2}+\frac{1}{3} \cdot \frac{\overline{\mathrm{~V}}_{2}^{3}}{\mathrm{M}_{2}^{3} \overline{\mathrm{~V}}_{1}} \cdot \mathrm{c}^{3}\right] \\
& \frac{\Pi}{\mathrm{c}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\frac{1}{\overline{\mathrm{M}}_{\mathrm{n}}}+\frac{\overline{\mathrm{V}}_{2}^{2}}{\mathrm{M}_{\mathrm{n}}^{2} \cdot \overline{\mathrm{~V}}_{1}} \cdot\left(\frac{1}{2}-\varepsilon_{1}\right) \cdot \mathrm{c}+\frac{1}{3} \cdot \frac{\overline{\mathrm{~V}}_{2}^{3}}{\overline{\mathrm{M}}_{\mathrm{n}}^{3} \cdot \overline{\mathrm{~V}}_{1}} \cdot \mathrm{c}^{2}\right] \\
& \frac{\Pi}{\mathrm{c}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left[\frac{1}{\overline{\mathrm{M}}_{\mathrm{n}}}+\mathrm{A}_{2} \cdot \mathrm{c}+\mathrm{A}_{3} \cdot \mathrm{c}^{2}+\cdot \cdot\right] \\
& (35 \mathrm{~d})
\end{aligned}
$$

Where the second virial coefficient is:

$$
\mathrm{A}_{2}=\frac{\overline{\mathrm{V}}_{2}^{2}}{\overline{\mathrm{M}}_{\mathrm{n}}^{2} \cdot \overline{\mathrm{~V}}_{1}} \cdot\left(\frac{1}{2}-\varepsilon_{1}\right)
$$

At low concentrations (c $<1 \%$)
$\Pi=\frac{\mathrm{R} \cdot \mathrm{T} \cdot \mathrm{c}}{\overline{\mathrm{M}}_{\mathrm{n}}} \quad$ (Van't Hoff's equation)

At high concentrations:

$$
\frac{\Pi}{\mathrm{c}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left(\frac{1}{\mathrm{M}_{\mathrm{n}}}+\mathrm{A}_{2} \cdot \mathrm{c}+\mathrm{A}_{3} \cdot \mathrm{c}^{2}+\cdot \cdot\right)
$$

$c\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
conditions. We examine the following system:
a) PMMA/toluene
b) PMMA/Acetone
c) PMMA/Acrylnitrile (θ) $\varepsilon_{1}=0.5 ; \mathrm{A}_{2}=0$

M/c

$c\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$

1) Rods and coils in good solvents
2) Compact spheres
3)
4) Poor solvents $A_{2}<0$

Viscosity

Definition of viscosity:

The viscosity of a liquid is an expression for its
resistance to flow.
Newtonian liquids at laminar flow:
$\frac{\mathrm{F}}{\mathrm{A}}=\frac{\eta \cdot \mathrm{dv}}{\mathrm{dy}} ; \eta=$ viscosity

The relation between the force F, that pulls the plate with an area A in contact with the liquid, is called shear stress $\sigma=\frac{\mathrm{F}}{\mathrm{A}}$. The relation $\frac{\mathrm{dv}}{\mathrm{dy}}$ is called shear
rate $\gamma \equiv \frac{\mathrm{dv}}{\mathrm{dy}}$

$$
\begin{equation*}
\eta=\frac{\frac{\mathrm{F}}{\mathrm{~A}}}{\frac{\mathrm{dv}}{\mathrm{dy}}}=\frac{\sigma}{\gamma}=\frac{\text { shear stress }}{\text { shear rate }} \tag{37}
\end{equation*}
$$

For Newtonian liquids, this relation is constant. The dimension for the quantities is:

$$
\sigma=\frac{\mathrm{N}}{\mathrm{~m}^{2}} ; \gamma=\mathrm{s}^{-1} ; \eta=\frac{\mathrm{N} \cdot \mathrm{~s}}{\mathrm{~m}^{2}}
$$

Non-Newtonian liquids.

Generally the broadness of the Newtonian region will decrease with increasing molecular weight.

Viscosity in polymer solutions

In a polymer solution, the change in the viscosity is dependent of a number of factors:

- Solvent (thermodynamically good or poor solvents)
- Type of polymer (size and conformation)
- The molecular weight of the polymer
- The polymer concentration
- Temperature

Einstein's equation:

$$
\begin{equation*}
\eta_{\mathrm{s}}=\eta_{0}\left(1+2.5 \cdot \Phi_{2}\right) \tag{38}
\end{equation*}
$$

$\eta_{\mathrm{s}}=$ the solution viscosity
$\eta_{0}=$ the solvent viscosity $\Phi_{2}=$ the volume fraction of particles

Equ. (38) is valid for rigid spheres at low
concentrations.

For particles of other geometric shapes than spherical, the following relation is valid:

$$
\begin{equation*}
\eta_{\mathrm{s}}=\eta_{0} \cdot\left(1+\beta \cdot \Phi_{2}\right) \tag{39}
\end{equation*}
$$

where the parameter β is a function of the asymmetry of the molecule.

Different types capillary viscosity meters:

Ostwald: dependent on the volume of the liquid Ubbelohde: not dependent on the volume of the liquid

Ostwald

Ubbelohde

Poiseuilles equation:
$\frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\pi \mathrm{r}^{4} \cdot \overline{\mathrm{p}}}{8 \eta \mathrm{~L}}$
r = capillary radius
$\frac{\mathrm{dV}}{\mathrm{dt}}=$ the volume of a liquid that flows through the capillary
$\mathrm{L} \quad=$ the length of the capillary
$\eta \quad=$ viscosity
p = the average pressure that produces flow
$\mathrm{p}=\mathrm{h} \cdot \rho \cdot \mathrm{g}$
$\mathrm{h}=$ the level of the liquid
$\rho=$ the density of the liquid $\mathrm{g}=$ the acceleration of gravity

If we substitute equ. (41) in (40) and assumes constant flow velocity we get:

$$
\begin{equation*}
\eta=\frac{\pi \cdot r^{4} \cdot \mathrm{~h} \cdot \rho \cdot \mathrm{~g} \cdot \mathrm{t}}{8 \cdot \mathrm{~L} \cdot \mathrm{~V}} \tag{42}
\end{equation*}
$$

Equ. (42) is valid for Newtonian flow.
$\underline{\text { Reynolds number: }} \mathrm{R}_{\mathrm{ey}}=\frac{2 \cdot \mathrm{~V} \cdot \rho}{\pi \mathrm{r} \cdot \eta \cdot \mathrm{t}}<1000$ (Laminar flow)
$\mathrm{R}_{\mathrm{et}}>1000 \quad$ (turbulent flow)

Determination of the intrinsic viscosity [η]

Relative viscosity: $\quad \eta_{r}=\frac{\eta}{\eta_{0}}=\frac{\mathrm{t} \cdot \rho}{\mathrm{t}_{0} \cdot \rho_{0}}$
0 indicates solvent.

In dilute solutions, $\rho \approx \rho_{0}$.

$$
\text { Specific viscosity: } \quad \eta_{\mathrm{sp}}=\eta_{\mathrm{r}}-1=\frac{\mathrm{t}-\mathrm{t}_{0}}{\mathrm{t}_{0}}
$$

Reduced viscosity:

$$
\frac{\eta_{\mathrm{sp}}}{\mathrm{c}}
$$

Intrinsic viscosity:

$$
[\eta]=\lim \cdot \frac{\eta_{\mathrm{sp}}}{\mathrm{c}} ; \quad \mathrm{c} \rightarrow 0
$$

Empirical relation that represents the concentration dependence of the reduced viscosity:

$$
\begin{equation*}
\frac{\eta_{\mathrm{sp}}}{\mathrm{c}}=[\eta]+\mathrm{k}^{\prime} \cdot[\eta]^{2} \cdot \mathrm{c} \tag{43}
\end{equation*}
$$

$\mathrm{k}^{\prime}=$ Huggins constant.

Flexible polymer coils in dilute solutions:
$\mathrm{k}^{\prime} \approx 0.5$ (θ-conditions); $\mathrm{k}^{\prime}<0.5$ (good conditions)

Staudinger-Mark-Houwinks equation

Experimental determination of the relation between
$[\eta]$ and M .

$$
\begin{equation*}
[\eta]=K \cdot M^{\mathrm{a}} \tag{44}
\end{equation*}
$$

Relation between molecular shape and exponent
Sphere: $[\eta]=2.5 \cdot \mathrm{M}^{0} ; \mathrm{a}=0$
Coil: $\left\{\begin{array}{l}\text { Compact: }[\eta]=\mathrm{K} \cdot \mathrm{M}^{0.5} ; \mathrm{a}=0.5 \\ \text { Random (good conditions): }[\eta]=\mathrm{K} \cdot \mathrm{M}^{0.7} \\ \text { Random (} \theta \text {-conditions): }[\eta]=\mathrm{K} \cdot \mathrm{M}^{0.5}\end{array}\right.$
Rod: $\quad[\eta]=\mathrm{K} \cdot \mathrm{M}^{1.8} ; \mathrm{a}=1.8$

Random coils and Flory-Fox equation

$$
\begin{gather*}
\eta_{\mathrm{s}}=\eta_{0}\left(1+2.5 \cdot \Phi_{2}\right) \\
\eta_{\mathrm{s}}=\text { solution viscosity } \\
\Phi_{2}=\mathrm{c} \cdot \mathrm{v}_{\mathrm{h}} ; \mathrm{v}_{\mathrm{h}}=\text { hydrodynamic volume } \\
\eta_{\mathrm{r}}=\frac{\eta_{\mathrm{s}}}{\eta_{0}}=1+2.5 \cdot \mathrm{c} \cdot \mathrm{v}_{\mathrm{h}} \\
\eta_{\mathrm{sp}}=\eta_{\mathrm{r}}-1=2.5 \cdot \mathrm{c} \cdot \mathrm{v}_{\mathrm{h}} \\
\lim _{\mathrm{c} \rightarrow 0} \frac{\eta_{\mathrm{sp}}}{\mathrm{c}}=[\eta]=2.5 \cdot \mathrm{v}_{\mathrm{h}} \tag{45}
\end{gather*}
$$

Let us assume that a random coil will behave as an equivalent sphere with a radius R_{e} :

$$
\mathrm{R}_{\mathrm{e}}=\psi \cdot \mathrm{R}_{\mathrm{G}} ; \psi \approx 0.8
$$

The hydrodynamic volume for the particle is:

$$
\mathrm{v}_{\mathrm{h}}^{\prime}=\frac{4 \pi \cdot \psi^{3} \cdot \mathrm{R}_{\mathrm{G}}^{3}}{3}
$$

This is the hydrodynamic volume pr. sphere, but we are interested in the hydrodynamic volume pr. weight unit of the macromolecule.

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{h}}=\frac{\mathrm{v}_{\mathrm{h}}^{\prime} \cdot \mathrm{N}_{\mathrm{A}}}{\mathrm{M}} \\
& \mathrm{v}_{\mathrm{h}}=\frac{4 \pi \cdot \psi^{3} \cdot \mathrm{R}_{\mathrm{G}}^{3} \cdot \mathrm{~N}_{\mathrm{A}}}{3 \cdot \mathrm{M}}
\end{aligned}
$$

From Einstein's equation (45) we get:

$$
\begin{equation*}
[\eta]=\frac{\phi \cdot \mathrm{R}_{\mathrm{G}}^{3}}{\mathrm{M}} \tag{46}
\end{equation*}
$$

$\phi \approx 2.8 \cdot 10^{21}(\theta$-solvent $) ; \phi \approx 2.0 \cdot 10^{21}($ in good
solvents). Equ. (46) (Flory-Fox equation)

Kirkwood-Riseman:

$[\eta]=\frac{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{f}_{0} \cdot \mathrm{~b} \cdot \mathrm{R}_{\mathrm{G}}^{2}}{6 \pi \cdot \eta_{0} \cdot \mathrm{M}} ;[\eta] \propto \frac{\mathrm{R}_{\mathrm{G}}^{2} \cdot \mathrm{R}_{\mathrm{D}}}{\mathrm{M}}$
$\mathrm{f}_{0}=\left(6 \pi \eta_{0} \mathrm{R}_{\mathrm{D}}\right)$ the friction coefficient when $\mathrm{c} \rightarrow 0$
$\eta_{0}=$ solvent viscosity
$\mathrm{b}=$ bond length
$\mathrm{R}_{\mathrm{D}}=$ hydrodynamic or dynamic radius

Gel permeatation chromatography (GPC)

GPC is a method for separation of large molecules (separates by molecular size). This method is used to determine the molecular weight and the molecular weight distribution $\left(\overline{\mathrm{M}}_{\mathrm{w}}\right)$ of polymers.

Principal sketch of GPC equipment

Printer

GPC is a method where the polymers are fractionated according to the size of the molecules, and accordingly by the molecular weight. However, the molecular weigh may not be determined directly, but only by calibrating of the system by measuring the eludating volume for a number of monodisperse polymer fractions with a known molecular weight.

Illustration of a GPC experiment.

The gel particles consist of a cross-linked polymer and have variable pore sizes.

Polymer: Ex.: Styragel (co-polymerization of styrene
with divinyle benzene) and dextran (sephadex)

Pore diameter: 25-10.000 \AA.

The stationary phase of the column: The gel particles included the liquid that is bond inside the pores.

The mobile phase of the column: The eludating sample that flows through the column between the gel particles.

The sample with polymer: A small volume is injected at the top of the column.

Detector: UV-absorption, refractive index (differential refractometer).

Retention time: The time that a certain fraction is in the column.

The flow of the polymer particles through the column is a function of the Brownian motion and the size of
the polymer molecules.
Calibrating: With monodisperse polymers (PS, PEO)
of a known molecular weight.

$$
\log \mathrm{M}=\mathrm{a}+\mathrm{b} \cdot \mathrm{~V}_{\mathrm{r}}
$$

$\mathrm{M}=$ molecular weight
$\mathrm{V}_{\mathrm{r}}=$ retention volume
a and b are constants

Universal calibrating: $[\eta] \cdot \mathrm{M}$ plotted against $\mathrm{V}_{\mathrm{r}} \cdot[\eta] \cdot \mathrm{M}$

correspond to a hydrodynamic volume

$$
\left([\eta]=\frac{\psi \cdot \mathrm{R}_{\mathrm{G}}^{3}}{\mathrm{M}}\right)
$$

Fig. 15.8 Universal calibration in gel-permeation chromatography for a variety of polymers in tetrahydrofuran. [Reproduced from Z. Grubisic, P. Rempp and H. Benoit, Polymer Lett., 5, 753 (1967); with permission of John Wiley \& Sons, Inc., New York.]

Light scattering

Inhomogeneities in the sample (fluctuations in refractive index) causes light scattering:
a)
Density fluctuations
b)
Concentration fluctuations

Light scattering (static) gives information of molecular weight $\left(\mathrm{M}_{\mathrm{w}}\right)$, the radius of gyration $\left(\mathrm{R}_{\mathrm{G}}\right)$ and thermo dynamical properties (e.g. A_{2}).

Principal sketch of light scattering equipment

Scatter of light polarized in a plane from one particle:

Let us consider the scatter from light polarized in a plane, with a frequency v, and wavelength λ, from one particle. The electric field, E, may be written in the following way:

$$
E=E_{0} \cdot \cos (2 \pi \nu t)
$$

$\mathrm{E}_{0}=$ max. amplitude,
$v=$ frequency
$\lambda=$ wave length
$\mathrm{t}=$ time

An oscillating field will cause the introduction of an oscillating dipole moment, μ, in the molecule:

$$
\mu=\gamma \cdot E=\gamma \cdot E_{0} \cdot \cos (2 \pi \nu t) ; \gamma=\text { polarize ability. }
$$

For polarized light of a wavelength λ, Rayleigh discovered the following relation between the intensity I_{O} of the incoming light and the intensity I_{S} of the scattered light from one particle, at an angle ϕ with respect to the incoming light:

$$
\begin{equation*}
\frac{\mathrm{I}_{\mathrm{s}}{ }^{\prime}}{\mathrm{I}_{0}{ }^{\prime}}=\frac{16 \pi^{4} \gamma^{2}}{\mathrm{r}^{2} \lambda^{4}} \cdot \sin ^{2} \phi \tag{48a}
\end{equation*}
$$

$r=$ distance from the particle to the point of
observation
$\phi=$ the angle between the axis of polarization and the direction of the scattered light.

For unpolarized light the analogue expression is:

$$
\begin{equation*}
\frac{\mathrm{I}_{\mathrm{s}}{ }^{\prime}}{\mathrm{I}_{0}{ }^{\prime}}=\frac{8 \pi^{4} \gamma^{2}}{\mathrm{r}^{2} \lambda^{4}} \cdot\left(1+\cos ^{2} \theta\right) \tag{48b}
\end{equation*}
$$

$\theta=$ the angle between the incoming and the scattered light.

We got $\mathrm{I}_{\mathrm{s}} \propto \lambda^{-4}$ which means that blue light $(\lambda \approx 450$
nm) (blue sky) scatter considerably more than red light ($\lambda \approx 630 \mathrm{~nm}$) (red sunset).

Constructive and destructive interference

$\psi_{1}=\mathrm{A} \cdot \cos \left(2 \pi \cdot v \cdot \mathrm{t}+\delta_{1}\right) ; \mathrm{A}=$ amplitude

$$
\psi_{2}=\mathrm{A} \cdot \cos \left(2 \pi \cdot v \cdot \mathrm{t}+\delta_{2}\right)
$$

δ_{1} and δ_{2} represents the phase shift from particle 1 and 2, respectively. (The particles have unequal distance from the source of radiation and additionally the distance between the particles and the detector is unequal.)

The collected succession of waves at P is:
$\psi=\psi_{1}+\psi_{2}$
$\psi=\mathrm{A} \cdot \cos \left(2 \pi \cdot v \cdot \mathrm{t}+\delta_{1}\right)+\mathrm{A} \cdot \cos \left(2 \pi \cdot v \cdot \mathrm{t}+\delta_{2}\right)$
$\Delta \delta=\delta_{2}-\delta_{1}=\mathrm{n}_{1} \cdot 180^{\circ} ; \mathrm{n}_{1}$ is an odd number multiple
of 180°, the succession of waves cancels each other
out (destructive interference).
$\Delta \delta=0$, or a multiple of 360°, the succession of waves
will amplify each other (constructive interference).

If the two particles move independent of each other (ideal gas), all $\Delta \delta$ will be equal probable \rightarrow the effect of the interference will at average equal 0 .

At the observation point:

$$
\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{s}, 1}+\mathrm{I}_{\mathrm{s}, 2}
$$

Solutions of macromolecules

Rayleigh scattering:

$$
\mathrm{R}_{\mathrm{G}}<\frac{\lambda}{20}
$$

We will now regard the excess light scattering that are due to particles dissolved in the liquid.

Fluctuation theory (Einstein): One imagines that the liquid is divided into volume elements that are less than the wavelength of the light.

The volume elements have a fluctuating concentration of macromolecules. These concentration fluctuations must necessarily be dependent of the size of the macromolecules $\left(\overline{\mathrm{M}}_{\mathrm{w}}, \mathrm{R}_{\mathrm{G}}\right)$ and interactions in the system $\left(\mathrm{A}_{2}\right.$: thermodynamic properties).

Ideal solution: Classical electro magnetic theory:

$$
\begin{equation*}
\mathrm{n}^{2}-\mathrm{n}_{0}^{2}=4 \pi \cdot \mathrm{~N} \cdot \gamma \tag{49}
\end{equation*}
$$

$\mathrm{N}=\frac{\text { number of particles }}{\text { volume unit }} ; \mathrm{n}_{0}$ and n is the refractive index of solvent and solution, respectively.

$$
\left(\mathrm{n}-\mathrm{n}_{0}\right) \cdot\left(\mathrm{n}+\mathrm{n}_{0}\right)=4 \pi \cdot \mathrm{~N} \cdot \gamma
$$

$$
\gamma=\frac{\mathrm{n}+\mathrm{n}_{0}}{4 \pi} \cdot \frac{\mathrm{n}-\mathrm{n}_{0}}{\mathrm{c}} \cdot \frac{\mathrm{c}}{\mathrm{~N}}
$$

(3)
(1) In a dilute solution: $\mathrm{n}+\mathrm{n}_{0} \approx 2 \mathrm{n}_{0}$
(2) $\frac{d n}{d c}$ refractive index increment
(3) $\mathrm{N}=\mathrm{c} \cdot \frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{M}}$

$$
\begin{equation*}
\gamma=\mathrm{n}_{0} \cdot \frac{\mathrm{dn}}{\mathrm{dc}} \cdot \frac{\mathrm{M}}{2 \pi \cdot \mathrm{~N}_{\mathrm{A}}} \tag{51}
\end{equation*}
$$

We put this into Rayleigh's equ. (48b):

$$
\begin{align*}
& \frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{I}_{0}}=8 \pi^{4} \mathrm{n}_{0}^{2} \cdot\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right)^{2} \cdot \mathrm{M}^{2} \cdot \frac{1+\cos ^{2} \theta}{\mathrm{r}^{2} \lambda^{4}(2 \pi)^{2} \mathrm{~N}_{\mathrm{A}}^{2}}= \tag{52}\\
& =2 \pi^{2} \cdot \mathrm{n}_{0}^{2} \cdot\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right)^{2} \cdot \mathrm{M}^{2} \cdot \frac{1+\cos ^{2} \theta}{\lambda^{4} \mathrm{r}^{2} \mathrm{~N}_{\mathrm{A}}^{2}}
\end{align*}
$$

$\mathrm{I}_{\mathrm{s}}{ }^{\prime}$ is the scatter from one particle, but we want to
know the scatter from N particles $\left(\mathrm{N}=\mathrm{c} \cdot \frac{\mathrm{N}_{\mathrm{A}}}{\mathrm{M}}\right)$:
$\frac{I_{S}}{I_{0}}=2 \pi^{2} \cdot n_{0}^{2} \cdot\left(\frac{d n}{d c}\right)^{2} \cdot \frac{\left(1+\cos ^{2} \theta\right) \cdot \mathrm{c} \cdot \mathrm{M}}{\lambda^{4} \cdot \mathrm{r}^{2} \cdot \mathrm{~N}_{\mathrm{A}}}$
$\frac{I_{S}}{I_{0}} \cdot \frac{r^{2}}{1+\cos ^{2} \theta}=R_{\theta}=2 \pi^{2} \cdot n_{0}^{2} \cdot\left(\frac{d n}{d c}\right)^{2} \cdot \frac{1}{\lambda^{4} N_{A}} \cdot c \cdot M$
$\mathrm{R}_{\theta}=$ reduced scattered intensity
$\mathrm{R}_{\theta}=\mathrm{R}_{\theta}^{\text {solution }}-\mathrm{R}_{\theta}^{\text {solvent }}$
$\mathrm{K}=2 \pi^{2} \cdot \mathrm{n}_{0}^{2} \cdot\left(\frac{\mathrm{dn}}{\mathrm{dc}}\right)^{2} \cdot \frac{1}{\lambda^{4} \mathrm{~N}_{\mathrm{A}}}$
$\mathrm{K}=$ constant for a given polymer system

$$
\begin{align*}
& \mathrm{R}_{\theta}=\mathrm{K} \cdot \mathrm{c} \cdot \mathrm{M} \\
& \frac{\mathrm{~K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{M}} \tag{54}
\end{align*}
$$

Compare the expression $\frac{\Pi}{\mathrm{R} \cdot \mathrm{T} \cdot \mathrm{c}}=\frac{1}{\mathrm{M}}$ for osmotic pressure at ideal conditions.

Real solution (at normal concentrations)

The concentration fluctuations are also dependent the thermo dynamical conditions in the solution.

Thermo dynamics may be described by the osmotic compressibility, $\frac{\mathrm{d} \Pi}{\mathrm{dc}}$

The degree of destructive interference will increase with $\frac{\mathrm{d} \Pi}{\mathrm{dc}}$ and the light scattering will be reversible proportional to $\frac{\mathrm{d} \Pi}{\mathrm{dc}}$.

$$
\begin{align*}
& \text { Debye: } \begin{aligned}
& \mathrm{R}_{\theta}=\frac{\mathrm{K} \cdot \mathrm{R} \cdot \mathrm{~T} \cdot \mathrm{c}}{\frac{\mathrm{~d} \Pi}{\mathrm{dc}}} \\
& \frac{\Pi}{\mathrm{c}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left(\frac{1}{\mathrm{M}}+\mathrm{A}_{2} \mathrm{c}+\mathrm{A}_{3} \mathrm{c}^{2}+\cdot \cdot\right) \\
& \frac{\mathrm{d} \Pi}{\mathrm{dc}}=\mathrm{R} \cdot \mathrm{~T} \cdot\left(\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}+3 \mathrm{~A}_{3} \mathrm{c}^{2}+\cdot \cdot\right) \\
& \mathrm{R}_{\theta}= \frac{\mathrm{K} \cdot \mathrm{R} \cdot \mathrm{~T} \cdot \mathrm{c}}{\mathrm{R} \cdot \mathrm{~T} \cdot\left(\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}+3 \mathrm{~A}_{3} \mathrm{c}^{2}+\cdot \cdot\right)}
\end{aligned} \tag{55}\\
&
\end{align*}
$$

$$
\begin{equation*}
\frac{\mathrm{K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \mathrm{c}+3 \mathrm{~A}_{3} \mathrm{c}^{2}+\cdot \cdot \tag{5}
\end{equation*}
$$

Rayleigh-Gans scattering $\left(\frac{\lambda}{20}<\mathrm{R}_{\mathrm{G}}<\frac{\lambda}{2}\right)$

In the preceding discussion, we have considered particle where $\mathrm{R}_{\mathrm{G}}<\frac{\lambda}{20}$. When the dimensions of the scattering particle are larger than this, the phase difference becomes large enough to give destructive interference. Large particles give destructive interference that has the greatest effect at large angles.

At zero angle we will not get any phase shift, and thereby no destructive interference.

The scattering 'envelope'

Illustration of the scattering envelope in the $x-z$ plane

at different conditions:

a) Rayleigh-scattering $\left(\mathrm{R}_{\theta}<\frac{\lambda}{20}\right)$ of light polarized in a plane
b) Rayleigh-scattering $\left(\mathrm{R}_{\theta}<\frac{\lambda}{20}\right)$ of unpolarized light
c) Rayleigh-Gans-scattering

$$
\left(\frac{\lambda}{20}<\mathrm{R}_{\theta}<\frac{\lambda}{2}\right) \quad \text { of }
$$ unpolarized light

The distribution of the angle of the scattered light is

 dependent of several different factors:a) the size of the particle
b) the shape of the particle
c) interactions between the particles
d) the size distribution of the particles

At low scattering angles, θ, and at low concentrations, the angular dependency is independent of the shape of the particle and only dependent on the average radius of gyration of the particle.

In practical treatment of light scattering data, we define a function $\mathrm{P}(\theta)=$ the particle-scattering factor or the form factor.
$1 / P(\theta)$

$$
P(\theta)=\frac{R(\theta) \text { (real particle) }}{R(\theta)(\text { the same particle if it had produced Rayleigh }- \text { scattering })}
$$

$$
\mathrm{P}(\theta) \rightarrow 1 \text { when } \theta \rightarrow 0 \text { and } \mathrm{P}(\theta)<1 \text { for } \theta>0
$$

$\left(\mathrm{R}_{\theta}\right)_{\text {real }}=\mathrm{P}(\theta) \cdot\left(\mathrm{R}_{\theta}\right)_{\text {Rayleigh }}$
From equ. (56)

$$
\begin{equation*}
\frac{\mathrm{K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{P}_{\theta}} \cdot\left(\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \cdot \mathrm{c}+3 \mathrm{~A}_{3} \cdot \mathrm{c}^{2}+\cdot \cdot\right) \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\theta \rightarrow 0 \operatorname{Lim}\left(\frac{1}{\mathrm{P}(\theta)}\right)=1+\frac{16 \pi^{2} \cdot \mathrm{R}_{\mathrm{G}}^{2} \cdot \sin ^{2} \cdot\left(\frac{\theta}{2}\right)}{3 \cdot \lambda^{2}} \tag{58}
\end{equation*}
$$

We may now write the light scattering equation (57) in this way

$$
\begin{equation*}
\frac{K \cdot c}{R_{\theta}}=\left(1+\frac{16 \pi^{2} \cdot \mathrm{R}_{\mathrm{G}}^{2} \cdot \sin ^{2} \cdot\left(\frac{\theta}{2}\right)}{3 \cdot \lambda^{2}}\right) \cdot\left(\frac{1}{\mathrm{M}}+2 \mathrm{~A}_{2} \cdot \mathrm{c}\right) \tag{59}
\end{equation*}
$$

In order to determine the molecular weight, we have to extrapolate to both $c=0$ and $\theta=0$.
$\mathrm{c} \rightarrow 0 ; \quad \frac{\mathrm{K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{M}} \cdot\left(1+\frac{16 \pi^{2} \cdot \mathrm{R}_{\mathrm{G}}^{2} \cdot \sin ^{2}\left(\frac{\theta}{2}\right)}{3 \lambda^{2}}\right)$
$\theta \rightarrow 0 ; \frac{\mathrm{K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}=\frac{1}{\mathrm{M}}+\frac{2 \mathrm{~A}_{2} \cdot \mathrm{c}}{\mathrm{k}}$
In a Zimm-diagram $\frac{\mathrm{K} \cdot \mathrm{c}}{\mathrm{R}_{\theta}}$ is plotted against $\sin ^{2} \cdot\left(\frac{\theta}{2}\right)+\mathrm{k} \cdot \mathrm{c}$, where k is a constant (2000) that is used to scatter the measured data.

RESULTS

Serum albumin ($\mathrm{M}=6.6 \cdot 10^{4}$) (spherical) 29.8
Myosin $\left(M=4.9 \cdot 10^{5}\right) \quad$ (rod) 468
Polystyrene $\left(\mathrm{M}=1 \cdot 10^{5}\right) \quad$ (coil) 100 DNA $\quad\left(\mathrm{M}=4 \cdot 10^{6}\right)$
(rod) 1170

Polystyrene/butanone

$\frac{\overline{\mathrm{M}}_{\mathrm{w}} \cdot 10^{-3}}{1770}$	$\overline{\mathrm{R}}_{\mathrm{G}}(\AA)$
940	337
524	306
230	222
	163

DIFFUSION

The force for diffusion is the gradient of the chemic potential $\left(\frac{\partial \mu}{\partial x}\right)$. Substances diffuse spontaneously from a region with a high chemical potential to a region with a low chemical potential; that is from a concentrated to a dilute solution.

When we have a concentration gradient in a solution, we get a flux of matter, in a way that leads to a leveling out of the concentration gradient.

$$
\begin{equation*}
\mathrm{J}=-\mathrm{D} \cdot \frac{\partial \mathrm{c}}{\partial \mathrm{x}} \quad \text { (Fick's law) } \tag{60}
\end{equation*}
$$

$\mathrm{J}=\operatorname{flux}\left(\mathrm{kg} \cdot \mathrm{m}^{-2} \cdot \mathrm{~s}^{-1}\right)$
$\mathrm{D}=$ the diffusion coefficient $\left(\mathrm{m}^{2} \cdot \mathrm{~s}^{-1}\right)$
$\mathrm{c}=\operatorname{cons} .\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)$

In order to eliminate the flux, we may use the continuity equation:

$$
\begin{equation*}
\frac{\partial \mathrm{c}}{\partial \mathrm{t}}=-\frac{\partial \mathrm{J}}{\partial \mathrm{x}} \tag{61}
\end{equation*}
$$

Combination of (60) and (61) give:

$$
\begin{equation*}
\frac{\partial \mathrm{c}}{\partial \mathrm{t}}=\mathrm{D} \frac{\partial^{2} \mathrm{c}}{\partial \mathrm{x}^{2}} \tag{62}
\end{equation*}
$$

(Fick's second law)

Classical gradient technique

The flux of a substance is related to the negative gradient of the chemical potential $\left(-\frac{\partial \mu}{\partial \mathrm{x}}\right)$:

$$
\begin{equation*}
\mathrm{J}=-\mathrm{L} \cdot \frac{\partial \mu}{\partial \mathrm{x}} \tag{63}
\end{equation*}
$$

$\mathrm{L}=$ phenomenological coefficient

Ideal solutions:

$$
\begin{aligned}
& \mu=\mu^{0}+R \cdot T \cdot \ln c \\
& \frac{\partial \mu}{\partial x}=\frac{\partial \mu}{\partial c} \cdot \frac{\partial c}{\partial x}=\frac{R \cdot T}{c} \cdot \frac{\partial c}{\partial x}
\end{aligned}
$$

Combination with equ. (63) gives:

$$
\begin{equation*}
\mathrm{J}=-\frac{\mathrm{L} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{c}} \cdot \frac{\partial \mathrm{c}}{\partial \mathrm{x}} \tag{6}
\end{equation*}
$$

The flux may also be expressed in another way:

$$
\mathrm{J}=\mathrm{c} \cdot \mathrm{v}=-\mathrm{L} \cdot \frac{\partial \mu}{\partial \mathrm{x}}
$$

$\mathrm{v}=$ velocity
$\mathrm{c}=$ concentration

In diffusion, the force (pr. mol) $-\frac{\partial \mu}{\partial \mathrm{x}}$ is balanced by
the frictional force

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{fr}}(\text { pr. molecule })=\mathrm{f}_{0} \cdot \mathrm{v} \\
& \mathrm{~F}_{\mathrm{fr}}(\text { pr. mol })=\mathrm{f}_{0} \cdot \mathrm{v} \cdot \mathrm{~N}_{\mathrm{A}}
\end{aligned}
$$

$$
\mathrm{f}_{0}=\text { the frictional coefficient }
$$

$$
\begin{equation*}
\mathrm{c} \cdot \mathrm{v}=\mathrm{L} \cdot \mathrm{f}_{0} \cdot \mathrm{v} \cdot \mathrm{~N}_{\mathrm{A}} \rightarrow \mathrm{~L}=\frac{\mathrm{c}}{\mathrm{f}_{0} \cdot \mathrm{~N}_{\mathrm{A}}} \tag{65}
\end{equation*}
$$

We may now write equ. (64) in this way:

$$
\begin{equation*}
\mathrm{J}=-\frac{\mathrm{c} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{f}_{0} \cdot \mathrm{~N}_{\mathrm{A}} \cdot \mathrm{c}} \cdot \frac{\partial \mathrm{c}}{\partial \mathrm{x}}=-\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{f}_{0} \cdot \mathrm{~N}_{\mathrm{A}}} \cdot \frac{\partial \mathrm{c}}{\partial \mathrm{x}} \tag{66}
\end{equation*}
$$

Compare equ. (60) with equ. (66):

$$
\begin{equation*}
\mathrm{c} \rightarrow 0 \quad \mathrm{D}_{0}=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{f}_{0} \cdot \mathrm{~N}_{\mathrm{A}}} \tag{67}
\end{equation*}
$$

when $\mathrm{c} \gg 0$

$$
\begin{equation*}
D=M \cdot\left(1-v_{2} \cdot c\right) \cdot \frac{\frac{\partial \pi}{\partial c}}{f \cdot N_{A}} \tag{68}
\end{equation*}
$$

$\mathrm{D}=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{f}} \cdot\left(1-\mathrm{v}_{2} \cdot \mathrm{c}\right) \cdot\left(1+2 \mathrm{~A}_{2} \cdot \mathrm{M} \cdot \mathrm{c}+3 \mathrm{~A}_{3} \cdot \mathrm{M} \cdot \mathrm{c}^{2}+\cdot\right)(69)$

$$
\mathrm{D}=\left(\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{~N}_{\mathrm{A}} \cdot \mathrm{f}}\right)_{\text {Hydrodynamic factor }} \cdot \mathrm{Q}(\mathrm{c})_{\text {Thermodynamic factor }}
$$

)

The concentration dependence of the diffusion

coefficient

$$
\begin{equation*}
\mathrm{D}=\mathrm{D}_{0}\left(1+\mathrm{k}_{\mathrm{d}} \cdot \mathrm{c}\right) \text {; (empirical equ.) } \tag{70}
\end{equation*}
$$

$\mathrm{k}_{\mathrm{d}}=$ coefficient that is dependent on hydrodynamic and thermodynamic conditions

$$
\mathrm{k}_{\mathrm{d}}=2 \mathrm{~A}_{2} \mathrm{M}-\mathrm{k}_{\mathrm{s}}-\mathrm{v}_{2}
$$

ULTRA CENTRIFUGATION (Svedberg)

Velocity centrifugation (50.000-60.000 r.p.m.) gives
hydrodynamic information

Equilibrium centrifugation (5.000-6.000 r.p.m.) gives
thermodynamic information

Velocity centrifugation

Let us first look at a spherical particle (e.g. a ball) that falls in a liquid medium under the influence of the gravity force, g :

> | $\mathrm{m}=$ the mass of the particle |
| :--- |
| $\mathrm{v}_{2}=$ the specific volume of the particle |
| $\rho=$ the density of the liquid |
| $\mathrm{g}=$ the gravity acceleration |

Liquid

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{T}}-\mathrm{F}_{\mathrm{A}}-\mathrm{F}_{\mathrm{fr}}=\mathrm{m} \cdot \mathrm{a} ; \text { after a short time, } \mathrm{a} \approx 0 \\
& \mathrm{~F}_{\mathrm{T}}=\mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{fr}}
\end{aligned}
$$

$$
\mathrm{m} \cdot \mathrm{~g}=\mathrm{m} \cdot \mathrm{v}_{2} \cdot \rho \cdot \mathrm{~g}+\mathrm{F}_{\mathrm{fr}}
$$

$\mathrm{m} \cdot \mathrm{v}_{2}$ represents the volume of displaced liquid
$F_{f r}=m \cdot g\left(1-v_{2} \cdot \rho\right)$ represents the upwards pressure
$\mathrm{m}=\frac{\mathrm{M}}{\mathrm{N}_{\mathrm{A}}} ; \mathrm{F}_{\mathrm{fr}}=\mathrm{f} \cdot \mathrm{v}$
$\mathrm{f}=$ the friction coefficient, that is dependent of the
size and shape of the particles, and the viscosity of the
liquid.

$$
\begin{equation*}
\mathrm{f} \cdot \mathrm{v}=\frac{\mathrm{M}}{\mathrm{~N}_{\mathrm{A}}} \cdot\left(1-\mathrm{v}_{2} \rho\right) \cdot \mathrm{g} \tag{71}
\end{equation*}
$$

Macromolecules are far too small particles to sediment in the earth's gravitational field, one therefore need to apply a centrifugal field (ultra centrifuge) in order to get the molecules to sediment.

In a centrifugal field, g is replaced by $\Omega^{2} \cdot \mathrm{r}$ (200.000 g), where Ω is the angular velocity and r is the distance from the rotor axis. Equ. (71) may now be written as:
$\mathrm{f} \cdot \mathrm{v}=\frac{\mathrm{M}}{\mathrm{N}_{\mathrm{A}}} \cdot\left(1-\mathrm{v}_{2} \cdot \rho\right) \cdot \Omega^{2} \cdot \mathrm{r}$
Ex.
$60000 \mathrm{r} . \mathrm{p} . \mathrm{m} . \Omega^{2} \cdot \mathrm{r}=(2 \pi \cdot 1000)^{2} \cdot(6 \mathrm{~cm})=2.38 \cdot 10^{6} \mathrm{~cm} \cdot \mathrm{~s}^{-2}$

Svedberg introduced a parameter that is called the sedimentation coefficient, S :

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{v}}{\Omega^{2} \cdot \mathrm{r}} ;\left(\mathrm{v}=\frac{\mathrm{dr}}{\mathrm{dt}}\right) \tag{73}
\end{equation*}
$$

A combination of equ. (72) and (73), and when we additionally look at the situation when $c \rightarrow 0$:

$$
\begin{equation*}
\mathrm{S}_{0}=\frac{\mathrm{M} \cdot\left(1-\mathrm{v}_{2} \cdot \rho_{0}\right)}{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{f}_{0}} \tag{74}
\end{equation*}
$$

Illustration of how the boundary may be registered.

The rotor is spinning around the axis with an angular velocity Ω. Schlieren optics is used to register the concentration gradient; $\mathrm{r}_{\mathrm{m}}=$ the position of the meniscus; $\overline{\mathrm{r}}=$ the position of the boundary.

$$
\mathrm{S}=\frac{\frac{\mathrm{dr}}{\mathrm{dt}}}{\Omega^{2} \cdot \mathrm{r}}
$$

$$
\begin{aligned}
& \int_{\mathrm{r}_{\mathrm{m}}^{\mathrm{r}}}^{\overline{\mathrm{dr}}} \frac{\mathrm{r}}{\mathrm{r}}=\mathrm{S} \cdot \Omega^{2} \int_{0}^{\mathrm{t}} \mathrm{dt} \\
& \ln \cdot \frac{\overline{\mathrm{r}}}{\mathrm{r}_{\mathrm{m}}}=\mathrm{S} \cdot \Omega^{2} \cdot \mathrm{t}
\end{aligned}
$$

$$
\begin{equation*}
\ln \overline{\mathrm{r}}=\ln \mathrm{r}_{\mathrm{m}}+\mathrm{S} \cdot \Omega^{2} \cdot \mathrm{t} \tag{75}
\end{equation*}
$$

The concentration dependence of the sedimentation

coefficient

For random coils, S is dependent on the concentration, and this may be expressed using the following empirical equation:

$$
\begin{equation*}
\frac{1}{\mathrm{~S}}=\frac{1}{\mathrm{~S}_{0}} \cdot\left(1+\mathrm{k}_{\mathrm{s}} \cdot \mathrm{c}\right) \tag{76}
\end{equation*}
$$

k_{s} is a coefficient that expresses the concentration dependence. k_{s} is related to the hydrodynamic and thermodynamic conditions of the system.

$$
\mathrm{k}_{\mathrm{s}}=1.2 \cdot \mathrm{~A}_{2} \mathrm{M}+\frac{\mathrm{N}_{\mathrm{A}} \mathrm{~V}_{\mathrm{h}}}{\mathrm{M}}
$$

In order to determine the molecular weight in equ..
(74), we need to know f_{0}. One may determine f_{0}. from diffusion measurements (equ. (67)). $\mathrm{D}_{0}=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{N}_{\mathrm{A}} \cdot \mathrm{f}_{0}}$. By combining equ. (67) and (74), we get the Svedberg equation:

$$
\begin{equation*}
\mathrm{M}=\frac{\mathrm{S}_{0} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{D}_{0}\left(1-\mathrm{v}_{2} \cdot \rho_{0}\right)} \tag{77}
\end{equation*}
$$

Equilibrium centrifugation

If we let the rotor rotate at a relatively slow speed (5.000-6.000 r.p.m.) we may get equilibrium in the cell, so no net sedimentation is taking place. This usually takes a long time (several days).
$\mathrm{v} \equiv \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{S} \cdot \Omega^{2} \cdot \mathrm{r}$
and the flux is:

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{S}}=\mathrm{c} \cdot \mathrm{v}=\mathrm{c} \cdot \mathrm{~S} \cdot \Omega^{2} \cdot \mathrm{r} \\
& \mathrm{~J}_{\mathrm{D}}=-\mathrm{D} \cdot \frac{\mathrm{dc}}{\mathrm{dr}} \quad(\text { Fick's 1. law })
\end{aligned}
$$

At equilibrium:

$$
\mathrm{J}_{\mathrm{s}}+\mathrm{J}_{\mathrm{D}}=0
$$

Vi assumes an ideal solution: $\mathrm{S} \cdot \Omega^{2} \cdot \mathrm{r} \cdot \mathrm{c}-\mathrm{D} \cdot \frac{\mathrm{dc}}{\mathrm{dr}}=0$.

$$
\begin{aligned}
& \frac{\mathrm{S}}{\mathrm{D}} \cdot \Omega^{2} \int_{\mathrm{r}_{\mathrm{m}}}^{\overline{\mathrm{r}}} \mathrm{r} \cdot \mathrm{dr}=\int_{\mathrm{c}_{\mathrm{m}}}^{\overline{\mathrm{c}}} \frac{\mathrm{dc}}{\mathrm{c}} ; \mathrm{m}=\text { meniscus } \\
& \frac{\mathrm{S} \cdot \Omega^{2}}{2 \mathrm{D}} \cdot\left(\overline{\mathrm{r}}^{2}-\mathrm{r}_{\mathrm{m}}^{2}\right)=\ln \cdot \frac{\overline{\mathrm{c}}}{\mathrm{c}_{\mathrm{m}}}
\end{aligned}
$$

From equ. (77): $\frac{S}{D}=\frac{M \cdot\left(1-v_{2} \cdot \rho\right)}{R \cdot T}$

$$
\frac{\mathrm{M}}{2 \cdot \mathrm{R} \cdot \mathrm{~T}} \cdot\left(1-\mathrm{v}_{2} \cdot \rho\right) \cdot \Omega^{2} \cdot\left(\overline{\mathrm{r}}^{2}-\mathrm{r}_{\mathrm{m}}^{2}\right)=\ln \cdot \frac{\overline{\mathrm{c}}}{\mathrm{c}_{\mathrm{m}}}
$$

$M=\frac{2 \cdot R \cdot T \cdot \ln \frac{\bar{c}}{c_{m}}}{\Omega^{2} \cdot\left(1-\rho \cdot v_{2}\right) \cdot\left(\bar{r}^{2}-r_{m}^{2}\right)}$

Information from equilibrium sedimentation:

- We may determine the molecular weight by observing the concentration as a function of the distance (r). The concentration may be measured with the aid of a refractive index detector or UV detection.
- For polydisperse systems, one may in principle determine the polydispersity index.
- For non-ideal solutions one may determine thermodynamic interactions, e.g. A_{2} and A_{3}.
- The biggest drawback of equilibrium centrifugation is associated with the long time (several days) it takes the system to reach equilibrium in the centrifuge.

INTRODUCTION OF "SCALING"

Concentration regions and concentration fluctuations

in polymer solutions

Dilute

Semidilute

Concentrated

Dilute solutions:

The polymer molecule behaves as separate entities without intermolecular interactions.

Characteristic parameters: $\mathrm{R}_{\mathrm{G}}, \mathrm{R}_{\mathrm{D}}$ and $[\eta]$.

Static parameter:

$$
\begin{aligned}
& \quad \mathrm{R}_{\mathrm{G}}=\mathrm{K}_{\mathrm{G}} \cdot \mathrm{M}^{\beta_{\mathrm{G}}} \\
& \beta_{\mathrm{G}}=0.59(\text { good conditions }) \\
& \beta_{\mathrm{G}}=0.50(\theta \text {-conditions })
\end{aligned}
$$

Dynamical parameters:

$$
\begin{aligned}
& D_{0}=\frac{R \cdot T}{N_{A} \cdot f_{0}} \\
& D_{0}=\frac{\mathrm{k} \cdot \mathrm{~T}}{\mathrm{f}_{0}}=\frac{\mathrm{k} \cdot \mathrm{~T}}{6 \pi \cdot \eta_{0} \cdot \mathrm{R}_{\mathrm{D}}}
\end{aligned}
$$

Stoke's law:

$$
\mathrm{f}_{0}=6 \pi \cdot \eta_{0} \cdot \mathrm{R}_{\mathrm{D}} ; \mathrm{R}_{\mathrm{D}}=\mathrm{K}_{\mathrm{D}} \cdot \mathrm{M}^{\beta_{\mathrm{D}}}
$$

At θ-conditions, we always have $\beta_{\mathrm{G}}=\beta_{\mathrm{D}}$.

At good conditions: $\beta_{G}=\beta_{D}$ only when $\mathrm{M} \rightarrow \infty$, otherwise: $\beta_{\mathrm{D}}<\beta_{\mathrm{G}}$ and the numerical value of β_{D} is dependent on the considered molecular weight region. Intrinsic viscosity:

$$
\begin{aligned}
& {[\eta]=\mathrm{k} \cdot \mathrm{M}^{\mathrm{a}}} \\
& {[\eta] \propto \frac{R_{D} \cdot R_{G}^{2}}{M} \propto M^{2 \beta_{G}+\beta_{D}-1}}
\end{aligned}
$$

Fix. 5. Relation between zero-shear-rate intrinsic viscusity [$\boldsymbol{\eta})_{0}$ and wcight-average molecular weight M_{u} for polystyrene in benzere at 25 or $30^{\circ} \mathrm{C}$ and in cyclohexane at the theta temperature.
 \rightarrow) Yamamoto et al. (ref 10).

Semidilute solutions:
In this concentration region, the intermolecular
interactions are dominating.

At a certain concentration, c*, ("overlap concentration") the polymer molecules starts to overlap with each other, and a transient network is formed.

Static experiments:
$c^{*} \propto \frac{\mathrm{M}}{\mathrm{R}_{\mathrm{G}}^{3}} \propto \mathrm{M}^{1-3 \beta_{\mathrm{G}}}$
$\mathrm{c}^{*} \propto \mathrm{M}^{-0.76}$ (good conditions)
$c^{*} \propto \mathrm{M}^{-0.50}(\theta$-conditions $)$

Dynamical experiments:

$c^{*}=\frac{1}{[\eta]} \propto M^{1-2 \beta_{G}-\beta_{D}}$

Part of a network.

This network is characterized by a "correlation length" ("screening length"), ξ, that are independent of the molecular weight of the polymer, but dependent of the concentration of the solution.
$\xi \propto \mathrm{c}^{\mathrm{x}}$ where $\mathrm{x} \equiv \frac{\beta_{\mathrm{G}}}{1-3 \cdot \beta_{\mathrm{G}}}$
$\xi \propto c^{-0.77}$ (good conditions)
$\xi \propto \mathrm{c}^{-1.0}(\theta$-conditions $)$

Scaling laws in the semidilute region is based on the existence of an overlap concentration, c^{*}, where the concentration dependence of a given parameter (Π, S, D) is changing.

In addition to the existence of a correlation length, ξ, that are dependent on the polymer concentration, but independent on the molecular weight of the polymer.

Concentrated solutions

A homogenous distribution of segments in the solution. At a concentration, c^{+}, the chain dimensions will be independent of the concentration and assume their non-perturbed dimensions. $(\mathrm{c}>15 \%) ; \mathrm{c}^{+}=\frac{6}{[\eta]_{\theta}}$.

Illustration of characteristic lengths and concentration

regions

Description of semidilute polymer solutions with

the aid of the "Blob" model.

A semidilute solution may be considered to consist of a string of "blobs" of the size ξ. Each "blob" has the molecular weight $\left(\xi_{G} \propto c^{\beta(1-3 \beta)}\right)$

$$
\mathrm{M}(\xi) \propto \mathrm{c} \cdot \xi_{\mathrm{G}}^{3} \propto \mathrm{c}^{\frac{1}{1-3 \cdot \beta}}
$$

Phenomenological consideration of osmotic pressure, diffusion and sedimentation with the aid of Scaling-
laws

Osmotic pressure:

$$
\Pi=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{M}} \cdot\left(\mathrm{c}+\mathrm{A}_{2} \mathrm{c}^{2}+\mathrm{A}_{3} \mathrm{c}^{3}+\cdot \cdot\right)
$$

"Mean field" (Flory):
$\Pi \approx \mathrm{c}^{2}$ (good conditions)
$\Pi \approx \mathrm{c}^{3}(\theta$-conditions $)$

"Scaling":

$$
\frac{\Pi}{\mathrm{c}}=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{M}_{\text {"blob" }}}
$$

$\Pi \propto \frac{c}{c \cdot \xi^{3}}$
$\Pi \propto c^{-\frac{3 \beta_{G}}{1-3 \beta_{G}}}$

We set $\beta_{G}=0.59$
$\Pi \propto \mathrm{c}^{2.31} \quad$ (good conditions)
$\Pi \propto c^{3} \quad(\theta$-conditions $)$

In order to simplify the analysis of diffusion- and sedimentation data, we assume: $\mathrm{M} \rightarrow \infty$, then
$\beta_{\mathrm{G}}=\beta_{\mathrm{D}}=\beta$ and $\xi_{\mathrm{G}}=\xi_{\mathrm{D}}=\xi$.

Diffusion (cooperative):

$$
\begin{aligned}
& \mathrm{D}=\frac{\mathrm{k} \cdot \mathrm{~T}}{6 \pi \cdot \eta_{0} \cdot \xi} \propto \xi^{-1} \\
& \mathrm{D} \propto \mathrm{c}^{-\frac{\beta}{1-3 \cdot \beta}}
\end{aligned}
$$

$\mathrm{D} \propto \mathrm{c}^{0.77} \quad$ (good conditions)
$\mathrm{D} \propto \mathrm{c}^{1.0} \quad(\theta$-conditions)

Sedimentation (cooperative):
$S=M \cdot \frac{1-\mathrm{v}_{2} \cdot \rho}{\mathrm{~N}_{\mathrm{A}} \cdot \mathrm{f}} \propto \frac{\mathrm{M}_{\text {"blob" }}}{6 \pi \cdot \eta_{0} \cdot \xi} \propto \frac{\mathrm{c} \cdot \xi^{3}}{6 \pi \cdot \eta_{0} \cdot \xi} \propto \mathrm{c} \cdot \xi^{2} \propto \mathrm{c}^{1+\frac{2 \beta}{1-3 \beta}}$
$S \propto c^{\frac{1-\beta}{1-3 \beta}}$
$\mathrm{S} \propto \mathrm{c}^{-0.53} \quad$ (good conditions)
$\mathrm{S} \propto \mathrm{c}^{-1.0} \quad(\theta$-conditions)

FIG. 9. Lg- lg plot of sedimentation coefficient as a function of concentration for $(\odot) M_{w}=4.48 \times 10^{4} ;(\Delta) M_{w}=9.00 \times 10^{s} ;(1) M_{w}=3.92 \times 10^{s} ;(0) M_{w}=$
$1.11 \times 10^{3} ;(x) M_{w}=0.208 \times 10^{s}$.

Illustration of scaling behavior for diffusion and

sedimentation

Temperature-concentration diagram

"Mean field" theory

I. Dilute solution and good thermodynamic conditions
II. Semidilute and concentrated solutions at good conditions

I'. θ-region
IV. Phase separations curve

"Scaling" theory

Reduced temperature: $\varepsilon=\frac{T-\theta}{\theta}$

I. Dilute concentration regime

The I and II is separated by the overlap concentration

$$
\mathrm{c}^{*} \propto \frac{\mathrm{M}}{\mathrm{R}_{\mathrm{G}}^{3}} \quad \mathrm{c}^{*} \propto \mathrm{M}^{-\frac{4}{5}} \cdot \varepsilon^{-\frac{3}{5}}
$$

I'. Dilute θ-region
The function $c_{\theta}^{*} \approx M^{-1 / 2}$ separates the θ-region from the dilute region (good conditions) (I) and the θ-region from the phase separation region (IV).
II. The semidilute regime
III. The concentrated regime
IV. Phase separation region

RHEOLOGY AND THE MECHANICAL

PROPERTIES OF POLYMERS

Rheology:
i) Viscous flow - irreversible deformation
ii) Rubber elasticity - reversible deformation
iii) Viscoelasticity - the deformation is reversible, but time dependent
iv) "Hookean" elasticity - the motion of the chain segment is very restricted, but involves bound stretching and bound angle deformation

"Glass"-rubber transitions

Simple mechanical relations:

Young's-modulus:
This modulus describes the coupling between elastic and viscous properties of a polymer system.

For elastic behavior of flexible polymer chains, the
shear stress is

$$
\sigma=\frac{\mathrm{F}}{\mathrm{~A}}
$$

related to the stretching

$$
\begin{gather*}
\varepsilon=\frac{\mathrm{L}-\mathrm{L}_{0}}{\mathrm{~L}_{0}} \text { by the following equation: } \\
\sigma=\mathrm{E} \cdot \varepsilon \tag{79}
\end{gather*}
$$

where E is called Young's elasticity modulus.

This modulus gives information of the stiffness of the polymer. The higher E, the greater tendency the polymer material has to resist stretching.

Ex.

Material
copper
polystyrene
soft rubber

E(Pa)
$1.2 \cdot 10^{11}$
$3 \cdot 10^{9}$
$2 \cdot 10^{6}$

Shear modulus:
$\mathrm{G}=\frac{\sigma}{\mathrm{s}} ; \mathrm{s}=$ shear deformation (shear angle)

Newton's law: The equation for an ideal liquid with viscosity η, may be written as:

$$
\begin{align*}
& \sigma=\eta \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \tag{80}\\
& \frac{\mathrm{ds}}{\mathrm{dt}}=\text { shear deformation rate }
\end{align*}
$$

Equ. (80) describes the viscosity for simple liquids at low flow rates.

Compliance and modulus

The modulus measures the stiffness or hardness for an object, while the compliance, J, measures the softness. The elastic compliance is defined in the following way:

$$
\begin{equation*}
\mathrm{J}=\frac{1}{\mathrm{E}} \tag{81}
\end{equation*}
$$

Storage- and loss moduli

The complex Young's modulus:

$$
\mathrm{E}^{*}=\mathrm{E}^{\prime}+\mathrm{iE} \mathrm{E}^{\prime}
$$

E' = real part; iE" = imaginary part;
$E^{\prime}=$ storage modulus $E^{\prime \prime}=$ loss modulus.
E^{\prime} is a measure of the elastic energy that is stored under deformation, and $\mathrm{E}^{\prime \prime}$ is a measure of the energy
that is converted to heat.

The Young-Modulus' temperature dependence

(1) The glass region:

Ex. PS and PMMA at $25{ }^{\circ} \mathrm{C}$. Here E is approximately constant. The size of E is often ca. $3 \cdot 10^{9} \mathrm{~Pa}$. The molecular motion is limited to vibrations and short distance rotations.
(2) The glass transition region:

In this region E often decreases with a factor of 1000 over a temperature region of $20-30{ }^{\circ} \mathrm{C}$. The stiffness of the polymer changes quite rapidly in this region. $\mathrm{T}_{\mathrm{g}}\left(\frac{\mathrm{d}^{2} \mathrm{E}}{\mathrm{dT}^{2}}\right.$ maksimum $)$ is the glass transition temperature and represents the transition from "glass"- to rubber-like behavior.

This region (2) may, from a molecular view, be described as long-range coordinated molecular motion. At temperatures under the glass transition only 1-4 chain atoms are involved in motions, while at temperatures in the glass transition region 10-50 chain atoms are involved in a correlated motion.

Ex.Polymer	$\mathrm{T}_{\mathrm{g}}\left({ }^{\circ} \mathrm{C}\right)$	Number of chain atoms
PDMS	127	40
PS	100	40-100
polyisoprene -73 30-40		

(2a) Illustrates the effect of crystallinity. T_{m} is the melting point of the polymer.
(3) Rubber plateau region: In this region, E is approximately constant $\left(2 \cdot 10^{6} \mathrm{~Pa}\right)$. In this region, the polymer exhibits rubber elasticity
i) Linear polymer: The extent of the plateau region will primarily depend on the polymers molecular weight.

ii) Cross-linked polymer (3a)

Cross-linking gives "better" rubber elasticity.
$\mathrm{E}=3 \cdot \mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T} ; \mathrm{n}=$ number of active chain segments.
In region (3) the molecular motion may be described by "reptation".

(4) Rubber flow region: In this region, the polymer has both rubber-elastic and flow properties, dependent on which time scale the process is regarded on.
i)Short times: The physical "entanglements" do not have time to relax (rubber)
ii)Longtimes: The chains move in a coordinated way (flow).
(5) The liquid flow region: Here the polymer exhibits
flow properties $\sigma=\eta \cdot \frac{\mathrm{ds}}{\mathrm{dt}}$ at ideal conditions. This
region may also be describes by the "reptation" model.

$$
\begin{aligned}
& \text { Viscous flow: } \sigma=\eta \cdot \frac{\mathrm{ds}}{\mathrm{dt}} \\
& \sigma=\text { shear stress; } \frac{\mathrm{ds}}{\mathrm{dt}}=\text { the shear deformation rate }
\end{aligned}
$$

THE MOLECULAR WEIGHT DEPENDENCE OF

THE VISCOSITY

At molecular weights lower than the "entanglement" molecular weight $\left(\mathrm{M}_{\mathrm{E}}\right): \eta \propto \mathrm{M}^{1.0}$

Illustration of different" entanglement"

situations

I. Temporary "cross-link"
II. Local "link"
III. "Looping" of chains around each other in the form of long-distance contour

$$
\mathrm{M}_{\mathrm{E}}^{\mathrm{PS}} \approx 37000 ; \quad \mathrm{M}_{\mathrm{E}}^{\mathrm{PMMA}} \approx 10000 ; \quad \mathrm{M}_{\mathrm{E}}^{\mathrm{PEO}} \approx 6000
$$

For molecular weights over $\mathrm{M}_{\mathrm{E}}: \eta \propto \mathrm{M}^{3.4}$

Time dependent viscosity effects:
"Thixotropic" liquid: the viscosity decreases with time
"Rheopectic" liquid: the viscosity increases with time

Viscoelasticity and models for stress relaxation:

$\sigma=\mathrm{E} \cdot \varepsilon$ (elastic tress)
$\sigma=$ shear stress
$\mathrm{E}=$ Young's modulus
$\varepsilon=$ tension
$\sigma=\eta \cdot \frac{\mathrm{d} \varepsilon}{\mathrm{dt}}$ (viscous stress)

Maxwell model: $\quad \frac{\mathrm{d} \varepsilon}{\mathrm{dt}}=\left(\frac{\mathrm{d} \varepsilon}{\mathrm{dt}}\right)_{\text {elastic }}+\left(\frac{\mathrm{d} \varepsilon}{\mathrm{dt}}\right)_{\text {viscous }}$

$$
\frac{\mathrm{d} \varepsilon}{\mathrm{dt}}=\frac{1}{\mathrm{E}} \cdot \frac{\mathrm{~d} \sigma}{\mathrm{dt}}+\frac{\sigma}{\eta}
$$

Voigt modell

Maxwell modelI
$\mathrm{E}=$ elastic element (spring)
$\eta=$ viscous element (damping cylinder)

In viscoelastic measurements, on may follow a transient- or "steady-state"-response. Two common transient experiments are stress relaxation and creeping.

Stress relaxation:

A rapid external stress is applied at the time $t=0$ and the relaxation is measured as a function of time. The Maxwell model is suitable to describe this:

$$
\varepsilon=\text { start tension }=\text { constant at the time } t=0
$$

Thereafter $\frac{\mathrm{d} \varepsilon}{\mathrm{dt}}=0$.

$$
\begin{aligned}
& \frac{1}{E} \cdot \frac{d \sigma}{d t}+\frac{\sigma}{\eta}=0 \\
& \sigma=\sigma_{0} \cdot \exp \left(-\frac{E \cdot t}{\eta}\right)
\end{aligned}
$$

The relation $\frac{\eta}{E}$ is a constant with the dimension time, and is called relaxation time, τ_{r}

$$
\begin{equation*}
\tau_{\mathrm{r}}=\frac{\eta}{\mathrm{E}} \tag{82}
\end{equation*}
$$

If η is large, the relaxation time is long, and the stress relaxes slowly.

One often defines the relaxation time as the time it takes for the stress to relax to $\frac{1}{\mathrm{e}}$ of its start value.

Maxwell element

Voigt element

Creep: In this experiment a constant external strain is applied at the time $t=0$. The deformation is measured as a function of time by keeping the stress constant. To describe creep, Voigt's model is often used: The stress is constant $\sigma=\sigma_{0}$.
$\sigma_{0}=\mathrm{E} \cdot \varepsilon+\eta \cdot \frac{\mathrm{d} \varepsilon}{\mathrm{dt}}$
$E \cdot \frac{\varepsilon}{\sigma_{0}}=1-\exp \left(-\frac{E \cdot t}{\eta}\right)$

The ratio $\frac{\eta}{E}$ is called the retardation time of a creep experiment.

The four-element model

This model that consists of four elements, may be used to describe many practical applications

Four element method

Description of creep from this model

The natural material rubber $\left(\mathrm{C}_{5} \mathrm{H}_{8}\right)_{\mathrm{n}}$ (isoprene)
The following three conditions must be fulfilled for a material to exhibit rubber properties:

1) It has to consist of long chain molecules with bounds that permit free rotation
2) The forces between the molecules must be weak as in a liquid
3) The molecules must be connected, cross-linked, at certain points along the chains

Elastomers (rubber) may, over their glass transition temperature, be defined as an amorphous cross-linked polymer.

। Relaxed Chain

Exposed to external stress

The stress for an elastomer may be described in the following way:

$$
\sigma=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T} \cdot\left(\alpha-\frac{1}{\alpha^{2}}\right)
$$

$\mathrm{L}_{0}=$ the distance from the start
$\alpha=\frac{L}{L_{0}}$
$\mathrm{n}=\frac{\rho}{\mathrm{M}_{\mathrm{c}}}=\frac{\text { density }}{\text { molecular weight }}$ between cross-links
n represents the number of "active" network segments pr. unity volume.

THERMODYNAMICS
 FOR
 RUBBER

ELASTICITY

When one talks about equilibriums in systems that changes in a reversible way (e.g. elastic deformation), it is practical to introduce Helmholtz free energy, A, defined by:
$\mathrm{A}=\mathrm{U}-\mathrm{T} \cdot \mathrm{S} ; \mathrm{U}=$ inner energy

The backward-pulling force, f, which operates on the elastomer, is dependent on the change in free energy when the distance is changed:

$$
\begin{equation*}
\mathrm{f}=\left(\frac{\partial \mathrm{A}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{~V}}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{~V}}-\mathrm{T} \cdot\left(\frac{\partial \mathrm{~S}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{~V}} \tag{86}
\end{equation*}
$$

For an ideal elastomer:
$\left(\frac{\partial \mathrm{U}}{\partial \mathrm{I}}\right)_{\mathrm{T}, \mathrm{V}}=0$
for most other materials (e.g. a steel rod):
$\mathrm{T} \cdot\left(\frac{\partial \mathrm{S}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{V}}=0$
One may show that there is a direct correlation
between the entropy and f :
$-\left(\frac{\partial \mathrm{S}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{V}}=\left(\frac{\partial \mathrm{f}}{\partial \mathrm{T}}\right)_{1, \mathrm{~V}}$

This leads to the state equation for rubber elasticity

$$
\begin{equation*}
\mathrm{f}=\left(\frac{\partial \mathrm{U}}{\partial \mathrm{l}}\right)_{\mathrm{T}, \mathrm{~V}}+\mathrm{T} \cdot\left(\frac{\partial \mathrm{f}}{\partial \mathrm{~T}}\right)_{\mathrm{l}, \mathrm{~V}} \tag{88}
\end{equation*}
$$

The first term on the right side in the equ. (88) represents the energetic part $\left(\mathrm{f}_{\mathrm{e}}\right)$ and the second term is a entropy $\operatorname{part}\left(\mathrm{f}_{\mathrm{s}}\right): \mathrm{f}=\mathrm{f}_{\mathrm{e}}+\mathrm{f}_{\mathrm{s}}$

