
Chapter 1

INTRODUCTION TO NMR SPECTROSCOPY

1.1 Introduction

Figure 1.1. Protein struc-
ture determined by NMR
spectroscopy. Four struc-
tures of a 130 residue pro-
tein, derived from NMR
constraints, are overlaid to
highlight the accuracy of
structure determination by
NMR spectroscopy.

Nuclear magnetic resonance (NMR) is a spec-
troscopic technique that detects the energy ab-
sorbed by changes in the nuclear spin state. The
application of NMR spectroscopy to the study of
proteins and nucleic acids has provided unique in-
formation on the dynamics and chemical kinetics
of these systems. One important feature of NMR
is that it provides information, at the atomic level,
on the dynamics of proteins and nucleic acids over
an exceptionally wide range of time scales, ranging
from seconds to pico-seconds. In addition, NMR
can also provide atomic level structural informa-
tion of proteins and nucleic acids in solution (see
Fig. 1.1), i.e. there is no need to crystallize the
sample for NMR studies. Thus NMR provides a
method of obtaining structural information if the
molecule cannot be crystallized or there is some
question regarding a structure obtained by X-ray
crystallography. Lastly, it is relatively easy to
study protein-ligand interactions under physiologi-
cal conditions by simply adding ligand to the NMR
sample of the unliganded protein.

Although NMR is a powerful technique, it does
have its limitations. First, almost all experiments
require that the observed NMR absorption peaks
are assigned to a particular atom in the protein. Although resonance assign-
ment methods are well characterized, they do require considerable time for data
acquisition and analysis. Secondly, the size of the protein or nucleic acid that
can be studied by NMR is limited. Assemblies with rotational correlation time
of greater than 25 ns (corresponding to a protein with a molecular weight of
60 kDa) may be difficult to study at the detailed atomic level. However, more
limited NMR studies can be performed on much larger proteins and biological
assemblies. Generally, it is necessary to label larger proteins with 13C, 15N,
and perhaps 2H, to successfully apply NMR techniques to such large systems.
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Labeling of this type is most easily accomplished biosynthetically in either E.
coli or in tissue culture (at a much higher expense). A rough indication of the
isotopic labeling requirements as a function of protein size is given in Table
1.1. Lastly, due to the small energy difference between the ground and excited
state of the nuclear spins, NMR is a particularly insensitive technique. Protein
concentrations on the order of 0.5 to 1 mM are typical, thus a single 0.4 ml
NMR sample of a 20 kDa protein would require between 4 and 8 mg of protein.
Fortunately, the techniques are not destructive and the sample can be used for
other purposes.

For most of this text we will employ a semi-classical model of the nuclear
spins to obtain an intuitive understanding of many of the fundamental aspects
of modern NMR spectroscopy. In this chapter we will highlight a number of
important features of NMR spectroscopy, including:

1. How energy states are created by the magnetic field,

2. The relationship between the environment and the absorption energy,

3. Coupling between nuclear spins.

1.2 Classical Description of NMR Spectroscopy
The basic phenomenon of nuclear magnetic resonance NMR spectroscopy is

similar to other forms of spectroscopy, such as visible spectroscopy. A photon
of light causes a transition from the ground state to the excited state. For
example, in the case of visible spectroscopy the absorption of a photon by an
electron causes the electron to move from its ground state orbital to an orbital
of higher energy, the excited state. In the case of NMR, the absorption of a
radio-frequency photon promotes a nuclear spin from its ground state to its
excited state.

NMR spectroscopy differs in a number of important aspects from other forms
of spectroscopy. First, the generation of the ground and excited NMR states
requires the existence of an external magnetic field. This requirement is a very
important distinction of NMR spectroscopy in that it allows one to change
the characteristic frequencies of the transitions by simply changing the applied
magnetic field strength. Second, the NMR excited state has a lifetime that is on
the order of 109 times longer than the lifetime of the excited electronic states.
This difference in lifetimes follows directly from Einstein’s law for spontaneous
emission that relates the lifetime of the excited state, τ , to the frequency of the

Table 1.1. Molecular Weight Limitations for Chemical Shift Assignments

Isotopic Labeling Mol. Weight
None ≤10 kDa
15N 10-15 kDa
15N, 13C 15-30 kDa
15N, 13C, 2H 30-60 kDa
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transition, ω:

τ ∝
1

ω3
(1.1)

The long lifetime of the excited state implies extremely narrow spectral lines
since the ability to define the energy of a transition is proportional to the life-
time of the excited state 1. In the case of small organic molecules, linewidths
less than 1 Hz are easily attainable. Thus it is possible to detect small changes
in absorption energies that arise from subtle differences in the environment
of a nuclear spin. The persistence of the excited state also facilitates multi-
dimensional spectroscopy, by allowing the resonance frequency information as-
sociated with one spin to be passed to another. Finally, the long lifetime of
the excited state permits the measurement of molecular dynamics over a wide
range of time scales.

1.2.1 Nuclear Spin Transitions
In all forms of spectroscopy it is necessary to have two or more different

states of the system that differ in energy. In a system with two energy levels,
the one of lower energy if often referred to as the ground state and the higher
energy state is the excited state. In the case of nuclear magnetic resonance
spectroscopy, the energies of the states arise from the interaction of a nuclear
magnetic dipole moment with an intense external magnetic field. Excitation
of transitions between these states is stimulated using radio-frequency (RF)
electromagnetic radiation.

1.2.1.1 Magnetic Dipole

The nuclear magnetic dipole moment arises from the spin angular momentum
of the nucleus. All nuclei with an odd mass number (e.g. 1H, 13C, 15N) have
spin angular momentum because they have an unpaired proton. All nuclei with
an even mass number and an odd charge (e.g. 2H, 14N) also have spin angular
momentum.

The spin angular momentum, S⃗, is quantized (as is all angular momentum)
and the different quantum states are indexed with the spin quantum number
I. The total angular momentum of a nuclear spin is: S⃗ = h̄

√

I(I + 1). We
will generally be interested in the z-component of the angular moment, Sz ,
which is restricted to integral steps of h̄ ranging from −I to +I. For example,
a spin one-half nuclei would have two possible values of Sz: + 1

2 h̄, and − 1
2 h̄,

corresponding to spin quantum numbers mz = + 1
2 and mz = − 1

2 , respectively.
The magnetic moment of a nuclear spin, µ⃗, is proportional to its spin angular
momentum, h̄I⃗ by a factor, γ, which has units of radians sec−1 gauss−1.

µ⃗n = γnh̄I⃗ (1.2)

The magnitude of γ depends on the type of nuclei. NMR properties of various

1This is one form of Heisenberg’s uncertainty principle: ∆E∆t ≥ h̄/2.
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Table 1.2. Properties of NMR Active Nuclei.

Nuclei1 γ(rad · sec−1 · gauss−1)† I Natural Abundance (%)
1H 26,753 1/2 99.980
2H 4,106 1 0.016
19F 25,179 1/2 100.0002

13C 6,728 1/2 1.1083

15N -2,712 1/2 0.373

31P 10,841 1/2 100.00
1The term “Protons” is used interchangeably with 1H in the text.
2Fluorine is not normally found in biopolymers, therefore it has to be intro-
duced by chemical or biosynthetic labeling.
3These isotopes of carbon and nitrogen are normally found in low levels in
biopolymers, therefore the levels of these two spins are generally enriched, of-
ten to 100%, by biosynthetic labeling.
†CGS units.

nuclear spins, including values of γ, are shown in Table 1.2. NMR active
isotopes of hydrogen, carbon, nitrogen, and phosphorus exist, thus it is possible
to observe NMR signals from virtually every atom in biopolymers. Protons
(1H) and phosphorus are highly abundant in natural biopolymers, while in the
case of carbon and nitrogen it is usually necessary to introduce the appropriate
isotope into the sample (see footnote 4 in Table 1.2). Also note, that with the
exception of deuterium (2H), all of these nuclei have a z-component of the spin
angular momentum of h̄/2. Consequently, the material presented in this text
applies to all of the above atomic nuclei, except for deuterium. Deuterium with
a spin quantum number I = 1 is a quadrapolar nuclei and in certain instances
needs to be treated differently than spin-1/2 nuclei.

1.2.1.2 Transition Energies - Nuclear Dipole-Magnetic
Field Interaction

µ
θ

B

Figure 1.2. Interaction of
magnetic dipole with an ap-
plied field.

When the orientation of a collection of nuclear
spins is observed in the absence of a magnetic field,
all possible orientations of the magnetic dipole are
possible (see Fig. 1.3). However, once the spins are
placed in a magnetic field, the direction of z-axis
becomes defined by the direction of the field, and
the magnetic moments of spin-1/2 nuclei assume
two orientations, either along or opposed to the
magnetic field, as illustrated in Fig. 1.3. Note
that the magnetic moments cannot orient parallel
to the magnetic field because of the restrictions placed on the value of µz by
the quantum mechanical properties of the system.

The energy of a state depends on the interaction of the aligned magnetic
dipole with an externally applied magnetic field. The size of this interaction
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Figure 1.3. Orientation of Magnetic Dipoles.
A. Orientation of nuclear magnetic dipoles in the absence of a magnetic field. A unit
sphere is shown and the dots on the surface illustrate the various orientations of the
dipoles in space. The orientation of one dipole is indicated by a line drawn from the
center of the sphere.
B. The orientation of the nuclear spin dipoles in a static magnetic field along Z. Note
that ≈ one-half of the spins are pointed up and the other half are pointed down. Also
note that they can assume any value of φ, but only two values of θ. φ and θ represent
the orientation of the magnetic dipole in spherical coordinates, as shown on the right
part of this figure.

can be found from classical electromagnetic theory. For example, consider a
magnetic dipole in a static magnetic field, B⃗, with the magnetic field along the
z-axis, as shown in panel B of Fig. 1.3. The energy required to change the
angle, θ, is

E =

∫

Γdθ =

∫

(µ⃗ × B⃗)dθ = |µ||B|
∫

sin(θ)dθ = −|µ||B| cos(θ)

= −µ⃗ · B⃗ (1.3)

The torque, Γ arises as the static field attempts to align the magnetic dipole of
the nucleus. The energy of interaction, or Hamiltonian 2, between the field and
the dipole is therefore given by the dot product of the two vectors: H = −µ⃗ · B⃗.

The actual magnetic field that is present at the nucleus is usually attenuated,
or shielded, by the presence of electrons that surround the nucleus, giving a
modified field at the nucleus, B:

B = (1 − σ)Bo (1.4)

where σ represents the degree of shielding. An extensive discussion of shielding
effects is found in Section 1.3.

Assuming that the magnetic field is along the z-axis, the energy of each state
is:

H = −uzBz (1.5)

2The Hamiltonian is a quantum mechanical operator that gives the energy of the system
when applied to the wavefunction of the system.
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mz = +
2
1

mz = −
2
1E

B0

Figure 1.4. Energy of the two quantum states of a spin 1
2

particle, with γ > 0, as a
function of the magnetic field strength. The diagram for a spin with γ < 0 would be
identical, except that the quantum number would be interchanged.

At this point, we have a result that is entirely classical, it is applicable to any
magnetic dipole that is placed into a magnetic field. To relate the energy of a
nuclear spin to its quantum state, we make use of the relationship between the
magnetic dipole and the z-component of the spin angular momentum, µz =
γh̄mz, giving the energy for a spin in a quantum state, mz:

H = −γh̄Bmz (1.6)

This is often referred to as the Zeeman Hamiltonian.
Using Eq. 1.6 it is possible to draw an energy diagram for the system as a

function of magnetic field. For a spin-1/2 particle (mz = ±1/2) the energy as
a function of the magnetic field is shown in Fig. 1.4.

The ground, or lower energy state, referred to as α, corresponds to mz =
+1/2, and the excited, or higher energy state, is referred to as β, corresponds
to mz = −1/2. The energies of the two states can be calculated using Eq. 1.6,

Eα = −
γh̄B

2
Eβ = +

γh̄B

2
(1.7)

The energy difference between the two states is easily computed,

∆E = Eβ − Eα = γh̄B (1.8)

and using the relationship, E = h̄ω, gives the well known Larmor equation:

ωs = γB (1.9)

In the above equation, ωs refers to the absorption, or resonance, frequency
of the shielded nucleus, i.e. its observed resonance frequency. The Larmor
equation is one of the key equations in NMR spectroscopy, it states that the
absorption frequency of a transition is equal to γ multiplied by the strength of
the magnetic field at the nucleus.

The energy of an NMR transition is quite low, requiring radiowaves to excite
the spins. The small value of ∆E has two important consequences:
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1. The population difference between the two energy levels is very small, on
the order of 1 part in 106. The actual population difference can be easily
calculated from Boltzmann’s relationship:

Nβ

Nα
= e

−γh̄B
kt ≈ 1 −

γh̄B

kt
(1.10)

The consequence of having a small population differences is that NMR spec-
troscopy is a relatively insensitive experimental technique because of the
small excess of spins in the ground state. In any form of spectroscopy the
presence of electro-magnetic radiation induces transitions from the ground
to the excited state and vice versa, consequently, the net absorption de-
pends on the population difference between the two states. Due to the
low sensitivity, it is common to increase the signal-to-noise of the spectrum
by signal averaging. In addition, typical NMR experiments require protein
concentrations on the order of 1 mM. However, in some cases concentrations
in the range of 50 µM have be used.

2. The lifetime of the excited state can be quite long, on the order of msec
to sec. As discussed above, a long lifetime provides three benefits: narrow
resonance lines, experimental manipulation of the excited state in multi-
dimensional experiments, and sensitivity to molecular motion over a wide
time scale.

1.3 Chemical Shielding

CH 3

CH 3

CH 3

CH 3
Si

Figure 1.5. Tetramethyl silane
(TMS) is often used as a reference
compound. The Si atom is elec-
tropositive with respect to carbon,
therefore the electron density on
the methyl groups is higher than
would be found on the equivalent
hydrocarbon. The high electron
density shields the methyl carbon
and protons, leading to a lower
effective field at the nucleus and a
lower resonance frequency.

The magnetic field strength at the nu-
cleus differs slightly from the applied field,
Bo, because of shielded by the electron den-
sity surrounding the nucleus. This shield-
ing is due to precession of electrons under
the influence of the applied magnetic field,
which generates an additional magnetic field
that usually opposes the externally applied
magnetic field.

The magnetic field from the electrons
shields the nucleus from Bo, and results in a
local magnetic field strength at the nucleus
that is given by:

B = (1 − σ) · Bo (1.11)

where sigma represents the shielding of the
nuclear spin. For an isotropic electron dis-
tribution the shielding is given by the Lamb formula [?]:

σ =
e2

3mc2

∫

ρ(r)

r
dr (1.12)
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As the electron density around the nucleus increases, the effective field de-
creases, leading to lower resonance frequencies. Since the resonance frequency
is due to the chemical environment of the nuclear spin, the observed frequency
is referred to as a chemical shift . Due to differences in shielding, different
spins will experience different values of local magnetic field, giving rise to shifts
in their frequencies. Chemical shift reference standards, such as tetra-methyl
silane were chosen because their protons are highly shielded (see Fig. ??).

For anisotropic electron distributions the shielding is described by a tensor.
A tensor is a concise mathematical expression of the anisotropic properties of
a physical system in three-dimensional space and has the following form3

σ =

⎡

⎣

σxx 0 0
0 σyy 0
0 0 σzz

⎤

⎦ (1.13)

Equation 1.13 describes the chemical shielding if the magnetic field were along
the x-axis (σxx), y-axis (σyy), or the z-axis (σzz). Under conditions of rapid
tumbling, which is generally the case in solution, an averaged shielding is ob-
served:

σ̄ =
1

3
[σxx + σyy + σzz] (1.14)

1.3.1 Chemical Shift Scale - ppm
Equation 1.9 indicates that the observed absorption frequency depends on

the magnetic field strength. Commercial NMR spectrometers can be purchased
with different magnetic field strengths. A field strength that gives a proton
absorption frequency of 500 MHz (11.7 Tesla) is fairly common. However,
spectrometers with proton frequencies ranges as high as 900 MHz are becoming
more common. To faciliate the comparison of spectra obtained with different
field strengths, the effect of the field strength is removed by converting all
frequencies to a dimensionless scale, the chemical shift scale. This scale is
defined as:

δ =
ν − νo

νo
× 106 (1.15)

with units of ppm, or parts-per-million. The conversion from frequency to
chemical shift makes the position of the spectral line independent of the mag-
netic field strength (by dividing by νo).

The constant, νo, is a reference frequency, in units of Hertz (Hz). It is often
the frequency of the line from a reference compound whose resonance is at
one end of the spectrum. For example, tetra-methyl silane is used to reference
organic samples and the proton and carbon frequencies of its spectral line are
set to zero ppm. In the case of protein solutions the water line can be used as

3This simple form, with all off-diagonal elements having the value of zero, is only found
for one particular orientation of the molecule with respect to the magnetic field, called the
principle axis system (PAS).
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Table 1.4. Nitrogen chemical shifts for side-chain atoms. The amide nitrogen chemi-
cal shifts are ≈ 120 ppm, with the exception of Glycine, which is found at 109.9 ppm.
Data from BioMagResBank [?].

Residue Shifts
Arg 89.8 (ϵ), 74.8 NH1, 75.8 NH2
Asn 112.8 (δ)
Gln 111.8 (ϵ)
His 190.7 (δ1), 179.8 (ϵ2)
Lys 71.86 (ζ)
Trp 129.5 (ϵ)

an approximate proton chemical shift reference point, with a chemical shift of
about 4.70 ppm.

1.4 Characteristic 1H, 13C and 15N Chemical
Shifts

The proton, carbon, and nitrogen chemical shifts found for amino-acids in
proteins are presented in tables 1.3, 1.5, 1.4.

Table 1.3. Average proton chemical shifts in proteins. Data from BioMagResBank

Residue NH Hα Hβ Others
Gly 8.34 3.94
Ala 8.20 4.26 1.38
Val 8.29 4.16 1.99 0.84, 0.83(CH3)
Ile 8.26 4.20 1.80 1.30, 1.24 (CH2), 0.80 (γCH3), 0.70 (δCH3)
Leu 8.22 4.32 1.63,1.57 1.54 (γCH), 0.77, 0.76(δCH3)
Pro - 4.41 2.05,2.05 1.93 (γCH2), 3.64, 3.63 (δCH2)
Ser 8.29 4.51 3.88 5.33 Hγ (OH)
Thr 8.27 4.48 4.17 1.16 (γCH3), 4.40 Hγ1 (OH)
Asp 8.33 4.61 2.74,2.70
Glu 8.34 4.26 2.04 2.31 (γCH2)
Lys 8.22 4.28 1.79,1.78 1.38 (γCH2), 1.61 (δCH2), 2.93 (ϵCH2), 7.52 (ζNH3)
Arg 8.24 4.27 1.79 1.58 (γCH2), 3.13 (δCH2), 7.32, 6.74, 6.72 (NH)
Asn 8.37 4.70 2.80,2.78 7.27, 7.20 (δNH2)
Gln 8.22 4.28 2.05,2.04 2.32 (γCH2), 7.17, 7.07 (γNH2)
Met 8.26 4.39 2.03,2.01 2.44 (γCH2), 1.86 (ϵCH3)
Cys 8.42 4.73 2.95,2.98 1.66 -SH
Trp 8.35 4.74 3.32,3.18 6.68-7.17 (aromatic), 10.13 (NH)
Phe 8.42 4.62 2.97,2.99 6.89-6.91 (aromatic)
Tyr 8.37 4.63 1.91 6.86 (Hδ), 6.64 (Hϵ), 9.25 (-OH)
His 8.25 4.62 3.11,3.12 Hδ1 10.14(NH), Hδ2 7.08, Hϵ1 8.08, Hϵ2 10.43(NH)
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Table 1.5. Carbon chemical shifts from the BioMagResBank [?]. Carbonyl shifts
have been omitted since they are quite uniform at approximately 175 ppm.

Residue Cα Cβ Others
Gly 45.3
Ala 53.1 18.9
Val 62.5 32.6 21.3 (CH3)
Ile 61.6 38.6 27.6 (γ1), 17.3 (γCH3), 13.4 (δCH3)
Leu 55.7 42.3 26.8 (γ), 24.5 (δCH3)
Pro 63.3 31.8 27.1 (γ), 50.3 (δ)
Ser 58.6 63.8
Thr 62.1 69.6 21.4 (γCH3)
Asp 54.5 40.7 178.41 (γ) sidechain
Glu 57.4 30.0 36.0 (γ), 181.9 (δ) sidechain
Lys 56.8 32.8 24.9 (γ), 28.8 (δ), 40 (ϵ)
Arg 56.9 30.7 27.3 (γ), 43.1 (δ), 159.0 (ζ)
Asn 54.5 40.7 178.41 (γ) sidechain
Gln 56.6 29.1 33.7 (γ), 179.7 (δ) sidechain
Met 56.1 32.9 32.1 (γ), 17.2 (ϵCH3)
Cys 57.4 34.1
Trp 57.7 30.1 110-137 (aromatic)
Phe 58.2 40.0 129-138 (aromatic)
Tyr 58.0 39.1 117 (ϵC), 132 (δC), 156 (ζ)
His 56.4 30.0 119.8 (δ2), 136 (ϵ1)

1.4.1 Effect of Electronic Structure on Chemical
Shifts

The chemical shifts presented in tables 1.3 and 1.5 are clearly different from
atom to atom. For example, amide protons resonate at ≈ 8 ppm, Hα protons
at ≈ 4 ppm and methyl protons at ≈ 1 ppm. A similar trend in carbon shifts is
observed for α- and β-carbons. These trends in chemical shifts can be explained
by the electronegativity of the atoms that are chemically bonded to the atom of
interest. The amide proton has a high chemical shift because the nitrogen atom
is more electron withdrawing than carbon. The reduced electron density at the
amide proton decreases the shielding and therefore increases the effective field
and consequently the resonance frequency. Similarly the Hα shifts are higher
than the methyl-H shifts because of the proximity of the α-protons to the
electronegative nitrogen.
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Figure 1.6. The distribution of observed carbon (A, left) and proton (B, right) chem-
ical shifts in proteins. The solid circles (•) mark the average chemical shift. The solid
lines indicate ±3σ; 95% of the observed chemical shifts fall within this range. The
gray boxes indicate nominal chemical shift ranges for α, β, and methyl atoms. In the
case of carbon shifts, these range separate the atom types quite well. Note that there
are a few exceptions, for example, the β-carbons of Ser and Thr fall in the α-region
and the α-carbon of Gly can fall in the β-carbon region. The large range of β-carbon
shifts for Cys is due to the fact that both free and disulfide bonded residues are in-
cluded in this figure. In the case of proton shifts, the separation is not as clean due
to the extensive chemical shift overlap between the various atom types. Data from
the BioMagResBank database of chemical shifts [?].

Note that within a residue, the relationship between atom type and chemical
shift is similar for both carbon and proton shifts. For example, in the case of
Arginine the following ordering is found: α > δ > β > γ for both carbon and
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proton shifts (see Fig. 1.6. The identical ordering reflects a similar electronic
environment for both the carbon and its attached proton.

The conformation, or secondary structure, of the polypeptide backbone al-
ters the chemical shift of chemically equivalent atoms in a predictable fashion.
For example, the Cα shift of Alanine decreases by 1.3 ppm when this residue
is found in a β-strand, and increases by 2.3 ppm when found in an α-helical
configuration. Although the secondary structure of the backbone is only one of
the factors that alter chemical shifts, it is possible to predict secondary struc-
ture by correlating the deviation of the chemical shift from random-coil values
for a number of different atoms (e.g. Cα, Hα, etc).

In addition to electronegativity effects, a formal positive change (e.g. Lys
ϵN) also withdraws electrons from adjacent atoms, decreasing the shielding and
therefore increasing the chemical shift. A formal negative change, will have the
opposite effect.

1.4.2 Ring Current Effects
Chemical shifts are also perturbed by additional magnetic fields that arise

from the precession of delocalized electrons in conjugated systems, such as
aromatic rings or carboxylic acid groups. These ring current effects can be
substantial. Several methods have been devised to calculate the effect of ring-
currents on chemical shifts. The simplest method, introduced by Pople [?], is
to consider the induced magnetic field as a point dipole at the center of the
aromatic ring. The magnetic field that is generated by this dipole is given by
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Figure 1.7. Calculated ring current shifts for a Phenylalanine ring. The x-axis lies
in the plane of the ring and the y-axis is perpendicular to the plane of the ring. The
location of the carbon and its attached hydrogen are indicated by the large and small
spheres, respectively. The large gray area represents the approximate Van der Waals
radius of the phenyl group. The lines represent contours of iso-chemical shift changes.
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the standard dipole equation:

σ = iB
1 − 3cos2θ

r3
(1.16)

where i is a ring-current factor that depends on the geometry of the ring. For
the phenyl group i = 1. B is a constant of proportionally, on the order of 25
ppm. θ is the angle between the normal to the aromatic ring and the vector
that joins the atom to the origin.

This function is plotted in Fig. 1.7. The ring-current effect depends on
both distance and orientation. The weak distance dependence, of 1/r3, implies
that ring current effects can significantly perturb the chemical shifts of near-by
residues. Chemical shift perturbations also depend on the orientation of the
atom with respect to the plane of the aromatic ring. For example, placement
of an atom 4 directly above the center of the ring will decrease the chemical
shift by approximately 0.75 ppm. In contrast, if the atom is placed in the
plane of the ring at the same distance from the center, its chemical shift will
be increased by approximately 0.33 ppm. Aromatic protons, because of their
close proximity to the center of the ring, experience an increase of ≈ 2 ppm
due to ring current effects.

1.4.3 Effects of Local Environment on Chemical
Shifts

The above discussion suggest that chemically equivalent atoms will have
identical chemical shifts. For example, one might expect that all of the Ala-
nine methyl protons in a protein to resonance at 1.39 ppm. Fortunately, the
tertiary structure in folded proteins generates sufficient diversity in the local en-
vironment such that different resonance frequencies are observed for otherwise
identical groups. The environmental differences that cause diversity in chem-
ical shifts include electro-negativity effects (e.g. in hydrogen bonded amide
protons), as well as the electrostatic and magnetic (ring current) effects that
were discussed previously. Typical ranges of carbon and proton chemical shifts
for aliphatic atoms in a large number of proteins are shown in Fig. 1.6. The
carbon chemical shifts are more disperse, covering a range of approximately 70
ppm, while the proton chemical shift range is about 6 ppm.

1.4.3.1 Degeneracy and Equivalent Chemical shifts

In a number of cases, two or more spins (e.g. protons) will have identical
chemical shifts. These spins are said to have degenerate chemical shifts.

Chemical shift degeneracy occurs when the two protons are magnetically
equivalent. A simple test for magnetic equivalence is to replace each of the two
protons with a test atom, e.g. F, generating two new compounds, and determine
whether the two protons are magnetically equivalent using the following steps:

1. If two different compounds are generated, then the protons are non-equivalent
and will show two separate peaks.
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Figure 1.8. Testing for magnetic equivalence of glycine α-protons. Replacement of
each α-proton with fluorine generates the two compounds on the right. These are
enantiomers and therefore will show identical chemical shifts in an achiral environ-
ment. spectroscopy.

2. If the two molecules can be superimposed, then they are magnetically equiv-
alent.

3. If the two molecules are mirror images of each other (enantiomers), then
the two protons will have the same chemical shift in an achiral environment.
However, two different shifts can be observed in a chiral environment, such
as in biological polymers.

4. If the two molecules are diastereoamers, then the two protons are in different
magnetic environments and will show different chemical shifts.

As an example of the second item in the above list, consider the methyl
protons of alanine. Replacement of each methyl proton with F will generate
three different derivatives. However, these can all be superimposed on each
other by rotation about the alpha-beta bond, so all three protons are equivalent.
A similar analysis shows that the delta and epsilon protons on tyrosine and
phenylalanine are also equivalent due to rotation of the ring.

As an example of the third item on the above list, consider the two alpha
protons on glycine. When each of these is replaced by F, a chiral center on the
alpha carbon is generated, and the two compounds are mirror images of each
other. Consequently, the chemical shifts of the two alpha protons in glycine
will be identical in water, an achiral solvent. However, if glycine is incorporated
into a protein, it is likely that the environment is no longer achiral and separate
chemical shifts will be observed for each proton.

Although two protons may be magnetically equivalent in a formal sense,
restriction of rotation can produce non-equivalency if the rotation was required
to generate equivalency. For example, if the rotation of methyl groups on Ala,
Val, Leu, Ile, or aromatics on Phe or Tyr sidechains, is somehow restricted,
such that the methyl or aromatic protons are now in different environments,
then distinct resonances will be seen for each proton. In order for this to
occur the rate of rotation must be significantly slower than the difference in
resonance frequencies of the protons in the different environments. In the case
of aromatic residues, the rate of ring-flipping is often sufficiently slow that
individual resonances are seen for each of the δ and ϵ protons. In the case of
methyls, the activation barrier for rotation is usually so low that rapid rotation
does occur, giving rise to degenerate shifts for all three methyl protons.
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1.4.4 Use of Chemical Shifts in Resonance
Assignments

A critical problem in applying NMR techniques to proteins is that of res-
onance assignment, or determining an atom’s chemical shift. Once this has
been accomplished the information obtained from the NMR resonance signal,
such as relaxation rates, can be associated with a particular atom in the pro-
tein. During the assignment process resonance signals that belong to the same
amino acid are identified by a number of different NMR experiments that are
discussed in subsequent chapters. This collection of resonance signals is called
a spin-system. Identification of the residue type of a spin-system is helpful in
the assignment process. In particular, if a residue only appears once in the
primary sequence of a protein, then identification of the spin-system leads di-
rectly to assignment. The residue type of a spin-system can ofter be discerned
from the number of resonances and their chemical shifts. Inspection of Fig.
1.6 shows that there is a cleaner distinction between the type of atom and its
carbon chemical shift versus the corresponding proton shift. For example, the
chemical shift ranges for the α-carbons of Trp, Tyr, and Val do not overlap the
range for their β-carbon shifts. In contrast, these ranges overlap in the case of
proton shifts. Therefore, carbon chemical shifts are generally more reliable for
predicting the atom type in a spin-system.

1.4.5 Chemical Shift Dispersion &
Multi-dimensional NMR

Another problem that we will address is how to generate resolved NMR
spectra from complex biopolymers, such as proteins. The chemical shift ranges
shown in Fig. 1.6 indicate that the NMR spectra of a polypeptide of modest
size, say 50 residues, will have a complex NMR spectrum that will contain
many overlapping peaks. One solution to this problem has been to increase the
dimensionality of the NMR experiment, such that the positions of peaks are de-
fined by two or more resonance frequencies. Two-, three- and four-dimensional
experiments are routinely performed on isotopically labeled proteins and nucleic
acids. Multidimensional NMR experiments of this type are possible because of
spin-spin coupling between spins.





Chapter 2

SPIN-SPIN COUPLING

Scalar couplings arise from spin-spin interactions that occur via bonding
electrons. Consequently, they provide information on the chemical connec-
tivity between atoms. Therefore, these couplings can be utilized to correlate
NMR resonances of atoms that are chemically bonded to one another, providing
chemical shift assignments if the molecular structure is known. In particular,
the scalar coupling between the amide nitrogen and the carbonyl carbon of the
preceeding residue permits the linkage of spins on one amino acid to those of
its neighbor.

In addition to providing information on chemical connectivities, the sizes
of three bond scalar couplings are sensitive to the electron distribution of the
intervening bonds, consequently these couplings provide information on the
conformation of chemical groups in proteins.

In this chapter we will first explore the origin of scalar couplings between
nuclear spins, understanding the effect of this coupling on the resultant NMR
spectrum from a classical perspective. The coupling will then be analyzed
using quantum mechanics to fully evaluate the effect of the coupling on the
frequency and intensity of resonance lines in the NMR spectrum of coupled
spins. Finally, a density matrix treatment of coupled spins will be introduced
in the subsequent Chapter as a prelude to analyzing the effect of scalar coupling
in more complex multi-dimensional NMR spectra.

2.1 Scalar Coupling
Scalar, or J-coupling, occurs between nuclei which are connected by chemical

bonds. The coupling causes splitting of the spectral lines for both coupled spins
by an amount J, commonly referred to as the coupling constant (See Fig. 6.7).
The nomenclature that is used to describe a coupling is as follows:

nJAB
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where n refers to the number of intervening bonds, and A and B identify the two
coupled spins. For example the coupling constant between the amide nitrogen
and the Cβ carbon would be written as: 2JN Cβ

. The value of J is usually
given in Hz and is the observed frequency separation between the resonance
lines of the coupled spins (see below). A resonance line that is split due to
J-coupling is generally referred to as a multiplet. The spectrum shown in Fig.
6.7 is an example of a doublet. If the resonance line was split into three signals,
it would be called a triplet. Finally splitting into four lines generates a quartet.

The effect of J-coupling on the spectrum depends on the frequency separation
of the coupled spins. If the two coupled spins differ greatly in their resonance
frequencies (∆ν > J), then the system is referred to as an AX system, where the
X signifies the fact that the two chemical shifts are quite different. All coupling
between different atom types, or heteronuclear spins, are AX couplings because
of the large difference in the frequencies of coupled spins. Examples include,
JNH , JCH , and JNC . AX couplings can be analyzed using a classical analysis,
similar to that depicted in Fig. 6.7. When two coupling spins have nearly
equivalent resonance frequencies (∆ν ≤ J) then the system is referred to as an
AB system. For example, the coupling between two Hβ protons on an amino
acid is an example of an AB system. Accurate analysis of AB systems require
a detailed quantum mechanical treatment. Lastly, when the coupled spins have
the identical resonance frequencies, the observed coupling disappears entirely.
This is most often seen when multiple protons have equivalent environments,
such as the three protons on a methyl group.

2.1.1 Origin of Scalar Coupling

Scalar coupling arises from the interaction of the nuclear magnetic moment
with the electrons involved in the chemical bond. The nuclear spin polarization
of one atom affects the polarization of the surrounding electrons. The electron
polarization subsequently produces a change in the magnetic field that is sensed
by the coupled spin. For example, consider a C-H group in a molecule, as
illustrated in Fig. 6.7. The proton nuclear spin polarizes the electron in the
σ bonding orbital. This polarization alters the magnetic field at the carbon
nucleus. Since there are two possible spin states for the proton magnetic dipole,
the effective field at the carbon nucleus is increased or decreased, depending on
the spin state of the attached proton. Since the population difference between
the two orientations of the proton spin are approximately equal, one-half of the
attached carbons will experience an increase in the local magnetic field while
the other half will experience a decrease. This difference in the local magnetic
field at the carbon nucleus will lead to a shift of the carbon resonance frequency.
Since there are two possible proton spin states, the carbon spectrum is split
into two lines, with the separation between the lines equal to the J-coupling.

The change in the magnetic field induced by the proton spins is proportional
to γH . The corresponding change in the carbon resonance frequency is propor-
tional to the product of this field change and the gyromagnetic ratio of the
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Figure 2.1. Nuclear Spin Coupling in a 13C-H group. Two C-H groups in separate,
but otherwise identical molecules, are shown. The two molecules differ only in the
spin state of the proton. The bonding electrons in the σ orbital become polarized
from the proton magnetic dipole, as indicated by the oval field lines. The polarization
of the electrons can either increase or decrease the magnetic field at the 13C nucleus,
depending on the proton spin state. One orientation of the proton spin increases the
magnetic field (upper molecule) while the other orientation causes a decrease in the
apparent field (lower molecule), causing either an upfield or downfield shift in the
resonance line. The observed carbon spectrum is the sum of these two resonances,
giving two peaks that are separated by the J-coupling constant, as shown in the
middle spectrum.

carbon spin, i.e.:

∆ω ∝ ±γHγC (2.1)

The effect of the carbon spin on the proton spin can be calculated in the same
way. The change in the local magnetic field at the proton nucleus is proportional
to ±γC , giving rise to a frequency shift of the protons of ±γCγH . Consequently,
the proton spin will experience exactly the same shift in frequency as its coupled
partner, giving rise to exactly the same splitting of the proton resonance line
as the resonance line from the attached carbon.

Note also that the observed frequency shift only depends on the product of
the gyromagnetic ratios of the coupled spins, the scalar coupling constant is
independent of the applied magnetic field (Bo).

Values of J-coupling constants that are important in biomolecular NMR are
shown in Table 2.1. The strength of the J-coupling depends on several factors,
including the gyromagnetic ratio of the coupled spins, the number of bonds
connecting the coupled spins, and the conformation of the intervening bonds
in the case of multiple bond couplings. The series of single bond heteronuclear
couplings (Table 2.1, right column) illustrates the effect of the gyromagnetic
ratio on the coupling constant; the coupling constant increases with increasing
γ. Scalar coupling through multiple bonds severely attenuates the coupling.
For example, the strong single H-C coupling of 130 Hz is reduced to 5 Hz when
an additional carbon-carbon bond is inserted between the two coupled spins
(Table 2.1).
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2.1.2 Coupling to Multiple Spins
The coupling between a carbon and a hydrogen in a 13C-H group results in

the splitting of both the proton and carbon spectral line by an amount JCH

Hz. If the carbon atom is coupled to more than one equivalent proton1, such as
in a 13CH2 or 13CH3 group, then a more complex splitting pattern is observed.

In the case of a 13CH2 group a triplet of lines is observed in the carbon
NMR spectrum, as illustrated in Fig. 2.2. This pattern arises because there
are four possible combinations of the spin-states of the two coupled protons
and the local magnetic field at the carbon nucleus will be the sum of the field
changes induced by each proton. When the magnetic moment of both protons
point upwards, in the direction of Bo, the frequency shift of the resonance line
will be 2 × J/2 Hz, or J Hz. When the proton spins are both pointing in
the opposite direction the shift is −J Hz. When the direction of each proton
spin are opposite to each other, the local field change at the carbon cancels,
resulting in a zero frequency shift of the carbon spin. The intensity of the lines
in the carbon spectrum is proportional to the number of molecules in the sample
having one of the four possible proton spin-states. Since the state in which the
proton spins point in opposing directions occurs twice as frequently than the
other two states, the central line of the triplet will have twice the intensity of
the outer lines, giving an observed intensity ratio of 1:2:1, as illustrated in Fig.
2.2.

The coupling between a carbon atom and three equivalent protons, such as
in a methyl group (13CH3), can be analyzed in exactly the same way. The
change in the local field that occurs when the magnetic dipoles from all of the
protons are aligned in the same direction is ± 3

2J . When the magnetic dipoles
of two protons are oriented in the same direction, while the third is pointing in
the opposite direction, the frequency shift is ± 1

2J since the opposing pair cancel

1Equivalent protons are generally considered to be a collection of protons that are attached
to a single carbon atom and have the same chemical shift. Equivalency is most often a result
of free rotation of the group, which averages the local environments of all of the protons.

Couplings Involving Heteronuclear (13C or 15N) Spins Proton-Proton Couplings
C-N 14 Hz H-C-H -12 to -15 Hz
C-C 35 Hz H-C-C-H 2-14 Hz
H-N 92 Hz H-C=C-H 10 (cis)/17 (trans)
H-C 130 Hz H-N-C-H 1-10 Hz
H-C-C 5 Hz (two bond coupling) (3 Hz α-helix)

(10 Hz β-strand)

Table 2.1. Homonuclear (proton-proton) and heteronuclear coupling constants that
are commonly found in biopolymers. The values in this table are approximate; the
coupling constants will also be affected by the electronic environment of the associated
spins.
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Figure 2.2. Effect of scalar coupling to two (A) or three (B) equivalent protons on the
carbon spectrum. The possible arrangements of two (labeled A B) or three protons
(labeled A B C) are shown in the upper part of each panel (1H spin-states). The
resultant shift in the frequency of the attached carbon is indicated by ∆ν. The final
carbon spectrum is shown in the lower part of each panel. In both cases the splitting,
or separation between the lines is equal to 1JCH . The intensity of each line depends
on the number of molecules in the sample with a particular spin state; a 1:2:1 ratio
will be found for two coupled protons and a 1:3:3:1 ratio is found for three coupled
protons.

each other’s effect on the local magnetic field at the carbon nucleus. Again,
the relative intensity of each line is proportional to the number of atoms that
give a particular frequency shift, in this case the four lines in the quartet will
have a relative intensities of 1:3:3:1.

The effect of coupling to multiple spins on an NMR spectral line can be
easily obtained from Pascal’s triangle, as illustrated in Fig. 2.3. Each row of
the triangle indicates the location of each line in the multiplet as well as the
relative intensity of each line.

In cases where an atom is coupled to two different, or non-equivalent, spins,
then the couplings are treated independently. For example, the carbonyl carbon

n=0

n=1

n=2

n=3 1

1

1 1

1 2 1

1 3 3

Figure 2.3. Pascal’s triangle can be used to readily evaluate the effect of coupling
to multiple equivalent spins on the appearance of a resonance line. The top of the
triangle represents the resonance line from a spin with no coupling partner (n = 0)
and each subsequent row represents the spectra that would be obtained as a result of
coupling to one, or more, additional spins.
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is coupled to both the amide nitrogen (1JN CO ≈ 12 Hz) as well as the alpha
carbon, (1JCO Cα ≈ 55 Hz), consequently the spectra line from the carbonyl
will be a quartet, showing both couplings (see Fig. 2.4).
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Figure 2.4. Scalar coupling to two non-equivalent spins. The spectrum of a carbonyl
carbon is shown. A quartet is observed because the coupling to the alpha carbon
(JCCα ) is larger than the coupling to the nitrogen (JNC). The spin-states of the
alpha carbon and nitrogen are shown below the spectrum. Note that these four
states are equally likely, therefore the intensity of the lines in the quartet is 1:1:1:1.

2.1.3 Strong Coupling (J≈ ∆ν)
When the chemical shift difference between the two coupled spins is of the

same order as the coupling constant then it is necessary to perform a more
complete quantum mechanical treatment. This analysis shows that in addition
to simple splitting of the resonance lines, there are also intensity changes that
occur for each member of the multiplet. As the frequency separation between
the coupled spins decreases, the intensity of the outer lines of the multiple de-
crease in intensity. When the coupled spins have the same resonance frequency,
the intensity of the outer lines becomes zero, and there is no observed effect
of the coupling on the NMR spectrum, i.e. a single resonance line is observed
(see Fig. 2.5).
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Figure 2.5. Simulated spectra are shown to illustrate the collapse of observed cou-
pling as ∆ν becomes smaller than J. The J-coupling constant is 10 Hz, and the
separation between the lines is decreased from 100 Hz (bottom spectrum) to 0 Hz
(top spectrum).

2.1.4 Conformational Effects on Scalar Coupling
In the case of multiple bond couplings, the conformation of the coupled

atoms affects the coupling constant. For example, the three bond proton-
proton coupling in the H-C-C-H group ranges from 2 to 14 Hz. The relationship
between the coupling constant and the torsional angle is represented by the
Karplus relationship [?]:

J = Acos2θ + Bcosθ + C (2.2)

where A, B, and C are empirical constants. For example, the φ angle in the
peptide bond affects the strength of the coupling between the amide proton
and the alpha proton, as illustrated in Fig. 2.6.
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Figure 2.6. The Karplus curve for the φ torsional angle in polypeptides is shown on
the left. The φ angles for regular secondary structures are indicated by the vertical
gray bars. The φ torsional angle is defined by the relative orientation of the H-N
bond vector to the Cα-CO bond vector. The molecular fragment to the right of the
plot has a φ angle of 180/circ. The actual curve plotted is: J = 6.98 cos2(φ− 60) −
1.38 cos(φ− 60) + 1.72 [?].
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ONE DIMENSIONAL NMR SPECTROSCOPY

3.1 Detection of Nuclear Spin Transitions
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Figure 3.1. Geometry of magnetic fields
around the sample. The sample is con-
tained in a glass tube. The diameter of the
sample tube is typically 5 mm and the sam-
ple volume is approximately 0.5 ml. The
directions of the static B0 field and the os-
cillating B1 field are shown. The B1 field
is usually applied using two paddle shaped
Helmholtz coils, shaded dark gray. These
coils are also used to detect the magnetic
field produced by the excited spins.

We have seen how placing a nu-
clear spin in a static magnetic field
generates a ground and an excited
state. Irradiation of a sample with
radiofrequency (RF) waves of the ap-
propriate frequency, ωs = γB, will
excite transitions from the ground to
the excited state due to the inter-
action of the magnetic dipole with
the oscillating magnetic field compo-
nent of the electromagnetic radiation.
This excitation field, called B⃗1, must
be orthogonal to the direction of the
magnetic dipoles, such that B⃗1× µ⃗ ̸=
0, to generate transitions of the nu-
clear spin state. The relative orien-
tation of the static B0 field and the
oscillatory B1 field are shown in Fig.
3.1.

The B1 field can be applied to the
sample in one of two ways, either by scanning through multiple wavelengths
(continuous wave NMR), or as a short burst of high power RF that excites a
broad range of transitions (pulsed NMR). Each of these methods are discussed
below.
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Time

Radio−frequency pulse
Signal (FID)

Figure 3.2. A simple one-pulse NMR experiment. The experiment begins with a
short (≈ 10 µsec) radio-frequency pulse. The induced signal (FID) is sampled as it
evolves over time.

3.1.1 Continuous Wave NMR
In continuous wave (CW) spectroscopy the NMR spectrum is obtained by

using a technique that is similar to traditional UV-visible spectroscopy, namely
scanning the wavelength of the incident light and detecting the absorbance as
a function of frequency. Prior to the introduction of pulsed methods in the
early 1970’s, all NMR spectra were acquired in this way. Low sensitivity and
the general restriction to one-dimensional NMR experiments are the principal
reasons why continuous wave spectroscopy is no longer used. Due to the low
inherent sensitivity of NMR it is necessary to average signals. Consequently,
the overall sensitivity depends on how fast each individual spectrum can be
acquired. A continuous wave scan takes much longer than pulsed excitation
because it is necessary to wait for the excited spins to return to the ground state
while the spectrum is being scanned. Otherwise the signals from previously
excited spins will interfere with the newly excited spins. In contrast, since all
of the spins are excited at the same time with pulsed NMR, it is only necessary
to allow the spins to relax for a single time period, between each excitation
pulse.

3.1.2 Pulsed NMR
The simplest pulsed NMR experiment consists of a short RF-pulse followed

by detection of the signal. This pulse sequence is shown in Fig. 3.2. In this
experiment the nuclear spins are excited by a short burst of radiofrequency
(RF) energy and the resultant excited states produce an oscillating magnetic
field that induces a current in the receiver coil. In practice, the same coil that
was used to excite the spins is also used to detect the signals. The induced
current is measured as a function of time and is referred to the Free Induction
Decay or FID. The subsequent Fourier transformation of the FID gives the
normal NMR spectrum with absorption peaks at frequencies that represent the
energy difference between the ground and excited states.

To understand how this procedure can generate an NMR spectrum, the
motion of the spins during each segment of the experiment will be analyzed
using classical mechanics. The one-pulse experiment will be divided into the
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following three discrete time intervals, and the evolution of the spins within
each of these periods will be discussed in detail.

Preparation: Prior to the excitation pulse the spins are at thermal equilib-
rium and are subject to only the static Bo field.

Excitation: During the excitation pulse the spins are subject to the static
Bo field plus the oscillatory excitation field, B1.

Detection: The excited spins precess under the static Bo field, generat-
ing the free induction decay or FID. The spectrum is obtained by Fourier
transformation of the FID.

3.1.2.1 Rotating Frame of Reference

In the analysis of this experiment it is useful to consider two Cartesian
coordinate systems. One that is stationary (the lab frame) and one that rotates
about the z-axis (the rotating frame) at a frequency equal to the frequency of
the applied B1 field (ω), as shown in Fig. 3.3. The rotating frame serves two
purposes in our analysis. First, it simplifies the analysis of the effect of the
oscillating B1 field on the spins. Secondly, the magnetization that is detected
by the instrument is in the rotating frame.

y

z

y’
x’

x

Ω

Figure 3.3. Rotat-
ing frame of refer-
ence. The coordinate
system is rotating
at a frequency | Ω|
about the z-axis.
A magnetic dipole,
precessing about Bo

at a frequency ω will
appear stationary in
the rotating frame.

The transformation of the coordinate system from the
lab frame to the rotating frame induces a fictitious static
field that is present in the rotating frame. This ficti-
tious static field exactly cancels the applied external field.
Consequently, there is no magnetic field along the z-axis
in the rotating frame.

3.1.2.2 Before
the Pulse: Magnetization at Equilibrium

Since the nuclear spins possess angular momentum,
the effect of applying any external field (Bo and/or B1)
to the spins is to generate a torque, Γ, on the spin. This
torque will cause a change in angular momentum as de-
scribed by the following classical equation:

Γ =
dS

dt
= µ⃗ × B⃗ (3.1)

Using µ⃗ = γS⃗ we can write

dµ

dt
= γµ⃗ × B⃗ (3.2)

This equation can be solved by standard methods. The
result is that the magnetic dipole precesses around the static field at an angular
frequency ω = γBloc, that is, at its resonance frequency.

Bulk Magnetization Before progressing on to the next two segments of
the pulse sequence, it is useful to consider the evolution of the bulk, or average,
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magnetization during the experiment. The bulk magnetization of the sample
is just the sum of the individual magnetic dipoles. The vector components of
the bulk magnetization, M⃗ , are defined as:

Mi =
All spins

∑

i=1

µi (3.3)

In the presence of the static field, the sum of the z-components of each magnetic
dipole will produce detectable bulk magnetization because there is a slight
difference in the population of spins that are aligned in one direction versus
spins aligned in the other direction (see Fig. 1.3). The net magnetization along
z, referred to as the longitudinal magnetization, is therefore defined as:

Mz = Mo (3.4)

In contrast, before the pulse, the distribution of the magnetic dipoles in
the x-y plane is random. In other words, there is no relationship between
the transverse (x-y) magnetization of one spin to another. The transverse
magnetization is termed to be incoherent. Since the sum of a large collection
of vectors aligned in random directions is zero, there is no bulk transverse
magnetization at thermal equilibrium, i.e.:

Mx = My = 0 (3.5)

3.1.2.3 Effect of the B1 Pulse: Excitation of Nuclear Spins

The next step of the experiment, the application of the B1 pulse, has to be
considered. Assuming that the B1 magnetic field oscillates in y-direction, it
can be described as:

B⃗1 = |b1|cos(ωt)ĵ (3.6)

where b1 is the amplitude of the applied field, ω is its frequency, and ĵ describes
its direction. All three of these parameters; intensity, frequency, and direction,
are under computer control in modern NMR instruments.

The total magnetic field in the lab frame is the sum of both the static field
and the oscillating B1 field (see Fig. 3.4). Since the rotation rate of the rotating
frame is always set to the frequency of the B1 pulse, the B1 field is stationary
in the rotating frame. Furthermore, the static magnetic field along the z-axis is
canceled due to the coordinate change. Therefore, only a static B1 field along
the y-axis is present in the rotating frame.

The spins will precess about this field in exactly the same way they precessed
about the static Bo field prior to the pulse. Recall that the precessional fre-
quency of the spins depends on the magnetic field strength. During the pulse,
the field strength is just B1, the intensity of the applied field. Consequently,
the precessional rate is:

ω1 = γB1 (3.7)

Thus, M⃗ is tipped from the z-axis at a rate of ω1 rad/sec. The direction of
the change in M⃗ , is usually given by the right-hand rule, the thumb is pointed
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in the direction of the applied B1 filed and the fingers curl in the direction of
rotation.

The extent of precession about B1 depends on both the strength of the B1

field (ω1) and the length of time, τ , the pulse was applied. A pulse of length τ ,
applied at a field strength of ω1 rad/sec will rotate the magnetization through
a “tip”, or “flip”, angle of β = ω1τ . Maximum signal is obtained when the flip
angle is 90◦. Under this condition, the pulse will rotate the bulk magnetization
from the z-axis to the x-axis.

The effect of a y-pulse on the individual magnetic dipoles is shown in Fig. 3.5.
Note that the dipoles are transformed from a random distribution about the
z-axis to a distribution in which all of the dipoles have the same phase, aligned
along the x-axis (φ = 0). The distribution of the magnetic dipoles after the 90◦

pulse is referred to as a coherent state. In addition, the magnetization that is
in the x-y plane is called transverse magnetization because it is orthogonal to
the direction of the main field.

The net result of a 90◦ pulse is to turn the equilibrium
bulk magnetization from the z-axis and place it in the x-y
plane.

3.1.2.4 Detection of Resonance

After the B1 pulse is turned off, the transverse magnetization precesses in
the x-y plane around the Bo field, just as it did before the pulse. The key
difference is that the transverse magnetization is now coherent and gives rise
to a non-zero magnetic moment in the x-y plane.

The precession of the coherent magnetization in the x-y plane induces a time
dependent current in the receiver coil. This signal is called the free induction
decay (FID) and represents bulk magnetization that exists in the x-y plane.
The frequency of the induced signal is exactly equal to the resonance frequency

Beff

z

y

x

B1

Ω/γ B

Figure 3.4. Magnetic fields present in the rotating frame. Shown are the magnetic
fields present in the rotating frame of reference when Ω = ωs. B is the magnetic
field at the nucleus and is fixed along the z-axis. Ω

γ is the fictitious field that arises
due to the change in reference frame. Bz is the resultant field in the rotating frame:
Bz = B + Ω

γ . In this case, Bz is zero and not shown. B1 is the oscillating field that
is only present during a pulse. Beff is the vector sum of B1 and BZ and in this case
it is equal to B1.
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Figure 3.5. Effect of a B1 y-pulse on the nuclear spins. The upper part of the
figure shows a collection of individual magnetic dipoles while the lower part of the
figure shows the bulk magnetization. The leftmost part of the panel illustrates the
state of the system at thermal equilibrium, prior to the pulse. The subsequent 3
sections show the state of the system, in the rotating frame, near the beginning, at
the middle, and at the end of a 90◦ pulse. The bulk magnetization remains in the z-x
plane during the entire period of the pulse.

of the nuclear spin transition since the magnetization precesses around Bo at
ωs = γB.

Detection of the precessing magnetization is accomplished by analog circuits
that actually measure the magnetization in the rotating frame, i.e. the observed
frequency, ω′, is ωs − ω, where ωs is the precessional frequency of the spin and
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Figure 3.6. On- and off-resonance signals. The detected signals represent Mx in
the rotating frame after an Py

90 pulse. The solid line is on-resonance spectral line
(ωs = Ω), the dashed line represents spins that are 150 Hz from Ω, and the dotted
line represents spins whose resonance frequency is 650 Hz from Ω. All three resonances
have the same decay time (T2) of 20 msec.
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ω is the rate of rotation of the coordinate frame, or equivalently, the frequency
of the applied B1 pulse.

Usually, the magnetization along the x- and y-axis are measured simultane-
ously:

Mx(t) = Mocos(ω
′t)e−t/T2 My(t) = Mosin(ω′t)e−t/T2 (3.8)

where ω′ is the resonance frequency in the rotating frame, and e−t/T2 represents
the decay of the excited state due to relaxation, with a time constant of T2.
These two signals are usually combined into a single complex number:

S(t) = Mx(t) + iMy(t) = Moe
iω′te−t/T2 (3.9)

where the magnetization along the x-axis is arbitrarily chosen to be the real
component and the magnetization along the y-axis is arbitrarily chosen to be
the imaginary component.

The frequencies that are present in the FID can be obtained by Fourier
transformation of the time domain signal, as illustrated in Fig. 3.7. Since the
Fourier transformation is performed with digital computers, it is necessary to
sample the FID at fixed time intervals. The delay between each sampling is
referred to as the dwell time (τdw).

The position of the resonance line in the spectrum depends on its precessional
frequency. In the case of eiωt, the Fourier transform gives a delta function lo-
cated at ω. The lineshape of a resonance depends on how the signal decays with
time. The Fourier transform of the second function, e−t/T2 , gives a complex
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Figure 3.7. Fourier transform of the time domain signal. The free induction decay
after the 90◦ pulse is shown. The upper section of the figure shows the precession
of the transverse (i.e. x-y) magnetization after the pulse. The lower part of the
figure shows the FID with the points indicating the data sampled during digitization,
representing a dwell time of 1 msec. The subsequent resonance line obtained after
Fourier transformation is shown to the right. In this case the pulse is slightly off-
resonance and precesses in the rotating frame. The upper scale for the abscissa of
the spectra gives frequencies in the rotating frame, the lower scale gives frequencies
in the laboratory frame.
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function. The real part of this function is the Lorentzian lineshape:

F (ω) =
T2

1 + T 2
2 ω

2
(3.10)

 0
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2

Frequency [rad/sec]

Figure 3.8. Lineshape of an NMR
resonance. The Lorentzian line-
shape, which is the real part of
the Fourier transform of e−t/T2 , is
shown. The full width at half-
height, ∆ν, is indicated.

This lineshape is shown in Fig. 3.8. The
full width of the line at half-height, ∆ν,
is inversely proportional to the T2: ∆ν =
1/(πT2)

Since the time domain signal is a prod-
uct of two functions, eiω′t and e−t/T2 , its
Fourier transform will be the convolution
of the Fourier transforms of each function.
The final spectrum consists of a Lorentzian
line located at ω′, giving the final NMR
spectrum shown in Fig. 3.7. Note that since
detection of these frequencies occurs in the
rotating frame, the origin of the frequency
axis is zero in that frame, but ω, or the fre-
quency of the applied B1 field, in the labo-
ratory frame.

3.1.3 Frequency Spectrum
of the Applied Pulse

The B1 pulse consists of a single frequency, yet it can excite spins over a
wide frequency range. The broad excitation profile of the pulse is due to the
fact that it is applied for a short duration. The frequency components of the
pulse can be determined by taking its Fourier transform. The pulse can be
represented as a continuous harmonic function, cosωt that has been multiplied
by a square wave whose width is the pulse length, τ . Therefore, its Fourier
transform will be the convolution of the two individual transforms.

The Fourier transform of cosωt is a delta function at ±ω. The Fourier
transform of a square wave is a sinc function (see Fig 3.9). The convolution
of these two functions is simply a sinc function at ±ω. The width of the sinc
function, which represents the frequency range that the pulse excites, increases
as τ decreases. Therefore short pulses have broad excitation profiles. In the
limit, an infinitely sharp pulse can excite all frequencies.
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Figure 3.9. Effect of pulse width on Sinc
function. Sinc functions for two different
values of τ are shown. The solid line cor-
responds to τ = 1sec and the dotted line
to τ = 2.5sec.





Chapter 4

QUANTUM DESCRIPTION OF NMR

4.1 A Quantum Mechanical Description of NMR
The classical description of the evolution of spins during an NMR experi-

ment is perfectly adequate to describe the behavior of isolated uncoupled spins.
However, once spins become coupled it is necessary to treat the system using
quantum mechanics. As an example, the following two dimensional NMR ex-
periment, the COSY experiment (correlated spectroscopy): 90x − t1 − 90x − t2
will produce two types of peaks. Self, or diagonal, peaks whose coordinates are
the same in both frequency dimensions and cross-peaks, or off diagonal peaks,
whose coordinates are specified by the two frequencies of the coupled spins. A
classical analysis of this experiment can only explain the self peaks. A quantum
mechanical description explains both types of peaks.

To go from a classical description to the quantum description it is necessary
to describe the state of the system by a wave function and to describe the effects
of pulses, evolution, and J-coupling on this wave function. Wave functions
provide a way to represent the state of the system at any give time/position.
For example, the wave function of a hydrogen atom represents the probability
of finding an electron at position (x, y, z) around the nucleus.

In general it is possible to describe an arbitrary state of the system, Ψ, as a
linear superposition of basis wave functions, ψi, each weighted by a coefficient,
ci:

Ψ =
N

∑

i=1

ciψi (4.1)

This is entirely analogous to describing a vector in three dimensional space
as a sum of orthonormal basis vectors:

v = xi + yj + zk (4.2)
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You can select any arbitrary orientation of a coordinate system and the only
thing that will change are the values of (x, y, z) that describe a vector. Similarly,
in selecting basis wave functions in quantum mechanics any arbitrary collection
of orthogonal basis wave functions can be chosen to represent a system as long
as it is possible to represent any state of the system. Usually the basis wave
functions are chosen such that they are time invariant. If the system (and its
corresponding wave function) changes with time, then the coefficients become
time dependant:

Ψ(t) =
N

∑

i=1

ci(t)ψi (4.3)

The wave functions for a spin 1
2 nucleus are simple and are usually repre-

sented as vectors using Dirac’s notation. For example the basis wavefunction
for a spin whose z-component for spin angular momentum is +1/2 (state α) is
represented as:

Ψα =

[

1
0

]

(4.4)

Similarly, for the other possible basis wavefunction of the z-component of an-
gular momentum (state β):

Ψβ =

[

0
1

]

(4.5)

These basis functions are orthonormal, i.e.
∫

α∗ ·αdζ = 1, and
∫

α∗ ·βdζ = 0:

∫

α∗ · αdζ = [ 1 0 ]

[

1
0

]

= 1 (4.6)

An arbitrary state of a spin is given as:

Ψ =

[

c1

c2

]

(4.7)

and c1 and c2 are normalized,
∫

Ψ∗Ψdζ = c∗1c1 + c∗2c2 = 1.
Operators are entities that extract some property of the system from the
wavefunction, giving the expectation value for that property. For example, the
operator for energy, H, when applied to one of the basis wavefunctions returns
the energy of that state, multiplied by the original wavefunction:

Hψi = Eiψi (4.8)

One can devise an operator for any physical measurement. In the case of
NMR useful operators are those that can be used to determine the angular
momentum of the nuclear spin, such as the x-component of the angular mo-
mentum, Ix.

In Dirac notation the operators are matrices, and the effect of operators
on wave functions can be determined by simple matrix multiplications. For
example, the operator for the z-component of spin angular momentum is:
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Sz = +
h̄

2

[

1 0
0 −1

]

(4.9)

Observables To calculate the expectation value of an observable parameter,
the scalar product is obtained as follows, using the z-component of the spin
angular momentum again.

< Sz >=

∫

Ψ∗SzΨdζ = +
h̄

2
[ 1 0 ]

[

1 0
0 −1

] [

1
0

]

=
h̄

2
(4.10)

Coupled Spins For a pair of coupled spins it is necessary to have four basis
states or wavefunctions, formed by taking products of all possible combinations
of the basis states for the isolated spin. These orthonormal basis wavefunctions
are:

αα =

⎡

⎢

⎢

⎣

1
0
0
0

⎤

⎥

⎥

⎦

αβ =

⎡

⎢

⎢

⎣

0
1
0
0

⎤

⎥

⎥

⎦

βα =

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

ββ =

⎡

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎦

(4.11)

The ββ state represents both spins with mz=-1/2.
Using these basis vectors, operators become 4 x 4 matrices, for example the

operator for the z-component of the spin angular momentum for the first spin
(S) is:

Sz = +
h̄

2

⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥

⎥

⎦

(4.12)

In any NMR experiment the initial state of the system is described by some
wavefunction, e.g. for two coupled spins:

Ψ =

⎡

⎢

⎢

⎣

c1

c2

c3

c4

⎤

⎥

⎥

⎦

(4.13)

where each ci represents the contribution of the different basis wavefunctions
to the initial state of the system.

The application of pulses, evolution due to precession about the static field,
and coupling between spins leads to changes in these coefficients, such that
at the end of the experiment, at time t, the wavefunction that describes the
system is:

Ψ =

⎡

⎢

⎢

⎣

c1(t)
c2(t)
c3(t)
c4(t)

⎤

⎥

⎥

⎦

(4.14)
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We can interrogate this wavefunction, using the operator for the x-component
of the angular momentum for spin I, and separately for the y-component of an-
gular momentum for spin I, to find the expectation values for these measurable
quantities, < Ix > and < Iy >. We can do a similar calculation for the other
spin (S), and our detected signal will be:

S(t) =< Ix > + < Sx > +i[< Iy > + < Sy >] (4.15)

where the y-component is considered to be the imaginary part of the NMR
signal.

4.2 Product Operators
The calculations (matrix multiplications) that are required to describe the

final outcome of even modest NMR experiments are very involved. Fortunately,
a shorthand method has been devised to perform these calculations in a simple
manner. This method is based on the fact that if we consider a collection of
spins, then it is possible to represent their average properties in what is re-
ferred to as a density matrix, ρ. The elements of the density matrix essentially
indicate the relative likelihood of finding the system in particular states. The
various forms that the density matrix may take during the course of an NMR
experiment can be conveniently represented by components of angular momen-
tum, e.g. Ix, Iy, and Iz. If there are coupled spins, then products of these
angular momentum operators are required to represent the density of states,
and terms like 2IxSz are observed. Since products of operators are required to
represent the density matrix, this is often referred to as the ”product operator
notation”.

There are a small number of simple rules that describe how the density
matrix evolves with time under the influence of the external magnetic field,
radio-frequency pulses, and J-coupling. The application of these rules is de-
scribed in the figure 4.1.

The transformations of product operators that are associated with evolu-
tion, pulse, and scalar coupling can be obtained by application of the above
four rules. These transformations can be summarized in a graphical form that
readily permits the calculation of the evolution of the density matrix in product
operator format (see Fig. 4.1). The following are a series of example trans-
formations that are evaluated using this diagram. In all cases the product
operator to the left of the arrow represents the density matrix before the trans-
formation while the product operator to the right of the arrow represents the
density matrix after the transformation, for example:

Iy
ωI t−→ Iycos(ωIt) − Ixsin(ωIt)

Iy
βx−→ Iycos(β) + Izsin(β)

Iz
βy−→ Izcos(β) + Ixsin(β)

Iy
2πJIzSz−→ Iycos(πJt) − 2IxSzsin(πJt)
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Note that in all cases the new density matrix, ρ, is a linear combination of
the cosine weighted initial density matrix, ρi, plus the sine weighted density
matrix that is advanced by a 90◦ rotation about the z-axis, ρ90:

ρi → ρicos(αt) + ρ90sin(αt) (4.16)

As time passes, the system will pass through all four forms of the density
matrices that are in the same plane within figure 4.1. For example, the evolution
of Ix under J-coupling proceeds as follows:

Ix → 2IySz → −Ix → −2IySz → Ix → 2IySz... (4.17)

.
In most NMR experiments, the initial density matrix that describes the state

of the system is simply Iz , representing magnetization aligned along the z-axis
and at thermodynamic equilibrium ρo = Iz.

At the end of the experiment, after the application of pulses and evolution
due to J-coupling and precession about the static field, the density matrix will
consist of a number of different product operators. Of these, only those that

2 I   S  z z 2 I   S  z z

2 I   S  y z
2 I   S  x z

−2I   S  y z
−2I   S  x z

−Ix

 I y

y−Iy−Iy−I

 I x  I x
 I y  I y

−Ix −Ix

 Iz  Iz I z

 I x

−Ix
y−I

 I y

Θ=π  τJ Θ=π  τJ

β
β

Θ=ωτ

x I

Chemical shift x−pulse y−pulse

J−Coupling

Figure 4.1. Manipulation of the density matrices using the product operator repre-
sentation. The upper left section of the figure shows the effect of chemical shift
evolution (e.g. H = ωIIz), with a rotation angle of ωt. The effects of pulses, with a
flip angle of β degrees, are also shown on the top of the figure for pulses along the
x-axis (middle), or y-axis (right). The effects of J-coupling on the density matrix are
shown on the lower part of the figure, for the density matrix represented by Ix (left),
or Iy (right). Here, the rotation angle is πJt.
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are proportional to Ix and Iy (or their S-spin counterparts) will give detectable
signal. For example, if the density matrix during detection of the FID has the
following form:

ρ(t) = αIxSx + βIx + γIy (4.18)

then the detected signal will just be: β + iγ.
As a simple example, consider a single uncoupled spin in a one pulse exper-

iment. The starting density matrix is represented by Iz:

ρo = Iz (4.19)

A pulse along the y-axis with a flip angle (β) of 90 gives:

Iz → Izcosβ + Ixsinβ = Ix (4.20)

This term evolves during the detection time, t, due to precession about the
static field:

Ix → Ixcos(ωt) + Iysin(ωt) (4.21)

Consequently, the detected signal is:

s(t) = cos(ωt) + isin(ωt) (4.22)

Fourier transform of this signal gives a resonance line at ω.



Chapter 5

MULTI-DIMENSIONAL NMR SPECTROSCOPY

Multi-dimensional NMR experiments generate a spectrum in which the po-
sition of a spectral line, or peak, is defined by two or more frequencies. The
existence of such a peak indicates that the participating spins are coupled to
one other by scalar (J) coupling through chemical bonds or via dipolar coupling
through space. The position of the peak is defined by the chemical shifts, or
resonance frequencies, of the coupled spins.

In multi-dimensional experiments, the intensity of the crosspeaks will depend
on the nature of the interaction or coupling between the spins. In the case of
dipolar coupled spins the intensity is related to the distance between the two
spins, providing a means to measure inter-atomic distances.

This chapter begins with a general introduction to multi-dimensional NMR
spectroscopy and then features a detailed discussion of one important heteronu-
clear two dimensional experiment, the HMQC experiment. (heteronuclear mul-
tiple quantum correlated spectra).

5.1 Multi-dimensional Experiments
Multidimensional NMR experiments consist of an interleaved combination of

chemical shift labeling periods and magnetization transfer, or mixing, periods.
The mixing periods serve to transfer the chemical shift information from one
spin to its coupled partner. For example, in a two-dimensional (2D) NMR
experiment, represented by:

A −→ B,

the magnetization begins on spin “A”, is frequency labeled with the chemical
shift of “A”, and then it is transferred during a mixing period to spin “B”.
The magnetization on spin “B” is detected in the usual way, as a signal in the
receiver coil. The final detected signal is now dependent on two time domains,
the first was used to record ωA while the second time domain is used to measure
ωB. The detected signal at the end of the two dimensional experiment is given
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by:

S(t1, t2) = ηei(ωAt1)ei(ωBt2) (5.1)

where η represents the efficiency of magnetization transfer between the two
spins. The final detected signal that is shown in Eq. 5.1 indicates that the
directly detected FID, ei(ωBt2) is modulated by a term, ei(ωAt1) that contains
information of the frequency of the coupled spin. The Fourier transform of this
signal will produce a two-dimensional spectrum that contains a single peak,
located at (ωa,ωb). This type of peak is termed a crosspeak because the two
frequencies that define its position are different. In some experiments, notably
homonuclear proton multi-dimensional experiments, peaks exist that have the
same frequency in all dimensions. These peaks are referred to as selfpeaks ,
autopeaks , or diagonal peaks and represent magnetization that was not trans-
ferred to another spin during the experiment, hence the recorded frequencies
are the same in all dimensions.

In a three-dimensional experiment two labeling and mixing segments are
used, resulting in a path of magnetization flow between three spins as: A →
B → C, giving the following signal.

S(t1, t2, t3) = ηei(ωAt1)ei(ωBt2)ei(ωCt3) (5.2)

In this case, the amplitude of the detected FID is modulated by terms that
provide information on the frequencies of the other two coupled spins. Fourier
transformation of this signal will generate a peak whose position within a three-
dimensional cube is defined by ωA, ωB, and ωC in each dimension, as illustrated
in Fig. 5.1.

ωA

1ω
ωA ωA

1ω 1ω

2ω 2ω

3ω 3ω 3ω
ωC

2ω
ωBωB

Figure 5.1. Peak location in a three-dimensional spectrum. The location of a cross-
peak in a three dimensional spectrum is defined by the intersection of three orthogonal
planes. The first plane is the locus of all points that have a frequency of ωA in the
first frequency dimension. The second plane is the locus of all points that have a
frequency of ωB in the second frequency dimension. The intersection of these two
planes is a line, as indicated in the center diagram. The third plane is defined by
all points that have a frequency of ωC in the third frequency dimension. This plane
intersects the line at a single point, which is location of the crosspeak.
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5.1.1 Elements of Multi-dimensional NMR
Experiments

Generalized pulse sequences for two-dimensional and a three-dimensional
experiments are shown in Fig. 5.2. Any two-dimensional NMR experiment
can be divided into four basic elements: preparation, evolution, mixing, and
detection. In a three dimensional experiment, the evolution period and mix-
ing period would be repeated an additional time. These basic elements are
described in detail below:

1. Preparation period: The length of this period is fixed and is usually em-
ployed to allow the spins to return to, or near, thermodynamic equilibrium.
This period typically ends with a single 90◦ pulse that excites the first spin
(’A’).

2. Evolution period (t1): This time period is used to encode the chemical shift
of ’A’ in the data due to evolution under the Hamiltonian: H = ωAIAZ .
This period is referred to as the indirectly detected domain, or dimension,

t 3

t1

t1 t2

t1(p−1) x 

t1(p−1) x 

t2(r−1) x 

t3(r−1) x t2(q−1) x 

Preparation

Preparation Evolution

2 3 4 p 2 q.... ....
B

A

Mixing DetectionEvolutionEvolution

2 3 4 .... p

t 2

m=1

m=1 n=1

n=1 2 3 4 .... r

o=1 2 3 4 .... r

Δ

Δ Δ

Δ

Δ

Δ

ΔΔ

Detection

Mixing

Mixing

Figure 5.2. Generalized two-dimensional and three-dimensional pulse sequences.
Panels A and B show a two-dimensional or a three-dimensional experiment, respec-
tively. Both experiments begin with an excitation pulse that is followed by an evolu-
tion period, t1, and then a mixing period. In a two-dimensional experiment the FID
is collected after the mixing period. In the case of a three-dimensional experiment,
another evolution and mixing period follow before acquisition of the FID. Initially, the
length of the t1 period is set to zero (or ∆t1/2) and the first (m = 1) FID containing r
points is collected. Note that this FID usually consists of multiple scans, all of which
are summed to the same memory location. Subsequently, t1 is incremented by a fixed
amount, ∆t1 (the dwell time in t1), and a second (m = 2) FID is collected and stored
in a different memory location. This process is repeated a total of p times until the
desired evolution time is attained. In the case of the three-dimensional experiment
(B), the t1 and t2 evolution periods are sampled independently. For every t1 time, q
t2 times would be acquired, leading to a total of p × q separate FIDs. Note that the
increment in t1 (∆t1) need not equal the increment in t2 (∆t2), nor does p necessarily
equal q.
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because the excited state of spin ’A’ is not directly detected by the receiver
coil. Rather, the evolution of the system is sampled digitally, i.e. t1 begins
at zero and then is incremented by a constant amount, ∆t1, with a separate
FID acquired at each increment of t1. A total of p FIDs are acquired,
generating a total acquisition time in t1 of (p − 1) ×∆t1.

3. Mixing period: This event causes the magnetization that is associated
with spin ’A’ to become associated with spin ’B’. This period leads to the
transfer of the chemical shift information of spin ’A’ to spin ’B’. The mixing
can be evoked by either J-coupling or dipolar coupling. The key point is
that the amount of magnetization transferred from A to B is proportional to
cos(ωAt1) or sin(ωAt1). Hence the magnetization of ’B’ becomes amplitude
modulated by a function that contains information about ωA.

4. Detection Period: During this period of direct detection, the magnetization
that is precessing in the x-y plane is detected in the normal fashion. This
signal is also sampled digitally, with a time interval of ∆t2, the usual dwell
time, giving a total acquisition time of (r − 1) ×∆t2.

5.1.2 Generation of Multi-dimensional NMR
Spectra

The data from a two-dimensional experiment can be represented as a two-
dimensional array of single data points, with each cell of this array indexed by
the evolution time in t1 or t2, as indicated in Fig. 5.3. Typically, each directly
detected FID would contain 1k or 2k points (e.g. r = 1024 or 2048) while the
indirectly detected dimension would contain between 128 and 1k points (e.g.
p = 128 to 1024), depending on the nature of the experiment.

t2 −→
t1 ↓ 1 2 3 4 5 6 7 8 . r
1 x x x x x x x x . .
2 x x x x x x x x . .
3 x x x x x x x x . .
4 x x x x x x x x . .
5 x x x x x x x x . .
. . . . . . . . . . .
p . . . . . . . . . .

Figure 5.3. Data structure for two-dimensional data. The data structure for a two-
dimensional data set is shown. Each row corresponds to a FID of r points that was
acquired at the indicated t1 value. There are a total of p t1 values. Each FID may
result from the sum of more than one scan, but all scans would be acquired with the
same t1 value.
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Processing of this time domain data into a two-dimensional spectrum re-
quires calculation of a two-dimensional Fourier transform:

Ω(ω1,ω2) =

∫ ∫

S(t1, t2)e
iωt1eiωt2dt1dt2 (5.3)

where Ω represents the final spectrum and S(t1, t2) represents the initial matrix
of data points.
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Figure 5.4. Generation of a two-dimensional spectrum. In this example the fre-
quency of the two coupled spins are 190 and 250 Hz. Note that only one magnetiza-
tion path is considered here (i.e. A → B), therefore only one peak is present in the
spectrum, located at νA = 190 Hz and νB = 250 Hz.
Panel A shows, at the extreme left, the series of pulse sequences that are used to
obtain evolution of the first time domain. The sequence at the bottom has a t1 time of
zero; the mixing pulse immediately follows the excitation pulse. The t1 evolution time
is incremented by a fixed amount, ∆t1, producing a series of separate experiments,
arranged from the bottom to the top of the diagram. The FIDs that are obtained
for each value of these experiments are shown in the right part of panel A. Each FID
corresponds to a single t1 value. Note that at early t1 times the first points of the
FID are greater than zero, these points become negative at later t1 times due to the
fact the FID is equal to cos(ωAt1)e

iωBt2 .
Panel B shows the Fourier transform of each of the FIDs, hence the horizontal axis
is converted from the time domain in panel A to the frequency domain in B. The
vertical axis is still in units of time. Note that the intensity of the resonance line at
250 Hz, is positive for short t1 values, but becomes negative at longer t1 values, as
anticipated from the FIDs shown in panel A.
Panel C shows the results from the second Fourier transform, along t1. This trans-
form was obtained by taking a column of data at each ν2 frequency and computing
the transform of the data in t1. A single peak is found at νA = 190 Hz and νB = 250
Hz.
Panel D shows a contour, or topographical plot, of the same spectrum that is dis-
played in panel C. In this illustration, contour lines that join points of height intensity
are more darkly shaded than lines that join regions of low intensity. The location of
the two-dimensional peak is readily apparent in such a plot.
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In practice, this transform is computed one dimension at a time, usually
beginning with the transform of the data as a function of t2, followed by trans-
formation as a function of t1.

F (t1,ω2) =

∫

S(t1, t2)e
iωt2dt2

Ω(ω1,ω2) =

∫

F (t1,ω2)e
iωt1dt1 (5.4)

With reference to Fig. 5.3, the processing software would read and transform
p rows, corresponding to the directly detected FIDs, to produce F (t1,ω2), a
mixed data matrix. The software would then load r columns and perform
the Fourier transform in the t1 direction to generate the final data matrix or
spectrum, Ω(ω1,ω1). These steps are illustrated in Fig. 5.4. In the case of a
3-dimensional experiment, these steps would proceed as t3, followed by t2, and
then t1.

5.2 Two Dimensional Heteronuclear NMR
Experiments

There are two two-dimensional heteronuclear correlation experiments in com-
mon use: the heteronuclear multiple quantum coherence (HMQC) experiment
[?] and the heteronuclear single quantum coherence (HSQC) experiment [?].
An example of a two-dimensional 1H-15N HSQC spectrum of a 130 residue
protein is shown in Fig. 5.5.

Although these experiments all generate crosspeaks that correlate the proton
and heteronuclear chemical shifts, the experiments differ in the state of the
magnetization that evolves during the t1 (heteronuclear) labeling period. In
the case of the HMQC experiment a double-quantum state, with both the
proton and nitrogen spins in an excited state, evolves during t1. In the case of
the HSQC experiment only the nitrogen is excited during the t1 period. The
HSQC spectrum generally gives narrower linewidths at the expense of reduced
signal intensity.

5.2.1 HSQC Experiment
The HSQC pulse sequence is shown in Fig. 5.7. This experiment can be

divided into four distinct segments:

A. Polarization transfer from the amide proton to the nitrogen.

B. Measurement of the nitrogen frequency during t1.

C. Transfer of polarization from the amide nitrogen back to the proton.

D. Measurement of the protoen frequency during t2.

The transfer of the magnetization is illustrated on the chemical structure of
an amide group, shown in Fig. 5.6.
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Figure 5.5. Two-dimensional 1H-15N-HSQC spectrum. A two-dimensional HSQC
spectrum of a 130 residue protein is represented as a contour plot. The one-
dimensional proton and nitrogen spectra are shown on the left side and top of the
plot, respectively. Each crosspeak represents a signal from a single N-H pair. Each
peak is a singlet because there is no evolution due to J-coupling during both t1 and
t2 periods. The pairs of peaks connected by vertical lines indicate NH2 groups from
Gln and Asn groups. The two amide protons share the same nitrogen, consequently
both peaks have the same nitrogen shift. The HMQC experiment would be almost
identical in appearance.

5.2.1.1 A: Polarization Transfer - First INEPT.

The first step in most heteronuclear NMR experiments is to transfer the more
intense population difference associated with the protons to the less sensitive
spin. Since the ratio of the ground to the excited state is approximately equal
to γ, this step increases the signal intensity by a factor of γH/γN , or by about
a factor of 10.

The first polarization transfer period is referred to as an INEPT1 transfer and
the second polarization period is often referred to as a reverse-INEPT trans-
fer because the magnetization associated with the insensitive spins is trans-
fered back to the attached proton by the same mechanism. For simplicity,

1INEPT is an acronym for Insensitive Nuclei Enhanced by Polarization Transfer.
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the term INEPT will be used to describe this method of magnetization trans-
fer, regardless of the direction of magnetization transfer. The first 90◦ proton
pulse converts Iz to −Iy. Evolution of the proton chemical shift during the
remaining part of this period can be ignored because it is a spin-echo sequence
(τ − 180◦ − τ) that will refocus any evolution of the proton magnetization.
Therefore, it is only necessary to consider evolution by J-coupling. The 180◦

pulses in the middle of the INEPT period are usually applied to both the pro-
ton and the heteronuclear spin simultaneously. However, they are considered
to occur sequentially in the analysis below. The evolution of the magnetization
is as follows (φ = πJτ):

−Iy
J→ − [Iycos(φ) − 2IxSzsin(φ)]

180x
I→ − [−Iycos(φ) − 2IxSzsin(φ)]

180x
S→ − [−Iycos(φ) + 2IxSzsin(φ)]

J→ cos(φ)[Iycos(φ) − 2IxSzsin(φ)] − sin(φ)[2IxSzcos(φ) + Iysin(φ)]

= Iy [cos2φ− sin2φ] − 2IxSz[2sin(φ)cos(φ)]

= Iycos(2φ) − 2IxSzsin(2φ) (5.5)

where the trigonometric identities: cos(2φ) = cos2φ − sin2φ and sin(2φ) =
2sinφcosφ were used in the last step.

The delay, τ , is set to be equal to 1
4J , giving sin(2φ) = sin(2πJ/[4J ]) =

sin(π/2) = 1, therefore the magnetization just before the 90◦ pulses at the end
of the INEPT period is:

−2IxSz (5.6)

Therefore the INEPT period cause the conversion of proton magnetization
(−Iy) to both proton an nitrogen magnetization (2IxSz).

The 90◦ y-pulse on the proton and x-pulse on the nitrogen convert this to:

−2IzSy (5.7)

B:   N − freq.15

D:   H − freq.1

N

H
A: INEPTC: INEPT

Figure 5.6. Magnetization transfer in the HSQC experiment. The more intense
polarization of the amide proton is transferred to the nitrogen during the first INEPT
period. Labeling of the magnetization with the nitrogen frequency occurs in t1. The
magnetization, amplitude modulated by the nitrogen frequency, is returned to the
amide proton by the second INEPT. The proton frequency is measured during t2.
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(decouple)
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Figure 5.7. HSQC pulse sequence. The pulse sequence for the HSQC experiment.
The top set of pulses are applied to the protons and the lower set of the pulses are ap-
plied to the heteronuclear spins (15N in this illustration) via a separate radio-frequency
channel. Narrow bars correspond to 90◦ pulses and wider bars represent 180◦ pulses.
The delay τ is nominally set to 1

4J . Polarization transfer periods (INEPT) are labeled
and include the simultaneous proton and nitrogen 90◦ pulse.

B: Evolution During t1.

During this period the magnetization can potentially evolve under the influence
of the proton chemical shift, the heteronuclear chemical shift, and J-coupling.
Each of these are considered below:

Evolution of Proton Chemical Shift: Evolution under the proton chemical shift
does not occur since the proton state is Iz :

M = −eiIzωIτ2IzSye−iIzωIτ

= −2Sye
iIzωIτIze

−iIzωIτ

= −2SyIze
iIzωIτe−iIzωIτ

= −2IzSy

J-Coupling Evolution: Evolution due to J-coupling is refocused by the proton
180◦ pulse during t1. This can be seen with the following analysis (ζ = πJ t1

2 ):

−2IzSy
t1/2→ −2IzSycos(ζ) + Sxsin(ζ)
πI→ +2IzSycos(ζ) + Sxsin(ζ)

t1/2→ +cos(ζ)[2IzSycos(ζ) − Sxsin(ζ)] + sin(ζ)[Sxcos(ζ) + 2IzSysin(ζ)]

= −Sx[cos(ζ)sin(ζ) − cos(ζ)sin(ζ)] + 2IzSy[cos2(ζ) + sin2(ζ)]

= 2IzSy

Hence, the only effect of J-coupling on the magnetization during the t1 period
is a change in the sign. This is a general feature of applying a 180◦ pulse to one
of the two coupled spins within a symmetrical interval, there is no net evolution
of the magnetization due to J-coupling.
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Evolution of Nitrogen Chemical Shift: The net evolution of the magnetization
during t1 is solely due the nitrogen chemical shift:

2IzSy
ωSt1→ 2Iz [Sycos(ωSt1) − Sxsin(ωSt1)]

= 2IzSycos(ωSt1) − 2IzSxsin(ωSt1) (5.8)

C: Polarization transfer back to Protons - The Reverse INEPT.

This segment begins with the pair of x-pulses that are applied to both the
proton and heteronuclear spins, interchanging the state of the proton and het-
eronuclear spins:

2IzSycos(ωSt1) → 2IySzcos(ωSt1)

2IzSxsin(ωSt1) → −2IySxsin(ωSt1)
(5.9)

Note that the −2IySxsin(ωSt1) represents double quantum magnetization that
cannot be detected during the t2 period, hence it will be ignored. The subse-
quent part of the INEPT period ( τ −180◦(H,N)− τ) will refocus the 2IySz term
to give the magnetization at the beginning of t2, i.e.:

2IySzcos(ωSt1) → Ixcos(ωSt1) (5.10)

D: Detection.

During the detection period, heteronuclear decoupling is applied so that only a
single resonance line is detected for each I-S spin pair, giving the following sig-
nal, assuming detection of both the x- and y-components of the magnetization
in t2.

S(t1, t2) = cos(ωSt1)e
iωI t2 (5.11)

An HSQC spectrum of a 15N labeled protein is shown in Fig. 5.5.





Chapter 6

RESONANCE ASSIGNMENTS

6.1 Overview of the Assignment Process
NMR spectroscopy can be used to determine the structure of a protein, and

to provide detailed information on the dynamics of the protein over a wide
range of time-scales. However, before NMR can be used to investigate the
structure and dynamics of a protein it is necessary to assign resonance lines in
the spectrum to specific atoms in the protein. This is really a matching problem
in that each NMR active nucleus in the proton is matched to a resonance line.
Typically, this process is accomplished in a series of four steps:

1. Collect all resonance frequencies that are associated with spins on the same
residue. This collection of resonances is often referred to as a spin-system.
Usually the amide nitrogen and proton shiftts form the root of the spin
system. The set of frequencies in a spin-system is often divided into main-
chain atoms (HN , NH , Hα, Cα, CO) and side-chain atoms. Ultimately,
the resonances within a spin-system will be assigned to atoms within a
particular residue.

2. Spin-systems are grouped based on their most likely amino acid type -
this helps the placement of spin-systems on their corresponding amino acid
residues.

3. Determine which pairs of spin-systems arise from adjacent residues in the
protein. Extend this pairwise association to connect as many spin-systems
as possible into a linear chain that represents a segment of the poly-peptide
chain. Generally, a number of disconnected segments are obtained due to
missing signals, chemical shift overlap, and the presence of Pliny’s, which
lack an amide proton.
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Figure 6.1. Conceptual view of the resonance assignment strategy. Assume you are
trying to determine the order of six friends that are holding hands. Have each friend
write down on a piece of paper two pieces of information. On the right side of the
paper they should write their name (or chemical shifts) and on the left side of the
paper they should write the name (i.e. chemical shifts) of the person holding their
right hand. Each piece of paper now contains the chemical shifts of each spin system
on the right side and the chemical shifts of the preceding residue on the left side.
Starting with Sue’s paper, it is possible to determine the order of spin systems from
one end to the other.

4. Associate the connected segment of spin-systems with the segment of pri-
mary sequence that best matches the likely amino acid type of the spin-
systems.

If there are no missing amide groups, and all chemical shifts are unique, then it
is possible to completely assign a protein without any knowledge of the primary
sequence (see Fig. 6.1) using this strategy.

If there is missing information, such as the inter-residue shifts cannot be
measured, or an amide group is not observable due to exchange broadening,
it is usually possible to assign most of the spin systems by using the primary
sequence to guide the placement of connected spin-systems, provided that there
is sufficient chemical shift information to determine the most likely amino acid
type of the spin system.

Finally, it is often the case that different spin-systems will have the same
chemical shift for all of the measured resonances within the spin system. This
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degeneracy prevents unambiguous matching of spin systems because there are
multiple possible matches. In this case it is necessary to obtain additional
inter-residue information. For example, if the inter- and intra-residue Cα shifts
are degenerate it may be necessary to collect inter- and intra-residue Cβ shifts
to resolve the degeneracy.

6.2 Defining Spin Systems
6.2.1 2D-Homonuclear Methods

Two common experiments to determine the proton chemical shifts associ-
ated with each residue are the COSY experiment and the TOCSY experiment.
COSY is short form for correlated spectroscopy and TOCSY stands for total
correlated spectroscopy. The pulse sequences for these experiments are shown
in Fig. 6.2. Both of these experiments generate two-dimensional spectra that
displays self-peaks on the diagonal and crosspeaks for J-coupled protons. Note
that crosspeaks do not occur between amino acid residues nor between the Hβ

residue and aromatic protons; in both case the four-bond coupling constant is
zero.

The two experiments differ in that the COSY experiment only shows cross-
peaks between pairs of directly coupled protons, i.e. HN and Hα. In contrast
the TOCSY experiment shows couplings between protons that are mutually
coupled to other protons, as illustrated in Fig. 6.3. The transfer of magnetiza-
tion during the mixing period of a TOCSY experiment is similar to a relay race
in that during the mixing period the magnetization is transferred from one spin
to another due to J-coupling. For example, in the case of Valine, the chemical
shift of the methyl group is obtained during the t1 period. During the mixing
period this information is passed as follows:

Hγ
Jγβ→ Hβ

Jβα→ Hα
JαHN→ HN (6.1)

which generates a crosspeak at (ωγ ,ωNH), even though there is no direct cou-
pling between the two protons.

t 1 t 2 t 1 t 2

COSY TOCSY

Figure 6.2. Pulse sequences for the COSY and TOCSY experiment. Both of these
experiments are two-dimensional NMR experiments that show correlations between
J-coupled protons within an amino acid sidechain. Note that there is no coupling
between residues, nor is there coupling between the Hβ and aromatic protons. In
the TOCSY experiment the second 90◦ mixing pulse that is present in the COSY
experiment is replaced by a long lower-power pulse. During this mixing period mag-
netitization is transferred sequentially from one coupled spin to another.



56 Resonance Assignments

pp
m

ppm

pp
m

ppm

pp
m

ppm

pp
m

ppm

COSY Glycine Valine

TOCSY
10 6 4 2 08

10

8

6

4

2

0

10 6 4 2 08
10

8

6

4

2

0

10 6 4 2 08
10

8

6

4

2

0

10 6 4 2 08
10

8

6

4

2

0

Figure 6.3. COSY and TOCSY spectra of Gly and Val. The top spectra show
COSY spectra of Gly (left) and Val (right) residues within a protein. Note that in
the COSY spectra only direct couplings are observed and that there is no coupling
between residues. The TOCSY spectra are shown in the bottom two spectra. The
COSY and TOCSY spectra of Gly are identical. In contrast, the TOCSY spectrum of
Val shows additional correlations due to sequential transfer of magnetization between
the coupled spins within the residue. The arrow marks the peak in the TOCSY
spectrum of Val (lower right) that is discussed in the text (eq. 6.1).

6.2.2 3D 15N-Separated Homonuclear
Experiments

The two dimensional COSY and TOCSY spectra become increasingly crowded
as the molecular weight of the protein increases. For proteins whose size is be-
tween 10 and 20 kDa it is helpful to separate the cross peaks out into three
dimensions using the 15N chemical shift of the amide group to generate the
third dimension. This approach is most often applied to the 2D-TOCSY ex-
periment and the resultant 3D experiment is referred to as the HSQC-TOCSY
experiment. In this experiment the overall path of magnetization transfer is as
follows:

Haliphatic(t1)
TOCSY−→ HN

INEPT−→ ωN (t2)
INEPT−SE−→ HN (t3)

The 3D HSQC-TOCSY experiment can correlate all of the aliphatic proton
resonances with the amide group of a residue. In the case of small proteins,
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practically all of the members of a spin-system can be identified in this exper-
iment.

A simplified pulse sequence for the 3D 15N separated TOCSY experiment is
given in Fig. 6.4 and an illustration of the resultant spectra was shown in Fig.
6.5.

N15

H1

1t

2t

3t

Hω Nω HNω

Y Y

TOCSY
(H−H Transfer)

INEPT

ττ τ τ

INEPT
Decouple

Figure 6.4. Simplified pulse sequence for a 3D 15N separated TOCSY experiment.
The magnetization is labeled with the aliphatic proton frequencies during t1. The in-
formation is relayed to the amide proton during the TOCSY transfer period. An IN-
EPT sequence follows that transfers the magnetization to the amide nitrogen, whose
chemical shift is recorded in t2. The magnetization is transferred to back to the amide
proton during the second INEPT period, and the amide proton frequency is recorded
in t3.
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Figure 6.5. Increased resolution in a 3D-15N separated TOCSY. The amide-aliphatic
region of a 2D-TOCSY spectrum of a 130 residue protein is shown in the lower
left. The 3D spectrum, represented as a stack of individual 2D-spectra at various
15N frequencies is shown in the upper left. One of these spectra, or slices, at a
nitrogen frequency of 130.3 ppm, is shown on the lower right. For reference, a 2D
proton-nitrogen HSQC spectrum is shown in the upper right. The slice from the 3D
experiment contains five residues with 15N shifts of ≈130.3 ppm. These residues are
highlighted by the vertical lines in the slice from the 3D-TOCSY spectrum. Three
residues, highlighted with boxes in the 2D-TOCSY and HSQC spectra, have a proton
chemical shift of ≈9.6 ppm and are degenerate in the 2D-TOCSY, but become resolved
in the 3D-TOCSY spectrum. The boxed peaks in the slice from the 3D-TOCSY arise
from a single residue.
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6.3 Making the Connection - Determining
Adjacent Spin-systems

There are two methods of determining inter-residue connectivity, through
space dipolar coupling or through bond scalar coupling.

Typically, through-space connectivity is obtained using two-dimensional homonu-
clear NOESY experiments. The resolution, but not the information content, of
the NOESY experiment is often increased by the addition of a third dimension
by recording the 15N shift of the amide nitrogen. Inter-residues connectivities
obtained from the NOESY experiment reflect both local (e.g. sequential) as
well as long-range interactions between distant residues, making the assignment
process more difficult.

The use of scalar coupling across the peptide bond requires labeling with
both 15N and 13C. Since the coupling is completely independent of the structure
of the protein, and provides unambiguous inter-residue connectivities, it pro-
vides a reliable method of obtaining assignments. Another favorable attribute
of triple resonance experiments is the larger J-coupling between heteronuclear
spins. The larger J-couplings permits a more rapid transfer of magnetization
between spins, making triple resonance experiments more sensitive in larger
proteins that have shorter spin-spin relaxation times. Additionally, the pres-
ence of additional NMR active nuclei, such as 15N and 13C, permit the sepa-
ration of the resonance signals over additional chemical shift scales, increasing
the resolution of experiments. Finally, the carbon frequencies can also be used
to readily identify the likely amino acid type of the spin-system.

6.3.1 Inter-residue connectivity via NOESY
The intensity of crosspeaks in the NOESY experiment is proportional to

1/d6, where d is the inter-proton distance. Typically, distances of 5 Å or less
can be detected with this experiment. The measured inter-proton distances are
usually referred to as NOEs. With respect to resonance assignments, NOEs
involving the amide proton and/or the Hα proton are typically utilized because
these resonances are in a less crowded region of the spectrum.

A number of inter-proton distances that are typically observed for mainchain
atoms are shown in Fig. 6.6 and listed in Table 6.1. In the case of a β-sheet,
the strongest NOE between adjacent residues is the NOE between the amide
proton and the Hα proton of the preceding residue. The NOE between amide
protons on adjacent residues in a β-strand conformation is comparably weak
and is therefore not generally useful for confirming adjacent spin-systems. Note
that the amide proton also shows two moderately intense NOEs to protons on
the adjacent strand. These could be interpreted, incorrectly, as NOEs between
adjacent residues, causing errors in the assignments.

In the case of the α-helix, the NOE between adjacent amide protons is
strong due to the short inter-proton distance of 2.8 . The NOE between the
Hα proton and the amide proton of the following residue is somewhat weaker
(d = 3.5 ), but still useful for verifying the inter-spin-system connection. An
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Figure 6.6. Inter-proton distances in regular secondary structures. Inter-residue
distances in an β-sheet (Panel A) and an α-helix (Panel B). Inter-proton distances
are shown in Angstroms. All of these distances should be detectable in a NOESY
experiment, however longer distances will give weaker crosspeaks. Light gray atoms
represent amide and Hα protons, dark gray atoms are carbon, white atoms with a
black outline are carbonyl oxygens, black atoms are amide nitrogens.
Panel A: An amide proton will typically show four NOEs, two to the preceding
residue and two to non-sequential residues across the strand. The sequential NOE
between the amide and the Hα-proton of the preceding residue is intense because of
the short (2.5 ) distance between the two protons.
Panel B: The first amide in the helix is labeled i and distances to the amide protons
of the next three residues are indicated with solid arrows. The Hα proton is relatively
close to the HN proton of the next residue (3.5 , dashed line, shown for Hi+2

α to Hi+3
N )

as well as to the amide proton of the i + 3 residue.

amide proton is also close to the amide proton of the i+2 (4.2 ) and the i+3
residue (4.7 ), which provides redundant information regarding the sequential
ordering of spin-systems.

Table 6.1. Selected inter-residue distances for sequential assignments. The first
index of dij gives the atom on the i-th residue, the second index gives the atom on
the i+n residue, where n varies from 1 to 4. Using the first entry of the table as an
example: In an α-helix the Hα proton on the ith residue is 3.5 from the amide proton
(N) of the i + 1 residue.

Secondary Structure Interacting Atoms i+1 i+2 i+3 i+4
α-helix dαN 3.5 4.4 3.4 4.2

dNN 2.8 4.2 4.8 6.1
β-strand dαN 2.2

dNN 4.3
†The numbers following the atom descriptions give the position of the residue in the turn.
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6.4 Inter-residue Connectivity via Scalar
Coupling

Triple-resonance experiments, involving 15N, 13C and 1H spins, provide a
much more reliable and robust method of obtaining resonance assignments.
In the case of main chain assignments, the direct and relatively large scalar
coupling between carbon and nitrogen across the peptide bond can be used
to directly link spin systems. In the case of sidechain assignments, the large
carbon-carbon coupling can be used to efficiently pass magnetization through-
out the sidechain using isotropic (TOCSY) mixing. Alternatively, INEPT-like
transfers between carbon atoms can be used to transfer magnetization in a well
controlled fashion. Fig. 6.7 provides a summary of the heteronuclear coupling
constants that can be exploited for the transfer of magnetization between spins.

ψ
H H

HH

C C N C

H O H H

C HHC

C

92140

11

55 15

140

7−14 *

35

35

* −depends on conformation

Figure 6.7. Heteronuclear scalar cou-
plings in proteins. The coupling con-
stants, in units of Hz, are indicated ad-
jacent to the bond that joins the cou-
pled spins. All of these couplings are
one bond couplings, with the excep-
tion of the two bond coupling between
the amide nitrogen and the Cα carbon
of the preceding residue. All of the
one-bond couplings are essentially in-
dependent of the secondary structure.
In contrast, the two-bond coupling be-
tween the nitrogen and the Cα car-
bon, which depends on the ψ angle.
Note that the two-bond coupling be-
tween the amide nitrogen and its own
carbonyl carbon is essentially zero, thus
it is only practical to directly correlate
the amide nitrogen shift with the car-
bonyl shift of the preceding residue.

Nomenclature: A large number
of triple-resonance pulse sequences have
been devised for mainchain assignments
and a number of these are listed in Ta-
ble 6.2. The pathway of magnetization
transfer in a small number of these is
shown in Fig. 6.8. The usual nomencla-
ture for these experiments is to list the
nuclei in the order that frequency label-
ing occurs in the pulse sequence. If mag-
netization is passed through a spin with
no frequency labeling then that spin is
enclosed in parenthesis. In addition, an
experiment that begins with the mag-
netization on the amide proton, indi-
cated as ’HN’ in the experiment name,
generally implies an ’out-and-back’ ex-
periment, i.e. the magnetization is re-
turned to the amide proton for detection.
For example the HN(CO)CA experiment
would transfer the magnetization from
the amide proton to the nitrogen, record
the frequency of the N spin, pass the
magnetization through the carbonyl car-
bon (CO), record the frequency of the
Cα spin, and then return the magnetiza-
tion back through the carbonyl carbon to
the NH proton for detection. In contrast,
if the magnetization begins elsewhere, it
is usually passed in one direction to the
amide proton for detection. For example the (HA)CA(CO)NH experiment
would begin by transferring the α-proton magnetization to the α-carbon, fol-
lowed by recording the chemical shift of the α-carbon. The magnetization is
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then transferred to the carbonyl carbon and then to the amide nitrogen for
frequency labeling, with final detection on the amide proton on the following
residue.

Each of the triple-resonance experiments listed in Table 6.2 generate a three
dimensional spectrum. In cases where detection is on the amide proton, the
amide nitrogen and proton frequencies generally comprise the second and third
frequency dimension and the remaining dimension corresponds to the matching
atom. A slice from this three dimensional spectrum at the nitrogen frequency
of an amide group will show crosspeaks at the intersection of the amide proton
chemical shift and the shift of the third spin (matching atom). Some exper-
iments, such as the HNCA experiment, give both the inter- and intra-residue
shifts for the matching atom, and thus will show two crosspeaks for each amide
group. In order to unambiguously identify whether the peak originates from
the inter- or intra-residue spin requires data from a complementary experiment
that generates signals from only one of the two matching atoms. For example,
the HN(CO)CA experiment complements the HNCA experiment by providing
only inter-residue α-carbon shifts.

The general appearance of these spectra is illustrated in Fig. 6.9, using the
HNCA and the HN(CO)CA experiments as an example. Other triple-resonance
spectra would be very similar in appearance, with the significant difference

Table 6.2. Triple-resonance experiments for assignments.

Experiment Correlated Atoms

Mainchain Carbon Shifts†

HNCO CO i−1 with NH‡

HN(CA)CO CO with NH

HNCA Ci, i−1
α with NH

HN(CO)CA Ci−1
α with NN

HNCACB [CβCα]i, i−1 with NH

CBCANH [CβCα]i, i−1 with NH

HN(CO)CACB [CβCα]i−1 with NH

Mainchain Proton Shifts

HN(CA)HA Hi, i−1
α with NH

HN(COCA)HA Hi−1
α with NH

HAHB(CO)NH [HβHα]i−1 with NH

HAHBNH [HβHα]i & [HβHα]i−1

HCACO Cα, CO, Hα

Other Sidechain Shifts

HCCH TOCSY All protons with Hα & Cα

C-C TOCSY (CO)NH All Ci−1 with NH

H-H TOCSY (CO)NH All Hi−1 with NH
† The mainchain includes the β-proton and carbon. ‡ “NH” implies correlation to both amide

proton and nitrogen.
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Figure 6.8. Triple-resonance experiments for main chain assignments. The mag-
netization transfer pathways in selected triple-resonance experiments are shown. In
these diagrams the atoms that are circled define the recorded chemical shifts. The
atoms that are circled with a dotted line serve to transfer magnetization between
atoms, but their chemical shift is not recorded. The arrows indicate the direction
of magnetization transfer. In all cases these experiments begin by transferring the
amide proton polarization to the amide nitrogen. Experiments that give exclusively
inter-residue shifts are on the right. These experiments generate one crosspeak per
amide group. For the two experiments in the first row, the HN(CA)CO and HNCO,
the matching atom is the carbonyl carbon. The HN(CA)CO can in principal give both
inter- and intra-residue carbonyl shifts. However, the inter-residue peak is generally of
low intensity and often not observable. The HNCO experiment gives the chemical shift
of the carbonyl of the preceding residue. The HNCA and HN(CA)CB experiments
give both the intra- and inter-residue α-carbon (HNCA) or β-carbon (HN(CA)CB)
shifts. Thus two crosspeaks are observed per amide group. The HN(CO)CA and
HN(COCA)CB experiments only correlate the inter-residue α-carbon (HN(CO)CA)
or β-carbon (HN(COCA)CB) shift to the amide group, giving one crosspeak per
residue.

being the carbon frequency axis. In the HNCO and HN(CA)CO experiments
carbonyl shifts would be observed while in the HN(CA)CB and HN(COCA)CB
experiments the β-carbon shifts would be observed.
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Figure 6.9. Illustration of HNCA and HN(CO)CA Spectra. The left section of the
diagram shows the three-dimensional spectrum with the three frequency axis labeled.
A single slice from this spectrum is taken at a nitrogen frequency of 115.5 ppm
and the resultant two dimensional slices are shown on the right. The HN(CO)CA
spectrum is shown on the top and the HNCA spectrum is on the bottom. This
protein contains three residues whose amide nitrogen has a chemical shift of 115.5
ppm. The amide proton frequencies of these residues are 6.5, 7.0, and 8.5 ppm. The
HN(CO)CA spectrum gives the chemical shifts of the α-carbon that precedes each
residue. In this case the shifts are 48.75, 52.5, and 60.25 ppm for the first, second, and
third amide proton shifts, respectively. The HNCA spectrum gives both the inter-
and intra-residue shifts for each residue. The intra-residue crosspeak is usually more
intense than the inter-residue peak because the one bond intra-residue coupling is
generally usually larger than the two-bond inter-residue coupling. In this example,
the opposite is true for the residue with HN = 7.0 ppm. Using the HN(CO)CA
spectrum to unambiguously identify the intra-residue peak in the HNCA spectrum
gives intra-residue α-carbon shifts of 62.5, 57.5, and 52.5 ppm for the first, second,
and third amide proton shifts, respectively.



Chapter 7

NUCLEAR SPIN RELAXATION AND MOLECULAR

DYNAMICS

ϕg
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B(t) B(t)

A B

Nuclear spin relaxation is a con-
sequence of time-dependent fluctua-
tions in the magnetic field. These
fluctuations can cause the net loss
of energy from the excited state )A)
or enhance the rate of spin-spin ex-
change (B).

The principal goal of NMR relaxation studies is to characterize molecular
motion. The most common application is to determine the extent and rate of
internal motion at specific sites within a protein. The type of information that
is usually obtained from relaxation studies is:

1. τr - the overall rotational correlation time of the entire protein.

2. τi - the effective internal rotational correlation time at each labeled site.

3. S2 - the order parameter for each labeled site. The order parameter indicates
the extent of the internal motion: S2=1 immobile, S2=0 freely mobile

In relaxation measurements, the information (τr, τi, S) is obtained by com-
paring measured relaxation parameters to those calculated from models of the
motion. Therefore, it is important to be able to predict the relaxation of
the spins with reasonable accuracy. Consequently, the relaxation rates of het-
eronuclear spins, such as 15N and 13C, are generally measured because their
relaxation is dominated by the dipolar coupling to the attached proton and by
their own chemical shift anisotropy. The effect of both of these interactions on
relaxation can be calculated with a high degree of accuracy.

7.1 Effect of Relaxation on the Evolution of
Magnetization

There are two distinct relaxation mechanisms:
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1. Spin-lattice relaxation. This is the rate by which the energy of the excited
state is lost to the surroundings as the spins return to the original Boltzmann
equilibrium. It is characterized by a time constant T1 (see Fig. 7.2).

τ i

τ r

α

Figure 7.1. Framework for the analysis of internal motion. The rotational diffusion
of the entire protein (large oval) is characterized by the overall rotation time, τr. The
cone protruding off of the protein represents internal motion of a N-H bond. The
semi-angle, α of the cone is related to the order parameter: S =

ˆ

1
2
(1 + cosα)cosα

˜

.
The rate that the N-H group diffuses within this cone is characterized by τi, the
correlation time for internal motion.
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Figure 7.2. Relaxation of nuclear spins. Each panel shows, from top to bottom,
the individual nuclear moments as a function of time, the bulk magnetization as a
function of time, and the z-magnetization (Mz) or the bulk magnetization in the x-
y plane (

p

M2
y + M2

x), as a function of time. The left panel illustrates spin-lattice
relaxation in the absence of spin-spin relaxation. The right panel shows spin-spin
relaxation in the absence of spin-lattice relaxation.
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2. Spin-spin relaxation. This is the rate by which a coherent population of
spins becomes incoherent. Spin-spin relaxation is characterized by a time
constant T2 (see Fig. 7.2).

Measurement of the spin-lattice and spin-spin relaxation times provides in-
formation on molecule motion. In addition to these two observations, additional
information on molecular motion is provided by the nuclear Overhauser effect
(NOE). This is a measurement of the effect of proton irradiation on the pop-
ulation difference of nearby spins. The heteronuclear NOE (hnNOE) involves
proton-nitrogen or proton-carbon interactions.

7.1.1 Bloch Equations
For the moment we will treat T1 and T2 as measurable quantities, but we

will avoid any discussion about their relationship to structure and dynamics. To
develop analytical equations which describe the motion of the magnetic moment
in the presence of the static Bo field we will use the following approach that
was originally proposed by F. Bloch in 1946 [?]. This approach begins with the
classical description of the evolution of the magnetization:

dM⃗

dt
= γM⃗ × B (7.1)

The decay of magnetization due to relaxation is added to each component of
magnetization:

dMz

dt
=

Mo − Mz

T1
+ γ(M × B)z

dMx

dt
=

−Mx

T2
+ γ(M × B)x

dMy

dt
=

−My

T2
+ γ(M × B)y (7.2)

The Bloch equations describe a return of the z -magnetization to the equi-
librium value, Mo, with a time constant of T1, and a decay of the transverse
magnetization with a time constant of T2. In the rotating frame these equations
become:

δMz

δt
=

Mo − Mz

T1
(7.3)

δMx

δt
=

−Mx

T2
+ My(ωs − ω) (7.4)

δMy

δt
=

−My

T2
− Mx(ωs − ω) (7.5)

where ωs = γB,ω = −Ω.
These equations are most easily solved by defining a function:

M+ = Mx + iMy (7.6)
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Adding eqs. 7.4 and 7.5 gives the following:

δM+

δt
= −M+

[

1

T2
+ iω′

]

(7.7)

ω′ = ωs−ω, is the precessional rate of the spin in the rotating frame. In practice,
this is actually the frequency of the signal obtained from the spectrometer.
The solution to Eq. 7.7 is:

M+ = e−iω′t e−t/T
2 (7.8)

Taking into account the initial conditions immediately after a 90◦ x-pulse
(Mx & Mz=0) gives the following final solutions:

Mx(t) = sin(ω′t) e−t/T2

My(t) = cos(ω′t) e−t/T2

Mz(t) = Mo[1 − e−t/T
1 ]

(7.9)

The above shows that the magnetization along the z -axis will grow with an
exponential time constant of T1 while the transverse magnetization will decay
with a time constant of T2; exactly the behavior that is depicted in Fig. 7.2.

7.2 Measurement & Data Analysis

Change motional
parameters

Define motional
parameters

Calculate
relaxation data

Calculations
agree with
experiment?

described by model
Internal motion

NO

YES

Figure 7.3. Flow chart for analysis
of relaxation data. This flow chart
indicates how parameters that de-
scribe internal motion are obtained
from relaxation measurements.

The usual approach for the analysis of
molecular motion begins with a general
model of internal motion that contains only
two parameters (τi, S) per residue plus a
value for the overal rotation time, τr that
would apply to all residues. These param-
eters are obtained from the relaxation data
by following the scheme that is diagrammed
in Fig. 7.3 consisting of the following steps:

1. Collect T1, T2, and hnNOE data for
each residue.

2. Select a set of initial guesses for τr, τi,
and S and calculated expected T1,T2,
and hnNOE from these parameters.

3. Compare the measured relaxation pa-
rameters to those calculated.

4. Adjust τr, τi, and S2 until the calculated
and measured relaxation rates agree.

7.3 Theory of Relaxation
Transition between the excited and ground states can occur by two indepen-

dent mechanisms, spontaneous emission and stimulated emission. The rate of
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spontaneous emission is proportional to the third-power of the absorption fre-
quency. At typical proton NMR resonance frequencies, in the megahertz range,
the rate of spontaneous emission is essentially zero. Therefore, the major source
of relaxation for excited NMR spins is from stimulated emission.

Stimulated emission requires the presence of an oscillating electromagnetic
field whose frequencies are matched to the absorption frequencies of the NMR
transitions. The oscillating fields are created by random rotational motion of
the molecule or by internal motions within the molecule. Such motions can
generate a time dependent magnetic field by two mechanism, the anisotropic
chemical shift (chemical shift anisotropy, CSA) that is associated with a single
spin and the dipolar coupling between nearby spins. Both of these mechanism
operate simultaneously for all types of spins, however dipolar coupling is the
principal relaxation mechanism for the proton because of its relatively small
chemical shift anisotropy.

7.3.0.1 Chemical Shift Anisotropy

The external Bo field is reduced at the nucleus by the surrounding electron
density, by a shielding factor σ, giving an observed chemical shift of ωs =
γ(1−σ)Bo. If the electron density is the same in all directions (isotropic) then
a change in the orientation of the spin will have no effect on the shielding of
the nucleus, and therefore no effect on the magnetic field at the nucleus.
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Figure 7.4. Effect of orientation on the amide chemical shift. The orientation of
the peptide group affects the observed chemical shift of the amide nitrogen. The
chemical shift can be obtained from the chemical shift tensor. This tensor, in the
principal axis system is superimposed on the molecular structure. The z-axis of the
PAS lies in the plane of the peptide bond (shaded gray) and is rotated away from
the N-H bond vector by the angle β. The x-axis of the PAS is in the plane of the
peptide bond and the y-axis is perpendicular to the peptide plane. If the tensor is
axially symmetric, δzz = δ∥ and δ⊥ lies in the plane defined by δxx and δyy. In the
leftmost structure the orientation of the amide group is such that δyy is parallel to
the static field (Bo). Therefore the measured chemical shift is δyy, as illustrated in
the spectrum in the lower part of the figure. As the molecule rotates about the x-axis
the peak position will move from δyy to δzz, as shown in the middle of the diagram.
After a 90◦ rotation, the z-component of the chemical shift tensor becomes parallel
to the static field, and the observed chemical shift is δzz.
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If the shielding is anisotropic, then different orientations of the molecule will
generate different magnetic fields at the nucleus. The actual field will depend
on the orientation of the molecule with respect to the external magnetic field.
To characterize the anisotropic nature of the shielding we will define a chemical
shift tensor, σ̃, which will give the chemical shift for any given orientation of
the molecule with respect to the Bo field. In one particular orientation of the
molecule with respect to the magnetic field, the principal axis system (PAS),
the chemical shift tensor takes on a simple form:

δ̃PAS =

⎡

⎣

δxx 0 0
0 δyy 0
0 0 δzz

⎤

⎦ (7.10)

The diagonal form of the chemical shift tensor gives directly the chemical shift
that would be observed if the magnetic field were along the x-axis (δxx), y-axis
(δyy), or the z-axis (δzz) of the principal axis system (see Fig. 7.4).

If the molecule tumbles rapidly and isotropically in solution, then the ob-
served isotropic shift is simply the average of all three components:

δiso =
1

3
[δxx + δyy + δzz] (7.11)
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Figure 7.5. Dipole-dipole coupling. The
magnetic field generated by the amide
nitrogen generates an additional field,
Bdipole at the amide proton. The
strength of this field depends on the rel-
ative orientation of the two spins, as il-
lustrated by the gray crescent shapes.
When θ = 0, Bdipole is at a maximum.
The dipole field is zero when θ ≈ 54◦,
and is negative for 0 < |θ| < 54◦. Molec-
ular tumbling changes the relative ori-
entation of the two spins, resulting in a
change of Bdipole .

Although the average chemical
shift is time-independent, the rapid
rotation of atoms with anisotropic
chemical shifts will result in a change
in the instantaneous chemical shift,
and therefore the magnetic field, at
the nucleus.

7.3.1 Dipolar
Coupling

Dipolar coupling arises when the
magnetic field of one nuclear spin af-
fects the local magnetic field of an-
other spin. The magnetic field gen-
erated by the I spin is given by the
classic equation for a dipole field:

Bdipole(t) =
µ

r(t)3
(3cos2θ(t) − 1)

=
γh̄

r(t)3
(3cos2θ(t) − 1)

where θ and r are defined in Fig. 7.5.
The energy associated with this addi-
tional magnetic field is obtained from
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E = h̄ω = h̄γSBdipole :

H = h̄2 γSγI

r(t)3
(3cos2θ(t) − 1) (7.12)

The intensity of the dipole field, Bdipole , depends on both the orientation of
the two spins and the distance between them. If either of these properties are
time dependent then the magnetic field will vary with time.

Most relaxation studies take advanage of the fact the contribution of dipolar
interactions to the relaxation properties of heteronuclear spins, such as 15N or
13C, is dominated by the attached proton due to the 1/r3 dependence. Con-
sequently, dipolar fields that are generated by other protons are considered
negligible. Secondly, the inter-atomic distance, r, is fixed to the bond length,
consequently only fluctuations in the angular term contribute to time depen-
dent field fluctuations.

7.3.2 Frequency Components from Molecular
Rotation

Both chemical shift anisotropy and dipolar coupling generate magnetic field
fluctuations at the nucleus. In order for these motions to be effective at stim-
ulating nuclear transitions the random molecular motion must contain field
fluctuations at the appropriate frequencies to stimulate transitions.

In the case of two spins that are coupled, there are six possible transitions
between the four different states that represent two coupled spins (see Fig.
7.6. Four of these transitions are single quantum transitions because they
involve flipping only one spin. Using an N-H pair for example, single quantum
transitions will be stimulated by field fluctuation at ω = ωN or ω = ωH .
In addition, the double quantum (two spins flipped) and the single quantum
transitions (interchange of spin states) will be stimulated by field fluctuations
at ω = ωH + ωN and ω = ωH − ωH , respectively. Each of these transitions
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W1 W1

W1

αβ

αα
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ββ

Figure 7.6. Energy level diagram for two coupled spins. The lowest energy state
corresponds to both spins being in the α(mz = +1/2) state. The four single quantum
transitions, labeled with W I

1 or W S
1 , connect states that differ in the spin state of

only one spin. There is one zero quantum transition (W0) and one double quantum
transition (W2), corresponding to the net change in the magnetization of both spins
by zero or two units, respectively.
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is associated with a transition rate, W, that arises from time dependent field
fluctuations.

Quantum mechanics can be used to derive the relationship between the field
fluctuations and the transition rate. The end result is:

W ∝
∫ t

o
F(t)F(t − τ)e−iωτdτ (7.13)

In the above, F represents the time-dependent field fluctuations and the func-
tion F(t)F∗(t+τ) is an autocorrelation function. The autocorrelation function
measures how rapidly knowledge of a prior orientation is lost by the reorienting
molecule. For random fluctuations the autocorrelation function does not de-
pend on a specific origin of time, only on the time difference between instances
in time. Consequently, t can be set to zero and the auto-correlation depends
only on τ . Usually the autocorrelation function is given the symbol g(τ).

To obtain the transition rates at specific frequencies it is necessary to ex-
tract the frequency components from the autocorrelation function by Fourier
transformation. However, it is apparent from Eq. 7.13 that W is the Fourier
transform of the autocorrelation function, therefore W already represents the
frequency spectrum of the transition rates.

The Fourier transform of the normalized autocorrelation function is given
a special name, the spectral density function, J(ω), because it represents the
density of fluctuations at different frequencies. It is defined as follows:

J(ω) =

∫ ∞

0
g(τ)e−iωτdτ (7.14)

An illustration of the relationship between rotational motion of the particle,
magnetic field fluctuations due CSA, and the spectral density is shown in Fig.
7.7. A small molecule, which has a short correlation time, will experience rapid
fluctuations in the magnetic field (Panel A, gray curve). These fluctuations will
rapidly become uncorrelated, leading to a rapid decrease in the autocorrelation
function (Panel B). Such rapid fluctuations contain both high and low frequency
components, thus the resultant spectral density is broad and extends over a
large frequency range (Panel C). In contrast, a large particle tumbles slowly,
experiencing magnetic field fluctuations of lower frequencies (Panel A, black
curve), hence the spectral density function will have a higher intensity at lower
frequencies (Panel C).

In the case of dipolar coupling between spins, the complete expression for
the transition probabilities is:

W (ω) =
h̄2γ2

Nγ
2
H

r6
κJ(ω) (7.15)

The κ term depends on whether the transition is a zero, single, or double
quantum transition (see Fig. 7.6).

Once an autocorrelation function can be obtained, then the transitions rates
can be readily calculated using the above expressions. For example, the auto-
correlation and spectral density functions for random isotropic tumbling due
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Figure 7.7. Magnetic field fluctuations and the spectral density function. The re-
lationship between random magnetic field fluctuations, the auto-correlation function,
and the spectral density function is shown. An axially symmetric chemical shift tensor
with principal values of δ⊥ = 70 ppm and δ∥ = 215 ppm was used in the simulations.
The fluctuations in chemical shift that occur due to random isotropic rotation of the
amide group are shown in Panel A. The rotational correlation times are 1 nsec (gray
line) and 5 nsec (black line). The resultant autocorrelation functions are shown in
Panel B. Panel C shows the spectral density functions calculated from < g(τ ) >. High
frequency motions (gray curve) result in smaller values of J(ω) at ω = 0. However,
J(ω) extends to higher frequencies.

to Brownian motion are given here:

g(τ) = e−τ/τr J(ω) =
τr

1 + ω2τ2
r

(7.16)

τr is the rotational correlation time. It is the time required for a molecule to
rotate, on average, 1 radian and is proportional to the size of the protein and
the viscosity of the solution:

τr = 4πηa3/3kT (7.17)

where a is the radius of the protein, and η is the viscosity. It follows that τr is
approximately 1 nsec for each 2.6 kDa of protein mass at T = 300 K.

If internal motion is present, the autocorrelation function is:

g(τ) = e−τ/τr

[

S2 + (1 − S2)e−τ/τi

]

= (1 − S2)e−τ/τmix + S2e−τ/τr (7.18)
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where S is the order parameter, τi is the correlation time for internal motion.
This auto-correlation function gives the following spectral density:

J(ω) = (1 − S2)
τmix

1 + ω2τ2
mix

+ S2 τr
1 + ω2τ2

r
(7.19)

τmix = τiτr/(τi + τr) (7.20)

7.4 1H-1H Homonuclear relaxation
7.4.1 Spin-lattice relaxation

Spin-lattice relaxation, which occurs with a time constant of T1, is due to the
stimulation of single- and double-quantum transitions as both of these provide
a mechanism to re-populate the ground state. The T1 is thus sensitive to field
fluctuations at ωs and 2ωs, where ωs is the resonance frequency of the spin.
The dependence of the proton T1 on the spectral density function is:

1

T1
=

6

20
d2 [J(ωH) + 4J(2ωH)] (7.21)

where d2 = h̄2γ4
H/r6 and r is the inter-proton distance.

7.4.2 Spin-spin relaxation
Spin-spin relaxation, which occurs with a time constant of T2, is due to zero-

, single-, and double-quantum transitions because all of these transitions lead
to a loss of coherence in the spins. The T2 is thus sensitive to field fluctuations
that occur at ω = 0 as well as at higher frequencies. The dependence of the
proton T2 on the spectral density function is:

1

T2
=

3

20
d2 [3J(0) + 5J(ωH) + 2J(2ωH)] (7.22)

7.4.3 Molecular Weight effects on 1H Relaxation
The effect of molecular weight (τr) and the magnetic field strength on proton

relaxation times is illustrated in Fig. 7.8. Figure ?? shows the spin-spin relax-
ation time (T2) for the amide nitrogen, carbonyl carbon, and Cα carbon as a
function of these parameters. Note that at lower magnetic field strengths the
amide nitrogen and carbonyl carbon have similar spin-spin relaxation times. In
contrast, the Cα carbon is efficiently relaxed by its attached proton. However,
at high magnetic field strengths, the contribution of the CSA to the carbonyl
relaxation increases significantly because of the ω2 dependence, leading to very
short relaxation times for the carbonyl carbon at 900 MHz.

7.4.3.1 Effects of Molecular Weight on the Proton T1

Since T1 depends on J(ω) and J(2ω) the effect of the rotational correlation
time on the observed T1 can be explained by considering the intensity of the
spectral density at ω and 2ω for various values of τr. Beginning with fast
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motions, or short τr values, the spectral density is of low intensity at these two
frequencies (solid curve in Fig. 7.8, Panel B). Therefore, spin-lattice relaxation
is inefficient and the T1 is relatively long. As the rotational motion slows,
the profile of the spectral density changes becoming more intense at lower
frequencies. When ωτr is approximately one, the spectral density at ω and 2ω
is large (dotted line in Panel B Fig. 7.8), and efficient spin-lattice relaxation
occurs, giving a minimum in the T1. As the motion becomes even slower, the
intensity of J(ω) first drops at 2ω (dashed curve) and then eventually at ω. The
small values of J(ω) at these two frequencies will cause inefficient spin-lattice
relaxation, hence a longer T1 for large molecules.

The magnetic field dependence on the T1 is explained in a similar manner.
For any values of τr corresponding to a molecular weight greater than 10 kDa,
a higher magnetic field strength will cause J(ω) to be sampled at higher fre-
quencies. Since J(ω) always decreases as ω increases, the spin-lattice relaxation
will be less efficient and T1 will become longer. Consequently, longer recycle
delays need to be used at higher field strengths if the same level of steady-state
magnetization is desired.
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Figure 7.8. Effect of molecular weight on proton relaxation. Panel A shows pro-
ton T1 and T2 values as a function of the rotational correlation time, τr (note the
log scale). These were computed assuming a spherical protein and an inter-proton
distance of 1.7 . This value approximates the average proton density surrounding an
amide proton. The individual curves for T1 and T2 are labeled, the solid line repre-
sents relaxation at a proton frequency of 500 MHz while the dotted line represents
relaxation at 900 MHz. The gray rectangle indicates the range of molecular sizes,
from 10 kDa to 60 kDa, that are routinely studied. Panel B shows spectral density
functions for rotational correlation times of 0.025 (solid), 0.10 (dotted), and 0.40 nsec
(dashed). These times are near the T1 minimum. The ωH and 2ωH values for a
proton frequency of 500 MHz are indicated.
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7.4.3.2 Effects of Molecular Weight on the Proton T2

In contrast to the parabolic-like behavior of T1, the T2 for the proton (Fig.
7.8) decreases as the rotational correlation time increases. This relationship
is a result of the contribution of J(0) to the spin-spin relaxation rate. As the
rotational correlation time becomes longer, the spectral density at ω = 0 also
increases. In fact, for most proteins the spectral density at zero frequency
dominates the spin-spin relaxation. For larger proteins, the proton T2 can be
approximated as:

1

T2
≈

3d2

20
3J(0) =

9d2

20
τr (7.23)

Since the rotational correlation time, τr is proportional to the molecular weight,
the T2 is inversely proportional to the molecular weight:

T2 ∝ 1/MW (7.24)

as the size of the molecule increases, the T2 becomes shorter. Recall that the
linewidth is related to the T2:

∆ν =
1

πT2
(7.25)

Therefore larger proteins have broader lines.

7.5 Heteronuclear Relaxation
The equations that describe heteronuclear relaxation are very similar to

those that describe proton-proton relaxation. The spin-lattice relaxation due
to dipolar coupling is given by:

1

T Dipole
1

= d2 1

10
[J(ωI − ωS) + 3J(ωS) + 6J(ωI + ωS)] (7.26)

where d2 = γ2
Hγ

2
N h̄2/r6.

In the case of nuclei with significant CSA , it is necessary to add the contri-
bution of the CSA to the spin-lattice relaxation [?]:

1

T CSA
1

=
2

15
ω2

S∆σ
2J(ωS) (7.27)

∆σ is the CSA, and ωS is the resonance frequency of the S spin. J(ωS) ap-
pears because field fluctuations that can cause single quantum transition of the
heteronuclear spin provide a mechanism for the excited state to release energy
and return to the ground state.

The overall spin-lattice relaxation rate (R1=1/T1) is the sum of the rate due
to dipolar coupling and CSA. Using the amide group as an example:

R1 =
d2

10
[J(ωH − ωN ) + 3J(ωN ) + 6J(ωH + ωN)] +

2

15
ω2

S∆σ
2J(ωN ) (7.28)
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7.5.1 Spin-spin Relaxation
The spin-spin relaxation rate of a heteronuclear spin is affected by dipolar

coupling to the attached proton [?], chemical shift anisotropy [?], as well as
chemical exchange. Using the amide group as an example (S=15N, I=1H):

R2 =
d2

20
[4J(0) + J(ωH − ωN) + 3J(ωN ) + 6J(ωH) + 6J(ωH + ωN)]

+
1

45
ω2

N∆σ2 [4J(0) + 3J(ωN )] + Rex (7.29)

where d2 = γ2
Hγ

2
N h̄2/r6.

The J(0) term, which is present for both the dipolar coupling and CSA terms,
represents the dephasing of the transverse magnetization by an inhomogeneous
local magnetic field. The J(ωN) and J(ωN + ωH) terms represent relaxation
to the ground state which also destroys the transverse magnetization. The
J(ωH − ωN ) term represents zero-quantum mutual proton-nitrogen spin flips,
which cause dephasing of the nitrogen magnetization. Finally, the presence
of the J(ωH) term indicates that transitions of the coupled proton affects the
coherence of the transverse nitrogen magnetization.

7.5.2 Heteronuclear NOE
The heteronuclear NOE is a measure of the change in the steady state pop-

ulations of the heteronuclear spin (15N or 13C) when the attached proton is
saturated. Of the three types of relaxation data that are measured (T1, T2,
and hnNOE), the hnNOE is the most sensitive to internal motion, as shown in
Fig. 7.9.
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Figure 7.9. Effect of internal motion on 15N relaxation. The effect of internal
motion on T1 and T2 (panels A and B) and on the heteronuclear NOE (panels C
and D). In each plot the gray box indicates the range of overall correlation time (τr)
that are typically studied, spanning protein sizes from 10 kDa to 60 kDa. In panels
A and C, the order parameter, S2, was set to 0.8 and the correlation time for internal
motion, τi was 1 (solid), 10 (dotted), 30 (dashed), or 80 psec (long dash). In the case
of T2, the different curves are indistinguishable. In panels B and D, the correlation
time for internal motion was fixed at 30 psec and the order parameter was 1.0 (solid),
0.7 (dotted), and 0.5 (dashed). The horizontal line marked 0.65 indicates a cut-off
value that is often used to determine whether a residue displays significant mobility.



Chapter 8

EXCHANGE PROCESSES

8.1 Introduction

CH
3 CH

3
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Figure 8.1. Effect of exchange on the en-
vironment of a Spin. In this illustration
the methionine residue exists in two con-
formations. Since the environment of the
methyl group is different in each environ-
ment, two different resonance frequency
will be observed, ωA and ωB . In con-
formation A, the methyl group is found
above an aromatic ring and will experi-
ence a ring current shift. In conformation
B, the methyl group is removed from the
aromatic ring, resulting in a change in its
chemical shift. Note that the relaxation
properties of the methy group may also
differ between the two environments.

The exchange between two or more
environments can have a profound ef-
fect on the appearance of the reso-
nance lines of the exchanging species.
Under favorable conditions it may be
possible to obtain information on both
the forward and reverse rate-constants
for the exchange reaction as well as the
equilibrium population of each envi-
ronment from the changes in the NMR
spectrum.

When a spin exchanges between en-
vironments its spectral properties may
change if the chemical shift or relax-
ation properties of the spin are differ-
ent in each environment. Figure 8.1
shows how a conformational change in
a protein can lead to a change in the
chemical shift of the methyl group of a
methionine residue.

Since the exchange phenomenon involves a change in the chemical environ-
ment of a spin, leading to a chemical shift change, it is often referred to as
chemical exchange. Usually, exchange processes are studied when there are
non-covalent changes in the molecule. However, changes in the covalent struc-
ture of a molecule can also lead to chemical exchange.

In this chapter, three general aspects of exchange will be considered. First,
we will discuss the effects of a spin sampling two distinct environments on its
spectral properties. Here the goal is to measure the rate constants for exchange
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and/or the equilibrium constant. In the latter part of the chapter we will extend
these studies to the investigation of the kinetics and binding affinity of ligands.
Finally, the exchange properties of the amide proton will be discussed with
reference to measuring protein dynamics.

8.2 Chemical Exchange
The kinetics of the exchange reaction are defined by the following scheme:

A B
1

2

k

k
The kinetic rate constant for the conversion of A to B is k1 and the rate
constant for the reverse reaction is k2, giving an overall equilibrium constant,
Keq = k1/k2. The fraction of the system found in each conformation is:

pA =
k2

k1 + k2
=

1

1 + Keq
pB =

k1

k1 + k2
=

Keq

1 + Keq
(8.1)

To characterize the different time scales of exchange it is useful to define
an apparent exchange rate, kex = k1 + k2, and a frequency difference between
the two states, ∆ω = ωA − ωB. Table 8.1 illustrates how the relationship
between the apparent exchange rate, kex, and the frequency separation, ∆ω,
will affect the observed spectrum. Note that the response of the system to
chemical exchange depends on the ratio of the exchange rate to the frequency
difference of the spins in each environment, i.e. kex/∆ω.

8.2.1 Effect of Exchange on the NMR Spectrum
It is useful to consider in qualitative fashion two illustrative cases, fast ex-

change and slow exchange, to gain an understanding of the general features of
chemical exchange.

Fast Exchange (kex >> ∆ν): Under conditions of fast exchange, a single
resonance line is observed. The averaging of the chemical shift occurs because

Exchange Rate Observed Spectrum
Very slow kex << ∆ν Two Resonances
Slow kex < ∆ν Two Broadened Resonances
Intermediate kex ≈ ∆ν Complex Lineshape
Fast kex > ∆ν Single Broadened Resonance
Very fast kex >> ∆ν Single Resonance

Table 8.1. Summary of the effects of exchange on the properties of the NMR spec-
trum. The left columns describe the exchange in terms of the relationship between
the frequency separation (∆ν = 1

2π (ωA − ωB)) and the apparent exchange rate con-
stant (kex = k1 + k2). The remaining column describes the effect of exchange on the
spectrum. A more comprehensive description of the methodologies that can be used
to measure chemical exchange can be found in [?].
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Figure 8.2. Effects of fast exchange on the environment of a spin. The upper part
of the figure follows a single spin as it precesses during fast exchange. The lower part
of the figure shows two spins, one in conformation A (black) and one in conformation
B (gray), precessing in the absence of chemical exchange. In both cases the coordinate
frame is rotating at a frequency that is midway between ωA and ωB and pA = pB.
The left most part of the figure represents the system before the excitation pulse.
Following from left to right, after the 90◦ pulse and a short period τ , the spins have
precessed at a frequency that is representative of their environment. In the case of
fast exchange, the spin that was in environment A is now found in environment B.
Consequently its precessional frequency is now ωB and the spin precesses counter-
clockwise at ωB for the next τ ′ period. At the end of this period the magnetization is
found along the y-axis. Consequently no net precession has occurred and the observed
resonance frequency is 1

2
[ωA + ωB ]. In contrast, the non-exchanging spins (kex = 0)

remain in their original environment and will continue to precess in the same direction
for an additional period of τ ′. Note that τ ̸= τ ′ because exchange is a random process,
but the average time between exchange events, τ̄ and τ̄ ′ will be the same if pA = pB.

the spins do not exist in either environment long enough to establish an asso-
ciated resonance frequency (See Fig. 8.2). Consequently, the spin precesses at
a population averaged resonance frequency , ωobs, and exhibits a population
averaged spin-spin relaxation rate, T avg

2 :

ωobs = pAωA + pBωB
1

T avg
2

=
pA

T A
2

+
pB

T B
2

(8.2)

where pA and pB are the populations of each environment.

Slow Exchange (kex << ∆ν): Under conditions of slow exchange, the rate
of exchange is slower than the frequency difference, in Hz, of the spin in each
environment. Thus the exchange process is incapable of averaging the chemical
shifts while the spins are precessing. Consequently, two resonance lines are
observed, one line from the fraction of population of the spins that are found in
conformation A and one line from the fraction that are found in conformation
B. Since the environment of a spin determines its absorption frequency two
separate resonance lines are observed, one at ωa and one at ωb. The integrated
intensity of each line is equal to the fraction of spins in conformation A and B,
respectively.
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Figure 8.3. Effect of slow exchange on the relaxation rate of transverse magnetiza-
tion. The top of the figure shows the bulk magnetization of spins in conformation
’A’, undergoing slow exchange with conformation “B”. The lower part of the figure
shows the same spins in the absence of exchange. In both cases, the coordinate system
is rotating at a frequency that is midway between ωA and ωB. The left-most section
of the figure shows the bulk magnetization before the excitation pulse. The following
panels show the spin precessing clockwise at a rate ωA. The right-most section of the
figure shows the observed free induction decay for the spins at ωA. In the top section
of the figure (kex > 0) the spins leave conformation ’A’ and return from conformation
’B’ a random time later. Since the precessional frequencies, ωA and ωB are different,
the phase of the returning magnetization is no longer the same as those spins that
remained in conformation A, causing randomization of the transverse magnetization.
This reduces the signal, as illustrated by the shortening of the arrow that represents
the x-y magnetization. This loss of magnetization increases the rate of decay of the
transverse magnetization, shortening the observed T2. In the absence of exchange,
the transverse magnetization decays at the intrinsic T2, as shown in the lower part
of the figure.

Although slow exchange has no effect on the position of the resonance lines,
the exchange process reduces the lifetime of the spin within a particular envi-
ronment. Consequently, the resonance linewidth increases by an amount that
is proportional to the rate of exchange. This line broadening can be understood
by considering the effects of exchange on the magnetization as it precesses in
the x-y plane after excitation (See Fig. 8.3). After excitation, the spins in
environment A will precesses in the x-y plane at a frequency of ωA. However,
as time passes, some of these spins will change their environment and will begin
precessing at ωB. This change in environment results in a loss of coherent mag-
netization of the spins in conformation A, resulting in a decay of the transverse
magnetization at a rate faster than the intrinsic spin-spin relaxation rate.

Since the system is at equilibrium, an equal number of spins also convert from
conformation B to conformation A. This magnetization does not contribute to
the magnetization originally associated with ωA since the conversion from B to
A occurs randomly. Consequently, the phase of the magnetization coming from
environment B is incoherent with respect to the phase of the magnetization
originally associated with environment A.
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The rate at which the magnetization decays during the exchange process,
1/T2A, is given by the sum of the intrinsic spin-spin decay rate (1/T oA

2 = RoA
2 )

and the rate at which conformation A is converted to conformation B (k1). A
similar expression can be written for the spins in environment B:

1

T A
2

=
1

T oA
2

+ k1 = RoA
2 + k1

1

T B
2

=
1

T oB
2

+ k2 = RoB
2 + k2 (8.3)

The increase in T2 leads to broadening of the resonance line by each rate
constant:

π∆νA
1/2 =

1

T oA
2

+ k1 π∆νB
1/2 =

1

T oB
2

+ k2 (8.4)

8.2.2 General Theory of Chemical Exchange
The effect of exchange on the NMR lineshape can be analyzed in a number

of ways. The traditional method, attributed to H. M. McConnell [?], utilizes an
analysis of the steady-state magnetization while the measurement frequency is
changed (continuous wave spectroscopy, CW). This approach is quite straight-
forward and provides an simple expression for the lineshape that is suitable for
direct fitting of experimental lineshapes by least-squares methods.

The final result of this analysis, under the assumption that the decay due
to non-exchange processes is negligable, and that the populations of the two
environments are equal, is:

I(ω) ∝
1

2
k(∆ω)2

1

(ωA − ω)2(ωB − ω)2 + 4k2ω2
(8.5)

where k is the rate constant for exchange (k = k1 = k2) and the origin of the
frequency axis (ω = 0) is mid-way between ωA and ωB.

8.2.2.1 Fast Exchange Limit

Under conditions of fast exchange, k >> ∆ω, the second term in the de-
nominator of Eq. 8.2.3 will dominate, giving a single resonance line at ω = 0,
half-way between ωA and ωB (ω = pAωA + pBωB, pA = pB in this example).
The linewidth can be obtained by investigating the behavior of the lineshape
near ω = 0. Here, ωA −ω can be approximated as ωA, a similar approximation
can be taken for ωB.

I(ω) ∝
1

2
k(∆ω)2

1

(ωA)2(ωB)2 + 4k2ω2

∝
1

2
k(∆ω)2

1

(∆ω/2)2(∆ω/2)2 + 4k2ω2

∝
1

8k
(∆ω)2

1
1
k2 (∆ω)4(1

8 )2 + ω2
(8.6)
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This gives a rate of decay equal to:

1

T2
=

(∆ω)2

8k
(8.7)

In the general case, when k1 ̸= k2 the observed rate of decay of transverse
magnetization due to exchange is [?]:

R2 =
1

T2
= pApB(∆ω)2/kex (8.8)

This equation is equivalent to Eq. 8.7, when the two rate constants are equal.

8.2.2.2 Slow Exchange Limit

Under conditions of slow exchange, k << ∆ω, we anticipate the presence
of two resonance lines, one at ωA and the other at ωB, as predicted from the
previous qualitative analysis in Section 8.2. If the behavior of the general line-
shape function in the vicinity of ωA is considered, then the lineshape function
reduces to:

I(ω) ∝
1

2
k(∆ω)2

1

(ωA − ω)2(ωB − ωA)2 + 4k2ω2
A

∝
1

2
k(∆ω)2

1

(ωA − ω)2(∆ω)2 + 4k2(∆ω/2)2

∝
1

2
k

1

(ωA − ω)2 + k2
(8.9)

The above transformations assume that when ω ≈ ωA both (ωB−ω) and ω2 are
slowly varying functions of ω, i.e. we can approximate (ωB −ω) as (ωB −ωA),
and ω2 as ω2

A. On the other hand, (ωA−ω), is a rapidly varying function when
ω ≈ ωA and must be treated exactly.

Recall that the lineshape for a free induction decay that decays with a rate
of 1

T2
is:

I(ω) ∝
T2

1 + T 2
2ω

2

∝
1

ω2 + [ 1
T2

]2
(8.10)

Therefore, the contribution of exchange to the decay of the transverse magne-
tization is k, i.e.

R2 =
1

T2
= k (8.11)

as predicted from the earlier qualitative analysis.
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Figure 8.4. Effect of chemical exchange on lineshape. The lineshape is shown over
a wide range of exchange rates. In this simulation, the population of both states were
set to 1

2
. The frequency separation between ωA and ωB, ∆ω, was set to 40 Hz. The

exchange rates vary from 1 sec−1 to 104 sec−1. Spectrum A corresponds to very slow,
B to slow, C to intermediate, D to fast, and E to very fast exchange rates, as defined
in Table 8.1.

8.2.3 Intermediate Time Scales
The lineshape for intermediate exchange rates is obtained by evaluation of

Eq. . Numerical simulations are presented in Fig. 8.4. This simulation shows
the predicted transition from two peaks in the case of slow exchange to a single
peak under conditions of fast exchange.

Note that in the intermediate time scale, the resonance lines may be so
extensively broadened such that no peak is observed in the actual spectrum.
This situation will also hold true in a NOESY-type experiment if the dipolar
coupled spins are exchanging between environments.

8.3 Ligand Binding Kinetics
The binding of a ligand, L, to a protein, P, generally causes a change in

the environment of the nuclear spins on either the protein, the ligand, or both.
Since a change in environment usually results in a change in chemical shift,
ligand binding is equivalent to chemical exchange between two environments.
In this case the two states correspond to the bound (PL) or free protein (P).
The reaction for ligand binding to a single site is:
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k on

k off
P  +  L               PL 

The equilibrium binding constant for this reaction is given by:

Keq =
kon

koff
(8.12)

where kon is the second order rate constant for the binding of the ligand to the
protein, and koff represents the rate at which the ligand leaves the protein.

The kinetic rate equation in this situation is:

d[P ]

dt
= −kon[L][P ] + koff [PL]

d[PL]

dt
= +kon[L][P ] − koff [PL] (8.13)

Note that the only difference between these equations and those given for gen-
eral exchange in Eq. ?? is that the forward rate constant k1, now becomes
kon[L]. Therefore, any of the previous described techniques can be applied to
the study of ligand binding kinetics.

There are two key differences between general exchange and ligand binding:

1 The forward rate, k1, can be conveniently changed by the ligand concentra-
tion, since k1 = kon[L]. Thus the time scale of exchange can be controlled,
to some extent, by the varying the ligand concentration.

2 The chemical shifts of the unliganded and fully liganded states can be mea-
sured by acquiring spectra in the absence and presence of ligand. Conse-
quently it is possible to obtain ∆ω, and in some cases a direct measurement
of the equilibrium constant by acquiring a series of spectra at different ligand
concentrations.

Figure 8.5 shows the effect of chemical exchange of the observed spectra.
Three different scenarios are shown, slow (A), intermediate (B), and fast (C)
exchange. Approaches to obtain the kinetic rate constants for each of these
time scales are briefly discussed below.

8.3.1 Slow Exchange
In the case of slow exchange the resonance for the unliganded state simply

disappears and a resonance line at the position of the liganded state appears.
At any given ligand concentration the fraction of protein with bound ligand
can be calculated from the integrated intensities of the two lines:

pB =
IB

IA + IB
(8.14)

The dependence of pB on the free ligand concentration follows the ligand bind-
ing equation:

pB =
Keq[L]

1 + Keq
(8.15)
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Figure 8.5. Effects of Ligand Binding on NMR Lineshapes. This figure illustrates
the effect of slow (A), intermediate (B), or fast (C) exchange on the spectrum of a
resonance whose frequency is changed as a result of ligand binding. All three panels
correspond to an equilibrium binding constant, Keq = kon/koff , of 104 M−1 but differ
in the on- and off-rates. The on-rates were 105 M−1sec−1 (A),107 M−1sec−1 (B), and
109 M−1sec−1(C). The free and bound resonance positions are separated by 80 Hz
(νA = −40 Hz, νB = +40 Hz). Spectra were simulated with ligand concentrations of
0, 10 µM, 30 µM, 100 µM, 300 µM, 1 mM, and 10 mM, increasing from front to back.
These concentrations give the following fractions of liganded protein (pB): 0.00, 0.09,
0.23, 0.50, 0.75, 0.91, and 0.99, respectively.

Keq can be obtained by direct fitting of this function. Alternatively, it can be
linearized with a Scatchard plot,

pB

[L]
= Keq − pBKeq (8.16)

If the binding is non-cooperative and to a single site, then the slope of this line
is −Keq.

The individual rate constants can be obtained by direct measurement of
the linewidth at low ligand concentrations. At low ligand concentrations the
lifetime of the unliganded state is shortened when the protein binds a ligand,
therefore the observed spin-spin relaxation rate becomes:

RA
2 = RoA

2 + kon[L] (8.17)

The relaxation rate, RoA
2 in the absence of exchange is known, therefore a plot

of RA
2 versus the free ligand concentration will have a slope of kon.

8.3.2 Intermediate Exchange
In the intermediate exchange time regime the resonance line becomes very

broad as ligand is added and slowly migrates from the unliganded position
towards the position of the fully liganded protein. Under some conditions, the
line can disappear completely during the titration, making it difficult to identify
the resonance position of the fully bound species. Due to the complex nature
of lineshape it is necessary to analyze these data using the complex expression
for chemical exchange that was presented in Section ??. The only modification
to this equation is to replace k1 with kon[L]. Generally, several spectra are
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Figure 8.6. Effect of pH on hydrogen exchange rates. The hydrogen exchange rates
are shown for several exchangeable groups in proteins. NH indicates the backbone
amide proton. Other labels refer to sidechains. The rates assumes that the group is
fully exposed to solvent. The left axis indicates the mean lifetime of the proton while
the right scale gives the exchange rate.

acquired over a range of ligand concentrations and values of kon and koff are
found that minimize the difference between the observed lineshape and that
predicted from Eq. ??.

8.3.3 Fast Exchange
In the case of fast exchange, the exchange is sufficiently fast that the chemical

shift of the observed line, δ, is essentially equal to the weighted average of the
initial and final states:

δ = pAδA + pBδB (8.18)

At any given ligand concentration, the amount of bound protein, pB, is easily
found:

pB =
δ − δA
δB − δA

(8.19)

The equilibrium binding constant can be obtained using the methods described
above for slow exchange.

8.4 Measurement of Exchange: CPMG
Experiments

8.4.0.1 Measuring kex: Relaxation Dispersion Experiments

Under conditions of fast exchange the apparent exchange rate constant, kex,
can be obtained from relaxation dispersion experiments, or the change in the
relaxation rate due to a change in the magnetic field strength. In a relaxation
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dispersion experiment, the spins are subject to a transverse magnetic field, ωT

of varying strength while in the transverse (x-y) plane. The observed spin-spin
relaxation rate depends on both the chemical exchange rate and the strength
of the applied field. Because of this dependence it is possible to determine kex

without relying on any other information. In practice, the spin-spin relaxation
rate, R2, is measured at a number of different transverse field strengths and the
exchange rate is obtained by fitting the measured dispersion curve, R2(ωT ), to
theoretical models.

Two methods are employed to generate magnetic fields of different strengths
for dispersion experiments. The first employs a series of 180◦ pulses, spaced τcp

apart, as illustrated in Fig. 8.7. The initial implementation of this sequence
by Carr and Purcell utilized the same phase for the 90◦ excitation and 180◦

refocusing pulses [?]. A later modification by Meiboom and Gill reduced the
effects of imperfect 180◦ pulses by phase shifting the excitation pulse with
respect to the 180◦ pulses [?]. In recognition of the individuals who developed
this method, the sequence is usually referred to as a CPMG sequence. This
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Figure 8.7. The generation of a spin-echo by a train of CPMG pulses. The top sec-
tion shows the evolution of the transverse magnetization during the CPMG sequence.
In this example the transverse magnetization dephases rapidly due to an inhomoge-
neous magnetic field. This dephasing is reversible and is refocused by a 180◦ pulse.
The left-most section shows the magnetization immediately after the 90◦ pulse. Dur-
ing the first time period, τ , spins A and B precess at different rates due to differences
in the the local magnetic field. In this example spin B precesses faster than spin A
in the rotating frame. The 180◦ pulse rotates each spin about the x-axis. Spin A,
which was lagging behind spin B, is placed ahead of spin B by the 180◦ pulse. In the
next time period, the spins precess in the same direction as before, and at the same
rate. After a period τ all of the spins will refocus to the x-axis because spins with
slower precessional rates do not have to precess as far as those with higher rates. The
effect of a train of such pulses, is shown in the lower part of the figure. A series of
180◦ pulses, spaced τcp apart, will generate a series of echos spaced τcp apart. The
amplitude of which will decay according to the intrinsic spin-spin relaxation rate,
R2, as indicated by the dotted line. If chemical exchange occurs the decay rate will
increase and may depend on τcp, depending on the size of kex.
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pulse train refocuses the effects of magnetic field inhomogeneities on the decay
of transverse magnetization and is therefore useful for measuring T2. The
180◦ pulses in the CPMG sequence generate a spin-echo at a point half-way
between each pulse. The amplitude of this echo decays according to the spin-
spin relaxation rate, as illustrated in Fig. 8.7.

In the absence of exchange the τ − 180o − τ sequence will refocus any pre-
cession due to chemical shift evolution or magnetic field inhomogeneities since
the precessional frequency for any given spin is constant over the duration of
the experiment. However, in the case of exchange, the precessional frequency
no longer is constant. Consequently, the height of the spin-echo will decrease
with a rate equal to the sum of the spin-spin relaxation rate and the rate of
exchange: R2 = Ro

2 + Rex.
The second method of measuring relaxation dispersion is to apply a con-

tinuous B1 field while the spins are transverse. Since this RF-field forces the
magnetization to remain aligned with B1, this method is referred to as spin-
locking. This measurement of relaxation is referred to as T1 relaxation in the
rotating frame, or T1ρ. In practice, T1ρ is measured at different field strengths
by simply changing the strength of the B1 field: ωT = ω1 = γB1. Larger
spin-locking fields can be obtained using off-resonance B1 fields.

Both CPMG methods and T1ρ techniques reduce the contribution of chem-
ical exchange to the observed transverse relaxation rate. The degree of at-
tenuation depends on the relationship between the rate of exchange and the
applied field strength. A qualitative description of the effect of the transverse
field strength on the contribution of chemical exchange to dephasing of the
transverse magnetization is illustrated in Fig. 8.8. This figure shows the effect
of increasing the transverse field strength at a fixed value of kex. In the case of
CPMG methods the field strength is defined by the rate of 180◦ pulses, i.e. the
more closely spaced pulses the higher the field. If the pulses are applied with-
out any inter-pulse delay then a continuous B1 is generated, which is equivalent
to a spin-locking field. Thus field strengths during spin-locking are generally
higher than the fields used in CPMG methods.

8.4.0.2 Quantitative Description of the CPMG Experiment

The evolution of the density matrix during the CPMG experiment has been
analyzed using classical methods. The analysis considers free precession of the
magnetization during the τcp between 180◦ pulse followed by a rotation about
the x-axis of 180◦ by each pulse. The observed relaxation rate [?, ?] is given
in Eq. 8.20.

R2 =
1

2
[R2A + R2B + k1 + k2] −

1

τcp
lnλ+

λ+ = ln
[

(D+cosh2ξ − D−cos2η)1/2 + (D+sinh2ξ − D−sin2η)1/2
]

= (1/2)cosh−1 [D+cosh2ξ − D−cos2η]

(8.20)
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Figure 8.8. Measurement of exchange with CPMG or spin-lock methods. Panels
A and B illustrate CPMG experiments while Panel C shows a spin-lock experiment.
The evolution of one spin, as it exchanges between two environments, is shown by the
black (environment A) or gray (environment B) arrow. In environment A the spin
precesses clockwise in the x-y plane and while in environment B (gray arrow) the spin
precesses counter-clockwise. The rate of spin-spin relaxation is assumed to be zero in
both environments.
Panel A: The central portion of this panel shows the applied CPMG sequence. The
upper part of the figure shows the evolution of a spin that does not undergo chemical
exchange (kex = 0). The y-component of the magnetization is plotted along with the
trajectory of the spin in the x-y plane. The magnetization that is precessing in the
x-y plane is refocused by the first 180◦ pulse to give a maximum signal at τcp. In the
presence of exchange (kex > 0), the spin begins in environment A and exchanges to
B prior to the first 180◦ pulse. The change in precessional frequency interferes with
the refocusing effect, causing an attenuation of the signal.
Panel B: The closer spacing of the 180◦ pulses makes it more likely that a spin
will exist in a single environment during any τcp period, thus the refocusing is more
effective at reducing attenuation of the signal due to exchange.
Panel C: A continuous on-resonance B1 field along the y-axis is applied to the spins.
In the rotating frame the field along the z-axis disappears, leaving only the B1 field.
The spins remain aligned, or locked, along B1 in analogy to the alignment along Bo

in the laboratory frame.
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where,

D± =
1

2

[

±1 +
ψ + 2(∆ω)2
√

ψ2 + ζ2

]

ξ =
τcp√

8

[

+ψ +
√

ψ2 + ζ2
]1/2

η =
τcp√

8

[

−ψ +
√

ψ2 + ζ2
]1/2

ζ = 2∆ω(R2A − R2B + k1 − k2)

ψ = (R2A − R2B + k1 − k2)
2 − (∆ω)2 + 4k1k2

Eq. 8.20 is valid for all exchange rates. Due to the complexity of the full
expression it is helpful to gain an understanding of the response of the system
by considering the simpler limiting case of fast exchange, which was derived by
Luz and Meiboom [?] and by Allerhand and Thiele [?]:

R2 =
RA

2 + RB
2

2
+

pApB(∆ω)2

kex

[

1 −
2

kexτcp
tanh

kexτcp

2

]

(8.21)

This simplification is remarkably robust in predicting the effect of exchange for
experimentally accessible values of τcp (see Fig. 8.9).

The first part of the fast-exchange formula is just the averaged spin-spin
relaxation rate that would be observed in the presence of very fast exchange.
The second term gives the increase in the relaxation rate that is due to chemical
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Figure 8.9. The dependence of the observed spin-spin relaxation time on the frequency
of CPMG pulses. The relaxation rate, Ro

2, in the absence of exchange, is 10 sec−1.
This corresponds to the intersection of the x-axis with the y-axis. The frequency
separation between the two states, ∆ω/2π was 100 Hz and equal populations of both
states were assumed (pA = pB). The solid line shows the relaxation rate calculated
with the complete formula (Eq. 8.20), while the dotted line shows the result from the
fast-exchange approximation, Eq. 8.21. The sum of the exchange rates (kex = k1+k2),
from left to right, are 500 sec−1, 1000 sec−1, 2500 sec−1, and 5000 sec−1. The
shaded area corresponds to τcp values (10 msec, left side; 1 msec, right side) that
are experimentally accessible for proteins in the 20 − 40 kDa range. Note that the
fast-exchange approximation offers a good estimation for the relaxation dispersion
within the range of typical values of τcp.
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exchange. When the exchange is very fast, kex >> τcp, the observed increase
in the relaxation rate is equal to that found for free precession in the presence
of fast exchange (Eq. 8.8): pApB(∆ω)2/kex. In contrast, when the rate of the
180◦ pulses becomes much faster than the exchange rate, the effect of chemical
exchange on the linewidth disappears completely because:

limτCP→0

[

1 −
2

kexτcp
tanh(

kexτcp

2
)

]

= 0

(limx→0
1

x
tanh(x) = 1)

(8.22)

A more complete description of the relationship between the CPMG pulse
delay, the rate of chemical exchange, and the observed relaxation rate is shown
in Fig. 8.9. In general, as the exchange rate increases, the dispersion, or change
in R2 versus τcp decreases. In the case of a relatively slow exchange rate,
kex = 500 sec−1, the R2 due to exchange is large for long τcp values and is almost
completely attenuated as τcp is decreased. In contrast, when the exchange rate
is much faster than ∆ω (kex = 5000 sec−1, right panel) there is very little effect
of τcp on the observed R2. For very fast exchange, e.g. kex = 100×∆ω there is
no dispersion and it is not possible to obtain information on the exchange rate
with CPMG techniques.

The range of experimentally feasible τcp times is reduced by limitations on
the pulse rate that can be generated by the instrument and by the intrinsic
relaxation properties of the sample. Although the τcp times shown in Fig. 8.9
range from 31 msec to 0.5 msec, intervals much longer than 10 msec cannot be
used with moderately sized proteins because of the relatively rapid spin-spin
relaxation rate causes the transverse magnetization to decay before a single
cycle of the CPMG sequence can be applied. Longer τcp values, that would
extend the shaded area in Fig. 8.9 to the left, can be obtained for smaller
proteins because of their long spin-spin relaxation rates (see [?]).

Values of τcp much shorter than 1 msec can cause sample heating problems.
Furthermore, the analytical expressions shown above do not take into account
finite pulse widths, thus the effect of τcp intervals that are of the same order as
the 180◦ pulse lengths are not well represented by existing theories.

8.5 Amide Exchange
Resonance signals from the amide protons provide the cornerstone for prac-

tically all NMR experiments that are discussed in this text. Unfortunately, the
amide proton readily exchanges with solvent. This exchange rate is catalyzed
by both acid and base and the effect of pH on the rate of exchange is shown
in Fig. 8.6. These rates correspond to groups that are fully exposed to the
solvent. Rates that are several orders of magnitude slower can be observed for
protons that are buried and not exposed to solvent. Since these buried amides
eventually exchange with solvent, they must become transiently exposed to
solvent as the protein samples multiple conformations.
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If the rate at which the amide hydrogen exchanges with water is sufficiently
fast, signals from the amide protons can disappear from the spectrum. For
example, an amide proton resonance at 5.5 ppm is ≈500 Hz from the water
resonance line on a 600 MHz (νH) spectrometer. If the rate of exchange is
much faster than 500 sec−1, the system will be in fast exchange and the observed
chemical shift of the amide will be heavily weighted to that of the water due to
the high concentration of solvent in the sample, i.e. the amide resonance would
essentially appear at the solvent frequency.

Inspection of Fig. 8.6 shows that pH values less than approximately 6.0 are
required to give an exchange rate that is slower than 500 sec−1 for fully exposed
amides. At this pH the sidechain NH groups of arginine and lysine residues
will be in fast exchange with the water resonance since their exchange rates are
100 times that of the NH proton. Consequently, their NH protons cannot be
observed. The amide exchange rate of the amino terminus is similar to ϵ-amino
group of lysine, therefore it is often difficult to observe resonance signals from
this group as well. In a similar fashion, it would also be impossible to observe
resonance signals from the hydroxyl group of serine and threonine at any pH,
unless the group participates in hydrogen bonding or is buried in the protein,
causing a reduction in the exchange rate.

8.5.1 Amide Exchange and Protein Dynamics
The exchange rate of a fully hydrogen bonded proton in an amide group

is several orders of magnitude slower than the rate for a fully exposed, non-
hydrogen bonded, amide. Yet, amide groups in helicies and sheets exchange
more rapidly than would be expected for hydrogen bonded HN protons. It
is reasonably well established that the enhanced exchange rate is due to local
unfolding of the protein. During this process, the amide proton is free to
exchange with the solvent. Consequently, amide exchange rates can provide
information on local unfolding in proteins.
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PROTEIN STRUCTURE DETERMINATION
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Figure 9.1. Overview of the structure de-
termination process. Structure determina-
tion consists of a number of cycles that be-
gin with the assembly of constraints, fol-
lowed with building and refining models
derived from the constraints, and then in-
terpretation of the models to resolve errors
or ambiguities in the experimental data.

Structure determination generates
a molecular model of the protein or
nucleic acid that is as consistent as
possible with both the experimen-
tal data and known covalent and
non-covalent features of the folded
biopolymer. The most commonly
used experimental constraints are:

Inter-proton distances derived from
NOESY experiments.

Bond orientations determined from
single bond residual dipolar cou-
plings.

Torsional angles from measure-
ments of three bond J-couplings.

Hydrogen bonds determined from
amide exchange data.

Peptide mainchain torsional an-
gles from chemical shifts.

Non-experimental constraints consist
of:

Bond lengths.

Bond angles.

Torsional angles.

Van der Waals Interactions.
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The relative contribution of exper-
imental and non-experimental con-
straints to the final structure are bal-
anced by assigning an energy to both
types of constraints and weighting
the relative contribution of each type of constraint in an empirical manner:

ETotal = κEExperimental + ENon−experimental (9.1)

where κ is an empirical scaling factor.
Higher energies are associated with models whose structures gives the largest

disagreement between the constraints and the structure. The refinement pro-
cess seeks to create a structure that gives the lowest energy, and is therefore in
best agreement with both experimental and non-experimental constraints.

The overall steps in structure determination are illustrated in Fig. 9.1 and
outlined briefly in the following text. The first task is to assemble a collection
of reliable structural constraints, these generally include inter-proton distances
between protons that have unambiguous assignments. In addition, information
on torsional angles from three-bond scalar (3J) couplings can be utilized for
the construction of the initial trial structures. Residual dipolar couplings, as
well as hydrogen bonding information, are usually introduced during the latter
stages of model building, when the structure is approaching its final form.

Following the assembly of constraints, 100 to 200 initial models are built for
refinement. These can be generated from completely random atomic coordi-
nates, or rough structures obtained from the NOE data via a technique called
distance geometry, which converts interatomic distances to 3-D coordinates.
The initial models generally show poor agreement with the experimental data
and perhaps even with standard covalent and non-covalent interactions. Con-
sequently, the models are “regularized” to produce structures that are constant
with covalent geometry. Regularization is accomplished by moving the atoms
to reduce the overall energy of the structure. Since some of the required changes
in atomic coordinates may be large, this adjustment is usually performed using
simulated annealing techniques that facilitate large changes in atomic coor-
dinates. A number of the trial models may not converge to structures with
acceptable energy and are discarded at this stage. Acceptable models are sub-
ject to additional refinement by simulated annealing to further decrease the
energy of the system. The refinement is concluded with energy minimization,
which performs small changes in atomic coordinates to maximize the agree-
ment of the model with experimental data, as well as bonded and non-bonded
interactions.

The refined models are ranked by energy and 5% to 10% of the lowest en-
ergy structures are selected. This ensemble of structures is inspected carefully
to identify incorrect input data, such as incorrectly assigned NOEs, and such
experimental constraints are removed from the data set. The ensemble of struc-
tures is also used to resolve ambiguities with the existing data, allowing the
inclusion of more constraints in the next round of structure building. For ex-
ample, in the case of inter-proton distances from NOE measurements, a proton
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(A) with a well resolved chemical shift may show an NOE to another proton
(B) whose chemical shift is degenerate with a third proton (C). In the absence
of a structure it is not possible to determine if the inter-proton distance cor-
responds to A-B or A-C. However, the ensemble of low-energy structures may
make the choice clear by comparing the distances predicted from the model
structures. Intermediate structures may also be useful in identifying hydrogen
bond acceptors.

After the addition of more constraints, the entire process is repeated until
all experimental constraints have been exhausted. The overall quality of the
ensemble of lowest energy structures is then evaluated for compliance with cova-
lent and non-covalent energy terms as well as for agreement to the experimental
data.

9.1 Energy Functions
9.1.1 Experimental Data
9.1.1.1 NOE Constraints

The intensity of a crosspeak in NOESY spectra is related to the distance
between the interacting protons. However, there is considerable uncertainty as-
sociated with converting the NOE peak intensities to distances. Consequently,
it is common practice to specify both a lower bound (dlower) and an upper
bound (dupper), with the assumption that the true distance lies between the
two bounds. The upper and lower bounds are generally determined from the
signal-to-noise ratio in the spectrum. For example, if the uncertainty in peak
intensity is ∆I, and the measured intensity is I, then dlower ∝ 1/(I +∆I)6 and
dupper ∝ 1/(I −∆I)6. Alternatively, the lower bound is often specified as the
van der Waals radii of the atom.

9.1.1.2 Residual Dipolar Coupling

The contribution of residual dipolar couplings (RDC) to the overall energy
is:

ERDC =
nRDC
∑

i=1

KRDC(∆νCalc
i −∆νExpt

i )2 (9.2)

where ∆νCalc
i is the coupling calculated from the model, ∆νExpt

i is the experi-
mentally measured splitting, and the sum is over all observed dipolar couplings
(nRDC).

In order to compare calculated coupling to measured couplings it is necessary
to know the orientation of the molecular coordinate system with respect to the
magnetic field. In addition, the extent of alignment of the protein or nucleic acid
(Aa, Ar) must also be known. If these are known then the expected dipolar
coupling can be calculated from the molecular structure using the following
equation:

∆ν(θ,φ)Calc = Da

[

(3cos2θ − 1) +
3

2
Rsin2θcos2φ

]

(9.3)
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where θ and φ represent the orientation of a particular bond in the molecular
coordinate system.

9.1.1.3 Torsional Angles

During the course of refinement, the expected three-bond J coupling, 3JCalc

can be calculated from a torsional angle in the structure. Most 3-bond coupling
constants, such as the coupling between the amide proton and the α-proton,
are related to the torsional angle by the Karplus relationship [?]:

3J = A cos2 θ + B cos θ + C (9.4)

The deviation of the calculated J-coupling constant from the measured con-
stant contributes to the overall energy function as:

EJ =
nJ
∑

i=1

KJ(JCalc
i − JExpt

i )2 (9.5)

where the sum is over all observed J-couplings, KJ is an empirical weighting
factor, JCalc

i is the coupling constant calculated from the torsional angle in
the model (using Eq. 9.7), and JExpt

i is the experimentally observed coupling
constant.

In earlier versions of refinement software, the experimentally measured tor-
sional angle was explicitly given, in which case the energy function is:

Etor =
ntor
∑

i=1

Ktor(θ
Calc
i − θExpt

I )2 (9.6)

In this case, the torsional angle that most likely corresponds to the observed
coupling constant would be specified by the user. For example, a JHN Hα cou-
pling of 4 Hz implies a torsional angle, φ of -60◦ (see Fig. 9.2).

Common Coupling Constants Used in Refinement: The J coupling between
the HN to the Hα proton is perhaps the most useful coupling constant because
it provides information on the peptide backbone configuration (φ angle). The
relationship between the observed coupling constant and the peptide φ angle
is given by the following parametrized Karplus relationship:

3JHN Hα = 6.51 cos2 θ − 1.76 cosθ + 1.60 (9.7)

where θ = φ − 60◦, and the constants A, B, and C have been substituted
with values determined by Vuister and Bax [?]. A number of different values
for these constants have been obtained by other investigators [?] which give
similar values for 3JHN Hα. The Karplus curve for 3JHN Hα is shown in Fig. 9.2.

Note that a single value of the 3J-coupling constant can correspond to as
many as four distinct values of φ, thus a measured coupling constant may not
specify a unique value for φ. Furthermore, the observed coupling constant may
be averaged by rotation about the N−Cα bond at a rate that is faster than 1/J .
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Figure 9.2. Relationship between secondary structure and JNH Hα. The observed 3J-
coupling versus the torsional angle, φ is shown. φ angles corresponding to common
secondary structures are indicated by the vertical bars. The angle θ in Eq. 9.7 equals
φ − 60◦. The φ torsional angle is the angle between the planes defined by C-N-Cα

and N-Cα-C, as illustrated on the structure shown in the right-hand section of this
figure.

For example, if an amino acid residue samples an α-helical configuration and
a β-strand configuration with equal probability, then the observed coupling
will be approximately 7 Hz, or the average of 10.0 Hz(β) and 4.0 Hz (α).
Therefore, J-coupling constants that are approximately 7.0 Hz are not used in
the initial model building because it is unclear whether it represents a single
conformation with φ = −70◦ or is a result of conformational averaging. Once
the conformation of the residue becomes established during refinement it may
be possible to utilize these J-coupling constants as valid constraints for model
building.

9.1.1.4 Hydrogen Bonding

Amide protons that participate in hydrogen bonds are usually identified by
virtue of slow amide hydrogen exchange rates as well as a small temperature
dependence of the amide proton chemical shift (see Fig. 9.3).

The exchange rates are readily measured by replacing the solvent with D2O
and measuring the decrease in the intensity of amide proton resonances. The
exchange rate follows first-order kinetics and the rate constant is obtained by
fitting the peak intensity, I(t), to the following equation:

I(t) = Ioe
−kext (9.8)

The amide exchange rates are both acid and base catalyzed, and pH dependence
of the exchange rate, for a number of exchangeable protons, is presented in Fig.
8.6. Generally, if the observed exchange rate is 10 fold slower than the rate
expected for a fully exposed amide it is reasonable to assume that the amide
is either involved in a hydrogen bond or it is simply buried in a hydrophobic
region of the protein. The participation of the amide proton in an hydrogen
bond can be further substantiated by the temperature dependence of the amide
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proton chemical shift. Temperature coefficients that are less negative than
≈ 4.5 ppb/K are indicative of hydrogen bond formation [?], as illustrated in
Fig. 9.3.

If a suitable hydrogen bond acceptor can be identified in preliminary mod-
els, for example a C=O group, then constraints involving the N-H and C=O
atoms can be added to collection of constraints in the next round of structure
generation.

In some cases it may be possible to unambiguously determine the presence
of a hydrogen bond by detecting scalar coupling between the amide proton and
the carbonyl carbon that are involved in the hydrogen bond. Since this coupling
is quite weak, leading to long magnetization transfer times, experiments of this
type are generally more successful with smaller proteins (e.g. less than 20 kDa)
because of their longer T2 values.

In terms of energy calculations, hydrogen bonding constraints are often rep-
resented as a pair of inter-proton distances, i.e. the distance between the amide
proton and carbonyl oxygen (dH−O) and the distance between the nitrogen and
the carbonyl carbon (dNCO) to insure linearity of the hydrogen bond, giving
the following energy function:

Eh−bonds =
nhbonds
∑

i=1

KH−bond

⎡

⎣

2
∑

j=1

(dCalc
ij − dExpt

ij )2

⎤

⎦ (9.9)
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Figure 9.3. Identification of hydrogen bonds. The amide exchange rate versus the
temperature dependence of the amide proton chemical shift. The range of each axis
is typical for a folded globular protein at pH 5.0. An exchange rate of “fast” indicates
that it was not possible to measure the rate due to rapid loss of the amide proton in
D2O. Amides that show an amide exchange rate less than 10−2/sec and temperature
dependence smaller than -4.5 ppb/K are likely to participate in the formation of
a hydrogen bond. Amide protons that show a slow exchange rate but have a large
temperature dependence of chemical shift may not be hydrogen bonded. Fig. adapted
from [?].
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where j = 1 represents the H-O distance and j = 2 represents the N-C distance
and KH−bond is an empirical scaling factor. KH−bond is often set to the same
value of KNOE during refinement.

9.1.1.5 Chemical Shift Constraints

The chemical shift of backbone atoms, in particular the Cα, and carbonyl
carbon, and to a lesser extent Cβ , depend on the secondary structure of a
residue, as indicated in Fig.9.4 [?]. Although many tertiary interactions also
affect the chemical shift of these atoms, the change in chemical shift that is
induced by the secondary structure can provide a weak constraint during re-
finement (see [?]). For example, if an alanine residue in a protein showed Cα
and CO shifts that were 3 ppm below the mean chemical shift for these atoms,
then the φ and ψ torsional angles could be constrained to favor a β-strand
conformation.

ALA
VAL
LEU
THR
SER
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GLY
ARG
ASN
GLU
GLN
ASP
TRP
TYR
PHE
LYS
CYS
MET
HIS
PRO

Cα

 -3 -2 -1  0  1  2  3
Δ ppm

Cβ

 -3 -2 -1  0  1  2  3
Δ ppm

CO

 -3 -2 -1  0  1  2  3
Δ ppm

Sheet Helix

Figure 9.4. Effect of secondary structure on carbon chemical shifts. The deviation
from the mean chemical shift of the Cα, Cβ , and CO atoms for each residue type is
illustrated by each horizontal bar. Filled bars represent residues in β-strand configu-
ration while open bars represent residues in α-helical configuration. As an example,
the chemical shift for the Cα of Ala is 52.42 ppm in a random coil, 51.15 ppm in
a β-sheet, and 54.77 ppm in a helix. Therefore the change in chemical shift due to
secondary structure is -1.27 ppm and 2.35 ppm from random coil for helix or sheet,
respectively. Data from [?].
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Figure 9.5. Torsional angle potential energy. A molecular fragment from a protein
is shown in the upper section of the diagram. The bond connecting atoms B and C
could, for example, correspond to the Cα-Cβ bond in alanine. The torsional angle, φ
is specified by the angle between the planes defined by atoms ABC and atoms BCD.
In this particular configuration, φ = 60◦. The lower portion of the figure shows how
the energy varies with dihedral angle, here n = 3 and δ = 0 in Eq. 9.12.

9.1.2 Covalent and Non-covalent Interactions
The energy associated with covalent and non-covalent interactions are de-

fined by the following terms:

Ecovalent = Ebonds + Eangles + Etorsional + Eimproper

Enon−bonded = Evan der Waals + EElectrostatic (9.10)

The covalent energy terms insure proper covalent bonding and molecular struc-
ture, including planarity of aromatic groups and the correct geometry of chiral
centers.

Bond Lengths: Proper inter-atomic bond lengths are maintained during refine-
ment with the following energy term:

Ebonds =
nbonds
∑

i

Kbonds(d
Calc
i − dIdeal

i )2 (9.11)

where nbonds are the number of covalent bonds in the structure, Kbonds is an
empirical scale factor, dCalc

i is the bond length calculated from the structure
during refinement and dIdeal

i is the ideal covalent bond length.

Torsional Angles: Torsional angles can also contribute to the energy function.
They are used to maintain the planarity of aromatic rings, favor non-eclipsed
configuration of atoms, and to define the geometry of chiral centers. In the
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case of X-PLOR, two energy functions can be used to specify torsional angles,
the first of which is usually used to insure non-eclipsed atoms, as illustrated in
Fig. 9.5:

Etorsional =
∑

Kφ [1 + cos(nφ+ δ)] if n > 0

=
∑

Kφ(φ− δ)2 if n = 0 (9.12)

where φ is the torsional angle calculated from the structure at some point
during refinement, Kφ is the weighting factor, n is the multiplicity, and δ is the
phase shift.

To specify that four atoms lie in a plane, such as in an aromatic ring, n
would be set to zero and δ would be 180◦. Any out of plane configurations
would raise the energy due to a non-zero value of (φ − δ). To specify three
equally populated rotomers, for example a CH3 group, a value of n = 3 and
δ = 0◦ would be used, giving energy minima for torsional angles, φ = 60◦, 180◦,
and 300◦, as illustrated in Fig. 9.5.

The second energy expression for torsionals angles is referred to as the im-
proper energy term. It has exactly the same form as in Eq. 9.12 and is generally
used to maintain chirality and planarity of groups within in the structure. The
availability of two distinct potential functions permits a use of different scale
factors for the two types of torsional angles.

van der Waals Interactions: The non-bonded energy term contains contri-
butions from van der Waals interactions, usually encodes a pairwise standard
6-12 Lennard-Jones potential:

Evdw = Kvdw

natom
∑

ij

C12

d12
ij

−
C6

d6
ij

(9.13)

Electrostatic Energy: The simplest form of the electrostatic energy term is
given by Coulomb’s Law. However, given the uncertainty of the local dielectric
constant as well as the absence of solvent and counter ions in most structure
refinement protocols, this term is usually set to zero.

9.2 Energy Minimization and Simulated
Annealing

Structures are refined by a combination of energy minimization and sim-
ulated annealing. The overall goal is to alter the atomic coordinates of the
structure to attain a final set of atomic coordinates that give the lowest energy
for both experimental and non-experimental energy functions.
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9.2.1 Energy Minimization
The minimum energy of the structure can be found by moving the atoms in

the direction defined by the gradient of the energy:

ξi = −
∂E

∂xi
(9.14)

During the energy minimization, multiple steps of adjustment of the atomic
coordinates occur. The coordinate change at each step is calculated according
to the following:

x′
i = xi + ξi (9.15)

ξi is recalculated after each step in the minimization process and becomes
smaller and smaller as the system moves towards the minimum in energy. The
minimization proceeds for either a set number of cycles or until ξi drops below
a predetermined level.

If the energy function is smooth and has a single global minimum, then
minimization will find the true global minimum and produce a structure that
is as consistent as possible with the energy function. Unfortunately, the energy
surface as a function of atomic coordinates is complex and multi-valued such
that a simple minimization of the energy will inevitably reach a local minimum,
not the true global minimum, as illustrated in Fig. 9.6.

9.2.2 Simulated Annealing
Simulated annealing is used to overcome the problem of the structure be-

coming trapped in a local energy minimum. This procedure receives its name
because it simulates the annealing process in alloy formation in metals. Specif-
ically, the metal is heated to high temperatures to facilitate atomic rearrange-
ments and then cooled or annealed to more stable structures.

In the refinement of models the atoms in the protein are given a kinetic
energy, as defined by the temperature of the system:

1

2

N
∑

i=1

miv
2
i =

3

2
NkbT (9.16)

Initially, the atoms are assigned a random velocity that depends on the tem-
perature of the system [?]:

v =

[

m

2πkbT

]3/2

e−3mδ2/2kbT (9.17)

where δ is a random number from 0 to 1, T is the temperature of the system,
kb is Boltzmann’s constant, and m is the mass of the atom.

Since simulating annealing generally begins at high temperatures, the atoms
will have high kinetic energy, and will be able to transverse the energy barrier
between minima, as illustrated in Fig. 9.6. To insure the the system will
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converge on a minimum, the temperature of the system is slowly lowered at
the end of the molecular mechanics calculation. Provided the temperature is
lowered slowly, it is very likely that the system will anneal to a global energy
minimum.

The motion, or trajectory, of the atoms during simulating annealing are de-
termined by molecular mechanics calculations. Given a set of initial coordinates
and velocities, xo and vo, as well as the energy of the system, the coordinates
at a time ∆t are calculated using Newtonian mechanics using the following
expression:

x′ = xo + vo∆t −∇E
∆t2

2m
(9.18)

where −∇E is equal to the force applied to the atoms. E represents all, or a
subset, of the experimental, covalent, and non-covalent energy terms discussed
above. Generally, the time step, ∆t is a fraction of a psec and 50-200 steps
are performed at any given temperature. Multiple cycles of molecular me-
chanics are usually performed with any given refinement protocol. Each cycle
will generally use different energy scaling factors as well as a number of other
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Figure 9.6. Energy changes during simulated annealing. The solid lines shown the
energy of a structure as a function of its atomic coordinates. Two trial structures
are shown, drawn in black (structure A) or gray (structure B). The energy of the
structures immediately after generation by distance geometry or starting from random
coordinates are shown on the far left of the plot. The dashed lines shows the change
in energy due to regularization followed by energy minimization. Both structures
reach a local minimum with reasonable covalent geometry after regularization. The
dotted lines show the changes in energy that occur during additional refinement by
simulated annealing. In the case of structure B (gray), the energy barriers between
each local minimum can be transversed due to the high kinetic energy of the atoms
during annealing, thus B eventually finds the global minimum in energy. The energy
barriers surrounding the local minimum for structure A are too high, thus structure
A is found at the local minimum after refinement. The gray stippled region indicates
the range of energies that are considered to be acceptable after refinement; only a
very small subset of all possible atomic configurations possess the indicated range of
energies.
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parameters, such as the van der Waals radii of atoms. Several examples of
refinement protocols are presented below.

9.3 Illustrative Example of Protein Structure
Determination

The following section outlines the process of structure determination for a
130 residue protein, rho130 [?]. This protein was chosen as an example because
it consists of two sub-domains, an amino-terminal domain that is largely α-
helical, and a carboxy-terminal domain that is largely β-sheet (see Fig. 9.7,
Panel D). The number of contacts between the two domains is very limited, thus
it is difficult to obtain a large number of inter-proton distances to constrain the
structure of one domain with respect to the other. In this case the importance
of including constraints from residual dipolar couplings is quite apparent, giving
a precise definition of the relative orientation of the two domains with respect
to each other.

Four major steps (A-D) in the process of protein structure determination
are depicted here. The constraints that were used at each step are listed in
Table 9.1 and the resultant structures are shown in Fig. 9.7. At the beginning
of each step, 200 trial structures were built using distance geometry. Four of
the lowest energy models that were obtained after the final refinement protocol
are shown in Fig. 9.7.

The initial models (A) were constructed from approximately 900 inter-proton
distances, which were obtained from NOESY crosspeaks involving unambigu-
ously assigned resonance. The amide-amide distances were obtained from a
15N separated three-dimensional NOESY spectrum. The amide-aliphatic dis-
tances were also obtained from this experiment. Since the aliphatic region of
the proton spectrum is quite crowded the assignment of the aliphatic peaks
was aided by the CN-NOESY experiment, which gives the carbon shifts of
the aliphatic protons that are close to the amide protons. Distances between
aliphatic protons were obtained using a 13C separated NOESY experiment,
similar to the 15N NOESY, except that nitrogen excitation was replaced by ex-
citation of aliphatic carbons. Inter-proton distances between aromatic protons
were largely obtained from a two-dimension proton-proton NOESY acquired in
D2O, however a small number of such constraints were obtained by acquiring
a three-dimensional 13C separated NOESY with the carbon transmitter placed
on the aromatic carbon region.

Hydrogen bond constraints could not be utilized during stage A of structure
determination. Although potential hydrogen bond donors had been identified
by virtue of slow amide exchange kinetics, the identification of the acceptors
required initial models. A similar situation also existed for the use of φ torsional
angle constraints. Although most of the coupling constants had been measured
for the three bond HN -Hα coupling, only approximately one-third (30/91) were
above 9 Hz and could be used without concern of conformational averaging of
the coupling constant.
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Residual dipolar couplings for the H-N and H-Cα bond vectors were obtained
from samples aligned using filamentous bacteriophage. Both couplings were
obtained by measuring the oscillation of peak intensity as a function of time
and then fitting the data to a damped cosine function to determine the value
of the coupling constant. These constraints were not used for refinement until
the final stage, when reasonably accurate structures became available.

The lowest energy model structures that were obtained from step A showed
good agreement within each sub-domain of the protein. The structural sim-
ilarity can be characterized by the root-mean-squared deviation RMSD. The

A B C D
I NOE HN -HN

Local 147 167 184 184
Long 38 42 53 53

HN -HC

Intra 238 238 308 308
Local 245 247 379 379
Long 53 55 137 137

HC-HC

Intra 163 163 159 159
Local 14 14 52 52
Long 39 39 118 118

NOE:Long/residue 1.0 1.0 2.4 2.4
H-bond 0 36 43 43
φ 30 80 91 91
χ1 0 0 23 23
RDC HN 0 0 0 63

HCα 0 0 0 49
II RMSD (β) 1.3 0.90 0.70 0.39

RMSD (α & β) 7.0 6.75 1.40 0.43

Table 9.1. Constraints used in determining structure of Rho130. The constraints
used at each stage in structure determination (A through D, see Fig. 9.7) of struc-
ture determination are given in section I of this table. The NOE constraints are di-
vided into amide-amide (HN -HN), amide-aliphatic (HN -HC), and aliphatic-aliphatic
or aliphatic-aromatic or aromatic-aromatic (HN -HC). Each of these categories is
further divided into intra-residue, local, and long-range distances. A local distance
constraint involves residues that are within four residues of each other in the primary
sequence. Long range distances involve residues that are more than four residues from
each other. The average number of long range distance constraints/residue are also
given. The number of H-bonds are also listed. The number of torsional constraints
constraining the N-Cα bond (φ) and the Cα-Cβ bond (χ1) are also listed. Finally, the
number of HN and HCα residual dipolar couplings are listed. Section II of this table
gives the root-mean-squared-difference (RMSD) between each of the four low-energy
structures. The first entry is the RMSD for alignment of the β-domain while the
second entry is for aligning both domains.
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A B C D

L

Figure 9.7. Stages in the structure determination of Rho130. Each panel shows the
superposition of the four lowest energy structures after final energy minimization. The
β-strand domain, which forms the lower part of the structure in this presentation, was
used to define the alignment. Panel A shows the set of structural models generated
from the initial set of constraints. Panel B and C show improvement in the structural
models by the addition of hydrogen bonds as well as torsional angle and additional
distance constraints. Panel D shows the effect of utilizing residual dipolar couplings
as additional constraints. Note that the relative alignment of the two sub-domains
is not well defined until Panel C and becomes more precise with the addition of the
RDCs.

RMSD is a measure of the similarity of one structure to another and is defined
as follows:

RMSD =
1

N

N Atoms
∑

i=1

√

[(xij − xik)2 + (yij − yik)2 + (zij − zik)2] (9.19)

where xjk represents the x-coordinate of the kth atom in molecule j and xik is
the x-coordinate of the same atom in molecule i.

The smaller the RMSD, the more similar the structures are to each other. In
the case of the sub-domains, the RMSD is about 1.3 (Table 9.1). However, the
relative orientation of the two domains was poorly determined, as indicated by
the high RMSD for aligning the entire protein and the obvious poor alignment
of structures in Panel A of Fig. 9.7.

The set of lowest energy structures from step A were inspected and a small
number of inter-proton distances were added after using these structures to
resolve ambiguities in the assignment of NOE crosspeaks. In addition, a total
of 36 hydrogen bond acceptors were identified on the basis that the residues
were in regular secondary structure. Finally, most of the φ torsional constraints
could be used for the next stage since it was clear that the residues were in
regular secondary structure. The refined structures from step B are shown in
Fig. 9.7. There is a significant improvement in the sub-domain structure; the
RMSD for the β region dropped from 1.3 to 0.9 . In addition, there is a modest
decrease in the RMSD for overall alignment.
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The structures from step B were sufficiently well defined to allow the as-
signment of a large number long-range distance constraints: 11 amide-amide,
82 amide-aliphatic, and 79 aliphatic-aliphatic. In addition, it was possible to
identify 7 more hydrogen bonds and utilize 11 more φ torsional constraints. A
number of torsional angle constraints, involving the Cα-Cβ (χ1) bond, could
also be incorporated at this time.

The resultant structures are shown in Panel C of Fig. 9.7. The lowest energy
structures were very well defined within each sub-domain, with an RMSD of
0.7 . The alignment of the overall protein was poorer showing an RMSD of 1.4 .
However, the overall structure was quite acceptable. The increase in the quality
of the structures in step C is due almost entirely to the increase in the number
of long-range inter-proton distances, from 1.0/residue in B to 2.4/residue in
stage C.

The difficulty in determining the relative orientation of the two sub-domains
is not surprising given the fact that there are few distance constraints between
the domains and that the information from these NOE derived distances is
entirely of a local nature. The inclusion of constraints from residual dipolar
coupling, as shown in D, provided information on the independent alignment
of each sub-domain with respect to the direction of the applied magnetic field.
A small number of such constraints are sufficient to fix the relative orientation
of each sub-domain, as shown in panel D of Fig. 9.7.

The inclusion of residual dipolar couplings also increase the precision of the
local geometry. The conformation of an inter-strand loop region of the protein,
marked with an “L” in Panel D of Fig, 9.7, is poorly defined in C because of
the lack of experimentally measured inter-proton distances in this region of the
protein. However, the inclusion of several RDCs from this region causes the
structures to converge to a common configuration. The RDCs also increase the
overall precision of the structure, reducing the RMSD to 0.42 .

In summary, with a sufficient number of experimental constraints, it is pos-
sible to obtain structures of proteins in solution that rival structures obtained
from high-resolution X-ray crystallography.


