
Molecular Vibrations

C. David Sherrill

School of Chemistry and Biochemistry
School of Computational Science and Engineering

Georgia Institute of Technology



Why Estimate Molecular Vibrations?

I Simulation of vibrational spectrum (identification of molecules)
I Vibrational corrections to enthalpy
I (Small) vibrational corrections to polarizability and other

properties
I Understanding of vibrational motion could assist dynamics

experiments and “mode-selective” chemistry



Small Vibrations in Classical Mechanics

The classic reference is Wilson, Decius, and Cross, Molecular
Vibrations (Dover, New York, 1980). Cheap book, makes a good
reference.
Let us focus on purely classical systems at first; all the results carry
over to quantum mechanics.
For small vibrations, the motion of atom α away from its
equilibrium value may be described by ∆xα,∆yα,∆zα, with kinetic
energy
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If we switch to mass-weighted coordinates, such as q1 =
√
M1∆x1,

q2 =
√
M1∆y1, q3 =

√
M1∆z1, q4 =

√
M2∆x2, etc., then the

kinetic energy operator becomes simpler since the mass factors are
now absorbed
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Remember that at equilibrium, (∂V /∂qi )0 = 0; we can also set
V0 = 0. Also abbreviate (∂2V /∂qi∂qj)0 as just fij .



Newton’s Equations of Motion

We can rewrite Newton’s equations of motion as

d

dt
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= 0 j = 1, 2, · · · , 3N
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A possible solution to this equation is

qi = aicos
(√

λt + φ
)

where the angular frequency is
√
λ; this is just

√
k/m in harmonic

oscillator — the m has been absorbed by the mass-weighted
coordinate system used here!



Substitute the last expression into the differential equations to get

3N∑
i=1

(fij − δijλ) ai = 0 j = 1, 2, · · · , 3N

or in matrix notation, just F a = λ a. This is an eigenvalue
equation! We have a solution to this system of 3N linear equations
only if λ has special values obtainable from the secular determinant∣∣∣∣∣∣∣∣∣

f11 − λ f12 f13 · · · f1,3N
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...
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Normal Modes of Vibration

The matrix eigenvalue equation is equivalent to matrix
diagonalization which is equivalent to solving the secular
determinant for each λ (N of them). Once we have the eigenvalues
λk we can get the corresponding eigenvectors ak , giving the motion
of each atom for the given eigenvalue λk :

qik = aikcos
(√

λkt + φk

)
.

The eigenvectors ak are the normal modes of vibration. For each
normal mode, all the atoms move with the same frequency and
phase, but with different amplitudes.



Normal Coordinates

We can define a new set of coordinates using the normal modes.
This gives us the “normal coordinates”

Qk =
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aikqi k = 1, 2, · · · , 3N

Since the eigenvectors of a real, symmetric matrix (F) are
orthogonal, T and V become diagonal (no cross terms):
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The Hamiltonian is separable in this representation!



Figure 1: Normal modes of vibration for the H2O molecule. From left to
right: the a1 symmetric stretch, the b2 antisymmetric stretch, and the a1
bend.



Transition to Quantum Mechanical Models

What happens for quantum mechanics, and for polyatomic
molecules? Use Harmonic Oscillator model.

I 3N-6 frequencies (3N-5 for linear molecules); the rest are
translations and rotations with zero frequency

I In normal mode coordinates, Hamiltonian is separable:
wavefunction is a product and energy is a sum. Total
vibrational energy is

∑
i ωi~(vi + 1/2)

I Minimum energy (due to uncertainty principle) is “zero point
vibrational energy” (ZPVE or ZPE), where vi = 0 for all i .
ZPVE = 1

2~
∑

i ωi



How Would We Get Harmonic Frequencies for a Molecule?
I Easy — just diagonalize the second derivative matrix F, called

the Hessian. The frequencies ωi are the square roots of the
eigenvalues,

√
λi . Recall fij = (∂2V /∂qi∂qj).

I Potential energy V is just Ee (B.O. approximation!): Need
∂E 2

e /∂qi∂qj .
I Compute second derivative of Ee in terms of of Cartesian

displacements (xα, yα, zα, call them q̃i ) and it’s easy to
transform to mass-weighted coordinates, using
F = M−1/2 F̃ M−1/2.

I How do we get ∂2Ee/∂xα∂yβ , etc? Need second derivative of
electronic energy vs nuclear coordinates. Compute analytically
(using formula) or numerically from finite differences of
energies or gradients:
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Analytic Hessian Better than Numerical

I In principle, time required is similar for analytic vs numerical
(note: for benzene HF/6-31G*, energy takes < 1 second,
gradient takes 2 s, freq takes 57 s on my desktop computer)

I Can need gradients from many displaced geometries — up to
6N (+ and - for each of 3N coordinates) — unless reduced by
point group symmetry

I Numerical Hessian contains numerical errors (divide small
number by small number)

I (Can land on wrong solution if displacement drops symmetry)



Availability of Analytic Derivatives

Method Gradient Hessian
HF, DFT Y Y
CI Y N
CCSD, CCSD(T) Y S
MP2 Y S
CASSCF Y S
CIS Y Y
EOM-CCSD S N
TD-DFT S N

S = available in some packages; Y = widely available



Approximate Average Errors in Harmonic Frequencies
(Using polarized double and triple zeta basis sets)

Method Error
HF 11%
CISD 4-6%
CCSD 1-4%
CCSD(T) 1-3%

Anharmonicity accounts for another ∼ 2-3% difference from
experimental fundamental frequencies. Many workers employ
scaling factors for each level of theory to better predict
fundamental frequencies.



Example Application

Figure 2: Computed spectra of 2 isomers of SiC2H2 compared to
experimental data. Intensities of peaks help with assignment.



Scaling ZPVE’s

In an enlightening paper, Grev, Janssen, and Schaefer [J. Chem.
Phys. 95, 5128 (1991)] showed that using scaled fundamental
frequencies to estimate the ZPVE is not necessarily better than
using unscaled frequencies. The reason is anharmonicity.
If ZPVE’s use scaling, they should have a different scaling factor
than the individual frequencies.

G (v) =
∑
r

ωr

(
vr +

1
2

)
+
∑
r≥s

χrs

(
vr +

1
2

)(
vs +

1
2

)
+ · · · ,

∆harm = G (0)− ZPVEharm =
1
4

∑
r

χrr +
1
4

∑
r>s

χrs .

∆fund = G (0)− ZPVE fund = −3
4

∑
r

χrr −
1
4

∑
r>s

χrs .



Characterization of Stationary Points

I A stationary point is a geometry q̃ for which the gradient
∂Ee(q̃)/∂q̃i for all coordinates q̃i : can be a (global or local)
PES minimum, transition state, or higher order saddle point

I The Hessian Index is the number of negative force constants
(corresponding to imaginary vibrational frequencies, often
printed as negative frequencies)

I For a minimum, verify that there are no imaginary frequencies
I For a transition state, verify there is exactly one unique

imaginary frequency



Example Frequency Computation on H2O Using Psi4

memory 1 gb

molecule h2o {
O
H 1 0.946
H 1 0.946 2 104.66

}

set basis 6-31G(d)
optimize(’scf’)
frequencies(’scf’)



==> Optimization Summary <==

Measures of convergence in internal coordinates in au.
------------------------------------------------------------------------------ ~
Step Total Energy Delta E MAX Force RMS Force MAX Disp RMS Disp ~

------------------------------------------------------------------------------ ~
1 -76.010694015 -76.010694015 0.002980 0.002333 0.018621 0.011082 ~
2 -76.010718609 -0.000024594 0.000793 0.000674 0.003884 0.002338 ~
3 -76.010720657 -0.000002047 0.000005 0.000005 0.000025 0.000015 ~

------------------------------------------------------------------------------ ~

Guess geometry was good, so optimization completes rapidly (3
steps).



==> Coupled-Perturbed RHF Solver <==

Maxiter = 100
Convergence = 1.000E-06
Number of equations = 9

-----------------------------------------------------
Iter Residual RMS Max RMS Remain Time [s]

-----------------------------------------------------
1 5.641e-01 7.913e-01 9 0
2 1.281e-01 1.617e-01 9 0
3 2.847e-02 4.582e-02 9 0
4 3.616e-03 5.984e-03 9 0
5 6.563e-04 9.567e-04 9 0
6 1.268e-04 1.936e-04 9 0
7 1.772e-05 3.157e-05 8 0
8 3.463e-06 7.071e-06 5 0
9 8.387e-07 1.536e-06 4 0

10 2.671e-07 1.862e-07 0 0

Analytic 2nd derivative involves solving the Coupled-Perturbed
Hartree–Fock (CPHF) Equations



Freq [cm^-1] 1826.6573 4070.3428 4188.6298
Irrep A1 A1 B2
Reduced mass [u] 1.0823 1.0455 1.0829
Force const [mDyne/A] 2.1277 10.2057 11.1935
Turning point v=0 [a0] 0.2468 0.1682 0.1629
RMS dev v=0 [a0 u^1/2] 0.1815 0.1216 0.1199
IR activ [km/mol] 107.2809 18.2191 58.1675
Char temp [K] 2628.1532 5856.3170 6026.5058
----------------------------------------------------------------------------------

1 O 0.00 -0.00 -0.07 0.00 0.00 0.05 0.00 -0.07 0.00
2 H -0.00 0.43 0.56 0.00 0.58 -0.40 -0.00 0.56 -0.43
3 H -0.00 -0.43 0.56 -0.00 -0.58 -0.40 -0.00 0.56 0.43

Summary of computed vibrational frequencies, their symmetries, IR
intensities, and normal modes.



==> Thermochemistry Energy Analysis <==

Raw electronic energy, E0
Total E0, Electronic energy at well bottom at 0 [K] -76.01072066 [Eh]

Zero-point energy, ZPE_vib = Sum_i nu_i / 2
Electronic ZPE 0.000 [kcal/mol] 0.000 [kJ/mol] 0.000000 [Eh]
Translational ZPE 0.000 [kcal/mol] 0.000 [kJ/mol] 0.000000 [Eh]
Rotational ZPE 0.000 [kcal/mol] 0.000 [kJ/mol] 0.000000 [Eh]
Vibrational ZPE 14.418 [kcal/mol] 60.325 [kJ/mol] 0.022976 [Eh] 5042.815 [cm^-1]

Correction ZPE 14.418 [kcal/mol] 60.325 [kJ/mol] 0.022976 [Eh] 5042.815 [cm^-1]
Total ZPE, Electronic energy at 0 [K] -75.987743 [Eh]

Zero-point vibrational energy (ZPVE) is added to the electronic
energy to get the energy at 0K.



Enthalpy, H_trans = E_trans + k_B * T
Electronic H 0.000 [kcal/mol] 0.000 [kJ/mol] 0.00000000 [Eh]
Translational H 1.481 [kcal/mol] 6.197 [kJ/mol] 0.00236046 [Eh]
Rotational H 0.889 [kcal/mol] 3.718 [kJ/mol] 0.00141628 [Eh]
Vibrational H 14.419 [kcal/mol] 60.329 [kJ/mol] 0.02297799 [Eh]

Correction H 16.789 [kcal/mol] 70.245 [kJ/mol] 0.02675473 [Eh]
Total H, Enthalpy at 298.15 [K] -75.98396593 [Eh]

Gibbs free energy, G = H - T * S
Electronic G 0.000 [kcal/mol] 0.000 [kJ/mol] 0.00000000 [Eh]
Translational G -8.837 [kcal/mol] -36.975 [kJ/mol] -0.01408304 [Eh]
Rotational G -2.205 [kcal/mol] -9.225 [kJ/mol] -0.00351356 [Eh]
Vibrational G 14.418 [kcal/mol] 60.325 [kJ/mol] 0.02297662 [Eh]

Correction G 3.376 [kcal/mol] 14.125 [kJ/mol] 0.00538001 [Eh]
Total G, Free enthalpy at 298.15 [K] -76.00534064 [Eh]

Summary of Enthalpy (H) and Gibbs free energy (G) at requested
temperature.



Visualization

Tools like WebMO can animate normal modes, and simulate the IR
spectrum using a simple Gaussian broadening
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