Molecular Vibrations

C. David Sherrill

School of Chemistry and Biochemistry School of Computational Science and Engineering Georgia Institute of Technology

Why Estimate Molecular Vibrations?

- Simulation of vibrational spectrum (identification of molecules)
- Vibrational corrections to enthalpy
- (Small) vibrational corrections to polarizability and other properties
- Understanding of vibrational motion could assist dynamics experiments and "mode-selective" chemistry

Small Vibrations in Classical Mechanics

The classic reference is Wilson, Decius, and Cross, *Molecular Vibrations* (Dover, New York, 1980). Cheap book, makes a good reference.

Let us focus on purely classical systems at first; all the results carry over to quantum mechanics.

For small vibrations, the motion of atom α away from its equilibrium value may be described by $\Delta x_{\alpha}, \Delta y_{\alpha}, \Delta z_{\alpha}$, with kinetic energy

$$T = \frac{1}{2} \sum_{\alpha=1}^{N} M_{\alpha} \left[\left(\frac{d\Delta x_{\alpha}}{dt} \right)^{2} + \left(\frac{d\Delta y_{\alpha}}{dt} \right)^{2} + \left(\frac{d\Delta z_{\alpha}}{dt} \right)^{2} \right]$$

If we switch to mass-weighted coordinates, such as $q_1 = \sqrt{M_1} \Delta x_1$, $q_2 = \sqrt{M_1} \Delta y_1$, $q_3 = \sqrt{M_1} \Delta z_1$, $q_4 = \sqrt{M_2} \Delta x_2$, etc., then the kinetic energy operator becomes simpler since the mass factors are now absorbed

$$T = \frac{1}{2} \sum_{i=1}^{3N} \dot{q}_i^2$$

$$V = V_0 + \sum_{i=1}^{3N} \left(\frac{\partial V}{\partial q_i} \right)_0 q_i + \frac{1}{2} \sum_{i=1}^{3N} \left(\frac{\partial^2 V}{\partial q_i \partial q_j} \right)_0 q_i q_j + \cdots$$
(1)

Remember that at equilibrium, $(\partial V/\partial q_i)_0 = 0$; we can also set $V_0 = 0$. Also abbreviate $(\partial^2 V/\partial q_i \partial q_i)_0$ as just f_{ii} .

Newton's Equations of Motion

We can rewrite Newton's equations of motion as

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} + \frac{\partial V}{\partial q_i} = 0 \quad j = 1, 2, \cdots, 3N$$

or

$$\ddot{q}_j + \sum_{i=1}^{3N} f_{ij} q_i = 0$$

A possible solution to this equation is

$$q_i = a_i cos\left(\sqrt{\lambda}t + \phi\right)$$

where the angular frequency is $\sqrt{\lambda}$; this is just $\sqrt{k/m}$ in harmonic oscillator — the m has been absorbed by the mass-weighted coordinate system used here!

Substitute the last expression into the differential equations to get

$$\sum_{i=1}^{3N} (f_{ij} - \delta_{ij}\lambda) a_i = 0 \quad j = 1, 2, \cdots, 3N$$

or in matrix notation, just $\underline{\underline{F}}$ $\underline{\underline{a}} = \lambda \underline{\underline{a}}$. This is an eigenvalue equation! We have a solution to this system of 3N linear equations only if λ has special values obtainable from the secular determinant

$$\begin{vmatrix} f_{11} - \lambda & f_{12} & f_{13} & \cdots & f_{1,3N} \\ f_{21} & f_{22} - \lambda & f_{23} & \cdots & f_{2,3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{3N,1} & f_{3N,2} & f_{3N,3} & \cdots & f_{3N,3N} - \lambda \end{vmatrix} = 0$$

Normal Modes of Vibration

The matrix eigenvalue equation is equivalent to matrix diagonalization which is equivalent to solving the secular determinant for each λ (N of them). Once we have the eigenvalues λ_k we can get the corresponding eigenvectors $\underline{\mathbf{a}}_k$, giving the motion of each atom for the given eigenvalue λ_k :

$$q_{ik} = a_{ik} cos \left(\sqrt{\lambda_k} t + \phi_k \right).$$

The eigenvectors $\underline{\mathbf{a}}_k$ are the normal modes of vibration. For each normal mode, all the atoms move with the same frequency and phase, but with different amplitudes.

Normal Coordinates

We can define a new set of coordinates using the normal modes. This gives us the "normal coordinates"

$$Q_k = \sum_{i=1}^{3N} a_{ik} q_i \quad k = 1, 2, \cdots, 3N$$

Since the eigenvectors of a real, symmetric matrix $(\underline{\underline{F}})$ are orthogonal, T and V become diagonal (no cross terms):

$$T = \frac{1}{2} \sum_{k=1}^{3N} \dot{Q}_k^2$$

$$V = \frac{1}{2} \sum_{k=1}^{3N} \lambda_k Q_k^2$$

The Hamiltonian is separable in this representation!

Figure 1: Normal modes of vibration for the H_2O molecule. From left to right: the a_1 symmetric stretch, the b_2 antisymmetric stretch, and the a_1 bend.

Transition to Quantum Mechanical Models

What happens for quantum mechanics, and for polyatomic molecules? Use Harmonic Oscillator model.

- ➤ 3*N*-6 frequencies (3*N*-5 for linear molecules); the rest are translations and rotations with zero frequency
- In normal mode coordinates, Hamiltonian is separable: wavefunction is a product and energy is a sum. Total vibrational energy is $\sum_i \omega_i \hbar(v_i + 1/2)$
- Minimum energy (due to uncertainty principle) is "zero point vibrational energy" (ZPVE or ZPE), where $v_i=0$ for all i. ZPVE $=\frac{1}{2}\hbar\sum_i\omega_i$

How Would We Get Harmonic Frequencies for a Molecule?

- ▶ Easy just diagonalize the second derivative matrix $\underline{\underline{F}}$, called the *Hessian*. The frequencies ω_i are the square roots of the eigenvalues, $\sqrt{\lambda_i}$. Recall $f_{ii} = (\partial^2 V/\partial q_i \partial q_i)$.
- ▶ Potential energy V is just E_e (B.O. approximation!): Need $\partial E_e^2/\partial q_i\partial q_i$.
- ▶ Compute second derivative of E_e in terms of of Cartesian displacements $(x_\alpha, y_\alpha, z_\alpha, \text{ call them } \tilde{q}_i)$ and it's easy to transform to mass-weighted coordinates, using $\underline{\mathbf{F}} = \underline{\mathbf{M}}^{-1/2} \ \underline{\tilde{\mathbf{F}}} \ \underline{\mathbf{M}}^{-1/2}$.
- ▶ How do we get $\partial^2 E_e/\partial x_\alpha \partial y_\beta$, etc? Need second derivative of electronic energy vs nuclear coordinates. Compute *analytically* (using formula) or *numerically* from finite differences of energies or gradients:

$$\frac{\partial^2 E_e}{\partial x_\alpha \partial y_\beta} \approx \left[\left(\frac{\partial E_e}{\partial y_\beta} \right) \right|_{x_\alpha = x_{\alpha 0} + \Delta x_\alpha} - \left(\frac{\partial E_e}{\partial y_\beta} \right) \right|_{x_\alpha = x_{\alpha 0} - \Delta x_\alpha} \left] / 2\Delta x_\alpha.$$

Analytic Hessian Better than Numerical

- ▶ In principle, time required is similar for analytic vs numerical (note: for benzene HF/6-31G*, energy takes < 1 second, gradient takes 2 s, freq takes 57 s on my desktop computer)
- ► Can need gradients from many displaced geometries up to 6N (+ and - for each of 3N coordinates) — unless reduced by point group symmetry
- Numerical Hessian contains numerical errors (divide small number by small number)
- ► (Can land on wrong solution if displacement drops symmetry)

Availability of Analytic Derivatives

Method	Gradient	Hessian
HF, DFT	Υ	Υ
CI	Υ	Ν
CCSD, CCSD(T)	Υ	S
MP2	Υ	S
CASSCF	Υ	S
CIS	Y	Υ
EOM-CCSD	S	Ν
TD-DFT	S	N

S = available in some packages; Y = widely available

Approximate Average Errors in Harmonic Frequencies

(Using polarized double and triple zeta basis sets)

Method	Error
HF	11%
CISD	4-6%
CCSD	1-4%
CCSD(T)	1-3%

Anharmonicity accounts for another \sim 2-3% difference from experimental fundamental frequencies. Many workers employ scaling factors for each level of theory to better predict fundamental frequencies.

Example Application

Figure 2: Computed spectra of 2 isomers of SiC_2H_2 compared to experimental data. Intensities of peaks help with assignment.

Scaling ZPVE's

In an enlightening paper, Grev, Janssen, and Schaefer [*J. Chem. Phys.* **95**, 5128 (1991)] showed that using scaled fundamental frequencies to estimate the ZPVE is *not* necessarily better than using unscaled frequencies. The reason is anharmonicity. If ZPVE's use scaling, they should have a *different* scaling factor than the individual frequencies.

$$\begin{split} G(v) &= \sum_{r} \omega_{r} \left(v_{r} + \frac{1}{2} \right) + \sum_{r \geq s} \chi_{rs} \left(v_{r} + \frac{1}{2} \right) \left(v_{s} + \frac{1}{2} \right) + \cdots, \\ \Delta^{harm} &= G(0) - ZPVE^{harm} = \frac{1}{4} \sum_{r} \chi_{rr} + \frac{1}{4} \sum_{r > s} \chi_{rs}. \\ \Delta^{fund} &= G(0) - ZPVE^{fund} = -\frac{3}{4} \sum_{r} \chi_{rr} - \frac{1}{4} \sum_{r > s} \chi_{rs}. \end{split}$$

Characterization of Stationary Points

- A stationary point is a geometry $\tilde{\mathbf{q}}$ for which the gradient $\partial E_e(\tilde{\mathbf{q}})/\partial \tilde{q}_i$ for all coordinates \tilde{q}_i : can be a (global or local) PES minimum, transition state, or higher order saddle point
- ► The Hessian Index is the number of negative force constants (corresponding to imaginary vibrational frequencies, often printed as negative frequencies)
- ▶ For a minimum, verify that there are no imaginary frequencies
- For a transition state, verify there is exactly one unique imaginary frequency

Example Frequency Computation on H₂O Using Psi4

```
memory 1 gb
molecule h2o {
  0
  H 1 0.946
  H 1 0.946 2 104.66
set basis 6-31G(d)
optimize('scf')
frequencies('scf')
```

==> Optimization Summary <==

Measures	of	convergence	in	internal	coordinates	in	au.	

						~
Step	Total Energy	Delta E	MAX Force RMS Force	MAX Disp	RMS Disp	~
1	-76.010694015	-76.010694015	0.002980 0.002333	0.018621	0.011082	~
2	-76.010718609	-0.000024594	0.000793 0.000674	0.003884	0.002338	~
3	-76.010720657	-0.000002047	0.000005 0.000005	0.000025	0.000015	~
						~

Guess geometry was good, so optimization completes rapidly (3 steps).

==> Coupled-Perturbed RHF Solver <==

Maxiter	=	100
Convergence	=	1.000E-06
Number of equations	=	Ç

Iter	Residual RMS	Max RMS	Remain	Time [s]
1	5.641e-01	7.913e-01	9	0
2	1.281e-01	1.617e-01	9	0
3	2.847e-02	4.582e-02	9	0
4	3.616e-03	5.984e-03	9	0
5	6.563e-04	9.567e-04	9	0
6	1.268e-04	1.936e-04	9	0
7	1.772e-05	3.157e-05	8	0
8	3.463e-06	7.071e-06	5	0
9	8.387e-07	1.536e-06	4	0
10	2.671e-07	1.862e-07	0	0

Analytic 2nd derivative involves solving the Coupled-Perturbed Hartree–Fock (CPHF) Equations

Freq [cm^-1]	1826.6573	4070.3428	4188.6298
Irrep	A1	A1	B2
Reduced mass [u]	1.0823	1.0455	1.0829
Force const [mDyne/A]	2.1277	10.2057	11.1935
Turning point v=0 [a0]	0.2468	0.1682	0.1629
RMS dev v=0 [a0 u^1/2]	0.1815	0.1216	0.1199
IR activ [km/mol]	107.2809	18.2191	58.1675
Char temp [K]	2628.1532	5856.3170	6026.5058
1 0	0.00 -0.00 -0.07	0.00 0.00 0.05	0.00 -0.07 0.00
2 H	-0.00 0.43 0.56	0.00 0.58 -0.40	-0.00 0.56 -0.43
3 H	-0.00 -0.43 0.56	-0.00 -0.58 -0.40	-0.00 0.56 0.43

Summary of computed vibrational frequencies, their symmetries, IR intensities, and normal modes.

```
==> Thermochemistry Energy Analysis <==
```

Raw electronic energy, E0

Zero-point vibrational energy (ZPVE) is added to the electronic energy to get the energy at 0K.

```
Enthalpy, H_trans = E_trans + k_B * T
  Electronic H
                    0.000 [kcal/mol] 0.000 [kJ/mol]
                                                      0.00000000 [Eh]
 Translational H 1.481 [kcal/mol] 6.197 [kJ/mol]
                                                      0.00236046 [Eh]
  Rotational H
                  0.889 [kcal/mol] 3.718 [kJ/mol]
                                                      0.00141628 [Eh]
                  14.419 [kcal/mol] 60.329 [kJ/mol]
                                                      0.02297799 [Eh]
  Vibrational H
Correction H
                   16.789 [kcal/mol] 70.245 [kJ/mol]
                                                      0.02675473 [Eh]
Total H. Enthalpy at 298.15 [K]
                                                    -75.98396593 [Eh]
Gibbs free energy, G = H - T * S
  Electronic G 0.000 [kcal/mol] 0.000 [kJ/mol] 0.00000000 [Eh]
 Translational G -8.837 [kcal/mol] -36.975 [kJ/mol] -0.01408304 [Eh]
 Rotational G
                  -2.205 [kcal/mol] -9.225 [kJ/mol] -0.00351356 [Eh]
                  14.418 [kcal/mol] 60.325 [kJ/mol] 0.02297662 [Eh]
  Vibrational G
Correction G
                   3.376 [kcal/mol] 14.125 [kJ/mol] 0.00538001 [Eh]
Total G, Free enthalpy at 298.15 [K]
                                                    -76.00534064 [Eh]
```

Summary of Enthalpy (H) and Gibbs free energy (G) at requested temperature.

Visualization

Tools like WebMO can animate normal modes, and simulate the IR spectrum using a simple Gaussian broadening

