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Molecular Orbitals Aren’t Real...

Molecular orbitals are the eigenvectors of the Fock matrix in

Hartree-Fock theory. Hartree-Fock is just an approximation,

even if a complete orbital basis is used. Why? Two reasons,

equivalent to each other:

• It assumes the wavefunction can be written as one Slater

determinant. This is wrong!

• It assumes that each electron interacts with an average

charge distribution due to the other electrons. This is

wrong!



Electron Correlation

• Electrons repel each other according to Coulomb’s law,

with the repulsion energy r−1
ij .

• Hartree-Fock replaces this instantaneous electron-electron

repulsion with the repulsion of each electron with an

average electron charge cloud.

• This introduces an error in the wavefunction and the

energy. The energy error is called the total correlation

energy. The error in the total energy is about 1 eV per

electron pair in a bond or lone pair.

• Dispersion forces are due to electron correlation; expect

Hartree-Fock to fail badly for van der Waals complexes.



Correlation Energy

• The correlation energy is defined as the difference between

the true energy and the Hartree-Fock energy in a complete

basis (“Hartree-Fock limit”)

Ecorr = Eexact − E∞
HF

• Usually we don’t know the exact energy Eexact, but

sometimes we can compute the exact energy for a given

one-electron basis set. This lets us compute the basis set

correlation energy (or just “correlation energy” for short...)

Ebasis
corr = Ebasis

exact − Ebasis
HF



Why it’s called Electron Correlation

The Hartree Product

ΨHP (x1,x2, · · · ,xN) = χi(x1)χj(x2) · · ·χk(xN)

is completely uncorrelated, in the sense that the probability of

simultaneously finding electron 1 at x1, electron 2 at x2, etc.,

is given by |ΨHP (x1, · · · ,xN)|
2dx1 · · · dxN and is just

|χi(x1)|
2dx1|χj(x2)|

2dx2 · · · |χk(xN)|
2dxN ,

which is the probability of finding electron 1 at x1 times the

probability of finding electron 2 at x2, etc....the product of the

probabilities. This makes the Hartree Product an independent

particle model. Electrons move independently; their motion is

uncorrelated.



Correlation in Hartree-Fock

• Hartree-Fock is usually defined as “uncorrelated.” However,

the electron motions are no longer completely independent.

• For two electrons with the same spin

• For two electrons with different spins, |Ψ1(r1)α(ω1)Ψ2(r2)β(ω2)〉,

the probability of finding electron 1 at r1 and electron 2 at

r2 is

P (r1, r2)dr1dr2 = dr1dr2

∫

dω1dω2|Ψ|2

=
1

2

[

|Ψ1(r1)|
2|Ψ2(r2)|

2 + |Ψ1(r2)|
2|Ψ2(r1)|

2
]

dr1dr2

The electrons are uncorrelated.



• For two electrons with the same spin, |Ψ1(r1)α(ω1)Ψ2(r2)α(ω2)〉,

the probability of finding electron 1 at r1 and electron 2 at

r2 is

P (r1, r2)dr1dr2 =
1

2

(

|Ψ1(r1)|
2|Ψ2(r2)|

2 + |Ψ1(r2)|
2|Ψ2(r1)|

2

− [Ψ∗
1(r1)Ψ2(r1)Ψ

∗
2(r2)Ψ1(r2)

+ Ψ1(r1)Ψ
∗
2(r1)Ψ2(r2)Ψ

∗
1(r2)]) dr1dr2

Now P (r1, r1) = 0. No 2 electrons with same spins can be

at the same place. “Fermi hole.” Same-spin electrons are

correlated in Hartree-Fock, different-spin electrons are not.



The N-electron Basis

• A collection of atom-centered Gaussian functions can be

used as a basis set for expanding one-electron functions

(molecular orbitals).

• We need to solve the electronic Schrödinger equation to

get Ψe(x1,x2, · · · ,xN), a function of N electrons. What

can we use as a basis for expanding Ψe?

• Slater determinants are proper N -electron basis functions:

they are functions which can be used to expand any

(antisymmetric) N -electron function.

• In the limit of an infinite number of Slater determinants,

any N -electron function can be expanded exactly.



What Other Determinants?

If it takes an infinite number of determinants to exactly

represent the wavefunction, taking only one, as in Hartree-Fock

theory, is not necessarily a decent approximation!

For a given set of MO’s, other determinants can be formed by

putting electrons in different orbitals. These other determinants

will generally belong to different electron configurations.



Example: Minimal Basis H2

There are four possible determinants, one for each spin-orbital

configuration:

(σg)
2 (σgα)(σ

∗
uβ) (σgβ)(σ

∗
uα) (σ∗u)

2

Note that the middle two correspond to the same spatial orbital

configuration but are different spin orbital configurations or

Slater determinants.

Note also that the middle two determinants can be discarded in

any expansion of the 1Σ+
g state of H2. Why??



Using Symmetry

We only need determinants with the right symmetries. This

includes: spatial symmetry, Ŝz symmetry, and Ŝ2 symmetry.

Determinants with values different than the desired state

cannot contribute to the total wavefunction.

Of the four given determinants for H2,

(σg)
2 (σgα)(σ

∗
uβ) (σgβ)(σ

∗
uα) (σ∗u)

2,

all have Ms = 0. The first and last are also eigenfunctions of

Ŝ2, but the middle two are not – we would need to take +/-

combinations of them. Configuration State Functions (CSF’s)

are combinations of one or more Slater determinants with the

proper values of spatial symmetry, Ms, and S.



Configuration Interaction (CI)

Configuration Interaction: Express the wavefunction as a

linear combination of Slater determinants. Usually obtain

expansion coefficients variationally. |Φ〉 =
∑

I cI |ΦI〉.

Complete CI: Arrange all electrons in all possible ways

(consistent with symmetry requirements) in a complete

(i.e., infinite) orbital basis set. Unattainable.

Full CI: Arrange all electrons in all possible ways (w/ sym-

metry) for a finite orbital basis set. Very costly!



How Many Determinants Could There Be?

Ignoring Ŝ2 and spatial symmetry, but keeping Ŝz symmetry,

how many determinants can be formed? If there are Nα (Nβ)

electrons with α (β) spin, in n orbitals, one can keep Ms fixed

by moving the α and β electrons separately.

There are very many ways to do this!

Ndet =







n

Nα













n

Nβ





 .



Number of Ms = 0 Determinants (CSF’s in parentheses)

Number of electrons

Orbitals 6 8 10 12

10 14.4× 103 44.1× 103 63.5× 103 44.1× 103

(4.95× 103) (13.9× 103) (19.4× 103) (13.9× 103)

20 1.30× 106 23.5× 106 240× 106 1.50× 109

(379× 103) (5.80× 106) (52.6× 106) (300× 106)

30 16.5× 106 751× 106 20.3× 109 353× 109

(4.56× 106) (172× 106) (4.04× 109) (62.5× 109)



Full CI is Impractical

• About 1 billion determinants is the limit of what can be

reached today for Full CI computations. This requires

highly optimized computer code!

• For a determinant basis, this means about 12 electrons in

20 orbitals, or 10 electrons in 30 orbitals. Mostly diatomics.

• Need to separate the “more important” determinants

from the “less important.” A common way: truncate CI

expansion according to excitation level.



Classification by Substitution (“Excitation”) Classes

The Hartree-Fock “reference” determinant |Φ0〉 should be the

leading term. Expect the importance of other configurations to

drop off rapidly as they substitute more orbitals. Let |Φab···c
ij···k〉

denote a determinant which differs from |Φ0〉 by replacing

orbitals ij · · · k with ab · · · c.

|Ψ〉 = c0|Φ0〉 +
∑

cai |Φ
a
i 〉 +

∑

cabij |Φ
ab
ij 〉 +

∑

cabcijk |Φ
abc
ijk〉 · · ·

Reference Singles Doubles Triples · · ·



Examples of Excitation Levels
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How to obtain Coefficients?

• Variationally: This is the configuration interaction method.

Find the coefficients which minimize the total energy.

Equivalent to diagonalizing Ĥ is the basis of determinants.

• (Many-Body) Perturbation Theory: Treat the Hartree-Fock

determinant |Ψ0〉 as the zeroth-order solution, E(0) =
∑

εi,

E(1) = EHF , doubles (and singles for open-shell) contribute

to |Ψ(1)〉 and E(2), etc.

Need to truncate expansion of determinants to make it practi-

cal.



Configuration Interaction

|Ψ〉 = c0|Φ0〉 +
∑

cai |Φ
a
i 〉 +

∑

cabij |Φ
ab
ij 〉 +

∑

cabcijk |Φ
abc
ijk〉 · · ·

Reference Singles Doubles Triples · · ·

Usually truncate expansion at a given excitation level.

CISD: CI with singles and doubles. Scales as O(N 6).

CISDT: CI with singles, doubles, triples. Scales as O(N 8).

Can keep going until Full CI limit; more accurate as more

terms are added, but also more costly! (Why no CIS?)



Configuration Interaction Matrices

It’s easy to prove that the coefficients cI which minimize

the total energy ECI are the same as the eigenvectors of the

electronic Hamiltonian in the same basis of determinants.

Simple strategy for CI: form the Hamiltonian matrix H and

diagonalize it. In actuality, we do this cleverly to avoid extra

work.

Evaluate the matrix elements HIJ = 〈ΦI |Ĥ|ΦJ〉 using Slater’s

Rules. Determinants differing by more than two spin orbitals

are 0.
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Slater’s Rules for Matrix Elements

Identical Determinants: If the determinants are identical,

then

〈Φ1|Ĥ|Φ1〉 =
N
∑

m

〈m|ĥ|m〉+
N
∑

m>n

〈mn||mn〉

Determinants that Differ by One Spin Orbital:

|Φ1〉 = | · · ·mn · · ·〉

|Φ2〉 = | · · · pn · · ·〉

〈Φ1|Ĥ|Φ2〉 = 〈m|ĥ|p〉+
N
∑

n

〈mn||pn〉



Determinants that Differ by Two Spin Orbitals:

|Φ1〉 = | · · ·mn · · ·〉

|Φ2〉 = | · · · pq · · ·〉

〈Φ1|Ĥ|Φ2〉 = 〈mn||pq〉

Determinants that differ by More than Two Spin Orbitals:

|Φ1〉 = | · · ·mno · · ·〉

|Φ2〉 = | · · · pqr · · ·〉

〈Φ1|Ĥ|Φ2〉 = 0



Percent Corr. Energya

Molecule CISD CISDT CISDTQ

BH 94.91 n/a 99.97

H2O(Re) 94.70 95.47 99.82

H2O(1.5 Re) 89.39 91.15 99.48

H2O(2.0 Re) 80.51 83.96 98.60

NH3 94.44 95.43 99.84

HF 95.41 96.49 99.86

H+
7 96.36 96.87 99.96

aData from Harrison et al., 1983, except H+
7

data from Fermann et al., 1994.



Size of CI space vs Excitation Level

CSF’s requireda

Molecule CISD CISDT CISDTQ FCI

BH 568 n/a 28 698 132 686

H2O 361 3 203 17 678 256 473

NH3 461 4 029 19 925 137 321

HF 552 6 712 48 963 944 348

H+
7 1 271 24 468 248 149 2 923 933

aData from Harrison et al., 1983, except for H+
7 data

from Fermann et al., 1994.



Configuration Interaction Is Not Size Extensive

CISD is exact for a two-electron system like H2

H2
↑↓

+
↑↓

...But not exact for two noninteracting H2’s.

H2
↑↓

+
↑↓

H2
↑↓

+
↑↓

Would need Quadruple excitations! Should be able to express

quadruple as product of doubles, but not in CISD.



Many-Body (or Møller-Plesset) Perturbation Theory

A size-extensive approach. As always in perturbation theory,

we split the problem into a part we can solve easily and a

perturbation, i.e.,

Ĥ = Ĥ0 + λĤ ′

The solution is expressed as a Taylor series in λ, the perturba-

tion strength, as

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · ·

|Ψi〉 = |Ψ
(0)
i 〉+ λ|Ψ

(1)
i 〉+ λ2|Ψ

(2)
i 〉+ · · ·



The Fock operator is zeroth-order Hamiltonian; difference

between the real r−1
ij repulsion and the Fock operator becomes

the perturbation (“fluctuation potential”) Ĥ ′.

Ĥ0 =
∑

f(i)

=
∑

[

h(i) + vHF (i)
]

Ĥ ′ =
∑

i<j

r−1
ij − VHF

=
∑

i<j

r−1
ij −

∑

vHF (i)

vHF (1)χp(x1) =
∑

i

〈i|r−1
12 |i〉χp(x1)−

∑

i

〈i|r−1
12 |p〉χi(x1)

〈p|vHF |q〉 = vHF
pq =

∑

i

〈pi||qi〉



Hartree-Fock energy is Sum of Zero and First Order

Energies

Ĥ0|Ψ0〉 = E
(0)
0 |Ψ0〉

E
(0)
0 =

∑

i

εi

E
(1)
0 = 〈Ψ0|H

′|Ψ0〉

= 〈Ψ0|
∑

i<j

r−1
ij |Ψ0〉 − 〈Ψ0|

∑

i

vHF (i)|Ψ0〉

=
1

2

∑

ij

〈ij||ij〉 −
∑

i

〈i|vHF |i〉

= −
1

2

∑

ij

〈ij||ij〉

EHF
0 = E

(0)
0 + E

(1)
0



Second-Order Energy Expression

E
(2)
0 =

∑

I 6=0

|〈Φ0|Ĥ
′|ΦI〉|

2

E
(0)
0 − E

(0)
I

The numerator is zero for all other determinants except double

excitations.

E
(2)
0 = −

∑

i<j,a<b

|〈ab||ij〉|2

εa + εb − εi − εj

Second-order energy correction is negative; electron correlation

stabilizes the energy. Usually perturbation theory is taken

through second order, MBPT(2) (or simply MP2), which scales

as O(N5).



Coupled-Cluster Theory

|ΨCC〉 = eT̂ |Φ0〉

= (1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + · · ·)|Φ0〉

CCSD: T̂ = T̂1 + T̂2. Cost O(N 6).

CCSD(T): Adds perturbative correction for T̂3 at cost O(N 7).

• Improves over CISD, etc., by using products of excitations

• Size extensive version of CI: CCSD exact for N noninter-

acting H2’s

• Contains higher-order “disconnected” substitutions



H2 ↑↓

|ΦA
0 〉

+

↑↓

T̂A
2 |ΦA

0 〉

H2 ↑↓

|ΦB
0 〉

+

↑↓

T̂B
2 |ΦB

0 〉

If Ĥ = ĤA + ĤB, should have E = EA + EB and

|Ψ〉 = |ΨA〉|ΨB〉. Unfortunately,

|ΨCID〉 6= |ΨA
CID〉|Ψ

B
CID〉

(1 + T̂A
2 + T̂B

2 )|ΦA
0 〉|Φ

B
0 〉 6=

{

(1 + T̂A
2 )|ΦA

0 〉
}{

(1 + T̂B
2 )|ΦB

0 〉
}

However,

eT̂
A

2
+T̂B

2 |ΦA
0 〉|Φ

B
0 〉 =

{

eT̂
A

2 |ΦA
0 〉
} {

eT̂
B

2 |ΦB
0 〉

}

|ΨCCD〉 = |ΨA
CCD〉|Ψ

B
CCD〉



Excitation Operators

Coupled-cluster theory makes use of excitation operators that

act on a reference determinant to generate excited determinants

times coefficients

T̂1 =
∑

ia

tai |Φ
a
i 〉

T̂2 =
∑

ijab

tabij |Φ
ab
ij 〉

With this notation, CISD is just

|ΨCISD〉 = (1 + T̂1 + T̂2)|Φ0〉



This makes the CCSD wavefunction

|ΨCCSD〉 = eT̂1+T̂2 |Φ0〉

= (1 + T̂1 + T̂2 +
1

2
T̂ 2

1 + T̂1T̂2 +
1

2
T̂ 2

2 + · · ·)|Φ0〉

= |Φ0〉+
∑

ia

tai |Φ
a
i 〉+

ab
∑

ij

tabij |Φ
ab
ij 〉

+
1

2

a
∑

i

tai

b
∑

j

tbj|Φ
ab
ij 〉+

a
∑

i

tai

bc
∑

jk

tbcjk|Φ
abc
ijk〉

+
1

2

ab
∑

ij

tabij

cd
∑

kl

tcdkl |Φ
abcd
ijkl 〉+ · · ·



Coupled-Cluster Theory: An Ab Initio Success Story

Expected Errors for Large-Basis CCSD(T)

Bond lengths ± 0.004 Å

Bond angles ± 0.3o

Harmonic frequencies +2%

Dipole moments ± 0.05 D

IR intensities ± 20%

Excitation energies ± 0.2 eV



Convergent ab initio Methods

• Ab initio methods such as CI and MBPT can be improved,

in principle, by including more and more terms (and

simultaneously increasing one-electron basis set size).

• CI and CC become more accurate as higher substitution

levels are included (although cost grows dramatically).

• MBPT does not always improve at higher orders; the

series is not guaranteed to converge. Current conventional

wisdom is to stop at second order.

• Density functional theory methods are nonconvergent

methods in that no one knows how to improve them

systematically to get more and more accurate results.



Convergence and Pauling Points

Basis Set

Method STO-3G 6-31G* cc-pVTZ cc-pVQZ · · · ∞

SCF x

MP2 x x

CISD x x

CCSD x x

CCSD(T) x x

CCSDT x x

· · ·

Full CI Truth


