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Preface

First Edition

A large part of crystallography deals with the way in which atoms are arranged in single crys-
tals. On the other hand, a knowledge of the relationships between crystals in a polycrystalline
material can be fascinating from the point of view of materials science. It is this aspect of
crystallography which is the subject of this monograph. The monograph is aimed at both
undergraduates and graduate students and assumes only an elementary knowledge of crystal-
lography. Although use is made of vector and matrix algebra, readers not familiar with these
methods should not be at a disadvantage after studying appendix 1. In fact, the mathematics
necessary for a good grasp of the subject is not very advanced but the concepts involved can
be difficult to absorb. It is for this reason that the book is based on worked examples, which
are intended to make the ideas less abstract.

Due to its wide–ranging applications, the subject has developed with many different schemes
for notation and this can be confusing to the novice. The extended notation used throughout
this text was introduced first by Mackenzie and Bowles; I believe that this is a clear and
unambiguous scheme which is particularly powerful in distinguishing between representations
of deformations and axis transformations.

The monograph begins with an introduction to the range of topics that can be handled using
the concepts developed in detail in later chapters. The introduction also serves to familiarise
the reader with the notation used. The other chapters cover orientation relationships, aspects
of deformation, martensitic transformations and interfaces.

In preparing this book, I have benefited from the support of Professors R. W. K. Honeycombe,
Professor D. Hull, Dr F. B. Pickering and Professor J. Wood. I am especially grateful to
Professor J. W. Christian and Professor J. F. Knott for their detailed comments on the text,
and to many students who have over the years helped clarify my understanding of the subject.
It is a pleasure to acknowledge the unfailing support of my family.

April 1986

Second Edition

I am delighted to be able to publish this revised edition in electronic form for free access. It is
a pleasure to acknowledge valuable comments by Steven Vercammen.

January 2001, updated July 2008
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1 Introduction

Crystallographic analysis, as applied in materials science, can be classified into two main
subjects; the first of these has been established ever since it was realised that metals have a
crystalline character, and is concerned with the clear description and classification of atomic
arrangements. X–ray and electron diffraction methods combined with other structure sensitive
physical techniques have been utilised to study the crystalline state, and the information
obtained has long formed the basis of investigations on the role of the discrete lattice in
influencing the behaviour of commonly used engineering materials.

The second aspect, which is the subject of this monograph, is more recent and took off in earnest
when it was noticed that accurate experimental data on martensitic transformations showed
many apparent inconsistencies. Matrix methods were used in resolving these difficulties, and
led to the formulation of the phenomenological theory of martensite1,2. Similar methods have
since widely been applied in metallurgy; the nature of shape changes accompanying displacive
transformations and the interpretation of interface structure are two examples. Despite the
apparent diversity of applications, there is a common theme in the various theories, and it is
this which makes it possible to cover a variety of topics in this monograph.

Throughout this monograph, every attempt has been made to keep the mathematical content
to a minimum and in as simple a form as the subject allows; the student need only have
an elementary appreciation of matrices and of vector algebra. Appendix 1 provides a brief
revision of these aspects, together with references to some standard texts available for further
consultation.

The purpose of this introductory chapter is to indicate the range of topics that can be tackled
using the crystallographic methods, while at the same time familiarising the reader with vital
notation; many of the concepts introduced are covered in more detail in the chapters that follow.
It is planned to introduce the subject with reference to the martensite transformation in steels,
which not only provides a good example of the application of crystallographic methods, but
which is a transformation of major practical importance.

At temperatures between 1185 K and 1655 K, pure iron exists as a face–centred cubic (FCC)
arrangement of iron atoms. Unlike other FCC metals, lowering the temperature leads to the
formation of a body–centred cubic (BCC) allotrope of iron. This change in crystal structure
can occur in at least two different ways. Given sufficient atomic mobility, the FCC lattice can
undergo complete reconstruction into the BCC form, with considerable unco–ordinated diffu-
sive mixing–up of atoms at the transformation interface. On the other hand, if the FCC phase
is rapidly cooled to a very low temperature, well below 1185 K, there may not be enough time
or atomic mobility to facilitate diffusional transformation. The driving force for transformation

1
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nevertheless increases with undercooling below 1185 K, and the diffusionless formation of BCC
martensite eventually occurs, by a displacive or “shear” mechanism, involving the systematic
and co–ordinated transfer of atoms across the interface. The formation of this BCC martensite
is indicated by a very special change in the shape of the austenite (γ) crystal, a change of shape
which is beyond that expected just on the basis of a volume change effect. The nature of this
shape change will be discussed later in the text, but for the present it is taken to imply that the
transformation from austenite to ferrite occurs by some kind of a deformation of the austenite
lattice. It was E. C. Bain 3 who in 1924 introduced the concept that the structural change from
austenite to martensite might occur by a homogeneous deformation of the austenite lattice, by
some kind of an upsetting process, the so–called Bain Strain.

Definition of a Basis

Before attempting to deduce the Bain Strain, we must establish a method of describing the
austenite lattice. Fig. 1a shows the FCC unit cell of austenite, with a vector u drawn along the
cube diagonal. To specify the direction and magnitude of this vector, and to relate it to other
vectors, it is necessary to have a reference set of co–ordinates. A convenient reference frame
would be formed by the three right–handed orthogonal vectors a1, a2 and a3, which lie along
the unit cell edges, each of magnitude aγ , the lattice parameter of the austenite. The term
orthogonal implies a set of mutually perpendicular vectors, each of which can be of arbitrary
magnitude; if these vectors are mutually perpendicular and of unit magnitude, they are called
orthonormal.

Fig. 1: (a) Conventional FCC unit cell. (b) Relation between FCC and BCT

cells of austenite. (c) BCT cell of austenite. (d) Bain Strain deforming the

BCT austenite lattice into a BCC martensite lattice.

2



   

The set of vectors ai (i = 1, 2, 3) are called the basis vectors, and the basis itself may be
identified by a basis symbol, ‘A’ in this instance.

The vector u can then be written as a linear combination of the basis vectors:

u = u1a1 + u2a2 + u3a3,

where u1, u2 and u3 are its components, when u is referred to the basis A. These components
can conveniently be written as a single–row matrix (u1 u2 u3) or as a single–column matrix:




u1

u2

u3





This column representation can conveniently be written using square brackets as: [u1 u2 u3].
It follows from this that the matrix representation of the vector u (Fig. 1a), with respect to
the basis A is

(u; A) = (u1 u2 u3) = (1 1 1)

where u is represented as a row vector. u can alternatively be represented as a column vector

[A;u] = [u1 u2 u3] = [1 1 1]

The row matrix (u;A) is the transpose of the column matrix [A;u], and vice versa. The
positioning of the basis symbol in each representation is important, as will be seen later. The
notation, which is due to Mackenzie and Bowles2, is particularly good in avoiding confusion
between bases.

Co–ordinate Transformations

From Fig. 1a, it is evident that the choice of basis vectors ai is arbitrary though convenient;
Fig. 1b illustrates an alternative basis, a body–centred tetragonal (BCT) unit cell describing
the same austenite lattice. We label this as basis ‘B’, consisting of basis vectors b1, b2 and b3

which define the BCT unit cell. It is obvious that [B;u] = [0 2 1], compared with [A;u] = [1 1 1].
The following vector equations illustrate the relationships between the basis vectors of A and
those of B (Fig. 1):

a1 = 1b1 + 1b2 + 0b3

a2 = 1b1 + 1b2 + 0b3

a3 = 0b1 + 0b2 + 1b3

These equations can also be presented in matrix form as follows:

(a1 a2 a3) = (b1 b2 b3) ×




1 1 0
1 1 0
0 0 1



 (1)

This 3×3 matrix representing the co–ordinate transformation is denoted (B J A) and transforms
the components of vectors referred to the A basis to those referred to the B basis. The first
column of (B J A) represents the components of the basis vector a1, with respect to the basis
B, and so on.

3
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The components of a vector u can now be transformed between bases using the matrix (B J A)
as follows:

[B;u] = (B J A)[A;u] (2a)

Notice the juxtapositioning of like basis symbols. If (A J’ B) is the transpose of (B J A), then
equation 2a can be rewritten as

(u; B) = (u; A)(A J′ B) (2b)

Writing (A J B) as the inverse of (B J A), we obtain:

[A;u] = (A J B)[B;u] (2c)

and
(u; A) = (u; B)(B J′ A) (2d)

It has been emphasised that each column of (B J A) represents the components of a basis
vector of A with respect to the basis B (i.e. a1 = J11b1 + J21b2 + J31b3 etc.). This procedure
is also adopted in (for example) Refs. 4,5. Some texts use the convention that each row of
(B J A) serves this function (i.e. a1 = J11b1 + J12b2 + J13b3 etc.). There are others where a
mixture of both methods is used – the reader should be aware of this problem.

Example 1: Co–ordinate transformations

Two adjacent grains of austenite are represented by bases ‘A’ and ‘B’ respectively. The base
vectors ai of A and bi of B respectively define the FCC unit cells of the austenite grains
concerned. The lattice parameter of the austenite is aγ so that |ai| = |bi| = aγ . The grains are
orientated such that [0 0 1]A‖ [0 0 1]B , and [1 0 0]B makes an angle of 45◦ with both [1 0 0]A
and [0 1 0]A. Prove that if u is a vector such that its components in crystal A are given by
[A;u] = [

√
2 2

√
2 0], then in the basis B, [B;u] = [3 1 0]. Show that the magnitude of u (i.e.

|u|) does not depend on the choice of the basis.

Fig. 2: Diagram illustrating the relation between the bases A and B.

Referring to Fig. 2, and recalling that the matrix (B J A) consists of three columns, each
column being the components of one of the basis vectors of A, with respect to B, we have

[B;a1] = [ cos 45 − sin 45 0]
[B;a2] = [ sin 45 cos 45 0]
[B;a3] = [ 0 0 1]

and (B J A) =




cos 45 sin 45 0
− sin 45 cos 45 0

0 0 1





4



   

From equation 2a, [B;u] = (B J A)[A;u], and on substituting for [A;u] = [
√

2 2
√

2 0], we get
[B;u] = [3 1 0]. Both the bases A and B are orthogonal so that the magnitude of u can be
obtained using the Pythagoras theorem. Hence, choosing components referred to the basis B,
we get:

|u|2 = (3|b1|)2 + (|b2|)2 = 10a2
γ

With respect to basis A,

|u|2 = (
√

2|a1|)2 + (2
√

2|a2|)2 = 10a2
γ

Hence, |u| is invariant to the co–ordinate transformation. This is a general result, since a
vector is a physical entity, whose magnitude and direction clearly cannot depend on the choice
of a reference frame, a choice which is after all, arbitrary.

We note that the components of (B J A) are the cosines of angles between bi and aj and
that (A J′ B) = (A J B)−1; a matrix with these properties is described as orthogonal (see
appendix). An orthogonal matrix represents an axis transformation between like orthogonal
bases.

The Reciprocal Basis

The reciprocal lattice that is so familiar to crystallographers also constitutes a special co-
ordinate system, designed originally to simplify the study of diffraction phenomena. If we
consider a lattice, represented by a basis symbol A and an arbitrary set of basis vectors a1, a2

and a3, then the corresponding reciprocal basis A∗ has basis vectors a∗
1, a∗

2 and a∗
3, defined by

the following equations:

a∗
1 = (a2 ∧ a3)/(a1.a2 ∧ a3) (3a)

a∗
2 = (a3 ∧ a1)/(a1.a2 ∧ a3) (3b)

a∗
3 = (a1 ∧ a2)/(a1.a2 ∧ a3) (3c)

In equation 3a, the term (a1.a2∧a3) represents the volume of the unit cell formed by ai, while
the magnitude of the vector (a2 ∧a3) represents the area of the (1 0 0)A plane (see appendix).
Since (a2 ∧ a3) points along the normal to the (1 0 0)A plane, it follows that a∗

1 also points
along the normal to (1 0 0)A and that its magnitude |a∗

1| is the reciprocal of the spacing of the
(1 0 0)A planes (Fig. 3).

The reciprocal lattice is useful in crystallography because it has this property; the components
of any vector referred to the reciprocal basis represent the Miller indices of a plane whose normal
is along that vector, with the spacing of the plane given by the inverse of the magnitude of
that vector. For example, the vector (u; A∗) = (1 2 3) is normal to planes with Miller indices
(1 2 3) and interplanar spacing 1/|u|. Throughout this text, the presence of an asterix indicates
reference to the reciprocal basis. Wherever possible, plane normals will be written as row
vectors, and directions as column vectors.

We see from equation 3 that

ai.a
∗
j = 1 when i = j, and ai.a

∗
j = 0 when i '= j

or in other words,
ai.a

∗
j = δij (4a)

5
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Fig. 3: The relationship between a∗1 and ai. The vector a∗1 lies along the

direction OA and the volume of the parallelepiped formed by the basis vectors

ai is given by a1.a2∧ a3, the area OPQR being equal to |a2∧ a3|.

δij is the Kronecker delta, which has a value of unity when i = j and is zero when i '= j (see
appendix).

Emphasising the fact that the reciprocal lattice is really just another convenient co–ordinate
system, a vector u can be identified by its components [A;u] = [u1 u2 u3] in the direct lattice
or (u;A∗) = (u∗

1 u∗
2 u∗

3) in the reciprocal lattice. The components are defined as usual, by the
equations:

u = u1a1 + u2a2 + u3a3 (4b)

u = u∗
1a

∗
1 + u∗

2a
∗
2 + u∗

3a
∗
3 (4c)

The magnitude of u is given by

|u|2 = u.u
= (u1a1 + u2a2 + u3a3).(u

∗
1a

∗
1 + u∗

2a
∗
2 + u∗

3a
∗
3)

Using equation 4a, it is evident that

|u|2 = (u1u
∗
1 + u2u

∗
2 + u3u

∗
3)

= (u; A∗)[A;u].
(4d)

This is an important result, since it gives a new interpretation to the scalar, or “dot” product
between any two vectors u and v since

u.v = (u; A∗)[A;v] = (v; A∗)[A;u] (4e)

Homogeneous Deformations

We can now return to the question of martensite, and how a homogeneous deformation might
transform the austenite lattice (parameter aγ) to a BCC martensite (parameter aα). Referring
to Fig. 1, the basis ‘A’ is defined by the basis vectors ai, each of magnitude aγ , and basis

6



‘B’ is defined by basis vectors bi as illustrated in Fig. 1b. Focussing attention on the BCT
representation of the austenite unit cell (Fig. 1b), it is evident that a compression along the
[0 0 1]B axis, coupled with expansions along [1 0 0]B and [0 1 0]B would accomplish the
transformation of the BCT austenite unit cell into a BCC α cell. This deformation, referred
to the basis B, can be written as:

η1 = η2 =
√

2(aα/aγ)

along [1 0 0]B and [0 1 0]B respectively and

η3 = aα/aγ

along the [0 0 1]B axis.

The deformation just described can be written as a 3 × 3 matrix, referred to the austenite
lattice. In other words, we imagine that a part of a single crystal of austenite undergoes
the prescribed deformation, allowing us to describe the strain in terms of the remaining (and
undeformed) region, which forms a fixed reference basis. Hence, the deformation matrix does
not involve any change of basis, and this point is emphasised by writing it as (A S A), with
the same basis symbol on both sides of S:

[A;v] = (A S A)[A;u] (5)

where the homogeneous deformation (A S A) converts the vector [A;u] into a new vector [A;v],
with v still referred to the basis A.

The difference between a co–ordinate transformation (B J A) and a deformation matrix (A S A)
is illustrated in Fig. 4, where ai and bi are the basis vectors of the bases A and B respectively.

Fig. 4: Difference between co–ordinate transformation and deformation ma-

trix.

We see that a major advantage of the Mackenzie–Bowles notation is that it enables a clear
distinction to be made between 3×3 matrices which represent changes of axes and those which
represent physical deformations referred to one axis system.

The following additional information can be deduced from Fig. 1:

Vector components before Bain strain Vector components after Bain strain
[1 0 0]A [η1 0 0]A
[0 1 0]A [0 η2 0]A
[0 0 1]A [0 0 η3]A

7
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and the matrix (A S A) can be written as

(A S A) =




η1 0 0
0 η2 0
0 0 η3





Each column of the deformation matrix represents the components of the new vector (referred
to the original A basis) formed as a result of the deformation of a basis vector of A.

The strain represented by (A S A) is called a pure strain since its matrix representation (A S A)
is symmetrical. This also means that it is possible to find three initially orthogonal directions
(the principal axes) which remain orthogonal and unrotated during the deformation; a pure
deformation consists of simple extensions or contractions along the principal axes. A vector
parallel to a principal axis is not rotated by the deformation, but its magnitude may be altered.
The ratio of its final length to initial length is the principal deformation associated with that
principal axis. The directions [1 0 0]B , [0 1 0]B and [0 0 1]B are therefore the principal axes of
the Bain strain, and ηi the respective principal deformations. In the particular example under
consideration, η1 = η2 so that any two perpendicular lines in the (0 0 1)B plane could form
two of the principal axes. Since a3‖ b3 and since a1 and a2 lie in (0 0 1)B , it is clear that the
vectors ai must also be the principal axes of the Bain deformation.

Since the deformation matrix (A S A) is referred to a basis system which coincides with the
principal axes, the off–diagonal components of this matrix must be zero. Column 1) of the
matrix (A S A) represents the new co–ordinates of the vector [1 0 0], after the latter has
undergone the deformation described by (A S A), and a similar rationale applies to the other
columns. (A S A) deforms the FCC γ lattice into a BCC α lattice, and the ratio of the final
to initial volume of the material is simply η1η2η3 (or more generally, the determinant of the
deformation matrix). Finally, it should be noted that any tetragonality in the martensite can
readily be taken into account by writing η3 = c/aγ , where c/aα is the aspect ratio of the BCT
martensite unit cell.

Example 2: The Bain Strain

Given that the principal distortions of the Bain strain (A S A), referred to the crystallographic
axes of the FCC γ lattice (lattice parameter aγ), are η1 = η2 = 1.123883, and η3 = 0.794705,
show that the vector

[A;x] = [−0.645452 0.408391 0.645452]

remains undistorted, though not unrotated as a result of the operation of the Bain strain. Fur-
thermore, show that for x to remain unextended as a result of the Bain strain, its components
xi must satisfy the equation

(η2
1 − 1)x2

1 + (η2
2 − 1)x2

2 + (η2
3 − 1)x2

3 = 0 (6a)

As a result of the deformation (A S A), the vector x becomes a new vector y, according to the
equation

(A S A)[A;x] = [A;y] = [η1x1 η2x2 η3x3] = [−0.723412 0.458983 0.512944]

Now,
|x|2 = (x; A∗)[A;x] = a2

γ(x2
1 + x2

2 + x2
3) (6b)
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and,
|y|2 = (y; A∗)[A;y] = a2

γ(y2
1 + y2

2 + y2
3) (6c)

Using these equations, and the numerical values of xi and yi obtained above, it is easy to show
that |x| = |y|. It should be noted that although x remains unextended, it is rotated by the
strain (A S A), since xi '= yi. On equating (6b) to (6c) with yi = ηixi, we get the required
equation 6a. Since η1 and η2 are equal and greater than 1, and since η3 is less than unity,
equation 6a amounts to the equation of a right–circular cone, the axis of which coincides with
[0 0 1]A. Any vector initially lying on this cone will remain unextended as a result of the Bain
Strain.

This process can be illustrated by considering a spherical volume of the original austenite
lattice; (A S A) deforms this into an ellipsoid of revolution, as illustrated in Fig. 5. Notice that
the principal axes (ai) remain unrotated by the deformation, and that lines such as ab and cd
which become a′b′ and c′d′ respectively, remain unextended by the deformation (since they are
all diameters of the original sphere), although rotated through the angle θ. The lines ab and
cd of course lie on the initial cone described by equation 6a. Suppose now, that the ellipsoid
resulting from the Bain strain is rotated through a right–handed angle of θ, about the axis a2,
then Fig. 5c illustrates that this rotation will cause the initial and final cones of unextended
lines to touch along cd, bringing cd and c’d’ into coincidence. If the total deformation can
therefore be described as (A S A) combined with the above rigid body rotation, then such a
deformation would leave the line cd both unrotated and unextended; such a deformation is
called an invariant–line strain. Notice that the total deformation, consisting of (A S A) and a
rigid body rotation is no longer a pure strain, since the vectors parallel to the principal axes
of (A S A) are rotated into the new positions a’i (Fig. 5c).

It will later be shown that the lattice deformation in a martensitic transformation must contain
an invariant line, so that the Bain strain must be combined with a suitable rigid body rotation
in order to define the total lattice deformation. This explains why the experimentally observed
orientation relationship (see Example 5) between martensite and austenite does not correspond
to that implied by Fig. 1. The need to have an invariant line in the martensite-austenite
interface means that the Bain Strain does not in itself constitute the total transformation strain,
which can be factorised into the Bain Strain and a rigid body rotation. It is this total strain
which determines the final orientation relationship although the Bain Strain accomplishes the
total FCC to BCC lattice change. It is emphasised here that the Bain strain and the rotation
are not physically distinct; the factorisation of the the total transformation strain is simply a
mathematical convenience.

Interfaces

A vector parallel to a principal axis of a pure deformation may become extended but is not
changed in direction by the deformation. The ratio η of its final to initial length is called a
principal deformation associated with that principal axis and the corresponding quantity (η−1)
is called a principal strain. Example 2 demonstrates that when two of the principal strains of
the pure deformation differ in sign from the third, all three being non–zero, it is possible to
obtain a total strain which leaves one line invariant. It intuitively seems advantageous to have
the invariant–line in the interface connecting the two crystals, since their lattices would then
match exactly along that line.

A completely undistorted interface would have to contain two non–parallel directions which
are invariant to the total transformation strain. The following example illustrates the char-
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INTRODUCTION

Fig. 5: (a) and (b) represent the effect of the Bain Strain on austenite, repre-

sented initially as a sphere of diameter ab which then deforms into an ellipsoid

of revolution. (c) shows the invariant–line strain obtained by combining the

Bain Strain with a rigid body rotation.

acteristics of such a transformation strain, called an invariant–plane strain, which allows the
existence of a plane which remains unrotated and undistorted during the deformation.

Example 3: Deformations and Interfaces

A pure strain (Y Q Y), referred to an orthonormal basis Y whose basis vectors are parallel to
the principal axes of the deformation, has the principal deformations η1 = 1.192281, η2 = 1
and η3 = 0.838728. Show that (Y Q Y) combined with a rigid body rotation gives a total
strain which leaves a plane unrotated and undistorted.

Because (Y Q Y) is a pure strain referred to a basis composed of unit vectors parallel to its
principal axes, it consists of simple extensions or contractions along the basis vectors y1, y2

and y3. Hence, Fig. 6 can be constructed as in the previous example. Since η2 = 1, ef‖ y2

remains unextended and unrotated by (Y Q Y), and if a rigid body rotation (about fe as
the axis of rotation) is added to bring cd into coincidence with c′d′, then the two vectors ef
and ab remain invariant to the total deformation. Any combination of ef and ab will also
remain invariant, and hence all lines in the plane containing ef and ab are invariant, giving
an invariant plane. Thus, a pure strain when combined with a rigid body rotation can only
generate an invariant–plane strain if two of its principal strains have opposite signs, the third
being zero. Since it is the pure strain which actually accomplishes the lattice change (the rigid
body rotation causes no further lattice change), any two lattices related by a pure strain with
these characteristics may be joined by a fully coherent interface.

(Y Q Y) actually represents the pure strain part of the total transformation strain required to
change a FCC lattice to an HCP (hexagonal close–packed) lattice, without any volume change,
by shearing on the (1 1 1)γ plane, in the [1 1 2]γ direction, the magnitude of the shear being
equal to half the twinning shear (see Chapter 3). Consistent with the proof given above, a fully
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Fig. 6: Illustration of the strain (Y Q Y), the undeformed crystal represented

initially as a sphere of diameter ef . (c) illustrates that a combination of

(Y Q Y) with a rigid body rotation gives an invariant-plane strain.

coherent interface is observed experimentally when HCP martensite is formed in this manner.
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2 Orientation Relations

A substantial part of research on polycrystalline materials is concerned with the accurate deter-
mination, assessment and theoretical prediction of orientation relationships between adjacent
crystals. There are obvious practical applications, as in the study of anisotropy and texture
and in various mechanical property assessments. The existence of a reproducible orientation
relation between the parent and product phases might determine the ultimate morphology of
any precipitates, by allowing the development of low interfacia–energy facets. It is possible
that vital clues about nucleation in the solid state might emerge from a detailed examination
of orientation relationships, even though these can usually only be measured when the crystals
concerned are well into the growth stage. Needless to say, the properties of interfaces depend
critically on the relative dispositions of the crystals that they connect.

Perhaps the most interesting experimental observation is that the orientation relationships
that are found to develop during phase transformations (or during deformation or recrystalli-
sation experiments) are usually not random6−8. The frequency of occurrence of any particular
orientation relation usually far exceeds the probability of obtaining it simply by taking the two
separate crystals and joining them up in an arbitrary way.

This indicates that there are favoured orientation relations, perhaps because it is these which
allow the best fit at the interface between the two crystals. This would in turn reduce the
interface energy, and hence the activation energy for nucleation. Nuclei which, by chance,
happen to be orientated in this manner would find it relatively easy to grow, giving rise to the
non-random distribution mentioned earlier.

On the other hand, it could be the case that nuclei actually form by the homogeneous defor-
mation of a small region of the parent lattice. The deformation, which transforms the parent
structure to that of the product (e.g. Bain strain), would have to be of the kind which minimises
strain energy. Of all the possible ways of accomplishing the lattice change by homogeneous
deformation, only a few might satisfy the minimum strain energy criterion – this would again
lead to the observed non–random distribution of orientation relationships. It is a major phase
transformations problem to understand which of these factors really determine the existence
of rational orientation relations. In this chapter we deal with the methods for adequately
describing the relationships between crystals.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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Cementite in Steels

Cementite (Fe3C, referred to as θ) is probably the most common precipitate to be found in
steels; it has a complex orthorhombic crystal structure and can precipitate from supersaturated
ferrite or austenite. When it grows from ferrite, it usually adopts the Bagaryatski9 orientation
relationship (described in Example 4) and it is particularly interesting that precipitation can
occur at temperatures below 400 K in times too short to allow any substantial diffusion of iron
atoms10, although long range diffusion of carbon atoms is clearly necessary and indeed possible.
It has therefore been suggested that the cementite lattice may sometimes be generated by the
deformation of the ferrite lattice, combined with the necessary diffusion of carbon into the
appropriate sites10,11.

Shackleton and Kelly12 showed that the plane of precipitation of cementite from ferrite is
{1 0 1}θ‖ {1 1 2}α. This is consistent with the habit plane containing the direction of maximum
coherency between the θ and α lattices 10, i.e. < 0 1 0 >θ ‖ < 1 1 1 >α. Cementite formed
during the tempering of martensite adopts many crystallographic variants of this habit plane
in any given plate of martensite; in lower bainite it is usual to find just one such variant, with
the habit plane inclined at some 60◦ to the plate axis. The problem is discussed in detail in
ref. 13. Cementite which forms from austenite usually exhibits the Pitsch14 orientation relation
with [0 0 1]θ‖ [2 2 5]γ and [1 0 0]θ‖ [5 5 4]γ and a mechanism which involves the intermediate
formation of ferrite has been postulated10 to explain this orientation relationship.

Example 4: The Bagaryatski Orientation Relationship

Cementite (θ) has an orthorhombic crystal structure, with lattice parameters a = 4.5241, b =
5.0883 and c = 6.7416 Å along the [1 0 0], [0 1 0] and [0 0 1] directions respectively. When
cementite precipitates from ferrite (α, BCC structure, lattice parameter aα = 2.8662 Å), the
lattices are related by the Bagaryatski orientation relationship, given by:

[1 0 0]θ‖ [0 1 1]α, [0 1 0]θ‖ [1 1 1]α, [0 0 1]θ‖ [2 1 1]α (7a)

(i) Derive the co-ordinate transformation matrix (α J θ) representing this orientation
relationship, given that the basis vectors of θ and α define the orthorhombic and
BCC unit cells of the cementite and ferrite, respectively.

(ii) Published stereograms of this orientation relation have the (0 2 3)θ plane exactly
parallel to the (1 3 3)α plane. Show that this can only be correct if the ratio
b/c = 8

√
2/15.

The information given concerns just parallelisms between vectors in the two lattices. In order
to find (α J θ), it is necessary to ensure that the magnitudes of the parallel vectors are also
equal, since the magnitude must remain invariant to a co–ordinate transformation. If the
constants k, g and m are defined as

k =
|[1 0 0]θ|
|[0 1 1]α|

=
a

aα
√

2
= 1.116120

g =
|[0 1 0]θ|
|[1 1 1]α|

=
b

aα
√

3
= 1.024957 (7b)

m =
|[0 0 1]θ|
|[2 1 1]α|

=
c

aα
√

6
= 0.960242
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ORIENTATION RELATIONS

then multiplying [0 1 1]α by k makes its magnitude equal to that of [1 0 0]θ; the constants g
and m can similarly be used for the other two α vectors.

Recalling now our definition a co–ordinate transformation matrix, we note that each column
of (α J θ) represents the components of a basis vector of θ in the α basis. For example, the
first column of (α J θ) consists of the components of [1 0 0]θ in the α basis [0 k k]. It follows
that we can derive (α J θ) simply by inspection of the relations 7a,b, so that

(α J θ) =




0.000000 1.024957 1.920485
−1.116120 −1.024957 0.960242
1.116120 −1.024957 0.960242





The transformation matrix can therefore be deduced simply by inspection when the orientation
relationship (7a) is stated in terms of the basis vectors of one of the crystals concerned (in this
case, the basis vectors of θ are specified in 7a). On the other hand, orientation relationships
can, and often are, specified in terms of vectors other then the basis vectors (see example 5).
Also, electron diffraction patterns may not include direct information about basis vectors. A
more general method of solving for (α J θ) is presented below; this method is independent of
the vectors used in specifying the orientation relationship:

From equation 2a and the relations 7a,b we see that

[0 k k]α = (α J θ)[1 0 0]θ
[g g g]α = (α J θ)[0 1 0]θ

[2m m m]α = (α J θ)[0 0 1]θ
(7c)

These equations can written as:



0 g 2m
k g m
k g m



 =




J11 J12 J13

J21 J22 J23

J31 J32 J33








1 0 0
0 1 0
0 0 1



 (7d)

where the Jij (i = 1, 2, 3 & j = 1, 2, 3) are the elements of the matrix (α J θ). From equation 7d,
it follows that

(α J θ) =




0 g 2m
k g m
k g m



 =




0 1.024957 1.920485

−1.116120 −1.024957 0.960242
1.116120 −1.024957 0.960242





It is easy to accumulate rounding off errors in such calculations and essential to use at least
six figures after the decimal point.

To consider the relationships between plane normals (rather than directions) in the two lattices,
we have to discover how vectors representing plane normals, (always referred to a reciprocal
basis) transform. From equation 4, if u is any vector,

|u|2 = (u;α∗)[α;u] = (u; θ∗)[θ;u]
or (u;α∗)(α J θ)[θ;u] = (u; θ∗)[θ;u]

giving (u;α∗)(α J θ) = (u; θ∗)
(u;α∗) = (u; θ∗)(θ J α)

where (θ J α) = (α J θ)−1

(7e)
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(θ J α) =
1

6gmk




0 −3gm 3gm

2mk −2mk −2mk
2gk gk gk



 =




0 −0.447981 0.447981

0.325217 −0.325217 −0.325217
0.347135 0.173567 0.173567





If (u; θ∗) = (0 2 3) is now substituted into equation 7e, we get the corresponding vector

(u;α∗) =
1

6gmk
(6gk − 4mk 3gk + 4mk 3gk + 4mk)

For this to be parallel to a (1 3 3) plane normal in the ferrite, the second and third components
must equal three times the first; i.e. 3(6gk − 4mk) = (3gk + 4mk), which is equivalent to
b/c = 8

√
2/15, as required.

Finally, it should be noted that the determinant of (α J θ) gives the ratio (volume of θ unit
cell)/(volume of α unit cell). If the co–ordinate transformation simply involves a rotation of
bases (e.g. when it describes the relation between two grains of identical structure), then the
matrix is orthogonal and its determinant has a value of unity for all proper rotations (i.e. not
involving inversion operations). Such co–ordinate transformation matrices are called rotation
matrices.

Fig. 7: Stereographic representation of the Bagaryatski orientation relation-

ship between ferrite and cementite in steels, where

[1 0 0]θ‖ [0 1 1]α, [0 1 0]θ‖ [1 1 1]α, [0 0 1]θ‖ [2 1 1]α
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A stereographic representation of the Bagaryatski orientation is presented in Fig. 7. Stere-
ograms are appealing because they provide a “picture” of the angular relationships between
poles (plane normals) of crystal planes and give some indication of symmetry; the picture is of
course distorted because distance on the stereogram does not scale directly with angle. Angu-
lar measurements on stereograms are in general made using Wulff nets and may typically be
in error by a few degrees, depending on the size of the stereogram. Space and aesthetic consid-
erations usually limit the number of poles plotted on stereograms, and those plotted usually
have rational indices. Separate plots are needed for cases where directions and plane normals
of the same indices have a different orientation in space. A co–ordinate transformation matrix
is a precise way of representing orientation relationships; angles between any plane normals or
directions can be calculated to any desired degree of accuracy and information on both plane
normals and directions can be derived from just one matrix. With a little nurturing it is also
possible to picture the meaning of the elements of a co–ordinate transformation matrix: each
column of (α J θ) represents the components of a basis vector of θ in the basis α, and the
determinant of this matrix gives the ratio of volumes of the two unit cells.

Note that these parallelisms are consistent with the co–ordinate transformation matrix (α J θ)
as derived in example 4:

(α J θ) =




0.000000 1.024957 1.920485
−1.116120 −1.024957 0.960242
1.116120 −1.024957 0.0960242





Each column of (α J θ) represents the components of a basis vector of θ in the basis of α.

Relations between FCC and BCC crystals

The ratio of the lattice parameters of austenite and ferrite in steels is about 1.24, and there
are several other alloys (e.g. Cu–Zn brasses, Cu–Cr alloys) where FCC and BCC precipitates
of similar lattice parameter ratios coexist. The orientation relations between these phases
vary within a well defined range, but it is usually the case that a close-packed {1 1 1}FCC

plane is approximately parallel to a {0 1 1}BCC plane (Fig. 8). Within these planes, there
can be a significant variation in orientation, with < 1 0 1 >FCC ‖ < 1 1 1 >BCC for the
Kurdjumov-Sachs15 orientation relation, and < 1 0 1 >FCC about 5.3◦ from < 1 1 1 >BCC

(towards < 1 1 1 >BCC) for the Nishiyama–Wasserman relation16. It is experimentally very
difficult to distinguish between these relations using ordinary electron diffraction or X-ray
techniques, but very accurate work, such as that of Crosky et al.17, clearly shows a spread
of FCC–BCC orientation relationships (roughly near the Kurdjumov–Sachs and Nishiyama–
Wasserman orientations) within the same alloy. Example 5 deals with the exact Kurdjumov–
Sachs orientation relationship.

Example 5: The Kurdjumov-Sachs Orientation Relationship

Two plates of Widmanstätten ferrite (basis symbols X and Y respectively) growing in the
same grain of austenite (basis symbol γ) are found to exhibit two different variants of the
Kurdjumov–Sachs orientation relationship with the austenite; the data below shows the sets
of parallel vectors of the three lattices:

[1 1 1]γ ‖ [0 1 1]X [1 1 1]γ ‖ [0 1 1]Y
[1 0 1]γ ‖ [1 1 1]X [1 0 1]γ ‖ [1 1 1]Y
[1 2 1]γ ‖ [2 1 1]X [1 2 1]γ ‖ [2 1 1]Y
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Derive the matrices (X J γ) and (Y J γ). Hence obtain the rotation matrix (X J Y) describing
the orientation relationship between the two Widmanstätten ferrite plates (the basis vectors
of X, Y and γ define the respective conventional unit cells).

The information given relates to parallelisms between vectors in different lattices, and it is
necessary to equalise the magnitudes of parallel vectors in order to solve for the various co–
ordinate transformation matrices. Defining the constants k, g and m as

k =
aγ

√
3

aα
√

2
g =

aγ
√

2
aα

√
3

m =

√
6aγ√
6aα

=
aγ
aα

we obtain (as in equation 7c):

[0 k k]X = (X J γ)[1 1 1]γ
[g g g]X = (X J γ)[1 0 1]γ

[2m m m]X = (X J γ)[1 2 1]γ

or




0 g 2m
k g m
k g m



 =




J11 J12 J13

J21 J22 J23

J31 J32 J33








1 1 1
1 0 2
1 1 1





(X J γ) =




0 g 2m
k g m
k g m








2/6 2/6 2/6
3/6 0 3/6
1/6 2/6 1/6



 =
1
6




3g + 2m 4m 3g + 2m

2k + 3g −m 2k + 2m 2k − 3g −m
2k − 3g + m 2k − 2m 2k + 3g + m





so that

(X J γ) =
aγ
aα




0.741582 −0.666667 −0.074915
0.649830 0.741582 −0.166667
0.166667 0.074915 0.983163





In an similar way, we find

(Y J γ) =
aγ
aα




0.741582 −0.666667 0.074915
0.166667 0.074915 −0.983163
0.649830 0.741582 0.166667





To find the rotation matrix relating X and Y, we proceed as follows:

[X;u] = (X J γ)[γ;u] and [Y ;u] = (Y J γ)[γ;u] and [X;u] = (X J Y)[Y ;u]

it follows that
(X J γ)[γ;u] = (X J Y)[Y ;u]

substituting for [Y;u], we get

(X J γ)[γ;u] = (X J Y)(Y J γ)[γ;u]

so that
(X J Y) = (X J γ)(γ J Y)

carrying out this operation, we get the required X–Y orientation relation

(X J Y) =




0.988776 0.147308 −0.024972
−0.024972 0.327722 0.944445
0.147308 −0.933219 0.327722




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Fig. 8: (a) Stereographic representation of the Kurdjumov–Sachs orientation

relationship. Note that the positions of the base vectors of the γ lattice are

consistent with the matrix (X J γ) derived in example 5:

(X J γ) =
aγ
aα




0.741582 −0.666667 −0.074915
0.649830 0.741582 −0.166667
0.166667 0.074915 0.983163





Each column of (X J γ) represents the components of a basis vector of γ in

the basis X, so that [1 0 0]γ , [0 1 0]γ and [0 0 1]γ are approximately parallel to

[1 1 0]α, [1 1 0]α and [0 0 1]α respectively, as seen in the stereographic represen-

tation. (b) Stereographic representation of the Nishiyama–Wasserman orienta-

tion relationship. Note that this can be generated from the Kurdjumov–Sachs

orientation by a rotation of 5.26◦ about [0 1 1]α. The necessary rotation makes

[1 1 2]γ exactly parallel to [0 1 1]α so that the Nishiyama–Wasserman orienta-

tion relation is also rational. In fact, the Nishiyama–Wasserman relation can be

seen to be exactly midway between the two variants of the Kurdjumov–Sachs

relation which share the same parallel close–packed plane. The stereograms

also show that the Kurdjumov-Sachs and Nishiyama-Wasserman orientation

relationships do not differ much from the γ/α orientation relationship implied

by the Bain strain illustrated in Fig. 1.

We see that the matrix (X J Y) is orthogonal because it represents an axis transformation
between like orthogonal bases. In fact, (X J γ) and (Y J γ) each equal an orthogonal matrix
times a scalar factor aγ/ aα; this is because the bases X, Y and γ are themselves orthogonal.

In the above example, we chose to represent the Kurdjumov–Sachs orientation relationship by
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a co–ordinate transformation matrix (X J γ). Named orientation relationships like this usually
assume the parallelism of particular low index planes and directions and in the example under
consideration, these parallelisms are independent of the lattice parameters of the FCC and
BCC structures concerned. In such cases, the orientation relationship may be represented by
a pure rotation matrix, relating the orthogonal, but not necessarily orthonormal, bases of the
two structures. Orientation relationships are indeed often specified in this way, or in some
equivalent manner such as an axis-angle pair or a set of three Euler angles. This provides
an economic way of representing orientation relations, but it should be emphasised that there
is a loss of information in doing this. For example, a co–ordinate transformation matrix like
(X J γ) not only gives information about vectors which are parallel, but also gives a ratio of
the volumes of the two unit cells.

Orientation Relationships between Grains of Identical Structure

The relationship between two crystals which are of identical structure but which are misoriented
with respect to each other is described in terms of a rotation matrix representing the rigid body
rotation which can be imagined to generate one crystal from the other. As discussed below,
any rotation of this kind, which leaves the common origin of the two crystals fixed, can also
be described in terms of a rotation of 180◦ or less about an axis passing through that origin.

Example 6: Axis-Angle Pairs, and Rotation Matrices

Two ferrite grains X and Y can be related by a rotation matrix

(Y J X) =
1
3




2 2 1
1 2 2
2 1 2





where the basis vectors of X and Y define the respective BCC unit cells. Show that the crystal
Y can be generated from X by a right–handed rotation of 60◦ about an axis parallel to the
[1 1 1]X direction.

A rigid body rotation leaves the magnitudes and relative positions of all vectors in that body
unchanged. For example, an initial vector u with components [u1 u2 u3]X relative to the X
basis, due to rotation becomes a new vector x, with the same components [u1 u2 u3]Y , but
with respect to the rotated basis Y. The fact that x represents a different direction than u
(due to the rotation operation) means that its components in the X basis, [w1 w2 w3]X must
differ from [u1 u2 u3]X . The components of x in either basis are obviously related by

[Y;x] = (Y J X)[X;x]

in other words,
[u1 u2 u3] = (Y J X)[w1 w2 w3] (8a)

However, if u happens to lie along the axis of rotation relating X and Y, then not only will
[X;u] = [Y;x] as before, but its direction also remains invariant to the rotation operation, so
that [X;x] = [Y;x]. From equation 8a,

(Y J X)[X;x] = [Y;x]

so that
(Y J X)[X;u] = [X;u]
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and hence
{(Y J X) − I}[X;u] = 0 (8b)

where I is a 3 × 3 identity matrix. Any rotation axis must satisfy an equation of this form;
expanding equation 8b, we get

− 1
3u1 + 2

3u2 − 1
3u3 = 0

− 1
3u1 − 1

3u2 + 2
3u3 = 0

2
3u1 − 1

3u2 − 1
3u3 = 0

Solving these simultaneously gives u1 = u2 = u3, proving that the required rotation axis lies
along the [1 1 1]X direction, which is of course, also the [1 1 1]Y direction.

The angle, and sense of rotation can be determined by examining a vector v which lies at 90◦
to u. If, say, v = [1 0 1]X , then as a result of the rotation operation it becomes z = [1 0 1]Y =
[0 1 1]X , making an angle of 60◦ with v, giving the required angle of rotation. Since v ∧ z
gives [1 1 1]X , it is also a rotation in the right–handed sense.

Comments

(i) The problem illustrates the fact that the orientation relation between two grains
can be represented by a matrix such as (Y J X), or by an axis–angle pair such as
[1 1 1]X and 60◦. Obviously, the often used practice of stating a misorientation
between grains in terms of just an angle of rotation is inadequate and incorrect.

(ii) If we always represent an axis of rotation as a unit vector (or in general, a vector
of fixed magnitude), then only three independent quantities are needed to define a
misorientation between grains: two components of the axis of rotation, and an angle
of rotation. It follows that a rotation matrix must also have only three independent
terms. In fact, the components of any rotation matrix can be written in terms of a
vector u = [u1 u2 u3] which lies along the axis of rotation (such that u1u1 + u2u2 +
u3u3 = 1), and in terms of the right–handed angle of rotation θ as follows:

(Y J X) =




u1u1(1 −m) + m u1u2(1 −m) + u3n u1u3(1 −m) − u2n
u1u2(1 −m) − u3n u2u2(1 −m) + m u2u3(1 −m) + u1n
u1u3(1 −m) + u2n u2u3(1 −m) − u1n u3u3(1 −m) + m



 (8c)

where m = cos θ and n = sin θ The right–handed angle of rotation can be obtained from the
fact that

J11 + J22 + J33 = 1 + 2 cos θ (8d)

and the components of the vector u along the axis of rotation are given by

u1 = (J23 − J32)/2 sin θ
u2 = (J31 − J13)/2 sin θ
u3 = (J12 − J21)/2 sin θ

(8e)

From the definition of a co–ordinate transformation matrix, each column of (Y J X) gives the
components of a basis vector of X in the basis Y. It follows that

[1 0 0]X‖ [2 1 2]Y [0 1 0]X‖ [2 2 1]Y [0 0 1]X‖ [1 2 2 ]Y
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Suppose now that there exists another ferrite crystal (basis symbol Z), such that

[0 1 0]Z‖ [2 1 2]Y [1 0 0]Z‖ [2 2 1]Y [0 0 1]Z‖ [1 2 2]Y

(Y J Z) =
1
3




2 2 1
2 1 2
1 2 2





with the crystal Y being generated from Z by a right–handed rotation of 70.52◦ about [1 0 1]Z
direction. It can easily be demonstrated that

(Z J X) =




0 1 0
1 0 0
0 0 1



 from (Z J X) = (Z J Y)(Y J X)

so that crystal X can be generated from Z by a rotation of 90◦ about [0 0 1]X axis. However,
this is clearly a symmetry operation of a cubic crystal, and it follows that crystal X can never
be experimentally distinguished from crystal Z, so that the matrices (Y J X) and (Y J Z) are
crystallographically equivalent, as are the corresponding axis–angle pair descriptions. In other
words, Y can be generated from X either by a rotation of 60◦ about [1 1 1]X , or by a rotation
of 70.52◦ about [1 0 1]X . The two axis–angle pair representations are equivalent. There are
actually 24 matrices like (Z J X) which represent symmetry rotations in cubic systems. It
follows that a cubic bicrystal can be represented in 24 equivalent ways, with 24 axis–angle
pairs. Any rotation matrix like (Y J X) when multiplied by rotation matrices representing
symmetry operations (e.g. (Z J X)) will lead to the 24 axis–angle pair representations. The
degeneracy of other structures is as follows18: Cubic (24), Hexagonal (12), Hexagonal close-
packed (6), Tetragonal (8), Trigonal (6), Orthorhombic (4), Monoclinic (2) and Triclinic (1).
In general, the number N of axis–angle pairs is given by

N = 1 + N2 + 2N3 + 3N4 + 5N6

where N2, N3, N4 and N6 refer to the number of diads, triads, tetrads and hexads in the
symmetry elements of the structure concerned.

Fig. 9 is an electron diffraction pattern taken from an internally twinned martensite plate in a
Fe–4Ni–0.4C wt% steel. It contains two < 0 1 1 > BCC zones, one from the parent plate (m)
and the other from the twin (t). The pattern clearly illustrates how symmetry makes it possible
to represent the same bi-crystal in terms of more than one axis–angle pair. This particular
pattern shows that the twin crystal can be generated from the parent in at least three different
ways: (i) Rotation of 70.52◦ about the < 0 1 1 > zone axes of the patterns, (ii) Rotation
of 180◦ about the {1 1 1} plane normal, and (iii) Rotation of 180◦ about the {2 1 1} plane
normal. It is apparent that these three operations would lead the same orientation relation
between the twin and the parent lattices.

Example 7: “Double” Twinning

Plates of BCC martensite in Fe-30.4Ni wt% contain {1 1 2} transformation twins, the two twin
orientations X and Y being related by a rotation of 60◦ about a < 1 1 1 > axis. Deformation
of this martensite at low temperatures leads to the formation of twins on {5 8 11} planes,
the direction of the twinning shear being < 5 1 3 >. This is a very rare mode of twinning
deformation in BCC systems; show that its occurrence may be related to the fact that such
twins can propagate without any deviation, across the already existing transformation twins
in the martensite19,20.
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Fig. 9; Electron diffraction pattern from a martensite plate (m) and its twin

(t). Spots not connected by lines (e.g. “dd”) arise from double diffraction.

The orientation relationship between the transformation twins is clearly the same as the matrix
(Y J X) of Example 6. Using this matrix and equations 2a,7e we obtain:

[5 1 3]X‖ < 5 3 1 >Y

(5 8 11)X‖ {5 11 8}Y
It follows that {5 8 11} deformation twins can propagate without deviation across the trans-
formation twins, since the above planes and directions, respectively, are crystallographically
equivalent and indeed parallel. This may explain the occurrence of such an unusual deformation
twinning mode.

The Metric

For cubic crystals, it is a familiar result that if the indices [u1 u2 u3] of a direction u in the
lattice are numerically identical to the Miller indices (h1 h2 h3) of a plane in the lattice, then
the normal to this plane (h) is parallel to the direction mentioned. In other words, u‖ h,
and since [A;u] = [u1 u2 u3] and (h; A∗) = (h1 h2 h3), we have [u1 u2 u3] = [h1 h2 h3]. (‘A’
represents the basis of the cubic system concerned, and ‘A∗’ the corresponding reciprocal basis,
in the usual way).

However, this is a special case reflecting the high symmetry of cubic systems, and it is not
generally true that if ui = hi, then u‖ h. For example, the [1 2 3] direction in cementite is not
parallel to the (1 2 3) plane normal.
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Consider any arbitrary crystal system, defined by a basis A (basis vectors ai), and by the
corresponding reciprocal basis A∗ consisting of the basis vectors a∗

i (obtained as in equation 3a).
To find the angle between the direction u and the plane normal h, it would be useful to have
a matrix (A∗ G A), which allows the transformation of the components of a vector referred to
the basis A, to those referred to its reciprocal basis A∗. (The symbol G is used, rather than J,
to follow convention). This matrix, called the metric, with components Gij can be determined
in exactly the same manner as any other co–ordinate transformation matrix. Each column of
(A∗ G A) thus consists of the components of one of the basis vectors of A, when referred to
the basis A∗. For example,

a1 = G11a
∗
1 + G21a

∗
2 + G31a

∗
3 (9a)

Taking successive scalar dot products with a1, a2 and a3 respectively on both sides of equa-
tion 9a, we get

G11 = a1.a1, G21 = a1.a2 G31 = a1.a3

since ai.a
∗
j = 0 when i &= j (equation 4b). The rest of the elements of (A∗ G A) can be

determined in a similar way, so that

(A∗ G A) =




a1.a1 a2.a1 a3.a1

a1.a2 a2.a2 a3.a2

a1.a3 a2.a3 a3.a3



 (9b)

It is easily demonstrated that the determinant of (A∗ G A) equals the square of the volume
of the cell formed by the basis vectors of A. We note also that for orthonormal co–ordinates,
(Z∗ G Z) =I.

Example 8: Plane normals and directions in an orthorhombic structure

A crystal with an orthorhombic structure has lattice parameters a, b and c. If the edges of the
orthorhombic unit cell are taken to define the basis θ, determine the metric (θ∗ G θ). Hence
derive the equation giving the angle φ between a plane normal (h; θ∗) = (h1 h2 h3) and any
direction [θ;u] = [u1 u2 u3].

From the definition of a scalar dot product, h.u/|h||u| = cosφ. Now,

(θ∗ G θ) =




a2 0 0
0 b2 0
0 0 c2



 (θ G θ∗) =




a−2 0 0
0 b−2 0
0 0 c−2





From equation 4,
|h|2 = h.h = (h; θ∗)[θ;h]

= (h; θ∗)(θ G θ∗)[θ∗;h]

= h2
1/a

2 + h2
2/b

2 + h2
3/c

2

Similarly,
|u|2 = u.u = (u; θ)[θ∗;u]

= (u; θ)(θ∗ G θ)[θ;u]

= u1a
2 + u2b

2 + u2
3c

2

Since
h.u = (h; θ∗)[θ;u] = h1u1 + h2u2 + h3u3

it follows that
cosφ =

(h1u1 + h2u2 + h3u3)√
(h2

1/ a2 + h2
2/b

2 + h2
3/c

2)(u1a
2 + u2b

2 + u2
3c

2)
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More about the Vector Cross Product

Suppose that the basis vectors a, b and c of the basis θ define an orthorhombic unit cell, then
the cross product between two arbitrary vectors u and v referred to this basis may be written:

u ∧ v = (u1a + u2b + u3c) ∧ (v1a + v2b + v3c)

where [θ;u] = [u1 u2 u3] and [θ;v] = [v1 v2 v3]. This equation can be expanded to give:

u ∧ v = (u2v3 − u3v2)(b ∧ c) + (u3v1 − u1v3)(c ∧ a) + (u1v2 − u2v1)(a ∧ b)

Since a.b∧c = V , the volume of the orthorhombic unit cell, and since b∧c = V a∗ (equation 3a),
it follows that

u ∧ v = V

[
(u2v3 − u3v2)a

∗ + (u3v1 − u1v3)b
∗ + (u1v2 − u2v1)c

∗
]

(10a)

Hence, u ∧ v gives a vector whose components are expressed in the reciprocal basis. Writing
x = u∧v, with (x; θ∗) = (w1 w2 w3), it follows that w1 = V (u2v3−u3v2), w2 = V (u3v1−u1v3)
and w3 = V (u1v2−u2v1). The cross product of two directions thus gives a normal to the plane
containing the two directions. If necessary, the components of x in the basis θ can easily be
obtained using the metric, since [θ;x] = (θ G θ∗)[θ∗;x]. Similarly, the cross product of two
vectors h and k which are referred to the reciprocal basis θ∗, such that (h; θ∗) = (h1 h2 h3)
and (k; θ∗) = (k1 k2 k3), can be shown to be:

h ∧ k =
1
V

[
(h2k3 − h3k2)a + (h3k1 − h1k3)b − (h2k1 − h1k2)c

]
(10b)

Hence, h∧k gives a vector whose components are expressed in the real basis. The vector cross
product of two plane normals gives a direction (zone axis) which is common to the two planes
represented by the plane normals.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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3 Invariant–Plane Strains

The deformation of crystals by the conservative glide of dislocations on a single set of crystallo-
graphic planes causes shear in the direction of the resultant Burgers vector of the dislocations
concerned, a direction which lies in the slip plane; the slip plane and slip direction constitute
a slip system. The material in the slip plane remains crystalline during slip and since there is
no reconstruction of this material during slip (e.g. by localised melting followed by resolidifi-
cation), there can be no change in the relative positions of atoms in the slip plane; the atomic
arrangement on the slip plane is thus completely unaffected by the deformation. Another
mode of conservative plastic deformation is mechanical twinning, in which the parent lattice is
homogeneously sheared into the twin orientation; the plane on which the twinning shear occurs
is again unaffected by the deformation and can therefore form a coherent boundary between
the parent and product crystals. If a material which has a Poisson’s ratio equal to zero is
uniaxially stressed below its elastic limit, then the plane that is normal to the stress axis is
unaffected by the deformation since the only non-zero strain is that parallel to the stress axis
(beryllium has a Poisson’s ratio which is nearly zero).

All these strains belong to a class of deformations called invariant–plane strains. The operation
of an invariant–plane strain (IPS) always leaves one plane of the parent crystal completely
undistorted and unrotated; this plane is the invariant plane. The condition for a strain to
leave a plane undistorted is, as illustrated in example 3, that the principal deformations of its
pure strain component, η1, η2 and η3 are greater than, equal to and less than unity, respectively.
However, as seen in Figs. 6a,b, this does not ensure that the undistorted plane is also unrotated;
combination with a suitable rotation (Fig. 6c) produces the true invariant plane. Before using
the concept of an IPS to understand deformation and transformation theory, we develop a way
of expressing invariant–plane strains which will considerably simplify the task2.

In chapter 1, it was demonstrated that a homogeneous deformation (A S A) strains a vector
u into another vector v which in general may have a different direction and magnitude:

[A;v] = (A S A)[A;u] (11a)

However, the deformation could also have been defined with respect to another arbitrary basis,
such as ‘B’ (basis vectors bi) to give the deformation matrix (B S B), with:

[B;v] = (B S B)[B;u]. (11b)

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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INVARIANT–PLANE STRAINS

The physical effect of (B S B) on the vector u must of course be exactly the same as that
of (A S A) on u, and the initial and final vectors u and v remain unaffected by the change
of basis (although their components change). If the co–ordinate transformation relating the
bases A and B is given by (A J B), then:

[A;u] = (A J B)[B;u] and [A;v] = (A J B)[B;v].

Substituting these relations into equation 11a, we get

(A J B)[B;v] = (A S A)(A J B)[B;u]

or
[B;v] = (B J A)(A S A)(A J B)[B;u]

Comparison with equation 11b proves that

(B S B) = (B J A)(A S A)(A J B) (11c)

An equation like equation 11c represents a Similarity Transformation, changing the basis with
respect to which the deformation is described, without altering the physical nature of the
deformation.

We can now proceed to examine the nature of invariant–plane strains. Fig. 10 illustrates three
such strains, defined with respect to a right–handed orthonormal basis Z, such that z3 is parallel
to the unit normal p of the invariant plane; z1 and z2 lie within the invariant plane, z1 being
parallel to the shear component of the strain concerned. Fig. 10a illustrates an invariant–plane
strain which is purely dilatational, and is of the type to be expected when a plate-shaped
precipitate grows diffusionally. The change of shape (as illustrated in Fig. 10a) due to the
growth of this precipitate then reflects the volume change accompanying transformation.

In Fig. 10b, the invariant–plane strain corresponds to a simple shear, involving no change of
volume, as in the homogeneous deformation of crystals by slip. The shape of the parent crystal
alters in a way which reflects the shear character of the deformation.

Fig. 10: Three kinds of invariant–plane strains. The squares indicate the

shape before deformation. δ, s and m represent the magnitudes of the dilata-

tional strain, shear strain and general displacement respectively. p is a unit

vector, the shear strain s is parallel to z1, whereas δ is parallel to z3.
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The most general invariant–plane strain (Fig. 10c) involves both a volume change and a shear;
if d is a unit vector in the direction of the displacements involved, then md represents the
displacement vector, where m is a scalar giving the magnitude of the displacements. md may
be factorised as md = sz1 + δz3, where s and δ are the shear and dilatational components,
respectively, of the invariant–plane strain. The strain illustrated in Fig. 10c is of the type
associated with the martensitic transformation of γ iron into HCP iron. This involves a shear
on the {1 1 1}γ planes in < 1 1 2 >γ direction, the magnitude of the shear being 8− 1

2 . However,
there is also a dilatational component to the strain, since HCP iron is more dense than FCC
iron (consistent with the fact that HCP iron is the stable form at high pressures); there is
therefore a volume contraction on martensitic transformation, an additional displacement δ
normal to the {1 1 1} austenite planes.

It has often been suggested that the passage of a single Shockley partial dislocation on a close-
packed plane of austenite leads to the formation of a 3–layer thick region of HCP, since this
region contains the correct stacking sequence of close-packed planes for the HCP lattice. Until
recently it has not been possible to prove this, because such a small region of HCP material gives
very diffuse and unconvincing HCP reflections in electron diffraction experiments. However,
the δ component of the FCC-HCP martensite transformation strain has now been detected21

to be present for single stacking faults, proving the HCP model of such faults.

Turning now to the description of the strains illustrated in Fig. 10, we follow the procedure of
Chapter 1, to find the matrices (Z P Z); the symbol P in the matrix representation is used to
identify specifically, an invariant–plane strain, the symbol S being the representation of any
general deformation. Each column of such a matrix represents the components of a new vector
generated by deformation of a vector equal to one of the basis vectors of Z. It follows that the
three matrices representing the deformations of Fig. 10a-c are, respectively,

(Z P1 Z) =




1 0 0
0 1 0
0 0 1 + δ



 (Z P2 Z) =




1 0 s
0 1 0
0 0 1



 (Z P3 Z) =




1 0 s
0 1 0
0 0 1 + δ





These matrices have a particularly simple form, because the basis Z has been chosen carefully,
such that p‖ z3 and the direction of the shear is parallel to z1. However, it is often necessary
to represent invariant–plane strains in a crystallographic basis, or in some other basis X. This
can be achieved with the similarity transformation law, equation 11c. If (X J Z) represents
the co–ordinate transformation from the basis Z to X, we have

(X P X) = (X J Z)(Z P Z)(Z J X)

Expansion of this equation gives22

(X P X) =




1 + md1p1 md1p2 md1p3

md2p1 1 + md2p2 md2p3

md3p1 md3p2 1 + md3p3



 (11d)

where di are the components of d in the X basis, such that (d; X∗)[X;d] = 1. The vector d
points in the direction of the displacements involved; a vector which is parallel to d remains
parallel following deformation, although the ratio of its final to initial length may be changed.
The quantities pi are the components of the invariant–plane normal p, referred to the X∗ basis,
normalised to satisfy (p; X∗)[X;p] = 1. Equation 11d may be simplified as follows:

(X P X) = I + m[X;d](p; X∗). (11e)
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The multiplication of a single-column matrix with a single–row matrix gives a 3 × 3 matrix,
whereas the reverse order of multiplication gives a scalar quantity. The matrix (X P X) can
be used to study the way in which vectors representing directions (referred to the X basis)
deform. In order to examine the way in which vectors which are plane normals (i.e. referred
to the reciprocal basis X∗) deform, we proceed in the following manner.

The property of a homogeneous deformation is that points which are originally collinear re-
main collinear after the deformation5. Also, lines which are initially coplanar remain coplanar
following deformation. It follows that an initial direction u which lies in a plane whose normal
is initially h, becomes a new vector v within a plane whose normal is k, where v and k result
from the deformation of u and h, respectively. Now, h.u = k.v = 0, so that:

(h; X∗)[X;u] = (k; X∗)[X;v] = (k; X∗)(X P X)[X;u]
i.e.

(k; X∗) = (h; X∗)(X P X)−1 (12)
Equation 12 describes the way in which plane normals are affected by the deformation (X P X).
From equation 11e, it can be shown that

(X P X)−1 = I −mq[X;d](p; X∗) (13)
where 1/q = det(X P X) = 1 + m(p; X∗)[d;X]. The inverse of (X P X) is thus another
invariant–plane strain in the opposite direction.

Example 11: Tensile tests on single–crystals

A thin cylindrical single-crystal specimen of α iron is tensile tested at −140◦C, the tensile
axis being along the [4 4 1] direction (the cylinder axis). On application of a tensile stress,
the entire specimen deforms by twinning on the (1 1 2) plane and in the [1 1 1] direction,
the magnitude of the twinning shear being 2− 1

2 . Calculate the plastic strain recorded along
the tensile axis, assuming that the ends of the specimen are always maintained in perfect
alignment. (Refs. 23–26 contain details on single crystal deformation).

Fig. 11: Longitudinal section of the tensile specimen illustrating the (1 1 0)
plane. All directions refer to the parent crystal basis. The tensile axis rotates

towards d, in the plane containing the original direction of the tensile axis (u)

and d.
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Fig. 11a illustrates the deformation involved; the parent crystal basis α consists of basis vectors
which form the conventional BCC unit cell of α-iron. The effect of the mechanical twinning is
to alter the original shape abcd to a′b′c′d′. ef is a trace of (1 1 2)α on which the twinning shear
occurs in the [1 1 1]α direction. However, as in most ordinary tensile tests, the ends of the
specimen are constrained to be vertically aligned at all times; a′d′ must therefore be vertical
and the deforming crystal must rotate to comply with this requirement. The configuration
illustrated in Fig. 11c is thus obtained, with ad and a′d′ parallel, the tensile strain being
(a′d′ − ad)/(ad).

As discussed earlier, mechanical twinning is an invariant–plane strain; it involves a homoge-
neous simple shear on the twinning plane, a plane which is not affected by the deformation and
which is common to both the parent and twin regions. Equation 11d can be used to find the
matrix (α P α) describing the mechanical twinning, given that the normal to the invariant–
plane is (p;α∗) = aα6− 1

2 (1 1 2), the displacement direction is [α;d] = a−1
α 3− 1

2 [1 1 1] and
m = 2− 1

2 . It should be noted that p and d respectively satisfy the conditions (p;α∗)[α;p] = 1
and (d;α∗)[α;d] = 1, as required for equation 11d. Hence

(α P α) =
1
6




7 1 2
1 7 2
1 1 4





Using this, we see that an initial vector [α;u] = [4 4 1] becomes a new vector [α;v] =
(α P α)[α;u] = 1

6 [34 34 4] due to the deformation. The need to maintain the specimen ends in
alignment means that v is rotated to be parallel to the tensile axis. Now, |u| = 5.745aα where
aα is the lattice parameter of the ferrite, and |v| = 8.042aα, giving the required tensile strain
as (8.042 − 5.745)/5.745 = 0.40.

Comments

(i) From Fig. 11 it is evident that the end faces of the specimen will also undergo defor-
mation (ab to a”b”) and if the specimen gripping mechanism imposes constraints on
these ends, then the rod will tend to bend into the form of an ‘S’. For thin specimens
this effect may be small.

(ii) The tensile axis at the beginning of the experiment was [4 4 1], but at the end
is 1

6 [34 34 4]. The tensile direction has clearly rotated during the course of the
experiment. The direction in which it has moved is 1

6 [34 34 4]− [4 4 1] = 1
6 [10 10 10],

parallel to [1 1 1], the shear direction d. In fact, any initial vector u will be displaced
towards d to give a new vector v as a consequence of the IPS. Using equation 11e,
we see that

[α;v] = (α P α)[α;u] = [α;u] + m[α;d](p;α∗)[α;u] = [α;u] + β[α;d]

where β is a scalar quantity β = m(p;α∗)[α;u].

Clearly, v = u + βd, with β = 0 if u lies in the invariant–plane. All points in the
lattice are thus displaced in the direction d, although the extent of displacement
depends on β.

(iii) Suppose now that only a volume fraction V of the specimen underwent the twinning
deformation, the remainder being unaffected by the applied stress. The tensile strain
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recorded over the whole specimen as the gauge length would simply be 0.40 V , which
is obtained24 by replacing m in equation 11d by V m.

(iv) If the shear strain is allowed to vary, as in normal slip deformation, then the position
of the tensile axis is still given by v = u + βd, with β and v both varying as the
test progresses. Since v is a linear combination of u and βd, it must always lie in
the plane containing both u and d. Hence, the tensile axis rotates in the direction
d within the plane defined by the original tensile axis and the shear direction, as
illustrated in Fig. 11c.

Considering further the deformation of single–crystals, an applied stress σ can be resolved into
a shear stress τ acting on a slip system. The relationship between σ and τ can be shown23−25

to be τ = σ cosφ cosλ, where φ is the angle between the slip plane normal and the tensile axis,
and λ is the angle between the slip direction and the tensile axis. Glide will first occur in the
particular slip system for which τ exceeds the critical resolved shear stress necessary to initiate
dislocation motion on that system. In austenite, glide is easiest on {1 1 1} < 0 1 1 > and the
γ standard projection (Fig. 12a) can be used23 to determine the particular slip system which
has the maximum resolved shear stress due to a tensile stress applied along u. For example, if
u falls within the stereographic triangle labelled A2, then (1 1 1)[0 1 1] can be shown to be the
most highly stressed system. Hence, when τ reaches a critical value (the critical resolved shear
stress), this system alone operates, giving “easy glide” since there is very little work hardening
at this stage of deformation; the dislocations which accomplish the shear can simply glide out
of the crystal and there is no interference with this glide since none of the other slip systems are
active. Of course, the tensile axis is continually rotating towards d and may eventually fall on
the boundary between two adjacent triangles in Fig. 12a. If u falls on the boundary between
triangles A2 and D4, then the slip systems (1 1 1)[0 1 1] and (1 1 1)[1 0 1] are both equally
stressed. This means that both systems can simultaneously operate and duplex slip is said to
occur; the work hardening rate drastically increases as dislocations moving on different planes
interfere with each other in a way which hinders glide and increases the defect density. It
follows that a crystal which is initially orientated for single slip eventually deforms by multiple
slip.

Example 12: The Transition from Easy Glide to Duplex Slip

A single–crystal of austenite is tensile tested at 25◦C, the stress being applied along [2 1 3]
direction; the specimen deforms by easy glide on the (1 1 1)[0 1 1] system. If slip can only
occur on systems of this form, calculate the tensile strain necessary for the onset of duplex
slip. Assume that the ends of the specimen are maintained in alignment throughout the test.

The tensile axis (v) is expected to rotate towards the slip direction, its motion being confined
to the plane containing the initial tensile axis (u) and the slip direction (d). In Fig. 12b, v
will therefore move on the trace of the (1 1 1) plane. Duplex slip is expected to begin when
v reaches the great circle which separates the stereographic triangles A2 and D4 of Fig. 12b,
since the (1 1 1)[1 0 1] slip system will have a resolved shear stress equal to that on the initial
slip system. The tensile axis can be expressed as a function of the shear strain m as in example
11:

[γ;v] = [γ;u] + m[γ;d](p; γ∗)[γ;u]

where (p; γ∗) = aγ√
3
(1 1 1) and [γ;d] = 1√

2aγ
[0 1 1], so that

[γ;v] = [γ;u] +
4m√

6
[0 1 1] = [2 1 3] +

4m√
6
[0 1 1]
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Fig. 12: Stereographic analysis of slip in FCC single–crystals.

When duplex slip occurs, v must lie along the intersection of the (1 1 1) and (1 1 0) planes,
the former being the plane on which v is confined to move and the latter being the boundary
between triangles A2 and D4. It follows that v‖ [1 1 2] and must be of the form v = [v v 2v].
Substituting this into the earlier equation gives

[v v 2v] = [2 1 3] +
4m√

6
[0 1 1]

and on comparing coefficients from both sides of this equation, we obtain

[γ;v] = [2 2 4]

so that the tensile strain required is (|v| − |u|)/|u| = 0.31.

Deformation Twins

We can now proceed to study twinning deformations4,25,27 in greater depth, noting that a
twin is said to be any region of a parent which has undergone a homogeneous shear to give a
re–orientated region with the same crystal structure. The example below illustrates some of
the important concepts of twinning deformation.

Example 13: Twins in FCC crystals

Show that the austenite lattice can be twinned by a shear deformation on the {1 1 1} plane
and in the < 1 1 2 > direction. Deduce the magnitude of the twinning shear, and explain why
this is the most common twinning mode in FCC crystals. Derive the matrix representing the
orientation relationship between the twin and parent lattices.

{1 1 1} planes in FCC crystals are close-packed, with a stacking sequence . . . ABCABCABC . . .
The region of the parent which becomes re–orientated due to the twinning shear can be gener-
ated by reflection across the twinning plane; the stacking sequence across the plane B which is
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Fig. 13: Twinning in the FCC austenite lattice. The diagrams represent

sections in the (1 1 0) plane. In Fig. 13b, K ′
2 and η′2 are the final positions of

the undistorted plane K2 and the undistorted direction η2, respectively.

the coherent twin interface is therefore . . . ABCABACBA . . . Fig. 13a illustrates how a stack
of close-packed planes (stacking sequence . . . ABC . . .) may be labelled . . . − 1, 0,+1 . . . Re-
flection across 0 can be achieved by shearing atoms in the +1 plane into positions which are
directly above (i.e. along < 1 1 1 >) the atoms in the −1 plane.

Fig. 13a is a section of the lattice on the (1 1 0) plane; it is evident that a displacement of
all the atoms on +1 through a distance v = |v| along < 1 1 2 > gives the required reflection
across the twinning plane 0. The twinning shear s is given by the equation s2 = (v/d)2, where
d is the spacing of the (1 1 1) planes. Since v2 = u2 − 4d2, we may write

s2 = (u/d)2 − 4 (14)

where u = |u| and u connects a site on the +1 plane to an equivalent site on the −1 plane
(Fig. 13a). Hence, the FCC lattice can be twinned by a shear of magnitude s = 1/

√
2 on

{1 1 1}.

To answer why a crystal twins in a particular way, it is necessary to make the physically
reasonable assumption that the twinning mode should lead to the smallest possible shear (s).
When the twin is forced to form in a constrained environment (as within a polycrystalline
material), the shape change resulting from the shear deformation causes elastic distortions in
both the twin and the matrix. The consequent strain energy increase (per unit volume of
material) is approximately given by28−30 E = (c/r)µs2, where c and r represent the thickness
and length of the twin respectively, and µ is the shear modulus. This is also the reason why
mechanical twins have a lenticular morphology, since the small thickness to length ratio of thin-
plates minimises E. Annealing twins, grow diffusionally and there is no physical deformation
involved in their growth. Hence, their shape is not restricted to that of a thin plate, the
morphology being governed by the need to minimise interface energy. It is interesting that
annealing and mechanical twins are crystallographically equivalent (if we ignore the absence
of a shape change in the former) but their mechanisms of growth are very different.
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Equation 14 indicates that s can be minimised by choosing twinning planes with large d–
spacings and by choosing the smallest vector u connecting a site on the +1 plane to an equiv-
alent site on the −1 plane; for the (1 1 1) plane the smallest u is 1

2 [1 1 2], as illustrated in
Fig. 13a. Equation 14 can also be used to show that none of the planes of slightly smaller
spacing than {1 1 1} can lead to twins with s < 2− 1

2 ; two of these planes are also mirror planes
and thus cannot serve as the invariant–plane (K1, Fig. 13b) of the reflection twin.

From Fig. 13a we see that the twin lattice could also have been obtained by displacing the
atoms in the +1 plane through a distance 2v along [1 1 2] had u been chosen to equal [

√
2
√

2 0],
giving s =

√
2. This larger shear is of course inconsistent with the hypothesis that the favoured

twinning mode involves the smallest shear, and indeed, this mode of twinning is not observed.
To obtain the smallest shear, the magnitude of the vector v must also be minimised; in the
example under consideration, the correct choice of v will connect a lattice site of plane +1
with the projection of its nearest neighbour lattice site on plane −1. The twinning direction
is therefore expected to be along [1 1 2]. It follows that the operative twin mode for the FCC
lattice should involve a shear of magnitude s = 2− 1

2 on {1 1 1} < 1 1 2 >.

The matrix–twin orientation relationship (M J T) can be deduced from the fact that the twin
was generated by a shear which brought atoms in the twin into positions which are related to
the parent lattice points by reflection across the twinning plane (the basis vectors of M and T
define the FCC unit cells of the matrix and twin crystals respectively). From Fig. 13 we note
that:

[1 1 2]M‖ [1 1 2]T [1 1 0]M‖ [1 1 0]T [1 1 1]M‖ [1 1 1]T

It follows that 


1 1 1
1 1 1
2 0 1



 =




J11 J12 J13

J21 J22 J23

J31 J32 J33








1 1 1
1 1 1
2 0 1





Solving for (M J T), we get

(M J T) =
1
6




1 1 1
1 1 1
2 0 1








1 1 2
3 3 0
2 2 2



 =
1
3




1 2 2
2 1 2
2 2 1





Comments

(i) Equations like equation 14 can be used4 to predict the likely ways in which different
lattices might twin, especially when the determining factor is the magnitude of the
twinning shear.

(ii) There are actually four different ways of generating the twin lattice from the parent
crystal: (a) by reflection about the K1 plane on which the twinning shear occurs,
(b) by a rotation of π about η1, the direction of the twinning shear, (c) by reflection
about the plane normal to η1 and (d) by a rotation of π about the normal to the
K1 plane.

Since most metals are centrosymmetric, operations (a) and (d) produce crystallographically
equivalent results, as do (b) and (c). In the case of the FCC twin discussed above, the high
symmetry of the cubic lattice means that all four operations are crystallographically equivalent.
Twins which can be produced by the operations (a) and (d) are called type I twins; type
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II twins result form the other two twinning operations. The twin discussed in the above
example is called a compound twin, since type I and type II twins cannot be crystallographically
distinguished. Fig. 13b illustrates some additional features of twinning. The K2 plane is the
plane which (like K1) is undistorted by the twinning shear, but unlike K1, is rotated by
the shear. The “plane of shear” is the plane containing η1 and the perpendicular to K1; its
intersection with K2 defines the undistorted but rotated direction η2. In general, η2 and K1 are
rational for type I twins, and η1 and K2 are rational for type II twins. The set of four twinning
elements K1, K2, η1 and η2 are all rational for compound twins. From Fig. 13b, η2 makes an
angle of arctan(s/2) with the normal to K1 and simple geometry shows that η2 = [1 1 2] for
the FCC twin of example 13. The corresponding K2 plane which contains η2 and η1 ∧ η2 is
therefore (1 1 1), giving the rational set of twinning elements

K1 = (1 1 1) η2 = [1 1 2] s = 2−
1
2 η1 = [1 1 2] K2 = (1 1 1)

In fact, it is only necessary to specify either K1 and η2 or K2 and η1 to completely describe
the twin mode concerned.

The deformation matrix (M P M) describing the twinning shear can be deduced using equa-
tion 11d and the information [M;d]‖ [1 1 2], (p; M∗)‖ (1 1 1) and s = 2− 1

2 to give

(M P M) =
1
6




7 1 1
1 7 1
2 2 4



 and (M P M)−1 =
1
6




5 1 1
1 5 1
2 2 8



 (15a)

and if a vector u is deformed into a new vector v by the twinning shear, then

(M P M)[M;u] = [M;v] (15b)

and if h is a plane normal which after deformation becomes k, then

(h; M∗)(M P M)−1 = (k; M∗) (15c)

These laws can be used to verify that p and d are unaffected by the twinning shear, and that
the magnitude of a vector originally along η2 is not changed by the deformation; similarly, the
spacing of the planes initially parallel to K2 remains the same after deformation, although the
planes are rotated.

The Concept of a Correspondence Matrix

The property of the homogeneous deformations we have been considering is that points which
are initially collinear remain so in spite of the deformation, and lines which are initially coplanar
remain coplanar after the strain. Using the data of example 13, it can easily be verified that
the deformation (M P M) alters the vector [M;u] = [0 0 1]to a new vector [M;v] = 1

6 [1 1 4]i.e.

(M P M)[0 0 1]M =
1
6
[1 1 4]M (15d)

The indices of this new vector v relative to the twin basis T can be obtained using the co–
ordinate transformation matrix (T J M), so that

(T J M)
1
6
[1 1 4]M = [T;v] =

1
2
[1 1 0]T (15e)
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Hence, the effect of the shear stress is to deform a vector [0 0 1]M of the parent lattice into a
vector 1

2 [1 1 0]T of the twin. Equations 15d and 15e could have been combined to obtain this
result, as follows:

(T J M)(M P M)[M;u] = [T;v] (15f)

or
(T C M)[M;u] = [T;v] (15g)

where
(T J M)(M P M) = (T C M) (15h)

The matrix (T C M) is called the correspondence matrix; the initial vector u in the parent
basis, due to deformation becomes a corresponding vector v with indices [T;v] in the twin
basis. The correspondence matrix tells us that a certain vector in the twin is formed by
deforming a particular corresponding vector of the parent. In the example considered above,
the vector u has rational components in M (i.e. the components are small integers or fractions)
and v has rational components in T. It follows that the elements of the correspondence matrix
(T C M) must also be rational numbers or fractions. The correspondence matrix can usually
be written from inspection since its columns are rational lattice vectors referred to the second
basis produced by the deformation from the basis vectors of the first basis.

We can similarly relate planes in the twin to planes in the parent, the correspondence matrix
being given by

(M C T) = (M P M)−1(M J T) (15i)

where
(h; M∗)(M C T) = (k; T∗)

so that the plane (k; T∗) of the twin was formed by the deformation of the plane (h; M∗) of
the parent.

Stepped Interfaces

A planar coherent twin boundary (unit normal p) can be generated from a single crystal by
shearing on the twinning plane p, the unit shear direction and shear magnitude being d and
m respectively.

On the other hand, to generate a similar boundary but containing a step of height h requires
additional virtual operations (Fig. 14)24,27,31. The single crystal is first slit along a plane which
is not parallel to p (Fig. 14b), before applying the twinning shear. The shear which generates
the twinned orientation also opens up the slit (Fig. 14c), which then has to be rewelded
(Fig. 14d) along the original cut; this produces the required stepped interface. A Burgers
circuit constructed around the stepped interface will, when compared with an equivalent circuit
constructed around the unstepped interface exhibit a closure failure. This closure failure gives
the Burgers vector bi associated with the step:

bi = hmd (16a)

The operations outlined above indicate one way of generating the required stepped interface.
They are simply the virtual operations which allow us to produce the required defect – similar
operations were first used by Volterra32 in describing the elastic properties of cut and deformed
cylinders, operations which were later recognised to generate the ordinary dislocations that
metallurgists are so familiar with.
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Having defined bi, we note that an initially planar coherent twin boundary can acquire a step
if a dislocation of Burgers vector bm crosses the interface. The height of the step is given by31

h = bm.p

so that
bi = m(bm.p)d (16b)

From equation 11d, the invariant plane strain necessary to generate the twin from the parent
lattice is given by (M P M) = I + m[M;d](p; M∗)so that equation 16b becomes

[M;bi] = (M P M)[M;bm] − [M;bm] (16c)

Fig. 14: The virtual operations (Ref. 27) used in determining bi.

Example 14: Interaction of Dislocations with Interfaces

Deduce the correspondence matrix for the deformation twin discussed in example 13 and hence
show that there are no geometrical restrictions to the passage of slip dislocations across coherent
twin boundaries in FCC materials.

From example 13,

(T J M) =
1
3




1 2 2
2 1 2
2 2 1



 and (M P M) =
1
6




7 1 1
1 7 1
2 2 4





The correspondence matrix (T C M) which associates each vector of the parent with a corre-
sponding vector in the twin is, from equation 15h, given by

(T C M) = (T J M)(M P M)
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(M C T) = (M P M)−1(M J T)

so that

(T C M) = (M C T) =
1
2




1 1 1
1 1 1
2 2 0





The character of a dislocation will in general be altered on crossing an interface. This is because
the crossing process introduces a step in the interface, rather like the slip steps which arise at the
free surfaces of deformed crystals. We consider the case where a dislocation crosses a coherent
twin boundary. The interfacial step has dislocation character so that the original dislocation
(Burgers vector bm) from the parent crystal is in effect converted into two dislocations, one
being the step (Burgers vector bi) and the other the dislocation (Burgers vector bt) which has
penetrated the interface and entered into the twin lattice. If the total Burgers vector content
of the system is to be preserved then it follows that in general, bt &= bm, since bm = bi + bt.
Using this equation and equation 16c, we see that

[M;bt] = (M P M)[M;bm]

or
[T;bt] = (T J M)(M P M)[M;bm]

so that
[T;bt] = (T C M)[M;bm] (17a)

Clearly, dislocation glide across the coherent interface will not be hindered if bt is a perfect
lattice vector of the twin. If this is not the case and bt is a partial dislocation in the twin, then
glide across the interface will be hindered because the motion of bt in the twin would leave a
stacking fault trailing all the way from the interface to the position of the partial dislocation
in the twin.

There is an additional condition to be fulfilled for easy glide across the interface; the corre-
sponding glide planes pm and pt of dislocations bm and bt in the parent and twin lattices
respectively, must meet edge to edge in the interface. Now,

(pt; T
∗) = (pm; M∗)(M C T) (17b)

If the interface plane normal is pi, then the edge to edge condition is satisfied if pm∧pi‖ pt∧pi.

Dislocations in FCC materials usually glide on close–packed {1 1 1} planes and have Burgers
vectors of type a

2 < 1 1 0 >. Using the data of Table 1 it can easily be verified that all the
close-packed planes of the parent lattice meet the corresponding glide planes in the twin edge to
edge in the interface, which is taken to be the coherent (1 1 1)M twinning plane. Furthermore,
all the a

2 < 1 1 0 > Burgers vectors of glide dislocations in the parent correspond to perfect
lattice dislocations in the twin. It must be concluded that the coherent twin boundary for
{1 1 1} twins in FCC metals does not offer any geometrical restrictions to the transfer of slip
between the parent and product lattices.

These data (Table 1) also show that all dislocations with Burgers vectors in the (1 1 1)M
plane are unaffected, both in magnitude and direction, as a result of crossing into the twin.
For example, a

2 [1 1 0]M becomes a
2 [1 1 0]T so that |bm| = |bt|, and using (T J M) it can

be demonstrated that [1 1 0]M‖ [1 1 0]T . This result is expected because these particular
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Table 1: Corresponding Glide Planes and Burgers Vectors

Parent Twin

a
2 [1 1 0] a[0 0 1]
a
2 [1 0 1] a

2 [0 1 1]
a
2 [0 1 1] a

2 [1 0 1]
a
2 [1 1 0] a

2 [1 1 0]
a
2 [1 0 1] a

2 [1 0 1]
a
2 [0 1 1] a

2 [0 1 1]

(1 1 1) (1 1 1)

(1 1 1) (1 1 1)

(1 1 1) (0 2 0)

(1 1 1) (2 0 0)

dislocations cannot generate a step in the (1 1 1)M interface when they cross into the twin
lattice (see equation 16b). Only dislocations with Burgers vectors not parallel to the interface
cause the formation of steps.

The data further illustrate the fact that when bm lies in the (1 1 1)M plane, there is no
increase in energy due to the reaction bm → bi+bt, which occurs when a dislocation crosses the
interface. This is because bi = 0 and bt = bm. For all other cases bi is not zero and since |bt| is
never less than |bm| , bm → bi+bt is always energetically unfavourable. In fact, in the example
being discussed, there can never be an energy reduction when an a

2 < 1 1 0 > dislocation
penetrates the coherent twin boundary. The dislocations cannot therefore spontaneously cross
the boundary. A trivial case where dislocations might spontaneously cross a boundary is when
the latter is a free surface, assuming that the increase in surface area (and hence surface
energy) due to the formation of a step is not prohibitive. Spontaneous penetration of the
interface might also become favourable if the interface separates crystals with very different
elastic properties.

The results obtained show that single dislocations can glide into twins in FCC crystals without
leaving a fault; there are no geometrical restrictions to the passage of slip dislocations across the
coherent twin boundaries concerned. It can similarly be demonstrated that slip dislocations can
comfortably traverse the coherent twin boundaries of {1 1 2} twins in BCC or BCT lattices
and this has implications on the interpretation of the strength of martensite31. As will be
discussed later, the substructure of martensite plates in steels (and in many non-ferrous alloys)
often consists of very finely spaced {1 1 2} transformation twins. It was at one time believed
that the twins were mainly responsible for the high strength of ferrous martensites, because the
numerous twin boundaries should hinder slip – the analysis above clearly suggests otherwise.
Indeed, twinned martensites which do not contain carbon also do not exhibit exceptionally
high strengths and it is now generally accepted that the strength of virgin ferrous martensites
is largely due to interstitial solid solution hardening by carbon atoms, or in the case of lightly
autotempered martensites due to carbon atom clustering or fine precipitation. Consistent with
this, it is found that Fe–30Ni (wt%) twinned martensites are not particularly hard.

Finally, it should be mentioned that even when glide across coherent twin boundaries in marten-
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Fig. 15: The passage of a slip dislocation across a coherent twin boundary in

a BCC crystal. The twinning system is {1 1 2} < 1 1 1 >, s = 2− 1
2 . The

subscripts m and t refer to the twin and matrix respectively; the open arrows

indicate the sense of the Burgers vectors and the dislocation line vectors are

all parallel to [1 1 0]M,T .

sites should be unhindered, the boundaries will cause a small amount of hardening, partly
because the corresponding slip systems in the matrix and twin will in general be differently
stressed31,33 (simply because they are not necessarily parallel) and partly due to the work
necessary to create the steps in the interfaces. It is emphasised, however, that these should be
relatively small contributions to the strength of martensite. Fig. 15 illustrates the passage of
a slip dislocation across a coherent {1 1 2} twin interface in a BCC material.

Eigenvectors and Eigenvalues

In Chapter 2, equation 8b was used to determine the direction which remains unrotated and
undistorted as a result of a rigid body rotation. To examine the properties of invariant–
plane strains and other strains (or linear transformations) in more detail, it is necessary to
establish a more general method of determining the directions which remain unrotated, though
not necessarily undistorted, as a consequence of the deformation concerned. Vectors lying
along such unrotated directions are called eigenvectors of the deformation (or transformation)
matrix, and the ratios of their final to initial lengths are the corresponding eigenvalues of
the matrix. Considering the deformation matrix (A S A), the unrotated directions may be
determined by solving the equations

(A S A)[A;u] = λ[A;u] (18a)

where u is a unit vector lying along an eigenvector, A is a convenient orthonormal basis and
λ is a scalar quantity. This equation shows that the vector u does not change in direction as
a result of (A S A), although its length changes by the ratio λ (equation 18a can be compared
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with equation 8b, where λ = 1). If I is a 3×3 identity matrix, then on rearranging equation 18a,
we obtain

{(A S A) − λI}[A;u] = 0 (18b)

which can be written more fully as:



S11 − λ S12 S13

S21 S22 − λ S23

S31 S32 S33 − λ








u1

u2

u3



 = 0 (18c)

where [A;u] = [u1 u2 u3]. This system of homogeneous equations has non–trivial solutions if
∣∣∣∣∣∣

S11 − λ S12 S13

S21 S22 − λ S23

S31 S32 S33 − λ

∣∣∣∣∣∣
= 0 (18d)

The expansion of this determinant yields an equation which is in general cubic in λ; the
roots of this equation are the three eigenvalues λi. Associated with each of the eigenvalues is a
corresponding eigenvector whose components may be obtained by substituting each eigenvalue,
in turn, into equation 18c. Of course, since every vector which lies along the unrotated direction
is an eigenvector, if u is a solution of equation 18c then ku must also satisfy equation 18c, k
being a scalar constant. If the matrix (A S A) is real then there must exist three eigenvalues, at
least one of which is necessarily real. If (A S A) is symmetrical then all three of its eigenvalues
are real; the existence of three real eigenvalues does not however imply that the deformation
matrix is symmetrical. Every real eigenvalue implies the existence of a corresponding vector
which remains unchanged in direction as a result of the operation of (A S A).

Example 15: Eigenvectors and Eigenvalues

Find the eigenvalues and eigenvectors of

(A S A) =




18 −6 −6
−6 21 3
−6 3 21





To solve for the eigenvalues, we use equation 18d to form the determinant
∣∣∣∣∣∣

18 − λ −6 −6
6 21 − λ 3
−6 3 21 − λ

∣∣∣∣∣∣
= 0

which on expansion gives the cubic equation

(12 − λ)(λ− 30)(λ− 18) = 0

with the roots
λ1 = 12, λ2 = 30 and λ3 = 18

To find the eigenvector u = [A;u] = [u1 u2 u3] corresponding to λ1, we substitute λ1 into
equation 18c to obtain

6u1 − 6u2 − 6u3 = 0
−6u1 + 9u2 + 3u3 = 0
−6u1 + 3u2 + 9u3 = 0
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These equations can be simultaneously solved to show that u1 = 2u2 = 2u3. The other two
eigenvectors, v and x, corresponding to λ2 and λ3 respectively, can be determined in a similar
way. Hence, it is found that:

[A;u] = (6−
1
2 )[2 1 1]

[A;v] = (3−
1
2 )[1 1 1]

[A;x] = (2−
1
2 )[0 1 1]

All vectors parallel to u, v or x remain unchanged in direction, though not in magnitude, due
to the deformation (A S A).

Comments

(i) Since the matrix (A S A) is symmetrical, we find three real eigenvectors, which form
an orthogonal set.

(ii) A negative eigenvalue implies that a vector initially parallel to the corresponding
eigenvector becomes antiparallel (changes sign) on deformation. A deformation like
this is physically impossible.

(iii) If a new orthonormal basis B is defined, consisting of unit basis vectors parallel to
u, v and x respectively, then the deformation (A S A) can be expressed in the new
basis with the help of a similarity transformation. From equation 11,

(B S B) = (B J A)(A S A)(A J B) (18e)

where the columns of (A J B) consist of the components (referred to the basis A) of the
eigenvectors u, v and x respectively, so that

(B S B) =




u1 u2 u3

v1 v2 v3

w1 w2 w3








18 −6 −6
6 21 3
−6 3 21








u1 v1 w1

u2 v2 w2

u3 v3 w3



 =




18 0 0
0 30 0
0 0 12





Notice that (B S B) is a diagonal matrix (off diagonal terms equal zero) because it is referred to
a basis formed by the principal axes of the deformation - i.e. the three orthogonal eigenvectors.
The matrix representing the Bain Strain in chapter 1 is also diagonal because it is referred to
the principal axes of the strain. Any real symmetrical matrix can be diagonalised using the
procedure illustrated above. (B S B) is called the ‘diagonal’ representation of the deformation
(since off diagonal components are zero) and this special representation will henceforth be
identified by placing a bar over the matrix symbol: (B S B).

Stretch and Rotation

Inspection of the invariant–plane strain (Z P1 Z) illustrated in Fig. 10a shows that it is possible
to find three initially orthogonal axes which are not rotated by the deformation. These principal
axes are the eigenvectors of (Z P1 Z); any two mutually perpendicular axes in the invariant–
plane constitute two of the eigenvectors and the third is parallel to the invariant–plane normal.
The matrix (Z P1 Z) is symmetrical (equation 11d) and indeed, would have to be symmetrical
to yield three real and orthogonal eigenvectors. Since all vectors lying in the invariant–plane
are unaffected by the deformation, two of the eigenvectors have eigenvalues of unity; the third
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has the eigenvalue 1 + δ. Hence the deformation simply consists of an extension along one of
the principal axes.

As discussed in Chapter 1 (under homogeneous deformations), a strain like (Z P1 Z) is called
a pure deformation and has the following characteristics:

(i) It has a symmetrical matrix representation irrespective of the choice of basis.

(ii) It consists of simple extensions or contractions along the principal axes. The ratios
of the final to initial lengths of vectors parallel to the principal axes are called the
principal deformations, and the change in length per unit length the principal strains.

(iii) It is possible to find three real and orthogonal eigenvectors.

We note that a pure deformation need not be an invariant–plane strain; the strain (A S A) of
example 15 is a pure deformation, as is the Bain strain. On the other hand, the shear (Z P2 Z)
illustrated in Fig. 10b is not a pure deformation because it is only possible to identify two
mutually perpendicular eigenvectors, both of which must lie in the invariant–plane. All other
vectors are rotated by the shearing action. The deformation is illustrated again in Fig. 16a,
where the original lattice, represented as a sphere, is sheared into an ellipsoid. The invariant–
plane of the deformation contains the z1 and z2 axes. The deformation can be imagined to
occur in two stages, the first one involving simple extensions and contractions along the y1

and y3 directions respectively (Fig. 16b) and the second involving a rigid body rotation of the
ellipsoid, about the axis z2‖ y2, through a right–handed angle φ.

In essence, we have just carried out an imaginary factorisation of the impure strain (Z P2 Z)
into a pure strain (Fig. 16b) and a rigid body rotation. If the pure strain part is referred to as
(Z Q Z) and the rotation part as (Z J Z), then

(Z P2 Z) = (Z J Z)(Z Q Z) (19a)

It was arbitrarily chosen that the pure strain would occur first and be followed by the rigid
body rotation, but the reverse order is equally acceptable,

(Z P2 Z) = (Z Q2 Z)(Z J2 Z)

where in general,

(Z Q2 Z) &= (Z Q Z) and (Z J2 Z) &= (Z J Z)

Any real deformation can in general be factorised into a pure strain and a rigid body rotation,
but it is important to realise that the factorisation is simply a mathematical convenience and
the deformation does not actually occur in the two stages. The factorisation in no way indicates
the path by which the initial state reaches the final state and is merely phenomenological.

The actual factorisation can be considered in terms of the arbitrary deformation (Z S Z),
referred to an orthonormal basis Z. Bearing in mind that (Z S’ Z) is the transpose of (Z S Z),

(Z S′ Z)(Z S Z) = (Z Q′ Z)(Z J′Z)(Z J Z)(Z Q Z)

or (Z S′ Z)(Z S Z) = (Z Q Z)2
(19b)

since (Z J′Z)(Z J Z) = I and (Z Q′ Z) = (Z Q Z), (Z Q Z) being a pure deformation having a
symmetrical matrix representation. If the product (Z S’ Z)(Z S Z) is written as the symmetrical
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Fig. 16: Factorisation of a simple shear (Z P2 Z) into a pure deformation

(Z Q Z) and a right handed rigid body rotation of φ about z2. In (a), ac is the

trace of the invariant plane. (Z Q Z) leaves ac undistorted but rotated to a′c′

and rigid body rotation brings a′c′ into coincidence with ac. The axes y1, y2

and y3 are the principal axes of the pure deformation. The undeformed shape

is represented as a sphere in three dimensions.

matrix (Z T Z), then the eigenvalues λi of (Z T Z) are also the eigenvalues of (Z Q Z)2, so that
the eigenvalues of (Z Q Z) are

√
λi. If the eigenvectors of (Z T Z) are u, v and x (corresponding

to λ1, λ2 and λ3 respectively), then (Z T Z) can be diagonalised by similarity transforming it
to another orthonormal basis Y formed by the vectors u,v and x. From equation 18e,

(Y T Y) =




λ1 0 0
0 λ2 0
0 0 λ3



 = (Y J Z)(Z T Z)(Z J Y)

where the columns of (Z J Y) consist of the components of u,v and x, respectively, when the
latter are referred to the Z basis. It follows that since (Y Q Y)2 = (Y T Y),

(Z Q Z) = (Z J Y)(Y T Y)
1
2 (Y J Z)

where the square root of a diagonal matrix (Y T Y) is such that (Y T Y)
1
2 (Y T Y)

1
2 =

(Y T Y). It follows that:

(Z Q Z) =




u1 v1 w1

u2 v2 w2

u3 v3 w3









√
λ1 0 0
0

√
λ2 0

0 0
√
λ3








u1 u2 u3

v1 v2 v3

w1 w2 w3



 (19c)

It is worth repeating that in equation 19c, λi are the eigenvectors of the matrix (Z S’ Z)(Z S Z)
and ui, vi and wi are the components, in the basis Z of the eigenvectors of (Z S’ Z)(Z S Z).
The rotation part of the strain (Z S Z) is simply

(Z J Z) = (Z S Z)(Z Q Z)−1 (19d)

Example 16: The FCC to HCP transformation revisited

A Co–6.5Fe wt% alloy transforms from an FCC (γ) structure to a HCP martensite structure
with zero change in density21. The invariant plane of the transformation is the close–packed
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{1 1 1}γ plane, the shear direction being < 1 1 2 >γ . The magnitude of the shear is 8− 1
2 , which

is half the normal twinning shear for FCC crystals. By factorising the total transformation
strain into a pure strain and a rigid body rotation, show that the maximum extension or
contraction suffered by any vector of the parent lattice, as a result of the transformation, is
less than 20%.

Representing the FCC parent lattice in an orthonormal basis Z, consisting of unit basis vectors
parallel to [1 0 0], [0 1 0] and [0 0 1] FCC directions respectively, and substituting (p; Z∗) =
(3− 1

2 )(1 1 1), [Z;d] = (6− 1
2 )[1 1 2] and m = 8− 1

2 into equation 11d, the total transformation
strain (Z P Z) is found to be:

(Z P Z) =
1
12




13 1 1
1 13 1
−2 −2 10





This can be factorised into a pure strain (Z Q Z) and a rigid body rotation (Z J Z). That
the eigenvectors of (Z Q Z) represent the directions along which the maximum length changes
occur can be seen from Fig. 6 (the basis Y of Fig. 6 differs from the present basis Z. In fact, the
basis vectors of Y are parallel to the eigenvectors of (Z Q Z)). (Z P Z) is illustrated in Fig. 6c
and (Z Q Z) in Figs. 6a,b. It is seen that the axes of the ellipsoid represent directions along
which the greatest length changes occur; these axes are of course the eigenvectors of (Z Q Z).
Writing (Z T Z) = (Z P ′ Z)(Z P Z), we obtain:

(Z T Z) =
1

144




174 30 −6
30 174 −6
−6 −6 102





The eigenvalues and eigenvectors of (Z T Z) are:

λ1 = 1.421535 [Z;u] = [0.704706 0.704706 −0.082341]
λ2 = 1.000000 [Z;v] = [0.707107 −0.707107 0.000000]
λ3 = 0.703465 [Z;x] = [0.058224 0.058224 0.996604]

Notice that the eigenvectors form an orthogonal set and that consistent with the fact that v
lies in the invariant plane, λ2 has a value of unity. u, v and x are also the eigenvectors of
(Z Q Z). The eigenvalues of (Z Q Z) are given by the square roots of the eigenvalues of (Z T Z);
they are 1.192282, 1.0 and 0.838728. Hence, the maximum extensions and contractions are less
than 20% since each eigenvalue is the ratio of the final to initial length of a vector parallel to
an eigenvector. The maximum extension occurs along u and the maximum contraction along
x. The matrix (Z Q Z) is given by equation 19c as:

(Z Q Z) =




0.70471 0.70711 0.05822
0.70471 −0.70711 0.05822
−0.08234 0.00000 0.99660








1.19228 0.0 0.0

0.0 1.00000 0.0
0.0 0.0 0.83873





×




0.70471 0.70471 −0.08234
0.70711 −0.70711 0.00000
0.05822 0.05822 0.99660





=




1.094944 0.094943 −0.020515
0.094943 1.094944 −0.020515
−0.020515 −0.020515 0.841125




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and

(Z Q Z)−1 =




0.920562 −0.079438 0.020515
−0.079438 0.920562 0.020515
0.020515 0.020515 1.189885





From equation 19d, (Z J Z) = (Z P Z)(Z Q Z)−1

(Z J Z) =




0.992365 −0.007635 0.123091
−0.007635 0.992365 0.123091
−0.123092 −0.123092 0.984732





The matrix (Z J Z), from equation 8, represents a right–handed rotation of 10.03◦ about
[1 1 0]Z axis.

It is interesting to examine what happens to the vector [1 1 2]Z due to the operations (Z Q Z)
and (Z J Z):

(Z Q Z)[1 1 2]Z = [1.230916 1.230916 − 1.723280]Z
where the new vector can be shown to have the same magnitude as [1 1 2] but points in a
different direction. The effect of the pure rotation is

(Z J Z)[1.230916 1.230916 − 1.723280]Z = [1 1 2]Z

Thus, the pure strain deforms [1 1 2]Z into another vector of identical magnitude and the pure
rotation brings this new vector back into the [1 1 2]Z direction, the net operation leaving it
invariant, as expected, since [1 1 2]Z is the shear direction which lies in the invariant plane.
Referring to Fig. 6, the direction fe = [1 1 0]Z , cd = [1 1 2]Z and c′d′ = [1.230916 1.230916 −
1.723280]Z . c′d′ is brought into coincidence with cd by the rigid body rotation (Z J Z) to
generate the invariant plane containing fe and cd.

Physically, the FCC to HCP transformation occurs by the movement of a single set of Shockley
partial dislocations, Burgers vector b = a

6 < 1 1 2 >γ on alternate close-packed {1 1 1}γ planes.
To produce a fair thickness of HCP martensite, a mechanism has to be sought which allows
Shockley partials to be generated on every other slip plane. Some kind of a pole mechanism (see
for example, p. 310 of ref. 25) would allow this to happen, but there is as yet no experimental
evidence confirming this. Motion of the partials would cause a shearing of the γ lattice, on the
system {1 1 1}γ < 1 1 2 >γ , the average magnitude s of the shear being s = |b|/2d, where d is
the spacing of the close–packed planes. Hence, s = 6− 1

2 a/2(3− 1
2 a) = 8− 1

2 . This is exactly the
shear system we used in generating the matrix (Z P Z) and the physical effect of the shear on
the shape of an originally flat surface is, in general, to tilt the surface (about a line given by
its intersection with the HCP habit plane) through some angle dependant on the indices of the
free surface. By measuring such tilts it is possible to deduce s, which has been experimentally
confirmed to equal half the twinning shear.

In FCC crystals, the close-packed planes have a stacking sequence . . . ABCABCABC . . .; the
passage of a single Shockley partial causes the sequence to change to . . . ABA . . . creating
a three layer thick region of HCP phase since the stacking sequence of close–packed planes
in the HCP lattice has a periodicity of 2. This then is the physical manner in which the
transformation occurs, the martensite having a {1 1 1}γ habit plane – if the parent product
interface deviates slightly from {1 1 1}γ , then it will consist of stepped sections of close–packed
plane, the steps representing the Shockley partial transformation dislocations. The spacing of
the partials along < 1 1 1 >γ would be 2d. In other words, in the stacking sequence ABC,
the motion of a partial on B would leave A and B unaffected though C would be displaced by

45



     

INVARIANT–PLANE STRAINS

6− 1
2 a < 1 1 2 >γ to a new position A, giving ABA stacking. Partials could thus be located on

every alternate plane of the FCC crystal.

Hence, we see that the matrix (Z P Z) is quite compatible with the microscopic dislocation
based mechanism of transformation. (Z P Z) predicts the correct macroscopic surface relief
effect and its invariant plane is the habit plane of the martensite. However, if (Z P Z) is
considered to act homogeneously over the entire crystal, then it would carry half the atoms
into the wrong positions. For instance, if the habit plane is designated A in the sequence ABC
of close packed planes, then the effect of (Z P Z) is to leave A unchanged, shift the atoms on
plane C by 2sd and those on plane B by sd along < 1 1 2 >γ . Of course, this puts the atoms
originally in C sites into A sites, as required for HCP stacking. However, the B atoms are
located at positions half way between B and C sites, through a distance a

12 < 1 1 2 >γ . Shuffles
are thus necessary to bring these atoms back into the original B positions and to restore the
. . . ABA . . . HCP sequence. These atomic movements in the middle layer are called shuffles
because they occur through very small distances (always less than the interatomic spacing)
and do not affect the macroscopic shape change27. The shuffle here is a purely formal concept;
consistent with the fact that the Shockley partials glide over alternate close–packed planes,
the deformation (Z P Z) must in fact be considered homogeneous only on a scale of every two
planes. By locking the close–packed planes together in pairs, we avoid displacing the B atoms
to the wrong positions and thus automatically avoid the reverse shuffle displacement.

In the particular example discussed above, the dislocation mechanism is established experi-
mentally and physically reasonable shear systems were used in determining (Z P Z). However,
in general it is possible to find an infinite number of deformations5,27 which may accomplish
the same lattice change and slightly empirical criteria have to be used in selecting the correct
deformation. One such criterion could involve the selection of deformations which involve the
minimum principal strains and the minimum degree of shuffling, but intuition and experimen-
tal evidence is almost always necessary to reach a decision. The Bain strain which transforms
the FCC lattice to the BCC lattice is believed to be the correct choice because it seems to
involve the least atomic displacements and zero shuffling of atoms34. The absence of shuffles
can be deduced from the Bain correspondence matrix (α C γ) which can be deduced from
inspection since its columns are rational lattice vectors referred to the α basis, produced by
the deformation of the basis vectors of the γ basis; since [1 0 0]γ is deformed to [1 1 0]α, [0 1 0]γ
to [1 1 0]α and [0 0 1]γ to [0 0 1]α, by the Bain strain (Fig. 1), the correspondence matrix is
simply:

(α C γ) =




1 1 0
1 1 0
0 0 1



 (20)

If u is a vector defining the position of an atom in the γ unit cell, then it can be verified that
(α C γ)[γ;u] always gives a corresponding vector in the α lattice which terminates at a lattice
point. For example, 1

2 [1 0 1]γ corresponds to 1
2 [1 1 1]α; both these vectors connect the origins

of their respective unit cells to an atomic position. The Bain correspondence thus defines the
position of each and every atom in the α lattice relative to the γ lattice. It is only possible
to obtain a correspondence matrix like this when the primitive cells of each of the lattices
concerned contain just one atom5.

The primitive cell of the HCP lattice contains two atoms and any lattice correspondence will
only define the final positions of an integral fraction of the atoms, the remainder having to
shuffle into their correct positions in the product lattice. This can be demonstrated with
the correspondence matrix for the example presented above. It is convenient to represent the
conventional HCP lattice (basis H) in an alternative orthorhombic basis (symbol O), with basis
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vectors:
[1 0 0]O =

1
2
[0 1 1]γ =

1
3
[1 1 2 0]H

[0 1 0]O =
1
2
[2 1 1]γ = [1 1 0 0]H

[0 0 1]O =
2
3
[1 1 1]γ = [0 0 0 1]H

Fig. 17: Representation of bases O, H, and γ. The directions in the hexagonal

cell are expressed in the Weber notation.

The orthorhombic unit cell thus contains three close–packed layers of atoms parallel to its
(0 0 1) faces. The middle layer has atoms located at [0 1

3
1
2 ]O, [1 1

3
1
2 ]O and [12

5
6

1
2 ]O. The

other two layers have atoms located at each corner of the unit cell and in the middle of each
(0 0 1) face, as illustrated in Fig. 17.

From our earlier definition of a correspondence matrix, (O C γ) can be written directly from
the relations (between basis vectors) stated earlier:

(γ C O) =
1
2




0 2 1
−1 −1 1
1 −1 2





Alternatively, the correspondence matrix (O C γ) may be derived (using equation 15) as fol-
lows:

(O C γ) = (O J γ)(γ P γ)
The matrix (γ P γ) is the total strain, which transforms the FCC lattice into the HCP lattice; it
is equal to the matrix (Z P Z) derived in example 16, since the basis vectors of the orthonormal
basis Z are parallel to the corresponding basis vectors of the orthogonal basis γ. It follows
that:

(O C γ) =




0 −1 1

2/3 −1/3 −1/3
1/2 1/2 1/2








13/12 1/12 1/12
1/12 13/12 1/12
−2/12 −2/12 10/12





=




−1/4 −5/4 3/4
3/4 −1/4 −1/4
1/2 1/2 1/2




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and

(γ C O) =
1
2




0 2 1
−1 −1 1
1 −1 2





Using this correspondence matrix, we can show that all the atoms, except those in the middle
close–packed layer in the unit cell, have their positions relative to the parent lattice defined by
the correspondence matrix. For example, the atom at the position [1 0 0]O corresponds directly
to that at [0 1 1]γ in the FCC lattice. However, [0 1

3
1
2 ]O corresponds to 1

2 [7 1 4]γ and there is
no atom located at these co–ordinates in the γ lattice. The generation of the middle layer thus
involves shuffles of 1

12 [1 1 2]γ , as discussed earlier; we note that 1
12 [7 1 4]γ− 1

12 [1 1 2]γ = 1
2 [1 0 1]γ .

Thus, the atom at [0 1
3

1
2 ]O is derived from that at 1

2 [1 0 1]γ in addition to a shuffle displacement
through a

12 [1 1 2]γ .

The Conjugate of an Invariant–Plane Strain

We have already seen that an FCC lattice can be transformed to an HCP lattice by shearing
the former on the system {1 1 1} < 1 1 2 >, s = 8− 1

2 . This shear represents an invariant–plane
strain (Z P Z) which can be factorised into a pure strain (Z Q Z) and a rigid body rotation
(Z J Z), as in example 16. The pure deformation (Z Q Z) accomplishes the required lattice
change from FCC to HCP, but is not an invariant–plane strain. As illustrated in Fig. 6 and
in example 16, it is the rigid body rotation of 10.03◦ about < 1 1 0 > that makes the {1 1 1}
plane invariant and in combination with (Z Q Z) produces the final orientation relation implied
by (Z P Z).

Referring to Fig. 6a,b, we see that there are in fact two ways27 in which (Z Q Z) can be
converted into an invariant–plane strain which transforms the FCC lattice to the HCP lattice.
The first involves the rigid body rotation (Z J Z) in which c′d′ is brought into coincidence with
cd, as shown in Fig. 6c. The alternative would be to employ a rigid body rotation (Z J2 Z),
involving a rotation of 10.03◦ about < 1 1 0 >, which would bring a′b′ into coincidence with
ab, making ab the trace of the invariant–plane. Hence, (Z Q Z) when combined with (Z J2 Z)
would result in a different invariant–plane strain (Z P2 Z) which also shears the FCC lattice
to the HCP lattice. From equation 8c, (Z J2 Z) is given by:

(Z J2 Z) =




0.992365 −0.007635 −0.123091
−0.007635 0.992365 −0.123091
0.123092 0.123092 0.984732





From example 16, (Z Q Z) is given by:

(Z Q Z) =




1.094944 0.094943 −0.020515
0.094943 1.094944 −0.020515
−0.020515 −0.020515 0.841125





From equation 19a, (Z P2 Z) = (Z J2 Z)(Z Q Z)

(Z P2 Z) =




1.0883834 0.088384 −0.123737
0.088384 1.088384 −0.123737
0.126263 0.126263 0.823232





On comparing this with equation 11d, we see that (Z P2 Z) involves a shear of magnitude
s = 8− 1

2 on {5 5 7}Z < 7 7 10 >Z . It follows that there are two ways of accomplishing the
FCC to HCP change:

Mode 1: Shear on {5 5 7}Z < 7 7 10 >Z s = 8−
1
2
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Mode 2: Shear on {1 1 1}Z < 1 1 2 >Z s = 8−
1
2

Both shears can generate a fully coherent interface between the FCC and HCP lattices (the
coherent interface plane being coincident with the invariant–plane). Of course, while the {1 1 1}
interface of mode 2 would be atomically flat, the {5 5 7} interface of mode 1 must probably
be stepped on an atomic scale. The orientation relations between the FCC and HCP lattices
would be different for the two mechanisms. In fact, (Z J2 Z) is

(Z J2 Z) =




−0.2121216 −1.2121216 0.6969703
0.7373739 −0.2626261 −0.2323234
0.3484848 0.3484848 0.7121212





It is intriguing that only the second mode has been observed experimentally, even though both
involve identical shear magnitudes.

A general conclusion to be drawn from the above analysis is that whenever two lattices can be
related by an IPS (i.e. whenever they can be joined by a fully coherent interface), it is always
possible to find a conjugate IPS which in general allows the two lattices to be differently
orientated but still connected by a fully coherent interface. This is clear from Fig. 6 where we
see that there are two ways of carrying out the rigid body rotation in order to obtain an IPS
which transforms the FCC lattice to the HCP lattice. The deformation involved in twinning
is also an IPS so that for a given twin mode it ought to be possible to find a conjugate twin
mode. In Fig. 13b, a rigid body rotation about [1 1 0], which brings K2 into coincidence with
K ′

2 would give the conjugate twin mode on (1 1 1)[1 1 2].

We have used the pure strain (Z Q Z) to transform the FCC crystal into a HCP crystal.
However, before this transformation, we could use any of an infinite number of operations (e.g.
a symmetry operation) to bring the FCC lattice into self-coincidence. Combining any one of
these operations with (Z Q Z) then gives us an alternative deformation which can accomplish
the FCC→HCP lattice change without altering the orientation relationship. It follows that
two lattices can be deformed into one another in an infinite number of ways. Hence, prediction
of the transformation strain is not possible in the sense that intuition or experimental evidence
has to be used to choose the ‘best’ or ’physically most meaningful’ transformation strain.

Example 17: The Combined Effect of two invariant–plane Strains

Show that the combined effect of the operation of two arbitrary invariant–plane strains is
equivalent to an invariant–line strain (ILS). Hence prove that if the two invariant–plane strains
have the same invariant–plane, or the same displacement direction, then their combined effect
is simply another IPS2.

The two invariant–plane strains are referred to an orthonormal basis X and are designated
(X P X) and (X Q X), such that m and n are their respective magnitudes, d and e their
respective unit displacement directions and p and q their respective unit invariant–plane nor-
mals. If (X Q X) operates first, then the combined effect of the two strains (equation 11e)
is

(X P X)(X Q X) = {I + m[X;d](p; X∗)}{I + n[X; e](q; X∗)}
= I + m[X;d](p; X∗) + n[X; e](q; X∗) + mn[X;d](p; X∗)[X; e](q; X∗)
= I + m[X;d](p; X∗) + n[X; e](q; X∗) + g[X;d](q; X∗)

(21a)

where g is the scalar quantity g = mn(p; X∗)[X; e].
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If u is a vector which lies in both the planes represented by p and q, i.e. it is parallel to p∧q,
then it is obvious (equation 21a) that (X P X)(X Q X)[X;u] = [X;u], since (p; X∗)[X;u] = 0
and (q; X∗)[X;u] = 0. It follows that u is parallel to the invariant line of the total deformation
(X S X) = (X P X)(X Q X). This is logical since (X P X) should leave every line on p invariant
and (X Q X) should leave all lines on q invariant. The line that is common to both p and q
should therefore be unaffected by (X P X)(X Q X), as is clear from equation 21a. Hence, the
combination of two arbitrary invariant–plane strains (X P X)(X Q X) gives and Invariant-Line
Strain (X S X).

If d = e, then from equation 21a

(X P X)(X Q X) = I + [X;d](r; X∗) where (r; X∗) = m(p; X∗) + n(q; X∗) + g(q; X∗)

which is simply another IPS on a plane whose normal is parallel to r. If p = q, then from
equation 21a

(X P X)(X Q X) = I + [X; f ](p; X∗) where [X; f ] = m[X;d] + n[X; e] + g[X;d]

which is an IPS with a displacement direction parallel to [X;f].

Hence, in the special case where the two IPSs have their displacement directions parallel, or
have their invariant–plane normals parallel, their combined effect is simply another IPS. It is
interesting to examine how plane normals are affected by invariant-line strains. Taking the
inverse of (X S X), we see that

(X S X)−1 = (X Q X)−1(X P X)−1

or from equation 13,

(X S X)−1 = I − an[X; e](q; X∗)I − bm[X;d](p; X∗)
= I − an[X; e](q; X∗) − bm[X;d](p; X∗) + cnm[X; e](p; X∗)

(21b)

where a, b and c are scalar constants given by 1/a = det(X Q X), 1/b = det(X P X) and
c = ab(q; X∗)[X;d].

If h = e∧d, then h is a reciprocal lattice vector representing the plane which contains both e
and d. It is evident from equation 21b that (h; X∗)(X S X)−1 = (h; X∗), since (h; X∗)[X; e] = 0
and (h; X∗)[X;d] = 0. In other words, the plane normal h is an invariant normal of the
invariant–line strain (X S X)−1.

We have found that an ILS has two important characteristics: it leaves a line u invariant
and also leaves a plane normal h invariant. If the ILS is factorised into two IPS’s, then u
lies at the intersection of the invariant–planes of these component IPS’s, and h defines the
plane containing the two displacement vectors of these IPS’s. These results will be useful in
understanding martensite.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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4 Martensite

In this chapter we develop a fuller description of martensitic transformations, focussing atten-
tion on steels, although the concepts involved are applicable to materials as diverse as A15
superconducting compounds35 and Ar − N2 solid solutions36. The fundamental requirement
for martensitic transformation is that the shape deformation accompanying diffusionless trans-
formation be an invariant–plane strain; all the characteristics of martensite will be shown to
be consistent with this condition. In this chapter, we refer to martensite in general as α′ and
body–centered cubic martensite as α.

The Diffusionless Nature of Martensitic Transformations

Diffusion means the ‘mixing up of things’; martensitic transformations are by definition37

diffusionless. The formation of martensite can occur at very low temperatures where atomic
mobility may be inconceivably small. The diffusion, even of atoms in interstitial sites, is then
not possible within the time scale of the transformation. The martensite–start temperature
(MS) is the highest temperature at which martensite forms on cooling the parent phase. Some
examples of MS temperatures are given below:

Composition MS / K Hardness HV

ZrO2 1200 1000

Fe–31Ni–0.23C wt% 83 300

Fe–34Ni–0.22C wt% < 4 250

Fe–3Mn–2Si–0.4C wt% 493 600

Cu–15Al 253 200

Ar–40N2 30

Table 1: The temperature MS at which martensite first forms on cooling, and

the approximate Vickers hardness of the resulting martensite for a number of

materials.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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Even when martensite forms at high temperatures, its rate of growth can be so high that
diffusion does not occur. Plates of martensite in iron based alloys are known to grow at
speeds approaching that of sound in the metal38,39; such speeds are generally inconsistent with
diffusion occurring during transformation. Furthermore, the composition of martensite can be
measured and shown to be identical to that of the parent phase (although this in itself does
not constitute evidence for diffusionless transformation).

The Interface between the Parent and Product Phases

The fact that martensite can form at very low temperatures also means that any process
which is a part of its formation process cannot rely on thermal activation. For instance, the
interface connecting the martensite with the parent phase must be able to move easily at
very low temperatures, without any significant help from thermal agitation (throughout this
text, the terms interface and interface plane refer to the average interface, as determined on a
macroscopic scale). Because the interface must have high mobility at low temperatures and at
high velocities, it cannot be incoherent; it must therefore be semi–coherent or fully coherent40.
Fully coherent interfaces are of course only possible when the parent and product lattices can
be related by a strain which is an invariant–plane strain5. In the context of martensite, we
are concerned with interphase-interfaces and fully coherent interfaces of this kind are rare
for particles of appreciable size; the FCC→HCP transformation is one example where a fully
coherent interface is possible. Martensitic transformation in ordered Fe3Be occurs by a simple
shearing of the lattice (an IPS)41, so that a fully coherent interface is again possible. More
generally, the interfaces tend to be semi-coherent. For example, it was discussed in chapter 1
that a FCC austenite lattice cannot be transformed into a BCC martensite lattice by a strain
which is an IPS, so that these lattices can be expected to be joined by semi-coherent interfaces.

The semi–coherent interface should consist of coherent regions separated periodically by discon-
tinuities which prevent the misfit in the interface plane from accumulating over large distances,
in order to minimise the elastic strains associated with the interface. There are two kinds of
semi–coherency5,27; if the discontinuities mentioned above are intrinsic dislocations with Burg-
ers vectors in the interface plane, not parallel to the dislocation line, then the interface is said
to be epitaxially semi–coherent. The term ‘intrinsic’ means that the dislocations are a nec-
essary part of the interface structure and have not simply strayed into the boundary - they
do not have a long-range strain field. The normal displacement of such an interface requires
the thermally activated climb of intrinsic dislocations, so that the interface can only move in
a non-conservative manner, with relatively restricted or zero mobility at low temperatures. A
martensite interface cannot therefore be epitaxially semi–coherent.

In the second type of semi–coherency, the discontinuities discussed above are screw disloca-
tions, or dislocations whose Burgers vectors do not lie in the interface plane. This kind of
semi–coherency is of the type associated with glissile martensite interfaces, whose motion is
conservative (i.e. the motion does not lead to the creation or destruction of lattice sites). Such
an interface should have a high mobility since the migration of atoms is not necessary for its
movement. Actually, two further conditions must be satisfied before even this interface can be
said to be glissile:

(i) A glissile interface requires that the glide planes of the intrinsic dislocations associ-
ated with the product lattice must meet the corresponding glide planes of the parent
lattice edge to edge in the interface27, along the dislocation lines.

(ii) If more than one set of intrinsic dislocations exist, then these should either have
the same line vector in the interface, or their respective Burgers vectors must be
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parallel27. This condition ensures that the interface can move as an integral unit. It
also implies (example 17) that the deformation caused by the intrinsic dislocations,
when the interface moves, can always be described as a simple shear (caused by a
resultant intrinsic dislocation which is a combination of all the intrinsic dislocations)
on some plane which makes a finite angle with the interface plane, and intersects
the latter along the line vector of the resultant intrinsic dislocation.

Obviously, if the intrinsic dislocation structure consists of just a single set of parallel disloca-
tions, or of a set of different dislocations which can be summed to give a single glissile intrinsic
dislocation, then it follows that there must exist in the interface, a line which is parallel to the
resultant intrinsic dislocation line vector, along which there is zero distortion. Because this
line exists in the interface, it is also unrotated. It is an invariant–line in the interface between
the parent and product lattices. When full coherency between the parent and and martensite
lattices is not possible, then for the interface to be glissile, the transformation strain relating
the two lattices must be an invariant–line strain, with the invariant–line being in the interface
plane.

The interface between the martensite and the parent phase is usually called the ‘habit plane’;
when the transformation occurs without any constraint, the habit plane is macroscopically
flat, as illustrated in Fig. 18. When the martensite forms in a constrained environment, it
grows in the shape of a thin lenticular plate or lath and the habit plane is a little less clear
in the sense that the interface is curved on a macroscopic scale. However, it is experimentally
found that the average plane of the plate (the plane containing the major circumference of the
lens) corresponds closely to that expected from crystallographic theory, and to that determined
under conditions of unconstrained transformation. The aspect ratio (maximum thickness to
length ratio) of lenticular plates is usually less than 0.05, so that the interface plane does not
depart very much from the average plane of the plate. Some examples of habit plane indices
(relative to the austenite lattice) are given in Table 3.

Fig. 18: The habit plane of martensite (α′) under conditions of unconstrained

and constrained transformation, respectively. In the latter case, the dashed

line indicates the trace of the habit plane.
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Composition /wt.% Approximate habit plane indices

Low–alloy steels, Fe–28Ni {1 1 1}γ
Plate martensite in Fe–1.8C {2 9 5}γ

Fe–30Ni–0.3C {3 15 10}γ
Fe–8Cr–1C {2 5 2}γ

ε–martensite in 18/8 stainless steel {1 1 1}γ

Table 3: Habit plane indices for martensite. With the exception of ε–

martensite, the quoted indices are approximate because the habit planes are

in general irrational.

Orientation Relationships

Since there is no diffusion during martensitic transformation, atoms must be transferred across
the interface in a co-ordinated manner (a “military transformation” - Ref. 42) and it follows
that the austenite and martensite lattices should be intimately related. All martensite trans-
formations lead to a reproducible orientation relationship between the parent and product
lattices. The orientation relationship usually consists of parallel or very nearly parallel cor-
responding closest-packed planes from the two lattices, and it is usually the case that the
corresponding close–packed directions in these planes are also roughly parallel. Typical ex-
amples of orientation relations found in steels are given below; these are stated in a simple
manner for illustration purposes although the best way of specifying orientation relations is by
the use of co-ordinate transformation matrices, as in chapter 2.

{1 1 1}γ‖ {0 1 1}α
< 1 0 1 >γ‖ < 1 1 1 >α

Kurdjumov–Sachs15

{1 1 1}γ‖ {0 1 1}α
< 1 0 1 >γ about 5.3◦ from < 1 1 1 >α towards < 1 1 1 >α

Nishiyama–Wasserman16

{1 1 1}γ about 0.2◦ from{0 1 1}α
< 1 0 1 >γ about 2.7◦ from < 1 1 1 >α towards < 1 1 1 >α

Greninger–Troiano43

The electron diffraction pattern shown in Fig. 19, taken to include both γ and α, indicates
how well the two lattices are “matched” in terms of the orientation relation, even though the
lattice types are different. The reflections from austenite are identified by the subscript ‘a’.

In studying martensitic transformations in steels, one of the major conceptual difficulties is
to explain why the observed orientation relations differ from that implied by the Bain strain.
The previous section on martensite interfaces, and the results of chapter one explain this
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‘anomaly’. As we have already seen, the martensite interface must contain an invariant–line,
and the latter can only be obtained by combining the Bain Strain with a rigid body rotation.
This combined set of operations amounts to the necessary invariant–line strain and the rigid
body rotation component changes the orientation between the parent and product lattices to
the experimentally observed relation.

Fig. 19: Electron diffraction pattern from BCC martensite and FCC austenite

lattices in steels (the austenite reflections are identified by the subscript ‘a’).

The Shape Deformation due to Martensitic Transformation

All martensitic transformations involve co-ordinated movements of atoms and are diffusionless.
Since the shape of the pattern in which the atoms in the parent crystal are arranged never-
theless changes in a way that is consistent with the change in crystal structure on martensitic
transformation, it follows that there must be a physical change in the macroscopic shape of
the parent crystal during transformation44. The shape deformation and its significance can
best be illustrated by reference to Fig. 20, where a comparison is made between diffusional
and diffusionless transformations. For simplicity, the diagram refers to a case where the trans-
formation strain is an invariant–plane strain and a fully coherent interface exists between the
parent and product lattices, irrespective of the mechanism of transformation.

Considering the shear transformation first, we note that since the pattern of atomic arrange-
ment is changed on transformation, and since the transformation is diffusionless, the macro-
scopic shape of the crystal changes. The shape deformation has the exact characteristics of
an IPS. The initially flat surface normal to da becomes tilted about the line formed by the
intersection of the interface plane with the surface normal to da. The straight line ab is bent
into two connected and straight segments ae and eb. Hence, an observer looking at a scratch
that is initially along ab and in the surface abcd would note that on martensite formation, the
scratch becomes homogeneously deflected about the point e where it intersects the trace of the
interface plane. Furthermore, the scratches ae and eb would be seen to remain connected at
the point e. This amounts to proof that the shape deformation has, on a macroscopic scale,
the characteristics of an IPS and that the interface between the parent and product lattices
does not contain any distortions (i.e. it is an invariant–plane). Observing the deflection of
scratches is one way of experimentally deducing the nature of shape deformations accompany-
ing transformations.
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Fig. 20: Schematic illustration of the mechanisms of diffusional and shear

transformations.

In Fig. 20 it is also implied that the martensitic transformation is diffusionless; the labelled
rows of atoms in the parent crystal remain in the correct sequence in the martensite lattice,
despite transformation. Furthermore, it is possible to suggest that a particular atom in the
martensite must have originated from a corresponding particular atom in the parent crystal.
A formal way of expressing this property is to say that there exists an atomic correspondence
between the parent and product lattices.

In the case of the diffusional transformation illustrated in Fig. 20, it is evident that the product
phase can be of a different composition from the parent phase. In addition, there has been
much mixing up of atoms during transformation and the order of arrangement of atoms in
the product lattice is different from that in the parent lattice - the atomic correspondence
has been destroyed. It is no longer possible to suggest that a particular atom in the product
phase originates from a certain site in the parent lattice. Because the transformation involves
a reconstruction of the parent lattice, atoms are able to diffuse around in such a way that the
IPS shape deformation (and its accompanying strain energy) does not arise. The scratch ab
remains straight across the interface and is unaffected by the transformation.
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In summary, martensitic transformations are always accompanied by a change in shape of the
parent crystal; this shape deformation always has the characteristics of an invariant–plane
strain, when examined on a macroscopic scale. The occurrence of such a shape deformation
is taken to imply the existence of an atomic correspondence between the parent and product
lattices. It is possible to state that a particular atom in the product occupied a particular
corresponding site in the parent lattice.

These results have some interesting consequences. The formation of martensite in a constrained
environment must (due to its IPS shape deformation) cause a distortion of the parent lattice
in its vicinity. The strain energy due to this distortion, per unit volume of martensite, is
approximately given by28−30

E =
c

r
µ(s2 + δ2)

where µ is the shear modulus of the parent lattice, c/r is the thickness to length ratio of
the martensite plate and s and δ are the shear and dilatational components of the shape
deformation strain. It follows that martensite must always have a thin plate morphology,
if E is to be minimised and this is of course experimentally found to be the case. E usually
amounts to about 600 J mol−1 for martensite in steels30, when the shape deformation is entirely
elastically accommodated. If the austenite is soft, then some plastic accommodation may occur
but the E value calculated on the basis of purely elastic accommodation should be taken to
be the upper limit of the stored energy due to the shape change accompanying martensitic
transformation. This is because the plastic accommodation is driven by the shape deformation
and it can only serve to mitigate the effects of the shape change30. In the event that plastic
accommodation occurs, dislocations and other defects may be generated both in the parent
and product lattices.

The Phenomenological Theory of Martensite Crystallography

We have emphasized that a major feature of the martensite transformation is its shape defor-
mation, which on a macroscopic scale has the characteristics of an invariant–plane strain. The
magnitude m of the shape deformation can be determined as can its unit displacement vector
d. The habit plane of the martensite (unit normal p) is the invariant–plane of the shape defor-
mation. The shape deformation can be represented by means of a shape deformation matrix
(F P F) such that:

(F P F) = I + m[F;d](p; F∗)

where the basis F is for convenience chosen to be orthonormal, although the equation is valid
for any basis.

For the shear transformation illustrated in Fig. 20 and for the FCC→HCP martensite reaction,
the lattice transformation strain is itself an IPS and there is no difficulty in reconciling the
transformation strain and the observed shape deformation. In other words, if the parent lattice
is operated on by the shape deformation matrix, then the correct product lattice is generated
if shuffles are allowed; the transformation strain is the same as the shape deformation. This is
not the case45 for the FCC→ BCC martensite reaction and for many other martensite trans-
formations where the lattice transformation strain (F S F) does not equal the observed shape
deformation (F P F). In example 2 it was found that the Bain Strain (F B F) when combined
with an appropriate rigid body rotation (F J F) gives an invariant–line strain which when ap-
plied to the FCC lattice generates the BCC martensite lattice. However, the shape deformation
that accompanies the formation of BCC martensite from austenite is nevertheless experimen-
tally found to be an invariant–plane strain. This is the major anomaly that the theory of
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martensite crystallography attempts to resolve: the experimentally observed shape deforma-
tion is inconsistent with the lattice transformation strain. If the observed shape deformation is
applied to the parent lattice then the austenite lattice is deformed into an intermediate lattice
(not experimentally observed) but not into the required BCC lattice.

This anomaly is schematically illustrated in Figs. 20a-c. Fig. 21a represents the shape of the
starting austenite crystal with the FCC structure. On martensitic transformation its shape
alters to that illustrated in Fig. 21b and the shape deformation on going from (a) to (b) is
clearly an IPS on the plane with unit normal p and in the unit displacement direction d.
However, the structure of the crystal in Fig. 21b is some intermediate lattice which is not
BCC, since an IPS cannot on its own change the FCC structure to the BCC structure. An
invariant–line strain can however transform FCC to BCC, and since an ILS can be factorised
into two invariant–plane strains, it follows that the further deformation (F Q F) needed to
change the intermediate structure of Fig. 21b to the BCC structure (Fig. 21c) is another IPS.
If the deformation (F Q F) is of magnitude n on a plane with unit normal q and in a unit
direction e, then:

(F Q F) = I + n[F;e](q; F∗)

(F Q F) has to be chosen in such a way that (F P F)(F Q F) = (F S F), where (F S F)
is an invariant–line strain which transforms the FCC lattice to the BCC lattice. Hence, a
combination of two invariant–plane strains can accomplish the necessary lattice change but
this then gives the wrong shape change as the extra shape change due to (F Q F), in changing
(b) to (c), is not observed.

Experiments46−48 indicate that the shape deformation due to the FCC→BCC martensite trans-
formation is an IPS, and it seems that the effect of (F Q F) on the macroscopic shape is invisible.
If we can find a way of making the effect of (F Q F) invisible as far as the shape change is
concerned, then the problem is essentially determined.

(F Q F) can be made invisible by applying another deformation to (c) such that the shape
of (c) is brought back to that of (b), without altering the BCC structure of (c). Such a
deformation must therefore be lattice-invariant because it must not alter the symmetry or
unit cell dimensions of the parent crystal structure. Ordinary slip does not change the nature
of the lattice and is one form of a lattice-invariant deformation. Hence, slip deformation on the
planes q and in the direction -e would make the shape change due to (F Q F) invisible on a
macroscopic scale, as illustrated in Fig. 21d. The magnitude of this lattice-invariant slip shear
is of course determined by that of (F Q F) and we know that it is not possible to continuously
vary the magnitude of slip shear, since the Burgers vectors of slip dislocations are discrete.
(F Q F) on the other hand can have any arbitrary magnitude. This difficulty can be overcome
by applying the slip shear inhomogeneously, by the passage of a discrete slip dislocation on say
every nth plane, which has the effect of allowing the magnitude of the lattice-invariant shear
to vary as a function of n. In applying the lattice-invariant shear to (c) in order to obtain (d),
the BCC structure of (c) is completely unaffected, while is shape is deformed inhomogeneously
to correspond to that of (b), as illustrated in Fig. 21d.

This then is the essence of the theory of martensite crystallography1,2,4, which explains the
contradiction that the lattice transformation strain is an ILS but the macroscopic shape de-
formation is an IPS. The lattice transformation strain when combined with an inhomogeneous
lattice-invariant shear produces a macroscopic shape change which is an IPS.

Twinning is another deformation which does not change the nature of the lattice (although
unlike slip, it reorientates it); the shape (c) of Fig. 21 could be deformed to correspond macro-
scopically to that of (b), without changing its BCC nature, by twinning, as illustrated in
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Fig. 21e. The magnitude of the lattice-invariant deformation can be adjusted by varying the
volume fraction of the twin. This explains the twin substructure found in many ferrous marten-
sites, and such twins are called transformation twins. The irrationality of the habit planes arises
because the indices of the habit plane depend on the amount of lattice-invariant deformation,
a quantity which does not necessarily correlate with displacements equal to discrete lattice
vectors.

Since the effect of the homogeneous strain (F Q F) on the shape of the parent crystal has to
be cancelled by another opposite but inhomogeneously applied lattice-invariant deformation,
it follows that (F Q F) is restricted to being a simple shear with the displacement vector
e being confined to the invariant–plane of (F Q F). In other words, (F Q F) must have a
zero dilatational component, since it cannot otherwise be cancelled by another IPS which
preserves the lattice2. As noted earlier, lattice-invariant deformations cannot alter the volume
or symmetry of the lattice. The determinant of a deformation matrix gives the ratio of the
volume after deformation to that prior to deformation, so that det(F Q F) = 1. This means
that the total volume change of transformation is given by det(F P F) = det(F S F).

In summary, the martensite transformation in iron requires an invariant–line strain (F S F)
to change the FCC lattice to the BCC martensite lattice and to obtain the experimentally
observed orientation relation. This can be imagined to consist of two homogeneous invariant–
plane strains (F P F) and (F Q F), such that (F S F) = (F P F)(F Q F). However, the shape
change due to the simple shear (F Q F) is rendered invisible on a macroscopic scale since there
is also an inhomogeneous lattice-invariant deformation (which can be slip or twinning) which
cancels out the shape change due to (F Q F), without altering the lattice structure. It follows
that the macroscopic shape change observed is solely due to (F P F) and therefore has the
characteristics of an invariant–plane strain, as experimentally observed. We have already seen
that the transformation strain (F S F) can be factorised into a Bain Strain (F B F) combined
with an appropriate rigid body rotation (F J F), such that (F S F)=(F J F)(F B F) and is an
invariant–line strain, with the invariant–line lying in the planes p and q, and the invariant-
normal of (F S F) defining a plane containing d and e. Hence, the theory of martensite can
be summarised in terms of the equation

(F S F) = (F J F)(F B F) = (F P F)(F Q F) (22a)

Stage 1: Calculation of Lattice Transformation Strain

Two arbitrary lattices can be transformed into one another by an infinite number of different
transformation strains, but only some of these may have reasonably small principal deforma-
tions. The choice available can be further reduced by considering only those strains which
involve the minimum degree of shuffling of atoms and by considering the physical implications
of such strains. In the case of martensitic transformations, a further condition has to be sat-
isfied; the lattice transformation strain must also be an invariant–line strain if the interface is
to be glissile27.

For the FCC→BCC martensitic transformation, the Bain Strain, which is a pure deformation,
involves the smallest atomic displacements during transformation. When it is combined with
an appropriate rigid body rotation (example 4), the total strain amounts to an invariant–line
strain. For martensitic transformations, the rigid body rotation has to be chosen in such a way
that the invariant–line lies in the plane of the lattice-invariant shear and also in the habit plane
of the martensite; these planes are the invariant planes of (F Q F) and (F P F) respectively, so
that the line common to these planes is not affected by these deformations. Furthermore, the
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Fig. 21: Schematic illustration of the phenomenological theory of martensite.

(a) represents the austenite crystal and (c), (d) & (e) all have a BCC structure.

(b) has a structure between FCC and BCC, p is the habit plane unit normal

and q is the unit normal to the plane on which the lattice–invariant shear

occurs. The heavy horizontal lines in (e) are coherent twin boundaries. Note

that the vector e is normal to q but does not lie in the plane of the diagram.

invariant normal of the ILS must define a plane which contains the displacement directions of
the lattice invariant shear and of the shape deformation. This ensures that the spacing of this
plane is not affected by (F Q F) or (F P F).

Example 18 illustrates how the transformation strain can be determined once the nature of
the pure deformation (Bain Strain) which accomplishes the lattice change is deduced using
the procedures discussed above. To ensure that the invariant–line and invariant-normal of
the transformation strain are compatible with the mode of lattice–invariant shear, we first
need to specify the latter. In example 18 it is assumed that the plane and direction of the
lattice- invariant shear are (1 0 1)F and [1 0 1]F respectively. One variant of the Bain Strain
is illustrated in Fig. 1, where we see that [1 0 0]γ is deformed into [1 1 0]α, [0 1 0]γ to [1 1 0]α
and [0 0 1]γ to [0 0 1]α, so that the variant of the Bain correspondence matrix is given by
equation 20a. We will use this variant of the Bain correspondence matrix throughout the text,
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but we note that there are two other possibilities, where [0 0 1]α can be derived from either
[1 0 0]γ or [0 1 0]γ respectively.

Example 18: Determination of Lattice Transformation Strain

The deformation matrix representing the Bain Strain, which carries the FCC austenite lattice
(Fig. 1) to the BCC martensite lattice is given by

(A B A) =




η1 0 0
0 η2 0
0 0 η3





where F is an orthonormal basis consisting of unit basis vectors fi parallel to the crystallo-
graphic axes of the conventional FCC austenite unit cell (Fig. 1, f1‖ a1, f2‖ a2 & f3‖ a3). ηi are
the principal deformations of the Bain Strain, given by η1 = η2 = 1.136071 and η3 = 0.803324.

Find the rigid body rotation (F J F) which when combined with the Bain Strain gives an
invariant–line strain (F S F) = (F J F)(F B F), subject to the condition that the invariant–
line of (F S F) must lie in (1 0 1)F and that the plane defined by the invariant-normal of
(F S F) contains [1 0 1]F .

Writing the invariant–line as [F;u] = [u1u2u3], we note that for u to lie in (1 0 1)F , its
components must satisfy the equation

u1 = −u3 (23a)

Prior to deformation,
|u|2 = (u; F)[F;u] = 1 (23b)

u, as a result of deformation becomes a new vector x with

|x|2 = (x; F)[F;x]
= (u; F)(F B′ F )(F B F)[F;u]

= (u; F)(F B F)2[F;u]

If the magnitude of u is not to change on deformation then |u| = |x| or

u2
1 + u2

2 + u2
3 = η2

1u
2
1 + η2

2u
2
2 + η2

3u
2
3 (23c)

Equations 23a–c can be solved simultaneously to give two solutions for undistorted lines:

[F;u] = [−0.671120 − 0.314952 0.671120]

[F;v] = [−0.671120 0.314952 0.671120]

To solve for the invariant normal of the ILS, we proceed as follows. Writing (h; F∗) = (h1h2h3),
we note that for h to contain [1 0 1]F , its components must satisfy the equation

h1 = h3 (23d)

Furthermore,
(h; F∗)[F ∗;h] = 1 (23e)
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h, on deformation becomes a new plane normal l and if |h| = |l| then

|l|2 = (l; F∗)[F ∗; l]

= (h; F∗)(F B F)−1(F B′ F )−1[F ∗;h]

so that
h2

1 + h2
2 + h2

3 = (l1/η1)
2 + (l2/η2)

2 + (l3/η3)
2 (23f)

Solving eqs.23d–f simultaneously, we obtain the two possible solutions for the undistorted–
normals as

(h; F∗) = (0.539127 0.647058 0.539127)

(k; F∗) = (0.539127 − 0.647058 0.539127)

To convert (F B F) into an invariant–line strain (F S F) we have to employ a rigid body rotation
(F J F) which simultaneously brings an undistorted line (such as x) and an undistorted normal
(such as l) back into their original directions along u and h respectively. This is possible because
the angle between x and l is the same as that between u and h, as shown below:

l.x = (l; F∗)[F;x]

= (h; F∗)(F B F)−1(F B F)[F;u]
= (h; F∗)[F;u]
= h.u

Hence, one way of converting (F B F) into an ILS is to employ a rigid body rotation which
simultaneously rotates l into h and x into u. Of course, we have found that there are two
undistorted lines and two undistorted normals which satisfy the conditions of the original
question, and there are clearly four ways of choosing pairs of undistorted lines and undistorted
normals (in the case we investigate, the four solutions are clearly crystallographically equiv-
alent). There are therefore four solutions (different in general) to the problem of converting
(F B F) to (F S F), subject to the condition that the invariant–line should be in (1 0 1) and
that the invariant normal defines a plane containing [1 0 1]. We will concentrate on the solution
obtained using the pair u and h:

l = (h; F∗)(F B F)−1 = (0.474554 0.569558 0.671120)

x = (F B F)[F;u] = [−0.762440 − 0.357809 0.539127]

a = u ∧ h = (−0.604053 0.723638 − 0.264454)

b = x ∧ l = (−0.547197 0.767534 − 0.264454)

The required rigid body rotation should rotate x back to u, l back to h and b to a, giving the
three equations:

[F;u] = (F J F)[F;x]

[F;h] = (F J F)[F;l]

[F;a] = (F J F)[F;b]

which can be expressed as a 3 × 3 matrix equation



u1 h1 a1

u2 h2 a2

u3 h3 a3



 =




J11 J12 J13

J21 J22 J23

J31 J32 J33








w1 l1 b1
w2 l2 b2
w3 l3 b3




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it follows that



−0.671120 0.539127 −0.604053
−0.314952 0.647058 0.723638
0.671120 0.539127 −0.264454



 = (F J F)




−0.762440 0.474554 −0.547197
−0.357808 0.569558 0.767534
0.539127 0.671120 −0.264454





which on solving gives

(F J F) =




0.990534 −0.035103 0.132700
0.021102 0.994197 0.105482
−0.135633 −0.101683 0.985527





which is a rotation of 9.89◦ about [0.602879 − 0.780887 0.163563]F The invariant–line strain
(F S F) = (F J F)(F B F) is thus

(F S F) =




1.125317 −0.039880 0.106601
0.023973 1.129478 0.084736
−0.154089 −0.115519 0.791698





and we note that (F S F)−1 = (F B F)−1(F J F)−1 is given by

(F S F)−1 =




0.871896 0.018574 −0.119388
−0.030899 0.875120 −0.089504
0.165189 0.131307 1.226811





Stage 2: Determination of the Orientation Relationship

The orientation relationship between the austenite and martensite is best expressed in terms
of a co-ordinate transformation matrix (α J γ). Any vector u or any plane normal h can then
be expressed in either crystal basis by using the equations

[α;u] = (α J γ)[γ;u]

[γ;u] = (γ J α)[α;u]

(h;α∗) = (h; γ∗)(γ J α)

(h; γ∗) = (h;α∗)(α J γ)

Example 19: The Martensite-Austenite Orientation Relationship

For the martensite reaction considered in example 18, determine the orientation relationship
between the parent and product lattices.

The orientation relationship can be expressed in terms of a co-ordinate transformation matrix
(α J γ), which is related to the transformation strain (γ S γ) via equation 15h, so that

(α J γ)(γ S γ) = (α C γ)

where (α C γ) is the Bain correspondence matrix (equation 20a), and it follows that

(α J γ) = (α C γ)(γ S γ)−1
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In example 18 the matrices representing the transformation strain and its inverse were de-
termined in the basis F, and can be converted into the basis γ by means of a similarity
transformation. However, because fi are parallel to ai, it can easily be demonstrated that
(F S F) = (γ S γ) and (F S F)−1 = (γ S γ)−1. Hence, using the data from example 18 and
the Bain correspondence matrix from equation 20a, we see that

(α J γ) =




1 1 0
1 1 0
0 0 1








0.871896 0.018574 −0.119388
−0.030899 0.875120 −0.089504
0.165189 0.131307 1.226811





(α J γ) =




0.902795 −0.856546 −0.029884
0.840997 0.893694 −0.208892
0.165189 0.131307 1.226811





(γ J α) =




0.582598 0.542718 0.106602
−0.552752 0.576725 0.084736
−0.019285 −0.134804 0.791698





These co–ordinate transformation matrices can be used to show that

(1 1 1)γ = (0.016365 1.525799 1.523307)α

and
[1 0 1]γ = [−0.932679 − 1.049889 1.061622]α

This means that (1 1 1)γ is very nearly parallel to (0 1 1)α and [1 0 1]γ is about 3◦ from
[1 1 1]α. The orientation relationship is illustrated in Fig. 22.

Stage 3: The Nature of the Shape Deformation

Having determined the transformation strain (F S F), it remains to factorise it according to
equation 22a, (F S F)=(F P F)(F Q F), where (F P F) is the shape deformation matrix. This
factorisation is not unique; (F P F) is physically significant because it can be experimentally
determined and describes the macroscopic change in shape of the parent crystal, but the above
equation also implies that (F Q F) operates before (F P F). This implication is not real since the
transformation does not occur in two stages with (F Q F) followed by (F P F). All the changes
necessary for transformation occur simultaneously at the moving interface. Transformation
dislocations (atomic height steps) in the interface cause the FCC lattice to change to the BCC
lattice as the interface moves and the deformation that this produces is described by (F S F).
The intrinsic dislocations which lie along the invariant–line in the interface have Burgers vectors
which are perfect lattice vectors of the parent lattice. They cannot therefore take part in the
actual transformation of the lattice, but as the interface moves, they inhomogeneously shear
the volume of the material swept by the interface27. This is of course the lattice–invariant
shear discussed above, which in combination with the shape deformation due to (F S F) gives
the experimentally observed IPS surface relief (F P F). This then is the physical interpretation
of the transformation process.

The crystallographic theory of martensite is on the other hand called phenomenological; the
steps into which the transformation is factorised (e.g. the two “shears” (F P F) & (F Q F))
are not unique and do not necessarily describe the actual path by which the atoms move from
one lattice to the other. The theory simply provides a definite link between the initial and
final states without being certain of the path in between.
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Fig. 22: Stereographic representation of the orientation relationship between

martensite and austenite, as deduced in example 19. The lattice–invariant

shear plane (q) and direction (-e), and the habit plane (p) and unit displace-

ment vector (d) are also illustrated.

Example 20: The Habit Plane and the Shape Deformation

For the martensite reaction considered in example 18, determine the habit plane of the marten-
site plate, assuming that the lattice–invariant shear occurs on the system (1 0 1)γ [1 0 1]γ .
Comment on the choice of this shear system and determine the nature of the shape deforma-
tion.

The lattice invariant shear is on (1 0 1)[1 0 1] and since its effect is to cancel the shape
change due to (F Q F), the latter must be a shear on (1 0 1)[1 0 1]. To solve for the habit
plane (unit normal p) it is necessary to factorise (F S F) into the two invariant–plane strains
(F P F) = I + m[F;d](p; F∗) and (F Q F) = I + n[F;e](q; F∗).

The transformation strain (F S F) of example 18 was calculated by phenomenologically com-
bining the Bain Strain with a rigid body rotation, with the latter chosen to make (F S F)
an invariant line strain, subject to the condition that the invariant line u of (F S F) must
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lie in (1 0 1)γ and that the invariant-normal h of (F S F) must define a plane containing
[1 0 1]γ . This is of course compatible with the lattice–invariant shear system chosen in the
present example since u.q = e.h = 0. From equation 22a,

(F S F) = (F P F)(F Q F) = {I + m[F;d](p; F∗)}{I + n[F;e](q; F∗)} (24a)

and using equation 13, we see that

(F S F)−1 = (F Q F)−1(F P F)−1

= {I − n[F;e](q; F∗)}{I − am[F;d](p; F∗)}
(24b)

where 1/a = det(F P F) and det(F Q F) = 1. Using equation 24b, we obtain

(q; F∗)(F S F)−1 = (q; F∗){I − n[F;e](q; F∗)}{I − am[F;d](p; F∗)}
= {(q; F∗) − n (q; F∗)[F;e]︸ ︷︷ ︸

=0

(q; F∗)} {I − am[F;d](p; F∗)}

= (q; F∗){I − am[F;d](p; F∗)}
= (q; F∗) − b(p; F∗)

where b is a scalar constant given by b = am(q; F∗)[F;d].

Hence,

b(p; F∗) = (q; F∗) − (q; F∗)(F S F)−1

= ( 0.707 0.000 0.707 ) − ( 0.707 0.000 0.707 )




0.871896 0.018574 −0.119388
0.030894 0.875120 −0.089504
0.165189 0.131307 1.226811





= (−0.026223 −0.105982 −0.075960 )

This can be normalised to give p as a unit vector:

(p; F∗)‖ (0.197162 0.796841 0.571115)

(p; F∗) of course represents the indices of the habit plane of the martensite plate. As expected,
the habit plane is irrational. To completely determine the shape deformation matrix (F P F)
we also need to know m and d. Using equation 24a, we see that

(F S F)[F;e] = [F;e] + m[F;d](p; F∗)[F;e]

Writing c as the scalar constant c = (p; F∗)[F;e], we get

cm[F;d] = (F S F)[F;e] − [F;e]

=




1.125317 −0.039880 0.106601
0.023973 1.129478 0.084736
−0.154089 −0.115519 0.791698








0.707107
0.000000
−0.707107



 −




0.707107
0.000000
−0.707107





so that
cm[F;d] = [0.013234 − 0.042966 0.038334]
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Now, c = (0.197162 0.796841 0.571115)[0.707107 0 − 0.707107] = −0.26442478 so that
m[F;d] = [−0.050041 0.162489 − 0.144971]. Since d is a unit vector, it can be obtained
by normalising md to give

[F;d] = [−0.223961 0.727229 − 0.648829]

and
m = |md| = 0.223435

The magnitude m of the displacements involved can be factorised into a shear component s
parallel to the habit plane and a dilatational component δ normal to the habit plane. Hence,
δ = md.p = 0.0368161 and s = (m2 − δ2) 1

2 = 0.220381. These are typical values of the
dilatational and shear components of the shape strain found in ferrous martensites.

The shape deformation matrix, using the above data, is given by

(F P F) =




0.990134 −0.039875 −0.028579
0.032037 1.129478 0.092800
−0.028583 −0.115519 0.917205





Stage 4: The Nature of the lattice–invariant Shear

We have already seen that the shape deformation (F P F) cannot account for the overall
conversion of the FCC lattice to that of BCC martensite. An additional homogeneous lattice
varying shear (F Q F) is necessary, which in combination with (F P F) completes the required
change in structure. However, the macroscopic shape change observed experimentally is only
due to (F P F); the effect of (F Q F) on the macroscopic shape change must thus be offset
by a system of inhomogeneously applied lattice–invariant shears. Clearly, to macroscopically
cancel the shape change due to (F Q F), the lattice–invariant shear must be the inverse of
(F Q F). Hence, the lattice invariant shear operates on the plane with unit normal q but in
the direction −e, its magnitude on average being the same as that of (F Q F).

Example 21: The Lattice Invariant Shear

For the martensite reaction discussed in examples 18–20, determine the nature of the homoge-
neous shear (F Q F) and hence deduce the magnitude of the lattice–invariant shear. Assuming
that the lattice–invariant shear is a slip deformation, determine the spacing of the intrinsic
dislocations in the habit plane, which are responsible for this inhomogeneous deformation.

Since (F S F) = (F P F)(F Q F), it follows that (F Q F) = (F P F)−1(F S F), so that

(F Q F) =




1.009516 0.038459 0.027564
−0.030899 0.875120 −0.089505
0.027568 0.111417 1.079855








1.125317 −0.039880 0.106601
0.023973 1.129478 0.084736
−0.154089 −0.115519 0.791698








1.132700 0.000000 0.132700
0.000000 1.000000 0.000000
−0.132700 0.000000 0.867299





Comparison with eq. 11d shows that this is a homogeneous shear on the system (1 0 1)[1 0 1]F
with a magnitude n = 0.2654.
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The lattice–invariant shear is thus determined since it is the inverse of (F Q F), having the
same average magnitude but occurring inhomogeneously on the system (1 0 1)[1 0 1]F . If the
intrinsic interface dislocations which cause this shear have a Burgers vector b = (aγ/2)[1 0 1]γ ,
and if they occur on every K’th slip plane, then if the spacing of the (1 0 1)γ planes is given
by d, it follows that

n = |b|/Kd = 1/K so that K = 1/0.2654 = 3.7679

Of course, K must be an integral number, and the non–integral result must be taken to mean
that there will on average be a dislocation located on every 3.7679th slip plane; in reality, the
dislocations will be non–uniformly placed, either 3 or 4 (1 0 1) planes apart.

The line vector of the dislocations is the invariant–line u and the spacing of the intrinsic
dislocations, as measured on the habit plane is Kd/(u ∧ p.q) where all the vectors are unit
vectors. Hence, the average spacing would be

3.7679(aγ2−
1
2 )/0.8395675 = 3.1734aγ

and if aγ = 3.56Å, then the spacing is 11.3Å on average.

If on the other hand, the lattice–invariant shear is a twinning deformation (rather than slip),
then the martensite plate will contain very finely spaced transformation twins, the structure of
the interface being radically different from that deduced above, since it will no longer contain
any intrinsic dislocations. The mismatch between the parent and product lattices was in
the slip case accommodated with the help of intrinsic dislocations, whereas for the internally
twinned martensite there are no such dislocations. Each twin terminates in the interface to give
a facet between the parent and product lattices, a facet which is forced into coherency. The
width of the twin and the size of the facet is sufficiently small to enable this forced coherency
to exist. The alternating twin related regions thus prevent misfit from accumulating over large
distances along the habit plane.

If the (fixed) magnitude of the twinning shear is denoted S, then the volume fraction V of the
twin orientation, necessary to cancel the effect of (F Q F), is given by V = n/S, assuming
that n < S. In the above example, the lattice–invariant shear occurs on (1 0 1)[1 0 1]γ
which corresponds to (1 1 2)α[1 1 1]α, and twinning on this latter system involves a shear
S = 0.707107, giving V = 0.2654/0.707107 = 0.375.

It is important to note that the twin plane in the martensite corresponds to a mirror plane in the
austenite; this is a necessary condition when the lattice–invariant shear involves twinning. The
condition arises because the twinned and untwinned regions of the martensite must undergo
Bain Strain along different though crystallographically equivalent principal axes2,4.

The above theory clearly predicts a certain volume fraction of twins in each martensite plate,
when the lattice–invariant shear is twinning as opposed to slip. However, the factors governing
the spacing of the twins are less quantitatively established; the finer the spacing of the twins,
the lower will be the strain energy associated with the matching of each twin variant with
the parent lattice at the interface. On the other hand, the amount of coherent twin boundary
within the martensite increases as the spacing of the twins decreases.

A factor to bear in mind is that the lattice–invariant shear is an integral part of the trans-
formation; it does not happen as a separate event after the lattice change has occurred. The
transformation and the lattice–invariant shear all occur simultaneously at the interface, as
the latter migrates. It is well known that in ordinary plastic deformation, twinning rather
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than slip tends to be the favoured deformation mode at low temperatures or when high strain
rates are involved. It is therefore often suggested that martensite with low MS temperatures
will tend to be twinned rather than slipped, but this cannot be formally justified because the
lattice–invariant shear is an integral part of the transformation and not a physical deformation
mode on its own. Indeed, it is possible to find lattice–invariant deformation modes in marten-
site which do not occur in ordinary plastic deformation experiments. The reasons why some
martensites are internally twinned and others slipped are not clearly understood49. When the
spacing of the transformation twins is roughly comparable to that of the dislocations in slipped
martensite, the interface energies are roughly equal. The interface energy increases with twin
thickness and at the observed thicknesses is very large compared with the corresponding in-
terface in slipped martensite. The combination of the relatively large interface energy and the
twin boundaries left in the martensite plate means that internally twinned martensite is never
thermodynamically favoured relative to slipped martensite. It is possible that kinetic factors
such as interface mobility actually determine the type of martensite that occurs.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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5 Interfaces

Atoms in the boundary between crystals must in general be displaced from positions they
would occupy in the undisturbed crystal, but it is now well established that many interfaces
have a periodic structure. In such cases, the misfit between the crystals connected by the
boundary is not distributed uniformly over every element of the interface; it is periodically
localised into discontinuities which separate patches of the boundary where the fit between
the two crystals is good or perfect. When these discontinuities are well separated, they may
individually be recognised as interface dislocations which separate coherent patches in the
boundary, which is macroscopically said to be semi–coherent. Stress-free coherent interfaces
can of course only exist between crystals which can be related by a transformation strain which
is an invariant–plane strain. This transformation strain may be real or notional as far as the
calculation of the interface structure is concerned, but a real strain implies the existence of
an atomic correspondence (and an associated macroscopic shape change of the transformed
region) between the two crystals, which a notional strain does not.

Incoherency presumably sets in when the misfit between adjacent crystals is so high that it
cannot satisfactorily be localised into identifiable interface dislocations, giving a boundary
structure which is difficult to physically interpret, other than to say that the motion of such
an interface must always occur by the unco-ordinated and haphazard transfer of atoms across
the interface. This could be regarded as a definition of incoherency; as will become clear later,
the intuitive feeling that all “high–angle” boundaries are incoherent is not correct.

The misfit across an interface can formally be described in terms of the net Burgers vector bt

crossing a vector p in the interface50,51,5. If this misfit is sufficiently small then the boundary
structure may relax into a set of discrete interfacial dislocations (where the misfit is concen-
trated) which are separated by patches of good fit.

In any case, bt may be deduced by constructing a Burgers circuit across the interface, and
examining the closure failure when a corresponding circuit is constructed in a perfect reference
lattice. The procedure is illustrated in Fig. 23, where crystal A is taken to be the reference
lattice. An initial right–handed Burgers circuit OAPBO is constructed such that it straddles
the interface across any vector p in the interface (p = OP); the corresponding circuit in
the perfect reference lattice is constructed by deforming the crystal B (of the bi–crystal A-
B) in such a way that it is converted into the lattice of A, eliminating the interface. If
the deformation (A S A) converts the reference lattice into the B lattice, then the inverse

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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deformation (A S A)−1 converts the bi–crystal into a single A crystal, and the Burgers circuit
in the perfect reference lattice becomes OAPP’B, with a closure failure PP’, which is of course
identified as bt. Inspection of the vectors forming the triangle OPP’ of Fig. 23b shows that:

[A;bt] = {I − (A S A)−1}[A;p] (25)

Fig. 23: (a,b) Burgers circuit used to define the formal dislocation content of

an interface5, (c) the vector p in the interface, (d) relationship between li, mi,

ci and n.

Hence, the net Burgers vector content bt crossing an arbitrary vector p in the interface is
formally given by equation 25. The misfit in any interface can in general be accommodated
with three arrays of interfacial dislocations, whose Burgers vectors bi (i = 1, 2, 3) form a non-
coplanar set. Hence, bt can in general be factorised into three arrays of interfacial dislocations,
each array with Burgers vector bi, unit line vector li and array spacing di, the latter being
measured in the interface plane. If the unit interface normal is n, then a vector mi may be
defined as (the treatment that follows is due to Knowles52 and Read53):

mi = n ∧ li/di (26a)

We note the |mi| = 1/di, and that any vector p in the interface crosses (mi.p) dislocations of
type I (see Fig. 23c). Hence, for the three kinds of dislocations we have

bt = (m1.p)b1 + (m2.p)b2 + (m3.p)b3

We note that the Burgers vectors bi of interface dislocations are generally lattice translation
vectors of the reference lattice in which they are defined. This makes them perfect in the sense
that the displacement of one of the crystals through bi relative to the other does not change
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the structure of the boundary. On the basis of elastic strain energy arguments, bi should be
as small as possible. On substituting this into equation 25, we get:

(m1; A
∗)[A;p][A;b1] + (m2; A

∗)[A;p][A;b2] + (m3; A
∗)[A;p][A;b3] = (A T A)[A;p] (26b)

where (A T A) = I − (A S A)−1.

If a scalar dot product is taken on both sides of equation 26b with the vector b∗
1, where b∗

1 is

b1∧ =
b2 ∧ b3

b1.b2 ∧ b3

(26c)

then we obtain
(b∗

1; A
∗)(A T A)[A;p] = (m1; A

∗)[A;p] (26d)

If p is now taken to be equal to l1 in equation 26d, we find that

(b∗
1; A

∗)(A T A)[A; l1] = 0

or
(l1; A)(A T′; A)[A∗;b∗

1] = 0 (26e)

If we define a new vector c1 such that

[A∗; c1] = (A T′; A)[A∗;b∗
1] (26f)

then equation 26e indicates that c1 is normal to l1. Furthermore, if m1 is now substituted for
p in equation 26d, then we find:

(b∗
1; A

∗)(A T A)[A;m1] = (m1; A
∗)[A;m1] = |m1|2

or
(m1; A)(A T′ A)[A∗;b∗

1] = |m1|2

or
(m1; A)[A∗; c1] = |m1|2

or
m1.c1 = |m1|2

These equations indicate that the projection of c1 along m1 is equal to the magnitude of m1.
Armed with this and the earlier result that c1 is normal to l1, we may construct the vector
diagram illustrated in Fig. 23d, which illustrates the relations between m1, l1, n and c1. From
this diagram, we see that

m1 = c1 − (c1.n)n (27a)

so that
|m1 ∧ n| = |c1 ∧ n| = 1/d1 (27b)

and in addition, Fig. 23d shows that
l1‖ c1 ∧ n (27c)

alternatively,
(1/d1)l1 = c1 ∧ n (27d)
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The relations of the type developed in equation 27 are, after appropriately changing indices,
also applicable to the other two arrays of interfacial dislocations, so that we have achieved
a way of deducing the line vectors and array spacings to be found in an interface (of unit
normal n) connecting two arbitrary crystals A and B, related by the deformation (A S A)
which transforms the crystal A to B.

Example 22: The Symmetrical Tilt Boundary

Given that the Burgers vectors of interface dislocations in low-angle boundaries are of the form
< 1 0 0 >, calculate the dislocation structure of a symmetrical tilt boundary formed between
two grains, A and B, related by a rotation of 2θ about the [1 0 0] axis. The crystal structure
of the grains is simple cubic, with a lattice parameter of 1 Å.

The definition of a tilt boundary is that the unit boundary normal n is perpendicular to the
axis of rotation which generates one crystal from the other; a symmetrical tilt boundary has
the additional property that the lattice of one crystal can be generated from the other by
reflection across the boundary plane.

If we choose the orthonormal bases A and B (with basis vectors parallel to the cubic unit
cell edges) to represent crystals A and B respectively, and also arbitrarily choose B to be the
reference crystal, then the deformation which generates the A crystal from B is a rigid body
rotation (B J B) consisting of a rotation of 2θ about [1 0 0]B . Hence, (B J B) is given by (see
equation 8c):

(B J B) =




1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ





and (B T B) = I − (B J B)−1 is given by

(B T B) =




0 0 0
0 1 − cos 2θ sin 2θ
0 − sin 2θ 1 − cos 2θ





and

(B T′ B) =




0 0 0
0 1 − cos 2θ − sin 2θ
0 sin 2θ 1 − cos 2θ





Taking [B;b1] = [1 0 0], [B;b2] = [0 1 0] and [B;b3] = [0 0 1], from equation 26c we note that
[B∗;b∗

1] = [1 0 0], [B∗;b∗
2] = [0 1 0] and [B∗;b∗

3] = [0 0 1]. equation 26f can now be used to
obtain the vectors ci:

[B∗; c1] = (B T′ B)[B∗;b∗
1] = [0 0 0]

[B∗; c2] = (B T′ B)[B∗;b∗
2] = [0 1 − cos 2θ sin 2θ]

[B∗; c3] = (B T′ B)[B∗;b∗
3] = [0 − sin 2θ 1 − cos 2θ]

Since c1 is a null vector, dislocations with Burgers vector b1 do not exist in the interface;
furthermore, since c1 is always a null vector, irrespective of the boundary orientation n, this
conclusion remains valid for any n. This situation arises because b1 happens to be parallel
to the rotation axis, and because (B J B) is an invariant–line strain, the invariant line being
the rotation axis; since any two crystals of identical structure can always be related by a
transformation which is a rigid body rotation, it follows that all grain boundaries (as opposed
to phase boundaries) need only contain two sets of interface dislocations. If b1 had not been
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parallel to the rotation axis, then c1 would be finite and three sets of dislocations would be
necessary to accommodate the misfit in the boundary.

To calculate the array spacings di it is necessary to express n in the B∗ basis. A symmetrical
tilt boundary always contains the axis of rotation and has the same indices in both bases. It
follows that

(n; B∗) = (0 cos θ − sin θ)

and from equation 27d,
(1/d2)l2 = c2 ∧ n = [−2 sin θ 0 0]B

so that
[B; l2] = [−1 0 0]

and
d2 = 1/2 sin θ

. similarly,
(1/d3)l3 = c3 ∧ n = [0 0 0]

so that dislocations with Burgers vector b3 have an infinite spacing in the interface, which
therefore consists of just one set of interface dislocations with Burgers vector b2.

These results are of course identical to those obtained from a simple geometrical construction
of the symmetrical tilt boundary5. We note that the boundary is glissile (i.e. its motion does
not require the creation or destruction of lattice sites) because b2 lies outside the boundary
plane, so that the dislocations can glide conservatively as the interface moves. In the absence
of diffusion, the movement of the boundary leads to a change in shape of the “transformed”
region, a shape change described by (B J B) when the boundary motion is towards the crystal
A.

If on the other hand, the interface departs from its symmetrical orientation (without changing
the orientation relationship between the two grains), then the boundary ceases to be glissile,
since the dislocations with Burgers vector b3 acquire finite spacings in the interface. Such a
boundary is called an asymmetrical tilt boundary. For example, if n is taken to be (n; B∗) =
(0 1 0), then

[B; l2] = [1 0 0] and d2 = 1/ sin 2θ

[B; l3] = [1 0 0] and d3 = 1/(1 − cos 2θ)

The edge dislocations with Burgers vector b3 lie in the interface plane and therefore have to
climb as the interface moves. This renders the interface sessile.

Finally, we consider the structure of a twist boundary, a boundary where the axis of rotation
is parallel to n. Taking (n; B∗) = (1 0 0), we find:

[B; l2]‖ [0 sin 2θ cos 2θ − 1],

and d2 = [2 − 2 cos 2θ] 1
2 and

[B; l3]‖ [0 1 − cos 2θ sin 2θ],

and d3 = d2.

We note that dislocations with Burgers vector b1 do not exist in the interface since b1 is parallel
to the rotation axis. The interface thus consists of a cross grid of two arrays of dislocations
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with Burgers vectors b2 and b3 respectively, the array spacings being identical. Although
it is usually stated that pure twist boundaries contain grids of pure screw dislocations, we
see that both sets of dislocations actually have a small edge component. This is because
the dislocations, where they mutually intersect, introduce jogs into each other so that the
line vector in the region between the points of intersection does correspond to a pure screw
orientation, but the jogs make the macroscopic line vector deviate from this screw orientation.

Example 23: The interface between alpha and beta brass

The lattice parameter of the FCC alpha phase of a 60 wt% Cu–Zn alloy is 3.6925 Å, and that
of the BCC beta phase is 2.944 Å54. Two adjacent grains A and B (alpha phase and beta
phase respectively) are orientated in such a way that

[1 1 1]A‖ [1 1 0]B

[1 1 2]A‖ [1 1 0]B
[1 1 0]A‖ [0 0 1]B

and the grains are joined by a boundary which is parallel to (1 1 0)A. Assuming that the misfit
in this interface can be fully accommodated by interface dislocations which have Burgers vectors
[A;b1] = 1

2 [1 0 1], [A;b2] = 1
2 [0 1 1] and [A;b3] = 1

2 [1 1 0], calculate the misfit dislocation
structure of the interface. Also assume that the smallest pure deformation which relates FCC
and BCC crystals is the Bain strain.

The orientation relations provided are first used to calculate the co-ordinate transformation
matrix (B J A), using the procedure given in examples 4 and 5. (B J A) is thus found to be:

(B J A) =




0.149974 0.149974 1.236185

0.874109 0.874109 − 0.212095
0.874109 0.874109 − 0.212095





The smallest pure deformation relating the two lattices is stated to be the Bain strain, but
the total transformation (A S A), which carries the A lattice to that of B, may include an
additional rigid body rotation. Determination of the interface structure requires a knowledge
of (A S A), which may be calculated from the equation (A S A)−1 = (A C B)(B J A), where
(A C B) is the correspondence matrix. Since (B J A) is known, the problem reduces to the
determination of the correspondence matrix; if a vector equal to a basis vector of B, due to
transformation becomes a new vector u, then the components of u in the basis A form one
column of the correspondence matrix.

For the present example, the correspondence matrix must be a variant of the Bain correspon-
dence, so that we know that [1 0 0]B must become, as a result of transformation, either a
vector of the form < 1 0 0 >A, or a vector of the form 1

2 < 1 1 0 >A, although we do not know
its final specific indices in the austenite lattice. However, from the matrix (B J A) we note
that [1 0 0]B is close to [0 0 1]A, so that it is reasonable to assume that [1 0 0]B corresponds
to [0 0 1]A, so that the first column of (A C B) is [0 0 1]. Similarly, using (B J A) we find that
[0 1 0]B is close to [1 1 0]A and [0 0 1]B is close to [1 1 0]A, so that the other two columns of
(A C B) are [ 12

1
2 0] and [− 1

2
1
2 0]. Hence, (A C B) is found to be:

(A C B) =
1
2




0 1 −1
0 1 1
2 0 0




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so that (A S A)−1 = (A C B)(B J A) is given by:

(A S A)−1 =




0.880500 −0.006386 −0.106048
−0.006386 0.880500 −0.106048
0.149974 0.149974 1.236183





and since
(A T A) = I − (A S A)−1

, (A T’ A) is given by:

(A T′ A) =




0.119500 0.006386 −0.149974
0.006386 0.119500 −0.149974
0.016048 0.016048 −0.236183





The vectors b∗
i , as defined by equation 26c, are given by:

[A∗;b∗
1] = [1 1 1]

[A∗;b∗
2] = [1 1 1]

[A∗;b∗
3] = [1 1 1]

and using equation 26f, we find

[A∗; c1] = [0.263088 0.036860 0.236183]
[A∗; c2] = [0.036860 0.263088 0.236083]
[A∗; c3] = [−0.024088 −0.024088 −0.024087]

and from equation 27d and the fact that (n; A∗) = 3.6925(−0.707107 0.707107 0),

(1/d1)[A; l1] = [−0.012249 −0.012249 0.015556]
(1/d2)[A; l2] = [−0.012249 −0.012249 0.015556]
(1/d3)[A; l3] = [ 0.001249 0.001249 −0.002498]

so that d1 = d2 = 11.63 Å, and d3 = 88.52 Å

Coincidence Site Lattices

We have emphasised that equation 25 defines the formal (or mathematical) Burgers vector
content of an interface, and it is sometimes possible to interpret this in terms of physically
meaningful interface dislocations, if the misfit across the interface is sufficiently small. For
high–angle boundaries, the predicted spacings of dislocations may turn out to be so small that
the misfit is highly localised with respect to the boundary, and the dislocation model of the
interface has only formal significance (it is often said that the dislocations get so close to each
other that their cores overlap). The arrangement of atoms in such incoherent boundaries may
be very haphazard, with little correlation of atomic positions across the boundary.

On the other hand, it is unreasonable to assume that all high–angle boundaries have the disor-
dered structure suggested above. There is clear experimental evidence which shows that certain
high–angle boundaries exhibit the characteristics of low-energy coherent or semi–coherent in-
terfaces; for example, they exhibit strong faceting, have very low mobility in pure materials
and the boundary diffusion coefficient may be abnormally low. These observations imply that
at certain special relative crystal orientations, which would usually be classified as high–angles
orientations, it is possible to obtain boundaries which have a distinct structure – they contain
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regions of good fit, which occur at regular intervals in the boundary plane, giving a pattern of
good fit points in the interface. It is along these points that the two crystals connected by the
boundary match exactly.

If we consider the good fit points to correspond to lattice points in the interface which are
common to both crystals, then the following procedure allows us to deduce the pattern and
frequency of these points for any given orientation relationship. If the two lattices (with a
common origin) are notionally allowed to interpenetrate and fill all space, then there may
exist lattice points (other than the origin) which are common to both the crystals. The set of
these coincidence points forms a coincidence site lattice (CSL)56,57, and the fractions of lattice
points which are also coincidence sites is a rational fraction 1/Σ. Σ is thus the reciprocal
density of coincidence sites relative to ordinary lattice sites. The value of Σ is a function of
the relative orientation of the two grains and not of the orientation of the boundary plane.
The boundary simply intersects the CSL and will contain regions of good fit which have
a periodicity corresponding to the periodicity of a planar net of the CSL along which the
intersection occurs. Boundaries parallel to low-index planes of the CSL are two dimensionally
periodic with relatively small repeat cells, and those boundaries with a high planar coincidence
site density should have a relatively low energy.

Example 24: Coincidence site lattices

The axis–angle pair describing the orientation relationship between the two grains (A and B)
of austenite is given by:

axis of rotation parallel to [1 1 2]A

right–handed angle of rotation 180◦

Show that a CSL with Σ = 3 can be formed by allowing the two lattices to notionally inter-
penetrate. Also show that 1 in 3 of the sites in an interface parallel to (0 2 1)A are coincidence
sites.

Because of the centrosymmetric nature of the austenite lattice, a rotation of 180◦ about [1 1 2]A,
which generates the B grain from A, is equivalent to a reflection of the A lattice about (1 1 2)A.
We may therefore imagine that B is generated by reflection of the A lattice about (1 1 2)A as
the mirror plane. The stacking sequence of (1 1 2)A is . . . ABCDEFABCDEFABCDEF . . .
and grain A is represented below as a stack of (1 1 2) planes, B being generated by reflecting
the A lattice about one of the (1 1 2)A planes.

Grain A︷ ︸︸ ︷
A B C D E F A B C D E F A B C D E F A B C D E F A B C D E F

| | | | | | | [1 1 2]A →
A B C D E F A B C D︸ ︷︷ ︸

Grain A
C B A F E D C B A F E D C B A F E D C B︸ ︷︷ ︸

Grain B

The first sequence represents a stack of (1 1 2)A planes, as do the first 9 layers of the second
sequence. The remainder of the second sequence represents a stack of (1 1 2)B planes (note
that B lattice is obtained by reflection of A about the 9th layer of the second sequence). Since
the two sequences have the same origin, comparison of the first sequence with the B part of
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the second sequence amounts to allowing the two crystals to interpenetrate in order to identify
coincidences. Clearly, every 3rd layer of grain B coincides exactly with a layer from the A
lattice (dashed vertical lines), giving Σ = 3.

A boundary parallel to (1 1 2)A will be fully coherent; at least 1 in 3 of the sites in any other
boundary, such as (0 2 1)A will be coincidence sites.

We now consider a mathematical method5,58 of determining the CSL formed by allowing the
lattices of crystals A and B to notionally interpenetrate; A and B are assumed to be related
by a transformation (A S A) which deforms the A lattice into that of B; A and B need not
have the same crystal structure or lattice parameters, so that (A S A) need not be a rigid body
rotation. Consider a vector u which is a lattice vector whose integral components do not have
a common factor. As a result of the transformation (A S A), u becomes a new vector x such
that

[A;x] = (A S A)[A;u] (28)

Of course, x does not necessarily have integral components in the A basis (i.e. it need not be a
lattice vector of A). CSL vectors, on the other hand, identify lattice points which are common
to both A and B, and therefore are lattice vectors of both crystals. It follows that CSL vectors
have integral indices when referred to either crystal. Hence, x is only a CSL vector if it has
integral components in the basis A. We note that x always has integral components in B,
because a lattice vector of A (such as u) always deforms into a lattice vector of B.

The meaning of Σ is that 1/Σ of the lattice sites of A or B are common to both A and B. It
follows that any primitive lattice vector of A or B, when multiplied by Σ, must give a CSL
vector. Σx must therefore always be a CSL vector and if equation 28 is multiplied by Σ, then
we obtain an equation in which the vector u always transforms into a CSL vector:

Σ[A;x] = Σ(A S A)[A;u] (29)

i.e. given that u is a lattice vector of A, whose components have no common factor, Σx is
a CSL vector with integral components in either basis. This can only be true if the matrix
Σ(A S A) has elements which are all integral since it is only then that Σ[A;x] has elements
which are all integral.

It follows that if an integer H can be found such that all the elements of the matrix H(A S A)
are integers (without a common factor), then H is the Σ value relating A and B.

Applying this to the problem of example 24, the rotation matrix corresponding to the rotation
180◦ about [1 1 2]A is given by (equation 8c)

(A J A) =
1
3




2 1 2
1 2 2
2 2 1





and since 3 is the integer which when multiplied with (A J A) gives a matrix of integral
elements (without a common factor), the Σ value for this orientation is given by Σ = 3 . For
reasons of symmetry (see chapter 2), the above rotation is crystallographically equivalent to a
rotation of 60◦ about [1 1 1]A and for this the rotation matrix is given by

(A J A) =
1
3




2 2 1
1 2 2
2 1 2




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so that a rotation of 60◦ about [1 1 1]A also corresponds to a Σ = 3 value.

Finally, we see from equation 29 that if the integer H (defined such that H(A S A) has
integral elements with no common factor) turns out to be even, then the Σ value is obtained
by successively dividing H by 2 until the result H’ is an odd integer. H’ then represents the
true Σ value. This is because (equation 29) if H[A;x] is a CSL vector and if H is even then
Hx has integral even components in A, but H ′x would also have integral components in A and
would therefore represent a smaller CSL vector. From example 16, the transformation strain
relating FCC-austenite and HCP-martensite is given by:

(Z P Z) =




1.083333 0.083333 0.083333
0.083333 1.083333 0.083333
−0.166667 −0.166667 0.833333



 =
1
12




13 1 1
1 13 1
−2 −2 9





so that H = 12, but H ′ = Σ = 3 . We can further illustrate this result by following the
procedure of example 24. The first sequence below represents a stack of the (1 1 1) planes of
the FCC lattice, as do the first 9 planes of the second stacking sequence. The other planes of
the second sequence represent the basal planes of the HCP lattice. Since two out of every 6
layers are in exact coincidence, Σ = 3 , as shown earlier.

FCC︷ ︸︸ ︷
A B C A B C A B C A B C A B C A B C A B C A B

| | | | | | [1 1 1]γ‖ [0 0 0 1]HCP →
A B C A B C A B C︸ ︷︷ ︸

FCC
A C A C A C A C A C A C A C︸ ︷︷ ︸

HCP

Example 25: Symmetry and the Axis-Angle representations of CSL’s

Show that the coincidence site lattice associated with two cubic crystals related by a rotation
of 50.5◦ about < 1 1 0 > has Σ = 11. Using the symmetry operations of the cubic lattice,
generate all possible axis–angle pair representations which correspond to this Σ value.

The rotation matrix corresponding to the orientation relation 50.5◦ about < 1 1 0 > is given
by (equation 8c):

(A J A) =




0.545621 −0.545621 0.636079
0.181961 0.818039 0.545621
0.818039 0.181961 −0.545621



 =
1
11




6 −6 7
2 9 6
9 2 −6





so that Σ = 11 (A is the basis symbol representing one of the cubic crystals). The 24 symmetry
operations of the cubic lattice are given by:
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Angle (degrees) Axis

0,90,180,270 < 1 0 0 >

90,180,270 < 0 1 0 >

90,180,270 < 0 0 1 >

180 < 1 1 0 >

180 < 1 0 1 >

180 < 0 1 1 >

180 < 1 1 0 >

180 < 1 0 1 >

180 < 0 1 1 >

120,240 < 1 1 1 >

120,240 < 1 1 1 >

120,240 < 1 1 1 >

120,240 < 1 1 1 >

If any symmetry operation is represented as a rotation matrix which then premultiplies (A J A),
then the resulting new rotation matrix gives another axis–angle pair representation. Hence,
the alternative axis–angle pair representations of Σ = 11 are found to be:

Angle (degrees) Axis

82.15 < 1 3 3 >

162.68 < 3 3 5 >

155.37 < 1 2 4 >

180.00 < 2 3 3 >

62.96 < 1 1 2 >

129.54 < 1 1 4 >

129.52 < 0 1 1 >

126.53 < 1 3 5 >

180.00 < 1 1 3 >

100.48 < 0 2 3 >

144.89 < 0 1 3 >

The above procedure can be used to derive all the axis–angle pair representations of any Σ
value, and the table below gives some of the CSL relations for cubic crystals, quoting the
axis–angle pair representations which have the minimum angle of rotation, and also those
corresponding to twin axes.

We note the following further points about CSL relations:
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Table 3: Some CSL relations for Cubic crystals5

Σ Angle Axis Twin axes

3 60.0 < 1 1 1 > < 1 1 1 >, < 1 1 2 >

5 36.9 < 1 0 0 > < 0 1 2 >, < 0 1 3 >

7 38.2 < 1 1 1 > < 1 2 3 >

9 38.9 < 1 1 0 > < 1 2 2 >, < 1 1 4 >

11 50.5 < 1 1 0 > < 1 1 3 >, < 2 3 3 >

13a 22.6 < 1 0 0 > < 0 2 3 >, < 0 1 5 >

13b 27.8 < 1 1 1 > < 1 3 4 >

15 48.2 < 2 1 0 > < 1 2 5 >

17a 28.1 < 1 0 0 > < 0 1 4 >, < 0 3 5 >

17b 61.9 < 2 2 1 > < 2 2 3 >, < 3 3 4 >

19a 26.5 < 1 1 0 > < 1 3 3 >, < 1 1 6 >

19b 46.8 < 1 1 1 > < 2 3 5 >

21a 21.8 < 1 1 1 > < 2 3 5 >, < 1 4 5 >

21b 44.4 < 2 1 1 > < 1 2 4 >

(i) All of the above CSL relations can be represented by a rotation of 180◦ about some
rational axis which is not an even axis of symmetry. Any such operation corresponds
to a twinning orientation (for centrosymmetric crystals), the lattices being reflected
about the plane normal to the 180◦ rotation axis. It follows that a twin orientation
always implies the existence of a CSL, but the reverse is not always true59,5; for
example, in the case of Σ = 39, there is no axis–angle pair representation with an
angle of rotation of 180◦ , so that it is not possible to find a coherent interface
between crystals related by a Σ = 39 orientation relation.

(ii) Boundaries containing a high absolute density of coincidence sites (i.e. a large value
of number of coincidence sites per unit boundary area) can in general be expected
to have the lowest energy.

(iii) Calculations of atomic positions60−62 in the boundary region, using interatomic
force laws, suggest that in materials where the atoms are hard (strong repulsive
interaction at short range), coincidence site lattices may not exist. For example,
in the case of a Σ3 twin in a “hard” BCC material, with a {1 1 2} coherent twin
plane, it is found that a small rigid translation (by a vector a

12 < 1 1 1 >) of
the twin lattice lowers the energy of the interface (Fig. 24)27,5. Because of this
relaxation, the lattices no longer have a common origin and so the coincidences
vanish. Nevertheless, boundaries which contain high densities of coincidence sites
before relaxation may be expected to represent better fit between the lattices, and
thus have low energies relative to other boundaries. This is because the periodic
nature and the actual repeat period of the structure of the interface implied by the
CSL concept is not destroyed by the small translation. The rigid body translations
mentioned above have been experimentally established in the case of Aluminium;
although not conclusively established, the experiments suggest that the translation
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may have a component outside the interface plane, but the atomistic calculations
cannot predict this since they always seem to be carried out at constant volume27.

(iv) The physical significance of CSL’s must diminish as the Σ value increases, because
only a very small fraction of atoms in an interface can then be common to both the
adjacent crystals.

(v) The Σ = 3 value is independent5 of the transformation matrix (eg. (A J A) in
example 25) and hence is independent of symmetry considerations. This is conve-
nient since such matrices do not uniquely relate the grains; it is usually necessary
to impose criteria to allow physically reasonable choices of (A J A) to be made.

Fig. 24: {1 1 2} coherent twin boundary in a BCC material, initially with an

exact Σ3 CSL. The figure on the right illustrates the structure after a rigid

body translation is included27,5.

The O–lattice

We have seen that coincidence site lattices can be generated by identifying lattice points
which are common to both of the adjacent crystals, when the lattices of these crystals are
notionally allowed to interpenetrate and fill all space. The totality of the common lattice
points then forms the coincidence site lattice. This procedure is of course only a formal way
of identifying coincidence points, and for a real interface connecting the two crystals, only
atoms from crystal 1 will exist on one side of the interface and those from crystal 2 on the
other. There will, however, be good fit regions in the interface, corresponding to the lattice
points that are common to both crystals; the pattern formed by these points consists of a two
dimensional section of the CSL. The coincidence site lattice thus concentrates on just lattice
points, and this is not the most general case to consider. When the transformation carrying
one grain into the other is a rigid body rotation, all points along the rotation axis will represent
points of perfect fit between the two crystals, not just the lattice points which may lie on the
rotation axis. When the transformation relating two grains is an invariant–plane strain, all
points in the invariant–plane represent points of perfect fit between the two lattices and not
just the lattice points which lie in the invariant–plane.
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Any point x within a crystal may be represented as the sum of a lattice vector u (which has
integral components) and a small vector β whose components are fractional and less than
unity. The internal co-ordinates of the point x are then defined to be the components of the
vector β. The O–lattice method takes account of all coincidences, between non-lattice sites of
identical internal co-ordinates as well as the coincidence lattice sites.

All lattice points in a crystal are crystallographically equivalent and any lattice point may be
used as an origin to generate the three dimensional crystal lattice. To identify points of the
CSL we specify that any lattice vector u of crystal A must, as a result of the transformation
to crystal B, become another lattice vector x of A – i.e. x = u + v where v is a lattice vector
of A. The CSL point x can then be considered to be a perfect fit point in an interface between
A and B, because it corresponds to a lattice point in both crystals.

Non–lattice points in a crystal are crystallographically equivalent when they have the same
internal co-ordinates. To identify O–points64,65, we specify that any non-lattice vector x of
crystal A must, as a result of transformation to crystal B, become another non-lattice vector
y of A such that y = x + v where v is a lattice vector of A; the points x and y thus have
the same internal co–ordinates in A. The O–point y can then be considered to be a perfect fit
point in the interface between A and B. Note that when x becomes a lattice vector, y becomes
a CSL point. The totality of O–points obtained by allowing crystals A and B to notionally
interpenetrate forms the O–lattice64,65, which may contain the CSL as a sub-lattice if A and B
are suitably orientated at an exact CSL orientation. Any boundary between A and B cuts the
O–lattice and will contain regions of good fit which have the periodicity corresponding to the
periodicity of a planar net of the O–lattice along which the intersection occurs. Boundaries
parallel to low-index planes of the O–lattice are in general two dimensionally periodic with
relatively small repeat cells, and those with a high planar O–point density should have a
relatively low energy.

Consider two crystals A and B which are related by the deformation (A S A) which converts
the reference lattice A to that of B; an arbitrary non-lattice point x in crystal A thus becomes
a point y in crystal B, where

[A;y] = (A S A)[A;x]

If the point y is crystallographically equivalent to the point x, in the sense that it has the same
internal co-ordinates as x, then y is also a point of the O–lattice, designated O. This means
that y = x + u, where u is a lattice vector of A. Since y is only an O–point when y = x + u,
we may write that y is an O–lattice vector O if64,65

[A;y] = [A;O] = [A;x] + [A;u] = (A S A)[A;x]

or in other words,
[A;u] = (A T A)[A;O] (30a)

where (A T A) = I − (A S A)−1. It follows that

[A;O] = (A T A)−1[A;u] (30b)

By substituting for u the three basis vectors of A in turn5, we see that the columns of (A T A)−1

define the corresponding base vectors of the O–lattice.

Since O–points are points of perfect fit, mismatch must be at a maximum in between neigh-
bouring O–points. When O is a primitive O–lattice vector, equation 30b states that the
amount of misfit in between the two O–points connected by O is given by u. A dislocation
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with Burgers vector u would thus accommodate this misfit and localise it at a position between
the O–points, and these ideas allow us to consider a dislocation model of the interface in terms
of the O–lattice theory.

Three sets of dislocations with Burgers vectors bi (which form a non-coplanar set) are in
general required to accommodate the misfit in any interface. If the Burgers vectors b1, b2 and
b3 are chosen to serve this purpose, and each in turn substituted into equation 30b, then the
corresponding O–lattice vectors O1, O2 and O3 are obtained. These vectors Oi thus define
the basis vectors of an O–lattice unit cell appropriate to the choice of bi. If the O–points
of this O–lattice are separated by “cell walls” which bisect the lines connecting neighbouring
O–points, then the accumulating misfit in any direction can be considered to be concentrated
at these cell walls64,65. When a real interface (unit normal n) is introduced into the O–lattice,
its line intersections with the cell walls become the interface dislocations with Burgers vectors
bi and unit line vectors li parallel to the line of intersection of the interface with the cell walls.

The three O–lattice cell walls (with normals O∗
i ) have normals parallel to O∗

1 = O2 ∧ O3,
O∗

2 = O3 ∧ O1 and O∗
3 = O1 ∧ O2, so that the line vectors of the dislocations are given by

l1‖ O∗
1 ∧ n, l2‖ O∗

2 ∧ n and l3‖ O∗
3 ∧ n. Similarly, 1/di = |O∗

i ∧ n| . These results are exactly
equivalent to the theory developed at the beginning of this chapter (equation 25-27) but the
O–lattice theory perhaps gives a better physical picture of the interface, and follows naturally
from the CSL approach5. The equivalence of the two approaches arises because equation 30a
is identical to equation 25 since u and O are equivalent to bt and p respectively.

Example 26: The alpha/beta brass interface using O–lattice theory

Derive the structure of the alpha/beta brass interface of example 23 using O–lattice theory.

From example 23, the matrix (A T A) is given by:

(A T A) =




0.119500 0.006386 0.016048
0.006386 0.119500 0.016048
−0.149974 −0.149974 −0.236183





so that

(A T A)−1 =




−52.448 −61.289 −51.069
−61.289 −52.448 −51.064
72.222 72.222 60.622





If the vectors b1, b2 and b3 are each in turn substituted for u in equation 30a, then the
corresponding O lattice vectors are found to be:

[A;O1] = [−0.689770 − 5.110092 5.799861]

[A;O2] = [−5.110092 − 0.689770 5.799861]

[A;O3] = [−56.86861 − 56.86861 72.22212]

[A∗;O∗
1] = [ 0.263088 0.036860 0.236183]

[A∗;O∗
2] = [ 0.036860 0.263088 0.236183]

[A∗;O∗
3] = [−0.024088 − 0.024088 − 0.024088]
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O∗
1 ∧ n‖ l1 = [−0.012249 − 0.012249 0.015556]A

O∗
2 ∧ n‖ l2 = [−0.012249 − 0.012249 0.015556]A

O∗
3 ∧ n‖ l3 = [ 0.001249 0.001249 − 0.002498]A

d1 = d2 = 11.63 Å and d3 = 88.52 Å

The results obtained are therefore identical to those of example 23.

Secondary Dislocations

Low-angle boundaries contain interface dislocations whose role is to localise and accommodate
the misfit between adjacent grains, such that large areas of the boundary consist of low-
energy coherent patches without mismatch. These intrinsic interface dislocations are called
primary dislocations because they accommodate the misfit relative to an ideal single crystal
as the reference lattice. Boundaries between grains which are at an exact CSL orientation
have relatively low-energy. It then seems reasonable to assume that any small deviation from
the CSL orientation should be accommodated by a set of interface dislocations which localise
the misfit due to this deviation, and hence allow the perfect CSL to exist over most of the
boundary area. These intrinsic interface dislocations66−69 are called secondary dislocations
because they accommodate the misfit relative to a CSL as the reference lattice. High-angle
boundaries between crystals which are not at an exact CSL orientation may therefore consist
of dense arrays of primary dislocations and also relatively widely spaced arrays of secondary
dislocations. The primary dislocations may be so closely spaced, that their strain fields virtually
cancel each other and in these circumstances only secondary dislocations would be visible using
conventional transmission electron microscopy.

Example 27: Intrinsic secondary dislocations

The axis–angle pair describing the orientation relationship between the two grains (A and B)
of austenite is given by:

axis of rotation parallel to[1 1 2]A
right–handed angle of rotation175◦

Calculate the secondary dislocation structure of an interface lying normal to the axis of ro-
tation, given that the Burgers vectors of the interface dislocations are [A;b1] = 1

2 [1 0 1],
[A;b2] = 1

2 [0 1 1] and [A;b3] = 1
2 [1 1 0], where the basis A corresponds to the conventional

FCC unit cell of austenite, with a lattice parameter a = 3.56 Å.

The secondary dislocation structure can be calculated with respect to the nearest CSL, which
is a Σ3 CSL obtained by a 180◦ rotation about [1 1 2]A. The rigid body rotation matrix
corresponding to this exact CSL orientation is thus:

(A J A) =
1
3




2 1 2
1 2 2
2 2 1





The rotation matrix (A J2 A) describing the actual transformation of A to B, corresponding
to a rotation of 175◦ about [1 1 2]A is given by:

(A J2 A) =




−0.663496 0.403861 0.629817
0.261537 −0.663496 0.700979
0.700979 0.629817 0.334602




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The matrix (A J3 A) describing the deviation from the exact CSL is given by65 (A J3 A) =
(A J2 A)−1(A J A), so that

(A J3 A) =




0.996829 0.071797 −0.034313
−0.070528 0.996829 0.036850
0.036850 −0.034313 0.998732





If (A T A) = I − (A J3 A)−1, then (A T’ A) is given by:

(A T′ A) =




0.003171 −0.071797 0.034313
0.070528 0.003171 −0.036850
−0.036850 0.034313 0.001268





The secondary dislocation structure can now be calculated using equation 26f,27c,27d:

(n; A∗) = a(0.408248 0.408248 0.816497)

[A∗;b∗
1] = [1 1 1]

[A∗;b∗
2] = [1 1 1]

[A∗;b∗
3] = [1 1 1]

From equation 26f,
[A∗; c1] = [0.040655 0.104207 − 0.072341]
[A∗; c2] = [−0.0109280 − 0.030507 0.069894]
[A∗; c3] = [−0.034313 0.036850 − 0.001268]

so that
d1 = 26.71Å, d2 = 26.71Å, and d3 = 70.68Å

l1‖ [ 0.860386 − 0.470989 − 0.194695]A
l2‖ [−0.401046 0.883699 − 0.241327]A
l3‖ [ 0.607647 0.545961 − 0.576794]A

The DSC lattice

In a boundary between two crystals, the Burgers vector b of an interface dislocation must
be such that the displacement of one of the crystals through b relative to the other does
not change the structure of the interface. Lattice translation vectors of the reference lattice
always satisfy this condition, so that b can always equal a lattice translation vector. However,
additional possibilities arise in the case of secondary dislocations, whose Burgers vectors are
generally DSC lattice translation vectors70,65. Secondary dislocations represent the deviation
from a particular coincidence site lattice, and a corresponding DSC lattice may be generated
such that the translation vectors of the DSC lattice are possible Burgers vectors of secondary
interface dislocations. The interesting point about the DSC lattice is that its lattice vectors
need not be crystal lattice translation vectors. Fig. 25 illustrates a Σ5 CSL between two FCC
grains (A & B), related by a rotation of 36.87◦ about [1 0 0]A.

Fig. 25b is obtained by displacing lattice B by [A;b] = 1
10 [0 3 1] relative to lattice A and

it is obvious that the basic pattern of lattice sites and CSL sites remains unaffected by this
translation, despite the fact that b is not a lattice vector of A or B. It is thus possible for
secondary dislocations to have Burgers vectors which are not lattice translation vectors, but
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Fig. 25: Σ5 coincidence system for FCC crystals71. Filled symbols are lattice

A, unfilled ones lattice B and coincidence sites are a mixture of the two. lat-

tice sites in the plane of the diagram are represented as circles whereas those

displaced by 1
2 [1 0 0] are represented as triangles. The [1 0 0] axis is normal

to the plane of the diagram.

are vectors of the DSC lattice. The DSC lattice, or the Displacement Shift Complete lattice,
is the coarsest lattice which contains the lattice points of both A and B, and any DSC lattice
vector is a possible Burgers vector for a perfect secondary dislocation. We note that the
displacement b causes the original coincidences (Fig. 25a) to disappear and be replaced by
an equivalent set of new coincidences (Fig. 25b), and this always happens when b is not a
lattice translation vector. This shift of the origin of the CSL has an important consequence on
the topography71 of any boundary containing secondary dislocations with non-lattice Burgers
vectors.

Considering again Fig. 25, suppose that we introduce a boundary into the CSL, with unit
normal [A;n]‖ [0 1 2], so that its trace is given by XX on Fig. 25a. The effect of the displacement
b of crystal B relative to A, due to the presence of a secondary dislocation, is to shift the origin
of the CSL; if the boundary originally at XX is to have the same structure after the displacement
then it has to shift to the position YY in Fig. 25b. Because a dislocation separates slipped from
unslipped regions, the shift of the boundary occurs at the position of the secondary dislocation
so that the boundary is stepped at the core of this dislocation. One such step is illustrated in
Fig. 26.

The following further points about the DSC lattice and its consequences should be
noted:

(i) The DSC lattice can be constructed graphically simply by inspection, bearing in
mind that it is the coarsest lattice containing lattice sites from both the crystals
orientated at an exact CSL orientation. Rather detailed analytical methods for
computing the basis vectors of the DSC lattice have been presented elsewhere73,
and tabulations of these DSC lattice calculations as a function of Σ3 can also be
found for cubic systems74.
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Fig. 26: The presence of a step72 in a Σ5, (3 1 0)A boundary of an FCC crystal

containing a secondary interface dislocation with [A; b] = (a/10)[1 3 0]. The

symbolism is identical to that of Fig. 25.

(ii) For the primitive cubic system, the components of the three basis vectors of the DSC
lattice are the columns of a 3 × 3 matrix (DSC) obtained by taking the transpose
of the inverse of another 3 × 3 matrix (CSL). The columns of CSL represent the
components of the basis vectors of the coincidence site lattice concerned.

(iii) Crystal lattice vectors (of both the adjacent crystals) form a sub-set of DSC lattice
vectors.

(iv) The volume of a CSL unit cell is Σ3 times larger than that of the crystal lattice unit
cell, whereas the DSC lattice unit cell has a volume 1/Σ times that of the crystal
lattice unit cell73.

(v) The homogeneous deformation (A S A) of equation 25, describing the transformation
from the reference lattice to another crystal is not unique5, but the CSL and DSC
concepts are independent of the choice of (A S A). The O–lattice on the other hand,
depends critically on the form of (A S A).

(vi) Primitive DSC lattice vectors can be much smaller than primitive crystal lattice
vectors75. On the basis of elastic strain energy arguments, smaller interface disloca-
tion Burgers vectors should be favoured. This is not confirmed experimentally since
secondary dislocations often have Burgers vectors which are crystal lattice vectors.

(vii) Although DSC lattices are defined relative to the unrelaxed CSL, small rigid body
translations which destroy exact coincidence (but preserve the CSL periodicity) do
no affect the essentials of the DSC concept27.

88



    

Some difficulties associated with interface theory

Consider two crystals A and B, both of cubic structure, related by a rigid body rotation.
Any boundary containing the axis of rotation is a tilt boundary; for the special case of the
symmetrical tilt boundary, lattice B can be generated from A by reflection across the boundary
plane. By substituting the rigid body rotation for (A S A) in equation 25, the dislocation
structure of the symmetrical tilt boundary may be deduced (example 22) to consist of a single
array of dislocations with line vectors parallel to the tilt axis.

Symmetry considerations imply that the rigid body rotation has up to 23 further axis–angle
representations. If we impose the condition that the physically most significant representation
is that which minimizes the Burgers vector content of the interface, then the choice reduces to
the axis–angle pair involving the smallest angle of rotation.

On the other hand, (A S A) can also be a lattice–invariant twinning shear on the symmetrical
tilt boundary plane5; crystal B would then be related to A by reflection across the twin plane so
that the resulting bicrystal would be equivalent to the case considered above. The dislocation
content of the interface then reduces to zero since the invariant–plane of the twinning shear is
fully coherent.

This ambiguity in the choice of (A S A) is a major difficulty in interface theory5. The problem
is compounded by the fact that interface theory is phenomenological - i.e. the transformation
strain (A S A) may be real or notional as far as interface theory is concerned. If it is real
then we expect to observe a change in the shape of the transformed region, and this may help
in choosing the most reasonable deformation (A S A). For example, in the case of mechanical
twinning in FCC crystals, the surface relief observed can be used to deduce that (A S A) is a
twinning shear rather than a rigid body rotation. In the case of an FCC annealing twin, which
grows from the matrix by a diffusional mechanism (during grain boundary migration), the same
twinning shear (A S A) may be used to deduce the interface structure, but the deformation is
now notional, since the formation of annealing twins is not accompanied by any surface relief
effects. In these circumstances, we cannot be certain that the deduced interface structure for
the annealing twin is correct.

The second major problem follows from the fact that the mathematical Burgers vector content
bt given by equation 25 has to be factorised into arrays of physically realistic dislocations with
Burgers vectors which are vectors of the DSC lattice. There is an infinite number of ways in
which this can be done, particularly since the interface dislocations do not necessarily have
Burgers vectors which minimise their elastic strain energy.

Secondary dislocations are referred to an exact CSL as the reference lattice. Atomistic calcu-
lations suggest that boundaries in crystals orientated at exact coincidence contain arrays of
primary dislocations (whose cores are called structural units)76. The nature of the structural
units varies with the Σ3 value, but some favoured CSL’s have boundaries with just one type
of structural unit, so that the stress field of the boundary is very uniform. Other CSL’s have
boundaries consisting of a mixture of structural units from various favoured CSL’s. It has
been suggested that it is the favoured CSL’s which should be used as the reference lattices in
the calculation of secondary dislocation structure, but the situation is unsatisfactory because
the same calculations suggest that the favoured/unfavoured status of a boundary also depends
of the boundary orientation itself. (We note that the term “favoured” does not imply a low
interface energy).

Referring now to the rigid body translations which exist in materials with “hard” atoms, it
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is not clear whether the calculated translations might be different if the relaxation were to be
carried out for a three dimensionally enclosed particle.

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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Appendix 1

Vectors

Quantities (such as force, displacement) which are characterised by both magnitude and di-
rection are called vectors; scalar quantities (such as time) only have magnitude. A vector is
represented by an arrow pointing in a particular direction, and can be identified by underlining
the lower–case vector symbol (e.g. u). The magnitude of u (or |u|) is given by its length, a
scalar quantity. Vectors u and v are only equal if they both point in the same direction, and
if |u| = |v|. The parallelism of u and v is indicated by writing u‖ v. If x = −u, then x points
in the opposite direction to u, although |x| = |u|.

Vectors can be added or removed to give new vectors, and the order in which these operations
are carried out is not important. Vectors u and x can be added by placing the initial point of
x in contact with the final point of u; the initial point of the resultant vector u + x is then
the initial point of u and its final point corresponds to the final point of x. The vector mu
points in the direction of u, but |mu|/|u| = m, m being a scalar quantity. A unit vector has
a magnitude of unity; dividing a vector u by its own magnitude u gives a unit vector parallel
to u.

It is useful to refer vectors to a fixed frame of reference; an arbitrary reference frame would
consist of three non-coplanar basis vectors a1, a2 and a3. The vector u could then be described
by means of its components u1, u2 and u3 along these basis vectors, respectively, such that

ui = |u| cos θi/|ai|

where I = 1, 2, 3 and θi = angle between u and ai.

If the basis vectors ai form an orthonormal set (i.e. they are mutually perpendicular and each
of unit magnitude), then the magnitude of u is:

|u|2 = u2
1 + u2

2 + u2
3

If the basis vectors ai form an orthogonal set (i.e. they are mutually perpendicular) then the
magnitude of u is:

|u|2 = (u1|a1|)2 + (u2|a2|)2 + (u3|a3|)2

Worked Examples in the Geometry of Crystals by H. K. D. H. Bhadeshia, 2nd edition, 2001.
ISBN 0–904357–94–5. First edition published in 1987 by the Institute of Metals, 1 Carlton
House Terrace, London SW1Y 5DB.
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A dot or scalar product between two vectors u and x (order of multiplication not important)
is given by u.x = |u| × |x| cos θ, θ being the angle between u and x. If x is a unit vector then
u.x gives the projection of u in the direction x.

The cross or vector product is written u ∧ x = |u| × |x| sin θy, where y is a unit vector
perpendicular to both u and x, with u,x and y forming a right–handed set. A right–handed
set u, x, y implies that a right–handed screw rotated through an angle less than 180◦ from u to
x advances in the direction y. The magnitude of u∧x gives the area enclosed by a parallelogram
whose sides are the vectors u and x; the vector y is normal to this parallelogram. Clearly,
u ∧ x %= x ∧ u.

If u, x and z form a right–handed set of three non-coplanar vectors then u ∧ x.z gives the
volume of the parallelepiped formed by u, x and z. It follows that u∧x.z = u.x∧z = z∧u.x.

The following relations should be noted:

u ∧ x = −x ∧ u
u.(x ∧ y) = x.(y ∧ u) = y.(u ∧ x)

u ∧ (x ∧ y) %= (u ∧ x) ∧ y
u ∧ (x ∧ y) = (u.y)x − (u.x)y

Matrices

Definition, addition, scalar multiplication

A matrix is a rectangular array of numbers, having m rows and n columns, and is said to have
an order m by n. A square matrix J of order 3 by 3 may be written as

J =




J11 J12 J13

J21 J22 J23

J31 J32 J33



 and its transpose J′ =




J11 J21 J31

J12 J22 J32

J13 J23 J33





where each number Jij (i = 1, 2, 3 and j = 1, 2, 3) is an element of J. J’ is called the transpose
of the matrix J. An identity matrix (I) has the diagonal elements J11, J22 & J33 equal to
unity, all the other elements being zero. The trace of a matrix is the sum of all its diagonal
elements J11 + J22 + J33. If matrices J and K are of the same order, they are said to be equal
when Jij = Kij for all i, j. Multiplying a matrix by a constant involves the multiplication of
every element of that matrix by that constant. Matrices of the same order may be added or
subtracted, so that if L = J + K, it follows that Lij = Jij + Kij .

The Einstein Summation Convention

In order to simplify more complex matrix operations we now introduce the summation con-
vention. The expression

u1a1 + u2a2 + ...unan

can be shortened by writing
3∑

i=1

uiai
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A further economy in writing is achieved by adopting the convention that the repetition of a
subscript or superscript index in a given term implies summation over that index from 1 to n.
Using this summation convention, the above sum can be written uiai. Similarly,

xi = yjzij for i = 1, 2 and j = 1, 2 implies that

x1 = y1z11 + y2z12

x2 = y1z21 + y2z22

Multiplication and Inversion

The matrices J and K can be multiplied in that order to give a third matrix L if the number
of columns (m) of J equals the number of rows of K (J is said to be conformable to K). L is
given by

Lst = JsrKrt

where s ranges from 1 to the total number of rows in J and t ranges from 1 to the total number
of columns in K. If J and K are both of order 3 × 3 then, for example,

L11 = J11K11 + J12K21 + J13 + K31

Note that the product JK does not in general equal KJ.

Considering a n×n square matrix J, it is possible to define a number ∆ which is the determinant
(of order n) of J. A minor of any element Jij is obtained by forming a new determinant of
order (n− 1), of the matrix obtained by removing all the elements in the ith row and the jth
column of J. For example, if J is a 2× 2 matrix, the minor of J11 is simply J22. If J is a 3× 3
matrix, the minor of J11 is: ∣∣∣∣

J22 J23

J32 J33

∣∣∣∣ = J22J33 − J23J32

where the vertical lines imply a determinant. The cofactor jij of the element Jij is then given
by multiplying the minor of Jij by (−1)i+j . The determinant (∆) of J is thus

detJ =
n∑

j=1

J1jj1j withJ = 1, 2, 3

Hence, when J is a 3 × 3 matrix, its determinant ∆ is given by:

∆ = J11j11 + J12j12 + J13j13
= J11(J22J33 − J23J32) + J12(J23J31 − J21J33) + J13(J21J32 − J22J31)

The inverse of J is written J−1 and is defined such that

J.J−1 = I

The elements of J−1 are J−1
ij such that:

J−1
ij = jji/detJ

93



    

APPENDIX 1: Vectors and Matrices

Hence, if L is the inverse of J, and if detJ = ∆, then:

L11 = (J22J33 − J23J32)/∆
L12 = (J32J13 − J33J12)/∆
L13 = (J12J23 − J13J22)/∆
L21 = (J23J31 − J21J33)/∆
L22 = (J33J11 − J31J13)/∆
L23 = (J13J21 − J11J23)/∆
L31 = (J21J32 − J22J31)/∆
L32 = (J31J12 − J32J11)/∆
L33 = (J11J22 − J12J21)/∆

If the determinant of a matrix is zero, the matrix is singular and does not have an inverse.

The following matrix equations are noteworthy:

(JK)L = J(KL)
J(K + L) = JK + JL
(J + K)′ = J′ + K′

(JK)′ = K′J′

(JK)−1 = K−1J−1

(J−1)′ = (J′)−1

Orthogonal Matrices

A square matrix J is said to be orthogonal if J−1 = J′. It the columns or rows of a real
orthogonal matrix are taken to be components of column or row vectors respectively, then these
vectors are all unit vectors. The set of column vectors (or row vectors) form an orthonormal
basis; if this basis is right–handed, the determinant of the matrix is unity, but if it is left–handed
then ∆ = −1.

Orthogonal matrices arise in co-ordinate transformations between orthonormal bases and where
rigid body rotations are represented in a single orthonormal basis. References 77, 78 should
be consulted for further information on matrices and vectors.
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Example 1

A =




2 0 2
3 4 5
5 6 7



 A′ =




2 3 5
0 4 6
2 5 7





det A = −8 A−1 =




0.25 −1.5 1
−0.5 −0.5 0.5
0.25 1.5 −1





Example 2

A =
(

2 3
1 4

)
A′ =

(
2 1
3 4

)

det A = 5 A−1 =
(

0.8 −0.6
−0.2 0.4

)
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Appendix 2

Transformation Texture

It is found that not all of the 24 possible crystallographic variants of martensite (α′) form when
austenitic stainless steel is induced to transform during tensile deformation [79].

This variant selection is particularly noticeable in austenite (γ) grains belonging to the Goss
and Cube components of texture, which transform into smaller fractions of martensite [79].
This is presumably because the early stages of transformation are dominated by the α′ variants
most favoured by the external stress.

A case study is presented here in which the transformation texture is calculated by considering
the interaction of the applied stress with martensite plates, based on a self–consistent set of
crystallographic parameters [80].

Standard Variant

It is often assumed in texture analysis that the orientation relationship between the austen-
ite and martensite is that due to Kurdjumov–Sachs or Nishiyama–Wasserman, but the true
relation must be irrational (Chapter 4). Although the difference between this irrational and
assumed orientation may seem small, it is vital because the assumed orientations do not in
general lead to an invariant–line between the parent and product lattices. The existence of
an invariant line is an essential requirement for martensitic transformation to occur. It is
not surprising therefore, that Nolze [81] in his experimental study of several hundred thou-
sand γ/α′ orientation relations, found detailed deviations from assumed Kurdjumov–Sachs etc.
orientations.

When considering martensitic transformation, the crystallographic set includes the habit plane
and shape deformation apart from the orientation relation. This set is mathematically linked
and should be considered as a whole in texture analysis. This standard set for the steel of
interest is given as follows [80]:

Habit plane (−0.183989 0.596344 − 0.781359)γ

Shape deformation ( γ P γ ) =




0.991342 0.028064 −0.036770
0.028064 0.909040 0.119180
0.029429 −0.095386 1.124979




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Coordinate transformation ( γ J α′ ) =




0.579356 0.542586 0.102537
0.014470 0.133650 −0.788984
−0.552000 0.572979 0.086936





This set of data implies that

(1 1 1)γ = (0.012886 0.981915 0.978457)α′

[1 1 0]γ = [0.927033 1.055684 − 1.071623]α′

Notice that (1 1 1)γ is approximately parallel to (0 1 1)α′ and [1 1 0]γ is approximately parallel
to [1 1 1]α′ . The actual relationship is irrational to ensure the invariant–line necessary for
martensitic transformation.

The full twenty four crystallographic sets corresponding to the 24 variants of martensite pos-
sible in each austenite grain can be generated using symmetry operations.

Austenite Textures

It is necessary to replicate the observed austenite texture in order to model that due to trans-
formation. The γ–textures of interest here are the Goss and Cube varieties [79]. Having
chosen a sample reference frame in which the orientation of the tensile axis is one of the three
axes, the first austenite grain is introduced in the exact required orientation (Goss or Cube).
Another 499 grains are then generated by randomly choosing rotation axes, but limiting the
right–handed angle of rotation to the range 0–45◦. Allowing this angle to be any value would
simply generate a random set of austenite grains. The results, in the form of 100γ pole figures,
are illustrated in Fig. 23.

Fig. 23: 100γ pole figure of biased austenite. RD represents the orientation

of the tensile axis and TD the transverse direction. (a) Goss (b) Cube.
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APPENDIX 2: Transformation Texture

Transformation Textures

Gey et al. [79] proved that the transformation texture, beginning with the Goss and Cube
austenite textures cannot be explained by allowing all martensite variants to form. In other
words, something favours the formation of specific variants in each austenite grain. We assume
here that it is the interaction of the applied stress with the shape deformation of the martensite
which determines the variants that are favoured [80].

The interaction energy U between the stress and the plate of martensite is given by [82]:

U = σNζ + τs

where σN is the component of stress that is normal to the habit plane and τ the corresponding
shear stress resolved on the habit plane, in the direction of the martensite shear. ζ and s are
the dilatational and shear strains due to the shape deformation of martensite, which can be
shown using (γ P γ) to be 0.02536 and 0.2245 respectively (Chapter 4). Notice that calculating
the interaction energy in this way is complete [82] because it takes account of the total strain
due to martensitic transformation rather than a component, for example, the Bain strain.

A variant is said to be favoured when U adds to the driving force for transformation. Each
austenite grain is then allowed to transform to only the favoured variants, thus allowing the
transformation texture to be calculated. It is emphasised that each austenite grain is trans-
formed equally into the selected variants having equal fractions of each favoured variant. This
is because the relationship between the interaction energy and fraction transformed is not clear.
Therefore, although the crystallography should be correctly predicted, the detailed intensities
may not be accurate.

For the Cube component of austenite texture, Fig. 24a shows the measured pole figure for
martensite, Fig. 24b the calculated pole figure allowing only the favoured variants, and finally,
Fig. 24c illustrates what should happen if all possible variants are allowed to form.

Fig. 24: 100α′ pole figures for transformation of Cube oriented austenite

grains. (a) Experimental data [79]. (b) Calculations allowing only favoured

variants of martensite to form in each austenite grain. (c) Calculations allowing

all possible variants of martensite to form in each austenite grain.
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Similar results for the Goss oriented austenite grains are shown in Fig. 25. The agreement
between the calculated transformation texture based on favoured variants and the measured
data is remarkably good.

Fig. 25: 100α′ pole figures for transformation of Goss oriented austenite

grains. (a) Experimental data [79]. (b) Calculations allowing only favoured

variants of martensite to form in each austenite grain. (c) Calculations allow-

ing all possible variants of martensite to form in each austenite grain.

It has been possible to reproduce the transformation texture that develops in particular com-
ponents of the austenite texture, by allowing only those martensite variants which interact
favourably with the applied stress to grow. The method here is based on a self–consistent
crystallographic set to define each martensite plate, and the interaction of the plate with the
applied stress [80,83].

One interesting outcome is that the stress alone seems sufficient to explain variant selection,
even though the plastic strain in the original experiments reached some 10% elongation.
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APPENDIX 3: Grain Deformation

Appendix 3

Topology of Grain Deformation

Steels and aluminium alloys are produced in very large quantities using plastic–deformation
in order to achieve particular shapes of use in industry. The microstructure changes during
deformation, with an increase in the defect density and in the amount of grain boundary area
per unit volume (SV ) and grain edge length per unit volume (LV ). All of these changes are
important in determining the course of phase transformations in steels and recrystallisation
processes in general.

The equiaxed grain structure which exists prior to deformation can be represented using a
Kelvin tetrakaidecahedron. A tetrakaidecahedron has 8 hexagonal and 6 square faces, Fig. 26,
with 36 edges, each of length a. All of the edges can be described in terms of just six vectors,
as listed in Table 4.1. It then becomes possible to operate on these vectors by a deformation
matrix in order to calculate consequential changes in grain parameters, as described in the
next section.

Fig. 26: A tetrakaidecahedron
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Vector Components

1 [a 0 0]

2 [0 a 0]

3 [−a
2 −a

2
a√
2
]

4 [a2 −a
2

a√
2
]

5 [a2
a
2

a√
2
]

6 [−a
2

a
2

a√
2
]

Table 4.1: Vectors defining the edges of a tetrakaidecahedron

Plane Strain Deformation

A general deformation matrix S acts on a vector u to give a new vector v as follows:




S11 S12 S13

S21 S22 S23

S31 S32 S33








u1

u2

u3



 =




v1

v2

v3





Consider first the orientation of the tetrakaidecahedron as illustrated in Fig. 26. The polyhe-
dron is completely specified by the six initial vectors listed in Table 4.1. For plane strain defor-
mation, all Sij are zero except that S11 ×S22 ×S33 = 1 to conserve volume, and S11 ×S33 = 1
since S22 = 1. For a diagonal matrix, the terms S11, S22 and S33 represent the principal
distortions, i.e., the ratios of the final to initial lengths of unit vectors along the principal axes.
It follows that for a diagonal S, the true strains are given by ε11 = ln{S11}, ε22 = ln{S22} and
ε33 = ln{S33}.

The application of the deformation to the initial set of vectors results in the new set of vectors
listed in Table 4.2. The latter are used to calculate the area and edge–lengths of the deformed
object. Using the conditions for plane strain deformation, the final to initial area (A/A0) and
edge–length (L/L0) ratios for the deformed tetrakaidecahedron are give by:

A

A0

≡ SV

SV0

=
S11 + 3(S11

√
1 + 2S2

33 +
√

S2
11 + 2S2

33) + S33

√
2(1 + S2

11)
3(2

√
3 + 1)

L

L0

≡ LV

LV0

=
1 + S11 + 2

√
1 + S2

11 + 2S2
33

6

Here SV0
and LV0

are the values at zero strain, of grain surface area and edge–length per unit
volume. These equations apply strictly to the grain orientation illustrated in Fig. 26, relative
to S. From stereology, SV0

= 2/L so that SV
SV0

≡ 2SV L, and LV0
= 9.088/L2, where L is the

mean linear intercept commonly used to define the grain size.

The grain–orientation illustrated in Fig. 26 may not be representative. Suppose that we wish
to orient the tetrakaidecahedron randomly with respect to the deformation. A rotation matrix
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Deformed Vector Components

1 [aS11 0 0]

2 [0 aS22 0]

3 [−aS11
2 −aS22

2
aS33√

2
]

4 [aS11
2 −aS22

2
aS33√

2
]

5 [aS11
2

aS22
2

aS33√
2

]

6 [−aS11
2

aS22
2

aS33√
2

]

Table 4.2: Components of the six vectors of undeformed tetrakaidecahedron,

after plane strain or axisymmetric deformation.

R can be generated using random numbers to rotate the object relative to the axes defining
S: 


S11 S12 S13

S21 S22 S23

S31 S32 S33








R11 R12 R13

R21 R22 R23

R31 R32 R33








u1

u2

u3



 =




v1

v2

v3





The results are illustrated in Fig. 27. For comparison purposes, the results are plotted against
the equivalent strain:

ε =
(

2
3

) 1
2
(
ε211 + ε222 + ε233 +

1
2
γ2
13 +

1
2
γ2
12 +

1
2
γ2
23

) 1
2

where ε11, ε22, and ε33 are the normal components and γ13, γ12 and γ23 are the shear compo-
nents of strain (the tangents of the shear angles). For homogeneous plane strain compression,
ε = (2/

√
3)ε11. The orientation of the tetrakaidecahedron does not make much of a difference

to the outcome as far as the surface and edge–lengths per unit volume are concerned, probably
because the tetrakaidecahedron is almost isotropic in shape.

Axisymmetric Tension

In wire–drawing or rod–rolling, S22 = S33 and volume conservation requires that S22 =
1/

√
S11, Table 4.3. For the tetrakaidecahedron oriented as in Fig. 26,

SV

SV0

=
(3S11)

1
2 +

[
2

S2
11

+ S11

] 1
2

+ 1
3 + 1

3

[
2

S2
11

+ 2S11

] 1
2

1 + 2
√

3

LV

LV0

=
S11 + S−1

11 + 2
√

S2
11 + 3S−1

11

6

In Fig. 28 it is particularly noticeable that the increase in edge–length relative to grain bound-
ary area, as a function of strain, is exaggerated when compared with the corresponding case
for plane strain compression.
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Fig. 27: Calculations for plane strain deformation. The curve represents the

data for the tetrakaidecahedron oriented as illustrated in Fig. 26. The small–

points are 99 other cases where the tetrakaidecahedron is randomly oriented

relative to S.

Type S11 S12 S13 S21 S22 S23 S31 S32 S33

Plane strain compression ≥ 1 0 0 0 1 0 0 0 1/S11

Axisymmetric compression 1/
√
S33 0 0 0 1/

√
S33 0 0 0 ≤ 1

Axisymmetric tension ≥ 1 0 0 0 1/
√
S11 0 0 0 1/

√
S11

Simple shear 1 0 +ve 0 1 0 0 0 1

Table 4.3: Volume preserving deformations. The convention used is that

S11 > S22 > S33.

Axisymmetric Compression

In axisymmetric compression, S11 = S22 = 1/
√
S33, and for a tetrakaidecahedron oriented as

in Fig. 26.

SV

SV0

=

[
8S33 + 4

S2
33

] 1
2

+ 1
3

[
1

S33
+ 2S

1
2
33

]

1 + 2
√

3

LV

LV0

=
1
3

(√
S33 +

√

2S2
33 +

2
S33

)

The results are illustrated in Fig. 29.

Zhu et al. [84] have shown that many other deformations and indeed, combinations of defor-
mation are possible to treat in this way, including gradients of strain.
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Fig. 28: Calculations for axisymmetric tension. The curve represents data for

the tetrakaidecahedron oriented as illustrated in Fig. 26. The small–points are

99 other cases where the tetrakaidecahedron is randomly oriented relative to

S.

Fig. 29: Calculations for axisymmetric compression. The curve represents

data for the tetrakaidecahedron oriented as illustrated in Fig. 26. The small

points are 99 other cases where the tetrakaidecahedron is randomly oriented

relative to S.

.
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