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Chapter 1

Preface

What is the first law of thermodynamics?
You do not talk about thermodynamics

What is the second law of thermodynamics?
You do not talk about thermodynamics
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Chapter 2

Revision history

2/05: Original build
11/07: Corrected all typos caught to date and added some more material

1/08: Added more stuff and demos. Made the equilibrium section more
pedagogical.

5/08: Caught more typos and made appropriate fixes to some nomenclature
mistakes.

12/11: Started the next round of text changes and error corrections since
I’m teaching this class again in spring 2012. Woah! I caught a whole bunch

of problems that were present in the last version. It makes you wonder what
I was thinking. Anyway, hindsight is 20/20.

12/12: Made next round of error corrections as caught by students during
the spring semester of 2012. Made some other minor text changes and
corrections. Also changed one derivation for the boiling point elevation in

the colligative properties section.
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Chapter 3

Introduction

This is left here for posterity (outdated)
Chem. 322 Physical Chemistry 2 MWF 11:45-12:35 Fitzpatrick 356

Instructor: Ken Kuno 146 Stepan Chemistry mkuno@nd.edu
Grader: Chuck Vardeman Charles.F.Vardeman.1@nd.edu

Office hours: T,Th 11:45-12:35

Class requirements

roughly 10 problem sets 3 exams and 1 final

Proposed grading scheme

Problem sets 10%

Exams 20%
Final 30%

Foreword to the student

To quote Gilbert Castellan from his well known textbook “Physical chem-

istry”:
“On most campuses, the course in physical chemistry has a reputation

for difficulty. It is not, nor should it be, the easiest course available; but to
keep the matter in perspective, it must be said that the IQ of a genius is
not necessary for understanding the subject. . . Finally, don’t be put off by

the reputation for difficulty. Many students have enjoyed learning physical
chemistry.” (this guy must have a sense of humor)
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Now this is me speaking:
Unfortunately, this is an old, yet important, field. There have been many

many people who have contributed things in this area over literally 200
years. As a consequence, there is some kind of name equation for just
about everything. For example, the Carnot cycle, Joule-Thompson expan-

sion, Helmholtz free energy, and the Gibbs (not the Redskins coach) free
energy (even though in some cases, one name equation is just a derivative of

another). Other prominent names you will see come up include Kelvin (or
Lord Kelvin in some books), Clausius etc... I kid you not, it will be hard to

keep track of all these people and associated name equations. But I’d like
you to consider the following quote by Poincare.

“The order in which these elements are placed is much more important
than the elements themselves. If I have the feeling. . . of this order, so as to

perceive at a glance, the reasoning as a whole, I need no longer fear lest I
forget one of the elements, for each of them will take its alloted place in the
array, and that without any effort of memory on my part”

Understand what you are doing and more importantly why. This will
help you put this course into perspective. I will also try to weave a story

through the course to help you remember the flow of ideas. I don’t know if
you are old enough to have watched Battlestar Galactica on TV but there

was this one episode where Starbuck (I think) teaches a group of kids on
some planet how to carry out some plan against the cylons by remembering

words to a song. It’s the same sort of idea here.
I encourage everyone to work problems, the more the better. It will

help you put the concepts being discussed on a firmer basis. There is a
saying that goes “If you’re going to talk the talk, you gotta walk the walk”.
You will discover that I have an unusual affinity for this quote. Also, when

working problems, be aware of your problem’s environment. Know exactly
what conditions and assumptions are being made (constant volume, constant

pressure, temperature etc. . . ). There are too many ways you can go wrong
if you don’t know what you need to do and more importantly what sort of

equation you have to use.
Get a scientific calculator and become familiar with how to use it. I had

one HP-21S calculator for over ten years since my undergrad days. This
thing was solid. Sadly they don’t build things like they used to anymore so

my new HP from Walmart feels pretty cheap. Also because thermodynamics,
in particular, is an old field people like to work in old units. So units like
the atmosphere or millimeters of mercury or bar are more common than SI

units. However, you must be ready to convert between the two with ease.
This will come with practice.
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Finally, last but not least, four important points. This is the first (now
second) time that I have taught this course and more specifically, taught to

undergraduates. Please bear with me while I get my feet wet (still applies).
Second, I will try and post my class notes on my web page. You can then
download them from there. There is a chance that I will just print them out

and hand them out each time but this will depend on how hectic the semester
becomes. Third, although the textbook for this class is McQuarrie, I have

never used McQuarrie for thermodynamics, or kinetics and upon glancing
through the material decided that I didn’t like how he presented things

(still true). Just be aware that I may be coming from left field relative to
McQuarrie on some days. Finally, I encourage everyone to look at different

text books. Sometimes one author will confuse you and another will explain
it differently in a clear manner. This applies to me as well. A little outside

reading goes a long way.

Now why bother

Here we discuss why one studies thermodynamics (and kinetics and statis-

tical mechanics). Quantum mechanics and thermodynamics are two pillars
of chemistry. Quantum as you have just seen is concerned with the micro-

scopic properties of atoms, molecules. In fact, if you think about it all the
problems you have worked in quantum, whether it be the particle in a box,

the harmonic oscillator, the rigid rotor deals with one box, one oscillator,
one rotor. This is the single atom, single molecule limit. From these model

systems you found the electronic energies of the system, the vibrational and
rotational energies. You also found the wavefunctions whether you really

cared about them or not. You may even have (don’t know how far you
got, actually I do since I taught 321 last semester) have modeled transitions
between these levels using time dependent perturbation theory.

Thermodynamics, on the other hand, deals with ensembles or macro-

scopic quantities of matter. We’re talking Avogadros number of atoms or
molecules. It deals with energy conservation and energy transfer (the con-

version between energy in its different forms such as kinetic energy and
potential energy and its exchange from one body of matter to another),

such as in chemical reactions. More importantly from a practicing chemist’s
point of view it predicts the spontaneous direction of chemical reactions
or processes. Hey, if you mix A and B together do they react? Wouldn’t

you like to know beforehand? However, it does not presume a microscopic
picture of molecules or atoms. In this sense thermodynamics is a self con-
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sistent field. Recall that thermodynamics was developed a long time ago in
the context of engineers, inventors and others trying to make better steam

engines or hot air balloons. But the results were so general that it worked
with chemistry and physics as well.

Although thermodynamics tells you if something can happen it says

nothing about how fast the process occurs. You don’t know the rate of
the process. This is the realm of chemical kinetics which we will discuss

after establishing the basic principles of thermodynamics. Finally tying
the macroscopic and microscopic pictures of matter together is the field of

statistical mechanics. It uses statistical principles and a quantum mechanical
view of atomic and molecular energy levels to tell you why a macroscopic

thermodynamic quantity takes the value that it does.
Finally you should be aware that there are a number of approaches for

teaching thermodynamics. One approach (I’ll call it the classical approach)
just teaches you the fundamental laws of thermodynamics, the behavior of
gases, liquids and solids (without specifying any details of the system). You

then do kinetics and usually there is a separate class for statistical mechan-
ics (if any). The other tries to teach thermodynamics from a statistical

mechanics approach (this is what McQuarrie is trying to do).
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Relevant Reading in
McQuarrie

• Math review: pg 683-689

• Ideal gas equation of state: Ch.16, pg 637-642

• Real gas equation of state: Ch. 16, pg 642-648

• 1st Law of Thermodynamics:
Hess Law and thermochemistry Ch. 19, pg 765-800 (Ignore 19-6)

• Entropy and the 2nd Law of Thermodynamics, Ch 20, pg 817-844
(Ignore 20-5, 20-8, 20-9)

• Entropy and the 3rd Law of Thermodynamics, Ch 21, pg 853-870,
(Ignore 21-6)

• Spontaneity and Gibbs free energy, Ch 22, pg 881-910

• Single component phases, Ch. 23, pg 925-945, (Ignore 23-5)

• Mixtures, Ch. 24, pg 963-998

• Equilibrium, Ch. 26, pg 1049-1087, (Ignore 26-8, 26-9)

• Kinetics, Ch. 29, pg 1181-1213, (Ignore 29-7)

• Statistical mechanics, series and limits, MathChapter I, pg 723-726

• Statistical mechanics, Stirlings approximation, MathChapter J, pg
809-813
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• Statistical mechanics, Boltzmann, Ch. 17, pg 693-716 and Section
20-5, pg 829-832

• Statistical mechanics, partition functions, ideal gases, Ch. 18, pg 731-
756
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Summary of common
equations

• Boyle’s Law, Pressure/Volume inverse relation

• Charles’ Law, Volume/Temperature direct relation

• Ideal gas Law, Boyle and Charles Laws put together, pv = nRT

• Dalton’s Law, partial pressures of ideal gas, ptot = p1 + p2 or more if
greater that 2 components

• PV work (w), gas expansion work due to volume change against an
external pressure

• Heat (q), the name says it all

• 1st Law of thermodynamics, Basically conservation of energy, U =
q + w

• Joule-Thompson coefficient, associated with Joule expansion and change
of temperature with change of pressure

• Enthalpy, H = U + pV

• Hess’ Law, Thermochemistry and enthalpy bookkeeping

• Kirchoff’s Equation, Get enthalpy at different temperatures through

Cp

• no-name1, Get internal energy at different temperatures through Cv

11
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• Fundamental equations of thermodynamics, Remember “Save that
ship Gibbs”, you’ll see

• Maxwell’s Relations, a consequence of the above

• Gibbs free energy, G = H −TS or G = A+pV , constant Pressure and
Temperature

• Helmholtz free energy, A = U−TS, constant Volume and Temperature

• Gibbs-Helmholtz equation, temperature dependence of ∆G

• no-name2, pressure dependence of ∆G

• Clapeyron equation, solid/liquid line in a phase diagram

• Clausius-Clapeyron equation, liquid/vapor line in a phase diagram

(basically an extension of the Clapeyron equation)

• Trouton’s Rule, ∆S =
∆Hvap

Tb
at liquid vapor line, nearly const value

for many systems

• Gibbs-Duhem equation, The chemical potential of components in a
mixture are not independent.

• Raoult’s Law, relation between partial pressure of components in a
mixture with its mole fraction

• Henry’s Law, corrected Raoult, take that!

• Le’Chatelier’s Principle, more products or reactants by varying pres-
sure, temperature, concentration etc...

• Van’t Hoff Equation, describes variation of the equilibrium constant.

It is also basically the Gibbs Helmholtz equation.

As you are going through the course, periodically look through this sec-
tion to help you remember these equations. Also if I have missed an equation

just add it by hand here.
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Summary of common
symbols

• q, heat

• w, work

• p, pressure

• V , volume

• n, moles

• T , temperature

• Cp, constant pressure, heat capacity

• Cv , constant volume, heat capacity

• U , internal energy

• H , enthalpy

• G, Gibbs free energy

• A, Helmholtz free energy

• S, entropy

• µ, chemical potential

• f , fugacity

13
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• a, activity

• χ, mole fraction



Chapter 7

Units

Pressure

The SI unit of pressure is Pa (Pascal)

Pa = N/m2 = J/m3 = kg/ms2

Misc. units

J = kg · m2

s2

J = N · m
N =

kg · m
s2

J = Pa · m3

More common units

Common (practical) units of pressure are

• atm (atmosphere), basically you live at 1 atm pressure

• torr

• mm Hg (millimeters of mercury)

• bar

15
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Pressure in Everyday Life

So that you are calibrated in terms of pressures, here is a list that I found

on a BBC website.

• 10-20 atm - The pressure in space-vacuum

• 10-16 atm - The lowest pressure ever achieved by a man made gizmo

• 10-6 atm - Ordinary vacuum pumps

• 10-2 atm - The pressure in a common light bulb

• 0.5 - 1.5 atm - Atmospheric pressure

• 1.5 - 2.4 atm - Car tyres

• 3 - 7 atm - Flatus (!)

• 4 - 12 atm - Bicycle tyres

• 10 atm - The pressure inside the cylinder cavity in a car’s engine

• 100 - 500 atm - Compressed gas cylinders

• 500 atm - The impact pressure of a karate fist punch (so what would
Chuck Norris’ value be?)

• 1000 atm - The pressure at the bottom of the Mariana Trench

• 7000 atm - Water compressors

• 106 atm - The pressure at the centre of the earth, and also the highest
pressure ever achieved by a man-made machine (diamond anvil)

• 1011 atm - The pressure at the centre of the sun -enough to ignite
fusion reactions

• Approx. 1029 atm - The pressure at the centre of a neutron star.

Unit conversion

• 1 atm = 1.01325× 105 Pa

• 1 atm = 760 torr

• 1 atm = 760 mm Hg
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• 1 atm = 1.01325 bar

where

• 1 mm Hg = 1 Torr

• 1 bar = 105 Pa

Volume

The SI unit of volume is the cubic meter (m3). Of course this means that

no one uses this.

More common units

Common (practical) units of volume are

• cm3 (aka “cc” where 1 cc = 1 mL in case you watch these medical
shows on TV)

• dm3

• L, liters

Unit conversion

• 1 L = 1dm3

• 1 L = 1000cm3

• 1 L = 1 × 10−3m3

Temperature

The SI unit of temperature is Kelvin (K). Sometimes you will see Celsius.

But it’s more common to use Kelvin.

K = C + 273.15 (7.1)
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Ideal gas constant, R

• R = 8.314J/mol · K, this is very commonly used

• R = 0.08206L · atm/mol ·K, this is also very commonly used

• R = 8.314kg · m2/s2 · mol ·K

• R = 8.314kPa · dm3/mol ·K

• R = 1.9872cal/mol · K

• R = 0.083145L · bar/mol · K

Energy

• 1 cal = 4.18 J

• 1 kcal = 4.18 kJ

• Joules

Demo

A demo can be shown here by burning donuts or burning potato chips and

heating a water bath and watching the temperature change. Pringles burn
fairly cleanly. Doritos don’t burn as well. If you’re going to do this, I

recommend using a hood.

Some examples of unit conversion

To get warmed up, convert the following

Example 1

Calculate R in terms of calories starting with R = 8.314J/mol · K.
Ans:

1cal = 4.184J

By the way 1 real world “calorie” is actually 1 scientific kcal. So if you ever

watch the movie “Supersize me” you will see that our health officials have
forgotten their units. No wonder we’re so huge.
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8.314

4.184
= 1.9871cal/mol ·K

R = 1.9871cal/mol · K

Example 2

Calculate R in terms of bar and L starting with R = 8.314J/mol · K
Ans: 1Joule = 1Pa · m3 We have

R = 8.314Pa · m3/mol · K

Now recall that 1Pa = 10−5bar. We now have

R = 8.314× 10−5bar · m3/mol · K

where 1m3 = 1000L. Now we get

R = 8.314× 10−2bar · L/mol ·K

The desired answer is

R = 0.08314bar · L/mol · K

Example 3

Calculate R in terms of L · atm starting with R = 8.314J/mol ·K.
Ans: J = Pa · m3 giving

R = 8.314Pa · m3

mol · K
where 1.01325× 105Pa = 1atm or 1Pa = 9.87× 10−6atm. This gives

R = 8.314(9.87× 10−6)atm · m3/mol · K

where 1m3 = 1000L giving

8314(9.87× 10−6)L · atm/mol · K

R = 0.08206L · atm/mol ·K
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Chapter 8

Math interlude

Exact or total differentials

These types of differentials are important because they illustrate the idea of
path independency. This is an important concept when working with ther-

modynamic functions such as energy, enthalpy and entropy. These thermo-
dynamic functions are called state functions and they are said to depend only

on the initial and the final state of the system and not the path traversed
in going from one to the other.

Assume a function of two variables f(x, y). In reality, this could be a

function depending on actual variables [say (V , T ), (P , T ) etc...]. Now the
total differential of this function f(x, y) is written as

df =
(

∂f
∂x

)

y
dx +

(

∂f
∂y

)

x
dy (8.1)

where the subscripts x and y refer to keeping x or y constant while differ-
entiating. The total differential describes how the function f will change

when both x and y change. The homework will include an example that
will better drive home this point in a physical way.

Now, since
(

∂f
∂x

)

and
(

∂f
∂y

)

are functions of x and y one may also write

df = M(x, y)dx + N (x, y)dy.

If we form second derivatives of the function f(x, y) there are several pos-

sibilities. For example,
(

∂f
∂x

)

can be differentiated with respect to either x

or y. Likewise
(

∂f
∂y

)

can be differentiated with respect to either x or y. We

then get the following second derivatives

21
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• ∂2f
∂x2

• ∂2f
∂x∂y

• ∂2f
∂y2

• ∂2f
∂y∂x

However, of these four terms only three are actually distinct. In this respect,
it can be shown that for a function of several variables that the order of
differentiation with respect to 2 variables such as x, y does not matter and

that

∂2f

∂x∂y
=

∂2f

∂y∂x

or that

∂M

∂y
=

∂2f

∂y∂x

∂N

∂x
=

∂2f

∂x∂y

and that

∂M

∂y
=

∂N

∂x
.

These are important tests of what is called exactness. We will use this

later in deriving what are referred to as Maxwell’s relations (no, not the
Electricity and Magnetism ones).

Now conversely a differential expression

M(x, y)dx + N (x, y)dy

is called an exact differential if it happens to correspond to the total dif-
ferential of some function f(x,y). Let’s say you don’t know f(x,y) a priori.

Then to check, the necessary condition for this random differential to be
exact is if

∂M

∂y
=

∂N

∂x
.
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Example

The state of a thermodynamic system is generally a function of more than

one independent variable. Generally, many thermodynamic problems you
will encounter involve only two independent variables (P ,T ) or (V ,T ) etc. . .
Consider the case of an ideal gas where, without deriving it yet and simply

asking you to remember Freshman chemistry -this is the ideal gas equation),

pV = nRT

V = f(T, p)

V =
nRT

p

V =
RT

p
(n = 1).

V can therefore be written as a function of T and p since R is a constant.

Its total or exact differential is

dV =

(

∂V

∂p

)

T

dp +

(

∂V

∂T

)

p

dT

which explicitly shows its dependence on p and T .

Now let’s evaluate
(

∂V
∂p

)

T
and

(

∂V
∂T

)

p
. We get

(

∂V

∂p

)

T

= −RT

p2

(

∂V

∂T

)

p

=
R

p

giving

dV =
−RT

p2
dP +

R

p
dT

You can now check for exactness in your leisure time.

Math games

Often in thermodynamics there will be no convenient experimental method

for evaluating a dependency (i.e. derivative needed for some problem). In
this case, we can play some math games to get what we want.
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Example

Start with the total differential for V = f(p, T )

dV =

(

∂V

∂p

)

T

dp +

(

∂V

∂T

)

p

dT

Say you want or need
(

∂p
∂T

)

V
. To obtain this dependency, divide both sides

by dT and keep V constant (i.e. dV = 0).
(

dV

dT

)

V

=

(

∂V

∂p

)

T

(

dp

dT

)

V

+

(

∂V

∂T

)

p

= 0

Since dV = 0, we have

(

∂p

∂T

)

V

= −
(

∂V
∂T

)

p
(

∂V
∂p

)

T

,

which is the expression we were after. Note that the numerator on the right
is related to what is called the coefficient of thermal expansion (α) while the

denominator is related to what is called the coefficient of compressibility
(κ).

Example

Next, starting with the same total differential above

dV =

(

∂V

∂p

)

T

dP +

(

∂V

∂T

)

p

dT

say you want
(

∂T
∂p

)

V
. To obtain this, divide by dp and keep V constant (i.e.

dV = 0). We get
(

dV

dp

)

V

=

(

∂V

∂p

)

T

+

(

∂V

∂T

)

p

(

dT

dp

)

V

= 0,

resulting in

(

∂T

∂p

)

V

= −

(

∂V
∂p

)

T
(

∂V
∂T

)

p

,

which is our desired expression.
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Example, the inverter

From the previous two results we can then see that

(

∂p

∂T

)

V

=
1

(

∂T
∂p

)

V

.

This relationship has a name in some texts and is called the “inverter”.
Generally speaking then

(

∂x
∂y

)

z
= 1

( ∂y

∂x)
z

. (8.2)

Example, the cyclic rule or Euler chain relation

Another useful relation between partial derivatives is called the cyclic rule.
The total differential of a function is written (again) as

dz =

(

∂z

∂x

)

y

dx +

(

∂z

∂y

)

x

dy = 0

this time using z = f(x, y). Furthermore, as before, we restrict the previous
equation to those where variations of x and y leave the value of z unchanged

z(x, y) = constant or conversely (dz = 0).

(

∂z

∂x

)

y

dx +

(

∂z

∂y

)

x

dy = 0.

Dividing by dy and keeping z constant, we get

(

∂z

∂x

)

y

(

∂x

∂y

)

z

+

(

∂z

∂y

)

x

= 0

At this point, multiply by
(

∂y
∂z

)

x
, using our previous inverter relation, to

get

(

∂y

∂z

)

x

(

∂z

∂x

)

y

(

∂x

∂y

)

z

+ 1 = 0.

This yields our final result

(

∂x
∂y

)

z

(

∂y
∂z

)

x

(

∂z
∂x

)

y
= −1 . (8.3)
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Note that it can also be shown that
(

∂x

∂z

)

y

(

∂z

∂y

)

x

(

∂y

∂x

)

z

= −1.

This is useful since x,y,z in the numerator are related the y,z,x in the de-

nominator as well as to the associated subscripts by a cyclic permutation.
Since in many thermodynamic situations the variables of state are functions
of 2 other variables there is frequent use of such relations.

You don’t have to memorize this equation. Just write down x,y,z in the
numerator in any order. Usually just keep the x,y,z order. Then underneath

in the denominator write down x,y,z in any order but do not repeat the the
same letter in both the numerator and denominator. You will find that there

are only two unique combinations (those shown above).

Summary

Relation 1

(

∂f

∂x

)

z

=

(

∂f

∂x

)

y

+

(

∂f

∂y

)

x

(

∂y

∂x

)

z

(8.4)

Relation 2 (the “inverter”)

(

∂x

∂y

)

z

=
1

(

∂y
∂x

)

z

(8.5)

Relation 3 (the “permuter”)

(

∂x

∂y

)

z

= −
(

∂x

∂z

)

y

(

∂z

∂y

)

x

(8.6)

Relation 4 (the “Euler chain relation”)

(

∂x

∂y

)

z

(

∂y

∂z

)

x

(

∂z

∂x

)

y

= −1 (8.7)
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Solving the differential

Given the total differential for f(x, y)

df =

(

∂f

∂x

)

y

dx +

(

∂f

∂y

)

x

dy

= Mdx + Ndy

its functional form can be found in the following systematic fashion.

From ∂f
∂x = M integrate to get

f =

∫

Mdx + k(y)

where k(y) is some constant that potentially depends on y. The next step
is to find out what k(y) is by differentiating this expression with respect to

y.

(

∂f

∂y

)

x

=
∂

∂y

(
∫

Mdx

)

+
d

dy
k(y) = N (x, y).

Now we rearrange and find k(y) by integrating
dk(y)

dy

dk(y)

dy
= N (x, y)− ∂

∂y

(
∫

Mdx

)

to get

k(y) =

∫

N (x, y)dy −
∫

dy

[

∂

∂y

(
∫

Mdx

)]

+ const.

Replace this k(y) into our previous expression for f to get what we were
after

f(x, y) =

∫

Mdx +

∫

Ndy −
∫

dy

[

∂

∂y

(
∫

Mdx

)]

+ const.

Example

Solve

df = (x3 + 3xy2)dx + (3x2y + y3)dy = 0.
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Test for exactness

M(x, y) = x3 + 3xy2

N (x, y) = 3x2y + y3

taking their cross derivatives we get

∂M

∂y
= 6xy

∂N

∂x
= 6xy

Hence the equation is exact. Now, we go after f(x, y)

f =

∫

Mdx + k(y)

=

∫

(x3 + 3xy2)dx + k(y)

=
x4

4
+

3y2x2

2
+ k(y).

Find k(y) by differentiating this, keeping x constant

(

∂f

∂y

)

x

=
6yx2

2
+

dk(y)

dy
= N (x, y)

Therefore, we have the equivalence

6yx2

2
+

dk(y)

dy
= 3x2y + y3

dk(y)

dy
= y3

yielding

k(y) =
y4

4
+ const

Put it all together now.

f(x, y) =
x4

4
+

3x2y2

2
+

y4

4
+ const
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Integrating factors

The idea behind this method is simple. We sometimes have an equation

p(x, y)dx + q(x, y)dy = 0

that is not exact. However, if we multiply it by some suitable function f(x,y),

the new equation

fpdx + fqdy = 0

is exact so that it can be solved like we did before. Our job here is to find

this integrating factor f(x,y).
In simple cases, f(x, y), can be found by inspection but more generally

do the following. Since

fpdx + fqdy = 0

is exact

∂fp

∂y
=

∂fq

∂x

In general, this is complicated. Therefore make some simplifications and
look for an integrating factor that depends only on one variable. Thus let

f = f(x).

f
∂p

∂y
+ p

∂f

∂y
= f

∂q

∂x
+ q

∂f

∂x

where the second term on the left is zero because f has no y dependence.
We then get

f
∂p

∂y
= f

∂q

∂x
+ q

∂f

∂x

Divide through by fq to get

1

q

∂p

∂y
=

1

q

∂q

∂x
+

1

f

∂f

∂x

Now consolidate terms to get

1

f

∂f

∂x
=

1

q

(

∂p

∂y
− ∂q

∂x

)

lnf =

∫

1

q

(

∂p

∂y
− ∂q

∂x

)

dx
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The desired integrating factor is therefore

f = e
R

1
q

“

∂p

∂y
−

∂q

∂x

”

(8.8)

Note that the same type of argument can be made if one assumes f = f(y)

only rather than f = f(x) as done here.

Linear differential equations

This section is mostly for the kinetics part of this course.

A 1st order differential equation is said to be linear if it can be written

y
′

+ p(x)y = r(x)

The characteristic feature of the equation is that it is linear in y and y
′

whereas p and r on the right may be any function of x.

Now if r(x) = 0 the equation is said to be homogeneous. If r(x) 6= 0
then this is a non-homogeneous equation.

Homogeneous case

For example

y
′

+ p(x)y = 0

dy

dx
= −p(x)y

dy

y
= −p(x)dx

lny = −
∫

p(x)dx + const

resulting in

y = Ae−
R

p(x)dx

where A is a constant. This is the desired general solution for the homoge-
neous case.
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Non-homogeneous case

Consider the same equation

y
′

+ p(x)y = r(x)

This will be solved by using an integrating factor. Rewrite the expression

as

dy

dx
+ p(x)y − r(x) = 0

dy + (p(x)y − r(x))dx = 0

(p(x)y − r(x))dx + dy = 0

Pdx + Qdy = 0

where

P = p(x)y − r(x)

Q = 1

From our integrating factor formula derived previously

1

f

df

dx
=

1

q

(

∂p

∂y
− ∂q

∂x

)

1

f

df

dx
=

1

1

(

∂(p(x)y − r(x))

∂y
− 0

)

1

f

df

dx
=

∂[p(x)y − r(x)]

∂y

1

f

df

dx
= p(x)

df

f
=

∫

p(x)dx

lnf =

∫

p(x)x + const

f = Ae
R

p(x)dx

or if A = 1

f(x) = e
R

p(x)dx
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This is our desired integrating factor. Now multiply our original equation
by this integrating factor to make it exact.

f(x)[y
′

+ p(x)y] = f(x)r(x)

e
R

pdx(y
′

+ py) = e
R

pdxr(x)
(

e
R

pdx
)′

= e
R

pdxr(x)

You can check for yourself that the last expression is true.

(

e
R

pdx
)′

= e
R

pdxy
′

+ y
d

dx
(e

R

pdx)
d(
∫

pdx)

dx

= e
R

pdxy
′

+ ye
R

pdxp

= e
R

pdx(y
′

+ yp)

So you can see that the expression checks out.

Back to where we left off

(

e
R

pdx
)′

= e
R

pdxr(x)

Integrate this with respect to x

e
R

pdxy =

∫

e
R

pdxr(x)dx + const

giving

y = e−
R

pdx

[
∫

e
R

pdxr(x)dx + const

]

This is our desired final solution. The choice of constant does not matter.

Example

Nonhomogeneous 1st order linear differential equation.

Solve the following linear differential equation.

y
′ − y = e2x

Here

p(x) = −1

r(x) = e2x



33

Solve for the exponential term

e
R

pdx = e
R

−1dx

= e−x

We have

e
R

pdx = e−x

Plug this into the general formula for the integrating factor.

y = e−
R

pdx

[
∫

e
R

pdxr(x)dx + const

]

= ex

[
∫

e−xr(x)dx + const

]

= ex

[
∫

e−xe2xdx + const

]

= ex

[
∫

exdx + const

]

= ex [ex + const]

Our general solution to the problem is therefore

y = Cex + e2x

where C is a constant.
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Chapter 9

Thermo definitions

• System: the system is the part of the world in which we have a special

interest. It may be a reaction vessel, an engine, an electrochemical cell,
a biological cell, etc...

• Surroundings: everything else

• Open system: if matter can be transferred through the boundary
between the system and its surroundings

• Closed system: matter cannot pass through the boundary between

the system and its surroundings. Both open and closed systems, how-
ever, can exchange energy with their surroundings. We will primarily

deal with closed systems in this class.

Within closed systems we have two subclasses

• Isolated system: This is a closed system and on top of it, no me-
chanical or thermal energy can be exchanged between system and sur-

rounding. This is boring and we will generally not be interested in
this.

• Adiabatic system: This is also a closed system, but absolutely no

thermal energy can be exchanged between the system and surrounding.
However mechanical work or energy can be transfered (unlike the pure

isolated system).

Some important processes as we move from some initial state of a system

to a final state are characterized by holding a quantity constant during the
process:

35
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• isobaric means ∆p = 0

• isothermal mean ∆T = 0

• isentropic means ∆S = 0

• isometric means ∆V = 0

• adiabatic means dq = 0

Pictorial representations

I guess one day I’ll add these drawings.



Chapter 10

Equation of state: Ideal gases

A system is in a definite state when all of its properties (e.g. mass, pressure,

volume, temperature, etc...) have definite values. The state of the system is
therefore described by specifying the values of some or all of its properties.

The question we ask is whether you need to specify 5, 20, 50, 100, differ-
ent properties to ensure that the state is completely described. Fortunately

only four properties, mass, volume, temperature, and pressure are ordinarily
required.

The equation of state is the mathematical relationship between the values

of these four properties. Unfortunately, of solids, liquids and gases, only the
gas phase allows for a simple quantitative description of the equation of
state.

Ideal gas equation

An ideal gas is defined as one in which all collisions between point particles

(in reality, atoms or molecules but idealized here to be particles which occupy
no volume) are perfectly elastic (no loss of energy on collision) and in which

there are no intermolecular interactions whether attractive or repulsive. One
can therefore visualize the ideal gas as a collection of infinitesimally small

hard spheres which collide but which otherwise do not interact with each
other. In such a gas, all the internal energy is in the form of kinetic en-

ergy and any change in internal energy is accompanied by a change in the
temperature of the gas. Note that we say nothing about what this inter-
nal energy actually is. In fact, classical thermodynamics doesn’t care. But

you know from your previous classes that this internal energy is basically
the rotational and vibrational energies of the system’s constituent atoms or

37
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molecules. Furthermore, in the case of molecules there is additional energy
tied up in the chemical bonds (whether ionic or covalent).

Definition: an ideal gas is one that obeys the following equation of

state

pV = nRT (10.1)

where n is the number of moles of gas and R is the ideal gas constant.

Furthermore, the internal energy of the ideal gas, U , is a function of the
temperature only. (note that some authors use E for internal energy, same

thing) As a consequence, we say that U has no volume or pressure depen-
dence

(

∂U

∂V

)

T

= 0 (10.2)

(

∂U

∂p

)

T

= 0. (10.3)

Note that I have simply asserted this for ideal gases. I will derive it later,
however, remembering this little fact now will help a lot down the road.

In a microscopic sense this is saying that if you change the volume and

pack the gas atoms closer together, they still do not interact. Likewise,
changing the pressure does nothing either. The atoms or molecules are
blissfully ignorant of each other.

Derivation

Now, the ideal gas equation of state can be derived from Boyle’s Law and

Charles’ Law.

Boyle’s Law

Recall that this is an expression derived in 1661 (or 1662) by Robert Boyle

which describes an inverse relationship between pressure and volume. He
supposedly discovered this in the context of hot air balloons or something

but don’t take my word on this. So at constant temperature and with a
constant amount of stuff the pressure of a gas is inversely proportional
to its volume. Consider squishing a balloon (actively reducing the volume

occupied by the gas). Here the balloon’s gas is our system of interest. Hence
when we talk about p and V we are referring to its pressure and volume.
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Now, as you compress the balloon the pressure exerted by the air inside
increase dramatically. We have

p =
const1

V

or

pV = const1.

Alternatively, we see that

V = const1
p

from where you see that if p increases, V decreases.

Demo opportunity

One can do a demo here with a closed syringe. Plug up a disposable syringe.
When one puts pressure on the plunger, the volume will decrease and will

simultaneously increase the system’s pressure. Conversely, decreasing the
system’s pressure will increase its volume. Again, the pressure we are talking
about is the gas pressure inside the syringe.

In either the balloon example above or the disposable syringe demo,

when you -the external agent of change- imposes your will on the system
the system’s gas responds. In both cases, we saw that the pressure increased.
What I want to you be cognizant of at this point is that, when all is said

and done, equilibrium is established between you and the system. Hence,
the system’s pressure will equal the pressure you are imposing on it. Think

about it. If it didn’t, you would be able to continue compressing the balloon
or the syringe.

Charles’ Law

Next, in 1787, French physicist Jacques Charles observed that the volume

of a gas under constant pressure and constant stuff conditions increases or
decreases with temperature (i.e. there exists a linear relationship between

the volume and temperature of a system). Note that there are some books
which call this temperature-volume relationship by the name of Gay-Lussac’s
Law. There are others which call it the Law of Charles and Gay-Lussac.

This has to do with who published first (bottom line, if you’re an academic,
publish in a timely fashion.)
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Thus, under constant pressure/stuff conditions, the hotter the gas is the
more volume it occupies and vice versa.

V = const2(T ) .

Demo opportunity

One can do a demo here using a filled balloon and liquid nitrogen. Pour
the liquid nitrogen over the balloon (don’t do it the other way by trying to
dunk the balloon into LN2. It takes longer and sometimes the balloon will

freeze and crack letting all the air out.). As the gas inside cools, the balloon
volume will decrease. Let the balloon warm up and it should expand again.

Avogadro’s Law

Finally, there is a third relationship that we need. It is called Avogadro’s

law in some texts and what it says is that the volume of a gas is proportional
to how much stuff is present (i.e. n). Note that implicit here is the idea
that both the gas’ temperature and pressure remain constant.

V = const3(n) .

Putting Boyle and Charles and Avogadro together

Qualitatively

We now want to put all the empirically observed gas laws together. Qual-
itatively, this is pretty straightforward. We have just seen that the three
laws say

V =
const1

p

V = const2(T )

V = const3(n).

If we just merge all three laws together you can see that in the numerator we

will find n and T . In the denominator we will have p and all of this will be
tied together with an overall constant of proportionality c that encompasses

what is buried in const1, const2 and const3. We have

V =
cnT

p

which is basically the ideal gas law if c = R.
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More formally

There is, however, a more formal way to derive the ideal gas equation of

state. For a given amount of stuff n we see that V depends only on T and
p.

V = f(T, p).

The total derivative of this function is then

dV =

(

∂V

∂T

)

n,p

dT +

(

∂V

∂p

)

n,T

dp

where recall for constant stuff and pressure, Charles says V = const2(T )
and thus

(

∂V

∂T

)

n,p

= const2.

Next, recall for constant stuff and constant temperature, Bolye says that
V = const1

p
and thus

(

∂V

∂p

)

n,T

= −const1
p2

.

When all is put together we get

dV = const2dT − const1
p2

dp.

We can simplify this more if we recall that

const2 =
V

T
(Charles’ Law)

const1 = V p (Boyle’s Law).

This gives

dV =
V

T
dT +

−V

p
dp.

Rearrange this to get

dV

V
=

dT

T
− dp

p
.
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Integrate this to get

lnV = lnT − ln p + const.

This simplifies to

ln V = ln
T

p
+ const

or

V =
T

p
econst =

T

p
constfinal.

At this point, recall that we had a fixed amount of stuff, n. So the final
constant of proportionality, constfinal includes n and by Avogadro’s law we

find that

V = nR
T

p

provided that constfinal = nR with R the ideal gas constant. Our desired

expression is then

pV = nRT.

Note that from here on out when working with the ideal gas equation of
state you will usually have pressures in terms of atm. Volumes will often be

in terms of liters, n is in moles, and T is in Kelvin.

Demo opportunity

A demo of the ideal gas law can be done here. At standard temperature
and pressure (STP -no not the stuff you get at AutoZone) which is 1 atm

and 273.15 K one mole of gas occupies 22.4 L. This can be demonstrated by
filling a small Erlenmeyer with 1 mol of liquid nitrogen. When the density

of liquid nitrogen and the molar mass are accounted for half a mole of LN2
is about 17.5 mL. Then put a balloon on top of the Erlenmeyer. Warm
up the liquid nitrogen by putting it in a warm water bath. You will see

the balloon expand. Measure the radius of the balloon and from geometric
considerations calculate the balloon volume in liters.
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Example, easy

Calculate the volume occupied by 1 mol of an ideal gas at 25oC and 1 atm.

Ans:

pV = nRT

(1)(V ) = (1)(0.08206)(298.15)

We get

• V = 24.47 L

• V = 24470 mL

• V = 24470cm3

Example

How many grams of oxygen (O2) are there in a 50 L tank at 21oC when the
oxygen pressure is 15.7 atm.

Ans:

pV = nRT

(15.7)(50) = n(0.08206)(294.15)

leaving n = 32.52 mol oxygen. The molecular weight of O2 is 32 grams/mole

giving 1.04 kg O2 present in the tank.

Example

What is the pressure of a 50L tank containing 3.03 kg oxygen at 23oC?

Ans: The number of moles of oxygen is n = 94.48. Next

pV = nRT

p(50) = (94.68)(0.08206)(296.15)

From this we get p = 46 atm.

Example, harder

In some industrial process, N2 is heated to 500K in a vessel of constant
volume (sounds dangerous). It enters the vessel at a pressure of 100 atm
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and at T = 300K. What pressure would it exert at the working temperature
if it behaved as an ideal gas.

Ans:

pV = nRT

p2V2 = (nR)(500)

where we want p2 and note that the volume is constant

p1V1 = (nR)(300)

p2V2 = (nR)(500).

Therefore, the ratio is

p2V2

p1V1
=

500

300
p2

p1
=

5

3
p2

100
=

5

3
.

We then get our desired answer

p2 = 167 atm.

Example

Alternatively, (using the same information given in the previous example)

what temperature would result in the sample exerting a pressure of 300 atm.

Ans:

p1V1 = (nR)T1

p2V2 = (nR)T2

where recall again that the volume stays constant. Thus

p1

p2
=

T1

T2

100

300
=

300

T2
.

From this we see that T2 = 900 Kelvin.
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Dalton’s Law

Simply stated, Dalton’s law says that the pressure exerted by a mixture of

ideal gases is the sum of their individual partial pressures.

ptot = p1 + p1 + . . .

The partial pressure is defined as the pressure of a single ideal
gas in the mixture as if that gas were alone in the container. In

other words, Dalton maintained that since there was an enormous amount of
space between the gas molecules within the mixture that the gas molecules

did not have any influence on the motion of other gas molecules, therefore
the pressure of a gas sample would be the same whether it was the only

gas in the container or if it were among other gases. This assumption that
molecules act independently of one another works fine as long as the gases
are ideal. For real gases, it works provided that there is a lot of space

between the component gas molecules in the mixture and the temperature
is not too low. Lowering the temperature and/or compressing the gas will

upset this assumption.

Example

A 10L container holds 1 mole N2, 3 moles of H2 at 298K. What is the total
pressure in atmospheres if each component behaves as an ideal gas.

Ans:

pN2 =
(1)RT

V

pH2 =
(3)RT

V

The total pressure is the sum of each component in the mixture

ptot = pN2 + pH2

=
RT

V
(1 + 3)

=
4(0.08206)(298)

10
= 9.78 atm

Partial pressures and mole fraction

Finally, it is possible to relate the partial pressure of a gas in a mixture to its
mole fraction χ. Namely, the ratio of the partial pressure of one component
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of a gas mixture to the total pressure is

p1

ptot
=

(

n1RT
V

)

(

n1RT
V + n2RT

V + . . .
)

=

(

n1RT
V

)

(n1 + n2 + . . . )RT
V

=
n1

n1 + n2 + . . .

Therefore

p1

ptot
= χ1 (10.4)

Thus the ratio of partial pressure to total pressure is equal to the mole
fraction of the gas in the mixture.

Alternatively, the partial pressure of an ideal gas could just as well have

been defined as

p1 = χ1ptot (10.5)

and likewise

p2 = χ2ptot

p3 = χ3ptot

etc . . .
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Equation of state: Real gases

Real gases do not obey the ideal gas law. Deviations from ideal behavior are
particularly important at high pressures and low temperatures. Therefore

to develop a better equation of state for “real” gases the Van der Waals
equation was introduced in 1873 (or 1877, depends on who you believe in

but nonetheless highlights the fact that this was a long time ago). The van
der Waals equation does not assume like the ideal gas law that we are dealing
with point particles that do not interact except through elastic collisions.

It corrects for the fact that in reality molecules are not point particles but
rather occupy some volume (this means van der Waals messed around with

the V in the ideal gas equation). Next the van der Waals equation accounts
for the fact that gas molecules attract one another when close enough and

hence that real gases are more compressible. These attractive forces are still
referred to today as van der Waals forces. (basically this also means that

van der Waals messed with the p term in the ideal gas equation)

The van der Waals forces we have learned about previously are

• Dipole-dipole (Keesom 1912)

• Dipole-induced dipole (Debye 1920)

• Dispersion Forces (London 1930)

I’ll assume that you remember what the idea behind these interactions were.

You can see evidence of nonideal gases everywhere. Add enough pressure
and the gas condenses to a liquid or a solid. For example, if you work in
a chemistry lab, chances are that you use liquid nitrogen for the trap on

your vacuum line. If you are a physicist you use liquid helium to cool your
samples to low temperatures. If you watch movies where you have bubbling
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solutions made by the mad scientist, that’s solid carbon dioxide (aka dry
ice) at work. These all show that real gases are non-ideal.

These are the corrections made by van der Waals to the ideal gas equation
of state.

Volume correction

Real molecules are not point particles.

Vm → (Vm − b)

where b is the volume per mole occupied by real molecules. Note that Vm is
the molar volume of the gas.

Pressure correction

Real molecules interact with one another.

p →
(

p +
a

V 2
m

)

where a is some constant. Again Vm is the molar volume of the gas.

Summary

The ideal gas equation thus gets transformed into the van der Waals equation

of state

pV = nRT →
(

p +
a

V 2
m

)

(Vm − b) = RT.

This gives

(

p + a
V 2

m

)

(Vm − b) = RT (11.1)

and is for one mole of real gas. A more general expression for n moles of
real gas is

(

p + n2a
V 2

)

(V − nb) = nRT . (11.2)

Finally, there are tables of van der Waals a and b coefficients. Here is a
sampling of them.
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Gas a (L2 · atm/mol2) b (L/mol)

He 0.0342 0.02370

Ne 0.211 0.0171
Ar 1.35 0.0322

Kr 2.32 0.0398
Xe 4.19 0.0511

H2 0.244 0.0266
N2 1.39 0.0391

O2 1.36 0.0318
Cl2 6.49 0.0562
H2O 5.46 0.0305

CH4 2.25 0.0428
CO2 3.59 0.0427

CCl4 20.4 0.1383

Summary of other real gas equations

Now it goes without saying that over the years people have thought of other

ways to better model real gases. There are a ton of equations that are
listed below that show you what they have tried. Some look easier than

others. Nevertheless, the van der Waal expression is pretty decent and is
very commonly used, although it should be said that the ideal gas equation

isn’t bad either under some circumstances. I assume you are able to tell
yourself what those circumstances are.

van der Waals equation

It was the first to describe deviations for ideality

(

p +
a

V 2
m

)

(Vm − b) = RT (11.3)

where Vm is the volume/mole and a and b are the above gas specific con-
stants.

Berthelot equation

This is too unwieldy to be used generally and as an equation of state. How-
ever, it is convenient in calculations of deviations from ideality near 1 atm
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pressure
(

p +
a

TV 2
m

)

(Vm − b) = RT. (11.4)

Again a and b are constants that you go and look up in a table. Note that
these constants are not the same as those in the van der Waals equation of

state.

Redlich-Kwong equation

This was first proposed back in 1949 (still a while ago)
[

p +
a√

TVm(Vm + b)

]

(Vm − b) = RT. (11.5)

As usual, a and b are constants, characteristic of the gas, that you go look

up in a table somewhere.

Dieterici equation

p(Vm − b) = RTe
−a

RTVm (11.6)

Beattie-Bridgeman equation

pV 2
m = (1− γ)RT (Vm + β) − α (11.7)

where α = a0

(

1 + a
Vm

)

, β = b0

(

1 − b
Vm

)

and γ = c0
VmT 3 . Looks complicated

and has lots of coefficients.

Virial function

This is an empirical power series expansion

pVm = A(T ) + B(T )p + C(T )p2 + . . . (11.8)

which can alternatively be written as

pVm = A
′

(T ) +
B

′

(T )

Vm
+

C
′

(T )

V 2
m

+ . . . (11.9)

where A, B, C and A
′

, B
′

, C
′

are called virial coefficients.
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Compressibility factor

For real gases, to clearly display their deviations from ideality we plot the

ratio of the observed molar volume, Vm to the ideal gas value as a function
of pressure at constant temperature

Z =
Vm

Videal

=
Vm

RT
p

to obtain

Z = pVm

RT
. (11.10)

This ratio is called the compressibility factor, Z. Note that for an ideal gas,

Z = 1. A graph of Z versus pressure will show deviations from 1 indicating
non-ideality.

Z, van der Waals gas

Let’s calculate Z for the van der Waal gas

(

p +
a

V 2
m

)

(Vm − b) = RT.

Rearrange this to

(

p +
a

V 2
m

)

=
RT

(Vm − b)

p =
RT

(Vm − b)
− a

V 2
m

.

Now multiply through by Vm

pVm =
RTVm

(Vm − b)
− a

Vm
.

Divide through by RT

Z =
pVm

RT
=

Vm

(Vm − b)
− a

RTVm
.
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The compressibility factor of the van der Waals gas is therefore

Z = 1
1− b

Vm

− a
RTVm

(11.11)

This expression can be expressed differently, especially at low pressures

where b
Vm

<< 1 by talking a series expansion of the above expression.

The Mclaurin series of 1
1−x

goes as

1

1 − x
= 1 + x + x2 + . . .

Thus

1

1 − b
Vm

= 1 +

(

b

Vm

)

+

(

b

Vm

)2

+

(

b

Vm

)3

+ . . .

Hence

Z ' 1 +

(

b

Vm

)

+

(

b

Vm

)2

+

(

b

Vm

)3

− a

RTVm

giving the following equation.

Z = 1 +
(

b − a
RT

)

(

1
Vm

)

+
(

b
Vm

)2
+
(

b
Vm

)3
+ . . . (11.12)

Alternatively, it would be preferable to have Z defined as a function of
temperature and pressure, but since the van der Waals equation is cubic in
Vm this gets complicated fast. We settle for an approximate expression by

noting that as the pressure goes to zero (p → 0), 1
Vm

→ 0 and Z → 1 (ideal).
Therefore at low pressures we can expand Z as a power series in pressure

Z = 1 + A1p + A2p
2 + A3p

3 + . . .

where A1, A2, A3 are functions of temperature only. Now to determine A1,

A2, A3 note that Z = pVm

RT
(our definition) or that 1

Vm
= p

RTZ
. Replace this

expression into our volume-based power series expansion

Z = 1 +
(

b − a

RT

)

(

1

Vm

)

+

(

b

Vm

)2

+

(

b

Vm

)3

+ . . .

= 1 +
(

b − a

RT

)( p

RTZ

)

+
b2p2

(RTZ)2
+

b3p3

(RTZ)3
+ . . .

= 1 +
(

b − a

RT

)( p

RTZ

)

+

(

b

RT

)2 p2

Z2
+

(

b

RT

)3 p3

Z3
+ . . .

= 1 + A1p + A2p
2 + A3p

3



53

We then have the equality

A1p + A2p
2 + A3p

3 + · · · =
(

b − a

RT

)( p

RTZ

)

+

(

b

RT

)2 p2

Z2
+

(

b

RT

)3 p3

Z3
+ . . .

or

A1 + A2p + A3p
2 + · · · =

(

b − a

RT

)

(

1

RTZ

)

+

(

b

RT

)2 p

Z2
+

(

b

RT

)3 p2

Z3
+ . . .

By inspection

A1 =
(

b − a

RT

)

(

1

RTZ

)

and as Z → 1

A1 =
(

b − a

RT

)

(

1

RT

)

Now we go back and find the other coefficients. We have

A1 + A2p + A3p
2 + · · · = A1

Z
+

(

b

RT

)2 p

Z2
+

(

b

RT

)3 p2

Z3
+ . . .

Subtract A1 from both sides and then divide by p to isolate A2 on the left

hand side.

A2p + A3p
2 + . . . =

A1

Z
− A1 +

(

b

RT

)2 p

Z2
+

(

b

RT

)3 p2

Z3
+ . . .

A2 + A3p + . . . =
A1

Z

(

1

p

)

−
(

A1

p

)

+

(

b

RT

)2 1

Z2
+

(

b

RT

)3 p

Z3
+ . . .

From this, by inspection, we see that

A2 =
A1

p

(

1

Z
− 1

)

+

(

b

RT

)2 1

Z2

= −A1

p

[

Z − 1

Z

]

+

(

b

RT

)2 1

Z2

= −A1

Z

(

Z − 1

p

)

+

(

b

RT

)2 1

Z2
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Since Z = 1 + A1p + A2p
2 + . . . , limp→0

(

Z−1
p

)

= A1. Using this we get

A2 = −A1

Z
A1 +

(

b

RT

)2 1

Z2

=

(

b

RT

)2 1

Z2
− A2

1

Z

Now let Z = 1 to get

A2 =

(

b

RT

)2

− A2
1

Here we need to evaluate one last thing A2
1 before we are scott free (who

was scott anyway?).

A2
1 =

(

b − a

RT

)2
(

1

RT

)2

=

[

b2 − 2ab

RT
+

a2

(RT )2

](

1

RT

)2

=

(

b

RT

)2

− 2ab

(RT )3
+

a2

(RT )4

therefore when this is thrown back into the expression for A2 we get

A2 =

(

b

RT

)2

−
(

b

RT

)2

+
2ab

(RT )3
− a2

(RT )4

resulting in

A2 =
a

(RT )3

(

2b − a

RT

)

This process is repeated on and on to get A3, A4 and so forth.

Summary

Expression of the van der Waals gas compressibility ratio expressed as a

function of pressure and temperature. Now we can plot this on a Z versus
p curve.

Z(p, T ) = 1 + 1
RT

(

b − a
RT

)

p + a
(RT )3

(

2b − a
RT

)

p2 + . . . (11.13)



Chapter 12

Equation of state:
Condensed phases

At this point, you might be wondering if there is a generic equation of

state for condensed phases. In this regard, solids and liquids are referred to
collectively as condensed phases. This emphasizes their high density relative

to gases. To illustrate, at standard temperature and pressure (STP, this is
0oC or 273.15K and 1 atm) a gas occupies 22,400 cm3/mol (or 22.4 L) while

most solids and liquids occupy between 10 and 100cm3/mol. Thus the molar
volume of gas is 500-1000 times larger than that of a liquid or a solid. This

translates to large differences in the average distance between molecules in
the gas phase versus either condensed phase. If the ratio of gas volume to

liquid volume is 1000, the ratio of intermolecular distances is roughly

d3 = 1000

d =
3
√

1000 = 10.

Molecules in the gas phase are therefore approximately 10 times farther
apart than molecules in liquids and especially in solids.

So what really begins to distinguish liquids and solids from gases is the

presence of short range intermolecular forces (remember those van der Waals
forces for real gases) which fall off very quickly with increasing molecular

separation. So in gases, we (for the most part) ignore these intermolecular
forces to obtain the ideal gas law. Corrections for reality then lead us to the
previous real gas equations of state such as the van der Waals equation, the

Berthelot equation etc... As you can probably guess, in condensed phases,
these intermolecular forces cannot be ignored.
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Again, recall that the three contributions to so-called Van der Waals
forces are

• dipole-dipole interactions (Keesom 1912)

• dipole-induced dipole interactions (Debye 1920)

• induced-dipole-induced-dipole interactions (London 1930).

In the absence of orientational averaging, the first dipole-dipole contribution

has a 1
r3 dependence. After angle averaging, it becomes 1

r6 . The second
dipole-induced dipole term maintains a 1

r3 dependence because the second

dipole is induced by the first as the name implies. The relative orientation of
the dipoles is therefore maintained. The final contribution, induced-dipole-

induced-dipole, is shown to possess a 1
r6 dependence.

We return to our original question. Is it then possible to find an equation

of state for liquids and solids that has the same generality as the ideal gas
equation of state? Unfortunately, the answer is no. However, we can develop

something that looks like a general equation of state for condensed phases
as we will see.

The dependence of the volume of a solid or liquid on temperature at
constant pressure is

V (T ) = V0(1 + αT ) (12.1)

where V0 is the volume of a solid or liquid at 0oC and α is the coefficient of
thermal expansion (units of K−1). α is generally the same for all gases but

varies dramatically in solids and liquids. This expression is akin to Charles’
law in gases. If we wanted to, we can extend this power series to better
fit the behavior of a real solid or liquid. So our original expression would

change a bit to

V (T ) = V0(1 + aT + bT 2 + cT 3 + . . . )

where a,b,c,d, etc... are constants. One generally keeps only the first two
terms of this expression since the contributions of higher order terms be-

comes successively smaller.
Now it turns out that V0 is dependent on pressure just like Boyle’s law

in gases. Experimentally a relationship between V0 and pressure is found to
be

V0(p) = V 0
0 [1 − κ(p − 1)] (12.2)
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at constant temperature where V 0
0 is the volume of the condensed phase

at 0oC and at 1 atm, p is the pressure in atm and κ is the coefficient of

compressibility with units of atm−1. Note that κ is very small for liquids
and solids. They are basically incompressible (κ ' 0). This is why torpedoes
are so dangerous to ships.

The above two equations for V (T ) and V (p) can be obtained from the

definitions of α and κ as illustrated below. Namely, α and κ are formally
defined as

α = 1
V

(

∂V
∂T

)

p
(12.3)

κ = − 1
V

(

∂V
∂p

)

T
. (12.4)

Derive V(T)

Let’s first show how α gives us V (T ) = Vo(1 + αT )

α =
1

V

(

∂V

∂T

)

p

dV

V
= αdT

∫ V

V0

dV

V
=

∫ T

T0

αdT

ln
V

V0
= α(T − T0)

V

V0
= eα(T−T0)

V = V0e
α(T−T0).

Now if α(T − T0) << 1 we can express the exponential as a series

eα(T−T0) ' 1 + α(T − T0) + . . .

This leads to our first expression for V as a function of T

V (T ) = V0[1 + α(T − T0)] (12.5)

where if T0 = 0oC we obtain the desired original expression.
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Derive V(p)

Likewise, we can do the same sort of derivation for V (p)

dV

V
= −κdp

∫ V

V0

dV

V
= −

∫ p

p0

κdp

ln
V

V0
= −κ(p − p0)

V

V0
= e−κ(p−p0).

Now if κ(p − p0) << 1 the exponential can be expressed as a series

e−κ(p−p0) ' 1 − κ(p − p0) + . . .

resulting in

V (p) = V0[1 − κ(p − p0)]. (12.6)

If p0 = 1atm we get our original expression where V becomes V0 and V0

becomes V 0
0 .

Combining the two

So just like in the ideal gas section where we combined the results of Boyle

and Charles (and Avogadro) to get the ideal gas equation let’s combine the
above two expressions.

V (T ) = V0(p)(1 + αT )

V0(p) = V 0
0 [1− κ(p − 1)].

Substituting one equation into the other gives

V (T, p) = V 0
0 [1− κ(p− 1)][1 + αT ] , (12.7)

which is a general equation of state for condensed phases. But this result

isn’t truly as general as the ideal gas equation of state because each solid or
liquid has a different V 0

0 and α and κ value. There is no equivalent to the

universal ideal gas constant R here.
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First law of thermodynamics

The first law of thermodynamics is basically a statement of the conservation

of energy applied to a thermodynamic system of interest. The reason we
need the first law is that the systems we will consider ultimately undergo

some sort of process, taking it from an initial state to a final state (after
all if the system just sat there life would be pretty boring). During these

processes, the system exchanges energy with its surroundings and since we
don’t magically gain or lose energy we need a bookkeeping mechanism to
track the changes in internal energy of a system. Obviously, if the system is

isolated and just minding its own business, its internal energy will remain
the same.

At this point, note three more things. First, we are not specifying exactly
what kind of energy the system has gained or lost. Given our knowledge

of quantum mechanics, we could say that it’s electronic or vibrational or
rotational energy gained or lost. But back in the day people didn’t know

this. Thermo preceded quantum by many years. So in some ways that’s the
beauty of classical thermodynamics since it applies to everything irrespective

of what is actually going on inside the system. Next, we are only looking at
energy changes in thermodynamics. We are not measuring absolute energies

of a system. That’s the reason for all the deltas and differentials in what
follows. Finally, it will be customary to define a system’s internal energy in
terms of its temperature and volume [U(T, V )]. However, it is possible to

define a system’s internal energy as a function of temperature and pressure.
But this is not commonly done though we will show the functional form in

the later parts of this chapter for the sake of completeness.

The 1st law of thermodynamics states that the change in internal energy
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(U) of a system is

∆U = q + w . (13.1)

You can see that these changes in internal energy occur as a consequence of

adding and subtracting heat (q) and work (w) to the system. For infinitesi-
mally small changes in internal energy we write

dU = dq + dw . (13.2)

Before going on we should make a sign convention clear. This is impor-

tant. If you add energy to the system by doing work on it then w is positive.
If the system does some kind of work then w is negative. The same goes

with everything else. If the system receives heat, q is positive. If it loses
heat during some process then q is negative. I informally call this a selfish

“me” perspective. The other analogy is to a checking account you might
have at NDFCU. If you add cash to the account the sign is positive. If you

use the ATM to withdraw money, the sign is negative. You are warned that
there are many texts out there that have an opposite sign convention. So

beware!
To continue, we need to describe the kind of work involved here. This is

mostly what I will call pressure/volume (PV ) work. I will not go into other

forms of work other than note that you can have electrical work among other
things. Generally speaking we will not deal with these other forms of work

here. The heat term is simply the energy transferred to or from the system
due to a temperature difference with the surroundings.

Work

Now, when dealing with PV work we are generally dealing with gases and

on top of this we are usually dealing with changes in its volume. The work
term then looks like

w = p∆V (13.3)

and the internal energy expression becomes

∆U = q + p∆V. (13.4)

These volume changes for gases can be large and hence the amount of work
done can be significant. Doubt me, then think of the V8 in a car. Everytime

you have a volume expansion in one of the cylinders it causes a volume
displacement (or displacement, you usually see these written as 1.7 L or 5 L
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sometimes on the back of the car) by a moving piston which, in turn, enables
your car to move. However, if you are dealing with condensed phases like

liquids and solids, recall that they are generally incompressible and that
any volume changes are almost insignificant. They can be ignored to a first
approximation. Basically, ∆U ' q for solids and liquids. As a consequence,

in the next section we focus only on gases and not on condensed phases.

Heat transfer

There are three generic heat transfer processes one should be aware of. They

are

• Conduction

• Convection

• Radiation

Demo opportunity

Conduction can be demonstrated by heating one end of a metal rod. Wait

long enough and the end you are holding will get hot as well. Try holding
on to it as long as possible and think of the opening scene in Kung Fu.

Alternatively, use a hand boiler filled with methylene chloride. Hold it in
your hand and the pressure in the bottom of the bulb will build up. This

pressure will then push the liquid up into the top section of the hand boiler.

Convection can be demonstrated using a beaker full of say ethylene gly-
col. Don’t try corn syrup it doesn’t work, trust me. Add a few drops of
food coloring to the top. I like red. Be careful not to mix it by agitating

things. Heat the beaker with an open flame from say a portable stove. As
a temperature gradient between the bottom and top of the beaker builds

in, you will see the food coloring start to cycle and distribute across the
solution. This shows the convection or physical motion of solvent molecules

that arises due to a temperature gradient.

Radiation can be demonstrated with a science toy (its called a Crookes
radiometer and you can buy these things from companies like Edmund

Scientific-problem is as a kid you probably won’t appreciate it) that has
an evacuated chamber with fan like apparatus on the inside. One side of
the blades is painted black. The other side is not painted. When exposed

to sunlight, the blades will begin to rotate. You can buy such a toy in most
science museum gift shops.
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Example

As a warm up example, let’s run some numbers. The temperature of 1 mole

of substance is raised by heating it with 750 joules of energy. It expands and
does the equivalent of 200 J of work. Calculate the change in the system’s

internal energy.
Ans:

∆U = q + w

= 750 − 200

= 550J.

Now, let’s look more closely at work done by gases.

Piston example

Think of a car engine piston. A chemical reaction occurs within the cylinder

which forms a gas that pushes against the piston head. For simplicity,
assume no friction and hence no heat evolved as a direct consequence of the
piston moving.

The force acting on the piston can be calculated since

pressure =
force

area
.

Now remembering some basic physics

force = (pressure)(area).

So what is the pressure? Well, the pressure is the external pressure (pext)

that the gas inside the piston is pushing against (Remember, we always look
at things from the system’s point of view). Since the piston is cylindrical,

the area is just πr2. We get

force = (pext)(πr2).

At this point, we know that the amount of work done is simply force times
distance (assume the z direction as the direction the piston moves in). Fur-

thermore, remember from our sign convention that if the system does work,
the sign out front is negative. Thus

w = −force(distance)

dw = −pextπr2(dz)
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or

dw = −pextdV . (13.5)

Integrating then gives

w = −
∫

pextπr2dz

= −
∫ V2

V1

pextdV.

and yields our desired expression

w = −
∫ V2

V1
pextdV .

Types of work we will encounter

Ok so what next? Let’s catalog the types of work you will see often in

thermodynamics. Remember again that all of this primarily deals with gases
since solids and liquids do little or no PV (i.e pdV ) work. Their internal
energy changes predominantly through the heat term in the first law.

• A1. isothermal free expansion

• A2. isothermal constant pressure expansion

• A3. isothermal reversible expansion

• B1. adiabatic free expansion

• B2. adiabatic constant pressure expansion

• B3. adiabatic reversible expansion

What distinguishes these different processes is how exactly we carry out
the gas expansion (or compression). The keywords you see mean that we
impose certain restrictions on the process such as assuming that the system’s

temperature stays constant or invoking the lack of heat transfer between the
system and surroundings in an adiabatic process.
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A1. Isothermal (irreversible) free expansion

Assume in this case that the gas inside the piston is pushing against nothing.

Picture a vacuum on the other side. Or in science fiction movies think of
why people are supposed to blow up if they get sucked out of the spaceship

not wearing a space suit. Next, let the expansion against vacuum occur
uncontrollably. This expansion is therefore called irreversible. Think of it

this way, you never see the guy blown out of the spaceship (or Arnold in
Total Recall) subsequently get blown back into the spaceship, do you? The

process is therefore not reversible.
Now, in this case pext = 0. Therefore w = 0 and no work is done by the

system. Finally, something for nothing

w = 0.

In this irreversible free expansion, the temperature of the gas is not a
well defined quantity. It may change during the free expansion. However

the temperature quickly returns to equilibrium. You can therefore con-
sider the free expansion to be effectively isothermal. (Sometimes
problems in certain texts will assume that you know that a free expansion

is isothermal.) Furthermore, you recall that in the case of an ideal gas an
isothermal process also means that the change in internal energy is zero

∆U = 0.

Then, you also recall that from the first law of thermodynamics if there is
no change in internal energy and no PV work, by default there is no heat
involved

q = 0.

Finally, it will be shown later that another thermodynamic state function
called enthalpy (H = U + pV ) also does not change (∆H = 0) in an ideal
gas isothermal process.

To summarize For an isothermal free expansion of an ideal gas

w = 0

q = 0

∆U = 0.

I don’t recommend trying to memorize this. Rather I suggest knowing the
train of thought that got you to these results.
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A2. Isothermal (irreversible) expansion against constant pres-
sure

Ok, this time assume there is no vacuum on the other side so pext 6= 0. Work
is therefore done by the system when the gas expands. Using our formula

for work

w = −
∫ V2

V1

pextdV

we find

w = −pext

∫ V2

V1

dV

since the external pressure is constant. This integrates to

w = −pext(V2 − V1) = −pext∆V

which is our desired expression.

Again, note that we have an isothermal expansion. Therefore

∆U = 0

and from the first law of thermodynamics

q = −w = pext∆V.

Finally, it will be shown later that the change in system enthalpy (H =
u + pV or for those who are curious ∆H = ∆U + p∆V ) is zero (∆H = 0).

To summarize For an isothermal constant pressure expansion of an
ideal gas

w = −pext∆V

q = pext∆V

∆U = 0.

Example

To get a numerical feel for this, calculate the work, heat and internal energy

change when 1 mole of a gas expands from 5 dm3 to 10 dm3 against a
constant pressure of 1 atm isothermally.
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Ans:

w = −pext(V2 − V1)

= −(1atm)(10− 5dm3)

where 1atm = 1.01325× 105Pa = 1.01325× 105 N
m2 and 1dm = 0.1m

w = −(1.01325× 105 N

m2
)(5)(0.1)3m3

= −(5 × 105 N

m2
)(1× 10−3)m3

= −(5 × 105 N

m2
)(1× 10−3)N ·m

where 1J = 1N ·m. The desired answer is

w = −500J.

Note that one can also simplify life if your remember the following unit
conversion factor

1L · atm = 101J . (13.6)

In this case, you don’t have to go through the hassle of multiple unit con-

versions as done above.
Finally, since the process is isothermal and we are dealing with an ideal

gas we can immediately say that ∆U = 0. Again, just accept this fact
for now. The exclusive temperature dependence of U for an ideal gas will

be shown in the next chapter. Then from the first law of thermodynamics
q = −w and q = 500 J.

A3. Isothermal (reversible) expansion

This process is pretty common so you should remember it. There are a
number of ways to describe this physically but in all cases the idea is that you

are doing the expansion infinitely slow. At each point during the expansion
you wait long enough so that the system comes to complete equilibrium with

the surroundings. This means that at each point of the reversible expansion
the system’s pressure (p) equals the external pressure (pext). Recall also
that we are assuming an ideal gas. As a consequence, we have

pext = p =
nRT

V
.
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We now replace pext into our work expression and integrate

w = −
∫ V2

V1

pextdV

= −
∫ V2

V1

nRT

V
dV

= −nRT

∫ V2

V1

dV

V

= −nRT ln V |V2
V1

= −nRT (ln V2 − lnV1)

or better yet

w = −nRT ln
V2

V1
.

It turns out that this reversible work is the maximum work you can extract

from the system. At this point, given that the process is isothermal and
that we are dealing with an ideal gas ∆U and ∆H are both zero. Finally,

from the first law of thermodynamics q = −w.
To summarize For the isothermal reversible expansion of an ideal gas

w = −nRT ln
V2

V1

q = nRT ln
V2

V1

∆U = 0.

Example

Calculate the amount of work done when 1 mole of a gas expands reversibly
from 5dm3 to 10dm3 at 25oC.

Ans:

w = −nRT ln
V2

V1

= −(1mol)(8.314
J

molK
)(298.15K) ln

10

5

The desired result in joules is

w = −1718.2J.
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Adiabatic expansion of an ideal gas

Next, let’s talk about the three adiabatic processes mentioned. By defini-

tion, an adiabatic process is one where there is no heat transfer
between the system and its surroundings. Thus no heat gained or

lost by the gas in our imaginary piston and from the very start we know
that q = 0. Next, from the first law of thermodynamics we know then that

∆U = w. These two conclusions are then the conceptual starting point for
addressing adiabatic problems.

Now, there are three ways we talked about carrying out an adiabatic
expansion

• adiabatic free expansion

• adiabatic (intermediate) constant pressure expansion

• adiabatic reversible expansion

Let’s go through them one at a time.

B1. adiabatic free expansion

We start by saying that

q = 0

since this is an adiabatic process. Next, a free expansion means that pext = 0.
As a consequence

w = 0.

Given the first law of thermodynamics, we finally say that

∆U = 0

It will also be seen later that ∆H = 0.
At this point, take a step back to think about things. Since we are

dealing with an ideal gas and since we just found that ∆U = 0 what this is
also saying is that the system’s temperature didn’t change. The expansion

was therefore essentially isothermal.
To summarize For the adiabatic free expansion of an ideal gas

w = 0

q = 0

∆U = 0

∆T = 0.
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Again, I encourage you to not memorize this. Rather remember the logic
that led you to these conclusions.

B2. The adiabatic (intermediate) constant pressure expansion

We again begin by saying that

q = 0

because the process is adiabatic. The associated work is evaluated using our
familiar expression

dw = −pextdV

where in the constant external pressure case (the so called intermediate case)

you get

w = −pext∆V.

I want to point out at this stage that there is another equivalent expression

for the work involving what is called the constant volume heat capacity.
However, let’s introduce this in a minute when we begin to discuss the

adiabatic reversible expansion of an ideal gas.

From the first law of thermodynamics,

∆U = −pext∆V.

Note that since ∆U 6= 0 and given that we are dealing with an ideal gas,

we know that the temperature of the system will change. Our goal in the
last part of this chapter will be to determine what exactly the relationship

between the initial temperature and final temperature is.

To summarize For the adiabatic constant external pressure expansion

of an ideal gas,

w = −pext∆V

q = 0

∆U = −pext∆V

∆T 6= 0.
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B3. The adiabatic reversible expansion

In the reversible case, there will be a complication as you will see when

trying to evaluate the work involved in the expansion. First, as always, for
an adiabatic process we write

q = 0.

Then the formula for work is always

dw = −pextdV.

So here you say -hmmm, since this is a reversible process p = pext and since

I’m dealing with an ideal gas p = nRT
V

. Plug this into our expression for
work

w = −
∫

nRT

V
dV.

But here your thermodynamics 6th sense should kick in to alert you that
something is wrong. Didn’t we just see that in the adiabatic constant ex-

ternal pressure expansion ∆T 6= 0? Maybe ∆T is nonzero in the reversible
case. If true, this would mean that we couldn’t really integrate our work

expression above. In fact, it will be shown that ∆T 6= 0 in the reversible
case. As a consequence, we have a problem. To overcome it, just like on

a SAT (or GRE) exam, if you don’t know the answer to something, keep
moving (wait, I must be showing my age. Aren’t these exams computerized

these days so you can’t actually skip questions and come back to them?).
Anyway -we move on to calculating the change in internal energy.

Here if you think real deep and remember that U = f(T, V ). The total

differential is

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV.

Next, in an ideal gas, U has no volume dependence (this will be shown

through the Joule experiment which will be seen shortly). As a consequence,
we are left with

dU =

(

∂U

∂T

)

V

dT.

The partial derivative
(

∂U
∂T

)

has a name. It is called the constant volume

heat capacity (CV ). We will see more of this in the next chapter. For now,
assume that CV is a constant. Thus

dU = CV dT
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and integrating gives

∆U = CV ∆T.

Now, having found both q and ∆U , we use the first law of thermodynamics

to obtain the reversible work

w = CV ∆T.

Some things of interest to note at this point. First, for an ideal monatomic

gas CV = 3
2R. This can be derived from statistical mechanics. Next, note

that this CV -based approach for calculating w can also be applied to the

prior adiabatic constant pressure (intermediate) expansion case. However,
we didn’t need to invoke it since we could readily evaluate w using our nor-

mal approach. But as a thought experiment, you might try verifying that
both work expressions yield the same answer. Finally, note that we have
implicitly assumed that CV is independent of temperature. This is not for-

mally true. It does have a temperature dependence but in many cases -for
a finite temperature range- one can assume that it is constant.

To summarize For the adiabatic reversible expansion of an ideal gas

w = CV ∆T

q = 0

∆U = CV ∆T

∆T 6= 0.

Adiabatic processes and temperature changes

But what exactly are the temperature changes involved in w and ∆U above?
If we want numbers, we’re going to need a more concrete expression for what

the temperature change is in an adiabatic expansion (excluding the free adi-
abatic expansion case). The purpose of the next part of this discussion is

therefore to show you that in an adiabatic reversible or intermediate expan-
sion process the final temperature of the system will drop. Conversely, in

compression it will rise.

Adiabatic irreversible or intermediate case

Let’s begin with the adiabatic constant external pressure expansion process.

Note that we assume CV is independent of temperature which is not always
the case but it is a good start.
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Since q = 0 we have

∆U = w.

This then leads to the following as we have seen

CvdT = −pextdV
∫ T2

T1

CvdT = −pext

∫ V2

V1

dv

Cv(T2 − T1) = −pext(V2 − V1)

(T2 − T1) = −pext

Cv

(V2 − V1)

or

T2 = T1 − pext

Cv
(V2 − V1) . (13.7)

Provided that V2 > V1 it’s apparent that T2 < T1. So the gas temperature
will drop on expansion and physically this has to do with the system doing

work on the surroundings. Conversely, note that the gas will heat on com-
pression. In fact, this is the basis for Diesel engines where the compression

stroke of the engine causes the gas in the piston to heat up and ultimately
ignite, causing an explosion.

Adiabatic reversible case

Consider now the reversible case where pext = p = nRT
V

. Since q = 0 we
again have

∆U = w.

This becomes

CV dT = −nRT

V
dV

CV dT

T
= −nR

V
dV

CV ln
T2

T1
= −nR ln

V2

V1

CV ln
T2

T1
= nR ln

V1

V2
.
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Again, remember that we have assumed that CV does not depend on tem-
perature over the temperature range sampled. Consolidating terms gives

ln
T2

T1
=

nR

CV
ln

V1

V2

ln
T2

T1
= ln

(

V1

V2

)
nR
CV

which can then get rearranged as follows

T2

T1
=

(

V1

V2

)
nR
CV

giving

T2 = T1

(

V1

V2

)
nR
CV

.

Now, if V2 > V1 and nR < CV then T2 < T1, showing that the gas cools on
expansion.

Let’s see if this makes any sense. The following table shows you molar

CV values and compares it to R where n = 1. So this all assumes one mole
of gas.

Gas CV (J/mol K) CV

R

Ar 12.5 1.50
He 12.5 1.50

CO 20.7 2.49
H2 20.4 2.45
HCl 21.4 2.57

N2 20.6 2.49
NO 20.9 2.51

O2 21.1 2.54
Cl2 24.8 2.98

CO2 28.2 3.40
CS2 40.9 4.92

H2S 25.4 3.06
N2O 28.5 3.42

SO2 31.3 3.76

Alternatively, it will be shown that for one mole of an ideal gas (n = 1)
Cp = CV + R or that R = Cp −CV . Here Cp is called the constant pressure
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heat capacity. With this, we obtain an equivalent expression for the final
temperature T2. Starting with

ln
T2

T1
=

nR

CV
ln

V1

V2

we have

ln
T2

T1
=

Cp − CV

CV
ln

V1

V2

=

(

Cp

CV
− 1

)

ln
V1

V2

Now let γ =
Cp

CV

ln
T2

T1
= (γ − 1) ln

V1

V2

giving

T2
T1

=
(

V1
V2

)γ−1
(13.8)

and since γ > 1 we see that the final temperature is smaller than the initial

T2 < T1.
Alternatively, we can come up with another equivalent expression using

pressures. Since pV = nRT

T2

T1
=

p2V2

p1V1
(

V1

V2

)(

T2

T1

)

=

(

p2

p1

)

where from before
(

T2
T1

)
1

γ−1
=
(

V1
V2

)

so that

(

T2

T1

)
γ−1
γ−1

+ 1
γ−1

=

(

p2

p1

)

(

T2

T1

)
γ

γ−1

=

(

p2

p1

)

.

This leaves us with our desired (final) pressure-based expression for the

temperature of an ideal gas after an adiabatic reversible expansion

(

T2
T1

)

=
(

p2
p1

)
γ−1

γ
. (13.9)
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Again, the final temperature will be smaller than the initial temperature.
Physically, the system cools a little bit by doing PV (i.e. pdV ) work.

In all cases, for a monatomic ideal gas it turns out that (this can be
derived using statistical mechanics)

γ = 5
3 (13.10)

CV = 3
2R (13.11)

Cp = 5
2R (13.12)

Finally, for the sake of completeness, we can derive an expression that
relates the initial and final pressures and volumes. Starting with pV = nRT ,

T2

T1
=

p2V2

p1V1
=

(

V1

V2

)γ−1

p2V2V
γ−1
2 = p1V1V

γ−1
1 .

Here we used the T2
T1

relationship with volumes. This then results in

p2V
γ
2 = p1V

γ
1 .

Demo opportunity

A demo that one can do is to fire off a fire extinguisher. You will see the
carbon dioxide cool during the expansion and will thus see what appears to

be snow. Alternatively, one can set off a can of compressed air. Feel the can
and you will feel it get cold as the gas is released. Note that an adiabatic

compression demo is possible. Namely, you can use a fire syringe that is
readily purchased from any science education store. Buy the thick acrylic

one though since you’re going to slam down hard on the plunger. A glass
fire syringe might break.

Put it all together, a thermodynamic cycle

Let’s run through an example to put all of these concepts together. One

mole of an ideal gas initially at 300K and 1 atm is taken reversibly through
a 3 step cycle.

Step 1 The gas expands isothermally until the volume doubles.

Step 2 The gas is then compressed at constant pressure until the original
volume is restored
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Step 3 The gas undergoes isometric (constant volume) heating until the
initial state is reached.

Calculate the work, heat and internal energy change in each step and for

the entire cycle. I will do the work for you and presumably you can do the
heat and internal energy on your own in your leisure time. Right?

To do this problem, draw a P versus V diagram first. You will notice
that we are missing some things, namely V1, p2 and T3. We will therefore

need to calculate these values first before proceeding.

What is V1?

p1V1 = RT1

(1)(V1) = (0.08206)(300)

We get V1 = 24.6L.

What is p2? Well we could already say that it’s 1
2p1 but let’s run the

numbers for completeness.

p2V2 = RT2

p1V1 = RT1

where T1 = T2 and V2 = 2V1. Plugging these values in we get p2 = 1
2p1 =

0.5atm

What is T3?

p3V3 = RT3

p2V2 = RT2

where p3 = p2 and V3 = V1 and V2 = 2V1. Plugging these numbers in we
get T3 = 1

2T2 = 150K

What is the work in step 1? This is an isothermal reversible expan-
sion

w1 = −RTln
V2

V1

where V2 = 2V1. You can run the numbers.

What is the work in step 2? This is a constant pressure compression.

Note that the gas cools in this step to maintain its pressure even though its
volume decreases.

w2 = −pext∆V
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where pext = p. We get

w2 = −p(V1 − 2V1)

= p1V1.

I’ll let you run the numbers.
What is the work in step 3? Easy, ∆V = 0 in an isometric process.

No work is done.

w3 = 0.

The total work in the cycle is therefore

wtot = w1 + w2 + w3

You can do ∆Utot and qtot yourselves.
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Chapter 14

Heat capacities, internal
energy and enthalpy

We just went through a discussion of the 1st law of thermodynamics and
the types of work that one typically sees with gases. Recall that solids
and liquids are incompressible and hence PV (i.e. pdV ) work terms are

negligible. Most of the internal energy changes of condensed media therefore
result from changes in q. To illustrate, consider the case in the 1st law of

thermodynamics where the volume is constant (for a gas, a liquid, or a solid,
or whatever)

dU = dq + dw.

If the volume is strictly constant, then there is no PV work involved in the
process whatever it is (dw = 0) and we are left with

dU = dq.

Thus, under constant volume conditions, the change in heat is the same
as the change in internal energy of the system. This is useful for solids

and liquids for evaluating changes in internal energy but not necessarily for
gases since PV work can be done.

Now you can see that it would be useful to have a function that relates
changes in heat to changes in temperature of the system either at constant

volume (this case) or under constant pressure (the next case). Such a func-
tion is referred to as the heat capacity. In the most generic of cases, the heat

absorbed by a body is found to be proportional to its temperature change

q = C(∆T ).

79
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The constant of proportionality is called the heat capacity, C, and is pro-
portional to the mass of the stuff. So the more stuff present the larger C

is.
Now there are two versions of the heat capacity that we will encounter.

The first is under constant volume conditions. The second is under constant
pressure conditions. Hence, the two types of heat capacities are called the
constant volume and constant pressure heat capacities (CV and Cp). Note

that they will have different numerical values -especially for gases. But for
condensed phases we will find that they will not differ all that much.

Demo opportunity

One can readily demo the mass dependence of C by simply boiling 10 mL

of water versus 100 mL. The smaller volume will boil first. So if you have
ever asked yourself why a pot of water doesn’t boil when cooking spaghetti

you can answer the question by suggesting that you have too much water.
Reduce it and the pot of water will boil faster.

Since C depends on how much stuff is present (i.e. it is an “extensive”
property), we often normalize its value. The normalized heat capacity is

therefore called either the molar heat capacity or specific heat capacity.
The former is on a per mole basis while the latter is on a per gram basis.

The normalized versions of the constant volume heat capacity are

• CV,m, the molar heat capacity at constant volume (this is on a per
mole basis, J/mol K units)

• cV , the specific heat capacity at constant volume (this is on a per gram
basis, J/g K units)

• Cp,m, the molar heat capacity at constant pressure (this is on a per
mole basis, J/mol K units)

• cp, the specific heat capacity at constant pressure (this is on a per
gram basis, J/g K units)

Note the big C used for the per mole version whereas a small c is used for

the per gram version.

At this point, let’s rearrange our generic heat capacity expression to
emphasize how the temperature of a system changes depending on the value
of C

∆T =
q

C
.
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We can see that for a given amount of heat (i.e. energy), the larger C is
the smaller ∆T will be. Conversely, the smaller C is the larger temperature

jumps one will experience for a given amount of heat added to the system.

Demo opportunity

You can readily show how sensitive temperature changes are to C by carrying

out the following experiment. Fill one balloon with air. Fill another with
water. The following are the heat capacities of water and air. For the

moment, ignore the subscripts.

Material Molar heat capacity (J/mol K) Specific heat capacity (J/g K)

H2O Cv,m = 74.53 cv = 4.18
Air Cp,m = 29.19 cp=1.012

This means ignore the different subscripts between the air and water heat

capacities. We will show that CV ' Cp for condensed phases shortly.

Now heat the two balloons. You will find that the balloon containing

air will get hot faster and will eventually pop. By contrast, the water filled
balloon will be ok as long as you don’t put a flame directly onto the rubber.

Keep it over your laptop as long as you want. You believe in thermody-
namics, right? The larger heat capacity of the water absorbs all the energy

dumped into the system, preventing the balloon from bursting.

Other demo opportunities that can be pursued include the following:

1. You can boil water over an open flame in a paper cup. The paper will
not burn.

2. You can soak a 100 dollar bill in a 50/50 water/ethanol mixture. Light

the bill on fire. The bill won’t burn.

3. Wrap printer paper around a metal rod tightly. Put the rod over an

open flame. The paper will not burn.

Let’s continue

The following tables compile the molar and specific heat capacities for var-
ious materials to give you a feel for their values. The first table shows heat
capacities for some solids and liquids. The second table basically comes from

the previous chapter and shows the heat capacities of selected monatomic
and polyatomic gases.



82CHAPTER 14. HEAT CAPACITIES, INTERNAL ENERGY AND ENTHALPY

Material Molar heat capacity (J/mol K) Specific heat capacity (J/g K)

Aluminum 24.3 0.900
Bismuth 25.7 0.123
Copper 24.5 0.386

Gold 25.6 0.126
Lead 26.4 0.128

Silver 24.9 0.233
Tungsten 24.8 0.134

Zinc 25.2 0.387
Mercury 28.3 0.140

Water 75.2 4.186
Ethanol 111 2.4

Gas CV (J/mol K) CV

R

Ar 12.5 1.50
He 12.5 1.50
CO 20.7 2.49

H2 20.4 2.45
HCl 21.4 2.57

N2 20.6 2.49
NO 20.9 2.51

O2 21.1 2.54
Cl2 24.8 2.98

CO2 28.2 3.40
CS2 40.9 4.92

H2S 25.4 3.06
N2O 28.5 3.42
SO2 31.3 3.76

There are some things to notice from these tables. First, an apparent
difference exists in the heat capacities of solids, liquids and gases. Classical

thermodynamics doesn’t really explain these differences -nor does it care.
However, one can use a microscopic picture to begin to qualitatively ratio-

nalize this trend. Statistical thermodynamics is where a more quantitative
basis for these numbers is developed.

In solids, the uptake of energy leads to collective vibrations of component
atoms/molecules of the solid. This is what gives it its heat capacity. Though

not shown, as the temperature gets smaller and approaches 0K, the solid’s
heat capacity will approach zero since there isn’t enough thermal energy to

excite the solid’s vibrational modes.

In liquids, there exist additional low frequency vibrational modes that
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add to the material’s ability to absorb energy. Hence, the overall heat
capacity of the liquid will be larger than that of the solid.

In gases, we lose some of this ability to acquire low energy vibrations
of the material since the constituent atoms/molecules are far apart. Heat
is then taken up as translational motion which requires significantly larger

energies. Hence, the heat capacities of gases will be smaller in general.
In all cases, whether for solids, liquids or gases, increasing the tempera-

ture will raise the material’s heat capacity since this enables access to more
vibrational/translational and rotational modes of the material. Note that

we will often assume that the heat capacity is temperature independent
when running problems. Obviously, this is not correct but within a limited

temperature range it can be a good approximation. Finally, the last table
shows that the more atoms a gas has, the larger its heat capacity will be

in general. This is because of the many more vibrational modes that such
polyatomic systems have relative to their monatomic counterparts.

Internal energy

At this point, recall that we will usually describe the internal energy of a
system as a function of T and V . Let’s see how U responds to changes in

either T or V . We first write the total derivative

dU =
(

∂U
∂T

)

V
dT +

(

∂U
∂V

)

T
dV . (14.1)

It will be seen below that the total differential can ultimately be written as

dU = CV dT + πTdV . (14.2)

Ignore for the moment what the various variables are. They are defined
below. Let’s now consider in detail how U changes.

Changes in U with T under constant volume conditions

Since dV = 0 we find from above that

dU =

(

∂U

∂T

)

V

dT.

Now, we will define the constant volume heat capacity CV as follows CV =
(

∂U
∂T

)

V
. This gives us

dU = CV dT.
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On looking at this equation and recalling from our discussion about the
relationship between heat and heat capacity -you might guess that dU is

related to dq. In fact, they are exactly the same under constant volume
conditions. You can see this for yourself very simply as follows. Since under
constant volume conditions dV = 0 there is no work involved in the process.

As a consequence, from the first law of thermodynamics

dU = dq

and hence under constant volume conditions heat and internal en-

ergy changes are synonymous. Done.

Changes in U with V under constant temperature conditions

Let’s now see how U changes with V under constant T conditions. Starting
with the total differential above we see that if dT = 0 we are left with

dU =

(

∂U

∂V

)

T

dV.

The term in parenthesis is sometimes called the internal pressure (πT ) giving

dU = πTdV.

It turns out that this internal pressure term is a reflection of non-ideality.
We will explicitly show that for an ideal gas πT = 0 but for real gases where
there are intermolecular interactions such that πT 6= 0. In fact,

• πT = 0, ideal gas and no interactions between molecule, atoms of the

system

• πT > 0, real gas, there are attractive forces between molecules or atoms
of the system

• πT < 0, real gas, there are repulsive forces between molecules or atoms

of the system

Can you rationalize the sign of πT ? For future reference, a table of πT values
would be nice here.

Now, it can be shown (famous annoying words) that

πT =
(

∂U
∂V

)

T
=
[

T
(

∂p
∂T

)

V
− p
]

. (14.3)
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This is obtained from (this is another total differential for the internal energy
except in terms of entropy and volume. Since we haven’t talked about

entropy yet, just take my word for it. This is just a preview.)

dU = TdS − pdV

where using our math skills we can show that
(

∂U

∂V

)

T

= T

(

∂S

∂V

)

T

− p.

At this point, we will need another expression for ( ∂S
∂V )T . We will see later

on (i.e. way later) that one can find what it is using the following total

differential (one of the four fundamental equations of thermodynamics, again
this is a preview)

dA = −pdV − SdT

where from what are called Maxwell relations
(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

.

When inserted into our earlier expression for the internal pressure we get
our desired expression. The reason why this is desired and more convenient

is that using this expression and given an equation of state, one can evaluate
what the internal pressure πT is. For example, try this for the ideal gas and

say a van der Waals gas. You can try this on your own in your leisure time.
Hopefully, you will find that πT = 0 for an ideal gas whereas it is nonzero

for a real gas.
Finally, we should mention that for solids and liquids (strictly speaking)

(

∂U
∂V

)

T
6= 0. However, since in condensed phases, their densities vary little,

dV ' 0. Hence, we can ignore the volume dependence of their internal
energy -even if

(

∂U
∂V

)

T
is large.

The Joule experiment

Now, a long time ago Joule went out to try and find out what the value

of the internal pressure was for a gas. Joule had two flasks with different
volumes. One was evacuated and the other had a gas in it. There was a
stopcock separating the two. Joule thought that he could measure πT by

observing the temperature change of the gas when it was allowed to expand
into the evacuated container.
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When he carried out the experiment, he observed no change in temper-
ature. Joule thus concluded that πT = 0. However, it should be noted that

he probably didn’t have a tremendously sensitive thermometer back then.
More recent experiments show that πT 6= 0 for real gases. But why did Joule
probably feel comfortable with his conclusion? (I’m liberally re-writing his-

tory here)
Well, the experiment involved a free expansion. As a consequence, w = 0.

Next, since he measured no temperature change, q = 0 and hence ∆U = 0
by the first law of thermodynamics. Now, we already showed that the total

differential for U is

dU = CV dT + πTdV

where we just found that dU = 0 and dT = 0. Given that the volume of
the system changed (dV 6= 0) it is clear that πT = 0 for things to remain

self consistent. Hence, there was good reason for Joule to believe that he
was right. It turns out that real gases do indeed have a nonzero πT term.
The value is just small and easily overlooked, especially considering the

precision of early thermometers. As a minor aside, the Joule experiment is
a constant internal energy process. By contrast, you will see shortly that the

Joule-Thomson experiment, which is discussed later, is a constant enthalpy
process, ∆H = 0

Other dependencies of the internal energy

Here what we want to do is take a step back. We’ve just seen the dependen-

cies of internal energy with temperature and volume under the constraints
of constant temperature and constant volume. But you might be wondering

-what about the dependencies of the internal energy as a function of tem-
perature and pressure but now under constant temperature and pressure

conditions? Specifically, what are
(

∂U

∂T

)

p
(

∂U

∂p

)

T

given the total differential of U = f(T, p)

dU =

(

∂U

∂T

)

p

dT +

(

∂U

∂p

)

T

dp.
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Changes in U with T at constant pressure

Recall, from before that

dU = CV dT + πT dV.

Using our math skills, let’s rearrange the expression by dividing through by
dT and imposing constant p conditions

dU

dT
= πT

dV

dT
+ CV

(

∂U

∂T

)

p

= πT

(

∂V

∂T

)

p

+ CV .

It turns out that the term
(

∂V
∂T

)

p
is basically the coefficient of thermal expan-

sion α (α = 1
V

(

∂V
∂T

)

p
). We saw this earlier when dealing with the equation

of state for condensed phases. We therefore see that
(

∂V
∂T

)

p
= αV . Putting

everything together then gives

(

∂U
∂T

)

p
= πT αV + CV (14.4)

and if we have numerical values of α, πT and CV for a real gas we can

evaluate how its internal energy changes with temperature under constant
pressure conditions. In the limit of ideal gases, πT = 0 and we find that

(

∂U

∂T

)

p

= CV .

Thus, there is no difference between with the temperature dependence of U
between constant pressure and constant volume conditions. In general, for

real gases things are a little more complicated as you can see.

Changes in U with p under constant temperature conditions

To find this dependency, you again use the same math games you have seen
above. I’m going to let you try and figure this out on your own. But I’ve

summarized all these dependencies in the next section. So you can take a
peek if you wish to tap out.
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Internal energy summary

Since we will be interested in the internal energy changes of a system during

a process we summarize what we have learned up to now.

dU = dq + dw

∆U = q + w

dU = CV dT + πT dV

dU = q (constant volume conditions)

Enthalpy

Constant pressure processes are much more common in chemistry than con-

stant volume processes. Most benchtop reactions occur at 1 atm right?
Under constant pressure conditions PV (i.e. pdV ) work can be done. Just

as in the constant volume case where the change in internal energy equals
the heat transfered, there is an analogous relationship that applies in con-

stant pressure situations. But it requires us to define a new state function
called the enthalpy, H . The heat (i.e. energy) gained or lost by a

system in a constant pressure process is equal to the change in en-
thalpy of the system. Also look at the units of enthalpy. It is something

like kJ/mol and simply represents an energy change of the system.
The enthalpy is defined as

H = U + pV (14.5)

dH = dq (14.6)

where under constant pressure conditions.

Justification 1

Let’s show that the first equation for enthalpy makes sense. From the first
law of thermodynamics,

dU = dq + dw

or

dq = dU − dw.

Under the following restrictions,
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• constant pressure conditions

• p = pext (i.e. reversible conditions)

• and where we consider only PV work

we find dw = −pdV . This gives

dq = dU + pdV.

Since the pressure is constant, we can add V dp to the right hand side of the
above equation. (basically adding zero)

dq = dU + pdV + V dp

= dU + d(pV )

= d(U + pV ).

Thus

dq = d(U + pV ).

The differential heat absorbed/released by the system is therefore the total

differential of a new state function, called the enthalpy H . We therefore
define the enthalpy as

H = U + pV.

Justification 2

Next, let’s justify the second expression which says that dH = dq under

constant pressure conditions. If you think about it, this is identical to the
dU = dq criteria under constant volume conditions earlier. Starting with

H = U + pV

add a small increment to the enthalpy

(H + dH) = (U + dU) + (p + dp)(V + dV )

H + dH = U + dU + pV + pdV + V dp + dpdV.

Now, the last term is small and can be dropped giving

H + dH = H + dU + pdV + V dp

dH = dU + pdV + V dp.
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Recall from the first law that dU = dq + dw so that

dH = dq + dw + pdV + V dp.

If the work is carried out reversibly, pext = p and dw = −pdV . Replacing
this into our equation gives

dH = dq − pdV + pdV + V dp

= dq + V dp

and if we operate under constant pressure conditions, dp = 0. We obtain

dH = dq.

Changes in enthalpy, H

Just like with the internal energy, we are primarily concerned with changes

in H during a process. We’re not interested in an absolute value of H in
thermodynamics. So let’s summarize here what these ∆H expressions look

like. We can then consider the special case of an ideal gas.

First, we will usually define H to be a function of temperature and
pressure, H = f(T, P ). As a consequence, we write its total differential as

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp.

If you are looking for parallels between H and U you will be rewarded

since the first term in parenthesis turns out to be the constant pressure
heat capacity (Cp). The second term in parenthesis will be a reflection
of nonideality and will be related to what is called the Joule-Thompson

coefficient. For an ideal gas, the second term is zero just like for the internal
energy. Let us discuss this in more detail later.

Next, given the earlier definition of H (i.e. H = U + pV ) we have

dH = dU + d(pV )

= dU + pdV + V dp

∆H = ∆U + ∆(pV )

= ∆U + p∆V + V ∆p

= ∆U + (p2V2 − p1V1).
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Particular case of an ideal gas

Now, there are simplifications that arise when dealing with an ideal gas.

Namely, if pV = nRT

∆H = ∆U + ∆(pV )

= ∆U + ∆(nRT ).

Case 1 If the amount of moles is constant (i.e the system is a pure
substance), then we can say

∆H = ∆U + nR∆T.

Case 2 If the amount of moles is changing (e.g. our system is a chemical
reaction), and the temperature is constant we can write

∆H = ∆U + RT∆n.

Examples relating ∆H and ∆U

Let’s do some examples to demonstrate these relationships. Furthermore,
we can compare ∆H to ∆U and see how much of an energy difference

exists between the two. What we will find is that, in the case of a gas, the
differences between the two can be significant. This is because gases can

do pV work through expansion or contraction. By contrast, condensed
phases don’t undergo large volume changes and, as a consequence,

we will find that ∆H ' ∆U for liquids and solids.

Example, Gases

Consider a reaction between ideal gases that leads to a change in the number

of moles of gas by one (∆n = 1). Assume that the process is isothermal.
We then have

∆H = ∆U + ∆(pV )

which becomes

∆H = ∆U + ∆(nRT )

= ∆U + RT∆n.

For the generation of one mole of an ideal gas at 25oC, the difference between
∆H and ∆U is then

∆H − ∆U = (8.315J/molK)(298.15K) = 2.5kJ/mol
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which is a decently big number. This shows that the ability of gases do
pV work makes a big difference in the magnitude of ∆H versus ∆U . By

contrast, such differences between enthalpy and internal energy are small
when dealing with condensed phases and this is illustrated below in the
following two examples.

Example, Condensed phases

The change in internal energy ∆U when 1 mol of CaCO3 in the form of
calcite converts to argonite is 21kJ. What is the difference between the en-

thalpy change and the internal energy change when p = 1bar. The respective
densities of calcite and argonite are

ρcalcite = 2.71
g

cm3

ρargonite = 2.93
g

cm3

Ans:

H = U + pV

∆H = ∆U + ∆(pV )

∆H = ∆U + p∆V + V ∆p

but since p is constant

∆H = ∆U + p∆V.

For solids and liquids, the change in volume will be tiny. However, for gases

the change in volume can be huge. In this case we’re dealing with solids.
We need the change in volume which we will get through the densities

provided. The molecular weight of CaCO3 is 100 g/mol. As a consequence,

V1 =
100g

2.71g/cm3
= 36.9cm3 = 3.69× 10−5m3

V2 =
100g

2.93g/cm3
= 34.1cm3 = 3.41× 10−5m3.

The change in volume from calcite to argonite is therefore

∆V = −2.8 × 10−6m3.

The change in enthalpy is

∆H = ∆U + (1 × 105N/m2)(−2.8× 10−6m3)

= ∆U − 0.28J
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and the difference between the enthalpy and the internal energy is

∆H − ∆U = −0.28J.

This is a small energy difference. Therefore, the enthalpy is basically the
same as the internal energy of a condensed phase (∆H ' ∆U). This is not

true for gases as we have seen earlier.

Example, Condensed phases

Calculate the difference between ∆H and ∆U when 1 mol of grey tin (ρ =

5.75g/cm3) changes to white tin (ρ = 7.31g/cm3) at 10 bar.
Ans:

H = U + pV

∆H = ∆U + p∆V + V ∆p

Since the pressure is constant the last term drops out.

∆H = ∆U + p∆V.

Now, we need the change in volume which we will get through the pro-

vided densities. The molar weight of tin is 118.7 g/mol. Therefore

V1 =
118.7g

5.75g/cm3
= 20.64cm3 = 2.06× 10−5m3

V2 =
118.7g

7.31g/cm3
= 16.24cm3 = 1.62× 10−5m3.

The change in volume is then

∆V = −4.4 × 10−6m3

and the change in enthalpy is

∆H = ∆U + (1× 106N/m2)(−4.4× 10−6m3).

Thus, the difference between enthalpy and internal energy is

∆H − ∆U = −4.4J.

Again, this is a very small difference, showing that for condensed phases
∆H ' ∆U .
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The dependence of H with temperature and pressure, H =
f(T, p)

We now return to the change in enthalpy as a function of temperature and
pressure. Like with internal energy, let’s go through each of these changes
individually. First, given that H = f(T, p) we write the total differential

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp.

We will see below that this total differential can ultimately be written as

dH = CpdT − µJT Cpdp.

As before don’t worry about the variables since they are defined below. Let’s
go through each dependency separately.

Changes in H with T under constant pressure conditions

At constant pressure, the enthalpy changes with temperature through

dH =

(

∂H

∂T

)

p

dT.

Now, we will define the constant pressure heat capacity Cp as follows Cp =
(

∂H
∂T

)

p
. This gives us

dH = CpdT.

On looking at this expression and thinking about our discussion on heat
capacities, you might feel tempted to think that dH and dq are related
to one other. In fact, they are exactly identical under constant pressure

conditions

dH = dq.

We showed this above. Look to the beginning of this section if you don’t

believe me.

Changes in H with p under constant temperature conditions

Let’s now see how H changes with p under constant temperature conditions.
Starting with the total differential above we see that if dT = 0 we are left

with

dH =

(

∂H

∂p

)

T

dp.
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The term in parenthesis turns out to be related to the negative product
of what is called the Joule-Thompson coefficient (µJT ) with the constant

pressure heat capacity. This means we have

dU = −µJT Cpdp.

The Joule-Thompson coefficient is a reflection of non-ideality and we will

explicitly show that for an ideal gas µJT = 0.
Now, it can be shown (again, famous annoying words in any text) that

(

∂H
∂p

)

T
=
[

V − T
(

∂V
∂T

)

p

]

. (14.7)

This is a nice expression because you can use an equation of state to find

what
(

∂H
∂p

)

T
and consequently µJT actually are.

Our expression is derived from

dH = TdS + V dp

which is another one of those total differentials which you haven’t been

introduced to yet. So just trust me again. Next, using our math skills
(

∂H

∂p

)

T

= T

(

∂S

∂p

)

T

+ V.

At this point, we invoke another total differential (another one of those
fundamental equations of thermodynamics)

dG = −SdT + V dp

involving what is called the Gibbs free energy. Using a Maxwell relationship,

we then find from this that
(

∂S

∂p

)

T

= −
(

∂V

∂T

)

p

whereupon we can substitute this back into
(

∂H
∂p

)

T
to get our desired ex-

pression. The reason why this expression is useful is that using it along with

an equation of state, one can evaluate what the Joule-Thompson coefficient

is since
(

∂H
∂p

)

T
= −µJT Cp. For example, try this for the ideal gas and say

a van der Waals gas. You can try this on your own in your leisure time.

Hopefully, you will find that µJT = 0 for an ideal gas whereas it is nonzero
for a real gas.
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Joule-Thomson experiment

Before going on, note the parallel with the prior U section. This has been

deliberate.
Now, many years ago Joule and Thomson carried out an experiment to

determine what the Joule-Thompson coefficient of a gas was (obviously I’m
rewriting history again). In their experiment, they let a gas expand through

a porous plug from a region of constant pressure to another. In our mental
picture, the gas flows from the left to the right and the pressure on the left

side of the plug is at a higher pressure than the pressure on the right of the
plug (p1 > p2). Apparently the original experiment used a silk handkerchief

as the plug. During the process, Joule and Thompson measured the change
in temperature that occurred upon expansion of the gas. Their apparatus
was insulated so that the expansion process was effectively adiabatic (q = 0).

In the experiment, they observed a lower temperature on the low pressure
side with the difference in temperature proportional to the difference in

pressures. The constant of proportionality is now called the Joule-Thomson
coefficient, µJT and this cooling by adiabatic expansion is called the Joule-

Thomson effect. Must be cool to have all sorts of things named after you.
For fun and to show that the Joule-Thomson experiment is a constant en-

thalpy process, we can model the expansion through two frictionless pistons
moving on either side of a porous plug. One piston (the left one) compresses

the gas while the other piston (the right one) expands as the gas enters its
chamber. This effectively models passing gas from one side of the plug to
the other (no -not that kind of gas). The external pressure on the left, p1 is

kept constant as is the smaller external pressure on the right, p2.
We calculate the work on either side and see what happens. First, the

work done on the gas on the left during compression under a constant ex-
ternal pressure p1 is

w1 = −
∫ 0

V1

p1dV

= p1V1.

In parallel, the work done by the gas on the right is

w2 = −
∫ V2

0
p2dV

= −p2V2.

The total amount of work done on the system is therefore

wtot = w1 + w2 = p1V1 − p2V2
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and the total heat absorbed or released by the system is 0 since this is an
adiabatic process.

qtot = 0.

From the first law of thermodynamics, the internal energy change is

∆U = U2 − U1 = qtot + wtot

U2 − U1 = p1V1 − p2V2.

We find upon rearranging that

U2 + p2V2 = U1 + p1V1

H2 = H1

and as a consequence

∆H = 0.

Thus, at the end of the day, the Joule-Thomson experiment is a constant
enthalpy process. Compare this to the Joule experiment which is a constant

internal energy experiment.
In the Joule-Thompson experiment, Joule and Thomson measured a tem-

perature drop across the porous plug, resulting from cooling of the gas during

its expansion. Experimentally then, the value
(

∂T
∂p

)

H
is called the Joule-

Thomson coefficient, µJT . How does this relate to
(

∂H
∂p

)

T
which is what we

were interested earlier when describing the total differential dH? Consider

the following cyclic relationship (remember this stuff?)
(

∂H

∂p

)

T

(

∂p

∂T

)

H

(

∂T

∂H

)

p

= −1.

On rearranging things we get
(

∂H

∂p

)

T

= −
(

∂T

∂p

)

H

(

∂H

∂T

)

p

whereupon we can identify the first term on the right as the Joule-Thompson

coefficient and the second as the constant pressure heat capacity. This yields
our desired final relationship

(

∂H
∂p

)

T
= −µJT Cp , (14.8)
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which we previously showed equaled to

(

∂H

∂p

)

T

= V − T

(

∂V

∂T

)

p

.

As a thought problem, you can go and figure out what
(

∂H
∂p

)

T
is for a solid

or liquid. Hint: 1
V

(

∂V
∂T

)

p
= β, the coefficient of thermal expansion. Consider

also the case where β is small.

Special case of an ideal gas

Finally, before going on, let’s consider
(

∂H
∂p

)

T
for the special case of an ideal

gas. Using our earlier expression, you can directly show that this term is
zero. Remember it is an expression that reflect nonideality. Here what we

want to do is to show an alternate approach for establishing that it is zero.
Start with the definition of H

H = U + pV.

Since we are dealing with an ideal gas pV = nRT

H = U + nRT.

Next, consider the dependence of H on pressure under constant T conditions

(

∂H

∂p

)

T

=

(

∂U

∂p

)

T

+

(

∂RT

∂p

)

T

.

Both terms on the right hand side equal zero yielding

(

∂H

∂p

)

T

= 0,

which again proves that the enthalpy of an ideal gas depends only on tem-
perature.

By the same token, one can also show that
(

∂H
∂V

)

T
= 0. We have

(

∂H

∂V

)

T

=

(

∂U

∂V

)

T

+

(

∂RT

∂V

)

T

and it’s apparent that both terms on the right equal zero. Again, to reiterate,
the enthalpy of an ideal gas depends only on temperature.
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Other dependencies of the enthalpy

Here what we want to do is take a step back. We’ve just seen the depen-

dencies of enthalpy with temperature and pressure under the constraints
of constant temperature or constant pressure. But you might be wonder-

ing -what about the dependencies of enthalpy as a function of temperature
and volume but now under constant temperature and volume conditions?

Specifically, what are

(

∂H

∂T

)

V
(

∂H

∂V

)

T

in the total differential of H = f(T, V )

dH =

(

∂H

∂T

)

V

dT +

(

∂H

∂V

)

T

dV.

Changes in H with T under constant volume conditions

Like with the earlier U internal energy section, we’re going to find this

relationship by playing a few math tricks.

Consider the total derivative of H(p, T )

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp

= CpdT +

(

∂H

∂p

)

T

dp.

Rearrange the expression by dividing by dT , keeping the volume constant.

(

∂H

∂T

)

V

= Cp +

(

∂H

∂p

)

T

(

∂p

∂T

)

V

.

Invoke now the Euler chain relation
(

∂p

∂T

)

V

(

∂T

∂V

)

p

(

∂V

∂p

)

T

= −1

(

∂p

∂T

)

V

= − 1
(

∂T
∂V

)

p

(

∂V
∂p

)

T

.
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Apply the inverter relation so that

(

∂p

∂T

)

V

= −
(

∂V
∂T

)

p
(

∂V
∂p

)

T

.

Define κT = − 1
V

(

∂V
∂p

)

T
as the isothermal compressibility. Also recall that

the coefficient of thermal expansion is α = 1
V

(

∂V
∂T

)

p
. Throw these equations

back into our Euler-derived expression to get

(

∂p

∂T

)

V

=

(

α

κT

)

.

Now, take this and put it back into our original expression for the enthalpy

change under constant volume conditions

(

∂H

∂T

)

V

= Cp +

(

∂H

∂p

)

T

(

α

κT

)

.

At this point, we must change
(

∂H
∂p

)

T
to something more recognizable (does

this ever end). Let’s invoke the Euler chain relationship again.

(

∂H

∂p

)

T

(

∂p

∂T

)

H

(

∂T

∂H

)

p

= −1.

Apply the inverter relationship again

(

∂H

∂p

)

T

= − 1
(

∂p
∂T

)

H

(

∂T
∂H

)

p

= −
(

∂T

∂p

)

H

(

∂H

∂T

)

p

.

Now define

µJT =

(

∂T

∂p

)

H

,

which is the Joule-Thompson coefficient as seen earlier. Recall also that
(

∂H
∂T

)

p
= Cp is the constant pressure heat capacity. Our equation becomes

(

∂H

∂p

)

T

= −µJT Cp.
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Finally, replace this back into our original expression for the change in en-
thalpy with temperature at constant volume to get

(

∂H

∂T

)

V

= −µJT Cp

(

α

κT

)

+ Cp.

The desired final final expression is therefore

(

∂H
∂T

)

V
= Cp

(

1− µJT α
κT

)

(14.9)

and describes the change in enthalpy with temperature under constant vol-
ume conditions. Note that µJT = 0 for an ideal gas and just like in the

earlier U internal energy section we find that there is no difference between
(

∂H
∂T

)

V
and

(

∂H
∂T

)

p
. They both equal Cp.

Changes in H with V under constant temperature conditions

To find this dependency, you again use the same math games you have seen
above. I’m going to let you try and figure this out on your own. But I’ve

summarized all these dependencies in the next section. So you can take a
peek if you wish to tap out.

Summary of U and H dependencies

Case 1, U(T,V)

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV

du = CV dT +
(

∂U
∂V

)

T
dV (14.10)

where
(

∂U
∂V

)

T
is measured via the Joule experiment giving πT , the internal

pressure.

Case 2, U(T,p)

dU =

(

∂U

∂T

)

p

dT +

(

∂U

∂p

)

T

dp
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where we found
(

∂U
∂T

)

p
earlier. We do it again for completeness and so you

don’t have to go searching for stuff.

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV

(

∂U

∂T

)

p

=

(

∂U

∂T

)

V

+

(

∂U

∂V

)

T

(

∂V

∂T

)

p

= CV + πT

(

∂V

∂T

)

p

with
(

∂V
∂T

)

p
related to the coefficient of thermal expansion through α =

1
V

(

∂V
∂T

)

p
.

Next, from U = H − pV we get
(

∂U

∂p

)

T

=

(

∂(H − pV )

∂p

)

T

=

(

∂H

∂p

)

T

− p

(

∂V

∂p

)

T

− V

(

∂p

∂p

)

giving

(

∂U
∂p

)

T
=
(

∂H
∂p

)

T
− p

(

∂V
∂p

)

T
− V (14.11)

where
(

∂H
∂p

)

T
= −µJT Cp and where it was the subject of the Joule-Thomson

experiment.
To summarize, we have

dU =
[

(

∂U
∂T

)

V
+
(

∂U
∂V

)

T

(

∂V
∂T

)

p

]

dT +
[(

∂H
∂p

)

T
− p

(

∂V
∂p

)

− V
]

dp (14.12)

Case 3, H(T,p)

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp

dH = CpdT +
(

∂H
∂p

)

T
dp

where
(

∂H
∂p

)

T
= −µJT Cp is measured through the Joule-Thomson experi-

ment.
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Case 4, H(T,V)

dH =

(

∂H

∂T

)

V

dT +

(

∂H

∂V

)

T

dV

where we found
(

∂H
∂T

)

V
earlier. We do it again here for the sake of complete-

ness.

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp

(

∂H

∂T

)

V

=

(

∂H

∂T

)

p

+

(

∂H

∂p

)

T

(

∂p

∂T

)

V

= Cp + µJT Cp

(

∂p

∂T

)

V

.

It can be shown that
(

∂p
∂T

)

V
= −α

κ
.

Next,
(

∂H

∂V

)

T

=

(

∂(U + pV )

∂V

)

T

=

(

∂U

∂V

)

T

+ p

(

∂V

∂V

)

T

+ V

(

∂p

∂V

)

T

leaving us with

(

∂H
∂V

)

T
=
(

∂U
∂V

)

T
+ p + V

(

∂p
∂V

)

T
(14.13)

with
(

∂U
∂V

)

T
= πT the subject of the Joule experiment.

To summarize, we have

dH =
[

(

∂H
∂T

)

p
−
(

∂H
∂p

)

T

(

∂p
∂T

)

V

]

dT +
[

(

∂U
∂V

)

T
+ p + V

(

∂p
∂V

)

T

]

dV(14.14)

Summary for the particular case of an ideal gas

From the definition of an ideal gas you automatically get
(

∂U

∂p

)

T

= 0

(

∂U

∂V

)

T

= 0.
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Next, what are
(

∂H
∂V

)

T
and

(

∂H
∂p

)

T
?

First one
(

∂H

∂V

)

T

=

(

∂(U + pV )

∂V

)

T

=

(

∂U

∂V

)

T

+ p

(

∂V

∂V

)

T

+ V

(

∂p

∂V

)

T

giving the general expression

(

∂H

∂V

)

T

=

(

∂U

∂V

)

T

+ p + V

(

∂p

∂V

)

T

.

Now, if we are dealing with the specific case of an ideal gas we know that
(

∂U
∂V

)

T
= 0 and p = nRT

V
and therefore

(

∂p
∂V

)

T
= −nRT

V 2 . Our original

expression reduces to
(

∂H

∂V

)

T

= p − nRT

V

= p − p = 0.

Thus
(

∂H

∂V

)

T

= 0

for an ideal gas.

Second one
(

∂H

∂p

)

T

=

(

∂(U + pV )

∂p

)

T

=

(

∂U

∂p

)

T

+ p

(

∂V

∂p

)

T

+ V

(

∂p

∂p

)

T

leading to the general expression

(

∂H

∂p

)

T

=

(

∂U

∂p

)

T

+ p

(

∂V

∂p

)

T

+ V.

Now if we are dealing with the specific case of an ideal gas
(

∂U
∂p

)

T
= 0

(

∂H

∂p

)

T

= p

(

∂V

∂p

)

T

+ V
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where V = nRT
p gives

(

∂H

∂p

)

T

= −nRT

p
+ V

= −V + V = 0.

We then have the final expression
(

∂H

∂p

)

T

= 0

for the specific case of an ideal gas.

The relation between CV and Cp

To end this chapter, is there some relationship between CV and Cp? The
answer is yes, although you might not like how complicated the general case
looks. For the specific case of an ideal gas, this simplifies greatly.

Let’s go find and find this relationship since we have nothing better to
do and because we are curious types like the guy in Moby Dick. Begin with

Cp =

(

∂H

∂T

)

p

where recall that H = U + pV . Therefore, we find that

dH = d(U + pV )

= dU + pdV + V dp.

Since the Cp expression invokes a constant pressure, let’s assume constant
pressure conditions here

dH = dU + pdV.

Now, put this back into the Cp expression (the numerator specifically) to

get

Cp =

(

∂H

∂T

)

p

=

(

∂(U + pV )

∂T

)

=

(

∂U

∂T

)

p

+ p

(

∂V

∂T

)

p
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Note that the first term on the right hand side of the equation is similar
to the one we are interested in. Unfortunately it’s the change in internal

energy at constant pressure, not volume. Close. We’ve already derived what
this expression looks like, but let’s do it again for the sake of completeness.

U = f(T, V )

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV.

Now, divide by dT and keep the pressure constant
(

∂U

∂T

)

p

=

(

∂U

∂T

)

V

+

(

∂U

∂V

)

T

(

∂V

∂T

)

p

.

Replace this into the expression for Cp

Cp =

(

∂U

∂T

)

p

+ p

(

∂V

∂T

)

p

=

[

(

∂U

∂T

)

V

+

(

∂U

∂V

)

T

(

∂V

∂T

)

p

]

+ p

(

∂V

∂T

)

p

= CV +

[(

∂U

∂V

)

T

+ p

](

∂V

∂T

)

p

.

We obtain our first expression relating Cp to CV

Cp = CV +
(

∂V
∂T

)

p

[

p +
(

∂U
∂V

)

T

]

(14.15)

Note that if dV is small Cp ' CV again. This would best apply to condensed
phases and you can therefore remember that for solids and liquids

there isn’t a huge difference in these two heat capacities

The special case of an ideal gas

The special case of an ideal gas is simple. Starting with the above result

Cp = CV +

(

∂V

∂T

)

p

[

p +

(

∂U

∂V

)

T

]

note that pV = nRT and that
(

∂V
∂T

)

p
= nR

p
. Furthermore, recall that

for an ideal gas the internal energy depends only on temperature. Hence
(

∂U
∂V

)

T
= 0. Putting everything together we get

Cp = CV + nR. (14.16)
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Nice and simple.
Presumably one could use another gas equation of state, like the van

der Waals equation, and get analogous expressions. I’ll leave this for you to
explore in your leisure time. Furthermore, you can also consider coming up
with a qualitative explanation for why CV and Cp differ.

Alternative expression 1

Let’s say that we are masochistic or that we like to play math games. We

can express our general result slightly differently. Starting with

Cp = CV +

(

∂V

∂T

)

p

[

p +

(

∂U

∂V

)

T

]

the (∂U
∂V

)T term can be broken down using U = H − pV as follows

(

∂U

∂V

)

T

=

(

∂(H − pV )

∂V

)

T

=

(

∂H

∂V

)

T

− p − V

(

∂p

∂V

)

T

.

Replacing this back into our original Cp expression gives

Cp = CV +

(

∂V

∂T

)

p

[

p +

(

∂H

∂V

)

T

− p − V

(

∂p

∂V

)

T

]

= CV +

(

∂V

∂T

)

p

[(

∂H

∂V

)

T

− V

(

∂p

∂V

)

T

]

where
(

∂H
∂V

)

T
=
(

∂H
∂p

)

T

(

∂p
∂V

)

T
. This then yields

Cp = CV +

(

∂V

∂T

)

p

[(

∂H

∂p

)

T

(

∂p

∂V

)

T

− V

(

∂p

∂V

)

T

]

= CV +

(

∂V

∂T

)

p

(

∂p

∂V

)

T

[(

∂H

∂p

)

T

− V

]

where now recall one of our old math relationships
(

∂V
∂T

)

p

(

∂p
∂V

)

T
= −

(

∂p
∂T

)

V
to get

Cp = CV −
(

∂p

∂T

)

V

[(

∂H

∂p

)

T

− V

]

.
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The final alternative version of the relation between Cp and CV is then

Cp = CV +
(

∂p
∂T

)

V

[

V −
(

∂H
∂p

)

T

]

. (14.17)

Alternative expression 2

Let’s say we even have more free time. Alternatively, we can express the
above relationship in an even more convoluted way using math gymnastics.
Starting with the previous result

Cp = CV +

(

∂p

∂T

)

V

[

V −
(

∂H

∂p

)

T

]

we can modify it by considering H as a function of p and T .

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp.

If H is held constant (for those Spanish speaker, ojo!) dH = 0.
(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp = 0.

Divide by dP to get
(

∂H

∂T

)

p

(

∂T

∂p

)

H

+

(

∂H

∂p

)

T

= 0.

Therefore
(

∂H

∂p

)

T

= −
(

∂H

∂T

)

p

(

∂T

∂p

)

H

.

Replace this expression into where we left off with Cp.

Cp = CV +

(

∂p

∂T

)

V

[

V −
(

∂H

∂p

)

T

]

= CV +

(

∂p

∂T

)

V

[

V +

(

∂H

∂T

)

p

(

∂T

∂p

)

H

]

= CV +

(

∂p

∂T

)

V

[

V + Cp

(

∂T

∂p

)

H

]

= CV + V

(

∂p

∂T

)

V

+ Cp

(

∂T

∂p

)

H

(

∂p

∂T

)

V

.
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Consolidate the Cp terms to get

Cp

(

1−
(

∂T

∂p

)

H

(

∂p

∂T

)

V

)

= CV + V

(

∂p

∂T

)

V

Our final alternative expression is then (no mas -anyone know what this
historical reference is to?)

Cp =
[CV +V ( ∂p

∂T )
V
]

h

1−
“

∂T
∂p

”

H
( ∂p

∂T )
V

i . (14.18)

Done.
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Chapter 15

Thermochemistry

Previously we primarily dealt with internal energy and enthalpy changes for

expansions and other processes of a given substance. In chemistry, however,
we often deal with chemical reactions. So the system now isn’t a single gas

or a single block of something. It’s now a reaction consisting of reactants
and products. So here we show what the enthalpy change for a process

defined as a chemical reaction.

The enthalpy change for a reaction is simply the heat (i.e. energy)
absorbed or evolved when a chemical reaction for the breaking and making

of chemical bonds occurs at constant pressure and temperature. If you
remember your freshman chemistry, processes that result in an evolution of

heat are called exothermic and have a negative ∆H . Processes that result in
the absorption of heat are called endothermic and have positive ∆H values.

Common examples in real life include self heating drinks and meals as well
as single use ice packs. You’ve seen these at Walgreens I’m sure. These are

two easy demos that one can do.

Enthalpy H is a state function. The main consequence of this statement
is that the enthalpy change of a reaction is simply the difference in enthalpy

between the final and initial states (products minus reactions if you will).
The enthalpy changes associated with the formation of any intermediate

states does not ultimately matter. However, they can be used in an additive
bookkeeping fashion if needed to find the net enthalpy change of a reaction.

This principle is called Hess’ Law after a Russian chemist named Germain
Henri Hess in St. Petersburg. “The total enthalpy for a reaction is inde-

pendent of the path by which the reaction occurs.” Let’s illustrate Hess’ law

using an example. But before we go on, let’s make clear some “rules” when
dealing with these thermochemical equations.

111
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• When a thermochemical equation is multiplied by any factor, the value
of ∆H for the new equation is obtained by multiplying the value of

∆H in the original equation by that value.

• When a thermochemical equation is reversed, the value of ∆H has its
sign reversed.

• The enthalpy changes of sub reactions adding up to a net reaction are

additive.

Example

Consider the oxidation of carbon monoxide to carbon dioxide at 1 bar, 25oC.

CO(g) +
1

2
O2(g) → CO2(g)

The enthalpy change measured during the reaction is ∆H = −283kJ. This

is measured through the heat evolved in the reaction because dH = dq for
a process at constant pressure. So in practice we have a calorimeter with a

known heat capacity. The observed temperature change then gives you the
amount of heat involved in the reaction which, in turn, gives you ∆H for

the reaction (apart from a sign change).
However, we could have found out this value differently using Hess’s Law.

Say we measured the enthalpy changes of the two following reactions

C(graphite) +
1

2
O2 → CO

C(graphite) + O2 → CO2

where the enthalpy change of the first reaction is found to be ∆H = −110.5kJ
and the enthalpy change of the second reaction is found to be ∆H =

−393.5kJ. Using these two separate ∆H values, we can calculate the origi-
nal enthalpy change as follows.

If we reverse the first equation, the sign of the enthalpy change is flipped.

If we now add the two reactions together like math equations, we get the
net reaction

CO +
1

2
O2 → CO2.

The enthalpy change for this process is then the sum of the two enthalpy

changes (the first one being flipped in sign)

∆Htot = −∆H1 + ∆H2

= 110.5 + (−393.5) = −283kJ.
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This is in complete agreement with what was measured directly.

Example

The hydrocarbons ethene and ethane are byproducts from the cracking of
oil. The enthalpy change at 25oC for the reaction of graphite and hydrogen

gas is 52.26 and -84.68 kJ/mol respectively. Calculate the enthalpy change
for the hydrogenation of ethene to give ethane.

Ans: The stated reactions are

2C(graphite) + 2H2 → C2H4

2C(graphite) + 3H2 → C2H6.

To use Hess’ Law to find the desired reaction

C2H4 + H2 → C2H6

take the first equation and flip it. Remember to flip the sign of the enthalpy

change as well. We get

C2H4 → 2C + 2H2

2C + 3H2 → C2H6.

The net reaction is then the desired one written above (I hope you see this)
and the sum of the individual enthalpy changes is

∆Htot = −∆H1 + ∆H2

= −52.26 + (−84.68) = −136.94kJ.

Example

This example will illustrate why we won’t necessarily be using Hess so much.
Why? Cause it gets tedious and there is a shorter alternative.

Consider the chemical equation

CH4(g) + 4Cl2(g) → CCl4(l) + 4HCl(g).

What is the net enthalpy change of the reaction when you only have the

enthalpy differences for the following reactions (these are provided to you)

C(graphite) + 2H2(g) → CH4(g)∆Ho
f = −74.9kJ/mol

C(graphite) + 2Cl2(g) → CCl4(l)∆Ho
f = −139kJ/mol

1

2
H2(g) +

1

2
Cl2(g) → HCl(g)∆Ho

f = −92.3kJ/mol.
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Note that the subscripts f here stand for the enthalpy of formation. For-
mation from what? Formation from stuff in their standard states. We will

discuss this a little later when we talk about the easier alternative to doing
these sorts of problems.

So how do you use these equations to find what you want? Well, let’s
flip equation 1

CH4(g) → C(graphite) + 2H2(g)∆Ho
f = 74.9kJ

C(graphite) + 2Cl2(g) → CCl4(l)∆Ho
f = −139.0kJ

1

2
H2(g) +

1

2
Cl2(g) → HCl(g)∆Ho

f = −92.3kJ.

Now what? Multiply equation 3 by four.

CH4(g) → C(graphite) + 2H2(g)∆Ho
f = 74.9kJ

C(graphite) + 2Cl2(g) → CCl4(l)∆Ho
f = −139.0kJ

2H2(g) + 2Cl2(g) → 4HCl(g)∆Ho
f = −92.3(4)kJ

Now, add all the equations together. You will notice that the carbons

and the hydrogens will cancel. The chlorines will add. We get

CH4(g) + 4Cl2(g) → CCl4(l) + 4HCl(g)∆Ho
f = −433.3kJ.

This is our desired answer but we got it by dealing with a bunch of little

sub reactions. Imagine if instead of three we had ten or more. It gets ugly
fast.

An easier way

Now, there is another way to calculate enthalpy changes using tables. But

this requires that we first define some things such as standard conditions.
First the enthalpy change of something in its standard state is zero.

This will be our reference point from which all other enthalpy changes are
measured. Note that we are not talking about absolute enthalpies. We’re

always referring to enthalpy changes. In fact, all of these ∆H values are
relative to our more or less arbitrary standard state.

To illustrate, the enthalpy of formation of H2(g) at 298K, 1 bar is defined
to be zero. The same goes for N2(g) at 298 K and 1 bar. Usually this will be

for simple things such as elements or gases. Be careful, though, if the thing
is not in its standard state, say H2(s) or N2(l) then the associated enthalpy
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of formation is not zero. This is why you want to pay attention to the state
of a substance (i.e. whether it is a solid or a liquid or a gas).

Next, the standard conditions are defined as (note the difference in stan-

dard temperature from the earlier definition of STP. This gets annoying
when people start playing with reference conditions.)

• standard T , 25oC or 298.15K

• standard p, 1 bar or 1 × 105 Pa

• standard state, pure component at this temperature and pressure

We now define the enthalpy change of a molecule or something else in

terms of its standard heat of formation ∆Ho
298 or ∆Ho

f . Again, you can
loosely think of this as the enthalpy associated with a given species but
it’s really the enthalpy change associated with making it. The superscript

means 1 bar pressure. The 298 is obvious. So to summarize ∆Ho
f is the

enthalpy change due to 1 mole of a compound being formed under standard

conditions from its constituent elements in their standard states.

Example

Calculate the enthalpy change for the gas phase reaction between H2(g) and

I2(g) at 298K and 1 bar

H2(g) + I2(g) → 2HI(g).

Note that H2(g) is in its standard state. By contrast, I2(g) is not in its
standard state. In fact, the standard state of iodine is a solid (I2(s)). The

heat of formation of HI(g) can be looked up in a table and is listed as
∆Ho

f = 26.48 kJ/mol. Before we go on to solve this thing, we must get the

heat of formation for iodine

I2(s) → I2(g).

Here I2(s) is in its standard state, the associated heat of formation is zero.
Next the heat of formation of I2(g) is looked up in a table and is ∆Ho

f =
62.44 kJ/mol.

Now, put everything together

H2(g) + I2(g) → 2HI(g)

0 + 62.44 → 2(26.48).



116 CHAPTER 15. THERMOCHEMISTRY

Note that we accounted for the number of moles. The net change in en-
thalpy is then ∆H = −9.48kJ/mol. Since this is under constant pressure

conditions, the enthalpy change is the amount of heat (i.e. energy) lost to
the surroundings, which we basically measure using a calibrated calorimeter
and a thermometer.

Example

Calculate the enthalpy of reaction at 25oC for the following reaction

3Fe2O3(s) + 2NH3(g) → 6FeO(s) + 3H2O(l) + N2(g).

To do this, we go and look up the standard enthalpies of formation of the

different species in a table somewhere. We get (all in units of kJ/mol)

3Fe2O3(s) + 2NH3(g) → 6FeO(s) + 3H2O(l) + N2(g)

3(−824.2) + 2(−46.1) → 6(−266.3) + 3(−285.8) + 0

Add up the right, add up the left and take the difference (final minus initial)

to get

∆Hrxn = 109.6kJ.

So this is trivial. Cake. I’ll claim that it is one of the more straightfor-
ward aspects of this class. You just have to remember

Final− Initial,

taking into account the stoichiometry of the reaction. You also need to
look up the standard enthalpies of formation of the different reactants and

products in a table. The thing you have to be aware of is that when you do
this you are evaluating ∆H for given conditions, namely 25oC and 1 bar.

Variation of enthalpy with temperature

Ok, so not all reactions are run at 25oC right? How do we calculate the
enthalpy change if the reaction occurs at a different temperature? Well, we

have to consider the temperature dependence of H under constant pressure
conditions. This brings us back to our friend the constant pressure heat
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capacity, Cp

Cp =

(

∂H

∂T

)

p

dH = CpdT
∫

dH =

∫ T2

T1=298.15
CpdT.

This last equation is called Kirchoff’s Equation (not to be confused with
Kirchoff’s Law in electrical engineering, besides are these guys related?).

Now Kirchoff’s equation would appear to be a straightforward integral.
However, Cp actually varies with temperature and is not necessarily con-

stant. We glossed over this when we first talked about heat capacities. So
to make life easy, to a first approximation, you can assume that Cp is con-

stant or you can use the average value of the heat capacity C̄p over the
desired temperature range. If you ever saw the movie Heartbreak Ridge
with Clint Eastwood, this is an example of what I call improvising, adapt-

ing and overcoming). But we almost overlooked something, this average
heat capacity must be known for each species in the reaction. So if you have

a table that lists them then great, otherwise you have to assume that the
heat capacities are all constant with temperature.

At this point, we have

∆H = C̄p∆T

∆HT2 − ∆HT1 = C̄p(T2 − 298.15K)

or

∆HT2 = ∆HT1 + C̄p(T2 − 298.15K) (15.1)

Here I’m just writing out ∆H explicitly for the final and initial states to

remind you that we are not dealing with absolute enthalpies but rather
enthalpy changes.

This expression applies to each species in the reaction. Note that an
easy way to calculate the change in enthalpy of a reaction at a different

temperature is to first calculate the net change of enthalpy like usual. Then
go and find the heat capacities or average heat capacities of each species
and treat them the same way. Get the net heat capacity of the reaction by

adding up the left, adding up the right, taking into account the stoichiometry
(remember C depends on how much stuff you have) and taking the difference,



118 CHAPTER 15. THERMOCHEMISTRY

final minus initial. This will give you Cp(net) or C̄p(net) which you would
multiply by the temperature difference and add to the 25oC enthalpy change

to get the final answer.

Example

The complete combustion of ethane releases 1558.8 kJ of energy at 25oC.
Calculate ∆Hcombustion at 100oC.

C2H6(g) +
3

2
O2(g) → 2CO2(g) + 3H2O(l)

Given are (all units are in J/mol K)

• C̄p(C2H6)(g) = 52.6

• C̄p(O2)(g) = 29.5

• C̄p(CO2)(g) = 37.1

• C̄p(H2O)(l) = 75.3

Ans: Using Kirchoff’s equation we get

∆H373.15 = ∆H298.15 + C̄p(373.15− 298.15)

= −1558.8 + C̄p(373.15− 298.15)

= −1558.8 + C̄p(75)

where we find C̄p(net) as follows

C2H6 +
3

2
O2(g) → 2CO2 + 3H2O

52.6 +
3

2
(29.4) → 2(37.1) + 3(75.3).

Add up the left, add up the right, take their difference to get C̄p = 203.4J/K.

Replace this back into our expression for the enthalpy.

∆HT2 = −1558.8(1000)+

(

203.4

1000

)

(75) = −1543.5kJ.
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A more accurate treatment of heat capacity

We know that Cp can change with temperature. In fact, Cp can change
significantly in some cases. The variation of Cp with temperature is usually

represented as a power series in temperature

Cp(T ) = a + bT + cT 2 + dT 3 + . . .

where one keeps as many terms as necessary to make it an accurate repre-

sentation of what happens in real life. The coefficients a, b, and c etc... are
empirically determined.

Let’s consider the specific case where only the first 3 terms in the series

are needed. We get for the temperature dependence of the enthalpy

dH = CpdT

dH ' (a + bT + cT 2)dT

∆H '
∫ T2

T1

a + bT + cT 2dT

' a(T2 − T1) +
bT 2

2

∣

∣

∣

∣

T2

T1

+
cT 3

3

∣

∣

∣

∣

T2

T1

.

The final answer for the change in enthalpy due to a temperature change is

therefore

∆H ' a(T2 − T1) +
b

2
(T 2

2 − T 2
1 ) +

c

3
(T 3

2 − T 3
1 ).

Example

Given the standard enthalpy of formation and heat capacity data below,

calculate the enthalpy change at 100oC.

3C2H2 → C6H6

• ∆Ho
f (C2H2) = 226.7kJ/mol

• ∆Ho
f (C6H6) = 82.9kJ/mol

• Cp(C2H2) = 30.7 + 5.28× 10−2T − 1.63× 10−5T 2J/molK

• Cp(C6H6) = −1.7 + 32.5× 10−2T − 11.06× 10−5T 2J/molK



120 CHAPTER 15. THERMOCHEMISTRY

Ans: We need to find what C̄p(net) is first. Then we can use it in
Kirchoff’s expression.

C̄p(net) = −1.7 + 32.5× 10−2T − 11.06× 10−5T 2

− 3(30.7 + 5.28× 10−2T − 1.63× 10−5T 2)

= −1.7 + 32.5× 10−2T − 11.06× 10−5T 2

− 92.1− 15.85× 10−2T + 4.89× 10−5T 2

= −93.8 + 16.66× 10−2T − 6.17× 10−5T 2 J/K

Put this back into Kirchoff’s expression

∆Ho
373 = ∆Ho

f +

∫ T2

T1

−93.8 + 16.66× 10−2T − 6.17× 10−5T 2dT

= ∆Ho
f − 93.8(T2 − T1) +

16.66× 10−2

2
(T 2

2 − T 2
1 ) − 6.17× 10−5

3
(T 3

2 − T 3
1 )

= ∆Ho
f − 3.365kJ

= −597.2kJ − 3.365kJ

= −600kJ.

This is our desired answer.

Enthalpy changes for other processes

There are other important enthalpy changes that we should be aware of.

They are listed below along with a little blurb. Think of them like the name
reactions in second semester organic chemistry. Remember the Cannizzaro

reaction?

Enthalpy of combustion, (aka heat of combustion)

This is the enthalpy change when 1 mol of a compound reacts completely
with excess O2. For example,

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l).

Tables of these ∆Hcomb values exist.
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Bond dissociation enthalpy, (aka bond energies)

This represents the energy/mol needed to break a chemical bond. For ex-

ample,

CH4(g) → C(g) + 4H(g).

Tables of these ∆Hbond values also exist.

Example

Use values of bond energies to estimate the standard enthalpy change for
the reaction

CH3OCH3(g) → C2H5OH(g)

Given:

• ∆H(C − H) = 415kJ/mol

• ∆H(C − O) = 350kJ/mol

• ∆H(C − C) = 348kJ/mol

• ∆H(O − H) = 464kJ/mol

Note the sign, these are the energies needed to blow up the bond. It takes

energy inputted into the system to blow a bond up. Conversely, if you make
a bond you have to flip the sign. This shows how the system stabilizes on

bond formation.
On the left side of our reaction, we need to calculate the total energy

needed to blow up all bonds.

∆H1 = 6(C − H) + 2(C − O)

= 6(415) + 2(350) = 3190kJ.

On the right side of the reaction, we need to calculate the total energy

change which results from forming the molecule

∆H2 = −[5(C − H) + (C − C) + (C − O) + (O − H)]

= −[5(415) + (348) + (350) + (464)]

= −3237kJ.

Now put everything together by summing the two enthalpy changes, the
first to blow up the reactants and the second to form the products

∆Hnet = ∆H1 + ∆H2 = −47kJ.
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Enthalpy of solution

This is the enthalpy change when 1 mol of a compound dissolves in a large

excess of a pure solvent. For example

HCl(g) + H2O(excess) → HCl(aq).

Enthalpies associated with phase changes

Fusion

This is the transition from s → l. ∆Hfus (the enthalpy of fusion, aka the

latent heat of fusion) is the energy required at constant pressure to melt 1
mol of a pure substance at its melting point, Tm.

Vaporization

This is the transition from l → g. ∆Hvap is the energy required at constant

pressure to vaporize 1 mol of a pure liquid at its boiling point, Tb.

Sublimation

This is the transition from s → g. Think of dry ice where we skip the liquid

phase. So ∆Hsub is the energy required to take 1 mole of a substance from
solid to gas at its sublimation temperature, Tsub under constant pressure

conditions. Note that enthalpy is a state function. As a consequence,

∆Hsub = ∆Hfus + ∆Hvap . (15.2)

This is a direct application of Hess’s Law at constant temperature.



Chapter 16

Entropy and the 2nd and 3rd
Laws of Thermodynamics

The purpose of this section is to explain the origin of spontaneity of physical

and chemical processes. Namely, you might have gotten the impression from
prior classes that spontaneous reactions or processes are those which are

exothermic. But what really drives reactions? Let’s look at two spontaneous
reactions.

The first involves dissolving a salt in water.

LiCl (s) ⇀↽ Li+(aq) + Cl−(aq).

This process has an enthalpy change of ∆H = −37.1 kJ. It is exothermic.

The next spontaneous process also involves dissolving a salt in water.

NaCl (s) ⇀↽ Na+(aq) + Cl−(aq).

This process has an enthalpy change of ∆H = 3.9 kJ. It is endothermic. Yet

it is spontaneous. To drive home this point even more, consider the following
spontaneous reaction involving the melting of ice at room temperature

H2O (s) ⇀↽ H2O (l).

The enthalpy change here is ∆H = 6kJ. Again, here is an endothermic
process which we know beyond all doubt is spontaneous. So we conclude that
the spontaneity of reactions is not always controlled by favorable final/initial

state energy differences. Instead, is there something that is more predictive
as to whether a process or reaction is spontaneous?

123
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To better predict spontaneity, we therefore introduce a new thermody-
namic function called entropy (S). It is defined as

dS = dqrev

T (16.1)

where qrev is the heat released or absorbed during a reversible process.

The unit of entropy is J/mol K. Qualitatively, entropy is a measure of the
randomness or disorder of the system. The main idea then is that spon-

taneous processes are those which tend to increase disorder in the system
although we will see a more encompassing definition of spontaneity when

we encounter the second law of thermodynamics in a minute. Now, the
statistical definition of entropy is

S = kBlnW . (16.2)

This relationship was derived by Boltzmann and is written on his tombstone

in Vienna. In the expression, kB is called the Boltzmann constant (kB =
1.38 × 10−23J/K. It can be found from R/NA) and the W is basically the

number of ways in which you can arrange the molecules in a system.

Uses of entropy to show you’re part of the intelligentsia

Clean up your room.

Ans: “Why bother, it’s entropically unfavorable”

How come it’s such an ordeal get organized to leave for the Linebacker on

time?

Ans: “Clearly it’s against the Second Law”

etc... you get the point.

Second Law of Thermodynamics

Entropy is key to the second law of thermodynamics. The second law is

stated a number of ways but all with the same intent. “The entropy of an

isolated system increases in the course of a spontaneous change” or “Spon-

taneous process are those which increase the entropy of the universe”. So
what this is saying is that if we learn how to quantify changes in entropy,
we can, predict whether a process is spontaneous or not.

Note that Clausius has another statement of the second law (we’ll stick

with the top ones, but they’re all saying the same thing again). “It is

impossible to construct a machine that is able to convey heat by a cyclical
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process from one reservoir to another at a higher temperature unless work is

done on the machine by some outside agency.” This statement is basically

saying that we cannot construct a perpetual motion machine. Note that
there are two types of perpetual motion machines, a) those that violate
the 1st law of thermodynamics and b) those that violate the 2nd law of

thermodynamics.
Note also that thermodynamics has never ever been proven wrong, thus

everytime you see someone claiming one of these something for nothing
gimmicks (free energy for all) it’s probably not true (this also assumes that

you’re not one of those conspiracy theory people who believe the military-
industrial complex is suppressing the release of these free energy machines

to continue our dependency on crude oil).

Entropy change preface

Let’s see how the entropy of a system might change with temperature and

pressure, S(T, p), or temperature and volume, S(T, V ). First some prelimi-
naries.

The internal energy of a system is defined as

dU = dq + dw.

If only pV work is done and the process is done reversibly

dU = dqrev − pdV

thus

dqrev = dU + pdV.

The entropy change of the process is then

dS =
dqrev

T

=
dU + pdV

T
.

This gives an expression for S(U, V )

dS = 1
T

dU + p
T
dV (16.3)

which relates changes in entropy to changes in energy and volume under a

given pressure and temperature.
Note the following
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• (a) At constant volume (dV = 0) an increase in the internal energy of
the system means that the entropy increases. Kinda makes sense, yes?

• (b) If the internal energy is constant, an increase in volume implies an
increase in entropy.

Now, we do not normally control the energy of a system directly. Pres-
sure and temperature or volume and temperature are more convenient pa-

rameters to vary. We therefore convert our original expression to more useful
forms.

Variations of entropy with temperature and vol-

ume, S(T, V )

Consider entropy as a function of temperature and volume S(T, V ). The
total differential is

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV.

A priori who knows what
(

∂S
∂T

)

V
and

(

∂S
∂V

)

T
are. Well, we can find them by

referring to our previous relation for S(U, V ).

Compare the above to our previously derived expression

dS =
1

T
dU +

p

T
dV.

Let’s work with this second expression and get rid of dU . Do this by ex-
pressing the total differential for U(T, V )

dU =

(

∂U

∂T

)

V

dT +

(

∂U

∂V

)

T

dV

= CV dT +

(

∂U

∂V

)

T

dV

where recall
(

∂U
∂V

)

T
= πT (the internal pressure)

Use this value of dU in our previous expression for the entropy.

dS =
1

T

[

CV dT +

(

∂U

∂V

)

T

dV

]

+
p

T
dV

=
CV

T
dT +

1

T

(

∂U

∂V

)

T

dV +
p

T
dV

=
CV

T
dT +

1

T

[(

∂U

∂V

)

T

+ p

]

dV.
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Now, by comparing this to the total differential for the entropy as a function
of T and V , shown at the beginning of this section

(

∂S
∂T

)

V
= CV

T
(16.4)

(

∂S
∂V

)

T
= 1

T

[(

∂U
∂V

)

T
+ p
]

(16.5)

where from our prior work on the p/V dependencies of internal energy

(

∂U

∂V

)

T

= πT = T

(

∂p

∂T

)

V

− p.

The first expression describes the fact that at constant volume the en-
tropy will increase with temperature. The second expression, the volume

dependence at constant temperature, is more complicated. We will evaluate
this and reduce it to something more tractable. Namely, we will use the ex-

actness of a total differential to help us here. Recall that this meant that the
cross derivatives equaled. Note that you could just as well evaluate this by

shoving in the explicit form of
(

∂U
∂V

)

T
into our expression for

(

∂S
∂V

)

T
. It will

simplify greatly and you find that
(

∂S
∂V

)

T
=
(

∂p
∂T

)

V
. But let’s demonstrate

this another way in what follows.

We start with the exactness relationship

∂2S

∂V ∂T
=

∂2S

∂T∂V
.

Left hand side. The left hand side of the expression simplifies as follows

∂2S

∂V ∂T
=

∂

∂V

(

CV

T

)

where recall that CV =
(

∂U
∂T

)

V

∂2S

∂V ∂T
=

∂

∂V

[

1

T

(

∂U

∂T

)

V

]

=
1

T

∂2U

∂V ∂T
.

We therefore have
(

∂2S

∂V ∂T

)

=
1

T

∂2U

∂V ∂T
.
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Next, the right hand side We have

∂2S

∂T∂V
=

∂

∂T

[

1

T

[(

∂U

∂V

)

T

+ p

]]

=
∂

∂T

[

1

T

(

∂U

∂V

)

T

+
p

T

]

=
1

T

∂2U

∂T∂V
+

(

∂U

∂V

)

T

(−1

T 2

)

+
1

T

(

∂p

∂T

)

V

− p

T 2
.

The resulting expression is

∂2S

∂T∂V
=

1

T

[

∂2U

∂T∂V
+

(

∂p

∂T

)

V

]

− 1

T 2

[

p +

(

∂U

∂V

)

T

]

.

Now equate the left and right hand side expressions.

∂2S

∂V ∂T
=

∂2S

∂T∂V
1

T

∂2U

∂V ∂T
=

1

T

∂2U

∂T∂V
+

1

T

(

∂p

∂T

)

V

− 1

T 2

[

p +

(

∂U

∂V

)

T

]

.

The first two terms cancel because U is a state function and its differential

will be exact. This leaves

1

T

(

∂p

∂T

)

V

=
1

T 2

[

p +

(

∂U

∂V

)

T

]

(

∂p

∂T

)

V

=
1

T

[

p +

(

∂U

∂V

)

T

]

and on comparing this result with our original expression for the entropy

change with volume under constant temperature conditions
(

∂S

∂V

)

T

=
1

T

[

p +

(

∂U

∂V

)

T

]

we conclude that

(

∂S
∂V

)

T
=
(

∂p
∂T

)

V
. (16.6)

Thus
(

∂S
∂V

)

T
reduces to something more tractable in terms of the coefficient

of thermal expansion α and the coefficient of compressibility κ. Recall that

α =
1

V

(

∂V

∂T

)

p

κ = − 1

V

(

∂V

∂p

)

T
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so that
(

∂V

∂T

)

p

= αV

(

∂V

∂p

)

T

= −κV

and by the Euler Chain relation/inverter

(

∂p

∂T

)

V

(

∂T

∂V

)

p

(

∂V

∂p

)

T

= −1

(

∂p

∂T

)

V

= −
(

∂V

∂T

)

p

(

∂p

∂V

)

T
(

∂p

∂T

)

V

= −(αV )

(

− 1

κV

)

=
α

κ
.

Hence

(

∂S
∂V

)

T
=
(

∂p
∂T

)

V
= α

κ
. (16.7)

Now putting everything together we find

dS =

(

∂S

∂T

)

V

dT +

(

∂S

∂V

)

T

dV

dS = CV

T
dT + α

κ
dV . (16.8)

This expression is applicable to any substance. Except for gases, the volume
dependence is usually negligible. Thus for solids and liquids dS ' CV dT

T
.

Variations of entropy with temperature and pres-

sure, S(T, p)

Alternatively, consider the entropy as a function of temperature and pressure

S(T, p). The total differential is

dS =

(

∂S

∂T

)

p

dT +

(

∂S

∂p

)

T

dp.
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Again we don’t know a priori what
(

∂S
∂T

)

p
and

(

∂S
∂p

)

T
are.

But from before (the preface) we found that

dS =
1

T
dU +

p

T
dV.

To simplify this latter expression and to allow an evaluation of
(

∂S
∂T

)

p
and

(

∂S
∂p

)

T
we introduce the relation H = U + pV or better yet U = H − pV .

From this we get dU = dH − pdV − V dp. Replace this into our entropy

expression above.

dS =
1

T
[dH − pdV − V dp] +

p

T
dV

=
1

T
dH − p

T
dV − V

T
dp +

p

T
dV

dS = 1
T

dH − V
T

dp.

Obviously, we need to get rid of dH , otherwise what we just did wasn’t that
useful. Consider H(T, p). The total differential is

dH =

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp.

Replace this into the previous dS expression to get

dS =
1

T

[

(

∂H

∂T

)

p

dT +

(

∂H

∂p

)

T

dp

]

− V

T
dp

=
1

T
CpdT +

1

T

(

∂H

∂p

)

T

dp− V

T
dp

=
Cp

T
dT +

1

T

[(

∂H

∂p

)

T

− V

]

dp.

Now by comparison with the original entropy total differential at the begin-
ning of this section

(

∂S
∂T

)

p
=

Cp

T
(16.9)

(

∂S
∂p

)

T
= 1

T

[(

∂H
∂p

)

T
− V

]

. (16.10)
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Note that
(

∂H
∂p

)

T
= V −T

(

∂V
∂T

)

p
, which we learned in the previous chapter.

However, let’s show this another way to illustrate that there are many ways
to skin a cat (how did this colloquialism get started anyway?). Simplify the
second expression just like we did earlier by taking advantage of exactness.

We know that

∂2S

∂p∂T
=

∂2S

∂T∂p

The left hand side

∂

∂p

(

∂S

∂T

)

p

=
∂

∂p

(

Cp

T

)

where Cp =
(

∂H
∂T

)

p
so that

∂

∂p

(

∂S

∂T

)

p

=
∂

∂p

[

1

T

(

∂H

∂T

)

p

]

=
1

T

∂2H

∂p∂T
.

Next, the right hand side.

∂

∂T

(

∂S

∂p

)

T

=
∂

∂T

[

1

T

(

∂H

∂p

)

T

− V

T

]

=
1

T

∂2H

∂T∂p
+

(

∂H

∂p

)

T

(−1

T 2

)

− 1

T

(

∂V

∂T

)

p

+
V

T 2

=
1

T

[

∂2H

∂T∂p
−
(

∂V

∂T

)

p

]

− 1

T 2

[(

∂H

∂p

)

T

− V

]

.

Equate the left and right hand sides now.

1

T

∂2H

∂p∂T
=

1

T

∂2H

∂T∂p
− 1

T

(

∂V

∂T

)

p

− 1

T 2

[(

∂H

∂p

)

T

− V

]

.

The first two terms will cancel again because of the exactness of the total

differential of a state function (in this case H). We are left with

1

T

(

∂V

∂T

)

p

= − 1

T 2

[(

∂H

∂p

)

T

− V

]

−
(

∂V

∂T

)

p

=
1

T

[(

∂H

∂p

)

T

− V

]

.
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Replace this into our prior expression for
(

∂S
∂p

)

T
to get

(

∂S
∂p

)

T
= 1

T

[(

∂H
∂p

)

T
− V

]

= −
(

∂V
∂T

)

p
. (16.11)

As last time we can continue simplifying this a little further. Recall that

the coefficient of thermal expansion is

α =
1

V

(

∂V

∂T

)

p
(

∂V

∂T

)

p

= αV

So that
(

∂S

∂p

)

T

= −αV.

Putting everything together

dS =
(

∂S
∂T

)

p
dT +

(

∂S
∂p

)

T
dp (16.12)

dS =
Cp

T
dT − αV dp (16.13)

The special case of an ideal gas

The relationships just derived in the previous sections are applicable to any
system. They have a particularly simple form when applied to the specific

case of an ideal gas. Start with

dS = CV

T
dT + α

κ
dV

dS =
Cp

T dT − αV dp

where

α =
1

V

(

∂V

∂T

)

p

κ = − 1

V

(

∂V

∂p

)

T

.
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Since for an ideal gas pV = nRT we can show that (and you did this on a
homework a while back)

α =
1

T

κ =
1

p

So now the first entropy expression becomes

dS =
CV

T
dT +

p

T
dV

where this can get rearranged using p = nRT
V

to

dS = CV

T dT + nR
V dV . (16.14)

when integrated our final expression is

∆S = CV ln T2
T1

+ nR ln V2
V1

. (16.15)

assuming that CV is constant, which it is for an ideal gas.

The second entropy expression becomes

dS =
Cp

T
dT − αV dp

=
Cp

T
dT − V

T
dp

where this can get rearranged again using V = nRT
p

dS =
Cp

T
dT − nR

p
dp . (16.16)

Once integrated our final expression is

∆S = Cp ln T2
T1

− nR ln p2

p1
(16.17)

where again we assume that Cp is constant, which it is for an ideal gas.

Summary

Ok, so you have seen that S is multifaceted. It has an expression for virtually
every occasion. Let’s summarize things here in a cliff notes manner.
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Variations of entropy with T , constant V

dS =
CV dT

T

Now using this expression, the entropy at some different (final) tem-

perature T2 can be related to the entropy at some initial temperature T1

by

∆S = ST2 − ST1 =

∫ T2

T1

dqrev

T

=

∫ T2

T1

CV

T
dT

giving

∆S = CV ln
T2

T1
.

This assumes that CV is constant.

Variations of entropy with V , constant T

dS =
α

κ
dV

In the particular case of an ideal gas, we get the following for an isother-
mal (reversible) expansion: In this case, we know for an ideal gas that

∆U = 0, therefore q = −w and

w = −
∫

pdV

= −
∫

nRT

V
dV

= −nRT ln
V2

V1
= −nRT ln

p1

p2
.

So putting this into our expression for S = qrev

T

∆S = nR ln
V2

V1
= nR ln

p1

p2
.
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Variations of entropy with T , constant p

dS =
CpdT

T

Now using this expression, the entropy at some different (final) temper-

ature T2 can be related to the entropy at some initial temperature T1.

∆S = ST2 − ST1 =

∫ T2

T1

dqrev

T

=

∫ T2

T1

Cp

T
dT

giving

∆S = Cp ln
T2

T1

if Cp is constant (which it is for an ideal gas). Just like we saw earlier in the

Kirchoff’s equation section, in reality the heat capacity is not temperature
independent. However, as a first approximation you can just assume that

it is constant or you can use some mean value over the desired temperature
range C̄p. And just like before, if there is a significant variation of Cp with

temperature or we want more precision, then we can express Cp through a
power series where for example

Cp = a + bT + cT 2.

Thus

∆S =

∫ T2

T1

Cp

T
dT

=

∫ T2

T1

( a

T
+ b + cT

)

dT

giving

∆S = a ln
T2

T1
+ b∆T +

C(T 2
2 − T 2

1 )

2
.
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Variations of entropy with p, constant T

dS = αV dp

where in the ideal gas case

α =
1

T

We then get

dS =
V

T
dp =

nR

p
dp.

When integrated you get

∆S = nR ln
p2

p1
.

Miscellaneous: Variations of entropy with a phase
change, constant p

Phase changes provide a straightforward evaluation of the entropy change

associated with it since the temperature will be constant and q can be con-
sidered reversible. Since we have defined

∆S =
qrev

T

for fusion (melting), we get

∆Sfus =
∆Hfus

Tm
(16.18)

while for vaporization (boiling) we get

∆Svap =
∆Hvap

Tb
(16.19)

and for sublimation

∆Ssub = ∆Hsub

Tsub
. (16.20)
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Trouton’s Rule

Ok, I don’t really know who Trouton was but he must have been an experi-
mentalist because he made an observation that ∆Svap for many liquids had

roughly the same value.

∆Svap ' 85J/molK . (16.21)

After some quick checking I found this reference:

Frederick Thomas Trouton: The Man, the Rule, and the Ratio

The Chemical Educator

Volume 6 Issue 1 (2001) pp 55-61

Looks like there is more to the guy than just this rule. Who knew.

Putting it all together, a thermodynamic cycle

Recall the three step thermodynamic cycle in the first law of thermodynam-

ics chapter. Ok, let’s analyze it again and combine all of our knowledge
about changes in internal energy, U , enthalpy, H , entropy, S, and work and
heat. This is good practice. Practice makes perfect.

The original question was presented as follows. One mole of an ideal
(monatomic) gas at an initial temperature of 300K and an initial pressure

of 1 atm is taken reversibly through a three step cycle.

Step 1 Isothermal expansion to a volume twice the original volume

Step 2 Constant pressure compression until the original volume is re-

stored

Step 3 Isometric heating until the initial state is reached.

Calculate the work, heat, change in internal energy, enthalpy and entropy

for each step of the cycle. What are the net changes of all the above variables
for the full cycle?

To do this question correctly, let’s tediously construct a PV diagram for

each of the three states of the cycle. First we will find the initial volume. I’ll
call it Va. Hint Anytime you run across 2 of the three state defining vari-

ables, (p,T ) or (p,V ) or (V ,T ) you can calculate the third variable through
the equation of state.

Find Va first From the equation of state (note the units are liters and

atms)

(1)(Va) = (0.08206)(300)
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thus

Va = 24.6L.

Next, find pb Since step 1 is isothermal, we know Vb and Tb at the second

point of the cycle. We just need the final pressure. Using the equation of
state, we get

(pb)(49.236) = (0.08206)(300).

Thus

pb = 0.5atm.

Next, find Tc Since we know the volume and pressure at the third state

all we need is its temperature. From the equation of state

(0.5)(24.62) = (0.08206)(Tc).

Thus

Tc = 150K

Ok, now we’re set to go ahead and calculate all of the requested quanti-
ties.

Step 1 (isothermal, reversible expansion) The work here is

wa→b = −RT ln
Vb

Va

= −(8.314)(300)ln(2)

= −1728.85J.

Next, because we have an ideal gas and an isothermal process (U and H
depend only on T for ideal gases)

∆Ua→b = 0.

From the first law of thermodynamics

qa→b = −w

= RT ln
Vb

Va

= 1728.85J.
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We now need the enthalpy

∆Ha→b = ∆U + R∆T = 0

or

∆Ha→b = ∆U + ∆(pV ) = 0.

Or you just remember that for an ideal gas that the change in enthalpy is

zero if the temperature doesn’t change.
I’ll illustrate that the top two approaches are equivalent.

Approach 1

∆Ha→b = ∆U + R∆T

= 0 + (8.314)(0)

= 0.

Approach 2

∆Ha→b = ∆U + ∆(pV )

= ∆U + pbVb − paVa

= 0 + (0.5)(49.236)− (1)(24.62)

= 0 + 24.62− 24.62

= 0.

Finally, we want the entropy change

∆S =
qa→b

Ta
= R ln

Vb

Va

= (8.314) ln(2)

= 5.763J/K.

Step 2 (reversible constant pressure compression) The work here
is

wb→c = −
∫

pdV

= −p(Vc − Vb)

= −(0.5)(24.62− 49.236)

= 12.31 liter atm

= 1247.3J.
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Next, we want the heat. This is a constant pressure heating situation
so use the constant pressure heat capacity (Cp = 5

2R for a monatomic ideal

gas).

qb→c = Cp∆T

=
5

2
R(Tc − Tb)

= (2.5)(8.314)(150− 300)

= −3117.75J.

The change of internal energy is thus

∆Ub→c = q + w

= −1870.65 + 1247.3

= −1870.45J.

Next, the enthalpy change is

∆Hb→c = ∆U + R∆T

= −1870.45 + (8.314)(150− 300)

= −1870.45− 1247.1

= −3117.55J.

Finally, we need the entropy change

dSb→c =
qb→c

T

=
CpdT

T

∆Sb→c = Cp ln
Tc

Tb

=
5

2
R ln

Tc

Tb

= (2.5)(8.314) ln(0.5)

= −14.41J/K.

Step 3 (isometric heating) Calculate the work first. Since we only
deal with PV work and because the volume doesn’t change there is no work

term

wc→a = 0.
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Next, calculate the heat. Use the constant volume heat capacity to get

qc→a = Cv(T2 − T1)

=
3

2
R(300− 150)

= 1870.65J.

The change in internal energy is then

∆Uc→a = q + w

= 1870.65 + 0

= 1870.65J.

The corresponding change in enthalpy is

∆Hc→a = ∆U + R∆T

= 1870.65 + (8.314)(300− 150)

= 1870.65 + 1247.1

= 3117.75J.

Finally, calculate the change in entropy

∆Sc→a =

∫

CV dT

T

=
3

2
R ln

Ta

Tc

= (1.5)(8.314) ln(2)

= 8.644J/K.

Put it all together The net work in the cycle is

wtot = wa→b + wb→c + wc→a

= −1728.85 + 1247.3 + 0

= −481.55J.

The net heat in the cycle is

qtot = qa→b + qb→c + qc→a

= 481.75J/mol

Note the small rounding error with this and the work. They are actually
the same.
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The net internal energy change in the cycle is (you already know what
it is but it should still add up to zero. This is a way to check that your

calculations have been correct)

∆Utot = ∆Ua→b + ∆Ub→c + ∆Uc→a

= 0 − 1870.45 + 1870.65

= 0.

I have some small rounding errors, but it’s really zero.

The net change in enthalpy is

∆Htot = ∆Ha→b + ∆Hb→c + ∆Hc→a

= 0 − 3117.55 + 3117.75

= 0.

Again, I have some small rounding errors, but it’s zero.

Finally, the net change in entropy is

∆Stot = ∆Sa→b + ∆Sb→c + ∆Sc→a

= 5.763− 14.41 + 8.64

= 0.

Done. Fun right?

Stirling cycle

Here is another cycle that I put in here because of the Stirling engine demo
that I do each time I teach this class. The idealized Stirling cycle consists

of four steps.

• Step 1. Isothermal expansion (V1 → V2) and (p1 → p2)

• Step 2. Isometric (constant volume) cooling (V2) and (p2 → p3)

• Step 3. Isothermal compression (V2 → V1) and (p3 → p4)

• Step 4. Isometric heating (V1) and (p4 → p1)

We can calculate the following terms w, q, ∆U , ∆H , and ∆S like before
along each step of the cycle. We expect ∆Unet = 0, ∆Hnet = 0, and ∆Snet =

0 for the whole cycle since all are state functions. Assume an ideal gas and
reversible steps along the isothermal compression and expansion steps.
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Step 1

Assume a reversible expansion so that pext = p. Because this is an ideal gas

and an isothermal process we immediately say

∆U = 0

∆H = 0 .

In addition, we see that q = −w. Now, we find the work term

dw = −pextdV

= −pdV

= −nRT

V
dV

so that

w = −nRT1 ln V2
V1

.

Likewise

q = nRT ln V2
V1

.

Finally,

∆S = qrev

T
= nR ln V2

V1
.

Step 2

Since the process is isometric, there can be no pdV work done. As a conse-
quence,

w = 0 .

Also, given that it’s a constant volume process ∆U = q where

q = −CV (T2 − T1) .

Then

∆U = −CV (T2 − T1) .
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The enthalpy term can be found from

∆H = ∆U + V2∆p

Ok, here we need an expression for what ∆p should look like. We use the
ideal gas equations of state

p2V2 = nRT1

p3V2 = nRT2

giving

p2

p3
=

T1

T2

or

p3 = p2

(

T2

T1

)

.

The pressure difference, p3 − p2, is then

∆p = p2

(

T2

T1
− 1

)

.

Finally, S = f(T, V )

dS =
CV

T
dT

so that

∆S = CV ln T2
T1

.

Step 3

Assume a reversible expansion so that pext = p. Because this is an ideal gas

and an isothermal process we immediately say

∆U = 0

∆H = 0 .
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In addition, we see that q = −w. Now, we find the work term

dw = −pextdV

= −pdV

= −nRT

V
dV

so that

w = −nRT1 ln
V4

V2
.

Since V4 = V1 we have

w = −nRT ln V1
V2

.

Likewise,

q = nRT ln
V4

V2

and since V4 = V1 we get

q = nRT ln V1
V2

.

Finally,

∆S = qrev

T
= nR ln V1

V2
.

Step 4

Since the process is isometric, there can be no pdV work done. As a conse-

quence,

w = 0 .

Also, given that it’s a constant volume process ∆U = q where

q = −CV (T1 − T2) .

Then

∆U = −CV (T1 − T2) .
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The enthalpy term can be found as

∆H = ∆U + V4∆p .

Ok, here we need an expression for what ∆p should look like. We use the

ideal gas equations of state

p1V1 = nRT1

p4V4 = nRT2

but since V4 = V1 we get the pair

p1V1 = nRT1

p4V1 = nRT2

giving

p1

p4
=

T1

T2
.

The pressure difference, p1 − p4, is then

∆p = p4

(

T1

T2
− 1

)

.

Finally, we can relate p4 to p2 through p3 since we will need this shortly

p4V4 = p3V3

but since V3 = V2 we get

p4V4 = p3V2.

Next, since V4 = V1 we get

p4V1 = p3V2

or that p4 = V2
V1

p3. Finally, recall that in step 2 we found p3 = T2
T1

p2.
The entropy change is

dS =
CV

T
dT

giving

∆S = CV ln T1
T2

.
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Summary

Let’s put it all together now to prove explicitly that ∆Unet = 0, ∆Hnet = 0,

and ∆Snet = 0

For ∆Unet

∆U12 = 0

∆U23 = −CV (T2 − T1)

∆U34 = 0

∆U41 = −CV (T1 − T2) = CV (T2 − T1)

Therefore

∆Unet = 0.

For ∆Hnet

∆H12 = 0

∆H23 = −CV (T2 − T1) + V2p2

(

T2

T1
− 1

)

∆H34 = 0

∆H41 = −CV (T1 − T2) + V4p4

(

T1

T2
− 1

)

You can see that the last term is the negative of the second term by recalling
that V4 = V1, p4 = V2

V1
p3 and p3 = T2

T1
p2. When put together you get

∆H41 = CV (T2 − T1)− V2p2

(

T2

T1
− 1

)

so that when everything is added up

∆Hnet = 0.
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For ∆Snet

∆S12 = nR ln
V2

V1
.

∆S23 = CV ln
T2

T1
.

∆S34 = nR ln
V1

V2
.

∆S41 = CV ln
T1

T2
.

When everything is added up, we see that

∆Snet = 0.

The Carnot cycle

Here is another cycle commonly seen since in engineering thermodynamics
we talk about efficiencies. Let’s run this cycle for fun and focus on the
entropy changes. The Carnot cycle was conceived by a French engineer

called Sadi Carnot and consists of 4 reversible stages. It is usually evaluated
using an ideal gas. The four steps of the cycle are

• Step 1: Reversible isothermal expansion of a gas from state A to state

B.

• Step 2: Reversible adiabatic expansion of a gas from state B to state

C.

• Step 3: Reversible isothermal compression of a gas from state C to

state D.

• Step 4: Reversible adiabatic compression of a gas from state D to
state A.

Step 1 Since we’re dealing with an ideal gas and the process is isothermal

∆U = 0 and ∆H = 0. Then q + w = 0 or q = −w. Next w = −
∫

pdV since
this is a reversible process. Then because the gas is ideal p = nRT

V
. The

work and heat done by the gas expanding is therefore

w = −nRT ln
Vb

Va

q = nRT ln
Vb

Va
.
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The associated entropy change is

dS =
dqrev

T

∆S =
qrev

T

where dqrev is found from above. The corresponding entropy change is

∆SA→B = nR ln
Vb

Va
.

Step 2 This is an adiabatic expansion. Therefore q = 0 and w =

−
∫

pdV (reversible), ∆U = w (first law), and ∆H = ∆U + nR∆T . The
work is

w = −
∫

pdV

=

∫

CV dT

= CV (T2 − T1).

Now, the corresponding entropy change is

∆SB→C = 0

since this was an adiabatic reversible process. You can see this from dS =
dqrev

T
. Irrespective of what T is the numerator will always be zero.

Step 3 This is an isothermal process so ∆U = 0, ∆H = 0 and q = −w
where

w = −
∫ Vd

Vc

pdV

= −nRT

∫ Vd

Vc

dV

V

= −nRT ln
Vd

Vc
.

Note that in this case that Vd < Vc. The corresponding heat is

q = nRT ln
Vd

Vc
.

The entropy change is then

∆S =
qrev

T
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giving

∆SC→D = nR ln
Vd

Vc
.

Step 4 Another adiabatic step. Immediately q = 0, ∆U = w, and

∆H = ∆U + nR∆T . The work in this step is

w = −
∫

pdV

=

∫

CV dT

= CV (T1 − T2).

The associated entropy change is

∆SD→A = 0

since this was an adiabatic reversible step. You can see this from dS = dqrev

T
.

Irrespective of what T is the numerator will always be zero.

Putting it all together The total entropy change of the cycle is

∆Stot = nR ln
Vb

Va
+ 0 + nR ln

Vd

Vc
+ 0

= nR

(

ln
Vb

Va
+ ln

Vd

Vc

)

= nR ln

(

VbVd

VaVc

)

.

Did we make a mistake? Why isn’t this zero? Not to worry, recall from our
earlier work on adiabatic processes

VfinalTfinal = VinitialTinitial

So in step 2

VcT2 = VbT1

T2

T1
=

Vb

Vc

.

Likewise, in step 4

VaT1 = VdT2

T2

T1
=

Va

Vd
.
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Therefore

Va

Vd

=
Vb

Vc

or

VbVd

VaVc

= 1.

Therefore, with regards to the total entropy

∆Stot = nR ln

(

VbVd

VaVc

)

= nR ln(1)

= 0.

Done. In the Carnot, or another cycle, the total entropy change is zero. This
demonstrates that S is a state function. I suppose you could also prove that

U and H are also state functions using the Carnot cycle. As an example,
the total internal energy change around the cycle should be zero. You can

simply add up all the ∆U terms for each step or you can sum the total work
and total heat. Let’s see this alternate procedure since it should yield the
same thing as summing all the internal energy changes. The total work in

the cycle is

wtot = w1 + w2 + w3 + w4

= −nRT1 ln
Vb

Va

+ CV (T2 − T1) − nRT2 ln
Vd

Vc

− CV (T2 − T1)

= −nRT1 ln
Vb

Va
− nRT2 ln

Vd

Vc
.

The total heat in the cycle is

qtot = q1 + q2 + q3 + q4

= nRT1 ln
Vb

Va
+ 0 + nRT2 ln

Vd

Vc
+ 0

= nRT1 ln
Vb

Va

+ nRT2 ln
Vd

Vc

.

You can see that the sum of work and heat will be zero. The internal energy
is therefore a state function. I’ll let you do ∆Hnet on your own.
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The efficiency of the cycle

Finally, not that we’re engineers but one can write down the efficiency of a

Carnot cycle or heat engine as follows. The efficiency of a heat engine ε is
defined as the ratio of work done on the surroundings to the heat input at

the higher temperature.

ε =
−wtot

q1

=
q1 + q3

q1

= 1 +
q3

q1

where q3 = nRT2 ln Vd

Vc
and q1 = nRT1 ln Cb

Va
. Therefore,

ε = 1 +
T2 ln Vd

Vc

T1 ln Vb

Va

.

Using our previous adiabatically derived relationships between volumes

Va

Vd

=
Vb

Vc

we rearrange to get

Vd

Vc
=

Va

Vb
.

As a consequence, you can see that the ratio of natural logarithms in ε

will disappear and we will be left with our desired final expression for the
efficiency

ε = 1 +
T2

T1

ln Vd

Vc

ln Vb

Va

= 1 +
T2

T1

ln Vd

Vc

ln Vc

Vd

= 1 − T2

T1

ln Vd

Vc

ln Vd

Vc

.

This gives

ε = 1 − T2

T1

and you can see that the efficiency is not 1.
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The third law of thermodynamics

This is stated a number of ways but all with same intent. “As the tem-

perature approaches absolute zero so does the entropy of a system” or “The

entropy of a perfect crystal at zero Kelvin is zero” or “One cannot achieve

absolute 0K ”. Bottom line at 0K there is no disorder and hence

the entropy of anything is zero there. This is important because for
the first time we see one of these important state functions actually have

an absolute value. Recall that U and H were always considered within the
context of changes, not absolute values.

Qualitative rules for entropy changes in reactions

Even without knowing values for the entropies of substances you can some-
times predict the sign of ∆S for a reaction. The entropy will usually increase

in the following situations.

• A reaction in which a molecule is broken into two or more smaller
species

• A reaction in which there is an increase in the number of moles of gas

• A process in which a solid changes to a liquid or gas; a liquid changes
to a gas.

Entropy changes in chemical reactions

We come back to something that is akin to thermochemistry except with
entropies. First, entropy is a state function. As a consequence, you can take

a Hess type approach (don’t recommend) to find the entropy change for
some chemical reaction of interest. This means we need the entropy changes

for a bunch of sub reactions, which we will sequentially add up to get the
total entropy change of the main reaction. Alternatively, you can look up

the entropy changes of the products and reactants, get the stoichiometry
right, then take the difference, final minus initial. Simple. All we need
are so-called standard entropies, which are similar in spirit to the heats of

formation of different substances.

So, in practice, you just look up the standard entropies So
298 of a desired

compound in a table. These are molar entropies at 298K and 1 bar pressure.
The nice thing here is that these are actually absolute, not relative, values
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because the Third Law of Thermodynamics provides an absolute reference
floor for the entropy of any substance.

If you are hardcore, you could go and calculate these standard entropies
yourself. Let’s illustrate this once and only once. (but ultimately why
bother, especially since you can look them up. Nonetheless it’s informative

to see the guts of what has to be done.)

Example

Consider a gas at room temperature. In order to obtain its standard entropy
So

298 we need to determine the entropy change in taking 1 mol of this gas

through the following steps at constant pressure (1 bar).
Step 1 Heat the gas from 0K to the melting point of the solid Tm

∆So
1 =

∫ Tm

0

Cp(s)dT

T
.

Note that some extrapolation to 0K is needed here if Cp(s) is a constant.
Recall that this in itself is an approximation.

Step 2 Next, undergo a phase transition at the melting point

∆So
2 =

∆Hfus

Tm
.

Step 3 Heat the liquid from Tm to its boiling point Tb (constant p).

∆So
3 =

∫ Tb

Tm

Cp(liq)dT

T
.

Step 4 Then undergo a phase transition at the boiling point

∆So
4 =

∆Hvap

Tb
.

Step 5 Heat the gas from the boiling temperature to 298K (constant p)

∆So
5 =

∫ 298

Tb

Cp(g)dT

T
.

Step 6 Finally add everything together to get the desired standard en-

tropy.

∆So
298 = ∆So

1 + ∆So
2 + ∆So

3 + ∆So
4 + ∆So

5.
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Entropy changes in reactions

This is exactly the same procedure as done with enthalpy in the Thermo-

chemistry section (remember, the easy way). You add up the enthalpy
changes of the product, add up the enthalpy changes of the reactants, take

stoichiometry into account, then take the difference, final minus initial.
For those math aficionados the formal definition is

∆So
298(rxn) =

∑

νiS
o
298(prod) −

∑

νiS
o
298(react)

so for the particular case

αA + βB → γC + δD

we have

∆So
298 = [γSo

298(C) + δSo
298(D)]− [αSo

298(A) + βSo
298(B)].

Finally needless to say, there will be times when you will need the en-

tropy change at a different temperature -not 25oC. When you need to do
this, just take a Kirchoff’s equation approach to calculate the additional

change in entropy incurred by changing the temperature. You can calcu-
late each individual temperature induced entropy change or you can (like
in the Thermochemistry section) lump all the Cp values together, take into

account the stoichiometry, and then use the net Cp to calculate the tem-
perature induced entropy change for the entire reaction. I recommend this

latter approach. It is much faster.

Example

Using data from some table, calculate the entropy change at 25oC and at

750oC for the following reaction at 1 bar.

C(graphite) + O2(g) → CO2(g).

Ans:

C(graphite) + O2(g) → CO2(g)

5.7 + 205.1 → 213.7

∆S298 = 213.7− (5.7 + 205.1)

= 2.9J/K.
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Now at 750oC (1023.15 K)

∆S750 = ∆S25 + Cp(net) ln
T2

T1
.

Since we are dealing with a ratio, you don’t have to work in Kelvin. You
could do this in C if you wanted to.

∆S750 = 2.9 + Cp(net) ln
1023.15

298.15

where now the net heat capacity is

Cp = [Cp(CO2) − Cp(graphite) − Cp(O2)]

= 37.1− 8.5− 29.4

= −0.8J/K.

Thus,

∆S750 = 2.9− 0.8 ln(3.43)

= 1.916J/K.

Entropy and the environment

This last section shows that sometimes something determined via system
entropy alone might seem counterintuitive, especially if trying to predict the

spontaneity of a process for a non-isolated system. In this case, one must
consider the change of the surrounding’s entropy as well. (Or to foreshadow,
this example will show the need for something better than just entropy to

predict spontaneity. This will lead us into the development of what are
called Gibbs and Helmholtz Free Energies.)

Consider the entropy change for a familiar chemical reaction.

2H2(g) + O2(g) → 2H2O(l).

The change in entropy as determined from a table is (all units J/mol K)

2H2(g) + O2(g) → 2H2O(l)

2(130.7)+ 205.1 → 2(69.9)

is

∆So
298 = −326.7J/K.
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Ok, so what’s wrong here? Well, you can see that there is a loss of entropy
on forming water as would be expected in a reaction involving 3 moles of

disordered high entropy gas forming 2 mols of a lower entropy liquid. How
can this be? We know that water is stable at 298K and this reaction occurs
spontaneously. Doesn’t this contradict the Second Law of Thermodynamics?

Well, the second law in its various forms says that the entropy of the
universe (system + surroundings) will increase for a spontaneous process in

the cae of a non-isolated system. As a consequence, we need to know the
entropy change of the surroundings.

The enthalpy change in making 2 moles of water is ∆Ho
f = −285.8kJ.

The corresponding enthalpy change of the surroundings is the negative of

this value ∆Hsurr = 285.8kJ given that p is constant and −qrev = ∆Hsurr.
We will assume that interactions with the surroundings always

occur in a reversible manner, allowing us to use

∆Ssurr =
qrev

T

where

∆Ssurr =
∆Hsurr

T

=
2(285.8kJ)

298.15K
= 1.92kJ/K.

The total entropy change is then

∆Stot = ∆Ssys + ∆Ssurr

= 1593.3J/K.

So you see that there is an overall increase in the total entropy of the universe

in agreement with the second law. Obviously, there must be a better way
to do this. Thus, we will introduce the Gibbs and Helmholtz free energies

in the next chapter.
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Chapter 17

Free energy (Helmholtz and
Gibbs)

There’s no such thing as free lunch, or is there?

Processes at constant T and p, the Gibbs free en-

ergy

We saw in the previous section dealing with entropy that for a spontaneous

process at constant T and p

∆Suniverse = ∆Ssys + ∆Ssurr ≥ 0

= ∆Ssys −
∆Hsys

T
≥ 0

T∆Ssys − ∆Hsys ≥ 0.

Rearrange this expression a little bit

−T∆Ssys + ∆Hsys ≤ 0

to get

∆Hsys − T∆Ssys ≤ 0.

At this point, we can introduce a new function

∆Gsys = ∆Hsys − T∆Ssys ≤ 0

159
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and call it the Gibbs free energy. Namely,

G = H − TS (17.1)

where at constant temperature, T , and pressure, p

∆G = ∆H − T∆S . (17.2)

Note that unlike the end of the last section where we had to consider the

changes occurring in both the systems and its surroundings, the Gibbs free
energy takes care of this. Everything is now expressed in terms of the
system’s free energy change. Hence this will be a new more convenient

criteria for determining the spontaneity of a process.

We can make the following statement then “A spontaneous process is one

where at constant T and p, the Gibbs free energy decreases ∆G < 0”. Note

that G has units of energy, kJ/mol. Also, just like all the other thermody-
namic quantities we have been talking about, what we really care about are
free energy differences, not absolute values.

Processes at constant T and V, Helmholtz free en-
ergy

Note that the above argument has been developed under constant temper-

ature and pressure conditions. An analogous argument can be made for the
case of constant temperature and volume conditions.

We saw in the previous section dealing with entropy that for a sponta-

neous process

∆Suniverse = ∆Ssys + ∆Ssurr ≥ 0

This time, however, we are not at constant temperature and pressure but
rather at constant temperature and volume. The only difference then is that

∆Ssurr = −∆Usys

T since at constant volume dq = dU . We get

∆Suniverse = ∆Ssys −
∆Usys

T
≥ 0

= T∆Ssys − ∆Usys ≥ 0.

At this point, rearrange this expression a little bit to get

∆Usys − T∆Ssys ≤ 0.
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Since the temperature is constant, we can add the term −S∆T to both sides
of the expression (In the prior ∆G expression you could have also done this

trick.)

∆Usys − T∆Ssys − S∆T ≤ 0

∆U − ∆(TS) ≤ 0

∆(U − TS) ≤ 0

and we now introduce a new state function called the Helmholtz free energy,

A.

A = U − TS (17.3)

where at constant T and V

∆A = ∆U − T∆S . (17.4)

Again, like the Gibbs free energy you have implicitly taken care of changes

in the surroundings when looking at ∆A. Everything is now expressed in
terms of the system. Hence this and the Gibbs free energy are much more

convenient ways to predict spontaneity.

We can make the following statement “A spontaneous process is one

where at constant T and V , the Helmholtz free energy decreases ∆A < 0”.

Now since most chemical reactions occur at constant pressure, frankly,

we use ∆G way more often. ∆A however, can be useful especially when
dealing with solids or condensed phase processes where ∆V is negligibly
small. Are you starting to see the parallels?

Note that now in terms of predicting spontaneity for some process using
∆G and ∆A, you have to consider ∆H , ∆S and T . They will all dictate

whether something is spontaneous or not (i.e. ∆G < 0 or ∆A < 0).

For example, at low temperatures T , the T∆S term in the Gibbs free

energy may be small compared to ∆H . If so, then ∆G is insensitive to
∆S. Conversely, at high temperatures, the T∆S term might be pretty big,

so large that it overwhelms any ∆H term. So at high temperatures, the
∆S term might now control whether a process is spontaneous or not. An
analogous argument applies to ∆A as you can guess. This is probably why

you have gotten the impression that exothermic processes are spontaneous
since, in some cases, ∆H overwhelms T∆S in our expression for ∆G.
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Relationship between G and A

From the definition of G we have

G = H − TS

= (U + pV ) − TS

= (U − TS) + pV

= A + pV.

Thus, the relationship between G and A is

G = A + pV . (17.5)

Variations in Gibbs free energy, preliminaries

For a one component system (i.e. one pure substance. The reason for this

distinction is that in the future we will begin to talk about mixtures), let’s
see how temperature and pressure might affect the Gibbs free energy. This

derivation will be repeated in the next section and a mnemonic will be
provided to help you remember the expression. We begin with

G = H − TS

G = (U + pV ) − TS

dG = dU + pdV + V dp− TdS − SdT

where from the first law of thermodynamics dU = dq + dw. Next, if only

reversible pV work is done dw = −pdV . The reason I can arbitrarily invoke
a reversible path is that since G is a state function, I can construct whatever
path I want from the initial to the final state. The ∆G expression I come up

with will be the same for any other possible path between the same initial
and final states. Now, from the thermodynamic definition of entropy we

have dS = dq
T

or dq = TdS. Thus

dU = TdS − pdV

(By the way, this total differential is one of the fundamental equations of
thermodynamics. We will come back to this in the next section). Replace

this dU expression back into our expression for dG to get

dG = V dp − SdT . (17.6)

Through this expression (another total differential), you can see the change
of free energy with temperature and pressure.
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Variation in Gibbs free energy with temperature,
constant pressure, G(T, p)

We will show several expression one can use

First one At constant pressure dp = 0 and the previous fundamental
equation reduces to

dG = −SdT

or that

(

∂G
∂T

)

p
= −S . (17.7)

So you can see that if we know the entropy changes of a substance, we can
find out how G varies with temperature. An alternate interpretation is that

a measurement of the temperature dependence of G will allow us to calculate
S.

By the same token, an analogous expression, particularly useful when

dealing with chemical reactions, is

(

∂∆Grxn

∂T

)

p
= −∆Srxn . (17.8)

Here ∆G is the change in Gibbs free energy (products minus reactants) and
so too is ∆S. You can rationalize this as follows. Consider some generic
reaction

A + B ⇀↽ C + D.

For each reactant or product, we have
(

∂G
∂T

)

p
= −S. Namely,

(

∂GA

∂T

)

p

= −SA

(

∂GB

∂T

)

p

= −SB

(

∂GC

∂T

)

p

= −SC

(

∂GD

∂T

)

p

= −SD .
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So if we sum the product contributions and subtract the sum of the reactant
contributions we get

(

∂GC

∂T

)

p

+

(

∂GD

∂T

)

p

−
[

(

∂GA

∂T

)

p

+

(

∂GB

∂T

)

p

]

= SC + SD − [SA + SB]

or

(

∂∆Grxn

∂T

)

p

= −∆Srxn.

Second one Starting with the above expression, we can rearrange things

to get what is known as the Gibbs-Helmholtz equation. Since G = H − TS

(

∂G

∂T

)

p

= −S

(

∂G

∂T

)

p

=
G − H

T
(

∂G

∂T

)

p

=
G

T
− H

T
(

∂G

∂T

)

p

− G

T
= −H

T
.

Now, the term on the left hand side of the expression is actually T
[

∂
∂T

(

G
T

)]

p
.

We can show this explicitly.

“Proof”:

[

∂

∂T

(

G

T

)]

p

=
1

T

(

∂G

∂T

)

p

+ G
d(1/T )

dT

=
1

T

(

∂G

∂T

)

p

− G

T 2

=
1

T

[

(

∂G

∂T

)

p

− G

T

]

.

So back to our original expression, we have

T

[

∂

∂T

(

G

T

)]

p

= −H

T
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or that

[

∂
∂T

(

G
T

)]

p
= − H

T 2 . (17.9)

This equation is referred to as the Gibbs-Helmholtz equation. I guess you

can remember it by the name because Gibbs is for the G and use the H in
Helmholtz to refer to the enthalpy. It’s a relation between G and H .

Since we will likely use the Gibbs-Helmholtz equation frequently, I want
to introduce a slight notational change. If instead of using G and H above,

we replace them with ∆G and ∆H , an alternative expression is

[

∂
∂T

(

∆G
T

)]

p
= −∆H

T 2 . (17.10)

The reason for this change is simply that we really don’t have absolute values
of G or H . In all cases, we’re really just speaking about are differences of

G and H , in this case relative to so-called standard states. We already saw
what this was for enthalpy. We will see this shortly for the free energy.

Thus, G above is really ∆G. Ditto for ∆H .
You can see the potential usefulness of the expression since this equation

can get integrated to calculate ∆G at another temperature assuming that
∆H is independent of temperature. Namely,

∆G(T2)

T2
− ∆G(T1)

T1
= ∆H

(

1

T2
− 1

T1

)

and we find that

∆G(T2)
T2

=
∆G(T1)

T1
+ ∆H

(

1
T2

− 1
T1

)

. (17.11)

Now, for reactions, say aA + bB → cC + dD where we will encounter
equilibria, it will be seen later on that ∆G = −RT ln Keq where Keq is

the equilibrium constant (actually it is Kp, the equilibrium constant using
pressures). One can then substitute this expression for ∆G into the Gibbs-

Helmholtz equation to find

(

∂(lnKeq)
∂T

)

p
= ∆H

RT 2 . (17.12)

When integrated we get

ln Keq(T2)− lnKeq(T1) = −∆H

R

(

1

T2
− 1

T1

)
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or more compactly as

ln
Keq(T2)
Keq(T1)

= −∆H
R

(

1
T2

− 1
T1

)
)

. (17.13)

The above equation has a name and is called the Vant Hoff equation. But

you can see that it is basically the Gibbs-Helmholtz equation.
Note that some authors write the Gibbs-Helmholtz equation differently.

Since d 1
T = − 1

T 2 dT you can replace ∂T with −T 2∂(1/T ) to get another
version of the Gibbs-Helmholtz equation

(

∂(G
T )

∂( 1
T )

)

p

= H . (17.14)

When you integrate this expression, you get the same thing we just saw
above. Namely,

G(T2)

T2
− G(T1)

T1
= H

(

1

T2
− 1

T1

)

or

∆G(T2)

T2
− ∆G(T1)

T1
= ∆H

(

1

T2
− 1

T1

)

.

Again, all I have done for this last expression is to acknowledge that we
don’t deal with absolute values of G and H . So G above is really ∆G and
ditto for ∆H .

Third one Finally, you can go back to the definition of G, G = H−TS.

Let’s consider the first temperature and call it T1. Then we get

G(T1) = H − T1S

or

∆G(T1) = ∆H − T1∆S.

Now, if we change temperature to T2 we have

∆G(T2) = ∆H(T1 → T2) − T2∆S(T1 → T2).

So here all we need to know it the temperature dependences of the enthalpy
and the entropy. But we know these. Recall that under constant pressure
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conditions
(

∂H

∂T

)

p

= Cp

(

∂S

∂T

)

p

=
Cp

T
.

Thus

∆G(T2) = ∆H(T1 → T2) − T2∆S(T1 → T2)

=

[

∆H(T1) +

∫ T2

T1

CpdT

]

− T2

[

∆S(T1) +

∫ T2

T1

Cp

T
dT

]

The desired expression is then

∆G(T2) =
[

∆H(T1) +
∫ T2

T1
CpdT

]

− T2

[

∆S(T1) +
∫ T2

T1

Cp

T
dT
]

(17.15)

Thus, there are various ways to calculate the Gibbs free energy depen-

dence on temperature, depending on whether ∆H or ∆S of Cp is known.

Variation in Gibbs free energy with pressure, con-

stant temperature, G(T, p)

Starting from the fundamental equation for the Gibbs free energy (dG =
V dp − SdT ), when dT = 0 we get

dG = V dp

or that

(

∂G
∂p

)

T
= V . (17.16)

As noted previously the molar volumes of solids and liquids change very
little during reactions so for the case of condensed phases we can generally
integrate this to get

∆G = V ∆p.

For a chemical reaction, say

A + B ⇀↽ C + D
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we can get an identical expression

(

∂∆Grxn

∂p

)

T
= ∆Vrxn . (17.17)

This can be seen since for each reactant or product we have
(

∂G
∂p

)

T
= V

giving

(

∂GA

∂p

)

T

= VA

(

∂GB

∂p

)

T

= VB

(

∂GC

∂p

)

T

= VC

(

∂GD

∂p

)

T

= VD.

Summing up the product contributions and subtracting the reactant contri-

butions then gives

(

∂GC

∂p

)

T

+

(

∂GD

∂p

)

T

−
[(

∂GA

∂p

)

T

+

(

∂GB

∂p

)

T

]

= VC + VD − [VA + VB].

This reduces to

(

∂∆Grxn

∂p

)

= ∆Vrxn.
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Special case of an ideal gas

Gases are, however, different. Their volume is very sensitive to the external

pressure. Consider the case of an ideal gas

(

∂G

∂p

)

T

= V

=
nRT

p

dG =
nRT

p
dp

∆G =

∫

nRT

p
dp

= nRT

∫

dp

p

= nRT ln
p2

p1
.

The desired final expression for the dependence of G with pressure under
constant temperature conditions is

∆G = nRT ln p2
p1

. (17.18)

Alternatively, you can write this as

G2 − G1 = nRT ln
p2

p1

G2 = G1 + nRT ln
p2

p1
.

Now, if G1 happens to be the standard free energy (actually the free energy
difference relative to a standard state) at 1 bar and 25oC (Go

f) this becomes

G = Go
f + nRT ln

p2

1bar

or more simply

G = Go
f + nRT ln p

po (17.19)

We will see a similar expression later when dealing with mixtures and what

is called the chemical potential. This is why I introduce the notation here.
Note that p is the pressure of the gas alone and po means 1 bar. Furthermore,
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I want to reiterate that we’re not dealing with absolute values of G. They
are actually referenced to a so-called standard state. Hence, more formally,

we should replace G (Go
f) above with ∆G (∆Go

f) giving

∆G = ∆Go
f + nRT ln p

po . (17.20)

Fugacity, real gases

At some point, we will want to consider real systems, not necessarily ideal
ones. But what we want to do here is preserve as much of the notation and

formulas just derived.
First, a slight notational change that will become important

later, not here. On many occasions the term chemical potential is used.

The symbol for chemical potential is µ. In the case of pure compounds, the
chemical potential is the same as the molar Gibbs free energy.

µ = G
n (17.21)

or

µpure = G.

It’s just a notational change. However, the chemical potential will become
important when dealing with mixtures of compounds. We will see this later.

Finally, as you have seen earlier, we’re not dealing with absolute values of
G or µ here. Understood is that they are actually differences in free energy

relative to a standard state. But, by convention, from here on out you
will only see written G or µ in our equations.

Now, in the case of a real gas where we want an expression for the

chemical potential µ, we have just seen that for the ideal gas case (constant
temperature so the −SdT term is gone)

µ = µo + RT ln p
po . (17.22)

Here, we have just flipped over from G → µ. It turns out that the real gas
case looks very similar

µ = µo + RT ln f
po (17.23)

where f is an effective pressure called the fugacity

f = φp . (17.24)
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In the expression, φ is a fudge factor called the fugacity coefficient (it’s a
measure of nonideality, also some authors use the letter γ). Let’s plug this

in and see what we get

µ = µo + RT ln
φp

po

=

[

µo + RT ln
p

po

]

+ RT lnφ

So the final expression for a real gas Gibbs free energy or chemical potential

is just the ideal value plus RT lnφ

µreal = µideal + RT ln φ . (17.25)

It can be shown that

lnφ =
∫ p

0

(

Z−1
p

)

dp (17.26)

where Z is the compressibility factor we saw earlier at the beginning of this

class. It will take different forms for different equations of state.

Variations in Helmholtz free energy, preliminaries,

A(T, V )

I will not dwell on this because we will mostly work with the Gibbs free
energy. In addition, you will see this in the next section where we will talk

about the fundamental equations of thermodynamics. For now, let’s see how
the Helmholtz free energy varies with temperature and volume. Recall that

by definition

A = U − TS

so that

dA = dU − TdS − SdT.

From first and second laws of thermodynamics dU = TdS − pdV (we used
this earlier in the Gibbs section)

dA = TdS − pdV − TdS − SdT

= −pdV − SdT.
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We then have our desired expression

dA = −pdV − SdT . (17.27)

Through this total differential you can see the change of the Helmholtz free
energy with temperature and volume.

Variations of the Helmholtz free energy with temperature,
constant volume

At constant volume dV = 0. Therefore, we have

dA = −SdT

or

(

∂A
∂T

)

V
= −S . (17.28)

As an aside, you can similarly show that for some chemical reaction

(

∂∆Arxn

∂T

)

V
= −∆Srxn . (17.29)

The way to show this was first demonstrated when talking about Gibbs free
energy differences a few pages ago. I’ll let you prove this for yourself.

Back to where we left off. At this point, A = U −TS or A−U
T = −S. We

have

(

∂A

∂T

)

V

=
A − U

T
(

∂A

∂T

)

V

− A

T
= −U

T
.

The term on the left is actually

T

[

∂

∂T

(

A

T

)]

V

and this can be shown explicitly.
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“Proof”

T

[

∂

∂T

(

A

T

)]

V

= T

[

A

(

− 1

T 2

)

+
1

T

(

∂A

∂T

)

V

]

= −A

T
+

(

∂A

∂T

)

V

.

Therefore

T

[

∂

∂T

(

∂A

∂T

)]

V

= −U

T
.

Our desired expression is

[

∂
∂T

(

A
T

)]

V
= − U

T 2 . (17.30)

This is a no-name equation (maybe there is a name but I didn’t bother to dig

so deep) that is analogous to the Gibbs-Helmholtz equation derived earlier.
The only difference is that we are dealing with the temperature dependence

of the Helmholtz free energy.

Alternatively, recognizing -just like we did in the Gibbs section that A
and U here are really differences (i.e. ∆A and ∆U), one could write

[

∂
∂T

(

∂∆A
∂T

)]

V
= −∆U

T 2 . (17.31)

Again, this will give you the change of the Helmholtz free energy at different

temperatures assuming that the internal energy is more or less constant over
the temperature range.

Next, just like the Gibbs-Helmholtz equation, we can write this ex-
pression a little differently. This is what some authors like to do. Since

d( 1
T ) = − 1

T 2 dT we can replace ∂T = −T 2∂( 1
T ). On doing this, we get

(

∂( A
T

)

∂( 1
T

)

)

V

= U . (17.32)

Finally, something perhaps more intuitive. Since A = U − TS one can

write

A(T1) = U − T1S
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or

∆A(T1) = ∆U − T1∆S.

If we go to a different temperature, we have

∆A(T2) = ∆U(T1 → T2) − T2∆S(T1 → T2)

All we need now is the temperature dependence of both the internal energy
and the entropy. But we already know this. Recall that under constant

volume conditions

(

∂U

∂T

)

V

= CV

(

∂S

∂T

)

V

=
CV

T
.

So the desired expression is therefore

∆A(T2) =
[

∆U(T1) +
∫ T2

T1
CV dT

]

− T2

[

∆S(T1) +
∫ T2

T1

CV

T
dT
]

. (17.33)

Variations of the Helmholtz free energy with volume, constant
temperature

From the total differential of A = f(T, V ), which is dA = −pdV − SdT we

see that under constant temperature conditions

dA = −pdV.

Alternatively,

(

∂A
∂V

)

T
= −p . (17.34)

As before, for some chemical reaction, it can likewise be shown (I’ll let you

do this for yourself) that

(

∂∆Arxn

∂V

)

T
= −∆prxn . (17.35)
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Other dependences of either G or A

Both the dependences of the Gibbs and Helmholtz free energies on V and
p respectively can be derived. Although p, T are the natural independent

variables for G, it is sometimes useful to express G as a function of T and
V . The same can be said of the Helmholtz free energy, except in this case

as a function of T and p.

The total differentials of G(V, T ) and A(p, T ) can be shown to have the

following forms

dG =
[

V
(

∂p
∂T

)

V
− S

]

dT +
[

V
(

∂p
∂V

)

T

]

dV (17.36)

and

dA = −
[

p
(

∂V
∂p

)

T

]

dp −
[

p
(

∂V
∂T

)

p
+ S

]

dT . (17.37)

From these expressions you can find the volume dependence of G and the

pressure dependence of A. These expressions, I believe, will be on one of
your homeworks so that’s why I haven’t explicitly worked them out here.

Besides, you’re curious anyway so I’m sure you would do this on your own
anyway.

The Gibbs free energy of formation

Recall that we wanted to predict the spontaneity of a process. We introduced

∆G as a convenient way to do this at constant temperature and pressure.
In chemistry, we will want to evaluate ∆G for a reaction. So just like with

enthalpy and entropy we will define what is called the Gibbs free energy of
formation. ∆Go

f or ∆Go
298 is the change in Gibbs free energy when 1 mole of

a compound is formed at 1 bar and 298 K from its elements in their standard
states. By definition, ∆Go

f is zero for pure elements in their standard state.

I’m not sure this is important but some more terminology.

• Compounds with a positive ∆Go
f are called endergonic.

• Compounds with a negative ∆Go
f are called exogonic.



176 CHAPTER 17. FREE ENERGY (HELMHOLTZ AND GIBBS)

Free energy changes in chemical reactions

Now, the variations in Gibbs free energy during chemical reactions can be
done a number of ways. Note again, most chemical reactions are conducted

under constant pressure. Thus the Gibbs free energy is used here.

Since the free energy is a state function you could take a Hess type
of approach. But why bother since there are tables of Gibbs energies of

formations for many compounds. So just like in evaluating the enthalpy
and entropy changes of a chemical reaction, you just add up the free energy
changes on the products side, add up the free energy changes on the reactants

side, ensure that you have taken account of the stoichiometry of the reaction
and then take the difference, products minus reactants. That’s it.

What about the temperature dependence?

As you know, most reactions are not conducted at 298K. As a consequence,
we need to know the temperature dependence of the Gibbs free energy. This

is where the Gibbs-Helmholtz relation we saw earlier comes into play

(

∂
(

∆G
T

)

∂
(

1
T

)

)

= ∆H

d

(

∆G

T

)

= ∆Hd

(

1

T

)

where we assume ∆H to be temperature independent. This is generally

reasonable over a small temperature range. (Note that if you want you could
also model the temperature dependence explicitly as we showed earlier.) Our

resulting expression is then

∆G(T2)
T2

= ∆G(T1)
T1

+ ∆H
(

1
T2

− 1
T1

)

(17.38)

from where you can find ∆G(T2).

Example

Using data from a table, calculate the standard free energy change at 25oC

and 1 bar for the reaction

N2O4(g) → 2NO2(g)
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Ans: (all units kJ/mol)

N2O4(g) → 2NO2(g)

97.9 → 2(51.3).

The free energy change, products minus reactants is therefore

∆Go
298 = 4.7kJ

This process is not spontaneous as you can guess.

A and G and useful non-PV work

We have defined work to be exclusively pV (i.e. pdV ) work. However, in

more realistic situations there is non-PV work that can be done. Here we
show that ∆A and ∆G represent the maximum amount of non-PV work

that can be done by a system under constant (T ,V ) and constant (T ,p)
conditions respectively.

Useful work, ∆A

Recall that

dS ≥ dqrev

T
=

dU − dw

T

where dw includes non-pdV work. So it’s non-zero here. We could write
dw = −pdV + dwother but since dV = 0 here let’s just write, dw = dwother.

TdS ≥ dU − dwother

dU − dwother − TdS ≤ 0.

Since, T is constant, we can add in SdT to the above expression

dU − dwother − TdS − SdT ≤ 0

dU − d(TS) ≤ dwother

d(U − TS) ≤ dwother

giving

dA ≤ dwother . (17.39)

This gives us the maximum amount of non-PV work that can be done by

the system under reversible conditions (i.e. when dA = dwother). More often
than not the less than sign applies (i.e. an irreversible process).
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Useful work, ∆G

Start with one of the above equations

dU − dw − TdS − SdT ≤ 0.

Expand using dw = −pdV + dwother to get

dU + pdV − dwother − TdS − SdT ≤ 0.

Since p is constant, we can add in V dp above

dU + pdV + V dp − dwother − TdS − SdT ≤ 0

dU + d(pV ) − dwother − d(TS) ≤ 0

d(U + pV ) − d(TS) ≤ dwother

d(H)− d(TS) ≤ dwother

d(H − TS) ≤ dwother

and since G = H − TS we get

dG ≤ dwother . (17.40)

This gives us the maximum amount of useful non-PV work that can be done
by the system under reversible conditions (i.e. dG = dwother). More often

than not, the less than sign applies (i.e. an irreversible process).



Chapter 18

The fundamental equations
of thermodynamics

The point of this section is to begin recapping the major equations of ther-
modynamics. We will first derive what these fundamental equations are and
then I will show you a mnemonic that will make life a whole lot easier.

First, I will derive the fundamental equations for U , G, A, H . Namely,
important total differentials in each case. Note that these are for single

component systems.

The internal energy, U

Use the first and second laws of thermodynamics to derive this. From the
first law we have

dU = dq + dw

where dw = −pdV if only pV work is done and p = pext for a reversible
process. From the second law of thermodynamics, we get

dS =
dq

T

where q is a reversible heat or alternatively

dq = TdS.

Put both of these expressions together to get

dU = dq + dw

dU = TdS − pdV.
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The fundamental equation for the internal energy U is therefore

dU = TdS − pdV . (18.1)

But now recall that we could have written the total derivative of U(S, V )

dU =

(

∂U

∂S

)

V

dS +

(

∂U

∂V

)

S

dV.

By comparison, we see then that
(

∂U

∂S

)

V

= T

(

∂U

∂V

)

S

= −p.

We also know from the exactness of the total differential that

∂2U

∂V ∂S
=

∂2U

∂S∂V
(

∂T

∂V

)

S

= −
(

∂p

∂S

)

V

.

This results in the first of four so called Maxwell relations

(

∂T
∂V

)

S
= −

(

∂p
∂S

)

V
. (18.2)

The Gibbs free energy, G

G = H − TS

dG = dH − TdS − SdT

where H = U +pV and dH = dU +pdV +V dp. Replace this into the above

expression

dG = dU + pdV + V dp − TdS − SdT

where recall from the last section that dU = TdS − pdV . Plug this in also
and get

dG = TdS − pdV + pdV + V dp− TdS − SdT

= V dp− SdT.
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We are left with the fundamental equation for the Gibbs free energy

dG = V dp− SdT . (18.3)

Now recall that we could have written the total derivative of G(p, T )

dG =

(

∂G

∂p

)

T

dp +

(

∂G

∂T

)

p

dT.

By comparison we see then that

(

∂G

∂p

)

T

= V

(

∂G

∂T

)

p

= −S.

We also know that from the exactness of the total differential

∂2G

∂T∂p
=

∂2G

∂p∂T
(

∂V

∂T

)

p

= −
(

∂S

∂p

)

T

.

This results in the second of four so called Maxwell relations

(

∂V
∂T

)

p
= −

(

∂S
∂p

)

T
. (18.4)

The Helmholtz free energy, A

A = U − TS

dA = dU − TdS − SdT

where dU = TdS − pdV . Thus,

dA = TdS − pdV − TdS − SdT

= −pdV − SdT.

We are left with the fundamental equation for the Helmholtz free energy

dA = −pdV − SdT . (18.5)
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Recall now that we could have written the total derivative of A(V, T )

dA =

(

∂A

∂V

)

T

dV +

(

∂A

∂T

)

V

dT.

By comparison, we see then that
(

∂A

∂V

)

T

= −p

(

∂A

∂T

)

V

= −S.

We also know that from the exactness of the total differential

∂2A

∂T∂V
=

∂2A

∂V ∂T
(

∂p

∂T

)

V

=

(

∂S

∂V

)

T

.

This results in the third of four so called Maxwell relations

(

∂p
∂T

)

V
=
(

∂S
∂V

)

T
. (18.6)

The enthalpy, H

H = U + pV

dH = dU + pdV + V dp

where dU = TdS − pdV

dH = TdS − pdV + pdV + V dp

= TdS + V dp.

We are thus left with the fundamental equation for the Enthalpy

dH = TdS + V dp . (18.7)

Recall that we could have written the total derivative of H(S, p)

dH =

(

∂H

∂S

)

p

dS +

(

∂H

∂p

)

S

dp.
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By comparison, we see then that
(

∂H

∂S

)

p

= T

(

∂H

∂p

)

S

= V.

We also know that from the exactness of the total differential

∂2H

∂p∂S
=

∂2H

∂S∂p
(

∂T

∂p

)

S

=

(

∂V

∂S

)

p

.

This results in the fourth of four so called Maxwell relations

(

∂T
∂p

)

S
=
(

∂V
∂S

)

p
. (18.8)

The thermodynamic boat

So you’re probably wondering how will I ever remember all of these funda-
mental equations of thermodynamics and their associated Maxwell relations.

Well, there is a useful mnemonic I will describe below.
Remember the saying “Save that ship Gibbs.” Now construct a square

as follows

+ −
S U V
H A
p G T

The (+) and (-) sign are for the columns. Note that the functions U , H , A,

G, sandwiched by variables on the corners, are the functions whose funda-
mental equations we will find. Next, to construct a fundamental thermody-

namic relation choose one of these functions and take its derivative. Look
over to the opposing corners of the cube. For example, for G, we see S and

V . Multiply these variables by the opposing diagonal variables in derivative
form on either side of the function you have chosen. So for G again we have
dp and dT and they are multiplied with V and S respectively. Add the sign

by using the column in which these variables in derivative form are located.
Since dp is in the positive column we have a plus in front of it. Since dT is
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in the negative column we have a negative in front of it. So again for G we
have

dG = V dp − SdT.

Ok, I realize it’s hard to visualize what I have just written. It’s easier to
see it done in real life. Let’s do the rest to help you get the trick.

Let’s do A. So we call it dA. Next, we look for the variables on the
opposing corners of the cube. This time it’s S and p. We will multiply S

and p with its complementary opposing variable in derivative form on either
side of A. So for S we multiply it by dT . So for p we multiply it by dV .
Next we need the sign. Since both dV and dT are found in the negative

column, the signs will both be negative. Put it all together

dA = −pdV − SdT.

Let’s do H . Call it dH . Next, look for the variables on the opposing
corner. They are V and T . Multiply V by its complementary variable in
derivative form on the opposing diagonal corner. We get V dp. Multiply T

by its complementary variable in derivative form on the opposing diagonal
corner. We get TdS. Now for the signs. Both dS and dp are in the positive

column, hence both signs are positive. Put it all together.

dH = TdS + V dp.

Finally, let’s end with U . Call it dU . Look for the variables on
the opposing corner. They are p and T . Multiply T by its complementary
diagonal opposing variable in derivative form. We get TdS. Multiply p

by its opposing diagonal variable. We get pdV . Next, get the sign by the
columns in which dS and dV are located in. For dS we see it’s in the positive

column, hence we have a positive TdS term. Next, dV is in the negative
column so the product, pdV will have a negative in front of it. Put it all

together.

dU = TdS − pdV.

Now you’re basically done. If you need Maxwell relations, you can just

read it off of the total differentials that you have just derived using this
thermodynamic ship mnemonic.
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Summary

dU = TdS − pdV
(

∂U

∂S

)

V

= T

(

∂U

∂V

)

S

= −p

(

∂T

∂V

)

S

= −
(

∂p

∂S

)

V

dH = TdS + V dp
(

∂H

∂S

)

p

= T

(

∂H

∂p

)

S

= V

(

∂T

∂p

)

S

=

(

∂V

∂S

)

p

dA = −SdT − pdV
(

∂A

∂T

)

V

= −S

(

∂A

∂V

)

T

= −p

(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

dG = V dp − SdT
(

∂G

∂p

)

T

= V

(

∂G

∂T

)

p

= −S

(

∂V

∂T

)

p

= −
(

∂S

∂p

)

T

Done.
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Chapter 19

Application of Free Energy
to Phase Transitions

Phase diagram

A phase diagram is a map of the pressures and temperatures at which each
phase of a substance is the most stable. The “phase” of a substance is a form
of matter uniform in its chemical composition and physical state. Generally

speaking, at high temperatures and low pressures we get a gas. At low
temperatures and high pressures we get a solid. And somewhere inbetween

we get a liquid. Drawing of phase diagram should go here

Note the following two points on the phase diagram. They are the triple

point and the critical point. Triple point The triple point marks the lowest
pressure at which a liquid phase of a substance can exist. The critical
point is the upper limit. The triple point also represents the temperature

and pressure at which three phases of the substance (gas, liquid, and solid)
coexist in thermodynamic equilibrium. The triple point of water is at 273.16

K and 0.006 atm.

Critical point This is the upper pressure and temperature at which a

liquid exists. Beyond this the liquid becomes another single uniform phase
called a supercritical fluid. There is no liquid phase anymore and hence
no barrier between the liquid and gas phases (i.e. the distinction between

gas and liquid disappears.) Decaffeinated coffee is made this way using
supercritical CO2 to extract caffeine from coffee.
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Demo opportunity

There is an online video in youtube that shows the supercritical fluid tran-

sition of a substance.

Let’s continue

In this next section we will describe the transition of a pure compound

from solid to liquid or liquid to vapor or solid to vapor. A key point to
remember in what follows is that for a one component system, at a

phase transition the Gibbs free energy or chemical potential is
equal in either phase.

Preliminaries, Chemical potential of a pure sub-

stance

Recall that the chemical potential of a pure substance is synonymous with

its Gibbs free energy. It’s just a change of notation.

µ = G . (19.1)

In the expression, G is the molar Gibbs free energy (Again, I remind you that
what G is here is really a difference in free energy. By convention, one just
writes G in these sorts of equations. But it opens up the possibility of people

forgetting that there isn’t an absolute value of G being discussed.). Now,
the place where our notation really changes over from the Gs we’re used to

-to µ is in mixtures, which we will talk about in the next chapter. We’ll
see a preview of this when we derive the Clapyeron and Clausius-Clapeyron

Equations shortly.

Solid→Liquid

At equilibrium, the free energies of the substance will equal in either phase

G(l) = G(s).

Thus ∆Gfus = 0. But since G = H − TS at a constant temperature, Tm,
we get

∆Gfus = ∆Hfus − Tm∆Sfus = 0
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or

∆Hfus = Tm∆Sfus

or

∆Sfus =
∆Hfus

Tm
. (19.2)

We have already seen this expression earlier when talking about enthalpies.

Liquid→Gas

Again, the free energies will equal at the phase transition

G(l) = G(g).

Thus ∆Gvap = 0. But since G = H −TS at a constant temperature, Tb, we
get

∆Gvap = ∆Hvap − Tb∆Svap = 0

or

∆Hvap = Tb∆Svap

or

∆Svap =
∆Hvap

Tb
. (19.3)

This was seen earlier when talking about enthalpies.

Solid→Gas

Finally, we again have

G(s) = G(g).

Thus ∆Gsub = 0. But since G = H − TS at a constant temperature, Tsub,
we get

∆Gsub = ∆Hsub − Tsub∆Ssub = 0

or

∆Hsub = Tsub∆Ssub

or

∆Ssub = ∆Hsub

Tsub
. (19.4)

Same comment here as above. We have already seen this expression when
first discussing various types of enthalpies.



190CHAPTER 19. APPLICATION OF FREE ENERGY TO PHASE TRANSITIONS

The solid-liquid boundary, The Clapeyron equation

Now, let’s consider the solid/liquid phase transition. We will derive a re-

lationship that allows us to evaluate all of the pressure temperature points
along the solid/liquid equilibrium line on a phase diagram. This is called
the Clapeyron Equation. Recall that at equilibrium, the Gibbs free energies

in either phase will equal. This time, let’s switch notation and write

µa = µb

where dµa (or dGa if you prefer) is

dµa = −SadT + Vadp

dµb = −SadT + Vbdp.

Next if µa = µb we have

dµa = dµb

−SadT + Vadp = −SbdT + Vbdp

(−Sa + Sb)dT = (Vb − Va)dp

(Sb − Sa)dT = (Vb − Va)dp

∆SdT = ∆V dp.

We rearrange this to get

dp
dT

= ∆S
∆V

. (19.5)

If we now recall that ∆S = ∆H
T

at constant pressure, we get

dp
dT = ∆H

T∆V . (19.6)

Either expression is called the Clapeyron equation. Note that ∆S, ∆V ,
and ∆H all represent changes due to the phase transition of a substance.

While the Clapeyron equation is an exact expression for the slope of the
phase boundary and applies to any phase equilibrium of a pure substance,

it is normally associated with the solid-liquid boundary. You will see that
modifications to this expression lead to what is referred to as the Clausius-

Clapeyron equation, which describes both the liquid-vapor and solid-vapor
boundaries. Note also that one can come up with an integrated form of the

expression:

p2 = p1 + ∆H
∆V ln T2

T1
(19.7)
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where we have assumed that ∆H is temperature independent. This is an ok
assumption over a limited temperature range. However, if you really wanted

you could explicitly model the temperature dependence of ∆H through the
power series expansion in T as we showed earlier.

So at the solid-liquid boundary we have

dp
dT

=
∆Hfus

Tm∆Vfus
(19.8)

where ∆Sfus =
∆Hfus

T
at constant pressure. Now, in most cases in the

transition from solid to liquid the density of the material changes so that

∆Vfus is positive. As a consequence, the slope predicted by the Clapeyron
equation will often be positive. It also says that melting temperatures,

Tm, generally increase with increasing pressure.

But in some very special cases, on going from solid to liquid, ∆V will

be negative. Ice is a common example of this (think of why you never keep
Coke cans in the freezer, the stuff expands and blows up.) As a consequence,

the slope predicted by the Clapeyron equation will sometimes be negative.
This says that for special cases the melting temperature, Tm, decreases with
increasing pressure.

Example

The melting point of Na is 97.8oC at 1 atm. The densities of solid Na and

liquid Na are

Na(s)ρ = 0.929g/cm3

Na(l)ρ = 0.952g/cm3.

Also ∆Hfus = 3 kJ/mol. Calculate the melting point of Na at p=120 atm.

Ans: Employ the Clapeyron equation.

dp

dT
=

∆Hfus

T∆V
dp

dT
=

(3kJ/mol)

(370.95K)(−0.6cm3/mol)
.
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As an approximation, dp → ∆p and dT → ∆T .

(120− 1atm)

(T2 − 370.95K)
=

(3kJ/mol)

(370.95K)(−0.6cm3/mol)

(119atm)(1.01× 105Pa/atm)

(T2 − 370.95K)
=

−(3000J/mol)

(370.95K)(0.6cm3/mol)(1× 10−6m3/cm3)

1.2× 107Pa

T2 − 370.95K
=

−3000kg · m2/s2

370.95K(0.6)(1× 10−6)m3

1.2× 107Pa

T2 − 370.95K
= −1.34× 107Pa/K

T2 − 370.95K =
−1.2× 107

1.34× 107
= 0.89K

We are left with the final answer

T2 = 370.95− 0.89K = 370.06K(96.9C).

For fun, why don’t you integrate the Clapeyron Equation and compare the
exact answer to this.

The liquid-vapor and solid-vapor boundaries, The

Clausius-Clapeyron equation

While the Clapeyron equation is, in principle, applicable to all phase changes

in single component systems, the equation can be recast into a more useful
form when one of the phases is a gas. The major difference here is that

∆V will be huge because we are dealing with a gas. Recall that the volume
occupied by a gas is significantly larger than that of a solid or a liquid.

Starting with the Clapeyron equation, replace ∆V with V (g), the volume
of a gas, since V (l) and V (s) are much smaller and V (g) dominates.

dp

dT
=

∆Hvap

T∆V
dp

dT
' ∆Hvap

TV (g)
.

Next, assume the gas is ideal so that V (g) = RT
p

(n = 1). This volume is

now the molar volume and some authors will denote it Vm. Finally assume
that ∆Hvap is constant with temperature. Replace all of this into the above
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Clapeyron equation to get

dp

dT
' ∆Hvapp

T (RT )

dp

p
' ∆Hvap

R

dT

T 2

lnp|p2
p1

' ∆Hvap

R

−1

T

∣

∣

∣

∣

T2

T1

ln
p2

p1
' −∆Hvap

R

(

1

T2
− 1

T1

)

.

The desired Clausius-Clapeyron expression is then

lnp2
p1

=
∆Hvap

R

(

1
T1

− 1
T2

)

(19.9)

and relates the pressure/temperature points along the condensed phase/gas

phase equilibrium line of a phase diagram. Basically, if you have a boil-
ing/sublimation T and p for a given substance, you can find its new boil-
ing/sublimation temperature at another pressure or conversely its new boil-

ing/sublimation pressure at another temperature.

Example

The normal boiling point of benzene is 80.1oC and the enthalpy of vapor-
ization is ∆Hvap = 30.8kJ/mol. Calculate the boiling point of benzene at

100 torr.
Ans:

ln
100torr

760torr
=

30.8kJ/mol

8.314J/molK

(

1

353.25K
− 1

T2

)

ln(0.132) =
30800J/mol

8.314J/molK

(

1

353.25K
− 1

T2

)

−2.025 = 3704.6

(

1

353.25
− 1

T2

)

−5.47 × 10−4 =

(

1

353.25
− 1

T2

)

−5.45× 10−4 − 1

353.25
= − 1

T2

leading to our answer

T2 = 296.2K(23.05oC).
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This is benzene’s new boiling point at 100 torr.

An alternative Clausius-Clapeyron expression

Alternatively, we could have taken the indefinite integral of

dp

p
=

∆Hvap

R

dT

T 2

to get

d ln p
dT

= ∆H
RT 2 (19.10)

giving

ln p = −∆Hvap

R

(

1

T

)

+ const.

This is also sometimes called the Clausius-Clapeyron equation. Even more

progress can be made if we consider p = 1bar and Tb at 1 bar. Then this
expression becomes

ln(1) = −∆Hvap

R

(

1

Tb

)

+ const = 0.

Therefore

const =
∆Hvap

RTb
=

∆Svap

R
.

Thus, another way to write the Clausius-Clapeyron equation is

ln p =
∆Svap

R
− ∆Hvap

RT
. (19.11)

From this equation you can find the entropy of vaporization by plotting
ln p vs 1

T
and looking at the intercept. It turns out that the entropy of

vaporization is similar for many liquids and is about 85 J/mol

∆Svap = 85J/molK . (19.12)

This empirical finding is referred to as Trouton’s rule named after this
guy Trouton whose Chem. Ed. article we saw earlier. At the end of the

day, the Clausius-Clapeyron equation predicts a linear relationship between
1
Tb

and p.
Now at the solid-vapor boundary the only difference is that ∆Hvap

is replaced with ∆Hsub. Otherwise, it is the same expression as for the
liquid-vapor boundary.
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Recap

Let’s recap both the Clausius and Clausius-Clapeyron Equations with one

last example.

Example

Many of the highest mountains in the world are in excess of 25,000 feet. At
these altitudes p = 250 torr. Calculate the freezing point and boiling point
of water at this pressure.

Given:

• the density of ice is: ρice = 0.92g/cm3

• the density of water is: ρH20 = 1.00g/cm3

• ∆Hfus = 6.01kJ/mol

• ∆Hvap = 40.7kJ/mol

Ans: Use the Clapeyron equation for fusion and the Clausius-Clapeyron

equation for vaporization. The Clapeyron equation gives

dp

dT
=

∆Hfus

Tm∆Vfus
.

Making the approximation dp → ∆p and dT → ∆T we get

(250torr − 760torr)

T2 − 273.15K
=

(6.01kJ/mol)

(273.15K)(−1.565cm3)
.

Convert torr to Pa, convert J to kgm2/s2 and convert cm3 to m3. This gives

− 67993.2Pa

T2 − 273.15K
=

(6000kgm2/s2)

(273.15K)(−1.565× 10−6m3)

− 67993.2Pa

T2 − 273.15K
= −1.4 × 107Pa/K

and yields

∆T = 0.005K

as the freezing point temperature change on the mountain.
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Next, use the Clausius-Clapeyron equation to find the solution to the
boiling point change.

ln
p2

p1
=

∆Hvap

R

(

1

T1
− 1

T2

)

ln
250

760
=

40700

8.314

(

1

373.15
− 1

T2

)

−1.112 = 4895.4

(

1

373.15
− 1

T2

)

−2.3 × 10−4 =

(

1

373.15
− 1

T2

)

−2.3 × 10−4 − 1

373.15
= − 1

T2

1

T2
= 0.0029098.

Our desired answer is

T2 = 343.7K(70.5C).

We see that the boiling point is lower on a mountain. From this example,
you see that the melting point difference is negligible but that the boiling

point change is significant.
Demo opportunity A vacuum boiling demo could go here provided I

have this instrument.



Chapter 20

Mixtures

Chemistry deals with mixtures that potentially react. As a first step to
describe the thermodynamics of these systems, we will simply deal with bi-

nary mixtures that do not react. Note that up to now we have primarily
been working with closed systems of constant composition. For example,

our system is a gas and does some expansion whereupon we find the associ-
ated changes in free energy as well as other thermodynamic quantities. In

general, though, these thermodynamic state functions actually depend upon
the amount of stuff one has, which is especially important in the case of a

system with variable composition (i.e. mixtures and reactions as you will
see in the equilibrium section later).

Preliminaries, partial molar properties

First, an introduction into what are called partial molar properties.

Partial molar volume

The partial molar volume of a substance in a mixture is defined as

Vi =

(

∂V

∂ni

)

where the subscript i just refers to a species of interest. For a 2 component
binary mixture of species A and B, then, if the amounts of A and B are

varied, the total volume of the mixture changes by

dV =

(

∂V

∂na

)

p,T,nb

dna +

(

∂V

∂nb

)

p,T,na

dnb.

197
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The corresponding total volume is therefore

V =

(

∂V

∂na

)

na +

(

∂V

∂nb

)

nb

where na and nb are the moles of A and B respectively.

Partial molar Gibbs free energy

Recall that the chemical potential in the case of a single component is the

same as the Gibbs free energy (µ = G) (actually it’s the molar Gibbs free
energy to be absolutely correct). In the case of mixtures,

µi =
(

∂G
∂ni

)

p,T,nj

. (20.1)

The total Gibbs free energy of a binary mixture of species A and B at
constant T and p is then

dG = µadna + µbdnb (20.2)

such that

G = µana + µbnb (20.3)

where na and nb are the moles of A and B present in the mixture.

Next, to complicate things, recall that in general, the Gibbs free energy
will also depend on the pressure and temperature (you’ve already seen this

in previous sections). As a consequence, we write

dG = V dp− SdT + µadna + µbdnb

for our binary mixture. Of course, if there are more than two components

you keep adding the little chemical potential terms at the end where at
constant pressure and temperature, this simplifies back to

dG = µadna + µbdnb.

The Gibbs free energy, G

In general, we have

dG = V dp − SdT +
∑

i µidni . (20.4)
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This may also be written as

dG =
(

∂G
∂T

)

p
dT +

(

∂G
∂p

)

T
dp +

∑

i

(

∂G
∂ni

)

T,p,nj

dni (20.5)

where under constant T and p conditions the equation reduces to

dG =
∑

i µidni . (20.6)

The dependencies of other thermodynamic functions

Consider the dependencies of other thermodynamic functions with compo-

sition. fsWe will use the following (previously) derived relationships

G = A + pV

G = H − TS

H = U + pV.

The Helmholtz free energy, A

Since

dG = V dp − SdT +
∑

i

µidni

and

A = G − pV

we get

dA = dG− pdV − V dp

=

(

−SdT + V dp +
∑

i

µidni

)

− pdV − V dp

= −SdT − pdV +
∑

i

µidni

or that

dA = −SdT − pdV +
∑

i µidni . (20.7)
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This may also be written as

dA =
(

∂A
∂T

)

V
dT +

(

∂A
∂V

)

T
dV +

∑

i

(

∂A
∂ni

)

T,V,nj

. (20.8)

Furthermore, we can see that an alternative expression for the chemical
potential is

µi =
(

∂A
∂ni

)

T,V,nj

. (20.9)

The enthalpy, H

Since

dG = −SdT + V dp +
∑

i

µidni

and

G = H − TS

we get

dH = dG + TdS + SdT

=

(

−SdT + V dp +
∑

i

µidni

)

+ TdS + SdT

= V dp + TdS +
∑

i

µidni

or that

dH = V dp + TdS +
∑

i µidni . (20.10)

This may also be written as

dH =
(

∂H
∂p

)

S
dp +

(

∂H
∂S

)

p
dS +

∑

i

(

∂H
∂ni

)

T,S,nj

. (20.11)

Furthermore, we see that an alternative expression for the chemical potential
is

µi =
(

∂H
∂ni

)

S,p,nj

. (20.12)
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The internal energy, U

Since

dH = V dp + TdS +
∑

i

µidni

and

U = H − pV

we get

dU = dH − pdV − V dp

=

(

V dp + TdS +
∑

i

µidni

)

− pdV − V dp

or that

dU = TdS − pdV +
∑

i µidni . (20.13)

This may also be written as

dU =
(

∂U
∂S

)

V
dS +

(

∂U
∂V

)

S
dV +

∑

i

(

∂U
∂ni

)

S,V,nj

. (20.14)

Furthermore, we see that an alternative expression for the chemical potential

is

µi =
(

∂U
∂ni

)

S,V,nj

(20.15)

More games

Since G = H − TS we get

G = H − TS

G = (U + pV ) − TS

U = G− pV + TS

dU = dG− pdV − V dp + TdS + SdT

where recall from above that in general dG = V dp − SdT + µadna + µbdnb

for a binary mixture. Plug this into the above expression to get

dU = V dp − SdT + µadna + µbdnb − pdV − V dp + TdS + SdT

= −pdV + TdS + µadna + µbdnb.
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This again leads to

µi =

(

∂U

∂ni

)

S,V,nj

The Gibbs-Duhem equation, a relationship between partial
molar properties

Recall that under constant temperature and pressure conditions for a binary
mixture

G = µana + µbnb.

But note now that you could write

dG = µadna + nadµa + µbdnb + nbdµb

whereas we previously showed that under constant T and p conditions

dG = µadna + µbdnb.

Thus, for these two equations to equal

nadµa + nbdµb = 0 . (20.16)

This relationship is referred to as the Gibbs-Duhem equation. More gener-
ally

∑

i nidµi = 0 (20.17)

and its significance is that the chemical potential of one component of a
mixture cannot change independently of the chemical potentials of the other

components.
So in our binary mixture, if one chemical potential increases, the other

must decrease.

nadµa + nbdµb = 0

nbdµb = −nadµa

dµb = −na

nb
dµa.

The Gibbs-Duhem equation is general. Note that one could also write ntot =
nA + nB with χA = nA

ntot
and χB = nB

ntot
. Thus

dµb = −χa

χb
dµa

where χa and χb are the mole fractions of A and B.
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Mixing of ideal gases

Let’s now move to mixing problems. The changes in Gibbs free energy as

well as internal energy, enthalpy, entropy, etc... can be calculated on the
basis of the following Gedanken experiment.

Picture a cylinder where you have two gases, call them A and B that are

separated by two semipermeable membranes (one is permeable to A only,
the other is permeable to B only). Gas A is on the left. Gas B is on the

right. The two semipermeable membranes are just about touching. The
external pressures on the right and the left are initially at the exact same

pressure as gases A and B. So at this point nothing moves.
Next, the mixing is carried out reversibly (and also isothermally) by

reducing the external pressure on either side by an infinitesimally small
amount. Gases A and B then initiate a mixing by slowly moving the semiper-

meable barriers apart until the volumes have doubled.

The work, heat and internal energy of this mixing process

The work done during the expansion is the sum of the work incurred by
both moving semipermeable barriers.

wmix = wA + wB

= −
∫ VA+VB

VA

pAdV −
∫ VA+VB

VB

pBdV

= −
∫ VA+VB

VA

nART

V
dV −

∫ VA+VB

VB

nBRT

V
dV

= −nART ln
VA + VB

VA
− nBRT ln

VA + VB

VB

= nART ln
VA

VA + VB
+ nBRT ln

VB

VA + VB
.

Note that the volumes are proportional to the number of moles of each gas
(verify this for yourself). Therefore, we can also write

wmix = nART ln
nA

nA + nB

+ nBRT ln
nB

nA + nB

= nART ln
nA

ntot

+ nBRT ln
nB

ntot

= nART lnχA + nBRT ln χB .

This leads to our final expression for the work involved during mixing

wmix = ntotRT (χA lnχA + χB lnχB) . (20.18)
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Since the mixing is isothermal and both gases are ideal

∆Umix = 0 (20.19)

and

∆Hmix = 0 . (20.20)

Then by the first law of thermodynamics we know that

qmix = −wmix

giving

qmix = −ntotRT (χA lnχA + χB ln χB) . (20.21)

The Gibbs free energy of mixing

We are now interested in the Gibbs free energy of mixing. There are a
number of ways to evaluate this. The easiest is to recall that when the

process is isothermal and reversible the entropy change is basically the heat
of the reversible process over the temperature. Then once you have ∆Smix

you can get ∆G from ∆Gmix = ∆Hmis − T∆Smix. We will call this case 1.
Alternatively, there is a more advanced way to do this. It entails knowing

what the chemical potential of a substance is once mixed. One then subtracts
the original chemical potential of the substance from this value to get the

difference.

Case 1

∆Smix =
qrev

T

=
qmix

T

=
−nRT (χA lnχA + χB ln χB)

T
.

Then

∆Smix = −nR(χA lnχA + χB ln χB) . (20.22)
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To get ∆Gmix we know that ∆Hmix = 0. We therefore employ

∆G = ∆Hmix − T∆Smix

= nRT (χA ln χA + χB ln χB)

to find

∆Gmix = nRT (χA lnχA + χB ln χB) . (20.23)

Case 2

Now this case foreshadows something we will demonstrate in an upcoming
section. If you knew what the chemical potential of the substance was after

it got mixed, you could subtract from this the original chemical potential
when unmixed to get the energy change on mixing. We already know what
the unmixed free energy change is. All we need is an expression for the

chemical potential of the substance once mixed. We will derive this shortly.
For now, just watch.

First, for a two component system

G = naµa + nbµb

where, for an ideal gas, the unmixed chemical potential is

µ = µo + RT ln
p

po

with µo the chemical potential at 1 bar and 25o C and p is the pressure of
the gas divided by po which is 1 bar.

This is derived in an earlier discussion within the free energy chapter.
Starting with

dG = V dp− SdT

we now assume constant temperature conditions (dT = 0) to get

dG = V dp.

Since the gas is ideal, V = RT
p

(we are dealing with molar volumes here so

n = 1).

dG =
RT

p
dp

∆G = RT ln
p2

p1

G2 = G1 + RT ln
p2

p1
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and instead of using G we invoke µ. Thus, let G2 → µ, G1 → µo, p2 → p,
and p1 → po.

Here is the part which we haven’t talked about yet. What is the
chemical potential of a gas once mixed? Well, the chemical potential
of the gas once mixed is basically the same expression as before except with

p is replaced by pi, the gas’ partial pressure in the mixture. The chemical
potential of the mixed gas can then be written as

µ = µo + RT ln
pi

po
.

Back to our problem. Before mixing we had

G = na

[

µo
a + RT ln

p

po

]

+ nb

[

µo
b + RT ln

p

po

]

for the 2 gases separated with p the same in either container.

Gbefore = na

[

µo
a + RT ln

p

po

]

+ nb

[

µo
b + RT ln

p

po

]

.

Now, the two gases are allowed to mix, doubling the volume.

So after mixing we have pa + pb = p where pa and pb are the partial
pressures of A and B. The expression for G after mixing therefore becomes

Gafter = na

[

µo
a + RT ln

pa

po

]

+ nb

[

µo
b + RT ln

pb

po

]

.

We can now find out what the change in free energy is on mixing the
two ideal gases

∆Gmix = Gafter − Gbefore

= na

[

µo
a + RT ln

pa

po

]

+ nb

[

µo
b + RT ln

pb

po

]

− na

[

µo
a + RT ln

p

po

]

− nb

[

µo
b + RT ln

p

po

]

= na [RT lnpa − RT lnp] + nb [RT ln pb − RT lnp]

= na

[

RT ln
pa

p

]

+ nb

[

RT ln
pb

p

]

= naRT ln
pa

p
+ nbRT ln

pb

p
.

If we replace all pressures by mole fractions we get

∆Gmix = χantotRT lnχa + χbntotRT lnχb



207

leading to

∆Gmix = nRT (χa ln χa + χb lnχb) . (20.24)

Notice that since χa,b < 1 both ln terms will be less than zero. Thus
∆Gmix < 0 is negative. This confirms that the mixing of ideal gases is

spontaneous.

Example

Calculate the Gibbs free energy of mixing. Note that this is being worked
out using the case 2 approach.

A container is divided into 2 equal compartments. One contains 3 mol
of H2 at 25oC. The other contains 1 mol of N2 at 25oC. Calculate the ∆G

of mixing.
Ans:

Gbefore = na[µ
o
a + RT ln p] + nb[µ

o
b + RT ln 3p]

= (1)[µo
a + RT ln p] + (3)[µo

b + RT ln 3p].

After mixing, the volume doubles so that all pressures initially drop by
half. We are assuming ideal gas behavior.

p → 1

2
p

3p → 3

2
p.

Thus,

Gafter = (1)
[

µo
a + RT ln

p

2

]

+ (3)

[

µo
b + RT ln

3p

2

]

.

So the difference, final minus initial, is

∆Gmix = RT ln
p/2

p
+ 3RT ln

3p/2

3p

= RT ln
1

2
+ 3RT ln

1

2
= −RT ln 2 − 3RT ln 2

= −4RT ln 2

= −4(8.314J/molK)(298.15) ln(2) = −6.87× 103J.

The answer is

∆Gmix = −6.87kJ.

The value is negative so the mixing is spontaneous.
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The final chemical potential of a substance in a mixture

We just saw in the prior example that the chemical potential of a gas once

mixed has the form

µ = µo + RT ln pi

po (20.25)

where pi is the partial pressure of the gas in the mixture.

In this section, let’s just derive this result more formally. Start with the
fact that at constant temperature and pressure for a binary system

G = nAµA + nBµB .

Then realize that the free energy of mixing is just the difference of G after
minus that before

∆Gmix = Gmix − Gpure

where

Gmix = nAµA + nBµB

Gpure = nAµA,pure + nBµB,pure.

Next, I previously showed you that for a pure single component substance
(a gas here) that the chemical potential could be written as

µi,pure = µo
i + RT ln

p

po
.

Let’s replace this into our ∆Gmix expression above.

∆Gmix = nAµA + nBµB − nA

(

µo
A + RT ln

p

po

)

− nB

(

µo
B + RT ln

p

po

)

.

At this point, invoke ∆Gmix = nART ln χA + nBRT ln χB which we
derived separately through the case 1 approach. We incorporate this into

the LHS of the above equality to get

nART ln χA + nBRT ln χB = nAµA + nBµB − nA

(

µo
A + RT ln

p

po

)

− nB

(

µo
B + RT ln

p

po

)

nA(RT ln χA) + nB(RT lnχB) = nA

(

µA − µo
A − RT ln

p

po

)

+ nB

(

µB − µo
B − RT ln

p

po

)
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Since the coefficients of nA and nB must equal on both sides of the equation,
we are left with

RT lnχA = µA − µo
A − RT ln

p

po

RT lnχB = µB − µo
B − RT ln

p

po
.

Solve for µA and µB . We want these because they are the chemical potentials
of both substances after being mixed.

µA = RT ln χA + µo
A + RT ln

p

po

µB = RT ln χB + µo
B + RT ln

p

po
.

Consolidate terms to get

µA = µo
A + RT ln

χAp

po

µB = µo
B + RT ln

χBp

po

where we know that the partial pressures are pA = χAp and pB = χBp. This
then yields our desired expressions

µA = µo
A + RT ln

pA

po

µB = µo
B + RT ln

pB

po
.

So in general, the chemical potential of a substance (a gas here although

you will see a more general case next when we talk about liquids) once mixed
can be written as

µi = µo
i + RT ln pi

po . (20.26)

Other thermodynamic mixing functions involving ideal gases

Since
(

∂G
∂T

)

p,nj
= −S it follows from

∆Gmix = nRT (χa ln χa + χb lnχb)

that

∆Smix = −nR(χa ln χa + χb lnχb) . (20.27)
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Notice that both ln χa and lnχb are less than zero. Hence ∆Smix is positive
and the process is favored. The system is more disordered. Alternatively,

you could have calculated this from

∆Smix =
qmix

T

since the process was isothermal and was done reversibly, hence qmix = qrev .

Next, from

∆Gmix = ∆Hmix − T∆Smix

∆Gmix + T∆Smix = ∆Hmix.

From our previous results we then see that

∆Hmix = 0 . (20.28)

Alternatively, note that H is only temperature dependent for ideal gases

and that the process was isothermal. Hence, we could have (and actually
did) immediately say that ∆Hmix = 0.

Next, from

(

∂G

∂p

)

T

= V

we get

∆Vmix = 0 , (20.29)

showing that there is no volume change on mixing ideal gases (i.e. the
volumes are additive).

The mixing of ideal liquids

Let’s do liquids now. Consider a binary mixture again for simplicity. The
derived results will be general. Also assume constant temperature and pres-

sure conditions so that

G = naµa + nbµb

where

µi = µo
i + RT ln ai . (20.30)
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Here a is called the “activity” and the above expression is for the chemical
potential of the substance once mixed.

So what is this activity business? Let’s illustrate. Consider the
vapor-liquid equilibrium of a single substance. We have seen that at equi-
librium the chemical potentials are the same in either phase

µ(g) = µ(l).

We know from a previous section that for gases in a mixture

µi(g) = µo
i (g) + RT ln

pi

po

where pi is the gas’ partial pressure, po is 1 bar, and µo
i is the chemical

potential of the gas in its standard state. I’m now asserting that a similar
expression holds for liquids using this so-called activity.

µi(l) = µo
i (l) + RT lnai.

This results in the following equality at equilibrium

µ(g) = µ(l)

µo
i (g) + RT ln

pi

po
= µo

i (l) + RT ln ai

This equation can be applied to a pure liquid where the activity is defined

as 1(a = 1)

µo
i (g) + RT ln

p∗i
po

= µo
i (l).

The asterisk signifies that this particular pressure is for a pure substance
and po is the standard pressure of 1 bar. Thus p∗i is the pure liquid vapor

pressure.
Subtract one equation from the other to get

RT ln
pi

po
− RT ln

p∗i
po

= RT lnai

RT ln pi − RT lnpo − RT lnp∗i + RT lnpo = RT lnai

RT ln
pi

p∗i
= RT lnai.

Therefore, one finds that the activity is

ai = pi

p∗i
. (20.31)
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This ratio also equals χi

ai = pi

p∗i
= χi . (20.32)

The last equivalence relating the partial pressure to the mole fraction is
basically called Raoult’s Law and will be discussed below (the ratio of the
partial pressure to the pure vapor pressure is equivalent to the

mole fraction of a given component or alternatively that the activity is
the mole fraction of a substance in a mixture). For now just hold this to be

true. You will see more about activities shortly in the equilibrium chapter.
Now back to the point before we went on this tangent about

activities. In a binary mixture of liquids at constant T and p,

G = naµa + nbµb

where

µi = µo
i + RT lnai

= µo
i + RT lnχi.

So before mixing (constant T , p) we have

Gbefore = naµo
a + nbµ

o
b .

After mixing, we get

Gafter = na[µ
o
a + RT lnχa] + nb[µ

o
b + RT ln χb].

The free energy change on mixing is therefore

∆Gmix = Gafter − Gbefore

= naRT lnχa + nbRT lnχb.

If n = na + nb then we can re-express ∆Gmix in terms of mole fractions

∆Gmix = nRT [χa lnχa + χb ln χb]. (20.33)

Again, since χa and χb are both less than 1, ln χa and lnχb are negative.

The Gibbs free energy of mixing ideal liquids is therefore negative and hence
the process occurs spontaneously.

In addition, since
(

∂∆Gmix

∂T

)

p

= −∆Smix
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it follows that the entropy of mixing ideal liquids is

∆Smix = −nR[χa ln χa + χb lnχb] . (20.34)

You can see that ∆Smix > 0. The entropy increases with mixing.

Next, we get the enthalpy of mixing from

∆Gmix = ∆Hmix − T∆Smix

∆Hmix = ∆Gmix − T∆Smix

thus

∆Hmix = 0 , (20.35)

showing that there is no enthalpy change on mixing liquids to form ideal

solutions.

Finally, since

(

∂G

∂p

)

T

= V

∆Vmix = 0 . (20.36)

This means that the volumes are additive.

Demo opportunity There is a demo that can be done here. Take a

very large column of pure 200 proof ethanol. Add to it some water carefully.
Initially you will see that the volumes look additive. Now invert the column

and let the liquids mix. When brought back to its original state you will
notice that the total volume has decreased and that the volumes are in fact

not additive. This is non-ideal behavior. What is this telling you? A video
of this can be found on the web.

Raoult’s Law

The French chemist Francois Raoult found that the ratio of the partial vapor
pressure of each component in a mixture (pa) to its vapor pressure as a pure
liquid (p∗a) equals the mole fraction of the component

pa

p∗a
= χa . (20.37)
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Mixtures which obey Raoult’s Law are called ideal solutions. They generally
consist of two similar liquids. For example, toluene and benzene come to

mind.
To illustrate, consider a solution composed of a volatile solvent and one or

more involatile solutes. If the pure solvent (say A) is placed in an evacuated
container (not all the way full though), the liquid will evaporate until the

space above the liquid is filled with vapor. During the entire process the
temperature is kept constant. At equilibrium, the pressure established in
the vapor phase is p∗a which is the vapor pressure of the pure liquid. Now

if an involatile solute is dissolved in the liquid, and the entire experiment
is repeated, the equilibrium pressure pA over the solution (the solute is

involatile so the vapor consists purely of solvent vapor, A) is observed to be
less than p∗a. This is then the basis of Raoult’s observation. We generalize

this to multiple volatile liquids.

Henry’s Law

However, William Henry found experimentally that for real solutions at
low (dilute) concentrations that although Raoult was basically correct for

a solute, a, the constant of proportionality between pa and χa is not really
χa. Basically

pa 6= p∗aχa.

Henry instead found that

pa = κap
∗

a (20.38)

where κa is a fudge factor.

Mixtures for which the solute obeys Henry’s Law and the solvent obeys
Raoult’s Law are called ideal-dilute solutions.

Colligative properties

Finally, let’s use what we learned about mixtures to describe what are called

colligative properties. Here we will consider a substance (our solvent) into
which we will introduce a nonvolatile solute. What we want to see is what
happens to certain properties of the solvent. Namely, there are 3 colligative

properties for solute/solvent mixtures that are typically discussed. We will
cover the first two.
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• Elevation of the boiling point

• Depression of the freezing point

• Osmotic pressure

Elevation of the boiling point

The equilibrium that we are interested in during the boiling process is be-
tween the solvent vapor and the solvent at 1 bar (basically 1 atm). Let’s
call the solvent A and the added solute B. A real world example would be

adding salt to water to try and increase its boiling point. Does this actually
work? Or is this just urban legend. Another example involves using ethy-

lene glycol in your car’s radiator to increase the boiling point of water. In
fact, the boiling point increases 0.5 ◦C for every 76 grams added to 1 liter

of water.
The equilibrium is established at a temperature where

µA(g) = µA(l)

since it’s A that’s doing the boiling. Next, we need expressions for the left
hand side and the right hand side of the equation.

On the LHS we have

µA(g) = µ◦

A(g).

If you wanted to rationalize this, you would recall that the chemical potential

expression for a gas is

µA(g) = µ◦

A(g) + RT ln
p

p◦

where its pressure p is just the same as p◦ (i.e. p = p◦).

On the RHS we know that

µA(l) = µ◦

A(l) + RT ln
pA

p∗A

where pA is the partial pressure of the solvent in the presence of some solute.
By Raoult’s law we then have

µA(l) = µ◦

A(l) + RT lnχA.

Combining the left and right hand side expressions, we get

µ◦

A(g) = µ◦

A(l) + RT lnχA
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and, in terms of the solute (i.e. χA = 1 − χB) we have

µ◦

A(g) = µ◦

A(l) + RT ln(1− χB)

[µ◦

A(g)− µ◦

A(l)]

RT
= ln(1− χB)

1

R

[

µ◦

A(g)

T
− µ◦

A(l)

T

]

= ln(1− χB).

At this point, take derivatives of both sides with respect to T under
constant pressure conditions. We basically find terms like the following on
the left hand side

∂

∂T

(µ

T

)

=
1

T

(

∂µ

∂T

)

p

+ µ

(

− 1

T 2

)

where from dG = V dp− SdT we have
(

∂µ
∂T

)

p
= −S. Thus,

∂

∂T

(µ

T

)

= −S

T
− µ

T 2
.

At this point, we replace µ = H − TS to get

∂

∂T

(µ

T

)

= − H

T 2

and find that

1

R

∂

∂T

[

µ◦

A(g)

T
− µ◦

A(l)

T

]

=
d

dT
ln(1− χB)

becomes

1

R

[

−HA(g)

T 2
+

HA(l)

T 2

]

=
d

dT
ln(1 − χB)

− 1

RT 2
[HA(g)− HA(l)] =

d

dT
ln(1 − χB)

−∆Hvap

RT 2
=

d

dT
ln(1 − χB).

We can integrate the expression (assuming ∆Hvap to be independent of

temperature) to get

−
∫ T

Tb

∆Hvap

RT
′2

dT
′

=

∫ χB

χB=0
d ln(1− χ

′

B)

∆Hvap

RT
′

∣

∣

∣

∣

T

Tb

= ln(1 − χB)

∆Hvap

R

(

1

T
− 1

Tb

)

= ln(1 − χB).
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If χB is small then ln(1− χB) ' −χB . This gives

χB =
∆Hvap

R

(

1

Tb
− 1

T

)

.

Finally, if T ' Tb

χB ' ∆Hvap

R

(

T − Tb

TTb

)

=
∆Hvap

R

∆T

T 2
b

.

Rearranging things gives our desired expression for the change in the sol-
vent’s boiling point with mole fraction of solute added

∆T '
(

RT 2
b

∆Hvap

)

χB . (20.39)

The constant of proportionality in parenthesis is called the boiling point

constant, kb. Numerical values for kb of some solvents can be found in the
following table where recall that molality is moles of solute per kilogram of

solvent.
Solvent kb (◦C/molal)

benzene 2.53
phenol 3.04

water 0.51
ethanol 1.07

cyclohexane 2.79
acetic acid 3.08

Example

Say you had the idea that adding salt to water raises its boiling point. This
would allow you to cook your pasta faster. How much salt would you need

to add to raise the boiling point of water by 10 degrees? Let’s assume that
we are trying to boil 1L of water.

10 = (0.51)

(

x mol NaCl

1 kg water

)

.

From this we find that x = 19.61 moles of NaCl. This is 1.15 kg or 2.53

lbs of salt. Even if you were to do this I doubt this would make your pasta
palatable.
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Old derivation of boiling point elevation formula

I’m leaving this older derivation of the boiling point elevation formula here

for historical purposes. The derivation begins the same way by invoking

µA(g) = µA(l).

We then find expressions for the left and right hand sides of the equality.
We find

µo
A(g) = µo

A(l) + RT lnaA

µo
A(g) = µo

A(l) + RT lnχA

where χA +χB = 1 and where p∗A = po since the solute, B, is involatile. You
can see this through the following gedanken experiment. Imaging that you

have a flexible cover over the neat liquid (think of something like a balloon).
The outside pressure is 1 bar. Under these conditions, the vapor in the

balloon is exclusively the neat vapor of compound A. The associated vapor
pressure is 1 bar since otherwise the outside air pressure would collapse the

balloon. Likewise the balloon doesn’t blow up either.
Now, rearrange the original expression above as

µo
A(g) = µo

A(l) + RT ln(1 − χB)

or

ln(1− χB) =
µo

A(g)− µo
A(l)

RT
=

∆Gvap

RT

where ∆Gvap is the molar Gibbs free energy of vaporization. At the same
time

∆Gvap = ∆Hvap − Tb∆Svap.

If we invoke that T ' Tb then we can replace ∆Gvap into our expression to
find

ln(1 − χB) ' ∆Hvap

RT
− ∆Svap

R
.

Now when there is no B present (only A) then χB = 0 and we get

ln(1) =
∆Hvap

RTb
− ∆Svap

R
= 0
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where Tb is the boiling point of A.
The difference then when some B is present is

ln(1 − χB) − ln(1) =
∆Hvap

RT
− ∆Hvap

RTb

which reduces to

ln(1− χB) =
∆Hvap

R

(

1

T
− 1

Tb

)

.

Now assume that χB (our solute) is small. χB � 1. Then

ln(1 − χB) ' −χB

leaving

−χB =
∆Hvap

R

(

1

T
− 1

Tb

)

or

χB =
∆Hvap

R

(

1

Tb
− 1

T

)

.

Finally, because we have already assumed that T ' Tb

(

1

Tb
− 1

T

)

=
T − Tb

TbT
' T − Tb

T 2
b

=
∆T

T 2
b

.

Thus

χB ' ∆Hvap∆T

RT 2
b

and we write

∆T =

(

RT 2
b

∆Hvap

)

χB.

Depression of the freezing point

The heterogeneous equilibrium now of interest is between a pure solid solvent
(A) and the solution with a solute (B) present within it at mole fraction χB .

A real world example is adding salt to roads during the winter to prevent
ice from forming. We can go about deriving the melting point depression
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formula in the same manner as we did for the boiling point elevation. I’ll
let you do that on your own. What follows is my original derivation.

At the freezing point, the chemical potentials of the two phases equal

µA(s) = µA(l)

where

µA(l) = µo
A(l) + RT lnχA

and we use µA(s) = µo
A(s) on the left hand since the frozen solid is pure

A (i.e. we implicitly assume that the solute B does not freeze out). The
activity of a pure solid is a = 1 or χA = 1 and thus the RT ln χ term

that would have been on the left hand side of the equation dies. Putting
everything together gives

µo
A(s) = µo

A(l) + RT lnχA

where χA + χB = 1. We now do the same rearrangement/manipulation as

before and instead of ∆Hvap we use ∆Hfus. We also assume that T ' Tm

µo
A(s) = µo

A(l) + RT ln(1 − χB)

µo
A(s)− µo

A(l)

RT
= ln(1− χB)

ln(1 − χB) =
µo

A(s) − µo
A(l)

RT
= −∆Gfus

RT

ln(1 − χB) = − [∆Hfus − Tm∆Sfus]

RT

ln(1 − χB) = −∆Hfus

RT
+

∆Sfus

R
.

If χB = 0 (no solute, pure A) then

ln(1) = −∆Hfus

RTm
+

∆Sfus

R
= 0

where Tm is the melting point of A.
The difference between ln(1− χB)− ln(1) is then

ln(1 − χB) = −∆Hfus

RT
+

∆Hfus

RTm

= −∆Hfus

R

(

1

T
− 1

Tm

)
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where if χB is small, χB � 1 and ln(1 − χB) ' −χB . Thus,

−χB = −∆Hfus

R

(

1

T
− 1

Tm

)

χB =
∆Hfus

R

(

1

T
− 1

Tm

)

χB =
∆fus

R

(

Tm − T

TTm

)

χB =
∆Hfus(−∆T )

RTTm
.

Finally, recalling that we assumed T ' Tm

χB =
∆Hfus(−∆T )

RT 2
m

and

∆T = − RT 2
m

∆Hfus
χB . (20.40)

This gives you the melting point depression when some solute B is put

into a solvent A with an associated mole fraction χB . The constant of
proportionality is called kf , the freezing point constant. The table below
lists kf for some solvents.

Solvent kf (◦C/molal)

benzene 5.12
phenol 7.72

water 1.86
ethanol 2.00

cyclohexane 20.0

Example

How much salt does it take to lower the melting point of water by 5◦ C.?

Assume we are dealing with 1 kg of water for convenience.

−5 = −1.86

(

x moles NaCl

1 kg

)

so that x = 2.25 moles of NaCl. This is 120 grams.
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Demo

A demo that can be done here is to make homemade ice cream using rock

salt. You just need milk and sugar and some containers. Mix the milk and
sugar in one small container. Mix the salt and water in a separate (larger)

container. Then put the milk/sugar container into the salt water slurry and
let it sit. Shake occasionally for best results. Better yet, have a student

shake it for you during the entire lecture.
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Equilibrium

So far ∆G has been used to simply predict the spontaneity of a process or
some reaction. But ∆G is more useful than this. It will be related to a

reaction’s equilibrium constant.

The reaction quotient, Q

To begin, we need some definitions. For a generalized reaction

αA + βB → γC + δD

the reaction quotient Q is defined as

Q = (aC)γ(aD)δ

(aA)α(aB)β (21.1)

where an is called the activity (seen in a previous chapter) and can be

expressed as

• a ∝ [X ]
[Xo] where [Xo] is 1 M

• a = p
po (ideal gas)

• a = f
po (real gas where f is the fugacity)

• a = pi

p∗i
(liquids in a mixture, where p∗i is the pure substance vapor

pressure)

223
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At equilibrium

Q =
(aC)γ

eq(aD)δ
eq

(aA)α
eq(aB)β

eq

= Keq

or

Q = Keq . (21.2)

The equilibrium constant, K

Consider the reaction

aA + bB ⇀↽ cC + dD

The equilibrium constant is defined as

Kc = [C]c[D]d

[A]a[B]b
(21.3)

where the subscript c means that it is defined in terms of molar concentra-
tions.

Alternatively, in discussing gas phase reactions, it is often convenient to
write the equilibrium constant in terms of partial pressures. When you ex-

press the equilibrium constant for gaseous systems in terms of their partial
pressures you call it Kp. In what follows, we will focus on so called “homo-
geneous” reactions for simplicity. “Heterogeneous” or mixed phase systems

will be discussed later.
For example,

CO(g) + 3H2(g) ⇀↽ CH4(g) + H2O(g)

Kp =

(

pCH4
po

)(

pH2O

po

)

(

pCO

po

)(

PH2
po

) .

Now, in general, the value of Kp differs from that of Kc. To illustrate,
let’s consider the ideal gas case. For an ideal gas, the molar concentration
of some species can be expressed as

[A] =
n

V
=

p

RT
.
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Consider the generic reaction

αA + βB → γC + δD

From this we get

Kc =

(

pc

RT

)γ ( pd

RT

)δ

(

pa

RT

)α ( pb

RT

)β

=
(RT )α(RT )β

(RT )γ(RT )δ

(

pγ
c pδ

d

pα
apβ

b

)

= RTα+β−(γ+δ)

(

pγ
c pδ

d

pα
apβ

b

)

.

Thus

Kc = RT−∆nKp (21.4)

or

Kp = RT∆nKc . (21.5)

Remember here that ∆n is the change in moles of gas molecules in the

reaction. We take final minus initial.

The equilibrium constant for a sum of reactions

If a given chemical equation can be obtained by taking the sum of other sub
reactions, the equilibrium constant for the given equation is the product of

the equilibrium constants of these sub reactions.
Consider the following reactions

CO(g) + 3H2(g) ⇀↽ CH4(g) + H2O(g)

and

CH4(g) + 2H2S(g) ⇀↽ CS2(g) + 4H2(g).

If you sum these two reactions, together you get the overall reaction

CO(g) + 2H2S ⇀↽ CS2(g) + H2O(g) + H2(g).
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The equilibrium constant for this reaction is therefore

Keq =
[CS2][H2O][H2]

[CO][H2S]2
.

I claim that this is the product of each individual reaction’s equilibrium

constant. Namely,

K1,eq =
[CH4][H2O]

[CO][H2]3

K2,eq =
[CS2][H2]

4

[CH4][H2S]2
.

Take the product of K1,eq and K2,eq and see what happens

K1,eqK2,eq =
[CH4][H2O]

[CO][H2]3
[CS2][H2]

4

[CH4][H2S]2

=
[H2O][CS2][H2]

[CO][H2S]2

= Keq.

Good.

Other rules that Keq follows

There are a bunch of rules for the equilibrium constant. I don’t really want

to go over them in any great detail because you should have already seen in
this in general chemistry many years ago. I’m also a bit tired. So I’ll just

summarize things in bullet form.

The “rules”

• Pure solids and pure liquids are never ever included in the equilibrium
constant expression. Don’t do it. If you recall doing weak acid/base

problems where you were asked to find the pH for a give concentration,
remember you always set up your (R)ICE table and then ran the

numbers. At the end, when relating the concentrations at equilibrium
to Ka, you never ever included the concentration of the water solvent.

• The equilibrium constant depends on the way the reaction equation

is written. So basically, you will get a different looking equilibrium
constant if the reaction stoichiometries of the reaction are all changed.
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For example, if you double all of the coefficients in your equation, Keq

will change. Or if you halve all the coefficients, Keq will differ again.

I’ll let you play with this idea on your own.

• The equilibrium constant written for a reaction one way is just the

reciprocal of K for the opposite way. So if you flip the orientation of
the reaction, take the inverse of the old equilibrium constant to get
the new equilibrium constant. Again, you can play with this idea on

your own if interested.

• Kc and Kp do not equal. We’ve just seen how they are related. Note
that when you get equilibrium constants from ∆G, as you will do in
a minute, what you actually get are Kp values by convention. Some

texts seem to omit this fact.

• For consecutive reactions, the overall equilibrium constant is simply
the product of their individual equilibrium constants. We just saw this
worked out above.

The relationship between free energy and the equi-
librium constant

You’ve already seen a preview of this in one of our preceding examples. But
we will do this again under a more generic scenario.

Consider the reaction

A + B → C + D

The net change in chemical potential is

∆µ = (µC + µD) − (µA + µB)

where in terms of activities we have (we basically have a mixture, right?)

µA = µo
A + RT lnaA

µB = µo
B + RT lnaB

µC = µo
C + RT ln aC

µD = µo
D + RT lnaD.
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Putting it all together then gives

∆µ = [µo
C + RT ln aC + µo

D + RT ln aD]− [µo
A + RT ln aA + µo

B + RT ln aB]

= [(µo
C + µo

D) − (µo
A + µo

B)] + RT ln aCaD − RT ln aAaB

= ∆µo + RT ln
aCaD

aAaB

= ∆µo + RT lnQ.

At equilibrium, ∆µ = 0 and Q = Keq

0 = ∆Go − RT lnKeq

= ∆µo − RT lnKeq

or

∆Go = −RT lnKeq . (21.6)

I want to point out that the temperature listed above is tied to the ∆G value

being used. So if you see ∆Go, this means that the value of T you have to use
is T = 298 K. You cannot just randomly put another temperature in there.
If we have ∆G at another temperature, then you use that temperature for

T . So basically

∆Go(T1) = −RT1 lnKeq(T1)

∆Go(T2) = −RT2 lnKeq(T2)

∆Go(T3) = −RT3 lnKeq(T3)

etc . . .

An alternate expression commonly seen is

Keq = e
−∆Go

RT . (21.7)

An important side note here is that by convention we get Kp (not Kc) values

from this expression.
Let’s mix things up a little. What if we had the general reaction with
more complicated stoichiometries

αA + βB → γC + δD.

The difference in chemical potentials is then

∆µ = (µC + µD)− (µA + µB)
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where as the reaction proceeds

µC = γµo
C + γRT lnaC

µD = δµo
D + δRT lnaD

µA = αµo
A + αRT ln aA

µB = βµo
B + βRT lnaB.

Therefore,

∆µ = [γµo
C + γRT lnaC + δµo

D + δRT ln aD] − [αµo
A + αRT lnaA + βµo

B + βRT ln aB]

= [γµo
C + RT lnaγ

C + δµo
D + RT ln aδ

D] − [αµo
A + RT lnaα

A + βµo
B + RT lnaβ

B ]

= [γµo
C + δµo

D + RT ln aγ
Caδ

D] − [αµo
A + βµo

B + RT lnaα
Aaβ

B]

= [(γµo
C + δµo

D) − (αµo
A + βµo

B)] + RT lnaγ
Caδ

D − RT lnaα
Aaβ

B

= [(γµo
C + δµo

D) − (αµo
A + βµo

B)] + RT ln
a

γ
Caδ

D

aα
Aaβ

B

.

We get

∆µ = ∆µo + RT lnQ

with

Q =
aγ

Caδ
D

aα
Aaβ

B

.

At equilibrium, ∆µ = 0 and Q = Keq so that

∆µo = −RT lnKeq

∆Go = −RT lnKeq

or that

Keq = e
−∆Go

RT .

Again, as an aside, note that Keq here is actually Kp (not Kc).

The chemical potential and equilibrium

Next, let’s show how the chemical potential and equilibrium are related for

a reaction. Start with our previous expression for the Gibbs free energy
change under constant T and p conditions

dG =
∑

i

µidni
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where changes in the number of moles (dni) are the result of a chemical
reaction.

Then note that these changes in moles of a species are not independent

because they are related by the stoichiometry of the reaction. We express
this for a given species as

ni = no
i + νiξ

where no
i is the number of initial moles of a species, νi is a coefficient re-

flecting the stoichiometry of the reaction and ξ is called the advancement
coefficient and has units of moles. Note that νi is a negative number for

reactants and is a positive number for products.

To be a little more specific about ξ, for some generic reaction

αA + βB → γC + δD

the advancement coefficient is

n = no + νiξ

dn = νidξ

or dξ = dn
νi

where νa = −α, νB = −β, νC = γ, and νD = δ.

This gives:

dξ = −dnA

α
(for species A)

= −dnB

β
(for species B)

= +
dnC

γ
(for species C)

= +
dnD

δ
(for species D)

and in general

dξ = dni

νi
. (21.8)

From the above relationship, we get

dni = νidξ.
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Thus, since dG = µadna + µbdnb + µcdnc + . . .

dG =
∑

i

µiνidξ

=

(

∑

i

µiνi

)

dξ.

This can get rearranged to

(

∂G

∂ξ

)

T,p

=

(

∑

i

µiνi

)

= −αµa − βµB + γµC + δµD

= [γµC + δµD] − [αµA + βµB ].

The equation reflects the rate of increase of the Gibbs free energy with the
advancement, ξ, of the reaction.

• if
(

∂G
∂ξ

)

T,p
< 0, the reaction goes right, towards products

• if
(

∂G
∂ξ

)

T,p
> 0, the reaction goes left, towards reactants

• if
(

∂G
∂ξ

)

T,p
= 0, the reaction doesn’t go anywhere, it’s at equilibrium

Note that the last equilibrium expression can also be written as

(

∂G

∂ξ

)

T,p

=
∑

u

µiνi = 0.

Thus you see that the derivative
(

∂G
∂ξ

)

T,p
has the form of a change in

Gibbs free energy since it is the sum of the chemical potentials of the prod-
ucts (positive νi) minus the sum of the chemical potentials of the reactants

(negative νi).

Consequently, people often write ∆G =
(

∂G
∂ξ

)

T,p
and call it the

reaction Gibbs free energy. Sometimes people will write ∆Gr or ∆rG to

make this clear.

∆G =
∑

i µiνi (21.9)
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So at equilibrium

(

∂G
∂ξ

)

T,p
= ∆G = ∆Gr = ∆rG = 0 . (21.10)

All expressions are valid.
Now back to our equilibrium considerations Consider a model generic

reaction

A → B.

In addition, assume that A and B are gases. If we solely consider A then we
get

G = Go + nART ln
pA

po

where po = 1 bar and from where we also get

(

∂G

∂nA

)

=

(

∂Go

∂nA

)

+ RT ln
pA

po

or

µA = µo
A + RT ln

pA

po
.

We can do the same with B (assuming it’s alone) to get

µB = µo
B + RT ln

pB

po
.

Now back to the reaction A little bit of A (dnA) reacts to form a little

bit of B (dnB). Here dn = |dnA| = |dnB|. Then the free energy change of
the system due to this little reaction under constant T and p conditions is

dG = −µAdn + µBdn

= −(µo
A + RT ln

pA

po
)dn + (µo

B + RT ln
pB

po
)dn

= dn(µo
A − µo

B + RT ln
pB

po
− RT ln

pA

po
)

(

∂G

∂n

)

T,p

= (µo
A − µo

b) + RT ln
pB

pA

= ∆Go + RT ln
pB

pA
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This term
(

dG
dn

)

T,p
is referred to as the reaction Gibbs free energy and is

essentially the slope of the Gibbs free energy plotted against the extent of a

reaction. If
(

dG
dn

)

T,p
is negative, the forward reaction will be spontaneous. If

(

dG
dn

)

T,p
is positive the backward reaction to reactants will be spontaneous.

At equilibrium,
(

dG
dn

)

= 0 or alternatively “∆G = 0” and

∆Go = −RT ln
pB

pA

= −RT ln Keq.

Alternatively,

Keq = e
−∆Go

RT

Finally, as mentioned before, Keq here is Kp (not Kc) by convention.
These are the expressions you see all the time everywhere. Also apart

from re-deriving these important expressions we come to another important
conclusion.

dG = −µAdn + µBdn
(

dG

dn

)

T,p

= −µA + µB = 0.

Therefore,

µA = µB (21.11)

at equilibrium. The chemical potential of A equals the chemical potential

of B at equilibrium. “A chemical reaction comes to equilibrium at
constant T and p when the chemical potential of the reactants
equals the chemical potential of the products.”

More equilibrium stuff, definitions and such

Definition: A homogeneous equilibrium is an equilibrium that involves
reactants and products in a single phase.

Definition: A heterogeneous equilibrium is an equilibrium involving reac-
tants and products in more than one phase.

For example: Consider the reaction

3Fe(s) + 4H2O(g) ⇀↽ F3O4(s) + 4H2(g).
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This reaction involves both solids and gases. The equilibrium constant is

Kc =
[H2]

4

[H2O]4
.

Note that the equilibrium constant omits the solids and liquids because the
volumes of solids and liquids are basically constant. Their activities are

therefore 1. The activities of solids and liquids equal 1.

Examples

Write the equilibrium constant for the following reaction

CO(g) + 3H2(g) ⇀↽ CH4(g) + H2O(g)

or its reverse reaction

CH4(g) + H2O(g) ⇀↽ CO(g) + 3H2(g)

or this reaction

N2(g) + 3H2(g) ⇀↽ 2NH3(g)

all in terms of Kc and Kp.

Ans:

Kc =
[CH4][H2O]

[CO][H2]3

Kp =
pCH4pH2O

pCOp3
H2

Kc =
[CO][H2]

3

[CH4][H2O]

Kp =
pCOp3

H2

pCH4pH2O

Kc =
[NH3]

2

[N2][H2]3

Kp =
p2

NH3

pN2p
3
H2
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Example

Formulate an expression for the equilibrium constant, Kp, of the following

reaction in terms of its degree of dissociation

Ni(CO)4(g) ⇀↽ Ni(s) + 4CO(g).

Ans: The equilibrium constant of this heterogeneous equilibrium is

Kp =

(

pCO

po

)4

pNi(CO)4
po

=
p4

CO

pNi(CO)4

where we have divided out the units. All the pressures are just numbers.

The total number of moles of gas molecules is 1 + 3α. Therefore the
partial pressures are

pCO =
4α

1 + 3α
ptot

pNi(CO)4 =
1 − α

1 + 3α
ptot.

Plug everything into Keq to get

Kp =
(4α)4p3

tot

(1 − α)(1 + 3α)3

Example

Consider the reaction

N2(g) + 3H2(g) → 2NH3(g)

at 298K. Show how Keq is related to the partial pressures and free energy

change of the species at equilibrium.
Ans: From freshman chemistry, you know how to answer this question

immediately. However, let’s do it a little differently to emphasize what we
have been learning.

µNH3 = [2Go
NH3

+ 2RT lnaNH3]

µN2 = [Go
N2

+ RT lnaN2 ]

µH2 = [3Go
H2

+ 3RT ln aH2]
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where

aNH3 =
pNH3

po

aN2 =
pN2

po

aH2 =
pH2

po
.

Preview The change in free energy is

∆µ = [2µo
NH3

− (µo
N2

+ 3µo
H2

)] + 2RT ln aNH3 − RT ln aN2 − 3RT lnaH2

= ∆Go + RT ln
a2

NH3

aN2a
3
H2

where Q =
a2

NH3

aN2
a3

H2

. At equilibrium, ∆µ = 0 and Q = Keq. Thus,

0 = ∆Go + RT lnKeq

and this gets rearranged to

Keq = Kp =
p2

NH3

pN2p
3
H2

= e
−∆Go

RT

which is unitless, recall because each one of those partial pressures has al-

ready been divided by po.

The temperature dependence of the equilibrium con-

stant

The temperature dependence of the equilibrium constant is found using the
vant Hoff equation, which we saw earlier when first introducing the Gibbs

free energy. In this section, we derived

Kp = e−
∆Go

RT .

relating Kp with ∆Go. However, this expression cannot be used to find
Kp at different temperatures using ∆Go expressed at 298 K. Namely, it
might be tempting to use the above expression and insert into it a different

temperature to get Kp at the new temperature. However, this only works if
we know what ∆Go is at the new temperature.
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I won’t derive the vant Hoff equation again. Rather, I’ll just list it here
and if you are interested you can go back to the free energy chapter to see

it derived. The vant Hoff equation is

ln
K(T2)

K(T1)
=

∆H

R

(

1

T1
− 1

T2

)

.

As an aside, you may have noticed in the past that the vant Hoff equation

looks very similar to the Clausius-Clapeyron equation which we invoke when
talking about phase diagrams. You have reason to notice the similarity

because the vant Hoff and Clausius-Clapeyron equations are related.
Consider the following equilibrium

H2O(l) ⇀↽ H2O(g).

The associated equilibrium constant of this phase transition is Kp = p(H2O).

We don’t include the pure liquids or solids in the expression. Remember?
Also we have ∆Hvap for the enthalpy of the transition. Then inserting this
into the vant Hoff equation gives

ln
p(T2)

p(T1)
=

∆Hvap

R

(

1

T1
− 1

T2

)

,

which is the Clausius-Clapeyron equation.

Example

Consider the following reaction

PbCO3(s) ⇀↽ PbO(s) + CO2(g)

where Kp = 2.7×10−8 at 25oC. ∆Ho = 88.3 kJ/mol. Calculate Kp at 1000
K.

Ans: The vant Hoff equation is

ln
K2

K1
= −∆H

R

(

1

T2
− 1

T1

)

.

Plugging numbers into the equation then gives

ln
K2

K1
= −88, 300

8.314

(

1

1000
− 1

298

)

= 25.019.

Solving for K2 gives

K2 = K1e
25.019 = 1.98× 103.

So one sees that the equilibrium constant went from 10−8 to 103 by changing

the temperature. One could have already predicted this trend qualitatively
by recalling LeChatelier’s principle.
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Example

Calculate the equilibrium constant, Kp for the following reaction, first at

298 K, and then at 900 ◦C

CH4(g) +
1

2
O2(g) ⇀↽ CH3OH(l). (21.12)

Given:
Compound ∆Ho

f (kJ/mol) ∆Go
f (kJ/mol)

CH4 (g) -74.87 -50.8
CH3OH (l) -277.0 -174.7

Ans: We first need to find out what ∆Grxn and ∆Hrxn is at 298 K using
the provided information in the table.

∆Grxn = ∆Go
f (CH3OH, l)− ∆Go

f (CH4, g)

= −174.7 + 50.8

= −123.9kJ

∆Hrxn = ∆Ho
f (CH3OH, l)− ∆Ho

f (CH4, g)

= −277.0 + 74.9

= −202.1kJ.

Using this, we can find Kp at 298 K

Kp = e−
∆Grxn

RT

= e
123.9×103

(8.314)(298)

= 5.22× 1021.

To get Kp at the 1173 K, we use the vant Hoff equation and assume that

∆Hrxn remains temperature independent.

ln
K2

K1
= −∆Hrxn

R

(

1

T2
− 1

T1

)

=
202, 100

8.314

(

1

1173
− 1

298

)

= −60.848.

Then

K2 = K1e
−60.848 = 1.96× 10−5.

Note that we could have qualitatively guessed this knowing LeChatelier’s
principle.
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Example

Silver (I) oxide forms from silver and oxygen by the following reaction

4Ag(s) + O2(g) ⇀↽ 2Ag2O(s).

What is the pressure of O2 in equilibrium with Ag2O and Ag at 25oC? At
what temperature would the pressure of O2 be equal to 1 atm.

Given:
Compound ∆Ho

f (kJ/mol) ∆Go
f (kJ/mol)

Ag2O (s) -31.1 -11.32
Ans: First, evaluate what ∆Grxn and ∆Hrxn are at 298 K.

∆Grxn = 2∆Go
f(Ag2O, s) = −22.64kJ

∆Hrxn = 2∆Ho
f(Ag2O, s) = −62.2kJ

Think about why we only included Ag2O in the calculations. Why were

Ag(s) and O2(g) left out? Presumably you come to the conclusion that
∆Go

f and ∆Ho
f for things in their standard states is defined to be zero.

Next, we calculate Kp

Kp = e−
∆Grxn

RT

= e
22.64×103

(8.314)(298)

= 9302.

Finally, how is Kp linked to the pressure of oxygen? We know that pure
liquids and solids are never included in the equilibrium constant. As a
consequence,

Kp =
1

pO2
.

Solving for pO2 then gives

pO2 = 1.07× 10−4bar.

Part 2 of the problem wants us to get the temperature where Kp = 1.
Using the vant Hoff equation

ln
K2

K1
= −∆Hrxn

R

(

1

T2
− 1

T1

)

ln
1

9302
= −62.2(1000)

8.314

(

1

T2
− 1

298

)

we solve for T2 to get

T2 = 468.5K.
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Equilibrium, kinetic perspective

From a kinetics perspective (something we will see in a few chapters), the

chemical equilibrium is the state reached by a reaction mixture when the
rates of the forward and reverse reactions equal.
Consider the reaction

N2O4(g) ⇀↽ 2NO2(g).

The rate of the forward reaction is

kf [N2O4].

The rate of the reverse reaction is

kr[NO2]
2.

In the rate expressions, kf and kr are called rate constants. Again, we will

see more of this later in the kinetics section.
At equilibrium, the forward and reverse rates equal

kf [N2O4] = kr[NO2]
2.

The equilibrium constant is then the ratio of the forward and reverse rate

constants. We can see this explicitly

Kc =
kf

kr
=

[NO2]
2
eq

[N2O4]eq
.

Similarly, consider another generic reaction

A + B ⇀↽ C

The rate of the forward reaction is

kf [A][B].

The rate of the reverse reaction is

kr[C].

At equilibrium, the forward and reverse rates equal

kf [A][B] = kr[C].
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The equilibrium constant is then the ratio of the forward and reverse rate
constants

Kc =
kf

kr
=

[C]eq
[A]eq[B]eq

.

An analogous argument can be used in either example to relate Kp (partial
pressures instead of concentrations) to the forward and reverse rate constants

of a process.

Just like above, if the overall reaction occurs by a multistep mechanism,
one can show that the equilibrium constant equals a product of the ratio of

rate constants with one rate constant ratio for each step of the mechanism.
Finally, write the equilibrium constant without units here to stay consistent
with the above thermodynamic treatment using unitless activities.

Using the equilibrium constant

The equilibrium constant of a reaction can tell you a number of things.

• By looking at it, you can tell whether a particular equilibrium favors
the products or reactants. Obviously the bigger the equilibrium con-

stant is the more the products are favored. So if you see numbers that
are much greater than 1, say 108, then we know that the products are

favored. If you see numbers that are smaller than say 10−3 you know
that the reactants are favored.

• When the equilibrium constant is about 1 (neither large nor small)
neither reactants nor products are strongly favored.

• By looking at it and the reaction quotient, Q, you can tell the direction
of a reaction.

• You can calculate the equilibrium concentration of a species of interest
using it.

Example 1

Consider the synthesis of NH3 from its elements

N2(g) + 3H2(g) ⇀↽ 2NH3(g).
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At 25 ◦C Kc = 4.1× 108 (obviously the products are favored). Suppose the
equilibrium mixture is 0.01M N2 and 0.01M H2. Using Kc we can get the

concentration of NH3

Kc =
[NH3]

2

(0.01)(0.01)3
= 4.1× 108.

We find that

[NH3] = 2.025M.

There is a whole lot more product than there are reactants at equilibrium,

as predicted by the large Kc value. Conversely if the reaction had an equilib-
rium constant of 4.6×10−31 you would immediately say that at equilibrium

there is a whole lot more reactants than products.

Example 2

Suppose a gaseous mixture from an industrial plant has the following com-
position at 1200 K.

CO(g) + 3H2(g) ⇀↽ CH4(g) + H2O(g)

• 0.01M CO

• 0.02M H2

• 0.001M CH4

• 0.001M H2O.

The equilibrium constant is Kc = 3.92 at that temperature (not particularly
large). Which way does the reaction go?

Ans: We first determine the reaction quotient Q and relate it to Kc. The

reaction quotient Q has the same form as the equilibrium constant but has
concentration values that are not necessarily those at equilibrium. In this

particular case,

Q =
[CH4][H2O]

[CO][H2]3

=
(0.001)(0.001)

(0.01)(0.02)3

=
(0.001)2

0.08
= 12.5.
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Compare this with Kc. You see that Q > Kc so the reaction will proceed
left towards more reactants.

To summarize, for a generic reaction

αA + βB ⇀↽ γC + δD

Q =
[C]γ [D]δ

[A]α[B]β

If

• Q > Keq, the reaction goes left

• Q < Keq, the reaction runs right

• Q = Keq, the reaction doesn’t move since its already at equilibrium

Example 2a, another reaction quotient problem

A 50 L reaction vessel contains 1 mol N2, 3 mol H2 and 0.5 mole NH3. Will
more NH3 be formed or will it dissociate when the mixture goes to equilib-

rium at 400 ◦C. The equilibrium constant is Kc = 0.5 at this temperature.

N2(g) + 3H2(g) ⇀↽ 2NH3(g)

Ans:

Q =
[NH3]

2

[N2][H2]3
.

The concentration of the various species are

[NH3] =
0.5mol

50L
= 0.01M

[N2] =
1.0mol

50L
= 0.02M

[H2] =
3.0mol

50L
= 0.06M.

Put it all together

Q =
(0.01)2

(0.02)(0.06)3
= 23.15.

So Q > Kc therefore the reaction runs left.
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Example 2b, another reaction quotient problem

Carbon monoxide and hydrogen react in the presence of a catalyst to form

methanol

CO(g) + 2H2(g) ⇀↽ CH3OH(g).

An equilibrium mixture of these three substances is suddenly compressed so

the final volume is half the initial value. In what direction does the reaction
go as a new equilibrium is established?

Ans: Initially

Keq = Kc =
[CH3OH ]

[CO][H2]2
.

After compression, the volume decreases by half, hence the old equilib-
rium concentration of each doubles.

Q =
2[CH3OH ]

2[CO]4[H2]2

=
1

4

[CH3OH ]

[CO][H2]2

=
1

4
Keq.

Since Q < Keq the reaction goes to the right, more products.

Example 3, determining equilibrium concentrations

In aqueous solution, iodide anions and molecular iodine reach an equilibrium
in which triiodide is formed

I−(aq) + I2(aq) ⇀↽ I−3 (aq).

The equilibrium constant is Kc = 759 at 25 ◦C. Calculate how much iodine
remains in the solution as I2 if 0.025 mol KI and 0.05 mol I2 are dissolved

together in 1 dm3 of H2O.

Ans: Starting values

• I− = 0.025M

• I2 = 0.05M
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I− + I2 ⇀↽ I−3
(0.025M − α)(0.05− α) α

From the equilibrium constant, we get

Kc =
[I−3 ]

[I−][I2]

=
α

(0.025− α)(0.05− α)
= 759.

This can be solved for α

α = 759(0.025− α)(0.05− α)

= 759(0.00125− 0.075α + α2)

to get

α2 − 0.0751 + 0.00125 = 0.

This is a quadratic equation, which we all know how to solve. We get

α = 0.0376± 0.0126.

For this to be physical, we must take the negative solution (think about it).

Thus

α = 0.025M

and the desired concentration is

[I2] = 0.05− α

= 0.05− 0.025 = 0.025M.

Example 3a, determining equilibrium concentrations

Consider the gas phase reaction

N2O4(g) ⇀↽ 2NO2(g)

If 1 mol of N2O4 is introduced into a container and is allowed to reach

equilibrium at a total gas pressure of ptot bar, what are the equilibrium
concentrations of each species.
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Ans:

N2O4(g) ⇀↽ 2NO2(g)

(1 − α) 2α

The total moles of gas molecules is (1−α)+ 2α = (1+ α). Thus the partial
pressures of the different species are

PN2O4 =
(1 − α)

(1 + α)
ptot

PNO2 =
2α

(1 + α)
ptot.

Divide each partial pressure by 1 bar to make the numbers unitless since we
deal with activities.

Kp =
p2

NO2

PN2O4

=

(

2α
1+α

ptot

)2

(

1−α
1+αptot

)

=
4α2ptot

(1 − α2)
.

We get

Kp =
4α2ptot

(1− α2)
.

Hence if you know Kp from thermodynamic data (∆G data), the value of
α can be found and the equilibrium concentrations of each species can be

determined.

Additional examples

Example, applying stoichiometry to an equilibrium mixture

Carbon monoxide and hydrogen react according to the following equation

CO + 3H2 ⇀↽ CH4 + H2O.

When 1 mole of CO and 3 mole of H2 are placed in a 10 L vessel at 927
◦C and are allowed to come to equilibrium, the mixture contains 0.387 mole
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H2O. What is the molar composition of the equilibrium mixture. That is,
how many moles of each substance are present?

Ans:

CO + 3H2 ⇀↽ CH4 + H2O

(1 − α) 3(1− α) α α

But we know α = 0.387mol. Trivially then

• [CO] = 0.613mol
10L

• [H2] = 1.839mol
10L

• [CH4] = 0.387mol
10L

• [H2O] = 0.387mol
10L

Example, degree of dissociation

Estimate the degree of dissociation at equilibrium for the following reaction

H2O(g) → H2(g) +
1

2
O2(g).

The standard Gibbs energy of reaction for the decomposition is ∆G = 118

kJ/mol at 2300K. Make reasonable simplifications or assumptions about α.
Ans:

H2O(g) → H2(g) +
1

2
O2(g)

(1− α) α
α

2

The total number of moles of gas molecules is

ntot = (1 − α) + (α) +
α

2
= 1 +

α

2
.

The partial pressures are then

pO2 =
α
2

(1 + α
2 )

ptot

pH2 =
α

(1 + α
2 )

ptot

pH2O =
1 − α

(1 + α
2 )

ptot
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where ptot = 1 bar. The equilibrium constant is

Keq =
p

1
2
O2

pH2

pH2O
.

Note that we have divided all pressures by po so it is unitless

Keq =
α

3
2

√
2
√

1 + α
2 (1− α)

.

We now make a simplification, namely that α is small so that

Keq ' α
3
2√

2
√

1(1)

' α
3
2√
2

= e
−∆Go

RT .

When this is worked out

α
3
2 =

√
2(0.002) = 0.0029

α = 0.0205,

meaning that approximately 2 percent of the water has decomposed.

Example, degree of dissociation

The standard Gibbs free energy of reaction for the decomposition of water

H2O(g) → H2(g) +
1

2
O2(g)

is 135.2 kJ/mol at 2000K. Suppose steam at 200 kPa is passed through a
tube furnace at that temperature. Calculate the mole fraction of O2 present
in the output gas stream.

Ans:

H2O(g) → H2(g) +
1

2
O2(g)1− α α

1

2
α

Keq =
p

1
2
O2

pH2

pH2O
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where again we have already divided each partial pressure by po = 1 bar to
make this unitless and also where the total moles of gas molecules is (1+ α

2 )

The partial pressures are

pO2 =
α
2ptot

(1 + α
2 )

pH2 =
αptot

(1 + α
2 )

pH2O =
(1− α)ptot

(1 + α
2 )

.

Putting it together gives

Keq =
α

3
2
√

ptot√
2
√

1 + α
2 (1 − α)

.

Now, assume that α is small, smaller than 1.

Keq ' α
3
2
√

ptot√
2
√

1(1)

where ptot = 2 bar. This yields

Keq = α
3
2 = e

−∆Go

RT = e
−135200

RT

thus

α
3
2 = 0.00029

α = 0.0044.

But we’re not completely done yet. We need 1
2α for O2 so

1

2
α = 0.00221.

This is the desired mole fraction of O2. Note that if you run the problem

the same way using the Vant Hoff equation you will find the same answer.

Catalysts and the equilibrium position

Catalysts do not change the position of equilibrium. This can be
shown mathematically below.
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Let εcat be the reduction in activation energy due to the catalyst. Now
let the forward and backward activation energies with no catalyst be εf

a and

εr
a respectively. What follows is basically a preview of the kinetics section of

the class since we will take a kinetics perspective to equilibrium and of the
equilibrium constant.

The Arrhenius equation (shown later, but assume it for now) for the
forward and reverse rate constants in the presence of the catalyst is

kf = Ae
−(ε

f
a−εcat)
RT

kr = Ae
−(εr

a−εcat)
RT .

The equilibrium constant is the ratio of the forward to reverse rate constants

K =
kf

kr
=

Ae
−ε

f
a

RT e
εcat
RT

Ae
−εr

a
RT e

εcat
RT

=
e

−ε
f
a

RT

e
−ε

f
a

RT

=
kf (no catalyst)

kr(no catalyst)
.

Thus, we see that K does not change with the presence of the catalyst. The

equilibrium position is maintained. The only difference is that the catalyst
has made it easier to achieve the equilibrium point by lowering all barriers
to reaching it.

Le’Chatelier’s Principle

I’m getting tired. So I’m sure that you can motivate Le’Chatelier’s principle

for yourself. Let’s just walk through the various scenarios.

Le’Chatelier, changing the volume

If we are dealing with gases, decreasing the volume has the effect of increas-

ing the pressure of the system. In the ideal gas scenario, we’ve already seen
that Boyle’s Law describes an inverse relationship between a gas’ volume
and pressure. Note that we are implicitly saying that the pressure of both

the reactants and products will change. What we then find, if we look at
an equilibrium constant, is that increasing the pressure will favor moving
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the reaction towards the direction that produces fewer molecules. So for
example, if we have the generic gas phase reaction

A(g) + B(g) ⇀↽ C(g),

decreasing the volume of the container will increase the pressures of species
A, B, and C and the reaction will favor moving towards the products in

response to this change. Conversely, increasing the volume of the container
will decrease all of the pressures and the resulting equilibrium constant will

suggest that the reaction will move towards the reactants.
Similarly, increasing the volume has the same effect as decreasing the

pressure of the system. The reaction moves in the direction which produces
more molecules. In all cases, the equilibrium constant does not change.

Example

Consider an increase in the pressure of the generic reaction (this means we
are magically, decreasing the volume of the container)

A ⇀↽ 2B

where

Keq =
p2

B

pA
.

In response, le’Chatelier’s principle simply says that the reaction will go to-
wards more reactants in order to reduce the overall number of gas molecules.

We can show this quantitatively. Starting with

A(g) ⇀↽ 2B(g)

1− α ⇀↽ 2α

the total number of moles in the reaction is

ntot = (1 − α) + 2α = (1 + α).

At equilibrium, the mole fractions of A and B are

χA =
1 − α

1 + α

χB =
2α

1 + α
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and the partial pressures of each species are

pA =

(

1 − α

1 + α

)

ptot

pB =

(

2α

1 + α

)

ptot

where ptot = pA + pB. The equilibrium constant is then

Keq =
p2

B

pA

=

4α2

(1+α)2
p2

tot
(

1−α
1+α

)

ptot

=
4α2

(1 + α)(1− α)
ptot

=

(

4α2

1 − α2

)

ptot

or

Keq =
4α2

1 − α2
ptot.

Now solve for α

(1− α2)Keq = 4α2ptot

Keq − α2Keq = 4α2ptot

Keq − α2Keq = 4α2ptot

Keq = α2Keq + 4α2ptot

Keq = α2(Keq + 4ptot)

to get

α2 =
Keq

Keq + 5ptot

=
1

1 + 4ptot

Keq

.

We choose the positive solution since the negative solution of the square
root is unphysical. Note that Keq is a constant here

α =
1

√

1 + 4ptot

Keq

.
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You can see here that if ptot = pA + pB increases then α just decreases and
more of the reactants are left. The reaction effectively shifts to the left.

Another example

Consider the reaction

N2(g) + 3H2(g) → 2NH3(g).

The overall number of gas moles decreases with the reaction moving towards

products. Le’Chatelier’s principle therefore says that an increase in the
pressure due to both reactants and products will push the reaction to the

right. Let’s see this quantitatively. Starting with

• partial pressure NH3 = χNH3ptot

• partial pressure N2 = χN2ptot

• partial pressure H2 = χH2ptot,

the equilibrium constant can be written as

Keq =
p2

NH3

pN2p
3
H2

=
χ2

NH3
p2

tot

χN2ptotχ3
H2

p3
tot

=
χ2

NH3

χN2χ
3
H2

(

1

p2
tot

)

.

Let kx =

(

χ2
NH3

χN2
χ2

H2

)

, then

Keq =
kx

p2
tot

.

So you can see that if ptot = pN2 + pH2 + pNH3 increases two times, then
kx must increase four times to allow Keq to remain the same. Next, if kx

increases four times then χNH3 must increase meaning that the reaction
shifts to the right.
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Le’Chatelier, changing the temperature

The effect of changing the system’s temperature depends on whether the re-

action involved is exothermic or endothermic. If it is exothermic, le Chatelier
says that heating the system will shift the reaction in the direction which ab-

sorbs energy (i.e. the endothermic direction). If the reaction is endothermic,
heating the system will move the reaction towards more products products.

This can be shown mathematically.

∆Go = −RT ln Keq

thus

lnKeq = −∆Go

RT

where ∆Go = ∆Ho − T∆So and

lnKeq = −∆Ho

RT
+

∆So

R
.

Now, if you make the assumption that ∆Ho and ∆So are independent of T
over the range studied

d lnKeq

dT
= ∆Ho

RT 2 . (21.13)

Recall that this is called the Vant Hoff equation. But it’s really the same as
the Gibbs-Helmholtz equation seen earlier.

You can seen that for an exothermic reaction ∆Ho is negative. Keq will
therefore decrease giving you more reactants. Conversely, if the reaction is

endothermic, ∆Ho is positive and Keq will increase giving more products.
Let’s integrate the Vant Hoff equation to see what happens

ln Keq|Keq2

Keq1
= − ∆Ho

RT
|T2
T1

ln Keq2 − lnKeq1 =
−∆Ho

R

(

1

T2
− 1

T1

)

.

Therefore

lnKeq2 = lnKeq1 + −∆Ho

R

(

1
T2

− 1
T1

)

. (21.14)

This describes how the equilibrium constant will change with temperature.
Alternatively, sometimes people write

ln
Keq2

Keq1
= −∆Ho

R

(

1
T2

− 1
T1

)

. (21.15)
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Le’Chatelier, adding and removing reactants or products

This will shift the reaction left or right, depending on what you add or what

you remove. For example, adding products to a system at equilibrium will
shift the reaction towards reactants. Likewise, removing reactants will shift

the reaction to the reactants side. Adding reactants will shift the reaction
towards products. Likewise, removing products will shift the reaction this

way. One can quantitatively see this by looking at the equilibrium constant
and playing with the values in the numerator or denominator.

Le’Chatelier, changing the pressure with an inert gas

One can change the pressure of a reaction using an inert gas. The case of
adding a reactive gas is the same as adding more reactant or more product

to the mix so we don’t consider it here. In the inert gas case, increasing or
decreasing the overall pressure with it will not change the equilibrium con-
stant since this term is not present in either the numerator or denominator

of Keq. So nothing happens.

Example

A and B react to produce C according to the following generic chemical

reaction

A + B → C.

Additional amounts of A and B are added to an equilibrium mixture of A,

B, and C such that when equilibrium is again attained, the amounts of A
and B are doubled in the same volume. How is the amount of C changed?

Ans: Originally

Keq =
[C]

[A][B]
.

At the new equilibrium point, you have 2[A] and 2[B]. Since Keq does not

change, for the ratio to stay the same, we must have [C]new = 4[C].

Le’Chatelier, catalyst

Adding a catalyst has no effect on the equilibrium position. You just get

there faster.
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Chapter 22

Recap

I want to recap everything before moving into the kinetics part of this class.

At this point, we should be able to take data from the literature in
terms of ∆Ho

f as well as heat capacities and calculate ∆H and ∆S at any

temperature as well as calculate ∆G and Keq (actually Kp).

We will run though 2 such examples where you will “put it all together”.

Example 1

Silver carbonate decomposes on heating. Calculate the equilibrium constant
at 110o C for the reaction

Ag2CO3(s) → Ag2O(s) + CO2(g)

given (units of kJ/mol)

∆Ho
f(Ag2CO3(s)) = −501.4

∆Ho
f (Ag2O(s)) = −29.07

∆Ho
f (CO2(g)) = −393.5

and (units of J/mol K)

∆So(Ag2CO3(s)) = 167.3

∆So(Ag2O(s)) = 121.7

∆So(CO2(g)) = 213.7

257
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and (units of J/mol K)

Cp(Ag2CO3(s)) = 109.6

Cp(Ag2O(s)) = 68.6

Cp(CO2(g)) = 37.1.

Ans: We have to get ∆S and ∆H at 383K (110o C).

∆S383 = ∆So
298 + C̄pln

T2

T1

∆H383 = ∆Ho
298 + C̄p(T2 − T1).

But first we want ∆S298 and ∆H298 to allow the above Kirchoff type eval-

uation. Plugging in the numbers from our table we get

∆So
298 = (213.7) + (121.7)− (167.3) = 168.1J/K

and

∆Ho
298 = (−393.5)− (29.07) + (501.4) = 78.83kJ.

Next,

∆S383 = 168.1 + C̄p ln
383

298

where

C̄p = 37.1 + 68.6− 109.6 = −3.9J/K.

We therefore have

∆S383 = 167.12J/K.

At this point, we go after the enthalpy to get

∆H383 = 78.83− 3.9

1000
(383− 298)

giving

∆H383 = 78.5kJ.

Now, we need to calculate the free energy change at 383K

∆G383 = ∆H383 − T∆S383

= 78.5− (383.15)(0.167)
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yielding

∆G383 = 14.67kJ.

The equilibrium constant at 383 K is therefore

Kp = e
−∆G383

RT .

Plugging in the numbers, we get

Kp,383 = 0.01.

Note that if you evaluate this using the Vant Hoff approach, you will (or

should) obtain the same answer. Presumably you can do this on your own
in your leisure time.

Example 2

The standard enthalpy of formation of H2O is ∆Ho
298 = −241.8 kJ/mol.

Use the mean heat capacities and standard entropies listed to estimate the

percent dissociation of water vapor at 2000 ◦C and 0.01 bar.

The reaction of interest is

H2O(g) ⇀↽ H2(g) +
1

2
O2(g).

We have

∆Ho
298 = 241.8kJ

where the entropies are (units of J/mol K)

∆So
298(H2O(g)) = 188.3

∆So
298(H2(g)) = 130.7

∆So
298(O2) = 205.1

along with the following heat capacities (units of J/mol K)

Cp(H2O(g)) = 33.6

Cp(H2(g)) = 28.8

Cp(O2(g)) = 29.4.
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From this, we get the net entropy change

∆So
298 = (

1

2
(205.1) + 130.7)− 188.3

= 44.95J/K.

Likewise, we can find the standard free energy change

∆G298 = ∆H298 − T298∆S298

= 241.8− 298

1000
(44.95)

= 241.8− 13.38

= 228.4kJ.

From the table, the net heat capacity of the reaction is

C̄p =
1

2
(29.4) + 28.8− 33.6

= 9.9J/K.

Now, let’s get the enthalpy and entropy at 2273K using a Kirchoff type
approach. First, the enthalpy

∆Ho
2273 = ∆Ho

298 + C̄p(T2 − T1)

= ∆Ho
298 + 9.9(2273− 298)

= 241.8 + 19.6

= 261.35kJ.

Next, the entropy

∆So
2273 = ∆So

298 + C̄p ln
T2

T1

= 44.95 + 9.9 ln
2273

298
= 65.06J/K.

Finally, the free energy change at 2273K.

∆G = ∆H − T∆S

∆G2273 = 261.35− 2273(0.065)

= 113.46kJ.
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At this point, use ∆G2273 to get the equilibrium constant at 2273 K

Kp = e
−∆G2273

RT

= e−6.0.

Thus,

Kp = 0.0025.

One can calculate this number using the Vant Hoff approach. You will (or

should) get an identical number.
We’re not done yet. Gotta find the partial pressures at equilibrium

pO2 =
1
2α

(1 + 1
2α)

ptot

pH2 =
αptot

(1 + 1
2α)

pH2O =
1 − α

1 + 1
2α

ptot.

Plug this into Kp

Kp =

pO2
po pH2

pH2O

=
[

1
2
α

(1+ 1
2
α)

ptot]
1
2 [ αptot

(1+ 1
2
α)

]

[ 1−α

1+ 1
2
α
ptot]

=

√
0.5α

3
2 p

1
2
tot

(1− α)(1 + 1
2α)

1
2

= 0.0025.

To simplify this expression, assume that α is small compared to 1 so the
denominators drop out.

Kp '
√

0.5α
3
2 (0.01)

1
2 = 0.0025

or

α
3
2 = 0.0353

α = 0.1076.

Done.
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Chapter 23

Kinetics

Definition: The rate of a reaction is the amount of product formed or the
amount of reactant used up per unit of time (an increase in molar concentra-

tion of the product per unit time) or (a decrease in the molar concentration
of a reactant per unit time). The units are in mol/l · s.

Dependence of the rate on concentration

Empirically it has been found that a reaction rate depends on the concen-

trations of reactants. So for example, considering the reaction

2NO2(g) + F2(g) → 2NO2F (g)

the reaction rate doubles when the NO2 concentration doubles. Alterna-

tively, doubling the concentration of F2 doubles the rate. We empirically
find that the experimental rate is described by the equation

Rate = R = k[NO2][F2]

where k (the rate constant) is a proportionality constant and is constant
at a fixed temperature. However, it varies with temperature as we will

see, causing the rate to change. We will return to this later. Finally, the
units of k will depend on the actual rate law (the above equation with the

concentrations of reactants).
In general for a reaction

aA + bB → cC + dD

we have the following

R = k[A]m[B]n (23.1)

263
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where m and n are frequently integers but not necessarily so. m and n must
be determined experimentally and cannot be obtained by simply looking at

the balanced equation. The overall order of the reaction is the sum of all
the exponents (i.e. m+n).

Recall for the previous reaction we had

2NO2(g) + F2(g) → 2NO2F (g).

The associated rate law was

R = k[NO2]
1[F2]

1.

Thus, you see that m = 1 and n = 1 has no relation with the reaction’s

actual stoichiometry. This is a second order (m+n=2) process.

Reaction order

Definition: The reaction order at constant temperature with respect to a

given species is the exponent of the species in the rate law. So for example

R = k[NO2][F2]

is 1st order in NO2 and 1st order in F2. The overall order of the reaction is
2 since this is the sum of the exponents.

Examples of reaction order

A. The conversion of cyclopropane to propylene

C3H6(g) → CH2 = CHCH3(g).

The rate law is found to be

R = k[C3H6].

The reaction is 1st order in C3H6 and 1st order overall.
B. The reaction of nitric oxide with hydrogen.

2NO(g) + 2H2(g) → N2(g) + 2H2O(g).

Experimentally, one finds that the rate law is

R = k[NO]2[H2]



265

which is 2nd order in NO and 1st order in H2, so the reaction is 3rd order
overall.

Although these reaction orders happen to have whole numbers, they can
be fractional numbers, negative (i.e. the reaction rate slows down when a
reactant is present), or even zero (i.e. the reaction rate is independent of

the reactant).

The rate of a reaction

By convention, the rate of a reaction, R, is defined in terms of the rate of
change of the concentration of a reactant or a product.

R = 1
νi

d[Xi]
dt

= 1
νiV

dξ
dt

(23.2)

where

• νi reflects the stoichiometry of the species in a reaction

• [Xi] is the concentration of the species of interest

• V is a volume

• ξ is called the extent of reaction and has unit of moles

So for example, the rate of

A + 2B ⇀↽ X

can be described by

R = −d[A]

dt
= −1

2

d[B]

dt
=

d[X ]

dt
.

This definition has the advantage that the same rate of reaction R is

obtained no matter which reactant or product is studied. However, the
rate of reaction does depend on how the stoichiometric equation

is written. In discussing kinetics, equations with fractional stoi-
chiometries are avoided even though this is completely legitimate

in thermodynamics.
To summarize

• If the reaction goes forward, R is positive

• If the reaction goes backwards, R is negative



266 CHAPTER 23. KINETICS

• If the reaction is at equilibrium, R equals zero

We will generally be concerned with reactions occurring at constant vol-

ume (not to be confused with the thermodynamics version.) We are still
conducting the reaction at constant pressure. All we mean here is that the

volume of the reaction vessel does not change.

Example, rate of reaction

The reaction

H2 + Br2 → 2HBr

is carried out in a 0.25L reaction vessel. The change in the amount of Br2

in 0.01s is -0.001 mol.

• (a) What is the rate of conversion dξ
dt

• (b) What is the rate of reaction, R

• (c) What are the values of d[H2]
dt

, d[Br2]
dt

, and d[HBr]
dt

Ans:

(a) dξ
dt

= 0.001
0.01 = 0.1mol/s

(b) R = 1
V

dξ
dt

= 1
0.25L

(0.1mol/s) = 0.4M/s

(c)

d[H2]

dt
=

−1

V

dξ

dt
= −0.4M/s

d[Br2]

dt
=

−1

V

dξ

dt
= −0.4M/s

d[HBr]

dt
=

2

V

dξ

dt
= +0.8M/s.

Example, dependence of reaction rate on the chemical reac-
tion

Show that different rates are obtained when the same reaction is written
different ways

2A + B → 2C

A +
1

2
B → C
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Ans: According to the first stoichiometric reaction we get

R = −1

2

d[A]

dt
= −d[B]

dt
=

1

2

d[C]

dt
.

According to the second stoichiometric reaction we get

R = −d[A]

dt
= −2

d[B]

dt
=

d[C]

dt
.

This problem of varying reaction rate definitions is avoided by not using
fractional numbers for the stoichiometry.

Time-dependent concentrations

Rate laws are differential equations. You have to integrate them if you

want to find the concentration of a species as a function of time. They are
frequently complicated though. As a consequence, if one cannot solve them

analytically (paper and pencil), one must do it numerically. Here are some
simple cases for reactions that are zeroth order overall, first order overall,

and second order overall. These we can treat analytically. We will also
consider some special higher order reactions.

Zeroth order overall

A reaction is zeroth order if the reaction rate is independent of the concen-
tration of the reactants.

Consider the generic reaction

A → B

where the reaction rate is

−d[A]

dt
= k.

This expression can be integrated to find the time-dependent concentration

of A.

d[A]

dt
= −k

[A2]− [A1] = −k(t2 − t1)



268 CHAPTER 23. KINETICS

Now if t1 = 0 then [A1] = [Ao].(relabel [A2] as [A(t)]) The final expression
is

[A(t)] = [Ao] − kt.

This plots as a straight line with a negative slope of k and an intercept of
[Ao].

First order overall, style 1

Consider the generic reaction

A → B.

From the previous section along with knowledge that the reaction is 1st
order overall, we find that

R = −d[A]

dt
= k[A].

This can be solved for the concentration of A as a function of time.

−d[A]

dt
= k[A]

−d[A]

[A]
= kdt

d[A]

[A]
= −kdt

ln
[A2]

[A1]
= −k(t2 − t1)

[A2]

[A1]
= e−k(t2−t1).

Now if t1 = 0 then [A1] = [Ao], the concentration at time zero. The final
solution is an exponential decay.

[A(t)] = [Ao]e
−kt.

First order overall, style 2

Consider the reaction

aA → B.
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From the previous section along with knowledge that the reaction is 1st
order overall, we find that

R = −1

a

d[A]

dt
= k[A].

This can be solved to yield the concentration of A as a function of time. I

think you can already guess how this will turn out.

−d[A]

dt
= ak[A]

d[A]

dt
= −(ak)[A].

Now let keff = ak

d[A]

dt
= −keff [A]

and the rest can be solved like before to yield

[A(t)] = [Ao]e
−keff t.

Other miscellaneous things, 1/e time, half life and lifetime

The lifetime of the decay is defined as 1
k

or 1
keff

in the second case. For the

1/e time this is where
[A(t)]
[A(0)] = e−1. One then finds that kt = 1 or t 1

e
= 1

k
.

The halflife is defined as the time it takes for one to lose half the initial
population of the species of interest. This is easily determined to be

[A]

[Ao]
= 0.5 = e

−keff t 1
2

ln(0.5) = −keff t 1
2
.

The halflife is then

t 1
2

=
ln(0.5)

−keff
.

This is a general result.
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Example

Consider the following reaction

2N2O5(g) → 4NO2(g) + O2(g).

The experimentally determined rate law is

R = −1

2

d[N2O5]

dt
= k[N2O5].

We must integrate this equation to get the concentration (or population)
of N2O5 as a function of time

−d[N2O5]

[N2O5]
= 2kdt.

Integrate this to get

− ln[N2O5] = 2kt + const

[N2O5] = Ae−2kt

where A = [N2O5]0(t = 0). The desired solution is then

[N2O5(t)] = [N2O5]0e
−2kt

which is an exponential decay.

Second order overall, style 1

A reaction is second order overall if the reaction rate is proportional to
the square of the concentration of one reactant or to the product of the

concentrations of two reactants

Consider the reaction

A → B.

We know from the intro to this section and from the fact that the rate is
second order overall that

R = −d[A]

dt
= k[A]2.
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This can be solved to obtain an expression for the concentration of [A] as a
function of time.

−d[A]

dt
= k[A]2

d[A]

[A]2
= −kdt

∫

d[A]

[A]2
= −

∫

kdt

− 1

[A]

∣

∣

∣

∣

A2

A1

= −k(t2 − t1)

− 1

[A2]
+

1

[A1]
= −k(t2 − t1).

Now, if t1 = 0 then [A1] = [Ao] and

− 1

[A(t)]
+

1

[Ao]
= −kt,

giving our final solution

1

[A(t)]
=

1

[Ao]
+ kt.

Note that a plot of 1
[A]

versus t is linear. The intercept is 1
[Ao]

and the slope

is k.

The halflife is given by the time when [A] = 1
2 [Ao]

1
1
2 [Ao]

=
1

[Ao]
+ kt

2

[Ao]
− 1

[Ao]
= kt

1

[Ao]
= kt.

Thus,

t 1
2

=
1

k[Ao]
.
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Second order overall, style 2

Consider the reaction

aA → B.

We know from the intro to this section and from the fact that the rate is
second order overall that

R = −1

a

dA

dt
= k[A]2

− dA

[A]2
= akdt

−
∫

dA

[A]2
=

∫

akdt

1

[A]

∣

∣

∣

∣

A2

A1

= akt

(

a

[A2]
− 1

[A1]

)

= akt.

If t = 0 then [A1] = [Ao] the concentration at time zero. We get

1

[A(t)]
=

1

[Ao]
+ akt.

You can see that this solution is a line with a slope of k and an intercept of
1

A(0) .

Alternatively, one can rearrange the expression to get

[A(t)] =
[Ao]

1 + akt[Ao]

where the halflife is given by

1
1
2 [Ao]

− 1

[Ao]
= akt1

2

1

[Ao]
= akt1

2

such that

t 1
2

=
1

ak[Ao]
.
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Second order overall, style 3

Another type of second order reaction is one that is first order in A and first

order in B and thus second order overall. Note that we have an analogous
style 4 where there are coefficients in front of each reactant. (maybe this is

a HW problem) The generic reaction of interest is

A + B → C.

Its experimentally determined rate law is

R = k[A][B]

−d[A]

dt
= k[A][B]

where

[A] = [Ao] − x

= a − x

[B] = [Bo] − x

= b − x.

With this notation change,

−d[A]

dt
=

dx

dt
.

Putting everything together gives

dx

dt
= k(a − x)(b − x)

dx

(a − x)(b − x)
= kdt

∫ x

0

dx

(a − x)(b − x)
=

∫ t

0
kdt

kt =

∫ x

0

dx

(a − x)(b − x)
.

At this point, from a table of integrals we find
∫

dx

uv
=

1

k
ln

v

u
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where u = (a − x) and v = (b − x) and k = (b − a). So with regard to our
problem, we get

kt =
1

(b − a)
ln(

(b − x)

(a − x)
)

∣

∣

∣

∣

x

0

=
1

(b − a)

[

ln

(

b − x

a − x

)

− ln

(

b

a

)]

=
1

(b − a)
ln

a(b − x)

b(a− x)

where a = Ao and b = Bo. This gives

kt =
1

Bo − Ao

ln
Ao(Bo − x)

Bo(Ao − x)

where again Ao −x = [A] and Bo −x = [B], resulting in our final expression

kt =
1

[Bo − Ao]
ln

Ao[B]

Bo[A]
.

As you can see life gets nasty pretty fast. What is the halflife of this process?

Reversible first order, approach 1

All of the rate laws considered so far disregard the possibility of a reverse

reaction. Namely, none of them describes the overall rate close to equilib-
rium. This is because at equilibrium the products may be so abundant that
the reverse reaction must be taken into account. As an example, consider

A ⇀↽ B

where the forward rate constant is k1 and the reverse rate constant is k−1.
The forward and reverse rates are therefore

Rf = k1[A]

Rr = k−1[B].

Near equilibrium, the concentration of [A] is reduced by the forward reaction.
However, it is also replenished by the reverse reaction. The net rate of change

of A is thus the sum of these two terms

dA

dt
= −k1A + k−1B.
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Now, note that if there was never any B present initially at t = 0 then
A + B = Ao or B = (Ao − A). Replace this into the above expression.

dA

dt
= −k1A + k−1(Ao − A)

= −k1A − k−1A + k−1Ao.

To simplify things, let k = (k1 + k−1) and a = k−1Ao. We get

dA

dt
= −kA + a

which is called a linear first order non-homogeneous (does not equal zero)
differential equation.

The solution to this can be assembled from the solution to the homoge-
neous version of the same equation along with a particular solution to the

non-homogeneous part.
Homogeneous part

dA

dt
= −kA

dA

A
= −kdt

ln A = −kt + const

giving

A = Ce−kt

where C is a constant.

Particular part Assume that A is a constant. This allows us to account
for the “a” term. This approach is called a trial function or otherwise known

as educated guessing.

A = const
dA

dt
= 0

obviously. So now if we have

dA

dt
= −kA + a

0 = −kA + a

kA = a,



276 CHAPTER 23. KINETICS

yielding the so-called particular solution

A =
a

k
.

Put both the homogeneous solution together with the particular solution

A = Ce−kt +
a

k
.

At this point, we must satisfy the initial boundary condition which states

that at t = 0 A = Ao.

A(t = 0) = Ao = C +
a

k

therefore

C = Ao −
a

k

and

A =

(

Aok − a

k

)

e−kt +
a

k
.

Now let’s consolidate the terms. Recall that k = (k1 + k−1) and a = k−1Ao

to get

A =
Ao(k1 + k−1) − k−1Ao

(k1 + k−1)
e−(k1+k−1)t +

k−1Ao

(k1 + k−1)
.

The desired solution is then

A = Ao

[

k1e−(k1+k−1)t+k−1

(k1+k−1)

]

(23.3)

and since A + B = Ao we can find B from

B = Ao

[

1 −
[

k1e−(k1+k−1)t+k−1

(k1+k−1)

]]

. (23.4)

Finally, as t → ∞ we get the equilibrium value for A

At→∞ → Aok−1

(k1+k−1)
(23.5)

and if A+B = Ao then B = Ao−A, which we can use to find the equilibrium
value for B

Bt→∞ → Ao

(

k1
k1+k−1

)

. (23.6)
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The associated equilibrium constant for the reaction is therefore

Keq =
[B]eq
[A]eq

=

(

k1

k−1

)

.

But you could have already seen that at equilibrium, the forward and reverse

rates equal so that

k1[A] = k−1[B]

or

Keq =
[B]

[A]
=

(

k1

k−1

)

.

Reversible first order, approach 2

Consider the reversible first order reaction

A ⇀↽ B

with a forward rate constant k1 and a reverse rate constant k2. The rate
law for this reversible reaction can be written as

d[A]

dt
= −k1[A] + k2[B].

Now, if the concentration of B is zero initially ([Bo] = 0), [B] = [Ao] − [A]

we get

d[A]

dt
= −k1[A] + k2([Ao]− [A])

= −k1[A] + k2[Ao] − k2[A]

= −(k1 + k2)[A] + k2[Ao]

= −(k1 + k2)

[

[A]− k2

k1 + k2
[Ao]

]

.

At this point, we will depart from the brute force way of solving this problem

(see the last section). We recall that the equilibrium constant of the reaction
is defined as

Keq =
k1

k2
=

[Beq]

[Aeq]
=

[Ao] − [Aeq]

[Aeq]
.
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Therefore

[Ao] − [Aeq ]

[Aeq ]
=

k1

k2

[Ao]k2 − [Aeq]k2 = k1[Aeq]

[Ao]k2 = (k1 + k2)[Aeq],

yielding

[Aeq ] = [Ao]
k2

k1 + k2
.

Use this result in the main expression where we left off to get

d[A]

dt
= −(k1 + k2) [[A]− [Aeq ]]

d[A]

[A] − [Aeq]
= −(k1 + k2)dt

∫

d[A]

[A] − [Aeq]
= −

∫

(k1 + k2)dt

ln([A2] − [Aeq]) − ln([A1] − [Aeq]) = −(k1 + k2)(t2 − t1).

If t1 = 0 we get [A1] = [Ao]. The expression then becomes

ln
[A]− [Aeq]

[Ao] − [Aeq]
= −(k1 + k2)t

[A]− [Aeq]

[Ao] − [Aeq]
= e−(k1+k2)t

[A]− [Aeq] = ([Ao]− [Aeq])e
−(k1+k2)t

where [Ao]− [Aeq ] = k1
k2

[Aeq ] from the definition of the equilibrium constant.
Thus,

[A]− [Aeq] =
k1

k2
[Aeq]e

−(k1+k2)t
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[A] = [Aeq] +
k1

k2
[Aeq]e

−(k1+k2)t

[A] = [Aeq]

(

1 +
k1

k2
e−(k1+k2)t

)

and where recall that [Aeq] = k2
k1+k2

[Ao]. The desired final expression for the
time dependent concentration [A(t)] is therefore

[A(t)] =
(

k2[Ao]
k1+k2

)(

1 + k1
k2

e−(k1+k2)t
)

. (23.7)

What happens when t → ∞? This should look familiar.

Next, we find the time dependent concentration of [B]. Since [B] =
[Ao] − [A] we find

[B] = [Ao] − [A]

= [Ao] −
k2

k1 + k2
[Ao]

(

1 +
k1

k2
e−(k1+k2)t

)

= [Ao]

[

k1 + k2

k1 + k2
− k2

k1 + k2

(

1 +
k1

k2
e−(k1+k2)t

)]

= [Ao]

[

k1 + k2

k1 + k2
− k2

k1 + k2
− k1e

−(k1+k2)t

k1 + k2

]

= [Ao]

[

k1

k1 + k2
− k1

k1 + k2
e−(k1+k2)t

]

.

This results in our desired final expression for [B(t)]

[B(t)] =
k1[Ao]
k1+k2

[1− e−(k1+k2)t] . (23.8)

What happens when t → ∞? This should look familiar.

Consecutive elementary reactions

Some reactions proceed through the formation of an intermediate (I) as seen

in the following consecutive reaction

A → I → P

with a first rate constant ka and a second rate constant kb. More specifically,

one could consider a radioactive decay process such as

U(239) → Np(239) → Pu(239).
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We will get back to this “elementary” terminology in a moment.
To determine the way in which the concentrations of the substances

in such a mechanism depend on time, the rate equations are first written
down for each species. It is then necessary to obtain the solutions of these
simultaneous differential equations.

Variations of the concentrations with time: The rate of decompo-
sition of A is

−d[A]

dt
= ka[A].

The rate of forming I is

d[I ]

dt
= ka[A]− kb[I ].

Likewise, the rate of forming P is

d[P ]

dt
= kb[I ].

At t = 0 we have the initial conditions

• [Ao] is the initial concentration of A

• [I ] = 0

• [P ] = 0

To begin, we solve the first equation to get

[A(t)] = [Ao]e
−kat . (23.9)

Note that this is an exponential decay. Next, we substitute this into the

second equation to get

d[I ]

dt
= ka[Ao]e

−kat − kb[I ]

I
′

+ kb[I ] = ka[Ao]e
−kat.

We re-write this in simpler notation as

I
′

+ kbI = Ce−ka t

where C = ka[Ao].
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This is a 1st order non-homogeneous linear differential equation. We will
solve it via the integrating factor route. (Look back to our math interlude)

Here p(t) = kb and r(t) = Ce−ka t The generic solution for some function y
using integrating factors is found to be

y = e−
R

pdx

[
∫

e
R

pdxr(x)dx + const

]

.

So in our specific case, we get for I

I = e−kbt

[
∫

ekbtr(t)dt + const

]

= e−kbt

[
∫

Cekbte−katdt + const

]

= e−kbt

[
∫

Cekb−ka tdt + const

]

= e−kbt

[

Ce(kb−ka)t

(kb − ka)
+ const

]

=
Ce−ka t

(kb − ka)
+ conste−kbt

where C = ka[Ao]. This gives the general solution

[I ] =
ka[Ao]e

−kat

(kb − ka)
+ C1e

−kbt.

We can determine what C1 is through the constraint that I(t = 0) = 0

I(t = 0) =
ka[Ao]

(kb − ka)
+ C1 = 0.

Therefore

C1 = − ka[Ao]

(kb − ka)
.

Putting it all together, we get the final desired solution for [I(t)]

[I(t)] = ka[Ao]
(kb−ka)

(

e−kat − e−kbt
)

(23.10)
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Finally, we can find out what [P ] is because at all times, [A]+[I ]+[P ] =
[Ao]. Thus

[P ] = [Ao]− [A]− [I ]

= [Ao]− [Ao]e
−kat − ka[Ao]

(kb − ka)

(

e−kat − e−kbt
)

= [Ao]

[

1 − e−kat − ka

(kb − ka)
(e−kat − e−kbt)

]

= [Ao]

[

1 − e−kat − ka

(kb − ka)
e−kat +

ka

(kb − ka)
e−kbt

]

= [Ao]

[

1 +
ka

(kb − ka)
e−kbt −

(

kb − ka − ka

kb − ka

)

e−kat

]

= [Ao]

[

1 +
kae

−kbt

(kb − ka)
− kbe

−kat

(kb − ka)

]

Our final expression for [P (t)], the time-dependent product concentration,

is therefore

[P (t)] = [Ao]
[

1 + (kae−kbt
−kbe−kat)

(kb−ka)

]

. (23.11)

Note that you could also do this by integrating dP
dt = kbI given that you

have I(t). You can do this on your own. You should get the same answer.

Parallel reactions

Here we have two parallel reactions of the initial reactant. Consider the

simultaneous reactions

A → B(with a rate constant, k1)

A → C(with a rate constant, k2).

We solve this as follows.

The rate equation for A is

d[A]

dt
= −k1[A]− k2[A]

= −(k1 + k2)[A]

d[A]

[A]
= −(k1 + k2)dt.
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This leads to the final expression for A(t)

[A(t)] = [Ao]e
−(k1+k2)t . (23.12)

Next, the rate equation for B is

d[B]

dt
= k1[A]

d[B]

dt
= k1[Ao]e

−(k1+k2)t,

which is integrated to obtain

[B] = − k1[Ao]

k1 + k2
e−(k1+k2)t + const.

Now, if at t = 0 we have [B] = 0 we can find the constant of integration

const =
k1

k1 + k2
[Ao].

We put all of this together to get our final expression for B(t)

[B(t)] =
k1[Ao]
k1+k2

[

1 − e−(k1+k2)t
]

. (23.13)

Finally, the rate equation for C is

d[C]

dt
= k2[A]

= k2[Ao]e
−(k1+k2)t.

We integrate this to get

[C] = − k2[Ao]

k1 + k2
e−(k1+k2)t + const.

Next, if we look at the initial conditions, we notice that at t = 0, [C] = 0.
This allows us to find the value of the integration constant giving

const =
k2[Ao]

(k1 + k2)
.

We put it all together now to get our desired final expression for [C(t)]

[C(t)] =
k2[Ao]

(k1 + k2)

[

1 − e−(k1+k2)t
]

. (23.14)

It’s apparent from these equations that the ratio of concentrations of B
and C is always given by k1

k2
which is referred to as the branching ratio.
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Temperature

As noted earlier, the rate of a reaction (in particular, the rate constant)

depends on temperature. In most cases, the rate will increase with temper-
ature. Consider the following reaction

NO(g) + Cl2(g) → NOCl(g) + Cl(g).

The rate constant for this reaction at 25 ◦C is

k25C = 4.9× 10−6L/mols.

But at 35 ◦C the rate constant becomes

k35C = 1.5× 10−5L/mols.

Explanation of the temperature dependence

This will lead to the empirical Arrhenius equation first developed in 1889. A

collision theory picture of reactions assumes that reactants must collide with
some energy greater than a minimum value and with the proper orientation

for the reaction to proceed. This minimum collision energy for the reaction
to occur is called the activation energy εa.

In collision theory, the rate constant, k, for a reaction is given as a

product of 3 factors k = zfp where

• z → collision frequency

• f → fraction of collisions with ε > εa

• p → fraction of collisions with correct orientation.

Here f = e−
εa
RT . One then finds that

k = Ae
−εa
RT (23.15)

which is referred to as the Arrhenius equation after Svante Arrhenius. The
symbol A is related to (pz) and is called the frequency factor. This factor

has a slight temperature dependence but it is usually not huge and can be
ignored.

Next, if

k = Ae
−εa
RT

ln k = ln A − εa

RT
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A plot of ln k versus 1
T then gives εa from the slope. Such a plot is called

(what else)-an Arrhenius plot.

Alternatively, you can express things a little differently to find the
activation energy. Take the temperature derivative of the last expression.

d lnk

dT
=

εa

RT 2

giving

εa = RT 2 d lnk
dT . (23.16)

This is another expression for the activation energy.

Example

The rate constants for the formation of HI

H2(g) + I2(g) → 2HI(g)

at two different temperatures are (both are forward rate constants)

k1 = 2.7× 10−4L/mols(T = 600K)

k2 = 3.5× 10−3L/mols(T = 650K).

Find the activation energy εa

Ans:

k1 = Ae
−εa

R(600)

k2 = Ae
−εa

R(650) .

Then

k1

k2
=

e
−εa

R(600)

e
−εa

R(650)

= e−
εa
R ( 1

600
−

1
650)

ln
k1

k2
= −εa

R

(

1

600
− 1

650

)

ln
2.7× 10−4

3.5× 10−3
=

−εa

8.314

(

1

600
− 1

650

)

.

(Does this formula look familiar?) This yields

εa = 1.66× 105J.
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Example

Acetaldehyde CH3CHO decomposes when heated as follows

CH3CHO(g) → CH4(g) + CO(g).

The forward rate constant at two different temperatures is

k759 = 1.05× 10−31/
√

Ms

k836 = 2.14× 10−21/
√

Ms.

What is the activation energy for this decomposition process?

Ans:

k1 = Ae
−εa
RT1

k2 = Ae
−εa
RT2 .

The ratio of the two rate constants is then

k1

k2
=

e
−εa
RT1

e
−εa
RT2

= e
−

εa
R

“

1
T1

−
1

T2

”

ln
k1

k2
= −εa

R

(

1

T1
− 1

T2

)

ln
1.05× 10−3

2.14× 10−2
=

−εa

8.314

(

1

759
− 1

836

)

.

Solving for the activation energy, we get

εa = 2 × 105J.

Elementary reactions

The overall chemical reactions seen previously hide information. Though
simple in appearance, what happens at the molecular level might be more
involved. In this respect, the overall reaction might be the result of several

steps.

For example, the reaction

NO2(g) + CO(g) → NO(g) + CO2(g)
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is thought to take place in 2 steps (called elementary reactions)

NO2 + NO2 → NO3 + NO

NO3 + CO → NO2 + CO2

with NO3 as a reaction intermediate.

When dealing with elementary reactions, the rate is proportional to
the product of the concentrations of each reactant molecule.

Example,

A → B + C.

The rate is

Rate = k[A].

Example

A + B → C + B

The rate is

Rate = k[A][B].

Example

A + B + C → D + E

The rate is

Rate = k[A][B][C].

Thus any overall reaction that you see is likely to consist of several
elementary steps. This is why you cannot predict the rate law by looking

at the overall reaction equation.

Definition: The molecularity of an elementary reaction is the number

of molecules coming together to react in an elementary reaction. It can be
unimolecular, bimolecular etc...
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Rate law and the underlying mechanism

Let’s illustrate why the actual mechanism of a reaction cannot be observed

directly from its overall equation.
As an example, take the overall reaction

2NO2(g) + F2(g) → 2NO2F (g).

If you follow the rate of disappearance of F2, you observe that it is directly

proportional to [NO2] and [F2]. The experimentally determined rate is
therefore

R = k[NO2][F2].

Assume now that the underlying elementary reaction is

NO2 + NO2 + F2 → NO2F + NO2F.

But from this elementary reaction, the associated rate is

R = k[NO2]
2[F2].

This, however, does correspond to what is seen in the experiment so the

hypothesized mechanism must be wrong.
In fact, the reaction of NO2 with F2 is believed to occur through the

following set of reactions. The first step is called a rate determining step
(i.e. a slow first step) and as its name suggests, it will control the overall

reaction kinetics seen.

NO2 + F2 → NO2F + F (slow, rate constant, k1)

F + NO2 → NO2F (fast, rate constant, k2).

From these two elementary reaction, we get the overall reaction

2NO2 + F2 → 2NO2F.

Since the first step happens to be slow and is called the rate determining
step, the second reaction doesn’t really factor into the overall behavior of
the reaction. As far as we are concerned, once the first reaction occurs, the

second one happens immediately. Thus, the overall predicted reaction rate
is

R = k1[NO2][F2]
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and matches the experimentally determined rate law.

It’s apparent that when dealing with elementary steps, things can get

complicated pretty fast. A reaction scheme with many steps is nearly al-
ways unsolvable analytically. One way around this problem is to use a

computer to get the answer numerically. Alternatively, people sometimes
make approximations that lead to analytical solutions. There are a num-

ber of approaches used to simplify life, which we describe below. These
approximation techniques include

• Rate determining step

• The steady state approximation

• The rapid equilibrium approximation

We will see examples of these approximations in what follows.

Rate determining step

Suppose that for the consecutive reaction seen earlier

A → I → P

we have kb � ka or basically that ka is small and the first step is slow. Recall

from our previous discussion about consecutive reactions that the solution
for the time-dependent product concentration was

[P (t)] = [Ao]

[

1 +
kae

−kbt − kbe
−kat

(kb − ka)

]

.

Now since kb � ka we can drop a few terms in the above expression.

[P (t)] ' [Ao]

[

1 − kbe
−kat

kb

]

.

Thus, we get our final approximate expression

[P (t)] ' [Ao](1− e−kat) (23.17)

and you can see that the product formation depends only on the slower of

the two rates, (associated with ka). Again, this slower reaction is called the
rate determining step.
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Alternatively, you could have seen this as follows. The first step is slow
so basically you have

A → P

Then

dA

dt
= −kaA

A = Aoe
−kat

where A + P = Ao so P = Ao − A and

P = Ao − Aoe
−kat

P = Ao

(

1 − e−kat
)

.

Example, rate determining step (slow 1st step, fast 2nd step)

Determine the rate law from a mechanism with an initial slow step. The
overall reaction equation is

O3(g) + 2NO2(g) → O2(g) + N2O5(g).

The proposed mechanism in terms of elementary reactions is

O3 + NO2 → NO3 + O2(slow)

NO3 + NO2 → N2O5(fast)

where NO3 is an intermediate. What is the rate law predicted by this

mechanism?

Ans: The rate determining step is

O3 + NO2 → NO3 + O2

such that the predicted rate is

R ∝ k[O3][NO2]

and this should hopefully match the experimentally observed rate law.
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Example, rate determining step (slow 1st step, fast 2nd step)

The iodide ion catalyzed decomposition of hydrogen peroxide H2O2 is be-

lieved to follow the mechanism

H2O + I− → H2O + IO−(slow, rate constant, k1)

H2O2 + IO− → H2O + O2 + I−(fast, rate constant, k2)

with IO− and I− acting as intermediates. The overall reaction is

2H2O2 → 2H2O + O2.

What is the rate law predicted by this mechanism?
Ans:

R = k1[H2O][I−]

since the 1st step is the rate determining step.

The steady state approximation

The second of our life-improving approximations is the steady state approxi-

mation. This approximation says that the rate of change of all intermediates

in the reaction is zero after some finite induction time.

Steady state approximation, style 1

Consider one such reaction, which we have previously seen

A → I → P

with rate constants ka and kb for the first and second steps respectively.

Recall that I is an intermediate here.
Let’s write down the different rates for each species.

dA

dt
= −kaA

dI

dt
= kaA − kbI

dP

dt
= kbI.

This time, invoke the steady state approximation which says that dI
dt = 0

if we wait long enough. Thus

ka[A] = kb[I ]
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or

[I ] =
ka

kb
[A].

Plug this result into dP
dt

= kb[I ] to get

dP

dt
= kb

ka

kb

[A] = ka[A].

We know from solving the first order equation for A that [A] = [Ao]e
−kat.

As a consequence,

dP

dt
= ka[Ao]e

−kat

which we integrate to get

[P ] = ka[Ao]
e−kat

−ka

∣

∣

∣

∣

t

0

= −[Ao]
(

e−kat − 1
)

.

This is our final result for the time dependent population of the product

[P (t)] = [Ao]
(

1− e−kat
)

. (23.18)

Notice that this result is the same as that from the rate determining step

approximation (look back to previous section) which results when kb � ka.

Steady state approximation, style 2

Consider the following reaction where now we include reversible steps

A ⇀↽ I ⇀↽ B.

Obviously, things get more complicated. But the claim is that invoking the

steady state approximation will simplyf life. Let’s see. In the reaction, the
first forward and reverse rate constants are k1 and k−1 respectively. The

second forward and reverse rate constants are k2 and k−2. We now write
down the rates for each species

d[A]

dt
= −k1[A] + k−1[I ]

d[I ]

dt
= k1[A]− k−1[I ]− k2[I ] + k−2[B]

d[B]

dt
= k2[I ]− k−2[B].
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Using the steady state approximation, we now set d[I]
dt

= 0

d[I ]

dt
= k1[A]− (k−1 + k2)[I ] + k−2[B] = 0.

Therefore

(k−1 + k2)[I ] = k1[A] + k−2[B]

or that

[I ] = k1[A]+k−2[B]
(k−1+k2) . (23.19)

Substitute this result into equations 1 and 3.

First [A]

d[A]

dt
= −k1[A] +

k−1(k1[A] + k−2[B])

(k−1 + k2)

= −k1[A] +
k1k−1

(k−1 + k2)
[A] +

k−1k−2[B]

(k−1 + k2)

= −k1[A]

[

1 − k−1

(k−1 + k2)

]

+
k−1k−2

(k−1 + k2)

= −k1[A]

[

k−1 + k2 − k−1

(k−1 + k2)

]

+
k−1k−2

(k−1 + k2)
[B],

giving our desired expression for [A]

d[A]

dt
= − k1k2

(k−1 + k2)
[A] +

k−1k−2

(k−1 + k2)
[B].

Next [B]

d[B]

dt
=

k2

(k−1 + k2)
(k1[A] + k−2[B]) − k−2[B]

=
k1k2

(k−1 + k2)
[A] +

k2k−2

(k−1 + k2)
[B] − k−2[B]

=
k1k2

(k−1 + k2)
[A]− k−2[B]

(

1 − k2

(k−1 + k2)

)

=
k1k2

(k−1 + k2)
[A]− k−2[B]

(

k−1 + k2 − k2

(k−1 + k2)

)

,
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yielding the desired expression for B

d[B]

dt
=

k1k2

(k−1 + k2)
[A] − k−1k−2

(k−1 + k2)
[B].

Now, given that we have eliminated the intermediate, put the remaining
two equations together. To simplify things, let

kf =
k1k2

(k−1 + k2)

kr =
k−1k−2

(k−1 + k2)

be effective forward and reverse rates. Our two equations for A and B

therefore become

d[A]

dt
= −kf [A] + kr[B]

d[B]

dt
= kf [A]− kr[B].

This clearly reduces the entire problem to a standard reversible 1st order
reaction

A ⇀↽ B,

which we have already solved previously, provided certain initial condition

constraints.

Pre-equilibrium, style 1

Let’s now take a look at the third approximation that will simplify life.
Consider the reaction

A ⇀↽ I → B

with initial forward and reverse rate constants k1 and k−1 respectively and

a second rate constant k2. Furthermore assume that k−1 � k2 such that a
pre-equilibrium is established between A and I .

Now, if a pre-equilibrium is established we ignore B and recognize that

what we effectively have is A ⇀↽ I . At equilibrium, the corresponding for-
ward and reverse rates equal, giving

k1[A] = k−1[I ].
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Then

[I ] =
k1

k−1
[A].

and this is introduced into the rate of product formation

R = k2[I ]

=
k1k2

k−1
[A].

Let keff = k1k2
k−1

giving

R = keff [A].

Finally, we get [A] from the previous section where we solved for A in the
A ⇀↽ B type of reaction. In this case, we find A for A ⇀↽ I , provided certain

initial condition constraints.

Pre-equilibrium, style 2

A weak complex, AB, is formed in the reaction

A + B ⇀↽ AB → C

where the first forward and reverse rate constants are k1 and k−1 respec-
tively. The second rate constant is k2. Assuming that k−1 � k2 write the

rate law describing the formation of C.
Ans: Assume pre-equilibrium so that the forward and reverse rates in

the first step equal

k1[A][B] = k−1[AB].

We then see that

[AB] =
k1

k−1
[A][B].

The rate of formation of C is now

d[C]

dt
= k2[AB]

where replacing our pre-equilibrium derived expression for AB gives

d[C]

dt
=

k1k2

k−1
[A][B].
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Example, pre-equilibrium

Consider the overall reaction

2N2O5(g) → 4NO2(g) + O2(g).

This reaction has the proposed following mechanism

N2O5 ⇀↽ NO2 + NO3(fast, equilib, rate constants, k1 and k−1)

NO2 + NO3 → NO + NO2 + O2(slow, rate constant, k2)

NO3 + NO → 2NO2(fast, rate constant, k3).

The experimentally determined rate law is

R = k[N2O5].

We will now show how the elementary rates match up to what is mea-

sured experimentally. From elementary reaction 2

R = k2[NO2][NO3].

But [NO3] is an intermediate. This rate can’t be compared with the exper-
imental rate since we don’t see the intermediate. Thus, our immediate goal

is to eliminate [NO3] from the above expression.
From reaction 1

Rf = k1[N2O5]

Rr = k−1[NO2][NO3].

Next, once equilibrium is established the forward and reverse rates equal.
Thus,

Rf = Rr

k1[N2O5] = k−1[NO2][NO3]

or

[NO3] =
k1[N2O5]

k−1[NO2]
.

Substitute this into the above rate for reaction 2

R = k2[NO2]
k1[N2O5]

k−1[NO2]

=
k1k2

k−1

[NO2][N2O5]

[NO2]
.
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The final desired result that can be compared to the experimentally deter-
mined rate law and is

R =
k1k2

k−1
[N2O5].

You can see that it matches the experimentally rate law. Furthermore, note

that the apparent rate constant is really a product of 3 microscopic rate
constants.

Example, pre-equilibrium

Nitric oxide can be reduced with hydrogen gas to give nitrogen and water

vapor, according to the overall reaction

2NO(g) + 2H2(g) → N2(g) + 2H2O(g).

A proposed mechanism, using elementary steps, is

2NO ⇀↽ N2O2(fast, equilib, rate constants k1 and k−1)

N2O2 + H2 → N2O + H2O(slow, rate constant k2)

N2O + H2 → N2 + H2O(fast, rate constant, k3).

What is the rate law predicted by this mechanism?

Ans: Start with the slow rate limiting step

R = k2[N2O2][H2]

where N2O2 is an intermediate. Now from reaction 1 where a pre-equilibrium

situation exists

k1[NO]2 = k−1[N2O2].

Therefore

[N2O2] =
k1

k−1
[NO]2

and our predicted rate, which can be compared to experiment, is

R =
k2k1

k−1
[NO]2[H2].

Again, one can see that the experimental rate constant is complicated and
is really a product of three microscopic rate constants.
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Example, pre-equilibrium

Nitric oxide, NO, reacts with oxygen to produce nitrogen dioxide via the
overall reaction

2NO(g) + O2(g) → 2NO2(g).

The proposed mechanism, using elementary steps, is

NO + O2 ⇀↽ NO3(fast, equilibrium, rate constants k1 and k−1)

NO3 + NO → NO2 + NO2(slow, rate constant k2)

Here, NO3 is an intermediate. What is the predicted rate law for the overall

reaction.

Ans: Start with the slow rate limiting step

R = k2[NO3][NO].

Note that NO3 is an intermediate. Using reaction 1, we then have the
following equilibrium so that

k1[NO][O2] = k−1[NO3].

We can therefore get an expression for [NO3] using this

[NO3] =
k1

k−1
[NO][O2].

When inserted into the rate of the rate limiting step, we get our predicted

rate, which can be compared to the experimental rate

R =
k1k2

k−1
[NO]2[O2].

Again, the experimental rate constant is complicated as it consists of a

product of three microscopic rate constants.

Some important examples

Finally, let’s end this chapter with two important examples.
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Case study 1: Unimolecular reactions

A number of gas phase reaction follow 1st order kinetics. The problem

with this is that presumably the energy to allow the reaction comes from
collisions (presumably, these are bimolecular events). So how can we see 1st

order rate laws?
One mechanism was proposed by Lindemann in 1921 and was followed by

work by Hinshelwood. The result today is what is known as the Lindemann-
Hinshelwood mechanism. This is outlined below briefly. Consider the case

where a molecule becomes excited by a collision with a fellow molecule, the
excited molecule is denoted by A∗

A + A → A∗ + A.

The rate of excited state formation is

d[A∗]

dt
= ka[A]2.

Now, the excited molecule could suffer a collision with a normal molecule to

deactivate it

A + A∗ → A + A.

This occurs with an associated rate

d[A∗]

dt
= −k

′

a[A][A∗].

Alternatively, the excited molecule can react with itself to form the product
(the unimolecular step).

A∗ → P.

This occurs with a rate

d[A∗]

dt
= −kb[A

∗]

or with a rate of product formation

d[P ]

dt
= kbA

∗.

Now, if kb is rate limiting you will get what is effectively 1st order kinetics

as seen experimentally. But this can be demonstrated more explicitly by
taking the steady state approximation to A∗, the intermediate so to speak.
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Putting all the formation and deactivation pathways for A∗ together we
get

d[A∗]

dt
= ka[A]2 − ka

′ [A][A∗] − kb[A
∗] = 0

or that

ka[A]2 = (k
′

a[A] + kb)[A
∗].

Solving for the intermediate gives

[A∗] =
ka[A]2

k′

a[A] + kb
.

Plug this expression into that for the rate of product formation to get

dP

dt
= kb[A

∗]

=
kbka[A]2

(k
′

a[A] + kb)
.

Now, if k
′

a � kb

dP

dt
' kbka[A]2

k′

a[A]

' kbka

ka
′

[A],

leading to the final expression for the predicted rate of product formation

d[P ]

dt
= keff [A]

where keff = kbka

k
a
′

, which can be compared to the actual experiment.

Case study 2: The Michaelis-Menten mechanism

This is another example of a reaction where an intermediate is formed. It
describes enzyme action. In particular, the rate of an enzyme (E) catalyzed

reaction in which a substrate (S) is converted to product (P ) is found to
depend on the concentration of (E). Experimental studies reveal that the

rate law follows

−d[S]

dt
=

k[S]

K + [S]
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where [S] is the substrate concentration and k, K are constants.

The proposed mechanism to explain this rate law was derived by Leonor
Michaelis and Maude Menten in 1913. Their mechanism is a 2 step process
that involves the formation of an intermediate called ES. The mechanism

is

E + S ⇀↽ ES → P + E

with forward and reverse rate constants ka and ka
′ respectively and the

second rate constant being kb. The intermediate is the so-called bound
state ES. Before beginning our analysis note the following. The rate of

product formation is

d[P ]

dt
= kb[ES].

From the conservation of enzymes (whether free or bound),

Etot = E + ES.

Now, let’s begin our analysis by taking the steady state approximation.

We set the rate of change of the intermediate bound state to zero

d[ES]

dt
= 0

= ka[E][S]− ka
′ [ES]− kb[ES] = 0.

Therefore,

ka[E][S] = (ka
′ + kb)[ES].

Rearrange this expression to get

[E] =
(ka

′ + kb)

ka

[ES]

[S]

so that

Etot = E + ES

=

(

k
′

a + kb

ka

)

[ES]

[S]
+ [ES].
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Call km =
(

k
a
′+kb

ka

)

, the Michaelis constant. This gives

Etot = km
[ES]

[S]
+ [ES]

=

(

km

[S]
+ 1

)

[ES]

or

[ES] =
Etot

(

km

[S] + 1
) .

Replace this into the rate of product formation

d[P ]

dt
= kb[ES]

to obtain the desired rate of product formation.

d[P ]
dt

= kb[Etot]
“

km
[S]

+1
” . (23.20)

Now, rearrange this equation by inverting it

1
(

d[P ]
dt

) =

(

km

[S] + 1
)

kb[Etot]

which, in turn, yields an equivalent expression

1
(

d[P ]
dt

) =
km

kb[S][Etot]
+

1

kb[Etot]
.

It’s apparent that you can plot 1/rate versus 1/[S] to get a straight line

with a slope of km

kb[Etot]
and an intercept of 1

kb[Etot]
. Such a plot is called a

Lineweaver-Burke plot.

Michaelis-Menten mechanism, style 2

Just to show you that you can make things difficult for yourself, sometimes
the following is derived, which is valid for early times of the reaction.
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Return to the Michaelis-Menten mechanism made slightly more general
with a reversible 2nd step

E + S ⇀↽ ES ⇀↽ P + E.

The forward and reverse rate constants are k1 and k−1 while the second

forward and reverse rate constants are k2 and k−2 respectively.
We write the explicit rates for each species.

d[S]

dt
= −k1[E][S] + k−1[ES]

d[ES]

dt
= k1[E][S]− (k−1 + k2)[ES] + k2[E][P ]

d[P ]

dt
= k2[ES]− k−2[E][P ].

In all cases Etot = [ES] + [E] since the enzyme is not consumed by the

reaction. Rearrange this to get

[E] = [E]tot − [ES]

and replace this into the ES rate expression

d[ES]

dt
= k1[E]tot[S] + k−2[E]tot[P ] − [ES](k1[S] + k−1 + k2 + k−2[P ]).

Next, take the steady state approximation d[ES]
dt

= 0. (remember that

the implicit goal for doing this is to allow us to eliminate [ES] from all other
expressions). We have

k1[E]tot[S] + k−2[E]tot[P ] = [ES](k1[S] + k−1 + k2 + k−2[P ])

which can get rearranged to give

[ES] =
(k1[S] + k−2[P ])[E]tot

k1[S] + k−1 + k2 + k−2[P ]
.

Shove this expression for ES back into our first equation for the rate of
change of the substrate

d[S]

dt
= −k1[E][S] + k−1[ES]

= −k1[E][S] +
k−1(k1[S] + k−2[P ])[E]tot

k1[S] + k−1 + k2 + k−2[P ]
.
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Here, replace [E] with [E] = [E]tot− [ES] using the conservation of enzyme.
We get

d[S]

dt
= −k1[S]([E]tot − [ES]) +

k−1(k1[S] + k−2[P ])[E]tot

k1[S] + k−1 + k2 + k−2[P ]

= −k1[S][E]tot + k1[S][ES] +
k−1(k1[S] + k−2[P ])[E]tot

k1[S] + k−1 + k2 + k−2[P ]
.

Ok, this gets complicated. Let’s consolidate all terms. First, we need a

common denominator, call it stuff.

stuff = k1[S] + k−1 + k2 + k−2[P ].

We get

d[S]

dt
=

(−k1[S][E]tot(stuff)

(stuff)
+

k2
1[S]2[E]tot

(stuff)
+

k1k−2[S][P ]

(stuff)
+

k1k−1[S]

(stuff)

)

+
k−1k−2[P ]

(stuff)
.

You can now evaluate the stuff in parenthesis (a little tedious) and find that
it equals

−k1k2[S][E]tot

(stuff)
.

So that when you put it all together you get

d[S]

dt
=

(

−k1k2[S]

(stuff)
+

k−1k−2[P ]

(stuff)

)

[E]tot.

This gives our final expression for the rate of change of the substrate

d[S]
dt

=
(−k1k2[S]+k−1k−2[P ])[E]tot

k1[S]+k−1+k2+k−2[P ] . (23.21)

Now if the reaction does not progress very far (an important key as-
sumption which simplifies the result but ultimately limits it to short times)

then

• [S] ' [So]

• [P ] ' 0
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where [So] is the initial substrate concentration. We then get

d[S]

dt
= − k1k2[So][E]tot

k1[So] + k−1 + k2

= − k2[So][E]tot

[So] +
(

k−1+k2

k1

) .

Now, let km = k−1+k2

k1
which is the Michaelis constant. The final expression

we have for the rate of change of the substrate is then

d[S]
dt

= −k2[So][E]tot

km+[So]
. (23.22)

Notice that this is virtually identical to the previous expression except that
we have made an early time assumption so that [E] → [Eo]. Otherwise they

are identical. The above equation also shows that the initial rate for an
enzyme catalyzed reaction is

• first order at low substrate concentration (km � [So])

• zeroth order at high substrate concentration (km � [So])

Finally, we can get some more information from this expression. At high
substrate concentration conditions

d[S]

dt
= −k2[E]tot = Rmax

and is the maximum rate of the Michaelis-Menten mechanism. Next, the
turnover number is defined as Rmax/conc. of enzyme active sites. This is
the maximum number of substrate molecules converted to product per unit

time. If the enzyme has a single active site, the concentration of active sites
equals [E]tot. Therefore the turnover number is

turnover-number =
Rmax

[E]tot
=

k2[E]tot

[E]tot
= k2.

Inhibitors

The ability of enzymes to catalyze reactions can be hindered by inhibitor
molecules. One of the mechanisms by which an inhibitor works is by compet-
ing with the substrate for binding to the active site of the enzyme. We can

include this inhibition reaction in a modified Michaelis-Menten mechanism
for enzyme catalysis. Let’s do it and see what we get.
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The standard enzyme substrate reaction is

E + S ⇀↽ ES

with forward and reverse reaction rates, k1 and k−1 respectively. Now, we
have the inhibitor (I) reaction that interferes with the above reaction

E + I ⇀↽ EI.

It produces an inhibitor-enzyme complex, EI with forward and reverse rate
constants k2 and k−2. Finally, we have the product forming reaction

ES → E + P

with a rate constant k3.
We now determine the rate laws for all the species, [S], [ES], [EI ], and

[P ].

d[EI ]

dt
= k2[E][I ]− k−2[EI ]

d[S]

dt
= −k1[E][S] + k−1[ES]

d[ES]

dt
= k1[E][S]− (k−1 + k3)[ES]

d[P ]

dt
= k3[ES].

To simplify things, consider the case where the 1st and 3rd reactions are

always in equilibrium.
For the first equation we find at equilibrium that the forward and

reverse rates equal

k2[E][I ] = k−2[EI ]

or that

[EI ]eq
[E]eq[I ]eq

=
k2

k−2
= Keq.

From this, we get

[EI ]eq = Keq[E]eq[I ]eq.

Next, for the third equation we get

k1[E][S] = (k−1 + k3)[ES]
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such that

[ES] =
[E][S]

km

where km = k−1+k3

k1
. Use this expression as a means of getting rid of this

intermediate in the other rate equations.
Now the rate of product formation is

d[P ]

dt
= k3[ES]

where [ES] =
[E][S]
km

. So we get

d[P ]

dt
= k3

[E][S]

km
.

At this point, we aim to get rid of [E] in this expression. We can do this by

realizing that the amount of enzyme is conserved

[E]o = [E] + [ES] + [EI ]

= [E] +
[E][S]

km
+ Keq[E][I ].

This leads to an expression for [E]

[E] =
[Eo]

1 +
[S]
km

+ Keq[I ]
,

which we use in our main expression for the rate of product formation.

d[P ]

dt
= k3

[Eo][S]

km

(

1 +
[S]
km

+ Keq[I ]
)

=
k3[Eo][S]

(km + [S] + kmKeq[I ])
.

Finally, let k
′

= km(1 + Keq[I ]) to get our desired expression

d[P ]
dt

= k3[Eo][S]

k
′+[S]

. (23.23)

At short times, [S] ' [So] and we get

d[P ]
dt

= k3[Eo][So]

k
′
+[So]

. (23.24)

Finally, if there is no inhibitor present [I ] = 0 and k
′

= km. This returns

us to the original Michaelis-Menten equation.
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