Advanced Inorganic Chemistry (Part 1) Basic Solid State Chemistry WS 07/08 (H.J. Deiseroth)

Resources

Resources

Textbooks: Shriver, Atkins, Inorganic Chemistry (3rd ed, 1999) W.H. Freeman and Company (Chapter 2, 18 ...)
recommendation

german

very good, but not basic level

Internet resources

- http://ruby.chemie.uni-freiburg.de/Vorlesung/ (german)
- http://www.chemistry.ohio-state.edu/~woodward/ch754... (pdf-downloads)
- IUCR-teaching resources (International Union for Crystallography, advanced level)

Resources

Journals

Outline - 16.10.07

1. Introduction
2. Structure of solids
2.1 Basics of structures
2.2 Simple close packed structures: metals
2.3 Basic structure types (structure of simple salts)
2.4 More complex structures
2.5 Complex structures
2.6 Structure of nanomaterials

1.Introduction Why is the solid state interesting?

Most elements are solid at room temperature

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	$\begin{aligned} & 1 \\ & \mathrm{H} \end{aligned}$																		$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$
2	$\begin{gathered} 3 \\ \mathrm{Li} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ \hline \end{gathered}$												$\begin{aligned} & 5 \\ & B \\ & \hline \end{aligned}$	$\begin{aligned} & 6 \\ & C \end{aligned}$	$\begin{aligned} & 7 \\ & N \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \end{aligned}$
3	$\begin{array}{r} 11 \\ \mathrm{Na} \\ \hline \end{array}$	$\begin{gathered} 12 \\ \mathrm{Mg} \end{gathered}$												$\begin{aligned} & 13 \\ & \mathrm{Al} \end{aligned}$	$\begin{aligned} & 14 \\ & \mathrm{Si} \end{aligned}$	$\begin{gathered} 15 \\ \mathrm{P} \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & 5 \end{aligned}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \end{aligned}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \end{aligned}$
4	$\begin{aligned} & 19 \\ & \mathrm{~K} \end{aligned}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$		$\begin{aligned} & 21 \\ & \mathrm{SC} \end{aligned}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 23 \\ & V \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathrm{Mn} \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{Co} \end{aligned}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \end{aligned}$	$\begin{aligned} & 30 \\ & \mathrm{Zn} \end{aligned}$	$\begin{aligned} & 31 \\ & \mathrm{Ga} \end{aligned}$	$\begin{gathered} 32 \\ \mathrm{Ge} \end{gathered}$	$\begin{aligned} & 33 \\ & \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & 36 \\ & \mathrm{Kr} \end{aligned}$
5	$\begin{aligned} & 37 \\ & \mathrm{Rb} \\ & \hline \end{aligned}$	$\begin{array}{r} 38 \\ \mathrm{Sr} \\ \hline \end{array}$		$\begin{aligned} & 39 \\ & Y \end{aligned}$	$\begin{aligned} & 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{gathered} 42 \\ \text { Mo } \\ \hline \end{gathered}$	$\begin{aligned} & 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{array}{r} 44 \\ \mathrm{Ru} \end{array}$	$\begin{aligned} & 45 \\ & \mathrm{Rh} \end{aligned}$	$\begin{aligned} & 46 \\ & \mathrm{Pd} \end{aligned}$	$\begin{aligned} & 47 \\ & \mathrm{Ag} \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{~cd} \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & 50 \\ & \mathrm{Sn} \end{aligned}$	$\begin{aligned} & 51 \\ & \mathrm{Sb} \end{aligned}$	$\begin{aligned} & 52 \\ & \mathrm{Te} \end{aligned}$	$\begin{gathered} 53 \\ \mathrm{I} \\ \hline \end{gathered}$	$\begin{array}{r} 54 \\ \times \mathrm{e} \\ \hline \end{array}$
6	$\begin{array}{r} 55 \\ \mathrm{Cs} \\ \hline \end{array}$	$\begin{array}{r} 56 \\ \mathrm{Ba} \\ \hline \end{array}$	*	$\begin{array}{r} 71 \\ \mathrm{Lu} \\ \hline \end{array}$	$\begin{aligned} & 72 \\ & \mathrm{Hf} \end{aligned}$	$\begin{aligned} & 73 \\ & \mathrm{Ta} \\ & \hline \end{aligned}$	74 W	$\begin{aligned} & 75 \\ & \text { Re } \\ & \hline \end{aligned}$	$\begin{aligned} & 76 \\ & \text { Os } \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \mathrm{Ir} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & \text { Pt } \end{aligned}$	79 Au	$\begin{aligned} & 80 \\ & \mathrm{Hg} \\ & \hline \end{aligned}$	$\begin{aligned} & 81 \\ & \mathrm{Tl} \\ & \hline \end{aligned}$	$\begin{aligned} & 82 \\ & \mathrm{~Pb} \end{aligned}$	$\begin{aligned} & 83 \\ & \mathrm{Bi} \\ & \hline \end{aligned}$	$\begin{aligned} & 84 \\ & \text { Po } \end{aligned}$	$\begin{aligned} & 85 \\ & \mathrm{At} \end{aligned}$	$\begin{aligned} & 86 \\ & \mathrm{Rn} \end{aligned}$
7	$\begin{aligned} & 87 \\ & \mathrm{Fr} \\ & \hline \end{aligned}$	$\begin{aligned} & 88 \\ & \mathrm{Ra} \\ & \hline \end{aligned}$	**	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$	$\begin{gathered} 104 \\ \mathrm{Rf} \end{gathered}$	$\begin{aligned} & 105 \\ & \mathrm{Db} \end{aligned}$	$\begin{aligned} & 106 \\ & \mathrm{Sg} \end{aligned}$	$\begin{gathered} 107 \\ \mathrm{Bh} \\ \hline \end{gathered}$	$\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	$\begin{aligned} & 110 \\ & \text { Uun } \end{aligned}$	$\begin{aligned} & 111 \\ & \text { Uuu } \end{aligned}$	$\begin{aligned} & 112 \\ & \text { Uub } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 113 } \\ \text { Uut } \\ \hline \end{array}$	$\begin{gathered} 114 \\ \text { Uuq } \end{gathered}$	$\begin{array}{\|c\|} \hline 115 \\ \text { Uup } \\ \hline \end{array}$	$\begin{gathered} 116 \\ \text { Uuh } \end{gathered}$	$\begin{aligned} & 117 \\ & \text { Uus } \end{aligned}$	$\begin{gathered} 118 \\ \text { Uuo } \\ \hline \end{gathered}$
*Lanthanoids			*	$\begin{aligned} & 57 \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \\ & \hline \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & \mathrm{Nd} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 61 \\ & \mathrm{Pm} \\ & \hline \end{aligned}$	$\begin{array}{r} 62 \\ \mathrm{Sm} \\ \hline \end{array}$	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{aligned} & 64 \\ & \mathrm{Gd} \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \mathrm{Ho} \\ & \hline \end{aligned}$	$\begin{aligned} & 68 \\ & \mathrm{Er} \\ & \hline \end{aligned}$	$\begin{aligned} & 69 \\ & \mathrm{Tm} \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{Yb} \\ & \hline \end{aligned}$		
**Actinoids			**	$\begin{aligned} & 89 \\ & \mathrm{AC} \end{aligned}$	$\begin{aligned} & 90 \\ & \text { Th } \\ & \hline \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & U \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{aligned} & 94 \\ & \mathrm{Pu} \end{aligned}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{gathered} 96 \\ \mathrm{~cm} \end{gathered}$	$\begin{aligned} & 97 \\ & \text { BK } \end{aligned}$	$\begin{aligned} & 98 \\ & \mathrm{cf} \end{aligned}$	$\begin{aligned} & 99 \\ & \text { Es } \end{aligned}$	$\begin{aligned} & 100 \\ & \mathrm{Fm} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 101 \\ & \mathrm{Md} \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \end{aligned}$		

Special aspects of solid state chemistry

- Close relationship to solid state physics
- Importance of structural chemistry

- knowledge of several structure types
- understanding of structures
- Physical methods for the characterization of solids
- X-ray structure analysis, electron microscopy...
- thermal analysis, spectroscopy, conductivity measurements ...
- Investigation and tuning of physical properties
- magnetism, conductivity, sorption, luminescence
- defects in solids: point defects, dislocations, grain boundaries
- Synthesis
- HT-synthesis, hydrothermal synthesis, soft chemistry
- strategies for crystal growth (physics)

1. Introduction Classifications for solids (examples)

- Degree of order
- crystals: long range order (3D periodicity)
- amorphous solids, glasses: short range order (no 3D periodicity)
- crystals with disorder of a partial structure (ionic conductors)
- Chemical bonding - typical properties
- covalent solids (e.g. diamond, boron nitride): extreme hardness ...
- ionic solids (e.g. NaCl): ionic conductivity ...
- metals (e.g. Cu): high conductivity at low temperatures
- conductivity: metals, semiconductors, insulators, superconductors...
- magnetism: ferromagnetism, paramagnetism...
- Structure and Symmetry
- packing of atoms: close packed structure (high space filling)
- characteristic symmetry elements: cubic, hexagonal...
- defects in solids, point defects, dislocations

2.1 Basics of Structures Visualization of structures

Example: Cristobalite $\left(\mathrm{SiO}_{2}\right)$

Description of packing

Bragg jun. (1920) Sphere packing

Description of environment

Pauling (1928) Polyhedra

Description of topology

Wells (1954) 3D nets

2.1 Basics of Structures

Approximation: atoms can be treated like spheres

(a)

Metallic radius: $\mathrm{d} / 2$ in metal

covalent radius: $d / 2$ in molecule (single bond)

ionic radius: reference, e.g. $\mathrm{r}\left(\mathrm{O}^{2-}\right)=$ 140 pm (Shannon for $\mathrm{CN}=6$)

2.1 Basics of Structures Trends of the atomic radius

- atomic radii increase on going down a group.
- atomic radii decrease across a period
- particularities: Ga < AI (d-block)

2.1 Basics of Structures Atomic radii

Ga: 122 pm !

2.1 Basics of Structures Ionic radii

Li ${ }^{+}$	Be^{2+}	B^{3+}			N^{3-}	O^{2-}	F^{-}
59(4)	27(4)	12(4)			132	135(2)	128(2)
76(6)						138(4)	131(4)
						140(6)	133(6)
						142(8)	
Na^{+}	$\mathbf{M g}^{\mathbf{2 +}}$	Al^{3+}			\mathbf{P}^{3-}	\mathbf{S}^{2-}	Cl^{-}
99(4)	49(4)	39(4)			212	184(6)	167(6)
102(6)	72(6)	53(6)					
116(8)	89(8)						
K^{+}	Ca^{2+}	Ga^{3+}			As ${ }^{3-}$	Se^{2-}	Br^{-}
138(6)	100(6)	62(6)			222	198(6)	196(6)
151(8)	112(8)						
159(10)	128(10)						
160(12)	135(12)						
$\mathbf{R} \mathbf{b}^{+}$	Sr ${ }^{2+}$	$\mathbf{I n}^{3+}$	Sn ${ }^{2+}$	Sn ${ }^{4+}$		Te ${ }^{2-}$	I^{-}
149(6)	116(6)	79(6)	83(6)	74(6)		221(6)	206(6)
160(8)	125(8)	92(8)	93(8)				
173(12)	144(12)						
Cs ${ }^{+}$	Ba^{2+}	T \mathbf{T}^{3+}					
167(6)	149(6)	$88(6)$					
174(8)	156(8)	TI^{+}					
188(12)	175(12)	164(6)					

* Numbers in parentheses are the coordination number of the ion. For more values, see Resource section 1.

Table 3.3 The variation of radius with coordination number	
Coordination number	Relative radius
12	1
8	0.97
6	0.96
4	0.88

Table 3.3 The variation of radius with coordination number

Coordination Relative radius

2.1 Basics of Structures Trends of the ionic radii

- ionic radii increase on going down a group
- radii of equal charge ions decrease across a period
- ionic radii increase with increasing coordination number (the higher its CN the bigger the ions seems to be !!)
- the ionic radius of a given atom decreases with increasing charge $\left(r\left(\mathrm{Fe}^{2+}\right)>\mathrm{r}\left(\mathrm{Fe}^{3+}\right)\right.$)
- cations are usually the smaller ions in a cation/anion combination (exception: $\mathrm{r}\left(\mathrm{Cs}^{+}\right)>\mathrm{r}\left(\mathrm{F}^{-}\right)$)

2.1 Basics of Structures Determination of the ionic radius

Structure analyses, most important method:

X-ray diffraction

3 lonic radius

L. Pauling:

- Radius of one ion is fixed to a reasonable value ($\left.\left(\mathrm{r}^{2} \mathrm{O}^{-}\right)=140 \mathrm{pm}\right)$
- That value is used to compile a set of self consistent values for other ions.

2.1 Basics of Structures Structure and lattice - what is the difference?

Example:
structure and lattice in 2D

- Lattice
- pattern of points

- no chemical information, mathematical description
- no atoms, but points and lattice vectors ($a, b, c, \alpha, \beta, \gamma$), unit cell
- Motif (characteristic structural feature, atom, group of atoms...)
- Structure = Lattice + Motif
- contains chemical information (e. g. environment, bond length...)
- describes the arrangement of atoms

2.1 Basics of Structures Unit cell

Unit Cell (interconnection of lattice and structure)

- an parallel sided region of the lattice from which the entire crystal can be constructed by purely translational displacements
- contents of unit cell represents chemical composition (multiples of chemical formula)
- primitive cell: simplest cell, contain one lattice point

2.1 Basics of Structures

Unit cell - which one is correct?

Conventions:

1. Cell edges should, whenever possible, coincide with symmetry axes or reflection planes
2. The smallest possible cell (the reduced cell) which fulfills 1 should be chosen
M.C. Escher

2.1 Basics of Structures Unit cells and crystal system

- millions of structures but 7 crystal systems
- crystal system = particular restriction concerning the unit cell
- crystal system = unit cell with characteristic symmetry elements (later)

Crystal system	Restrictions axes	Restrictions angles
Triclinic	-	-
Monoclinic	-	$\alpha=\gamma=90^{\circ}$
Orthorhombic	-	$\alpha=\beta=\gamma=90^{\circ}$
Tetragonal	$\mathrm{a}=\mathrm{b}$	$\alpha=\beta=\gamma=90^{\circ}$
Trigonal	$\mathrm{a}=\mathrm{b}$	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Hexagonal	$\mathrm{a}=\mathrm{b}$	$\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$
Cubic	$\mathrm{a}=\mathrm{b}=\mathrm{c}$	$\alpha=\beta=\gamma=90^{\circ}$

2.1 Basics of Structures Unit cells and crystal system: "Right Hand Rule"

> Definition of the directions of the base vectors (a, b, c) that describe the crystal system of the unit cell.

Figare 2.4. Right-hand rule.

2.1 Basics of Structures

Unit cells and crystal system

2.1 Basics of Structures
 Indices of directions in space

"[110]", square brackets for directions Procedure in three steps

1. Select 000

2. Mark position of second point

3. Draw vector

Convention: right-handed coordinate system

- middle finger: c
- forefinger: b
- thumb: a

2.1 Basics of Structures
 Indices of directions in space - examples

[111]

[1̄10]

2.1 Basics of Structures
 Indices of planes in space

Why are they important?
Bragg equation: $n \lambda=2 d \sin \theta$

2.1 Basics of Structures Indices of planes in space

"(110)" round brackets for planes Procedure in three steps

1. Select 000

2. Mark intercept (1/h 1/k 1/l) of the axes (if possible)

3. Draw plane

Convention: right-handed coordinate system

2.1 Basics of Structures

 Indices of planes in space - examples

 Indices of planes in space - examples}
(112)
parentheses

Inverse of axis intercept!
(1̄10)

2.1 Basics of Structures Fractional coordinates

- Rules for marking the position of an atom in a unit cell:
- possible values for $\mathrm{x}, \mathrm{y}, \mathrm{z}$: [0;1]
- atoms are generated by symmetry elements
- negative values: add 1.0, values > 1.0: substract 1.0 (or multiples)
- Example: Sphalerite (Zincblende)
- Equivalent points are represented by one triplet only - equivalent by translation
- equivalent by other symmetry elements, later

2.1 Basics of Structures
 Number of atoms per unit cell (Z)

- Rectangular cells:
- atom completely inside unit cell: count = 1.0
- atom on a face of the unit cell: count $=0.5$
- atom on an edge of the unit cell: count $=0.25$
- atom on a corner of the unit cell: count $=\mathbf{0 . 1 2 5}$

Example 1: Sphalerite

number of atoms 1

Example 2: Wurzite

- Wyckoff-notation: number of particular atoms per unit cell

2.1 Basics of Structures Wyckoff-notation - example

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions
Z

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Mg1	+2	$4 a$	0.00000	0.00000	0.00000
Mg2	+2	$4 c$	$0.00995(600)$	$0.27734(600)$	0.75000
Si1	+4	$4 c$	$0.07373(500)$	$0.4043(50)$	0.25000
O1	-2	$4 c$	$0.23242(1000)$	$0.0918(100)$	0.75000
O2	-2	$4 c$	$0.2793(100)$	$0.05078(1000)$	0.25000
O3	-2	$8 d$	$0.22266(1000)$	$0.33594(1000)$	$0.46289(1000)$

2.1 Basics of Structures Wyckoff-notation and occupancy-factors

Crystal data	
Formula sum	$\mathrm{Cu}_{0.8} \mathrm{In}_{2.4} \mathrm{Se}_{4}$
Crystal system	$I-42 \mathrm{~m}(\mathrm{no.121)}$
Space group	$a=5.7539(3) \AA \quad c=11.519(1) \AA$
Unit cell dimensions	2

Atomic coordinates

Atom	Ox.	Wyck.	Occ.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Cu1	+1	$2 a$	0.8	0	0	0
In1	+3	$4 d$	1.0	0	$1 / 2$	$1 / 4$
In2	+3	$2 b$	0.4	0	0	$1 / 2$
Se1	-2	$8 i$	1.0	$1 / 4$	$1 / 4$	$1 / 8$

- Occ. factor < 1.0: mixing of atoms and vacancies on the same position
- Calculation of the composition: Cu: 2×0.8; In: $4 \times 1+2 \times 0.4$; Se: 8×1

Summary to 2.1

- Atoms can be treated (and visualized) like spheres
- Different types of radii
- Structure and lattice
- Unit Cell
- 7 crystal sytems
- Indexation of directions and planes
- Fractional coordinates
- Z: number of atoms per unit cell
- Wyckoff-notation and occupancy factors

2.2 Simple close packed structures (metals) Close packing in 2D

primitive packing (low space filling)
close packing (high space filling)

2.2 Simple close packed structures (metals) Close packing in 3D

Example 1: HCP

close packed layer

Example 2: CCP

2

2.2 Simple close packed structures (metals) Unit cells of HCP and CCP

HCP

(Be, Mg, Zn, Cd, Ti, Zr, Ru ...)
close packed layer: (001)

> space filling = 74\%
> $C N=12$

CCP

(Cu, Ag, Au, AI, Ni, Pd, Pt ...)
close packed layer: (111)
(b)

2.2 Simple close packed structures (metals) Calculation of space filling - example CCP

Space filling $=\frac{\text { Volume occupied by atoms (spheres) }}{\text { Volume of the unit cell }}$

$$
\begin{aligned}
& 4 r=\sqrt{2} a \\
& V(\text { cell })=a^{3}=\left(\frac{4 r}{\sqrt{2}}\right)^{3} \\
& Z V(\text { sphere })=4 \frac{4}{3} \pi r^{3} \\
& \text { spacef } .=\left(\frac{4 \frac{4}{3} \pi r^{3}}{\left(\frac{4 r}{\sqrt{2}}\right)^{3}}\right)=\frac{\sqrt{2} \pi}{6}=0.74
\end{aligned}
$$

2.2 Simple close packed structures (metals) Other types of metal structures

Example 1: BCC

(b)
(Fe, Cr, Mo, W, Ta, Ba ...)
space filling $=68 \%$

$$
C N=8
$$

Example 2: primitive packing

$$
\begin{gathered}
(\alpha-P o) \quad \begin{array}{c}
\text { space filling }=52 \% \\
C N=6
\end{array}
\end{gathered}
$$

Example 3: structures of manganese

2.2 Simple close packed structures (metals) Holes in close packed structures

Octahedral hole OH

2.2 Simple close packed structures (metals) Properties of OH and TH in HCP and CCP

HCP

Number
 $\mathrm{OH} / \mathrm{TH}$

CCP

 n/2nOH: center, all edges TH: center of each octant
no short distances

OH: 4 corners, all edges TH: inside unit cell

Ivery short!

Summary to 2.2

- Concept of close packing (layer sequences, unit cell, space filling)
- Structure of metals

- Holes in close packed structures

2.3 Basic structure types Overview

„Basic": anions form CCP or HCP, cations in OH and/or TH

Structure type	Examples	Packing	Holes filled OH and TH
NaCl	$\mathrm{AgCl}, \mathrm{BaS}, \mathrm{CaO}, \mathrm{CeSe}$, GdN, $\mathrm{NaF}, \mathrm{Na}_{3} \mathrm{BiO}_{4}, \mathrm{~V}_{7} \mathrm{C}_{8}$	CCP	n and 0 n
NiAs	TiS, CoS, CoSb, AuSn	HCP	n and 0 n
CaF_{2}	$\begin{aligned} & \mathrm{CdF}_{2}, \mathrm{CeO}_{2}, \mathrm{Li}_{2} \mathrm{O}, \mathrm{Rb}_{2} \mathrm{O}, \\ & \mathrm{SrCl}_{2}, \mathrm{ThO}_{2}, \mathrm{ZrO}_{2}, \mathrm{Auln}_{2} \end{aligned}$	CCP	0 and 2n
CdCl_{2}	$\begin{aligned} & \mathrm{MgCl}_{2}, \mathrm{MnCl}_{2}, \mathrm{FeCl}_{2}, \mathrm{Cs}_{2} \mathrm{O}, \\ & \mathrm{CoCl}_{2} \end{aligned}$	CCP	$0.5 n$ and 0
CdI 2	$\mathrm{MgBr}_{2}, \mathrm{PbI}_{2}, \mathrm{SnS}_{2}$, $\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{Cd}(\mathrm{OH})_{2}, \mathrm{Ag}_{2} \mathrm{~F}$	HCP	$0.5 n$ and 0
Sphalerite (ZnS)	Agl, BeTe, CdS, Cul, GaAs, GaP, HgS, InAs, ZnTe	CCP	0 and $0.5 n$
Wurzite (ZnS)	AIN, BeO, $\mathrm{ZnO}, \mathrm{CdS}$ (HT)	HCP	0 and $0.5 n$
$\mathrm{Li}_{3} \mathrm{Bi}$	$\mathrm{Li}_{3} \mathrm{Au}$	CCP	n and 2n

2.3 Basic structure types
 Pauling rules: understanding polyhedral structures

(1) A polyhedron of anions is formed about each cation, the cation-anion distance is determined by the sum of ionic radii and the coordination number by the radius ratio: r(cation)/r(anion)

Scenario for radius ratios:

worst case

optimum

low space filling

2.3 Basic structure types Pauling rules: understanding polyhedral structures

Exercises

1. Discuss and explain the different types of atomic radii that can be used to describe crystal structures.
2. Assume the lattice constants of the following rock salt type structures to be 545 pm (MgSe), 591 pm (CaSe), 623 pm (SrSe) and 662 pm (BaSe). Calculate the cation radii. To determine the Se2-radius, assume that the Se2-ions are in direct contact in MgSe.
3. Assume WC to crystallize in the rock salt structure. Describe the mutual coordination of W and C.
4. How many neighbours (Cl^{-}and/or Na^{+}!) has a Na^{+}ion in NaCl in its (a) first
(Cl-), (b) second (Na^{+}) and (c) third (Cl^{-}) coordination sphere?
5. The element Ta is bcc and has an atomic radius of 0.143 nm at $20^{\circ} \mathrm{C}$. Calculate a value for its lattice constants in \AA.
6. The element W crystallizes in the bcc structure with lattice constants $3.16 \AA$. Calculate a value for its atomic radius in nm .
7. Calculate a value for the density of fac Nickel from its lattice constant $a=0.352$ nm and its atomic mass of $58.71 \mathrm{~g} / \mathrm{mol}$.
8. Calculate the enlargement factor of surface if you grind a 1 cm 3 cube of a solid material into smaller cubes with an edge length of $100 \mu \mathrm{~m}$.
9. Sketch the principle properties of the fluorite structure.
10. Make suggestions for possible structure types of a crystalline solid with the general chemical composition $A B_{2}$.

2.3 Basic structure types Pauling rules: understanding polyhedral structures

(1) Negative and positive local charges should be balanced. The sum of bond valences $\sum s_{i j}$ should be equal to the oxidation state V_{i} of ion i : $\mathrm{V}_{\mathrm{i}}=\sum \mathrm{s}_{\mathrm{ij}}$

Example 1- TiO_{2} (Rutile)
$\mathrm{CN}\left(\mathrm{Ti}^{4+}\right)=6, \mathrm{CN}\left(\mathrm{O}^{2-}\right)=3: \quad \mathrm{s}_{\mathrm{ij}}(\mathrm{Ti}-\mathrm{O})= \pm 2 / 3$
$\Sigma \mathrm{s}_{\mathrm{ij}}(\mathrm{Ti})=4, \Sigma \mathrm{~s}_{\mathrm{ij}}(\mathrm{O})=2$

Example 2-GaAs (Sphalerite)
$\mathrm{CN}\left(\mathrm{Ga}^{3+}\right)=4, \mathrm{CN}\left(\mathrm{As}^{3-}\right)=4: \mathrm{s}_{\mathrm{ij}}= \pm 3 / 4$
$\Sigma \mathrm{s}_{\mathrm{ij}}(\mathrm{Ga})=3, \Sigma \mathrm{~s}_{\mathrm{ij}}(\mathrm{As})=3$

Example 3 - SrTiO_{3} (Perovskite)
$\mathrm{CN}\left(\mathrm{Sr}^{2+}\right)=12, \mathrm{CN}\left(\mathrm{Ti}^{4+}\right)=6$,
$\mathrm{CN}\left(\mathrm{O}^{2-}\right)=4(\mathrm{Sr})$ and $2(\mathrm{Ti})$
$\mathrm{s}_{\mathrm{ij}}(\mathrm{Sr}-\mathrm{O})=1 / 6, \mathrm{~s}_{\mathrm{ij}}(\mathrm{Ti}-\mathrm{O})=2 / 3$

2.3 Basic structure types Pauling rules: understanding polyhedral structures

(2) The presence of shared edges, and particularly shared faces decreases the stability of a structure. This is particularly true for cations with large valences and small CN.
(3) In a crystal containing different cations those with large valence and small CN do not tend to share polyhedron elements with each other.
(4) The number of chemically different coordination environments for a given ion in a crystal tends to be small.

2.3 Basic structure types NaCl -type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions Z

Atomic coordinates

NaCl
cubic
F m-3m (no. 225)
$a=5.6250(5) \AA$
4

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Na	+1	$4 a$	0	0	0
Cl	-1	$4 b$	$1 / 2$	$1 / 2$	$1 / 2$

Structural features:

- all octahedral holes of CCP filled, type = antitype
- Na is coordinated by $6 \mathrm{Cl}, \mathrm{Cl}$ is coordinated by 6 Na
- One NaCl_{6}-octaherdon is coordinated by $12 \mathrm{NaCl}_{6}$-octahedra
- Connection of octahedra by common edges

2.3 Basic structure types
 Bonding in ionic structures - Coulomb interaction

Classic picture of ionic bonding: cations donate electrons to anions thus each species fullfills the octet rule.
i.e. $\mathbf{N a + F} \rightarrow \mathbf{N a}^{+}+\mathbf{F}^{-}$

Interaction between anions and cations: Coulomb interactions.

$$
V_{A B}=-A \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{A B}} N \quad \begin{gathered}
\text { Coulomb potential } \\
\text { of an ion pair }
\end{gathered}
$$

V_{AB} : Coulomb potential (electrostatic potential)
A: Madelung constant (depends on structure type)
z: charge number, e: elementary charge $=1.602 \times 10^{-19} \mathrm{C}$
ε_{0} : dielectric constant (vacuum permittivity) $=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{Nm}^{2}\right)$
$r_{A B}$: shortest distance between cation and anion
N : Avogadro constant $=6.023 \times 10^{23} \mathrm{~mol}^{-1}$

2.3 Basic structure types Bonding in ionic structures - Coulomb interaction

Calculating the Madelung constant (for NaCl)
$A=6-\frac{12}{\sqrt{2}}+\frac{8}{\sqrt{3}}-\frac{6}{\sqrt{4}}+\ldots$

First coordination
sphere

Second coordination sphere

Third coordination
sphere

First term: attraction from the 6 nearest neighbors

Second term: repulsion (opposite sign) from 12 next nearest neighbors

A converges to a value of 1.748 .
A
CN

Rock Salt
CsCl
1.748

6

Sphalerite
Fluorite
1.763

8
1.638

4
5.039

8

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the

Born repulsion shows the same behaviour
approximation:

$$
V_{\text {Born }}=\frac{B}{r^{n}}
$$

B and n are constants for a given atom type; \mathbf{n} can be derived from compressibility measurements (~8)

2.3 Basic structure types Lattice energy of an ionic structure

1) Set the first derivative of the sum to zero
2) Substitute B-parameter of repulsive part

$$
\Delta \mathrm{H}_{L}^{0}=\operatorname{Min} .\left(V_{A B}+V_{B o r n}\right) \quad \Delta \mathrm{H}_{L}^{0}=-A \frac{Z_{+} Z_{-} e^{2}}{4 \pi \varepsilon_{0} r_{0}} N\left(1-\frac{1}{n}\right)
$$

- typical values, measured (calculated) $\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]$:
- NaCI: -772 (-757); CsCl: -652 (-623)
- measured means "calculated" by Born Haber cycle (later)
- fraction of Coulomb interaction at r_{0} : $\mathbf{~ 9 0 \%}$
- missing in our lattice energy calculations:
- zero point energy
- dipole-dipole interaction
- covalent contributions, example: AgCI: -912 (-704)

2.3 Basic structure types
 Sphalerite-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z

ZnS
cubic
F-4 3 m (no. 216)
$a=5.3450 \AA$
4

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Zn1	+2	$4 a$	0	0	0
S2	-2	$4 c$	$1 / 4$	$1 / 4$	$1 / 4$

Structural and other features:

- diamond-type structure
- 50\% of tetrahedral holes in CCP filled
- connected layers, sequence (S-layers): ABC, polytypes
- Zn , S is coordinated by 4 S , (tetrahedra, common corners)
- applications of sphalerite-type structures very important (semiconductors: solar cells, transistors, LED, laser...)

2.3 Basic structure types Wurzite-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z

ZnS
hexagonal
$P 6_{3} \mathrm{mc}$ (no. 186)
$a=3.8360 \AA, c=6.2770 \AA$
2

Atomic coordinates

Atom	Ox.	Wyck.	x	y	z
Zn1	+2	$2 b$	$1 / 3$	$2 / 3$	0
S1	-2	$2 b$	$1 / 3$	$2 / 3$	$3 / 8$

Structural features:

- connected layers, sequence (S-layers): AB
- Zn is coordinated by 4 S (tetrahedra, common corners)
- polytypes

2.3 Basic structure types CaF_{2}-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z
CaF_{2}
cubic
Fm-3 m (no. 225)
$a=5.4375(1) \AA$
4

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Ca1	+2	$4 a$	0	0	0
F1	-1	$8 c$	$1 / 4$	$1 / 4$	$1 / 4$

Structural features:
 - all TH of CCP filled

- F is coordinated by 4 Ca (tetrahedron)
- Ca is coordinated by 8 F (cube)

2.3 Basic structure types CdCl_{2}-type

Crystal data

Formula sum
Crystal system
Space group
CdCl_{2}

Unit cell dimensions $\quad a=6.2300 \AA, \alpha=36^{\circ}$
Z 1

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Cd1	+2	$3 a$	0	0	0
Cl1	-1	$36 i$	$0.25(1)$	$0.25(1)$	$0.25(1)$

2.3 Basic structure types CdI_{2}-type

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Cd1	+2	$1 a$	0	0	0
11	-1	$2 d$	$1 / 3$	$2 / 3$	$1 / 4$

Structural features:

- layered structure, sequence (I-layers): AB
- Cd is coordinated octahedrally by 6 I (via six common edges)
- polytypes
Cdl_{2}
trigonal
P-3 m 1 (no. 164)
$a=4.2500 \AA, c=6.8500 \AA$
1

2.3 Basic structure types NiAs-type

Crystal data

Formula sum
Crystal system
Space group
Unit cell dimensions Z

NiAs
hexagonal
P63/m m c (no. 194)
$a=3.619(1) \AA, c=5.025(1) \AA$
2

Atomic coordinates

Atom	Ox.	Wyck.	x	\mathbf{y}	\mathbf{z}
Ni1	+3	$2 a$	0	0	0
As1	-3	$2 c$	$1 / 3$	$2 / 3$	$1 / 4$

Structural features:

- all OH of HCP filled
- Ni is coordinated by 6 As (octahedron)
- metal-metal-bonding (common faces of the octahedra)
- As is coordinated by 6 Ni (trigonal prism)
- type $=$ antitype

2.3 Basic structure types Intercalation of layered compounds

- Reversible intercalation of atoms between the layers of a layered compound
- Host-guest interactions, structure-property relations

Example 1: Graphite

- Electron donors (alkali metals, e. g. KC_{8})
- Electron acceptors $\left(\mathrm{NO}_{3}{ }^{-}, \mathrm{Br}_{2}, \mathrm{AsF}_{5} \ldots\right.$)
- Properties: Increase of interlayer spacing, color change, increase of conductivity, change of electronic structure

Example 2: TiS_{2} (CdI ${ }_{2}$-type)

- Electron donors
(alkali metals, copper, organic amines)
- Application: Li-TiS ${ }_{2}$-battery

2.3 Conventional chemical preparation methods

Chemical Transport: A solid is dissolved in the gas phase at one place (T=T1) by reaction with a transporting agent (e.g. I_{2}). At another place ($\mathrm{T}=\mathrm{T} 2$) the solid is condensed again.

Whether T1 < T2 or T1 > T2 depends on the thermochemical balance of the reaction!
Transport can proceed from higher to lower or from lower to higher temperature

Main application: purification and crystallisation of solids

2.3 Growth of big single crystals (e.g. Si)

Abb. 1: Großer Silizium-Einkristall mit hoher Perfektion des Kristallbaus und extremer chemischer Reinheit. (Werkfoto der Wacker-Chemitronic, Burghausen; ich danke Dr. E. Lutz für dieses Bild.)
2.3 Growth of single crystals: Bridgman-Stockbarger-process (moving temperature gradient)

2.3 Czochralski process: Si (!)

- a rotating seed crystal is raised slowly from a melt with equal composition

2.3 Zone melting

- a small slice of the sample is molten and moved continuously along the sample - impurities normally dissolve preferably in the melt
(!! icebergs in salt water don't contain any salt !!)
- segregation coefficient k :

$$
\mathbf{k}=\mathbf{c}_{\text {solid }} / \mathbf{c}_{\text {liquid }}
$$

(c: concentration of an impurity)
only impurities with k < 1 can be removed by zone melting !!

2.3 Hydrothermal synthesis

Chemical transport in supercritical aqueous solution ($\left.\mathrm{H}_{2} \mathrm{O}: \mathrm{T}_{\mathrm{k}}=374^{\circ} \mathrm{C}, \mathrm{p}_{\mathrm{k}}=\mathbf{2 1 7 , 7} \mathrm{atm}\right)$

Autoclave for the growth of $\underline{\mathrm{SiO}}_{2}$ single crystals (\rightarrow quartz)

1500 bar, T- gradient $400 \rightarrow 380^{\circ} \mathrm{C}$
1: nutrient (powder), 2: seed crystal,
3: mechanical fixing of crystal
4: product crystal

Lit.: Die Rolle der Hydrothermalsynthese in der präparativen Chemie, A. Rabenau, Angew. Chem. 97 (1985) 1017

2.4 More complex structures Oxides: Rutile $\left(\mathrm{TiO}_{2}\right)$

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions Z
TiO_{2}
tetragonal
$P 4_{2} / \mathrm{m} \mathrm{n} \mathrm{m} \mathrm{(no}. \mathrm{136)}$
$a=4.5937 \AA, c=2.9587 \AA$
2

Atomic coordinates

Atom	Ox.	Wyck.	x	\mathbf{y}	\mathbf{z}	
Ti1	+4	$2 a$	0	0	0	
O1	-2	$4 f$	$0.30469(9)$	$0.30469(9)$	0	

Structural features:

- no HCP arrangement of $\mathrm{O}(\mathrm{CN}(\mathrm{O}, 0)=11)$
- mixed corner and edge sharing of TiO_{6}-octahedra
- columns of trans edge sharing TiO_{6}-octahedra, connected by common corners
- many structural variants
- application: pigment

2.4 More complex structures Oxides: ReO_{3}

Crystal data

Formula sum
Crystal system
Space group

$$
\begin{aligned}
& \mathrm{ReO}_{3} \\
& \text { cubic } \\
& P \mathrm{~m}-3 \mathrm{~m} \text { (no. 221) } \\
& \mathrm{a}=3.7504(1) \AA
\end{aligned}
$$

Unit cell dimensions
Z 1

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
$\operatorname{Re} 1$	+6	$1 a$	0	0	0
O1	-2	$3 d$	$1 / 2$	0	0

Structural features:

- no close packing (CN $(0,0)=8)$
- ReO_{6} octahedra connected by six common corners
- large cavity in the center of the unit cell
- filled phase $\left(\mathrm{A}_{\mathrm{x}} \mathrm{WO}_{3}\right.$ tungsten bronze)

2.4 More complex structures Oxides: undistorted perovskite $\left(\mathrm{SrTiO}_{3}\right)$

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions Z

Atomic coordinates

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Sr1	+2	$1 a$	0	0	0
Ti1	+4	$1 b$	$1 / 2$	$1 / 2$	$1 / 2$
O1	-2	$3 c$	0	$1 / 2$	$1 / 2$

Structural features:

- filled ReO_{3} phase, $\mathrm{CN}(\mathrm{Ca})=12$ (cuboctaehdron), $\mathrm{CN}(\mathrm{Ti})=6$ (octahedron)
- many distorted variants (even the mineral CaTiO_{3} !)
- many defect variants (HT-superconductors, $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7-x}$)
- hexagonal variants and polytyps

2.4 More complex structures Oxides: Spinel $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}, \mathrm{Fe}_{3} \mathrm{O}_{4}\right)$

Crystal data
Formula sum
Crystal system
Space group
Unit cell dimensions
Z

Atom	Ox.	Wyck.	\mathbf{x}	\mathbf{y}	\mathbf{z}
Mg1	+2	$8 a$	0	0	0
Al1	+3	$16 d$	$5 / 8$	$5 / 8$	$5 / 8$
O1	-2	$32 e$	0.38672	0.38672	0.38672

ICSD database: ~100.000 inorganic crystal structures
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$
cubic
F d -3 m (no. 227)
$a=8.0625(7) \AA$
8

Atomic coordinates

Structural features:

- distorted CCP of 0
- Mg in tetrahedral holes (25\%), no connection of tetrahedra
- Al in octahedral holes (50\%), common edges
- Inverse spinel structures $\mathbf{M g}_{\mathrm{TH}} \mathrm{Al}_{2 \mathrm{OH}} \mathrm{O}_{4} \rightarrow \mathbf{I n}_{\mathrm{TH}}(\mathrm{Mg}, \mathrm{In})_{\mathrm{OH}} \mathrm{O}_{4}$
- Application: ferrites (magnetic materials)

Defects are of paramount importance for the diffusion of ions (atoms) in solids

Schottky-imperfection: vacancy, missing ions moved to the surface (can be cations or anions)

Frenkel-imperfection: vacancy, missing ions on interstitial positions (cations ony)

2.5 Complex structures Oxides: Silicates- overview 1

From simple building units to complex structures

Structural features:

- fundamental building unit: SiO_{4} tetrahedron
- isolated tetrahedra or connection via common corners
- MO_{6} octahedra, MO_{4} tetrahedra ($\mathrm{M}=\mathrm{Fe}, \mathrm{Al}, \mathrm{Co}, \mathrm{Ni} .$.)

Nesosilicates
$\mathrm{SiO}_{4}{ }^{4-}$
Olivine: $\left(\mathbf{M g}, \mathrm{Fe}_{2} \mathbf{S i O}_{4}\right.$

Sorosilicates
$\mathrm{Si}_{2} \mathrm{O}_{7}{ }^{6}$
Thortveitite: $(\mathbf{S c}, \mathrm{Y})_{2} \mathbf{S i}_{2} \mathrm{O}_{\mathbf{7}}$

Cyclosilicates
$\mathrm{SiO}_{3}{ }^{2-}$
Beryl: $\mathrm{Be}_{3} \mathrm{Si}_{6} \mathrm{O}_{18}$

2.5 Complex structures
 Oxides: Silicates- overview 2

Inosilicates

single chain: $\mathrm{SiO}_{3}{ }^{2-}$ Pyroxene: $(\mathrm{Mg}, \mathrm{Fe}) \mathrm{SiO}_{3}$
double chain: $\mathrm{Si}_{4} \mathrm{O}_{11}{ }^{6-}$
Tremolite:
$\mathrm{Ca}_{2}\left(\mathrm{Mg}, \mathrm{Fe}_{5} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}\right.$

Phyllosilicates
$\mathrm{Si}_{2} \mathrm{O}_{5}{ }^{2-}$
Biotite: $\mathrm{K}(\mathrm{Mg}, \mathrm{Fe})_{3} \mathrm{AlSi}_{3} \mathrm{O}_{10}(\mathrm{OH})_{2}$

2.5 Complex structures
 Oxides: Silicates- overview 3

Tectosilicates SiO_{2}
Faujasite: $\mathrm{Ca}_{28} \mathrm{Al}_{57} \mathrm{Si}_{135} \mathrm{O}_{384}$

2.5 Complex structures
 Concept for visualization of topology

T-Atom representation

2.5 Complex structures Intermetallics- overview

Solid solutions: Example: $\mathrm{Rb}_{\mathrm{x}} \mathrm{Cs}_{1-\mathrm{x}} \mathrm{BCC}$-structure, disordered

- chemically related
- small difference of electronegativity
- similar number of valence electrons
- similar atomic radius
- (high temperature)

Ordered structures: from complex building units to complex structures
Rule: complex structures
Exception: simple structures

CN 12

CN 16

2.5 Complex structures Intermetallics- Hume-Rothery-phases

Trend 1:

Intermetallics with a defined relation between structure and VEC (Valence Electron Concentration)

Number (N) of valence electrons (empirical rules):
$0: \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Pt}, \mathrm{Pd} ; \quad 1: \mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}$
2: Be, Mg, Zn, Cd; 3: Al; 4: Si, Ge, Sn; 5: Sb VEC $=\mathrm{N}($ val. electr) $/ \mathrm{N}$ (atoms) (both per formula unit)

VEC	$3 / 2$	$3 / 2$	$3 / 2$	$21 / 13$	$7 / 4$
Structure	CuZn	$\beta-\mathrm{Mn}$	HCP	γ-Brass	HCP
Example	$\mathrm{Cu}_{3} \mathrm{AI}$	$\mathrm{Cu}_{5} \mathrm{Si}$	$\mathrm{Cu}_{3} \mathrm{Ga}$	$\mathrm{Cu}_{5} \mathrm{Zn}_{8}$	CuZn_{3}

2.5 Complex structures

 Intermetallics- Laves-phases

 Intermetallics- Laves-phases}

Trend 2:
Intermetallics with a high space filling (71\%)
Typical radius ratio: 1:1.225

Structure	MgCu_{2}	MgZn_{2}	MgNi_{2}
Example	TiCr_{2}	BaMg_{2}	FeB_{2}
	AgBe_{2}	FeBe_{2}	TaCo_{2}
	CeAl_{2}	WFe_{2}	ZrFe_{2}

2.5 Complex structures Zintl-phases- overview

Experimental observation: element 1 + element $2 \rightarrow$ compound (liquid ammonia) element 1: alkali, alkaline-earth (electropositive) element 2: Ga-TI, Si-Pb, As-Bi...(less electropositive) e.g. $\mathrm{Na}^{+}{ }^{+}{ }^{-}, \mathrm{Ca}^{2+} \mathrm{Si}^{2-}$...
Properties of the compounds:

- deeply colored
- soluble clusters in liquid ammonia
- fixed composition, valence compounds
$\left\{\begin{array}{c}\text { Characteristics of } \\ \text { Zintl phases }\end{array}\right.$
- The structure of the anions follows the octet rule

The Zintl-rule (,,8-N-rule")

- The number of bonds of each anion is $8-\mathrm{N}$ ($\mathrm{N}=$ number of valence electrons of the anion)
- The anions adopt structures related to the elements of group N

2.5 Complex structures Zintl-phases- examples

- $8-\mathrm{N}=\mathbf{0}, \mathrm{N}=8: \mathrm{Mg}_{2} \mathrm{Si}: \mathrm{Si}^{4-}$, isolated atoms (noble gases: HCP or CCP)
- 8-N = 1, $\mathrm{N}=7$: $\mathrm{Sr}_{2} \mathrm{P}_{2}$: P -, dimers (halogene)
$-8-\mathrm{N}=2, \mathrm{~N}=6$: $\mathrm{CaSi}^{\text {: } \mathrm{Si}^{2} \text {-, chains or rings (chalcogene) }}$
- $8-\mathrm{N}=3, \mathrm{~N}=5$: CaSi_{2} : $\mathrm{Si}^{\text {- }}$, sheets or 3D nets (pnicogene, black phosphorous)
$\cdot 8-\mathrm{N}=4, \mathrm{~N}=4$: NaTI: TI-, 3D framework of tetrahedra (tetrel, diamond)

Example: $\mathrm{Ba}_{3} \mathrm{Si}_{4}$

2.6 Basic Magnetochemistry

The magnetic moment of a single atom (μ)

(μ is a vector!)
$\mu=\mathrm{i} F\left[\mathrm{Am}^{2}\right.$], circular current i , aerea F
$\mu_{\mathrm{B}}=\mathrm{eh} / 4 \pi \mathrm{~m}_{\mathrm{e}}=0,9274 \quad 10^{-27} \mathrm{Am}^{2}$
(h: Planck constant, m_{e} : electron mass)

μ_{B} : „Bohr magneton" (smallest quantity of a magnetic moment)
\rightarrow for one unpaired electron in an atom:

$$
\mu^{s}=1,73 \mu_{\mathrm{B}}
$$

2.6 Basic Magnetochemistry

\rightarrow The magnetic moment of an atom has two components a spin component (,spinmoment") and an orbital component (,orbital moment").
\rightarrow Frequently the orbital moment is supressed (,spin-onlymagnetism", e.g. coordination compounds of 3d elements)

Magnetisation M and susceptibility χ

$$
M=\left(\sum \mu\right) / V
$$

$\Sigma \mu$: sum of all magnetic moments μ in a given volume V, dimension: $\left[\mathrm{Am}^{2} / \mathrm{m}^{3}=A / \mathrm{m}\right]$

The actual magnetization of a given sample is composed of the "intrinsic" magnetization (susceptibility χ) and an external field H :

$$
M=H \chi \quad \text { (} \chi: \text { suszeptibility) }
$$

2.6 Magnetochemistry

There are three types of susceptibilities:
χ_{V} : dimensionless (volume susceptibility)
$\chi_{g}:\left[\mathrm{cm}^{3} / g\right] \quad$ (gramm susceptibility)
$\chi_{m}:\left[\mathrm{cm}^{3} / \mathrm{mol}\right]$ (molar susceptibility)
!!!!! χ_{m} is used normally in chemistry !!!!
Frequently: $\chi=\mathrm{f}(\mathrm{H}) \rightarrow$ complications !!

2.6 Magnetochemistry

Diamagnetism

- external field is weakened
- atoms/ions/molecules with closed shells

$$
-10^{-4}<\chi_{m}<-10^{-2} \mathrm{~cm}^{3} / \mathrm{mol} \text { (negative sign) }
$$

Paramagnetism

- external field is strengthened
- atoms/ions/molecules with open shells/unpaired electrons

$$
+10^{-4}<\chi_{m}<10^{-1} \mathrm{~cm}^{3} / \mathrm{mol}
$$

\rightarrow diamagnetism (core electrons) + paramagnetism (valence electrons)

General:

1.) Diamagnetism:
2.) Paramagnetism:
3.) Pauli-Paramagnetism:
independent of temperature (metals and non-metals)
Curie- or Curie-Weiss-law (non-metals) independent of temperature (metals)

2.6 Curie- und Curie-Weiss-law for paramagnetic samples

Curie: $1 / \chi=C \cdot T$: Curie-Weiss: $1 / \chi=C \cdot(T-\Theta)$

2.6 Different types of collective magnetism in a solid due to coupling of magnetic moments

2.7 Structure of nanomaterials What is nano?

Definition: at least one dimension < 100 nm

2.7 Structure of nanomaterials Physical approaches to nanostructures

Building a Ni Dimer on $\mathrm{Au}(111)$

Building a Ni Dimer on Au(111)

2.7 Structure of nanomaterials Why nano? - fundamental properties

CdS-colloids, different particle sizes

- melting point: structure dominated by small CN (e.g. 9 instead of 12)
- magnetism (increasing spin interactions with decreasing particle size)
- optical properties (example: nano-Au, purple of cassius)
- conductivity (deviations from the Ohm's law)

Vision of nano: design of properties by designing the size of objects „wavefunction engineering" and not the chemistry of the objects

2.7 Structure of nanomaterials Structures containing large entities - fullerenes

Chemistry of fullerenes

- Synthesis: vaporization of carbon
- ion implantation in C_{60} cage
- fullerides: e.g. $\mathrm{A}_{3} \mathrm{C}_{60} \rightarrow\left(\mathrm{~A}^{+}\right)_{3}\left(\mathrm{C}_{60}\right)^{3-}$
- numerous chemical modifications

2.7 Structure of nanomaterials 1D nanomaterials - Carbon nanotubes

Single walled carbon nanotube (SWCNT)
Graphene sheet

- multiwalled carbon nanotubes (MWCNT)
- different conformations: different conductivity
- electron emission (field emission)
- remarkable mechanical properties
- hydrogen adsorption
- easy electrolyte contact
- polymer strengthening
- transistor components
- drug or chemical storage

2.7 Structure of nanomaterials 2D nanomaterials - synthesis

- Sputtering

- Ar'-ions are accelerated in an electrical field and „,hit" the target
- consequence: surface atoms are removed from the surface
- applications: reactive sputtering, surface cleaning ...

2.7 Structure of nanomaterials 2D nanomaterials - synthesis

- Epitaxy:
- thin orientated layers of similar crystal structures
- e.g. InAs: $\mathrm{a}=603,6 \mathrm{pm}$ on GaAs : $\mathrm{a}=565,4 \mathrm{pm}$, both sphalerite structures
- CVD (Chemical Vapour Deposition)
- decomposition of molecules in the gas phase by electron beam or laser
- deposition on suitable substrates
- e.g. fabrication of LEDs with GaP and $\mathrm{GaAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}$, epitaxial layers are produced by thermal decomposition of compounds like $\mathrm{AsH}_{3}, \mathrm{AsCl}_{3}, \mathrm{PH}_{3}, \mathrm{PCl}_{3}, \ldots$
- MBE

> Production of a $\mathrm{Ga}_{1-\mathrm{x}} \mathrm{Al}_{\mathrm{x}} \mathrm{As}$ on GaAs by the MBE process

OD nanomaterials - synthesis by MBE

- substrate wafers transferred to high vacuum growth chamber
- elements kept in effusion cells at high temperatures
- shutters over cells open to release vaporized elements, which deposit on sample
- temperature of each effusion cell controls the rate of deposition of that element (Ga, In, AI, etc.)
- precise control over temperatures and shutters allows very thin layers to be grown (~1 ML/sec)
- RHEED patterns indicate surface morphology (Reflection High Energy Electron Diffraction)

