Advanced Inorganic Chemistry (Part 1) **Basic Solid State** Chemistry WS 07/08 (H.J. Deiseroth)

Atkins • Overton • Rourke • Weller • Armstrong

Resources

Textbooks:Shriver, Atkins, Inorganic Chemistry (3rd ed, 1999)W.H. Freeman and Company (Chapter 2, 18 ...)

Internet resources

- http://ruby.chemie.uni-freiburg.de/Vorlesung/ (german)
- http://www.chemistry.ohio-state.edu/~woodward/ch754... (pdf-downloads)
- IUCR-teaching resources (International Union for Crystallography, advanced level)

Journals

Outline - 16.10.07

- 1. Introduction
- 2. Structure of solids
 - 2.1 Basics of structures
 - 2.2 Simple close packed structures: metals
 - 2.3 Basic structure types (structure of simple salts)
 - **2.4 More complex structures**
 - **2.5 Complex structures**

► Oxides...

2.6 Structure of nanomaterials

1.Introduction Why is the solid state interesting?

Most elements are solid at room temperature

Group	1	2] [3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rh
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
* Lanthanoids * 57 58 59 60 61 62 63 64 65 66 La Ce Pr Nd Pm Sm Eu Gd Tb Dy							67 Ho	68 Er	69 Tm	70 Yb									
**Ac	tinoic	ls	**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

1. Introduction Special aspects of solid state chemistry

- Close relationship to solid state physics
- Importance of structural chemistry
 - knowledge of several structure types
 - understanding of structures
- Physical methods for the characterization of solids
 - X-ray structure analysis, electron microscopy...
 - thermal analysis, spectroscopy, conductivity measurements ...
- Investigation and tuning of physical properties
 - magnetism, conductivity, sorption, luminescence
 - defects in solids: point defects, dislocations, grain boundaries
- Synthesis
 - HT-synthesis, hydrothermal synthesis, soft chemistry
 - strategies for crystal growth (physics)

1. Introduction Classifications for solids (examples)

- Degree of order
 - crystals: long range order (3D periodicity)
 - amorphous solids, glasses: short range order (no 3D periodicity)
 - crystals with disorder of a partial structure (ionic conductors)
- Chemical bonding typical properties
 - covalent solids (e.g. diamond, boron nitride): extreme hardness ...
 - ionic solids (e.g. NaCl): ionic conductivity ...
 - metals (e.g. Cu): high conductivity at low temperatures
 - conductivity: metals, semiconductors, insulators, superconductors...
 - magnetism: ferromagnetism, paramagnetism...
- Structure and Symmetry
 - packing of atoms: close packed structure (high space filling)
 - characteristic symmetry elements: cubic, hexagonal...
 - defects in solids, point defects, dislocations

2.1 Basics of Structures Visualization of structures

Example: Cristobalite (SiO₂)

Description of packing

Bragg jun. (1920) Sphere packing

Description of environment

Pauling (1928) Polyhedra Description of topology

Wells (1954) 3D nets

2.1 Basics of Structures Approximation: atoms can be treated like spheres

ionic radius: reference, e.g. $r(O^{2-}) =$ 140 pm (Shannon for CN = 6)

2.1 Basics of Structures Trends of the atomic radius

- atomic radii increase on going down a group.
- atomic radii decrease across a period
- particularities: Ga < Al (d-block)

2.1 Basics of Structures Atomic radii

Table	1.4 Ato	mic radi	i, <i>r</i> /pm*													
Li	Be											В	C	N	0	F
157	112											88	77	74	66	64
Na	Mg											Al	Si	Р	S	Cl
191	160											143	118	110	104	99
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
235	197	164	147	135	129	137	126	125	125	128	137	155	122	121	117	114
Rb	Sr	Y	Zr	Nb	Мо	Τϲ	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1
250	215	182	160	147	140	135	134	134	137	144	152	167	158	141	137	133
Cs	Ва	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	τι	Pb	Bi		
272	224	172	159	147	141	137	135	136	139	144	155	171	175	182		

*The values refer to coordination number 12 (see Section 3.2).

Ga: 122 pm !

2.1 Basics of Structures Ionic radii

Table 1.5	lonic radii, r/	pm*					
Li ⁺ 59(4) 76(6)	Be ²⁺ 27(4)	B ³⁺ 12(4)			N ³⁻ 132	0 ²⁻ 135(2) 138(4) 140(6)	F [−] 128(2) 131(4) 133(6)
Na ⁺ 99(4)	Mg ²⁺ 49(4)	Al ³⁺ 39(4)			P ³⁻ 212	142(8) S ^{2–} 184(6)	Cl - 167(6)
102(6) 116(8)	72(6) 89(8)	53(6)					107 (0)
K ⁺ 138(6) 151(8) 159(10) 160(12)	Ca ²⁺ 100(6) 112(8) 128(10) 135(12)	Ga ³⁺ 62(6)			As ^{3–} 222	Se ^{2–} 198(6)	Br 196(6)
Rb ⁺ 149(6) 160(8) 173(12)	Sr ²⁺ 116(6) 125(8) 144(12)	In ³⁺ 79(6) 92(8)	Sn ²⁺ 83(6) 93(8)	Sn ⁴⁺ 74(6)		Te ^{2–} 221(6)	I [−] 206(6)
Cs ⁺ 167(6) 174(8) 188(12)	Ba ²⁺ 149(6) 156(8) 175(12)	πι ³⁺ 88(6) πι ⁺ 164(6)					

Table 3.3 The variation of radiuswith coordination number

Coordination number	Relative radius
12	1
8	0.97
6	0.96
4	0.88

*Numbers in parentheses are the coordination number of the ion. For more values, see Resource section 1.

2.1 Basics of Structures Trends of the ionic radii

- ionic radii increase on going down a group
- radii of equal charge ions decrease across a period
- ionic radii increase with increasing coordination number (the higher its CN the bigger the ions seems to be !!)
- the ionic radius of a given atom decreases with increasing charge (r(Fe²⁺) > r(Fe³⁺))
- cations are usually the smaller ions in a cation/anion combination (exception: r(Cs⁺) > r(F⁻))

cf. atomic radii

2.1 Basics of Structures Determination of the ionic radius

Ionic radius = d - r(F, O...)

Structure analyses, most important method: X-ray diffraction

L. Pauling:

- Radius of one ion is fixed to a reasonable value $(r(O^{2-}) = 140 \text{ pm})$
- That value is used to compile a set of self consistent values for other ions.

2.1 Basics of Structures Structure and lattice – what is the difference?

Example: structure and lattice in 2D

Lattice

- pattern of points
- no chemical information, mathematical description
- no atoms, but points and lattice vectors (a, b, c, α , β , γ), unit cell
- Motif (characteristic structural feature, atom, group of atoms...)
- Structure = Lattice + Motif
 - contains chemical information (e.g. environment, bond length...)
 - describes the arrangement of atoms

2.1 Basics of Structures Unit cell

Unit Cell (interconnection of lattice and structure)

- an parallel sided region of the lattice from which the entire crystal can be constructed by purely translational displacements
- <u>contents of unit cell represents chemical composition</u> (multiples of chemical formula)
- primitive cell: simplest cell, contain one lattice point

2.1 Basics of Structures Unit cell – which one is correct?

Conventions:

- 1. Cell edges should, whenever possible, coincide with symmetry axes or reflection planes
- 2. The smallest possible cell (the reduced cell) which fulfills 1 should be chosen

M.C. Escher

2.1 Basics of Structures Unit cells and crystal system

- millions of structures but 7 crystal systems
- crystal system = particular restriction concerning the unit cell
- crystal system = unit cell with characteristic symmetry elements (later)

Crystal system	Restrictions axes	Restrictions angles
Triclinic	_	-
Monoclinic	-	$\alpha = \gamma = 90^{\circ}$
Orthorhombic	-	$\alpha = \beta = \gamma = 90^{\circ}$
Tetragonal	a = b	$\alpha = \beta = \gamma = 90^{\circ}$
Trigonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Hexagonal	a = b	$\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$
Cubic	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$

2.1 Basics of Structures Unit cells and crystal system: "Right Hand Rule"

2.1 Basics of Structures Unit cells and crystal system

2.1 Basics of Structures Indices of directions in space

"[110]", <u>square brackets for directions</u> Procedure in three steps

1. Select 000

2. Mark position of second point

3. Draw vector

Convention: right-handed coordinate system

- middle finger: c
- forefinger: b
- thumb: a

2.1 Basics of Structures Indices of directions in space – examples

2.1 Basics of Structures Indices of planes in space

Why are they important ?

2.1 Basics of Structures Indices of planes in space

"(110)" <u>round brackets for planes</u> Procedure in three steps

1. Select 000

2. Mark intercept (1/h 1/k 1/l) of the axes (if possible)

3. Draw plane

Convention: right-handed coordinate system

2.1 Basics of Structures Indices of planes in space – examples

2.1 Basics of Structures Fractional coordinates

- Rules for marking the position of an atom in a unit cell:
 - possible values for x, y, z: [0; 1]
 - atoms are generated by symmetry elements
 - negative values: add 1.0, values > 1.0: substract 1.0 (or multiples)

• Example: Sphalerite (Zincblende)

- Equivalent points are represented by one triplet only
 - equivalent by translation
 - equivalent by other symmetry elements, later

2.1 Basics of Structures Number of atoms per unit cell (Z)

Rectangular cells:

- atom completely inside unit cell: count = 1.0
- atom on a face of the unit cell: count = 0.5
- atom on an edge of the unit cell: count = 0.25
- atom on a corner of the unit cell: count = 0.125

Example 1: Sphalerite

Example 2: Wurzite

Wyckoff-notation: number of particular atoms per unit cell

2.1 Basics of Structures Wyckoff-notation - example

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z $\begin{array}{l} \text{Mg}_{2}\text{SiO}_{4} \mbox{ (Olivine)} \\ \text{orthorhombic} \\ P \mbox{ b n m (no. 62)} \\ a = 4.75(2) \mbox{ Å, } b = 10.25(4) \mbox{ Å, } c = 6.00(2) \mbox{ Å} \\ 4 \end{array}$

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Z
Mg1	+2	4a	0.00000	0.00000	0.00000
Mg2	+2	4 <i>c</i>	0.00995(600)	0.27734(600)	0.75000
Si1	+4	4 <i>c</i>	0.07373(500)	0.4043(50)	0.25000
01	-2	4 <i>c</i>	0.23242(1000)	0.0918(100)	0.75000
02	-2	4 <i>c</i>	0.2793(100)	0.05078(1000)	0.25000
O3	-2	8d	0.22266(1000)	0.33594(1000)	0.46289(1000)

2.1 Basics of Structures Wyckoff-notation and occupancy-factors

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z Cu_{0.8} In_{2.4} Se₄ tetragonal *I*-4 2 m (no. 121) a = 5.7539(3) Å c = 11.519(1) Å 2

Atomic coordinates

Atom	Ox.	Wyck.	Occ.	X	У	Ζ
Cu1	+1	2a	0.8	0	0	0
ln1	+3	4 <i>d</i>	1.0	0	1/2	1/4
ln2	+3	2b	0.4	0	0	1/2
Se1	-2	8 <i>i</i>	1.0	1/4	1/4	1/8

• Occ. factor < 1.0: mixing of atoms and vacancies on the same position

• Calculation of the composition: Cu: 2×0.8 ; In: $4 \times 1 + 2 \times 0.4$; Se: 8×1

Summary to 2.1

- Atoms can be treated (and visualized) like spheres
- Different types of radii
- Structure and lattice
- Unit Cell
- 7 crystal sytems
- Indexation of directions and planes
- Fractional coordinates
- Z: number of atoms per unit cell
- Wyckoff-notation and occupancy factors

2.2 Simple close packed structures (metals) Close packing in 2D

primitive packing (low space filling)

close packing (high space filling)

2.2 Simple close packed structures (metals) Close packing in 3D

2.2 Simple close packed structures (metals) Unit cells of HCP and CCP

HCP

(Be, Mg, Zn, Cd, Ti, Zr, Ru ...)

close packed layer: (001)

space filling = 74% CN = 12

CCP

(Cu, Ag, Au, Al, Ni, Pd, Pt ...) close packed layer: (111)

2.2 Simple close packed structures (metals) Calculation of space filling – example CCP

2.2 Simple close packed structures (metals) Other types of metal structures

Example 2: primitive packing (α-Po) space filling = 52% CN = 6

Example 3: structures of manganese

2.2 Simple close packed structures (metals) Holes in close packed structures

Tetrahedral hole TH

Octahedral hole OH

2.2 Simple close packed structures (metals) Properties of OH and TH in HCP and CCP

Distances OH/TH

Connection of tetrahedra, HCP

Connection of octahedra, HCP

no short distances

Summary to 2.2

- Concept of close packing (layer sequences, unit cell, space filling)
- Structure of metals

Holes in close packed structures

"Basic": anions form CCP or HCP, cations in OH and/or TH

Structure type	Examples	Packing	Holes filled OH and TH
NaCl	AgCl, BaS, CaO, CeSe, GdN, NaF, Na₃BiO₄, V₇C₈	ССР	n and On
NiAs	TiS, CoS, CoSb, AuSn	HCP	n and On
CaF ₂	$\begin{array}{c} CdF_2, CeO_2, \textbf{Li}_2 \textbf{O}, Rb_2 O, \\ SrCl_2, ThO_2, ZrO_2, Auln_2 \end{array}$	ССР	0 and 2n
CdCl ₂	$ \begin{array}{c c} MgCl_2, \ MnCl_2, \ FeCl_2, \ Cs_2O, \\ CoCl_2 \end{array} $	ССР	0.5n and 0
Cdl ₂	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	HCP	0.5n and 0
Sphalerite (ZnS)	AgI, BeTe, CdS, CuI, GaAs, GaP, HgS, InAs, ZnTe	ССР	0 and 0.5n
Wurzite (ZnS)	AIN, BeO, ZnO, CdS (HT)	HCP	0 and 0.5n
Li ₃ Bi	Li ₃ Au	ССР	n and 2n

2.3 Basic structure types Pauling rules: understanding polyhedral structures

(1) A polyhedron of anions is formed about each cation, the cation-anion distance is determined by the sum of ionic radii and the coordination number by the radius ratio: r(cation)/r(anion)

worst case

Scenario for radius ratios:

optimum

low space filling

2.3 Basic structure types Pauling rules: understanding polyhedral structures

coordination	anion polyhedron	radius ratios	cation
3	triangle	0.15-0.22	С
4	tetrahedron	0.22-0.41	Si, Al
6	octahedron	0.41-0.73	AI, Fe, Mg, Ca
8	cube	0.73-1.00	K, Na
12	close packing	1.00	
	(anti)cuboctahedron		2r(anion)

Example: Octahedron

Radius ratio

:tahedral coordinatic

 $\frac{\sqrt{2}}{1} = \frac{2r(anion) + 2r(cation)}{2r(anion)}$

$$\sqrt{2} - 1 = \frac{r(cation)}{r(anion)} = 0.414$$

Exercises

1. Discuss and explain the different types of atomic radii that can be used to describe crystal structures.

2. Assume the lattice constants of the following rock salt type structures to be 545 pm (MgSe), 591 pm (CaSe), 623 pm (SrSe) and 662 pm (BaSe). Calculate the cation radii. To determine the Se2- radius, assume that the Se2- ions are in direct contact in MgSe.

3. Assume WC to crystallize in the rock salt structure. Describe the mutual coordination of W and C.

4. How many neighbours (Cl⁻ and/or Na⁺ !) has a Na⁺ ion in NaCl in its (a) first (Cl⁻), (b) second (Na⁺) and (c) third (Cl⁻) coordination sphere?

5. The element Ta is bcc and has an atomic radius of 0.143 nm at 20 °C. Calculate a value for its lattice constants in Å.

6. The element W crystallizes in the bcc structure with lattice constants 3.16 Å. Calculate a value for its atomic radius in nm.

7. Calculate a value for the density of fcc Nickel from its lattice constant a=0.352 nm and its atomic mass of 58.71 g/mol.

8. Calculate the enlargement factor of surface if you grind a 1 cm3 cube of a solid material into smaller cubes with an edge length of 100 μ m.

9. Sketch the principle properties of the fluorite structure.

10. Make suggestions for possible structure types of a crystalline solid with the general chemical composition AB_2 .

2.3 Basic structure types Pauling rules: understanding polyhedral structures

(1) Negative and positive local charges should be balanced. The sum of <u>bond valences</u> $\sum s_{ij}$ should be equal to the oxidation state V_i of ion i: V_i= $\sum s_{ii}$

```
Example 1-TiO<sub>2</sub> (Rutile)
CN(Ti<sup>4+</sup>) = 6, CN(O<sup>2-</sup>) = 3: s_{ij}(Ti-O) = ± 2/3
\sum s_{ij}(Ti) = 4, \sum s_{ij}(O) = 2
```

<u>Example 2</u> - GaAs (Sphalerite) CN(Ga³⁺) = 4, CN(As³⁻) = 4: $s_{ij} = \pm 3/4$ $\sum s_{ij}(Ga) = 3, \sum s_{ij}(As) = 3$

<u>Example 3</u> - SrTiO₃ (Perovskite) $CN(Sr^{2+}) = 12$, $CN(Ti^{4+}) = 6$, $CN(O^{2-}) = 4(Sr)$ and 2(Ti) $s_{ij} (Sr-O) = 1/6$, $s_{ij} (Ti-O) = 2/3$

2.3 Basic structure types Pauling rules: understanding polyhedral structures

(2) The presence of shared edges, and particularly shared faces decreases the stability of a structure. This is particularly true for cations with large valences and small CN.

(3) In a crystal containing different cations those with large valence and small CN do not tend to share polyhedron elements with each other.

(4) The number of chemically different coordination environments for a given ion in a crystal tends to be small.

2.3 Basic structure types NaCl-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z NaCl cubic *F* m -3 m (no. 225) *a* = 5.6250(5) Å 4

Atomic coordinates

Atom	Ox.	Wyck.	Χ	У	Z
Na	+1	4a	0	0	0
CI	-1	4 <i>b</i>	1/2	1/2	1/2

- all octahedral holes of CCP filled, type = antitype
- Na is coordinated by 6 CI, CI is coordinated by 6 Na
- One NaCl₆-octaherdon is coordinated by 12 NaCl₆-octahedra
- Connection of octahedra by common edges

2.3 Basic structure types Bonding in ionic structures – Coulomb interaction

Classic picture of ionic bonding: cations donate electrons to anions thus each species fullfills the octet rule.

i.e. Na + F \rightarrow Na⁺ + F⁻

Interaction between anions and cations: Coulomb interactions.

- **V**_{AB}: Coulomb potential (electrostatic potential)
- A: Madelung constant (depends on structure type)
- z: charge number, e: elementary charge = 1.602×10⁻¹⁹C
- ϵ_{o} : dielectric constant (vacuum permittivity) = 8.85×10⁻¹²C²/(Nm²)
- \mathbf{r}_{AB} : shortest distance between cation and anion
- N: Avogadro constant = 6.023×10²³ mol⁻¹

2.3 Basic structure types Bonding in ionic structures – Coulomb interaction

Calculating the Madelung constant (for NaCl)

...

First term: attraction from the 6 nearest neighbors

Second term: repulsion (opposite sign) from 12 next nearest neighbors

A converges to a value of 1.748.

	Α	CN
Rock Salt	1.748	6
CsCl	1.763	8
Sphalerite	1.638	4
Fluorite	5.039	8

Repulsion arising from overlap of electron clouds

Because the electron density of atoms decreases exponentially towards zero at large distances from the nucleus the Born repulsion shows the same behaviour

approximation:

$$V_{Born} = \frac{B}{r^n}$$

B and n are constants for a given atom type; n can be derived from compressibility measurements (~8)

2.3 Basic structure types Lattice energy of an ionic structure

- 1) Set the first derivative of the sum to zero
- 2) Substitute B-parameter of repulsive part

$$\Delta H_L^0 = Min.(V_{AB} + V_{Born})$$

$$\Delta H_L^0 = -A \frac{z_+ z_- e^2}{4\pi\varepsilon_0 r_0} N(1 - \frac{1}{n})$$

- typical values, measured (calculated) [kJ mol⁻¹]:
 - NaCI: -772 (-757); CsCI: -652 (-623)
 - measured means "calculated" by Born Haber cycle (later)
- fraction of Coulomb interaction at r_0 : ~ 90%
- missing in our lattice energy calculations:
 - zero point energy
 - dipole-dipole interaction
 - covalent contributions, example: AgCI: -912 (-704)

2.3 Basic structure types Sphalerite-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z ZnS cubic *F* -4 3 m (no. 216) *a* = 5.3450 Å 4

Atomic coordinates

Atom	Ox.	Wyck.	Χ	У	Ζ
Zn1	+2	4a	0	0	0
S2	-2	4 <i>c</i>	1/4	1/4	1/4

Structural and other features:

- diamond-type structure
- 50% of tetrahedral holes in CCP filled
- connected layers, sequence (S-layers): ABC, polytypes
- · Zn, S is coordinated by 4 S, (tetrahedra, common corners)
- applications of sphalerite-type structures very important (semiconductors: solar cells, transistors, LED, laser...)

2.3 Basic structure types Wurzite-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z ZnS hexagonal *P* 6₃ m c (no. 186) *a* = 3.8360 Å, *c* = 6.2770 Å 2

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Ζ
Zn1	+2	2b	1/3	2/3	0
S1	-2	2b	1/3	2/3	3/8

- connected layers, sequence (S-layers): AB
- Zn is coordinated by 4 S (tetrahedra, common corners)
- polytypes

2.3 Basic structure types CaF₂-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z CaF_2 cubic F m -3 m (no. 225)a = 5.4375(1) Å4

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Ζ
Ca1	+2	4a	0	0	0
F1	-1	8c	1/4	1/4	1/4

- all TH of CCP filled
- F is coordinated by 4 Ca (tetrahedron)
- Ca is coordinated by 8 F (cube)

2.3 Basic structure types CdCl₂-type

Crystal data

Formula sum $CdCl_2$ Crystal system trigonal Space group R-3 m (no. 166) Unit cell dimensions a = 6.2300 Å, $\alpha = 36^{\circ}$ Z 1

Atomic coordinates

- layered structure, sequence (CI-layers): ABC
- Cd is coordinated octahedrally by 6 Cl (via six common edges)
- polytypes

2.3 Basic structure types CdI₂-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z

Cdl₂ trigonal *P* -3 m 1 (no. 164) *a* = 4.2500 Å, *c* = 6.8500 Å 1

Atomic coordinates

Atom	Ox.	Wyck.	X	у	Ζ
Cd1	+2	1a	0	0	0
11	-1	2 <i>d</i>	1/3	2/3	1/4

- layered structure, sequence (I-layers): AB
- Cd is coordinated octahedrally by 6 I (via six common edges)
- polytypes

2.3 Basic structure types NiAs-type

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z NiAs hexagonal *P* 63/m m c (no. 194) *a* = 3.619(1) Å, *c* = 5.025(1) Å 2

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Z
Ni1	+3	2a	0	0	0
As1	-3	2 <i>c</i>	1/3	2/3	1/4

- all OH of HCP filled
- Ni is coordinated by 6 As (octahedron)
- metal-metal-bonding (common faces of the octahedra)
- As is coordinated by 6 Ni (trigonal prism)
- type ≠ antitype

2.3 Basic structure types Intercalation of layered compounds

- Reversible intercalation of atoms between the layers of a layered compound
- Host-guest interactions, structure-property relations

Example 1: Graphite

- Electron donors (alkali metals, e. g. KC₈)
- Electron acceptors (NO₃⁻, Br₂, AsF₅...)
- Properties: Increase of interlayer spacing, color change, increase of conductivity, change of electronic structure

Example 2: TiS₂ (Cdl₂-type)

- Electron donors (alkali metals, copper, organic amines)
- Application: Li-TiS₂-battery

xLi (metal) \rightarrow xLi⁺(solv) +xe⁻ xLi⁺(solv) + TiS₂ + xe⁻ \rightarrow Li_xTiS₂(s)

<u>Chemical Transport:</u> A <u>solid</u> is <u>dissolved</u> in the <u>gas phase</u> at one place (T=T1) by reaction with a <u>transporting agent</u> (e.g. I_2). At another place (T=T2) the solid is <u>condensed</u> again.

Whether T1 < T2 or T1 > T2 depends on the <u>thermochemical</u> <u>balance</u> of the reaction !

Transport can proceed from <u>higher to lower</u> or from <u>lower to</u> <u>higher</u> temperature

Main application: purification and crystallisation of solids

2.3 Growth of big single crystals (e.g. Si)

Abb. 1: Groβer Silizium-Einkristall mit hoher Perfektion des Kristallbaus und extremer chemischer Reinheit. (Werkfoto der Wacker-Chemitronic, Burghausen; ich danke Dr. E. Lutz für dieses Bild.)

2.3 Growth of single crystals: Bridgman-Stockbarger-process (moving temperature gradient)

2.3 Czochralski process: Si (!)

- a rotating seed crystal is raised slowly from a melt with equal composition

2.3 Zone melting

- a small slice of the sample is molten and moved continuously along the sample
- impurities normally dissolve preferably in the melt (!! icebergs in salt water don't contain any salt !!)
- segregation coefficient k:
 k = c_{solid}/c_{liquid}
 (c: concentration of an impurity)

only impurities with k < 1 can be removed by zone melting !!

2.3 Hydrothermal synthesis

Chemical transport in supercritical aqueous solution (H_2O : T_k = 374 °C, p_k = 217,7 atm)

Autoclave for the growth of $\underline{SiO_2 \ single}$ crystals (\rightarrow quartz)

1500 bar, T- gradient 400 \rightarrow 380 °C

nutrient (powder), 2: seed crystal,
 mechanical fixing of crystal
 product crystal

Lit.: Die Rolle der Hydrothermalsynthese in der präparativen Chemie, A. Rabenau, Angew. Chem. 97 (1985) 1017

2.4 More complex structures Oxides: Rutile (TiO_2)

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z TiO₂ tetragonal $P 4_2/m n m (no. 136)$ a = 4.5937 Å, c = 2.9587 Å2

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Z	
Ti1	+4	2a	0	0	0	
01	-2	4 <i>f</i>	0.304	469(9)	0.30469(9)	0

- no HCP arrangement of O (CN(O,O) = 11)
- mixed corner and edge sharing of TiO₆-octahedra
- columns of trans edge sharing TiO₆-octahedra, connected by common corners
- many structural variants
- application: pigment

2.4 More complex structures Oxides: ReO₃

Crystal data

Formula sum Crystal system Space group Unit cell dimensions a = 3.7504(1) Å 7 1

ReO₃ cubic *P* m -3 m (no. 221)

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Ζ
Re1	+6	1 <i>a</i>	0	0	0
01	-2	3 <i>d</i>	1/2	0	0

- no close packing (CN (O,O) = 8)
- ReO₆ octahedra connected by six common corners
- large cavity in the center of the unit cell
- filled phase (A_xWO₃ tungsten bronze)

2.4 More complex structures Oxides: undistorted perovskite ($SrTiO_3$)

- filled ReO₃ phase, CN (Ca) = 12 (cuboctaehdron), CN (Ti) = 6 (octahedron)
- many distorted variants (even the mineral CaTiO₃!)
- many defect variants (HT-superconductors, YBa₂Cu₃O_{7-x})
- hexagonal variants and polytyps

2.4 More complex structures Oxides: Spinel (MgAl₂O₄, Fe₃O₄)

Crystal data

Formula sum Crystal system Space group Unit cell dimensions Z

MgAl₂O₄ cubic *F* d -3 m (no. 227) *a* = 8.0625(7) Å 8 ICSD database: ~100.000 inorganic crystal structures

Atomic coordinates

Atom	Ox.	Wyck.	X	У	Z
Mg1	+2	8 <i>a</i>	0	0	0
Al1	+3	16 <i>d</i>	5/8	5/8	5/8
01	-2	32e	0.38672	0.38672	0.38672

- distorted CCP of O
- Mg in tetrahedral holes (25%), no connection of tetrahedra
- Al in octahedral holes (50%), common edges
- Inverse spinel structures $Mg_{TH}AI_{2OH}O_4 \rightarrow In_{TH}(Mg, In)_{OH}O_4$
- Application: ferrites (magnetic materials)

2.4 Point defects (imperfections) in solids

Defects are of paramount importance for the diffusion of ions (atoms) in solids

<u>Schottky-imperfection:</u> vacancy, missing ions moved to the surface (can be cations or anions)

Frenkel-imperfection: vacancy, missing ions on interstitial positions (cations ony)

2.5 Complex structures Oxides: Silicates- overview 1

From simple building units to complex structures

- fundamental building unit: SiO₄ tetrahedron
- isolated tetrahedra or connection via common corners
- MO_6 octahedra , MO_4 tetrahedra (M = Fe, AI, Co, Ni...)

2.5 Complex structures Oxides: Silicates- overview 2

2.5 Complex structures Oxides: Silicates- overview 3

2.5 Complex structures Concept for visualization of topology

2.5 Complex structures Intermetallics- overview

Solid solutions: Example: Rb_xCs_{1-x} BCC-structure, disordered

- chemically related
- small difference of electronegativity
- similar number of valence electrons
- similar atomic radius
- (high temperature)

Ordered structures: from complex building units to complex structures

Rule: complex structures

Exception: simple structures

CN 12

CN 16

2.5 Complex structures Intermetallics- Hume-Rothery-phases

Trend 1: Intermetallics with a defined relation between structure and VEC (Valence Electron Concentration)

Number (N) of valence electrons (empirical rules): 0: Fe, Co, Ni, Pt, Pd; 1: Cu, Ag, Au 2: Be, Mg, Zn, Cd; 3: Al; 4: Si, Ge, Sn; 5: Sb VEC = N(val. electr) / N(atoms) (both per formula unit)

VEC	3/2	3/2	3/2	21/13	7/4
Structure	CuZn	β -Mn	НСР	γ-Brass	НСР
Example	Cu ₃ Al	Cu₅Si	Cu ₃ Ga	Cu₅Zn ₈	CuZn ₃

2.5 Complex structures Intermetallics- Laves-phases

Trend 2: Intermetallics with a high space filling (71%) Typical radius ratio: 1:1.225

Structure	MgCu ₂	MgZn ₂	MgNi ₂
Example	TiCr ₂ AgBe ₂	BaMg₂ FeBe₂	FeB ₂ TaCo ₂
		WFe ₂	ZrFe ₂

2.5 Complex structures Zintl-phases- overview

Experimental observation:

element 1 + element 2 → compound (liquid ammonia) element 1: alkali, alkaline-earth (electropositive) element 2: Ga-TI, Si-Pb, As-Bi...(less electropositive) e.g. Na⁺TI⁻, Ca²⁺Si²⁻...

Properties of the compounds:

- deeply colored
- soluble clusters in liquid ammonia
- fixed composition, valence compounds

Characteristics of Zintl phases

The Zintl-rule ("8-N-rule")

- The structure of the anions follows the octet rule
- The number of bonds of each anion is 8-N
 (N = number of valence electrons of the anion)
- The anions adopt structures related to the elements of group N

2.5 Complex structures Zintl-phases- examples

- 8-N = 0, N = 8: Mg_2Si : Si⁴⁻, isolated atoms (noble gases: HCP or CCP)
- 8-N = 1, N = 7: Sr₂P₂: P⁻, dimers (halogene)
- 8-N = 2, N = 6: CaSi: Si²⁻, chains or rings (chalcogene)
- 8-N = 3, N = 5: CaSi₂: Si⁻, sheets or 3D nets (pnicogene, black phosphorous)
- 8-N = 4, N = 4: NaTI: TI⁻, 3D framework of tetrahedra (tetrel, diamond)

The magnetic moment of a single atom (µ)

<u>D,</u>µm

F

 μ = i F [Am²], circular current i, aerea F

 $\mu_{\rm B} = eh/4\pi m_{\rm e} = 0,9274 \ 10^{-27} \ Am^2$

(h: Planck constant, m_e: electron mass)

 μ_{B} : "Bohr magneton" (smallest quantity of a magnetic moment)

 \rightarrow for one unpaired electron in an atom:

$$\mu^{s} = 1,73 \ \mu_{B}$$

2.6 Basic Magnetochemistry

 \rightarrow The magnetic moment of an atom has two components a spin component ("spinmoment") and an orbital component ("orbital moment").

 \rightarrow Frequently the orbital moment is <u>supressed</u> ("spin-only-magnetism", e.g. coordination compounds of 3d elements)

<u>Magnetisation</u> M and <u>susceptibility</u> χ

M = $(\Sigma \mu)/V$ $\Sigma \mu$: sum of all magnetic moments μ in a given volume V, dimension: [Am²/m³ = A/m]

The actual magnetization of a given sample is composed of the "intrinsic" magnetization (susceptibility χ) and an external field H:

 $M = H \chi$ (χ : suszeptibility)

2.6 Magnetochemistry

2.6 Magnetochemistry

<u>Diamagnetism</u>

- external field is weakened
- atoms/ions/molecules with closed shells

$$-10^{-4} < \chi_m < -10^{-2} \text{ cm}^3/\text{mol}$$
 (negative sign)

<u>Paramagnetism</u>

- external field is strengthened
- atoms/ions/molecules with open shells/unpaired electrons

+10⁻⁴ <
$$\chi_{\rm m}$$
 < 10⁻¹ cm³/mol

 \rightarrow diamagnetism (core electrons) + paramagnetism (valence electrons)

2.6 Temperature dependence of the magnetic suszeptibility

Curie:
$$1/\chi = C \cdot T$$
; Curie-Weiss: $1/\chi = C \cdot (T - \Theta)$

 $M_{(v)} = f(H), \ \chi_m = f(T) \ \text{und} \ \frac{1}{\chi_m} = f(T)$ für paramagnetische Stoffe

2.6 Different types of collective magnetism in a solid due to coupling of magnetic moments

2.7 Structure of nanomaterials What is nano?

Definition: at least one dimension < 100 nm

Nanotube

2.7 Structure of nanomaterials Physical approaches to nanostructures

Tip

Building a Ni Dimer on Au(111)

Building a Ni Dimer on Au(111)

2.7 Structure of nanomaterials Why nano? - fundamental properties

CdS-colloids, different particle sizes

- melting point: structure dominated by small CN (e.g. 9 instead of 12)
- magnetism (increasing spin interactions with decreasing particle size)
- optical properties (example: nano-Au, purple of cassius)
- conductivity (deviations from the Ohm's law)

Vision of nano: design of properties by designing the size of objects "wavefunction engineering" and not the chemistry of the objects

2.7 Structure of nanomaterials Structures containing large entities – fullerenes

Chemistry of fullerenes

- Synthesis: vaporization of carbon
- ion implantation in C₆₀ cage
- fullerides: e.g. $A_3C_{60} \rightarrow (A^+)_3(C_{60})^{3-1}$
- numerous chemical modifications

2.7 Structure of nanomaterials1D nanomaterials - Carbon nanotubes

Single walled carbon nanotube (SWCNT)

Graphene sheet

- multiwalled carbon nanotubes (MWCNT)
- different conformations: different conductivity
- electron emission (field emission)
- remarkable mechanical properties
- hydrogen adsorption
- easy electrolyte contact
- polymer strengthening
- transistor components
- drug or chemical storage

2.7 Structure of nanomaterials2D nanomaterials - synthesis

- Sputtering
 - Ar⁺-ions are accelerated in an electrical field and "hit" the target
 - consequence: surface atoms are removed from the surface
 - applications: reactive sputtering, surface cleaning ...

2.7 Structure of nanomaterials2D nanomaterials - synthesis

• Epitaxy:

- thin orientated layers of similar crystal structures
- e.g. InAs: a=603,6 pm on GaAs: a=565,4 pm, both sphalerite structures
- CVD (Chemical Vapour Deposition)
 - decomposition of molecules in the gas phase by electron beam or laser
 - deposition on suitable substrates
 - e.g. fabrication of LEDs with GaP and GaAs_{1-x}P_x, epitaxial layers are produced by thermal decomposition of compounds like AsH₃, AsCl₃, PH₃, PCl₃, ...

Production of a Ga_{1-x}Al_xAs on GaAs by the MBE process

2.7 Structure of nanomaterialsOD nanomaterials - synthesis by MBE

- substrate wafers transferred to high vacuum growth chamber
- elements kept in effusion cells at high temperatures
- shutters over cells open to release vaporized elements, which deposit on sample
- temperature of each effusion cell controls the rate of deposition of that element (Ga, In, Al, etc.)
- precise control over temperatures and shutters allows very thin layers to be grown (~1 ML/sec)
- RHEED patterns indicate surface morphology (Reflection High Energy Electron Diffraction)

