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PREFACE

CEYSTALLOGRAPHIC methods are used in chemistry for two main pur-

poses the identification of solid substances, and the determination of

atomic configurations ;
there are also other applications, most of which,

as far as technique is concerned, may* be said to lie between the two

main subjects. This baok is intended to be a guide to these methods.

I have tried to explain the elementary principles involved, and to give

as much practical information as will enable the reader to start using

the methods described. I have not attempted to give a rigorous treat-

ment of the physical principles: the
fapproach is consistently from the

chemist's point of view, and physical theory is included only in so far

as it is necessary for the general comprehension of the principles and

methods described. Nor have I attempted to give an exhaustive

account of any subject ;
the aim throughout has been to lay the founda-

tions, and to give sufficient references (either to larger works or to

original papers) to enable the reader to follow up any subject in greater

detail if he so desires.

The treatment of certain subjects is perhaps somewhat unorthodox.

Crystal morphology, for instance, is described in terms of the concept
of the unit cell (rather than in terms of the axial ratios of the earlier

morphologists), and is approached by way of the phenomena of crystal

growth. The optical properties of crystals are described solely in terms

of the phenomena observed in the polarizing microscope. X-ray diffrac-

tion is considered first in connexion with powder photographs; it is

moj*e usual to start with the interpretation of the diffraction effects of

single crystals. These methods of treatment are dictated by the form

and scope of the book ; they also reflect the course of the writer's own

experience in applying crystallographic methods to chemical problems.
It is therefore hoped that they may at any rate seem natural to those

to whom the book is addressed -students of chemistry who wish to

acquire some knowledge of crystallographic methods, and research

workers who wish to make practical use of such methods. If the book

should come to the notice of a more philosophical reader, I can only

hope that any qualms such a reader may feel about its avoidance of

formal physical or mathematical treatment may be somewhat offset

by the interest of a novel, if rather severely practical, viewpoint.
The difficulties of three-dimensional thinking have, I hope, been

lightened as much as possible by the provision of a large number of
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diagrams ; but crystallography is emphatically not a subject which can

be learnt solely from books: solid models should be used freely models

of crystal shapes, of atomic .nd molecular configurations, of reciprocal

lattices and of vectorial representations of optical and other physical

properties. Most of the diagrams are original, but a few have been

reproduced, by permission, from published books and journals: Figs.

197, 207-9, 215, and 222 from the Journal of the Chemical Society ;

Figs. 199, 203, and 217 from the Proceedings of the Royal Society,

Figs. 102-4 from the Journal of Scientific Instruments ; Fig. 229 from

the Journal of the American Chemical Society, Fig. 161 from Inter-

nationale Tabetten ftir Bestimmung von Kristallstrukturen (Berlin: Born-

traeger); Fig. 192 from the
*

Strnkturbericht
'

of the Zeitschrift fttr

Kristallographie\ and Figs. 212 and 216 from Bragg's The Crystalline

State (London: G. Bell & Sons, Ltd.). For Figs. 220-1 I wish to thank

Messrs. G. Huse and H. M. Powell. Finally I wish to thank Dr. F. C.

Phillips and his colleagues at the Department of Mineralogy and

Petrology, Cambridge, for permission to use* their scheme of exhibiting

the relations between the crystal classes by miniature stereographic

projections (Fig. 32).

I have great pleasure in acknowledging the help of my friends and

colleagues, and proclaiming my gratitude for it. First of all I wish to

thank Professor C. N. Hinshelwood, at whose suggestion the book was

written, and whose interest and encouragement stimulated its progress.

Next I must thank Mr. H. S. Peiser, who read the whole work in manu-

script, made many valuable suggestions, contributed the geometrical

proofs of appendixes 2 and 4, and compiled the subject index. Parts of

the book were read by Mr. R. Brooks, Dr. L. M. Clark, and Mr. T. C.

Alcock ; their suggestions were gratefully received. I am also indebted

to Dr. H. Lipson for a discussion on nomenclature. In checking the

typescript and proofs I have been very much helped by my wife, by
Mr. C. A. Smale, and Miss A. Turner-Jones. The last-mentioned and

Mr. H. Emmett kindly drew some of the diagrams. The X-ray photo-

graphs were, with one exception, taken by Mr. J. L. Matthews and

Mr. T. C. Alcook, and printed by Mr. W. J. Jackson ; the exception is

the Weissenberg photograph of Plate VIII, for which I am indebted

to Messrs. R. C. Evans and H. S. Peiser. The photomicrographs and

optical diffraction photographs (Plates I, II, V, and XIII) were taken

by Mr, H. Emmett.

Finally, I wish to say that the experience on which the book is based

was gained in the Research Laboratory of I.C.I. Limited (Alkali
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Division) at Northwich. The support and encouragement of Mr. H. E.

Cocksedge (formerly Research Manager), of his successor Dr. J. C.

Swallow, of the present Research Manager, Dr. J. Ferguson, and of

many of my colleagues more especially Dr. L. M. Clark and Mr. E. A.

Cooke are gratefully acknowledged.
C.W.B.
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I

INTRODUCTORY SURVEY

MOST solid substances are crystalline, that is to say, the atoms or mole-

cules of which they are composed are packed together in a regular

manner, forming a three-dimensional pattern. In some solids many
minerals, for instance the fact that they are crystalline is obvious to

the unaided eye ; the plane faces and the more or less symmetrical shape

of the particles are evidence of an orderly internal structure. In other

solids all we see is a powder or some irregular lumps ; but with the aid of

the microscope and the still more dedicate X-ray methods we have come

to realize that most of the solids with which we are familiar, from rocks

to sand and soil, from the chemical reagents on our laboratory shelves

to paint pigments and cleaning powders, from steel and concrete to

bones and teeth, really consist of small crystals. Even such apparently

unlikely materials as wood, silk, and hair are at any rate partly crystal-

line ; the molecules composing them are to some extent packed together

in an orderly way, though the regularity of arrangement is not main-

tained throughout the whole of the material.

The crystalline condition is, in fact, the natural condition in the solid

state ; at low temperatures atoms and molecules always try to arrange

themselves in a regular manner. When they do not succeed in doing so

there is good reason for their failure. Some glasses, for instance, are

siipercoolcd liquids in which crystals have not been able to grow owing
to very rapid cooling and the very high viscosity of the liquid ; low-

temperature decomposition products such as 'amorphous' carbon are

formed at such temperatures that atomic movements are too sluggish

to permit crystal growth; some polymers (such as 'bakelite') are com-

posed of molecules which are large and irregular in structure and cannot

pack together neatly.

(Even in these 'amorphous' substances it is by no means certain that

order is entirely lacking. The word 'amorphous' has to be used with

caution and inverted commas, for some people consider that glasses

and low-temperature decomposition products are really composed of

extremely small crystals only a few atoms across ; moreover, some of

the macromolecular polymers like rubber, which are 'amorphous' in the

ordinary condition at room temperature, can be brought to a crystal-

line condition by stretching. Even in liquids disorder is not complete ;

there is SOTIIO attempt to form a regular arrangement. An interesting
4458 B
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account of work on these substances up to 1934 is to be found in J. T.

Randall's book, The Diffraction of X-rays and Electrons by Amorphous
Solids, Liquids, and Oases.)

The fact that in most solid substances the atoms or molecules are

arranged in an orderly manner is of great significance for the chemist,

whether he is a philosopher in a university or an analyst in an industrial

laboratory. The chemist is interested in such things as the structure

of molecules, the nature of the bonds between dtoms, and the arrange-
ment of ions ; and he uses every property of a substance which can give
him any information on these matters. He is also inevitably concerned

with methods for the identification and analysis of the substances he

encounters. Crystals, in virtue of the orderly arrangement of the atoms

or molecules composing them, have very special properties, which not

only make possible the most precise determinations of molecular struc-

tures, but also provide powerful and certain methods of identification

and analysis.

Anisotropy . To begin with, the properties ofa crystal are, in general,

not the same in all directions. A crystal grows, not as a sphere, but as

a polyhedron; it dissolves more

quickly in some directions than in

others
; its refractive index (except

in certain special cases) varies with

the direction of vibration of the

light waves ; its magnetic suscepti-

bility, its cohesion, its thermal ex-

QO GO pansion, its electrical conductivity,

'QQ Q) aU vary with direction in the

crystal. This variation of proper-
FIG. 1. Crystal properties vary with

tieg with crygtal direction, Or 'ani-
direetion.

, .

J
_ _

sotropy , is a consequence of the

regular packing of atoms or molecules in a crystal. In a normal liquid

or a gas the atoms or molecules are oriented at random, and con-

sequently the properties are the same in all directions; individual

molecules may be strongly anisotropic, but owing to the random

orientation of the large numbers of molecules present even in micro-

scopic samples, the properties are averaged out in all directions. In

a crystal the atoms are drawn up in ranks ; pass through it in imagina-

tion, first in one direction and then in another, and (unless you have

chosen two special directions) you will encounter the constituent atoms

or molecules at different intervals and perhaps (if there are different
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kinds of atoms) in a different order in the two directions. (See Fig. 1,

a two-dimensional analogy.) Since the arrangement of the atoms or

molecules in a crystal varies witjh direction, certain properties of the

crystal must also vary with direction.

Crystals thus have a greater wealth and variety of measurable charac-

teristics than liquids or gases. This circumstance can be turned to good
account ;

we can use these varied directional properties for the identi-

fication of crystalline siibstances. Since there are more characteristic

magnitudes to determine, identification by physical methods is im-

mensely more certain for crystals than it is for liquids or gases.

Identification of crystals under the microscope. Of the charac-

teristics which are most useful for identification purposes the most

readily determined are shape and refractive indices. The determinative

method which has proved most valuable for microscopic crystals (such

as those in the average experimental or industrial product) is to measure

the principal refractive indices (up to three in number, depending on the

symmetry of the crystal) and, if jjossible, to find the orientation of

the principal optical directions with respect to the geometrical form of

the crystal. This information, which can all be obtained by simple and

rapid microscopic methods, is usually sufficient to identify any crystal-

line substance whose properties have previously been recorded. Mix-

tures oftwo or more crystalline substances can be identified by the same

method
;
in phase equilibrium studies and in industrial research it is not

uncommon to encounter mixtures of three or four constituents, all of

which can be identified in this way.
This method of identification sometimes has certain advantages over

chemical analysis. A single substance can often be identified in a few

minutes where a chemical analysis might take hours, and only very small

quantities of material are required. But in general the method must not

be regarded as a rival to chemical analysis but as a valuable complement.
It gives essential information in cases where chemical analysis does not

tell the whole story or does not even touch the most important part of

the story. Where substances capable of crystallizing in two or more

different forms are concerned (for instance, the three forms of calcium

carbonate calcite, aragonite, and vaterite), chemical analysis cannot

distinguish between them, and a crystallographic method is essential.

The greatest advantages, however, are shown in the analysis of mixtures

of several solid phases. Chemical analysis tells us which atoms or ions

are present, as well as the proportion of each, but it does not usually tell

us which of these are linked together. For instance, a solid obtained in a
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phase equilibrium study of the reciprocal salt pair NaN03-KCl-(H20)

is shown by chemical analysis to contain all four ions, Na, K, N03 , 01,

in certain proportions. But which substances are present ? NaCl,NaN03 ,

and KNO8 , or NaCl, NaNO3 ,
and KC1, or perhaps all four possible salts,

NaCl, NaN03 , KC1, KN03 ? This question can be most readily settled

by a ocystallographic method of identification. As another example,
consider a refractory material whose composition can be represented as

so much alumina and so much silica; are these present as separate

constituents or are they combined as an aluminium silicate ? If they
are combined, which ofthe several known aluminium silicates is present ?

And is the material all aluminium silicate, or is there some excess silica

as well as an aluminium silicate ? <*If there is excess silica, which of the

several forms of silica is present ? These questions can be settled by

crystallographic identification. If the crystals are large enough to be

seen as individuals under the microscope, they can usually be identified

by refractive index measurements ; the crystals need not have a regular

geometrical shape, for refractive rindex measurements can be made

quite as well on completely irregular crystal fragments as on well-formed

crystals.

This method was first developed by mineralogists, but it is now being

used to an increasing extent in such problems of inorganic chemistry
as those just mentioned. In the organic field it has so far made slower

progress, probably because a rapid and convenient physical method of

identification (the measurement of melting-points) is already well

established ; but when the possibilities of the microscopic method are

realized, there is no doubt that it will find a very large field of usefulness

in organic chemistry, especially in circumstances in which the estab-

lished methods are inadequate or inapplicable (for instance, when a

sample contains a mixture of solid phases).

Origin of anisotropic properties of crystals. If we inquire a

little more deeply into the origin ofthe anisotropic properties of crystals,

we can distinguish two factors. Consider first crystals composed of

unionized molecules. The molecules themselves may be anisotropic;

a long molecule, for instance, has a greater refractivity for light vibrating

along itf than for light vibrating across it, while a flat molecule has a

greater refractivity for light vibrating in the plane of the molecule than

for light vibrating perpendicular to this plane. The same is true for

polyatomic ions. This is the first factor. The second is the way in which

f The vibration direction is defined as the direction of the electric vector of the waves.

(See Chapters III and VIII.)
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the molecules or polyatomic ions are packed. In some crystals all the

molecules are packed parallel to each other, and these crystals have

properties which correspond with those of individual molecules. A
crystal composed of long molecules all packed parallel as in Fig. 2 a

(a crystal of a long-chain hydrocarbon, for instance) has a high refrac-

tive index for light vibrating along the molecules, and low refractive

indices for light vibrating in all directions perpendicular to the mole-

cules. In other crystals*the molecules are not all parallel to each other ;

sometimes half the molecules have one orientation and half another

orientation, as in Fig. 2 6
; sometimes the arrangement is still more

00
no*OUOUMB 9^9 9

w
FIG. 2. a. Long molecules packed parallel, b. Long molecules arranged so

that there are two different orientations, c. In some crystals composed of

monatomic ions, anisotropy results from the mode of packing of the ions.

complex (it depends on the shape of the molecules and the intermole-

cular forces). The properties of these crystals correspond, not with

those of a single molecule, but with those of a small group of two or

more differently oriented molecules.

To turn now to crystals composed of 'unattached* atoms or monatomic

ions, which are individually isotropic. Here it is only the second factor

the effect of arrangement which can be responsible for anisotropy
in the crystal. It is the orderliness of arrangement itself which, because

it gives rise to different atomic distributions in different directions

(Fig. 2 c), confers properties varying with crystal direction. The degree

of anisotropy is usually far less in these crystals than in crystals con-

taining molecules or polyatomic ions which are themselves anisotropic.

Molecular type and arrangement deduced from anisotropic

properties of crystals. It is evident that, in dealing with crystals of

unljpiown structure, the anisotropic properties may often be used to

give direct information about the general shape of the molecules or

polyatomic ions in the crystals and the way in which the molecules or

ions are packed. A strongly anisotropic crystal must contain strongly

anisotropic molecules or polyatomic ions packed in such a way that the
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anisotropies of the different molecules or ions do not neutralize each

other, and a consideration ofthe properties ofthe crystal in all directions

may lead to a fair idea of the general shape of the molecules or ions and

the way they are packed. This use of optical and other properties to

give information about molecular or ionic shape and arrangement is a

striking example of the advantages conferred by the ordered structure

of crystals. A molecule is too small to study individually by methods

available at the present time
;
but a crystal, in'which a large number of

molecules are packed in a regular manner, is in a sense a vastly enlarged

model of a molecule or a small group of molecules, and when we observe

the optical properties of such a crystal under the microscope, we are

observing in effect the optical properties of a molecule or a small group
of molecules, and this may tell us something about the shape of the

molecules and the way they are packed in the crystal.

The use of X-rays. All the information mentioned hitherto is ob-

tained by old and well-established methods, of which by far the most

important and generally useful is the determination of optical properties

under the microscope. Visible light, however, gives us only a rough idea

of the internal structure of a crystal ;
its waves, being much longer than

the distances between atoms, are much too coarse to show the details. If

we want a more detailed picture of the structure of molecules and the

arrangement of atoms and ions, as well as a yet more powerful method

of identification, we must use much shorter waves, of about the same

length as the distances between atoms. The X-rays, produced when

high-speed electrons hit atoms, happen to be about the right length.

The discovery of this fact, due to Laue in 1 912, was of course one of the

most important -discoveries in the present century ;
it opened the way,

not only to an understanding of the nature of X-rays, but also to the

determination of the exact arrangement of the atoms in crystals. True,

we cannot get a direct image of the atomic pattern in a crystal ; X-rays
cannot be focused in the convenient ways used for visible light. What
we have to do is to study the diffraction effects produced when X-rays

pass through a crystal, and build up an image of the structure by calcu-

lation. The diffraction of X-rays by crystals is not essentially different

from that of visible light by a diffraction grating ;
but to synthesize the

image from the diffracted waves we must use, not lenses, but equations.!
Electron density maps. Since it is the electrons in the atoms which

t Recently, W. L. Bragg (
1 939, 1 942 a) has shown that, starting with the data provided

by tho X-ray diffraction pattern, an image can be formed experimentally by a method

employing visible light : the interference of light waves takes the place of calculations.
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are responsible for the diffraction of X-rays, the image we build up by
calculation is a sort of contour map of electron densities in the crystal.

Two or three such maps or projections, giving views of the structure

from two or three different directions, are sufficient to enable us to

build a complete space model of the crystal structure, showing the exact

position of every atom. The different sorts of atoms can be identified by
their different electron densities. The value of such a model is obviously
enormous. The exact arrangement ofions and their distances apart (giv-

ing the coordination numbers and "sizes' of the ions) ; the exact spatial

configuration and interatomic distances in polyatomic ions and

organic molecules (with all that this tells us about the specific properties

of these bodies and the nature of \be bonds between the atoms) ; the

mode of packing of molecules (which depends on the shape and the

intermolecular forces) these are some of the fundamentals revealed

at once by such a model. In the words of Bernal and Crowfoot (1933 c),

the intensive analysis of X-ray diffraction patterns 'is one of the chief

means of transformation from the classical qualitative, topological

chemistry of the nineteenth century to the quantum-mechanical,
metrical chemistry of the present day'.

Limitations of X-ray methods. If it were possible to find the

structure of every crystalline substance in this way, chemists would no

longer have to spend their time in deducing the structures of new
substances by more or less indirect methods ; they could turn all their

energies to preparation and synthesis. In the future it may well happen
that the structures of crystals will be determined by X-ray methods

without chemical evidence of any sort, but at the present time there are

certain difficulties which restrict the scope of such methods.

As may be imagined, the building by calculation of an image of the

pattern of atoms in a crystal is a complex and lengthy task. Moreover,
it is not (except in special cases) straightforward ; that is to say, we
cannot proceed straight from the experimental data (the positions and

intensities ofthe diffracted X-ray beams) to the calculation of the image ;

at one stage it is nearly always necessary to use the procedure of trial

and error, that is, to think of an atomic arrangement, calculate the

diffraction effects it would give, and compare these with the actual

diffraction effects observed ; if they do not agree, another arrangement
must be tried, and so on. Only when the approximate atomic positions

have been found in this way is it possible to calculate the final image in

all its details from the experimental data. For the simpler structures

this does not present any great difficulties, but for the more complex
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structures much depends on the extent of knowledge available at the

time for the building of trial structures. In the early days of X-ray

crystallography the structures of only elements and simple salts could

be tackled with any hope of success, but with the accumulation of

knowledge, structures of ever-increasing complexity have been success-

fully worked out. Up to the present time (1944) many inorganic struc-

tures of considerable complexity (such as the silicate minerals, the alums,

and the hetero-polyacids like phosphotungstic acid) have been worked

out completely. Among organic compounds progress was at first slower,

but as soon as the structures of the principal fundamental types of

molecules (normal paraffin chain, benzene ring, naphthalene nucleus)

were well established, the pace accelerated, and recently, the structures

of such complex substances as dyestuffs, carbohydrates, sterols, and

high polymers have been solved, and even substances of extreme com-

plexity (proteins) are being actively studied by this method. X-ray

analysis at first merely confirmed the conclusions of organic chemistry,

but now it plays a useful part in research on chemical constitution.

Use of X-ray diffraction patterns for identification. Even when

complete structure determination is not possible, however, much
valuable information of a less detailed character may be obtained by

X-ray methods. In the first place, the diffracted beams produced when

X-rays pass through crystals may be recorded on photographic films or

plates, and the patterns thus formed may be used quite empirically,

without any attempt at interpretation, to identify crystalline sub-

stances, in much the same way as we use optical emission spectra to

identify elements. Each crystalline substance gives its own character-

istic pattern, which is different from the patterns of all other substances ;

and the pattern is of such complexity (that is, it presents so many
measurable quantities) that in most cases it constitutes by far the most

certain physical criterion for identification. The X-ray method of

identification is of greatest value in cases where microscopic methods

are iradequate; for instance, when the crystals are opaque or are too

small to be seen as individuals under the microscope. The X-ray
diffraction patterns of different substances generally differ so much
from each other that visual comparison without precise measurement

is usually sufficient for identification ;
but in doubtful cases measure-

ment of the positions of the recorded diffractions may be necessary.

Mixtures of two or more different substances which are present as

separate crystals give X-ray diffraction patterns consisting of the super-

imposed patterns of the constituents.
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Information obtainable by partial interpretation of X-ray
diffraction patterns. Between the recording of an X-ray diffraction

pattern and the elucidation of the complete atomic arrangement there

are several well-defined stages. Arrival at each stage gives more and

more intimate information about the substance in question. It may be

possible to form conclusions about the degree of purity of a substance,

to determine its molecular weight more accurately than by any other

method, to discover something about the symmetry of the molecules or

ions in the crystal, or to determine the overall dimensions of the mole-

cules. Individual circumstances, the nature of the substance, and the

size and form of the crystals determine in each case how far it is possible

or desirable to go.

Value of using more than one method. It must be emphasized
that the combination of different lines ofevidence is often ofmuch greater

value than any single method of approach. X-ray methods should never

be used alone ;
the combination of evidence given by X-ray diffraction

patterns with that given by optical properties, habit, cleavage, and so

on may lead to valuable conclusions in circumstances where each of

these lines of evidence taken by itself would leave unresolved ambi-

guities.

Plan of this book. It will be evident from the foregoing survey of

the principal applications of crystallographic methods to chemical prob-

lems that these applications fall into two classes: firstly, the use of

crystal properties lor the purpose of identifying substances
; secondly,

the elucidation of the internal structure of crystals by interpretation

of their properties. This natural division determines the plan of this

book, which is in two main sections, on identification and internal

structure respectively.

Section I (on identification) comprises four chapters. Chapter II

is an introduction to the shapes of crystals and the relation between

shape and structure, and Chapter III is an elementary account of

crystal optics ;
some knowledge of both subjects is essential, not only

for the identification of crystals by microscopic methods, but also for

the understanding of the problems of structure determination dealt

with in Section II. Chapter IV deals with procedure in microscopic

methods of identification.

Chapter V, on identification by X-ray methods, is concerned with

the practical details of taking X-ray powder photographs, and also

includes elementary diffraction theory, taken as far as is necessary for

most identification problems.
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Section II deals, in six chapters, with the principles underlying the

progressive stages in the elucidation of internal structure. Chapters VI
and VII deal with the principles of structure determination by trial ;

ChapterVIII with the use of physical properties (such as habit, cleavage,

and optical, magnetic, pyro- and piezo-electric properties) as auxiliary
evidence in structure determination. In Chapter IX are to be found

several examples of the derivation of complete structures. Chapter X
gives an introductory account of the use c*f direct and semi-direct

Fourier series methods of building electron density maps and vector

diagrams from X-ray diffraction data.

Certain crystals give diffuse X-ray reflections ; there are various

possible causes for this small costal size, structural irregularities, or

thermal movements. The consideration of these phenomena in Chapter
XI leads on to a brief introduction to the interpretation of the very
diffuse diffraction patterns given by non-crystalline substances.



SECTION I. IDENTIFICATION

II

THE SHAPES OF CRYSTALS

ANYONE who has seen the well-formed crystals of minerals in our

museums must have boen impressed by the great variety of shapes
exhibited : cubes and octahedra, prisms of various kinds, pyramids and

double pyramids, flat plates of various shapes, rhornbohedra and other

less symmetrical parallelepipeda, and many other shapes less easy to

describe in a word or two. These crystal shapes are extremely fascinat-

ing in themselves ;
artists (notably Diirer) have used crystal shapes for

formal or symbolic purposes, while many a natural philosopher has been

drawn to the attempt to understand first of all the geometry of crystal

shapes considered simply as solid figures, and then the manner in which

these shapes are formed by the anisotropie growth of atomic and mole-

cular space-patterns.

But this book has a practical object, as its title proclaims. Our pur-

pose in this chapter is to inquire to what extent crystal shapes can be

criteria for identification, and how much they tell us about the atomic

and molecular space-patterns within them.

In view of the great variety of crystal shapes and the rich face-

development on many crystals, it is natural to expect that, on the basis

of accurate methods of measurement and a sound system of classifi-

cation, it would be possible to identify crystals by their shapes alone ;

and indeed, in recent years attempts have been made, first by Fedorov

and later by Barker and his school, to develop such a method resting on

the measurement of the angles between face-normals. There is no doubt

that when well-formed crystals, large enough to be handled individually

so that they can be mounted on a goniometer, are available, this morpho-

logical method of identification is a practicable one; Barker (1930) has

demonstrated this. But as a standard method of identification in a

chemical laboratory it has very serious limitations. One of them is

that the crystals formed in laboratory experiments or in industrial

processes are often too small to be handled individually ; they can only
be examined under the microscope, and under these conditions angular

measurements either cannot be made at all, or if they can be made are

only approximate. Another is that the shapes of such crystals are often

not sufficiently characteristic; sometimes there are too few faces on
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each crystal ;
or perhaps the substance grows in the form of skeletal

crystals without definite faces; or, worse still, the crystals may be

broken into irregular pieces. To identify such materials we need a

method which does not depend on shape, but on some characteristics of

the crystal material itself properties of the atomic space-pattern.

The properties most conveniently measured under the microscope are

the optical constants, particularly the refractive indices
;
and in practice

the measurement of refractive indices has provfed by far the most useful

single method of identifying crystalline substances under the micro-

scope. The technique is described in the next chapter.

There is no need, however, to ignore crystal shape in identifica-

tion work. On the contrary, whenever crystals do show good face-

development their shapes, even if they cannot be measured precisely

but only observed in a qualitative way, reinforce and implement the

evidence provided by optical properties, especially if the relations

between the principal optical and geometrical directions can be

discovered.

This is one reason for studying crystal shapes. Another and more

weighty reason is that crystal shapes tell us a great deal about the

relative, dimensions and the symmetries of the atomic and molecular

space-patterns constituting the crystalline material.

In this chapter, therefore, we make some inquiry into the origins of

crystal shapes and their classification on the basis of symmetry charac-

teristics.

Shape varies with conditions of growth. The shape of a crystal,

taken as it stands, is not a fixed characteristic of the substance in

question. In the first place, the shape is controlled to some extent by
the supply of material round the crystal during growth. In uniform

surroundings, as in a stirred solution, crystals of sodium chloride grow
as cubes, but if they grow, well separated, on the bottom of a dish of

stagnant solution, they grow as square tablets whose thickness is not more

than half their other dimensions ; the reason is that growth can occur

only upwards and sideways, not downwards. If the crystals on the

bottom of the dish are crowded, the tablets formed are not all square ;

many have unequal edges owing to local variations in the supply of

solute. As another example, sodium chlorate, NaClO3 , when grown

rapidly in a stirred solution, forms cubes, but when grown very slowly in

a still solution grows in the form of a modified cube showing additional

facets on the edges and corners (Fig. 3). Crystals which grow in

rod-like forms such as gypsum, CaS04.2H20, which is also illustrated
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(b)

in Fig. 3 usually tend to grow longer and thinner when formed

rapidly than when growth is slow.

These are, comparatively speaking, minor variations of shape ; but

the crystal shapes of some substances may be completely altered by the

presence of certain other substances in the mother liquor. Sodium

chloride grows from a pure solution in the form of cubes, but if the

mother liquor contains 10 per

cent, of urea, the crystals which

grow (Fig. 3) are octahedra

(Gille and Spangonberg, 1927).

Yet the internal structure the

pattern of atoms of this sub-

stance is. not changed by such

differing external conditions ;
it

is only the form of the bounding
surface ofthe crystalline material

which is changed. It is evident

that if we want to use crystal

shapes for identificationwe must,

so to speak, get behind the shape
as it stands, and try to deduce

from the actual shape something
about the internal structure.

FIG. 3. Variation of crystal shape with con-

ditions of growth. Sodium chlorate, NaClO3 ,

grown (a) rapidly and (b) slowly; gypsum,
CaSO4 . 2H2O, grown (c) slowlyand (d) rapidly;
sodium chloride, NaCl, grown (c) from pure
solution and (/) from sohition containing 10

per cent, of urea.

The possibility of doing this is

indicated by the fact that the

angles between the faces of the

long thin gypsum crystals in

the sketch are exactly the same

as those of the shorter crystals.

Likewise, all octahedra of sodium chloride, however much they differ

in size, and however unequal the areas of the different faces of any
one crystal may be, have exactly the same interfacial angles. The slopes

of the various faces are in fact controlled by the rigid, precise internal

structure. The relation between totally different shapes of any one

substance such as the cubes and octahedra of sodium chloride is

less obvious ;
but it can be shown that the faces of cubes and octahedra

are oriented in precise but different ways with respect to the internal

atomic pattern.

Two pieces ofinformation about the fundamental atomic pattern may
be deduced from the actual shape of a crystal, provided this crystal



H IDENTIFICATION OHAP. n

shows a sufficient variety effaces and is large enough to permit measure-

ments of the angles between the faces. One is a knowledge of the shape
and relative dimensions of the unit of pattern. The other is a partial

knowledge of the symmetries of the atomic arrangement.
The unit of pattern ('unit cell'). A crystal consists of a large

number ofrepetitions ofa basic pattern ofatoms. Just as in many textile

materials and wall-papers a pattern is repeated over and over again on

a surface, so in a crystal a particular grouping of atoms is repeated

c

cf

<- .......

FIG. 4. A plane pattern. Lower part divided into identical unit noils Biirh

as ATtCD. Alternative unit cells RFGJJ and JJKL are also outlined.

many times in space. The reason for the formation of regular patterns
is that atoms, ions, or molecules tend to settle down in positions of

minimum energy; for each atom, ion, or molecule a particular environ-

ment ofneighbours has a lower energy content than any other, and there

is therefore a tendency for this arrangement to be taken up everywhere.
The only patterns of exactly repeated environments capable of

indefinite extension are those in which successions of pattern-units lie

on straight lines. Consider the shape of the unit of pattern, first of

all in the simpler case of a plane pattern, such as that shown in Fig. 4.

Mark any point such as A, and then mark other points whose surround-

ings are exactly the same (in orientation as well as geometrical character)

as those ofA ; these points fall on straight lines which divide the pattern

into a number ofexactly similar parallelogram-shaped areas. Each area,

such as ABCD, represents one unit of pattern ; the whole pattern can be

built up by parallel contiguous repetitions of ABCD. Of course, we

might have started by choosing a differently situated point E, but we
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should have arrived at the same shape EFGH for the unit of pattern ;

the position of the origin does not matter. Note that IJKL may equally
claim to be the unit of pattern, inasmuch as it contains one unit of

pattern and has exactly the same area as ABCD or EFGH ;
and many

other still more elongated areas, each containing one unit of pattern,

could be drawn
;
in practice, however, it is usually most convenient to

accept as the unit of pattern the area with the shortest sides, that is to

say, the area most nearly* approaching rectangular shape.

All patterns on surfaces can be divided into similar areas in this way,
and the unit of pattern is always a parallelogram. The shape and dimen-

sions of the parallelogram vary in different ways ;
it is possible to have

square units, rectangular units with ur^equal sides, and non-rectangular

units with either equal or unequal sides.

In a crystal we can do the same thing in three dimensions. Again the

choice of origin does not matter, and again we can divide the whole

structure into units (of volume this time) by joining similarly situated

points by straight lines. Fig. 5 show$ the arrangement of the ions in a

crystal of caesium bromide. Any caesium ion has exactly the same

surroundings as any other, and if the centre of each is joined to the

centres of its nearest neighbours, the whole structure is found to be

divided into cubes, each of which has caesium ions at its corners and a

bromine ion at its centre. The centre of a bromine ion might equally

well have been selected as the origin, and then the cubic units of pattern

would have bromine ions at their corners and caesium ions at their

centres. (Note that no bromine ion 'belongs' specifically to any one

caesium ion ; its relations to the eight caesium ions surrounding it are

equal. There are thus no 'molecules' ofCsBr in the crystal ;
the structure

is simply a stack of positively charged caesium ions and negatively

charged bromine ions.)

Fig. 5 also shows an example of a molecular structure that of

hexamethylbenzene, C6(CH3 )6 . The molecules, which can be represented

as disks, are all stacked parallel to each other, and if the centre of each

molecule is joined to those of its nearest neighbours, the structure is

divided into a number of identical units of pattern, each of which is a

non-rectangular 'box' with all three sets of edges unequal in length.

The unit of pattern in a crystal is always a 'box' bounded by three

pairs of parallel sides. The shape and dimensions of the box, that is,

the lengths of its three different sorts of edges ('axes') and the angles

between them, are characteristic for each different crystal species ; in

some crystals the box is a cube, in others it is rectangular with unequal
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FIG. 5. a. Caesium bromide, CsBr. Loft, structure. Right, shape of crystal. 6. Hexu-

methylbenzene, C,(CH,)6 . Left, structure. Right, sha.po of crystal, c. Coppor. Loft,

structure. Right, shape ot crystal.
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edges, in others the angles are not right angles, and so on. We shall not

at this point catalogue the various types of shape ; we merely observe

that various shapes of pattern-unit are possible ; the crystal structure of

caesium bromide represents the most highly symmetrical and that of

hexamethylbenzene the least symmetrical of the possible shapes.
It is sometimes more appropriate to use for purposes of reference a

box containing more than one unit of pattern. For instance, in crystals

of metallic copper the atoms are arranged in the manner shown in

Figs. 5 c and 6. All the atoms have precisely the same surroundings, and

FIG. 6. Face-centred cubic unit coll of roj>|x*r (left), and body-centred culm; unit cell of

a iron (both shown by broken lines). In each case a unit containing one pattern-unit

(one atom) is heavily outlined.

the true unit of pattern, formed by joining similarly situated points so as

to divide the structure into 'boxes' with atoms at the corners only, is the

heavily outlined rhombohedron in Fig. 6 ;
there is one atom, one pattern-

unit, to each 'box'. (One at each corner of the box makes eight in all
;

but each one is shared between the eight boxes which meet at the corner ;

therefore each box has the volume of one pattern-unit .) But it is found

that atoms A,B,C 9 D, E, F, G, and // fall at the corners of a cube, and

atoms /, 7, K, L, M, and N in the centres of the faces of the same cube.

This cube is accepted as the unit cell, in spite of the fact that it contains

four pattern-units comprising one copper atom each. (The corner atoms

count as one to each cube ; the six atoms in the face centres are each

shared between two cubes; thus the number of atoms per unit cube

is 1+ 3 = 4.) There are two reasons for this. The first and more im-

portant reason is that the symmetries of the complete arrangement
are the same as those of crystals in which the shape of the true pat-

tern-unit is cubic; crystal symmetry will not be discussed here an
4458
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introductory account of it is given later in this chapter. The second

reason for accepting the four-atom cube as the unit cell is that a cube is

a more convenient frame of reference than a rhombohedron. This parti-

cular 'compound' unit cell is described as 'face-centred'. Other types of

'compound' unit cell are the body-centred, with identical pattern-units
in the centres of the cells as well as at the corners (see the structure of a

iron in Fig. 6), and the side-centred, with identical pattern-units at the

centres of one pair of opposite faces in addition to those at the corners.

The arrangement of the pattern-units, the assemblage of points each of

which represents one pattern-unit, is called the space-lattice. The points
of the space-lattice the 'lattice points' are thus corners of the true

unit of pattern ;
the conventionally accepted unit cell may be simple or

compound; if compound, it may contain two or more space-lattice

points.

We now have to consider the faces of crystals and their relation to

the geometry of the precisely patterned assemblage of atoms which

constitutes the solid material. This subject is best approached by

thinking about the manner in which crystals grow. Crystals usually

have plane faces, firstly because they do not grow at the same rate in all

directions, and secondly as a result of the specific manner in which

solid material is deposited.

Crystal growth . Suppose we had the task of packing a large number

of atoms or ions or molecules together to form a predetermined arrange-

ment. We should find that the most convenient way of building up the

structure is to arrange one layer of building units, then put a second

layer on top of the first, and so on. But we should have to choose which

layer to put down first, and there are many different layers which might
be selected ; there* are very many ways in which a crystal structure

could be divided into layers by planes passing through it. A few possible

ways are shown in Fig. 7. In practice we should choose the 'simplest'

possible plane, that is to say, a plane which is as layer-like as possible,

a plane in which the building-units atoms in sDme crystals, ions or

molecules in others are packed closely together. Thus, to build the

crystal of hexamethylbenzene (Fig. 5 6), it would obviously be more

convenient to choose planes such asABCD and DCFG, which are paral-

lel to the side of the unit cell, rather than a plane such as BDF, which

is inclined to all the edges of the unit cell, as the basis for our building

operation.

This is apparently what happens in nature when a crystal grows from

a solution or melt. When growing crystals are watched under the micro-





FIG. 8. Above: layer formation on crystal of cadmium iodide ( X 600). Below, left: layer

formation on crystal of sodium chloride (X1400). Below, right: skeletal growths of

ammonium chloride ( X 20).
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scope, using a high magnification and dark ground illumination,,layers

can often be seen spreading over the faces one after another (Fig. 8,

Plate I) ; sometimes it can be seen that relatively thick layers which

spread at a moderate speed are built up from much thinner, much more

rapidly spreading, layers ; and it seems likely that the same thing occurs,

down to the molecular or ionic scale the building units arrange them-

selves layer by layer. (See also Marcelin, 1918 ; Volmer, 1923 ; Kowarski,

Fio. 7. Dividing a crystal into layers. A few of the simpler ways.

(Each dot is a lattice point.)

1935.) And this process occurs only on certain planes ; most crystals are

bounded by only a few faces, sometimes all of the same type (for in-

stance, in cubic crystals), though more frequently of a few different

types ; and in structurally simple crystals these types are always densely

packed planes.

In the hexamethylbenzene crystal the most densely packed planes

are those parallel to the unit cell edges, and we find that crystals of

hexamethylbenzene grown from a pure solution in benzene are parallele-

pipeda with the three pairs of faces parallel to the faces of the unit cell

(Lonsdale, 1929). In caesium bromide (Fig. 5) the most densely packed

planes are those such as ACGE which cut two edges of the unit cell at

equal angles and are parallel to the third, and caesium bromide crystals

(grown from pure aqueous solution) are rhombic dodecahedra which are
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bounded entirely by such planes (Groth, 1906-19). In crystalline copper

(Fig. 5 c) the most densely packed planes are those such as BEG which

cut the three edges of the unit cell symmetrically (note that atomsK , J,

and N fall on plane BEG) ; copper crystals grow from the vapour as

octahedra, the faces of which are just these most densely packed planes

(Groth, 1906-19).

For some of the more complex crystals it is not easy to define plane

density of packing of atoms or molecules : a pfane parallel to a crystal

face, taken at any level, passes through many atoms, but it cannot pass

through the centres of more than a small proportion of them. For

instance, the particular plane of the lead chloride crystal illustrated in

Fig. 39, if it passes through the cerffcres of the atoms at the corners of the

marked unit area, does not pass exactly through the centres of any of

the other atoms, which lie at various distances above or below the plane
of the paper. It would be difficult to say which of these should 'count*

in the reckoning ofplane density ofpacking ofatoms. (See Niggli, 1920.)

But plane density of lattice points is a precisely defined magnitude ;

and it is on this that we must focus our attention for it is found that

the faces of crystals are always densely packed with lattice points. In

other words, if we regard the group of atoms associated with a lattice

point as the building unit, we may say that the faces of crystals are

planes of high reticular density of building units.

It will be evident that, since the faces are parallel to definite planes

of lattice points, the interfacial angles are constant in different crystals

of the same substance. Variations in local conditions during growth

may cause some crystals of hexamethylbenzene, for instance, to be

longer or thinner than others in the same batch
;
and the eight faces of a

copper crystal, which in uniform growth conditions would grow to the

same size, may in practice be found to have very different sizes ;
but

whatever the variation in the actual dimensions of crystals ofany parti-

cular substance, the interfacial angles are constant, provided that the

same type of face is present.

Sparsely packed planes usually do not appear as faces on growing

crystals, but if we deliberately create such surfaces we can study their

growth. Fig. 9 illustrates what happens when a cubic crystal of sodium

chlorate (NaClO3 )
is partly dissolved to a rounded shape so as to present

all possible surfaces, and then put into a supersaturated solution. The

diagram is two-dimensional for the sake of simplicity it is a section

through the middle of the crystal. At first, small faces appear on the

corners of the square section ; but it is found that the rate of growth of
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these small faces the thickness of solid deposited in a unit of time is

greater than that of the cube faces, and as a result of this, the small

faces ultimately disappear and the final crystal is entirely bounded by
the most slowly growing faces, the ordinary cube faces. (See also Arte-

meev, 1910; Spangenberg, 1928.) This experiment brings out the fact

that the faces which appear on growing crystals are those with the

smallest rate of thickening. A small rate of thickening, with perhaps a

great rate of spreading, are the growth characteristics one expects of the

planes with highest reticular density

and widest interplanar spacing.

When crystals grow rapidly in stirred,

strongly supersaturated solutions (&s

they often do under the usual condi-

tions of crystallization in the laboratory

or in industrial plant) there is a plentiful

supply of solute round each growing

crystal; external conditions are fairly

uniform, and the controlling factor is

the architecture of the crystal. Under

these conditions the picture of crystal

growth given in the previous para-

graphs adequately represents what

happens ;f the crystals are bounded by

very few faces the minimum number

of the most slowly growing 'simple'

planes necessary to enclose a solid figure. On the other hand, crystals

of many minerals, for instance, have grown very slowly in very slightly

supersaturated solutions in which the supply of solute is very limited

and may vary locally owing to stagnant conditions, convection currents,

the proximity of other crystals, and so on. The external conditions thus

play a large part in determining the shape ;
faces which, given equal

chances, would grow at different rates may actually grow at the same

rate, &nd vice versa. These crystals therefore often show a variety of

facets which do not appear on crystals grown rapidly. Subsidiary facets

may also appear if the temperature of a crystallizing solution fluctuates ;

partial dissolution rounds off the crystals, and when growth is resumed,

small facets appear on the rounded corners, and these may not have

time or opportunity to eliminate themselves by rapid growth as in Fig. 9.

t Except in extreme conditions (very high supersaturation), when skeletal crystals are

formed ; and a few substances grow in skeletal form under ordinary conditions. See later.

FIG. 9. A rounded crystal of sodium

chlorate, on being put into super-

saturated solution, develops 110 and

1 00 faces. The more rapidly growing
1 10 faces are subsequently eliminated.
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The production of beautiful, richly faceted crystals by the simple

method of leaving a dish of solution for several days on a laboratory

bench without temperature control is undoubtedly often due to such

temperature fluctuations. It is still true, however, that all the faces on

such richly faceted crystals are fairly simple planes, in the sense that

they have a fairly high reticular density of lattice points. It is also true

that the principal faces are in general simpler than the subsidiary facets.

The shape of a crystal may be modified, or even completely changed,

by the presence of certain impurities in the solution (see Fig. 3). The

reason is that the impurities are strongly adsorbed only on certain faces

of the crystal, thereby retarding the growth of these faces (Gaubert,

1906; Bunn, 1933; Royer, 1934).* The impurity may be adsorbed on

faces which normally grow rapidly (that is, planes which are not the

simplest and do not normally appear), and in these circumstances the

rate of growth of these faces may be so much reduced that they become

the predominant faces on the crystal. The presence ofmodifying impuri-

ties may often be unsuspected ;
hence we sometimes find crystals exhi-

biting for no apparent reason faces not of the simplest type.

Abnormal external conditions may thus be responsible for an ap-

parent breakdown in the principle of simplicity of faces. However,

apparent exceptions to the principle cannot always be attributed to ab-

normal external conditions. It is not justifiable to regard the principle of

simplicity as more than a broad generalization ;
that is to say, even when

external conditions are normal, the faces on crystals, though always

simple, are not necessarily the simplest possible. (See also Niggli, 1920.)

The rates of growth of crystal faces are of course determined by the

distribution of the forces between the atoms, ions, or molecules, and it

is not to be expected that a purely geometrical generalization (as the

principle of simplicity is) would cover adequately such complexities.

In particular it is to be noted that in ionic crystals the distribution of

electric charges in the various planes plays an important part (Kossel,

1927; Stransky, 1928; Brandes and Volmer, 1931).

Nevertheless the broad generalization is of the greatest value
;
for we

can measure the angles between the faces of a crystal, 'and, assuming
that these faces are simple that is, they are densely packed with lattice

points and are either parallel to the unit ceil faces or are related in some

simple way to the unit cell we can usually deduce the type of unit cell,

and very often calculate its relative dimensions and angles.

Not all crystals are solid polyhedra. We may approach the subject of

irregularities in crystals by remarking that when a crystal is growing



CHAP, ii SHAPES OF CRYSTALS 23

from a solution, it sometimes happens that growth in the centres of the

faces stops, while growth in the outer regions of the faces (near the edges

and corners) continues, A hollow is thus formed in the centre of each

face. If, as often happens, the hollow is subsequently closed over,

mother liquor is included in the crystal. This may be repeated more

than once, and is a common cause of opacity in crystals, and also of the

subsequent caking of crystalline products when stored. (Mother liquor

diffuses out, and deposits solute at the points of contact of crystals,

cementing them together.)

If such cavities are not closed over, the final crystals have hollow

faces; often there is a step-formation down each hollow. In extreme

cases growth is maintained only towards the corners of crystals, leading

to skeletal forms, in which successive branching occurs, as in ammonium

chloride, illustrated in Fig. 8, Plate I ; the directions of growth here are

the axial directions of the cubic unit cell. When crystals grow in thin

films or droplets of liquid, distortion may occur ;
a familiar example is

ice, which forms irregular tree-like patterns when it crystallizes from

liquid on window panes.

Such tendencies may be reduced by growing crystals very slowly, for

instance by extremely slow cooling or evaporation. In fact, when it is

desired to obtain perfect crystals for goniometric or X-ray work, the

golden rule is to grow them as slowly as possible. Excessive nucleus

formation in solutions can often be avoided by removing dust particles

in the following way. A solution saturated at, say, 30 C. is made up
and allowed to cool without disturbance to room temperature ;

it is then

suddenly disturbed, so that a shower of small crystals is formed ; these

carry down with them any nucleus-forming particles which were in the

solution. The solution is then filtered, warmed slightly to destroy any
now nuclei formed during filtration, and then left undisturbed to eva-

porate slowly.

Another method, often useful for organic substances, is to make a solu-

tion in one solvent and to cover this with a less dense liquid in which

the substance is much less soluble ; crystals grow at the interface. The

two solvents must be at least partially miscible.

Sparingly soluble salts which are conveniently formed by precipita-

tion reactions may sometimes be induced to form good crystals by a

diffusion method. Solutions of the reagents are put in two separate

beakers, both completely filled and standing in a larger vessel ;
water is

carefuDy poured in to cover both beakers, and the arrangement is then

left undisturbed (L. M. Clark: private communication).
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The amount of structural information obtainable by the morpholo-

gical study of skeletal crystals is naturally very limited, especially when

they are distorted. In order to be able to deduce the shape of the unit

cell it is necessary to ha^ve well-formed polyhedral crystals. The faces

of such crystals are, as we have already seen, related in some simple way
to the unit cells. We must now define more closely what is meant by the

last phrase 'related in some simple way to the unit cells' and to do

Flu. 10. Various sots of planes in a crystal.

this it is necessary to give some account of the accepted nomenclature

of crystal planes.

Nomenclature of crystal planes. Attention has already been

drawn to the many ways of dividing a crystal into layers by sets ofplanes

passing through lattice points (Fig. 7). Each of these sets of parallel

planes is described by three numbers such as 210 or 132, the meaning of

which is best shown by a few examples. For simplicity, think first of all

in only two dimensions, that is, look at the crystal along one axis say

the c axis as in Fig. 10. In this diagram the points, each of which

represents a row of lattice points one behind the other, are seen to lie on

sets of straight lines (planes seen edgewise). Every point lies on one of

these planes. Now along the axial directions count the number of planes
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crossed between one lattice point and the next ; these numbers are the

index numbers. Thus, for the set of planes in the bottom right-hand

corner, three planes are crossed in going along a from one lattice point

to the next, and two planes in going along b from one lattice point to the

next ; the first two index numbers are therefore 32. The third index

number is 0, because this set of planes is parallel to the c axis, and there-

fore no planes are crossed in going along c ; this set of planes is thus the

320 set. Other sets of planes, with indices 110, 100, 010, and 120 (all

parallel to the c axis), are also illustrated in this diagram.

Fia. 11. This set of parallel planes has indices 312.

A set of planes inclined to all three axes is shown in Fig. 11. Along a,

three planes are crossed between one lattice point and the next ; along

6, one plane is crossed at each lattice point, and along c, two planes per

lattice point : the indices are 312.

Alternatively, one could say that these planes cut the a axis at inter-

vals of a/3 (a being the repeat distance in this direction), the b axis at

intervals of 6/1, and the c axis at intervals of c/2, the indices being

defined as the reciprocals of these intercepts. This comes to the same

thing as the definition already given, and corresponds to that found in

most text-books of crystal morphology ; but it is really simpler to think

ofnumbers ofplanes rather than reciprocals ofintercepts ; andmoreover,

the present definition links up with the method of indexing X-ray

reflections (see Chapter VI).

Each type of plane is a possible crystal face, although in actual fact

only a few simple types of plane usually appear as crystal faces. The

next sketch, Fig. 12, shows an actual crystal (ammonium sulphate)

with the indices of its front faces marked. This sketch will also serve to

illustrate the conventions about crystal set-up and positive and negative
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directions. In order to show as many faces as possible, crystals are

drawn as seen from a viewpoint inclined to all three axes and defined in

the following way. Imagine first of all the crystal with its c axis vertical

and its 010 plane seen edgewise ;
now shift the eye a little to the right

and upwards. The c axis still appears vertical, the b axis lies left and

right but not quite in the plane of the paper, and the a axis points a

little to the left and downwards as it appears to come out above the

Flo. 13. Indices of planes of hexagonal

crystals. ABCDEFA'B'C'D'F/F', hexa-

gonal prism; ABCOA'B'C'O', unit cell.

FIG. 12. A crystal of ammonium sulphate ACO^ plane whir}]> in conforinjty with
(class rnmm). (After Tutton.) indices of crystals of other systems, is

called 111. For the sake of treating the

three equivalent directions O/4, OG, and
OK equally, this plane i sometimes known

as 1121.

paper. Usually perspective drawing is not attempted; most crystal

drawings are orthogonal projections. Positive directions are upwards

along c, to the right along 6, and forwards (above the paper) along a.

Intercepts in the negative directions are represented by minus signs

above the index numbers, thus: 120, 111. Naturally it is sometimes

necessary to depart from the conventional viewpoint to illustrate

particular features of crystals more clearly.

An extension of this system of nomenclature is sometimes encoun-

tered in descriptions of crystals of hexagonal type (Fig. 13). The unit

cell of these crystals has a diamond-shaped base, the a and b axes being

equal in length and inclined to each other at an angle of 120. The c

axis is perpendicular to the other two. Although only two horizontal
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axes are strictly necessary for purposes of description, nevertheless there

are three horizontal directions, all exactly equivalent, at 120 to each

other ; any two of them could be taken as the a and b axes. In order to

bring out this feature, index numbers referring to all three horizontal

axes, as well as the vertical (c) axis, are given, thus: 1121. The last

number refers to the c axis, the first three to the horizontal axes. The

third index, which is always necessarily numerically equal to the sum
of the first two but of opposite sign, is really redundant. This nomen-

clature will be found in descriptions of the shapes of hexagonal crystals,

but for internal crystal planes it is customary to omit the third index.

The indices of single crystal faces are sometimes enclosed in brackets,

thus: (100); this distinguishes a face from the corresponding set of

internal planes 100. Curly brackets signify a set of equivalent faces : for

a cubic crystal {100} would mean the set 100, TOO, 010, OK), 001, and OOT.

The law of rational indices. We have seen that the faces of

structurally simple crystals, the planes on which deposition of solid

occurs layer by layer, are in general those planes which have a high
reticular density of lattice points in each plane and wide interplanar

spacing. Sometimes the faces are the planes with the densest packing
and the widest interplanar spacing, but there are many exceptions to

this, for various reasons which have already been mentioned. It re-

mains true, however, that in all cases the actual faces of a crystal are

planes of high (though not necessarily the highest) reticular density.

We may call these the 'simple' planes.

It is evident from Figs. 10 and 1 1 that these planes have small indices ;

we may therefore state that the actual faces on crystals are planes with

small indices. In this form, the generalization is what is known as the

'law of rational indices', which says simply that all the faces on a crystal

may be described, with reference to the three axes, by three small whole

numbers. It is frequently found that all the faces of even richly faceted

crystals can be described by index numbers not greater than 3 ; numbers

greater than 5 are very rare.

It is the recognition of the law of rational indices which makes it

possible to deduca*probable unit cell shapes from crystal shapes. (It is,

of course, not possible to discover the absolute dimensions ; X-ray or

electron diffraction photographs are necessary for this purpose (Chapter

VI).) The general principle is to find that unit cell (its angles and relative

dimensions) which will enable us to describe all the faces of the crystal

by the smallest whole numbers, and, in particular, the largest faces by
the smallest numbers. There is a further condition: all faces which
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appear to be equivalent (for instance, all the eight faces of a regular

octahedron) are given similar indices, that is, are assumed to be related

in the same way to the most appropriate unit cell
;
in other words, the

directions of unit cell edges are chosen in conformity with'the symmetry
of the crystal. We shall return to this subject later in this chapter.

Meanwhile, the first step in the attempt ta deduce the angles and

relative dimensions of the unit cell of a crystal from its actual shape

is the accurate measurement of the angles between all the faces of the

crystal.

LIGHT

FIG. 14. Principle of the reflecting goniometer. The adjusting head comprises two

iriutually perpendicular arc movements and two cross movements.

Measurement of interfacial angles, and graphical representa-

tion. The most accurate method of measuring the angles between

crystal faces is an optical one, which makes use of the reflection of light

by the plane faces. The crystal is mounted on the stem of a goniometer

head (Fig. 14) by means ofwax, shellac, or plasticine ; a beam of parallel

light from the collimator strikes the crystal, which is rotated until

one of its faces reflects the beam into the telescope, which is at any

convenient angle to the collimator. A suitable sharply defined aperture

is provided in the collimator, so that its image can be adjusted accu-

rately to the cross-wires of the telescope. The crystal is then rotated

until the light is reflected by the next face ;
the angle through which the

goniometer head has been turned is the angle between the normals of the

two faces. It is evident that, in order to get reflections from both faces

into the telescope, the crystal must be adjusted very carefully by means
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ofthe arc movements of the goniometer head. This is simplest when the

crystal is mounted on the goniometer head so that one of the face-

normals is approximately parallel to one of the arc movements
; this arc

is adjusted until the reflection from this face appears accurately on the

cross-wires. The crystal is now rotated so that the reflection from

another face (preferably one which is roughly at right angles to the first)

enters the telescope ; by a movement of the second arc this reflection is

brought to the cross-wires.

It is found that, when the reflections from two faces are registered

accurately on the cross-wires of the telescope, other faces automatically

give their reflections when the crystal is rotated further
;
for instance,

all the vertical faces of the ammonium sulphate crystal in Fig. 12 give

their reflections one after the other as the crystal is rotated round the

c axis. Such a set of faces is called a 'zone', and the axis of rotation

parallel to all the faces is called the 'zone axis'. All the faces of any

crystal fall on one or other of a few zones, and therefore in order to

measure all the interfacial angles each of these zone axes in turn must

be set parallel to the axis of rotation of the goniometer head. On a

single-circle goniometer this must be done by remounting the crystal

for each zone
;
but two-circle goniometers which obviate the necessity

of such re-setting are also obtainable.

It is often useful to be able to represent precisely on a flat surface the

three-dimensional relations between the interfacial angles. The most

convenient projection for most purposes is the stereographic projection,

which is derived in the following way. From a point within the crystal

imagine lines drawn outwards normal to all the faces (Fig. 15). Round
the crystal describe a sphere having the point as its centre. The positions

at which the face-normals meet the surface of the sphere are known as

the poles of the faces. The crystal is thus replaced by a set of points on

the surface of the sphere, each point representing the orientation of a

crystal face. In this way we have left behind the actual shape of the

crystal, with the irregularities arising from the conditions of growth,
and are now dealing simply with the orientations of faces that is, with

the orientations of lattice planes, which are related in a simple way to the

unijj cell. The sphere is now projected on to a selected plane the equa-

torial plane in Fig. 15 b by joining all points on its upper half to the

'south pole' and all points on its lower half to the 'north pole'. The great

advantage of this projection (Fig. 15c) is that all zones of faces fall

either on arcs of circles or else on straight lines, a circumstance which

much facilitates graphical construction. (Each such arc or straight line
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FIG. 15. The stereographic projection.

passes through opposite points
on the equatorial circle.) Poles

in the northern hemisphere are

denoted by dots, those in the

southern hemiphere by little

rings.

For further information on

stereographic projections and
the spherical trigonometry

necessary for handling gonio-

metric data, books by Miers

(1929), Tutton (1922), and

Barker (1922) may be consulted.

Deduction of possible unit

cell shape from crystal

shape. Preliminary. In this

book we are concerned chiefly

with optical and X-ray methods,
and we shall consider crystal

morphology only so far as is

necessary for the full use of such

methods for identification or for

structure determination. But

although it is not intended

to deal with morphological

methods in a quantitative way,
it is very necessary to consider

in rather more detail the rela-

tion between the external shape
of a crystal and that of its unit

cell ; and this subject is perhaps
best developed in the guise of

a consideration of the problem
of deducing the probable unit

cell shape from the external

shape of a crystal. We have al-

ready seen that the principle on

which the attempt is based is

the principle of simplicity of

indices, coupled with the con-
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formity of the indices with the symmetry of the crystal. We now see

how this principle can be applied in practice. First of all, we shall see

the principle of simplicity in action by itself; and we shall then find

it necessary to consider crystal symmetry in some detail.

The planes with the simplest indices 100, 010, and 001 are those

which are parallel to the sides of the unit cell, and we find that on many
crystals these form the principal faces, and on some crystals (especially

those grown rapidly m,stif

ongly supersaturated solutions) the only faces.

One example, hexamethylbenzene, has already been given; it forms

non-rectangular parallelepipeda with the three pairs of faces parallel

to the unit cell faces. Another example is anhydrite, CaS04 ; the unit

cell of this crystal is a rectangular box*with unequal edges, and it grows
as a rectangular brick with unequal edges, though it must be emphasized
that the relative dimensions of the crystal itself have no direct con-

nexion with the dimensions of the unit cell. (The rates of growth of the

various faces of any crystal depend, in the first place, on the forces

between the atoms, ions, or molecules in different directions, and these

forces have no direct connexion with the unit cell dimensions ; moreover,

these rates of growth are affected by external conditions.) Such crystals

tell us the angles of the unit cell, but they do not tell us anything about

the relative dimensions of the unit cell edges.

If we are to be able to calculate the relative dimensions of the unit

cell of any crystalline substance, some of the faces on the crystals must

be inclined to the faces of the unit cell. Suppose we have a crystal of the

shape shown in Fig. 16 a a rectangular brick with the (unequal) edges

bevelled (an orthorhombic crystal). We naturally assume that the faces

which are perpendicular to each other are parallel to the faces of the unit

cell, which is evidently a rectangular box. The indices of the principal

faces are thus assumed provisionally to be 100, 010, and 001. The

simplest indices for the faces which bevel the edges are 110, Oil, and

101. If we assume that a face is Oil, we are assuming that successive

identical planes of lattice points parallel to this face are parallel to the

a axis, and that in passing along either b or c, only one plane is crossed

in the interval between one lattice point and the next. (See Fig. 16 6.)

It is evident that c/b
= cot 0. In the same way, by assuming that

another face is 110, we can obtain a/6 ; and this settles the shape of the

unit cell and the indices of the remaining faces ; thus, the third different

bevelling face might turn out to be, not 101 as first suggested, but 201

or 102. If our crystals also have faces cutting off the corners (Fig.

16 c), the indices of these faces can be found (by slightly more complex
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trigonometry) from the angles between these 'corner' faces and the

principal faces.

Alternatively, it might have been assumed initially that these 'corner*

faces are 111, III, and so on ; this assumption would have given us a set

of axial ratios, from which the indices of the bevelling faces could be

deduced.

It is always possible to find alternative sets of indices, corresponding
to different axial ratios, for any crystal. Thus

1

,'
consider the ammonium

(b)

c-UNIT
: CELL

010

FIG. 16. Determination of the probable shape of the unit

cell from interfacial angles.

sulphate crystal (Fig. 12), which, like the example just given, has a

rectangular unit cell. Let us call the faces 110, Oil, 130, 021, and 111

P> ?> P'> q'> and o respectively. If it had been assumed that q' is 01 1 and

p 110, then this group effaces would be 110, 012, 130, Oil, and 112.

Or it might have been assumed that p
1

is 110 and q Oil, in which case

the group of faces would be, 310, Oil, 110, 021, 311. But the sets of

indices given by the second and third schemes are less simple than those

resulting from the first assumptions, and therefore the axial ratios

derived in the first scheme are accepted as the probable relative dimen-

sions of the unit cell edges. This turns out to be correct.

Here we have the key to morphological crystallography. The principle

followed throughout is to find that unit cell shape which, subject to the

condition that similar faces shall have similar indices, will allow all the
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faces of a crystal to be indexed by the smallest possible whole numbers,

the principal faces being given, as a general rule, the simplest indices.

This method was developed during the last century, long before X-rays
were discovered, though the term 'unit cell' was not used. The set of

axes deduced in this way was regarded primarily as the most convenient

frame of reference for the accurate description and classification of any

crystal. Nevertheless it is clearly more than a convenient frame of

reference ; it corresponds'to some fundamental feature of the ultimate

structure of the crystal. We know now, as the result of the study of the

atomic structure of crystals by X-ray methods, that the relative axial

dimensions deduced by morphological methods are in fact very often

the exact relative dimensions of the u&it cell. Even when they are not

correct, there is always a very simple relation between the 'morpholo-

gical' unit and the true unit ; one of the morphological axes is perhaps
twice as long or half as long (in relation to the other axes) as it should be.

This obviously means that the principle ofsimplest indices is not strictly

true for these crystals ; some of the faces on these crystals are, so to

speak, not the simplest but the next in order of simplicity. There is no

doubt about the general soundness of the principle of simplest indices,

but it is not a rigid law.

The examples given hitherto have been particularly simple ones,

because some of the faces have been at right angles to each other, and

this has given the clue to the type of unit cell. But many crystals do

not possess faces parallel to the unit cell faces, and for such crystals

the type of unit cell, and possible indices for the principal faces, are

very often not by any means obvious. To approach such problems it is

necessary to introduce the all-important subject of crystal symmetry.
The type of unit cell is entirely bound up with the symmetry of the

atomic arrangement ;
it is, in fact, the symmetry of the atomic arrange-

ment which decides which (if any) of the unit cell angles shall be right

angles, and how many of its edges shall be equal. Therefore if we can

recognize the symmetries of any particular crystal, this leads us at once

to the unit cell type and to the probable directions of unit cell edges.

And this is not all. Each type of unit cell may arise from a number of

different types of atomic arrangement, and some of the symmetry
characteristics of these different types of atomic arrangements are re-

vealed by shape-symmetries. In classifying crystals we can first of all

divide them into several systems according to unit cell types, and then

each system can be divided into several classes according to those sym-

metry characteristics which are revealed by shape. The consideration
4458
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of crystal symmetry may thus take us further than the mere derivation

of unit cell type.

Internal symmetry and crystal shape. Consider first one of the

simplest and most highly symmetrical of atomic arrangements, that

which is found in crystals of sodium chloride and in many other simple

binary compounds. The atomic arrangement is shown in Fig. 17 a. The

unit cell is a cube ;
if we take the corner of the unit cell to be the centre

of a sodium ion, there are also sodium ions at the centre of each face,

the lattice being a face-centred one; the chlorine ions are half-way

along the edges and also in the centre of the unit cell. Note first that

tlie reason why the three mutually perpendicular axes are equal in

length is that the arrangement of atoms is precisely the same along one

axis as it is along the other two ; the 100 plane has exactly the same

arrangement of atoms as the 010 and 001 planes ; secondly, that when

a sodium chloride crystal grows in a pure solution, it is inevitable that,

provided the three types of faces have the same chance (in a stirred

solution, for instance), they grow at the same rate, and the crystal

becomes a perfect cube.

If sodium chloride crystals are grown in a solution containing 10 per
cent, of urea, they grow as regular octahedra ;

but although the external

shape is different from that of crystals grown from a pure solution, the

internal structure is exactly the same; the same internal lattice is

bounded by surfaces of a different type in the two sorts of crystals.

The octahedral faces (111, 111, lTl,Tll, iTT, TlT, TTl, and TTT) are per-

pendicular to the cube diagonals ;
the atomic arrangement on all octa-

hedral faces is the same, and if we proceed from any point in the crystal

along any of the eight diagonal directions, we shall come across the

same atomic distribution (alternate layers of sodium and chlorine

ions) ; consequently, in uniform growth conditions all the octahedral

faces grow at the same rate, and the crystals grow as perfectly regular

octahedra.

Now although the cube and the regular octahedron are quite different

solid shapes, yet their symmetries are exactly the same
;
and it can be

seen (in Figs. 17-20) that the symmetries of these solid figures are those

of the arrangement of atoms in a, sodium chloride crystal. Rotate a cube

about an axis perpendicular to one of its faces and passing through its

centre (Fig. 176); after a quarter of a turn it presents exactly the same

appearance as it did at first ; after half a turn, again the same appear-

ance, and likewise after three-quarters of a turn
;
in fact, it presents the

same appearance four times during a complete revolution ;
the axis is an
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axis of fourfold symmetry. There are three such fourfold axes, all at

right angles to each other and parallel to the cube edges. A regular

octahedron likewise has three fourfold axes, passing through its corners

(Fig. 17 c). These fourfold axes correspond with those of the atomic

(a)

FIG. 17. a. The atomic arrangement in sodium chloride, and some of its axes

of symmetry, b and c. Fourfold axes of cube and octahedron, d and e. Twofold
axe of cube and octahedron.

arrangement ; every line which passes through a row of atoms parallel

to a unit cell edge is an axis of fourfold symmetry, since the atomic

arrangement (regarded as extending indefinitely in space) presents the

same appearance four times during a complete revolution round this

line. Similarly there arc, passing through the edges of both cube and

octahedron, six axes of twofold symmetry, involving identity of appear-
ance twice during a complete revolution (Fig. 17 d and e) ;

and finally,

passing through the cube corners and perpendicular to the octahedron
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faces, four axes of threefold symmetry, involving identity of appearance

three times during a complete revolution (Fig. 18). All these axes are

symmetry elements of the atomic arrangement.

FIG. 18. Centre: atomic arrangement in sodium chloride, seen along a threefold

axis of symmetry. Left : cube seen along a body diagonal. Right : octahedron
seen along a fare-normal.

Sodium chloride crystals also possess another type of symmetry;

imagine a plane parallel to one pair of cube faces, passing through the

centre of the crystal (Fig. 19) ; this plane
divides the crystal into two halves, each

the mirror image of the other, and is there-

fore called a plane of symmetry. There are

two sets of such planes of symmetry: a

set of three mutually perpendicular planes

parallel to the three pairs of cube faces,

and a set of six bisecting the angles be-

tween the first set. These planes of sym-

<
/ \ / / \

%
- metry, which are also possessed by the

(r ~y \\\l regular octahedron, correspond with the

planes of symmetry of the atomic arrange-

ment planes passing through sheets of

atoms.

There is one other element of symmetry

possessed by sodium chloride crystals. For

each face, edge, or corner of the cube or octahedron there is an exactly

similar face, edge, or corner diametrically opposite ; the centre of the

cube or octahedron (Fig. 20) is therefore called a centre of symmetry.
The centre of symmetry possessed by these shapes corresponds with

the centre of symmetry in the atomic arrangement ;
the centre of any

sodium or chlorine ion is a centre of symmetry, since along any direction

from the selected ion the arrangement encountered is exactly repeated

FIG. 19. Planes of symmetry in

cube and octahedron.
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in the diametrically opposite direction. A centre of symmetry is often

called a centre of inversion because a particular grouping on one side of

it is an inverted or mirror-image copy of the

grouping on the other side, just as a pin-hole

camera produces an inverted image of the

original object.

Turn now to sodium chlorate, NaClO3 . This

crystal also has a cubic unit cell, and rapidly

grown crystals are simple cubes; but slowly

grown crystals (Fig. 21, left) show subsidiary

faces on the edges and corners, and if these

crystals are examined it will be found hat their

symmetries are different from those of sodium chloride. For instance,

there are only four 'corner' faces ({11 1} type), not eight ;
and the axes

passing through the centres of the cube faces are in this case not four-

fold but only twofold. Similarly, when we encourage the growth of 1 1 1

2

e-

FIG. 20. Both cube and
octahedron possess a centre

of symmetry, which corre-

sponds to the centre of

symmetry in each atom of

the crystal.

\]

FIG. 21. Sodium chlorate crystals with tetrahedron faces.

faces by the presence of sodium thiosulphate in the solution, we ob-

tain tetrahedra, not octahedra (Buckley, 1930) ; a regular tetrahedron

(Fig. 21, right) has three mutually perpendicular twofold axes but no

fourfold axes. Evidently the rate of growth of four of the faces of

type 1 1 1 is much less than that of the other four. The known atomic

arrangement (Fig. 22) shows clearly the reason why there is a difference.

The chlorate ion (C103) has the form of a low triangular pyramid with

the chlorine atom as apex and the oxygen atoms forming an equilateral

triangular base. The arrangement of these pyramidal ions on faces of

type 111 is rather complex, for there are four different orientations;

but for the present purpose we need not consider this in detail; we
need only note that on four of the planes of type 111 there are pyramidal
ions with their bases facing outwards (and none with an exactly reversed

orientation), while on the otherfour it is the apexes which face outwards ;
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hence the surface forces on four of the planes are quite different from

those of the other four, and the rates ofgrowth are therefore different

so much so that one set never appears on crystals at all. The tetrahedron

has no centre of symmetry, and each threefold axis is called a polar axis

since its two ends are not equivalent.

If sodium chlorate grew always in the form of regular tetrahedra

we might think the atomic arrangement has planes ofsymmetry, for the

regular tetrahedron is a solid figure which has such planes. But crystals

of this substance grown very slowly in pure solution (Fig. 23) present
evidence of an internal symmetry even lower than that of a simple

FIG. 22. Structures of left- and right-handed sodium chlorate crystals.

tetrahedron. Truncating the cube edges there are not only {1 10} faces

but also faces of type {210} ; but only twelve out of a possible twenty-
four of this type are present, one on each edge ; thus, on a particular

crystal, 210 is present but not 120. The threefold axes (cube diagonals)

are maintained, as they are in all crystals belonging to the cubic system ;

and so are the twofold axes characteristic of a tetrahedron ; but in con-

sequence of the presence of this half-set of {210} faces, the crystal has

no planes of symmetry. If we look down a threefold axis of the crystal

shown in Fig. 23, left, we see a 210 type of face always in advance

(clockwise) of a 110 type of face. The reason can again be seen quite

directly from the known atomic structure of the crystal ;
the C103 ions

are placed so that their chlorine-oxygen bonds do not point to the

corners of the tetrahedral faces
;
the ions are rotated to a 'skew' position.

It should be noted that in addition to the crystal illustrated on the left

of Fig. 23, there is an equivalent but not identical type (Fig. 23, right)

in which the faces of type 210 are on the other side of the 110 faces
;
in

these crystals, evidently, the C103 ions are twisted round in the opposite

direction to those in the first-mentioned crystals.f The two types of

t It is not known whether the orientations of the chlorate groups in the two types of

crystal are as shown or the reverse.
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crystal are mirror-images of each other, both as regards their external

shape and their atomic arrangements; they are, like left- and right-

handed gloves, equivalent but not identical.

The external form of a crystal may thus reveal, not only the shape
of the unit cell, but to some extent the symmetries of the internal

atomic arrangement. For each different type of unit cell (each different

100

101

100

FIG. 23. Shapes of left- and right-handed sodium chlorate crystals, and orientation

of C1O3 groups 011 111 faces. (Point-group symmetry of sodium chlorate 23.)

crystal system) there are several types of internal symmetry which may
be revealed by crystal shape ; in the cubic system, for instance, there are

five different classes recognizable by external shape-symmetry, that of

sodium chloride having the highest and that of sodium chlorate thfe

lowest symmetry. Such information is not always obtainable, however ;

very often, especially when crystals grow rapidly, they have too few

faces, and the apparent symmetry of the crystals is higher than the real

internal symmetry ;
but when this information can be obtained, it is of

value for identification purposes and for structure determination. The

possibilities of identity for a crystal observed to have the form of a

regular tetrahedron are in some degree limited by the obvious fact that

it cannot belong to the most highly symmetrical class of the cubic
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system ; its internal symmetry is not higher than tetrahedral (though it

might be lower). And in setting out to determine the atomic arrange-

ment of a crystal having a tetrahedral habit all arrangements having
fourfold axes of symmetry are ruled out from the start.

The above remarks on symmetry of shape apply only to crystals

grown in uniform external conditions. When external conditions are

not uniform, crystallographically equivalent faces are often found to be

very unequal in size ; but, however unequal thtey are in size, the angles

between them are constant, and the symmetries of the internal atomic

arrangement, though not shown by the shape as a whole, are exhibited

by the interfacial angles. The best way of thinking of such cases is to

imagine lines drawn outwards fropi a point within the crystal, each line

being perpendicular to a crystal face ; this assemblage of perpendiculars

or 'poles' (which is best represented on paper by the stereographic

projection) exhibits the symmetries of the atomic arrangement. There

is an important possible source of confusion here
;
certain faces may be

missing owing to accidental local variations of growth conditions.

However, it will usually be qbvious that such absences are accidental,

as opposed to the systematic absences like those shown by sodium

chlorate crystals. For instance, when only one of a set of eight faces is

missing the absence is obviously accidental. It is only when a set of

faces is halved or quartered, for instance, that the circumstance has any

significance with regard to internal symmetry. The examination of a

number of crystals from the same batch will usually resolve such diffi-

culties ; not all the crystals will have the same accidental absences or

accidental variations of shape, and examination of a number of crystals

will usually give a sound idea of shape-symmetry.

Crystal shapes idealized in this way may be regarded as the result of

the co-operation ofselected elements ofsymmetry. In crystals belonging

to the cubic system we find the planes and axes of symmetry occurring

in sets of three or four or six, in consequence of the identity of atomic

arrangement along three mutually perpendicular directions; but in

crystals belonging to some of the other systems we may find them in

smaller sets or in isolation. Crystals of cassiterite, Sn02 , for instance,

which belong to the tetragonal system, exhibit a single fourfold axis,

perpendicular to two sets of two twofold axes ;
there are also planes of

symmetry in sets of one or two (Fig. 24). Crystals of sodium meta-

periodate trihydrate, NaI04 .3H20, have one threefold axis (of polar

character) as their only element of symmetry (Fig. 25). Meta-bromoni-

trobenzene (orthorhombic system) has one twofold (polar) axis and two
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planes of symmetry parallel to this axis (Fig. 26). Paraquinone (mono-
clinic system) has one twofold axis and a plane of symmetry perpendi-

cular to this axis (Fig. 27).

The number of different types of symmetry elements is very small.

In addition to the symmetry axes already mentioned, the only other

FIG. 24. Cassiterite, SnO2 . Left: general view, showing axes of symmetry
ar\d equatorial plane of symmetry. Right : view down fourfold axis, showing

vertical planes of symmetry. Class 4/mmm.
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FIG. 25. NaIO4 .3H2O (class 3). Left: general view. Right: view along
threefold axis.

straightforward rotation axis is the sixfold axis, involving identity

of appearance six times in the course of one complete revolution.

Crystals of potassium dithionate, K2S2Q6 ,
exhibit this type of sym-

metry (Fig. 28).

Axes of fivefold or greater-than-sixfold symmetry do not occur in

crystals, though it is possible to construct solid figures showing such

symmetries. The reason is that space-patterns regular repetitions of

structural units in space cannot have such symmetries. Nor, for that
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matter, can plane-patterns ; it is easy to confirm this by drawing patterns
of dots on paper.

Finally, there is another type of symmetry axis which involves,

not simple rotation, but combined rotation and inversion through a

point. Crystals of urea, 0:C(NH2 )2 , are prisms of square cross-section,

terminated at each end by a pair of sloping faces (Fig. 29) ;
all four

FIG. 26. Symmetries of meta-

bromonitrobenzene (classmm).

FIG. 27. Symmetries of para-quinono
(class 2/m).

FIG. 28. Potassium dithionate, K2S2O6 (class 6/wmm). Left: general view. Right: view
down sixfold axis. (Note. Atomic arrangement has lower symmetry.)

sloping faces make the same angles with the prism faces, but if we wish

to imagine a bottom face say 111 moved into the position of a top

face, we must rotate through 90 and invert through a point at the

centre of the crystal, thus arriving at 1 1 1 or 1 1 1 . All four sloping faces

can be accounted for by repetitions of this compound operation. The

prism axis of such a crystal is known as a fourfold axis of rotatory in-

version, or fourfold inversion axis. There are also three- and sixfold

inversion axes. The threefold inversion axis, which is equivalent to an

ordinary threefold axis plus a centre of symmetry, is exemplified in

crystals of dioptase, CuH2Si04 (Fig. 30). The sixfold inversion axis is
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equivalent to a straightforward threefold axis with a plane of symmetry
normal to it. A twofold inversion axis is equivalent to a plane of sym-

metry, and is usually known by the latter name.

All idealized crystal shapes bounded by plane faces exhibit either no

symmetry at all or else a combination of some of the elements of sym-

metry in this very short list. Crystals having no symmetry are very rare.

It has been said at the beginning of this section that the symmetries

displayed by the shapes of crystals grown in uniform surroundings are

III -A I" /

FIG. 29. The fourfold inversion axis.

Urea, O:C(NH2 )2 . Class 42m.
FIG. 30. The threefold inversion axis.

Dioptase, CuH2SiO4 . Class 3.

those of the atomic space-pattern (or at any rate are not lower than

those of the atomic space-pattern). This statement needs amplification.

In some atomic space-patterns parallel contiguous repetitions of units

of pattern there can be discerned types of symmetry elements involv-

ing translation : screw axes involving combined rotation and transla-

tion, and glide planes involving combined reflection and translation.

(Examples will be found in Chapter VII.) Such symmetry elements

involving translation naturally cannot be displayed by crystal shapes,

which are, to speak formally, assemblies of face-types round a point,

having no element of translation. Crystal shapes therefore display

symmetry elements which may be regarded as screw axes and glide

planes deprived of their elements of translation
;
that is to say, an

atomic space-pattern having screw axes gives rise to a crystal shape

displaying the corresponding simple rotation axes, and a space-pattern

having glide planes gives rise to a crystal shape displaying straight-

forward reflection planes. Thus, several different types of atomic
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space-patterns (space-group symmetries) give rise to the same crystal

shape-symmetry (point-group symmetry). The space-group symmetries
are considered more fully in Chapter VII ; here we are concerned only
with point-group symmetry.
Nomenclature of symmetry elements and crystal classes.

It is convenient to have short, self-explanatory symbols with which to

refer to the various crystal classes. Some of the names used formerly
for the crystal classes are rather cumbrous (e.g* monoclinic hemimorphic

hemihedry), and others (e.g. tetragonal hemihedry of the second type)
are not self-explanatory. Moreover, different authorities have quite

different name-systems. The point-group nomenclature recentlyadopted

internationally and given in Internationale Tabellen zur Bestimmung von

Kristallstrwkturen (1935) provides symbols which are not only extremely

concise, but also self-explanatory in that they present the essential sym-
metries of the point-groups.

Two-, three-, four-, or sixfoldrotation axes ofsymmetryare represented
by the numbers 2, 3, 4, and 6, while three-, four-, and sixfold inversion

axes have the symbols 3, 4, and 6; In conformity with this scheme, asym-

metry is represented by the figure 1 (only one repetition in a complete

rotation), and a centre of symmetry, or inversion through a point, by 1.

A plane of symmetry is represented by the letter m ('mirror').

In putting together the symbols to denote the symmetries of any

crystal class the convention is to give the symmetry of the principal

axis first for instance, 4 or 4 for tetragonal classes. If there is a plane
of symmetry perpendicular to the principal axis, the two symbols are

4
associated thus: (

e

four over m'), or, more conveniently for printing,m
4/m. Then follow the symbols for the secondary axes, if any, and then

4
any other symmetry planes. (Note that 4/mmm means mm, that is,m
the second and third ra's refer to planes of symmetry parallel to the

fourfold axis.)

Secondary axes may be in sets, but there is no need to mention more

than one. Thus if, to a principal fourfold axis, we add a secondary
twofold axis (perpendicular to the principal axis), the action of the four-

fold axis inevitably creates another twofold axis at right angles to the

first ; and further, we find that there are inevitably two more twofold

axes bisecting the angles between the first two. This is illustrated in

Fig. 31, a stereographic projection in which a point represents the pole

of a general plane ; if A is the secondary twofold axis which is first
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system, obtained by adding planes of symmetry both parallel and per-

pendicular to the principal rotation axis. The enantiomorphous classes

are those in the first and sixth rows those possessing rotation axes

only.

Note how, very often, the association of two elements of symmetry

inevitably creates further elements. We have already seen an example
of this in class 42 (Fig. 31). The class symbols given in Fig. 32 are, first,

those which conform to the scheme of derivation in this diagram (these

are sufficient sometimes more than sufficient to characterize the

classes uniquely), and following these the conventional symbols given

010

FIG. 33. Triclinic system, a. Unit cell type. b. CaS 2Oa .6H2O. Class L c. CuSO4 .5H2O.

Class 1. d. 1,4 dinitro 2,5 dibromo-benzene. Class 1.

in Internationale Tabellen, which in some cases are longer (4mm, 42m),

and in others shorter (w3m), than the first-mentioned symbols.

The cubic classes stand somewhat apart from the rest. They have as

their distinctive feature -four threefold axes lying along cube diagonals ;

these are secondary axes. The primary axes may be either twofold or

fourfold.

Examples of crystals are shown in Figs. 33-8 and in various other

drawings in this book. Familiarity with crystal symmetry is, however,

best attained by handling and contemplating idealized models of

crystals.

The unit cell types or crystal systems.

Triclinic (sometimes called anorthic). Crystals lacking symmetry of

any kind naturally have the most 'general' type of unit cell, the three

axes of which are all inclined to each other at different angles and

unequal in length. The addition of a centre of symmetry does not alter

the situation, for this most general type of unit cell has a centre of

symmetry and is appropriate for this class also. These two classes,

1 and T, constitute the triclinic system (Fig. 33).
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The lattice points of a triclinic crystal may be joined in various ways
to form differently shaped unit cells (see p. 141). It is usually most con-

venient to use the cell with the shortest edges, unless there is some

special feature which recommends some other direction as a unit cell

edge. Donnay (1943) recommends that the shortest axis shall be called

c and the longest 6
;
and that the angles a and /J shall be obtuse.

When axes are chosen on morphological grounds there is a convention,

not always followed, that the principal zone* axis is called c, and that,

FIG. 34. Monoclinic system. (See also Fig. 27.) a. Unit cell type. 6. Left- and right-

handed tartaric acid. Class 2. c. 2,4,6 Tribromobenzonitrile. Class m. d. p-Dinitro-
benzene. Class 2/ra. e. (CH3COO)2Pb.3H2O. Class 2/w.

of the other two, the longer is called b ; and the obtuse angles between

the axes are usually specified, rather than the acute angles.

Monoclinic. The single twofold axis of class 2 is an obvious direction

for a unit cell edge, and this is called b. The existence of the twofold axis

means that neighbouring lattice points lie on a plane normal to the

twofold axis ; therefore all the lattice points lie in planes normal to b ;

thus the a and c edges of the unit cell are both normal to 6, but since

there is no other element of symmetry, they are inclined to each other ;

and the three axes are unequal in length.

This same type of unit cell is appropriate for class m, the a and c axes

lying in the plane ofsymmetry and the b axis being normal to this plane.

It is equally appropriate for class 2/w. The three classes, 2, w, and 2/w,

constitute the monoclinic system (Fig. 34).

It would have been better if this unique axis were called c, to bring
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the nomenclature into line with that of tetragonal, hexagonal, and the

polar orthorhombic crystals, which all have their unique axes labelled c ;

but the 6 convention for monoclinic crystals seems now too well estab-

lished to be altered. Of the other two axes, the shorter is called c, and
the obtuse angle /? between a and c is usually specified, rather than the

acute angle.

Orthorhombic (sometimes catted rhombic). In class mm
(
= 2mm) the

lattice points lie in planes normal to the twofold axis ; they also lie in

FIG. 35. Orthorhombic, system. (Soo also Fig. 26.) a. Unit cell type. 6. (

Class 222. Left- and right-handed crystals, c. 1-Brom, 2-hydroxy-naphthalene. Class 222.

d. Picric acid. Class mm. e. Oxalic acid. Class mmm. /. C2I3r6 . Class mmm.

the mutually perpendicular planes of symmetry m which are parallel to

the twofold axis. The lattice is thus entirely rectangular, and the unit

cell is a rectangular box with unequal edges. The twofold axis is usually
called c ; of the other two, the longer is called b.

The same type of unit cell is appropriate for classes 222 and mmm
(
= 2/m 2/m 2/m) ; the cell edges lie along the twofold axes.- Donnay

(1943) recommends that the longest shall be called b and the shortest c.

When axes are chosen on morphological grounds the axis of the principal

prism zone is labelled c, while b is the longer of the other two. The three

classes mm, 222, andmmm constitute the orthorhombic system (Fig. 35).

Hexagonal and trigonal. In many crystals having a single three- or

sixfold rotation axis or inversion axis the unique axis is taken as one of
4458 v
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the unit cell edges, and this axis is called c. In all these crystals there

are, in a plane normal to the principal axis, three equivalent directions

which are at 120 to each other (see p. 26). Any two of these may be

called a and 6. The unit cell thus has a diamond-shaped base, with a

and b edges at 120 to each other and equal in length ;
c is perpendicular

to a and b and different in length.

The twelve classes which may be referred to such a unit cell are : 3, 3m,
32 ; 3, 3m ; 6, 6m2 ; 6, 6/m, 6mm, 62, 6/mmm. *Eor examples, see Fig. 36.

0001

d 1

FIG. 36. Hexagonal and trigonal systems. (Seo also Figs. 25, 28, and 30.) a. Hexa-
gonal-type unit cell. 6. Apatite, 3Ca3(PO4 ) 2 .CaF2 . Class 6/m. c. Hydrocinchonine
sulphate hydrate, (C19H24ON2 )2 .H2SO4 . 11H2O. Class Gm. d. Rhombohedral-type unit

cell. e. A habit of calcite, CaCO 3 . Class 3m. /. KBrO3 . Class 3.

It is often more convenient to refer some trigonal crystals to a rhombo-
hedral cell which has three equal axes making equal angles not 90 with
each other. The three equal rhombohedral axes are equally inclined to

the c axis of the hexagonal-type cell.

Tetragonal. In all crystals having a single fourfold rotation axis or

inversion axis there are, normal to this unique direction, two equivalent
directions perpendicular to each other. The unit cell is thus entirely

rectangular, with two edges (a and b) equal in length, and the remaining
edge (the fourfold axis) different in length. The seven classes of the

tetragonal system are: 4, 42m; 4, 4/m, 4mm, 42, and 4/mmm (Fig. 37).

Cubic (sometimes called isometric, or tesseral). All crystals having four

secondary threefold axes have three mutually perpendicular directions
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Fin. 37. Tetragonal system. (See also Fig. 29.) a. Unit cell type. 6. Thloroglucinol

diethyl ether. Class 4/wi. c. Wulfenite, PbMoO4 . Class 4. d. Anatase, TiO 2 . Class

4/mmm. e. Zircon, ZrSi()4 . Class 4/mram.

102

FIG. 38. Cubic system. (See also Figs. 17-23.) a. Unit cell typo. 6 andc. Two habits

of pyrites, FoS 2 . Class w3. d. Tetrahedrito, Cu3SbS 3 . Class 43m. c. Spinel, MgAl,O4 .

Class w3?w. /. Almandine (Garnet), Fe3Al3(SiO4 ) 3 . Class m3m.

all equivalent to each other. The unit cell is thus a cube, the secondary
threefold axes being the cube diagonals. The five classes of the cubic

system are: 23, w3 (
== 2/w3), 43m, 43

(
= 432), andw3w (

= 4/m 3 2/m).

Examples are shown in Fig. 38.



52 IDENTIFICATION CHAP. II

The various names used formerly for the crystal classes are to be

found, collected in a table of concordances, in Internationale Tabellen

zur Bestimmung von Kristallstrukturen (1935).

The essential symmetries and unit cell types for the different crystal

systems are summarized in Table. I.

TABLE I

System

Triclinic.

Monoclinic.

Orthorhombic.

Trigonal and

Hexagonal.

Tetragonal.

Cubic.

Essential symmetry

No planes, no axes.

One twofold axis, or one plane.

*

Three mutually perpendicular
twofold axes, or two planes inter-

secting in a twofold axis.

One threefold axis, or one sixfold

axis.

One fourfold axis or fourfold in-

version axis.

Four threefold axes.

Unit cell

Angles a, ft, and y unequal and not

90. Edges a, 6, and c unequal.

a = y = 90*. not 90. a, 6, and
c unequal.

a = j3
= y 90. a, 6, and c un-

equal.

(1) a -
|3
- 90. y

- 120. a =- b.

c different from a and 6.

(2) a =
ft

-=
y, not 90. a =~ 6 = c.

a = p ^ y =^ 90. a 6. c differ-

ent from a and 6.

a =
j8
= y ^ 90. a b c.

Deduction of a possible unit cell shape and point-group sym-
metry from interfacial angles. When all the interfacial angles of a

crystal have been measured on the goniometer, and the symmetries
deduced by the contemplation of stereographic projections, the proce-

dure in deducing the relative lengths of the unit cell edges and the angles

between them follows from the contents of the foregoing notes. In most

classes the directions of the edges are prescribed by the symmetry
elements

;
when they are not, the principle of simplest indices is called

in to indicate the probable directions. In some of the tetragonal and

hexagonal classes there are two sets of secondary axes or symmetry

planes, providing alternative positions for the secondary (a and 6) edges
of the unit cell

;
the principle of simplest indices is again called in, but

its verdict will not necessarily be correct ; X-ray diffraction photographs
are necessary to settle such questions. In certain other tetragonal and

hexagonal classes there is a single set of secondary twofold axes which

are naturally chosen as probable unit cell edges. But this again is not

necessarily correct : in some crystals the unit cell edges are parallel to

twofold axes, while in others they bisect the twofold axes. The morpho-

logical axes are, however, entirely adequate for morphological purposes ;

and the morphological axial ratio c/a is related in a simple way to the
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axial ratio of the unit cell usually by a factor of V2 in the tetragonal

system and A/3 in the hexagonal system.

Attention has already been drawn to the fact that the idealized shape

ofa crystal may exhibit a symmetry higher than that ofthe arrangement
of atoms. Sodium chlorate crystals when grown rapidly in pure solution

are cubes, the symmetry of which is holohedral (m3m) ;
when sodium

thiosulphate is present ip the solution the crystals grow as tetrahedra

(symmetry ?3w); only when grown slowly in pure solution do the

crystals exhibit the symmetry of the atomic arrangement that of the

enantiomorphous class 23. In this case, and in many others, the true

r\\\

c

FIG. 39. Loft, bisphenoid of PbCJ 2 . Centre and right, arrangements of atoms
on 111 and 111. The atoms depicted are those which lie on, or not far bolow,

the plane of the corner atoms.

point-group symmetry was known before the atomic arrangement was

discovered by X-ray methods ;
but in the case of sodium nitrite, NaN02 ,

which is orthorhombic, the habit of the crystals gives no evidence that

the symmetry is other than holohedral (mmm), yet the X-ray diffraction

pattern leaves no doubt that the atomic arrangement has the point-

group symmetry mm the polar class of the orthorhombic system.

(See Chapter IX.)

The opposite may occur if crystal growth takes place in a solu-

tion containing particular impurities. Miles (1931) showed that when
lead chloride crystals, whose internal structure has the orthorhombic

holohedral symmetry mmm, grow in a solution containing dextrine,

they form bisphenoids, the symmetry of which is 222. It seems curious

that a holohedral crystal should in any circumstances assume a hemi-

hedral (holoaxial) shape. The reason is that the substance in solution

which modifies the shape of the lead chloride crystals is itself asym-
metric, and only left-handed molecules are present. Consider the

arrangement of atoms at a particular level on the 111 plane of the lead

chloride crystal (Fig. 39). This plane-pattern has no symmetry, and if

we call the arrangement on 111 left-handed, the arrangement on Til is
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right-handed. Now, modification of crystal habit by dissolved impuri-

ties is due to adsorption of the impurity molecules on specific crystal

faces, this adsorption reducing the rate of growth of these faces. If

asymmetric left-handed molecules are present in the solution, and these

are adsorbed on the 111 face, they are not likely to fit well on the 111

face; consequently the rate of growth of 111 (as well as that of the

equivalent faces TTl, TlT, and iTT) is reduced, while that of Til (and

TTT, 111, and ill) is not, and the resulting crystal is entirely bounded

by the first-mentioned set of planes and thus has a hemihedral form.

To produce an effect of this sort, molecules of the dissolved impurity

need not be entirely without symmetry, but they must lack planes of

symmetry, inversion axes, and a' centre of symmetry.
Such effects are probably rare, and when crystals are grown from

solutions of high purity there is little danger of the occurrence of shapes

which are misleading in this way. Nevertheless, the knowledge that

such phenomena can occur prompts caution in accepting morphological

evidence on internal symmetry when the conditions of growth are

incompletely known (see p. 247).

The shapes and orientations of the etching pits formed in crystal

faces by appropriate solvents are also used as clues to internal symmetry

(Miers, 1929). Here again, solvent molecules having only axial sym-

metry must be avoided, as they may produce misleading effects, for

reasons similar to those given in the case of crystal shape (Herzfeld and

Hettich, 1926, 1927).

The use of shape-symmetry and other morphological features in the

study of the internal structure of crystals will be considered further in

Part 2 of this book (Chapters VII and VIII). Here we are concerned

with crystal shapes in so far as they afford evidence useful for the pur-

pose of identification.

Identification by shape. When a substance which it is desired to

identify consists of well-formed single (that is, not aggregated) crystals

of sufficient size to be handled, the interfacial angles may be measured

on the goniometer; it is then possible to look up the morphological

information on likely substances either in Groth's Chemische Krystallo-

graphie or in papers scattered through the literature (chiefly chemical

and mineralogical journals). An indirect method of this sort is, however,

not always entirely satisfactory: possible substances may be overlooked.

The desire for a direct method has led to attempts to devise a system in

which morphological characteristics are measured and the results re-

ferred to a classified index. Barker (1930) has devised a system in which
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certain 'key' angles of the measured unknown crystal are looked up in

an index in which substances are arranged in order of the magnitudes
of these key angles. The selection of the key angles for an unknown

crystal involves the indexing of all the faces on the crystal, and thus

implies the deduction of a possible unit cell shape. Barker does not use

the term 'unit cell', and does not claim for his system anything more than

that it is a consistent scheme for the morphological description and

identification of crystals t but the term 'unit cell' will be retained here,

since the treatment in this book is entirely based on this conception.

For the purpose of identification the fact that the 'morphological unit

cell' does not always coincide with the true unit cell does not matter,

provided that all crystals of the sam species give the same morpho-

logical cell in the hands of different investigators. The problem is to

devise rules which ensure this, even in the triclinic system, where none

of the axial directions are fixed by symmetry. The rules devised by
Barker, together with some additions by Porter and Spiller (1939),

constitute a sound system, and a card index for the method is in exist-

ence, though it is not yet (1944) published. The rules will not be

described here in detail
;
but we may observe that the system is based

on a thorough-going acceptance of the principle of simplicity of indices,

and that a definition of simplicity is given all indices composed only
of O's and 1's being regarded as equally simple, and all others complex.
Another point is that class-symmetry within a

particular system is

ignored ;
this is necessary in view of the frequency with which crystals

display in their shapes too high a point-group symmetry (this being in

some cases variable with growth conditions).

One limitation ofmorphological methods has already been mentioned :

some crystals, especially those grown rapidly, are entirely bounded by
faces parallel to the unit cell sides, and measurements of the interfacial

angles of such crystals can only give the angles between the axes, not

their relative lengths (except where symmetry indicates that two or

more axes are equal in length, as in the cubic, tetragonal, hexagonal,
and trigonal systems). Another limitation arises from the fact that all

crystals belonging to the cubic system have the same shape of unit cell,

and therefore cannot be identified by purely morphological methods.

It is true that different crystals belonging to the cubic system often

have different bounding faces, some growing normally as octahedra,

others as tetrahedra, and so on
;
but there are many different crystals

of octahedral habit, and many others of tetrahedral habit. In addition,

it must be remembered that the shape may be completely changed by
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the presence of certain impurities in the solution. Thus, shape is of very

little use for identification in the case of crystals belonging to the cubic

system.

It is not intended to describe purely morphological methods of

identification in any more detail in this book, for we are concerned with

the crystals found in the average experimental or industrial product,

and for these crystals the practical limitations imposed by small size

or irregular shape <are often sufficient to rule eut goniometric methods.

With regard to size, it should be realized that crystals as small as otie-

qr two-tenths of a millimetre in each direction can be handled and

measured on the goniometer.

Generally speaking, however,

crystals suitable for goniometric

measurements are either speci-

ally selected mineral specimens
or crystals specially grown for

the purpose. Not all crystals can

be grown under laboratory con-

ditions to a size suitable for
FIG. 40. Orthorhombic crystal lying on

(001) on microscope slide. handling ; very sparingly soluble

substances, for instance, might

require a geological age for growth to such a size. Moreover, it may
be desired to identify the products of chemical reactions in which it is

not possible to prescribe suitable crystallization conditions.

For well-formed microscopic crystals the scope of purely morpholo-

gical methods is usually limited to qualitative observations which may
enable us to deduce the type of unit cell. Sometimes it may be possible

to measure interfacial angles approximately, but only when the crystals

lie in such a way that the two faces in question are both parallel to the

line of vision ; for instance, if an orthogonal crystal is lying on the slide

on its (100) face (Fig. 40), the angle between (110) and (010) faces could

be measured by bringing them successively parallel to the eyepiece

cross-wire, and reading off the angle through which the slide or the

eyepiece has been turned. This would give us an approximate value for

the axial ratio. For very many crystals, however, interfacial angles

cannot be measured ; we may be able to conclude that a crystal probably
has a tetragonal or a monoclinic unit cell, but we cannot deduce the

relative dimensions of the cell.

Further, it may often be desired to identify poorly formed crystals

such as needle-like crystals without definite faces, or skeletal growths >
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or even completely irregular fragments. This can only be achieved by

measuring some properties of the crystal material itself, properties

which are independent of the shape of the crystals. Of such properties,

by far the most important and the most convenient for measurement

are the optical properties, especially the refractive indices. An ele-

mentary account of the optical properties of crystals will be found in

Chapter III.

Before leaving the subject of crystal shape there are a few other

morphological features which are sometimes encountered and must be

mentioned briefly.

FIG. 41. Twinning, a. Gypsum, CaSO4 . 2H2O. Two individuals joined at a well-marked

plane (100). b. 'Interpenetration' twin of fluorspar, CaF2 . One individual is rotated 60
with respect to the other. The junction surface in such twins is often very irregular,
c. 'Mimetic' twin of ammonium sulphate, (NH4 )2SO4 . Six individuals, with three

different orientations (numbered).

Twinning. Two or more crystals of the same species are sometimes

found joined together at a definite mutual orientation, this orientation

of the individual crystals being constant in different examples of any
one species. Such crystals are said to be twinned. Certain species show

this phenomenon frequently, and some species invariably. The most

frequent type of twinning is that of calcium sulphate dihydrate (gyp-

sum), which is often found in the form shown in Fig. 41 a. The two

crystals appear to be joined at the 100 plane. At the junction there is

presumably a sheet of atoms common to the two individuals ; when the

crystal nucleus was formed, two lattices were probably built by deposi-

tion on opposite sides of this common sheet of atoms.

Sometimes twinned crystals appear to be interpenetrating, as in the

calcium fluoride twin illustrated in Fig. 41 6. Here we may imagine

(in the crystal nucleus) a common 111 sheet of atoms, the symmetry of

which is trigonal ;
the crystal on one side of it is rotated 60 with respect

to the one on the other side. The twin plane is not always respected

during subsequent growth ;
one individual may encroach on the domain

of the other, so that the junction surface in the final crystal is irregular.
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There are many other types of composite shape which arise as the result

oftwinning ; for further examples, see the text-books ofMiers and Dana.

Twinning always involves the addition of a plane or an axis of sym-

metry, and the symmetry of the composite shape may thus be higher

than that of an individual crystal of the same species. When the com-

posite shape has no re-entrant angles it may appear deceptively like

that of a single crystal of higher symmetry ; thus, ammonium sulphate

crystals grown in solutions containing ferric iflns form hexagonal prisms

(Fig. 41 c). The atomic arrangement in ammonium sulphate crystals has

orthorhombic symmetry, but the conjunction of six sectors with three

different orientations (opposite sectors having the same lattice orienta-

tion) gives rise to apparent hexagonal symmetry. The same thing occurs

in aragonite, the orthorhombic form of calcium carbonate. (For the

atomic structure on the twin plane see Bragg, 1924 a.) The occurrence

of such mimetic twinning may cause confusion if its existence is not

realized. The study of such phenomena is greatly assisted by the use

of the polarizing microscope; this is dealt with in the next chapter.

In some crystals the energy of addition of material to a crystal face in

such a way as to start a new twinned individual may be almost the same

as that of carrying on a single-crystal structure ; frequent changes may
thus occur, giving rise to a fine lamellar 'repeated-twinning' structure.

Here again the polarizing microscope may reveal at once the composite
character of the structure.

Cleavage. The cohesion of crystals is not the same in all directions.

It may be very strong in some directions and very weak in others
;
so

much so that many crystals, on crushing or grinding, break almost

exclusively along certain planes. The most striking of familiar examples
is mica, a potassium aluminium silicate mineral which readily cleaves

into thin sheets. Similarly crystals of calcite, the rhombohedral variety

of calcium carbonate, break into small rhombohedra ; sodium chloride

crystals tend to break along planes parallel to the cube faces ; calcium

fluoride (fluorspar) crystals cleave along the octahedral planes. Minerals

like chrysotile ('asbestos') have more than one cleavage parallel to the

same crystal direction and very readily split into fibres.

Cleavage planes are always planes of high reticular density of atomic

or molecular packing and large interplanar spacing, the cohesion being

strong in the plane and weak at right angles to the plane. Cleavage

planes thus have simple indices, and in fact are often parallel to the

principal faces of the crystal ; thus calcite, when precipitated in the

laboratory, often grows in the form of simple rhombohedra whose faces
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are parallel to the cleavage planes. But this statement, like the principle

of simplest indices for the faces of growing crystals, is only a broad

generalization, not a rigid rule. An exception, for instance, is shown

by calcium fluoride, which usually grows as cubes but cleaves along

octahedral faces (Wooster, N., 1932). Another is penta-erythritol,

C(CH2OH)4 ,
which grows as tetragonal bipyramids but has basal

cleavage (001).

Polymorphism. Some substances form, under different conditions,

crystals of quite different internal structure ; they are then said to be

polymorphic. The different structures are different packings ofthe same

building units. Sometimes one particular structure can only exist within

a definite temperature range, and if tte temperature goes outside this

range there is a rapid reorganization of the building units (atoms, mole-

cules, or ions) to form a different arrangement. Sulphur, for instance,

forms an orthorhombic arrangement at room temperature and a mono-

clinic arrangement above 95 C. An extreme example is ammonium

nitrate, which exists in five different crystalline forms, each of which

changes to another at a definite temperature. Other substances exist

in two or more forms which are apparently equally stable at the same

temperature. Calcium carbonate, for instance, occurs in a rhombohedral

form, calcite, and an orthorhombic form, aragonite, both of which have

existed in the earth's crust for geological ages. Actually calcite is prob-

ably slightly more stable than aragonite at all temperatures, but the

atomic motions in aragonite crystals at ordinary temperatures are so

small that no reorganization is possible. There is also a much less stable

form, jLt-CaC03 or vaterite, which is apparently hexagonal.

Isomorphism and mixed crystal formation. The atomic arrange-

ment in crystals ofammonium sulphate, (NH4 )2S04 ,
is entirely analogous

to that found in potassium sulphate (K2S04 ) crystals, the ammonium
ion playing the same role in the structure as the potassium ion.

The unit cell dimensions of the two crystals are very nearly the same,

and the shapes of crystals grown under similar conditions are almost

the same. Accurate gonibmetric measurements would be necessary to

distinguish between the two crystals by morphological methods. Such

crystals are said to be isomorphous. The reason for this close resem-

blance is that ammonium and potassium ions are very similar in size and

chemical character ; they can therefore fit into the same arrangement

with sulphate ions. When the ionic sizes are closely similar, they can

replace each other indiscriminately in the lattice; a mixed solution

of ammonium and potassium sulphates deposits crystals which may
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contain any proportions of the two substances, and which have unit cell

dimensions intermediate between those of the pure components. Such

crystals are called 'mixed crystals' or 'crystalline solid solutions'.

Not all isomorphous substances form mixed crystals. Calcite (CaC08)

and sodium nitrate (NaN03 ) form similar atomic arrangements, their

unit cells are both rhombohedra of very similar dimensions, and also

the corresponding ions are closely similar in size; but they do not

form mixed crystals : the reason presumably'is that their solubilities in

water are extremely different.

FIG. 42. Oriented overgrowths of urea on ammonium chloride.

Oriented overgrowth. Isomorphous substances which do not form

mixed crystals may do the next best thing ;
one crystal may grow on the

other in parallel orientation. ^Sodium nitrate grows on calcite in this

way. Isomorphism is not, however, a necessary condition for oriented

overgrowth ; it is sufficient if the arrangement of atoms on a particular

plane of one crystal is similar, both in type, dimensions, and distri-

bution of electrostatic charges, to the arrangement on one of the planes
of the other crystal ;

the two structures may be in other respects com-

pletely different from each other (Royer, 1926, 1933). Thus, tetragonal

urea, 0=C<^
2

, grows with its 001 plane precisely oriented in
JN xlo

contact with the cube faces of ammonium chloride, NH4C1, Fig. 42
;

the two structures are completely different except for a formal and
dimensional similarity on the planes in question (Bunn, 1933).
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Of the morphological phenomena mentioned in the last few para-

graphs, that of twinning is likely to be of most frequent value in

identification problems. But all the phenomena are significant from the

point of view of structure determination. The subject of crystal

morphology in relation to internal structure will not, however, be

pursued further at present ; it will be taken up again in Chapters VII

and VIII. For the present, we shall oontinue our consideration of the

problem of the identification of microscopic crystals ; we pass on to

discuss crystal optics, the relation between optical properties and

crystal shape and symmetry, and the determination of refractive indices

and other optical characteristics under the microscope.



Ill

THE OPTICAL PROPERTIES OF CRYSTALS

THE physical properties of crystals, such as refractive index, absorption
of light, and conduction of heat and electricity, are in general not the

same for all crystal directions; in other words, a three-dimensional

graph of any characteristic showing its magnitude for all directions is

not, except in certain special cases, a sphere, but a less symmetrical

figure, owing to the fact that on passing through a crystal the sequence
ofatoms encountered depends on the direction taken. The type of shape
of the three-dimensional grapK is not the same for all characteristics

and naturally varies with crystal symmetry, but one generalization

that can be made is that the figure must necessarily exhibit a symmetry
at least as high as that of the atomic pattern in the crystal. The

symmetry of the figure may be higher than that of the atomic pattern

(just as the shape of a crystal may have a higher symmetry than that

of the atomic pattern), but it cannot be lower. If there is a plane of

symmetry in the atomic pattern, then there must be a corresponding

plane of symmetry in the figure ;
if there is an axis of symmetry or a

centre ofsymmetry in the atomic pattern, then these also are necessarily

exhibited by the figure.

In this chapter we are concerned chiefly with the refractive indices

of crystals and other phenomena depending on the refractive indices.

The absorption of light and the rotation of the plane of polarization

are also considered briefly. The treatment of crystal optics followed in

this book is restricted to those aspects which are most generally useful

for purposes of identification or structure determination. The finer

points of crystal optics, and aspects which are of physical rather than

chemical interest, may be pursued in more comprehensive text-books,

such as Miers's Mineralogy, Tutton's Crystallography and Practical

Crystal Measurement, Hartshorne and Stuart's Crystals and the Polariz-

ing Microscope, Wooster's Crystal Physics, and Preston's Theory of

Light.

The refractive index of a solid is usually defined in terms of SnelTs

law, which states that when a ray of light changes its direction on pass-

ing from one medium to another the ratio of the sine of the angle of

incidence to that of the angle of refraction is a constant ; this constant

is the refractive index of the second medium with respect to the first.

For the consideration of the optical properties of crystals, however, it
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is better to think of the refractive index, not as a measure of the bending

of a ray of light when it passes from air into the solid, but as a measure

of the velocity of light in the solid : the refractive index of a solid with

respect to air is the ratio of the velocity of light in air to the velocity

in the solid. By thinking in this way we are focusing our attention on

a particular direction in the crystal.

The first point to be made is that in a crystal the refractive index

depends not on the direction in which the electromagnetic waves are

travelling but on the direction of the electrical disturbances transverse

to the line of travel the Vibration direction'. We have to consider

the shape of the graph connecting refractive index with vibration

direction for each crystal system, and the methods available for

measuring the refractive indices of crystals in different vibration

directions.

Cubic crystals. Crystals with cubic unit cells have the same atomic

arrangement along all three axial directions; consequently all the

properties of the crystal are identical along these three directions.

The optical properties are found to be the same, not only along these

three directions, but also for all other directions. An attempt at an

explanation of this would take us too deeply into the electromagnetic

theory of light ;
we shall therefore simply accept the fact that a cubic

crystal is optically isotropic it behaves towards light just like a piece

of glass ;
its refractive index is the same for all vibration directions of

the light. To identify a cubic crystal it is usually sufficient to measure

its one refractive index.

Measurement of refractive index under the microscope. The

measurement of the refractive index of an isotropic transparent solid

under the microscope is extremely simple. The principle is to keep a

set of liquids of known refractive indices, and to find which liquid has

the same (or nearly the same) refractive index as the solid in question.

When the solid particles are immersed in this liquid they become

invisible ;
the light, in passing from liquid to solid and from solid to

liquid, is not refracted, and consequently the edges of the particles

cannot be seen ;
as far as the light is concerned, the whole complex is

a homogeneous medium.

The procedure is to immerse particles of the solid in a drop of liquid

of known refractive index on a microscope slide, cover the drop with a

thin cover-glass, and observe the particles, using a low or moderate

magnification (J-inch objective and 4 or 10 times eyepiece, for instance)

and parallel or nearly parallel light. If the particles show up plainly,
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their refractive index must differ considerably from that of the liquid ;

other liquids of different refractive indices are then tried, until a liquid

is found in which the particles are invisible or very nearly so. The
search for the right liquid is not as laborious as one might suppose,
because it is possible, by observing certain optical effects, to tell whether

the refractive index of the liquid is higher or lower than that of the

crystal; and with experience, one can estimate roughly how much

higher or lower. These optical effects are illustrated in Fig 43, Plate II,

in which a shows cubic crystals of sodium chlorate (refractive index

n = 1-515) immersed in a liquid of n = 1-480. If the crystals are first

of all focused sharply, and if then the objective is raised slightly (by
means of the fine adjustment of the microscope), a line of light (the

'SOUP

(a) (b)

FIG. 44. The 'Becke line' effect.

'Becke line') is seen inside the edges of each crystal ;
as the objective is

raised more and more, the line contracts farther and farther within the

boundaries of the crystal. This is what happens when the refractive

index of the liquid is less than that of the crystal ;
but if the reverse is

true, as in Fig. 436, Plate II, the Becke line appears round the outside

ofthe crystal when the objective is raised and expands as the objective is

raised farther. The shape of the particles does not matter
; the Becke

line always follows the outline of the particle ; the determination of the

refractive index of irregular fragments of crystals, or of particles of

glass, is just as easy as that of well-formed crystals.

The simplest way of regarding the Becke line effect, as well as the best

way of remembering which way the line moves, is to think of a particle

as a crude lens which, if it has a refractive index higher than that of

the medium surrounding it, tends to focus the light at some point
above it (Fig. 44) ; when the objective is raised it is focused on a plane
PP above the particle, and in this plane the refracted light waves

occupy a smaller area than they do in a plane nearer the particle, and
thus the boundary line of light moves inwards as the objective is raised.

If the refractive index of the particle is lower than that of the sur-

rounding liquid, it will have the opposite effect and act as a negative



FIG. 43. a. Crystals of Hodium chlorate, NaGlO,, in liquid of refractive index 148;

objective raised. 6. The same substance in liquid of refractive index 1-55; objective

raised, c. Crystal ofmonammoriium phosphate, NH4H2PO4 , in liquid of refractive index

1-500; polarized light, vibration dirertion vertical; objective raised, d. Tho same,

vibration direction horizontal; objective raised, e. Mixture NaBr.2H2O and NaBrO,
in liquid of refractive index 1-54. The NaBrO3 crystals show up in relief.
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lens (Fig. 44) ; consequently on raising the objective the boundary line

of light expands.

By observing this effect and trying various liquids in turn, it is

possible to find in a few minutes a liquid in which the particles are nearly

invisible. In practice, it is convenient to keep a set of liquids with

refractive indices differing by 0-005. Refractive index values are nearly

always given for sodium D light, and the liquids are therefore standar-

dized for this wavelength. (For suitable liquids, see Appendix 1.)

Usually, of course, the refractive index of the particles is found to lie

between those of two of these liquids ; its value can be estimated from

the magnitude of the Becke line effects in the two liquids. In this way
the refractive index of isotropic particles can be found within limits of

0-002. It must be mentioned that solid particles are seldom quite

invisible in liquids, because the dispersion of the liquid (variation of

refractive index with colour of light) is usually different from that ofthe

solid ; consequently, if the refractive indices of solid and liquid are

equal for yellow light, they are not equal for red or blue light, and there-

fore in white light, coloured Becke line fringes will be seen round the

edges of the crystals. For this reason it is sometimes suggested that

monochromatic light should be used for refractive index determinations ;

in practice, however, sufficient accuracy for identification purposes is

usually obtainable by the use of white light, which is also more pleasant

in use.

Tetragonal, hexagonal, and trigonal crystals. Preliminary.

The simple method just described is applicable as it stands only to

isotropic solids, that is, to glasses and amorphous solids in general, and

to crystals belonging to the cubic system. In all other crystals the

refractive index varies with the direction of vibration of the light in

the crystal ;
the optical phenomena are more complex, and it is necessary

to disentangle them.

If tetragonal crystals of monammonium phosphate, NH4H2P04

(Fig. 45), lying on the microscope slide on their prism faces, are examined

in the way already described with ordinary unpolarized light, it is not

possible to find any liquid in which they are nearly invisible. In liquids

with refractive indices below 1*479 it is clear that the crystals have a

higher index than the liquids; in liquids with indices above 1-525 it is

equally clear that the crystals have lower indices than the liquids;

but in liquids with indices between 1-479 and 1-525 confusing effects

are seen Becke lines can be seen both inside and outside the crystal

edges. This is because the crystal resolves light into two components
445S v
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vibrating in different planes,| and the refractive indices of the two

components are unequal ;
the crystal thus 'shows' two different indices

at the same time.

In order to observe one refractive index at a time, we must evidently

use polarized light light vibrating in one plane only and adjust its

plane of vibration to coincide with one of the planes of vibration in

the crystal itself. In the polarizing microscope, plane polarized light

is obtained by means of a Nicol prism placed between the light source

and the microscope slide ;
it is usually located immediately below the

condenser which concentrates light on the slide. The plane of vibration

can be adjusted with respect to the

crystal either by rotating the Nicol

prism or (on other types of micro-

scope) by rotating the microscope

slide; the two cross-wires in the

eyepiece indicate planes parallel

and perpendicular to the plane of

vibration of the light transmitted

by the polarizer.

If a crystal of monammonium

phosphate is immersed in a liquid of

refractive index 1-500, and observed in light vibrating along the four-

fold axis, the Becke line effect (Fig. 43 d, Plate II) shows that the index

of the crystal is lower than that of the liquid ;
if the polarizer is turned

through 90, the index of the crystal is seen to be higher than that of the

liquid.

If now we immerse the crystals in various liquids, and observe each

crystal in light vibrating parallel to its fourfold axis, we observe con-

sistent effects as in the case of isotropic solids in ordinary light, and we

find the refractive index is 1-479. Ifwe use light vibrating perpendicular

to the fourfold axis of the crystal, we again observe consistent effects

and this time find the refractive index to be 1-525. (Fig. 45 a and b).

That tetragonal crystals should have one refractive index for light

vibrating along the fourfold axis and a different index for vibration

directions perpendicular to this axis is only to be expected, since the

arrangement of atoms along the c axis (the fourfold axis) is different

from that along the a and b axes. The same is true for hexagonal and

trigonal crystals; the refractive index for light vibrating along the

t The plane of vibration is the plane containing the direction of propagation and the

direction of the electrical disturbances associated with the waves.

FIG. 45. Refractive indices of monammo-
nium phosphate, NH4H2PO 4 . Arrows

indicate vibration directions.
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unique sixfold or threefold axis is different from the index for light

vibrating in directions perpendicular to this axis. The only new and

perhaps unexpected phenomenon to be grasped is that the crystal

actually resolves the light into two components vibrating at right angles

to each other, and that the crystal therefore 'shows' two different

refractive indices simultaneously except when the incident light is

polarized and vibrates along one of the crystal's vibration directions.

Use of crossed Nicols. Extinction directions. Interference

colours. To set the polarizing NicoFs vibration plane parallel to one of

th6 crystal's vibration planes is simple for crystals such as those already

considered. But suppose we have crystals which are irregular fragments,

so that there are no edges to guide us*? The vibration planes of such

crystals are found by making use of a second Nicol prism, the 'analyser',

which is'jplaced somewhere between the crystal and the observer's eye ;

in the polarizing microscope it is located either in the tube of the micro-

scope or above the eyepiece. The vibration plane of the analyser is set

perpendicular to that of the polarizer, so that the light passed by the

polarizer, as long as it continues to vibrate in the plane imposed on it

by the polarizer, will be completely stopped by the analyser,f If we
look through the microscope with the Nicols 'crossed' in this way we
shall see a dark background. If the particles we are observing happen
to be isotropic we shall see nothing at all

;
but if, like monammonium

phosphate crystals, they are birefringent that is, have two different

refractive indices we shall see that most of the crystals are illuminated,

often with beautiful colours. Moreover, if we rotate the Nicols together

(keeping them exactly crossed all the time), or alternatively rotate the

microscope slide, we shall see that each crystal is 'extinguished' at a

certain position, only to reappear as the Nicols or the slide are rotated

further. It will be found that the extinction positions for any one

crystal are 90 apart ; extinction occurs four times during a complete
revolution.

The explanation of these phenomena is as follows. Suppose the

polarizer transmits light vibrating in the plane P (perpendicular to the

page), Fig. 46 a
;
when it gets to a crystal of monammonium phosphate

which happens to be lying in such a position that its vibration directions

are not parallel to either of the cross-wires (vibration directions of the

Nicols), it is resolved by the crystal into two components, vibrating in

t When light is resolved into a vibration plane which makes an angle with its original
vibration piano, the resolved part has an intensity equal (apart from absorption effects)

to a fraction cosa of the original intensity.
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the crystal's own vibration directions X and Z. When this light, which

now consists of the two components X and Z, passes through the

analyser, each component is again resolved by the analyser into its

own vibration direction A, so that the light emerges from the analyser

as a single component but now vibrating in plane A. In this position,

therefore, the crystal transmits light. But now consider Fig. 46 b in

which the crystal's vibration directions coincide with the vibration

directions of the Nicols. Light from the polarizer, vibrating in plane P,

on arriving at the crystal continues vibrating in plane P since this is

also the crystal's own vibration plane X ; the resolved part in plane Z is

zero. On arriving at the analyser, all the light is necessarily stopped,

(c)

Z

P

FIG. 46. Crystals of monammoniiirn phosphate between crossed Nicols.

since it is still vibrating in plane P and the analyser cannot transmit it,

the resolved part in the analyser's vibration plane A being zero. In this

position, therefore, the crystal is extinguished. The same thing occurs

when the fourfold axis of the crystal is parallel to A (Fig. 46 c), and this

position, 90 from the first-mentioned position, is thus also an extinction

position. At all intermediate positions the crystal will be illuminated,

the intensity of illumination being greatest at the 45 position.

Thus, extinction occurs when the vibration directions of the Nicols

coincide with those of the crystal.

This explains illumination and extinction
; but what of the colours ?

To understand the production of colours we must consider the relative

velocities of the two components X and Z in the crystal. We have

already seen that in a crystal ofmonammonium phosphate the refractive

index for component Z is greater than for component X ; this means

that light vibrating along Z travels through the crystal more slowly than

light vibrating along X, the ratio of the velocities being inversely

proportional to the ratio of the refractive indices. The frequency v of

any monochromatic component of the white light naturally remains

constant ; therefore, since vA = velocity, the wavelength A is smaller

for component Z than for component X. The two components start in
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phase with each other at the bottom of the crystal (Fig. 47), but when

they reach the top of the crystal it is likely that they are no longer

exactly in phase with each other. When they reach the analyser they
are resolved into the same plane of vibration and are able to interfere

with each other. Whether or not they entirely cancel each other out

depends on the difference of phase. Now, for a given thickness of a

INTENSITY

ZERO
INTENSITY

STRONG

TWO RAYS POLARIZED

AT RIGHT ANGLES

FIG. 47. Birefringent crystal between crossed Nicols, in 45 position.

particular crystal, only one particular wavelength of light will be

completely cut out by interference; for other wavelengths there will

be only a diminution of intensity. If the thickness of the crystal and

the values ofthe two refractive indices are such that blue light is entirely

cut out by interference, the colour we shall see will consist of the rest of

the spectrum a yellowish polour ; if red light is cut out, we shall see

a greenish colour, and so on. For increasing thicknesses of crystal the

colours given are in the order known as 'Newton's scale' ;
it is the same

order as that of the interference colours given by very thin films, such

as oil films on a wet road. The order can be studied on any birefringent

crystal of varying thickness, such as the pyramidal ends of the crystals



70 IDENTIFICATION
.

CHAP, in

of monainmonium phosphate ;
the colours appear as bands like contour

lines on the crystals. The colour produced is determined by the bire-

fringence of the crystal (the difference between the two refractive

indices) and its thickness.

To return to the extinction phenomenon. We now know how to set

the polarizer so that its vibration direction coincides with one of the

vibration directions of the crystal: we make use of the extinction

phenomenon in the following way. Keeping tlie polarizer always in the

illuminating beam, focus a particular crystal ; introduce the analyser

(crossed with respect to the polarizer) and rotate either the crystal or

the coupled pair of Nicols until extinction occurs ; then remove the

analyses and observe the Becked line effect. Reintroduce the analyser,

and turn either Nicols or crystal through 90 to the other extinction

position; after removing the analyser once again, observe the Becke

line effect for the second time. These observations reveal the relations

between the refractive indices of the crystal and that of the liquid.

Suppose one index of the crystal is lower and the other higher than that

of the liquid (Fig. 43 c, d, Plate II). Try liquids of lower index until

one is found whose index is equal to the lower of the two indices of the

crystals ; and subsequently, seek the higher of the two indices of the

crystals in a similar way.

Crystals which are all lying in the same position, such as monam-
monium phosphate crystals lying on their prism faces, give consistent

results when examined in this way ; but if these crystals are crushed to

provide irregular fragments capable of lying on the microscope slide in

any orientation, and these fragments are examined in the same way, it

will be found that although the upper index of each fragment is con-

stant and equal to 1-525, the lower index is different for each fragment,
and may have any value between 1'479 and 1-525. This brings us to a

general consideration of the refractive indices for all possible orienta-

tions with respect to the transmitted light.

The Indicatrix. Imagine a point within a crystal, and from this

point lines drawn outwards in all directions, the length of each line

being proportional to the refractive index for light vibrating along the

line. It is found that for all crystals the ends of these lines fall on

the surface of an ellipsoid, a solid figure all sections passing through
the centre of which are ellipses. This ellipsoidal three-dimensional

graph of refractive indices is called the 'indicatrix'. For monammonium

phosphate crystals and for all tetragonal, hexagonal, and trigonal

crystals the indicatrix is a special type of ellipsoid (Fig. 48) in which
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OPTIC

FIG. 48. Left: positive uniaxial indicatrix. Right: negative
uniaxial indicatrix.
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two of the principal axes are equal to each other and the third different

in length (it may be longer or shorter) ;
it is an 'ellipsoid of revolution*

obtained by rotating an ellipse round one of its principal axes in

the case of monammonium phosphate,

round the minor axis. The ellipsoid

thus has one circular section perpen-

dicular to the unique axis. The unique
axis of this ellipsoid of revolution

necessarily coincides with the unique

(fourfold, sixfold, or threefold) sym-

metry axis of the crystal.

The vibration directions and refrac-

tive indices of crystal fragments of

monammonium phosphate lying on a

microscope slide in any orientation are

given by the indicatrix in the following

way. A crystal fragment, oriented with

its unique axis at any angle 6 to the line

of vision, is mentally replaced by the

indicatrix (Fig. 49). Perpendicular to the

line of vision, imagine a section PQ passing through the centre of the

ellipsoid ; this section is an ellipse, and its principal axes (the maximum
and minimum radii of the ellipse) represent the vibration directions

and refractive indices of the crystal fragment. Now the maximum
radius OD of every such ellipse is also a radius o> of the one circular

FIG. 49. Uniaxial indicatrix-

general orientation.
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section of the indicatrix.f The minimum radius c' of the ellipse, how-

ever, varies with the angle 0. In general, the length e' lies between c

and a)
;
when 8 = 90, as it is for well-formed monammonium phosphate

crystals lying on their prism faces as in Fig. 45 a, c' is equal to c, the

unique axis of the indicatrix ; when = 0, as it is for crystals of this

substance standing on end as in Fig. 45 c, e is equal to to, the radius of

the one circular section. The observed refractive indices of crystal

fragments of monammonium phosphate are in line with this: every

fragment has an upper index equal to 1-525, but the lower index varies

in different fragments between 1-479 and 1-525.

The method of finding the principal refractive indices of such crystals

even when quite irregular is therefore simple : numerous fragments are

examined, each fragment being observed in its two extinction positions ;

the two principal refractive indices are the extreme upper and lower

values observed. The upper principal index is (for this particular sub-

stance) the easier to find because every fragment, however oriented,

gives this value as its upper index. The lower principal index is the

lowest of the lower values of all fragments.

When we are looking along the unique axis, both indices of the

crystal or fragment are equal to 1-525; the crystal will therefore not

show any interference colours when examined between crossed Nicols ;

it will appear to be isotropic. This direction of apparent isotropy is

called the optic axis ;
there is only one such direction in the crystals we

have hitherto dealt with tetragonal, hexagonal, and trigonal crystals

and such crystals are therefore described as optically uniaxial. The

optic axis necessarily coincides with the principal symmetry axis.

The principal refractive indices ofuniaxial crystals are usually symbol-
ized a) or nw for the more important of the two, the one which is con-

stant for all orientations, and e or n for the other one. When e is less

than co (as in monammonium phosphate) the crystal is described as

uniaxial negative ; when e is greater than o>, as in quartz, SiO2 (o>
=

1-544, c = 1-553), the crystal is described as uniaxial positive.

The method for the determination of the principal refractive indices

of irregular fragments has been described, not only because such

material may often be encountered in chemical work, but also for

another reason. Well-formed crystals of many uniaxial crystals are

of such a shape that, when lying on any one of their faces on a micro-

scope slide, they do not show both the principal indices. Rhombohedra

t Wire models will make this and other features of the optical indicatrix clearer than

plane diagrams can possibly do.
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or bipyramids, for instance, do not show c
; they necessarily show w as

one of their indices, but the other index lies between eo and c. In such

circumstances it is advisable to break the crystals so as to provide

irregular fragments, and to seek in the way already described.

Orthorhombic crystals. The symmetries of the orthorhombic

classes either three mutually perpendicular planes of symmetry, or

three mutually perpendicular twofold axes, or two perpendicular planes

intersecting in a twofold axis demand that the indicatrix, which is of

the most general type with all three principal axes of unequal length,

has these three axes parallel to the crystallographic axes. The inequality

c \1-S06

(a) (b)

MM f-506

(c)

FIG. 50. Refractive indices of sodium carbonate monohydrate,
Na2C0 3.H20.

of the refractive indices for light vibrating along the three crystallo-

graphic axes is a consequence of the fact that the arrangements of

atoms encountered along these axes are all different from each other.

Any one indicatrix axis may coincide with any crystallographic axis.

For well-formed crystals of suitable shape the three principal refrac-

tive indices can be found quite easily. Crystals of sodium carbonate

monohydrate (Fig. 50), which can be made by evaporating a solution

of sodium carbonate above 40 C., are suitable for demonstration

because they lie on a microscope slide either on their 001 faces or their

100 faces (Fig. 50 b and c). It will be found that the extinction directions

that is, the vibration directions are parallel and perpendicular to

the long edges of the crystals for both orientations ; crystals lying on

001 give refractive indices of 1-420 for light vibrating along the crystal

and 1-526 for light vibrating across the crystal ;
those lying on 100 give

1-420 for the vibration direction along the crystal and 1*506 for the

other vibration direction. If crystals standing on end can be found on

the microscope slide, they will give indices of 1-506 and 1-526 for the

vibration directions shown in Fig. 50. These three values 1-420, 1-506,
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and 1*526 are the principal refractive indices, and are symbolized a or

na for the lowest, j3 or np for the next, and y or n
y
for the highest.

Many orthorhombic crystals are of such a shape that, when lying on

one of their faces on a microscope slide, they do not show any of the

principal refractive indices. Such crystals may be broken to provide

fragments which lie in a variety of orientations. If fragments of crystals

of sodium carbonate monohydrate oriented in all possible ways are

examined, both indices of each fragment bfeing observed, it will be

found that the lower of the two indices may have any value between

a and j8, while the upper index lies

between J3 and y. The determina-

tion of a and y for identification

purposes is in principle quite

simple: a is the lowest index for

any vibration direction, and y is

the highest index for any vibration

direction.

To find the intermediate prin-

cipal index /J is less simple. One

method of finding it makes use of

the fact that in any ellipsoid having
three unequal axes there are two

circular sections. Thus, referring

to Fig. 51, there is, somewhere be-

tween a and y on the surface of the ellipsoid, a point j8' such that

0j8'
=

Of}, and the section passing through this point and the centre of

the ellipsoid is evidently a circle. Further, there is another point /J"

for which 0/J" is equal to 0$, and /?/?" is therefore another circular

section. This means that crystals seen along either of the two directions

OP and OQ which are perpendicular to these circular sections (directions

known as 'optic axes') have one refractive index only and will appear

isotropic. Moreover, this one refractive index is equal to j8. Therefore,

to find
)3, search for fragments which appear isotropic or nearly so

(giving very low order interference colours) ;
these fragments give /J or

values very near it.

It is not always easy to find crystals or fragments oriented so that

one is looking along an optic axis; hence it is necessary to mention

another method of finding j8. This method depends on the fact that no

crystal, whatever its orientation, can give two refractive indices above

j8 or two refractive indices below
/J. One index must be between a and j8

FIG. 51. Biaxial indicatrix.
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(for particular orientations it may be equal to a or /?), and the other

must be between /? and y (for particular orientations it may be equal to

/?
or y). Therefore, to find /3 we observe upper and lower values for

numerous fragments, and ft is the highest of the lower values or the

lowest of the higher values.

To sum up, the method of determining the three refractive indices of

an orthorhombic crystal is to observe the upper and lower indices (for

the two extinction directions) of numerous fragments, a is the lowest

of the lower values, y the highest of the higher values, while jS is the

highest of the lower values or the lowest of the higher values. If we
find fragments oriented so that we are looking along an optic axis,

upper and lower values are both equal to /?.

Since orthorhombic crystals have two optic axes (that is, two direc-

tions of apparent isotropy), they are termed optically biaxial. The

angle between the optic axes is known as the optic axial angle. The
three principal axes of the indicatrix are known as the acute bisectrix

(of the optic axes), the obtuse bisectrix, and the third mean line. The
last-mentioned the third mean line is in all cases the vibration

direction of p. The acute bisectrix is either the vibration direction of

y in which case the costal is known as biaxial positive or else it is

the vibration direction of a, in which case the crystal is known as bi-

axial negative. Note that this nomenclature conforms with that of

uniaxial crystals. If we regard a uniaxial crystal as having an optic

axial angle of 0, we may say that both optic axes coincide with the

acute bisectrix. This unique direction is the vibration direction of e,

and when this is the highest index (corresponding to y for a biaxial

crystal), the crystal is known as a uniaxial positive crystal. For weakly
or moderately birefringent biaxial crystals it is nearly correct to say
that a positive crystal has /? nearer to a than to y, while a negative

crystal has /? nearer to y than to a. But for strongly birefringent

crystals (y a > 0-1) the dividing line between positive and negative

crystals (where the optic axial angle is 90) occurs when j3 is appreciably
different from J(a+y).
Monoclinic and triclinic crystals. The indicatrix for monoclinic

and triclinic crystals is of the same type as that for orthorhombic

crystals an ellipsoid with all its three principal axes unequal in length.

(This is the least symmetrical type of ellipsoid, so that any diminution

of crystal symmetry below orthorhombic cannot alter the form of the

ellipsoid.) The measurement of the three principal refractive indices of

a monoclinic or triclinic crystal is therefore carried out in the manner
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described for orthorhombic crystals, random orientation being assured

by crushing the crystals if necessary.

The orientation of the indicatrix with respect to the unit cell axes,

however, obviously cannot be the same as for orthorhombic crystals,

since the unit cell axes in monoclinic and triclinic crystals are .not all

at right angles to each other.

In monoclinic crystals the 6 axis is either an axis oftwofold symmetry
or is normal to a plane ofsymmetry (or both) ; {herefore, since the orienta-

tion of the indicatrix must conform

to the crystal symmetry, one axis

of the indicatrix (it may be either

a, j8, or y) must coincide with the 6

axis of the unit cell. This is the only
restriction on indicatrix orienta-

tion; its other two axes must ob-

viously lie in the plane normal to

b the ac plane, but they may be

in any position in this plane, though
of course remaining at right angles

to each other. This is illustrated in

Fig. 52, which shows a gypsum

crystal lying on its 010 face, the b

axis being normal to the paper. The

vibration direction of /? happens to

be the one which coincides with the

b axis, hence a and y lie in the ac plane, and it is found that the vibration

direction of a makes an angle of 37 with the c axis. Ifgypsum crystals

are examined under the microscope, it will be found that the extinction

directions are inclined to the crystal edges, and refractive index a (1-520)

is shown when the vibration direction of the light from the polarizer

makes an angle of 37 with the long edge of the crystal. If these

crystals can be observed edgewise (in a crowd of crystals, especially

when immersed in a viscous medium, some may be found suitably

oriented) it can be seen (Fig. 52, right) that the extinction directions

are parallel and perpendicular to the long edges of the crystal, and that

refractive index /? (1-523) is shown when the vibration direction of the

light is perpendicular to the long edges, that is, along the 6 axis
; for

the vibration direction parallel to the long edges the index lies between

a and y, its value being given by the length OZ.

One consequence of the freedom of position of the indicatrix in the

FIG. 52. Orientation of indicatrix in

gypsum crystal. (The differences between
the refractive indices for example, the

lengths Ooc and Oy are greatly ex-

aggerated.)
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ac plane is that the extinction position need not be the same for all

wavelengths of light ; its position for red light may be, and often is,

appreciably different from that for blue light ; consequently some mono-

clinic crystals, when lying on the microscope slide on their 010 faces,

do not show complete extinction at any position of the crossed Nicols ;

the illumination passes through a minimum on rotation of the Nicols,

and in the region of the minimum, abnormal interference colours may
be seen, reddish for one setting of the Nicols (where blue light is

extinguished) and bluish when the Niools are turned a degree or two

(when red light is extinguished). This occurs in crystals of sodium

thiosulphate pentahydrate, Na2S 2O3 .5H2O, and sodium carbonate

decahydrate, Na2C03 .10H20. This phenomenon does not occur in

orthorhombic crystals lying on faces parallel to crystallographic axes,f

since the indicatrix axes are fixed by symmetry along the crystal axes

and are therefore unable to vary in position with the wavelength of

light. Nor does it occur for monoclinic crystals lying on any face

parallel to 6, since one ellipsoid axis is fixed by symmetry along 6.

In triclinic crystals there are no restrictions at all on the position

ofthe indicatrix with respect to the crystal axes. No axis of the ellipsoid

need coincide with any one of the crystal axes. Consequently the

position of the ellipsoid may vary with the light wavelength for all

crystal orientations ; incomplete extinction with abnormal interference

colours at the position of minimum illumination may therefore be seen

for any crystal orientation.

Use of convergent light. The phenomena so far described are those

which are seen when approximately parallel light is used. For any

particular crystal orientation they give information about the proper-

ties of the crystal for one particular direction of propagation of light

(the line of vision). If strongly convergent light (given by a high power

condenser) is used, phenomena can be seen which give information

about a wide range of directions of propagation of light : in fact, in

some circumstances, the phenomena show at a glance whether a crystal

is uniaxial or biaxial, and if it is biaxial, they indicate the magnitude
of the optic axial angle.

A bundle of parallel rays which all take the same direction through
the crystal and then pass through the objective lens of the microscope
are necessarily brought to a focus at a point a little above the objective

(in the focal plane of the objective, the plane in which the image of a

t Orthorhombic crystals lying on hkl faces such as (111) may, however, show this

phenomenon.
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distant object would be produced) ;
all the rays taking another direction

through the crystal are focused at a different point in the same plane.

Consequently, if we look at the optical effects in this plane we shall see

a pattern which represents the variation of optical properties over the

range of directions taken by the objective lens. When the crystal is

between crossed Nicols the pattern of colours indicates the variation of

birefringence with direction in the crystal.

This pattern, known as the 'interference figure', 'directions image', or

'optic picture', may be seen by removing the eyepiece of the micro-

scope and looking straight down the tube ; it appears to be just above

the objective lens. If the microscope is fitted with a Bertrand lens a

special auxiliary lens which can be inserted in the tube it is not

necessary to remove the eyepiece. For the observation of small crystals

a Bertrand lens with a small diaphragm, located just below the eye-

piece, is most suitable, as it picks out the directions image produced by
a small crystal which occupies only a small fraction of the field of view.

The objective lens used should have a high numerical aperture, so that

it takes in a wide angular range of directions ;
a 6- or 4-mru. lens of

numerical aperture 0-7-0-8 is suitable. The crystals are preferably

immersed in a liquid whose refractive index is not far from /? or to.

A uniaxial crystal with its optic axis along the line of vision gives a

directions image consisting ofa black cross with concentric coloured rings

(Fig. 53 a, left). The centre of the figure is dark because it represents

the direction of the optic axis a direction of apparent isotropy. The

arms of the black cross represent the vibration directions of the crossed

Nicol prisms, while the rings show interference colours whose order

(see p. 81) increases with their radius, owing to the rising birefringence

of the crystal for directions increasingly inclined to the optic axis.

Suitable crystals for demonstrating this type of figure are the hexagonal

plates of cadmium iodide, CdI2 ,
which lie correctly oriented on the

microscope slide. Crystals lying so that the optic axis is a little inclined

to the line of vision give a directions image displaced from the centre

of the eyepiece field.

Biaxial crystals under similar optical conditions produce directions

images like that shown in Fig. 53 6, when the acute bisectrix of the

optic axes lies along the line of vision and the vibration directions of

the crossed Nicols are at 45 to the extinction directions. There are

black hyperbolae and coloured lemniscate rings. A sheet of muscovite

mica is a suitable specimen for demonstration. The distance between

the black hyperbolae is a measure of the optic axial angle. If various
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crystals of known optic axial angle are observed, and the distances

between the black hyperbolae are measured by means of a micrometer

eyepiece, a calibration can be made so that the optic axial angle of any

FIG. 63. 'Directions images
1

or 'optic pictures*, a. Uniaxial crystal with optic axis

parallel (loft) and slightly inclined (right) to line of vision. 6. Biaxial crystal with acute

bisectrix parallel (left) and inclined (right) to line of vision.

AIR

IMMERSION \ /
MEDIUM

CRYSTAL* 2V l
//t\\

LIGHT

Fia. 54. Optic axial angle in crystal (2V) and in air (2J57).

crystal can subsequently be determined. The angle thus measured is

the angle the optic axial directions make with each other on emerging

from the crystal into air (Fig. 54) ; this angle 2E is related to the true

optic axial angle 2V by the expression sinjE? = jSsinF.
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The optic axial angle 2
t
V is related to the three principal refractive

indices by the expression

tanF =

If three of these quantities are known, the fourth can *be calculated.

Thus, when it is possible to measure all three principal refractive

indices, the measurement of the optic axial angle is, strictly speaking,

superfluous. But in some cases it may be possible to measure only two

of the principal refractive indices. For instance, some organic crystals

have y higher than any available immersion liquid. In such circum-

stances a measurement of the optic axial angle gives the necessary in-

formation for calculating the third index ; this measurement of the optic

axial angle must include the determination not only of its magnitude but

also of its sign. The distinction between positive and negative crystals

can be made by the use of the quartz wedge ; this forms the subject of

the next section.

Use of the quartz wedge. When needle crystals of a uniaxial sab-

stance such as urea (tetragonal uniaxial positive) are being examined

between crossed Nicols, it may be seen that when one crystal lies across

another of similar thickness, and at right angles to it, the apparent

birefringence (as shown by the interference colour) at the point where

they cross is very low or actually zero. The effect is seen perhaps most

conveniently by examining thin threads of fibres such as rayon or

nylon which behave optically like uniaxial crystals ;
in a yarn of such

materials the threads are of uniform diameter, and where they cross

each other at right angles, the apparent birefringence is zero. But if

one thread lies on another parallel to it, the interference colour is of

much higher order than that given by a single thread. The interference

effects are thus subtractive when the threads or crystals are at right

angles to each other, and additive when they are parallel. This is

because crystal 1 (Fig. 55 a) retards waves vibrating along A relative

to those along J2; but subsequently, when the waves go through

crystal 2, the waves vibrating along B are retarded relative to those

along A, thus neutralizing or compensating the effect of crystal 1, so

that no interference colours are shown for the crossed position. Con-

versely, if the crystals are parallel, the retardation effects are additive

and a higher order interference colour is produced.
This effect can be used for finding which vibration direction gives

the higher index for any birefringent crystal. It is most convenient to

use the quartz wedge, a thin slice of quartz with its length parallel to



CFAP. Ill OPTICAL PROPERTIES 81

the hexagonal axis of the crystal (the vibration direction which has

the higher index) and uniformly tapering in thickness.f If it is pushed
into the polarizing microscope at 45 to the vibration directions of the

Nicols (a slot is provided for the purpose), the interference colours of

Newton's scale can be seen grey near the thinnest part of the wedge,
and passing through near-white, brownish-yellow, red, and violet of the

first order, then peacock blue, yellowish-green, yellow, magenta, and

violet of the second order, then emerald green, yellowish, and pink of

the third order, and thence through alternating, progressively paler

Fio. 55. a. Two urea crystals of the same tliickness, crossed at right angles. At the
centre overlapping portion the combination appears isotropic. 6. Effect of quartz
wedge on crystal of NH4H2T?O4 . As the wedge advances, the colour contours move

towards the thicker part of the crystal.

shades of green and pink of the higher orders. If a crystal of mpnam-
monium phosphate is examined, and the quartz wedge pushed in parallel

to the fourfold axis (Fig 55 6), it can be seen that the interference

colours decrease in order as an increasing thickness of quartz overlaps
the crystal. This shows at once that the optical characlsr of this crystal

is opposite to that of quartz the waves vibrating along the crystal

have the lower refractive index. Perhaps the best method of observa-

tion is to watch the colour contours on the pyramidal ends of the

crystal ; these contours retreat towards the thicker part of the crystal

as the quartz wedge advances and neutralizes the retardation. The
effect may be checked by pushing the wedge in at right angles to the

fourfold axis of the crystal; the birefringence effects are now additive,

t This is the commonest type. But quartz wedges having the opposite orientation

(with the vibration direction for the lower index parallel to the length of the wedge)
are also made. The phenomena they give are naturally opposite to those described.

4468



82 IDENTIFICATION . CHAP, in

and the colour contours move towards the pointed ends of the crystal

as the quartz wedge advances.

The distinction between the vibration directions of higher and lower

refractive indices can always be made in this way for crystals having
inclined extinction no less than for those with parallel extinction. When
refractive indices are measured by the methods already given, the use

of the quartz wedge is hardly necessary (unless for confirmation of

FIG. 56. Effect of quartz wodge on 'directions images', a. Uniaxial positive
6. Uniaxial negative, c. Biaxial positive, d. Biaxial negative.

conclusions already reached) ; but in other circumstances (for instance,

when crystals are being examined in their mother liquor), quartz wedge
observations are useful clues to optical character.

The quartz wedge may be used in a quantitative manner for finding

the magnitude of birefringence of a crystal, that is, the difference

between the two refractive indices the crystal is showing. For this

purpose it is necessary to know the thickness of the crystal. The quartz

wedge is pushed in until the birefringence of the crystal is just neutral-

ized ; the interference colour given by the wedge alone at this point is

noted, and the corresponding retardation can then be read off on a chart

like that given by Winchell (1931). The relation between the retardation

of one wave behind the other (R), the birefringence ()>' a'), and the

thickness t is (y'~~ ')
= -R- Such measurements can be done more



CHAP, in OPTICAL PROPERTIES 83

conveniently by means of the Babinet compensator, in which two

quartz wedges slide over each other in response to the turn of a screw

(Tutton, 1922). Such methods are useful when it is difficult or impos-
sible to measure individual refractive indices by the immersion method ;

for instance, the birefringence of stretched sheets of rubber has been

measured in this way (Treloar, 1941),

The optic sign of a crystal can be discovered by observing the effect

of the quartz wedge on the interference figure. For a uniaxial positive

crystal the vibration directions of higher index lie along the radii of the

coloured circles (Fig. 56 a). Consequently, when the quartz wedge
moves across the figure, additive effects occur along the radii parallel

to the wedge (since the direction of higher index for the wedge is along

its length), and subtractive effects along the radii perpendicular to the

wedge ;
the coloured circles therefore move inwards along radii parallel

to the wedge and outwards along radii perpendicular to the wedge.
The converse is true for uniaxia] negative crystals. Similar effects for

biaxial crystals are illustrated in Fig. 56 6.

Such observations may be useful in those cases when complete
refractive index measurements by the methods already described are

not possible ;
for instance, when the maximum refractive index of an

organic crystal is too high to be matched by any available liquid.

Dispersion. The principal refractive indices of a crystal vary in

magnitude with the frequency of light ;
and in crystals of monoclinic or

triclinic symmetry, the vibration directions of the principal indices may
vary with frequency. Such variation is known as dispersion.

The indicatrix for a cubic crystal is a sphere; the only variation

which can occur is a change in the size of the sphere with the frequency
of light. The colour fringes often seen round the edges of a crystal when
it is immersed in a liquid of nearly the same refractive index are due

to a difference between the dispersion of the crystal and that of the

liquid.

For uniaxial crystals (those of tetragonal, trigonal, and hexagonal

symmetry) the indicatrix is an ellipsoid of revolution, the orientation

of which is fixed by symmetry (see earlier section). But the magnitudes
of a) and . may vary with frequency in different degrees, so that the

birefringence varies with wave-length. This is not likely to give rise to

noticeable phenomena under the microscope unless the birefringence is

very low, when abnormal interference colours may be seen when the

crystals are observed between crossed Nicols in parallel light. For

instance, the mineral rinneite, FeCl2 . SKCl.NaCl, is practically isotropic



84 IDENTIFICATION CHAP. Ill

for yellow light, but appreciably birefringent for blue light ; fragments
of suitable thickness do not show first order yellow, but a bluish

tinge. In benzil, C6H5 .CO.CO.C6H5 , the changes of co and e with

frequency are such that it is positive for most of the visible spectrum,

isotropic in the violet, and negative for the far violet end ofthe spectrum

(Bryant, 1943).

In orthorhombic crystals the vibration directions of the three

principal indices are fixed by symmetry, but their magnitudes may
vary independently, and this may lead to appreciable variation of

FIG. 57. Dispersion of optic axes in orthorhombic crystals, a. p > v.

b-d. Crossed axial plane dispersion.

optic axial angle with frequency. This effect modifies the appearance
of the directions image produced in convergent light. The acute

bisectrix of the optic axes (to which the centre of the directions image

corresponds) is fixed by symmetry along one of the crystal axes, and

the plane of the optic axes (the ay plane of the indicatrix) is one of the

faces of the unit cell. Consequently the two planes of symmetry of

the directions image are fixed in the same positions for all frequencies.

Therefore the hyperbolae which indicate the positions of the optic axes

may move towards or away from each other with change of frequency,
but always symmetrically with respect to the fixed lines AB and CD in

Fig. 57 a. For small dispersions the directions image produced by white

light will show a red fringe on one side of the hyperbola (where blue

light is missing) and a blue fringe on the other side (where red light is

missing), both hyperbolae being the same. When the red fringes are

on the side nearer to the acute bisectrix, as in the diagram, the optic

axial angle for blue light is evidently smaller than for red light. The
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usual symbol for recording this condition is p > v. In extreme cases,

as in brookite (the orthorhombic form of titanium dioxide, Ti02 ), the

optic axial angle narrows to zero and then opens out again in a plane

at right angles to the first, as the frequency of the light is changed

(see Fig. 57 b-d). This means that the refractive index for vibration

direction CD, which for red light is
, approaches that for the vibration

direction AB (a for a positive crystal), becomes equal to it for green light

(so that the crystal is fortuitously uniaxial), and falls below it for blue

light, so that the index for vibration direction CD is now called a, while

that for AB is called
j8.

The white light directions image in such

circumstances is very abnormal ; to elucidate the relation between optic

axial angle and frequency, it is necessary to make observations in

monochromatic light of variable frequency. (See Bryant, 1941.)

In monocliiiic crystals the indicatrix may not only change its dimen-

sions, butmay rotate round whichever axis coincides with the 6 crystallo-

graphic axis ; and in triclinic crystals it may rotate in any direction

whatever, with change of frequency. These movements may give rise

to less symmetrical types of dispersion of the optic axes, though it is

only rarely that the magnitude of the effect is great enough to render

the phenomenon a useful criterion for identification. These types of

dispersion will therefore not be described in detail ; it will merely be

observed that the type of dispersion is conditioned by the symmetry
of the crystal, and that when appreciable dispersion occurs, the

symmetry of the polychromatic directions image, or the movement of

the monochromatic figure as the frequency is changed, is a reliable

indication of maximum crystal symmetry. A polychromatic figure

which has only a centre of symmetry, or is symmetrical about only
one line, can only be produced by a crystal having monoclinic or

triclinic symmetry ; a figure having no symmetry can only be produced

by a triclinic crystal. For further information, see Miers (1929) and

Hartshorne and Stuart (1934).

Pleochroism. When crystals absorb light the positions of the

absorption bands and their intensities are likely to vary with the

vibration direction of the light, and therefore, when the absorption

bands are in the visible region, the colour shown is likely to depend on

the vibration direction of the light. All coloured anisotropic crystals

that is, all coloured crystals except those belonging to the cubic system
are likely to show, in polarized light, colours which vary as the

polarizer is rotated. This will be noticed when the refractive indices of

coloured crystals are being measured. Thus, when crystals of potassium
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ferricyanide K3Fe(CN)6 are examined in polarized light, rotation of the

polarizer causes the colour of some of the crystals to change from

yellow to orange-red; crystals 'showing* the refractive index a are

yellow, while those 'showing' y are orange-red. Such crystals are

said to be 'pleochroic'. These absorption effects, which are shown

when only the polarizer of the microscope is in use, should not be

confused with the interference colours produced when crossed Nicols

are in use.

The three-dimensional graph showing the variation in the absorption

of any frequency with crystal direction is, like that of the refractive

indices, an ellipsoid. Cubic crystals necessarily have the same absorp-

tion for all vibration directions, just as they have a constant refractive

index. For optically uniaxial crystals (those belonging to the tetragonal,

hexagonal, and trigonal systems) the absorption for the co vibration

direction may be different from the absorption for the e vibration

direction different in respect of both the proportion of light absorbed

and the wave-length ranges ofthe absorption bands ; and when an index

between CD and c is shown, the absorption is intermediate. (Strictly

speaking, the phenomenon in uniaxial crystals should be termed

dichroism, since there are only two different absorptions.) For biaxial

crystals, a, /?, and y may all show different colours. Thus in crystals of

Fe3(P04 )2 . 8H2 (the mineral vivianite) a is cobalt blue, j3 is nearly

colourless, while y shows a pale olive-green colour (Larsen and Berman,

1934).

The observation of the colour and the degree of absorption associated

with each index is of obvious value for identification purposes ;
the

larger the number of characteristics observed, the more certain the

identification. Observations ofpleochroism may also be useful as indica-

tions of certain features of molecular structure. (See Chapter VIII.)

Very strongly pleochroic crystals, which absorb almost completely

for one vibration direction and hardly at all for another, can be used as

polarizers. Tourmaline, a complex aluminosilicate mineral of trigonal

symmetry, has a very low absorption for light of all colours vibrating

along the trigonal axis, and a very high absorption for vibration direc-

tions perpendicular to this axis ; when unpolarized light passes through
the crystal, it is resolved in the usual way into two components vibrat-

ing parallel and perpendicular to the threefold axis ;
but the component

vibrating perpendicular to this axis is almost completely absorbed by
even very thin crystals, while the other component is transmitted with

little loss of intensity ; consequently the light which emerges from the
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crystal is practically completely plane polarized. The polarizing sheets

known as 'Polaroid* have similar characteristics ;
each sheet consists, not

of a single crystal, but of a large number of submicroscopic crystals, all

oriented parallel to each other and embedded in a suitable medium.

The first crystal used for this purpose was 'herapathite', strychnine

sulphate periodide ; some other substances of this type (periodides) have

similar properties.

Rotation of the plane of polarization. When plane polarized light

passes through crystals belonging to certain classes, the plane of polari-

zation may be rotated. The phenomenon is readily observed only in

cubic crystals and in birefringent crystals seen along an optic axis;

these, when examined between crossed Jficols, using parallel white light,

do not appear dark (as they would ifno rotation occurred), but coloured
;

and when the crossed Nicols are rotated, no extinction occurs, the

intensity and colour of the light remaining constant. Light is trans-

mitted because the plane of vibration of the light from the polarizer is

rotated by the crystal, so that it is no longer extinguished by the

analyser ;
and the reason for the colour is that the amount of rotation

usually varies considerably with the wave-length of the light, and con-

sequently the proportion of light passed by the analyser (resolved into

its own plane of vibration), is different for each wave-length, the net

transmitted light being therefore coloured. The rotation is usually

greatest for the blue end of the spectrum ; consequently for thin crystals

in which the amount of rotation is much less than 90 for all wave-

lengths, the light which passes the analyser is predominantly blue.

Thus, for microscopic crystals, rotation of the plane of polarization is

indicated by the appearance of a bluish light which does not extinguish

as the crossed Nicols are rotated, but remains of constant colour and

intensity. As a check, the analyser should be rotated so that it is no

longer exactly crossed with the polarizer; the colour should change,
and the sequence of changes shows the sense of rotation of the plane
of polarization ;

if the analyser is rotated clockwise, a change of colour

in the order blue, violet, yellow shows that the crystal is rotating to

the right (clockwise).

If monochromatic light is used, Nicols exactly crossed will trans-

mit some if it, but by rotating the analyser extinction can be

achieved.

Rotation of the plane of polarization naturally modifies directions

images. When rotation occurs in a uniaxial crystal the black arms of

the directions image fade towards the centre, and the centre itself is
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coloured, not black ; and if rotation occurs along the optic axial direc-

tions of a biaxial crystal the image will show coloured 'eyes', the black

hyperbolae being interrupted at these points.

Such evidence ofrotation ofthe plane ofpolarization is not likely to be

detected in microscopic crystals unless the specific rotation is exception-

ally large. The phenomena mentioned above are usually exhibited only

by crystals at least several millimetres thick. Suitable subjects for

observation are sodium chlorate (cubic), quartz (trigonal, uniaxial), and

cane sugar (monoclinic, biaxial).

The crystal classes which may rotate the plane of polarization of light

are, first of all, the enantiomorphous classes those which lack planes

ofsymmetry, inversion axes, and a centre ofsymmetry. But in addition

to these, one crystal belonging to class m (that is, having a plane of

symmetry, but no centre of symmetry) is known to exhibit the pheno-
menon (Sommerfeldt, 1908) ; and therefore presumably some others

possessing planes but no centre of symmetry may do the same. To a

chemist, familiar with the conditions necessary for rotation of the plane

of polarization by dissolved molecules (that is, absence of both planes

and a centre of symmetry in the molecular geometry), this may appear

surprising ; but the surprise disappears when it is realized that the two

situations on the one hand, a mass of randomly oriented molecules,

and on the other, a single crystal composed of precisely oriented

molecules are not comparable. Reconciliation of ideas is effected by
the following considerations. A crystal or a single molecule having a

plane of symmetry but no centre of symmetry can rotate the plane of

polarization, but the rotation varies with the direction in which the

light travels, arid if there is left-handed rotation along any selected

direction on one side of the plane of symmetry, there must be, along
the mirror-image direction on the other side of the plane of symmetry,

right-handed rotation of the same magnitude. Therefore in a mass of

randomly oriented molecules (or crystals) some will rotate in one

direction and others (differently oriented) in the opposite direction, the

net rotation being exactly zero. Thus it is not true to say that a single

molecule or a single crystal having a plane of symmetry cannot rotate

the plane ofpolarization of light ; provided it has no centre ofsymmetry,
it can and does cause rotation for light travelling in any direction

except those parallel and perpendicular to the plane of symmetry ;
it is

the mass of randomly oriented molecules in a liquid or solution which

fails to show any net rotation.

For a fuller discussion of the phenomenon, and a list of the crystal
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classes which (according to current theories) may exhibit it, see

Wooster, 1938.

Optical properties of twinned crystals. Each individual in a twin

exhibits its own optical characteristics. If a gypsuin twin is seen along

its b axis and examined between crossed Nicols, it can be seen that each

individual extinguishes independently. The twin plane (100) is a plane

of symmetry of the composite whole, and the vibration directions of the

two individuals, like all the other properties, are related to each other

by this plane of symmetry (see Fig. 58 a).

FIG. 58. Optical properties of twinned crystals, a. Gypsum, b. Calcium

sulphate subhydrate. Note orientations of 'directions images' in the three

sectors.

The relations between the optical properties of the two individuals

are clear in the case ofgypsum because the crystals lie on the microscope
slide on their (010) faces, so that the (100) twin planes are parallel to

the line of vision. In some crystals the twin planes are inclined to the

line of vision when the crystals are lying on their principal faces so that

one is looking through two crystals in which the vibration directions are

not parallel to each other. In these circumstances, in the overlapping

regions extinction does not occur when the Nicols are rotated. When
observations are being made for refractive index determination it is

necessary to confine the observations to those portions of crystals which

are not overlapped by other individuals.

Observations of crystals between crossed Nicols are particularly

valuable in the case of some of those twin combinations which in their

external shape simulate a single crystal having a symmetry higher than

that of one of the individuals. The observation of different extinction

directions in different regions demonstrates at once that the crystal is

not a single individual but a twinned combination. The hexagonal

prisms ofammonium sulphate mentioned on p. 58 are in this way shown
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to be mimetic triplets, since adjacent sectors extinguish at 60 to each

other. Similarly crystals of calcium sulphate subhydrate grown in nitric

acid solution are hexagonal<plates, which, however, are not single crystals

but triplets (Fig. 58 b): three sectors have extinction directions at 120

to each other, and, moreover, biaxial directions images at 120 to each

other can be seen by examining each sector in turn.



IV

IDENTIFICATION OF TRANSPARENT CRYSTALS UNDER
THE MICROSCOPE

IN this chapter the sequence of observations followed in the microscopic
method of identification is outlined. The immersion method for the

identification of small separate crystals forms the main subject of this

chapter, though some remarks on methods for large aggregates will be

found at the end. When the immersion method is to be used aggregates

may be crushed or ground carefully.

A preliminary observation is made in ordinary transmitted light to

see whether the solid is transparent or not. It must be remembered

that the amount of light transmitted is greatest when the solid is

immersed in a medium of similar refractive index ; transparent solids of

very high refractive index, in air or in a liquid of low index, may appear

opaque, especially if they are aggregates of small particles, on account

of the total internal reflection of light at inclined surfaces. Therefore,

if the particles appear opaque when immersed in a liquid of refractive

index 1-4-1 -5, a liquid of much higher index say 1-71 '8 should be

tried. (The polarizer of the microscope, though not necessary for this

observation, may be left in position ; in fact, it is hardly ever necessary
to remove it.)

Ingeneral chemical work the greatmajority ofsubstances encountered ,

when in the form of small microscopic particles, are likely to be in koine

degree transparent, and can therefore be studied by methods employ-

ing transmitted light. For completely opaque particles it must be

admitted that the chances of identification by any microscopic method
are rather small, unless well-formed crystals large enough to be handled

individually are available: such crystals may be mounted on a micro-

scope stage goniometer, and if sufficient angular measurements can be

obtained it may be possible to use Barker's morphological method of

identification (1930).

For opaque crystals too small to be handled individually, only general
observations of shape can be made, and for this purpose it is best to use

diffused light illuminating the crystals from above on one side of the

microscope. Such observations will not carry us very far we may be

able to recognize cubes or octahedra or hexagonal prisms or other shapes,
but in the absence of angular measurements or indeed measurements of

any characteristics at all, identification in the strict sense of the word is
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scarcely possible. In case any readers happen to be metallurgists, I

hasten to add that experience in dealing with a particular system (in

the phase rule sense of the word) may show that certain characteristic

shapes or formations recognizable by simple observation are indicative

of the presence of certain phases. In metallurgy the body of experience

built up by a large number of observations of polished and subsequently

etched surfaces of metal specimens is used with great effect in 'spotting*

particular constituents. Metallurgical text-books, such as Rosenhain's

Introduction to Physical Metallurgy (1935), should be consulted for

further information on this highly specialized branch of crystallography.

Similar methods may be used, and often are used, for non-metallic

systems, once the necessary experience has been gained. But experience

obviously has to be built up for every different system individually ;

if a new constituent is added, the picture may be entirely changed,

because new phases may be formed or familiar phases may grow in

unfamiliar shapes and will have to be identified by methods of general

validity before the necessary experience for specialized inspection-

methods can be built up. It is with the methods of general validity that

we are concerned in this book.

When a solid substance is seen to be transparent the next step is to

observe whether it is isotropic or not. The analyser is introduced (crossed

with respect to the polarizer), and the Nicols (or alternatively the parti-

cles) are rotated. If the particles remain dark for all positions of the

crossed Nicols they are isotropic, and their refractive index can be

measured by the method described at the beginning of the previous

chapter. Note at this point that crystals belonging to the optically

uniaxial systems which happen to grow as thin plates (of tetragonal,

hexagonal, or trigonal outline) tend to lie flat on the microscope slide,

and in this position their optic axes lie along the line of vision and the

crystals therefore appear isotropic. If, however, the iris diaphragm of

the substage condenser is opened to give strongly convergent light, such

crystals will show interference colours, thus betraying their birefringent

character ;
and an observation of the 'directions image* will confirm that

they are uniaxial. In any case, it is unlikely that all the crystals will

be lying flat
; in a crowd of crystals some will almost certainly be tilted

or even standing on edge, and in parallel light these will show inter-

ference colours, revealing their birefringent character. In case of doubt

the crystals may be deliberately tilted. If a 'universal stage* is available

the microscope slide may be readily tilted in any direction. If not, the

crystals should be immersed in a viscous liquid such as glycerol or
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dibutyl phthalate ;
if the microscope is tilted so that its stage is not

horizontal, or in any case if the cover-glass is disturbed, the liquid will

flow slowly and the crystals wiU turn over ; observation between crossed

Nicols while the crystals are moving will show whether they are bire-

fringent or not. (This is also a useful way of studying the shapes of

microscopic crystals, the analyser being removed for this purpose.)

Cubic crystals and amorphous substances. Isotropic solids,

if they are truly isotropic (not merely aggregates of very small bire-

fringent crystals too small to shov/ interference colours), are either

crystals belonging to the cubic system or amorphous substances like

glasses or gels in which there is no regular arrangement of atoms.

Crystalline substances are likely to showeome signs of regular structure ;

if they are well formed and their shape is obvious, isotropic crystals

should have a shape consistent with cubic symmetry. (See Fig. 38.)

Even broken fragments of crystals are likely to show occasional edges,

corners, or cleavage surfaces suggesting the original shape. Substances

such as ammonium chloride and bromide which grow in skeletal forms

often have rounded surfaces, but the occurrence of fragments branch-

ing at right angles does give an indication of an ordered internal

structure.

The magnitude of the refractive index of an isotropic crystal usually

leads to unequivocal identification. In the tables published by Winchell

(1931) for inorganic laboratory products and Larsen and Berman (1934)

for minerals, crystals are arranged in order of their principal refractive

index, and it is therefore a straightforward matter to find which crystal

has the refractive index which has been measured. It may happen that

the measured value does not correspond with any in the lists ; in this

case, there are two possibilities. One is that the substance is a mixed

crystal or crystalline solid solution, the refractive index of which varies

continuously with the composition (the tables mentioned indicate the

known variations) ;
a hint of such variation is often given by the sample

itself some crystals may have a slightly higher index than others.

The second possibility is that the substance is one whose refractive index

has not previously been measured, in which case it obviously cannot be

identified by this method.

Glasses may reveal their nature by exhibiting conchoidal fractures.

The composition of a one- or two-component glass may be deduced

from its refractive index if the system has previously been studied ;

the indices of a number of glasses are given in WinchelTs tables. For

three-component glasses the refractive index alone cannot give the
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composition ;
but ifthe refractive index and one other property say the

density can be measured, it may be possible to specify the composition.

Precipitated amorphous substances usually appear to be irregular

isotropic masses. They usually tend to hold varying amounts of solvent

and therefore show variable refractive indices. Usually they cannot be

identified with certainty.

Irregular masses which appear isotropic may consist of aggregates of

anisotropic crystals which are individually too small to show inter-

ference phenomena between crossed Nicols; each crystal may be of

submicroscopic size. The single measurable refractive index is an average
value lying between the principal indices of the crystal in question.

Weakly birefringent substances are the most likely to appear in this

form, but any substance may do so provided the individual crystals are

small enough ;
the higher the birefringence, the smaller the individual

crystals must be in order to appear isotropic. Slaked lime, Ca(OH)2 ,

which has a moderate birefringence (to
= 1-57, e = 1-54), sometimes

forms apparently isotropic masses ;
in such cases it is always advisable to

increase the intensity of illumination (still using crossed Nicols) by open-

ing the iris diaphragm of the condensing lens of the microscope, when
it may happen that vague patches of feeble interference colours (greys

of the first order) indicate the presence of minute birefringent crystals.

Strained glass may also show weak birefringence, but the glassy

character will probably be betrayed by conchoidal fractures. In any such

case the specimen should be referred to the higher court of inquiry by

X-ray examination ; this method is dealt with in the next chapter.

Optically uniaxial crystals . When a crystalline substance is found

to be birefringent one proceeds with the determination of its principal

refractive indices by the methods already described. If the crystals are

flat plates, apparently ifiotropic when lying flat on the slide, they are

evidently uniaxial ;f the principal index o> is given by the apparently

isotropic plates, while plates standing on edge give co for light vibrating
in the plane of the plate and c for light vibrating normal to the plate,

For crystals which are not plate-like it may not be possible to decide

from the appearance of the crystals whether they belong to one of the

uniaxial systems (tetragonal, hexagonal, trigonal) or one of the biaxial

systems (orthorhombic, monoclinic, triclinic). It should then be assumed

initially that there are three principal indices a, ft, and y to be measured ;

evidence ofuniaxial or biaxial character is bound to turn up in the course

f Flat biaxial crystals in which one of the optic axes happens to be precisely
normal to the plane of the plate will appear Lsotropic; but this situation is rare.
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ofthe observations. Thus, the general procedure is to observe the upper

and lower indices (for the two extinction positions) of numerous frag-

ments in a range of liquids, random orientation being assured by crush-

ing if necessary. The index a is the lowest of the lower values, y is the

highest of the upper values, while /? is the highest of the lower values

or the lowest of the upper values. If the crystals happen to be uniaxial

positive, then ft will be found to be equal to a that is to say, every

crystal will give a constant lower value: /?
= a = co. If the crystals are

uniaxial negative, ft will be found to be equal to y every crystal will

give a constant upper value: j8
r= y = CD.

The uniaxial character may be checked, if possible, by observing (on

a crystal which appears isotropic or nearly so) the directions image

produced by strongly convergent light, either by introducing the

Bertrand lens or by removing the eyepiece. It is useful to do this

because some biaxial crystals have two indices so close together that it

is scarcely possible to detect the difference by the immersion method.

Thus, potassium nitrate has y = 1-335, jB
= 1-5056 , y = 1-5064 . The

directions image shows, however, not the black cross of a uniaxial

crystal, but (for the 45 position of the Nicols) the two black hyperbolae
of a biaxial crystal ; careful observation is necessary to confirm this,

because the hyperbolae are very close together (the optic axial angle

27 being only 7 and 2E 101).
If a uniaxial directions image is seen the optical sign of the crystal

may be checked by the use of the quartz wedge in the manner described

in the previous chapter. This is not necessary (except as confirmation)

unless for any reason it is not possible to obtain actual measurements

of both co and e.

Needle-like crystals naturally lie on the microscope slide with their

long axes parallel to the slide, and it may not be possible to find tilted

crystals ;
and even crushing may not yield fragments which lie in all

possible orientations. However, even when the needle axis is invariably

parallel to the slide, all orientations obtainable by rolling a needle are

likely to be encountered, and observations of a number of crystals

should be sufficient to give all the information required. The first thing
to do is to observe the extinction direction ; if extinction is consistently

parallel to the length, the crystals may be uniaxial, the direction of

elongation being necessarily the unique geometrical axis and therefore

also the optic axis ; but they may also be biaxial either orthorhombic,

the direction of elongation being any one of the three axes, or mono-

clinic elongated along the 6 axis (since the 6 axis of a monoclinic crystal
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is the only direction which has an axis of the indicatrix coincident with

it). For all these types the refractive index for light vibrating along
the needle axis is constant ; but for light vibrating perpendicular to the

needle axis the refractive index is constant only for uniaxial crystals ;

for biaxial types it is variable. We return to the biaxial types in the

next section; meanwhile the position is that needle crystals with

parallel extinction which give two constant refractive indices are uni-

axial. It only remains to discover which of these indices is co and

which e. The latter is the value for light vibrating along the needle

axis (the optic axis) ; if the vibration direction of the polarizer is known,
it will be obvious which of the two measured indices is c

;
if not, the

use of the quartz wedge will decide the question.

Uniaxial bipyramids and rhombohedra (usually recognized by shape
and symmetrical extinction), when lying on the slide on their faces, will

not give e but a value lying somewhere between CD and e. Hence the

need for breaking the crystals to give random orientation. Crystals

having good rhombohedral or pyramidal cleavages (like calcite) may,
even when crushed, give many fragments which still lie inconveniently

on the cleavage faces ; nevertheless, irregular-shaped fragments which

will lie in random orientation are sure to be produced in sufficient num-

bers for the determination of e.

Optically uniaxial crystals may be tetragonal, hexagonal, or trigonal,

If it is possible to recognize a shape characteristic of a particular system
this information is useful supplementary evidence; but it must be

emphasized that the refractive index values by themselves are usually

sufficient for identification.

Optically biaxial crystals. The measurement of the three princi-

pal refractive indices of a biaxial substance presents no difficulties when

the crystals are large enough to be crushed to provide irregular frag-

ments which will lie on the slide in random orientation. When the

crystals are too small for crushing to be desirable or effective, and are

bounded by a very few plane faces, some caution is necessary ; one must

make sure of observing not only those crystals which are lying on their

principal faces but also crystals tilted in various ways (because crystals

lying on their principal faces may not give their principal indices). If

a universal stage is available this presents no difficulty ;
but even with-

out the universal stage it is not as difficult as might be supposed to

find suitably oriented crystals; even thin plates, the worst type of

crystals in this respect, may be found tilted at various angles or standing

on edge, especially in a crowd of crystals.
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Crushing has been recommended as a primary method because it is

safe and will lead to the determination of the principal refractive indices

of any crystalline substance, provided a sufficient number of randomly
oriented fragments is observed ; it is a beginner's method. But the more

experienced worker may often dispense with it, when the crystals being

examined have a well-defined polyhedral shape. If the relation between

crystal shape and optical properties is properly understood, it is possible

to determine the principal indices by a limited number of observations

on crystals selected because they lie in such positions that they neces-

sarily show their principal indices.

For instance, crystals which appear to possess three mutually per-

pendicular planes of symmetry, or two planes intersecting in a twofold

axis, or three twofold axes, are probably orthorhombic, with rectangular
unit cells; and if, on looking along the presumed axial directions,

extinction is parallel to crystal edges or bisects the angles between

crystal edges, this conclusion is confirmed. Any crystal lying so that

an axial direction lies along the line of vision necessarily shows two of

the principal refractive indices; and views down two different axial

directions yield the three principal refractive indices. Crystals such as

those of sodium carbonate monohydrate (Fig. 50) are ideal for such

observations. At the same time, these observations yield a knowledge
ofthe orientation of the principal vibration directions (the principal axes

of the indicatrix) with respect to the crystal axes ; thus, for sodium

carbonate monohydrate the vibration direction for a is the direction of

elongation of the crystal, while the vibration direction for j3 is the zone

axis of the terminal faces.

Crystals which appear to possess one twofold axis, or one plane of

symmetry, or both (the twofold axis b being normal to the plane of

symmetry) are probably monoclinic
; if so, crystals lying with their

presumed 6 axes parallel to the microscope slide will show extinction

parallel to this 6 axis, and the refractive index for this vibration direc-

tion is one of the principal refractive indices. The other two principal

indices will be shown by crystals lying with their 6 axes along the line

of vision ; for this aspect of the crystal, extinction is not parallel to a

principal edge or to the bisector of edge angles.f

Crystals which appear to possess only a centre of symmetry or no

symmetry at all a^e probably triclinic, and will probably not show their

principal refractive indices when lying on their faces; such crystals

should be crushed.

t Note that in rare cases extinction angles may be so small as to escape detection.

4458
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Biaxial crystals of inorganic substances can usually be identified by
their refractive indices alone; it is true that biaxial crystals are far

more numerous than uniaxial ones, but this is balanced by the fact that

they have three principal refractive indices three different measurable

characteristics as against two for the uniaxial types ; it is rare to find

two substances having their three principal refractive indices equal

within the limits of experimental error. Nevertheless, it is always
desirable to discover, if possible, the crystal system and the relation

between the principal vibration directions and the crystal axes. This

information will often be simply confirmatory, but for certain mineral

systems in which considerable variation of composition (and therefore

of refractive indices) may occur./ the magnitudes of the refractive indices

alone are not enough for unequivocal identification
;
it is necessary to

discover the crystal symmetry and the orientation of the indicatrix

with respect to the crystal axes. For orthorhombic crystals the principal

axes of the indicatrix necessarily coincide with the unit cell axes, and

it is simply a matter of observing which vibration directions lie along

characteristic axial directions (such as a direction of elongation, a

principal prism zone, or a polar axis). For monoclinic crystals it is

necessary to find which vibration direction lies along the 6 axis, and the

angles made by the other vibration directions with respect to the a and

c axes. For triclinic crystals the indicatrix is not fixed in any way by

symmetry ; it may be possible to determine extinction directions with

respect to characteristic morphological directions, though not to define

precisely the orientation of the indicatrix, unless a universal stage is

available. The necessary information for these purposes is normally

gathered in the course of the determination of the refractive indices ;

it is applied to the operation of identification by the use of the tables

of Larsen and Berman (1934) for minerals and Winchell (1931) for

laboratory chemicals.

For organic substances, the available information has been collected

and arranged by Winchell (1943). For some substances the only re-

fractive indices which have been recorded are those given by crystals

lying on their principal faces
; these are of course not always principal

indices, but they may be equally useful for identification purposes.

Such information is included in Winchell's tables.

If the crystals being examined are not well-formed polyhedra, the

scope of such observations is naturally more limited. Perhaps the

commonest type of partly defined shape is a rod somewhat rounded so

that there are no definite faces on it. The only definite morphological
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feature here is a single direction the long axis of the rod. If extinction

is consistently parallel, and it is found that the crystals are biaxial (see

pp. 95-6), they are almost certainlyf either orthorhombic or else mono-

clinic with the b axis as the direction of elongation. It is possible to

determine which vibration direction lies parallel to the rod by the

methods already given (for instance, by the use of the quartz wedge).

If extinction is inclined, the crystals are either monoclinic with a or c

as the direption of elongation, or else triclinic. The extinction angle

will vary with the orientation of the rod-like crystal on the slide. If

it is found that crystals which show the maximum extinction angle also

show two of the principal indices, then the substance is probably mono-

clinic, and the maximum extinction artgle represents the angle made

by one of the principal vibration directions with the direction of elonga-
tion. Otherwise, the crystals are triclinic.

The observation of directions images in convergent light may often

provide confirmation of the orientation of the indicatrix. The plane of

the optic axes is the cxy plane, while the normal to this plane is the /?

vibration direction. For a positive crystal the acute bisectrix is the y
vibration direction, while for a negative crystal it is the OL vibration

direction.

Even when the crystals being examined are quite irregular fragments,

it may be possible to obtain some information on their symmetry, if

certain types of dispersion of the optic axes are observed (see pp. 83-5).

The optical properties of crystals are usually quite reliable criteria

for identification
;
but occasionally crystals have submicroscopic cracks

and cavities, and although appearing quite normal, give refractive

indices lower than those of an entirely solid crystal. This phenomenon,
which is obviously very misleading, is fortunately very rare, but has been

observed in anhydrite (calcium sulphate) and calcite (calcium carbonate)

prepared in the laboratory. In cases of doubt, X-ray powder photo-

graphs should be taken see Chapter V.

Mixtures. When the constituents of a mixture differ markedly from

each other in appearance the refractive indices and other optical

properties of each can be determined without difficulty. This is very

frequently the case even when the shapes of the crystals are not very
well defined; for instance, a mixture may consist quite obviously of

three constituents, one in the form of comparatively large, rounded,

roughly equidimensional crystals, another in the form of small rod-

like crystals, and a third in the form of small rectangular or cubic

t See footnote to p. 97.
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crystals. There is no difficulty in measuring the properties of each con-

stituent in such a mixture as this. Even when the differences between

constituents are much slighter and less easy to specify, they may be

none the less obvious.

Even when there are no morphological distinguishing features, how-

ever, it is very often possible to measure the refractive indices of differ-

ent constituents. Two or more isotropic substances can be identified,

provided that their refractive indices are not closer than 0-002. A
mixture of one anisotropic substance with one, two, or more isotropic

substances likewise presents no difficulty. Fig 43 e shows a mixture

of sodium brtanate (cubic, n = 1-616) and sodium bromide dihydrate

(monoclinic, a = 1-513, /?
= 1-(>19, y = 1-525) immersed in a liquid of

refractive index 1-54. In this case the constituents are distinguishable

by two features one substance (sodium bromate) is not only isotropic

but also its refractive index is much higher than those of the other

substance. Two anisotropic constituents can be identified if the refrac-

tive indices of one lie wholly above those of the other
;
and in fact, any

number of anisotropic constituents can be identified if their respective

ranges of refractive indices are quite distinct. Serious difficulties only
occur if there are present in a mixture two or more anisotropic consti-

tuents whose refractive index ranges overlap for instance, if the y of

one constituent is higher than the a of another. It will be evident that

there are two (or more) constituents in the mixture, since two (or

more) values of /J are observed
; but, unless there are some distinguishing

features (such as differences of shape or size, or the presence of striations

or other marks on one constituent, or differences of dispersion), it will

not be possible to measure the other indices. Identification may some-

times be achieved on the basis of the /? values alone or perhaps by /?

values aided by measurements of optic axial angles ; if not, the mixture

is one of those which cannot be identified by microscopic methods.

This situation is most likely to arise when one of the constituents

is a very strongly birefringent substance such as a carbonate or a

nitrate.

Identification when it is not possible to measure refractive

indices. In some circumstances it may be desired to identify sub-

stances without removing them from their mother liquor. Direct identifi-

cation that is, by measuring properties and looking up the measured

values in tables is not possible, and the evidence obtainable is con-

fined to shape, vibration directions, optic axial angles, and the like ; but

if such characteristics of all the substances likely to be formed in the



CHAP, iv TRANSPARENT CRYSTALS 101

particular circumstances are known, it may be possible to conclude that

the crystals can only be one of the likely substances. For instance, it

may be known that one of the possible substances grows as plate-like

crystals of a certain shape, which when lying flat on the slide give a

(convergent-light) directions image showing part of a biaxial figure,

oriented in a particular way with respect to the crystal edges ;
if none

of the other likely substances has similar characteristics, these obviously
form a good criterion for identification. Hartshorne and Stuart (1934)

give numerous examples of the value of such observations.

The value of measurements of the magnitude of the optic axial

angle has been urged by Bryant (1932); and where dispersion of the

optic axes occurs, the variation of the optic axial angle with light

frequency is a highly characteristic feature which is valuable evidence

for identity. (See Bryant, 1941, 1943.)

These methods of 'spotting* constituents of particular systems (in

the phase rule sense of the word) are akin to those of the metallurgist,

but have far greater scope on account of the wealth of observable or

measurable characteristics in transparent crystals. They are most

closely allied, however, to those of the petrologist, who by observing

birefringence, extinction directions, optic axial angles, and the like in

thin slices of rocks, and referring the information to his knowledge of

the characteristics and occurrence of mineral species, is able to identify

such species with rapidity and certainty. For information on these

methods, see Rogers and Kerr's Optical Mineralogy (1942).

The thin-section methods of the petrologist may be used for artificial

specimens which are in the form of large aggregates specimens of such

materials as refractories, bricks, and boiler scales. Instead of powder-

ing them and using immersion methods, it is possible to grind thin

sections and examine them. When it is simply a question of distinguish-

ing between a few possible constituents of known characteristics, this is

a useful method. But in unfamiliar systems the powder method is likely

to be more useful for identification purposes ; the principal function of

the thin-section method in such circumstances is to provide information

on the distribution, orientation, or size of the crystals of the different

constituents.

Substances which are too opaque for the use of transmitted light

methods are rare, apart from metals; they include chiefly sulphides

and a few oxides. Aggregates of such materials may be examined by
the metallurgist's method of grinding and polishing a flat surface. The

scope of such methods is much greater for non-cubic than for cubic
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substances, since by the use of reflected polarized light it is possible to

measure birefringence. (See Phillips, 1933.)

This book is concerned with purely physical methods of identification.

It is, however, relevant to mention in this chapter on microscopic
methods the use of a combination of physical and chemical methods.

Chemical reactions may be carried out on a small scale on microscope

slides, the crystallization of reaction products being watched. Tests for

particular ions or atom groups have been devised, the criterion ofidentity

being, not solubility or colour as in macroscopic qualitative chemical

analysis, but crystallographic properties. For information on such

methods, see Handbook of Chemical Microscopy, by Charaot and Mason

(1931).



V

IDENTIFICATION BY X-RAY POWDER PHOTOGRAPHS

SOLID substances cannot always be identified by measuring crystal

shapes and optical properties. In the first place, the crystals in a speci-

men may be too small to be studied as individuals under the micro-

scope. Secondly, even if the individual crystals are large enough, the

information obtainable by microscopic methods may not be sufficient

for unequivocal identification. The measured refractive indices may be

(Within the limits of error ofmeasurement) equal to those oftwo different

substances ; this is rare, but may occur if for any reason only rough
measurements can be made. Or it may happen that the measured

refractive indices do not correspond exactly with those of any known

substance, either because the specimen in question is an unfamiliar

substance whose optical properties have not previously been recorded,

or because it is a mixed crystal whose refractive indices lie between

those of the pure constituents. Finally, if crystals are completely opaque

(as in metals and alloys), microscopic technique is limited to observa-

tions by reflected light. In metallurgical specimens, often the only
evidence available is that provided by the shapes of the intergrown
constituents in the polycrystalline aggregate ;

in familiar systems, such

evidence may be sufficient for identification, but in unfamiliar systems

(especially the more complex ones) it is likely to be inadequate. In any
of these circumstances, examination by X-ray methods may provide an

answer to the problems involved.

The production of X-rays. X-rays are electromagnetic waves of

very high frequency, and are produced when rapidly moving electrons

collide with atoms
;
the electrons at the higher energy levels in the atom

are disturbed, and the energy liberated in their transitions from higher

to lower energy levels is given out in the form of X-rays.

In X-ray tubes the electrons are produced either by ionization of air

at a moderately low pressure (in 'gas tubes') or by emission from a

heated filament at a much lower pressure (in 'hot cathode' or Coolidge

tubes). In most commercially obtainable X-ray tubes, one of which is

illustrated in Fig. 59, the latter method is used. An electrically heated

tungsten filament A emits electrons, which are accelerated by a high

voltage of some tens of thousands of volts maintained between the

filament and the target B. (Actually, high-voltage A.C. is applied, but
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only one-halfof the cycle is passed

by the one-way electron stream.)

In practice the anode, which is

water-cooled, is kept at earth

potential, while the filament is at

a negative high voltage. A metal

shield C surrounding the filament

and kept at the same potential

has the effect of focusing the

electron stream on a small area

ofthe target. The acceleration of

the electrons by the high voltage

gives them sufficient energy to

bring about the emission of

X-rays on striking the metal

target B. The part of the tube

surrounding filament and target

is made of brass (the rest being

porcelain) and is cooled by a

water-jacket. The tube is con-

tinuously evacuated, through a

wide tube, by a diffusion pump
using low-vapour-pressure oil,

backed by a rotary pump. The

X-rays are emitted from the

target in all directions, but only

a small proportion is used: win-

dows D of thin aluminium foil

allow the exit of only those rays

which make a small angle with

the target face. This type of

X-ray tube is demountable: the

target and windows are readily

detachable, and the whole of the

porcelain part of the tube can be

taken off to fit a new filament.

All joints are simply flat or

COOUH6
WATER

FIG. 59. A demountable X-ray tube. A,
filament ; B, target ; C, focusing shield ;

D, windows ; E, target holder.
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conical surfaces in contact, sealed by 'plasticine' made from low-

vapour-pressure grease. Targets of different materials can be mounted

in duplicate holders such as E, so that rapid changes may be made.

The demountable type of X-ray tube is probably the most convenient

for research purposes. Sealed glass X-ray tubes can also be obtained
;

their advantage is that they do not have to be continuously evacuated,

require no attention during operation, and demand no expenditure of

time for maintenance ; on the other hand, if more than one type of

target must be used, extra complete tubes are required; also the

emission decreases during the useful life of the tube owing to the

deposition of a solid containing tungsten (from the filament) all over

the inside of the tube, including the* target and the insides of the

windows ; and the X-ray beam may be contaminated with undesired

wave-lengths from this same deposit.

In the X-ray tube illustrated the filament is a close helix of tungsten

wire, set horizontally ; the shield surrounding it brings the electrons to

a focus along a horizontal line. For most crystallographic purposes a

narrow. X-ray beam is taken at a small angle 5-7 to the plane of the

target ; at tliis angle the line focus appears foreshortened so that the

source is effectively a point or, more precisely, a small area, not much

larger than the collimating systems used in X-ray cameras. Ideally,

the X-ray source should be as small, as possible, but in practice, if the

focus is made too sharp, a hole is burnt in the target after a short period

of use.

X-ray wave-lengths. The wave-length distribution in the X-ray
beam depends on the material of the target and on the accelerating

voltage used. Fig. 60 shows the sort of wave-length distribution given

by a copper target when bombarded by electrons accelerated by 50,000

volts. TJiere is a continuous band of wave-lengths, often referred to'as

'white' radiation, the limit of which on the short wave-length side is

rigidly determined by the quantum relationship Ve = hv, where V is

the accelerating potential, e the electronic charge, h Planck's constant,

and v the frequency of the shortest waves. If the potential is expressed

in volts (V), the shortest wave-length in A. is given by 1-234 x 104/F'.

In addition to the continuous band, and superimposed on* it, are very
narrow peaks of great intensity, the wave-lengths of which are rigidly

determined by the nature of the target material. This set of sharply

defined radiations is known as the K series of copper ; by far the strong-

est peaks are a1? 2 ,
and j3 components ;

the wave-lengths of o^ and a2

are so nearly identical that resolution of them occurs only in special
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circumstances. The intensity of c^ (1-5374 kX) is twice that of a2

(1-5412 kX).f
For most crystallographic purposes a monochromatic beam, that is,

a beam consisting of one wave-length only, is desirable. Actually the ex

components are so strong in comparison with all other wave-lengths

present that the unfiltered beam may be used for some purposes ;
the

'white* radiation merely increases the background intensity of X-ray

CO

WHITE
RADIATION

8 1-0 \-2

/VAVELENGTH IN A
1-6 1-8

FIG. 60. Intensity distribution in X-ray beam from copper target ; accelerating: voltage,

50,000 V. Kfi has about 1/6 the intensity of Kx. A nickel filter 0-021 mm. thick reduces

this ratio to 1/600 owing to the form of the absorption curve. Kot is actually
a very close doublet.

diffraction photographs, and this may not constitute a serious dis-

advantage ;
the /? component produces its own diffraction effects, but

provided a and jS diffractions are readily distinguished, the presence of

the latter can be tolerated. For powder photographs it is best always
to remove the /? component, and this may be done by placing a suitable

filter in the beam
;
the absorption coefficient of any chemical element

suddenly changes at a particular wave-length corresponding to the

resonance frequency (see Fig. 60), and by choosing an element whose

absorption edge lies between the wave-lengths of the a and
/} components

f To convert to Angstrom units (10~
8
cm.), multiply these figures by 1*00202. (See

footnote to Table II, p. 107.) Cu K^ = 1-5405 A. Cu Ka2 = 1-5443 A.
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in the X-ray beam, the intensity of the /? component may be reduced

to a negligible level. For the very frequently used copper radiation,

nickel foil accomplishes this end; if it is of thickness 0*021 mm., it

reduces the intensity of Kfi to 1/600 that of KQL, and at the same time

reduces the intensity of some ofthe 'white' radiation in comparison with

TABLE II

Targets, Wave-lengths and Filters

t The kX unit is 1/3-02904 of the cleavage spacing of calcite at 18 C. ; it was based
on a former value for Avogadro's number, according to which the kX unit was 10~ 8 cm.
or 1 Angstrom unit. The most recent value for Avogadro's number, however, gives the
kX unit a sliphtlv different value: to convert tho above figures to Angstrom units,

multiply by 1-00202. The kX unit is retained because the relative values of X-ray
wave-lengths are known more accurately than the absolute values. (Lipson and Riley,
1943; Siogbahn. 1943; Wilson, 19436.)

Ka. The filter may, if desired, be made the window of the X-ray tube ;

or, if the window is aluminium, the filter may be placed in a holder in

front of the window or on the camera. If it is necessary to remove

'white' radiation altogether, this is accomplished by reflecting the X-ray
beam by a particular face of a large crystal set at the correct angle ;

sodium chloride, pentaerythritol, and urea nitrate crystals have been

used for this purpose since they giye very strong reflections (Fankuchen,
1937

; Lonsdale, 1941). Urea nitrate gives the strongest reflected beam.
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The reflected beam consists ofK^ and Ka2 ,
with negligible proportions

of other wave-lengths ;
its intensity is much reduced in comparison with

the primary beam, so much so that exposures must be increased ten-fold

or more; this is the price of strict monochromatism. According to

Pankuchen (1937), the intensity of the reflected beam is increased by

grinding an artificial surface on the reflecting crystal at a suitable angle.

Guinier (1937) achieved a focusing effect by using a curved crystal as

monochromator.

To reduce exposures, high-power X-ray tubes are being developed ;

the limiting factor here is the heat generated at the focal spot on the

target. To avoid melting, the target is rotated so that the heat is spread

over an increased area (Muller,1929; Astbury and Preston, 1934).

The wave-length of the KOL radiation is determined by the atomic

number of the target material; the higher the atomic number, the

shorter the wave-length. (The wave-length A is given almost exactly by
the expression A K/(Nl)2

, where N is the atomic number and K a

constant.) The wave-lengths of some frequently used radiations, with

the filters suitable for removing the j3 component, are shown in Table II,

taken from a paper by Edwards and Lipson (1941); this paper also

gives similar information for the less frequently used wave-lengths,

together with useful information on the preparation of filters.

X-ray powder photographs. When a narrow monochromatic

beam of X-rays passes through a small specimen of a powdered crystal-

line solid, or through any polycrystalline specimen in which the

crystals are oriented at random, numerous cones of diffracted beams

emerge frorqi the specimen, and they can be recorded either as circles on

a flat photographic plate or film placed behind the specimen at right

angles to the X-ray beam, or better still, as arcs on a strip of film en-

circling the specimen as in Fig. 61. The latter is preferable because the

angular range of diffracted cones which can be recorded on a circular

film is much greater than on a flat film. The powder method was first

used by Debye and Scherrer (1916) and independently by Hull (1917).

With regard to the origin of the diffraction cones, it is sufficient for

the present to remark that each cone consists of a large number of small

diffracted beams, each from a small crystal ;
and that all the diffracted

beams in any one cone are 'reflections' by one particular type of crystal

plane. Any particular crystal plane can reflect monochromatic X-rays

only when it is at a particular angle to the primary beam ; all the little

crystals which happen to lie with this plane at this angle 6 to the primary
beam give a reflection. The angle of reflection is equal to the angle of
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incidence ; hence the reflected beam makes an angle 26 with the primary
beam. The reflected beams from all the little crystals which happen to

be suitably oriented therefore form a cone of semi-vertical angle 20

having the primary beam as its axis. Each different type of crystal

plane requires a different angle of incidence, and therefore gives a re-

flected beam at a different angle to the primary beam ; thus, numerous

cones of reflected beams are produced at specific angles, each cone

coming from a different crystal plane.

ill
FILM FLATTENED OUT

FIG. 61. Arrangement for taking powder photographs. The angle ESX is 26,

where 9 is the angle of incidence on a set of crystal planes.

For the present we shall not inquire into the reason why reflections

are produced only at specific angles, nor into the type of crystal plane

responsible for each cone ;
we shall merely accept the fact that each

crystalline species produces its own characteristic pattern which is

different from the patterns given by other species. It is possible to

identify substances by means of their X-ray powder photographs with-

out any knowledge of the structures of the crystals or of the theory of

diffraction, just as it is possible to use optical emission spectra for the

identification of elements without any knowledge of the electron transi-

tions responsible for the emitted rays.

Powder cameras. A powder camera consists essentially of an

aperture system to define the X-ray beam, a holder for the specimen,
and a framework for holding the photographic film. For most identi-

fication purposes a camera 9-10 cm. in diameter is found satisfactory;

an X-ray beam about 0-5 mm. wide is generally used, the powder

specimen being a little narrower than this of the order of O3 mm.

X-ray cameras are usually made almost entirely of brass ; this mate-

rial is not ideal forthe aperture system, as its absorption of the commonly
used wave-lengths is only moderate ;

but in practice it is usually found
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satisfactory. The best aperture system (see Fig. 62) consists of a circular

hole O5 mm. in diameter drilled through a brass cylinder A. To prevent

X-rays scattered by the edgea of the aperture from reaching the film

there is a guard tube B, I mm. in diameter. Using this aperture system,

powder photographs like that shown in Fig. 63, Plate III, are produced.
It is found that not much deterioration of quality of the photograph
occurs if a slit up to 2 mm. long (and still 0-5 mm. wide) is used instead

of the circular 0-5 mm. tube. For instance, in Fig. 63, Plate III, the

photographs of zinc oxide and a alumina were taken with the smaller

aperture system, while those of sodium sulphite and dickite were taken

with the slit system 2 mm. long ;
in the latter the ends of the arcs are

a little diffuse, but the centres <io not suffer much, except at very small

angles. The time of exposure is reduced by using the slit
;
the whole

brass cylinder AB can be withdrawn and replaced by the slit system
when required.

Several methods of mounting specimens are used. Ideally, the only

solid material in the X-ray beam should be the specimen material itself,

but this is only possible if the specimen is a coherent piece of material

such as a metal wire ; usually, a powder specimen must be held together

in some manner, using as little extraneous material as possible. It is

sometimes mixed with a trace of adhesive and stuck to a hair or fine

glass fibre
; the hair must be kept taut by hanging a small lead weight on

it. Another method is to mix the powder with some adhesive to form

a paste, and extrude a rod of this from a capillary tube. Substances

which are affected by solvents, or are deliquescent, are packed into

capillary tubes of lithium borate glass ('Lindemann glass') which can

then be sealed. Lithium borate is used because it contains only elements

of low atomic number, and consequently does not absorb X-rays to any

great extent.")" Powders containing heavy elements may be mixed with

a light diluent such as powdered gum tragacanth (Rooksby, 1942) to

reduce the absorption. Metals and alloys are usually examined in the

form of filings, and the preparation of uncontaminated specimens

thoroughly representative of the lump from which they were filed

presents special problems of its own (Hume-Rothery and Raynor, 1941).

The specimen P (Fig. 62), however it is made, should be not more than

0-5 mm. wide. It is best to rotate it to ensure random orientation of the

crystals (otherwise discontinuous spotty arcs may be produced on the

photograph), and for this purpose it is mounted on a rotating holder.

t Lithium borate glass capillaries become* devitrified in moist air in a few days, but

will keep indefinitely if stored over anhydrous calcium chloride.



FIG. 62. .Essential parts of a powder camera. A, aperture system
J3 9 guard tube ; CD, trap ; E, knife edges ; JP, specimen.
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Centring may be done by hand, or better, by using a holder fitted with

adjusting screws.

To prevent fogging ofthe film by the primary beam a trap is provided.

Its construction is sufficiently explained by Fig. 62
; the edges D must

be so placed that X-rays XE scattered in the trap cannot reach the film.

At the back of the trap is a screw which can be removed (a) for centring

the specimen by looking through the hole at a light placed at A, and (b)

for adjusting the camera in relation to the X-ray tube, for which purpose
a fluorescent screen is placed at C. (This must be done before the

photographic film is put in the camera.) It is sometimes useful to have

the position of the primary beam recorded on the film, but its strength

must be very much reduced to avoid fogging. This can be done by

drilling out the screw just mentioned until the thickness of brass re-

maining to obstruct the beam is 1-5 mm. ; this reduces the primary beam
to about the same level of intensity as a strong diffraction arc on an

average powder photograph.
The film is in contact with the cylindrical brass frame of the camera

and is held in position by springs S. Sharp edges E terminate the ex-

posed part of the film abruptly. Light is excluded by a brass cover

which fits over the whole camera
;
the X-ray beam is admitted through

a hole covered with black paper. Further details of the construction

and use of powder cameras can be found in a paper by Bradley, Lipson,

and Fetch (1941).

Cameras in which powder photographs of substances maintained at

high temperatures may be taken are much used, especially in metallurgy

(Jay, 1933; Dorn and Glockler, 1936; Hume-Rothery and Reynolds,

1938). Other special cameras have been designed for low temperatures

(Pohland, 1934) and high pressures (Frevel, 1935).

General characteristics of X-ray powder photographs. A few

examples of X-ray powder photographs, all taken with copper Koc

radiation, are shown in Fig. 63, Plate III. They vary greatly in com-

plexity; chemically simple crystals of high symmetry give strong

patterns containing few arcs, while crystals of complex chemical consti-

tution or of low symmetry give patterns consisting of a large number of

less strong arcs. The time of exposure necessary to produce a photo-

graph of convenient intensity is related to the complexity. Under

typical conditions for instance, when a self-rectifying X-ray tube is

passing 20 milliamperes and the unsmoothed peak voltage is 60 kV

well-exposed photographs of metals can usually be taken in 10-15

minutes, using the 2-mm. slit aperture in the 9-cm. camera just described,
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FIG. 63. X-ray powder photographs.
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while a complex silicate may require over an hour under the same

conditions.

Exposures may be shortened by putting a fluorescent screen behind

and in contact with the film, so that the optical fluorescence reinforces

the direct X-ray effect on the photographic emulsion ; or two screens

might be used, one in front and one behind the film. (Note that the

intensity relations are much changed by the optical fluorescence : weak

reflections come out relatively much too weak.)
There is always a certain background intensity on X-ray powder

photographs, due partly to the presence of 'white' radiation, which gives
diffracted rays over a wide angular range from each crystal plane,

partly to a certain amount of incoherent scattering of the Ka radiation

by the crystals themselves, and partly to X-ray fluorescence of the

crystals, which absorb the primary rays and re-emit the energy in the

form of longer waves. The last effect may in some circumstances be so

strong that serious fogging of the film occurs, and for this reason the

wave-length ofthe primary beam used must be chosen with this effect in

mind. X-ray fluorescence is strongest when the wave-length of the

absorption edge of the irradiated element (which is almost equal to that

of Kp for the element) is slightly longer than the wave-length of the

irradiating beam
;
under these circumstances, in addition to the part

ofthe primary beam diffracted by the crystals another part is converted

into the K series of the irradiated element. For instance, the shortest

wave-length of theK series (and the absorption edge) of iron is not much

longer than that of copper KOL, and consequently iron-containing crystals

fluoresce strongly in copper KOL radiation. For substances containing

iron, therefore, copper KOL radiation is quite unsuitable ;
cobalt or iron

KOL should be used. The elements preceding iron in the periodic table

also fluoresce in copper KOL radiation, but less strongly than iron, the

effect diminishing with the atomic number
;
for calcium, for instance, it

is practically negligible.

Fluorescent radiation, when it is not too serious, may be partly

absorbed by placing a suitable filter between the specimen and the film.

For instance, titanium compounds in copper radiation give rather foggy

photographs owing to X-ray fluorescence ;
the fog is reduced by putting

the nickel filter (necessary in any case for removing copper Kfi) between

the specimen and the film, instead of in the more usual position in front

of the camera
;
it absorbs titanium radiation much more than it does

copper KOL, and the background intensity is therefore reduced in com-

parison with the diffraction arcs.
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Some substances, such as alkaline-earth sulphides, emit visible light

when irradiated by X-rays ; for these substances it is essential to have a

sheet of optically opaque material (such as black paper) between the

specimen and the film.

The wave-length used does not, in general, affect the relative inten-

sities of the various arcs in any pattern, but it does control the scale of

the pattern ; the longer wavelengths spread out the pattern, while the

shorter wave-lengths contract it.

The simplest procedure in identifying a substanceby an X-raymethod
is to compare its powder photograph with those of known substances

taken in the same camera with X-rays of the same wave-length. The

patterns given by different substances are usually so obviously different

that visual comparison is sufficient for certainty. Often, however, it

may not be possible to obtain the reference substances required ;
nor is

this necessary in many cases, for a limited amount of interpretation

makes it possible to use published results, obtained, maybe, with

cameras of different radius or X-rays of different wave-length. Interpre-

tation of powder photographs for this purpose usually need go only as

far as the calculation of the spacings of the crystal planes responsible

for the various arcs. This demands no knowledge of the crystal struc-

ture, but only the use of a simple equation, the derivation ofwhich forms

the subject of the next section.

Diffraction of X-rays by a crystal. Diffraction by a three-dimen-

sional array of atoms might be expected to present a complex geo-

metrical problem, but in actual fact the fundamental equation, known
as Bragg's law, turns out to be extremely simple :

d _ A

n
~~

where A is the X-ray wave-length, d the distance between successive

identical planes of atoms in the crystal, the angle between the X-ray
beam and these atomic planes, and n any whole number. (W. L. Bragg,

1913.) It may seem curious that the arrangement of the atoms in each

atomic plane does not come into the expression, which contains merely

d, the distance between the atomic planes. The reason for this can be

appreciated by considering, first the diffraction of rays by a row of

points, then by a plane arrangement of points, and finally by a three-

di#iensional array of points.

If a train of waves, whose wave-front is perpendicular to the direction

of propagation, is scattered by an array of points, the scattered rays
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interfere with each other except when they happen to be in phase, that

is, when the* difference between the path-lengths of rays scattered by
different points is either zero, or one wave-length, or two wave-lengths,

or any whole number of wave-lengths. If a single row of equally

spaced points (spacing = a) is perpendicular to the beam (Fig. 64 a), ray
II is a cos

<f>
behind ray I, and thus the rays will be in phase only when

WAVE
FRONT

=/

n-0

d~3 cos $ which must - nX

(a)

(b)

Differencf ofpath-length = OA-PB- a cos - a cos B This must -/?A

FIG. 64. Diffraction by a row of points.

n\ = a cos <. For particular values of n and A.
<f>

is constant, that is,

the diffracted rays form a cone withthe point-line as axis or rather, two

cones, one on each side of the incident beam. The second-order diffrac-

tions form a narrower cone than the first-order diffractions. The zero-

order cone is a plane surface (Fig. 64 b). If the incident beam is not

perpendicular to the point-line (Fig. 64 c) the diffraction surfaces are

still cones, but their semi-vertical angles <f>
are given by

and the upward and downward cones for the same value of n have

different angles. Note that for diffracted rays having the same
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path-length (n = 0), <f>
will equal 6, and the angle of this (zero-order)

cone of diffracted beams is independent of the point-spacing a, and

depends only on 6, which may have any value ; in other words, an X-ray
beam falling on a line of equally spaced diffracting points at any angle

gives rise to a zero-order cone of diffracted beams whose semi-vertical

angle 6 is the same as the angle between the incident beam and the

point-line in other words, the incident beam forms part of the cone.

Consider now a regular array of points in a plane, such as that in

Fig. 65
;
this may be divided into rows of points in many different ways ;

FIG. 65. 'Reflection' by a regular array of points in a plane.

each type of point-row would, by itself, produce its own diffraction

surfaces, but the diffracted rays from different types of point-rows such

as BAC and DAE will not co-operate except where the different surfaces

intersect that is, along certain straight lines. We need not consider

this in detail, except to show that the zero-order diffracted beam

(n = 0) is a sort of reflection of the incident beam by the point-plane.

The incident beam OA strikes 1/he surface at an angle 6, Fig. 65. One
row of points (suppose it is BAC) is bound to lie exactly under the

incident beam
;
that is, LOBA = LOBD 90. This point-row would,

by itself, give a zero-order diffraction cone of angle 0. Any other row of

points such as DAE is at a larger angle (f>
to the incident beam, and by

itself would give a zero-order diffraction cone of angle <. The two cones

cut in a line, and this will be the direction of the diffracted beam pro-

duced by both point-rows together. We have to find the direction of

this line AP. Make AP = GA,AC = AB, and AE = AD; join PC,
PE, and CE. Now the solid figure PCAE has three angles 0, <, and oj

(meeting at A) equal to corresponding angles of the figure OBAD, and
the three sides enclosing these angles (AP, AC, and AE) also equal to
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the corresponding sides of the figure OBAD ; hence the two solid figures

are similar in all respects; therefore the angle PCE = OBD = 90,
and thus AP lies in the plane OAB. The same could be shown for every

possible point-row ; hence all the points acting together produce a zero-

order diffraction along a single direction, the angle of diffraction being

equal to the angle of incidence, with both incident and diffracted beams

lying in a plane perpendicular to the point-plane : the zero-order diffrac-

tion is, in fact, a 'reflection* of the incident beam by the point-plane.

Such a 'reflection* can be produced for any angle of incidence of the

primary beam; and it is important to notice that the spacing and

arrangement of the points in the plane do not affect the process.

FIG. 66. The condition for 'reflection' by a crystal lattice. Difference

of path -^ GY+YH = 2cJsm0, which must -= nX.

If a fferee-dimensional point-array is to produce a diffracted beam,
the diffracted waves from all the points must be in phase ;

some of them
will have the same path-length, those from other points will be one

wave-length behind the first set, still others will be two wave-lengths

behind, and so on. It has just been shown that any plane of points by
itself would be capable, at any angle of incidence, of producing a dif-

fracted beam consisting of waves all of the same path-length, and this

beam would be a reflection of the primary beam by the plane ; but if the

waves from the next lower plane of points are to be in phase with those

from the first-mentioned plane, this imposes strict limitations on the

permissible angles of incidence. Thus in Fig. 66, JP, Q, and R are

successive planes of points seen edgewise. Plane P, if it were alone,

would reflect the primary beam AX in XD, the angle of reflection DXP'

being equal to AXP
( 8) ; this would happen whatever the value of 0,

and does not depend at all on the spacing and arrangement of the points
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in the plane. Plane Q likewise, if it were alone, would also reflect the

beam at this same angle; but since Q is lower than P, the path BYE
traversed by waves reflected in Q is longer than the path AXD traversed

by waves reflected in P, and if the two sets of waves are to be in phase,

then the difference of path-length must be a whole number of wave-

lengths. The difference in path-length is G Y-\- YH, where XG and XH
are perpendicular to BY and YE respectively. XY is drawn perpendi-
cular to PP' and QQ', so that its length is d, the spacing of the planes.

It follows that GY and YH are each equal to dsin0, hence

= nX.

This equation is Bragg's law.
'

A crystal is not, in actual fact, a simple array of points, each of which

is a pattern-unit. In the first place, an atom is not a point ;
its electrons,

which scatter the X-rays, occupy a volume commensurable with the

interatomic distances. Secondly, each pattern-unit in a crystal often

consists, not of one atom, but a group of atoms. The pattern-unit is

thus not a point, but has a diffuse and often irregular form. However,
for the purpose of diffraction theory, as far as it is carried in this chapter,

the diffuse pattern-unit may be mentally replaced by a point. It will

be shown in Chapter VII that the form of the pattern-unit affects the

intensities of the diffracted beams ; but it does not affect their positions,

which depend only on the space-lattice, the fundamental arrangement
of identical pattern-units.

Each of the many different sets of planes in a crystal may produce a

'reflected' beam, but only if it is at the appropriate angle to the primary

beam, this angle being determined by d, the spacing of the set of planer

in question. The angle between the reflected beam and the primary
beam will be 20. The Bragg equation means that if we turn a crystal

about at random in an X-ray beam, in general no reflected beam will be

produced ; but at certain definite positions of the crystal, when the

condition nX = 2d sin is satisfied for a particular set of planes, a re-

flected beam flashes out. A set of planes having a large spacing d

produces a first-order reflection close to the primary beam (that is, is

small), and higher-order reflections (n = 2, 3, and so on) at larger angles.

A set of closely spaced planes produces its first-order reflection at a large

angle. For any particular X-ray wave-length there is a lower limit to the

possible values ofd/n, set by the fact that sin cannot be greater than 1.

The lower limit for d/n is equal to A/2.

In a crystalline powder the crystals are oriented at random. If a
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narrow X-ray beam is sent through the powder, most of the crystals will

give no diffracted beams, because none of their planes make a suitable

angle with the beam. Some crystals, however, lie in such positions that

a particular set of crystal planes say the 100 set is at exactly the

appropriate angle for giving the first-order reflection (the angle must be

within a few minutes of arc of the angle specified by the Bragg equation ;

see p. 203) ;
all the little crystals which reflect with their 100 planes give

a reflected beam at the same angle, this angle depending on the spacing

of the 100 planes. The locus of all directions making a particular angle

with the primary beam is a cone having the primary beam for its axis.

Other crystals in the powder happen to lie in such a way that they can

FILM 100

CRYST/

INCIDENT
X-RAY
BEAM

FIG. 67. Each arc on a powder photograph represents
a 'reflection' by a particular crystal plane.

reflect with their 110 planes, and all these will produce a cone of re-

flected rays, but the 110 cone will have a different angle from the 100

cone, since the spacing of 110 planes is different from that of 100 planes.

(See Fig. 67.) Each cone of rays cuts the photographic film in an arc.

This, therefore, is the origin of the arcs on a powder photograph ;

each arc represents the combined diffracted beams from all the crystals

which happen to be suitably oriented for reflecting with one particular

set of planes.

Measurement of powder photographs. From the measured

position of each arc on a powder photograph, 6 can be calculated, and

thence din by the Bragg equation. Since on powder photographs the

position ofthe undeviated primary beam is usually not precisely defined,

it is necessary to measure from an arc on one side of the photograph to

the corresponding arc on the other side, the distance x between which

represents 40. If the radius of the film when it was in the camera was r,
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the circumference Ztrr represents 360, or, since we are to divide through

by 4, 27TT represents a Bragg angle of 90
; for each arc is thus obtained,

and d/n is calculated from 9, r, and the known X-ray wave-length used

for the photograph. Ifmany films have to be measured, it is best in the

long run to make a table giving d/n for all values of x. The effective

radius r of the camera is best determined by the methods mentioned

in the section on high-precision methods (p. 180).

The X-rays used are not strictly monochromatic ; copper KOL radia-

tion consists not of one wave-length but of two slightly different wave-

lengths, 1-5374 and 1-5412 kX. These produce reflected beams from any

particular crystal plane at slightly different angles; but in ordinary

powder cameras the two reflections are not resolved except at angles

near 90, as may be seen by inspecting the powder photographs in Fig. 63,

Plate III
;
the last few reflections are plainly doublets, resolution at large

angles being a consequence of the fact that when is near 90 a small

difference of sin 6 (produced by a small difference of A) means a com-

paratively large difference of 8. Therefore, for the arcs at small angles a

weighted averagef value (1-5387 kX for copper) must be assumed for

calculations, while for the doublets at large angles calculations can be

made for both individual wave-lengths. For identification purposes
measurement with a steel rule graduated in millimetres or half-milli-

metres is usually sufficiently accurate, but for precision work a travelling

microscopemay be used. For still greater precision photometric measure-

ment of the distribution of blackening on the film may be made
;
each

reflection appears as a hump on the blackness-distance curve, and the

position ofthepeak can be taken as the 'position' ofthe reflection. Inwork

of such precision as this, some account must be taken of several sources

of error arising from the particular experimental circumstances.

Spacing errors in powder photographs . Owing to the appreciable

thickness of the powder specimen and the absorption of X-rays in it,

the diffraction arcs are produced more by the outer layers of the speci-

men than by its centre (Fig. 68) ; on this account, corresponding arcs on

opposite sides of the photograph tend to be slightly too far apart, and

spacings d/n calculated from the arc angles therefore tend to be low.

Such errors are greatest for small angles of reflection (large values ofd/n),

and diminish towards zero for large angles. For specimens containing

only light atoms, such as carbon, oxygen, aluminium, or sodium, they are

very small at all angles ; but for specimens containing large proportions

of heavy elements, such as iodine or lead, they are appreciable, though

f The oi1 wave-length is given twice the weight of a , since it is twice as strong.
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not sufficiently large as to be likely to cause confusion in identification.

The diameter of the specimen should be as small as possible (not more

than 0-3 mm.frfor the camera described here) to minimize such errors.

An effect often produced by strongly absorbing specimens is the splitting

of small-angle reflections into narrow doublets, owing to the beam

passing round both sides of the specimen but not through its centre
;

at larger angles, only the outer component of the doublet is present, as

CENTRE OF
REFLECTION >

,'T*. WEAKLY :'\

ABSORBING
SPECIMEN

,'/K CENTRE OF
'I ^REFLECTION

STRONGLY
ABSORBING
SPECIMEN

X-RAY
BEAM

FTG. 68. Apparent displacement of reflections owing to absorption. (Much exaggerated.)
Reflections at large angles are less affected than those at small angles.

in Fig. 68. Other errors may occur if the specimen is not strictly in the

centre of the film or if a long slit is used. Correction terms can be calcu-

lated if certain factors are known (Claassen, 1930; Bradley, 1935; see

also Int. Tab. (1935), p. 583). Finally, photographic films shrink on

development and drying; errors from this cause can be avoided by

printing fiducial marks on the film. In the type of camera described

here (Bradley and Jay, 1932) the exposed part of the film (always

defined by the general background blackening) is terminated by a knife

edge whose position represents a definite angle which can be accurately

measured ; assuming uniform shrinkage, the true angle for any arc can be

calculated by simple proportion.
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One method of correcting for all possible errors is to mix the substance

with a standard substance whose spacings are accurately known ;
the

X-ray photograph shows both patterns superimposed. For this purpose
it is desirable to use a simple substance giving few lines, otherwise

overlapping of arcs will be frequent ; sodium chloride is often used.

Measurement of the sodium chloride arcs gives a calibration curve,

which can then be used for interpolating the precise spacings of the

substance under investigation.

Further information on high precision methods will be found on p. 180.

Identification of single substances, and classification of powder
photographs. Each crystalline substance has its own set of plane-

spacings, which is different from those of other crystalline substances.

The relative intensities of the various reflections are also characteristic.

Each substance thus gives its own characteristic powder photograph,
the scale of which, however, depends on the wp,ve-length of the X-rays
used and the diameter of the camera.

The indirect method of identification, in which the pattern of the

unknown is compared with those of likely substances, has been much
used ;

but to eliminate the chances of possible substances being over-

looked, and to deal with the occurrence of quite unexpected substances,

a direct method is desirable, in which 'key' spacings of the unknown are

looked up in an index, in the manner used in the identification of optical

emission spectra. In the direct method of identification the main 'key'

is the spacing of the strongest arc: a card index is made, in which all

substances are arranged in order of the spacing of the strongest arc.

If two or more arcs appear equally strong to the eye, the innermost the

one with the greatest spacing should be used as the key. To identify

an unknown substance, the spacing of its strongest arc is measured ;

reference to the index may indicate several substances having the

correct key spacing within the possible limits of error of the photograph.

Some will be out of the question, in view of the origin of the specimen ;

for the rest, the remaining arcs will decide. In the card index published

by the joint committee of the American Society for X-ray and Electron

Diffraction and the American Society for Testing Materials there are

three cards for each substance, one for each of the three strongest arcs ;

consequently, measurement of the second and third strongest arcs,

followed by reference to the index, may lead to unequivocal identifica-

tion, which, however, should only be accepted as final when the whole

pattern is compared with that in the index and found to agree, both in

spacings and relative intensities. Visual estimates of relative intensities,
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Fro. 69. X-ray powder photograplis.
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classified as 'very strong', 'strong', 'medium', 'weak', and so on, are

usually sufficient for identification purposes. If the index does not lead

to identification, the literature may be searched for the patterns of

likely substances. The 'Strukturbericht' published by the ZeitschriftfUr

Kristallographie is useful here. A collection of 1,000 patterns was

published by Hanawalt, Rinn, and Frevel (1938) ;
these are included in

the A.S.T.M. index. For minerals there are the determinative tables

of Mikheev and Dubinina (1939), and for the ore minerals the compre-
hensive list of Harcourt (1942).

If the spacings of the arcs on a powder photograph do not lead to

identification, the determination ofunit cell dimensions from the powder

photograph may be attempted ;
the methods are described in Chapter

VI. If crystals large enough to be handled individually can be picked
out of the specimen, single-crystal rotation photographs may be taken

and used for identification
;
this also is dealt with in Chapter VI.

Identification and analysis of mixtures. A mixture of two or

more substances gives a pattern consisting of the superimposed patterns

of the individual components, provided that these components exist as

separate crystals in the powder specimen (see Fig 69, Plate IV). The

identification of simple mixtures, therefore, does not differ in principle

from that of single substances. The principle is to find the spacing of the

strongest arc; reference to the index may result in identification of

one probably the main constituent, and this accounts for some of

the arcs. The spacing of the strongest of the remaining arcs is then used

in the same way for identifying the second constituent ;
and this pro-

cedure is repeated until every arc on the photograph has been accounted

for. Overlapping of the arcs of different constituents may sometimes

cause confusion.

If a mixture is found to give a very complex pattern which appears
to consist of several superimposed patterns, many of the arcs of which

overlap, it may be desirable to attain greater resolution, and this can be

done either by using X-rays of longer wave-length to spread out the

diffraction pattern or by modifying the camera or specimen.
Chromium KOL radiation (A

= 2-29 A.) is suitable for the first method
;

but the absorption of this wave-length by air is appreciable, and it is

desirable either to evacuate the camera or to fill it with hydrogen.
Even longer wave-lengths, like the characteristicK radiation of calcium

or even magnesium, have been used for special purposes, but it is doubt-

ful whether identification problems would ever call for the use of such

long waves. Their use entails further experimental difficulties
; owing to
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the high absorption ofthesewavesby air, the camera should be evacuated

and built straight on to the X-ray tube, forming part of the same

evacuated system. (Clark and Corrigan, 1931
; Hagg, 1933.)

The second method is preferable. Either the specimen and aperture

system may be reduced in size or the camera increased in size. The pre-

paration of very narrow powder specimens is not easy, and the tendency

now is to use larger cameras (Bradley, Lipson, and Fetch, 1941).

Exposures are necessarily increased, but this is the unavoidable price

of greater resolution.

X-ray powder photographs are now very widely used for identifica-

tion. Two typical investigations will be mentioned. The first is the

identification of the crystalline Constituents of Portland cement, one of

the more important building materials of the present day. It is made

by heating to a high temperature such raw materials as chalk or lime-

stone, clay, and sand. Its chemical composition may be expressed in

terms of lime, silica, alumina, and ferric oxide, but its actual constitu-

tion cannot be deduced by stoichiometric methods. X-ray powder

photographs, together with evidence obtained by the determination of

optical properties under the microscope, have shown that the principal

crystalline constituents are Ca3Si05 and j3 Ca2Si04 , together with smaller

amounts of Ca3(A103 )2 ,
4CaO.Al2 3.Fe2O3 ,

and MgO (Brownmiller and

Bogue, 1930
; Insley, 1937

; Insley and McMurdie, 1938). It may be said

that the recent great progress in our understanding of the chemistry of the

setting of cements is largely due to crystallographic investigations of this

type. (SeeTheChemistryofCementandConcrete,byIjea,a,ndT)esch, 1935.)

The second example is the investigation of the constitution of

'bleaching powder', which is made by the action of chlorine gas on

slaked lime. The constitution of this widely used material had remained

obscure for many years, since, although it contains calcium chloride as

well as hypochlorite (2Ca(OH)2+2Cl2
> Ca(OCl)2+CaCl2-f 2H20), it

is not deliquescent; moreover, it is difficult to carry chlorination to

completion. These features had led to many suggestions of the existence

of double compounds suggestions which could not be tested by older

methods of investigation, on account of the small size of the crystals.

X-ray powder photographs showed that bleaching powder consists of

two substances a crystal of variable composition consisting chiefly of

Ca(OCl)2 ,
and the basic chloride CaCl2 . Ca(OH)2 .H2 . It is the latter,

a very stable non-deliquescent substance, which is responsible for the

difficulty of complete chlorination and the non-deliquescent nature of

the material. (Bunn, Clark, and Clifford, 1935.)
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In both these investigations the X-ray method was not used alone
;

measurements of the optical properties of crystals under the microscope

supplied evidence on certain points. The desirability of using micro-

scopic and X-ray methods in conjunction with each other cannot be too

strongly emphasized. This applies also in another field where the

X-ray method of identification has been widely used the determination

of phase boundaries in metallurgical equilibrium diagrams. (Bradley,

Bragg, and Sykes, 1940;Hume-RotheryandRaynor, 1941 ;Lipson, 1943.)

It is possible not only to identify the components of a mixture but

also to estimate the proportions of the different components from the

relative intensities of the patterns. No simple mathematical relation-

ship between the proportions of the* components and the relative

intensities of particular diffraction arcs can be given, and therefore the

method of analysis must be empirical ;
when the constituents have been

identified, powder photographs of mixtures containing known propor-

tions of the constituents must be taken, and that oftheunknown mixture

compared with them. Estimates ofproportions to within 5 per cent, can

be made by visual comparison, but the probable error can be reduced to

the order of 1 per cent, bymeasuring the intensities of selected diffraction

arcs by means of a micro-photometer; the relation between known

composition and the relative photographic densities of particular arcs is

found empirically, and the composition of the unknown mixture inter-

polated from these results. On account of the somewhat variable

characteristics of X-ray films and the circumstance that the relation

between photographic density and X-ray exposure is not linear except
at low densities, it is better for this purpose to print on each film a strip

giving a series of known X-ray exposures, and from this to calibrate the

mixture patterns in terms of X-ray exposure rather than photographic

density. (See Chapter VII.)

This method of analysis is particularly valuable when chemical

methods are inadequate or inapplicable. For instance, for complex
mixtures where the different elements or ions may be associated in many
different ways, all compatible with the analytical figures ; or for mixtures

of polymorphous forms of the same substance, such as the three crystal-

line forms of CaCO3 (calcite, aragonite, and vaterite) or the three

crystalline forms of FeO(OH) (goethite, lepidocrocite, and j3 FeO(OH)
see Bunn, 1941) mixtures for which chemical analytical methods

are irrelevant.

One limitation in the use of X-ray powder photographs for the

identification and analysis of mixtures must be mentioned. It is very
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often not possible to detect less than 5 per cent, of a constituent. The

minimum proportion of a substance which can be detected varies

enormously; it is usually specific for each crystalline substance, and

depends on many factors, such as the symmetry of the crystal and the

diffracting power of the atoms composing it. Highly symmetrical

crystals of simple substances such as sodium chloride (cubic) and the

rhombohedral form of calcium carbonate (calcite) can be detected even

when present to the extent of only 1 per cent, or even less, but less

symmetrical crystals such as monoclinic CaSO4 .2H2O (gypsum) can be

detected only if 5 per cent, or more is present. This statement is valid

under normal conditions, that is, when the X-rays used contain a certain

proportion of 'white' radiation* in addition to the principal a wave-

lengths ; but the figures given can be reduced by using strictly mono-

chromatic radiation, thus diminishing the background intensity of the

photographs and making it possible to detect weaker arcs.

'Mixed crystals' or 'crystalline solid solutions' (see p. 59) present

different problems from those of straightforward mixtures. A mixed

crystal gives a diffraction pattern which is in general intermediate, in

respect of both the positions and the intensities of its arcs, between those

of the pure constituents. Identification of the crystal species can be

effected if this relation between a given pattern and those of known

pure constituents is recognized, and quantitative analysis is possible if

the relation between composition and arc position and intensity is

known for the system in question. An interesting example is given by

Rooksby (1941). Preparations of zinc and cadmium sulphides are used

as luminescent powders, the colour of the emitted light depending on

the proportions of the two constituents. The X-ray diffraction patterns

show that the solids are mixed crystals: there is a complete range of

mixed crystals, as is shown by the fact that the positions of the arcs

change gradually with composition . (Rooksby shows a range of patterns

for the whole series.) The composition of the mixed crystal phase can

be determined to within 1-2 per cent, from the X-ray pattern, and the

X-ray method has the advantage over chemical analysis that it is not

affected by the presence of oxide. Mixtures of different mixed crystals

are also used to give other luminescent colours
;
and in these the composi-

tion of each mixed crystal phase can be determined from the X-ray

pattern ;
this probably could not be done at all by any other method.

Interpretation of the diffraction patterns of mixed crystals, as far as

the determination of unit cell dimensions, may be desirable. This is

described in Chapter VI.
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Non-crystalline substances. Some solid substances, such as sili-

cate glasses, and certain organic polymers like polystyrene, are not

crystalline ;
the atoms of which they are composed are not arranged

in a precise way, though there may be some approach to regularity.

The X-ray diffraction patterns of these 'amorphous' solids, like those

of liquids and gases, consist of broad diffuse bands with perhaps two

or three intensity maxima at definite angles. Examples are shown in

Fig. 69, Plate IV. It is obvious that such diffuse patterns afford less

scope for identification or interpretation than crystal patterns. Never-

theless, something may be done ; the difference between the patterns of

polymethylmethacrylate and polystyrene, for instance, is so great that

the substances could easily be distinguished from each other in this way.
It has been pointed out (Randall, Rooksby, and Cooper, 1930;

Randall and Rooksby, 1931, 1933) that, when a substance is capable of

existing in both amorphous and crystalline forms, the X-ray pattern

given by the amorphous form may be regarded as a very diffuse version

of the crystal pattern. There is, in fact, no sharp distinction between

'crystalline' and 'amorphous' states ; if, starting with a coarsely crystal-

line solid, we could reduce the size of the crystals by stages, taking an

X-ray diffraction photograph at each stage, we should find that when

the crystal size fell below about 10~5 cm. the photographs would become

diffuse
;
the effect is analogous to the imperfect resolution of an optical

diffraction grating containing only a few lines. With reduction of crystal

size, the reflections become increasingly diffuse until the limit is reached

at 10~7 to 10"-8 cm. the region of atomic dimensions, where the word

'crystal', with its implication of precise pattern-repetition, ceases to

be appropriate. One cannot speak of a crystal only one unit cell in

diameter, for the term 'unit cell' implies repetition ; this is the justifica-

tion for the use of the term 'amorphous' in describing glass-like sub-

stances.

The breadth of X-ray reflections may be used to calculate crystal

size within the range in which broadening occurs; the method is

mentioned in Chapter XI. The interpretation of amorphous patterns

in terms of atomic structure is also referred to in the same chapter.

This brings us to the end ofthe section ofthis book concerned primarily
with identification problems. This does not mean that these problems
will not reappear later

; they do reappear in Chapter VI. But from this

point onwards the book is concerned mainly with the determination of

the arrangements of atoms in crystals.



SECTION II. STRUCTURE DETERMINATION

VI

DETERMINATION OF UNIT CELL DIMENSIONS

IF it were possible to produce, by means of a supermicroscope, images
of atomic structures, it would not be necessary to undertake the lengthy

processes of reasoning and calculation which form the subject-matter
of this book. Up to the time of writing, however, this very desirable

objective has not been reached. Enormous magnifications have been

achieved by means of the electron microscope, but the resolving power
is still well above atomic dimensions. These attempts to extend our

range of vision are based on the principles of the optical microscope,
and X-rays have not been used, because although they have sufficiently

short wave-lengths to respond to the details of atomic structures, they
cannot be refractedf and focused as visible light can. Electron beams,

however, since they consist of streams of charged particles, can be

refracted and focused by magnetic or electric fields; since they also

behave as wave-trains having (with a suitable accelerating voltage)

effective wave-lengths short enough to respond to the details of atomic

structure, it might be possible, by their use, to produce images of atomic

structures. The difficulties, especially that ofmaking corrected electron

'lenses' suitable for the enormous magnifications involved, are serious,

however; by 1941, the best resolution achieved was about 30-40 A.

(Marton, McBain, and Void, 1941.)

At present, therefore, the details of atomic structures must be dis-

covered indirectly. The experimental material for the purpose is the

X-ray diffraction pattern. (Electron diffraction patterns are very
similar and could be used in the same way, see p. 373.) We are con-

cerned here with the diffraction patterns of crystals, the interpretation

of which falls into two stages first, the determination of the shape
and dimensions of the unit cell (see Chapter II), and secondly the dis-

covery of the positions of the atoms in the unit cell.

It has been assumed, in the previous chapter, that the positions of

diffracted beams depend only on the repeat distances in the crystal

that is, on the unit cell dimensions while the intensities ofthe diffracted

beams depend on the positions of the atoms in the unit cell. This can

f X-rays are refracted when they pass through matter, but to such a slight extent

that it is not possible to make lenses of short focal length.





FIG. 70. Diffraction of light by lino gratings. Above: grating of evenly spaced lines,

with diffraction pattern. Below: grating in which the unit of pattern is a pair of lines

(repeat distance same as in the first), with diffraction pattern.
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be demonstrated in principle by means of a simple one-dimensional

optical analogy. In Fig. 70, Plate V, is shown, first of all, a grating in

which the lines are evenly spaced. (It was made by drawing black lines

on white card, and taking a very small photograph on which the lines

are 0-2 mm. apart.) A beam of monochromatic light, on passing through

it, produces a set of diffracted beams,f the intensities of which fade off

regularly in the successive orders. In the lower half of Fig. 70 is another

grating having the same repeat distance as the first
;
but in this grating

the unit of pattern is not one Jine but two. It can be seen that in the

diffraction pattern the diffracted beams have the same spacing as those

of the first pattern, but the intensities of the successive orders do not

diminish regularly. The diffraction ofX-nlys by crystals is more complex
than this, but not different in principle. Tims, in the determination of

unit cell dimensions, only the positions of the diffracted beams need be

considered ; the intensities may be ignored.

From a powder photograph all we can obtain (apart from the intensities

of the arcs, which are irrelevant to the present problem) is a set of values

of d (= A/(2sin0)). Each arc represents a 'reflection* from a particular

set of paralle] crystal planes, but there is nothing to tell us which set of

crystal planes produces which arc; nothing, that is, except the magni-
tudes and ratios of the spacings themselves. We cannot deduce the

unit cell of the arrangement of pattern-units directly ;
our only course

is the indirect one of thinking what arrangement of pattern-units has

spacings of the observed magnitudes. This can only be done for the

more symmetrical arrangements ; for those of low symmetry, the number
of variables defining the unit cell is too great for such a method to be

possible, but for arrangements whose unit cells are defined by not more
than two variables -that is to say, for cubic, tetragonal, and hexagonal

(including trigonal) crystals it is readily accomplished.

Cubic unit cells. In a crystal having a simple cubic unit cell that

is, a crystal in which identically situated points lie at the corners of

cubes, as in Fig. 71 the distance between the 100 planes of pattern-

units is evidently a, the length of the unit cell edge; that between 010

and 001 planes is also a. For other sets of lattice planes it is a matter

of simple geometry to show that the spacing d = a/V(/&
2+P+Z2

),

where //, Ic, and I are the indices of the planes. (For a general derivation

of the expression for the plane-spacings in all crystals having rectangular
and hexagonal unit cells, see Appendix 2.) Thus the powder photograph

t Tho experimental arrangement used for photographing the diffraction pattern is

described un p. 271.

4458 K
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of a substance such as ammonium chloride which has a simple cubic

unit cell shows a set of arcs whose positions correspond*with plane -

spacings in the ratios 1 : 1/V2 : 1/V3 : 1/V4 : 1/V5, and so on. The first arc

on the photograph the one with the smallest angle of reflection is

produced by the planes having the greatest spacing the 100, 010, and

001 planes; the others follow in order of diminishing spacing.

Whenever the arc positions

in a powder photograph are

found to correspond with

spacings in these ratios, it is

evident that the substance

producing the photograph has

a simple cubic unit cell. This

is indeed usually obvious from

a mere inspection of the photo-

graph, which shows regularly

spaced arcs as in the pattern

of ammonium chloride in Fig.

121, Plate X. Note that the

gaps in this photograph are

due to the fact that not all

whole numbers are values of

hz+kz
-\-l

2
',

for instance, no

combination of the squares of

three whole numbers is equal
to 7, and therefore there is a

gap following the sixth arc.

Some cubic crystals sodium

chloride, for instance give

powder photographs in which there are many more gaps than those in the

ammonium chloride pattern. It will be shown later, in Chapter VII,

that such absences are due to the fact that the crystal in question has

a compound (face-centred or body-centred) unit cell, or to certain

symmetries in the arrangement of atoms in the unit cell. For the

determination of cell dimensions these absences need not be considered ;

we need only note that if a pattern shows spacings in the ratios of the

various values of l/V(A
2+&2+Z2

), even though some of the values are

missing, the crystals producing the pattern have cubic unit cells.

The calculations necessary to show that a crystal has a cubic unit cell

show in addition which crystal plane is responsible for each arc. Thus,

FIG. 71. Spaoings of some simple planes of

a cubic lattice.
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the 100, 010, and 001 planes are responsible for the first arc in the

ammonium.chloride pattern, the 110, Oil, and 101 planes for the second

arc, and so on.

Note that the fourth arc, which is the second-order 'reflection' from

100 planes, is labelled '200', the order being included in the index

description. Similarly the second-order 'reflection' from the 110 planes

is called 220, and the third order 'reflection' from 312 would be called

936. This practice of including the order in the index numbers has

become standard, as it makes for uniformity and avoids confusion.

Looking at it in another way, we may regard 220 as the first-order

'reflection' from a set of planes having half the spacing of 110 (see the

bottom right-hand corner of Fig. 71). "This fits in with the definition

of the indices of crystal planes given in Chapter II (p. 24) the number
of planes crossed between one lattice point and the next, along each

axial direction. Another meaning of the indices of X-ray reflections is

also important. All 'reflections' are first-order 'reflections' from planes

defined in the above manner
;
this means that there is a phase-difference

of one wave-length between waves from successive planes. Counting
the number of planes crossed between one lattice point and the next is

therefore the same thing as counting the number of wave-lengths phase-
difference between waves scattered by neighbouring lattice points. The

indices thus represent the phase-differences between waves diffracted by

neighbouring lattice points along the three axial directions. Thus, if

we take any one atom as the reference point, the 936 'reflection' is

produced when waves diffracted by the next similarly situated atom

along the a axis are 9 wave-lengths in front of those from the reference

atom, those from the next similarly situated atom along the b axis are

3 wave-lengths out, and those from the next along the c axis 6 wave-

lengths out. The indices are thus the three order numbers which

characterize diffracted beams produced by a three-dimensional grating.

For an optical line grating a one-dimensional pattern we speak of

'first', 'second', and succeeding orders of diffraction, the one order

number being appropriate to the one-dimensional character of the

pattern ; but for a three-dimensional pattern, three order numbers are

necessary to describe diffracted beams. The X-ray beam which we
have called, rather loosely, the 936 'reflection', or the 'third-order

reflection from the 312 plane', is, strictly speaking, the diffracted beam
whose order numbers are 936.

The length a of the unit cell edge can be calculated from the spacing

of any arc from the expression a d
ftkl^(h

2+kz+l2
). The results from
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arcs at l^rge angles are more accurate than those from the first few

arcs for two reasons : firstly, the errors due to the thickness $nd absorp-

tion of the specimen diminish with increasing diffraction angle (see

p. 120), and secondly, on account of the form of the Bragg equation

n\ = 2dsin0, the resolving power increases with 6 (see p. 120), as is

obvious from the fact that the ^ 2 doublets are only resolved at large

values of 0.

Although the interpretation of patterns from cubic crystals can be

done by way of calculations as above, it is more convenient to use

graphical methods as described in the next section.

Tetragonal unit cells* In crystals of tetragonal symmetry the unit

cell is a rectangular box withbwo edges equal (a) and the third (c)

different from the first two. The spacings of hkO planes those parallel

to c are in the same ratios as those of the hkQ planes of cubic crystals,

that is, in the ratios 1/V1
2
:1/V(1

2+1 2
): 1/V2

2
: 1/V(2

2+1 2
), and so on.

But the 001 spacing is not related in any simple way to a ; the ratio c/a

may have any value and is different for every tetragonal crystal ;
and

/ 7/^2 i 2
j[2\

Tiki spacings in general are given by dhkl
~ If /(

~
h~ol-

/ V \ a2 c2/

diffraction patterns of tetragonal crystals are thus less simple than

those of cubic crystals, and there is no regular spacing of the arcs, as

may be seen in the pattern of urea, Fig. 72
;
the relative spacings are

different for every different tetragonal crystal, except for the hkQ

spacings.

It would be possible to find the unit cell of a tetragonal crystal by
first picking out those arcs whose spacings are in the ratios 1 : 1/V2 : 1/V4,

etc. (these being the hkO reflections), and then assigning likely indices

to the remaining reflections by trial. But this would be a laborious

process, and there is no need to proceed in this way, since the problem
can be solved graphically. The relative spacings of the different planes

are determined by the axial ratio c/d ;
if two crystals happened to have

the same axial ratio but different actual cell dimensions, their patterns

would show the same relative spacings, though one pattern would be

more spread out than the other if the same X-raywave-length were used.

Graphs connecting the relative values of d and c/a can be constructed,

and the whole set of arcs in a powder pattern identified by finding where

their relative spacings fit the chart. In order to deal only with relative

spacings so that only the shape (not the actual size) of the cell enters

into the problem, the chart is made logarithmic with respect to d. The

first such charts were published by Hull and Davey (1921), who plotted
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log d for each crystal plane against c/a. These charts are rather small,

and for small values of c/a do not extend far enough for some purposes.

A new method of constructing such a chart entirely without calculation

002

3V 25 20 t-6 12 JO $ -8 7 -6

AXIAL RATIO %

FIG. 72. Graphical method for indexing the powder pattern of a tetragonal crystal.
The pattern shown is that of urea.

is given in an appendix. The method of using these charts is to pl6t

on a strip of paper the values of log d (or 2 log d for the new form of

chart) for all the arcs on the photograph, and move the strip about on

the chart, keeping it always parallel to the logd axis, until a good
match between strip points and chart lines is found ; this is illustrated

in Fig. 72. (Some reflections may.be absent ; this feature may be ignored.)
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More than one matching position will be found ; the position giving the

simplest indices will naturally refer to the simplest unit cell. When
the correct position is found, the indices of all arcs can be read off on

the chart. The axial ratio can also be read off approximately, but it is

better to calculate a and c from the spacings of selected arcs. The length

a can be obtained from the spacing of any hkO arc, and c from any of

the OOZ arcs, the most accurate results being obtained from the arcs at

the largest reflection angles. Arcs representing two or more different

crystal planes with about the same spacing should naturally be avoided.

If unambiguous hkO and OOZ arcs are not available, both a and c can

be calculated from the spacings of any two arcs having different hk and

I values from the equations
*

the most accurate results being obtained from a pair of arcs (such as 21 1

and 102 in the urea photograph, Fig. 72), one of which comes from a

plane with high hk and low I, and the other from a plane with low hk

and high I ; they should be fairly near together on the photograph so

that absorption and other errors are about the same for both. Calcula-

tions should be made from several pairs of arcs, and the results averaged.

Reflections at large angles give more accurate results than those at

small angles see Fig. 68. (For high precision methods, see p. 180.)

Note that a tetragonal cell with an axial ratio of 1 is cubic, and the

chart at this position can therefore be used for cubic crystals.

Hexagonal, trigonal, and rhombohedral unit cells. In many
crystals of hexagonal and trigonal symmetry the unit cell has a diamond-

shaped base, a and b being equal in length and at 120 to each other;

c is perpendicular to the base and different in length from a and b.

The axial ratio c/a is different for each crystal. The spacings d of the

planes are given by
/4 (h*+hk+k*)

,

Z*\

The indices for the arcs on a powder photograph can be found graphi-

cally on a suitable chart (see Appendix 3) in a way similar to that

described for tetragonal crystals, and the axial lengths calculated from

the spacings of suitable pairs of arcs by the above equation.

For some trigonal crystals, the unit cell is a rhombohedron a figure

which has three equal axes which make equal angles not 90 with each

other; the cell is, so to speak, a cube either compressed or elongated
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along a body diagonal. The spacing d of any set of atomic planes hkl

is given, in terms of the unit cell edge a and the interaxial angle a, by
the expression

__ / /(

hkl
~~

/ A/ ((i'
2^2

cos3a 3 cos2
a: I

a))'

It is not easy to determine directly a and a from a powder photograph

by the use of this rather unwieldy expression ; fortunately, however,

the atomic arrangement in rhombohedral crystals can always be referred

FIG. 73. Rhombohedral cell (bold linos) with corresponding hexagonal
cell (narrow hues) and hexagonal prism (dotted).

to a larger hexagonal cell (Fig. 73) whose dimensions an and CH are

related to those of the rhombohedral cell, aR and a, by the relations

,2 "// Cjf

"O"'

.

sm- = 3

Hexagonal indices hH kff 1H are related to rhombohedral indices hR kR 1R

by the relations , _ 7 7,76ri -=
tiff /C//-H,

31R = 2hH kn -\-lH .

The procedure is to find the simplest hexagonal indices on the chart

already mentioned, to calculate the dimensions of the hexagonal cell,

and finally to find the dimensions of the true rhombohedral cell by the

above expressions.

If it is not known whether a crystal has rhombohedral symmetry or

not, this question may be settled by assigning hexagonal indices to the

reflections and then surveying these indices to see whether all of them

are such that AJJ^+^HJ ^//+2A?jtf+ZJy, and 2hH kH ~^-lH are

divisible by 3
;
if they are, the true unit cell is rhombohedral.
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Other types of unit cells. The dimensions of orthorhombic, mono-

clinic, and triclinic unit cells cannot usually be determined from powder

photographs. The number of variable parameters is too great to permit
the use of charts for finding the indices for the arcs. Even for ortho-

rhombic crystals a three-dimensional figure of a very complex type
would be necessary, and this is impracticable. The only hope of finding

the unit cell dimensions from a powder photograph of one of these less

symmetrical crystals is by trial: that is, by postulating simple indices

for the first few arcs, calculating the unit cell dimensions on these

assumptions, and then finding whether the spacings of the remaining
arcs fit this cell. Unless external evidence is available, such a process of

trial is likely to be, at the very% least, extremely lengthy, and more often

than not, quite hopeless. If, however, external evidence is available,

such as the axial ratios and angles deduced from goniometric or micro-

scopic measurements, there is more hope, since, as pointed out in Chapter

II, the shape of the 'morphological' unit cell is either the true shape or

is closely related to the true shape, for instance by the halving or doubling
of one of the axes with respect to the others. Such a clue may lead to

the postulation of correct indices for the first few arcs and hence to the

indexing of the whole powder photograph. The cell first chosen may
be too large ; if, for instance, all the h indices are found to be even, then

the length of the true a axis is half that first chosen: the change to this

true a axis will halve all the h indices.

The spacings of the various planes for these crystals are given by
the following expressions:

Orthorhombic dhkl
~

Monoclinic dhkl

For triclinic crystals the expression is so unwieldy that it is not

worth while attempting to use it
;
a graphical method based on the con-

ception of the reciprocal lattice should be used (see pp. 156-8). The

reciprocal lattice method is also more rapid than calculation for mono-

clinic crystals.

The difficulties in the interpretation ofpowder photographs of crystals

of low symmetry lie in the fact that in a powder photograph all the
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information is crowded along one line, and this information consists

only of the; spacings of the planes, without any geometrical indication

of the relative orientations of the crystal planes producing the various

arcs. This is inevitable in a powder photograph on account ofthe random

orientation of the crystals in the specimen. Only by departing from the

randomness of orientation can we obtain X-ray diffraction photographs
which give geometrical indications of the orientation of the crystal

planes producing the various reflections. Obviously it is best to use a

FILM

CRYSTAL

(a)

FIG. 74, Arrangements for taking single-crystal rotation photographs
(a) on flat films, (6) on cylindrical films.

single crystal set in some definite way with regard to the X-ray beam,
so that the reflections from differently oriented planes shall fall on

different parts of the recording film.

Single-crystal rotation photographs. The method found most

convenient for finding the unit cell dimensions of crystals of low sym-

metry is to send a narrow monochromatic X-ray beam through a single

crystal at right angles to one of its axes, to rotate the crystal round

this axis during exposure in order to bring a number of different crystal

planes successively into reflecting positions, and to record the reflec-

tions either on a flat plate or film perpendicular to the primary beam

(Fig. 74 a), or better still (because more reflections are registered) on a

cylindrical film surrounding the crystal, the cylinder axis coinciding

with the crystal's axis of rotation (Fig. 746). A single-crystal camera

differs from a powder camera only in the necessity of having arrange-



138 STKUCTUBE DETERMINATION CHAP, vi

ments for the accurate adjustment of the crystal and the use of a much

longer cylinder of photographic film. The crystal is mounted on the

stem of a goniometer head ;
whenever possible, accurate adjustment is

effected by making use of the reflection of light by the faces, in the

manner described in Chapter II. (Ill-formed crystals may be set

accurately by X-ray methods ;
the procedure cannot be given at this

stage it will be found on p. 173.) Descriptions of 'universal' X-ray

goniometers suitable for taking (among other things) rotation photo-

graphs have been given by Bernal (1927, 1928, 1929), Sauter (1933 a),

and Hull and Hicks (1936) ;
Bernal's papers are particularly valuable, as

they give much useful information on procedure. Aperture systems for

defining the X-ray beam are tUe same as in powder cameras ;
a 0*5 mm.

channel in a brass tube, with the usual guard tube, is suitable for

most purposes. Fogging by the primary beam is avoided either (as in

the powder camera, Fig. 62) by the provision of a trap or by making
a small hole in the film through which the primary beam passes.

Goniometer cameras are not usually made light-tight ; instead, the film

is contained in an envelope of black paper or other material which stops

light but not X-rays. X-ray goniometers are usually fitted, not only

for complete rotation of the crystal, but also for oscillations over limited

angular ranges ; this is usually effected by heart-shaped cams controlling

the angular movement.

The crystal is mounted by sticking it to a glass hair (preferably lithium

borate glass) by a trace of plasticine, shellac, or wax ; the glass hair in

turn is stuck to the goniometer stem. Crystals which are deliquescent,

efflorescent, or rather volatile must be sealed inside lithium borate tubes

(Robertson, 1935 a). It is in some cases necessary to take X-ray photo-

graphs of crystals immersed in their own mother liquor ;
here again,

thin-walled capillary tubes must be used (Bernal and Crowfoot, 1934 a).

The type of X-ray photograph given by a crystal rotated round a

principal axis is illustrated in Fig. 75, Plate VI, which shows the

diffraction pattern of the orthorhombic crystal potassium nitrate

rotated round its c axis. The most obvious feature of this photograph
is the arrangement of the diffraction spots on a series of straight

horizontal lines. The reason for this will be apparent when it is remem-

bered that along the c axis there are identical diffracting units (groups

of atoms) spaced a distance of c apart. It has already been shown (p. 1 1 5)

that a row of identical, equally spaced diffracting units perpendicular
to an X-ray beam produces cones of diffracted rays at angles given by
n\ = c cos

<f> 9
where A is the X-ray wave-length, c the distance between
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FIG. 75. Single-crystal rotation photographs. Above : potassium nitrate (orthorhombio ;

rotation axis, c). Centre: gypsum (monoclinic; rotation axis, c). Below: benzil (hexa-

gonal ; rotation axis, c).
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the diffracting units, ^ the semi-vertical angle of the cone of diffracted

rays, and n a whole number. On a cylindrical film having the point-

row for its axis, these cones of rays would be registered as a series of

straight lines. A crystal is not a single row of diffracting units, but

consists of many identical rows of such units, all parallel to each other

and packed side by side in a precise way, arid on account of the three-

dimensional character of the assemblage of diffracting units, diffracted

beams are produced, not all along each cone, but only along specific

directions lying on the cone, the directions being such that the Bragg

equation A = 2d sin 8 is satisfied ;
thus we get on the cylindrical film,

not continuous straight lines, but spots lying on straight lines. The

lines of spots are usually called 'layer lines'.

The length of c can be obtained very simply from this photograph

by measuring the distance y of any layer line from the equator ;
if the

camera radius is r, then r/y is tan<
;
c is then given by wA/cos <, n being

the number of the layer line selected (the equator having n = Q). For

the potassium nitrate crystal, c is 6-45 A. If a flat film is used instead

of a cylindrical film, the layer lines are shown, not as straight lines

but as hyperbolae. Tan< is given by r/y
1

', where y
r

is the shortest dis-

tance from the hyperbola to the equator the distance at the meridian,

Unit cell dimensions from rotation photographs. The simplest

way of measuring the lengths of the three edges of the unit cell of an

orthorhombic crystal is evidently to take three rotation photographs,

the crystal being rotated round a different axis for each photograph ;

the axial directions are chosen on the basis of morphological measure-

ments, and these directions are necessarily, by symmetry, parallel to

the true unit cell edges. For the potassium nitrate crystal the lengths

of the edges of the unit cell were found by D. A. Edwards (1931) to be :

a = 5-42 A ; 6 = 9-17 A
;
c = 6-45 A.

The same method can be used for all crystals, irrespective of sym-

metry ;
axial directions are chosen, and interaxial angles determined,

by measurements of interfacial angles, while the lengths of the axes

are determined from X-ray rotation photographs. There are pitfalls

here, however; the directions selected as crystal axes on the basis of

morphological measurements may not always be parallel to the edges

of the simplest unit cell, which will be referred to here as the 'true unit

cell' the smallest cell which has the correct symmetry and accounts

for all the X-ray reflections. Consider first the most highly symmetrical

crystals those belonging to the cubic, tetragonal, and hexagonal

(including trigonal and rhombohedral) systems. (Although, as we have
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seen, the unit cell dimensions of such crystals can usually be determined

from powder photographs, nevertheless it may happen that faint

reflections not seen on powder photographs are registered on single-

crystal photographs, and these may necessitate revision of cell dimen-

sions; hence, single-crystal photographs should be taken whenever

possible.)

Axial directions in cubic crystals are fixed by symmetry, as in the

orthorhombic crystals already considered. But in tetragonal crystals,

TRUE 110

MORPHJ'MO"
'-rmim

MORPH.'W
-TRUE 100

**

/.A ROTATION ""<*' ROTATION
1 ' AXIS1 AXIS 1

FIG. 76. Determination of unit cell dimensions by rotation photographs,
(a) for tetragonal, (b) for hexagonal crystals.

although there is no doubt about the direction of the unique c axis, on

the other hand the morphologically chosen a axis may be at 45 to the

true a axis : the prism face selected as 100may really be 1 10 (see Fig.76 a),

and thus an X-ray photograph with direction 1 as rotation axis would

give (from the layer-line spacing) the repeat distance al9 which is V2

times the true unit cell edge a2 . Therefore, to find the true a for a

tetragonal crystal by this method, it would be necessary to take two

rotation photographs, one with the morphological '[100]' direction 1

and the other with the morphological '[1 10]
'

direction 2 as rotation axis ;

one repeat distance will be found to be V2 times the other, and the

smaller of these lengths is evidently the true a. Similarly, for hexagonal

crystals (Fig. 76 b) it is necessary to take two photographs with

directions 1 and 2 respectively as rotation axes; one repeat distance

(a) will be found to be V3 times the other ( 2 ), and the latter is evidently
the correct a.



CHAP. VI UNIT CELL DIMENSIONS 141

FKJ. 77. Alternative monoclinic

cells (6 projection).

Monoclinic crystals may present more serious difficulties of a similar

type : the b axis is fixed by the symmetry (it coincides with the single

twofold axis or is perpendicular to the single plane of symmetry) ; but

the a and c axes are not fixed in any such way. We may encounter the

state of affairs illustrated in Fig. 77, where the morphological '001' plane
is really 101 of the true unit cell, and the

morphological '100' is really 10T; and in

addition, the true angle /? would be differ-

ent from the morphologically determined

j8'. Here we should evidently have to

take X-ray photographs with the crystal

rotating round directions parallel to OP
arid OQ in order to obtain the dimensions

of the simplest unit cell. Note that the

alternative cell defined by a", c, and j8"

has the same size as that defined by a, c,

and jS, and has an equal claim to be

regarded as the true unit cell, but may
be less convenient because its

j3 is greater.

It is possible that the relations between

the morphologically chosen axial direc-

tions and the edges of the simplest unit

cell might be more remote, in which case

it would be difficult to find the latter by
the simple method hitherto described. In

the triclinic system, still more difficulties

may be encountered. In crystals of

rhombohedral symmetry the simplest

unit rhombohedron may be one with quite

different values ofa and a from those of the

morphologically selected rhombohedron ;

this is so for calcite, for instance (Fig. 78).

The straightforward way out of these difficulties is to accept provision-

ally the cell edges selected on morphological evidence, and to find the

indices of all the reflections on this basis ;
then to survey the indices to

see whether any smaller cell will account for all the reflections, thus

simplifying the indices. The smallest cell which has a shape appropriate
to the crystal system and will account for all the reflections is the true

unit cell. This procedure may appear very laborious, but the graphical

methods now to be described greatly simplify and shorten the work.

Fio. 78. Large (32-molecule) unit

rhombohedron of calcite based on

cleavage rhomb. The true unit

cell is the small (2-molecule) stoop
rhombohedron shown inside.
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For the determination of unit cell dimensions, detailed indexing of

the reflections on single-crystal rotation photographs is only necessary

in certain cases, as indicated in the foregoing discussion ;
the complete

indexing of rotation photographs of all types of crystals is, however,

necessary whenever an investigation is to be carried beyond the

determination of unit cell dimensions (to the discovery of the symmetry
of the arrangement of atoms in the crystal, or to the elucidation of the

arrangement in detail), and it will be appropriate to deal with the whole

subject at this stage.

One further remark must be made before taking up this subject.

Morphological features are useful in suggesting possible unit cell edges,

but it is possible to proceed* with very meagre evidence of this sort

(such as a single direction, as in rod-shaped crystals lacking well-defined

faces), or even with none at all. There are initial difficulties in setting

such crystals in a suitable orientation on the goniometer, but these can

be solved by X-ray methods ;
see p. 173. As soon as a single crystal has

been set sufficiently well to give an X-ray rotation photograph showing

recognizable layer lines, the unit cell dimensions and the indices of all

the reflections can be found by the methods now to be described.

Indexing rotation photographs. Preliminary consideration.

The spots on the equator of a rotation photograph are obviously reflec-

tions from atomic planes which were vertical during the exposure. In

Fig. 75, Plate VI, the equatorial spots are reflections from planes parallel

to the c axis, that is, hkQ planes : the third or I index for these reflections

is by inspection. The other two indices, h and &, of all the equatorial

reflections may be found from the spacings of the planes, which are

worked out from the reflection angles 8 by the Bragg equation. The

spacing d of any hkQ plane of an orthorhombic crystal is given by
/ //A2 k2

\
d = 1 / /I--]-); the simplest way of finding h and k for all the reflec-

/ V \a* 62/

tions is to plot log d for each spot on a strip of paper and fit this on a

chart (Fig. 79) similar to, but simpler than, the charts used for indexing

powder photographs. The construction of such a chart (which shows

logd for all values of h and k and a wide range of axial ratios a:b) is

described in Appendix 3. The h and k indices for each reflection are

read off on the chart when the match position is found. Note that

in some cases, owing to the absence of many equatorial reflections

(see pp. 217-40), the simplest match position is not correct. As a guide
to the correct match position, log rf100 and log d010 (already known from

the other two rotation photographs) sliould be marked on the strip.
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For the spots on layer lines above and below the equator, one

index (I) is .given by inspection. It should be remembered that the

indices of reflections represent

phase-differences between waves

diffracted by neighbouring units

along the three axial directions

(see p. 131). The spots on the

first layer line above the equator
lie on a cone for which n in the

equation nX = ccos< (see p. 138)

is 1
;
this means that waves coming

from any one diffracting unit are

one wave-length behind those from

the next diffracting unit above it ;

in fact, n in the cone equation is

Z, the third index number. Thus,

all spots on the fourth layer line

(fourth cone) above the equator

are from hk4: planes (those on the

fourth layer line below the equator
are from M4 planes), and so on.

The I index of every spot is thus

obvious by mere inspection. The

other two indices are best obtained

by a graphical method. Just as all

spots with the same I indices (in

the present example) lie on definite

lines, so all spots with the same hk

values lie on definite curves. But

these 'hk curves' have a form less

simple than the 'I curves'. The

form of these curves is most

readily determined by introducing

a piece ofmental scaffolding known i-o -3 -8 -7 -6 -s -4r &
AXIAL RATIO a

/b
as the 'reciprocal lattice' a con-

ception which has proved to be a

tool of the greatest value for the

solution of all geometrical prob-

lems concerned with the directions of X-ray reflections from crystals.

It was introduced by Ewald (1921).

Fid. 79. Graphical method for indexing

equatorial reflections on rotation photo-

graphs. The pattern shown is that of

polyehloroprene (hkO reflections).
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The 'reciprocal lattice*. From a point within a crystal imagine
lines drawn outwards perpendicular to the lattice planes ; calong these

lines points are marked at distances inversely proportional to the

spacings of the lattice planes. The points thus obtained form a lattice

that is, they fall on sets of parallel planes. (For a simple proof that

they do form a lattice, see Appendix 4.) This imaginary lattice is known

as the 'reciprocal lattice'. An example is shown in Fig. 80
;
all points

having the same I index fall on a

plane, and the plane containing all

hkl points is parallel to that con-

taining the hk2 points, and so on.

By thinking of this imaginary

lattice, in which the planes of the

real lattice are symbolized by

points, we are obviously brought
nearer to the single-crystal X-ray
diffraction pattern with its array

of spots, especially as the layers

of points in the reciprocal lattice

correspond with the layers of spots

on the diffraction pattern. In fact,

a rotation photograph such as one

of those in Fig. 75, Plate VJ, is, as

we shall see, strongly similar to the

pattern we should get by rotating

the reciprocal lattice round the c

axis of the crystal and marking off

the positions where the reciprocal lattice points pass through a plane

through the c axis (Fig. 81). The resemblance between this 'reciprocal

lattice rotation diagram' and the X-ray photograph is closest near the

centre of the photograph ;
elsewhere the X-ray photograph is a some-

what distorted version of the reciprocal lattice rotation diagram.

The process of reflection by the real lattice cannot be visualized in

terms of the reciprocal lattice
;
but the condition for reflection by the

real lattice (the Bragg equation) naturally has its precise geometrical

equivalent in terms of the reciprocal lattice. This is illustrated in Fig. 82,

in which XY represents the orientation of a set of crystal planes which

we will suppose is in a reflecting position. Along the normal to this set

of planes is the corresponding reciprocal lattice point P, the distance of

which from the reciprocal lattice origin X is inversely proportional to

FIG. 80. Reciprocal lattice of an
orthorhomhicj crystal.
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d, the spacing of the planes in question (defined as on p. 131 so as to

include the 'order* of reflection) ;
the unit of length is chosen so that XP

is equal to \/d rather than 1/d for a reason which will presently appear

(A is the characteristic X-ray wave-length, which in any particular ex-

periment is constant). The X-ray beam QX is reflected by the plane

at an angle 6, the reflected beam XR making an angle 20 with the

primary beam. If T lies in the plane QXR, the angle QXY = 6.

At P draw a line perpendicular to XP to meet the primary beam at

Q. It must also lie on this line, since primary beam, reflected beam, and

FIG. 81. Formation of reciprocal lattice rotation diagram.

the normal to the reflecting plane all lie in a common plane. QE and

XT are parallel to each other (since both are at right angles to XP and

are in the same plane), hence the angle PQX = QXY 0. Since the

angle QPX is a right angle, PX/QX = sin 6 ; therefore

\ld A
__ _ _

sin# sin 9 dsm9*

But the Bragg equation states that when a set of crystal planes reflects

X-rays,

Hence QX = 2. Thus, for every different set of crystal planes when

in a reflecting position, the above construction brings us the line QX
of constant length 2 units. For every possible position of P the angle

QPX is a right angle, hence P always lies on a circle which has QX (=2)
as its diameter. To plot the positions occupied by all reciprocal lattice

points when the planes they symbolize are in reflecting positions, rotate
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RECIPROCAL
LATTICE
ROTATES
HERE

the circle QPX about its diameter QX ;
the sphere QSXP is obtained.

(The reason why the reciprocal lattice is made on the scale XP = X/d

is now apparent ;
it is to give the sphere QXSP unit radius.)

In other words, the condition for reflection, in terms of the reciprocal

lattice, is this : construct a sphere of unit radius having the primary

beam along its diameter. Place the origin of the reciprocal lattice at

the point where the primary beam emerges frpm the sphere. As the

crystal turns, the reciprocal lattice, in

turning about its origin, passes through
the sphere (Fig. 83), and whenever a

reciprocal lattice point (distant X/d from

the origin) just touches the surface of

the sphere (the 'sphere of reflection') a

reflected beam flashes out, being re-

flected by the crystal plane correspond-

ing to the reciprocal lattice point.

Note that if in Fig. 82 we join O, the

centre of the sphere, to P, the angle

OQP = OPQ = 0, and thus the angle

XOP = 29
\
OP is therefore parallel to

XB and, equally with XR, represents

the direction of the reflected ray. The

problem of finding the position of any
reflected spot on an X-ray photograph
therefore resolves itself into (1) finding

where the reciprocal lattice point for

the plane in question touches the sur-

face of the sphere of reflection, and then (2) finding where the (produced)
radius through this point strikes the film. This procedure is valid for

all types of single-crystal X-ray photographs. In the particular case

of a crystal rotating round a principal axis (say c) which is perpendicular
to the X-ray beam, the reciprocal lattice points are in layers parallel

to the equatorial section of the sphere of reflection (Fig. 83), and remain

on the same level as the reciprocal lattice rotates roundXC ; consequently
all the points on any one layer that is, all points having the same I

index pass through the surface of the sphere at various points lying
on the circle PNM (Fig. 82) which is parallel to QSX. If we joined the

centre of the sphere to each of these points we should get a set of Unes

lying on the surface of a cone. We have thus arrived, by way of the

conception of the reciprocal lattice, at the same conclusion as that

FIG. 82. The condition for reflection

in terms of the reciprocal lattice.

Reflection occurs when a reciprocal
lattice point P touches the surface

of the sphere of reflection.
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already drawn from a consideration of diffraction by a row of scatter-

ing points, namely, that when a single crystal is rotated round its c

axis and an X-ray beam passes through it perpendicular to its c axis,

all reflected rays from planes having the same I index lie on a cone.

The semi-vertical angle of this cone, <, we have already seen is given by
IX = ccos< ;

this is also obvious from Fig. 84 (OU = IX/c
= cos<).

When the reflections are recorded on a cylindrical film the height y
of each layer of spots above the equator is r cot <, where r is the radius

of the cylinder.

RECIPROCAL

LATTICE
'ROTATES HERE

C

FIG. 83. Reciprocal lattice passing through sphere of reflection

as it rotates.

Since the directions of reflected rays are obtained by joining the

centre of the sphere to points on its surface, the crystal itself may be

regarded as rotating in the centre of the sphere of reflection, while the

reciprocal lattice of this same crystal rotates about a different point
the point where the beam emerges from the sphere. If this seems odd,

it must be remembered that the reciprocal lattice is a geometrical

fiction and should not be expected to behave other than oddly; the

fact is, the reciprocal lattice is concerned with directions ;
its magnitude

and the location of its origin are immaterial.

As for the precise position of each reflected beam, and the point at

which it strikes the film, this evidently depends (for any one layer of

reciprocal lattice points, any one cone of reflections) on the distance of

the reciprocal lattice point from the axis of rotation. A point whose

distance from the axis of rotation is equal to the shortest distance from
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this axis to the circle PNM would just touch the sphere at T (Fig. 84 a

and 6), which lies on the line UV, parallel to the primary beam; the

reflected beam for this plane would travel along OT, striking a film of

^ on^e meridian

W

RECIPROCAL LATTICE

ROTATES HERE of the film, directly above the

central spot X. Points nearer

the axis of rotation than T
would never touch the sphere

at all, and the planes they

represent would never reflect.

Other points whose distance

from the axis of rotation lies

between TV and N V touch the

sphere at points such as P
;

what we want to know is the

angle PUV (or </r),
since this

angle determines the distance x

of the reflected spot from the

meridian of the film. To find

we have to solve the triangle

PUV. Now UV is 1 (the radius

of the sphere). UP, the radius

of the circle of contact, is

Therefore, if we know ,
all three

sides of the triangle are known
and the angle ifj

can be found.

is x/r radians.

In practice, we want to find

the coordinates of a reciprocal

lattice point from the measured

position of a spot on the film.

This is most simply done by a graphical method, as described below.

If, however, it is desired to do it by calculation, for the sake of greater

accuracy, the following expressions are required. If the coordinates of

a spot on a cylindrical film are x (along the equator) and y (along the

meridian), the distance of any reciprocal lattice point from the equa-

torial plane (the circle QSX) is cos^ -- cos(cot""
1
2//r). The distance f

JNW

FIG. 84. Sphere of reflection surrounded by
cylindrical film of unit radius, a. Elevation.

6. Plan.
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of the point from the axis of rotation is (solving the triangle PUV
having two sides of length 1 and sin <, and the included angle iff) given by

sin2{cot~%/r)} 2 sin{cot-%/r)}cos(o;/r)].

Bernal (1926) worked out and for all positions on a cylindrical

film, and gives a chart showing contours of equal and equal , suitable

for a camera of diameter 10 cm.
;

it is only necessary to place a

rotation photograph on the chart, and read off the and coordinates

for every spot on the film. For other camera sizes this chart (illus-

trated on a smaller scale in Fig. 85) may be photographed and re-

produced on the correct scale. A similar chart for photographs on flat

films is also given in the same paper. Greater accuracy is attained

by measuring the positions of spots on the photograph, using a

millimetre rule or a travelling microscope, and then plotting these

positions on a special large-scale Bernal chart.

For the purpose of visualizing the geometry of the reciprocal lattice

in terms of the actual camera dimensions, it is perhaps useful to multiply
the dimensions of the reciprocal lattice and of the sphere of reflection

by r, the radius of the cylindrical film, since in this case the origin of

the reciprocal lattice is the point where the primary X-ray beam strikes

the film, and the axis of rotation of the reciprocal lattice is the vertical

line through this point. Let us recapitulate the geometrical construc-

tion on this scale.

We have, first of all (Fig. 86 a), the primary beam passing through
the crystal at right angles to its axis of rotation and striking the cylindri-

cal film (radius r) at the point X. Erect the axis XC parallel to the

cylinder axis; the reciprocal lattice will rotate round XG (its origin

being at X) while the crystal itself rotates round OS. In the cylinder,

describe a sphere having the same radius r (Fig. 866) ; this will be the

sphere of reflection. Any reciprocal lattice point P (distance from the

origin = rX/d) rotates round XC ; as soon as it touches the surface of

the sphere (Fig. 86 c), a reflected beam flashes oat, and strikes the film

at Y!. On further rotation (Fig. 86 d), the point passes again through
the surface of the sphere at P2 ,

and a reflection again flashes out,

striking the film at Y2 .

A Bernal chart for a cylindrical can\era of any radius may be con-

structed graphically by drawing the plan and elevation of this model.

Thus, if the height of any reciprocal lattice point above the origin is r
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and its distance from the axis of rotation is rg, the position of the

reflection on the film is obtained in the following way. Draw a circle

of radius r (Fig. 86 e), and then a chord NUT at a distance r from the

centre (this is the circle of contact seen edgewise) ; UT is the radius of

BEAM

FIG. 86. a-d. See text, e and / illustrate giaphical construction

of a Bernal chart.

the circle of contact for this reciprocal lattice point. Join OT and pro-

duce to W on the line XC which is parallel to OU. WX is then the

ordinate y of the spot on the film. Now draw the plan, that is, draw

another circle of radius r (Fig. 86 /) and in it describe a circle of radius

UT. On this circleNT mark off the points Px ,
P2 which are at a distance

rg from X, and produce UPl to Yl and UP2 to 72 . The arcs XYl and

XY2 are the abscissae x of the two reflections on the film produced by
this plane. By doing this for a number of different values of r and r,
the complete chart is obtained.
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Indexing rotation photographs by reciprocal lattice methods.
Orthorhombic crystals. First of all, the coordinates and for each

reflection on the photograph (Fig. 87) are found in one of the ways
just described; these coordinates may be plotted as in Fig. 88 a to

form the reciprocal lattice rotation diagram. The problem now is to

decide which point of the reciprocal lattice itself corresponds to each

spot on the rotation diagram.

I -2 -3 4 -5 '6 7 '8 '9 10 M

FIG. 87. Coordinates of spots on rotation photograph of orthorhombic crystal.

Consider first the equatorial reflections. For a crystal rotated round

its c axis, the equatorial reflections are those of hkO planes. To assign
correct indices it is only necessary to make a diagram (Fig. 886) of

the zero level of the reciprocal lattice (the dimensions being already
known from layer-line spacings on other photographs), and to measure

with a ruler the distance f of each point from the origin ;
it is then

obvious which reciprocal lattice point corresponds to each spot on the

rotation diagram.
As for the upper and lower layer lines of the rotation diagram, it is

immediately obvious that the spots on them lie exactly above or below

equatorial spots the values for spots on all layer lines are the same

(except where certain spots are missing). The reason is that the 101

point of the reciprocal lattice is at the same distance from the axis of

rotation as 100 (Fig. 80), and in general a point hkl is at the same distance

from the axis of rotation as the corresponding MO point. Therefore,
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knowledge of the indices of the equatorial spots immediately leads to

the correct indices for all the remaining spots. The vertical lines of

400 040

FIG. 88. a. Reciprocal lattice rotation diagram corresponding to Fig. 87.

b. Graphical determination of f values for an orthorhombic crystal.

spots having the same hk indices are known as 'row lines*. The row lines

are often obvious on the photograph itself, though they are not straight

lines see the photograph of benzil in Fig. 75, Plate VI.
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It should be noted that some reflections may be missing from the

photograph on account of certain symmetries in the atomic arrangement

(see Chapter VII), others because they are so weak that they do not

produce a perceptible blackening on the film. Still others (such as 001,

002) are absent because the crystal planes have not been in reflecting

positions ;
the reciprocal lattice points which do pass through reflecting

positions are contained within a circular area of radius 1, corresponding

to the boundary of the sphere of reflection (see Fig. 88 a). It is useful

FIG. 89. Reciprocal lattice (hQl plane) of moiio-

rlinic crystal. Tho 6 projection of the real coll is

also shown (a, r, /?).

FIG. 90. Monoclinic reciprocal
lattice rotated round 6.

to remember that the distance from the origin to each point on the

rotation diagram is X/d for the corresponding crystal plane.

Monoclinic crystals. The procedure already described is followed

as far as the determination of and for each point and the construction

of the reciprocal lattice rotation diagram. But, on account of the lower

symmetry of the monoclinic cell, the rotation diagram is less simple than

that of an orthorhombic crystal.

A monoclinic unit cell has its a and c axes at an angle /J not 90, and

its b axis normal to the ac plane. The reciprocal lattice has a similar

form, but it should be noted that, whereas in the orthorhombic system
all three reciprocal axes are parallel to the real axes, in the monoclinic

system only the 6* axis of the reciprocal lattice is parallel to the real

6 axis. The a* and c* reciprocal axes are not parallel to the a and c

axes of the real cell : a* (length = A/d100 ) is perpendicular to c, and c*

(length = A/d001 ) is perpendicular to a (Fig. 89) ;
and the angle /?* of

the reciprocal cell is the supplement of the angle )3 of the real cell.

If the crystal is rotated round its b axis (Fig. 90) the equatorial spots
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are reflections from hOl planes. The | values for these spots are found

as before by measuring the distance from the origin to each point of

the (non-rectangular) hOl net plane (Fig. 89). Note that the indexing of

equatorial reflections in this case cannot be done by a log d chart, since

there are three variables, a, c, and
/? ;

the reciprocal lattice method is

essential. Once the indices for the equatorial reflections have been

FIG. 91. Monodinic reciprocal lattice rotated round normal to a*6* piano

(c axis of real cell). Above : general view. Right : real roll, same orientation.

Below: view (on smaller scale) looking straight down c axis.

found, those of the reflections on upper and lower layer lijies follow at

once, since all reciprocal lattice points having the same h and I indices

(such a set as 201, 211, 221, 231, and so on) are at the same distance

from the axis of rotation and thus form row lines.

Rotation round the a or c axis of a monoclinic crystal (Fig. 91) results

in a different type of photograph ;
the spots fall on layer lines, as always

when a crystal is rotated about a principal axis, but not on row lines.

Consider first the equatorial spots on a photograph obtained by rotating

the crystal round the c axis
;
these are from hkO planes. The zero (hkQ)
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level of the reciprocal lattice is a rectangular array of points, from which

values are obtained as before by measurements from the origin. The

other levels are also rectangular networks, but they do not lie directly

above or below the zero level, being displaced in the direction of a* by

YIG. 92. Graphical method for determining f values for non-equatorial
reflections of monoclinic crystal rotated round c.

A //I?''...

FIG. 93. Part of reciprocal lattice rotation diagram for monoclinic crystal

rotated round c axis, constructed by measurement of Fig. 92.

distances which are multiples of c*cosj3*. The 101 point, for instance,

is not the same distance from the axis of rotation as the 100 point, and

hence10Z reflections on the photograph do not lie on row lines but on

curves whose form depends on j3*. The distances of the non-equatorial

points from the axis of rotation might be obtained by drawing the pro-

jections of the various levels on the equatorial plane, as in Fig. 91 ;
but
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it is simpler to use the same network the already drawn zero level

for all layers, marking off along a* a set of new origins, one for each

level (Fig. 92). It is important to note that the origins for the upper

layers (positive values of I) lie along the negative direction of a*. The

f values for all hkl points are found by measuring the distance from

the origin for Z = + 1 to the appropriate hkO point ; and so on for other

layers. Note that for 10T (or T01) is smaller than f for 101. The

rotation diagram produced in this way is shown in Fig. 93. Only OOZ

points, and hOl points having h constant, lie on straight lines (inclined

to the itxis at the angle j8*), all others lying on curves.

The rotation diagrams of monoclinic crystals can also be used for

graphical determination of the spacings of the planes ;
this is done (as

in Fig. 93) by measuring the distance of each point to the origin. This

graphical method is much more rapid than calculation.

Triclinic crystals. None of the angles of a triclinic cell are right

angles ; in consequence, none of the axes of the reciprocal lattice are

parallel to those of the real lattice, and the angles a*, )3*, and y* of

the reciprocal lattice are all different from those (a, /?,
and y) of the real

lattice. The relations between these quantities are as follows :

cos 6 cosy cos a
',_ _ ,-

;
'

; ,

sin p sin y

cosfi* = cos r cos"-CQS ff

sin y sin a
'

A cos a cos fi cos y
cosy* = --r

-
. y

sin a sin p

a* = -fccsina,

6* = casinjS,

* A Ac* = - aosmy,

where D = a&cV(l+ 2cosacos/?cosy cos2a cos2
/? cos2y).

These formulae are so unwieldy that it is better to derive the reciprocal

lattice elements directly from the spacings and angles of the planes :

... A r * A j. A
0* = -; b*==^ ; C*-=T-'a!00 "'010 a001

and

a* = ^(010): (001), 0* = L (100): (001), y* =-- L (100): (010).



FIG. 94. Triclinic reciprocal lattice. Above, left: general view. Right: real cell,

Below: view looking straight down r, showing zero and first layers only.

FIG. 95. Graphical determination of f values for non -equatorial
reflections of triclinic crystal rotated round c.
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If a triclinic crystal is rotated round any axis of the real cell (Fig. 94),

the photograph exhibits layer lines (since the various levels of the

reciprocal lattice are normal to the axis of rotation), but not row

lines, since none of the points on upper or lower levels are at the same

distance from the axis of rotation as

corresponding points on the zero level.

The indices for points on the zercr level

are found in the same way as for photo-

graphs of monoclinic crystals rotated

round the b axis: for the zero level of

a triclinic crystal rotated round c, a net

with elements a*, &*, and y* is con-

structed (Fig. 95), and distances f of

points from the origin are measured.

The other levels, projected on to the

equator, are displaced with regard to the

zero level in a direction which does not

lie along an equatorial reciprocal axis;

the simplest way of measuring values

is, as before, to use the zero level net-

work, marking off a set of alternative

origins, one for each level, along a line

OL in Fig. 95. The angle S this line makes with a* is given by

-, cos a* COS fi* cosy*
tanS = ^_L___

cosp*smy*

and the distances of the alternative origins are multiples of

I20\fl0

WO 020 220 120

FIG. 96. Reciprocal lattice rota-

tion diagram for triclinic crystal,

constructed by measurements on

Fig. 95.

The rotation diagram has the appearance of Fig. 96
;
the only points

lying on a straight line (apart from the layer lines) are the OOZ set. Note

that the values for hkl, hkl, hkl, and fikl are all different.

The spacings of the planes of a triclinic crystal are best determined

from the rotation diagram, by measuring the distance of each point

from the origin.

Oscillation photographs. It often happens that on rotation photo-

graphs the positions of two or more possible reflections are so close

together that it is impossible to decide whether a particular spot is

produced by one of the crystal planes in question, or the other, or indeed

both together. For the purpose of determining unit cell dimensions
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this usually does not matter, but if the investigation is to be carried

further, to the determination of atomic positions (see Chapter VII), it

is important 'to identify every reflection unequivocally and to measure

its intensity.

One method of separating reflections is to take photographs while

the crystal is, not rotating completely, but oscillating through a limited

angular range. A set of several photographs is required to cover all

reflections ;
on each photograph only certain spots appear, because only

FIG. 97. Reciprocal lattice diagram for oscillation photograph.
Orthorhombic crystal, equatorial level.

certain sets of crystal planes pass through their reflecting positions in

the course of the oscillation of the crystal through the selected angular

range. Thus, it is usually possible to decide that because a particular

spot appears on one photograph and not on others it must have been

produced by one crystal plane and not another.

The orientation of the crystal necessary for the production of each

reflection is determined graphically by a method (Bernal, 1926) which

follows naturally from the reciprocal lattice methods already described.

Consider first the equatorial reflections given by an orthorhombic

crystal oscillated about its c axis. These reflections are produced as the

zero level of the reciprocal lattice (containing the hkO points) passes

through the sphere of reflection. In Fig. 97 the axis of rotation is

normal to the plane of the paper. Suppose that the crystal is oscillated

through 15, one extreme position being with the X-ray beam jBx normal
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to the 100 plane. At this position the circle of contact, which for the

zero level is the equator of the sphere (radius =1), has its diameter

along a* (position I). When the crystal rotates, the reciprocal lattice

rotates about 0, but it is simpler for graphical purposes to keep the

reciprocal lattice still and rotate the beam (in the opposite direction),

and with it the circle of contact, which for the other extreme position

of the 15 oscillation reaches position II. During this movement the

only reciprocal lattice points which pass through the circumference of

FIG. 98. Reciprocal lattice diagram for oscillation photograph.
Orthorhomhic crystal, third layer line.

the circle are those marked with spots ;
therefore the only equatorial

reflections which appear on this photograph are those from planes having

the indices of these points, and ifwe look at the photograph as if looking

along the beam, reflections OlO, 230, 330, 430, and 530 appear on the left

of the film, while reflections 120, 220, 520, 620, 710, and 700 appear on

the right.

Consider now the reflections on an upper layer line say the third.

These are produced when the points on the third (upper) level of the

reciprocal lattice pass through the sphere of reflection. The circle of

contact (MNP in Figs. 82-4) has a radius less than that of the sphere ;

the radius is actually </{! (3A/c)
2
}. (For the nth layer the radius would

be ^{1 (n\/c)
2
}.) During the oscillation of 15 (see Fig. 98) this circle

of contact moves from position I to position II ;
the only crystal planes

which reflect during this movement are those whose reciprocal lattice
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points lie in the areas L and jR that is, 123, 333, 433, and 623, giving

spots on
the^left

of the photograph, and 113, 223, 323, 423, 523, and

613, giving spots on the right.

All reciprocal lattice levels and all angles of oscillation can be dealt

with in this way, care being taken always to use the correct radius for

the circle of contact. In the same way, if for any purpose it is desired

to know at what angle any plane reflects, it is only necessary to draw

"IT ->
B,

FIG. 99. Reciprocal lattice diagram for oscillation photograph.
Triclinic crystal, first layer line.

the circle of contact on tracing-paper, and rotate it until the appro-

priate reciprocal lattice point touches the circumference ; the position

of the diameter BO then gives the necessary orientation of the beam
with respect to the reciprocal lattice net and thus to any chosen reference

direction in the crystal. Bernal, in the paper already mentioned (1926),

gives a transparent chart showing the circles of contact for various

reciprocal lattice levels.

The same procedure is followed for all crystals. In dealing with photo-

graphs of monoclinic crystals oscillated round a or c, or triclinic crystals

oscillated round any axis, care should be taken to use the appropriate

origin for each reciprocal lattice level. (See Figs* 92 and 95.) As an

example, the procedure for the first (Tiki) level of a triclinic crystal is

illustrated in Fig. 99.

The oscillation method just described is essentially a method of

checking indices which have already been assigned on the basis of f
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W

f *>

FIG. 101. Rotation of a tilted

crystal.

values, and of separating those reflections which on complete rotation

photographs are found to overlap. It defines the positions of reciprocal

lattice points only within the 15 or 10 angle used for the oscillation

photograph. It would be possible to define the angular positions of

these points more closely by oscillating through smaller angles, or by
taking photographs covering slightly overlapping angular ranges ;

but

this would be tedious. It is better to use one of the methods which

have been devised to define the precise positions of reciprocal lattice

points in other words, methods whereby the reciprocal lattice may be

plotted directly from the coordinates of

reflections on the photographs. The best
* methods of doing this are those (to be

described later) in which the film is

moved while the crystal is rotating, so

that one coordinate of a spot on the film

is related to the position occupied by
the crystal when that reflection was

produced. If, however, a moving-film

goniometer is not available, it is often

possible to achieve the same result by

using the ordinary rotation-and-oscilla-

tion goniometer in a special way: the

crystal, instead of being rotated round a principal axis, is rotated round

a direction inclined at an angle of a few degrees to a principal axis.

The tilted crystal method. Crystals rotated round a direction

inclined at a few degrees to a principal axis give X-ray diffraction photo-

graphs in which the spots are displaced from the layer lines. But the

amount of displacement is different for each reflection
;
on the equator

of Fig. 100, Plate VII (upper photograph), it can be seen that some

reflections are doublets, one above and one below the equator, the

separation being different for each pair of reflections ;
a few lie actually

on or very near the equator and are therefore not resolved; others

are quadruplets, the separation being again variable. The reason is

illustrated in Fig. 101, which shows a crystal tilted in a direction lying

in the 010 plane; this particular plane is still vertical (see Fig. 101 b)

and therefore gives reflections lying on the equator. But the reflections

from plane 100 will not lie on the equator ;
a reflection to the right when

the crystal is in position a will lie above the equator, while on turning

through 180 (position c) the reflection to the right will appear below

the equator. The reflections from other planes in the hkO zone will be



PLATE VII

Fio. 100. X-ray diffraction photographs of a gypsum crystal rotated round a direction
inclined 8 to the c axis in an arbitrary direction. Above, complete rotation; below,

90 oscillation*
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displaced from the equator by an amount which depends'on the orienta-

tion of the reflecting plane with respect to the plane of tilt, as well as

on the angle of reflection.

The problem is best treated by reciprocal lattice methods. Fig. 102

gives a general view of the zero layer of the reciprocal lattice of a

crystal tilted in an arbitrary direction. Fig. 103 is a plan; the axis of

rotation is normal to the plane of the paper ;
the normal to the zero

layer, as it comes out above the paper, lies a little to the right in the

plane OT. All the reciprocal lattice spots to the right of AA' lie a little

below the equatorial level, while those to the left of AA' lie a little

A

5
6 *

Zero layer of

reciprocal lattice
'

FIG. 102. Reciprocal lattice of a tilted crystal. Zero layer (general view).

above the equatorial level. Now since all the points on this net lie in a

plane, the distance of any point from the equatorial level is propor-

tional to the distance x from the line AA'
\
if

<f>
is the angle of tilt,

x - cosec
<t> (see Fig. 102). Hence, if

<f>
and are known, x can be calcu-

lated. The angle of tilt < can be fixed experimentally by first setting the

crystal with a principal axis accurately parallel to the axis of rotation,

and then tilting it
<f> by one of the goniometer arcs. The coordinate of

each spot can be determined either by using a Bernal chart or more

accurately by calculation (p. 149). It is also possible to determine the

distance (Fig. 102) from the origin of the reciprocal lattice: the co-

ordinate of each spot is determined, either on the Bernal chart or by

calculation, and from this is given by V(
2+ 2

)*

The two coordinates x and fix the position of each reciprocal lattice

point in its own net plane, except in one particular: the sign of the y

coordinate (Fig. 103) is not determined ; in other words, any reciprocal

lattice point P may be on either side of the tilt plane OT. Points P
and Q, for instance, in Fig. 103 are on opposite sides of the tilt plane OT,
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but there is nothing in the treatment so far to tell us which side each

is on. This ambiguity can be avoided by taking, not a complete rotation

photograph, but an oscillation photograph in such a way that all reflec-

tions on one side of the photograph correspond with reciprocal lattice

points all lying on the same side of OT. For instance, the crystal is

oscillated through 90 so that the tilt plane OT moves anti-clockwise

from a position normal to the X-ray beam to a position parallel to the

beam, and back again. On Fig. 103, in which the reciprocal lattice is

FIG. 103. Reciprocal lattice of a tilted crystal. Zero layer (plan).

stationary, this is equivalent to a rotation of the X-ray beam clockwise

from OB to OC and back again. Reflections on the right-hand side of

this photograph correspond to reciprocal lattice points through which

the semicircle! ODB (radius = 1) passes as it rotates to OFC and back

again ; all these points (lying within the heavily outlined area ODBECF)
are on the same side of the tilt plane OT. (The left-hand side of the

same photograph is not free from ambiguity.) The oscillation may, if

desired, be through a smaller angle within the 90 range mentioned;

but the X-ray beam may oscillate only between OB and OG if ambiguity
is to be avoided and it is only avoided on the right-hand side of the

photograph.

t Strictly speaking, owing to the tilt of the net plane with respect to the plane of the

paper all 'circles' in Fig. 103 should be slightly elliptical, with tho,major axis parallel to

AA' (eccentricity = sin^).
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In this way the coordinates of all reciprocal lattice points on the

zero layer lying within the area ODBECF are directly determined.

Fig. 104 shows the results obtained from a 90 oscillation photograph

(Pig. 100, Plate VII) of a gypsum crystal set with its c axis inclined 8|

Plane of till

FIG. 104. MO plane of reciprocal lattice of gypsum crystal, determined from the

photographs in Fig. 100. The length of each arc represents the possible error.

to the axis of rotation ; in spite of the limited precision in the determina-

tion of x, there is no doubt about where to draw the net. If the remain-

ing points are required, the simplest plan is to restore the crystal to

the untilted position, and then tilt it in a direction at right angles to

the first by using the second of the arc movements of the goniometer
head. A second 90 oscillation photograph is then taken, the plane of

tilt being oscillated as before in relation to the X-ray beam.

The coordinates of reciprocal lattice points corresponding to spots on

the upper and lower layers of the same photograph can also be deter-

mined directly. For these layers it can be shown (Bunn, Peiser, and
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Turner-Jones, 1944) that ifz is the distance ofa layer from the equatorial

layer' x = z cot<- cosec
<f>.

The other coordinate necessary for the determination of the position of

a reciprocal lattice point is
,
the distance of the point from the normal

to the net plane (i.e. the real axis of the crystal) ;
this can be obtained

either from a photograph of the untilted crystal (in which circum-

stance =
), or alternatively from the tilt photograph, using the

expression =
V(

2+ 2 z2 )- It is thus possible to determine the whole

reciprocal lattice directly from one or two tilt photographs.

The tilted crystal method can only be used if the layers of reflections,

though somewhat dispersed, &re distinct from each other: it must be

possible to recognize at a glance that a particular reflection belongs to

a particular level of the reciprocal lattice. For this reason, the method

is most suitable for crystals having at least one short axis. Rotation

about a direction inclined by a few degrees to the short axis gives a

photograph in which the layer lines are well separated ; the shorter the

axis, the larger the angle of tilt which can be used, and therefore the

greater the displacement of the spots and the more accurate the deter-

mination of x. This condition is fulfilled by many crystals of aromatic

substances, since flat molecules often pack parallel to each other ;
one

crystal axis is approximately normal to the plane of the molecules and

may be as short as 4-5 A. Moreover, the crystals of such substances

are often needle-like, the short axis lying along the needle axis
;
these

crystals can be conveniently set up on the goniometer with the needle

axis inclined by a few degrees to the axis of rotation.

Moving -film goniometers. The advantage of moving the photo-

graphic film during its exposure to the diffracted X-ray beams from a

rotating crystal (the movement of the film being synchronized with

that of the crystal) has already been mentioned : it is that one coordinate

of a spot on the film is related to the position occupied by the crystal

when that reflection was produced, and in practice this means that the

coordinates of reciprocal lattice points can be derived directly from the

coordinates of the spots on the film. It is true that this can be done by
means of the ordinary rotation-and-oscillation goniometer if the tilted

crystal method is used ;
but the scope of this method is limited by the

necessity of keeping the layer lines separate from each other, and even

in the most favourable circumstances the displacements of the spots

from the average layer-line levels are small. In moving-film gonio-

meters a crystal axis is set accurately parallel to the axis of rotation,
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and one cone of reflections only is allowed to reach the film, which is

moved through a comparatively large distance during the rotation of

the crystal/

The earliest of the moving-film goniometers, the one which up to

FILM

c=(=

SCREEN

/A/SLOT
SCREEN

P'

P F

W

FIG. 105. a. Principle of the Weissenberg moving-film goniometer, arranged for recording

equatorial layer by normal beam method. 6. Determination of reciprocal lattice

coordinates for spots on equatorial layer.

the present has been most widely used, is that of Weissenberg (1924),

in which (see Fig. 105 a), while the crystal is rotated, a cylindrical

film is moved bodily along the axis of rotation, a complete to-and-fro

cycle taking place during the rotation of the crystal through 180 and

back again. A slotted screen is adjusted to permit the passage of any
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selected cone of reflections. Details of the design of this type of gonio-

meter are to be found in papers by Robertson (1934 6), Buerger (1936),

and Wooster and Martin (1940).

The interpretation of Weissenberg photographs is quite simple.

Consider first the zero layer of reflections, the X-ray beam being perpen-

dicular to the axis of rotation of the crystal in other words, the reflec-

tions which would lie on the equator ofa fixed-film normal-beam rotation

photograph, but which in a Weissenberg photograph are spread out as

in the example in Fig. 107, Plate VIII.

Imagine the film at one extreme end

of its range of travel, the crystal being
in a corresponding position, and in

Fig. 105 6, let XA (perpendicular to

the X-ray beam) and XB (along the

beam) be the axes of reference of the

reciprocal lattice. P is any reciprocal

lattice point, whose position with

respect to XA is given in polar co-

ordinates by (the distance PX) and

the angle y (Z.PXA). When the crystal

rotates anticlockwise, reflection occurs

when P reaches P' on the surface of

the sphere of reflection, the direction

of the reflected ray being OP'. To
reach this position, the reciprocal

lattice has rotated through an angle o> (PXP')\ and the film has

simultaneously moved a distance d which is related to the total travel

D by the relation =
J!j-

.

We wish to find and y for the spot corresponding to the reciprocal

lattice point P. is obtained from the distance x of the spot from

the centre line of the film (corresponding to the distance along the

equator of a fixed-film rotation photograph): if the radius of the

U
2F

FIG. 1^6. Scheme for equi-inclination

method. When cos ^ = , the Ith cone

includes the direction of the primary
beam.

v J i *i
cylindrical film 1S ^ -_. _

, where 6 is the Bragg angle ;
is then

given by f = 2 sin 0. The angle y is given very simply by the fact that

/.P'XA (== aj+y) is equal to (since P'XQ is == 90 0): thus

y = Bw = ~ X 180.

The whole zero layer of the reciprocal lattice can thus be plotted





PLATE VITT
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directly, using the polar coordinates f and y. Cartesian coordinates

e and / are usually more convenient, however; these are given by
e = f cosy dnd / = siny. It is a simple matter to construct a chart

giving Cartesian coordinates for all positions on the film
; such a chart

is illustrated in Fig. 107, Plate VIII.

For other cones of reflections it is best to use the 'equi-inclination*

method (Fig. 106), in which the X-ray beam is inclined to the axis of

rotation of the crystal at such an angle that it actually lies on the cone

SCREEN

FIG. 108. Moving-film goniometers which record a limited angular range
of reflections. Left: Robinson, Cox. Right: Schiebold, Sauter.

of reflections being studied. This occurs when cos
(ft
=

ZA/2c (for rota-

tion round the c axis). The advantage of the equi-inclination method

(see Buerger, 1934) is that the chart for the zero layer can be used for

the other layers ;
it is only necessary to remember that to obtain reci-

procal lattice coordinates on the same scale as those of the zero layer,

the figures on the chart must be Multiplied by the factor ^{1 (/2)
2
}.f

Moving-film goniometers intended to record only a limited angular

range of reflections the range which would appear on a flat stationary

film are simpler to construct, since reciprocating motion may be

avoided. B. W. Robinson (1933 a) describes one (Fig. 108) in which

the equatorial zone of reflections, passing through a slot in a metal

screen, falls on a cylindrical film rotating round an axis at right angles

to the axis of rotation of the crystal. A similar type is used by E. G.

Cox,J who employs synchronous motors to avoid mechanical gearing.

The position of the film axis is not fixed ; for reflections at small angles

it may be set at right angles to the beam, while for reflections at large

angles it can be moved round to the side of the beam. Schiebold (1933)

t See also p. 189. Private communication.
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and Sauter (19336) use a flat film rotating in its own plane (Fig. 108).

A design of this form of goniometer employing synchronous motors is

described by Thomas (1940). This method has the disadvantage that

the tangential velocity of the film increases with distance from the

centre, and therefore the intensity of the spots fades off rather rapidly

with increasing distance from the centre. The previously described

method is preferable.

The most interesting of the moving-film cameras is that of De Jong
and Bounian (1938). (See also De Jong, Bouman, and De Lange, 1938.)

FIG. 109. De Jong and Bouman's goniometer for undistorted photography of reciprocal
lattice net planes. Left: camera arrangement. Right: reciprocal lattice equivalent.

The X-ray beam is inclined to the axis of rotation of the crystal, and a

flat film is rotated at the same speed in its own plane about an axis

parallel to, but not coincident with, the axis of rotation of the crystal

(Fig. 109). One cone of reflections is selected by means of a screen with

an annular slot. Reflections corresponding to the zero level of the

reciprocal lattice lie on the cone containing the direction of the X-ray

beam, and for photography of this cone the beam must pass through
the centre of the rotating film. When these conditions are fulfilled the

spots on the film are found to be arranged in a network exactly as. in

the reciprocal lattice ;
in fact, it may be said that the film shows an

undifitorted photograph of the zero level of the reciprocal lattice. The

reason is demonstrated in Fig. 109. The scale of the reciprocal lattice

and its attendant sphere of reflection may be made whatever we choose.

Suppose we make the radius of the latter equal to Q, the distance

from the crystal to the centre of the film. We have seen that the origin

of the reciprocal lattice lies at the point where the beam emerges from

the sphere of reflection ; evidently, then, the centre of the film is the
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origin of the reciprocal lattice, and, in fact, since the film is normal to

the axis of rotation of the crystal, the plane of the film is the plane of

the zero level of the reciprocal lattice. Moreover, we have seen that

when the crystal rotates on its axis, the reciprocal lattice rotates about

its own origin ; hence, when crystal and film rotate together at the same

speed, the film keeps pace exactly with the reciprocal lattice in fact,

the film is the zero level of the reciprocal lattice. Reflections are pro-

duced when reciprocal lattice points touch the surface of the sphere,

which they do at various positions in the circle of contact. The circle

of contact for the zero level of the reciprocal lattice is, in this camera,

defined by the annular slot in the screen. The directions of reflected

beams are lines joining the crystal (the cetitre of the sphere) to reciprocal

lattice points when the latter touch the circle of contact ;
hence the

reflected beams make spots on the film at positions corresponding

exactly to reciprocal lattice points. We may imagine the reciprocal

lattice points as already existing in the film, only waiting to be printed

(as latent images) when reflected beams flash out from the crystal.

The foregoing description refers to the photography of the zero level

of the reciprocal lattice. But De Jong and Bouman show that in a

camera in which both the inclination of the beam and the position of

the axis of rotation of the film are variable, the various levels of the

reciprocal lattice may be recorded successively, all on the same scale.

The advantages of such photographs are obvious : no charts or graphical

constructions are needed for indexing the spots, the indices being obvious

by inspection. The only disadvantage of this camera is that the angular

range of reflections which can be registered on any one film is limited ;

in this respect, De Jong and Bouman's arrangement is better than that

of Schiebold and Sauter, but not so good as that of Weissenberg, which,

for the zero level at any rate, permits the recording of reflections at

Bragg angles from near to near 90.

A method not using a moving film has been suggested by Orowan

(1942): a grid of fine wires, placed between the crystal and the (flat)

film, rotates at the same speed as the crystal. On the photograph each

spot is crossed by the shadows of one or more wires, and the orientation

of these shadows defines the position occupied by the crystal when the

reflection was produced. This method was devised for the determination

of the orientation ofmetal crystals (in wires, for instance) : it is mentioned

here because in principle it is also applicable to the indexing of single

crystal photographs. In practice there are two limitations : first, both

crystal and X-ray beam would have to be rather broad, unless a very
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fine-mesh grid were used ; secondly, the angular range of reflections

recorded on a flat film is limited.

The simplest unit cell. When the indices of all reflections on the

X-ray photographs of a crystal have been obtained by any of the

methods described indices based, it will be remembered, on morpho-

logically chosen axes the whole set of indices can be surveyed to see

whether any simpler cell would account for all the reflections. The best

way of doing this is to look at reciprocal lattice diagrams or models.

For instance, in Fig. 110 it is obvious that the larger, heavily outlined

110

FIG. 110. The systematic absences in this reciprocal lattice indicate that a larger reciprocal
cell (that is, a smaller real cell) can be chosen. The new reciprocal cell is heavily outlined.

The new indices (underlined) are simpler than the old.

reciprocal cell extended to form a network accounts for all the

reflections, and therefore should be accepted in preference to the

original network based on morphologically chosen axes. The larger

reciprocal cell represents a smaller real cell, and jgives smaller indices

for the reflections than the old cell for instance, the former 1 10 becomes

010, the former iTO becomes 100, and the former 200 becomes 110.

Bhombohedral crystals are best treated as if they were hexagonal.

When hexagonal indices have been assigned to all reflections, and the

simplest hexagonal cell has been chosen, hexagonal indices may be

transformed to rhombohedral indices by the formulae given on p. 135,

If, however, a rhombohedral crystal is rotated round an axis of the

(morphologically chosen) cell, the photographs must be indexed by the

methods given for triclinic crystals. Examination of a sketch or model

of the reciprocal lattice deduced in this way will show whether or not
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a smaller, differently shaped rhombohedral cell would account for all

the reflections.
4

Where there is more than one cell . of the same volume (and shape

appropriate to the crystal system) which will account for all the reflec-

tions, as in monoclinic and triclinic crystals (see Fig. 77), the most

nearly rectangular cell will usually prove the most convenient to accept.

When an investigation is to be carried only as far as the determina-

tion of unit cell dimensions, it is usually not necessary to index the whole

of the reflections
;
it will often be sufficient to index reflections up to a

Bragg angle of 30-40, or even less for crystals having large unit cells.

Moreover, photographs taken for only one setting of the crystal are

usually sufficient ; it is not necessary to*take rotation photographs for

three settings as in the method mentioned on p. 1 39. For a single setting

a straightforward rotation photograph gives the cell dimension along
the axis of rotation (from the layer-line spacing) ; the other cell dimen-

sions and angles are obtained from the positions of individual spots,

either on moving-film photographs or, if a moving-film goniometer is

not available, on tilted-crystal photographs.
So far it has been assumed that well-formed crystals with plane faces,

suitable for accurate setting by the optical method, are available.

Such crystals form the ideal experimental material for any detailed

crystallographic investigation ;
but it is possible, even when the crystal

symmetry is low, to proceed with far less promising material with

ill-formed crystals, or with irregular crystal fragments, or even with

polyerystalline specimens. The additional problems presented by such

specimens will now be considered.

The accurate setting of ill-formed crystals. Some crystals have

imperfect faces which give diffuse optical reflections ;
or it may happen

that the only crystals available have partially defined shapes^such as

those considered in the chapter on microscopic methods of identifica-

tion ^ey may be rod-like or plate-lifee, with fairly well-defined edges

but too few well-formed faces to permit precise setting by the optical

method. In such circumstances it is possible to set the crystal by

preliminary X-ray photographs. The chosen direction is first set

approximately parallel to the axis of rotation by the optical method,

and a small-angle (10-15) oscillation photograph is taken, one of the

arcs of the goniometer head being parallel to the beam for the mean

position of the crystal. The zero-layer reflections are found to lie, not

exactly on the equator, but on a curve, and from the form of the curve

it is possible to deduce in what direction, and by how much, the chosen
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axis is mis-set. This, like all such problems, is best appreciated in terms
of the reciprocal lattice.

If, as in Fig. Ill a, the c axis of the crystal is displaced from the axis

of rotation in the plane normal to the beam (for the mean position of

the crystal), the zero layer (hkO) of the reciprocal lattice is tilted in this

same direction, and its plane cuts the sphere of reflection in the circle

AD. During the 15 oscillation a number of hkO points pass through

FIG. 111. Oscillation photographs for setting ill -formed crystals.

the surface of the sphere, and thus X-rays reflected by these hkQ planes
of the crystal strike the film at corresponding points ; on the flattened-

out film (Fig. 1116) the spots fall on a curve BAD, whose distance from
the equator is a maximum at a Bragg angle 6 ~ 45 and zero at 9 = 90.

If, on the other hand, the displacement of the c-axis is in the plane
containing the beam (Fig. Ill c), the spots on the film fall on a curve
whose maximum distance from the equator is at 9 == 90 (Fig. Ill d).

When the displacement of the c axis has components in both directions,
an intermediate form of curve is obtained (Fig. Ill e). Note that the

angle < gives the component of displacement in the plane perpendicular
to the X-ray beam that is, the component for one setting arc; < is
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unaffected by the other component. From the curve e it is theoretically

possible (Kratky and Krebs, 1936; Hendershot, 19376) to calculate

both compohents, at any rate for crystals having large unit cell dimen-

sions in the equatorial plane (so that there are sufficient spots on the

photograph to define the curve of the equatorial layer line). In practice

it is usually better to take two small-angle oscillation photographs;

for one of them one of the setting arcs is, at the mean position of the

oscillation, perpendicular to the X-ray beam; the angle </)
of the equa-

torial layer (Fig. 1116) gives the correction to be applied to this setting

arc. For the other photograph, the second setting arc is, at the mean

position of the oscillation, perpendicular to the X-ray beam ;
the angle

</'
on this photograph gives, as before, Uhe correction to be applied to

this arc. This simple method has the advantage that only short

exposures need be given, since only the strong reflections at small

angles are used. Another point worth remembering is that unfiltered

radiation may be used
;
the 'white' streak on the equatorial layer helps

to define the angle </>.

If the only crystal available is quite irregular in shape, it may be

set up on the X-ray goniometer in any position, and trial oscillation

photographs may be taken
;
if recognizable layer lines are produced,

accurate setting may be achieved by the method just given ;
if not, the

setting may be altered at random until recognizable layer lines are

produced. Examination under the microscope between crossed Nicols

may be useful: an extinction direction may coincide with, or lie near

to, a possible crystal axis.

Oriented polycrystalline specimens. Not every substance occurs

naturally or can be induced in the laboratory to grow in the form of

single crystals which can be dealt with by the methods already described.

In certain fibrous minerals for instance, chrysotile, 3MgO - 2SiO2 . 2H2

('asbestos') even very t^in fibres are found to be, not single crystals,

but bundles of crystals all having one axis parallel to the fibre axis but

randomly oriented in other respects. (Warren and Bragg, 1930.) And

among organic substances the long-chain polymers to which class

many biologically important substances as well as many useful synthetic

substances belong usually cannot be obtained in the form of single

crystals. Fortunately, however, these substances can usually be obtained

in the form of fibres in which all the little crystals have one axis parallel

or nearly parallel to the fibre axis (as in chrysotile). Substances such

as cellulQse, keratin (the protein of hair), and fibroin (the protein of silk)

occur naturally in this form (Polanyi, 1921 ; Astbury and Street, 1931 ;
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Astbury and Woods, 1933; Kratky and Kuriyama, 1931). Synthetic

polymers such as polyethylene and the polyesters and polyamides can

be drawn out to form fibres in which the same type of orientation

occurs. (Fuller, 1940) ; and some of the rubber-like substances, although

amorphous when unstretched, crystallize on stretching, the crystals so

formed all having one axis parallel to the direction of stretching (Katz,

1925; Sauter, 1937; Fuller, Frosch, and Pape, 1940).

When an X-ray beam passes through such a fibre perpendicular to

its length, the pattern produced is of the same type as that given by a

single crystal rotated about a principal axis. All orientations perpen-
dicular to the fibre axis are already present in the -specimen, so that the

effect of rotation is produced. Examples are shown in Fig. 112, Plate IX.

The reflections are less sharp than those produced by single crystals,

for two reasons : firstly, the orientation of the crystals in the fibre is

not perfect, so that each spot is drawn out to the form of a short arc,

and secondly, in most polymer fibres the crystals are so small that the

reflections are inevitably more diffuse than those of large crystals (see

p. 363).

The unit cell dimensions can often be deduced from such a pattern

by the methods already described; it fe true that only one rotation

photograph is available, but this may be sufficient for the purpose.

The length of the unit cell edge which is parallel to the fibre axis is

given directly by the spacing of the layer lines. The other dimensions,

and the angles, are less easy to discover ; the degree of difficulty depends
on the symmetry of the crystals. The procedure is first to discover,

from the spacings of the equatorial planes, the shape and size of the

projected cell-area seen along the fibre axis. Naturally the simplest

possibility a rectangular projection is considered first; this is best

done by calculating logd for each spot, plotting the values on a strip

of paper, and attempting to find a match point on the logd chart

(see Fig. 79, p. 143).

Assuming that the equatorial reflections have been shown to fit a

rectangular reciprocal lattice net, attention may be turned to the upper
and lower layer lines. The values for all the spots are read off on

BernaPs chart, and the reciprocal lattice rotation diagram is constructed

from these values
;
if the values for the upper and lower layer lines

correspond with those of the equator that is, row lines as well as layer

lines are exhibited as in Fig. 87 then the unit cell must be ortho-

rhombic. It should be noted that some spots may be missing from the

equator, and it may be necessary to halve one or both of the reciprocal
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FICJ. 113. Determination of non-rectangular

equatorial net-plane by trial.

axes previously found to satisfy the equatorial reflections. The dimen-

sions of the unit cell, and the indices of all the spots, follow immediately
from the reciprocal lattice diagrams.

Suppose, however, that although the equatorial reflections fit a

rectangular projected cell-base that is, a rectangular zero-level reci-

procal lattice net the rest of the spots do not fall on row lines.

This must mean that the remaining axis of the reciprocal lattice is (as

in Fig. 91) not normal to the zero level; in other words, the unit cell

is monoclinic, the fibre axis being the c or a axis of the cell. (It is

customary to call the fibre axis c rather than a.) Indexing is done by
trial that is, by postulating

simple indices for the innermost

spots and then testing the rest

to see whether they fit the re-

ciprocal lattice defined in this

way. The solution is often indi-

cated very simply by the fact

that in the rotation diagram
several orders of OOZ (or JW)0)

are seen to lie obviously on

a straight line starting at the

origin ;
the slope of this line at once gives /J*. (This line may be obvious

in the fibre photograph itself, though the line is not straight ; see Fuller

and Erickson, 1937
;
Fuller and Frosch, 1939.) This line gives the slope

of c*, but not its orientation witli respect to the zero-level net. To

discover this, and to test the remaining values, mark off, on the

zero-level net, values of nc*cosj8* along one axis, the points to serve

as origins for their respective layer lines ; measure values as in Fig. 9*2.

If the measured values do not correspond with those on the rotation

diagram, these alternative origins should be marked off along the other

axis of the zero-level net to test the alternative orientation of c*. It

may be necessary to halve one of the zero-level reciprocal axes to

account for all spots on other levels.

If the equatorial reflections do not fit a rectangular net, the crystals

must be either monoclinic (with 6 parallel to the fibre axis) or triclinic.

The shape and size of the projected cell-base must be found by trial.

Simple indices such as 100, 001, 101, Toi are postulated for the first

few reciprocal lattice points ; thus, mark off along a line the value of

A/rf for the first spot and call it 100 (Fig. 113); from the origin draw

arcs of circles with radii equal to X/d for the second and third spots,
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which will be called 001 and T01 ; then find the position where a line LL
(parallel to OA) cuts these two arcs at points whose distance apart is

equal to A/d100 . This defines a possible net, which can then be extended

to mark a sufficient range of additional points, the distances of which

from the origin are compared with the values of X/d for the remaining

spots. If this does not account for all the spots, it is necessary to try

halving first one, then the other, and finally (if necessary) both axes of

the net to account for the whole of the equatorial spots.

This done, consider the other layer lines on the photograph. A
reciprocal lattice rotation diagram is prepared as before from the f and

values of all the spots. If row lines are exhibited, then the remaining
axis of the reciprocal lattice is normal to the zero-level net, as in Fig. 90 ;

in other words, the crystals are monoclinic with their 6 axes parallel to

the fibre axis. It is again necessary to remember that one or both

reciprocal axes of the zero-level net may have to be halved to account

for all the points on other levels.

If row lines are not shown, then the crystals are triclinic. The

inclination of c* to the vertical may be shown by a row of spots in line

with the origin ; but the orientation of c* with regard to the zero-level

net must be found by trial. Distances equal to the f values for OOZ

planes are marked off along a line on a strip of paper pivoted at the

origin ofthe zero-level net, and this line is swung round until the distances

measured, as in Fig. 95, correspond with the values on the rotation

diagram. This process is not so difficult or lengthy as it may seem.

When sheets of certain crystalline polymers are thinned by being

passed through rollers, or when sheets of certain rubber-like substances

are stretched, a double orientation of the crystals is effected ; not only

does one crystal axis become approximately parallel to the direction of

rolling or stretching, but also a particular crystal plane tends to lie in

the plane of the sheet. For rubber the best double orientation is obtained

by stretching a sheet which is short (in the direction of stretching) in

comparison with its width (Gehman and Field, 1939). Double orienta-

tion in keratin has been achieved by compressing horn in steam, in a

direction at right angles to the fibre axis (Astbury and Sisson, 1935).

If the structure is orthorhombic and the favoured plane happens to be

a face of the unit cell, then the whole specimen may simulate a single

crystal; in other circumstances (Fig. 114) there may be two or more

different orientations of the unit cell in the specimen (for instance, for

a triclinic unit cell there are four different orientations of the unit cell

in a doubly oriented specimen). Such doubly oriented specimens are
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more useful than singly oriented fibres ; they give photographs which

are like the oscillation photographs of single crystals or twinned crys-

tals, and although the limits of crystallite orientation are naturally

(d)

!%^-1W

FIG. 114. Orientations of unit cell in doubly oriented polycrystalline specimens.

a. Orthorhombic, fibre axis c, favoured plane 110 (or any hkO)
b. Monoclinic, 6, , hQl

c.

d.

e. Triclinic,

/. Monoclinic,

c,

c,

010
100

MO
hkO

somewhat indefinite, the photographs can be used like oscillation

photographs to provide clues to the orientation of crystal planes giv-

ing particular spots, or to confirm or disprove indices already selected.

Photographs of such specimens may also be taken, one layer at a time,
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in moving-film cameras ; instead of the spots given by single crystals,

streaks are produced, and the position of maximum intensity on any
streak may be taken as an indication of the position of the reciprocal

lattice point for the plane in question.

In drawn metal wires the fibre axis is usually not a crystal axis. The

problem of the determination of crystal orientation in such specimens

(and in rolled metal sheets), though closely related to those dealt with

here, is outside the scope of this book. (The unit cell dimensions, and

indeed the complete structures of such crystals, are usually known, and

the problems that arise are questions of correlation of physical proper-

ties with orientation.) See Schmid and Boas, 1935; Orowan, 1942.

Determination of unit cell dimensions with the highest accu-

racy. The greatest precision in the determination of the spacings of

crystal planes is attained when the angle of reflection (6) is near 90.

This is in the first place a consequence of the form of the Bragg equation

d = ; near 90 a very small change of sin 8 (corresponding to a
2sin#

very small change in d) means a large change in 0. Hence a certain

error in the measurement of means a much smaller error in the

determination of d. In addition to this circumstance, the possible error

due to the absorption of X-rays in the specimen (see Fig. 68) tends

towards zero as 9 approaches 90.

In most high-precision determinations of unit cell dimensions hitherto

published, powder photographs have been used. Any possible errors

due to shrinkage of the film on development and drying are avoided by

printing fiducial marks on the film
;
in the type of camera designed by

Bradley and Jay, which is well adapted for this type of work, the sharp

termination ofthe exposed part of the film by a knife-edge in the camera

serves this purpose. The reflection angles of several arcs (they are all

! 2 doublets in the large-angle region) are determined from their

positions in relation to the fiducial marks
;
values of d are calculated

from the angles, and from these values the axial dimensions are worked

out for each arc. By plotting the several different calculated values of

the axial dimensions against cos2 and extrapolating to cos2 = (that

is, B = 90), the most probable values are obtained (Bradley and Jay,

1932). An analytical least-squares method of finding the most probable
value has also been suggested (Cohen, 1935). Determination of the

camera constant (the angle which the fiducial marks represent) can be

done either by an optical method or by taking a powder photograph
of quartz, the lattice dimensions of which are accurately known (Wilson
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and Lipson, 1941). In favourable cases axial dimensions may be deter-

mined in this way with a possible error of no more than 1 part in

50,000. (The small deviations from the Bragg equation caused by

refraction of X-rays are usually negligible Hagg and Phragmen, 1933
;

but see also Wilson, 1940, and Lipson and Wilson, 1941.)

For cubic, tetragonal, hexagonal, and trigonal crystals, powder photo-

graphs alone may be used. The same method may be used for crystals

of orthorhombic or even lower symmetry, provided the indices of the

reflections at large angles can be found ;
for this purpose it is usually

necessary to make use of information derived

by single-crystal methods.

Single-crystal rotation photographs fnay

also be used for very accurate determinations

of lattice dimensions
;
the positions of the

doublets at large angles of reflection are

measured. A Weissenberg camera suitable for

this purpose is described by Buerger (1937).

Powder cameras of a type different from

that hitherto described have been used for

high-precision determinations of unit cell

dimensions. In this type of camera (first ^ . . , f* FIG. 115. Principle of powder
used by Seeman (1919) and Bohlin (1920)) a camera of focusing type,

divergent X-ray beam is used, and a focusing
effect is obtained by making the powdered specimen and the recording

film parts of the same circle, which passes through the point of diver-

gence of the X-ray beam (Fig. 1 15). The focusing effect depends on the

fact that all angles subtended by the same arc of a circle are equal.

Thus, if the angle of reflection for a particular crystal plane is 20, the

reflections from crystals at two points A and B on the arc-shaped

specimen reach the film at the same point R. Sharp reflections are

thus produced, and the accuracy attainable is as high as in the Debye-
Scherrer camera, as Owen and his collaborators have shown (Owen and

Iball, 1932
; Owen, Pickup, and Roberts, 1935). The specimen AB need

not be diametrically opposite to the point of entry of the X-ray beam ;

it may be anywhere on the circumference ofthe circle. Focusing cameras

are, however, less suitable for general purposes than the Debye-Scherrer

type, and are not widely used.

Applications of knowledge of unit cell dimensions. 1. Identi-

fication. The use of powder photographs for identification has been

described in Chapter V ; the simplest method is to calculate the spacings
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of the crystal planes from the positions of the reflections, and to use

these spacings together with the relative intensities as determinants.

If this information does not lead to identification, it may be worth while

to attempt to discover the unit cell dimensions, since for many sub-

stances unit cell dimensions have been determined and published, but

the details of the X-ray diffraction photographs have not been recorded.

If only a powder photograph is available, this will usually be possible

only for cubic, tetragonal, and hexagonal (including trigonal) crystals.

For cubic crystals a list is available in which substances are arranged in

order of the length of the unit cell edge ;
it includes results published

up to 1931 (Knaggs, Karlik, and Elam, 1932). For the other types it

is necessary to think of likely substances and look up their unit cell

dimensions.

If the spacings given by the powder photograph do not fit any of

these types of unit cell, the crystal (assuming that there is only one

crystalline species in the specimen) is probably orthorhombic, mono-

clinic, or triclinic. Single-crystal photographs are usually necessary for

the determination of the dimensions of the unit cell in these types of

crystal ; if it is possible to pick out from the specimen single crystals

large enough to be handled and set up on the X-ray goniometer, or if

the specimen can be recrystallized to give sufficiently large crystals,

the unit cell dimensions may be determined by the methods described

earlier in this chapter.

Single-crystal photographs are extremely sensitive criteria for identi-

fication, much more sensitive than powder photographs. The latter yield

a set of spacings and relative intensities, which are quite sufficient for

the unequivocal identification of the great majority of substances.

However, complex organic substances which are closely related to each

other (for instance, large molecules differing only in the position of a

single constituent atom) may give powder photographs which are very
similar to each other ; but the single-crystal photographs of such sub-

stances are sure to display some differences. Many reflections which

would overlap on powder photographs are separated on single-crystal

photographs, which show not only the spacings of the crystal planes
and the intensities of the reflections, but also the relative orientations

of the planes. Even if the unit cell dimensions of two substances

are closely similar, the relative intensities of some of the reflections are

likely to be different, since, as we shall see in the next chapter, the

intensities of reflections change rapidly with small changes in atomic

positions.



CHAP, vi UNIT CELL DIMENSIONS 183

As an example of the use of single-crystal photographs for identifica-

tion, vitamin B4 was shown by Bernal and Crowfoot (1933 6) to be

identical with adenine hydrochloride. The extensive survey of the

crystallography of substances of the sterol group by Bernal, Crowfoot,

and Fankuchen (1940) gives a vast amount of information on these

crystals, including unit cell dimensions; this paper also contains a

discussion of the identification problems in this group.

If single crystals cannot be obtained, and the only available X-ray

photograph is a powder photograph which cannot be interpreted directly,

the possibilities of identification are not exhausted. Indirect methods

may perhaps be used. For instance, it may be suspected on chemical

grounds that a substance is one which is known to form monoclinic

crystals whose single-crystal photographs or unit cell dimensions have

been published ; from the published information it may be possible to

calculate the spacings and intensities which would be shown on powder

photographs. To do this for a large number of reflections would be a task

of considerable magnitude, for which the knowledge in the next chapter

is required ;
but calculation of the spacings of a few of the strongest

reflections would soon show whether it is worth while to proceed further.

Another possibility is that the suspected substance has not previously

been studied by X-ray methods, but morphological axial ratios have

been published. The axial ratios of the simplest unit cell are either the

same, or are closely related to, those selected by morphological methods.

Consequently, a determination of unit cell dimensions by whatever

X-ray method is practicable may give the clue to identification.

For chain compounds, such as the paraffin wax hydrocarbons, fatty

acids, and other derivatives, it is possible to use a single spacing, or

the various orders of diffraction from one particular crystal plane, for

purposes of identification. A thin layer of the substance is crystallized

on a glass plate; the leaf-like crystals grow with their basal planes

parallel to the glass surface, so that if an X-ray beam grazes the surface

while it is oscillated through a small angle, the various orders of diffrac-

tion from the basal plane are recorded. The long molecules are either

normal to the basal plane or somewhat inclined to the normal; the

spacings are thug related to the lengths of the molecules, and can thus

be used for identifying particular members of a series of homologues.
The relative intensities of the different orders may be used to locate

substituent atoms, as in the ketones. (See Piper, 1937.)

2. Determination of composition in mixed crystal series. The unit cell

dimensions of mixed crystals crystals in which equivalent positions in
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the lattice are occupied indiscriminately by two or more different types

of atom or molecule are intermediate between those of the separate

constituents. If the relation between composition and unit 'cell dimen-

sions has previously been established, then in practice the unit cell

dimensions may be used to determine the composition of the mixed

crystal. For instance, certain metals form mixed crystals, often over

a wide range of composition. The crystals are usually highly symmetri-
cal cubic or hexagonal and therefore powder photographs may yield

veryprecise unit cell dimensions,which lead to an accurate determination

of composition. Of course, for a simple two-component system the

composition could be determined chemically. But if other constituents

are present, it may not be known which of them crystallize together ;

there might be a double compound of A and B and mixed crystals of

A and C, and in such a case the X-ray method would be very valuable.

Even in a simple two-component system the results may not be as simple

as might be expected. For instance, mixed crystals of copper and nickel

were prepared by co-precipitation of the hydroxides, conversion to

oxides by heat, followed by low-temperature reduction. But in one

experiment the resulting solid was shown by its X-ray powder photo-

graph to consist of two different compositions of mixed-crystal, one

rich in copper and the other rich in nickel ;
the two patterns of cubic

type appeared together on the film, and the lattice dimensions gave
the compositions of the two phases.

Whenever the composition of a crystal lattice varies, and with it the

lattice dimensions, this method may be used. Certain 'interstitial' com-

pounds, such as iron nitrides and carbides, come under this heading

(though they are not usually called 'mixed crystals') ;
in these crystals

varying numbers of carbon or nitrogen atoms fit into the holes between

metal atoms (Hagg, 1931). Zeolitic crystals, in which the water content

may vary without essential change of crystal structure, are also of this

type (Taylor, 1930, 1934). A simpler substance of the same type is

calcium sulphate subhydrate, CaSO4 .0-|H20; the water content may
be determined from the lattice dimensions (Bunn, 1941).

In certain circumstances it may be possible to use accurate values

of lattice dimensions as criteria of the purity of a substance. If the

impurities likely to be present in small quantities are such as form

mixed crystals with the main substance, then the lattice dimensions

determined by a high-precision method form sensitive criteria of purity.

No generalizations can be made on the sensitivity of the test, which is

entirely specific to each substance and each possible impurity.
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3. Determination of molecular weight. From the unit cell dimensions,

the volume V of the unit cell may be calculated. Multiplying the volume

V by the dfensity p, we get the weight W of matter in the unit cell:

W = Vp. The weight of a molecule M is either equal to W (if there is

only one molecule in the unit cell), or is a simple submultiple of W (if

there is more than one molecule in the unit cell). Therefore, if we know

the approximate weight of a molecule and this knowledge is usually

known from chemical evidence we can find the number of molecules

n constituting the unit of crystal pattern. Having found n, we can then

use W to get an accurate value for M , which == Wjn = Vpjn.

FIG. 116. Volume of unit cell -= r x area of c projection.
Left: monoclinic. Right: triclinic.

The volume of a rectangular cell (cubic, tetragonal, or orthorhombic)

is, of course, the product of the three edge-lengths. For non-rectangular

cells the following expressions give the volume :

Hexagonal : V = abc sin 60 ;

Rhombohedral :

Monoclinic : V = abc sin /} ;

Triclinic : V = abc sin /J sin y sin 8 ,
where

IT o . o * f i &' sin a/2
V = a3 sm2asmS ,

where sin- = : ;

2 sin a

i

i=y{
si<

It is worth remembering that to determine the volume of the unit

cell of a monoclinic or triclinic crystal it is not necessary to find all the

edge-lengths and angles of the unit cell. The volume of such a unit cell

is, for instance, the area of the c projection multiplied by the length of

the c axis (Fig. 116). Consequently, if the crystal is set up with c as the

axis of rotation, determination of the dimensions of the projected cell-

base (from the equatorial reflections) and the length of the c axis (from
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the layer-line spacing) gives all the information required to calculate F.

It is not necessary to find /? for the monoclinic cell,f or any of the real

angles of the triclinic cell.

If the unit cell dimensions have been expressed in cm., using the

latest values for X-ray wave-lengths in cm. (Lipson and Riley, 1943)

and the density in gm./c.cm., the molecular weight obtained is in

grams. To put it on the chemical scale against = 16, the figure must

be divided by 1-6604 x 10~24
,
the weight in grams of a hypothetical atom

of atomic weight 1-0000. (Birge, 1941.) Thus,

"

1-6604 xlO-*4
"" ~~

1-6604
"

t

If X-ray wave-lengths in kX units have been used, so that unit cell

dimensions are also in kX units, these figures may be multiplied by
10~8

,
and the molecular weight result divided by the older value for

the weight of the unit atom, that is, 1-6502 x 10~24
gm. Thus,

M ^ F(inkX3
)xp

1-6502
'

The most convenient method of measuring the density of crystals is to

suspend them in a liquid mixture, the composition of which is adjusted

by adding one of the constituents until the crystals neither float nor

sink. The use of the centrifuge increases the sensitivity of this method

(Bernal and Crowfoot, 1934 6). The density of the liquid is then deter-

mined by the standard pycnometer method.

The X-ray method is often the most accurate way of finding the

molecular weight of a substance. Usually the chief error is likely to be

in the value for the density.

It should be noted that in crystals of long-chain polymers, the unit

cell shown by the X-ray photographs contains only sections of molecules.

A small group of atoms, often only one or two monomer units, is

repeated many times along a chain molecule, and the precise side-by-

side packing of these chains gives rise to the crystalline pattern of atoms.

By a 'crystal' of a long-chain polymer is meant a repeating pattern of

monomer units, not of whole molecules (see Fig. 143). Chain molecules

thread their way through the unit cell. A calculation of the foregoing

type leads, for such substances, to a knowledge of the number of

t For a monoclinic cell centred on the 100 face (symbol A BOO p. 223) the equatorial
reflections alone yield an apparent projected cell-base having a b axia half the true length.
For molecular weight determination this does not matter : the method gives tho weight
of matter associated with each lattice point, which is either the molecular weight itself or

a multiple of it.
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monomer units in the unit cell. It should also be noted that the

measured density of specimens of such substances is lower than the

true density of the crystalline regions, on account of the presence of a

certain amount of less dense amorphous material (Mark, 1940; Bunn,

1942 c) ; therefore the calculated value of n (assuming M )
is always a

little low; but if it comes to 3-8, for instance, it is obvious that there

are really four monomer units in the cell. In such circumstances, the true

density of the crystalline regions can be calculated from M, n, and V.

7 ~/ 7
7 7" /

FIG. 1 1 7. Molecules of very different shapes, packed in identical unit cells.

4. Shapes of molecules, and orientation in the unit cell. A knowledge
of the dimensions of the unit cell does not, by itself, lead to a knowledge
of molecular shape, even when there is only one molecule in the cell

and all the molecules in the crystal are therefore oriented in the same

way. For instance, Fig. 117 shows how a projected cell of given dimen-

sions can accommodate molecules of very different shapes. In conjunc-

tion with other evidence, however, unit cell dimensions may lead to

valuable conclusions on molecular structure and orientation. For

instance, alternative formulae for a particular substance may be

suggested on chemical grounds ;
models can be made, using the known

interatomic distances and bond angles, and these may be packed

together to see which will fit the known unit cell.

The evidence from optical and other physical properties (see Chapter

VIII) is likely to be very useful in conjunction with unit cell data. It
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is often possible to form a general idea of the shape and orientation of

molecules from such evidence ; after which the actual overall dimensions

follow from the unit cell dimensions.

One-molecule unit cells are, however, not common. Usually there are

two, four, or more molecules in the unit cell, and in such circumstances

it is necessary to discover the manner of packing ('space-group sym-

metry' see pp. 224-52) before considering molecular dimensions.

5. Chain-type in crystals of linear polymers. In drawn fibres of

Z-S3A

FIG. 118. Left: structure of molecule of polyvinyl alcohol.

Right: structure of molecule of polyvinyl chloride.

these substances the molecules are (in all cases so far known) approxi-

mately parallel to the fibre axis,| and the unit cell dimension along

the fibre axis is also the identity-period of the molecule itself. The fact

that it is possible so simply to determine intra-molecular distances has

far-reaching consequences. The magnitude of this identity-period may
lead directly to a knowledge of the geometry of the chain, and some-

times to a knowledge of the geometry of the whole molecule, including

side-substituents. For instance, it is known that the fully extended

zigzag form of the saturated carbon chain has an identity-period of

2-53 A. (Bunn, 1939.) Polyvinyl alcohol
( CH2 CHOH ) tt

also has

this same period, and therefore its chain also has the fully extended

t In a recent paper, Fuller, Frosch, and Pape (1942) suggest that in fibres of certain

polyesters the chains may be inclined to the fibre axis. There are, however, other possible

interpretations of the X-ray photographs, which are suggested in the same paper; a

meandering chain-configuration, with the general direction of the chain parallel to the

fibre axis, is likely.



CHAP, vi UNIT CELL DIMENSIONS 189

zigzag form ; moreover, all the OH groups must occupy corresponding

stereo-positions (Halle and Hofmann, 1935). The geometry of this

molecule (Fig. 118) is therefore settled by this one measurement,

together with the assumption that the carbon valencies are tetrahedrally

disposed. Polyvinyl chloride has twice this period, 5-1 A., and accord-

ingly it has a fully extended zigzag chain, but, unlike polyvinyl alcohol,

has its chlorines in alternating stereo-positions, as in Fig. 118 (Fuller,

1940). In a similar way, the identity-period of poly-hexamethylene

adipamide (nylon 66) is 17-3 A. Assuming the usual interatomic

distances (C C 1-53 A., C N 1-47 A.) and tetrahedral bond-angles,
the chain must be a fully extended (or very nearly fully extended)

zigzag, and the geometry of the whole' molecule is therefore approxi-

mately settled (Fuller, 1940).

The chains of some polymer molecules are not fully extended ; the

identity-periods leave no doubt of that. By rotation round the single

bonds the chains are crumpled, shortened. The magnitude of the

identity-period may by itself indicate the geometry of the chain, but

more probably it will not be possible to draw unambiguous conclusions

without the aid of further stereochemical considerations. Examples of

the use of identity-periods in conjunction with stereochemical con-

siderations to deduce possible molecular structures for chain polymers
are (1) the prediction (subsequently confirmed by detailed structure

determination Bunn and Garner, 1942) of the chain-form of rubber

hydrochloride (see p. 323), and (2) Astbury's suggestion of a possible

structure for a-keratin on the basis of a knowledge of the repeat

distance along the molecule and a consideration of the packing of side-

chains. (Astbury, 1941.) It must be emphasized that such concep-

tions, in the case of chains with long periods, are suggestions only;

they cannot be accepted as proved unless and until detailed structure

determination is achieved.

Additional note to p. 169.

t For further information on the interpretation of Weissenberg photographs, see

Buerger (1935, 1942) and Crowfoot (1935).



VII

DETERMINATION OF THE POSITIONS OF THE ATOMS IN
THE UNIT CELL BY THE METHOD OF TRIAL AND ERROR

HITHERTO only the positions of the X-ray beams diffracted by crystals

have been considered; unit cell dimensions are determined from the

positions of diffracted beams without reference to their intensities. To
discover the arrangement and positions of the atoms in the unit cell it

is necessary to consider the intensities of the diffracted beams.

The ideal method would be to measure these intensities, arid then

combine them, either by calculation or by some experimental procedure,
to form an image of the structure. Unfortunately it is usually not

possible to proceed in this direct manner. To appreciate the reason

for this, and to approach the whole subject in a simple way, it is useful

to refer once more to the one-dimensional optical analogy already
introduced at the beginning of Chapter VI (Fig. 70, Plate V). This

experiment demonstrates the fact that the relative intensities of the

successive orders of diffraction depend on the details of the grating

pattern ;
the problem now is how to recombine the diffracted beams to

give an image of the original grating. The possibility of doing this is

suggested by the fact that, if this grating were put on the microscope

stage and illuminated by monochromatic light, diffracted beams would

be produced ; it is these diffracted beams which are collected by the

objective lens of the microscope. The formation of the magnified image
in the microscope is obviously the recombination of the diffracted beams ;

so, one would suppose, if the diffracted waves do, as an experimental

fact, recombine, it ought to be possible to combine them by calculation.

The difficulty here, however, is to know the phase relations between the

various diffracted waves: to combine waves by calculation we must

obviously know their phase relations as well as their intensities. The

best way of thinking of the situation is to trace back all the diffracted

waves to some one particular point in the pattern, taking this particular

point as the origin of the 'unit cell' of the one-dimensional pattern.

This is illustrated in Fig. 119, the chosen origin being O. Monochromatic

light passing through the patterned grating at right angles is scattered

at each line; interference occurs, except where the path-difference

between waves from successive similar points in the pattern (P and Q,

for instance) is a whole number of wave-lengths. In the upper diagram
the path-difference is one wave-length, while in the lower diagram it is
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three wave-lengths. When waves from P and Q are in phase (and so on

all along the grating), then R and S are also in phase with each other ;

but what decides the intensity of the diffracted beam js the phase-

relationship between R and P (or 8 and Q). In both cases chosen the

resultant diffracted beam is strong ; but the point of interest at the

moment is that, if we choose a moment when a crest of the incident

waves strikes the pattern, and trace

back the resultant diffracted beams

to the point of reference 0, we find

that for the first-order diffraction

there is a trough at this point, while

for the third order there is a crest.

In recombining the diffracted waves

by calculation this would have to be

taken into account; if the wrong

phase relations were assumed, the

wrong picture would be obtained.

(Some other pattern would give first

and third orders having the same

phase at the origin.)

Turning back to X-ray diffraction

patterns, the problem is quite ana-

logous ;
it is more complex, because a

three-dimensional diffraction grating

is involved, but exactly the same in

principle; and the difficulty is that

we cannot determine experimentally
the phases of the diffracted X-ray
beams, and usually have no means

of knowing anything about them. There are rare cases in which the

phase relations can be deduced directly, using crystallographic evi-

dence, and when this is so an image of the atomic structure can be

calculated directly ;
or alternatively, by substituting light waves for

X-rays, an image can be formed experimentally; the methods are

described in Chapter X. For the great majority of crystals, however,

the phases are not known. It. is therefore necessary to use indirect

methods. The method of postulating a likely structure, calculating the

intensities of diffracted beams which this structure would give, and

comparing these with the observed X-ray intensities, was used for all

the earlier structure determinations, and must still be used for many

FIG. 119. Diffraction of light by the

patterned lino-grating of Fig. 70. First

order (above) and third order (below).
The resultant diffracted beam is in each
case traced back to the point O (a centre

of symmetry); the phases (referred to

this point) of the first and third orders

are opposite.
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crystals. But although, in absence of a knowledge of the phases, atomic

positions cannot be obtained, nevertheless an appropriate synthesis in

which all the, beams have the same phase can give atomic vectors,

that is, interatomic distances coupled with directions. From vector

diagrams it may be possible to deduce some at least of the atomic

positions ; or, in rare cases, all of them. The methods are also described

in Chapter X.

The present chapter deals first with all the preliminary steps which

must be taken to obtain suitable data for structure determination

(whether by direct or indirect methods) the measurement of the

intensities of diffracted beams, and the application of the corrections

necessary to isolate the factois due solely to the crystal structure from

those associated with camera conditions. It then goes on to deal with

the effect of atomic arrangement on the intensities of diffracted beams,
the procedure in deducing the general arrangement, and finally the

methods of determining actual atomic coordinates by trial. It follows

from what has been said that, as soon as atomic positions have been

found to a sufficient degree of approximation to settle the phases of the

diffracted beams, then the direct method can be used
; this, in fact, is

the normal procedure in the determination of crystal structures.

Measurement of X-ray intensities. The method first used by
W. H. and W. L. Bragg (1913) for the measurement of the intensities

of X-ray reflections makes use of the fact that X-rays ionize gases, and

the resulting conductivity is a measure of the intensity of the X-ray
beam. The gas the inert gas argon is most suitable (Wooster and

Martin, 1936) is contained in a chamber, to which the narrow X-ray
beam is admitted through a fine aperture. A voltage is applied between

an internal electrode and the wall of the chamber; the current is

measured, and this is proportional to the intensity of the beam entering

the chamber. The chamber is mounted on the rotating arm of a spectro-

meter, the central table of which is occupied by the single crystal or

block of crystal powder (Wyckoff, 1930) under investigation. By
suitable movements of the specimen and ionization chamber, reflections

at all angles may be explored, for one crystal zone at a time ; and the

primary beam itself may be measured in the same way. The record

produced a curve relating X-ray intensity to angle of reflection

shows peaks, e$ch representing the reflection of X-rays by a different

set of internal planes. The 'intensity* of each reflection is the integrated

intensity, which is proportional to the area under the peak (W. H. Bragg,

1914). This is the most direct method for the measurement of 'absolute'
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intensities the intensities of crystal reflections in relation to that of

the primary beam.

The great convenience and rapidity of photographic methods, how-

ever, has led to their development and widespread use. Many crystal

structure determinations have been based on the relative intensities of

the reflections among themselves, measured photographically; it is,

however, sometimes desirable to put the whole set of intensities on an

absolute basis, and this too may be done photographically by com-

paring a few of the strongest reflections with some of the reflections of

sodium chloride (James and Firth, 1927) or anthracene (Robertson,
1933 a). If the intensity of the X-ray beam can be kept constant,
known exposures may be given, first to one specimen and then to

another in the same camera, using two pieces of the same film which
are subsequently developed together. If the intensity of the X-ray
beam cannot be kept constant over a long period, the safest method is

to use a special camera in which the two crystals are admitted alternately
into the beam. Wooster and Martin (1040) have designed a two-

crystal Wcissenberg goniometer for this purpose.
The procedure in the photometry of X-ray photographs depends on

the type of photograph and the type of photometric equipment avail-

able. It is simplest for powder photographs. On the margin of the film

(which was shielded from X-rays during the taking of the difiraotion

photograph) is printed a calibration strip consisting of a row of patches

exposed to X-rays for known relative times. By measuring tho light

transmission of each patch on a microphotometer the relation between

X-ray exposure and light transmission is established; arid since tho

calibration strip is printed on the same film as the photograph, and thus

passes through the same development process, any possible errors dno

to variation offilm characteristics or development conditions are a voided .

The series of patches may be obtained conveniently by means of a brass

sector wheel rotating in front of a slit in a brass piate (Fig. 120 ft). For
visible light such a method cannot be used, but for X-rays it is sound

(Bouwers, 1923). Alternatively, a strip showing a continuously varying

opacity may be printed by using an appropriately shaped cam in place
of the sector wheel (Fig. 120 6) ;

in this case the distance alon<r the strip

indicates the X-ray exposure. In taking a photometer record of a

powder photograph each arc is traversed. The intensity of each reflec-

tion is proportional to the area under the peak, which can be rapidly
measured by the use of a planimeter. In th* simplest typo of photo-
electric photometer (Jay, 1941) the light transmission tit any point on

445S
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the film is proportional to a galvanometer deflexion. In the better

types of photometer the light transmission through the film is balanced

against a known light intensity adjusted by an optical wedge.
For single-crystal photographs the requirements are different. It is

necessary to obtain the integrated intensity over the whole of each spot.
In B. W. Robinson's photometer (1933 b ; also Dawton, 1937) the cali-

bration strip itself (of the continuously varying type) is used as an

optical wedge, against which the light transmission through any point

SCREEN

FIG. 120. Arrangements for printing intensity calibration strips on X-ray photographs.
a. Sector wheel to give a stepped wodgo. 6. Cam to give a continuous wedge.

on a spot is balanced by means of a pair of opposed photocells coupled
to an amplifier and galvanometer. Each spot is traversed at several

levels and the readings at a number of points all over the spot are added

mechanically. The X-ray intensities measured by this instrument com-

pare very well with those given by the ionization spectrometer. The
measurement of the intensities of several hundred spots is, however, a

lengthy task ; to accelerate such work Dawton has devised a photometer
in which each spot is scanned in the manner used in television, the

integrated intensity being given as a single galvanometer reading

(Robertson and Dawton, 19*41).

Another rapid method, also developed by Dawton (J938), is to print
a positive from the X-ray 'negative'. When suitable photographic
materials are used, the light transmission through a whole spot on the

positive film is proportional to the integrated X-ray intensity. The
merits of the different photographic methods have been summed up
by Robertson and Dawton (1941). For structure determination, great
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accuracy in the measurement of intensities is usually not required, and

it is probable that the positive film method, which does not require

specialized apparatus, is adequate for most purposes.

Many of the simpler structures have been solved by consideration of

the relative intensities estimated visually. The intensities of X-ray
reflections are very sensitive to small changes of atomic positions;

comparatively small movements of atoms mean large changes in the

relative intensities of the various reflections. Consequently, by adjust-

ing postulated atomic positions until mere qualitative agreement
between calculated and observed intensities is attained that is, the

arrangement of the calculated intensities in order of strength is the

same as that observed on the photographs a surprisingly good approxi-

mation to the truth can be achieved. Visual estimates may even be

used for moderately complex structures ; comparison of reflections with

calibration spots of known relative intensity is a method capable of

yielding a set of reflection intensities suitable for all but the most

precise investigations (Hughes, 1935).

Whatever photographic method is used for estimating intensities, it

will be found that the range of intensities is far too great to be recorded

satisfactorily on a single film : an exposure suitable for recording weak

reflections at convenient strength would show the strongest reflections

so opaque that measurement would scarcely be possible. A suitable set

of films may be obtained in a single X-ray exposure by placing several

films one behind the other in the camera ; successive photographs are

related by a constant exposure ratio of about 2:1. Much additional

information on the measurement of intensities by photographic methods

can be found in a paper by Robertson (1943).

Calculation of intensities. Preliminary. Each spot or arc on an

X-ray diffraction photograph may be regarded as the 'reflection* of

X-rays by a particular set of parallel crystal planes. The intensity of

this reflection is controlled by several factors the diffracting powers
of the atoms, the arrangement of the atoms with regard to the crystal

planes, the Bragg angle at which reflection occurs, the number of

crystallographically equivalent sets of planes contributing towards the

total intensity of the spot or arc, and the amplitude of the thermal

vibrations of the atoms. In any powder photograph for instance, that

of ammonium chloride (Fig. 121, Plate X) two features immediately
strike the eye ; firstly, there is a general diminution of intensities with

increasing reflection angle, and secondly, the intensities vary from one arc

to the next in an apparently irregular manner. The general diminution
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of intensities with increasing reflection angle is due to a decrease in

the diffracting powers of atoms with increasing angle 0, to the polari-

zation of the X-rays on reflection (to a degree depending
1

again on 0),

to a geometrical factor, and to the thermal vibrations of the atoms.

The apparently irregular variation of intensity from one arc to the next

is due to the effect of the relative positions of the atoms in space the

'structure factor' and to the variation in the number of equivalent sets

of planes contributing to the spot or arc a number which depends ,on

the type of plane. It is the structure factor in which we are chiefly

interested, but in order to isolate it we must allow for all the other

factors. Each factor will now be considered.

The diffracting powers 'of atoms. X-rays are diffracted, not by
the positively charged core of an atom, but by the cloud of electrons

forming the outer parts of the atom. The diffracting power of an atom

is determined, in the first place, by the number of electrons surrounding
the central nucleus, that is, by the atomic number of the element its

place in the periodic table. Atoms such as iodine and lead, which have

high atomic numbers, have much higher diffracting powers than those

like sodium and oxygen, which have low atomic numbers; in fact, at

small angles the diffracting power of an atom is proportional to the

number of electrons in the atom. In the ammonium chloride crystal

the ammonium ion NH^" may be treated as a single entity ; the hydrogen
nuclei (protons) are embedded in the electron cloud which includes the

electrons from both nitrogen and hydrogen atoms, minus one which is

given up to the chlorine,f The number of electrons in NH^f" is thus

7+41 = 10. Since the Cl- ion has 17+1 = 18 electrons, the diffract-

ing power of Cl~ is nearly twice that of NH^ ; if the ions behaved as

scattering points, or if the variation in diffracting power with angle (see

later section on 'angle factors') were the same for both ions, the ratio

would be exactly 18/10. Actually, the diffracting powers of the two ions

vary with the angle of diffraction in slightly different degrees ; but the

difference is not great, and in fact the ratio of diffracting powers is never

far from 18/10.

The structure amplitude, F. In an ammonium chloride crystal

the unit 'Cell is a cube containing one NH^" and one Cl- ion. If the

centre of a chlorine ion is taken as the corner of the unit cell, then the

ammonium ion lies in the centre of the cell (Fig. 122).

Consider the reflection of X-rays by the 001 plane of the crystal ; it

f Also, at room temperature, the whole ion is rotating and in effect has spherical

symmetry.
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is this reflection, together with the exactly similar reflections by the

100 and 010 planes, which gives rise to the first arc on the powder photo-

graph (Fig. 12 1
, PlateX) , an arc ofmoderate intensity. The 00 1 reflection

is produced when X-r&ys from one plane of chlorine ions (M in Fig. 123)
are exactly one wave-length behind those from the next plane of chlorine

ions N. But when this happens, waves from ammonium ions in plane
P must be exactly half a wave-length behind those from the chlorine

ions N, since the ammonium plane P is exactly half-way between the

chlorine planes M and N. Waves from

ammonium ions are thus exactly opposite
in phase to those from chlorine ions, and

this is true throughout the crystal. Inter-*

ference will occur, but the intensity of

the resultant diffracted beam will not be

zero, because the diffracting power of the

ammonium ion/NH< is little more than half

that of the chlorine ion /C1 ,
and the am-

plitude of the resultant wave (= /CI~/NH.)
is thus reduced to slightly less than half

what it would be if chlorine ions alone FIG. 122. Structure ofammonium
were present. The intensity of a beam is,

chloride - (The sizes of the spheres

f < r ,. , i i are arbitrary ; they do not repre-
for an imperfect f crystal such as ammo- 80nt effective packing sizes.)

nium chloride, proportional to the square
of the amplitude of the waves, hence the intensity for 001 is less than

one-quarter what it would be for chlorine ions alone.

But now consider reflections by planes of type 101 (such as 10T, 110,

Oil, and so on), which give rise to the second arc a very strong one.

Here, the ammonium ions lie on the same planes as the chlorine ions

(Fig. 123), the 101 reflection being produced when waves from plane L
are one wave-length behind waves from plane K ; the waves from all

the ions in the crystal are therefore in phase with each other, and the

resultant amplitude (/Ci+/NH4 )
is about l\ times what it would be for

chlorine ions alone ; the intensity is therefore about twice what it would
be for chlorine ions alone. The intensity of a 101 reflection is thus

something like eight times as great as that of a 100 reflection. This,

then, is the principal reason why the second arc on the photograph is

so very much stronger than the first. (There is another reason, but this

will be considered later.)

The third arc is composed of reflections from 111 planes. The sheets

t See p. 207.
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of chlorine ions which define these planes are interleaved by sheets of

ammonium ions (Fig. 124) ; hence, the situation is the same as for 001 :

waves from the ammonium ions oppose those from the chlorine ions,

and a weak reflection is the result.

FIG. 123. Reflection of X-rays by 001 and 101 planes of ammonium chloride.

FIG. 124. Ill planes of ammonium chloride.

The fourth arc consists of 200+020+002. These reflections occur

when waves from chlorine plane M (Fig. 125) are two wave-lengths
behind those from the next chlorine plane N ; but, since the ammonium
ions in plane P are half-way between planes M and N

9
waves from P

j&re one wave-length behind those from N and one wave-length in front
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of those fromM ; therefore they are in phase with those from M and N,
and a strong reflection is the result.

A rough idea of the relative intensities of all the reflections may be

gained in this way. On account of the position of the ammonium ions

in the centres of the unit cells defined by the chlorine ions, it is found

that, for all planes in which the sum ofthe indices A+i-f-Z is even, waves

from ammonium and chlorine ions are in phase with, and therefore

co-operate with, each other, giving a strong reflection, while for all

planes having A+&+Z odd, waves from ammonium ions oppose those

from chlorine ions, and the reflection is therefore relatively weak.

FIG. 125. Reflection of X-rays by 002 planes of ammonium chloride.

The ammonium chloride crystal forms a particularly simple example
of the effect of atomic arrangement on the intensities of the various

reflections. The structure amplitude will be treated more generally in

a later section.

The number of equivalent reflections, p. The statement just

made is true in a general way, but it may be noted (in Fig. 121, Plate X)
that, for instance, 211 (the sixth arc) is stronger than 002 (the fourth

arc), though h+k+l is even for both. This is because there are more

planes of type 211 than there are of type 002. There are only three

different planes oftype 002 namely, 002, 020, and 200
;
a crystal turned

to all possible orientations would give reflections from this type of plane
for six different orientations with respect to the X-ray beam (002 and

002 being reflections in opposite directions from the same plane). But

there are twelve different planes of type 211 namely 211, 121, 112,

2lT, 2Tl, 2TT, T21, 121, T2T, Tl2, lT2, TT2, and therefore twenty-four

reflections. Stated generally, there are six reflections oftype AOO, twelve

of type hhQ, twenty-four of type hkQ, eight of type hhh, twenty-four of

type hhl, and forty-eight of type hkl. In a powder there are crystals

oriented in all possible ways ; the number of them which happen to lie

in a position suitable for reflection by a particular type of plane is
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evidently proportional to the number of differently oriented, crystallo-

graphically equivalent planes.

In Table III, the numbers of equivalent reflections in crystals of all

possible symmetries are set down. These members are applicable to

powder photographs, in which all planes having the same spacing give

reflections on the same arc. For single-crystal normal-beam rotation

photographs the situation is different: planes parallel to the axis of

rotation give reflections in two places on the equator of the photograph,
one each side of the meridian, while the reflections from other planes

are distributed among four positions, one in each quadrant. The multi-

plicities for single-crystal rotation photographs are therefore given in

another Table (IV). These multiplicities depend on the symmetry of the

axis round which rotation occurs
; they are obvious by inspection in

tilted crystal photographs. It should be noted that in some cases there

are two or more sets of reflections having the same spacing but different

intensities
;
this depends on the 'Laue-symrnetry' of the crystal see

p. 241. These features also are obvious in tilted crystal photographs.

TABLE III

Numbers of equivalent reflections (multiplicity)

| Where the multiplicity is given as, for example, 6+6, this signifies that there are

two sot& of reflections at the same angle but having different intensities.

Angle factors. The two factors already mentioned the crystal

structure amplitude and the factor for the number of similar planes

give a general idea of the reason for the variation of intensity from one
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arc to another in the powder photograph of ammonium chloride. We
have now to consider the general diminution with increasing angle.

TABLE IV

f"
Whore the multiplicity is given as, for example, 4+4,

this signifies that there are two sets of spots on the same

layer line and at the same Bragg angle, but having different

intensities.

Atoms in crystals cannot be regarded as scattering points; the

'diameter* of the electron cloud of an atom is of the same order of size

as the distance between the centres of adjacent atoms in fact, to a

Fio. 126. Weakening of reflection by out-of-phase waves
diffracted by outer regions of atoms.

first approximation, the atoms in many crystals may be regarded as

spheres of definite radius in contact with each other ; the electron clouds

of adjacent atoms may be regarded as just touching; each other. The

consequences of this are illustrated in Fig. 126, in which (in the forma-

tion of a particular reflection) waves diffracted by electrons on the

equatorial plane BB of one atom are one wave-length behind those

diffracted by the equatorial electrons AA of the next atom
; in these

circumstances, waves diffracted by outer electrons CC and DD of these

atoms oppose, to some extent, those from AA and BB, and therefore
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reduce the intensity of the resultant diffracted beam. The reduction of

intensity is not considerable in the circumstances mentioned, because

the electron density in the outer regions of an atom is law compared
with the density near the centre, the electron cloud being in effect a

sort of diffuse atmosphere having maximum density in the inner regions

and a low density in the outer regions ;
but for the higher order diffrac-

FIG. 127. Diffracting powers of a few common atoms.

tions (that is, 'reflections' from closely spaced planes), when the phase
difference for waves from the inner regions of adjacent atoms is several

wave-lengths,wavesfrom regions of not verydissimilar electron densities

interfere with each other, and the intensity of the resultant diffracted

beam is therefore much reduced. The apparent diffracting power of an

atom is evidently dependent on the spacing of the reflecting planes ;
it

is usually given as a function of -r
(
=

^ 1, and the diffracting powers
A \ 2d)

of all atoms (symbolized /) for a wide range of ^- are to be found in
A

Int. Tab. A few are shown in Fig. 127. For many atoms, diffracting
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powers have been deduced from the measured intensities of reflections

from crystals whose structures are firmly established (James and

Brindley, 1931), but it is also possible (Hartree, 1928) to calculate the

values from the electronic structures of atoms, and these calculated

values agree well with the experimental values (James, Waller, and

Hartree, 1928). The units used for / are such that for = 0, / is
A

equal to the number of electrons in the atom. For ionized atoms the

number is increased or decreased by the magnitude of the charge. In

polyatomic ions such as NO^" the constituent atoms are charged ;
the

appropriate figures to be used in calculations, for the nitrite ion taken

as example, are those for O~2 and N+*1
. It should be noted that the

figures given in the tables are not valid when appreciable X-ray fluor-

escence occurs ; fluorescence, due to the absorption of X-rays followed

by re-emission as longer waves characteristic of the atoms, is intense

when the wave-length of the incident X-rays is slightly shorter than Kf$
for the atoms, and in these circumstances the intensity of the diffracted

beam is naturally reduced.

Another cause of diminution of the intensities of X-rays with increas-

ing angle of reflection is the polarization which occurs on reflection.

The intensity of any reflection is reduced by this effect to the fraction

1+ cos2 20

2
*

Yet another angle factor is what is known as the Lorentz factor L,

which expresses, for rotating crystal photographs, the relative time any

crystal plane spends within the narrow angular range over which reflec-

tion occurs. When a perfect crystal turns slowly through the reflecting

position, reflection occurs only over a range of a few seconds of arc.

Most crystals are not perfect, and reflect over a range of some minutes

or even as much as half a degree (Bragg, James, and Bosanquet, 1921),

but the reason for this is that different portions of the lattice are not

quite parallel to each other
;
this spread may be regarded as part of the

rotation of the crystal, and is irrelevant to the present point, which

concerns only the angular range within which the small perfect sections

of the lattice reflect. In terms of the conception of the reciprocal lattice,

each 'point' ofthe reciprocal lattice has a finite size, and as the reciprocal

lattice rotates through the sphere of reflection, each 'point' spends a

finite time passing through the surface of this sphere. This factor varies

with the distance of the reciprocal lattice point from the origin, which

is of course related to the angle of reflection. The Lorentz factor varies
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with the type of photograph. For the equatorial reflections on a normal

rotation photograph, it is .
- (Darwin, 1922). For other layers on

sin 2i\j
*

normal rotation photographs, it is . nf. x ~
r/ z~r ~-^ where A

sm20 ^/(cos
2

< sin2 0)

is the angle between the reflecting plane and the axis of rotation ; it

increases the strength of spots on upper and lower layers in comparison
with those on the equator, the increase being greatest near the meridian

of the photograph; Cox and Shaw (1930) give a chart showing this

function for all positions on a normal rotation photograph.f (The same

paper gives corrections for the obliquity of incidence of X-rays on non-

equatorial positions on a cylindrical film.) Expressions for rotation

photographs taken with the beam not normal to the axis of rotation of

the crystal are given by Tunell (1939) (for equi-inclination Weissenberg

photographs) and Bouman and De Jong (1938) and Buerger (1940) (for

the general inclination used in the De Jong and Bouman camera).

For powder photographs it is also necessary to take into account the

fact that all the reflected beams from all the little crystals are spread
over a cone which is narrow for reflections at small angles but much
wider for reflections at larger angles, when 26 is near 90. The fraction

of intensity per unit length of arc (which decides the degree of blacken-

ing of the film) is thus less at the larger angles than at the smaller ones.

The cones are smaller again for "back reflections' at Bragg angles

approaching 90 (that is, angles of reflection 29 approaching 180), so

that here again there is a greater fraction of intensity per unit length of

arc. The effect of this factor at large angles can often be seen on powder

photographs as a tendency towards increasing intensity at the very ends

of the film where the Bragg angle is approaching 90. (See, for instance,

Fig. 63, Plate III.) To account for this eflFect, the expression for the

intensity must be multiplied by the factor -^ ^.sm20cos0

Thermal vibrations . Atoms in crystals vibrate at ordinary tempera-
tures with frequencies very much lower than those of X-rays ; at any
one instant, some atoms are displaced from their mean positions in one

direction while those in another part of the crystal are displaced in

t This expression and tho chart mentioned imply that, for a spot on the meridian

(tf>
= 90 8), the intensity is infinite which is absurd. This arises from the fact that an

integration occurring in the derivation of the expression implies that the angular range
over which reflection occurs is vanishingly small an assumption which is not quite true.

The point is of no practical importance, for the chance of a spot occurring sufficiently
near the meridian to render the expression inaccurate is very small.
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another direction ; consequently diffracted X-rays which would be

exactly in phase if the atoms were at rest are actually not exactly in

phase, and the intensity of the diffracted beam is thus lower than it

would be if all the atoms were at rest. For crystal planes of large spacing

(those giving reflections at small angles), the thermal displacements of

the atoms are small fractions of the plane-spacing, and therefore do

not affect the intensities much ; but for the more closely spaced planes

(those giving reflections at the larger angles) the atomic displacements

may be comparable with the plane-spacing, and therefore the intensities

of these reflections may be much reduced. The effect is thus greater,

the larger the angle of reflection
;
and it naturally increases with rising

temperature X-ray diffraction patterns taken at high tempera-
tures are always weaker than those of the same substance at low

temperatures.

Note that it is largely in consequence of considerable thermal vibra-

tions that the diffraction patterns of crystals ofmany organic substances

(taken at room temperature) fade away to nothing at Bragg angles of

50-60 (using copper Kot radiation, A = 1-54 A), while those of inorganic

salts and metals which are far below their melting-points show strong

reflections over the whole range to 90, because the thermal vibrations

are very small compared with the interatomic distances.

The ratio T between the actual intensity of a diffracted beam and the

intensity which it would have if there were no thermal vibrations is

f~2#( )
>
where B is a constant for a particular crystal. B is related

to the amplitude of vibration of the atoms by the expression B =
where u2

is the mean square amplitude; it can usually be estimated

only approximately (see Int. Tab., p. 569), but this need not deter us

from quantitative study of diffraction patterns, since an inaccurate

estimation of B would only mean that the intensities of the reflections

fall away with increasing Bragg angle rather more slowly or more

rapidly than was expected. In practice it is found that uncertainty in

the value ofB does not lead to appreciable doubt about the interpreta-

tion of X-ray diffraction patterns. A typical value of B for an ionic

crystal is 1-43 X 10-16 for Nad (Int. Tab., p. 570).

The use of the above expression implies that all the atoms vibrate

with equal amplitudes. This is not strictly true : for instance, in sodium

chloride the amplitude of vibration of the lighter sodium ion is greater

than that of the chlorine ion ; and in general, thermal vibrations must

be different for every crystallographically different atom in a unit cell,
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since they depend on the surroundings of the atom as well as on its

inertia.

Instead ofmaking a separate correction forB it is often possible to use

experimentally determined values for the diffracting powers of atoms,

which include the temperature effect as an additional diminution of the

apparent diffracting power with increasing angle ofreflection. Empirical

diffracting powers for elements occurring in silicate crystals are given by
Bragg and West (1929) ; and for hydrocarbons by Robertson (1935 a).

Another assumption implied in the use of the expression given above

(or the empirical diffracting powers referred to in the last paragraph)
is that the thermal vibrations of the atoms have the same magnitude in

all directions in the crystal, lliis is not strictly true
;
it is a sufficient

approximation to the truth for many crystals, but there are cases in

which the vibrations are markedly anisotropic. For instance, the vibra-

tions of long-chain molecules are almost entirely perpendicular to their

long axes, while flat molecules vibrate chiefly in a direction normal to

the plane of the molecule.f Furthermore, it has been found that some

crystals give diffuse 'extra' reflections which are undoubtedly due to

the thermal vibrations of the atoms. In terms of the conception of the

reciprocal lattice, the reflecting power, which hitherto has been assumed

to be confined to the points of the reciprocal lattice, is actually to some

extent spread in varying degrees along the principal lines of the

reciprocal lattice. It is as if the diminution of reflecting power referred

to at the beginning of this section is not lost, but reappears along the

lines of the reciprocal lattice, giving rise to extra spots and streaks on

single-crystal photographs. A valuable summary of work on this sub-

ject up to 1942 is given in a paper by Lonsdale (1942).

Absorption . The effect ofabsorption ofX-rays in a powder specimen
is to diminish the intensities of reflections at small angles much more

than those of the 'back reflections' (see Fig. 68). Corrections can be

calculated for cylindrical specimens ofknown diameter (Bradley, 1935),

these corrections being valid also for cylindrically shaped single crystals.

For crystals of natural shape completely bathed in the X-ray beam, it

is possible to calculate absorption corrections (Hendershot, 1937 a;

Albrecht, 1939), but the calculations are laborious, and it is much better,

if possible, to reduce single crystals to cylindrical shape. For rod-

shaped crystals this may sometimes be done by rolling them on a

ground-glass plate ; for soluble substances it may be possible to adjust

t For the effect of anisotropic thermal vibrations on the relative intensities of

X-ray reflections, see Helmholz (1936) and Hughes (1941).
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the crystal on the goniometer, and then rotate it while holding against

it a fine paint brush charged with solvent.

To keep absorption corrections as low as possible it is best, when

working with strongly absorbing substances, to use smaller crystals

than when working with transparent substances. But a limit is set by
the increase in exposure times as well as by difficulties of manipulation:

a suitable size for a strongly absorbing crystal is l/20th to l/10th mm.

Bradley (1935) points out that, since the effect of the absorption

factor is opposite to that of thermal vibrations, the two may in some

cases cancel each other approximately ; consequently itmay be justifiable

to ignore both factors. This naturally applies only to crystals ofmoderate

or high absorption ; it does not apply to most organic substances, for

which absorption is small and thermal vibrations large, so that the

effect of *the latter far outweighs the absorption effect.

Complete expression for intensity of reflection. Perfect and

imperfect crystals. If relative intensities are being calculated, it is

sufficient to multiply the structure amplitude (which is treated generally

in the next section) by all the correction factors mentioned. Thus, for

a powder photograph, the intensity of each arc is proportional to

14-cos2 26F2p -v-gTj
-

* X temperature factor (T) X absorption factor (A),

while for ar normal-beam single-crystal rotation photograph, the in-

tensity of each spot is proportional to

/l+cos22/A/ cos6 \

*\ sin 26 /\V(cos^-sin
2
0)/

The advantage of using of absolute intensities, especially for complex

structures, has been urged by Bragg and West (1929). If absolute

intensities are being calculated, the following expressions must be used :

(1) For powder photograph on cylindrical film, radius r.

If diffracted energy in a length ofarc I = P' and energy ofprimary
beam per second per unit area = /

,

P' __N*eWlV p2 l+cos220

/ 327rm2cV P
sin2 cos 6

'

where JV = number of unit cells per unit volume,

e, m = electronic charge and mass,

A = X-ray wave-length,
V = volume of powder in the beam,
c = velocity of light.
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(2) Fornormal-beam single-crystal rotation photograph, using crystal

of volume V completely bathed in X-rays :

p -=
cos0 \

'

2
^~-siii^)/

'

sin 2(9 /y
where p is the integrated reflection, defined thus :

p = Eaj/I ,
where E is the total energy in a given reflected beam

when the crystal has been rotating for time r at constant angular

velocity o>. Some crystal structure determinations (notably those of

complex silicates worked out by W. L. Bragg and his school) have

been based on measurements of reflections from the faces of crystals

much larger than the primary beam, or reflections transmitted through

crystal sections. Formulae appropriate to these experimental con-

ditions will be found in Int. Tab.

These expressions containing F2 are valid only for 'ideally imperfect*

crystals, to which class most known crystals belong. It is a curious

fact that really perfect crystals like certain diamonds, in which all

portions of the lattice are parallel to a high degree of precision, give an

integrated intensity which is proportional directly to .F (not to its

square), and is thus smaller than that given by an imperfect crystal of

the same substance.

If a perfect crystal is turned slowly through the reflecting position,

using an extremely narrow X-ray beam, reflection occurs only over a

range of a few seconds of arc (Allison, 1932). Reflection, when it occurs,

is total the whole beam is reflected but this happens over such a

small angular range that the integrated reflection (which is always
measured in crystal structure determination) is less than that given by
an imperfect crystal which reflects less strongly, but over a much wider

angular range.

Most actual crystals are imperfect ; different portions of the lattice

are not quite parallel, and the crystal behaves as if it consisted of a

number ofblocks (of the order of 10~5 cm. in diameter) whose orientation

varies over several minutes or even in some cases up to half a degree.

This imperfection is perhaps connected with the manner of growth in

thin layers (see Chapter II and Fig. 8, Plate I) ; each layer might be

slightly wavy, and there may be cracks or impurities between the layers.

Most crystals are imperfect in this way, and in structure determination

it is usually safe to assume that the intensity ofany reflection is propor-
tional to the square of the structure amplitude.

The intensities of crystal reflections are in some circumstances
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reduced by effects known as primary and secondary extinction. If the

crystal is not 'ideally imperfect' but consists of rather large lattice

blocks, the Intensities of the reflections are proportional to a power of

F between 1 and 2
; this is 'primary extinction'. 'Secondary extinction'

affects only the strongest reflections and is due to the fact that the

top layer of a crystal (the part nearest the primary beam) reflects away
an appreciable proportion of the primary beam, thus in effect partially

shielding the lower layers of the crystal ;
the strongest reflections are

therefore experimentally less strong than they should be in comparison

with the weaker reflections. The relation between the actual intensity

p and the intensity p which would be obtained if there were no secondary

extinction is ,

P = r4?-
where g is a constant the 'secondary extinction coefficient' (Bragg

(W. L.), James, and Bosanquet, 1021, 1922; Bragg (W. L.) and West-,

1929).

Both primary and secondary extinction effects may usually be avoided

by powdering a crystal. For this and other reasons the intensities of the

arcs on powder photographs arc likely to be more reliable than those

of other types of photograph ;
but in practice, in structure determina-

tion it is only possible to use 'powder intensities' alone for very simple

structures
;
for complex crystals reflections from different planes over-

lap seriously.

In most structure determinations small crystals 0-1-0-5 mm. across

are now used. Primary extinction is rare and not likely to be en-

countered, while secondary extinction for crystals of this size is usually

not serious.

It should be remembered that the strongest reflections which arc most

seriously affected by secondary extinction occur at small angles and

are less likely to overlap on powder photographs ; therefore it may often

be best to measure the intensities of the small-angle reflections on a

powder photograph and the rest on single-crystal photographs. Another

useful procedure is to measure the strongest reflections on both powder

and single-crystal photographs, and by comparing them (assuming

the powder results to be free from extinction effects) to estimate the

secondary extinction coefficient which can then be applied to the

single-crystal results (Wyckoff, 1932; Wyckoff and Corey, 1934).

General expression for the structure amplitude. We are inter-

ested primarily in the arrangement of the atoms in crystals and the
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effect of the arrangement on the intensities of diffracted X-ray beams.

A general idea of the effect of atomic arrangement on the intensities of

various reflections of a very simple crystal has been presented in an

earlier section. For this crystal, ammonium chloride, the phase relation-

ships between the waves from the two types of ions are very simple ;

the waves from ammonium ions are, for every type of crystal plane,

either exactly in phase with those from chlorine ions or exactly opposite

in phase, owing to the position of the ammonium ion in the exact

centre of the cube defined by the chlorine ions.

In most crystals, however, the coordinates of some or all the atoms

are not simple fractions of the unit cell edges, and the phase relation-

ships between waves from different atoms are therefore not simple.

Consider, for instance, the atomic arrangement in rutile, one of the

crystal forms of Ti02 (Vegard, 1916). The unit ceU (Pig. 128 a) is

tetragonal (a = 4-58 A, c = 2*98 A) and contains two titanium and

four oxygen atoms. Titanium atoms are at the corners and centres of

the cells (coordinates 000 and |H respectively) ; oxygen atoms lie on

the base diagonals and at similar positions half-way up the cells, the

coordinates being (1) 0-31a, 0-316, 0*0c, (2) 0-31a, 0-316, 0-Oc,

(3) ~_0-19a, +0-196, 0-50c, (4) + 0-19a, 0-196, 0-50c. A powder

photograph of this substance, taken with copper KQL radiation, is shown

in Fig. 121, Plate X. Consider the intensities of some of the reflections.

First of all, no reflection from 001 appears on the photograph; the

reason is that when waves from plane P (Fig. 128 a) are one wave-length
behind those from plane M, then waves from plane N are half a wave-

length behind those from plane M, and are thus exactly opposite in

phase ; and since there is exactly the same combination of . atoms on

N as onM (one Ti and two per unit cell), the waves from N exactly

cancel out those from M ; and so on throughout the crystal. Reflection

002, however, does appear on the photograph, because a phase-difference

of two wave-lengths between waves from M and P means a phase-

difference of one wave-length between waves from M and N, and thus

all the waves co-operate. The intensity of 002 is not very great because

there are only two reflections of this type (002, 002). The 100 reflection

is absent because the 100 planes of Ti atoms are interleaved (at exactly

half-way) by exactly similar planes of Ti atoms (see Fig. 128 6), which

produce waves of exactly opposite phase and the same is true for the

oxygen atoms.

For 110 (see Fig. 128 c), observe first that waves from all Ti atoms

are in phase with each other, and that those from two of the oxygens
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(3 and 4) are also in phase, but that the waves from the other two (1

and 2) are not in phase. The last-mentioned waves are not exactly

opposite in phase to the rest, however; the phase-difference is

c=2-98A

liQ)

4 [a ^W) Jff

/00 fa

7>r>;
/OO ABSENT

Ti(1)+Ji(2)

0/3)

'Ti(1)

~ Vy ^00 JVfyA/C

FIG. 128. Intensities of some &&0 reflections of rutile, TiO2

(5/dno) X 360, which for 0(1) is 0-62 x 360 and for 0(2) is 0-62 X 360.

If the waves are represented graphically as in Fig. 128 c, the resultant

amplitude (shown by the thicker line) is obtained by adding the

ordinates. It is evident that for this particular reflection the partly-
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out-of-phase waves do not diminish the intensity much, because there

are only two oxygens producing them, as against 2(Ti)+2(0) pro-

ducing the rest, and the net result is a strong reflection.

For 200, however (Fig. 128 d), waves from all the oxygens oppose,

to some extent, those from the titanium atoms, and since the diffracting

power of four oxygens is a substantial fraction of that of two titanium

atoms, a weak reflection is expected and found (see the powder photo-

graph Fig. 121) ; the reflection is, however, not as weak as if the oxygen
atoms had been on planes exactly half-way between the titanium planes,

which would have meant a phase-difference of 180; the actual phase-

difference is 2 x 0-31 X 2?r (
= 223), the waves from two oxygens being

223 in front of, and those from the other two 223 behind, those from

the titanium atoms. Graphical compounding of the waves as in Fig.

l2Sd shows the result.

In practice the compounding of waves from the different atbms is

done by calculation. The expression for compounding waves from

different atoms (diffracting power /) situated at different points in the

unit cell (coordinates x, y, z in fractions of the unit cell edges) is, quite

generally, for any reflecting plane hkl,

Where A = 2/cos 2n(hx+ky+h),
B = ^fam27r(hx+ky+lz).

This is valid for all crystals, whatever their symmetry ; but whenever

there is, as in rutile, a centre ofsymmetry at the origin, there is no need to

calculate the sine terms, since in the aggregate they are bound to add up
to zero. (For every atom giving a wave of phase angle there is also an

identical atom giving a wave ofphase angle 6, and sin(--0) = sin 0.)

Apply this to the 200 and 110 reflections of rutile. The spacing d of

200 is 2-30 A; . ai ..
sm0 / 1\

A \-23J

is thus 0'217x 108 , and, looking up in Int. Tab. the diffracting powers
of the atoms concerned, we find /Ti = 14-0 and / = 5-2. The phase

angles for the two Ti atoms are obviously zero (Fig. 128 d) and the net

contribution for these atoms is 2/Ti cosO = 2/T1 = +28-0. But for

oxygen No. 1, x = 0-31 and /o cos 2?r(2x 0-31) = / cos223 = 5-2 x

(0-732) = 3-80. For oxygen No. 2 the phase angle is 223, and its

contribution is thus the same as that of the first (since cos( 0)
= cos 0).

The other two oxygens are at x = 0-19 and +0-19 respectively and
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their phase angles are thus 137 and +137, the cosines of which are

the same as those of 223 and 223. The net contribution of the four

oxygens istKus 4/o cos 223 = 4( 3-80) = 15-2. Adding this to the con-

tribution ofthe titanium atoms, we get A (== F) = +28-015-2 = 12-8
;

the intensity is proportional to the square of F.

For 110, d = 3-25 A, = 0-154X 108
, and/Ti and/ are 15-7 and

A

6-5 respectively. The phase angles for Ti atoms are again zero, and

the Ti contribution is thus 2/Ti = +31-4. For oxygens 1 and 2 the

phase angles are 27r(0-31+0-31) and 27r( 0-310-31) or +223 and

223
;
their contributions are therefore

2/ cos 223 = 13( 0-732) = -9-5.

For oxygens 3 and 4 the phase angle is zero, and their contribution is

2/ = +13-0. The total is +31-4-9-5+13-0 = +34-9. The actual

relative intensities of the 200 and 110 arcs on the powder photograph
are obtained by multiplying the JP's by the appropriate angle factor

l+-cos220
-r~--

n and the number of similar reflections p (4 for 200, 4 for 110).
sin20cos0 ^ v '

In this way it is found that /200 = K X 9-7 x 104
,
7no = KX 156 X 10*.

(The absorption and temperature factors are neglected.)

As a final example the intensity for the general plane 213 will be

calculated. Spacing of 213 = 0-888 A;

/o = 1-9-

sin0 = 0-566 X ^ 8-0,

^ = 2/eoso>:= +18-04,
F2 = 326.

Angle of reflection = 59 34'.

l+ Gf2*
for 59 34' is 1-443.

sin2 cos 8

Number of equivalent reflections (p) of type 213 = 16

Hence intensity = J72 X angle factorxp XK
== 326 X 1-443 X 16^ = 7-5 X
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out-of-phase waves do not diminish the intensity much, because there

are only two oxygens producing them, as against 2(Ti)+2(0) pro-

ducing the rest, and the net result is a strong reflection.

For 200, however (Fig. 128 d), waves from all the oxygens oppose,

to some extent, those from the titanium atoms, and since the diffracting

power of four oxygens is a substantial fraction of that of two titanium

atoms, a weak reflection is expected and found (see the powder photo-

graph Fig. 121) ;
the reflection is, however, not as weak as if the oxygen

atoms had been on planes exactly half-way between the titanium planes,

which would have meant a phase-difference of 180; the actual phase-

difference is 2 x 0-31 X 2rr (
= 223), the waves from two oxygens being

223 in front of, and those from the other two 223 behind, those from

the titanium atoms. Graphical compounding of the waves as in Fig.

128d shows the result.

In practice the compounding of waves from the different atbms is

done by calculation. The expression for compounding waves from

different atoms (diffracting power/) situated at different points in the

unit cell (coordinates x, y, z in fractions of the unit cell edges) is, quite

generally, for any reflecting plane hkl,

where A =
B =

This is valid for all crystals, whatever their symmetry ;
but whenever

there is, as in rutile, a centre ofsymmetry at the origin, there is no need to

calculate the sine terms, since in the aggregate they are bound to add up
to zero. (For every atom giving a wave of phase angle there is also an

identical atom giving a wave ofphase angle 0, and sin( 0)
= sin 8.)

Apply this to the 200 and 110 reflections of rutile. The spacing d of

200 is 2-30 A; . ,
/ i x

sm0/ l\

A p2rf)

is thus 0*217 x 108
, and, looking up in Int. Tab. the diffracting powers

of the atoms concerned, we find /Ti = 14-0 and /o = 5-2. The phase

angles for the two Ti atoms are obviously zero (Fig. 128 d) and the net

contribution for these atoms is 2/Ti cosO = 2/T1 == +28-0. But for

oxygen No. 1, x = 0-31 and / cos 27r(2x 0-31) =/o cos223 = 5-2 x

(0-732) = 3-80. For oxygen No. 2 the phase angle is 223, and its

contribution is thus the same as that of the first (since cos( 0)
= cos 0).

The other two oxygens are at x = 0-19 and +0'19 respectively and
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their phase angles are thus 137 and +137, the cosines of which are

the same as those of 223 and 223. The net contribution of the four

oxygens is th*us 4/o cos 223 = 4( 3-80) = 15-2. Adding this to the con-

tribution ofthe titanium atoms, we getA (= F) = +28-0 15-2 = 12-8;

the intensity is proportional to the square of F.

For 110, d = 3-25 A, = 0-154X 108
, and/Ti and/o are 15-7 and

A

6*5 respectively. The phase angles for Ti atoms are again zero, and

the Ti contribution is thus 2/Ti = +31-4. For oxygens 1 and 2 the

phase angles are 277(0-31+0-31) and 27r( 0-31 0-31) or +223 and

223; their contributions are therefore

2/ cos 223 = 13( 0-732) = -9-5.

For oxygens 3 and 4 the phase angle is zero, and their contribution is

2/ = +13-0. The total is +31-4 9-5+13-0 = +34-9. The actual

relative intensities of the 200 and 110 arcs on the powder photograph
are obtained by multiplying the F*'s by the appropriate angle factor

_IL-- and the number of similar reflections p (4 for 200, 4 for 110).
sin20cos0 ^ v '

In this way it is found that J200
= ^Tx9-7x 104, J110 = Kx 156x 104 .

(The absorption and temperature factors are neglected.)

As a final example the intensity for the general plane 213 will be

calculated. Spacing of 213 == 0-888 A ;
55* = 0-566 x 108 ; /Ti = 8-0,

/o = 1-9.

+18-04,
F2 = 326.

Angle of reflection 6 = 59 34'.

l+ Gf 2
i^ 59 34' is 1-448.

sin2 cos

Number of equivalent reflections (p) of type 213 = 16

Hence intensity = F2 x angle factorxp XK
= 326xl'443xl6#= 7-5
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The expressions used are valid for crystals of all types, from cubic to

triclinic: the structure amplitude depends on atomic coordinates (as

fractions of the unit cell edges), irrespective of the shape ctf the cell.

Variation of intensities of reflections with atomic parameters.
In the foregoing calculations the general arrangement of Fig. 128 a was

accepted, and the known parameter of the oxygen atoms (0-31) was

FIG. 129. Determination of the single parameter in the rutile structure.

used ; the calculated intensities agree with those actually observed. The

accepted value of 0*31 for this parameter was determined by Vegard

(1916) by calculating the intensities of a number of reflections for a

range of parameters. To demonstrate how sensitively the intensities

are related to the parameter x, Fig. 129 shows how the calculated

intensities for several powder reflections vary with x. The curves are

shown only for values of a: up to 0-5, since they are symmetrical about

x = O5. (The ordinates are not the intensities themselves, but their

square roots, which correspond better with visual impressions of in-

tensities on X-ray photographs.) It is evident that, taking into account

mere visual impressions of the intensities of the first few powder reflec-
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tions, the oxygen parameter must be about 0-3, since only for this value

are the various intensities in the correct order 110 very strong, 211

strong, 101 fairly strong, 111 and 301 medium, 310 and 002 medium

weak, 200 and 210 weak. The intensities of the higher-order reflections

vary more rapidly with the value of the parameter, and therefore a

more accurate value may be obtained by comparing the intensities of

the various high-order reflections.

Fig. 129 thus not only demonstrates how rapidly the relative in-

tensities of different reflections vary with the atomic coordinates, but

also indicates the straightforward way in which a single parameter can

be determined : when the general arrangement is known, the intensities

of a number of reflections are calculated for a range of values of the

single parameter. In practice in the example given it would not be

necessary to carry out calculations for the complete range of values of

x, since it is obvious from the start that a weak 200 reflection could only
result if the oxygens are about midway between the 200 planes of

titanium atoms that is, if x is not far from 1/4. Calculations would

therefore be carried out only for a restricted range round x = 1/4.

But how to discover the general arrangement ? Calculations such as

those just described cannot be made until the general arrangement is

known. This problem of the deduction of the general arrangement of

atoms in any crystal forms the subject of the next few sections of this

chapter. Briefly, the consideration of the relative intensities of the

reflections is begun by observing which reflections have zero intensity.

Atomic arrangements. Preliminary. For simple structures such

as those of many elements and binary compounds the determination

of atomic positions by trial presents little difficulty; there are few

possible arrangements, and the task of examining them in turn and

calculating the intensities of the reflections for a range of coordinates

in each arrangement is not a very complex or lengthy one. Some

examples are given in Chapter IX. But for complex crystals such as

silicate minerals or crystals of most organic substances the problem

may seem to be of bewildering complexity. When there are many atoms

in the unit cell the number of possible arrangements may be very large,

and for each arrangement there may be a number of variable parameters
to be considered.

There are two lines of approach to such complex problems. In the

first place, a systematic consideration of the possible types of arrange-

ment in crystals in general and the influence of the type of arrangement
on the X-ray diffraction pattern as a whole leads to general principles



216 STRUCTURE DETERMINATION CHAP, vn

which render the complexities less formidable and save much time and

effort.

Atoms, molecules, or ions tend at low temperatures to 'form that

arrangement which has the lowest energy; and the arrangement of

lowest energy is a regular repetition of a pattern in space. The pattern

usually exhibits symmetries of one sort or another; some types of

symmetry, as we have already seen, are displayed in the external shapes

of crystals ;
other types of symmetry, as we shall see in this chapter,

affect the X-ray diffraction pattern they cause certain types of reflec-

tion to be absent
; systematic absences of certain types of reflection

therefore give a straightforward clue to the type of arrangement in the

crystal ; they may limit the possibilities to two or three arrangements,
or even to a single type of arrangement.
The second line of approach to the complexities of crystal structures

is by way of the body of existing knowledge of structure types and

interatomic distances. The prospects of success in the attempt to find

the correct arrangement and parameters in a complex crystal depend
to a considerable extent on the amount of knowledge and experience

available with regard to related structures previously determined.

When the general arrangement is known it is then necessary to

determine precise atomic coordinates. Sometimes the positions of

certain atoms are invariant they arc fixed by symmetry considera-

tions but in complex crystals most of the atoms are in 'general'

positions not restricted in any way by symmetry. The variable para-

meters must be determined by successive approximations; here the

work of calculating structure amplitudes for postulated atomic positions

can be much shortened by the use of graphical methods, to be described

later in this chapter. It cannot be denied, however, that the complete

determination of a complex structure is a task not to be undertaken

lightly; the time taken must usually be reckoned in months.

The classification of atomic arrangements into types, together with

the consideration of the effect of the type of arrangement on the diffrac-

tion pattern, will be considered in two stages. First of all, unit cells are

either simple, with only one pattern-unit in the cell, or compound, with

two or more pattern-units in the cell (see Chapter II). Crystals with

compound unit cells give patterns from which many reflections are

absent, and the recognition of a compound cell is a very simple matter.

The type of arrangement of pattern-units is called the 'space lattice'.

Secondly, the group of atoms forming a pattern-unit the group of

atoms associated with each lattice point may have certain symmetries,
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and some of these symmetries cause further systematic absences of

certain types of reflections from the diffraction pattern. The complex
of symmetry elements displayed by the complete arrangement is known
as the 'space group'.

Simple and compound unit cells. The 'space lattices
9
. In

Chapter II it has been mentioned that for some crystals it is most

appropriate to consider as the unit cell, not the smallest parallelepiped

from which the whole crystal could be built up by parallel contiguous

repetitions, but a larger parallelepiped containing two or more pattern-

units. The example given (in Figs. 5 c and 6) were the metals iron (in its

room-temperature or a form) and copper ;
the accepted unit cell of a-iron

contains two pattern-units ofone atom eal3h, and that of copper contains

four pattern-units of one atom each. In the first place, it is obviously
far more convenient to use these compound unit cells which are cubic

in shape than the true structure-units which are not even rectangular.

But convenience is not the only basis for accepting the compound unit

cells
;
a more fundamental reason is that the symmetries ofthese crystals

naturally lead to their classification with crystals which have simple

cubic cells. For instance, pure a-iron crystals are rhombic dodecahedra

and copper crystals octahedra (Groth, 1906-19), and both these shapes

are typical of the cubic system ;
and if the atomic arrangements in these

two crystals are examined in the way described on pp. 34r-6, it will be

found that they possess the same elements of symmetry as caesium

bromide which has a simple cubic unit cell. All three arrangements

possess the highest symmetry possible in the cubic system.

The compound two-atom unit cell of a-iron is termed 'body-centred
5

.

The arrangement is similar to that in ammonium chloride (Fig. 122),

with the important difference that in a-iron the atoms in the centres of

the cells are the same as those at the corners, whereas in ammonium
chloride (which is not called 'body-centred') there are weakly diffracting

ammonium ions at the cell centres and more strongly diffracting chlorine

ions at the cell corners. On account of this difference, all those reflec-

tions which are weak in the ammonium chloride pattern (owing to

opposition of the waves from corner and centre atoms) are necessarily

completely absent from the a-iron pattern (see Fig. 130, Plate XI).

Thus, for the 010 reflection (Fig. 131), waves from all corner atoms are

in phase with each other, while waves from centre atoms are exactly

opposite in phase because the planes of centre atoms are exactlyhalf-way
between planes of corner atoms. For ammonium chloride this situation

merely produces a weak reflection, but for a-iron the diffracting powers
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of centre atoms are the same as those of corner atoms, and so waves

from corner atoms are exactly cancelled by those from centre atoms.

(Remember that there are just as many centre atoms as comer atoms.)

All planes for which this is true (010, 111, and 210 are examples) have

h+k+l odd. (Since the coordinates of the centre atom are JJt, the

phase angle 27r(hx-\-ky+lz) for this atom is 180 when h+k+l is odd.)

Therefore, reflections from planes having h+k+l odd are not found in

the diffraction pattern of a-iron. On the other hand, all planes such as

110, 200, 310, and 211 which have h+k+l even give strong reflections,

because all the atoms lie on these planes. (In other words, the phase

J
\

old
'

FIG . 131. Planes of body-centred lattice .

angle for the centre atom is when h+k+l is even.) It is important
to note that this is true not only for body-centred cubic crystals but

for all other body-centred crystals, whatever their symmetry.
The compound four-atom unit cell of copper is termed 'face-centred' ;

the cubic unit cell has atoms not only at the corners but also at the

centre of each face. If the various planes are examined in the same

way as for a-iron, it will be seen that in the first place 010 is absent,

because the 010 planes (Fig. 132) comprising one corner atom and one

of the face-centring atoms of each cell (atoms 1 and 2) are interleaved

by other planes comprising the other two face-centring atoms of each

cell (atoms 3 and 4). For the same reason, 110 is absent. But 111 is

strong, and so is 020, because all the atoms lie on these planes. It will

be found that all reflections having h+k or k+l or l+h odd are absent,

while all planes having h+k, k+l, and l+h even are present (see Fig. 130,

Plate XI). It is easier to remember that the only reflections present

are those whose indices are either all even or all odd for example 111,

200, 220, 311. This again is true for all cells which are centred on all

three faces, irrespective of symmetry.
In the examples just given one atom is associated with each lattice
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FIQ. 130. X-ray powder photographs of a iron, copper, sodium chloride, and potassium
chloride, The photograph of a iron was taken with cobalt Kot radiation, the others

with copper Kot radiation.
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point, and the lattice points have been chosen for convenience at the

centres of these atoms. But the rules are equally true for crystals in

which thefe are several atoms associated with each lattice point ;
this

will be evident when it is remembered that lattice points are defined as

those points which have identical surroundings. In such circumstances

we must think (in the case of the body-centred lattice) of the combined

diffracted wave from the group of atoms associated with the corner

lattice point being cancelled by the combined diffracted wave from the

identical group of atoms associated with the centre lattice point, for

reflections having h-\~k-{-l odd.

FIG. 132. Planes of face-centred lattice.

The recognition of simple or body-centred or face-centred lattices is

thus quite straightforward. Indeed, for many cubic crystals of elements

and binary compounds it is obvious by mere inspection of the powder

photograph, provided enough reflections are registered. The grouping
of reflections in each ofthe three types of diffraction pattern is illustrated

in Fig. 133 : a crystal with a simple cubic lattice gives an X-ray powder

pattern like that of ammonium chloride, in which the arcs are regularly

spaced up to the sixth, after which there is one gap (because 7 is not a

possible value for A2
+fc

2+J2
) ; body-centred crystals give patterns in

which the regular spacing is maintained beyond the sixth arc; face-

centred crystals give the grouping shown in the copper pattern (Fig. 130,

Plate XI) two arcs fairly close together (111 and 200), then a gap to

the third (220), a similar gap to the fourth (311), and the fifth (222)

close to the fourth.

The face-centred cubic lattice is very common. Many metallic elements

crystallize in this form; so also do many binary compounds such as

alkali halides and the oxides of divalent metals. Thus the powder photo-

graph of sodium chloride (Fig. 130, Plate XI) shows the same grouping
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of arcs as that of copper. Note, however (this is something of a digres-

sion, but a useful one at this stage), that while the arcs of copper are

all strong, some of those of sodium chloride are much wg&ker than

others. The reason is, of course, to be found in the existence of two

types of ion of different diffracting powers, placed in a particular

position in relation to each other: in addition to the face-centred lattice

formed by the chlorine ions (Fig. 134), there is an equal number of

sodium ions which lie along the edges and in the centre ofthe cell, always

half-way between chlorine ions (forming, by themselves, another face-

to!
[300] 311 320

wo no /// 200 210211 m m msu

SIMPLE

BODY- CENTRED

FACE -CENTRED I I

I II

FIG. 133. Powder patterns of simple, body-centred, and face-centred cubic crystals,

centred lattice) ;
and these naturally affect the intensities of the reflec-

tions. Thus, for the 111 reflection, waves from all the chlorine ions are

in phase with each other, but since there are planes of sodium ions mid-

way between the planes of chlorine ions, the waves from the sodium ions

oppose those from the chlorine ions and thus weaken the reflection (the

diffracting power of sodium being half that of chlorine). On the other

hand, all the ions lie on the 200 planes, and all the waves therefore

co-operate to give a strong reflection. For such reasons, all reflections

with odd indices are weak, while those with even indices are strong ;

that this is so may be seen on Fig. 130, Plate XI. Such effects are still

more marked in the powder photograph of potassium chloride which is

also shown in Fig. 130, Plate XI so much so that the odd type reflec-

tions are absent altogether, and the pattern looks like that of a simple
cubic cell with an edge half the true length. The reason for the complete
absence of the odd type reflections is that the diffracting power of the

potassium ion is almost exactly equal to that of the chlorine ion, since
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both ions contain the same number of electrons (K+ 21 1, Cl~ 19+1).
The X-ray photograph is in a way misleading, since it appears to indicate

a simple cubic cell containing only one atom
;
but we know, of course,

from chemical evidence that there are two sorts of ions, and in view of

200

FIG . 1 34. Planes of sodium chloride crystal.

this the absence of the odd type reflections is really a striking demonstra-

tion of the equality of the diffracting powers ofK+ and Cl~ and of the

effect of ionic positions on the intensities of X-ray reflections.

The three types of lattice which have been mentioned simple (or

primitive), body-centred, and face-centred

are the only ones possible in the cubic system.

Note that a lattice centred on one pair of

opposite faces, or two pairs, would not have

cubic symmetry (the essential elements of

which are the four threefold axes running

diagonally through the cell). If the possi-

bilities in the other crystal systems are

examined, it will be found that there are

fourteen kinds of lattice in all. This was

first recognized by Bravais in 1848, and the

different types are therefore often referred

to as 'the fourteen Bravais space-lattices'.

Certain kinds of lattice which at first

thought might be expected to exist will on

examination be found either to have the wrong symmetry or to be

equivalent to other kinds. For instance, in the tetragonal system there

is no face-centred lattice : if to a simple tetragonal lattice we add extra

lattice points at the centres of the faces (Fig. 135), the lattice so formed

B

FIG. 135. To a primitive tetra-

gonal lattice ABCDEFOH add
extra lattice points at the face

centres. The new lattice is

equivalent to the body-centred
lattice BJCIFLGK,



STRUCTURE DETERMINATION CHAP. VII

will be found to have a body-centred unit cell with a square base whose

edges are 1/V2 times the length of those of the original cell. All the

fourteen types of lattice are illustrated in Fig. 136.

12 13

FIG. 136. The fourteen Bravais space-lattices. 1, Triclinic (P). 2-3, Monoclinic (Pand
C). 4-7, Orthorhombic (P, C, J, and F). 8, Hexagonal (C see text for explanation).

9, Rhombohedral (R). 10-11, Tetragonal (P and /). 12-14, Cubic (P, /, and F).

All body-centred crystals, whatever their symmetry, can give only

reflections having h-{-k+l even, and all face-centred crystals, whatever

their symmetry, can give only reflections having either all odd or all

even indices. The only additional type of lattice encountered in non-
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cubic crystals is the lattice centred on one face only. If it is the 001 face

which is centred, it can easily be seen (by reasoning similar to that used

in the foregoing pages) that all reflections having h+k odd must be

absent, but that reflections having k+l or l+h odd may be present,

provided that h+k is even. Thus 210, 012, 121, and 122 are all absent,

because h+k is odd in each case, but 110, 112, and 312 may be present

because h+k is even ;
the values of k+l and l+h do not matter as far

as the compound nature of the lattice is concerned.

In referring to the symmetries of atomic arrangements, concise

symbols (similar to those of the point-groups see Chapter II) are used.

In a set of symbols characterizing a

space-group, the first is always a

capital letterwhich indicateswhether
*

the lattice is simple (P for primitive),

body-centred (/ for inner), side-

centred (A, B, or C), or centred on

all faces (F). For the rhombohedral

lattice the special letter B is used.

For the hexagonal lattice the letter

C is used, because it can be regarded
as an orthorhombic lattice centred

on the C face (see Fig. 137). In Some FlG ' 137 ' Alternative cell-bases for

ri_ i .LI hexagonal crystals.

descriptions of hexagonal crystals

the letter H will be found ; this refers to a larger cell containing three

lattice points (Fig. 137). It is not a new lattice type, but merely a

different description of the simple hexagonal lattice ; theH cell is used

only where it is desired to adhere to the a and b axes selected on mor-

phological grounds, even when these are not the edges of the smallest

unit cell. For similar reasons some tetragonal crystals are described

by a face-centred cell ; this again is not a new lattice type, for a C
face-centred tetragonal lattice with base-edge a is equivalent to a

primitive lattice of base-edge a/V2. In structure determination it is

really simplest to use the smallest unit cell, transforming the indices of

the reflections if necessary, as described on p. 172.

The types of absent reflections so far mentioned are those arising

from the compound nature of certain lattices ; it is important to note

that a compound lattice causes systematic absences throughout the

whole range of reflections. These are not the only types of systematic

absences ; certain other types, which may occur in addition to, or instead

of, those already mentioned, are due to certain types of symmetry in
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atomic arrangements. These will be described in the following sections ;

for the moment all we need note is that these symmetry elements cause

absences only throughout particular principal zones of reflections, or

among the various orders of reflection from a particular principal plane ;

thus they do not affect the determination of the lattice type from the

X-ray diffraction pattern, which is done by examining the list of reflec-

tions for any systematic absences throughout the whole range of reflec-

tions.

The first stage in the determination of the structure of a crystal

the discovery of the lattice type is thus quite simple and straight-

forward. In this chapter we will proceed with the story of the further

stages in the elucidation of crystal structures in general ;
but some of

the simpler structures can be solved completely by a determination of

the lattice type, with perhaps a very limited consideration of the

intensities of a few reflections
; examples of such structures are given

at the beginning of Chapter IX.

The symmetries of atomic arrangements. Point groups and

space groups. Crystals consist of groups of atoms repeated regularly

in space. A crystal structure may be imagined as being built up by

assembling a particular group of atoms, and then repeating the same

grouping in exactly the same orientation at regular intervals in space.

The smallest group from which the whole crystal may be constructed

in this way is the unit of pattern. Each such group may be regarded as

associated with a lattice point ;
in other words, we mentally replace a

group of atoms by a symbolic point. In the previous section the

various possible arrangements (both simple and compound) of such

lattice points have been mentioned. We now have to consider

the arrangement of atoms round each lattice point and the effect of

the arrangement on the X-ray diffraction pattern. In speaking of the

symmetries of the arrangement of atoms round a lattice point it is

customary to use the term 'point-group', and for the symmetries of the

complete arrangement in the crystal the term 'space-group'.

Consider first a few of the possible ways of arranging atoms round a

point, ignoring crystal structure for the moment and thinking of groups
of atoms in isolation. For this purpose we cannot do better than to

recall the structures of a few simple molecules and ions, Fig. 1 38 is a

gallery of simple types. (It should be noted that in these drawings the

spheres mark the positions of atomic centres
;
the effective external radii

of the atoms are much larger.)

The trans form of 1,2 dichlorethylene C1HC=CHC1 (Brockway, Beach,
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and Pauling, 1935) has a single plane of symmetry (m) passing through

all the atoms, a twofold axis (symbol 2) normal to this plane and, arising

out of this combination, a centre of symmetry ; the symmetry of this

HO

d tori?) (CH3)BrHC CHBHCH3 ) meso(CH3)BrHC CHBrfCHs)

Symmetry, 2 Symmetry,! , ,

Benzene o/mmm

FIG. 138. The symmetries of some simple molecules and ions.

molecule (2/ra) is the same as that ofa crystal belonging to the holohedral

class of the monoclinic system.
In the carbonate ion C0^~ (W. L. Bragg, 1914, 1924 a) the three

oxygen atoms lie at the corners of an equilateral triangle, at the centre

of which the carbon atom is situated. The ion has a plane of symmetry

(m) passing through all the atoms, and a threefold axis (3) normal to
4458 Q
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this plane and passing through the carbon atom ; this combination is

more concisely described as a hexagonal inversion axis (6). There are

also three planes of symmetry intersecting in the threefold axis, and

thres twofold axes of symmetry, each passing through the carbon atom

and one oxygen atom. The conventional point-group symbol is 62m

(though 6m would be a sufficient description).

In the chlorate ion CIQ$ the three oxygen atoms form an equilateral

triangle, but the chlorine atom is not in the plane of this triangle

(Dickinson and Goodhue, 1921 ; Zachariasen, 1929) ;
the whole ion has

a threefold axis with three planes of symmetry intersecting in this axis,

like the carbonate ion, but lacks the three twofold axes and the plane
ofsymmetry perpendicular to the threefold axis ; its point-group symbol
is 3m.

The urea molecule 0=C(NH2 )2 has two planes of symmetry inter-

secting in a single twofold axis the symmetry found in crystals belong-

ing to the polar class of the orthorhombic system (Hendricks 1928 a) ;

the point group symbol is mm (== 2mm).
Molecules of the meso form of 2,3 dibromobutane Br(CH3)HC

CH(CH3)Br have a centre of symmetry (1) as their only element of

symmetry! (Stevenson and Schomaker, 1939), resembling in this respect

crystals belonging to the holohedral class of the triclinic system. It is

worth noting that the d and / isomers are not asymmetric ; they possess

one twofold axis.f

The benzene molecule (Pauling and Brockway, 1934) has a sixfold axis

ofrotation, together with all the additional symmetryelements possessed

by a crystal belonging to the holohedral hexagonal class 6/mmm.

Finally the carbon tetrachloride molecule CC14 has its chlorine atoms

arranged tetrahedrally round the carbon atom (Pauling and Brockway,

1934) ; it has four threefold axes, each passing through the carbon atom

and one chlorine atom, three mutually perpendicular fourfold inversion

axes which bisect the Cl C Cl angles, and six planes of symmetry,
each passing through one carbon atom and two chlorine atoms ; but it

has no fourfold rotation axes or centre of symmetry . The point-group

symmetry is that of the tetrahedral class of the cubic system 43m.

Before considering the placing of point-groups in space lattices it

must be observed that the pattern-unit of which a crystal is built up
the group of atoms associated with each lattice point is by no means

f The two halves of these molecules rotate, with respect to each other, round the
C C bond as axis; the remarks on symmetry refer to the most stable configuration,
that in which the molecule spends most of its time.
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always a single molecule or a pair of ions ; more often than not, two or

three or four, or perhaps even more, molecules form the pattern-unit.

These mofecules are often

arranged in such a way that

the group exhibits some of

the symmetry elements al-

ready mentioned. There are

many ways ofgrouping mole-

cules round a point, and the

general problem confronting

those who wish to catalogue

all the possible point-groups

is to think of all the possible

ways of attaining symmetry
of one type or another by

arranging asymmetric ob-

jects round a point. Thus

two identical asymmetric
molecules may be related

(Fig. 139) by an axis of

symmetry ;
and two enantio-

morphous molecules may be

related by a plane of sym-

metry or a centre of sym-

metry. Larger numbers of

molecules may be arranged

to attain higher symmetries.
The number of possible sym-
metries of isolated groups of

atoms is unlimited; but we
are concerned here only with

those symmetries which can

also exist in repeating space-

patterns; and, as we have

already seen, this restricts us
, ji . i FIG. 139. Arrangements of two asymmetric
to those arrangements having molecules,

two-, three-, four-, or sixfold

axes. There are only thirty-two different symmetry combinations (point-

groups) which fulfil these conditions thirty-two, including the asym-
metric case in which only one object is used. This number is the same
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as the number of crystal classes ;
in fact, the various possible symmetries

of molecules or groups of molecules correspond with the various types
of crystal shape which are catalogued in Chapter II ; the' problem of

arranging diiferent types of atoms round a point is formally the same

as that of arranging different types of crystal faces round a point.

We have now to think of the possible ways of placing the various

types of atomic arrangement in the various types of lattices. Suppose a

molecule having certain symmetries is to be associated with each point of

a particular space lattice. The first thing to realize is that the molecule

can only be placed in a lattice having the appropriate symmetry if

both molecule and lattice are to retain their original symmetries. Thus
a molecule of tetrahedral symmetry such as tin tetra-iodide (Dickin-

son, 1923) fits appropriately into a cubic lattice, the threefold axes of

the molecule lying along the threefold axes of the cubic lattice. But to

put a molecule of hexagonal symmetry in a triclinic space lattice would

seem like sheer waste of good symmetry ;
and since the forces between

neighbouring molecules would not be hexagonally disposed, there would

be a tendency for all the molecules to distort each other. How much
effect this would have would depend on the rigidity of the molecule in

relation to the forces around it tending to distort it. Structures of this

kind, in which molecules are apparently inappropriately placed, are,

however, not uncommon. In fact, the state of affairs j ust mentioned a

molecule of hexagonal symmetry in a triclinic lattice actually occurs

in the crystal of hexamethylbenzene. In this crystal the rigidity of th0

molecule is such that no distortion has been detected, but the tendency
to distortion must be there. The point is that, from the formal point

ofview, the molecules in the crystal do not possess hexagonal symmetry ;

the only symmetry element they possess is the only one possible in a

triclinic lattice a centre of symmetry. The reason why hexamethyl-
benzene molecules arrange themselves to form a triclinic crystal is, no

doubt, that intermolecular forces and the requirements of good packing
are satisfied better by a triclinic arrangement than they would be by
a hexagonal or any other arrangement ; though it is difficult to see just

why this is so. (See Mack, 1932.) It very frequently happens that some

of the symmetry elements possessed by free molecules are not utilized

in the formation of crystalline arrangements,! though the neglect is not

often so striking as in hexamethylbenzene.

t Note also that non-crystallographic symmetries in molecules are inevitably

ignored ; thus, in gaseous cyclopentane the molecule may have a fivefold axis (Pauling
and Broekway, 1937); this could not be retained in a crystal in other words, there

would be a tendency to distortion.
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Conversely, a molecule of low symmetry cannot by itself form the

pattern-unit of a crystal of high symmetry. If identical asymmetric
molecules were placed singly at the corners of a ceD of orthorhombic

shape, the result would necessarily be that the asymmetrically disposed

forces between the molecules would distort the cell and make it tri-

clinic. The only way of making an orthorhombic crystal out of asym-
metric molecules is to group at least four of them together to form a

pattern-unit having the symmetry appropriate to the orthorhombic

lattice. For instance (confining our attention for the moment to the

symmetry elements so far mentioned), two left-handed and two right-

handed molecules might be arranged so that the group exhibits two

planes of symmetry at right angles to erfch other (with, arising out of

this, a twofold axis at their intersection) that is, point-group symmetry
mm

;
or four left-handed molecules might be arranged so that the group

exhibits three mutually perpendicular twofold axes that is, point-

group symmetry 222. Such groups could be placed at the points of

an orthorhombic lattice without changing the symmetry of either the

groups or the lattice
; they must of course be oriented correctly, with

twofold axes parallel to cell edges and planes of symmetry parallel to

cell faces. These remarks apply to asymmetric molecules
; naturally, if

molecules themselves possess some symmetry, fewer of them may be

required to form an arrangement of particular point-group symmetry,

provided that the natural symmetries of the molecules are utilized.

Thus, each of the thirty-two point-groups must be placed, correctly

oriented, in a lattice having appropriate symmetry. Bearing in mind
the existence of compound lattices having the same symmetries as

simple ones, we realize that the number of arrangements possible on

this basis is considerably greater than thirty-two.

But this does not end the tale of possible arrangements. Hitherto we
have considered only those symmetry operations which carry us from

one atom in the crystal to another associated with the same lattice

point the symmetry operations (rotation, reflection, or inversion

through a point) which by continued repetition always bring us back

to the atom from which we started. These are the point-group sym-
metries which were already familiar to us in crystal shapes. Now in

many space patterns two additional types of symmetry operations can

be discerned types which involve translation and therefore do not

occur in point-groups or crystal shapes.

Symmetry elements involving translation. These elements are

the glide plane, which involves simultaneous reflection and translation,
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and the screw axis, which involves simultaneous rotation and transla-

tion. By continued repetition of these symmetry operations we do not

arrive back at the atom from which we started; we arrive at the

corresponding atom associated with the next lattice point, and then the

next, and so on throughout the crystal. These operations will be illus-

trated first by an isolated molecule that of polyethylene (Fig. 140), a

chain polymer molecule so long that it may be regarded for the present

purpose as indefinitely long. This molecule may be constructed in

FIG. 140. Left: twofold screw axis. Right: glide plane.

imagination by repeating a group of two carbon and four hydrogen
atoms the groups marked M and N over and over again along a

straight line ; the distance from any atom to the next similarly situated

atom along the axis the repeat distance of the molecule will be

called c . Some of the symmetries of this molecule are those already

familiar planes of symmetry, twofold axes, and a centre of symmetry ;

these are not marked on the pictures. But now consider how it is

possible to move groupM into the position ofN
9
and N into the position

of P, and so on. One way (Fig. 140, left) is to imagine groupM rotated

round the c axis for half a revolution and at the same time moved along

this axis for a distance of |c ; in this way we arrive at the next CH2

group N ; if we repeat the process, we arrive at the next CH2 group P,

and so on. Thus, two repetitions of the operation bring us, not to the
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original group M, but to the next corresponding group along the axis

of the molecule. The term 'screw axis' aptly describes the process, and

the accepted symbol for this symmetry element is 21 .

Another way of going in imagination from groupM to groups N and

P is (Fig. 140, right) to imagine groupM reflected in the plane marked

c (at right angles to the plane Containing the carbon atoms) and then

moved along the molecular axis a distance of c ;
this brings us to group

N9 and another repetition of the process brings us to group P. This

symmetry element is appropriately called the glide plane, and the

accepted symbol for it is an

italic letter in this case c indi-

cating the direction along which

translation occurs.

Screw axes and glide planes are

of great importance. In mole-

cular crystals the molecules are

usually related to each other by
these symmetry elements rather

than by rotation axes or reflec-

tion planes; the reason is pre-
2

sumably that, since atoms are
. , . , . i Fio. 141. The effective shape of the molecule

more or less spherical in shape, Of giycine, NH,. CH,.COOH.
and when linked by covalent

bonds are partly merged in each other, a molecule is a rather knobbly

object (Fig. 141
) and there is a tendency for the knobs of one molecule to

fit into the hollows of its neighbours an arrangement which is likely to

give rise to screw axes, glide planes, or centres of symmetry rather than

to rotation axes or reflection planes. (The latter would bring knobs in

opposition to each other see Fig. 139.) An example of a crystal struc-

ture exhibiting twofold screw axes and glide planes the structure of

benzoquinone (Robertson, 1935 a) is shown in Fig. 142. MoleculeM can

be moved into the position ofP either by rotation round the screw axis

S1 and translation half-way along 6, or by reflection in the glide plane Gl

and translation half-way along a. (Note that these symmetry elements

do not occur singly; the existence of the screw axes Sl automatically

gives rise to $2 ,
S3 , and S4, half-way between them ; and the glide plane

<?! is inevitably accompanied by another, (?2 ,
at a distance 6 from it.)

Other examples will be found later in this book notably the structure of

durene, Fig. 149. The arrangement ofpolyethylene molecules in crystals

of that substance (Fig. 143) is also worth studying. Note that not only
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is the twofold screw axis possessed by a single molecule retained in the

crystalline arrangement, but also there are twofold screw axes relating

the molecules to each other ; there are three sets of such twofold screw

axes, one set parallel to each unit cell axis. Perpendicular to the b axis

are glide planes, the translation being |a (symbol a) In addition to

FIG. 142. Crystal structure of benzoquinone.

these there is another set of glide planes perpendicular to the a axis,

but the translation is not simply along an axis but along the be diagonal ;

a special symbol n is used for such glide planes involving a translation

half-way along the diagonal of a cell-face. There are also planes of

symmetry, but not all the planes of symmetry possessed by a single

molecule are retained in the crystal; those perpendicular to c (the long

axis of the molecule) are retained, but the plane of symmetry parallel

to the long axis of a single molecule is ignored in the crystal arrange-
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ment in fact, formally speaking, the molecule in the crystal no longer

has a plane of symmetry parallel to its length.

A twofold screw axis has no left- or right-handed sense of helical

movement, since rotation through 180 to the left brings us to the

same place as rotation through 180 to the right. But some threefold,

fourfold, and sixfold screw axes may be either left- or right-handed.

^ /Carbon O Hydrogen

FIG. f43. Crystal structure of polyethylene.

This is illustrated in Figs. 144-6, which also show in a formal way the

other types ofsymmetry axes whichmay be found in trigonal, tetragonal,
and hexagonal crystals. The symbols such as 6X and 43 have this signifi-

cance : the main figure gives the amount of rotation and the subscript

the translation. Thus, 6X means a rotation of one-sixth of a turn com-

bined with a translation of one-sixth the length of the c axis, the spiral

motion being such as to give rise to a right-handed screw ;
66 means a

rotation of one-sixth of a turn in the same direction combined with a

translation of 5c/6 which amounts to the same thing as c/6 in the opposite
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direction, the result being that 65 is a left-handed screw, the mirror

image of 6r Similarly 43 is the mirror image of 4j, and 32 the mirror

image of 3r
The inversion axes 3, 4, and 6 (also shown in Figs. 144r-6) have the

same significance as in morphology ; thus 3 means rotation through one-

third of a turn combined with inversion through a point.

-iO

A-
3,

A
3

FIG. 144. Types of threefold axes.

FIG. 145. Types of fourfold axes.

The only other symmetryelement involving translation which remains

to be mentioned is the glide plane having a translation of one-quarter
of a cell-face diagonal ;

this type of glide, symbolized d, is found only
in a few space-groups.

Effects of screw axes and glide planes on X-ray diffraction

patterns. The existence in a crystal of screw axes or glide planes is

necessarily not revealed by the shape of the crystal, since the shape of

a polyhedron cannot exhibit symmetry elements possessing translation.

Shape-symmetry may tell us that a particular crystal has a fourfold
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axis, but it cannot tell us whether-this axis is a simple rotation axis or

a screw axis. Nor is it possible by examining the shape of a crystal to

distinguish between a reflection plane and a glide plane. But X-ray
diffraction patterns do make such distinctions, and in a very straight-

forward manner: just as it is possible to detect compound ('centred')

lattices by noticing the absence of certain types of reflections (p. 217),

so also it is possible to detect screw axes and glide planes, for the

presence of atoms or groups of atoms related by translations which

are simple submultiples of a unit cell edge (one-half, one-third, one-

H 4 H

FIG. 146. Types of sixfold axes.

quarter, or one-sixth) necessarily causes the absence of particular types

of reflections.

Consider, for instance, first of all the twofold screw axis and its effect

on X-ray beams reflected by the crystal plane perpendicular to the screw

axis. The first-order reflection 001 would be produced when waves from

atomic plane MM'

(Fig. 147) are one wave-length ahead of waves from

atomic plane PP' ; but, exactly half-way between these planes is an

exactly similar sheet of atoms NN', waves from which would be half a

wave-length ahead of those from PP' and thijs of exactly opposite phase

(and, of course, equal amplitude). Waves from atomic planes NN' 9

QQ', and so on evidently cancel out those fromMM' , PP', etc.^ and the

resultant intensity of the 001 reflection is zero. There may be other

atoms in the crystal, formally independent of those just mentioned;

but since any other atoms in the crystal are also related to each other

by the screw axes, the same conclusion is valid. The second-order

reflection 002, however, is produced when waves from MM'

are two

wave4engths ahead of those from PP', and when this occurs, waves

from NN' are one wave-length ahead of those from PP' and therefore
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in phase with them; the reflection 002 is therefore not cancelled.

Similarly, all odd-order reflections from this plane are bound to be

absent, while all even-order reflections may be present; ki fact, the

spacing along the c axis appears to be halved, since if we observed

only the different orders of OO/, we should call the first reflection 001 and

thus be led to suppose that the c axis has a length half the true value

which is obtained when the first reflection is given its true indices 002.

Co

Fio. 147. Twofold screw axes. Effect on X-ray reflections.

For all other crystal planes there are no simple phase relations between

waves from M and those from N, and therefore no further systematic

absences. Thus, the distance x of the atoms from the screw axis in the

direction of the a axis is not, except by accident, a submultiple of a
,

and therefore there are no systematic absences of AOO reflections. One

or two of these may not appear on the photograph because the structure

amplitudes happen to be very small
;
but the point is that there are no

systematic absences. The same is true for all other planes 101 for

instance (Fig. 147 6), since the distance s between such a plane of atoms

as NQ' and the plane through P is not, except by accident, a simple

submultiple of the spacing dwl .

Thus the only systematic absences caused by a twofold screw axis

are the odd orders of reflection from the plane perpendicular to the

screw axis.
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In a similar way, in a crystal exhibiting a threefold screw axis ^ or

32 , identical atoms are repeated on planes spaced one-third the length

of the axis ;<jfcherefore the reflections from the plane normal to the screw

axis would, by themselves, appear to indicate a repeat distance only
one-third the true axial length. The first of these reflections would be

the third-order reflection in reference to the true repeat distance, while

the second would be actually the sixth-order reflection. In other words,

a threefold screw axis 3l or 32 causes the absence of the first and second

orders of reflection from the plane perpendicular to the screw axis, as

well as the fourth and fifth and

indeed all orders not divisible by
3. When a fourfold screw axis 4X
or 43 is present, all orders not

divisible by 4 are absent, while a

sixfold screw axis 6
X or 65 cancels

all but the sixth, twelfth, and other

orders divisible by 6. Throughout,
the only crystal plane whose re-

flections are affected in this way
is the plane perpendicular to the

screw axis*

No such absences occur when
the axes of symmetry are simple
rotation axes; thus in Fig. 148 there are no subdivisions of the c axis

and therefore no absences of OOZ reflections.

Glide planes are more devastating in their effects on X-ray reflections ;

they cause absences among a whole zone of reflections. Consider the

structure of durene, 1, 2, 4, 5 tetramethylbenzene (Robertson, 19336).

Fief. 148. Ordinary twofold axes. No
systematic absences of reflections.

The unit cell is monoclinic and contains two molecules, and the space

group is P21/a. The two molecules are related to each other by a glide

plane perpendicular to the 6 axis and having a translation of a/2. Con-

sider first Fig. 149 a, which is a view looking straight down the b axis. In

this representation it can be seen that molecule B is differently oriented

from molecule A ; in order to move B into the position ofA it would be

necessary to reflect it in the plane of the paper and, ipove it half-way
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along the a axis. But now consider Fig. 149 6, in which only the positions
of atomic centres are shown ;

molecules A and B now look exactly the

same ;
in fact, it looks as if the unit cell has an a axis only Lalf the true

FIG. 149. Crystal structure ofdurene, 1, 2, 4, 5 tetramethylbenzene. (a) As seen when

looking straight down the b axis. (b) The same ; but only the positions of atomic centres

are marked, (c) As seen when looking straight down the c axis.

length. It is the atomic coordinates in this projection which settle the

intensities of the hOl reflections ; hence the only hOl reflections present

are those which would be given by the half-sized apparent unit cell

reflections for which the true h is even. (Reflections having h odd are

those for which the phase-difference of waves from molecules A and C
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is an odd number ofwave-lengths ; but in these circumstances the phase-

difference ofwaves fromA andB is an odd number of halfwave-lengths ;

hence wa^WjErom B cancel waves from A. All reflections having h odd

are therefore absent.) From all other viewpoints, such as the c projec-

tion, Fig. 149 c, the a axis does not appear to be halved, and therefore

there are no systematic absences in any zone other than hOl. The only

other systematic absences are the odd orders of 0&0, owing to the two-

fold screw axis along 6.

In some crystals there is a glide plane n having a translation, not along

an axis, but half-way along a face-diagonal of the cell. In fact, the dame

FIG. 150. Crystal structure of durene, showing alternative

unit cell a'c having symmetry P2JH,

crystal that we have already described as having the space-group

symmetry P21/a could alternatively be described by a different cell a'c

(Fig. 150) having the symmetry P2JH, one molecule being derived from

the other by reflecting in the glide plane and translating half-way along
the diagonal of the a'c plane. If, as before, we look along the 6 axis, we
see molecule B looking exactly the same as A but translated half-way

along the a'c diagonal ;
in other words, the projected cell seen from this

view-point appears to be centred, and therefore all reflections from hQl

planes having h+l odd (for example, 100, 001, 102 X 201, 302, 203, and

so on) must be absent. These are the only systematic zone absences,

since from all other view-points there is no apparent centring. These

absent reflections are of course the same as in the first description of

the cell; they are merely denoted by different indices, 101 of P2Ja
being 20T of P2JH, and T01 of P2Ja being 001 of P2Jn; and so on.

In a similar way a glide plane normal to the c axis of a crystal
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having a translation of one-quarter of the ab diagonal (symbolized d)

nullifies all MO reflections except those for which h+k is divisible by 4.

In some hexagonal, tetragonal, and cubic space groups tj^#e are glide

planes which are not normal to cell edges; they are normal to the

diagonals of cell faces. Glide planes ofthis type, normal to the diagonals

of the 001 cell face and having a translation of c/2, cause all hhl reflec-

tions with I odd (for example 223) to be absent.

Ordinary reflection planes m cannot be detected in this way because

they cause no systematic absences ; thus when two molecules related by
a reflection plane are seen from a direction normal to the reflection plane,

one molecule is exactly eclipsed by the other; there is no apparent

halving of an axis or a diagonal, and therefore there are no systematic

absences due to a plane of symmetry.

Thus, while screw axes and glide planes can be detected and distin-

guished from each other by X-ray diffraction phenomena alone, ordi-

nary rotation axes and reflection planes cannot be detected in this way,
since neither type leads to any systematic absences of reflections.

The presence of symmetry elements having translation, together

with the lattice type, can always be deduced, as in the above discussion,

from first principles. The types of absences and the elements of trans-

lation causing them are summarized in Table V. The absences for all

the space-groups are tabulated by Astbury and Yardley (1924), and

also in Int. Tab.

TABLE V
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Diffraction symmetry in relation to point-group symmetry.
So far, in our consideration of the intensities of X-ray reflections in

the proces^if discovering the general arrangement in a crystal, we

have dealt only with reflections of zero intensity, and we have seen

that when certain types of reflections have zero intensity the presence

of elements of translation in the structure may be inferred. We now

consider in a general way the intensity relations between the reflections

3\0 3/0

FIG. 151. Above: urea (c projection). 310 and 310 planes have the same structure

amplitude. Below: penta-erythritol (c projection). 310 and 310 planes have different

structure amplitudes. Note positions of atoms with respect to planes in each case.

which are recorded on the photographs, for in certain circumstances

the symmetry of the diffraction effects gives some useful information.

The nature of the relation which exists between the symmetry of

diffraction effects and that of the crystal may be gathered by considera-

tion of the hkO intensities of two simple tetragonal crystals urea

(O C(NH2 )2), whose point-group symmetry is 42m, and penta-erythri-

tol (C(CH2OH)4), belonging to class 4. In the case of urea (see Fig. 151),

the intensity of 310 is the same as that of 3lO, as is obvious from the

relation of the molecules to the traces of these planes. But in the case

of penta-erythritol, the relation of the molecules to the 310 planes is

quite different from their relation to the 3lO planes, and therefore the

intensity of 310 is very different from that of 3lO. The same is true

4498
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for the general planes : hkl and hkl intensities are the same for urea, but
different for penta-erythritol.

The planes in penta-erythritol which have correspondin^andices, yet

give different intensities of X-ray reflections, are just those planes
which, as crystal faces, have different rates of growth, since the orienta-

tion of the molecules with respect to the crystal planes determines both
these properties. Therefore it might be thought that the symmetry
of diffraction effects the symmetry of the reciprocal lattice, if we

002

FIG. 152. Reflection of X-rays in opposite directions by a non-centro-

symmetrieal structure. The_phase differences of waves from different atoms
are the same for 002 as for 002 ; hence the intensities are the same. Hence the

symmetry of an X-ray diffraction pattern ('Laue-symmetry') is the point-
group symmetry of the crystal plus a centre of {symmetry.

think of the points of this lattice as eacli having a 'weight* proportional
to the structure amplitude of the corresponding set of crystal planes-
is the same as that of the crystal shape, or in other words the point-

group symmetry. And so it is, except in one important respect : it is

not possible, except in special circumstances, to decide from X-ray
diffraction effects whether a crystal has a centre of symmetry or not

(Friedel, 1913). In a crystal lacking a centre of symmetry (Fig. 152),
the intensity of reflection by a set of crystal planes depends simply on
the phase-differences between the waves from different atoms, and these

phase-differences are normally just the same for reflection in one
direction 002 in the diagram as they are for reflection in the opposite
direction 002. Therefore the diffraction symmetry of a crystal is

normally the point-group symmetry plus a centre ofsymmetry. Friedel's

law has been shown to break down when the wave-length of the X-rays





PLATE XII

FIG. 153. Laue photographs of ammonium chloride (above) and

penta-erythritol (below). X-ray beam along fourfold axis.
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is near that of an absorption edge for some of the atoms in the crystal :

there is an anomalous phase-change on diffraction which is not reversed

when the (l>$ction of reflection is reversed (Coster, Knol, and Prins,

1930; see also Bragg, The CrysMline State, p. 93). But except in these

very special circumstances the law holds, and therefore the diffraction

symmetry corresponds with one of the eleven different point-groups

which are obtained by adding a centre of symmetry to each of the

thirty-two true point-groups (see Table VI).

The diffraction symmetry is strikingly shown in Laue photographs
diffraction patterns produced by sending a beam of X-rays comprising
a wide range of wave-lengths ('white' X-rays) along a principal axis of

a stationary crystal. ('White' X-rays are best obtained from an X-ray
tube with a tungsten target, run at 60 kv. If a copper target is used,

the characteristic K wave-lengths should be removed by an iron filter.)

Each crystal plane reflects only those X-rays which have such a wave-

length that the Bragg equation is obeyed. Laue photographs of

ammonium chloride (cubic) and penta-erythritol (tetragonal) are shown

in Fig. 153, Plate XII. Both these crystals have a fourfold axis of

symmetry, and the X-ray beam is sent down the fourfold axis in both

eases. It is immediately obvious that in ammonium chloride there are

apparent planes of symmetry parallel to the fourfold axis, while in

penta-erythritol there are not. The conclusions that may be drawn

from these patterns are that ammonium chloride (cubic) must belong
to one of the point-groups having diffraction symmetry m3m (classes

43ra, 432, and m3m), while penta-erythritol must belong to one of

the tetragonal classes having diffraction symmetry 4/m (classes 4/w,

4, and 4).

Since the diffraction symmetry is shown so strikingly in Laue photo-

graphs, it is often called the 'Laue-symmetry'. The information on

diffraction symmetry is of course all contained in moving-crystal photo-

graphs taken by monochromatic X-rays, provided that reflections with

similar indices are separated, as they are in tilted crystal photographs
and moving film photographs; but Laue photographs show it much
more obviously.|

The information obtainable from the Laue-symmetry is meagre ;
it

consists simply in the distinction between crystal classes, and then only

f Lauo photographs wore formerly muc.h used in structure determination, especially

by American workers in the years 1 92030 (for methods, see the books by Wyckoff (1931)

and Davoy (1934)); but the methods described here, in which monochromatic X-rayt
are passed through rotating crystals, have important advantages and have superseded
the Laue method.
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in the more symmetrical systems cubic, tetragonal, hexagonal, and

trigonal (see Table VI). But it is useful in cases in which morphological

features do not give clear evidence on this point. ^
TABLE VI

Crystal classes

Triclmie: 1, 1

Monoclinio: m, 2. 2jm
Orthorhombio : mm, 222, mmm
Tetragonal: (a) 4, 4, 4/w

(b) 42m, 4mm, 422, 4/mmm
Trigonal and hexagonal :

(a) 3, 3 _
(b) 3w, 32 3m
(c) 6, 6, 6/w
(d) 62m, 6mm, 622, 6/mmm

Cubic: (a) 23, m3
(6) 43m, 432, m3m

Laue-symmetry

1

2/m
mmm
4/m
4/mmm

3

3m
6/m
6/mmm
m3
m3m

Space-group symbols. All the symmetry elements which can be

discerned in all possible arrangements of atoms have now been

mentioned. The number of different symmetry elements is not large ;

nevertheless, as may be imagined, the number of different ways of

arranging asymmetric groups of atoms by combining the various

symmetry elements in different ways is considerable. The total number

is in fact 230. Three different crystallographers, SchOnflies, Fedorov,

and Barlow, all working independently, had derived the complete list

in the years 1890-4 long before the advent of X-ray methods made
it possible to utilize the knowledge. Diagrams showing the symmetries
of all the space-groups are to be found in Int. Tab.

;
one of them is

reproduced in Fig. 161 to illustrate the conventional representation (in

a projection) of the commonest symmetry elements.

In referring to any particular space-group, the symbols for the

symmetry elements are put together in a way similar to that used for

the point-groups. First conies a capital letter indicating whether the

lattice is simple (P for primitive), body-centred (/ for inner), side-

centred (A 9 B, or C), or centred on all faces (F). An exception is the

hexagonal lattice, which is, strictly speaking, primitive but is described

by the letter C for reasons given previously. For some hexagonal
structures the H cell containing three lattice points is used (Fig. 137).

The rhombohedral lattice is also described by a special letter J?.

Following the capital letter for the lattice type comes the symbol for

the principal axis, and if there is a plane ofsymmetry or a glide plane per-



CHAP, viz POSITIONS OF THE ATOMS 245

2 2
pendicular to it, the two symbols are associated thus: P

>, P -^ or,m c

more conveniently for printing, P2/m, P^/c. Then follow symbols for

the symmetries of secondary axes, and planes of symmetry or glide

planes parallel to the axes. The set of symbols is often abbreviated,

only such symbols as are necessary for unique characterization of the

space-group being given. Thus, it is not necessary to write P2/m 2/m 2/m
since Pmmm implies the existence of twofold axes as well as planes of

symmetry. Note that P222 is a different space-group having no planes
of symmetry.
Procedure in deducing the space-group. The number of possible

space-groups for a crystal under investigation is, of course, limited by
the knowledge (usually already possessed at this stage) of the crystal

system to which it belongs. From this point it is often possible to

identify the space-group unequivocally from the X-ray diffraction

pattern.

In examining a list of X-ray reflections for this purpose, it is best

to look first for evidence of the lattice type whether it is simple (P)
or compound; systematic absences throughout the whole range of

reflections indicate a compound lattice, and the types of absences show
whether the cell is body-centred (7), side-centred (A, J5, or 6Y

), or face-

centred (F). When this is settled, look for further absences ; systematic
absences throughout a zone of reflections indicate a glide plane normal
to the zone axis, while systematic absences of reflections from a single

principal plane indicate a screw axis normal to the plane. The result

of such a survey, followed by an examination of the list of absences for

all space-groups (see Int. Tab., or Astbury and Yardley, 1924) may be

to settle the space-group unequivocally. Thus orthorhombic crystals
of methyl urea CH3.NH.CO.NH2 give all types of reflections except
AOO with h odd, O&O with k odd, and OOZ with I odd. The lattice is

evidently primitive, and there are no glide planes ;
but there are screw

axes parallel to all three edges of the unit cell. The only possible space-

group is P2
t
2
X 2! (Corey and Wyckoff, 1933).

As another example, ^-azoxyanisole

CH3 N=N OCH3

A
^-^

is monoclinic, and since it gives all types of general (hkl) reflections,

its lattice is primitive; but in the hOl zone, reflections for which h+l
is odd are absent, indicating a glide plane with a translation of
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GL'Q

I

1

N'

(symbol n), and also the odd orders of OJfcO are absent, indi-

cating that there is a screw axis parallel to b. The only possible

space-group is P21/n (Bernal and Crowfoot, 1933 a). (Tb& could be

described alternatively, with a change of a and c axes, as P2l/a or

P21/c.)

Our third example will more complex. The X-ray diffraction patterns

of 1,2 dimethylphenanthrene (Bernal and Crowfoot, 1935) show no hkl

reflections having k~\-l odd; the lattice is therefore centred on the a

face (symbol A). In the hOl zone, reflections with / odd must of course

be absent, since for these k is and k+l is thus odd; but it is found

that hQl reflections with h odd are also absent.

Evidently there is, perpendicular to the b axis, a

glide plane with translation a/2. The only other

zone showing additional systematic absences is Qkl ;

not only are reflections having k-\-l odd absent

(owing to the A face-centred lattice), but also all

reflections having k odd or h odd are absent; it

therefore appears that there is, perpendicular to

the a axis, a glide plane having one translation of

^/^ an(^ another translation of c/2. This appears at

first sight a new sort of glide plane not previously

mentioned ; but actually, owing to the A face-centred

lattice, a glide of 6/2 is indistinguishable from a glide

of c/2. This is illustrated in Fig. 154, which sym-
bolizes the projection in question. A group of atoms

M at the corner of the cell is repeated at the face-centre P ; ifwe imagine

these groups reflected in the plane of the paper and translated 6/2, M
reaches N and P reaches Q. Exactly the same result would be obtained

by translating c/2 ;
M would reach Q', which is equivalent to Q, and P

would reach JV', which is equivalent to N. It therefore does not matter

whether we call this a glide of \b or- \c ; and the space-group may be

called Aba or Aca\ convention calls it Aba. Reference to the list of

space-groups shows that Aba is the only one causing this particular

combination of absences. (The verdicts on space-groups in these ex-

amples could have been arrived at mechanically, by simply noting the

absent reflections and looking up the list of space-groups ; but it is best

to approach such problems from first principles. Reference should,

however, always be made to the list of space-groups to avoid missing

any possibilities.)

Other examples will be found in Chapter IX ;
these include rutile,

Fro. 154. Lattice

side-centred on 100

(symbol A); glide

plane perpendicular
to the a axis (that is,

in the plane of the

paper).
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the structure whose general arrangement was assumed earlier in this

chapter.

X-ray diffraction patterns alone do not always settle the space-group

uniquely; for instance, an orthorhombic crystal whose X-ray diffrac-

tion pattern exhibits no systematic absences may have either space-

group symmetry Pmmm, or alternatively P222, or Pmm. In such a

case morphological features may indicate whether there are three

reflection planes (holohedral class mmm), three twofold axes and no

reflection planes (enantiomorphic class 222), or two reflection planes

intersecting in a single twofold axis (polar class mm). Caution is

necessary here, because the shape of a crystal may have a symmetry

higher or lower than that of the atomic? arrangement (see Chapter II).

If, in crystals grown from a solution or melt of high purity, there is

definite evidence of enantiomorphic or polar character, the crystal

class and with it the space-group are settled, but if the crystal shape
has holohedral symmetry, it is by no means certain that the atomic

arrangement has holohedral symmetry.
When the conditions of growth of a crystal are unknown the

evidence of its shape should be regarded with reserve. There are, indeed,

cases in which the shape of a crystal is inconsistent with clear X-ray
evidence on atomic structure for instance, cuprite Cu2O (Greenwood,

1924; Bragg, 1937; Miers, 1929). Possibly this is due to the presence

of impurities during growth (see p. 53).

If the combination of X-ray and morphological evidence does not

determine the space-group uniquely, additional information may be

sought by tests for piezo-electric and pyro-electric properties, and by
an optical examination for any evidence of rotation of the plane of

polarization. (See Chapter VIII.) The results of such tests may settle

the matter, since only certain crystal classes have these properties.

Only positive results are decisive
;
the apparent absence of piezo-

electric or pyro-electric effects may be due to feeble phenomena.
If after such tests the space-group is in doubt, there is no other

course than to proceed with the next stage in the interpretation of the

X-ray patterns, trying arrangements in each of the possible space-

groups in turn. There may be stereochemical reasons for supposing
that one arrangement is more likely than others, and this arrangement
will naturally be tried first. Such possibilities cannot be discussed in

general terms
; they are specific for each crystal. Familiarity with the

general background of crystal chemistry and molecular stereochemistry

is desirable.
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Information given by a knowledge of the space-group.
1. Molecular or ionic symmetry. If the space-group of a particular

crystal has been determined unequivocally, this knowledge yiay make
it possible to draw certain definite conclusions about the'symmetry of

the molecules or ions of which the crystal is composed and this

without any attempt to discover the

positions of individual atoms.

Consider the space-group sym-

metry P21/a. A structure having
this symmetry can be built by

placing a group of atoms in any

general position in the unit cell, and

repeating this group in accordance

with the demands of the complex
of symmetry elements. Thus, in

Fig. 155, if group A (symbolized by
a question mark because we do not

yet know anything about the posi-

tions of individual atoms) is regarded
as the reference group, the glide

plane at gives rise to group B ;
and

the lower screw axis creates C from

A, as well as a second glide plane a2

from a
l9
and thence D from C. Now

the group of atoms forming the

element of structure need have no

symmetry at all. The symmetry

P2j/a can be attained by arranging

four asymmetric groups in the manner indicated. (All monoclinic

crystals of the holohedral class with primitive lattices contain four

asymmetric groups.) But if we find that a particular crystal has this

symmetry but contains only two molecules in the cell, then each

molecule must have twofold symmetry of some kind. If the substance

is a high polymer, each molecule may possess either a screw axis or

a glide plane or a centre of symmetry, since all these twofold elements

of symmetry are present in the group P2j/a ; but if the substance is a

mpnomer, the molecules cannot have symmetry elements of translation,

and therefore must each have a centre of symmetry. The asymmetric
element of structure is half a molecule ;

each molecule consists of two

asymmetric halves related by a centre of symmetry.

FIG. 155. Space-group P2j/a.
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A good example of the value of such evidence is the conclusion that

the molecule of diphenyl C6H5 . C6H5 has a centre of symmetry. The

situation ia>. exactly that just described the space-group symmetry is

P21/a and there are only two molecules in the unit cell
;
hence each

molecule has a centre of symmetry (Hengstenberg and Mark, 1929;

Clark (G. L.) and Pickett, 1931). Assuming that the benzene ring is

planar and that the connecting link also lies

in the nuclear plane, the fact that in the

crystal the molecule has a centre of symmetry
leads at once to the important stereochemical

conclusion that the two rings are coplanar;

any twist at the single bond would destroy

the centre of symmetry (Fig. 156). Even if

no assumptions are made, it is still certain

that the mean planes of the two rings are

parallel.

But suppose a crystal having this same sym-

metryP21/a is found to contain four molecules ?

It would appear at first thought that each

molecule is asymmetric, since it requires four

asymmetric objects (two left-handed and two

right-handed) to make up this symmetry. This

conclusion, however, would not necessarily be correct; it embodies the

assumption that the asymmetric object is to be identified with the

molecule an assumption which is not warranted. The asymmetric
unit in a crystal may be, and often is, a molecule

;
but it is not neces-

sarily one particular molecule it may be half one molecule and half

another, the two molecules being geometrically different and unrelated

by symmetry operations. Consider an actual example. The crystal of

stilbene, C6H5 .CH=CH.C6H5 ,
has the space-group symmetry P2

2/a,

and there are four molecules in the unit cell (Robertson, Prasad* and

Woodward, 1936; Robertson and Woodward, 1937). If the asymmetric

object were any one particular molecule, then there would be in the

unit cell two left-handed and two right-handed molecules, mirror

images of each other. It turns out, however, that there are two types
of unrelated molecules, both having a centre of symmetry; the asym-
metric unit is half one of these molecules and half the other, the halves

being obtained by mentally bisecting the molecules through their

centres of symmetry (see Fig. 157). These two types of molecules are

geometrically slightly different from each other; they are not stereo-

Fio. 156. Structure of di-

phenyl molecule (in the

crystal). The two benzene

rings must be coplanar (left) ;

any twist at the connecting
link (right) would destroy

the centre of symmetry.
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isomers in the ordinary sense the difference is due to the distorting

effects of the different surroundings of the two types. The differences

are more marked in trans-azobenzene, C6H5 .N=N.C6H5,^which has

a similar structure ; half the molecules are flat, while in the rest the ben-

zene rings are rotated 15 out of the plane of the central C N=N C

group (Lange, Robertson, and Woodward, 1939). That chemically

identical molecules should arrange themselves so that the surroundings

of half ofthem are different from those of the rest seems odd. Evidently

FIG. 157. Structure of stilbene. The asymmetric unit (ringed) consits of half

one molecule and half another, the two types of molecules being unrelated by
symmetry elements (Robertson and Woodward, 1936).

intermolecular forces and the requirements of good packing are satis-

fied better by this arrangement than they would be by an arrangement

of crystallographically equivalent molecules ; but the phenomenon does

not appear to be understood in detail. These examples show that

caution is necessary in forming conclusions on molecular symmetry: it

is possible to conclude, from a knowledge of the space-group and the

number ofmolecules in the unit cell, only that the molecule in its crystal

setting has a certain minimum symmetry. In truth the molecular

symmetry may be higher (if, as in the examples given, there are non-

equivalent molecules), but it cannot be lower than that indicated by
the sort of evidence considered here. The minimum symmetries of

molecules in the various space-groups, taking into account different

possible numbers of molecules in the unit cell, are given in Astbury
and Yardley's tables (1924). (These symmetries do not refer to High

polymer molecules.)
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The above remarks refer to the symmetries of molecules in crystals.

It is very important to remember that the symmetry of a molecule in

its crystal seating is not necessarily the full symmetry of an isolated

molecule, since, as we have seen, the full symmetries of molecules are

not always utilized in forming crystalline arrangements. Suppose, for

example, that X-ray and other evidence leads to the definite conclusion

that certain molecules in their crystal setting have no symmetry. It

does not follow that these molecules in isolation are asymmetric : it may
be that in isolation they would have axes of symmetry or planes of

symmetry, but that these are ignored in the formation of the crystalline

arrangement. One element of symmetry, however, they are not likely

to possess a centre of symmetry. Centrosymmetrical molecules do not

usually form non-centrosymmetrical arrangements though it cannot

be said that this is impossible. (There is one interesting case in con-

nexion with this point. The space-group of 4,4' dinitrodiphenyl is said to

be the non-centrosymmetrical PC, though the molecules themselves are

centrosymmetrical or nearly so (Niekerk, 1943). The coordinates of

the atoms are, however, not significantly different from those of the

centrosymmetrical space-group P2
a/c, and the case is therefore not a

convincing one: it deserves further investigation.)

When the number of molecules in the unit cell is greater than the

number of asymmetric units necessary to give rise to the space-group

symmetry, it is certain that there are in the crystal two or more

crystallographically non-equivalent types of molecules. This is so in

ascorbic acid (vitamin C), for instance (Cox, 1932 a ; Cox and Goodwin,

1936).

2. Molecular dimensions. In research on substances of unknown or

partially known constitution, a knowledge of the shape and size of the

molecules may be of great value in confirming or rejecting suggested
structural formulae. It has been pointed out (p. 187) that when a unit

cell contains only one molecule, the dimensions of the cell suggest

possible molecular dimensions. But clearly, When there is more than

one molecule in the unit cell, the shape and size of the cell merely

suggest the possible dimensions of a group of molecules : the dimensions

of an individual molecule cannot be deduced directly, for the cell might
be divided into two or more identical volumes in an infinite variety
of ways. If, however, the space-group is known, this knowledge may
lead to the conclusion that the molecules are related to each other by
certain symmetry operations, and this restricts the number of ways of

subdividing the unit cell. Still further restrictions may be imposed if
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the constitution of the molecule is partly known. A knowledge of some

of the physical properties, particularly the birefringence, pleochroism,

or magnetic anisotropy, may lead to definite conclusion on the

orientation of whole molecules or of particular atom groups (see

Chapter VIII), and these conclusions may impose still further re-

strictions on the mode of subdivision of the unit cell, and in fact may
determine definitely the overall size and shape of each molecule. This

subject cannot be discussed in general terms ;
each substance presents

its own specific problems. It is desirable in considering the possi-

bilities to use models in which the atoms have the correct effective

external radii : abstract thinking or drawing diagrams on paper is apt
to be misleading.

*

An outstanding example of the use of such methods is the work of

Bernal (1932) on substances of the sterol group. X-ray and optical

evidence led to the conclusion that these molecules have the approxi-

mate dimensions 5x 7-2x 17-20 A, and this played an important part

in the abandonment of earlier structural formulae and the elucidation

of the correct constitution (Rosenheim and King, 1932).

3. Location of atoms in relation to symmetry elements. Equivalent

positions and their multiplicities. After gaining as much knowledge as

possible on the general shape, orientation, and symmetry of the

molecules or ions in a crystal, the next step is to try to locate particular

atoms. This it is sometimes possible to do by reasoning of the type

already used. Thus, if an atom is placed in a space-group having six-

fold rotation axes, it is inevitably multiplied by 6, unless it is placed

actually on one of the sixfold axes; therefore, if, in a space-group

having sixfold rotation axes, it is found that there is only one atom of

a particular kind in the unit cell, that atom must lie on a sixfold axis,

for only in this position can sixfold repetition be avoided. This brings

us to a general consideration of the multiplicity of different types of

positions in the various space-groups:

A 'space-group' is a group of symmetry elements. If an atom is

placed in a quite general position in the unit cell, it is inevitably

multiplied by the symmetry elements, and thus other atoms, exactly

equivalent to the first, are found at other positions which are related

in a precise way to those of the first. Each space-group has its own
characteristic number of equivalent general positions. Thus all primi-
tive (that is, not centred) space-groups in the polar and holoaxial classes

of the orthorhornbic system (classes mm and 222) have four equivalent

general positions, while primitive holohedral space-groups (class mmm)
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have eight equivalent general positions. Thus, if in space-group Pmm,
an atom is placed in a general position xyz (see Fig. 158, left), one

plane of 'symmetry creates another at xyz, and the second plane of

symmetry creates another from each ofthese, at xyz and xyz respectively.

General positions in space-group Pmm are thus fourfold positions.

Suppose, however, we place an atom on one of the planes of sym-

metry, m2 , at position xOz. Plane m2 does not create a second atom ;
it

merely makes one-half of the atom the mirror image of the other half.

But plane ml does create another atom, at position xOz (Fig. 158, right).

Similarly if an atom were placed on m1 at position Qyz, only one more

^4

m7

FIG. 158. Space-group Pmm. Left: fourfold (general) positions.

Right : twofold positions.

atom would be created, at Oyz. Thus positions on planes of symmetry
are twofold positions. It should be noted that there are also planes of

symmetry half-way along a and b edges of the cell, and therefore x\z
is a twofold position (reflected by m[ as xjz), as is also \yz (reflected by
m2 as \yz).

Finally it will be evident that, if an atom is placed at any position

on a twofold axis where two planes of symmetry intersect for instance,

at OOz it is not multiplied at all
;
OOz is thus a onefold position. Other

onefold positions are 0z, OJz, and \\z\ in other words, in this space-

group any position on any one of the twofold axes is a onefold position.

If, in a crystal having this space-group symmetry Pmm, there is only
one atom of a particular kind, it must necessarily lie on one of the two-

fold axes. If there are two chemically identical atoms, some caution

is necessary; they may occupy one set of twofold positions, but another

possibility which cannot be excluded is that the atoms may actually

occupy two of the (crystallographically non-equivalent) onefold

positions. Similarly when there are four chemically similar atoms,
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they may occupy the fourfold (general) positions, or two independent
sets of twofold positions, or even four independent onefold positions.

In general, any position lying on a plane ofsymmetry, a Dotation axis,

an inversion axis, or a centre of symmetry (these are the symmetry
elements which do not involve translation) is a special position, having
fewer equivalent companions than the general positions. But note care-

fully that positions lying on screw axes or glide planes are not special

positions (unless they also lie on non-translatory elements) : an atom

lying on a screw axis or a glide plane is

multiplied just as surely as if it were

lying at a distance from the symmetry
'element see Fig. 159. And in space-

groups exhibiting translatory symmetry
elements only, all positions in the cell

are general positions; this is so, for

instance, in the frequently occurring

space-group P2
1
2
l
2
l ,

the equivalent

positions in which are illustrated in

Fig. 1 60 : every position in the cell has

fourfold multiplicity.

In many space-groups some of the

positions of low multiplicity arc fixed

positions in the cell : no variable para-

meters are involved. Thus in the

monoclinic space-group P2Jc the twofold positions are centres of

symmetry. There are four different pairs of centres of symmetry,
the coordinates of which are :

(a) 000,

(b) 00, i

(c) OOJ,

(d) M,
There are no onefold positions, and all other positions in the cell are

fourfold. If in a unit cell having this symmetry there are only two

atoms of a particular kind, these must lie in one pair of centres of sym-

metry; and we may choose which pair we like, for all give the same

arrangement as far as these atoms are concerned. This is the situation

in platinum phthalocyanine : the two platinum atoms in the cell lie

without any doubt in a pair of symmetry centres (see p. 342).

Note, however, that if in this same space-group P2
3 /c there is one

pair of atoms of one kind and one pair of another kind, each pair of

FIG. 159. Atoms lying on screw axes

or glide planes are multiplied, no loss

than those at a distance.
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atoms must occupy a pair ofsymmetry centres ;
but the relation between

the two pairs of atoms is not uniquely defined, for the arrangement
with one pairjui (a) and the other in (6) is not the same as the arrange-

ment with one pair in (a) and the otfyer pair in (c) ;
and the combination

(a)+(d) is a third different arrangement. The correct arrangement may
be found by calculating the intensities of the X-ray reflections for the

different arrangements; this must be done simultaneously with the

determination of the parameters of the rest of the atoms in the cell.

(See next section, and also p. 307.)

FIG. 100. Equivalent positions in space-group P2 1
21

2 1 .

In all except very simple structures most atoms lie either in partly

restricted positions involving one or two variable parameters or in

general positions involving three variable parameters. We shall pass

to the methods of determining these variable parameters in the next

section ;
but before leaving this section there is one other very useful

consideration to be mentioned. If a structure is known to have twofold

axes (not screw axes) and certain atoms do not lie on the twofold axes,

the distance of the centre of one of these atoms from a twofold axis

cannot be less than the radius of the atom, for any smaller distance

would mean that two equivalent atoms on opposite sides of the twofold

axis overlap each other. Similarly the centre of an atom must lie

either on a plane of symmetry (a reflection plane, not a glide plane) or

else at a distance from it not less than the atomic radius. The same is

true for a centre of symmetry. For three-, four-, and sixfold rotation

axes we have to imagine a ring of atoms round the axis 4 none of them

can touch the axis, hence the smallest permissible distance is greater

than the atomic radius. Such considerations have played a large part
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in the solution of silicate structures such as that of beryl, Be3Al2Sifl 18

(Bragg, W. L., and West, 1926).

The space-groups illustrated here are simple ones having a maximum

multiplicity of 4. In many space-groups, however, the multiplicity of

the general positions is much higher 16, or 32, or even 96 in some of

the highly symmetrical space-groups. The multiplicities and the co-

ordinates of equivalent positions (both general and special) are given

in Int. Tab. Specimen diagrams from Int. Tab. are reproduced in

Fig. 161 to show the conventional way of representing equivalent
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FIG. 161. Symmetry elements and equivalent positions in space-group
Omca (Internationale Tabellen, 1, p. 141).

positions and the commonest symmetry elements. Some examples of

the use of the tables ofequivalent positions will be found in Chapter IX ;

attention is drawn first of all to the derivation ofthe structure ofsodium

nitrite NaN02 , since the arrangement has the symmetry Imm, closely

related to the one (Pmm) used as an example here.

The application of the theory of space-groups to crystal structure

determination involves the assumption that equivalent sites in the

crystal are occupied by identical atoms. Fortunately this is true for

the majority of crystals, though there are some exceptions. Considera-

tion of the abnormal types of crystals is deferred to the end of Chapter
IX. For the present we will continue with the account of the methods
of solving normal structures.

Determination of atomic parameters . At this stage in the attempt
to find the positions of the atoms in the unit cell it is known that the

complete arrangement has certain symmetries. If the space-group is

P21
2
1
2
1 (Fig. 160), a particular atom Ml which may be tal^en as the

standard of reference is repeated by the symmetry elements in other
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definite positions in the cell M2 ,
M3 ,

and M4 ; a second type of atom

Nv which is formally independent of the first-mentioned, is also

repeated in other definite positions JV2 ,
N-3 ,

and JV4 by the same scheme

of symmetry 'elements ;
and so on. Each type of reference atom has

three parameters x, y, and z, which are the coordinates of the atom

with respect to the unit cell edges expressed as fractions of the lengths

of thsse edges. If the coordinates of each reference atom can be found,

the other three of each group are bound to be at x, y, +z, at

f+z, \y, z, and at x, %+y, \z (if the origin of the cell is, in

accordance with convention, a point half-way between neighbouring

screw axes as in Fig. 160).

The procedure in determining the parameters will naturally vary

with circumstances, but a few general principles can be given. First,

as to the most convenient method of calculation. We have seen (p. 212)

that for any crystal plane hkl the contribution ofeach atom (coordinates

xyz) to the expression for the structure amplitude consists of a cosine

term /cos 2n(hx+ky+lz) and a sine term /sin 2ir(hx+ky+lz). Equiva-

lent atoms (those related to each other by symmetry elements) have

coordinates which are related to each other in a simple way, and on

this account the cosine terms for the whole group may be combined to

form a single expression, the evaluation of which is usually more rapid

and convenient than the process of dealing with each atom separately.

Thus, the cosine terms for four equivalent atoms in space-group P21
2121

(coordinates given above), on being expanded and combined, are found

to be equal to the expression

A =

The sine terms combine in a similar way to form the expression

B = ^4/sin

If the combined expressions are used, it is only necessary to consider

each reference atom in turn ;
the expressions take care of the rest of

each group. The cosine term for each independent group is evaluated

and then all the cosine terms are added together. Sine terms for all the

independent groups are likewise added together. A 2+BZ is then = F",

which for an 'ideally imperfect' crystal is proportional to the intensity

the hkl reflections would have if the atoms really were in the postulated

positions. The combined expression for the contribution of a set of

4458 S
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equivalent atoms, for each space-group, is to be found in Int. Tab.

and in a book by Lonsdale (1936),

When there is only one variable parameter in a crystal stiucture its

determination is straightforward : calculation ofthe intensities ofvarious

reflections for a range of values of this parameter (as was done for rutile

on p. 214) leads directly to the selection of the value which gives the

best agreement with the observed intensities. It is usually necessary

to calculate only for a small range of parameters, for it is likely to be

obvious, from the strength or weakness of certain reflections, that the

parameter can only be near a certain value (see again the evidence on

rutile, p. 215). Usually, reflections at small angles fix it approximately,
while the high-order reflections at large angles lead to a more accurate

value.f

Similar methods can be used whenever a parameter can be isolated.

This is well illustrated by the determination of the structure of

ammonium hydrogen fluoride NH4HF2 by Pauling (1933). The crystals

are orthorhombic, and the unit cell has the dimensions a = 8-33 A,

6 = 8* 14 A, c 3-68 A and contains four molecules. The general

arrangement, which has the symmetry Prnan, was suggested by refer-

ence to the already known structure of KHF2 (Bozorth, 1923) and a

consideration of the modifications brought about by the formation of

hydrogen bonds between nitrogen and fluorine atoms : in this arrange-

ment the nitrogen atoms are at JJzp |Jz1 , Jfzj, and ffzp half the

fluorine atoms at #00, 00, (J+#)iO an(i (| #)iO and the others at

\y*K \yz* 0($ y)z2 ,
and 0(J+y)z2 .

The intensities of the JiQQ reflections depend only on the value of x

(this is the only parameter along the a axis) ;
hence the relative intensi-

ties of the various orders of hOQ lead to the determination of x. (The
results are presented in Pauling's paper in the form of curves like those

for rutile in Fig. 129.) Similarly y was found from the relative intensities

of the O&O reflections. Along the c axis there are two parameters- zx and

22 , but Zj was isolated from z2 by considering only those likl reflections

which have h odd and k odd ; if the expressions for the contributions

of all the atoms in the cell are combined together, the complete structure

amplitude for these reflections is found to be

F = 4/F(cos 27T&E cos 2irky cos 27rZz2 ),

f This ij not true in all circumstances. For instance, the diffracting power of the oxygon
atom falls off with increasing angle of diffraction much more rapidly than does that
of iron so much so that in lepidocrocite (^-FeO.OH) the intensities of the high-order
diffractions are determined almost entirely by the positions of the iron atoms ; the para-
meters of the oxygen atoms must be fixed by means of some of the low-order diffractions.
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an expression which does not contain zv The already known values

of y and x were used, and thus z2 ,
the only variable in the expression,

could be determined in the same straightforward way. This left only
one parameter, z1? to be determined ; this could have been found from

the intensities of various remaining types of reflections ; actually it was

found from the relative intensities of hkl reflections having h and k

both even, the structure amplitude for these being

/h-4-k \F = 4/Nn4 cos27r[--^-^+ Z2j+4^^

In the more complex structures it is usually necessary to determine

a number of parameters simultaneously ;
in crystals of complex organic

compounds, for instance, more often than not the atoms are all in general

positions and there are therefore three parameters for each atom. Such

problems cannot be solved by the methods described for isolated para-
meters. It is necessary to postulate likely positions for the atoms, to

calculate the intensities which these positions would give, and to com-

pare these calculated intensities with those observed. The prospects

of success depend on whether the postulated positions are anywhere
near the correct positions, giving some measure of agreement with

observed intensities
;
if they are, the correct positions can be found by

judicious small displacements ofsome or all the atoms from the positions

first chosen.

The following discussion relates chiefly to complex crystals in which

all the atoms have much the same diffracting powers crystals such as

those of many organic compounds ;
for it is in these circumstances that

the indirect method of trial and error must still be used. For crystals

containing a minority of heavy atoms together with a larger number
of lighter atoms in the unit cell, the direct or semi-direct methods

described in Chapter X arc more appropriate.

The first step should be to gain a general idea of the distribution of

the atoms. A general idea of the shape and orientation of the molecules

may have been gained by reasoning based on a knowledge of the unit

cell dimensions and the space-group, together with physical properties

such as optical or magnetic birefringence, and whatever stereochemical

knowledge is cavailable on the type of substance in question. If so, this

will lead to the. postulation of approximate atomic coordinates.

Failing this, a direct attack on the problem of the interpretation

of the intensities of the X-ray reflections may be made. In any case,

this is the next stage. The only X-ray intensities so far considered
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quantitatively (indiscovering the space-group)havebeenzero intensities
;

the next to be considered are those of maximum intensity, since these

may indicate the whereabouts of the greatest concentrations of atoms.

The strongest reflections are usually those at small angles . Ifone ofthese

is much stronger than any others, it may be that all the atoms lie on or

near the lattice planes responsible for this outstandingly strong reflec-

tion. If absolute (not merely relative) intensities are available, this

idea can be checked directly ;
if the intensity is about the maximum

, possible by co-operation of diffracted

waves from all the atoms in the cell

(taking into account all angle factors),

then all the atoms must lie on or near

the reflecting planes. Even if absolute

intensities are not available, it is still

possible to check the idea, though in a

less direct way; if all the atoms lie on

particular crystal planes, then the struc-

ture amplitudes for all orders of reflection

FIG. 162. Orientation ofmolecules fr m these plaiies must be equal and there-

in the crystal of benzoquinone. fore the actual intensities of the different

S ZS?S p.JSft
orders diminish regularly from one to the

the great strength of 201 shows next, owing to the effect of the angle

facto- This arg* has been ch

used; for an example, see the structure

of sodium nitrite, p. 303. If a decline is maintained only for two or

three orders, the higher ones being apparently erratic, or if the decline

is greater or smaller than the normal decline due to angle factors, then

the atoms must be somewhat dispersed from the planes in question.

As an example, in the determination of the structure of benzoquinone

(Robertson, 1935 a) the great strength of the 20T reflection and the

rapid decline of the intensities of the second and third orders (402 and

603) were used as evidence thut the flat molecules lie nearly, but not

quite, along the 201 planes (see Fig. 162); and the final result of the

analysis showed that this is correct. In crystals containing atoms of

widely different diffracting powers, such evidence may mean that the

more strongly diffracting atoms lie on the planes in question, with the

more weakly diffracting ones somewhere in between.

Iftwo or three reflections in the same principal zone are much stronger
than all the others, the atoms lie approximately along lines parallel to

this zone axis. Fibres of crystalline chain polymers, for instance, often
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give two or three very strong reflections from planes parallel to the fibre

axis
;
this shows that in the crystalline regions the chain molecules are

fairly well 'extended (not meandering) and parallel to the fibre axis: if

we look along the chain axis (usually called c), we see the ab projection,

and in this projection the chains, seen end-on, appear to be compact

groups of atioms. Thus, in polyethylene (Bunn, 1939) and some of the

polyesters (Fuller, 1940) the ab projection of the unit cell is rectangular

(Fig. 163) and two chain molecules run through it; the, 200 and 110

I x

110 110

FIG. 163. Packing of chain molecules

in polyethylene and some of the

polyesters. The chains, sden end-on,

appear to be compact groups of

atoms at P and Q.

0/0

FIG. 164. High polymers whose unit

cells projected along the fibre axis are

not rectangular may give three very

strong reflections. If the fibre axis is c,

these reflections may be 100, 010,

and lIO.

reflections are far stronger than any others, and this shows that the

atoms appear from this viewpoint to be in compact groups at the

corners and centres of the projected cells. In polyisobutene the 200

and 110 planes have the same spacing (Fuller, Frosch, and Pape, 1940),

and in the fibre photograph (Fig. 112, Plate IX) these reflections are

superimposed, forming a spot of very great intensity. If the projected
cell is not rectangular, there may be three very strong reflections, from

planes such as those in Fig. 164.

Such considerations, applied to the low-order (small angle) reflections,

give a general idea of the distribution of the atoms, if these happen to

be in sheets or in strings. In the case of molecular crystals they indicate

the general orientations of sheet or chain molecules. The occurrence in

these crystals of the atomic centres in compact groups is due partly to

the chain or sheet structure of the molecules, and partly to the fact

that the effective external radii of atoms (which govern the distances
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between molecules) are much greater than the distances between

atoms linked by primary bonds.

Any outstandingly strong reflections at large angles may give similar

information about the distribution of the atoms within the molecules.

For instance, the crystal of chrysene (monoclinic, a = 8-34 A,6 = 6-18A,
c = 25-OA, j8= 115-8, space-group I2/c) gives a very strong 0.3.17

reflection, and this suggests that the atoms lie on planes of this

type. But it is not known whether the phase of the reflection (the sign

(a) k^ (b)

FIG. 165. Structure of chrysene.

of the structure amplitude) is positive with respect to the centre of

symmetry at the origin which would mean that the atoms lie on the

'positive' planes in Fig. 165 b or negative, as it would be if the atoms

lay on the planes in Fig. 165 a. However, the chemical structure and

probable dimensions of the molecule are known, and if such a molecule

is placed in the cell oriented as in Fig. 165 b (an orientation suggested

by the cell dimensions), the atoms do lie on the 'negative
7

0.3.17 planes ;

and this postulated orientation is confirmed by the fact that the 060

reflection is also strong Fig. 165 b shows that the atoms lie on 'nega-

tive' 060 planes. (Iball, 1934.)

Another example of the use of this type of evidence is to be found in

the determination of the structure of crystalline rubber (Bunn, 1942 a).

First of all it must be mentioned that the chain molecules, seen end-on,
lie as in Fig. 166. (The great strength of the 200 and 120 reflections,

coupled with the fact that there are four molecules passing through the
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10.0.0 +

unit cell, gives this information.) A strong hint of the distribution of

the atoms is given by the fact that the 10.0.0 reflection is recorded;

it is wea, bjit the fact that it is there at all (considering the large

angle of reflection) must mean that the structure amplitude for this

reflection is large. Again, the atoms may lie on 'positive' planes as in

Fig. 166 a or 'negative* planes as in Fig. 166 6 ; but the probable con-

figuration of the chain mole-

cules, derived from reasoning

based on the repeat distance of

the molecules (the length of the

c axis of the cell), is such that

the first of these alternatives is fa)

evidently the correct one.

This is as far as it is possible

to go by simple inspection ;
the

discovery of the positions of

individual atoms, and the de-

termination of the parameters
with as much accuracy as the

experimental evidence allows,

must rest on detailed calcula-

tions. When atomic positions

have been postulated as the

result of considerations such as
_J__J_J__

those just given, it is usually 10.0.0
-

best to concentrate on one prin-

cipal projection ofthe structure ;

the projection chosen should be

the one expected to give the

clearest resolution of the differ-

ent atoms, and calculations

should first of all be carried out for the zone of reflections relevant to

this projection. (The hkQ reflections yield the x and y coordinates of

the atoms that is, they give a picture of the structure projected along
the c axis; and so on.) Following this (assuming that the intensities

of this first zone of reflections are successfully accounted for and a

reasonable projected structure is obtained), the other principal pro-

jections may be considered ; and finally the whole structure is checked

by calculations of all the hkl intensities.

In the attempt to obtain correct calculated intensities the following

FIG. 166. Structure of rubber. The great

strength of 200 and 120 shows that the four

chain molecules, seen end-on, lie in the posi-
tions shown. The large structure amplitude of

10.0.0 shows that there are concentrations of

atoms either on the 10.0.0+ planes (above)
or the 10.0.0 planes (below).
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PI

P2

Pm

Pb

Cm V

Pmm

Pba \

Pbm

Cmm X
/Y

problem arises : suppose a particular set of atomic

coordinates gives some measure of agreement of

calculated with observed intensities for' one pro-

jection, but nevertheless there are still considerable

discrepancies, especially among the higher order

reflections a situation which probably means that

the postulated atomic coordinates are roughly cor-

rect, but need adjustment. Which atoms should be

moved, and by how much ?

It should be remembered that when a reference

atom is moved, all the atoms related to it by sym-

metry elements move also in a manner determined

by the symmetry elements ;
and the problem is to

know, for any particular reflection, the direction in

which to move the reference atom so that the con-

tribution of the whole group of related atoms either

increases or decreases. This problem is best solved

by the use of charts which show at a glance the

magnitude of the structure amplitude for such a

group of atoms for all coordinates of the reference

atom.

Graphical methods and machines for evalu-

ating structure amplitudes. The evaluation of

the structure amplitudes for a large number of re-

flections (it may run into hundreds) is a task of

such magnitude that methods of shortening it are

very welcome. For any principal zone (MO, hQl, or

O&Z) onlytwo coordinates of each atom are concerned

in the structure amplitude, and therefore a graphical

method may be used : charts showing the values of

such functions as cos 2ir(hx+ ky) or cos Znhx cos 2nky

may be constructed (Bragg and Lipson, 1936), and

on them the contribution of a group of related atoms

may be read. Great accuracy is not required in

structure amplitude calculations, and the 1 Per

cent, or so obtainable by such graphical methods is

adequate. Such charts have, in addition, the very

great advantage that they show at a glance what

FIG. 167. Some of the plane groups.
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movements of atoms are required to increase or decrease the calculated

intensity for any reflection.

Projected Arrangements may be described as 'plane-groups', for

which a nomenclature conforming to that of the space-groups is used
;

the most frequently encountered plane-groups are illustrated in Fig. 167.

A pair of atoms having coordinates xy and xy (that is, related by an

FIG. 168. Chart for the estimation of cos 2ir(2x+3y) for all values of x and y.

apparent centre of symmetry at the origin) form plane-group PI ;
the

contribution of this pair to the structure amplitude is 2/cos 27r(hx-}-ky).

For the 230 reflection a chart showing cos27r(2o;-{-3y) for all values of

x and y is required ; such a chart is shown in Fig. 168. It is made square

for convenience ; the real shape of the projected cell does not matter,

since structure amplitudes do not depend on the shape of the cell but

only on atomic coordinates expressed as fractions of the unit cell edges.

A complete chart would show contours at intervals of 0-1 filling all

the spaces between the nodes ; but it is unnecessary to draw anything

but the nodes, since the value at any point can be readily found by
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using a 'master key' which is fitted between the nodes in the way shown

in the diagram : the structure amplitude at the point P is obviously 0-73.

If the chart is made on transparent material (tracing clpth'is durable

material for this purpose), atomic positions can be plotted, as fractions

of unit cell edges, on white paper ;
for crystal plane 230 the chart show-

ing cos 2?r(2a:+%) is laid on the plot of atomic coordina,tes and the con-

tribution of each atom is read off. Note that this same chart can be

Jin Cos + Cos Cos

[Sin sm {as Sin

FIG. 169. ('hart for the estimation of cos '27r2x cos 2ir%y (and other

similar functions) for all values of a; arid y.

used not only for plane 230, but also for 230, 320, and 320 by turning
it over or reversing the axes. But a different chart is required for each

different pair of numerical values of h and k. In order to serve for sine

as well as cosine terms each chart is extended in one direction, the

origins for sine and cosine terms being 7r/2 apart.

Four atoms having coordinates xy, xy, (l+x)(^ y) and (i x)(l+y)
form plane-group Pba (see Fig. 167). The combined structure ampli-
tude for such a group of atoms is 4 cos 27rhx cos 2nky when Ji-\~ k is even,

and 4 sin "Zirhx sin Z-rrky when h+k is odd.

Charts showing these functions are divided by the nodes into rect-

angular sections filled by curved contours (Fig. 169). Here it is even

more desirable to construct skeleton charts with a set of 'master keys'

to fit the differently shaped rectangular sections. The same chart

can be used either for the two functions already mentioned or for
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sin 2-n-hx cos 2rrh/ or cos 27rAa: sin 277% (which are required for some

plane-groups) by appropriate placing of the origin.

A set of charts for the functions already mentioned suffices for

graphical evaluation of the structure amplitudes for the principal zones

(hkQ, hQl, Qkl) of all triclinic, monoclinic, and orthorhombic crystals ;

since, in Barker's words, this group is the centre of gravity of the crystal

kingdom (a large proportion of known substances including nearly all

organic substances crystallize in these systems), such a set of charts

has a very wide range of usefulness. The same charts can be used for

hQl zones of hexagonal and tetragonal crystals. It should be noted that

for certain projections of space-groups containing glide planes the pro-

jected plane unit cell area appears to have one or both axes subdivided
;

in other words, the unit cell dimensions of the 'plane-group' are sub-

multiples of those of the corresponding 'space-group' ;
in such circum-

stances it is necessary to remember to multiply the atomic coordinates

and divide the indices of the reflections to make them appropriate to

the plane-group in question.

For basal plane projections (hkQ) ofhexagonal and tetragonal crystals,

and for projections of cubic crystals (for which MO, hQl, and OH are all

equivalent), the charts showing the combined contributions from a set

of crystallographically equivalent atoms have a more complex form.

Charts for these and all possible 'plane-groups' are illustrated in the

paper by Bragg and Lipson.

Figures for hexagonal plane-groups have been evaluated by Beevers

and Lipson (1938). It should be noted that if charts for the hexagonal
and square plane-groups are not available (the labour of constructing

them is considerable), sets of equivalent atoms may be divided into

subgroups whose contributions may be separately read off on the charts

for the less symmetrical plane-groups. Thus, forany pair ofatoms related

by a (projected) centre of symmetry (plane-group Pi), the contribution

is given by 2 cos 2rr(hx-\-ky) ; any four atoms related in the projection by
two apparent planes of symmetry at right angles (plane-group Pmm)
contribute 4 cos 2irhx cos 2irky to the structure amplitude ; and so on.

The value of these charts, in showing what adjustments of atomic

parameters will increase or decrease the structure amplitude, has already

been mentioned. To this little need be added except a suggestion on

procedure in dealing with several independent reference atoms simul-

taneously. This is best explained by an actual example. In attempting
to find the x and y coordinates of the atoms in the hkO projection of

polychloroprene (Bunn 1942 a) a particular set ofpostulated coordinates
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gave roughly correct intensities for the hkO reflections, but there were

still some discrepancies, the most serious of which were that the calcu-

lated structure amplitude of 240 was too small and that of 420 too great.

By using the charts it was readily seen that the movements of atoms

which could rectify these discrepancies are as follows :

Ci C2 C3 4 Cl Ib \

To increase 240 . . . / f \ / -> \^a]

To decrease 420 . . . -> f / \ -

These verdicts are fairly consistent; in particular, it appears that a

movement ofC2 upwards or Cl to the right would have the desired effect.

Since the diffracting power of Cl is much greater than that of C, a

movement of Cl would be much more effective than a similar movement
of C. But if Cl is moved, it is found that the intensities of some of the

other reflections are adversely affected; in particular, 410 becomes too

strong. The movements now required to weaken 410 are as follows:

\J\ v^2 >-^3 v^ Ol

To weaken 410 . . . f -> f \ -*-

It is not now desired to shift Cl ;
and of the other atoms it is not

desirable to move C4 downwards, as this would weaken 240 again;

therefore it seems that the correct thing to do is to move Cx and C3

upwards ; in this way, not only is 410 weakened, but 240 is strengthened

further. The magnitudes ofthe movements required were found by trial,f

It will be evident that these methods can only be used after approxi-

mately correct atomic positions have been postulated. If the positions

postulated are not approximately correct, the calculated intensities are

nothing like those observed, and it is not possible to decide what move-

ments are necessary to put matters right. Everything therefore depends
on whether the preliminary reasoning leads to an approximately correct

structure. This is the great limitation of the method of trial.

Three-dimensional charts are not practicable, but for many space-

groups the plane charts just described can be utilized for general (hkl)

reflections in the following way. For space-group P21
2121 the structure

amplitude is J(A*+B
2
), where

A ^ At O k h-k\ O 1 7 *-A O /7 l~-'h\A = > 4/cos27T[hx-- \co82TT\ky-- cos27ruz--
4*

\ 4 / \
4 / \ 4 /

and

D \? At o iB = > 4/sin27r(Aa:
\

4 / \ 4 / \

f A numerical *least squares' method of adjusting parameters is described by Hughes
(1941).
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The xy positions of the atoms are plotted on a transparent square chart

in the manner already described ; the z positions are plotted on a separ-

ate strip. 'To^find A, the product of the first two cosine terms is read off

on a chart giving cos %-nhx cos Znky by suitably displacing the origin ; for

instance, for plane 231,
27r(- ]

is 90 and
27r( -J

is +180 ; using

the 23 chart, the origin of the atomic position chart is shifted 90 back-

wards along the x axis and 180 forwards along the y axis. The last cosine

term is read off on the strip, using a one-dimensional chart giving

(I

_M- 1 is 90, and the origin of the strip must

therefore be displaced backwards 90. The only calculation is then the

multiplication ofthe two graphically estimated figures and/, the diffract-

ing power of the atom. Sine terms are obtained in a similar way from

the same charts.

The procedure is of course longer than for planes of type MO, etc.,

but it is very much shorter than straightforward calculation of hkl

structure amplitudes.

As another example, the structure amplitude for space-group P21/a

is given by

A = 4coa27rhx+lz+cos2ky~, (B = 0).
\ 4

/ \ 4
/

The x and z positions of the atoms are plotted on a square chart, and

the first cosine terms read off on the Bragg and Lipson chart for plane-

group P2, the origin being displaced by 2nl -I ; the y positions are

plotted on a strip as in the previous example, and the second term read

off, again after the appropriate displacement ofthe origin ; the two terms

are then multiplied.

For the general planes of triclinic crystals the structure amplitude is

given by

The Bragg and Lipson charts cannot be used for these expressions. The

following method uses slide-rule technique and has been found to save

much time and effort. A strip A is prepared (Fig. 170) on which phase

angles and the corresponding cosine and sine values are marked. For a

particular atom in the structure the postulated coordinates are marked

on a separate strip of paper B. The phase angle for any crystal plane
hkl is found by placing the two strips together, first of all with their
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origins opposite to each other (Fig. 170 a) and then displacing strip B in

the following way. For crystal plane 1 1 1
,
for instance, a pointer (a needle

point or a sharp pencil point) is placed at x, and strip B is
f

moved along
so that its origin comes opposite the pointer (Fig. 170 6) ;

the pointer is

now moved to y (Fig. 170c) 3
the origin shifted to the pointer, and so on.

For 121 two y displacements would be made. For 231 two x displace-

ments, three negative y displacements, and one z displacement would

be made. The value of the cosine (or sine) for the final phase angle is

(fa)

(c,

FIG. 170. Slide-rule method for determination of cos (or sin) 2Tr(hx-\-ky-}-lz).

read off, and only needs multiplying by / to give tho contribution of

the atom in question. A separate paper strip should be prepared for

each independent atom in the structure. If the phase angle becomes so

large that it is outside the range of strip A, it must be transferred back

by shifting the pointer 2?7. This disadvantage of a slide rule could be

remedied by making A and B circles or disks.

Machines to carry out calculations of structure amplitudes have been

devised. Evans and Peiser (1942) have a machine (made largely of

'Meccano' parts) which evaluates/cos (orsin) 2ir(kx+ky) that is to say,

for an atom having coordinates x and y along the a and b axes, it

reckons up the phase angle, and then multiplies its cosine (or sine) by
the diffracting power /; this can be done for all the MO planes by
suitable numbers of turns of two handles (representing h and k). For

other atoms, x, y, and / are reset, and the process repeated. The
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machine does not add up the contributions of all the independent atoms

to the structure amplitude of any one plane ;
this must be done separ-

ately. The machine can also be used for general (hkl) planes by re-

setting for each value of /.

Cox has a machine which is undoubtedly more rapid than the one

already mentioned. As an electrical analogy to the process of multiply-

ing a diffracting power by the cosine (or sine) of a phase angle, a con-

denser whose capacity is proportional to the diffracting power / of an

atom is charged by a voltage proportional to the cosine (or sine) of the

phase angle 6, the resulting charge on the condenser (== capacity x

voltage) being therefore proportional to /cos 6. (See discussion of paper

by Beevers, 1939.)

The optical diffraction method. W. L. Bragg (1944) has suggested
a method of avoiding the calculation of structure amplitudes altogether,

at any rate in the early stages of structure determination. This method

consists in making, on a scale small enough to give optical interference

effects, a plane pattern corresponding to the postulated crystal structure

as seen from one particular direction (usually a unit cell axis) ;
the

diffraction pattern produced when monochromatic light passes through
this imitation crystal corresponds to the X-ray diffraction pattern

produced by the real crystal that is to say, the relative intensities of

the optical diffraction spots correspond with those of the X-ray diffrac-

tion spots for the particular zone selected. Thus, suppose the c projec-

tion of a crystal is being considered ; x and y coordinates for all the

atoms are postulated and a picture is made, on a very small scale,

showing many repetitions of the projected unit cell ; this is done by a

photographic reduction method (described below). The diffraction

pattern may be observed by looking through a telescope at a point-

source of monochromatic light several feet away ; when the pattern
which represents the crystal structure is placed between the source

and the telescope, many images of the source are seen ; the relative

intensities of these images should correspond with those of the hlcO

X-ray reflections, if the postulated structure is correct. Another simple
method of observing the diffracted beams is to set up a microscopic

objective lens (of, say, 2 inches focal length) to produce an image of a

monochromatic point-source several feet away, and to examine this

image by means of a microscope ;
when the pattern representing the

crystal structure is placed between the source and the 2-inch lens, many
images are seen; the 2-inch lens may conveniently be screwed into

the substage of the microscope. That this method does give correct
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intensities is shown by Fig. 172, Plate XIII, in which the upper photo-

graph shows part of a pattern representing the b projection of the

phthalocyanine crystal (actually 676 repetitions were madu), and the

lower photograph shows the diffraction pattern given by it. The actual

structure amplitudes obtained from the hOl X-ray reflections (Robert-

son, 1935 c, 1936 a) are given in Table VII, and it can be seen that there

is a close correspondence between the optical and X-ray intensities;

there are some discrepancies among the weaker spots, but the agree-

ment is on the whole very good quite good enough to show that the

method can be used for the purpose of finding approximate atomic

positions.

TABLE VII

The multiple pattern is made in the following way (see Fig. 171).

The atoms in one projected unit cell are represented by illuminated

holes in an opaque screen. (A square coordinate system is used for

convenience, just as square charts are. used in the graphical methods.)
A multiple photograph of this one unit cell is taken by means of a

multiple pinhole camera (Fig. 171 a) which consists of 676 pinholes in

an area 5 mm. square (made by drawing a large pattern of black dots

on white card and taking a small photograph on a fine-grained plate).

The distances between the illuminated holes and the pinholes, and

between pinholes and photographic plate, must be such that the images
are properly contiguous, to preserve correct coordinates in the unit cell.

Atoms of different diffracting power may be represented either by holes

of different sizes, or else, if the holes are all the same size, by covering
those holes representing the lighter atoms during part of the exposure.



PLATE XIII

FlQ. 172. Above: pattern representing the b projection of tho phthaloeyanine structure.
Below: optical diffraction pattern given by it.
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Another method of making patterns by means of the multiple pin-

hole camera is to use a single small light-source (such as a car headlamp

bulb) which is photographed in various positions each of which repre-

sents the position of an atom in the projected unit cell. Atoms of

different diffracting powers are represented by exposures of different

lengths.

Concluding remarks on the method of trial and error. The

general procedure in structure determination by trial has been described.

PHOTOGRAPHIC
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Fia. 171. a. Part of multiple pinhole camera. 6. Arrangement for making
repeating patterns by the multiple pinhole camera. Atoms in the unit cell

are represented by points of light.

It remains to mention certain experimental and theoretical devices

which are of less general application but which are valuable in special

circumstances.

a. In some diffraction patterns certain types of reflections- the types

which if absent altogether would indicate the presence of glide planes

or screw axes arc consistently very weak, suggesting the existence of

pseudo glide planes or pseudo screw axes. For instance, if all kOl

reflections with Jt odd are very weak, this means that in the 6 projection

there are, about half-way along the a edges of the cell, groups of atoms

(molecules, perhaps) looking much the same as, but not identical with,

groups of atoms at the cell corners. (See the structure of ascorbic acid,

p. 315.) Similarly, it is not uncommon to see in a rotation photograph
that the odd layer lines are much weaker than the even ones ; this

means that there is a pseudo unit cell with one edge (the edge parallel
4458 r
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to the axis of rotation) half the true length: one half the unit cell is

similar to, but not identical with, the other.

6. Two isomorphous crystals in which atoms of different diffracting

powers occupy corresponding sites give diffraction patterns in which

corresponding reflections have different intensities. The differences of

structure amplitudes may be used to locate these atoms : the differences

may be regarded as the structure amplitudes which would be given by
a hypothetical crystal consisting only of hypothetical atoms having a

diffracting power equal to the difference between the diffracting powers
of the replaceable atoms in the real crystals. By solving the structure of

the hypothetical crystal, using the differences of structure amplitudes,

the positions ofthe replaceable atoms can be found independently of the

remaining atoms in the real cell. (The assumption on which this method

rests is true only for the stronger reflections : for the weaker reflections,

the replacement of one atom by another may cause a change of sign

of the structure amplitude, in which case the difference in magnitude of

the structure amplitudes does not correspond with the required arith-

metical difference. The stronger reflections may, however, provide

sufficient evidence for successful location of the atoms in question.)

c. In crystals containing atoms of very similar atomic numbers

(copper and manganese, for instance) it may not be possible by normal

methods to distinguish between the two species of atom because their

diffracting powers are very similar for most X-ray wave-lengths. But if

an X-ray wave-length lying between the absorption edges of the atoms

concerned is used, the difference between the diffracting powers are

enhanced, so that distinction is possible. (Bradley and Rodgers, 1934.)

One final remark. Adjustment of postulated atomic positions by
trial need be carried only so far as to settle the phases of the majority
of the reflections ;

from that point the direct method described in

Chapter X can be used.

The background of crystal chemistry. Ideally, crystal structures

should be deduced from the X-ray diffraction patterns of crystals

(together with such physical properties as are rigorously determined

by internal symmetry) without making any stereochemical assump-
tions. Most of the simple structures, and some of the more complex

ones, have been determined in this way. In the early days of the use

of X-ray methods for the determination of crystal structures it was

necessary that structures should be deduced by rigorous reasoning from

physical data, so that the foundations of crystal chemistry should be

well and truly laid. In some of the more complex structures, however,
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it would be difficult to determine all the atomic positions by such

methods alone; and in these circumstances the obvious course is to

make use of the wealth of information contained in the large number

of crystal structures already established, as well as stereochemical

information obtained by other methods, and those physical properties

which have been shown by experience to give reliable structural informa-

tion. There is no reason why the fullest possible use should hot be made
of the generalizations resulting from previous studies, providing one

retains an open mind with regard to the possibilities of deviations from

or exceptions to these generalizations. After all, such considerations

are only used to indicate approximate atomic positions which, it is

hoped, will give approximately correct X-ray intensities
;
the atoms are

then moved about independently until the best possible agreement
between the calculated and observed intensities of X-ray reflections

from a wide range of planes is obtained. The proof of the correctness

of the structure is this agreement, and it does not matter how it is

attained -whether by rigid deduction from the X-ray diffraction pattern
alone or by reasonable induction from general principles arising from

a survey of previously determined structures.

The danger of using the non-rigorous methods is that the possibility

of there being more than one arrangement of atoms satisfying the X-ray
intensities may be overlooked

; there is a danger that the arrangement
first selected, if it gives good agreement between observed and calculated

intensities, may be accepted without further question. The only remedy
here is ruthless self-criticism on the part of the investigator. The chance

that two or more arrangements of atoms are equally compatible with

the X-ray results is small. It is only in crystals containing both heavy
and light atoms that there is an appreciable chance of ambiguity ;

the

heavy atoms may usually be placed with certainty, but lighter atoms,
since they contribute comparatively little to the X-ray intensities, may
be moved appreciably from selected sites or even to quite different sites

without altering radically the calculated intensities. Wyckoff (The
Structure, of Crystals) draws attention to some cases in which alternative

structures have been proposed; potassium dithionate (Helwig, 1932;

Huggins, 1933) may be cited as an example. Such ambiguities have

usually been resolved by subsequent investigations more precise in

technique and critical in approach.
In crystals in which different atoms have much the same diffracting

power (many organic crystals, for instance) the interchange of different

atoms such as nitrogen, oxygen, and carbon will have little effect on
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the calculated intensities ;
but usuaDy in such circumstances chemical

evidence indicates that all combinations but one are definitely ruled out

or wildly improbable. Granted that there is only one possible chemical

grouping of atoms in the molecule, the fact that the diffracting powers
of all the atoms are similar is actually an advantage, for the chance that

two different crystal structures give approximately the same calculated

intensities is in these circumstances very small.

It is not within the scope of this book to describe the principles of

crystal chemistry and molecular stereochemistry which have so far

emerged. The reader is referred for an account of the former subject

to Evans's Crystal Chemistry (1939) and Pauling's Nature of the

Chemical Bond (1940), and for the latter to text-books of organic

chemistry such as Freudenberg's Stereochemie (J 932-4). It must suffice

to observe here (in broadest outline) that the mode of packing of atoms,

ions, or molecules in crystals may be regarded as controlled by two

principles the principle of close packing (the closest packing obtainable

in view of the shapes and sizes of the building units), and, where ions

are concerned, the tendency for an electrically charged unit to surround

itself with units of opposite charge. Some of the silicate mineral struc-

tures may be regarded as close-packed arrangements of the compara-

tively large spherical oxygen ions, with the positive ions fitting into the

spaces between them; and the use of this generalization played an

important part in the solution of some of these structures (Bragg 1930).

Pauling (1929) went farther and formulated a set of rules based on the

principle of local satisfaction of electrostatic forces. In molecules and

complex ions atoms are joined by the comparatively short, strong, and

precisely directed covalent bonds; the covalent radii in such units

are only about half the external radii of the atoms, and a molecule or

complex ion may thus be regarded as an assemblage of partly merged

spheres ; Fig. 141 illustrates this. The configurations of aliphatic organic
molecules are determined first of all by the tetrahedral disposition of

the four bonds of a carbon atom
; in double- and triple-bonded group-

ings the joining of atoms by pairs or triplets of bonds results in a

planar configuration of atomic centres in the group

a\ A
b

and a linear configuration of a CE=C b. In chain molecules com-

paratively free rotation round single bonds as axes leads to molecular

flexibility; nevertheless certain configurations those in which the
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single bonds of covalently linked atoms are staggered (see Fig. 204,

p. 324) are more stable than others, and these configurations are

found in crystals (Bunn, 19426). Aromatic ring molecules including

fused-ring structures like anthracene and chrysene are flat.

As for the physical properties of crystals, some account of crystal

morphology and optics has been given in Chapters II and III, where,

however, these subjects were developed only as far as was necessary for

identification purposes. For structure determination further considera-

tion of both these subjects, as well as others such as the magnetic, pyro-

electric, and piezo-electric properties of crystals, is desirable
;
this will

be found in Chapter VIII.

Examples of the use of stereochemical generalizations and physical

properties in structure determination will be found in Chapter IX.

The present chapter on the methods of structure determination would

not be complete without some mention of the fact that two structural

principles which have so far been tacitly assumed are not always obeyed.

The first of these principles is that atoms in crystals occupy precise

positions, about which they merely vibrate to a degree depending on

the temperature ; when the atoms are the constituents of molecules or

polyatomic ions this means that the molecules or ions have precisely

defined orientations as well as precise mean positions. The second

principle is implied in the application of the theory of space-groups to

structure determination: it is assumed that the members of a set of

crystallographically equivalent positions are all occupied, and that

they are occupied by identical atoms. In the majority of crystals these

principles are obeyed, but there are some in which one or the other of

them is violated: in some crystals, at certain temperatures, whole

molecules or ions rotate
;
in others equivalent positions are occupied

indiscriminately by two or more different kinds of atoms
;
in still others

some members of a set of equivalent positions are empty, the gaps

being randomly distributed. This subject will not be pursued farther

at present ; some account of it will be found towards the end of Chapter

IX, where examples of different types of abnormal structures are given.

Here, in this chapter on the general principles of structure determina-

tion, it is only necessary to point out that, in setting out to determine

the structure of any crystal, it is obviously necessary to bear in mind

the possibility of abnormalities of this sort.



VIII

EVIDENCE ON CRYSTAL STRUCTURE
FROM PHYSICAL PROPERTIES

A STUDY of the physical properties ofa crystal its shape and cleavages,

its optical and magnetic characteristics, or piezo- and pyro-electric

behaviour cannot lead to a detailed knowledge of its structure, but it

can give valuable information on the general features of the structure ;

it may lead to a partial knowledge of the internal symmetry, to definite

conclusions on the general shape and orientation of molecules or poly-

atomic ions in the crystal, or to a general idea of the arrangement of

the molecules or the distribution of forces.

Shape and cleavage. The general shape of a crystal gives an indi-

cation of the relative rates of growth of the structure in different direc-

tions. Crystals which are roughly equi-dimensional have much the same

rate of growth on all the faces which have developed, but those which

are markedly plate-like or rod-like have very unequal rates of growth
in different directions, and this anisotropy of rate of growth is due either

to the effect of the shape and arrangement of the molecules, or to the

particular distribution of forces in the crystal, or to both these factors.

In molecular crystals held together by weak undirected van der

Waals forces the shape and arrangement of the molecules appear to

decide the relative rates ofgrowth. Long molecules tend to pack parallel

to each other, forming plate-like crystals in which the long molecules are

perpendicular or nearly perpendicular to the plane of the plate (Fig.

173 a). It is apparently easier to add a molecule to an existing layer

than to start a new one. Flat molecules sometimes form needle-like

crystals in which the planes of the molecules are approximately per-

pendicular to the needle axis (Fig. 1736); it is easier to add a flat

molecule to an existing pile than to start a new pile alongside the first.

On the other hand, either long or flat molecules may form arrangements
in which the'molecules are not all parallel, giving approximately equi-

dimensional crystals. It is evident that when the general shape of a

molecule is known through chemical evidence, the shape of the crystals

may indicate the general arrangement. Molecules which are roughly

spherical, such as hexamethylene tetramine, form roughly equi-

dimensional crystals.

In many crystals it is not possible to distinguish individual molecules ;

in silicates, for instance, there may be continuous one-, two-, or three-
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dimensional networks. In plate-like crystals such as mica and the clay

minerals, as well as the simpler 'layer lattices' such as CdI2 and MoS2 ,

there are sheets of atoms extending through the whole crystal ; in any
one sheet the atoms are held together by strong ionic forces, but between

neighbouring sheets the forces are much weaker. The cleavage, as well

as the anisotropy of rate of growth, is due to this distribution of forces.

In other crystals, such as chrysotile, 3MgO . 2SiO2 . 2H2O ('asbestos'),

there are continuous strings of atoms held together by strong ionic

forces, the strings being held together by weaker forces ; the result is a

needle-like or fibrous habit and easy cleavages parallel to the fibre axis.

FICJ. 173. (a) Long molecules, packed parallel, give plate-like crystals, while

(6) flat molecules, packed parallel, give needle-like crystals.

In molecular crystals held together by ionic forces (for instance, salts

of organic acids) or polar forces such as 'hydrogen bonds' (for instance,

alchohols and amides), the two influences, shape and distribution of

forces, may not co-operate, and it is difficult to form any definite con-

clusions on the structure from crystal shape and cleavage, though it is

well to keep these properties in mind during structure determination,
for any suggested structure should account for them.

The above remarks refer only to the relative dimensions of crystals.

A consideration of the indices of the principal bounding faces may lead

to further conclusions, at any rate for molecular crystals. The bounding
faces on crystals are apparently those planes having the greatest reticu-

lar density of atoms or molecules ; the indices of the bounding faces

may therefore indicate the general arrangement of the molecules. For

instance, when a crystal is found to be bounded entirely or mainly by
faces of 110 type (110, Oil, 101, etc.) it is likely that there are molecules

at the corners and centres of the unit cells, since this is the arrangement
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that gives greatest reticular density on these planes. For instance,

crystals of hexamethylene tetiamine (CH2 )6N4 are rhombic dodeca-

hedra, all the bounding faces ofwhich are of type 110, an(J the molecular

arrangement is body-centred (Dickinson and Raymond, 1923). For

similar reasons, in crystals bounded entirely by 111 faces the molecules

are likely to be arranged in a face-centred manner, and in prismatic

crystals bounded by faces of 110 type a base-centred arrangement is

probable. It should be noted, however, that the arrangements need

not be centred in the strict (space-lattice) sense ; the molecules present
at cell-centres or face-centres need not be oriented in the same way as

those at the corners of the cell. Benzene crystals, for instance, grow as

orthorhombic bipyramids bounded by {111} faces, but the molecular

arrangement is not strictly face-centred; there are molecules at the

corners and face-centres of the unit cell, but they are not all oriented

in the same way. (Cox, 1928, 1932 b.)

When ionic or polar forces play an important part in binding atoms

or molecules together in a crystal, matters are more complex, since

the rates of growth of crystal faces appear to be influenced by the

distribution of electric charges as well as the reticular density (Kossel,

1927). The subject has not so far received much attention, and it is

unwise to attempt to formulate generalizations.

A more detailed consideration of the types of faces present on a

crystal may lead to definite conclusions on the point-group symmetry
of the atomic or molecular arrangement. This subject has been dis-

cussed in Chapter II
;
the necessity for caution in accepting morpho-

logical evidence on internal symmetry should be remembered. Accord-

ing to Donnay (1939), it is possible to go farther, and to deduce (from

the relative 'importance' of the different faces) the presence or absence

of glide planes and screw axes and in fact the whole space-group

symmetry. But although the correct space-group symmetry of some

crystals has been deduced from morphological evidence, it would be

unwise to place too much reliance on such considerations, for there are

some striking exceptions to 'Donnay's law'. (See Donnay and Harker,

1937.) In any case, where X-ray methods are used it is unnecessary to

attempt to use morphological evidence to this extent.

Optical properties. The relations between the refractive indices of

crystals and their atomic structures were first pointed out by W. L.

Bragg (1924 fe), who succeeded not only in correlating birefringence

with structure in a general way but even in calculating, from the known
structures of several crystals (first of all calcite and aragonite), the
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actual values of the refractive indices and getting them approximately
correct. Here we are concerned, .for the moment, with the reverse

process the.use of refractive indices to provide clues to the atomic

arrangements in crystals.

Bragg's theory is roughly this : consider (to take the simplest situa-

tion) the effect of a diatomic molecule or ion on light passing through it,

first of all when the electric vector of the light waves lies along the line

joining the atoms or, as we usually say, the vibration direction of the

light is parallel to the line joining the atoms (Fig. 174 a). Each atom
becomes polarized that is, positive and negative parts suffer a relative

displacement in the direction of

the electric vector, to an extent

which depends on the strength

of the electric field and the

'polarizability' ofthe atom. But

the two atoms will also affect

each other; the presence of

dipole A increases (by induc-

ELECTOC

VECTOR

(a) W
FIG. 174. Illustrating Bragg's theory of

the refractive indices of crystals.

tion) the polarization of J5, and

the presence of B increases the

polarization of A. Each atom

is thus polarized more than it

would be if the other were absent. If, however, the electric vector

of the light waves is perpendicular to the line joining the atoms, as in

Fig. 174 6, the induction effect of dipole A is to decrease the polariza-

tion of jB, and similarly the presence of B decreases the polarization of

A. The effective dielectric constant is therefore much greater for situa-

tion a than for situation 6, and since the refractive index is proportional

to the square root of the dielectric constant,! the refractive index is

much higher when the electric vector lies along the line joining the atoms

than when it is perpendicular to this direction.

In a similar way it is easy to show that a flat molecule or polyatomic
ion (such as COj- ion, in which all the atoms lie in a plane and the

oxygen atoms form an equilateral triangle round the carbon atom) has

a higher refractive index when the electric vector lies in the plane of

the group of atoms than when it is perpendicular to this plane.

In crystals, the molecules or polyatomic ions are surrounded by others,

the presence of which complicates matters ; but the distances between

atoms in neighbouring molecules or polyatomic ions are much greater

f See for instance Richtmeyer, 1928, p. 111.
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than those between atoms linked by primary bonds, and since the

induction effect is very sensitive to distance (inversely proportional to

the cube of the distance), the induction effects of neighbouring molecules

or polyatomic ions are small. The main factor controlling the bire-

fringence of crystals containing strongly birefringent molecules or poly-

atomic ions is the relative orientation of these units. Where they are

all parallel, as in most carbonates and some nitrates, the refractivities

ofthe crystal are approximately those of the individual polyatomic ions ;

where the birefringent units are inclined to each other their individual

effects are partially, or in cubic crystals completely, cancelled out.

The effect of interatomic distance is strikingly illustrated by the fact

that the birefringence of nitrates in which the nitrate ions are all

parallel is much greater than that of carbonates of similar structure,

though the interatomic distances in the nitrate ion are only slightly

less than those in the carbonate ion :

Distances

KNO3 . . . 1-335 1-506 1-506)

NaNO3 . . . 1-336 1-586 (- |B)/

CaCO 3 (calcite) . 1-486 1-658 (= j8)i

O O

2-30

2-18

N(or C) O

1-21

1-26
(aragonite) . 1-530 1-681 1-686]

In view of this, it is not surprising that neighbouring ions have only
minor effects, since the distances between oxygen atoms in neighbour-

ing ions are 2-7 A. Nor is it surprising that in crystals in organic sub-

stances, where the distances between linked carbon atoms are 1-3-1-5 A
and the distances between carbon atoms in neighbouring molecules

3-5-4-2 A, the refractive indices depend almost entirely on the refrac-

tivities of individual molecules and the relative orientations of these

molecules in the crystals.

The examples in Table VIII (in addition to those already quoted)
will give some idea of the birefringence to be expected for various

groups. (See also Wooster, 1931.)

The very high negative birefringence of aromatic molecules may be

partly due to the conjugated double-bond systems in these molecules.

At all events, conjugated double bonds in a chain increase the refractive

index enormously for the vibration direction along the chain, as is

shown by the properties of crystals of methyl bixin

CH30~CO CH={CH C(CH3)=CH CH=}4CH CO OCH3 ,

which has a refractive index of 2-6 for the direction along the polyene
chain, the other principal indices being 1-47 and 1-65. (Waldmann and

Brandenberger, 1932.)
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TABLE VIII

283

When flat molecules have their planes inclined at a large angle to

each other but all parallel to a line, the refractive index for light

vibrating along this line is high, but in all directions perpendicular
to this line the refractive index is moderately low (corresponding
to an average value for the other two principal directions in the

molecule); the birefringence is thus positive, not negative. Thus
in the tetragonal crystal of urea O=C(NH2 )2 , the planes of the

Y-shaped molecules are perpendicular to each other but parallel to

a line (the c axis); consequently this crystal is uniaxial positive

(co
= 1-481, = 1-602).

It will be evident that the birefringence and the orientation of the

indicatrix may be used in a semi-quantitative manner as evidence of

the orientation of strongly birefringent groups of atoms in crystals.
The birefringence of molecules or polyatomic ions may sometimes be
calculated theoretically (this has been done for oxalic acid and some of

its salts, for instance Hendricks and Deming, 1935), and the values so

obtained used in conjunction with the measured indices of crystals as

evidence of the orientation of the groups in the crystals. But the princi-

pal use of the methods is likely to be qualitative and empirical ; when a

crystal containing flat molecules or ions is found to have strong negative

birefringence it can be assumed that the flat groups are all roughly

parallel to each other and perpendicular to the direction of lowest index
;

and when a crystal containing chain molecules or ions is found to have

Strong positive birefringence it can be assumed that the chains are all

roughly parallel to each other and to the direction of highest index.

Some idea of the birefringence to be expected for a particular group
can often be obtained from the properties of crystals of already known



284 STRUCTUKE DETERMINATION CHAP. Yin

structure. Evidence of this type is, in general, all that is required in

Structure determination; the details the precise orientation of the

groups and the atomic positions must be settled by the interpretation

of X-ray diffraction patterns ; the conclusions from optical properties

merely provide the starting-point for trial stuctures.

A few examples will show the value of such considerations. Naphtha-
lene (monoclinic, a = 8-29 A, 6 = 5-97 A, c = 8-68 A, j8

= 122 42')

has refractive indices 1-442, 1-775, and 1*932. The birefringence is so

strong that we should not be far wrong in assuming that the planes of

FIG. 175. Structure of naphthalene.

the two molecules in the cell are roughly parallel ;
and if we associate

the three indices with the three vibration directions of the molecule

itself, we are led to suppose that the longest axis of the molecule lies

parallel to the vibration direction of y (that is, nearly parallel to c), and

the intermediate axis along 6 (the j8
vibration direction).

The complete structure, determined by Robertson (1933 c), shows

that this is substantially correct ; the two molecules have their longest

axes almost exactly parallel to the direction of highest index, and their

intermediate axes tilted (one in one direction and the other in the

opposite direction) 29 to the b axis. (Fig. 175.)

In a crystal of hexamethylbenzene (triclinic, with one molecule in

the unit cell) the vibration direction for the lowest refractive index is

almost exactly normal to the 001 plane (Bhagavantam, 1930), indicat-

ing that the plane of the molecule is almost exactly parallel to 001
;

and again this is correct (Lonsdale, 1929).
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Potassium chlorate is monoclinic ;
it has strong negative birefringence,

and the vibration direction for the lowest refractive index lies in the

ac plane, making an angle of 56 with the c axis. The conclusion that

the low pyramidal (that is, more or less flat) chlorate ions have their

oxygen triangles normal to this direction of least refractive index is

correct within 1 (Zachariasen, 1929).

Turn now to crystals whose structures are as yet unknown. The

substance C6H5 CH^CH CO C6H4 CH3 ,
the molecules of which

are expected to be elongated in shape, forms orthorhombic crystals

having the refractive indices and vibration directions a = 1*607
(|| a),

j8
= 1-634

(|j c), y =. 1-881
(|| 6). j*

The strong positive birefringence shows

that all the molecules in the crystal have their long axes roughly parallel

to each other, and to the vibration direction having the highest refrac-

tive index, that is, the 6 axis. Also, the fact that the two low indices

are so similar indicates that the planes ofthe benzene rings in the crystal

are not all parallel to each other.

Vaterite, or /x-CaC03 ,
which grows in the form of hexagonal plates,

is interesting, because it has fairly strong positive birefringence (w =
1-550, = 1-650), in contrast to calcite andaragonite, which are strongly

negative. The strong positive birefringence shows that the negative

carbonate ions cannot be parallel to the plane of the crystal plate ;
the

planes of the flat carbonate ions must be roughly perpendicular to

the plane of the crystal plate. An arrangement in which the planes ofthe

carbonate ions are parallel to the apparent sixfold axis but not parallel

to each other would give similar to the highest index of calcite or

aragonite (actually a little lower because the density of ju,-CaC03 is

low), and the indices for vibrations in the plane of the plate definitely

higher than the low indices of calcite and aragonite. The reported

indices of /i-CaC03 (Winchell, 1931) are indeed of this order. These

considerations also lead to a further conclusion ofstructural significance.

The unit cell is stated to contain two molecules (Olshausen, 1925).

Now in a carbonate ion the only symmetry axes in the plane of the

atoms are twofold axes. Trigonal or hexagonal symmetry cannot be

achieved by any arrangement of two cax'bonate ions oriented as the

optical properties demand. Hence, if the cell really contains two

molecules, its symmetry cannot be trigonal or hexagonal ;
or alterna-

tively, if the symmetry is trigonal or hexagonal, the true unit cell must

be larger than that reported.

Observation of the absorption of light in different vibration directions

t Groth, 1906-19.
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may also be useful. Not very much work has yet been done on this

subject, but it seems that for molecules containing chromophoric groups
such as a polyene chain

( CH=CH )n ,
or quinonoid

or azo N=N groups, the absorption is largely confined to the

vibration direction parallel to the double bonds. Thus, in a crystal of

methyl bixin, the vibration direction along the polyene chain is character-

ized not only by a very high refractive index as we have already seen,

but also by vejy high absorption ; it is practically black for this direc-

tion, and red or yellow for other directions. For other examples of the

use ofsuch evidence see Bernal and Crowfoot, 1 933a (azoxy compounds),
W. H. Taylor, 1936 (rubrene, etc.), and Perutz, 1039 (parallelism of the

four chromophoric groups in molecules of methaemoglobin and oxy-

haemoglobin). In crystals of the complex substances used as dyestuffs

the colours (that is, the positions of the absorption bands) for the

principal vibration directions are often very different from each other ;

a study of these absorptions in relation to the chemical constitution of

the molecules and their orientation in the crystals should throw much

light on the problem of the relation of colour to chemical constitution
;

and this knowledge, in turn, will be useful in the determination of

crystal structures of new substances.

The infra-red absorption spectra for different vibration directions in

a crystal should also give information on the orientation of particular

groups (Ellis and Bath, 1938). Very little experimental evidence, how-

ever, is yet available.

One other optical character which may sometimes contribute informa-

tion useful in structure determination is the rotation of the plane of

polarization. In cases where the shape or the X-ray diffraction pattern

or other properties do not yield unequivocal evidence on point-group

symmetry, a positive observation of the phenomenon may settle the

question. (For experimental method, see Chapter III.)

A question which may sometimes be asked is this : 'If an enantio-

morphous crystal that is, one possessing neither planes nor a centre

of symmetry is dissolved in a solvent, does the solution necessarily

rotate the plane of polarization of light ?' The answer to this question

is, 'Not necessarily'. If the molecules or ions of which the crystal is

composed are themselves enantiomorphous, then the solution will be

optically active. But it must be remembered that enantiomorphous
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crystals may be built from non-centrosymmetrical molecules which in

isolation possess planes of symmetry these planes of symmetry being

ignored in the crystal structure ;
such molecules in solution would not

rotate the plane of polarization of light. (A molecule of this type, in

isolation, would rotate the plane of polarization of light (see p. 88),

but the mass of randomly oriented molecules in a solution would show

no net rotation.) An example is sodium chlorate NaClO3 ;
the crystals

are enantiomorphous and optically active, but the solution of the salt

is inactive because the pyramidal chlorate ions (see Fig. 138) possess

planes of symmetry.

Centrosymmetrical molecules do not usually form non-centrosym-
metrical crystals ; therefore, if a molecular crystal is found to be enantio-

morphous, it is probably safe to conclude that the molecules lack

centres of symmetry ;
but they may have planes of symmetry.

Magnetic properties. Interest in the magnetic properties of

crystals has grown rapidly in recent years, and anisotropy of diamag-
netic susceptibility has been used, in much the same way as optical

anisotropy, as evidence of molecular orientation in crystals.

All substances composed of ions, atoms, or molecules having no

resultant orbital or spin moment (this includes organic substances and

inorganic salts, except those containing transition elements like iron

and platinum) are diamagnetic. This means that when placed near a

magnet they are repelled; or, more precisely, when placed in a non-

uniform magnetic field they tend to move to a weaker part of the field.

Evidently a piece of a diamagnetic substance when placed in a magnetic
field becomes (by induction) a magnet in opposition to the inducing

field behaviour opposite to that of ferromagnetic and paramagnetic
substances. The force of repulsion is exceedingly minute, but can be

measured if a powerful magnet and delicate suspensions are used. The

ratio of the induced magnetism to the field strength is known as the

diamagnetic susceptibility.

Crystals, except those belonging to the cubic system, are anisotropic

in this respect ; the force of repulsion varies with the orientation of the

crystal with respect to the direction of the field. The graph representing

vectorially the diamagnetic susceptibility in all directions in a crystal

is an ellipsoid, whose orientation with respect to the unit cell is restricted

by symmetry in exactly the same way as that of the optical indicatrix.

Thus, for uniaxial crystals the magnetic ellipsoid is an ellipsoid ofrevolu-

tion whose unique axis coincides with the threefold, fourfold, or sixfold

axis of the crystal; for orthorhombic crystals the ellipsoid has three
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unequal axes which necessarily coincide with the three axes of the

crystal ; for monoclinic crystals the only restriction is that one of the

principal axes of the magnetic ellipsoid must coincide with the 6 axis

of the crystal ; while for triclinic crystals the orientation of the ellipsoid

is not restricted in any way.
The available methods for the determination of diamagnetic suscepti-

bilities in crystals will not be described here. Papers by Rabi (1927),

Krishnan and his collaborators (1933, 1934, 1935), and the excellent

review of the whole subject by Lonsdale (1937 a) should be consulted.

For many aromatic molecules, and for the flat nitrate and carbonate

ions, the relative dimensions of the magnetic ellipsoid are opposite to

those of the refractive index ellipsoid : the susceptibility is numerically
much greater in the direction normal to the plane of the molecule or

ion than in directions lying in the plane. This is partly a matter of

relative electron density in the different directions; but for aromatic

substances, with their large conjugated ring systems, it seems that the

large orbits of the resonance electrons play an important part. (Pauling,

1936; London, 1937; Lonsdale, 1937 6.)

Crystals in which the molecules are all parallel to each other have the

same characteristics as the individual molecules. But when there are

two or more differently oriented molecules in the unit cell, the magnetic

anisotropies of the individual molecules are to some extent neutralized.

The magnetic properties of a crystal are, very precisely, the vectorial

sum of those of the constituent molecules. (For equations, see Lonsdale,

1937 a.) The effects of neighbouring molecules on each other are negli-

gible, the reason being that induced magnetic effects are exceedingly

feeble. Magnetic properties therefore have, at any rate theoretically,

some advantage over optical properties for the determination of mole-

cular orientation, since molecular interaction does play a small part in

determining refractive indices. However, in structure determination,

physical properties are needed only to indicate approximate molecular

orientations, and for this purpose optical properties are quite satis-

factory, and usually much easier to measure than magnetic properties.

The precise details of the structure are settled by X-ray analysis.

Magnetic properties are likely to be most valuable in circumstances in

which refractive indices are not easily measured. For instance, crystals

of many substances used as dyes are so strongly coloured that even

minute crystals are almost opaque, so that it is scarcely possible to

measure refractive indices.

The magnetic ellipsoid of a crystal or a molecule is not always the
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inverse of the refractive index ellipsoid. This is shown by the properties

of potassium chlorate, KC103 . Optically, the chlorate ion is strongly

negative like the nitrate and carbonate ions; but magnetically it is

also negative, in contrast to the nitrate and carbonate ions which are

positive. (Krishnan, Guba, and Banerjee, 1933.) The reason, no doubt,

lies in the pyramidal form of the chlorate ion (Fig. 138). The refractive

indices are determined largely by the triangle of oxygen atoms forming
the base of the pyramid ; the chlorine atom at the apex has little effect,

because Cl+8 is less polarizable than O~2
. Magnetic properties are

determined by quite different factors, electron density being important
and for this reason the comparatively heavy and dense chlorine atom

and its position outside the plane of the oxygen atoms plays a very

important part. The effect does not appear to have been quantitatively

explained, and the facts prompt caution in interpreting magnetic

properties except for molecules or complex ions of well-established

characteristics .

Crystals composed of aliphatic chain molecules provide further

examples of special effects which give rise to diamagnetic characteristics

different from those which might have been expected. The susceptibili-

ties of several such crystals have been shown to be numerically greater

along the chain molecules than across them; thus the magnetic
characteristics of these chain molecules (one large susceptibility and

two smaller ones) are the same as those of flat aromatic molecules, not

inverse as might have been expected. These magnetic properties of

chain molecules have been interpreted as an indication that the electron

clouds of the chain CH 2 groups are flattened in the plane normal to the
TT

chain axis that is, the C^ plane. (Lonsdale, 1939.) There is X-ray

evidence pointing in the same direction. (Bunn, 1939.)

The magnetic properties of crystals composed of aromatic polynuclear
molecules may give information on the relative orientations of the

benzene rings to each other. Thun, Clews and Lonsdale (1937) con-

cluded from the magnetic anisotropy of crystals of o-diphenylbenzene
that the planes of the o-phenyl groups are inclined at 50 to the plane of

the main ring.

The relations between paramagnetic and ferromagnetic properties

and structure are less simple than in the case of diamagnetic substances,

and the subject is in its infancy. It will not be dealt with here ; the

reader is referred to the review by Lonsdale (1937 a).

Pyro-electric and piezo-electric tests. When a crystal belonging
4458
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to one of the iion-centrosymmetrical classes is heated or cooled, it

develops electric charges and becomes positive at one end and negative

at the other end of each polar axis. Therefore, if a crystal is found to

be pyro-electric, it must belong to one of the classes which" lack a centre

of symmetry. Various qualitative tests for pyro-electric character have

been used. The three most suitable for small crystals are the following :

(a) Crystals are placed on a metal plate or spoon and dipped in liquid

air. When the grains have cooled, the plate is tilted until it

becomes vertical ; pyro-electric crystals stick to the metal, others

fall off. (Martin, 1931.)

(6) Small crystals are attached to fine silk threads, and two or more

are dipped in liquid air ; pyro-electric crystals tend to stick to each

other, others do not. (Robertson, 1935 c.)

(c) A crystal is heated ; the charges formed on it are then dissipated

by passing it through a flame. It is then allowed to cool in a bell

jar full of magnesium oxide smoke (made by burning magnesium
in it) ; the charges developed on cooling cause fine filaments of

magnesium oxide to grow out from the crystal along the lines of

force, forming a pattern like that of iron filings round a magnet.

(Maurice, 1930.)

Only positive results are significant: feeble pyro-electricity may
escape detection by these tests.

Piezo-electricity is the property, possessed by some crystals, of

developing electric charges when compressed or extended in particular

directions. Conversely, when a potential difference is applied to suitable

points on such a crystal, it expands or contracts. Piezo-electric proper-

ties can occur in all crystals lacking a centre of symmetry, except those

belonging to the cubic class 432 (Wooster, 1938). A test for such

properties, suitable for small crystals or even powders, is the following.

The crystals are placed between the plates of a condenser which forms

part of an oscillating circuit. An audio-frequency amplifier, with head-

phones or speaker, is connected to the oscillator. When the frequency
of the oscillator is changed continuously by means of a variable con-

denser in the circuit, clicks (or, for a large number of small crystals,

rustling noises) are heard. The reason is that whenever the frequency
of the oscillator happens to coincide with a natural frequency of one of

the crystals, there is a sudden change of current through the condenser

and consequently an impulse which is amplified by the audio-frequency

amplifier. For a suitable circuit see Wooster, 1938.

Other physical properties. Anisotropy of thermal and electrical
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conductivity, coefficient of thermal expansion, elasticity, and dielectric

constant may also provide information on internal structure. These

properties, however, have so far been little used in structure determina-

tion, because they are less easily measured than those already con-

sidered
; consequently not very much experimental evidence is available

for the purpose of generalizing on the relations between such properties
and structural features. For further information on these subjects, see

Wooster (1938).

A sudden change in average dielectric constant (measured by using

powdered material) when a substance is heated has been taken as

evidence of the onset of molecular rotation at the temperature of the

sudden change. (White and Bishop, 1940
; White, Biggs, and Morgan,

1940; Turkevitch and Smyth, 1940.) Specific heat anomalies also

accompany the onset of molecular rotation. (Fowler, 1935; Eucken,

1939.)



IX

SOME EXAMPLES OF CRYSTAL STRUCTURE
DETERMINATION BY TRIAL

THE principles of the methods by which atomic positions are deduced

from X-ray diffraction patterns have been described in Chapters VI
and VII ; and examples of the separate stages (determination of unit

cell dimensions, deduction of space-group, calculation of structure

amplitudes, and so on) have been given. It is now intended, in this

chapter, to describe the complete process of structure determination

in several examples. The structures described are all relatively simple

ones; they have been chosen on the ground that they .display the

utilization of the essential principles in relatively simple circumstances.

In some of the examples the help given by physical properties (the

subject ofChapter VIII) is an important feature. (The train ofreasoning

by which each structure is deduced does not, in all cases, coincide with

that followed in the original investigations.) Many structures of far

greater complexity than these have been worked out completely ;
but

success in such cases has usually been possible through the application

of stereochemical principles derived from simpler structures; the

principles of interpretation of the X-ray patterns and the physical

properties are essentially the same. The use of stereochemical principles

is brought out in some of the later examples. The chapter ends with a

section on abnormal structures in which the crystallographic ideals

embodied in the application of the theory of space-groups are not

followed.

In setting out to discover the relative positions of the atoms in a

crystal, it is best, when the unit cell dimensions have been determined

and the intensities of the reflections measured, to calculate F for each

reflection. (See Chapter VII.) Absolute values of F* derived from

intensities in relation to that of the primary beam, form the ideal experi-

mental material, though very many structures have been determined

from a set of relative JP's. The reliability of the set of figures depends
on the success with which the corrections for thermal vibrations, absorp-

tion, and extinction effects have been estimated.

Some of the simplest structures of all are those of many metallic

elements, in which there is one atom to each lattice point. These need

not detain us long; for clearly, as soon as the lattice type has been

deduced (by inspection of the indices of the reflections), the whole
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structure is completely determined. Thus aluminium has a cubic unit

cell containing four atoms and gives only reflections having all even or

all odd indices
;
hence the lattice is face-centred, and there is one atom

to each lattice point. The structure presents no further problems.

Similarly, molybdenum has a cubic unit cell containing two atoms and

gives only reflections having h+k+l even
;
hence the lattice is body-

centred, there is only one atom to each lattice point, and the whole

structure is settled.

FIG. 176. Diagram representing powder photographs of calcium oxido and cuprous
chloride. Abscissae represent distances of arcs along the film; ordinates represent

relative intensities (estimated visually).

Many binary salts, oxides, and sulphides are a little more complex,
two atoms being associated with each lattice point ;

it is necessary to

discover the relative positions of the two atoms. This can be done by
mere inspection of the set of structure amplitudes, and confirmed by
a very moderate amount of calculation. Two examples will be given

calcium oxide and cuprous chloride.

Calcium oxide, CaO, is cubic, and the unit cell (a = 4-80A) contains

four molecules of CaO. The only reflections present (Fig. 176) are those

having all even or all odd indices ;
the lattice is therefore face-centred.

If the origin of the unit cell is taken as the centre of a calcium atom,

then there are also calcium atoms at the centres of the cell faces (Fig.

177 a). It is now necessary to place the oxygen atoms. Note first of all

that the oxygen atoms by themselves also form a face-centred lattice

(an oxygen atom might have been chosen as the origin of the cell the

two sorts of atoms obviously have equal rights in this respect) ; the only

problem therefore is the relation of the oxygen lattice to the calcium
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lattice. Inspection of the powder photograph shows that reflections

with odd indices, such as 111 and 531 , are weaker than those with even

indices at about the same angle. (With one exception thb pair 311

and 222, which are about equally strong; but, since the number of

equivalent reflections is 24 for 311 and only 8 for 222, it is evident that

F for 311 is much smaller than that for

222.) Consider the placing of one oxygen
atom. To weaken 111 the oxygen must

be somewhere on or near the plane ABC
(marked 111 in Fig. 177 a). Since 200

is strong, it must be somewhere on or

near the planes marked 200+ ; and since

220 is strong, it must be on or near the

planes marked 220+ . Its position is

evidently somewhere near where these

three types of planes intersect, that is,

at A or By or the similar positions

Z>, Ey F, etc. There is no need to choose

between these positions, for if we place

an atom at any one of them, say A,

^y* -7,0 -^ o identical atoms immediately spring into

t" T~C- !
^ -Lrr* being at B, C, D, etc., forming a face-

centred lattice
;
and it should be noted

that, to preserve the symmetries of the

cubic system, they must be exactly half-

way along the edges and in the centre of

the cell (Fig. 177 b). In confirmation, it

is found that structure amplitudes calcu-

lated for this arrangement agree with

those experimentally determined, and

the structure, which is analogous to that

of sodium chloride (see p. 220), is established. Note that in this arrange-
ment (a very common one among binary compounds) every atom is

equidistant from six of the other kind of atorA.

Cuprous chloride, CuCl, is also cubic (a = 5-41 A) with four

molecules in the unit cell. Since the only reflections present on the

powder photograph (Fig. 176) are those with all even or all odd indices,

the lattice is, like that of calcium oxide, face-centred. It is, however,

immediately obvious from the photograph that the arrangement must
be different from that of calcium oxide, since the 111 reflection of

FIG. 1 77. Structure of calcium

oxide, CaO.
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cuprous chloride is much stronger than 200
;
in the calcium oxide pattern

the opposite is true. It is evident that the face-centred chlorine lattice

must be placed in such a way with respect to the face-centred copper

lattice that for 111 the chlorine atoms lie on or near the same planes as

copper atoms, while for 200, chlorine planes interleave copper planes.

Note also that 220 is strong, and thus

all the atoms, both copper and chlorine,

lie on or near 220 planes. Taking the

centre of a copper atom as the origin

of the cell (Fig. 178 a) and focusing

attention on the placing of one chlorine

atom (the rest will follow inevitably

from the first), the position A seems

a possible site, since at this point the

planes marked 11 1+ , 200 , and 220+
intersect. This will not do, however

;

if the other reflections on the photo-

graph are examined, it will be found

that 222 is absent ;
if the chlorine were

at A, which lies on the plane DCEF,
then 222 would be strong its F would

be as great as that of 111. (There are

other reasons why position A will not

do, but this one will suffice.) To account

for the absence of 222, the chlorine

must be moved out ofthe 111+ plane

but not too far, in view of the strength
of 111. The absence of 222 can be

accounted for by moving the chlorine

away from plane DEF by a distarice equal to half the spacing of 222,

since at this position waves from the chlorine will oppose those from the

copper atoms (and the same will be true for ail the other chlorine atoms) ;

actually the intensity should not be zero, but evidently this reflection

is too weak to show on the photograph. Half the spacing of 222 is one-

quarter the spacing of 111, and therefore the intensity of 111 will not

be adversely affected to any serious extent. The chlorine atom, in

moving away from plane DEF, must keep to the line AG, to preserve

the correct intensities for 200 and 220. The position necessary to

account for all the intensities so far considered is thus P, half-way
betweenA and /. It is also to be noted thatP is equidistant from copper

o

FIG. 178. Structure of cuprous
chloride, CuCl.



296 STRUCTURE DETERMINATION CHAP, ix

atoms B, C, D, and H, and, moreover, when the other chlorine atoms

are placed so that they all form a face-centred arrangement (Fig. 178 6)

the essential symmetries of the cubic system (the diagonally disposed

threefold axes) are preserved. P, for instance, lies on the 'diagonal DJ.

The symmetry is not holosymmetric but tetrahedral ;
the crystal class

(point-group) is 43m and the space-group F 43m. Calculation of the

remaining structure amplitudes and comparison with those experi-

mentally determined show that this arrangement is indeed correct.

This arrangement, in which each chlorine atom is tetrahedrally sur-

rounded by four copper atoms (in contrast to CaO, with its octahedral

six-coordination), is found in many of the less polar binary solids. In

diamond the same arrangement, but with all the atoms identical, is

found, and reflections which are weak for Cud are absent altogether for

diamond,t In view of the preferred tetrahedral configuration of carbon

bonds this arrangement in diamond is not surprising.

Titanium dioxide, TiO2 (rutile). In the structures so far con-

sidered, all the atoms have occupied very special positions in the unit

cell ; there were no continuously variable parameters to be determined.

The structure of rutile, now to be considered, is a simple example of a

structure in which there is one parameter. This structure has been

described on p. 210, where it was introduced in connexion with the

calculation of structure amplitudes. The general arrangement of the

atoms was assumed, and the effect of the variation of the oxygen para-

meter on the structure amplitudes of the reflections was demonstrated

(Fig. 129). Here we shall consider the evidence which leads to a know-

ledge of the general arrangement of the atoms.

The tetragonal unit cell, the dimensions of which (a 4-58 A,

c = 2-98 A) can be calculated from either powder or single-crystal

photographs, contains two titanium and four oxygen atoms. A survey
of the indices of the reflections (see the powder photograph in Fig. 121)

shows that there are no systematic absences among those of the general

(hkl) type ; hence the lattice is primitive. For the principal zonesJ the

only systematic absences are hOl reflections having h+l odd (together

with the equivalent type OK with k-\-l odd) ;
hence there are glide planes

f Except that diamond gives a very weak 222 reflection. This is taken as an indication

that the electron cloud of the carbon atom is not spherical, but has tetrahedral symmetry.
(Bragg, W. H., 1921.)

J It should be remembered that in the cubit;, tetragonal, and hexagonal systems
there may be glide planes perpendicular to the diagonals of the basal plane ; hence the

set of hhl reflections constitutes a 'principal zone' ; absence of hhl reflections having I odd
indicates the existence of such a glide plane.
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n having diagonal translation perpendicular to both a and b axes. If

the list of tetragonal space-groups is consulted, it will be found that the

only possible space-groups are P4nm and P4/rawn. (Remember that

4
the latter means Pnm.)m

It should be noted that in both these space-groups the fourfold axes

are of the 4
2 type ;

this is not expressed in the conventional space-group

symbol because the existence of the glide planes having diagonal trans-

lation n implies the 42 type of fourfold axis.

b

O

O

(c) and ft) (e) (f) (g)

FIG. 179. Fourfold positions in space-group P4/mnw.

The shapes of rutile crystals give no hint of polar character, hence

the holohedral space-group P^jmnm is the more likely to be correct.

It will be considered first.

'Consider the positions of the titanium atoms. There are only two of

these in the unit cell ;
if one is placed at the corner of the unit cell, then

the other can only be at the centre of the cell: the glide planes having

diagonal translation demand it.f

The positions of the four oxygen atoms can best be deduced by refer-

ring to the lists of equivalent positions in Int. Tab. There are five sets

of fourfold positions in space-group P^/mnm :

(c) OJO; J00;0il;i0l.

(d) OJi; OJ; 0||; 0f.

(e) OOz; OOz; i, i i+z; i i, i-z.

(/) xxOixxO;

(g) xxQ: xxQ',

All except the last two of these sets can be dismissed very simply by
the following consideration: the x and y coordinates of (c) and (d) are

iO and OJ, and the c projection looks like Fig. 179. This projected

arrangement is centred, and if it were correct, all hkO reflections having
h+k odd would be absent. Actually, such reflections are present for

t In Int. Tab. a second set of twofold positions is given: 00 J and JJO. This set, how-
ever, represents the same arrangement as the first set 000, JJ.
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example, 210. Hence these arrangements can be dismissed. Similarly

the (e) arrangement in projection appears centred, and can likewise be

dismissed. It is therefore certain that the oxygen atoms occupy either

the (/) or the (g) set of fourfold positions. Since (/) and'(gr) are equiva-

lent that is, they give rise to exactly the same complete arrangement

(see Figs. 179. and 180) we can use either.

The general arrangement is thus settled, and it remains only to deter-

mine the value of the single variable parameter x ; the weakness of 200

indicates that it is not far from 0*25 ; its precise magnitude is found by

calculating the intensities of a number of reflections for a range of

--0--
)--

a '-*+ a

FIG. 180. Structure of rutile, TiO 2 . Arrangements in P4/mnm (left)

and P&nm (right).

positions around this value. The best agreement between calculated

and observed intensities is obtained for x 0*31.

Since the whole X-ray diffraction pattern is accounted for by this

arrangement whose space-group symmetry is P4/mnm, this appears to

be the correct structure. It is, however, necessary to consider whether

any arrangement in the other possible space-group P4nm would account

for the intensities equally well. In this space-group the titanium atoms

are in the same positions as before, but the oxygen atoms occupy the

following set of fourfold positions :

(c) (xxz), (xxz), (\+x, | #,i+z), (\ x, l+x, l+z),

giving the arrangement illustrated in Fig. 180. It differs from the

P4:/mnm arrangement in that the oxygen atoms are all shifted along

the c axis by a distance z. The x parameter must be either 0-31 or

0-19, to account for the hkO intensities (see Fig. 129). The z parameter
is given by the intensities of the other reflections ; we need go no farther

than the consideration of 002, the intensity of which is such that z can

only be about zero : any value far from zero would give 002 too weak

in comparison with the hkO intensities. Other intensities involving z

establish that its value is exactly zero. (At the same time, x is estab-
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lished as 0-31, not 0-19.) But this arrangement with z zero is none other

than the P4[mnm arrangement we have already considered
;
this struc-

ture is therefore established as correct beyond doubt.

Urea, O=^C(NH 2)2 . Crystals of urea are tetragonal, and their

distinctive habit (Fig. 29) places them without any doubt in class 42m

(tetragonal scalenohedral in Groth's nomenclature, ditetragonal alternat-

ing in Miers's). The unit cell dimensions are a = 5-67 A, c = 4-73 A,

and these figures, together with the known density of 1-335, lead to the

conclusion that this unit cell comprises two molecules of urea. There

are no systematic absences among the hkl reflections, hence the lattice

is primitive (P). There are no systematic absences among hkQ, tiki, or

hOl reflections, hence there are no glide planes. In fact, the only

systematic absences arc AGO reflections for which h is odd (and, of course,

(WfeO reflections for which Jc is odd, since the a and 6 axes are equivalent) ;

the only symmetry elements involving translation are therefore screw

axes (2j) parallel to a and b. If the list of tetragonal space-groups and

their systematic absences is consulted, it will be found that the only

possible space-group is P421m.

In considering the positions of the atoms in the unit cell we are

entitled to assume that the atoms are linked together in molecules in

the manner established by chemical evidence :

H2N NH22 \/
I!

o

This means that we may consider first of all (in order to attain a general

idea of the atomic positions) the symmetry of the molecule, and the

relation of the two molecules in the cell to the symmetry elements of

space-group P42jW, the c projection of which is shown in Fig. 181.

Consider the axes of symmetry in the crystal. There are fourfold

inversion axes, twofold axes, and twofold screw axes. Now a molecule

having the chemical structure O^C(NH2 ) 2
cannot have a fourfold

inversion axis; neither can it have a screw axis (since it is a finite

molecule). Hence the molecules cannot lie on these crystal axes; the

two molecules must be related to each other by these axes. On the other

hand, a molecule of this structure may well possess a twofold axis pass-

ing through the C and O atoms ; consequently the twofold axes (A in

Fig. 181) are likely sites for molecules. Furthermore, it is to be noted

that each twofold axis stands at the intersection of two mutually per-

pendicular planes ofsymmetry and these also are likely to be possessed
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by a molecule of urea (see Fig. 138). Further consideration shows that

all other positions are impossible ;
for instance, if we put a molecule at

B, it is inevitably repeated at B', B", and B"'
; this is out of the question,

since we know there are only two molecules in the unit' cell, not four.

It is therefore certain that each molecule lies on a twofold axis, and

thus the C and O atoms of the molecule lie, one above the other, on this

twofold axis. Moreover, the nitrogen* atoms must lie on the symmetry

planes; for, suppose them displaced from the symmetry planes, as

FIG. 181. Structure of urea. Left: arrangement of_moleeules ; general view. Right:

symmetry elements of space-group P42jm (c projection).

at C in Fig. 181
; multiplication would inevitably occur, and there

would be four nitrogen atoms to each molecule, which we know is

incorrect.

It is thus certain that the molecules are arranged as in Fig. 181, with

the carbon and oxygen atoms on twofold axes and the nitrogen atoms

on the diagonally placed planes of symmetry. Hydrogen atoms need

not be considered, since their positions cannot be found by X-ray
methods.

An alternative argument will now be given ,
which arrives at the same

conclusion as that already given, but takes a different course ;
it starts

with a consideration of the equivalent positions in the space-group
P421m, and only introduces the concept of molecular structure at the

end. Both arguments are included here, because it is often useful to

think in both ways ; consideration of the placing of molecules of known
chemical structure is often more appropriate for organic crystals, while

the argument from equivalent positions is more likely to be useful for

ionic structures.

In the unit cell of urea we have to place two carbon, two oxygen, and
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four nitrogen atoms. Consider first the carbon and oxygen atoms. The

twofold positions in space-group P42Am are

(a) 000;

(b)

(c)

Suppose we put the carbons at (a) and the oxygens at (b). In this case

an oxygen atom would be equidistant from 6\ and C2 (Fig. 182 a) ; in

other words its distance from the carbon atom in its own molecule would

be the same as its distance from a carbon atom in a different molecule,

which is very unlikely. Suppose now we put carbons at (a) and oxygens
at (c) ; the same situation develops an oxygen would be equidistant

^L

w
FIG. 182. Consideration of possible atomic positions in urea. Left: C atoms
at (a), O atoms at (b). Centre: C atoms at (a), O atoms at (c). Right: C and

O atoms at (c), N atoms at (d).

from Cl and (73 (Fig. 182 6). Only by putting both carbons and oxygens
at two sets of (c) positions, with different values of z (Fig. 182 c), can

we keep the intramolecular and intermolecular carbon-oxygen distances

different from each other.

For the nitrogens consider the fourfold positions

(d) OOz; OOz; Jz; fjz;

(e) x, %+x, z; , \x,z\ %+x, x, z\ \x, x, z.

Suppose we put them at (d) positions. Remembering that carbons

and oxygens are at (c), it is evident that a nitrogen is equidistant from

two carbon atoms (Fig. 182c); the (d) positions can therefore be

rejected for the same reason as before. We are left only with the (e)

positions, and are thus brought to the same conclusions as in the

previous form of argument that is, that the structure is as shown in

Fig. 181, a structure in which there are four independently variable

parameters to be determined, #N ,
ZN ,

zc ,
and zo .

The best experimental determinations of the structure amplitudes for

the various reflections are those of Wyckoff (1930, 1932) and Wyckoff
and Corey (1934), who measured the intensities of the reflections from

a pressed cake of powder and from a single crystal in the form of a
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cylindrical rod, using the ionization spectrometer. The powder data

were used to indicate the corrections for secondary extinction to be

applied to the single crj
rstal data (see p. 209).

It is best to determine #N first, by considering the hkO intensities ; for

this projection #N is the only variable; since carbon and oxygen atoms

are fixed (one underneath the other) as in Fig. 183. It is simply a ques-

tion of calculating the hkO intensities for a range of positions along the

diagonal line AB in Fig. 183. This is done most rapidly by Bragg and

Lipson's graphical method (Fig. 169), the chart for plane group Pba

being used. It is important to remember to use the 'cos cos' origin for

6

CWO

FIG. 183. Urea. View along
c axis.

FIG. 184. Uroa. View along a axis.

Plane group l y
bnt.

reflections having h~}-k even and the 'sin sin' origin for those having

h+k odd. It is also important to use the correct scattering powers ;
the

NH2 group may be regarded as a single scattering unit containing nine

electrons, consequently scattering powers in the ratios 6:8:9 are

appropriate for C, 0, and NH2 respectively. The value of XN giving the

best overall agreement between calculated and observed F's is 0-145

(Wyckoff, 1932).

The three z parameters must all be determined together ; it is simplest

to consider first the Qkl intensities, which will give positions in the a

projection, Fig. 184. To use the graphical method, shift the origin to P
in Fig. 184, and on the chart use the 'cos cos' origin for reflections

having k even and the 'sin sin' origin for those having k odd, these

being the appropriate expressions for this plane-group Pbm. It is

important to remember that there are two NH2 groups and only one

carbon and one oxygen in the structure. It would not be profitable to

describe in detail the procedure in shifting the atoms about in the

attempt to obtain correct .F's. But two remarks may be made. The

first is that, in order to limit the possible atomic positions, it is justifiable
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to assume, as Hendricks
(
1928 a) did in the earliest work

,
that the distance

C is somewhere between 1-0 and 1-7 A, while C N is 1-0-1-5 A.

(In working out organic structures nowadays it would be justifiable to

assume much narrower limits, owing to the accumulation of knowledge
since that time.) The second is that when a particular set of atomic

positions gives a set of structure amplitudes some of which are seriously

wrong, inspection of the charts shows in which direction each atom
should be moved in order to increase or diminish the structure ampli-
tude for a given reflection (see p. 264).

The whole structure should be checked by calcula-

tions of hkl intensities. The appropriate expression
will be found in the Int. Tab. It is possible to use

the Bragg and Lipson charts to shorten such calcula-

tions (see p. 268). The final parameters were found /f0

by Wyckoff and Corey to be zc = 0-335, zo = 0-60, //0-

XN = 0-145, ZN = 0-18.

Sodium nitrite, NaNO2 , forms orthorhombic

crystals of the shape of Fig. 185. This shape has

holohedral symmetry mmm: the internal symmetry
F
J
G * 1

.

85 '

. .J J 9 j j ofsodium nitrite,

might, however, be lower than this (see p. 247), and NaNO 2 .

therefore atomic arrangements in all three classes

of the orthorhombic system (mmm, 222, and 2mm) may be considered.

The unit cell has the dimensions

a = 3-55 A,

b .-= 5-56 A,

c = 5-38 A,

and contains two molecules of NaN02 (Ziegler, 1931). All reflections

for which h+k+l is odd are absent, hence the lattice is body-centred (/).

There is evidently only one molecule of NaNO2 associated with each

lattice point ;
the problem of structure determination is simply to group

the atoms of one molecule ofNaN02 at one corner of the cell; the other

molecule is arranged in exactly the same way at the centre of the cell.

There are no further systematic absences ; the absences of odd orders

of AGO, Oi%

0, and OOZ are included in the general statement that reflec-

tions having h-\-k-{-l odd are absent. This means that, for a body-
centred lattice, we cannot tell (from the systematic absences) whether

twofold screw axes are present or not. The possible space-groups are

therefore /mmm in the holohedral class, 7222 and /2
1
2
1
2
1
in the enantio-

morphic class, and 7mm in the polar class. Of these, 721
2
1
2
1
can be ruled

out at once because there are no twofold positions in this space-group.
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Consider now 1222, which has several sets of twofold positions. Put

a nitrogen atom A at the origin (its companion B will necessarily be at

the centre of the cell).
At the centres of edges and faces (as well as at

the corners of the celJ) three twofold axes intersect (Fig. 186 a), and a

sodium atom, to avoid multiplication, must lie at one of these points,

that is, either exactly half-way along the c axis (at S) as in the diagram,

or else at one of the other points mentioned. For the two oxygen atoms

of the reference molecule the positions available are along the edges

of the cell, either at D or in similar positions such as E. (For, suppose

we put them off one of the twofold axes as in Fig. 186 b
;
F and G would

H
o..

o -C-2

-6-2"o

(a) (b)

FIG. 186. Sodium nitrite. Consideration of arrangement Immm.

be inevitably repeated at H and /.) We may assume that the two

oxygen atoms of the nitrite ion are closely associated with the nitrogen

atom, hence if we have our reference nitrogen atom at the origin, the

two oxygen atoms belonging to it will be found along one of the axes.

In Fig. 186 a they are shown on 6, but theymight equally well be on a or c.

It is now necessary to note that this sort of arrangement has planes

as well as axes of symmetry ;
in other words, we cannot place 2NaN02

in an orthorhombic cell to give symmetry 7222
; the attempt to do so

leads inevitably to symmetry Immm.
We now consider the structure amplitudes which this highly sym-

metrical type of arrangement would give, beginning with the various

orders of feOO, O&O, and OO/. Only the even orders are present (the lattice

being body-centred). If the NO2 groups are as in Fig. 186 a, the oxygen
atoms lie on both 200 and 002 planes ; hence all the orders of 200 and 002

would have the same F'a, or in other words, the successive orders of

both 200 and 002 should show a normal decline of actual intensity.

Similarly, if we put the oxygens along a, the successive orders of 020
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and 002 should show a normal decline ; or, if we put them along c, the

orders of 200 and 020 should decline regularly : in each case the succes-

sive orders of two principal planes should decline normally. In actual

fact, the decline of intensities for the orders of both 002 and 020 is not

regular (002 vw, 004 w\ 020 vs, 040 w). Hence the actual arrangement
in the sodium nitrite crystal is not one of those so far considered : the

correct space-group cannot be Immm.

(b) (c;

N w P
/^a Q (

Ck-^O ^ CX^Lo P^fr P>| N
->gr iTcx.^y^ <rV > ^Ix,

FIG, 187. Sodiiim nitrite. Arrangements having symmetry Imm.

(There is also another quite different reason for dismissing such

arrangements : they would be unstable. For instance, the forces between

the ions in Fig. 186 a (assuming the orientations of the ions were main-

tained) would make the a and c axes equal and the symmetry tetragonal

with b as the fourfold axis.)

We are thus driven to try arrangements having the lower symmetry
Imm. This space-group has twofold axes parallel to only one (we do not

know which) of the cell edges, with planes of symmetry intersecting on

each twofold axis. This means that, ifwe put a reference nitrogen atom

at the origin as before, the oxygen atoms must lie on one face of the cell,

but need not form a straight line with the nitrogen atom ;
the N02 ion

may be V-shaped as in Fig. 187 a. Further, the sodium atoms must lie

on the twofold axes, but need not be exactly half-way along the cell

edges ;
this point is also illustrated in the diagrams.
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The plane of the nitrite ion can be defined : it must lie in the only

principal plane showing a normal decline of intensities that is, 200.

The nitrite ions must therefore lie as in Fig. 187 a (with c as the polar

twofold axis) or as in Fig. 187 b (with b as the polar twofold axis).

Before trying to decide which orientation of nitrite ions is correct,

consider the positions of the sodium ions. The outstanding fact bearing

on this is that 101 is very strong. With nitrite ions at the corners of

the cell, the only way of ensuring tins is to put sodium atoms on or

near the b edges of the cell
;
others will fall near the centres of the ac

faces as in Fig. 187 c. Putting in the nitrite ions in the two possible

orientations a and 6, we get the two complete arrangements d and e.

In trying to choose the more likely of these, consider the fact that 020

is very strong while 002 is very weak. For arrangement d, in which

sodium atoms are exactly half-way along 6, the only way of ensuring

that 020 shall be strong and 002 weak is to put the oxygens fairly near

the c axis and well away from the b axis (about a quarter of the way up c).

This would give an acute-angled nitrite ion as in /, where y < z. This

seems improbable. In arrangement e, on the other hand, the intensi-

ties mentioned can be satisfied by an obtuse-angled ion
;
this therefore

appears to be the more probable arrangement. Calculations of structure

amplitudes, in the first instance for Okl planesf and finally for all planes,

confirm that this is correct, and give the precise positions of the atoms.

The parameters were found by Ziegler (1931) to be (taking the nitrogen

atorti as the origin) yN& = 0-50, yo = 0-083, zo 0-194.

The optical properties of the sodium nitrite crystal are fully consis-

tent with this arrangement. The birefringence (largely due to the nitrite

ion) is very strong and positive, as would be expected for a crystal con-

taining roughly linear ions packed parallel: a. 1-340
(|| a), j8 1-425

(|| fc),

y 1-655
(|| c).J The plane of the V-shaped ions is normal to a, the vibra-

tion direction of lowest index, while the longest dimension of the ion

lies along c, the vibration direction of highest index. These facts might
indeed have been used in deducing the orientation of the nitrite ions

in the crystal. The derivation from X-ray intensities alone has been

given, however, as it forms a,good example of the use of such evidence.

Sodium bicarbonate, NaHCO3 . The structure of sodium bicar-

bonate is more complex than that of sodium nitrite, and it would be

very difficult or impossible to solve it by the use of X-ray data alone.

The optical properties, however, provide valuable evidence, and the

f Best done graphically, using Bragg and Lipson's charts. The plane-group for this

projection is Cm. { Measurements by the author.
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solution of the complete structure by Zachariasen (1933) forms a very

good example of the combined use of optical and X-ray evidence,

The dimensions of the monoclinic unit cell (a = 751 A, b = 9-70 A,

c 3-53 A, /?
= 93 19') were found by using the rotation and oscilla-

tion photographs of a single crystal. These dimensions, together with

the known density of 2-20, lead to the conclusion that there are four

molecules of NaHC03 in the unit cell. Absent reflections are those in

the li()l zone for which h+l is odd indicating a glide plane n perpen-
dicular to 6 and also the odd O&O reflections, indicating that there are

twofold screw axes parallel to b. The space-group is evidently P^ifn.

(This is equivalent to PZJa, with a change of a and c axes see p. 239.

P2ja is the normal set-up given in Int. Tab.)

In this space-group the general positions have fourfold multiplicity.

(Coordinates! xyz, xijz, (i+a)(J-f/)(i+), (i~*)(l+y)(i-).) The

only special positions have twofold multiplicity; these are pairs of

symmetry centres. There are four such pairs :f (#) 000, Mi 5 (b) 00, 0|| ;

(c) OOi, UO] (d) |0|, OJ-O. We have to assign 4Na, 4H, and 4CO3 to

appropriate sets of equivalent positions. Hydrogen atoms will be

ignored for the present: their positions cannot be found directly by

X-ray methods.

We are entitled to assume that in this crystal there are carbonate

groups having the same shape and dimensions as in other carbonate

crystals that is, equilateral triangles of oxygen atoms with carbon

atoms at the centres (see Fig. 138). Now the carbonate ion does not

possess a centre of symmetry ;
therefore neither the carbon atoms nor

any of the oxygen atoms lie at the centres of symmetry ; they lie in

general positions.

No such argument applies to the sodium atoms, whicli can be

assumed confidently to be independent ions ; they may well lie at centres

of symmetry. It is of course not certain that they do : they may either

occup}' two pairs of symmetry centres or alternatively one set of

general positions.

Assume first of all that the sodium ions do occupy two sets of sym-

metry centres, and consider the c projection only. Although in space
there are four different combinations of two pairs of symmetry centres,

there are only two different projected arrangements, which are illus-

trated in Fig. 188. Other combinations are equivalent to these: thus

(a)+ (b) is equivalent to (a)+(d), when seen from this viewpoint.

t Usually expressed more briefly as #i/z, (I+ )(} 2

J The symmetry cent-res are incorrectly paired in the original paper.
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The orientation of the carbonate groups may be inferred from the

optical properties of the crystals. The birefringence is very strong

(a 1-378, ft 1*500, y 1-580), and a is so low that it may be assumed that

the planes of the carbonate ions are all perpendicular to the vibration

direction for this refractive index ; this direction lies in the ac plane,

making an angle of 27^ with the c axis. Zachariasen accepted this,

and also the dimensions of the carbonate ion as found in other crystals ;

and attempted to find, by trial, positions in the c projection which

would satisfy the observed hkQ intensities. This involved moving one

reference carbonate ion about, and also rotating it in its own plane,

2Na

2Na

Km. ] 88. Sodium bicarbonate, c projection. Sodium atoms
in pairs of symmetry centres.

for each of the sodium arrangements shown in Fig. 188. The other

three carbonate ions are of course related to the reference ion by the

symmetries of P2Jn.
Positions giving correct relative intensities for the hkQ refections

could not be found, and Zachariasen therefore concluded that the

sodium ions do not lie in symmetry centres but in general positions.

He then moved the sodium ions (or rather, in practice, one reference

ion) about in this same projection. (Carbonate contributions for various

positions and orientations of the carbonate ions were already known as

a result of the first set of calculations.) A set of positions satisfying the

hkQ intensities was found; the arrangement is shown in Fig. 189.

The only coordinates remaining to be found were then those along
the c axis; these involve only two variable parameters, one for the

sodium and one for the carbonate ion. The values of these parameters
were found without much difficulty from the relative intensities of

some of the other reflections ; the principle was to compare structure

amplitudes for reflections at similar angles. Finally the structure was
checked by calculations of the intensities of all reflections within a wide

angular range.
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Although only visual estimates of intensities were used, the number

of reflections for which calculations were made is so large that the

parameters* may be accepted with considerable confidence. A view of

the structure seen along the 6 axis is shown in Fig, 189.

FIG, 189. Structure of sodium bicarbonate, NaHCOa .

Above, c projection ; below, b projection.

In the calculations hydrogen atoms were ignored ; but their positions

are indicated by the fact that one oxygen-oxygen distance is abnor-

mally low (2-55 A) a fact which is taken as evidence for the existence

of a 'hydrogen bond' between these oxygen atoms. (See Pauling, 1940.)
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The hydrogen atoms are assumed to be midway between the two

oxygen atoms concerned. This was the principal result of chemical

interest which came from this investigation the proof of a striking

example of hydrogen bond formation, at a time when the existence of

this type of bond had not long been realized and was exciting con-

siderable interest.

. Zachariasen rounded off this work by calculating the three principal

refractive indices of the crystal on the basis of his structure, accepting

Bragg's theory (1924). The calculated values are close to the known
indices of the crystal.

FIG. 190. p-Diphenylberi/ew. Controsyiniiietricul configurations.

^-Diphenylbenzene, C6H5 .C6H4 .C6H5 , and dibenzyl, C6H5 .CH2 .

CH2 . C6H5 . The crystal structures of these two substances present very

similar problems and will be considered together. In both crystals the

unit cell is rnonoclinic and contains two molecules, and in both crystals

the space-group symmetry is PSJa. (Absent reflections : hQl with h odd,

indicating the existence of glide planes perpendicular to the b axis with

a translation of a/2, and O&O with k odd, indicating the existence of

twofold screw axes parallel to b.)

These facts lead at once to a valuable stereochemical conclusion, as

in the case of diphenyl discussed on p. 249. It takes four asymmetric
units to give the symmetry P2

JL/a, and therefore, since there are only

two molecules in the unit cell, each molecule must possess twofold

symmetiy; and since finite molecules cannot possess either a screw

axis or a glide plane, they must possess the only other symmetry
element in the cell a centre of symmetry.
From this point we shall consider the substances separately. The

centre of symmetry in jo-diphenylbenzene obviously lies in the middle
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of the central benzene ring ; and the existence of it means that the

planes of the terminal benzene rings are parallel to each other. They

may be at any angle to the plane of the central benzene ring, but they
must be parallel to each other (Fig. 190).

Consider now the approximate orientation ofthe molecules in the unit

cell. The dimensions of the cell (a = 8-08 A, b = 5-60 A, c = 13-59 A,
= 91 55') suggest that the long molecules lie very roughly parallel

to the long c axis
;
and the fact that the 201 reflection is very strong

suggests that the long molecules lie along the traces of these planes,

as in Fig. 191 a. If this is true, and we look along the c axis, we

FIG. 191. p-Diphenylbenzene. Approximate orientation of

molecules in unit cell.

should see the long molecules more or less end-on
;
the strength of 110

confirms this (see Fig. 191 b).

It remains to define the orientation of the molecules more precisely

and to fix the positions of all the carbon atoms. There is no further

help to be gained from symmetry considerations all the atoms are in

general positions, as in most organic crystals; atomic positions are

found by the laborious process of trial. The carbon atoms in the

asymmetric unit

xCJuL CJi\ xCH

CHy xC CC

\CH CH/ \CH

must be moved about until the calculated intensities agree with those

actually observed. Pickett, who worked out the structure in 1933,

assumed that the benzene ring is a flat regular hexagon, that the C C
distance is 1*42 A as in hexamethylbenzene, and that the C C link
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lies in the planes of both rings. The problem therefore was to rotate the

terminal ring with respect to the central ring, and to alter the orienta-

tion of the whole molecule to find which position (if any) satisfies the

FIG. 192. Structure of jo-diphenylbenzene. (Strukturbericht, 1933-5, p. 681.)

intensities of the reflections. The procedure followed was to attempt
first to satisfy the intensities of the small-angle reflections, and then

to work outwards, the atomic coordinates being defined more and
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(a)

more closely as this went on. It was found that molecules having all

three rings coplanar, oriented as in Fig. 192, give correct intensities

for all ih& reflections. Note that the long axes of the molecules lie

almost precisely along the 201 planes, in accordance with our prelimi-

nary expectation ; and, moreover, they are parallel to the ac face of the

cell, which makes the structure easy to visualize.

The structure of dibenzyl C6H5 .CH2 .CH2 .C6H5 is formally similar

to tnat of >-diphenylbenzene, but its elucidation (accomplished by
J. M. Robertson, 1934 a) was a rather more complex problem. We
may note first of all that a gre'ater variety of molecular configurations

might be assumed by rotation

round the three single bonds.

However, thanks to the existence

of the centre of symmetry in the

molecule (which must be half-

way between the CH2 groups),

some of these can be immediately

rejected: it is certain that the

three single bonds form a plane

zigzag as in the paraffin hydip-

carbons, since this is the only

configuration of the three bonds

which has a centre of symmetry.
It is also certain that the planes

of the benzene rings are parallel

to each other
; theymay be twisted

at any angle to the central zigzag (Fig. 193) but they must be parallel

to each other.

A rough idea of the orientation of the molecules in the unit cell

(dimensions a = 12-77 A, b = 6-12 A, c == 7-70 A, j3
= 116) is given

by the fact that the highest structure amplitude is that of 202
;

the long molecules therefore lie approximately along these planes

(Fig. 194). The atoms must, however, be somewhat dispersed from

these planes, since the absolute value of the structure amplitude
falls considerably short of the maximum possible (70 out of 113).

In attempting to find the atomic coordinates Robertson considered

first the more symmetrical molecular configurations a and c of Fig. 193,

and calculated structure amplitudes for various orientations of both

models. Starting with the inner (small-angle) reflections and working
outwards as usual, he found that agreement between calculated and

H-f-

V -4-H

FIG. 193. Dibenzyl. Centitfsymmetrical

configurations .
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observed intensities over the whole range of reflections could not be

achieved by type a, whatever the orientation of the molecules, but

that good agreement could be obtained for a particular oriehtation of

FIG. 11)4. Dibenzyl. Approximate orientation of molecules in unit cell.

Molecule at corner

Molecule

atzb

FIG. 195. Structure of dibenzyl, C6H6.CH2.CH2 .C6H5 .

molecules of type c. The latter therefore appears to be correct : it was

not necessary to consider intermediate configurations such as b. The

complete structure (b projection) is illustrated in Fig. 195. (It was

subsequently confirmed by calculations of the distribution of electron
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density in the crystal in the way described in the next chapter

Robertson, 19356.)

Ascorbic acid ( 'Vitamin C ')
. The crystal structure of this substance

cannot be said to be established with the certainty and precision we
associate with those already described ; nevertheless, there is no reason

to doubt that the structure suggested by Cox and Goodwin (1936) on

the basis of a limited study of the X-ray reflections is essentially correct.

The work is described here because this crystal structure presents some

very interesting and instructive features. It is also historically inter-

esting because a preliminary study by optical and X-ray methods

played a part in the elucidation of the chemical structure of this bio-

logically important substance. (Cox, 1932 a
; Cox, Hirst, and Reynolds,

1932; Cox and Hirst, 1933.)

The crystals have monoclinic sphenoidal symmetry (class 2) and

grow as almost square tablets having 100 as the principal face. They
have very strong negative birefringence (a 1-476, /? 1-594, y 1-750), the

vibration direction of a being parallel to the b axis. This suggests that

the molecules are flat, with the plane perpendicular to the b axis
; indeed,

the birefringence is so strong that the molecule may have a flat ring

structure containing double bonds.

The X-ray results lead to the same general conclusion. The unit cell

dimensions are found to be a = 16-95 A, b = 6-32 A, c 6-38 A,

/?
= 102 J, and the unit cell contains four molecules. The 020 reflection

is very strong, and the regular decline of the ixitensities of subsequent
orders (040, 060) indicates that most of the atoms lie on or near the

020 planes ;
in other words, the molecules are flat and lie with their

planes perpendicular to b.

The X-ray results also lead to a knowledge of the approximate
molecular dimensions. It is first necessary to note that the only

systematic absences are the odd orders of OfcO
;
hence the space-group is

either P\ or P2x/m. The shape of the crystals indicates that P2X is

correct. In addition, it is worth noting that P2l/m is ruled out by the

fact that the substance in solution rotates the plane of polarized light ;

hence the molecules are asymmetric, and there cannot be equal numbers

of d and I molecules in the crystal, as would be required for P2l/m ;

therefore the space-group must be P2
X . This space-group, however,

requires only two asymmetric units ; the unit cell" actually contains

four molecules, hence a group of two molecules constitutes the asym-
metric unit of structure ;

these two molecules may be grouped in any
manner whatsoever.
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This seems to complicate the problem hopelessly. But the situation

is not as bad as it seems ; for it is found that all hkO reflections for which

h is odd are extremely weak, and this suggests very strongly that if we

look along the c axis (Fig. 196 b) there is a molecule, B almost exactly

half-way between molecules A and C and oriented in almost exactly

the same way, so that from this viewpoint B looks almost exactly the

(a)

1
2

'

--.

IB

a Sin

FIG. 196. Ascorbic acid. Arrangement of asymmetric molecules

(represented by formal shapes) consistent with X-ray data.

same as A and C and halves the apparent length of the a axis. The

packing of the nearly flat molecules is of the form shown in Fig. 196 a,

in which A and B are differently related to the screw axes ; there is no

question of halving for the b projection, since all types of hOl reflections

are present.

The dimensions' of the molecules are therefore likely to be about

L xcx-, that is, 8*5 X 6-4x3-1 A. These dimensions ruled out some

suggested constitutions, and played a part in suggesting the following
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constitution which was eventually established chemically by Herbert,

Hirst, Percival, Reynolds, and Smith (1933):

HO OH

/ VoOH HI

Y
CH2OH

The relative positions of the molecules in the unit cell were after-

wards found by calculating some of the structure amplitudes for various

FIG. 197. Structure of ascorbic acid (6 projection). Only one
sheet of molecules is shown. (Cox and Goodwin, 1936.)

positions. The arrangement in one sheet of molecules is shown in Fig.

197. (In the published account (Cox and Goodwin, 1936) use is made
of the conception of a pseudo plane of symmetry perpendicular to the

plane of the molecule and perpendicular to the c axis ; actually the

apparent halving of a in the c projection does not demand any such

pseudo plane of symmetry in the molecule, but can be produced with

completely asymmetric molecules, as Fig. 196 shows. However, as it

turns out, the configuration and arrangement of the molecules which

accounts for the intensities of the principal reflections does show a

pseudo plane of symmetry in the position mentioned.)

Long-chain polymers. To conclude this series of examples of

structure determination by trial, accounts will be given of the elucida-

tion of the structures of two long-chain polymers. Substances of this

type are of increasing practical importance, and moreover their
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molecules are very interesting stereochemically. The experimental data

available for the study of their crystal structures is more scanty than

in the case of crystals composed of small molecules: there is no morpho-

logical evidence on crystal symmetry, and only limited optical evidence

on molecular arrangement, while on account of the imperfect orienta-

tion and often small crystal size in fibre specimens, the X-ray reflec-

tions are less sharp than those of single crystals (see Fig. 112), with the

result that the weakest reflections tend to be lost in the general back-

ground of the photographs. Another limitation is that, owing to the

overlapping of different reflections, only their combined intensities are

known ; and there is often doubt about systematic absences. Neverthe-

less, to offset these disadvantages there are some compensating features

which make the study of chain-polymer structures less difficult and

uncertain than might be supposed. The principal advantage is that in

fibre specimens the molecules run parallel to the fibre axis (molecular

orientation being therefore partially defined from the start), and more-

over the length of the unit cell edge which lies parallel to the fibre axis

is a distance iviihin the molecule a feature which has far-reaching

consequences, as we have seen in Chapter VI. There are also other

advantages ; for on account of the special character of the molecules,

special arguments can sometimes be used to limit the possible arrange-

ments in the crystal. The two examples to be described (f$ gutta-percha

( CH2 C(CH3)=CH CH2 )n a naturally occurring polymer of iso-

prene and rubber hydrochloride (-H2 C(CH3)C1 CH2 CH2 )J
are also instructive for another reason : they exhibit pseudo-symmetries,
which may cause confusion if the possibility of their occurrence is not

realized.

1. f$ Gutta-percha. Interpretation of fibre photographs shows that the

unit cell of /? gutta-percha is rectangular (and therefore probably ortho-

rhombic in symmetry), with the dimensions a = 7-78 A, b = 11-78 A,

c = 4-72 A (c being the fibre axis). Cold-rolled sheets provide con-

firmatory evidence, for in them the crystals tend to be oriented, not

only with their c axes along the direction of rolling, but also with

their 010 planes in the plane of the sheet; photographs of such speci-

mens set at particular angles to the X-ray beam can be treated as crude

oscillation photographs of single crystals, the indices of the various

reflections being thus checked. Four chain molecules run through
the cell.

In interpreting chain-polymer photographs it is best to consider

first the length of the unit cell edge which is parallel to the fibre axis,
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for this length is also the repeat distance of the molecules themselves
;

the magnitude of this repeat distance often gives valuable information

on molecular configuration. Gutta-percha forms a striking example

here. Its repeat distance (4-72 A) is so short that it is probable from

the start that there is only one chemical unit ( CH2 C(CH3)=
CH CH2 )

in this length. With regard to cis and trans positions of

chain-bonds with regard to the double bond, it is evident from Fig. 198

that only the trans form of chain

is likely to have one chemical

unit in the repeat distance (the

cis form having two). Now a

trans chain with all its carbon

atom centres in a plane would

be expected to have a repeat dis-

tance of 5-04 A, if bond lengths

and angles are normal; this

figure is considerably in excess

of the observed repeat distance.

The only way of shortening

such a ohain without serious

and improbable alterations of

bond lengths and angles is to

make it non-planar: in other

words, starting from a planar

chain, we make rotations round

the bonds. Rotations round the

double bond are unlikely : all the

atoms attached to the double-bonded pair of carbon atoms are likely to

be in a plane. We must therefore rotate round single bonds. The only

possibility is to move bond 4 la (Fig. 198) out of plane 12345 by
rotation round bond 3 4; at the same time, in order to keep unit

Ia2a3a4a5a strictly parallel to unit 12345 so that the two remain

crystallographically equivalent, it is necessary to rotate bond la 4

round bond la 2a. Thus one chemical unit has been moved towards

the other along the chain axis while maintaining the correct distance

between atoms 4 and la and maintaining the angles 341a and 41a2a at

109. In this shortening movement bond 4 la can be rotated either

clockwise or anti-clockwise, giving the two types of asymmetric mole-

cule shown in Fig. 199 ; they are mirror images of each other.

The next step in the interpretation of chain-polymer photographs is

FIG, 198. Planar poly-isoprene molecules.

(a) Cis chain, (b) End view of (a), (c) Trans

chain, (d) End view of (c).



320 STRUCTURE DETERMINATION CHAP. IX

usually the consideration of the projection of the structure along the

fibre axis, to deduce the side-by-side arrangement of the molecules.

The intensities of the equatorial reflections on the normal fibre photo-

graph are the experimental material for this purpose. A survey of the

left
righfc

4-7A

FIG. 199. Molecular models assuming planar isoprene units (trans) and

repeat distance of 4-7 A. Left- and right-handed molecules.

indices of these reflections on the /J gutta-percha pattern shows that all

reflections having k odd are absent. It looks as if there is a glide plane

normal to c with a translation of 6/2 ;
but some caution is necessary in

this particular case, for it will be observed in Fig. 199 that left- and

right-handed molecules, seen along the fibre axis from either end, look

almost identical as far as the positions of atomic centres are concerned
;

pseudo symmetries are obviously possible. Whatever the truth on this
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point, however, the cell as seen along c apparently has its b axis halved,

and we can certainly work on the half-size projected cell, which has only
two chain "molecules passing through it.

Calculations' of the intensities of the hkQ reflections for various

positions and orientations of two molecules lead to the conclusion that

they are disposed approximately as in Fig. 200. It can also be shown
that no arrangement of planar molecules can possibly satisfy these

intensities. (In the original investigation the interpretation of these

intensities was considered before the question of chain-shortening;
and an unprejudiced consideration

of what atomic positions could

possibly satisfy these intensities

led to the arrangement of Fig. 200,

implying non-planar chains
;
con-

sequently, when the question of

chain-shortening (to satisfy the

FIG. 200. Approximate positions of carbon
atoms in. the c projection of )3 gutta-percha,
deduced from intensities of hkQ reflections.

repeat distance of the molecule)

was then considered, the attain-

ment of a non-planar molecular

configuration having almost ex-

actly the same end-view was most

striking and encouraging.)
It is now possible to consider

the space-group symmetry of the

structure as a whole. The evidence of absent reflections will not be

considered yet, for reasons already given. Instead, the known approxi-

mate arrangement in the c projection will be the starting-point for a

consideration of the possible complete arrangements. First, a further

limitation can be imposed by the following reasoning. )8 gutta-percha is

made by cooling amorphous ('melted') material rapidly. 'Melted' gutta-

percha is not a liquid but a rubber-like 'solid'. In such material the

molecules probably do not move about relative to each other to any

great extent ; if they did, the material would be fluid. Neither can the

enormously long molecules turn round to reverse their ends. Hence,

on crystallization, the molecules settle down in an orderly manner

while remaining more or less where they happen to be. Crystals form

where sections of molecules happen to lie in favourable positions. Since

in any such group there are likely to be equal numbers of molecules

pointing both ways, we expect to find in a crystal equal numbers of

molecules pointing both ways ; we may admit the possibility of minor
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movements of sections of molecules sufficient to convert a random

arrangement into an ordered crystalline arrangement, without admit-

ting the wholesale migrations which would mean fluidity. Thus, of

the four molecules passing through the unit cell, two are likely to be

upside-down with respect to the others an 'up' molecule being defined

as one with its methyl groups above the double bonds and a 'down*

molecule the reverse.

KoSoe/

f o

a , , a , ,
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FIG. 201. Possible arrangements of molecules in
j3 gutta-porcha. Note that for Pea the

axial nomenclature is changed; this is done to attain the conventional orientation of

symmetry elements in this space-group. (One symmetry element in this arrangement is

not shown : there is a glide plane parallel to the paper, having translation a/2.) R right,

L ~
left, u = up, d down.

When all possible arrangements allowed by these limitations are

considered, it is found that there are only five with orthorhombic

symmetry (Fig. 201). The indices of the unambiguous reflections

definitely present on the photographs do not allow us to rule any of

these out, though the symmetry P21
2
1
2
l seems more likely than P2X

2
X
2

in view of the absence of 001 and 003 from photographs taken with the

fibre axis oscillating with respect to the X-ray beam.

The B forms of P21
2
121 and P2!2X

2 can be ruled out by a simple
consideration: the Oil reflection is fairly strong. Since the chain atoms

can contribute little to its intensity, the side methyl groups must be as

in Fig. 202. The choice between the remaining arrangements can only
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be made by detailed calculations of intensities for a range of molecular

positions %
in each case. It would not be profitable to describe this

rather laborious process here. It must suffice to observe that correct

relative intensities were only obtained for the P2
1
2
1
2
1 arrangement.

The best carbon positions are those shown in Fig. 203.f Hydrogen
atoms are usually ignored in work on organic substances; but it is

noteworthy that in the work on /? gutta-percha it was found necessary

(in order to improve the agreement between observed and calculated

intensities) to assume that the diffracting powers of C, CH, CH2 ,
and

CH3 groups are in the ratios 6:7:8: 9 these being the numbers of

CH3

FTO. 202. Approximate positions of CH 3 groups in the a projection of j3 gutta-percha.

electrons in the groups. More recently, Levi and Corey (1941) in theii

work on alanine have found a distinct improvement when the contribu-

tions of hydrogen atoms at definite positions in the structure were taker

into account.

The results of stereochemical interest which came out of this wort

may be indicated (Bunn, 1942 a-c). It paved the way to a solution ol

the crystal structure of rubber itself (the cis isomer of poly-isoprene

and of the synthetic rubber-like substance polychloroprene (
CH2 CC

~CH CH2 )n ; it led to suggestions with regard to the moleculai

basis of rubber-like properties and to stereochemical explanations o

the differences between the physical properties of the substances

mentioned
;
and finally it led to a general consideration of the stereo

chemistry of chain polymers and to a new generalization on the con

figurations of aliphatic molecules. (See next section.)

2. Rubber hydrochloride ( CH2
- -C(CH3)C1 CH2 CH2 )w . This

cellophane-like substance is made by the action of hydrochloric acic

on rubber. X-ray diffraction j)attcrns show that it is crystalline

(Gehinan, Field, and Dinsmore, 1938), and interpretation of the pattern!

t See note on p. 334.
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given by drawn fibres and sheets (Bunn and Garner, 1942) yields the

information that the unit cell is rectangular, with the dimensions

... +.

down up

up down

4--

down up

down

down

FIG. 203. Structure of right-handed ft gutta-percha crystal,

seen (A) along the c axis, (B) along the a axis.

c b a

FIG. 204. Bond positions in saturated carbon compounds.

a = 5-83 A, 6 = 10-38 A, c = 8-95 A, the last being the fibre axis.

There are four chemical units in this cell.

The length of the repeat distance along the molecule suggests that it
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comprises two chemical units. The question of the chain configuration

is obviously more complex than in the case of gutta-percha : by rotation

round single bonds to various degrees, all sorts of configurations, all

having the correct repeat distance, could be obtained. But although

rotation round single bonds occurs in liquids and gases, certain con-

figurations are more stable than others,

and when crystallization occurs, molecules

settle down in these preferred configura-

tions. In all the well-established crystal

structures containing such molecules the

bonds of singly linked carbon atoms are

found to be staggered (Fig. 204). Various

types of chain may be constructed by

using various sequences of the three

possible bond-configurations a'da, a!db,

and a'dc, which will be referred to as A, B,

and C respectively. Now the only chain

with, an 8-atom period which has a repeat

distance of about 8-95 A is the chain

AAABAAAC, shown in Fig. 205. This is

therefore likely to be the configuration of

the rubber hydrochloride molecule. This

chain, moreover, seems probable from

other points of view; one would expect
the CH2 CH2 CH2 portions to be

plane zigzags as in polyethylene (A

sequences), while a different bond-con-

figuration at every fourth carbon atom

(those which carry substituents) is an

obvious possibility. The chlorine and

methyl substituents may be either as in

Fig. 205 or reversed; their positions, and the arrangement of the

molecules, must be discovered from the intensities of the X-ray
reflections.

There are only two molecules passing through the unit cell
;
if the

symmetry is orthorhombic (as one would suppose, from the rectangular

character of the cell), four asymmetric units are required ;
therefore

each molecule must have twofold symmetry of some kind. Now the

molecule in Fig. 205 has a glide plane as its only element of symmetry ;

therefore this must be used in the crystal structure. A survey of the

GLIDE PLANE,
TRANSLATION .

c/2(SEEN
EDGEW/5E

a
FIG. 205. Rubber hydrochloride.
Molecular configuration sug-

gested by the repeat distance and
the principle of staggered bonds.

(Hydrogen atoms omitted.)
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reflections shows that hOl reflections having / odd are absent, indicating

that there is, normal to 6, a glide plane having a translation of c/2.

Our expectations are thus confirmed, so far
;
and the orientation of the

molecule in the cell is settled : it has its glide plane normal to b.

Assuming still that the symmetry is orthorhombic, the two molecules

must be related to each other by a symmetry element
;
and this can

only be either a plane of symmetry or a glide plane, perpendicular to

the glide plane already mentioned, giving an arrangement in the polar

class mm. (Arrangements in the holosymmetric class mmm would

Pia. 206. Rubber hydrochloride. Projection along a. Consideration

of arrangement with n glide plane parallel to the paper.

require eight asymmetric units
; arrangements using axial symmetry

where this does not imply an extra plane or glide plane have mono-

clinic symmetry.) Molecules are not usually related by planes of sym-

metry (see p. 231); moreover, the a axis (normal to which the plane

would be) is so short (5-83 A) that there is not room for two molecules

along it. Therefore we look for a glide plane normal to either a or c.

In the hkO zone there is certainly no glide plane. In the Okl zone the

presence of a fairly strong 013 reflection rules out glide planes with

b or c translation. (This reflection, from its position, might be 003 or

013 or both
;
but in view of the structure of the molecules, 003 is bound

to be absent.) There remains the possibility of an n glide. The great

strength of the spot indexed as 021+ 111 (one of the strongest on the

photograph) suggests that 021 is present, which would rule out an n

glide ;
but we cannot be quite certain of this. However, the arrange-

ment with an n glide (Fig. 206) can be ruled out, because it would give
a strong Oil reflection; Oil is actually absent.

It appears, therefore, that the symmetry cannot be orthorhombic.
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It may be monoclinic with the angle /J equal to 90. In this case the c

glide plane possessed by the molecules themselves need not necessarily

be used in the crystal structure ; however, the existence of a c glide

in the crystal structure suggests that it is used. In looking for other

>10-364.

Cl Cl

FIG. 207. Structure of rubber hydrochlorido. c projection.

b 10-38A.

FIG. 208. Structure of rubber hydrochloride. a projection.

symmetry elements (for the relation of the two molecules to each

other), we find evidence (in the absence of odd O&O reflections) of a screw

axis along 6, pointing to the space-group P21/c, the arrangement being
as in Fig. 207.

The test of this structure is begun, as usual, by considering the c

projection. It can be shown that the arrangement of Fig. 2.07 gives
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approximately correct intensities for the hkO reflections, if the chlorine

atoms are placed on p bonds and the methyl groups on q bonds. The

positions of the molecules along the c axis are found by calculating

intensities, first for hOl and Okl reflections and finally for the general

(hkl) reflections. It is found that satisfactory agreement between

calculated and observed intensities is obtained for the positions shown
in Figs. 207-9

;
this is evidently the structure of rubber hydrochloride.

The mode of packing of the molecules shows clearly the reason why
the angle j8 is 90. The chlorine atom of one molecule (Cl' in Fig. 209)

Cl

Fid. 209. Structure of rubber hydrochloride. b projection.

fits into the hollow formed by groups CH3 , CH2(2), and CH2(3) attached

to carbon atom C of the molecule in front (that is, the next molecule

along the a axis). This packing ensures that the z coordinate of Cl' is

about the same as that of C, and since the carbon-chlorine bond is at

right angles to the chain axis, the angle /} must necessarily be approxi-

mately 90.

The coordinates of atoms in chain-polymer crystals cannot be deter-

mined with the precision attained in single-crystal work, on account of

the smaller number of reflections available and the overlapping of some
ofthem. But the amount ofevidence available is sufficient (for polymers
of the degree of complexity of those considered here) to leave little

doubt of the general arrangement, as well as the approximate coordi-

nates of the atoms.
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The principal interest of the rubber hydrochloride structure (apart

from its bearing on the theory of the relation between the physical

properties and the molecular structure of polymers) is that it formed the

first test of validity and usefulness of the principle of staggered bonds.

Abnormal structures. In all the structures considered so far two

structural principles have been obeyed: firstly, atoms have occupied

precisely defined positions, and secondly, positions which are equivalent

according to the theory of space-groups have been occupied by identical

atoms. It has already been mentioned (at the end of Chapter VII) that

there are some crystals in which one or the other of these principles is

violated ; and it is now intended to pursue this subject by giving a few

examples.

Crystals which are abnormal in this way are in a minority ;
but they

are important in their bearing on our understanding of the physical

properties of crystals and the relations between the crystalline and

liquid states ; and, moreover, if in attempting to determine the structure

of any crystal it is found impossible to account for the intensities of

the X-ray reflections by any structure based on the acceptance of the

two principles mentioned, it must be considered whether any structure

in which these principles are ignored can account for the X-ray pattern.

Molecular rotation. In a normal crystal every atom occupies a

precise mean position, about which it vibrates to a degree depending
on the temperature; molecules or polyatomic ions have precisely

defined orientations as well as precise mean positions. When such a

crystal is heated, the amplitude of the thermal vibrations of the atoms

increases with the temperature until a point is reached at which the

regular structure breaks down, that is, the crystal melts. But in a few

types of crystal it appears that rotation of molecules or polyatomic
ions sets in below the melting-point ;

in other words, rotation does not

disturb the arrangement sufficiently to disorganize it entirely. Molecules

which behave in this way are either roughly cylindrical, so that they

may rotate about a particular axis without unduly disturbing their

neighbours, or else roughly spherical and rotate about more than one

axis. (White and Bishop, 1940; White, Biggs, and Morgan, 1940.)

Evidently, when the molecules start rotating, the forces between them

are still sufficient to ensure three-dimensional regularity until at a

higher temperature the links between the molecules are broken by
additional thermal vibrations, and the crystal melts. The onset of

molecular rotation is often, but not always, accompanied by a change
of symmetry.



330 STRUCTURE DETERMINATION CHAP. IX

J-54A

In some crystals such rotation occurs at room temperature. One of

the simplest examples is potassium cyanide, KCN ;
the structure is of

the sodium chloride type (Fig. 134), and this can only mean that the

CN~ ion is rotating ;
it does not necessarily mean that aH orientations

are equally probable, but it does mean that frequent changes of orienta-

tion occur, such that the effective symmetry of the ion is the highest

possible in the cubic system ; neither carbon nor nitrogen atoms occupy

specific positions in the structure but are in effect 'spread over' a

number of positions.

Long molecules sometimes rotate about their

long axes, and disk-shaped molecules or ions

like NO^~ may spin in the plane of the disk.

The history of the study of the long-chain

primary alkyl-ammonium halides such as

C5H11NH3C1 is interesting and instructive.

These substances form tetragonal crystals

with two molecules in the unit cell. It ap-

peared at first (Hendricks, 1928 b) that the

carbon chain in these substances is linear, with

a C C distance of 1*25 A. Yet in other long-

chain molecules the carbon chain is a zigzag,

with a C C distance of 1-54 A and bond

angles of about 110; this form of chain is

quite incompatible with the tetragonal sym-

metry of the alkyl-ammonium halide crystals.

The dilemma was resolved by the suggestion that rotation of the chain

about its long axis occurs, since in this way the zigzag chain may
attain, in effect, tetragonal symmetry (Fig. 210) ;

the spacing of 1-25 A
is the projection on the chain axis of a bond 1-54 A in length inclined

at 35 to the axis. It was then found that at low temperatures the

structure changes (Hendricks, 1930) ; probably in this low-temperature

form, the molecules are not rotating.

Crystals in which molecules rotate still have three-dimensional regu-

larity ; they must not be confused with 'liquid crystals', in which there

is only two-dimensional or one-dimensional regularity (see JBernal and

Wooster, 1932; Randall, 1934; G. and E. Friedel and others, 1931;

Oseen and others, 1933).

Evidence of molecular rotation may be given by non-crystallographic

evidence; the transition from a rotating to a non-rotating state is

accompanied by sudden changes in specific heat and in dielectric con-

FIG. 210. The zigzag hydro-
carbon chain in C6H11NH3C1

attains, by rotation, tetra-

gonal symmetry.
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starit (see Chapter VIII). Molecular rotation in crystals also leads to

an abnormally high melting-point and a small temperature interval

between melting- and boiling-points (Baker and Smyth, 1939).

Since molecular rotation does occur in certain crystals, it is necessary,

when attempting to determine the structure of any crystal, to consider

this possibility. If there appears to be a conflict between the symmetry
of a molecule in the crystal and the expectation based on stereochemical

principles, or if it is found impossible to obtain correct calculated

intensities on the assumption that the molecules are fixed, it should

be considered whether the hypothesis of molecular rotation provides
an explanation.

Mixed crystals and 'defect' structures. Certain substances

which, by themselves, form crystals of the same structural type
are able to crystallize together in the form of a 'mixed crystal', in which

equivalent sites are occupied indiscriminately by different atoms. The

example ofK2S04 and (NH4 )2S04 has already been mentioned in Chap-
ter II

;
there is nothing surprising in the formation of mixed crystals of

these substances, since the structures of the pure substances are entirely

analogous and the potassium and ammonium ions are similar both in

chemical character and size. (Radii: K+, 1-33 A; NH+, 1-43 A.) Still

simpler examples are found in some alloy systems ;
for instance, copper

and gold, which by themselves form face-centred cubic crystals, are able

to form mixed crystals containing any proportions of the two elements.

Here again, similarity of chemical character and size of the two types
of atoms is the underlying cause. (Radii: Cu 1-28 A, Au 1-44 A.) The

proof that in these alloys crystallographically equivalent sites are

occupied indiscriminately by the two different types of atoms is very

simple. The alloy crystals are face-centred cubic, with four atoms to

the unit cell, that is, one atom to each lattice point ;
it therefore appears,

from the X-ray evidence, that the atoms in the crystal are all identical ;

it is, however, known that two different types of atom are present.

The only way out of this dilemma is the conclusion that the equivalent
lattice points are occupied indiscriminately by the two types of atom.

(A large number of unit cells is concerned in the formation of an X-ray
reflection; local irregular variations of composition are not detected.)

In agreement with this conclusion is the fact that the length of the unit-

cell edge of such an alloy lies between those of the pure components
indeed, the relation between unit-cell size and composition is almost

exactly linear.

The difference between a mixed crystal and a compound is well
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brought out by other phenomena which occur in the copper-gold

system. The mixed-crystal alloys mentioned in the last paragraph are

only obtained by quenching from high temperatures. If these mixed

crystals are cooled slowly, or annealed at a suitable temperature, the

atoms sort themselves out and form a more regular arrangement. The

type of arrangement depends on the composition. Thus, an alloy of

composition Cu3Au, when annealed, gives an X-ray diffraction pattern

containing many more reflections than that of the quenched specimen.

The reflections fit a cubic unit cell of about the dame size as that of the

quenched specimen, but the pattern exhibits no systematic absences ;

in fact the lattice is primitive, not face-centred.

Detailed analysis shows that the arrangement
of the atoms is that of Fig. 211, a properly

ordered arrangement in which equivalent sites

are occupied by identical atoms. This is a

very simple and clear example of the effect of

ordered and disordered arrangements on X-ray
diffraction patterns; ordered arrangements,

which are stable at low temperatures, give

patterns containing more reflections than the

disordered arrangements which are stable at

higher temperatures. (In alloy systems the ordered structures obtained

from mixed crystals by annealing are called 'superlattices'.)

Mixed crystals are mentioned hero chiefly as an introduction to the

idea that sites equivalent according to space-group theory may in some

circumstances be occupied by different atoms. As far as structure

determination is concerned, we need not be detained by further con-

sideration of mixed crystals ; nobody is likely to attempt to determine

the structure of a mixed crystal without first knowing the structures of

the pure constituents. The function of X-ray analysis here is to deter-

mine, as in the example of Cu3Au, whether a substance thought to be

a mixed crystal is really a true mixed crystal or a 'compound' character-

ized by a superlattice ; the latter is amenable to the normal methods of

structure analysis based on space-group theory, and likewise need not

detain us further.

More surprising than the formation of mixed crystals is the occurrence

of substances which are apparently compounds of fixed composition,

yet in which different atoms are scattered indiscriminately among
crystallographically equivalent sites ('defect structures'). Crystals of

lithium ferrite LiFe02 , for instance, give an X-ray diffraction pattern

FIG. 211. Structure of

Cu,Au.
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which indicates the sodium chloride type of structure, with an oxygen
in place of each chlorine atom and, to all appearances, |Li+-}-|Fe

3+

in place of each sodium a result which can only mean that lithium

and ferric ions (which have the same radius, 0-67 A) are scattered

indiscriminately over the positive sites (Posnjak and Barth, 1931).

The constancy of composition is due to the fact that the interchange-

able ions have different charges; any variation of the proportions

of Li+ and Fe3+ would mean that the whole crystal would not be

electrically neutral. Li2TiO3 has a similar structure (Kordes, 1935 b).

More complex examples ofthe same sort ofthing occur among substances

having the spinel type of structure, an arrangement common to many
mixed oxides having the formula AB2 4 . In a normal spinel like

ZnAl2 4 the cubic unit cell corttains eight 'molecules'
; the space-group

is FdSih, oxygen ions occupy a 32-fol4 set of positions, zinc ions an 8-fold

set of positions in which each is surrounded tetrahedrally by four

oxygens, and aluminium ions a 16-fold set of positions in which each is

surrounded octahedrally by six oxygens. But in some spinels such as

MgFe2O4 ,
the positive ions are distributed differently over the same

pattern of sites. In the example given, half the ferric ions occupy the

8-fold positions, while^the other half, together with all the magnesium

ions, are distributed at random over the 16-fold positions. (Barth and

Posnjak, 1932.) The evidence for this arrangement is of course provided

by the intensities of the X-ray reflections. This example serves to

remind us that, if satisfactory agreement between observed and calcu-

lated intensities cannot be achieved on the basis of the assumption
that equivalent sites are occupied by identical atoms, then arrangements

ignoring this principle should be tried.

Still more surprising are certain crystals in which a set of equivalent

positions is only partially occupied, some sites here and there at random

being empty. The spinel group also provides examples of this type of

structure. The cubic (y) form of Fe2 3 ,
for instance, gives an X-ray

diffraction pattern very similar to that ofFe3 4 ,
which is a normal spinel

Fe2
+Fef

H
4 . In fact it appears that in the unit cell of y-Fe2 3 there

are 32 oxygen ions arranged in the same way as in Fe3 4 ;
this leads to

the surprising conclusion that there are, on the average, 21\ iron atoms

in the unit cell, these being scattered indiscriminately over the positive

ion sites and the intensities of the reflections confirm this (Verwey,

1935; Hagg, 1935). The structure of y~Al2 3 is of the same type

(Kordes, 1935 a
; Hagg and Soderholm, 1935).

A simpler example is the iron sulphide pj^rrhotite, the composition of
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which is roughly FeS but which always contains rather too little iron.

The X-ray pattern indicates the sodium chloride type of structure, and
it appears that while the negative ion positions are fully occupied by
sulphur, there is a deficiency of iron atoms in the positive ion sites.

(Laves, 1930; Hagg and Sucksdorff, 1933.)

The zeolite group of minerals provides further examples of defect

structures. These are complex aluminosilicates, the crystals of which

have a rigid framework of Al, Si, and O atoms in which there are

continuous channels
;
water molecules may enter or leave the crystals

by way of these channels, the amount of water in the crystals being
variable (W. H. Taylor, 1930, 1934). (In normal hydrates the structure

collapses when water is removed, a new structure being formed.) A
simple substance in which the same thing occurs is calcium sulphate

subhydrate CaSO4 .0-fH2O (Bunn, 1941).

An extreme type of defect structure is the a form of Agl, which is

stable above 146 C. In this crystal the iodine atoms form a cubic body-
centred arrangement, but the silver atoms apparently have no fixed

positions at all; they wander freely through the iodine lattice (Strock,

1934, 1935).

The evidence for the various types of defect structures is (it is hardly

necessary to repeat) provided by X-ray diffraction patterns. The unit-

cell dimensions, the chemical analysis, arid the density settle the composi-
tion of the unit cell, and the intensities of the reflections settle the

positions of the atoms. Those who studied these structures were forced

to the rather surprising conclusions by this evidence. The moral of this

tale is that the implications of X-ray diffraction patterns (in conjunc-
tion with reliable chemical analyses and densities) should be accepted

boldly, even if they conflict with geometrical ideals (the application of

the theory of space-groups) or with stereochemical preconceptions. Only
in this way is new knowledge and a deeper comprehension of the crystal-

line state attained.

Additional note to p. 323.

Slightly different atomic coordinates were subsequently suggested by Jeffrey (1944).
The two sets of coordinates gix

ro about equally good agreement between observed and
calculated intensities. Comparison of the two sets of coordinates will give some idea
of the degree of precision to bo expected in this work.
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IN the method of trial, crystal structures are determined by considering

what atomic positions will account for the intensities of the diffracted

X-ray beams. This method is not only very laborious (except for very

simple structures) but also has all the disadvantages of an indirect

method: so much depends on the chances of postulating an approxi-

mately correct structure. The opposite method is to record and measure

the diffraction pattern, and then combine the results by suitable mathe-

matical or experimental operations to give a picture of the crystal

structure.

The reason why it is not usually possible to employ this direct method

for the solution of crystal structures has already been indicated at the

beginning of Chapter VII : it is that we do not usually know, and cannot

determine experimentally, the phases of the various diffracted beams

with respect to a chosen point in the unit of pattern. However, for

certain crystals we can from the start be reasonably certain of the phase
relations of the diffracted beams, or can deduce them from crystallo-

graphic evidence, and in these circumstances we can proceed at once

to combine the information, either mathematically or by experimental
methods in which light waves are used in place of X-rays. Otherwise,

it is necessary to find approximate positions by trial, the approximation

being taken as far as is necessary to be certain of the phases of a

considerable number of reflections
;
as soon as the phases are known,

the direct method can be used.

The subject may be approached most simply by considering the

process of image formation in the microscope, and in particular the

formation of an image of the patterned line-grating shown in Fig. 70,

Plate V. The simple geometrical representation of the formation of

the image of a large object by a simple lens, in which light waves from

different points on the object travel independently through the lens and

are brought to a focus at different points, is not adequate for objects

bearing fine detail commensurate with the wave-length of light, since

in these circumstances, waves from neighbouring points interfere with

each other. For the small patterned line-grating shown in the lower

half of Fig. 70, Plate V, it cannot be said that an image of each line

is produced independently of the images of its neighbours ; owing to

interference between waves from neighbouring lines, a set of diffracted
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beams is produced, each of them coming from the pattern as a whole. The

formation of two of them the first and third orders is illustrated in

Fig. 119. Thus, from the pattern of the grating, a very different pattern

of diffracted beams is produced. Yet an image of the original grating

is formed by the lens, and this image must evidently be built up by the

interaction of the diffracted beams after passing through the lens. An
idea of the part played by each diffracted beam may be gained in the

following way.

Suppose first that, in addition to the direct (zero-order) beam, only

the first-order diffracted beams (one on each side of the primary beam)

Spectra Lens Object Light
waves

FIG. 212. Formation of the image of a diffraction grating. Paths of light

rays (Bragg, 1929/0-

pass through the lens. The paths of the light rays are shown in Fig. 212,

for the special case of a small distant monochromatic light-source. The

parallel direct rays give an image of the source at $
;
the two sets of

first-order diffracted rays give additional images on either side of the

central image. There is thus in this plane a diffraction pattern in the

form of a set of images of the source. Continuing on their way, the first-

order rays reach the image plane, where they interact, producing an

ordinary set of interference fringes in which there is a sinusoidal

distribution of light intensity. (See top of Fig. 213.) In other words

the image given by the first-order diffracted beams alone is an extremely
diffuse one

;
it merely shows diffuse lines (the spacing of which corre-

sponds to the repeat distance of the pattern) without any of the details.

The second-order diffracted beams by themselves would produce a

set of interference fringes having half the spacing of those of the first

order, and an intensity proportional to that of the diffracted beams

concerned. If this set is added to the first-order set, as in the second

stage of Fig. 213, the image is modified, the resultant distribution of
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light intensity being that shown by the full line, obtained by adding
the ordinates of the constituent (dotted) curves. In this particular case

the second orders make little difference because their intensity is small ;

but with the Addition of the third orders (also shown in Fig. 213) the

details of the pattern (the pair of lines constituting the pattern-unit)

begin to appear, and become sharper when the fourth orders are added.

FIG. 213. Formation of image of patterned line-grating of Fig. 70 by
superposition of different sots of interference fringes, each set being

produced by a pair of diffracted beams.

It is by the co-operation of all the orders passing through the lens that

the image is built up ;
one may imagine all the sets of interference

fringes, each with its own spacing and intensity, superposed. The larger

the number of orders of diffraction taking part, the more faithful the

image. This is the reason why the resolving power of a microscopic

objective lens combination depends on the numerical aperture, which

is a measure of the angular range of diffracted beams collected by
the lens.

If it were not possible to obtain an image of the pattern experimentally,
it would be possible to obtain it mathematically ;

but in order to do so
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it would be necessary to know not only the positions and intensities of

the diffracted beams but also their phase angles, for it is these phase

angles which place the various sets of interference fringes in correct

register: for the patterned line-grating which we are using as example,

the first, second, and fourth orders have negative phase with respect to

the origin 0, while the third order is positive. Thus, given the position,

intensity, and phase angle of every diffracted beam produced by a

unidimensional pattern, we can calculate the actual density distribution

along that pattern. We effect by numerical computation what is shown

graphically in Fig. 213: the resultant amplitude of light vibrations at

any point whose distance from the origin is x (expressed as a fraction

of the repeat distance) is given by the Fourier series

cos 7

where each term represents the contribution of one order, the co-

efficients A ly AZ, etc., being the amplitudes of the waves (the square

roots of the intensities of the diffraction spots), and
]_,

<x2 , etc., the

phase displacements. (^4 is the amplitude of the zero -order dif-

fraction.) For a centrosymmetrical pattern, such as the one we are

considering, the phase displacements arc all either or i (in degrees,

or 180) with respect to the centre of symmetry, and therefore

the expression A Q ~\- ^An coB2nnx may be used, each coefficient A
1 ,

A 2 , etc., being given the appropriate sign, positive for a phase angle

of 0, negative for a phase angle of 180.

This is a simple example of the synthesis of an image from a diffrac-

tion pattern by calculation. The synthesis of an image of a crystal

structure from its X-ray diffraction pattern is more complex (because

a three-dimensional diffraction grating is involved), but similar in

principle, because the X-ray diffraction spots produced by an atomic

pattern are absolutely analogous to the diffracted light beams formed

by a pattern whose repeat distance is comparable with the wave-length

of light.

We have seen that a diffracted X-ray beam may be regarded as a

reflection from a set of parallel planes of lattice points, and that the

intensities of the different orders of reflection from this set of planes

depend on the distribution of atoms between one plane and the next,

Consequently a synthesis of all the orders of reflection from one set of

planes leads to a knowledge of the distribution of scattering matter

between one plane and the next, just as the synthesis of all the orders
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of optical diffraction from a line grating yields a curve showing the

distribution of scattering points along the grating. The scattering

matter in a crystal consists of the electron atmospheres of the atoms,

hence a syntHesis on the lines indicated yields a curve showing the

distribution of electron density between one lattice plane and the next.

The orders of 001 reflections, for instance, yield the distri bution ofelectron

density between one 001 plane and the next. The expression used for

the synthesis is entirely analogous to the one for the line grating :

Diffracting power at any level z

cos 27r(z-h ooi)-r-^002 oos 2

= ^000+ 2 ^owc

^001 > ^002' and so on are the structure amplitudes for these reflections,

calculated from the intensities in the way described earlier in this book.

If the projection has a real or apparent centre of symmetry, the phase

angles with respect to this centre of symmetry are all either or 180.

The scattering material in a crystal consists of electrons, and if we
wish to calculate the absolute electron density at any level, we must
use absolute structure amplitudes in the expression

/^mn ^'000+ 2^ow cos2Tr(fcH <%)/)

in which p^ is the absolute electron density at a level 2, rf001 is the spacing
of the 001 planes, and J^

ftoo (the structure amplitude for the zero-order

diffraction) is the number of electrons in the unit cell. If only relative

jP\s arc available, the constant term 7^000 is not known in relation to

the set of relative F's
; nevertheless, electron densities in relation to an

arbitrary level can be calculated.

Turn now to the calculation of an image of a crystal structure as seen

along a zone axis. This is obtained by a synthesis of all the reflections

from planes parallel to this zone axis. Thus, the hOl reflections give an

image of the structure as seen along the 6 axis, an image in which the

high lights are the points of maximum projected electron density the

atomic centres.

One way of approach to this is to consider a two-dimensional pattern
on the optical scale and the formation of an image of it by a microscope
lens. A two-dimensional pattern such as that in Fig. 172. Plate XIII,

when illuminated by parallel monochromatic light, gives a two-

dimensional diffraction pattern (shown in the lower half of this figure)

in which each diffracted beam is characterized by two order numbers.

The diffracted beams, after passing through the objective lens and
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reaching the image plane, form the image by interference; we may
imagine many sets of interference fringes, one set from each pair of

diffracted beaitis hQl and toZ, crossing each other in all directions, and

by their superposition building up the image. , Returning to the X-ray
reflections from a crystal, we may treat the hOl set of reflections as

if they were diffracted beams from a two-dimensional pattern which

is the 6 projection of the crystal structure, and combine them by
calculation to form an image of this pattern. The two order numbers,

h and I, for each reflection, enter into the expression in this way:

Pxz (projected electron density at point 'xz) XA (area of projected unit

cell)
= F{m+^ f̂

Fm Gos27T(hx+ky+am ). (Bragg, 1929 a.) To obtain

the complete image it is necessary to calculate the projected electron

density at a large number of points xz all over the projected cell ; for

each point a large number of terms (one for each hOl reflection) must

be added to the constant term FOQ0 .

Finally, synthesis of all the reflections gives the electron density at

any point xyz in the unit cell. The expression for this three-dimensional

synthesis is pxyz (electron density at a point xyz) x V (volume of unit

cell)
= ^000+ 222Fm cos2iT(hx+ky+lz+ahkl ).

The labour involved in a three-dimensional synthesis is very great,

except for the simplest structures ;
for this reason (and others which will

appear later), the two-dimensional synthesis, giving a view of a projec-

tion of the structure, is most often used in crystal structure determina-

tion. No synthesis can be carried out, however, unless the phase angles

of the reflections with respect to a reference point in the structure are

known. We now consider under what circumstances it is possible to be

sure ofthe phase anglfes from the start, or to deduce them from crystallo-

graphic evidence.

For a much more detailed discussion of Fourier series methods, see

Robertson, 1937.

Direct structure determination. In some crystal projections the

phase angles of the reflections relevant to the projection are all the same

(with respect to a reference point). In such circumstances the image of

the structure can be calculated directly from the intensities of the

reflections. The circumstances in which we can be certain that this is so

are unfortunately rare. Three conditions must be fulfilled. The first is

that the projection must possess apparent centres of symmetry ; not

necessarily true centres of symmetry in the crystal, but apparent
centres of symmetry such as occur when there are twofold axes of sym-

metry parallel to the zone axis of the projection. With respect to any
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apparent centre of symmetry, the phase angles of all reflections are

necessarily
either or 180.

The second condition is that there must be, at the centre ofsymmetry,
an atom whos'e diffracting power is very much greater than that of any
of the other atoms in the cell. The third is that there must be only one

such atom in the projected unit cell ;t this atom is conveniently taken

as the origin of the projected cell. In these circumstances, it is certain

that the phase angles of all the reflections with respect to the origin are

0, since the wave from the heavy atom at the origin has a phase angle
of and is so strong that it overrides the effects of all the waves from

L^-o_ IP-O

0-</ 5 ^f
FIG. 214. For this projected structure, in which the black circles Represent

heavy atoms, all reflections having h~}-k even have a phase angle of 0, but

those having h-\-k odd may have phase angles of or 180. Therefore direct

structure determination is not possible.

the remaining atoms ;
the latter, if in opposition to those from the heavy

atom (that is, have, in combination, a phase angle of 180), reduce its

intensity but cannot reverse its phase sign.

The necessity for the third condition may be appreciated by con-

sideration of Fig. 214, in which there are two molecules or atom groups
in the projected unit cell. Each molecule contains a heavy atom, and

both heavy atoms are at centres of symmetry, but the orientation of

the molecule in the centre of the projected cell is different from that of

the molecule at the corner. As far as the heavy atoms alone are con-

cerned, the projected cell is centred ; this means that for all reflections

having h+k odd, the contribution of the heavy atoms is zero, since

the wave from the centre atom opposes the wave from the corner atom.

But with regard to the rest ofthe molecule, the projection is not centred,

f Note that for certain views of some space-groups the unit cell of the projection con-

tains fewer molecules than the real cell ; see p. 238. Also, that where two heavy atoms
have the same coordinates in a projection, they may be regarded as a single strong

scattering centre for the present purposes.
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and therefore reflections having h+k odd are produced; they are due

entirely to the parts of the molecules other than the heavy atoms, and

their phases may be either or 180. Thus, while it is true that reflec-

tions having h+Jc even all have a phase angle of owing to the over-

riding effect of the heavy atoms, reflections having h+k odd may have

phase angles of either or 180, and there is nothing to tell us which is

correct for each reflection.

The three necessary conditions are fulfilled in the b projection of the

platinum phthalocyanine crystal. (Robertson and Woodward, 1940.)

The unit cell is monoclinic (space-group P2j/a), and contains two mole-

cules of PtC32H 1(jNs . Since there are only two platinum atoms in the

cell, and the only twofold positions in this space-group he at centres of

symmetry, each platinum atom lies at a centre of symmetry. In the

6 projection the a axis appears to be halved owing to the existence of

the glide plane ;
in other words, this projection has a one-molecule cell

with the heavy platinum atom at a centre of symmetry. The other

atoms in the molecule of PtC32H16N8 all have diffracting powers very
much smaller than that of platinum, and therefore the phase angles will

be those of the platinum atom, that is, for every reflection. This is

not true for the a and c projections. The direct method can therefore

only be used for the b projection ; fortunately this is by far the most

informative on the details of the molecular structure.

When electron densities are calculated for this projection by the

expression already given, the map shown in Fig. 215 is obtained. Con-

tours are drawn at intervals of one electron, except round the platinum

atom, where the interval is 20 electrons. The detail shown in this

striking view of the structure is remarkable; every atom is clearly

resolved, and the positions of atomic centres can be read off with con-

siderable precision. It should be noted that the flat molecule is inclined

at 26-5 to the plane of the paper, and is therefore somewhat fore-

shortened in one direction.

The swamping effect of the heavy atom is of extreme value in that it

enables us to assume the phases of all the reflections
;
but it should be

noted that the intensities of the reflections must be determined with as

much precision as possible, since the swamping effect tends to make
the intensities more nearly equal than they would be in absence of the

heavy atom.

It follows from the foregoing discussion that three-dimensional

determinations by this direct method (giving the electron densities at

points in the unit cell) are only possible when the unit cell contains only



CHAP. X ELECTRON DENSITY MAPS 343

one heavy atom, which must lie at a centre ofsymmetry. This situation

is rare, and, so far, three-dimensional determinations by this method

have not'been published.

4 *

FIG. 215. Electron densities in the 6 projection of platinum phthalocyanine.

(Robertson and Woodward, 1940.)

Phase angles from experimental evidence. There is another

set of circumstances in which the signs of the terms can be deduced

from experimental evidence. This has been done for phthalocyanine

itself. It so happens that the unit cell dimensions and space-group of

the parent substance and the nickel derivative are identical, and it can

be assumed that the orientations of the molecules are the same in both
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crystals. The centre of symmetry of the cell is occupied by hydrogen

in the former and nickel in the latter ;
the contribution of hydrogen is

quite negligible, hence it can be assumed that the centre of symmetry
is effectively empty in the parent substance. Now the 'phase for the

parent substance is positive for some planes and negative for others ;

and it is reasonably assumed that for any particular crystal plane the

contribution of the organic part of the nickel derivative has the same

sign as for the corresponding plane of the parent substance. The nickel

atom, however, being at the centre of symmetry, gives a positive con-

tribution for every reflection. Therefore if, in the nickel derivative, the

organic part of the molecule gives, for a particular plane, a negative

contribution, this will be in opposition to that of the nickel atom, and

the reflection will therefore be weaker than the corresponding reflection

of the parent substance. But for some planes the organic part of the

molecule will give a positive contribution, and this, co-operating with

that of the nickel atom, will result in reflections stronger than those

from corresponding planes of the parent substance. The procedure is

therefore to measure the intensities of the reflections from both parent

substance and nickel derivative, and compare the absolute intensities

for corresponding planes. When the intensity for the nickel derivative

is higher than that for the parent substance, it is assumed that the

structure amplitude for the latter is positive ;
when the reverse is true,

it is assumed that the structure amplitude for the parent substance is

negative. In this way the signs of all the structure amplitudes for the

parent substance are found. The way is thus opened for a direct

Fourier synthesis. This was done by Robertson (1936tf) ; this indeed was

the first structure to be determined by the direct method. The electron

density map so produced is very similar to that of the platinum deriva-

tive, except that the molecule is more tilted with regard to the piano of

projection, and therefore appears more foreshortened. The angle of

tilt is 44. It should be noted that no assumptions of a stcreochemical

nature were made; the only assumptions were those based on the

observed isomorphism of the crystals. (Likewise, in the case of the

platinum derivative, the only assumption was that the phases are all

the same.)

Refinement of approximate structures by image synthesis.

Crystals which fulfil the conditions necessary for the exclusive use of

direct methods are rare, and most crystal structures must still be solved,

or partially solved, by indirect methods. But the indirect methods
the method of trial, or the vector methods mentioned later in this
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chapter need be carried only as far as the correct placing of such atoms

as constitute the greater part of the scattering material. As soon as the

approximate positions of these atoms have been found by trial, or by
vector methocifc, the phases of some of the reflections are known

;
the

phases for some of the weakest reflections may be wrong, but those of

the strong reflections are bound to be correct, and with this information

a preliminary Fourier synthesis can be carried out. The electron

density map so obtained indicates atomic positions with a little more

precision than at first, and the new positions can be used to check the

phases of the weaker reflections
; there will be a few changes, and a

second synthesis can then be carried out. An alternative procedure is

to include in the first synthesis only those terms whose signs are bound

to be correct that is, those reflections which are strong in the photo-

graphs and also have large calculated structure amplitudes. In the next

synthesis more terms are included
;
and so on. This process constitutes

a direct method of adjusting atomic coordinates towards more probable
values ; naturally it is most successful for projections in which the atoms

are seen clearly resolved from each other. Good examples of structures

determined in this way are, among inorganic substances, diopside

CaMg(8i()3 )2 determined by W. L. Bragg (1929 6), and among organic

substances stilbene C6H6 CH=CH C6H5 determined by Robertson

and Woodward (1937). They are both illustrated, in Figs. 216 and 217

respectively.

Organic iodine derivatives have been used for the sake of the over-

riding effect of the heavy iodine atom. An example is picryl iodide,

the structure of which has been determined by Huse and Powell (1940)

In projections of this crystal structure the iodine atoms are not at

centres of symmetry, hence the entirely direct method cannot be used

But it can be assumed that the phases of the reflections are those of

the combined waves from the iodine atoms alone
;
this may not be true

for a few reflections, because when the net contribution by the iodine

atoms is small, the phase may be reversed by the rest of the molecule
;

nevertheless, most of the assumed phases are likely to be right. Con-

sequently, as soon as the positions of the iodine atoms are known,
direct image synthesis can begin. This, in fact, is how the structure was

worked out. (The preliminary location of the iodine atoms was actually

accomplished, not by trial, but by the Patterson vector method described

later in this chapter.)

In most crystal structure determinations in which Fourier series

methods have been used, two-dimensional syntheses have been made
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CHAP, x ELECTRON DENSITY MAPS 347

for one, two, or three principal zones. Three-dimensional syntheses

are very laborious and are usually quite unnecessary ; but for special

purposes it may be desirable to carry out a three-dimensional synthesis,

not necessarily for points throughout the cell, but in a particular region

or on a particular plane. This has been done, for instance, for particular

planes in the crystal of penta-erythritol tetra-acetate (Goodwin and

Hardy, 1938), and also in the poJy- ethylene structure (Bunn, 1939).

One-dimensional synthesis is sometimes useful, as in the case of

quaterphenyl, C6H5 . CGH4 . C6H4 . C6H6 (Pickett, 1936).

For crystals not possessing a centre of symmetry (or apparent centre

of symmetry in a projection) the difficulties of the Fourier synthesis

method are increased by the necessity of estimating the phase angle

for each reflection, or in other words the term ot
ttkl

in the expression

F
f)kl eos27r(hx-\~ky-\-lz

J
t-am ). This is done by finding approximate

positions by trial: atomic coordinates are adjusted until approximately
correct intensities are obtained. The calculations made for this

purpose provide the necessary data for determining a
fl /d : A (see

p. 212) = Fco&27rot
;
B F sin 2?ra. This has been done for

resorcinol C6H4(OH) 2 by Robertson (1936 b), and for the rhombohedral

crystal form of acetamide CH3 .CO.NH 2 by Seiiti and Barker (1940).

Methods of computation. The number of reflections in a single

zone (MO, h()l, or Okl) is not likely to be so large as to make the labour

of computation prohibitive. It is, however, a task of considerable

magnitude, and methods of reducing the time and effort are very
desirable. Beevers and Lipsoii (1936) convert cos27r(JiX'\-ky) into

cos 27rhx cos 27T/7/ sin 27rhx sin 2rrky and for the addition of these terms

for a large number of points xy, use a large set of prepared card strips,

each of which gives F cos 2nhx (or F sin Zrrhx) for given values of F and
h and a range of values of x ; thus, a typical strip for F = +23, h = 3

gives values of 23cos(27rX3xj|j), 23cos(27rx3Xa
1

5 ), 23cos(27rX 3x|>)>
and so on up to 23cos(27rx3xjg), that is, for points separated by fo

of the cell edge up to one-quarter of the cell edge. The various reflec-

tions are divided into groups ;
for instance, all those with h 3 are

grouped together, since it is necessary to add up -F310 cos ZirZx cos 2ny,
F320 cQs27r3xcos27T2y, -F330 cos 27r3o; cos 27r3?/, and so on or in other

words cos 27T^x(F^w cos 2Try+Fyio cos 27r2y+F^ cos 2n3y-\- ...). The
terms in the brackets are added up (for the various values of y) by
taking out the appropriate strips and adding up the numbers on them.

This provides, for each value of y, a new coefficient F'
;
so we have

F' cos 27r3o:. Similar operations for other groups of reflections give
ft *3
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(for this same value of y) F'coaZnx, JT cos 27r2#, and so on. Strips
h=l A=2

for these expressions are now taken out, and the numbers-on them

are added up, giving the electron densities at the range of points x.

For positions of x and y beyond one-quarter of the cell edge the anti-

symmetry of cos 6 about 9 = 90, and the symmetry of sin about the

same point, are used. For further details of the method, the original

paper should be consulted. A somewhat different method, using three-

figure coefficients, is described by Robertson (1936 c).

A machine has been designed by Beevers (1939) which carries out

these operations with great rapidity. (See also MacEwan and Beevers,

1942.) Finally, it is possible to effect a one- or two-dimensional syn-

thesis by an optical method due to W. L. Bragg ;
this is described in

the next section. Three-dimensional syntheses are very laborious,

except for very simple structures. It is probably best to use expanded

expressions, which reduce to different forms for the various space-

groups. Such expressions, in the forms most convenient for calculation,

are given by Lonsdale (1936).

Optical synthesis. We have seen that the formation, by a lens, of

the image of a microscopic pattern may be regarded as occurring in two

stages: first, diffracted beams are formed by interference; secondly,

when the diffracted beams are reunited in the image plane, interference

again occurs, and the formation of the image may be regarded as the

result of the superposition of many sets of interference fringes, one set

from each pair of diffracted beams. The calculation of an image of a

crystal structure from an X-ray diffraction pattern is simply the

mathematical equivalent of the second stage : in summing the Fourier

series we are simply adding up the contributions of the various sets of

interference fringes.

The use of optical methods in place of calculations was suggested by
W. L. Bragg. His first method consists in photographically printing

sets of imitation interference fringes. For each pair of reflections hOl

and K,Ql, a set of light and dark bands, having the same distribution of

intensity as a set of interference fringes and a spacing and orientation

appropriate to the reflections in question, is printed, the exposure being

proportional to the structure amplitude. The superposed bands, cross-

ing in many directions, build an image of the projected crystal struc-

ture. For examples, see The Crystalline State, by W. L. Bragg, pp. 231-4
;

W. L. Bragg, 19296; Huggins, 1941.

Bragg's second method is much more elegant ;
real optical interfer-

ence effects are produced. Beams of light, one for each X-ray reflection
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in a chosen zone, are arranged so as to produce, by interference, an

image of the projected crystal structure. The apparatus used consists

essentially of two lenses, each of about 6 feet focal length, placed a few

inches apart.
* At the principal focus of one lens is a pinhole source of

monochromatic light. Between the lenses, therefore, the light is parallel,

and if there were no obstruction in the path of the light, an image of

the pinhole source of light would be formed at the principal focus of the

second lens. If, however, an opaque plate drilled with a pattern of

holes is put between the lenses, multiple images of the point-source are

formed at the principal focus Of the second lens : the diffraction pattern

of the original pattern of holes is produced. If the holes are arranged
like the points in the reciprocal lattice of a crystal zone, and the area of

each hole is proportional to the structure amplitude for the reciprocal

lattice point, the diffraction pattern is a representation of the

arrangement of atoms in the crystal as seen along the zone axis,

provided that the phases of all the X-ray reflections concerned are the

same. The image is of course very small, and must be viewed or photo-

graphed by means of a microscope. We may regard the formation of

this image in the following way. The first stage in image formation

the production of diffracted beams is accomplished by X-rays, since

these have an appropriate wave-length for the purpose ; then, for each

diffracted X-ray beam, a beam of visible light is substituted, so that

the second stage of image formation the recombination of the

diffracted beams is accomplished in the medium of visible light. This

view of the process must not be taken too literally : it must be remem-

bered that, on account of the three-dimensional character of the atomic

arrangement, the crystal must be moved in relation to the X-ray beam
in order to give diffracted beams. It is perhaps truer to say that one

zone of three-dimensional X-ray diffractions is treated as a set of two-

dimensional diffractions produced by a flat pattern which is the projec-

tion ofthe actual crystal structure ;
the recombination of these diffracted

beams yields an image of this flat pattern. Bragg (1939) shows that a

substantially correct image of the b projection of the diopside crystal

is formed by this method.

As described, the method applies to projections for which all phases
are the same. But it has been suggested that adjustment of the phases

of the beams of light may be accomplished by the use of small quarter-

wave sheets of mica placed (in correct orientation) over the holes in the

plate. To avoid having to drill holes of various sizes in a metal plate

(as in the earlier experiments), the necessary pattern of holes can be
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produced on a photographic plate provided that the plate is optically

flat (to a small fraction of a wave), and that there is no gelatin in the

holes. (Bragg, 1942 a.)

Resolving power; and other general matters. Just as the resolv-

ing power of a microscopic objective lens depends on the angular range
of diffracted beams collected by it, so the resolution in a calculated

image of a crystal structure depends on the number of diffracted beams

used in the synthesis. It can be shown (Bragg, W. L., and West, 1930)

that peaks cannot be distinguished if the distance between them is less

than O61rf
,
where rf is the lower limit' of the spacings of the crystal

planes whose F 7

s are used in the synthesis. If reflections are recorded

up to a Bragg angle of nearly 90, dQ ( A/2 sin 6) is about A/2, which, for

the much-used copper Ku radiation, is 0-75 A; therefore peaks are

resolved only if they are more than about 0-5 A apart. Since atoms in

crystals are always 1 A or more apart, resolution could always be

achieved by three-dimensional synthesis; but for the more usual

(because more practicable) two-dimensional synthesis, projected dis-

tances are often less than 0-5 A, and therefore the desirability of using

short waves, giving a lower limit of d0?
a larger number of reflections, and

thus better convergence of the Fourier series, is indicated (Cox, 1938).

There is another important point. If a Fourier series is cut off

sharply when the terms are still appreciable, false detail will appear
in the electron density map. To avoid this, for crystals giving strong

reflections at large angles, an artificial temperature factor may be

applied to the intensities, to make the JF's fade off gradually instead

_/f/fi!l0\2
of stopping abruptly. (The intensities are multiplied by e \ A /

9

where E is a constant.) For examples, see Wooster (W. A.), 19,'W, and

Wells, 1938.

Even when this is done, electron density maps usually show, in the

regions of low density, irregularities which do not appear to have any
significance ; they are probably due to inaccuracies in the measurement
of the intensities of the reflections, or to approximations in calculation.

The positions of the atomic centres, however, are not in doubt.

Atomic positions fixed by Fourier synthesis are not necessarily more
accurate than those obtained solely by trial, but the Fourier synthesis
method is more straightforward ; when, in the trial method, it is desired

to make final small changes of atomic coordinates to obtain a closer

approximation between calculated and observed intensities, it may be
difficult to decide which atoms should be slightly moved, arid by how
much

; these difficulties are avoided by using the Fourier series method.
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The final test of any proposed structure, however, is the comparison of

calculated with observed intensities, and it is usual, when atomic

positions have been found by Fourier series methods, to calculate all

the intensities for these atomic positions, for comparison with the

photographs. This is especially necessary when some of the atoms are

not clearly resolved on the projections ; final adjustments may have to

be made by trial.

If the absolute intensities of the X-ray reflections are not available

but only relative intensities the value of the constant term (the

equivalent of jP000 in the equations given previously) in relation to the

other terms of the Fourier series (which are in this case in arbitrary

units) is not known; the figures for the electron density obtained by

calculation, omitting the constant term, will all be wrong by this

amount ; but for the purpose of locating atomic centres, this is of no

consequence: the image formed by the electron density contours is of

precisely the same form.

It is worth noting that although, in using Fourier series methods, it

is desirable to measure the intensities of X-ray reflections as accurately

as possible, nevertheless surprisingly good approximations to correct

atomic, positions can be obtained by using mere visual estimates of

intensities. This is well illustrated by two independent determinations

of the structure of cyanuric triazide, one (Hughes, 1935) based on

visual estimates of intensities, and the other (Knaggs, 1935) on accurate

measurements. There is not a great deal of difference in the results,

though the latter are naturally to be preferred. This comparison is a

good illustration of the statement already made (Chapter VII), that

the intensities of X-ray reflections are very sensitively related to atomic

positions : small changes of atomic positions mean large changes of the

relative intensities of different reflections.

Interatomic vectors. Although, in absence ofknowledge ofthe signs

of the Fourier terms, it is not possible to deduce directly the actual posi-

tions of the atoms in the cell, it is theoretically possible to deduce inter-

atomic vectors, that is, the lengths and directions of lines joining atomic

centres. Patterson (1934, 1935a)showed that a Fourier synthesis employ-

ing values ofF2
(which are of course all positive) yields this information.

The Patterson functionPxyz =2221FIM 1

2 cos Zir(hx+ty+lz) exhibits

peaks at vector distances from the origin equal to vector distances

between pairs of maxima in the electron density. Thus, if (Fig. 218

left) there are atoms at positions A, J5, and (' in the unit cell,

the function P
xyz obtained by the above three-dimensional synthesis
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would show maxima at A', B', and C' in Fig. 218 right, where

OA' = AB, OB' = EG, and OC' = AC. A two-dimensional synthesis

of all the MO intensities (Pxy
= 22 I^Mol 2cos27r(^+%)) would

give these peaks projected on to the ab face of the vector cell that

is, at D, E, and F in Fig. 218. The height of each peak is proportional

to the product of the scattering powers of the two atoms concerned.

Calculations of the Patterson function may be carried out in exactly

the same way as those of electron densities. Bragg's optical method

may also be used
; indeed, in general it may be applied more readily to

the formation of vector maps, since (the signs of the F2 coefficients

a a

FIG. 218. Left: atoms in unit cell. Right: corresponding vectors.

being all positive) the question of phase adjustment does not arise.

The optical method has been shown to give a correct, vector map for

the b projection of haemoglobin.
A straightforward F2

synthesis gives a large peak at the origin, which

expresses the fact that any atom is at zero distance from itself. If

necessary, this origin peak can be removed ;
the method for doing this,

as well as a procedure for sharpening other peaks, are given in Patter-

son's 1935 paper.

The usefulness of the F2
synthesis is subject to the inherent limitation

of a vector diagram : vectors are all erected from a single point. The

vector diagram, when obtained, must be interpreted in terms of actual

atomic coordinates. (For the relations between peak positions on

vector maps and the equivalent points in the 17 plane groups, see

Patterson, 1935 b.) For simple structures this presents little difficulty,

but for more complex structures it may be almost as difficult to interpret

the vector diagram as it would be to solve the structure by trial. This

is due, not only to the nature of vector diagrams, but also to the fact

that, for unit cells containing many atoms (especially those of organic
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substances, where interatomic distances do not differ much from each

other), some of the vectors are very likely to lie close together so that

the individual peaks are not resolved. This is so even in a three-dimen-

sional vector model
;
for instance, in Fig. 218 (right), A' and B' would

be rather close together, since the vectors AB and BC in the cell are

similar in length and orientation, and might not be resolved. In a

projection the chances of overlapping are obviously greater still.

Further, the number of peaks in a vector map rises rapidly with the

number of atoms in the cell : if there are N atoms in the cell (N peaks in

an electron density map), there are N(N 1) peaks in a vector map.
This is a pity, for it is precisely for the more complex structures that

some help by a direct method is most needed. However, if some of the

atoms in the cell have much greater diffracting powers than the others,

the vectors between the heavy atoms will stand out, and the informa-

tion thus gained may lead to a knowledge of the coordinates of these

atoms. The positions of the iodine atoms in picryl iodide were found

in this way, and the knowledge paved the way to a subsequent F
synthesis which gave an image of the projected structure (Huse and

Powell, 1940) ;
and in the determination of the structure ofNiSO4 . 7H20,

an F2
synthesis threw considerable light on the positions of the Ni and

S atoms (Beevers and Schwartz, 1935).

The results for picryl iodide are particularly clear and simple. Crystals

of this substance are tetragonal, with unit cell dimensions a = 7-03 A
and c = 1 9* 8 A ; and the absent reflections indicate the enantiomorphous

pair of space-groups P^i and P^\. (In agreement with this con-

clusion, the crystals rotate the plane of polarization of light.) There

are four molecules in the unit cell, and therefore, since the general

position is eightfold, each molecule must possess twofold symmetry;
this can only be the twofold axis lying perpendicular to the c axis and

along the ab diagonal of the cell. These twofold axes necessarily pass

through the iodine atoms, which lie in the only fourfold positions in the

ceU:

x,xt 0; x,x, J; J a, J+s, J; \+x, x, f.

From the fact that 110 and 220 are both strong, it appears that the

iodine atoms are not far from the corners and centres of the cells that

is, x is small. For the determination of a; by the F2
synthesis the 110

projection appears to be the most suitable; from this viewpoint the

iodine atoms appear as in Fig. 219 a
;
the vectors Vt and F4 are exactly

equivalent and will amalgamate to a single peak at Jc (Fig. 219 6) ; so

will F2 and F8 ;
and F5 and F6 will give a single peak at \c. For the 100

4458 A a
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projection there would not be this amalgamation, and the larger number
of peaks might lead to confusion, at any rate for some values ofx. The
result of Huse and Powell's synthesis of the hhl reflections is shown in

Fig. 220. The vector marked with an arrow is F2+ F3 ,
arid the distance

of the peak from the cell edge is 0*045 of the ab diagonal which means
that x is also 0-046. The 001 vector map (Fig. 221), obtained by a

/'v

Ovl

('C

\

FIG. 219. Fourfold positions in space-group P412 1
.

a. View along 1 1 0. b. Corresponding vector diagram.

FIG. 220. Picryl iodide.

Vector map, 110 pro-

jection. ((_!. Huse and
H. M. Powell.)

synthesis of the hkQ reflections, confirms this ;
the peaks near the origin

are not resolved, and are thus useless for the purpose, but the two peaks
near | give the information required. (Corresponding vectors are

marked in the diagrams.)

With this information, the signs of the F's for iodine atoms alone

were calculated, and an F synthesis performed for the 110 projection.

The resulting electron density map indicated approximate positions for

the lighter atoms, and doubtful signs were then recalculated, using

this information. (It is interesting that there were only two changes of

sign.) Using the altered signs, a second F synthesis was performed,
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giving the electron density map shown in Fig. 222
; the vectors in this

diagram a^re marked to correspond with the peaks in the vector map,

Fig. 220. Owing to the fact that the lighter atoms are not well resolved

(this is a consequence of the swamping effect of the iodine atoms),

final adjustments were made by trial, to get the best possible fit of

calculated to observed intensities.

The presence of comparatively heavy atoms may in some circum-

stances confer a further advantage. Suppose there is one heavy atom

in a projected cell, and this atom is at a centre of symmetry. We have

FIG. 221. Picryl iodide, a. Fourfold positions, 001 projection.
6. Vector map. (G. Huse and H. M. Powell.)

already seen that if the atom is heavy enough, the signs of all the F's

will be positive with respect to the heavy atom, and projected electron

densities may be calculated directly. If, however, the atom is not heavy

enough to determine all the signs ofthe jP's, this method cannot be used.

(For instance, a copper atom in a large organic molecule would not

determine all the phases as platinum does in platinum phthalocyanine.)

The next best thing is to carry out an F2
synthesis, producing a vector

map. The strongest peaks will be at the corners of the projected vector

cell, and they naturally present vectors between heavy atoms. The

next strongest peaks will represent vectors between a heavy atom and

the lighter atoms ; since the heavy atom is at the origin, these peaks

represent the actual coordinates of the lighter- atoms. It is true that

theoretically there should be subsidiary peaks representing vectors

between light atoms, and these might be expected to confuse the

picture ; but in practice (since the height of a peak is proportional to
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the product of the atomic numbers of the atoms concerned) confusion

from this source is not likely to be appreciable.

Atomic coordinates in relation to symmetry elements. A three-

dimensional Fz
synthesis over the whole unit cell would involve a

prohibitive amount of labour, but a three-dimensional F* synthesis of

-
I. C. *N. 0=0

Fio. 222. Picryl iodide. Electron density map, 1 1 projection. (Huse arid Powell, 1940.)

limited scope, giving the Patterson function over a particular plane of

along a particular line, is practicable, since the labour of computation

involved is that of a two-dimensional or one-dimensional Fourier

synthesis. Moreover, as Harker pointed out (1936), provided the

crystal has planes or axes of symmetry (or screw axes or glide planes),

it is easy to specify on which plane or along which line of the vector

cell the most useful information will be found ;
the synthesis can there-

fore be restricted to the appropriate plane or line. If the crystal has

axes or screw axes of symmetry, vectorial distances of atoms from

these axes can be obtained, the labour involved being that of a two-
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dimensional synthesis although the whole of the reflections are used.

If the crystal has planes or glide planes of symmetry, the labour of a

one-dimensional synthesis (but again using the whole of the reflections)

yields the distances of the atoms from these planes. This procedure

can be followed for all but triclinic crystals, the only ones which have

no axes or planes of symmetry.
To specify which plane or line of the vector cell contains the desired

information, consider the equivalent positions of the atoms in relation

to the symmetry element. Suppose the crystal in question has a two-

(a) (b)

FIG. 223. a. Twofold axis, real coll. b. Corresponding vector cell.

fold axis parallel to 6. If there is an atom at x, y, z, there is an equiva-

lent atom at x , y, z (Fig. 223 a). The vector between these (Fig. 223 6)

lies on the ac face of the vector cell (y
=

0), and there will be a maxi-

mum in the Patterson function P
an/z

at the point 2x
y 0, 2z. On this ac

face of the cell there will be a maximum for each crystallographically

different kind of atom ; by halving the coordinates the distances of the

atoms from the twofold axis are obtained. It is therefore necessary to

evaluate the Patterson function only on the ac face of the cell, that is,

for points x, 0, z.

In working out the values of

h= + oo k 4- oo Z + oo211 IF^GOs^^hx+ky+k)
/J,as 00 fc 00 Z= 00

for all points x, 0, z, note that for all planes having the same h and Z for

example 201, 211, 221, 231, 2Tl, 221, etc. the cosine term is the same,
since ky = 0. Hence, before starting the calculations, add up the F2

'&
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for all those planes ; and likewise for other sets of planes having the

same h and Z. Thus the expression simplifies to

Ji~= 4. oo Zn 4- o k -foo

For all crystals with axes of symmetry, whether two-, three-, four-, or

sixfold, the vectors between equivalent atoms are parallel to a face of

the real unit cell ; the maxima in Pxvs therefore lie on a face of the vector

cell, and their positions can be found by evaluating PxQs

P
xyQ , as the case may be).

(orP(Oyss
or

A
(a) (6)

FIG. 224. a. Twofold screw axis, real cell. 6. Corresponding vector cell.

When a crystal has a twofold screw axis parallel to 6, there are

equivalent atoms at x, y, z, and x y y+l, z (Fig. 224 a). The vector

between these has components 2x, , 2z, and there will therefore be a

maximum in the Patterson function at the point 2x, J, 2z (Fig. 224 6).

For every pair of atoms related by the screw axis there will be a maxi-

mum somewhere on the plane y = J, and it is therefore only necessary

to evaluate P all over this plane, that is, PX^Z9
to determine the vector

distances of the atoms from the screw axis.

In a similar way, it can be shown that if a crystal has a plane of

symmetry perpendicular to its 6 axis, the Patterson function has

maxima along the b axis of the cell (the line 0, y, 0, in Fig. 225) which

indicate the distance of atoms from the plane of symmetry. For a glide

plane perpendicular to 6, with a translation c/2, the distance of atoms

from this plane are indicated by maxima along the line 0, y, |.

There are other circumstances in which some of the atomic coordi-

nates in a crystal can be discovered by evaluation of the Patterson
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function over a particular plane or along a particular line. For instance,

it may be known, from a consideration of the space-group and the

equivalent positions in the unit cell, that there is one particular atom

at the origin of the cell and others somewhere on the plane y = . The

Patterson function will show maxima on this plane at positions which

give immediately the actual coordinates of these atoms, Similar con-

siderations were used in the determination of the structure ofpotassium

sulphamate NH2S03K (Brown and Cox, 1940) ;
it was known that the y

coordinates of the potassium ions are and |, while those of the sulphur

atoms are J and
; consequently the Patterson function on the plane

FIG. 225. Left: When a crystal has a plane of symmetry normal to 6, the

distances of atoms from this piano are given by maxima along the line OyO
of tho vector coll. liight: When there is a glide plane perpendicular to 6, with

translation c/2, the distances of atoms from this plane are given by maxima

along the line Qy\ of the vector cell.

y = J shows maxima at positions corresponding to K-S vectors.

Atomic positions are not given directly, but can be derived from the

positions of Patterson peaks by a consideration of the equivalent

positions in the space-group.

The place of vector methods in structure analysis. The Patter-

son F2
synthesis has proved extremely useful; indeed, in studying

complex structures, the normal procedure nowadays is to carry out an

F2
synthesis (either a two-dimensional or else a partial three-dimensional

one, according to circumstances) to see if it yields any clear information

on the positions of some of the atoms or the general form or orientation

of the molecules ;
if it does yield such information, this may be sufficient

to settle the signs of some of the F's, which are then used for a two-

dimensional F synthesis leading to the first approximate electron

density map; this is then refined in the way previbusly described.

From what has already been said it will be evident that interpre-

tation of vector diagrams of a complex structure is likely to be

difficult or impossible unless the structure contains a minority of

heavy atoms. On the relation between the vector method and the
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trial-and-error method, the following opinion by R. C. Evans (1935)
is worth noting :

'In more complex structures, the number of interatomic distances will be so

large that only the most prominent between heaviest atoms will be expected
to stand out in a Patterson synthesis, and to this extent the method has its

limitations and perhaps gives little more information than would be deduced
from general considerations by an experienced worker in structure analysis.
At the same time, the Patterson synthesis does afford the only means of

giving unprejudiced presentation of all the information which may be

derived directly from the experimental material/

It is perhaps fair to say that the information contained in X-ray

photographs is transformed by the Patterson synthesis and presented
to the investigator in quite a different form. Whether he chooses to

consider the interpretation of the X-ray intensities themselves, or the

interpretation of the vector diagram, is partly a matter of taste and

experience and partly a matter depending on the particular features

(or suspected features) of the structure he is investigating.

Special circumstances may weight the scales heavily in favour of the

vector method, as we have already seen
;
therefore it should always be

considered whether the peculiarities of any substance imply ^ny
simplification of the problem of interpreting its vector diagrams.

Perhaps the most generally applicable of the procedures so far devised

is the use of substances containing a minority of heavy atoms ; an

example has already been given (picryl iodide). There is no doubt that

this method will be much used in the study of organic substances.

Other devices which may be useful in special circumstances are the

following :

(a) Vector diagrams from two photographs, taken with two different

X-ray wave-lengths, one on either side of an absorption edge for

one type of atom in a crystal, may be compared. The relative

intensities of some of the peaks are different ; those peaks which

are affected are due to the atoms whose diffracting power changes
with the X-ray wave-length.

(6) If a crystal is known to have identical atoms or groups of atoms

at the corners and centre of the projected unit cell (the c projec-

tion, say) though the projection as a whole is not centred then

an F2
synthesis employing only the reflections having h+k odd

will exhibit peaks due only to atoms other than the centre and

corner atoms.
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(c) The vector diagrams of isomorphous substances may be com-

pared ; the differences may indicate which peaks are due to the

replaceable atoms.

These are merely examples of possible applications of special pro-
cedures ; no doubt many others will be devised in future. Even among
crystals of extreme complexity, such as the proteins, the problem of

the interpretation of the vector diagrams is not hopeless, in virtue of

the peculiarities of at any rate some of them. For instance, it seems

possible that by making use of the shrinkage and change of shape of

the unit cell of crystalline haemoglobin on drying, and a comparison
of the vector diagrams, it may be possible to draw some conclusions

on the internal structure of the molecule, or even to solve the crystal

structure in detail. (Bernal, Fankuchen, and Perutz, 1938; Perutz,

1942.)



XI

BROADENED X-RAY REFLECTIONS ANJ>
THEIR INTERPRETATION

HITHERTO, in this book, we have been concerned chiefty with sharp

X-ray reflections which occur at the Bragg angle and over a very
narrow angular range near it the reflections given by crystals which

are comparatively large (> 10~5 cm. in diameter) and are perfectly

regular in internal structure. Specimens are, however, sometimes

encountered which give broadened X-ray reflections: for instance,

powder photographs may be obtained which show rather diffuse lines.

This may mean that some crystals have slightly different unit-cell

dimensions from others ;
or that the unit-cell dimensions vary in different

regions of the same crystal, owing to variations of composition or to

strains. In these circumstances certain crystals or parts of crystals

give X-ray reflections at slightly different angles from others, and a

broad line is the result. Alternatively, the broadening may mean that

the crystals are extremely small. Just as an optical diffraction grating
with comparatively few lines gives diffuse diffracted beams, so a crystal

of very small dimensions gives reflections over a wider angular range
than a large crystal. More complex broadening effects may be caused

by structural irregularities on a very small scale and by the thermal

movements of the atoms in crystals.

The interpretation of the broadening is of obvious importance in

relation to the physical properties of materials, and much work is being
done from this viewpoint. In addition, there may be, for certain sub-

stances, some correlation between the broadening and particular chemi-

cal properties. The rate of a chemical reaction may, for instance,

depend on the size of the crystals of a solid reactant (small crystals

reacting more rapidly than large ones) ; thus, if the size involved lies

in the range below 10~5
cm., it may be possible to correlate reactivity

with the broadening of the X-ray reflections. The activity of solid

catalysts is also likely to depend first of all on the size of the crystals :

the adsorption which is believed to be a prerequisite for many catalytic

reactions is more extensive the greater the surface area (which is a

function of crystal size). Size, however, is not the only factor involved

in catalytic activity. The 'active spots' which are believed to exist on

catalyst surfaces may be associated with local strains, due perhaps to

the presence of foreign atoms inserted in the main crystals. ('Promoters' ,
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the secondary substances* often added to increase the activity of cata-

lysts, may have the function of providing these foreign atoms which

strain the crystals and thus give rise to active spots.) Little is known
of these matters at present, but it appears to be a field well worth the

attention of X-ray workers in chemical laboratories. A convincing
correlation between catalytic activity and the line-broadening on X-ray

powder photographs of the catalysts concerned, with an interpretation

extended to the distinction between the different possible causes of

line-broadening, would represent a notable advance in our knowledge
of the mechanism of catalysis:

The correlation of line-broadening with the chemical conditions of

preparation of materials also falls within our scope. Consider, for

instance, pigment materials
;
we are not concerned with the colour or

other physical properties as such ; but the colour of a powder may
depend not only on the crystal structure of the particles, but also on

their size; and the size may depend on the chemical conditions of

preparation.

In all such circumstances the problem which presents itself is, in the

first place, that of distinguishing between the different possible causes

of line-broadening ;
and then, if a definite verdict on this point can be

given, to attempt quantitative interpretation in terms of this factor, be

it crystal size, or the extent of the variation of lattice dimensions, or the

periodicity of structural irregularities or thermal movements.

Relation between crystal size and breadth of X-ray reflections.

If an extremely narrow X-ray beam is diffracted by a large perfect

crystal which is rotated, each diffracted beam (making an angle of 20

with the primary beam, where is the Bragg angle) is extremely narrow

it has a width of only a few seconds of arc on either side of the

theoretical angle 20. Most crystals are imperfect in the sense that

different regions of the crystal are not exactly parallel to each other ;

but this does not affect the angular range of the diffracted beam : the

crystal may continue to give a diffractedbeam when it is rotated through
several minutes of arc, or even as much as half a degree, but the

diffracted beam is not broadened by such imperfections, provided that

the perfect sections ofthe crystal are larger than 10~5 cm.
;
the imperfec-

tions of the crystal may be regarded as part of its rotation. (On Weis-

senberg photographs the reflections are often short streaks owing to

such imperfections.)

If such a crystal were ground to fragments, and a powder photograph
were taken, using an extremely narrow X-ray beam and a very small
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specimen, the angular width of the arc would still be only a few seconds,

provided that the crystal fragments were larger than lO^
5 cm. in

diameter. In practice, somewhat divergent X-ray beams, and powder

specimens of very appreciable width, are used (otherwise exposures
would be inconveniently long), and it is these circumstances which are

responsible for the widths of the arcs on typical powder photographs
such as those in Fig. 63, Plate III. The arcs on the photograph of

quartz, for instance, would be described as perfectly sharp ; in other

BACKGROUND
INTENSITY
SUBTRACTED

BACKGROUND

DISTANCE ALONG FILM

FIG. 226. Intensity distribution in an arc of a powder photograph.

words, the breadth of the arcs is almost entirely due to camera condi-

tions, not to the diffracting properties of the specimen.

A crystal smaller than about 10~5 cm. in diameter gives a broadened

diffracted beam. For quantitative treatment it is first necessary to

define 'breadth*. A line on a powder photograph (Fig. 226) shows

maximum intensity at the centre, and fades away on either side ; a

simple definition of breadth is the angular width between the points

at which the intensity falls to half its maximum value. In an 'ideal'

powder photograph of an extremely narrow specimen taken with a very
narrow beam, the relation between this 'breadth at half height' /? and

the size of the crystals would be

/? (in radians) = sec 6,
t

where t is the thickness of the crystal, C is a constant, A the X-ray

wave-length, and 6 the Bragg angle. (Scherrer, 1920.) Strictly speaking,
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this is true only when the particles are spherical, belong to the cubic

system, and are uniform in size, but it is usually agreed that the equa-
tion can be used quite generally without risk of serious error. The
constant C is*, according to Scherrer, 0*94. Somewhat different treat-

ments by Seljakow (1925) and Bragg (1933) gave the same equation,
with a value for the constant of 0-92 and 0'89 respectively.

Laue (1926) dealt with the general case of a parallelepiped belonging
to any crystal system, and used a different definition of Krie breadth

the breadth of an imaginary line having uniform intensity equal to the

maximum and a total intensity equal to that of the actual line (in other

words, the area of the curve divided by its height). For crystals of

cubic shape belonging to the cubic system, Laue's expressions reduce

to the same equation as Scherrer's, with C = 1-42 (Laue gave 0-9, but

Jones (1938) pointed out and corrected arithmetical errors in Laue's

calculations).

The pure diffraction broadening discussed in the last two paragraphs
increases the breadths of lines on powder photographs when the crystals

are very small. In order to deduce the size ofthe crystals it is necessary
to find the pure diffraction broadening /J,

and for this purpose it is

necessary to know the breadth of lines (b) given by crystals greater

than 10~6 cm. under the same camera conditions. This breadth b is

determined not only by the divergence of the X-ray beam and the size

ofthe specimen, but also by the absorption. (See Chapter V.) Numerous

attempts have been made to correct for such factors by calculation

(for summary, see Cameron and Patterson, 1937) ;
but the safest method

is that of Jones (1938), who mixes the solid under investigation with

another substance consisting of crystals larger than 10~6 cm. The

diffraction arcs of both substances are affected in exactly the same way
by the camera conditions and absorption in the specimen ; consequently
the breadths of the sharp lines of the reference substance give 6, while

those of the substance under investigation give J5, the total breadth

including diffraction broadening. Both these vary with 0, and the

procedure is therefore to measure on the microphotometer the intensity

distribution in various lines of both substances at different Bragg angles

(converting from photographic opacity to X-ray intensity by the use

of a calibration wedge, as described in Chapter VII), and to plot the

breadths 6 of the sharp lines against 6 ; by interpolation, the value of

6 at the Bragg angle of each of the broadened lines is read off. To obtain

the pure diffraction broadening /? from B and 6, Scherrer assumed that

j}
= J3 6. Jones (1938) pointed out that it depends on the intensity
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distribution in a line, and gives, for particular line-shapes, correction

curves giving the relation between b/B and j8/J5. He also gives a method

for correcting for the effect of the cxx a2 doublets.

In the Scherrer formula ft is proportional to sec 0. For other causes

of line-broadening, the relation is different ; therefore, in studying a

particular substance, if /? is found to be proportional to sec 0, it is

probably justifiable to assume that the broadening is due to the small

size of the crystals.

No great accuracy can be expected in work of this sort. A further

source of doubt is in the effect of the wide range of crystal sizes present

in most specimens ; Jones states, as a general conclusion, that on this

account the observed mean size will be greater than the true mean size,

but that the difference is unlikely to be greater than 30 per cent, of the

observed mean size.

The above discussion relates, strictly speaking, only to spherical

crystals. For other shapes the breadths of different reflections depend
on the dimensions of the crystals in different directions and on the

indices. The breadths of different lines thus do not vary regularly with

the Bragg angle. The subject will not be considered in detail
; but, in

a general way, it may be observed that the breadth of a line depends on

the thickness of a crystal in a direction at right angles to the reflecting

planes. Plate-like crystals, for instance, will give broader reflections

from planes parallel to the plane of the plate than from those perpen-

dicular to this plane. For other planes it is necessary to consider the

volume averagef of the thickness of the crystal in the direction at right

angles to the reflecting planes. (Stokes and Wilson, 1942.) For further

information see also papers by Laue (1926), Brill (1930), Jones (1938),

and Patterson (1939).

There are other possible causes of differential broadening, as we shall

see later; and a distinction between the different possible causes is

much more difficult than in the case of broadening which is some

function of the Bragg angle only. But if there are external reasons

for believing that small crystal size is the only likely cause for

broadening in a particular specimen, then a general idea of the size

and shape of the crystals may be gained in the way indicated in the

last paragraph.
This section will be concluded by an emphasis on three points. First,

f Tm d V
f The 'volume average' is , where V is the volume of the crystal and T^i

is the thickness of the crystal in the direction normal to the hkl plane.
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that for powders the X-ray method gives the size of crystals, not

particles.(which may be aggregates of crystals). Second, that the range

of sizes covered is the range below 10~5
cm., and that estimates of

crystal size Between 10~6 and 10~5 cm. are very rough, since the line-

broadening is slight. It is only below 1C"*6 cm. that broadening is really

sufficient for reliable measurements. For larger crystals the range
above 10~4 cm. (1 p) is usually dealt with by measuring and counting

particles or crystals under the ordinary microscope. The range between

10~6 and 10~4 cm. is now catered for by the electron microscope; there

are many recent papers on its Applications see, for instance, Zworykin

(1943) . The third point is that the line-broadening gives no information

on the size distribution among thje crystals responsible for the effect
;

it indicates only an average size.

Other causes of broadening of X-ray reflections. When a mixed

crystal phase is formed the composition is likely to vary from one crystal

to another, and unless a long time is allowed for the attainment of

equilibrium, this difference of composition between crystals, or even

different parts of the same crystal, is likely to persist. The lattice

dimensions will vary with the composition, and therefore a powder

photograph will show broadened lines. In distorted crystals also the

lattice dimensions vary, with a similar effect on the powder photograph ;

this may happen in crystals of fixed composition as well as in mixed

crystals. If the variation of lattice dimensions is uniform in all direc-

tions, the breadth of the X-ray reflections is proportional to tan 0. We
have already seen that broadening due to small crystal size is propor-
tional to sec 8

; hence, if data are available for a sufficient angular range,

it is possible to distinguish between these two possible causes of line-

broadening. (Stokes, Pascoe, and Lipson, 1943; Lipson and Stokes,

1943; Smith and Stickley, 1943.) It is interesting to appreciate the

difference between the two situations in terms of the reciprocal lattice.

A reduction in the size of crystalsf causes all the points of the reciprocal

lattice to expand to the same extent (see Fig. 227 a) ;
but a variation of

lattice dimensions means a variation of reciprocal lattice dimensions,

with the result that the outer points are drawn out more than the inner

ones (Fig. 227 b). The breadths of reflections are given by the relative

times taken by different reciprocal 'points' (they are really small

volumes) to pass through the surface of the sphere of reflection on

f For non-spherical shapes the reciprocal points expand anisotropically, being greatest
in tho direction of the smallest real dimension ; all the reciprocal points become the same

shape and size.
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rotation; it is thus evident that the relations between breadth of

reflection and 6 are different in the two cases.

Another cause of the broadening of X-ray reflections is to be found

in the thermal motions in crystals. It has already been mentioned in

Chapter VII that, on account of the thermal motions, the reflecting

power is not concentrated entirely in the points of the reciprocal lattice,

but is to some extent spread along the lines joining the points. The

'points' are really small volumes having a three-dimensional star-shape.

On single-crystal photographs the result is the formation of extra spots
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FIG. 227. a. One level of the reciprocal lattice of a very small crystal.

6. Effect of variation of reciprocal lattice dimensions.

and streaks, much weaker than the normal 'Bragg' reflections, and only

appreciable in intensity in the case of certain substances and under

certain experimental conditions. (See Lonsdale, 1942.) On powder

photographs the effect would be to extend the 'foot' of the curve (Fig.

226) representing the distribution of intensity in an arc ; this may make

the background level uncertain; but this effect is likely to be serious

only in the case of crystals near their melting-points.

One more cause of broadening will be mentioned. This is the existence

of structural irregularities in crystals. The nature of such irregularities

will be illustrated by one ofthe simplest cases that of the metal cobalt.

This element may crystallize either with a hexagonal structure or a

face-centred cubic structure. These structures are different types of

close-packing of spheres, arising in the following way. If a single layer

of spheres is arranged in close-packed formation (positions 1 in Fig. 228)

and a second laver is put on top of the first, resting in the hollows
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marked 2, the third layer put over the first, and the fourth over the

second, the arrangement is hexagonal close-packed. If the third layer,

instead of being put over the first, is put in the alternative set of posi-

tions marked 3, and then this 1, 2, 3 succession is repeated, the arrange-

ment is face-centred cubic (the layers being 111 planes). Some speci-

mens of cobalt give X-ray photographs which indicate that these two

possible arrangements occur indiscriminately throughout the crystals.

The evidence is that while some X-ray reflections are sharp, others are

broadened in different degrees. The phenomena will not be explained

in detail, but it may be observed that the building plane of the above

description (001 of the hexagonal

form, 111 of the cubic form) is

perfect, and gives a sharp reflection,

but that planes inclined to it exhibit

random faults, which give rise to

reciprocal lattice points extended

in particular directions and thus

to X-ray reflections broadened in

different degrees. (Edwards and

Liyson, 1942; Wilson, 1942.) More ^ nn T11'

, / i_ i_
FIG. 228. Illustrating alternative

complicated cases which have re- close-packed structures.

cently been studied are those of

AuCu3 (Jones and Sykes, 1938; Wilson, 1943 a), and Cu4FeNi3 (Daniel

and Lipson, 1943). The streaks which occur on fibre photographs of

chrysotile (Warren and Bragg, 1930) and certain chain polymers (Fuller,

Baker, and Pape, 1940) probably have a similar origin. The distribution

of the faults may give rise to extension of the reciprocal lattice points
in particular directions and in different degrees, or to the existence of

satellites round certain reciprocal points.

It will be evident that when differential broadening is encountered

in powder photographs, it may often be difficult to decide which is the

most likely cause. If single-crystal photographs can be obtained, more
detailed and more certain interpretation may be attempted. But,

beyond the observation that thermal effects will obviously vary in

intensity with temperature (Preston, 1939, 1941 ; Lonsdale, 1942), no

general rules can be given ;
each case must be considered individually.

Mathematical treatment is likely to be difficult, and even qualitative

consideration far from straightforward; here, the optical diffraction

methods introduced by Bragg are likely to be very useful (see Bragg
and Lipson, 1943) : patterns can be made exhibiting particular types of
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faults, and the optical diffraction effects compared with the X-ray
diffraction effects of actual crystals. For simple structures, suggestions

of possible types of faults may be obtained by Bragg's device of using
an array of surface-packed bubbles as an analogy of a t\tfo-dimensional

atomic arrangement. (Bragg, 19426.)

Interpretation of diffraction effects of non-crystalline sub-

stances. It has been pointed out in Chapter V that there is no sharp

dividing line between crystalline and 'amorphous' substances : with de-

crease of crystal size, X-ray diffraction patterns become more and more

diffuse until finally, any attempt to calculate crystal size by the method

given earlier in this chapter gives a figure of only a few Angstrom units

that is, about one unit cell; in these circumstances the word 'crystal',

with its implication of pattern-repetition, is inappropriate. The alterna-

tive word 'amorphous' is not entirely satisfactory either: on account of

the sizes of atoms and their preference for particular environments, the

distribution of atomic centres cannot be entirely random. The word

'non-crystalline' is really preferable.

With increasing diffuseness of the diffraction pattern the possibilities

of interpretation obviously become more restricted
;
but even in the

extreme cases of glass-like substances and liquids it is possible to draw

definite conclusions on the manner of association of the atoms, at any
rate in the simpler cases. As in crystal analysis, there are two ways of

proceeding. Particular arrangements of atoms may be postulated, and

the intensity of diffraction at different angles calculated, for comparison
witL the actual diffraction pattern of the specimen. The opposite

method is to convert the experimental diffraction pattern, by the

Fourier series method, into a vector diagram. Provided that there is

only one type of atom in the specimen, this diagram will represent the

radial distribution of atoms round any atom in the specimen. In the

more general case, where there is more than one type of atom, we may
say that all the vectors in the specimen are superposed in all directions ;

it is then necessary to consider the interpretation of the vector diagram
in terms of atomic arrangements.

In either case, the first step is to record the diffraction pattern of the

substance
;
it must be a true record of the absolute intensity of diffrac-

tion of monochromatic X-rays over a wide angular range. 'White'

radiation effects, superimposed on the monochromatic pattern, would

complicate the situation : hence it is necessary to use strictly mono-
chromatic X-rays reflected from a crystal (see Chapter V) ;

and it is

also advisable to evacuate the X-ray camera to avoid scattering by air.
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(Warren, Krutter, and Morningstar, 1936.) The photographic intensities

are measured on the microphotometer, and converted to X-ray inten-

sities in the usual way. It is also desirable to correct for 'Compton

scattering
5

the incoherent scattering of X-rays with concomitant

change of wave-length. (See Warren, 1934; Wollan. 1932.)

In the method of trial the intensity / of scattered radiation at any

angle is given (for a solid containing two different types of atom) by
the Debye equation

T ___

wherefm and/n are the scattering powers ofatoms m and n, S ~ -~^~r
,

A

and rmn is the distance from atom m to atom n (Debye, 1915).

In the Fourier series method the weighted radial distribution func-

tion, which represents the number of atoms at a distance r from any
atom, weighted by the products of the diffracting powers, is given by
the expression

oo

2 Km 4irra
/> + f iS sin Sr dS,

77 J
* o

which is evaluated for a range of values of r. In the first term of this

expression Km is the effective number of electrons in atom m, and p the

average number of electrons per unit volume
;
the summation is over

a unit of composition. In the second term i =
(IVTTJJ"""" M J

^ being

absolute intensity (in electron units) at an angle 8, N the number of

atoms in the sample, and / their absolute diffracting power.
Warren (1937, 1940) calculates iS from the experimental intensity

curve and plots it as a function of 8 ;
he then carries out the integration

for about forty different values of r ranging from to 8 A, either

graphically or with a harmonic analyser.

For an example of the results obtained in this way, see the paper by
Warren, Krutter, and Morningstar (1936) on silica glass. It appears that

the immediate surroundings of any one atom are much the same as in

cristobalite (one of the crystalline forms of silica) ; this is the reason

why the diffraction pattern of silica glass is like a very diffuse version

of that of cristobalite. On the larger-scale aspects of glass structure,

the X-ray data do not give definite information
; they are equally con-

sistent with Zachariasen's model (1932) of a continuous random net-

work (Fig. 229 b) and with the ideas of Hfigg (1935) and Preston (1942),
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who suggest that large discrete groups of atoms may be present

in other words, that the bond-scheme of Fig. 229 b is not maintained

continuously throughout the specimen.

Warren's method may be applied also to powder photographs of

crystalline substances. Warren and Gingrich (1934), applying it to

orthorhombic sulphur, found the results consistent with the assumption

that rings of eight sulphur atoms are present. Medlin (1935, 1936) has

also used it for several substances ; but the results are of course much

less detailed than those obtained by single-crystal methods.

FIG. 229. Two-dimensional representation of the difference between
a crystal (left) and a glass (right), according to Zachariasen (1932).

Similar methods may be used in the study of the structures of liquids.

The continual movements which occur in liquids do not affect the

determination of the principal interatomic distances. For earlier work

on the subject see Randall's book (1934). Among more recent papers,

those of Harvey (1939) on ethanol and Bray and Gingrich (1943) on

carbon tetrachloride are typical.

The interpretation of the diffraction effects of gases of simple mole-

cular structure is simplified by th fact that the molecules are very
far apart, and therefore it is necessary to consider only the distances

between the atoms in one molecule. Much information on the structures

of molecules has been gained in this way by Debye and others.

The ring patterns formed when electrons are scattered by gases have

been used in a similar way, and much valuable information on the
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geometry of gas molecules has been gained by Pauling, Brockway, and

others. (See Brockway, 1936.) The subject of electron diffraction will

not be considered in this book, but it is worth remarking that electron

diffraction patterns, both of gases and crystals, are strongly similar to

the X-ray diffraction patterns of the same substances. Electrons are

scattered chiefly by the nuclei of atoms, while X-rays are scattered by
the electron clouds of the atoms ; but the positions and intensities of

diffracted beams are controlled by atomic arrangement in the same way.
Electron diffraction powder photographs may be used for identification

in exactly the same way as X-ray powder photographs. Exceedingly
thin films must be used, in a very high vacuum. The electron diffraction

patterns of very thin films of high, polymers are also strikingly similar

to the corresponding X-ray patterns. (Storks, 1938.) The chief chemi-

cal application of electron diffraction methods (apart from the study of

the molecular structure of gases, mentioned above) appears to be the

identification of crystalline substances in very thin films, and the study
of crystal orientation in similar circumstances. Electron diffraction

patterns have not so far been much used for crystal structure determina-

tion ; one reason appears to be that when electrons are diffracted at the

surfaces of large crystals, the phenomena are more complex than those

of X-ray diffraction, owing to the fact that the diffraction of electrons

is much more efficient than that of X-rays. (See Bragg, 1933 ; Thomson
and Cochrane, 1939.)
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IMMERSION LIQUIDS AND THEIR STANDARDIZATION

BY mixing pure liquids any refractive index between those of the pure
constituents can be attained. If two liquids having widely different refractive

indices are chosen, a considerable range can be covered by mixing them

in different proportions. Liquids for mixing in this way should preferably

have similar vapour pressures at room temperature, so that evaporation does

not lead to appreciable change of refractive index. Sets of liquids suitable

for the identification of minerals have been suggested by several writers.

(Larsen and Berman, 1934.) These are mostly very oily substances, which

for inorganic chemical work on certain substances have the disadvantage
that they are intolerant of water: crystals which are slightly damp, when
immersed in such oily liquids, do not make optical contact with the liquids,

so that genuine Becke line effects are not seen. It is an advantage to use

liquids which can dissolve a small proportion of water
; the change of refrac-

tive index caused by the dissolution of a surface film of water is usually

negligible. The following liquids have been found suitable :

1-373 1-396 Ethyl acetate and amyl acetate.

1-396 1-490 Amyl acetate and xyleiie.

1-490 1-559 Para-cymene and monobromobeiizene.

1-559 1-598 Monobromobenzerie and bromoform.

1-598 1-658 Bromoform and a-bromonaphthalene.
1-658 1-740 a-Bromonaphthalene and methylene iodide.

1-74 1-78 Solutions of sulphur in methylene iodide.

1-78 1-88 Solutions of sulphur, SnI4 ,
AsI3 , SbI3 ,

and iodoform in

methylene iodide. (See Larsen and Berman, 1934.)

The most important range for inorganic chemicals is between 1-40 and
1-70. But there are some substances, such as certain oxides and sulphides,
whose indices lie well above this range, or even well above 2-0. Media which

are liquid at room temperature and have such high refractive indices are not

available, but certain mixtures of substances which solidify to glasses may
be used. A little of the medium in melted on a microscope slide, the substance

under examination is dusted into the melt, a cover-glass is pressed on, and
the slide is then allowed to cool. Substances which have been used in this

way are mixtures of piperine with arsenic and antimony tri-iodides (for

indices 1-7-2-1), mixtures of sulphur and selenium (2-0-2-7) for details,

see Larsen and Berman, 1934 and mixtures of the halides of thallium

(Barth, 1929).

Crystals of many organic substances are soluble in the liquids given in

the above list, and for these it is necessary to use aqueous solutions. Potassium
mercuric iodide is a suitable substance, solutions of which have refractive

indices up to 1-72. Owing to evaporation of the water, the refractive index
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of a solution may change ; therefore, if stock solutions are used, their refrac-

tive indices should be checked frequently; or, alternatively, the refractive

index of *a crystal should be matched by adjusting the composition of

a solution, which is then immediately checked on the refractometer. To
lessen the evaporation of water, solutions of potassium mercuric iodide in

mixtures of glycerol and water may be used. (Bryant, 1932.)

Stock solutions may be kept in 30-c.c. bottles with ground stoppers carry-

ing dropping rods. For refractive indices up to 1 -7 it is best to keep a set of

liquids having refractive indices differing by 0-005 ; from 1-7 to 1-9, intervals

of 0*01 are sufficient. The refractive indices of liquids are best measured by
means of the Abb6 refractometev.

If no refractometer is available, the refractive indices of a set of liquids

made by mixing known volumes of two pure liquids can be obtained in the

following way. The refractive indices of the two pure liquids can be found

in International Critical Tables. Assuming that the relation between volume-

concentration and refractive index is Linear, a regular series of mixtures,

0-005 apart in refractive index, is made up. The actual refractive indices,

which will differ slightly from the expected values, are found by examining
a known crystalline substance in two adjacent liquids, one above and one

below, and estimating the relative differences between the refractive indices

of the liquid and the crystal by the Becke line effect ; since the two liquids

differ by 0-005, the actual refractive indices are then known. This procedure
is repeated for other crystals, and a curve is then drawn for the whole range
of mixtures, the refractive indices of the untested liquids being read off from

the curve. Cubic and uniaxial crystals are most suitable for this purpose. A
list of suitable substances is appended.

List of crystals suitable for checking refractive indices of immersion liquids

These are co values of uniaxial substances. All the other substances are cubic.
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THE SPACINGS OF CRYSTAL PLANES

Rectangular unit cells. In Fig. 230, OA, OB, and OC are orthogonal
axes. Consider any set of crystal planes; one plane passes through the

origin, the next (X YZ) makes intercepts of ajh, b/k, and c/l on the axes. Drop

FIG. 230. The spacings of planes of orthogonal crystals.

a perpendicular ON from the origin to the plane XYZ; we have to find t'ne

length of ON (= d) in terms of a, 6, c, h, k, and Z.

Now

therefore

d = cos /.NOK = cos LNOY = cos

~, and
6

~.
c

The law of direction cosines states that

cos2 SLNOX+CO&* NOY+cos2 NOZ = 1,

1,therefore

whence

and

For tetragonal crystals (a = b) this expression reduces to
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and for cubic crystals (a = b = c) to

377

d =
J

Hexagonal unit cells. The c axis is at right angles to a and 6 which

are equal in length and are at 120 to each other. To use the above formula,

it is required to find the intercepts made by any plane on orthogonal axes,

two of which are chosen as OC and OB (Fig. 231), the third being OQ in the

plane AOB. The intercepts made by plane hkl on OB and OC are ? and
y

respectively. It is required to find the length OW (== r).

FIG. 231. The spacings of planes of hexagonal crystals. Above: general
view of planeXYZ, indices hkl. Below : normal view of basal plane (AOB)

of this diagram.

Produce TO to P, and join XP, where tXPO = 90.
The right-angled triangles YOW and TPX are similar, hence

TO
OW

YP
PX

YO+OP
PX '

a/k

r
T =

V3.E.
2 M
1 . 1

V3

2M k'
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From the formula for direction cosines,

therefore

+
OM--

(h*+hk+k*)

a*
"*"

For rhombohedral unit cells, it is best to transform indices to hexagonal
Indices, and to use the above formula for the spacings of planes.
For monoclinic and triclinic cells, the formulae for the spacings are very

unwieldy. Graphical methods based on the conception of the reciprocal
lattice are recommended. (Chapter VI.)



APPENDIX *3

CHARTS SHOWING THE RELATION BETWEEN PLANE
SPACINGS AND AXIAL RATIOS, CONSTRUCTED WITHOUT

CALCULATION

Tetragonal (including cubic) crystals. Bjurstrom (1931) showed that

if, on a rectangular framework AMNC (Fig. 232 a), values of h?+k2 are

FIG. 232. Bjurstrom's chart. Tetragonal crystals.

plotted along MA and values of I
2
along NO, and all the points on MA are

joined to all the points on NO by straight lines, as in the diagram, then for

a crystal whose axial ratio corresponds to position X alongMN, the ordinates

of all the lines represent the relative values of l/d
2 for all values of hkl. The
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reason for this can be seen by writing the equation for the plane-spacings in

a tetragonal crystal thus :

If we make (l/a
2+l/c

2
) a constant (this actually means using different units

of length for every different crystal), the above expression is, for given values

of A, k, and Z, of the form y K
lx+K2 , that is to say, the graph of y against

oo 3-0 20 1528 1225 W 816 -654-5 333

AXIAL RAW cla

FIG. 233. Logarithmic form of Bjurstrom's chart. Tetragonal crystals.

a: is a straight line. In Bjurstrom's chart the constant (l/a
2
+l/c

2
) is the

length MN of the base of the chart.

The value of l/d
2 for each arc on a powder photograph is calculated from

the Bragg equation. Since, however, we do not know on what scale to plot

these values, it is necessary to represent them with a wide range of scales ;

that is, to plot them, on transparent paper, along a line DE as in Fig. 232 b,

and join them all to a point F on the perpendicular to DE. This 'fan' diagram
is moved about on the chart, keeping FD coincident with MN, until 'fan'

lines cross chart lines consistently along a line parallel to AM and NC ; along
this line the indices for each 'fan* line are given by the chart line crossing it. The

axial ratio c/a is given by the relation - =
/ gji /i>

1
1a *-p~ i ic

but *s
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to calculate it from suitable pairs of spacings. In practice, this method

is found, to be very unsatisfactory; the two sets of lines are so confusing

that it is difficult to find the match position. The difficulty can be removed

by making the chart logarithmic along the direction MA. Thus, values

of Iog(/fc
2
-f &

2
)
are plotted along MA, and values of log/

2
along NC, and

all these points are joined by logarithmic curves, giving a chart of the

type shown in Fig. 233, which can be used in the same way as the Hull and

Davey charts (Chapter VI). The construction of such a chart is naturally

not quite so simple as that of the straight-line Bjurstrom chart, but, inasmuch

as no calculations are required, it is very much simpler than that of a chart

of the Hull and Davey type. Afc an example of the method of construction,

consider the plotting of the 213 curve, which joins Iog5 (i.e. log(^
2
+fc

2
)) on

one side to log 9 (i.e. logZ
2
) on the other. Nine other points, at intervals of

MN/10, are enough for the construction of the curve. Since on the straight-

line Bjurstrom chart the ordinates at these points would be 5*4, 5*8, 6-2, 6*6,

7-0, 7-4, 7-8, 8-2, and 8-6, we simply plot on the new type of chart log 5-4,

log 5-8, and so on
;
this can be done directly on large-scale logarithmic graph

paper ; or on ordinary graph paper by reading off the values in a table of

logarithms.

This type of chart has one undesirable feature
;
at the two sides (that is,

for very small or very large values of c/a) some of the lines are nearly parallel

to MA and NC, and appear very crowded. It is better, therefore, to spread
out the diagram in these regions by plotting against log c/a instead of against

1 /c
2

-
, . Plotting the curves is no more difficult than in the previous

l/GT+l/C
2

type of chart, if it is remembered that (to use the same example as before)

log 5-4, log 5*8, and so on are plotted against values of log c/a given by
1/c

2

i/ 2 I ]/"a 1/W, 2/10, and so on
; straight lines at these values of log c/a are

first drawn temporarily, and used as a scaffold for the plotting of the log I/a*
2

curves. This, the best type of chart, is illustrated in principle in Fig. 72.

Hexagonal and trigonal crystals. A chart for these crystals can be

constructed by plotting values of log(&
2
-fhk+kz

) along MA and values of

log I
2
along NC, and joining them by logarithmic curves. The axial ratio

/ i ii i f Au i ^ MX 4/3a
2

. ...
c/a can be obtained from the relation -^-^ = In

' but again it is
' MN 4/3a

2
+l/c

2 6

better to calculate it from suitable pairs of spacings. A better form of chart

is obtained by plotting against log c/a; no calculations are needed if it is

remembered that in the original Bjurstrom chart the graph of I/a*
2
against

MX (defined above) is a straight line. Thus, for the 213 curve, h
2
+hk-\-k* = 7,

while Z
2 = 9; on the Bjurstrom chart, the straight line for these indices

joins the point at 7 along MA with that at 9 along NC ; for the logarithmic
chart we plot log 7-2, log 7*4, log 7-6, etc., at points along the log c/a axis
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For rhombohedral crystals, which can always be referred to a large

hexagonal cell containing more than one pattern-unit, this same qhart may
be used, the indices ha kff lH relating to the hexagonal cell being subsequently
transformed to those relating to the rhombohedral cell hR kR lR by the

relations

3kR = hH+2kH+lH ,

31R = -2ha-

Many reflections which would be given by a simple hexagonal crystal are

necessarily absent for a rhombohedral crystal. Only those reflections ha kH 1H
for which ha kH+lH ,

hff+2kH ~{-lHt and 2hH kH+lH are all divisible

by three occur when the true unit cell is rhombohedral. In view of this, a

special chart from which the unwanted* hexagonal lines are omitted may be

constructed in the way already described.

Zero layer on single-crystal rotation photographs. The spacings
/ ;/^2 m

d of the hOl planes ofan orthorhombic crystal are given by d = 1 / / 1 -5+ -5 1

The spacings for all axial ratios c/a can be represented on a chart which is

similar to those already described but has values of logh
2 on one side and

logZ
2 on the other. The tetragonal chart could be used, curves other than hOl

being ignored ; but the many unwanted curves are confusing, and it is therefore

better to construct a special chart from which the unwanted lines are omitted.

Since this chart is symmetrical about the centre line, it is necessary to con-

struct only half of it. The use of this chart is illustrated in Fig. 79.

This chart may be used for single-crystal photographs of orthorhombic

crystals rotated about any axis, for tetragonal crystals rotated about a or c

(in the latter case the cell base is square and the axial ratio 1). It may also

be used for hexagonal crystals rotated about a or c
;
in the latter case true

hexagonal indices will not be given, but indices in reference to an ortho-

rhombic cell having an axial ratio of V3. The orthorhombic indices h kQ are

converted to hexagonal indices JiH kH by the relations

It may also be used for monoclinic crystals rotated about a or c, since the

projection of a monoclinic cell along either of these axes is rectangular.
All these charts should be drawn on a large scale ; it is found that if a

difference of 0-1 in log I/d
2 is made 2 inches, all reflections including those at

Bragg angles near 90 can be indexed, except in the case of very large unit

cells. In using the charts, values of 2 logd are plotted on a strip which is

moved about on the chart in the manner described in Chapter VI.
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PROOF THAT RECIPROCAL POINTS FORM A LATTICE

CONSIDEB a crystal with its c axis (OZ in Fig. 234) vertical. All reciprocal

points corresponding with the vertical hkQ (real) lattice planes lie in the

horizontal plane x*y*.

Consider now any set of real lattice planes having indices hkl. If one plane

passes through the origin 0, the next plane RST makes an intercept of c/l on

the OZ axis. Draw a perpendicular to this plane, meeting it atN (ON = d t

the spacing of the planes), and produce ON to P, where OP = X/d. P is the

reciprocal lattice point corresponding to the set of real lattice planes hkl.

M

FIG. 234. Proof that reciprocal points form a lattice.

Now since the angle RNO is 90, ON (= d) = OR cos =
(c/Z)cos< ;

cos< =
dl/c.

Drop a perpendicular PM on to the horizontal plane x*y*. We have to

find the length of PM, the height of the reciprocal lattice point above the

horizontal plane.

PM = OPGO&Z.MPO. Since PM is parallel to OZ,MPO ==^LNOR =
</>.

Thus PM - OP cos <. But OP = A/d,

.*. Pif = (A/d)cose
=

(}(/d)(dl/c) AZ/c, which is constant for a given value of Z.

Thus all points having the same I index lie at the same distance from the

horizontal plane #**/*, and thus lie on a plane parallel to the plane x*y* ;

moreover, the distance of each such plane of points from the plane x*y* is

proportional to Z. Therefore successive sets of points for the successive values

of the index Z lie on a set of equidistant planes, spaced A/c apart.

Similarly, it can be shown that the reciprocal hkl points lie on planes

perpendicular to the a axis (spaced A/a apart), and on planes perpendicular

to the b axis (spaced A/6 apart). Thus the whole assemblage of points forms

a lattice.
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LIST OF SPACE-GROUPS
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Vector method 351 ff.

Warren's method 372

Analysis (Fourier)
Absolute intensities . . , .

t
351

Beevers-Lipson strips . . . 347 f.

Electron density .... 339 ff.

False detail 350

Image formation 338,

Methods of computation . . ,'347f.

Non-crystalline substances . . 370 f.

Optical synthesis .... 348 ff .

Patterson 35 J ff.

Patterson-Harker .... 356 ff.

Resolving power 350

Strips 347 f.

Structure determination . . 335 ff.

Analyser 67
Anatase

Crystal symmetry 51

Anglo Factors 200 ff .

Angstrom Units 100

Anhydrite (see also Calcium Sulphate)
Crystal habit 31

Optical anomalies 99

Anisoie, p-Azoxy-
Space-group 245 f.

Anisotropy
Crystal growth 278 f.

Diamagnetic susceptibility . 287 ff.

Optical . 2 ff., 65 ff., 82 f., 86, 94 ff.,

280 ff.

Other physical properties . . 290 f.

Anorthic System (see Triclinic System,
and Biaxial Crystals)

Anthracene
Absolute intensities . . . . 193
Molecular shape 277

Antimony Iodide .

as Solute in R.I. liquids . . . 374

Apatite
Crystal symmetry 50

Aperture (X-ray)
Height correction 121
Reduced size 124

Aragonite (see also Calcium Car-

bonate) 59

Analysis 125

Birefringence 282

Twinning 58
Arsenic Iodide

as Solute in R.I. liquids . . . 374
Artificial Temperature Correction 350
Asbestos

Chrysotile, q.v 58, 175. 279

Ascorbic Acid
Molecules in unit cell . . . . 251
Pseudo-symmetry 273
Structure determination . . 316 ff.

A.S.T.M. Index 122 f.

Atomic Number
Absorption coefficient . . . 106 f.

Diffracting power .... 202 f.

X-ray wave-lengths . . . . 108
Atomic Parameters . . . . 190 ff.

Adjustment 264 ff.

Ambiguities 275 f.

Determination . . . 256 ff., 292 ff.

Refinement 344 ff.

Structure amplitude, q.v. . 257 ff.

Atomic Space Patterns (see Space-Groups)
Atoms

Diffracting power, q.v. 126, 196, 200 ff.

Packing 276
Polarization 281

Axes of Symmetry .... 35 ff.

Effect on ^-synthesis . . . 356 ff.

Inversion 42 f., 234 f.

Polar 40 f.

Screw, q.v. . . 43 ff., 230 ff., 273 f.

Axial Ratio (see also Unit Cell) 31 ff.

from Interplanar spacings 132 ff., 376 ff.,

379 ff.

Azobenzene (trans)

Crystal structure 250
Azo-Groups

Light absorption 286
p -Azoxyanisole

Space-group 245 f.

Babinet Compensator .... 83

Background Intensity . . . . 113
Bakelite 1

Barium Nitrate
for R.I. liquids standardization 375

Becke Line Method . . 64 ff., PI. II

Beevers-Lipson Strips . . . 347 f.

Benzene
Habit and structure .... 280
Molecular symmetry . . . 226 f.

Benzene, Azo- (trans)

Crystal Structure 250
Benzene , Bromo -

as R.I. liquid 374
Benzene, m-Bromo-Nitro -

Crystal symmetry .... 41

Benzene, 2, 6 Dibromo, 1, 4 Dinitro-

Crystal symmetry 47
Benzene, m-Dihydroxy- (see Resorcinol)
Benzene, ^p-Dinitro-

Crystal symmetry 48
Benzene, 1, 4 Dinitro, 2, 5 Dibromo -

Crystal symmetry 47
Benzene, o-Diphenyl-
Magnetic anisotropy .... 289

Benzene, j>-Diphenyl-
Struoture determination . . 310 ff.

Benzene, Hexamethyl-
Birefringence 283 f.

Crystal habit 19, 31

4458 Dd2
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Benzene, Hexamethyl- (cont.)

Crystal structure . . . .15, 284

Symmetry 228
Benzene, I Hydroxy, 3, 5 Diethoxy-

Crystal symmetry 51

Benzene, 1 Hydroxy, 2, 4, 6 Trinitro-

Crystal symmetry 49
Benzene, 1, 2, 4, 6 Tetramethyl-

Symmetry 231

Systematic absences . . . 237 ff.

Benzene, 2, 4, 6 Tribromo, 1 Cyano-
Crystal symmetry 48

Benzene, 1, 3, 5 Triphenyl-
Birefringence 283

Benzil

Dispersion 84
Rotation photograph . .152, PL VI

Benzoquinone
Structure 231 ff., 260
Symmetry 231 ff.

Benzyl, Di-
Structure determination . . 310 ff.

Benzylidene-p-Methyl Toluyl Ketono
Optical properties and structure . 285

Bernal Chart 149 ff.

Indexing rotation photographs 151 ff.

Bertrand Lens 78

Beryl
Structure 256

Biaxial Crystals 73 ff.

Dispersion 84 f.

Identification 96 ff.

Indicatrix 73 ff.

Optic pictures 78 f.

Optic sign 75, 83
Pleochroism 85 ff.

Birefringence . . . . 65 ff., 94 ff.

Crystal structure .... 280 ff.

Identification 94 ff.

Measurement 82 f.

Molecular orientation . . . 282 ff .

Optic sign .... 72, 75, 80 ff.

Organic substances. . . . 282 ff.

Polyatomic ions . . . . 281 ff.

Bisectrix 75
Bixin, Methyl-

Birefringence 282
Pleochroism 286

Bleaching Powder
Identification of constituents 124

Body-Centring ... 217 ff., PL XI
Absences due to . . . 217 ff., 222

Boiler Scales
Identification of constituents . 101

Bragg's Law 114 ff.

Reciprocal lattice 145

Bragg-Lipson Charts . . . 264 ff .

Bravais Lattices (see also Space -

Lattices). ... 221 ff., PL XI
Breadth of X-ray Reflections . 362 ff .

Bricks
Identification of constituents . . 101

Broadened X-ray Reflections . 362 ff.

1 Brom, 2 Hydroxy Naphthalene
Crystal symmetry 49

Bromobenzene
as R.I. liquid 374

Bromoform '

as R.I. liquid 374
ex Bromonaphthalene

as R.I. liquid ...'... 374
m-Broraonitrobenzene

Crystal symmetry 41
Brookite

Crossed axial dispersion . 84 f.

Brushes (see Directions Image)
Butane, 2, 3 Dibromo-

Molecular symmetry . . . 225 f.

Cadnjium Iodide

Layer formation . . .

'

. PL I

Layer lattice 279

Optic pictures 78
Cadmium Sulphide

in liuminescent powders 126
Caesium Bromide

Crystal habit 19 f.

Crystal structure . . . . 15, 217

'Caking' of Crystals .... 23
Calcite 59

Analysis 125

Birefringence 282

Cleavage 58

Crystal symmetry ..... 50
Detection of small quantities in

mixture 126

Isomorphism with NaNOa . . ,60

Optical anomalies 99
for R.I. liquids standardization . 376
Unit cell 141

Calcium Aluminates
in Portland cement . . . . 124
Powder photograph ... PL III

Calcium Carbonate

Analysis 125

Aragonite, q.v. ... 58 f, 282

Birefringence 282
Calcite, q.v. . 50, 58 ff., 99, 125 f.,

141, 282, 375

p 69

Polymorphism 59
Vaterite, q.v 59, 285

Calcium Chloride
Basic 124
in Bleaching powder . . . . 124

Calcium Fluoride

Cleavage 58 f.

Crystal habit 59
for R.I. liquids standardization . 376

Twinning 67
Calcium Hydroxide

Optical properties 94
Calcium Hypochlorite

Birefringence 283
in Bleaching powder . . . . 124

Calcium Oxide
for R.I. liquids standardization . 375
Structure determination . . 293 f.

Calcium Silicates

in Portland cement . . . . 124
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Calcium Sulphate
Anhydrite, q.v 31, 99

Dihydrate (gypsum, q.v.) 12 f., 31,

57, 76, 89, 126, 165, Pis. VI & VII
Subhydrate .... 90, 184, 334

Calcium Thiosuiphate Hexahydrate
Crystal symmetry 47

Calculated Intensities (see also Struc-
ture Amplitude)

Relation to observed . . 191 f., 275
Calculation

Correction factors, q.v. 132, 199 ff., 350
Fourier series . . . 335 ff., 347 f.

Interplanar spacinga . .114, 376 ff.

Refractive indices .... 80 ft

Structure amplitude
196 ff., 209 ff., 264 ff.

Structures by Fourier series . 335 ff.

Cameras (X-ray)
Focusing

* 181

Moving-film, q.v 166 ff.

Powder, q.v. . . . 109 ff., 123 f.

Rotation 137 ff.

Two-crystal 193
Universal goniometers . . . 138

Cane-Sugar
Optical activity 88

Carbon
Amorphous 1

Carbonate Ion

Polarizability 281

Shape 307

Symmetry 225 f.

Carbonates (see also individual Car-

bonates)
Birefringence 282

Diamagnetism 288
Carbon Tetrachloride

Molecular symmetry . . . 225 f.

Structure 372
Cassiterite

Crystal symmetry 40

Catalysts
Activity 362

Cell (see Unit Cell)
Cellulose

Orientation 175
Cement

Portland 124
Centre ofInversion (see Inversion Axes)
Centre of Symmetry . . . . 3C f.

Friedel's law 242 f.

Laue symmetry .... 243 f.

Piezo-electricity 290

Pyro-electricity .... 289 f.

X-ray photographs. . . . 242 f.

Chain Compounds
Birefringence 282 f.

Identification 183

Polymers, q.v. . 127, 175 ff., 186 ff.,

248 f., 261 f., 317 ff., 373
Characteristic X-radiation . . 105 ff.

Charts

Indexing layer lines of rotation

photographs 142 f., 151 ff., 382 f.

Indexing powder photographs
132 ff., 379 ff.

Lorentz factor correction . . 204
Structure amplitude . . . 264 ff.

Chemical Composition
Analytical methods 3 f., 102, 125 f., 184
Mixed crystals .... 126, 183 f.

Mixtures. . 99 ff., 123 ff., PL IV
Quantitative .... 125, 184
Solid solutions 126

Chemical Reactions
on Microscope Slide . . . . 102

Chlorate Ion (see also individual

Chlorates)

Symmetry 225 f.

Chromophoric Groups .... 286

Chrysene
Molecular shape 277
Structure 262

Chrysotile
Cleavage 58, 279

Polycrystalline character . . . 175
Classes of Symmetry 33 ff., 44 ff., 224

Cubic 50 ff.

Hexagonal 49 f.

Monoclinic 48 ff.

from Morphological data . 52 ff.

Nomenclature . . . . 44 ff., 384 ff.

Optical activity 88 f.

Orthorhombic 49
Relation to diffraction symmetry 241 ff.

Relation to molecular symmetry 228 f.

Relation to space lattices . . 228 f.

Stereographic projection . 45 ff.

Tetragonal 50
Triclinic 47 f.

Trigonal 49 f.

Clay minerals

Layer lattice 279

Cleavage 58 f.

Crystal structure 279 f.

Identification 93
Cobalt

Irregularities of structure . . 368 f.

Compensator
Babinet 83

Composition (Chemical)
Analytical methods 3 f., 102, 125 f., 184
Mixed crystals .... 126, 183 f.

Mixtures. . . 99 ft, 123 ff., PL IV
Quantitative . . . . 125, 184
Solid solutions 126

Compton Scattering 371

Computation
Correction factors, q.v.

199 ff., 132, 200 ff., 350
Fourier series 347 f.

Interplanar spacings . . . 376 ff.

Refractive indices .... 280 ff.

Structure amplitude 196 ff., 209 ff.,

264 ff.

Structures by Fourier series . 335 ff.

Conductivity
Crystal structure .... 290 f.

Cones of Diffracted X-rays 108 f., 137 ff.
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Conjugated Double-Bonds

Birefringence 282
Continuous X-ray Spectrum (see

White X-Radiation)
Convergent Light

Investigations in 77 if .

Copper
Crystal habit 20
Mixed crystals with gold . . .331 f.

Structure . . 17, 217, PL XI
Superlattices with gold . . . 332

Copper (Cuprous) Chloride
for R.I. liquids standardization . 375
Structure determination . . 294 ff .

Copper Dihydrogen Silicate (Dioptase)
Crystal symmetry 42 f.

Copper (Cuprous) Oxide

Misleading crystal shape . . . 247

Copper Sulphate Pentahydrate
Crystal symmetry 47

Correction Factors

Absorption . . 120 ff., 132, 206 f.

Angle 200 ff.

Artificial temperature .... 350
Intensities 199ff., 350
Slit 121

Spacings 120 ff., 132

Temperature 205 f.

Corundum
Powder photograph ... PL III

for R.I. liquids standardization . 375
Cox Moving-Film X-ray photo-

graphs 169
Cox-Shaw correction charts . . 204
Crossed Axial Dispersion. . 84 f.

Crossed Nicols 67 ff.

Crystal Chemistry .... 274 ff.

Crystal Growth . . 12 ff., 18 ff., 31

Anisotropy 278 f.

Good crystals 23

Layer formation . . . 19, PL I

Rate 21, 31, 278 f.

Crystal Habit

Crystal structure . . 13 ff., 278 ff.

Donnay's law 280
Effect of growth conditions 12 ff., 21,

31,40
Identification . . 54 ff., 91, 99 ff.

Modification . . 13, 34, 37, 53 f.

Molecular shape . . . . 277 ff.

Unit cell 30 ff.

Crystalline Polymers . . 175 ff., 188 f.

Density 186 f.

Double orientation . . . 178ff.
Electron diffraction .... 373
Orientation 175 ff.

Strongest X-ray reflections . 261 f.

Structure determinations . 317 ff.

Symmetry 248 f.

X-ray identification .... 127

Crystalline Solid Solutions . . 59 f.

Composition 183 f.

JF-synthesis 361

Isomorphous crystals, q.v. 59 ff., 126,

274, 361

Optical properties 93
Structure 331 ff.

X-ray patterns . . .
'

126, 367
ZnS-CdS

*

. 126

Crystal Optics 3 ff., 62 ff., 91 ff., 280 ff.

Absorption . . . / . 85 f., 285 f.

Amorphous substances . 63 f., 93 f.

Anisotropy . . 2, 4 ff., 65 ff., 82 f.,

94 ff., 280 ff.

Biaxial 73 ff., 96 ff.

Convergent light .... 77 ff.

Crystal structure .... 280 ff.

Cubic 63, 93 f.

Dispersion, q.v.. 65, 77, 83 ff., 100 f.

Extinction directions, q.v. 67 ff., 77,
95 ff., 100

identification . . . . 3 f., 91 ff.

Image formation .... 335 ff.

. Interference colours . . 67 ff., 78 ff.

Mixed crystals 93
Mixtures 99 ff.

Nicol prism 66 ff.

Opaque crystals . . . 91 f., 101 f.

Optic axial angle, q.v. 75, 77 ff., 80,
100 f.

Parallel light 63 ff.

Pleochroism 85 ff .

'

Refractive indices, q.v. . 62 ff.

Symmetry .... 62 ff., 70 ff .

Twinned crystals 89 f.

Uniaxial crystals . . 65 ff., 94 ff.

Universal stage 1
92

Crystal Planes

Interplanar spacing, q.v. 114, 118ff,,
129 ff., 376 ff ., 379 ff.

Law of constancy of angles . . 20
Law of rational indices . 27 f., 31 ff.

Nomenclature 24 ff.

Relation to unit cell . . . 31 ff.

Roticular density .... 20, 58
Structure amplitude . . . 196 ff.

Crystal Size

Effect on X-ray pattern . 127, 362 ff.

Electron microscope .... 367
, Microscope count 367

Crystal Strains 362 ff.

Crystal Structure Determination
Abnormal structures . . . 329 ff.

Adjustment of parameters . 264 ff .

Ambiguities 275 f.

Atomic parameters, q.v. . 256 ff.,

344 ff.

Birefringence 280 ff.

by Calculation .... 7, 338 ff.

Crystal chemistry .... 274 ff .

Defect structures . . . 277, 332 ff.

Direct 340 ff.

Electron density .... 335 ff .

Examples 291 ff.

Fourier series 335 ff.

General 6 ff .

Indicatrix 283 ff.

Irregularities in structures 362 ff., 368
Mixed crystals 331 ff.

One parameter 214 f.
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Crystal Structure Determination (cont.)

Optical diffraction methods, q.v. 7,

271 ff., 348 ff., 369 f.

Physical properties. . . . 278 ff.

Polymers 317 ff.

Shape of crystals . . 13 ff., 278 ff.

Simplest structures . 196 ff., 209 ff.

Space-group, q.v. . . 43 ff., 217, 224,
244 ff.

by Trial and error, q.v. 7 f., 190 ff.,

259 ff., 271 ff., 292ff.,350f.
Unit cell, q.v. . . . 128 ff ., 21 7 ff.

Vector method 351 ff.

Warren's method 372
Cubic system

Classes 50 ff.

Dispersion 83

Interplanar spacings 129 f., 377, 379 ff.

List of unit cell dimensions . . 182

Optical identification . . . . 93 f.

Optical properties T 63

Space-lattices 217 ff.

Unit cell from powder data 129 ff., 377

Cupric Dihydrogen Silicate (Dioptase)
Crystal symmetry 42 f.

Cupric Sulphate Pentahydrate
Crystal symmetry 47

Cuprite
Misleading crystal shape . . . 247

Cuprous Chloride
for R.I. liquids standardization 375
Structure determination . . 294 ff.

Cuprous Oxide

Misleading crystal shape . . . 247

Cyanuric Triazide
Structure 351

2?-Cymene
as R.I. liquid 374

Debye Equation . 371

Debye Factor (see Temperature
Factor)

Debye-Scherrer X-ray Photographs
103, 106, 108 ff.

(see also Powder X-ray Photo-

graphs)
Defect Structures . . 277, 332 ff.

De Jbng-Bouman Moving-Film X-
ray Photographs .... 170 f.

Density
Determination 186
Molecular packing .... 276

Polymers 186 f.

Reticular 20, 58
Determinative Tables
Absent reflections 240

Crystal shapes .... 54 ff., 91
Refractive indices .... 93, 98

Space-groups 384ff.
Unit cell dimensions cubic sub-

stances 182

X-ray patterns minerals . . . 123

X-ray powder patterns . . 122 ff.

Diagonal Glide Planes .... 239

Diamagnetic Susceptibility
Crystal structure .... 287 ff

Dibenzyl
Structure determination . . 310 ff

2, 3 Dibromobutane
Molecular symmetry . . . 225 f

2, 5 Dibromo, 1, 4 Dinitro Benzene
Crystal symmetry 41

1, 2 Dichloroethylene (trans)
Molecular symmetry . . . 224 f

Dichroism 85 ff

Crystal structure .... 285 f

Dickite
Powder photograph ... PL II]

Dielectric Constant

Crystal structure .... 290 f

Diffracting Power of Atoms . . 19(

Angle factors 200 ff

Graph (sin0)/A 205

Intensity of X-ray reflections 126, 19
Diffraction

Amorphous substances . . 370 ff

Bragg's law 114ff
Cones of .... 108 f., 137 ff

Electron 372 f

Geometry .... 108 f., 128 ff

Line broadening .... 362 ff

Non-crystalline substances . 370 ff

Optical, q.v. 129, 190 f., 271 ff., 335 ff.,

348 ff., 369 f., Pis. V, XIII
Order of, q.v. . . 114ff., 131

Phase relation . 116 ff., 190 ff., 197 ff.,

210 ff., 340 ff.

Point array in plane . . . 116f
Point array in 3 dimensions . 117 f,

Point row 114ff.

Symmetry 241 ff,

Diffuse X-ray Reflections . 206, 362 ff,

w-Dihydroxybenzene (see Resorcinol)
1, 2 Dimethyl phenanthrene
Space-group 246

p-Dinitrobenzene
Crystal symmetry 48

1, 4 Dinitro, 2, 6 Dibromo Benzene
Crystal symmetry 47

4, 4' Dinitrodiphenyl
Structure 251

Diopside
Structure 345 f., 349

Dioptase
Crystal symmetry .... 42 f,

Diphenyl
Symmetry 249

o-Diphenyl Benzene

Magnetic anisotropy .... 289

p-Diphenyl Benzene
Structure determination . 310 ff.

Diphenyl, 4, 4' Dinitro-

Structure 251
Directions Image 77 ff.

Bertrand lens 78
Identification 95, 99

Optical activity .... 87 f.

Optic axial angle, q.v. 75, 77 ff., 100 f.

Optic sign 83
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Direct Structure Determination 340 ff.

Dispersion 65, 77, 83 ff.

Biaxial 77, 84 f.

Crossed axial 84 f.

Cubic 83
Identification of mixtures . 100 f.

Isotropic 83

Optic axes 84 f.

Orthorhombic 84 f.

Uniaxial 83 f.

Donnay's Law 280
Double Fourier (Series .... 340
Double Orientation in Polymers 178 ff.

Double Refraction 65 f.

Durene
Symmetry 231

Systematic absences . . . 237 ff.

d-Values . . . 114 ff., 376 ff., 379 E.

Absorption correction 120 ff., 132

Bragg's law 114ff.

Calculation . . . 114, 376 ff.

Correction factors . . 120 ff., 132

Cubic ... 129 f., 377, 379 ff.

Hexagonal . . 134 f., 377 f., 381
Lower limit 118

Monoclinic .... 136 f., 156
Orthorhombic 136 f., 142 f., 376, 382 f.

Powder photographs . 119 ff., 379 ff.

Reciprocal lattice, q.v. . . 144 ff.

Rhornbohedral ... 134 f., 378

Rotation photographs . . 142 ff.

Slit correction 121

Tetragonal . . . 132, 376, 379 ff.

Triclinic .... 136 f., 156 ff.

Trigonal . . . 134 f., 378, 381

Unit cell dimensions . . 376 ff.

Dyes
Magnetic properties .... 288

Optical properties 286

Elasticity

Crystal structure . 290 f.

Electron Density
Absolute intensities . . . . 351

Beevers-Lipson strips . . 347 f.

False detail 350

Fourier series 339 ff.

Maps 6f., 335 ff.

Methods of computation . . 347 f.

Optical synthesis .... 348 ff.

Resolving power 350

Strips 347 f.

Structure determination . . 335 ff.

Electron Diffraction .... 372 f.

Electron Distribution in Atoms 201 f.

Electron Microscope . . . 128, 367

Electron Scattering (Diffraction) 372 f.

Ellipsoids Representing Physical Pro-

perties (see also Indicatrix)

Absorption of light 86

Diamagnetic susceptibility . 287 ff.

Refractive index . . 70 ff., 283 ff.

Emission Spectra of X-rays . . 105 ff.

Enantiomorphism . . . . 38 f., 286 f.

Molecules 227

Equivalent Positions . . . 252 ff.

General 252 f.

Special . 253 ff.

Structure amplitude . . '.. 257 ff.

Etch-Figures 54

Ethane, Hexabromo-
Crystal symmetry . .' . . 45, 49

Ethanol
Structure 372

Ethyl Acetate
as R.I. liquid' 374

Ethyl Alcohol (see Ethanol)
Ethylene, 1, 2 Dichloro- (trans)

Molecular symmetry . . . 224 f.

Ettringite
Powder photograph ... PI. Ill

Extinction

Primary and secondary . . 208 f.

Extinction Directions . . 67 ff., 77

. Identification by . . 95 ff., 100 f.

Extra'Spots 206

Face-centring .

Absences duo to
Faces of Crystals

Crystal structure
Indices

218 ff., PI. XI
218 f., 222 f.

. . 18 ff.

. . 279 f.

24 ff., 31 ff.

Law of constancy of angles . . 20
Law of rational indices . 27 f., 31 ff.

Nomenclature 24 ff.

Rate of growth . . . . 21,31
Relation to unit cell shape . 30 ff.

Fatty Acids f

Identification 183
Faults in Crystal Structure (see Ir-

regularities, and Broadening of

X-ray Reflections)

/-Curves 202 f.

y Ferric Oxide
Defect structure 333

Ferroso-ferric oxide
Structure 333

Fibre X-ray Photographs 176 ff., 318,
PL IX.

Indexing 176 ff.

Interpretation 317ff.

Repeat period . . . . 176, 188 f.

Fibroin
Orientation 175

Filters for X-rays . . . 106 f., 113
Fluorescence (see also Luminescence) 113 f.

Effect on intensities .... 203
Fluorite

Cleavage 58

Crystal habit 59
for R.I. liquids standardization . 375

Twinning 57

Focusing Cameras 181

Fogging of X-ray Film . . 113, 138
Form 27

Fourier Series

Absolute intensities . . . . 351

Beovers Lipson strips . . 347 f.

Electron density .... 339 ff.

False detail 350
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Fourier Series (cont.)

Image formation 338
Methods of computation . 347 f.

Non-crystalline substances 370 f.

Optical synthesis . . . 3483.
Patterson 351 ff.

Patterson-Barker . . . 356 ff.

Resolving power 350

Strips 347 f.

Structure determination . . 335 ff.

.Friedel's Law ...'.. 242 f.

jF-Synthesis 339 ff.

False detail 350

Resolving power 350

^-Synthesis
Absorption / 360
Non-crystalline substances . 370 f.

Patterson 351 'ff.

Patterson-Harker .... 356 ff.

P-Values (see also Structure Ampli-
tude) 196 ff., 209 ff., 257 ff., 292 ff.

Garnet

Crystal symmetry 51
Gas Molecules

Geometry 372 f.

General Positions .... 252 f.

Structure amplitude . . . 257 ff.

Glasses
Lindemann ... 110, PI. IV
Lithium borate . . 110, PL IV
Optical identification ... 93 f.

^Optical properties . . . 63 f., 374
R.I. measurement .... 374
Silicate 127

Specimen mounts 110
Structure 1, 370 ff.

Warren's method 372

X-ray diffraction . . . . 370 f.

X-ray identification . . . . 127

X-ray photographs. . . . PI. IV
Glide Planes 43, 229 ff.

Absences due to .... 234 ff .

Diagonal 239
Effect on ^-synthesis . . 356 ff.

Effect on X-ray patterns . 234 ff .

Pseudo 273 f.

Quarter 234

Glycine
Molecular shape 231

Goethite

Analysis 125
Gold
Mixed crystals with copper . 331 f.

Superlattices with copper . . 332

Goniometry . . . . 11 ff., 28 ff.

X-ray 137 ff., 193

X-ray moving-film, q.v. . . 166 ff.

Graphical Methods
- Indexing fibre photographs . . 176

Indexing powder photographs 132 ff.,

379 ff.

Indexing rotation photographs 142 f.,

382 f.

Structure amplitudes . . . 264 ff .

Grating
Image formation of ... 335 ff .

Growth of Crystals . . 12 ff., 18 ff., 31

Anisofcropy 278 f.

Good crystals 23

Layer formation during ... 19
Rate 21, 31, 278 f.

Gum Tragacanth 110

|3
Gutta-Percha
Structure determination . . 318 ff.

Gypsum
Crystal habit 12 f.

Detection of small quantities in
mixture 126

Optical properties ..... 76
Rotation photograph ... PL VI
Tilted crystal photograph 165, PL VII
Twinning 57, 89

Habit of Crystals
Crystal structure . . 13 ff., 278 ff.

Donnay's law 280
Effect of growth conditions 12 ff., 21,

31,40
Identification ... 54 ff., 91, 99 ff .

Modification in . . 13, 34, 37, 53 f.

Molecular shape . . . . 277 ff.

Unit cell 30 ff.

Heavy Atoms .

JF-synthesis 341 ff.

^-synthesis 353 ff.

Herapathite
Light absorption 87

Hexabromoethane
Crystal symmetry .... 45, 49

Hexagonal System (see also Uniaxial

Crystals)
Classes 49 f.

Dispersion 83

Interplanar spacings . 134 f., 377 f.,

381

Optical properties .... 65 ff.

Unit cell from powder data 134 f.,

377 f., 381
Unit cell from rotation photographs 140

Hexamethylbenzene
Birefringence 283 f.

Crystal habit 19,31
Crystal structure . . . . 15, 284
Symmetry 228

Hexamethylene Tetramine
Habit and structure .... 280

Hydrocinchonine Sulphate Hydrate
Crystal symmetry 50

Hydrogen Bond 309 f.

Ice 23

Ideally Imperfect Crystals . . 208 f.

Identification of Crystalline Materials

Cleavage 93

Crystal shape . 54 ff., 91, 99 f., 103
Directions Image .... 95, 99
Extinction directions . 95 ff., 100 f.

Metallurgical 92

Microscopic 3, 91 ff.
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Identification of Crystalline Materials

(cont.)
Mixed crystals 183 f.

Mixtures, q.v. . 99 ff., 123 ff., PI. IV
Morphological . 64 ff., 91, 99 f.,183

Optic axial angle . . . . 100 f.

Powder photographs 6, 8, 103 ff., 122 ff.

Shape . . . 54 ff., 91, 99 f., 103

Single crystal photographs . 182 f.

Thin section 101
Unit cell 123, 182 ff.

Vibration direction. 95 ff., 100 f.

Identification of Ions

Microscope slide reactions . . . 102
Identification of Non-Crystalline

Materials

Optical 93 f.

X-ray 127

Identity Period
Fibre 176, 188 f.

Layer lines, q.v. 138 f., 142 f., 147,
382 f.

Rotation photographs . 138 f., 147

[mage formation . ... 335 ff.

[mmersion Liquids . . 63 ff., 374 8.

Immersion Methods of Refractive
Index Measurement 63 ff ., 374 ff.

Identification by . . . . 91 ff.

Imperfect Crystals
Defect structures . . . 277, 332 ff.

Ideally 208 f.

X-ray reflections . . 363, 367 ff.

Index (Catalogue)
A.S.T.M 122f.

Crystal shapes . . . . 54 ff., 91

Cubic unit cell dimensions . . 182
Refractive indices .... 93, 98

X-ray powder patterns . . 122 ff.

Indexing of X-ray Photographs
Bernal chart 149 ff.

Fibre photographs . . . . 176 ff.

Layer lines .... 142 f., 382 f.

Moving-film photographs, q.v. 167 ff.

Orowan 171 f.

Oscillation photographs . . 159 ff.

Powder photographs . 129 ff., 379 ff.,

PL X
Reciprocal lattice, q.v. 151 ff., 176 ff.

Rhombohedral . . 135, 172 f.

Rotation photographs 142 ff., 151 ff.,

382 f.

Simplest cell 172 f.

Tilted crystal photographs 162 ff.

Indicatrix

Biaxial 73 ff.

Orientation in monoclinic and tri-

clinic crystals .... 76 f.

Structure determination . . 283 ff.

Uniaxial 70 ff.

Indices of Crystal Faces . 24 ff., 31 ff.

Principle df simplest ... 32 f.

Infra-Red Absorption Spectra
Crystal structure 286

Integrated Intensity . . 192, 194 f.

Intensifying Screens 113

Intensities of X-ray Reflections

Absent, q.v. 153, 210, 216 ff., 234 ff.,

f
245 ff .

Absolute, q.v. 192 f., 207 ff., 351, 370 f.

Absorption correction . . . 206 f.

Background . . . f
. . . 113

Calculated and observed . 191 f., 275
Calculation 195 ff., 209 ff ., 264 ff.

Characteristic of substance . . 122
Chemical composition . . . 125
Correction factors, q.v. 199 ff., 350

Diffracting power of atoms, q.v. 126,

196, 200 ff.

Expressions 207 f.

for Fourier synthesis .... 351

Integrated . . . 192, 194 f.

Measurement 192 ff.

Relative, q.v. . 122, 125, 192 ff., 207
Scattered 113

Structure amplitude . 196 ff., 209 ff.,

257 ff.

Trial and error method, q.v. 7 f.,

259 ff., 271 ff., 292 ff.

Interatomic Vectors . . . . 351 ff.

Maps ... 351 ff., 356 ff., 370 f.

Interfacial Angles . . . . 11 ff.

Goniometric measurement . 28 ff.

Law of constancy of .... 20

Microscopic measurement . . 56
Unit cell shape 52 ff.

Interference Colours .... 67 ff.

in Convergent light ... 78 ff.

Quartz wedge .... 80 ff.

Interference Figure . . . . 77 ff.

Bertrand lens 78
Identification 95, 99

Optical activity .... 87 f.

Optic axial angle . 75, 77 ff., 100 f.

Optic sign 83

Interpenetration Twins .... 57

Interplanar Spacings . 114ff., 376 ff.,

379 ff.

Absorption correction . 120 ff., 132

Bragg's law 114ff.

Calculation . . . 114, 376 ff.

Correction factors ... 120 ff., 132
Cubic . . . 129 f., 377, 379 ff.

Hexagonal . . 134 f., 377 f., 381
Lower limit 118
Monoclinic .... 136 f., 156
Orthorhombic 136 f., 142 f., 376,

382 f.

Powder photographs . 119 ff., 370 ff.

Reciprocal lattice, q.v. . , 144 ff.

Rhombohedral . . . 134f., 378
Rotation photographs . . 142 ff.

Slit correction 121

Tetragonal . . . 132, 376, 379 ff.

Triclinic .... 136 f., 156 ff.

Trigonal . . 134 f., 378, 381
Unit cell dimensions . . 376 ff.

Inversion Axes . . . 42 f., 234 f.

lodoform
as R.I. liquid 374

lonization Chamber 192
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Ions

Diffracting power 203

Identification by microscope slide

reactions 102

Polyatomic, q.v. . 5 f., 225 f., 276,
280 ff .

Rotation 329 ff.

Scattering power 203

Symmetry . . . 225 f., 248 ff.

a Iron

Crystal structure . 18, 217, PL XJ
Iron Oxide (y Fe2O8 )

Defect structure 333
Iron Oxide (Fe3O4 )

Structure 333
Iron Oxides (Hydrated) (FeO.OH)

*

Goethite and Lepidocrocite analysis 125

Lepidocrocite structure . . . 258
Iron Phosphate Octahydrate

Pleochroism * 86
Iron Sulphide

Pyrites, crystal symmetry . 51

Pyrrhotite, defect structure 333 f.

Irregularities in Crystal Structure 362 f.,

368 f.

Optical diffraction 369 f.

Isogyres (see Directions Image)
Isometric System (see also Cubic

System) 50 ff.

Isomorphous Crystals . , . 59 ff.

jF2-syntheis 361

Location of atoms .... 274
Mixed crystals, q.v. 59 ff., 93, 126,

183 f., 331 ff., 361, 367

ZnS-CdS 126

Jong-Bouman Moving-Film X-ray
Photographs 170f.

106 f.

. 105 ff.

. . 120

, . 189
, . 178

. 175

. 183
, 105 ff .

105 ff.

. 120

. 107

Lamellar Twinning 58
Lattice
Absences due to .... 216 ff.

Body-centred ... 217 ff., PI. XI
Bravais (see also Space-) . . 221 ff.

Face-centred ... 218 ff., PL XI
Point 18, 24, 118
Primitive 223

Reciprocal, q,v. ... 144 ff., 383
Side-centred 223

Space-, q.v. . 118, 216 ff., PL .XI

K-Absorption Edge .

JST-Emission Spectra
a -doublet ....

Keratin
Chain type ....
Double orientation
Orientation ....

Ketones
Identification .

JK-Series of X-rays
Emission spectra .

Resolution of a-doublets

kX Units
Definition ....

Laue Symmetry ... 243 f., PL XII
Laue X-ray Photographs 243, PL XII
Law of Constancy of Interfacial

Anjgles 20
Law of Rational Indices . 27 f., 31 ff.

Layer Formation

Crystal growth . . . . . 19, PL I

Layer Lines 138 f.

Indexing . . . 142 f., 382 f.

Reciprocal lattice 147
Lead Acetate Trihydrate

Crystal symmetry 48
Lead Carbonate

Birefringence 283
Lead Chloride

Modification of external crystal

.symmetry 63 f

Lead Molybdate
Crystal symmetry 51

Lead Nitrate
for R.I. liquids standardization . 375

Lemniscate Rings 78

Lepidocrocite
Analysis 125
Structure 258

Light Diffraction Methods in Struc-
ture Determination 129, 190 f.,

271 ff., 335 ff., 348 ff., 369 f., Pis. V, XIII
Faulty pattern 369 f.

Fourier synthesis .... 348 ff.

General 7, PL XIIJ
Geometry 129

Image formation by lens . . 335 ff.

Patterson synthesis .... 352
Phase relation 190 f.

Structure amplitude , . . 271 ff.

Trial and error method 271 ff., PL XIII
Lindemann Glass 110
Powder photograph ... PL IV

Line Broadening 362 ff.

Reciprocal lattice .... 367 f
Line Grating
Image formation of . 335 ff., PL V

Line Spectra
X-rays 105 ff.

Liquid Crystals 330

Liquids
Diffraction 370 f.

Immersion .... 63 ff., 374 ff.

Structure 370 ff.

Supercooled 1

X-ray identification . . . . 127
Lithium Borate

Glass 110, PL IV
Lithium Ferrite

Defect structure .... 332 f.

Lithium Fluoride
for R.I. liquids standardization . 375

Lithium Titanate
Defect structure 333

Long-Chain Polymers . . . 188 f.

Chain type 188 f.

Density 186 f.

Double orientation . . . 178 ff.

Electron diffraction .... 373
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Long-Chain Polymers (cent.)
Orientation 175 ff.

Polycrystalline 175 ff.

Strongest X-ray reflections . 261 f.

Structure determinations . 317 ff.

Symmetry 248 f.

X-ray identification . . . . 127

X-ray photographs . . Pis. IV,, IX
Lorentz Factor 203 f.

Luminescent Powders . . . . 126

Magnesium Iron Oxide
Defect structure 333

Magnesium Oxide
in Portland cement . . . . 124

Magnetic Properties
Crystal structure .... 287 ff.

Maps (Fourier)
Absolute intensities . . . . 351

Beovers-Lipson strips . . . 347 f.

Electron density .... 339 ff.

False detail 350
Image formation 338
Methods of computation . . 347 f.

Non-crystalline substances . 370 f.

Optical synthesis .... 348 ff.

Patterson 351 ff.

Patterson-Harker .... 356 ff.

Resolving power 350

Strips 347 f.

Structure determination . . 33t5 ff.

Mercurous Chloride
for R.I. liquids standardization . 375

Metallurgical Identification . . 92
Metal Specimens

Crystal size and strain . . 362 ff.

Irregularity in crystal structure 362 f.,

368 f.

Oriented 180
Orowan's X-ray photographs . 171
Solid solution, q.v. . . 274, 331 f.

Methyl Bixin

Birefringence 282

Methyleno Iodide
as R.I. liquid 374

Methyl Urea
Space-group 245

Mica
Cleavage 58

Layer lattice 279

Optic picture 78 f.

Micro-Photometer
Accurate spacings 120

Composition mixture , . . . 125
Intensities of X-ray reflections 193 ff.

Structure of non-crystalline sub-
stances 371

Microscopic Investigations
Absorption 85 f., 285 f.

Biaxial crystals . . 73 ff., 96 ff.

Chemical reactions . . . . 102

Cleavage 93

Convergent light 77 ff.

Crystal shape ... 56, 93, 100

Crystal structure .... 280 ff.

Cubic 63

Dispersion, q.v. . . 65, 77, 83 ff.,

100 f.

Extinction directions, q.v. 67 ff., 77,
95 ff., 100

Identification . . ... . 3, 91 ff.

Interference colours ... 67 ff.

Limitations 103
Mixed crystals 93
Mixtures 99 ff.

Nicol prisms 66 ff.

Opaque crystals . . 91 f., 101 f.

Optic axial angle, q.v. 75, 77 ff., 80,
100 f.

Parallel light 63 ff.

Ple6chroism 85 ff.

Refractive index measurement,
q.v 62 ff.

Tilting crystals .... 92 f.

Twiiming 89 f.

Uniaxial crystals . . . 65 ff., 94 ff.

Universal stage 92
Mimetic Twinning 58
Minerals

Table of refractive indices . . 93
Tables of X-ray patterns . . 123

Mixed Crystals 59 ff.

Composition 183 f.

Fz
-synthesis 361

Isomorphous crystals, q.v. 59 ff., 126,
274, 361

Optical properties 93
Structure 331 if.

X-ray patterns .... 126, 367
ZnS-CdS 126

Mixtures
Identification by optical methods 99 ff.

Identification by X-ray methods 1 23 ff .,

PI. IV
Quantitative composition . . . 125

Modification of Crystal Habit 13, 34, 37,
53 f.

Involving change in symmetry 53 f.

Molecular Weight Determination
9, 185 ff.

Molecules

Birefringence due to orientation
of . 282 ff.

Diamagnetism due to . . 288 ff .

Dimension 251 f.

Enantiomorphous 227

Packing 276
Rotation 291, 329 ff.

Shapes . . 4 ff., 187 f., 251 f., 277 ff.

Structure of simple gas . . 372 f.

Symmetry .... 224 ff., 248 ff.

Molybdenum
Structure determination . . . 293

Molybdenum Sulphide
Layer lattice 279

Monobromobenzene
as R.I. liquid 374

Monochromatic X-rays . . . 106 ff.

Structure of non-crystalline sub-
stances 370 f.
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Monochromators 107 f.

Monoclinic System (see also Biaxial

Crysfals)
Classed 48 ff.

Dispersion 85

Interplanar spacings . . 136 f., 156

Optical properties .... 75 ff.

Reciprocal cell shape . . . . 153
Rotation photographs . . 153 if.

Unit cell and powder data . 136 f.

Unit cell from rotation photographs
141 f.

Unit coll volume .... 185 f.

Morphology of Crystals . . . 1 1 ff .

Classes 52 ff.

Crystal structure . . 13 ff., 278 ff.

Donnay's law 280
Goniometry . . . 11 ff., 28 ff.

Identification . 54 ff., 91, 99 ff., 183
Index 54*ff., 91
Molecular shape .... 277 ff.

Unit cell . 27 f., 30 ff., 52 ff., 139 f.

Mosaic Crystals (see Ideally Imper-
fect Crystals)

Moving-Film X-ray Cameras . 166 ff.

Cox 169
De Jong and Bouman . . 1 70 f.

Robertson 169
Schiebold and Sauter . . . 169 f.

Thomas 170
Unit cell 166 ff., 181

Weissenberg 167 ff., 181, 193, PL VIII
Multiplicity of X-ray Reflections 199 f.

Naphthalene
Birefringence 283 f.

Structure 284

Naphthalene, 1 -Brom, 2 Hydroxy-,
Crystal symmetry 49

Naphthalene, a Bromo-
as R.I. liquid 374

Newton's Scale of Colours . . 69, 81
Nickel Phthalocyanine

Structure 343 f.

Nickel Sulphate Heptahydrate
Structure 353

Nicol Prisms 66 ff.

Crossed 67 ff.

Nitrates (see also individual Nitrates)
Birefringence 282

Diamagnetism 28$
Ionic rotation 330

Nomenclature
Classes 44 ff., 384 ff.

Crystal planes 24 ff.

Point-groups ... 44 ff., 384 ff.

Space-groups ... 244 f., 384 ff.

Space-lattices 223

Non-Crystalline Substances
Glasses, q.v. 1, 63 f., 93 f., 110, 127,

370 ff., 374
Identification, q.v. . . 93 f., 127
Structure 370 ff.

Warren's method 372

X-ray diffraction .... 370 ff.

Notation
Classes .... 44 ff., 384 ff.

Crystal planes 24 ff.

Point-groups ... 44 ff ., 384 ff .

Space-groups ... 244 f., 384 ff.

Space-lattices 223
Nylon

Chain type 189

Obtuse Bisectrix .

Opacity of Crystals .

Opaque Substances

Optical study .

Optical Activity
Classes

Directions image .

Enantiomorphism, q.v.

75
23

91 f., 101 f.

87 ff.

88 f.

87 f.

38 f., 227,
286 f.

Solid and solution .... 286 f.

Space-groups 286

Optical Diffraction Methods in Struc-
ture Determination

Faulty pattern 369 f.

Fourier synthesis .... 348 ff .

General 7, PL XIII

Optical Properties 3 ff., 62 ff., 91 ff.,

280 ff.

Absorption 85 f., 285 f.

Amorphous substances . 63 f., 93 f.

Anisotropy . 2, 4ff., 65 ff., 82 f., 94 ff.,

280 ff.

Biaxial 73 ff., 96 ff.

Convergent light .... 77 ff.

Crystal structure .... 280 ff .

Cubic 63, 93 f.

Dispersion, q.v. 65, 77, 83 ff., 100 f.

Extinction directions, q.v. 67 ff., 77,
95 ff., 100
3 f., 91 ff.

, 335 ff .

67 ff., 78 ff.

Identification .

Image formation .

Interference colours
Mixed crystals 93
Mixtures 99 ff.

Nicol prism 66 ff.

Opaque crystals . . 91 f., 101 f.

Optic axial angle, q.v. 75, 77 ff., 80,
100 f.

Parallel light 63 ff.

Pleochroism 85 ff.

Refractive indices, q.v. . 62 ff.

Symmetry 62 ff., 70 ff .

Twinned crystals .... 89 f.

Unaxial crystals . . 65 ff., 94 ff.

Universal stage 92

Optic Axial Angle . . . 75, 77 ff.

Determination from refractive

indices 80
Identification of mixtures . 100 f.

Optic Axis 72, 74
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Optic Picture 77 ft.

Bertrand lens 78

Identification 95, 99

Optical activity . . , . 87 f.

Optic axial angle, q.v. 75, 77 ff., 100 f.

Optic sign 83

Optic Sign
Biaxial 75, 83

Directions image 83

Quartz wedge 80 ff.

Uniaxial 72, 81, 83

Order of Reflection . . . 114ff., 131

Absent, q.v. 153, 210, 216 ff., 234 ff.,

240
Zero 339 f., 351

Oriented Overgrowths .... 60
Oriented Specimens (Polycrystal-

line) 175 ff.

Doubly 178ff.

Metal 180

Unit cell determination . . 176 ff.

X-ray photographs . . . 176 ff.

Orowan's X-ray Photographs . 171 f.

Orthorhombic System (see also Biaxial

Crystals)
Classes 49

Dispersion 84 f.

Indexing rotation photographs 151 ff.

Interpjariar spacings
136 f., 142 f., 376, 382 f.

Optical properties .... 73 ff.

Unit cell and powder data 136 f., 376
Unit ceil from rotation photographs

139, 142 ff., 382 f.

Oscillation X-ray Photographs 1 58 f.

Indexing 159 ff.

Tilted crystal 164 ff.

Oxalic Acid

Birefringence 283

Crystal symmetry 49

Packing of Atoms 276
Paraffin Wax

Identification 183
Parameters (Atomic) . . . 190 ff.

Adjustment 264 ff.

Ambiguities 275 f.

Determination . . . 256 ff., 292 ff.

Refinement 344 ff.

Structure amplitude, q.v. . 257 ff.

Pattern Unit 118

Patterson Synthesis . . . . 351 ff.

by Optical method .... 352
Patterson-Harker Synthesis . 356 ff.

Pauling's Rules 276

Pentaerythritol
Cleavage 59

Crystal habit 59
Diffraction symmetry . . 241 f.

Laue photograph . . 243, PI. XII
Monochromators 107

Pentaerythritol Tetra-Acetate
Three-dimensional synthesis . . 347

Perfect Crystal .... 203, 208 f.

Periclase (see Magnesium Oxide)

Perspex (see Polymethylmethacrylate)
Petrological Methods , .... 101

Phase Angles (see also Structure

Amplitude A and B terms)
1

Equal 340 ff.

Experimental determination . 343 f.

Non-centro-symmetrical structures 347

Optical image 338

X-ray reflections .... 340 ff.

Phase Relationm X-ray Diffraction

115 ff., 190 ff., 197 ff., 210 ff., 340 ff.

Phenanthrene, 1, 2 Dimethyl -

Space-group 246

Phloroglucinol Diethyl Ether

Crystal symmetry 51

Photographic Film

Shrinkage 121

Photometry . . . 120, 193 ff.

Accurate spacings 120

Composition mixture . . . . 125

Intensities of X-ray reflections 193 ff.

Structure of non-crystalline sub-

stances 371

Phthalocyanine
Nickel 343 f.

Optical diffraction ... PL XIII
Phase angles 343 f.

Platinum, q.v 254, 342 f.

Structure amplitudes . 272, PL XIII

Physical Properties
Crystal structure .... 278 ff.

Identification . . . 54 ff., 91 ff.

Optical, q.v. 3 ff., 62 ff., 91 ff., 280 'ff.

Picric Acid

Crystal symmetry 49

Picryl Iodide
Determination of I positions 353 f.

Structure 345, 353 ff.

Piezo-Electricity

Crystal structure 290

Pigments
Colours 363

Piperine
for R.I. measurements. . . . 374

Plane-groups 264 ff.

Plane of Vibration 66

Rotation of 87 ff.

Plane Polarized Light
Pleochroism . . . 85 ff., 285 f.

Production 66, 86 f.

Rotation of Plane .... 87 ff.

tlanes of Symmetry . . 36, 43 ff.

Diagonal glide 239
Effect on ^-synthesis . . 356 ff .

Glide, q.v. ... 43, 229 ff,, 273 f.

Quarter glide 234
Plaster of Paris (see Calcium Sulphate

Subhydrate)
Platinum Phthalocyanine

Direct structure determination 342 f.

Position of Pt atoms . . 254, 342 f.

Pleochroism .... 85 ff.

Crystal structure .... 286 f.

Point-Groups (see also Classes of Sym-
metry) 44 ff., 224
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Point-Groups (cont.)

from Morphological data . 52 ff.

Nomenclature . . 44 ff., 384 ff.

Optical activity .... 88 f.

Relation to diffraction symmetry
241 ff.

Relation to molecular symmetry 228 f.

Relation to space-lattices . . 228 f.

Symmetry 44 if .

Polar Axes of Symmetry* . . 40 f.

Polarizability 281
Polarization
Atoms 281

Light 66, 86 f.

Rotary 87 ff., 286

X-rays 203
Polarizer 67
Polaroid 87

Polyamides
Nylon chain type 189
Orientation 176

Polyatomic Ions
Orientation in crystal structures

5 f., 280 ff.

Packing 276

.Polarizability 281
Rotation 329 f!.

Symmetry .... 225 f., 248 ff.

Polychloroprene
Structure determination . . . 268

Polycrystalline Materials

Crystal size and strain . . 362 ff.

Double orientation . . . 178 ff.

Fibre photographs, q.v.
176 ff., 188 f., 317 ff., PL IX

Metal 180
Orientation. . . . 175f., 178 ff.

Polymers, q.v. . . 127, 175 ff., 248 f.,

261 f., 317 ff., 373.
Unit cell determination . . 176 ff.

X-ray photographs . . . 176 ff.

Polyene Chains

Birefringence 282

Light absorption ..... 286

Polyesters
Orientation 176

Strongest reflections . . . . 261

Polyethylene
Molecular symmetry . . . 230 f.

Orientation 176

Strongest reflections . . . . 261

Symmetry of structure . . 231 ff.

Three-dimensional synthesis . . 347

Polyhexamethylene Adipamide
Chain type 189

Polyisobutene
Fibre photograph . . . . PI. IX

Polymers
Chain type 188 f.

Density 186 f.

Double orientation . . . 178 ff.

Electron diffraction .... 373
Orientation 175 ff.

Polycrystalline 175 ff.

Strongest X-ray reflections . 261 f.

Structure determinations . . 317 ff.

Symmetry 248 f.

X-ray identification .... 127

X-ray photographs. . . Pis, IV, IX
Polymethylmethacrylate
X-ray pattern .... 127, PL IV

Polymorphism 59

Polystyrene
X-ray pattern .... 127, PL IV

Polysynthetic Twinning (see Repeated
Twinning)

Polythene (see Polyethylene)
Polyvinyl Alcohol

Chain type 188 f.

Polyvinyl Chloride
Chain type 189

Polyvinylidene Chloride
Fibre photograph .... PL IX

Portland Cement
Identification of constituents 124

Potassium Bromate
Crystal symmetry 50

Potassium Bromide
for R.I. liquids standardization . 375

Potassium Chlorate

Birefringence .... 283, 285

Magnetic ellipsoid 289
Structure 285

Potassium Chloride
Powder photograph . . 220, PL XI
for R.I. liquids standardization . 375
Structure .... 220 f., PL XI

Potassium Cyanide
Ionic rotation 330
for R.I. liquids standardization . 376

Potassium Dithionate

Crystal symmetry .... 41 f.

Structure 275
Potassium Ferricyanide

Pleochroism 85 f.

Potassium Fluoride
for R.I. liquids standardization . 375

Potassium Iodide
for R.I. liquids standardization . 375

Potassium Mercuric Iodide
for R.I. measurements . . 374 f.

Potassium Nitrate

Birefringence 282

Optical properties 95
Rotation photograph . .138, PL VI

Potassium Sulphamate
Structure 359

Potassium Sulphate
Isomorphism with (NH4 )2SO4 59, 331

Powder X-ray Cameras ... 109 ff.

Focusing 181

Hydrogen filled 123

Large radius 124

Seeman-Bohlin 181
Vacuum 123 f.

Powder X-ray Photographs
103, 106, 108 ff., Pis. Ill, IV, X, XI,

Absorption, q.v.
106 f., 120 ff., 132, 206 f.

A.S.T.M. index .... 122 f.



416 SUBJECT INDEX

Powder X-ray Photographs (con/.)
Axial ratio . . 132 ff., 376 ff., 379 ff.

Background 113
Centred cubic lattices . . 219 f.

Choice of wave-lengths 113 f., 123

Crystal size 127, 362 ff.

Cubic 129 ff.

Filters 106 f., 113
Identification . 6, 8, 103 ff., 122 ff.

Indexing 129 ff., 376 ff., 379 ff., PL X
Intensities of reflections 192 ff., 207 ft.

Interplanar spacings, q.v.
119ff., 376 ff., 379 ff.

Limitations in identification . 125 f.

Line broadening .... 362 ff*

Measurement 119 ff.

Mixed crystals . 126, 183 f., 367
Number of equivalent reflections 199 f.

Photometry, q.v. 120. 125, 193 ff., 371
Solid solutions .... 126, 367
TJnit cell 129 ff., 180 ff., 376 ff., 379 ff.

Primary Extinction .... 208 f.

Primitive Cell (see also Simple Cell) 223

Principal Refractive Indices 72, 74 ff.

Principle of Simplest Indices . 32 f.

Principle of Staggered Bonds . . 277

Projections
Reciprocal lattice, q.v.

144 ff., 367 -f.

Stereographic . . . . 29 ff., 45 ff.

Pseudo-Symmetry
Space-group 273 f.

Twinning 58

Pyrites
Crystal symmetry 51

Pyro-Electricity
Crystal structure .... 289 f.

Pyrrhotite
Defect structure 333

Quarter Glide Planes .... 234

Quartz
Optical activity 88

Optical properties 72
Powder photograph . . . PI. Ill

Wedge 80 ff., 95, 99

Quaterphenyl
One-dimensional synthesis . . 347

p-Quinone
Crystal symmetry 41

Quinonoid Groups
Light absorption 286

Rational Indices
Law of . . . . . . 27 f., 31 ff.

Reactions (Chemical)
on Microscope slide . . . . 102

Reciprocal Lattice . . 144 ff., 383

Doubly oriented polycrystalline
specimens 179 f.

Indexing fibre photographs . 176 ff.

Indexing moving-film photographs
166 ff.

Indexing oscillation photographs
159 ff.

Indexing rotation photographs 151 ff.

Indexing tilted crystal photographs
. 163 ff.

Line broadening .... 367 f.

Monoclinic . . . . . . 153
Point, shape of . .

"

. 206, 368
Proof 383
Rhombohedral .... 172 f.

Simplest unit cell . . . 172 f.

Triclinic .

* 156 f.

Reflecting Sphere .... 146 ff.

Reflection Planes (see Planes of Sym-
metry)

Reflections of X-rays . . . 108 ff.

Absent, q.v.. . . 163, 210, 216 ff.

Atomic planes 114 ff.

Bragg'slaw l)4ff.
Broadened 362 ff.

. Ideally imperfect crystals . . 208

Intensity, q.v. ... 122 ff., 192 ff.

Microphotometry, q.v.
120, 125, 193 ff., 371

Number of equivalent . . 199 f.

Order of 114ff., 131
Perfect crystals 208

Spacings, q.v. . . . 114ff., 376 if.

Structure amplitude, q.v.
196 ff., 209 ff., 292 ff.

Refractive Index 62 ff.

Anisotropy 2 ff ., 65 ff ., 82 f., 94 ff., 280 ff.

Becke line 64 ff.

Biaxial crystals . 73 ff., 96 ft.

Birefringence
Calculation .

Crystal structure
Cubic crystals .

Glasses .

Identification .

Indicatrix, q.v.

Liquids .

Measurement 3 f

Optic axial angle
Organic substances

Polyatomic ions

Principal
Symmetry

65 ff., 94 ff.

, . . 280 ff.

. . . 280 ff.

63 ff., 93 f.

63 f., 93 f., 374
, . 3 f., 91 ff.

70 ff., 283 ff.

63 ff., 374 ff.

t ff., 93 ff., PL II
, . . . 80

. 98, 282 ff.

. . 281 ff.

72, 74 ff.

62 ff., 70 ff.

Tables 93, 98
Uniaxial crystals . . . 65 ff., 94 ff.

X-ray 128
Refractometer 375
Refractories

Identification of constituents . 101
Relative Intensities 122, 125, 192 ff., 207

Absent, q.v.

153, 210, 216 ff., 234 ff., 245 ff.

Absorption correction . . . 206 f.

Background 113
Calculated and observed . 191 f., 273
Calculation . . 195 ff., 209 ff., 264 ff.

Characteristic of substance . . 122
Chemical composition . . . . 126
Correction factors, q.v. . 199 ff., 350

Diffracting power of atoms, q.v.
126, 196, 200 ff.

Expressions for 207
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Relative Intensities (cant.)

for Fourier synthesis .... 351

Measmement 192 ff.

Scattered 113

Structure amplitude
196 ff., 209 ff., 257 ff.

Trial and error method, q.v.
7 f., 259 ff., 271 ff., 292 ff.

Relative Retardation (see Birefringence)

Repeated Twinning 58

Repeat Period
Fibre 176, 188 f.

Layer lines, q.v. 138 f., 142 f., 147, 382 f.

Rotation photographs . 138 f., 147

Resolution
a-doublet 120

Atoms in electron density map . 360
Peaks on vector maps . . 352 f.

Variation with 6 132
Resorcinol

Structure
*

. . 347
Reticular Density .... 20, 58
Rhombic System (see Orthbrhombic

System and Biaxial Crystals)
Rhombohedral Cell 134 f., 141, 172 f.

Indices . . 135, 172 f., 378

Reciprocal cell .... 172 f.

Rhombohedral System (see Trigonal
System and Uniaxial Crystals)

Rinneite

Dispersion S3 f.

Robertson Moving-Film X-ray Photo-

graphs 169
Robertson Strips 348
Rock Slices

Identification of constituents in thin
sections 101

Rotary Inversion Axes . . . . 42 f.

Rotation Axes. ... 35 ff., 43 ff.

Rotation of Molecules . "291, 329 ff.

Rotation of Plane of Polarization 87 ff.

Space-groups 286
Rotation X-ray Cameras . , 137 ff.

Rotation X-ray Photographs
137 ff., PL VI

Bernal chart 149 ff.

Extra spots 206
Identification 182 f.

Indexing . , 142 ff., 151 ff., 382
Intensities of reflections 192 ff ., 207 ff.

Layer lines, q.v. . 138 f., 142 f., 147
Monoclinic 153 ff.

Moving-film, q.v 166 ff.

Number of equivalent reflections 200 f.

Row lines 152

Setting 173 ff.

Streaks 206
TUted crystal 162 ff.

Triclinio 157 f.

Unit cell ... 139 ff., 181 f., 382
Row Lines 152
Rubber
Double orientation . . . . 178
Orientation 176
Structure 262 f.

Rubber Hydrochloride
Chain type 189

Structure determination . . 323 ff.

Rutile
Powder photograph ... PI. X
Structure 210 ff.

Structure determination . . 296 ff.

Scattering Power of Atoms (see Dif-

fracting Power)
Scattering of X-rays . . . . .113

Compton 371

by Electrons 118

Schiebold-Sauter Moving-Film X-ray
Photographs 169 f.

Schoenflies Symbols .... 384 ff.

Screw Axes .... 43 ff., 230 ff.

Absences due to . 234 ff.

Effect on jP2-synthesis . 356 ff.

Effect on X-ray patterns . 234 ff .

. Pseudo .... .273 f.

Secondary Extinction * . . 209

Seoman-Bohlin X-ray Cameras . 181

Selenium
for R.I. measurements . . . 374

Setting X-ray Photographs . 173 ff.

Shape of Crystals .... 11 ff.

Classes 52 ff.

Crystal structure . . 13 ff., 278 ff.

Donnay'slaw 280

Effect of growth conditions
12 ff., 21, 31, 40

Goniometry . . . 11 ff., 28 ff.

Identification . . 54 fi., 91, 99 ff.

Index 64 ff., 91

Microscopic investigation 56, 93, 99 f.

Misleading 247

Modification . . 13, 34, 37, 53 f.

Molecular shape .... 277 ff.

Morphology, q.v. 1 1 ff., 52 ff., 91, 278 ff.

Unit cell 27 f., 30 ff., 62 ff., 139 f.

Shape of Molecules
4 ff., 187 f., 251 f., 277 ff.

Short Wave-Length Limit ... - 105

Side-Centring 223

Sign (Optic)
Biaxial 75,83
Directions image 83

Quartz wedge 80 ff.

Uniaxial 72, 81, 83

Silica

Quartz, q.v. 72, 80 ff., 88, 95, 99t

PL in
Silicate Glass . .

- 127

Silk

Orientation 1*75

Silver Iodide
Defect structure 334

Simple Cell 217

Simplest Cell 172 f.

Simplest Indices 32 f.

Single-Crystal Osculation X-ray Photo-

graphs 158 ff.

Indexing 159 ff.

Tilted crystal 164 f.

4458 E e
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Single-Crystal Rotation X-ray Photo-
graphs .... 137 ff., PL VI

Bernal chart 149 ff.

Extra spots 206
Identification 182 ,f.

Indexing ... 142 if., 151 ff., 382
Intensities of reflections . . 192 ff.,

207 ff.

Layer lines, q.v. . 138 f., 142 f., 147
Monoclinic 153 ff.

Moving-film, q.v 166 ff.

Number of equivalent reflections 200 f.

Bow Lines 152

Setting 173 ff.

Streaks 206
Tilted crystal 162 ff.

Triclinic 157 f.

Unit cell . . . 139 ff., 181 f., 382
Skeletal Growths ... 23, PI. I

Slit (X-ray)
Height correction 121
Use of reduced size of . . . . 124

Snell's Law 62
Sodium Azide

Birefringence 283
Sodium Bicarbonate

Birefringence .... 283, 308
Structure determination . . 306 ff .

Sodium Bromate
Optical properties . . . 100, PL II

for R.I. liquids standardization . 375
Sodium Bromide Dihydrate

Optical properties . . . 100, PL II

Sodium Carbonate Decahydrate
Dispersion 77

Sodium Carbonate Monohydrate
Optical properties . . . 73 f., 97

Sodium Chlorate

Crystal habit .... 12, 37, 53

Enantiomorphism ... 38 f., 287
Growth 20 f.

Modification of habit ... 37, 53

Optical activity 88
Refractive index .... PL II
for R.I. liquids standardization . 375
Structure 37 ff.

Symmetry 37 ff.

Sodium Chloride
Absolute intensities . . . . 193

Cleavage 58

Crystal habit 12
Detection in mixture . . . . 126

Layer formation .... PL I

Modification of habit ... J3, 34
Monochromators 107
Powder photograph 130, 219 f., PL XI
for R.I. liquids standardization . 375
Standard for 'cf measurements . 122
Structure . . . 34, 220, PL XI
Symmetry 35 ff.

Thermal vibration 205
Sodium Ferrite
Powder photograph ... PL IV

Sodium Fluoride
for R.I. liquids standardization . 375

Sodium Hydroxide
Powder photograph ... PL IV

Sodium Metaperiodate Trihydrato
Symmetry 40

Sodium Nitrate

for R.I. liquids standardization . 375
Sodium Nitrite

Birefringence .... 283, 306

Crystal symmetry 53

Space-group symmetry . . . 256
Structure 260
Structure determination , . 303 ff.

Sodium Sulphite
Powder photograph .

..
. PL III

Sodiufm Thiosulphate Pentahydrate
Dispersion .

* 77
Solid solutions 59 f.

Composition 183 f.
4

.F2-cynthesis 361

Isomorphous crystals, q.v.
59 ff., 126, 274, 361

Optical properties 93
Structure 331 ff.

X-ray patterns .... 126, 367
ZnS-CdS 126

Space-Groups
43 f., 217, 224, 244 ff., 384 ff.

Absences due to 216 ff., 235 ff., 245 ff.

Deduction . . ... 245 ff.

Donnay'e law 280

Equivalent positions . . . 252 ff.

General positions .... 252 f.

List 384 ff.

Molecular dimensions . . . 251 f.

Molecular symmetry . . . 248 ff .

Multiplicity of atomic positions 252 ff .

Optical activity 286

Plane-groups 264 ff.

Schoenflies symbols . . . 384 ff.

Special positions .... 253 ff.

Structure amplitude . . . 257 ff.

Symbols 244 f.

Space-Lattices. . 118, 216 ff., PL XI
List 222
Nomenclature ...... 223
Relation to point-groups . 228 f.

Spacings of Crystal Planes
114 ff., 376 ff., 379 ff.

Absorption correction . . 120 ff., 132

Bragg's law 114 ff.

Calculation . . . 114, 376 ff.

Correction factors . . . 120 ff., 132
Cubic . . . 129 f., 377, 379 ff.

Hexagonal . . . 134 f., 377 f., 381
Lower limit 118
Monoclinic 136 f., 166
Orthorhombic 136 f., 142 f., 376, 382
Powder photographs . 119 ff., 379 ff.

Reciprocal lattice, q.v. .' . 144 ff.

Rhombohedral ... 134 f., 378
Rotation photographs . . 142 ff."

Slit correction 121

Tetragonal . . . 132, 376, 379 ff.

Triclinic .... 136 f., 156 ff.
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Spacings of Crystal Planes (con*.)

Trigonal . , . 134 f., 378, 381
Unit cell dimensions . . . 376 if.

Special Positions 253 if.

Specimen Mountings for X-ray Photo-

graphs
* 110

Sphere of Reflection . . . . 146 if.

Spinel
Crystal symmetry 51
Defect structures . .* . . . 333

Staggered Bonds Principle . . . 277
Stannic Iodide

as Solute in R.I.' liquids . . . . 374

Symmetry 228
Stannic Oxide

Crystal symmetry
*

40

Stereographic Projections . 29 if .

Classes ,
45 ff .

Sterols
Identification .'183
Molecular dimensions .... 252

Stilbene

Asymmetric structure unit . 249 f.

Structure ..".... 345 f.

Streaks 206, 368 f.

Strips (Fourier) 347 f.

Strontium Formate Dihydrate
Crystal symmetry 49

Structure Amplitude
196 ff., 209 if., 264 if., 292 if.

A and B terms 212
Calculation . 19$ if., 209 if. , 264 if.

'Charts 264 if .

Equation , 212

Graphical methods . . . 264 if.

Machines 270 f.

Optical method . 271 if., PI. XIII
Space-group 257 if.

Triclinic 269 f.

Structure Factor (see Structure Ampli-
tude)

Strychnine Sulphate Periodide

Light absorption 87

Sulphur
Polymorphism 59
as Solute in R.I. liquids . . . 374
Structure (orthorhombic) . . . 372

Superlattices 332

Symmetry 33 ff.

Atomic arrangements . . 224 ff .

Axes, q.v. 35 ff., 42 ff., 230 ff., 256 if.

Centre, q.v. . 36 f., 242 f., 289 f.

Classes 33 ff., 44 if., 88 f., 228 f., 241 if.

Diffraction 241 if.

Effect on ^-synthesis . . 356 ff .

Elements 34 if .

Glide planes, q.v. 43 ff., 229 ff., 273 f.

Intensity of X-ray reflections. . 126
Inversion axes . . . . 42 f., 234 f.

Ions 224 ff., 248 if.

Laue 243 f.

Modification of external . . 53 f.

Molecules .... 224 ff., 248 ff .

Optical properties . , . 62 ff., 70 ff.

Physical properties ; 62

Polyatomic ions . . 225 f., 248 ff.

Polymers 248 f.

Pseudo 58, 273 f.

Refractive indices . . . 62 ff., 70 ff.

Screw axes, q.v. 43 ff., 230 if,, 273 f.

Space-groups, q.v. 43 ff., 217, 224, 244 if.

Systems, q.v. ... 33 f., 47 ff ., 52
Translational ... 43 ff., 229 ff.

Unit cell 28, 217

Systematic Absences
153, 210, 216 fl. f 234 ff.

in Body-centred cells . . 21 7 ff., 222.
in Face-centred cells . . 18 f., 222 f.

Glide planes 234 if.

Lattice 216ff.
Screw axes 234 ff.

Space-group . . . 224 ff., 245 ff.

Tables 240
Systems of Symmetry 33 f., 47 ff., 52
'Cubic 50 ff.

Hexagonal 49 f.

Monoclinic 48 ff.

Orthorhombic 49

Tetragonal 50
Triclinic 47 f.

Trigonal 49 f.

Tables (see also Index)
Absent reflections .

Crystal shapes .

Refractive indices .

. . . 240
54 ff ., 91

93, 98

Spare-groups 384 ff.

Unit cell dimensions cubic sub-
stances ...*.... 182

X-ray patterns minerals . . . 123

X-ray powder patterns . . 122 ff.

Tartaric Acid

Crystal symmetry 48

Temperature Factor .... 205 f.

Artificial 350
Tesseral System (see also Cubic Sys-

tem) 50 ff.

Tetragonal System (set also Uniaxial

Crystals)
Classes 50

Dispersion 83 f.

Interplanar spacings 132, 376, 379 ff.

Optical properties .... 65 ff.

Unit cell from powder data
132 ff., 376, 380 ff.

Unit cell from rotation photographs 140
Tetrahedrite

Crystal symmetry ..... 51

1, 2, 4, 5 Tetramethyl Benzene

Symmetry 231

Systematic absences . . . 237 ff.

Thallium Halides
for R.I. measurement . . . 374

Thermal Expansion
Crystal structure .... 290 f.

Thermal Spots .... 206,368
Thermal Vibrations .... 204 ff.

Anisotropy 206

Intensity correction . . . 205 f.

Reflection broadening . . 362 ff., 368

EC2
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Thin-Section Methods ofIdentification 101
Third Mean Line 75
Tilted Crystal X-Ray Photographs

162 ff., PI. VII
Tilting of Crystals on Microscope Stage

92 f.

Tin Dioxide

Crystal symmetry 40
Tin Tetra-lodide

as Solute in B.I. liquids . . . 374

Symmetry 228
Titanium Dioxide
Anatase 51
Brookite 84 f.

Rutile, q.v. . . 210 ff., 296 ff., PI. X
Tourmaline

Absorption of light 86
Trans-Azobenzene

Crystal structure 250
Trans 1, 2 Dichloro Ethylene

Molecular symmetry . . . 224 f.

Translational Elements of Symmetry
43 ff., 229 ff.

Trial and Error Method orCrystal
Structure Determination

7 f., 190 ff., 259 ff.

Comparison with Fourier methods 350 f.

Examples 291 ff.

Non-crystalUno substances . . 371

Optical method . 271 ff., PI. XIII
2, 4, 6 Tribromobenzonitrile

Crystal symmetry 48
Triclinic System

Classes 47 f.

Dispersion .... 85

Interplanar spacings . 136, 158

Optical properties . , 77

Reciprocal cell shape . . 157 f.

Rotation photographs . . 158
Structure amplitudes . . 269 f.

Unit cell and powder data . . 136
Unit cell from rotation photographs

156 ff.

Unit cell volume . . . . 185 f.

Trigonal System (see also Uniaxial

Crystals)
Classes 49 f.

Dispersion 83 f.

Interplanar spacings 134 f., 378, 381

Optical properties .... 65 ff.

Unit cell from powder data 134 f., 381
1, 3, 5 Triphenyl Benzene

Birefringence 283

Twinning 57 f., 89 f.

Optical properties 89 f.

Two-Crystal Weissenberg Goniometer 193

Uniaxial Crystals . . . . 65 ff., 94 ff.

Dichroism 85 ff.

Dispersion 83 f.

Identification 94 ff.

Indicatrix 70 ff.

Optic pictures 78 f.

Optic sign 72, 81, 83

Unit Cell

Accurate dimensions
Axial ratio .

Body-centred
Chain type .

Dimensions .

Face-centred
Fibre photographs .

. . . 180 f,

31 rf., 379 ff.

. 18, 217 ff., 222

. . . 188 f.

31 ff., 128 ff., 182
17 f., 218 ff., 222 f,

176 ff.

Geometry of diffraction pattern 128 f.

Hexagonal ., . 134 f., 140, 377 f., 381
Identification .... 123, 181 ff.

Interplanar spacings . . . 376 ff.

Low symmetry .

'

. 136 ff., 141 ff.

Mixed crystals 183 f.

Molecular weight . . . . 185 ff.

Monoclinic 141

Morphology 27 f., 30 ff., 52 ff., 139 f.

Moving-film photographs, q.v.
166 ff., 181

Optfcal properties .... 63 ff.

Oriented polycrystalline specimens
176 ff.

Orthorhombic
136 f., 139, 142 ff., 376, 382 f.

Oscillation photographs . . 158 ff.

Powder photographs
129 ff., 180 ff., 376 ff., 379 ff.

Pseudo 273 f.

Rhombohedral
134 f., 141, 172 f., 378

Rotation photographs
139 ff., 181f., 382 f.

Shape of molecules . . . 187 f,

Shapes . 15, 17 f., 30 ff., 47 ff., 52 ff .

Simple and compound . 17, 216 ff.

Simplest 172 f.

Tetragonal . 132 ff., 140, 376, 379 ff.

Tilted crystal 162 ff.

Trigonal 134 f., 381

Types . . 15, 17 f., 47 ff., 52, 216 ff.

Unit of Pattern .... 118,224
Universal Stage 92
Urea

Birefringence 283
Diffraction symmetry . . 241 f.

Molecular symmetry . . . 225 f.

Optical properties 81
Oriented overgrowths on NH4C1 . 60
Powder photograph . . . PI. X
Structure determination . . 299 ff.

Symmetry 42 f.

Urea, Methyl-
Space-group 245

Urea Nitrate
Monochromator . . . . , 107

Vacuum Cameras . . . 123 f., 370
Vaterite 59

Analysis 125

Birefringence 285
Structure 285

Vector Maps
Non-crystalline substances . 370 f.

Patterson 351 ff.

Patterson-Harker .... 356 ff.
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Vibration Direction . . . 63, 65ff.

Extinction directions . . 67 ff., 77

Identification . , . 95 ff., 100 f.

Refractive index measurement
66 f., 73 ff.

Vitamin B 4
Identification 183

Vitamin C
Constitution 317
Molecules in unit cell ... .251
Pseudo-symmetry 273

Structure determination . . 315 ff.

Vivianite
Pleochroism 86

Warren's Method
Structure determination . . 371 f.

Wave-Lengths of X-rays . . 105 ft.

Atomic number 108

Bragg's law 114ff.

Choice 113f., 123

K-series 105 ff.

Powder patterns 114

Resolution KOL doublet . . . 120

Resolving power atoms . . . 350
Short limit 105

TJse of long A's for identification . 123

Wax (Paraffin)
Identification 183

Weissenberg Moving-Film X-ray
Photographs . . 167 ff., PL VIII

Equi-inclination 169

Two-crystal 193

Unit cell 181

White X-Radiation .... 105 f.

Background .... 113, 370
Laue photographs .... 243
Removal 107

Setting photographs . . . . 173

Width of X-ray Reflections . . 362 ff.

Wooster-Martin Two-Circle Gonio-
meter 193

Wulfenite

Crystal symmetry 51

{-Values 148
Bernal chart 149 ff.

Moving-film methods . . . 167 ff.

Rotation photographs . . 148 ff.

Tilted crystal method ... 163 ff.

X-ray Emission Spectra . . . 105 ff .

X-ray Fibre Photographs 176 ff., 318

Indexing 176

Interpretation 317 ff.

Repeat period .... 176, 188 f.

X-ray Filters 106 f., 113

X-ray Fluorescence . . . . 113f.

Effect on intensities .... 203

X-ray Goniometers 138

Moving-film, q.v 166 ff.

X-ray Intensities

Absent, q.v.

153, 210, 216 ff., 234 ff., 245 ff.

Absolute, q.v.
192 f., 207 ff., 351, 370 f.

Absorption correction . . . 206 f.

Background 113
Calculated and observed . 119 f., 275
Calculation . . 195 ff., 209 ff., 264 ff.

Characteristic of substance . . 122
Chemical composition . . . . 125
Correction factors, q.v. . 199 ff., 350

Diffracting power of atoms, q.v.
126, 196, 200 ff.

Expressions 207 f.

for Fourier synthesis .... 351

Integrated 192, 194 f.

Measurement 192 ff.

Relative, q.v. 122, 125, 192 ff., 207
Scattered 113
Structure amplitude

196 ff., 209 ff., 257 ff.

Trial and error method, q.v.
7f., 269 ff., 271 ff., 292 ff.

X-ray Laue Photographs . . . 243

X-ray Oscillation Photographs . 158 ff.

Indexing 159 ff.

Tilted crystal 164ff.

X-ray Powder Cameras . . . 109ff.

Focusing 181

Hydrogen filled 123

Large radius 124
Seeman-Bohlin 181

Vacuum 123 f.

X-ray Powder Photographs
103, 106, 108 ff., Pis. Ill, IV,

X, XI
Absorption, q.v.

106 f., 120 ff., 132, 206 f.

A.S.T.M. index .... 122 f.

Axial ratio . . 132 ff., 376 ff., 379 ff.

Background 113

Centred cubic lattices . . . 219 f.

Choice of wave-lengths . 113f., 123

Crystal size 127, 362 ff .

Cubic 129 ff.

Filters 106 f., 113
Identification . 6, 8, 103 ff., 122 ff.

Indexing 129 ff., 376 ff., 379 ff., PL X
Intensities of reflections 192 ff., 207 ff.

Interplanar spacings, q.v.
119 ff., 376 ff., 379 ff.

Limitations in identification . 125 f.

Line broadening .... 362 ff.

Measurement 119ff.

Mixed crystals . . 126, 183 f., 367
Number of equivalent reflections 199 f.

Photometry, q.v. 120, 125, 193 ff., 371

Solid solutions .... 126, 367
Unit cell 129 if., 180 ff., 376 ff., 379 ff.

X-ray Rotation Photographs
137 ff., PL VI

Bernal chart 149 ff.

Extra spots 206
Identification 182 f.

Indexing . . 142 ff., 151 ff., 382 f.

Intensities of reflections 192 ff., 207 ff.

Layer lines, q.v. . 138 f., 142 f., 147

Monoclinic 153 ff .

Moving-film, q.v 166 ff.
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X-ray Rotation Photographs (con*.)

Number of equivalent reflections 200 f.

Row lines 152

Setting 173 ff.

Streaks 206
Tilted crystal I62ff.
Triclinic 157 f.

Unit cell . . 139 ff., 181 f., 382 f.

X-ray Tubes 103 ff.

High power ...... 108

Xylene
as R.I. liquid 374

Zeolites
Defect structures 334

Zero-Order Diffraction . . 339 f., 351
{-Values ....<.... 148
Bernal chart

'
149 ff.

Rotation photographs . . 148 ff.

Tilted crystal method . . 163, 166
Zinc Oxide
Powder photograph . . . PL III

Zinc Sulphide
in Luminescent powders . . 126

Zircon

Crystal symmetry 51
Zone 29
Axis . . . 29
Stereographic projection ... 29
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