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PREFACE

CRYSTALLOGRAPHIC methods are used in chemistry for two main pur-
poses—the identification of solid substances, and the determination of
atomic configurations ; there are also other applications, most of which,
as far as technique is concerned, may: be said to lie between the two
main subjects. This book is intended to be a guide to these methods.
I have tried to explain the elementary principles involved, and to give
as much practical information as will enable the reader to start using
the methods described. 1 have not attempted to give a rigorous treat-
ment of the physical principles: thejapproach is consistently from the
chemist’s point of view, and physical theory is included only in so far
as it is necessary for the general comprehension of the principles and
methods described. Nor have I attempted to give an exhaustive
account of any subject ; the aim throughout has been to lay the founda-
tions, and to give sufficient references (either to larger works or to
original papers) to enable the reader to follow up any subject in greater
detail if he so desires.

The treatment of certain subjects is perhaps somewhat unorthodox.
Crystal morphology, for instance, is described in terms of the concept
of the unit cell (rather than in terms of the axial ratios of the earlier
morphologists), and is approached by way of the phenomena of crystal
growth. The optical properties of crystals are described solely in terms
of the phenomena observed in the polarizing microscope. X-ray diffrac-
tion is considered first in connexion with powder photographs; it is
more usual to start with the interpretation of the diffraction effects of
single crystals. These methods of treatment are dictated by the form
and scope of the book ; they also reflect the course of the writer’s own
experience in applying crystallographic methods to chemical problems.
It is therefore hoped that they may at any rate seem natural to those
to whom the book is addressed -students of chemistry who wish to
acquire some knowledge of crystallographic methods, and research
workers who wish to make practical use of such methods. If the book
should come to the notice of a more philosophical reader, I can only
hope that any qualms such a reader may feel about its avoidance of
formal physical or mathematical treatment may be somewhat offset
by the interest of a novel, if rather severely practical, viewpoint.

The difficulties of three-dimensional thinking have, I hope, been
lightened as much as possible by the provision of & large number of
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diagrams ; but crystallography is emphatically not a subject which can
be learnt solely from books: solid models should be used freely—models
of crystal shapes, of atomic and molecular configurations, of reciprocal
lattices and of vectorial representations of optical and other physical
properties. Most of the diagrams are original, but a few have been
reproduced, by permission, from published books and journals: Figs.
197, 207-9, 215, and 222 from the Journal of the Chemical Society;
Figs. 199, 203, and 217 from the Proceedings of the Royal Society;
Figs. 1024 from the Journal of Scientific Instruments; Fig. 229 from
the Journal of the American Chemical Society; Fig. 161 from Inter-
nationale Tabellen fiir Bestimmung von Kristallstrukturen (Berlin: Born-
traeger); Fig. 192 from the ‘Strmkturbericht’ of the Zeitschrift fur
Kristallographie ; and Figs. 212 and 216 from Bragg’s The Crystalline
State (London: G. Bell & Sons, Ltd.). For Figs. 220-1 I wish to thank
Messrs. G. Huse and H. M. Powell. Finally I wish to thank Dr. F. C.
Phillips and his colleagues at the Department of Mineralogy and
Petrology, Cambridge, for permission to use their scheme of exhibiting
the relations between the crystal classes by miniature stereographic
projections (Fig. 32).

I have great pleasure in acknowledging the help of my friends and
colleagues, and proclaiming my gratitude for it. First of all I wish to
thank Professor C. N. Hinshelwood, at whose suggestion the book was
written, and whose interest and encouragement stimulated its progress.
Next I must thank Mr. H. S. Peiser, who read the whole work in manu-
script, made many valuable suggestions, contributed the geometrical
proofs of appendixes 2 and 4, and compiled the subject index. Parts of
the book were read by Mr. R. Brooks, Dr. L. M. Clark, and Mr. T. C.
Alcock ; their suggestions were gratefully received. I am also indebted
to Dr. H. Lipson for a discussion on nomenclature. In checking the
typescript and proofs I have been very much helped by my wife, by
Mr. C. A. Smale, and Miss A. Turner-Jones. The last-mentioned and
Mr. H. Emmett kindly drew some of the diagrams. The X-ray photo-
graphs were, with one exception, taken by Mr. J. L. Matthews and
Mr. T. C. Alcock, and printed by Mr. W. J. Jackson ; the exception is
the Weissenberg photograph of Plate VIII, for which I am indebted
to Messrs. R. C. Evans and H. S. Peiser. The photomicrographs and
optical diffraction photographs (Plates I, II, V, and XIII) were taken
by Mr. H. Emmett.

Finally, I wish to say that the experience on which the book is based
was gained in the Research Laboratory of I.C.I. Limited (Alkali
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Division) at Northwich. The support and encouragement of Mr. H. E.
Cocksedge (formerly Research Manager), of his successor Dr. J. C.
Swallow, of the present Research Manager, Dr. J. Ferguson, and of
many of my colleagues—more especially Dr. L. M. Clark and Mr. E. A.

Cooke—are gratefully acknowledged.
C.W.B.
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I
INTRODUCTORY SURVEY

MosT solid substances are crystalline, that is to say, the atoms or mole-
cules of which they are composed are packed together in a regular
manner, forming a three-dimensional pattern. In some solids—many
minerals, for instance—"the fact that they are crystalline is obvious to
the unaided eye ; the plane faces and the more or less symmetrical shape
of the particles are evidence of an orderly internal structure. In other
solids all we see is a powder or some irregular lumps ; but with the aid of
the microscope and the still more deticate X-ray methods we have come
to realize that most of the solids with which we are familiar, from rocks
to sand and soil, from the chemical reagents on our laboratory shelves
to paint pigments and cleaning powders, from steel and concrete to
bones and teeth, really consist of small crystals. Even such apparently
unlikely materials as wood, silk, ansl hair are at any rate partly crystal-
line ; the molecules composing them are to some extent packed together
in an orderly way, though the regularity of arrangement is not main-
tained throughout the whole of the material.

The crystalline condition is, in fact, the natural condition in the solid
state; at low temperatures atoms and molecules always try to arrange
themselves in a regular manner. When they do not succeed in doing so
there is good reason for their failure. Some glasses, for instance, are
supercooled liquids in which erystals have not been able to grow owing
to very rapid cooling and the very high viscosity of the liquid; low-
temperature decomposition products such as ‘amorphous’ carbon are
formed at such temperatures that atomic movements are too sluggish
to permit crystal growth; some polymers (such as ‘bakelite’) are com-
posed of molecules which are large and irregular in structure and cannot
pack together neatly.

(Even in these ‘amorphous’ substances it is by no means certain that
order is entirely lacking. The word ‘amorphous’ has to be used with
caution and inverted commas, for some people consider that glasses
and low-temperature decomposition products are really composed of
extremely small crystals only a few atoms across; moreover, some of
the macromolecular polymers like rubber, which are ‘amorphous’ in the
ordinary condition at room temperature, can be brought to a crystal-
line condition by stretching. Even in liquids disorder is not complete ;

there is some attempt to form a regular arrangement. An interesting
4458
B
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account of work on these substances up to 1934 is to be found in J. T.
Randall’s book, The Diffraction of X-rays and Electrons by Amorphous
Solids, Liquids, and Gases.)

The fact that in most solid substances the atoms or molecules are
arranged in an orderly manner is of great significance for the chemist,
whether he is a philosopher in a university or an analyst in an industrial
laboratory. The chemist is interested in such things as the structure
of molecules, the nature of the bonds between dtoms, and the arrange-
ment of ions ; and he uses every property of a substance which can give
him any information on these matters. He is also inevitably concerned
with methods for the identification and analysis of the substances he
encounters. Crystals, in virtue of tke orderly arrangement of the atoms
or molecules composing them, have very special properties, which not
only make possible the most precise determinations of molecular struc-
tures, but also provide powerful and certain methods of identification
and analysis.

Anisotropy. To begin with, the properties of a crystalare, in general,
not the same in all directions. A crystal grows, not as a sphere, but as
a polyhedron; it dissolves more
quickly in some directions than in
others; its refractive index (except
in certain special cases) varies with
the direction of vibration of the
light waves; its magnetic suscepti-
bility, its cohesion, its thermal ex-
pansion, its electrical conductivity,
all vary with direction in the
crystal. This variation of proper-

Fe. 1. C'Y“i‘llirfé‘:g;‘:ﬁ"s vary with  tieq with crystal direction, or ‘ani-

’ sotropy’, is a consequence of the
regular packing of atoms or molecules in a crystal. In a normal liquid
or a gas the atoms or molecules are oriented at random, and con-
sequently the properties are the same in all directions; individual
molecules may be strongly anisotropic, but owing to the random
orientation of the large numbers of molecules present even in micro-
scopic samples, the properties are averaged out in all directions. In
a crystal the atoms are drawn up in ranks; pass through it in imagina-
tion, first in one direction and then in another, and (unless you have
chosen two special directions) you will encounter the constituent atoms
or molecules at different intervals and perhaps (if there are different
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kinds of atoms) in a different order in the two directions. (See Fig. 1,
8 two-dimensional analogy.) Since the arrangement of the atoms or
molecules in a crystal varies with direction, certain properties of the
crystal must also vary with direction.

Crystals thus have a greater wealth and variety of measurable charac-
teristics than liquids or gases. This circumstance can be turned to good
account ; we can use these varied directional properties for the identi-
fication of crystalline sibstances. Since there are more characteristic
magnitudes to determine, identification by physical methods is im-
mensely more certain for crystals than it is for liquids or gases.

Identification of crystals under the microscope. Of the charac-
teristics which are most useful for sidentification purposes the most
readily determined are shape and refractive indices. The determinacive
method which has proved most valuable for microscopic crystals (such
as those in the average experimental or industrial product) is to measure
the principal refractive indices (up to three in number, depending on the
symmetry of the crystal) and, if possible, to find the orientation of
the principal optical directions with respect to the geometrical form of
the crystal. This information, which can all be obtained by simple and
rapid microscopic methods, is usually sufficient to identify any crystal-
line substance whose properties have previously been recorded. Mix-
tures of two or more crystalline substances can be identified by the same
method ; in phase equilibrium studies and in industrial research it is not
uncommon to encounter mixtures of three or four constituents, all of
which can be identified in this way.

This method of identification sometimes has certain advantages over
chemical analysis. A single substance can often be identified in a few
minutes where a chemical analysis might take hours, and only very small
quantities of material are required. But in general the method must not
beregarded as a rival to chemical analysis but asa valuable complement.
It gives essential information in cases where chemical analysis does not
tell the whole story or does not even touch the most important part of
the story. Where substances capable of crystallizing in two or more
different forms are concerned (for instance, the three forms of calcium
carbonate—calcite, aragonite, and vaterite), chemical analysis cannot
distinguish between them, and a crystallographic method is essential.
The greatest advantages, however, are shown in the analysis of mixtures
of several solid phases. Chemical analysis tells us which atoms or ions
are present, as well as the proportion of each, but it does not usually tell
us which of these are linked together. For instance, a solid obtained in a
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phase equilibrium study of the reciprocal salt pair NaNO;-KCl-(H,0)
is shown by chemical analysis to contain all four ions, Na, K, NO,, Cl,
in certain proportions. But which substances are present ? NaCl, NaNO;,
and KNOj, or NaCl, NaNO,, and KCl, or perhaps all four possible salts,
NaCl, NaNO,, KCl, KNO,? This question can be most readily settled
by a crystallographic method of identification. As another example,
consider a refractory material whose composition can be represented as
so much alumina and so much silica; are tliese present as separate
constituents or are they combined as an aluminium silicate ? If they
are combined, which of the several known aluminium silicatesis present ?
And is the material all aluminium silicate, or is there some excess silica
as well as an aluminium silicate ? «If there is excess silica, which of the
several forms of silica is present? These questions can be settled by
crystallographic identification. If the crystals are large enough to be
seen as individuals under the microscope, they can usually be identified
by refractive index measurements ; the crystals need not have a regular
geometrical shape, for refractive index measurements can be made
quite as well on completely irregular crystal fragments as on well-formed
crystals.

This method was first developed by mineralogists, but it is now being
used to an increasing extent in such problems of inorganic chemistry
as those just mentioned. In the organic field it has so far made slower
progress, probably because a rapid and convenient physical method of
identification (the measurement of melting-points) is already well
established ; but when the possibilities of the microscopic method are
realized, there is no doubt that it will find a very large field of usefulness
in organic chemistry, especially in circumstances in which the estab-
lished methods are inadequate or inapplicable (for instance, when a
sample contains a mixture of solid phases).

Origin of anisotropic properties of crystals. If we inquire a
little more deeply into the origin of the anisotropic properties of crystals,
we can distinguish two factors. Consider first crystals composed of
unionized molecules. The molecules themselves may be anisotropic;
a long molecule, for instance, has a greater refractivity forlight vibrating
along itt than for light vibrating across it, while a flat molecule has a
greater refractivity for light vibrating in the plane of the molecule than
for light vibrating perpendicular to this plane. The same is true for
polyatomic ions. This is the first factor. The second is the way in which

1 The vibration dircction is defined as the direction of the electric vector of the waves.
(See Chapters 1II and VIII.)
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the molecules or polyatomic ions are packed. In some crystals all the
molecules are packed parallel to each other, and these crystals have
properties which correspond with those of individual molecules. A
crystal composed of long molecules all packed parallel as in Fig. 2a
(a crystal of a long-chain hydrocarbon, for instance) has a high refrac-
tive index for light vibrating along the molecules, and low refractive
indices for light vibrating in all directions perpendicular to the mole-
cules. In other crystals*the molecules are not all parallel to each other;
sometimes half the molecules have one orientation and half another
orientation, as in Fig. 2b; sometimes the arrangement is still more

O~0
\;\;\; PON 'O'O'O'O'
AOPHN oy

@ ® ° ()
Fi16. 2. a. Long molecules packed parallel. b. Long molecules arranged so

that there are two different orientations. c. In some crystals composed of
monatomic ions, anisotropy results from the mode of packing of the ions.

complex (it depends on the shape of the molecules and the intermole-
cular forces). The properties of these crystals correspond, not with
those of a single molecule, but with those of a small group of two or
more differently oriented molecules.

To turn now to crystals composed of ‘unattached’ atoms or monatomic
ions, which are individually isotropic. Here it is only the second factor
—the effect of arrangement—which can be responsible for anisotropy
in the crystal. It is the orderliness of arrangement itself which, because
it gives rise to different atomic distributions in different directions
(Fig. 2 c), confers properties varying with crystal direction. The degree
of anisotropy is usually far less in these crystals than in crystals con-
taining molecules or polyatomic ions which are themselves anisotropic.

Molecular type and arrangement deduced from anisotropic
properties of crystals. It is evident that, in dealing with crystals of
unknown structure, the anisotropic properties may often be used to
give direct information about the general shape of the molecules or
polyatomic ions in the crystals and the way in which the molecules or
ions are packed. A strongly anisotropic crystal must contain strongly
anisotropic molecules or polyatomic ions packed in such a way that the

\
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anisotropies of the different molecules or ions do not neutralize each
other, and a consideration of the properties of the crystal in all directions
may lead to a fair idea of the general shape of the molecules or ions and
the way they are packed. This use of optical and other properties to
give information about molecular or ionic shape and arrangement is a
striking example of the advantages conferred by the ordered structure
of crystals. A molecule is too small to study individually by methods
available at the present time; but a crystal, in*which a large number of
molecules are packed in & regular manner, is in a sense a vastly enlarged
model of a molecule or a small group of molecules, and when we observe
the optical properties of such a crystal under the microscope, we are
observing in effect the optical properties of a molecule or a small group
of molecules, and this may tell us something about the shape of the
molecules and the way they are packed in the crystal.

The use of X-rays. All the information mentioned hitherto is ob-
tained by old and well-established methods, of which by far the most
important and generally useful is the determination of optical properties
under the microscope. Visible light, however, gives us only a rough idea
of the internal structure of a crystal ; its waves, being much longer than
the distances between atoms, are much too coarsc to show the details. If
we want a more detailed picture of the structure of molecules and the
arrangement of atoms and ions, as well as a yet more powerful method
of identification, we must use much shorter waves, of about the same
length as the distances between atoms. The X-rays, produced when
high-speed electrons hit atoms, happen to be about the right length.
The discovery of this fact, due to Laue in 1912, was of course one of the
most important discoveries in the present century ; it opened the way,
not only to an understanding of the nature of X-rays, but also to the
determination of the exact arrangement of the atoms in crystals. True,
we cannot get a direct image of the atomic pattern in a crystal; X-rays
cannot be focused in the convenient ways used for visible light. What
we have to do is to study the diffraction effects produced when X-rays
pass through a crystal, and build up an image of the structure by calcu-
lation. The diffraction of X-rays by crystals is not essentially different
from that of visible light by a diffraction grating ; but to synthesize the
image from the diffracted waves we must use, not lenses, but equatiogs.

Electron density maps. Since it is the electrons in the atoms which

1 Recently, W. L. Bragg (1939, 1942 a) has shown that, starting with the data provided
by tho X-ray diffractien pattern, an image can be formed experimentally by a method
employing visible light : the interference of light waves takes the place of calculations.
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are responsible for the diffraction of X-rays, the image we build up by
calculation is a sort of contour map of electron densities in the crystal.
Two or three such maps or projections, giving views of the structure
from two or three different directions, are sufficient to enable us to
build a complete space model of the crystal structure, showing the exact
position of every atom. The different sorts of atoms can be identified by
their different electron densities. The value of such a model is obviously
enormous. The exact arrangement of ions and their distancesapart (giv-
ing the coordination numbers and ‘sizes’ of the ions); the exact spatial
configuration and interatomic distances in polyatomic ions and
organic molecules (with all that this tells us about the specific properties
of these bodies and the nature of {he bonds between the atoms); the
mode of packing of molecules (which depends on the shape and the
intermolecular forces)—these are some of the fundamentals revealed
at once by such a model. In the words of Bernal and Crowfoot (1933 ¢),
the intensive analysis of X-ray diffraction patterns ‘is one of the chief
means of transformation from the classical qualitative, topological
chemistry of the nineteenth century to the quantum-mechanical,
metrical chemistry of the present day’.

Limitations of X-ray methods. If it were possible to find the
structure of every crystalline substance in this way, chemists would no
longer have to spend their time in deducing the structures of new
substances by more or less indirect methods ; they could turn all their
energies to preparation and synthesis. In the future it may well happen
that the structures of crystals will be determined by X-ray methods
without chemical evidence of any sort, but at the present time there are
certain difficulties which restrict the scope of such methods.

As may be imagined, the building by calculation of an image of the
pattern of atoms in a crystal is a complex and lengthy task. Moreover,
it is not (except in special cases) straightforward; that is to say, we
cannot proceed straight from the experimental data (the positions and
intensities of the diffracted X-ray beams) to the calculation of the image ;
at one stage it is nearly always necessary to use the procedure of trial
and error, that is, to think of an atomic arrangement, calculate the
diffraction effects it would give, and compare these with the actual
diffraction effects observed ; if they do not agree, another arrangement
must be tried, and so on. Only when the approximate atomic positions
have been found in this way is it possible to calculate the final image in
all its details from the experimental data. For the simpler structures
this does not present any great difficulties, but for the more complex
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structures much depends on the extent of knowledge available at the
time for the building of trial structures. In the early days of X-ray
crystallography the structures of only elements and simple salts could
be tackled with any hope of success, but with the accumulation of
knowledge, structures of ever-increasing complexity have been success-
fully worked out. Up to the present time (1944) many inorganic struc-
tures of considerable complexity (such as the silicate minerals, the alums,
and- the hetero-polyacids like phosphotungstic acid) have been worked
out completely. Among organic compounds progress was at first slower,
but as soon as the structures of the principal fundamental types of
molecules (normal paraffin chain, benzene ring, naphthalene nucleus)
were well established, the pace accglerated, and recently, the structures
of such complex substances as dyestuffs, carbohydrates, sterols, and
high polymers have been solved, and even substances of extreme com-
plexity (proteins) are being actively studied by this method. X-ray
analysis at first merely confirmed the conclusions of organic chemistry,
but now it plays a useful part in research on chemical constitution.

Use of X-ray diffraction patter'ns for identification. Even when
complete structure determination is not possible, however, much
valuable information of a less detailed character may be obtained by
X-ray methods. In the first place, the diffracted beams produced when
X-rays pass through crystals may be recorded on photographic films or
plates, and the patterns thus formed may be used quite empirically,
without any attempt at interpretation, to identify crystalline sub-
stances, in much the same way as we use optical emission spectra to
identify elements. Each crystalline substance gives its own character-
istic pattern, which is different from the patterns of all other substances ;
and the pattern is of such complexity (that is, it presents so many
measurable quantities) that in most cases it constitutes by far the most
certain physical criterion for identification. The X-ray method of
identification is of greatest value in cases where microscopic methods
are iradequate ; for instance, when the crystals are opaque or are too
small to be seen as individuals under the microscope. The X-ray
diffraction patterns of different substances generally differ so much
from each other that visual comparison without precise measurement
is usually sufficient for identification; but in doubtful cases measure-
ment of the positions of the recorded diffractions may be necessary.
Mixtures of two or more different substances which are present as
separate crystals give X-ray diffraction patterns consisting of the super-
imposed patterns of the constituents.
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Information obtainable by partial interpretation of X-ray
diffraction patterns. Between the recording of an X-ray diffraction
pattern and the elucidation of the complete atomic arrangement there
are several well-defined stages. Arrival at each stage gives more and
more intimate information about the sabstance in question. It may be
possible to form conclusions about the degree of purity of a substance,
to determine its molecular weight more accurately than by any other
method, to discover something about the symmetry of the molecules or
ions in the crystal, or to determine the overall dimensions of the mole-
cules. Individual circumstances, the nature of the substance, and the
size and form of the crystals determine in each case how far it is possible
or desirable to go. '

Value of using more than one method. It must be emphasized
that the combination of different lines of evidence is often of much greater
value than any single method of approach. X-ray methods should never
be used alone; the combination of evidence given by X-ray diffraction
patterns with that given by optical properties, habit, cleavage, and so
on may lead to valuable conclusions in circumstances where each of
these lines of evidence taken by itself would leave unresolved ambi-
guities.

Plan of this book. It will be evident from the foregoing survey of
the principal applications of crystallographic methods to chemical prob-
lems that these applications fall into two classes: firstly, the use of
crystal properties for the purpose of identifying substances; secondly,
the elucidation of the internal structure of crystals by interpretation
of their properties. This natural division determines the plan of this
book, which is in two main sections, on identification and internal
structure respectively.

Section I (on identification) comprises four chapters. Chapter II
is an introduction to the shapes of crystals and the relation between
shape and structure, and Chapter III is an elementary account of
crystal optics; some knowledge of both subjects is essential, not only
for the identification of crystals by microscopic methods, but also for
the understanding of the problems of structure determination dealt
with in Section II. Chapter IV deals with procedure in microscopic
methods of identification.

Chapter V, on identification by X-ray methods, is concerned with
the practical details of taking X-ray powder photographs, and also
includes elementary diffraction theory, taken as far as is necessary for
most identification problems.
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Section II deals, in six chapters, with the principles underlying the
progressive stages in the elucidation of internal structure. Chapters VI
and VII deal with the principles of structure determination by trial;
Chapter VIII with the use of physical properties (such as habit, cleavage,
and optical, magnetic, pyro- and piezo-electric properties) as auxiliary
evidence in structure determination. In Chapter IX are to be found
several examples of the derivation of complete structures. Chapter X
gives an introductory account of the use of direct and semi-direct
Fourier series methods of building electron density maps and vector
diagrams from X-ray diffraction data.

Certain crystals give diffuse X-ray reflections; there are various
possible causes for this—small cgystal size, structural irregularities, or
thermal movements. The consideration of these phenomena in Chapter
XTI leads on to a brief introduction to the interpretation of the very
diffuse diffraction patterns given by non-crystalline substances.



SECTION I. IDENTIFICATION

II
THE SHAPES OF CRYSTALS

ANYONE who has seen the well-formed crystals of minerals in our
museums must have been impressed by the great variety of shapes
exhibited: cubes and octahedra, prisms of various kinds, pyramids and
double pyramids, flat plates of various shapes, rhombohedra and other
less symmetrical parallelepipeda, and many other shapes less easy to
describe in a word or two. These crystal shapes are extremely fascinat-
ing in themselves; artists (notably Diirer) have used crystal shapes for
formal or symbolic purposes, while many a natural philosopher has been
drawn to the attempt to understand first of all the geometry of crystal
shapes considered simply as solid figures, and then the manner in which
these shapes are formed by the anisotropic growth of atomic and mole-
cular space-patterns.

But this book has a practical object, as its title proclaims. Our pur-
pose in this chapter is to inquire to what extent crystal shapes can be
criteria for identification, and how much they tell us about the atomic
and molecular space-patterns within them.

In view of the great variety of crystal shapes and the rich face-
development on many crystals, it is natural to expect that, on the basis
of accurate methods of measurement and a sound system of classifi-
cation, it would be possible to identify crystals by their shapes alone;
and indeed, in recent years attempts have been made, first by Fedorov
and later by Barker and his school, to develop such a method resting on
the measurement of the angles between face-normals. There is no doubt
that when well-formed crystals, large enough to be handled individually
so that they can be mounted on a goniometer, are available, this morpho-
logical method of identification is a practicable uvne ; Barker (1930) has
demonstrated this. But as a standard method of identification in a
chemical laboratory it has very serious limitations. One of them is
that the crystals formed in laboratory experiments or in industrial
processes are often too small to be handled individually ; they can only
be examined under the microscope, and under these conditions angular
measurements either cannot be made at all, or if they can be made are
only approximate. Another is that the shapes of such crystals are often
not sufficiently characteristic; sometimes there are too few faces on
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each crystal; or perhaps the substance grows in the form of skeletal
crystals without definite faces; or, worse still, the crystals may be
broken into irregular pieces. To identify such materials we need a
method which does not depend on shape, but on some characteristics of
the crystal material itself—properties of the atomic space-pattern.
The properties most conveniently measured under the microscope are
the optical constants, particularly the refractive indices ; and in practice
the measurement of refractive indices has proved by far the most useful
single method of identifying crystalline substances under the micro-
scope. The technique is described in the next chapter.

There is no need, however, to ignore crystal shape in identifica-
tion work. On the contrary, whenever crystals do show good face-
development their shapes, even if they cannot be measured precisely
but only observed in a qualitative way, reinforce and implement the
evidence provided by optical properties, especially if the relations
between the principal optical and geometrical directions can be
discovered. .

This is one reason for studying crystal shapes. Another and more
weighty reason is that crystal shapes tell us a great deal about the
relative. dimensions and the symmetries of the atomic and molecular
space-patterns constituting the crystalline material.

In this chapter, therefore, we make some inquiry into the origins of
crystal shapes and their classification on the basis of symmetry charac-
teristics.

Shape varies with conditions of growth. The shape of a crystal,
taken as it stands, is not a fixed characteristic of the substance in
question. In the first place, the shape is controlled to some extent by
the supply of material round the crystal during growth. In uniform
surroundings, as in a stirred solution, crystals of sodium chloride grow
as cubes, but if they grow, well separated, on the bottom of a dish of
stagnant solution, they grow as square tablets whose thickness is not more
than half their other dimensions; the reason is that growth can occur
only upwards and sideways, not downwards. If the crystals on the
bottom of the dish are crowded, the tablets formed are not all square ;
many have unequal edges owing to local variations in the supply of
solute. As another example, sodium chlorate, NaClO;, when grown
rapidly in a stirred solution, forms cubes, but when grown very slowly in
a still solution grows in the form of a modified cube showing additional
facets on the edges and corners (Fig. 3). Crystals which grow in
rod-like forms—such as gypsum, CaSO,.2H,0, which is also illustrated
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in Fig. 3—usually tend to grow longer and thinner when formed
rapidly than when growth is slow.

These are, comparatively speaking, minor variations of shape; but
the crystal shapes of some substances may be completely altered by the
presence of certain other substances in the mother liquor. Sodium
chloride grows from a pure solution in the form of cubes, but if the
mother liquor contains 10 per

cent. of urea, the crystals which
grow (Fig. 3) are octahedra @) ®
(Gille and Spangenberg, 1927).
Yet the internal structure—the

pattern of atoms—of this sub-

stance is not changed by such (©
differing external conditions; it

is only the form of the bounding <
surface of the crystalline material

which is changed. It is evident

that if we want to use crystal

@
shapes foridentification we must,
so to speak, get behind the shape
as it stands, and try to deduce €) (F)
from the actual shape something
about the internal structure.

The pOSSibﬂity of dOing this is Fi1c. 3. Variation of crystal shape with con-
indicated by the fact that the ditions of growth. Sodium chlorate, NaClO,,

grown (a) rapidly and (b) slowly; gypsum,
angles between the faces of the CaS0,.2H,0, grown (c) slowly and (d) rapidly ;
Iong thin gypsum crysta,ls in sodium chloride, NaCl, grown (e) from pure

the sketch are exact]y the same solution and (f) from solution containing 10
per cent. of urea.

as those of the shorter crystals.
Likewise, all octahedra of sodium chloride, however much they differ
in size, and however unequal the areas of the different faces of any
one crystal may be, have exactly the same interfacial angles. The slopes
of the various faces are in fact controlled by the rigid, precise internal
structure. The relation between totally different shapes of any one
substance—such as the cubes and octahedra of sodium chloride—is
less obvious ; but it can be shown that the faces of cubes and octahedra
are oriented in precise but different ways with respect to the internal
atomic pattern.

Two pieces of information about the fundamental atomic pattern may
be deduced from the actual shape of a crystal, provided this crystal
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shows a sufficient variety of faces and is large enough to permit measure-
ments of the angles between the faces. One is a knowledge of the shape
and relative dimensions of the unit of pattern. The other is a partial
knowledge of the symmetries of the atomic arrangement.

The unit of pattern (‘unit cell’). A crystal consists of a large
number of repetitions of a basic pattern of atoms. Just as in many textile
materials and wall-papers a pattern is repeated over and over again on
a surface, so in a crystal a particular grouping of atoms is repeated
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F16. 4. A plane pattern. Lower part divided into identical unit cells such
as ABCD. Alernative unit colls FF(7]] and /JK/], are also outlined.

many times in space. The reason for the formation of regular patterns
is that atoms, ions, or molecules tend to settle down in positions of
minimum energy ; for each atom, ion, or molecule a particular environ-
ment of neighbours has a lower energy content than any other, and there
is therefore a tendency for this arrangement to be taken up everywhere.

The only patterns of exactly rcpeated environments capable of
indefinite extension are those in which successions of pattern-units lie
on straight lines. Consider the shape of the unit of pattern, first of
all in the simpler case of a plane pattern, such as that shown in Fig. 4.
Mark any point such as 4, and then mark other points whose surround-
ings are exactly the same (in orientation as well as geometrical character)
as those of 4 ; these points fall on straight lines which divide the pattern
into a number of exactly similar parallelogram-shaped areas. Each area,
such as 4 BCD, represents one unit of pattern ; the whole pattern can be
built up by parallel contiguous repetitions of ABCD. Of course, we
might have started by choosing a differently situated point E, but we
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should have arrived at the same shape EFGH for the unit of pattern;
the position of the origin does not matter. Note that /JK L may equally
claim to be the unit of pattern, inasmuch as it contains one unit of
pattern and has exactly the same area as ABCD or EFGH ; and many
other still more elongated areas, each containing one unit of pattern,
could be drawn ; in practice, however, it is usually most convenient to
accept as the unit of pattern the area with the shortest sides, that is to
say, the area most nearly’approaching rectangular shape.

All patterns on surfaces can be divided into similar areas in this way,
and the unit of pattern is always a parallelogram. The shape and dimen-
sions of the parallelograin vary in different ways; it is possible to have
square units, rectangular units with urequal sides, and non-rectangular
units with either equal or unequal sides.

In a crystal we can do the same thing in three dimensions. Again the
choice of origin does not matter, and again we can divide the whole
structure into units (of volume this time) by joining similarly situated
points by straight lines. Fig. 5 shows the arrangement of the ions in a
crystal of caesium bromide. Any caesium ion has exactly the same
surroundings as any other, and if the centre of each is joined to the
centres of its nearest neighbours, the whole structure is found to be
divided into cubes, each of which has caesium ions at its corners and a
bromine ion at its centre. The centre of a bromine ion might equally
well have been selected as the origin, and then the cubic units of pattern
would have bromine ions at their corners and caesium ions at their
centres. (Note that no bromine ion ‘belongs’ specifically to any one
caesium ion; its relations to the eight caesium ions surrounding it are
equal. There are thus no ‘molecules’ of CsBr in the crystal ; the structure
is simply a stack of positively charged caesium ions and negatively
charged bromine ions.)

Fig. 5 also shows an example of a molecular structure—that of
hexamethylbenzene, C4(CH,),. The molecules, which can be represented
as disks, are all stacked parallel to each other, and if the centre of each
molecule is joined to those of its nearest neighbours, the structure is
divided into a number of identical units of pattern, each of which is a
non-rectangular ‘box’ with all three sets of edges unequal in length.

The unit of pattern in a crystal is always a ‘box’ bounded by three
pairs of parallel sides. The shape and dimensions of the box, that is,
the lengths of its three different sorts of edges (‘axes’) and the angles
between them, are characteristic for each different crystal species; in
some crystals the box is a cube, in others it is rectangular with unequal
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Fi6. 5. a. Caesium bromide, CsBr. Left, structure. Right, shape of crystal. 6. Hexa-
methylbenzene, Cy(CH,)q. Left, structure. Right, shape of erystal. c. Copper. Left,
structure. Right, shape ot crystal.
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edges, in others the angles are not right angles, and so on. We shall not
at this point catalogue the various types of shape; we merely observe
that various shapes of pattern-unit are possible ; the crystal structure of
caesium bromide represents the most highly symmetrical and that of
hexamethylbenzene the least symmetrical of the possible shapes.

It is sometimes more appropriate to use for purposes of reference a
box containing more than one unit of pattern. For instance, in crystals
of metallic copper the atoms are arranged in the manner shown in
Figs. 5cand 6. All the atoms have precisely the same surroundings, and

F1a. 6. Face-centred cubic unit cell of copper (left), and body-centred cubic unit cell of
a iron (hoth shown by broken hnes). In each case a unit containing one pattern-uiit
(one atom) is heavily outlined.

the true unit of pattern, formed by joining similarly situated points so as
to divide the structure into ‘boxes’ with atoms at the corners only, is the
heavily outlined rhombohedron in Fig. 6 ; there is one atom, one pattern-
unit, to each ‘box’. (One at cach corner of the box makes eight in all;
but each one is shared between the eight boxes which meet at the corner;
therefore each box has the volume of one pattern-urit.) But it is found
that atoms 4, B,C, D, E, F, G, and If fall at the corners of a cube, and
atoms I, J, K, L, M, and N in the centres of the faces of the same cube.
This cube is accepted as the unit cell, in spite of the fact that it contains
four pattern-units comprising one copper atom each. (The corner atoms
count as one to each cube; the six atoms in the face centres are each
shared between two cubes; thus the number of atoms per unit cube
is 143 = 4.) There are two reasons for this. The first and more im-
portant reason is that the symmetries of the complete arrangement
are the same as those of crystals in which the shape of the true pat-
tern-unit is cubic; crystal symmetry will not be discussed here—an

4458 ¢
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introductory account of it is given later in this chapter. The second
reason for accepting the four-atom cube as the unit cell is that a cube is
a more convenient frame of reference than a rhombohedron. This parti-
cular ‘compound’ unit cell is described as ‘face-centred’. Other types of
‘compound’ unit cell are the body-centred, with identical pattern-units
in the centres of the cells as well as at the corners (see the structure of o
iron in Fig. 6), and the side-centred, with identical pattern-units at the
centres of one pair of opposite faces in addition to those at the corners.
The arrangement of the pattern-units, the assemblage of points each of
which represents one pattern-unit, is called the space-lattice. The points
of the space-lattice—the ‘lattice points’—are thus corners of the true
unit of pattern ; the conventionally accepted unit cell may be simple or
compound ; if compound, it may contain two or more space-lattice
points.

We now have to consider the faces of crystals and their relation to
the geometry of the precisely patterned assemblage of atoms which
constitutes the solid material. This subject is best approached by
thinking about the manner in which crystals grow. Crystals usually
have plane faces, firstly because they do not grow at the same rate in all
directions, and secondly as a result of the specific manner in which
solid material is deposited.

Crystal growth. Suppose we had the task of packing a large number
of atoms or ions or molecules together to form a predetermined arrange-
ment. We should find that the most convenient way of building up the
structure is to arrange one layer of building units, then put a second
layer on top of the first, and so on. But we should have to choose which
layer to put down first, and there are many different layers which might
be selected ; there' are very many ways in which a crystal structure
could be divided into layers by planes passing through it. A few possible
ways are shown in Fig. 7. In practice we should choose the ‘simplest’
possible plane, that is to say, a plane which is as layer-like as possible,
a plane in which the building-units—atoms in sbme crystals, ions or
molecules in others—are packed closely together. Thus, to build the
crystal of hexamethylbenzene (Fig. 5b), it would obviously be more
convenient to choose planes such as ABCD and DCF@, which are paral-
lel to the side of the unit cell, rather than a plane such as BDF, which
is inclined to all the edges of the unit cell, as the basis for our building
operation.

This is apparently what happens in nature when a crystal grows from
a solution or melt. When growing crystals are watched under the micro-
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Fic. 8. Above: layer formation on erystal of cadmium iodide ( X 600). Below, left: layer
formation on crystal of sodium chloride (x 1400). Below, right: skeletal growths of
ammonium chloride ( X 20).
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scope, using a high magnification and dark ground illumination,.layers
can often be seen spreading over the faces one after another (Fig. 8,
Plate I); sometimes it can be seen that relatively thick layers which
spread at a moderate speed are built up from much thinner, much more
rapidly spreading, layers ; and it seems likely that the same thing occurs,
down to the moleeular or ionic scale—the building units arrange them-
selves layer by layer. (See also Marcelin, 1918; Volmer, 1923 ; Kowarski,

Fic. 7. Dividing a crystal into layors. A few of the simpler ways.
(Each dot is a lattice point.)

1935.) And this process occurs only on certain planes ; most crystals are
bounded by only a few faces, sometimes all of the same type (for in-
stance, in cubic crystals), though more frequently of a few different
types ; and in structurally simple crystals these types are always densely
packed planes.

In the hexamethylbenzene crystal the most densely packed planes
are those parallel to the unit cell edges, and we find that crystals of
hexamethylbenzene grown from a pure solution in benzene are parallele-
pipeda with the three pairs of faces parallel to the faces of the unit cell
(Lonsdale, 1929). In caesium bromide (Fig. 5) the most densely packed
planes are those such as ACGE which cut two edges of the unit cell at
equal angles and are parallel to the third, and caesium bromide crystals
(grown from pure aqueous solution) are rhombic dodecahedra which are
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bounded entirely by such planes (Groth, 1906-19). In crystalline copper
(Fig. 5 c) the most densely packed planes are those such as BEG which
cut the three edges of the unit cell symmetrically (note that atoms K, J,
and N fall on plane BEG); copper crystals grow from the vapour as
octahedra, the faces of which are just these most densely packed planes
(Groth, 1906-19).

For some of the more complex crystals it is not easy to define plane
density of packing of atoms or molecules: a pfane parallel to a crystal
face, taken at any level, passes through many atoms, but it cannot pass
through the centres of more than a small proportion of them. For
instance, the particular plane of the lead chloride crystal illustrated in
Fig. 39, if it passes through the certtres of the atoms at the corners of the
marked unit area, does not pass exactly through the centres of any of
the other atoms, which lie at various distances above or below the plane
of the paper. It would be difficult to say which of these should ‘count’
in the reckoning of plane density of packing of atoms. (See Niggli, 1920.)
But plane density of lattice points is a precisely defined magnitude;
and it is on this that we must focus our attention—for it is found that
the faces of crystals are always densely packed with lattice points. In
other words, if we regard the group of atoms associated with a lattice
point as the building unit, we may say that the faces of crystals are
planes of high reticular density of building units.

It will be evident that, since the faces are parallel to definite planes
of lattice points, the interfacial angles are constant in different crystals
of the same substance. Variations in local conditions during growth
may cause some crystals of hexamethylbenzene, for instance, to be
longer or thinner than others in the same batch ; and the eight faces of a
copper crystal, which in uniform growth conditions would grow to the
same size, may in practice be found to have very different sizes; but
whatever the variation in the actual dimensions of crystals of any parti-
cular substance, the interfacial angles are constant, provided that the
same type of face is ptesent.

Sparsely packed planes usually do not appear as faces on growing
crystals, but if we deliberately create such surfaces we can study their
growth. Fig. 9 illustrates what happens when a cubic crystal of sodium
chlorate (NaClO,) is partly dissolved to a rounded shape so as to present
all possible surfaces, and then put into a supersaturated solution. The
diagram is two-dimensional for the sake of simplicity—it is a section
through the middle of the crystal. At first, small faces appear on the
corners of the square section ; but it is found that the rate of growth of
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these small faces—the thickness of solid deposited in a unit of time—is
greater than that of the cube faces, and as a result of this, the small
faces ultimately disappear and the final crystal is entirely bounded by
the most slowly growing faces, the ordinary cube faces. (See also Arte-
meev, 1910; Spangenberg, 1928.) This experiment brings out the fact
that the faces which appear on growing crystals are those with the
smallest rate of thickening. A small rate of thickening, with perhaps a
great rate of spreading, dre the growth characteristics one expects of the
planes with highest reticular density
and widest interplanar spacing. 100
When crystals grow rapidly in stirred,
strongly supersaturated solutions (as
they often do under the usual condi-
tions of crystallization in the laboratory
or in industrial plant) there is a plentiful
supply of solute round each growing
crystal; external conditions are fairly
uniform, and the controlling factor is
the architecture of the crystal. Under
these conditions the picture of crystal
growth given in the previous para- F16. 9. A rounded crystal of sodium
graphs adequately represents what cpiorate, on being put into super-
happens ;t the crystals are bounded by saturated solution, develops 110 and
o s 100 faces. The more rapidly growing
very few faces—the minimum number 110 faces are subsequently eliminated.
of the most slowly growing ‘simple’
planes necessary to enclose a solid figure. On the other hand, crystals
of many minerals, for instance, have grown very slowly in very slightly
supersaturated solutions in which the supply of solute is very limited
and may vary locally owing to stagnant conditions, convection currents,
the proximity of other crystals, and so on. The external conditions thus
play a large part in determining the shape; faces which, given equal
chances, would grow at different rates may actually grow at the same
rate, dnd vice versa. These crystals therefore often show a variety of
facets which do not appear on crystals grown rapidly. Subsidiary facets
may also appear if the temperature of a crystallizing solution fluctuates;
partial dissolution rounds off the crystals, and when growth is resumed,
small facets appear on the rounded corners, and these may not have
time or opportunity to eliminate themselves by rapid growth as in Fig. 9.

110

N

)

t Except in extreme conditions (very high supersaturation), when skeletal crystals are
formed ; and a few substances grow in skeletal form under ordinary conditions. See later.
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The production of beautiful, richly faceted crystals by the simple
method of leaving a dish of solution for several days on a laboratory
bench without temperature control is undoubtedly often due to such
temperature fluctuations. It is still true, however, that all the faces on
such richly faceted crystals are fairly simple planes, in the sense that
they have a fairly high reticular density of lattice points. It is also true
that the principal faces are in general simpler than the subsidiary facets.

The shape of a crystal may be modified, or even completely changed,
by the presence of certain impurities in the solution (see Fig. 3). The
reason is that the impurities are strongly adsorbed only on certain faces
of the crystal, thereby retarding the growth of these faces (Gaubert,
1906 ; Bunn, 1933; Royer, 1934).* The impurity may be adsorbed on
faces which normally grow rapidly (that is, planes which are not the
simplest and do not normally appear), and in these circumstances the
rate of growth of these faces may be so much reduced that they become
the predominant faces on the crystal. The presence of modifying impuri-
ties may often be unsuspected ; hence we sometimes find crystals exhi-
biting for no apparent reason faces not of the simplest type.

Abnormal external conditions may thus be responsible for an ap-
parent breakdown in the principle of simplicity of faces. However,
apparent exceptions to the principle cannot always be attributed to ab-
normal external conditions. 1t is not justifiable to regard the principle of
simplicity as more than a broad generalization ; that is to say, even when
external conditions are normal, the faces on crystals, though always
simple, are not necessarily the simplest possible. (Sec also Niggli, 1920.)
The rates of growth of crystal faces are of course determined by the
distribution of the forces between the atoms, ions, or molecules, and it
18 not to be expected that a purely geometrical generalization (as the
principle of simplicity is) would cover adequately such complexities.
In particular it is to be noted that in ionic crystals the distribution of
electric charges in the various planes plays an important part (Kossel,
1927; Stransky, 1928; Brandes and Volmer, 1931).

Nevertheless the broad generalization is of the greatest value; for we
can measure the angles between the faces of a crystal, 'and, assuming
that these faces are simple—that is, they are densely packed with lattice
points and are either parallel to the unit ceil faces or are related in some
simple way to the unit cell—we can usually deduce the type of unit cell,
and very often calculate its relative dimensions and angles.

Not all crystals are solid polyhedra. We may approach the subject of
irregularities in crystals by remarking that when a crystal is growing
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from a solution, it sometimes happens that growth in the centres of the
faces stops, while growth in the outer regions of the faces (near the edges
and corners) continues. A hollow is thus formed in the centre of each
face. If, as often happens, the hollow is subsequently closed over,
mother liquor is included in the crystal. This may be repeated more
than once, and is a common cause of opacity in crystals, and also of the
subsequent caking of crystalline products when stored. (Mother liquor
diffuses out, and depostts solute at the points of contact of crystals,
cementing them together.)

If such cavities are not closed over, the final crystals have hollow
faces; often there is a step-formation down each hollow. In extreme
cases growth is maintained only towards the corners of crystals, leading
to skeletal forms, in which successive branching occurs, as in ammonium
chloride, illustrated in Fig. 8, Plate I; the directions of growth here are
the axial directions of the cubic unit cell. When crystals grow in thin
films or droplets of liquid, distortion may occur; a familiar example is
ice, which forms irregular tree-like patterns when it crystallizes from
liquid on window panes.

Such tendencies may be reduced by growing crystals very slowly, for
instance by extremely slow cooling or evaporation. In fact, when it is
desired to obtain perfect crystals for goniometric or X-ray work, the
golden rule is to grow them as slowly as possible. Excessive nucleus
formation in solutions can often be avoided by removing dust particles
in the following way. A solution saturated at, say, 30° C. is made up
and allowed to cool without disturbance to room temperature ; it is then
suddenly disturbed, so that a shower of small crystals is formed ; these
carry down with them any nucleus-forming particles which were in the
solution. The solution is then filtered, warmed slightly to destroy any
new nuclei formed during filtration, and then left undisturbed to eva-
porate slowly.

Another method, often useful for organic substances, is to make a solu-
tion in one solvent and to cover this with a less dense liquid in which
the substance is much less soluble ; crystals grow at the interface. The
two solvents must be at least partially miscible.

Sparingly soluble salts which are conveniently formed by precipita-
tion reactions may sometimes be induced to form good crystals by a
diffusion method. Solutions of the reagents are put in two separate
beakers, both completely filled and standing in a larger vessel ; water is
carefully poured in to cover both beakers, and the arrangement is then
left undisturbed (L. M. Clark: private communication).
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The amount of structural information obtainable by the morpholo-
gical study of skeletal crystals is naturally very limited, especially when
they are distorted. In order to be able to deduce the shape of the unit
cell it is necessary to have well-formed polyhedral crystals. The faces
of such crystals are, as we have already seen, related in some simple way
to the unit cells. We must now define more closely what is meant by the
last phrase—‘related in some simple way to the unit cells’—and to do

c1o

Fi¢. 10. Various sots of planes in a crystal.

this it is necessary to give some account of the accepted nomenclature
of crystal planes.

Nomenclature of crystal planes. Attention has already been
drawn to the many ways of dividing a crystal into layers by sets of planes
passing through lattice points (Fig. 7). Each of these sets of parallel
planes is described by three numbers such as 210 or 132, the meaning of
which is best shown by a few examples. For simplicity, think first of all
in only two dimensions, that is, look at the crystal along one axis—say
the ¢ axis—as in Fig. 10. In this diagram the points, each of which
represents a row of lattice points one behind the other, are seen to lie on
sets of straight lines (planes seen edgewise). Every point lies on one of
these planes. Now along the axial directions count the number of planes
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crossed between one lattice point and the next ; these numbers are the
index numbers. Thus, for the set of planes in the bottom right-hand
corner, three planes are crossed in going along a from one lattice point
to the next, and two planes in going along b from one lattice point to the
next; the first two index numbers are therefore 32. The third index
number is 0, because this set of planes is parallel to the ¢ axis, and there-
fore no planes are crossed in going along c; this set of planes is thus the
320 set. Other sets of planes, with indices 110, 100, 010, and 120 (all
parallel to the ¢ axis), are also illustrated in this diagram.

b

Fic. 11. This set of parallel planes has indices 312.

A set of planes inclined to all three axes is shown in Fig. 11. Along a,
three planes are crossed between one lattice point and the next; along
b, one plane is crossed at each lattice point, and along ¢, two planes per
lattice point: the indices are 312.

Alternatively, one could say that these planes cut the a axis at inter-
vals of a/3 (a being the repeat distance in this direction), the b axis at
intervals of b/1, and the c axis at intervals of ¢/2, the indices being
defined as the reciprocals of these intercepts. This comes to the same
thing as the definition already given, and corresponds to that found in
most text-books of crystal morphology ; but it is really simpler to think
of numbers of planes rather than reciprocals of intercepts ; and moreover,
the present definition links up with the method of indexing X-ray
reflections (see Chapter VI).

Each type of plane is a possible crystal face, although in actual fact
only a few simple types of plane usually appear as crystal faces. The
next sketch, Fig. 12, shows an actual crystal (ammonium sulphate)
with the indices of its front faces marked. This sketch will also sérve to
illustrate the conventions about crystal set-up and positive and negative
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directions. In order to show as many faces as possible, crystals are
drawn as seen from a viewpoint inclined to all three axes and defined in
the following way. Imagine first of all the crystal with its ¢ axis vertical
and its 010 plane seen edgewise ; now shift the eye a little to the right
and upwards. The c axis still appears vertical, the b axis lies left and
right but not quite in the plane of the paper, and the a axis points a
little to the left and downwards as it appears to come out above the
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Fia. 13. Indices of planes of hexagonal
o7 crystals. ABCDEFA'B'C'D'E’F’, hexa-
gonal prism; ABCOA’B'C’Q’, unit cell.
ACO’, plane which, in conformity with
indices of crystals of other systoms, is
called 111. For the sake of treating the
threo equivalent directions 04, OC, and
OF equally, this plane i sometimes known

as 1121.

paper. Usually perspective drawing is not attempted; most crystal
drawings are orthogonal projections. Positive directions are upwards
along ¢, to the right along b, and forwards (above the paper) along a.
Intercepts in the negative directions arc represented by minus signs
above the index numbers, thus: 120, 111. Naturally it is sometimes
necessary to depart from the conventional viewpoint to illustrate
particular features of crystals more clearly.

An extension of this system of nomenclature is sometimes encoun-
tered in descriptions of crystals of hexagonal type (Fig. 13). The unit
cell of these crystals has a diamond-shaped base, the @ and b axes being
equal in length and inclined to each other at an angle of 120°. The ¢
axis is perpendicular to the other two. Although only two horizontal

F1c. 12. A crystal of ammonium sulphate
(class mmm). (After Tutton.)
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axes are strictly necessary for purposes of description, nevertheless there
are three horizontal directions, all exactly equivalent, at 120° to each
other; any two of them could be taken as the @ and b axes. In order to
bring out this feature, index numbers referring to all three horizontal
axes, as well as the vertical (c) axis, are given, thus: 1121. The last
number refers to the c axis, the first three to the horizontal axes. The
third index, which is always necessarily numerically equal to the sum
of the first two but of opposite sign, is really redundant. This nomen-
clature will be found in descriptions of the shapes of hexagonal crystals,
but for internal crystal planes it is customary to omit the third index.

The indices of single crystal faces are sometimes enclosed in brackets,
thus: (100); this distinguishes a facc from the corresponding set of
internal planes 100. Curly brackets signify a set of equivalent faces: for
a cubic crystal {100} would mean the set 100, 100, 010, 010, 001, and 001.

The law of rational indices. We have seen that the faces of
structurally simple crystals, the planes on which deposition of solid
occurs layer by layer, are in general those planes which have a high
reticular density of lattice points in each plane and wide interplanar
spacing. Sometimes the faces are the planes with the densest packing
and the widest interplanar spacing, but there are many exceptions to
this, for various reasons which have already been mentioned. It re-
mains true, however, that in all cases the actual faces of a crystal are
planes of high (though not necessarily the highest) reticular density.
We may call these the ‘simple’ planes.

It is evident from Figs. 10 and 11 that these planes have small indices ;
we may therefore state that the actual faces on crystals are planes with
small indices. In this form, the generalization is what is known as the
‘law of rational indices’, which says simply that all the faces on a crystal
may be described, with reference to the three axes, by three small whole
numbers. It is frequently found that all the faces of even richly faceted
crystals ean be described by index numbers not greater than 3 ; numbers
greater than 5 are very rare.

It is the recognition of the law of rational indices which makes it
possible to deducaprobable unit cell shapes from crystal shapes. (It is,
of course, not possible to discover the absolute dimensions; X-ray or
electron diffraction photographs are necessary for this purpose (Chapter
VI).) The general principle is to find that unit cell (its angles and relative
dimensions) which will enable us to describe all the faces of the crystal
by the smallest whole numbers, and, in particular, the largest faces by
the smallest numbers. There is a further condition: all faces which
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appear to be equivalent (for instance, all the eight faces of a regular
octahedron) are given similar indices, that is, are assumed to be related
in the same way to the most appropriate unit cell; in other words, the
directions of unit cell edges are chosen in conformity with'the symmetry
of the crystal. We shall return to this subject later in this chapter.
Meanwhile, the first step in the attempt to deduce the angles and
relative dimensions of the unit cell of a crystal from its actual shape
is the accurate measurement of the angles between all the faces of the
crystal.

3
5c0° . COLLIMATOR

F1c. 14. Principle of the reflecting goniometer. The adjusting head compriges two
mutually perpendicular arc movements and two cross movements.

Measurement of interfacial angles, and graphical representa-
tion. The most accurate method of measuring the angles between
crystal faces is an optical one, which makes use of the reflection of light
by the plane faces. The crystal is mounted on the stem of a goniometer
head (Fig. 14) by means of wax, shellac, or plasticine ; & beam of parallel
light from the collimator strikes the crystal, which is rotated until
one of its faces reflects the beam into the telescope, which is at any
convenient angle to the collimator. A suitable sharply defined aperture
is provided in the collimator, so that its image can be adjusted accu-
rately to the cross-wires of the telescope. The crystal is then rotated
until the light is reflected by the next face ; the angle through which the
goniometer head has been turned is the angle between the normals of the
two faces. It is evident that, in order to get reflections from both faces
into the telescope, the crystal must be adjusted very carefully by means
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of the arc movements of the goniometer head. This is simplest when the
crystal is mounted on the goniometer head so that one of the face-
normals is approximately parallel to one of the arc movements ; this arc
is adjusted until the reflection from this face appears accurately on the
cross-wires. The crystal is now rotated so that the reflection from
another face (preferably one which is roughly at right angles to the first)
enters the telescope ; by a movement of the second arc this reflection is
brought to the cross-wires.

It is found that, when the reflections from two faces are registered
accurately on the cross-wires of the telescope, other faces automatically
give their reflections when the crystal is rotated further; for instance,
all the vertical faces of the ammoniun. sulphate crystal in Fig. 12 give
their reflections one after the other as the crystal is rotated round the
¢ axis. Such a set of faces is called a ‘zone’, and the axis of rotation
parallel to all the faces is called the ‘zone axis’. All the faces of any
crystal fall on one or other of a few zones, and therefore in order to
measure all the interfacial angles each of these zone axes in turn must
be set parallel to the axis of rotation of the goniometer head. On a
single-circle goniometer this must be done by remounting the crystal
for each zone; but two-circle goniometers which obviate the necessity
of such re-setting are also obtainable.

It is often useful to be able to represent precisely on a flat surface the
three-dimensional relations between the interfacial angles. The most
convenient projection for most purposes is the stereographic projection,
which is derived in the following way. From a point within the crystal
imagine lines drawn outwards normal to all the faces (Fig. 15). Round
the crystal describe a sphere having the point as its centre. The positions
at which the face-normals meet the surface of the sphere are known as
the poles of the faces. The crystal is thus replaced by a set of points on
the surface of the sphere, each point representing the orientation of a
crystal face. In this way we have left behind the actual shape of the
crystal, with the irregularities arising from the conditions of growth,
and are now dealing simply with the orientations of faces—that is, with
the orientations of lattice planes, which are related in a simple way to the
unip cell. The sphere is now projected on to a selected plane—the equa-
torial plane in Fig. 15 b—by joining all points on its upper half to the
‘south pole’ and all points on its lower half to the ‘north pole’. The great
advantage of this projection (Fig. 15 c) is that all zones of faces fall
either on arcs of circles or else on straight lines, a circumstance which
much facilitates graphical construction. (Each such arc or straight line
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F16. 15. The stereographic projection.

CHAP. 11

passes through opposite points
on the equatorial circle.) Poles
in the northern hemisphere are
denoted by dots, those in the
southern hemiphere by little
rings.

For further information on
stereographic projections and
the spherical trigonometry
necessary for handling gonio-
metric data, books by Miers
(1929), Tutton (1922), and
Barker (1922) may be consulted.

Deduction of possible unit
cell shape from crystal
shape. Preliminary. In this
book we are concerned chiefly
with optical and X-ray methods,
and we shall consider crystal
morphology only so far as is
necessary for the full use of such
methods for identification or for
structure determination. But
although it is not intended
to deal with morphological
methods in a quantitative way,
it is very necessary to consider
in rather more detail the rela-
tion between the external shape
of a crystal and that of its unit
cell ; and this subject is perhaps
best developed in the guise of
a consideration of the problem
of deducing the probable unit
cell shape from the external
shape of a crystal. We have al-
ready seen that the principle on
which the attempt is based is
the principle of simplicity of
indices, coupled with the con-
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formity of the indices with the symmetry of the crystal. We now see
how this principle can be applied in practice. First of all, we shall see
the principle of simplicity in action by itself; and we shall then find
it necessary to consider crysial symmetry in some detail.

The planes with the simplest indices—100, 010, and 001—are those
which are parallel to the sides of the unit cell, and we find that on many
crystals these form the principal faces, and on some crystals (especially
those grown rapidly in str'ongly supersaturated solutions) the only faces.
One example, hexamethylbenzene, has already been given; it forms
non-rectangular parallelepipeda with the three pairs of faces parallel
to the unit cell faces. Another example is anhydrite, CaSO,; the unit
cell of this crystal is a rectangular boxswith unequal edges, and it grows
as a rectangular brick with unequal edges, though it must be emphasized
that the relative dimensions of the crystal itself have no direct con-
nexion with the dimensions of the unit cell. (The rates of growth of the
various faces of any crystal depend, in the first place, on the forces
between the atoms, ions, or molecules in different directions, and these
forces have no direct connexion with the unit cell dimensions ; moreover,
these rates of growth are affected by external conditions.) Such crystals
tell us the angles of the unit cell, but they do not tell us anything about
the relative dimensions of the unit cell edges.

If we are to be able to calculate the relative dimensions of the unit
cell of any crystalline substance, some of the faces on the crystals must
be inclined to the faces of the unit cell. Suppose we have a crystal of the
shape shown in Fig. 16 a—a rectangular brick with the (unequal) edges
bevelled (an orthorhombic crystal). We naturally assume that the faces
which are perpendicular to each other are parallel to the faces of the unit
cell, which is evidently a rectangular box. The indices of the principal
faces are thus assumed provisionally to be 100, 010, and 001. The
simplest indices for the faces which bevel the edges are 110, 011, and
101. If we assume that a face is 011, we are assuming that successive
identical planes of lattice points parallel to this face are parallel to the
a axis, and that in passing along either b or ¢, only one plane is crossed
in the interval between one lattice point and the next. (See Fig. 165.)
It is evident that ¢/b = cot §. In the same way, by assuming that
another face is 110, we can obtain a/b; and this settles the shape of the
unit cell and the indices of the remaining faces ; thus, the third different
bevelling face might turn out to be, not 101 as first suggested, but 201
or 102. If our crystals also have faces cutting off the corners (Fig.
16 c), the indices of these faces can be found (by slightly more complex
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trigonometry) from the angles between these ‘corner’ faces and the
principal faces.

Alternatively, it might have been assumed initially that these ‘corner’
faces are 111, 111, and so on ; this assumption would have given us a set
of axial ratios, from which the indices of the bevelling faces could be
deduced.

It is always possible to find alternative sets of indices, corresponding
to different axial ratios, for any crystal. Thus; consider the ammonium
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Fic. 16. Determination of the probable shape of the unit
cell from interfacial angles.

sulphate crystal (Fig. 12), which, like the example just given, has a
rectangular unit cell. Let us call the faces 110, 011, 130, 021, and 111
»,9,p", 4, and o respectively. If it had been assumed that ¢’ is 011 and
p 110, then this group of faces would be 110, 012, 130, 011, and 112.
Or it might have been assumed that ' is 110 and ¢ 011, in which case
the group of faces would be, 310, 011, 110, 021, 311. But the sets of
indices given by the second and third schemes are less simple than those
resulting from the first assumptions, and therefore the axial ratios
derived in the first scheme ave accepted as the probable relative dimen-
sions of the unit cell edges. This turns out to be correct.

Here we have the key to morphological crystallography. The principle
followed throughout is to find that unit cell shape which, subject to the
condition that similar faces shall have similar indices, will allow all the
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faces of a crystal to be indexed by the smallest possible whole numbers,
the principal faces being given, as a general rule, the simplest indices.
This method was developed during the last century, long before X-rays
were discovered, though the term ‘unit cell’ was not used. The set of
axes deduced in this way was regarded primarily as the most convenient
frame of reference for the accurate description and classification of any
crystal. Nevertheless it is clearly more than a convenient frame of
reference ; it corresponds’to some fundamental feature of the ultimate
structure of the crystal. We know now, as the result of the study of the
atomic structure of crystals by X-ray methods, that the relative axial
dimensions deduced by morphological methods are in fact very often
the exact relative dimensions of the unit cell. Even when they are not
correct, there is always a very simple relation between the ‘morpholo-
gical’ unit and the true unit; one of the morphological axes is perhaps
twice as long or half as long (in relation to the other axes) as it should be.
This obviously means that the principle of simplest indices is not strictly
true for these crystals; some of the faces on these crystals are, so to
speak, not the simplest but the next in order of simplicity. There is no
doubt about the general soundness of the principle of simplest indices,
but it is not a rigid law.

The examples given hitherto have been particularly simple ones,
because some of the faces have been at right angles to each other, and
this has given the clue to the type of unit cell. But many crystals do
not possess faces parallel to the unit cell faces, and for such crystals
the type of unit cell, and possible indices for the principal faces, are
very often not by any means obvious. To approach such problems it is
necessary to introduce the all-important subject of crystal symmetry.
The type of unit cell is entirely bound up with the symmetry of the
atomic arrangement ; it is, in fact, the symmetry of the atomic arrange-
ment which decides which (if any) of the unit cell angles shall be right
angles, and how many of its edges shall be equal. Therefore if we can
recognize the symmetries of any particular crystal, this leads us at once
to the unit cell type and to the probable directions of unit cell edges.

And this is not all. Each type of unit cell may arise from a number of
different types of atomic arrangement, and some of the symmetry
characteristics of these different types of atomic arrangements are re-
vealed by shape-symmetries. In classifying crystals we can first of all
divide them into several systems according to unit cell types, and then
each system can be divided into several classes according to those sym-

metry characteristics which are revealed by shape. The consideration
4458
D
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of crystal symmetry may thus take us further than the mere derivation
of unit cell type.

Internal symmetry and crystal shape. Consider first one of the
simplest and most highly symmetrical of atomic arrangements, that
which is found in crystals of sodium chloride and in many other simple
binary compounds. The atomic arrangement is shown in Fig. 17a. The
unit cell is a cube ; if we take the corner of the unit cell to be the centre
of a sodium ion, there are also sodium ions at the centre of each face,
the lattice being a face-centred one; the chlorine ions are half-way
along the edges and also in the centre of the unit cell. Note first that
the reason why the three mutually perpendicular axes are equal in
length is that the arrangement of atoms is precisely the same along one
axis as it is along the other two; the 100 plane has exactly the same
arrangement of atoms as the 010 and 001 planes ; secondly, that when
a sodium chloride crystal grows in a pure solution, it is inevitable that,
provided the three types of faces have the same chance (in a stirred
solution, for instance), they grow at the same rate, and the crystal
becomes a perfect cube.

If sodium chloride crystals are grown in a solution containing 10 per
cent. of urea, they grow as regular octahedra ; but although the external
shape is different from that of crystals grown from a pure solution, the
internal structure is exactly the same; the same internal lattice is
bounded by surfaces of a different type in the two sorts of crystals.
The octahedral faces (111, 111,111,111, 111,111,111, and 111) are per-
pendicular to the cube diagonals; the atomic arrangement on all octa-
hedral faces is the same, and if we proceed from any point in the crystal
along any of the eight diagonal directions, we shall come across the
same atomic distribution (alternate layers of sodium and chlorine
ions); consequently, in uniform growth conditions all the octahedral
faces grow at the same rate, and the crystals grow as perfectly regular
octahedra.

Now although the cube and the regular octahedron are quite different
solid shapes, yet their symmetries are exactly the same; and it can be
seen (in Figs. 17-20) that the symmetries of these solid figures are those
of the arrangement of atoms in a sodium chloride crystal. Rotate a cube
about an axis perpendicular to one of its faces and passing through its
centre (Fig. 17 b) ; after a quarter of a turn it presents exactly the same
appearance as it did at first; after half a turn, again the same appear-
ance, and likewise after three-quarters of a turn ; in fact, it presents the
same appearance four times during a complete revolution ; the axis is an
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axis of fourfold symmetry. There are three such fourfold axes, all at
right angles to each other and parallel to the cube edges. A regular
octahedron likewise has three fourfold axes, passing through its corners
(Fig. 17 ¢). These fourfold axes correspond with those of the atomic

F1c. 17. a. The atomic arrangement in sodium chloride, and some of its axes
of symmetry. b and c. Fourfold axes of cube and octahedron. d and e. Twofold
axes of cube and octahedron.

arrangement ; every line which passes through a row of atoms parallel
to a unit cell edge is an axis of fourfold symmetry, since the atomic
arrangement (regarded as extending indefinitely in space) presents the
same appearance four times during a complete revolution round this
line. Similarly there are, passing through the edges of both cube and
octahedron, six axes of twofold symmetry, involving identity of appear-
ance twice during a complete revolution (Fig. 17 d and ¢); and finally,
passing through the cube corners and perpendicular to the octahedron
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faces, four axes of threefold symmetry, involving identity of appearance
three times during a complete revolution (Fig. 18). All these axes are
symmetry elements of the atomic arrangement.

F1c. 18. Centre: atomic arrangement in sodiuin chloride, seen along a threefold
axis of symmetry. Left: cube scon along a body diagonal. Right: octahedron
seen along a face-normal.

Sodium chloride crystals also possess another type of symmetry;
imagine a plane parallel to one pair of cube faces, passing through the
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cube and octahedron.

centre of the crystal (Fig. 19); this plane
divides the crystal into two halves, each
the mirror image of the other, and is there-
fore called a plane of symmetry. There are
two sets of such planes of symmetry: a
set of three mutually perpendicular planes
parallel to the three pairs of cube faces,
and a set of six bisecting the angles be-
tween the first set. These planes of sym-
metry, which are also possessed by the
regular octahedron, correspond with the
planes of symmetry of the atomic arrange-
ment—planes passing through sheets of
atoms.

There is one other element of symmetry
possessed by sodium chloride crystals. For

each face, edge, or corner of the cube or octahedron there is an exactly
similar face, edge, or corner diametrically opposite; the centre of the
cube or octahedron (Fig. 20) is therefore called a centre of symmetry.
The centre of symmetry possessed by these shapes corresponds with
the centre of symmetry in the atomic arrangement ; the centre of any
sodium or chlorine ion is a centre of symmetry, since along any direction
from the selected ion the arrangement encountered is exactly repeated
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in the diametrically opposite direction. A centre of symmetry is often
called a centre of inversion because a particular grouping on one side of
it is an inverted or mirror-image copy of the
grouping on the other side, just as a pin-hole :
camera produces an inverted image of the st 4&
original object. ..... . \V
Turn now to sodium chlorate, NaClOg. This
crystal also has a cubic unit cell, and rapidly ¥16. 20. Both cube and
octahedron possess a centre
grown crystals are simple cubes; but slowly of symmetry, which corre-
grown crystals (Fig. 21, left) show subsidiary sponds to the centre of
. symmetry in each atom of
faces on the edges and corners, and if these the crystal.
crystals are examined it will be found that their
symmetries are different from those of sodium chloride. For instance,
there are only four ‘corner’ faces ({111} type), not eight; and the axes
passing through the centres of the cube faces are in this case not four-
fold but only twofold. Similarly, when we encourage the growth of 111
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Fic. 21. Sodium chlorate crystals with tetrahedron faces.

faces by the presence of sodium thiosulphate in the solution, we ob-
tain tetrahedra, not octahedra (Buckley, 1930); a regular tetrahedron
(Fig. 21, right) has three mutually perpendicular twofold axes but no
fourfold axes. Evidently the rate of growth of four of the faces of
type 111 is much less than that of the other four. The known atomic
arrangement (Fig. 22) shows clearly the reason why there is a difference.
The chlorate ion (C10,) has the form of a low triangular pyramid with
the chlorine atom as apex and the oxygen atoms forming an equilateral
triangular base. The arrangement of these pyramidal ions on faces of
type 111 is rather complex, for there are four different orientations;
but for the present purpose we need not consider this in detail; we
need only note that on four of the planes of type 111 there are pyramidal
ions with their bases facing outwards (and none with an exactly reversed
orientation), while on the other four it is the apexes which face outwards ;
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hence the surface forces on four of the planes are quite different from
those of the other four, and the rates of growth are therefore different—
so much so that one set never appears on crystals at all. The tetrahedron
~ has no centre of symmetry, and each threefold axis is called a polar axis
since its two ends are not equivalent.

If sodium chlorate grew always in the form of regular tetrahedra
we might think the atomic arrangement has planes of symmetry, for the
regular tetrahedron is a solid figure which has such planes. But crystals
of this substance grown very slowly in pure solution (Fig. 23) present
evidence of an internal symmetry even lower than that of a simple
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Fic. 22. Structures of left- and right-handed sodium chlorate crystals.

tetrahedron. Truncating the cube edges there are not only {110} faces
but also faces of type {210}; but only twelve out of a possible twenty-
four of this type are present, one on each edge; thus, on a particular
crystal, 210 is present but not 120. The threefold axes (cube diagonals)
are maintained, as they are in all crystals belonging to the cubic system ;
and so are the twofold axes characteristic of a tetrahedron ; but in con-
sequence of the presence of this half-set of {210} faces, the crystal has
no planes of symmetry. If we look down a threefold axis of the crystal
shown in Fig. 23, left, we see a 210 type of face always in advance
(clockwise) of a 110 type of face. The reason can again be seen quite
directly from the known atomic structure of the crystal; the ClO; ions
are placed so that their chlorine-oxygen bonds do not point to the
corners of the tetrahedral faces ; the ions are rotated to a ‘skew’ position.
It should be noted that in addition to the crystal illustrated on the left
of Fig. 23, there is an equivalent but not identical type (Fig. 23, right)
in which the faces of type 210 are on the other side of the 110 faces; in
these crystals, evidently, the Cl0; ions are twisted round in the opposite
direction to those in the first-mentioned crystals.t The two types of

t It is not known whether the orientations of the chlorate groups in the two types of
crystal are as shown or the reverse.
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crystal are mirror-images of each other, both as regards their external
shape and their atomic arrangements; they are, like left- and right-
handed gloves, equivalent but not identical.

The external form of a crystal may thus reveal, not only the shape
of the unit cell, but to some extent the symmetries of the internal
atomic arrangement. For each different type of unit cell (each different

Fia. 23. Shapes of left- and right-handed sodium chlorate crystals, and orientation
of ClO, groups on 111 faces. (Point-group symmetry of sodium chlorate—23.)

crystal system) there are several types of internal symmetry which may
be revealed by crystal shape ; in the cubic system, for instance, there are
five different classes recognizable by external shape-symmetry, that of
sodium chloride having the highest and that of sodium chlorate the
lowest symmetry. Such information is not always obtainable, however;
very often, especially when crystals grow rapidly, they have too few
faces, and the apparent symmetry of the crystals is higher than the real
internal symmetry ; but when this information can be obtained, it is of
value for identification purposes and for structure determination. The
possibilities of identity for a crystal observed to have the form of &
regular tetrahedron are in some degree limited by the obvious fact that
it cannot belong to the most highly symmetrical class of the cubic
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system ; its internal symmetry is not higher than tetrahedral (though it
might be lower). And in setting out to determine the atomic arrange-
ment of a crystal having a tetrahedral habit all arrangements having
fourfold axes of symmetry are ruled out from the start.

The above remarks on symmetry of shape apply only to crystals
grown in uniform external conditions. When external conditions are
not uniform, crystallographically equivalent faces are often found to be
very unequal in size ; but, however unequal titey are in size, the angles
between them are constant, and the symmetries of the internal atomic
arrangement, though not shown by the shape as a whole, are exhibited
by the interfacial angles. The best way of thinking of such cases is to
imagine lines drawn outwards from a point within the crystal, each line
being perpendicular to a crystal face ; this assemblage of perpendiculars
or ‘poles’ (which is best represented on paper by the stereographic
projection) exhibits the symmetries of the atomic arrangement. There
is an important possible source of confusion here ; certain faces may be
missing owing to accidental local variations of growth conditions.
However, it will usually be qbvious that such absences are accidental,
as opposed to the systematic absences like those shown by sodium
chlorate crystals. For instance, when only one of a set of eight faces is
missing the absence is obviously accidental. It is only when a set of
faces is halved or quartered, for instance, that the circumstance has any
significance with regard to internal symmetry. The examination of a
number of crystals from the same batch will usually resolve such diffi-
culties; not all the crystals will have the same accidental absences or
accidental variations of shape, and examination of a number of crystals
will usually give a sound idea of shape-symmetry.

Crystal shapes idealized in this way may be regarded as the result of
the co-operation of selected elements of symmetry. In crystals belonging
to the cubic system we find the planes and axes of symmetry occurring
in sets of three or four or six, in consequence of the identity of atomic
arrangement along three mutually perpendicular directions; but in
crystals belonging to some of the other systems we may find them in
smaller sets or in isolation. Crystals of cassiterite, SnO,, for instance,
which belong to the tetragonal system, exhibit a single fourfold axis,
perpendicular to two sets of two twofold axes; there are also planes of
symmetry in sets of one or two (Fig. 24). Crystals of sodium meta-
periodate trihydrate, NalO,.3H,0, have one threefold axis (of polar
character) as their only element of symmetry (Fig. 25). Meta-bromoni-
trobenzene (orthorhombic system) has one twofold (polar) axis and two
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planes of symmetry parallel to this axis (Fig. 26). Paraquinone (mono-
clinic system) has one twofold axis and a plane of symmetry perpendi-
cular to this axis (Fig. 27).

The number of different types of symmetry elements is very small.
In addition to the symmetry axes already mentioned, the only other
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Fic. 24. Cassiterite, SnO,. Left: general view, showing axes of symmetry
and equatorial plane of symmetry. Right: view down fourfold axis, showing
vertical planes of symmetry. Class 4/mmm.
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Fi1a. 25. NalO,.3H,0 (class 3). Left: general view. Right: view along
threefold axis.

straightforward rotation axis is the sixfold axis, involving identity
of appearance six times in the course of one complete revolution.
Crystals of potassium dithionate, K,S,Qq, exhibit this type of sym-
metry (Fig. 28).

Axes of fivefold or greater-than-sixfold symmetry do not occur in
crystals, though it is possible to construct solid figures showing such
symmetries. The reason is that space-patterns—regular repetitions of
structural units in space—cannot have such symmetries. Nor, for that
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matter, can plane-patterns; it is easy to confirm this by drawing patterns
of dots on paper.

Finally, there is another type of symmetry axis which involves,
not simple rotation, but combined rotation and inversion through a
point. Crystals of urea, O:C(NH,),, are prisms of square cross-section,
terminated at each end by a pair of sloping faces (Fig. 29); all four

Fia. 26. Symmetries of meta- Fie. 27. Symmetries of para-quinone

bromonitrobenzene (classmm). (class 2/m).

Fic. 28. Potassium dithionate, K,S,04 (class 6/mmm). Left: general view. Right: view
down sixfold axis. (Note. Atomic arrangement has lower symmetry.)

sloping faces make the same angles with the prism faces, but if we wish
to imagine a bottom face—say 1117—mowved into the position of a top
face, we must rotate through 90° and invert through a point at the
centre of the crystal, thus arriving at 111 or 111. All four sloping faces
can be accounted for by repetitions of this compound operation. The
prism axis of such a crystal is known as a fourfold axis of rotatory in-
version, or fourfold inversion axis. There are also three- and sixfold
inversion axes. The threefold inversion axis, which is equivalent to an
ordinary threefold axis plus a centre of symmetry, is exemplified in
crystals of dioptase, CuH,SiO, (Fig. 30). The sixfold inversion axis is
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equivalent to a straightforward threefold axis with a plane of symmetry
normal to it. A twofold inversion axis is equivalent to a plane of sym-
metry, and is usually known by the latter name.

All idealized crystal shapes bounded by plane faces exhibit either no
symmetry at all or else a combination of some of the elements of sym-
metry in this very short list. Crystals having no symmetry are very rare.

It has been said at the beginning of this section that the symmetries
displayed by the shapes of crystals grown in uniform surroundings are

s

Cr]

Fic. 29. The fourfold inversi:m axis. Fi1a. 30. The threefold inversion axis.
Urea, O:C(NH,),. Class 42m. Dioptase, CuH,8i0,. Class 3.

those of the atomic space-pattern (or at any rate are not lower than
those of the atomic space-pattern). This statement needs amplification.
In some atomic space-patterns—parallel contiguous repetitions of units
of pattern—there can be discerned types of symmetry elements involv-
ing translation: screw axes involving combined rotation and transla-
tion, and glide planes involving combined reflection and translation.
(Examples will be found in Chapter VII.) Such symmetry elements
involving translation naturally cannot be displayed by crystal shapes,
which are, to speak formally, assemblies of face-types round a point,
having no element of translation. Crystal shapes therefore display
symmetry elements which may be regarded as screw axes and glide
planes deprived of their elements of translation; that is to say, an
atomic space-pattern having screw axes gives rise to a crystal shape
displaying the corresponding simple rotation axes, and a space-pattern
having glide planes gives rise to a crystal shape displaying straight-
forward reflection planes. Thus, several different types of atomic
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space-patterns (space-group symmetries) give rise to the same crystal
shape-symmetry (point-group symmetry). The space-group symmetries
are considered more fully in Chapter VII; here we are concerned only
with point-group symmetry.

Nomenclature of symmetry elements and crystal classes.
It is convenient to have short, self-explanatory symbols with which to
refer to the various crystal classes. Some of the names used formerly
for the crystal classes are rather cumbrous (e.g. monoclinic hemimorphic
hemihedry), and others (e.g. tetragonal hemihedry of the second type)
are not self-explanatory. Moreover, different authorities have quite
different name-systems. The point-group nomenclature recently adopted
internationally and given in Internationale Tabellen zur Bestimmung von
Kristallstrukturen (1935) provides symbols which are not only extremely
concise, but also self-explanatory in that they present the essential sym-
metries of the point-groups.

Two-, three-,four-, orsixfoldrotation axes of symmetry are represented
by the numbers 2, 3, 4, and 6, while three-, four-, and sixfold inversion
axes have the symbols 3,4, and 6. In conformity with this scheme, asym-
metry is represented by the figure 1 (only one repetition in a complete
rotation), and a centre of symmetry, or inversion through a point, by 1.
A plane of symmetry is represented by the letter m (‘mirror’).

In putting together the symbols to denote the symmetries of any
crystal class the convention is to give the symmetry of the principal
axis first—for instance, 4 or 4 for tetragonal classes. If there is a plane
of symmetry perpendicular to the principal axis, the two symbols are

associated thus: % (‘four over m’), or, more conveniently for printing,
4/m. Then follow the symbols for the secondary axes, if any, and then
any other symmetry planes. (Note that 4/mmm means %mm, that is,

the second and third m’s refer to planes of symmetry parallel to the
fourfold axis.)

Secondary axes may be in sets, but there is no need to mention more
than one. Thus if, to a principal fourfold axis, we add a secondary
twofold axis (perpendicular to the principal axis), the action of the four-
fold axis inevitably creates another twofold axis at right angles to the
first ; and further, we find that there are inevitably two more twofold
axes bisecting the angles between the first two. This is illustrated in
Fig. 31, a stereographic projection in which a point represents the pole
of a general plane; if 4 is the secondary twofold axis which is first
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system, obtained by adding planes of symmetry both parallel and per-
pendicular to the principal rotation axis. The enantiomorphous classes
are those in the first and sixth rows—those possessing rotation axes
only.

Note how, very often, the association of two elements of symmetry
inevitably creates further elements. We have already seen an example
of this in class 42 (Fig. 31). The class symbols given in Fig. 32 are, first,
those which conform to the scheme of derivation in this diagram (these
are sufficient—sometimes more than sufficient—to characterize the
classes uniquely), and following these the conventional symbols given

Fia. 33. Triclinic system. a. Unit cell type. b. CaS,0,.6H,0. Class 1. c. CuS80,.5H,0.
Class 1. d. 1,4 dinitro 2,5 dibromo-benzene. Class 1.

in Internationale Tabellen, which in some cases are longer (4mm, 42m),
and in others shorter (m3m), than the first-mentioned symbols.

The cubic classes stand somewhat apart from the rest. They have as
their distinctive feature four threefold axes lying along cube diagonals;
these are secondary axes. The primary axes may be either twofold or
fourfold.

Examples of crystals are shown in Figs. 33-8 and in various other
drawings in this book. Familiarity with crystal symmetry is, however,
best attained by handling and contemplating idealized models of
crystals.

The unit cell types or crystal systems.

Triclinic (sometimes called anorthic). Crystals lacking symmetry of
any kind naturally have the most ‘general’ type of unit cell, the three
axes of which are all inclined to each other at different angles and
unequal in length. The addition of a centre of symmetry does not alter
the situation, for this most general type of unit cell has a centre of
symmetry and is appropriate for this class also. These two classes,
1 and 1, constitute the triclinic system (Fig. 33)..
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The lattice points of a triclinic crystal may be joined in various ways
to form differently shaped unit célls (see p. 141). It is usually most con-
venient to use the cell with the shortest edges, unless there is some
special feature which recommends some other direction as a unit cell
edge. Donnay (1943) recommends that the shortest axis shall be called
¢ and the longest b; and that the angles « and 8 shall be obtuse.

When axes are chosen on morphological grounds there is a convention,
not always followed, that the principal zone'axis is called ¢, and that,

mol| i wo__|uo;
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Fi16. 34. Monoclinic system. (See also Fig. 27.) a. Unit cell type. b. Left- and right-
handed tartaric acid. Class 2. c¢. 2,4,6 Tribromobenzonitrile. Class m. d. p-Dinitro-
benzene. Class 2/m. e. (CH,COO0),Pb,.3H,0. Class 2/m.

of the other two, the longer is called b; and the obtuse angles between
the axes are usually specified, rather than the acute angles.

Monoclinic. The single twofold axis of class 2 is an obvious direction
for a unit cell edge, and this is called 5. The existence of the twofold axis
means that neighbouring lattice points lie on a plane normal to the
twofold axis; therefore all the lattice points lie in planes normal to b;
thus the a and ¢ edges of the unit cell are both normal to b, but since
there is no other element of symmetry, they are inclined to each other;
and the three axes are unequal in length.

This same type of unit cell is appropriate for class m, the a and c axes
lying in the plane of symmetry and the b axis being normal to this plane.
It is equally appropriate for class 2/m. The three classes, 2, m, and 2/m,
constitute the monochmc system (Fig. 34).

It would have been better if this unique axis were called ¢, to bring
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the nomenclature into line with that of tetragonal, hexagonal, and the
polar orthorhombic crystals, which all have their unique axes labelled ¢ ;
but the b convention for monoclinic crystals seems now too well estab-
lished to be altered. Of the other two axes, the shorter is called ¢, and
the obtuse angle 8 between a and ¢ is usually specified, rather than the
acute angle.

Orthorhombic (sometimes called rhombic). In class mm ( = 2mm) the
lattice points lie in planes normal to the twofold axis; they also lie in

Fia. 35. Orthorhombic system. (See also Fig. 26.) a. Unit cell type. b. (H.C0OO0),Sr.2H,0.
Class 222. Left- and right-handed crystals. c. 1-Brom, 2-hydroxy-naphthalene. Class 222.
d. Picric acid. Class mm. e. Oxalic acid. Class mmmm. f. C,Brg. Class mmm.

the mutually perpendicular planes of symmetry m which are parallel to
the twofold axis. The lattice is thus entirely rectangular, and the unit
cell is a rectangular box with unequal edges. The twofold axis is usually
called ¢; of the other two, the longer is called &.

The same type of unit cell is appropriate for classes 222 and mmm
(= 2/m 2/m 2/m); the cell edges lie along the twofold axes. Donnay
(1943) recommends that the longest shall be called b and the shortest c.
When axes are chosen on morphological grounds the axis of the principal
prism zone is labelled ¢, while b is the longer of the other two. The three
classes mm, 222, and mmm constitute the orthorhombic system (Fig. 35).

Hexagonal and trigonal. In many crystals having a single three- or

sixfold rotation axis or inversion axis the unique axis is taken as one of
4458
E
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the unit cell edges, and this axis is called c. In all these crystals there
are, in a plane normal to the principal axis, three equivalent directions
which are at 120° to each other (see p. 26). Any two of these may be
called a and b. The unit cell thus has a diamond-shaped base, with a
and b edges at 120° to each other and equal in length ; ¢ is perpendicular
to @ and b and different in length.

The twelve classes which may be referred to such a unit cell are: 3, 3m,
32;3,3m; 6, 8m2; 6, 6/m, 6mm, 62, 6/mmm. For examples, see Fig. 36.

Fie. 36. Hexagonal and trigonal systoms. (See also Figs. 25, 28, and 30.) a. Hexa-

gonal-type unit cell. b. Apatite, 3Cay(P0O,),.CaF,. Class 6/m. c. Hydrocinchonine

sulphate hydrate, (C;yH,,0N,),. H,80,.11H,0. Class 6m. d. Rhombohedral-type unit
cell. e. A habit of caleite, CaCO,. Class 3m. f. KBrO,. Class 3m.

It is often more convenient to refer some trigonal crystals to a rhombo-
hedral cell which has three equal axes making equal angles not 90° with
each other. The three equal rhombohedral axes are equally inclined to
the ¢ axis of the hexagonal-type cell.

Tetragonal. In all crystals having a single fourfold rotation axis or
inversion axis there are, normal to this unique direction, two equivalent
directions perpendicular to each other. The unit cell is thus entirely
rectangular, with two edges (a and b) equal in length, and the remaining
edge (the fourfold axis) different in length. The seven classes of the
tetragonal system are: 4, 42m; 4, 4/m, 4mm, 42, and 4/mmm (Fig. 37).

Cubic (sometimes called isometric, or tesseral). All crystals having four
secondary threefold axes have three mutually perpendicular directions
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d

Fic. 37. Tetragonal systom. (See also Fig. 29.) a. Unit cell type. b. Phloroglucinol
diethyl ether. Class 4/m. c. Wulfenite, PbMoO,. Class 4. d. Anatase, TiO,. Class
4/mmm. e. Zircon, ZrSiQ,. Class 4/mmm.

d e S
Fic. 38. Cubic system. (See also Figs. 17-23.) a. Unit cell type. b and c. Two habits
of pyrites, FeS,. Class m3. d. Tetrahedrite, Cu,SbS;. Class 43m. e. Spinel, MgAl,O,.
Class m3m. f. Almandine (Garnot), Fe Aly(8i0,);. Class m3m.

all equivalent to each other. The unit cell is thus a cube, the secondary
threefold axes being the cube diagonals. The five classes of the cubic
system are: 23, m3 ( = 2/m3), 43m, 43 ( = 432),and m3m ( = 4/m 3 2/m).
Examples are shown in Fig. 38.



52 IDENTIFICATION CHAP, 11

The various names used formerly for the crystal classes are to be
found, collected in a table of concordances, in Internationale Tabellen
zur Bestimmung von Kristallstrukturen (1935).

The essential symmetries and unit cell types for the different crystal
systems are summarized in Table. I.

TaBLE I
System Essential symmetry Unit cell
Triclinic. No planes, no axes. Angles a, B, and y unequal and not
90°. Edges a, b, and ¢ unequal.
Monoclinic. One twofold axis, or one plane. | « = y = 90°. B not 90°. a, b, and

¢ unequal.

€
Orthorhombic. | Three mutually perpendicular | « = 8 =y = 90°. @, b, and ¢ un-
twofold axes, or two planes inter-| equal.
secting in a twofold axis.

Trigonal and | One threefold axis, or one sixfold | (1) o =~ B = 90°. y — 120°. a = b.

Hexagonal. axis. ¢ different from @ and b.
(2) a=B—=19y,n0t90". a =b=c.
Tetragonal. One fourfold axis or fourfold in- a = 8 = y = 90°. a = b. c differ-
version axis. ent from @ and b.
Cubic. l Four threefold axes. a=B=y=90°% a=>bb=c

Deduction of a possible unit cell shape and point-group sym-
metry from interfacial angles. When all the interfacial angles of a
crystal have been measured on the goniometer, and the symmetries
deduced by the contemplation of stereographic projections, the proce-
dure in deducing the relative lengths of the unit cell edges and the angles
between them follows from the contents of the foregoing notes. In most
classes the directions of the edges are prescribed by the symmetry
elements; when they are not, the principle of simplest indices is called
in to indicate the probable directions. In some of the tetragonal and
hexagonal classes there are two sets of secondary axes or symmetry
planes, providing alternative positions for the secondary (a and b) edges
of the unit cell; the principle of simplest indices is again called in, but
its verdict will not necessarily be correct ; X -ray diffraction photographs
are necessary to settle such questions. In certain other tetragonal and
hexagonal classes there is a single set of secondary twofold axes which
are naturally chosen as probable unit cell edges. But this again is not
necessarily correct: in some crystals the unit cell edges are parallel to
twofold axes, while in others they bisect the twofold axes. The morpho-
logical axes are, however, entirely adequate for morphological purposes ;
and the morphological axial ratio c/a is related in a simple way to the
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axial ratio of the unit cell—usually by a factor of ¥2 in the tetragonal
system and 3 in the hexagonal system.

Attention has already been drawn to the fact that the idealized shape
of a crystal may exhibit a symmetry higher than that of the arrangement
of atoms. Sodium chlorate crystals when grown rapidly in pure solution
are cubes, the symmetry of which is holohedral (m3m); when sodium
thiosulphate is present ip the solution the crystals grow as tetrahedra
(symmetry 43m); only when grown slowly in pure solution do the
crystals exhibit the symmetry of the atomic arrangement—that of the
enantiomorphous class 23. In this case, and in many others, the true

in

¥1¢. 39. Left, bisphenoid of PbCl,. Centre and right, arrangements of atoms
on 111 and 111. The atoms depicted are those which he on, or not far below,
the plane of the corner atoms.

point-group symmetry was known before the atomic arrangement was
discovered by X-ray methods ; but in the case of sodium nitrite, NaNO,,
which is orthorhombic, the habit of the crystals gives no evidence that
the symmetry is other than holohedral (mmm), yet the X-ray diffraction
pattern leaves no doubt that the atomic arrangement has the point-
group symmetry mm—the polar class of the orthorhombic system.
(See Chapter IX.)

The opposite may occur if crystal growth takes place in a solu-
tion containing particular impurities. Miles (1931) showed that when
lead chloride crystals, whose internal structure has the orthorhombie
holohedral symmetry mmm, grow in a solution containing dextrine,
they form bisphenoids, the symmetry of which is 222. It seems curious
that a holohedral crystal should in any circumstances assume a hemi-
hedral (holoaxial) shape. The reason is that the substance in solution
which modifies the shape of the lead chloride crystals is itself asym-
metric, and only left-handed molecules are present. Consider the
arrangement of atoms at a particular level on the 111 plane of the lead
chloride crystal (Fig. 39). This plane-pattern has no symmetry, and if
we call the arrangement on 111 left-handed, the arrangement on 111 is
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right-handed. Now, modification of crystal habit by dissolved impuri-
ties is due to adsorption of the impurity molecules on specific crystal
faces, this adsorption reducing the rate of growth of these faces. If
asymmetric left-handed molecules are present in the solution, and these
are adsorbed on the 111 face, they are not likely to fit well on the 111
face; consequently the rate of growth of 111 (as well as that of the
equivalent faces 111, I1T, and 111) is reduced, while that of T11 (and
117, 117, and 1T1) is not, and the resulting crystal is entirely bounded
by the first-mentioned set of planes and thus has a hemihedral form.
To produce an effect of this sort, molecules of the dissolved impurity
need not be entirely without symmetry, but they must lack planes of
symmetry, inversion axes, and a‘centre of symmetry.

Such effects are probably rare, and when crystals are grown from
solutions of high purity there is little danger of the occurrence of shapes
which are misleading in this way. Nevertheless, the knowledge that
such phenomena can occur prompts caution in accepting morphological
evidence on internal symmetry when the conditions of growth are
incompletely known (see p. 247).

The shapes and orientations of the etching pits formed in crystal
faces by appropriate solvents are also used as clues to internal symmetry
(Miers, 1929). Here again, solvent molecules having only axial sym-
metry must be avoided, as they may produce misleading effects, for
reasons similar to those given in the case of crystal shape (Herzfeld and
Hettich, 1926, 1927).

The use of shape-symmetry and other morphological features in the
study of the internal structure of crystals will be considered further in
Part 2 of this book (Chapters VII and VIII). Here we are concerned
with crystal shapes in so far as they afford evidence useful for the pur-
pose of identification.

Identification by shape. When a substance which it is desired to
identify consists of well-formed single (that is, not aggregated) crystals
of sufficient size to be handled, the interfacial angles may be measured
on the goniometer; it is then possible to look up the morphological
information on likely substances either in Groth’s Chemische Krystallo-
graphie or in papers scattered through the literature (chiefly chemical
and mineralogical journals). An indirect method of this sort is, however,
not always entirely satisfactory: possible substances may be overlooked.
The desire for a direct method has led to attempts to devise a system in
which morphological characteristics are measured and the results re-
ferred to a classified index. Barker (1930) has devised a system in which
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certain ‘key’ angles of the measured unknown crystal are looked up in
an index in which substances are arranged in order of the magnitudes
of these key angles. The selection of the key angles for an unknown
crystal involves the indexing of all the faces on the crystal, and thus
implies the deduction of a possible unit cell shape. Barker does not use
the term ‘unit cell’, and does not claim for his system anything more than
that it is a consistent scheme for the morphological description and
identification of crystalsy but the term ‘unit cell’ will be retained here,
since the treatment in this book is entirely based on this conception.

For the purpose of identification the fact that the ‘morphological unit
cell’ does not always coincide with the true unit cell does not matter,
provided that all crystals of the samg species give the same morpho-
logical cell in the hands of different investigators. The problem is to
devise rules which ensure this, even in the triclinic system, where none
of the axial directions are fixed by symmetry. The rules devised by
Barker, together with some additions by Porter and Spiller (1939),
constitute a sound system, and a card index for the method is in exist-
ence, though it is not yet (1944) published. The rules will not be
described here in detail ; but we may observe that the system is based
on a thorough-going accepiance of the principle of simplicity of indices,
and that a definition of simplicity is given—all indices composed only
of 0’s and 1’s being regarded as equally simple, and all others complex.
Another point is that class-symmetry within a particular system is
ignored ; this is necessary in view of the frequency with which crystals
display in their shapes too high a point-group symmetry (this being in
some cases variable with growth conditions).

One limitation of morphological methods has already been mentioned :
some crystals, especially those grown rapidly, are entirely bounded by
faces parallel to the unit cell sides, and measurements of the interfacial
angles of such crystals can only give the angles between the axes, not
their relative lengths (except where symmetry indicates that two or
more axes are equal in length, as in the cubic, tetragonal, hexagonal,
and trigonal systems). Another limitation arises from the fact that all
crystals belonging to the cubic system have the same shape of unit cell,
and therefore cannot be identified by purely morphological methods.
It is true that different crystals belonging to the cubic system often
have different bounding faces, some growing normally as octahedra,
others as tetrahedra, and so on; but there are many different crystals
of octahedral habit, and many others of tetrahedral habit. In addition,
it must be remembered that the shape may be completely changed by
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the presence of certain impurities in the solution. Thus, shape is of very
little use for identification in the case of crystals belonging to the cubic
system.

It is not intended to describe purely morphological methods of
identification in any more detail in this book, for we are concerned with
the crystals found in the average experimental or industrial product,
and for these crystals the practical limitations imposed by small size
or irregular shape are often sufficient to rule eut goniometric methods.
With regard to size, it should be realized that crystals as small as one-
or two-tenths of a millimetre in each direction can be handled and

. measured on the goniometer.

100 - ) Generally speaking, however,

crystals suitable for goniometric
measurements are either speci-

010 ally selected mineral specimens
or crystals specially grown for

the purpose. Not all crystals can

be grown under laboratory con-

F1e. 40. Orthorhombic crystal lying on dltlon,s to a size -smtable for

(001) on microscopo slide. handling ; very sparingly soluble

substances, for instance, might

require a geological age for growth to such a size. Moreover, it may

be desired to identify the products of chemical reactions in which it is
not possible to prescribe suitable crystallization conditions.

For well-formed microscopic crystals the scope of purely morpholo-
gical methods is usually limited to qualitative observations which may
enable us to deduce the type of unit cell. Sometimes it may be possible
to measure interfacial angles approximately, but only when the crystals
lie in such a way that the two faces in question are both parallel to the
line of vision ; for instance, if an orthogonal crystal is lying on the slide
on its (100) face (Fig. 40), the angle between (110) and (010) faces could
be measured by bringing them successively parallel to the eyepiece
cross-wire, and reading off the angle through which the slide or the
eyepiece has been turned. This would give us an approximate value for
the axial ratio. For very many crystals, however, interfacial angles
cannot be measured ; we may be able to conclude that a crystal probably
has a tetragonal or a monoclinic unit cell, but we cannot deduce the
relative dimensions of the cell.

Further, it may often be desired to identify poorly formed crystals
such as needle-like crystals without definite faces, or skeletal growths,

100
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or even completely irregular fragments. This can only be achieved by
measuring some properties of the crystal material itself, properties
which are independent of the shape of the crystals. Of such properties,
by far the most important and the most convenient for measurement
are the optical properties, especially the refractive indices. An ele-
mentary account of the optical properties of crystals will be found in
Chapter III.

Before leaving the subject of crystal shape there are a few other
morphological features which are sometimes encountered and must be

mentioned briefly.

a b c

Fic. 41. Twinning. a. Gypsum, CaS80,.2H,0. Two individuals joined at a well-marked

plane (100). b. ‘Interpenetration’ twin of fluorspar, CaF,. One individual is rotated 60°

with respect to the other. The junction surface in such twins is often very irregular.

c. ‘Mimetic’ twin of ammonium sulphate, (NH,),80,. Six individuals, with three
different orientations (numbered).

N/

Twinning. Two or more crystals of the same species are sometimes
found joined together at a definite mutual orientation, this orientation
of the individual crystals being constant in different examples of any
one species. Such crystals are said to be twinned. Certain species show
this phenomenon frequently, and some species invariably. The most
frequent type of twinning is that of calcium sulphate dihydrate (gyp-
sum), which is often found in the form shown in Fig. 41 a. The two
crystals appear to be joined at the 100 plane. At the junction there is
presumably a sheet of atoms common to the two individuals ; when the
crystal nucleus was formed, two lattices were probably built by deposi-
tion on opposite sides of this common sheet of atoms.

Sometimes twinned crystals appear to be interpenetrating, as in the
calcium fluoride twin illustrated in Fig. 41 b. Here we may imagine
(in the crystal nucleus) a common 111 sheet of atoms, the symmetry of
which is trigonal ; the crystal on one side of it is rotated 60° with respect
to the one on the other side. The twin plane is not always respected
during subsequent growth ; one individual may encroach on the domain
of the other, so that the junction surface in the final crystal is irregular.
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There are many other types of composite shape which arise as the result
of twinning ; for further examples, see the text-books of Miers and Dana.
Twinning always involves the addition of a plane or an axis of sym-
metry, and the symmetry of the composite shape may thus be higher
than that of an individual crystal of the same species. When the com-
posite shape has no re-entrant angles it may appear deceptively like
that of a single crystal of higher symmetry ; thus, ammonium sulphate
crystals grown in solutions containing ferric i8ns form hexagonal prisms
(Fig. 41 ¢). The atomic arrangement in ammonium sulphate crystals has
orthorhombic symmetry, but the conjunction of six sectors with three
different orientations (opposite sectors having the same lattice orienta-
tion) gives rise to apparent hexagonal symmetry. The same thing occurs
in aragonite, the orthorhombic form of calcium carbonate. (For the
atomic structure on the twin plane see Bragg, 1924a.) The occurrence
of such mimetic twinning may cause confusion if its existence is not
realized. The study of such phenomena is greatly assisted by the use
of the polarizing microscope; this is dealt-with in the next chapter.

In some crystals the energy of addition of material to a crystal face in
such a way as to start a new twinned individual may be almost the same
as that of carrying on a single-crystal structure ; frequent changes may
thus occur, giving rise to a fine lamellar ‘repeated-twinning’ structure.
Here again the polarizing microscope may reveal at once the composite
character of the structure.

Cleavage. The cohesion of crystals is not the same in all directions.
It may be very strong in some directions and very weak in others; so
much so that many crystals, on crushing or grinding, break almost
exclusively along certain planes. The most striking of familiar examples
is mica, a potassium aluminium silicate mineral which readily cleaves
into thin sheets. Similarly crystals of calcite, the rhombohedral variety
of calcium carbonate, break into small rhombohedra ; sodium chloride
crystals tend to break along planes parallel to the cube faces; calcium
fluoride (fluorspar) crystals cleave along the octahedral planes. Minerals
like chrysotile (‘asbestos’) have more than one cleavage parallel to the
same crystal direction and very readily split into fibres.

Cleavage planes are always planes of high reticular density of atomic
or molecular packing and large interplanar spacing, the cohesion being
strong in the plane and weak at right angles to the plane. Cleavage
planes thus have simple indices, and in fact are often parallel to the
principal faces of the crystal; thus calcite, when precipitated in the
laboratory, often grows in the form of simple rhombohedra whose faces
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are parallel to the cleavage planes. But this statement, like the principle
of simplest indices for the faces of growing crystals, is only a broad
generalization, not a rigid rule. An exception, for instance, is shown
by calcium fluoride, which usually grows as cubes but cleaves along
octahedral faces (Wooster, N., 1932). Another is penta-erythritol,
C(CH,OH),, which grows as tetragonal bipyramids but has basal
cleavage (001).

Polymorphism. Some substances form, under different conditions,
crystals of quite different internal structure ; they are then said to be
polymorphic. The different structures are different packings of the same
building units. Sometimes one particular structure can only exist within
a definite temperature range, and if thle temperature goes outside this
range there is a rapid reorganization of the building units (atoms, mole-
cules, or ions) to form a different arrangement. Sulphur, for instance,
forms an orthorhombic arrangement at room temperature and a mono-
clinic arrangement above 95°C. An extreme example is ammonium
nitrate, which exists in five different crystalline forms, each of which
changes to another at a definite temperature. Other substances exist
in two or more forms which are apparently equally stable at the same
temperature. Calcium carbonate, for instance, occurs in a rhombohedral
form, calcite, and an orthorhombic form, aragonite, both of which have
existed in the earth’s crust for geological ages. Actually calcite is prob-
ably slightly more stable than aragonite at all temperatures, but the
atomic motions in aragonite crystals at ordinary temperatures are so
small that no reorganization is possible. There is also a much less stable
form, pu-CaCOj, or vaterite, which is apparently hexagonal.

Isomorphism and mixed crystal formation. The atomic arrange-
ment in crystals of ammonium sulphate, (NH,),SO,, is entirely analogous
to that found in potassium sulphate (K;SO,) crystals, the ammonium
ion playing the same role in the structure as the potassium ion.
The unit cell dimensions of the two crystals are very nearly the same,
and the shapes of crystals grown under similar conditions are almost
the same. Accurate goniometric measurements would be necessary to
distinguish between the two crystals by morphological methods. Such
crystals are said to be isomorphous. The reason for this close resem-
blance is that ammonium and potassium ions are very similar in size and
chemical character; they can therefore fit into the same arrangement
with sulphate ions. When the ionic sizes are closely similar, they can
replace each other indiscriminately in the lattice; a mixed solution
of ammonium and potassium sulphates deposits crystals which may
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contain any proportions of the two substances, and which have unit cell
dimensions intermediate between those of the pure components. Such
crystals are called ‘mixed crystals’ or ‘crystalline solid solutions’.

Not all isomorphous substances form mixed crystals. Calcite (CaCOj)
and sodium nitrate (NaNO;) form similar atomic arrangements, their
unit cells are both rhombohedra of very similar dimensions, and also
the corresponding ions are closely similar in size; but they do not
form mixed crystals: the reason presuma,bly'is that their solubilities in
water are extremely different.
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F16. 42. Oriented overgrowths of urea on ammonium chloride.

Oriented overgrowth. Isomorphous substances which do not form
mixed crystals may do the next best thing ; one crystal may grow on the
other in parallel orientation. -Sodium nitrate grows on calcite in this
way. Isomorphism is not, however, a necessary condition for oriented
overgrowth ; it is sufficient if the arrangement of atoms on a particular
plane of one crystal is similar, both in type, dimensions, and distri-
bution of electrostatic charges, to the arrangement on one of the planes
of the other crystal ; the two structures may be in other respects com-
pletely different from each other (Royer, 1926, 1933). Thus, tetragonal

NH, s . . .
urea, O==C<NH , grows with its 001 plane precisely oriented in
2

contact with the cube faces of ammonium chloride, NH,Cl, Fig. 42;
the two structures are completely different except for a formal and
dimeusional similarity on the planes in question (Bunn, 1933).
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Of the morphological phenomena mentioned in the last few para-
graphs, that of twinning is likely to be of most frequent value in
identification problems. But all the phenomena are significant from the
point of view of structure determination. The subject of crystal
morphology in relation to internal structure will not, however, be
pursued further at present; it will be taken up again in Chapters VII
and VIII. For the present, we shall continue our consideration of the
problem of the identification of microscopic crystals; we pass on to
discuss crystal optics, the relation between optical properties and
crystal shape and symmetry, and the determination of refractive indices
and other optical characteristics under the microscope.
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THE OPTICAL PROPERTIES OF CRYSTALS

THE physical properties of crystals, such as refractive index, absorption
of light, and conduction of heat and electricity, are in general not the
same for all crystal directions; in other words, a three-dimensional
graph of any characteristic showing its magnitude for all directions is
not, except in certain special cases, a sphere, but a less symmetrical
figure, owing to the fact that on passing through a crystal the sequence
of atoms encountered depends on the direction taken. The type of shape
of the three-dimensional grapli is not the same for all characteristics
and naturally varies with crystal symmetry, but one generalization
that can be made is that the figure must necessarily exhibit a symmetry
at least as high as that of the atomic pattern in the crystal. The
symmetry of the figure may be higher than that of the atomic pattern
(just as the shape of a crystal may have a higher symmetry than that
of the atomic pattern), but it.cannot be lower. If there is a plane of
symmetry in the atomic pattern, then there must be a corresponding
plane of symmetry in the figure; if there is an axis of symmetry or a
centre of symmetry in the atomic pattern, then these also are necessarily
exhibited by the figure.

In this chapter we are concerned chiefly with the refractive indices
of crystals and other phenomena depending on the refractive indices.
The absorption of light and the rotation of the plane of polarization
are also considered briefly. The treatment of crystal optics followed in
this book is restricted to those aspects which are most generally useful
for purposes of identification or structure determination. The finer
points of crystal optics, and aspects which are of physical rather than
chemical interest, may be pursued in more comprehensive text-books,
such as Miers’s Mineralogy, Tutton’s Crystallography and Practical
Crystal Measurement, Hartshorne and Stuart’s Crystals and the Polariz-
wng Microscope, Wooster’s Crystal Physics, and Preston’s Theory of
Light.

The refractive index of a solid is usually defined in terms of Snell’s
law, which states that when a ray of light changes its direction on pass-
ing from one medium to another the ratio of the sine of the angle of
incidence to that of the angle of refraction is a constant ; this constant
is the refractive index of the second medium with respect to the first.
For the consideration of the optical properties of crystals, however, it
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is better to think of the refractive index, not as a measure of the bending
of a ray of light when it passes from air into the solid, but as a measure
of the velocity of light in the solid: the refractive index of a solid with
respect to air is the ratio of the velocity of light in air to the velocity
in the solid. By thinking in this way we are focusing our attention on
a particular direction in the crystal.

The first point to be made is that in a crystal the refractive index
depends not on the direction in which the electromagnetic waves are
travelling but on the direction of the electrical disturbances transverse
to the line of travel—the ‘vibration direction’. We have to consider
the shape of the graph connecting refractive index with vibration
direction for each crystal system, and the methods available for
measuring the refractive indices of crystals in different vibration
directions.

Cubic crystals. Crystals with cubic unit cells have the same atomic
arrangement along all three axial directions; consequently all the
properties of the crystal are identical along these three directions.
The optical properties are found to be the same, not only along these
three directions, but also for all other directions. An attempt at an
explanation of this would take us too deeply into the electromagnetic
theory of light ; we shall therefore simply accept the fact that a cubic
crystal is optically isotropic—it behaves towards light just like a piece
of glass; its refractive index is the same for all vibration directions of
the light. To identify a cubic crystal it is usually sufficient to measure
its one refractive index.

Measurement of refractive index under the microscope. The
measurement of the refractive index of an isotropic transparent solid
under the microscope is extremely simple. The principle is to keep a
set of liquids of known refractive indices, and to find which liquid has
the same (or nearly the same) refractive index as the solid in question.
When the solid particles are immersed in this liquid they become
invisible ; the light, in passing from liquid to solid and from solid to
liquid, is not refracted, and consequently the edges of the particles
cannot be seen; as far as the light is concerned, the whole complex is
a homogeneous medium.

The procedure is to immerse particles of the solid in a drop of liquid
of known refractive index on a microscope slide, cover the drop with a
thin cover-glass, and observe the particles, using a low or moderate
magnification (}-inch objective and 4 or 10 times eyepiece, for instance)
and parallel or nearly parallel light. If the particles show up plainly,
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their refractive index must differ considerably from that of the liquid ;
other liquids of different refractive indices are then tried, until a liquid
is found in which the particles are invisible or very nearly so. The
search for the right liquid is not as laborious as one might suppose,
because it is possible, by observing certain optical effects, to tell whether
the refractive index of the liquid is higher or lower than that of the
crystal; and with experience, one can estimate roughly how much
higher or lower. These optical effects are illustrated in Fig 43, Plate II,
in which a shows cubic crystals of sodium chlorate (refractive index
n = 1-515) immersed in a liquid of » = 1-480. If the crystals are first
of all focused sharply, and if then the objective is raised slightly (by
means of the fine adjustment of the microscope), a line of light (the
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F1c. 44. The ‘Becke line’ effect.

‘Becke line’) is seen inside the edges of each crystal ; as the objective is
raised more and more, the line contracts farther and farther within the
boundaries of the crystal. This is what happens when the refractive
index of the liquid is less than that of the crystal; but if the reverse is
true, as in Fig. 435, Plate II, the Becke line appears round the outside
of the crystal when the objective is raised and expands as the objective is
raised farther. The shape of the particles does not matter; the Becke
line always follows the outline of the particle ; the determination of the
refractive index of irregular fragments of crystals, or of particles of
glass, is just as easy as that of well-formed crystals.

The simplest way of regarding the Becke line effect, as well as the best
way of remembering which way the line moves, is to think of a particle
as & crude lens which, if it has a refractive index higher than that of
the medium surrounding it, tends to focus the light at some point
above it (Fig. 44); when the objective is raised it is focused on a plane
PP above the particle, and in this plane the refracted light waves
occupy a smaller area than they do in a plane nearer the particle, and
thus the boundary line of light moves inwards as the objective is raised.
If the refractive index of the particle is lower than that of the sur-
rounding liquid, it will have the opposite effect and act as a negative



Fic. 43. a. Crystals of sodium chlorate, NaClO,, in liquid of refractive index 1-48;
objective raised. d. The same substance in liquid of refractive index 1-55; objective
raised. ¢. Crystal of monammonium phosphate, NH,H,PO,, in liquid of refractive index
1:500; polarized light, vibration direclion vertical; objective raised. d. Tho same,
vibration direction horizontal; objective raised. e. Mixture NaBr.2H,0 and NaBrO,
in liquid of refractive index 1:54. The NalirOs crystals show up in relief.
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lens (Fig. 44) ; consequently on raising the objective the boundary line
of light expands.

By observing this effect and trying various liquids in turn, it is
possible to find in a few minutes a liquid in which the particles are nearly
invisible. In practice, it is convenient to keep a set of liquids with
refractive indices differing by 0-005. Refractive index values are nearly
always given for sodium D light, and the liquids are therefore standar-
dized for this wavelength. (For suitable liquids, see Appendix 1.)
Usually, of course, the refractive index of the particles is found to lie
between those of two of these liquids; its value can be estimated from
the magnitude of the Becke line effects in the two liquids. In this way
the refractive index of isotropic particlcs can be found within limits of
+40-002. It must be mentioned that solid particles are seldom quite
invisible in liquids, because the dispersion of the liquid (variation of
refractive index with colour of light) is usually different from that of the
solid; consequently, if the refractive indices of solid and liquid are
equal for yellow light, they are not equal for red or blue light, and there-
fore in white light, coloured Becke line fringes will be seen round the
edges of the crystals. For this reason it is sometimes suggested that
monochromatic light should be used for refractive index determinations;
in practice, however, sufficient accuracy for identification purposes is
usually obtainable by the use of white light, which is also more pleasant
in use.

Tetragonal, hexagonal, and trigonal crystals. Preliminary.
The simple method just described is applicable as it stands only to
isotropic solids, that is, to glasses and amorphous solids in general, and
to crystals belonging to the cubic system. In all other crystals the
refractive index varies with the direction of vibration of the light in
the crystal ; the optical phenomena are more complex, and it is necessary
to disentangle them.

If tetragonal crystals of monammonium phosphate, NH,H,PO,
(Fig. 45), lying on the microscope slide on their prism faces, are examined
in the way already described with ordinary unpolarized light, it is not
possible to find any liquid in which they are nearly invisible. In liquids
with refractive indices below 1-479 it is clear that the crystals have a
higher index than the liquids; in liquids with indices above 1-525 it is
equally clear that the crystals have lower indices than the liquids;
but in liquids with indices between 1-479 and 1-5625 confusing effects
are seen--Becke lines can be seen both inside and outside the crystal

edges. This is because the crystal resolves light into two components
44568
F
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vibrating in different planes,t and the refractive indices of the two
components are unequal ; the crystal thus ‘shows’ two different indices
at the same time.

In order to observe one refractive index at a time, we must evidently
use polarized light—light vibrating in one plane only—and adjust its
plane of vibration to coincide with one of the planes of vibration in
the crystal itself. In the polarizing microscope, plane polarized light
is obtained by means of a Nicol prism placed between the light source
and the microscope slide; it is usually located immediately below the
condenser which concentrates light on the slide. The plane of vibration

can be adjusted with respect to the
@ (b) €  crystal either by rotating the Nicol
prism or (on other types of micro-
1525 scope) by rotating the microscope
1479 «— slide; the two cross-wires in the
v eyepiece indicate planes parallel
and perpendicular to the plane of
vibration of the light transmitted

Fie 15 Refwioe el monanner by the polarizr. |
indicate vibration directions. If a crystal of monammonium
phosphate is immersed in a liquid of
refractive index 1-500, and observed in light vibrating along the four-
fold axis, the Becke line effect (Fig. 43 d, Plate II) shows that the index
of the crystal is lower than that of the liquid ; if the polarizer is turned
through 90°, the index of the crystal is seen to be higher than that of the

liquid.

If now we immerse the crystals in various liquids, and observe each
crystal in light vibrating parallel to its fourfold axis, we observe con-
sistent effects as in the case of isotropic solids in ordinary light, and we
find the refractive index is 1-479. If we use light vibrating perpendicular
to the fourfold axis of the crystal, we again observe consistent effects
and this time find the refractive index to be 1-525. (Fig. 45 a and b).

That tetragonal crystals should have one refractive index for light
vibrating along the fourfold axis and a different index for vibration
directions perpendicular to this axis is only to be expected. since the
arrangement of atoms along the ¢ axis (the fourfold axis) is different
from that along the @ and b axes. The same is true for hexagonal and
trigonal crystals; the refractive index for light vibrating along the

1525

} The plane of vibration is the plane containing the direction of propagation and the
direction of the electrical disturbances associated with the waves.
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unique sixfold or threefold axis is different from the index for light
vibrating in directions perpendicular to this axis. The only new and
perhaps unexpected phenomenon to be grasped is that the crystal
actually resolves the light into two components vibrating at right angles
to each other, and that the crystal therefore ‘shows’ two different
refractive indices simultaneously except when the incident light is
polarized and vibrates along one of the crystal’s vibration directions.

Use of crossed Nicols. Extinction directions. Interference
colours. To set the polarizing Nicol’s vibration plane parallel to one of
the crystal’s vibration planes is simple for crystals such as those already
considered. But suppose we have crystals which are irregular fragments,
80 that there are no edges to guide ug? The vibration planes of such
crystals are found by making use of a second Nicol prism, the ‘analyser’,
which is'placed somewhere between the crystal and the observer’s eye ;
in the polarizing microscope it is located either in the tube of the micro-
scope or above the eyepiece. The vibration plane of the analyser is set
perpendicular to that of the polarizer, so that the light passed by the
polarizer, as long as it continues to vibrate in the plane imposed on it
by the polarizer, will be completely stopped by the analyser.t If we
look through the microscope with the Nicols ‘crossed’ in this way we
shall see a dark background. If the particles we are observing happen
to be isotropic we shall see nothing at all; but if, like monammonium
phosphate crystals, they are birefringent—that is, have two different
refractive indices—we shall see that most of the crystals are illuminated,
often with beautiful colours. Moreover, if we rotate the Nicols together
(keeping them exactly crossed all the time), or alternatively rotate the
microscope slide, we shall see that each crystal is ‘extinguished’ at a
certain position, only to reappear as the Nicols or the slide are rotated
further. It will be found that the extinction positions for any one
crystal are 90° apart; extinction occurs four times during a complete
revolution.

The explanation of these phenomena is as follows. Suppose the
polarizer transmits light vibrating in the plane P (perpendicular to the
page), Fig. 46 a; when it gets to a crystal of monammonium phosphate
which happens to be lying in such a position that its vibration directions
are not parallel to either of the cross-wires (vibration directions of the
Nicols), it is resolved by the crystal into two components, vibrating in

T When light is resolved into a vibration plane which makes an angle  with its original
vibration plano, the resolved part has an intensity equal (apart from absorption effects)
to a fraction cos®@ of the original intensity.
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the crystal’s own vibration directions X and Z. When this light, which
now consists of the two components X and Z, passes through the
analyser, each component is again resolved by the analyser into its
own vibration direction 4, so that the light emerges from the analyser
as a single component but now vibrating in plane 4. In this position,
therefore, the crystal transmits light. But now consider Fig. 46b in
which the crystal’s vibration directions coincide with the vibration
directions of the Nicols. Light from the polarizer, vibrating in plane P,
on arriving at the crystal continues vibrating in plane P since this is
also the crystal’s own vibration plane X ; the resolved part in plane Z is
zero. On arriving at the analyser, all the light is necessarily stopped,
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Fic. 46. Crystals of monammonium phosphate between crossed Nicols.

since it is still vibrating in plane P and the analyser cannot transmit it,
the resolved part in the analyser’s vibration plane A4 being zero. In this
position, therefore, the crystal is extinguished. The same thing occurs
when the fourfold axis of the crystal is parallel to 4 (Fig. 46 ¢), and this
position, 90° from the first-mentioned position, is thus also an extinction
position. At all intermediate positions the crystal will be illuminated,
the intensity of illumination being greatest at the 45° position.

Thus, extinction occurs when the vibration directions of the Nicols
coincide with those of the crystal.

This explains illumination and extinction ; but what of the colours ?
To understand the production of colours we must consider the relative
velocities of the two components X and Z in the crystal. We have
already seen that in a crystal of monammonium phosphate the refractive
index for component Z is greater than for component X ; this means
that light vibrating along Z travels through the crystal more slowly than
light vibrating along X, the ratio of the velocities being inversely
proportional to the ratio of the refractive indices. The frequency v of
any monochromatic component of the white light naturally remains
constant ; therefore, since vA = velocity, the wavelength A is smaller
for component Z than for component X. The two components start in
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phase with each other at the bottom of the crystal (Fig. 47), but when
they reach the top of the crystal it is likely that they are no longer
exactly in phase with each other. When they reach the analyser they
are resolved into the same plane of vibration and are able to interfere
with each other. Whether or not they entirely cancel each other out
depends on the difference of phase. Now, for a given thickness of a
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Fi1a. 47. Birefringent crystal between crossed Nicols, in 45° position.

particular crystal, only one particular wavelength of light will be
completely cut out by interference; for other wavelengths there will
be only a diminution of intensity. If the thickness of the crystal and
the values of the two refractive indices are such that blue light is entirely
cut out by interference, the colour we shall see will consist of the rest of
the spectrum—a yellowish golour; if red light is cut out, we shall see
a greenish colour, and so on. For increasing thicknesses of crystal the
colours given are in the order known as ‘Newton’s scale’; it is the same
order as that of the interference colours given by very thin films, such
as oil films on a wet road. The order can be studied on any birefringent
crystal of varying thickness, such as the pyramidal ends of the crystals
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of monammonium phosphate ; the colours appear as bands like contour
lines on the crystals. The colour produced is determined by the bire-
fringence of the crystal (the difference between the two refractive
indices) and its thickness.

To return to the extinction phenomenon. We now know how to set
the polarizer so that its vibration direction coincides with one of the
vibration directions of the crystal: we make use of the extinction
phenomenon in the following way. Keeping the polarizer always in the
illuminating beam, focus a particular crystal; introduce the analyser
(crossed with respect to the polarizer) and rotate either the crystal or
the coupled pair of Nicols until extinction occurs; then remove the
analysexr and observe the Becke'line effect. Reintroduce the analyser,
and turn either Nicols or crystal through 90° to the other extinction
position ; after removing the analyser once again, observe the Becke
line effect for the second time. These observations reveal the relations
between the refractive indices of the crystal and that of the liquid.
Suppose one index of the crystal is lower and the other higher than that
of the liquid (Fig. 43 ¢, d, Plate II). Try liquids of lower index until
one is found whose index is equal to the lower of the two indices of the
crystals; and subsequently, seek the higher of the two indices of the
crystals in a similar way.

Crystals which are all lying in the same position, such as monam-
monium phosphate crystals lying on their prism faces, give consistent
results when examined in this way ; but if these crystals are crushed to
provide irregular fragments capable of lying on the microscope slide in
any orientation, and these fragments are examined in the same way, it
will be found that although the upper index of each fragment is con-
stant and equal to 1-525, the lower index is different for each fragment,
and may have any value between 1-479 and 1-525. This brings us to a
general consideration of the refractive indices for all possible orienta-
tions with respect to the transmitted light.

The Indicatrix. Imagine a point within a crystal, and from this
point lines drawn outwards in all directions, the length of each line
being proportional to the refractive index for light vibrating along the
line. It is found that for all crystals the ends of these lines fall on
the surface of an ellipsoid, a solid figure all sections passing through
the centre of which are ellipses. This ellipsoidal three-dimensional
graph of refractive indices is called the ‘indicatrix’. For monammonium
phosphate crystals and for all tetragonal, hexagonal, and trigonal
crystals the indicatrix is a special type of ellipsoid (Fig. 48) in which
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Fia. 48. Left: positive uniaxial indicatrix. Right: negative
uniaxial indicatrix.

two of the principal axes are equal to each other and the third different
in length (it may be longer or shorter); it is an ‘ellipsoid of revolution’
obtained by rotating an ellipse round one of its principal axes—in

the case of monammonium phosphate,
round the minor axis. The ellipsoid
thus has one circular section perpen-
dicular to the unique axis. The unique
axis of this ellipsoid of revolution
necessarily coincides with the unique
(fourfold, sixfold, or threefold) sym-
metry axis of the crystal.

The vibration directions and refrac-
tive indices of crystal fragments of
monammonium phosphate lying on a
microscope slide in any orientation are
given by the indicatrix in the following
way. A crystal fragment, oriented with
its unique axis at any angle 8 to the line
of vision, is mentally replaced by the
indicatrix (Fig. 49). Perpendicular to the
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Fic. 49. Uniaxial indicatrix—
general orientation.

line of vision, imagine a section P passing through the centre of the
ellipsoid ; this section is an ellipse, and its principal axes (the maximum
and minimum radii of the ellipse) represent the vibration directions
and refractive indices of the crystal fragment. Now the maximum
radius OD of every such ellipse is also a radius w of the one circular
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section of the indicatrix.t The minimum radius €’ of the ellipse, how-
ever, varies with the angle 8. In general, the length ¢’ lies between e
and w; when 8 = 90°, as it is for well-formed monammonium phosphate
crystals lying on their prism faces as in Fig. 45 a, €' is equal to e, the
unique axis of the indicatrix ; when 6§ = 0°, as it is for crystals of this
substance standing on end as in Fig. 45 ¢, € is equal to w, the radius of
the one circular section. The observed refractive indices of crystal
fragments of monammonium phosphate are in line with this: every
fragment has an upper index equal to 1-525, but the lower index varies
in different fragments between 1-479 and 1-525.

The method of finding the principal refractive indices of such crystals
even when quite irregular is therefore simple: numerous fragments are
examined, each fragment being observed in its two extinction positions;
the two principal refractive indices are the extreme upper and lower
values observed. The upper principal index is (for this particular sub-
stance) the easier to find because every fragment, however oriented,
gives this value as its upper index. The lower principal index is the
lowest of the lower values of all fragments.

When we are looking along the unique axis, both indices of the
crystal or fragment are equal to 1-525; the crystal will therefore not
show any interference colours when examined between crossed Nicols;
it will appear to be isotropic. This direction of apparent isotropy is
called the optic axis; there is only one such direction in the crystals we
have hitherto dealt with—tetragonal, hexagonal, and trigonal crystals
—and such crystals are therefore described as optically uniaxial. The
optic axis necessarily coincides with the principal symmetry axis.

The principal refractive indices of uniaxial crystals are usually symbol-
ized w or n, for the more important of the two, the one which is con-
stant for all orientations, and € or », for the other one. When e is less
than w (as in monammonium phosphate) the crystal is described as
uniaxial negative; when e is greater than w, as in quartz, SiO, (v =
1-544, ¢ = 1-553), the crystal is described as uniaxial positive.

The method for the determination of the principal refractive indices
of irregular fragments has been described, not only because such
material may often be encountered in chemical work, but also for
another reason. Well-formed crystals of many uniaxial crystals are
of such a shape that, when lying on any one of their faces on a micro-
scope slide, they do not show both the principal indices. Rhombohedra

1 Wire models will make this and other features of the optical indicatrix clearer than
plane diagrams can possibly do.
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or bipyramids, for instance, do not show ¢; they necessarily show w as
one of their indices, but the other index lies between w and e. In such
circumstances it is advisable to break the crystals so as to provide
irregular fragments, and to seek e in the way already described.
Orthorhombic crystals. The symmetries of the orthorhombic
classes—either three mutually perpendicular planes of symmetry, or
three mutually perpendicular twofold axes, or two perpendicular planes
intersecting in a twofold axis—demand that the indicatrix, which is of
the most general type with all three principal axes of unequal length,
has these three axes parallel to the crystallographic axes. The inequality
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Fic. 50. Refractive indices of sodium carbonate monohydrate,
Na,CO,4. H,0.

of the refractive indices for light vibrating along the three crystallo-
graphic axes is a consequence of the fact that the arrangements of
atoms encountered along these axes are all different from each other.
Any one indicatrix axis may coincide with any crystallographic axis.
For well-formed crystals of suitable shape the three principal refrac-
tive indices can be found quite casily. Crystals of sodium carbonate
monohydrate (Fig. 50), which can be made by evaporating a solution
of sodium carbonate above 40° C., are suitable for demonstration
because they lie on a microscope slide either on their 001 faces or their
100 faces (Fig. 50 b and ¢). It will be found that the extinction directions
—that is, the vibration directions—are parallel and perpendicular to
the long edges of the crystals for both orientations; crystals lying on
001 give refractive indices of 1-420 for light vibrating along the crystal
and 1-526 for light vibrating across the crystal ; those lying on 100 give
1-420 for the vibration direction along the crystal and 1-506 for the
other vibration direction. If crystals standing on end can be found on
the microscope slide, they will give indices of 1-506 and 1-:526 for the
vibration directions shown in Fig. 50. These three values 1-420, 1-506,
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and 1-526 are the principal refractive indices, and are symbolized « or
n, for the lowest, B or ng for the next, and y or n, for the highest.

Many orthorhombic crystals are of such a shape that, when lying on
one of their faces on a microscope slide, they do not show any of the
principal refractive indices. Such crystals may be broken to provide
fragments which lie in a variety of orientations. If fragments of crystals
of sodium carbonate monohydrate oriented in all possible ways are
examined, both indices of each fragment bé&ing observed, it will be
found that the lower of the two indices may have any value between

o and B, while the upper index lies

0’: )Zg a%/f between B8 and y. The determina-
tion of « and y for identification
purposes is in principle quite
simple: « is the lowest index for
any vibration direction, and v is
the highest index for any vibration
direction.

To find the intermediate prin-
cipal index B is less simple. One
method of finding it makes use of
the fact that in any ellipsoid having
three unequal axes there are two

Fie. 51. Biaxial indicatrix. circular sections. Thus, referring
to Fig. 51, there is, somewhere be-
tween « and y or the surface of the ellipsoid, a point B’ such that
OB’ = 0B, and the section passing through this point and the centre of
the ellipsoid is evidently a circle. Further, there is another point g”
for which OB” is equal to OB, and BB” is therefore another circular
section. This means that crystals seen along either of the two directions
OP and OQ which are perpendicular to these circular sections (directions
known as ‘optic axes’) have one refractive index only and will appear
isotropic. Moreover, this one refractive index is equal to 8. Therefore,
to find B, search for fragments which appear isotropic or nearly so
(giving very low order interference colours); these fragments give 8 or
values very near it.

It is not always easy to find crystals or fragments oriented so that
one is looking along an optic axis; hence it is necessary to mention
another method of finding 8. This method depends on the fact that no
crystal, whatever its orientation, can give two refractive indices above
B or two refractive indices below . One index must be between « and 8
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(for particular orientations it may be equal to « or B), and the other
must be between 8 and y (for particular orientations it may be equal to
B or y). Therefore, to find 8 we observe upper and lower values for
numerous fragments, and B is the highest of the lower values or the
lowest of the higher values.

To sum up, the method of determining the three refractive indices of
an orthorhombic crystal is to observe the upper and lower indices (for
the two extinction directions) of numerous fragments. o is the lowest
of the lower values, y the highest of the higher values, while g is the
highest of the lower values or the lowest of the higher values. If we
find fragments oriented so that we are looking along an optic axis,
upper and lower values are both equal to B.

Since orthorhombic crystals have two optic axes (that is, two direc-
tions of apparent isotropy), they are termed optically biaxial. The
angle between the optic axes is known as the optic axial angle. The
three principal axes of the indicatrix are known as the acute bisectrix
(of the optic axes), the obtuse bisectrix, and the third mean line. The
last-mentioned—the third mean line—is in all cases the vibration
direction of 8. The acute bisectrix is either the vibration direction of
y—in which case the crystal is known as biaxial positive—or else it is
the vibration direction of «, in which case the crystal is known as bi-
axial negative. Note that this nomenclature conforms with that of
uniaxial crystals. If we regard a uniaxial crystal as having an optic
axial angle of 0°, we may say that both optic axes coincide with the
acute bisectrix. This unique direction is the vibration direction of e,
and when this is the highest index (corresponding to y for a biaxial
crystal), the crystal is known as a uniaxial positive crystal. For weakly
or moderately birefringent biaxial crystals it is nearly correct to say
that a positive crystal has 8 nearer to « than to y, while a negative
crystal has B nearer to y than to «. But for strongly birefringent
crystals (y—a > 0-1) the dividing line between positive and negative
crystals (where the optic axial angle is 90°) occurs when 8 is appreciably
different from 3 (a+y).

Monoclinic and triclinic crystals. The indicatrix for monoclinic
and triclinic crystals is of the same type as that for orthorhombic
crystals—an ellipsoid with all its three principal axes unequal in length.
(This is the least symmetrical type of ellipsoid, so that any diminution
of crystal symmetry below orthorhombic cannot alter the form of the
ellipsoid.) The measurement of the three principal refractive indices of
a monoclinic or triclinic crystal is therefore carried out in the manner
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described for orthorhombic crystals, random orientation being assured
by crushing the crystals if necessary.

The orientation of the indicatrix with respect to the unit cell axes,
however, obviously cannot be the same as for orthorhombic crystals,
since the unit cell axes in monoclinic and triclinic crystals are not all
at right angles to each other.

In monoclinic crystals the b axis is either an axis of twofold symmetry
orisnormal to a plane of symmetry (or both) ; therefore, since the orienta-

tion of the indicatrix must conform

™ to the crystal symmetry, one axis
of the indicatrix (it may be either

* a, B, or y) must coincide with the b
, axis of the unit cell. Thisis the only
d \\ ©  restriction on indicatrix orienta-
\ 7 ] tion; its other two axes must ob-
ay viously lie in the plane normal to
b—the ac plane, but they may be
in any position in this plane, though

of course remaining at right angles
to each other. This is illustrated in
= . .
Fig. 52, which shows a gypsum
Fig. 52. Orientation of indicatrix in

gypsum crystal. (The differences between cry stal ly mg on its 010 fa'ce: the b
the refractive indices—for example, the axis being normal to the paper. The

lengths  Ox “’;‘;gg;’;ﬁe groatly eX-  vihration direction of B happens to
be the one which coincides with the
b axis, hence o and y lie in the ac plane, and it is found that the vibration
direction of « makes an angle of 374° with the ¢ axis. If gypsum crystals
are examined under the microscope, it will be found that the extinction
directions are inclined to the crystal edges, and refractive index « (1-520)
is shown when the vibration direction of the light from the polarizer
makes an angle of 37}° with the long edge of the crystal. If these
crystals can be observed edgewise (in a crowd of crystals, especially
when immersed in a viscous medium, some may be found suitably
oriented) it can be seen (Fig. 52, right) that the extinction directions
are parallel and perpendicular to the long edges of the crystal, and that
refractive index B (1:523) is shown when the vibration direction of the
light is perpendicular to the long edges, that is, along the b axis; for
the vibration direction parallel to the long edges the index lies between
« and y, its value being given by the length OZ.
One consequence of the freedom of position of the indicatrix in the
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ac plane is that the extinction position need not be the same for all
wavelengths of light; its position for red light may be, and often is,
appreciably different from that for blue light ; consequently some mono-
clinic crystals, when lying on the microscope slide on their 010 faces,
do not show complete extinction at any position of the crossed Nicols;
the illumination passes through a minimum on rotation of the Nicols,
and in the region of the minimum, abnormal interference colours may
be seen, reddish for one setting of the Nicols (where blue light is
extinguished) and bluish when the Nicols are turned a degree or two
(when red light is extinguished). This occurs in crystals of sodium
thiosulphate pentahydrate, Na,S,0,.5H,0, and sodium -carbonate
decahydrate, Na,CO,.10H,0. This phenomenon does not occur in
orthorhombic crystals lying on faces parallel to crystallographic axes,t
since the indicatrix axes are fixed by symmetry along the crystal axes
and are therefore unable to vary in position with the wavelength of
light. Nor does it occur for monoclinic crystals lying on any face
parallel to b, since one ellipsoid axis is fixed by symmetry along b.

In triclinic crystals there are no restrictions at all on the position
of the indicatrix with respect to the crystal axes. No axis of the ellipsoid
need coincide with any one of the crystal axes. Consequently the
position of the ellipsoid may vary with the light wavelength for all
crystal orientations; incomplete extinction with abnormal interference
colours at the position of minimum illumination may therefore be seen
for any crystal orientation.

Use of convergent light. The phenomena so far described are those
which are seen when approximately parallel light is used. For any
particular crystal orientation they give information about the proper-
ties of the crystal for one particular direction of propagation of light
(the line of vision). If strongly convergent light (given by a high power
condenser) is used, phenomena can be seen which give information
about a wide range of directions of propagation of light: in fact, in
some circurastances, the phenomena show at a glance whether a crystal
is uniaxial or biaxial, and if it is biaxial, they indicate the magnitude
of the optic axial angle.

A bundle of parallel rays which all take the same direction through
the crystal and then pass through the objective lens of the microscope
are necessarily brouglit to a focus at a point a little above the objective
(in the focal plane of the objective, the plane in which the image of a

t Orthorhombic crystals lying on hkl faces such as (111) may, however, show this
phenomenon.



78 IDENTIFICATION CHAP. LI

distant object would be produced) ; all the rays taking another direction
through the crystal are focused at a different point in the same plane.
Consequently, if we look at the optical effects in this plane we shall see
a pattern which represents the variation of optical properties over the
range of directions taken by the objective lens. When the crystal is
between crossed Nicols the pattern of colours indicates the variation of
birefringence with direction in the crystal.

This pattern, known as the ‘interference figure’, ‘directions image’, or
‘optic picture’, may be seen by removing the eyepiece of the micro-
scope and looking straight down the tube; it appears to be just above
the objective lens. If the microscope is fitted with a Bertrand lens—a
special auxiliary lens which can be inserted in the tube—it is not
necessary to remove the eyepiece. For the observation of small crystals
& Bertrand lens with a small diaphragm, located just below the eye-
piece, is most suitable, as it picks out the directions image produced by
a small crystal which occupies only a small fraction of the field of view.
The objective lens used should have a high numerical aperture, so that
it takes in a wide angular range of directions; a 6- or 4-mm. lens of
numerical aperture 0-7-0-8 is suitable. The crystals are preferably
immersed in a liquid whose refractive index is not far from 8 or w.

A uniaxial crystal with its optic axis along the line of vision gives a
directions image consisting of a black cross with concentric coloured rings
(Fig. 53 a, left). The centre of the figure is dark because it represents
the direction of the optic axis—a direction of apparent isotropy. The
arms of the black cross represent the vibration directions of the crossed
Nicol prisms, while the rings show interference colours whose order
(see p. 81) increases with their radius, owing to the rising birefringence
of the crystal for directions increasingly inclined to the optic axis.
Suitable crystals for demonstrating this type of figure are the hexagonal
plates of cadmium iodide, CdI,, which lie correctly oriented on the
microscope slide. Crystals lying so that the optic axis is a little inclined
to the line of vision give a directions image displaced from the centre
of the eyepiece field.

Biaxial crystals under similar optical conditions produce directions
images like that shown in Fig. 53 b, when the acute bisectrix of the
optic axes lies along the line of vision and the vibration directions of
the crossed Nicols are at 45° to the extinction directions. There are
black hyperbolae and coloured lemniscate rings. A sheet of muscovite
mica is a suitable specimen for demonstration. The distance between
the black hyperbolae is a measure of the optic axial angle. If various
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crystals of known optic axial angle are observed, and the distances
between the black hyperbolae are measured by means of a micrometer
eyepiece, a calibration can be made so that the optic axial angle of any

(b)

Fia. 53. ‘Directions images’ or ‘optic pictures’. a. Uniaxial crystal with optic axis
parallel (loft) and slightly inclined (right) to line of vision. b. Biaxial crystal with acute
bisectrix parallel (left) and inclined (right) to line of vision.

IMMERSION

MEDIUM
G‘A’KS’ TAL X 2V )

77NN

LIGHT
Fi6. 54. Optic axial angle in crystal (2V) and in air (2E).

crystal can subsequently be determined. The angle thus measured is
the angle the optic axial directions make with each other on emerging
from the crystal into air (Fig. 54); this angle 2E is related to the true
optic axial angle 2V by the expression sin & = BsinV.
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The optic axial angle 2V is related to the three principal refractive
indices by the expression

_y [(B—a?
wat =% (=)
If three of these quantities are known, the fourth can be calculated.

Thus, when it is possible to measure all three principal refractive
indices, the measurement of the optic axial angle is, strictly speaking,
superfluous. But in some cases it may be possible to measure only two
of the principal refractive indices. For instance, some organic crystals
have y higher than any available immersion liquid. In such circum-
stances a measurement of the optic axial angle gives the necessary in-
formation for calculating the third index ; this measurement of the optic
axial angle must include the determination not only of its magnitude but
also of its sign. The distinction between positive and negative crystals
can be made by the use of the quartz wedge ; this forms the subject of
the next section.

Use of the quartz wedge. When needle crystals of a uniaxial sub-
stance such as urea (tetragonal—uniaxial positive) are being examined
between crossed Nicols, it may be seen that when one crystal lies across
another of similar thickness, and at right angles to it, the apparent
birefringence (as shown by the interference colour) at the point where
they cross is very low or actually zero. The effect is seen perhaps most
conveniently by examining thin threads of fibres such as rayon or
nylon which behave optically like uniaxial crystals; in a yarn of such
materials the threads are of uniform diameter, and where they cross
each other at right angles, the apparent birefringence is zero. But if
one thread lies on another parallel to it, the interference colour is of
much higher order than that given by a single thread. The interference
effects are thus subtractive when the threads or crystals are at right
angles to each other, and additive when they are parallel. This is
because crystal 1 (Fig. 55 a) retards waves vibrating along 4 relative
to those along B; but subsequently, when the waves go through
crystal 2, the waves vibrating along B are retarded relative to those
along A, thus neutralizing or compensating the effect of crystal 1, so
that no interference colours are shown for the crossed position. Con-
versely, if the crystals are parallel, the retardation effects are additive
and a higher order interference colour is produced.

This effect can be used for finding which vibration direction gives
the higher index for any birefringent crystal. It is most convenient to
use the quartz wedge, a thin slice of quartz with its length parallel to
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the hexagonal axis of the crystal (the vibration direction which has
the higher index) and uniformly tapering in thickness.t If it is pushed
into the polarizing microscope at 45° to the vibration directions of the
Nicols (a slot is provided for the purpose), the interference colours of
Newton’s scale can be seen—grey near the thinnest part of the wedge,
and passing through near-white, brownish-yellow, red, and violet of the
first order, then peacock blue, yellowish-green, yellow, magenta, and
violet of the second order, then emerald green, yellowish, and pink of
the third order, and thence through alternating, progressively paler

‘QUARTZ WEDGE

1
A< e
2
V  coour”
B CONTOURS
(a) (b)

Fr1e. 55. a. Two urea crystals of the same thickness, crossed at right angles. At the

centre overlapping portion the combination appears isotropic. b. Effect of quartz

wedge on crystal of NH,H,PO,. As the wedge advances, the colour contours move
towards the thicker part of the crystal.

shades of green and pink of the higher orders. If a crystal of monam-
monium phosphate is examined, and the quartz wedge pushed in parallel
to the fourfold axis (Fig 550b), it can be seen that the interference
colours decrease in order as an increasing thickness of quartz overlaps
the crystal. This shows at once that the optical character of this crystal
is opposite to that of quartz—the waves vibrating along the crystal
have the lower refractive index. Perhaps the best method of observa-
tion is to watch the colour contours on the pyramidal ends of the
crystal; these contours retreat towards the thicker part of the crystal
as the quartz wedge advances and neutralizes the retardation. The
effect may be checked by pushing the wedge in at right angles to the
fourfold axis of the crystal; the birefringence effects are now additive,

1 This is the commonest type. But quartz wedges having the opposito orientation
(with the vibration direction for the lower index parallel to the length of the wedge)
are also made. The phenomena they give are naturally opposite to those doseribed.

44568

G
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and the colour contours move towards the pointed ends of the crystal
as the quartz wedge advances.

The distinction between the vibration directions of higher and lower
refractive indices can always be made in this way for crystals having
inclined extinction no less than for those with parallel extinction. When
refractive indices are measured by the methods already given, the use
of the quartz wedge is hardly necessary (unless for confirmation of

Fic. 56. Effect of quartz wodge on ‘directions images’. a. Uniaxial positive.
b. Uniaxial negative. c¢. Biaxial positive. ¢. Biaxial negative.

conclusions already reached); but in other circumstances (for instance,
when crystals are being examined in their mother liquor), quartz wedge
observations are useful clues to optical character.

The quartz wedge may be used in a quantitative manner for finding
the magnitude of birefringence of a crystal, that is, the difference
between the two refractive indices the crystal is showing. For this
purpose it is necessary to know the thickness of the crystal. The quartz
wedge is pushed in until the birefringence of the crystal is just neutral-
ized ; the interference colour given by the wedge alone at this point is
noted, and the corresponding retardation can then be read off on a chart
like that given by Winchell (1931). The relation between the retardation
of one wave behind the other (R), the birefringence (y'—«'), and the
thickness t is (y'—a’)t = R. Such measurements can be done more
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conveniently by means of the Babinet compensator, in which two
quartz wedges slide over each other in response to the turn of a screw
(Tutton, 1922). Such methods are useful when it is difficult or impos-
sible to measure individual refractive indices by the immersion method ;
for instance, the birefringence of stretched sheets of rubber has been
measured in this way (Treloar, 1941).

The optic sign of a crystal can be discovered by observing the effect
of the quartz wedge on the interference figure. For a uniaxial positive
crystal the vibration directions of higher index lie along the radii of the
coloured circles (Fig. 56 a). Consequently, when the quartz wedge
moves across the figure, additive effects occur along the radii parallel
to the wedge (since the direction of higher index for the wedge is along
its length), and subtractive effects along the radii perpendicular to the
wedge ; the coloured circles therefore move inwards along radii parallel
to the wedge and outwards along radii perpendicular to the wedge.
The converse is true for uniaxial negative crystals. Similar effects for
biaxial crystals are illustrated in Fig. 56 b.

Such observations may be useful in those cases when complete
refractive index measurements by the methods already described are
not possible; for instance, when the maximum refractive index of an
organic crystal is too high to be matched by any available liquid.

Dispersion. The principal refractive indices of a crystal vary in
magnitude with the frequency of light; and in crystals of monoclinic or
triclinic symmetry, the vibration directions of the principal indices may
vary with frequency. Such variation is known as dispersion.

The indicatrix for a cubic crystal is a sphere; the only variation
which can occur is a change in the size of the sphere with the frequency
of light. The colour fringes often seen round the edges of a crystal when
it is immersed in a liquid of nearly the same refractive index are due
to a difference between the dispersion of the crystal and that of the
liquid.

For uniaxial crystals (those of tetragonal, trigonal, and hexagonal
symmetry) the indicatrix is an ellipsoid of revolution, the orientation
of which is fixed by symmetry (see earlier section). But the magnitudes
of w and € may vary with frequency in different degrees, so that the
birefringence varies with wave-length. This is not likely to give rise to
noticeable phecnomena under the microscope unless the birefringence 18
very low, when abnormal interference colours may be seen when the
crystals are observed between crossed Nicols in parallel light. For
instance, the mineral rinneite, FeCl,.3KCl.NaCl, is practically isotropic
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for yellow light, but appreciably birefringent for blue light ; fragments
of suitable thickness do not show first order yellow, but a bluish
tinge. In benzil, C;H;.CO.CO.CgH;, the changes of w and e with
frequency are such that it is positive for most of the visible spectrum,
isotropic in the violet, and negative for the far violet end of the spectrum
(Bryant, 1943).

In orthorhombic crystals the vibration directions of the three
principal indices are fixed by symmetry, but their magnitudes may
vary independently, and this may lead to appreciable variation of

(©

Fi1c. 57. Dispersion of optic axes in orthorhombic crystals. a. p > w.
b—d. Crossed axial plane dispersion.

optic axial angle with frequency. This effect modifies the appearance
of the directions image produced in convergent light. The acute
bisectrix of the optic axes (to which the centre of the directions image
corresponds) is fixed by symmetry along one of the crystal axes, and
the plane of the optic axes (the oy plane of the indicatrix) is one of the
faces of the unit cell. Consequently the two planes of symmetry of
the directions image are fixed in the same positions for all frequencies.
Therefore the hyperbolae which indicate the positions of the optic axes
may move towards or away from each other with change of frequency,
but always symmetrically with respect to the fixed lines AB and CD in
Fig. 57 a. For small dispersions the directions image produced by white
light will show a red fringe on one side of the hyperbola (where blue
light is missing) and a blue fringe on the other side (where red light is
missing), both hyperbolae being the same. When the red. fringes are
on the side nearer to the acute bisectrix, as in the diagram, the optic
axial angle for blue light is evidently smaller than for red light. The
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usual symbol for recording this condition is p > v. In extreme cases,
as in brookite (the orthorhombic form of titanium dioxide, TiO,), the
optic axial angle narrows to zero and then opens out again in a plane
at right angles to the first, as the frequency of the light is changed
(see Fig. 57 b—d). This means that the refractive index for vibration
direction CD, which for red light is 8, approaches that for the vibration
direction 4B (« for a positive crystal), becomes equal to it for green light
(so that the crystal is fortuitously uniaxial), and falls below it for blue
light, so that the index for vibration direction CD is now called «, while
that for AB is called B. The white light directions image in such
circumstances is very abnormal ; to elucidate the relation between optic
axial angle and frequency, it is nece‘ssa,ry to make observations in
monochromatic light of variable frequency. (See Bryant, 1941.)

In monoclinic erystals the indicatrix may not only change its dimen-
sions, but may rotate round whichever axis coincides with the b crystallo-
graphic axis; and in triclinic crystals it may rotate in any direction
whatever, with change of frequency. These movements may give rise
to less symmetrical types of dispersion of the optic axes, though it is
only rarely that the magnitude of the effect is great enough to render
the phenomenon a useful criterion for identification. These types of
dispersion will therefore not be described in detail; it will merely be
observed that the type of dispersion is conditioned by the symmetry
of the crystal, and that when appreciable dispersion occurs, the
symmetry of the polychromatic directions image, or the movement of
the monochromatic figure as the frequency is changed, is a reliable
indication of maximum crystal symmetry. A polychromatic figure
which has only a centre of symmetry, or is symmetrical about only
one line. can only be produced by a crystal having monoclinic or
triclinic symmetry ; a figure having no symmetry can only be produced
by a triclinic crystal. For further information, see Miers (1929) and
Hartshorne and Stuart (1934).

Pleochroism. When crystals absorb light the positions of the
absorption bands and their intensities are likely to vary with the
vibration direction of the light, and therefore, when the absorption
bands are in the visible region, the colour shown is likely to depend on
the vibration direction of the light. All coloured anisotropic crystals—
that is, all coloured crystals except those belonging to the cubic system
—are likely to show, in polarized light, colours which vary as the
polarizer is rotated. This will be noticed when the refractive indices of
coloured crystals are being measured. Thus, when crystals of potassium



86 IDENTIFICATION - CHAP, 111

ferricyanide K Fe(CN), are examined in polarized light, rotation of the
polarizer causes the colour of some of the crystals to change from
yellow to orange-red; crystals ‘showing’ the refractive index o are
yellow, while those ‘showing’ y are orange-red. Such crystals are
said to be ‘pleochroic’. These absorption effects, which are shown
when only the polarizer of the microscope is in use, should not be
confused with the interference colours produced when crossed Nicols
are in use.

The three-dimensional graph showing the variation in the absorption
of any frequency with crystal direction is, like that of the refractive
indices, an ellipsoid. Cubic crystals necessarily have the same absorp-
tion for all vibration directions, just as they have a constant refractive
index. For optically uniaxial crystals (those belonging to the tetragonal,
hexagonal, and trigonal systems) the absorption for the w vibration
direction may be different from the absorption for the e vibration
direction—different in respect of both the proportion of light absorbed
and the wave-length ranges of the absorption bands ; and when an index
between w and e is shown, the absorption is intermediate. (Strictly
speaking, the phenomenon in uniaxial crystals should be termed
dichroism, since there are only two different absorptions.) For biaxial
crystals, a, 8, and y may all show different colours. Thus in crystals of
Fe,(PO,),.8H,0 (the mineral vivianite) o is cobalt blue, 8 is nearly
colourless, while y shows a pale olive-green colour (Larsen and Berman,
1934).

The observation of the colour and the degree of absorption associated
with each index is of obvious value for identification purposes; the
larger the number of characteristics observed, the more certain the
identification. Observations of pleochroism may also be useful as indica-
tions of certain features of molecular structure. (See Chapter VIII.)

Very strongly pleochroic crystals, which absorb almost completely
for one vibration direction and hardly at all for another, can be used as
polarizers. Tourmaline, a complex aluminosilicate mineral of trigonal
symmetry, has a very low absorption for light of all colours vibrating
along the trigonal axis, and a very high absorption for vibration direc-
tions perpendicular to this axis; when unpolarized light passes through
the crystal, it is resolved in the usual way into two components vibrat-
ing parallel and perpendicular to the threefold axis; but the component
vibrating perpendicular to this axis is almost completely absorbed by
even very thin crystals, while the other component is transmitted with
little loss of intensity; consequently the light which emerges from the
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crystal is practically completely plane polarized. The polarizing sheets
known as ‘Polaroid’ have similar characteristics ; each sheet consists, not
of a single crystal, but of a large number of submicroscopic crystals, all
oriented parallel to each other and embedded in a suitable medium.
The first crystal used for this purpose was ‘herapathite’, strychnine
sulphate periodide ; some other substances of this type (periodides) have
similar properties.

Rotation of the plane of polarization. When plane polarized light
passes through crystals belonging to certain classes, the plane of polari-
zation may be rotated. The phenomenon is readily observed only in
cubic crystals and in birefringent crystals seen along an optic axis;
these, when examined between crossed Nicols, using paralle] white light,
do not appear dark (as they would if no rotation occurred), but coloured ;
and when the crossed Nicols are rotated, no extinction occurs, the
intensity and colour of the light remaining constant. Light is trans-
mitted because the plane of vibration of the light from the polarizer is
rotated by the crystal, so that it is no longer extinguished by the
analyser; and the reason for the colour is that the amount of rotation
usually varies considerably with the wave-length of the light, and con-
sequently the proportion of light passed by the analyser (resolved into
its own plane of vibration), is different for each wave-length, the net
transmitted light being therefore coloured. The rotation is usually
greatest for the blue end of the spectrum ; consequently for thin crystals
in which the amount of rotation is much less than 90° for all wave-
lengths, the light which passes the analyser is predominantly blue.
Thus, for microscopic crystals, rotation of the plane of polarization is
indicated by the appearance of a bluish light which does not extinguish
as the crossed Nicols are rotated, but remains of constant colour and
intensity. As a check, the analyser should be rotated so that it is no
longer exactly crossed with the polarizer; the colour should change,
and the sequence of changes shows the sense of rotation of the plane
of polarization ; if the analyser is rotated clockwise, a change of colour
in the order blue, violet, yellow shows that the crystal is rotating to
the right (clockwise).

If monochromatic light is used, Nicols exactly crossed will trans-
mit some if it, but by rotating the analyser extinction can be
achieved.

Rotation of the plane of polarization naturally modifies directions
images. When rotation occurs in a uniaxial crystal the black arms of
the directions image fade towards the centre, and the centre itself is
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coloured, not black; and if rotation occurs along the optic axial direc-
tions of a biaxial crystal the image will show coloured ‘eyes’, the black
hyperbolae being interrupted at these points.

Such evidence of rotationof the plane of polarization is not likely to be
detected in microscopic crystals unless the specific rotation is exception-
ally large. The phenomena mentioned above are usually exhibited only
by crystals at least several millimetres thick. Suitable subjects for
observation are sodium chlorate (cubic), quartz (trigonal, uniaxial), and
cane sugar (monoclinie, biaxial).

The crystal classes which may rotate the plane of polarization of light
are, first of all, the enantiomorphous classes—those which lack planes
of symmetry, inversion axes, and a centre of symmetry. But in addition
to these, one crystal belonging to class m (that is, having a plane of
symmetry, but no centre of symmetry) is known to exhibit the pheno-
menon (Sommerfeldt, 1908); and therefore presumably some others
possessing planes but no centre of symmetry may do the same. To a
chemist, familiar with the conditions necessary for rotation of the plane
of polarization by dissolved molecules (that is, absence of both planes
and a centre of symmetry in the molecular geometry), this may appear
surprising ; but the surprise disappears when it is realized that the two
situations—on the one hand, a mass of randomly oriented molecules,
and on the other, a single crystal composed of precisely oriented
molecules—are not comparable. Reconciliation of ideas is effected by
the following considerations. A crystal or a single molecule having a
plane of symmetry but no centre of symmetry can rotate the plane of
polarization, but the rotation varies with the direction in which the
light travels, and if there is left-handed rotation along any selected
direction on one side of the plane of symmetry, there must be, along
the mirror-image direction on the other side of the plane of symmetry,
right-handed rotation of the same magnitude. Therefore in a mass of
randomly oriented molecules (or crystals) some will rotate in one
direction and others (differently oriented) in the opposite direction, the
net rotation being exactly zero. Thus it is not true to say that a single
molecule or a single crystal having a plane of symmetry cannot rotate
the plane of polarization of light ; provided it has no centre of symmetry,
it can and does cause rotation for light travelling in any direction
except those parallel and perpendicular to the plane of symmetry ; it is
the mass of randomly oriented molecules in a liquid or solution which
fails to show any net rotation.

For a fuller discussion of the phenomenon, and a list of the crystal
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classes which (according to current theories) may exhibit it, see
Wooster, 1938.

Optical properties of twinned crystals. Each individual in a twin
exhibits its own optical characteristics. If a gypsum twin is seen along
its b axis and examined between crossed Nicols, it can be seen that each
individual extinguishes independently. The twin plane (100) is a plane
of symmetry of the composite whole, and the vibration directions of the
two individuals, like all the other properties, are related to each other
by this plane of symmetry (see Fig. 58 a).

X
(@ (b)
Fi1a. 58. Optical properties of twinned crystals. a. Gypsum. b. Calcium

sulphate subhydrate. Note orientations of ‘directions images’ in the three
soctors.

The relations between the optical properties of the two individuals
are clear in the case of gypsum because the crystals lie on the microscope
slide on their (010) faces, so that the (100) twin planes are parallel to
the line of vision. In some crystals the twin planes are inclined to the
line of vision when the crystals are lying on their principal faces so that
one is looking through two crystals in which the vibration directions are
not parallel to each other. In these circumstances, in the overlapping
regions extinction does not occur when the Nicols are rotated. When
observations are being made for refractive index determination it is
necessary to confine the observations to those portions of crystals which
are not overlapped by other individuals.

Observations of crystals between crossed Nicols are particularly
valuable in the case of some of those twin combinations which in their
external shape simulate a single crystal having a symmetry higher than
that of one of the individuals. The observation of different extinction
directions in different regions demonstrates at once that the crystal is
not a single individual but a twinned combination. The hexagonal
prisms of ammonium sulphate mentioned on p. 58 are in this way shown
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to be mimetic triplets, since adjacent sectors extinguish at 60° to each
other. Similarly crystals of calcium sulphate subhydrate grown in nitric
acid solution are hexagonalplates, which, however, are not single crystals
but triplets (Fig. 58 b): three sectors have extinction directions at 120°
to each other, and, moreover, biaxial directions images at 120° to each
other can be seen by examining each sector in turn.



v
IDENTIFICATION OF TRANSPARENT CRYSTALS UNDER
THE MICROSCOPE

I~ this chapter the sequence of observations followed in the microscopic
method of identification is outlined. The immersion method for the
identification of small separate crystals forms the main subject of this
chapter, though some remarks on methods for large aggregates will be
found at the end. When the immersion method is to be used aggregates
may be crushed or ground carefully.

A preliminary observation is made in ordinary transmitted light to
see whether the solid is transparent or not. It must be remembered
that the amount of light transmitted is greatest when the solid is
immersed in a medium of similar refractive index ; transparent solids of
very high refractive index, in air or in a liquid of low index, may appear
opaque, especially if they are aggregates of small particles, on account
of the total internal reflection of light at inclined surfaces. Therefore,
if the particles appear opaque when immersed in a liquid of refractive
index 1-4-1-5, a liquid of much higher index—say 1-7-1-8—should be
tried. (The polarizer of the microscope, though not necessary for this
observation, may be left in position; in fact, it is hardly ever necessary
to remove it.)

Ingeneral chemical work the great majority of substances encountered,
when in the form of small microscopic particles, are likely to be in sowme
degree transparent, and can therefore be studied by methods empiuy-
ing transmitted light. For completely epaque particles it must be
admitted that the chances of identification by any microscopic method
are rather small, unless well-formed crystals large enough to be handled
individually are available: such crystals may be mounted on a micro-
scope stage goniometer, and if sufficient angular measurements can be
obtained it may be possible to use Barker’s morphological method of
identification (1930).

For opaque crystals too small to be handled individually, only general
observations of shape can be made, and for this purpose it is best to use
diffused light illuminating the crystals from above on one side of the
microscope. Such observations will not carry us very far—we may be
able to recognize cubes or octahedra or hexagonal prisms or other shapes,
but in the absence of angular measurements or indeed measurements of
any characteristics at all, identification in the strict sense of the word is
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scarcely possible. In case any readers happen to be metallurgists, I
hasten to add that experience in dealing with a particular system (in
the phase rule sense of the word) may show that certain characteristic
shapes or formations recognizable by simple observation are indicative
of the presence of certain phases. In metallurgy the body of experience
built up by a large number of observations of polished and subsequently
etched surfaces of metal specimens is used with great effect in ‘spotting’
particular constituents. Metallurgical text-books, such as Rosenhain’s
Introduction to Physical Metallurgy (1935), should be consulted for
further information on this highly specialized branch of crystallography.
Similar methods may be used, and often are used, for non-metallic
systems, once the necessary experience has been gained. But experience
obviously has to be built up for every different system individually ;
if a new constituent is added, the picture may be entirely changed,
because new phases may be formed or familiar phases may grow in
unfamiliar shapes and will have to be identified by methods of general
validity before the necessary experience for specialized inspection-
methods can be built up. It is with the methods of general validity that
we are concerned in this book.

When a solid substance is seen to be transparent the next step is to
observe whether it is isotropic or not. The analyser isintroduced (crossed
with respect to the polarizer), and the Nicols (or alternatively the parti-
cles) are rotated. If the particles remain dark for all positions of the
crossed Nicols they are isotropic, and their refractive index can be
measured by the method described at the beginning of the previous
chapter. Note at this point that crystals belonging to the optically
uniaxial systems which happen to grow as thin plates (of tetragonal,
hexagonal, or trigonal outline) tend to lie flat on the microscope slide,
and in this position their optic axes lie along the line of vision and the
crystals therefore appear isotropic. If, however, the iris diaphragm of
the substage condenser is opened to give strongly convergent light, such
crystals will show interference colours, thus betraying their birefringent
character ; and an observation of the ‘directions image’ will confirm that
they are uniaxial. In any case, it is unlikely that all the crystals will
be lying flat ; in a crowd of crystals some will almost certainly be tilted
or even standing on edge, and in parallel light these will show inter-
ference colours, revealing their birefringent character. In case of doubt
the crystals may be deliberately tilted. If a ‘universal stage’ is available
the microscope slide may be readily tilted in any direction. If not, the
crystals should be immersed in a viscous liquid such as glycerol or
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dibutyl phthalate; if the microscope is tilted so that its stage is not
horizontal, or in any case if the cover-glass is disturbed, the liquid will
flow slowly and the crystals will turn over ; observation between crossed
Nicols while the crystals are moving will show whether they are bire-
fringent or not. (This is also a useful way of studying the shapes of
microscopic crystals, the analyser being removed for this purpose.)

Cubic crystals and amorphous substances. Isotropic solids,
if they are truly isotropic (not merely aggregates of very small bire-
fringent crystals too small to show interference colours), are either
crystals belonging to the cubic system or amorphous substances like
glasses or gels in which there is no regular arrangement of atoms.
Crystalline substances are likely to show some signs of regular structure ;
if they are well formed and their shape is obvious, isotropic crystals
should have a shape consistent with cubic symmetry. (See Fig. 38.)
Even broken fragments of crystals are likely to show occasional edges,
corners, or cleavage surfaces suggesting the original shape. Substances
such as ammonium chloride and bromide which grow in skeletal forms
often have rounded surfaces, but the occurrence of fragments branch-
ing at right angles does give an indication of an ordered internal
structure.

The magnitude of the refractive index of an isotropic crystal usually
leads to unequivocal identification. In the tables published by Winchell
(1931) for inorganic laboratory products and Larsen and Berman (1934)
for minerals, crystals are arranged in order of their principal refractive
index, and it is therefore a straightforward matter to find which crystal
has the refractive index which has been measured. It may happen that
the measured value does not correspond with any in the lists; in this
case, there are two possibilities. One is that the substance is a mixed
crystal or crystalline solid solution, the refractive index of which varies
continuously with the composition (the tables mentioned indicate the
known variations) ; a hint of such variation is often given by the sample
itself—some crystals may have a slightly higher index than others.
The second possibility is that the substance is one whose refractive index
has not previously been measured, in which case it obviously cannot be
identified by this method.

Glasses may reveal their nature by exhibiting conchoidal fractures.
The composition of a one- or two-component glass may be deduced
from its refractive index if the system has previously been studied;
the indices of a number of glasses are given in Winchell’s tables. For
three-component glasses the refractive index alone cannot give the
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composition ; but if the refractive index and one other property—say the
density—can be measured, it may be possible to specify the composition.

Precipitated amorphous substances usually appear to be irregular
isotropic masses. They usually tend to hold varying amounts of solvent
and therefore show variable refractive indices. Usually they cannot be
identified with certainty.

Irregular masses which appear isotropic may consist of aggregates of
anisotropic crystals which are individually too small to show inter-
ference phenomena between crossed Nicols; each crystal may be of
submicroscopic size. The single measurable refractive index is an average
value lying between the principal indices of the crystal in question.
Weakly birefringent substances are the most likely to appear in this
form, but any substance may do so provided the individual crystals are
small enough ; the higher the birefringence, the smaller the individual
crystals must be in order to appear isotropic. Slaked lime, Ca(OH),,
which has a moderate birefringence (w = 1:57, € = 1-54), sometimes
forms apparently isotropic masses ; in such cases it is always advisable to
increase the intensity of illumination (still using crossed Nicols) by open-
ing the iris diaphragm of the condensing lens of the microscope, when
it may happen that vague patches of feeble interference colours (greys
of the first order) indicate the presence of minute birefringent crystals.
Strained glass may also show weak birefringence, but the glassy
character will probably be betrayed by conchoidal fractures. In any such
case the specimen should be referred to the higher court of inquiry by
X-ray examination ; this method is dealt with in the next chapter.

Optically uniaxial crystals. When a crystalline substance is found
to be birefringent one proceeds with the determination of its principal
refractive indices by the methods already described. 1f the crystals are
flat plates, apparently isotropic when lying flat on the slide, they are
evidently uniaxial;T the principal index w is given by the apparently
isotropic plates, while plates standing on edge give w for light vibrating
in the plane of the plate and e for light vibrating normal to the plate.

For crystals which are not plate-like it may not be possible to decide
from the appearance of the crystals whether they belong to one of the
uniaxial systems (tetragonal, hexagonal, trigonal) or one of the biaxial
systems (orthorhombic, monoclinie, triclinic). It should then be assumed
initially that there are three principal indices a, 8, and y to be measured ;
evidence of uniaxial or biaxial character is bound to turn up in the course

T Flat biaxial crystals in which one of the optic axes happens to be precisely
normal to the plane of the plate will appear isotropic; but this situation is rare.
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of the observations. Thus, the general procedure is to observe the upper
and lower indices (for the two extinction positions) of numerous frag-
ments in a range of liquids, random orientation being assured by crush-
ing if necessary. The index « is the lowest of the lower values, vy is the
highest of the upper values, while 8 is the highest of the lower values
or the lowest of the upper values. If the crystals happen to be uniaxial
positive, then B8 will be found to be equal to o—that is to say, every
crystal will give a constant lower value: 8 = a = w. If the crystals are
uniaxial negative, B will be found to be equal to y—every crystal will
give a constant upper value: 8 = y = w.

The uniaxial character may be checked, if possible, by observing (on
a crystal which appears isotropic or nearly so) the directions image
produced by strongly convergent light, either by introducing the
Bertrand lens or by removing the eyepiece. It is useful to do this
because some biaxial erystals have two indices so close together that it
is scarcely possible to detect the difference by the immersion method.
Thus, potassium nitrate has y = 1:335, B = 1-5055, y = 1-506,. The
directions image shows, however, not the black cross of a uniaxial
crystal, but (for the 45° position of the Nicols) the two black hyperbolae
of a biaxial crystal; careful observation is necessary to confirm this,
because the hyperbolae are very close together (the optic axial angle
2V being only 7° and 2E 10}°).

If a uniaxial directions image is seen the optical sign of the crystal
may be checked by the use of the quartz wedge in the manner described
in the previous chapter. This is not necessary (except as confirmation)
unless for any reason it is not possible to obtain actual measurements
of both w and e.

Needle-like crystals naturally lie on the microscope slide with their
long axes parallel to the slide, and it may not be possible to find tilted
crystals; and even crushing may not yield fragments which lie in all
possible orientations. However, even when the needle axis is invariably
parallel to the slide, all orientations obtainable by rolling a needle are
likely to be encountered, and observations of a number of crystals
should be sufficient to give all the information required. The first thing
to do is to observe the extinction direction ; if extinction is consistently
parallel to the length, the crystals may be uniaxial, the direction of
elongation being necessarily the unicue geometrical axis and therefore
also the optic axis; but they may also be biaxial—either orthorhombic,
the direction of elongation being any one of the three axes, or mono-
clinic elongated along the b axis (since the b axis of a monoclinic crystal
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is the only direction which has an axis of the indicatrix coincident with
it). For all these types the refractive index for light vibrating along
the needle axis is constant ; but for light vibrating perpendicular to the
needle axis the refractive index is constant only for uniaxial crystals;
for biaxial types it is variable. We return to the biaxial types in the
next section; meanwhile the position is that needle crystals with
parallel extinction which give two constant refractive indices are uni-
axial. It only remains to discover which of these indices is w and
which e. The latter is the value for light vibrating along the needle
axis (the optic axis) ; if the vibration direction of the polarizer is known,
it will be obvious which of the two measured indices is ¢; if not, the
use of the quartz wedge will dedide the question.

Uniaxial bipyramids and rhombohedra (usually recognized by shape
and symmetrical extinction), when lying on the slide on their faces, will
not give ¢ but a value lying somewhere between w and e. Hence the
need for breaking the crystals to give random orientation. Crystals
having good rhombohedral or pyramidal cleavages (like calcite) may,
even when crushed, give many fragments which still lie inconveniently
on the cleavage faces; nevertheless, irregular-shaped fragments which
will lie in random orientation are sure to be produced in sufficient num-
bers for the determination of e.

Optically uniaxial crystals may be tetragonal, hexagonal, or trigonal.
If it is possible to recognize a shape characteristic of a particular system
this information is useful supplementary evidence; but it must be
emphasized that the refractive index values by themselves are usually
sufficient for identification.

Optically biaxial crystals. The measurement of the three princi-
pal refractive indices of a biaxial substance presents no difficulties when
the crystals are large enough to be crushed to provide irregular frag-
ments which will lie on the slide in random orientation. When the
crystals are too small for crushing to be desirable or effective, and are
bounded by a very few plane faces, some caution is necessary ; one must
make sure of observing not only those crystals which are lying on their
principal faces but also crystals tilted in various ways (because crystals
lying on their principal faces may not give their principal indices). If
a universal stage is available this presents no difficulty ; but even with-
out the universal stage it is not as difficult as might be supposed to
find suitably oriented crystals; even thin plates, the worst type of
crystals in this respect, may be found tilted at various angles or standing
on edge, especially in a crowd of crystals.
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Crushing has been recommended as a primary method because it is
safe and will lead to the determination of the principal refractive indices
of any crystalline substance, provided a sufficient number of randomly
oriented fragments is observed ; it is a beginner’s method. But the more
experienced worker may often dispense with it, when the crystals being
examined have a well-defined polyhedral shape. 1f the relation between
crystal shape and optical properties is properly understood, it is possible
to determine the principal indices by a limited number of ebservations
on crystals selected because they lie in such positions that they neces-
sarily show their principal indices.

For instance, crystals which appear to possess three mutually per-
pendicular planes of symmetry, or two planes intersecting in a twofold
axis, or three twofold axes, are probably orthorhombic, with rectangular
unit cells; and if, on looking along the presumed axial directions,
extinction is parallel to crystal edges or bisects the angles between
crystal edges, this conclusion is confirmed. Any crystal lying so that
an axial direction lies along the line of vision necessarily shows two of
the principal refractive indices; and views down two different axial
directions yield the three principal refractive indices. Crystals such as
those of sodium carbonate monohydrate (Fig. 50) are ideal for such
observations. At the same time, these observations yield a knowledge
of the orientation of the principal vibration directions (the principal axes
of the indicatrix) with respect to the crystal axes; thus, for sodium
carbonate monohydrate the vibration direction for « is the direction of
elongation of the crystal, while the vibration direction for 8 is the zone
axis of the terminal faces.

Crystals which appear to possess one twofold axis, or one plane of
symmetry, or both (the twofold axis b being normal to the plane of
symmetry) are probably monoclinic; if so, crystals lying with their
presumed b axes parallel to the microscope slide will show extinction
parallel to this b axis, and the refractive index for this vibration direc~
tion is one of the principal refractive indices. The other two principal
indices will be shown by crystals lying with their b axes along the line
of vision; for this aspect of the crystal, extinction is not parallel to a
principal edge or to the bisector of edge angles.t

Crystals which appear to possess only a centre of symmetry or no
symmetry at all age probably triclinic, and will probably not show their
principal refractive indices when lying on their faces; such crystals
should be crushed.

t Note that in rare cases extinction angles may be so small as to escape detection.
4458
H
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Biaxial crystals of inorganic substances can usually be identified by
their refractive indices alone; it is true that biaxial orystals are far
more numerous than uniaxial ones, but this is balanced by the fact that
they have three principal refractive indices—three different measurable
characteristics—as against two for the uniaxial types; it is rare to find
two substances having their three principal refractive indices equal
within the limits of experimental error. Nevertheless, it is always
desirable to discover, if possible, the crystal system and the relation
between the principal vibration directions and the crystal axes. This
information will often be simply confirmatory, but for certain mineral
systems in which considerable variation of composition (and therefore
of refractive indices) may occur, the magnitudes of the refractive indices
alone are not enough for unequivocal identification ; it is necessary to
discover the crystal symmetry and the orientation of the indicatrix
with respect to the crystal axes. For orthorhombic crystals the principal
axes of the indicatrix necessarily coincide with the unit cell axes, and
it is simply a matter of ohserving which vibration directions lie along
characteristic axial directions (such as a direction of elongation, a
principal prism zone, or a polar axis). For monoclinic crystals it is
necessary to find which vibration direction lies along the b axis, and the
angles made by the other vibration directions with respect to the a and
¢ axes. For triclinic crystals the indicatrix is not fixed in any way by
symmetry ; it may be possible to determine extinction directions with
respect to characteristic morphological directions, though not to define
precisely the orientation of the indicatrix, unless a universal stage is
available. The necessary information for these purposes is normally
gathered in the course of the determination of the refractive indices;
it is applied to the operation of identification by the use of the tables
of Larsen and Berman (1934) for minerals and Winchell (1931) for
laboratory chemicals.

For organic substances, the available information has been collected
and arranged by Winchell (1943). For some substances the only re-
fractive indices which have been recorded are those given by crystals
lying on their principal faces ; these are of course not always principal
indices, but they may be equally useful for identification purposes.
Such information is included in Winchell’s tables.

If the crystals being examined are not well-formed polyhedra, the
scope of such observations is naturally more limited. Perhaps the
commonest type of partly defined shape is a rod somewhat rounded so
that there are no definite faces on it. The only definite morphological
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feature here is a single direction—the long axis of the rod. If extinction
is consistently parallel, and it is found that the crystals are biaxial (see
pp- 95-6), they are almost certainlyt either orthorhombic or else mono-
clinic with the b axis as the direction of elongation. It is possible to
determine which vibration direction lies parallel to the rod by the
methods already given (for instance, by the use of the quartz wedge).
If extinction is inclined, the crystals are either monoclinic with a or ¢
as the direction of elongation, or else triclinic. The extinction angle
will vary with the orientation of the rod-like crystal on the slide. If
it is found that crystals which show the maximum extinction angle also
show two of the principal indices, then the substance is probably mono-
clinic, and the maximum extinction angle represents the angle made
by one of the principal vibration directions with the direction of elonga-
tion. Otherwise. the crystals are triclinic.

The observation of directions images in convergent light may often
provide confirmation of the orientation of the indicatrix. The plane of
the optic axes is the ay plane, while the normal to this plane is the B
vibration direction. For a positive crystal the acute bisectrix is the y
vibration direction, while for a negative crystal it is the « vibration
direction.

Even when the crystals being examined are quite irregular fragments,
it may be possible to obtain some information on their symmetry, if
certain types of dispersion of the optic axes are observed (see pp. 83-5).

The optical properties of crystals are usually quite reliable criteria
for identification ; but occasionally crystals have submicroscopic cracks
and cavities, and although appearing quite normal, give refractive
indices lower than those of an entirely solid crystal. This phenomenon,
which is obviously very misleading, is fortunately very rare, but has been
observed in anhydrite (calcium sulphate) and calcite (calcium carbonate)
prepared in the laboratory. In cases of doubt, X-ray powder photo-
graphs should be taken—see Chapter V.

Mixtures. When the constituents of a mixture differ markedly from
each other in appearance the refractive indices and other optical
properties of each can be determined without difficulty. This is very
frequently the case even when the shapes of the crystals are not very
well defined; for instance, a mixture may consist quite obviously of
three constituents, one in the form of comparatively large, rounded,
roughly equidimensional crystals, another in the form of small rod-
like crystals, and a third in the form of small rectangular or cubic

1 See footnote to p. 97.
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crystals. There is no difficulty in measuring the properties of each con-
stituent in such a mixture as this. Even when the differences between
constituents are much slighter and less easy to specify, they may be
none the less obvious.

Even when there are no morphological distinguishing features, how-
ever, it is very often possible to measure the refractive indices of differ-
ent constituents. Two or more isotropic substances can be identified,
provided that their refractive indices are mot closer than 0-002. A
mixture of one anisotropic substance with one, two, or more isotropic
substances likewise presents no difficulty. Fig 43 ¢ shows a mixture
of sodium bromate (cubic, n» = 1-616) and sodium bromide dihydrate
(monoclinic, a = 1-513, B8 = 1-519, y = 1-525) immersed in a liquid of
refractive index 1-54. In this case the constituents are distinguishable
by two features—one substance (sodium bromate) is not only isotropic
but also its refractive index is much higher than those of the other
substance. Two anisotropic constituents can be identified if the refrac-
tive indices of one lie wholly above those of the other; and in fact, any
number of anisotropic constituents can be identified if their respective
ranges of refractive indices are quite distinct. Serious difficulties only
occur if there are present in a mixture two or more anisotropic consti-
tnents whose refractive index ranges overlap—for instance, if the y of
one constituent is higher than the « of another. It will be evident that
there are two (or more) constituents in the mixture, since two (or
more) values of 8 are observed ; but, unless there are some distinguishing
features (such as differences of shape or size, or the presence of striations
or other marks on one constituent, or differences of dispersion), it will
not be possible to measure the other indices. Identification may some-
times be achieved on the basis of the 8 values alone or perhaps by B
values aided by measurements of optic axial angles; if not, the mixture
is one of those which cannot be identified by microscopic methods.
This situation is most likely to arise when one of the constituents
is a very strongly birefringent substance such as a carbonate or a
nitrate.

Identification when it is not possible to measure refractive
indices. In some circumstances it may be desired to identify sub-
stances without removing them from their mother liquor. Directidentifi-
cation—that is, by measuring properties and looking up the measured
values in tables—is not possible, and the evidence obtainable is con-
fined to shape, vibration directions, optic axial angles, and the like ; but
if such characteristics of all the substances likely to be formed in the
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particular circumstances are known, it may be possible to conclude that
the crystals can only be one of the likely substances. For instance, it
may be known that one of the possible substances grows as plate-like
crystals of a certain shape, which when lying flat on the slide give a
(convergent-light) directions image showing part of a biaxial figure,
oriented in a particular way with respect to the crystal edges; if none
of the other likely substances has similar characteristics, these obviously
form a good criterion for identification. Hartshorne and Stuart (1934)
give numerous examples of the value of such observations.

The value of measurements of the magnitude of the optic axial
angle has been urged by Bryant (1932); and where dispersion of the
optic axes occurs, the variation of the optic axial angle with light
frequency is a highly characteristic feature which is valuable evidence
for identity. (See Bryant, 1941, 1943.)

These methods of ‘spotting’ constituents of particular systems (in
the phase rule sense of the word) are akin to those of the metallurgist,
but have far greater scope on account of the wealth of observable or
measurable characteristics in transparent crystals. They are most
closely allied, however, to those of the petrologist, who by observing
birefringence, extinction directions, optic axial angles, and the like in
thin slices of rocks, and referring the information to his knowledge of
the characteristics and occurrence of mineral species, is able to identify
such species with rapidity and certainty. For information on these
methods, see Rogers and Kerr’s Optical Mineralogy (1942).

The thin-section methods of the petrologist may be used for artificial
specimens which are in the form of large aggregates—specimens of such
materials as refractories, bricks, and boiler scales. Instead of powder-
ing them and using immersion methods, it is possible to grind thin
sections and examine them. When it is simply a question of distinguish-
ing between a few possible constituents of known characteristics, this is
a useful method. But in unfamiliar systems the powder method is likely
to be more useful for identification purposes; the principal function of
the thin-section method in such circumstances is to provide information
on the distribution, orientation, or size of the crystals of the different
constituents.

Substances which are too opaque for the use of transmitted light
methods are rare, apart from metals; they include chiefly sulphides
and a few oxides. Aggregates of such materials may be examined by
the metallurgist’s method of grinding and polishing a flat surface. The
scope of such methods is much greater for non-cubic than for cubic
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substances, since by the use of reflected polarized light it is possible to
measure birefringence. (See Phillips, 1933.)

This book is concerned with purely physical methods of identification.
It is, however, relevant to mention in this chapter on microscopic
methods the use of a combination of physical and chemical methods.
Chemical reactions may be carried out on a small scale on microscope
slides, the crystallization of reaction products being watched. Tests for
particular ions or atom groups have been devised, the criterion of identity
being, not solubility or colour as in macroscopic qualitative chemical
analysis, but crystallographic properties. For information on such
methods, see Handbook of Chemical Microscopy, by Chamot and Mason
(1931).
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IDENTIFICATION BY X-RAY POWDER PHOTOGRAPHS

SoLIp substances cannot always be identified by measuring crystal
shapes and optical properties. In the first place, the crystals in a speci-
men may be too small to be studied as individuals under the micro-
scope. Secondly, even if the individual crystals are large enough, the
information obtainable by microscopic methods may not be sufficient
for unequivocal identification. The measured refractive indices may be
(within the limits of error of measurement) equal to those of two different
substances ; this is rare, but may occur if for any reason only rough
measurements can be made. Or it may happen that the measured
refractive indices do not correspond exactly with those of any known
substance, either because the specimen in question is an unfamiliar
substance whose optical properties have not previously been recorded,
or because it is a mixed crystal whose refractive indices lie between
those of the pure constituents. Finally,if crystals are completely opaque
(as in metals and alloys), microscopic technique is limited to observa-
tions by reflected light. In metallurgical specimens, often the only
evidence available is that provided by the shapes of the intergrown
constituents in the polycrystalline aggregate ; in familiar systems, such
evidence may be sufficient for identification, but in unfamiliar systems
(especially the more complex ones) it is likely to be inadequate. In any
of these circumstances, examination by X-ray methods may provide an
answer to the problems involved.

The production of X-rays. X-rays are electromagnetic waves of
very high frequency, and are produced when rapidly moving electrons
collide with atoms ; the electrons at the higher energy levels in the atom
are disturbed, and the energy liberated in their transitions from higher
to lower energy levels is given out in the form of X-rays.

In X-ray tubes the electrons are produced either by ionization of air
at a moderately low pressure (in ‘gas tubes’) or by emission from a
heated filament at a much lower pressure (in ‘hot cathode’ or Coolidge
tubes). In most commercially obtainable X-ray tubes, one of which is
illustrated in Fig. 59, the latter method is used. An electrically heated
tungsten filament 4 emits electrons, which are accelerated by a high
voltage of some tens of thousands of volts maintained between the
filament and the target B. (Actually, high-voltage A.C. is applied, but
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IDENTIFICATION CHAP. V

only one-half of the cycle is passed
by the one-way electron stream.)
In practice the anode, which is
water-cooled, is kept at earth
potential, while the filament is at
a negative high voltage. A metal
shield C surrounding the filament
and kept at the same potential
has the effect of focusing the
electron stream on a small area
of the target. The acceleration of
the electrons by the high voltage
gives them sufficient energy to
bring about the emission of
X-rays on striking the metal
target B. The part of the tube
surrounding filament and target
is made of brass (the rest being
porcelain) and is cooled by a
water-jacket. The tube is con-
tinuously evacuated, through a
wide tube, by a diffusion pump
using low-vapour-pressure oil,
backed by a rotary pump. The
X-rays are emitted from the
target in all directions, but only
a small proportion is used: win-
dows D of thin aluminium foil
allow the exit of only those rays
which make a small angle with
the target face. This type of
X-ray tube is demountable: the
target and windows are readily
detachable, and the whole of the
porcelain part of the tube can be
taken off to fit a new filament.
All joints are simply flat or

Fic. 59. A demountable X-ray tube. A4,
filament; B, target; C, focusing shield ;
D, windows; E, target holder.



CHAP. V X-RAY POWDER PHOTOGRAPHS 106

conical surfaces in contact, sealed by ‘plasticine’ made from low-
vapour-pressure grease. Targets of different materials can be mounted
in duplicate holders such as E, so that rapid changes may be made.
The demountable type of X-ray tube is probably the most convenient
for research purposes. Sealed glass X-ray tubes can also be obtained ;
their advantage is that they do not have to be continuously evacuated,
require no attention during operation, and demand no expenditure of
time for maintenance; on the other hand, if more than one type of
target must be used, extra complete tubes are required; also the
emission decreases during the useful life of the tube owing to the
deposition of a solid containing tungsten (from the filament) all over
the inside of the tube, including thestarget and the insides of the
windows ; and the X-ray beam may be contaminated with undesired
wave-lengths from this same deposit.

In the X-ray tube illustrated the filament is a close helix of tungsten
wire, set horizontally ; the shield surrounding it brings the electrons to
a focus along a horizontal line. For most crystallographic purposes a
narrow. X-ray beam is taken at a small angle 5-7° to the plane of the
target; at this angle the line focus appears foreshortened so that the
source is effectively a point—or, more precisely, a small area, not much
larger than the collimating systems used in X-ray cameras. Ideally,
the X-ray source should be as small as possible, but in practice, if the
focus is made too sharp, a hole is burnt in the target after a short period
of use.

X-ray wave-lengths. The wave-length distribution in the X-ray
beam depends on the material of the target and on the accelerating
voltage used. Fig. 60 shows the sort of wave-length distribution given
by a copper target when bombarded by electrons accelerated by 50,000
volts. There is a continuous band of wave-lengths, often referred to'as
‘white’ radiation, the limit of which on the short wave-length side is
rigidly determined by the quantum relationship Ve == hv, where V is
the accelerating potential, e the electronic charge, » Planck’s constant,
and v the frequency of the shortest waves. If the potential is expressed
in volts (V’), the shortest wave-length in A. is given by 1-234 X 104/V".
In addition to the continuous band, and superimposed on'it, are very
narrow peaks of great intensity, the wave-lengths of which are rigidly
determined by the nature of the target material. This set of sharply
defined radiations is known as the K series of copper ; by far the strong-
est peaks are oy, a,, and B components; the wave-lengths of o, and o,
are so nearly identical that resolution of them occurs only in special
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circumstances. The intensity of «, (1-5374 kX) is twice that of «,
(1-5412 kX).t

For most crystallographic purposes a monochromatic beam, that is,
a beam consisting of one wave-length only, is desirable. Actually the «
components are so strong in comparison with all other wave-lengths
present that the unfiltered beam may be used for some purposes; the
‘white’ radiation merely increases the background intensity of X-ray
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Fic. 60. Intensity distribution in X-ray beain from copper target ; accelerating voltage,

50,000 V. KB has about 1/6 the intensity of Kx. A mckel filter 0-021 mm. thick reduces

this ratio to 1/600 owing to the form of the absorption curve. Ka is actually
a very close doublet.

diffraction photographs, and this may not constitute a serious dis-
advantage; the 8 component produces its own diffraction effects, but
provided « and B diffractions are readily distinguished, the presence of
the latter can be tolerated. For powder photographs it is best always
to remove the § component, and this may be done by placing a suitable
filter in the beam ; the absorption coefficient of any chemical element
suddenly changes at a particular wave-length corresponding to the
resonance frequency (see Fig. 60), and by choosing an element whose
absorption edge lies between the wave-lengths of the « and B components

t To convert to Angstrom units (10°8 cm.), multiply these figures by 1-00202. (See
footnote to Table II, p. 107.) Cu Ka; = 1:5405 A. Cu Ka, = 1-5443 A.
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in the X-ray beam, the intensity of the f component may be reduced
to a negligible level. For the very frequently used copper radiation,
nickel foil accomplishes this end; if it is of thickness 0:021 mm., it
reduces the intensity of KB to 1/600 that of K«, and at the same time
reduces the intensity of some of the ‘white’ radiation in comparison with

Taste I1
Targets, Wave-lengths and Filters

Target B Filter
Element with Wave-length Element and Thickness in mm.
Atomic n Peak | absorption edge necessary to reduce
Number Line | kX unitst | KV (kX units) |(gm./em.2| KB/Ka to 1/600
Mo, 42 Ko, 0-707831 80 Zr, 0-6874 0-069 0-108

Ka, | 0-712105
KB, | 0-630978
Cu, 29 Ka, | 1:337395 | 50 Ni. 14839 | 0-019 0-021
Koy, | 1:541232
KB, | 1-38935
Ni, 28 Koy | 1465450 | 50 Co, 1-6040 | 0-015 0-018
Kay | 165835
KB, | 149705
Co, 27 Koy | 178529 | 45 Fe, 17394 | 0-014 0018
Kay | 1-78919
KB, | 161744
Fe, 26 Koy | 14932076 | 40 | Mn, 1.8916 | 0012 0-016
Koy | 1936012
KB, | 1753013

Cr, 24 Ko, | 2:28503 35 Vv, 22630 | 0-009 0016
Ko, | 2:28891
KB, | 20806

t The kX unit is 1/3-:02904 of the cleavage spacing of calcite at 18° C.; it was based
on a former value for Avogadro’s nuimber, according to which the kX unit was 1078 em.
or 1 Angstrom unit. The most recent value for Avogadro’s number, however, gives the
kX unit a slightlv different value: to convert the above figures to Angstrom units,
multiply by 1-00202. The kX unit is retained because the relative values of X-.ray
wave-lengths are known more accurately than the absolute values. (Lipson and Riley,
1943 ; Siegbahn, 1943 ; Wilson, 1943b.)

Ka. The filter may, if desired, be made the window of the X-ray tube;
or, if the window is aluminium, the filter may be placed in a holder in
front of the window or on the camera. If it is necessary to remove
‘white’ radiation altogether, this is accomplished by reflecting the X-ray
beam by a particular face of a large crystal set at the correct angle;
sodium chloride, pentaerythritol, and urea nitrate crystals have been
used for this purpose since they give very strong reflections (Fankuchen,
1937 ; Lonsdale, 1941). Urea nitrate gives the strongest reflected beam.
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The reflected beam consists of Ka, and Ka,, with negligible proportions
of other wave-lengths ; its intensity is much reduced in comparison with
the primary beam, so much so that exposures must be increased ten-fold
or more; this is the price of strict monochromatism. According to
Fankuchen (1937), the intensity of the reflected beam is increased by
grinding an artificial surface on the reflecting crystal at a suitable angle.
Guinier (1937) achieved a focusing effect by using a curved crystal as
monochromator.

To reduce exposures, high-power X-ray tubes are being developed ;
the limiting factor here is the heat generated at the focal spot on the
target. To avoid melting, the target is rotated so that the heat is spread
over an increased area (Miiller,»1929; Astbury and Preston, 1934).

The wave-length of the Ka radiation is determined by the atomic
number of the target material; the higher the atomic number, the
shorter the wave-length. (The wave-length A is given almost exactly by
the expression A = K/(N—1)2%, where N is the atomic number and K a
constant.) The wave-lengths of some frequently used radiations, with
the filters suitable for removing thé B component, are shown in Table 11,
taken from a paper by Edwards and Lipson (1941); this paper also
gives similar information for the less frequently used wave-lengths,
together with useful information on the preparation of filters.

X-ray powder photographs. When a narrow monochromatic
beam of X-rays passes through a small specimen of a powdered crystal-
line solid, or through any polycrystalline specimen in which the
crystals are oriented at random, numerous cones of diffracted beams
emerge from the specimen, and they can be recorded either as circles on
a flat photographic plate or film placed behind the specimen at right
angles to the X-ray beam, or better still, as arcs on a strip of film en-
circling the specimen as in Fig. 61. The latter is preferable because the
angular range of diffracted cones which can be recorded on a circular
film is much greater than on a flat film. The powder method was first
used by Debye and Scherrer (1916) and independently by Hull (1917).

With regard to the origin of the diffraction cones, it is sufficient for
the present to remark that each cone consists of a large number of small
diffracted beams, each from a small crystal; and that all the diffracted
beams in any one cone are ‘reflections’ by one particular type of crystal
plane. Any particular crystal plane can reflect monochromatic X-rays
only when it is at a particular angle 6 to the primary beam ; all the little
crystals which happen to lie with this plane at this angle 6 to the primary
beam give a reflection. The angle of reflection is equal to the angle of
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incidence ; hence the reflected beam makes an angle 26 with the primary
beam. The reflected beams from all the little crystals which happen to
be suitably oriented therefore form a cone of semi-vertical angle 26
having the primary beam as its axis. Each different type of crystal
plane requires a different angle of incidence, and therefore gives a re-
flected beam at a different angle to the primary beam ; thus, numerous
cones of reflected beams are produced at specific angles, each cone
coming from a different crystal plane.
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Fic. 61. Arrangement for taking powder photographs. The angle RSX is 26,
where 0 is the angle of incidence on a set of crystal planes.

For the present we shall not inquire into the reason why reflections
are produced only at specific angles, nor into the type of crystal plane
responsible for each cone; we shall merely accept the fact that each
crystalline species produces its own characteristic pattern which is
different from the patterns given by other species. It is possible to
identify substances by means of their X-ray powder photographs with-
out any knowledge of the structures of the crystals or of the theory of
diffraction, just as it is possible to use optical emission spectra for the
identification of elements without any knowledge of the electron transi-
tions responsible for the emitted rays.

Powder cameras. A powder camera consists essentially of an
aperture system to define the X-ray beam, a holder for the specimen,
and a framework for holding the photographic film. For most identi-
fication purposes a camera 9-10 cm. in diameter is found satisfactory;
an X-ray beam about 0-5 mm. wide is generally used, the powder
specimen being a little narrower than this—of the order of 0-3 mm.

X-ray cameras are usually made almost entirely of brass; this mate-
rial is not ideal for the aperture system, asits absorption of the commonly
used wave-lengths is only moderate ; but in practice it is nsually found
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satisfactory. The best aperture system (see Fig. 62) consists of a circular
hole 0-5 mm. in diameter drilled through a brass cylinder 4. To prevent
X-rays scattered by the edges of the aperture from reaching the film
there is a guard tube B, 1 mm. in diameter. Using this aperture system,
powder photographs like that shown in Fig. 63, Plate I1I, are produced.
It is found that not much deterioration of quality of the photograph
occurs if a slit up to 2 mm. long (and still 0-5 mm. wide) is used instead
of the circular 0-5 mm. tube. For instance, in Fig. 63, Plate II1, the
photographs of zinc oxide and « alumina were taken with the smaller
aperture system, while those of sodium sulphite and dickite were taken
with the slit system 2 mm. long; in the latter the ends of the arcs are
a little diffuse, but the centres €o not suffer much, except at very small
angles. The time of exposure is reduced by using the slit; the whole
brass cylinder AB can be withdrawn and replaced by the slit system
when required.

Several methods of mounting specimens are used. Ideally, the only
solid material in the X-ray beam should be the specimen material itself,
but this is only possible if the specimen is a coherent piece of material
such as a metal wire ; usually, a powder specimen must be held together
in some manner, using as little extraneous material as possible. It is
sometimes mixed with a trace of adhesive and stuck to a hair or fine
glass fibre ; the hair must be kept taut by hanging a small lead weight on
it. Another method is to mix the powder with some adhesive to form
a paste, and extrude a rod of this from a capillary tube. Substances
which are affected by solvents, or are deliquescent, are packed into
capillary tubes of lithium borate glass (‘Lindemann glass’) which can
then be scaled. Lithium borate is used because it contains only elements
of low atomic number, and consequently does not absorb X-rays to any
great extent.t Powders containing heavy elements may be mixed with
a light diluent such as powdered gum tragacanth (Rooksby, 1942) to
reduce the absorption. Metals and alloys are usually examined in the
form of filings, and the preparation of uncontaminated specimens
thoroughly representative of the lump from which they were filed
presents special problems of its own (Hume-Rothery and Raynor, 1941).

The specimen P (Fig. 62), however it is made, should be not more than
0-5 mm. wide. 1tis best to rotate it to ensure random orientation of the
crystals (otherwise discontinuous spotty arcs may be produced on the
photograph), and for this purpose it is mounted on a rotating holder.

+ Lithium borate glass capillaries become devitrified in moist air in a few days, but
will keep indefinitely if stored over anhydrous caleium chloride.



Fie. 62. Essential parts of a powder camera. A, aperture system
B, guard tube; CD, trap; Z, knife edges; P, specimen.
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Centring may be done by hand, or better, by u;ing a holder fitted with
adjusting screws.

To prevent fogging of the film by the primary beam a trap is provided.
Its construction is sufficiently explained by Fig. 62; the edges D must
be so placed that X-rays X & scattered in the trap cannot reach the film.
At the back of the trap is a screw which can be removed (@) for centring
the specimen by looking through the hole at a light placed at 4, and (b)
for adjusting the camera in relation to the X-ray tube, for which purpose
a fluorescent screen is placed at C. (This must be done before the
photographic film is put in the camera.) It is sometimes useful to have
the position of the primary beam recorded on the film, but its strength
must be very much reduced te avoid fogging. This can be done by
drilling out the screw just mentioned until the thickness of brass re-
maining to obstruct the beam is 1-5 mm. ; this reduces the primary beam
to about the same level of intensity as a strong diffraction arc on an
average powder photograph.

The film is in contact with the cylindrical brass frame of the camera
and is held in position by springs S. Sharp edges F terminate the ex-
posed part of the film abruptly. Light is excluded by a brass cover
which fits over the whole camera ; the X-ray beam is admitted through
a hole covered with black paper. Further details of the construction
and use of powder cameras can be found in a paper by Bradley, Lipson,
and Petch (1941).

Cameras in which powder photographs of substances maintained at
high temperatures may be taken are much used, especially in metallurgy
(Jay, 1933; Dorn and Glockler, 1936; Hume-Rothery and Reynolds,
1938). Other special cameras have been designed for low temperatures
(Pohland, 1934) and high pressures (Frevel, 1935).

General characteristics of X-ray powder photographs. A few
examples of X-ray powder photographs, all taken with copper Ko
radiation, are shown in Fig. 63, Plate III. They vary greatly in com-
plexity; chemically simple crystals of high symmetry give strong
patterns containing few arcs, while crystals of complex chemical consti-
tution or of low symmetry give patterns consisting of a large number of
less strong arcs. The time of exposure necessary to produce a photo-
graph of convenient intensity is related to the complexity. Under
typical conditions—for instance, when a self-rectifying X-ray tube is
passing 20 milliamperes and the unsmoothed peak voltage is 60 kV—
well-exposed photographs of metals can usually be taken in 10-15
minutes, using the 2-mm. slit aperture in the 9-cm. camera just described,
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T1a. 63. X-ray powder photographs.
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while a complex silicate may require over an hour under the same
conditions.

Exposures may be shortened by putting a fluorescent screen behind
and in contact with the film, so that the optical fluorescence reinforces
the direct X-ray effect on the photographic emulsion; or two screens
might be used, one in front and one behind the film. (Note that the
intensity relations are much changed by the optical fluorescence: weak
reflections come out relatively much too weak.)

There is always a certain background intensity on X-ray powder
photographs, due partly to the presence of ‘white’ radiation, which gives
diffracted rays over a wide angular range from each crystal plane,
partly to a certain amount of incoherent scattering of the K« radiation
by the crystals themselves, and partly to X-ray fluorescence of the
crystals, which absorb the primary rays and re-emit the energy in the
form of longer waves. The last effect may in some circumstances be so
strong that serious fogging of the film occurs, and for this reason the
wave-length of the primary beam used must be chosen with this effect in
mind. X-ray fluorescence is strongest when the wave-length of the
absorption edge of the irradiated element (which is almost equal to that
of KB, for the element) is slightly longer than the wave-length of the
irradiating beam ; under these circumstances, in addition to the part
of the primary beam diffracted by the crystals another part is converted
into the K series of the irradiated element. For instance, the shortest
wave-length of the K series (and the absorption edge) of iron is not much
longer than that of copper K«, and consequently iron-containing crystals
fluoresce strongly in copper K« radiation. For substances containing
iron, therefore, copper Ka radiation is quite unsuitable ; cobalt or iron
Ko should be used. The elements preceding iron in the periodic table
also fluoresce in copper K« radiation, but less strongly than iron, the
effect diminishing with the atomic number; for calcium, for instance, it
is practically negligible.

Fluorescent radiation, when it is not too serious, may be partly
absorbed by placing a suitable filter between the specimen and the film.
For instance, titanium compounds in copper radiation give rather foggy
photographs owing to X-ray fluorescence ; the fog is reduced by putting
the nickel filter (necessary in any case for removing copper Kf) between
the specimen and the film, instead of in the more usual position in front
of the camera; it absorbs titanium radiation much more than it does
copper Ka, and the background intensity is therefore reduced in com-
parison with the diffraction arcs.
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Some substances, such as alkaline-earth sulphides, emit visible light
when irradiated by X-rays; for these substances it is essential to have a
sheet of optically opaque material (such as black paper) between the
specimen and the film.

The wave-length used does not, in general, affect the relative inten-
sities of the various arcs in any pattern, but it does control the scale of
the pattern; the longer wave-lengths spread out the pattern, while the
shorter wave-lengths contract it.

The simplest procedure in identifying a substance by an X-ray method
is to compare its powder photograph with those of known substances
taken in the same camera with X-rays of the same wave-length. The
patterns given by different substances are usually so obviously different
that visual comparison is sufficient for certainty. Often, however, it
may not be possible to obtain the reference substances required ; nor is
this necessary in many cases, for a limited amount of interpretation
makes it possible to use published results, obtained, maybe, with
cameras of different radius or X-rays of different wave-length. Interpre-
tation of powder photographs for this purpose usually need go only as
far as the calculation of the spacings of the crystal planes responsible
for the various arcs. This demands no knowledge of the crystal struc-
ture, but only the use of a simple equation, the derivation of which forms
the subject of the next section.

Diffraction of X-rays by a crystal. Diffraction by a three-dimen-
sional array of atoms might be expected to present a complex geo-
metrical problem, but in actual fact the fundamental equation, known
as Bragg’s law, turns out to be extremely simple:

d A

n  2sinf’

where A is the X-ray wave-length, d the distance between successive
identical planes of atoms in the crystal, § the angle between the X-ray
beam and these atomic planes, and n any whole number. (W. L. Bragg,
1913.) It may seem curious that the arrangement of the atoms in each
atomic plane does not come into the expression, which contains merely
d, the distance between the atomic planes. The reason for this can be
appreciated by considering, first the diffraction of rays by a row of
points, then by a plane arrangement of points, and finally by a three-
dimensional array of points.

If a train of waves, whose wave-front is perpendicular to the direction
of propagation, is scattered by an array of points, the scattered rays
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interfere with each other except when they happen to be in phase, that
is, when the difference between the path-lengths of rays scattered by
different points is either zero, or one wave-length, or two wave-lengths,
or any whole number of wave-lengths. If a single row of equally
spaced points (spacing = a) is perpendicular to the beam (Fig. 64 a), ray
11 is a cos ¢ behind ray I, and thus the rays will be in phase only when

2
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OrfPerence of path-length = 04-P8
=acos @-acosb This must =nA

F1a. 64. Diffraction by a row of points.

nA = acos¢. For particular values of n and A, ¢ is constant, that is,
the diffracted rays form a cone with the point-line as axis—or rather, two
cones, one on each side of the incident beam. The second-order diffrac-
tions form a narrower cone than the first-order diffractions. The zero-
order cone is a plane surface (Fig. 64 b). If the incident beam is not
perpendicular to the point-line (Fig. 64 ¢) the diffraction surfaees are
still cones, but their semi-vertical angles ¢ are given by

nX = a(cos p—cos 0),
and the upward and downward cones for the same value of n have
different angles. Note that for diffracted rays having the same
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path-length (n = 0), ¢ will equal 8, and the angle of this (zero-order)
cone of diffracted beams is independent of the point-spacing @, and
depends only on 8, which may have any value ; in other words, an X-ray
beam falling on a line of equally spaced diffracting points at any angle
gives rise to a zero-order cone of diffracted beams whose semi-vertical
angle 0 is the same as the angle hetween the incident beam and the
point-line—in other words, the incident beam forms part of the cone.

Consider now a regular array of points in a plane, such as that in
Fig. 65 ; this may be divided into rows of points in many different ways;

F1c. 65. ‘Reflection’ by a regular array of points in a plane.

each type of point-row would, by itself, produce its own diffraction
surfaces, but the diffracted rays from different types of point-rows such
as BAC and DAE will not co-operate except where the different surfaces
intersect—that is, along certain straight lines. We need not consider
this in detail, except to show that the zero-order diffracted beam
(n = 0) is a sort of reflection of the incident beam by the point-plane.
The incident beam OA strikes the surface at an angle 6, Fig. 65. One
row of points (suppose it is BAC) is bound to lie exactly under the
incident beam ; that is, ZOBA = £OBD -~ 90°. This point-row would,
by itself, give a zero-order diffraction cone of angle 8. Any other row of
points such as DAE is at a larger angle ¢ to the incident beam, and by
itself would give a zero-order diffraction cone of angle ¢. The two cones
cut in a line, and this will be the direction of the diffracted beam pro-
duced by both point-rows together. We have to find the direction of
this line AP. Make AP = 04, AC = AB, and AE = AD; join PC,
PE, and CE. Now the solid figure PCAE has three angles 6, ¢, and w
(meeting at A) equal to corresponding angles of the figure OBAD, and
the three sides enclosing these angles (AP, AC, and AE) also equal to
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the corresponding sides of the figure OBAD ; hence the two solid figures
are similar in all respects; therefore the angle PCE = OBD = 90°,
and thus 4P lies in the plane O4B. The same could be shown for every
possible point-row ; hence all the points acting together produce a zero-
order diffraction along a single direction, the angle of diffraction being
equal to the angle of incidence, with both incident and diffracted beams
lying in a plane perpendicular to the point-plane: the zero-order diffrac-
tion is, in fact, a ‘reflection’ of the incident beam by the point-plane.
Such a ‘reflection’ can be produced for any angle of incidence of the
primary beam; and it is important to notice that the spacing and
arrangement of the points in the plane do not affect the process.

| SRR R

Fia. 66. Tho condition for ‘reflection’ by a crystal lattice. Difference
of path = GY+ YH = 2dsin §, which must = nA.

If a three-dimensional point-array is to produce a diffracted beam,
the diffracted waves from all the points must be in phase ; some of them
will have the same path-length, those from other points will be one
wave-length behind the first set, still others will be two wave-lengths
behind, and so on. 1t has just been shown that any plane of points by
itself would be capable, at any angle of incidence, of producing a dif-
fracted beam consisting of waves all of the same path-length, and this
beam would be a reflection of the primary beam by the plane ; but if the
waves from the next lower plane of points are to be in phase with those
' from the first-mentioned plane, this imposes strict limitations on the
permissible angles of incidence. Thus in Fig. 66, P, ), and R are
successive planes of points seen edgewise. Plane P, if it were alone,
would reflect the primary beam 4X in XD, the angle of reflection DXP’
being equal to AXP (-= 6); this would happen whatever the value of 8,
and does not depend at all on the spacing and arrangement of the points
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in the plane. Plane @ likewise, if it were alone, would also reflect the
beam at this same angle; but since ¢ is lower than P, the path BYE
traversed by waves reflected in @ is longer than the path 4 XD traversed
by waves reflected in P, and if the two sets of waves are to be in phase,
then the difference of path-length must be a whole number of wave-
lengths. The difference in path-length is GY + Y H, where XG and- XH
are perpendicular to BY and YE respectively. XY is drawn perpendi-
cular to PP’ and QQ’, so that its length is d, the spacing of the planes.
It follows that GY and YH are each equal to dsinf, hence

GY+YH = 2dsinf = nA.

This equation is Bragg’s law.

A crystal is not, in actual fact, a simple array of points, each of which
is a pattern-unit. In the first place, an atom is not a point ; its electrons,
which scatter the X-rays, occupy a volume commensurable with the
interatomic distances. Secondly, each pattern-unit in a crystal often
consists, not of one atom, but a group of atoms. The pattern-unit is
thus not a point, but has a diffuse and often irregular form. However,
for the purpose of diffraction theory, as far as it is carried in this chapter,
the diffuse pattern-unit may be mentally replaced by a point. It will
be shown in Chapter VII that the form of the pattern-unit affects the
intensities of the diffracted beams ; but it does not affect their positions,
which depend only on the space-lattice, the fundamental arrangement
of identical pattern-units.

Each of the many different sets of planes in a crystal may produce a
‘reflected’ beam, but only if it is at the appropriate angle 6 to the primary
beam, this angle 6 being determined by d, the spacing of the set of planes
in question. The angle between the reflected beam and the primary
beam will be 26. The Bragg equation means that if we turn a crystal
about at random in an X-ray beam, in general no reflected beam will be
produced ; but at certain definite positions of the crystal, when the
condition nA = 2dsin § is satisfied for a particular set of planes, a re-
flected beam flashes out. A set of planes having a large spacing d
produces a first-order reflection close to the primary beam (that is, 6 is
small), and higher-order reflections (» = 2, 3, and so on) at larger angles.
A set of closely spaced planes produces its first-order reflection at a large
angle. For any particular X-ray wave-length there is a lower limit to the
possible values of d/n, set by the fact that sin  cannot be greater than 1.
The lower limit for d/n is equal to A/2.

In a crystalline powder the crystals are oriented at random. If a
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narrow X-ray beam is sent through the powder, most of the crystals will
give no difffacted beams, because none of their planes make a suitable
angle with the beam. Some crystals, however, lie in such positions that
a particular set of crystal planes—say the 100 set—is at exactly the
appropriate angle for giving the first-order reflection (the angle must be
within a few minutes of arc of the angle specified by the Bragg equation ;
see p. 203) ; all the little crystals which reflect with their 100 planes give
a reflected beam at the same angle, this angle depending on the spacing
of the 100 planes. The locus of all directions making a particular angle
with the primary beam is a cone having the primary beam for its axis.
Other crystals in the powder happen to lie in such a way that they can
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Fic. 67. Each arc on a powder photograph represents
a ‘reflection’ by a particular crystal plane.

reflect with their 110 planes, and all these will produce a cone of re-
flected rays, but the 110 cone will have a different angle from the 100
cone, since the spacing of 110 planes is different from that of 100 planes.
(See Fig. 67.) Each cone of rays cuts the photographic film in an arc.

This, therefore, is the origin of the arcs on a powder photograph ;
each arc represents the combined diffracted beams from all the crystals
which happen to be suitably oriented for reflecting with one particular
set of planes.

Measurement of powder photographs. From the measured
position of each arc on a powder photograph, 6 can be calculated, and
thence d/n by the Bragg equation. Since on powder photographs the
position of the undeviated primary beam is usually not precisely defined,
it is necessary to measure from an arc on one side of the photograph to
the corresponding arc on the other side, the distance x between which
represents 46. If the radius of the film when it was in the camera was r,
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the circumference 27r represents 360°, or, since we are to divide through
by 4, 27 represents a Bragg angle of 90°; 8 for each arc is thas obtained,
and d/n is calculated from 6, », and the known X-ray wave-length used
for the photograph. If many films have to be measured, it is best in the
long run to make a table giving d/n for all values of . The effective
radius 7 of the camera is best determined by the methods mentioned
in the section on high-precision methods (p. 180).

The X-rays used are not strictly monochromatic; copper Ko radia-
tion consists not of one wave-length but of two slightly different wave-
lengths, 1-5374 and 1-5412 kX. These produce reflected beams from any
particular crystal plane at slightly different angles; but in ordinary
powder cameras the two refledtions are not resolved except at angles
near 90°, as may be seen by inspecting the powder photographsin Fig. 63,
Plate I11 ; the last few reflections are plainly doublets, resolution at large
angles being a consequence of the fact that when 8 is near 90° a small
difference of sin § (produced by a small difference of A) means a com-
paratively large difference of 6. Therefore, for the arcs at small angles a
weighted averaget value (1-5387 kX for copper) must be assumed for
calculations, while for the doublets at large angles calculations can be
made for both individual wave-lengths. For identification purposes
measurement with a steel rule graduated in millimetres or half-milli-
metres is usually sufficiently accurate, but for precision work a travelling
microscope may beused. Forstill greater precision photometric measure-
ment of the distribution of blackening on the film may be made ; each
reflection appears as a hump on the blackness-distance curve, and the
position of the peak can be taken as the ‘position’ of the reflection. In work
of such precision as this, some account must be taken of several sources
of error arising from the particular experimental circumstances.

Spacing errors in powder photographs. Owing to the appreciable
thickness of the powder specimen and the absorption of X-rays in it,
the diffraction arcs are produced more by the outer layers of the speci-
men than by its centre (Fig. 68); on this account, corresponding arcs on
opposite sides of the photograph tend to be slightly too far apart, and
spacings d/n calculated from the arc angles therefore tend to be low.
Such errors are greatest for small angles of reflection (large values of d/n),
and diminish towards zero for large angles. For specimens containing
only light atoms, such as carbon, oxygen, aluminium, or sodium, they are
very small at all angles ; but for specimens containing large proportions
of heavy elements, such as iodine or lead, they are appreciable, though

1 The «, wave-length is given twice the weight of ay, since it is twice as strong.
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not sufficiently large as to be likely to cause confusion in identification.
The diameter of the specimen should be as small as possible (not more
than 0-3 mm. for the camera described here) to minimize such errors.
An effect often produced by strongly absorbing specimens is the splitting
of small-angle reflections into narrow doublets, owing to the beam
passing round both sides of the specimen but not through its centre;
at larger angles, only the outer component of the doublet is present, as
CENTRE OF
REFLECTION ™\
2 WEAKLY /%
A ABSORBING '
IR SPECIMEN .+ )|
. 7\ CENTRE 0F

REFLECTION
STRONGLY
ABSORBING
SPECIMEN

X-RAY
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F1a. 68. Apparent displacement of reflections owing to absorption. (Much exaggerated.)
Reflections at large anglos are less affected than those at small angles.

in Fig. 68. Other errors may occur if the specimen is not strictly in the
centre of the film or if a long slit is used. Correction terms can be calcu-
lated if certain factors are known (Claassen, 1930; Bradley, 1935; see
also Int. Tab. (1935), p. 583). Finally, photographic films shrink on
development and drying; errors from this cause can be avoided by
printing fiducial marks on the film. In the type of camera described
here (Bradley and Jay, 1932) the exposed part of the film (always
defined by the general background blackening) is terminated by a knife
edge whose position represents a definite angle which can be accurately
measured ; assuming uniform shrinkage, the true angle for any arc can be
calculated by simple proportion.
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One method of correcting for all possible errors is to mix the substance
with a standard substance whose spacings are accurately known; the
X-ray photograph shows both patterns superimposed. For this purpose
it is desirable to use a simple substance giving few lines, otherwise
overlapping of arcs will be frequent; sodium chloride is often used.
Measurement of the sodium chloride arcs gives a calibration curve,
which can then be used for interpolating the precise spacings of the
substance under investigation.

Further information on high precision methods will be found on p. 180.

Identification of single substances, and classification of powder
photographs. Each crystalline substance has its own set of plane-
spacings, which is different froin those of other crystalline substances.
The relative intensities of the various reflections are also characteristic.
Each substance thus gives its own characteristic powder photograph,
the scale of which, however, depends on the wave-length of the X-rays
used and the diameter of the camera.

The indirect method of identification, in which the pattern of the
unknown is compared with those of likely substances, has been much
used ; but to eliminate the chances of possible substances being over-
looked, and to deal with the occurrence of quite unexpected substances,
a direct method is desirable, in which ‘key’ spacings of the unknown are
looked up in an index, in the manner used in the identification of optical
emission spectra. In the direct method of identification the main ‘key’
is the spacing of the strongest arc: a card index is made, in which all
substances are arranged in order of the spacing of the strongest arc.
If two or more arcs appear equally strong to the eye, the innermost—the
one with the greatest spacing—should be used as the key. To identify
an unknown substance, the spacing of its strongest arc is measured;
reference to the index may indicate several substances having the
correct key spacing within the possible limits of error of the photograph.
Some will be out of the question, in view of the origin of the specimen;
for the rest, the remaining arcs will decide. In the card index published
by the joint committee of the American Society for X-ray and Electron
Diffraction and the American Society for Testing Materials there are
three cards for each substance, one for each of the three strongest arcs;
consequently, measurement of the second and third strongest arcs,
followed by reference to the index, may lead to unequivocal identifica-
tion, which, however, should only be accepted as final when the whole
pattern is compared with that in the index and found to agree, both in
spacings and relative intensities. Visual estimates of relative intensities,
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classified as ‘very strong’, ‘strong’, ‘medium’, ‘weak’, and so on, are
usually sufficient for identification purposes. If the index does not lead
to identification, the literature may be searched for the patterns of
likely substances. The ‘Strukturbericht’ published by the Zestschrift fir
Kristallographie is useful here. A collection of 1,000 patterns was
published by Hanawalt, Rinn, and Frevel (1938); these are included in
the A.S.T.M. index. For minerals there are the determinative tables
of Mikheev and Dubinina (1939), and for the ore minerals the compre-
hensive list of Harcourt (1942).

If the spacings of the arcs on a powder photograph do not lead to
identification, the determination of unit cell dimensions from the powder
photograph may be attempted ; the methods are described in Chapter
VI. If crystals large enough to be handled individually can be picked
out of the specimen, single-crystal rotation photographs may be taken
and used for identification ; this also is dealt with in Chapter VI.

Identification and analysis of mixtures. A mixture of two or
more substances gives a pattern consisting of the superimposed patterns
of the individual components, provided that these components exist as
separate crystals in the powder specimen (see Fig 69, Plate 1V). The
identification of simple mixtures, therefore, does not differ in principle
from that of single substances. The principle is to find the spacing of the
strongest arc; reference to the index may result in identification of
one—probably the main—constituent, and this accounts for some of
the arcs. The spacing of the strongest of the remaining arcs is then used
in the same way for identifying the second constituent; and this pro-
cedure is repeated until every arc on the photograph has been accounted
for. Overlapping of the arcs of different constituents may sometimes
cause confusion.

If a mixture is found to give a very complex pattern which appears
to consist of several superimposed patterns, many of the arcs of which
overlap, it may be desirable to attain greater resolution, and this can be
done either by using X-rays of longer wave-length to spread out the
diffraction pattern or by modifying the camera or specimen.

Chromium Aa radiation (A = 2-29 A.) is suitable for the first method ;
but the absorption of this wave-length by air is appreciable, and it is
desirable either to evacuate the camera or to fill it with hydrogen.
Even longer wave-lengths, like the characteristic K radiation of calcium
or even magnesium, have been used for special purposes, but it is doubt-
ful whether identification problems would ever call for the use of such
long waves. Their use entails further experimental difficulties ; owing to
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the high absorption of these waves by air, the camera should be evacuated
and built straight on to the X-ray tube, forming part of the same
evacuated system. (Clark and Corrigan, 1931; Higg, 1933.)

The second method is preferable. Either the specimen and aperture
system may be reduced in size or the camera increased in size. The pre-
paration of very narrow powder specimens is not easy, and the tendency
now is to use larger cameras (Bradley, Lipson, and Petch, 1941).
Exposures are necessarily increased, but this is the unavoidable price
of greater resolution.

X-ray powder photographs are now very widely used for identifica-
tion. Two typical investigations will be mentioned. The first is the
identification of the crystalline tonstituents of Portland cement, one of
the more important building materials of the present day. It is made
by heating to a high temperature such raw materials as chalk or lime-
stone, clay, and sand. Its chemical composition may be expressed in
terms of lime, silica, alumina, and ferric oxide, but its actual constitu-
tion cannot be deduced by stoichiometric methods. X-ray powder
photographs, together with evidence obtained by the determination of
optical properties under the microscope, have shown that the principal
crystalline constituents are Ca,SiO; and B Ca,SiO,, together with smaller
amounts of Ca,(AlO,),, 4Ca0.Al,0,.Fe, 05, and MgO (Brownmiller and
Bogue, 1930; Insley, 1937 ; Insley and McMurdie, 1938). It may be said
that the recent great progress in our understanding of the chemistry of the
setting of cements is largely due to crystallographic investigations of this
type. (See The Chemistry of Cement and Concrete, by Lea and Desch, 1935.)

The second example is the investigation of the constitution of
‘bleaching powder’, which is made by the action of chlorine gas on
slaked lime. The constitution of this widely used material had remained
obscure for many years, since, although it contains calcium chloride as
well as hypochlorite (2Ca(OH),+ 2Cl, — Ca(OCl),+CaCL+ 2H,0), it
is not deliquescent; moreover, it is difficult to carry chlorination to
completion. These features had led to many suggestions of the existence
of double compounds-—suggestions which could not be tested by older
methods of investigation, on account of the small size of the crystals.
X-ray powder photographs showed that bleaching powder consists of
two substances—a crystal of vatriable composition consisting chiefly of
Ca(OCl),, and the basic chloride CaCl,.Ca(OH),.H,0. It is the latter,
a very stable non-deliquescent substance, which is responsible for the
difficulty of complete chlorination and the non-deliquescent nature of
the material. (Bunn, Clark, and Clifford, 1935.)
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In both these investigations the X-ray method was not used alone;
measuremeats of the optical properties of crystals under the microscope
supplied evidence on certain points. The desirability of using micro-
scopic and X-ray methods in conjunction with each other cannot be too
strongly emphasized. This applies also in another field where the
X-ray method of identification has been widely used—the determination
of phase boundaries in metallurgical equilibrium diagrams. (Bradley,
Bragg, and Sykes, 1940; Hume-Rothery and Raynor, 1941 ; Lipson, 1943.)

It is possible not only to identify the components of a mixture but
also to estimate the proportions of the different components from the
relative intensities of the patterns. No simple mathematical relation-
ship between the proportions of the® components and the relative
intensities of particular diffraction arcs can be given, and therefore the
method of analysis must be empirical ; when the constituents have been
identified, powder photographs of mixtures containing known propor-
tions of the constituents must be taken, and that of the unknown mixture
compared with them. Estimates of proportions to within 5 per cent. can
be made by visual comparison, but the probable error can be reduced to
the order of 1 per cent. by measuring the intensities of selected diffraction
arcs by means of a micro-photometer; the relation between known
composition and the relative photographic densities of particular arcs is
found empirically, and the composition of the unknown mixture inter-
polated from these results. On account of the somewhat variable
characteristics of X-ray films and the circumstance that the relation
between photographic density and X-ray exposure is not linear except
at low densities, it is better for this purpose to print on each film a strip
giving a serics of known X-ray exposures, and from this to calibrate the
mixture patterns in terms of X-ray exposure rather than photographic
density. (See Chapter VII.)

This method of analysis is particularly valuable when chemical
methods are inadequate or inapplicable. For instance, for complex
mixtures where the different elements or ions may be associated in many
different ways, all compatible with the analytical figures ; or for mixtures
of polymorphous forms of the same substance, such as the three crystal-
line forms of CaCO, (calcite, aragonite, and vaterite) or the three
crystalline forms of FeQO(OH) (goethite, lepidocrocite, and B FeO(OH)
—see Bunn, 1941)—mixtures for which chemical analytical methods
are irrelevant.

One limitation in the use of X-ray powder photographs for the
identification and analysis of mixtures must be mentioned. It is very
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often not possible to detect less than 5 per cent. of a constituent. The
minimum proportion of a substance which can be detected varies
enormously ; it is usually specific for each crystalline substance, and
depends on many factors, such as the symmetry of the crystal and the
diffracting power of the atoms composing it. Highly symmetrical
crystals of simple substances such as sodium chloride (cubic) and the
rhombohedral form of calcium carbonate (calcite) can be detected even
when present to the extent of only 1 per cent. or even less, but less
symmetrical crystals such as monoclinic CaSO,.2H,0 (gypsum) can be
detected only if 5 per cent. or more is present. This statement is valid
under normal conditions, that is, when the X-rays used contain a certain
proportion of ‘white’ radiatiors in addition to the principal « wave-
lengths ; but the figures given can be reduced by using strictly mono-
chromatic radiation, thus diminishing the background intensity of the
photographs and making it possible to detect weaker arcs.

‘Mixed crystals’ or ‘crystalline solid solutions' (see p. 59) present
different problems from those of straightforward mixtures. A mixed
crystal gives a diffraction pattern which is in general intermediate, in
respect of both the positions and the intensities of its arcs, between those
of the pure constituents. Identification of the crystal species can be
effected if this relation between a given pattern and those of known
pure constituents is recognized, and quantitative analysis is possible if
the relation between composition and arc position and intensity is
known for the system in question. An interesting example is given by
Rooksby (1941). Preparations of zinc and cadmium sulphides are used
as luminescent powders, the colour of the emitted light depending on
the proportions of the two constituents. The X-ray diffraction patterns
show that the solids are mixed crystals: there is a complete range of
mixed crystals, as is shown by the fact that the positions of the arcs
change gradually with composition. (Rooksby shows a range of patterns
for the whole series.) The composition of the mixed crystal phase can
be determined to within 1-2 per cent. from the X-ray pattern, and the
X-ray method has the advantage over chemical analysis that it is not
affected by the presence of oxide. Mixtures of different mixed crystals
are also used to give other luminescent colours ; and in these the composi-
tion of each mixed crystal phase can be determined from the X-ray
pattern ; this probably could not be done at all by any other method.

Interpretation of the diffraction patterns of mixed crystals, as far as
the determination of unit cell dimensions, may be desirable. This is
described in Chapter V1.
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Non-crystalline substances. Some solid substances, such as sili-
cate glasses.and certain organic polymers like polystyrene, are not
crystalline; the atoms of which they are composed are not arranged
in a precise way, though there may be some approach to regularity.
The X-ray diffraction patterns of these ‘amorphous’ solids, like those
of liquids and gases, consist of broad diffuse bands with perhaps two
or three intensity maxima at definite angles. Examples are shown in
Fig. 69, Plate IV. It is obvious that such diffuse patterns afford less
scope for identification or interpretation than crystal patterns. Never-
theless, something may be done ; the difference between the patterns of
polymethylmethacrylate and polystyrene, for instance, is so great that
the substances could easily be distinguisked from each other in this way.

It has been pointed out (Randall, Rooksby, and Cooper, 1930;
Randall and Rooksby, 1931, 1933) that, when a substance is capable of
existing in both amorphous and crystalline forms, the X-ray pattern
given by the amorphous form may be regarded as a very diffuse version
of the crystal pattern. There is, in fact, no sharp distinction between
‘crystalline’ and ‘amorphous’ states ; if, starting with a coarsely crystal-
line solid, we could reduce the size of the crystals by stages, taking an
X-ray diffraction photograph at each stage, we should find that when
the crystal size fell below about 10-® cm. the photographs would become
diffuse ; the effect is analogous to the imperfect resolution of an optical
diffraction grating containing only a few lines. With reduction of crystal
size, the reflections become increasingly diffuse until the limit is reached
at 10-7 to 108 cm.—the region of atomic dimensions, where the word
‘erystal’, with its implication of precise pattern-repetition, ceases to
be appropriate. One cannot speak of a crystal only one unit cell in
diameter, for the term ‘unit cell’ implies repetition ; this is the justifica-
tion for the use of the term ‘amorphous’ in describing glass-like sub-
stances.

The breadth of X-ray reflections may be used to calculate crystal
size within the range in which broadening occurs; the method is
mentioned in Chapter XI. The interpretation of amorphous patterns
in terms of atomic structure is also referred to in the same chapter.

This brings us to the end of the section of this book concerned primarily
with identification problems. This does not mean that these problems
will not reappear later; they do reappear in Chapter VI. But from this
point onwards the book is concerned mainly with the determination of
the arrangements of atoms in crystals.



SECTION II. STRUCTURE DETERMINATION

VI
DETERMINATION OF UNIT CELL DIMENSIONS

Ir it were possible to produce, by means of a supermicroscope, images
of atomic structures, it would not be necessary to undertake the lengthy
processes of reasoning and calculation which form the subject-matter
of this book. Up to the time of writing, however, this very desirable
objective has not been reached. Enormous magnifications have been
achieved by means of the electron microscope, but the resolving power
is still well above atomic dimensions. These attempts to extend our
range of vision are based on the principles of the optical microscope,
and X-rays have not been used, because although they have sufficiently
short wave-lengths to respond to the details of atomic structures, they
cannot be refractedt and focused as visible light can. Electron beams,
however, since they consist of streams of charged particles, can be
refracted and focused by magnetic or electric fields; since they also
behave as wave-trains having (with a suitable accelerating voltage)
effective wave-lengths short enough to respond to the details of atomic
structure, it might be possible, by their use, to produce images of atomic
structures. The difficulties, especially that of making corrected electron
‘lenses’ suitable for the enormous magnifications involved, are serious,
however; by 1941, the best resolution achieved was about 30-40 A.
(Marton, McBain, and Vold, 1941.)

At present, therefore, the details of atomic structures must be dis-
covered indirectly. The experimental material for the purpose is the
X-ray diffraction pattern. (Electron diffraction patterns are very
similar and could be used in the same way, see p. 373.) We are con-
cerned here with the diffraction patterns of crystals, the interpretation
of which falls into two stages—first, the determination of the shape
and dimensions of the unit cell (see Chapter II), and secondly the dis-
covery of the positions of the atoms in the unit cell.

It has been assumed, in the previous chapter, that the positions of
diffracted beams depend only on the repeat distances in the crystal—
that is, on the unit cell dimensions—while the intensities of the diffracted
beams depend on the positions of the atoms in the unit cell. This can

1t X-rays are refracted when they pass through matter, but to such a slight extent
that it is not possible to make lenses of short focal length.






PLATE V

Fia. 70. Diffraction of light by line gratings. Above: grating of evenly spaced lines,
with diffraction pattern. Below: grating in which the unit of pattern is a pair of lines
(repeat distance same as in the first), with diffraction pattern.
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be demonstrated in principle by means of a simple one-dimensional
optical analogy. In Fig. 70, Plate V, is shown, first of all, a grating in
which the lines are evenly spaced. (It was made by drawing black lines
on white card, and taking a very small photograph on which the lines
are 0-2 mm. apart.) A beam of monochromatic light, on passing through
it, produces a set of diffracted beams,} the intensities of which fade off
regularly in the successive orers. In the lower half of Fig. 70 is another
grating having the same repeat distance as the first ; but in this grating
the unit of pattern is not one line but two. It can be seen that in the
diffraction pattern the diffracted beams have the same spacing as those
of the first pattern, but the intensities of the successive orders do not
diminishregularly. The diffraction of X-riys by crystals is more complex
than this, but not different in principle. Thus, in the determination of
unit cell dimensions, only the positions of the diffracted beams need be
considered ; the intensities may be ignored.

From a powder photograph all we can obtain (apart from the intensities
of the arcs, which are irrelevant to the present problem) is a set of values
of d (= A/(2sin)). Each arc represents a ‘reflection’ from a particular
set of parallel crystal planes, but there is nothing to tell us which set of
crystal planes produces which arc; nothing, that is, except the magni-
tudes and ratios of the spacings themselves. We cannot deduce the
unit cell of the arrangement of pattern-units directly ; our only course
is the indirect one of thinking what arrangement of pattern-units has
spacings of the observed magnitudes. This can only be done for the
more syminetrical arrangements ; for those of low symmetry, the number
of variables defining the unit cell is too great for such a method to be
possible, but for arrangements whose unit cells are defined by not more
than two variables—that is to say, for cubic, tetragonal, and hexagonal
(including trigonal) crystals--it is readily accomplished.

Cubic unit cells. In a crystal having a simple cubic unit cell—that
is, a crystal in which identically situated points lie at the corners of
cubes, as in Fig. 71—the distance between the 100 planes of pattern-
units is evidently a, the length of the unit cell edge ; that between 010
and 001 planes is also a. For other sets of lattice planes it is a matter
of simple geometry to show that the spacing d = a/V(h24k*4-1%),
where I, &, and I are the indices of the planes. (For a general derivation
of the expression for the plane-spacings in all crystals having rectangular
and hexagonal unit cells, see Appendix 2.) Thus the powder photograph

t The experimontal arrangement usod for photographing the diffraction pattern is

deseribed on p. 271,
4458 K
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of a substance such as ammonium chloride which has a simple cubic
unit cell shows a set of arcs whose positions correspondewith plane-
spacings in the ratios 1:1/v2:1/¥3:1/44:1/v/5, and so on. The first arc
on the photograph—the one with the smallest angle of reflection—is
produced by the planes having the greatest spacing—the 100, 010, and
001 planes; the others follow in order of diminishing spacing.
Whenever the arc positions
y in a powder photograph are

4
46.. found to correspond with
!E spacings in these ratios, it is
Eﬁg \ evident that the substance
Eﬁg! l< = producing the photograph has
a simple cubic unit cell. This
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gap following the sixth arc.
F1c. 71. Spacings of some simple planes of Some cubic crystals——sodium

a cubic lattice. . i .
chloride, for instance—give

powder photographs in which there are many more gaps than those in the
ammonium chloride pattern. It will be shown later, in Chapter VII,
that such absences are due to the fact that the crystal in question has
a compound (face-centred or body-centred) unit cell, or to certain
symmetries in the arrangement of atoms in the unit cell. For the
determination of cell dimensions these absences need not be considered ;
we need only note that if a pattern shows spacings in the ratios of the
various values of 1/v(h24k2-+12%), even though some of the values are
missing, the crystals producing the pattern have cubic unit cells.

The calculations necessary to show that a crystal has a cubic unit cell
show in addition which crystal plane is responsible for each arc. Thus,
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the 100, 010, and 001 planes are responsible for the first arc in the
ammonium,chloride pattern, the 110, 011, and 101 planes for the second
arc, and so on.

Note that the fourth arc, which is the second-order ‘reflection’ from
100 planes, is labelled ‘200°, the order being included in the index
description. Similarly the second-order ‘reflection’ from the 110 planes
is called 220, and the third order ‘reflection’ from 312 would be called
936. This practice of including the order in the index numbers has
become standard, as it makes for uniformity and avoids confusion.
Looking at it in another way, we may regard 220 as the first-order
‘reflection’ from a set of planes having half the spacing of 110 (see the
bottom right-hand corner of Fig. 71). +This fits in with the definition
of the indices of crystal planes given in Chapter II (p. 24)—the number
of planes crossed between one lattice point and the next, along each
axial direction. Another meaning of the indices of X-ray reflections is
also important. All ‘reflections’ are first-order ‘reflections’ from planes
defined in the above manner ; this means that there is a phase-difference
of one wave-length between waves from successive planes. Counting
the number of planes crossed between one lattice point and the next is
therefore the same thing as counting the number of wave-lengths phase-
difference between waves scattered by neighbouring lattice points. The
indices thus represent the phase-differences between waves diffracted by
neighbouring lattice points along the three axial directions. Thus, if
we take any one atom as the reference point, the 936 ‘reflection’ is
produced when waves diffracted by the next similarly situated atom
along the a axis are 9 wave-lengths in front of those from the reference
atom, those from the next similarly situated atom along the b axis are
3 wave-lengths out, and those from the next along the ¢ axis 6 wave-
lengths out. The indices are thus the three order numbers which
characterize diffracted beams produced by a three-dimensional grating.
For an optical line grating—a one-dimensional pattern—we speak of
‘first’, ‘second’, and succeeding orders of diffraction, the one order
number being appropriate to the one-dimensional character of the
pattern; but for a three-dimensional pattern, three order numbers are
necessary to describe diffracted beams. The X-ray beam which we
have called, rather loosely, the 936 ‘reflection’, or the ‘third-order
reflection from the 312 plane’, is, strictly speaking, the diffracted beam
whose order numbers are 936.

The length a of the unit cell edge can be calculated from the spacing
of any arc from the expression a = d,;,V(h%+4k2+12). The results from
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arcs at large angles are more accurate than those from the first few
arcs for two reasons: firstly, the errors due to the thickness gnd absorp-
tion of the specimen diminish with increasing diffraction angle (see
p- 120), and secondly, on account of the form of the Bragg equation
nA = 2dsin @, the resolving power increases with 8 (see p. 120), as is
obvious from the fact that the o, o, doublets are only resolved at large
values of 6.

Although the interpretation of patterns from cubic crystals can be
done by way of calculations as above, it is more convenient to use
graphical methods as described in the next section.

Tetragonal unit cells. In crystals of tetragonal symmetry the unit
cell is a rectangular box with ¢wo edges equal (a) and the third (c)
different from the first two. The spacings of k0 planes—those parallel
to c—are in the same ratios as those of the kL0 planes of cubic crystals,
that is, in the ratios 1/v12:1/v(124-12):1/422:1/4(22+412), and so on.
But the 001 spacing is not related in any simple way to a ; the ratio c¢/a
may have any value and is different for every tetragonal crystal; and

h? +k2
hkl spacings in general are given by d,;, =1 + @ The

diffraction patterns of tetragonal crystals are thus less simple than
those of cubic crystals, and there is no regular spacing of the arcs, as
may be seen in the pattern of urea, Fig. 72; the relative spacings are
different for every different tetragonal crystal, except for the hk0
spacings.

It would be possible to find the unit cell of a tetragonal crystal by
first picking out those arcs whose spacings are in the ratios 1:1/v2:1/v4,
etc. (these being the hk0 reflections), and then assigning likely indices
to the remaining reflections by trial. But this would be a laborious
process, and there is no need to proceed in this way, since the problem
can be solved graphically. The relative spacings of the different planes
are determined by the axial ratio c/a ; if two crystals happened to have
the same axial ratio but different actual cell dimensions, their patterns
would show the same relative spacings, though one pattern would be
more spread out than the other if the same X-ray wave-length were used.
Graphs connecting the relative values of d and c/a can be constructed,
and the whole set of arcs in a powder pattern identified by finding where
their relative spacings fit the chart. In order to deal only with relative
spacings so that only the shape (not the actual size) of the cell enters
into the problem, the chart is made logarithmic with respect to d. The
first such charts were published by Hull and Davey (1921), who plotted
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logd for each crystal plane against c/a. These charts are rather small,
and for small values of ¢/a do not extend far enough for some purposes.
A new method of constructing such a chart entirely without calculation
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F16. 72. Graphical method for indexing the powder pattern of a tetragonal crystal.
The pattern shown is that of urea.

is given in an appendix. The method of using these charts is to plot
on a strip of paper the values of logd (or —2logd for the new form of
chart) for all the arcs on the photograph, and move the strip about on
the chart, keeping it always parallel to the logd axis, until a good
match between strip points and chart lines is found ; this is illustrated
in Fig. 72. (Some reflections may be absent ; this feature may be ignored.)
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More than one matching position will be found ; the position giving the
simplest indices will naturally refer to the simplest unit eell. When
the correct position is found, the indices of all arcs can be read off on
the chart. The axial ratio can also be read off approximately, but it is
better to calculate @ and ¢ from the spacings of selected arcs. The length
a can be obtained from the spacing of any hkO arc, and ¢ from any of
the 00! arcs, the most accurate results being obtained from the arcs at
the largest reflection angles. Arcs representing two or more different
crystal planes with about the same spacing should naturally be avoided.
If unambiguous kk0 and 00 arcs are not available, both @ and ¢ can
be calculated from the spacings of any two arcs having different Ak and
l values from the equations

3+ k2 24+ k2
(dh‘k,l,)z( it L ) (dh,k.l.)g(h :—k +cz) =1,

the most accurate results being obtained from a pair of arcs (such as 211
and 102 in the urea photograph, Fig. 72), one of which comes from a
plane with high Ak and low I, and the other from a plane with low hk
and high I; they should be fairly near together on the photograph so
that absorption and other errors are about the same for both. Calcula-
tions should be made from several pairs of arcs, and the results averaged.
Reflections at large angles give more accurate results than those at
small angles—see Fig. 68. (For high precision methods, see p. 180.)

Note that a tetragonal cell with an axial ratio of 1 is cubic, and the
chart at this position can therefore be used for cubic crystals.

Hexagonal, trigonal, and rhombohedral unit cells. In many
crystals of hexagonal and trigonal symmetry the unit cell has a diamond-
shaped base, a and b being equal in length and at 120° to each other;
¢ is perpendicular to the base and different in length from a and b.
The axial ratio c/a is different for each crystal. The spacings d of the
planes are given by

4 h2 h 2
dhkl~l/J( s k+k)+cg)

The indices for the arcs on a powder photograph can be found graphi-
cally on a suitable chart (see Appendix 3) in a way similar to that
described for tetragonal crystals, and the axial lengths calculated from
the spacings of suitable pairs of arcs by the above equation.

For some trigonal crystals, the unit cell is a rhombohedron—a figure
which has three equal axes which make equal angles not 90° with each
other; the cell is, so to speak, a cube either compressed or elongated
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along a body diagonal. The spacing d of any set of atomic planes hkl
is given, in terms of the unit cell edge a and the interaxial angle «, by
the expression

d 142 cosPa—3 cos?a
het = / A/ {*Iiz—r{:ﬁ—}—l? sin® o+ 2(hk—+kl+1h)(cos®a—cos a)}
It is not easy to determine directly a and o from a powder photograph

by the use of this rather unwieldy expression; fortunately, however,
the atomic arrangement in thombohedral crystals can always be referred

Fic. 73. Rhombohedral celi (bold lines) with corresponding hexagonal
cell (narrow lines) and hexagonal prism (dotted).

to a larger hexagonal cell (Fig. 73) whose dimensions ay and cy are
related to those of the rhombohedral cell, ay and «, by the relations

2 2
a 3 . 3
2 __ “H . sin

Tp = 4 T4 = T T
ST )
H

Hexagonal indices ky k; 1, are related to rhombohedral indices hp kI
by the relations Shyp = hyy— gLy,

3k = hy+2kg+1y,
3lR == _2’I’II—kH+lH‘

The procedure is to find the simplest hexagonal indices on the chart
already mentioned, to calculate the dimensions of the hexagonal cell,
and finally to find the dimensions of the true rhombohedral cell by the
above expressions.

If it is not known whether a crystal has rhombohedral symmetry or
not, this question may be settled by assigning hexagonal indices to the
reflections and then surveying these indices to see whether all of them
are such that hy—kg+ly, hy+2ky+ly, and —2hg—ky+1ly, are
divisible by 3; if they are, the true 1nit cell is rhombohedral.
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Other types of unit cells. The dimensions of orthorhombic, mono-
clinic, and triclinic unit cells cannot usually be determined from powder
photographs. The number of variable parameters is too great to permit
the use of charts for ﬁnd'mg the indices for the arcs. Even for ortho-
rhombic crystals a three-dimensional figure of a very complex type
would be necessary, and this is impracticable. The only hope of finding
the unit cell dimensions from a powder photograph of one of these less
symmetrical crystals is by trial: that is, by postulating simple indices
for the first few arcs, calculating the unit cell dimensions on these
assumptions, and then finding whether the spacings of the remaining
arcs fit this cell. Unless external evidence is available, such a process of
trial is likely to be, at the very least, extremely lengthy, and more often
than not, quite hopeless. 1f, however, external evidence is available,
such as the axial ratios and angles deduced from goniometric or micro-
scopic measurements, there is more hope, since, as pointed outin Chapter
I, the shape of the ‘morphological’ unit cell is either the true shape or
is closely related to the true shape, for instance by the halving or doubling
of one of the axes with respect to the others. Such a clue may lead to
the postulation of correct indices for the first few arcs and hence to the
indexing of the whole powder photograph. The cell first chosen may
be too large ; if, for instance, all the & indices are found to be even, then
the length of the true a axis is half that first chosen: the change to this
true a axis will halve all the A indices.

The spacings of the various planes for these crystals are given by
the following expressions:

1

[(h? k212’
et

1

bt = T B\
@Te e E
 sinZf + b2

For triclinic crystals the expression is so unwieldy that it is not
worth while attempting to use it ; a graphical method based on the con-
ception of the reciprocal lattice should be used (see pp. 156-8). The
reciprocal lattice method is also more rapid than calculation for mono-
clinic crystals.

The difficulties in the interpretation of powder photographs of erystals
of low symmetry lie in the fact that in a powder photograph all the

Orthorhombic dppy =

Monoclinic
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information is crowded along one line, and this information consists
only of the spacings of the planes, without any geometrical indication
of the relative orientations of the crystal planes producing the various
arcs. This is inevitable in a powder photograph on account of the random
orientation of the crystals in the specimen. Only by departing from the
randomness of orientation can we obtain X-ray diffraction photographs
which give geometrical indications of the orientation of the crystal
planes producing the various reflections. Obviously it is best to use a
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Fic. 74. Arrangemonts for taking single-crystal rotation photographs
(a) on flat filns, (b) on cylindrical films.

single crystal set in some definite way with regard to the X-ray beam,
so that the reflections from differently oriented planes shall fall on
different parts of the recording film.

Single-crystal rotation photographs. The method found most
convenient for finding the unit cell dimensions of crystals of low sym-
metry is to send a narrow monochromatic X-ray beam through a single
crystal at right angles to one of its axes, to rotate the crystal round
this axis during exposure in order to bring a number of different crystal
planes successively into reflecting positions, and to record the reflec-
tions either on a flat plate or film perpendicular to the primary beam
(Fig. 74 a), or better still (because more reflections are registered) on a
cylindrical film surrounding the crystal, the cylinder axis coinciding
with the crystal’s axis of rotation (Fig. 74b). A single-crystal camera
differs from a powder camera only in the necessity of having arrange-
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ments for the accurate adjustment of the crystal and the use of & much
longer cylinder of photographic film. The crystal is mounted on the
stem of a goniometer head ; whenever possible, accurate adjustment is
effected by making use of the reflection of light by the faces, in the
manner described in Chapter II. (Ill-formed crystals may be set
accurately by X-ray methods; the procedure cannot be given at this
stage—it will be found on p. 173.) Descriptions of ‘universal’ X-ray
goniometers suitable for taking (among other things) rotation photo-
graphs have been given by Bernal (1927, 1928, 1929), Sauter (1933 a).
and Hull and Hicks (1936) ; Bernal’s papers are particularly valuable, as
they give much useful information on procedure. Aperture systems for
defining the X-ray beam are tlle same as in powder cameras; a 0-5 mm.
channel in a brass tube, with the usual guard tube, is suitable for
most purposes. Fogging by the primary beam is avoided either (as in
the powder camera, Fig. 62) by the provision of a trap or by making
a small hole in the film through which the primary beam passes.
Goniometer cameras are not usually made light-tight ; instead, the film
is contained in an envelope of black paper or other material which stops
light but not X-rays. X-ray goniometers are usually fitted, not only
for complete rotation of the crystal, but also for oscillations over limited
angular ranges ; this is usually effected by heart-shaped cams controlling
the angular movement.

The crystal is mounted by sticking it to a glass hair (preferably lithium
borate glass) by a trace of plasticine, shellac, or wax; the glass hair in
turn is stuck to the goniometer stem. Crystals which are deliquescent,
efflorescent, or rather volatile must be sealed inside lithium borate tubes
(Robertson, 1935 a). It is in some cases necessary to take X-ray photo-
graphs of crystals immersed in their own mother liquor; here again,
thin-walled capillary tubes must be used (Bernal and Crowfoot, 1934 a).

The type of X-ray photograph given by a crystal rotated round a
principal axis is illustrated in Fig. 75, Plate VI, which shows the
diffraction pattern of the orthorhombic crystal potassium nitrate
rotated round its ¢ axis. The most obvious feature of this photograph
is the arrangement of the diffraction spots on a series of straight
horizontal lines. The reason for this will be apparent when it is remem-
bered that along the ¢ axis there are identical diffracting units (groups
of atoms) spaced a distance of c apart. It has already been shown (p. 115)
that a row of identical, equally spaced diffracting units perpendicular
to an X-ray beam produces cones of diffracted rays at angles given by
nA = c cos ¢, where A is the X-ray wave-length, ¢ the distance between



Fia.75. Single-crystal rotation photographs. Above: potassium nitrate (orthorhombic ;
rotation axis, ¢). Centre: gypsum (monoclinic ; rotation axis, ¢). Below: benzil (hexa-
gonal ; rotation axis, c).







CHAP. VI UNIT CELL DIMENSIONS 139

the diffracting units, ¢ the semi-vertical angle of the cone of diffracted
rays, and n a whole number. On a cylindrical film having the point-
row for its axis, these cones of rays would be registered as a series of
straight lines. A crystal is not a single row of diffracting units, but
consists of many identical rows of such units, all parallel to each other
and packed side by side in a precise way, and on account of the three-
dimensional character of the assemblage of diffracting units, diffracted
beams are produced, not all along each cone, but only along specific
directions lying on the cone, the directions being such that the Bragg
equation A = 2d sin @ is satisfied; thus we get on the cylindrical film,
not continuous straight lines, but spots lying on straight lines. The
lines of spots are usually called ‘layer lines’.

The length of ¢ can be obtained very simply from this photograph
by measuring the distance y of any layer line from the equator; if the
camera radius is r, then r/y is tan ¢ ; c is then given by nA/cos ¢, » being
the number of the layer line selected (the equator having n = (). For
the potassium nitrate crystal, ¢ is 6:45 A. If a flat film is used instead
of a cylindrical film, the layer lines are shown, not as straight lines
but as hyperbolae. Tan ¢ is given by r/y’, where y’ is the shortest dis-
tance from the hyperbola to the equator—the distance at the meridian.

Unit cell dimensions from rotation photographs. The simplest
way of measuring the lengths of the three edges of the unit cell of an
orthorhombic crystal is evidently to take three rotation photographs,
the crystal being rotated round a different axis for each photograph;
the axial directions are chosen on the basis of morphological measure-
ments, and these directions are necessarily, by symmetry, parallel to
the true unit cell edges. For the potassium nitrate crystal the lengths
of the edges of the unit cell were found by D. A. Edwards (1931) to be:
a=>542A;b=917TA;c=645A.

The same method can be used for all crystals, irrespective of sym-
metry ; axial directions are chosen, and interaxial angles determined,
by measurements of interfacial angles, while the lengths of the axes
are determined from X-ray rotation photographs. There are pitfalls
here, however ; the directions selected as crystal axes on the basis of
morphological measurements may not always be parallel to the edges
of the simplest unit cell, which will be referred to here as the ‘true unit
cell’—the smallest cell which has the correct symmetry and accounts
for all the X-ray reflections. Consider first the most highly symmetrical
crystals—those belonging to the cubic, tetragonal, and hexagonal
(including trigonal and rhombohedral) systems. (Although, as we have
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seen, the unit cell dimensions of such crystals can usually be determined
from powder photographs, nevertheless it may happen that faint
reflections not seen on powder photographs are registered on single-
crystal photographs, and these may necessitate revision of cell dimen-
sions; hence, single-crystal photographs should be taken whenever
possible.)

_ Axial directions in cubic crystals are fixed by symmetry, as in the
orthorhombic crystals already considered. But in tetragonal crystals,
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Fig. 76. Determination of unit cell dimensions by rotation photographs,
(a) for tetragonal, (b) for hexagonal crystals.

although there is no doubt about the direction of the unique ¢ axis, on
the other hand the morphologically chosen a axis may be at 45° to the
true a axis: the prism face selected as 100 may really be 110 (see Fig.76 a),
and thus an X-ray photograph with direction 1 as rotation axis would
give (from the layer-line spacing) the repeat distance a,, which is v2
times the true unit cell edge a,. Therefore, to find the true a for a
tetragonal crystal by this method, it would be necessary to take two
rotation photographs, one with the morphological ‘[100]’ direction 1
and the other with the morphological ‘[110]’ direction 2 as rotation axis;
one repeat distance will be found to be +2 times the other, and the
smaller of these lengths is evidently the true a@. Similarly, for hexagonal
crystals (Fig. 76 b) it is necessary to take two photographs with
directions 1 and 2 respectively as rotation axes; one repeat distance
(@,) will be found to be v3 times the other (a,), and the latter is evidently
the correct a.
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Monoclinic crystals may present more serious difficulties of a similar
type: the b axis is fixed by the symmetry (it coincides with the single
twofold axis or is perpendicular to the single plane of symmetry); but
the a and ¢ axes are not fixed in any such way. We may encounter the
state of affairs illustrated in Fig. 77, where the morphological ‘001’ plane
is really 101 of the true unit cell, and the
morphological ‘100’ is really 101; and in
addition, the true angle 8 would be differ-
ent from the morphologically determined
B’. Here we should evidently have to
take X-ray photographs with the crystal
rotating round directions parallel to OP’
and O in order to obtain the dimensions
of the simplest unit cell. Note that the
alternative cell defined by a”, ¢, and 8"
has the same size as that defined by a, c,
and B, and has an equal claim to be
regarded as the true unit cell, but may ¥¢- 77 Alternative monoclinic

. cells (b projection).
be less convenient because its B8 is greater.
It is possible that the relations hetween
the morphologically chosen axial direc-
tions and the edges of the simplest unit
cell might be more remote, in which case
it would be difficult to find the latter by
the simple method hitherto described. In
the triclinic system, still more difficulties
may be encountered. In crystals of
rhombohedral symmetry the simplest

. . . Fia. 78. Large (32-molecule) unit
unit rhombohedron may be one with quite ; -\~ "5 = O alcite based on
different values of a and o from those of the cleavage rhomb. The true unit
morphologically selected rhombohedron ; °enr}‘]’f)2‘l§’0;’::rl(l) I(lzs':;‘i‘;c‘;;zg ;:""p
this is so for calcite, for instance (Fig. 78). '

The straightforward way out of these difficulties is to accept provision-
ally the cell edges selected on morphological evidence, and to find the
indices of all the reflections on this basis; then to survey the indices to
see whether any smaller cell will account for all the reflections, thus
simplifying the indices. The smallest cell which has a shape appropriate
to the crystal system and will account for all the reflections is the true
unit cell. This procedure may appear very laborious, but the graphical
methods now to be described greatly simplify and shorten the work.
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For the determination of unit cell dimensions, detailed indexing of
the reflections on single-crystal rotation photographs is only necessary
in certain cases, as indicated in the foregoing discussion; the complete
indexing of rotation photographs of all types of crystals is, however,
necessary whenever an investigation is to be carried beyond the
determination of unit cell dimensions (to the discovery of the symmetry
of the arrangement of atoms in the crystal, or to the elucidation of the
arrangement in detail), and it will be appropriate to deal with the whole
subject at this stage.

One further remark must be made before taking up this subject.
Morphological features are useful in suggesting possible unit cell edges,
but it is possible to proceed’ with very meagre evidence of this sort
(such as a single direction, as in rod-shaped crystals lacking well-defined
faces), or even with none at all. There are initial difficulties in setting
such crystals in a suitable orientation on the goniometer, but these can
be solved by X-ray methods; see p. 173. As soon as a single crystal has
been set sufficiently well to give an X-ray rotation photograph showing
recognizable layer lines, the unit cell dimensions and the indices of all
the reflections can be found by the methods now to be described.

Indexing rotation photographs. Preliminary consideration.
The spots on the equator of a rotation photograph are obviously reflec-
tions from atomic planes which were vertical during the exposure. In
Fig. 75, Plate VI, the equatorial spots are reflections from planes parallel
to the ¢ axis, that is, hk0 planes: the third or / index for these reflections
is 0 by inspection. The other two indices, & and £, of all the equatorial
reflections may be found from the spacings of the planes, which are
worked out from the reflection angles § by the Bragg equation. The
spacing d of any kk0 plane of an orthorhombic crystal is given by

2 g2
d=1 / J (2—2-1—-](-:-2-) ; the simplest way of finding % and k for all the reflec-

tions is to plot logd for each spot on a strip of paper and fit this on a
chart (Fig. 79) similar to, but simpler than, the charts used for indexing
powder photographs. The construction of such a chart (which shows
log d for all values of & and k and a wide range of axial ratios a:b) is
described in Appendix 3. The % and % indices for each reflection are
read off on the chart when the match position is found. Note that
in some cases, owing to the absence of many equatorial reflections
(see pp. 217-40), the simplest match position is not correct. As a guide
to the correct match position, log d,y, and log dy,, (already known from
the other two rotation photographs) should be marked on the strip.
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For the spots on layer lines above and below the equator, one
index (I) is .given by inspection. It should be remembered that the

indices of reflections represent
phase-differences between waves
diffracted by neighbourirg units
along the three axial directions
(see p. 131). The spots on the
first layer line above the equator
lie on a cone for which = in the
equation nA = ccos¢ (see p. 138)
is 1; this means that waves coming
from any one diffracting unit are
one wave-length behind those from
the next diffracting unit above it ;
in fact, » in the cone equation is
I, the third index number. Thus,
all spots on the fourth layer line
(fourth cone) above the equator
are from hk4 planes (those on the
fourth layer line below the equator
are from hk4 planes), and so on.
The ! index of every spot is thus
obvious by mere inspection. The
other two indices are best obtained
by a graphical method. Just as all
spots with the same [ indices (in
the present example) lie on definite
lines, so all spots with the same Ak
values lie on definite curves. But
these ‘hk curves’ have a form less
simple than the ‘I curves’. The
form of these curves is most
readily determined by introducing
a piece of mental scaffolding known
as the ‘reciprocal lattice’—a con-
ception which has proved to be a
tool of the greatest value for the
solution of all geometrical prob-
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F1a. 79. Graphical method for indexing
equatorial reflections on rotation photo-

graphs.

The pattern shown is that of

polychloroprene (hk0 reflections).

lems concerned with the directions of X-ray reflections from crystals.

It was introduced by Ewald (1921).
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The ‘reciprocal lattice’. From a point within a crystal imagine
lines drawn outwards perpendicular to the lattice planes;.along these
lines points are marked at distances inversely proportional to the
spacings of the lattice planes. The points thus obtained form a lattice
—that is, they fall on sets of parallel planes. (For a simple proof that
they do form a lattice, see Appendix 4.) This imaginary lattice is known
as the ‘reciprocal lattice’. An example is shown in Fig. 80; all points
having the same [ index fall on a
plane, and the plane containing all
hkl points is parallel to that con-
taining the AL2 points, and so on.
By thinking of this imaginary
lattice, in which the planes of the
real lattice are symbolized by
points, we are obviously brought
nearer to the single-crystal X-ray
diffraction pattern with its array
of spots, especially as the layers
of points in the reciprocal lattice
correspond with the layers of spots
on the diffraction pattern. In fact,
a rotation photograph such as one
of those in Fig. 75, Plate VI, is, as
we shall see, strongly similar to the
pattern we should get by rotating
the reciprocal lattice round the ¢
axis of the crystal and marking off
the positions where the reciprocal lattice points pass through a plane
through the ¢ axis (Fig. 81). The resemblance between this ‘reciprocal
lattice rotation diagram’ and the X-ray photograph is closest near the
centre of the photograph ; elsewhere the X-ray photograph is a some-
what distorted version of the reciprocal lattice rotation diagram.

The process of reflection by the real lattice cannot be visualized in
terms of the reciprocal lattice; but the condition for reflection by the
real lattice (the Bragg equation) naturally has its precise geometrical
equivalent in terms of the reciprocal lattice. This is illustrated in Fig. 82,
in which XY represents the orientation of a set of crystal planes which
we will suppose is in a reflecting position. Along the normal to this set
of planes is the corresponding reciprocal lattice point P, the distance of
which from the reciprocal lattice origin X is inversely proportional to

F1c. 80. Reciprocal lattice of an
orthorhombic erystal.
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d, the spacing of the planes in question (defined as on p. 131 so as to
include the ‘order’ of reflection) ; the unit of length is chosen so that XP
is equal to A/d rather than 1/d for a reason which will presently appear
(X is the characteristic X-ray wave-length, which in any particular ex-
periment is constant). The X-ray beam QX is reflected by the plane
at an angle 6, the reflected beam X R making an angle 20 with the
primary beam. If Y lies in the plane QXR, the angle QXY = 6.

At P draw a line perpendicular to XP to meet the primary beam at
Q. R must also lie on this line, since primary beam, reflected beam, and

Fic. 81. Formation of reciprocal lattice rotation diagram.

the normal to the reflecting plane all lie in a common plane. @R and
XY are parallel to each other (since both are at right angles to XP and
are in the same plane), hence the angle PQX = QXY = 0. Since the
. angle QPX is a right angle, PX/QX = sin 6; therefore
PX  Ad A
X == = == .
9 sind sinf  dsinf
But the Bragg equation states that when a set of crystal planes reflects
X-rays, A
dsinf
Hence QX = 2. Thus, for every different set of crystal planes when
in a reflecting position, the above construction hrings us the line QX
of constant length 2 units. For every possible position of P the angle
QPX is a right angle, hence P always lies on & circle which has QX (= 2)
as its diameter. To plot the positions occupied by all reciprocal lattice

points when the planes they symbolize are in reflecting positions, rotate
4458 L

= 2.
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the circle QPX about its diameter QX ; the sphere QSXP is obtained.
(The reason why the reciprocal lattice is made on the scale XP = A/d
is now apparent ; it is to give the sphere QXSP unit radius.)

In other words, the condition for reflection, in terms of the reciprocal
lattice, is this: construct a sphere of unit radius having the primary
beam along its diameter. Place the origin of the reciprocal lattice at
the point where the primary beam emerges from the sphere. As the

crystal turns, the reciprocal lattice, in

R |C turning about its origin, passes through

“TRecprocar  the sphere (Fig. 83), and whenever a

TTICE reciprocal lattice point (distant A/d from

the origin) just touches the surface of

the sphere (the ‘sphere of reflection’) a

reflected beam flashes out, being re-

flected by the crystal plane correspond-
ing to the reciprocal lattice point.

Note that if in Fig. 82 we join O, the
centre of the sphere, to P, the angle
OQP = OPQ = 0, and thus the angle
XOP = 20, OP is therefore parallel to
XR and, equally with XR, represents
the direction of the reflected ray. The

N ~ problem of finding the position of any

Fi1a. 82. The condition for reflection
in terms of the reciprocal lattice. reflected spot on an X'ra‘y photogra,ph
Reflection occurs when a reciprocal therefore resolves itself into (1) finding
l"tt“’zf’:ﬁ;’“:pfe:g:’;};Z;:cht‘i’oi‘frf“e where the reciprocal lattice point for
the plane in question touches the sur-
face of the sphere of reflection, and then (2) finding where the (produced)
radius through this point strikes the film. This procedure is valid for
all types of single-crystal X-ray photographs. In the particular case
of a crystal rotating round a principal axis (say c¢) which is perpendicular
to the X-ray beam, the reciprocal lattice points are in layers parallel
to the equatorial section of the sphere of reflection (Fig. 83), and remain
on the same level as the reciprocal lattice rotates round XC' ; consequently
all the points on any one layer—that is, all points having the same [
index—pass through the surface of the sphere at various points lying
on the circle PNM (Fig. 82) which is parallel to @SX. If we joined the
centre of the sphere to each of these points we should get a set of lines
lying on the surface of a cone. We have thus arrived, by way of the
conception of the reciprocal lattice, at the same conclusion as that
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already drawn from a consideration of diffraction by a row of scatter-
ing points, namely, that when a single crystal is rotated round its ¢
axis and an X-ray beam passes through it perpendicular to its ¢ axis,
all reflected rays from planes having the same ! index lie on a cone.
The semi-vertical angle of this cone, ¢, we have already seen is given by
IX = ccos¢; this is also obvious from Fig. 84 (OU = IX/c = cos ¢).

When the reflections are recorded on a cylindrical film the height y
of each layer of spots above the equator is r cot ¢, where 7 is the radius
of the cylinder.

RECIPROCAL

LATTICE
* ROTATES| I EIERE
s

Fia. 83. Reciprocal lattice passing through sphere of reflection
as it rotates.

Since the directions of reflected rays are obtained by joining the
centre of the sphere to points on its surface, the crystal itself may be
regarded as rotating in the centre of the sphere of reflection, while the
reciprocal lattice of this same crystal rotates about a different point—
the point where the beam emerges from the sphere. If this seems odd,
it must be remembered that the reciprocal lattice is a geometrical
fiction and should not be expected to behave other than oddly; the
fact is, the reciprocal lattice is concerned with directions ; its magnitude
and the location of its origin are immaterial.

As for the precise position of each reflected beam, and the point at
which it strikes the film, this evidently depends (for any one layer of
reciprocal lattice points, any one cone of reflections) on the distance of
the reciprocal lattice point from the axis of rotation. A point whose
distance from the axis of rotation is equal to the shortest distance from
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this axis to the circle PN.M would just touch the sphere at 7' (Fig. 84 a
and b), which lies on the line UV, parallel to the primary beam ; the
reflected beam for this plane would travel along OT, striking a film of
unit radius at W on the meridian

RECIPROCAL LATTICE
ROTATES HERE of the film, directly above the
FILM { central spot X. Points nearer
- [T the axis of rotation than 7
------ E - would never touch the sphere
Tt o O e - at all, and the planes they
v % i NI represent would never reflect.
N ~-a, Other points whose distance ¢
s y ¢ from the axis of rotation lies
m_\»_ 07 X between T'V and NV touch the
@ */7“/0 sphere at points such as P;
L de what we want to know is the
s angle PUV (or ¢), since this
< angle determines the distance x
— :‘ of the reflected spot from the

meridian of the film. To find ¢
we have to solve the triangle
PUV. Now UV is 1 (the radius
of the sphere). UP, the radius
of the circle of contact, is

s - i)

Therefore, if we know ¢, all three
sides of the triangle are known
and the angle ¢ can be found.
¢ is z/r radians.
Y-RAY/BEAM In practicc, we want to find
Fi1a. 84. Sphere of reflection surrounded by the coordinates of a redproca‘l
cylindrical film of unit radius. a. Elevation. lattice point from the measured
b. Plan. position of a spot on the film.
This is most simply done by a graphical method, as described below.
If, however, it is desired to do it by calculation, for the sake of greater
accuracy, the following expressions are required. If the coordinates of
a spot on a cylindrical film are z (along the equator) and y (along the
meridian), the distance { of any reciprocal lattice point from the equa-
torial plane (the circle QSX) is cos ¢ == cos(cot~ly/r). The distance ¢

RECIPROCAL
LATTICE

4 ROTATES
ERE

O]
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of the point from the axis of rotation is (solving the triangle PUV
having two sides of length 1 and sin ¢, and the included angle ) given by

¢ = \/(14-sin*¢—2sin ¢ cosy)
= ,/[1+sin*cot~1(y/r)} — 2sin{cot~(y/r)}cos(z/r)].

Bernal (1926) worked out ¢ and { for all positions on a cylindrical
film, and gives a chart showing contours of equal ¢ and equal {, suitable
for a camera of diameter 10 cm.; it is only necessary to place a
rotation photograph on the chart, and read off the ¢ and { coordinates
for every spot on the film. For other camera sizes this chart (illus-
trated on a smaller scale in Fig. 85) may be photographed and re-
produced on the correct scale. A similar chart for photographs on flat
films is also given in the same paper. Greater accuracy is attained
by measuring the positions of spots on the photograph, using a
millimetre rule or a travelling microscope, and then plotting these
positions on a special large-scale Bernal chart.

For the purpose of visualizing the geometry of the reciprocal lattice
in terms of the actual camera dimensions, it is perhaps useful to multiply
the dimensions of the reciprocal lattice and of the sphere of reflection
by r, the radius of the cylindrical film, since in this case the origin of
the reciprocal lattice is the point where the primary X-ray beam strikes
the film, and the axis of rotation of the reciprocal lattice is the vertical
line through this point. Let us recapitulate the geometrical construc-
tion on this scale.

We have, first of all (Fig. 86 a), the primary beam passing through
the crystal at right angles to its axis of rotation and striking the cylindri-
cal film (radius 7) at the point X. Erect the axis XC parallel to the
cylinder axis; the reciprocal lattice will rotate round XC (its origin
being at X)) while the crystal itself rotates round OS. In the cylinder,
describe a sphere having the same radius r (Fig. 86b); this will be the
sphere of reflection. Any reciprocal lattice point P (distance from the
origin = rA/d) rotates round XC'; as soon as it touches the surface of
the sphere (Fig. 86 c), a reflected beam flashes out, and strikes the fiim
at ¥,. On further rotation (Fig. 86 d), the point passes again through
the surface of the sphere at P,, and a reflection again flashes out,
striking the film at Y.

A Bernal chart for a cylindrical camera of any radius may be con-
structed graphically by drawing the plan and elevation of this model.
Thus, if the height of any reciprocal lattice point above the origin is r{
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and its distance from the axis of rotation is r£, the position of the
reflection on the film is obtained in the following way. Draw a circle
of radius r (Fig. 86 ¢), and then a chord NUT" at a distance r{ from the
centre (this is the circle of contact seen edgewise); UT is the radius of

P
< =1
XRAY CRYSTAL

| il e

BEAM (N
NI

Fic. 86. a-d. See text. e and f illustrate giaphical construction
of a Bernal chart.

the circle of contact for this reciprocal lattice point. Join OT and pro-
duce to W on the line XC which is parallel to OU. WX is then the
ordinate y of the spot on the film. Now draw the plan, that is, draw
another circle of radius r (Fig. 86 f) and in it describe a circle of radius
UT. On this circle N7 mark off the points P,, P, which are at a distance
r¢ from X, and produce UP, to Y, and UP, to Y,. The arcs XY, and
XY, are the abscissae z of the two reflections on the film produced by
this plane. By doing this for a number of different values of r{ and r¢,
the complete chart is obtained.
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Indexing rotation photographs by reciprocal lattice methods.
Orthorhomblc crystals. First of all, the coordinates { and ¢ for each
reflection on the photograph (Fig. 87) are found in one of the ways
just described; these coordinates may be plotted as in Fig. 88a to
form the reciprocal lattice rotation diagram. The problem now is to
decide which point of the reciprocal lattice itself corresponds to each
spot on the rotation diagram.

DL

y
|
|

8 9 10 H

.2 \d v L J ¥ L I'
|
’,

1 2 3 4 %6
¢

Fig. 87. Coordinatoes of spots on rotation photograph of orthorhombic crystal.

Consider first the equatorial reflections. For a crystal rotated round
its ¢ axis, the equatorial reflections are those of Ak0 planes. To assign
correct indices it is only necessary to make a diagram (Fig. 88b) of
the zero level of the reciprocal lattice (the dimensions being already
known from layer-line spacings on other photographs), and to measure
with a ruler the distance ¢ of each point from the origin; it is then
obvious which reciprocal lattice point corresponds to each spot on the
rotation diagram.

As for the upper and lower layer lines of the rotation diagram, it is
immediately obvious that the spots on them lie exactly above or below
equatorial spots—the ¢ values for spots on all layer lines are the same
(except where certain spots are missing). The reason is that the 101
point of the reciprocal lattice is at the same distance from the axis of
rotation as 100 (Fig. 80), and in general a point hkl is at the same distance

- from the axis of rotation as the corresponding 2k0 point. Therefore,
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knowledge of the indices of the equatorial spots immediately leads to
the correct indices for all the remaining spots. The vertical lines of
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Fig. 88. a. Reciprocal lattice rotation diagram corresponding to Fig. 87.
b. Graphical determination of ¢ values for an orthorhombic crystal.

spots having the same Ak indices are known as ‘row lines’. The row lines
are often obvious on the photograph itself, though they are not straight
lines—see the photograph of benzil in Fig. 75, Plate V1.
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It should be noted that some reflections may be missing from the
photograph on account of certain symmetries in the atomic arrangement
(see Chapter VII), others because they are so weak that they do not
produce a perceptible blackening on the film. Still others (such as 001,
002) are absent because the crystal planes have not been in reflecting
positions ; the reciprocal lattice points which do pass through reflecting
positions are contained within a circular area of radius 1, corresponding
to the boundary of the sphere of reflection (see Fig. 88a). It is useful

]
(45

% 102 4:03 4:03 1020[ B ——
/ / 7 = Htﬂ

zm mr a 001 101 /zo:
200 f00 a* 100 200
/ / %’ [
l2o1 Tnor oot TioT Tz01
Fia. 89. Reciprocal lattice (40l plane) of mono- ¥1G. 90. Monoclinic reciprocal
clinic erystal. The b projection of the real coll is lattice rotated round b.

also shown (a, ¢, B).

to remember that the distance from the origin to each point on the
rotation diagram is A/d for the corresponding crystal plane.

Monoclinic crystals. The procedure already described is followed
as far as the determination of { and ¢ for each point and the construction
of the reciprocal lattice rotation diagram. But, on account of the lower
symmetry of the monoclinic cell, the rotation diagram is less simple than
that of an orthorhombic crystal.

A monoclinic unit cell has its @ and ¢ axes at an angle 8 not 90°, and
its b axis normal to the ac plane. The reciprocal lattice has a similar
form, but it should be noted that, whereas in the orthorhombic system
all three reciprocal axes are parallel to the real axes, in the monoclinic
system only the b* axis of the reciprocal lattice is parallel to the real
b axis. The a* and c* reciprocal axes are not parallel to the a and ¢
axes of the real cell: a* (length =: A/d,o,) is perpendicular to ¢, and c*
(length = A/dgy,) is perpendicular to a (Fig. 89); and the angle g* of
the reciprocal cell is the supplement of the angle 8 of the real cell.

If the crystal is rotated round its & axis (Fig. 90) the equatorial spots
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are reflections from 40! planes. The ¢ values for these spots are found
as before by measuring the distance from the origin to each point of
the (non-rectangular) 20l net plane (Fig. 89). Note that the indexing of
equatorial reflections in this case cannot be done by a log d chart, since
there are three variables, a, ¢, and 8; the reciprocal lattice method is
essential. Once the indices for the equatorial reflections have been

2c*cos g® :

REAL CELL

| | |
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FIe. 91. Monoclinic reciprocal lattice rotated round normal to «*b* planc
(c axis of roal cell). Above: gencral view. Right: real cell, same orientation.
Below: view (on smaller scale) looking straight down ¢ axis.

found, those of the reflections on upper and lower layer lines follow at
once, since all reciprocal lattice points having the same % and ! indices
(such a set as 201, 211, 221, 231, and so on) are at the same distance £
from the axis of rotation and thus form row lines.

Rotation round the a or ¢ axis of a monoclinic crystal (Fig. 91) results
in a different type of photograph ; vhe spots fall on layer lines, as always
when a crystal is rotated about a principal axis, but not on row lines.
Consider first the equatorial spots on a photograph obtained by rotating
the crystal round the ¢ axis; these are from 2k0 planes. The zero (hk0)



CHAP. VI UNIT CELL DIMENSIONS 155

level of the reciprocal lattice is a rectangular array of points, from which
£ values are obtained as before by measurements from the origin. The
other levels are also rectangular networks, but they do not lie directly
above or below the zero level, being displaced in the direction of a* by

730 130 030 130 230
20 220
}-~3224
110 710
3 200~
210 fio ofo 110 210

Fic. 92. Graphical method for determining ¢ values for non-equatorial
refloctions of monoclinic crystal rotated round c.
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¥1a. 93. Part of reciprocal lattice rotation diagram for monoclinic crystal
rotated round c axis, constructed by measurement of Fig. 92.

distances which are multiples of c*cos8*. The 101 point, for instance,
is not the same distance from the axis of rotation as the 100 point, and
hencel0l reflections on the photograph do not lie on row lines but on
curves whose form depends on 8*. The distances of the non-equatorial
points from the axis of rotation might be obtained by drawing the pro-
jections of the various levels on the equatorial plane, as in Fig. 91; but
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it is simpler to use the same network—the already drawn zero level—
for all layers, marking off along a* a set of new origins, one for each
level (Fig. 92). It is important to note that the origins for the upper
layers (positive values of ) lie along the negative direction of a*. The
£ values for all hk1 points are found by measuring the distance from
the origin for I = 41 to the appropriate k0 point ; and so on for other
layers. Note that ¢ for 101 (or 101) is smaller than ¢ for 101. The
rotation diagram produced in this way is shown in Fig. 93. Only 00
points, and k0l points having % constant, lie on straight lines (inclined
to the ¢ axis at the angle 8*), all others lying on curves.

The rotation diagrams of monoclinic crystals can also be used for
graphical determination of the spacings of the planes; this is done (as
in Fig. 93) by measuring the distance of each point to the origin. This
graphical method is much more rapid than calculation.

Triclinic crystals. None of the angles of a triclinic cell are right
angles; in consequence, none of the axes of the reciprocal lattice are
parallel to those of the real lattice, and the angles a*, B*, and y* of
the reciprocal lattice are all different from those («, 8, and y) of the real
lattice. The relations between these quantities are as follows:

cos Bcosy—cosa

coso* = : :
sinfBsiny
cos B* — cosy cos a—cos 3
siny sin o
cog* o COSXCOS B—cosy
4 sin asin B
A,
a¥* = Ebc sin o,
A
b* = —casinf
D ’
A,
c* = —absinvy,

where D = abcv(1+2 cos « cos B cos y — cos?a— cos?B— cos?y).

These formulae are so unwieldy that it is better to derive the reciprocal
lattice elements directly from the spacings and angles of the planes:
A A A

= —,

* .
a* = —;
dloo 010 001

and
o* = £ (010):(001), * — £ (100):(001),  ¥* = £ (100): (010).
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F1a. 94. Triclinic reciprocal lattice. Above, left: general view. Right: real cell.
Below: view looking straight down ¢, showing zero and first layers only.

Fic. 95. Graphical determination of ¢ values for non-equatorial
refloctions of triclinic crystal rotated round c.
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If a triclinic crystal is rotated round any axis of the real cell (Fig. 94),
the photograph exhibits layer lines (since the various levels of the
reciprocal lattice are normal to the axis of rotation), but not row
lines, since none of the points on upper or lower levels are at the same
distance from the axis of rotation as
corresponding points on the zero level.
k3 [ TR The indices for points on the zero level
are found in the same way as for photo-
graphs of monoclinic crystals rotated
hk2 [~ b round the b axis: for the zero level of

a triclinic crystal rotated round ¢, a net
with elements 2*, b*, and ¢* is con-
ki | structed (Fig. 95), and distances ¢ of
ooy o\ fort points from the origin are measured.
4 The other levels, projected on to the
equator, are displaced with regard to the
A W e zero level in a direction which does not

100 020 229 120 lie along an equatorial reciprocal axis;
Fia. 96. Reciprocal lattice rota- the simplest way of measuring ¢ values
tion diagram for triclinic erystal, jis ag before, to use the zero level net-
constructed by measurements on . .
Fig. 95. work, marking off a set of alternative
origins, one for each level, along a line
OL in Fig. 95. The angle  this line makes with a* is given by

cos a* —cos B* cog y*
tanS = - you ¥
cosB*siny

and the distances of the alternative origins are multiples of

Jler-8

The rotation diagram has the appearance of Fig. 96; the only points
lying on a straight line (apart from the layer lines) are the 00l set. Note
that the ¢ values for hkl, hkl, hkl, and hkl are all different.

The spacings of the planes of a triclinic crystal are best determined
from the rotation diagram, by measuring the distance of each point
from the origin.

Oscillation photographs. It often happens that on rotation photo-
graphs the positions of two or more possible reflections are so close
together that it is impossible to decide whether a particular spot is
produced by one of the crystal planes in question, or the other, or indeed
both together. For the purpose of determining unit cell dimensions
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this usually does not matter, but if the investigation is to be carried
further, to the determination of atomic positions (see Chapter VII), it
is important "to identify every reflection unequivocally and to measure
its intensity.

One method of separating reflections is to take photographs while
the crystal is, not rotating completely, but oscillating through a limited
angular range. A set of several photographs is required to cover all
reflections ; on each photograph only certain spots appear, because only
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Fic. 97. Reciprocal lattice diagram for oscillation photograph.
Orthorhombic crystal, equatorial lovel.

certain sets of crystal planes pass through their reflecting positions in
the course of the oscillation of the crystal through the selected angular
range. Thus, it is usually possible to decide that because a particular
spot appears on one photograph and not on others it must have been
produced by one crystal plane and not another.

The orientation of the crystal necessary for the production of each
reflection is determined graphically by a method (Bernal, 1926) which
follows naturally from the reciprocal lattice methods already described.
Consider first the equatorial reflections given by an orthorhombic
crystal oscillated about its ¢ axis. These reflections are produced as the
zero level of the reciprocal lattice (containing the hk0 points) passes
through the sphere of reflection. In Fig. 97 the axis of rotation 0 is
normal to the plane of the paper. Suppose that the crystal is oscillated
through 15°, one extreme position being with the X-ray beam B; normal
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to the 100 plane. At this position the circle of contact, which for the
" zero level is the equator of the sphere (radius = 1), has its diameter
along a* (position I). When the crystal rotates, the reciprocal lattice
rotates about 0, but it is simpler for graphical purposes to keep the
reciprocal lattice still and rotate the beam (in the opposite direction),
and with it the circle of contact, which for the other extreme position
of the 15° oscillation reaches position II. During this movement the
only reciprocal lattice points which pass through the circumference of
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Fic. 98. Reciprocal lattice diagram for oseillation photograph.
Orthorhombic crystal, third layer line.

the circle are those marked with spots; thereforc the only equatorial
reflections which appear on this photograph are those from planes having
the indices of these points, and if we look at the photograph as if looking
along the beam, reflections 010, 230, 330, 430, and 530 appear on the left
of the film, while reflections 120, 220, 520, 620, 710, and 700 appear on
the right.

Consider now the reflections on an upper layer line—say the third.
These are produced when the points on the third (upper) level of the
reciprocal lattice pass through the sphere of reflection. The circle of
contact (MNP in Figs. 82-4) has a radius less than that of the sphere;
the radius is actually 4/{1—(3)/c)?}. (For the nth layer the radius would
be ,/{1—(nA/c)?}.) During the oscillation of 15° (see Fig. 98) this circle
of contact moves from position I to position IT; the only crystal planes
which reflect during this movement are those whose reciprocal lattice
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points lie in the areas L and R—that is, 123, 333, 433, and 623, giving
spots on the left of the photograph, and 113, 223, 323, 423, 523, and
613, giving si;ots on the right.

All reciprocal lattice levels and all angles of oscillation can be dealt
with in this way, care being taken always to use the correct radius for
the circle of contact. In the same way, if for any purpose it is desired
to know at what angle any plane reflects, it is only necessary to draw
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\

Fia. 99. Reciprocal lattice diagram for oscillation photograph.
Triclinic crystal, first layer line.

the circle of contact on tracing-paper, and rotate it until the appro-
priate reciprocal lattice point touches the circumference ; the position
of the diameter BO then gives the necessary orientation of the beam
with respect to the reciprocal lattice net and thus to any chosen reference
direction in the crystal. Bernal, in the paper already mentioned (1926),
gives a transparent chart showing the circles of contact for various
reciprocal lattice levels.

The same procedure is followed for all crystals. In dealing with photo-
graphs of monoclinic crystals oscillated round a or ¢, or triclinic crystals
oscillated round any axis, care should be taken to use the appropriate
origin for each reciprocal lattice level. (See Figs. 92 and 95.) As an
example, the procedure for the first (hk1) level of a triclinic crystal is
illustrated in Fig. 99.

The oscillation method just described is essentially a method of

checking indices which have already been assigned on the basis of ¢
4458 M
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values, and of separating those reflections which on complete rotation
photographs are found to overlap. It defines the positions of reciprocal
lattice points only within the 15° or 10° angle used for the oscillation
photograph. It would be possible to define the angular positions of
these points more closely by oscillating through smaller angles, or by
taking photographs covering slightly overlapping angular ranges; but
this would be tedious. It is better to use one of the methods which
have been devised to define the precise positions of reciprocal lattice
points—in other words, methods whereby the reciprocal lattice may be

plotted directly from the coordinates of

00 \ reflections on the photographs. The best
- methods of doing this are those (to be
010 , described later) in which the film is
moved while the crystal is rotating, so
] 100 that one coordinate of a spot on the film
+ o+ +

is related to the position occupied by
the crystal when that reflection was
produced. If, however, a moving-film

(3 (6) (%) goniometer is not available, it is often
Fio. 101. Rotation of a tilted  POSSible to achieve the same result by
crystal. using the ordinary rotation-and-oscilla-

tion goniometer in a special way: the
crystal, instead of being rotated round a principal axis, is rotated round
a direction inclined at an angle of a few degrees to a principal axis.
The tilted crystal method. Crystals rotated round a direction
inclined at a few degrees to a principal axis give X-ray diffraction photo-
graphs in which the spots are displaced from the layer lines. But the
amount of displacement is different for each reflection; on the equator
of Fig. 100, Plate VII (upper photograpb), it can be seen that some
reflections are doublets, one above and one below the equator, the
separation being different for each pair of reflections; a few lic actually
on or very near the equator and are therefore not resolved; others
are quadruplets, the separation being again variable. The reason is
illustrated in Fig. 101, which shows a crystal tilted in a direction lying
in the 010 plane; this particular plane is still vertical (see Fig. 101 d)
and therefore gives reflections lying on the equator. But the reflections
from plane 100 will not lie on the equator ; a reflection to the right when
the crystal is in position a will lie above the equator, while on turning
through 180° (position c) the reflection to the right will appear below
the equator. The reflections from other planes in the k0 zone will be



PLATE VII

F1a. 100. X-ray diffraction photographs of a gypsum crystal rotated round a direction
inclined 83° to the c¢ axis in an arbitrary direction, Above, complete rotation; below,
90° oscillation,
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displaced from the equator by an amount which depends on the orienta-
tion of the neflecting plane with respect to the plane of tilt, as well as
on the angle of reflection.

The problem is best treated by reciprocal lattice methods. Fig. 102
gives a general view of the zero layer of the reciprocal lattice of a
crystal tilted in an arbitrary direction. Fig. 103 is a plan; the axis of
rotation is normal to the plane of the paper; the normal to the zero
layer, as it comes out above the paper, lies a little to the right in the
plane OT'. All the reciprocal lattice spots to the right of 44’ lie a little
below the equatorial level, while those to the left of A4’ lie a little

Zero layer of
reciprocal latnce

Fic. 102. Reciprocal lattice of a tilted crystal. Zero layer (general view).

above the equatorial level. Now since all the points on this net lie in a
plane, the distance { of any point from the equatorial level is propor-
tional to the distance x from the line AA’; if ¢ is the angle of tilt,
x — L cosec ¢ (see Fig. 102). Hence, if ¢ and { are known, z can be calcu-
lated. The angle of tilt ¢ can be fixed experimentally by first setting the
crystal with a principal axis accurately parallel to the axis of rotation,
and then tilting it ¢° by one of the goniometer arcs. The coordinate { of
each spot can be determined either by using a Bernal chart or more
accurately by calculation (p. 149). It is also possible to determine the
distance £, (Fig. 102) from the origin of the reciprocal lattice: the co-
ordinate £ of each spot is determined, either on the Bernal chart or by
calculation, and from this £, is given by J(£2+(?).

The two coordinates x and &, fix the position of each reciprocal lattice
point in its own net plane, except in one particular: the sign of the y
coordinate (Fig. 103) is not determined ; in other words, any reciprocal
lattice point P may be on either side of the tilt plane OT. Yoints P
and @, for instance, in Fig. 103 are on opposite sides of the tilt plane OT,
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but there is nothing in the treatment so far to tell us which side each
is on. This ambiguity can be avoided by taking, not a complete rotation
photograph, but an oscillation photograph in such a way that all reflec-
tions on one side of the photograph correspond with reciprocal lattice
points all lying on the same side of OT. For instance, the crystal is
oscillated through 90° so that the tilt plane OT moves anti-clockwise
from a position normal to the X-ray beam to a position parallel to the
beam, and back again. On Fig. 103, in which the reciprocal lattice is

F1c. 103. Reciprocal lattice of a tilted crystal. Zero layer (plan).

stationary, this is equivalent to a rotation of the X-ray beam clockwise
from OB to OC and back again. Reflections on the right-hand side of
this photograph correspond to reciprocal lattice points through which
the semicirclet ODB (radius = 1) passes as it rotates to OFC and back
again ; all these points (lying within the heavily outlined area ODBECF)
are on the same side of the tilt plane OT. (The left-hand side of the
same photograph is not free from ambiguity.) The oscillation may, if
desired, be through a smaller angle within the 90° range mentioned ;
but the X-ray beam may oscillate only between OB and OC if ambiguity
is to be avoided—and it is only avoided on the right-hand side of the
photograph.

1 Strictly speaking, owing to the tilt of the net plane with respect to the plane of the

paper all ‘circles’ in Fig. 103 should be slightly elliptical, with tho.major axis parallel to
A A’ (eccentricity = sing).
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In this way the coordinates of all reciprocal lattice points on the
zero layer lying within the area ODBECF are directly determined.
Fig. 104 shows the results obtained from a 90° oscillation photograph
(Fig. 100, Plate VII) of a gypsum crystal set with its ¢ axis inclined 84°
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F16. 104. hkO plane of reciprocal lattice of gypsum crystal, determined from the
photographs in Fig. 100. The length of each arc represents the possible error.

to the axis of rotation ; in spite of the limited precision in the determina-
tion of z, there is no doubt about where to draw the net. If the remain-
ing points are required, the simplest plan is to restore the crystal to
the untilted position, and then tilt it in a direction at right angles to
the first by using the second of the arc movements of the goniometer
head. A second 90° oscillation photograph is then taken, the plane of
tilt being oscillated as before in relation to the X-ray beam.

The coordinates of reciprocal lattice points corresponding to spots on
the upper and lower layers of the same photograph can also be deter-
mined directly. For these layers it can be shown (Bunn, Peiser, and
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Turner-Jones, 1944) that if z is the distance of a layer from the equatorial
layer, x = zcot ¢—{ cosec .

The other coordinate necessary for the determination of the position of
a reciprocal lattice point is &, the distance of the point from the normal
to the net plane (i.e. the real axis of the crystal); this can be obtained
either from a photograph of the untilted crystal (in which circum-
stance ¢, = £), or alternatively from the tilt photograph, using the
expression & = ,/(¢2+{2—2?). It is thus possible to determine the whole
reciprocal lattice directly from one or two tilt photographs.

The tilted crystal method can only be used if the layers of reflections,
though somewhat dispersed, &re distinct from each other: it must be
possible to recognize at a glance that a particular reflection belongs to
a particular level of the recipracal lattice. For this reason, the method
is most suitable for crystals having at least one short axis. Rotation
about a direction inclined by a few degrees to the short axis gives a
photograph in which the layer lines are well separated ; the shorter the
axis, the larger the angle of tilt which can be used, and therefore the
greater the displacement of the spots and the more accurate the deter-
mination of . This condition is fulfilled by many crystals of aromatic
substances, since flat molecules often pack parallel to each other; one
crystal axis is approximately normal to the plane of the molecules and
may be as short as 4-5 A. Moreover, the crystals of such substances
are often needle-like, the short axis lying along the needle axis; these
crystals can be conveniently set up on the goniometer with the needle
axis inclined by a few degrees to the axis of rotation.

Moving-film goniometers. The advantage of moving the photo-
graphic film during its exposure to the diffracted X-ray beams from a
rotating crystal (the movement of the film being synchronized with
that of the crystal) has already been mentioned: it is that one coordinate
of a spot on the film is related to the position occupied by the crystal
when that reflection was produced, and in practice this means that the
coordinates of reciprocal lattice points can be derived directly from the
coordinates of the spots on the film. It is true that this can be done by
means of the ordinary rotation-and-oscillation goniometer if the tilted
crystal method is used ; but the scope of this method is limited by the
necessity of keeping the layer lines separate from each other, and even
in the most favourable circumstances the displacements of the spots
from the average layer-line levels are small. In moving-film gonio-
meters a crystal axis is set accurately parallel to the axis of rotation,
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and one cone of reflections only is allowed to reach the film, which is

moved through a comparatively large distance during the rotation of
the crystal.’

The earliest of the moving-film goniometers, the one which up to
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Fi16. 105. a. Principle of the Weissenberg moving-film goniometer, arranged for recordi.ng
equatorial layer by normal beam method. b. Determination of reciprocal lattice
coordinates for spots on equatorial layer.

the present has been most widely used, is that of Weissenberg (1924),
in which (see Fig. 105 a), while the crystal is rotated, a cylindrical
film is moved bodily along the axis of rotation, a complete to-and-fro
cycle taking place during the rotation of the crystal through 180° and
back again. A slotted screen is adjusted te permit the passage of any
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selected cone of reflections. Details of the design of this type of gonio-
meter are to be found in papers by Robertson (1934 b), Buerger (1936),
and Wooster and Martin (1940).

The interpretation of Weissenberg photographs is quite simple.
Consider first the zero layer of reflections, the X-ray beam being perpen-
dicular to the axis of rotation of the crystal—in other words, the reflec-
tions which would lie on the equator of a fixed-film normal-beam rotation
photograph, but which in a Weissenberg photograph are spread out as

in the example in Fig. 107, Plate VIII.
Imagine the film at one extreme end

of its range of travel, the crystal being

- in a corresponding position, and in

Fig. 105, let XA (perpendicular to

A the X-ray beam) and XB (along the
beam) be the axes of reference of the
/. 1A reciprocal lattice. P is any reciprocal
% fattice point, whose position with
respect to XA is given in polar co-
ordinates by ¢ (the distance PX) and

the angle y (£PXA). When the crystal

Fia. 106. Scheme for equi-inclination rotates anticlockwise, reflection occurs
method. When cos ¢ = —lf,the itheone When P reaches P’ on the surface of
includes the direction of the primary the sphere of reflection, the direction
beam. of the reflected ray being OP'. To

reach this position, the reciprocal

lattice has rotated through an angle w (£LPXP’); and the film has
simultaneously moved a distance d which is related to the total travel

: . d w
D by the relation b= 10"

We wish to find ¢ and y for the spot corresponding to the reciprocal
lattice point P. ¢ is obtained from the distance z of the spot from
the centre line of the film (corresponding to the distance along the
equator of a fixed-film rotation photograph): if the radius of the

cylindrical film is 7, nﬁr = %’ where § is the Bragg angle; £ is then

given by £ = 2sinf. The angle y is given very simply by the fact that
LP'XA (= w+vy) is equal to 0 (since P'XQ is = 90°—0): thus

y=f0—w= 9_%>< 180°.

The whole zero layer of the reciprocal lattice can thus be plotted
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Fra. 107. Weissenberg photograph of the substance (EtyAs),(HgCl,), (triclinic; rotation axis, ¢; zero level), with chart for
reading off reciprocal lattice coordinates. (R. C. Evans and H. S. Peiger.)
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direotly, using the polar coordinates ¢ and y. Cartesian coordinates
e and f are usually more convenient, however; these are given by
e = fcosy 4nd f = £siny. It is a simple matter to construct a chart
giving Cartesian coordinates for all positions on the film ; such a chart
is illustrated in Fig. 107, Plate VIII.

For other cones of reflections it is best to use the ‘equi-inclination’
method (Fig. 106), in which the X-ray beam is inclined to the axis of
rotation of the crystal at such an angle that it actually lies on the cone

Fie. 108. Moving-film goniometers which record a limited angular range
of reflections. Left: Robinson, Cox. Right: Schiebold, Sauter.

of reflections being studied. This occurs when cos¢ = IA/2¢ (for rota-
tion round the ¢ axis). The advantage of the equi-inclination method
(see Buerger, 1934) is that the chart for the zero layer can be used for
the other layers; it is only necessary to remember that to obtain reci-
procal lattice coordinates on the same scale as those of the zero layer,
the figures on the chart must be'multiplied by the factor ,{1—({/2)%}.t

Moving-film goniometers intended to record only a limited angular
range of reflections—the range which would appear on a flat stationary
film—are simpler to construct, since reciprocating motion may be
avoided. B. W. Robinson (1933 a) describes one (Fig. 108) in which
the equatorial zone of reflections, passing through a slot in a metal
screen, falls on a cylindrical film rotating round an axis at right angles
to the axis of rotation of the crystal. A similar type is used by E. G.
Cox,} who employs synchronous motors to avoid mechanical gearing.
The position of the film axis is not fixed ; for reflections at small angles
it may be set at right angles to the beam, while for reflections at large
angles it can be moved round to the side of the beam. Schiebold (1933)

1 See also p. 189. 1 Private communication.
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and Sauter (1933 b) use a flat film rotating in its own plane (Fig. 108).
A design of this form of goniometer employing synchronous motors is
described by Thomas (1940). This method has the disadvantage that
the tangential velocity of the film increases with distance from the
centre, and therefore the intensity of the spots fades off rather rapidly
with increasing distance from the centre. The previously described
method is preferable.

The most interesting of the moving-film cameras is that of De Jong
and Bouman (1938). (See also De Jong, Bouman, and De Lange, 1938.)

F1e. 109. De Jong and Bouman’s goniometer for undistorted photography of reciprocal
lattice net planes. Left: camera arrangement. Right: reciprocal lattice equivalent.

The X-ray beam is inclined to the axis of rotation of the crystal, and a
flat film is rotated at the same speed in its own plane about an axis
parallel to, but not coincident with, the axis of rotation of the crystal
(Fig. 109). One cone of reflections is selected by means of a screen with
an annular slot. Reflections corresponding to the zero level of the
reciprocal lattice lie on the cone containing the direction of the X-ray
beam, and for photography of this cone the beam must pass through
the centre of the rotating film. When these conditions are fulfilled the
spots on the film are found to be arranged in a network exactly as in
the reciprocal lattice; in fact, it may be said that the film shows an
undistorted photograph of the zero level of the reciprocal lattice. The
reason is demonstrated in Fig. 109. The scale of the reciprocal lattice
and its attendant sphere of reflection may be made whatever we choose.
Suppose we make the radius of the latter equal to @, the distance
from the crystal to the centre of the film. We have seen that the origin
of the reciprocal lattice lies at the point where the beam emerges from
the sphere of reflection; evidently, then, the centre of the film ¢s the
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origin of the reciprocal lattice, and, in fact, since the film is normal to
the axis of rotation of the crystal, the plane of the film is the plane of
the zero level of the reciprocal lattice. Moreover, we have seen that
when the crystal rotates on its axis, the reciprocal lattice rotates about
its own origin ; hence, when crystal and film rotate together at the same
speed, the film keeps pace exactly with the reciprocal lattice—in fact,
the film 43 the zero level of the reciprocal lattice. Reflections are pro-
duced when reciprocal lattice points touch the surface of the sphere,
which they do at various positions in the circle of contact. The circle
of contact for the zero level of the reciprocal lattice is, in this camera,
defined by the annular slot in the screen. The directions of reflected
beams are lines joining the crystal (the cehtre of the sphere) to reciprocal
lattice points when the latter touch the circle of contact; hence the
reflected beams make spots on the film at positions corresponding
exactly to reciprocal lattice points. We may imagine the reciprocal
lattice points as already existing in the film, only waiting to be printed
(as latent images) when reflected beams flash out from the crystal.

The foregoing description refers to the photography of the zero level
of the reciprocal lattice. But De Jong and Bouman show that in a
camera in which both the inclination of the beam and the position of
the axis of rotation of the film are variable, the various levels of the
reciprocal lattice may be recorded successively, all on the same scale.
The advantages of such photographs are obvious: no charts or graphical
constructions are needed for indexing the spots, the indices being obvious
by inspection. The only disadvantage of this camera is that the angular
range of reflections which can be registered on any one film is limited ;
in this respect, De Jong and Bouman’s arrangement is better than that
of Schiebold and Sauter, but not so good as that of Weissenberg, which,
for the zero level at any rate, permits the recording of reflections at
Bragg angles from near 0° to near 90°.

A method not using a moving film has been suggested by Orowan
(1942): a grid of fine wires, placed between the crystal and the (flat)
film, rotates at the same speed as the crystal. On the photograph each
spot is crossed by the shadows of one or more wires, and the orientation
of these shadows defines the position occupied by the crystal when the
reflection was produced. This method was devised for the determination
of the orientation of metal crystals (in wires, for instance): it is mentioned
here because in principle it is also applicable to the indexing of single
crystal photographs. In practice there are two limitations: first, both
crystal and X-ray beam would have to be rather broad, unless a very
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fine-mesh grid were used; secondly, the angular range of reflections
recorded on a flat film is limited.

The simplest unit cell. When the indices of all reflections on the
X-ray photographs of a crystal have been obtained by any of the
methods described—indices based, it will be remembered, on morpho-
logically chosen axes—the whole set of indices can be surveyed to see
whether any simpler cell would account for all the reflections. The best
way of doing this is to look at reciprocal lattice diagrams or models.
For instance, in Fig. 110 it is obvious that the larger, heavily outlined
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F16. 110. The systematic absences in this reciprocal lattice indicate that a larger reciprocal
cell (that is, a smaller real cell) can be chosen. The new reciprocal cell is heavily outlined.
The new indices (underlined) are simpler than the old.

reciprocal cell—extended to form a network—accounts for all the
reflections, and therefore should be accepted in preference to the
original network based on morphologically chosen axes. The larger
reciprocal cell represents a smaller real cell, and gives smaller indices
for the reflections than the old cell—for instance, the former 110 becomes
010, the former 110 becomes 100, and the former 200 becomes 110.
Rhombohedral crystals are best treated as if they were hexagonal.
When hexagonal indices have been assigned to all reflections, and the
simplest hexagonal cell has been chosen, hexagonal indices may be
transformed to rhombohedral indices by the formulae given on p. 135.
If, however, a rhombohedral crystal is rotated round an axis of the
(morphologically chosen) cell, the photographs must be indexed by the
methods given for triclinic crystals. Examination of a sketch or model
of the reciprocal lattice deduced in this way will show whether or not
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a smaller, differently shaped rhombohedral cell would account for all
the reflections.

Where there is more than one cell of the same volume (and shape
appropriate to the crystal system) which will account for all the reflec-
tions, as in monoclinic and triclinic crystals (see Fig. 77), the most
nearly rectangular cell will usually prove the most convenient to accept.

When an investigation is to be carried only as far as the determina-
tion of unit cell dimensions, it is usually not necessary to index the whole
of the reflections; it will often be sufficient to index reflections up to a
Bragg angle of 30-40°, or even less for crystals having large unit cells.
Moreover, photographs taken for only one setting of the crystal are
usually sufficient ; it is not necessary to take rotation photographs for
three settings as in the method mentioned on p. 139. For a single setting
a straightforward rotation photograph gives the cell dimension along
the axis of rotation (from the layer-line spacing); the other cell dimen-
sions and angles are obtained from the positions of individual spots,
either on moving-film photographs or, if a moving-film goniometer is
not available, on tilted-crystal photographs.

So far it has been assumed that well-formed crystals with plane faces,
suitable for accurate setting by the optical method, are available.
Such crystals form the ideal experimental material for any detailed
crystallographic investigation ; but it is possible, even when the crystal
symmetry is low, to proceed with far less promising material—with
ill-formed crystals, or with irregular crystal fragments, or even with
polycrystalline specimens. The additional problems presented by such
specimens will now be considered.

The accurate setting of ill-formed crystals. Some crystals have
imperfect faces which give diffuse optical reflections; or it may happen
that the only crystals available have partially defined shapes(such as
those considered in the chapter on microscopic methods of identifica-
tion—they may be rod-like or plate-like, with fairly well-defined edges
but too few well-formed faces to permit precise setting by the optical
method. In such circumstances it is possible to set the crystal by
preliminary X-ray photographs. The chosen direction is first set
approximately parallel to the axis of rotation by the optical method,
and a small-angle (10-15°) oscillation photograph is taken, one of the
arcs of the goniometer head being parallel to the beam for the mean
position of the crystal. The zero-layer reflections are found to lie, not
exactly on the equator, but on a curve, and from the form of the curve
it is possible to deduce in what direction, and by how much, the chosen
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axis is mis-set. This, like all such problems, is best appreciated in terms
of the reciprocal lattice. ,

If, as in Fig. 111 a, the ¢ axis of the crystal is displaced from the axis
of rotation in the plane normal to the beam (for the mean position of
the crystal), the zero layer (kk0) of the reciprocal lattice is tilted in this
same direction, and its plane cuts the sphere of reflection in the circle
AD. During the 15° oscillation a number of k0 points pass through

|

Fi1e. 111. Oscillation photographs for setting ill-formed crystals,

the surface of the sphere, and thus X-rays reflected by these k0 planes
of the crystal strike the film at eorresponding points; on the flattened-
out film (Fig. 111 4) the spots fall on a curve BAD, whose distance from
the equator is a maximum at a Bragg angle 6 == 45° and zero at § = 90°.
If, on the other hand, the displacement of the c-axis is in the plane
containing the beam (Fig. 111 ¢), the spots on the film fall on a curve
whose maximum distance from the equator is at 6 = 90° (Fig. 111 d).
When the displacement of the ¢ axis has components in both directions,
an intermediate form of curve is obtained (Fig. 111 ¢). Note that the
angle ¢ gives the component of displacement in the plane perpendicular
to the X-ray beam—that is, the component for one setting arc; ¢ is
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unaffected by the other component. From the curve e it is theoretically
possible (Kratky and Krebs, 1936; Hendershot, 19375) to calculate
both compohents, at any rate for crystals having large unit cell dimen-
gions in the equatorial plane (so that there are sufficient spots on the
photograph to define the curve of the equatorial layer line). In practice
it is usually better to take two small-angle oscillation photographs;
for one of them one of the setting arcs is, at the mean position of the
oscillation, perpendicular to the X-ray beam ; the angle ¢ of the equa-
torial layer (Fig. 111 b) gives the correction to be applied to this setting
arc. For the other photograph, the second setting arc is, at the mean
position of the oscillation, perpendicular to the X-ray beam ; the angle
#' on this photograph gives, as before, the correction to be applied to
this arc. This simple method has the advantage that only short
exposures nced be given, since only the strong reflections at small
angles are used. Another point worth remembering is that unfiltered
radiation may be used ; the ‘white’ streak on the equatorial layer helps
to define the angle ¢.

If the only crystal available is quite irregular in shape, it may be
set up on the X-ray goniometer in any position, and trial oscillation
photographs may be taken; if recognizable layer lines are produced,
accurate setting may be achieved by the method just given; if not, the
setting may be altered at random until recognizable layer lines are
produced. Examination under the microscope between crossed Nicols
may be useful: an extinction direction may coincide with, or lie near
to, a possible crystal axis.

Oriented polycrystalline specimens. Not every substance occurs
naturally or can be induced in the laboratory to grow in the form of
single crystals which can be dealt with by the methods already described.
In certain fibrous minerals—for instance, chrysotile, 3Mg0O . 2Si0,. 2H,0
(‘asbestos’)—even very thin fibres are found to be, not single crystals,
but bundles of crystals all having one axis parallel to the fibre axis but
randomly oriented in other respects. (Warren and Bragg, 1930.) And
among organic substances the long-chain polymers—to which class
many biologically important substances as well as many useful synthetic
substances belong—usually cannot be obtained in the form of single
crystals. Fortunately, however, these substances can usually be obtained
in the form of fibres in which all the little crystals have one axis parallel
or nearly parallel to the fibre axis (as in chrysotile). Substances such
as cellulgse, keratin (the protein of hair), and fibroin (the protein of silk)
occur naturally in this form (Polanyi, 1921; Astbury and Street, 1931;
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Astbury and Woods, 1933; Kratky and Kuriyama, 1931). Synthetic
polymers such as polyethylene and the polyesters