Chem 3322 -- Physical Chemistry II

Syllabus


TA (Ly Tran) web page:

TA (Ly Tran) web page


NEW LECTURE NOTES

Lecture notes, part 1
Lecture notes, part 2
Lecture notes, part 3
Lecture notes, part 4
Lecture notes, part 5
Lecture notes, part 6
Lecture notes, part 7
Lecture notes, part 8
Lecture notes, part 9
Hartree Fock notes by Dr. Sherrill, Georgia Tech.


OLD LECTURE NOTES

Lecture notes, part 1
Lecture notes, part 2
Lecture notes, part 3
Lecture notes, part 4
Lecture notes, part 5
Lecture notes, part 6
Lecture notes, part 7
Lecture notes, part 8
Lecture notes, part 9


Chem3322 mp4 Video Recordings from a few years ago

(minutes:seconds) [video link] (cumulative hours:minutes:seconds)
(07:39) General introduction(cumulative time = 00:07:39)
(01:08) Lecture 001. Introduction. Matter-waves. Classical waves; classical particles.(cumulative time = 00:08:47)
(08:20) Lecture 002. Classical waves.(cumulative time = 00:17:07)
(08:10) Lecture 003. Classical waves.(cumulative time = 00:25:17)
(16:45) Lecture 004. Classical waves.(cumulative time = 00:42:02)
(22:13) Lecture 005. Separation of variables procedure.(cumulative time = 01:04:15)
(03:32) Lecture 006. Separation of variables applied to the classical wave equation(cumulative time = 01:07:47)
(17:15) Lecture 007. monochromatic waves; general solution; Fourier series(cumulative time = 01:25:02)
(08:16) Lecture 008. 3d classical wave equation(cumulative time = 01:33:18)
(19:49) Lecture 009. Classical particles: equation of motion; conservation of energy(cumulative time = 01:53:07)
(15:55) Lecture 010. wave-particle duality relationships(cumulative time = 02:09:02)
(17:46) Lecture 011. Schroedinger equation for a particle in free space(cumulative time = 02:26:48)
(27:05) Lecture 012. TDSE: time dependent Schroedinger equation(cumulative time = 02:53:53)
(10:57) Lecture 013. Physical interpretation of the wavefunction in terms of the spatial probability density(cumulative time = 03:04:50)
(12:11) Lecture 014. Apply separation of variables to the TDSE to get the TISE and the function of time(cumulative time = 03:17:01)
(09:24) Lecture 015. Solve the two ODEs arising from the separation of variables on the TDSE(cumulative time = 03:26:25)
(12:37) Lecture 016. Stationary states; death spiral catastrophe of classical mechanics model of the H atom(cumulative time = 03:39:02)
(24:47) Lecture 017. Particle in a finite box(cumulative time = 04:03:49)
(07:26) Lecture 018. Particle in a finite box(cumulative time = 04:11:15)
(13:28) Lecture 019. Particle in a box(cumulative time = 04:24:43)
(14:05) Lecture 020. Particle in a box(cumulative time = 04:38:48)
(14:18) Lecture 021. Particle in a box(cumulative time = 04:53:06)
(07:17) Lecture 022. Particle in a box(cumulative time = 05:00:23)
(07:08) Lecture 023. Particle in a box(cumulative time = 05:07:31)
(13:55) Lecture 024. quantum dots (application of particle in a box model)(cumulative time = 05:21:26)
(11:50) Lecture 025. double well potential and tunneling(cumulative time = 05:33:16)
(15:42) Lecture 026. scanning tunneling microscope (application of the double well potential)(cumulative time = 05:48:58)
(14:01) Lecture 027. particle on a ring(cumulative time = 06:02:59)
(20:06) Lecture 028. particle on a ring(cumulative time = 06:23:05)
(18:35) Lecture 029. particle on a ring(cumulative time = 06:41:40)
(12:00) Lecture 030. particle on a ring(cumulative time = 06:53:40)
(16:37) Lecture 031. harmonic oscillator(cumulative time = 07:10:17)
(08:48) Lecture 032. harmonic oscillator(cumulative time = 07:19:05)
(16:03) Lecture 033. harmonic oscillator(cumulative time = 07:35:08)
(13:09) Lecture 034. harmonic oscillator(cumulative time = 07:48:17)
(09:45) Lecture 035. harmonic oscillator(cumulative time = 07:58:02)
(07:52) Lecture 036. harmonic oscillator, correspondence principle(cumulative time = 08:05:54)
(10:14) Lecture 037. zero-point energy(cumulative time = 08:16:08)
(07:32) Lecture 038. orthogonality(cumulative time = 08:23:40)
(19:06) Lecture 039. orthogonality(cumulative time = 08:42:46)
(13:22) Lecture 040. orthogonality(cumulative time = 08:56:08)
(11:00) Lecture 041. orthogonality(cumulative time = 09:07:08)
(12:53) Lecture 042. orthogonality, examples(cumulative time = 09:20:01)
(10:36) Lecture 043. expectation value(cumulative time = 09:30:37)
(12:05) Lecture 044. expectation value, correspondence principle(cumulative time = 09:42:42)
(12:15) Lecture 045. expectation value(cumulative time = 09:54:57)
(15:19) Lecture 046. expectation value(cumulative time = 10:10:16)
(11:20) Lecture 047. expectation value(cumulative time = 10:21:36)
(19:10) Lecture 048. operators(cumulative time = 10:40:46)
(08:03) Lecture 049. Hamiltonian operator(cumulative time = 10:48:49)
(10:00) Lecture 050. standard deviation(cumulative time = 10:58:49)
(09:22) Lecture 051. eigenfunction/eigenvalue(cumulative time = 11:08:11)
(17:14) Lecture 052. postulates(cumulative time = 11:25:25)
(18:57) Lecture 053. H-atom intro(cumulative time = 11:44:22)
(11:14) Lecture 054. H-atom, separate variables(cumulative time = 11:55:36)
(03:56) Lecture 055. phi equation(cumulative time = 11:59:32)
(09:14) Lecture 056. theta equation(cumulative time = 12:08:46)
(12:18) Lecture 057. spherical harmonics(cumulative time = 12:21:04)
(05:08) Lecture 058. spherical harmonics(cumulative time = 12:26:12)
(11:34) Lecture 059. radial wavefunction(cumulative time = 12:37:46)
(08:27) Lecture 060. radial wavefunction(cumulative time = 12:46:13)
(16:58) Lecture 061. 3d wavefunction(cumulative time = 13:03:11)
(07:06) Lecture 062. 3d wavefunction(cumulative time = 13:10:17)
(13:39) Lecture 063. TISE for a molecule(cumulative time = 13:23:56)
(12:30) Lecture 064. Born-Oppenheimer(cumulative time = 13:36:26)
(14:08) Lecture 065. Born-Oppenheimer(cumulative time = 13:50:34)
(04:43) Lecture 066. Born-Oppenheimer(cumulative time = 13:55:17)
(05:59) Lecture 067. Born-Oppenheimer(cumulative time = 14:01:16)
(08:40) Lecture 068. Born-Oppenheimer(cumulative time = 14:09:56)
(09:21) Lecture 069. Born-Oppenheimer(cumulative time = 14:19:17)
(07:38) Lecture 070. diatomic molecule intro(cumulative time = 14:26:55)
(20:38) Lecture 071. diatomic molecule TISE(cumulative time = 14:47:33)
(16:21) Lecture 072. diatomic molecule vib. and rot. energy(cumulative time = 15:03:54)
(12:08) Lecture 073. diatomic molecule vib. and rot. energy(cumulative time = 15:16:02)
(12:07) Lecture 074. spectroscopy, selection rules intro(cumulative time = 15:28:09)
(10:15) Lecture 075. transition dipole matrix element(cumulative time = 15:38:24)
(26:39) Lecture 076. selection rule for rigid rotor(cumulative time = 16:05:03)
(17:40) Lecture 077. selection rule for harmonic oscillator(cumulative time = 16:22:43)
(09:39) Lecture 078. selection rule for harmonic oscillator(cumulative time = 16:32:22)
(12:12) Lecture 079. Morse oscillator model(cumulative time = 16:44:34)
(22:49) Lecture 080. Morse oscillator model and selection rules(cumulative time = 17:07:23)
(10:25) Lecture 081. rigid rotor (microwave) spectroscopy(cumulative time = 17:17:48)
(12:44) Lecture 082. rigid rotor (microwave, THz) spectroscopy(cumulative time = 17:30:32)
(12:01) Lecture 083. vibrational (IR) spectroscopy(cumulative time = 17:42:33)
(13:50) Lecture 084. vibrational (IR) spectroscopy of HCl(g)(cumulative time = 17:56:23)
(07:02) Lecture 085. vibrational (IR) analysis for the RRHO model(cumulative time = 18:03:25)
(39:42) Lecture 086. Raman vibrational spectroscopy(cumulative time = 18:43:07)
(14:48) Lecture 087. Raman vibrational spectroscopy(cumulative time = 18:57:55)
(21:20) Lecture 088. selection rules for IR and Raman vibrational spectroscopy(cumulative time = 19:19:15)
(08:47) Lecture 089. applications of Raman spectroscopy(cumulative time = 19:28:02)
(09:13) Lecture 090. vibrational (IR) spectroscopy of HCl(g)(cumulative time = 19:37:15)
(35:41) Lecture 091. IR of larger molecules(cumulative time = 20:12:56)
(19:40) Lecture 092. electronic spectroscopy, introduction(cumulative time = 20:32:36)
(08:27) Lecture 093. vibronic selection rules(cumulative time = 20:41:03)
(21:49) Lecture 094. vibronic selection rules(cumulative time = 21:02:52)
(15:46) Lecture 095. vibronic spectroscopy(cumulative time = 21:18:38)
(08:17) Lecture 096. phosphorescence(cumulative time = 21:26:55)
(04:20) Lecture 097. fluorescence(cumulative time = 21:31:15)
(17:19) Lecture 098. triplet vs. single state(cumulative time = 21:48:34)
(11:24) Lecture 099. triplet vs. single state(cumulative time = 21:59:58)
(16:59) Lecture 100. triplet vs. single state(cumulative time = 22:16:57)
(14:52) Lecture 101. triplet vs. single state(cumulative time = 22:31:49)
(10:49) Lecture 102. triplet vs. single state(cumulative time = 22:42:38)
(14:00) Lecture 103. triplet vs. single state(cumulative time = 22:56:38)
(13:03) Lecture 104. statistical mechanics, introduction(cumulative time = 23:09:41)
(14:38) Lecture 105. statistical mechanics, introduction(cumulative time = 23:24:19)
(19:49) Lecture 106. statistical mechanics, Boltzmann factor(cumulative time = 23:44:08)
(20:51) Lecture 107. partition function, HO(cumulative time = 24:04:59)
(04:48) Lecture 108. HO population(cumulative time = 24:09:47)
(13:04) Lecture 109. RR degeneracy(cumulative time = 24:22:51)
(09:02) Lecture 110. RR partition function(cumulative time = 24:31:53)
(08:09) Lecture 111. RR partition function(cumulative time = 24:40:02)
(05:10) Lecture 112. RR population, IR spectrum(cumulative time = 24:45:12)
(11:18) Lecture 113. two level system(cumulative time = 24:56:30)
(14:25) Lecture 114. two level system(cumulative time = 25:10:55)
(05:41) Lecture 115. theory of bonding intro(cumulative time = 25:16:36)
(07:33) Lecture 116. MO theory overview(cumulative time = 25:24:09)
(13:53) Lecture 117. independent electron (orbital) approx(cumulative time = 25:38:02)
(05:31) Lecture 118. LCAO approx(cumulative time = 25:43:33)
(07:57) Lecture 119. LCAO example(cumulative time = 25:51:30)
(10:17) Lecture 120. LCAO example(cumulative time = 26:01:47)
(12:09) Lecture 121. LCAO example(cumulative time = 26:13:56)
(11:16) Lecture 122. LCAO example(cumulative time = 26:25:12)
(04:29) Lecture 123. LMCT example(cumulative time = 26:29:41)
(14:07) Lecture 124. bonding in solids(cumulative time = 26:43:48)
(13:15) Lecture 125. bonding in metals(cumulative time = 26:57:03)
(03:15) Lecture 126. Huckel theory intro(cumulative time = 27:00:18)
(12:54) Lecture 127. Huckel theory for butadiene(cumulative time = 27:13:12)
(13:33) Lecture 128. Huckel theory for butadiene and cyclobutadiene(cumulative time = 27:26:45)
(10:31) Lecture 129. Huckel theory for monocyclic polyenes(cumulative time = 27:37:16)
(04:55) Lecture 130. Huckel theory: resonance stabilization(cumulative time = 27:42:11)



lecture slides on metaphysics
lecture (mp4 video) on metaphysics

HOMEWORK / TESTS

Homework #1, due January 26
Homework #1 solutions
Homework #2, due February 2
Homework #2 solutions
Homework #3, due February 9
Homework #3 solutions
Homework #4, due February 16
Homework #4 solutions
Test 1 practice
Test 1 solutions

Homework #5, due March 1
Homework #5 solutions
Homework #6, due March 8
Homework #6 solutions
Homework #7, due March 22
Homework #7 solutions
Test 2 practice
Test 2 solutions
Homework #8, due April 5


Test 2 material:
topics that were not covered on test 1: particle on a ring; harmonic oscillator; 2d and 3d particle in a box and also retangular boxes; correspondence principle; expectation value; operators; postulates; orthogonality; hydrogen atom
lecture notes: parts 1 (3d box and particle on a ring and harmonic oscillator) and 2 and 3 of the "NEW LECTURE NOTES" and parts 2 (3d box and particle on a ring) and 3 and 4 of the "OLD LECTURE NOTES" and homework sets 5,6,7,
videos: 27-62
Test 2 textbook contents:
Chapter 3: eigenvalue formulation; correspondence principle (section 3-6); momentum operator and expectation value (section 3-7); uncertainty principle (section 3-8); 3d box (section 3-9)
Chapter 4: section 4.1 (postulates); section 4.2 (operators); section 4.3 (postulates); section 4.5 (orthogonality)
Chapter 5: classical harmonic oscillator (section 5-1); harmonic oscillator energy levels (section 5-4); harmonic oscillator wavefunctions (section 5-6)
Chapter 6: hydrogen atom




EXTRA MATERIAL

derivation of the classical wave equation
a more detailed derivation of the classical wave equation
animated gif of wave function at a step potential with same omega
animated gif of wave function at a step potential with different omegas
Explanation of Euler's Equation
Quantum dot and STM/STS slides
quantum dot article by Libchaber
multiplexed quantum dots article
3 slides illustrating the harmonic oscillator energy levels and wavefunctions
desmos notebook for Fourier series
Spring 2023 electives
Spring 2023 elective catalog listing
Anharmonic notes
Tent function fit to particle in a box eigenfunctions
The postulates of quantum mechanics
Chapter 6 hydrogen atom (central force) notes
images of H atom orbitals
CO spectrum
CO spectrum
Microwave spectroscopy
Anharmonic notes, part 1
ro-vibrational spectroscopy of diatomics, in more detail
cos*cos frequencies
IR and Raman, large molecules (ppt format)
IR and Raman, large molecules (pdf format)
Raman slides
animated normal modes
O2 has unpaired electrons
Bright Ideas for Chemical Biology
Fluorescence article
spectrophotometric titration of a Tyrosine residue
Detailed article on the electronic spectrum of I2
animated vibrations
jupyter notebook (web browser version)
Franck Condon jupyter notebook
IR and Raman of CO2
IR spectrum of water, gas vs. liquid




McQuarrie/Simon (which topics are where, and some suggested problems)

chapter 1: background to quantum theory
Practice problems: 1-9, 1-11, 1-14, 1-25, 1-34, 1-37, 1-38, 1-39
solutions to Chapter 1 practice problems
Mathchapter A: review of complex numbers
Practice problems: A-5, A-6
solutions to Chapter A practice problems
chapter 2: classical waves
Practice problems: 2-5, 2-16, 2-18
solutions to Chapter 2 practice problems
Mathchapter B: probability
Practice problems: B-1, B-2, B-3, B-4, B-5
solutions to Chapter B practice problems
chapter 3: Schroedinger equation, particle in box (1d and 3d)
Practice problems: 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-11, 3-12, 3-13, 3-14, 3-16, 3-17, 3-19, 3-20, 3-21, 3-23, 3-25, 3-26, 3-27, 3-28, 3-29, 3-30, 3-35
solutions to Chapter 3 practice problems
chapter 4: theory
4.4: separation of variables to get time-independent equation
Practice problems: 4-1, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-12, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19, 4-21, 4-22, 4-26, 4-29, 4-38
solutions to Chapter 4 practice problems
Mathchapter D: spherical coordinates
Practice problems: D-1, D-4, D-6, D-7, D-8, D-10
solutions to Chapter D practice problems
chapter 5: harmonic oscillator (center of mass coordinates), rigid rotor
Practice problems: 5-1, 5-7, 5-8, 5-14, 5-15, 5-20, 5-21, 5-23, 5-35
solutions to Chapter 5 practice problems
chapter 6: hydrogen atom
eq. 6.1 -- potential energy
eq. 6.2 -- Hamiltonian operator
eq. 6.6 -- separation of variables is being attempted
eq. 6.8 -- radial equation
eq. 6.10 -- angular eq. -- spherical harmonics
eq. 6.11 -- separation of variables for the angular part
eq. 6.20 -- phi solutions
Table 6.2 -- theta solutions
Table 6.3 -- spherical harmonics
page 206 -- energies
Table 6.5 -- atomic wavefunctions for hydrogenic atoms
page 209-210 -- "s" orbitals
page 213-218 -- "p" and "d" orbitals
Problems: 6.1, 6.3, 6.20, 6.21, 6.22, 6.23, 6.24, 6.25, 6.28, 6.29, 6.32, 6.33, 6.35, 6.36
solutions to Chapter 6 practice problems
page 323-324 -- Born-Oppenheimer approx.
page 497 -- rotational and vibrational transitions
Fig. 13.1 -- rotational/vibrational levels for a diatomic in the harmonic oscillator / rigid rotor approx.
eq. 13.11 -- selection rules in harmonic oscillator / rigid rotor approx.
Fig. 13.2 -- rotational / vibrational spectrum
Fig. 13.4 -- beyond the harmonic approx.
page 521 -- active and inactive vibrational motions
page 531-532 -- rigid rotor selection rules
page 533-534 -- harmonic oscillator selection rules
Problems: 13.1, 13.2, 13.3, 13.5, 13.7, 13.8, 13.9, 13.11, 13.12, 13.34
Problems 5-9, 5-10, 5-12, 13-13, 13-14, 13-15, 13-16, 13-20, 13-22, 13-23, 13-24, 18-4, 18-5, 18-10, 18-17, 18-18, 18-37
solutions to Chapter 13 practice problems
solutions to Chapter 18 practice problems