Databases

Ken Moody

Computer Laboratory University of Cambridge, UK

Lecture notes by Timothy G. Griffin

Lent 2012

4□ > 4Ē > 4Ē > Ē > 9Q@

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

1 / 175

Lecture 01: What is a DBMS?

- DB vs. IR
- Relational Databases
- ACID properties
- Two fundamental trade-offs
- OLTP vs. OLAP
- Course outline

Example Database Management Systems (DBMSs)

A few database examples

- Banking: supporting customer accounts, deposits and withdrawals
- University: students, past and present, marks, academic status
- Business: products, sales, suppliers
- Real Estate: properties, leases, owners, renters
- Aviation: flights, seat reservations, passenger info, prices, payments
- Aviation : Aircraft, maintenance history, parts suppliers, parts orders

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012 3 / 175

Some observations about these DBMSs ...

- They contains highly structured data that has been engineered to model some restricted aspect of the real world
- They support the activity of an organization in an essential way
- They support concurrent access, both read and write
- They often outlive their designers
- Users need to know very little about the DBMS technology used
- Well designed database systems are nearly transparent, just part of our infrastructure

Databases vs Information Retrieval

Always ask What problem am I solving?					
DBMS IR system					
exact query results fuzzy query results					
optimized for concurrent updates optimized for concurrent reads					
data models a narrow domain domain often open-ended					
generates documents (reports) search existing documents					
increase control over information	reduce information overload				

And of course there are many systems that combine elements of DB and IR.

 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 6

 DB 2012
 5 / 175

Ken Moody (cl.cam.ac.uk)

Databases

Still the dominant approach: Relational DBMSs

your relational application

relational interface

Database Management System (DBMS)

- The problem: in 1970 you could not write a database application without knowing a great deal about the low-level physical implementation of the data.
- Codd's radical idea [C1970]: give users a model of data and a language for manipulating that data which is completely independent of the details of its physical representation/implementation.
- This decouples development of Database Management Systems (DBMSs) from the development of database applications (at least in an idealized world).

Ken Moody (cl.cam.ac.uk) Databases

2012 6 / 17

What "services" do applications expect from a DBMS?

Transactions — ACID properties (Concurrent Systems course)

Atomicity Either all actions are carried out, or none are

logs needed to undo operations, if needed

Consistency If each transaction is consistent, and the database is initially consistent, then it is left consistent

Applications designers must exploit the DBMS's capabilities.

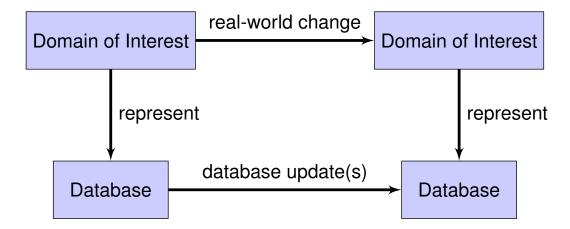
Isolation Transactions are isolated, or protected, from the effects of other scheduled transactions

Serializability, 2-phase commit protocol

Durability If a transactions completes successfully, then its effects persist

Logging and crash recovery

These concepts should be familiar from Concurrent Systems and Applications.


Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

7 / 175

What constitutes a good DBMS application design?

At the very least, this diagram should commute!

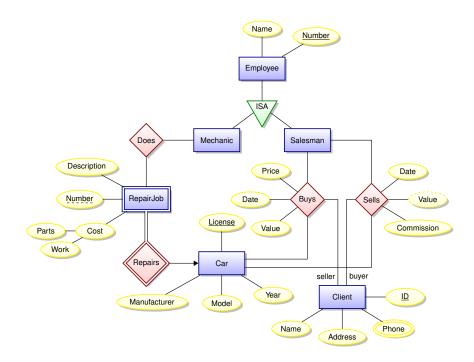
- Does your database design support all required changes?
- Can an update corrupt the database?

Relational Database Design

Our tools	
Entity-Relationship (ER) modeling	high-level, <mark>diagram-based</mark> design
Relational modeling	formal model normal forms based
	on Functional Dependencies (FDs
SQL implementation	Where the rubber meets the road

The ER and FD approaches are complementary

- ER facilitates design by allowing communication with domain experts who may know little about database technology.
- FD allows us formally explore general design trade-offs. Such as


 — A Fundamental Trade-off in Database Design: the more we reduce data redundancy, the harder it is to enforce some types of data integrity. (An example of this is made precise when we look at 3NF vs. BCNF.)

 ✓ □ ▷ ✓ □ ▷ ✓ 臺 ▷ 臺 ▷ 臺 ♡ ℚ ○

 Ken Moody (cl.cam.ac.uk)
 Databases

 DB 2012
 9 / 175

ER Demo Diagram (Notation follows SKS book)¹

¹By Pável Calado,

http://www.texample.net/tikz/examples/entity-relationship-diagram

Ken Moody (cl.cam.ac.uk) Databases DB 2012 10 / 175

A Fundamental Trade-off in Database Implementation — Query response vs. update throughput

Redundancy is a Bad Thing.

- One of the main goals of ER and FD modeling is to reduce data redundancy. We seek normalized designs.
- A normalized database can support high update throughput and greatly facilitates the task of ensuring semantic consistency and data integrity.
- Update throughput is increased because in a normalized database a typical transaction need only lock a few data items perhaps just one field of one row in a very large table.

Redundancy is a Good Thing.

- A de-normalized database can greatly improve the response time of read-only queries.
- Ken Moody (cl.cam.ac.uk)

 Databases

 Databases

 Databases

 Databases

 Databases

 Databases

 Databases

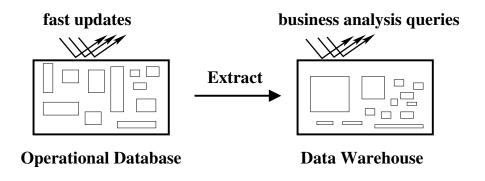
 Databases

 Databases

 DB 2012

 11 / 175

OLAP vs. OLTP

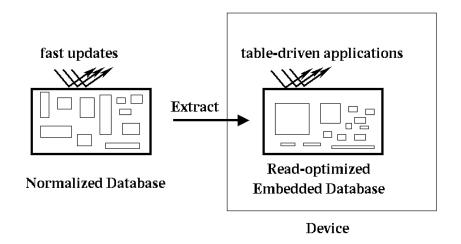

OLTP Online Transaction Processing

OLAP Online Analytical Processing

 Commonly associated with terms like Decision Support, Data Warehousing, etc.

	OLAP	OLTP
Supports	analysis	day-to-day operations
Data is	historical	current
Transactions mostly	reads	updates
optimized for	query processing	updates
Normal Forms	not important	important

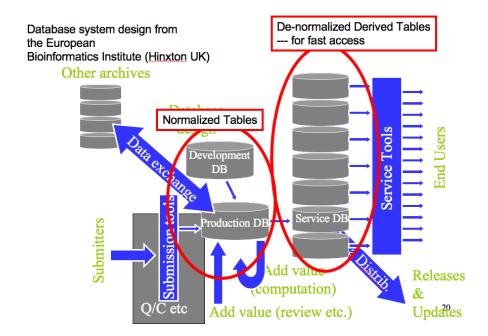
Example: Data Warehouse (Decision support)



< □ > < □ > < Ē > < Ē > 999 13 / 175

Ken Moody (cl.cam.ac.uk)

DB 2012


Example: Embedded databases

FIDO = Fetch Intensive Data Organization

◆□▶◆□▶◆≣▶ ■ りQ@

Example: Hinxton Bio-informatics

Ken Moody (cl.cam.ac.uk)

atabases

DB 2012

15 / 175

NoSQL Movement

Technologies

- Key-value store
- Directed Graph Databases
- Main memory stores
- Distributed hash tables

Applications

- Facebook
- Google
- iMDB

Always remember to ask: What problem am I solving?

Term Outline

Lecture 02	The relational data model.
Lecture 03	Entity-Relationship (E/R) modelling
Lecture 04	Relational algebra and relational calculus
Lecture 05	SQL
Lecture 06	Case Study - Cancer registry for the NHS - challenges
Lecture 07	Schema refinement I
Lecture 08	Schema refinement II
Lecture 09	Schema refinement III and advanced design
Lecture 10	On-line Analytical Processing (OLAP)
Lecture 11	Case Study - Cancer registry for the NHS -
	experiences
Lecture 12	XML as a data exchange format

◆□▶◆□▶◆■▶◆■▶ ■ 9Q@

Ken Moody (cl.cam.ac.uk)

Database

DB 2012

7 / 175

Recommended Reading

Textbooks

SKS Silberschatz, A., Korth, H.F. and Sudarshan, S. (2002). Database system concepts. McGraw-Hill (4th edition).

(Adjust accordingly for other editions)

Chapters 1 (DBMSs)

2 (Entity-Relationship Model)

3 (Relational Model)

4.1 - 4.7 (basic SQL)

6.1 – 6.4 (integrity constraints)

7 (functional dependencies and normal forms)

22 (OLAP)

UW Ullman, J. and Widom, J. (1997). A first course in database systems. Prentice Hall.

CJD Date, C.J. (2004). An introduction to database systems. Addison-Wesley (8th ed.).

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

18 / 175

Reading for the fun of it ...

Research Papers (Google for them)

- C1970 E.F. Codd, (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM.
- F1977 Ronald Fagin (1977) Multivalued dependencies and a new normal form for relational databases. TODS 2 (3).
- L2003 L. Libkin. Expressive power of SQL. TCS, 296 (2003).
- C+1996 L. Colby et al. Algorithms for deferred view maintenance. SIGMOD 199.
- G+1997 J. Gray et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals (1997) Data Mining and Knowledge Discovery.
 - H2001 A. Halevy. Answering queries using views: A survey. VLDB Journal. December 2001.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

19 / 175

Lecture 02: The relational data model

- Mathematical relations and relational schema
- Using SQL to implement a relational schema
- Keys
- Database query languages
- The Relational Algebra
- The Relational Calculi (tuple and domain)
- a bit of SQL

Let's start with mathematical relations

Suppose that S_1 and S_2 are sets. The Cartesian product, $S_1 \times S_2$, is the set

$$S_1 \times S_2 = \{(s_1, s_2) \mid s_1 \in S_1, s_2 \in S_2\}$$

A (binary) relation over $S_1 \times S_2$ is any set r with

$$r \subseteq S_1 \times S_2$$
.

In a similar way, if we have *n* sets,

$$S_1, S_2, \ldots, S_n,$$

then an n-ary relation r is a set

$$r \subseteq S_1 \times S_2 \times \cdots \times S_n = \{(s_1, s_2, \ldots, s_n) \mid s_i \in S_i\}$$

(ロ) (固) (重) (重) (重) の(()

Ken Moody (cl.cam.ac.uk)

Database

DB 2012

21 / 175

Relational Schema

Let **X** be a set of *k* attribute names.

- We will often ignore domains (types) and say that $R(\mathbf{X})$ denotes a relational schema.
- When we write $R(\mathbf{Z}, \mathbf{Y})$ we mean $R(\mathbf{Z} \cup \mathbf{Y})$ and $\mathbf{Z} \cap \mathbf{Y} = \phi$.
- u.[X] = v.[X] abbreviates $u.A_1 = v.A_1 \wedge \cdots \wedge u.A_k = v.A_k$.
- \vec{X} represents some (unspecified) ordering of the attribute names, A_1, A_2, \ldots, A_k

Mathematical vs. database relations

Suppose we have an *n*-tuple $t \in S_1 \times S_2 \times \cdots \times S_n$. Extracting the *i*-th component of t, say as $\pi_i(t)$, feels a bit low-level.

• Solution: (1) Associate a name, A_i (called an attribute name) with each domain S_i . (2) Instead of tuples, use records — sets of pairs each associating an attribute name A_i with a value in domain S_i .

A database relation R over the schema

$$A_1: S_1 \times A_2: S_2 \times \cdots \times A_n: S_n$$
 is a finite set

$$R \subseteq \{\{(A_1, s_1), (A_2, s_2), \ldots, (A_n, s_n)\} \mid s_i \in S_i\}$$

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

23 / 175

Example

A relational schema

Students(name: string, sid: string, age: integer)

A relational instance of this schema

```
 \begin{array}{lll} \textbf{Students} & = & \{ & & \{ (\textbf{name}, \ Fatima), (\textbf{sid}, \ fm21), (\textbf{age}, \ 20) \}, \\ & & \{ (\textbf{name}, \ Eva), (\textbf{sid}, \ ev77), (\textbf{age}, \ 18) \}, \\ & & \{ (\textbf{name}, \ James), (\textbf{sid}, \ jj25), (\textbf{age}, \ 19) \} \\ & & \} \\ \end{array}
```

A tabular presentation

name	sid	age
Fatima	fm21	20
Eva	ev77	18
James	jj25	19

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

24 / 175

Key Concepts

Relational Key

Suppose $R(\mathbf{X})$ is a relational schema with $\mathbf{Z} \subseteq \mathbf{X}$. If for any records u and v in any instance of R we have

$$u.[\mathbf{Z}] = v.[\mathbf{Z}] \Longrightarrow u.[\mathbf{X}] = v.[\mathbf{X}],$$

then **Z** is a superkey for R. If no proper subset of **Z** is a superkey, then **Z** is a key for R. We write $R(\underline{Z}, Y)$ to indicate that **Z** is a key for $R(Z \cup Y)$.

Note that this is a semantic assertion, and that a relation can have multiple keys.

◆□ ▶ ◆昼 ▶ ◆ 昼 ▶ ○ 昼 ・ 夕 Q (~)

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012 2

25 / 175

Creating Tables in SQL

Listing a Table in SQL

```
-- list by attribute order of create table mysql> select * from Students; 
+----+ | sid | name | age | 
+----+ | ev77 | Eva | 18 | 
| fm21 | Fatima | 20 | 
| jj25 | James | 19 | 
+----+ | 3 rows in set (0.00 sec)
```

Ken Moody (cl.cam.ac.uk)

Databases

DR 2012

7 / 175

Listing a Table in SQL

Keys in SQL

A key is a set of attributes that will uniquely identify any record (row) in a table.

◆□ → ◆□ → ◆ = → ◆ = → へ ○

Ken Moody (cl.cam.ac.uk)

Databases

OB 2012 29 / 17

What is a (relational) database query language?

Input: a collection of Output: a single relation instances relation instance

 $R_1, R_2, \cdots, R_k \implies Q(R_1, R_2, \cdots, R_k)$

How can we express Q?

In order to meet Codd's goals we want a query language that is high-level and independent of physical data representation.

There are many possibilities ...

The Relational Algebra (RA)

$$Q::=R$$
 base relation $\sigma_p(Q)$ selection $\pi_{\mathbf{X}}(Q)$ projection $Q \times Q$ product $Q - Q$ difference $Q \cup Q$ union $Q \cap Q$ intersection $Q \cap Q$ renaming

- p is a simple boolean predicate over attributes values.
- $\mathbf{X} = \{A_1, A_2, \dots, A_k\}$ is a set of attributes.
- $M = \{A_1 \mapsto B_1, A_2 \mapsto B_2, \dots, A_k \mapsto B_k\}$ is a renaming map.

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ り へ ○

Ken Moody (cl.cam.ac.uk)

Jatabases

DB 2012

31 / 175

Relational Calculi

The Tuple Relational Calculus (TRC)

$$Q = \{t \mid P(t)\}$$

The Domain Relational Calculus (DRC)

$$Q = \{(A_1 = v_1, A_2 = v_2, \dots, A_k = v_k) \mid P(v_1, v_2, \dots, v_k)\}$$

The SQL standard

- Origins at IBM in early 1970's.
- SQL has grown and grown through many rounds of standardization :
 - ► ANSI: SQL-86
 - ANSI and ISO: SQL-89, SQL-92, SQL:1999, SQL:2003, SQL:2006, SQL:2008
- SQL is made up of many sub-languages :
 - Query Language
 - Data Definition Language
 - System Administration Language

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

33 / 175

Selection

RA
$$Q = \sigma_{A>12}(R)$$

TRC $Q = \{t \mid t \in R \land t.A > 12\}$
DRC $Q = \{\{(A, a), (B, b), (C, c), (D, d)\} \mid \{(A, a), (B, b), (C, c), (D, d)\} \in R \land a > 12\}$
SQL select * from R where R.A > 12

Projection

RA
$$Q = \pi_{B,C}(R)$$

TRC $Q = \{t \mid \exists u \in R \land t.[B,C] = u.[B,C]\}$
DRC $Q = \{\{(B,b),(C,c)\} \mid \exists \{(A,a),(B,b),(C,c),(D,d)\} \in R\}$
SQL select distinct B, C from R

Ken Moody (cl.cam.ac.uk)

Databases

DR 2012

35 / 175

Why the distinct in the SQL?

The SQL query

select B, C from R

will produce a bag (multiset)!

SQL is actually based on multisets, not sets. We will look into this more in Lecture 11.

Databases

DB 2012

36 / 175

Lecture 03: Entity-Relationship (E/R) modelling

Outline

- Entities
- Relationships
- Their relational implementations
- n-ary relationships
- Generalization
- On the importance of SCOPE

Ken Moody (cl.cam.ac.uk)

DB 2012

Some real-world data ...

... from the Internet Movie Database (IMDb).

Title	Year	Actor
Austin Powers: International Man of Mystery	1997	Mike Myers
Austin Powers: The Spy Who Shagged Me	1999	Mike Myers
Dude, Where's My Car?	2000	Bill Chott
Dude, Where's My Car?	2000	Marc Lynn

Entities diagrams and Relational Schema



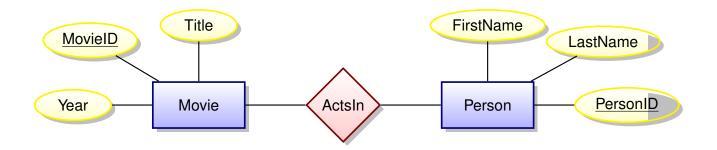
These diagrams represent relational schema

Movie(MovieID, Title, Year)

Person(PersonID, FirstName, LastName)

Yes, this ignores types ...

Entity sets (relational instances)


Movie		
<u>MovieID</u>	Title	Year
55871	Austin Powers: International Man of Mystery	1997
55873	Austin Powers: The Spy Who Shagged Me	1999
171771	Dude, Where's My Car?	2000

(Tim used line number from IMDb raw file movies.list as MovieID.)

Person			
	PersonID	FirstName	LastName
	6902836	Mike	Myers
	1757556	Bill	Chott
	5882058	Marc	Lynn

(Tim used line number from IMDb raw file actors.list as PersonID)

Relationships

Ken Moody (cl.cam.ac.uk)

DB 2012

Foreign Keys and Referential Integrity

Foreign Key

Suppose we have $R(\mathbf{Z}, \mathbf{Y})$. Furthermore, let $S(\mathbf{W})$ be a relational schema with $Z \subseteq W$. We say that Z represents a Foreign Key in S for Rif for any instance we have $\pi_{\mathbf{Z}}(S) \subseteq \pi_{\mathbf{Z}}(R)$. This is a semantic assertion.

Referential integrity

A database is said to have referential integrity when all foreign key constraints are satisfied.

A relational representation

A relational schema

ActsIn(MovieID, PersonID)

With referential integrity constraints

 $\pi_{MovieID}(ActsIn) \subseteq \pi_{MovieID}(Movie)$

 $\pi_{\mathit{PersonID}}(\mathit{ActsIn}) \subseteq \pi_{\mathit{PersonID}}(\mathit{Person})$

ActsIn

<u>PersonID</u>	<u>MovieID</u>
6902836	55871
6902836	55873
1757556	171771
5882058	171771

Ken Moody (cl.cam.ac.uk)

atabases

DB 2012


43 / 175

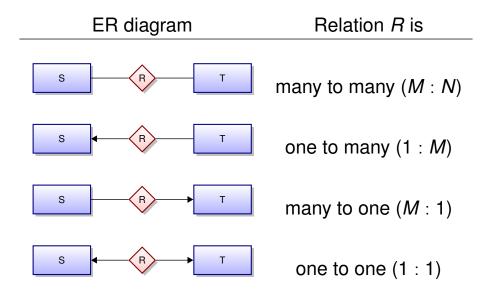
Foreign Keys in SQL

```
create table ActsIn
( MovieID int not NULL,
   PersonID int not NULL,
   primary key (MovieID, PersonID),
   constraint actsin_movie
        foreign key (MovieID)
        references Movie(MovieID),
   constraint actsin_person
        foreign key (PersonID)
        references Person(PersonID))
```

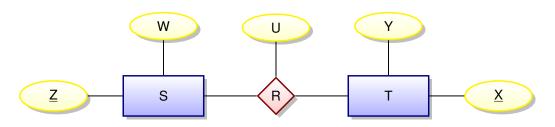
Relational representation of relationships, in general?

That depends ...

Note that the database terminology differs slightly from standard mathematical terminology.

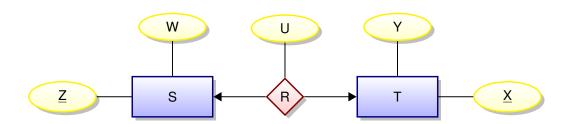

Ken Moody (cl.cam.ac.uk)

Databases


DB 2012

45 / 175

Diagrams for Mapping Cardinalities



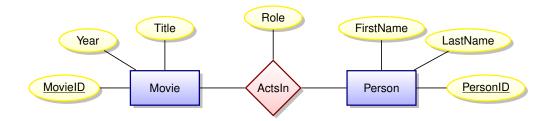
Relationships to Relational Schema

Relation R is	Sc	chema
many to many (M:N)	R(<u>X</u>	<u>(</u> , <u>Z</u> , U)
one to many (1 : <i>M</i>)	R(X)	(, <u>Z</u> , U)
many to one (M:1)	R(<u>X</u>	<u>(</u> , Z , U)
one to one (1 : 1)	$R(\underline{X}, Z, U)$ and/or $R(\underline{X}, Z, U)$	(X, \underline{Z}, U) (alternate keys)
	4	
Ken Moody (cl. cam ac.uk)	Databases	DR 2012 47 / 175

"one to one" does not mean a "1-to-1 correspondence"

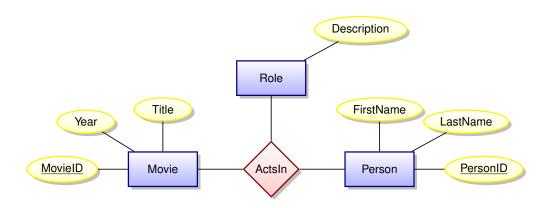
This database instance is OK

(S		R		-	Γ
	W	Z	X	U	X	Y
<i>Z</i> ₁	<i>W</i> ₁	$\overline{z_1}$	<i>X</i> ₂	<i>u</i> ₁	 <i>X</i> ₁	<i>y</i> ₁
Z_2	W_2				<i>X</i> ₂	<i>y</i> ₂
<i>Z</i> 3	W_3				<i>X</i> 3	y 3
					<i>X</i> ₄	<i>y</i> ₄


Some more real-world data ... (a slight change of SCOPE)

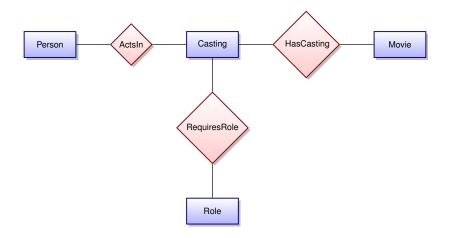
Title	Year	Actor	Role
Austin Powers: International Man of Mystery	1997	Mike Myers	Austin Powers
Austin Powers: International Man of Mystery	1997	Mike Myers	Dr. Evil
Austin Powers: The Spy Who Shagged Me	1999	Mike Myers	Austin Powers
Austin Powers: The Spy Who Shagged Me	1999	Mike Myers	Dr. Evil
Austin Powers: The Spy Who Shagged Me	1999	Mike Myers	Fat Bastard
Dude, Where's My Car?	2000	Bill Chott	Big Cult Guard 1
Dude, Where's My Car?	2000	Marc Lynn	Cop with Whips

How will this change our model?

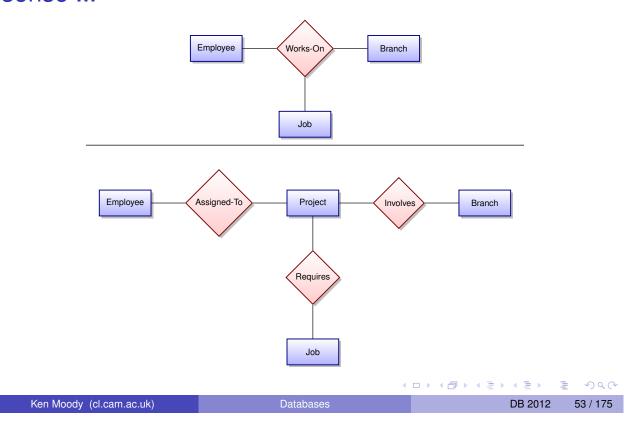

 Ken Moody (cl.cam.ac.uk)
 Databases
 DB 2012
 49 / 175

Will ActsIn remain a binary Relationship?

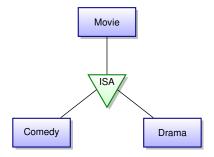
No! An actor can have many roles in the same movie!


Could ActsIn be modeled as a Ternary Relationship?

Yes, this works!



Can a ternary relationship be modeled with multiple binary relationships?



The Casting entity seems artificial. What attributes would it have?

Sometimes ternary to multiple binary makes more sense ...

Generalization

Questions

- Is every movie either comedy or a drama?
- Can a movie be a comedy and a drama?

But perhaps this isn't a good model ...

- What attributes would distinguish Drama and Comedy entities?
- What abound Science Fiction?
- Perhaps Genre would make a nice entity, which could have a relationship with Movie.

 Ken Moody (cl.cam.ac.uk)
 Databases
 DB 2012
 54 / 175

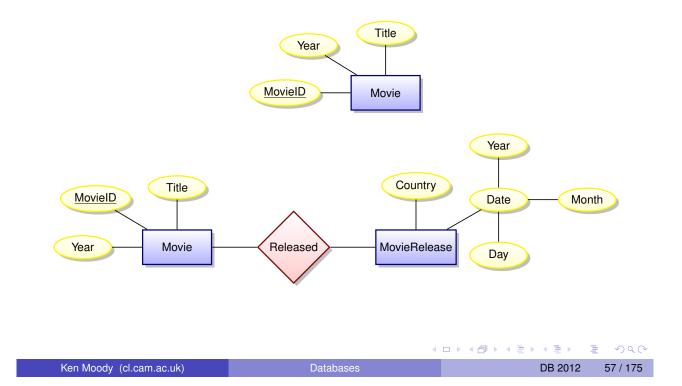
Question: What is the right model?

Answer: The question doesn't make sense!

- There is no "right" model ...
- It depends on the intended use of the database.
- What activity will the DBMS support?
- What data is needed to support that activity?

The issue of SCOPE is missing from most textbooks

- Suppose that all databases begin life with beautifully designed schemas.
- **Observe** that many operational databases are in a sorry state.
- Conclude that the scope and goals of a database continually change, and that schema evolution is a difficult problem to solve, in practice.


DB 2012 55 / 175

Ken Moody (cl.cam.ac.uk)

Another change of SCOPE ...

Movies with detailed release dates				
Title	Country	Day	Month	Year
Austin Powers: International Man of Mystery	USA	02	05	1997
Austin Powers: International Man of Mystery	Iceland	24	10	1997
Austin Powers: International Man of Mystery	UK	05	09	1997
Austin Powers: International Man of Mystery	Brazil	13	02	1998
Austin Powers: The Spy Who Shagged Me	USA	80	06	1999
Austin Powers: The Spy Who Shagged Me	Iceland	02	07	1999
Austin Powers: The Spy Who Shagged Me	UK	30	07	1999
Austin Powers: The Spy Who Shagged Me	Brazil	80	10	1999
Dude, Where's My Car?	USA	10	12	2000
Dude, Where's My Car?	Iceland	9	02	2001
Dude, Where's My Car?	UK	9	02	2001
Dude, Where's My Car?	Brazil	9	03	2001
Dude, Where's My Car?	Russia	18	09	2001

... and an attribute becomes an entity with a connecting relation.

Lecture 04: Relational algebra and relational calculus

Outline

- Constructing new tuples!
- Joins
- Limitations of Relational Algebra

Renaming

RA
$$Q = \rho_{\{B \mapsto E, \ D \mapsto F\}}(R)$$

TRC $Q = \{t \mid \exists u \in R \land t. A = u. A \land t. E = u. E \land t. C = u. C \land t. F = u. D\}$
DRC $Q = \{\{(A, a), (E, b), (C, c), (F, d)\} \mid \exists \{(A, a), (B, b), (C, c), (D, d)\} \in R\}$
SQL select A, B as E, C, D as F from R

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

59 / 175

Union

RA
$$Q = R \cup S$$

TRC $Q = \{t \mid t \in R \lor t \in S\}$

DRC $Q = \{\{(A, a), (B, b)\} \mid \{(A, a), (B, b)\} \in R \lor \{(A, a), (B, b)\} \in S\}$

SQL (select * from R) union (select * from S)

Intersection

RA
$$Q = R \cap S$$

TRC $Q = \{t \mid t \in R \land t \in S\}$
DRC $Q = \{\{(A, a), (B, b)\} \mid \{(A, a), (B, b)\} \in R \land \{(A, a), (B, b)\} \in S\}$
SQL
(select * from R) intersect (select * from S)

◆□▶◆□▶◆壹▶◆壹▶ 壹 か900

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

61 / 175

Difference

RA
$$Q = R - S$$

TRC $Q = \{t \mid t \in R \land t \notin S\}$

DRC $Q = \{\{(A, a), (B, b)\} \mid \{(A, a), (B, b)\} \in R \land \{(A, a), (B, b)\} \notin S\}$

SQL (select * from R) except (select * from S)

Wait, are we missing something?

Suppose we want to add information about college membership to our Student database. We could add an additional attribute for the college.

Students	WithCol	lege :	
+	-+	-+	-++
name	age	sid	college
+		-+	_+

•		•		•			
	Eva		18		ev77	King's	
	Fatima		20		fm21	Clare	
	James		19		jj25	Clare	

Ken Moody (cl.cam.ac.uk)

Database:

)B 2012

3 / 175

Put logically independent data in distinct tables?

Students: +-----+ | name | age | sid | cid |

| James | 19 | jj25 | cl |

Colleges : +----+

. . .

Product

Note the automatic flattening

RA
$$Q = R \times S$$

TRC $Q = \{t \mid \exists u \in R, v \in S, t.[A, B] = u.[A, B] \land t.[C, D] = v.[C, D]\}$

DRC $Q = \{\{(A, a), (B, b), (C, c), (D, d)\} \mid \{(A, a), (B, b)\} \in R \land \{(C, c), (D, d)\} \in S\}$

SQL select A, B, C, D from R, S

oody (cl.cam.ac.uk)

Databases

DB 2012 68

Product is special!

Ken Moody (cl.cam.ac.uk)

- x is the only operation in the Relational Algebra that created new records (ignoring renaming),
- But × usually creates too many records!
- Joins are the typical way of using products in a constrained manner.

65 / 175

Natural Join

Natural Join

Given R(X, Y) and S(Y, Z), we define the natural join, denoted $R \bowtie S$, as a relation over attributes X, Y, Z defined as

$$R \bowtie S \equiv \{t \mid \exists u \in R, v \in S, u.[Y] = v.[Y] \land t = u.[X] \cup u.[Y] \cup v.[Z]\}$$

In the Relational Algebra:

$$R \bowtie S = \pi_{\mathbf{X},\mathbf{Y},\mathbf{Z}}(\sigma_{\mathbf{Y}=\mathbf{Y}'}(R \times \rho_{\vec{\mathbf{Y}}\mapsto\vec{\mathbf{Y}'}}(S)))$$

◆□ → ◆□ → ◆ = → ◆ = → へ○

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

7 / 175

Join example

Students

name	sid	age	cid
Fatima	fm21	20	cl
Eva	ev77	18	k
James	jj25	19	cl

Colleges

cid	cname
k	King's
cl	Clare
q	Queens'
:	•

 π name,cname(Students \bowtie Colleges)

 \Longrightarrow

name	cname
Fatima	Clare
Eva	King's
James	Clare

The same in SQL

```
select name, cname
from Students, Colleges
where Students.cid = Colleges.cid
```

```
| name | cname |
+----+
| Eva | King's |
| Fatima | Clare |
| James | Clare
```

4□ > 4□ > 4 = > 4 = > = 90

Ken Moody (cl.cam.ac.uk)

Division

Given R(X, Y) and S(Y), the division of R by S, denoted $R \div S$, is the relation over attributes **X** defined as (in the TRC)

$$R \div S \equiv \{x \mid \forall s \in S, \ x \cup s \in R\}.$$

name	award				
Fatima	writing		award		
Fatima	music				
Eva	music	÷	music writing	=	name Eva
Eva	writing		dance		∟va
Eva	dance		uarice		
James	dance				

Division in the Relational Algebra?

Clearly, $R \div S \subseteq \pi_{\mathbf{X}}(R)$. So $R \div S = \pi_{\mathbf{X}}(R) - C$, where C represents counter examples to the division condition. That is, in the TRC,

$$C = \{x \mid \exists s \in S, \ x \cup s \notin R\}.$$

- $U = \pi_{\mathbf{X}}(R) \times S$ represents all possible $x \cup s$ for $x \in \mathbf{X}(R)$ and $s \in S$,
- so T = U R represents all those $x \cup s$ that are not in R,
- so C = π_X(T) represents those records x that are counter examples.

Division in RA

$$R \div S \equiv \pi_{\mathbf{X}}(R) - \pi_{\mathbf{X}}((\pi_{\mathbf{X}}(R) \times S) - R)$$

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

1 / 175

Query Safety

A query like $Q = \{t \mid t \in R \land t \notin S\}$ raises some interesting questions. Should we allow the following query?

$$Q = \{t \mid t \notin S\}$$

We want our relations to be finite!

Safety

A (TRC) query

$$Q = \{t \mid P(t)\}$$

is safe if it is always finite for any database instance.

- Problem : query safety is not decidable!
- Solution : define a restricted syntax that guarantees safety.

Safe queries can be represented in the Relational Algebra.

Limitations of simple relational query languages

- The expressive power of RA, TRC, and DRC are essentially the same.
 - None can express the transitive closure of a relation.
- We could extend RA to more powerful languages (like Datalog).
- SQL has been extended with many features beyond the Relational Algebra.
 - stored procedures
 - recursive queries
 - ability to embed SQL in standard procedural languages

 4 □ ▶ 4 ₱ ▶ 4 ₱ ▶ 4 ₱ ▶ 9 ₱

 DB 2012
 73 / 175

Ken Moody (cl.cam.ac.uk)

Database

Lecture 05 : SQL and integrity constraints

Outline

- NULL in SQL
- three-valued logic
- Multisets and aggregation in SQL
- Views
- General integrity constraints

What is NULL in SQL?

What if you don't know Kim's age?

◆ロト ◆園 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q (*)

Ken Moody (cl.cam.ac.uk)

What is NULL?

- NULL is a place-holder, not a value!
- NULL is not a member of any domain (type),
- For records with NULL for age, an expression like age > 20 must unknown!
- This means we need (at least) three-valued logic.

Let ⊥ represent We don't know!

NULL can lead to unexpected results

```
mysql> select * from students;
+----+
 sid | name | age
 ev77 | Eva
                 18 I
 fm21 | Fatima |
                 20 |
 jj25 | James |
 ks87 | Kim | NULL |
 ----+
mysql> select * from students where age <> 19;
+----+
 sid | name | age
+----+
 ev77 | Eva |
                 18 |
 fm21 | Fatima |
                20 I
                             ◆ロト ◆昼 ト ◆ 重 ト ● 重 り Q ()・
Ken Moody (cl.cam.ac.uk)
                                     DB 2012
                                          77 / 175
select ...
           where P
```

The ambiguity of NULL

Possible interpretations of NULL

- There is a value, but we don't know what it is.
- No value is applicable.
- The value is known, but you are not allowed to see it.
- ...

A great deal of semantic muddle is created by conflating all of these interpretations into one non-value.

The select statement only returns those records where the where

On the other hand, introducing distinct NULLs for each possible interpretation leads to very complex logics ...

Not everyone approves of NULL

C. J. Date [D2004], Chapter 19

"Before we go any further, we should make it very clear that in our opinion (and in that of many other writers too, we hasten to add), NULLs and 3VL are and always were a serious mistake and have no place in the relational model."

Ken Moody (cl.cam.ac.uk)

)atabases

DB 2012

9 / 175

age is not a good attribute ...

The **age** column is guaranteed to go out of date! Let's record dates of birth instead!

age is not a good attribute ...

4□ ト 4 @ ト 4 差 ト 4 差 ト 差 り 9 0 ○

Ken Moody (cl.cam.ac.uk)

atabases

DB 2012

1 / 175

Use a view to recover original table

```
(Note: the age calculation here is not correct!)
```

```
create view StudentsWithAge as
  select sid, name,
    (year(current_date()) - year(birth_date)) as age,
    cid
  from Students;
```

```
mysql> select * from StudentsWithAge;
```

```
+----+----+-----+-----+

| sid | name | age | cid |

+----+-----+-----+

| ev77 | Eva | 19 | k |

| fm21 | Fatima | 21 | cl |

| jj25 | James | 20 | cl |
```

Views are simply identifiers that represent a query. The view's name can be used as if it were a stored table.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

82 / 175

But that calculation is not correct ...

Clearly the calculation of age does not take into account the day and month of year.

```
From 2010 Database Contest (winner: Sebastian Probst Eide)

SELECT year(CURRENT_DATE()) - year(birth_date) -

CASE WHEN month(CURRENT_DATE()) < month(birth_date)

THEN 1

ELSE

CASE WHEN month(CURRENT_DATE()) = month(birth_date)

THEN

CASE WHEN day(CURRENT_DATE()) < day(birth_date)

THEN 1

ELSE 0

END

ELSE 0

END

END

AS age FROM Students
```

Ken Moody (cl.cam.ac.uk)

)atabases

DB 2012

83 / 175

An Example ...

```
mysql> select * from marks;
  +----+
  | sid
         | course | mark |
  | ev77 | databases |
                      92 |
  | ev77 | spelling |
                      99 |
  | tgg22 | spelling | |
  | tgg22 | databases | 100 |
  | fm21 | databases |
                     92 |
  | fm21 | spelling | 100 |
  | jj25 | databases |
                     88 |
  | jj25 | spelling |
                      92 |
  +----+
```

... of duplicates

```
mysql> select mark from marks;
+----+
| mark |
+----+
| 92 |
| 99 |
| 3 |
| 100 |
| 92 |
| 100 |
| 88 |
| 92 |
+----+
```

4□ → 4□ → 4 = → 4 = → 9 0 0

Ken Moody (cl.cam.ac.uk)

vatabases

DB 2012

85 / 175

Why Multisets?

Duplicates are important for aggregate functions.

The group by clause

```
mysql> select course,
          min (mark),
          max(mark),
          avg(mark)
     from marks
     group by course;
+----+
| course | min(mark) | max(mark) | avg(mark) |
| databases | 88 | 100 | 93.0000 |
             3 |
| spelling |
                        100 | 73.5000 |
```

+----+

Ken Moody (cl.cam.ac.uk)

DB 2012 87 / 175

Visualizing group by

sid	course	mark
ev77	databases	92
ev77	spelling	99
tgg22	spelling	3
tgg22	databases	100
fm21	databases	92
fm21	spelling	100
jj25	databases	88
jj25	spelling	92

course	mark
spelling	99
spelling	3
spelling	100
spelling	92

course	mark
databases	92
databases	100
databases	92
databases	88

Visualizing group by

course	mark
spelling	99
spelling	3
spelling	100
spelling	92

course	mark
databases	92
databases	100
databases	92
databases	88

course	min(mark)
spelling	3
databases	88

 ✓ □ ▷ ◀ ⓓ ▷ ◀ 戛 ▷ ◀ 戛 ▷ ▼ 戛
 ✓ ♀ ♀

 Ken Moody (cl.cam.ac.uk)
 Databases
 DB 2012
 89 / 175

The having clause

How can we select on the aggregated columns?

◆□▶◆□▶◆■▶◆■▶ ■ 990

Use renaming to make things nicer ...

Ken Moody (cl.cam.ac.uk)

atabases

DB 2012

1 / 175

Materialized Views

- Suppose *Q* is a very expensive, and very frequent query.
- Why not de-normalize some data to speed up the evaluation of Q?
 - This might be a reasonable thing to do, or ...
 - ... it might be the first step to destroying the integrity of your data design.
- Why not store the value of Q in a table?
 - This is called a materialized view.
 - But now there is a problem: How often should this view be refreshed?

General integrity constraints

- Suppose that C is some constraint we would like to enforce on our database.
- Let $Q_{\neg C}$ be a query that captures all violations of C.
- Enforce (somehow) that the assertion that is always $Q_{\neg C}$ empty.

Example

- $C = \mathbf{Z} \rightarrow \mathbf{W}$, and FD that was not preserved for relation $R(\mathbf{X})$,
- Let Q_R be a join that reconstructs R,
- Let Q_R' be this query with $\mathbf{X} \mapsto \mathbf{X}'$ and

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

3 / 175

Assertions in SQL

Lectures 06 : Case Study - Cancer registry for the NHS

ECRIC is a cancer registry, recording details about all tumours in people in the East of England. This data is particularly sensitive, and its use is strictly controlled. The lecture focusses on the challenges of scaling up the registration system to cover all cancer patients in England, while still maintaining the long term accuracy and continuity of the data set.

◆□▶◆□▶◆壹▶◆壹▶ 壹 か900

Ken Moody (cl.cam.ac.uk)

atabases

DB 2012

5 / 175

Lecture 07: Schema refinement I

Outline

- ER is for top-down and informal (but rigorous) design
- FDs are used for bottom-up and formal design and analysis
- update anomalies
- Reasoning about Functional Dependencies
- Heath's rule

Update anomalies

Table					
sid	name	college	course	part	term_name
yy88	Yoni	New Hall	Algorithms I	IA	Easter
uu99	Uri	King's	Algorithms I	IA	Easter
bb44	Bin	New Hall	Databases	ΙB	Lent
bb44	Bin	New Hall	Algorithms II	ΙB	Michaelmas
zz70	Zip	Trinity	Databases	ΙB	Lent
zz70	Zip	Trinity	Algorithms II	ΙB	Michaelmas
	yy88 uu99 bb44 bb44 zz70	sid name yy88 Yoni uu99 Uri bb44 Bin bb44 Bin zz70 Zip	sidnamecollegeyy88YoniNew Halluu99UriKing'sbb44BinNew Hallbb44BinNew Hallzz70ZipTrinity	sidnamecollegecourseyy88YoniNew HallAlgorithms Iuu99UriKing'sAlgorithms Ibb44BinNew HallDatabasesbb44BinNew HallAlgorithms IIzz70ZipTrinityDatabases	sidnamecollegecoursepartyy88YoniNew HallAlgorithms IIAuu99UriKing'sAlgorithms IIAbb44BinNew HallDatabasesIBbb44BinNew HallAlgorithms IIIBzz70ZipTrinityDatabasesIB

- How can we tell if an insert record is consistent with current records?
- Can we record data about a course before students enroll?
- Will we wipe out information about a college when last student associated with the college is deleted?

DB 2012

Ken Moody (cl.cam.ac.uk)

Redundancy implies more locking ...

... at least for correct transactions!

Big Table					
sid	name	college	course	part	term_name
yy88	Yoni	New Hall	Algorithms I	IA	Easter
uu99	Uri	King's	Algorithms I	IA	Easter
bb44	Bin	New Hall	Databases	IB	Lent
bb44	Bin	New Hall	Algorithms II	IB	Michaelmas
zz70	Zip	Trinity	Databases	IB	Lent
zz70	Zip	Trinity	Algorithms II	IB	Michaelmas

- Change New Hall to Murray Edwards College
 - Conceptually simple update
 - May require locking entire table.

Redundancy is the root of (almost) all database evils

- It may not be obvious, but redundancy is also the cause of update anomalies.
- By redundancy we do not mean that some values occur many times in the database!
 - A foreign key value may be have millions of copies!
- But then, what do we mean?

◆ロト ◆部ト ◆夏ト ◆夏ト ■ りへの

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

99 / 175

Functional Dependency

Functional Dependency (FD)

Let R(X) be a relational schema and $Y \subseteq X$, $Z \subseteq X$ be two attribute sets. We say Y functionally determines Z, written $Y \to Z$, if for any two tuples u and v in an instance of R(X) we have

$$u.\mathbf{Y} = v.\mathbf{Y} \rightarrow u.\mathbf{Z} = v.\mathbf{Z}.$$

We call $\mathbf{Y} \to \mathbf{Z}$ a functional dependency.

A functional dependency is a <u>semantic</u> assertion. It represents a rule that should always hold in any instance of schema $R(\mathbf{X})$.

◆ロト ◆昼 ト ◆ 星 ト ● ● 今 Q C P

Example FDs

Big Table

	sid	name	college	course	part	term_name
У	/y88	Yoni	New Hall	Algorithms I	IA	Easter
U	ıu99	Uri	King's	Algorithms I	IA	Easter
b	b44	Bin	New Hall	Databases	ΙB	Lent
b	b44	Bin	New Hall	Algorithms II	ΙB	Michaelmas
Z	zz70	Zip	Trinity	Databases	ΙB	Lent
Z	zz70	Zip	Trinity	Algorithms II	IB	Michaelmas

- ullet sid o name
- $\bullet \ \, \text{sid} \rightarrow \text{college} \\$
- course → part
- ullet course o term_name

Ken Moody (cl.cam.ac.uk)

)atabases

DB 2012

101 / 175

Keys, revisited

Candidate Key

Let R(X) be a relational schema and $Y \subseteq X$. Y is a candidate key if

- lacktriangledown The FD $\mathbf{Y} \to \mathbf{X}$ holds, and
- 2 for no proper subset $Z \subset Y$ does $Z \to X$ hold.

Prime and Non-prime attributes

An attribute A is prime for $R(\mathbf{X})$ if it is a member of some candidate key for R. Otherwise, A is non-prime.

Database redundancy roughly means the existence of non-key functional dependencies!

Semantic Closure

Notation

$$\textit{F} \models \textbf{Y} \rightarrow \textbf{Z}$$

means that any database instance that that satisfies every FD of F, must also satisfy $\mathbf{Y} \to \mathbf{Z}$.

The semantic closure of F, denoted F^+ , is defined to be

$$\textit{F}^{+} = \{\textbf{Y} \rightarrow \textbf{Z} \mid \textbf{Y} \cup \textbf{Z} \subseteq \text{atts}(\textit{F}) \textit{and} \land \textit{F} \models \textbf{Y} \rightarrow \textbf{Z}\}.$$

The membership problem is to determine if $\mathbf{Y} \to \mathbf{Z} \in F^+$.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012 1

103 / 175

Reasoning about Functional Dependencies

We write $F \vdash \mathbf{Y} \to \mathbf{Z}$ when $\mathbf{Y} \to \mathbf{Z}$ can be derived from F via the following rules.

Armstrong's Axioms

Reflexivity If $Z \subseteq Y$, then $F \vdash Y \rightarrow Z$.

Augmentation If $F \vdash Y \rightarrow Z$ then $F \vdash Y, W \rightarrow Z, W$.

Transitivity If $F \vdash \mathbf{Y} \to \mathbf{Z}$ and $F \models \mathbf{Z} \to \mathbf{W}$, then $F \vdash \mathbf{Y} \to \mathbf{W}$.

Logical Closure (of a set of attributes)

Notation

$$\mathsf{closure}(F, \ \mathbf{X}) = \{A \mid F \vdash \mathbf{X} \to A\}$$

Claim 1

If $\mathbf{Y} \to \mathbf{W} \in F$ and $\mathbf{Y} \subseteq \operatorname{closure}(F, \mathbf{X})$, then $\mathbf{W} \subseteq \operatorname{closure}(F, \mathbf{X})$.

Claim 2

 $\mathbf{Y} \to \mathbf{W} \in F^+$ if and only if $\mathbf{W} \subseteq \operatorname{closure}(F, \mathbf{Y})$.

< □ ト < □ ト < 圭 ト < 圭 ト ラ へ © へ © へ © で 。

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

05 / 175

Soundness and Completeness

Soundness

$$F \vdash f \implies f \in F^+$$

Completeness

$$f \in F^+ \implies F \vdash f$$

Proof of Completeness (soundness left as an exercise)

Show $\neg (F \vdash f) \implies \neg (F \models f)$:

- Suppose $\neg (F \vdash \mathbf{Y} \to \mathbf{Z})$ for $R(\mathbf{X})$.
- Let $\mathbf{Y}^+ = \operatorname{closure}(F, \mathbf{Y})$.
- $\exists B \in \mathbf{Z}$, with $B \notin \mathbf{Y}^+$.
- Construct an instance of R with just two records, u and v, that agree on \mathbf{Y}^+ but not on $\mathbf{X} \mathbf{Y}^+$.
- ullet By construction, this instance does not satisfy ${f Y}
 ightarrow {f Z}.$
- But it does satisfy F! Why?
 - ▶ let $S \rightarrow T$ be any FD in F, with u.[S] = v.[S].
 - ▶ So $\mathbf{S} \subseteq \mathbf{Y}+$. and so $\mathbf{T} \subseteq \mathbf{Y}+$ by claim 1,
 - ▶ and so u.[T] = v.[T]

4□ > 4□ > 4 = > 4 = > = 900

Ken Moody (cl.cam.ac.uk)

Database:

DB 2012

07 / 175

Closure

By soundness and completeness

$$\mathsf{closure}(F, \ \mathbf{X}) = \{A \mid F \vdash \mathbf{X} \to A\} = \{A \mid \mathbf{X} \to A \in F^+\}$$

Claim 2 (from previous lecture)

$$\mathbf{Y} \to \mathbf{W} \in F^+$$
 if and only if $\mathbf{W} \subseteq \operatorname{closure}(F, \mathbf{Y})$.

If we had an algorithm for closure(F, X), then we would have a (brute force!) algorithm for enumerating F^+ :

F⁺

- for every subset $\mathbf{Y} \subseteq \operatorname{atts}(F)$
 - for every subset $\mathbf{Z} \subseteq \operatorname{closure}(F, \mathbf{Y})$,
 - \star output $\mathbf{Y} o \mathbf{Z}$

Attribute Closure Algorithm

- Input: a set of FDs F and a set of attributes X.
- Output : $\mathbf{Y} = \operatorname{closure}(F, \mathbf{X})$
- $\mathbf{0} \ \mathbf{Y} := \mathbf{X}$
- while there is some $S \to T \in F$ with $S \subseteq Y$ and $T \not\subseteq Y$, then $Y := Y \cup T$.

◆ロト ◆昼 ト ◆ 量 ト ● ● りへで

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

09 / 175

An Example (UW1997, Exercise 3.6.1)

R(A, B, C, D) with F made up of the FDs

$$\textbf{A},\textbf{B}\rightarrow\textbf{C}$$

$$C \rightarrow D$$

$$D \rightarrow A$$

What is F^+ ?

Brute force!

Let's just consider all possible nonempty sets **X** — there are only 15...

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

For the single attributes we have

- $\{A\}^+ = \{A\},$
- $\{B\}^+ = \{B\},$

The only new dependency we get with a single attribute on the left is $C \rightarrow A$.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

111 / 175

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Now consider pairs of attributes.

- $\{A, B\}^+ = \{A, B, C, D\},\$
 - so $A, B \rightarrow D$ is a new dependency
- $\{A, C\}^+ = \{A, C, D\},\$
 - ightharpoonup so $A, C \rightarrow D$ is a new dependency
- $\{A, D\}^+ = \{A, D\},$
 - so nothing new.
- $\{B, C\}^+ = \{A, B, C, D\},\$
 - ▶ so $B, C \rightarrow A, D$ is a new dependency
- $\{B, D\}^+ = \{A, B, C, D\},\$
 - so $B, D \rightarrow A, C$ is a new dependency
- $\{C, D\}^+ = \{A, C, D\},\$
 - so $C, D \rightarrow A$ is a new dependency

Example (cont.)

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

For the triples of attributes:

- $\{A, C, D\}^+ = \{A, C, D\},\$
- $\{A, B, D\}^+ = \{A, B, C, D\},$ • so $A, B, D \to C$ is a new dependency
- $\{A, B, C\}^+ = \{A, B, C, D\},\$
 - ▶ so $A, B, C \rightarrow D$ is a new dependency
- $\{B, C, D\}^+ = \{A, B, C, D\},\$
 - ▶ so $B, C, D \rightarrow A$ is a new dependency

And since $\{A, B, C, D\} + = \{A, B, C, D\}$, we get no new dependencies with four attributes.

Ken Moody (cl.cam.ac.uk)

Jatabases

DB 2012

113 / 175

Example (cont.)

We generated 11 new FDs:

Can you see the Key?

 $\{A, B\}, \{B, C\}, \text{ and } \{B, D\} \text{ are keys.}$

Note: this schema is already in 3NF! Why?

Consequences of Armstrong's Axioms

Union If $F \models \mathbf{Y} \to \mathbf{Z}$ and $F \models \mathbf{Y} \to \mathbf{W}$, then $F \models \mathbf{Y} \to \mathbf{W}, \mathbf{Z}$.

Pseudo-transitivity If $F \models Y \rightarrow Z$ and $F \models U, Z \rightarrow W$, then $F \models Y, U \rightarrow W$.

Decomposition If $F \models \mathbf{Y} \to \mathbf{Z}$ and $\mathbf{W} \subseteq \mathbf{Z}$, then $F \models \mathbf{Y} \to \mathbf{W}$.

Exercise: Prove these using Armstrong's axioms!

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

115 / 175

Proof of the Union Rule

Suppose we have

$$F \models Y \rightarrow Z,$$

 $F \models Y \rightarrow W.$

By augmentation we have

$$F \models Y, Y \rightarrow Y, Z,$$

that is,

$$F \models Y \rightarrow Y, Z$$
.

Also using augmentation we obtain

$$F \models \mathbf{Y}, \mathbf{Z} \rightarrow \mathbf{W}, \mathbf{Z}.$$

Therefore, by transitivity we obtain

$$F \models Y \rightarrow W, Z.$$

Example application of functional reasoning.

Heath's Rule

Suppose R(A, B, C) is a relational schema with functional dependency $A \rightarrow B$, then

$$R = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R).$$

Ken Moody (cl.cam.ac.uk)

)atabases

DB 2012

117 / 175

Proof of Heath's Rule

We first show that $R \subseteq \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

- If $u = (a, b, c) \in R$, then $u_1 = (a, b) \in \pi_{A,B}(R)$ and $u_2 = (a, c) \in \pi_{A,C}(R)$.
- Since $\{(a, b)\} \bowtie_A \{(a, c)\} = \{(a, b, c)\}$ we know $u \in \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R)$.

In the other direction we must show $R' = \pi_{A,B}(R) \bowtie_A \pi_{A,C}(R) \subseteq R$.

- If $u=(a,\ b,\ c)\in R'$, then there must exist tuples $u_1=(a,\ b)\in \pi_{A,B}(R)$ and $u_2=(a,\ c)\in \pi_{A,C}(R)$.
- This means that there must exist a $u' = (a, b', c) \in R$ such that $u_2 = \pi_{A,C}(\{(a, b', c)\}).$
- However, the functional dependency tells us that b = b', so $u = (a, b, c) \in R$.

Closure Example

$$R(A, B, C, D, E, F)$$
 with

$$A, B \rightarrow C$$

 $B, C \rightarrow D$
 $D \rightarrow E$
 $C, F \rightarrow B$

What is the closure of $\{A, B\}$?

$$\{A, B\} \stackrel{A,B\to C}{\Longrightarrow} \{A, B, C\}$$

$$\stackrel{B,C\to D}{\Longrightarrow} \{A, B, C, D\}$$

$$\stackrel{D\to E}{\Longrightarrow} \{A, B, C, D, E\}$$

So $\{A, B\}^+ = \{A, B, C, D, E\}$ and $A, B \rightarrow C, D, E$.

◆□ ▶ ◆□ ▶ ◆■ ▶ ● ● ◆○○

Ken Moody (cl.cam.ac.uk)

Jatabases

DB 2012

119 / 175

Lecture 08: Normal Forms

Outline

- First Normal Form (1NF)
- Second Normal Form (2NF)
- 3NF and BCNF
- Multi-valued dependencies (MVDs)
- Fourth Normal Form

The Plan

Given a relational schema $R(\mathbf{X})$ with FDs F:

- Reason about FDs
 - Is F missing FDs that are logically implied by those in F?
- Decompose each $R(\mathbf{X})$ into smaller $R_1(\mathbf{X}_1), R_2(\mathbf{X}_2), \cdots R_k(\mathbf{X}_k)$, where each $R_i(\mathbf{X}_i)$ is in the desired Normal Form.

Are some decompositions better than others?

◆□▶◆□▶◆■▶◆■▶ ■ かんで

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

21 / 175

Desired properties of any decomposition

Lossless-join decomposition

A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup (\mathbf{X} - \mathbf{Z}))$ is a lossless-join decomposition if for every database instances we have $R = S \bowtie T$.

Dependency preserving decomposition

A decomposition of schema $R(\mathbf{X})$ to $S(\mathbf{Y} \cup \mathbf{Z})$ and $T(\mathbf{Y} \cup (\mathbf{X} - \mathbf{Z}))$ is dependency preserving, if enforcing FDs on S and T individually has the same effect as enforcing all FDs on $S \bowtie T$.

We will see that it is not always possible to achieve both of these goals.

First Normal Form (1NF)

We will assume every schema is in 1NF.

1NF

A schema $R(A_1 : S_1, A_2 : S_2, \dots, A_n : S_n)$ is in First Normal Form (1NF) if the domains S_1 are elementary — their values are atomic.

name Timothy George Griffin ⇒

first_name	middle_name	last_name
Timothy	George	Griffin

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

23 / 175

Second Normal Form (2NF)

Second Normal Form (2NF)

A relational schema R is in 2NF if for every functional dependency $X \rightarrow A$ either

- \bullet $A \in X$, or
- X is a superkey for R, or
- A is a member of some key, or
- X is not a proper subset of any key.

3NF and BCNF

Third Normal Form (3NF)

A relational schema R is in 3NF if for every functional dependency $X \rightarrow A$ either

- $A \in \mathbf{X}$, or
- X is a superkey for R, or
- A is a member of some key.

Boyce-Codd Normal Form (BCNF)

A relational schema R is in BCNF if for every functional dependency

 $X \rightarrow A$ either

- $A \in \mathbf{X}$, or
- X is a superkey for R.

Is something missing?

◆□ ▶ ◆□ ▶ ◆■ ▶ ● ● ◆○○

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

25 / 175

Another look at Heath's Rule

Given $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ with FDs F

If $\mathbf{Z} \to \mathbf{W} \in F^+$, the

$$R = \pi_{\mathsf{Z},\mathsf{W}}(R) \bowtie \pi_{\mathsf{Z},\mathsf{Y}}(R)$$

What about an implication in the other direction? That is, suppose we have

$$R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R).$$

Q Can we conclude anything about FDs on R? In particular, is it true that $\mathbf{Z} \to \mathbf{W}$ holds?

A No!

We just need one counter example ...

Clearly $A \rightarrow B$ is not an FD of R.

 Image: Control of the control of t

A concrete example

Ken Moody (cl.cam.ac.uk)

course_name	lecturer	text
Databases	Tim	Ullman and Widom
Databases	Fatima	Date
Databases	Tim	Date
Databases	Fatima	Ullman and Widom

Assuming that texts and lecturers are assigned to courses independently, then a better representation would in two tables:

course name	lecturer	course name	text
Databases	Tim	Databases	Ullman and Widom
Databases	Fatima	Databases	Date

Time for a definition! MVDs

Multivalued Dependencies (MVDs)

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. A multivalued dependency, denoted $\mathbf{Z} \rightarrow \mathbf{W}$, holds if whenever t and u are two records that agree on the attributes of \mathbf{Z} , then there must be some tuple v such that

- \bigcirc v agrees with both t and u on the attributes of **Z**,
- v agrees with t on the attributes of W,
- v agrees with u on the attributes of Y.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

129 / 175

A few observations

Note 1

Every functional dependency is multivalued dependency,

$$(\mathbf{Z} \to \mathbf{W}) \implies (\mathbf{Z} \twoheadrightarrow \mathbf{W}).$$

To see this, just let v = u in the above definition.

Note 2

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema, then

$$(Z \twoheadrightarrow W) \iff (Z \twoheadrightarrow Y),$$

by symmetry of the definition.

MVDs and lossless-join decompositions

Fun Fun Fact

Let $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ be a relational schema. The decomposition $R_1(\mathbf{Z}, \mathbf{W})$, $R_2(\mathbf{Z}, \mathbf{Y})$ is a lossless-join decomposition of R if and only if the MVD $\mathbf{Z} \rightarrow \mathbf{W}$ holds.

◆□▶◆□▶◆壹▶ 壹 か900

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

31 / 175

Proof of Fun Fun Fact

Proof of $(\mathbf{Z} \rightarrow \mathbf{W}) \implies R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$

- Suppose Z → W.
- We know (from proof of Heath's rule) that $R \subseteq \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$. So we only need to show $\pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R) \subseteq R$.
- Suppose $r \in \pi_{Z,W}(R) \bowtie \pi_{Z,Y}(R)$.
- So there must be a $t \in R$ and $u \in R$ with $\{r\} = \pi_{\mathbf{Z},\mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(\{u\}).$
- In other words, there must be a $t \in R$ and $u \in R$ with $t.\mathbf{Z} = u.\mathbf{Z}$.
- So the MVD tells us that then there must be some tuple $v \in R$ such that
 - $\mathbf{0}$ v agrees with both t and u on the attributes of \mathbf{Z} ,
 - 2 v agrees with t on the attributes of \mathbf{W} ,
 - \circ v agrees with u on the attributes of **Y**.
- This v must be the same as r, so $r \in R$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへの

Proof of Fun Fun Fact (cont.)

Proof of $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R) \implies (\mathbf{Z} \twoheadrightarrow \mathbf{W})$

- Suppose $R = \pi_{\mathbf{Z},\mathbf{W}}(R) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(R)$.
- Let t and u be any records in R with $t.\mathbf{Z} = u.\mathbf{Z}$.
- Let v be defined by $\{v\} = \pi_{\mathbf{Z},\mathbf{W}}(\{t\}) \bowtie \pi_{\mathbf{Z},\mathbf{Y}}(\{u\})$ (and we know $v \in R$ by the assumption).
- Note that by construction we have
 - $\mathbf{0}$ $v.\mathbf{Z} = t.\mathbf{Z} = u.\mathbf{Z}$
 - 2 v.W = t.W,
 - $\mathbf{0}$ $v.\mathbf{Y} = u.\mathbf{Y}.$
- Therefore, Z → W holds.

◆ロト ◆昼 ト ◆ 重 ト → 重 ・ か へ ○

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

133 / 175

Fourth Normal Form

Trivial MVD

The MVD $\mathbf{Z} \rightarrow \mathbf{W}$ is trivial for relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ if

- \bigcirc **Z** \cap **W** \neq {}, or
- $\mathbf{Y} = \{\}.$

4NF

A relational schema $R(\mathbf{Z}, \mathbf{W}, \mathbf{Y})$ is in 4NF if for every MVD $\mathbf{Z} \rightarrow \mathbf{W}$ either

- Z → W is a trivial MVD, or
- **Z** is a superkey for *R*.

Note: $4NF \subset BCNF \subset 3NF \subset 2NF$

Summary

We always want the lossless-join property. What are our options?

	3NF	BCNF	4NF
Preserves FDs		Maybe	Maybe
Preserves MVDs	Maybe	Maybe	Maybe
Eliminates FD-redundancy	Maybe	Yes	Yes
Eliminates MVD-redundancy	No	No	Yes

Ken Moody (cl.cam.ac.uk)

vatabases

DB 2012

35 / 175

Inclusions

Clearly BCNF \subseteq 3NF \subseteq 2*NF*. These are proper inclusions:

In 2NF, but not 3NF

R(A, B, C), with $F = \{A \rightarrow B, B \rightarrow C\}$.

In 3NF, but not BCNF

R(A, B, C), with $F = \{A, B \rightarrow C, C \rightarrow B\}$.

- This is in 3NF since AB and AC are keys, so there are no non-prime attributes
- But not in BCNF since C is not a key and we have $C \rightarrow B$.

Schema refinement III and advanced design

Outline

- General Decomposition Method (GDM)
- The lossless-join condition is guaranteed by GDM
- The GDM does not always preserve dependencies!
- FDs vs ER models?
- Weak entities
- Using FDs and MVDs to refine ER models
- Another look at ternary relationships

< ロ > ◆ 昼 > ◆ 量 > ◆ 量 > り Q で

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

37 / 175

General Decomposition Method (GDM)

GDM

- Understand your FDs F (compute F^+),
- ind R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with FD $Z \rightarrow W \in F^+$ violating a condition of desired NF,
- 3 split R into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

Reminder

For $\mathbf{Z} \to \mathbf{W}$, if we assume $\mathbf{Z} \cap \mathbf{W} = \{\}$, then the conditions are

- Z is a superkey for R (2NF, 3NF, BCNF)
- W is a subset of some key (2NF, 3NF)
- 3 Z is not a proper subset of any key (2NF)

The lossless-join condition is guaranteed by GDM

- This method will produce a lossless-join decomposition because of (repeated applications of) Heath's Rule!
- That is, each time we replace an S by S_1 and S_2 , we will always be able to recover S as $S_1 \bowtie S_2$.
- Note that in GDM step 3, the FD $\mathbf{Z} \to \mathbf{W}$ may represent a key constraint for R_1 .

But does the method always terminate? Please think about this

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

139 / 175

General Decomposition Method Revisited

GDM++

- Understand your FDs and MVDs F (compute F^+),
- find R(X) = R(Z, W, Y) (sets Z, W and Y are disjoint) with either FD Z → W ∈ F⁺ or MVD Z → W ∈ F⁺ violating a condition of desired NF,
- 3 split R into two tables $R_1(\mathbf{Z}, \mathbf{W})$ and $R_2(\mathbf{Z}, \mathbf{Y})$
- wash, rinse, repeat

Return to Example — Decompose to BCNF

$$F = \{A, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$$

Which FDs in F^+ violate BCNF?

$$egin{array}{cccc} C &
ightarrow & A \ C &
ightarrow & D \ D &
ightarrow & A \ A, C &
ightarrow & D \ C, D &
ightarrow & A \end{array}$$

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

41 / 175

Return to Example — Decompose to BCNF

Decompose R(A, B, C, D) to BCNF

Use $C \rightarrow D$ to obtain

- $R_1(C, D)$. This is in BCNF. Done.
- $R_2(A, B, C)$ This is not in BCNF. Why? A, B and B, C are the only keys, and $C \to A$ is a FD for R_1 . So use $C \to A$ to obtain
 - $R_{2.1}(A, C)$. This is in BCNF. Done.
 - $R_{2.2}(B, C)$. This is in BCNF. Done.

Exercise: Try starting with any of the other BCNF violations and see where you end up.

The GDM does not always preserve dependencies!

$$\begin{array}{ccc}
A,B & \rightarrow & C \\
D,E & \rightarrow & C \\
B & \rightarrow & D
\end{array}$$

- $\{A, B\}^+ = \{A, B, C, D\},\$
- so $A, B \rightarrow C, D$,
- and {*A*, *B*, *E*} is a key.
- $\{B, E\}^+ = \{B, C, D, E\}$,
- so $B, E \rightarrow C, D$,
- and {A, B, E} is a key (again)

Let's try for a BCNF decomposition ...

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

43 / 175

Decomposition 1

Decompose R(A, B, C, D, E) using $A, B \rightarrow C, D$:

- $R_1(A, B, C, D)$. Decompose this using $B \to D$:
 - $ightharpoonup R_{1.1}(B, D)$. Done.
 - $R_{1.2}(A, B, C)$. Done.
- \bullet $R_2(A, B, E)$. Done.

But in this decomposition, how will we enforce this dependency?

$$D, E \rightarrow C$$

Decomposition 2

Decompose R(A, B, C, D, E) using $B, E \rightarrow C, D$:

- $R_3(B, C, D, E)$. Decompose this using $D, E \rightarrow C$
 - $R_{3.1}(C, D, E)$. Done.
 - $R_{3.2}(B, D, E)$. Decompose this using $B \to D$:
 - $R_{3.2.1}(B, D)$. Done.
 - \star $R_{3.2.2}(B, E)$. Done.
- $R_4(A, B, E)$. Done.

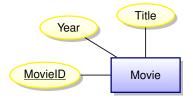
But in this decomposition, how will we enforce this dependency?

$$A, B \rightarrow C$$

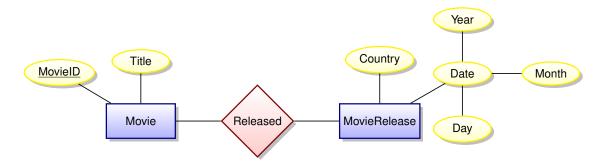
Ken Moody (cl.cam.ac.uk)

Databases

DB 2012


145 / 175

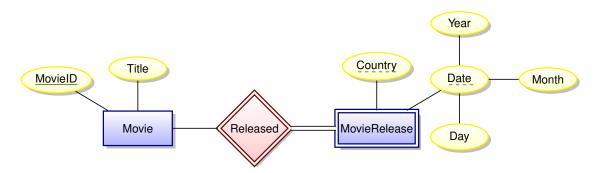
Summary


- It is always possible to obtain BCNF that has the lossless-join property (using GDM)
 - But the result may not preserve all dependencies.
- It is always possible to obtain 3NF that preserves dependencies and has the lossless-join property.
 - Using methods based on "minimal covers" (for example, see EN2000).

Recall: a small change of scope ...

... changed this entity

into two entities and a relationship:


But is there something odd about the MovieRelease entity?

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012 147 / 175

MovieRelease represents a Weak entity set

Definition

- Weak entity sets do not have a primary key.
- The existence of a weak entity depends on an identifying entity set through an identifying relationship.
- The primary key of the identifying entity together with the weak entities discriminators (dashed underline in diagram) identify each weak entity element.

Ken Moody (cl.cam.ac.uk) Databases DB 2012 148 / 175

Can FDs help us think about implementation?

$$R(I, T, D, C)$$
 $I \rightarrow T$

I = MovieIDT = Title

D = Date

C = Country

Turn the decomposition crank to obtain

$$R_1(I,T)$$
 $R_2(I,D,C)$
 $\pi_I(R_2) \subseteq \pi_I(R_1)$

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

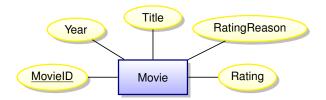
149 / 175

Movie Ratings example

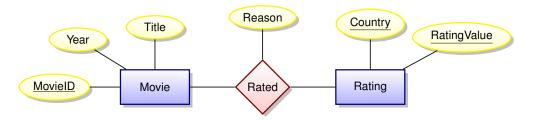
Scope = UK Title Austin Powers: International Man of Mystery Austin Powers: The Spy Who Shagged Me Dude, Where's My Car? Year Rating 1997 15 1999 12 2000 15

Scope = Earth			
Title	Year	Country	Rating
Austin Powers: International Man of Mystery	1997	UK	15
Austin Powers: International Man of Mystery	1997	Malaysia	18SX
Austin Powers: International Man of Mystery	1997	Portugal	M/12
Austin Powers: International Man of Mystery	1997	USA	PG-13
Austin Powers: The Spy Who Shagged Me	1999	UK	12
Austin Powers: The Spy Who Shagged Me	1999	Portugal	M/12
Austin Powers: The Spy Who Shagged Me	1999	USA	PG-13
Dude, Where's My Car?	2000	UK	15
Dude, Where's My Car?	2000	USA	PG-13
Dude, Where's My Car?	2000	Malaysia	18PL

Ken Moody (cl.cam.ac.uk)


Databases

DB 2012


150 / 175

Example of attribute migrating to strong entity set

From single-country scope,

to multi-country scope:

Note that relation Rated has an attribute!

			₹ 900°
Ken Moody (cl.cam.ac.uk)	Databases	DB 2012	151 / 175

Beware of FFDs = Faux Functional Dependencies

(US ratings)			
Title	Year	Rating	RatingReason
Stoned	2005	R	drug use
Wasted	2006	R	drug use
High Life	2009	R	drug use
Poppies: Odyssey of an opium eater	2009	R	drug use

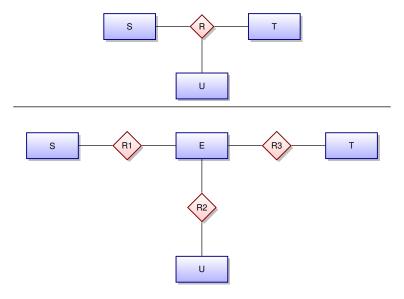
But

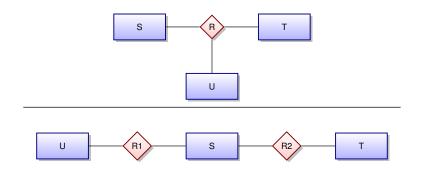
Title → {Rating, RatingReason}

is not a functional dependency.

This is a mildly amusing illustration of a real and pervasive problem — deriving a functional dependency after the examination of a limited set of data (or after talking to only a few domain experts).

Oh, but the real world is such a bother!


from IMDb raw data file certificates.list 2 Fast 2 Furious (2003) Switzerland:14 (canton of Vaud) 2 Fast 2 Furious (2003) Switzerland:16 (canton of Zurich) 28 Days (2000) Canada:13+ (Quebec) 28 Days (2000) Canada:14 (Nova Scotia) 28 Days (2000) Canada:14A (Alberta) 28 Days (2000) Canada:AA (Ontario) 28 Days (2000) Canada:PA (Manitoba) 28 Days (2000) Canada:PG (British Columbia)


Ken Moody (cl.cam.ac.uk)

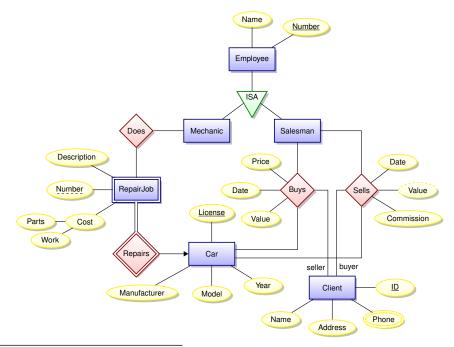
Databases

Ternary or multiple binary relationships?

Ternary or multiple binary relationships?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 夕Q♡

Ken Moody (cl.cam.ac.uk)


atabases

DB 2012

155 / 175

Look again at ER Demo Diagram²

How might this be refined using FDs or MVDs?

²By Pável Calado,

http://www.texample.net/tikz/examples/entity-relationship-diagram

Ken Moody (cl.cam.ac.uk) Databases DB 2012 156 / 175

Lecture 10 : On-line Analytical Processing (OLAP)

Outline

- Limits of SQL aggregation
- OLAP: Online Analytic Processing
- Data cubes
- Star schema

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

57 / 175

Limits of SQL aggregation

sale	prodld	storeld	amt					_
	p1	c1	12			с1	c2	L
	p2	c1	11	\leftarrow	p1	12		
	p1	c3	50		p2	11	8	Γ
	P .				_			
	p2	c2	8					

- Flat tables are great for processing, but hard for people to read and understand.
- Pivot tables and cross tabulations (spreadsheet terminology) are very useful for presenting data in ways that people can understand.
- SQL does not handle pivot tables and cross tabulations well.

OLAP vs. OLTP

- OLTP: Online Transaction Processing (traditional databases)
 - Data is normalized for the sake of updates.
- OLAP : Online Analytic Processing
 - These are (almost) read-only databases.
 - Data is de-normalized for the sake of queries!
 - Multi-dimensional data cube emerging as common data model.
 - This can be seen as a generalization of SQL's group by

◆ロト ◆昼 ト ◆ 夏 ト ● ● 夕 Q O

Ken Moody (cl.cam.ac.uk)

Databases

DR 2012

159 / 175

OLAP Databases: Data Models and Design

The big question

Is the relational model and its associated query language (SQL) well suited for OLAP databases?

- Aggregation (sums, averages, totals, ...) are very common in OLAP queries
 - Problem : SQL aggregation quickly runs out of steam.
 - Solution : Data Cube and associated operations (spreadsheets on steroids)
- Relational design is obsessed with normalization
 - Problem : Need to organize data well since all analysis queries cannot be anticipated in advance.
 - Solution: Multi-dimensional fact tables, with hierarchy in dimensions, star-schema design.

◆ロト ◆昼 ト ◆ 豊 ト ・ 豊 ・ りへ(*)

A very influential paper [G+1997]

 $Data\ Mining\ and\ Knowledge\ Discovery\ 1,29–53\ (1997)$ © 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals*

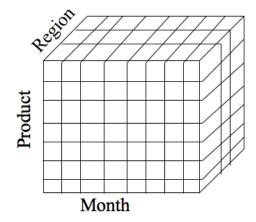
JIM GRAY Gray@Microsoft.com
SURAIT CHAUDHURI SurajitC@Microsoft.com
ADAM BOSWORTH AdamB@Microsoft.com
ANDREW LAYMAN AndrewL@Microsoft.com
DON REICHART DonRei@Microsoft.com
MURALI VENKATRAO MuraliV@Microsoft.com
Microsoft Research, Advanced Technology Division, Microsoft Corporation, One Microsoft Way, Redmond,

FRANK PELLOW HAMID PIRAHESH IBM Research, 500 Harry Road, San Jose, CA 95120 Pellow@vnet.IBM.com Pirahesh@Almaden.IBM.com

◆□▶◆□▶◆車▶◆車▶ 車 か900

Ken Moody (cl.cam.ac.uk)

Databases


DB 2012

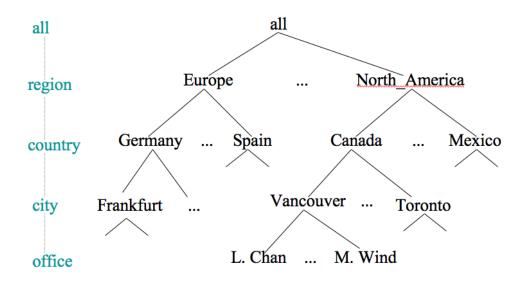
161 / 175

From aggregates to data cubes

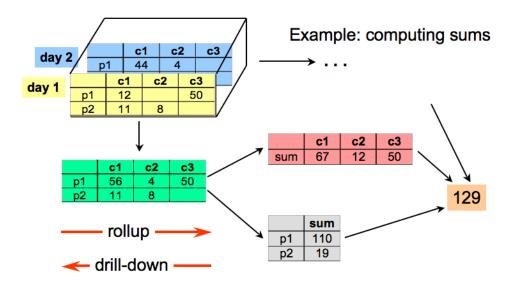
The Data Cube

Dimensions: Product, Location, Time

- Data modeled as an n-dimensional (hyper-) cube
- Each dimension is associated with a hierarchy
- Each "point" records facts
- Aggregation and cross-tabulation possible along all dimensions

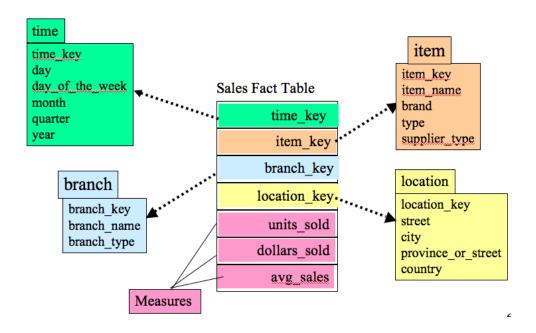

Ken Moody (cl.cam.ac.uk)

Databases


DB 2012

163 / 175

Hierarchy for Location Dimension



Cube Operations

 Ken Moody (cl.cam.ac.uk)
 Databases
 DB 2012
 165 / 175

The Star Schema as a design tool

 4□ → 4□ → 4 = → 4 = → 2

 DB 2012
 166 / 175

Lectures 11: Case Study - Cancer registry for the NHS, Part II

The extension of ECRIC to cover all of England requires schema reconciliation, a problem that remains unresolved since it was first encountered in the 1980s. Jem Rashbass has a long track record in NHS IT, and is now CEO of ECRIC. Jem will explain what the NHS needs and why - some of the existing challenges and future opportunities. The session will close with an open forum in which the DBA of the now national level Cancer Registry DBMS will join Jem.

◆□ → ◆□ → ◆ = → ◆ = → へ ○

Ken Moody (cl.cam.ac.uk)

vatabases

DB 2012

67 / 175

Lecture 12: XML as a data exchange format

Outline

- HTML vs. XML
- Using XML to solve the data exchange problem
- Domain-specific XML schema
- Native XML databases

HTML vs XML

HTML

HTML = Content + (fixed) Schema + (fixed) presentation

Untangle these and generalize to

XML

XML = Content

XSL = defines presentations

DTD or XSchema = defines schema

HTML: Hypertext Markup Language XML: eXtensible Markup Language

XSL : Extensible Stylesheet Language (similar to CSS)

CSS: Cascading Style Sheets
DTD: Document Type Definition

4□▶ 4□▶ 4□▶ 4□▶ 1□ 900

Ken Moody (cl.cam.ac.uk)

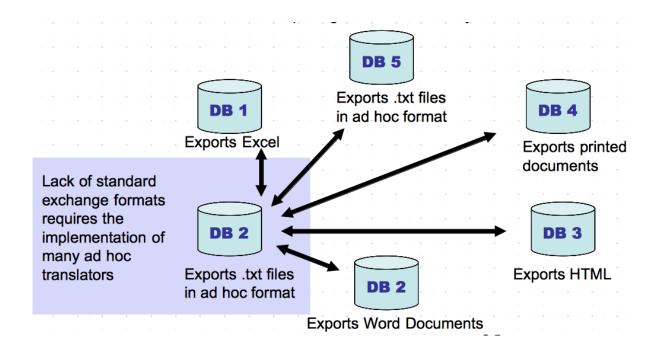
Databases

DB 2012

169 / 175

XML data is "semi-structured" UniCode text

<TAGNAME VAL1="some value" VAL2="some value">
Body of text, and possibly nested tags.
</TAGNAME>

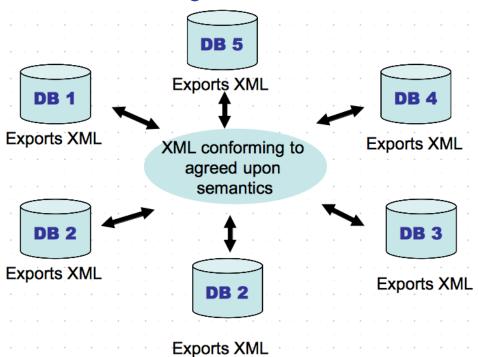

An XML schema defines

- tag names
- which associated values are optional or required
- types of associated values
- type of the associated body

What would Churchill say?

XML is the worst form of data representation, except for all those other forms that have been tried from time to time.

The data exchange problem


Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

171 / 175

XML as a data exchange standard

Domain-specific schema can become standards.

Ken Moody (cl.cam.ac.uk)

Databases

DB 2012

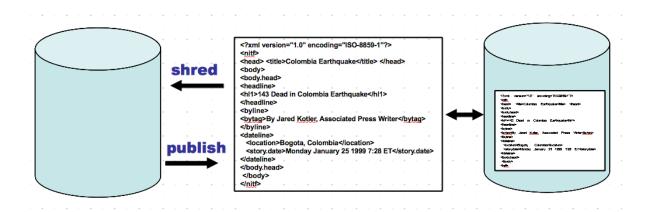
172 / 175

There are now thousands of domain-specific schema

WML: Wireless markup language (WAP)

OFX: Open financial exchange CML: Chemical markup language AML: Astronomical markup language MathML: Mathematics markup language

SMIL: Synchronized multimedia integration language


ThML: Theological markup language

The public XML schema is in some many ways "dual" to the many private SQL schemas involved in data exchange.

Ken Moody (cl.cam.ac.uk)

173 / 175

Two basic kinds of XML databases (hybrids possible)

XML-enabled databases

Relational (XML for exchange) "Data-centric"

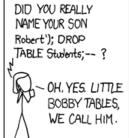
SQL

http://www.mysql.com/

Native XML database

direct storage of XML data "Document-centric" XPath and XQuery

http://basex.org


http://exist.sourceforge.net

◆母 ▶ ◆ 重 ▶ ◆ 重 ◆ 9 9 0

The End

(http://xkcd.com/327)

