Foundations of

Object Relational Mapping

v0.2 [mlf-970703]
Mark L. Fussell

1220 N. Fair Oaks Ave, #1314
Sunnyvale, CA 94089
408.734-9068

Mark.Fussell@ChiMu.com

www.chimu.com

Overview

Table of Contents

Introduction

Object Modeling

Basic Concepts

Identity

State

Behavior

Encapsulation

Higher-level Concepts

Type

Associations

Class

Inheritance

Summary

Relational Modeling

Relational Terminology

Relation

Attribute

Domain

Tuple

Attribute Value

Relation Value

Relation Variable

Database

Base Relation Values

Derived Relation Values

Coupling between relations, variables, and values

O D OO O OXPPPHEPP S J AU AR X W N

Common Database Terminology 10
Summary 10
Objects integrated into the Relational Model 11
Objects as Tuple Attribute Values 11
Redundancy and Normalization 11
Object attributes as views 12
Behavior 12
Inheritance 13
Summary 13
Using Current Relational Databases 14
IdentityKeys: Relinquishing Objects for ObjectShadows 14
Distinguishers: Identifying an Object’s Type 14
Foundations of Object Relational Mapping Page 2 of 22

Copyright 0 1997, Mark L. Fussell

July 15, 1997

Summary 15
Client-Server Object Issues 16
ObjectSpaces 16
ObjectSpace Example 16
Client-Server ObjectSpaces 17
True ObjectSpace is on the Server 17
Proxies and Replicates 17
Replicated ObjectSpaces are on the Clients 18
Concurrency and Conflicts 18
Approach-1 18
Approach-2 19
Approach-3 19
Summary 19
Conclusion 20
Standard Definitions 21
References 23
Foundations of Object Relational Mapping Page 3 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Overview

This document describes general concepts needed for object-relational mapping. It serves as an
introduction to the issues involved in doing general object-relational mapping and provides a foundation for
understanding frameworks that supports that mapping.

The document begins by describing object modeling and relational modeling. It then covers how to
integrate objects into the relational model. This is followed by how to implement that integration with
current database systems. Next, the issues for client-server objects are covered independently from the
whole mapping problem. This leads to the conclusion, which finishes the preparation for analyzing specific
object-relational approaches by reviewing the topics and describing object-relational approaches.

Foundations of Object Relational Mapping Page 4 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Introduction

Object-relational mapping is the process of transforming between object and relational modeling
approaches and between the systems that support these approaches. Doing a good job at object-relational
mapping requires a solid understanding of object modeling and relational modeling, how they are similar,
and how they are different. Ideally we should have a single integrated model that described both
approaches. This would ensure we understand and explicitly document both concepts and their
relationships. This document will present what we believe to be the only correct integration of the two
worlds that is suitable for implementation on a relational database.

Difficulties occur when we have to deal with the real systems implementing object and relational models.
These systems have implementations that are deficient or inconsistent with the theoretical approaches.
Relational databases have been deficient for multiple decades in correctly implementing the core concepts
of relational theory. On the other hand, object modeling is not standardized, so each programming
environment implements its own variation. Because of these deficiencies, object-relational mapping is
more complicated than it needs to be.

Fortunately, object modeling and relational modeling have such different concerns that they are actually
extremely compatible. Relational theory is concerned with knowledge and object techniques are primarily
concerned with behavior. Mapping between the two models requires deciding how the two worlds can refer
to each other. We will first describe the two worlds in more detail and then show how they can be
integrated.

Foundations of Object Relational Mapping Page 5 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Object Modeling

Object modeling describes systems as built out of objects: programming abstractions that have identity,
behavior, and state. Objects are an abstraction beyond abstract data types (ADTs), where data and variables
are merged into a single unifying concept. As such the object modeling includes many other concepts:
abstraction, similarity, encapsulation, inheritance, modularity, and so on. See references for Object-
Oriented design ([Booch 95], [Rumbaug+BPEL 91], [Kilov+R 94]) for more information on the concepts of
object modeling.

For this paper, we will be concerned with the basic object concepts of identity, behavior, state, and
encapsulation. We will also need some higher level concepts of type, association, class, and inheritance.
Each of these will be defined below.

Basic Concepts

Identity

Objects have identity, which distinguishes them from all other objects. This is the crucial step for
describing how objects are different from ADTs. When an object is created it is distinguishable from all
other objects whether its state (or “value”) happens to be equal.

State

Because an object can be distinguished independently of its “value”, it has a state: the current value
associated with this identity. Objects can have a single state throughout their life (which would make them
degenerately like ADTs) or can go through many state transitions. Because objects are encapsulated, the
state is an abstraction and is only visible by examining the behavior of the object.

Behavior

Objects provide an abstraction that clients can interact with. The behavior of an object is the collection of
operations an object provides (its interface), the responses these operations give to the caller, and the
changes the operations cause to the object (and other objects in the system). All interactions with an object
must be through its interface and all knowledge about an object is from its behavior (returned values or side
effects) to the interface interaction.

Encapsulation

Encapsulation provides an abstraction and prevents external parties from seeing the implementation details
of that abstraction. For objects, clients can interact with the public behavior of the object (and by so doing
identify the state of an object) but they can not see how the behavior and the state are implemented.

Higher-level Concepts

Type
A type is the specification of an interface that objects will support. An object implements a type if it

provides the interface described by the type. All objects of the same type can be interacted with through the
same interface. An object can implement multiple types at the same time.

Foundations of Object Relational Mapping Page 6 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Associations

Types can be associated with other types, which specifies that the objects of one type can be linked to
objects of the other type. Having a link provides the ability to traverse from one object to the other objects
involved in the link.

Class

One approach to implementing objects is to have a class, which defines the implementation for multiple
objects. A class defines what types the objects will implement, how to perform the behavior required for
the interface and how to remember state information. Then each object will only need to remember its
individual state. Although using classes is by far the most common object approach, it is not the only
approach (using prototypes is another approach). It is really peripheral to the core concepts of object-
oriented modeling.

Inheritance

Inheritance can apply to types or to classes. When applied to types, inheritance specifies that if an object
is of ‘Type B’ where Type B inherits from ‘Type A’ than that object can be used just like an object of ‘Type
A’. Type B is said to conform to Type A and all objects that are ‘Type B’s are also ‘Type A’s.

When applied to Classes, inheritance specifies that a class uses the implementation of another class with
possible overriding modification. This frequently implies type inheritance but that may not always be the
case.

Summary

Object models are different from other modeling techniques because they have merged the concept of
variables and abstract data types into an abstract variable type: an object. Objects have identity, state, and
behavior; Object models are built out of systems of these objects. To make object modeling easier, there
are concepts of type, inheritance, association, and possibly class. Although object modeling is only a small
step from data type oriented programming, it produces a significantly different feel and structure for
programs. Object modeling’s focus on identity and behavior is completely different from the relational
model’s focus on information.

Foundations of Object Relational Mapping Page 7 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Relational Modeling

Relational modeling describes information as predicate logic and truth statements. We give the relational
database a logical model and tell it truth axioms about the world. From this information model a relational
database can remember and return the original information as well as prove “new” (derived) truths. We
must also have a way to be sure we understand what we are telling the database and what the database is
telling us: we must be able to translate between the human knowledge and the database model. All of this is
accomplished in the relational model through well-defined terms like relation, tuple, domain, and database.

Relational Terminology

The following describes the concepts to the relational model. Most of these are identical to the definitions
given in [Date 95], but I draw a finer distinction between certain terms (specifically relation and relation
value).

Relation

A relation is a truth predicate. It defines what attributes are involved in the predicate and what the meaning
of the predicate is. Frequently the meaning of the relation is not represented explicitly, but this is a very
significant source for human error in using the database system. An example of a relation is:
Person: {SSN#, Name, City} There exists a person with social security number SSN#, who has the
name Name, and lives in a city named City.

Attribute

An attribute identifies a name that participates in the relation and specifies the domain from which values
of the attribute must come. In the above relation, Name is an attribute defined over the String domain. The
above relation should explicitly identify the domains for each attribute:
Person: {SSN# : SSN, Name : StriNG, City : CityNaMme} There exists a person with social security
number SSN#, who has the name Name, and lives in a city named City.

Domain

A domain is simply a data type. It specifies a data abstraction: the possible values for the data and the
operations available on the data. For example, a String can have zero or more characters in it, and has
operations for comparing strings, concatenating string, and creating strings.

Tuple

A tuple is a truth statement in the context of a relation. A tuple has attribute values which match the
required attributes in the relation and that state the condition that is known to be true. An example of a
tuple is:

<Person SSN# = “123-45-6789” Name = “Art Larsson” City = “San Francisco”™>
Tuples are values and two tuples are identical if their relation and attribute values are equal. The ordering
of attribute values is immaterial.

Attribute Value

An attribute value is the value for an attribute in a particular tuple. An attribute value must come from the
domain that the attribute specifies.

Foundations of Object Relational Mapping Page 8 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Relation Value

A relation value is composed of a relation (the heading) and a set of tuples (the body). All the tuples must
have the same relation as the heading and, because they are in a set, the tuples are unordered and have no
duplicates. A relation value could be shown as a set of tuples:
{ <Person SSN# = “123-45-6789” Name = “Art Larsson” City = “San Francisco”>,
<Person SSN# = “231-45-6789” Name = “Lino Buchanan” City = “Philadelphia”>,
<Person SSN# = “321-45-6789” Name = “Diego Jablonski” City = “Chicago”™> }

It is more common and concise to show a relation value as a table.

: Person
SSN# Name I Ciy |
| 123-45-6789 = Art Larrson San Francisco |

| 231-45-6789 Lino Buchanan Philadelphia |

| 321-45-6789 Diego Jablonski ~ Chicago
In this representation, the heading is specified by the “: Person”, the attributes of the heading are ordered
(for presentation only) by the column headings, and the rows define what tuples exist.

All ordering within the table is artificial and meaningless. The following is a different presentation of the
identical relation value.

: Person

SSN#

| Philadelphia 231-45-6789 Lino Buchanan |
| San Francisco 123-45-6789 Art Larrson |
| Chicago 321-45-6789 Diego Jablonski |

Relation Variable

A relation variable holds onto a single relation value at any point in time, but can change value at any
point in time. Relation variables are typed to a particular relation, so they will always hold relation values
that have a heading with that relation. A relation variable would look like:

| People : Person |
This shows the variable name “People” and the variable relation type “Person”.

Using the tabular structure from above, we can show a relation variable and its current value.

People : Person

SSN#

| Philadelphia 231-45-6789 Lino Buchanan |

| San Francisco 123-45-6789 Art Larrson |

| Chicago 321-45-6789 Diego Jablonski |
Database

A database is a collection of relation variables. It describes the complete state of an information model,
can change state (by changing the relation variables), and can answer questions about its particular state.

Base Relation Values

A base relation value has been explicitly told to the database at some point in time. The above People
relation could be such a base relation, in which case we explicitly told the database that Lino Buchanan and
Art Larrson are people.

Foundations of Object Relational Mapping Page 9 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Derived Relation Values

Derived relation values are calculated from other relation values known to the database. For our example
data, the number of people located in each city is:

: PersonCount

I

| Philadelphia 1 |
| San Francisco 1 I
| Chicago 1 I

This can be derived from the information in the “People” relation variable.

Derived relation values are most commonly the result of relational expressions and queries. They are also
frequently permanently remembered (and recalculated) through views: derived relation variables.

Coupling between relations, variables, and values

Relations, variables, and values are more inter-linked than they may first appear to be. Because a relation
includes a meaning, a relation variable must have the same meaning as the relation. So defining a variable
“HappyPeople : Person” does not make sense because the predicate for ‘Person’ does not describe
happiness. What we are really saying is we have a new relation ‘HappyPerson’ which is almost identical to
person but has a slightly extended meaning:

HappyPerson: {SSN#, Name, City} There exists a person with social security number SSN#, who

has the name Name, and lives in a city named City, and that person is happy.

or using a more concise definition

HappyPerson extends Person: And that person is happy.

New anonymous relations are produced for all derived values (except the identity transformation). This can
cause confusions because the anonymous relations are not well defined and different users of the database
may have different interpretations.

Common Database Terminology

The previous section defined the correct relational model terminology, but databases have had a long
history with different terms that are now overloaded to apply in the relational context. These common terms
are not as precise as the relational terms, but the approximate equivalencies between these terms are given
in the following table.

Common Relational

table relation variable

row tuple

column attribute

column value attribute value

database database
Summary

Relational modeling works in terms of predicates, truth axioms, and derivable truth statements. Relations
define the possible truth statements, tuples describe the current known truths, relation values collect truth
statements together, relation variables remember values, and relation expressions can derive new values.

The relational model is very different from the object model. In many ways the difference is helpful
because in most areas object and relational modeling are orthogonal: their concerns are completely
different. The next chapter introduces how to integrate the two approaches.

Foundations of Object Relational Mapping Page 10 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Objects integrated into the Relational Model

Object modeling describes a system through objects that have identity, behavior, and encapsulated state.
Relational models describe a system by information. How can a relational model support object modeling?
Relational modeling seems to have no way of representing any of the object modeling properties nicely.
Tuples have neither identity nor encapsulation. Tuple attribute values are encapsulated but are pure values,
so they have neither identity nor state. This is what is frequently called an impedance-mismatch between
object approaches and relational databases.

Fortunately the impedence mismatch is not really there. Predicate logic is quite good at describing the state
of the world (or a model of the world), so relational databases must be quite good at describing the state of
an object model. To see how easily they can model an object model’s state, we will first expand the
relational model slightly.

Objects as Tuple Attribute Values

What if we allowed Objects (with identity and state) to be tuple attribute values?

Instead of simply having a social security number (or even a Parent Child
complex value like a graphic image or a rectangle) as a tuple’s — —
attribute value, we can have a ‘Person’ as a tuple’s attribute value.
This would allow us to have a predicate “This person is known to
be the parent of this person” instead of saying, “The person with
this SSN is known to be the parent of the person with this SSN”.
We don’t care about a person’s SSN (which might change) or any
of the other attributes of a person: we have direct representations
of the people themselves.

Person#1 Person#2

This merger provides much flexibility. Anywhere we used to have a primitive or abstract data type we can
now have an object. For this to fit with the relational model, we need to enhance Domains to be able to take
their “values” from a pool of existing objects or to be able to create a new object when asked.

Redundancy and Normalization

Now that we have integrated the relational model and the object model, we have the problem of “which do
we ask?” Do I ask ‘Person#1’ for its child (object approach) or do I ask the Parenthood relation for the
children of ‘Person#1’ (the relational approach)? Presumably I can ask both questions, but then how do we
make sure changes made to one or the other place are synchronized? We clearly have a redundancy
(denormalization) problem between objects with attributes and the tuples in relations.

This problem is especially obvious for the basic attribute tables (or Entity table in ER modeling) where
every row lists the attributes of an object. Do we ask the object to change its attribute or do we change a
row in the table?

Foundations of Object Relational Mapping Page 11 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Object SSN First Name Last Name Employer
//’///\\\\\\

Person#1 123-45-6789 Lino Buchanan Company#3
\/
//’///\\\\\\

Person#2 234-56-7890 Art Larrson Company#9
\/

Because this is a relational model, the relational features should take precedence: We only want to extend
the relational model well enough so we can easily represent objects in it. Because the relational model has a
complete approach for changing the state of the database we should not add a second one. So, we do not
change the state of an object through the methods of an object, but must instead modify the appropriate
relation variables (by adding, removing, or replacing/changing tuples) to cause the desired changes.

Object Attributes as Views

Should we allow an object to answer a question about its attributes? That would be convenient. Instead of
having to look up in the Parenthood table for parents and the Person table for basic attributes we could
instead ask Person#1 for it #firstName and its #parents. From the relational perspective, the person object
would provide a centralized view on all the tables that can refer to a person object (i.e. all those tables
which have attributes with Domains that can contain a person).

Assuming the notation <Person#1> represents that actual person object, then the query
| ‘SELECT Person.SSN FROM Person WHERE Person.Object = <Person#1>’ |

is equivalent to
| ‘SELECT <Person#l>.SSN’ |

This query assumes two things: first, it is obvious what relation variable (table) controls the SSN attribute
for Person; and second, it is obvious which attribute in the relation variable we are starting from (in this
case the “Object” attribute). In general these assumptions are unlikely to be true, so we probably would
need to explicitly define how the attributes of an object are a view on the appropriate relation variables.
Something like:

CREATE DOMAIN PERSON CLASS {
ssn AS SELECT SSN FROM Person WHERE Object = THIS
firstName AS SELECT First Name FROM Person WHERE Object = THIS
parents AS SELECT Parent FROM Parenthood WHERE Child = THIS
children AS SELECT Child FROM Parenthood WHERE Parent = THIS

}
Where we added the ability to declare a domain which will have objects with identity as its values (a
CLASS), the ability to declare attributes of that class as views on the database, and the new keyword THIS
to refer to whichever object we are currently dealing with. Under the covers these views could be
significantly optimized which would give the same performance advantage for traversals as an object
database.

SELECT children.firstName
FROM Person.Object as Parent, Parent.children as children

WHERE Parent.firstName = ‘ART’ ”
Behavior
To add object behavior requires the ability to specify method implementations for any given object.
Something like:
CREATE DOMAIN PERSON CLASS ({
setName (newName : String) AS UPDATE ... WHERE Object = THIS
Foundations of Object Relational Mapping Page 12 of 22

Copyright 0 1997, Mark L. Fussell July 15, 1997

L I
Discussing behavioral additions is beyond the scope of this document. So far we have all the capabilities
required for an information modeling and storage system, and additional behavior could be easily added to
objects, tables, or the database as a whole. Effectively these are the three “types” of objects that could have
behavior within our object-relational system.

Inheritance

Type based inheritance can be used as part of integrity constraints. When we specify that a domain is of a
particular type, we are allow only objects that implement that type or any conformant subtype to be values
in that domain. This permits similar flexibility and integrity as for a type based programming language.

For example, if we have the two classes:

CREATE DOMAIN PERSON CLASS {...}

CREATE DOMAIN EMPLOYEE CLASS EXTENDS PERSON {...}
An object from either class then can be the value of an attribute of type PERSON. We know that the object
will at least support the PERSON interface although some may additionally support the EMPLOYEE
interface.

Class based inheritance can be used to ease the creation of classes by having subclasses inherit the attributes
and behavior of the superclass.

What about inheriting among tables? Inheriting among tables is not inheritance at all; it is just multi-
relation compression and management. Tables are related by having common attributes (columns and
domains) and by having common predicates. Table “inheritance” (compression) does not affect whether the
tables are related or not, it is just a simple way to implement possibly related tables. In this sense, it is
similar to class inheritance, but there is no reason to overload the term “inheritance”.

Summary

This chapter has presented a correct integration of objects into the relational model. These objects have
identity, which is the foundation for the true integration of object modeling. Objects can also have
attributes and behavior, but these properties must be in terms of the truth statements and predicates that are
the foundation of the relational model. Attributes are read from relational expressions and state modifying
behavior must alter the state of relation variables in the database. The two models are merged and enables
us to have the convenience of object notation with the expressive power of predicate logic.

Foundations of Object Relational Mapping Page 13 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Using Current Relational Databases

The previous section assumed we could modify the relational model to add features we need for object-
relational mapping. In the long run this may be possible but currently it is not. Current relational systems
do not support objects with identity as the values of tuple attributes. Most relational systems do not support
anything more than basic data types as tuple attributes. Have we returned to the impedance mismatch? No,
we already have an approach that is a good integration of Relational and Object models. We only need to
implement it with current technology.

IdentityKeys: Relinquishing Objects for ObjectShadows

We can not directly store objects with identity in current relational databases. Instead we will just store an
IdentityKey as an ObjectShadow: the existence of an IdentityKey indicates that an Object exists but that
the database can not directly represent the actual object. We only have the shadow of the object, which is
less convenient to work with but contains as much information.

ID SSN First Name Last Name Company_ID
/\
Person#1 €+— #1 123-45-6789 Lino Buchanan #3
\/
/\
Person#2 €+— #2 234-56-7890 Art Larrson #9
\/

Distinguishers: Identifying an Object’s Type

In the above example the type of the ObjectShadow is obvious. It is always a person for the ID column and
it is always a company for the Company ID column. What if we allow the type of a domain to vary over
multiple classes? How do we identify what type of object that shadow is for? We need some manner to
first identify the object’s class and then use the object’s IdentityKey to identify the object within that class.
We need a more knowledgeable shadow.

We can add this knowledge through a distinguisher that identifies the object shadow’s class. We first find
the class through the distinguisher and then find the object of that class through the identityKey.

{ Employee

i \ Dist ID SSN First Name Last_Name Company_ID

#1 123-45-6789 Lino Buchanan #3
|

[
- P #1 234-56-7890 Art Larrson #9
...................... / i |
Person

T
m

Foundations of Object Relational Mapping Page 14 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Summary

Working with current relational technology makes implementing objects in the database much more
cumbersome, but the model is still valid and possible. Instead of having real objects we have object
shadows which indicates the existence of a particular object. An object shadow is simply an IdentityKey
when the objects are all from a single type. An object shadows is an IdentityKeys plus a distinguisher when
the objects could be from one of multiple types. In all cases the ObjectShadow must be sufficient to
uniquely identify the single true object that should be in its place. If we have this, we have objects.

Foundations of Object Relational Mapping Page 15 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Client-Server Object Issues

Object-relational mapping intrinsically brings in client-server issues because a relational server is separated
from the client application. The client-server issues are nonetheless independent of relational mapping.
This conveniently divides the problems into more manageable pieces. This chapter will discuss client-
server issues solely in terms of objects. The next chapter can then focus on the specifics of relational
mapping.

The major issues when dealing with client-server objects is to be able to manage the identity and state of
objects on each of the client and the server, and then handle the relationships between the two systems’
objects. This is different from the relational approach where everything is just a value. For that approach,
the client is only getting a simple snapshot of the server state and then must state explicitly how the server
state should change. The object model tries to provide a more transparent interface for the client, but this
actually causes a more complex model and a more sophisticated framework.

ObjectSpaces

To help describe these independent states we will define the
term ObjectSpace. An ObjectSpace is a closed collection of
objects based on a single (possibly very large) scheme. An
ObjectSpace is self-contained and isolated from other
ObjectSpaces: two ObjectSpaces can be based on the same ObjectSpace-2
scheme but they have no references to each other and changes
to either ObjectSpaces’s state will not impact the other.

ObjectSpace-1

Scheme-1

ObjectSpace-3 Scheme-2

ObjectSpace Example

Scheme-1 shows a scheme for a simple business model. ObjectSpace-1 shows one complete state of a
business model: it represents the model of interest to Purrfect Analysis. ObjectSpace-2 shows a second,
independent, but also complete state of the same scheme. ObjectSpace-1 and ObjectSpace-2 are completely
independent even though they have compatible (actually equivalent) models.

Scheme-1
Employee employer> Company
: 3
P e
Project
Foundations of Object Relational Mapping Page 16 of 22

Copyright 0 1997, Mark L. Fussell July 15, 1997

ObjectSpace-2

ObjectSpace-1
Diego Red Hot Hat
Jablonski Manufacturing
Comfy Cat

- |_—— | Corporation
‘)

w -
Mouse Cage

Enterprises

The Brain

=

Rule The
World

Better

N
4 MouseTrap

Client-Server ObjectSpaces

ObjectSpaces are, by default, unrelated. A simple application could “load” all the objects from one
ObjectSpace, modify them, and then save them back (similar to working with a document). At the same
time a different application could work with a different ObjectSpace. Neither application would have an
impact on the other.

Client-Server applications can not work this way. The basic model for client-server applications is a single

central server with multiple clients that can connect to that server. The ObjectSpaces for these different
applications are not independent, but are instead inter-linked by the state of the server’s ObjectSpace.

True ObjectSpace is on the Server

For client-server applications, the “true” Server: ObjectSpace-1

ObjectSpace is located on the Server. This
Diego Red Hot Hat
Jablonski Manufacturipa

is where the one true state of the business
Comfy Cat
- — - Corporation

model is kept for everyone to see and
Better
MouseTrap

modify. If each client were to connect to the
server’s ObjectSpace (locking out all other
clients for that time period) and to make
changes, we would again return to the
simple, single ObjectSpace model.
Unfortunately this would prevent any type of

—

N
g

concurrency among different users of the
application. Instead each client will also
have its own ObjectSpace that is replicated
from the servers true ObjectSpace.

Proxies and Replicates

A Proxy is an object that stands in for another object (the RealSubject) and manages the client interaction
with the RealSubject. A proxy pretends to be the RealSubjectto make life easy on the client: a client does
not need to consider all the issues involved with talking to the RealSubjectwhich may be on a different
machine or could change in different contexts. A Replicate is a Proxy which holds local state and performs
local operations which are later propagated to the RealSubject. This is as opposed to a Forwarder, which
holds no local state and which immediately propagates all operations to the RealSubject.

Proxies must be able to find and pretend to be their RealSubject. This causes a Proxy to have two
identities: their local identity and their “real” identity. The RealSubject must have some type of
IdentityKey, a value that uniquely identitifies the RealSubject for its proxies. Each proxy can then hold
onto the RealSubject’s IdentityKey for later use in finding and interacting with the RealSubject.

Foundations of Object Relational Mapping Page 17 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Replicated ObjectSpaces are on the Clients

Each client has its own ObjectSpace but this is only a temporary working-copy of the server’s true
ObjectSpace. Each object in a client’s ObjectSpace is a replicate of a server object, and the whole client
ObjectSpace forms a partial or complete replicate of the server’s ObjectSpace.

[] |

= = = —
—=
1

Client-1: ObjectSpace-1a _ Client-2: ObjectSpace-1b
e~ r Comfy Cat ! T T~ =TT T~
Qo \\://: Corporation | i~ Diego \',—: Red Hot Hat |
i 7, Lino Buchanan ~-Z o I__Jablonski __ | Manufacturinn_ |
| JLIl’h\ —— ~—_ - S~ _—<< -~ - S~
T~ - =~ T~ Comfy Cat !
e~ =] ArtLarsson | Cor, o)r/ation :
- Sett -~ r’:Lino‘bu.h\ I _ P n_
etter Ay ~-z ~— -
| MouseTrap B S~__ To=F7

Server: ObjectSpace-1

Diego Red Hot Hat
Jablonski nufactur- 0

Comfy Cat

Qraton
|' Better —)

AN
4 MouseTrap

Concurrency and Conflicts

If each client deals with a non-intersecting subset of the servers ObjectSpace then we can have easy and
“perfect” concurrency: clients can cause changes to their ObjectSpace replicates and propagate these to the
server without worrying about a conflict with another client. For our example, changes to “Diego
Jablonski” will not conflict with changes to “Lino Buchanan”.

For most applications it is very unlikely that clients will always using non-intersecting subsets. For the
cases where the ObjectSpaces on clients overlap, there must be some type of concurrency control between
the clients and the server. Concurrency controls can vary on granularity, visibility, pessimism, functional
dependency, and many other axes. There are too many variations of concurrency control to be discussed
here, but I will include a couple examples.

Approach-1

A client can “check-out” a collection of objects from the server and no other client can see these objects
until they are checked back in. For our example, client-1 can check-out Comfy Cat and all its employees
and projects. Then client-2 could work with “Red Hot Hat” but not do anything with Comfy Cat. This
automatically causes each client to have non-intersecting subsets.

Foundations of Object Relational Mapping Page 18 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Approach-2

A client can either read “check-out” or write “check-out” objects from the server. Two clients can check-
out the same object as long as they are not both trying to write to it. Alternatively we can prevent dirty-
reads as well: a client can only check out an object if there are no write-locks on it and can only write-lock
an object if no other client has checked it out.

Approach-3

A client can replicate any object from the server but will only be able to write changes back to the server if
the server object has not changed since the client produced the replicate. This is the standard optimistic
locking.

Summary

Because relational mapping intrinsically involves a client-server system, we need to be able to handle the
issues with that system. Most of the issues have nothing to do with relational mapping but are instead
involved with having multiple ObjectSpaces between a Server and its Client applications. We need to
recognize that the client objects are Replicates of the server objects, that they must keep track of the
IdentityKey of their server object, and that there are many issues and approaches for handling concurrency
between the multiple clients.

Foundations of Object Relational Mapping Page 19 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Conclusion

We now have all the major pieces needed to discuss and analyze object-relational mapping. We have
discussed object modeling and relational modeling. We integrated the two models into a single object-
extended relational model and described how to implement that model on current relational database
systems. Finally we discussed the issues with client-server object models.

Not all object-relational mapping products will be able to support the complete integrated model and all the
client-server capabilities. Some will choose a partial approach or simply not consider objects at all. The
best approach for mapping is up to each project and product vendor. It will depend on how much of the
integrated model they require, whether they can implement all the needed functionality, and the time & cost
considerations. The following table identifies and describes levels of object-relational mapping
sophistication starting from simply using the relational model and up to implementing a full object mapping
as described in this document. At the end is a short description of the functional capabilities of an active
object server.

1 Pure Relational Use relational database model in the client and the server. The client
Ul is organized around rows and tables and uses the standard relational
operations to tables and rows.

2 Light Object Mapping Have some use of objects on the client and try to isolate most of the
application code from the specifics of SQL. Convert rows from the
database into basic objects on the client. Encapsulate hard-coded SQL
calls within certain classes/methods so most of the application does not
have to be coupled to them.

3 Medium Object Mapping Primarily use objects on the client and write the entire application
behavior in terms of these objects. Application may have to manage
transactions of these objects. Flexibly convert rows from the database
into the appropriate type of objects and maintain identity for these
objects. Manage associations between objects of variable types. Allow
retrieval queries to be specified in object model terms and then
converted to the needed SQL calls. Also allow simple identity based
retrieval queries to be answered locally (without the database hit).

4 Full Object Mapping Completely use objects in the application code. Similar to previous
level, but allow very general class data storage formats (for inheritance
and composition), manage replicate vs. server state differences, allow
queries to be completely executed locally when possible, combine
multiple simple object queries into a single, larger database queries.

5 Object Server Server itself also uses objects to organize both the information and
behavior, so retrievals and updates can be completely specified in terms
of the object model and then executed on either the server or client as
appropriate (for processing power vs. data movement).

Choosing a technique to use from among these levels will impact performance, cost, scalability, application
behavior, development time, and maintenance. No technique is the best at all the criteria. More
sophisticated techniques are not appropriate for all applications and many applications work just fine with a
purely relational model. Other applications will grow to a size and complexity that is easier to manage
using object models, and will have to decide which technique and products will best serve their needs.

Foundations of Object Relational Mapping Page 20 of 22
Copyright 0 1997, Mark L. Fussell July 15, 1997

Standard Definitions

This section collects definitions of terms needed for general Object-Relational mapping.

Object

Type

Protocol

Class
Factory

Identity

Immutable

ValueObject

Attribute

BasicAttribute

Association

Instance Variable

ObjectShadow

Proxy

Forwarder

Replicate

An identifiable, encapsulated entity that is interacted with by sending messages.
Objects have behavior, state, and identity (but see ValueObject for a variation).

Specifies the public behavior and a conceptual grouping for objects that are members
of the Type

Specifies a collection of methods that together provide a higher level interface to an
object. An object can be a Type, an object can support a Protocol, and a Type can
specify support for a Protocol.

Describes the types and the implementation for a set of objects.

An object that can create other objects.

The ability to tell an object apart from another object independently of whether their
type and state is equal.

Can not be changed after being created.

An object that does not have identity independent of its value. A ValueObject is
immutable and should be considered identical to anything that it is equal to.
Primitive data types in Smalltalk (most numbers, Symbols) are ValueObjects. Java
Strings are very close to ValueObjects except they are not guaranteed to be
identical for the same value (they would be if they did an automatic “intern()”).
Java primitive types are not Objects.

A public property of an object that shows the state of the object. Frequently there is a
minimal collection of attributes that uniquely determine the state of the object.

An attribute that takes its value from ValueObjects. This is as opposed to associations
which connect two or more objects with identity.

A defined relationship between two objects with identity.

A private implementation to remember part of an object's state.

The information needed to see that an object exists without any true representation of
the real object. Relational databases could be considered to work with
ObjectShadows: they record the information about an object but never have a real
object to interact with.

An object that stands in for another object (the RealObject) and manages the client
interaction with the RealObject.

A proxy which immediately forwards messages, possibly over process and machine
boundaries, to the RealSubject.

A proxy which holds local state and performs local operations which are later
propagated to the RealSubject

Foundations of Object Relational Mapping
Copyright 0 1997, Mark L. Fussell

Page 21 of 22
July 15, 1997

Stub

A proxy which acts as a placeholder for the RealObject and must become another type
of proxy (for example, forwarder or replicate) when interacted with by a client.

Realldentity The identity of the RealObject that a proxy represents instead of the proxy’s
independent identity. For proxies we are rarely interested in their own identity, we
just want to know the identity of the RealObject on the server.

IdentityKey A value that defines the Realldentity of a Proxy.

Binding Associating a client object to a database object, which turns the client object into a
Proxy

Builder Builds up another object that can later be extracted

Writer Writes information directly to another object (usually another writer or a Stream)

Reader Reads information from another object (another Reader or a Stream)

Stream Able to sequentially retrieve or store information

Foundations of Object Relational Mapping Page 22 of 22

Copyright 0 1997, Mark L. Fussell July 15, 1997

References

Booch 94

Brown+W

Cattell+ 96

Codd 90

Date 95
Date 95b

Firesmith+E 95

Grady Booch. Object-Oriented Analysis and Design with Applications.
Benjamin/Cummings, Redwood City, CA, 1994.

Kyle Brown and Bruce G. Whitenack. “Crossing Chasms: A Pattern Language for
Object-RDBMS Integration”. http://www.ksccary.com/ORDBJrnl.htm

R.G.G. Cattell, Editor. The Object Database Standard: ODMG-93, Release 1.2. Morgan
Kaufmann, San Francisco, 1996.

E.F. Codd. The Relational Model for Database Management, Version 2. Addison-
Wesley, Reading, MA, 1990

C.J. Date. An Introduction to Database Systems. Addison-Wesley, Reading, MA, 1995.

C.J. Date. Relational Database Writings 1991- 1994. Addison-Wesley, Reading, MA,
1995.

Donald Firesmith, Edward Eykholt. Dictionary of Object Technology: The Definitive
Desk Reference. SIGS Books, Inc., New York, NY, 1995.

Kilov+R 94 Haim Kilov and James Ross. Information Modeling: An Object-Oriented Approach.

Prentice-Hall, Englewood Cliffs, NJ, 1994.

Rumbaugh+BPEL 91 James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorenson. Object-Oriented Modeling and Design. Prentice-Hall, Englewood
Cliffs, NJ, 1991.

Stonebraker+M 96 Michael Stonebraker with Dorothy Moore. Object-Relational DBMSs, The Next Great
Wave. Morgan Kauffman, San Francisco, CA, 1996.
Foundations of Object Relational Mapping Page 23 of 22

Copyright 0 1997, Mark L. Fussell July 15, 1997

