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Preface

These notes are to accompany a short course that I will be teaching during my

August/September 2009 visit to ERI. The topics are related to my own seismology

research projects and are rather diverse. Thus, each lecture is largely independent

of the others. My intention is to give a chalkboard description of the material

in these notes, as background material, before giving a PowerPoint presentation

of the accompanying research results. Some, but not all, of the material in these

notes is from my book, Introduction to Seismology or from my papers listed in the

“Additional Reading” list. These papers can be downloaded from my web site at:

http://igppweb.ucsd.edu/ shearer/mahi/publist.html
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Chapter 1

Upper mantle discontinuities

The upper mantle discontinuities provide important constraints on models of mantle

composition and dynamics. The most established seismic discontinuities occur at

mean depths near 410, 520, and 660 km and will be the focus of this lecture. The

term “discontinuity” has traditionally been applied to these features, although they

may involve steep velocity gradients rather than first-order discontinuities in seismic

velocity. The velocity and density jumps at these depths result primarily from phase

changes in olivine and other minerals, although some geophysicists, for geochemical

and various other reasons, argue for small compositional changes near 660 km.

Before discussing observations of these features, I will review some of the aspects

of ray theory that will help in the analysis.

1.1 Ray theory and triplications in 1-D Earth models

To first order, the Earth is spherically symmetric, as can be seen in a global stack

of long-period seismograms (Fig. 1.1). A variety of seismic body-wave phases result

from the P and S wave types and reflections and phase conversions within the Earth.

If 3-D heterogeneity were very large, then these phases would not appear so sharp

in a simple stack that combines all source-receiver paths at the same distance.

I will use the term “1-D Earth model” for spherically symmetric models in

which velocity varies only as a function of radius. In this case, the ray parameter

or horizontal slowness p is used to define the ray and can be expressed as:

p = u(z) sin θ =
dT

dX
= utp = constant for given ray, (1.1)
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Figure 1.1: Global seismic network (GSN) vertical-component seismograms from
1988 to 1994 from shallow (< 50 km depth) earthquakes of M > 5.7, filtered to
below 10 s period, normalized using a STA/LTA filter, and stacked in 0.5◦ epicentral
distance bins. From Astiz et al. (1996).
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where u = 1/v is the slowness, z is depth, θ is the ray incidence angle (from vertical),

T is the travel time, X is the horizontal range, and utp is the slowness at the ray

turning point.

Generally in the Earth, X(p) will increase as p decreases; that is, as the takeoff

angle decreases, the range increases, as shown in Figure 1.2. In this case the deriva-

tive dX/dp is negative. When dX/dp < 0, we say that this branch of the travel time

curve is prograde. Occasionally, because of a rapid velocity transition in the Earth,

dX/dp > 0, and the rays turn back on themselves (Fig. 1.3). When dX/dp > 0 the

travel time curve is termed retrograde. The transition from prograde to retrograde

and back to prograde generates a triplication in the travel time curve.

v

z
p
decreasing

X increasing

Figure 1.2: A gentle velocity increase with depth causes rays to travel further when
they leave the source at steeper angles.
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Figure 1.3: A steep velocity increase with depth causes steeper rays to fold back on
themselves toward the source.

Triplications are very diagnostic of the presence of a steep velocity increase or

discontinuity. The 410- and 660-km discontinuities cause a double triplication near

20 degrees (Fig. 1.4 and 1.5), which can be seen in both P wave and S waves.

This is how these discontinuities were first discovered in the 1960s. Older studies of

the triplications analyzed the timing (and sometimes the slopes, if array data were

available) of the different branches of the travel-time curves. However, because the
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Figure 1.4: The seismic velocity increases near 410 and 660 km depth create a
double triplication in the P -wave travel time curve near 20◦ epicentral distance, as
predicted by the IASP91 velocity model (Kennet, 1991). A reduction velocity of
10 km/s is used for the lower plot. From Shearer (2000).

first arriving waves do not directly sample the discontinuities, and the onset times

of secondary arrivals are difficult to pick accurately, these data are best examined

using synthetic seismogram modeling. The goal is to find a velocity-depth profile

that predicts theoretical seismograms that match the observed waveforms. This

inversion procedure is difficult to automate, and most results have been obtained

using trial-and-error forward modeling approaches.

An advantage of this type of modeling is that it often provides a complete velocity

versus depth function extending from the surface through the transition zone. Thus,

in principle, some of the tradeoffs between shallow velocity structure and disconti-

nuity depth that complicate analysis of reflected and converted phases (see below)

are removed. However, significant ambiguities remain. It is difficult to derive quan-

titative error bounds on discontinuity depths and amplitudes from forward modeling

results. Tradeoffs are likely between the discontinuity properties and velocities im-
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Figure 1.5: Record section of P waves from Mexican earthquakes recorded by south-
ern California seismic stations (left) compared to synthetic seismograms. From
Walck (1984).

mediately above and below the discontinuities—regions that are not sampled with

first-arrival data. The derived models tend to be the simplest models that are found

to be consistent with the observations. In most cases, the 410 and 660 discontinu-

ities are first-order velocity jumps, separated by a linear velocity gradient. However,

velocity increases spread out over 10 to 20 km depth intervals would produce nearly

identical waveforms (except in the special case of pre-critical reflections), and subtle

differences in the velocity gradients near the discontinuities could be missed. The

data are only weakly sensitive to density; thus density, if included in a model, is

typically derived using a velocity versus density scaling relationship.
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Figure 1.6: Example ray paths for discontinuity phases resulting from reflections or
phase conversions at the 660-km discontinuity. P waves are shown as smooth lines,
S waves as wiggly lines. The ScS reverberations include a large number of top- and
bottom-side reflections, only a single example of which is plotted. From Shearer
(2000).

1.2 Discontinuity phases

An alternative approach to investigating upper mantle discontinuity depths involves

the study of minor seismic phases that result from reflections and phase conversions

at the interfaces. These can take the form of P or S topside and bottomside reflec-

tions, or P -to-S and S-to-P converted phases. The ray geometry for many of these

phases is shown in Figure 1.6. Typically these phases are too weak to observe clearly

on individual seismograms, but stacking techniques (the averaging of results from

many records) can be used to enhance their visibility. Analysis and interpretation

of these data have many similarities to techniques used in reflection seismology.

Note that these reflected and converted waves are much more sensitive to dis-
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Figure 1.7: Ray geometry for near-vertical S-wave reflection and transmission.

continuity properties than directly transmitted waves. For example, consider the

reflected and transmitted waves for an S-wave incident on a discontinuity (Fig. 1.7).

For near-vertical incidence, the travel time perturbation for the reflected phase is

approximately

∆TR =
2∆z
β1

(1.2)

where ∆z is the change in the layer depth and β1 is the velocity of the top layer.

The travel time perturbation for the transmitted wave is

∆TT =
∆z
β1

− ∆z
β2

= ∆z
(

1
β1
− 1
β2

)
= ∆z

(
β2 − β1

β1β2

)
=

∆z
β1

β2 − β1

β2

=
1
2
β2 − β1

β2
∆TR (1.3)

where β2 is the velocity in the bottom layer. Note that for a 10% velocity jump,

(β2 − β1)/β2 ≈ 0.1, and the reflected travel time TR is 20 times more sensitive to

discontinuity depth changes than the transmitted travel time TT .

Now consider the amplitudes of the phases. At vertical incidence, assuming an

incident amplitude of one, the reflected and transmitted amplitudes are given by

the S-wave reflection and transmission coefficients are

AR = S̀Śvert =
ρ1β1 − ρ2β2

ρ1β1 + ρ2β2
, (1.4)

AT = S̀S̀vert =
2ρ1β1

ρ1β1 + ρ2β2
. (1.5)

where ρ1 and ρ2 are the densities of the top and bottom layers, respectively. The

product βρ is termed the shear impedance of the rock. A typical upper-mantle
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discontinuity might have a 10% impedance contrast, i.e., ∆ρβ/ρβ = 0.1. In this

case, S̀Ś = −0.05 (assuming β1ρ1 < β2ρ2) and S̀S̀ = 0.95. The transmitted wave is

much higher amplitude and will likely be easier to observe. But the reflected wave, if

it can be observed, is much more sensitive to changes in the discontinuity impedance

contrast. If the impedance contrast doubles to 20%, then the reflected amplitude

also doubles from 0.05 to 0.1. But the transmitted amplitude is reduced only from

0.95 to 0.9, a 10% change in amplitude that will be much harder to measure. Because

the reflected wave amplitude is directly proportional to the impedance change across

the discontinuity, I will sometimes refer to the impedance jump as the “brightness”

of the reflector.

Figure 1.8: A step velocity discontinuity produces a delta-function reflected pulse.
A series of velocity jumps produces a series of delta-function reflections.

Another important discontinuity property is the sharpness of the discontinuity,

that is over how narrow a depth interval the rapid velocity increase occurs. This

property can be detected in the possible frequency dependence of the reflected phase.

A step discontinuity reflects all frequencies equally and produces a delta-function

reflection for a delta-function input (Fig. 1.8, top). In contrast, a velocity gradient

will produce a box car reflection. To see this, first consider a staircase velocity depth

function (Fig. 1.8, bottom). Each small velocity jump will produce a delta function

reflection.
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Figure 1.9: Different velocity-depth profiles and their top-side reflected pulses.

In the limit of small step size, the staircase model becomes a continuous velocity

gradient, and the series of delta functions become a boxcar function (top left of

Fig. 1.9). This acts as a low pass filter that removes high-frequency energy. Thus, the

sharpness of a discontinuity can best be constrained by the highest frequencies that

are observed to reflect off it. The most important evidence for the sharpness of the

upper-mantle discontinuities is provided by observations of short-period precursors

to P ′P ′. Underside reflections from both the 410 and 660 discontinuities are visible

to maximum frequencies, fmax, of ∼1 Hz (sometimes slightly higher). The 520-km

discontinuity is not seen in these data, even in data stacks with excellent signal-

to-noise (Benz and Vidale, 1993), indicating that it is not as sharp as the other

reflectors.

P ′P ′ precursor amplitudes are sensitive to the P impedance contrast across

the discontinuities. Relatively sharp impedance increases are required to reflect

high-frequency seismic waves. This can be quantified by computing the reflection

coefficients as a function of frequency for specific models. If simple linear impedance

gradients are assumed, these results suggest that discontinuity thicknesses of less

than about 5 km are required to reflect observable P waves at 1 Hz (e.g., Richards,

1972; Lees et al., 1983), a constraint confirmed using synthetic seismogram modeling

(Benz and Vidale, 1993). A linear impedance gradient of thickness h will act as a low
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pass filter to reflected waves. At vertical incidence this filter is closely approximated

by convolution with a boxcar function of width tw = 2h/v, where tw is the two-way

travel time through the discontinuity and v is the wave velocity. The frequency

response is given by a sinc function, the first zero of which occurs at f0 = 1/tw.

We then have h = v/2f0 = λ/2, where λ is the wavelength; the reflection coefficient

becomes very small as the discontinuity thickness approaches half the wavelength.

Interpretation of P ′P ′ precursor results is further complicated by the likely pres-

ence of non-linear velocity increases, as predicted by models of mineral phase changes

(e.g., Stixrude, 1997). The reflected pulse shape (assuming a delta-function input)

will mimic the shape of the impedance profile (Fig. 1.9). In the frequency domain,

the highest frequency reflections are determined more by the sharpness of the steep-

est part of the profile than by the total layer thickness. In principle, resolving the

exact shape of the impedance profile is possible, given broadband data of sufficient

quality. However, the effects of noise, attenuation and band-limited signals make

this a challenging task. Recently, Xu et al. (2003) analyzed P ′P ′ observations at

several short-period arrays and found that the 410 reflection could be best modeled

as a 5-km-thick gradient region immediately above a sharp discontinuity.

1.3 Additional reading

Shearer, P. M. (2000). Upper mantle seismic discontinuities, Earth’s Deep Interior:
Mineral Physics and Tomography from the Atomic to the Global Scale, AGU
Geophysical Monograph 117, 115–131.

Lawrence, J. F., and P. M. Shearer (2006). Constraining seismic velocity and den-
sity for the mantle transition zone with reflected and transmitted waveforms,
Geochem. Geophys. Geosys., 7, doi: 10.1029/2006GC001339.
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Chapter 2

Seismic scattering

Most seismic analyses of Earth structure rely on observations of the travel times

and waveforms of direct seismic waves that travel along ray paths determined by

Earth’s large-scale velocity structure. These observations permit inversions for ra-

dially averaged P -wave and S-wave velocity profiles as well as three-dimensional

perturbations. However, smaller-scale velocity or density perturbations cause some

fraction of the seismic energy to be scattered in other directions, usually arriving

following the main phase as incoherent energy over an extended time interval. This

later-arriving wavetrain is termed the coda of the direct phase. Scattering tends to

be stronger at higher frequencies, which causes the coda to be most prominent in

short-period records (see Fig. 2.1).

Figure 2.1: Long-period and short-period seismograms look very different.

Given the number of different scattering events and the complexity of the scat-

tered wavefield, it is generally impossible to resolve individual scatterers. Instead,

15
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coda-wave observations are modeled using random media theories that predict the

average energy in the scattered waves as a function of scattering angle, given the

statistical properties of the velocity and density perturbations. In this way, it is

possible to characterize Earth’s heterogeneity at much smaller scales than can be

imaged using tomography or other methods.

The fact that direct seismic waves can be observed in the Earth indicates that

this scattering must be relatively weak so that a significant fraction of the seismic

energy remains in the primary arrivals. Scattering is much stronger in the Moon,

making direct wave arrivals hard to resolve in lunar seismograms. In addition to

facilitating observations of direct arrivals, weak (as opposed to strong) scattering

also can simplify modeling by permitting use of single-scattering theory (i.e., the

Born approximation). However, it is now clear that accurate modeling of scattering

in the lithosphere, and possibly deeper in the mantle as well, requires calculations

based on multiple scattering theories. Fortunately, increased computer power makes

these calculations computationally feasible.

A good reference for seismic scattering is the book by Sato and Fehler (1998),

henceforth termed S&F, which provides an extensive review of scattering theory and

analysis methods, as well as a comprehensive summary of crustal and lithospheric

studies.

2.1 Scattering theory

Wave scattering from random heterogeneities is a common phenomenon in many

fields of science and theoretical modeling approaches have been extensively devel-

oped in physics, acoustics and seismology. Solving this problem for the full elastic

wave equation (i.e., for both P and S waves) in the presence of strong perturbations

in the elastic tensor and density is quite difficult, so various simplifying approxima-

tions are often applied. These include:

1. Assuming an isotropic elastic tensor

2. Using first-order perturbation theory in the case of weak scattering

3. Using the diffusion equation for very strong scattering

4. Assuming correlations among the velocity and density perturbations
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2.1.1 Single-scattering theory and random media

For sufficiently weak velocity and density perturbations, most scattered energy will

have experienced only one scattering event and can be adequately modeled using

single-scattering theory. The mathematics in this case are greatly simplified if we

assume that the primary waves are unchanged by their passage through the scat-

tering region (the Born approximation). The total energy in the seismic wavefield

therefore increases by the amount contained in the scattered waves and energy con-

servation is not obeyed. Thus this approximation is only valid when the scattered

waves are much weaker than the primary waves, which is the case in the Earth when

the velocity and density perturbations are relatively small (quantifying exactly how

small depends upon the frequency of the waves and the source-to-receiver distance).

Single-scattering theory is sometimes called Chernov theory after Chernov (1960).

Detailed descriptions of Born scattering theory for elastic waves are contained in

Wu and Aki (1985a,b), Wu (1989) and Sato and Fehler (1998).

A derivation of the Born equations for an isotropic medium can be found in

section 13.2 of Aki and Richards (1980). It begins with the momentum equation for

isotropic material:

ρüi = ∂i(λ∂kuk) + ∂j [µ(∂iuj + ∂jui)] (2.1)

where u is the displacement vector, ρ is density, and λ and µ are the Lamé pa-

rameters. At this point we are assuming a general inhomogeneous medium, so the

partial derivatives on the r.h.s. will apply to λ and µ as well as to the displace-

ment. Now assume that the inhomogeneous medium consists of the sum of two

parts, an “unperturbed” homogenous medium and the perturbations that make up

the heterogeneity. Then the perturbed medium properties may be expressed as

ρ = ρ0 + δρ

λ = λ0 + δλ (2.2)

µ = µ0 + δµ

where ρ0, λ0 and µ0 are for the unperturbed medium and are constant, and where

δρ, δλ and δµ are the perturbations (functions of position but assumed to be much
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smaller than the unperturbed values).

Now let us write the displacement u as the sum of primary waves u0 and scattered

waves u1

u = u0 + u1 (2.3)

u0 is the solution for the unperturbed medium. The Born scattering equations are

obtained by substituting (2.3) and (2.3) into (2.1), and dropping all terms involv-

ing squares or products of the perturbed medium terms and the scattered wave

terms. Thus, both the primary wave is assumed to propagate cleanly through the

unperturbed medium. Interactions between the primary wave and the medium per-

turbations generate scattered waves. These scattered waves, once generated, prop-

agate cleanly through the unperturbed medium—there is no secondary or multiple

scattering.

Single-scattering theory provides equations that give the average scattered power

as a function of the incident and scattered wave types (i.e., P or S), the power of

the incident wave, the local volume of the scattering region, the bulk and statistical

properties of the random medium, the scattering angle (the angle between the inci-

dent wave and the scattered wave), and the seismic wavenumber (k = 2π/Λ, where

Λ is the wavelength). A general random medium could have separate perturbations

in P velocity, S velocity and density, but in practice a common simplification is

to assume a linear scaling relationship among the perturbations (e.g., Sato, 1990)

and/or to assume zero density perturbations. Performing the actual calculation for

a specific-source receiver geometry involves integrating the contributions of small

volume elements over the scattering region of interest. Each volume element will

have a specific scattering angle and geometrical spreading factors for the source-to-

scatterer and scatterer-to-receiver ray paths.

The nature of the scattering strongly depends upon the relative length scales

of the heterogeneity and the seismic waves. Normally one has no hope of actually

resolving all of the individual scatterers but only some statistical measure of their

scale length and strength. A standard way to describe the spatial fluctuation of a

random field is with the autocorrelation function (ACF). Let us define the fractional
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velocity perturbation as:

µ = −δc/c0 (2.4)

(do not confuse this parameter with the shear modulus!) where we assume the

fluctuation of µ is isotropic and stationary in space. The normalized autocorrelation

function is

N(r) =
〈µ(r′)µ(r′ + r)〉

〈µ2〉
(2.5)

where 〈 〉 is a spatial average over many statistically independent samples. Two

specific forms for N(r) are often modeled:

Gaussian

Exponential

N(r) = e−|r|/a (exponential model) (2.6)

= e−|r|
2/a2

(Gaussian model) (2.7)

where a is called the correlation distance. Note that the Gaussian model will have

“blobs” of relatively uniform size, whereas the exponential model will have greater

heterogeneity structure at both smaller and larger wavelengths.

The correlation distance, a, provides a rough measure of the average size of the

“blobs” in many commonly assumed forms for the ACF (e.g., Gaussian, exponen-

tial, van Kármán, etc.). Figure 2.2 shows examples of random realizations of the

Gaussian and exponential ACF models.

If the velocity heterogeneity is large compared to the seismic wavelength (a �

Λ, ka is large), then forward scattering predominates and becomes increasingly

concentrated near the direction of the incident wave as ka increases. Back-scattered
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a a

Gaussian Exponential

Figure 2.2: Examples of random media defined by a Gaussian ACF (left) and an
exponential ACF (right). The correlation distance, a, is indicated in the lower-left
corner.

power becomes very small, particularly for the Gaussian model. In the limit of large

ka, the energy remains along the primary ray path and scattering effects do not need

to be taken into account. However, this neglects the effect of density perturbations,

which tend to increase the amount of backscattered power. Alternatively, if the

blobs are small compared to the seismic wavelength (a � Λ, ka is small), then

the scattering is often approximated as isotropic and the scattered power scales as

k4a3. In the limit of small ka, the scattering strength goes to zero and the medium

behaves like a homogeneous solid. As discussed by Aki and Richards (1980, p. 749-

750), scattering effects are strongest when a and Λ are of comparable size (i.e., when

ka ∼ 2π), in which case the scattering is highly directional.

Aki and Chouet (1975) presented an important application of single scattering

theory to predict coda decay rates for local earthquakes. For a co-located source

and receiver and homogeneous body-wave scattering in 3-D media, they obtained

AC(t) ∝ t−1e−ωt/2QC (2.8)

where AC is the coda amplitude at time t (from the earthquake origin time) and

angular frequency ω. QC is termed the coda Q and there has been some uncer-

tainty regarding its physical meaning, in particular whether it describes intrinsic

attenuation, scattering attenuation, or some combination of both. Regardless of its
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interpretation, this formula has proven successful in fitting coda decay rates in a

large number of studies.

Single-scattering theory has also been important for modeling deep Earth scat-

tering in terms of random heterogeneity models (see Shearer, 2007, for a review).

Born theory has also been used to model expected travel time variations in direct ar-

rivals that travel through random velocity heterogeneity (e.g., Spetzler and Snieder,

2001; Baig et al., 2003; Baig and Dahlen, 2004a,b). Although our focus here is

largely on incoherent scattering from random media, it should be noted that the

Born approximation can also be used to model the effect of specific velocity struc-

tures, provided their perturbations are weak compared to the background velocity

field. In this case, true synthetic seismograms can be computed, not just the enve-

lope functions. In addition, Born theory forms the basis for computing sensitivity

kernels in finite-frequency tomography methods (e.g., Dahlen et al., 2000; Nolet et

al., 2006).

2.1.2 Born equations for correlated velocity and density perturba-
tions

In general, the Born scattering equations are quite complex. However, they become

simpler if the material properties (velocity and density) obey fixed scaling relations.

That is, assume that the P velocity α and S velocity β have have the same fractional

velocity fluctuations (S&F 4.47):

ξ(x) =
δα(x)
α0

=
δβ(x)
β0

(2.9)

where α0 and β0 are the mean P and S velocities of the medium. We further assume

that the fractional density fluctuations are proportional to the velocity variations

(S&F 4.48):
δρ(x)
ρ0

= νξ(x) (2.10)

where ν is the density/velocity fluctuation scaling factor.

The basic scattering patterns are given by (S&F 4.50):

XPP
r (ψ, ζ) =

1
γ2

0

[
ν

(
−1 + cosψ +

2
γ2

0

sin2 ψ

)
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Figure 2.3: The ray-centered coordinate system used in the scattering equations.
The incident ray is in the x3 direction. For S waves the initial polarization is in
the x1 direction. The scattered ray direction is defined by the angles ψ and ζ. The
scattered ray polarization is defined by Xr, Xψ and Xζ .

−2 +
4
γ2

0

sin2 ψ

]
XPS
ψ (ψ, ζ) = − sinψ

[
ν

(
1− 2

γ0
cosψ

)
− 4
γ0

cosψ
]

XSP
r (ψ, ζ) =

1
γ2

0

sinψ cos ζ
[
ν

(
1− 2

γ0
cosψ

)
− 4
γ0

cosψ
]

XSS
ψ (ψ, ζ) = cos ζ [ν(cosψ − cos 2ψ)− 2 cos 2ψ]

XSS
ζ (ψ, ζ) = sin ζ [ν(cosψ − 1) + 2 cosψ] (2.11)

where XPP
r is the radial component of P -to-P scattering, XψPS is the ψ component

of P -to-S scattering, etc. The angles ψ and ζ are defined as in Figure 2.3 and the

velocity ratio γ0 = α0/β0.

Assuming a random media model, the scattered power per unit volume is given

by the scattering coefficients for the various types of scattering (P to P , P to S,

etc.) (S&F 4.52):

gPP (ψ, ζ;ω) =
l4

4π

∣∣∣XPP
r (ψ, ζ)

∣∣∣2 P (
2l
γ0

sin
ψ

2

)
gPS(ψ, ζ;ω) =

1
γ0

l4

4π

∣∣∣XPS
ψ (ψ, ζ)

∣∣∣2
P

(
l

γ0

√
1 + γ2

0 − 2γ0 cosψ
)

gSP (ψ, ζ;ω) = γ0
l4

4π
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Figure 2.4: An example of a S-to-P scattering pattern as a function of ray angle,
computed using the Born equations for a random media model. The distance from
the origin gives the value of the coefficient gSP in equation 2.12. The incident S
wave is traveling in the x3 direction and is polarized in the x1 direction.

gSS(ψ, ζ;ω) =
l4

4π

(∣∣∣XSS
ψ (ψ, ζ)

∣∣∣2 +
∣∣∣XSS

ζ (ψ, ζ)
∣∣∣2)

P

(
2l sin

ψ

2

)
(2.12)

where l = ω/β0 is the S wavenumber for angular frequency ω, P is the power

spectral density function (PSDF) for the random media model (see S&F p. 14–17).

A popular choice for P is the exponential autocorrelation function, in which case

we have (S&F 2.10):

P (m) =
8πε2a3

(1 + a2m2)2
(2.13)

where a is the correlation distance, ε is the RMS fractional fluctuation (ε2 = 〈ξ(x)2〉),

and m is the wavenumber (i.e., the argument of the P functions in (2.12) above).

For example,

P

(
2l sin

ψ

2

)
=

8πε2a3(
1 + 4a2l2 sin2 ψ

2

)2 (2.14)

An example scattering pattern plotted in Figure 2.4 (the S-to-P coefficient gSP in

equation (2.12), computed for γ0 =
√

3, ν = 0.8, β0 = 6/
√

3 km/s, ω = 2π, ε = 0.01,

and a = 1 km), which is plotted at 6◦ increments in ψ and ζ.

The PSDF defines the strength of the heterogeneity as a function of its scale
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length and controls how the amplitude of the scattering varies with seismic wave-

length. Observations at a single frequency mainly constrain the heterogeneity at

scale lengths near the seismic wavelength and cannot determine the PSDF very

completely. Analysis of broadband data and consideration of scattered arrival am-

plitudes as a function of frequency is necessary to make quantitative estimates of

the PSDF.

2.1.3 How To Write a Born Scattering Program

Most scattering programs are based on ray theory so you will need to be able to

trace rays through your model and to compute travel time and geometrical spreading

factors.

1. Define the background velocity vs. depth model, the source and receiver loca-
tions, and the ray paths to be modeled.

2. Decide on what type of random media (e.g., exponential, Gaussian, etc.) and
what scattering equations you will use. This will determine what parameters
you will need to specify the scattering part of the model. Determine the
frequency (ω) at which you will model the scattering.

3. Determine where the scattering volume is in the Earth that you will use to
model your observations. Specify the heterogeneity parameters that you will
need, such as the scale length, the RMS velocity heterogeneity, the P-to-S
scaling, etc.

4. Divide the scattering volume into cells that you will use to numerically inte-
grate the scattered power.

5. For each source-receiver pair, initialize a time series to zero values.

6. For each cell in your scattering volume, compute the source-to-cell travel time
and amplitude, A, of the incident wave. Compute the scattering angle, θ, the
difference between the incident ray direction and the takeoff direction of the
scattered ray that will land at the receiver (this is one of the trickier parts so
be sure to thoroughly test this part of the code!). Compute the geometrical
spreading factor for the scattered ray. Compute the local wavenumber k from
ω and the average velocity in the cell.

7. Use your preferred scattering equations to compute the amount of scattered
power that will arrive at the receiver. Using the total source-to-scatterer-to-
receiver travel time, add this contribution to your time series.

8. Repeat (6) and (7) for all the cells in your scattering volume.

9. Repeat (5)-(8) for all of your source-receiver pairs.
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10. Your synthetics will give power as a function of time. If they are noisy looking,
try using a longer sample interval dt for your time series or convolve the result
with a realistic source-time function (in energy, not amplitude!).

11. Take the square root if you want the amplitude envelopes.

12. Often you will want to compare the scattered power to that in the direct
arrival. To do so, simply compute the ray theoretical amplitude for each
source-to-receiver ray path.

13. You can add in the effect of Q along the ray paths and reflection and transmis-
sion coefficients where the rays cross boundaries if you want to include these
effects.

2.2 Multiple scattering theories

If the energy in the scattered wavefield is a significant fraction of the energy in the

direct wave, then the Born approximation is inaccurate and a higher-order theory

should be used that takes into account the energy reduction in the primary wave and

the fact that the scattered waves may experience more than one scattering event.

These effects are all naturally accounted for using finite-difference or finite-element

calculations, but these are computationally intensive and there is a need for faster

approaches that also provide physical insight into the scattering process. In the

case of very strong scattering, the diffusion equation can be applied by assuming a

random walk process. Although this approach preserves energy, it violates causality

by permitting some energy to arrive before the direct P wave.

Most current approaches to synthesizing multiple scattering use radiative trans-

fer theory to model energy transport. Radiative transfer theory was first used in

seismology by Wu (1985) and Wu and Aki (1988) and recent reviews of the theory

are contained in Sato and Fehler (1998) and Margerin (2004). Other results are de-

tailed in Shang and Gao (1988), Zeng et al.(1991), Sato (1993), and Sato et al.(1997).

Analytical solutions are possible for certain idealized cases (e.g., Wu, 1985; Zeng,

1991; Sato, 1993) but obtaining general results requires computer calculations.

Two analytical results are of particular interest (and can be used as tests of

numerical simulations). For the case of no intrinsic attenuation, Zeng (1991) showed

the coda power converges to the diffusion solution at long lapse times

PC(t) ∝ t−3/2 (2.15)
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mean free path

(a)

(b) (c)

Figure 2.5: Example of a Monte Carlo computer simulation of random scattering
of seismic energy particles, assuming 2-D isotropic scattering in a uniform whole
space. Particles are sprayed in all directions from the source with constant scattering
probability defined by the indicated mean free path length, `. As indicated in
(a), black dots show particles that have not not been scattered, red dots show
particles that have scattered once, blue dots show particles that have scattered
twice, and green dots show particles scattered three or more times. (b) Results for
1000 particles after t = 0.8`/v, where v is velocity. (c) Results for 1000 particles
after t = 1.25`/v. Note that the particle density is approximately constant for the
scattered energy inside the circle defining the direct wavefront, as predicted by the
energy flux model.

For elastic waves with no intrinsic attenuation, the equilibrium ratio of P and S

energy density is given by (e.g., Sato, 1994; Ryzhik et al., 1996; Papanicolaou et al.,

1996)

EP /ES = 1
2(β/α)3 (2.16)

Assuming a Poisson solid, this predicts about 10 times more S energy than P energy

at equilibrium, a result of the relatively low efficiency of S-to-P scattering compared

to P -to-S scattering (e.g., Malin and Phinney, 1985; Zeng, 1993). For media with

intrinsic attenuation, an equilibrium ratio also exists but will generally differ from

the purely elastic case (Margerin et al., 2001).

A powerful method for computing synthetic seismograms based on radiative

transfer theory is to use a computer-based Monte Carlo approach to simulate the

random walk of millions of seismic energy “particles” which are scattered with prob-

abilities derived from random media theory. Figure 2.5 illustrates a simple exam-
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ple of this method applied to 2-D isotropic scattering. Variations on this basic

technique are described by Gusev and Abubakirov (1987), Abubakirov and Gusev

(1990), Hoshiba (1991, 1994, 1997), Margerin et al.(2000), Bal and Moscoso (2000),

Yoshimoto (2000), Margerin and Nolet (2003a,b), and Shearer and Earle (2004). All

of these results suggest that body-wave scattering in the whole Earth can now be

accurately modeled using ray theory and particle-based Monte Carlo methods. Al-

though somewhat computationally intensive, continued improvements in computer

speed make them practical to run on modest machines. They can handle multiple

scattering over a range of scattering intensities, bridging the gap between the Born

approximation for weak scattering and the diffusion equation for strong scattering.

They also can include general depth-dependent or even 3-D variations in scatter-

ing properties, including non-isotropic scattering, without a significant increase in

computation time compared to simpler problems.

2.3 Additional reading

Shearer, P. M., M. A. H. Hedlin, and P. S. Earle (1998). PKP and PKKP precursor
observations: implications for the small-scale structure of the deep mantle and
core, The Core-Mantle Boundary Region, AGU Geodynamics Series, 28, 37–55.

Shearer, P. M. (2007). Seismic scattering in the deep Earth, in Treatise on Geo-
physics, Volume 1: Deep Earth Structure, Schubert, G. (ed.), Elsevier Ltd.,
Oxford, p. 695–730.

Shearer, P. M., and P. S. Earle (2008). Observing and modeling elastic scattering in
the deep Earth, in Advances in Geophysics, Volume 50: Earth Heterogeneity and
Scattering Effects on Seismic Waves, H. Sato and M. C. Fehler (ed.), Elsevier
Ltd., Oxford, p. 167–193.
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Chapter 3

Earthquake location methods

The problem of locating earthquakes from travel time data is one of the oldest chal-

lenges in seismology and continues to be an important component of seismic research.

Earthquakes are defined by their origin times and hypocenters. The hypocenter is

the (x, y, z) location of the event, while the epicenter is defined as the (x, y) point

on the Earth’s surface directly above the hypocenter. Earthquakes are generally

treated as point sources in location methods. For large earthquakes that rupture

from tens to hundreds of kilometers, the hypocenter is not necessarily the “center”

of the earthquake. Rather it is the point at which seismic energy first begins to radi-

ate at the beginning of the event. Since the rupture velocity is less than the P -wave

velocity, the hypocenter can be determined from the first arrival times regardless

of the eventual size and duration of the event. Earthquake information given in

standard catalogs, such as the Preliminary Determination of Epicenters (PDE), is

based on travel times of high-frequency body wave phases. These origin times and

hypocenters should not be confused with long-period inversion results, which often

give a centroid time and location for the event, representing the “average” time and

location for the entire event.

Four parameters describe the origin time and hypocenter. Let’s call these para-

meters the model, and define a model vector

m = (m1,m2,m3,m4) = (T, x, y, z). (3.1)

Now suppose we are given n observations of travel times, ti, at individual seismic

stations. In order to invert these times for the earthquake parameters, m, we first

31
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must assume a reference Earth model. For every value of m we can then calculate

ranges to the ith station and compute predicted arrival times,

tpi = Fi(m), (3.2)

where F is the operator that gives the predicted arrival time at each station from

m. The difference between the observed and predicted times is

ri = ti − tpi = ti − Fi(m), (3.3)

where ri is the residual at the ith station. We wish to find the m that, in some

sense, gives the smallest residuals between the observed and predicted times. Note

that F is a function both of the Earth model and of the individual station locations.

Most importantly, F is a nonlinear function of the model parameters (with the

exception of the origin time T ). In practice, for 1-D Earth models, F(m) is not

particularly difficult to calculate, since the arrival times can be interpolated at the

appropriate ranges from known travel time tables for the reference velocity model.

However, the nonlinear dependence of the travel times on the earthquake location

parameters greatly complicates the task of inverting for the best earthquake model.

This nonlinearity is apparent even in the simple example of 2-D location within a

plane of uniform velocity. The travel time from a station with coordinates (xi, yi)

to a point (x, y) is given by

ti =
√

(x− xi)2 + (y − yi)2

v
, (3.4)

where v is the velocity. Clearly t does not scale linearly with either x or y in this

equation. The result is that we cannot use standard methods of solving a system

of linear equations to obtain a solution. Given a set of travel times to the stations,

there is no single-step approach to finding the best event location.

Before discussing practical location strategies, it is instructive to consider what

we might do if an infinite amount of computer power were available. In this case, we

could perform a grid search over all possible locations and origin times and compute

the predicted arrival times at each station. We could then find the particular m for

which the predicted times tpi and the observed times ti were in best agreement. How
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do we define “best” agreement? A popular choice is least squares, that is, we seek

to minimize

ε =
n∑
i=1

[ti − tpi ]
2, (3.5)

where n is the number of stations. The average squared residual, ε/n, is called the

variance; thus we are trying to minimize the variance of the residuals. A common

term that you may hear in describing models is variance reduction (“I got a 50%

variance reduction with just two parameters” or “Their model only gives a 5%

variance reduction in the raw data”). Here we use the term variance loosely to

describe the spread in the residuals, independently of the number of free parameters

in the fitting procedure. More formally, in statistics the variance is defined as ε/ndf ,

where ndf is the number of degrees of freedom (ndf is n minus the number of free

parameters in the fit). For typical problems the number of fitting parameters is

much less than the number of data, and so n and ndf are approximately equal.

Least squares is often used as a measure of misfit since it leads to simple analyt-

ical forms for the equations in minimization problems. It will tend to give the right

answer if the misfit between t and tp is caused by uncorrelated, random Gaussian

noise in t. However, in many instances the errors are non-Gaussian, in which case

least squares will give too much weight to the outliers in the data (a residual of 2

contributes 4 times more to the misfit than a residual of 1). As an alternative, we

could use the sum of the differences

ε =
n∑
i=1

|ti − tpi | . (3.6)

This measure of misfit is called the L1 norm and is considered more robust than

the L2 norm (least squares) when excessive outliers are present in the data. For a

distribution of numbers, the minimum L2 norm yields the mean or average of the

numbers, while the minimum L1 norm gives the median value. The L1 norm is

not often used because the absolute value sign creates great complications in the

equations. As an alternative to robust norms such as L1, it is possible to weight the

residuals in the least squares problem using an iterative procedure that reduces the

influence of the outlying points in subsequent steps. Of course in the case of our

hypothetical “brute force” grid search it is straightforward to apply any norm that
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Table 3.1: Percentage points of the χ2 distribution.
ndf χ2(95%) χ2(50%) χ2(5%)

5 1.15 4.35 11.07
10 3.94 9.34 18.31
20 10.85 19.34 31.41
50 34.76 49.33 67.50

100 77.93 99.33 124.34

we desire. Once we have defined a measure of misfit, we can find the “best” m as

the one with the smallest misfit, ε(m). The next step is to estimate the probable

uncertainties in our location.

Some indication of these uncertainties can be seen in the behavior of the misfit

function in the vicinity of its minimum. In our two-dimensional example, suppose

that we contour ε(m) as a function of x and y, assuming that the origin time is

known (since the tp are a linear function of the origin time, determination of the

best origin time for a given location is trivial). Clearly, if ε grows rapidly as we move

away from the minimum point, we have resolved the location to better accuracy than

when ε grows only very slowly away from its minimum.

How can we quantify this argument? By far the most common approach is based

on least squares and the L2 norm, since the statistics of Gaussian processes are well

understood. In this case we define

χ2 =
n∑
i=1

[ti − tpi ]
2

σ2
i

, (3.7)

where σi is the expected standard deviation of the ith residual due to random

measurement error. The expected value of χ2 is approximately the number of degrees

of freedom ndf (in our case ndf = n − 4 because m has 4 components) and 95%

confidence limits may be obtained by consulting standard statistical tables (e.g.,

Table 3.1).

For example, if we locate an earthquake using 14 travel times, then ndf = 10 and

there is a 90% probability that the value of χ2 computed from the residuals at the

best fitting hypocenter will be between 3.94 and 18.31. There is only a 5% chance

that the value of χ2 will exceed 18.31. The value χ2(m) will grow as we move away



35

from the best-fitting location, and by contouring values of χ2(m) we can obtain an

estimate of the 95% error ellipse for the event location.

Note that the σi values are critical in this analysis—the statistics are based on

the data misfit being caused entirely by random, uncorrelated Gaussian errors in

the individual travel time measurements. However, the misfit in earthquake location

problems is usually larger than would be expected from timing and picking errors

alone. If the σi are set significantly smaller than the average residual, then the

χ2 measure may indicate that the solution should be rejected, most likely because

unmodeled velocity structure is dominating the misfit. Alternatively, if the σi are

set significantly larger than the average residual, then the best-fitting hypocenter

could be rejected because it fits the data “too well.”

To avoid these embarrassments, the estimated data uncertainties σi are often

estimated from the residuals at the best location,

σ2(mbest) =
∑n
i=1 [ti − tpi (mbest)]

2

ndf
, (3.8)

where mbest is the best-fitting location, and this constant value of σ2 is used for all

the σ2
i in (3.7), that is,

χ2(m) =
∑n
i=1 [ti − tpi (m)]2

σ2
. (3.9)

Note that χ2(mbest) = ndf so that the χ2 value at the best-fitting hypocenter is

close to the 50% point in the χ2 distribution. By contouring χ2(m), we can then

obtain an estimate of the 95% confidence ellipse for the solution; that is, we can

approximate the region within which there is a 95% chance that the true location

lies.2

However, a serious problem with typical confidence limits is that they don’t

take into account the correlated changes to travel time residuals resulting from un-

modeled lateral heterogeneity. For example, consider a model in which a vertical

fault separates the crust into two blocks with slightly different velocities (Fig. 3.1).

Events occurring on the fault will tend to be mislocated off the fault into the faster

velocity block owing to a systematic bias in the travel times. This possibility is
2The error ellipse is only approximate because the uncertainties in the σi estimate are ignored.
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Slow Fast

Bias moves locations off fault

Figure 3.1: Earthquakes located along a fault will often be mislocated if the seismic velocity
changes across the fault.

Seismic network

Error ellipse elongated
away from array

Figure 3.2: Earthquake locations for events outside of a network are often not well con-
strained.

not accounted for in the formal error analysis, which, in this case, incorrectly as-

sumes that the travel time uncertainties are uncorrelated between different stations.

The effects of unmodeled lateral heterogeneity are the dominant source of error for

earthquake locations, provided a good station distribution is used in the inversion.

Global locations in the ISC and PDE catalogs are typically off by about 25 km in

horizontal position and depth (assuming depth phases such as pP are used to con-

strain the depth; if not, the probable depth errors are much greater). Techniques

that can be used to improve earthquake locations include joint hypocenter velocity

inversion and master event methods.

When a good station distribution is not available, location errors can be quite

large. For example, the distance to events occurring outside of a seismic array is

not well constrained, since there is a large tradeoff between range and origin time

(Fig. 3.2). In this case, the location could be improved dramatically if a travel

time was available from a station on the opposite side of the event. Generally it

is best to have a good azimuthal distribution of stations surrounding an event to

avoid these kinds of location uncertainties. Another problem is the tradeoff between
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event depth and origin time that occurs when stations are not available at close

ranges (Fig. 3.3). Since the takeoff angles of the rays are very similar, changes in

the earthquake depth may be compensated for by a shift in the event origin time.

In the preceding examples, we have assumed that only direct P -wave data are

available. The addition of other phases recorded at the same stations can substan-

tially improve location accuracy, since the use of differential times between phases

removes the effect of the earthquake origin time. For example, S arrivals travel at

a different speed than P arrivals and can be used to estimate the source–receiver

range at each station directly from the S − P time (a convenient rule of thumb for

crustal phases is that the distance to the event in kilometers is about 8 times the

S−P time in seconds). Even better than S for determining earthquake depths from

teleseismic data is the depth phase pP since the differential time pP − P is very

sensitive to the earthquake depth.

3.0.1 Iterative location methods

In our discussion so far we have assumed that the minimum ε could be found di-

rectly by searching over all ε(m). In practice, this often becomes computationally

unfeasible and less direct methods must be employed. The standard technique is to

linearize the problem by considering small perturbations to a target location

m = m0 + ∆m, (3.10)

where m0 is the current guess as to the best location and m is a new location a small

distance away from m0. The predicted times at m may be approximated using the

Depth
trades
off with
origin
time

Distant stations

Earthquake

Figure 3.3: Earthquake depth can be hard to determine if only distant stations are available.
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first term in the Taylor series expansion

tpi (m) = tpi (m0) +
∂tpi
∂mj

∆mj . (3.11)

The residuals at the new location m are given by

ri(m) = ti − tpi (m)

= ti − tpi (m0)−
∂tpi
∂mj

∆mj

= ri(m0)−
∂tpi
∂mj

∆mj . (3.12)

In order to minimize these residuals we seek to find ∆m such that

ri(m0) =
∂tpi
∂mj

∆mj (3.13)

or

r(m0) = G∆m, (3.14)

where G is the matrix of partial derivatives Gij = ∂tpi /∂mj , i = 1, 2, ..., n, j =

1, ..., 4. The best fit to Equation (3.14) may be obtained using standard least squares

techniques to obtain the location adjustment ∆m. Next, we set m0 to m0+∆m and

repeat the process until the location converges. This iterative procedure generally

converges fairly rapidly provided the initial guess is not too far from the actual

location.

3.0.2 Relative event location methods

In the common situation where the location error is dominated by the biasing effects

of unmodeled 3-D velocity structure, the relative location among events within a

localized region can be determined with much greater accuracy than the absolute

location of any of the events. This is because the lateral velocity variations outside

the local region, which lead to changes in the measured travel times at distant

stations, will have nearly the same effect on all of the events. In other words, the

residuals caused by 3-D structure to a given station will be correlated among all of

the events. If the ray path to a station is anomalously slow for one event, then it

will be slow for the other events as well, provided the local source region is small
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compared to the heterogeneity. However, the bias in the locations caused by the

3-D structure will vary among the events because they typically do not have picks

from exactly the same set of stations.

The simplest way to improve relative location accuracy among nearby earth-

quakes is to consider differential times relative to a designated master event. The

arrival times of other events relative to the master event times are

trel = t− tmaster. (3.15)

Setting the master event location to m0 in Equation (3.13), we see that the relative

location ∆m is given by the best-fitting solution to

treli = tpi (m)− tpi (m0) =
∂tpi
∂mj

∆mj , (3.16)

where the solution will be valid provided ∆m is small enough that the linear ap-

proximation holds. This approach works because the differential times subtract out

any travel-time perturbations specific to a particular station. Note that the absolute

location accuracy is limited by the location accuracy of the master event, which is

assumed fixed. However, if the absolute location of the master event is known by

other means (e.g., a surface explosion), then these relative locations can also be

converted to absolute locations.

This approach can be generalized to optimally relocate events within a com-

pact cluster with respect to the cluster centroid by projecting out the part of the

travel-time perturbations that are common to particular stations, a method termed

hypocentroidal decomposition by Jordan and Sverdrup (1981). A simpler technique is

to compute station terms by averaging the residuals at each station, recompute the

locations after correcting the observed picks for the station terms, and iterate until a

stable set of locations and station terms is obtained (e.g., Frohlich, 1979). It can be

shown that this iterative approach converges to the same solution as hypocentroidal

decomposition (Lin and Shearer, 2005).

These ideas can be generalized to distributed seismicity where the effect of 3-D

velocity structure on travel times will vary among different source regions. The

double-difference location algorithm (Waldhauser and Ellsworth, 2000; Waldhauser,
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Figure 3.4: Earthquake locations for over 17,000 earthquakes in the Imperial Valley, Cali-
fornia (1981–2005), as computed using: (left) single event location, (middle) source-specific
station term (SSST) locations, and (right) waveform cross-correlation locations using results
from Lin et al. (2007).

2001) performs simultaneous relocation of distributed events by minimizing the

residual differences among nearby events. The source-specific station term (SSST)

method (Richards-Dinger and Shearer, 2000; Lin and Shearer, 2006) iteratively com-

putes spatially varying time corrections to each station. Further improvements in

relative location accuracy can be achieved by using waveform cross-correlation to

compute more accurate differential times among nearby events than can be mea-

sured using arrival time picks on individual seismograms. Figure 3.4 illustrates the

improvement in local earthquake locations that can be achieved using these methods

compared to classic single event location. Note the increasingly sharp delineation of

seismicity features that is obtained using source-specific station terms and waveform

cross-correlation.

3.0.3 How does the SSST method work?

The source-specific station term (SSST) method is an extension of the station term

approach (e.g., Frohlich, 1979) to the case of distributed seismicity. First, consider

a small cluster of events embedded within some unknown 3-D velocity structure,
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Figure 3.5: Events within a single small event cluster will have correlated travel
time residuals to each station.

Figure 3.6: The residuals to each station will vary among different event clusters.

which are located using a 1-D velocity model (see Fig. 3.5). The 3-D structure will

cause some rays to travel faster than the model and some slower than the model,

which will bias the locations. Assuming the cluster is small compared to the 3-D

structure, the relative locations of the events within the cluster can be improved

through the use of station terms, which are computed by averaging the residuals

at each station, recomputing the locations after correcting the observed picks for

the station terms, and iterating until a stable set of locations and station terms is

obtained.

Now consider several small clusters in different locations (Fig. 3.6). In this

case, the biasing effects are different for each cluster and a different set of station

terms would need to be computed for each cluster. This is straightforward, but

the situation gets more complicated for distributed seismicity (Fig. 3.7). In this

case the timing correction terms vary continuously as a function of event position.

One approach would be to divide the crust into rectangular boxes and compute

a different set of station terms for the events within each box. But this could

cause edge artifacts as the locations change across the boundaries between boxes.
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Figure 3.7: Travel time residuals to a single station will have some amount of random
scatter and some systematic variation with event location. Negative (fast) residuals
are shown in blue; positive (slow) residuals are shown in red. The average residual
will be positive for paths through slow material and negative for paths through fast
material.

A more flexible approach is to recognize that the residuals for each station contain

uncorrelated contributions from random timing and picking errors and spatially

correlated contributions from 3-D velocity structure. The goal of the SSST approach

is to remove the effect of the spatially correlated residuals by subtracting a smoothed

version of the residual field from the travel times.

The SSSTs are computed by smoothing the residual field over some specified

smoothing radius r (see Fig. 3.8). There is a different set of SSSTs for every station,

and every event will have a slightly different SSST (unless the events are in exactly

the same location). The travel time data are then corrected for the SSSTs and the

events relocated. Just as in the single station term method, the process is repeated

until it converges to a stable set of locations and SSSTs. Note that in the limit of

large r, the method is the same as the single station term approach (e.g., Frohlich,

1979). In the limit of small r, the method will have no effect because no smoothing

of residuals among nearby events will take place.

In practice the best results seem to be obtained if r is set large for the first

iteration and then is gradually shrunk with iteration number. This is called the

“shrinking box” SSST method (Lin and Shearer, 2005).
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Figure 3.8: Source-specific station terms (SSSTs) are computed by smoothing the
residual field over some specified smoothing radius.

3.1 EXERCISES

1. (COMPUTER) You are given P -wave arrival times for two earthquakes recorded

by a 13-station seismic array. The station locations and times are listed in Ta-

ble 5.2 and also given in the supplemental web material.

(a) Write a computer program that performs a grid search to find the best

location for these events. Try every point in a 100 km by 100 km array

(x = 0 to 100 km, y = 0 to 100 km). At each point, compute the range

to each of the 13 stations. Convert these ranges to time by assuming

the velocity is 6 km/s (this is a 2-D problem, don’t worry about depth).

Compute the average sum of the squares of the residuals to each grid

point (after finding the best-fitting origin time at the grid point; see

below).

(b) For each quake, list the best-fitting location and origin time.

(c) From your answers in (b), estimate the uncertainties of the individual

station residuals (e.g., σ2 in 3.8) for each quake.

(d) For each quake, use (c) to compute χ2 at each of the grid points. What

is χ2 at the best fitting point in each case?
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Table 3.2: P -arrival times for two earthquakes.
Quake 1 Quake 2

x (km) y (km) t1 (s) t2 (s)
9.0 24.0 14.189 20.950

24.0 13.2 13.679 21.718
33.0 4.8 13.491 21.467
45.0 10.8 14.406 21.713
39.0 27.0 13.075 20.034
54.0 30.0 15.234 20.153
15.0 39.0 13.270 18.188
36.0 42.0 12.239 16.008
27.0 48.0 12.835 15.197
48.0 48.0 14.574 16.280
15.0 42.0 12.624 16.907
18.0 15.0 13.496 21.312
30.0 36.0 10.578 16.664

(e) Identify those values of χ2 that are within the 95% confidence ellipse. For

each quake, make a plot showing the station locations, the best quake

location, and the points within the 95% confidence region.

(f) Note: Don’t do a grid search for the origin time! Instead assume an origin

time of zero to start; the best-fitting origin time at each grid point will be

the average of the residuals that you calculate for that point. Then just

subtract this time from all of the residuals to obtain the final residuals

at each point.

3.2 Additional reading

Lin, G. and P. Shearer, Tests of relative earthquake location techniques using syn-
thetic data, J. Geophys. Res., 110, B4, B04304, doi:10.1029/2004JB003380,
2005.

Lin, G. and P. Shearer, The COMPLOC earthquake location package, Seismol. Res.
Lett., 77, 440-444, 2006.

Lin, G., P. M. Shearer and E. Hauksson, Applying a three-dimensional veloc-
ity model, waveform cross correlation, and cluster analysis to locate southern
California seismicity from 1981 to 2005, J. Geophys. Res., 112, B12309, doi:
10.1029/2007JB004986, 2007.
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Chapter 4

Seismic tomography

Observed travel times typically exhibit some scatter compared to the times predicted

by even the best reference 1-D Earth model. The travel time residual may be

computed by subtracting the predicted time from the observed time, tresid = tobs −

tpred. Negative residuals result from early arrivals indicative of faster-than-average

structure, while positive residuals are late arrivals suggestive of slow structure. Resi-

duals within a selected range window are often plotted as a histogram to show the

spread in residuals. If the average residual is nonzero, as in the example below, this

indicates that the reference 1-D velocity model may require some adjustment.

The spread in the residual histogram can be modeled as the sum of two parts:

(1) random scatter in the times due to picking errors and (2) systematic travel time

differences due to lateral heterogeneity. The goal of 3-D velocity inversion techniques

is to resolve the lateral velocity perturbations. These techniques are now commonly

called seismic tomography by analogy to medical imaging methods such as CAT

scans. However, it is worth noting that 3-D seismic velocity inversion is much more

complicated than the medical problem. This is due to several factors: (1) Seismic

Residual (s)
0 1-1 2
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Figure 4.1: An example ray path and cell numbering scheme for a simple 2-D tomography
problem.

ray paths generally are not straight and are a function of the velocity model itself,

(2) the distribution of seismic sources and receivers is sparse and nonuniform, (3)

the locations of the seismic sources are not well known and often trade off with the

velocity model, and (4) picking and timing errors in the data are common.

Thus the analogy to medical tomography can be misleading when seismologists

speak of imaging Earth structure, since the term “image” implies a rather direct

measurement of the structure, whereas, in practice, seismic velocity inversion usually

requires a number of modeling assumptions to deal with the difficulties listed above.

It is comparatively easy to produce an image of apparent 3-D velocity perturbations;

the more challenging task is to evaluate its statistical significance, robustness, and

resolution.

4.0.1 Setting up the tomography problem

Assuming that a reference 1-D model is available, the next step is to parameterize the

model of 3-D velocity perturbations. This is commonly done in two different ways:

(1) the model is divided into blocks of uniform velocity perturbation or (2) spherical

harmonic functions can be used in the case of global models to parameterize lateral

velocity perturbations, with either layers or polynomial functions used to describe

vertical variations.

As an example, we now illustrate the block parameterization in the case of body

waves. Consider a two-dimensional geometry with the model divided into blocks

as shown in Figure 4.1. For each travel time residual, there is an associated ray

path that connects the source and receiver. Finding this exact ray path comprises

the two-point ray tracing problem, and this can be a nontrivial task, particularly

in the case of iterative tomography methods in which rays must be traced through
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3-D structures. Methods for solving the two-point ray tracing problem include: (1)

ray shooting in which slightly different take-off angles at the source are sampled

in order to converge on the correct receiver location, (2) ray bending in which a

nearby ray path is slightly deformed to arrive at the desired receiver location, or

(3) finite difference or graph theory techniques that require a grid of points (e.g.,

Vidale, 1988; Moser, 1991). Fortunately, Fermat’s principle suggests that we do not

have to get precisely the right ray path to obtain the correct travel time—getting

reasonably close should suffice, since, to first order, the travel times are insensitive

to perturbations in the ray paths.

Once we have determined the geometry of the ray path, the next step is to find

the travel time through each block that the ray crosses (although in principle this

is straightforward, programming this on the computer can be a substantial chore!).

The total travel time perturbation along the ray path is then given by the sum of the

product of each block travel time with the fractional velocity perturbation within

the block. In other words, the travel time residual r can be expressed as

r =
∑
k

bkvk, (4.1)

where bk is the ray travel time through the kth block and vk is the fractional velocity

perturbation in the block (note that vk is unitless, with vk = −0.01 for 1% fast,

vk = 0.01 for 1% slow, etc.). The ray paths and the bk values are assumed to be

fixed to the values obtained from ray tracing through the reference model. Note

that the velocity perturbations vk are constant within individual blocks, but the

velocity within each block may not be constant if the reference 1-D model contains

velocity gradients. Since velocity perturbations will affect the ray paths, Equation

(5.16) represents an approximation that is accurate only for small values of vk.

If we set the ray travel times for the blocks not encountered by the ray to zero,

we can express the travel time residual for the ith ray path as:

ri =
m∑
j=1

bijvj , (4.2)

where m is the total number of blocks in the model. Note that most of the values of

bij are zero since each ray will encounter only a small fraction of the blocks in the
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model. For n travel time measurements, this becomes a matrix equation:

r1
r2
r3
·
·
·
rn


=



0 0 0 0 0.8 · · ·
0 0.6 0 1.3 0 · · ·

0.1 0 0 0 0 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 0.7 0 0 · · ·





v1
v2
·
·
·
vm


, (4.3)

where the numbers are examples of individual ray travel times through particular

blocks. This can be written as

d = Gm (4.4)

using the conventional notation of d for the data vector, m for the model vector, and

G for the linear operator that predicts the data from the model. The numbers in G

are the travel times for each ray through each block. G will generally be extremely

sparse with mostly zero elements. In the case shown, the number of travel time

observations is greater than the number of model blocks (n > m), and, in principle,

the problem is overdetermined and suitable for solution using standard techniques.

The least squares solution to (5.1) is

m = (GTG)−1GTd. (4.5)

In tomography problems this formula can almost never be used since the matrix

GTG is invariably singular or extremely ill-conditioned. Some of the ray paths may

be nearly identical while some of the blocks may not be sampled by any of the ray

paths. These difficulties can be reduced in the case of small matrices with linear

algebra techniques such as singular value decomposition (SVD). More commonly,

however, m is so large that direct matrix inversion methods cannot be used. In either

case, it will typically turn out that there is no unique solution to the problem—there

are too many undersampled blocks and/or tradeoffs in the perturbations between

different blocks.

A common approach to dealing with ill-posed least squares problems is to impose

additional constraints on the problem, a process referred to as regularization. One

example of regularization is the damped least squares solution in which (5.1) is
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replaced with [
d
0

]
=

[
G
λI

]
m, (4.6)

where I is the identity matrix and λ is a weighting parameter that controls the

degree of damping. The least squares solution to this problem will minimize the

functional

||Gm− d||2 + λ2||m||2,

where the first term is the misfit to the data and the second term is the variance of

the model. By adjusting the parameter λ we can control the tradeoff between misfit

and model variance. These constraints add stability to the inversion—perturbations

in blocks that are not sampled by rays will go to zero; anomalies will be distributed

equally among blocks that are sampled only with identical ray paths. However, the

damped least squares solution will not necessarily lead to a smooth model, since it

is the size of the model, not its roughness, that is minimized. Model perturbations

in adjacent blocks can be quite different.

A common measure of model roughness for block models is the Laplacian opera-

tor ∇2, which can be approximated with a difference operator in both 2-D and 3-D

block geometries. To minimize ∇2 we replace I with L in ( 4.6):

[
d
0

]
=

[
G
λL

]
m, (4.7)

where L is the finite difference approximation to the Laplacian applied over all model

blocks. Each row of L is given by the difference between the target block and the

average of the adjacent cells.

For example, in a 2-D model the Laplacian be-
comes

∇2
j ' 1

4(mleft +mright +mup +mdown)−mj ,

where ∇2
j is the Laplacian of the jth model point.

In this case the least squares inversion will mini-
mize

mj

mdown

mleft

mup

mright

||Gm− d||2 + λ2||Lm||2,
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where λ controls the tradeoff between misfit and model roughness. This type of

regularization adds stability to the inversion in a different way than damped least

squares. The resulting models will be smooth, but not necessarily of minimum

variance. Blocks that are not sampled by ray paths will be interpolated between

nearby cells, or, more dangerously, extrapolated when they are near the edge of the

model.

Both damped least squares and minimum roughness inversions have advantages

and disadvantages, and the best regularization method to use will vary from prob-

lem to problem. In general, one should distrust damped least squares solutions

that contain significant fine-scale structure at scale lengths comparable to the block

dimensions, whereas minimum roughness solutions are suspect when they produce

large-amplitude anomalies in regions constrained by little data.

We have so far assumed that all of the data are weighted equally. This is not

always a good idea in tomography problems since travel time residuals are often non-

Gaussian and plagued with outliers. This difficulty has been addressed in different

ways. Often the residuals are first windowed to remove the largest outliers. Travel

time residuals from similar ray paths are commonly averaged to form summary

ray residuals before beginning the inversion. In iterative schemes the influence of

anomalous data points can be downweighted in subsequent steps, thus simulating a

more robust misfit norm than used in least squares.

4.0.2 Solving the tomography problem

For “small” problems (number of blocks in model m < 500 or so), conventional

linear algebra methods such as Gauss reduction or singular value decomposition can

be used to obtain exact solutions to Equations (4.6) or (4.7). In these cases, we

have a significant advantage in that it is also practical to compute formal resolution

and model covariance matrices. However, more commonly m is too large for such

calculations to be practical. For example, a 3-D model parameterized by 100 blocks

laterally and 20 blocks in depth contains 200,000 model points. Clearly we are not

going to be able to invert directly a 200,000 by 200,000 matrix! Indeed we could

not even fit such a matrix into the memory of our computer.
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Synthetic model Inversion resultRay geometry

Figure 4.2: The resolution of tomographic models is often evaluated using the impulse
response test (top) or the checkerboard test (bottom). In each, a synthetic set of travel
times are created for a simple velocity model using the same ray paths present in the real
data; then the synthetic times are inverted to see how well the starting model is recovered.

Thus, we must turn to iterative methods designed for large sparse systems of

equations in order to solve these problems. Fortunately these have proven extremely

useful in tomography problems and are found to converge fairly rapidly to close

approximations to the true solutions. Examples of iterative methods include names

such as ART-backprojection, SIRT, conjugate gradient, and LSQR (see Nolet, 1987,

for a detailed discussion of many of these methods). Although it is instructive to

see the form of equations such as (4.3) and (5.1), in practice we rarely attempt to

construct G as a matrix. Rather we treat G as a linear operator that acts on the

model to predict the data. On the computer, this often will take the form of a

subroutine. Since the iterative techniques effectively use only one row of G at a

time, they are sometimes given the name row action methods.

A disadvantage of these iterative solutions is that it becomes impossible to com-

pute formal resolution and covariance matrices for the model. As substitutes for

these measures, it has become common practice to conduct experiments on syn-

thetic data sets. The synthetic data are generated by assuming a particular model

of velocity perturbations and computing travel time anomalies using the same ray

paths as the real data. The synthetic data are then inverted to see how well the test

model is recovered (Fig. 4.2). One example of this procedure is the impulse response
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test, in which a single localized anomaly is placed in a region of interest to see how

well it can be resolved. Another method that is often applied is the checkerboard

test, in which a model with a regular pattern of alternating fast and slow velocities

is examined. In this case, the degree of smearing of the checkerboard pattern will

vary with position in the model, giving some indication of the relative resolution in

different areas.

It is not always clear that these tests give a reliable indication of the true resolu-

tion and uniqueness of the velocity inversions. Impulse response and checkerboard

tests can be misleading because they typically assume uniform amplitude anomalies

and perfect, noise-free data. In real tomography problems, the data are contami-

nated by noise to some degree and the velocity models that are obtained contain

anomalies of varying amplitude. In these cases it is often only the higher amplitude

features that are unambiguously resolved. In principle, some of these problems can

be addressed using techniques that randomly resample the data (such as “jackknife”

or “bootstrap” methods). However, these require repeating the inversion procedure

up to 100 times or more, a significant obstacle in these computationally intensive

analyses. Questions regarding the best way to evaluate resolution in tomographic

inversions are not fully answered, and this continues to be an active area of research.

4.0.3 Tomography complications

In the preceding discussion it has been assumed that the source locations and origin

times were precisely known. However, in the case of earthquakes this is rarely the

case, and there is the potential for bias due to errors in the locations. Since the

earthquakes are generally located using a reference 1-D velocity model, we would

expect the locations to change given a 3-D velocity model, and indeed there is often

a tradeoff between velocity anomalies and earthquake locations. This problem can

be addressed by joint hypocenter and velocity inversions (JHV) that solve for both

the earthquake locations and the velocity structure. In practice, for large inversions,

this is often an iterative process in which initial earthquake locations are assumed,

a velocity model is derived, the earthquakes are relocated using the new model, a

new velocity model is derived, etc. Tradeoffs between quake locations and velocity
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Figure 4.3: When only a limited range of ray angles are available, resolution of velocity
anomalies is limited in the direction parallel to the rays.

structure will be minimized in this procedure, but only if a wide variety of ray paths

are available to locate each quake (we will discuss the earthquake location problem

in greater detail in the next section).

Another ambiguity in velocity inversions concerns the shallow structure at each

seismic station. Rays generally come up at near-vertical angles beneath individual

stations and sample only a very limited lateral area in the uppermost crust. Be-

cause of this, and the fact that no information is generally obtained for the shallow

structure between stations, times to individual stations in large-scale inversions are

usually adjusted using a station correction, a time for each station obtained by av-

eraging the residuals from all ray paths to the station. As in the case of earthquake

locations, it is important that the station correction be obtained from a wide range

of ray paths, to minimize the biasing effect of travel time differences from deeper

velocity anomalies.

Seismic tomography works best when a large number of different ray geometries

are present and each cell in the model is crossed by rays at a wide range of angles.

Unfortunately, this is often not the case, since the sources and receivers are unevenly

distributed, and, at least in global tomography problems, largely confined to Earth’s

surface. Typically, this will result in many blocks being sampled at only a limited

range of ray angles. When this occurs, anomalies are smeared along the ray path

orientation (Fig. 4.3). This problem cannot be cured by regularization or other

numerical methods—only the inclusion of additional ray paths at different angles

can improve the resolution.
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In some cases, there is the danger that the 3-D velocity perturbations could

cause the source–receiver ray paths to deviate significantly from the reference model

ray paths. If these ray-path deviations are large enough, then Fermat’s principle

may not save us and our results could be biased. This concern can be addressed

by performing full 3-D ray tracing calculations on the velocity model and iterating

until a stable solution is achieved. This requires significantly more work and has not

generally been done in global tomography problems where the velocity perturbations

are only a few percent. This effect is probably of greater importance in local and

regional tomography problems where larger velocity anomalies are found and steep

velocity gradients and/or discontinuities are more likely to be present.

There is also a tendency for rays to bend or be diffracted around localized slow

anomalies, which may introduce a bias into tomographic inversions by making such

features less resolvable than fast velocity anomalies (Nolet and Moser, 1993). More

details concerning traditional seismic tomography techniques can be found in the

books by Nolet (1987) and Iyer and Hirahara (1993).

4.0.4 Finite frequency tomography

“Classic” seismic tomography assumes the ray theoretical approximation, in which

travel-time anomalies are accumulated only along the geometrical ray path. How-

ever, at realistic seismic wavelengths there will always be some averaging of structure

adjacent to the theoretical ray path. Recently, seismologists have begun computing

these finite-frequency effects in the form of kernels (sometimes called Fréchet deriva-

tives) that show the sensitivity of the travel time or other observables for a particular

seismic phase and source-receiver geometry to velocity perturbations throughout the

Earth (e.g., Dahlen et al., 2000; Hung et al., 2000; Zhao et al., 2000). Examples

of these kernels computed for a 1-D reference model for a P wave at 60◦ range are

plotted in Figure 4.4. These are sometimes given the name banana-doughnut ker-

nels, with “banana” describing the fact they are wider at the middle of the ray path

than near its endpoints, and “doughnut” arising from the counterintuitive fact that

their sensitivity is zero to velocity perturbations exactly along the geometrical ray

path. The width of the kernels shrinks with the frequency of the waves and thus
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period = 2 s

period = 20 s

Figure 4.4: Banana-doughnut kernels showing the sensitivity of P -wave travel times at 60◦

epicentral distance to velocity perturbations in the mantle. The right-hand plots show the
cross-section perpendicular to the ray direction at its midpoint. Note the much wider kernel
at 20 s period compared to 2 s period and the more pronounced “doughnut hole” along the
geometrical ray path. Figure from Dahlen et al. (2000).

the finite-frequency differences from geometrical ray theory are most important at

long periods.

In principle, the use of finite-frequency kernels should improve seismic tomog-

raphy by properly accounting for the effects of off-ray-path structure. There has

been some recent controversy as to how significant these improvements are for the

global mantle tomography problem with respect to the imaging of plumes, when

compared to differences arising from data coverage and regularization (see Montelli

et al., 2004; de Hoop and van der Hilst, 2005a,b; Dahlen and Nolet, 2005). How-

ever, it is clear that finite-frequency tomography represents a significant theoretical

advance and will eventually become common practice. Researchers are now com-

puting sensitivity kernels based on 3-D Earth models and developing sophisticated

algorithms for directly inverting waveforms for Earth structure (e.g., Zhao et al.,

2005; Liu and Tromp, 2006). These methods hold the promise of resolving structure
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using much more of the information in seismograms than simply the travel times of

direct phases.

4.1 Additional reading

Houser, C., G. Masters, P. Shearer, and G. Laske, Shear and compressional velocity
models of the mantle from cluster analysis of long-period waveforms, Geophys.
J. Int., 174, 195212, doi:10.1111/j.1365-246X.2008.03763.x, 2008.

Lin, G., P. M. Shearer, E. Hauksson and C. H. Thurber, A three-dimensional crustal
seismic velocity model for southern California from a composite event method,
J. Geophys. Res., 112, doi: 10.1029/2007JB004977, 2007.
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Chapter 5

Back-projection methods

Consider a linear set of equations relating observed data to a model:

d = Gm (5.1)

using the conventional notation of d for the data vector, m for the model vector,

and G for the linear operator that predicts the data from the model. Our goal in

geophysical inverse problems is to estimate m from the observations, d. Assuming

there are more data points than model points, the standard way to solve this problem

is to define a residual vector, r = d−Gm, and find the m that minimizes r ·r. This

is the least squares solutions and it can be shown that

m = (GTG)−1GTd. (5.2)

However often GTG is singular or ill-conditioned, or it may simply be too large to

invert. What can be done is these cases? The simplest and crudest way to proceed

is to make the approximation

(GTG)−1 ≈ I (5.3)

in which case we can estimate the model as

m ≈ GTd. (5.4)

The transposed matrix GT is the adjoint or back-projection operator. Each model

point is constructed as the weighted sum of the data points that it affects. Can

such a crude approximation be of any use? It’s certainly easy to think of exam-

ples where (5.3) is completely invalid. However, in real geophysical problems it’s
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surprising how often this method works, particularly if a scaling factor is allowed

to bring the data and model-predicted data into better agreement (i.e., assuming

(GTG)−1 ≈ λI, where λ is a constant). Indeed, it is sometimes observed that the

adjoint works better than the formal inverse because it is more tolerant of imper-

fections in the data. Jon Claerbout discusses this in a wonderful set of notes (e.g.,

http://sepwww.stanford.edu/sep/prof/gee/ajt/paper html/node1.html).

In seismology our data are typically a set of seismograms. In source inversions,

we normally assume that the Earth’s velocity structure is known and we solve for

the locations and times of seismic wave radiators (e.g., solving for a slip model).

In reflection seismology, we normally assume that the location and time of the

source is known and we solve for the location of the reflector(s) that cause the

observed arrivals. In each case, the model estimate at each model point is obtained

by finding the times in the seismograms at which changes in the model will affect

the seismogram. The model estimate from back-projection is obtained by simply

summing or stacking the seismogram values at these points. The main thing to

compute is the travel time between the model points and each recording station.

These give the time shifts necessary to find the times in each seismogram that are

sensitive to the model perturbations.

One way of thinking about this is that we have the computer perform a series

of hypothesis tests over a time-space model grid. Is there a seismic radiator at this

space-time point? If there is, we would expect it to show up in seismograms at these

times. If we sum over the seismogram values at these times, we should get a large

amplitude. Of course, it is possible that inference from radiation at other model

points will cause us to have a biased estimate. But on average, we hope (expect)

these other contributions to cancel out. This is the forward-time way of thinking

about the problem.

But we could also think about this in reverse time. In this case we start with

the seismograms and project their values backward in time through the model grid.

As we do this, we accumulate the values in the model grid points. The model points

that are likely sources will experience constructive interference as the time-reversed

wavefields focus to these points. This is why this process is sometimes called back-



5.1. MIGRATION IN REFLECTION SEISMOLOGY 63

projection or reverse time migration. But the result is exactly the same as the

forward modeling approach described in the previous paragraph.

Left unstated in this discussion is how the amplitudes in the seismograms should

be scaled. If one wants to recover true model amplitudes, then geometrical spread-

ing and other factors should be taken into account. Often, however, the goal is

simply an image of the model and the absolute amplitude is not that important.

For example, in reflection seismology automatic gain control is often used to equal-

ize the contributions from different records and true amplitude information is lost.

These amplitude normalization methods can make back-projection more robust with

respect to noisy data or uncertainties in the velocity model.

5.1 Migration in reflection seismology

In reflection seismology, complicated structures will produce scattered and diffracted

arrivals that cannot be modeled by simple plane-wave reflections, and accurate in-

terpretation of data from such features requires a theory that takes these arrivals

into account. Most of the analysis techniques developed for this purpose are based

on the idea that velocity perturbations in the medium can be thought of as generat-

ing secondary seismic sources in response to the incident wavefield, and the reflected

wavefield can be modeled as a sum of these secondary wavelets.

5.1.1 Huygens’ principle

Huygens’ principle, first described by Christiaan Huygens (c. 1678), is most com-

monly mentioned in the context of light waves and optical ray theory, but it is

applicable to any wave propagation problem. If we consider a plane wavefront trav-

eling in a homogeneous medium, we can see how the wavefront can be thought to

propagate through the constructive interference of secondary wavelets (Fig. 5.1).

This simple idea provides, at least in a qualitative sense, an explanation for the

behavior of waves when they pass through a narrow aperture.

The bending of the ray paths at the edges of the gap is termed diffraction. The

degree to which the waves diffract into the “shadow” of the obstacle depends upon

the wavelength of the waves in relation to the size of the opening. At relatively
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(a)

(b)

t

t + t

Figure 5.1: Illustrations of Huygens’ principle. (a) A plane wave at time t + ∆t can be
modeled as the coherent sum of the spherical wavefronts emitted by point sources on the
wavefront at time t. (b) A small opening in a barrier to incident waves will produce a
diffracted wavefront if the opening is small compared to the wavelength.

long wavelengths (e.g., ocean waves striking a hole in a jetty), the transmitted

waves will spread out almost uniformly over 180◦. However, at short wavelengths

the diffraction from the edges of the slot will produce a much smaller spreading in

the wavefield. For light waves, very narrow slits are required to produce noticeable

diffraction. These properties can be modeled using Huygens’ principle by computing

the effects of constructive and destructive interference at different wavelengths.

5.1.2 Diffraction hyperbolas

We can apply Huygens’ principle to reflection seismology by imagining that each

point on a reflector generates a secondary source in response to the incident wave-

field. This is sometimes called the “exploding reflector” model. Consider a single

point scatterer in a zero-offset section (Fig. 5.2). The minimum travel time is given

by

t0 =
2h
v
, (5.5)

where h is the depth of the scatterer and v is the velocity (assumed constant in

this case). More generally, the travel time as a function of horizontal distance, x, is
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Figure 5.2: A point scatterer will produce a curved “reflector” in a zero-offset section.

given by

t(x) =
2
√
x2 + h2

v
. (5.6)

Squaring and rearranging, this can be expressed as

v2t2

4h2
− x2

h2
= 1 (5.7)

or
t2

t20
− 4x2

v2t20
= 1 (5.8)

after substituting 4h2 = v2t20 from (5.5). The travel time curve for the scattered

arrival has the form of a hyperbola with the apex directly above the scattering

point. This equation describes travel time as a function of distance away from a

point scatterer at depth for zero-offset data (the source and receiver are coincident).

5.1.3 Migration methods

Consider a horizontal reflector that is made up of a series of point scatterers, each of

which generates a diffraction hyperbola in a zero-offset profile (Fig. 5.3). Following

Huygens’ principle, these hyperbolas sum coherently only at the time of the main

reflection; the later contributions cancel out. However, if the reflector vanishes at
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Zero-offset sectionModel

Figure 5.3: The endpoint of a horizontal reflector will produce a diffracted arrival in a
zero-offset section. The reflector itself can be modeled as the coherent sum of the diffraction
hyperbola from individual point scatterers. The diffracted phase, shown as the curved heavy
line, occurs at the boundary of the region of scattered arrivals.

some point, then there will be a diffracted arrival from the endpoint that will show

up in the zero-offset data. This creates an artifact in the section that might be

falsely interpreted as a dipping, curved reflector.

Techniques for removing these artifacts from reflection data are termed migration

and a number of different approaches have been developed. The simplest of these

methods is termed diffraction summation migration and involves assuming that each

point in a zero-offset section is the apex of a hypothetical diffraction hyperbola. The

value of the time series at that point is replaced by the average of the data from

adjacent traces taken at points along the hyperbola. In this way, diffraction artifacts

are “collapsed” into their true locations in the migrated section. In many cases

migration can produce a dramatic improvement in image quality (e.g., Fig. 5.4).

A proper implementation of diffraction summation migration requires wave prop-

agation theory that goes beyond the simple ideas of Huygens’ principle. In partic-

ular, the scattered amplitudes vary as a function of range and ray angle, and the

Huygens secondary sources are given, for a three-dimensional geometry, by the time

derivative of the source-time function (in the frequency domain this is described

by the factor −iω, a π/2 (90 degree) phase shift with amplitude proportional to

frequency). In the case of a two-dimensional geometry, the secondary sources are

the “half-derivative” of the source function (a 45 degree phase shift with amplitude
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Figure 5.4: Original (top) and migrated (bottom) reflection data from a survey line across
the Japan trench (figure modified from Claerbout, 1985; data from the Tokyo University
Oceanographic Research Institute).

scaled by the square root of frequency). These details are provided by Kirchhoff

theory, which is discussed later in this chapter. The diffraction hyperbola equation

assumes a uniform velocity structure, but migration concepts can be generalized

to more complicated velocity models. However, it is important to have an accu-

rate velocity model, as use of the wrong model can result in “undermigrated” or

“overmigrated” sections.

In common practice, data from seismic reflection experiments are first processed

into zero-offset sections through common midpoint (CMP) stacking. The zero-

offset section is then migrated to produce the final result. This is termed poststack

migration. Because CMP stacking assumes horizontal layering and may blur some

of the details of the original data, better results can be obtained if the migration is

performed prior to stacking. This is called prestack migration. Although prestack

migration is known to produce superior results, it is not implemented routinely

owing to its much greater computational cost.
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5.2 Additional reading
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Chapter 6

Pulse shapes, spectra, and
stress drop

The displacement that occurs on opposite sides of a fault during an earthquake

is permanent; the Earth does not return to its original state following the event.

Thus, the equivalent body force representation of the displacement field must involve

a permanent change in the applied forces. In addition, the displacement is not

instantaneous but occurs over some finite duration of rupture. We can accommodate

these properties by generalizing the moment tensor source representation to be time

dependent. For instance, one of the components of the moment tensor could be

expressed as M(t) and might have the form shown at the top left of Figure 6.1.

This is what the near-field displacement would look like; for example, this might

describe the path of a house near the San Andreas Fault during a large earthquake.

These displacements are permanent and can be measured at some distance away

from large earthquakes by geodetic means (such as surveying or GPS) after the

shaking has subsided.

The expressions for the far-field displacements from isotropic or double-couple

sources all involve the time derivative of the moment tensor. The time derivative of

M(t) is proportional to the far-field dynamic response (the middle panel of Figure

6.1), such as would be observed in a P - or S-wave arrival. Note that this is a

displacement pulse and that there is no permanent displacement after the wave

passes. Most seismometers measure velocity u̇(t) rather than displacement u(t),

in which case what is actually recorded will have an additional time derivative.
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Figure 6.1: The relationships between near-field displacement and far-field displacement
and velocity for time series (left two panels) and spectra (right panel).

In problems of Earth structure, it generally matters little whether we use velocity

rather than displacement provided we assume an extra derivative for the source

when we are modeling the waveforms. However, when studying seismic sources,

velocity is almost always converted to displacement. This is done by integrating the

velocity record and normally also involves a correction for the instrument response.

The aim is to recover an unbiased record of Ṁ(t) at the source. We will assume for

most of this section that we are measuring far-field displacement.

The spectrum of the far-field displacement pulse (see top right of Figure 6.1)

at low frequencies will be flat at a level, Ω0, equal to the area beneath the pulse.

The displacement spectrum will then roll off at higher frequencies, with the corner

frequency, fc, inversely proportional to the pulse width, τ . In the frequency domain

the effect of the time derivatives is to multiply the spectrum by f . Thus velocity

records are enhanced in high frequencies relative to displacement records.

The long-period spectral level, Ω0, is proportional to the scalar seismic moment,

M0. Recall that M0 = µAD, where µ is the shear modulus, A is the fault area, and

D is the displacement. In the case of body waves it can be shown that

M0 =
4πρc3rΩ0

Uφθ
(6.1)

where ρ is the density, c is the wave velocity, r is the distance from the source,

and Uφθ is the radiation pattern term. This equation is for spherical wavefronts
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expanding in a whole space but can be applied to more complicated velocity models

using ray theory if the r factor is replaced with the appropriate term for geometrical

spreading. If Ω0 is measured from a station at the Earth’s surface, then corrections

must be applied to account for the wave amplification that occurs from the surface

reflections. There are analogous expressions for computing M0 from surface waves.

These equations are important because they show how a fundamental property of

the earthquake source—scalar moment—can be obtained directly from seismic wave

observations at great distances. Because Ω0 is measured at the lowest possible fre-

quency, it is relatively insensitive to the effects of scattering and attenuation, making

scalar moment estimates more reliable than measurements of source properties that

require higher frequency parts of the spectrum. However, note that Equation (6.1)

does require knowledge of the focal mechanism owing to the Uφθ term. If a focal

mechanism is not available, sometimes M0 is estimated by averaging results from

many stations and replacing Uφθ with the mean radiation term over the focal sphere

(0.52 and 0.63 for P and S waves, respectively). Of course, the scalar moment is a

simple function of the complete moment tensor if it is available.

Many different theoretical earthquake source models have been proposed and

they predict different shapes for the body-wave spectra. Brune (1970) described

one of the most influential models, in which the displacement amplitude spectrum

is given by

A(f) =
Ω0

1 + (f/fc)2
(6.2)

where fc is the corner frequency. Note that the high-frequency fall-off rate agrees

with the Haskell fault model. A more general model is

A(f) =
Ω0

[1 + (f/fc)γn]
1/γ

(6.3)

which was found by Boatwright (1980) with γ = 2 to provide a better fit to the

sharper corners that he found in his data. Equations (6.2) and (6.3) with n = 2 are

often called ω−2 source models. Some theoretical source models, particularly those

which consider elongated fault geometries, predict ω−3 fall off at high frequencies.

However, studies of both globally and locally recorded earthquakes over a wide range
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of sizes have generally shown that their average high-frequency fall-off rate is close

to ω−2, although individual earthquakes often have quite different spectral behavior.

6.0.1 Empirical Green’s functions

One of the challenging aspects of studying seismic spectra is separating out what

originates from the source and what is caused by attenuation or other path effects.

For example, for a simple constant Q model the spectra will drop off exponentially

at high frequencies

A(f) = A0(f)e−πft/Q. (6.4)

In principle, this fall off has different curvature than the power law decay with fre-

quency of theoretical source models and one approach has been to use (6.4) together

with (6.2) or (6.3) to simultaneously solve for Q and fc (and sometimes n and γ as

well). However, with the irregular spectra and limited bandwidth of real data it can

be difficult to separately resolve the source and attenuation contributions and there

is often a tradeoff between them.

Another approach is to use records from a smaller earthquake near the target

earthquake to compute an empirical path and attenuation correction. The assump-

tion is that the second quake is small enough that its corner frequency is above

the observation band and its spectrum is nearly flat, i.e., it is effectively a delta-

function source. In this case one can either deconvolve its waveform from the target

earthquake record in the time domain or simply correct the observed spectrum in

the frequency domain. This is called the empirical Green’s function or EGF method

(e.g., Mueller, 1985; Hough, 1997) and is widely used in source studies. It does, how-

ever, require that there be a suitable event close enough to the target earthquake

that the path effects will be approximately the same.

6.1 Stress Drop

The seismic moment, M0 = µDA, does not distinguish between an earthquake in-

volving small slip on a large fault and one with large slip on a small fault, provided

the product of the average slip (D) and fault area (A) remains constant. However,
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these earthquakes would change the stress on the fault by very different amounts.

This change may be defined as the stress drop, which is the average difference be-

tween the stress1 on a fault before an earthquake to the stress after the earthquake:

∆σ =
1
A

∫
S

[σ(t2)− σ(t1)] dS , (6.5)

where the integral is performed over the surface of the fault and A is the fault

area. Analytical solutions for the stress drop have been derived for a few specialized

cases of faults embedded within homogeneous material. For a circular fault in a

whole-space, Eshelby (1957) obtained

∆σ =
7πµD
16r

=
7M0

16r3
, (6.6)

where r is the fault radius, µ is the shear modulus, and D is the average displace-

ment. For strike-slip motion on a shallow, rectangular fault of length L and width

w (L� w), Knopoff (1958) obtained

∆σ =
2µD
πw

=
2M0

πw2L
. (6.7)

More generally, we may write

∆σ = Cµ

[
D

L̃

]
, (6.8)

where L̃ is a characteristic rupture dimension (r in the case of the circular fault, w for

the long rectangular fault) and C is a nondimensional constant that depends upon

the geometry of the rupture. Notice that physically it makes sense that the shear

stress change on the fault will be proportional to the ratio of the displacement to the

size of the fault. Large slip on a small fault will cause more stress than small slip on a

large fault. It should be noted that these solutions assume smooth forms for the slip

function on the fault surface and thus represent only approximations to the spatially

averaged stress drop on real faults, for which the displacement and corresponding

stress drop may vary in complicated ways owing to non-uniform elastic properties

and initial stresses. A widely used result to obtain results for faults made up of

arbitrary rectangular slip patches is the half-space solution of Okada (1992).
1In this section “stress” refers specifically to the shear stress across the fault plane.
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For large earthquakes for which the fault geometry can be constrained from

surface rupture or aftershock studies, the stress drop can then be estimated from

the moment. For large, shallow earthquakes, ∆σ varies from about 1 to 10 MPa (10

to 100 bars in the units often used in older studies) with no observed dependence

on moment for M0 variations from 1018 to 1023 N m (Kanamori and Anderson,

1975; Kanamori and Brodsky, 2004). Earthquakes near plate boundaries (interplate

events) generally have been observed to have somewhat lower stress drops than those

that occur in the interior of plates (intraplate events) (e.g., Kanamori and Anderson,

1975; Kanamori and Allen, 1986). Average ∆σ for interplate quakes is about 3 MPa

compared to about 6 MPa for intraplate events (Allmann and Shearer, 2008). This

implies that intraplate faults are “stronger” in some sense than interplate faults and

have smaller fault dimensions for the same moment release.

For small earthquakes, direct observations of the rupture geometry are not pos-

sible so the fault dimensions must be estimated from far-field observations of the

radiated seismic waves. In this case it is necessary to make certain assumptions

about the source properties. In particular, these methods generally assume that

the source dimension is proportional to the observed body-wave pulse width (after

correcting for attenuation). The first quantitative model for estimating stress drop

in this way was derived by Brune (1970), who assumed a simple kinematic model

for a circular fault with effectively infinite rupture velocity and showed that the

expected high-frequency spectral fall-off rate is ω−2 and that the corner frequency

is inversely proportional to the source radius. This result, together with a number

of other proposed rupture models, predicts that the fault radius varies as

r =
kβ

fc
, (6.9)

where r is the fault radius, fc is the observed corner frequency (see Figure 6.1)

and k is a constant that depends upon the specific theoretical model. Currently,

perhaps the most widely used result is from Madariaga (1976), who performed

dynamic calculations for a circular fault using finite differences. Assuming that the

rupture velocity is 90% of the shear-wave velocity (vr = 0.9β), he obtained k = 0.32

and 0.21 for the P - and S-wave corner frequencies, respectively, with an ω−2 high-
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Figure 6.2: Predicted P -wave spectra from the Madariaga (1976) source model, assuming
a constant stress drop of 3 MPa. The spectra have been scaled such that their amplitudes
at low frequency are equal to their moments, M0. The circles show the corner frequencies
(fc). Individual spectra are for moment magnitudes, MW , from 1 to 8 (see (??) for the
definition of MW )

frequency fall-off rate. His model predicts a P -wave corner frequency about 50%

higher than the S-wave corner frequency (fPc ' 1.5fSc ). Figure 6.2 plots predicted

P -wave spectra for the Madariaga (1976) model for a wide range of M0, assuming

a constant stress drop of 3 MPa. Note that the corner frequency varies as M−1/3
0 ,

with higher corner frequencies for smaller earthquakes.

From (6.6) and (6.9), we have

∆σ =
7
16

(
fc
kβ

)3

M0 . (6.10)

This is how stress drop can be estimated directly from far-field body wave spectra

using corner-frequency measurements, together with measurements of M0 (which

can be computed from the low frequency part of the spectrum, see Ω0 in Figure

6.1). Because this equation involves the cube of the (fc/kβ) term, the computed

∆σ is extremely sensitive to differences in the assumed theoretical model (which

determines the value of k and in general depends upon the assumed rupture ve-

locity) and to variations in the estimated corner frequency fc. The Brune (1970)

model has a k value about 1.7 times larger than the Madariaga (1976) model, which

translates to stress drop estimates about 5 times smaller. The corner frequency, fc,
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can be tricky to measure from individual spectra, which are rarely as smooth as the

theoretical models predict, and are sensitive to corrections for attenuation effects.

Published stress drop values exhibit considerable scatter and it can be difficult to

determine what part of these variations are real and what part may be attributed

to differences in the modeling assumptions and analysis methods. However, there

are large variations in individual earthquake stress drops even within single stud-

ies, suggesting that much of the observed scatter is real. For example, Shearer et

al. (2006) analyzed P -wave spectra from over 60,000 small earthquakes in southern

California using the Madariaga (1976) model and obtained ∆σ values from 0.2 to

20 MPa, with the bulk of the events between 0.5 to 5 MPa.

In principle, stress drop, like moment, is essentially a static measurement of

permanent changes caused by an earthquake. However, the methods for estimating

stress drops for small earthquakes are derived from body-wave pulse shapes and

assumptions about the dynamics of the source. Because these are not direct mea-

surements of static stress drop, they are sometimes termed Brune-type stress drops,

although they may not be computed exactly as in Brune (1970). It is important

to remember that these measurements involve a number of modeling assumptions

that may not be true for individual earthquakes. For example, variations in rup-

ture speed will cause a change in corner frequency even if the stress drop remains

constant. Finally, note that measurements of the stress drop do not constrain the

absolute level of stress on faults. The absolute level of stress in the crust near

faults has long been a subject of controversy, with heat flow constraints suggesting

lower levels of stress for real faults than laboratory rock-sliding experiments seem

to require.

6.2 Additional reading

Allmann, B.P., and P.M. Shearer, Spatial and temporal stress drop variations in
small earthquakes near Parkfield, California, J. Geophys. Res., 112, B4, B04305,
doi:10.1029/2006JB004395, 2007.

Allmann, B. B., and P. M. Shearer, Global variations of stress drop for moderate to
large earthquakes, J. Geophys. Res., 114, doi: 10.1029/2009JB005821, 2009.

Shearer, P. M., G. A. Prieto, and E. Hauksson, Comprehensive analysis of earth-
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Chapter 7

Earthquake scaling and energy

The fact that earthquake stress drops appear to be at least approximately constant

over a wide range of earthquake sizes has implications for earthquake scaling rela-

tionships. Aki (1967) proposed that the physics of of large and small earthquakes

may be fundamentally similar, in which case we should expect scale-invariance or

self-similarity of the rupture process. This implies that regardless of which theoret-

ical earthquake source model is correct, the properties of the source will change in

predictable ways as a function of earthquake size.

This is illustrated in Figure 7.1, which shows the expected change in pulse shape

and spectrum when an earthquake rupture plane is increased in size by a factor b.

Assuming the dimensions of the larger rupture are scaled proportionally, then the

fault area, A, will increase by a factor b2, the displacement, D, will increase by b,

and the moment, M0 = µDA, will increase by a factor of b3. Stress drop remains

constant because it is proportional to DA−1/2. It follows that moment will scale

with fault area as

M0 ∝ A3/2 (7.1)

and such a scaling is observed to be approximately correct for large earthquakes

(e.g., Kanamori and Anderson, 1975; Kanamori and Brodsky, 2004).

For an identical source-receiver geometry, no attenuation, and constant rupture

velocity (predicted from self-similarity), the far-field displacement pulse will increase

in duration by a factor of b and in amplitude by a factor of b2. Note that the area

under the pulse, Ω0, also increases by b3, as expected since Ω0 is proportional to

79
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Figure 7.1: Illustration of the effects of self-similarity when an earthquake is increased
in size by a factor b, showing the behavior of (a) rupture area and moment, (b) far-field
displacement pulses, and (c) displacement spectra. Figure adapted from Prieto et al. (2004).

M0. It follows that the displacement pulse, u∗, recorded by the second earthquake

can be expressed as

u∗(t) = b2u(t/b) (7.2)

where u(t) is the recorded displacement pulse of the first earthquake. The radiated

seismic energy, ER, in the recorded pulse will be proportional to
∫
u̇2(t) dt (the

integrated square of the slope of the pulse), so the second pulse will contain a factor

b3 more energy than the first pulse. Thus the radiated seismic energy to moment

ratio (ER/M0) remains constant.

Using the similarity theorem for the Fourier transform, it follows that the spec-

trum of the second earthquake is given by

u∗(ω) = b3u(bω) (7.3)

where u(ω) is the spectrum of the first earthquake. This relationship predicts that

the shape of all spectra on a log-log plot will be identical, but offset along a line of

ω−3 (Figure 7.1c). This means that corner frequency will vary as

fc ∝M
−1/3
0 (7.4)

as is seen in Figure 6.2.
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Self-similarity appears to be at least roughly true for average earthquake prop-

erties, although this has been a subject of considerable debate and there are large

variations among individual earthquakes. It should be noted that self-similarity may

break down for very large earthquakes that rupture through the entire seismogenic

zone. In this case, ruptures are much longer than they are wide, with aspect ratios

of 10 or more, which might make them behave differently than the less elongated

rupture planes expected of smaller earthquakes (e.g., Scholz, 1982, 1997; Heaton,

1990). For example, the 1906 San Francisco earthquake ruptured for about 450 km

to a depth of no more than 10 km (Thatcher, 1975).

7.1 Radiated Seismic Energy

Seismic moment and static stress drop are fundamental properties of the slip ge-

ometry of an earthquake, but they say nothing directly about the dynamics of the

event, such as how fast the rupture propagated or how fast the two sides of the fault

moved. This is why it is possible to estimate M0 and ∆σ from geodetic measures

of Earth deformation long after an earthquake; they are measures of the permanent

static displacements across faults. Fault creep events that are too slow to radiate

seismic energy at observable frequencies can nonetheless have significant moments

and stress drops (although as noted in section 6.1, some methods of actually com-

puting stress drops require seismic wave observations and make assumptions about

source dynamics).

In contrast, one of the most fundamental measures of earthquake dynamics is the

total radiated energy, ER, which represents the seismic energy that would propagate

to the far field in a whole space with no attenuation. Using the expressions for

seismic energy flux, we have (e.g., Venkataraman et al., 2006)

ER = ρ

∫
S

∫ ∞

−∞

[
αu̇2

α(t, θ, φ) + βu̇2
β(t, θ, φ)

]
dt dS, (7.5)

where u̇α and u̇β are velocity seismograms for P and S waves, respectively, and S

is a spherical surface at a large distance around the source. Of course, we cannot

integrate over the entire focal sphere; we must use seismic observations from a

discrete number of seismic stations. Using ray theory, we can correct the observed
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amplitudes for varying amounts of geometrical spreading and determine the ray

takeoff angles, θ and φ, at the source. Because of radiation pattern effects, u̇α and

u̇β vary greatly over the surface of the sphere and thus a large number of observations

from different seismic stations would be necessary to estimate ER reliably from (7.5)

directly. However, if the focal mechanism and thus the radiation pattern is known,

then single station estimates are possible, i.e.,

ER = EPR + ESR = 4πραr2
〈PUφθ2〉
PUφθ

2 IP + 4πρβr2
〈SUφθ2〉
SUφθ

2 IS (7.6)

where PUφθ and SUφθ are the P and S radiation pattern terms and 〈Uφθ2〉 is the

mean over the focal sphere of (Uφθ)2 (〈PUφθ2〉 = 4/15 for P waves and 〈SUφθ2〉 = 2/5

for S waves), and IP and IS are the time-integrated values of u̇2
α and u̇2

β, as corrected

for geometrical spreading and any near-receiver effects (e.g., free-surface reflections

or amplifications from slow velocities in shallow layers) to what they would be at a

uniform distance r in the absence of attenuation.

IP and IS are usually computed in the frequency domain from body-wave spectra

because it is easier to correct for attenuation and instrument response effects, as

well as to check for adequate signal-to-noise properties. From Parseval’s theorem,

we have

I =
∫ ∞

−∞
|v(t)|2 dt =

∫ ∞

−∞
|v(f)|2 df (7.7)

In principal, the integration is performed to infinite frequency. However, the velocity

spectrum peaks near the corner frequency (see Figure 6.1), and this peak becomes

even stronger when the velocity is squared. For the ω−2 model, calculations have

shown that 90% of the total energy is obtained if the integration is performed out

to 10 times the corner frequency (Ide and Beroza, 2001). Often data do not have

this much bandwidth, which can lead to underestimation of the energy. To correct

for this, the integration can be extrapolated beyond the observed bandwidth of the

data by assuming that the spectral fall off continues at a fixed rate. However, in

this case the result is no longer a direct measurement from the data because it relies

on assumptions about the nature of the source.

The ratio of S-wave energy to P -wave energy is defined as

q = ESR/E
P
R (7.8)
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For a point-source model in which the P and S-wave pulses have identical shapes

(and thus identical corner frequencies fPc and fSc ), it can be shown that q =

1.5(α/β)5 ' 23.4 for a Poisson solid. However, many theoretical finite source models

predict that the P -wave pulse will be shorter in duration than the S-wave pulse (i.e.,

fPc > fSc ), which will result in lower values for q. For example, the Madariaga (1976)

model has fPc ' 1.5fSc , from which one can compute (Boatwright and Fletcher, 1984)

that q is about 7. Observations have generally suggested average q values between

9 and 25, with a large amount of scatter for individual earthquakes.

Measuring ER is much more difficult than measuring M0 and results among

different groups for the same earthquakes often differ by factors of 2 or more. This

is because ER is derived from high-frequency parts of the source spectrum where

corrections for attenuation are critically important. Most of the energy is radiated as

S waves, which are particularly sensitive to attenuation. If only EPR measurements

are available, ER can still be estimated if a fixed value of q is assumed, but once again

this detracts from the directness of the observation. Because energy is proportional

to the square of the wave amplitudes, the effects of the radiation pattern are more

severe for ER calculations compared to M0 calculations. The Uφθ terms in the

denominators of (7.6) go to zero at the nodes in the radiation pattern. This can

lead to artificially high energy estimates if measurable wave amplitudes are seen

near the nodes, which can happen due to scattering, 3D structure, or inaccuracies

in the focal mechanism. Finally, rupture directivity does not affect M0 estimates

(because Ω0 is preserved despite changes in the pulse amplitudes) but produces

large variations in IP and IS (e.g., Ma and Archuleta, 2006). If directivity effects

are important, then (7.6) is incomplete and can produce biased results, depending

upon whether the critical takeoff angles with the highest amplitudes are included in

the available data.

The ratio of the radiated energy to the moment

ẽ =
ER
M0

=
1
µ

ER

DA
(7.9)

is called the scaled energy and is dimensionless (note that 1 joule = 1 N m). The

parameter µẽ = ER/DA has units of stress and has traditionally been called appar-



84 CHAPTER 7. EARTHQUAKE SCALING AND ENERGY

1011 1013 1015 1017 1019 1021

10-4

10-5

10-6

10-7

10-8

Abercrombie (1995)
Kanamori et al. (1993) Mayeda & Walter (1996)

Perez-Campos & Beroza (2001)
Prieto et al. (2004)M1/4

0

1 2 3 4 5 6 7 8

M0 (N-m)

MW

ER
M0

Figure 7.2: The observed radiated seismic energy to moment ratio, ẽ = ER/M0, plotted as
a function of moment. The M1/4

0 trend noted in some studies is plotted for reference.

ent stress but this term can be confusing because it is not directly related to either

absolute stress or stress drop. The scaled energy, ẽ, is proportional to the energy

radiated per unit fault area and per unit slip. As noted in the previous section,

if earthquakes are self-similar then ẽ should be constant as a function of moment.

Whether this is indeed the case has been the subject of some controversy (e.g., see

recent review by Walter et al., 2006). Some have argued that average ẽ grows with

moment approximately as M1/4
0 (e.g., Mayeda and Walter, 1996) while others have

maintained that average ẽ is seen to be nearly constant with M0 when one carefully

corrects for possible biases in the data analysis (e.g., Ide and Beroza, 2001). Figure

7.2 plots ẽ versus M0, showing results from a number of different studies. Note that

there is a great deal of scatter in the ẽ estimates, which span over an order of mag-

nitude even at the same moment. However, there is some evidence for an increase

in ẽ with moment, particularly for the smaller earthquakes. Ide and Beroza (2001)

have argued, however, that this may be an artifact of the data selection method in

the Abercrombie (1995) study. An important issue is the fact that energy estimates

derived from teleseismic data tend to be about 10 times smaller than those obtained

from local records (Singh and Ordaz, 1994; Mayeda and Walter, 1996). This can be



7.1. RADIATED SEISMIC ENERGY 85

seen in Figure 7.2, noting that Perez-Campos and Beroza (2001) is the only tele-

seismic study plotted. If these points are excluded, the M1/4
0 trend becomes much

clearer.

7.1.1 Earthquake energy partitioning

The total strain and gravitational energy released during an earthquake is given by

E = 1
2(σ1 + σ2)DA (7.10)

where σ1 is the initial stress, σ2 is the final stress, D is displacement, A is the fault

area, and the overbar means the spatial average. Note that 1
2(σ1 + σ2) = σ is the

average shear stress on the fault so this is analogous to “work = force × distance”

from basic physics. As discussed in Kanamori and Brodsky (2004) and Kanamori

and Rivera (2006), this is usually approximated as

E = σDA = 1
2∆σDA+ σ2DA (7.11)

where the average stress drop ∆σ = σ1 − σ2. The total energy can be partitioned

into three parts:

E = ER + EF + EG (7.12)

where ER is the radiated seismic energy, EF is the frictional energy (often released

as heat), and EG is the energy used to fracture the rock, although the separation

between EF and EG is not always clear cut. In principle, ER and EG can be

estimated from seismic data. However, EF cannot be measured from direct seismic

wave observations and depends upon the absolute level of stress on the fault, which

is difficult to determine.

This energy balance is shown graphically in Figure 7.3 for two idealized earth-

quakes on faults of unit area and total displacement D. In the first example, the

Orowan fault model (e.g., Orowan, 1960; Kostrov, 1974), the stress on the fault, σf ,

drops abruptly to σ2 as soon as the fault starts moving. In this case, there is no

fracture energy, EG, and σ2 represents the dynamic frictional stress on the fault.

The total energy released is the shaded trapezoid, which is the sum of ER and EF .
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Figure 7.3: The shear stress, σf , on a point on a fault as a function of slip for the Orowan
fault model and a simple example of a slip-weakening fault model. σ1 and σ2 are the initial
and final stresses, D is the total slip, DC is the critical slip, ER is the radiated seismic
energy, EF is the frictional energy dissipated, and EG is the fracture energy released.

Generalizing to a fault of area A, we have

ER = 1
2(σ1 − σ2)DA = 1

2∆σDA (7.13)

EF = σ2DA (7.14)

In this case, the stress drop can be expressed as

∆σ(Orowan) =
2ER
DA

=
2µER
M0

= 2µẽ (7.15)

and we see that this model predicts a very simple relationship between stress drop

and scaled energy, ẽ. This is sometimes termed the Orowan stress drop to make clear

that it only represents the true stress drop if the earthquake obeys this simple model.

Assuming ∆σ = 3 MPa and µ = 30 GPa (typical values for crustal earthquakes),

the Orowan model predicts ẽ = 5 × 10−5, which is in rough agreement with direct

observations of ẽ for large earthquakes (see Fig. 7.2).

In general, however, we expect the rupture process to be more involved than the

Orowan model and the σf function may follow a complicated trajectory. In some

models, σf rises above σ1 at the onset of rupture to what is termed the yield stress

before dropping as slip begins. It is also possible for σf to fall below σ2 during part

of the rupture and for σf to end at a value above or below the final stress state once
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the earthquake is completely over (the latter phenomena are called overshoot and

undershoot, respectively, and are predicted by some theoretical models).

The right part of Figure 7.3 shows an example of a slip-weakening model in which

the stress drops from σ1 to σ2 over a distance DC (sometimes called the critical slip)

and then continues at a constant stress σf = σ2. The radiated seismic energy, ER,

is reduced by the area to the left of the curve, which represents the fracture energy

EG. In this case we have

EG = E − EF − ER = 1
2∆σDA− ER =

∆σ
2µ

M0 − ER (7.16)

and

∆σ =
2µ(ER + EG)

M0
≥ ∆σ(Orowan) (7.17)

and we see that in principle we can estimate the fracture energy EG if we are able

to separately measure M0, ∆σ and ER, and that the Orowan stress drop represents

the minimum possible stress drop, given values of ER and M0, at least for simple

models in which σf ≥ σ2. It should be noted that σf for real earthquakes may follow

more complicated trajectories than those plotted in Figure 7.3, in which case EF is

not determined by the final stress and the partitioning in (7.16) and (7.17) between

EF and EG does not necessarily have physical significance in the faulting process.

The radiation efficiency is defined as the ratio

ηR =
ER

ER + EG
(7.18)

and is an important measure of the dynamic properties of earthquakes. Note that

ηR = 1 for the Orowan fault model. For our simple slip-weakening model, it can be

expressed as

ηR =
ER

1
2∆σDA

=
2µ
∆σ

ER
M0

= 2µ
ẽ

∆σ
, (7.19)

and thus is proportional to the ratio between the scaled energy and the stress drop.

As discussed in Kanamori and Brodsky (2004), the radiation efficiency can be related

to the rupture velocity, vr, in theoretical crack models:

ηR = 1− g(vr) (7.20)
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where g(vr) is a function that depends upon the specific crack model and the ratio

of vr to the Rayleigh or shear wave velocity. For example, for Mode III (transverse

shear) cracks,

g(v) =

√
1− vr/β

1 + vr/β
, (7.21)

in which case ηR approaches one and the fracture energy, EG, goes to zero as the

rupture velocity approaches the shear wave velocity. For about 30 earthquakes of

6.6 < MW < 8.3, Venkataraman and Kanamori (2004) obtained radiation efficiency

estimates generally between 0.25 and 1.0. One class of earthquakes that appear to

have ηR < 0.25 are tsunami earthquakes, which involve slow rupture and generate

large tsunamis relative to their moment.

The radiation efficiency should not be confused with the seismic efficiency, η,

defined as the fraction of the total energy that is radiated into seismic waves:

η =
ER
E

=
ER

σDA
=
µER
σM0

=
µẽ

σ
. (7.22)

The seismic efficiency is more difficult to estimate than the radiation efficiency

because it depends upon the poorly constrained absolute stress level on the fault.

In the extreme case where we assume that the earthquake relieves all of the

stress on the fault, then σ2 = 0 and we say that the stress drop is total. In this case,

EF = 0 and we have

Emin = 1
2∆σDA =

∆σ
2µ

M0 (7.23)

This represents the minimum amount of energy release for an earthquake with a

given stress drop and moment.

The theories that describe how slip on a fault initiates, propagates and comes

to a halt can be very complicated, even for idealized models with uniform pre-stress

and elastic properties. Much of the recent work in this area has involved theory and

observations of rate and state friction (e.g., Dieterich, 1994) in which the frictional

properties are time and slip dependent. Because these models vary in their behavior

and it is likely that real earthquakes span a range of different rupture properties, it is

important to keep in mind the distinction between parameters that are more-or-less

directly estimated (e.g., moment, geodetically-determined static stress drop, and
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radiated energy) and those that depend upon modeling assumptions (e.g., Brune-

type and Orowan stress drops) and thus are not truly independent measurements.

For example, it would make little sense to use Equation (7.16) to estimate EG if

both ∆σ and ER are derived from fitting the observed body-wave spectra to the

same theoretical model.

7.2 Additional reading
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Chapter 8

Earthquake triggering

The events in real earthquake catalogs occur at apparently random times, with

the exception of aftershock sequences. Earthquake times over large regions can

be modeled reasonably well as a Poisson process, that is, the probability of an

earthquake at any given time is constant and independent of the time of the last

event1. However, at small scales there is a noticeable clustering of earthquakes

in time and space that violates the simple Poisson model. Much of this can be

explained as aftershock triggering, but some features, such as swarms without a

clear mainshock, appear to require other mechanisms. In general, it is difficult to

completely separate aftershocks from other earthquakes because even small events

increase the probability of future events to some extent.

The most obvious example of non-random earthquake occurrence is the exis-

tence of aftershock sequences after large earthquakes. Although the exact timing

of individual events is still random, an increased rate of activity is observed that

is temporally and spatially correlated with the mainshock. The seismicity rate de-

cays with time, following a power law relationship, called Omori’s Law after Omori

(1894),

n(t) =
K

t+ c
(8.1)

where n(t) is the number of aftershocks per unit time above a given magnitude, t is

the time measured from the mainshock, and K and c are constants. This is often

1For example, see Gardner and Knopoff, 1974, “Is the sequence of earthquakes in southern
California, with aftershocks removed, Poissonian?” This paper is famous for having the shortest
abstract in the geophysical literature—it simply says “Yes.”
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Figure 8.1: Aftershock rate for the 1994 Northridge, California, earthquake as a function
of time after the mainshock. The line shows the Omori’s law prediction for K = 2230, c =
3.3 days, and p = 1. Data are from the Southern California Seismic Network catalog within
a lat/lon window of (34.2◦, 34.45◦, -118.75◦, -118.3◦).

generalized to the modified Omori’s Law

n(t) = K(t+ c)−p (8.2)

in which p is typically close to 1.

As an example, Figure 8.1 plots the aftershock rate following the 1994 Northridge,

California, earthquake (MW = 6.7), which is well fit by Omori’s law with c = 3.3

days and p = 1. The parameter c is related to a relative deficit of aftershocks imme-

diately following the earthquake compared to a simple uniform power law. For the

Northridge example, this is mainly caused by the inability of the seismic network to

detect and locate the large number of events occurring in the first few days after the

earthquake (e.g., Kagan and Houston, 2005). When care is taken to obtain a more

complete catalog, the deficit in early aftershocks lasts only a few minutes after the

mainshock (Peng et al., 2007).

Earthquakes are thought to trigger aftershocks either from the dynamic effects

of their radiated seismic waves or the resulting permanent static stress changes

(for reviews, see Harris, 2002, and Freed, 2005). A common assumption based on
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rock behavior in laboratory experiments is that earthquake occurrence on a fault is

promoted by increases in the Coulomb failure function (CFF)

CFF = |τs|+ µ(τn + P ), (8.3)

where τs is the shear traction on the fault, τn is the normal traction (positive for

tension), P is the pore fluid pressure, and µ is the coefficient of static friction (don’t

confuse this with the shear modulus!). The second term is negative because in our

sign convention τn is negative for the hydrostatic compression forces at depth. Thus,

increases in shear stress or decreases in fault normal compression (which “unclamp”

the fault) will encourage failure, and the opposite changes will discourage failure.

Numerous studies have searched for possible spatial correlations between aftershock

occurrence and the sign of the CFF change predicted by mainshock slip models,

and many have found that there tend to be more aftershocks in regions where the

static stress changes should promote earthquakes (e.g., Reasenberg and Simpson,

1992; Harris and Simpson, 1992; Stein et al., 1992; Stein, 1999). However, these

correlations are not perfect and some aftershocks occur even in areas where the CFF

changes are negative. The relative importance of static and dynamic triggering for

aftershocks is also not yet firmly established. Dynamic stress changes from seismic

waves often trigger earthquakes at large distances from mainshocks and some have

argued that dynamic effects could be the dominant triggering mechanism for near-

field aftershocks as well (e.g., Kilb et al., 2000; Felzer and Brodsky, 2006).

An obvious and important aspect of aftershocks is that they don’t all occur in-

stantly at the time of the mainshock—they have a time dependence that is described

by Omori’s law. This indicates that whatever their triggering mechanism, it must

initiate a time-dependent failure process that causes events to occur at a wide range

of times following the mainshock. There cannot simply be a precise threshold stress

that, when exceeded, immediately triggers earthquakes. Additional evidence for this

come from the lack of an obvious correlation between earthquake occurrence time

and the solid Earth tides. Daily variations in crustal stresses caused by the tides

greatly exceed the daily accumulation of stress from tectonic loading. Thus, any

threshold level of stress will be first exceeded only at certain times in the tidal cycle,
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which might be expected to produce strong periodicities in earthquake occurrence

times. Many researchers have searched for tidal signals in earthquake catalogs, but

the most careful studies (e.g., Vidale et al., 1998) have found little or no correlation

between earthquakes and tidal stresses.

Omori’s law does not say anything about the magnitude distribution of the af-

tershocks or their spatial relationship to the mainshock. However, by combining

Omori’s law with the Gutenberg-Richter magnitude-frequency law2 and other em-

pirical relationships, one can develop general models that predict the probability

of future events based on the record of previous seismicity. The most well-known

of these is called the Epidemic Type Aftershock-Sequences or ETAS model (for re-

views, see Ogata, 1999, and Helmstetter and Sornette, 2002). In the ETAS model,

every earthquake, no matter how small, increases the probability of future nearby

events. The increased probability is greatest immediately after an earthquake and

then decreases following Omori’s law until it reaches a background level of seis-

micity. These models do not require that aftershocks always be smaller than the

triggering event. Sometimes mainshocks can be considered really big aftershocks of

a foreshock, a smaller preceding earthquake that is spatially and temporally near

the mainshock. Thus when any earthquake occurs, the possibility that it might be

a foreshock increases the probability that a larger earthquake will soon follow. In

California, for example, it has been estimated that an M 5.3 earthquake on the San

Gorgonio Pass segment of the San Andreas Fault would produce a 1% chance of a

much larger earthquake occurring within the next 3 days (Agnew and Jones, 1991).

The ETAS model in its original form does not include any spatial constraints

on aftershock probabilities, that is the observed decay in aftershock density with

distance from the mainshock. Felzer and Brodsky (2006) have explored this decay

rate, and incorporating their result into the ETAS model of Ogata (1999), a general

2The G-R law is log10 N = a − bM , where N is the number of events with magnitudes greater
than or equal to M . In this equation, a describes the total number of earthquakes, while the
parameter b is called the b-value and measures the relative number of large quakes compared to
small quakes. The b-value is generally found to lie between 0.8 and 1.2 for a wide variety of regions
and different magnitude scales (for a review, see Utsu, 2002a).
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equation for estimated earthquake probability is

λ(x, t) = λ0 +
∑
i

κ10α(mi−m0)(ti + c)−pr−qi (8.4)

where λ(x, t) is the predicted event density (events per unit volume and unit time)

at position x and time t, λ0 is a background rate (untriggered), which in general

may be spatially varying, κ is a triggering productivity parameter, the summation

is taken over all events in the catalog prior to t, mi is the magnitude of each earth-

quake, m0 is the minimum magnitude of the counted events, α (≈ 1) accounts for

the fact that larger earthquakes trigger more events, ti is the time from the ith

event to t, c and p (≈ 1) are the Omori decay constants, ri is the distance from

the ith event to x, and q defines the decay with distance. This type of model is an

attempt to quantify the clustering in time and space of seismicity, i.e., the common

observation that earthquakes are most likely to occur near recent earthquake activ-

ity. Note that this equation approximates earthquakes as point sources and would

require modification to accurately predict aftershock density around the extended

rupture of a large earthquake. By including the Gutenberg-Richter b-value relation,

these models can also be used to estimate the probability as a function of earth-

quake size. Most of these models are purely empirical, but there have also been

attempts to create physical models based on time-dependent failure mechanisms,

such as the rate-and-state friction laws of Deterich (1994). Although this work

is unlikely to lead to deterministic predictions of individual events, understanding

how earthquake occurrence relates to prior events is important for developing more

accurate earthquake probability forecasts.

An example of this is the U.S. Geological Survey sponsored effort to provide

realtime estimates of the probability of significant ground shaking in California. As

shown in Figure 8.2, the probability of earthquake occurrence increases following

every earthquake, but then decays back to the background rate. Large earthquakes

increase the risk of future events more than small earthquakes. Using seismicity

catalogs it is possible to use such a model to predict the instantaneous probability

of earthquake occurrence of a given magnitude as a function of location. This can be

combined with the known relationship between earthquake magnitude and shaking
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Figure 8.2: A cartoon illustrating how earthquake probability increases immediately after
prior events, and then decays back to the background seismicity rate. Figure adopted from
web material at: http://pasadena.wr.usgs.gov/step/.

intensity in California, as measured, for example, by the Mercalli scale (see Fig. ??).

Integrating over all locations, the result can be plotted as the probability of ground

motion exceeding a specified Mercalli intensity within a 1-day period. An example

of the results of this calculation is shown in Figure 8.3, comparing just before to

just after the 28 September 2004 Parkfield earthquake (M 6). The probability of

damaging shaking is greatly increased in a large region around Parkfield, reflecting

the chance that the Parkfield earthquake might be a foreshock of a larger earthquake.

Although space-time clustering of earthquakes is clearly observed, the physics

behind this clustering is not well understood. Some earthquake clusters, such as

mainshock-aftershock sequences are most likely caused by triggering of events by

previous events (although whether this occurs primarily as a result of static or

dynamic stress changes is still debated). In other cases, such as earthquake swarms

that lack an initiating mainshock, it seems more likely that the earthquakes are

triggered by some underlying physical process, such as slow creep or fluid movement

(e.g., Vidale and Shearer, 2006). These questions are also relevant to when foreshock

sequences are observed prior to large earthquakes. Do the mainshocks occur simply

because the foreshock activity itself increases the likelihood of a big earthquake, or

could they be symptomatic of an underlying physical process that ultimately causes

the larger event? The latter scenario provides more hope for prediction of large

earthquakes, if the physical process could be understood more completely.



8.1. ADDITIONAL READING 97

Figure 8.3: The probability of local ground motions of Modified Mercalli intensity 6 or
greater within a 24-hour period, immediately before and after the 2004 Parkfield earthquake
in California. Source: http://pasadena.wr.usgs.gov/step/

8.1 Additional reading

Shearer, P. M., and G. Lin, Evidence for Mogi doughnut behavior in seismicity
preceding small earthquakes in southern California, J. Geophys. Res., 114, doi:
10.1029/2009JB005982, 2009.

Vidale, J.E., and Shearer, P.M. (2006). A survey of 71 earthquake bursts across
southern California: Exploring the role of pore fluid pressure fluctuations and
aseismic slip as drivers, J. Geophys. Res., 111, doi: 10.1029/2005JB004034.
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