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“ Spectral Estimation is --- an Art ”
Petre Stoica

“1 hear, I forget;
I see, I remember;

I do, I understand.”

A Chinese Philosopher.




What is Spectral Estimation?

From a finite record of a stationary data sequence, estimate how

the total power is distributed over frequencies , or more practically,

over narrow spectral bands (frequency bins).




Spectral Estimation Methods:

e Classical (Nonparametric) Methods

Ezx. Pass the data through a set of band-pass filters and measure

the filter output powers.
e Parametric (Modern) Approaches

Ex. Model the data as a sum of a few damped sinusoids and

estimate their parameters.
Trade-Offs: (Robustness vs. Accuracy)

e Parametric Methods may offer better estimates if data closely

agrees with assumed model.

e Otherwise, Nonparametric Methods may be better.




Some Applications of Spectral Estimation

e Speech
- Formant estimation (for speech recognition)
- Speech coding or compression
e Radar and Sonar
- Source localization with sensor arrays
- Synthetic aperture radar imaging and feature extraction
e Electromagnetics
- Resonant frequencies of a cavity
e Communications

- Code-timing estimation in DS-CDMA systems




REVIEW OF DSP FUNDAMENTALS

Continuous-Time Signals

e Periodic signals

2(t) = x(t +Tp)

Fourier Series:
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Ex.

s(t) = Y0 . 6(t — KT)

Cp = & for all k

Remark:

s(t)

Periodic Signals «+— Discrete Spectra.




e Discrete signals

x(t) x(w)

/\t% w

Ex:

X(t) s(t)

T T
t 21/T

Remark: Discrete Signals <— Periodic Spectra.

Discrete Periodic Signals <— Periodic Discrete Spectra.




Aliasing Problem:
Ex.

-
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* Fourier Transform (Continuous - Time vs. Discrete-Time)

oo

Z x(nT)o(t —nT)

n=—oo

/ y(t)e 7 dt

— 00

Let y(t) = x(t)s(t)

CTFT: Y (w)

oo 0 S0

— / Z r(nT)6(t — nT)e I« dt

X n=—cx

= i z(nT)e It

Z a:(nT)e_jw”T

nN=——oo

DTFT: Y(w)
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Discrete-Time

Signal x(nT)

DTFT

SRV AV

y(w)

o' T

N\,

<!
T

Remarks: Discrete-Time Fourier Transform (DTFT) is the same as

Continuous-Time Fourier Transform (CTFT) with

replaced by z(nT) and [ replaced by > (easy for

x(nT) é(t —nT)

computers).
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For simplicity, we drop T.

x(n) X (w)

DTFT

OR

1 12 0 12 1 f

Xw)=55"> x(n)evn
DTFT Pair : () Z”;‘“’ ( ).
z(n) =5 [7 X(w)ed*"dw
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Remark: For DTFT, we also have:

Discrete Periodic Signals L Periodic Discrete Spectra.

Ex.

X(n)
DTFT o)
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Note The Aliasing

\\ ] \\ 7 \\ T
/ / !
Ny N W P/
Y, Y, Y,

When z(n+ N) = z(n),

r(n) = § Yoo X (k)e> ™%,

DFT Pair : N1 o
X(k) =3 "o x(n)e™72™w
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Fz. Note the Aliasing

x(n)

DFT

DFT

Remarks: For periodic sequences, DF'T and DTFT yield similar

spectra. IDFT (Inverse DFT) is the same as IDTFT (inverse
DTFT) with X (22%) 6 (w — 22%) replaced by X (k)

by > (easy for computers).

and [ replaced
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Effects of Zero-Padding:

x(n) X (w)
{ { DTFT \ [
n o g
X X() ;
DFT o
5 points \ PP, ,’
P T2 3. 4 K
n T | |
ak X(k)3
DFT I
{ { { { 10 points x 3 43 , 7 éj’
... ofr 2] 7 5 e ] 9 K
- .

Remark:e The more zeroes padded, the closer X (k) is to X(w).

e X(k) is a sampled version of X(w) for finite duration sequences.
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Z-Transform

X(2) = X5 aln)e
z(n) = % [ X(2)z""dz

For finite duration x(n),

X(k) = X(2)| 2s,.

>—el N

Im

R
\JRe

( X(k) evenly sampled on the unit circle of the z-plane)
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Linear Time-Invariant (LTI) Systems.

e N order difference equation:

N—-1

Zakyn— Zbkwn—

k=0

e Impulse Response:

an)

h(n) = y(n)|z(n)=5(n)
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e Bounded-Input Bounded-Output (BIBO) Stability:

All poles of H(z) are inside the unit circle for a causal system
(where h(n)=0, n< 0).

e FIR Filter: N=O.

e [IR Filter: N>0.

e Minimum Phase: All poles and zeroes of H(z) are inside the unit

circle.
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ENERGY AND POWER SPECTRAL DENSITIES
e Energy Spectral Density of Deterministic Signals.
Finite Energy Signal if

0< >  lz(n)* <o

nN=——~oo

Let X(w) =" z(n)e Iwn

n=—aoo

Parseval’s Energy Theorem:

Remark: | X (w)|® “measures” the length of orthogonal projection of

{z(n)} onto basis sequence {e 7*"} w € [—m, n].
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Let p(k) =>_""___xz(n)x*(n — k).

n=—oo

Z p(k)e ¥k = Sj Sj z(n)z* (n — k)e Ienelwn=Fk)
= [ Z x(n)ejw"] [ Z $(s)ejw‘9]
X (@) = S()

Remark: S(w) is the DTFT of the “autocorrelation” of finite

energy sequence {x(n) }.
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e Power Spectral Density (PSD) of Random Signals.

Let {z(n)} be wide-sense stationary (WSS) sequence with
Elx(n)] = 0.
r(k) = Elz(n)x™(n — k)].
Properties of autocorrelation function r(k).
o (k) =r*(—k).
e r(0) > |r(k)| , for all k

e 0 < r(0) = average power of x(n).
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Def: A is positive semidefinite if z? Az > 0 for any z.

(z" = (z7)" Hermitian transpose ).

Let

|
=

Obviously, A is positive semidefinite.

Then all eigenvalues of A are > 0.
= determinant of A > 0.

= r2(0) — |r(k)|* > 0.
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Covariance matrix:

r(0) r(1) oo r(m—=2) r(m-—1)
r*(1) r(0) r(m — 2)
R =
 rf(m—1) r*(m-=2) -+ r*(1) r(0)

e It is easy to show that R is positive semidefinite.

e R is also Toeplitz.

e Since R = R R is Hermitian.
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e FEigendecomposition of R

R = UXUY,

where UPU = UU" =1

(U is unitary matrix whose columns are eigenvectors of R)
Y= diag(A1, ..oy A ),

(A\; are the eigenvalues of R, real, and > 0).
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First Definition of PSD:

o

P(w) = Z r(k)e IwF
k=—o0
r(k) = % /j P(w)e’* dw
Or
P = Y rlkye 2"
k=—o0

Remark: e Since r(k) is discrete, P(w) and P(f) are periodic, with
period 27 (w) and 1 (f), respectively.

e We usually consider w € [—m, 7] or f € [—1, 3]
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[’ P(w)dw = Average power for all frequency.
PSD
/ B) Average power between wland w?2
0V
wl w2
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Second Definition of PSD.

N-1
Z x(n)e 7¥"
n=0

This definition is equivalent to the first one under

2

1
P = Jim B

N—-1

lim S k] (k)] =0

N—oo [N
k=—N-+1

(which means that {r(k)} decays sufficiently fast ).
Properties of PSD.

e P(w) >0 for all w.
e For real z(n),r(k) = r(—k),= P(w) = P(—w),w € [—m, 7.

e For complex z(n),r(k) = r*(—k).
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PSD for LTI Systems.

x(n) H (W) Ln)
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Spectral Estimation Problem

From a finite-length record {x(0),...,x(IN — 1)}, determine an
estimate P(w) of the PSD, P(w), for w € [-m,x].

NonParametric Methods:

Periodogram:

Recall the second definition of PSD:

2

Plw)= lim E —Jwn

N — o0

_ —Jjwn
Periodogram = P,(w) = N‘Zn o Z(

Remark: e P,(w) > 0 for all w.
o If z:(n) is real, P,(w) is even.

o E[P)(w)] =? Var[P,(w)] = ? (to be discussed later on)




Correlogram (See first PSD definition)

N-1
Correlogram = P,(w) = Z (ke IwF,
k=—(N—1)

Unbiased Estimate of r(k):

k>0, k)=S0 e (i — k)

k<0, 7(k)= f*z—k)

>
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Ex.

1, (average of 3 points)
(1)(1) = 1, (average of 2 points)
(1)(1) =1, (average of 1 point)

(k)

1) =#(1) =537
~ 2
125
—3) =#(3) = 0.
R(w)
S
-TT 0 Tt
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Remark:
e (k) is a bad estimate of r(k) for large k.
e F|r(k)] = r(k) (unbiased )

Proof:
N—1

1 N s
N_kZ:U(z)x (i — k)

1=k

1 N-1
=N ;rw):r(k)

e P.(w) based on unbiased #(k) may be < 0.

El[i (k)] = E
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Biased Estimate of (k) (used more often!)

k>0, #(k)=§ Xy @(i)a* (i — k),
k<0, 7k)=r7r*(—k),

Remark:

1Nl

= & 3 Bla(i)a’ (i~ b)
1=k

ﬁ>

1 ! k
/’/i
1=k

r(k)

— r(k), as N — o

(Asymptotically unbiased)
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Ex. O Jl
7(0) = 53 0(1(1) = 1.
F(—1) = #(1) = %Z?(l)(l) = 3
P(—2) = 7(2) = %Zﬁ(l)(l) =3
(k)
' _DTFT
I
-2-1 01 2

R©)
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Remark:
e With biased 7#(k), P.(w) = P,(w) > 0,for all w

o E[i (k)] # (k)
Ef(k)] — r(k), as N — oo = Asymptotically unbiased.

7(0) (1) o (N =1)
Jh (1) 7(0) .o (N = 2) |
] (N —-1) 7*(N—=-2) --- 7(0) |

with 7(k) biased estimate. Then R is positive semidefinite.
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General Comments on P,(w) and P,(w).

e P,(w) and P.(w) provide POOR estimate of P(w). (The
variances of P,(w) and P,(w) are high.)

Reason: P,(w) and P.(w) are from a single realization of a random

process.

e Compute P,(w) via FFT.
Recall DFT: (N2 complex multiplication)

N—1
X(k) =Y a(i)e I ¥H
1=0
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Let

Note:

e /v, N=2"

N-1

n=0

51 N-1

> W+ Yz

51

n=0

W% p— 6_]%% p— e_jﬂ-k
R even k
| =1, oddk
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X(2p) =N} z(n)+z(n+ 5)|Wr, k=2p=0,2,..
n=0 [x(n)_x(n_l_%)} Wknv k:2p—|—17

which requires 2(%)2 complex multiplication
This process is continued till 2 points.

e Remark: An N = 2™ -pt FFT requires O(N log, N) complex
multiplications.

e Zero padding may be used so that N = 2™,

e Zero padding will not change resolution of P,(w).
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FUNDAMENTALS OF ESTIMATION THEORY
Properties of a Good Estimator for a constant scalar a

e Small Bias:

Bias = Fla] — a

e Small Variance:

Variance = F {(& — E[&])2}

e Consistent:

a — a as Number of measurements — oo.
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Ez. Measurement
Yy =a-+e,
Where a is an unknown constant and e is N(0,02).

Find a from y ?

f(yla)
Pdf of v:
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Maximum Likelihood (ML) Estimate of a:

Say y = 5, we want to find a so that it is most likely that the

measurement is 5

0f(yla),
a& ‘GZCLML Y
g : y
| | "
a S = Ay

o = amMrL =Y
* Elayi]) = Elyl = Ela+n]=a
) Varlay) = Varly] = o

42




Ex. y=a+e
Three independent measurements y1, y2, y3 are taken.

ayr = 7 Bias = ? Variance = 7

—(yi—a)?
f(y'l,‘a/) — 217_(_06 202
—(i—a)?
f(y17y27y3‘a/) — H’L3:]. ﬁ@ 202

3f(y1,y2,y3|a)| X —0
da a=amMrL —

) 1
= QML — §(91 + Y2 + y3).

Elayp) = F B(yl + Y2 + y3)] = a.

1

VCLT[&ML] = 9Var(y1 + Yo + yg)

1 2
_ —(2—|—02—|—a2):%.

Nej
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FEzx. x is a measurement of an uniformly distributed random

variable on [0, 0 |, where 6 is an unknown constant. 0y, = ?

QMsz

>
D> X
1 o>t —

Question: What if two independent measurements x; and xs are
taken 7

0/ —max (1,22 ).
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Cramér - Rao Bound.

Let B(a) = E|a(r)|a] — a denote the bias of a(r), where r is the

measurement.

Then

[1—|— 38 B(CL)]2
In f(rla)]*la}

MSE =E [(a( )—a)2|a,} > oila

* The denominator of the CRB is known as Fisher’s Information,
I(a).

*If B(a) =0, the numerator of CRB is 1
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1+ 5eB@) = [ lat) =l f(rla) 5o rle) s
9 G
But %lnf(r]a) = )

0

L+ 2 Bla) = [WMM—MfM@%ﬁwmwm

= {7 lalr) = a] VF0To) | (£
= [1+ 2 B(a)]".
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Schwarz Inequality:

| an@a(a)d < [ | 912<x>d:c] : [ | gf(:c)da:] g

44

where “ =7 holds iff g1(z) = cg2(x) for some constant ¢ (c is

independent of x).

N [1+ ;B(a)r < {/OO a(r) —a]Qf(r|a,)dr}

— OO

where “= 7 holds iff

a(r) —a = cZIn f(rla).

(where ¢ is a constant independent of 7).
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Efficient Estimate:

An estimate is efficient if

(a.) It is unbiased
(b.) It achieves the CR - bound, i.e, E {[&(r) — a]2|a} = CRB.
Ex.r=a+e

where a is unknown constant, e~ N(0,02). ayr, = ? efficient ?

1 1 2
frla) = —p—e 37

2o
1 1
In f(rla) =In Tore 907 (r —a)’.
0 1
50 In f(rla) = —EQ(T —a)
1
= ﬁ(a—r).
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0 .
%lnf(ﬂa) . =0 =ayL=r
0 1 .
%lnf('r a) = ;(a—aML)
0 .
:>—02%lnf(r a) = apyp—a
E {(CALML — &)2‘ CL} — CRB
Elayr] = E|r] =a, unbiased

=  ayy efficient {
Remark: @ MSE = Var|ay ] = Var[r] = o2.

s {lbe )2

1
= CRB = T(a) =0 = VarlayL].

ol(a) = E{ [% In f(r|a)] 2




Remarks:
(1) If a(r) is unbiased, Var[a(r) | > CRB.
(2) If an efficient estimate a(r) exists, i.e,

g In f(r|a) = cla(r) —a]. (¢ is independent of r.)
a
then

0

0= 50 In f(r|a)|q=a, . () Tesults in ayrr(r) = a(r).
a

If an efficient estimate exists, it is apsr,.

(3) If an efficient estimate does not exist, how good apsr, () is

depends on each specific problem.

No estimator can achieve the CR-bound. Bounds (for example,
Bhattacharya, Barankin) larger than the CR-bound may be found.
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Independent measurements r1, ..., rny available, where r; may or

may not be Gaussian.

Assume
A 1
ap g — ﬁ Z’I‘z

Law of large numbers: ay;;, — a
N — 00

Central Limit Theorem:

an 1, has Gaussian distribution as N — oo.
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Asymptotic Properties of ay . (r1,...,7n)
(a) aprp(r1,...,7n) — a (Gprr is a consistent estimate.)
N —o00
(b) aprr is asymptotically efficient.
(¢) apr is aymptotically Gaussian.
Er. r=g 1(a)+e, e~N(0,0°%). apyg =7 efficient ?
Let b=g '(a). Then a = g(b)

0, 1 d —1
da In f(rla) = 52 (r— g7 (a)) QT@‘CL:&ML =0
anmr =g(r) = g(BML)-

Invariance property of ML estimator

o If a = g(b) then anr = g(bur).
e a);;, may not be efficient. G,y is not efficient if ¢g(-) is a

nonlinear function.
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PROPERTIES OF PERIODOGRAM
Bias Analysis

e When 7(k) is a biased estimate,

E [ﬁp(w)} — [ﬁc(w)} —EB{ Y (keI
k=—(N—1)
k>0, B[i(k)] = N]; Kk,
k<0, B = B (k)] = ey = Ty,
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Bartlett or Triangular Window.

1,

J

w g (k)

L(N-1)

EBw)| = > [wslk)r(k)e "

k=—o0

Let wp(k)+S Wa(w)

B [Pyw)] = & [T P@)Wp(w — $)dy.
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e When 7(k) is unbiased estimate,

A

E|Pyw)| = & [T, PW)Wa(w - p)dy .

DTF'T
)

wR(k < WR(w)

W (K)

1]

(N-1) O N-1

P( ) E [ P(w)]
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Manlobe . Side lobes

N 0\ ’

3 dB power width of main lobe ~ 2T (or + in Hz) .

Remark:e The main lobe of Wp(w) smears or smooths P(w).

27

e T'wo peaks in P(w) that are separated less than 5F cannot be

resolved in P, (w).

1

e = in Hz is called spectral resolution limit of periodogram

methods.
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Remark:

e The side lobes of Wp(w) transfer power from high power
frequency bins to low power frequency bins — leakage.

e Smearing and leakage cause more problems to peaky P(w) than
to flat P(w).

If P(w) = o2, for all w, E[P,(w)] = P(w).

e Bias of P,(w) decreases as N — oco. (asymptotically unbiased.)
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Variance Analysis

We shall consider the case x(n) is zero-mean circularly symmetric

complex Gaussian white noise.

O

Elz(n)z* (k)] = 0%5(n — k).
Elz(n)x(k)] =0 for all n,k.

(© is equivalent to:

E | Re(z(n))Re(xz(k))] = S d(n — k)
{ Em(z(n))Im(z(k))] = % d(n — k)
| E [Re(z(n))Im(xz(k))] =0

Remark: The real and imaginary parts of x(n) are N (0, "72) and

independent of each other.
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Remark: If z(n) is zero-mean complex Gaussian white noise, P,(w)

is an unbiased estimate.

o (k) = o%(k).
: S LIA PR
E|P,(w)| = — — |r(k)e ¥ =0
pe] = 3 (1-5)
o P(vw) = _z: r(k)e I9F = o2
- E[Pp(w)]
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For Gaussian complex white noise,

Ez(k)x*(D)x(m)xz*(n)] = o* [6(k — 1)d(m —n) + §(k — n)dé(l — m)].

i S: Jz(m)z™(n)]

—]wl(k l) —]wg(m n)

E[ﬁp(wl)ﬁp(m)} - IQNS:

€

O' N—1N-—
_ _2 Z Z (w1 —ws)(k—1)

k=0 [=0

N_ 2

Z ed (W1 —w2)k

:O'—|——
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A

lim FE {pp@dl) p(wg)} = P(wl)P(wg) + P2(w1)5(w1 — CUQ).

N — o0

tim B {[By(w1) — Plwn)| [Bylen) — Plws)|}

N — o0

PQ(wl), W1 — W2

0, w1 # wo (uncorrelated if wy # wo)

Remark: e P,(w) is not a consistent estimate.
o If wy # wsy, Py(wy) and P,(wy) are uncorrelated with each other.

e This variance result is also true for
y(n) = h(k)x(n - k),
k=0

where x(n) is zero-mean complex Gaussian white noise.

x(n) h (n) y(n)
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REFINED METHODS

Decrease variance of P(w) by increasing bias or

decreasing resolution .

Blackman - Tukey (BT) Method

Remark: The #(k) used in P,(w) is poor estimate for large lags k.

M—1
M<N: Pprw)= Y  wk)i(k)e I,
k=—(M—1)

where w(k) is called lag window.

Remark: If w(k) is rectangular, w(k)7 (k) is a truncated version of

DTFT
—

If #(k) is a biased estimate, and w(k) W(w)

Ppr(w) = o= [T W(w—¢)P,()d .
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Remark: e BT spectral estimator is “locally” weighted average of

periodogram P,(w).
e The smaller the M . the poorer the resolution of PBT(w) but the

lower the variance.

e Resolution of Ppr(w) o .

2I=

M fixed
—3

N — o0

e Variance of Ppr(w) 0.

e For fixed M , Ppr(w) is asymptotically biased but variance — 0.

Question: When is Ppp(w) > 0V w?
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DTFT

Theorem: Let YV (w) +— y(n), —(N—-1)<n<N-1

Then Y (w) > 0V w iff

is positive semidefinite.

In other words, Y (w) > 0V w iff

707707y[_(N_1)]7vy(0)7y(1)7

positive semidefinite sequence.

- y(0) y(1) y(N —1
y(—1) y(0) y(N —2)
y[—(N —1)] y(0)
0

7y(N_1)707 .

1S a
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Remark:  Pgr(w) > 0V w iff {w(k)#(k)} is a positive semidefinite

sequence.

OPBT(Q)) 20Vw1ﬂ"

]?{BT —
I w(0)7(0) w(M —1)#M —1) 0 |
w[—(M = 1)]F[—(M —1)] w(0)7(0)
0

is positive semidefinite, i.e, Rpr > 0.
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O | i-w-1] -

() = Hadamard matrix product:
(i7)!" element: (A (O B);; = A;;By;
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Theorem:
If A > 0 (positive semidefinite) B > 0 then A () B > 0.

Remark: If #(k) is a biased estimate, P,(w) > 0V w. Then if W(w)
> 0V w, we have PBT(w) >0V w.

Remark: Nonnegative definite (positive semidefinite) window

sequences: Bartlett, Parzen.
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Time-Bandwidth Product

e Equivalent Time Width N,.:

M-—1
Zn:—(M—l) w(n)

Ne = w(0)
FEx.
M—1
NG
N, = =k= (f 1)():2M—1.
w_ ()
1
RN
-(M-1) 0 M-1
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FEx.

W ()
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e Equivalent Bandwidth (.:

f_wﬂ W (w)dw
2m B, = W0)
Since w(n)DﬂTW(w).
1 [7 :
w(n) = gy W(w)e!*"dw.

— 7T

5 w(0) = % /_ﬁ W (w)dw.

n=—(M-1)
M—1
= W(0) = Z w(n)
n=—(M-1)
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Sl w(n) [T W (w)dw
or S W(W)dw 2033007 ) w(n)

Neﬁe: =1

= N.B. =1 (Time Bandwidth product.)

Remark:

e If a signal decays slowly in one domain, it is more concentrated in

the other domain.

e Window shape determines the side lobe level relative to W (0).
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Ex:
r(2n)+— - X

DTFT 1 (w)

X(w)

x(2n)

Remark: e Once the window shape is fixed, M T — N, 1 — (. |.
= M 1 — main lobe width |.
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Window design for Pgr(w)

Let 3,, = 3dB main lobe width.

Resolution of Pgp(w) ~ B,  Variance of Pgp(w) ~ BLm

e Choice of 3,, is based on the trade-off between resolution
and variance, and [NV

e Choice of window shape is based on leakage, and N.

e Practical rule of thumb:

N
1. M< X

2. Window shape based on trade-off between smearing and leakage.
3. Window shape for Pgr(w) >0, Vw

Remark: e Other methods for Non-parametric Spectral
Estimation include: Bartlett, Welch, Daniell Methods.

e All try to reduce variance at the expense of poorer resolution.
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Bartlett Method

X(n): eee---000---000---000- -
A\ ~ 7 \\ - ) \ )
z1(n) z2(n) xr(n)

e z(n) is an N point sequence.

e ;(n),l=1,---,L, are M point sequences.
e 1;(n) are non-overlapping. L = 1v.

2

LS
P(w) = i Z xy(n)e 7"
n=0

Pp(w) = % S Aw).
=1

Remark:

e Pg(w) >0,V w.

A

e For large M and L, Pg(w) =~ [ Pgr(w) using wr(n) ]
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Welch Method:

e z;(n) may overlap in the Welch method.

e z;(n) may be windowed before computing Periodogram.

4 \
|
X, (N) X< (M)
Let w(n) be the window applied to z;(n),l =1,..,5 n =
Let
| M1
P = power of w(n) = Wi Z lw(n)|?
n=0
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LR 2
P(w) = P Z w(n)x;(n)e 7"
n=0

) 1 3o
Py (w) = 5 ZPZ(W)
=1

Remarks: e By allowing x;(n) to overlap, we hope to have a larger
S, the number of P;j(w) we average. 50% overlap in general.

Practical examples show that f’W (w) may offer lower variance

than Pp(w), but not significantly.

e Py (w) may be shown to be Pgr(w) -type estimator, under

reasonable approximation.
o Py (w) can be easily computed with FFT -favored in practice

e Ppr(w) is theoretically favored.
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Daniell Method:

A w—|—67r A
Pp(w) = 523 J.,_ 5. Pp()di.

oo—Bﬁ c§+Bn

Remark: e Pp(w) is a special case of Pgr(w) with

%7 S [_/67-‘-7 Bﬂ-]

)DTFT
0, else .

w(n) in pBT(w — W(w) =

e The larger the (3, the lower the variance, but the poorer the

resolution.
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Implementation of Pp(w)

e Zero pad x(n) so that z(n) has N’ points, N’ >> N.
e Calculate Pp(wk) with FFT.

2T
wp = Sk, k=0, N =1
[
1 k+J
I=k—J
Pp(w) XX o ee .. °

2J41 points averaging
4

pD(Wk)
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Ex.

PARAMETRIC METHODS

Parametric Modeling

P(f) - %);fe%(“ff) 1<s

Remark: e P(f) is described by 2 unknowns: r(0) and o7-.
e Once we know 7(0) and o, we know P(f), the PSD.

e Nonparametric methods assume no knowledge on P(f) — too

many unknowns.

e Parametric Methods attempt to estimate r(0) and oy.
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Parsimony Principle:

Better estimates may be obtained by using an

appropriate data model with fewer unknowns.

Appropriate Data Model.

e If data model wrong, ﬁ( f) will always be biased.

/ Estimate

True PSD
f

e To use parametric methods, reasonably correct ‘a prior:’

knowledge on data model is necessary.
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Rational Spectra:

A(w)
Aw) =1+ a1e™ ¥ + -+ ape 7P

P(w) = 02‘—3(“}) i

Bw)=14+be % + .- +be 1%,
Remark: e We mostly consider real valued signals here.
®aj,---,ap,b1, -+, b, are real coeflicients.

e Any continuous PSD can be approximated arbitrarily close by a
rational PSD.
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u(n) H(w) = % X(n)

u(n) = zero-mean white noise of variance o?.

B(w)

Aw)

2
P..(w) = o? :

Remark:

The rational spectra can be associated with a signal obtained by

filtering white noise of power o2 through a rational filter with
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In Difference Equation Form,

p q
z(n) ==Y apz(n—k)+ > byu(n — k).
k=1 k=0
In Z-transform Form, z = e/¥
B(z)
H
&)= 5

Az)=14+a1z7  +- - +apz?
B(z)=1+bz" 4+ + bz 1

O x(n-1)
Unit Delay line
Notation sometimes used : z 'z(n)=z(n —1)
B
Then: z(n) = Aéziu(n)

83




ARMA Model: ARMA (p,q)

2

P(w) = o %
AR Model: AR(p)
P(w) = o” ﬁ

MA Model: MA(q)

P(w) = o?|B(w)|".
Remark: e AR models peaky PSD better .
e MA models valley PSD better.
e ARMA is used for PSD with both peaks and valleys.
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Spectral Factorization:

B(w)|’ _ 0°B(w)B*(w)
Aw) Aw)A*(w)

Aw)=1+are ™™ + - +ape /P

P(w) = o*

bi,---,bg,a1,---,a, are real coeflicients.

A*(w) = 14+ a1/ + -+ aye’?”
1 1 1
— 1+a1;++apz—p:A(;

)

9 B(2)B(21)
P(2) = 0" Zady-

Remark: If a;,---,a,,01,---,b, are complex,
, B(2)B* (%)

P(z)=o0 A A" (zi*)
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Consider

Remark: e If « is zero for P(z), so is <.

e If 3 is a pole for P(z), so is %

e Since the ay,---,ap,b1,---, b, are real, the poles and zeroes of

P(z) occur in complex conjugate pairs.

a
N

Im

Re

\ge/
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Remark:

e If poles of ﬁ inside unit circle , H(z) igg is BIBO stable.
)

e If zeroes of B(z) inside unit circle, H(z) = ﬁ

—~

z

1S minimum

—~
I\

)

phase.
e We chose H(z) so that both its zeroes and poles are inside unit
circle.
u(n) HZz) = B x(n)
A(2)
Stable and

Minimum Phase system
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Relationships Among Models
e An MA(q) or ARMA(p,q) model is equivalent to an AR(c0).

e An AR(p) or ARMA(p,q) model is equivalent to an MA (co)
model

Ex:

B 1+0.9z71
- 140.8271

H(z) —  ARMA(1,1)

1

(1+0.8271) 55651y

1
(1+0.8-1)(1—092-1 +0.812=2+---)
= AR(00).

Remark:Let ARMA(p,q) = 38 — % = AR(o0).

From ay,---,ap,b1,---,by, we can find ¢y, cg, - -+ and vice versa.
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Cp+1

B(z) 1
A(z)  C(z)
= [14+bz "+ +bz ][I+ +-
=[1+az7" 4+ +ayz?

= B(2)C(z) = A(z)

Since

O -+ --- 0
1 o --- 0 ] ] B 1 ]
1
a1
b1
by | =
1 Ay
0
. _bq_
Cp i i

|
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Cp+1

Cp+q

Cp+q—1

Remark: Once b1,

- 1 0
Cp " Cp—g+l
by 0
c

P by 0
Cp—q+1 b1 Cp+1

— ()

Cp ] | bq | | Cptaq |
.-+, b, are computed with (%) a,--+,a, can be

computed with (o).
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Computing Coefficients from r(k).

AR signals.
Let ﬁ =14zt Fagz 4

r(n) = ﬁu(n) =u(n)+au(n —1)+---
E [z(n)u(n)] = o2
Elz(n —k)u(n)] =0, k > 1

Since A(z)x(n) = u(n)
z(n) +ax(n—1)+ -+ a,z(n —p) = u(n)

a(n) a(n-1) - at-p) ||

91




|
-

E S

z(n —p) }
1
r(=p) a:l
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E <

z(n —p)
1
r(k —p) } a:1
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Ra=-r<
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Remarks:

e When we only have N samples, {r(k)} is not available. {7(k)}
may be used to replace {r(k)} to obtain ai,-- -, a,.

= This is the Yule - Walker Method.

e R is a positive semidefinite matrix. R is positive definite unless
x(n) is a sum of less than | § | sinusoids.

e R is Toeplitz.

e Levinson - Durbin algorithm is used to solve for a efficiently

e AR models are most frequently used in practice.

e Estimation of AR parameters is a well-established topic.

95




Remarks:

o If {7(k)} is a positive definite sequence and if ay, - - -, a, are found

by solving Ra = —r, then the roots of polynomial

1+ayz7' + -+ apz P are inside the unit circle.

e The AR system thus obtained is BIBO stable

e Biased estimate {7(k)} should be used in YW-equation to obtain
a stable AR system:

96




Efficient Methods for solving

Ra=-r or Ra=-r

e Levinson - Durbin Algorithm.
e Delsarte - Genin Algorithm.
e Gohberg - Semencul Formula for R™! or R!

(Sometimes, we may be interested in not only a but also R™!)
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Let

Levinson - Durbin Algorithm (LDA)

r(0)  r(1) r(n)
r(1)  r(0)
R, = . . ,  ( real signal )
r(n) r(n—1) r(0)
n = 17 27 ) » P
_ . 3
Let 0, = : ,
An n
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LDA solves

Roi1 | - | =

recursively in n, starting from n = 1.

Remark:
Forn=1,2,.---,p,
e LDA needs ~ p? flops

e Regular matrix inverses need ~ p* flops.
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Let A = Symmetric and Toeplitz.

let b=

b,
bn—l
,with b =
b1
Then if c = Ab
= &= Ab
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Proof:

— Az'j

ao ap -+ Qp-—1
aj
A =
ai
| Qn-—1 ai ap |

k=1
Z Ap—i+1—k| Dk
k=1
Z a|m—i|bn—m—|—1 — Z Am,zgm (m =n—Fk+ 1)
m=1 m=1
(Ab),
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Consider:

Rn—l—l
_ | -
RTH-Q 0, —
- O —
| r(n+1)
Let r, =

Then a, =r(n+1) + 0,1t
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Result:

Let kn_|_1 = —5— Then
0, 0,
H’n—l—l — + kn—l—l
0 1
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Proof:

On,
0 + kna1
| On
i Opn + kni1am, ]
0 —
Qp + Kny10n |
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LDA: Initialization:

r(0) r(1 1 )
n=1: Ry | 0 " —|
r(1) r(0) 01 0
b1 = o(1)
01 =7(0) — ngf O(1)
k‘l = 91
Forn=1,2,---,p—1, do:
T .
kn—l—l _ _r(n-l—l()S:-On I'n ~n flops
Ont1 = 0n(1 =K} 4y) O(1) flops
0, 0
Oni1 = + Knt1 ~n flops
0 1

flops

flops
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Ex:

Straightforward Solution:

ay

Jo
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LDA: Initialization:

107




Properties

o k| <1,

0 6
— ! + ]€2 !
0 1
— — — a
0 1 0 as
of LDA:
n=12---,p, and 7(0)>0,iff

An(z) =1+ an,lz_l +- - Fapnz =0

has roots inside the unit circle.

o k.| <1,

n=12---,p, and r(0)>0 iff R,y >0
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Proof (for the second property above only): We first use induction

to prove:
I an1 -+ ann - - 1
r(0) --- 7r(n)
Qn, 1 1
0 1 aq,1
r(n) r(0)
1 NG ~ _J a,n7n a’l,l 1
~— -~ _/ Rn—l—l ~— ~
UZ_H Up41
On
0
= (%)
0 01
r(0)
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Suppose (x) is true for n =k — 1, i.e.,

Consider n = k:

T
U, 1 Re41 Uk

Since

U/R,U; = D,.

1 6} r(0) r}

0 UZ I Rk
?“(O) + ngk: I‘Z -+ Hng
UZI‘]{ UkRk

1 O
Ryt1 —
0} 0

111




r(0 rl
NECR
I Rk

T
= Uk+1Rk+1Uk+1

T
= Iy

Ok

T

Ty,

+ 0. R!
+ 6. Ry

0
UTR,

Ok

=0

1
0

0
Uy

0

IJZI’].C + U;{Rkﬁk UZRkUk

o0, O
0 Dy

= D1
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T
= Un_|_1Rn—|—1Un—|—1 — Dn—l—l-
= (x) proven !

: 1 p—1 T 1 -1
Since U, 1R, 1, (Un—|-1) =D, 1

-1 _ -1 11T
= Rn+1 - Un+1Dn—|—1Un—|—1’

Un+1D;él is called Cholesky Factor of R,;Jlrl

e Consider the determinant of R, 41 :
det(Ry11) = det(Dy,41) = r(0)I1};_; 0

= det(R,41) = d,det(R,,)
= R,11 >0, n=1,2,---,p, iff r(0)>0
and 0 >0, k=1,2,---,p.
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Recall
Ont1 = O0p(1 — kiJrl).
If Rn—l—l > O,

:>T(O)>Oa 5n>07 77/2172,

57’& o 5n—|—1
On

Since  y, — Opt1 < On,

2 —
kn—l—l -

k721+1 <1l = |k <l
If |kal <1, r(0)>0,

= kpp <L

N dp = 1(0) > 0,

7p7

5n+1:5n(1—k%+1)>07 n:1’27...

7p_1
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MA Signals:

r(n) = B(z)u(n)
= wu(n)+bu(n—1)+---+byu(n —q)
r(k) = Elz(n)z(n— k)
= Eflu(n)+ -+ bgu(n —q)]
u(n —k)+---+bu(n—q—Fk)|}
k| > ¢ r(k) =
]k|<q: ?“(k) = 02z_:blbl—|—kz q>k>0
r(k) = r(—;). —q<k<0
b():l,b1°",bq: real
- P(w) = St r(k)e 7"




Remarks: e Estimating by, - -, b, 1s a nonlinear problem.

q
A simple estimator is P(w) = Z F(k)e Iwr,
k=—q

* This is exactly Blackman - Tukey method with rectangular

window of length 2q + 1.

A

* No matter whether 7(k) is biased or unbiased estimate, this P(w)

may be <0 .
* When unbiased #(k) is used, P(w) is unbiased.

* To ensure P(w) >0,V w, we may use biased 7(k) and
a window with W(w) >0, V w. For this case, P(w) is biased.

This is again exactly BT-method.

e A most used MA spectral estimator is based on a Two-Stage
Least Squares Method. See the discussions on ARMA later.
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ARMA Signals:  (Also called Pole -Zero Model).
(1+az7t+-+apzP)x(n) = (1+brz=t + -+ bz u(n).
Let us write x(n) as MA(o0):

ZC(TL) = U(’n) + hlu(n — 1) -+ h2u(n — 2) 4o

z(n) u(n)
[ _— . } az(n.— 1) _ [ _— b u(n.— 1)
z(n—p) L u(n—q) |

e Next we shall multiply both sides by x(n — k) and take E {.}.
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[1 an
k=1
[1 aq
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k > gq+1

This is the modifed YW - Equation
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To solve for ay, -, a, we need p equations. Using r(k) =

gives

r(g+1) r(q) r(g—p+1)
ri(g+2) r(g+1) r(g—p+2)
r(g+p) rg+p—1) r(q)
r(q) r(g—p+1) | ¢
rg+1) 1

r(=k)
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Remarks:

(1) Replacing 7(k) for r(k) above, we can solve for ay,-- -, a,.

(2) The matrix on the left side

e is nonsingular under mild conditions.
e is Toeplitz.
e is NOT symmetric.

e Levinson - type fast algorithms exist.
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What about the MA part of the ARMA PSD?
Let y(n)=(1+bz"" +- +byz"u(n).
The ARMA model becomes

(1+az"t+--+ap,zP)z(n) = y(n)

P e

2

1 Py(w).

Pp(w) = ‘m

Let v be the autocorrelation function of y(n) . Then (see MA

signals).

q
Py(w) = Z vee 7"

k=—q
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V=

Since aq, - - -, a, may be computed with the modified YW- Method

;)\/k: fzozizof(k—i_j_z)&z&ja &0:17 ]C:O,].,"',q
Y-k = Vk-
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ARMA PSD Estimate:

q 2 o —jwk
~ __ . Yk€
P(C(J) — Zk ! ‘2

A

Aw)

Remarks:

e This method is called modified YW ARMA Spectral Estimator

e P(w) is not guaranteed to be > 0, V w, due to the MA part.

e The AR estimates ai,---,a, have reasonable accuracy if the

ARMA poles and zeroes are well inside the unit circle.

e Very poor estimates aq, - - -, a, occur when ARMA poles and
zeroes are closely-spaced and nearby unit circle. (This is

narrowband signal case).
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FEx: Consider
xz(n) = cos(win + ¢1) + cos(wan + ¢2),

where ¢1 and ¢5 are independent and uniformly distributed on

0,27].
r(k) = %cos(wlk) + %COS(WQ]@').

Note that when w; ~ ws, large values of k are needed to distinguish

cos(w1k) and cos(wqk).

Remark: This comment is true for both AR and ARMA models.
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Overdetermined Modified Yule - Walker Equation (M > p)

7(q)
Flg+p—1)
| P+ M —1)

Flg—p+1)
(q)
P(q+M—p)

Q

r(q+1)

*(q + p)
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Remarks:

e The overdetermined linear equations may be solved with

Least Squares or Total Least Squares Methods.

e M should be chosen based on the trade-off between information

contained in the large lags of 7(k) and the accuracy of #(k).

e Overdetermined YW -equation may also be obtained for AR
signals.
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Solving Linear Equations:

Consider AmM*XnxnXx1l — pmXx1

e When m = n and A is full rank, x = A~ !b.

e When m > n and A is full rank n, then the solution exists if b is
in the n-dimensional subspace of the m-dimensional space that is

determined by the columns in A.

Ex: o
1
A =
0
3
If b= X =3
0
1
If b= ,X =7 does not exist !
1
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Least Squares (LS) Solution

for Overdetermined Equations:

e Objective of LS solution:

Let e=Ax—Db

Find x7g sothat efe is minimized.
€1
€2

Let e=
Em

Euclidean Norm = e'le = \61|2 + |€2\2 T |“3m‘2
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Ex:

‘e

m

Remarks: e Ax;9 = b + efg

e We see that xy g is found by perturbing b so that a solution

exists.
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e = (Ax—Db)"(Ax—D)

— xUAHAx —xHUAHb —b"Ax + bbb

+ be—bHA@AHAf?AHq

_ }—(AHAy*AﬂerAHA)P—wAHAf*AH@

Remark: e The 2™? term above is independent of x.

® €

H

e is minimized if

x = (AHEA) T AHD

LS Solution
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Let

Illustration of LS solution:
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Ex:

XLS

Axpg =

ers = Axps —b =

1
, Xrs ="'
1
1 _
1o
1
1
(1) = ,
0
1 —_
1
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Computational Aspects of LS

e Solving Normal Equations

(ATA)xps = Ab. (1)

This equation is called Normal equation.

Let
APA =C, Afb=g.

Cxrs =g, where C is positive definite.
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Cholesky Decomposition:

C =LDL",
1 0 0
loy 1 0
where L = . . (Lower Triangular Matrix )
lnl ln2 1
dq 0
D = e , d; > 0.
0 dp,
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Let

Back - Substitution to solve:

LDLx,s =g
y = DLYx;¢.
1 0 --- 0 n _ _
gi
lov 1 - 0 Y2
dn
lnl ln2 e 1 Yn B -
)
Yi = g1
Y2 = g2 — 2191

k—1
L yk:gk_zjzllkjij k:37”'7n°
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_1 SRRUU TR - - -
21 nl "
1 ==
o 1 ... [* dy
n2 _
Yn
xn 5
dn,
0 I B -
— Yn
:> xn_dn
_ Yk n * ) — _
LTk = 4. Zj:k+1 ISR k=mn—1,
Remarks:

e Solving Normal equations may be sensitive to numerical errors.
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FEx.

3 3—0

Tq B —1
4 446 | |a | | 1|
where 0 is a_small number.
Exact solution: i ) i i
1 1

1
)
Assume that due to truncation errors, 2 = 0.

AHA =

25

25+0 25420

2540

14925 |
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Solution to Normal equation (Note the Big Difference!):

x=(ATA) A= | °
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¢ QR Method: (Numerically more robust).

Ax = b.

Using Householder transformation, we can find an orthonormal
matrix Q (ze QQY = I), such that

T Z1
x=QAx=Qb=| ... |,

0 %)

where T is a square, upper triangular matrix, and

min ee =zlz,

= Tx;9 = 2z

Back Substitution to find x,g
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Ex.

3 3—-90 1 - —1
4 4—9 L2 1
113 4
Q=
4 -3
5 542 x 1
QAx = Qb gives 5 N S
0 — i) —_
1
Ty = 3
= S
x1 = —3 (same as exact solution)

Remark: For large number of overdetermined equations, QR
method needs about twice as much computation as solving Normal

equation in (1).
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Total Least Squares (TLS) solution to Ax = b.

e Recall x5 is obtained by perturbing b only, i.e,
Ax;s =b+erg. egSeLS —  min.
e X7 1s obtained by perturbing both A and b, i.e.,
(A+Errs)Xrrs = b +errs,

|[Errs brrsl||p = minimum,

where ||.||» is Frobenius matrix norm,
2
1Gllp = lol"

U

)th

gi; = (ij element of G.
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Ilustration of TLS solution

<

The straight line is found by minimizing the shortest distance

between the line and the points squared
Let C=[A B].
Let the singular value decomposition (SVD) of C be

C=UxXV¥H,

Remarks: ® The columns of U are the eigenvectors of CC*.
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Remarks: ® The columns in V are the eigenvectors of C*C.

e Both U and V are unitary matrices, i.e,

vutf =vufu=1 vvil=viv=1

e X is diagonal and the diagonal elements are the +/eigenvalues of

CcHC ) i
01 0
0 On+1
o -.. 0
ey >09 2> >0np11 > 0,0; are real

144




Let

n 1
V_ Vi Vi n
Va1 Voo 1
Xrrs = —VigVay

Remarks:
e At low SNR, TLS may be better than LS.
e At high SNR, TLS and LS yield similar results.

Markov Estimate:

If the statistics of e = Ax - b is known,

the statistics may be used to obtain better solution to Ax =Db.
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ARMA Signals:

Two Stage Least Squares Method
Step 1: Approximate ARM A(p, q) with AR(L) for a large L.

YW Equation may be used to estimate aq,as, -, ay,.
u(n) = zn)+ax(n—1)4+---+arx(n—L).
| N
A2 ~2
6t = 7 Z u“(n).
n=L-+1
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Step 2: System Identification

u(n)

Let x=

B(2) x(n)
A@)
_ 0 _
z(1) )
. ) U =
r(N —1)
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a(—1)
2(0)

] r(N—-2) ---

0= —a,
b1
bq
z(—p) a(—1)
r(—p+1) u(0)

s(N—p—1) a(N—-2) ---
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x = HO + 0 (real signals) .
A _1 R
LS Solution = 0=(H'H) H"(x-1)

Remarks:

e Any elements in H that are unknown are set to zero.
e QR Method may be used to solve the LS problem.
Step 3:

2

Plw) = 62| LT IETT e bye s
|1+ aeIY 4+ ayeivp

Remark: The difficult case for this method is when ARMA zeroes

are near unit circle.
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Further Topics on AR Signals:

Linear prediction of AR Processes

e Forward Linear Prediction

) x(n)
A

n-4 n-2

n-3 [ Nn-1 ‘

I |

Samples used to predict x(n)

~f
x(n) i a{ (i) m
i=1

e (n)
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1=1
= 7..(0) + Za{rm(z)
i=1
+ a,rm +ZZaarxxj—z
7=1 1=1 5=1
86t NN
=0 = rm(z)—kz%rm(]—z):@.
da; j=1
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Remarks: e This is exactly the YW - Equation.

Tz ()

Taca:(l) . I (m) - r
Tzx (O) T T (m — 1)
ree(m—1) - T2z (0) 11

® 5f decreases as m increases.

| | | | | |
I I I I I

p
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Backward Linear prediction

x(N)

il o)

n n+2 | n+4l

| |
Samples used to predict x(n)

i%(n) = — Z alx(n +1).

1=1

e’(n) = x(n —m) — 2°(n —m)

8 =F [(eb(n))ﬂ :
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To minimize §°, we obtain

S _ b
— ai — a'w
5 =g

for all

(
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Consider an AR(p) model and the notation in LDA:
Let m=1,2,---.p
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Recall LDA:

Hm—l
0,, =
] 0
el (n) =
z(n) x(n—1) xr(n —m)] <
= [z(n) z(n—-1)
+km [x(n—1) x(n—2)

+ km
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Similarly,

eh(n) = ey (n) + kmeb, 1 (n—1).
eh,(n) = eh,_1(n = 1) + kel (n).
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Lattice Filter for Linear Prediction Error

f f
e () eLm

f
e (n)
m

x(n)

Remarks:e The implementation advantage of lattice filters is that
they suffer from less round-off noise and are less sensitive to
coefficient errors.

o If x(n) is AR(p) and m = p, then

x(n) u(n)
1+ a z'1 +..+a_zP
1 p

Whitening Filter
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AR Spectral Estimation Methods

e Autocorrelation or Yule-Walker method: Recall that YW-

Equation may be obtained by minimizing

where
z(n) = — Z arxr(n — k).
k=1
The autocorrelation or YW method replaces (k) in the YW
equation with biased 7(k)
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e Covariance or Prony Method

Consider the AR(p) signal,

p

x(n):—Zakx(n—k)Jru(n), n=0,1,---,N—1

In matrix form,

_x@—l)
) z(p)
] (N —2)

k=1
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The Prony Method is to find LS solution to the overdetermined

equation
zp—1) - 2(0) a z(p)
r(N—-2) -+ x(N—-—p-—1) ap (N —1)
Remarks:

e The Covariance or Prony Method minimizes

N-—-1

N—1 p
1 1
A2 /\2 A
o“ = u“(n) = x(n) + arx(n —k
N—pnzzp () N—pZ (n) kzzl i )

n=p

2
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e The Autocorrelation Method or YW-Method minimizes

2
o0 p
1

62 = ~ > |z(n)+ ) arz(n — k)

n=—00 k=1
where those x(n) that are NOT available are set to zero.
e For large N, the YW and Prony methods yield similar results.

e For small N, YW method gives poor performance. The Prony
method can give good estimates aq,-- -, a, for small N. The Prony
method gives exact estimates for x(n) =sum of sinusoids.

e Since biased 7(k) are used in YW method, the estimated poles

are inside unit circle. Prony method does not guarantee stability.
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Modified Covariance or Forward Backward (F/B) Method

Recall Backward Linear Prediction:

ZZ (n + k) + €’ (n).

k=1

For real data and real AR coefficients,

a£ = Z ar, k=1, , P
w0 | | ) 2@ ep) || a
z(1) . x(2)  z(3) (p+1) as
_:C(N—p—l)_ _:E(N—p) a:(N—l)_ | ap

In the F/B method, this backward prediction equation is combined
with the forward prediction equation and LS solution is found.
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- a(p— 1) w0) || e ]
B r(N—-2) -+ z(N—-p-—1) az | _ (N —1)
z(1) - z(p) 5 z(0)
_:C(N—p) (N —1) | _ _ _J;(N—p—l)_

Remarks: e The F/B method does not guarantee poles inside the

unit circle. In Practice, the poles are usually inside the unit circle.
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e For complex data and complex model,
ak:a£: (az) , k=1,---,p

Then F/B solves:

Cap-1) w0 ] ]
B r(N —2) (N —p—1) az | _
z*(1) z*(p)
] z*(N — p) z*(N —1) | _ _ i
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Remarks on &2:

e In YW method,

e In Prony Method,

p
52 = 7(0) + » _ ant(k)
k=1
e(p)
Let erq = :
e(N —1)
1 N-—1
2 2
o = e\n
N » ;I ()]
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e In F/B Method,

Let €rs —
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Burg Method
Consider real data and real model. Recall LDA:

6., 0,
Hn—i—l — + kn—l—l
0 1

Thus, if we know 8,, and k,11, we can find 0,,1.

Recall

m—1
where &/ (n) =xz(n)+ Am—1.xT(n — k)
k=1
m—1
e _(n)=xz(n—m+1)+ am—1x(n—m+1+k)
k=1
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A

kp, is found by minimizing (for 6,, 1 given)

OS] + )’}
~ —225; fn ((n)é (n—1) .
S SRS (R N T )

Steps in Burg method:

( A N-1
. #(0)= LYV ()
e Jp =70
Initialization 0 = 7(0)
) ég(n):x(n), n=12---,N—1
e eb(n) =z(n), n=0,1,---,N —2
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For m=1,2,---,p,
e Calculate k,, with (*)

.ém: _I_km 7( élzigl)-

e Update é/ (n) and é° (n) with (1)

Remarks: e 4, = 62

e Since a? + b > 2ab,

fcm‘ <1,
= Burg Method gives poles that are inside unit circle.

e Different ways of calculating km are available.
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Properties of AR(p) Signals:

e Extension of r(k):

* Given 7(0),7(1),---,r(p).

* From YW - Equations we can calculate a1, as,- -, ap, o?

*r(k)=—-> _jar(k—=1), k>p
e Another point of view:

* Given r(0),---,r(p).

* Calculate ay, - -, ay,, 02,

* Obtain P(w)
* (k) S P(w).
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Maximum Entropy Spectral Estimation

Given r(0),---,7(p) . The remaining r(p + 1), --- are extrapolated

to maximize entropy.

Entropy: Let Sample space for discrete random variable x be

x1,---,rNn. The entropy H(x) is
N
H(x) = — Z P(x;)In P(x;),
i=1
P(z;) = prob(z = z;)

For continuous random variable,

/flnf)

f(x) = pdf of .
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For Gaussian random variables,

z(0)
X — ~ N(O,RN)

(N —1)

1

Since Hy — o0 as N — oo, we consider Entropy Rate:

Hy
h= 1

h is maximized with respect to r(p+ 1),7(p +2),--- .

Remark: For Gaussian case, we obtain Yule-Walker equations .... !
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Maximum Likelihood Estimators:

e Exact ML Estimator:

u(n) 1
real inputs A(2)

X(n), n=0,..,N-1

real outputs

u(n) is Gaussian white noise with zero-mean.

=49 Varlu
\ E[u(’i)u(J)] = 0,7 #J,

The likelihood function is

The ML estimates of ay, -,

Elu(n)] =

)
(n)]

(N —1)la, -+, ap,0°]

a,, o are found by maximizing f.
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1 1
f1= s exp [—— xi R 1% ]
(27) 2 det? (R,) y (X0 )
(0) r0) o r(p—1)
XO p—y . , Rp p—y .
z(p—1) | rp—1) - r(0)
Remark: 7(0),---,r(p — 1) are functions of ay,- -, a,, 0. (see, e.g.,

the YW system of equations)
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* Consider next

f2=f[az(p),--- (N

= x(N —

1) + alx(N —

2)+ -+ apx(N —p—1).
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0 0
1 0
Ay 1
-+ apx(0)
-+ apr(1)
apz(p —1)
0
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u(p) z(p)

u(N —1) (N —1)

2

Given x(0),---,z(p—1),a1,---,ap,0°, z and u are related by

linear transformation.

The Jacobian of the transformation

10 0
J— aq 1
I 0 ap 1 ]
det(J) =1
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Let X =
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1

ay
a—

ap

u = Xa
fo= ——5= exp|—5za" X'X
(2wo2) " 2
Remark: Maximizing f = f;.fo with respect to ay,---,a,,c? is

highly non-linear!
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e An Approximate ML Estimator

AN

a/17...

jdla"’

~2

, p,0“ are found by maximizing fo.

(N —1)

,a, are found by minimizing a’’ X?Xa = u’u

r(N—p—1)

1

ax

Qp

u(N —1)

= This is exactly Prony’s Method !

1 N—-1
2 |

p
)+ 2 (=)

Again, exactly Prony’s Method !

q 2
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Accuracy of AR PSD Estimators

e Accuracy Analysis is difficult.
e Results for large NV are available due to Central Limit Theorem.

e For large N, the variances for aq,---,a,, ki, -, kp, 0% P(w)

are all proportional to % Biases %
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AR Model Order Selection

Remarks:
e Order too low yields smoothed /biased PSD estimate.

e Order too high yields spurious peaks/large variance in PSD

estimate

e Almost all model order estimators are based on the estimate of
the power of linear prediction error, denoted 5k, where k is the

model order chosen.
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Final Prediction Error (FPE) Method

minimizes

FPE(k) = Ntks, .

Akaike Information Criterion (AIC) Method

minimizes

AIC(k) = N Indy, + 2k .

Remarks:

e As N — oo, AIC’s probability of error in choosing correct order
does NOT — 0.

e As N 1, AIC tends to overestimate model order.
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Minimum Description Length (MDL) Criterion

minimizes

MDL(k) = N Indy, + kIn N.

Remark: As N — oo, MDL’s probability of error — 0.
(consistent!).

Criterion Autoregressive Transfer (CAT) Method

k
1 1 1
CAT ~ T ~_7
L Z_ 5; O
mMinimizes =1

N
N—i "

C}»

5, =

Remarks: e None of the above methods works well for small N

e Use these methods to initially estimate orders. ( Practical

experience needed ).
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Noisy AR Processes:

y(n) = z(n) + w(n)

e z(n) = AR(p) process.

2

e w(n) = White Gaussian noise with zero-mean and variance o

e z(n) and w(n) are Independent of each other.

Pyy(w) = Ppp(w) + Pyw(w)
2
— o 5 —|—0'12U
|A(w)]
02 + 02| A(w)|”

Aw)[*
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Remarks: e y(n) is an ARMA signal

2 2
0&1,"',a,p, 0,0,

* ARMA methods.

may be estimated by

* A large order AR approximation.
* Compensating the effect of w(n).
* Bootstrap or adaptive filtering and AR methods.
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Wiener Filter: (Wiener-Hopf Filter)

y(n) =x(n) +w(n)

x(n) Desired Signal

+

H(2)

e(n)

X(n)

e H(z) is found by minimizing £ {|e(n)\2}

e [ (z) depends on knowing Py, (w).
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General Filtering Problem: (Complex Signals)

d(n) Desred Signd

+

y(n) =x(n) +w(n)

Special case of d(n): d(n) = x(n + m):
1.) m >0, m - step ahead prediction.
2.) m =0, filtering problem

3.) m <0, smoothing problem.
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Three common filters:

1.) General Non-causal:

H(z) = Z hiez "
k=—o0
2.) General Causal:
H(z) = Z hipz "
k=0

3.) Finite Impulse Response (FIR):

p

H(z) = Z hpz "
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Case 1: Non-causal Filter.

E = E{\e<n)|2}

-y hky(nk)] [d(n) > hzy(nl)] }

k=—o0

= r44(0 Z hiTay(l) Z hit g, (F)

l=—00 k=—o0

1 5‘ Sj ryy (I — k)hih}

k=—ool=—0c0

Remark: For Causal and FIR filters, only limits of sums differ.

oOF oF
Let h@:()éz—l—jﬁz v, :O, ({96 = 0.
= Tay (1 Z hyryy (2 W)




In Z - domain

Piy(z) = H°(z)Pyy(2)

which is the optimum Non-causal Wiener Filter.

FEx: dn) = z(n), yn)=zn)+wn),
0.36

(1 —-0.8271) (1 —0.82)

Puow(z) = 1.

r(n) and w(n) are uncorrelated.

Optimal filter ?

Pyy(2) = Peu(2) + Puw(2)
B 0.36 |
 (1-0.8271) (1 —0.82) i
_ e (1—-0.5271) (1 - 0.52)

(1 —-0.8271)(1—-0.82)
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Eld(n+k)y*(n)]
E{z(n+k)[z"(n) +w(n);

0.36
1.6 (1 — 0.52=1) (1 — 0.5z)

1\ 5
i) — 03(3)
h® (k)
0.3 I
) T ) K
O 2
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Case 2: Causal Filter.
H(z) = Z hipz "
k=0

Through similar derivations as for Case 1, we have

ray(t) = Zliozo hiryy (i — k),

o __
w ="

Split H(z) as
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e e e e e —
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Pick B(z) such that the system B(z) is stable, causal,

minimum phase.

Note that

P, (2) = P,y B(z)B" (Zi) 1

= B(z) is called whitening filter.

Choose G°(z) so that E{|e(n)|?} is minimized.
= Tay(1) = 350 Garam (i — k).
Since P,,(z) =1, rp,(k) = (k).

=

ran(t) =g¢7, 1=0,1,2,---
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Note that

ran(t) = E{d(n+i)n"(n)}

= E{d(n+i) ibky(nk)] }

= Y biray(i+k).
k=0

Since b} = 0 for k < 0 (causal),

ran(i) =) biray(i+ k).

= Pay(2) = Pay(2)B* ()
ran(t) =g;, fori=0,1,--- , ONLY .
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Let
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Fzx. (Same as previous one)

0.36
Pa:a:(z) — — 1 — 9
(1—-0.8271) (1 —-0.82)
Pyw(z) = 1. z(n) and w(n) independent
x(n)
Py, (2) = Pyy(z) = Pyz(2)
P () 1.6 (1 —0.5271) (1 —0.52)
yyl? (1—-082-1) (1—0.82)
1 1-0.8z7"1
B(z) = 61— 0.52_1 ( stable and causal )
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0.36 1 1-0.8z

(1—0.82=1)(1—0.82) /1.6 1 — 0.52
0.36 1

V1.6(1—=0.82"1)(1—-0.5z2)

0.36 2 N 22
V1.6 \1—-082=1  1—-0.52

5
0.36 _ (2

3
V161 —0.8z2"1
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~ 036 3 1 1-0870 . 1

e |
(2) J161—0821v161—05z"1 1— 0521

V' UK), k=0,1,2,--.
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Case 3: FIR Filter:

Again, we can show similarly

Tdy E hkryy

_ Tdy(0) _ - ryy(0)  7ryy(=1) - 7ryy(—p) [l 0 _
Tdy(1) _ Tyy(1) Tyy(0) T h3
i Tdy(p) ] i ryy(p) Tyy(p—1) -+ 7y(0) 11 hy ]

Remark: The Minimum error E is the smallest in case (1) and

largest in case (3).
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Parametric Methods for Line Spectra

= x(n) +w(n)

K
_ E akej(wkn+¢k)
k=1

= Initial phases, independent of each other,
uniform distribution on |-, 7]

= amplitudes, constants, > 0

= angular frequencies

— zero-mean white Gaussian Noise,

independent of ¢, -+, 0K
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Remarks:

e Applications: Radar, Communications, - - -

e We are mostly interested in estimating wq,---,wWk.
e Once wq,---,wk are estimated, &1, ---,&x, @1, --,0K can be
found readily from w4, -, wg

Let apel® = (4

y(0) 1 1 1 5
y(l) eJw1 el w2 eIWK 32

The amplitude of Bk is . The phase of Bk is ¢p.
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Remarks:
o ry,(k) = E{y"(n)yn+k)}

K .
— Z aZel?ik  o?25(k)
i=1

K
e P,w) = 2 Z i b(w — w;) + o2
i=1
2Tt0(f 21‘[0(; 2thx§
T N
oo, O o PR

1

e Recall that the resolution limit of Periodogram is %

e The Parametric methods below have resolution better than %

(These methods are the so-called High - Resolution or Super -
Resolution methods)
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Maximum Likelihood Estimator

w(n) is assumed to be zero-mean circularly symmetric complex
Gaussian random variable with variance o?.

The pdf of w(n) is N(0, 0?)

Remark: e The real and imaginary parts of w n) are real Gaussian

f (w(n)) = Zexp{

mo

random variables with zero-mean and variance "7

e The two parts are independent of each other.
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f(w(O),---,w(N— 1)) —

(7TO'2)N

The likelihood function of y(0), ---, y(IN —1)is

o {_zno(j;w(nn }

1 >nso ly(n) — z(n)|”
f:f(y(o)vvy(N_l)): N €XP§ — =0 5
(mo?) g
Remark: The ML estimates of
Wi, WK, Q1,°,0rg, ©O1,+,0r are found by maximizing f
with reSpeCt to wl)"'7WK70417°"704K7¢17°"7¢K-

Equivalently, we minimize

N-1 K 2
g= Z y(n) — Zakeﬂ(wkn+¢k)
n=0 k=1

}
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Remarks: If w(n) is neither Gaussian nor white, minimizing g is

called the non-linear least-squares method, in general.

y(0) 51 W1
e Lety=| i |.8=] i |w=
_y(N—l)_ _5K_ | WK |
el w1 eJwz .. eJWK
B =
ej(N_l)wl ... ej(N_l)wK
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g = (y-Bp)"(y-Bpg).
- [3-(8"B)'B"y|" (B"B)[3- (B"B) ' B"Y]

+ yHy—yHB (BHB)_1 BHy.

W = argmaxg, [yHB (BHB)_1 BHy} :

A

B=(B"B) By .
wW=Ww

Remarks: e w is a consistent estimate of w
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e For large N,

o
~ ~ H 60'2 .
Flw—-w)(w—-w) = N3
1
i af
= CRB

However,
e The maximization to obtain w is difficult to implement.
* The search may not find global maximum.

* Computationally expensive.
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Special Cases:

1) K=1

ej(N—l)w
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BHy = [1 e J¥
N-—-1
WU
n—0
L. 1
w — argimax,  —
g w N

> y(nyeien

n=0

w corresponds to the highest peak of the Periodogram !
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, 21
Aw = in fizk |wi — wg| > N
: . 1
Since Var (0 —wg) N3
. 1
= Wi — W X N% .
, . . 27
= infizk |0 — O > A
= We can resolve all K sine waves by evaluating g; at FFT points:
W; = %Ti, 1=0,---,N—1

Any K ofthese @; gives BYB = NI, I = Identity matrix.

K o4 |v-1 2
o =3 LS e
k=1 n=0
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N The K w; that maximizes g; correspond to the

largest K peaks of the Periodogram.

Remarks: e w; estimates obtained by using the K largest peaks of

Periodogram have accuracy wp — wp QW”

e The periodogram is a good frequency estimator. (This was

introduced by Schuster a century ago !)
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High - Resolution Methods

e Statistical Performance Close to ML estimator ( or CRB ) .

e Avoid Multidimensional search over parameter space.
e Do not depend on Resolution condition.

e All provide consistent estimates

e All give similar performance, especially for large V.

e Method of choice is a “ Matter - of - Taste 7.
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Higher - Order Yule- Walker ( HOYW) Method:

Let  x(n) = el @rntox)
1—e 27 ap(n) = zp(n) —e“*ap(n—1)
_ el @enten) _ giwn g, pilwr(n=1)+]
= 0
= |1 — e/“*27!| is an Annihilating filter for z4(n).

Let A(z) =, (1 —e/“*z1)
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Remark:

e [t is tempting to cancel A(z) from both sides above, but this is
wrong since y(n) # w(n) !

Multiplying both sides of (*) by a polynomial A(z)

of order L — K gives

(I+aiz" "+ +arz ") yn) = 1+az"" +-+arz ") wn)

where 1+ a1z ' 4 +arz ¥ = A(2)A(2)
-
a1
= ly(n) yln—1) y(n — L) =w(n)+---+agw(n—L)
ar,
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Multiplying both sides by

y*(n—L—M)
' 211
ryy (L + 1) ryy(1) .
aq
we get = 0.
ryy (L + M) Tyy (M) .
i i ir
Tyy (L) ryy (1) a Tyy(L + 1)
ryy(L+ M —1) ryy (M) || oL i ryy(L+ M)
= l'a = —v
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Remarks:

e When y(0),---,y(IN — 1) are the only data available, we first

estimate r,,(7) and replace r,,(i) in above equation with estimate
Pyy(9)
e {Wk} are the angular positions of the K roots nearest the unit

circle
e Increasing L and M will

* give better performance due to using the information in

higher lags of 7(1)
e Increasing L and M ‘too much’ will

* give worse performance due to increased variance in 7(7) for

large 1
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[I' has rank K, if M > K and L > K

Proof: Let y;(n)

wn —1i+1)

, xp(n) = agel@rntor)
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1 1

e_jwl 6_]w2

e—j(i—l)wl

\ .

A; =1 x K Vandermonde matrix.

rank(A;) = K if i > K and wy # w; for k # 1.

= yi(n) = A;x(n) + w;(n)
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Thus

/o

' =F |

where Py

y(n—L—1)

y(n — L — M)

|| D>

[yWH—D

AyPri A7,
E{x(n—L)x"(n)}

f@—L)]

E{Ayx(n—L-1)x"(n—1)A]}
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E{z;(n)} = F {oziej(w’iw“bi)}

n . . 1
— / ozz-ejwme“bi—d(bi =0
2T

— 7T

_ B {Ozieg’[wi(n—k>+¢i]%e—j<wm+¢i>}

2€—jwik

p— a’i

Since ¢)s are independent of each other,
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f 7 )
ri(n—L—1)
ro(n—L—1)
Pri1 = ES . {af{(n—l) e X (n—1)
\_a:K(n—L—l)_ }
I a%e_.]wlL . .. O ]
O Oé%(e_ijL

Remark: For M > K and L > K, I'" is of rank K, so is I .
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Consider

"gyy(L) T 7gyy(l)

72yy(lﬁ‘]w_l) fyy(M)

= Tax —A.

Remarks: rank (I') = min(M, L)

almost surely, due to errors in 7, (¢)

Q

Fyy(L + 1)

Pyy(L + M)

e For large N, #,,(i) ~ 7, (i) makes T ill conditioned.

e For large N, LS estimates of ay,---,ar, give poor estimates of

Wi, ", WK-
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Let us use this rank information as follows: Let

A

I = Uxv?

1 0 \%H K
0 X VE | L-K

= [U1 Uy

denote the singular value decomposition (SVD) of I. (Diagonal

3 0
elements in ! arranged from large to small ).
0 3

Since T is close to rank K, and T has rank K,
Ty =U; 3, VY

(The best Rank - K Approximation of I' in the Frobenius Norm

sense) is generally a better estimate of I' than T

T'rar —4, a=-V,I7'UEy  (xx)
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Remark:
e Using 'k to replace I' gives better frequency estimation.

e This result may be explained by the fact that I'x is closer to T
than T

¢

e The rank approximation step is referred as “ noise cleaning ”.
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Summary of HOYW Frequency Estimator
Step 1: Compute #(k),k=1,2,---, L+ M.
Step 2: Compute the SVD of I' and determine a with (**)

Step 3: Compute the roots of

l4+az ' +--+arz =0

Pick the K roots that are nearest the unit circle and obtain the

frequency estimates as the angular positions (phases) of these roots.

Remarks: e Rule of Thumb for selecting L and M:

L~M
N

L+ M~ —
+ 3

e Although one cannot guarantee that the K roots nearest the unit
circle give the best frequency estimates, empirical evidence shows
that this is true most often .
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Some Math Background

Lemma: Let U be a unitary matrix; i.e., U U = 1.

Then |[Ub][3 = ||b]|2,

where ||x|[3 = x"x.

Proof:
|Ub||3 = b U”Ub = b"b = ||b]|*.
Consider Ax = b,

where A is M x L,
x 1s L x1,
b is M x1,
A isof rank K
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SVD of A:

3, 0 \%

fx:UEVH:[th UQ}
0 O \%

Goal: Find the minimum-norm x so that |[|[Ax — b||3 = minimum.
|Ax —b|j; = [|[U"Ax—-TU"b|[;
= |[U"U=vix - U"p|]

= |IZVx-U"b|f;
N——

y
= ||y - U"Db|[3
- a2 r . - 2112
B 37 0 Y1 Ulb
0 O Y2 Uib ;
= [|Z1y1 — Uy'b|f5 + |[U3'b]|3
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To minimize ||Ax — b||3, we must have,

=

>,y = Uf'b

y1 =2 'Ufb .

Note that ys can be anything and ||Ax — bl|3 is not affected.

Let y2 = 0 so that ||y||5= ||x||3 = minimum.

=>VHX=y: Y1
0
Y1
:>X:V}’:[V1 Vz] 0 :V1Y1

x =V, X;7'Ub.

[x[|z = [lyllz = minimum
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SVD Prony Method

Recall: (I+arz=" 4 +arz=") y(n)
At not too low SNR,
el
a1
[ y(n) y(n—1) y(n— L) ~0
ar,
y(L)  y(L—1) y(0) L
y(L+1)  y(L) - y(1) o
Tleo
YIN=1) y(N=2) - y(N=L=1) || ar




Remark: o If w(n) = 0, Eq (x) holds exactly.
o If w(n) =0, Eq (%) gives EXACT frequency estimates.

Consider next the rank of

_ r(L—1) --- x(0) _
X =
2(N-2) - z(N-L-1)
Note
- #(0) . _ 1 1
oo WK
| AN =L gI(N-L-Dw1 .. i(N—L-wx

B

Br
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= X =

ejwl

- ej(N—L—l)wl

1

ejwl

ej(N—L—l)wl

ej(L—l)wl

ej(L—l)WQ

ej(L—l)wK

eij

ej(N—L—l)wK

1

eij

ej(N—L—l)wK

ejwl

ejWQ

1
1

1

B

Brel

Brel K

Bk
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Remark: f N— L —1> K and L > K, X is of rank K.

From (*)
y(L- 1) vo) | la |l [ s
LyWN -2 yW—-L-1) [ |aw | [ y(N-1

Y

Remark: A rank K approximation of Y has “ Noise Cleaning ”

effect.

vy

\53
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= -V, Uf 3 . (1)
ar y(N —1)

Summary of SVD Prony Estimator.

Step 1. Form Y and compute SVD of Y
Step 2. Determine a with (1)

Step 3. Compute the roots from a. Pick K roots that are nearest
the unit circle. Obtain frequency estimates as phases of the roots.

Remark: e Although one cannot guarantee that the K roots
nearest the unit circle give the best frequency estimates, empirical

results show that this is true most often.

e A more accurate method is obtained by “cleaning” (i.e., rank K

approximation of) the matrix [Y : y].
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Pisarenko and MUSIC Methods

Remark: Pisarenko method is a special case of MUSIC ( Multiple
Signal Classification ) method.

Recall: i i
y(n)
) y(n—1)
yu(n) = .
y(n— M +1)
1 . 1
e_jwl . .. e_ij
AM — .
e~ I(M—-1w1 . —i(M-1Dwk
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R = A, PAY + 071,
o 0
—
P =
I 0 a%{ |

Remarks: o rank (AyPAL) = K if M > K.

o If M > K, A MPA]\H4 has K positive eigenvalues and M — K zero
eigenvalues. We shall consider M > K below.

e Let the positive eigenvalues of A /PA%, be denoted
AL > Ao > > Mg
The eigenvalues of R are:

Ak:xk+02, k=1,---, K.

Two groups
)\k:O'Q, k=K+1,---.M
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Let sq1,---,sk be the eigenvectors of R that correspond to
A1, AK.

Let S =[s1, -, SK]
Let sg11,---,8y be the eigenvectors of R that correspond to
AK 1, "y AM-
Let G = [sg11,",SM]
_ s ; i,
RG =G = 02G
L O 0-2 -
RG = (AMPAﬁ + 021) G
= Ay PALG + %G

= AyPAYG=0 =ALG=0
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Remark:

Let the linearly independent K columns of A, define
K -dimensional signal subspace

* Then the eigenvectors of R that correspond to the M — K

smallest eigenvalues are orthogonal to the signal subspace.

* The eigenvectors of R that correspond to the K largest

eigenvalues of R span the same signal subspace as A ,y.

= Ay =SC fora K x K non-singular C.

241




MUSIC:

The true frequency values {wk}szl are the only solutions of

all (W)GG ay(w) =0.

1

e Iw

aM(w) =

e—jw(M—l)

Steps in MUSIC:

~

Step 1: Compute R = % Z,,]LM yu(n)yir(n), and its
eigendecomposition.

Form G whose columns are the eigenvectors of R that correspond
to the M — K smallest eigenvalues of R.
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Step 2a (Spectral MUSIC): Determine the frequency estimates as
the locations of the K highest peaks of the MUSIC spectrum

1

I NS ’ W € [_ﬂ-?ﬂ-]
ay (w)GGHa(w)

Step 2b (Root MUSIC): Determine the frequency estimates as
angular positions (phases) of K (pairs of reciprocal) roots of
equation

an (271 GGHay(z) =0
that are closest to the unit circle

—M+1}T

aM(Z) — [1 Z_l R 77:'6'7 aM(Z)lzzej“’ — aM(w)
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Pisarenko Method = (MUSIC with M = K + 1)

Remarks:
e Pisarenko method is not as good as MUSIC.

e M in MUSIC should not be too large due to poor accuracy of
(k) for large k.
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ESPRIT Method

(Estimation of Signal Parameters by Rotational Invariance
Techniques )

e Jwi ... e IWK
Ay =
e—j(M—l)wl e—j(M—l)wK

Let B; = first M — 1 rows of Ay;, By = last M — 1 rows of A,y.

B>,D = B4,
e -
D =
0 eIWK
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Let S; and S, be formed from S the same way as B; and By from
Ay

Recall: S = A,C

S; =B,C =B;DC.
So = BoC

=

S,C~! = B,
~ 8§, =S,C'DCZs,w.

= W — (Sis,) " sis;.
The diagonal elements of D are the eigenvalues of W.
—1

SHS,

Steps of ESPRIT: Step 1: ¥ = (éf%)

Step 2: Frequency estimates are angular positions of the

eigenvalues of .
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Remarks:
o SQ\IJ ~ gl
can also be solved with Total Least Squares Method

e Since W is K x K matrix, we do not need to pick K roots nearest

the unit circle, which could be wrong roots.

e ESPRIT does not require the search over parameter space, as
required by Spectral MUSIC.

All of these remarks make ESPRIT a recommended method !
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Sinusoidal Parameter Estimation in the Presence

of Colored Noise via RELAX

K
y(n) = B’ +e(n)
k=1

o B = Complex amplitudes, unknown.
o W = Unknown frequencies.
e ¢(n) = Unknown AR or ARMA noise.

Consider the Non-linear least-squares (NLS) method.

2

N-1 K
g= ) |y(n) =) Brelr"
n=0 k=1
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Remarks:

° Bk and w, k=1,---, K are found by minimizing g .

e When e(n) is zero mean Gaussian white noise, this NLS method
is the ML method.

e When ¢e(n) is non-white noise, NLS method gives asymptotically
(N — o0) statistically efficient estimates of & and ), despite the
fact that NLS is not an ML method for this case.

e The non-linear minimization is a difficult problem.
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Remarks:

e Concentrating out {0y} gives
w = argmax,, [yHB (BHB>_1 BHy]
8= (B"B) By .

e Concentrating out {0}, instead of simplifying the problem,

actually complicates the problem.

e The RELAX algorithm is a relaxation - based optimization

approach.
e RELAX is both computationally and conceptually simple.
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Preparation:

Let  yr(n) Z Biel@im

1=1,1#£k

* 38; and @;, i # k, are assumed given, known, or estimated.

Let gr = Z |y (n) kejwkn|

* Minimizing g gives:

2
Wi = argmax,, e JwRT
| V-l
B =~ > yk(n)e 7"
N
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Remarks:

N—-1
S yk(n)e ™ is the DTFT of yg(n)!
n=0

(can be computed via FFT and zero-padding.)

e (w; corresponds to the peak of the Periodogram!

e (), is the peak height (complex number!) of the DTFT of yx(n)

(at wy ) divided by N.
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The RELAX Algorithm

Step 1: Assume K =1. Obtain &, and 3; from y(n).

Step 2: Obtain y2(n) by assuming K=2 and using w; and 3
obtained from Step 1.

(

Obtain ws and 35 from yo(n)

Iterate until converg. ¢ Obtain y;(n) by using Wy and Bg

and reestimate &1 and (1 from y1(n)
Step 3: Assume K = 3.

Obtain y3(n) from @ 31, Wa, Bo. Obtain w3 and (5 from y3(n) .
Obtain y1(n) from ws, By, &3, B3. Reestimate & and 31 from y1(n).
Obtain y3(n) from wy, By, &3, B3. Reestimate &y and 35 from y2(n).

Iterate until g does not decrease “significantly” anymore !
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Step 4: Assume K =4, ---

Continue until K is large enough!
Remark:

e RELAX is found to perform better than existing

high-resolution algorithms, especially in obtaining better @ :
k=1, K

e RELLAX is more robust to the choice of K and the data model

eITrors.
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