EE101: Op Amp circuits (Part 1)

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

Op Amps: introduction

* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.

Op Amps: introduction

* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
* The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
* The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
* The characteristics of an Op Amp are nearly ideal \rightarrow Op Amp circuits can be expected to perform as per theoretical design in most cases.

Op Amps: introduction

* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
* The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
* The characteristics of an Op Amp are nearly ideal \rightarrow Op Amp circuits can be expected to perform as per theoretical design in most cases.
* Amplifiers built with Op Amps work with DC input voltages as well \rightarrow useful in sensor applications (e.g., temperature, pressure)

Op Amps: introduction

* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
* The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
* The characteristics of an Op Amp are nearly ideal \rightarrow Op Amp circuits can be expected to perform as per theoretical design in most cases.
* Amplifiers built with Op Amps work with DC input voltages as well \rightarrow useful in sensor applications (e.g., temperature, pressure)
* The user can generally carry out circuit design without a thorough knowledge of the intricate details (next slide) of an Op Amp. This makes the design process simple.
* The Operational Amplifier (Op Amp) is a versatile building block that can be used for realizing several electronic circuits.
* The use of Op Amps frees the user from cumbersome details such as transistor biasing and coupling capacitors.
* The characteristics of an Op Amp are nearly ideal \rightarrow Op Amp circuits can be expected to perform as per theoretical design in most cases.
* Amplifiers built with Op Amps work with DC input voltages as well \rightarrow useful in sensor applications (e.g., temperature, pressure)
* The user can generally carry out circuit design without a thorough knowledge of the intricate details (next slide) of an Op Amp. This makes the design process simple.
* However, as Einstein has said, we should "make everything as simple as possible, but not simpler." \rightarrow need to know where the ideal world ends, and the real one begins.

Op Amp 741

Actual circuit

Op Amp: equivalent circuit

Op Amp: equivalent circuit

* The external resistances (\sim a few $\mathrm{k} \Omega$) are generally much larger than R_{0} and much smaller than $R_{i} \rightarrow$ we can assume $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$ without significantly affecting the analysis.

Op Amp: equivalent circuit

* The external resistances (\sim a few $\mathrm{k} \Omega$) are generally much larger than R_{0} and much smaller than $R_{i} \rightarrow$ we can assume $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$ without significantly affecting the analysis.
* $V_{C C}$ and $-V_{E E}(\sim \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V})$ must be supplied; an Op Amp will not work without them!

Op Amp: equivalent circuit

* The external resistances (\sim a few $\mathrm{k} \Omega$) are generally much larger than R_{0} and much smaller than $R_{i} \rightarrow$ we can assume $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$ without significantly affecting the analysis.
* $V_{C C}$ and $-V_{E E}(\sim \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V})$ must be supplied; an Op Amp will not work without them!
In Op Amp circuits, the supply voltages are often not shown explicitly.

Op Amp: equivalent circuit

* The external resistances (\sim a few $\mathrm{k} \Omega$) are generally much larger than R_{0} and much smaller than $R_{i} \rightarrow$ we can assume $R_{i} \rightarrow \infty, R_{o} \rightarrow 0$ without significantly affecting the analysis.
* $V_{C C}$ and $-V_{E E}(\sim \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V})$ must be supplied; an Op Amp will not work without them!
In Op Amp circuits, the supply voltages are often not shown explicitly.
* | Parameter | Ideal Op Amp | 741 |
| :--- | :--- | :--- |
| A_{V} | ∞ | $10^{5}(100 \mathrm{~dB})$ |
| R_{i} | ∞ | $2 \mathrm{M} \Omega$ |
| R_{o} | 0 | 75Ω |

Op Amp: equivalent circuit

Op Amp: equivalent circuit

* The output voltage V_{o} is limited to $\pm V_{\text {sat }}$, where $V_{\text {sat }} \sim 1.5 \mathrm{~V}$ less than $V_{C C}$.

Op Amp: equivalent circuit

* The output voltage V_{o} is limited to $\pm V_{\text {sat }}$, where $V_{\text {sat }} \sim 1.5 V$ less than $V_{C C}$.
* For $-V_{\text {sat }}<V_{0}<V_{\text {sat }}, V_{i}=V_{+}-V_{-}=V_{0} / A_{V}$, which is very small $\rightarrow V_{+}$and V_{-}are virtually the same.

Op Amp circuits

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:
- Op Amp operating in the linear region

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:
- Op Amp operating in the linear region
- Op Amp operating in the saturation region

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:
- Op Amp operating in the linear region
- Op Amp operating in the saturation region
* Whether an Op Amp in a given circuit will operate in linear or saturation region depends on

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:
- Op Amp operating in the linear region
- Op Amp operating in the saturation region
* Whether an Op Amp in a given circuit will operate in linear or saturation region depends on
- input voltage magnitude

Op Amp circuits

* Broadly, Op Amp circuits can be divided into two categories:
- Op Amp operating in the linear region
- Op Amp operating in the saturation region
* Whether an Op Amp in a given circuit will operate in linear or saturation region depends on
- input voltage magnitude
- type of feedback (negative or positive) (We will take a qualitative look at feedback later.)

Op Amp circuits (linear region)

Op Amp circuits (linear region)

In the linear region,

* $V_{+}-V_{-}=V_{0} / A_{V}$, which is very small

$$
\rightarrow V_{+} \approx V_{-}
$$

Op Amp circuits (linear region)

In the linear region,

* $V_{+}-V_{-}=V_{0} / A_{V}$, which is very small

$$
\rightarrow V_{+} \approx V_{-}
$$

* Since R_{i} is typically much larger than other resistances in the circuit, we can assume $R_{i} \rightarrow \infty$.

$$
\rightarrow \quad \quad_{\text {in }} \approx 0
$$

Op Amp circuits (linear region)

In the linear region,

* $V_{+}-V_{-}=V_{0} / A_{V}$, which is very small

$$
\rightarrow V_{+} \approx V_{-}
$$

* Since R_{i} is typically much larger than other resistances in the circuit, we can assume $R_{i} \rightarrow \infty$.

$$
\rightarrow \quad i_{\text {in }} \approx 0
$$

These two "golden rules" enable us to understand several Op Amp circuits.

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.

Op Amp circuits (linear region)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.

Op Amp circuits (linear region)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.
$\rightarrow V_{o}=V_{-}-i_{1} R_{2}=0-\left(\frac{V_{i}}{R_{1}}\right) R_{2}=-\left(\frac{R_{2}}{R_{1}}\right) V_{i}$.

Op Amp circuits (linear region)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.
$\rightarrow V_{o}=V_{-}-i_{1} R_{2}=0-\left(\frac{V_{i}}{R_{1}}\right) R_{2}=-\left(\frac{R_{2}}{R_{1}}\right) V_{i}$.
The circuit is called an "inverting amplifier."

Op Amp circuits (linear region)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.
$\rightarrow V_{o}=V_{-}-i_{1} R_{2}=0-\left(\frac{V_{i}}{R_{1}}\right) R_{2}=-\left(\frac{R_{2}}{R_{1}}\right) V_{i}$.
The circuit is called an "inverting amplifier."
Where does the current go?

Op Amp circuits (linear region)

Since $V_{+} \approx V_{-}, V_{-} \approx 0 V \rightarrow i_{1}=\left(V_{i}-0\right) / R=V_{i} / R$.
(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)
Since i_{i} (current entering the OpAmp) is zero, i_{1} goes through R_{2}.
$\rightarrow V_{o}=V_{-}-i_{1} R_{2}=0-\left(\frac{V_{i}}{R_{1}}\right) R_{2}=-\left(\frac{R_{2}}{R_{1}}\right) V_{i}$.
The circuit is called an "inverting amplifier."
Where does the current go?

Op Amp circuits: inverting amplifier

Op Amp circuits: inverting amplifier

* The gain of the inverting amplifier is $-R_{2} / R_{1}$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^{5}$).

Op Amp circuits: inverting amplifier

* The gain of the inverting amplifier is $-R_{2} / R_{1}$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^{5}$).
* The gain can be adjusted simply by changing R_{1} or R_{2} !

* The gain of the inverting amplifier is $-R_{2} / R_{1}$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^{5}$).
* The gain can be adjusted simply by changing R_{1} or R_{2} !
* For the common-emitter amplifier, on the other hand, the gain $-g_{m}\left(R_{C} \| R_{L}\right)$ depends on how the BJT is biased (since g_{m} depends on I_{C}).

* The gain of the inverting amplifier is $-R_{2} / R_{1}$. It is called the "closed-loop gain" (to distinguish it from the "open-loop gain" of the Op Amp which is $\sim 10^{5}$).
* The gain can be adjusted simply by changing R_{1} or R_{2} !
* For the common-emitter amplifier, on the other hand, the gain $-g_{m}\left(R_{C} \| R_{L}\right)$ depends on how the BJT is biased (since g_{m} depends on I_{C}).
(SEQUEL file: ee101_inv_amp_1.sqproj)

Op Amp circuits: inverting amplifier

Op Amp circuits: inverting amplifier

* The output voltage is limited to $\pm V_{\text {sat }}$.

Op Amp circuits: inverting amplifier

* The output voltage is limited to $\pm V_{\text {sat }}$.
* $V_{\text {sat }}$ is $\sim 1.5 \mathrm{~V}$ less than the supply voltage $V_{C C}$.

Op Amp circuits: inverting amplifier

Op Amp circuits: inverting amplifier

* If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.

Op Amp circuits: inverting amplifier

* If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
* The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).

Op Amp circuits: inverting amplifier

* If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
* The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).
* For the 741 , the slew rate is $0.5 \mathrm{~V} / \mu \mathrm{sec}$.

Op Amp circuits: inverting amplifier

* If the signal frequency is too high, a practical Op Amp cannot keep up with the input due to its "slew rate" limitation.
* The slew rate of an Op Amp is the maximum rate at which the Op Amp output can rise (or fall).
* For the 741 , the slew rate is $0.5 \mathrm{~V} / \mu \mathrm{sec}$.
(SEQUEL file: ee101_inv_amp_2.sqproj)

Op Amp circuits: inverting amplifier

What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?

Op Amp circuits: inverting amplifier

What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?
Our previous analysis would once again give us $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}$.

What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?
Our previous analysis would once again give us $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}$.
However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.
\rightarrow Our assumption that the Op Amp is working in the linear region does not hold for Circuit 2, and $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}$ does not apply any more.

What if the + (non-inverting) and - (inverting) inputs of the Op Amp are interchanged?
Our previous analysis would once again give us $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}$.
However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.
\rightarrow Our assumption that the Op Amp is working in the linear region does not hold for Circuit 2, and $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}$ does not apply any more.
(Circuit 2 is also useful, and we will discuss it later.)

Op Amp circuits (linear region)

* $V_{+} \approx V_{-}=V_{i}$

Op Amp circuits (linear region)

* $V_{+} \approx V_{-}=V_{i}$
$\rightarrow i_{1}=\left(0-V_{i}\right) / R_{1}=-V_{i} / R_{1}$.

Op Amp circuits (linear region)

* $V_{+} \approx V_{-}=V_{i}$
$\rightarrow i_{1}=\left(0-V_{i}\right) / R_{1}=-V_{i} / R_{1}$.
* $V_{o}=V_{+}-i_{1} R_{2}=V_{i}-\left(-\frac{V_{i}}{R_{1}}\right) R_{2}=V_{i}\left(1+\frac{R_{2}}{R_{1}}\right)$.

* $V_{+} \approx V_{-}=V_{i}$
$\rightarrow i_{1}=\left(0-V_{i}\right) / R_{1}=-V_{i} / R_{1}$.
* $V_{o}=V_{+}-i_{1} R_{2}=V_{i}-\left(-\frac{V_{i}}{R_{1}}\right) R_{2}=V_{i}\left(1+\frac{R_{2}}{R_{1}}\right)$.
* This circuit is known as the "non-inverting amplifier."

* $V_{+} \approx V_{-}=V_{i}$
$\rightarrow i_{1}=\left(0-V_{i}\right) / R_{1}=-V_{i} / R_{1}$.
* $V_{o}=V_{+}-i_{1} R_{2}=V_{i}-\left(-\frac{V_{i}}{R_{1}}\right) R_{2}=V_{i}\left(1+\frac{R_{2}}{R_{1}}\right)$.
* This circuit is known as the "non-inverting amplifier."
* Again, interchanging + and - changes the nature of the feedback from negative to positive, and the circuit operation becomes completely different.

Inverting or non-inverting?

* If the sign of the output voltage is not a concern, which configuration should be preferred?

Inverting or non-inverting?

* If the sign of the output voltage is not a concern, which configuration should be preferred?
* For the inverting amplifier, since $V_{-} \approx 0 V, i_{1}=V_{s} / R_{1} \rightarrow R_{\text {in }}=V_{s} / i_{1}=R_{1}$.

Inverting or non-inverting?

Non-inverting amplifier $\xlongequal{=}$

* If the sign of the output voltage is not a concern, which configuration should be preferred?
* For the inverting amplifier, since $V_{-} \approx 0 V, i_{1}=V_{s} / R_{1} \rightarrow R_{\text {in }}=V_{s} / i_{1}=R_{1}$.
* For the non-inverting amplifier, $R_{\text {in }} \sim R_{i}$ of the Op Amp, which is a few $\mathrm{M} \Omega$.
\rightarrow Non-inverting amplifier is better if a large $R_{\text {in }}$ is required.

Non-inverting amplifier

Consider $R_{1} \rightarrow \infty, R_{2} \rightarrow 0$.

Non-inverting amplifier

Consider $R_{1} \rightarrow \infty, R_{2} \rightarrow 0$.
$\frac{V_{o}}{V_{i}} \rightarrow 1+\frac{R_{2}}{R_{1}} \rightarrow 1$, i.e., $V_{o}=V_{i}$.

Non-inverting amplifier

Consider $R_{1} \rightarrow \infty, R_{2} \rightarrow 0$.
$\frac{V_{o}}{V_{i}} \rightarrow 1+\frac{R_{2}}{R_{1}} \rightarrow 1$, i.e., $V_{o}=V_{i}$.
This circuit is known as unity-gain amplifier/voltage follower/buffer.

Non-inverting amplifier

Consider $R_{1} \rightarrow \infty, R_{2} \rightarrow 0$.
$\frac{V_{o}}{V_{i}} \rightarrow 1+\frac{R_{2}}{R_{1}} \rightarrow 1$, i.e., $V_{o}=V_{i}$.
This circuit is known as unity-gain amplifier/voltage follower/buffer.
What has been achieved?

Loading effects

Consider an amplifier of gain A_{V}. We would like to have $V_{o}=A_{V} V_{s}$.

Loading effects

Consider an amplifier of gain A_{V}. We would like to have $V_{o}=A_{V} V_{s}$. However, the actual output voltage is,
$V_{o}=\frac{R_{L}}{R_{o}+R_{L}} \times A_{V} V_{i}=A_{V} \times \frac{R_{L}}{R_{o}+R_{L}} \times \frac{R_{i}}{R_{i}+R_{s}} V_{s}$.

Loading effects

Consider an amplifier of gain A_{V}. We would like to have $V_{o}=A_{V} V_{s}$. However, the actual output voltage is,
$V_{o}=\frac{R_{L}}{R_{o}+R_{L}} \times A_{V} V_{i}=A_{V} \times \frac{R_{L}}{R_{o}+R_{L}} \times \frac{R_{i}}{R_{i}+R_{s}} V_{s}$.
To obtain the desired V_{o}, we need $R_{i} \rightarrow \infty$ and $R_{o} \rightarrow 0$.

Loading effects

Consider an amplifier of gain A_{V}. We would like to have $V_{o}=A_{V} V_{s}$. However, the actual output voltage is,
$V_{o}=\frac{R_{L}}{R_{o}+R_{L}} \times A_{V} V_{i}=A_{V} \times \frac{R_{L}}{R_{o}+R_{L}} \times \frac{R_{i}}{R_{i}+R_{s}} V_{s}$.
To obtain the desired V_{o}, we need $R_{i} \rightarrow \infty$ and $R_{o} \rightarrow 0$.
The buffer (voltage follower) provides this feature (next slide).

* The current drawn from the source (V_{s}) is small (since R_{i} of the Op Amp is large) \rightarrow the buffer has a large input resistance.

* The current drawn from the source (V_{s}) is small (since R_{i} of the Op Amp is large) \rightarrow the buffer has a large input resistance.
* As we have seen earlier, A_{V} is large $\rightarrow V_{i} \approx 0 V \rightarrow V_{A}=V_{B}=V_{s}$.

* The current drawn from the source (V_{s}) is small (since R_{i} of the Op Amp is large) \rightarrow the buffer has a large input resistance.
* As we have seen earlier, A_{V} is large $\rightarrow V_{i} \approx 0 V \rightarrow V_{A}=V_{B}=V_{s}$.
* The resistance seen by R_{L} is $R^{\prime} \approx R_{o}$, which is small \rightarrow the buffer has a small output resistance. (To find R^{\prime}, deactivate the input voltage source (V_{s}) $\rightarrow A_{V} V_{i}=0 V$.)

Op Amp buffer

Since the buffer has a large input resistance, $i_{1} \approx 0 A$, and V_{+}(on the source side) $=V_{s} \rightarrow V_{o 1}=V_{s}$.

Op Amp buffer

Since the buffer has a large input resistance, $i_{1} \approx 0 A$, and V_{+}(on the source side) $=V_{s} \rightarrow V_{o 1}=V_{s}$.

Similarly, $i_{2} \approx 0 A$, and $V_{o 2}=A_{V} V_{s}$.

Op Amp buffer

Since the buffer has a large input resistance, $i_{1} \approx 0 A$, and V_{+}(on the source side) $=V_{s} \rightarrow V_{o 1}=V_{s}$.

Similarly, $i_{2} \approx 0 A$, and $V_{o 2}=A_{V} V_{s}$.
Finally, $V_{o}=V_{o 2}=A_{V} V_{s}$, as desired, irresepective of R_{S} and R_{L}.

Op Amp circuits (linear region)

Op Amp circuits (linear region)

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i 1} / R_{1}, i_{1}=V_{i 2} / R_{2}, i_{1}=V_{i 3} / R_{3}$.

Op Amp circuits (linear region)

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i 1} / R_{1}, i_{1}=V_{i 2} / R_{2}, i_{1}=V_{i 3} / R_{3}$.
$i=i_{1}+i_{2}+i_{3}=\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right)$.

Op Amp circuits (linear region)

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i 1} / R_{1}, i_{1}=V_{i 2} / R_{2}, i_{1}=V_{i 3} / R_{3}$.
$i=i_{1}+i_{2}+i_{3}=\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right)$.
Because of the large input resistance of the Op Amp, $i_{i} \approx 0 \rightarrow i_{f}=i$, which gives,

Op Amp circuits (linear region)

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i 1} / R_{1}, i_{1}=V_{i 2} / R_{2}, i_{1}=V_{i 3} / R_{3}$.
$i=i_{1}+i_{2}+i_{3}=\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right)$.
Because of the large input resistance of the Op Amp, $i_{i} \approx 0 \rightarrow i_{f}=i$, which gives, $V_{o}=V_{-}-i_{f} R_{f}=0-\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right) R_{f}=-\left(\frac{R_{f}}{R_{1}} V_{i 1}+\frac{R_{f}}{R_{2}} V_{i 2}+\frac{R_{f}}{R_{3}} V_{i 3}\right)$,
i.e., V_{0} is a weighted sum of $V_{i 1}, V_{i 2}, V_{i 3}$.

Op Amp circuits (linear region)

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i 1} / R_{1}, i_{1}=V_{i 2} / R_{2}, i_{1}=V_{i 3} / R_{3}$.
$i=i_{1}+i_{2}+i_{3}=\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right)$.
Because of the large input resistance of the Op Amp, $i_{i} \approx 0 \rightarrow i_{f}=i$, which gives, $V_{o}=V_{-}-i_{f} R_{f}=0-\left(\frac{V_{i 1}}{R_{1}}+\frac{V_{i 2}}{R_{2}}+\frac{V_{i 3}}{R_{3}}\right) R_{f}=-\left(\frac{R_{f}}{R_{1}} V_{i 1}+\frac{R_{f}}{R_{2}} V_{i 2}+\frac{R_{f}}{R_{3}} V_{i 3}\right)$,
i.e., V_{0} is a weighted sum of $V_{i 1}, V_{i 2}, V_{i 3}$.

If $R_{1}=R_{2}=R_{3}=R$, the circuit acts as a summer, giving

$$
V_{o}=-K\left(V_{i 1}+V_{i 2}+V_{i 3}\right) \text { with } K=R_{f} / R .
$$

Summer example

$R_{1}=R_{2}=R_{3}=1 k \Omega$
$\mathrm{R}_{\mathrm{f}}=2 \mathrm{k} \Omega$
$\rightarrow \mathrm{V}_{\mathrm{o}}=-2\left(\mathrm{~V}_{\mathrm{i} 1}+\mathrm{V}_{\mathrm{i} 2}+\mathrm{V}_{\mathrm{i} 3}\right)$

SEQUEL file: ee101_summer.sqproj

Summer example

$R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{f}}=2 \mathrm{k} \Omega$
$\rightarrow \mathrm{V}_{\mathrm{o}}=-2\left(\mathrm{~V}_{\mathrm{i} 1}+\mathrm{V}_{\mathrm{i} 2}+\mathrm{V}_{\mathrm{i} 3}\right)$

SEQUEL file: ee101_summer.sqproj

* Note that the summer also works with DC inputs. This is true about the inverting and non-inverting amplifiers as well.

Summer example

$R_{1}=R_{2}=R_{3}=1 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{f}}=2 \mathrm{k} \Omega$
$\rightarrow \mathrm{V}_{\mathrm{o}}=-2\left(\mathrm{~V}_{\mathrm{i} 1}+\mathrm{V}_{\mathrm{i} 2}+\mathrm{V}_{\mathrm{i} 3}\right)$

SEQUEL file: ee101_summer.sqproj

* Note that the summer also works with DC inputs. This is true about the inverting and non-inverting amplifiers as well.
* Op Amps make life simpler! Think of adding voltages in any other way.

