## EE101: Op Amp circuits (Part 2)



M. B. Patil<br>mbpatil@ee.iitb.ac.in<br>www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering
Indian Institute of Technology Bombay

## Common-mode and differential-mode voltages



## Common-mode and differential-mode voltages



Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$. $R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$.

## Common-mode and differential-mode voltages



Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$. $R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$. The bridge converts $\Delta R$ to a signal voltage which can then be suitably amplified and used for display or control.

## Common-mode and differential-mode voltages



Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$. $R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$. The bridge converts $\Delta R$ to a signal voltage which can then be suitably amplified and used for display or control.
Assuming that the amplifier has a large input resistance,

## Common-mode and differential-mode voltages



Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$.
$R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$.
The bridge converts $\Delta R$ to a signal voltage which can then be suitably amplified and used for display or control.
Assuming that the amplifier has a large input resistance,
$v_{1}=\frac{R}{R+R} V_{C C}=\frac{1}{2} V_{C C}$.


Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$.
$R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$.
The bridge converts $\Delta R$ to a signal voltage which can then be suitably amplified and used for display or control.
Assuming that the amplifier has a large input resistance,
$v_{1}=\frac{R}{R+R} V_{C C}=\frac{1}{2} V_{C C}$.
$v_{2}=\frac{(R+\Delta R)}{R+(R+\Delta R)} V_{C C}=\frac{1}{2} \frac{1+x}{1+x / 2} V_{C C} \approx \frac{1}{2}(1+x)(1-x / 2) V_{C C}=\frac{1}{2}(1+x / 2) V_{C C}$,
where $x=\Delta R / R$.


Consider a bridge circuit for sensing temperature, pressure, etc., with $R_{a}=R_{b}=R_{c}=R$.
$R_{d}=R+\Delta R$ varies with the quantity to be measured. Typically, $\Delta R$ is a small fraction of $R$.
The bridge converts $\Delta R$ to a signal voltage which can then be suitably amplified and used for display or control.
Assuming that the amplifier has a large input resistance,
$v_{1}=\frac{R}{R+R} V_{C C}=\frac{1}{2} V_{C C}$.
$v_{2}=\frac{(R+\Delta R)}{R+(R+\Delta R)} V_{C C}=\frac{1}{2} \frac{1+x}{1+x / 2} V_{C C} \approx \frac{1}{2}(1+x)(1-x / 2) V_{C C}=\frac{1}{2}(1+x / 2) V_{C C}$,
where $x=\Delta R / R$.
For example, with $V_{C C}=15 V, R=1 \mathrm{k}, \Delta R=0.01 \mathrm{k}$,
$v_{1}=7.5 \mathrm{~V}$,
$v_{2}=7.5+0.0375 \mathrm{~V}$.

## Common-mode and differential-mode voltages



$$
v_{1}=7.5 V, \quad v_{2}=7.5+0.0375 V
$$

## Common-mode and differential-mode voltages


$v_{1}=7.5 \mathrm{~V}, v_{2}=7.5+0.0375 \mathrm{~V}$.
The amplifier should only amplify $v_{2}-v_{1}=0.0375 V$ (since that is the signal arising from $\Delta R$ ).

## Common-mode and differential-mode voltages


$v_{1}=7.5 \mathrm{~V}, v_{2}=7.5+0.0375 \mathrm{~V}$.
The amplifier should only amplify $v_{2}-v_{1}=0.0375 V$ (since that is the signal arising from $\Delta R$ ).
Definitions:
Given $v_{1}$ and $v_{2}$,
$v_{c}=\frac{1}{2}\left(v_{1}+v_{2}\right)=$ common-mode voltage,
$v_{d}=\left(v_{2}-v_{1}\right)=$ differential-mode voltage.

## Common-mode and differential-mode voltages


$v_{1}=7.5 \mathrm{~V}, v_{2}=7.5+0.0375 \mathrm{~V}$.
The amplifier should only amplify $v_{2}-v_{1}=0.0375 V$ (since that is the signal arising from $\Delta R$ ).
Definitions:
Given $v_{1}$ and $v_{2}$,
$v_{c}=\frac{1}{2}\left(v_{1}+v_{2}\right)=$ common-mode voltage,
$v_{d}=\left(v_{2}-v_{1}\right)=$ differential-mode voltage.
$v_{1}$ and $v_{2}$ can be rewritten as,
$v_{1}=v_{c}-v_{d} / 2, v_{2}=v_{c}+v_{d} / 2$.

## Common-mode and differential-mode voltages


$v_{1}=7.5 \mathrm{~V}, v_{2}=7.5+0.0375 \mathrm{~V}$.
The amplifier should only amplify $v_{2}-v_{1}=0.0375 V$ (since that is the signal arising from $\Delta R$ ).
Definitions:
Given $v_{1}$ and $v_{2}$,
$v_{c}=\frac{1}{2}\left(v_{1}+v_{2}\right)=$ common-mode voltage,
$v_{d}=\left(v_{2}-v_{1}\right)=$ differential-mode voltage.
$v_{1}$ and $v_{2}$ can be rewritten as,
$v_{1}=v_{c}-v_{d} / 2, v_{2}=v_{c}+v_{d} / 2$.
In the above example, $v_{c} \approx 7.5 \mathrm{~V}, v_{d}=37.5 \mathrm{mV}$.

## Common-mode and differential-mode voltages


$v_{1}=7.5 \mathrm{~V}, v_{2}=7.5+0.0375 \mathrm{~V}$.
The amplifier should only amplify $v_{2}-v_{1}=0.0375 V$ (since that is the signal arising from $\Delta R$ ).
Definitions:
Given $v_{1}$ and $v_{2}$,
$v_{c}=\frac{1}{2}\left(v_{1}+v_{2}\right)=$ common-mode voltage,
$v_{d}=\left(v_{2}-v_{1}\right)=$ differential-mode voltage.
$v_{1}$ and $v_{2}$ can be rewritten as,
$v_{1}=v_{c}-v_{d} / 2, v_{2}=v_{c}+v_{d} / 2$.
In the above example, $v_{c} \approx 7.5 \mathrm{~V}, v_{d}=37.5 \mathrm{mV}$.
Note that the common-mode voltage is quite large compared to the differential-mode voltage.
This is a common situation in transducer circuits.

## Common-Mode Rejection Ratio



An ideal amplifier would only amplify the difference $\left(v_{+}-v_{-}\right)$, giving
$v_{o}=A_{d}\left(v_{+}-v_{-}\right)=A_{d} v_{d}$,
where $A_{d}$ is called the "differential gain" or simply the gain $\left(A_{V}\right)$.

## Common-Mode Rejection Ratio



$$
\begin{aligned}
& \mathrm{v}_{+}=\mathrm{v}_{\mathrm{c}}+\mathrm{v}_{\mathrm{d}} / 2 \\
& \mathrm{v}_{-}=\mathrm{v}_{\mathrm{c}}-\mathrm{v}_{\mathrm{d}} / 2
\end{aligned}
$$

An ideal amplifier would only amplify the difference $\left(v_{+}-v_{-}\right)$, giving $v_{o}=A_{d}\left(v_{+}-v_{-}\right)=A_{d} v_{d}$,
where $A_{d}$ is called the "differential gain" or simply the gain $\left(A_{V}\right)$.
In practice, the output can also have a common-mode component:
$v_{o}=A_{d} v_{d}+A_{c} v_{c}$,
where $A_{c}$ is called the "common-mode gain".

## Common-Mode Rejection Ratio



An ideal amplifier would only amplify the difference $\left(v_{+}-v_{-}\right)$, giving
$v_{o}=A_{d}\left(v_{+}-v_{-}\right)=A_{d} v_{d}$,
where $A_{d}$ is called the "differential gain" or simply the gain $\left(A_{V}\right)$.
In practice, the output can also have a common-mode component:
$v_{o}=A_{d} v_{d}+A_{c} v_{c}$,
where $A_{c}$ is called the "common-mode gain".
The ability of an amplifier to reject the common-mode signal is given by the
Common-Mode Rejection Ratio (CMRR):
$\mathrm{CMRR}=\frac{A_{d}}{A_{c}}$.

## Common-Mode Rejection Ratio



An ideal amplifier would only amplify the difference $\left(v_{+}-v_{-}\right)$, giving
$v_{o}=A_{d}\left(v_{+}-v_{-}\right)=A_{d} v_{d}$,
where $A_{d}$ is called the "differential gain" or simply the gain $\left(A_{V}\right)$.
In practice, the output can also have a common-mode component:
$v_{o}=A_{d} v_{d}+A_{c} v_{c}$,
where $A_{c}$ is called the "common-mode gain".
The ability of an amplifier to reject the common-mode signal is given by the
Common-Mode Rejection Ratio (CMRR):
$\mathrm{CMRR}=\frac{A_{d}}{A_{c}}$.
For the 741 Op Amp, the CMRR is $90 \mathrm{~dB}(\simeq 30,000)$, which may be considered to be infinite in many applications. In such cases, mismatch between circuit components will determine the overall common-mode rejection performance of the circuit.



Method 1:
Large input resistance of $\mathrm{Op} \mathrm{Amp} \rightarrow i_{+}=0, V_{+}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.


Method 1:
Large input resistance of $\mathrm{Op} \mathrm{Amp} \rightarrow i_{+}=0, V_{+}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.
Since $V_{+}-V_{-} \approx 0, i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{-}\right) \approx \frac{1}{R_{1}}\left(V_{i 1}-V_{+}\right)$.

## Op Amp circuits (linear region)



Method 1:
Large input resistance of $\mathrm{Op} \mathrm{Amp} \rightarrow i_{+}=0, V_{+}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.
Since $V_{+}-V_{-} \approx 0, i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{-}\right) \approx \frac{1}{R_{1}}\left(V_{i 1}-V_{+}\right)$.
$i_{-} \approx 0 \rightarrow V_{o}=V_{-}-i_{1} R_{2} \approx V_{+}-\frac{R_{2}}{R_{1}}\left(V_{i 1}-V_{+}\right)$.

## Op Amp circuits (linear region)



Method 1:
Large input resistance of $\mathrm{Op} \mathrm{Amp} \rightarrow i_{+}=0, V_{+}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.
Since $V_{+}-V_{-} \approx 0, i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{-}\right) \approx \frac{1}{R_{1}}\left(V_{i 1}-V_{+}\right)$.
$i_{-} \approx 0 \rightarrow V_{o}=V_{-}-i_{1} R_{2} \approx V_{+}-\frac{R_{2}}{R_{1}}\left(V_{i 1}-V_{+}\right)$.
Substituting for $V_{+}$and selecting $R_{3} / R_{4}=R_{1} / R_{2}$, we get (show this),
$V_{o}=\frac{R_{2}}{R_{1}}\left(V_{i 2}-V_{i 1}\right)$.

## Op Amp circuits (linear region)



Method 1:
Large input resistance of $\mathrm{Op} \mathrm{Amp} \rightarrow i_{+}=0, V_{+}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.
Since $V_{+}-V_{-} \approx 0, i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{-}\right) \approx \frac{1}{R_{1}}\left(V_{i 1}-V_{+}\right)$.
$i_{-} \approx 0 \rightarrow V_{o}=V_{-}-i_{1} R_{2} \approx V_{+}-\frac{R_{2}}{R_{1}}\left(V_{i 1}-V_{+}\right)$.
Substituting for $V_{+}$and selecting $R_{3} / R_{4}=R_{1} / R_{2}$, we get (show this),
$V_{o}=\frac{R_{2}}{R_{1}}\left(V_{i 2}-V_{i 1}\right)$.
The circuit is a "difference amplifier."

## Difference amplifier



Method 2:
Since the Op Amp is operating in the linear region, we can use superposition:

## Difference amplifier



## Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:
Case 1: Inverting amplifier (note that $V_{+}=0 \mathrm{~V}$ ).
$\rightarrow V_{o 1}=-\frac{R_{2}}{R_{1}} V_{i 1}$.

## Difference amplifier



## Method 2:

Since the Op Amp is operating in the linear region, we can use superposition:
Case 1: Inverting amplifier (note that $V_{+}=0 \mathrm{~V}$ ).

$$
\rightarrow V_{o 1}=-\frac{R_{2}}{R_{1}} V_{i 1}
$$

Case 2: $\quad$ Non-inverting amplifier, with $V_{i}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.

$$
\rightarrow V_{o 2}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right) V_{i 2} .
$$

## Difference amplifier



Method 2:
Since the Op Amp is operating in the linear region, we can use superposition:
Case 1: Inverting amplifier (note that $V_{+}=0 \mathrm{~V}$ ).

$$
\rightarrow V_{o 1}=-\frac{R_{2}}{R_{1}} V_{i 1} .
$$

Case 2: $\quad$ Non-inverting amplifier, with $V_{i}=\frac{R_{4}}{R_{3}+R_{4}} V_{i 2}$.

$$
\rightarrow V_{o 2}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right) V_{i 2} .
$$

The net result is,
$V_{o}=V_{o 1}+V_{o 2}=\left(1+\frac{R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right) V_{i 2}-\frac{R_{2}}{R_{1}} V_{i 1}=\frac{R_{2}}{R_{1}}\left(V_{i 2}-V_{i 1}\right)$, if $R_{3} / R_{4}=R_{1} / R_{2}$.

## Difference amplifier



## Difference amplifier



The resistance seen from $v_{2}$ is $\left(R_{3}+R_{4}\right)$ which is small enough to cause $v_{2}$ to change. This is not desirable.

## Difference amplifier



The resistance seen from $v_{2}$ is $\left(R_{3}+R_{4}\right)$ which is small enough to cause $v_{2}$ to change. This is not desirable.
$\rightarrow$ need to improve the input resistance of the difference amplifier.

## Difference amplifier



The resistance seen from $v_{2}$ is $\left(R_{3}+R_{4}\right)$ which is small enough to cause $v_{2}$ to change. This is not desirable.
$\rightarrow$ need to improve the input resistance of the difference amplifier.
We will discuss an improved difference amplifier later. Before we do that, let us discuss another problem with the above difference amplifier which can be important for some applications (next slide).

## Difference amplifier



## Difference amplifier



Consider the difference amplifier with $R_{3}=R_{1}, R_{4}=R_{2} \rightarrow V_{o}=\frac{R_{2}}{R_{1}}\left(v_{i 2}-v_{i 1}\right)$.
The output voltage depends only on the differential-mode signal $\left(v_{i 2}-v_{i 1}\right)$,
i.e., $A_{c}$ (common-mode gain) $=0$.

## Difference amplifier



Consider the difference amplifier with $R_{3}=R_{1}, R_{4}=R_{2} \rightarrow V_{o}=\frac{R_{2}}{R_{1}}\left(v_{i 2}-v_{i 1}\right)$.
The output voltage depends only on the differential-mode signal $\left(v_{i 2}-v_{i 1}\right)$,
i.e., $A_{c}$ (common-mode gain) $=0$.

In practice, $R_{3}$ and $R_{1}$ may not be exactly equal. Let $R_{3}=R_{1}+\Delta R$.

## Difference amplifier



Consider the difference amplifier with $R_{3}=R_{1}, R_{4}=R_{2} \rightarrow V_{o}=\frac{R_{2}}{R_{1}}\left(v_{i 2}-v_{i 1}\right)$.
The output voltage depends only on the differential-mode signal $\left(v_{i 2}-v_{i 1}\right)$,
i.e., $A_{c}$ (common-mode gain) $=0$.

In practice, $R_{3}$ and $R_{1}$ may not be exactly equal. Let $R_{3}=R_{1}+\Delta R$.

$$
\begin{aligned}
v_{o} & =\frac{R_{2}}{R_{1}+\Delta R+R_{2}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{i 2}-\frac{R_{2}}{R_{1}} v_{i 1} \\
& \simeq \frac{R_{2}}{R_{1}}\left(v_{d}-x v_{c}\right), \text { with } x=\frac{\Delta R}{R_{1}+R_{2}}
\end{aligned}
$$

## Difference amplifier



Consider the difference amplifier with $R_{3}=R_{1}, R_{4}=R_{2} \rightarrow V_{o}=\frac{R_{2}}{R_{1}}\left(v_{i 2}-v_{i 1}\right)$.
The output voltage depends only on the differential-mode signal $\left(v_{i 2}-v_{i 1}\right)$,
i.e., $A_{c}$ (common-mode gain) $=0$.

In practice, $R_{3}$ and $R_{1}$ may not be exactly equal. Let $R_{3}=R_{1}+\Delta R$.

$$
\begin{aligned}
v_{o} & =\frac{R_{2}}{R_{1}+\Delta R+R_{2}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{i 2}-\frac{R_{2}}{R_{1}} v_{i 1} \\
& \simeq \frac{R_{2}}{R_{1}}\left(v_{d}-x v_{c}\right), \text { with } x=\frac{\Delta R}{R_{1}+R_{2}} \quad \text { (show this) } \\
\left|A_{c}\right| & =x \frac{R_{2}}{R_{1}} \ll\left|A_{d}\right|=\frac{R_{2}}{R_{1}} .
\end{aligned}
$$

## Difference amplifier



Consider the difference amplifier with $R_{3}=R_{1}, R_{4}=R_{2} \rightarrow V_{o}=\frac{R_{2}}{R_{1}}\left(v_{i 2}-v_{i 1}\right)$.
The output voltage depends only on the differential-mode signal $\left(v_{i 2}-v_{i 1}\right)$,
i.e., $A_{c}$ (common-mode gain) $=0$.

In practice, $R_{3}$ and $R_{1}$ may not be exactly equal. Let $R_{3}=R_{1}+\Delta R$.

$$
\begin{aligned}
v_{o} & =\frac{R_{2}}{R_{1}+\Delta R+R_{2}}\left(1+\frac{R_{2}}{R_{1}}\right) v_{i 2}-\frac{R_{2}}{R_{1}} v_{i 1} \\
& \simeq \frac{R_{2}}{R_{1}}\left(v_{d}-x v_{c}\right), \text { with } x=\frac{\Delta R}{R_{1}+R_{2}} \quad(\text { sh } \\
\left|A_{c}\right| & =x \frac{R_{2}}{R_{1}} \ll\left|A_{d}\right|=\frac{R_{2}}{R_{1}} .
\end{aligned}
$$

(show this)

However, since $v_{c}$ can be large compared to $v_{d}$, the effect of $A_{c}$ cannot be ignored.



$$
V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right) .
$$


$V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)$.
Large input resistance of A 1 and $\mathrm{A} 2 \Rightarrow$ the current through the two resistors marked $R_{2}$ is also equal to $i_{1}$.

$V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)$.
Large input resistance of A 1 and $\mathrm{A} 2 \Rightarrow$ the current through the two resistors marked $R_{2}$ is also equal to $i_{1}$.

## Improved difference amplifier


$V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)$.
Large input resistance of A 1 and $\mathrm{A} 2 \Rightarrow$ the current through the two resistors marked $R_{2}$ is also equal to $i_{1}$.
$V_{o 1}-V_{o 2}=i_{1}\left(R_{1}+2 R_{2}\right)=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)\left(R_{1}+2 R_{2}\right)=\left(V_{i 1}-V_{i 2}\right)\left(1+\frac{2 R_{2}}{R_{1}}\right)$.

## Improved difference amplifier


$V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)$.
Large input resistance of A 1 and $\mathrm{A} 2 \Rightarrow$ the current through the two resistors marked $R_{2}$ is also equal to $i_{1}$.
$V_{o 1}-V_{o 2}=i_{1}\left(R_{1}+2 R_{2}\right)=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)\left(R_{1}+2 R_{2}\right)=\left(V_{i 1}-V_{i 2}\right)\left(1+\frac{2 R_{2}}{R_{1}}\right)$.
Finally, $V_{o}=\frac{R_{4}}{R_{3}}\left(V_{o 2}-V_{o 1}\right)=\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1}}\right)\left(V_{i 2}-V_{i 1}\right)$.

## Improved difference amplifier


$V_{+} \approx V_{-} \rightarrow V_{A}=V_{i 1}, V_{B}=V_{i 2}, \rightarrow i_{1}=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)$.
Large input resistance of A 1 and $\mathrm{A} 2 \Rightarrow$ the current through the two resistors marked $R_{2}$ is also equal to $i_{1}$.
$V_{o 1}-V_{o 2}=i_{1}\left(R_{1}+2 R_{2}\right)=\frac{1}{R_{1}}\left(V_{i 1}-V_{i 2}\right)\left(R_{1}+2 R_{2}\right)=\left(V_{i 1}-V_{i 2}\right)\left(1+\frac{2 R_{2}}{R_{1}}\right)$.
Finally, $V_{o}=\frac{R_{4}}{R_{3}}\left(V_{o 2}-V_{o 1}\right)=\frac{R_{4}}{R_{3}}\left(1+\frac{2 R_{2}}{R_{1}}\right)\left(V_{i 2}-V_{i 1}\right)$.
This circuit is known as the "instrumentation amplifier."

## Instrumentation amplifier



## Instrumentation amplifier



The input resistance seen from $V_{i 1}$ or $V_{i 2}$ is large (since an Op Amp has a large input resistance).

## Instrumentation amplifier



The input resistance seen from $V_{i 1}$ or $V_{i 2}$ is large (since an Op Amp has a large input resistance).
$\rightarrow$ the amplifier will not "load" the preceding stage, a desirable feature.

## Instrumentation amplifier



The input resistance seen from $V_{i 1}$ or $V_{i 2}$ is large (since an Op Amp has a large input resistance).
$\rightarrow$ the amplifier will not "load" the preceding stage, a desirable feature.

## Instrumentation amplifier



The input resistance seen from $V_{i 1}$ or $V_{i 2}$ is large (since an Op Amp has a large input resistance).
$\rightarrow$ the amplifier will not "load" the preceding stage, a desirable feature.
As a result, the voltages $v_{1}$ and $v_{2}$ in the bridge circuit will remain essentially the same when the bridge circuit is connected to the instrumentation amplifier.

## Instrumentation amplifier



As we have seen earlier, $v_{i 1}$ and $v_{i 2}$ can have a large common-mode component $\left(v_{c}\right)$. What is the effect of $v_{c}$ on the amplifier output $v_{o}$ ?

## Instrumentation amplifier



As we have seen earlier, $v_{i 1}$ and $v_{i 2}$ can have a large common-mode component $\left(v_{c}\right)$.
What is the effect of $v_{c}$ on the amplifier output $v_{o}$ ?
$v_{+} \approx v_{-} \Rightarrow v_{A}=v_{c}-v_{d} / 2, v_{B}=v_{c}+v_{d} / 2$.

## Instrumentation amplifier



As we have seen earlier, $v_{i 1}$ and $v_{i 2}$ can have a large common-mode component $\left(v_{c}\right)$.
What is the effect of $v_{c}$ on the amplifier output $v_{o}$ ?
$v_{+} \approx v_{-} \Rightarrow v_{A}=v_{c}-v_{d} / 2, v_{B}=v_{c}+v_{d} / 2$.
$i_{1}=\frac{1}{R_{1}}\left(v_{A}-v_{B}\right)=\frac{1}{R_{1}}\left(\left(v_{c}-v_{d} / 2\right)-\left(v_{c}+v_{d} / 2\right)\right)=-\frac{1}{R_{1}} v_{d}$.

## Instrumentation amplifier



As we have seen earlier, $v_{i 1}$ and $v_{i 2}$ can have a large common-mode component $\left(v_{c}\right)$.
What is the effect of $v_{c}$ on the amplifier output $v_{o}$ ?
$v_{+} \approx v_{-} \Rightarrow v_{A}=v_{c}-v_{d} / 2, v_{B}=v_{c}+v_{d} / 2$.
$i_{1}=\frac{1}{R_{1}}\left(v_{A}-v_{B}\right)=\frac{1}{R_{1}}\left(\left(v_{c}-v_{d} / 2\right)-\left(v_{c}+v_{d} / 2\right)\right)=-\frac{1}{R_{1}} v_{d}$.
$v_{c}$ has simply got cancelled! (And this holds even if $R_{2}$ and $R_{2}^{\prime}$ are not exactly matched.)

## Instrumentation amplifier



As we have seen earlier, $v_{i 1}$ and $v_{i 2}$ can have a large common-mode component $\left(v_{c}\right)$.
What is the effect of $v_{c}$ on the amplifier output $v_{o}$ ?
$v_{+} \approx v_{-} \Rightarrow v_{A}=v_{c}-v_{d} / 2, v_{B}=v_{c}+v_{d} / 2$.
$i_{1}=\frac{1}{R_{1}}\left(v_{A}-v_{B}\right)=\frac{1}{R_{1}}\left(\left(v_{c}-v_{d} / 2\right)-\left(v_{c}+v_{d} / 2\right)\right)=-\frac{1}{R_{1}} v_{d}$.
$v_{c}$ has simply got cancelled! (And this holds even if $R_{2}$ and $R_{2}^{\prime}$ are not exactly matched.)
$\rightarrow$ The instrumentation amplifier is very effective in minimising the effect of the common-mode signal. (Note that component mismatch in the second stage will cause a finite CMRR, but the first stage has effectively amplified only $v_{d}$ while leaving $v_{c}$ unchanged; so the overall CMRR has improved.)

## Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert this current into a voltage for further processing.

## Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert this current into a voltage for further processing.
Current-to-voltage conversion can be achieved by simply passing the current through a resistor: $V_{o 1}=I_{s} R$.


## Current-to-voltage conversion

Some circuits produce an output in the form of a current. It is convenient to convert this current into a voltage for further processing.
Current-to-voltage conversion can be achieved by simply passing the current through a resistor: $V_{o 1}=I_{s} R$.


However, this simple approach will not work if the next stage in the circuit (such as an amplifier) has a finite $R_{i}$, since it will modify $V_{o 1}$ to $V_{o 1}=I_{s}\left(R_{i} \| R\right)$, which is not desirable.

## Current－to－voltage conversion



## Current-to-voltage conversion


$V_{-} \approx V_{+}$, and $i_{-} \approx 0 \Rightarrow V_{o}=V_{-}-I_{s} R=-I_{s} R$.

## Current-to-voltage conversion


$V_{-} \approx V_{+}$, and $i_{-} \approx 0 \Rightarrow V_{0}=V_{-}-I_{s} R=-I_{s} R$.
The output voltage is proportional to the source current, irrespective of the value of $R_{L}$, i.e., irrespective of the next stage.

## Current-to-voltage conversion


$V_{-} \approx V_{+}$, and $i_{-} \approx 0 \Rightarrow V_{o}=V_{-}-I_{s} R=-I_{s} R$.
The output voltage is proportional to the source current, irrespective of the value of $R_{L}$, i.e., irrespective of the next stage.
Example: a photocurrent detector.

## Current-to-voltage conversion


$V_{-} \approx V_{+}$, and $i_{-} \approx 0 \Rightarrow V_{o}=V_{-}-I_{s} R=-I_{s} R$.
The output voltage is proportional to the source current, irrespective of the value of $R_{L}$, i.e., irrespective of the next stage.
Example: a photocurrent detector.

## Current-to-voltage conversion


$V_{-} \approx V_{+}$, and $i_{-} \approx 0 \Rightarrow V_{0}=V_{-}-I_{s} R=-I_{s} R$.
The output voltage is proportional to the source current, irrespective of the value of $R_{L}$, i.e., irrespective of the next stage.

Example: a photocurrent detector.
$V_{o}=I_{s} R$. The diode is under a reverse bias, with $V_{n}=0 V$ and $V_{p}=V_{\text {bias }}$.

## Op Amp circuits (linear region)



## Op Amp circuits (linear region)


$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R$.

$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R$.
Since $i_{-} \approx 0$, the current through the capacitor is $i_{1}$.
$\Rightarrow C \frac{d V_{c}}{d t}=i_{1}=\frac{V_{i}}{R}$.

## Op Amp circuits (linear region)


$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R$.
Since $i_{-} \approx 0$, the current through the capacitor is $i_{1}$.
$\Rightarrow C \frac{d V_{c}}{d t}=i_{1}=\frac{V_{i}}{R}$.
$V_{c}=V_{-}-V_{o}=0-V_{o}=-V_{o} \rightarrow C\left(-\frac{d V_{o}}{d t}\right)=\frac{V_{i}}{R}$

## Op Amp circuits (linear region)


$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R$.
Since $i_{-} \approx 0$, the current through the capacitor is $i_{1}$.
$\Rightarrow C \frac{d V_{c}}{d t}=i_{1}=\frac{V_{i}}{R}$.
$V_{c}=V_{-}-V_{o}=0-V_{o}=-V_{o} \rightarrow C\left(-\frac{d V_{o}}{d t}\right)=\frac{V_{i}}{R}$
$V_{o}=-\frac{1}{R C} \int V_{i} d t$
The circuit works as an integrator.




## Integrator





## Integrator





SEQUEL files: ee101_integrator_1.sqproj, ee101_integrator_2.sqproj

## Offset voltage




## Offset voltage





## Offset voltage





For the real Op Amp, $V_{o}=A_{V}\left(\left(V_{+}+V_{O S}\right)-V_{-}\right)$.

## Offset voltage





For the real Op Amp，$V_{o}=A_{V}\left(\left(V_{+}+V_{O S}\right)-V_{-}\right)$．
For $V_{o}=0 V, V_{+}+V_{O S}-V_{-}=0 \rightarrow V_{+}-V_{-}=-V_{O S}$ ．

## Offset voltage





For the real Op Amp, $V_{o}=A_{V}\left(\left(V_{+}+V_{O S}\right)-V_{-}\right)$.
For $V_{o}=0 V, V_{+}+V_{O S}-V_{-}=0 \rightarrow V_{+}-V_{-}=-V_{O S}$.
$V_{o}$ versus $V_{i}$ curve gets shifted.

## Offset voltage



For the real Op Amp, $V_{o}=A_{V}\left(\left(V_{+}+V_{O S}\right)-V_{-}\right)$.
For $V_{o}=0 V, V_{+}+V_{O S}-V_{-}=0 \rightarrow V_{+}-V_{-}=-V_{O S}$.
$V_{o}$ versus $V_{i}$ curve gets shifted.
741: $-6 \mathrm{~m} V<V_{O S}<6 \mathrm{mV}$.
OP-77: $-50 \mu V<V_{O S}<50 \mu V$.

## Effect of $V_{O S}$



## Effect of $V_{O S}$



By superposition, $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}+V_{O S}\left(1+\frac{R_{2}}{R_{1}}\right)$.

## Effect of $V_{O S}$



By superposition, $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}+V_{O S}\left(1+\frac{R_{2}}{R_{1}}\right)$.
For $V_{O S}=2 \mathrm{mV}$, the contribution from $V_{O S}$ to $V_{O}$ is 22 mV ,

## Effect of $V_{O S}$



By superposition, $V_{o}=-\frac{R_{2}}{R_{1}} V_{i}+V_{O S}\left(1+\frac{R_{2}}{R_{1}}\right)$.
For $V_{O S}=2 \mathrm{mV}$, the contribution from $V_{O S}$ to $V_{O}$ is 22 mV ,
i.e., a DC shift of 22 mV .

## Effect of $V_{O S}$



## Effect of $V_{O S}$



## Effect of $V_{O S}$


$V_{-} \approx V_{+}=V_{O S} \rightarrow i_{1}=\frac{1}{R}\left(V_{i}-V_{O S}\right)=C \frac{d V_{c}}{d t}$.
i.e., $V_{c}=\frac{1}{R C} \int\left(V_{i}-V_{O S}\right) d t$.

## Effect of $V_{O S}$


$V_{-} \approx V_{+}=V_{O S} \rightarrow i_{1}=\frac{1}{R}\left(V_{i}-V_{O S}\right)=C \frac{d V_{c}}{d t}$.
i.e., $V_{c}=\frac{1}{R C} \int\left(V_{i}-V_{O S}\right) d t$.

Even with $V_{i}=0 V, V_{c}$ will keep rising or falling (depending on the sign of $V_{O S}$ ).
Eventually, the Op Amp will be driven into saturation.

## Effect of $V_{O S}$


$V_{-} \approx V_{+}=V_{O S} \rightarrow i_{1}=\frac{1}{R}\left(V_{i}-V_{O S}\right)=C \frac{d V_{c}}{d t}$.
i.e., $V_{c}=\frac{1}{R C} \int\left(V_{i}-V_{O S}\right) d t$.

Even with $V_{i}=0 V, V_{c}$ will keep rising or falling (depending on the sign of $V_{O S}$ ).
Eventually, the Op Amp will be driven into saturation.
$\rightarrow$ need to address this issue!

## Effect of $V_{o s}$

Integrator with $V_{i}=0 V$ :


## Effect of $V_{o s}$

Integrator with $V_{i}=0 V$ :

(a) $i_{1}=\frac{V_{O S}}{R}=-C \frac{d V_{c}}{d t}$

$$
V_{c}=-\frac{1}{R C} \int V_{O S} d t \rightarrow \text { Op Amp saturates. }
$$

## Effect of $V_{O S}$

Integrator with $V_{i}=0 \mathrm{~V}$ :

(a) $i_{1}=\frac{V_{O S}}{R}=-C \frac{d V_{c}}{d t}$

$$
V_{c}=-\frac{1}{R C} \int V_{O S} d t \rightarrow \mathrm{Op} \text { Amp saturates. }
$$

(b) There is a DC path for the current.

$$
\rightarrow V_{o}=\left(1+\frac{R^{\prime}}{R}\right) V_{O S}
$$

## Effect of $V_{O S}$

Integrator with $V_{i}=0 V$ :

(a) $i_{1}=\frac{V_{O S}}{R}=-C \frac{d V_{c}}{d t}$

$$
V_{c}=-\frac{1}{R C} \int V_{O S} d t \rightarrow \mathrm{Op} \text { Amp saturates. }
$$

(b) There is a DC path for the current.

$$
\rightarrow V_{o}=\left(1+\frac{R^{\prime}}{R}\right) V_{O S}
$$

$R^{\prime}$ should be small enough to have a negligible effect on $V_{o}$.

## Effect of $V_{O S}$

Integrator with $V_{i}=0 V$ :

(a) $i_{1}=\frac{V_{O S}}{R}=-C \frac{d V_{c}}{d t}$

$$
V_{c}=-\frac{1}{R C} \int V_{O S} d t \rightarrow \text { Op Amp saturates. }
$$

(b) There is a DC path for the current.

$$
\rightarrow V_{o}=\left(1+\frac{R^{\prime}}{R}\right) V_{O S}
$$

$R^{\prime}$ should be small enough to have a negligible effect on $V_{o}$.
However, $R^{\prime}$ must be large enough to ensure that the circuit still functions as an integrator.

## Effect of $V_{O S}$

Integrator with $V_{i}=0 V$ :

(a) $i_{1}=\frac{V_{O S}}{R}=-C \frac{d V_{c}}{d t}$

$$
V_{c}=-\frac{1}{R C} \int V_{O S} d t \rightarrow \text { Op Amp saturates. }
$$

(b) There is a DC path for the current.

$$
\rightarrow V_{o}=\left(1+\frac{R^{\prime}}{R}\right) V_{O S}
$$

$R^{\prime}$ should be small enough to have a negligible effect on $V_{o}$.
However, $R^{\prime}$ must be large enough to ensure that the circuit still functions as an integrator.
$\rightarrow R^{\prime} \gg 1 / \omega C$ at the frequency of interest.

Input bias currents


Input bias currents


$I_{B}^{+}$and $I_{B}^{-}$are generally not exactly equal.
$\left|I_{B}^{+}-I_{B}^{-}\right|:$"offset current" (IOS)
$\left(I_{B}^{+}+I_{B}^{-}\right) / 2:$ "bias current" $\left(I_{B}\right)$.

$I_{B}^{+}$and $I_{B}^{-}$are generally not exactly equal.
$\left|I_{B}^{+}-I_{B}^{-}\right|:$"offset current" (IOS)
$\left(I_{B}^{+}+I_{B}^{-}\right) / 2$ : "bias current" $\left(I_{B}\right)$.

## Effect of bias currents

Inverting amplifier:


## Effect of bias currents

Inverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).

## Effect of bias currents

Inverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R_{1}$.

## Effect of bias currents

Inverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R_{1}$.
$i_{2}=i_{1}-I_{B}^{-} \rightarrow V_{o}=V_{-}-i_{2} R_{2}=0-\left(\frac{V_{i}}{R_{1}}-I_{B}^{-}\right) R_{2}=-\frac{R_{2}}{R_{1}} V_{i}+I_{B}^{-} R_{2}$,

## Effect of bias currents

Inverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=0 V \rightarrow i_{1}=V_{i} / R_{1}$.
$i_{2}=i_{1}-I_{B}^{-} \rightarrow V_{o}=V_{-}-i_{2} R_{2}=0-\left(\frac{V_{i}}{R_{1}}-I_{B}^{-}\right) R_{2}=-\frac{R_{2}}{R_{1}} V_{i}+I_{B}^{-} R_{2}$,
i.e., the bias current causes a DC shift in $V_{0}$.

For $I_{B}^{-}=80 \mathrm{n} A, R_{2}=10 \mathrm{k}, \Delta V_{o}=0.8 \mathrm{mV}$.

Effect of bias currents

Non-nverting amplifier:


## Effect of bias currents

Non-nverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).

## Effect of bias currents

Non-nverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=V_{i} \rightarrow i_{1}=-V_{i} / R_{1}$.

## Effect of bias currents

Non-nverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=V_{i} \rightarrow i_{1}=-V_{i} / R_{1}$.
$i_{2}=i_{1}-I_{B}^{-}=-\frac{V_{i}}{R_{1}}-I_{B}^{-}$.

## Effect of bias currents

Non-nverting amplifier:


Assume that the Op Amp is ideal in other respects (i.e., $V_{O S}=0 V$, etc.).
$V_{-} \approx V_{+}=V_{i} \rightarrow i_{1}=-V_{i} / R_{1}$.
$i_{2}=i_{1}-I_{B}^{-}=-\frac{V_{i}}{R_{1}}-I_{B}^{-}$.
$V_{o}=V_{i}-i_{2} R_{2}=V_{i}-\left(-\frac{V_{i}}{R_{1}}-I_{B}^{-}\right) R_{2}=V_{i}\left(1+\frac{R_{2}}{R_{1}}\right)+I_{B}^{-} R_{2}$.
$\rightarrow$ Again, a DC shift $\Delta V_{o}$.

Effect of bias currents

## Integrator:



## Effect of bias currents

Integrator:


Even with $V_{i}=0 V, V_{c}=\frac{1}{C} \int-I_{B}^{-} d t$ will drive the Op Amp into saturation.

## Effect of bias currents

Integrator:


Even with $V_{i}=0 V, V_{c}=\frac{1}{C} \int-I_{B}^{-} d t$ will drive the Op Amp into saturation.
Connecting $R^{\prime}$ across $C$ provides a DC path for the current, and results in a DC shift $\Delta V_{o}=I_{B}^{-} R^{\prime}$ at the output.

## Effect of bias currents

Integrator:


Even with $V_{i}=0 V, V_{c}=\frac{1}{C} \int-I_{B}^{-} d t$ will drive the Op Amp into saturation.
Connecting $R^{\prime}$ across $C$ provides a DC path for the current, and results in a DC shift $\Delta V_{o}=I_{B}^{-} R^{\prime}$ at the output.

As we have discussed earlier, $R^{\prime}$ should be small enough to have a negligible effect on $V_{o}$. However, $R^{\prime}$ must be large enough to ensure that the circuit still functions as an integrator.

