LECTURE NOTES
ON

MICROPROCESSORS & MICROCOMPUTER

COURSE CODE:BCS- 301

| VEER SURENDRA SAJ UNIVERSITY
OF TECHNOLOGY, ODISHA BURLA

Prepared By

Dr. M.R.Kabat
Dr. A.K.Rath
Dr. S.Panigrahi

Department of Computer Science & Engineering andT
VSS University of Technology,usla, Odisha

Syllabus

BCS-301 MICROPROCESSORS & MICROCOMPUTER (3-1-0)

Module — 1(8 Lectures)

Microprocessors, Microcomputers _and _Assembly Languge Microprocessors, Microprocessor
Instruction Set, Computer Languages, Microcomputers
Interfacing I/O devicesand Memory. Memory mapp@ldnd 1/0O mapped I/o.

Module — II (8 Lectures)

The Processors: 8086/8088- Architectures, Pin Diagms and Timing Diagrams- Register Organisation
of 8086, Architecture, Signal Descriptions of 80BBysical Memory Organisation, General Bus Openatio
I/O Addressing Capability, Special Processor Attg, Minimum Mode 8086 System and Timings,
Maximum Mode 8086 System and Timings.

Module — Il (8 Lectures)

8086 Instruction Set and ALP- Machine Language Instruction Formats, Addressingd®4é of 8086,
Instruction Set of 8086, Assembler Directives ameators, ALP

Module-1V (8 Lectures)

Special Architectural Features and Related Programnmg:- Introduction to Stack, Stack structure of
8086, Interrupts and Interrupt Service Routinetermipt Cycle of 8086, Non Maskable Interrupt, Masle
Interrupt (INTR), Interrupt Programming, PassingdPaeters, to Size More than 64K, MACROS, Timings
and Delays;

Module — V (8 Lectures)

General-Purpose Programmable Peripheral DevicesThe 8255A Programmable Peripheral Interface,
lllustration: Interfacing Keyboard and Seven-Segnigisplay, lllustration: Bidirectional Data Transfe
between Two Microcomputers, The 8259A Programmatiégrupt Controller, Direct Memory Access
(DMA) and the 8257 DMA Controller

INTRODUCTION TO MICROPROCESSOR ARCHITECTURES

A Microprocessor is a multipurpose programmable log ic device which reads the binary
instructions from a storage device called ‘Memory’ accepts binary data as input and process
data according to the instructions and gives the re sults as output. So, you can understand the
Microprocessor as a programmable digital device, wh ich can be used for both data processing
and control applications. In view of a computer stu dent, it is the CPU of a Computer or heart of
the computer. A computer which is built around a mi croprocessor is called a microcomputer. A
microcomputer system consists of a CPU (microproces sor), memories (primary and
secondary) and I/O devices as shown in the block di agram in Fig 1. The memory and 1/O
devices are linked by data and address (control) bu ses. The CPU communicates with only one
peripheral at a time by enabling the peripheral by the control signal. For example to send data
to the output device, the CPU places the device add ress on the address bus, data on the data
bus and enables the output device. The other periph erals that are not enabled remain in high
impedance state called tri-state.

Address Bus

) l

CPU Emﬂw Device IO Device
o T - A

} Data Bus .

‘Cantml Bus g

Fig.1 Bl ock diagram of a Microcomputer

Evolution of Microprocessors

The first Microprocessor (4004) was designed by Int el Corporation which was founded by
Moore and Noyce in 1968.

In the early years, Intel focused on developing se miconductor memories (DRAMs and
EPROMSs) for digital computers.

In 1969, a Japanese Calculator manufacturer, Busic om approached Intel with a design for a
small calculator which need 12 custom chips. Ted H off, an Intel Engineer thought that a
general purpose logic device could replace the mult iple components.

This idea led to the development of the first so ¢ alled microprocessor. So, Microprocessors
started with a modest beginning of drivers for calc ulators.

With developments in integration technology Intel was able to integrate the additional chips
like 8224 clock generator and the 8228 system contr oller along with 8080 microprocessor with
in a single chip and released the 8 bit microproces sor 8085 in the year 1976. The 8085
microprocessor consisted of 6500 MOS transistors an d could work at clock frequencies of 3-5
MHz. It works on a single +5 volts supply. The othe r improved 8 bit microprocessors include
Motorola MC 6809, Zilog Z-80 and RCA COSMAC.

In 1978, Intel introduced the 16 bit microprocesso r 8086 and 8088 in 1979. IBM selected
the Intel 8088 for their personal computer (IBM-PC) .8086 microprocessor made up of 29,000
MOS transistors and could work at a clock speed of 5-10 MHz. It has a 16-bit ALU with 16-bit
data bus and 20-bit address bus. It can address up to 1MB of address space. The pipelining
concept was used for the first time to improve the speed of the processor. It had a pre-fetch
gueue of 6 instructions where in the instructions t 0 be executed were fetched during the
execution of an instruction. It means 8086 architec ture supports parallel processing. The 8088
microprocessor is similar to 8086 processor in arch itecture ,but the basic difference is it has
only 8-bit data bus even though the ALU is of 16-bi t.It has a pre-fetch queue of 4-instructions
only.

In 1982 Intel released another 16-bit processor cal led 80186 designed by a team under the
leadership of Dave Stamm. This is having higher rel iability and faster operational speed but at a
lower cost. It had a pre-fetch queue of 6-instructi ons and it is suitable for high volume
applications such as computer workstations, word-pr ocessor and personal computers. It is
made up of 134,000 MOS transistors and could work a t clock rates of 4 and 6 MHz. This is also
comes under first generation of Microprocessors.

Intel released another 16 bit microprocessor 80286 having 1, 34,000 transistors in 1981. It was
used as CPU in PC-ATs in 1982. It is the second gen eration microprocessor, more advanced to
80186 processor. It could run at clock speeds of 6 to 12.5 MHz .1t has a 16-bit data bus and 24-
bit address bus, so that it can address up to 16MB of address space and 1GB of virtual
memory. It had a pre-fetch queue of 6 instructions .Intel introduced the concept of protected
mode and virtual mode to ensure proper operation. | t also had on-chip memory management
unit (MMU) .This was popularly called as Intel 286 in those days.

In 1985, Intel released the first 32 bit processor 80386, with 275,000 transistors. It has 32-
bit data bus and 32-bit address bus so that it can address up to a total of 4GB memory also a
virtual memory space of 64TB.It could process five million instructions per second and could
work with all popular operating systems including W indows. It has a pre-fetch queue of length
16-bytes with extensive memory management capabilit ies. It is incorporated with a concept
called paging in addition to segmentation technique . It uses a math co-processor called 80387.

Intel introduced 80486 microprocessor with a buil t-in maths co-processor and with 1.2
million transistors. It could run at the clock spee d of 50 MHz This is also a 32 bit processor but
it is twice as fast as 80386.The additional feature s in 486 processor are the built-in Cache and
built-in math co-processors. The address bus here i s bidirectional because of presence of
cache memory.

On 19™ October, 1992, Intel released the Pentium-l Proces sor with 3.1 million transistors. So,
the Pentium began as fifth generation of the Intel x86 architecture. This Pentium was a
backward compatible while offering new features. Th e revolutionary technology followed is that

the CPU is able to execute two instruction at the s ame time. This is known as super scalar
technology. The Pentium uses a 32-bit expansion bus , however the data bus is 64 bits.

The 7.5 million transistors based chip, Intel Pen tium Il processor was released in 1997. It
works at a clock speed of 300M.Hz. Pentium Il uses the Dynamic Execution Technology which
consists of three different facilities namely, Mult iple branch prediction, Data flow analysis, and
Speculative execution unit. Another important featu re is a thermal sensor located on the
mother board can monitor the die temperature of the processor. For thermal management
applications.

Intel Celeron Processors were introduced in the yea r 1999. Pentium-lll processor with 9.5
million transistors was introduced in 1999. It also uses dynamic execution micro-architecture, a
unique combination of multiple branch prediction, d ataflow analysis and speculative execution.
The Pentium IIl has improved MMX and processor seri al number feature. The improved MMX
enables advanced imaging, 3D streaming audio and vi deo, and speech recognition for
enhanced Internet facility.

Pentium-IV with 42 million transistors and 1.5 GHz clock speed was released by Intel in
November 2000. The Pentium 4 processor has a system bus with 3.2 G-bytes per second of
bandwidth. This high bandwidth is a key reason for applications that stream data from memory.

This bandwidth is achieved with 64 —bit wide bus ca pable of transferring data at a rate of 400
MHz. The Pentium 4 processor enables real-time MPEG 2 video encoding and near real-time
MPEG4 encoding, allowing efficient video editing an d video conferencing.

Intel with partner Hewlett-Packard developed the next generation 64-bit processor architecture
called 1A-64 .This first implementation was named | tanium. Itanium processor which is the first
in a family of 64 bit products was introduced in t he year 2001.The Itanium processor was
specially designed to provide a very high level of parallel processing ,to enable high
performance without requiring very high clock frequ encies .Key strengths of the Itanium
architecture include ,up to 6 instructions/cycle. T he Itanium processor can handle up to 6
simultaneous 64 —bit instructions per clock cycle.

The Itanium Il is an IA-64 microproces sor developed jointly by Hewlett-Packard (HP)
and Intel and released on July 8,2002..1t is theore tically capable of performing nearly 8 times
more work per clock cycle than other CISC and RISC architectures due to its parallel
computing micro-architecture. The recent Itanium pr ocessor features a split L2 cache, adding a
dedicated 1MB L2 cache for instructions and thereby effectively growing the original 256KBL2
cache, which becomes a dedicated data cache. The fi rst Itanium 2 processor (code named
McKinley) was more powerful than the original Itani um processor, with approximately two
times performance.

Pentium 4EE was released by Intel in the year 20 03 and Pentium 4E was released in the
year 2004.

The Pentium Dual-Core brand was used for mainstre am X86-architecture
microprocessors from Intel from 2006 to 2009 The 64 bit Intel Core2 was released on July
27,2006. In terms of features, price and performanc e at a given clock frequency, Pentium Dual-
Core processors were positioned above Celeron but b elow Core and Core 2 microprocessors
in Intel's product range. The Pentium Dual-Core was also a very popular choice for over
clocking, as it can deliver optimal performance (wh en over clocked) at a low price.

The Pentium Dual Core, which consists of 167 millio n transistors was released on January 21,
2007. Intel Core Duo consists of two cores on one die, a 2 MB L2 cache shared by both cores,
and an arbiter bus that controls both L2 cache and FSB access.

Core 2 Quad processors are multi-chip modules consi sting of two dies similar to those used in
Core 2 Duo, forming a quad-core processor. While th is allows twice the performance to a dual-
core processors at the same clock frequency in idea | conditions, this is highly workload
specific and requires applications to take advantag e of the extra cores.

In September.2009, new Core i7 models based on the Lynnfield desktop quad-core processor
and the Clarksfield quad-core mobile were added, and models based ont he Arrandale dual-
core mobile processor have been announced. The firs t six-core processor in the Core lineup is
the Gulftown, which was launched on March 16, 2010. Both the re gular Core i7 and the Extreme
Edition are advertised as five stars inthe Intel Processor Rating.

ASSEMBLY LANGUAGE PROGRAMMING EXAMPLES:

Addition Programs

Example 1 : Addition of two 8-bit numbers whose sum is 8-bit S.

Explanation: This assembly language program adds tw o 8-bit numbers stored in two memory
locations .The sum of the two numbers is 8-bits onl y.The necessary algorithm and flow charts
are given below.

ALGORITHM:

Stepl. : Initialize H-L pair with memory address XX 00 (say: 9000).

Step2. : Clear accumulator.

Step3. : Add contents of memory location M to accum ulator.

Step4. : Increment memory pointer (i.e. XX01).

Stepb. : Add the contents of memory indicated by me mory pointer to accumulator.
Step6. : Store the contents of accumulator in 9002.

Step7. : Halt

PROGRAM:

Address Mnemonics

of the
memory Hex code Label Op-code Operand Comments

location

8000 21,00,90 LXI H, 9000 Initialise memory pointer to
point the first data location
9000.

8003 3E MVI A, 00 Clear accumulator

8004 00

8005 86 ADD A, M The first number is added to
accumulator [A] € [A] + M

8006 23 INX H Increment the memory
pointer to next location of
the Data.

8007 86 ADD A'M The 2" number is added to
contents of accumulator

8008 32 STA 9002 The contents of accumulator
are stored in memory

8009 |02 location 9002.

800A 90

800B 76 HLT Stop the execution

Ex: Input: Ex: (i) 9000 —29 H Ex:(ii) 9000-49 H
9001 -16H 9001 -32 H
Result: Ex: (i) 9002 - 3F H Ex:(i i) 9002 - 7B

Example 2: Addition of two 8-bit numbers whose sum is 16 bits.

Explanation: The first 8-bit number is stored in on e memory location (say 8500) and the second
8-bit number is stored in the next location (8501). Add these two numbers and check for carry.
Store the LSB of the sum in one memory location (85 02) and the MSB (carry) in the other
location(8503).

ALGORITHM:

Stepl. : Initialize H-L pair with memory address X (say: 8500).
Step2. : Clear accumulator.
Step3. : Add contents of memory location M to accum ulator.

Step4. : Increment memory pointer (i.e. 8501).

Stepb. : Add the contents of memory indicated by me

Step6. : Check for Carry

Step 7 : Store the sumin 8502.

Step8 : Store the Carry in 8503 location

mory pointer to accumulator.

Step 9 : Halt
PROGRAM:

Address of Hex code | Label Mnemonics Comments

the memory

location Op- Operand

code

8000 21,00,85 LXI H, 8500 H | Initialise memory pointer to
point the first data location
9000.

8003 3E MVI | A,00 Clear accumulator

8004 00

8005 86 ADD |A/M The first number is added to
accumulator [A] € [A][+M

8006 OE MVI | C,00 Initial value of Carry is O

8007 00

8008 23 INX |[H Increment the memory
pointer to next location of the
Data.

8009 86 ADD A, M The 2™ number is added to
contents of accumulator

800A 32 JNC |FWD Is Carry exists ? No,go to the
label FWD

800B OE

800C 80

800D 0C INR |C Make carry =1

800E 32 FWD | STA |8502 H The sum is stored in memory
location 8502.

800F 02

8010 85

8011 79 MOV | AC

8012 32 STA | 8503 H Store the carry at 8503
location

8013 03

8014 85

8015 76 HLT Stop the execution
Ex: Input: Ex: 8500-97H RE SULT: 8502 - 32 H

8501 — 98H 8503 --01 H

Example 3: Decimal addition of two 8-bit numbers whose sum is 16 bits.
Explanation: Decimal addition of two 8-bit numbers is same as that of two 8-bit numbers
program. Except that the use of DAA instruction. Th e first 8-bit number is stored in one
memory location (say 8500) and the second 8-bit n umber is stored in the next

location(8501).Add these two numbers and use the D AA instruction to get the result in
decimal. Also check for carry. Store the LSB of the sum in one memory location(8502) and the
MSB (carry) in the other location(8503).

ALGORITHM:

Stepl. : Initialize H-L pair with memory address XX XX (say: 8500).

Step2. : Clear Carry register C.

Step3. : Move contents of memory location M to accu mulator.

Step4. : Increment memory pointer (i.e. 8501).

Step5. : Add the contents of memory indicated by me mory pointer to accumulator.
Step6. : Apply the instruction DAA(Decimal adjusta fter addition)

Step7: Check for Carry

Step8: Store the sum in XX02.

Step9: Store the Carry in XX03 location

Stepl10: Halt
PROGRAM
Address of | Hex Label | Mnemonics Comments
the code
memory Op- Operand
location code
8000 21, LXI H, 8500 | Initialise memory pointer to
00,85 H point the first data location 9000.

8003 OE MVI C, 00 Clear accumulator
8004 00
8005 7E MOV A, M The first number is added to
accumulator [A] € [A]+M
8006 23 INX H Increment the memory pointer to
next location of the Data.
8007 86 ADD A'M The 2" number is added to
contents of accumulator
8008 27 DAA
8009 D2 JNC FWD Is Carry exists? No, go to the
label FWD
0D
80
800C 0C INR C Make carry =1
800D 32 FWD | STA 8502 H The contents of accumulator are
stored in memory location 8502.
800E 02
800F 85
8010 79 MOV A C Carry is moved to accumulator
8011 32 STA 8503 H A Carry is stored in the locati on
8503
8012 03
8013 85
8014 76 HLT Stop the execution
Ex:Input: Ex: 8500-67D RE SULT: 8502 - 52D
8501 -85D 8503 — 01 (Carry)

Example 4: Addition of two 16-bit numbers whose sum is 16 bits or more

Explanation: First 16-bit number is stored in two c
because in each location we can store only one 8-bi
in the next two consecutive locations (For Ex: 8502

the LSB of the second number and the MSB of the fir

number using the DAD instruction. Store the sum in
any) in the third location

onsecutive locations (Ex 8500 &8501)
t number. Store the second 16-bit number
&8503).Add the LSB of the first number to

st number to the MSB of the second
the next two locations and the carry (if

ALGORITHM:

Stepl: First 16 bit number is in locations 8500 &

8501 respectively

Step2: Second 16-bit number is in locations 8502 & 8503
Step3: Add the two 16-bit numbers using DAD Instruc tion.
Step4: Sum is stored in locations 8504 & 8505.
Step5: Carry (if any) is stored in the location 850 6.
Step6: Halt
PROGRAM:
ADDRESS | HEX — LABEL MNEMONIC COMMENTS
CODE
OPCO | OPERAND
DE
8000 2A,00,85 LHLD | 8500 H First 16-bit number in H-L pair
8001 00
8002 85
8003 EB XCHG Exchange first number to D-E
Pair
8004 2A LHLD 8502 H
8005 02
8006 85
8007 OE MVI 00 MSB of the sum is initially 00
8008 00
8009 19 DAD D Add two 16 —bit numbers
800A D2 JNC FWD Is Carry? If yes go to the next
line .Else go to the 800E
800B OE LOCATION
800C 80
800D OC INR C Increment carry
800E 22 FWD SHLD | 8504 H Store the LSB of the Sum in
8504 & MSB in 8505 locations
800F 04
8010 85
8011 79 MOV A,C MSBs of the sum is in

Accumulator

8012 32 STA 8506 H Store the MSB (Carry) of the
result in 8506 location

8013 06

8014 85

8015 76 HLT Stop execution

Ex: INPUT: 8500- 12 H LSB of the | ' Number

8501- 13 H MSB of the | St Number
8502 -13 H LSB of the Il "™ Number
8503 -12H MSB of the Il " number

Subtraction Programs:

RESULT : 8504 - 25H LSB of the Su m
8505 — 25H MSB of the Sum
8506 -- 00 Carry .

Example 5: Subtraction of two 8-bit numbers without borrows.

Explanation: It's a simple program similar to addit

instruction SUB instead of ADD. The first 8-bit num

second 8-bit number is stored in the XX01 location

the XX02 location.

ALGORITHM:

Stepl.:
Step2. :
Step3.:
Step4. :
Steps.
Step6.

ion of two 8- bit numbers, except that we use the
ber is stored in XX00 memory location and the
.Use the SUB instruction and store the result in

Initialise H-L pair with the address of mi nuend.

Move the minuend into accumulator

Increment H-L pair

Subtract the subtrahend in memory location
: Store the result in XX02.

: Stop the execution

M from the minuend.

ADDRESS | HEX LABEL | MNEMONIC

COMMENTS

CODE
E D

OPCOD | OPERAN

8000 21 LXI H, 8500 Initialise H-L pair and getth e
First number in to 8500
location

8001 00

8002 85

8003 7E MOV AM [A] € [M]

8004 23 INX [M+1] € [M]

8005 96 SUB M A € [A]l-[M]

8006 23 INX Next memory location

8007 77 MOV M,A Store the result in the
location 8502

8008 76 HLT Stop the execution

PROGRAM:

INPUT:

Ex: 8500- 59H

8501- 30H

Resul t: 8502 — 29H

Example 6: Subtraction of two 8-bit Decimal numbers

Explanation: In this program we can’'t use the DAA i
because it is decimal adjust after addition only. S
is to be subtracted is converted to 10’'s complement

nstruction after SUB or SBB instruction
o, for decimal subtraction the number which
and then DAA is applied.

ALGORITHM:
Stepl. : Initialise H-L pair with the address of se ~ cond number (XX01).
Step2. : Find its ten’s complement
Step3. : Decrement the H-L pair for the first numbe r (XX00)
Step4. : Add the first number to the 10’'s complemen t of second number.
Stepb. : Store the result in XX02.
Step6. : Stop the execution
PROGRAM:
ADDRESS | HEX LAB | MNEMONIC COMMENTS
CODE | EL
OPCODE | OPERAND
8000 21 LXI H,8500 Initialise H-L pair and get
theSecond number in to 8501
location
8001 00
8002 85
8003 3E MVI A,99 [A] €99
8004 99
8005 96 SUB M 9's complement of second
number
8006 3C INR A 10’'s complement of second
number
8007 2B DCX H Address of the first number

8008 86 ADD M Add first number to 10's
complement of second number

8009 27 DAA

800A 32 STA 8502 Store the result in the location
8502

800B 02

800C 85

800D 76 HLT Stop the execution

Ex: Input: 8500 -76 D Result: 8502 -41D

8501-35D

Example 6: Subtraction of two 16 —bit numbers.

Explanation: It is very similar to the addition of

instructions to get the result .The first 16-bit nu
the second 16-bit number is stored in the next two
subtracted using SUB instruction and the MSBs aare

result is stored in different locations.

ALGORITHM:

Stepl.:
Step2. :
Step4. :
Steps. :
Step6. :

Step 7: Stop the execution

Store the first number in the locations 85

Store the second number in the locations 8

Subtract the second number from the first

Store the result in locations 8504 & 8505.

Store the borrow in location 8506

PROGRAM:

two 16-bit numers.Here we use SUB &SBB
mber is stored in two consecutive locations and

consecutive locations.The Isbs are
subtracted using SBB instruction.The

00 & 8501.
502 &8503.

number with borrow.

Ex: INPUT 8500- FF H LSB of the | * Number RESULT: 8504 - 11H LSB
ADDRESS HEX LABE | MNEMONIC COMMENTS
CODE | L
OPCOD | OPERAN
E D
8000 2A, LHLD 8500 H First 16-bit number in H-L pair
00,85

8003 EB XCHG Exchange first number to D-E Pair

8004 2A LHLD 8502 H Get the second 16-bit number in H-L
pair

8005 02

8006 85

8007 7B MOV A E Get the lower byte of the First
number in to Accumulator

8008 95 SUB L Subtract the lower byte of the
second number

8009 6F MOV L, A Store the result in L- register

800A MOV A D Get higher byte of the first number

800A 9C SBB H Subtract higher byte of second
number with borrow

800B 67 MOV H, A

800C 22 SHLD 8504 Store the result in memory locations
with LSB in 8504 & MSB in 8505

800D 04

800E 85

800F 76 HLT Stop execution

Multiplication

Example 7: Multiplication of two 8-bit numbers. Pr

8501 - FF H MSB of the | ®* Number

8502 -EE H LSB of the Il " Number

8503 —EE H MSB of the Il ™ number

Programs

8505 -11 H MSB

oduct is 16-bits.

Explanation: The multiplication of two binary numbe rs is done by successive addition. When
multiplicand is multiplied by 1 the product is equa | to the multiplicand, but when it is multiplied

by zero, the product is zero. So, each bit of the m ultiplier is taken one by one and checked
whether it is 1 or 0 .If the bit of the multiplier is 1 the multiplicand is added to the product and

the product is shifted to left by one bit. If the b it of the multiplier is 0 , the product is simply

shifted left by one bit. This process is done for a Il the 8-bits of the multiplier.

ALGORITHM:

Step 1 : Initialise H-L pair with the address of mu ltiplicand.(say 8500)

Step 2 : Exchange the H-L pair by D-E pair. so that multiplicand is in D-E pair.
Step 3 : Load the multiplier in Accumulator.

Step 4 : Shift the multiplier left by one bit.

Step 5 : If there is carry add multiplicand to prod uct.

Step 6 : Decrement the count.

Step 7 : If count #0; Go to step 4

Step 8 : Store the product i.e. resultin memory | ocation.

Step 9 : Stop the execution

PROGRAM:
ADDRESS HEX | LABE | MNEMONIC COMMENTS
-COD : OPCOD | OPERAND
E E
8000 2A, LHLD H, 8500 Load the multiplicand in to H-L pair
00,8
S
8003 EB XCHG Ex_change the multiplicand in to D-E
pair
8004 3A LDA 8502 Multiplier in Accumulator
8005 02
8006 85
8007 21 LXI H.0000 Initial value in H-L pairis 00
8008 00
8009 00
800A OE MVI C,08 Count =08
800B 08
800C 29 :SOO DAD H E_hift the partial product left by one
It.

800D 17 RAL Rotate multiplier left by one bit
800E D2 JNC FWD Is Multiplier bit =1? No go to lab el
FWD
800F 12
8010 80
8011 19 DAD D Product =Product +Multiplicand
8012 0D FWD | DCR C COUNT=COUNT-1
8013 C2 JNZ LOOP
8014 0oC
8015 80
8016 22 SHLD 8503 Store the result in the location s 8503
& 8504

8017 03
8018 85
8019 76 HLT Stop the execution
INPUT :

Addres | Data

s

8500 8AH — LSB of Multiplicand

8501 00 H — MSB of Multiplicand

8502 52 H - Multiplier

Result: | 8503 34 H — LSB of Product
8504 2C H — MSB of Product

Division Programs

Example 7:

Division of a 16- bit number by a 8-

bit number.

Explanation: The division of a 16/8-bit number by a 8-bit number follows the successive
subtraction method. The divisor is subtracted from the MSBs of the dividend .If a borrow
occurs, the bit of the quotient is set to 1 else 0. For correct subtraction process the dividend is
shifted left by one bit before each subtraction. Th e dividend and quotient are in a pair of
register H-L.The vacancy arised due to shifting is occupied by the quotient .In the present
example the dividend is a 16-bit number and the div isor is a 8-bit number. The dividend is in
locations 8500 &8501.Similarly the divisor isinth e location 8502.The quotient is stored at 8503
and the remainder is stored at 8504 locations.

ALGORTHM:
STEPL. : Initialise H-L pair with address of divi dend.
STEP2. : Get the divisor from 8502 to register A & then to Reg.B
STEP3. : Make count C=08
STEPA4. : Shift dividend and divisor left by one b it
STEP 5: Subtract divisor from dividend.
STEPS®. : If carry = 1 : goto step 8 else step7.
STEP7. : Increment quotient register.
STEPS. : Decrement countin C
STEP®9. : If count not equal to zero go to step 4
STEP10: Store the quotient in 8503
STEP11: Store the remainder i n 8504
STEP12: Stop execution.

PROGRAM:

ADD | HEX - | LABEL MNEMONIC COMMENTS

R- CODE

ESS OPCODE | OPERAND

8000 |21 LHLD H, 8500 Initialize the H-L pair for
dividend

8001 | 00

8002 | 85

8003 | 3A LDA 8502 H Load the divisor from
location 8502 to accumulator

8004 | 02

8005 | 85

8006 | 47 MOV B,A Move Divisor to Reg.B from A

8007 | OE MVI C,08 Count =08

8008 | 08

8009 | 29 BACK DAD H Shift dividend and quotient
left by one bit

800A | 7C MOV AH MSB of dividend in to
accumulator
800B | 90 SUB B Subtract divisor from MSB
bits of divisor
800C | DA JC FWD Is MSB part of dividend >
divisor ? No,goto label FWD
800D |11
800E | 80
800F | 67 MOV H,A MSB of the dividend in Reg.H
8010 | 2C INR L Increment quotient
8011 | OD FWD DCR C Decrement count
8012 | C2 JNZ BACK If count is not zero jump
to8009 location
8013 | 09
8014 | 80
8015 |22 SHLD 8503H Store quotient in 8503 and
remainder in 8504 locations
8016 | 03
8017 | 85
8018 | 76 HLT Stop execution
Ex: Input & Result
Address |Data
8500 64 > LSB of
Dividend
8501 00 > MSB of
Dividend
8502 07 = Divisor
8503 OE - Quotient
8504 02 - Remainder

Largest & Smallest numbers in an Array
Example 8: To find the largest number in a data array

Explanation: To find the largest number in a data a rray of N numbers (say)first the count is
placed in memory location (8500H) and the data are stored in consecutive
locations.(8501....onwards).The first number is copie d to Accumulator and it is compared with
the second number in the memory location. The large r of the two is stored in Accumulator. Now
the third number in the memory location is again co mpared with the accumulator. And the
largest number is kept in the accumulator. Using th e count, this process is completed , until all
the numbers are compared .Finally the accumulator s tores the smallest number and this
number is stored in the memory location.85XX.

ALGORTHM:

Stepl: Store the count in the Memory location point ed by H-L register.

Step2: Move the | st number of the data array int 0 accumulator

Step3: Compare this with the second number in Memo ry location.

Step4: The larger in the two is placed in Accumula tor

Step5: The number in Accumulator is compared with the next number in memory .
Step 6: The larger number is stored in Accumulator.

Step 7; The process is repeated until the count is zero.

Step 8: Final result is stored in memory location.

Step 9: Stop the execution

PROGRAM

ADD |HEX - |LABEL |[MNEMONIC COMMENTS

R- CODE

ESS OPCOD | OPERAN

E D
8000 | 21,00,8 LXI H, 8500 INITIALISE H-L PAIR
5

8003 | 7E MOV CM Count in the C register

8004 | 23 INX H First number in H-L pair

8005 | 4E MOV AM Move first number in to
Accumulator

8006 | OD DCR C Decrement the count

8007 |91 LOOP1 | INX H Get the next number

8008 | BE CMP M Compare the next number
with previous number

8009 | D2 JNC LOOP2 Is next number >previous
maximum?No,go to the
loop2

800A | 0D

800B | 80

800C | 7TE MOV AM If,yes move the large
number in to Accumulator

800D | OD LOOP2 | DCR C Decrement the count

800E | C2 JNZ LOOP1 If count not equal to
zero,repeat

800F | 07

8011 | 80

8012 |78

8013 | 32 STA 85XX Store the largest number in
the location 85XX

8014 | XX

8015 | 85

8016 | 76 HLT Stop the execution

Ex:Input: 8500- N(Say N=7) Result : 8508 - 7F

Example 9 :

8501-05
8502-0A
8503-08
8504-14
8505 -7F
8506-25
8507-2D

To find the smallest number in a data array.

Explanation: To find the smallest number in a data array of N numbers (say)first the count is
placed in memory location (8500H) and the data are stored in consecutive
locations.(8501....onwards).The first number is copie d to Accumulator and it is compared with
the second number in the memory location.The smalle r of the two is stored in
Accumulator.Now the third number in the memory loc ation is again compared with the
accumulator.and the smallest number is kept in the accumulator.Using the count,this process
is completed until all the numbers are compared . Finally the accumulator stores the smallest
number and this number is stored in the memory loca tion.85XX.

ALGORTHM :

Stepl: Store the count in the Memory location point ed by H-L register.

Step2: Move the | st number of the data array int 0 accumulator

Step3: Compare this with the second number in Memo ry location.

Step4: The smaller in the two is placed in Accumul ator

Step5: The number in Accumulator is compared with the next number in memory .
Step 6: The smaller number is stored in Accumulator

Step 7; The process is repeated until the count is zero.

Step 8: Final result is stored in memory location.

Step 9: Stop the execution

PROGRAM

ADD | HEX - |LABEL | MNEMONIC COMMENTS

R- CODE

ESS OPCOD | OPERAN

E D

8000 |21 LXI H, 8500 Initialise the H-L pair.

8001 | 00

8002 | 85

8003 | 7E MOV CM Count in the C register

8004 | 23 INX H First number in H-L pair

8005 | 4E MOV AM Move first number in to
Accumulator

8006 | OD DCR C Decrement the count

8007 |91 LOOP1 | INX H Get the next number

8008 | BE CMP M Compare the next number
with previous number

8009 | D2 JC LOOP2 Is next number <previous
smallest ?If yes go to the
loop2

800A | 0D
800B | 80
800C | 7E MOV AM No,move the smaller
number in to Accumulator
800D | OD LOOP2 | DCR C Decrement the count
800E | C2 JNZ LOOP1 If count not equal to
zero,repeat
800F | 07
8011 | 80
8012 | 78
8013 | 32 STA 85XX Store the smallest number
in the location 85XX
8014 | XX
8015 |85
8016 | 76 HLT Stop the execution
Ex: Input : 8500 - N((Say N=7) Result : 8508 — 04
8501-09
8502-0A
8503-08
8504-14
8505 -7F
8506-04
8507-2D

Stack and Subroutines

Stack is a set of memory locations in the Read/Writ e memory which is used for temporary
storage of binary information during the execution of a program. It is implemented in the Last-
in-first-out (LIFO) manner. i.e., the data written first can be accessed last, One can put the data
on the top of the stack by a special operation know n as PUSH. Data can be read or taken out
from the top of the stack by another special instru ction known as POP.

Stack is implemented in two ways. Int he first case, a set of registers is arranged in a
shift register organization. One can PUSH or POP da ta from the top register. The whole block of
data moves up or down as a result of push and pop o perations respectively. In the second
case, a block of RAM area is allocated to the stack . A special purpose register known as stack
pointer (SP) points to the top of the stack. Whenev er the stack is empty, it points to the bottom
address. If a PUSH operation is performed, the dat a are stored at the location pointed to by SP
and itis

decremented by one. Similarly if the POP operation is performed, the data are taken out of the
location pointed at by SP and SP is incremented by one. In this case the data do not move but
SP is incremented or decremented as a result of pus h or pop operations respectively.

Application of Stack: Stack provides a powerful dat a structure which has applications in many
situations. The main advantage of the stack is that

We can store data (PUSH) in it with out destroying previously stored data. This is not true in the
case of other registers and memory locations.

stack operations are also very fast

The stack may also be used for storing local varia bles of subroutine and for the transfer of
parameter addresses to a subroutine. This facilitat es the implementation of re-entrant
subroutines which is a very important software prop erty.

The disadvantage is, as the stack has no fixed addr ess, it is difficult to debug and document a
program that uses stack.

Stack operation: Operations on stack are performed using the two instructions namely PUSH
and POP. The contents of the stack are moved to cer tain memory locations after PUSH
instruction. Similarly, the contents of the memory are transferred back to registers by POP
instruction.

For example let us consider a Stack who se stack top is 4506 H. This is stored in the 16-
bit Stack pointer register as shown in Fig.29

Before PUSH operation

4503
4504
4505
SP
4506 1A 4—— | 4506 | (stack top location)
4507 o7

stack

Figure.29 The PUSH operation of the Stack

Let us consider two registers (register pair) B &

After

4503
4504
4505
4506

4507

PUSH

Reg. B

Reg. C

25

62

‘_

a7

B

L

C whose contents are 25 & 62.

operation the status of the Stack is as shown in Fig 3.30

After PUSH operation

25

62

SP

4504

_ p next Available location

Figure .30 After PUSH operation the status of the stack

Let us now consider POP operation: The Figs 31 & 32
operation in detail

explains before and after the POP

35 65
SP

4502 15 +— | 4502

4503 1C

4504 2A

4505 1A

4506 09

4507 o7

Stack

Figure 31 The POP operation of t he Stack

POP B

1 After POP operation
1 . i
|
I 1C 15
I
P
4505 1A
4506 09
4507 07

Stack after POP operation

Figure 32 After POP operation the status of the stack

locations 4502 & 4503 and after the pop

Before the operation the data 15 and 1C are in the
e SP register points to 4504 location. This is

operation the data is copied to B-C pair and now th
shown in Fig.3.32

Programming Example FOR PUSH & POP

Write a program to initialize the stack pointer (SP) and store the contents of the register pair H-
L on stack by using PUSH instruction. Use the conte nts of the register pair for delay counter
and at the end of the delay retrieve the contents o f H-L using POP.

Memory Label Mnemonics Operand Comments

Location

8000 LXI SP, 4506 H Initialize
Stack
pointer

8003 LXI H,2565 H

8006 PUSH H

8007

DELAY CALL Push the

8.00A

POP

contents.

Subroutine : It is a set of instructions written separately from the main program to execute a
function that occurs repeatedly in the main program

For example, let us assume that a delay is needed three times in a program. Writing delay
programs for three times in a main program is nothi ng but repetition. So, we can write a
subroutine program called ‘delay’ and can be called any number of times we need

Similarly, in 8085 microprocessor we do not find the instructions for multiplication and
division. For this purpose we write separate progra ms. So, in any main program if these
operations are needed more than once, the entire pr ogram will become lengthy and complex.
So, we write subroutine programs MUL & DIV separate ly from main program and use the
instruction CALL MUL (or) CALL DIV in the main prog ram. This can be done any number of
times. At the end of every subroutine program there must be an instruction called ‘RET’. This
will take the control back to main program.

The 8085 microprocessor has two instructions to im plement the subroutines. They are CALL
and RET. The CALL instruction is used in the main p rogram to call a subroutine and RET
instruction is used at the end of the subroutine to return to the main program. When a
subroutine is called, the contents of the program c ounter, which is the address of the
instruction following the CALL instruction is store d on the stack and the program execution is

transferred to the subroutine address. When the RET instruction is executed at the end of the

subroutine, the memory address stored on the stack is retrieved and the sequence of execution

is resumed in the main program.

Diagrammatic representation

Let us assume that the execution of the main pr ogram started at 8000 H. It continues until a
CALL subroutine instruction at 8020 H is encountere d. Then the program execution transfers to
8070 H. At the end of the subroutine 807B H. The RE T instruction is present. After executing
this RET, it comes back to main program at 8021 Ha s shown in the following Fig. 33

8000H (Start)

main program

g CALL Subroutine
8020H > 8070H

Return

1o
B

HGram

Subroutine program

8050 H

NV N/ (RET)
End of main program 807B H

Fig.33 Diagrammatic representation of sub

The same is explained using the assembly language

Program Example:

routine program execution

program example.

Memory Mnemonics Operand Comments

Address

8000 LXI SP, 8400 H Initialize the Stack pointer at 8400
H

I

I

I

8020

CALL c0/0H

BGtthory Mnemonics Operand Com@alkratssubroutine program stored
at the location 8070 H. (It is a three

gudress by Instruction)

8023 N The address of the next instruction

ext following CALL instruction

| instruction 9 '

I |

| I End of the main program

802F

HLT

_ o) Subroutine
8070 Instructions Beginning of the Subroutine. Program:
I
| Delay
| programs:
I
807B
RET End of the program
807C) o
Next Instructions of next subroutine if
Subroutine any
807F End of the subroutine.
RET

In many situations it may be desired to provide som e delay between the execution of two

instructions by a microprocessor. The delay can be produced by either hardware chip like 8253
or by writing a software program using registers of the processor. Here we will discuss the
software delay program. This delay program is not a part of the main program. Hence it is
called delay sub-routine program. For small delays we can use only one register. But for
longer delays one has to use two or three registers . The technique involved here is, a register
is loaded with a number and then decremented by usi ng the instruction DCR until it becomes
zero. The time of execution of the microprocessor i s equal to the delay time produced.

For example, we have constructed a display system w here the LEDs receive the input from a
microprocessor. Since the microprocessor is a very fast device it sends the signal at very high

speeds there by our eye cannot recognize the displ ay pattern. So, if you provide some delay
between two input signals, the display can be visua lized clearly. Similarly to observe the
rotations of a stepper motor, a delay is needed bet ween every two excitation signals applied to

the motor.

Delay Subroutine with one register:

Program

Address | Label | Machine Mnemonics | Operand Comments

code

9000 MVI A, FF Get FF in register A

9002 LOOP DCR A Decrement register A.

9003 JNZ LOOP Has the content of
register B becomes
zero? No, jump to
LOOP. Yes, proceed
ahead.

9006 RET Return to main
program

Calculation of Delay time for the above program:

In the above program register A is loaded by FFH B(
loop until it becomes zero. The delay produced by t

We should know the number of times each instructio
executed. The number of states required for the exe

255 decimal) and it is decremented in a

his program is as follows

n of the above program is being

cution of each instruction is as follows:

Instructions States
MVI A, FFH 7
(loop) DCRA 4
JNZ loop 7/10
RET 10

Instruction No. of times the states Total states
Instruction is executed
MW A, FF 1 Tl 7
loop DCR A 255 4% 255 1020
JNZ Toop 255 (103254 3+ (Tx 1) 2547
RET 1 10x7 10

2584 States

The time required for one T-state in INTEL 8085 m

Total T States=3584

Delay time is= 3584 x 333n.sec

Delay Subroutine with two registers

= 3.584 x 0.333 x 102 seconds
=1.18272 x 1073 seconds
=1. 193472 milliseconds

icroprocessor is nearly 330n.sec

Program:
Address | Label Machine | Mnemonic | Operand | Comments
Code
8400 MVI B, 10H Get desired number in register B
8402 LOOP1 MVI C, 56H Get desired number in register
8404 LOOP2 DCR C Decrement C.
8405 JNZ LOOP2 |Is [C] zero? No, go to LOOP2. Yes,
proceed further
8408 DCR B Decrement register B
8409 JNZ LOOP1 |Is [B] zero? No, go to LOOP1. Yes,
proceed further
840C RET Return to main program.
Delay Subroutine using register pair
Program:
Addres | Label Machin | Mnemonic | Operand | Comments
S e
Code
8000 LXI D, FFFF | Get FFFF in register pair D-E
LOOP DCX D Decrement count

MOV A D Move the contents of register D to
accumulator
ORA E Check if D and E are zero.
JNZ LOOP If D-E is not zero, jump to LOOP
RET Return to main program
Delay Subroutine using three registers
Program:
Addres | Label Machin | Mnemonic Operand | Comments
s e
Code
8400 MVI A, 98H Get control word
8402 ouT 03 Initialize port foe LED Display
8404 MVI B, 50H)
8406 MVI C, FFH
8408 MVI D, FFH
840A DCR D > Delgy Subroutine with three
registers
840B JNZ LOOP3
840E DCR C
840F INZ LOOP2 /
8412 DCR B
8413 JNZ LOOP1
8416 MVI A, 01
8418 ouT 01 Output for LED
8419 HLT Stop.

From

the above discussion it is clear that with inc rease of T-states required for a delay

subroutine ,the delay time also increases.

8086 Microprocessor

It is a 16-bitup.

8086 has a 20 bit address bus can access up &20ry locations (1 MB).

It can support up to 64K I/O ports.

It provides 14, 16 -bit registers.

It has multiplexed address and data bus ADO- ADIbAL6 — A19.

It requires single phase clock with 33% duty cytol@rovide internal timing.

8086 is designed to operate in two modes, MinimachMaximum.

It can prefetches up to 6 instruction bytes frommmey and put them in instr queue in
order to speed up instruction execution.

It requires +5V power supply.

A 40 pin dual in line package

Architectural Diagram of 8086:

The 8086 has two parts, the Bus Interface Unit (Bdkbd the Execution Unit (EU).

The BIU fetches instructions, reads and writes,datd computes the 20-bit address.
The EU decodes and executes the instructions tisng)6-bit ALU.
The two units functions independently.

Minimum and Maximum Modes:

— The minimum mode is selected by applying logic th®MN /MX input pin. This

IS a single microprocessor configuration.

— The maximum mode is selected by applying logic thhéeoMN /MX input pin. This

Is a multi micro processors configuration.

+ 8086 employs parallel processing
« 8086 CPU has two parts which operate at

the same time
— Bus Interface Unit
— Execution Unit

« ADDER ctions

8086 CPU

Bus Interface 19
Unit(BIU)

1) L

1. Fetch

EXTRA SEGMENT (16)

v

DATA SEGMENT (16)
CODE SEGMENT (16)

BlU STACK SEGMENT (16)
INSTRUCTION POINTER (16) I

Internal Bus
U
A
B | BH@® —— BLE) - Arlthmet:(:;
i it

S I e lo;glcum(}
D [~ bH e DL(8) :

(8 H

— SP (16) —

il SI(16) = |

INSTRUCTION QUEUE (6 byte)

v

Instruction
Decoding circuit

v

Timing and control
Unit

(I BP (16) — Flag register{16) <:: @

Control Signals
- DI (16) —
Instruction —-{ GPR (AX,BX,CX,DX)]
Pointer(IP)
[Segment register (CS,DS,ES,SS) J —[Pointer Registers(SP,BP)]

—[Adder]
4{ Index register(SI,DI)]

|
l

Instruction Queue] ‘

ALU]

Flag

Bus Interface Unit (BIU):

The BIU performs all bus operations such as inssadetching, reading and writing
operands for memory and calculating the addredsta& aonemory operands.

The instruction bytes are transferred to the imsiton queue.
It provides a full 16 bit bidirectional data busda20 bit address bus.

The bus interface unit is responsible for perfoigrati external bus operations.

Specifically it hasthe following functions:

— Instruction fetch , Instruction queuing, Operanidhieand storage, Address
calculation relocation and Bus control.

— The BIU uses a mechanism known as an instructieaeto implement a
pipeline architecture.

— This queue permits prefetch of up to six bytesiefruiction code. Whenever the
gueue of the BIU is not full and has room for at least two more bytes and at
the same time EU is not requesting it to read alevaperands from memory,
the BIU is free to look ahead in the program byfgtiehing the next sequential
instruction.

— These prefetching instructions are held in its Ftfe@ue. With its 16 bit data
bus, the BIU fetches two instruction bytes in gg@memory cycle.

— After a byte is loaded at the input end of the guéuautomatically shifts up
through the FIFO to the empty location nearesbiltput.

— The EU accesses the queue from the output erehdsrone instruction byte
after the other from the output of the queue. é¢f gneue is full and the EU is
not requesting access to operand in memory.

— These intervals of no bus activity, which may odoetween bus cycles, are
known ad dle state.

— If the BIU is already in the process of fetchingiastruction when the EU
request it to read or write operands from memory@y the BIU first
completes the instruction fetch bus cycle befoitgabng the operand read /
write cycle.

— The BIU also contains a dedicat@dlder which is used to generate the 20bit
physical address that is output on the addressTihis address is formed by
adding an appended 16 bit segment address anthiadféet address.

— For example: The physical address of the nextunstn to be fetched is
formed by combining the current contents of theeceelgment CS register and
the current contents of the instruction pointerd§ister.

EXECUTION UNIT (EU)

— The Execution unit is responsible for decoding exelcuting all instructions.

— The EU extracts instructions from the top of thewgiin the BIU, decodes
them, generates operands if necessary, passesdltbenBIU and requests it to

perform the read or write bys cycles to memory /& bnd perform the
operation specified by the instruction on the opdsa

— During the execution of the instruction, the EUddbe status and control flags
and updates them based on the results of exedtgnigstruction.

— If the queue is empty, the EU waits for the nestrnction byte to be fetched
and shifted to top of the queue.

— When the EU executes a branch or jump instructidrgansfers control to a
location corresponding to another set of sequemisatuctions.

— Whenever this happens, the BIU automatically rethetgueue and then begins
to fetch instructions from this new location toiliehe queue

The BIU contains the following registers

IP - the Instruction Pointer

CS - the Code Segment Register
DS - the Data Segment Register
SS - the Stack Segment Register
ES - the Extra Segment Register

The BIU fetches instructions using the CS and IRtten CS:IP, to contract the 20-bit

address. Data is fetched using a segment re@isteally the DS) and an effective address
(EA) computed by the EU depending on the addressinge.

Internal Registers of 8086

AX |AH |AL |Accumulator
BX | BH BL Base Register
EU CX | CH CL Count Register
Registers DX |DH DL Data Register
SP Stack Pointer
BP Base Pointer
Sl Source Index Register
DI Destination Index Register
| FR | Flag Register
CS Code Segment Register
BIU DS Data Segment Regigter
Registers SS Stack Segment Register
ES Extra Segment Register

| IP | Instruction Pointer

* The 8086 has four groups of the user accessildenialt registers.
 These are

Instruction pointer(IP)

Four General purpose registers(AX,BX,CX,DX)
Four pointer (SP,BP,SI,DI)

Four segment registers (CS,DS,SS,ES)

Flag Register(FR)

» The 8086 has a total of fourteen 16-bit registectuiding a 16 bit register called the
statusregister (flag register), with 9 of bits implemented for status and contias.

* Most of the registers contain data/instruction eswithin 64 KB memory segment.

» There are four different 64 KB segments for indians, stack, data and extra data. To
specify where in 1 MB of processor addressable megth@se 4 segments are located
the processor uses four segment registers:

Segment Registers

1) Code segmen{CS) is a 16-bit register containing address oKB4segment with
processor instructions. The processor uses CS sedonall accesses to instructions
referenced by instruction pointer (IP) register.

2) Stack segmen(SS) is a 16-bit register containing address of ®4kKgment with
program stack. By default, the processor assunaathdata referenced by the stack
pointer (SP) and base pointer (BP) registers iatéatin the stack segment. SS register
can be changed directly using POP instruction.

3) Data and Extra segmen{DS and ES) is a 16-bit register containing addoé€z1KB
segment with program data. By default, the progesssumes that all data referenced
by general registers (AX, BX, CX, and DX) and indegister (Sl, DI) is located in
the data and Extra segment.

Data Registers

1) AX (Accumulator)

* Itis consists of two 8-bit registers AL and AH, ialh can be combined
together and used as a 16-bit register AX. AL is tfase contains the low-
order byte of the word, and AH contains the higteoibyte. Accumulator
can be used for I/O operations and string manijulat

2) BX (Base register)

» Itis consists of two 8-bit registers BL and BH,ialhcan be combined
together and used as a 16-bit register BX. BL is ¢hse contains the low-
order byte of the word, and BH contains the higtieobyte.

» BX register usually contains a offset for data segm

3) CX (Count register)

» Itis consists of two 8-bit registers CL and CH,jievhcan be combined
together and used as a 16-bit register CX. Wherbowed, CL register
contains the low-order byte of the word, and CHtams the high-order
byte.

» Count register can be used in Loop, shift/rotaséructions and as a counter
in string manipulation.

» 8086 has the LOOP instruction which is used folutenpurpose when it is
executed CX/CL is automatically decremented by 1.

EX
MOV CL, 05H
START NOP
LOOP START (here CL is automatically decremeriigd without
DCR instruction.
4) DX (Data register)

* Itis consists of two 8-bit registers DL and DH,iefhcan be combined
together and used as a 16-bit register DX. Wherbaoed, DL register
contains the low-order byte of the word, and DHtaors the high-order
byte.

» DX can be used as a port number in I/O operations.

* Ininteger 32-bit multiply and divide instructionet DX register contains
high-order word of the initial or resulting number.

Pointer register

1. Stack Pointer(SP) is a 16-bit register is used to hold the offskelress for stack
segment.

2. Base Pointer(BP) is a 16-bit register is used to hold the dftskdress for stack
segment.

I. BP register is usually used for based, based intlexeegister indirect

addressing.

ii. The difference between SP and BP is that the 8Bed internally to

store the address in case of interrupt and the CiAktrn.
3. Source Index(Sl) andDestination Index (Dl)
These twol6-bit register is used to hold the offset addfesS and ES in case of
string manipulation instrn.

I. Slis used for indexed, based indexed and regrsd@ect addressing, as

well as a source data addresses in string manipaligistructions.

ii. Dlis used for indexed, based indexed and registirect addressing,
as well as a destination data addresses in stramgpulation
instructions.

Instruction Pointer (IP)

It is a 16-bit register. It acts as a program ceuand is used to hold the offset address
for CS.

Flag Register

Confct\:l Flags

[A
U U |U U |OF DF|IF |TF |SF|ZF (U |[AC|U PF|U [CF
I

! i l
/m;ﬁ . l Sign _‘lm Auxiliary paiiw Carry

Over flow Direction
U - Unused

Trap

A flag is a 16-bit register containing 9 one bit flags.
I. Overflow Flag (OF)
» This flag is set if an overflow occurs. i.e. if thesult of a signed operation is large
enough to be accommodated in a destination register
ii. Direction Flag (DF) —
» This is used by string manipulation instructiorighis flag bit is
‘0’, the string is processed beginning from thedstvaddress to the
highest address. i.e. auto-incrementing mode.
» Otherwise, the string is processed from the highddtess towards
the lowest address, i.e. auto-decrementing mode
ii. Interrupt-enable Flag (IF) —

» If this flag is set, the maskable interrupts asogmnized by the CPU. Otherwise

they are ignored. Setting this bit enables maskalbderupts.
Iv. Single-step FlagTF) —

» If this flag is set, the processor enters the sistgp execution mode. In other
words, a trap interrupt is generated after exenutfoeach instruction. The
processor executes the current instruction anddhtol is transferred to the
Trap interrupt service routine.

v. Sign Flag(SF) —
» This flag is set when the result of any computaisonegative. For signed
computations, the sign flag equals the MSB of #seiit.
vi. Zero Flag (ZF) - set if the result is zero.
vii. Auxiliary carry Flag (AF) —
» setif there was a carry from or borrow to bits B+8he AL register.
viii. Parity Flag (PF) —
» set if parity (the number of "1" bits) in the loweer byte of the result is even.
ix. Carry Flag (CF) —

> This flag is set when there is a carry out of MBRase of addition or a borrow

in case of subtraction. For example. When two numbee added, a carry may

be generated out of the most significant bit positiThe carry flag, in this case,
will be setto 1'. In case, no carry is generatedjll be ‘0.

Segmented Memory

Reason for Segmented Memory:

v 8086 has a 20-bit address bus. So it can addmessianum of 1MB of memory and
each memory location is addressed by a 20 bit addre

v To hold a 20-bit address there must be a 20-bitesddegister available within
processor but 8086 only has 16-bit registers. Sbit&ddress can't be stored inside
the 16-bit register. To avoid this problem segmembemory is used in 8086.

Total 1IMB memory can be divided into some equad segments each of having capacity
64 KB.
So max no of segments is 16. (1mb/64 kb=16)
8086 can work with only four 64KB segments at aetimthin this 1MB range.
Each location in a particular segment can be egpreby two addresses.
) Segment Address (16 bit): It refers the starting address of a segment aisd it
fixed for whole of the segment.
i) Offset or Displacement Address (16 bit): It refers the individual location in
that segment and it is varied location wise.

By using these two addresses the 20 bit physiacliead can be calculated as below:
Physical address (20 bit) = [Segment Address ()6 k0], + Offset Address(16 bit)

According to this formula segment address is miiditpby 10 and is added to offset.
This is equivalent to shifting of segment registentent towards left 4 times so that
four zero are added to right side (MSB) of the seginaddress and added with the
offset address to get the physical address whi2b isit.

Offset Address (16 bit)

4

Segment Register (16 0000
hit)

Physical address (20 bit)

Figure 1 Fig: Physical address calculation

EX:-

Given Segment Address=357t Offset Address =6676H

So Physical address = [Segment Address y + Offset Address
=[3578 * 10 + 6676H
= 35780+667
= 3BDF6F

Types of Segments

There are four types ofiemory segmenidefined in 8086:
* Code segment(CS)
» Data segment (DS)
» Stack segment(SS)
» Extra segment(ES)

Code segment (CS)This segment is used to store code/program ingtng

Data and Extra segment (D&ES): This segment is used to stal&aused in the program.
Stack segment (SS)This segment is used to store the stack con

Types of SegmentReqisters:

To hold the upper 16its of the starting address for each of the sedg, there are four
segment registers:

— CS (Code Segment registe

— DS (Data Segment registe

— SS (Stack Segment registe

— ES (Extra Segment registel

Memory
1 00000H
cs [Eon '
3
4
os [
7
“g 8 1MB
% ° Address
= 1o Range
'g: - 11
%“’ ‘g 12
E gn 13
vy 14

15
ss [o1 [NSEERSRE rrFEFH

Advantage of memory Segmentatior

« Allows the memory capacity to be 1 Mbytes althotiglhactual addressto be
handled are of 164t size

« Allows the placing of code, data and stack portioithe same program in differe
parts (segments) of memory, for data and code girote

* Permits a program and/or its data to be put irfferd@int areas of memory ez time
the program is executeide., provision for relocation is done.

PIN Diagram

Maximum mode Minimum mode

(O
GND [1 40] vcc
ADy [2 39] ADys
ADi [3 38 |] AwSy
ADy [4 37 [Aw'Se
ADy] 5 36 |] AwSs
ADwp[| 6 35] AwSs
ADg (17 34 |] BHES;
ADs (] 8 33 [] MNMX
AD; [0 2] @D
ADg [10 8086 31 [] ROGT, {(HOLD)
ADg [1 30 [T] RQGT, {HLDA)
AD, [] 12 29 [] [OCK (WR)
AD; [13 2] 5 (Md)
AD, (114 2701 5 {DTIR)
AD, [15 %] S (DEN)
AD, [] 16 5[] as, (ALE)
NI [17 24 [as, (INTA)
INTR[| 18 23|} TEST
CLK [19 22 [} READY
GND [20 21 [_1 RESET

Flg.l.-s Pin Configuration of 8086
The following signal descriptions are common for bilh modes

AD15-ADO:

These are the time multiplexed memory I/O addredsdata lines. Address rema
on the lines during T1 state, while the data islalgke on the data bus during T2, T3, "
and T4.

A19/S6, A18/S5, A17/S4, A16/S3:
These are the time multiplexed address and stats During T1 these
are the most significant address lines for memg@mrations. During 1/0
operations, these lines are low. During memory@©rdperations, status
information is available on those lines for T2, T8 and T4.
+ Al6/S3,A17/S4-
A16,A17 are multiplexed with segment identifierrsads
S3 and S4 which combinedly indicate which segment
register is presently being used for memory aceessen

below fig..
S4 S3 Indication
0 0 Extra segment(E)
0 1 Stack segment(S
1 0 Code segment(CS)
1 1 Data segment (D.

* A18/s5: A18 is multiplexed with status S5 of the interrepible flag
bit which is updated at the beginning of each clogie.
e A19/s6: A18 is multiplexed with status S6.

BHE/ S7: (Bus High enable)

« The bus high enable is used to indicate the tranéfgata over the
higher order (D15-D8) data bus as shown in table.

* |t goes low for the data transfer over D15-D8 andsed to derive chip
selects of odd address memory bank or periphdB&g. is low during
T1 for read, write and interrupt acknowledge cyclelsenever a byte is
to be transferred on higher byte of data bus.

» The status information is available during T2, T8l 84. The signal is
active low.

BHE | AO Indication

0 | Whole Word

o

Lower byte from or to even address

0
0 1 | Upper byte from or to odd address
1
1

=

None

RD (Read):

» This signal on low indicates the peripheral thatphocessor is

performing s memory or I/O read operation. The aignactive low.
READY::

» This is the acknowledgement from the slow devicenemory that they
have completed the data transfer. The signal meaitahle by the
devices is synchronized by the 8284A clock genetatprovide ready
input to the 8086. This signal is active high.

e enter into wait states and remain idle : READY =0

» no effect on the operation of g : READY =1

INTR (Interrupt Request):
« This is a level triggered input and hardware intgtipin.
« If any interrupt request is pending, the processwers the interrupt
acknowledge cycle. This can be internally maskedebylting the
interrupt enable flag.

NMI : non-maskable interrupt
e This is a edge triggered input and hardware inggnoin which causes

Type 2 interrupt.

TEST:
« This input is examined by a ‘WAIT’ instruction.
« If the TEST pin goes low, execution will contingdse the processor
remains in an idle state.
CLK (Clock Input) :
* The clock input provides the basic timing for pres@& operation and
bus control activity.
Ve (power supply): +5.0V, £10%
RESET:
W :reset if RESET is high

GND(Ground) : Two pins labeled GND(O voltage

MN/MX:
» The logic level at this pin decides whether thecpssor is to operate in
either minimum or maximum mode.

« if MN/MX= 1: Minimum Mode else Maximum Mode

Pin functions for the minimum mode operation of
8086

1. M/T0
e This is a status line logically equivalentSbin maximum
mode. When it is low, it indicates the CPU is hgvam I/O
operation, and when it is high, it indicates tlnat CPU is
having a memory operation.

2. INTA (Interrupt Acknowledge):

* when this signal it goes low, the processor hased the
interrupt.

3. ALE (Address Latch Enable):

« This output signal indicates the availability o thalid
address on the address/data lines, and is conrtededh
enable input of latches.

4. DT/R (Data Transmit/Receive):

« This output is used to decide the direction of diata
through the transreceivers (bidirectional buffers).

* When the processor sends out data, this signatsamd
when the processor is receiving data, this signiaiw.

5. DEN Data Enable:

« This signal indicates the availability of valid dadver the
address/data lines. It is used to enable the waaisters
(bidirectional buffers) to separate the data frommultiplexed
address/data signal.

* Itis active from the middle of T2 until the middie T4.

6. HOLD, HLDA - Acknowledge:

* When the HOLD line goes high, it indicates to thegessor that
another master is requesting the bus access.

* The processor, after receiving the HOLD requestias the hold
acknowledge signal on HLDA pin, in the middle of thext
clock cycle after completing the current bus cycle.

7. WR (Write):
 When it is low the processor perform memory or faev.

Pin functions for the maximum mode operation of
8086

1. S2,S1, SO — Status Lines:

» These signals are connected to 8288.These aréaths Bnes
which reflect the type of operation according te below table,
being carried out by the processor.

Indication
Interrupt acknowledge

Read I/O port

Write 1/0 port

Halt

Code access

Read memory

Write memory

olo|o|lo|o|o|o|ol|f
v
l—‘l—‘OOl—‘l—‘OOH|

w
HOHOHOl—‘O°|

Passive State

2. LOCK:

« This output pin indicates that other system bustenasill be
prevented from gaining the system bus, while th€KGignal is
low.

« The LOCK signal is activated by the ‘LOCK’ prefimgtruction
and remains active until the completion of the nestruction.
When the CPU is executing a critical instructionahrequires
the system bus, the LOCK prefix instruction enstinas other
processors connected in the system will not gagrctntrol of
the bus.

3. QS1, QSO0 (queue status)

« These lines give information about the status efatde-prefetch
gueue. These are active during the CLK cycle aitale the queue
operation is performed.

QSs1 QSO0 Indication
0 0 No operation
0 1 First byte of opcode from the queue
1 0 Empty Queue
1 1 Subsequent byte from queue

4. RQ/GT1 ,RQ/GTO (Request/Grant)

» These pins are used by the other local bus masteaximum mode,
to force the processor to release the local btlsea¢nd of the

processor current bus cycle.

» Each of the pin is bidirectional with RQ/GTO havimigher priority
than RQ/GT1.

In maximum mode of operation signals likeR , ALE, DEN, DT/R etc
are not available directly from the processor.
These signals are available from the controller8328

. Reset Ctk GEM
RDY B284 ’

Resel Clk RDY

Resel Clk Ready

L—- MMMX Mo
RD
Vee T

Maximum

Mode
D —
MWR —_—
IORD :
oWt . Y

‘.Hu-'\]n

Minimum
Mode

L_ar . |=l

_. ,:1:
-.—E|
° &85

!
sz @l
ol ekt 8 K
\l R
e
Eﬁﬁ.&* b
o u
s i%9 [lg
> IR
S
20
T
43297
“ggz:z

ADDISTATUS ~ }{ BHE. Aig-Ais X S7-Ss }-—————

ADDIDATA -_~{A15—ﬁn }—(Dvs— Dy }, “““““

ADys - ADy
MRDC ‘\,l J,f
DTR _"_ J,|’
/ \
LK | T2 | Ta | Ta |

ALE / \
N S— T G—
ADDISTATUS ;){ }(BHE)(Sy =8 >_.E“’L
ADDIDATA »— As—Ac W DATAOUTDis— Do p———

ADs — ADy,
AMWE or
AI0WC 1'|,l 11"
MWTC or
IoWGC "\ I||'
DTR High

DEM 111. l||||r

Fig. 1.16(b) Memory Write Timing in Maximum Mode

CLK

| T | T2 | Ty | Tw | Ta l

AE | \
ADD/STATUS ¥ BHE, a.,-m,X S7-5 X

B
ADD/DATA X Ais—Ag s (sannind Boaily s

)
o\

Fig.1.14(a) Read Cydle Timing Diagram for Minimum Mode

T

| Ty | T2 | Ta |Tw | T4 | T |

CLK

WP A
.nmrsumXﬂE X 57-5; X

Agg—Asg

Add/Data le—ﬁq X Valid data Dys - Dy X

T\ S
o \ I
DTR —/ \—

Fig. 1.14(b) Write Cycle Timing Diagram for Minimum Mode Operation

ADDRESSING MODES OF 8086

Addressing mode indicates a way of locating dataparands. Depending
upon the data types used in the instruction andnér@ory addressing modes,
any instruction may belong to one or more addrgssiades, or some
instruction may not belong to any of the addressnogles. Thus the
addressing modes describe the types of operandfhancay they are
accessed for executing an instruction. Here, wepngisent the addressing
modes of the instructions depending upon theirgypecording to the flow

of instruction execution, the instructions may be&egorized as

() Sequential control flow instructions and
(i) Control transfer instructions.

Sequential control flow instructions are the instiens, which after
execution, transfer control to the next instructmpearing immediately after
it (in the sequence) in the program. For example arithmetic, logical, data
transfer and processor control instructions areaetipl control flow
instructions. The control transfer instructions tlea other hand, transfer
control to some predefined address somehow speaifithe instruction after
their execution. For example, INT, CALL, RET and\MP instructions fall
under this category.

The addressing modes for sequential control tramsééructions are
explained as follows:

1. Immediate: In this type of addressing, immediate data is &qfar
instruction, and appears in the form of succedsye or bytes.

Example: MOV AX, 0005H

In the above example, 0005H is the immediate ddta.immediate data may
be 8-bit or 16-bit in size.

2. Direct: In the direct addressing mode, a 16-bit memory esi(offset)
is directly specified in the instruction as a parit.

Example: MOV AX, [5000H]

Here, data resides in a memory location in the siaggnent, whose effective
address may be computed using 5000H as the otfde¢ss and content of
DS as segment address. The effective address,i$ia@H*DS+5000H.

3. Register In register addressing mode, the data is storedregister
and it is referred using the particular registdr tihe registers, except IP, may
be used in this mode.

Example: MOV BX, AX.

4. Register Indirect: Sometimes, the address of the memory location,
which contains data or operand, is determined imdinect way, using the
offset registers. This mode of addressing is knaw/negister indirect mode.
In this addressing mode, the offset address ofidataeither BX or Sl or DI
registers. The default segment is either DS orTB8.data is supposed to be
available at the address pointed to by the comteany of the above registers
in the default data segment.

Example: MOV AX, [BX]

Here, data is present in a memory location in D8seloffset address is in
BX. The effective address of the data is given@s*DS+ [BX].

5. Indexed:In this addressing mode, offset of the operantbi®ed in one
of the index registers. DS and ES are the defagingnts for index registers
Sl and DI respectively. This mode is a special cddbe above discussed
register indirect addressing mode.

Example: MOV AX, [S]]

Here, data is available at an offset address star€tlin DS. The effective
address, in this case, is computed as 10H*DS+ [SI].

6. Register Relative:ln this addressing mode, the data is availableat a
effective address formed by adding an 8-bit or t@Hsplacement with the
content of any one of the registers BX, BP, Sl Bhth the default (either DS
or ES) segment. The example given before explaissiiode.

Example: MOV Ax, 50H [BX]
Here, effective address is given as 10H*DB+6 [BX].

7. Based IndexedThe effective address of data is formed, in this
addressing mode, by adding content of a base eedgty one of BX or BP)

to the content of an index register (any one adr9DI). The default segment
register may be ES or DS.

Example: MOV AX, [BX] [SI]

Here, BX is the base register and Sl is the indgister. The effective address
iIs computed as 10H*DS+ [BX] + [SI].

8. Relative Based IndexedThe effective address is formed by adding an
8-bit or 16-bit displacement with the sum of comgenf any one of the bases
registers (BX or BP) and any one of the index tegss in a default segment.

Example: MOV AX, 50H [BX] [S]]

Here, 50H is an immediate displacement, BX is & lvagister and Sl is an
index register. The effective address of data mmated as 160H*DS+ [BX]
+ [SI] + 50H.

For the control transfer instructions, the addregssnodes depend upon
whether the destination location is within the s@®gment or a different one.
It also depends upon the method of passing théndéenh address to the
processor. Basically, there are two addressing sxtmte¢he control transfer
instructions, viz. inter-segment and intra-segnagliressing modes.

If the location to which the control is to be tréarsed lies in a different
segment other than the current one, the modeledaaker-segment mode. If
the destination location lies in the same segnibatmode is called intra-
segment.

Inter-segment

Direct
Inter-segment
Inter- segment

Modes for Indlrect
control

Transfer
instructions Intra-segment

Direct
Intra-segment
Intra—segment

Indlrect

ADDRESSING MODES FOR CONTROL TRANSFER INSTRUCTION

1. Intra-segment direct mode:In this mode, the address to which the
control is to be transferred lies in the same seqmmewhich the control
transfer instruction lies and appears directlyhm instruction as an
immediate displacement value. In this addressindanthe
displacement is computed relative to the contetlh@instruction
pointer IP.

The effective address to which the control willtnsferred is given by the
sum of 8 or 16 bit displacement and current cora&i®. In case of jump
instruction, if the signed displacement (d) is difi® (i.e. —128<d<+128), we
term it as short jump and if it is of

16 bits (i.e. —32768<+32768), it is termed as lpmgp.

2. Intra-segment Indirect Mode: In this mode, the displacement to which
the control is to be transferred, is in the sanggrsat in which the
control transfer instruction lies, but it is passedhe instruction
indirectly. Here, the branch address is found astntent of a register
or a memory location. This addressing mode maysiee in
unconditional branch instructions.

3. Inter-segment Direct Mode:In this mode, the address to which the
control is to be transferred is in a different segin This addressing
mode provides a means of branching from one cogimeset to another
code segment. Here, the CS and IP of the destmatidress are
specified directly in the instruction.

4. Inter-segment Indirect Mode: In this mode, the address to which the
control is to be transferred lies in a differergreent and it is passed to
the instruction indirectly, i.e. contents of a meynblock containing
four bytes, i.e. IP (LSB), IP (MSB), CS (LSB) an& QMSB)
sequentially. The starting address of the memarglbimay be referred
using any of the addressing modes, except immenhatk.

8086 Instruction Set and Assembler Directives

The 8086 microprocessor supports 6 types of Instns. They are
1. Data transfer instructions

2. Arithmetic instructions

3. Bit manipulation instructions

4. String instructions

5. Program Execution Transfer instructions (Brafdbop Instructions)
6. Processor control instructions

1. Data Transfer instructions: Thesenstructions are used to transfer the
data from source operand to destination operaridh@lstore, move, load,
exchange, input and output instructions belongni®droup.

General purpose byte or word transfer instructions

MOV : Copy byte or word from specified source to speditiestination
PUSH : Push the specified word to top of the stack

POP : Pop the word from top of the stack to the dpetiocation
PUSHA : Push all registers to the stack

POPA : Pop the words from stack to all registers

XCHG : Exchange the contents of the specified sourcelestination
operands one of which may be a register or menumation.

XLAT : Translate a byte in AL using a tablenremory
Simple input and output port transfer instructions

1. IN : Reads a byte or word from specified porthie
accumulator

2. OUT : Sends out a byte or word from accumulata to
specified port

Special address transfer instructions

1. LEA : Load effective address of operand into spedi
register

2. LDS : Load DS register and other specified regifbm
memory

3. LES : Load ES register and other specified tegisom
memory.

Flag transfer registers

1. LAHF : Load AH with the low byte of the flag resger
2. SAHF : Store AH register to low byte of flag retgr
3. PUSHF : Copy flag register to top of the stack

4. POPF : Copy word at top of the stack to flagsieg

2. Arithmetic instructions : These instructions are used to perform various
mathematical operations like addition, subtractrnltiplication and division
etc....

Addition instructions

1.ADD : Add specified byte to byte or word to word
2.ADC : Add with carry

3.INC : Increment specified byte or specified word by 1
4.AAA : ASCII adjust after addition
5.DAA : Decimal (BCD) adjust after addition

Subtraction instructions

1. SUB : Subtract byte from byte or word from word

2. SBB : Subtract with borrow

3. DEC : Decrement specified byte or word by 1

4. NEG : Negate or invert each bit of a specifiedelbyt word
and add 1(2’s complement)

5. CMP : Compare two specified byte or two spedifrds

6. AAS : ASCII adjust after subtraction

7. DAS : Decimal adjust after subtraction

Multiplication instructions

1. MUL : Multiply unsigned byte by byte or unsigned word o
word.

2. IMUL : Multiply signed bye by byte or signed word by word

3. AAM : ASCII adjust after multiplication

Division instructions

1. DIV : Divide unsigned word by byte or unsignedutdte
word by word

2. IDIV : Divide signed word by byte or signed doulerd by
word

3. AAD : ASCII adjust after division

4. CBW : Fill upper byte of word with copies of sigit of
lower byte

5. CWD : Fill upper word of double word with sigrt bf
lower word.

3. Bit Manipulation instructions : These instructions include logical , shift
and rotate instructions in which a bit of theadiatinvolved.

Logical instructions

1. NOT :Invert each bit of a byte or word.

2. AND : ANDing each bit in a byte or word with the
corresponding bit in another byte or word.

3. OR:ORing each bitin a byte or word with the
corresponding bit in another byte or word.

4. XOR : Exclusive OR each bit in a byte or word wtitle
corresponding bit in another byte or word.

5. TEST :AND operands to update flags, but don’'t gesan
operands.

Shift instructions

1. SHL/SAL : Shift bits of a word or byte left, prero(S) in

LSBs.

2. SHR : Shift bits of a word or byte right, @aro(S) in
MSBs.

3. SAR : Shift bits of a word or byte right, gopld MSB
into new MSB.

Rotate instructions

1. ROL : Rotate bits of byte or word left, MSB to LSRd to
Carry Flag [CF]

2. ROR : Rotate bits of byte or word right, LSB to M3Bd to
Carry Flag [CF]

3. RCR :Rotate bits of byte or word right, LSB TO QidaCF to
MSB

4. RCL :Rotate bits of byte or word left, MSB TO CRdaCF to
LSB

4. String instructions

A string is a series of bytes or a series of wandsequential memory
locations. A string often consists of ASCII chaesatodes.

1. REP : An instruction prefix. Repeat following insttion until
CX=0

2. REPE/REPZ : Repeat following instruction until QXer zero
flag ZF=1

3. REPNE/REPNZ : Repeat following instruction until €Xor
zero flag ZF=1

4. MOVS/MOVSB/MOVSW: Move byte or word from one sig
to another

5. COMS/COMPSB/COMPSW: Compare two string bytes or two

string words

. INS/INSB/INSW: Input string byte or word from port

. OUTS/OUTSB/OUTSW : Output string byte or word tatpo

SCAS/SCASB/SCASW: Scan a string. Compare a strytg b

with a byte in AL or a string word with a word inxA

9. LODS/LODSB/LODSW: Load string byte in to AL or stg
word into AX

o~ O

5.Program Execution Transfer instructions

These instructions are similar to branching or ingpnstructions.
These instructions include conditional & uncoratial jump or loop
instructions.

Unconditional transfer instructions

1. CALL : Call a procedure, save return address aokst
2. RET : Return from procedure to the main program
3. JMP : Goto specified address to get next ity

Conditional transfer instructions

JA/JJNBE : Jump if above / jump if not belowemjual
JAE/INB : Jump if above /jump if not below
JBE/IJNA : Jump if below or equal/ Jump if not edo
JC : jump if carry flag CF=1

JE/JZ : jump if equal/jump if zero flag ZF=1

JG/INLE : Jump if greater/ jump if not less tharqual
JGE/JINL :jump if greater than or equal/ jumpat less than
JL/IINGE : jump if less than/ jump if not gredteain or equal
. JLE/ING : jump if less than or equal/ jump if gog¢ater than
0.JNC : jump if no carry (CF=0)

e A L

11JNE/INZ : jump if not equal/ jump if not zero@&H

12JNO . jump if no overflow(OF=0)

13JINP/JPO :jump if not parity/ jump if parity éF=0)
14.JNS : jJump if not sign(SF=0)

15J0 : jump if overflow flag(OF=1)

16 JP/JPE > jump if parity/jump if parity evéH=1)
17JS : jump if sign(SF=1)

6. Iteration control instructions

These instructions are used to execute a seriestafictions for certain
number of times.

1. LOOP :Loop through a sequence of instructions @x=0

2. LOOPE/LOOPZ : Loop through a sequence of instomstiwhile
ZF=land CX=0

3. LOOPNE/LOOPNZ : Loop through a sequence of instons
while ZF=0 and CX =0

4. JCXZ : jump to specified address if CX=0

7. Interrupt instructions

1. INT : Interrupt program execution, call servicdeqedure
2. INTO : Interrupt program execution if OF=1
3. IRET : Return from interrupt service proceduranain program

8.High level language interface instructions

1. ENTER : enter procedure

2. LEAVE :Leave procedure

3. BOUND : Check if effective address within spedifi@ray
bounds

9.Processor control instructions
Flag set/clear instructions

STC :SetcarryflagCFto1

CLC :Clear carry flag CFto 0

CMC : Complement the state of the carry flag CF

STD : Set direction flag DF to 1 (decrementngipointers)
CLD : Clear direction flag DF to O

STl : Setinterrupt enable flag to 1(enabl@R\Nnput)

CLI : Clear interrupt enable Flag to O (disalN@R input)

NoohkwhE

10. External Hardware synchronization instructions

HLT : Halt (do nothing) until interrupt or rdse

WAIT : Wait (Do nothing) until signal on the tgsh is low
ESC : Escape to external coprocessor such&&@B089
LOCK : An instruction prefix. Prevents anotheopessor from
taking the bus while the adjacent instruction exesu

o E

11. No operation instruction

1. NOP : No action except fetch and decode

Instruction Description

AAA Instruction - ASCII Adjust after Addition

AAD Instruction - ASCII adjust before Division

AAM Instruction - ASCII adjust after Multiplication

AAS Instruction - ASCII Adjust for Subtraction

ADC Instruction - Add with carry.

ADD Instruction - ADD destination, source

AND Instruction - AND corresponding bits of two operand

VVVVVYVYY

Example
» AAA Instruction:

AAA converts the result of the addition of two hlinpacked BCD digits to a
valid 2-digit BCD number and takes the AL regisisrits implicit operand.

Two operands of the addition must have its lowbitgl contain a number in
the range from 0-9.The AAA instruction then adjiktso that it contains a
correct BCD digit. If the addition produce carryHAl), the AH register is
incremented and the carry CF and auxiliary carryflags are set to 1. If the
addition did not produce a decimal carry, CF anda#é-cleared to O and AH
is not altered. In both cases the higher 4 bi#sloére cleared to 0.

AAA will adjust the result of the two ASCII charaes that were in the range
from 30h (“0”) to 39h(“9”).This is because the lowkbits of those character
fall in the range of 0-9.The result of additiomist a ASCII character but it is
a BCD digit.

Example:

MOV AH, 0 ; Clear AH for MSD

MOV AL, 6 ; BCD 6 in AL

ADD AL, 5 ; Add BCD 5 to digit in AL
AAA ; AH=1, AL=1 representing BCD 11.

» AAD Instruction: ADD converts unpacked BCD digits in the AH and
AL register into a single binary number in the Aegister in
preparation for a division operation.

Before executing AAD, place the Most significantB@igit in the AH
register and Last significant in the AL registerh®d AAD is executed,
the two BCD digits are combined into a single byjnanmber by setting
AL=(AH*10)+AL and clearing AH to 0.

Example:

MOV AX, 0205h ; The unpacked BCD number 25
AAD ; After AAD, AH=0 and

; AL=19h (25)

After the division AL will then contain the unpack8CD quotient and AH
will contain the unpacked BCD remainder.

Example:

; AX=0607 unpacked BCD for 67 decimal

; CH=09H

AAD ; Adjust to binary before division

; AX=0043 = 43H =67 decimal

DIV CH ; Divide AX by unpacked BCD in CH
; AL = quotient = 07 unpacked BCD

; AH = remainder = 04 unpacked BCD

» AAM Instruction - AAM converts the result of the muligation of two
valid unpacked BCD digits into a valid 2-digit urggad BCD number
and takes AX as an implicit operand.

To give a valid result the digits that have beeiitiplied must be in the range
of 0 — 9 and the result should have been plac#uiAX register. Because
both operands of multiply are required to be 9ss) the result must be less
than 81 and thus is completely contained in AL.

AAM unpacks the result by dividing AX by 10, plagithe quotient (MSD) in
AH and the remainder (LSD) in AL.

Example:

MOV AL, 5

MOV BL, 7

MUL BL ; Multiply AL by BL, result in AX
AAM ; After AAM, AX =0305h (BCD 35)

» AAS Instruction: AAS converts the result of the sulticat of two
valid unpacked BCD digits to a single valid BCD rhgnand takes the
AL register as an implicit operand.

The two operands of the subtraction must havewst 4 bit contain number
in the range from O to 9.The AAS instruction theljuat AL so that it contain
a correct BCD digit.

MOV AX, 0901H ; BCD 91

SUB AL, 9 ; Minus 9

AAS : Give AX =0802 h (BCD 82)
(a)

; AL =0011 1001 =ASCII 9

; BL=0011 0101 =ASCII 5

SUB AL, BL ; (9 - 5) Result:

; AL = 00000100 =BCD 04,CF =0

AAS : Result:

; AL=00000100 =BCD 04
; CF = 0 NO Borrow required
(b)
; AL = 0011 0101 =ASCII 5
; BL = 0011 1001 = ASCII 9
SUB AL, BL ; (5-9) Result:
;AL=11111100=-4
;in 2’s complement CF =1
AAS ; Results:
; AL = 0000 0100 =BCD 04
; CF = 1 borrow needed.

» ADD Instruction:

These instructions add a number from source tawbeufrom some
destination and put the result in the specifiedidason. The add with carry
instruction ADC, also add the status of the caayg fnto the result.

The source and destination must be of same typansribey must be a byte
location or a word location. If you want to addyaebto a word, you must
copy the byte to a word location and fill the uppwgte of the word with
zeroes before adding.

EXAMPLE:

ADD AL, 74H ; Add immediate number 74H to content & AL
ADC CL, BL ; Add contents of BL plus

; carry status to contents of CL.

; Results in CL

ADD DX, BX ; Add contents of BX to contents ; of DX

ADD DX, [SI] ; Add word from memory at ; offset [SI] in DS to contents
of DX

; Addition of Un Signed numbers

ADD CL, BL ; CL =01110011 =115 decimal

; + BL =01001111 = 79 decimal

; Resultin CL = 11000010 = 194 decimal

; Addition of Signed numbers

ADD CL, BL ; CL =01110011 =+ 115 decimal

; + BL =01001111 = +79 decimal

; Resultin CL = 11000010 = - 62 decimal

; Incorrect because result is too large to fit in ‘bits.
» AND Instruction:

This Performs a bitwise Logical AND of two operandlke result of the
operation is stored in the opl and used to sdtabs.

AND opl, op2

To perform a bitwise AND of the two operands, ebitiof the result is set to
1 if and only if the corresponding bit in both bétoperands is 1, otherwise
the bit in the result | cleared to 0.

AND BH, CL ; AND byte in CL with byte in BH ; result in BH

AND BX, O0FFh ; AND word in BX with immediate ; 00F-H. Mask
upper byte, leave ; lower unchanged

AND CX, [SI] ; AND word at offset [SI] in data ; segment with word in
CX; register. Result in CX register.

; BX=10110011 01011110

AND BX, 00FFh ; Mask out upper 8 bits of BX
; Result BX = 00000000 01011110

; CF =0, OF =0, PF=0, SF=0,

ZF=0

» CALL Instruction
Direct within-segment (near or intrasegment)
Indirect within-segment (near or intrasegment)
*Direct to another segment (far or intersegment)
Indirect to another segment (far or intersegment)

CBW Instruction - Convert signed Byte to signed word

CLC Instruction - Clear the carry flag

CLD Instruction - Clear direction flag

CLI Instruction - Clear interrupt flag

CMC Instruction - Complement the carry flag

CMP Instruction - Compare byte or word - CMP destinatisource.
CMPS/CMPSB/

VVVVYVYYY

CMPSW Instruction - Compare string bytes or string words

» CWD Instruction - Convert Signed Word to - Signed Dewvbrd
Example

» CALL Instruction:

This Instruction is used to transfer execution subprogram or procedure.
There are two basic types of CALL’s: Near and Far.

A Near CALL is a call to a procedure which is i tbtame code segment as
the CALL instruction.

When 8086 executes the near CALL instruction ireeents the stack
pointer by two and copies the offset of the nextrunction after the CALL on
the stack. This offset saved on the stack is redeas the return address,
because this is the address that execution wilkmstto after the procedure
executes. A near CALL instruction will also loac timstruction pointer with
the offset of the first instruction in the proceelur

A RET instruction at the end of the procedure vatlirn execution to the
instruction after the CALL by coping the offset sdwon the stack back to IP.

A Far CALL is a call to a procedure which is initi@rent from that which
contains the CALL instruction. When 8086 execukesFar CALL instruction
it decrements the stack pointer by two again amiesahe content of CS

register to the stack. It then decrements the giacker by two again and
copies the offset contents offset of the instructaéter the CALL to the stack.

Finally it loads CS with segment base of the sedminch contains the
procedure and IP with the offset of the first instion of the procedure in
segment. A RET instruction at end of procedure reillirn to the next
instruction after the CALL by restoring the saved &hd IP from the stack.

; Direct within-segment (near or intrasegment)

CALL MULTO ; MULTO is the name of the procedure. Th e assembler
determines displacement of MULTO from the instructon after the CALL
and codes this displacement in as part of the insiction.

; Indirect within-segment (near or intrasegment)

CALL BX ; BX contains the offset of the first instruction of the
procedure. Replaces contents of word of IP with cdants o register BX.

CALL WORD PTR [BX] ; Offset of first instruction of procedure is in
two memory addresses in DS. Replaces contents ofwith contents of
word memory location in DS pointed to by BX.

; Direct to another segment- far or intersegment.
CALL SMART ; SMART is the name of the Procedure
SMART PROC FAR; Procedure must be declare as an far

» CBW Instruction - CBW converts the signed value in Atheregister
into an equivalent 16 bit signed value in the A¥ister by duplicating
the sign bit to the left.

This instruction copies the sign of a byte in AlLalbthe bits in AH. AH is
then said to be the sign extension of AL.

Example:

; AX = 00000000 10011011 = - 155 decimal

CBW ; Convert signed byte in AL to signed word in A.
; Resultin AX=11111111 10011011

: = - 155 decimal

» CLC Instruction:

CLC clear the carry flag (CF) to O This instructioas no affect on the
processor, registers, or other flags. It is ofteeduto clear the CF before
returning from a procedure to indicate a successfutination. It is also use
to clear the CF during rotate operation involving CF such as ADC, RCL,
RCR.

Example:
CLC ; Clear carry flag.
» CLD Instruction:

This instruction reset the designation flag to z&i@s instruction has no
effect on the registers or other flags. When theatiion flag is cleared / reset
Sl and DI will

automatically be incremented when one of the sinsguction such as
MOVS, CMPS, SCAS, MOVSB and STOSB executes.

Example:
CLD ; Clear direction flag so that string pointers auto increment
» CLI Instruction:

This instruction resets the interrupt flag to zeMo.other flags are affected. If
the interrupt flag is reset, the 8086 will not resg to an interrupt signal on its
INTR input. This CLI instruction has no effect drethonmaskable interrupt
input, NMI

» CMC Instruction:

If the carry flag CF is a zero before this instioiet it will be set to a one after
the instruction. If the carry flag is one beforestimstruction, it will be reset to
a zero after the instruction executes. CMC hasfieateon other flags.

Example:
CMC; Invert the carry flag.
» CWD Instruction:

CWD converts the 16 bit signed value in the AX s#gi into an equivalent 32
bit signed value in DX: AX register pair by duplice the sign bit to the left.

The CWD instruction sets all the bits in the DXistgr to the same sign bit of
the AX register. The effect is to create a 32slghed result that has same
integer value as the original 16 bit operand.

Example:

Assume AX contains C435h. If the CWD instruction ixecuted, DX will
contain FFFFh since bit 15 (MSB) of AX was 1. Botkhe original value of
AX (C435h) and resulting value of DX: AX (FFFFC4350 represents the
same signed number.

Example:

; DX = 00000000 00000000

; AX=11110000 11000111 = - 3897 decimal

CWD ; Convert signed word in AX to signed double
; word in DX:AX

; Result DX =11111111 11111111

; AX=11110000 11000111 =-3897 decimal.

» DAA Instruction - Decimal Adjust Accumulator

» DAS Instruction - Decimal Adjust after Subtraction

» DEC Instruction - Decrement destination register or mgnbEC
destination.

» DIV Instruction - Unsigned divide-Div source

» ESCInstruction

When a double word is divided by a word, the magtiicant word of the
double word must be in DX and the least significaatd of the double word
must be in AX. After the division AX will contairheé 16 —bit result (quotient)
and DX will contain a 16 bit remainder. Again, Iif attempt is made to divide
by zero or quotient is too large to fit in AX (gteathan FFFFH) the 8086 will
do a type of O interrupt.

Example:
DIV CX ; (Quotient) AX= (DX: AX)/CX

: (Reminder) DX= (DX: AX)%CX

For DIV the dividend must always be in AX or DX aA¥, but the source of
the divisor can be a register or a memory locaspecified by one of the 24
addressing modes.

If you want to divide a byte by a byte, you musstfput the dividend byte in
AL and fill AH with all 0’s. The SUB AH, AH instruion is a quick way to
do.

If you want to divide a word by a word, put theidend word in AX and fill
DX with all 0’s. The SUB DX, DX instruction doesishquickly.

Example: ; AX = 37D7H = 14, 295 decimal
; BH =97H = 151 decimal
DIV BH ; AX/BH
; AX = Quotient = 5EH = 94 decimal
; AH = Remainder = 65H = 101 decimal

» ESCInstruction - Escape instruction is used to passuction to a

coprocessor such as the 8087 math coprocessor sinechs the

address and data bus with an 8086. Instructiothebcoprocessor is

represented by a 6 bit code embedded in the eststpection. As the

8086 fetches instruction byte, the coprocessor@dsches these bytes

from data bus and puts them in its queue. The cegswor treats all of

the 8086 instruction as an NOP. When 8086 fetchdsSL instruction,

the coprocessor decodes the instruction and cawuiethe action

specified by the 6 bit code. In most of the casg68@eats ESC

instruction as an NOP.

HLT Instruction - HALT processing

IDIV Instruction - Divide by signed byte or word IDIVigce

IMUL Instruction - Multiply signed number-IMUL source

IN Instruction - Copy data from a port IN accumulafmott

INC Instruction - Increment - INC destination

HALT Instruction - The HLT instruction will cause the8#0to stop

fetching and executing instructions. The 8086 waiiter a halt state. The

only way to get the processor out of the halt sha¢ewith an interrupt

signal on the INTR pin or an interrupt signal on Ndh or a reset

signal on the RESET input.

> IDIV Instruction - This instruction is used to divideigned word by a
signed byte or to divide a signed double word Bygaed word.

VVVVVY

Example:

IDIV BL ; Signed word in AX is divided by signed byte in BL
» IMUL Instruction - This instruction performs a signeditiplication.

IMUL op ; In this form the accumulator is the multiplicagad op is the
multiplier. op may be a register or a memory opéran

IMUL opl, op2 ; In this form opl is always be a register operand op2
may be a register or a memory operand.

Example:

IMUL BH ; Signed byte in AL times multiplied by ; signed byte in BH
and result in AX.

Example:

; 69 * 14

; AL = 01000101 = 69 decimal

; BL = 00001110 = 14 decimal

IMUL BL ; AX = 03C6H = + 966 decimal
; MSB = 0 because positive result

;- 28 *59

; AL =11100100 = - 28 decimal

; BL = 00001110 = 14 decimal

IMUL BL ; AX = F98Ch = - 1652 decimal
; MSB = 1 because negative result

» IN Instruction: This IN instruction will copy data froa port to the AL
or AX register.

For the Fixed port IN instruction type the 8 —fitrt address of a port is
specified directly in the instruction.

Example:

IN AL, OC8H ; Input a byte from port 0C8H to AL

IN AX, 34H ; Input a word from port 34H to AX
A _TO D EQU 4AH
IN AX, A_ TO_D; Input a word from port 4AH to AX

For a variable port IN instruction, the port addresloaded in DX register
before IN instruction. DX is 16 bit. Port addreasge from 0000H — FFFFH.

Example:

MOV DX, OFF78H ; Initialize DX point to port

IN AL, DX ; Input a byte from a 8 bit port ; OFF78H to AL

IN AX, DX ; Input a word from 16 bit port to ; OFF7 8H to AX.
» INC Instruction:

INC instruction adds one to the operand and setfldly according to the
result. INC instruction is treated as an unsigniedty number.

Example:

; AX = 7TFFFh

INC AX ; After this instruction AX = 8000h
INC BL ; Add 1 to the contents of BL register
INC CL ; Add 1 to the contents of CX register.

INT Instruction - Interrupt program

INTO Instruction - Interrupt on overflow.

IRET Instruction - Interrupt return

JA/INBE Instruction - Jump if above/Jump if not below nqual.
JAE/IJNB/JINC Instructions- Jump if above or equal/ Jump if not
below/

Jump if no carry.

JA / INBE - This instruction performs the Jump if above (@rnp if
not below or equal operations according to the tmmg if CF and ZF
=0.

YVVVY

Y

Example:

(1) CMP AX, 4371H ; Compare by subtracting 4371H from AX

JA RUN_PRESS ; Jump to label RUN_PRESS if ; AX aba/4371H
(2) CMP AX, 4371H ; Compare (AX —4371H)

JNBE RUN_PRESS ; Jump to label RUN_PRESS if ; AX nidbelow or
equal to 4371H

» JAE / IJNB / JNC - This instructions performs the Jump if above or
equal, Jump if not below, Jump if no carry operatiaccording to the
condition, if CF = 0.

Examples

1.CMP AX, 4371H ; Compare (AX — 4371H)

JAE RUN ; Jump to the label RUN if AX is ; above orequal to 4371H.
2. CMP AX, 4371H ; Compare (AX — 4371H)

JNB RUN_1 ; Jump to the label RUN_1 if AX; is notbelow than 4371H

3. ADD AL, BL ; Add AL, BL. If result is with in JN C OK ; acceptable
range, continue

» JB/JC/INAE Instruction - Jump if below/Jump if carry/ Jummat
above nor equal

JBE/JNA Instructions- Jump if below or equal / Jump if abbve
JCXZ Instruction - Jump if the CX register is zero

JE/JZ Instruction - Jump if equal/Jump if zero

JG/INLE Instruction- Jump if greater/Jump if not less tinan equal
JB/JC/INAE Instruction - This instruction performs the Jumpefow
(or) Jump if carry (or) Jump if not below/ equakogtions according to
the condition, if CF =1

VVVVY

Example:

1. CMP AX, 4371H ; Compare (AX — 4371H)

JB RUN_P ; Jump to label RUN_P if AX is ; below 43TH
2. ADD BX, CX ; Add two words and Jump to

JC ERROR ; label ERROR if CF =1

» JBE/JINA Instruction - This instruction performs the Jumpeéiow or

equal (or) Jump if not above operations accordmnitpé condition, if
CFand ZF =1

Example:

CMP AX, 4371H ; Compare (AX —4371H)

JBA RUN ; Jump to label RUN if AX'is ; below or equal to 4371H

CMP AX, 4371H ; Compare (AX —4371H)

JNA RUN_R ; Jump to label RUN_R if AX is ; not aboe than 4371H
» JCXZ Instruction:

This instruction performs the Jump if CX registeeero. If CX does not
contain all zeros, execution will simply proceedhe next instruction.

Example:
JCXZ SKIP_LOOP ; If CX =0, skip the process
NXT: SUB [BX], 07H ; Subtract 7 from data value
INC BX ; BX point to next value
LOOP NXT ; Loop until CX =0
SKIP_LOOP ; Next instruction

» JE/JZ Instruction:

This instruction performs the Jump if equal (onnguf zero operations
according to the condition if ZF =1

Example:

NXT: CMP BX, DX ; Compare (BX — DX)
JE DONE ; Jump to DONE if BX = DX,
SUB BX, AX; Else subtract Ax

INC CX ; Increment counter

JUMP NXT ; Check again

DONE: MOV AX, CX; Copy count to AX

Example:

IN AL, 8FH ; read data from port 8FH

SUB AL, 30H ; Subtract minimum value

JZ STATR ; Jump to label if result of ; subtraction was 0
» JG/INLE Instruction:

This instruction performs the Jump if greater (nnp if not less than or
equal operations according to the condition if ZFamd SF = OF

Example:

CMP BL, 39H ; Compare by subtracting ; 39H from BL

JG NEXT1 ; Jump to label if BL is ; more positive han 39H
CMP BL, 39H ; Compare by subtracting ; 39H from BL

JNLE NEXT2 ; Jump to label if BL is not ; less thanor equal 39H

» JGE/JINL Instruction - Jump if greater than or equal/ Jufmpt less
than

JL/INGE Instruction - Jump if less than/Jump if not gredban or
equal

JLE/ING Instruction - Jump if less than or equal/ Jumpoif greater
JMP Instruction - Unconditional jump to - specified deation
JGE/JNL Instruction - This instruction performs the Jumpgiéater
than or equal / Jump if not less than operatiomlicg to the
condition if SF = OF

YVVYVY VY

Example:
CMP BL, 39H ; Compare by the ; subtracting 39H fromBL

JGE NEXT11 ; Jump to label if BL is ; more positivethan 39H ; or equal
to 39H

CMP BL, 39H ; Compare by subtracting ; 39H from BL

JNL NEXT22 ; Jump to label if BL is not ; less than39H

» JL/INGE Instruction - This instruction performs the Jumpess than /
Jump if not greater than or equal operation acogrth the condition, if
SF# OF

Example:

CMP BL, 39H ; Compare by subtracting 39H ; from BL

JL AGAIN ; Jump to the label if BL is more ; negative than 39H
CMP BL, 39H ; Compare by subtracting 39H ; from BL

JNGE AGAINL1 ; Jump to the label if BL is not ; more positive than 39H
or ; not equal to 39H

» JLE/ING Instruction - This instruction performs the Jumgpess than
or equal / Jump if not greater operation accordgiintpe condition, if
ZF=1 and SE OF

Example:
CMP BL, 39h ; Compare by subtracting 39h ; from BL

JLE NXT1 ; Jump to the label if BL is more ; negatve than 39h or equal
to 39h

CMP BL, 39h ; Compare by subtracting 39h ; from BL
JNG AGAINZ2 ; Jump to the label if BL is not ; more positive than 39h

JNA/JBE Instruction - Jump if not above/Jump if below oual
JNAE/JB Instruction - Jump if not above or equal/ Jumpeifdv
JNB/INC/JAE Instruction - Jump if not below/Jump if no carryfju

if above or equal

JNE/JINZ Instruction - Jump if not equal/Jump if not zero

JNE/JINZ Instruction - This instruction performs the Jumpadat equal /
Jump if not zero operation according to the coaditif ZF=0

VV VVY

Example:
NXT: IN AL, OF8H ; Read data value from port
CMP AL, 72 ; Compare (AL -72)

JNE NXT ; Jump to NXT if AL # 72

IN AL, OF9H ; Read next port when AL = 72
MOV BX, 2734H ; Load BX as counter

NXT_1: ADD AX, 0002H ; Add count factor to AX
DEC BX ; Decrement BX

JNZ NXT_1 ; Repeat until BX =0

JNG/JLE Instruction - Jump if not greater/ Jump if lesstloa equal
JNGE/JL Instruction - Jump if not greater than nor equahguf less
than

JNL/JGE Instruction - Jump if not less than/ Jump if gredtan or
equal

JNLE/JG Instruction - Jump if not less than nor equal tovip if
greater than

JNO Instruction — Jump if no overflow

JNP/JPO Instruction — Jump if no parity/ Jump if parity odd

JNS Instruction - Jump if not signed (Jump if positive)

JNZ/INE Instruction - Jump if not zero / jump if not equal

JO Instruction - Jump if overflow

JNO Instruction — This instruction performs the Jumpafoverflow
operation according to the condition, if OF=0

VVVVVY VvV ¥V VYV

Example:

ADD AL, BL ; Add signed bytes in AL and BL
JNO DONE ; Process done if no overflow -
MOV AL, OOH ; Else load error code in AL
DONE: OUT 24H, AL ; Send result to display

» JNP/JPO Instruction — This instruction performs the Jumpot parity
/ Jump if parity odd operation according to thediban, if PF=0

Example:
IN AL, OF8H ; Read ASCII char from UART

OR AL, AL ; Set flags

JPO ERROR1 ; If even parity executed, if not ; sen@rror message

» JNS Instruction - This instruction performs the Jumpat signed
(Jump if positive) operation according to the caindi if SF=0

Example:
DEC AL ; Decrement counter

JNS REDO ; Jump to label REDO if counter has not decremented to
FFH

» JO Instruction - This instruction performs Jump if ol@w operation
according to the condition OF =0

Example:

ADD AL, BL ; Add signed bits in AL and BL

JO ERROR ; Jump to label if overflow occur ; in addtion

MOV SUM, AL ; else put the result in memory ; locaton named SUM

» JPE/JP Instruction - Jump if parity even/ Jump if parity

» JPO/JINP Instruction - Jump if parity odd/ Jump if no parity

» JSInstruction - Jump if signed (Jump if negative)

» JZ/JE Instruction - Jump if zero/Jump if equal

» JPE/JP Instruction - This instruction performs the Jumpairity even /
Jump if parity operation according to the condifidbiPF=1

Example:

IN AL, OF8H ; Read ASCII char from UART

OR AL, AL ; Set flags

JPE ERROR?2 ; odd parity is expected, if not ; senérror message

» JSInstruction- This instruction performs the Jump if sign openatio
according to the condition, if SF=1

Example:

ADD BL, DH ; Add signed bytes DH to BL

JS JJS_S1; Jump to label if result is ; negative

LAHF Instruction - Copy low byte of flag register to AH

LDS Instruction - Load register and Ds with words froramory —
LDS register, memory address of first word

LEA Instruction - Load effective address-LEA registarce

LES Instruction Load register and ES with words fror@mory —LES
register, memory address of first word.

LAHF Instruction: LAHF instruction copies the value d¢f,ZF, AF,
PF, CF, into bits of 7, 6, 4, 2, O respectivelyAdf register. This LAHF
instruction was provided to make conversion of adsg language
programs written for 8080 and 8085 to 8086 easier.

» LDS Instruction: This instruction loads a far pointesrh the memory
address specified by op2 into the DS segment exqasid the op1l to the
register.

YV VYV VY

LDS opl, op2
Example:

LDS BX, [4326] ; copy the contents of the memory atisplacement 4326H
in DS to BL, contents of the 4327H to BH. Copy coetts of 4328H and
4329H in DS to DS register.

» LEA Instruction - This instruction indicates the offséthe variable or
memory location named as the source and put tfestah the indicated
16 — bit register.

Example:

LEA BX, PRICE ; Load BX with offset of PRICE ;inD S
LEA BP, SS:STAK ; Load BP with offset of STACK ; in SS
LEA CX, [BX][DI] ; Load CX with EA=BX + DI

LOCK Instruction - Assert bus lock signal

LODS/LODSB/ LODSW Instruction - Load string byte into AL or
Load string word into AX.

LOOP Instruction - Loop to specified label until CX =0

LOOPE / LOOPZ Instruction - loop while CX¥ 0 and ZF =1
LODS/LODSB/LODSW Instruction - This instruction copies a byte
from a string location pointed to by Sl to AL oward from a string
location pointed to by SI to AX. If DF is clearem@, S| will
automatically incremented to point to the next edatof string.

VVV VY

Example:

CLD ; Clear direction flag so Sl is auto incremente

MOV SI, OFFSET SOURCE_STRING ; point S| at start ofthe string
LODS SOUCE_STRING ; Copy byte or word from ; string to AL or AX

» LOORP Instruction - This instruction is used to repeatdaes of
instruction some number of times

Example:

MOV BX, OFFSET PRICE

; Point BX at first element in array

MQV CX, 40 ; Load CX with number of ; elements in aray
NEXT: MOV AL, [BX] ; Get elements from array

ADD AL, 07H ; Ad correction factor

DAA ; decimal adjust result

MOV [BX], AL ; Put result back in array

LOOP NEXT ; Repeat until all elements ; adjusted.

» LOOPE / LOOPZ Instruction - This instruction is used to repeat a
group of instruction some number of times until EX and ZF =0

Example:

MOV BX, OFFSET ARRAY

; point BX at start of the array

DEC BX

MOV CX, 100 ; put number of array elements in ; CX
NEXT:INC BX ; point to next element in array

CMP [BX], OFFH ; Compare array elements FFH

LOOP NEXT

» LOOPNE/LOOPNZ Instruction - This instruction is used to repeat a
group of instruction some number of times until EX and ZF =1

Example:

MOV BX, OFFSET ARRAY1

; point BX at start of the array

DEC BX

MOV CX, 100 ; put number of array elements in ; CX
NEXT:INC BX ; point to next elements in array

CMP [BX], OFFH ; Compare array elements ODH

LOOPNE NEXT

» MOV Instruction - MOV destination, source
» MOVS/MOVSB/ MOVSW Instruction - Move string byte or string
word-MOVS destination, source
» MUL Instruction - Multiply unsigned bytes or words-MWburce
» NEG Instruction - From 2’s complement — NEG destination
» NOP Instruction - Performs no operation.
» MOV Instruction - The MOV instruction copies a wordeobyte of
data from a specified source to a specified destimna
MOV opl, op2
Example:

MOV CX, 037AH ; MOV 037AH into the CX.
MQV AX, BX ; Copy the contents of register BX ; toAX

MOV DL, [BX] ; Copy byte from memory at BX ; to DL, BX contains the
offset of byte in DS.

» MUL Instruction:

This instruction multiplies an unsigned multiplicet of the accumulator by
the operand specified by op. The size of op may tegister or memory
operand.

MUL op

Example: ; AL = 21h (33 decimal)
; BL = A1h(161 decimal)

MUL BL ; AX =14C1h (5313 decimal) since AH0, ; CF and OF will set
to 1.

MUL BH ; AL times BH, result in AX
MUL CX ; AX times CX, result high word in DX, ; low word in AX.

» NEG Instruction - NEG performs the two’s complementtsadtion of
the operand from zero and sets the flags accotditite result; AX =
2CBh

NEG AX ; after executing NEG result AX =FD35h.
Example:
NEG AL ; Replace number in AL with its 2’s complement
NEG BX ; Replace word in BX with its 2's complement
NEG BYTE PTR[BX]; Replace byte at offset BX in
; DS with its 2’s complement

» NOP Instruction:

This instruction simply uses up the three clocdey@and increments the
instruction pointer to point to the next instructicNOP does not change the
status of any flag. The NOP instruction is usethtoease the delay of a delay
loop.

NOT Instruction - Invert each bit of operand —NOT deastiion.
OR Instruction - Logically OR corresponding of two ogeds- OR
destination, source.

OUT Instruction - Output a byte or word to a port — Oprt,
accumulator AL or AX.

POP Instruction - POP destination

NOT Instruction - NOT perform the bitwise complemenbpfand
stores the result back into op.

YV V VY

NOT op

Example:

NOT BX ; Complement contents of BX register.
; DX =F038h

NOT DX ; after the instruction DX = OFC7h

» OR Instruction - OR instruction perform the bit wisgyical OR of two
operands.Each bit of the result is cleared toahd only if both
corresponding bits in each operand are 0, othex this bit in the result
Is setto 1.

OR opl, op2

Examples:

OR AH, CL ; CL ORed with AH, result in AH.

; CX=00111110 10100101

OR CX, FFOOh ; OR CX with immediate FFOOh
;resultin CX =11111111 10100101

; Upper byte are all 1's lower bytes ; are unchangsk

» OUT Instruction - The OUT instruction copies a bytenfrdL or a
word from AX or a double from the accumulator O Port specified
by op. Two forms of OUT instruction are availal&) Port number is
specified by an immediate byte constant, (0 - RB%s also called as
fixed port form.(2) Port number is provided in the DX register (0 —
65535)

Example: (1)

OUT 3BH, AL ; Copy the contents of the AL to port Bh
OUT 2CH, AX ; Copy the contents of the AX to port Zh
(2) MOV DX, OFFF8H ; Load desired port address in X
OUT DX, AL ; Copy the contents of AL to ; FFF8h

OUT DX, AX ; Copy content of AX to port ; FFF8H

» POP Instruction:

POP instruction copies the word at the currenttiojhe stack to the operand
specified by op then increments the stack poimtgoint to the next stack.

Example:

POP DX ; Copy a word from top of the stack to

; DX and increments SP by 2.

POP DS ; Copy a word from top of the stack to

; DS and increments SP by 2.

POP TABLE [BX]

; Copy a word from top of stack to memory in DS wih
. EA = TABLE + [BX].

POPF Instruction - Pop word from top of stack to flagggister.
PUSH Instruction - PUSH source

PUSHF Instruction - Push flag register on the stack

RCL Instruction - Rotate operand around to the lefatlgh CF — RCL
destination, source.

RCR Instruction - Rotate operand around to the righdaugh CF- RCR
destination, count

POPF Instruction - This instruction copies a word frome two
memory location at the top of the stack to flagstsy and increments
the stack pointer by 2.

» PUSH Instruction: PUSH instruction decrements the sfaakter by 2
and copies a word from a specified source to thation in the stack
segment where the stack pointer pointes.

YV WV VVVYVY

Example:
PUSH BX ; Decrement SP by 2 and copy BX to stack
PUSH DS ; Decrement SP by 2 and copy DS to stack

PUSH TABLE[BX] ; Decrement SP by 2 and copy word from memory
in DS at

; EA = TABLE + [BX] to stack.

"TPUSHF Instruction:

This instruction decrements the SP by 2 and cdpesvord in flag register to
the memory location pointed to by SP.

» RCL Instruction:

RCL instruction rotates the bits in the operanccsjgel by opl towards left
by the count specified in op2.The operation isutag the MSB of operand is
rotated into a carry flag and the bit in the CFotated around into the LSB of
operand.

RCR op1, op2

Example:

CLC ; put0Oin CF

RCL AX, 1 ; save higher-order bit of AX in CF
RCL DX, 1; save higher-order bit of DX in CF
ADC AX, 0 ; set lower order bit if needed.
Example:

RCL DX, 1 ;: Word in DX of 1 bit is moved to left, and ; MSB of word is
given to CF and

; CF to LSB.

; CF=0, BH =10110011

RCL BH, 1 ; Result: BH =01100110

: CF =1, OF = 1 because MSB changed

; CF =1, AX=00011111 10101001

MOV CL, 2 ; Load CL for rotating 2 bit position
RCL AX, CL ; Result: CF =0, OF undefined

; AX=01111110 10100110

» RCR Instruction - RCR instruction rotates the bitshe bperand
specified by opl towards right by the count spedifn op2RCR op1,
op2

Example: (1) RCR BX, 1 ; Word in BX is rotated byl bit towards
; right and CF will contain MSB bit and
; LSB contain CF bit.
(2);CF=1,BL=00111000
RCR BL, 1 ; Result: BL = 10011100, CF =0
; OF = 1 because MSB is changed to 1.
> REP/REPE/REPZ/

REPNE/REPNZ - (Prefix) Repeat String instruction until specifieahdition
exist

» RET Instruction — Return execution from procedure thir@aprogram.

» ROL Instruction - Rotate all bits of operand left, MEBLSB ROL
destination, count.

» ROL Instruction - ROL instruction rotates the bits v toperand
specified by opl towards left by the count spedifreop2. ROL moves
each bit in the operand to next higher bit positioime higher order bit
is moved to lower order position. Last bit rotatedopied into carry
flag.

ROL opl, op2

Example: (1)

ROL AX, 1 ; Word in AX is moved to left by 1 bit
; and MSB bit is to LSB, and CF

; CF =0, BH =10101110

ROL BH, 1 ; Result: CF, Of =1, BH = 01011101
Example: (2)

; BX=01011100 11010011

; CL = 8 bits to rotate

ROL BH, CL ; Rotate BX 8 bits towards left

; CF =0, BX=11010011 01011100

» ROR Instruction - Rotate all bits of operand right, LEBMSB — ROR
destination, count

» SAHF Instruction — Copy AH register to low byte of flaggister

» ROR Instruction - ROR instruction rotates the bitshe bperand opl
to wards right by count specified in op2. The lastotated is copied
into CF.

ROR opl, op2
Example:

(1) ROR BL, 1 ; Rotate all bits in BL towards richt by 1 ; bit position,
LSB bit is moved to MSB

- and CF has last rotated bit.
(2); CF=0,BX=00111011 01110101

ROR BX, 1 ; Rotate all bits of BX of 1 bit position; towards right and CF
:1,

BX =10011101 10111010
Example (3)

; CF=0, AL=10110011,

MOVE CL, 04H ; Load CL

ROR AL, CL ; Rotate all bits of AL towards right ; by 4 bits, CF =0, AL
= 00111011

» SAHF Instruction: SAHF copies the value of bits 7, 6240 of the
AH register into the SF, ZF, AF, PF, and CF regpebt. This
instruction was provided to make easier conversicassembly
language program written for 8080 and 8085 to 8086.
SAL/SHL Instruction - Shift operand bits left, put zerdJ8B(s)
SAL/AHL destination, count

SAR Instruction - Shift operand bits right, new MAB &IdVSB
SAR destination, count.

SBB Instruction - Subtract with borrow SBB destinatisource
SAL / SHL Instruction - SAL instruction shifts the bits ireth
operand specified by opl to its left by the coym@csfied in op2. As
a bit is shifted out of LSB position a 0 is kepU8B position. CF
will contain MSB bit.

VV V VY

SAL opl, op2

Example:

; CF=0,BX =11100101 11010011

SAL BX, 1 ; Shift BX register contents by 1 bit ; psition towards left
; CF=1,BX=11001011 1010011

» SAR Instruction - SAR instruction shifts the bits iretbperand
specified by opl towards right by count specifie@dp2.As bit is
shifted out a copy of old MSB is taken in MSB

MSB position and LSB is shifted to CF.

SAR opl, op2

Example: (1)

- AL = 00011101 = +29 decimal, CF =0

SAR AL, 1 ; Shift signed byte in AL towards right
; (divide by 2)

; AL =00001110 = + 14 decimal, CF =1
(2);BH=11110011 =- 13 decimal, CF =1
SAR BH, 1 ; Shifted signed byte in BH to right

; BH=11111001 =- 7 decimal, CF =1

» SBBInstruction - SUBB instruction subtracts op2 fropilpthen
subtracts 1 from opl is CF flag is set and resutored in opl and it is
used to set the flag.

Example:
SUB CX, BX ; CX — BX. Result in CX

SUBB CH, AL ; Subtract contents of AL and ; contens CF from contents
of CH. : Result in CH

SUBB AX, 3427H : Subtract immediate number ; from AX

Example:

*Subtracting unsigned number

; CL=10011100 = 156 decimal

; BH = 00110111 = 55 decimal

SUB CL, BH ; CL =01100101 = 101 decimal
; CF, AF, SF, ZF =0, OF, PF =1
*Subtracting signed number

; CL=00101110 = + 46 decimal

; BH = 01001010= + 74 decimal

SUB CL, BH; CL = 11100100 = - 28 decimal
; CF =1, AF, ZF =Q

; SF = 1 result negative

STI Instruction - Set interrupt flag (IF)

SCAS/SCASB/- Scan string byte or a
SCASW Instruction string word.

STC Instruction - Set the carry flag to 1

VVVVVYVYYVYY

number of times specified by op2.

Example:

STD Instruction - Set the direction flag to 1

STOS/STOSB/ STOSWnstruction - Store byte or word in string.

SHR Instruction - Shift operand bits right, put zerdi$B

SHR Instruction - SHR instruction shifts the bits inlof right by the

(1)SHR BP, 1 ; Shift word in BP by 1 bit positiorto right ; and 0 is kept

to MSB

(2) MOV CL, 03H ; Load desired number of shifts nto CL

SHR BYTE PYR[BX] ; Shift bytes in DS at offset BX and

; rotate 3 bits to right and keep 3 0’'s in MSB

(3)

Sl =

10010011 10101101, CF =0

SHR SI, 1 ; Result: SI = 01001001 11010110

;CF=1,0F=1,SF=0,ZF=0

TEST Instruction — AND operand to update flags

WAIT Instruction - Wait for test signal or interrupt s&

XCHG Instruction - Exchange XCHG destination, source

XLAT/ XLATB Instruction - Translate a byte in AL

XOR Instruction - Exclusive OR corresponding bits obtaperands —
XOR destination, source

TEST Instruction - This instruction ANDs the contentsacdource byte
or word with the contents of specified destinatird. Flags are
updated but neither operand is changed. TEST utgtruis often used
to set flags before a condition jump instruction

Examples:

TEST AL, BH ; AND BH with AL. no result is ; stored. Update PF, SF,

ZF

TEST CX, 0001H ; AND CX with immediate ; number

: no result is stored, Update PF, ; SF

Example:

; AL = 01010001

TEST AIl, 80H ;: AND immediate 80H with AL to ; testf MSB of AL is 1

or0

, ZF=1ifMSB of AL=0

; AL = 01010001 (unchanged)

. PF=0,SF=0

; ZF = 1 because ANDing produced is 00

WAIT Instruction - When this WAIT instruction executéds 8086
enters an idle condition. This will stay in thiat&t until a signal is
asserted on TEST input pin or a valid interruphalgs received on the
INTR or NMI pin.

FSTSW STATUS; copy 8087 status word to memory
FWAIT ; wait for 8087 to finish before- ; doing next 8086truction
MOV AX, STATUS ; copy status word to AX to ; check bits

In this code we are adding up of FWAIT instructsamthat it will stop the
execution of the command until the above instrucigofinishes it's work.so
that you are not loosing data and after that yduaow to continue the
execution of instructions.

e XCHG Instruction - The Exchange instruction exchangesctimtents
of the register with the contents of another regigdr) the contents of
the register with the contents of the memory lazatDirect memory to
memory exchange are not supported.

XCHG opl, op2

The both operands must be the same size and dhe operand must always
be a register.

Example:
XCHG AX, DX ; Exchange word in AX with word in DX
XCHG BL, CH ; Exchange byte in BL with byte in CH

XCHG AL, Money [BX] ; Exchange byte in AL with byte ; in memory at
EA.

e XOR Instruction - XOR performs a bit wise logical XORtbe
operands specified by opl and op2. The resulteobfierand is stored
in opl and is used to set the flag.

XOR opl, op2

Example: (Numerical)

; BX=00111101 01101001

; CX = 00000000 11111111

XOR BX, CX ; Exclusive OR CX with BX

; Result BX = 00111101 10010110

ASSEMBLER DIRECTIVES :

Assembler directives are the directions to themsder which indicate
how an operand or section of the program is torbegssed. These are also
called pseudo operations which are not executabtedmicroprocessor. The
various directives are explained below.

1. ASSUME: The ASSUME directive is used to inform the assemthe
name of the logical segment it should use for @ifpd segment.

Ex: ASSUME DS: DATA tells the assembler that &ory program
instruction which refers to the data segment giudth use the logical segment
called DATA.

2.DB Define byte. It is used to declare a byte varialset aside one or
more storage locations of type byte in memory.

For example, CURRENT_VALUE DB 36H tells the assesnlbb reserve 1
byte of memory for a variable named CURRENT _ VALBMd to put the
value 36 H in that memory location when the paogis loaded into RAM .

3. DW -Define word.lt tells the assembler to define a variable of tyyoed
or to reserve storage locations of type word in msm

4. DD(define double word :This directive is used to declare a variable of
type double word or restore memory locations wiai@ah be accessed as type
double word.

5.DQ (define quadword) This directive is used to tell the assemibéer
declare a variable 4 words in length or to resdrwords of storage in
memory .

6.DT (define ten bytes)it is used to inform the assembler to define aalde
which is10 bytes in length or to reserve 10 bytes of storagmemory.

7.EQU —Equatelt is used to give a name to some value or synthary
time the assembler finds the given name in theraragit will replace the
name with the value or symbol we have equated thdhname

8.0RG -Originate : The ORG statement changes the starting oftklreas
of the data.

It allows to set the location counter to a desiraldie at any point in the
program.For example the statement ORG 3000 ttel assembler to set
the location counter to 3000H.

9 .PROC- Procedure: It is used to identify the start giracedure or
subroutine.

10. END- End program .This directive indicates the assentbiat this is the
end of the program module.The assembler ignorestatgments after an
END directive.

11 ENDP- End procedure: It indicates the end of the pdoce (subroutine)
to the assembler.

12.ENDSENd Segment: This directive is used with the nafrthe segment
to indicate the end of that logical segment.

Ex: CODE SEGMENT : Start of logical segment comitag
code

CODE ENDS : End of the segmearhed CODE.

Basic Peripherals and Their Interfacing with 808!

Interfacing with RAM And ROM
The figure 2.1 shows a general block diagram of an 8086 mer
array. In this, the 1-bit word memory is partitioned into high and I
8-bit banks on the upper halves of the data bus teeldry BHE, ant

AO.
Sélect high bank (_Bmi) : —= L
Address : *+—>» HIGH 8 bit
BANK
* >
Control . ¢ ‘ >
Data 4————->l
——» .
LOW 8 bit
3 BANK
o
:

Select low bank {(A0)
FIGURE 2.1- 8086 MEMORY ARRAY

a) ROM and EPROM

ROMS and EPROMs are the simplest memory chipstesfate to the 808€
Since ROMs and EPROMs are r-only devices, AO and BHE are r
required to be part of the chip enable/select dagodThe 8086 address lin
must be connected to the ROM/EPROM i chips starting with A1 an
higher to all the address lines of the ROM/EPRONpg&h The 8086 unuse
address lines can be used as chip enable/seleatlidgc To interface th
ROMs/RAMs directly to the 80¢multiplexed bus, they must have out
enable signals. Thigure 3.5.2 shows the 8086 interfaced to two 271

Byte accesses are obtained by reading the fi-bit word onto the bus wit
the 8086 discarding the unwanted byte and accefiimdesired byt

Chija Selec % 4T
A-[n 5 = s RN g
A=A Bl All-A 10

m e s] |5|:
I ekl
D07 +—— | | L—dFF
e =Ly
B AR
o Ol
16
FIGURE 3.5.2

b) Static RAMS

Since gatic RAMs are read/write memories, both AO and BiHESt be
included in the chip select/enable decoding of deeices and write timin
must be considered in the compatibility anal

For each static RAM, the memory data lines mustdmeected to eitlr
the upper half AD1ADO or lower half AD-ADO of the 8086 data line

For static RAMs without output enable pins, read amite lines mus
be used as enables for chip select generationdiol &us contention. |If ree
and write lines are not used tctivate the chip selects, static RAMs w
common input/output data pins such as 2114 willefaextreme bu
contentions between chip selects and write actiVeée 8086 A0 and BH
pins must be used to enable the chip the chiptseld¢ote that Intel 82(has
three enables E1, E2, and E3, three inputs A0 @&daAd eight outputs (-
O7.

For devices with output enables such as 2142, ayetwgenerate ch
selects for the static RAMSs is by gating the 808R ¥¥gnal with BHE and Al
to provide upper and lower bank write strobes. o&gible configuration i
shown in thdfigure 3.5.4. Since the Intel 2142 is a 1024 * 4 bit staticNR/
two chips for each bankith a total of 4 chips for 2K * 8 static RAM
required. Note that DATA is read from the 2142 whiee output disable O
is low, WE is HIGH, and DATA is written into 214af multiple chip select

are available with the static RAM, BHE and AO may usd directly as the
chip selects. A possible configuration for 2K ‘aBay is shown in thfigure
3.5.5

c) Dynamic RAM

Dynamic RAM store information as charges in cajasit Since
capacitors can hold charges for a few millisecon@gresh circuitry s
necessary in dynamic RAMs for retaining these obsrglherefore, dynam
RAMs are complex devices to design a system. Teveethe designer ¢
most of these complicated interfacing tasks, Iptelides the 8202 dynam
RAM controller as part of tt 8086 families of peripheral devices. The 8.
can be interfaced with the 8086 to build a dynam&mnory system

Three of the
8086 unused
address lines —» AD-A2
AD d F1 5
MAO or an B 00-07 ——>» CL;?WS”?”*CE
unused address o E2 “hip Selects
line
8205
_— decoder
RD
WR
— AQ-A2
BT d= a
High Bank
C0-07
d 2 > Chip Selects
E3
8205
decoder

i + 5
52

10
8086 p, ol A
AT-ATD 7 0-A9 I/O1
- it
8086 RD oD ”84
| WE 1Kx4
AD ——f CS1
WR 2142
+5Y
BHE L cs2
=t AD-AY O
Al19-A14 1 to
;] B205 EEJ V04
ANl —d i -t ———J WE TKx4
Al12 —d 2 o &5
ATTPOE3 2142
+ 5%
CS2
> AD-AQ /O
(]
oD /O
o WE 1Kx4
O 51
2142
+5V
Cs2
» AD-A9 O
(8]
oD /O4
ad WE 1Kx4
| CS1
2142

4
<« D0-D3

4
A——f— 4.7

4
< [D8-D11

i

: 4
< D12-015

FIGURE 3.5.5 — 2K * 8 STATIC ARRAY WITH AO and BHE AS DIRECT CHIP SELECT INPUTS

y Low
Banl

High
Bank

A1-AT0

RD

WR
A0

Unused
Address Line
such as A1l

BHE -

AD-A9

o0 1Ol
— to
Ve os

i
cs2
2142
AO-A9
o0 ol
_— o
WE yos
d &5
Cs2
2142
AO-AY
op 1ol
— to
IWE ou
&
cs2
2142
A0-A9
oD /01
== to
IV os
&S |
Cs2

2142

4
<« DO-D3

4
< D4-D7

4 .
<+ DB-D11

4
<+ D12-D15

P10 8255

The parallel input-output port chip 8255 is alsteezhas
programmabl@eripheral input-output port. The Intel’s 8255 is
designed for use with Intel's 8- bit, 16-bit andler capability
microprocessors. It has 24 input/output lines wimay be
individually programmed in two groups of twelvedseach, or
three groups of eight lines.

The two groups of I/0O pins are named as Groupd\@roup B.
Each of these two groups contains a subgroup ot @ lines
called as 8-bit port and another subgroup of fowad or a 4-bit port.
Thus Group A contains an 8-bit port A along with-bit port C
upper.

The port A lines are identified by symbols ®®RA7 while the port C
lines are identified as RIPCy. Similarly, Group B contains an 8-bit
port B, containing lines PBO-PB7 and a 4gwott C with lower bits
PCO- PC3. The port C upper and port C lower cansiee in
combination as an 8-bit port C.

Both the port C are assigned the same addresas.dife may have
either three 8- bit 1/0 ports or two 8-bit and tdbit ports from
8255. All of these ports can

function independently either as input or as oupmits. This can be
achieved by programming the bits of an internaisteg of 8255
called as control word register (CWR).

The internal block diagram and the pin configirabf 8255 are

shown in fig.

The 8-bit data bus buffer is controlled by thad#vrite control logic.
The read/writecontrollogic manages all of the internal and external
transfers of both data and control words.

RD, WR, A, A0 and RESET are the inputs provided by the
microprocessor to the READ/ WRITE control logic8#55. The 8-
bit, 3-state bidirectional buffer is used to intexé the 8255 internal
data bus with the external system data bus.

This buffer receives or transmits data upon ttexetion of input or
output instructions by the microprocessor. The mdntords or status
information is also transferred through the buffer.

The signal description of 8255 are briefly praedras follows :
PA7-PAQ: These are eight port A lines that acts as elttehed output
or buffered input lines depending upon the conimid loaded into the

control word register.

PC7-PC4 : Upper nibble of port C lines. They may act abesit
output latches or input buffers lines.This porbatan be used for
generation of handshake lines in mode 1 or mode 2.

PC3-PCo : These are the lower port C lines, other detadslae same
as PC7-PC4 lines.

PBQ-PB7 : These are the eight port B lines which are usddtahed
output lines or buffered input lines in the samg asa port A.

RD : This is the input line driven by the microproaasand
should be low to indicate read operation to 8255.

WR : This is an input line driven by the microprocesgolow
on this line indicates write operation.

CS : This is a chip select line. If this line goes |dhenables the 8255
to respond to RD and WR signals, otherwise RD \firl signal are

neglected. _ _ _
A1-AQ : These are the address input lines and are dbiy¢ime
MICroprocessor.

These lines A-AQ with RD, WR and CS from the following

operations for 8255. These address lines are vsedlfiressing any
one of the four registers, i.e.three ports andrdgrobword register as
given in table below.

In case of 8086 systems, if the 8255 is to berfated with lower
order data bus, thegpand A1 pins of 8255 are connected with A
and A respectively.

D0-D7 : These are the data bus lines those carry datandrol word
to/from themicroprocessor.

RESET : A logic high on this line clears the control waosdjister of
8255. All ports are set as input ports by defaitidiraeset.

RD WR S A, Ao Input (Read) cycle
0 1 0 0 0 Port A to Data bus
0 1 0 0 1 Port B to Data bus
0 1 0 1 0 Port C to Data bus
0 1 0 1 1 CWR to Data bus

RD WR cs A, Ao Output (Write) cycle
1 0 0 0 0 Databusto Port A
1 0 0 0 1 Databus to Port B
1 0 0 1 0 Databus to Port C
1 0 0 1 1 Databus to CWR
RD WR cs Aq Ao Function

X 1 X X Databus tristat ed
1 X X Databus tristated

Control Word Register

Block Diagram of 8255 (Architecture)

+ It has a 40 pins of 4 groups.

1. Data bus buffer

2. Read Write control logic

3. Group A and Group B controls

4. PortA,Band C

» Databushbuffer: This is a tristate bidirectional buffer usedrterface
the 8255 to system databus. Data is transmitteeloived by the
buffer on execution of
input or output instruction by the CPU.

» Control word and status information are alsodfamed through this

unit.

» Read/Write control logic: This unit accepts control signdlRD ,
WR) and also inputs from address bus and issuasiemds to
individual group of control blocks (Group A, GroB).

* It has the following pins.

a) CS - Chipselect : A low on this PIN enablesatiamunication

between CPU and 8255.

b) RD (Read)— A low on this pin enables the CBtetd the data in
the ports or the status word through data bus buffe

c) WR (Write) : A low on this pin, the CPU can terblata on to the

ports or on to the control register through thednats buffer.
d) RESET: A high on this pin clears the control registed ati ports are
set to the input mode.
e) AQ andA1 (Address pins): These pins in conjunction with RD

and WR pins control the selection of one of the@B89
* Group A and Group B controls: These block receive control from the
CPU and issues commands to their respective ports.

* Group A-PA and PCU (PC-P()
* Group B - PCL (PC3 - PCO0)
» Control word register can only be written intoread operation of the
CW regqister is allowed.
* a)Port A: This has an 8 bit latched/buffered O/P and &ipitit
latch. It can be programmed in 3 modes — mode @emo mode 2.
b) Port B: This has an 8 bit latched / buffered O/P and &lput
latch. It can be programmed in mode 0, model.
c) Port C : This has an 8 bit latched input buffer and 8duitput
latched/buffer. This port can be divided into twbiéports and can be used
as control signals for port A and port B. it cangnegrammed in mode O.

Modes of Operation of 8255

These are two basic modes of operation of 82&bmode and
Bit Set-Reset mode (BSR).
In I/O mode, the 8255 ports work as programmé&lleorts, while in
BSR mode only port C (PC0O-PC7) can be used torgesset its
individual port bits.
Under the I/O mode of operation, further ther=taree modes of
operation of 8255, so as to support different tygfespplications, mode
0, mode 1 and mode 2.
BSR Mode: In this mode any of the 8-bits of port C can be® reset
depending on DO of the control word. The bit tode or reset is
selected by bit select flags D3, D2 and D1 of @WR as given in
table.
I/O Modes:
a) Mode O (Basic I/0O mode): This mode is also called as basic

input/output mode. This mode provides simple irgnd output capabilities
using each of the three ports. Data can be singalgl from and written to the
input and output ports respectively, after appmdprinitialization.

D3 D> D, Selectedits of port C
0] 0] 0 Do
0 0 1 D,
0 1 0 D,
0] 1 1 D,
1 0] 0 D4
1 0 1 Ds
1 1 0 Ds
1 1 1 D,

BSR Mode

g1l o1 N 0o

PA

— > PAG — PA7

PCU—» PC4 - PC7

pcL——— PCO-PC3

PB

— > PBO - PB7

All Output

Mode 0

: CWR Format
PA—> PA
8 PCU——»
2 PC
S PCL—
5
PBL— »PBo—PB;

Port A and Port C acting as
O/P. Port B acting as I/P

The salient features of this mode are as lisetdvin

1. Two 8-bit ports (port A and port B)and two 44bdrts (port C upper
and lower)are available. The two 4-bit ports carmd®binedly used as a
third 8-bit port.
2. Any port can be used as an input or output port

3. Output ports are latched. Input ports are aichled.

4. A maximum of four ports are available so thatrall 16 1/0

configuration are possible.

All these modes can be selected by programmnegjiater

internal to 8255 known as CWR.

The control word register has two formats. Thstfiormat is valid for
I/O modes of operation, i.e. modes 0, mode 1 anden2owhile the
second format is valid for bit set/reset (BSR) motieperation.
These formats are shown in following fig.

1 X X X

_T | | T T T * 0-Reset

0-for BSR mode Bit select flags — 1- Set
D3, Dy, D; are from 000 to 111 for bits PG TO PC,

I/O Mode Control Word Register Format and
BSR Mode Control Word Register Format

PAs —1 40— pA,
PA; — o 39— PA.
PA1—3 38— PA,
PAo— 4 37— PA;
RD—5 36— WR
CS 6 35— Reset
P E
1 —18 — Dy
PAS —9 32— D,
. -
pC, Lo 8255A 30 gj
PCs —12 29— D;
PCs —13 28— D,
PCo—14 27— D,
I:)Cl —115 26— Vce
PC. 16 25— PB,
PCs —17 24— PB;
PBo —18 23— PB;
PB1 —g 22— pp,
PB, —20 211— ppg,

<‘:8»2:§A Pin Configuration <:>
— <>
¥
¥
PA-PA
D-D; oPA:
— <>
CS ” — PC,-PC;
RESET—— |
8255A
PCy-PCy
Ao
Al — PBO-PB7
RD S . K—>
> < — Vcc <
W
je GND
5 =1 —
A <
3 4/ PAGHAA;
Q Group A (—1 GroupA <::q‘>
:_, control Port ﬁ(g) <
> 1
Do-Dzy| Data P Group/A PC:-HC4
—»| bus > D (—~ PortC <£>
N 8 bitintdatabus | | upper(4) |«
—_ 4
Group B PCo-HCs
2 Port C
RD Lower(4)
WR READ/
WRITE
Ao Control Group B Group B PB+-PBy

RESET

A1

CS

Control Word Format of 8255

b) Mode 1: (Strobed input/output mode) In this mode the handshaking
control the input and output action of the spedipert. Port C lines PCO-
PC2, provide strobe or handshake lines for poffttiss group which
includes port B and PCO-PC2 is called as grouprBstmbed data
input/output. Port C lines PC3-PC5 provide strobed for port A.

This group including port A and PC3-PC5 from grauplrhus port C is
utilized for generating handshake signals. Theesafeatures of mode 1
are listed as follows:

1. Two groups — group A and group B are availédnretrobed data

transfer.

2. Each group contains one 8-bit data I/O port@mel4-bit control/data

port.

3. The 8-bit data port can be either used as iapdtoutput port. The
inputs and outputs both are latched.

4. Out of 8-bit port C, PC0O-PC2 are used to gegaarantrol signals for
port B and PC3-PCéareusedto generate control signals for port A.
the lines PC6, PC7 may be used as independeniimzta

» The control signals for both the groups in input anl output
modes are explained as follows

I nput control signal definitions (mode 1):

» STB(Strobe input) — If this lines falls to logic ldevel, the data
available at 8-bit input port is loaded into infatches.

 IBF (Input buffer full) — If this signal rises to logig it indicates that

data has been loaded into latches, i.e. it worlksascknowledgement.

IBF is set by a low on STB and is reset by thengsdge of RD input.

* INTR (Interrupt request) — This active high output sigrza be used

to interrupt theCPU whenever an input device requests the seNddR

is set by a higlaTB pin and a high at IBF pin. INTE is an interflay that

can be controlled by the bit set/reset mode okelBC4(INTEA) or

PC2(INTEB) as shown in fig.

* INTR is reset by a falling edge of RD input. Thars external input
device can be request the service of the procdssputting the data
on the bus and sending the strobe signal.

Output control signal definitions(mode 1) :
* OBF (Output buffer full) — This status signal, whenefadls to low,
indicateghat

CPU has written data to the specified output pidre OBF flip-flop
will be set by a rising edge of WR signal and tésea low going
edge at the ACK input.

 ACK (Acknowledge input) — ACK signal acts as an

acknowledgement to be given by an output deviceK Afgnal,

whenever low, informs the CPU that the

data transferred by the CPU to the output deviaautjh the port is
received by

the output device.

* INTR (Interrupt request) — Thus an output signal thatlmaused to
interrupt the CPU when an output device acknowlsdige data
received from the CPU. INTR is set when ACK, OB &NTE are 1.
It is reset by a falling edge on WR input. The INN&d INTEB flags
are controlled by the bit set-reset mode of PC6RA0A respectively.

Input control signal definitions in Mode

1
10 |1]|0 |[1/0|X [X|X (X | X[X [X|1]|1]|X
D; Dg Ds D, D3 D, Dy Dy D; Dg Ds D, D; D, Dy Dg
1- Input
- t
9:09886“—
PC,
PA— PBO—PB7<
PA; _
INTE A % INTE g PCZ —PSTBB
PC—— «—
PC5<—|BFA PL’]- |BF|3
|
PCH>INTR,, | INTR
RD—» PCe — PGe—>0 =
RD
Mode 1 Control Word Group Mode 1 Control Word Group

AllP BI/P

Programmable Interval Timer 8253

The Intel 8253 is a programmable counter / timep clasigned for use as
an Intel microcomputer peripheral. It uses nMO®ite@bogy with a single
+5V supply and is packaged in a 24-pin plastic DIP.

It is organized as 3 independent 16-bit countexrsh evith a counter rate up
to 2 MHz. All modes of operation are software peogmable.

The 82C54 is pin compatible with the HMOS 8254, mral superset of the
8253.

Six programmable timer modes allow the 82C54 / 8253 used as an
event counter, elapsed time indicator, programmaibéshot, and in many
other applications.

Block diagram

y
DATA ———CLKO
DT-DEI BUS <:> @CDUTEH.—GATED
BUFFER ST 0
_ | 2
e S T, & i L
] VWRITE = COUMTER GATE 1
a0 —— = 1
1 Lo i ——T
=
- L]
CTRL. ——— CLK 2
WORD <}: <}{l> TR GaTE2
FEC. v ouT 2

k=

Fig: Block diagram of an 8253 programmable intervalimer

The block labeledata bus buffecontains the logic to buffer the data bus to iiro
the microprocessor, and to the internal regist@ne.block labeledead / write

logic controls the reading and the writing of the counggisters. The final block,
the control word registercontains the programmed information that is sefte
device from the microprocessor. In effect this segi defines how the 8253
logically works. The timer has three independerdgmmmable counters and they
are all identical

Each counter in the block diagram has 3 logicaklio@nnected to it. Two of these
lines, clock and gate, are inputs. The third, latb€@&T is an output. The function
of these lines changes and depends on how theed\iititialized or programmed.

PIN configuration

The following picture shows the pin configurationtieg 8253 and a general
definition of the lines follows:

Tl =" 23Hvece

o6 O 2 o3 e

o503 22 O RD

D O 4 o Q7S

0305 200 &1

o2 O e 19040

pigdr 9293 qghcoiks

ooda 1700o0uT 2
cLK 00a 160 GATE 2
ouT ocl1o 150 CLK 1
GATE 00011 14 O GATE 1

GND 12 130 00T 1

* Clock This is the clock input for the counter. The coungek6 bits. The
maximum clock frequency is 1 / 380 nanoseconds@®mniggahertz. The
minimum clock frequency is DC or static operation.

» Out This single output line is the signal that is timalf programmed output
of the device. Actual operation of the outline deggeon how the device has
been programmed.

» Gate This input can act as a gate for the clock inp, lor it can act as a
start pulse, depending on the programmed modesafdhnter.

Internal 8253 reqister

Here is a list of the internal 8253 registers thifitprogram the internal counters
of the 8253:

RD |WR | A0 | A1 | function

1 0 0 | O |Load counter 0
COUNTER 0

0 1 0 | 0 | Read counter O

1 0 0 | 1 |Load counter 1
COUNTER 1

0 1 0 | 1 | Read counter 1

1 0 1 0 | Load counter 2
COUNTER 2

0 1 1 0 | Read counter 2

MODE WORD or 1 0 1 1 | Write mode word
CONTROL WORD

-- 0 1 1 | 1 | No-operation

Counter #0, #1, #2Each counter is identical, and each consistsld-hit, pre-
settable, down counter. Each is fully independedtcan be easily read by the
CPU. When the counter is read, the data withirctheater will not be disturbed.
This allows the system or your own program to marthie counter's value at any
time, without disrupting the overall function oEtB253.

Control Word Register This internal register is used to write informattonprior
to using the device. This register is addressechvteand Al inputs are logical
1's. The data in the register controls the operatiode and the selection of either

binary or BCD (Umary coded_ecimal) counting format. The register can only be
written to. You can't read information from the istgr.

CONTROL BYTE D7 - DO
D7 D6 D5 D4 D3 D2 D1 DO
SC1 SCO0 RL1 RLO M2 M1 MO BCP

Control Word Register

All of the operating modes for the counters areced by writing bytes to the
control register. This is the control word format.

D7 D6 Counter
SC1 SCO Select

0 0 counter 0
0 1 counter 1
1 0 counter 2
1 1 illegal value

Bits D7 and D6 are labeled SC1 and SCO. Thesesdligst the counter to be
programmed, it is necessary to define, using tmérabbits D7 and D6, which
counter is being set up.

EE~0nce a counter is set up, it will remain that watilut is changed by another
control word.

D5 D4 ; .
nL1 pLg R/ L Definition
U 0 Countervalue is [atched. This means

that the selected counter has its
contents transferred into a temporary
latch, which can then be read by the CPL.

0 1 Head/ load least-significant byte anly.
1 0 Read/ |load most-significant byte only.

1 1 Head/ load least-significant byte first,
then most-significant byte.

Bits D5 and D4 (RL1 / RLO) of the control wostiown above are defined as the
read / load mode for the register that is selebteblits D7 and D6. Bits D5 and D4
define how the particular counter is to have dagalrfrom or written to it by the
CPU.

These bits are defined as:

The 1st value, $00, is tledunter latch moddf this mode is specified, the current
counter value is latched into an internal regiatedhe time of the 1/O write
operation to the control register. When a readhefdounter occurs, it is this
latched value that is read.

If the latch mode is not used, then it is possibét the data read back may be in
the process of changing while the read is occurflings could result in invalid
data being input by the CPU. To read the countierevahile the counter is still in
the process of counting, one must first issuechlabntrol word, and then issue
another control word that indicates the order eflikites to be read.

An alternative method of obtaining a stable covminfthe timer is to externally
inhibit counting while the register is being re@d.this, an external logic to the
8253 controlled by the Z80 to inhibit count duringiaput read operation is to
connect.

Each technique has certain disadvantages. Thetliestatching method, may give
the CPU a reading that is "old" by several cyalenending on the speed of the
count and which byte of the counter is being read.

The second method, the external inhibiting functrequires additional hardware.
In addition, it may change the overall system of@naThe counters 1 and 2 of
the MZ-700 are not designed with this additionatiaare function. :-(but the
counter 0. You can use this method for your owrppses even an amplifier is
connected to the output pin of this counter.

E=s~The input to counter 0 is 1.1088MHz.

The next 3 bits of the control woete D3, D2, and D1. These bits determine the
basic mode of operation for the selected countee.mode descriptions are as
follows:

el el Mode value
3 VA 1 I % -

0 0O 0O mode(interrupt on terminal count
o 0 1 mode 1: programmable one-shot

¥ 1 0 mode 2: rate generator

X 1 1 mode 3: square wave generator

1 0 0 moded: software triggered strobe

1 0 1 mode 5 hardware triggered strobe
OO0 counts down in
I binary
1 BCD

The final bitDO of the control register determines how the regisi# count: The
maximum valuesfor the count in each count mode aré (i®,000 decimal) in
BCD and 2° (65,536 decimal) in binary.

Modes

The following text describes all possible modes. ifoeles used in the MZ-700
and set by the monitor's startup are mode 0, mpded®mode 3.

» Mode 0 (Interrupt on Terminal Count)

The counter will be programmed to an initial valne afterwards counts down at
a rate equal to the input clock frequency. Whercthant is equal to 0, the OUT
pin will be a logical 1. The output will stay a legi 1 until the counter is reloaded
with a new value or the same value or until a medel is written to the device.
Once the counter starts counting down, the GATE iopatdisable the internal
counting by setting the GATE to a logical O.

» Mode 1 (Programmable One-Shagt

In mode 1, the device can be setup to give an opydae that is an integer number
of clock pulses. The one-shot is triggered on thiag edge of the GATE input. If
the trigger occurs during the pulse output, the382Bl be retriggered again.

» Mode 2 (Rate Generator)

The counter that is programmed for mode 2 beconidvige by n" counter. The
OUT pin of the counter goes to low for one inputcklperiod. The time between
the pulses of going low is dependent on the presmnit in the counter's register. |
mean the time of the logical 1 pulse.

For example, suppose to get an output frequendyO®0 Hz (Hertz), the period
would be 1 /1,000 s =1 ms (millisecond) or D,@& (microseconds). If an
input clock of 1 MHz (Mega-Hertz) were appliedtbh@ clock input of the counter
#0, then the counter #0 would need to be prograntmé&d00 us. This could be
done in decimal or in BCD. (The period of an inplaick of 1 MHz is 1 /
1,000,000 =1 ps.)

The formula isn=f; divided by f,.

fi = input clock frequencyf; = output frequency, n = value to be loaded.

My example: f= 1 MHz = 1 x 16 Hz, f,,;= 1 kHz = 1 x 18 Hz.

n=1x18Hz/1x 18 Hz =1 x 16 = 1,000. This is the decimal value to be
loaded or the hexadecimal value $03E8. The follovarapram example uses the
decimal load count.

BO0OO 3E35 LD A,$35 ; load control word
: for counter O mode 2
B002 3207E0 LD ($E007),A ; into port $EO07
: for BCD count
BOO5 2104E0 LD HL,$E004 ; address to the port
; of counter O
BO08 3EO0 LD A,$00
BOOA 77 LD (HL),A ; load least significant
; byte of 1000 first
BOOB 3E10 LD A$10
BOOD 77 LD (HL),A ; load most significant
; byte of 1000 last
BOOE 3E01 LD Al
B010 3208E0 LD ($E008),A ; start counter 0 is only
; Necessary for the MZ-700.
; Not necessary for
; counter #1 and #2
; The counter is now initialized and the output frequency
; will be 1000 Hz if the input frequency is 1 MHz.

If the count is loaded between output pulses, thegnt period will not be
affected. A new period will occur during the negtiat sequence.

» Mode 3 (Square Wave Generato)

Mode 3 is similar to the mode 2 except that th@ouvill be high for half the
period and low for half. If the count is odd, thetmut will be high for (n+1)/2
and low for (n-1)/2 counts.

For example, I'll setup counter #0 for a squareenMasquency of 10 kHz (kilo-
Hertz), assuming the input frequency is 1 MHz.

Please refer to the formula described at mode 2.
1 x 10 /10 x 16 = 100. This is the decimal value to be loadecerttexadecimal
value $0064. The following program example usesdthary load count.

B0O0OO 3E35 LD A, $36 : load control word
: for counter 0 mode 3
B002 3207E0 LD ($E007),A ; into port $E007

; for binary count
BOO5 2104E0 LD HL,$E004 ; address to the port
: of counter O
BO08 3EO0 LD A,$64 ; equals to
: 100 microseconds

; for 10,000 Hz

BOOA 77 LD (HL),A ; load least significant
; byte of $0064 first

BOOB 3E10 LD A,$00

BOOD 77 LD (HL),A ; load most significant
; nyte of $0064 last

BOOE 3E01 LD Al

B010 3208E0 LD ($E008),A ; start counter 0 is only
; necessary for the MZ-700.
; Not necessary for counter
: #1 and #2

; The counter is now initialized and the output frequency

; will be 10 kHz if the input frequency is 1 MHz.

» Mode 4 (Software Triggered Strobe)

In this mode the programmer can set up the cotmigive an output timeout
starting when the register is loaded. On the teafrdount, when the counter equals
to 0, the output will go to a logical O for one ckgperiod and then returns to a
logical 1. First the mode is set, the output wdldlogical 1.

» Mode 5 (Hardware Triggered Strobe)

In this mode the rising edge of the trigger inpit start the counting of the
counter. The output goes low for one clock at theniteal count. The counter is
retriggerable, thus meaning that if the triggewinig taken low and then high
during a count sequence, the sequence will stairt ov

When the external trigger input goes to a logicah& timer will start to time out.

If the external trigger occurs again, prior to timee completing a full timeout, the
timer will retrigger.

Programmable Interrupt Controller 8259A

- If we are working with an 8086, we have a problesretbecause the 8086 has
only two interrupt inputs, NMI and INTR.

* If we save NMI for a power failure interrupt, $Heaves only one interrupt for
all the other applications. For applications wheeshave interrupts from
multiple source, we use an external device callpdarity interrupt
controller (PIC) to the interrupt signals into a single intgrinput on the
processor.

Architecture and Signal Descriptions of 8259A

» The architectural block diagram of 8259A is showifigid. The functional
explication of each block is given in the followitext in brief.

* Interrupt Request Register (RR} The interrupts at IRQ input lines are
handled by Interrupt Request internally. IRR st@iéshe interrupt request
In it in order to serve them one by one on therpyidasis.

* In-Service Register (ISR) This stores all the interrupt requests those are
being served, i.e. ISR keeps a track of the regqumshg served.

'.E'l'.'-ii INT,

D ':D' r Data Bas = - Control Logic
Buffer - T
D Eead/ W L
WE—=| Write [*) _ Interrupt IR
A, Logic IN Service Priarity Request | IR,
x Begister (=38 Resolver P— Resister |4
& IR IRR :

. 4
CASy—+[Cascade T T . IF.
CAS,——»[Buffer/ R
CAS, ..Eum;;amtur [~ Imterrupt Mask Register

SP/EN — IME.

Imternal Eﬂu54r

Fig:1 82584 Block Diagram

* Priority Resolver : This unit determines the priorities of the intetrup
requests appearing simultaneously. The highestityrie selected and
stored into the corresponding bit of ISR during INpulse. The IR0 has the
highest priority while the IR7 has the lowest oma;mally in fixed priority
mode. The priorities however may be altered by fnwgning the 8259A in
rotating priority mode.

» Interrupt Mask Register (IMR) : This register stores the bits required to
mask the interrupt inputs. IMR operates on IRRhatdirection of the
Priority Resolver.

e Interrupt Control Logic : This block manages the interrupt and interrupt
acknowledge signals to be sent to the CPU for sgrone of the eight
interrupt requests. This also accepts the intemakibowledge (INTA)
signal from CPU that causes the 8259A to releasmraddress on to the
data bus.

Data Bus Buffer: This tristate bidirectional buffer interfaces imal

8259A bus to the microprocessor system data busir@avords, status and
vector information pass through data buffer duread or write operations.
Read/Write Control Logic: This circuit accepts and decodes commands
from the CPU. This block also allows the statuhef&259A to be
transferred on to the data bus.

Cascade Buffer/Comparator This block stores and compares the ID’s all
the 8259A used in system. The three 1/0 pins CAS®eutputs when the
8259A is used as a master. The same pins act as wpen the 8259A is in
slave mode. The 8259A in master mode sends thé tileanterrupting
slave device on these lines. The slave thus sdlewit send its
preprogrammed vector address on the data bus dimengext INTA pulse.
CS: This is an active-low chip select signal for dmabRD and WR
operations of 8259A. INTA function is independehCé&.

WR : This pin is an active-low write enable input @68A. This enables it

to accept command words from CPU.

RD : This is an active-low read enable input to 8258A0w on this line
enables 8259A to release status onto the datafliLidd.

DO-D7: These pins from a bidirectional data bus thatesaB-bit data
either to control word or from status word registérhis also carries
interrupt vector information.

CASO — CAS2 Cascade LinesA signal 8259A provides eight vectored
interrupts. If more interrupts are required, the®R is used in cascade
mode. In cascade mode, a master 8259A along vgtit silaves 8259A can
provide upto 64 vectored interrupt lines. Theseslirees act as select lines
for addressing the slave 8259A.

PS/EN: This pin is a dual purpose pin. When the chipsied in buffered
mode, it can be used as buffered enable to camiftér transreceivers. If
this is not used in buffered mode then the pirseduas input to designate
whether the chip is used as a master (SP =1) vz §iEN = 0).

INT : This pin goes high whenever a valid interrupt esjus asserted. This
is used to interrupt the CPU and is connecteddortterrupt input of CPU.
IRO — IR7 (Interrupt requests) :These pins act as inputs to accept interrupt
request to the CPU. In edge triggered mode, arrugteservice is requested
by raising an IR pin from a low to a high state &ottling it high until it is
acknowledged, and just by latching it to high levielised in level triggered
mode.

Pin Diagram

cs 1 28— Vee
WR—]2 7l A
RD—3 26 INTA
D14 251 IR-
Ds— |5 24| IR
D:— 16 23 IR:
D, |7 2 IR,
D:_ |8 82594 21 IR,
D,—9 0 IR,
D110 19 IR
Dy |11 18| IR,
CAS—{12 17— INT
CAS |13 16| SP/EN
GND__14 15— Cas,

Fig : 8259 Pin Dhagram

INTA (Interrupt acknowledge) : This pin is an input used to strobe-in 8259A
interrupt vector data on to the data bus. In cactjon with CS, WR and RD
pins, this selects the different operations likatimg command words,
reading status word, etc.

» The device 8259A can be interfaced with any CPUgusither polling or

interrupt. In polling, the CPU keeps on checkingheperipheral device in
sequence to ascertain if it requires any servma the CPU. If any such
service request is noticed, the CPU serves theest@und then goes on to
the next device in sequence.

» After the entire peripheral device are scannedaseathe CPU again starts
from first device.

» This type of system operation results in the redunotif processing speed
because most of the CPU time is consumed in pdliegeripheral devices.

* In the interrupt driven method, the CPU perfornestimin processing task
till it is interrupted by a service requesting plaeral device.

* The net processing speed of these type of systemghdecause the CPU
serves the peripheral only if it receives the ntpt request

« If more than one interrupt requests are receivedtiabe, all the requesting
peripherals are served one by one on priority basis

» This method of interfacing may require additionaidweare if number of
peripherals to be interfaced is more than thenaptipins available with the
CPU.

Interrupt Sequence in an 8086 system

* The Interrupt sequence in an 8086-8259A systemserieed as follows:
One or more IR lines are raised high that set spoeding IRR bits.
8259A resolves priority and sends an INT signal RJC
The CPU acknowledge with INTA pulse.

Upon receiving an INTA signal from the CPU, the laghpriority ISR bit is

set and the corresponding IRR bit is reset. Thé®B82%es not drive data

during this period.

5. The 8086 will initiate a second INTA pulse. Durirgst period 8259A
releases an 8-bit pointer on to a data bus fronrevihés read by the CPU.

6. This completes the interrupt cycle. The ISR bieisat at the end of the
second INTA pulse if automatic end of interrupt QI mode is
programmed. Otherwise ISR bit remains set untagpropriate EOI
command is issued at the end of interrupt subreutin

Command Words of 8259A

» The command words of 8259A are classified in tnaugs
1. Initialization command words (ICW) and
2. Operation command words (OCW).

* Initialization Command Words (ICW): Before it s&@ftinctioning, the
8259A must be initialized by writing two to fourmonand words into
the respective command word registers. These #esl @s initialized
command words.

* If AO =0 and D4 = 1, the control word is recogmizes ICWL1. It
contains the control bits for edge/level triggeneade, single/cascade
mode, call address interval and whether ICW4 isiired or not.

e If AO=1, the control word is recognized as ICW2. TG¥V2 stores
details regarding interrupt vector addresses. Titialisation sequence
of 8259A is described in form of a flow chart ig 8 below.

» The bit functions of the ICW1 and ICW2 are self exgtory as shown
in fig below.

rwn =

0 A- Ag As 1 LTIM| ADI [|SNGL| ICs

AT-AS of Interrupt ICW,
vector address MCs
80/85 mode only

1 =I1CW,y Needed 0
= No ICWy Needed

1 - Single 0 -
Cascaded

1 — Level Triggered 0 -
—Edge Triggered

Call Address Interval
"1 1 — Interval of 4 bytes

W, 0 — Interval of 8 bytes.
Ap D+ D Ds Dy Da Dz D Dy
1 T Ts Ts Ty T3 A Ag Ag

*Ts;—T32 are A3 — AD of interrupt address

* Ajp — Ap, Ag— Selected according to interrupt request level.

Thev are not the address lines of Microorocessor
- Al =1 selects TCTWW;

Fiz 4 Fig: tion Command Words ICW; and

Operating Modes of 8259

The different modes of operation of 8259A can bgmammed by setting or
resting the appropriate bits of the ICW or OCW msuksed previously.
The different modes of operation of 8259A are exgdiin the following.
Fully Nested Mode: This is the default mode of operation of 8259A0 IR
has the highest priority and IR7 has the lowest Ween interrupt request
are noticed, the highest priority request amortgamtis determined and the
vector is placed on the data bus. The corresporiding ISR is set and
remains set till the microprocessor issues an E@incand just before
returning from the service routine or the AEOIibitet.

If the ISR (in service) bit is set, all the samdawer priority interrupts are
inhibited but higher levels will generate an intgat; that will be
acknowledge only if the microprocessor interrulda flag IF is set. The
priorities can afterwards be changed by programrtiiegotating priority
modes.

End of Interrupt (EOI) : The ISR bit can be reset either with AEOI bit of
ICW1 or by EOI command, issued before returning fthminterrupt
service routine. There are two types of EOl commapeésific and non-
specific. When 8259A is operated in the modesphederve fully nested
structure, it can determine which ISR bit is tarbset on EOI.

When non-specific EOl command is issued to 825%klitbe

automatically reset the highest ISR bit out of thakeady set.

When a mode that may disturb the fully nested sireds used, the 8259A
IS no longer able to determine the last level askedged. In this case a
specific EOl command is issued to reset a partid@Rrbit. An ISR bit that

Is masked by the corresponding IMR bit, will notddeared by non-specific
EOI of 8259A, if it is in special mask mode.

Automatic Rotation : This is used in the applications where all the
interrupting devices are of equal priority.

In this mode, an interrupt request IR level receipgority after it is served
while the next device to be served gets the higbrstity in sequence.
Once all the device are served like this, the fstice again receives
highest priority.

Automatic EOI Mode : Till AEOI=1 in ICW4, the 8259A operates in
AEOI mode. In this mode, the 8259A performs a npeetfic EOI operation
at the trailing edge of the last INTA pulse autacaly. This mode should
be used only when a nested multilevel interrupicstire is not required
with a single 8259A.

Specific Rotation: In this mode a bottom priority level can be stdd¢
using L2, L1 and LO in OCW2 and R=1, SL=1, EOI=0.

The selected bottom priority fixes other prioriti#dR5 is selected as a
bottom priority, then IR5 will have least priorignd IR4 will have a next
higher priority. Thus IR6 will have the highestqorty.

These priorities can be changed during an EOI cordrbgirprogramming
the rotate on specific EOl command in OCW2.

Specific Mask Mode In specific mask mode, when a mask bit is set in
OCW1, it inhibits further interrupts at that levagld enables interrupt from
other levels, which are not masked.

Edge and Level Triggered Mode This mode decides whether the interrupt
should be edge triggered or level triggered. ILGitM of ICW1 =0 they are
edge triggered, otherwise the interrupts are laiggered.

Reading 8259 Status The status of the internal registers of 8259A loan
read using this mode. The OCWa3 is used to read RR%R while OCW1
is used to read IMR. Reading is possible only irpalbled mode.

Poll Command: In polled mode of operation, the INT output of 825s
neglected, though it functions normally, by notrecting INT output or by
masking INT input of the microprocessor. The polldads entered by
setting P=1 in OCWa3.

The 8259A is polled by using software execution bgraprocessor instead
of the requests on INT input. The 8259A treats #ve RD pulse to the
8259A as an interrupt acknowledge. An approprigf bit is set, if there is
a request. The priority level is read and a datadwsplaced on to data bus,
after RD is activated. A poll command may give mibr@n 64 priority

levels.
D~ Ds Ds D, I D, Iy Dy

1 X X X X w1 w1 Wi

$ 4 + Binary code of
If =1, there is an interrupt highest priority
level

Special Fully Nested Mode This mode is used in more complicated system,
where cascading is used and the priority has f@rdgrammed in the master
using ICW4. this is somewhat similar to the normadted mode.

In this mode, when an interrupt request from aateslave is in service, this
slave can further send request to the mastere ifgfuesting device connected
to the slave has higher priority than the one beungently served. In this
mode, the master interrupt the CPU only when tteriapting device has a
higher or the same priority than the one curremidgeerved. In normal mode,
other requests than the one being served are masked

When entering the interrupt service routine thévearfe has to check whether
this is the only request from the slave. This isglby sending a non-specific
EOI can be sent to the master, otherwise no EQildHme sent. This mode is
important, since in the absence of this mode, fdneesvould interrupt the
master only once and hence the priorities of taeesinputs would have been
disturbed.

Buffered Mode: When the 83259A is used in the systems wheralbumg
buffers are used on data buses. The problem ofiegahe buffers exists. The
8259A sends buffer enable signal on SP/ EN pinnefier data is placed on
the bus.

Cascade ModeThe 8259A can be connected in a system contaoniieg
master and eight slaves (maximum) to handle ugtpridrity levels. The
master controls the slaves using CAS0-CAS2 whittagachip select inputs
(encoded) for slaves.

In this mode, the slave INT outputs are connectigld master IR inputs. When
a slave request line is activated and acknowledfednaster will enable the
slave to release the vector address during seaalsd pf INTA sequence.
The cascade lines are normally low and contairestaidress codes from the
trailing edge of the first INTA pulse to the traij edge of the second INTA
pulse. Each 8259A in the system must be separaiéblized and
programmed to work in different modes. The EOI caanchmust be issued
twice, one for master and the other for the slave.

A separate address decoder is used to activattipeelect line of each
8259A.

» Following Fig shows the details of the circuit centions of 8259A in cascade
scheme.

< ADDEESS EUS

A, A

COMIBEOL BUS

<
L TP
LT 1 T

EZVVVV

s

¥
s bl NT cs A DoeDr RT cs D
SPE Master 5P Slave 0 Slave 7
| 1[51L1L1[311 MMy | R IR} TRyoeommoo- IR,
O N SR EE R AR LIRS AR R RE

INT
Fig : 8159A in Cascade Mode

Keyboard/Display Controller 8279

* While studying 8255, we have explained the use2668n interfacing
keyboards and displays with 8086. The disadvantafjgss method of
interfacing keyboard and display with 8086 is tifit processor has to
refresh the display and check the status of thbedayl periodically using
polling technique. Thus a considerable amount dil @Re is wasted,
reducing the system operating speed.

* Intel's 8279 is a general purpose keyboard disptatroller that
simultaneously drives the display of a system atelfaces a keyboard with
the CPU, leaving it free for its routine task. Aitebture and Signal.

Descriptions of 8279
» The keyboard display controller chip 8279 provides:
a) a set of four scan lines and eight return linesriterfacing keyboards
b) A set of eight output lines for interfacing display
» Fig shows the functional block diagram of 8279dwléd by its brief

description.

I/O Control and Data Buffers : The 1/0O control section controls the flow
of data to/from the 8279. The data buffers intertaeeexternal bus of the
system with internal bus of 8279.

The I/O section is enabled only if CS is low. Thespi®, RD and WR
select the command, status or data read/write tpesacarried out by the
CPU with 8279.

Control and Timing Register and Timing Control : These registers store
the keyboard and display modes and other operatinditions programmed
by CPU. The registers are written with AO=1 and WRH@e Timing and
control unit controls the basic timings for the gi®n of the circuit. Scan
counter divide down the operating frequency of 8@r8erive scan
keyboard and scan display frequencies.

Scan Counter : The scan counter has two modes to scan the key matrix and
refresh the display. In the encoded mode, the counter provides binary

count that is to be externally decoded to provide the scan lines for

keyboard and display (Four mode, the counter internally decodes the least
significant 2 bits and provides a decoded 1 out of 4 scan on SLO-SL3(Four
internally decoded scan lines may drive upto 4 displays). The keyboard and
display both are in the same mode at a time.

Return Buffers and Keyboard Debounce and Contral This section for a
key closure row wise. If a key closer is detecthd,keyboard debounce unit
debounces the key entry (i.e. wait for 10 ms). Afite debounce period, if
the key continues to be detected. The code ofkeyrectly transferred to
the sensor RAM along with SHIFT and CONTROL key status
FIFO/Sensor RAM and Status Logic In keyboard or strobed input mode,
this block acts as 8-byte first-in-first-out (FIFRAM. Each key code of the
pressed key is entered in the order of the entyimthe mean time read by
the CPU, till the RAM become empty.

The status logic generates an interrupt after ee Fead operation till the
FIFO is empty. In scanned sensor matrix mode,uhisacts as sensor
RAM. Each row of the sensor RAM is loaded with thedss of the
corresponding row of sensors in the matrix. If @see changes its state, the
IRQ line goes high to interrupt the CPU.

Display Address Registers and Display RAM The display address
register holds the address of the word currentigdoeritten or read by the
CPU to or from the display RAM. The contents of tbgisters are
automatically updated by 8279 to accept the nete eatry by CPU.

DBD-DBT@

RO WR P

DATA

/'O

BUFFERS

 CONTROL

T

[

FIFO/SENSOR
— % RAM STATUS

1L

A

| INTERNAL 8 BIT DATA BUS

l L R 1k U
gl © KEYBOARD
DISPLAY 168 S L(IONTROL 8*8 FIFO/ PEBOUNCE
ADDRESS DISPLAY |~ AND SENSOR AND
REGISTERS RAM TIMING || RAM (CONTROL
:) REGISTERS ™ A
TIMING
V AND v
DISPLAY CONTROL SCAN Return
REGISTERS [—NTT < COUNTER 5
u v H‘SHIFJ |
OUT Ap-A; BD SLyZ SLs RL;-RL, CNTL/
OUT Bo-Bs 8279 Internal Architecture STB

Pin Diagram

1 40 [Veeo
RL: {2 30 |— RL,
CLK — 3 35 — Rl
IRQ — 4 37 — CNTL/STE
RL, 5 36 — SHIFT
Bl: {6 35 — SL;
EL; 7 34 — SL,
RI- 8§ 33 — 51,
RESET— 9 8270 32 — SL,
RED —{ 10 - 31 — OUT By,
WE 11 0 —OUT B
DB, — 12 20 — OUT B,
DB; — 13 28 — OUT B,
DE; {14 27 —OUT A,
DB; —{ 15 260 — OUT A
DB, — 16 25 — OUT A,
DB: {17 4 —OUT A,
DB; — 18 23 — BD
DB, — 19 g J S
Vss — 20 21

827% Pin Configuraftion

The signal description of each of the pins of 823 foows :

* DBO-DB7: These are bidirectional data bus lines. The datacammand
words to and from the CPU are transferred on thess.

* CLK : Thisis a clock input used to generate intermairtg required by 8279.

* RESET : This pin is used to reset 8279. A high on this lieset 8279. After
resetting 8279, its in sixteen 8-bit display, kfitry encoded scan, 2-key
lock out mode. The clock prescaler is set to 31.

* CS: Chip Select — A low on this line enables 8279rformal read or write
operations. Other wise, this pin should remain high

» AO : A high on this line indicates the transfer ofcerenand or status
information. A low on this line indicates the tréarsof data. This is used to
select one of the internal registers of 8279.

* RD, WR (Input/Output) READ/WRITE - These input pins enable the data
buffers to receive or send data over the data bus.

* IRQ : This interrupt output lines goes high when thera data in the FIFO
sensor RAM. The interrupt lines goes low with eBthfO RAM read
operation but if the FIFO RAM further contains dwmy-code entry to be
read by the CPU, this pin again goes high to gea@minterrupt to the
CPU.

* V/ss, Vcc: These are the ground and power supply lines focittuit.

» SLO-SL3-Scan Lines These lines are used to scan the key board naatdx
display digits. These lines can be programmed esdad or decoded, using
the mode control register.

* RLO - RL7 - Return Lines : These are the input lines which are connected
to one terminal of keys, while the other terminalhe keys are connected to
the decoded scan lines. These are normally higlpuled low when a key
IS pressed.

* SHIFT : The status of the shift input lines is stored glaith each key code
in FIFO, in scanned keyboard mode. It is pulledrternally to keep it high,
till it is pulled low with a key closure.

* BD — Blank Display: This output pin is used to blank the display dgigligit
switching or by a blanking closure.

* OUT A0 — OUT A3 and OUT BO — OUT B3- These are the output ports for
two 16*4 or 16*8 internal display refresh registérhe data from these
lines is synchronized with the scan lines to sbandisplay and keyboard.
The two 4-bit ports may also as one 8-bit port.

* CNTL/STB- CONTROL/STROBED I/P Mode : In keyboard mode, this
lines is used as a control input and stored in FOR@ key closure. The line
Is a strobed lines that enters the data into FIRMRN strobed input mode.
It has an interrupt pull up. The lines is pulledwiowith a key closer.

Modes of Operation of 8279

» The modes of operation of 8279 are as follows :

1. Input (Keyboard) modes.

2. Output (Display) modes.

* Input (Keyboard) Modes : 8279 provides three input modes. These modes
are as follows:

1. Scanned Keyboard Mode This mode allows a key matrix to be interfaced
using either encoded or decoded scans. In encaded an 8*8 keyboard or
in decoded scan, a 4*8 keyboard can be interfaldeel code of key pressed
with SHIFT and CONTROL status is stored into the FIR&M.

2.Scanned Sensor Matrix In this mode, a sensor array can be interfacéu wi
8279 using either encoded or decoded scans. Withdex scan 8*8 sensor
matrix or with decoded scan 4*8 sensor matrix caimkerfaced. The sensor
codes are stored in the CPU addressable sensor RAM.

3. Strobed input: In this mode, if the control lines goes low, tteta on return
lines, is stored in the FIFO byte by byte.

* Output (Display) Modes: 8279 provides two output modes for selecting the
display options. These are discussed briefly.

1. Display Scan: In this mode 8279 provides 8 or 16 character ipleked
displays those can be organized as dual 4- bihgtes8-bit display units.

2. Display Entry : (right entry or left entry mode) 8279 allows apts for data
entry on the displays. The display data is entevediplay either from the
right side or from the left side.

Command Words of 8279

» All the command words or status words are writteread with AO = 1 and
CS =0 to or from 8279. This section describes/ireous command
available in 8279.

a) Keyboard Display Mode Set- The format of the command word to select
different modes of operation of 8279 is given beloith its bit definitions.

D; Des Ds D4 Ds D2 D1 Do | Ao
ol o/l b] b|] b|] K| K| K| 1

Display modes

Eight 8-bit character Left entry
Sixteen 8-bit character left entry

Eight 8-bit character Right entry

e o o
= o = o -

Sixteen 8-bit character Right entry

7
2
7

Kevboard modes

e e e = = = I ==

Encoded Scan, 2 key lockout (Default after reset)
Decoded Scan, 2 key lockout
Encoded Scan, N- key Roll over

Decoded Scan, N- key Roll over
Encode Scan, N- key Roll over

Decoded Scan, N- key Roll over

Strobed Input Encoded Scan

= D D e e O D
Il — I — =

Strobed Input Decoded Scan

b) Programmable clock: The clock for operation of 8279 is obtained by

dividing the external clock input signal by a pragymable constant called
prescaler.

PPPPP is a 5-bit binary constant. The input frequendivided by a
decimal constant ranging from 2 to 31, decidedhayltits of an internal
prescaler, PPPPP.

D; Des Ds D4 Ds D2 D1 Do | Ao
ol ol 1] P|] P| P | P| P |1

Read FIFO / Sensor RAM: The format of this command is given below.

This word is written to set up 8279 for reading FIE@nsor RAM. In
scanned keyboard mode, Al and AAA bits are of rm ihie 8279 will
automatically drive data bus for each subsequexat, i@ the same sequence,
in which the data was entered.

In sensor matrix mode, the bits AAA select onehef8 rows of RAM. If Al
flag is set, each successive read will be fronstiissequent RAM location.

D; Des Ds D4 Ds D2 D1 Do | Ao
o]l 1] o] AL | X|] A]A] A] 1

X —don’t care

* Al — Auto Increment Flag
* AAA - Address pointer to 8 bit FIFO RAM

d) Read Display RAM: This command enables a programmer to read the
display RAM data. The CPU writes this command wior8279 to prepare
it for display RAM read operation. Al is auto inorent flag and AAAA, the
4-bit address points to the 16-byte display RAM thdo be read. If Al=1,
the address will be automatically, incrementedraféeh read or write to the
Display RAM. The same address counter is used &afing and writing.

D; Des Ds D4 Ds D2 D1 Do | Ao
ol 1] 1] AL A] A Al A1

e) Write Display RAM :
Al — Auto increment Flag.
AAAA — 4 bit address for 16-bit display RAM to beitten.

D; Des Ds D4 Ds D2 D1 Do | Ao
1] o] o] AL A| A A A |1

f) Display Write Inhibit/Blanking : The IW (inhibit write flag) bits are used
to mask the individual nibble as shown in the betmmmand word. The
output lines are divided into two nibbles (OUTA@UTAS3) and (OUTBO
— OUTB3), those can be masked by setting the carnebpg IW bit to 1.

* Once a nibble is masked by setting the correspgnV bit to 1, the entry to
display RAM does not affect the nibble even thoughay change the
unmasked nibble. The blank display bit flags (BL) ased for blanking A
and B nibbles.

* Here DO, D2 corresponds to OUTB0 — OUTB3 while Dd &x3
corresponds to OUTAO-OUTAS3 for blanking and masking

» If the user wants to clear the display, blank (Bit$ hre available for
each nibble as shown in format. Both BL bits wilVbdo be cleared for
blanking both the nibbles.

D; Des Ds D4 Ds D2 D1 Do | Ao
1] o] 1| X | w]|] w | BL| BL 1

g) Clear Display RAM : The CD2, CD1, CDQO is a selectable blanking code to
clear all the rows of the display RAM as given beldhe characters A and
B represents the output nibbles.
* CD2 must be 1 for enabling the clear display comun#CD2 = 0, the
clear display command is invoked by setting CA=d araintaining

CD1, CDO bits exactly same as above. If CF=1, FsEus is cleared
and IRQ line is pulled down.

» Also the sensor RAM pointer is set to row 0. if ClAthis combines the
effect of CD and CF bits. Here, CA represents Cidband CF as Clear

FIFO RAM.

D; Des Ds D4 Ds D2 D1 Do | Ao
1] 1| 0] cbz2 [CcD1 [CDo |[CF | CA | 1

CD CD1 CDo
1 0 X
1 1 0
1 1 1

All zeros (x don’t care) AB=00
A3-A0 =2 (0010) and B3-B0=00 (0000)
All ones (AB =FF), i.e. clear RAM
h) End Interrupt / Error mode Set : For the sensor matrix mode, this
command lowers the IRQ line and enables furthetivgrinto the RAM.
Otherwise, if a change in sensor value is deteti®&d,goes high that
inhibits writing in the sensor RAM.
* For N-Key roll over mode, if the E bit is programntedoe ‘1’, the 8279
operates in special Error mode. Details of this enak described in
scanned keyboard special error modedon’t care.

D; Des Ds D4 Ds D2 D1 Do | Ao
1] 1| 1| E | X | X | X | X | 1

Programmable Communication Interface 8251 USART

8251 is a USART (Universal Synchronous Asynchrori®eseiver Transmitter)
for serial data communication. As a peripheral dewf a microcomputer system,
the 8251 receives parallel data from the CPU aaisiits serial data after
conversion. This device also receives serial data the outside and transmits
parallel data to the CPU after conversion.

Transmit
Buffer
(P-8§)

—= TXD

Transmit
Control

Data Bus
D7 D3<::> Buffer
i
RESET —={
%&%_.. Read/Write
RD—=g CGontrol
WR—=s Logic
CS—-C
DSR —=
Eq—c Modem
CTS—=c Control
RTS =—-rq

Internal Bus Line

—== TXRDY

—= TXE

p— TXC

Recieve

Buffer

L

(5-P)

r— RXD

r

Recieve
Control

—= RXRDY

ba—— RXC

+—w SYNDET/BD

Block diagram of the 8251 USART (Universal Synchroous Asynchronous
Receiver Transmitter)
The 8251 functional configuration is programed bfgvgare. Operation between

the 8251 and a CPU is executed by program coritatile 1 shows the operation

between a CPU and the device.

CS | C/D| RD | WR
1 P P X Data Bus 3-State
0 X 1 1 Data Bus 3-State
0 1 0 1 Status — CPU
0 1 1 0 Control Word « CPU
0 0 0 1 Data — CPU
0 0 1 0 Data « CPU

Table 1 Operation between a CPU and 8251

Control Words
There are two types of control word.
1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the functidrh@ 8251. Mode instruction will
be in "wait for write" at either internal reseteternal reset. That is, the writing of
a control word after resetting will be recognizedad'mode instruction."”

Items set by mode instruction are as follows:

» Synchronous/asynchronous mode

* Stop bit length (asynchronous mode)

» Character length

* Parity bit

» Baud rate factor (asynchronous mode)

* Internal/external synchronization (synchronousig)o

* Number of synchronous characters (Synchronouseinod

The bit configuration of mode instruction is showrFigures 2 and 3. In the case
of synchronous mode, it is necessary to write an®+o byte sync characters. If
sync characters were written, a function will belsxause the writing of sync
characters constitutes part of mode instruction.

0; Dg Ds D4 Dy D5 D Dy
S 54 EP PEN Ly L, B, B+
Baud Rate Factor
- 0 1 0 1
- 0 0 1 1
H,fif;_ré” 1x | 16x | 64x
SYNC
Charactor Length
= 0 1 0 1
= 0 0 1 1
5 bits 6 bits 7 bits | 8 hits
Parity Check
= 0 1 0 1
= 0 0 1 1
Disable Pi[fjidhf Disable F'f:r'f{;
stop bit Length
0 1 0 1
0 0 1 1
Inhabit 1 bit 150its | 2 bits

Fig. 2 Bit Configuration of Mode Instruction (Asynchronous)

o

oGS | ESD | EP | PEN Ly L

Charactor Length

0 1 0 1
0 0 1 1
5 bits B bits 7 bits 8 hits
Parity
0 1 0 1
0 0 1 1
. Odd . Even
Disable Parity Disahle Parity
synchronous Mode
0 1
Internal External

synchronization

synchronization

Number of Synchronous Charactors

0

1

Z Charactors

1 Charactor

Fig. 3 Bit Configuration of Mode Instruction (Synchronous)

2) Command

Command is used for setting the operation of tH€l8# is possible to write a

command whenever necessary after writing a modeuti®n and sync

characters.

Items to be set by command are as follows:
» Transmit Enable/Disable

* Receive Enable/Disable

* DTR, RTS Output of data.

* Resetting of error flag.

» Sending to break characters
* Internal resetting

* Hunt mode (synchronous mode)

EH IR RTS | ER | S5BRK | RXE | DTR | TXEN

1... Transmit Enable
0...Disable

|

TR

_:.
_:.

=
o

T
T

3
= —

=0
=1

=
o

1...Recieve Enable
0...Disable

—

...5ent Break Charactor

0...Normal Operation

1...Reset Error Flag

=

..Normal Qperation

|

TS5

_:.
_:.

=
o

T
T

3
= = T

=0
=1

=
o

1...Internal Reset

0...Normal Operation

1...Hunt Mode (Note)
0...Normal Operation

Note: Seach mode for synchronous
charactors in synchronous mode.

Fig. 4 Bit Configuration of Command

Status Word

It is possible to see the internal status of tH&l82y reading a status word. The bit
configuration of status word is shown in Fig. 5.

7 Dg Ds D4 Dz D= D4 Do
DER

L

SVRINE
"IP.RD'T FE OE PE THEMPTY | RXRDY | TRDY

JBD
L Parity Diffarent from
TARDY Terminal.

Refer to "Explanation”
of TXRDY Terminals.

Same as terminal.
& #—w» Refer to "Explanation”
of Terminals.

w 1...Parity Error

1...0verrun Error

1

1...Framing Error

1

Note: Only asynchronous mode.
Stop bit cannot be detected

Fig. 5 Bit Configuration of Status Word

Pin Description
D 0to D 7 (/O terminal)

This is bidirectional data bus which receive conivotds and transmits data from
the CPU and sends status words and received d&Rauo

RESET (Input terminal)

A "High" on this input forces the 8251 into "resédtus.” The device waits for the
writing of "mode instruction.” The min. reset widthsix clock inputs during the
operating status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device tgnfdLK signal is independent
of RXC or TXC. However, the frequency of CLK mustdreater than 30 times
the RXC and TXC at Synchronous mode and Asynchrotdifsmode, and must
be greater than 5 times at Asynchronous "x16" aBd™ mode.

WR (Input terminal)

This is the "active low" input terminal which recessa signal for writing transmit
data and control words from the CPU into the 8251.

RD (Input terminal)

This is the "active low" input terminal which recessa signal for reading receive
data and status words from the 8251.

C/D (Input terminal)

This is an input terminal which receives a signalsielecting data or command
words and status words when the 8251 is accesstwfyPU. If C/D = low, data
will be accessed. If C/D = high, command word atwst word will be accessed.

CS (Input terminal)

This is the "active low" input terminal which seletihe 8251 at low level when the
CPU accesses. Note: The device won't be in "stasthiys”; only setting CS =
High.

TXD (output terminal)

This is an output terminal for transmitting datanfravhich serial-converted data is
sent out. The device is in "mark status" (high leaéter resetting or during a
status when transmit is disabled. It is also pdssdset the device in "break
status” (low level) by a command.

TXRDY (output terminal)

This is an output terminal which indicates that82&1lis ready to accept a
transmitted data character. But the terminal isagnat low level if CTS = high or
the device was set in "TX disable status" by a continblote: TXRDY status
word indicates that transmit data character isivabée, regardless of CTS or

command. If the CPU writes a data character, TXRDIYbe reset by the leading
edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that82&1 has transmitted all the
characters and had no data character. In "synchsomode," the terminal is at
high level, if transmit data characters are no érrgmaining and sync characters
are automatically transmitted. If the CPU writeda#a character, TXEMPTY will
be reset by the leading edge of WR signal. Note th& transmitter is disabled by
setting CTS "High" or command, data written befisable will be sent out. Then
TXD and TXEMPTY will be "High". Even if a data is wtatn after disable, that
data is not sent out and TXE will be "High".Afteettransmitter is enabled, it sent
out. (Refer to Timing Chart of Transmitter Controtldfiag Timing)

TXC (Input terminal)

This is a clock input signal which determines tlasfer speed of transmitted data.
In "synchronous mode," the baud rate will be theesas the frequency of TXC. In
"asynchronous mode", it is possible to select tngdlrate factor by mode
instruction. It can be 1, 1/16 or 1/64 the TXC. Taléng edge of TXC sifts the
serial data out of the 8251.

RXD (input terminal)
This is a terminal which receives serial data.
RXRDY (Output terminal)

This is a terminal which indicates that the 8251tams a character that is ready to
READ. If the CPU reads a data character, RXRDY hallreset by the leading
edge of RD signal. Unless the CPU reads a datactesbefore the next one is
received completely, the preceding data will bé. lmssuch a case, an overrun
error flag status word will be set.

RXC (Input terminal)

This is a clock input signal which determines tlamsfer speed of received data. In
"synchronous mode," the baud rate is the sameedsdatjuency of RXC. In
"asynchronous mode," it is possible to select tngdlrate factor by mode
instruction. It can be 1, 1/16, 1/64 the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes accortingode. In "internal
synchronous mode." this terminal is at high leifedync characters are received
and synchronized. If a status word is read, thaitel will be reset. In "external
synchronous mode, "this is an input terminal. Agilion this input forces the
8251 to start receiving data characters.

In "asynchronous mode," this is an output termiviaich generates "high
level"output upon the detection of a "break” chteai receiver data contains a
"low-level" space between the stop bits of two oardus characters. The terminal
will be reset, if RXD is at high level. After Regstactive, the terminal will be
output at low level.

DSR (Input terminal)

This is an input port for MODEM interface. The inptatss of the terminal can be
recognized by the CPU reading status words.

DTR (Output terminal)

This is an output port for MODEM interface. It is pide to set the status of DTR
by a command.

CTS (Input terminal)

This is an input terminal for MODEM interface whichused for controlling a
transmit circuit. The terminal controls data trarssion if the device is set in "TX
Enable" status by a command. Data is transmitaltkeeiferminal is at low level.

RTS (Output terminal)

This is an output port for MODEM interface. It is pide to set the status RTS by
a command.

8527 DMA Controller

The 18527 controller has four independent chanreth ef which contains an
address register and a counter. The counter dectemerach byte transfer occur,
and forces termination of the DMA operation aftex tast transfer. The controller
increments the address registers after each operab that successive data
transfers are made at contiguous ascending addrd3se arbiter resolves conflicts
among the channels for access to memory. Two methade been used in this

chip to make the chip useful in a variety of diffiet applications. In one mode the
channels have a fixed priority and conflicts amoheed according to the priority,
for example, Channel 0 has highest priority andrmle&3 lowest. The second
mode is a rotating priority scheme in which pripriankings are the four cycle
shifts of 0-1-2-3, when a channel is granted actieise bus the priority ranking
shifts cyclically to place the channel in the lowesority position for the next
arbitration cycle.

_DACKOL,
Channel O DR O
“ g CACK 1L
Microprocessor bus & & < Channel 1 | DRG
7 = |
VO READ L < DACK 2L
VO WRITE L Channel 2 | pRra o
DAaCK 3L
Chanfel 3 | DR 2
M"p.l MEM BEAD L
E =-' - MEMWRITEL | Coniral signal
£ HED inkarpratar and
p o | = generabar
=2 HLDHA,
4]
WA RK I
EE TG
il
- -

Figure 5-4: Structure of the i8527 DMA controller
The chip has four signals associated with the READWWRITE operation. MEM
READ L and MEM WRITE L are signals produced by DMA coti&moto exercise
memory. The two signals /O READ L and I/O WRITE L ardirectional, they
are inputs from the microprocessor when the mi@ogssor sends commands to
the 8257 and reads back the 8257 status. Durinj@h&peration these signals are
output from the 8257 and are functionally oppositthe memory signals. The
8257 takes control of the bus by exercising HALT (HR&d receives back the
"go-ahead" signal on HALT ACKNOWLEDGE (HLDA).
Two signals produced by the DMA controller can beduly the 1/0 port to assist
in controlling the transfer process. One signal T&minal count--is asserted
during the last cycle of a DMA block. This can bediso describe a DMA mode
on an 1/O port or to reset the port's internalestatindicate the end of a transfer.
The second--MARK--is inserted when the remainingnt@n a channel became a
multiple of 128--providing a convenient timing satior an external device.

Interrupts 8086

The meaning of ‘interrupts’ is to break the seqeeoicoperation. While the
CPU is executing a program, an ‘interrupt’ bredleshormal sequence of
execution of instructions, diverts its executiorstone other program called
Interrupt Service Routing(TSR). After executing TSR, the control is
transferred back again to the main program whick beang executed at the
time of interruption.

Whenever a number of devices interrupt a CPU e, land if the processor is
able to handle them properly, it is said to hawg{tiple interrupt
processing capability.

Need for Interrupt: Interrupts are particularly useful when interfacihO
devices that provide or require data at relativ@ly data transfer rate.

Sources of Interruptsin 8086: There are two pins for Interrupts in 8086. These
are:

» Hardware Interrupts (External Interrupts) — INTRIMN
» Software Interrupts (Internal Interrupts and Ingttions) — INT n
instructions

(i) Hardware Interrupts (External | nterrupts)-

The Intel microprocessors 8086pport hardware interrupts through:

Two pins that allow interrupt requests, -INTR anéIN
However one pin that acknowledges, INTR is INTA.

Edge triggered

Input
NMI
: _ Tevel triggered

INTR Input

INTA | Response to
INTR mput

8086

INTR and NMI

1. INTR is a maskable hardware interrupt. The interruptlza
enabled/disabled using STI/CLI instructions or gsmore complicated
method of updating the Interrupt Flag (IF).

2. The INTR, further, is of 256 types. The INTR typesy be fronD0 to
FFH (or 00 to255).If more than one type of INTR interrupt occurs at a
time, then an external chip called programmablermapt controller is
required to handle them. The same is the cas@fR linterrupt input of
8085.

* When an interrupt occurs, the processor stores FRAggister into
stack, disables further interrupts, fetches froelibs one byte
representing interrupt type, and jumps to interprptessing
routine address of which is stored in location

4 * <interrupt type>
Interrupt processing routine should return wité IRET instruction.

3. NMI is a non-maskable interrupt which means that atgriupt request
at NMI input cannot be masked or disabled by angimae
» This Interrupt is processed in the same way afNf& interrupt.
* Interrupt type of the NMl is 2, i.e. the addressha NMI
processing routine is stored in location 0008h.
» This interrupt has higher priority than the maskahterrupt.
Ex: NMI, INTR,

(i1) Software Interrupts (Internal Interrupts and
| nstructions)-

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This isygpé 3 interrupt.
INT <interrupt number> instruction - any one intgat from available
256 interrupts.
INTO instruction - interrupt on overflow
Single-step interrupt - generated if the TF flagas This is a type 1
interrupt. When the CPU processes this interrugesirs TF flag before
calling the interrupt processing routine.
Processor exceptions: Divide Error (Type 0), UnuSedode (type 6)
and Escape opcode (type 7).
Software interrupt processing is the same as foh#rdware interrupts.
- Ex: INT n (Software Instructions)
Control is provided through:

o IF and TF flag bits

o IRET and IRETD

Action taken when Interrug ocurres

Mainline PUSH Flaos f}[HH procedure
Program o ag:! o
CLEARIF TF / PUSH registers
PUSH CS
PUSH IP _

FETCH ISR ADDRESS

) POP regisiers
7 1t — POP IP
' l\\ POP CS IRET
POP FLAGS

decrements SP by 2 and pushe: flag register on the stac

8. Disables INTR by clearing the |

9. It resets the TF in the flag Regist

10.t decrements SP by 2 and pushes CS on the ¢

111t decrements SP by 2 and pushes IP on the ¢

12 Fetch the ISR address from the interrupt vectdel

13 After executing ISR (e., when IRET invoked) then IP, C:nd
Flag register content is popped sc will be decremente
gradually.

| nterrupt Vector Table

Interrupt Type Content (16-bit) Address Comments

ISR IP 0000:0000 ~1 Reserved for divide by Zero
Type O
»e { ISRCS 0000:0002 :| interrupt
s ISR CS 0000:0006 — interrupt
ISR IP 0000:0008 —
Type 2 —[Reserved for NMI
ISR CS 0000:0D00A —
Type 3 ose single byte
_E ISRCS 0000-000E — Instruction
Type 4 —E ik Y Batacaad i IS0 Ribcatsn
o0 in
pe ISR CS 0000:0012 —
0000:0014 ——
0000:0016
- ISR IP 0000004 Reserved for two byle
T'j'ﬂ'ﬂ'” IN
L[Tsres 0000:(004N+2) | 'mstruction INT TYPE
0000.03FC
P -
Type FFH — ISR 0000-03FE
| ISRCS 0000:03FF ——

Every external and internal interrupt is assignétl & type (N), that is
either implicit (in case of NMI, TRAP and divide kgro) or specified in
the instruction INT N (in case of internal intertsip

In case of external interrupts, the type is pass¢ke processor by an
external hardware like programmable interrupt call@r.

The 8086 supports a total of 256 types of the intgs. i.e. from 00 to
FFH. Each interrupt requires 4 bytes. i.e. two $yach for IP and CS of
its TSR. Thus a total of 1024 bytes are require@%6 interrupt types,
hence the interrupt vector table starts at loca@i@®0:0000 and ends at
0000:03FFH.

The interrupt vector table contains the IP and €&ldhe interrupt types
stored sequentially from address 0000:0000 to @BKFF H.

The interrupt type N is multiplied by 4 and the &é&cimal

multiplication obtained gives the offset addresthimzerd' code segment
at which the IP and CS addresses of the intereuptce routine (ISR) are
stored.

IP = (4xn)y
CS=(@4xn)y+ 2 ; where rtype of interrug
» The execution automatically starts from the new IP.

Interrupt Type

Type 0 — Type 4 Intel predefine
Type 5 — Type 31>Reserve
Type 32 — Type 255> User defined Maskable Interr

Functions associated wittType 0 — Type 4— Intel predefined

IHNT Humber :Phrsitalhddre-jsg

IMT 00 i 00000

INT 01 : 00004
IMNT 02 : 00008
IMT FF i 003FC

Type 0 (divide error)

It is invoked by the microprocessor whenever thegn attempt to divid

a number by zero.
ISR is responsible for displaying the message ‘@avError” on the

screen.
IP:00000, CS:000(

Type 1 (Trap or Single stey)
For single stepping the trap flag must b

After execution of each instruction, 8086 autonatjcjumps to 00004t

to fetch 4 bytes for CS: IP of the I¢
The job of ISR is to dump the registers on tc screen

Type 2(Non maskable Interrupt)

- Whenever NMI pin of the 8086 is activated by a hsggnal (5v), the

CPU Jumps to physical memory location 00008 tadhf€6: IP of the
ISR associated with NMI.

Type 3 (Break point)

A break point is used to examine the CPU and meraftey the
execution of a group of Instructions.

It is one byte instruction whereas other instrutiof the form “INT 3”
are 2 byte instructions.

Type 4 (Signed number overflow)

There is an instruction associated with this IN(inberrupt on overflow).

If INT O is placed after a signed number arithmasdMUL or ADD the
CPU will activate Type 4 if OF = 1.

In case where OF =0, the INT 0 is not executadsdoypassed and acts
as a NOP

Performance of Hardware Interrupts

NMI : Non maskable interrupts - TYPE 2 Interrupt
INTR : Interrupt request - Between 20H and FFH

Edge triggered

Input
NMI
: . Level Leveltriggered
INTR| Input
INTA Response to
INTR mnput
8086
Interrupt Priority Structure
Interrupt Priority
Divide Error, INT(n) INTO Highest
NMI
INTR

Single Step Lowest

