CS-424/580A Microcontrollers and Robotics

CS-424/580A

Microcontrollers & Robotics

- Professor Richard R. Eckert
 - EB-N6, 777-4365
 - Office hours: W 10-11:30 A.M., R 1-2:30 P.M.
 - Email: reckert@binghamton.edu
 - Web Page: <u>www.cs.binghamton.edu/~reckert/</u>
 - Link to CS-424/580A
 - Class listserv
 - <u>CS424-L@listserv.binghamton.edu</u>
 - To be activated soon
- CA: Ryan Zielinski
 - Email: rzielin1@binghamton.edu
 - Office hours: TBA

Course Content

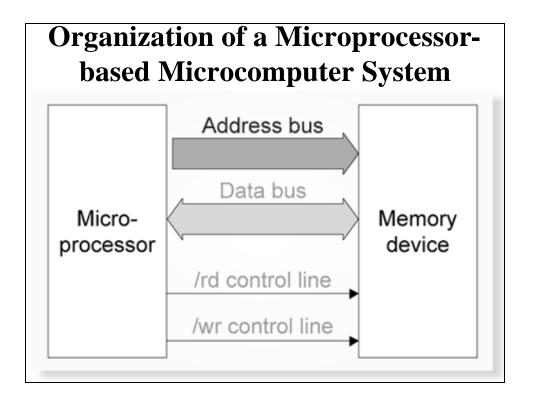
• Microcontrollers

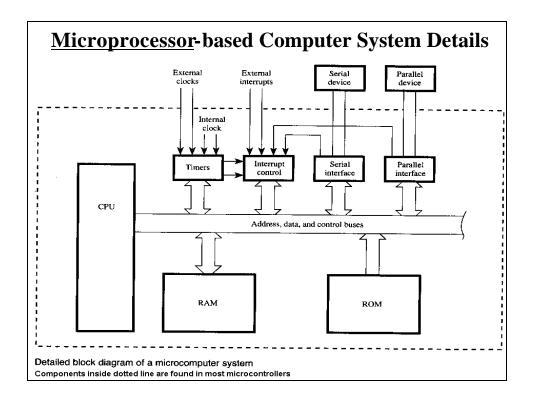
- Architectures, instruction sets, and programming
 - Microchip Technology's PIC microcontrollers - PIC18F452
- Control of alphanumeric LCD displays
- Digital and analog I/O ports
- External memory interface
- A/D, D/A conversion, sensors
- Motor control, PWM
- Timers
- Interrupts
- Serial I/O
 - USARTs
- Robotics
 - LEGO Mindstorms RCX
 - Programming the RCX with NQC
 - Motor/sensor control, Sound, Multitasking, Timers, IR communication, Data logging
 - Behavior architectures
 - Robot navigation
 - Robot vision control
 - Programming with Lejos Java
 - Open-Robot
 - Telerobotics
 - Interfacing with Microsoft .NET
 - Modifying firmware with PIC C Compiler and ICD
 - Robot communications
 - Robot competition

Lab

- Most important part of course
- Every Friday, 1:10-4:10 P.M., LNG-210 – We will meet this Friday
- Students work in teams of three
- One report per team for lab experiments
- 1st half of course: Microcontroller experiments
 - QuikFlash & QuikProto boards
 - PIC 18F452 microcontroller
- 2nd half, robot experiments
 - LEGO Mindstorms RCX
 - Open-Robot

The Microcontroller


- Common component in modern electronic systems
- Computer on a single chip
 - Microprocessor-based device (the "core")
 - Completely self contained with memory and I/O on chip
- Primary role:
 - Provide inexpensive, programmable logic control and interfacing to external devices
 - Monitor external input, receive input from sensors
 - Regulate and turn devices on or off
 - Very commonly used in robots
- Usually <u>embedded</u> in the systems they control


Use of Microcontrollers

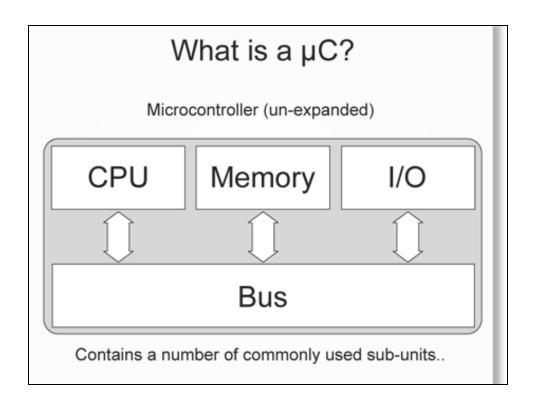
- Greatly outnumber conventional CPUs used in PCs
- Used in a wide variety of electronic systems:
 - Automobile systems
 - PC keyboards and printers
 - Electronic measurement instruments
 - Mobile phones
 - TV, radio, CD/DVD players, tape recording equipment
 - Hearing aids
 - Security alarm systems
 - Microwave ovens
 - Remote controllers
 - Food dispensers
 - Many, many more

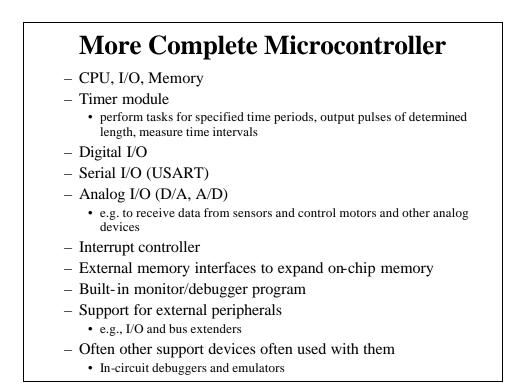
Microprocessor

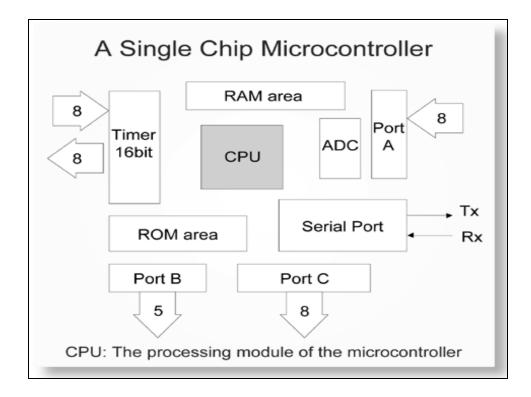
- Programmable device that integrates many useful functions into a single IC package
- The CPU of a computer on a chip
- Some functions:
 - Execute a stored set of instructions to carry out user-defined tasks
 - Access external memory and I/O chips to read/write data from/to memory and I/O devices

Input/Output

- Digital I/O Ports
- Serial vs. Parallel
- Asynchronous vs. Synchronous
- Programmable Parallel Ports (e.g., Intel 8255 PPI)
 Direction, handshaking conventions, etc.
- Serial Interface (e.g., Intel 8251 USART)
- Analog I/O


 A/D, D/A Converters (e.g., 804, 1408)
- Timers (e.g., Intel 8254 PIT)
- Programmed vs. Interrupt-driven I/O
 - Interrupt Controllers (e.g. Intel 8259 PIC)


Memory


- In order of increasing "writeability" and volatility
 - -ROM
 - PROM
 - EPROM
 - EEPROM
 - Flash (non-volatile read/write memory)
 - Static RAM
 - Dynamic RAM

Basic Microcontroller

- Integrates most of the components of a microcomputer system onto a single chip
- Just need to add power and clocking
- Following components usually included:
 - CPU Core
 - I/O
 - Memory
 - PROM, EPROM, or Flash for programs and nonvolatile data
 - RAM for volatile data

Differences between Microprocessors and Microcontrollers

- Design:
 - mC: Designed to control I/O devices
 - mP: Designed to process large amounts of data fast in large computer systems
- Instruction Sets:
 - mP: processing intensive 🖉
 - Powerful, complex instructions w/ many addressing modes
 - Large instruction size
 - mC: Instructions to control I/O &
 - Small instruction sets, set/clear bits, Boolean operations
 - Compact instructions
 - Control program must fit in small on-chip PROM
- Hardware and Instruction Set Support:
 - mC: Built-in I/O operations, event timing, interrupt priority schemes
 - mP: Requires external support (programmable controller chips) for these activities
- Bus Widths:
 - mP: Very wide
 - Large memory address spaces ∠ wide Address Bus – e.g., 4 Gigabyte memory ∠ 32 bit wide Address Bus
 - Lots of data transferred very fast
 ∞ wide Data Bus
 - (32, 64, 128 bits common)
 - mC: Relatively narrow
 - Memory size: kilobytes 🗷 8/16 bit Address Bus
 - Data Bus typically 4, 8, 16 bits wide

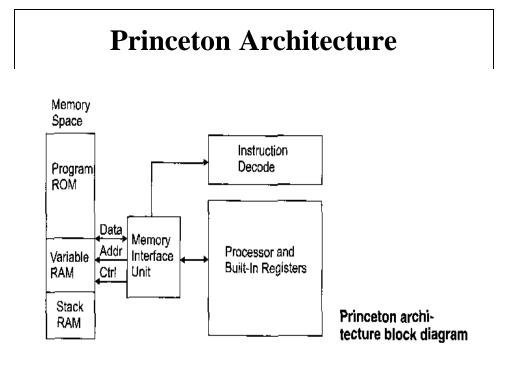
- Clock Rates
 - mP: Very fast for fast processing of large amounts of data
 - Typically > 1 GigaHertz
 - mC: Relatively slow to control slow I/O devices
 - Typically 10 KHz -10 MHz
- Cost
 - mP: High
 - Typically > \$100.00
 - mC: Low
 - 4 Bit: < \$1.00
 - 8 Bit: \$1.00 to \$10.00
 - 16 Bit: \$10.00 to \$20.00
 - Even less in bulk quantities

Microcontroller Software

- Programming
 - Usually in core CPU's native assembly language
 - Sometimes HLL support available (C, Basic)
 - Assemblers/Linkers often provided by mfg.
 - C Compilers:
 - Sometimes free tend to be buggy
 - Better ones are expensive
 - Programming environments
 - Often very unfriendly (not Microchip's MPLAB)
 - Powerful IDE for assembly lang. pgm. development
 - MPLAB SIM simulator for debugging

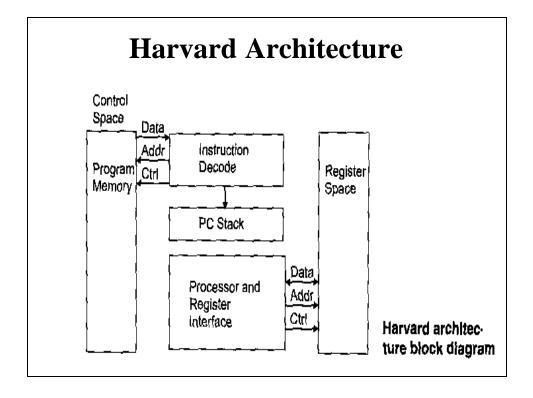
Microcontroller Pgm. Downloading

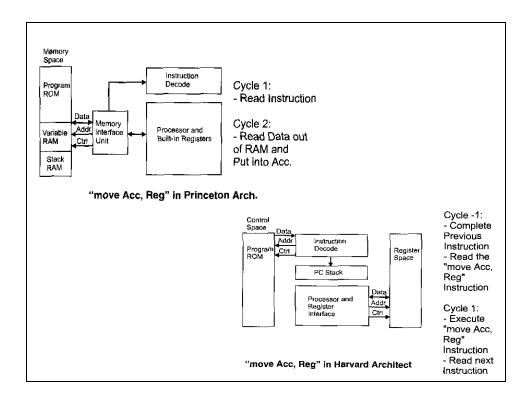
- Program Development usually done on a PC
- SW tools must produce a file that can be downloaded to the mC's PROM or Flash memory
 - Several standard formats
 - Intel Hex format most common
- EEPROM burner often needed
 - Expensive quartz glass window
 - UV EPROM eraser required
- If mC has Flash memory, it's much easier
 - Can be reprogrammed with resident monitor program
 - Often on-chip USART to communicate w/ the PC
 - In-circuit debuggers and emulators can be used

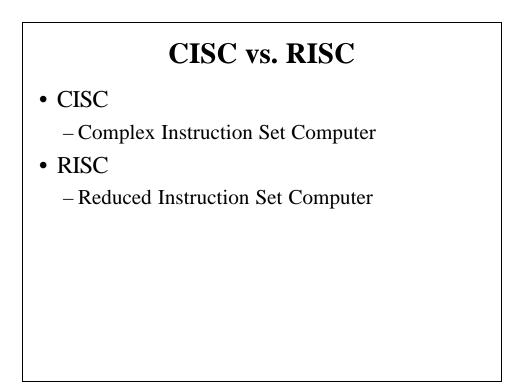

Monitor Program

- On-chip program that communicates with PC software
- Typically uses a serial port to talk to PC terminal emulation program
- Capabilities vary
 - Used to download programs, but often includes a debugger
 - Examine/change registers, memory
 - Single step, set break points
- We'll be using the TeraTerm Pro Terminal program on a PC to communicate with the QuikBug monitor burned into the PIC18F452 mC on our QuikFlash microcontroller boards

Microcontroller Architectures


• Princeton (Von Neumann) Architecture


- All memory space on same bus
- Instructions and data treated in same way
 - Possible bottleneck between instruction fetches and data fetches
- Simple processor design
 - Only one memory interface
 - More reliable since fewer things can fail
 - RAM used for both data ans instructions *«* greater flexibility in SW/OS design
- Intel 80x86 (Pentium) mP, Motorola 68HC11 mC are examples

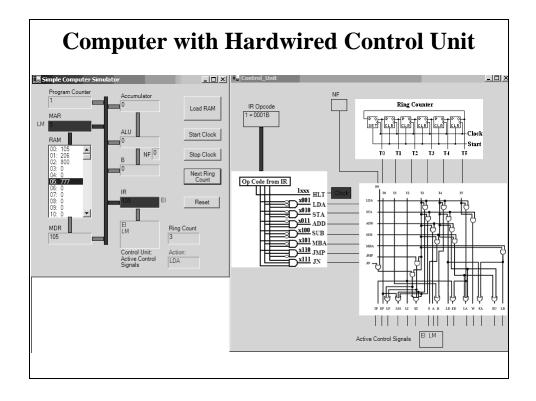


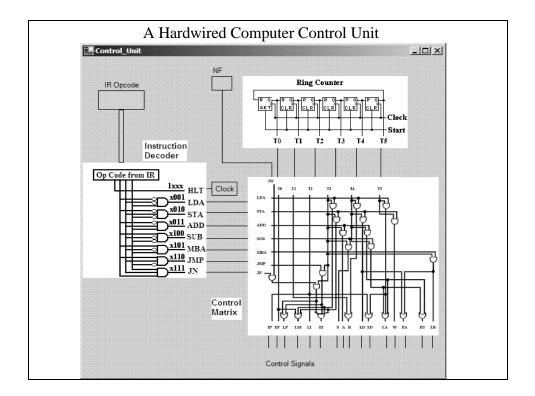
• Harvard Architecture

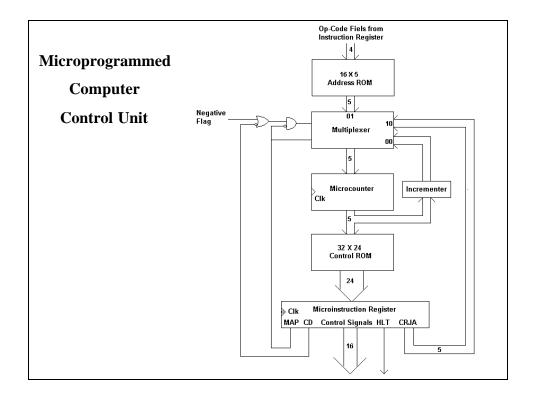
- Code and data memory storage areas are on different busses
- Potentially more efficient
- Instructions execute in fewer cycles
 - Instructions and data can be fetched simultaneously
 - Greater instruction parallelism
- More complex processor design
- Example: Microchip's PIC microcontrollers

CISC

- Many instructions in the instruction set
 Can be very powerful and serve very special purposes
- Many addressing modes
- Can do complex operations with one instruction - But many are used very infrequently
- Many are very long (many bytes) and require many clock cycles
- Example: Intel 80X86
- Control Unit (Instruction Decoder) must be very complex, occupying much of chip area
 - Less space for registers
 - More access to memory required
 - Slower


RISC


- Few instructions in the instruction set
 - Simple instructions
 - Short and fast
 - Often instructions are "orthogonal"
 - All access registers in same way
- Few addressing modes
- Example: PIC and many other microcontrollers
- Some mPs and mCs offer both CISC and RISC features
- Simpler (smaller) control unit
 - More space for more registers
 - Less access to memory
 - Faster


Internal Organization of a Computer's Control Unit

• Hardwired

- Control signals required to execute instructions generated by logic gates in a "control matrix"
 - Faster, but less flexible
- Microprogrammed
 - A processor within the processor causes "control words" to be fetched from a control ROM
 - Bits are control signals
 - Greater flexibility in instruction set design
 - Easier to design (SW vs. HW)
 - But slower

Some Examples of Microcontrollers

- Intel 8051
- Microchip's PICmicro
 - We'll use the PIC18F452 in first half of course
- Motorola 68HC11
- Hitachi H8
 - Microcontroller in the LEGO MindStorms RIS RCX used in the second half of the course

Intel 8051 Family

- Introduced in late 1970s
- At the heart of biggest variety of micros on earth
- CISC with Harvard Architecture
- Some Pros:
 - Powerful bit manipulation instructions
 - Part of RAM & many registers bit-addressable
 - Multiply/divide instructions
 - At least two 16-bit timers
 - UART capable of 500 kb/s at 16 MHz
 - Lots of internal RAM
 - Straightforward code addressing always starts at 0
 - Bidirectional I/O easy
 - Excellent free assembler and C compiler available

Intel 8051

- Some Cons:
 - Quirky instruction set
 - Confusing variety of internal/external memory spaces
 - I/O design prevents true floating inputs
 - Not very fast due to clock division
 - Access to external data very weak
 - Single pointer register only
 - Watchdog timer and Brownout Reset not standard

Microchip's PICmicros

- Modern PIC18F452 is the mC on the QuikFlash board used in first half of the course
- RISC with Harvard Architecture
- Some Pros:
 - Simple instruction set
 - Robust hardare
 - Lots of devices incorporated on chip
 - Excellent support
 - Microchip's MPLAB free development environment
 - Wide range of sizes and peripheral choices
 - Many language and tool choices

PICmicros

• Some Cons:

- -4 times slower at any given clock speed
- Relatively weak instruction set
- Limited code and data addressing
- Complex "banked" addressing
- Accumulator-based data processing
 - Single "working" accumulator

Motorola 68HC11

- Some Pros:
 - Competitive with Intel 8051
 - Princeton architecture is easy to understand
 - Powerful, easy-to-use instruction set
 - Popular parts are available and cheap
 - Good support for C compilers
 - Good support from Motorola
- Some Cons:
 - Weak timers
 - Old technology
 - Evaluation board (EVB) expensive and unreliable
 - Not price-competitive
 - Slow

Hitachi H8

- Used in LEGO MindStorms RCX
- Similar in architecture to the 68HC11
- Some Pros:
 - Flash memory
 - Powerful instruction set
 - HLL suport:
 - C, Java, Forth, other language compilers free
 - Wide range of 8 and 16 bit devices
 - Nice evaluation/programming boards available
 - Abundant timers
- Some Cons:
 - Fairly expensive