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2 - HHGHER-ORDER, CASCADED, ACTIVE FILTERS

In the previous chapter we have shown how to design second-order active filters.
However, most filter applications require an order higher than two. The objective of this
section will be to show how to use the first- and second-order filters to achieve higher
order filters. We shall aso introduce a general, second-order stage cdled the biquad. The
biquad is useful as ageneral component in filter realizations.

Higher-order active filters as presented in this section is strictly a design activity. We
will begin by understanding how afilter is specified. A great ded of tabular information is
available as a starting point for the design. This tabular information is generally presented

in the form of anormalized low-passfilter as shown in Fig. 2-1.

Normalized T Fregfuencst/h FC_:ascad%/ of
- LP Filter ransrorm the | First- and/or
NLocan\gaIPiazZSd / Root ™ Rootsto HP, [™TSecond-Order \
Filter with a Locations BP, or BS Stages Denormalize
passband of the Filter
%&%%Sg?cgn Normalized Frequency First-Order Redlization
of 1 ohm Low-Pass | | Transform the | .| REplacement
: RLC Ladder L'sand C'sto of Ladder
Redlization HP, BP, or BS Components

Figure 2-1 - General design approach for active filters of Chapters 2 and 3.

Two design approaches are used design higher-order active filters. One is based on
realizing the root locations of the filter with cascaded first- and second-order stages and the
second is based on replacing components of a passive RLC ladder filter with first-order
stages. We will postpone our discussion of ladder filter design to the next section. If the
filter is to be other than low-pass, then it is necessary to transform the filter design to a
high-pass (HP), bandpass (BP), or bandstop (BS). The last step in higher-order, low-pass
filter design isto denormalize the design to achieve the actual performance specifications.

The subject of active filters is an extensive one and encompasses more material than
can be presented in this section. We shall attempt to give an overview and illustrate some

of the basic concepts and design procedures. For more information, the reader is referred
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to the many excdllent texts that cover this subject in much more detailt. In the smulation
part of this section, we shal illustrate one of the computer-aided design approaches
presently available for the design of activefilters.
Ideal Filters

Filters are generally classified by their magnitude response in the frequency domain
only. However, there are some filters, which will not be considered here, that are
characterized by both their magnitude and phase response. The magnitude response of an
ideal filter will be divided into two types of regions. One region has a gain of unity and is
caled the passband. Even though filters can have gains greater or less than unity in the
passband, we shall consider the passband gain unity for purposes of smplicity. The
second region has again of zero and is called the stopband. We shall also assume that the
ideal filter can have the passband adjacent to the stopband and that wr is the frequency
where the transition is made from one band to the other.

Fig. 2-2 shows the four categories of filtersthat we shall consider. The first category
is caled a low-pass filter and has a gain of 1 from O to wr and a gain of zero for dl
frequencies greater than wt. The ideal low-pass filter is illustrated by Fig. 2-2a. The

magnitude response of thisfilter isgiven as

M O<wswr
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Figure 2-2 - Ided magnitude responses of (a.) low-pass, (b.) high-pass, (c.) bandpass,
and (d.) bandstop filter.
The second category of ided filter isthe high-passfilter and hasagain of 0 from 0 to

wr and again of 1 for al frequencies greater than or equal to wr. The ideal high-pass filter

isshownin Fig. 2-2b. The magnitude response of the high-passfilter is given as

B0 Osw<wg

Thp(w)| = O

Ol wisw<o (2-2)

The third category of ided filters is the bandpass filter and has a gain of 1 between the

frequencies of wr1 and wr2 and a gain of zero elsewhere. The magnitude response of an

ideal bandpassfilter is shown in Fig. 2-2c and is mathematically expressed as

[p O<w<wT1
Tep(w)| =[]l wrisw<wrz . (2-3)
(L)T2<Q)<OO

The fourth and last category of ided filters is the bandstop filter and has a gain of O
between the frequencies of wry1 and wr2 and a gain of 1 elsewhere. The magnitude
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response of an ideal bandpass filter is shown in Fig. 2-2d and is mathematically expressed
as

e O<w<wT1

Tep(w)| = DO WT1ISW<WT?2 . (2-4)
WT2<W<00

The phase response of each of these idedl filtersis exactly the same. Itisgiven as
Arg[T(jw)] =-wTg, 0<sw<oo . (2-5)
We see the ideal phase shift isa straight line passing through O degrees at w = 0 and having
adopeof -Tyq. Because the time delay of afilter is equa to the negative derivative of the
phase shift with respect to frequency, Tq is called the time delay of thefilter and is constant
for al frequencies.
Practical Filters

Practical filters cannot have a continuous band of zero gain nor can they have an
instantaneous transition from the passband to the stopband. Consequently, we need to
extend our idedl filter specifications to include practical filters. Thisisdone by defining the
filter magnitude response in terms of constraints separated by finite-width transition
regions. Fig. 2-3 shows the magnitude specifications for the four types of filters that can
be realized by active and/or passive circuits.

The low-pass filter specification of Fig. 2-3a has been divided into three frequency
regions. From O to wpg the magnitude must be between 1 and Tpg. This is passband
region. From wsp to infinity, the magnitude must be less than Tgg. This is the stopband
region. The region between wpg and wsg is called the transition region. The magnitude of
the filter is unspecified in this region, although a good approximation would be expected to
closdly follow astraight line drawn from point A to point B. Any filter design which stays
within the shaded regions and approximates a straight-line from A to B in the transition
region will satisfy the filter specifications. The line shown on Fig. 2-3ais an example of

one possible filter redization whose magnitude response would satisfy the specifications.
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It is not necessary that the magnitude response oscillate as shown, but this characteristic
permits practicd filters to have a smaller transition region than filter realizations whose

slope is monotonic.
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Figure 2-3 - Practical magnitude responses of (a.) low-pass, (b.) high-pass, (c.) bandpass,
and (d.) bandstop filter.

Figs. 2-3b through 2-d are practicad magnitude specifications for the high-pass,
bandpass, and bandstop filters, respectively. In each case, the magnitude of the filter must
fall within the shaded areas. The magnitude of the filter in the transition region(s) should
approximate a straight-line through points A and B or C and D, in the case of the bandpass
and bandstop filters.

In order to smplify the filter design procedure, al filter design begins with a
normalized, low-pass filter specification. The normalized low-passfilter is a structure from
which all other filters can be derived by denormalization or transformation. The low-pass
filter is normalized so that wpg of Fig. 2-3ais unity. The low-pass filter has also been

normalized to an impedance level of 1 ohm. Fig. 2-1 illustrates the low-pass, normalized
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filter isthe starting point of al filter design. The normalizations used in the low-pass, filter

are defined asfollows. The normalized frequency variable, s,, is defined as

__S (2-6)
™ g

where we use s, to indicate the frequency normalized complex variable. The normalization
impedance, Zy, used in the low-pass filter is defined as

Z
Zn= Z (2-7)

where Z isthe unnormalized impedance and z is a unitless impedance scaling constant. In
RLC passive filters, the impedance level isimportant. However, in active filter design, the
impedance denormalization amounts to a smple impedance scaling constant. We must
remember that the normalization definitions in Egs. (2-6) and (2-7) apply only to the low-
pass filter of Fig. 2-3a.

Often, the entire design of an active filter is done using the normalized complex
frequency variable, s,, and the normalized impedance, Z,. At the end of the design
procedure, as indicated in Fig. 2-1, the filter is denormaized to achieve the desired
frequency range and to scale the passive component to values which are more convenient.
This denormdization is smply the inverse of Egs. (2-6) and (2-7). Table 2-1 gives the
influence of the frequency and impedance denormalization is illustrated on the normaized

passive components and the normalized root locations of afilter.

Example 2-1 - Application of the Denormalizing Factors to the L ow-Pass Filter

Suppose that a normalized, second-order, low-pass filter is characterized by the

1 1
circuit of Fig. 2-4 or by the following pole locations pn1, pn2 = E *] E .

Find the denormalized circuit and pole locationsif thefilter isto have a passband frequency
of 1 kHz and the resistors in the realization should be 10 kQ.
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Figure 2-4 - A normalized, second-order, low-passfilter.
Solution
From the information given, wpg is 2rx103 rps.  zg is 104 because the normaized 1
Q inFig. 2-4isto become 10 kQ. Therefore, the denormalized pole locations are
p1, P2 = - (0.707)(21x103) +j (0.707)(21x103) = -4,443 + j4,443 rps..

The denormalized components of Fig. 2-4 become

1042

2
L :6283.2 =2.251 H,

1

= =0.112 F
C= V26283 2) (108 - 1125 NF,
and
R =10kQ.
Denormdized
Denormalization | Denormdized | Denormalized | Denormalized | Pole, p, or
! Resistance, R | Capacitance, C| Inductance, L Zexo, Z
Frequency - P = WpPBPn
S= WPBSH R=Rn _En _Ltn Z = WpBZn
Impedance - P = Pn
Z= ZoZn R= ZoRn _ & L= ZoLn Z=17n
~ 2
Frequency and
|mpedance - R= ZoRn Cn ZoLn -
2(8) = ) ZoWps ) wpB " wPsz ’
ZoZn(WPBSn) 2=WPBZn

Table 2-1 - Influence of the frequency and impedance denormalizations on the passive

components and root locations of afilter.
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Attenuation Viewpoint of Practical Filter Specifications
Fig. 2-5a shows the specifications of a low-pass filter where the vertical axis has
been plotted in terms of dB. If we normalize the frequency axis by wpg, then the
normalized passband frequency is now 1 rps and the normalized stopband frequency, Qn,
isgiven as
WsB

Qn= g (2-8)

The redlizations of this normalized, low-pass filter must remain in the shaded areas and
approximate a straight-line drawn through points A and B in the transition region. A

possiblefilter realization is shown on Fig. 2-5a.
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Figure 2-5 - Normalized, low-passfilter. (a) GainindB. (b.) Attenuation in dB.

Because we have normalized the gain of the low-passfilter to unity, the dB values are
al negative. Sometimes, it is convenient to view the normalized, low-pass filter from
attenuation which is the reciproca of gain. An attenuation plot in dB for the normalized,
low-pass filter of Fig. 2-5a is shown in Fig. 2-5b. In some references, Apg is cdled
Amax and Asgiscaled Ag or AviN.

The specification for the normalized, low-pass filter is completely described by three
parameters. These parameters are Tpg, Tsg, and Qp or Apg, Asg, and Q. Once these
parameter values are known, then we must determine the order of the filter necessary to
satisfy the specification. However, the order is determined by the type of filter

approximation used to redize the specifications. While there are numerous filter
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approximations, we shall discuss two of the more popular ones next. They are the
maximally flat magnitude or Butterworth approximation and the equa passband ripple or
Chebyshev approximation.
Normalized, Low-Pass, Butterworth Filter Approximation

One of the more useful filter approximations to the normalized low-passfilter is called
the Butterworth™ filter approximation. The magnitude of the Butterworth filter
approximation is maximally flat at low frequencies (w —0) and monotonically rolls off to a
value approaching zero at high frequencies (w — «). The magnitude of the normalized,
Butterworth, low-pass filter approximation can be expressed as

1

|TLen(jwn)| = o~ (2-9)
‘\/1 +&82w

where N is the order of the filter approximation and € is defined in Fig. 2-6. Fig. 2-6

shows the magnitude response of the Butterworth filter approximation for severa values of

N.
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Figure 2-6 - Magnitude response of a normalized Butterworth low-pass filter

approximation for various orders, N, and for € = 1.

T S. Butterworth was a British engineer who described this type of filter approximation in conjunction with
electronic amplifiersin his paper "On The Theory of Filter Amplifiers,” Wireless Engineer, vol. 7, 1930.



ECE 6414: Continuous Time Filters (P. Allen) - Chapter 2 Page 2-10

The shaded area on Fig. 2-6 corresponds to the shaded area in the passband region of
Figs. 2-3aand 2-5a. It is characteristic of al filter approximations that they pass through
the point A asillustrated on Fig. 2-6. The value of € can be used to adjust the width of the
shaded areain Fig. 2-6. Normally, Butterworth filter approximations are given for an € of
unity asillustrated on Fig. 2-6. We see from Fig. 2-6 that the higher the order of the filter
approximation, the smaller the transition region for given value of Tsg. For example, if
Tpg =0.707 (€= 1), Tsg = 0.1 and Qp = 1.5 (illustrated by the both shaded areas of Fig.
2-6), then the order of the Butterworth filter approximation must be 6 or greater to satisfy
the specifications. Notethat the order must be an integer which means that even though N
= 6 exceeds the specification it must be used because N = 5 does not meet the specification.
The magnitude of the Butterworth filter approximation at wsg can be expressed from Eq.

(2-9) as

0 %’(OSBDD ) 1
(TP L =[TLpn(Qn)|=Tsg = : (2-10)
0~ "[ops [ A /1 + 2 erlm\l

This equation is useful for determining the order required to satisfy a given filter
gpecification. Often, the filter specification is given in terms of dB. In this case, Eq. (2-

10) isrewritten as

20 l0g10(Tss) = Tss (dB) = -10logioH + £2 Q°N'H . (2-11)

Example 2-2 - Determining the Order of A Butterworth Filter Approximation

Assume that a normalized, low-passfilter is specified as Tgp = -3dB, Tsg = -20 dB,
and Qp = 1.5. Find the smallest integer value of N of the Butterworth filter approximation
which will satisfy this specification.

Solution

Tgp =-3dB correspondsto Tgp = 0.707 whichimpliesthat € = 1. Thus, substituting

€ =1and Qn=1.5into Eq. (2-11) gives
Tsg (dB) =-10logio( 1 + 1.52Ny .
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Substituting values of N into this equation gives Tsg =-7.83 dB for N = 2,
-10.93 dB for N = 3, -14.25dB for N = 4, -17.68 dB for N = 5, and -21.16 dB for N =

6. Thus, N must be 6 or greater to meet the filter specification.

Once, the order of the Butterworth filter approximation is known, we must next find
the normalized root locations. Of course, dl zeros are a infinity because the redization is
low-pass. The poles depend on thevalue of €. For € = 1, the pole locations are on a unit

circle. The normalized poles are designated as pkn = Okn + jxn and are given as

H2k - Do 2k - 1)TD
Okn=-SNT 5N 0 ad wn=cosT oy O, K=123~N. (212

To help illustrate this formula, the poles for fifth-order, Butterworth filter approximation
have been evaluated and are given in Table 2-2. Figure 2-7 shows the pole locations for

the fifth-order, Butterworth filter approximation. It can be shown that these poles are

angularly spaced by an amount of TUN (36° for N = 5).

2k - 1O 2k - 1)mQ»
K Okn=-SNT 2N U Wkn = COST DN [
1 -0.3090 rps 0.9511 rps
2 -0.8090 rps 0.5878 rps
3 -1.0000 rps 0.0000 rps
4 -0.8090 rps -0.5878 rps
5 -0.3090 rps -0.9511 rps

Table 2-2 - Normalized pole |ocations for afifth-order, Butterworth filter approximation.
Cascade Realization of Butterworth Filter Approximations

It isimportant to realize that while the Butterworth filter approximation is monotonic,
theindividual pole pairs are not. For example, let uswrite the normalized transfer function
of the fifth-order example of Table 2-2 into the product of two, second-order terms and

one, first-order terms. Thefilter transfer function is written as

T [ P3n M P1nPsn M P2nP4n 0
LPn(Sn) = (g +Pan{n*P1n) (Sn+Psn) LTS+ P2n) (St Pan) Ll

(2-13)
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Figure 2-7 - Example of the normalized pole locations for a fifth-order, normalized

Butterworth filter approximation.

where we have grouped the complex-conjugate polesinto second-order terms. Substituting

the values of Table 2-2 into Eq. (2-13) gives

Ten(s) = T Tas)Tals) = g i——— L1 0 oy
n 1 2\Sn) 13(Sn §n+1%2 2 U -
n+0.6180sy+1[T$,+1.6180sy+10

The contributions of the first-order term, T1(sp), and the two second-order terms, To(Sp)
and T3(sn), can be illustrated by plotting each one separately and then taking the products
of all three. Fig. 2-8 showstheresult. Interestingly enough, we see that the magnitude of
To(sn) has apeak that is about 1.7 times the gain of the fifth-order filter at low frequencies.
If we plotted Fig. 2-8 with the vertical scale in dB, we could identify the Q by comparing
the results with the normalized second-order, magnitude responses of Fig. 1-6a
Consequently, dl filter approximations that are made up from first-order and/or second-
order products do not necessarily have the properties of the filter approximation until al the

terms are multiplied (added on adB scale).
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Figure 2-8 - Individual magnitude contributions of a fifth-order, Butterworth filter
approximation.

Now we see how the Butterworth filter gpproximation can be redized by the
cascading of second-order stages and, at most, one-first order stage. The design procedure
is stated as follows:

1.) From Tpg, Tsg, and Qp (or Apg, Asg, and Q) determine the required order of

the Butterworth filter approximation using Eq. (2-10) or Eq. (2-11).

2.) From Eq. (2-12) find the normalized poles of the approximation.

3.) Group the complex-conjugate poles into second-order realizations. For odd-

order realizations there will be one first-order term of the form 1/(sh+1).

4.) Redlize each of the second-order terms using the active filters of Sec. 1. Redize

the first-order section (if any) by the first-order low-pass circuits of Sec. 4.2.

5.) Cascade the redlizations in the order from input to output of the lowest-Q stage

first (first-order stages generally should be first).

6.) Denormalize to the desired passband frequency and denormalize the impedances

if desired.

Step 5 covers an aspect we have not considered and that is the order of the stages. The
principle behind the ordering suggested in step 5 is to prevent one stage from being

overdriven. Consider the fifth-order filter of Fig. 2-8 to illustrate this principle. If the
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frequency applied to the filter is at the passband (wn = 1), the gain of To(sy) is about 1.6
while the gain of T1(sy) is0.707 and T3(sy) is 0.6. If the order were To, T4, and T3 and
the amplitude of the sinusoid at wy = 1 was 1V, the output of the first stage (T2) would be
1.6V, the output of the second stage (T1) would be 1.13V, and finaly the output of the
third stage (T3) would be 0.707. If the input signa is too large, or the power supply
voltagestoo small, the first and possibly the second stages may saturate or clip. However,
if we put the stages in the order of T1, T3, and To or T3, T1 and T, saturation will not
occur and one can achieve maximum signal amplitude. Let us illustrate the cascade design

approach with an example.

Example 2-3 - Design of a Fifth-Order, L ow-Pass Butterworth Filter

Design a cascade, activefilter realization for a Butterworth filter approximation to the
filter specifications of Apg = 3dB, Asg = 30 dB, fpg = 1 kHz, and fsg = 2 kHz. Give a
schematic and component values for the redlization using the negative feedback, second-
order, low-pass active filter of Fig. 1-14 and any first-order stage that may be necessary.
Solution

First we must convert the specificationsto Tpg = - 3dB, Tsg = -30dB, and Qp =
fsg/fpg = 2.0. Tpg =-3dB means € = 1. Trying different values of N in Eqg. (2-11)
showsthat for N =5 that Tsg =-30.1 dB. Thus, afifth-order Butterworth approximation
barely satisfies the requirement. We might be smart to go to a sixth-order redlization to
obtain amargin of safety but we shall stay with N =5 for thisexample. N =5 allows us to
take advantage of the previous results given above. Let us do the design stage-by-stage.

Stage 1. Stage 1is simply afirst-order stage. We will use Fig. 4.2-6¢ with R17 =

R21 = 1Q and Co1 = 1F where the second subscript stands for the stage number.

Stage 2: The transfer function for the second stage is
To(sn) =

2
spt0.6181sy+1
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From Eq. (1-3) we seethat wp = 1rps and Q = 1.6181. Using the design equations
of Egs. (1-41) through (1-45) give Cs2 = 1 F, Cs2 = 4(1.6181)2(1+1)C = 20.95 F,
Rio = 1/[(2)(1)(1)(1.6181)(1)] = 0.3090 Q, Ry = U/[(2)(1)(1.6181)(1)] = 0.3090
Q, and Rz, = 1/[(2)(1)(1.6181)(1+1)] = 0.1545 Q.

Stage 3: The transfer function for the third stage is

T3(sn) =
Spt1.6180sh+1

From Eqg. (1-3) we seethat wo = 1rps and Q = 0.6181. Using the design equations

of Egs. (1-41) through (1-45) give Cs3 = 1 F, Cy43 = 4(0.6181)2(1+1)C = 3.056 F,

R13 = 1/[(2)(1)(1)(0.6181)(1)] = 0.8090 Q, R23 = 1/[(2)(1)(0.6181)(1)] = 0.8090

Q, and Ra3 = 1/[(2)(1)(0.6181)(1+1)] = 0.4045 Q.

Next, we frequency denormalize the filter realization by wpg = 21x103. At the same
time we will impedance denormalize by 10 (arbitrarily chosen). The resulting values are
shown on theredlization of Fig. 2-9 and are achieved using the bottom row of Table 2-1.
Note, that we have placed stage 1 first, stage 3 second, and stage 2 last. This filter

realization will meet the specifications given and will permit maximum signal amplitude.

D Vout(

Cypo=

I20.95;E B

Stage 2-

Figure 2-9 - A denormalized, fifth-order, active filter redization of a low-pass ,

Butterworth filter approximation.

Normalized, Low-Pass, Chebyshev Filter Approximation
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A second useful filter approximation to the normalized low-pass filter is caled a
Chebyshevt filter approximation. The Chebyshev low-passfilter approximation has equal-
ripplesin the passband and then is monotonic outside of the passband. The equal-ripple in
the passband allows the Chebyshev filter approximation to fal off more quickly than the
Butterworth filter approximation of the same order. This increased rolloff occurs only for
frequenciesjust above wpg. As the frequency becomes large, filter approximations of the
same order will have the samerate of decrease in the magnitude response. The magnitude
of the normalized, Chebyshev, low-pass, filter approximation can be expressed as

1

|TLPn(ion)| = , wp<1 (2-15)
\/ 1 + €2 cos?[Ncos1(wn)]

and
. 1
oG] = , on>1 (2-16)
\/1 + £2 cosh?[Ncosh-1(con)]

where N is the order of the filter approximation and € is defined in Fig. 2-10. Fig. 2-10
shows the magnitude response of the Chebyshev filter approximation for € = 0.5088.

The values of € are normally chosen so that the ripple width is between 0.1dB (g =
0.0233) and 1 dB (¢ = 0.5088). We can show that the Chebyshev is has a smaller
trangition region by considering the order necessary to satisfy the partiad specification of
Tsg = 0.1 and Qn = 1.5, We see from Fig. 2-10 that N = 4 will easly satisfy this
requirement. We also note that Tpg = 0.8913 which is better than 0.7071 of the
Butterworth filter approximation. Thus, we see that € determines the width of the passband
rippleand isgiven as

TUR@Pe)] = [TLpn(D)| = Tes = \/1— . (2-17)

1+€2

T The Chebyshev filter approximation was first used to study the construction of steam engines as described
by P.L. Cheybshev in the paper "Thé orie des mé canismes connus sous le nom de parallelogrammes,”
Oeuvres, vol. 1, St. Petersburg, 1899.
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Figure 2-10 - Magnitude response of a normalized Chebyshev low-pass filter
approximation for various orders of N and for € = 0.5088.

The magnitude of the Chebyshev filter approximation at wsg can be expressed from Eq. (2-

16) as
0 [wssl 1
UM paa L= [TLpn(Qn)[ = Tse = - (218)
O - Tps \/1 + €2 cosh?[Ncosh-1(Qp)]

If the specifications are in terms of decibels, then Eq. (2-19) is more convenient in the form
20 10910(Tsg) = Tsa (dB) = -10logsof 1 + g2 coshZ[Ncosh'l(Qn)]] . (219

Example 2-4 - Determining the Order of A Chebyshev Filter Approximaton

Repeat Ex. 2-2 for the Chebyshev filter approximation.

Solution

In Ex. 2-2, € = 1which means the ripple width is 3 dB or Tpg = 0.707. Now we
substitute € = 1 into Eq. (2-19) and find the value of N which satisfies Tsg = - 20dB. For
N=2 weget Tsg =-11.22dB. For N =3, we get Tsg =-19.14 dB. Finally, for N = 4,
we get Teg = -27.43 dB. Thus N = 4 must be used athough N = 3 amost satisfies the

specifications.

The normalized pole locations, pkn, of the low-pass, normalized Chebyshev filter

approximation can be found from the following formula
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_ C2k-1)mo % _ 1 ) [(2k-1)1J _ 1
= = -1=1] -1=0
Pkn = Okn + jWkn = - SINT 5N O Sinhfg sinh N +] cosT BN O coshify sinh 0
k=1,23, -, N . (2-20)

To illustrate this formula, the poles for a fifth-order, normalized, Chebyshev filter have

been evaluated are are given in Table 2-3 for the case where Tpg = -1dB. It can be shown

that these poleslie on an dllipse centered about the origin of the complex frequency plane.

The pole locations for Table 2-3 areillustrated on Fig. 2-11.

K | okn=- Qn% sinh% sinh'%g Wkn = cos% cosh% si nh'%g
1 -0.0895 rps 0.9901 rps
2 -0.2342 rps 0.6119 rps
3 -0.2895 rps 0.0000 rps
4 -0.2342 rps -0.6119 rps
5 -0.0895 rps -0.9901 rps

Table 2-3 - Normalized pole locations for a fifth-order, Chebyshev filter approximation for

£ = 0.5088.
jon
j1
pln*, J
4j0.9901 Unit
I \ .
erII//JI(- jositg ¥ Cirdle
[ \
02342 1 1-0.0895
p3”i\! | » O
-1 1
Ellipse
{-j0.6119 on which
7 poleslie
<|-j0.9901

Figure 2-11 - Location of the normalized poles for a fifth-order, normalized Chebyschev
filter approximation for € = 0.5088.
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The normalized transfer function of the Chebyshev filter approximation can be written
as the product of second-order terms and one, first-order term if the order is odd. For the

fifth-order, Chebysheve filter approximation, the filter transfer function is written as

1 P3n M P1nP5n N P2nP4n 0
TLPn(Sn) = F5+panI{(SntP1n) (St Pem) LTS P2n) (St Pan) I (2-21)

where we have grouped the complex-conjugate poles into second-order terms. Substituting
the values of Table 2-3 into Eq. (2-21) gives
TLpPn(sn) = T1(sn) T2(sn) T3(sn) =

102895 ;) 09883 . 04239
+0.
(3+0- 2895012 | 17806, +0.08831H82+0.46845,+0.42391]

(2-22)
As before, each product does not necessarily have the characteristic of a Chebychev filter.
However, when dl the products are multiplied together, the result is a Chebyschev filter
approximation.

The design procedure for designing a cascaded, Chebyshev filter approximation
using active filtersis stated as follows:

1.) From Tpg, Tsg, and Qp (or Apg, Asg, and Qp) determine the required order of

the Chebyshev filter approximation using Eq. (2-18) or Eq. (2-19).

2.) From Eq. (2-20) find the normalized poles of the approximation.

3.) Group the complex-conjugate poles into second-order realizations. For odd-

order realizations there will be one first-order term of the form 1/(sh+1).

4.) Redlize each of the second-order terms using the active filters of Sec. 1. Redize

the first-order section (if any) by the first-order low-pass circuits of Sec. 4.2.

5.) Cascade the redlizations in the order from input to output of the lowest-Q stage

first (first-order stages generally should be first).

6.) Denormalize to the desired passband frequency and denormalize the impedances

if desired.

The following example will illustrate the application of this design procedure.
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Example 2-5 - Design of aFifth-Order, L ow-Pass Chebyshev Filter

Design acascade, active filter redization for a Chebyshev filter approximation to the
filter specifications of Apg = 1dB, Asg =45dB, fpg = 1 kHz, and fsg = 2 kHz. Give g
schematic for the redization using the negative feedback, second-order, low-pass active
filter of Fig. 1-14 and any first-order state that may be necessary. Show al values of the
components.
Solution

First we must convert the specificationsto Tpg = - 1dB, Tsg = -45dB, and Qp =
fsg/fpg = 2.0. Tpg =-1 dB means € = 0.5088. Trying different values of N in Eqg. (2-20)
showsthat for N =5 that Tsg = -45.3 dB. Thus, afifth-order Chebyshev approximatiors
barely satisfies the requirement. Again, we might be smart to go to a sixth-order redlizatiors
to achieve amargin of safety but we shall stay with N = 5 for this example. N = 5 allows
us to take advantage of the previous results given above. Let us do the design stage-by-
stage.

Stage 1. Stage 1 is smply afirst-order stage. Let us use Fig. 4.2-6¢ and choose

R11 = Rp1 = 1Q. Therefore, from Eq. (4.2-17) we get Cp1 = ngl = 3454 K

where the second subscript stands for the stage number.

Stage 2: Thetransfer function for the second stageis

0.9883
To(sn) = 2
$,+0.1789s,+0.9883

1/0.9883

From Eq. (1-3) we see that w) = 4/0.9883 = 0.9941 rpsand Q = Q = 01789 =

5.557. Using the design equations of Eqgs. (1-41) through (1-45) give Csp = 1 F,

1
Cqo = 4(5.557)2(1+1)C =247.04F, Ry2 = —(2)(1)(0_9941)(5_557)(1) = 0.09051 Q,
1 1
Rez = (OO EE7E) = 0.09051 Q. end Raz = (0 0aT) 567 (ET) =

0.04525 Q.

Stage 3: Thetransfer function for the second stageis
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0.4239
$°+0.46845,+0.4239

T3(sn) =

\/ 0.4239

From Eq. (1-3) we see that w) = 4/0.4239 = 0.6522 rps and Qg = 04684 =

1.390. Using the design equations of Egs. (1-41) through (1-45) give Cs3 = 1 F,

C43 = 4(1.390)2(1+1)C = 15.457 F, R13 = W = 0.5515 Q,
1
R23 = (2)(0.6522)(1.390)(1) = 0-9515 Q, and Rs3 = (2)(0.6522)(1.390)(1+1)

0.2758 Q.

Next, we frequency denormalize thefilter realization by wpg = 2mx103. At the same
time we will impedance denormalize by 10 (arbitrarily chosen). The resulting values are
shown on the realization of Fig. 2-12 and are achieved using the bottom row of Table 2-1.
Note, that we have placed stage 1 first, stage 3 second, and stage 2 last. This filter

realization will meet the specifications given and will permit maximum signal amplitude.

R21 = C1=5.50nF

= Stagel Stage 3 Stage 2

Figure 2-12 - A denormalized, fifth-order, active filter realization of alow-pass, Cheby-
shev filter approximation.

In comparing the results of Examples 2-3 and 2-5, we see that the redlizations are
identica and it is the value of the components which distinguishes the Butterworth
approximation from the Chebyshev approximation. However, we should note that for the
same wpg and wsg, the Chebyshev approximation has a 1dB passband ripple compared to
a 3dB passband "ripple’ for the Butterworth approximation. More importantly, the

stopband attenuation of the Chebyshev approximation is greater than 45 dB as compared to

Vout(
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30 dB for the Butterworth. In fact, we could easily satisfy the requirements of Ex. 2-3
with afourth-order Chebyshev approximation which would eiminate stage 1 of Fig. 2-12
(obvioudly, the components of stages 3 and 2 will change values).
High-Pass Active Filters

One of the useful principles of active filter design is that al design is based on the
normalized, low-pass filter approximation. Therefore, al we haveto dois to transform the
normalized, low-pass filter design to a high-pass, bandpass, or bandstop design. If we let
Sn be the normalized, low-pass frequency variable, the normalized, low-pass to
normalized, high-pass transformation is defined as

1
= 5

(2-23)
where sy is the normalized, high-pass frequency variable (normally the subscripts h and |
are not used when the meaning is understood). We have seen from the previous work that
ageneral form of the normalized, low-pass transfer function is

T _ P1inP2InP3In-""PNIn
LPn(Sin) = (Sin*P1in)(SIn+P2in) (SIn+P31n) - *(Sin+PNiIn)

where pkin isthe kth normalized, low-pass pole. If we apply the normalized, low-pass to

(2-24)

high-pass transformation to Eq. (2-24) we get

P1inP2InP3In""PNIn

THpn(shn) = =7 1 1
m M 0 0
Elﬂw_n+p1|”[l]§1n +P2InEn, +p3InD'"E;th+pNInD
N
: Shn
- 1 1 A 1n
%h”J’ I31|n%h"‘+ pzm%h“J’ ID:slnD"'%h”+ PNInC]
N
Shn

— (2-25)
(Snn"'plhn) (9nn+p2hn) (9nn+pShn) “( Snn"‘pNhn)

where pknn IS the kth normalized high-pass pole.



ECE 6414: Continuous Time Filters (P. Allen) - Chapter 2 Page 2-23

We see that the normalized, low-pass to high-pass transformation inverts the pole
locations and causes al of the zerosto appear at the origin of the complex frequency plane.
Therefore, the design procedure is essentially the same as for the normalized, low-pass
filters except the poles are inverted and we associate with each pole a zero at the origin.
The order of the high-pass filter is determined by trandating its specifications to an
equivalent low-passfilter. The general cascade design procedure for a high-pass filter is as
follows:

1) Start with the high-pass specification in the form of Fig. 2-3b (or the equivaent

in terms of attenuation). Normalize the frequency by dividing by wpg. Therefore,

the normalized passband frequency is 1 rps and the normalized bandstop frequency is

1 wWsB
Qn = Qm= ol (2-26)

Note that Qnn will always be less than unity.

2.) From Tpg, Tsg, and Qp, (or Apg, Asg, and Q) determine the required order of
the filter approximation using the proper equations for the selected approximation.

3.) Find the normalized, low-pass poles of the approximation.

4.) Invert the normalized, low-pass poles (pkin) to get the normalized, high-pass
filter poles (pkhn)-

5.) Group the complex-conjugate poles of the normalized, high-pass filter into
second-order redlizations including 2 zeros at the origin. For odd-order realizations
there will be one first-order high-pass product.

6.) Realize each of the second-order terms using the high-pass, first- or second-order
activefilters of Chapter 1.

7.) Cascade the redlizations in the order from input to output of the lowest pole-Q
stage first (first-order stages generally should be first).

8.) Denormalize to the desired passband frequency and denormalize the impedances.

The following example will illustrate the application of this design procedure.
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Example 2-6 - Design of aButterworth, High-Pass Filter

Design a high-pass filter having a -3dB ripple bandwidth above 1 kHz and a gain of
less than -35 dB below 500 Hz using the Butterworth approximation. Use the positive
feedback active filter redization and give a complete circuit and al component values.
What isthe value of thefilter gain as frequency approachesinfinity?

Solution

From the specification, we know that Tpg = -3 dB and Tsg = -35 dB. EQ. (2-26)
givesusan Qn=2(Qnn=0.5). € =1 because Tpg = -3 dB. Therefore, we use Eq. (2-
11) to find that N = 6 will give Tsg = -36.12 dB which is the lowest, integer value of N
which meets the specifications.

Next, we evaluate the normalized, low-pass poles from Eq. (2-12) as

P1in, Pein = -0.2588 + j 0.9659
P2in, Psin = -0.7071 + j 0.7071
and
P3in, Pain = -0.9659 + j 0.2588
where the first subscript on the poles corresponds to k in Eq. (2-12). Inverting the

normalized, low-pass poles gives the normalized, high-pass poles which are

P1hn, Pehn = -0.2588 + j 0.9659

P2hn, Pshn = -0.7071 £ j 0.7071
and

P3hn, Pann = -0.9659 £ j 0.2588 .
We note the inversion of the Butterworth poles simply changes the sign of the imaginary
part of the pole.
The next step isto group the poles in second-order products, since there are no first-
order products. Thisresult gives the following normalized, high-pass transfer function.
THPn(Sn) = T1(shn) T2(Shn) T3(Shn)
Shzn H Shzn + Shzn 5
Shn*P1hn) (Shn*Péhin) LL{Shn*P2hn) (Shn+Pshin) LL{Shn*P3hn) (Shn+Pann) U

p
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2 2 2
% Shn % Shn % Shn E

52 +0.51765n+ 155 +1.414150+ 1 +1.93185+1H

Now we are in a position to do the stage-by-stage design. We will use Fig. 1-21a
and the design equations indicated on thisfigure for all three, second-order stages.

Stage 1. Letusselect C=Cq1=C31=1F. TheresistorsbecomeR=Ro1=Rg1 =1

Q. If weselect Ra1 = 1Q, then Rg1 = 2 - (1/1.9320) = 1.4823 Q.

Stage 2. Let us sdect C = C1p = C3p = 1F. Therefore the resistors are R = Rpp =

Ri2=1Q. If Raz=1Q, then Rgo = 2 - 1.4141 = 0.5858 Q.

Stage 3: Let us sdlect C = C13 = C33 = 1F. Therefore the resistors are R = Ro3 =

Ri3=1Q. If Ra3=1Q, then Rgz =2 - 1.9318 = 0.0682 Q.
Finally, we denormalize the components by wpg = 2mx103. At the same time we will
arbitrarily denormalize the impedance by 10°. Fig. 2-13 shows the resulting, 6th-order,
unnormalized, high-pass active filter redization using the Butterworth approximation.

Note that the stages are cascaded in the order of T3, T2, and T for maximum signal swing.

The gain of thefilter at high frequenciesis 1.0682x1.589x2.480 = 4.201.

The above procedure is general and can be used to design a cascaded, active filter
redization of a high-pass filter. The problems give severa other examples of designing

higher-order, high-pass filters (see PR2-8 and PR2-9).

F43=100kQ Ra2=100kQ F41=100kQ
Ciz [CazVVV
13- 3~
1.59nF{1.59nF

-
ot

Stage3 —

Rpz=
6.82kQ

Figure 2-13 - Denormalized, sixth-order, active filter realization of Ex. 2-6.
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Bandpass Active Filters

We can continue to use our knowledge of low-pass filters to develop the other types
of filter responsesindicated in Fig. 2-3. We will now develop bandpass filters which are
based on the normalized, low-pass filter. First, we define the width of the passband and
the width of the stopband of the bandpass filter as

BW = wgp2 - WpB1 (2-27)
and
SW = wsB2 - WsB1 (2-28)

respectively. Our study here only pertains to a certain category of bandpass filters. This
category is one where the passband and stopband are geometricaly centered about a
frequency, wy, which is called the geometric center frequency of the bandpass filter. The

geometric center frequency of the bandpassfilter is defined as

o :\/(UPBl(UPBZ =\/w5|32w8|31 : (2-29)

The geometrically centered bandpass filter can be developed from the normalized low-

pass filter by the use of a frequency transformation. If sy is the bandpass complex
frequency variable, then we define a normalized low-pass to unnormalized bandpass

transformation as

2 2
1 b+0\)r

2D
W
SNTBW [T 5 D BW %b + (2-30)

A normalized low-pass to normalized bandpass transformation is achieved by dividing the
bandpass variable, s, by the geometric center frequency, wy, to get

ek 1pg U o (2-31)
3= BWHHy ™ (st BWHSPN ™ Soni

where

S
=— . 2-32
Sbn o ( )
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We can multiply Eg. (2-31) by BW/wy and define yet a further normalization of the low-

pass, complex frequency variable as

B, 11

0s g 4
= = = _D -
0 DSn QpSin=Qp a DD E’gbn + Son[] (2-33)

where Qp is a bandpass normalization of the low-pass frequency variable given as

Sn =

BW
Qp=—". (2-34)
oy

We will cal the normalization of Eq. (2-33) a bandpass normalization of the low-pass
complex frequency variable.
In order to be able to use this transformation, we need to solve for sy, in terms of s|'n

. From Eq. (2-33) we get the following quadratic equation.

2 1
Spn -Sin Sin+1=0 . (2-35)
Solving for sy from Eq. (2-34) gives

0 .
n n
sbn=D2Ei'\/§I;'2—%-1 : (2-36)

Figure 2-14 shows how transformation of Eqg. (2-30) is used to create an unnormalized
bandpass filter from an unnormalized low-passfilter. We must remember that the low-pass
filter magnitude includes negative frequencies as indicated by the area enclosed by dashed
lines to the left of the vertical axis of Fig. 2-14a. The low-pass filter has been amplitude
normalized so that the passband gain is unity. Fig. 2-14b shows the normalization of the
frequency by wpg|. Next, the low-pass to bandpass transformation of Eq. (2-31) is
applied to get the normalized, band-pass magnitude in Fig. 2-14c. Findly, the bandpass
filter is frequency denormalized to get the frequency unnormaized bandpass magnitude
response of Fig. 2-14d. The stopbands of the bandpass filter were not included for

purposes of simplicity but can be developed in the same manner.
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10 1 O Wy, (rps) -Qp0 Qp 1 Wn (1pS)
(@) = - ®)
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Figure 2-14 - Illustration of the development of a bandpass filter from alow-passfilter. (a.)
Ideal normalized, low-pass filter. (b.) Normalization of (a.) for bandpass transformation.
(c.) Application of low-pass to bandpass transformation. (d.) Denormaized bandpass
filter.

Once the normalized, low-pass poles, p,. , ae known, then the normalized

bandpass poles can be found from
Rin Rin?

Pkon="7 * 02 D-l . (2-37)
which iswritten from Eq. (2-36). For each pole of the low-passfilter, two poles result for
the bandpass filter. Consequently, the order of complexity based on poles is 2N for the
bandpass filter. If the low-pass pole is on the negative real axis, the two bandpass poles
are complex conjugates. However, if the low-pass pole is complex, two bandpass poles
result from this pole and two bandpass poles result from its conjugate. Fig. 2-15 shows

how the complex conjugate low-pass poles contribute to a pair of complex conjugate
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bandpass poles. p* isthe designation for the conjugate of p. This figure shows that both
poles of the complex conjugate pair must be transformed in order to identify the resulting

two pairs of complex conjugate poles.

. s
@ %Pion
| A  XPibn
Piinx N
— 0, = > Opn
pi(l'n*,I‘ X
X Pipn
L ow-pass Poles '
. WpsLY Normalized
Normalized by BW Bandpass Poles

Figure 2-15 - lllustration of how the normalized, low-pass, complex conjugate poles are
transformed into two normalized, bandpass, complex conjugate poles.

It can also be shown that the low-pass to bandpass transformation takes each zero a
infinity and transformsto a zero at the origin and a zero at infinity. After the low-pass to
bandpass transformation is applied to N-th order low-pass filter, there will be N complex
conjugate poles, N zeros at the origin, and N zeros at infinity. We can group the poles and
zeros into second-order products having the following form

KkSobn _ KkSbn
(Son + Pkbn)(Sbn + Pibn)  (Son*Okbr+jWkbn) (Son*Okbr-j Wkbn)

Tk(Son) =

T OI"IE|
K kSon k(Wkon) 1Qk n

-2 N
Sbn+(20kbn) Son+(CObnt+Wkbn) 2 ond 2
Son + 7 Qk [on + Wkon

(2-39)

where j and k corresponds to the jth and kth low-pass poles which are a complex conjugate

pair, Kk isagain constant, and

2 2
Wkon = \/Gkbn"'wkbn (2-39)
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and

2 2
\ Oon*Wkon

Dl e—— (2-40)

Normally, the gain of Tk(wkon) IS unity.

The order of the bandpass filter is determined by trandating its specifications to an
equivaent low-pass filter. The ratio of the stop bandwidth to the pass bandwidth for the
bandpass filter is defined as

SW  WsB2 - WsB1

Qn=BwW = :
nTBW WBP2 - WpPB1

(2-41)

The general cascade design procedure for a bandpass filter follows:
1.) Start with the bandpass specification in the form of Fig. 2-3c (or the equivaent in
termsof attenuation). Normalize the frequency by dividing by «x . Therefore, the
normalized geometric center frequency is 1 rps and the normalized bandwidth Qp,.
2.) From Tpg, Tsg, and Qp, (or Apg, Asg, and Qp) determine the required order of
the normalized, low-pass filter approximation using the proper equations for the
selected approximation.
3.) Find the normalized, low-pass poles of the approximation.
4.) Frequency scale (normalize) the normalized, low-pass poles by Qp = (BW/wy,).
5.) Find the normalized poles of the bandpass filter by inserting each normalized
low-pass pole into Eq. (2-37).
6.) Group the complex conjugate polesin to the form of Eq. (2-38).
7.) Redize each complex conjugate pole pair by a second-order, bandpass active
filter.
8.) Cascade the redlizations in the order from input to output of the lowest pole-Q
stagefirst.
9.) Denormalize to the desired passband frequency and denormdize the impedances
if desired using Eq. (2-32) and Table 2-1.
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The following example will illustrate the application of this design procedure.

Example 2-7 - Design of a Butterworth, BandPass Filter

Design a bandpass, Butterworth filter having a -3dB ripple bandwidth of 200 Hz
geometrically centered at 1 kHz and a stopband of 1 kHz with an attenuation of 40 dB or
greater, geometrically centered at 1 kHz. Use the Tow-Thomas active filter realization and
give acomplete circuit and all component values. The gain at 1 kHz isto be unity.

Solution

From the specifications, we know that Tpg = -3 dB and Tsg = -40 dB. EQ. (2-39)
givesavaue of Q,=1000/200=5. € =1because Tpg = -3 dB. Therefore, we use Eq.
(2-11) to find that N = 3 will give Tsg =-41.94 dB which isthe lowest, integer value of N
which meets the specifications.

Next, we evaluate the normalized, low-pass poles from Eq. (2-12) as

P1in: P3in = -0.5000 + j0.8660
and

Poin = -1.0000 .

where the first subscript on the poles corresponds to k in EQ. (2-12). Normalizing these

poles by the bandpass normalization of Qp = 200/1000 = 0.2 gives

B, B, =-0.1000+ j 0.1732

and
B, =-0.2000 .

Each one of the p,\, will contribute a second-order term of the form given in Eq. (2-

37). The normalized bandpass poles are found by using EQ. (2-36) which results in 6
poles given asfollows. For p;, =-0.1000 +j0.1732 we get

P1bn, P2bn = -0.0543 +j1.0891, -0.0457 - j0.9159.
For g, =-0.1000 - j0.1732 we get

P3bn, P4bn = -0.0457 +j0.9159, -0.543 - j 1.0891.
For g, =-0.2000 we get

Psbn, Pebn = -0.1000 + j 0.9950.
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Fig. 2-16 shows the normalized low-pass pole locations, pkin, the bandpass normalized,
low-pass pole locations, p|'<|n , and the normalized bandpass poles, pkpn. Note that the

bandpass poles have very high pole-Qsif BW < wy.

joan i ' P1bn JWon
A, 'y 4
| P1in j1 Psbn —=»¢4 11
j0.8660
P3bh 3 zeros
Phir A £eo
>0 P2i n_1 P | : > Oin + ) > Opn,
Pam
P2on
-_chi.sseo P3iK 1 Pebn -1
p4bn/(
@) (b.) (c)

Figure 2-16 - Pole locations for Ex. 2-7. (a.) Normalized low-pass poles. (b.) Bandpass
normalized low-pass poles. (c.) Normalized bandpass poles.
Grouping the complex conjugate bandpass poles gives the following second-order

transfer functions.

B K1Son 3 K1Spn
T1(Son) = (5¥p16n)(S¥Papr) = (Son*0.0543+] 1.0891) (Son+0.0543-] 1.0891)

11.0904
10.0410[yon

= 2 [11.0904 -

_ K2Spn _ K 2Son
T2(Sbn) = (SFp20n) (5 P3br) ~ (Son0.0457+]0.9159)(Son+0.0457-]0.9159)

[10.9170
[10.0333(on

~ 2 10.9170 '
Sbn+g_0_0333 n+0.91592

and

3 K3Shn : K3Sbn
T3(Son) = (57paon) (5+Paon) = (o 0-1000+j0.9950) (5 +0.10000.9950)
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Now we are in a position to do the stage-by-stage design. We will use Fig. 1-22 and
the design equations of Egs. (1-60), (1-61), and (1-73) for all three, second-order stages.
Stage 1. Letusselect C=Cy1=Cp1 =1 F. From Eg. (1-60), the resistors Ro1 and
Ra1 aredesigned asR = Ry1 = R31 = 1(010nC) = 1/(1.09043)(1) = 0.9171 Q. Eq.
(1-61) gives Ra1 = QR = (10.0410)(0.9171) = 9.2083 Q. Finaly, Eq. (1-73) gives
R11 = R41 = 9.2083 Q.
Stage 2. Letussedlect C=Cyp=Cpp =1 F. From Eg. (1-60), the resistors Ry and
Rap are designed as R = Roo = Rap = U(ponC) = 1/(0.9159)(1) = 1.0918 Q. Eq.
(1-61) gives Rz = QR = (10.0333)(1.0918) = 10.9546 Q. Finally, Eq. (1-73) gives
R12 = Rg2 = 10.9546 Q.
Stage 3. Let usselect C=Cy13=Cp3 =1 F. From Eg. (1-60), the resistors Ro3 and
Ra3 aredesigned as R = Ro3 = R33 = 1/(w3onC) = 1/(1)(1) = 1.0000 Q. EQ. (1-61)
gives Ra1 = QR = (5.0000)(1.0000) = 5.0000 Q. Finaly, Eq. (1-73) gives R3 =
R43 = 5.0000 Q.
Finally, we denormalize the components by wy = 2mx103. At the same time we will
arbitrarily denormalize the impedance by 104. Fig. 2-17 shows the resulting, sixth-order,

unnormalized, bandpass active filter realization using the Butterworth approximation. Note

that the stages are cascaded in the order of T3, To, and T for maximum signal swing.

The bandpass design procedure illustrated in Ex. 2-7 is general and can be used to
design a cascaded, active filter redization of a bandpass filter whose bandwidth is
geometrically centered around afrequency, wy. The problems give severa other examples

of designing higher-order, high-passfilters (see PR2-11 and PR2-12).
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Ra3= 10kQ C3=1591nF Rz =10.92kQ Cx=15.91nF Ry =9.171kQ Cy =1591nF

C12 =
Rus =| 15. =| 1591 nF

50.00 _|
£

Vg @
Stage 2

Figure 2-17 - Sixth-order, Butterworth filter realization for Ex. 2-7.

Active Filters with Finite Complex Conjugate Zeros

Some filter approximations which we have not studied use finite complex conjugate
zeros as well as complex conjugate poles. Typicaly, these zeros are on the jw axis
athough they may be either in the left-haf or right-half complex frequency plane. The
advantage of having complex conjugate zeros is that these zeros may be placed in the
stopband to make the attenuation of the filter approximation greater for a given transition
region. Fig. 2-18 shows an approximation called dliptic filter approximation. The dliptic
filter has equal ripple bands in both the passband and the stopband. The number of poles
must be equal to or greater than the number of zeros so that the magnitude of the low-pass

filter rolls off to zero as frequency approachesinfinity.
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0.4 : :
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0-2: ____________ \B /7 5__\_\_______'
oL /\ ]
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Normalized Frequency,

Figure 2-18 - Magnitude response of afifth-order, eliptic filter approximation.
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The dliptic filter approximation has the steepest possible roll off in the transition
region of any type of filter approximation. This steep roll off is due to the presence of
complex conjugate zeros on the jw axis just outside of the passband. The redization of
filters containing jw axis zeros is exactly the same as been previously demonstrated in this
section. Thefilter design starts from the normalized, low-pass structure which will contain
complex conjugate zeros. The realization uses the cascade of first- and second-order active
filters. However, this time, the active filters must be capable of redizing the complex
conjugate zeros. The biquad, second-order active filter discussed in the last section is
useful for this purpose. See the problems for further details on the design of filters with
complex conjugate zeros (see PA2-2 and PA2-3).

Summary

The emphasis of this section has been on the design of higher-order filters using the
cascade of first- and second-order active filter reaizations. The normaized low-pass filter
approximation isthe starting point of al filter designs. The normalized |ow-pass filter has
a passband from O to 1 rps. A filter is completely specified by four quantities. 1.)
passband region, 2.) ripple of the passband region, 3.) stopband region, and 4.) the ripple
of the stopband region. We use the word "ripple” even for those filter approximations
which are monotonic.

We have examined two popular filter approximations. They are the Butterworth and
the Chebyshev approximations. An approximation is a transfer function in the complex
frequency variable which will satisfy the filter specification. The order of the
approximation isameasure of the complexity of arealization. It is generaly preferable to
keep the order as small as possible.

There are four types of filters that have been considered. These types are the low-
pass, high-pass, bandpass, and bandstop. The normalized low-pass filter is the starting
point for the design of these different types of filters. Frequency transformations are used

to take the low-pass filter approximation to the other types of filters. It is important to
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remember if the frequency transformations are used for the bandpass filters (and bandstop
filters) that the filter passband and stopband must be geometrically related to a center
frequency, wy.

The redlization of higher-order filters discussed in this section uses the cascade of
first- and second-order activefilters. The design of each cascaded active filter uses a set of
design equations which permit the designer to find the value of the components of the filter
in terms of the first- or second-order transfer function. The design of these active filters is
usually done for the normalized approximation and then a frequency denormalization and
an impedance denormalization (which is generaly arbitrary) is used to achieve the actua
filter specifications and to get practical component values.

A word of caution is in order concerning the filters that have been discussed in this
section. The design techniques introduced work well until the frequency of thefilter begins
to become larger than about 10 kHz. At this point, the frequency response of the op amp
can no longer beignored. Some of the redlizations are more susceptible than others to the
influence of the op amp frequency response. There are methods which permit active filters
to be extended to 100 kHz and above but they are beyond the scope of this chapter. It has
been observed that the influence of the op amp frequency response on the filter

performance increases as the Q of the pole becomes higher.



