ADCs for High-Speed Applications

David Nairn
David.Nairn@Analog.com
Analog Devices HSC
Greensboro NC

ADCs for High-Speed Applications

ADC Concepts:

- quantization
- sampling

ADC Specifications:

- static specifications
- dynamic specifications

ADC Architectures:

- classical architectures
- "new" architectures

Summary

ADC Concepts

- continuous time
- continuous amplitude
- discrete time
- discrete values

Quantization and Resolution

Quantization:

• continuous amplitudes represented with discrete levels

FS = Full Scale LSB = Least Significant Bit

Resolution (1 LSB):

• smallest noticeable change

$$V_{LSB} = \frac{V_{FS}}{2^N}$$

Converter Resolution = N

Quantization Noise & SNR

Quantization noise:

 quantization errors appear as noise with an RMS level of

$$\sqrt{\overline{v_{qn}^2}} = \frac{V_{LSB}}{\sqrt{12}}$$

Signal-to-Noise Ratio (SNR):

• full scale sine wave $V_{sig} = 2^N V_{LSB} / 2\sqrt{2}$

$$SNR = 20\log(V_{sig}/\sqrt{v_{qn}^2}) = [6.02N + 1.76]dB$$

$$SNR \approx 6 \text{NdB}$$

Notes for quantization noise:

Quantization noise can be calculated by assuming the signal within any quantization step has a uniform distribution, as shown in the sketch to the right. The error for a particular sample will simply be the distance between x and the origin where $-V_{LSB}/2 < x < V_{LSB}/2$. The rms error or the quantization noise can then be calculated as:

$$v_{qn} = \sqrt{\frac{1}{V_{LSB}} \int_{-V_{LSB}/2}^{V_{LSB}/2} x^2 dx} = \frac{V_{LSB}}{\sqrt{12}}$$

SNR and Resolution: the Practical Case

Quantization is not the only noise source:

SNR & Effective Number of Bits

Measuring *SNR*:

- $f_{in} < f_s/2$
- noise bandwidth = $f_{\rm s}/2$
- SNR increases with the signal
- ideal SNR

$$SNR_{max} = (6N + 1.76)dB$$

Effective Number of Bits:

- ideally ENOB = N
- circuit nonlinearities and noise reduce ENOB to:

$$ENOB = \frac{SNR_{max} - 1.76}{6.02}$$

DEVICES Notes for signal-to-noise:

The maximum SNR for an ideal N-bit ADC can be calculated by assuming the input is a sine wave and the only noise source is quantization noise. The largest peak-to-peak value of the sine wave is $2^N V_{LSB}$ which has an RMS value of $2^N V_{LSB}/2\sqrt{2}$. Knowing the quantization noise is $V_{LSB}/\sqrt{12}$, one can express the SNR as:

$$SNR = 20\log\left(\frac{2^{N}V_{LSB}/2\sqrt{2}}{V_{LSB}/\sqrt{12}}\right)$$

which reduces to:

$$SNR = 6.02N + 1.76 \text{ dB}$$

Solving the above equation for N, yields the effective number of bits from the maximum SNR

$$ENOB = (SNR_{max} - 1.76)/6.02$$

Sampling, Nyquist and Aliasing

Signal spectrum:

Sampled spectrum with $f_s > 2f_{BW}$:

Sampled spectrum with $f_s < 2f_{BW}$:

Aliasing in the Time Domain

- signals beyond $f_s/2$ are aliased to below $f_s/2$
- useful for down conversion from IF to baseband

Sampling & Anti-Aliasing Filtering (ADCs)

Nyquist Criterion $f_s > 2f_{BW}$

Ideal Case: $f_s = 2f_{BW}^{-1}$

Practical Case: digital audio

^{1.} Strictly, there should be NO signal energy at half the sampling frequency

Oversampling & Anti-Aliasing Filters

Oversampling eases filtering requirements:

• simple analog filter

• high order digital filters can have sharp transitions & linear phase

Oversampling & Quantization Noise

Quantization noise is uniform between 0 and $f_{\it s}/2$

In-band SNR::

$$SNR = \left[6.02N + 1.76 + 10\log\left(\frac{f_s}{2f_{BW}}\right)\right] dB$$

ADC Concepts Summary

Quantization determines resolution:

- smallest discernible step = 1 LSB
- more bits = more resolution
- $SNR \approx 6 \text{NdB}$

Sampling rate determines useful bandwidth:

- $f_s > 2f_{RW}$ Nyquist criterion
- $f_s \gg 2f_{BW}$ eases analog filtering

•
$$SNR = \left[6N + 1.76 + 10\log\left(\frac{f_s}{2f_{BW}}\right)\right] dB$$

Specifying ADCs

DC Specifications:

- $\bullet f_s << f_{clk}$
- "optimal" specifications

Dynamic Specifications:

- • $f_s \sim f_{clk}$
- indicates performance degradation for high signal frequencies
- "realistic" specifications

DC Specifications

Ideal output:
$$V_{OUT} = V_{REF} \left[\frac{b_{n-1}}{2} + \ldots + \frac{b_0}{2^N} \right]$$

- MSB (most significant bit) = b_{n-1}
- LSB (least significant bit) = b_0
- Full Scale input (or output) = $V_{REF} \left[\frac{2^N 1}{2^N} \right] \approx V_{REF}$

Ideal ADCs and DACs

Analog-to-Digital Converter

Digital-to-Analog Converter

• levels are uniformly spaced:

$$1LSB = \frac{V_{REF}}{2^N}$$

• slope = 45° , intercept = origin

Gain and Offset Errors

3-bit ADC example:

Offset Error: difference between zero intercept and the origin - expressed in LSBs

Gain Error: difference between real and ideal slopes - often expressed in LSBs from ideal full scale

Linearity Errors

Differential Non-Linearity (DNL):

• difference between real & ideal step size

Integral Non-Linearity (INL):

difference between step midpoint and line joining end points

Missing Codes:

 excessive DNL leads to missed codes in ADCs

Non-Monotonicity:

• excessive DNL leads to non-monotonic behavior in ADCs

Spurious Free Dynamic Range (SFDR)

• INL, DNL and finite slew rates cause distortion

SFDR:

- is a measure of harmonic distortion
- ideally SFDR > SNR

To Measure:

noise bandwidth

$$\Delta f \ll f_s/2$$

• input sine wave

$$f_{in} \ll f_s/2$$

Signal-to-Noise and Distortion (SINAD)

SINAD:

• noise and distortion degrade an ADC's performance

ANALOGDEVICES

ADC Bandwidth Specifications

Nyquist:

• bandwidth = $f_s/2$

Full Power BW (f_{3dB}):

- fundamental down 3dB
- typically $f_{3db} > f_s/2$

Resolution BW (f_{RBW}) :

- SINAD down 3dB (1/2 bit = 3dB)
- ideally $f_{RBW} \gg f_s/2$

 $f_{
m 3dB}$ & $f_{\it RBW}$ are usually independent of $f_{\it s}/2$

Sampling Errors (Jitter)

Jitter:

- most systems assume the signal is sampled uniformly.
- clock noise leads to non-uniform sampling (i.e. jitter).

• leads to SNR degradation for high frequency inputs.

$$2\pi f_a T_j V_p < V_{LSB}$$

Notes for jitter:

Jitter introduces uncertainty in the sampling instant that leads to uncertainty in the sampled value resulting in a degradation in the SNR. The effects of jitter depend on the slope of the signal at the sampling instant. A sine wave of frequency f_a with a peak value of V_p can be expressed as $V_p \sin(2\pi f_a t)$. The slope of this wave form at any time is given by:

$$\partial v/\partial t = 2\pi f_a V_p \cos(2\pi f_a t)$$

The worst case slope occurs at t = 0 and is given by $2\pi f_a V_p$. If the sampling clock has an rms jitter of T_j one can substitute for ∂t to solve for the worst case ∂v :

$$\partial v = 2\pi f_a V_p T_j$$

A nominal target for ∂v is to keep it below one LSB or

$$2\pi f_a V_p T_j < V_{LSB}$$

ADC Specification Summary

For true N-bit performance:

- INL $< \pm \frac{1}{2} LSB$
- DNL $< \pm \frac{1}{2} LSB$
- **ENOB** ~ **N**
- SFDR > 6NdB
- $\bullet f_{RBW} > f_s/2$

