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Abstract

This thesis presents a new method for the automatic structural analysis of analog and
digital integrated circuits. The method provides automatic recognition of basic analog
and digital building blocks, automatic identification of analog and digital signal paths
as well as symmetry computation. Applications in the context of automatic analysis
of digital standard cells as well as automatic sizing and placement of analog circuits
are presented.

Kurzfassung

Diese Arbeit stellt eine neue Methode zur automatische Strukturanalyse von analogen
und digitalen integrierten Schaltungen vor. Sie umfasst eine automatische Erkennung
analoger und digitaler Grundblöcke, eine automatische Bestimmung analoger und di-
gitaler Signalpfade sowie die Berechnung von Symmetrien. Die Arbeit stellt Anwen-
dungen im Bereich der automatischen Analyse von digitalen Standardzellen sowie der
automatischen Dimensionierung und Platzierung analoger Schaltungen vor.
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1. Introduction

Analog and mixed-signal circuits play an important role in today’s electronic systems.
The International Technology Roadmap for Semiconductors lists, among others, con-
sumer, communication and automotive applications (ITRS 2011, System Driver Chap-
ter). It defines analog or mixed-signal circuits to be circuits that at least partially deal
with input signals whose precise values matter (ITRS 2011, System Driver Chapter,
p.16). These circuits are mainly required for analog to digital and digital to analog
conversion to read out sensors or control actuators. It lists shortage of design produc-
tivity (ITRS 2011, System Driver Chapter, p.25) emerging from poor automation as
one of the main challenges for future mixed-signal systems.

In the design chapter of the same work, more detailed goals are formulated. Figure 1.1a
shows the degree of automation required for analog components in comparison to the
degree of automation for digital circuits. Figure 1.1b illustrates the amount of circuits
that should be synthesized. For the years starting from 2011 data is taken from
ITRS (2011, design chapter, Tables DESN2a, DESN2b, DESN4). For years 2005
to 2011 data from ITRS (2005, design chapter, Tables 13a and 15a) is used. Both,
ITRS (2005) and ITRS (2011) state that in 2011 analog automation reaches 27% of
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Figure 1.1.: Requirements for analog design automation as formulated by the ITRS
(ITRS 2005, ITRS 2011). (a) Degree of automation for analog designs in
percent of automation for digital designs. (b) Percentage of synthesized
analog content.
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1. Introduction

digital automation and 19% of synthesized analog content. Therefore, it is assumed
that the intermediate goals from 2005 to 2011 were met.

Some amount of this increase might be due to the better integration of constraint–
driven design and some basic design automation algorithms in major CAD tools. The
idea is that analog and mixed–signal designs are heavily dependent on so–called con-
straints. Constraints describe all conditions that must be held for an analog circuit to
work correctly but are normally not part of the specification. Examples for constraints
are matching conditions, operating region conditions (e.g., saturation) or symmetry
conditions. An example for a commercial software enabling constraint–driven design is
Cadence R© Virtuoso R© 6 (Cadence Design Systems 2008). It contains a constraint man-
ager to edit and store constraints in the design database. It provides basic methods to
generate constraints using automatic recognition of building blocks like simple current
mirrors and symmetry analysis. The constraints are then automatically considered in
the layout editor. In order to be able to use design automation for sizing (Martens
& Gielen 2008) or placement (Graeb 2011) without excessive setup, machine readable
storage of constraints is necessary. In this context three problems can arise,

1. Traditionally, constraints were rarely documented. Maybe, important constraints
were noted in some annotation layer.

2. Modern design software allows to store the constraints in machine–readable form
with the design. However, entering all constraints for an existing or new design
is tedious.

3. In the case that the constraints of a design were stored in machine–readable form,
completeness becomes an issue. For sizing and placement tools, completeness of
the constraints is important. Otherwise, they may find inappropriate solutions
which an experienced designer would exclude from the beginning.

Automatic generation of constraints is an approach to tackle all these three prob-
lems.

1.1. Research Needs in Constraint-Driven Design

For the degree of analog automation, Fig. 1.1 shows a long term goal of 60%. For the
amount of synthesized content the long term goal is 67%. However, today’s technology,
including research results, will limit the degree of automation to 35% which should be
reached in 2014. The amount of synthesized content is limited to 45% which should
be reached in 2019. Thus, further research in the area of analog design automation is
necessary to reach the long term goals.

Further progress is expected trough interactive design aids (ITRS 2011, design chap-
ter). Such an interactive design aid must fulfill two major requirements. First, it
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1.1. Research Needs in Constraint-Driven Design

must be well integrated with the overall design environment. Second, the required
initial set-up must be low to allow the designer a quick start and refine settings after-
ward. This is especially true for the constraints, which in turn requires an enhanced
constraint-driven design.

Necessary enhancements in constraint–driven design are discussed in the following.
According to Jerke et al. (2011) constraint–driven design requires a constraint man-
agement system, the possibility to generate or derive constraints from design objec-
tives, the possibility to transform higher level constraints into lower level constraints,
constraint verification and constraint sensitivity analysis. Constraint generation or
constraint extraction is also identified as key issue by Rutenbar (2012). Enhancement
of the state of the art is possible for most components:

• Constraint Management/Representation
In current constraint management systems, constraints are often stored in a
tool–specific way. This applies to the types of constraints provided as well as
the parameters available for some specific constraint. This becomes a problem
when various tools shall use the same set of constraints. In most systems, addi-
tional constraints can be defined by the user. However, a generic constraint set,
applicable to different tools and circuits is not yet known.

• Constraint Generation
Multiple approaches to automatic constraint generation were discussed in the
literature (see Section 2.3). Most algorithms analyze the topology of the circuit
for building blocks and/or symmetry. For example, the transistors of a simple
current mirror always have to work in saturation region and must be matched.
Symmetry is a widely used principle, where a circuit is designed to consist of
two identical halves. A typical example are fully-differential circuits. For these
circuits, high CMRR and low-offset error can only be obtained if the correspond-
ing symmetry constraints for sizing and layout are completely available and are
obeyed. Consequently, circuit symmetry should be computed from behavioral
considerations. State–of–the–art algorithms focus on the topology of the circuit
and the sizing and cannot handle multiple symmetrical signal paths that cross
each other.

• Constraint Transformation
Constraint transformation was considered little in research so far. Some work can
be found for AC constraint transformation and in the field of hierarchical syn-
thesis (see Section 2.3). The symmetry computation problem mentioned above
can also be interpreted as constraint transformation of symmetry constraints on
behavioral level to symmetry constraints on transistor level.

• Constraint Verification
Two different problems occur in the context of constraint verification. On the
one hand, the completed design must be checked for constraint violations. On the
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1. Introduction

other hand, the constraints must be checked for completeness and contradictions.
This problem is closely related to the constraint generation problem. Thus,
methods developed for the constraint generation problem will push constraint
verification forward as well.

This thesis will present new solution approaches to above problems. In particular,
it investigates different approaches for constraint generation for analog circuits us-
ing structural analysis. It presents a new symmetry computation that is based on
constraint transformation. In addition, a data structure for generic representation of
constraints for different applications is presented.

1.2. Structural Analysis for Digital Circuits

The use of structural analysis methods is not limited to constraint generation. For
digital circuits, structural analysis is a well established method (see Section 2.4). In
this work, it will be shown that structural analysis for analog and digital circuits can
be performed using the same methods. This is beneficial for circuits containing analog
and digital components at the same time. Examples are analog circuits with some
digital gates controlling power-down mode or mixed-signal circuits.

Timing characterization for digital standard cells determines the delay of a cell in
dependence of the switching pattern and cell load. To perform this automatically,
several input data like the logic function of the cell is required. Information about the
internal structure of a cell becomes important for advanced techniques. For example
the current–source modeling approach of Knoth et al. (2009) as well as the aging
analysis approach of Lorenz et al. (2010) require a decomposition of the standard cell
into single stage gates. This thesis will show that the suggested method can generate
this information.

1.3. Contributions of this Work

The structural analysis method presented in this thesis is suitable but not limited
to the applications discussed above. In particular, these are constraint generation
for analog circuits and generation of structural and behavioral information for timing
characterization of digital standard cells.

An overview of the proposed method is given in Fig. 1.2. Starting point is the circuit
topology which is typically a netlist as well as a description of the inputs and outputs
of the circuit. Based on the circuit topology a building block analysis is performed,
which recognizes analog building blocks like simple current mirrors or digital building
blocks like pass gates. After that, a structural signal path analysis is performed
which is based on a structural and qualitative behavioral model of the circuit, the
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circuit topology
(netlist)

I/O configuration

building block analysis (Chapter 3)

structural signal path analysis (Chapter 4)

symmetry computation
(Chapter 5) logic function extraction

(Section 6.1)

logic functionsymmetry building blocks

application:
constraint generation

(Chapter 7)

application:
generation of library information

(Chapter 6)

Figure 1.2.: Overview of the proposed method.

so–called ESFG. The analysis includes an automatic identification of the analog and
digital part of a circuit as well as the core and bias part, a computation of true pass
gate directions, automatic breaking of feedback loops and a symmetry computation.
For digital circuits, the results of the structural signal path analysis are then used to
compute the overall logic function of the circuit.

The method includes the following contributions compared to state of the art (see
Chapter 2).

1. Building Block Analysis
Traditional approaches for building block analysis either focus on analog or digital
circuits. This is the first method that can handle analog and digital building
blocks simultaneously. In addition, it contains several runtime improvements
compared to the basic algorithm (Massier 2010).

2. Structural Signal Path Analysis
The structural signal path analysis is based on a new graph model, the ESFG. It is
the first model, that includes the structure of the circuit described by its building
blocks as well as its qualitative behavior. This thesis presents the following
analyses based on that model:

a) a method to automatically identify the core and bias part of a circuit,

b) a method to automatically identify the analog and digital part of a circuit,
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1. Introduction

c) a method to detect the true directions of pass gates within the digital circuit
part,

d) a method to break feedback loops within the digital circuit part.

3. Symmetry Computation
In addition, a new automatic symmetry computation method is presented. This
method shows a significant improvement of the symmetry computation for analog
circuits, because

• it provides an improved handling of asymmetries, and

• it is the only method that can handle multiple, overlapping differential signal
paths correctly.

4. A Consistent Constraint Generation Method
Existing constraint generation approaches were revised and generalized. The re-
sulting method can provide consistent constraints for the complete analog design
flow with a focus on sizing and placement.

Parts of this work have been published in Eick et al. (2009), Eick, Lu & Graeb (2010),
Eick, Strasser, Graeb & Schlichtmann (2010), Strasser et al. (2011), Eick et al. (2011),
Eick & Graeb (2011a), Eick & Graeb (2011b), Eick & Graeb (2012a), Eick &
Graeb (2012b), Eick & Graeb (2012c), Eick & Graeb (2013), Eick, Sridharan
& Graeb (2013) and Eick, Strasser & Lu (2013). Some subproblems and pro-
visional results were investigated in the following student projects: Lu (2009),
Stolberg-Stolberg (2009), Stolberg-Stolberg (2010), Tag (2010), Tschöpe (2010),
Tsonev (2010), Youssef (2010), Zhang (2011), Guo (2012), Jongudomkarn (2012)
and Sridharan (2013).

The remainder of this thesis is organized as follows. The state of the art is discussed in
Chapter 2. Chapter 3 discusses the enhanced building block analysis, Chapter 4 intro-
duces the structural signal path analysis and Chapter 5 describes the new symmetry
computation method. After that, two different applications are presented. Chapter 6
describes the application to automatic generation of input data of digital standard
cells. Chapter 7 discusses the application to automatic constraint generation for ana-
log circuits. The thesis is concluded by Chapter 8.
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2. State of the Art

This chapter discusses the state of the art in fields related to the topic of the thesis.
First, existing structural and behavioral symbolic analysis methods for analog circuits
are discussed. Next, sizing and placement constraint generation methods for analog
circuits are covered. After that, structural and functional analysis methods for digital
circuits are discussed. Some of these methods are capable of determining the logic
function out of the circuit structure.

2.1. Structural Analysis for Analog Circuits

Two structural analyses types with relevance for this thesis can be identified. Build-
ing block analysis computes basic building blocks like simple current mirrors. The
symmetries within a circuit are computed by a symmetry analysis.

2.1.1. Building Block Analysis

Building block analysis is the problem of finding subcircuits with a fixed topology
within a circuit. From a mathematical point of view, this is the problem of finding
subgraph isomorphism. Hence, the problem is related to comparing two complete
circuits using isomorphism methods. Such methods are applied in layout–versus–
schematic (LVS) checks (Barke 1984). The relatively small number and size of analog
building blocks allows to develop more specialized methods, which are discussed in the
following.

Chen & Sheu (1992) describe an algorithm to recognize differential pairs, simple cur-
rent mirrors, common-gate devices and cascode current mirrors by identifying four
types of special circuit nodes.

Arsintescu (1996) suggests a weighted bipartite matching algorithm to identify simple
current mirrors and level shifters (called biasing groups).

Mahmoud (1998) describes a method using pattern rules to recognize certain template
circuits. The extent of these templates is unclear. The example shown covers simple
current mirrors and a differential pair.
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Building BlockHierarchy
Level

transistor (t)0

1
simple

mirror

level differential
pair (dp)

cascode current
mirror

2

current shifter
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pair
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I
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II
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load
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(cp)
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current mirror
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wilson current
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(wcm)(ccm)
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wide-swing
cascode current
mirror (wscm)

...cm
3 differential stage (ds) child1 child2

Legend

Figure 2.1.: Library of CMOS building blocks (Massier 2010, Fig. 3.2).

The Sizing Rules Method

The Sizing Rules Method described by Massier (2010)1 includes a recognition algo-
rithm that compares a hierarchical building block library to a given netlist. It is the
most complete approach with respect to the covered types of building blocks and it is
the only approach that can handle CMOS and bipolar circuits. Since this algorithm
is the basis for the building block analysis presented in Chapter 3, a more detailed
description of this approach is given in the following.

Figure 2.1 shows the CMOS part of the building block library. It consists of four hier-
archy levels 0 to 3. Hierarchy level 0 contains a single MOSFET transistor. Hierarchy
level 1 contains the pair building blocks simple current mirror, level shifter, differential
pair, cross–coupled pair, voltage reference I, voltage reference II, current mirror load
and cascode pair. The transistors forming the pair are called children of the building
block. They are numbered to allow referencing. In Fig. 2.1 the child with index 1 is
marked by a blue rectangle and the child with index 2 is marked by a blue rectangle
with beveled corners. Hierarchy level 2 contains building blocks that are built using
blocks from hierarchy levels 0 and 1: The cascode current mirror consists of a simple

1preliminary works in (Graeb et al. 2001, Zizala 2001, Massier 2002, Massier et al. 2003, Eick 2006,
Massier et al. 2008a, Massier et al. 2008b, Massier & Graeb 2008)
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2.1. Structural Analysis for Analog Circuits

B ← ∅
for t← scm, ls, dp, . . . , ccm, 4tcm, . . . , ds

X ←
{

(c1, c2) ∈ (B ∪ D)2|leftTypeMatches(t, c1) ∧ rightTypeMatches(t, c2)
}

for (c1, c2) ∈ {(c1, c2) ∈ X|patternMatches(t, c1, c2)}
B ← B ∪ {newBuildingBlock(t, (c1, c2))}

B ← resolveConflicts(B)

B ← removeUncertainBuildingBlocks(B)

1

2

3

4

5

6

7

Figure 2.2.: Building block analysis algorithm according to Massier (2010).

current mirror and a level shifter. The four–transistor current mirror is formed by a
voltage reference I and a current mirror load. The wilson current mirror consists of a
single transistor and a simple current mirror. The improved wilson current mirror is
formed by a simple current mirror and a level shifter. The wide–swing cascode current
mirror of a voltage reference II and a cascode pair. Hierarchy level 3 contains the
differential stage which is formed by a differential pair and some current mirror.

An outline of the analysis algorithm is given in Fig. 2.2. Set B includes all recognized
building blocks and set D denotes the devices (e.g., transistors) of the circuit. The
algorithm iterates over all defined building blocks of hierarchy level 1, 2 and 3. For each
iteration, pairs (c1, c2) ∈ X with matching types are determined first. For example,
for the recognition of a simple current mirror, pairs of transistors are formed. For the
recognition of a cascode current mirror, pairs (c1, c2) are formed, where c1 is a simple
current mirror and c2 is a level shifter. Next, the connection patterns of all pairs in X
are compared with the connection pattern of the current building block. If the pattern
matches, a new building block is created.

Table 2.1 illustrates the course of the algorithm for the symmetrical OTA from
Sansen (2007, Silde 0711). In the iteration for t = scm, four simple current mirrors
scm1, scm2, scm3 and scm4 are recognized. They consist of transistors N1 and N3,
N2 and N4, P3 and P4 as well as P5 and P6, respectively. The search for differential
pairs (t = dp) yields differential pair dp1 consisting of P1 and P2, differential pair dp2

consisting of N3 and N4 as well as differential pair dp3 consisting of P4 and P6. The
latter two are false recognitions that will be removed in later steps. Iteration t = cp
finds two (false) cascode pairs cp1 and cp2 consisting of P1 and P6 as well as P2 and
P6. Finally, one differential stage ds1 consisting of dp1 and scm4 is found in iteration
t = ds.

In the example, transistor N3 is part of scm1 and dp2. The question arises, which of
these building blocks is valid and which is wrong. Two building blocks are said to be in
conflict if they overlap at least at one device. Formally this can be written as follows.
The set of all devices D?(x) ⊆ D of a building block contains all devices that form the
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Continued on next page . . .

Table 2.1.: Flow of the recognition algorithm for a symmetrical OTA
(Sansen 2007, Slide 0711).
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Table 2.1.: Flow of the recognition algorithm for a symmetrical OTA
(Sansen 2007, Slide 0711).
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Table 2.1.: Flow of the recognition algorithm for a symmetrical OTA
(Sansen 2007, Slide 0711).

block. The devices can either be direct children, grandchildren, great–grandchildren,
etc. Set D?(x) is recursively defined as follows,

D?(x) =

{ ⋃
y∈x.childrenD?(y) x ∈ B

{x} x ∈ D , (2.1)

where x.children ⊆ D ∪ B denotes the set of all children of x. In some cases, it
is necessary to distinguish the devices that belong to the first child x.child1 or the
second child x.child2 of a pair. For these cases, sets D1(x) and D2(x) are defined as
follows,

D1(x) := D?(x.child1) D2(x) := D?(x.child2) . (2.2)

Index ? can also be interpreted as 1 or 2 because a pair has exactly two children and

D?(x) = D1(x) ∪D2(x) . (2.3)

In the example, sets D1(scm1), D2(scm1) and D?(scm1) of simple current mirror scm1

are,

D1(scm1) = {N1} D2(scm1) = {N3} D?(scm1) = {N1, N3} . (2.4)

For differential pair dp2, sets D1(dp2), D2(dp2) and D?(dp2) are,

D1(dp2) = {N3} D2(dp2) = {N4} D?(dp2) = {N3, N4} . (2.5)
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(dp,?)

(ls,2)

(scm,2)

(cml,2)(cml,1)

(vrI,2)

(vrII,?)

(cc,?)

(wscm,2) (wcm,1)

Figure 2.3.: Dominance graph GD for the library shown in Fig. 2.1
(Massier 2010, Fig. 4.7).

The assignment of N3 and N4 to D1(dp2) and D2(dp2) is arbitrary because the differ-
ential pair is symmetric. However, set D?(dp2) is not influenced.

According to Massier (2010), a conflict is resolved by determining a dominant building
block that is kept and a dominated building block that is removed using the dominance
graph shown in Fig. 2.3. Precisely,

x2 dominates x1 :⇔
∃(i,j)∈{1,2,?}2

(
Di(x1) ∩Dj(x2) 6= ∅

)
∧
(
(x1.type, i) reachable from (x2.type, j)

)
, (2.6)

where x1.type and x2.type denote the type of building blocks x1 and x2, respectively.
Cut–set Di(x1) ∩ Dj(x2) is non-empty if x1 and x2 share one device. If i = 1 and
j = 2 this device is part of the first child of x1 and the second child of x2. If i = ? and
j = 2 this device is part of the first or second child of x1 and the second child of x2.
Relation reachable from is true for µ and ν iff there is a path in GD from ν to µ. A
recognition result described through B is said to be conflict free, if there is no building
block x2 ∈ B that dominates some building block x1 ∈ B,

∀
(x1,x2)∈B2

x2 dominates x1 . (2.7)

The notation used here differs from the notation used by Massier (2010), but Eq. (2.7)
can be shown to be equivalent to Massier (2010, 4.11) (see Appendix B).

In the example, the conflict between scm1 and dp2 can now be resolved using Eq. (2.6).
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For x1 = dp2, x2 = scm1, i = ? and j = 2, the following holds,

(
D?(dp2) ∩D2(scm1) = {N3} 6= ∅

)
∧
(

(dp, ?) reachable from (scm, 2)
)

⇔ scm1 dominates dp2 . (2.8)

The conflict is resolved by removing dp2. In the example, there is a second conflict be-
tween scm3, scm4 and dp3. The conflict is resolved by removing dp3 (see Table 2.1).

The building blocks differential pair and cascode pair are connected at one point only,
e.g., the two transistors of a differential pair are only connected at their source pins.
These building blocks are considered as uncertain and are removed if they are not
part of a larger building block. In the example, differential pair dp1 is kept because
it is part of differential stage ds1. In contrast, cascode pairs cp1 and cp2 are removed
because they are not part of a larger building block (Table 2.1). The final recognition
result for the example is shown at the bottom of Table 2.1.

2.1.2. Symmetry Analysis

Symmetry analysis or symmetry computation is the problem of identifying two parts
in the netlist of a circuit that should work equally or exactly opposed. The following
describes how different authors tackled that problem for different applications in the
context of analog circuits.

Charbon et al. (1993) present a symmetry computation to generate matching con-
straints for layout. It works on an undirected graph where nodes are devices and
edges are nets. They propagate pairs of symmetric nodes trough the circuit while
considering the results of a sensitivity analysis. The propagation is stopped when a
real or virtual ground is reached. According to the experimental results, they can
handle one fully-differential or single-ended signal path. This signal path is subdi-
vided into multiple symmetry axes. The algorithm needs a sized netlist to compute
the sensitivities.

Kole et al. (1994) describe a symmetry analysis with applications in symbolic analysis
and behavioral modeling. They use a hypergraph where nets are nodes and devices
are edges. Starting from each node and edge of the circuit their algorithm tries to
create two isomorphic trees. The algorithm is limited to fully symmetric circuits.
They suggest to handle so-called near symmetries by transforming the circuit to a
fully symmetric one. However, it is not explained how this can be automated.

Arsintescu & Spanoche (1996) and Arsintescu (1996) suggest a symmetry computation
method for placement constraint generation and visualizing netlists of analog circuits.
Their data structure is a bipartite graph with the nets and transistor pins as nodes.
Starting from every net in the circuit, they try to propagate pairs of symmetric nodes
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trough this graph. Their algorithm includes the sizing, i.e., two transistors are only
detected as symmetric if they have the same sizing. They claim that the algorithm
can handle circuits that are not fully symmetric. However, they do not describe how
the algorithm achieves this.

Yi et al. (2003), Hao et al. (2004) and Zhou et al. (2005) present a symmetry com-
putation with application in placement constraint generation. They use a bipartite
graph and a labeling algorithm similar to the Gemini II algorithm (Ebeling 1988).
Asymmetries in the circuit are handled by ignoring the gate connections and an initial
transformation of the netlist. However, it is unclear if this can be automated in a
reliable way.

Bhattacharya et al. (2004) describes an algorithm to extract symmetry constraints
from a given layout for retargeting of analog circuits.

2.1.3. More Structural Analysis Methods

Other structural analysis methods were suggested in the context of structural syn-
thesis. The purpose of these methods is to detect unrealistic circuit configurations
and evaluate the results. Examples can be found in Sripramong & Toumazou (2002),
Ferent & Doboli (2010) and Meissner et al. (2012).

2.2. Behavioral Analysis

Behavioral analysis methods can be divided into qualitative and quantitative methods.
Qualitative methods will give information, e.g., on which path an input signal propa-
gates trough the circuit but will not include information about the exact magnitude
of the signal at the output. Quantitative methods will give information about signal
magnitudes.

One of the earliest works on qualitative analysis was published in the field of artificial
intelligence (de Kleer 1984). It uses causal analysis to generate a qualitative model of
a circuit starting from qualitative models of the devices as well as Kirchhoff’s Laws.
The result is represented as so-called mechanism graph, which represents a sequence
of deductions leading to a certain input/output behavior. An algorithm to compute
possible current flows trough a circuit is investigated by Hao et al. (2004) and Zhou
et al. (2005). They call this signal flow analysis and use it to identity the signal
processing part (core part) of the circuit as well as to generate layout constraints.
Another so-called signal flow analysis is patented by Zhang et al. (2008). They model
possible signal flows on transistor level using a graph. They claim, that this can be
used to partition the circuit into a digital part, an analog biasing part and an analog
core part. However, they do not present their exact method.
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Figure 2.4.: Examples of signal flow graphs. (a) General signal flow graph. (b) Linear
signal flow graph.

Quantitative methods can be further subdivided into numerical and symbolic methods.
Numerical methods like SPICE simulation are applicable to a wide range of circuits but
they do not give insight how a circuit works. Symbolic methods try to find analytical
equations to describe the behavior of the circuit (Gielen & Sansen 1991). These models
are typically linear and limited to small-signal behavior. A small and simple model
may give good insight but have bad accuracy, because important parameters were
neglected. A large model may have good accuracy but provide less insight, because it
is too complex.

Signal Flow Graphs

Some symbolic methods use so–called signal flow graphs, which are related to data
structures used in this thesis. Signal flow graphs have wide applications in all fields
of electrical engineering, e.g., control theory and signal processing. They were first
introduced by Mason (1953). The work describes general properties of signal flow
graphs as well as linear signal flow graphs. The idea is to represent possible ways of
signal propagation between variables represented as nodes of a directed graph. An
example is given in Fig. 2.4a. If an edge e connects nodes ni and nj it means that a
signal can propagate from ni to nj. Thus, in the example a signal can propagate from
node n1 to node n2 but not from n4 to n1. Every node ni processes the input signals
to generate one output signal yi using a function fi. Thus, the example can be written
as,

y2 = f2(y1, y4) y3 = f3(y1, y2) y4 = f4(y3) y5 = f5(y1, y4) . (2.9)

No expressions for the functions are considered so far. For linear signal flow graphs
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the node functions fi are linear. For the example this could be,

y2 = w21 y1 + w24 y4 y3 = w31 y1 + w32 y2 y4 = w43 y3 y5 = w51 y1 + w54 y4 . (2.10)

For convenience the edges of the graph can be labeled with the weights of the cor-
responding inputs and the nodes can be labeled with the variables (Fig. 2.4b). The
total transfer function or gain from node ni to another node nj can then be computed
using simplification steps (Mason 1953) or Mason’s Rule (Mason 1956). The latter al-
lows to compute the transfer function by analyzing loops and forward paths. Forward
paths connect input to output and do not contain any node twice. If there is only one
feedback loop with loop gain T , Mason’s Rule can be written as,∑

iGi +
∑

iHi (1− T )

(1− T )
, (2.11)

where Gi is the gain of the i-th forward path touching the loop and Hi is the gain of
the i-th forward path not touching the loop. A more general formulation for multiple
loops can be found in Mason (1956). Using this, the gain from node y1 to node y5

can be calculated for the example. The graph has one loop consisting of nodes y2, y3

and y4 with loop gain T1 = w32w43w24. The graph has three forward paths. Paths
y1, y2, y3, y4, y5 and y1, y3, y4, y5 touch the loop. Their gains are G1 = w21w32w43w54

and G2 = w31w43w54, respectively. Path y1, y5 does not touch the loop. Its gain is
H1 = w51. In this case Mason’s Rule evaluates to

y5

y1

=
G1 +G2 +H1(1− T )

1− T

=
w31w43w54 + w21w32w43w54 + w51(1− w32w43w24)

1− w32w43w24

. (2.12)

Linear signal flow graphs are used by many symbolic analysis approaches for analog
circuits (Gielen & Sansen 1991). Since the nodes of the signal flow graph are the
variables of the problem, structural information is lost. This is different for the graph
proposed by Wei & Doboli (2008). The nodes of this so–called coupled building–block
behavioral (CBBB) model are the nets of the circuit. The edges and the corresponding
linear expressions are generated based on the building blocks of the circuit. However,
structural information is not considered during subsequent analysis. They present also
a variant called uncoupled building–block behavioral (UBBB) model, where feedbacks
are removed and a method to handle weakly non–linear circuits.

2.3. Constraint Generation for Analog Circuits

Constraint generation and constraint management has been discussed in several pub-
lications.
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sizing layout

Chen & Sheu (1992) × × —
matching
net length
net spacing

Charbon et al. (1993)
Choudhury &
Sangiovanni-Vincentelli (1993)
Malavasi et al. (1996)

× × —
matching
parasitics
layout symmetry

Arsintescu &
Spanoche (1996)

× × —
matching
layout symmetry

Graeb et al. (2001)
Massier et al. (2008b)
Massier (2010)

× operating region
matching

—

Yi et al. (2003)
Hao et al. (2004)
Zhou et al. (2005)

× × × —

matching
layout symmetry
core/bias identi-
fication

Table 2.2.: Overview of constraint generation approaches for analog circuits

General concepts for so-called constraint–driven design were discussed in the intro-
duction. Krinke & Lienig (2011) present a formal approach to constraint defini-
tion using so–called ontologies. Malavasi & Kao (1997) discuss different challenges
for constraint–driven physical design, including noise, delay, parasitics, symmetries,
matching and yield. Malavasi et al. (1998) present a general constraint management
system.

Some approaches to automatic constraint generation were published together with
the structural analysis methods discussed in Section 2.1. They are summarized in
Table 2.2. It can be observed that various approaches exist to generate layout con-
straints. They utilize different combinations of building block, symmetry, sensitivity
and current flow analyses. The constraints generated cover matching, net length, net
spacing, bounds for parasitics, layout symmetry and special restrictions for the core
part. Apart from that, there is one approach (Massier 2010) to generate operating
region and matching constraints for sizing by analyzing building blocks.

A method to identify critical and less critical constraints during constraint transfor-
mation was presented by Arsintescu & Otten (1998). Arsintescu et al. (1998) present
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a method to transform AC constraints between different abstraction levels. Makris &
Toumazou (1995) present a method based on qualitative reasoning to correct a circuit
in case the specification is violated. Some approaches to transform constraints from
one level of a design hierarchy to another were investigated in the context of analog
circuit synthesis. BLADES (El-Turky & Perry 1989) and OASYS (Harjani et al. 1989)
suggest knowledge–based approaches.

2.4. Structural Analysis for Digital Circuits

Structural analysis of digital circuits was broadly covered by research in the past. The
following discusses recognition of digital building blocks (e.g., inverters), computation
of true signal flow of switches and regularity extraction.

For the recognition of digital building blocks two classes of approaches exist: library
based approaches and algorithmic approaches.

Library based approaches typically model circuit and building blocks in a library
using graphs. Subgraph isomorphism algorithms are applied to compare the building
blocks from the library to the circuit (Watanabe et al. 1983, Huang & Overhauser
1995, Rubanov 2003, Rubanov 2006, Zhang & Wunsch II 2006). These methods are
independent of a specific design style like CMOS. However, their recognition ability is
limited to building blocks contained in the library.

Algorithmic approaches use the design rules of a specific design style like CMOS logic
to interpret a given netlist. Some approaches for CMOS logic investigate series and
parallel connection in the pull-up and pull-down network (Takashima et al. 1982,
Boehner 1988, Yokomizo et al. 1990, Dagenais 1991, Kim & Shin 1998). Bryant (1991)
extends this concept using four valued logic considering high impedance and unknown
states. Other approaches investigate paths of serial transistors ending at the power
rails (Laurentin et al. 1992, Hübner et al. 1997). All approaches compute the logic
function of the gate. These approaches can cover one design style (typically CMOS
logic) completely, but cannot be used for other design styles.

A hybrid approach is presented by Yang & Shi (2003). They speed-up a subgraph
isomorphism approach by preprocessing the netlist using an algorithmic approach to
identify simple gates.

In case sequential circuits are investigated it must be considered that states are saved
internally. The variables in the resulting logic function can refer to different time steps,
leading to so–called temporal logic (Ari et al. 1983). Pandey et al. (1995) and Jain
et al. (1995) show how state machines can be extracted using symbolic simulation.

The problem of determining the correct signal flow within switches, e.g., pass gates or
pass transistors, occurs for example in switch–level simulation and timing verification.
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The approach of Jouppi (1983) relies on a set of local rules. Ousterhout (1985) suggest
to search paths between the switch and a strong signal source. Other approaches
represent the circuit as graph and classify the nodes according to different criteria
(Blaauw et al. 1990, Lee et al. 1990, Baba-ali & Farah 1996). Next, switch directions
are determined using local rules as well as reachability analysis on the graph.

Many EDA algorithms for digital circuits can be speeded up by exploiting regularities
and symmetries. Regularity extraction tries to find repetition of the same subcir-
cuit within one circuit. The extent of this subcircuit is not known in the beginning.
Regularity extraction algorithms work in two steps: First, subcircuit candidates are
identified using heuristics. Second, repetitions of these subcircuits within the cir-
cuit are searched using the subgraph isomorphism techniques described above (Rao
& Kurdahi 1993, Hassoun & McCreary 1999). Symmetry extraction was investigated
based on general automorphism approaches (Aloul et al. 2002) as well as using special
heuristics (Wang et al. 2003, Chai 2009). None of these approaches is suitable for ana-
log circuits because appropriate heuristics are not known and the general approaches
can not handle cases that are not fully symmetric.
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The idea of building block analysis is that most integrated analog and digital circuits
are composed out of a few basic building blocks of fixed topology. Although these
building blocks are small they make up the essential circuit functions. Typical ex-
amples of analog building blocks are current mirrors and differential pairs. Typical
examples of digital building blocks are inverters or NAND gates. Building block anal-
ysis tries to identify such building blocks in a given circuit. The results can then be
fed to other analyses allowing, e.g., automatic constraint generation.

In the following, a new building block analysis method is presented. It consists of a new
building block library containing analog and digital building blocks, the corresponding
ambiguity resolution graph and a new algorithm to handle this library. The chapter
is concluded by a discussion of the contributions compared to the state of the art and
by experimental results.

3.1. Library of Analog and Digital Building Blocks

The library is shown in Fig. 3.2. The library is organized in a hierarchical way. Each
building block in the library consists of devices (e.g., transistors) or other building
blocks. Each building block and each device has a number of pins that connect to the
nets of the circuit. The building blocks can be distinguished according to the following
criteria:

• Hierarchy level
The library is partitioned into nL hierarchy levels. The building blocks from one
hierarchy level are built out of building blocks from lower hierarchy levels. The
overall number of hierarchy levels nL depends on the size of the logic gates used.
The presented algorithm will determine the correct value of nL automatically.

• Generic building block type
The building blocks in the library are of three different generic building block
types:

– Pair
A pair is formed by exactly two children c1, c2, which are building blocks
or devices of different or equal type (Fig. 3.1a). At least one pin of child c1

must be connected to one pin of child c2. The pins of the pair can be formed
by connected and unconnected pins of c1 and c2. An example is a simple
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c1 c2

(a) pair

c1 c2 cn

(b) array

c3

c2

cn

c1

(c) chain

(d) simple current
mirror

(e) logic array (f) stack chain

Figure 3.1.: Generic building block types ((a) to (c)) and corresponding exam-
ples ((d) to (f)).

current mirror (Fig. 3.1d). Child c1 is a diode–connected transistor (more
specifically a diode transistor array) and child c2 is a transistor without self
connections (more specifically a normal transistor array). Both children are
connected at their gate and source pins. The input pin of the overall simple
current mirror is connected to the gate pins of both children. The source pin
of the simple current mirror is connected to the source pins of both children.
The output pin of the simple current mirror is connected to the drain pin of
the second child.

– Array
An array is formed by n children c1 to cn which are building blocks or devices
of equal type (Fig. 3.1b). All children are connected in parallel by one or
more nets. The pins of the pair can be formed by connected and unconnected
pins of c1 to cn. An example is a logic array with three children (Fig. 3.1e)
from level 3 of the library in Fig. 3.2. It consists of transistors without self
connections (normal transistor arrays). Drain pins and source pins of all
three transistors are connected together and form pins of the logic array.
The gates of the transistors form three additional pins of the logic array.

– Chain
A chain is formed by n children c1 to cn which are pairs of equal type
(Fig. 3.1c). For two children ci, ci+1, i = 1 . . . (n− 1) the following applies:
The second child of ci is the first child of ci+1, i.e., ci and ci+1 share one
child. The pins of the chain are formed by the pins of c1 to cn. An example
is a stack chain with three children (Fig. 3.1f) from level 4 of the library in
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Fig. 3.2. It consists of three stacks on level 3 that overlap at one transistor.
The pins of the stack chain are formed by all gate pins, the drain pin of the
first transistor and the source pin of the last transistor.

• Signal type
Building blocks that are only used for analog signals are shown in the unshaded
part of the library. The gray shaded part contains building blocks that are only
used for digital signals. Building blocks that can be used in both cases are part
of the striped part.

• Subtype
For all building blocks except pass gate, logic gate and tristate control block an
NMOS and a PMOS subtype exists. This denotes whether the building block is
built out of NMOS or PMOS transistors. In general, only the NMOS subtype is
shown in Fig. 3.2.

A description of the different hierarchy levels follows.

3.1.1. Hierarchy levels 0 and 1

Hierarchy level 0 contains the devices transistor (trans) and resistor (res). It also can
contain other devices like capacitors or inductors but they are not shown in Fig. 3.2.

Hierarchy level 1 contains one pair consisting of a transistor and a resistor. Such a
pair is known as degenerated transistor (dtrans) (Johns & Martin 1997).

3.1.2. Hierarchy level 2

Hierarchy level 2 contains four kind of arrays that pool parallel transistors together
based on the connection of the transistor with itself. The normal transistor array (nta)
consists of transistors or degenerated transistors (dtrans), where all pins connect to
different nets. Transistors or degenerated transistors (dtrans), where gate and drain
are connected, form diode transistor arrays (dta). A capacitor transistor array (cta)
contains transistors where drain and source are connected. Transistors where all pins
are connected, form dummy transistor arrays (uta). All of these array types are allowed
to have one child only, i.e., they are also used for single transistors, which have the
required connections.
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Figure 3.2.: Building block library

3.1.3. Hierarchy level 3

The analog part of hierarchy level 3 contains the pairs voltage reference I (vrI), volt-
age reference II (vrII), current mirror load (cml), simple current mirror (scm), level
shifter (ls), differential pair (dp) and folded cascode pair (fc). They are built of normal
transistor arrays and diode transistor arrays. The pairs stack on level 3 (st3), pass
gate (pg) and cross–coupled pair (cc) can be used in analog and digital circuits. They
consist of normal transistor arrays. Pairs logic gate on level 3 (lg3) and logic array on
level 3 (la3) are used in digital circuits only.

3.1.4. Hierarchy level 4

Hierarchy level 4 contains a stack chain on level 4 (sc4), which is constructed from
stacks from level 3 that overlap at one transistor. It is used for digital circuits only.

3.1.5. Hierarchy level 5 (non–recursive part)

The analog part of hierarchy level 5 contains several larger current mirrors. A cas-
code current mirror (ccm) consists of a simple current mirror and a level shifter. A
four–transistor current mirror (4tcm) is built out of a voltage reference I and a current
mirror load. A wide–swing cascode current mirror (wscm) and a wide–swing current
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mirror (wsm) are formed by a voltage reference II and a cascode pair or normal tran-
sistor array, respectively. An improved wilson current mirror (iwcm) and a wilson
current mirror (wcm) consist of a simple current mirror plus a level shifter or normal
transistor array, respectively. The digital part of level 5 contains the tristate base
block (tbb), consisting of a pass gate and a logic array. It is required to handle one
type of tristate cells correctly.

3.1.6. Hierarchy level 7 (non–recursive part)

The analog part of hierarchy level 7 contains the differential stage (ds), which consists
of some current mirror plus a differential pair, as well as the Gilbert stack (gs), which
consists of two differential pairs. It is required for Gilbert–type mixers (Vallee &
Masry 1994). The digital part contains the tristate control block (tcb), consisting of
two complementary tristate base blocks.

3.1.7. Hierarchy levels 5, 7, . . . , nL (recursive part)

Some of the digital building blocks in all hierarchy levels starting from level 5 are de-
fined recursively. This allows to handle all CMOS circuits without explicitly specifying
all possible variants. These building blocks are logic gate, logic array, stack and stack
chain.

A stack (stk) on one of the odd hierarchy levels k = 5, 7, 9, . . . can be formed out of
logic arrays or normal transistor arrays. At least one of the children must be from level
k− 2, while the other can be from any level less than k. The same principle applies to
logic arrays (lak), which are built of stack chains or normal transistor arrays, as well
as logic gates (lgk), which are formed by stack chains, logic arrays or normal transistor
arrays. One of these building blocks must be of PMOS subtype and one must be of
NMOS subtype.

3.1.8. Hierarchy levels 6, 8, . . . , nL − 1 (recursive part)

Even hierarchy levels k = 6, 8, 10, . . . contain stack chains (sck) which are formed by
stacks from level k − 1.

3.1.9. Example

Figure 3.3 illustrates how a compound gate (Weste & Harris 2005, Fig. 1.18) can be
represented using the library. The gate consists of PMOS transistors P1 to P4 and
NMOS transistors N1 to N4. Each transistor is represented by normal transistor arrays
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la1
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Figure 3.3.: Compound gate (Weste & Harris 2005, Fig. 1.18) with recognized building
blocks.

nta1 to nta8 on hierarchy level 2. On hierarchy level 3, logic array la1
3 consisting of

N1, N2 and N3 is formed. Stack st1
3 consists of P1 and P2. Stack st2

3 consists of P2

and P3. Since st1
3 and st2

3 share P2, they form stack chain sc1
4 on hierarchy level 4. On

hierarchy level 5, sc1
4 and P4 form logic array la1

5. Stack st1
5 is built of la1

3 and nta4. It
becomes stack chain sc1

6 on hierarchy level 6. Finally, logic gate lg1
7 is formed by sc1

6

and la1
5 on hierarchy level 7.

3.1.10. Dominance graph

Ambiguities can occur when comparing the library to the circuit. One transistor can
become part of multiple, conflicting building blocks. In these cases it must be decided
which building block is the correct one. For this purpose, the ambiguity resolution
concept of Massier (2010) (see Section 2.1.1) is used. However, a new dominance
graph is required for the extended library. The new dominance graph is shown in
Fig. 3.4. The analog part of this graph essentially matches the dominance graph
proposed by Massier (2010) (Fig. 2.3). A small modification is made to include the
folded cascode pair. It dominates the level shifter part of a cascode current mirror and
the output part of a wide–swing cascode current mirror. This avoids that transistors
of folded cascodes are hidden in cascode current mirrors and wide–swing cascode
current mirrors. This is preferable for the structural signal path analysis discussed in
Chapter 4.

Inside each level of the digital, recursive part of the library the following holds: The
first device or building block of a stack dominates a logic gate. In the example of
Fig. 3.3 this, e.g., prevents a false inverter consisting of P1 and N4. A logic array
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(dp,?)

(ls,2)

(scm,2)

(cml,2)(cml,1)

(vrI,2)

(vrII,?)

(cc,?)

(ccm,1) (wscm,2)

(wcm,2)

(fc,2)

analog

(lg2,?)

(st2,1)(st2,2)

(la2,?)

(lgk,?)

(stk,1)(stk,2)

(lak,?)

(lgnL ,?)

(stnL ,1)(stnL ,2)

(lanL ,?)

(pg,?)

digital

Figure 3.4.: Dominance graph for the building block library from Fig. 3.2.

dominates a stack. In addition, logic gates from higher hierarchy levels dominate logic
gates from lower hierarchy levels. This means, in case different logic gates of different
sizes can be formed, the largest one is selected. Transistors that are part of a pass
gate must not be part of any other building block.

Currently, there is only one connection between the analog and the digital part. The
simple current mirror dominates a stack. However, further research in the area of
mixed–signal circuits might reveal more dependencies.

3.2. Enhanced Algorithm

Below, a formal notation of a circuit is introduced and the algorithm is described.
Figure 3.5 gives an overview of the data structures using a pseudo object–oriented
description. A circuit consists of a set of devices D, a set of building blocks B and a
set of nets N . Building blocks and devices can be abstracted as components. They
share the attributes listed under component in Fig. 3.5. In the following, attributes
are denoted in a pseudo object–oriented manner, e.g., c.type denotes the type attribute
type of component c. In case a component c is a device, its type c.type is in the set TD
of device types,

c.type ∈ TD = {trans, res, . . .} , (3.1)
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Component
type type
subtype subtype
pins set of pins
parents set of parents
net(p) connectivity function

Building block
child1 . . . childnc single children
children set of all children

Device

Net

Circuit
N set of all nets
B set of all building blocks
D set of all devices

”is a”

”refers to”

”consists of”

Figure 3.5.: Data structures representing a circuit.

where trans stands for transistor and res stands for resistor. In case a component c
is a building block, its type c.type is in library–dependent set TB of all building block
types,

c.type ∈ TB . (3.2)

The subtype c.subtype of a component c denotes whether it is NMOS or PMOS, i.e.,

c.subtype ∈ {—, n, p} , (3.3)

where n stands for NMOS, p stands for PMOS and — stands for none. The set of
pins c.pins lists all pins of a component c. It depends on the type of the component.
For example, N1.pins = {sc, gt, dn} for a transistor N1. The relation between nets and
pins of a component c is given by connectivity function

c.net(p) : c.pins→ N . (3.4)

Pin p of component c connects to net n iff c.net(p) = n.

A building block b ∈ B is formed by several components. In the following, these compo-
nents will be denoted as children. They are denoted by attributes b.child1, b.child2, . . . ,
b.childnc . The set of all children of a building block b is given by,

b.children = {b.child1, b.child2, . . . , b.childnc} ⊆ (D ∪ B) (3.5)

If a component a is child of a building block b then b is denoted as parent of a. It
holds,

a ∈ b.children⇔ b ∈ a.parents a.parents ⊆ B , (3.6)
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i← 0; B ← ∅
i← i+ 1; Bi ← ∅
for all t ∈ Li

pair array chain

t is a

Bi ← Bi ∪ findPairs(t) Bi ← Bi ∪ findArrays(t) Bi ← Bi ∪ findChains(t)

see Section 3.2.1 see Section 3.2.2 see Section 3.2.3

B′i ← {b ∈ Bi|∃a∈B a dominates b}
Bdom ← {c ∈ B|∃b∈B′i b dominates c}
B ← (B ∪B′i) \ Bdom

until
(
{b ∈ B|b.type ∈ Li} = ∅

)
∧
(
i = 7, 9, . . .

)
B ← removeUncertainBuildingBlocks(B)

1
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6

7

8

9
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11

12

Figure 3.6.: Enhanced building block analysis algorithm.

where a.parents is the set of all parents of a.

The enhanced building block analysis algorithm is shown in Fig. 3.6. The outer
loop (lines 2 to 11) iterates over the different hierarchy levels i of the building block
library. Set Li contains the building block types of level i,

Li ⊆ TB . (3.7)

For example L2 for hierarchy level 2 is,

L2 = {nta, dta, cta, uta} . (3.8)

The outer loop ends if no new building blocks were found in the current hierarchy level.
The termination condition is checked in level seven for the first time. This guarantees
that all non–recursive building blocks are recognized. After that, the condition is
evaluated at all odd hierarchy levels because we expect to find a logic gate at the very
end. Logic gates are part of the odd hierarchy levels 3, 5, . . . (see Fig. 3.2).

Inside each hierarchy level, the inner loop (lines 3 to 7) iterates over all building block
types belonging to that level. Depending whether the current type is a pair, array or
chain, corresponding functions are called to find new building blocks (line 6). These
functions are described in detail in Sections 3.2.1 to 3.2.3.

After that, the dominance relation is evaluated with respect to the found building
blocks. Line 8 checks whether the new building blocks are already dominated by some
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existing building block. Line 9 computes the set of all existing building blocks that are
dominated by the new building blocks. Relation dominates corresponds to Eq. (2.6).
Finally, the set of all building blocks is updated.

After termination of the main loop all uncertain building blocks that do not have
parents are removed similar to the algorithm of Massier (2010) (see Section 2.1.1).

3.2.1. Recognition of Pairs

In the following, the algorithm to find pairs is described. It is controlled by a rule
function ρt : (D ∪ B)2 → B, where B = {0, 1} is the set of Boolean numbers. Two
components x1 and x2 are recognized as pair of type t if ρt is true. The available
conditions cover required and forbidden connections, required types and subtypes as
well as existence of parents. For example, the rule function ρscm for a simple current
mirror reads as follows.

ρscm(x1, x2) =
[(
x1.type = dta

)
∧
(
x2.type = nta

)︸ ︷︷ ︸
type

∧
(
x1.subtype = x2.subtype

)︸ ︷︷ ︸
same subtype

∧
(
x1.net(gt) = x2.net(gt)

)
∧
(
x1.net(sc) = x2.net(sc)

)︸ ︷︷ ︸
required connections

∧
(
x1.net(gt) 6= x2.net(dn)

)︸ ︷︷ ︸
forbidden connection

]
(3.9)

The type conditions require the first component to be a diode transistor array and
the second component to be a normal transistor array. Both components must have
the same subtype. The required connection conditions require the gates and sources
of both components to be connected. The forbidden connection condition forbids a
connection between the gate of the first component, which is the drain at the same
time, and the drain of the second component.

In order to speed up the recognition algorithm, the rule function is split up into three
partial rule functions, for the first child, for the second child and the pair

r1,t : N × (D ∪ B)→ B r2,t : N × (D ∪ B)→ B r12,t : (D ∪ B)2 → B (3.10)

such that

ρt(x1, x2)⇔ ∃n∈N
[
r1,t(n, x1) ∧ r2,t(n, x2)

]
∧ r12,t(x1, x2) . (3.11)
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For example the rule function ρscm for a simple current mirror can be rewritten to

r1,scm(n, x1)⇔
(
x1.type = dta

)
∧
(
x1.net(gt) = n

)
(3.12)

r2,scm(n, x2)⇔
(
x2.type = nta

)
∧
(
x2.net(gt) = n

)
(3.13)

r12,scm(x1, x2)⇔
(
x1.subtype = x2.subtype

)
∧
(
x1.net(gt) 6= x2.net(dn)

)
∧
(
x1.net(sc) = x2.net(sc)

)
(3.14)

In general, the rule functions for any pair type t can be determined from the library
in Fig. 3.2 as follows:

1. One of the connections between both children is selected as characteristic con-
nection. If possible, connections should be avoided that correspond to a power
net.

2. Function r1,t for the first child is formed by a type rule for the first child plus the
corresponding part of the required connection rule for the characteristic connec-
tion.

3. Function r2,t for the second child is formed by a type rule for the second child
plus the corresponding part of the required connection rule for the characteristic
connection.

4. All other conditions form function r12,t:

a) A required connection rule for every connection shown in Fig. 3.2 except the
characteristic connection.

b) A forbidden connection rule for every connection not shown in Fig. 3.2.

c) A same subtype rule if only NMOS transistors are shown in Fig. 3.2. If
the building block consists of NMOS and PMOS transistors, corresponding
subtype rules are added.

d) For all recursive building blocks, a rule is added that forbids that children
already have parents.

Based on the formulation of recognition rules as function r1,t, r2,t and r12,t the algorithm
can be implemented as shown in Fig. 3.7. A set X of candidate pairs is determined by
iterating over all nets (lines 2 to 5). For each net, a candidate set X1 is computed that
contains only components where r1,t is true. Afterward, X2 is computed analogously.
This can be implemented efficiently by keeping an appropriate index for each net. For
all resulting pairs in X1 × X2 and thus for all pairs in X the existence condition in
Eq. (3.11) is fulfilled. Thus, a new pair can be created for all pairs in X where r12,t is
fulfilled (lines 6 and 7).
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findPairs(t)

B ← ∅; X ← ∅
for all n ∈ N

X1 ← {x1 ∈ D ∪ B|r1,t(n, x1)}
X2 ← {x2 ∈ D ∪ B|r2,t(n, x2)}
X ← X ∪ (X1 ×X2)

for all (x1, x2) ∈ {(x1, x2) ∈ X|r12,t(x1, x2)}
B ← B ∪ {newPair(t, x1, x2)}

return B

1
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3

4

5

6

7

8

Figure 3.7.: Algorithm to find pairs.

For the worst–case and average runtime complexity of the algorithm, the following
considerations can be made. In lines 3 and 4, sets X1 and X2 are computed for one
net n. In the worst case all components D ∪ B are connected to n. This computation
can be made fast by using an appropriate index, that is based on red–black trees
(Sedgewick 1988), yielding logarithmic complexity for the worst–case runtimes tmax

3

and tmax
4 ,

tmax
3 = tmax

4 ∈ O(log|D ∪ B|) , (3.15)

In line 5, every new pair requires one insert operation into set X. Assuming that X
is implemented using red–black trees and |X1| = |X2| = |D ∪ B| in the worst case
(Sedgewick 1988), this yields,

tmax
5 ∈ O(|D ∪ B|2 log|D ∪ B|2) = O(|D ∪ B|2 log|D ∪ B|) . (3.16)

Thus, the worst–case runtime t2−5 for the upper loop is,

tmax
2−5 = |N |(tmax

3 + tmax
4 + tmax

5 ) ∈ O(|N | · |D ∪ B|2 · log|D ∪ B|) . (3.17)

The lower loop is executed |X| times, which is |D ∪B|2 in the worst case. In addition,
it must be assumed that r12,t is true for every pair and consequently |D∪B|2 new pairs
are created, i.e.,

|B|max
findPairs = |D ∪ B|2 . (3.18)

Creating a new pair has logarithmic complexity with respect to the overall number
of components, since the index mentioned above must be updated. Overall, the com-
plexity for the worst–case runtime tmax

6−7 for lines 6 and 7 is,

tmax
6−7 ∈ O(|D ∪ B|2 log|D ∪ B|) . (3.19)

33



3. Enhanced Building Block Analysis

The runtime complexity for the upper loop is dominant, yielding the following com-
plexity for the worst–case runtime tmax

findPairs of the complete function,

tmax
findPairs ∈ O(|N | · |D ∪ B|2 · log|D ∪ B|) . (3.20)

However, these assumptions are hardly realistic. In a real circuit, there are many nets
with only few devices connected. In addition, it can be assumed, that r1,t and r2,t

are only true for a number of devices that is approximately constant. This yields the
following typical runtime complexity ttyp

2−5 of the upper loop,

ttyp
2−5 ∈ |N | · (O(1) +O(1) +O(log|D ∪ B|) = O(|N | · log|D ∪ B|) (3.21)

Experiments show that the number of created new pairs |B| is approximately linear
to the circuit size,

|B|typ ∈ O(|D ∪ B|) . (3.22)

Consequently the typical runtime ttyp
6−7 has the following complexity,

ttyp
6−7 ∈ O(|D ∪ B| log|D ∪ B|) , (3.23)

yielding the following typical runtime complexity for the function,

ttyp
findPairs ∈ O

(
(
∣∣N|+ |D ∪ B|) log|D ∪ B|

)
. (3.24)

3.2.2. Recognition of Arrays

Next, the algorithm to find arrays is discussed. Theoretically, an array of type t can
be found by evaluating a rule function ρt(x1, x2, . . . , xn) for n–tuples (x1, x2, . . . , xn)
of potential children as follows,

ρt(x1, x2, . . . , xn)⇔
n ≥ nmin,t ∧ ∀

i∈{1,2,...,n}
rchld(xi) ∧ ∃

ν1,ν2,...,νmt∈N
∀

i∈{1,2,...,n}
rcon,t(xi, ν1, ν2, . . . , νmt) . (3.25)

Constant nmin,t is the minimum number of components for an array of type t. Function

rchld : D ∪ B → B, (3.26)
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describes the properties of each child. It can contain conditions about type, subtype,
existence of parents as wells as required and forbidden connections of the child with
itself. Function,

rcon : (D ∪ B)×Nmt → B (3.27)

describes the connectivity between the children and does only contain conditions about
required connections. The size mt of the tuple of nets ν1, ν2, . . . , νmt is type specific
and constant.

In addition, the tuple must be the largest possible one. This means, it must not be
possible to extend a valid tuple (x1, x2, . . . , xn) by a child xn+1, such that ρt is still
valid, i.e.,

∃
xn+1

ρt(x1, x2, . . . , xn, xn+1) . (3.28)

Based on Eq. (3.25), Eq. (3.28) can be rewritten to,

∃
xn+1

[
n+ 1 ≥ nmin,t ∧ ∀

i∈{1,2,...,n+1}
rchld(xi)

∧ ∃
ν1,ν2,...,νmt∈N

∀
i∈{1,2,...,n+1}

rcon,t(xi, ν1, ν2, . . . , νmt)
]

⇔ ∃
xn+1

[
n+ 1 ≥ nmin,t︸ ︷︷ ︸

1 if ρt(x1,x2,...,xn)=1

∧ ∀
i∈{1,2,...,n}

rchld(xi)︸ ︷︷ ︸
1 if ρt(x1,x2,...,xn)=1

∧rchld(xn+1)

∧ ∃
ν1,ν2,...,νmt∈N

∀
i∈{1,2,...,n+1}

rcon,t(xi, ν1, ν2, . . . , νmt)
]

(3.29)

Under the assumption that ρt(x1, x2, . . . , xn) = 1 the first and second term are always
true. This yields,

∃
xn+1

[
rchld(xn+1) ∧ ∃

ν1,ν2,...,νmt∈N
∀

i∈{1,2,...,n+1}
rcon,t(xi, ν1, ν2, . . . , νmt)

]
. (3.30)

This means, there may be no child xn+1 that fulfills rchld,t and is connected in parallel.

For example, for a normal transistor array the rule functions and type–specific con-
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stants are,

nmin,nta = 1 (3.31)

mnta = 3 (3.32)

rchld,nta(x) ⇔
(
x.type = trans

)︸ ︷︷ ︸
type

∧
(
x.net(gt) 6= x.net(dn)

)︸ ︷︷ ︸
forbidden connection

∧
(
x.net(gt) 6= x.net(sc)

)
∧
(
x.net(sc) 6= x.net(dn)

)︸ ︷︷ ︸
forbidden connections

(3.33)

rcon,nta(x, ν1, ν2, ν3) ⇔ (x.net(gt) = ν1) ∧ (x.net(dn) = ν2) ∧ (x.net(sc) = ν3)︸ ︷︷ ︸
required connections

(3.34)

The minimum size for a normal transistor array is one. The children of a normal
transistor array have three parallel connections, thus mnta is three. The rule function
rchld,nta enforces x to be of type transistor. It forbids connections between any of the
pins of the transistor. The rule function rcon,nta requires all children to be connected
at gate, drain and source.

In general, the constants and rule functions can be determined from the library in
Fig. 3.2 as follows.

1. Constant nmin,t is 1 for the diode transistor array, normal transistor array, ca-
pacitor transistor array and dummy transistor array. Constant nmin,t is 2 for the
logic array.

2. The nets shown as parallel connected in Fig. 3.2 form required connection con-
ditions in rcon,t. Constant mt is equal to the number of nets used for the parallel
connections.

3. Rule function rchld,t is formed by a type condition. In addition, connection shown
between the pins of one child result in required connection conditions. Connec-
tions not shown between the pins of one child result in forbidden connection
conditions.

Figure 3.8 shows a recognition algorithm that is based on Eq. (3.25). First, the set X
of all components matching rule function rchld,t is computed (line 2). Next, it iterates
over all tuples (ν1, ν2, . . .) of nets that fulfill rcon,t for at least one component from x
(line 3). After that, the algorithm finds all components that connect to nets ν1, . . . , νmt
(line 4). This ensures that there is no component xn+1 left that could fulfill Eq. (3.30).
Lines 3 and 4 can be implemented efficiently by using, e.g., maps based on binary
trees. Finally, a new array is created in case Xκ is greater than the minimum array
size for t (lines 5 to 7).

The runtime complexity of this algorithm is dominated by the searches in lines 3
and 4. In case this is implemented state–of–the–art binary tree implementations (e.g.,
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findArrays(t)

B ← ∅
X ← {x ∈ D ∪ B|rchld,t(x)}
for all (ν1, ν2, . . .) ∈ {(ν1, ν2, . . .) ∈ Nmt | ∃x∈X rcon,t(x, ν1, ν2, . . .)}
Xκ ← {x ∈ X|rcon,t(x, ν1, ν2, . . .)}

|Xκ| ≥ nmin,t

true false

B ← B ∪ {newArray(t,Xκ)}
return B
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7

8

Figure 3.8.: Algorithm to recognize arrays.

red–black trees), worst–case and typical runtimes are,

ttyp
findArrays = tmax

findArrays ∈ O(|D ∪ B| log|D ∪ B|) , (3.35)

respectively. Every component can only become part of one array. The maximum
number of arrays |B|max

findArrays is the number of components,

|B|max
findArrays ≤ |D ∪ B| . (3.36)

3.2.3. Recognition of Chains

The algorithm to find chains is discussed next. Theoretically, a chain can be found
by evaluating a rule function

ρt(x1, x2, . . . , xn) : (D ∪ B)n → B (3.37)

where n is the (unknown) length of the chain. For a chain of type t, ρt is,

ρt(x1, x2, . . . , xn) :⇔ ∀
i=2,...,n

[
Γ21
t (xi−1) = {xi} ∧ Γ12

t (xi) = {xi−1}
]

∧ ∀
i=1,...,n

[
Γ22
t (xi) = ∅ ∧ Γ11

t (xi) = ∅
]
. (3.38)

where function Γijt (x) returns all building blocks x′ of type t, where the j–th child is
equal to the i–th child of x,

Γijt (x) = {x′ ∈ B|(x′.type = t) ∧ x.childi = x′.childj} . (3.39)
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x.child2

x.child1

sta1
3 sta2

3 stan3

(a) Γ12
st3

(x) = {sta13 , sta23 , . . . , stan3 }

x.child2

x.child1

stb13 stbn3

(b) Γ11
st3

(x) = {stb13 , , . . . , stbn3 }

x.child2

x.child1

stc13 stcn3

(c) Γ21
st3

(x) = {stc13 , . . . , stcn3 }

x.child2

x.child1

std1
3 stdn3

(d) Γ22
st3

(x) = {std13 , . . . , stdn3 }

Figure 3.9.: Examples for Γijst3
(x).

Function Γijst3
(x) is illustrated by Fig. 3.9. Function Γ12

st3
(x) consists of stacks sta1

3 ,

sta2
3 to stan3 that are formed by x.child1 and transistors connected to the drain pin of

x.child1 by their source pin (Fig. 3.9a). Function Γ11
st3

(x) consists of stacks stb13 to stbn3
that are formed by x.child1 and transistors connected to the source pin of x.child1 by
their drain pin (Fig. 3.9b). Function Γ21

st3
(x) consists of stacks stc13 to stcn3 that are

formed by x.child2 and transistors connected to the source pin of x.child2 by their
drain pin (Fig. 3.9c). Function Γ22

st3
(x) consists of stacks std1

3 to stdn3 that are formed
by x.child2 and transistors connected to the drain pin of x.child2 by their source pin
(Fig. 3.9d).

Equation (3.38) can be interpreted as follows. Two consecutive building block xi−1,
xi, i = 2 . . . n have the property that,

1. building block xi is the only building block of type t, where the first child is equal
to the second child of xi−1, and

2. building block xi−1 is the only building block of type t, where the second child
is equal to the first child of xi.

In addition, every building block xi in the chain must have the property that,

1. there is no other building block of type t, where the first child is the first child
of xi, and

2. there is no other building block of type t, where the second child is the second
child of xi.
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Figure 3.10.: Examples for two valid stack chains sc1
4 and sc2

4 (a), an invalid stack
chain sc3

4 (b) as well as the corresponding building block hierarchy (c).

The only chain in the library from Fig. 3.2 is the stack chain. The conditions are
illustrated by Fig. 3.10. It shows an example consisting of seven NMOS transistors N1

to N7. These transistors form stacks st1
3 to st7

3 (Fig. 3.10c). Stacks st3
3 and st4

3 form a
valid chain sc1

4 (Fig. 3.10a), because

Γ21
st3

(st3
3) = {st4

3} Γ12
st3

(st4
3) = {st3

3}
Γ11

st3
(st3

3) = ∅ Γ22
st3

(st3
3) = ∅

Γ11
st3

(st3
3) = ∅ Γ22

st3
(st3

3) = ∅
⇒ ρsc4

(st3
3, st

4
3) = 1 . (3.40)

Stacks st3
3 and st4

3 share transistor N2. There are no branches at stack st3
3 or stack st4

3.
The same is true for sc2

4 formed by stack st7
3, because

Γ11
st3

(st7
3) = ∅ Γ22

st3
(st7

3) = ∅
⇒ ρsc4

(st7
3) = 1 . (3.41)
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Stacks st5
3, st3

3 and st4
3 do not form a valid chain sc3

4 (Fig. 3.10b), because,

Γ11
st3

(st5
3) = {st6

3} Γ22
st3

(st5
3) = {st2

3} . (3.42)

This chain would have two branches and is therefore invalid.

In addition, the chain must be as large as possible. There must be no x0 that can be
added at the beginning and there must be no xn+1 that can be added at he end, i.e.,,

∃
x0

ρt(x0, x1, . . . , xn) ∧ ∃
xn+1

ρt(x1, . . . , xn, xn+1) (3.43)

From the first term of Eq. (3.43), conditions for the first child x1 are derived in the
following. The term can be rewritten to

∃
x0

[
ρt(x1, . . . , xn) ∧ Γ21

t (x0) = {x1} ∧ Γ12
t (x1) = {x0} ∧ Γ11

t (x0) = ∅ ∧ Γ22
t (x0) = ∅

]
.

(3.44)
Thus set Γ12

t (x1) of a valid start point x1 must not have exactly one element. To-
gether with the conditions from ρt, this yields the following conditions for a valid start
point x1,

x1 valid start point⇔
[
|Γ12
t (x1)| 6= 1 ∧ Γ11

t (x1) = ∅ ∧ Γ22
t (x1) = ∅

]
. (3.45)

This allows to formulate the algorithm as shown in Fig. 3.11. The algorithm first
determines all building blocks of type t (line 2). After this, valid chains are searched,
starting from all components that are valid start points (line 3). A component x1 is
a valid start point, if Eq. (3.45) is fulfilled. The inner loop (lines 4 to 7) runs as long
as the chain can be extended. In each iteration, the only element of Γ21(xi) is stored
as xi+1 and i is incremented. At the end, a new chain is created for x1 to xi−1. This
algorithm can be implemented efficiently by modeling components xi as graph.

Setting up such a data structure requires iterating over all elements of X and stor-
ing their children in, e.g., an adjacency list. The complexity of the worst–case run-
time tmax

setup and of the typical runtime ttyp
setup for this is,

tmax
setup, t

typ
setup ∈ O(|D ∪ B| log|D ∪ B|), (3.46)

assuming that insert operations for the adjacency list are logarithmic in time. The
procedure described in lines 3 to 10 is similar to a depth–first search (Sedgewick 1988)
which is known to be linear in the sum of nodes and edges. In this case the number
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findChains(t)

B ← ∅
X ← {c ∈ B|x.type = t}

for all x1 ∈
{
x ∈ X

∣∣ x valid start point}
i← 1

while (|Γ21
t (xi)| = 1) ∧ (Γ11

t (xi) = ∅) ∧ (Γ22
t (xi) = ∅)

xi+1 ← only element of
(
Γ21
t (xi)

)
i← i+ 1

i > 1

true false

B ← B ∪ {newChain(t, (x1, . . . , xi−1))}
return B

1

2

3

4

5

6

7

8

9

10

11

Figure 3.11.: Algorithm to recognize chains.

of nodes and edges is of the same size, yielding the following worst–case and typical
runtimes,

tmax
3-10, t

typ
3-10 ∈ O(|D ∪ B|). (3.47)

Consequently, the complexity of the worst–case and typical runtime for this function
is,

tmax
findChains, t

typ
findChains ∈ O(|D ∪ B| log|D ∪ B|) . (3.48)

Every component can only become part of one chain. The maximum number of
chains |B|max

findChains is the number of components,

|B|max
findChains ≤ |D ∪ B| . (3.49)

3.3. Discussion

In the following, first the overall complexity is calculated. Afterward, differences to
the approach of Massier (2010) and pattern recognition approaches are discussed.

In order to calculate the worst–case complexity it is assumed that all hierarchy levels
of the library uniformly consist of pairs, arrays and chains. The worst–case for the size
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3. Enhanced Building Block Analysis

of the set of all components after the first iteration is dominated by the worst–case of
found new pairs Eq. (3.18), as follows

|D ∪ B|max
1 = |D|+ |L1||D|2 . (3.50)

Similar the worst–case size after the second iteration is,

|D ∪ B|max
2 = |D ∪ B|max

1 +
(
|D ∪ B|max

1

)2

(3.51)

= |D|+ |L1||D|2 + |L2|
(
|L1||D|2 + |D|

)2

(3.52)

In general, the worst–case for the size of the set of all components after k iterations
is,

|D ∪ B|max
k = |D|+

k∑
i=1

|Bi|max (3.53)

= |D|+ |L1||D|2 + |L2|
(
|L1||D|2 + |D|

)2
+ · · · ∈ O(|D|2k) (3.54)

The complexity of the runtime tmax
bba of the overall algorithm is then dominated by the

runtime to recognize pairs in level nL, yielding,

tmax
bba ∈ O(|N | · |D|2·2nL log|D|2nL ) = O(|N | · |D|2nL+1 · 2nL · log|D|). (3.55)

In the typical case, only a number of new components that is linear with the number of
existing components is found by all three functions (see Eqs. (3.22), (3.36) and (3.49)).
This results in,

|D ∪ B|typ
k = |D|+

k∑
i=1

|Bi|typ ∈ |L1|O(|D|) + |L2|O(|D|+ |D|) + · · · (3.56)

⇒ |D ∪ B|typ
k ∈ O(k · |D|) . (3.57)

The complexity for functions findPairs, findArrays and findChain is given by
Eqs. (3.24), (3.35) and (3.48). The complexity of the runtime ttyp

bba of the overall
algorithm is then,

ttyp
bba ∈

nL∑
k=1

|Lk|O((k − 1) · |D| log|D|) = O(n2
L · |D| log|D|) . (3.58)

Overall, the algorithm shows polynomial behavior in the worst case and nearly linear
behavior in the typical case if the library is fixed.
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3.3. Discussion

For the ESFG generation algorithm (Section 4.1) only the top–most level of the build-
ing block hierarchy is regarded. These building blocks represent complete functional
blocks. These building blocks do not have parents, i.e.,

Btop = {b ∈ B|b.parents\{ds, gs} = ∅}. (3.59)

Differential stages and Gilbert stacks are ignored because these building blocks are only
required to check the correctness of detected differential pairs. Two building blocks
from Btop are disjoint, this means they do not share devices. The only exceptions are
current mirrors that share an input stage. Overall, it can be said that,

|Btop| ≤ |D| . (3.60)

The enhanced building block analysis method differs from the building block recogni-
tion of Massier (2010) (see Section 2.1.1) in the following points:

• The algorithm was extended by introducing the concepts of arrays and chains to
handle digital building blocks. The library and dominance relation were extended
accordingly.

• The library now contains the new hierarchy level 2 to detect normal transis-
tor arrays and diode transistor arrays. This adopts the principle suggested by
Arsintescu (1996) to detect simple current mirrors and level shifters. However,
the library used in this work is more comprehensive. This principle is beneficial
because less rules must be evaluated during the recognition of pairs.

• The recognition of pairs was speeded up because less candidate pairs are gen-
erated compared to previous approaches. The approach of Massier (2010) used
all pairs of devices or building blocks of the correct type. The approach of
Zizala (2001) used all pairs of devices or building blocks that are connected to
the same net and one rule function per type. The new rule functions suggested
in this thesis, only yield pairs that are connected to the same net by the correct
pin and that are of correct type.

• The conflict resolution is performed after each hierarchy level. This has the
advantage that the overall number of building blocks is kept low, which in turn
results in another speed–up. Furthermore, the recognition of chains requires that
wrong stacks are removed beforehand.

This is illustrated by the iterations of the enhanced algorithm for the symmetrical OTA
from Sansen (2007, Silde 0711) shown in Table 3.1. The analog part of the library is
used. Compared to Table 2.1, it contains an extra iteration for hierarchy level 2 to
detect normal transistor arrays and diode transistor arrays. In hierarchy level 3 the
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Table 3.1.: Flow of the enhanced algorithm for a symmetrical OTA
(Sansen 2007, Silde 0711).
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Table 3.1.: Flow of the enhanced algorithm for a symmetrical OTA
(Sansen 2007, Silde 0711).
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Table 3.1.: Flow of the enhanced algorithm for a symmetrical OTA
(Sansen 2007, Silde 0711).
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circuit class no. devices
analog 1 SE-OTA (Laker & Sansen 1994) 22

2 FD-OTA (Galdi et al. 2008) 30
3 FD-OTA (Johns & Martin 1997, Cadence Design

Systems 2010)
26

4 FD-Mixer (Lee 2004) 12
5 SE-OTA (Sansen 2007, Ohri & Callahan 1979,

Roh et al. 2008)
12

6 SE-OTA (Vallee & Masry 1994) 17
7 SE-OTA (Laker & Sansen 1994) 18

digital standard cells 2− 96

Table 3.2.: Test cases for building block analysis.

cascode pair was renamed to stack on level 3 (st3) to allow integration with the digital
library part. The wrongly detected differential pair dp2 is immediately removed after
hierarchy level 3. This is because the conflict resolution is run after each hierarchy
level. No building blocks are found in hierarchy levels 4, 5 and 6. Therefore these
levels are not shown in Table 3.1.

Some of the principles discussed in the context of graph matching for pattern recogni-
tion (Conte et al. 2004) can be found in the algorithm. This can be seen if components
and nets are not regarded as objects but as nodes in a bipartite graph. In addition, a
building block in the library would be represented by a so–called object graph and the
circuit would be the subject graph. The algorithm can then be interpreted as two step
approach. First, a characteristic node of the object graph is searched in the subject
graph. Second, the algorithm tries to match the remaining object graph starting from
the characteristic node. A strong relation exists also to the algorithm of Messmer &
Bunke (1998). They suggest to decompose larger graphs in a preprocessing step and
perform a hierarchical matching afterward. For the algorithm used here this prepro-
cessing step is replaced by a knowledge–based decomposition. However, it is important
to notice that none of these algorithms can handle arrays and chains.

3.4. Experimental Results

In the following, experimental results are shown for a set of test cases consisting
of seven analog circuits and one digital standard cell library. After that, detailed
results are shown for two of the analog test cases, a digital latch and two mixed–signal
circuits.

Table 3.2 lists details about the test cases. The analog test cases consist of four single–
ended (SE) operational transconductance amplifiers (OTA), two fully–differential (FD)
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Figure 3.12.: Time needed for building block analysis with respect to circuit size.

OTAs and one fully–differential mixer. In particular, Circuit 1 is a single–ended,
folded–cascode OTA from Laker & Sansen (1994). Circuit 2 is the fully–differential
OTA presented by Galdi et al. (2008). Circuit 3 is the fully–differential OTA discussed
in Johns & Martin (1997) and Cadence Design Systems (2010). Circuit 4 is a fully–
differential Gilbert cell mixer from Lee (2004). Circuit 5 is a single–ended OTA with
a negative resistance to increase gain (Sansen 2007, Ohri & Callahan 1979, Roh et al.
2008). It is depicted in Fig. 3.14. Circuit 6 is the complementary folded–cascode OTA
from Vallee & Masry (1994). It is shown in Fig. 3.15. Circuit 7 is a symmetrical
cascode OTA based on Laker & Sansen (1994).

The digital test case is the Nangate standard cell library, which consists of 134 standard
cells. The library includes various combinatorial circuits, latches and registers of
different driver strength. It can be seen that the number of transistors in these test
circuit varies between 2 and 96. For the analog test cases netlists generated from the
schematic are used together with the analog part of the library shown in Fig. 3.2.
For the digital test cases netlists extracted from the layout are used together with the
digital part of the library shown in Fig. 3.2.

Figure 3.12 shows a plot of the runtime required for building block analysis over the
circuit size. The times were measured on a Intel R© Core

TM
2 Duo CPU running at

3.00 GHz. The analog circuits are marked by circles, while the library cells from the
digital test case are marked by squares. It can be seen that there is a larger variation of
the runtime for the same circuit size. This is because of the different internal structure
of the cells. The runtime tbba of the building block analysis appears to be bounded
by O(|D| log|D|). This corresponds to the derived typical complexity (Eq. (3.58)). It
is significantly better than the derived worst–case complexity (Eq. (3.55)).
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Figure 3.13.: Number of recognized building blocks with respect to circuit size.

Figure 3.13 shows the number of recognized building blocks in dependency of the
circuit size. Figure 3.13a shows the final size of set B and Fig. 3.13b shows the size of
set Btop. Set B appears to grow linearly with the circuit size for the analog and digital
test cases. This corresponds to Eq. (3.54). The size of set Btop of the test cases is
always less than the theoretical bound |Btop| = |D| (Eq. (3.59)). For the digital test
case, the complexity appears to be better than linear. Thus, the ratio of |Btop| and |D|
is higher for analog circuits than for digital circuits.

In the following, detailed results are presented for analog circuits 5 and 6. These were
selected because they exhibit all typical analysis results.

Figure 3.14 shows detailed results for Circuit 5 from table Table 3.2. The circuit is
based on Sansen (2007), Ohri & Callahan (1979) and Roh et al. (2008). It consists
of four simple current mirrors scm1 to scm4, one differential pair dp1 and one cross–
coupled pair cc1.

Figure 3.15 shows detailed results for Circuit 6 from Table 3.2, which is a complemen-
tary folded cascode amplifier (Vallee & Masry 1994). It consists of eight NMOS tran-
sistors N1 to N8, eight PMOS transistors P1 to P8 and one resistor R1. The algorithm
recognizes four simple current mirrors scm1 to scm4, two differential pairs dp1 and dp2,
two level shifters ls1 and ls2 as well as differential stages ds1 and ds2 (Fig. 3.15a). In
addition, the method recognizes folded cascode pairs fc1 and fc2 (Fig. 3.15b). These
pairs suppress the recognition of a cascode current mirror ccm1 consisting of scm4 and
ls2. Similarly, folded cascode pairs (P3, N7) and (P4, N8) suppress a cascode current
mirror consisting of scm2 and ls1.
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Figure 3.14.: Circuit 5: A modified symmetrical OTA (Sansen 2007, Ohri & Callahan
1979, Roh et al. 2008) and the recognized building blocks.

scm1 ds1 scm2 ls1dp1

scm3 ds2 scm4 ls2dp2

N1 N2

N3 N4

N5 N6

N7 N8

P1 P2

P3 P4

P5 P6

P7 P8R1
ip in o

(a)

fc1 fc2

ccm1

N3 N4

P5 P6

P7 P8

(b)

Figure 3.15.: Circuit 6: Complementary folded cascode amplifier (Vallee & Masry
1994) and recognized building blocks (a) and recognized folded cascode
pair (b).
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Figure 3.16.: Result of building block analysis for a latch (Weste & Harris 2005).

Figure 3.16 shows the result for a digital latch (Weste & Harris 2005). It consists of
two pass gates pg1 and pg2 as well as three logic gates on level 3 lg1

3 to lg3
3. Further

results for the structural analysis of complete standard cell libraries can be found in
Section 6.4.

Figure 3.17 shows the result for a charge–pump. The circuit is based on Rhee (1999).
It consists of two logic gates on level 2 lg1

3 and lg2
3, which are digital building blocks. It

also consists of three simple current mirrors scm1 to scm3, which are analog building
blocks. From the structural point of view, P5,P6 and N6,N7 form differential pairs but
their inputs D and U are digital. Therefore, these differential pairs are suppressed by
certain additional rules. Although, this information is not always available from the
beginning, it can be obtained by the method for automatic identification of analog
and digital part described in Section 4.2.

Figure 3.18 shows the result for a voltage–controlled ring oscillator (Retdian et al. 2002,
Fig. 8). It consists of seven simple current mirrors scm1 to scm7 and five logic
gates logic gates on level 3 lg1

3 to lg5
3. From the structural point of view N3, N6 and

P3, P6 could form stacks on level 3 leading to a logic gate on level 5 covering all
four transistors. But this would contradict the analog functionality of N3 and P3.
Therefore, the recognition of the stacks on level 3 is prevented by the dominance
relation from Fig. 3.4. The second child of a stack on level 3 is dominated by the
second child of a simple current mirror.
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Figure 3.17.: Result of building block analysis for a charge–pump (Rhee 1999).
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Figure 3.18.: Result of building block analysis for a voltage–controlled ring oscillator
(Retdian et al. 2002, Fig. 8).
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This chapter describes the structural signal path analysis method. Figure 4.1 shows
the overall flow. The method consists of five different steps and starts from the building
blocks generated by the analysis presented in Chapter 3. First, the so–called enhanced
structural signal flow graph (ESFG) is generated, which is a structural and qualitative
behavioral model of the circuit. In case of a mixed–signal circuit, this enhanced
structural signal flow graph (ESFG) is then used to automatically identify the analog
and digital part. The analog part is then further subdivided into a core part, which
does the signal processing, and a bias part, which provides bias voltages and currents.
For the digital part, the true operating directions of pass gates are determined next.
Finally, feedback loops in the ESFG are automatically broken up, leading to the
temporal ESFG, which models time behavior in addition.

All of these steps are detailed in the following.

4.1. Generation of Enhanced Structural Signal Flow Graphs

Electronic circuits usually process some kind of signal which is a voltage or a current.
The possible ways of signal propagation inside a given circuit are determined by its

building blocks

ESFG generation

analog/digital identification

ESFG of analog part ESFG of digital part

core/bias identification

ESFG of core part ESFG of bias part

pass gate direction assignment

feedback analysis

temporal ESFG of digital part

Figure 4.1.: Flow of structural signal path analysis method.
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structure. ESFGs aim to model this relationship. They use the concept of signal flow
graphs (Mason 1953) to model the qualitative behavior of the circuit. They extend the
signal flow graphs by introducing structural attributes that are specific to integrated
circuits. This and the next chapter will show that this unique combined structural
and behavioral model allows to analyze the circuit to a large extent.

In this work qualitative approaches are preferred over quantitative approaches (see
Section 2.2) out of the following reasons. Qualitative methods can be applied to
circuits that can not be simulated because they are not sized properly. They are not
limited to small–signal domain and avoid the accuracy–complexity trade–off.

In the following, ESFGs are formally defined and the generation method is described
together with the corresponding library.

4.1.1. Formal Definition of ESFGs

The definition of an ESFG is based on the definition of terminals and the general
definition of digraphs (see Appendix A.1).

Definition 4.1 (terminal)
A terminal connects a circuit block to external circuitry. The set of all terminals is
denoted by K. The set of all input terminals is Ki, the set of all output terminals
is Ko such that

K = Ki ∪ Ko . (4.1)

Definition 4.2 (Enhanced structural signal flow graph (ESFG))
An ESFG is an attributed, directed graph GE = (NGE , EGE , ϕGE , αGE) with the
following properties.

1. Nets N and Terminals K of the circuit form the set of nodes

NGE ⊆ N ∪K . (4.2)

2. The set of edges is denoted by EGE . An edge e ∈ EGE models possible ways
of signal propagation from its start node ϕ−GE(e) to its end node ϕ+

GE(e),

ϕ−GE(e) : EGE → NGE ϕ+
GE(e) : EGE → NGE . (4.3)

The incidence function ϕGE is

ϕGE(e) = (ϕ−GE(e), ϕ+
GE(e)) . (4.4)
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3. An edge points from each input terminal node i ∈ Ki to the associated net
node ni ∈ N . An edge points to each output terminal node o ∈ Ko from the
associated net node no ∈ N .

4. Each edge e ∈ EGE refers to a component or terminal x given by the compo-
nent attribute function

αCGE(e) = x x ∈ D ∪ B ∪ K . (4.5)

5. The structural attributes of an edge e are given by function

αSGE(e) =

{
(t, s, p1, p2) ϕGE(e) ∈ N 2

terminal otherwise
(4.6)

t ∈ TD ∪ TB s ∈ {—, n, p} p1, p2 ∈ αCGE(e).pins

For edges that connect two net nodes, attributes t and s denote type and
subtype of the component represented by this edge, respectively. Attributes p1

and p2 represent the pins associated with this edge. For example if an edge e1

represents the signal flow from the input i to the output o of a NMOS–simple
current mirror then αSGE(e1) = (scm, n, i, o) holds. For edges connecting from
or to a terminal node, the structure attribute has the special value terminal.

6. The attribute function for an edge e is composed from the component attribute
function and the structural attribute function:

αGE(e) = (αCGE(e), αSGE(e)) . (4.7)

This partitioning is required for the algorithm to identify analog and digital
circuit parts (Section 4.2), the pass gate direction assignment (Section 4.4)
and the symmetry computation algorithm (Chapter 5).

7. Two edges e1 and e2 are equal if they connect the same nodes and have the
same attributes, i.e.,

(e1 = e2) :⇔
(
ϕGE(e1) = ϕGE(e2)

)
∧
(
αGE(e1) = αGE(e2)

)
(4.8)

This implies that two edges e1, e2 can connect the same two nodes in parallel
if αGE(e1) 6= αGE(e2).
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type of building block x Sub-ESFG for x
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s
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cta g s x.net(g) x.net(s)

cc
a b
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i

o

c1 c2
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o1 o2

s x.net(s)
x.net(i1) x.net(i2)

x.net(o1) x.net(o2)
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i1 o1

i2 o2

x.net(i1)
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x.net(o1)

x.net(o2)

scm/
wsm/
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wscm/
iwcm

i o

i o i o i o

i

o

i o

i o

x.net(i) x.net(o)

Continued on next page ...

Table 4.1.: Library of building blocks and corresponding ESFG.
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type of building block x Sub-ESFG for x
Continued from previous page . . .

di
gi

ta
l

lg

i1

in

o

iss

idd
x.net(i1)

...
x.net(in)

x.net(o)

x.net(idd)

x.net(iss)

tcb

i1 i2
i3 i4

i5 i6

o1

o2

x.net(i1)
x.net(i2)
x.net(i3)
x.net(i4)
x.net(i5)
x.net(i6)

x.net(o1)

x.net(o2)

Table 4.1.: Library of building blocks and corresponding ESFG.

4.1.2. Library–based Generation

In the following it is assumed that every building block from the building block library
(Fig. 3.2) has a typical signal flow, which can be stored in a second library. Thus a
sub-ESFG can be generated for each recognized building block. For the ESFG of
the complete circuit, only components b ∈ Btop are considered, where Btop is defined
according to Eq. (3.59). The ESFG of the complete circuit is generated by combining
the subgraphs GE,b for all building blocks b in Btop and subgraphs GE,k for all terminals
in K as follows,

GE =
⋃

b∈Btop

GE,b ∪
⋃
k∈K

GE,k . (4.9)

The graph union operation is defined according to Definition A.7.

The library of sub-ESFGs for all building blocks of the library shown in Fig. 3.2 is
shown in Table 4.1. The library does only contain sub-ESFGs for building blocks
that can occur in set Btop of a valid recognition result. Among others, it does not
contain entries for the differential stage and Gilbert stack because they are explicitly
not part of set Btop (Eq. (3.59)). A device k, which is a resistor (R), capacitor (C)
or inductor (L), is modeled using two anti–parallel edges (drawn as one bidirectional
edge) between the nets x.net(a), x.net(b) connecting to pins a, b, respectively. A
normal transistor array (nta) can transmit signals from gate to drain and source and
between drain and source. Thus, it is represented by edges from the gate to drain
and source and by two anti–parallel edges between drain and source. Similarly, a
diode transistor array (dta) is represented by two anti–parallel edges between drain
and source. For a capacitor transistor array (cta), an additional edge is added from
drain/source pin s to the gate because it acts as capacitor. Consequently, the
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type of terminal k Sub–ESFG for k

input k k nk

output k knk

Table 4.2.: Sub-ESFGs for circuit terminals.

20 40 60 80 100

2

4

O(|D|)

|D|

tgen [ms] digital
analog

Figure 4.2.: Time needed for ESFG generation with respect to circuit size.

assumption that the signal only flows from gate to drain or source is no longer true.
The dummy transistor array (uta) is not in the library because it has no function in
the circuit and therefore no signal flow. A cross–coupled pair (cc) is represented by
two anti–parallel edges between pins a and b. The sub-ESFG for a pass gate (pg)
is the combination of the sub-ESFGs for a PMOS and an NMOS normal transistor
array. An analog differential pair (dp) transmits signals from the inputs i1 and i2 to
outputs o1 and o2, respectively, as well as from pin s to both outputs. Theoretically,
there is a signal flow from i1 to o2 and from i2 to o1. But modeling this signal flow
brings no benefit for the subsequent methods working on the graph because neither
the symmetry nor the border between core and bias part does change. An analog
level shifter (ls) transmits signals along drain and source of both transistors and from
input i1 to output o1. All types of analog current mirrors are modeled by an edge
from input i to output o. A digital logic gate (lg) is represented by edges from all
inputs i1 to in to the output o. In case the logic gate is not directly connected to the
supply rails, there are additional edges from supply inputs idd and iss to output o. For
the digital tristate control block (tcb) a signal flow exists from every input to very
output.

The library of sub–ESFGs for terminals are shown in Table 4.2. An input terminal
is represented by an edge from a terminal k to the corresponding net nk. An out-
put terminal is represented by an edge from the corresponding net nk to a terminal
node k.
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Figure 4.3.: Number of generated edges with respect to circuit size (a) and number of
top building blocks (b).

4.1.3. Discussion

Although ESFGs are based on the general concept of signal flow graphs (Mason 1953),
there are important differences to the approaches based on signal flow graphs that are
discussed in Section 2.2. All other approaches aim for a quantitative model. Thus, the
edges are annotated with symbolic information about device properties. Our model is
purely structural and qualitative. Therefore, the edges are annotated with structural
information only. A second difference is that the nodes represent nets in our approach
but represent variables in all other approaches except Wei & Doboli (2008). Compared
to the patent of Zhang et al. (2008) the graph is constructed from building blocks and
not directly from transistors. This has the benefit of a smaller graph, because some
building blocks like current mirrors can be represented by one edge only. In addition,
the ESFG has structural attributes that are used to guide the algorithms presented
later on, e.g., the identification of analog and digital part in Section 4.2 and the
symmetry computation in Chapter 5.

Concerning the complexity of the algorithm, the following considerations can be made.
The size of the ESFG GE can be estimated as follows,

|NGE | ≤ |N |+ |K| |EGE | ∈ O(|Btop|) = O(|D|) . (4.10)

Since every node is exactly one net or terminal, the number of nodes is limited by the
number of nets and terminals. Since the sub–ESFGs for every building block b ∈ Btop

are fixed trough the library, a fixed number of edges is generated for every b resulting
in linear complexity with the number of devices. The worst–case runtime tgen for the
ESFG generation has linear complexity with the number of devices and terminals as
follows,

tmax
gen ∈ O(|D|+ |K|) . (4.11)
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4.1.4. Experimental Results

In the following, experimental results for the runtime of the algorithm are presented.
After that detailed results are shown for a pure analog case, for a pure digital case
and two mixed–signal cases.

Figure 4.2 shows the runtime of the algorithm for the test cases from Table 3.2. For
the digital test case, the runtime appears to be bounded linearly, which corresponds
to Eq. (4.11). No clear regularity can be observed for the investigated analog test
cases, probably the test cases are too small and too few. It can also be observed
that the time needed for analog circuits is slightly larger than the time needed for
digital circuits. The reasons for that are revealed by Fig. 4.3. It shows the size of the
edge set EGE versus the number of devices |D| (Fig. 4.3a) and building blocks |Btop|
(Fig. 4.3b). The number of edges appears to be linearly bounded by the number
of devices. It can be seen that the number of generated edges per device is higher
for analog circuits. This is because there are more top building blocks generated per
device for analog circuits. Consequently, the relation between |EGE | and |Btop| appears
to be linear.

An example for the ESFG generation is depicted in Fig. 4.4. The ESFG generated for
the circuit shown in Fig. 4.4a consists of port nodes ip, in, ib and o, net nodes n1 to
n4, nip, nin, nib and no. The attributes for edges e1 to e10 are shown in Fig. 4.4c.

Differential pair dp1 generates edges e1 to e4, thus the component attribute function
is dp1. The structural attribute of edge e1 is (dp, p, s, o1) because dp1 is a differential
pair with PMOS subtype and the edge represents the connection from s to o1. Similar
applies for edges e2 to e4. Anti–parallel edges e5 and e6 are generated by cross–coupled
pair cc1. Edges e7 to e10 are generated by simple current mirrors scm1 to scm4,
respectively. Edges eip, ein and eib model input terminals ip, in and ib, respectively.
Edge eo models output terminal o.

Figure 4.5 shows the ESFG for the latch circuit from Fig. 3.16. Edges e1 to e5 represent
the logic gates. Edges e10 to e15 and e20 to e25 represent the two pass gates.

Figure 4.6 shows the ESFG for the charge–pump shown in Fig. 3.17. Edges e1 to e3

represent the simple current mirrors. Edges e6 to e12 represent the analog switches.
Edges e13 and e14 represent the logic gates.

Figure 4.7 shows the ESFG of the voltage–controlled ring oscillator shown in Fig. 3.18.
Edge e1 represents the input transistor. Edges e2 to e8 represent scm1 to scm7.
Edges e9, e10 and e11 represent lg1

3. Edges e12, e13 and e14 represent lg2
3. Edges e15, e16

and e17 represent lg3
3. Edges e18 and e19 represent lg4

3 and lg5
3, respectively.

Up to now, analog and digital building blocks are known, but it is not known whether
the nodes in the graph represent analog or digital signals. This makes it impossible
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Figure 4.4.: ESFG for Circuit 5 from Fig. 3.14 (analog): (a) Schematic with building
blocks. (b) Generated ESFG. (c) Attributes of edges.
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Figure 4.5.: ESFG of the digital latch from Fig. 3.16.
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Figure 4.6.: ESFG of the charge–pump from Fig. 3.17 (mixed–signal).
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Figure 4.7.: ESFG of the voltage–controlled ring oscillator from Fig. 3.18 (mixed–
signal).

to determine the logic function of the digital circuit parts. Therefore an algorithm to
identify the analog and digital part of the circuit is presented next.
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4.2. Automatic Identification of Analog and Digital Part

The pass–gate direction assignment algorithm in Section 4.4, the feedback analysis
in Section 4.5 and the logic function extraction in Chapter 6 are specialized analyses
for digital circuits. The algorithm in Section 4.3 to identify core and bias part is a
specialized analysis for analog circuits. If a circuit is not purely analog or purely digital
but consists of an analog and a digital part, these parts are identified beforehand to
apply the algorithms listed above. In the following, an algorithm that identifies the
analog and digital part of the ESFG is presented. In addition, the algorithm detects
the interface part that represents the transition between analog and digital signals.
The algorithm is based on the structural information about the building blocks of
the circuit stored in the ESFG. The method uses the ESFG to set up a constraint
satisfaction problem (CSP). A CSP consists of a set of Boolean variables, integer
variables or set variables and a set of constraints that must be satisfied by the variables.
Possible constraints are predicate logic expressions as well as linear and specific non–
linear equalities and inequalities. The methods to solve a CSP are called constraint
programming.

The following CSP partitions the ESFG GE in an analog ESFG GE,A, a digital
ESFG GE,D and an interface ESFG GE,I .

GE = GE,A ∪GE,I ∪GE,D

∧ NGE,A ∩NGE,D = ∅
∧ ∀e∈EGE,IϕGE,I (e) ∈

(
NGE,A ×NGE,D ∪NGE,D ×NGE,A

)
∧ (∀k∈KAk ∈ NGE,A) ∧ (∀k∈KDk ∈ NGE,D)

∧ ∀e∈EGE c(e,NGE,A , NGE,D)

(4.12)

The first three constraints describe the partitioning of GE. Subgraphs GE,A and
GE,D must not share any node. Subgraph GE,I has the property that every edge
connects a node of GE,A with a node of GE,D. The fourth constraint forces analog
terminals k ∈ KA to be part of the analog graph and digital terminals k ∈ KD to be
part of the digital graph. The last constraint sets up one or more constraints per edge
using Boolean function c. Depending on the structural attributes αSGE(e) of edge e the
function corresponds to one of the four generic functions presented in the following.

1. fixed analog end: the end node of the edge e must be in the analog subgraph,

cfixed–analog–end(e,NGE,A , NGE,D) :⇔ (ϕ+
GE(e) ∈ NGE,A) . (4.13)

2. fixed digital end: the end node of the edge e must be in the digital subgraph,

cfixed–digital–end(e,NGE,A , NGE,D) :⇔ (ϕ+
GE(e) ∈ NGE,D) . (4.14)
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structural attribute αSGE(e) c(e,NGE,A , NGE,D)
pass gate
(pg,—, i, o), (pg,—, o, i) cprop(e,NGE,A , NGE,D)
(pg,—, c1/c2, i/o) cnull(e,NGE,A , NGE,D)
normal transistor array
(nta, n/p, sc, dn), (nta, n/p, dn, sc) cprop(e,NGE,A , NGE,D)
(nta, n/p, gt, dn), (nta, n/p, gt, sc) cnull(e,NGE,A , NGE,D)
all pure analog building blocks
pure analog types cfixed–analog–end(e,NGE,A , NGE,D)
all pure digital building blocks
pure digital types cfixed–digital–end(e,NGE,A , NGE,D)
terminals
terminal cprop(e,NGE,A , NGE,D)

Table 4.3.: Mapping from the structural attribute of an edge e to the corresponding
generic constraint type.

3. propagation: start and end node of the edge e must be in the same subgraph,

cprop(e,NGE,A , NGE,D) :⇔
(

(ϕ+
GE(e) ∈ NGE,A)↔ (ϕ−GE(e) ∈ NGE,A)

)
∧
(

(ϕ+
GE(e) ∈ NGE,D)↔ (ϕ−GE(e) ∈ NGE,D)

)
.

(4.15)

4. null: there is no condition for this edge,

cnull(e,NGE,A , NGE,D) :⇔ 1 . (4.16)

Table 4.3 shows the correspondence of these four generic functions and function c for a
specific edge e. For edges representing a pass gate (pg) the following holds. Start and
end node of the edges running from pin i to pin o and vice versa must be in the same
subgraph (Eq. (4.15)). No conditions exists for the edges running from the control
inputs c1 and c2 to i and o.

For edges e representing a normal transistor array (nta) the following holds. Start
and end nodes of edges between drain and source must be in the same subgraph. No
conditions exists for the edges running from the gate to drain and source. In case
edge e represents a pure analog building block the output must always be analog.
In case edge e represents a pure digital building block the output must always be
digital.
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4.2.1. Examples

The following constraints are generated for the charge–pump example from Fig. 3.17
and the ESFG from Fig. 4.6.

GE = GE,A ∪GE,I ∪GE,D

∧ NGE,A ∩NGE,D = ∅
∧ ∀e∈EGE,IϕGE,I (e) ∈

(
NGE,A ×NGE,D ∪NGE,D ×NGE,A

)
∧(U ∈ NGE,D) ∧ (D ∈ NGE,D) ∧ (ib ∈ NGE,A) ∧ (o ∈ NGE,A)

∧cfixed–analog–end(e1, NGE,A , NGE,D) ∧ cfixed–analog–end(e2, NGE,A , NGE,D)

∧cfixed–analog–end(e3, NGE,A , NGE,D) ∧ cprop(e4, NGE,A , NGE,D)

∧cprop(e5, NGE,A , NGE,D) ∧ cprop(e6, NGE,A , NGE,D)

∧cprop(e7, NGE,A , NGE,D) ∧ cnull(e8, NGE,A , NGE,D)

∧cnull(e9, NGE,A , NGE,D) ∧ cnull(e10, NGE,A , NGE,D)

∧cnull(e11, NGE,A , NGE,D) ∧ cfixed–digital–end(e12, NGE,A , NGE,D)

∧cfixed–digital–end(e13, NGE,A , NGE,D) ∧ cprop(eU , NGE,A , NGE,D)

∧cprop(eD, NGE,A , NGE,D) ∧ cprop(eib, NGE,A , NGE,D)

∧cprop(eo, NGE,A , NGE,D)

(4.17)

Edges e1, e2 and e3 are generated by simple current mirrors (scm), which are analog
building blocks. Therefore the end nodes n1, n2 and n3 of these edges must be part of
the analog subgraph. Edges e4 to e7 represent drain–source channels, therefore a prop-
agate constraint is created for these edges. The corresponding gate–drain connections
represented by edges e8 to e11 create a null constraint. Edges e12 and e13 represent
logic gates, therefore the end nodes n4 and n5 are constrained to be digital. Edges eD,
eU , eib, eo represent the edges connecting port nodes to net nodes. For these edges a
propagate constraint is created.

The solution of this problem is depicted in Fig. 4.8. The analog ESFG GE,A consists
of edges e1 to e7, the interface ESFG GE,I consists of edges e8 to e11 and the digital
part consists of edges e12 and e13.

Figure 4.9 shows the identified analog, digital and interface part for the voltage–
controlled ring oscillator from Fig. 3.18. The analog sub–ESFG GE,A consists of edges
e1 to e8 representing the input transistor and the simple current mirrors. The interface
sub–ESFG GE,I consists of edges e9, e10, e12, e13, e15 and e16 which model the supply
inputs of lg1

3, lg2
3 and lg3

3. The interface sub–ESFG GE,D consists of edges e11, e14, e17,
e18 and e19 modeling lg1

3 to lg5
3.
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Figure 4.8.: Resulting digital sub–ESFG GE,D, interface sub–ESFG GE,I and analog
sub–ESFG GE,A of the ESFG (Fig. 4.6) of the charge–pump (Fig. 3.17).
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Figure 4.9.: Resulting digital sub–ESFG GE,D, interface sub–ESFG GE,I and analog
sub–ESFG GE,A of the ESFG (Fig. 4.6) of the voltage–controlled ring
oscillator (Fig. 3.18).
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4.2.2. Conflicts and Conflict Resolution

In all of the experiments done so far there was exactly one solution. In some cases,
above CSP could not be solved in the first place because the constraints contradicted
each other. This occurs if an analog building block is found in the digital or interface
circuit part or vice versa. A typical example is a differential pair that is detected in the
interface part, but the transistors work as pass transistors in reality. Such conflicts
are resolved in the following steps:

1. The CSP from Eq. (4.12) is reformulated into an optimization problem. The
second constraint is changed into an objective function, that minimizes the size
of the cut set NGE,A ∩ NGE,D . All nodes remaining in the cut set after solution
are conflict nodes. For all other nodes the assignment is assumed to be certain.

2. The building block analysis is repeated. The recognition rules are updated, such
that no pure analog building block has outputs at nodes that are certainly known
to be digital and vice versa.

3. The ESFG is regenerated.

4. The above method for identification of the analog and digital part is repeated.
The CSP has less conflicts because wrongly detected building blocks were re-
moved by the second step. For all circuits investigated so far, one iteration was
enough to resolve all conflicts.

4.2.3. Discussion

The algorithm partitions the ESFG GE into the three graphs GE,I , GE,A and GE,D.
Thus, these graphs are not larger than GE, i.e.,

|NGE,I |, |NGE,A |, |NGE,D | ≤ |NGE | ≤ |N |+ |K| (4.18)

|EGE,I |, |EGE,A |, |EGE,D | ≤ |EGE | ⇒ |EGE,I |, |EGE,A |, |EGE,D | ∈ O(|D|) . (4.19)

The runtime is defined trough the CSP solver. The CSP solver used in this work,
Gecode (Schulte et al. 2010), combines (local) constraint propagation techniques with
exhaustive search. Local constraint propagation techniques solve small, fixed–sized
subproblems of the overall CSP (Frühwirth & Abdennadher 2003). The solution of
these sub–problems is then added as new constraint to the overall CSP. For exam-
ple constraints x > y and y > 2 imply x > 2. Runtime complexity of constraint
propagation is strongly dependent on the used constraints. In general, local con-
straint propagation can be expected to have polynomial time complexity (Frühwirth
& Abdennadher 2003). In case a CSP can not be fully solved by constraint propaga-
tion exhaustive search is required. The algorithm successively selects different values
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Ni ← ∅; No ← ∅
for all ki ∈ Kic
Ni ← Ni ∪ forwardNodes(GE,A, ki)

for all ko ∈ Koc
No ← No ∪ backwardNodes(GE,A, ki)

G′E,C ← inducedGraph(GE,A, Ni ∩No)

G′E,B ← spannedGraph(GE,A, EGE\EG′E,C
Ni ∩No)

GE,C ← insertInputTerminals(G′E,C , NG′E,C
∩NG′E,B

)

GE,B ← insertOutputTerminals(G′E,B, NG′E,C
∩NG′E,B

)
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Figure 4.10.: Algorithm for automatic identification of core and bias part.

for a variable or adds constraint based on some heuristics. Constraint propagation is
repeated for every value or constraint. In general, search has exponential runtime com-
plexity (Frühwirth & Abdennadher 2003). In practice, better performance is observed
if the right heuristic is chosen.

For above problem, Gecode was configured to select variables based on the largest
accumulated failure count. This chooses the variable with the highest number of
failing propagators (Schulte et al. 2010). In addition, NGE,A = NGE and NGE,D = ∅
is used as initialization.

4.3. Automatic Identification of Core and Bias Part

Analog circuits typically consist of a core part that does the signal processing and a
bias part that provides bias voltages and currents for the core part. In the following,
a new method is presented that identifies both parts automatically. The method
assumes that the user specifies for each terminal if it belongs to the core or bias part.
The rationale of the method is to trace the signal flow between core inputs and core
outputs and construct the core part from that. The remainder of the ESFG is the bias
part. In the following, the algorithm and an example are discussed.

4.3.1. Algorithm

Figure 4.10 shows the algorithm. Sets Kic and Koc denote the set of core input ter-
minals and the set of core output terminals. In lines 2 and 3 the set Ni of all nodes
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Figure 4.11.: Core ESFG GE,C and bias ESFG GE,B for the OTA circuit from Fig. 3.14
with the ESFG shown in Fig. 4.4.

reachable from a core input terminal ki is computed. Function forwardNodes of a node
n of graph G is recursively defined as follows,

forwardNodes(G, n) := {n} ∪
⋃

m∈Γ+
G(n)

forwardNodes(G,m)

where Γ+
G(n) := {m ∈ NG | ∃e∈EG

(
ϕG(e) = (n,m)

)
} .

(4.20)

This matches a depth–first search which traverses all edges in forward direction. Sim-
ilarly, the set of all nodes No from which a core output terminal can be reached is
computed in lines 4 and 5. Function backwardNodes of a node n of graph G is recur-
sively defined as follows,

backwardNodes(G, n) := {n} ∪
⋃

m∈Γ−G(n)

backwardNodes(G,m)

where Γ−G(n) := {m ∈ NG | ∃e∈EG
(
ϕG(e) = (m,n)

)
} .

(4.21)

This matches a depth–first search which traverses all edges in backward direction.
In line 6, the subgraph G′E,C of GE,A induced by the intersection of Ni and No is
computed as preparatory step for the core graph. It contains all nodes that are part
of Ni and No as well as the edges between them (see Definition A.8). In line 7, the
subgraph G′E,B spanned by all edges of GE,A that are not part of G′E,C are determined
as preparatory step for the bias graph. It contains all such edges and their start and
end nodes (see Definition A.9). In lines 8 and 9 graphs G′E,C and G′E,B are completed
to core graph GE,C and bias graph G′E,B, respectively, by adding port nodes for the
interface between both graphs.
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4.3.2. Example

In the following the detailed flow of the algorithm for Circuit 5 (Figs. 3.14 and 4.4) is
shown. The following terminal sets are used:

Kic = {ip, in} Koc = {o} (4.22)

Since the circuit has no digital part, the ESFG from Fig. 4.4 is the analog ESFG. The
algorithm computes the following sets,

Ni = {ip, in, o, nin, nip, no, n2, n3, n4} (4.23)

No = {ip, in, o, nin, nip, nib, no, n1, n2, n3, n4} . (4.24)

The edge set of the graph G′E,C is

EG′E,C
= {eip, ein, eo, e3, e4, e5, e6, e7, e8, e9} . (4.25)

Graph G′E,B has the following edge set EG′E,B
and node set NG′E,B

,

EG′E,B
= {eib, e1, e2, e10} NG′E,B

= {ib, nib, n1, n2, n3} (4.26)

Finally, additional terminal nodes b1 and b2 are added to G′E,B and G′E,C for

NG′E,B
∩NG′E,C

= {n2, n3} (4.27)

resulting in the graphs shown in Fig. 4.11.

4.3.3. Discussion

The runtime tcb of the analysis is dominated by the time needed to compute sets Ni

and No. For both together, |Kic| + |Koc| depth–first searches are executed. Since a
depth–first search is known to be linear with the number of nodes and edges, this
yields,

tcb ∈ O((|Kic|+|Koc|)·(|NGE,A |+|EGE,A|)) = O((|Kic|+|Koc|)·(|N |+|K|+|D|)) (4.28)
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Figure 4.12.: Time needed for automatic
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Figure 4.13.: Size of core and bias part
with respect to circuit size.

4.3.4. Experimental Results

In the following experimental results are presented for the analog test cases from
Table 3.2. Figure 4.12 show the runtime needed for the automatic identification of
core and bias parts. Corresponding to Eq. (4.28) the runtime appears to be bounded
linearly for all circuits except Circuit 4. For Circuit 4 the runtime is longer than for
the other circuits but still below 2 ms. One explanation might be that the core part of
Circuit 4 has two differential inputs and one differential output, i.e., |Kic|+ |Koc| = 6
and Eq. (4.28) depends on |Kic|+ |Koc|. In contrast, the core part of Circuit 5 has one
differential input and one single–ended output, i.e., |Kic| + |Koc| = 3. Figure 4.13
shows the edge count for core and bias part with respect to circuit size. For most
circuits the size of core and bias part are approximately equal.

4.4. Pass Gate Direction Assignment

So far, the channel of pass gates and normal transistor arrays has been represented
by two anti–parallel edges (see Section 4.1.2). These two edges form a cycle, but
the ESFG must be acyclic to compute the logic function of digital circuits later on
(see Section 6.1). In most real applications, the signal flow through the pass gates is
unidirectional. Consequently, one of the anti–parallel edges can be removed to break
the cycle. An algorithm to do this automatically is presented in the following.

The method is based on a local and a global analysis per pass gate. The local analysis
removes one of the edges if there is no proper signal sink on the end node of the edge.
A node has a proper signal sink if edges of a logic gate or pass gate starts at this
node and no edges of logic gates end at this node. The global analysis removes one of
the edges if there is no path from the end node of the edge to the output. Next, the
algorithm is presented together with an example.
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for all (e1, e2) ∈ unresolved pairs(GE,D)

G̃← spannedGraph(EGE,D\{e1, e2})
valid sink(ϕ+

G̃(e1)) ∨ output reachable(ϕ+
G̃(e1))

true false

GE,D ← GE,D without
(
{e1} ∪ control edges(e1)

)
valid sink(ϕ+

G̃(e2)) ∨ output reachable(ϕ+
G̃(e2))

true false

GE,D ← GE,D without
(
{e2} ∪ control edges(e2)

)
until unresolved pairs(GE,D) = ∅
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Figure 4.14.: Algorithm for pass gate direction assignment.

4.4.1. Algorithm

The algorithm (Fig. 4.14) iterates over all pairs (e1, e2) of anti–parallel edges of unre-
solved pass gates or normal transistor arrays. It holds,

unresolved pairs(GE,D) :=

(e1, e2) ∈ E2
GE,D

∣∣∣∣∣∣∣
(
ϕ−GE,D(e1) = ϕ+

GE,D(e2)
)

∧
(
ϕ−GE,D(e2) = ϕ+

GE,D(e1)
)

∧
(
αCGE,D(e1) = αCGE,D(e2)

)
 . (4.29)

The end node of edge e1 must be the start node of edge e2 and vice versa. Both
edges e1 and e2 must represent the same pass gate or normal transistor array.

The algorithm investigates graph G̃, which is ESFG GE,D without edges e1 and e2.
Edge e1 is removed from GE,D if

• the end node is no valid sink, i.e., the edge of another logic gates ends at it (local
condition), or

• no output port is reachable from the end node (global condition).

At the same time, all control edges of the pass gate or normal transistor array are
removed. These are all edges of the same component that share the end node with e1:

control edges(e1) := {e′ ∈ EGE,D |(ϕ+
GE,D(e′) = ϕ+

GE,D(e1)) ∧ (αCGE,D(e′) = αCGE,D(e1))}
(4.30)

The same applies to e2. Sometimes, not all pass gates or normal transistor arrays
can be resolved at once. In this case, the above procedure is repeated until there are
no unresolved edges left. If at least one pair of edges is assigned per iteration, the
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Figure 4.15.: ESFG of the latch circuit from Fig. 3.16 with assigned pass gate direc-
tions.

algorithm takes npg iterations at maximum, where npg is the number of pass gates.
Since there are less pass gates than devices, the runtime tmax

pg of the analysis has linear
complexity in the worst–case,

tmax
pg ∈ O({D}) . (4.31)

4.4.2. Example

The ESFG of the latch circuit from Fig. 3.16 contains two pairs of anti–parallel edges:
(e10, e11) and (e20, e21) (Fig. 4.5). The algorithm removes edge e11 pointing from nQ
to nD because no output is reachable from nD without e10 and e11. Consequently,
control edges e12 and e14 are also removed. For the second pass gate, edge e21 pointing
from nQ to nb is removed together with e22 and e24. The resulting graph is shown in
Fig. 4.15.

4.4.3. Discussion

The problem of determining pass gate directions is similar to the problem of deter-
mining the signal flow directions of transistors in switch–level simulation (Blaauw
et al. 1990). In switch–level simulation each transistor is modeled as switch. In
contrast, in the ESFG generated by the approach in this thesis, only edges represent-
ing pass gates and normal transistor arrays must be handled. This allows to use the
algorithm discussed above.

The Nangate library which is used as test case in this chapter does not contain pass
gates. Thus, no experimental results can be presented. However, summarized experi-
mental results for libraries including pass gates are presented in Chapter 6.
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4.5. Feedback Analysis

A second origin of cycles in the ESFG are feedback loops. In digital circuits, feedback
loops are used to store states between clock cycles. Such feedback loops can be broken
up by introducing a time concept into the graph. This allows to model the circuit as
Mealy machine (Mealy 1955). This state machine runs with a virtual clock frequency
which is twice the real clock frequency, thus the real clock can be sampled according
to Shannon (1949).

Next, an algorithm is presented that breaks up feedback loops automatically. It is
based on the following rationale. For each existing feedback loop, one node is selected
to represent the state of the loop. This node is then split up into two nodes. One node
represents the state of the node in the previous time step. This node gets all edges
pointing from the original node into the loop. The other node represents the state of
the node in the current time step. This node gets all other edges. The split node is
selected such that the direct transmission from input to output is not changed.

The resulting ESFG is denoted as temporal ESFG. A temporal ESFG is defined as
follows:

Definition 4.3 (temporal ESFG)
A temporal ESFG is an ESFG Gt = (NGt , EGt , ϕGt , αGt , τGt) with additional time
function τGt : NGt → N. If the time function of a node n is zero τGt(n) = 0 this
means the node refers to the current time step. If the time function of a node n is
one τGt(n) = 1 this means the node refers to the previous time step.

4.5.1. Algorithm

The algorithm is depicted in Fig. 4.16. First, result graph Gt is initialized as copy of
the digital ESFG GE,D. Next, strongly connected components are found in Gt using
the algorithm of Tarjan (1972) (line 2). Strongly connected components are subgraphs
of Gt with the property that each node inside such a subgraph can be reached from
all nodes within the subgraph (see Definition A.5). In case no strongly connected
components are found Gt is acyclic and the algorithm terminates (line 3). Otherwise,
possible break nodes are determined inside the largest component G (line 4). There-
fore, all input nodes Nin of G are determined (line 5). This are all nodes where an
edge e ends that is not part of G. Similarly, all output nodes Nout of G are computed
(line 6), which are all nodes, where an edge e starts that is not part of G. Next, all
nodes Ndirect are computed that are between one input and one output node (lines 7
to 9). These nodes and the input nodes can not be selected as break nodes because
this would change the behavior of the direct path. In case Ndirect ∪ Nin is different
from NG there is a valid break node nx. The graph is then split at this node, i.e.,
a new node n′x is created and the edges starting at nx to a node inside the loop are
moved to n′x (left side of lines 12 and 13). Node n′x represents a previous time step,
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Gt ← GE,D

G ← find strongly connected components(Gt)

while G 6= ∅
G← largest component(G)

Nin ← {n ∈ NG|∃(e∈EGt\EG) ϕ
+
GE,D(e) = n}

Nout ← {n ∈ NG|∃(e∈EGt\EG) ϕ
−
GE,D(e) = n}

Ndirect ← ∅
for all (ni, no) ∈ Nin ×Nout

Ndirect ← Ndirect ∪ nodes between(Gt, ni, no)

NG 6= (Ndirect ∪Nin)

true false

nx ← select first(NG\(Ndirect ∪Nin))

Gt ← split(Gt, nx)

nx ← select first(Nout)

Gt ← duplicate(Gt, nx)

G ← find strongly connected components(Gt)
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Figure 4.16.: Algorithm for feedback analysis.

i.e., τGt(n
′
x) = τGt(nx) + 1. In addition, an output port node is created for nx and an

input port node is created for n′x. In case Ndirect ∪ Nin is equal to NG the loop can
not be broken without changing the direct path from input to output. In this case,
the direct path must be partially duplicated. Therefore, one of the output nodes is
selected (node nx) and a new node ñx is created (right side of line 12 and 13). All
edges ending at nx are duplicated for node ñx. All edges starting at nx to a node
outside the strongly connected component are moved to ñx. Finally, the computation
of strongly connected components is repeated (line 14).

4.5.2. Example

For the latch circuit from Fig. 3.16 the flow of the algorithm is as follows. It starts
from the ESFG shown in Fig. 4.15. The graph has one strongly connected component
G,

NG = {nQ, nQ, nb} EG = {e2, e4, e20} . (4.32)

The sets of input and output nodes of G are,

Nin = {nQ} Nout = {nQ, nQ} . (4.33)
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Figure 4.17.: Temporal ESFG of the latch circuit from Fig. 3.16.

There are no nodes between the input and output nodes of G, so set Ndirect is empty.
Candidates for break nodes are,

NG\(Ndirect ∪Nin) = {nb, nQ} . (4.34)

The algorithm arbitrarily selects one of these node, e.g., node nb. The resulting tem-
poral ESFG is shown in Fig. 4.17. It has a new node n′b representing nb at the
previous time step. Edge e20 was changed to start at n′b. It also has two additional
port nodes b and b′. Since this graph is acyclic, G is empty after the iteration and the
algorithm ends.

4.5.3. Discussion

In order to examine the convergence of the algorithm, the following cases can be
distinguished.

1. A valid node for the split operation is found and one strongly connected compo-
nent is broken. This is the most common case.

2. A valid node for the split operation is found but the strongly connected compo-
nent is not broken. This happens in case the loop is closed by multiple nodes or
if the strongly connected component contains more than one loop. In this case
the analysis is repeated for the same component in the next iteration. Since a
strongly connected component can only contain a limited number of loops this
finally will lead to the first case.

3. No valid break node is found. This can happen in case a loop has multiple input
and output nodes. In this case, one of the output nodes is duplicated and a valid
node for the split operation is found in the next iteration. Thus, one of the first
two cases applies.
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Cases 2 and 3 lead back to case 1, which breaks a strongly connected component. If one
strongly connected component is broken the algorithm will handle the next strongly
connected component in the next iteration. If no strongly connected components are
left, the algorithm terminates.

The complexity of the worst–case runtime of this analysis is derived in the following.
Strongly connected components can be computed using Tarjan’s algorithm in linear
time (Sedgewick 1988). The maximum of the number of nodes in graph G and sets
Nin and Nout is the number of nodes in GE,D,

|NG|max, |Nin|max, |Nout|max ≤ |NGE,D | . (4.35)

Based on that, the computation of Ndirect needs |NGE,D |2 iterations at maximum. Since
a depth first search is executed in each iteration, the overall runtime tmax

8−9 for this loop
is,

tmax
8−9 ∈ O(|NGE,D |3) . (4.36)

In order to compute the overall complexity the number of iterations for the outer loop
must be estimated. Graph GE,D can have multiple strongly connected components.
However, every node can only be subject of one duplicate operation and one split
operation. Thus the number of iterations is linear with the number of nodes in GE,D.
For the worst–case runtime tmax

fb of the overall algorithm this yields the following
complexity,

tmax
fb ∈ O(|NGE,D | × |NGE,D |3) = O(|NGE,D |4) = O((|N |+ |K|)4) . (4.37)

For the case of standard cells, the number of strongly connected components is either
0 (combinatorial cells), 1 (latches) or 2 (registers). This number nloop is independent
of the circuit size. Similarly, sets Nin and Nout only contain one or two nodes, i.e.,

|Nin|typ, |Nout|typ ∈ O(1)⇒ ttyp
8−9 ∈ O(|NGE,D |) (4.38)

The algorithm then searches for strongly connected components nloop + 1 times, yield-
ing,

ttyp
fb ∈ O((nloop + 1) · |NGE,D |) = O(nloop · (|N |+ |K|)) . (4.39)

In the typical case the complexity of the runtime of the feedback analysis is linear
with the number of loops and the number of nets and terminals.
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Figure 4.18.: Time needed for feedback analysis with respect to circuit size |D| and
size of the ESFG |NGE,D | .

4.5.4. Experimental Results

Figure 4.18 shows the runtime of the algorithm over the circuit size and the number
of nodes in the digital ESFG. In both plots, the data points are marked based on
the number of loops in the ESFG. Circuits without loop are represented by a white
square, circuits with one loop are represented by a gray square and circuits with
two loops are represented by a black square. It appears that the dependency on the
number of cycles suggested by Eq. (4.39) is the dominant effect. Corresponding to
Eq. (4.39) the runtime appears to be linearly dependent on the number of nodes in
the ESFG for circuits with the same number of cycles. The runtime seems to be
bounded by O(|NGE,D |4) as suggested by Eq. (4.37).
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Symmetry is a widely used design principle in analog circuits. For example, the positive
and the negative path of a fully–differential circuit should behave equally. But also for
single–ended opamps, it is expected that the positive and the negative input influence
the output equally. In general, these conditions are realized by choosing a symmetrical
topology. This allows to ensure the desired symmetrical behavior in the presence
of process variations and changing operating conditions by using appropriate layout
techniques.

In the following, some preliminary considerations are made for the behavioral circuit
level (Section 5.1). This will lead to a number of symmetry conditions for different
circuit configurations. After this, Section 5.2 will show that these conditions can
be transformed to symmetry conditions on the ESFG. Next, the overall symmetry
computation algorithm is presented. The algorithms includes transformation of above
conditions back to conditions on the structural level. Finally, experimental results will
be presented.

5.1. Preliminary Considerations

In the following, single terminals and symmetrical terminal pairs are distinguished.

Definition 5.1 (symmetrical terminal pair, single terminal)
A pair of terminals k = (k1, k2) ∈ K2 is called symmetrical if

• equal currents are flowing trough terminals k1 and k2 or

• terminals k1 and k2 have equal voltages with respect to ground.

All other terminals are called single terminals.

This allows to define a signal path of a circuit.

Definition 5.2 (signal path)
A signal path P = (ki, ko) describes the transfer behavior between one input ki
and one output ko. Input ki and output ko can either be a single terminal or a
symmetrical terminal pair, as follows,

ki ∈ Ki ∪ K2
i ko ∈ Ko ∪ K2

o . (5.1)
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Figure 5.1.: Four cases of signal paths and the associated behavioral symmetry prob-
lem.

Based on that, the four possible cases shown in Fig. 5.1 can be identified: pair–to–
single signal paths (Fig. 5.1a), single–to–pair signal paths (Fig. 5.1b), pair–to–pair
signal paths (Fig. 5.1c) and single–to–single signal paths (Fig. 5.1d). In the following
it is assumed that the signal is encoded in the voltages but the same considerations
apply to currents as well.

5.1.1. Pair–to–Single Signal Paths

A pair–to–single signal path (Fig. 5.1a) transfers data from a symmetrical terminal
pair (i1, i2) to a single output o. In the following it is assumed that output o can
be calculated by superposition of an arbitrary transfer function h1 from input i1 to
output o and an arbitrary transfer function h2 from input i2 to output o as follows,

vo = h1(vi1) + h2(vi2) . (5.2)

Two different cases leading to different behavioral symmetry conditions are considered
in the following. The first case assumes that the output is influenced by both inputs
in the same way, yielding,

h1(x) = h2(x) for vi1 = vi2 = x . (5.3)

In the second case, the output voltage vo is assumed to be zero, resulting in

vo = 0 ⇒ h1(x) = −h2(x) for vi1 = vi2 = x . (5.4)
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This is a common condition in the small signal domain. For an ideal single–ended
opamp Eq. (5.4) results in low offset error and high CMRR.

For real circuits, it is not always possible to match h1 and h2 exactly because parasitics
might be different. In addition, the circuit topology is not always fully symmetrical.
For example, additional circuitry might be required in the positive or negative signal
path to convert the symmetrical signal into a single signal. Therefore, Eq. (5.3) and
Eq. (5.4) are reformulated to the following minimization problem PBsym,

PBsym(h1, h2) := min
∣∣|h1(x)| − |h2(x)|

∣∣ . (5.5)

In the following, PBsym is denoted as behavioral symmetry problem. It covers Eq. (5.3)
and Eq. (5.4) because the absolute values of h1 and h2 are considered.

5.1.2. Single–to–Pair Signal Paths

A single–to–pair signal path (Fig. 5.1b) transfers data from a single input i to a
symmetrical terminal pair (o1, o2). Since (o1, o2) is a symmetrical terminal pair, it
holds,

vo1 = vo2 ⇒ h1(x) = h2(x) for vi = x =̂ PBsym(h1, h2) . (5.6)

Functions h1 and h2 are arbitrary transfer functions from input i to outputs o1 and o2,
respectively.

5.1.3. Pair–to–Pair Signal Paths

A pair–to–pair signal path (Fig. 5.1c) transfers data from a symmetrical terminal pair
(i1, i2) to a symmetrical terminal pair (o1, o2). It holds,

vo1 = h11(vi1) + h21(vi2) vo2 = h12(vi1) + h22(vi2) . (5.7)

Functions h11 and h21 are arbitrary transfer functions from inputs i1 and i2 to out-
put o1, respectively. Functions h12 and h22 are arbitrary transfer functions from inputs
i1 and i2 to output o2, respectively. For practical applications, condition vo1 = vo2,
can only be fulfilled if

h11(x) = h22(x) ∧ h21(x) = h12(x) for x = vi1 = vi2 (5.8)

=̂ PBsym(h11, h22) ∧ PBsym(h21, h12) . (5.9)
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j2
j1

i2
i1

o1
o2

S1

S2

S3

(a)

i

o1

o2

S1 S2

S3

S4S5

(b)

Figure 5.2.: Example for a circuit with multiple, overlapping signal paths (a) and
nested signal and feedback paths (b).

5.1.4. Single–to–Single Signal Paths

A single–to–single signal path (Fig. 5.1d) transfers data from a single terminal i to a
single terminal o. In general, this does not yield any symmetry condition. An exception
are cases where the signal path contains an internal feedback loop. In general, four
different cases of connections between the feedback network and the remaining circuit
are distinguished (Sansen 2007). In the following, series–shunt feedback is considered.
The gray part of Fig. 5.1d shows a Subcircuit S, that loops back output voltage vo.
It is connected in parallel at vo. Subcircuit S implements a series connection at the
input. It holds,

vo = h1(vi) + h2(vo) , (5.10)

where transfer functions h1 and h2 correspond to the transfer functions of a pair–to–
single signal path. This signal path does not show an offset in case vo = vi = x,
resulting in

x− h2(x) = h1(x) =̂ PBsym(h1, h2) . (5.11)

This is again similar to the problem of minimizing the error between h1 and h2, yielding
the behavioral symmetry problem PBsym(h1, h2).

5.1.5. Multiple Signal and Feedback Paths

The considerations made in Sections 5.1.1 to 5.1.4 are valid for circuits consisting of
one signal path. Real circuits can have multiple signal and feedback paths or signal
and feedback paths that overlap. Figure 5.2 shows two examples.

The first example (Fig. 5.2a) has two symmetrical input terminal pairs (i1, i2), (j1, j2)
and one symmetrical output terminal pair (o1, o2). Internally, it consists of Subcir-
cuits S1 to S3. Examination of the pair–to–pair signal path from (i1, i2) to (o1, o2)
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i o1&o2
S1 S2 S3&S4

S5

Figure 5.3.: Symmetry equivalent circuit for the circuit from Fig. 5.2b.

yields symmetry of S3 and between S1 and S2. The circuit has a second pair–to–pair
signal from (j1, j2) to (o1, o2) that overlaps with the first signal path at S3. However,
the second signal path does not yield additional symmetry conditions in this case.

The second example (Fig. 5.2b) shows a symmetrical signal path with feedback. The
internal structure is outlined by Subcircuits S1 to S5. The single–to–pair signal path
between input i and symmetrical output terminal pair (o1, o2) requires symmetry
of S2, S5 and between S3 and S4. For the feedback path, symmetry of S1, S3 and S4

is required.

In the following, the concepts of multipath symmetry and symmetry equivalence trans-
formation are introduced to handle such cases correctly.

Multipath Symmetry

In general, a circuit has a set of symmetrical input terminal pairs or single input
terminals Ki and a set of symmetrical output terminal pairs or output terminals Ko,

Ki ⊆ Ki ∪ Ki2 Ko ⊆ Ko ∪ Ko2 . (5.12)

The set P of all possible signal paths is then,

P = Ki ×Ko . (5.13)

A circuit has multiple signal paths in case it has more than one symmetrical input ter-
minal pair or more than one symmetrical output terminal pair. Symmetry conditions
from different signal paths cannot contradict. Therefore, it is possible to analyze each
possible signal path p ∈ P independently.

Symmetry Equivalence Transformation

The feedback path of the second example circuit (Fig. 5.2b) does not correspond
to any of the cases presented in Sections 5.1.1 to 5.1.4. The symmetry equivalence

83



5. Symmetry Computation

ip
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nin n2
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n4

e3
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e7
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GN2 = NCFG(GE,C , in, o)

Figure 5.4.: NCFGs for the circuit from Fig. 3.14.

transformation presented in the following will allow to explain this case as single–to–
single signal path with feedback.

For this purpose, the circuit is transformed to a circuit that is equivalent with respect to
symmetry by combining symmetrical components to one component. The signals are
transformed accordingly. The result for the example is shown in Fig. 5.3. Terminals o1
and o2 have been combined as well as subcircuits S3 and S4. As a consequence S2

and S5 are changed as well. The resulting symmetry equivalent circuit has a single
input terminal and a single output terminal. It is a single–to–single signal path with
feedback.

5.2. Symmetry Problem on ESFG Level

The previous section showed that the behavioral symmetry conditions for the four
different types of signal paths can be formulated in terms of the general symmetry
problem PBsym. This section will provide an equivalent formulation of the symmetry
problem for the ESFG.

5.2.1. Network components of ESFGs

The formulation is based on the network component of an ESFG (NCFG) which models
the influence of one input i to one output o. It is defined as follows,

Definition 5.3 (Network component of an ESFG (NCFG))
An NCFG GN = NCFG(GE, i, o) is the maximal subgraph of ESFG GE that is a
network graph (see Definition A.6) with input node i and output node o.

As explained in Section 4.1, ESFGs are based on signal flow graphs (Mason 1953).
Mason (1956) presented a method to compute transfer functions from linear signal
flow graphs by determining all possible paths and adjacent loops (see Section 2.2). An
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5.2. Symmetry Problem on ESFG Level

NCFG contains exactly these paths and adjacent loops. Therefore, NCFGs can be
regarded as structural model for the transfer function.

Figure 5.4 shows the NCFGs GN1 and GN2 of the OTA circuit from Fig. 3.14. They
are subgraphs of the ESFG shown in Fig. 4.4. NCFG GN1 represents the transfer
behavior between input ip and output o. It consists of edges e4 to e9 and nodes nip,
n2, n3, n4 and no. NCFG GN2 represents the transfer behavior between input in and
output o. It consists of edges e3 and e5 to e9 as well as nodes nin, n2, n3, n4 and no.

5.2.2. Symmetry Problem on ESFG Level

In a circuit, two transfer functions are equal if the corresponding circuit parts are built
equally. This can either be achieved by building exactly the same topology twice or
by using the same physical devices. In the following, the first case will be denoted as
symmetry and the second one as identity.

Symmetry and identity are formally defined based on the following definition of iso-
morphism for sub–NCFG. It extends the general definition of isomorphism (see Defi-
nition A.10) by considering the structural attributes of the edges in addition.

Definition 5.4 (Isomorphism of two subgraphs of NCFGs)
Let QN be a set of node pairs and QE a set of edge pairs,

QN ⊆ NG1 ×NG2 QE ⊆ EG1 × EG2 , (5.14)

where G1 and G2 are sub–NCFGs. Sets QN and QE represent mappings of the
nodes and edges of G1 and G2, respectively. Sub–NCFG G1 is isomorphic to
sub–NCFG G2 with respect to QN and QE iff the following holds,

G1
∼=

QN ,QE
G2 :⇔

∀
(e1,e2)∈EG1

×EG2

(e1, e2) ∈ QE ↔

 αSG1(e1) = αSG2(e2)
(ϕ−G1(e1), ϕ−G2(e2)) ∈ QN

(ϕ+
G1(e1), ϕ+

G2(e2)) ∈ QN

 mapping of
nodes and
edges

∧ ∀
n1∈NG1

∣∣{n2 ∈ NG2|(n1, n2) ∈ QN}
∣∣ = 1

∧ ∀
n2∈NG2

∣∣{n1 ∈ NG1|(n1, n2) ∈ QN}
∣∣ = 1

∧ ∀
e1∈EG1

∣∣{e2 ∈ EG2|(e1, e2) ∈ QE}
∣∣ = 1

∧ ∀
e2∈EG2

∣∣{e1 ∈ EG1|(e1, e2) ∈ QE}
∣∣ = 1

QN , QE bi-
jective

∧ ∀
e1,e2∈EG1

∩EG2

(e1, e2) ∈ QE ↔ (e2, e1) ∈ QE

∧ ∀
n1,n2∈NG1

∩NG2

(n1, n2) ∈ QN ↔ (n2, n1) ∈ QN .

}
symmetry
of QN , QE

(5.15)
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n1

n2

n3

n4

n5

n6

e1

(scm, n, i, o)
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∈ QN

⇔ ⇔ ⇔ ⇔

Figure 5.5.: Isomorphism of two sub–NCFGs (Definition 5.4).

Two edges must be mapped together with their start and end nodes and their
structural attributes must be equal. Each node or edge of G1 must be mapped to
exactly one node or edge of G2, i.e., the mapping QN must be bijective. The same
applies to mapping QE. Mappings QE and QN must be symmetrical with respect
to edges and nodes that are part of G1 and G2.

Figure 5.5 illustrates Definition 5.4. It shows a part of an ESFG G1 consisting of
nodes n1, n3, n5 and edges e1 and e3 as well as an ESFG G2 consisting of nodes n2, n4

and n6 and edges e2 and e4. It is assumed, that edges e1 and e2 were generated from
an NMOS simple current mirror. Consequently, their structural attributes are
αSG1(e1) = αSG2(e2) = (scm, n, i, o). For edges e3 and e4 structural attributes
αSG1(e3) = αSG2(e4) = (scm, p, i, o) are assumed. If (e1, e2) ∈ QE this requires
(n1, n2) ∈ QN and (n3, n4) ∈ QN . If (n3, n4) ∈ QN this requires (e3, e4) ∈ QE which
in turn requires (n5, n6) ∈ QN .

Based on Definition 5.4, symmetry of two sub-NCFG is defined as follows.

Definition 5.5 (Symmetry of two Sub–NCFGs)
Sub–NCFG G1 is symmetrical to sub–NCFG G2, G1 $G2, iff G1 is isomorphic to
G2 and mapped edges represent different physical devices, i.e., the edges are not
equal.

G1 $
QN ,QE

G2 :⇔ G1
∼=

QN ,QE
G2 ∧ ∀

(e1,e2)∈QE
e1 6= e2 (5.16)

Identity is defined as follows.

Definition 5.6 (Identity of two sub–NCFGs)
Sub–NCFG G1 is identical to sub–NCFG G2, G1≡G2, iff G1 is isomorphic to G2

and mapped edges represent the same physical device, i.e., the edges are equal.

G1≡G2 :⇔ G1
∼=

QN ,QE
G2 ∧ ∀

(e1,e2)∈QE
e1 = e2 (5.17)
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The symmetry problem on ESFG–Level tries to find as much symmetry and identity
as possible. This yields a partitioning of NCFG G1 and G2 into three subgraphs GS

1 ,
GC

1 , GI
1 and GS

2 , GC
2 , GI

2, respectively, as follows:

1. Subgraph GS
1 is symmetrical to subgraph GS

2 . In a real circuit, that corresponds
to the differential part.

2. Subgraph GI
1 is identical with subgraph GI

2. In a real circuit, this corresponds to
the part with only one signal.

3. Subgraph GC
1 connects GS

1 and GI
1. Subgraph GC

2 connects GS
2 and GI

2. In a
real circuit, that corresponds to the part that converts a differential signal into
a single signal.

Formally, the symmetry problem on ESFG–Level PEsym(G1, G2) for NCFGs G1 and G2

is defined as follows:

PEsym(G1, G2) :⇔
min

GS1 ,G
C
1 ,G

I
1

GS2 ,G
C
2 ,G

I
2

αC |GC
1 ∪GC

2 |+ αI |GI
1 ∪GI

2| s.t. }objective

∧ G1 = GS
1 ∪GC

1 ∪GI
1 ∧G2 = GS

2 ∪GC
2 ∪GI

2

}
partitioning∧ ∀

µ6=ν
µ,ν∈{S,C,I}

(EGµ1
∩ EGν1

= ∅ ∧ EGµ2
∩ EGν2

= ∅)

∧ (GS
1 $
QN ,QE

GS
2 ) }symmetry

∧ (GI
1≡GI

2) }identity
∧ RE = EGC1

∪ EGC2
}conversion

∧ ∀
n∈(N

GS1
∩N

GI1
)

∧n∈(N
GS2
∩N

GI2
)

∧n/∈(N
GC1
∪N

GC2
)

∃
(e1,e2)∈QE

[
ϕ−GS1 (e1) = ϕ−GS2 (e2) = n

∨ ϕ+
GS1

(e1) = ϕ+
GS2

(e2) = n

] }
interface

∧
[
(ki ∈ K)→ (ki ∈ NGI1

)
]
∧
[
(ko ∈ K)→ (ko ∈ NGI1

)
]  terminals∧

[
(ki ∈ K2)→ (ki ∈ NGS1

×NGS2
)
]

∧
[
(ko ∈ K2)→ (ko ∈ NGS1

×NGS2
)
]

(5.18)

The primary optimization objective is to minimize the size of the conversion part
to allow as much equality as possible. For the specific problem, it is beneficial to
have as much symmetry as possible because circuit robustness is increased. Therefore,
minimization of the size of the identity part is a secondary optimization criterion,
i.e., αC � αI .

The partitioning constraints describe the partitioning of G1 and G2. Subgraphs GS
1 ,

GC
1 andGI

1 ofG1 must not share an edge. The same holds for subgraphsGS
2 , GC

2 andGI
2
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Figure 5.6.: Subgraphs of the NCFGs from Fig. 5.4.

of G2. The symmetry constraints ensures that GS
1 is symmetrical to GS

2 . The identity
constraint ensures that GI

1 is identical with GI
2. The conversion constraint constructs

set RE out of the edges of conversion graphs GC
1 and GC

2 . The interface constraints
restricts transitions from the symmetrical part to the identity part. Such transitions
are only possible without conversion part if there is a pair of edges mapped by QE

that start or end at the interface node. An example follows. The terminal constraints
force single terminals to be in the identity subgraphs GI

1, GI
2 and symmetrical terminal

pairs to be in the symmetry subgraphs GS
1 , GS

2 .

Solution of the problem yields the node and edge mappings QN and QE of the sym-
metry parts GS

1 and GS
2 as well as set RE which contains all edges from conversion

parts GC
1 and GC

2 .

Figure 5.6 shows the resulting subgraphs for the circuit from Fig. 3.14 and the NCFGs
from Fig. 5.4. Subgraph GS

N1 consists of edges e4 to e8 and nodes ip, nip, no, n2, n3,
n4. Subgraph GS

N2 consists of edge e3 and edge e5 to e8 and nodes in, nin, no, n2, n3,
n4. The mappings QN and QE to satisfy the symmetry condition are

QN = {(ip, in), (nip, nin), (n3, n2), (n2, n3), (no, n4), (n4, no)} , (5.19)

QE = {(eip, ein), (e4, e3), (e5, e6), (e6, e5), (e7, e8), (e8, e7)} . (5.20)

Subgraphs GI
N1 and GI

N2 both consists of nodes no and o as well as the edge connecting
them. Subgraphs GC

N1 and GC
N2 both consists of nodes n4, no and edge e9. Set RE,
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5.3. Algorithm

QCN ,QCE,RC
E ← computeSymmetry(GE,C , Kic ×Koc)

Kob ← createBiasOutputs(QCN)

QBN ,QBE ,RB
E ← computeSymmetry(GE,B, Kib ×Kob)

QN ← QCN ∪QBN ; QE ← QCE ∪QBE ; RE ← RC
E ∪RB

E

S ← backAnnotateToDeviceLevel(QN ,QE,RE)

1

2

3

4

5

Figure 5.7.: Overall symmetry computation method.

consisting of the edges of GC
N1 and GC

N2 is,

RE = {e9} . (5.21)

Edge e9 is not assigned to the identity part because of the interface constraint.

Another valid solution of the constraints would be to assign edges e3 and e4 to the
symmetrical part, edges e5 and e6 to the conversion part and all other edges to the
identity part. However, the value of the objective function for this solution is worse
because the identity part is larger.

5.3. Algorithm

Figure 5.7 shows the overall symmetry computation method resulting from the prin-
ciples discussed in Sections 5.1 and 5.2. It takes the sets of core input and output
terminals and symmetrical terminal pairs Kic, Koc as input as well as the set of bias
input terminals and symmetrical terminal pairs Kib. Other inputs are the core and
bias ESFG resulting from the method described in Section 4.3. First, symmetries
inside the core part are computed for all possible signal paths P = Kic×Koc (line 1).
The resulting set of symmetrical node pairs QCN is then used to determine symmetrical
terminals Kob within the output terminals of the bias part of the circuit (line 2). This
allows to compute symmetries within the bias part in the next step (line 3). After
that, final result sets QN , QE and RE are constructed from the result of the symmetry
computation for the core and bias part (line 4). Finally, the overall results are back
annotated to the device level, resulting in a set S of symmetrical device pairs (line 5).
These steps are detailed in the following.

5.3.1. Symmetry Computation for Core Part

The details of the symmetry computation method for the core part are shown in
Fig. 5.8. The method implements the concept of multipath symmetry (Section 5.1.5)
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computeSymmetry(G,P)

QN ← ∅;QE ← ∅;RE ← ∅
for all (ki, ko) ∈ P

ki ∈ Ki2

true false

(ki1, ki2)← ki

ko ∈ Ko2
true false

(ko1, ko2)← ko

G11 ← NCFG(G, ki1, ko1)

G12 ← NCFG(G, ki1, ko2)

G21 ← NCFG(G, ki2, ko1)

G22 ← NCFG(G, ki2, ko2)

Q1
N , Q

1
E, R

1
E ← solve(PEsym(G11, G22))

Q2
N , Q

2
E, R

2
E ← solve(PEsym(G12, G21))

QN ← QN ∪Q1
N ∪Q2

N

QE ← QE ∪Q1
E ∪Q2

E

RE ← RE ∪R1
E ∪R2

E

G1 ← NCFG(G, ki1, ko)

G2 ← NCFG(G, ki2, ko)

Q1
N , Q

1
E, R

1
E ← solve(PEsym(G1, G2))

QN ← QN ∪Q1
N

QE ← QE ∪Q1
E

RE ← RE ∪R1
E

ko ∈ Ko2
true false

(ko1, ko2)← ko

G1 ← NCFG(G, ki, ko1)

G2 ← NCFG(G, ki, ko2)

Q1
N , Q

1
E, R

1
E ← solve(PEsym(G1, G2))

QN ← QN ∪Q1
N ; QE ← QE ∪Q1

E

RE ← RE ∪R1
E

GN ← NCFG(G, ki, ko)

G1 ← forwardPart(GN)

G2 ← loopPart(GN)

Q1
N , Q

1
E, R

1
E ← solve(PEsym(G1, G2))

QN ← QN ∪Q1
N ; QE ← QE ∪Q1

E

RE ← RE ∪R1
E

QE 6= ∅true false

QN , QE, RE ← compSymForEquivalentESFG(G,P ,QN ,QE)

QN ← QN ∪QN ;QE ← QE ∪QE;RE ← RE ∪RE

return QN ,QE,RE
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Figure 5.8.: Algorithm to compute symmetries within ESFG G using signal paths P .

90



5.3. Algorithm

by iterating over all possible signal paths P of ESFG G (line 2). Inside the loop, in
lines 3, 6 and 18, the algorithm distinguishes into pair–to–pair signal paths (left side
of lines 7 to 16), pair–to–single signal paths (right side of lines 7 to 12), single–to–pair
signal paths (left side of lines 19 to 24) and single–to–single signal paths (right side of
lines 19 to 24). In each case, the symmetry problem on ESFG–level corresponding to
the symmetry problems derived in Sections 5.1.1 to 5.1.4 is set up.

Function NCFG computes the NCFG between an input i and an output o. It deter-
mines the subgraphs containing all nodes that can be reached from the input and from
which the output is reachable,

NCFG(G, i, o) := inducedGraph(G,

forwardReachableNodes(G, i) ∩ backwardReachableNodes(G, o)) . (5.22)

Functions inducedGraph, forwardReachableNodes and backwardReachableNodes are
defined according to Definition A.8 and Eqs. (4.20) and (4.21), respectively.

The symmetry problem is then formulated as constraint satisfaction problem and
solved using the constraint programming package Gecode (Schulte et al. 2010). In the
algorithm this is symbolized by function solve. The results are then used to update
the set of symmetrical node pairs QN , the set of symmetrical edge pairs QE and the
set of conversion edges RE.

For the case of single–to–single signal paths (right side of lines 19 to 24) some extra
effort is necessary to identify the feedback. The sub–NCFG corresponding to transfer
function h1 which describes the direct transmission from the input to the output is
found by the forwardPart method. It computes all paths between the input and output
of the NCFG that contain no node more than once. The sub–NCFG corresponding to
transfer function h2 which describes the feedback loop is found by the loopPart method.
Similar to the feedback analysis (Section 4.5), it uses the algorithm of Tarjan (1972)
to compute strongly connected components (Sedgewick 1988). In contrast to the
feedback analysis, it does not break the loop and assumes that there is only one
strongly connected component.

Finally, the symmetry equivalence transformation is performed in case symmetries
were found (lines 25 to 28). The details are shown in Fig. 5.9. First, the equivalent
ESFG is computed. Each symmetrical node pair is represented as one node. Each
symmetrical edge pair is represented as one edge. After that, a similar transformation
is done for the signal paths. Next, the symmetry computation is repeated using the
equivalent ESFG and signal paths. This results in sets Q̃N , Q̃E and R̃E. These sets
are then transformed back into set QN , QE and RE.

Figure 5.10 shows the symmetry–equivalent ESFG for the ESFG from Fig. 4.11 and
sets QN and QE given in Eqs. (5.19) and (5.20), respectively. All symmetrical node
pairs and all symmetrical edge pairs are represented by one node, e.g., nodes n2 and
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compSymForEquivalentESFG(G,P ,QN ,QE)

G̃← createEquivalentESFG(G,QN ,QE)

P̃ ← createEquivalentSignalPaths(P ,QN)

Q̃N , Q̃E, R̃E ← computeSymmetry(G̃, P̃)

QN ← transformBack(Q̃N)

QE ← transformBack(Q̃E)

RE ← transformBack(R̃E)

return QN , QE, RE

1

2

3

4

5

6

7

Figure 5.9.: Algorithm for symmetry equivalence transformation

ip&in
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oe3&4

e5&6
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Figure 5.10.: Symmetry equivalent ESFG of Fig. 4.11.

n3 are represented by node n2&3. No additional symmetries are found for the example
circuit.

Overall, the symmetry computation for the core part results in the sets listed in
Eqs. (5.19) to (5.21) as follows,

QCN = {(ip, in), (nip, nin), (n3, n2), (n2, n3), (no, n4), (n4, no)} (5.23)

QCE = {(eip, ein), (e4, e3), (e5, e6), (e6, e5), (e7, e8), (e8, e7)} (5.24)

RC
E = {e9} . (5.25)

5.3.2. Symmetry Computation for Bias Part

The symmetry computation for the bias part is based on the symmetry computation for
the core part. First, symmetrical output terminal pairs and single output terminalsKob

of the bias part are determined. After that, the symmetry computation method from
above is repeated for the bias part.

In Section 4.2, extra terminal nodes for the interface between the bias part and the
core part were introduced. For the core part, symmetry of these terminal nodes
results from the symmetry computation. In the bias part, a pair of these terminal
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5.3. Algorithm

nodes is symmetrical if the corresponding pair in the core part is symmetrical. All
other terminals are single terminals.

In the ESFGs from Fig. 4.8 extra terminal nodes b1 and b2 were introduced to de-
scribe the interface between core and bias part. These nodes are a symmetrical node
pair (b1, b2) because they connect to nodes n2 and n3, which are a symmetrical node
pair in the symmetry computation result from Eq. (5.23). This yields,

Kob = {(b1, b2)} . (5.26)

The symmetry computation for the bias part results in

QBN = {(n2, n3), (b1, b2)} QBE = {(e1, e2), (eb1,b, eb2,b)} RB
E = ∅ . (5.27)

The overall symmetry computation results are,

QN = QCN ∪QBN
= {(ip, in), (nip, nin), (n3, n2), (n2, n3), (no, n4), (n4, no), (b1, b2)} (5.28)

QE = QCE ∪QBE
= {(eip, ein), (e4, e3), (e5, e6), (e6, e5), (e7, e8), (e8, e7), (e1, e2), (eb1,b, eb2,b)} (5.29)

RE = RC
E ∪RB

E = {e9} . (5.30)

5.3.3. Back Annotation to the Device Level

Device level symmetries are determined in two steps. First, the sets of symmetrical
nodes and edges QN and QE as well as the set of conversion edges RE are transformed
into a set of symmetrical building blocks QB and a set of so–called self–symmetrical
building blocks RB. Next, sets QB and RB are transformed into a set of symmetrical
devices S.

Two different building blocks x1 and x2 are symmetrical if corresponding edges are
symmetrical, i.e.,

QB = {(x1, x2) ∈ B2|(x1 6= x2) ∧ ∃
(e1,e2)∈QE

(αCGE(e1) = x1) ∧ (αCGE(e2) = x2)} , (5.31)

where QB is the resulting set of all symmetrical building block. A building block x
is called self symmetrical if two of the included devices are symmetrical to each other.
Self–symmetrical building blocks are determined in two ways:
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5. Symmetry Computation

1. Two edges belonging to the same building block x are symmetrical,

RB,1 =

{
x ∈ B

∣∣∣∣( ∃
(e1,e2)∈QE

αCGE(e1) = αCGE(e2) = x
)}

. (5.32)

2. Observation shows that building blocks in the conversion part are self–symmetrical
in general,

RB,2 =

{
x ∈ B

∣∣∣∣( ∃e∈RE αCGE(e) = x
)}

. (5.33)

The overall set of self–symmetrical building blocks is,

RB = RB,1 ∪RB,2 . (5.34)

These two cases are transformed differently to device level. In the first case, symmetry
is recursively translated trough the hierarchy of the building blocks until device level
is reached. The set of all such symmetrical devices S1 is,

S1 =
⋃

(x1,x2)∈QB

baSym(x1, x2) (5.35)

baSym(x1, x2) =

{⋃|x1.children|
i=1 baSym(x1.childi, x2.childi) x1, x2 ∈ B

(x1, x2) x1, x2 ∈ D
(5.36)

Function baSym recursively descends trough the extracted hierarchy of building blocks
until the devices level is reached. Children with the same index in x1 and x2 then form
a new pair of symmetrical devices.

For the second case, a special function selfSymmetry is defined per building block
type t in a library. It returns a set of symmetrical device pairs. The set of all such
symmetrical devices S2 is,

S2 =
⋃
x∈RB

selfSymmetryx.type(x) . (5.37)

The library is organized as follows. For all building blocks consisting of two devices
only, a symmetry pair is formed out of these devices. For four transistor current mirrors
like the cascode current mirror or the wide–swing cascode current mirror this yields
symmetry between the stacked transistors at the input and the stacked transistors at
the output.
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N5 N3 N1 N2 N4 N6

P1 P2

P3 P4

P6P5

o

in ipib

Figure 5.11.: Circuit 5: Results of symmetry computation.

The overall set of device symmetries S is,

S = S1 ∪ S2 . (5.38)

For the example the following sets are found for the building blocks,

QB = {(scm1, scm2)} RB = {dp1, cc1, scm3} . (5.39)

This results in the following symmetrical device pairs,

S = {(N3, N4), (N5, N6)︸ ︷︷ ︸
S1

, (P1, P2), (N1, N2), (P3, P4)︸ ︷︷ ︸
S2

} . (5.40)

Set S is illustrated by Fig. 5.11.

5.3.4. Discussion

The runtime complexity of the symmetry computation is dominated by the runtime
complexity to solve the CSP. As discussed in Section 4.2.3, worst–case runtime com-
plexity is exponential but the complexity observed in practice is better. For this
problem, Gecode is configured to select search variables based on the largest accumu-
lated failure count (see Section 4.2.3). For initialization, it is assumed that all edges
of NCFGs G1 and G2 belong to the symmetry part, i.e., EGS1

= EG1 , EGS2
= EG2 .

A limitation of the current method is that it can not handle all possible types of
feedback paths like shunt–shunt feedback or series–series feedback. In particular, it is
limited to series–shunt feedback configurations.
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circuit class linear
no.
devices

no. symmetry pairs

EXP COM PROP CP
1 SE-Opamp X 22 5 3 + 3F 5 5
2 FD-Opamp X 30 10 10 10 10
3 FD-Opamp X 26 11 8 9 11
4 FD-Mixer × 12 7 3 − 7
5 SE-Opamp X 12 5 3 + 2F 5 5
6 SE-Opamp X 17 6 6 6 6
7 SE-Opamp X 18 6 6 6 6

EXP: expected; COM: commercial tool; PROP: propagation approach; CP: constraint
programming approach presented in this chapter

Table 5.1.: Overview of symmetry computation results for different circuits.
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Figure 5.12.: Time needed for the symmetry computation of approach CP with respect
to circuit size.

5.4. Experimental Results

In the following, a number of experimental results are presented for the analog test
cases from Table 3.2. They cover six linear opamps and one non–linear mixer. Ta-
ble 5.1 summarizes the results. Besides class, linearity and number of devices it lists
the number of expected symmetry pairs (column EXP) and computation results for
three different approaches. Approach COM is a commercial tool. Approach PROP is
an earlier version of the approach presented in this thesis, which can not handle over-
lapping signal paths and is based on backtracking instead of constraint programming.
Details can be found in Lu (2009) and Eick, Lu & Graeb (2010). Approach CP is the
approach presented in this chapter.

Approach COM handles Circuit 2, 6 and 7 correctly. For Circuit 1 it misses two
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symmetry pairs and detects three false pairs. For Circuit 3 it misses three pairs and
for Circuit 4 four pairs are missing. For Circuit 5, which is the example circuit from
above, it misses two pairs and detects the two false pairs (N3, N2) and (N1, N4) .

Approach PROP handles Circuits 1, 2, 5, 6, and 7 correctly. For Circuit 3 symmetry
pairs are only found in a part of the circuit. For Circuit 4 the experiment was not
performed because of the known limitations of the algorithm in handling overlapping
signal paths.

Approach CP handles all circuits correctly. Compared to approach COM it shows
improved handling of the asymmetries in Circuits 1 and 5 and of the overlapping signal
paths in Circuits 3 and 4. Compared to approach PROP the handling of overlapping
signal paths was improved. Figure 5.12 shows the runtime of the method for the test
cases. There is a large variation between the circuits because the method is strongly
dependent on the internal structure of the circuit. Detailed results for Circuits 3, 4
and 6 are shown in the following.

97



5. Symmetry Computation

in ipon opib
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Figure 5.13.: Circuit 3 (Johns & Martin 1997, Cadence Design Systems 2010): Results
of symmetry computation using method CP.

Detailed results for Circuit 3 are shown in Fig. 5.13. Circuit 3 is a fully differential OTA
with differential inputs (ip, in), differential outputs (op, on), input for the common
mode voltage ic and bias current ib. For the experiment, sets Kic, Koc and Kib were,

Kic = {(ip, in), ic} Koc = {(op, on)} Kib = {ib} . (5.41)

The symmetry pairs shown in Fig. 5.13 are computed in the following steps,

1. Symmetry is computed for the pair–to–pair signal path from (ip, in) to (op, on).
This yields symmetry pairs a to e.

2. Symmetry is computed for the single–to–pair signal path from ic to (op, on).
This yields symmetry pairs i and j.

3. Symmetry equivalence transformation is performed based on Step 2. From the
feedback path, symmetry pairs f, g and k are found.

4. Symmetry computation for the bias part yields symmetry pair l.
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Figure 5.14.: Circuit 4 (Lee 2004): Results of symmetry computation using method
CP.

Figure 5.14 shows detailed results for Circuit 4. It is a fully differential mixer with
two differential inputs (lp, ln) and (rp, rn) as well as differential output (op, on). For
the experiment, sets Kic, Koc and Kib were,

Kic = {(lp, ln), (rp, rn)} Koc = {(op, on)} Kib = {ib, vdd, gnd} . (5.42)

The symmetry pairs shown in Fig. 5.14 are computed in the following steps,

1. Symmetry is computed for the pair–to–pair signal path from (lp, ln) to (op, on).
This yields symmetry pairs c and d.

2. Symmetry is computed for the pair–to–pair signal path from (rp, rn) to (op, on).
This yields symmetry pairs a, b, e and f.

3. Symmetry is computed for the bias part. This yields symmetry pair g.
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N1 N2

N3 N4

N5 N6

N7 N8

P1 P2

P3 P4

P5 P6

P7 P8R1

ip in o

Figure 5.15.: Circuit 6: Results of symmetry computation using method CP.

Figure 5.15 shows detailed results for Circuit 6. It is a single–ended OTA with dif-
ferential input (ip, in) and single output o. All symmetry pairs show in Fig. 5.15 are
found by computing symmetry for the pair–to–single signal path from (ip, in) to o.
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6. Application: Input Data Generation for Timing
Characterization of Digital Standard Cells

Software for automatic timing analysis requires input data about the characteristics
of each element of the standard cell library. This includes a list of input and output
pins, the logic function and the delay of the cell for a single switching input. This
delay is determined separately for every pin, rising and falling edges and all possible
combinations of input levels of the other inputs. This data is referred to as timing vec-
tors. The characterization of standard cells can be done automatically using extensive
numerical circuit simulation, e.g., using SPICE. This simulation determines the delay,
but again requires input and output pins, logic function and a list of timing vectors as
input. In the following it is explained how this data can be generated automatically
from the structural analysis results. An additional requirement for the method was
to analyze the internal structure of the cell in terms of single–stage logic gates. This
feature is required, e.g., by the methods of Knoth et al. (2009) and Lorenz (2012),
which build current–source and aging models for multi–stage gates out of the models
for single–stage gates.

An overview of the generation flow is given in Fig. 6.1. First, logic functions are
computed based on the results of the building block analysis (see Chapter 3) and
structural signal path analysis (see Chapter 4). The logic function is then used to
detect the type of the cell, e.g., And, Or, Nand, Nor, Flip Flop, Latch, etc. The logic
function is also used to generate the timing vectors. Number and direction of pins as
well as the internal structure of the cell are determined from the ESFG and temporal
ESFG. The analysis steps are described in the following. After that, experimental
results are presented.

6.1. Logic Function Extraction

The logic function extraction is done in three steps. First, the logic function of the
building blocks is computed. Second, the overall logic function of the complete cell
is computed. Third, the overall logic function of sequential cells is transformed to a
representation that is based on trigger conditions.

All logic function computations are based on ROBDDs (Bryant 1986) and use a
four–valued logic with 0, 1, Z (high impedance) and U (unknown) according to
Bryant (1991).
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building blocks

ESFG

temporal ESFG

logic function extraction

logic functions

type detection

vector generation

Data for cell named AND2

type: AND

pins
A: input, B: input, Z: output

behavior (logic function)
Z = A ∧B
internal structure

X = A ∧B
Z = X

timing vectors
A B Z

1→ 0 0 0
1→ 0 1 0

...
...

...

Figure 6.1.: Flow of input data generation

x x
0 1
1 0
Z Z
U U

(a)

b
⊕ 0 1 Z U

a

0 0 U 0 U
1 U 1 1 U
Z 0 1 Z U
U U U U U
(Bryant 1991)

(b)

b
� 0 1 Z U

a

0 0 U 0 0
1 U 1 1 1
Z 0 1 Z U
U 0 1 U U

(c)

s
� 0 1 Z U

g

0 Z Z Z Z
1 0 U Z U
Z U U Z U
U U U Z U

(d)

Table 6.1.: Operators for four valued logic.

6.1.1. Logic Function Extraction of Building Blocks

In general, CMOS circuits are composed of a pull–up and a pull–down network (Weste
& Harris 2005). The logic function of these networks can be computed by investigat-
ing serial and parallel connections (Bryant 1991). The overall logic function is then
computed by combining the logic functions of the pull–up and pull–down network.

In the method presented here, serial and parallel connections are already known from
the building block analysis step (Chapter 3). Thus, the logic functions for single logic
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type of building block x logic functions for x

trans g
d

s

d = ftrans,n(g, s) = g � s nmos subtype

d = ftrans,p(g, s) = g � s pmos subtype

pg i o

an

ap

o = fpg(i, a, b) =


i (an = 1) ∧ (ap = 0)

Z (an = 0) ∧ (ap = 1)

U otherwise

la f1 f2 fn

d

s

g1 g2 gn
d = fla

(
[g1 g2 · · ·gn], s)

= f1(g1, s) � f2(g2, s) � · · · � fn(gn, s)

sc

f1

f2

fn

d

s

g1

g2

gn
d = fsc

(
[g1 g2 · · ·gn], s)

= fn(gn, · · · f2(g2, f1(g1, s)) · · · )

lg
fp

fn

sp

sn

o
ip

in

o = flg

(
[ip in], s)

= fp(ip, sp)⊕ fn(in, sn)

tcb

o1

o2

i1 i2

i3 i4

i5 i6

o1 =


0 (i4 = 1) ∧

(
(i5 = 1) ∨ (i6 = 1)

)
1 (i1 = 0) ∨ (i2 = 0)

Z (i1 = 0) ∧ (i2 = 0) ∧ (i3 = 0) ∧ (i4 = 1)

U otherwise

o2 =


0 (i5 = 1) ∨ (i6 = 1)

1 (i3 = 0) ∧
(
(i1 = 0) ∨ (i2 = 0)

)
Z (i5 = 1) ∧ (i6 = 1) ∧ (i3 = 0) ∧ (i4 = 1)

U otherwise

Table 6.2.: Library of building blocks and corresponding logic functions.
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tcb

E

D

Y

i1
i2
i3
i4
i5
i6

o1

o2

Figure 6.2.: Usage of tristate control block to implement a tristate buffer (Weste &
Harris 2005, Fig 12.22).

gates can be computed. Table 6.2 illustrates the correspondence between building
blocks and logic functions.

The truth tables of the used operators are given in Table 6.1. The bar operator
defines a negation for four valued logic (Table 6.1a). Logic values 0 and 1 are swapped
but the other values remain constant. Operator ⊕ is the merge operator defined by
(Bryant 1991) (Table 6.1b). It is a or b in case one of them is in high impedance state
or both have the same value. In all other cases it is U . Operator � is a variant of
operator ⊕ (Table 6.1c). It considers that unknown states can be suppressed, e.g.,
in parallel connections. Operator � models the behavior of the drain of an NMOS
transistor in dependence of gate g and source s (Table 6.1d). It is 0 if the gate pin
is 1 and the source pin is 0. It is Z if the gate pin is 0 or the source pin is Z. In all
other cases it is U .

The logic function for the drain of a PMOS transistor is obtained by inverting inputs
and outputs (see Table 6.2). The drain is 0 if the gate pin is 0 and the source pin
is 1. The logic function for a pass gate is defined in the library. It transfers the value
from the input to the output in case an = 1 and ap = 0. In case of an = 0 and
ap = 1 nothing is transferred, i.e., it has a high–impedance output. In all other cases
it is of unknown state. The logic function for a logic array is obtained by applying
the � operator to its children. Vectors g1 to gn denote the logic functions at the
gate pins. The logic function for a stack chain is obtained by substituting the source
input of logic function fi+1 of the (i+ 1)-th child by logic function fi of the i-th child
for i = 1, 2, . . . , n − 1. The logic function for a logic gate is obtained by combining
the logic function fp of the p–block and logic function fn of the n–block. A tristate
control block implements a certain type of tristate buffer by connecting the PMOS
transistor of a logic gate to output o1 and the NMOS transistor of a logic gate to
output o2 (Fig. 6.2). It holds, i1 = i4 = E, i3 = i6 = E and i2 = i5 = D. For E = 0
output o1 = 1, output o2 = 0 and Y = Z, i.e., output Y is in high impedance state.
For E = 1 output o1 = o2 = D and Y = D. More details about the implementation
can be found in (Eick & Graeb 2013).

Figure 6.3 illustrates the extraction process for the compound gate (Weste & Harris
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la1
5

la1
3

sc1
4

sc1
6

lg1
7

N4

P1

P2
P4

N1

P3

N2
N3

i1
i2
i3
i4

⊕

flg1
7
(i1, i2, i3, i4) :

0
(
(i1 = 1) ∨ (i2 = 1) ∨ (i4 = 1)

)
∧ (i3 = 1)

1
(
(i1 = 0) ∧ (i2 = 0) ∧ (i4 = 0)

)
∨ (i3 = 0)

U otherwise

fla1
5
(i1, i2, i3, i4) :

1
(
(i1 = 0) ∧ (i2 = 0) ∧ (i4 = 0)

)
∨ (i3 = 0)

Z
(
(i1 = 1) ∨ (i2 = 1) ∨ (i4 = 1)

)
∧ (i3 = 1)

U otherwise

fP4(i3) = i3 � 1�

fsc1
4
(i1, i2, i4) = fP1(i1, fP2(i2, fP3(i3, 1))) :

1 (i1 = 0) ∧ (i2 = 0) ∧ (i4 = 0)
Z (i1 = 1) ∨ (i2 = 1) ∨ (i4 = 1)
U otherwise

fsc1
6
(i1, i2, i3, i4)

0
(
(i1 = 1) ∨ (i2 = 1) ∨ (i4 = 1)

)
∧ (i3 = 1)

Z
(
(i1 = 0) ∧ (i2 = 0) ∧ (i4 = 0)

)
∨ (i3 = 0)

U otherwise

fN4(i3, sN4) = i3 � sN4(· · · )

fla1
3
(i1, i2, i4) = (fN1(i4, 0) � fN2(i2, 0) � fN3(i1, 0) :

0 (i1 = 1) ∨ (i2 = 1) ∨ (i4 = 1)
Z (i1 = 0) ∧ (i2 = 0) ∧ (i4 = 0)
U otherwise

Figure 6.3.: Computation of the logic function of the compound gate (Weste & Harris
2005, Fig. 1.18) from Fig. 3.3
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2005, Fig. 1.18) from Fig. 3.3. In the p–block, logic function fsc1
4

for serial chain sc1
4

is computed by combining the logic functions for P1, P2 and P3. Next, logic function
fsc1

4
is combined with logic function fP4 of PMOS transistor P4, yielding fla1

5
for logic

array la1
5. In the n–block, logic function fla1

3
for logic array la1

3 is computed by combin-
ing the logic functions of N1, N2 and N3. Next, logic function fla1

3
is combined with

logic function fN4 of NMOS transistor N4, yielding fsc1
6

for stack chain sc1
6. Finally,

logic functions fsc1
6

and fla1
5

are combined to logic function flg1
7

for the complete logic
gate.

For the latch from Fig. 3.16 the method computes the following logic functions. Pass
gates pg1 and pg2 show the data from input i at the output in case the control inputs
an and ap are set properly,

fpg1
(i, ap, an) = fpg2

(i, ap, an) =


i (an = 1) ∧ (ap = 0)

Z (an = 0) ∧ (ap = 1)

U otherwise

. (6.1)

All logic gates are inverters with logic function:

flg1
(i1) = · · · = flg4

(i2) =


0 i1 = 1

1 i1 = 0

U (i1 = U) ∨ (i1 = Z)

. (6.2)

6.1.2. Overall Logic Function

The overall logic function is computed using temporal logic. This is done by assigning
logic variables to each node of the temporal ESFG. Similar to the nodes of the temporal
ESFG, the logic variables refer to different time steps. Next, the logic functions of the
building blocks are substituted into each other by traversing the graph in topological
order. This means every node is visited after all nodes it depends on. For this analysis,
it is assumed that the inputs of the cell are in a defined logic state. The logic function
of one node can be composed out of the logic function of multiple building blocks by
using the resolution operator from Bryant (1991). Due to the correspondence of the
temporal ESFG to a Mealy machine (Mealy 1955), the general logic function is,

z(t) = fo
(
x(t), s(t− 1)

)
(6.3)

s(t) = fs
(
x(t), s(t− 1)

)
. (6.4)

Vector x describes the input variables, vector s contains the state variables and vector z
contains the output variables. Function fo is the output function and function fs is
the transition function.
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For the latch from Fig. 3.16 this yields the following logic functions.

a(t) = fa(E(t)) =

{
0 E(t) = 1

1 E(t) = 0
(6.5)

Q(t) = fQ(D(t), E(t), b(t− 1))

=


0 ((E(t) = 1) ∧ (D(t) = 0)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 0))

1 ((E(t) = 1) ∧ (D(t) = 1)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 1))

Z ((E(t) = 0) ∧ (b(t− 1) = Z))

U ((E(t) = 0) ∧ (b(t− 1) = U))

(6.6)

Q(t) = fQ(D(t), E(t), b(t− 1))

=


1 ((E(t) = 1) ∧ (D(t) = 0)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 0))

0 ((E(t) = 1) ∧ (D(t) = 1)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 1))

U ((E(t) = 0) ∧ (b(t− 1) ∈ {U,Z}))
(6.7)

b(t) = fb(D(t), E(t), b(t− 1))

=


0 ((E(t) = 1) ∧ (D(t) = 0)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 0))

1 ((E(t) = 1) ∧ (D(t) = 1)) ∨ ((E(t) = 0) ∧ (b(t− 1) = 1))

U ((E(t) = 0) ∧ (b(t− 1) ∈ {U,Z}))
(6.8)

fo(x(t), s(t− 1)) =

[
fQ(D(t), E(t), b(t− 1))
fQ(D(t), E(t), b(t− 1))

]
with s =

[
b
]

x =

[
D
E

]
fs(x(t), s(t− 1)) =

[
fb(D(t), E(t), b(t− 1))

]
(6.9)

Logic function fa of node a is the inverted input E. The logic function can not be
U or Z because the input is assumed to be in a valid logic state. The logic functions
of outputs Q and Q as well as of state b depend on inputs D and E and the value
of state b in the previous time step. Output Q is D if E(t) = 1, else it is b in the
previous time step. Output Q is the inverted of output Q. State b equals to Q but
cases Z and U of Q are mapped to case U of b through the inverter.

6.1.3. Transformation to a Triggered Representation

In general, the expression for a triggered logic function looks like this (Accellera 2000,
Section 5.2),

@g
(
xt
)
z = f(xc, z) . (6.10)

The outputs in vector z are equal to logic function f iff g is true. The inputs are
partitioned into the inputs xc of logic function f and inputs xt of trigger function g.
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Γ← ∅

F
(
x(t),x(t− 1)

)
← fo

(
x(t), fs

(
x(t− 1),U

))
F
(
xt(t),xc(t),xt(t− 1),xc(t− 1)

)
← findTriggerInputs

(
F(x(t),x(t− 1))

)
for all xt1,xt2 ∈ Bnt

F̃(xc(t),xc(t− 1))← F
(
xt(t) = xt1,xc(t),xt(t− 1) = xt2,xc(t− 1)

)
alwaysDefined(F̃)

true false

Γ← Γ ∪ {(xt1,xt2, F̃)}
buildTriggerFunctions(Γ)

1

2

3

4

5

6

7

8

9

Figure 6.4.: Algorithm to compute the triggered logic function.

The trigger can contain conditions for specific levels, e.g., x1 = 1 or specific edges
x1 = 0 → 1; The algorithm computes the triggered representation in four steps (see
Fig. 6.4).

First, logic function F is constructed that describes the output after two time
steps (line 2). This allows to handle edge triggered and level triggered latches. The
state variables are assumed to be undefined at any time before t− 1. Next, this logic
function is used to divide the inputs x into trigger input xt and combinatorial in-
puts xc using the following heuristic (line 3). Vector xt is formed by all logic variables
that appear in the logic function for Fi = U , where Fi is any of the components of F.
After that, the remaining combinatorial logic function F̃ is computed for all possible
assignments of x(t) and x(t − 1) (lines 4 to 8). In case, F̃i = U can not be satisfied
for any component F̃i of F̃, the logic function is stored together with the assignment
in set Γ. Finally, the triggered logic function is build out of set Γ (line 9). In doing
so, equivalent entries are merged.

Lines 3 to 8 are implemented such that the assignment vectors xt1 and xt2 are generated
incrementally. This speeds up cases where a partial assignment is already enough to
decide about this assignment. At the same time, the necessary merge operations can
be handled right away.

For the example from above, the algorithm yields the following results.

fs(x(t− 1),U) =


0 ((E(t− 1) = 1) ∧ (D(t− 1) = 0))

1 ((E(t− 1) = 1) ∧ (D(t− 1) = 1))

U (E(t− 1) = 0)

(6.11)
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F1(x(t),x(t− 1)) = fQ(D(t), E(t), fs(x(t− 1),U))

=



0 ((E(t) = 1) ∧ (D(t) = 0))∨
((E(t) = 0) ∧ (E(t− 1) = 1) ∧ (D(t− 1) = 0)

1 ((E(t) = 1) ∧ (D(t) = 1))∨
((E(t) = 0) ∧ (E(t− 1) = 1) ∧ (D(t− 1) = 1)

U ((E(t) = 0) ∧ (E(t− 1) = 0)

(6.12)

F2(x(t),x(t− 1)) = fQ(D(t), E(t), fs(x(t− 1),U))

=



0 ((E(t) = 1) ∧ (D(t) = 1))∨
((E(t) = 0) ∧ (E(t− 1) = 1) ∧ (D(t− 1) = 1)

1 ((E(t) = 1) ∧ (D(t) = 0))∨
((E(t) = 0) ∧ (E(t− 1) = 1) ∧ (D(t− 1) = 0)

U ((E(t) = 0) ∧ (E(t− 1) = 0)

(6.13)

This means Q will show the current value of D if E is set or the previous value of D if E
was set in the first time step and cleared in the second. Expressions F1(x(t),x(t−1)) =
U and F2(x(t),x(t − 1)) = U depend only on E, which is selected as trigger input.
The four possible assignments for E(t) and E(t-1) yield,

E(t) = E(t− 1) = 0

F̃1(x(t),x(t− 1)) = U F̃2(x(t),x(t− 1)) = U (6.14)

E(t) = E(t− 1) = 1

F̃1(x(t),x(t− 1)) = D(t) F̃2(x(t),x(t− 1)) =

{
0 D(t) = 1

1 D(t) = 0
(6.15)

E(t) = 0 ∧ E(t− 1) = 1

F̃1(x(t),x(t− 1)) = D(t− 1) F̃2(x(t),x(t− 1)) =

{
0 D(t− 1) = 1

1 D(t− 1) = 0
(6.16)

E(t) = 1 ∧ E(t− 1) = 0

F̃1(x(t),x(t− 1)) = D(t) F̃2(x(t),x(t− 1)) =

{
0 D(t) = 1

1 D(t) = 0
(6.17)

The assignment shown in Eq. (6.14) yields always unknown outputs and is therefore
discarded. Assignments Eqs. (6.15) to (6.17) show that the latch is transparent in
case E is set. Therefore, the complete triggered logic function is,

@(E)

[
Q
Q

]
=

[
D
D

]
. (6.18)
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Library No. Cells Analysis Time Coverage
Lib 1 32 1 sec. 100.0%
Lib 2 134 4 sec. 100.0%
Lib 3 – Tech 1 ∼ 600 18 sec. 97.6%
Lib 3 – Tech 2 ∼ 550 13 sec. 99.6%
Lib 3 – Tech 3 ∼ 700 27 sec. 99.1%
Lib 4 ∼ 850 37 sec. 95.2%

Table 6.3.: Results for different standard cell libraries.

6.2. Type Detection

The generic type of a cell describes whether the cell is an And, Or, Nand, Nor, Flip
Flop, Latch, etc. It is detected by using the following criteria (Youssef 2010),

• Structure:
A Flip Flop is detected if the ESFG of a cell has two or more cycles. A Latch is
detected if the ESFG of a cell has exactly one cycle.

• Logic function:
For combinatorial cells the computed logic functions are compared to a library
of generic logic functions. Difficulties arise because the mapping between in- and
outputs of computed and generic logic function is unknown.

6.3. Vector Generation

The vectors are generated based on a logic function for two time steps. The algorithm
generates logic expressions for all combinations of switching input, rising or falling
input edge, all outputs and all possible transitions at the output. Solution of this
problem creates the required values for the remaining inputs.

6.4. Experimental Results

Table 6.3 summarizes the results for different standard cell libraries. Library 1 is the
standard cell library included in the FreePDK (Stine et al. 2007). Library 2 is the
Nangate open cell library. Library 3 is an industrial standard cell library which was
available for three different technology nodes. Library 4 is an industrial standard cell
library, too. The size of these libraries was between 30 and 850 cells in different driver
strengths. The runtimes were normalized to an Intel R© Xeon R© 2.33 GHz computer
with 4 GB RAM running Ubuntu and using 4 of 8 cores in parallel. They were always
below one minute. The coverage column lists the amount of correctly handled cells.
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This was determined by automatically checking if the result is reasonable, using the
following criteria,

• the structural analysis software finished without error,

• there are no transistors that are not part of a logic gate or pass gate,

• the overall logic function exactly uses all inputs.

It can be seen, that this coverage is always above 95 %. The uncovered cells were not
designed according to standard CMOS principles or require a more accurate modeling
of the time behavior. A further limitation of the current method are differential logic
cells. A more detailed investigation for different latch types was done by Guo (2012).
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7. Application: Constraint Generation for Analog
Circuits

Most EDA tools for the design steps analog sizing, placement and routing require
so–called constraints as input (see Chapter 1). Examples for such constraints are in-
equalities for the electrical properties of transistors to ensure the correct operating
point during sizing, or equalities for the geometrical parameters during placement to
ensure symmetry. These constraints are not independent of each other. For example it
is only possible to fulfill all constraints for matching during placement if the circuit was
sized appropriately. Therefore, a new system of constraints is proposed in the follow-
ing. This system is called generic constraints. It is based on the idea of capturing the
intention of constraints rather than the exact mathematical equation. These generic
constraints allow to generate the specific constraints for each tool automatically.

The overall constraint generation flow is depicted in Fig. 7.1. It starts from the circuit
topology given as unsized netlist. Next, the structural analysis method described in
Chapters 3 to 5 is executed yielding building block and symmetry information. This
information is then used together with the netlist to generate the generic constraints.
Based on these generic constraints, sizing constraints for the sizing tool and placement
constraints for the placement tool are generated. The generation of routing constraints
for a routing tool remains future work.

In the following, generic constraints are introduced. Next, the overall constraint gen-
eration flow for generic constraints as well as derived sizing and placement constraints
are described. Finally, experimental results are presented.

7.1. Generic Constraints

In the following, generic constraints are described in an object–oriented manner. This
results in the classes shown in Fig. 7.2. The general generic constraint is described by
class GenericConstraint. It affects one or more devices. Based on the sizing constraints
described by Eckmüller (1998), Zizala (2001) and Massier (2010) as well as the layout
constraints described by Hastings (2001) and Eick (2008), the following classes of
generic constraints can be identified:

Proximity The affected devices should be as close as possible in the layout.
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topology (netlist)structural analysis

building blocks symmetry

generator for generic constraints

generic constraints

sizing constraint
generator

sizing constraints

placement constraint
generator

placement constraints

routing constraint
generator

routing constraints

sizing tool

placement tool

routing tool

analog block

Figure 7.1.: Flow of constraint generation method.

GenericConstraint
devices: D

RobustOperationProximity Stack

Matching
grade: {minimal,moderate,maximal}
type : {undefined, voltage, current}
ratio : R+

0

OperatingPoint
region: {linear, saturation}

Symmetry
pairs: D2

Figure 7.2.: Different classes of generic constraints.
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circuit structure

netlist

building blocks

symmetrical pairs

generic constraints

Proximity

OperatingPoint

RobustOperation

Stack

Matching

Symmetry

sizing constraints

electrical
properties

geometry

placement
constraints

geometry

Figure 7.3.: Details of the constraint generation process

Matching Two devices should be matched, resulting in conditions for sizing and lay-
out. Matching can be described in more detail through the attributes grade, type
and ratio. The grade attribute determines how good the matching should be.
The type attribute describes whether currents or voltages should be matched.
The ratio attribute can be used to define a fixed ratio between the devices.
Matched devices without fixed ratio are indicated by a value of 0.

RobustOperation A RobustOperation constraint describes conditions that are set for
a single device to make its operation robust. A typical example are minimum
area constraints.

OperatingPoint An OperatingPoint constraint determines the operating point of a
single device. The attribute region describes the appropriate operating region.

Stack A Stack constraint is used to indicate that two transistors form a stack and
can be laid out in a special way in case they are sized appropriately.

Symmetry The Symmetry constraint describes that multiple devices should be laid
out with respect to a symmetry axis. The symmetry pairs are given by the pairs
attribute.

7.2. Constraint Generation

Figure 7.3 shows the constraint generation process in more detail. The generation of
generic, sizing and placement constraints is described in the following.
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7.2.1. Generic Constraints

Generic constraints are generated from the topology of the circuit given by the netlist,
the building blocks computed by the method from Chapter 3 and the symmetry com-
putation described in Chapter 5. The netlist is used to generate proximity constraints
for every pairs of devices that is connected.

The building blocks found by the building block analysis are evaluated to generate
generic constraints of classes OperatingPoint, RobustOperation, Stack and Matching.
The details are given in Table 7.1. For a differential pair (dp), both transistors work
in saturation region, have a very good voltage matching and a fixed width and length
ratio. For a simple current mirror (scm), both transistors work in saturation and have
current matching. For a cross–coupled pair (cc) both transistors work in saturation
and must be matched with a fixed width and length ratio. For a level shifter (ls) both
transistors work in saturation and have current matching. For a four–transistor current
mirror (4tcm) the upper transistors work in saturation and have current matching.
The lower transistors work in the linear region and also have current matching. For
the cascode current mirror (ccm), the wide–swing cascode current mirror (wscm),
wide–swing current mirror (wsm), the improved wilson current mirror (iwcm) and the
wilson current mirror (wcm) the following holds: All transistors work in saturation.
Transistors with the gate connected to the same net have current matching. A stack
constraint can only be generated for the wide–swing cascode current mirror (wscm)
and four–transistor current mirror (4tcm).

The symmetry information is used as follows. For each pair of symmetrical devices,
a moderate matching constraint with a fixed ratio of one is generated. In addition,
one symmetry constraint is generated for all symmetry pairs of the same symmetry
axis.
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type of building block generic constraints

M1 M2

dp

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
RobustOperation(M1); RobustOperation(M2)
Matching(M1,M2,grade=maximal,type=voltage,ratio=1.0)

M1 M2

scm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
RobustOperation(M1); RobustOperation(M2)
Matching(M1,M2,grade=minimal,type=current)

M1 M2

cc

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
RobustOperation(M1); RobustOperation(M2)
Matching(M1,M2,grade=minimal,ratio=1.0)

M1 M2

ls

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
RobustOperation(M1); RobustOperation(M2)
Matching(M1,M2,grade=minimal,type=current)

M1 M2

M3 M4

4tcm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=linear)
OperatingPoint(M4,region=linear)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3); RobustOperation(M4)
Matching(M1,M2,grade=minimal,type=current)
Matching(M3,M4,grade=minimal,type=current)
Stack(M1,M3); Stack(M2,M4)

M1 M2

M3 M4

ccm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=saturation)
OperatingPoint(M4,region=saturation)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3); RobustOperation(M4)
Matching(M1,M2,grade=minimal,type=current)
Matching(M3,M4,grade=minimal,type=current)
Continued on next page . . .

Table 7.1.: Generic constraints generated depending on the building block type.
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type of building block generic constraints
Continued from previous page . . .

M1 M2

M3 M4

wscm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=saturation)
OperatingPoint(M4,region=saturation)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3); RobustOperation(M4)
Matching(M1,M2,grade=minimal,type=current)
Matching(M3,M4,grade=minimal,type=current)
Stack(M1,M3); Stack(M2,M4)

M1

M2 M3

wsm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=saturation)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3)
Matching(M2,M3,grade=minimal,type=current)

M1 M2

M3 M4

iwcm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=saturation)
OperatingPoint(M4,region=saturation)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3); RobustOperation(M4)
Matching(M1,M2,grade=minimal,type=current)
Matching(M3,M4,grade=minimal,type=current)

M1

M2 M3

wcm

OperatingPoint(M1,region=saturation)
OperatingPoint(M2,region=saturation)
OperatingPoint(M3,region=saturation)
RobustOperation(M1); RobustOperation(M2)
RobustOperation(M3)
Matching(M2,M3,grade=minimal,type=current)

Table 7.1.: Generic constraints generated depending on the building block type.
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P3 P4

P5 P6

P1 P2

N1N3N5 N2 N4 N6

(a) Proximity

P3 P4

P5 P6

P1 P2

N1N3N5 N2 N4 N6

B

S
B

B

S
B

S

B B

S
S

(b) Matching

P3 P4

P5 P6

P1 P2

N1N3N5 N2 N4 N6

(c) Symmetry

Figure 7.4.: Generic constraints generated for the example circuit from Fig. 3.14.

The generated generic constraints for the example circuit from Fig. 3.14 are shown in
Fig. 7.4. Each shaded area in Fig. 7.4a symbolizes one proximity constraint generated
from the netlist. Each line in Fig. 7.4b symbolizes a matching constraint. The lines
marked with B are generated from building blocks (see Fig. 3.14) and the lines marked
with S are generated from symmetrical device pairs (see Eq. (5.40)). Transistors N1

and N2, P1 and P2 as well as P3 and P4 are subject to a Matching constraint from a
building block and from a symmetrical device pair. For such cases, a new Matching
constraint could be generated. The attributes of this constraint could be selected such
that both constraints are covered. The gray area in Fig. 7.4c marks the generated
symmetry constraint. The lines symbolize the symmetry pairs.
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generic constraint sizing constraints
OperatingPoint(M)

region = saturation vds,M − (vgs,M − Vth,M) ≥ Vsat,min (7.1)
vds,M ≥ 0 (7.2)

vgs,M − Vth,M ≥ 0 (7.3)
linear (vgs,M − Vth,M)− vds,M ≥ Vlin,min (7.4)

vds,M ≥ 0 (7.5)
vgs − Vth ≥ 0 (7.6)

RobustOperation(M) WM · LM ≥ Amin (7.7)
WM ≥ Wmin (7.8)
LM ≥ Lmin (7.9)

Matching(M1,M2) LM1 = LM2 (7.10)
|vgs,M1 − vgs,M2| ≤ ∆Vgs,max (7.11)
|vds,M1 − vds,M2| ≤ ∆Vds,max (7.12)

grade = minimal ∆Vgs,max,∆Vds,max large
moderate ∆Vgs,max,∆Vds,max small
maximal ∆Vgs,max,∆Vds,max very small

type = current |vgs,M1 − Vth,M1| ≥ Vov,min (7.13)
|vgs,M2 − Vth,M2| ≥ Vov,min (7.14)

voltage |vgs,M1 − Vth,M1| ≤ Vov,max (7.15)
|vgs,M2 − Vth,M2| ≤ Vov,max (7.16)

ratio 6= 0 ratio ·WM1 = WM2 (7.17)
Stack(M1, M2) WM1 = WM2 (7.18)

Table 7.2.: Sizing constraints generated from generic constraints.

7.2.2. Sizing Constraints

In the following, the generation of sizing constraints from generic constraints is de-
scribed. Therefore all generic constraints of classes OperatingPoint, RobustOpera-
tion, Matching and Stack are evaluated. The generation rules are summarized in
Table 7.2.

For the OperatingPoint constraint, inequalities for the saturation and linear region
are generated depending on the value of the region attribute. These inequalities can
be found in every circuit design book, e.g., Sansen (2007).

For the RobustOperation constraint, lower limits for width WM , length LM and area
WM · LM of transistor M are generated. This is based on Pelgrom et al. (1989) and
general considerations about mismatch (Eckmüller 1998).

For the Matching constraint, an equal length constraint for transistors M1 and M2

is generated independent of the attributes set. The difference between the gate–
source and drain–source voltages of M1 and M2 is limited to ∆Vgs,max and ∆Vds,max,
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respectively. Constants ∆Vgs,max and ∆Vds,max are chosen based on the grade attribute
and the technology. In case of current matching, the gate–source voltages of M1 and
M2 must exceed the threshold voltage at least by Vov,min. In case of voltage matching,
the gate–source voltages of M1 and M2 must not exceed the threshold voltage by more
than Vov,max. In case the ratio is non–zero, a corresponding constraint for the widths
is generated. These conditions are based on Eckmüller (1998) and Hastings (2001).

The Stack constraint yields a sizing constraint about equal width of both transistors.
This is based on Eckmüller (1998).

Based on Tables 7.1 and 7.2, the following constraints are generated for a simple
current mirror:

OperatingPoint(M1,region=saturation)

vds,M1 − (vgs,M1 − Vth,M1) ≥ Vsat,min vds,M1 ≥ 0 (7.19)

vgs,M1 − Vth,M1 ≥ 0 (7.20)

OperatingPoint(M2,region=saturation)

vds,M2 − (vgs,M2 − Vth,M2) ≥ Vsat,min vds,M2 ≥ 0 (7.21)

vgs,M2 − Vth,M2 ≥ 0 (7.22)

RobustOperation(M1)

WM1 · LM1 ≥ Amin WM1 ≥ Wmin (7.23)

LM1 ≥ Lmin (7.24)

RobustOperation(M2)

WM1 · LM1 ≥ Amin WM1 ≥ Wmin (7.25)

LM1 ≥ Lmin (7.26)

Matching(M1,M2,grade=minimal,type=current)

LM1 = LM2 (7.27)

|vgs,M1 − vgs,M2| ≤ ∆Vgs,max |vds,M1 − vds,M2| ≤ ∆Vds,max (7.28)

|vgs,M1 − Vth,M1| ≥ Vov,min |vgs,M2 − Vth,M2| ≥ Vov,min (7.29)

This complies with the constraints formulated by Eckmüller (1998), Zizala (2001)
and Massier (2010) except the constraint for the difference between the gate–source
voltages. However, this constraint is always fulfilled since vgs,M1 = vgs,M2 for the simple
current mirror.
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generic constraint sizing constraints
Proximity(M1,M2) distance(M1,M2) ≤ dmax (7.30)
Stack(M1, M2) merge transistors
Matching(M1,M2) Wf,M1 = Wf,M2 (7.31)

ϕM1 = ϕM2 (7.32)
grade = minimal align M1 ,M2 (7.33)

moderate nf,M1 = nf,M2 (7.34)
np,M1 > 1 np,M2 > 1 (7.35)

common–centroid M1 ,M2 (7.36)
maximal nf,M1 = nf,M2 (7.37)

np,M1 > 1 np,M2 > 1 (7.38)
common–centroid M1 ,M2(quadratic) (7.39)

ratio 6= 0 ratio · nf,M1 · np,M1 = nf,M2 · np,M2 (7.40)
Symmetry((M1,M

′
1), (M2,M

′
2), . . . , (Mn,M

′
n))

∀i,j∈{1,...,n} xMi
+ x′Mi

= xMj
+ x′Mj

(7.41)

∀i∈{1,...,n} yMi
= yM ′i (7.42)

Table 7.3.: Placement constraints generated from generic constraints.

7.2.3. Placement Constraints

Similar to the sizing constraints, the placement constraints are directly generated from
the generic constraints. The generation rules are summarized in Table 7.3.

A Proximity constraint yields an upper limit of the distance of transistors M1 and M2.
A Stack constraint should result in a transistor with a double gate if placement method
and the process development kit support this (Eckmüller 1998).

A Matching constraint results in several conditions for the placement (Hastings 2001).
It is assumed that every transistor M can be divided into a number np,M of parallel
sub–transistors. Each of these sub–transistors consists of nf,M fingers of width Wf,M .
The total width of transistor M is then calculated as,

WM = np,M · nf,M ·Wf,M (7.43)

In all cases, the finger width Wf,M1 of M1 and Wf,M2 of M2 should be equal, as well
as the orientations ϕM1 and ϕM2 . Minimal matching is achieved if all sub–transistors
of M1 and M2 are aligned in one direction. For moderate matching, a common–
centroid configuration should be used. This requires that the number of fingers is
equal for all sub–transistors of M1 and M2. In addition, M1 and M2 must be split into
more than one sub–transistor. For maximal matching, this common–centroid should
be as quadratic as possible. In case the ratio attribute is set to a non–zero value,
the ratio should again be reflected in the ratio of total width of M1 and M2. Since
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both finger widths are equal, this translates to the ratio of the products np,M1 · nf,M1

and np,M2 · nf,M2 .

A Symmetry constraint is always defined for a number n of symmetry pairs (M1,M
′
1)

to (Mn,M
′
n). Table 7.3 lists the constraints for a vertical axis. The coordinate of this

axis is calculated by (xMi
+ xM ′i )/2, where xMi

and xM ′i are the x–coordinates of the
center of gravity of all sub–transistors of Mi and M ′

i , respectively. This axis coordinate
must be equal for all symmetry pairs. In addition, the center of gravity of Mi and M ′

i

must be aligned in direction of the y–coordinate.

For the simple current mirror example from above, this results in the following place-
ment constraints:

Proximity(M1,M2)

distance(M1,M2) ≤ dmax (7.44)

Matching(M1,M2,grade=minimal,type=current)

Wf,M1 = Wf,M2 ϕM1 = ϕM2 (7.45)

align M1,M2 (7.46)

7.3. Experimental Results

In the following, experimental results for the generation of generic constraints are
shown. After that, the effect of different constraint sets to automatic sizing and
placement methods is investigated.

7.3.1. Generic Constraints

Table 7.4 lists the number of generic constraints generated for the test cases from
Table 3.2 using the method described in Section 7.1. The number of constraints is
broken down to the constraint classes Proximity, Matching, RobustOperation, Op-
eratingPoint, Stack and Symmetry. For the class Matching, the distribution to the
different values of attributes grade, type and ratio is shown. For the class Operating-
Point, the distribution to the different values of the region attribute is shown. In some
cases, the method described in Section 7.1 generates a constraint of the same class
more than once for the same set of devices. For example, if two simple current mir-
rors share one input transistor, an OperatingPoint and RobustOperation constraint
is generated for each simple current mirror. Similar, two Matching constraints are
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item circuit

1 2 3 4 5 6 7
Proximity 16 22 15 12 6 12 12

Matching 19 32 27 11 11 14 18
grade= minimal 13 21 13 1 5 6 11

moderate 5 10 11 7 5 6 6
maximal 1 1 3 3 1 2 1

type= undefined 5 10 11 7 6 6 6
current 13 21 13 1 4 6 11
voltage 1 1 3 3 1 2 1

ratio= undefined 13 21 13 10 4 6 11
1 6 11 14 1 7 8 7

RobustOperation 30 44 32 8 10 16 25

OperatingPoint 30 44 32 8 10 16 25
region= linear 2 4 0 0 0 0 0

saturation 28 40 32 8 10 16 25

Stack 2 4 0 0 0 0 0

Symmetry 1 1 1 1 1 1 1

Table 7.4.: Number of generated generic constraints for the analog test cases from
Table 3.2.

generated for two transistors that form a simple current mirror and a symmetrical de-
vice pair. Because of this, the number of listed OperatingPoint and RobustOperation
constraints is greater than the number of devices in Table 7.4.

Furthermore, the generic constraints generated from symmetrical device pairs can be
clearly identified in Table 7.4. These constraints have type undefined, grade minimal
and a ratio of 1. Differential pairs contribute Matching constraints of type voltage,
grade maximal and ratio 1. Thus, the overall number of Matching constraints with a
ratio of 1 is given by the number of differential pairs plus the number of symmetrical
device pairs.

7.3.2. Sizing

In order to evaluate the influence of different constraint sets on quality and speed of
numerical circuit optimization, Circuits 1 to 4 from Table 3.2 are selected as represen-
tative circuits. The following experiments were performed,

1. Three different constraint sets are generated:

COM Set COM is generated using a commercial tool.
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item set circuit

1 2 3 4
constraint generation
building blocks

no. eq. / ineq. COM 2/ 0 2/ 0 8/ 0 4/ 0
SRM 21/ 144 22/ 188 19/ 182 3/ 24
NEW 21/ 144 22/ 188 19/ 182 3/ 24

symmetry pairs
no. eq. / ineq. COM 10/ 0 18/ 0 10/ 0 2/ 0

SRM 0/ 0 0/ 0 0/ 0 0/ 0
NEW 10/ 20 20/ 40 22/ 44 12/ 24

total
no. eq. / ineq. COM 12/ 0 20/ 0 18/ 0 6/ 0

SRM 21/ 144 22/ 188 19/ 182 3/ 24
NEW 31/ 164 42/ 228 41/ 226 15/ 48

feasibility optimization
no. sim. / time [h:min] SRM 25/ 0:03 342/ 0:51 74/ 0:10 37/ 0:02

NEW 25/ 0:03 62/ 0:10 76/ 0:11 21/ 0:01
speed–up NEW 1× 5× 1× 2×
nominal optimization
specification fulfilled SRM X failed X X

NEW X X X X
no. sim./time [h:min] SRM 555/ 0:42 2802/ 4:47 1301/ 1:45 794/ 0:54

NEW 1/ 0:01 450/ 0:32 567/ 0:48 241/ 0:17
speed–up NEW 40× 6× 2.3× 3.3×
yield optimization
worst–case distance SRM 3.3σ 0.0σ 3.5σ 1.1σ

NEW 5.2σ 3.6σ 4.1σ 3.9σ
achieved yield SRM 99.97% 0.0% 99.98% 85.7%

NEW > 99.99% 99.99% > 99.99% 99.99%
no. sim. [1000] / SRM 9.3/ 13:25 —/ — 16/ 20:51 9.5/ 48:15

time [h:min] NEW 4.2/ 5:29 16/ 20:51 7/ 7:18 4.1/ 12:26
speed–up NEW 2.4× ∞× 2.9× 3.9×

Table 7.5.: Results of sizing experiments.
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SRM Set SRM is generated by using above generation flow but generating only
constraints from building blocks. This corresponds to the constraints gen-
erated by the sizing rules method (Massier 2010).

NEW Set NEW is generated by using above generation flow.

2. Setups for the circuit optimization tool WiCkeD (WiCkeD 6.3 2010, Antreich
et al. 2000) are created for sets SRM and NEW.

3. Nominal sizing is performed for sets SRM and NEW.

4. Yield optimization is performed for both sets.

The results are summarized in Table 7.5. It can be observed that the commercial
tool (COM) generate equalities only, while the sizing rules method (SRM) and the new
approach (NEW) generate equalities and inequalities. Approaches COM and NEW
generate constraints from symmetry pairs while method SRM generates constraints
for building blocks only. Overall, approach NEW always generates the highest number
of constraints for all test cases.

The effect of this can be seen in the subsequent experiments. They compare quality
and speed of feasibility optimization, nominal optimization and yield optimization for
the constraint sets generated by SRM and NEW. Feasibility optimization tries to find
a sizing of the circuits where all sizing constraints hold true. Nominal optimization
tries to find a sizing of the circuit, such that all performance specification are fulfilled
and all sizing constraints hold true. Yield optimization tries to optimize parametric
yield.

For both constraint sets feasibility optimization was successful. Runtime and simu-
lation count are similar for both methods and Circuits 1, 3 and 4. For Circuit 2 the
feasibility optimization takes significantly longer if set SRM is used.

Nominal optimization was successful for both constraint sets and all circuits, except
Circuit 2, where no solution is found for Circuit 2 if constraint set SRM is used. In
contrast to feasibility optimization, nominal optimization always took less time and
less simulations if constraint set NEW was used. Overall, this results in a speed–
up of up to 40 times for Circuit 1, where the specification was already fulfilled after
feasibility optimization for set NEW.

The quality of the resulting circuit after yield optimization is measured using the
parametric yield and the worst–case distance (Graeb 2007). For Circuit 2 no yield
optimization was done using constraint set SRM because the preceding nominal op-
timization failed. A worst–case distance of 3σ means that the circuit corresponds to
a 3σ design. A larger worst–case distance means that the circuit is more robust. It
can be observed that yield and worst–case distance are always highest for circuit sized
using constraint set NEW. For example, for Circuit 4 yield is 99.99% instead of 85.7%
and the achieved worst–case distance is 3.9σ instead of 1.1σ The runtime is always
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smaller if constraint set NEW is used. For Circuit 4 the runtime is reduced from 2
days to half a day. The minimum speed–up is 2.4, which was achieved for Circuit 1.

7.3.3. Placement

For the evaluation of the influence of different constraint sets on placement quality, a
set of five test circuits, Circuit L1 to Circuit L5, is used. This set differs to the previous
experiments because a different technology was used to realize the circuits. Circuit L1
is a Miller amplifier (Laker & Sansen 1994), Circuit L2 is a symmetrical OTA (Laker &
Sansen 1994), Circuit L3 is a fully differential amplifier similar to the circuit published
by Galdi et al. (2008). Circuit L4 is a folded cascode amplifier (Laker & Sansen 1994).
Circuit L5 is similar to the buffer amplifier published by Fisher & Koch (1987). They
have a size between 9 and 42 devices. The symmetry computation method used for
constraint generation is approach PROP from Section 5.4. This early version of the
approach used in this thesis can not handle all of the test circuits used above. For the
commercial tool an earlier version is used than for the experiments above. However,
the results still give a good idea about the influence of different constraint sets to the
post–layout performances.

For each of these circuits, a placement was generated using the method of Strasser (2011).
This placement was then routed using a general purpose router. After that DRC faults
were fixed manually and parasitics were extracted. Finally, post–layout performances
were simulated and the yield was determined using Monte–Carlo simulation. For each
circuit this was done for three different constraint sets:

unconstrained No constrained were generated. The hierarchical partitioning required
for the method of Strasser (2011) was generated randomly.

COM Constraints were generated using a commercial tool. The hierarchical parti-
tioning required for the method of Strasser (2011) was generated manually based
on the generated constraints and the rules provided in Eick et al. (2011) and
Strasser et al. (2011).

NEW Constraints were generated using the approach described in this thesis.
Common–centroid structures were used for all matching constraints. The
hierarchical partitioning required for the method of Strasser (2011) was gener-
ated according to Eick et al. (2011) and Strasser et al. (2011).

The sizes of the generated constraint sets are listed in Table 7.6. It can be seen that
method COM generates fewer constraints than the new method. A closer investigation
shows that method COM misses some important matching constraints due to its insuf-
ficient structural analysis. In some cases, method COM generates constraints that are
in conflict. For example, a symmetry constraints with a vertical axis was generated
for two devices, implying vertical alignment of these devices. But the method also
generated a horizontal alignment constraint for the same two devices.
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item set circuit

L1 L2 L3 L4 L5
no. devices 9 10 30 22 42

constraints
total COM 8 18 20 13 34

NEW 13 19 35 38 53
conflicts COM 1 1 1 0 0

NEW 0 0 0 0 0

layout properties
area [104µm2] unconstrained 0.94 1.6 1.2 0.41 6.1

COM 0.90 1.6 1.4 0.44 6.9
NEW 0.94 1.6 1.3 0.50 6.5

total netlength [mm] unconstrained 2.1 2.8 7.2 3.2 25
COM 1.9 2.7 7.2 3.0 24
NEW 2.3 3.4 10.8 3.7 30

simulated performance errors (post–layout vs. pre–layout)

ε
(abs)
Voffset

[mV] unconstrained -7.8 -4.6 -0.21 -0.45 -3.4
COM -0.011 -1.1 -0.029 -1.55 -0.81
NEW -0.016 -1.1 -0.0085 -0.31 -0.34

ε
(rel)
CMRR unconstrained −3.4% −6.1% −72% −25% −21%

COM −1.1% +6.1% −72% −12% −8.3%
NEW −1.1% +6.1% −63% −9.7% ±0%

ε
(rel)
A0

unconstrained −1.1% +1.0% −1.4% +1.8% +5.3%
COM ±0% +1.0% ±0% +1.8% ±0%
NEW ±0% ±0% −1.4% +1.8% +6.5%

ε
(rel)
fT

unconstrained ±0% −33% ±0% +5.3% +36%

NEW −2.2% ±0% +4.5% +3.5% −7.1%
HPR −2.2% ±0% ±0% +3.5% +36%

yield
COM 99.9% 99.6% 92% 84 % 88 %
NEW 99.9% 99.6% 96% 99 % 93 %

Table 7.6.: Results of placement experiments.
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After placing and routing of the circuits, area and total netlength are determined. It
can be observed, that the total areas are similar. Constraint set NEW defines common
centroid structures, but constraint set COM does not. Therefore the total netlength
is largest because additional routing is required in the common centroid structures.

After parasitic extraction, absolute value of the offset voltage |Voffset|, the common
mode rejection ratio (CMRR), static gain A0 as well as transit frequency fT were
determined by simulation and compared to the pre–layout values. Offset error and
CMRR are known to be mismatch sensitive (Laker & Sansen 1994). Therefore, a large
influence of the layout on offset error and CMRR are to be expected.

For the offset error, Table 7.6 lists the absolute error ε
(abs)
Voffset

,

ε
(abs)
Voffset

= |Voffset,pre| − |Voffset,post| , (7.47)

where Voffset,pre is the offset error simulated for the schematics, and Voffset,post is the
offset error simulated for the netlist extracted from the generated layout. Thus, a
negative value means a degradation of the offset error. It can be seen, that there is a
degradation for all constraint sets, but for all circuits except Circuit 2, this degradation
is lowest for constraint set NEW.

For CMRR, A0 and fT the respective relative errors ε
(rel)
CMRR, ε

(rel)
A0

and ε
(rel)
fT

are listed,

ε
(rel)
CMRR =

(
CMRRpost

CMRRpre

− 1

)
· 100% ε

(rel)
A0

=

(
A0,post

A0,pre

− 1

)
· 100% (7.48)

ε
(rel)
fT

=

(
fT,post

fT,pre

− 1

)
· 100% . (7.49)

Values CMRRpre, A0,pre and fT,pre refer to the simulated values for the schematics.
Values CMRRpost, A0,post and fT,post refer to the simulated values for the netlist ex-
tracted from the generated layout. Again, a negative value means a degradation of the
respective performance and a positive value means an improvement. For the CMRR
it can observed, that the NEW constraint set results in the best values for CMRR.
In the case of Circuit L3 the degradation is large because the pre–layout value goes
towards infinity. For the gain the error is small in all cases. The picture is similar for
the transit frequency. The error is low for all experiments. Exceptions are Circuit L2
if no constraints are used and Circuit L5 if no constraints or the new constraints are
used.

Parametric yield was computed for constraint sets COM and NEW and all circuits by
performing Monte–Carlo Analysis with 5000 simulations runs on the extracted netlists.
Parameter variations were modeled by ten global statistical parameters and two local
statistical parameters per transistor. It turns out that the standard deviation of the
single performances is only slightly influenced by the constraint set. In contrast,
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the mean value is influenced similar to the nominal values presented above. As a
consequence, there are large yield differences for Circuits 3 to 5. In all of these cases,
the best results are achieved for constraint set NEW.
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8. Conclusion

The design of analog blocks is still done mostly manual and only few supporting
software is available. Therefore analog blocks are still a significant cost factor for
modern integrated circuits. This is because analog designers usually consider many
different rules during the design process to ensure function in the presence of changing
operating conditions, variations of the manufacturing process and parasitic effects.
Theses rules are usually referred to as constraints. They must be available in machine
readable form to enable the usage of automatic sizing and placement methods for
analog circuits. However, this machine readable form is seldom available. Therefore,
this thesis proposed a new method to generate the constraints automatically from the
topology of analog circuits.

Beyond that, the thesis showed that similar structural analysis methods can be used
to analyze digital circuits as well. The main application shown in this context is the
generation of input data for automatic standard cell characterization. The method
presented in this thesis is the first method that can handle circuits with analog and
digital parts, e.g., mixed–signal circuits.

In particular, this thesis contains the following contributions compared to the state of
the art:

• An enhanced method for building block analysis, which is the first method that
can handle circuits with analog and digital parts. In addition, it contains several
runtime improvements compared to the basic algorithm (Massier 2010).

• A new structural signal path analysis, introducing a new graph model of the
circuit, as well as analyses to automatically identify the analog core part, analog
bias part and digital part of a circuit, detect the true directions of pass gates and
break feedback loops within the digital circuit part.

• A new symmetry computation for analog circuits, which can handle multiple,
overlapping differential signal paths correctly.

• A new consistent constraint generation method, which generalizes the constraint
generation for sizing and placement.

Experimental results to demonstrate the effectiveness of these methods were presented.
The capabilities of the method for digital circuits were investigated for five digital
standard cell libraries. For all libraries including industrial libraries the method was
able to analyze more than 95% of the cells correctly. The capabilities of the method
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for analog circuits were investigated for four single–ended OTAs, two fully–differential
OTAs and a fully–differential mixer.

It was shown, that a commercial tool cannot handle all of these circuits correctly. In
contrast, the presented symmetry computation method can handle all of these circuits
correctly. Furthermore, it was shown that symmetry related constraints have a big
influence on speed and result quality of sizing and placement tools. In the experiments,
nominal optimization and yield optimization of a circuit turned out to be up to 40
times and 3.9 times faster, respectively, if symmetry related constraints are used. At
the same time yield was increased up to 14% and the worst–case distance improved
up to 2.7σ. Sizing failed in one case if no symmetry related constraints were used.

For placement, different layouts were generated for three different constraint sets but
the same sizing. It was shown that mismatch critical performances can be improved
by a large amount if the constraints are generated using our new method. In one case,
yield improved from 84% to 99%.
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A. Graph Theoretical Definitions

Different authors from the field of graph theory use different notations and slightly
differing definitions (Harary 1969). This appendix summarizes the definitions and
notation used in this thesis. They are mostly based on (Harary 1969, Zwillinger
1996).

A.1. Graphs and Subgraphs

Definition A.1 (digraph)
A digraph or directed graph G is a triple G = (NG, EG, ϕG), where NG is the set
of nodes or vertices and EG is the set of edges. Incidence function ϕG : EG → N2

G

describes the relation between nodes and edges. An edge e points from node µ to
node ν iff ϕG(e) = (µ, ν). (Harary 1969, Zwillinger 1996)

Definition A.2 (path, loop)
A path in a graph is an alternating sequence of length k of nodes ni and edges
ei: n0, e1, n1, . . . , ek, nk. Edge ei must be incident with node ni−1 and node ni,
i.e., ϕG(ei) = (ni−1, ni). In short, a path can be described as a sequence of edges:
e1, e2, . . . en. In case start node n0 and end node nk are equal, i.e., n0 = nk, the
path is called loop. (Harary 1969, Zwillinger 1996)

The following special terms for graphs exist (Zwillinger 1996):

simple A graph is called simple if it has no parallel edges and no loops, i.e., ϕG is
one–to–one.

multigraph A multigraph has parallel edges but no loops.

pseudograph A directed pseudograph has parallel edges and loops.

Definition A.3 (subgraph)
A graph G′ = (NG′ , EG′ , ϕG′) is called subgraph of G = (NG′ , EG′ , ϕG′), if NG′ ⊆
NG, EG′ ⊆ EG and ϕG′(e) = ϕG(e) for all e ∈ EG′ .(Zwillinger 1996)
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Figure A.1.: Union graph GΣ = G1 ∪G2.

A.2. Properties of Graphs

Definition A.4 (reachability)
A node n2 is reachable from node n1 if there is a path from n1 to n2.(Harary 1969)

Definition A.5 (strongly connected)
A digraph G is called strongly connected if every node n1 ∈ NG can be reached
from every node n2 ∈ NG.(Harary 1969)

Usually this means the graph has a cycle.

Definition A.6 (network graph)
A digraph is called network graph if,

• it has one input node, where no edges end, and,

• it has one output node, where no edges start, and,

• all other nodes can be reached from the input node, and,

• the output node can be reached from all other nodes.

(Robinson & Foulds 1980)

A.3. Operations on Graphs

Definition A.7 (union graph)
The graph GΣ = (NΣ, EΣ, ϕΣ) created by the union G1 ∪ G2 of graphs G1 =
(N1, E1, ϕ1) and G2 = (N2, E2, ϕ2) consists of all nodes and edges of G1 and G2. It
holds (Harary 1969),

GΣ = G1 ∪G2 := (NG1 ∪NG2 , EG1 ∪ EG2 , ϕGΣ
(e)) ϕGΣ

(e) :=

{
ϕG1(e) e ∈ E1

ϕG2(e) e ∈ E2

.

(A.1)
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Figure A.2.: Subgraph G′ induced by node set {2, 3, 4} from Graph G.
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Figure A.3.: Subgraph G′ spanned by edge set {a, b, c, d, e} from Graph G.

Figure A.1 shows an example for this definition.

Definition A.8 (induced subgraph)
A subgraph G′ = (NG′ , EG′ , ϕG′) of graph G is induced by node set N if NG′ = N
and EG′ = {e ∈ EG|ϕG(e) ∈ N2}.(Golumbic 1980)

Figure A.2 shows an example for Fig. A.2.

Definition A.9 (spanned subgraph)
A subgraph G′ = (NG′ , EG′ , ϕG′) of graph G is spanned by edge set E if EG′ = E
and NG′ is the minimum set such that ϕG(e) ∈ N2

G′ for all e ∈ E.(Golumbic 1980)

Figure A.3 shows an example for Definition A.9.

A.4. Isomorphism

Definition A.10 (isomorphism)
Two graphs G and H are called isomorphic G∼=H if there are one–to–one mappings
fn : NG → NH and fe : EG → EH , such that the incidence function is preserved,
i.e.,

∀
e∈EG

(µ, ν) ∈ ϕG(e) ↔ [ϕH(fe(e)) = (fn(µ), fn(ν))] , (A.2)

(Zwillinger 1996).
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Figure A.4.: Two isomorphic graphs G and H.

Figure A.4 shows an example for Definition A.10.
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B. Equivalence of Conflict Resolution Techniques for
Building Block Analysis

This thesis and Massier (2010) use a different notation to describe the conflict res-
olution used during building block analysis. In the following it is shown that both
notations are mathematically equivalent.

Formula (4.11) in Massier (2010) gives a propositional form to describe an analysis
result that is conflict free. Formula (4.11) literally reads as follows:

∀
mµ∈M

∀
mκ,mλ∈des(mµ)R

∀
i,j∈{1,2}

[
((mκ.structype, i), (mλ.structype, j)) ∈ S∧

∃
x∈des?(mµ)R

(x,mλ) ∈ Rj︸ ︷︷ ︸
(†)

→ ∃
y∈des?(mµ)R

(y,mκ) ∈ Ri

]
(B.1)

Set M is the set of all devices, i.e., M = D. Relations R1, R2 describe the parent child
relation between different components. In case (x, y) ∈ R1 this means that x is the
first child of y. Similarly, (x, y) ∈ R2 means that x is the second child of y. Relation R
is the union of R1 and R2. This maps to the notation used in this thesis as follows,

(x, y) ∈ R⇔ x ∈ y.children (B.2)

(x, y) ∈ R1 ⇔ x = y.child1 (B.3)

(x, y) ∈ R2 ⇔ x = y.child2 . (B.4)

Set des(mµ) consists of all components that contain mµ, either as child, grandchild,
great–grandchild, etc. Using set D?(x) from Eq. (2.1) this can be written as,

des(mµ) = {x ∈ B|mµ ∈ D?(x)} . (B.5)

In addition des?(mµ) is defined as,

des?(mµ) = des(mµ) ∪ {mµ} = {x ∈ D ∪ B|(mµ ∈ D?(x)) ∨ (mµ = x)} . (B.6)

Relation S describes the dominance graph similar to graph GD from Fig. 2.3. Graph
GD differs from S that the star symbol ? is used as short notation for 1 or 2. In
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addition attribute structype is denoted as type attribute in this thesis. It holds,

((mκ.structype, i), (mλ.structype, j)) ∈ S
⇔

((mκ.type, i) reachable from (mλ.type, j))

∨ ((mκ.type, ?) reachable from (mλ.type, j))

∨ ((mκ.type, i) reachable from (mλ.type, ?))

∨ ((mκ.type, ?) reachable from (mλ.type, ?)) . (B.7)

Next, Eq. (B.1) will be rewritten step–by–step. The term (†) reads as follows in the
notation of this thesis,

∃
x∈{x∈D∪B|(mµ∈D?(x))∨(mµ=x)}

x = mλ.childj . (B.8)

This can be rewritten to,

∃
x∈D∪B

(
(mµ ∈ D?(x)) ∨ (mµ = x)

)
∧ (x = mλ.childj), (B.9)

because the term inside the quantifier is false for all elements of D ∪ B that are not
part of the original set. This is equivalent to,[

mµ ∈ D?(mλ.childj) ∪ {mλ.childj}
]
⇔ mµ ∈ Dj(mλ), (B.10)

where Dj(x) is defined according to Eq. (2.2).

In short, Eq. (B.1) can be denoted as,

∀
mµ∈M

∀
mκ,mλ∈des(mµ)R

f(mκ,mλ,mµ), (B.11)

where f(mκ,mλ,mµ) symbolizes the rest of the equation. Using Eq. (B.5) this can be
rewritten to,

∀
mµ∈D

∀
mκ,mλ∈{x∈D∪B|mµ∈D?(x)}

f(mκ,mλ,mµ) (B.12)

⇔ ∀
mµ∈M

∀
mκ,mλ∈D∪B

mµ ∈ (D?(mκ) ∩D?(mλ)) ∨ f(mκ,mλ,mµ) (B.13)

⇔ ∀
mκ,mλ∈D∪B

∀
mµ∈D?(mκ)∩D?(mλ)

f(mκ,mλ,mµ) (B.14)

⇔ ∀
mκ,mλ∈D∪B

∃
mµ∈D?(mκ)∩D?(mλ)

f(mκ,mλ,mµ) (B.15)
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Substituting f(mκ,mλ,mµ) by Eq. (B.7) yields,

∀
mκ,mλ∈D∪B

∃
mµ∈D?(mκ)∩D?(mλ)

∀
i,j∈{1,2}(

((mκ.type, i) reachable from (mλ.type, j))

∨ ((mκ.type, ?) reachable from (mλ.type, j))

∨ ((mκ.type, i) reachable from (mλ.type, ?))

∨ ((mκ.type, ?) reachable from (mλ.type, ?))
)

∧mµ ∈ Dj(mλ)→ mµ ∈ Di(mκ) . (B.16)

Applying de Morgan’s law results in,

∀
mκ,mλ∈D∪B

∃
mµ∈D?(mκ)∩D?(mλ)

∃
i,j∈{1,2}(

((mκ.type, i) reachable from (mλ.type, j))

∨ ((mκ.type, ?) reachable from (mλ.type, j))

∨ ((mκ.type, i) reachable from (mλ.type, ?))

∨ ((mκ.type, ?) reachable from (mλ.type, ?))
)

∧mµ ∈ Dj(mλ) ∧mµ ∈ Di(mκ) . (B.17)

This is equivalent to,

∀
mκ,mλ∈D∪B

∃
mµ∈D?(mκ)∩D?(mλ)(

∃
i,j∈{1,2}

((mκ.type, i) reachable from (mλ.type, j)) ∧mµ ∈ Dj(mλ) ∩Di(mκ)
)

∨
(
∃

i,j∈{1,2}
((mκ.type, ?) reachable from (mλ.type, j)) ∧mµ ∈ Dj(mλ) ∩Di(mκ)

)
∨
(
∃

i,j∈{1,2}
((mκ.type, i) reachable from (mλ.type, ?)) ∧mµ ∈ Dj(mλ) ∩Di(mκ)

)
∨
(
∃

i,j∈{1,2}
((mκ.type, ?) reachable from (mλ.type, ?)) ∧mµ ∈ Dj(mλ) ∩Di(mκ)

)
.

(B.18)
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B. Equivalence of Conflict Resolution Techniques for Building Block Analysis

This can be further rewritten using

∃
i∈{1,2}

mµ ∈ Dj(mλ) ∩Di(mκ)

⇔mµ ∈
(
Dj(mλ) ∩D1(mκ)

)
∨mµ ∈

(
Dj(mλ) ∩D2(mκ)

)
⇔mµ ∈ Dj(mλ) ∩

(
D1(mκ) ∪D2(mκ)

)
⇔mµ ∈ Dj(mλ) ∩D?(mκ)

(B.19)

and

∃
j∈{1,2}

mµ ∈ Dj(mλ) ∩Di(mκ)⇔ mµ ∈ D?(mλ) ∩Di(mκ) , (B.20)

yielding

∀
mκ,mλ∈D∪B

∃
mµ∈D?(mκ)∩D?(mλ)(

∃
i,j∈{1,2}

((mκ.type, i) reachable from (mλ.type, j)) ∧mµ ∈ Dj(mλ) ∩Di(mκ)
)

∨
(
∃

j∈{1,2}
((mκ.type, ?) reachable from (mλ.type, j)) ∧mµ ∈ Dj(mλ) ∩D?(mκ)

)
∨
(
∃

i∈{1,2}
((mκ.type, i) reachable from (mλ.type, ?)) ∧mµ ∈ D?(mλ) ∩Di(mκ)

)
∨
(

((mκ.type, ?) reachable from (mλ.type, ?)) ∧mµ ∈ D?(mλ) ∩D?(mκ)
)

(B.21)

This can be simplified to,

∀
mκ,mλ∈D∪B

(
∃

i,j∈{1,2,?}
((mκ.type, i) reachable from (mλ.type, j))

∧ ∃
mµ∈D?(mκ)∩D?(mλ)

mµ ∈ Dj(mλ) ∩Di(mκ)
)
. (B.22)

The last condition says that the cut set must not be empty. This allows to simplify
Eq. (B.22) to,

∀
mκ,mλ∈D∪B

(
∃

i,j∈{1,2,?}
((mκ.type, i) reachable from (mλ.type, j))

∧Dj(mλ) ∩Di(mκ) 6= ∅
)
. (B.23)

This matches Eq. (2.6) for x1 = mκ and x2 = mλ.

140



List of Figures

1.1. Requirements for analog design automation as formulated by the ITRS 1
1.2. Overview of the proposed method. . . . . . . . . . . . . . . . . . . . . . 5

2.1. Library of CMOS building blocks (Massier 2010, Fig. 3.2). . . . . . . . 8
2.2. Building block analysis algorithm according to Massier (2010). . . . . . 9
2.3. Dominance graph GD for the library shown in Fig. 2.1 (Massier 2010,

Fig. 4.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4. Examples of signal flow graphs. (a) General signal flow graph. (b)

Linear signal flow graph. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1. Generic building block types ((a) to (c)) and corresponding exam-
ples ((d) to (f)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Building block library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Compound gate (Weste & Harris 2005, Fig. 1.18) with recognized build-

ing blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4. Dominance graph for the building block library from Fig. 3.2. . . . . . 28
3.5. Data structures representing a circuit. . . . . . . . . . . . . . . . . . . . 29
3.6. Enhanced building block analysis algorithm. . . . . . . . . . . . . . . . 30
3.7. Algorithm to find pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8. Algorithm to recognize arrays. . . . . . . . . . . . . . . . . . . . . . . . 37
3.9. Examples for Γijst3

(x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.10. Examples for two valid stack chains sc1
4 and sc2

4 (a), an invalid stack
chain sc3

4 (b) as well as the corresponding building block hierarchy (c). 39
3.11. Algorithm to recognize chains. . . . . . . . . . . . . . . . . . . . . . . . 41
3.12. Time needed for building block analysis with respect to circuit size. . . 48
3.13. Number of recognized building blocks with respect to circuit size. . . . 49
3.14. Circuit 5: A modified symmetrical OTA (Sansen 2007, Ohri & Callahan

1979, Roh et al. 2008) and the recognized building blocks. . . . . . . . 50
3.15. Circuit 6: Complementary folded cascode amplifier (Vallee & Masry

1994) and recognized building blocks (a) and recognized folded cascode
pair (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.16. Result of building block analysis for a latch (Weste & Harris 2005). . . 51
3.17. Result of building block analysis for a charge–pump (Rhee 1999). . . . 52
3.18. Result of building block analysis for a voltage–controlled ring oscillator

(Retdian et al. 2002, Fig. 8). . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1. Flow of structural signal path analysis method. . . . . . . . . . . . . . 53

141



List of Figures

4.2. Time needed for ESFG generation with respect to circuit size. . . . . . 58

4.3. Number of generated edges with respect to circuit size (a) and number
of top building blocks (b). . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4. ESFG for Circuit 5 from Fig. 3.14 (analog): (a) Schematic with building
blocks. (b) Generated ESFG. (c) Attributes of edges. . . . . . . . . . . 61

4.5. ESFG of the digital latch from Fig. 3.16. . . . . . . . . . . . . . . . . . 61

4.6. ESFG of the charge–pump from Fig. 3.17 (mixed–signal). . . . . . . . . 62

4.7. ESFG of the voltage–controlled ring oscillator from Fig. 3.18 (mixed–
signal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8. Resulting digital sub–ESFG GE,D, interface sub–ESFG GE,I and analog
sub–ESFG GE,A of the ESFG (Fig. 4.6) of the charge–pump (Fig. 3.17). 66

4.9. Resulting digital sub–ESFG GE,D, interface sub–ESFG GE,I and analog
sub–ESFG GE,A of the ESFG (Fig. 4.6) of the voltage–controlled ring
oscillator (Fig. 3.18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10. Algorithm for automatic identification of core and bias part. . . . . . . 68

4.11. Core ESFG GE,C and bias ESFG GE,B for the OTA circuit from
Fig. 3.14 with the ESFG shown in Fig. 4.4. . . . . . . . . . . . . . . . . 69

4.12. Time needed for automatic identification of core and bias part with
respect to circuit size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.13. Size of core and bias part with respect to circuit size. . . . . . . . . . . 71

4.14. Algorithm for pass gate direction assignment. . . . . . . . . . . . . . . 72

4.15. ESFG of the latch circuit from Fig. 3.16 with assigned pass gate directions. 73

4.16. Algorithm for feedback analysis. . . . . . . . . . . . . . . . . . . . . . . 75

4.17. Temporal ESFG of the latch circuit from Fig. 3.16. . . . . . . . . . . . 76

4.18. Time needed for feedback analysis with respect to circuit size |D| and
size of the ESFG |NGE,D | . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1. Four cases of signal paths and the associated behavioral symmetry prob-
lem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2. Example for a circuit with multiple, overlapping signal paths (a) and
nested signal and feedback paths (b). . . . . . . . . . . . . . . . . . . . 82

5.3. Symmetry equivalent circuit for the circuit from Fig. 5.2b. . . . . . . . 83

5.4. NCFGs for the circuit from Fig. 3.14. . . . . . . . . . . . . . . . . . . . 84

5.5. Isomorphism of two sub–NCFGs (Definition 5.4). . . . . . . . . . . . . 86

5.6. Subgraphs of the NCFGs from Fig. 5.4. . . . . . . . . . . . . . . . . . . 88

5.7. Overall symmetry computation method. . . . . . . . . . . . . . . . . . 89

5.8. Algorithm to compute symmetries within ESFG G using signal paths P . 90

5.9. Algorithm for symmetry equivalence transformation . . . . . . . . . . . 92

5.10. Symmetry equivalent ESFG of Fig. 4.11. . . . . . . . . . . . . . . . . . 92

5.11. Circuit 5: Results of symmetry computation. . . . . . . . . . . . . . . . 95

5.12. Time needed for the symmetry computation of approach CP with re-
spect to circuit size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

142



List of Figures

5.13. Circuit 3 (Johns & Martin 1997, Cadence Design Systems 2010): Re-
sults of symmetry computation using method CP. . . . . . . . . . . . . 98

5.14. Circuit 4 (Lee 2004): Results of symmetry computation using method
CP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.15. Circuit 6: Results of symmetry computation using method CP. . . . . . 100

6.1. Flow of input data generation . . . . . . . . . . . . . . . . . . . . . . . 102
6.2. Usage of tristate control block to implement a tristate buffer (Weste &

Harris 2005, Fig 12.22). . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3. Computation of the logic function of the compound gate (Weste &

Harris 2005, Fig. 1.18) from Fig. 3.3 . . . . . . . . . . . . . . . . . . . 105
6.4. Algorithm to compute the triggered logic function. . . . . . . . . . . . 108

7.1. Flow of constraint generation method. . . . . . . . . . . . . . . . . . . 114
7.2. Different classes of generic constraints. . . . . . . . . . . . . . . . . . . 114
7.3. Details of the constraint generation process . . . . . . . . . . . . . . . . 115
7.4. Generic constraints generated for the example circuit from Fig. 3.14. . . 119

A.1. Union graph GΣ = G1 ∪G2. . . . . . . . . . . . . . . . . . . . . . . . . 134
A.2. Subgraph G′ induced by node set {2, 3, 4} from Graph G. . . . . . . . . 135
A.3. Subgraph G′ spanned by edge set {a, b, c, d, e} from Graph G. . . . . . 135
A.4. Two isomorphic graphs G and H. . . . . . . . . . . . . . . . . . . . . . 136

143



List of Figures

144



List of Tables

2.1. Flow of the recognition algorithm for a symmetrical OTA (Sansen 2007,
Slide 0711). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Overview of constraint generation approaches for analog circuits . . . . 18

3.1. Flow of the enhanced algorithm for a symmetrical OTA (Sansen 2007,
Silde 0711). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. Test cases for building block analysis. . . . . . . . . . . . . . . . . . . . 47

4.1. Library of building blocks and corresponding ESFG. . . . . . . . . . . . 57
4.2. Sub-ESFGs for circuit terminals. . . . . . . . . . . . . . . . . . . . . . 58
4.3. Mapping from the structural attribute of an edge e to the corresponding

generic constraint type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1. Overview of symmetry computation results for different circuits. . . . . 96

6.1. Operators for four valued logic. . . . . . . . . . . . . . . . . . . . . . . 102
6.2. Library of building blocks and corresponding logic functions. . . . . . . 103
6.3. Results for different standard cell libraries. . . . . . . . . . . . . . . . 110

7.1. Generic constraints generated depending on the building block type. . . 118
7.2. Sizing constraints generated from generic constraints. . . . . . . . . . . 120
7.3. Placement constraints generated from generic constraints. . . . . . . . . 122
7.4. Number of generated generic constraints for the analog test cases from

Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5. Results of sizing experiments. . . . . . . . . . . . . . . . . . . . . . . . 125
7.6. Results of placement experiments. . . . . . . . . . . . . . . . . . . . . . 128

145



List of Tables

146



Glossary

Symbols

α attribute function of a graph. 54, 55, 74
αC component attribute function of a graph. 55, 61, 72, 93, 94
αS structural attribute function of a graph. 55, 61, 63, 64, 85, 86
ϕ incidence function of a graph. 54, 55, 63, 65, 69, 74, 133–135
ϕ− incidence function of a graph (start node only). 54, 64, 72, 75, 85, 87
ϕ+ incidence function of a graph (end node only). 54, 63, 64, 72, 75, 85, 87
τ time function of a temporal ESFG. 74, 75
4tcm four–transistor current mirror. 9, 25, 116

A

attribute .
childi i-th child of a building block. 8, 10, 12, 25, 27, 29, 37, 38, 44, 94, 137, 138
children set of all children of a building block. 12, 29, 94, 137
net connectivity function. 29, 31, 32, 36, 56, 57
parents set of all parents of a component. 29, 30, 43
pins set of pins of a component. 29, 55
subtype subtype of a component, e.g., nmos or pmos. 29, 31, 32
type type of a component, e.g., trans for a transistor. 13, 28–32, 36, 37, 41, 94,

138–140, 148

B

B set of Boolean numbers, i.e., B = {0, 1}. 31
B the set of all building blocks. 9, 29
Btop set of all building blocks without parents. 57
building block basic functional block of a circuit; formally, a number of devices with

a fixed topology (=connection). 7–9, 13, 14, 17–19, 21–23, 26–32, 40, 43, 47,
49, 53, 56, 57, 59, 60, 93–95, 101–104, 106, 113, 115, 116, 119, 126, 142, 147,
148, 150

analog a building block which only occurs in analog circuit parts. 7, 51, 64, 65,
67

analysis a method to recognize building blocks based on the netlist of a circuit.
5, 7, 8, 21, 30, 43, 48, 67, 101, 102, 116, 131, 137

digital a building block which only occurs in digital circuit parts. 19, 43, 51, 64
library . 8, 21, 30

147



Glossary

type See attribute type. 30, 94

C

cc cross–coupled pair. 8, 25, 50, 58, 60, 61, 116
ccm cascode current mirror. 8, 9, 25, 27, 49, 50, 94, 116
cml current mirror load. 8, 9, 25
component a device or building block. 28, 29, 33, 40, 47, 147
constraint programming general term for methods to solve CSP. 63, 96
cp cascode pair. 8, 9, 14, 26, 47
CSP constraint satisfaction problem: consists of linear and specific non–linear equal-

ities and inequalities for integer variables and predicate logic expressions for
Boolean variables. 63, 67, 95, 148

cta capacitor transistor array. 23, 30, 36, 57

D

D set of all devices belonging to a building block. 9, 12–14, 137–140
D the set of all devices of a circuit. 9, 29
device the most basic elements of a circuit such as transistors, resistors, etc.. 21, 22,

28, 29, 43, 94, 147, 148, 150
dn drain pin of a MOSFET. 29
dp differential pair. 8, 9, 12–14, 25, 26, 43, 47, 49–51, 58, 60, 61, 67, 116, 124
ds differential stage. 9, 14, 26, 43, 49, 57
dta diode transistor array. 22, 23, 25, 30, 31, 36, 43, 57
dtrans degenerated transistor. 23

E

E set of edges of a graph. 54, 55, 59, 60, 63, 65, 67–72, 74, 75, 85, 87, 95, 133, 135
ESFG enhanced structural signal flow graph: a graph representing structure and

qualitative behavior of the circuit. 53, 54, 56–63, 65–70, 72–76, 78, 79, 84–87,
89–93, 101, 102, 106, 110, 142, 145, 147, 149, 150

F

fc folded cascode pair. 25, 27, 49, 50, 141

G

generic constraint describes circuit constraint in terms of generic conditions like
symmetry, matching, etc.. 113

gs Gilbert stack. 26, 43, 57
gt gate pin of a MOSFET. 29

I

148



Glossary

iwcm improved wilson current mirror. 9, 26, 116

K

K the set of all terminals of a circuit. 54, 55, 57, 59, 63, 67, 68, 70, 71, 77, 79, 87
Ki the set of all input terminals of a circuit. 54, 55, 83, 90
Ko the set of all output terminals of a circuit. 54, 55, 83, 90

L

la logic array. 22, 25–27, 36, 103, 104, 106
lg logic gate. 23, 25–28, 30, 51, 58, 60, 71, 103, 104, 106, 111
ls level shifter. 8, 9, 25–27, 43, 49, 58, 116

N

N set of all nets. 29
N set of nodes of a graph. 54, 59, 63–65, 67–70, 74–78, 85, 87, 133–135, 142
NCFG network component of an ESFG: a special ESFG that represents the influence

of one input to one output. 84–88, 91, 95, 142, see ESFG
net connects one or more components. 28, 29, 47, 54, 149
nta normal transistor array. 22, 23, 25–27, 30, 31, 35, 36, 39, 43, 57, 58, 64, 71–73

P

pg pass gate. 23, 25, 26, 28, 51, 58, 60, 64, 71–73, 103, 104, 106, 111, 131
placement constraint constraint for automatic placement. 113
PBsym behavioral symmetry problem. 80–82, 84
PEsym symmetry problem for ESFGs. 87, 90

S

S set of symmetric device pairs. 93–95
sc stack chain. 25–27, 39, 103, 104, 106
sc source pin of a MOSFET. 29
scm simple current mirror. 8, 9, 12–14, 21, 22, 25, 26, 28, 31, 32, 43, 49–52, 55, 60,

61, 65, 86, 116, 121, 123, 124
signal path a signal path describes the transfer behavior between a single input

terminal or a symmetrical input terminal pair and a single output terminal or
a symmetrical output terminal pair. 79–82, 142

sizing constraint constraint for automatic sizing. 113
st stack. 23, 25–28, 38, 39, 47, 51
structural signal path analysis an analysis method based on structural and qual-

itative behavioral considerations. 5, 27, 53, 101, 131, 141

T

149



Glossary

TB Set of all building block types. 29
tbb tristate base block. 26
tcb tristate control block. 23, 26, 58, 103, 104
TD Set of all device types. 28
temporal ESFG a ESFG with additional time concept. 74, 101, 102, 106, 147
terminal external connection of a circuit. 54, 149

U

uta dummy transistor array. 23, 30, 36, 58

V

vrI voltage reference I. 8, 9, 25
vrII voltage reference II. 8, 9, 25, 26

W

wcm wilson current mirror. 9, 26, 116
wscm wide–swing cascode current mirror. 9, 25, 27, 94, 116
wsm wide–swing current mirror. 25, 26, 116

150



Bibliography

Accellera (2000): Advanced Library Format (ALF) Reference Manual, version 2.0,
Los Gatos, CA, USA.

Aloul, Fadi, Ramani, Arathi, Markov, Igor L. & Sakallah, Karem (2002): Solving diffi-
cult SAT instances in the presence of symmetry, ACM/IEEE Design Automation
Conference (DAC), DAC ’02, ACM, New York, NY, USA, pp. 731–736.

Antreich, Kurt, Eckmueller, J., Graeb, Helmut, Pronath, Michael, Schenkel, Frank,
Schwencker, R. & Zizala, S. (2000): WiCkeD: Analog Circuit Synthesis Incorpo-
rating Mismatch, IEEE Custom Integrated Circuits Conference (CICC), pp. 511–
514.

Ari, Mordechai Ben, Pnueli, Amir & Manna, Zohar (1983): The temporal logic of
branching time, Acta Informatica 20: 207–226: 10.1007/BF01257083.

Arsintescu, Bogdan G. (1996): A Method for Analog Circuits Visualization, IEEE
International Conference on Computer Design (ICCD), pp. 454–459.

Arsintescu, Bogdan G., Charbon, Edoardo, Malavasi, Enrico & Kao, William (1998):
AC constraint transformation for top-down analog design, Circuits and Systems,
1998. ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on,
Bd. 6, pp. 126–130vol.6.

Arsintescu, Bogdan G. & Otten, Ralph H. J. M. (1998): Constraints space man-
agement for the layout of analog IC’s, Design, Automation and Test in Europe,
1998., Proceedings, pp. 971–972.

Arsintescu, Bogdan G. & Spanoche, S.A. (1996): Global stacking for analog circuits,
Design Automation Conference, 1996, with EURO-VHDL ’96 and Exhibition,
Proceedings EURO-DAC ’96, European, pp. 392–397.

Baba-ali, A.R. & Farah, A. (1996): An efficient algorithm for signal flow determination
in digital CMOS VLSI, European Design and Test Conference, 1996. ED TC 96.
Proceedings, pp. 288–293.

Barke, Erich (1984): A Network Comparison Algorithm for Layout Verification of
Integrated Circuits, Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on 3(2): 135–141.

151



Bibliography

Bhattacharya, Sambuddha, Jangkrajarng, Nuttorn, Hartono, Roy & Shi, C-J. Richard
(2004): Hierarchical Extraction and Verification of Symmetry Constraints for
Analog Layout Automation, Asia and South Pacific Design Automation Confer-
ence, pp. 400–405.

Blaauw, David T., Saab, Daniel G., Long, J. & Abraham, Jacob A. (1990): Deriva-
tion of signal flow for switch-level simulation, ACM/IEEE Design Automation
Conference (DAC), pp. 301–305.

Boehner, Michael (1988): LOGEX — an automatic logic extractor from transistor to
gate level for CMOS technology, 25th ACM/IEEE Design Automation Conference
DAC-88, pp. 517–522.

Bryant, Randal E. (1986): Graph-Based Algorithms for Boolean Function Manipula-
tion, IEEE Transactions on Computers 35(8): 677–691.

Bryant, Randal E. (1991): Extraction of gate level models from transistor circuits by
four-valued symbolic analysis, Computer-Aided Design, 1991. ICCAD-91. Digest
of Technical Papers., 1991 IEEE International Conference on, pp. 350–353.

Cadence Design Systems (2008): Virtuoso Custom Design Platform XL Datasheet:
Viewed 27 June 2012, http://www.cadence.com/products/cic/schematic_

editor/pages/resources.aspx.

Cadence Design Systems (2010): Functional verification of a differential operational
amplifier: http://w2.cadence.com/whitepapers/FVofDiffOpAmp.pdf.

Chai, Donald (2009): Circuit Symmetries in Synthesis and Verification, PhD thesis,
EECS Department, University of California, Berkeley.

Charbon, E., Malavasi, E. & Sangiovanni-Vincentelli, A. (1993): Generalized con-
straint generation for analog circuit design, IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), pp. 408–414.

Chen, D. J. & Sheu, B. J. (1992): Generalised approach to automatic custom layout
of analogue ICs, Circuits, Devices and Systems, IEE Proceedings G 139(4): 481–
490.

Choudhury, U. & Sangiovanni-Vincentelli, A. (1993): Automatic generation of par-
asitic constraints for performance-constrained physical design of analog circuits,
IEEE/ACM International Conference on Computer-Aided Design and Manufac-
ture of Electronic Components,, pp. 208–224.

Conte, D., Foggia, P., Sansone, C. & Vento, M. (2004): Thirty Years of Graph
Matching in Pattern Recognition, International Journal of Pattern Recognition
and Artificial Intelligence 18(03): 265–298.

152

http://www.cadence.com/products/cic/schematic_editor/pages/resources.aspx
http://www.cadence.com/products/cic/schematic_editor/pages/resources.aspx


Bibliography

Dagenais, Michel R. (1991): Efficient algorithmic decomposition of transistor groups
into series, bridge, and parallel combinations, Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on 38(6): 569–581.

de Kleer, Johan (1984): How circuits work, Artificial Intelligence 24: 205–280.

Ebeling, Carl (1988): GeminiII: A Second Generation Layout Validation Pro-
gram, IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), pp. 322–325.
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Eick, Michael & Graeb, Helmut (2012c): MARS: Matching-driven Analog Sizing,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
31(8): 1145–1158.

Eick, Michael & Graeb, Helmut (2013): Towards Automatic Structural Analysis of
Mixed-Signal Circuits, in M. Fakhfakh, E. Tlelo-Cuautle & R. Castro-Lopez
(eds), Analog/RF and Mixed-Signal Circuit Systematic Design, Springer, Kapi-
tel 1: To be published.

153



Bibliography

Eick, Michael, Lu, Kun & Graeb, Helmut (2010): Sizing of Analog Integrated Circuits
using Symmetry Recognition, Technischer Bericht TUM-LEA-10-1, Lehrstuhl für
Entwurfsautomatisierung.

Eick, Michael, Sridharan, Devanathan & Graeb, Helmut (2013): Symmetry Compu-
tation for Hierarchical Analog Designs: Frontiers in Analog CAD (FAC), To be
published.

Eick, Michael, Strasser, Martin, Graeb, Helmut & Schlichtmann, Ulf (2009): Au-
tomatische Generierung hierarchischer Platzierungsregeln für analoge integrierte
Schaltungen, GMM/GI/ITG-Fachtagung Zuverlässigkeit und Entwurf, VDE Ver-
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