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Introduction and Objectives 
This course provides an introductory text on testability of Digital ASIC devices. The aim 
of the course is to introduce the student to various techniques which are designed to 
reduce the amount of input test patterns required to ensure that an acceptable level of 
fault coverage has been obtained.  

Testability In Digital Systems 
Being able to design a workable system solution for a given problem is only half the 
battle unfortunately. We must also be able to test the system to a degree which ensures 
that we can have a high confidence level that it is fully functional. This is generally not a 
straightforward task, in very small scale digital systems, we can test exhaustively, that is 
to say, we can exercise the system over its full range of operating conditions. In a larger 
scale system, it is no longer possible to do this and therefore we must look at other 
strategies to ensure that the system will be properly tested.  

When testing a digital logic device, we apply a stimulus to the inputs of the device and 
check its response to establish that it is performing correctly. The input stimulus is 
referred to as a test pattern.  

In general, we observe the response of the device at its normal output pins, however, it 
may be that the device is specially configured during the test, to permit us to observe 
some internal nodes which generally would not be accessible to the user.  

The response of the device is evaluated by comparing it to an expected response which 
may be generated by measuring the response of a known good device, or by simulation 
on the computer.  

If the device under test (DUT) passes the test, we cannot say categorically that it is a 
``good'' device.  

The only conclusion that we can draw from the device passing a test, is that the device 
does not contain any of the faults for which it was tested. It is important to grasp this 
point, a device may contain a huge number of potential faults, some of which may even 
mask each other under specified operating conditions. The designer can only be sure that 
the device is 100%good if it has been 100%tested, this is rarely possible in real life 
systems.  

Faults 



What type of faults are we trying to detect ? We are starting with the assumption that 
logically, the system performs its desired function, and that any faults occuring will be 
due to electrical problems associated with one or more of its component parts.  

Two key concepts are of interest here, these are :  

• Controllability  
• Observability  

During the design of a system, the designer must ensure that the test engineers have the 
means to set or reset key nodes in the system, that is, to control them. Equally as 
important is the requirement that the response to this control will be observable, that is, 
that we will be able to see clearly the effects of the test patterns applied.  

1. Controllability - Being able to set up known internal states.  
2. Combinatorial Testability - Being able to generate all states to fully exercise all 

combinations of circuit states.  
3. Observability - Being able to observe the effects of a state change as it occurs 

(preferably at the system primary outputs).  

Test Vector Generation 

In VLSI circuits, we have a high ratio of logic gates to pins on the device, there is 
generally no way of accessing most of the logic, so we cannot directly probe the internals 
of the device. Because of this problem, we need a way of generating tests which, when 
applied to the inputs of a circuit, give a set of signals which indicate whether or not the 
device is good or faulty. The set of stimulus input and expected output pattern is called a 
``Test Vector''. The test vectors distinguish between the good machine and the faulted 
machine. Figure 1 shows a digital device, as we can see, there is only access to the 
primary inputs and outputs, and therefore the device must be tested using only these 
ports.  

Combinational Logic Test 

If the combinational logic block contains no redundant logic, 
then the device may be tested by applying all possible 2^N possible input patterns, Where 
N is the number of inputs. This is termed ``Exhaustive Testing'', and is satisfactory for 
small circuits but rapidly becomes unweildy as the number of inputs grows. Assuming a 
tester capable of applying a test pattern every 100ns. Then we can calculate the test time 
as shown in table 1.  



 

Looking at table 1, it is apparant that the exhaustive test strategy gets completely out of 
hand quite quickly, and therefore it is only of use where there are a very small number of 
inputs. This is also a very inefficient test strategy, most of the test patterns are actually 
redundant. We need a method of determining which test patterns are significant, in order 
to obtain a minimum set of patterns.  

Various methods are listed:  

1. Sensitised Path Method.  
2. D-Algorithm.  
3. Critical Path (L.A.S.A.R)  
4. P.O.D.E.M  
5. Boolean Differences  

Currently, the D-Algorithm and its descendents, P.O.D.E.M and L.A.S.A.R are the most 
widely used methods.  



 

Fault Models 
A Fault Model is a description, at the digital logic level, of the effects of some fault or 
combination of faults in the underlying circuitry. The use of fault models has some 
advantages and also some disadvantages.  

• Advantages  
o Technology independant.  
o Works quite well in practice.  

• Disadvantages  
o May fail to identify certain process specific faults, for instance CMOS 

floating gates.  
o Detects static faults only.  



Stuck –at faults:  

Example 

Single Fault.  

Consider an N-Input AND gate. For the STUCK-AT fault model, there are 3^(N+1) - 1 
different cases of single and multiple faults, with the single fault assumption, there are 
only 2(N+1) stuck at faults.  

 

AND Gate 

 

For the AND gate, any input SA0 has the same effect as the output SA0.  

 

Output SA0 is said to COVER all of the input SA0 faults. Similarly, any input SA1 
COVERS the fault output SA1.  

This means that :  



1. No Input SA0 faults need be included in the fault model.  
2. The Output SA1 fault need not be covered either.  

So, the AND gate fault model has N+1 faults, these are listed in table 2  

Therefore, with N+1 faults, N+1 test vectors can completely test an N input AND gate. 
The N+1 faults COVER all the 2(N+1) single SA faults. It can be shown that they cover 
all 3^(N+1) - 1 multiple SA faults as well.  

OR Gate 

With an OR gate, the Output SA1 covers all Input SA1 faults. Any Input covers Output 
SA0. This is shown in table 3.  

 

Inverter  

For an inverter, the Output SA1 covers Input SA0 and the Input SA0 covers Output SA1. 
This is shown in table 4  

 



Special Circuits 

Some special circuits can easily have test vector sets generated for them which model 
both single and multiple faults. Most such circuits are generally trivial, however, the 2 
input AND-OR circuit is one which is of considerable practical value, it is very common 
in PLA structures.  

Such a circuit is shown in figure 4.  

 

The circuit of figure 4 realises the Boolean function: 

 

Every product term in a 2 level AND-OR circuit is a prime implicant of the function 
realised by the circuit. These prime implicants may be expressed using the CUBE 
notation,which is simply an alternative way of expressing logic functions (the cubes 
represent the vertices of a hypercube in a Boolean statespace).  

 

So the function may also be realised as:  

Z = {(0x0x),(xx01),(11x1),(x110)}  



Consider now, the set of faults {(1/1),(2/1),(11/0)}  

This completely covers all other faults in Gate G1. If (11/0) occurs, the cube {(0x0x)} 
disappears completely from Z leaving Z' = {(x0x1),(1x11),(x110)}  

A test vector for this fault is any input pattern which causes the two functions Z and Z' to 
differ. Since the 0-cubes (minterms) of Z' must be a subset of those in Z, a test vector for 
11/0 wil be any 0-cube in Z and not in Z'.  

• T(11/0) = {Z} - {Z'}  
• = {(0000),(0001),(0010),(0011)} - {(x0x1),(1x11),(x110)}  
• = {(0000),(0010)}  

In general, for any AND-gate's output SA0, the test set may be found by taking the 
difference between the dropped minterms and the other minterms. This is most easily 
done by expanding the dropped prime implicants to minterms and comparing them with 
the other prome implicants.  

Testing AND gate output SA0 also tests for the appropriate OR gate output SA0 and any 
inverter output SA0 as well.  

The test sets for the other AND gate outputs SA0 are :  

• T(12/0) = {(1001)}  
• T(13/0) = {(1111)}  
• T(14/0) = {(0110),(1110)}  

Testing for AND gate inputs SA1  

Consider 1/1. This modifies Z to  

Z'' = {(x0xx),(x0x1),(x110)}  

As before, the set of test vectors for this fault will be all those minterms in Z and not in 
Z'' and vice versa, i.e., the set difference.  

• T(1/1) = {Z} - {Z''}  
• = {(00xx),(x0x1),(1x11),(x110)}-{(x0xx),(x0x1),(1x11),(x110)}  
• = {(10xx)} - {(x0x1),(1x11),(x110)}  

Expand {(1x0x)} to minterms and take the set difference  

= {(1000),(1010)}  

Similarly, the test sets for some of the other AND gate inputs SA1 are  



• T(2/1)={(0110),(0101),(0111)}  
• T(3/1)={(0101),(0111),(1101)}  

Notice that the vectors (0101) and (0111) serve as tests for both 2/1 and 3/1.  

Testing an AND gate input SA1 also tests for the OR gate output SA1, and any inverter 
output SA1 which lies in the path to the AND gate input. Testing the AND gate output 
SA1 and each input SA0 covers the AND gate. However, it also covers both the OR gate 
and the inverters. Thus, by testing only the AND gate we perform a complete test for all 
the faults in the circuit.  



The Sensitized Path Method 
This is a heuristic approach to generating tests for general combinational logic networks. 
The circuit is assumed to have only a single fault in it.  

The sensitized path method consists of two parts  

1. The creation of a SENSITIZED PATH from the fault to the primary output.  
2. The JUSTIFICATION (or CONSISTENCY) operation, where the assignments 

made to gate inputs on the sensitized path are traced back to the primary inputs.  

 

Figure 5 is an example network with an assumed fault 7/0. The sensitized path method 
will be used to generate a test for this fault.  

PART 1. Create the sensitized path. This is done by forcing the complement of the fault 
on line 7 and propagating this value to the output.  

 

Step 1 - Create conditions for fault to be detected on line 7, this can be achieved by 
applying the test vector for an AND gate output SA0 - net 1 = 1 and net 2 = 1. The value 
shown on net 7 in the table is that which it would carry in the absence of a fault.  



Step 2 - We need to propagate the fault through G5, this may be done by setting net 10 = 
0.  

Step 3 - We now need to propagate through G7, this can be achieved by setting net 14 = 
1.  

In general the fault signal is propagated through each gate by picking a combination of 
the other inputs which cause the output to be solely dependent on the faulty input.  

The sensitization stage is now complete because the fault has been propagated to a 
primary input  

PART 2. Justify the assignment of values to the outputs of internal gates made in part 1 
by working backwards towards the primary inputs.  

Interior nets 10 and 14 have had values assigned to them, corresponding to the outputs of 
gates G6 and G2.  

First we notice that net 10 having a value applied to it implies the values of nets 8, 11 and 
12, so these are updated in step 4.  

 

Step 5 - Now we try to justify the assignment of a logic 1 to net 14 (output of G6). Notice 
that net 12 = 1 will force net 14 = 1, so this condition is automatically justified. 
Therefore, assign an X (don t care) to net 9.  

 

In justifying nets 8 and 9 we have created two new gates to justify, i.e., G2 and G3.  

Step 6 - G3 is easy to justify, since it is X nets 5 and 6 can also be X.  



 

Step 7 - G2 may be justified by either net 3 = 0 and net 4 = X or net 3 = X and net 4 = 0, 
so finally we have.  

 

The test generation is now finished because all the primary inputs have been assigned 
values. T(7/0) = {(110XXX),(11X0XX)}.  

Problems with the Sensitized Path Method 

1. Making Choices  
2. Reconvergent Fan-out Paths. 

Making Choices 

The sensitized path method attempts to drive a test to a single output. When the 
propagation routine reaches a net with fan-out it arbitrarily selects one path. Sometimes 
this blind choice of a path ignores easy solutions.  



 

The NAND gate G4 of figure 5 is easy to control, its input from G2 can be set to 1 by 
setting PI X5 to 0. This makes an easy path to propagate faults on G1 and other to its left 
to a primary output.  

On the other hand, gate G3 will be more difficult to control because its input (net 1) 
comes from other logic not directly connected to a primary input. Moreover, any test 
propagating through G3 must also propagate through other logic.  

The path through G4 is the obvious choice, but the sensitized path heuristic has no way of 
recognizing this and is just as likely to choose a path through G3.  

By preprocessing using the SCOAP algorithm, a hierarchy of suitable choices can be 
established.  

Reconvergent Fan-out Paths 

The sensitive path method is NOT guaranteed to find a test for a fault, even where such a 
test does exist. The principle cause of this problem is the presence of reconvergent fan-
out paths in a circuit.  

Consider the circuit of figure 6 with fault 6/0. The path sensitization procedure is:  

Step 1 - Create conditions to detect fault on net 6.  

Step 2 - Try propagating through gate G5 by assigning 0 to net 1.  



Step 3 - Nets 1 and 3 are both 0 from steps 1 and 2, => net 5 = 1. 

 

 

Step 4 - Nets 5 = 1 from step 4, => net 8 = 0.  

Step 5 - Now propagate net 9 to the output by setting nets 8, 10, 11 = 0  



The path sensitization is now complete as the fault has been propagated to a primary 
output. Assignments to internal gate outputs must now be justified.  

G6 = 0 and G7 = 0 need to be justified. Start with G6 = 0.  

 

Step 6 - Net 6 is SA0, so net 4 = 1 will justify net 10 = 0.  

Step 7 - This implies G3 = 0, from net 2 = 0 and now net 4 = 1.  

However, this assignment is INCONSISTENT because net 3 = 0 and net 7 = 0 but also 
net 11 = 0 according to the table. This is not correct, as the values specified on nets 3 and 
7 should result in net 11 adopting a 1. The justification procedure has failed.  

On examination we can see that the problem arose because we assigned a 1 to net 4. 
However, this is an inevitable assignment given the path we are trying to sensitize.  

We could backtrack and try to sensitize a path through G6, but the same problem would 
arise. It appears that there is no test for 6/0. However, such a test does exist, it is T(6/0) = 
{(0000)}.  

Why does the sensitized path method fail to find this test ?  

If we examine (0000) we see that this vector sensitizes a path through both G5 and G6 
simultaneously. The problem with the sensitized path method is that it only ever attempts 
to sensitize a SINGLE path. For reconvergent fan-out networks this will usually cause 
problems during the justification stage.  

The problem arises because, having completed the sensitization, we must, during 
justification, trace back along the alternative path(s) to the position with the fault. This 
will require us to justify a gate one of whose inputs is faulty, which severely restricts our 
choice of inputs. Usually this leads to the type of difficulties encountered in this example.  



Redundancy and Undetectability 
If no test vector exists for a fault then that fault is UNDETECTABLE. Undetectable 
faults are usually caused by redundant logic in a circuit, usually gates inserted to remove 
hazard conditions.  

Figure 7 is an example of a circuit containing redundant logic which has an undetectable 
fault.  

 

Fault 3/1 is undetectable because in order to propagate it to net 6 we require X1 = 1 and 
X2 = 1 but X1 AND X2 = 0.  

Are undetectable faults a problem ? Yes, because they can MASK other faults.  

Example 

Fault Masking.  

(110) is a test for 1/0. However, if 3/1 is simultaneously present in the circuit, this test 
will fail.  

Undetectable faults arise from REDUNDANT logic. Consider the equation of the circuit 
shown above,  

Y = X1 AND X2. Satisfy yourself that this is so.  



The D-algorithm 
The D-algorithm is a modification of the sensitized path method. Unlike the latter it is 
guaranteed to find a test vector for a fault if one exists.  

The D-algorithm has been specified very formally, and is suitable for computer 
implementation. It is the most widely used test vector generator.  

The primary difference between the D-algorithm and the sensitized path approach is that 
the D-algorithm always attempts to sensitize every possible path to the primary outputs.  
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D-Notation 

This is a compact way of specifying how faults propagate through a circuit. D is a 
composite signal, it implies that in the good machine a 1 is to be found at the node 
holding D, whereas in the faulted machine a 0 is to be found at that node. Not(D) is 
analogously defined.  

 

``D'' stands for ``discrepancy signal''.  

Singular Cover 



The Singular Cover of a logic gate is a compact representation of its truth table. i.e., 2-
input AND gate.  

 

Each row of the singular cover is called a CUBE. The set of cubes which contain 0 as the 
output value is called the P0set. The set of cubes containing 1 as the output value is called 
the P1 set. For the AND gate:  

 

Another way of thinking of the singular cover of a function F - it is the union of the prime 
implicants of F and those of Not(F).  

Primitive D -Cubes of Failure (P.D.C.F.s) 

A Primitive D-Cube of Failure for a fault in a circuit is a set of inputs to the circuit which 
bring the fault to the circuit output..  

To generate the P.D.C.F. for a fault  

• Generate singular covers for the circuit in both its faulted and fault-free states.  

• Intersect the P0 cubes of the fault free cover with the F1 cubes of the faulted 
cover and intersect the P1 cubes with the F0 cubes.  

F1 and F0 play analogous roles in the faulted cover to P1 and P0 in the fault-free cover.  

Intersection is defined by intersecting each element of the cubes according to the 
following table.  



 

Note - D and Not(D) are only allowed on OUTPUT  pins for P.D.C.F. 
intersection. 

 Example 

Form the P.D.C.F.s for a 2-input AND gate where input 1 is SA0.  

We already have the singular cover for the fault-free AND gate, it is  

 

For the faulted AND gate 1/0 the cover is  

 

i.e., F1 is the empty set and F0 contains all input combinations  

 

Now, performing the intersections  



 

So the only P.D.C.F. for 1/0 is {(11D)}.  

Example 

Form the P.D.C.F.s for a 2-input AND gate where input 2 is SA1.  

For the faulted AND gate 2/1 the cover is:  

 

Intersecting  

 

The only P.D.C.F. for 2/1 is {(10 Not(D))}  

Propagation D-Cubes 

The propagation D-Cubes of a gate are those which cause the output of a gate to depend 
solely on one or more of its inputs (usually one). This allows a fault on this input to be 
propagated through the gate.  

The propagation D-cubes for a 2-input AND gate are  



 

To generate the propagation D-cubes, intersect region P0 of a gate's cover with region P1 
according to the following table  

 

In general it is possible to have up to 2^(2N-1) propagation D-cubes for an N-input gate, 
so normally only those cubes with a single D in the inputs are stored. Cubes with in the 
inputs are easily formed by complementing all the in a cube, and cubes with more than 
one D in the inputs can be formed by intersecting the covers.  

D-Intersection 

The D-Intersection is the method used to build sensitized paths. It is a set of rules which 
show how D signals at the outputs of gates intersect with the propagation D-cubes of 
other gates, allowing a sensitized path to be constructed.  

Example 

Generate a test for 2/0 in the circuit of figure 8  



 

2/0 has P.D.C.F. {(01 Not(D))}. To transmit the Not(D) on net 4 through G2 we must try 
to match (i.e., intersect) the specification with one of the propagation D-cubes for G2. 
Such a match is possible if the propagation D-cube (0D Not(D)) is used.  

 

 

Examples 

 

For purposes of intersection blank entries in a table correspond to X's.  



The Full D-Algorithm  
1. Choose a P.D.C.F. for the fault under consideration.  
2. Sensitize all possible paths from the faulty gate to a primary output of the circuit. 

We do this by successively intersecting the P.D.C.F. of the fault with the 
propagation D-cubes of successor gates. The process is called the ``D-Drive''.  

3. Justify the net assignments made during the D-drive by intersecting the singular 
covers of gates in the justification path with the expanding D-cube. This is called 
the ``Consistency Operation''.  

 

Example 

Use the D-algorithm to generate a test for 6/0 in the network shown in figure 9.  

 

 

D-Drive 

Step 1 - Select P.D.C.F. for 6/0.  

Step 2 - Intersect with propagation D-cube for NOR gate G4.  

Step 3 - Intersect with propagation D-cube for NAND gate G5.  

At this stage a primary output has been reached, so the D-drive is complete  



 

Consistency Operation 

Step 4 - Justify the assignment G3 = 1. By examining the cover for a NAND gate we see 
that (0X1) will serve.  

Step 5 - Justify the assignment G1 = X. Any combination of inputs will serve, so we 
choose (001) arbitrarily.  

All primary inputs have been assigned values, so the consistency operation is complete 
and we have a test for 6/0.  

This is an easy example because no inconsistencies were encountered. When they are, it 
is necessary to backtrack to the last point at which an arbitrary decision was made and 
make another choice at that point. This can lead to a lot of BACKTRACKING and can 
make the algorithm very slow if a lot of alternative paths must be examined.  



Figure 10 is an example circuit where inconsistencies force backtracking. 

 

D-Drive 

Step 1 - Select P.D.C.F. for 5/1.  

Step 2 - Carry out implications of this choice, net 4 becomes 1.  

Step 3 - Propagate through G4 by using one of the propagation D-cubes of the NAND 
gate.  

Step 4 - Propagate through G5 by using a propagation D-cube of the NOR gate.  

 

Step 5 - We now have D on net 7 and Not(D) on net 8. No propagation D-cube exists for 
this combination of inputs on an AND gate (G6), so Nulls are entered instead.  



This causes the intersection to fail, so the D-drive has failed. We need to back up and 
choose another value for either net 7 or net 8. This is a justification step for G6.  

Step 6 - We arbitrarily choose to modify net 8 and select to set it to 0. This action 
invalidates any inputs driving G5 which may have been chosen during the D-drive. In 
this instance the value on net 6 becomes invalid and is dropped.  

 

Step 6 also fails because of the lack of a propagation D-cube. Again we must back up and 
try another choice of input.  

Step 7 - This time we try net 8 = 1. A propagation D-cube does exist for this combination 
of inputs on G6, so the intersection is successful. This completes the D-drive.  

 

Consistency Operation 

If a gate has a logic value assigned to its output but is missing values at its inputs it must 
be justified. Gates G5 and G3 need justification.  

Step 8 - Justify G5. This gate has a fault on one input, which can be matched using an X.  

Step 9 - Justify G3. This completes the consistency operation.  

 



 

Other Test Generation Methods 
In this section, we will briefly examine some other test generation methods.  

 

L.A.S.A.R. 

L.A.S.A.R. - Logic Automated Stimulus And Response. Otherwise known as the Critical 
Path method. Unusual in that all circuits to be analyzed using this technique must first be 
converted to NAND equivalent form. Very similar to the justification part of the D-
algorithm. It works back from assumed values on primary outputs towards the inputs. 
Used in the HILO simulator.  

P.O.D.E.M. 

Path-Oriented DEcision Making. This algorithm was designed to generate tests for error 
detection/correction circuits. These circuits typically contain large numbers of XOR gates 
which slow down the D-algorithm. Has been found to work as well as or better than the 
D-algorithm for most general circuits. Works from primary inputs towards fault site and 
primary outputs.  

Boolean Differences 

This approach was popular amongst researchers in the 1960's, but has not survived.  

 

 

 



Design for Testability 
There are various techniques in common usage which help the designer of digital systems 
to ensure that his system will be testable. In the following sections, we shall consider 
some of these.  

Ad-Hoc Techniques 
In this section we shall list a set of what might be termed design for testability rules. 
These are not architecture design techniques per-se, but rather a set of guidelines.  

1. A global reset signal is important, this brings all of the internal memory elements 
to a known state.  

2. Long counter chains should be broken. A 10 bit counter needs 1024 cycles to test 
it full y, if divided into 2 5 bit counters, only 32 cycles are required. (Plus a few 
(approx 18) cycles for testing the decode logic. This approach may be difficult 
with fast synchronous counters with lookahead carry.  

3. Bring difficult to test internal nodes, out to device pins. This may also be difficult, 
as pads are usually at a premium.  

4. On board clock generators should be replacable by an external test clock signal, 
this will allow external control of the clock during test.  

5. Never, Ever use asynchronous design, this can lead to RACE conditions, and lots 
of other nasty problems. Only ever use the CLEAR input on a flip flop for the 
global reset signal.  

Structured Techniques 



 

Figure 11 illustrates a canonical model of a sequential circuit. What the structured design 
for testability techniques do, is to break the feedback path. This allows access to the 
memory elements from external pins.  

Scan Paths 
Since IO Pins are generally expensive in terms of Silicon area, and are in short supply, 
the memory elements (flip flops or latches) are usually connected in a shift register chain 
for test purposes. This is called a SCAN PATH design.  



 

Figure 12 illustrates the canonical system of figure 11 with a Scan Path added to it. 
During test, a binary sequence is shifted into the Scan_Ininput. Tests can be generated for 
the combinational logic block, by treating the memory element outputs as primary inputs, 
and the memory element inputs as primary outputs.  

The shift register chain is first tested by shifting a 1 0 1 0 1 ...pattern through it, Once the 
shift register chain has been demonstrated to be working correctly, test patterns can be 
shifted through it. Having shifted in a test pattern, the device can be taken out of Scan 
Mode, and 1 cycle of normal operation performed, to check that the combinational block 
is working with that pattern. The test results may then be shifted out in scan mode.  

Scan Path Implementation 

Scan path designs may be implemented in various ways 

Stanford Scan Path Design 

In this design, the memory elements are made up of a flip-flop, with an extra multiplexer 
added as shown in figure 13.  



 

The flip-flops are then connected as shown in figure 14.  

 

To test the design :  

1. Set test = 1.  
2. Load test pattern into flip-flops by clocking.  
3. Set test = 0.  
4. Apply 1 clock pulse, results are clocked into the same flip-flops which held the 

test pattern.  
5. Set test = 1 and clock out the result.  

Latch Based Designs 



Latch based designs attempt to eliminate circuit race hazards. A completely hazard free 
circuit is easier to test and more reliable. The most important technique was developed by 
IBM and is called Level Sensitive Scan Design or LSSD.  

In LSSD, each memory element consists of 2 latches, the L1 latch and the L2 latch. The 
L1 latch is a 2 port latch, with 2 clock inputs as shown in figure 15.  

 

Input D1 is controlled by clock signal C1, when C1 is high, then D1 is connected to Q 
Normally, D1 is connected to the outputs of the system combinational logic, and D2 to 
the scan path. Latch L2 is a standard D-type latch. The system is connected together as 
shown in figure 16.  

 

This is one possible LSSD structure, it is designed by directly replacing flip-flops in an 
IC. Each latch pair is used exactly like a Master-Slave flip -flop in normal operation. A 2 
phase, nonoverlapping clock is used on CLK1 and CLK2 as shown in figure 15.  



 

The test procedure is as follows.  

1. Apply pulses to TSTCLK and CLK2 in order to shift a bit pattern into the circuit.  
2. Apply 1 CLK1 pulse followed by 1 CLK2 pulse to run the test through the circuit.  
3. Clock the result out using TSTCLK and CLK2.  

This is only 1 technique which may be used to design LSSD circuits.  

Self Test 
Various forms of self test techniques are used in modern Digital IC design. In the 
following sections we shall look at some of these.  

Signature Analysis 

Signature Analysis is a data compression technique, it takes very long sequences of bits 
from a unit under test and compresses them into a unique N-bit signature which 
represents the circuit. A good circuit will have a unique signature, and a faulty one will 
deviate from this.  

Signature analysis is based on Linear Feedback Shift Registers (LFSR), basically, the 
memory elements in the system are reconfigured in test mode, to form an LFSR, as 
shown in figure 18.  

 



The summation unit (+) performs modulo 2 addition (according to the rules of addition in 
GF(2)) on the incoming bit stream and the taps coming back from the LFSR. (XOR 
Gates).  

A bit stream is fed in to the register (which is initially all 0's, because you remembered to 
put in the global reset signal ! ). After N clock pulses, the register will contain the 
signature of the data stream. Hewlett Packard, among others, make signature analysers 
for this purpose. Such a machine can trap all 1 bit errors, it is however possible that 2 or 
more errors will mask each other. The probability of two different data streams yielding 
the same signature is given by.  

 

Where m is the length of the LFSR and n is the length of the sequence, for n tending to 
infinity this tends to.  

 

So by making m large, the probability of a bad sequence being masked is small. Hewlett 
Packard use m = 16, giving Perr = 1.5E-5 and have not found this error probability to 
pose a problem in practice.  

Generating Self Test Patterns 

LFSR's corresponding to primitive polynomials over GF(2) make good sources of 
pseudo-random patterns (PRBS). As an example, consider figure 19 where the sequence 
length will be 2^16 -1 distinct patterns (all zeros is not allowed).  



 

To perform in-situ testing of a logic network, we could place one of these registers at its 
input, and some signature analysis circuitry at the output. The LFSR generates random 
binary sequences which are fed through the network under test, and analysed by the 
signature analysers.  

 

BILBO  

BILBO, is a rather unfortunate acronym for Built In Logic Block Observation, it 
implements the signature analysis idea, in practice. The memory elements in the system 
are connected in a Scan Path as shown in figure 20.  

 

Each BILBO can act as.  

• A Scan Path shift register.  
• An LFSR generating random patterns.  
• A multi-input signature analyser.  

Provided that the start state is known, and that a known number of clock cycles are 
injected, the finish state will be a known pattern.  

Test Procedure with BILBO's 

Testing using BILBO's is carried out as follows.  

For logic block 1.  



1. BILBO 1 is initialised to a non-zero initial state by shifting in a pattern through 
Scan_In.  

2. BILBO 1 is configured as a PRBS generator and BILBO 2 as a multi-input 
signature analyser.  

3. N clock pulses are applied.  
4. BILBO 2 is configured as a Scan-Path, and the result is shifted out through 

Scan_Out.  

To test logic block 2, BILBO 2 becomes the sequence generator, and BILBO 1 the 
signature analyser.  

The quality of the tests generated (fault coverage) must be determined by prior fault 
simulation. The final signature may be determined by checking a known good part 
(Dangerous !) or by logic simulation.  

----------------------------------------------------------- 
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