&)

e

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC ', 12B Status by UGC I, Approvedrbry AICTE

'www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION
ENGINEERING

UNIT - |

SECA1506 - Digital Signal Processing

1. DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER
TRANSFORM (FFT)

Review of Signals an m

Continuous Time signal — If the signal is defined over continuous-time, then the signal is a
continuous-time signal.

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function

K1) 4
r
094
0.5
0.7
0.6+
0.5
0.4
0.3
0.2

0.1

T T T ¥ T T —»

0 1T 2T 3T 4T 5T &T 77 1
Fig 1 Continuous Time signal

Discrete Signal and Discrete Time Signal:

The discrete signal is a function of a discrete independent variable. The independent variable
is divided into uniform intervals and each interval is represented by an integer. The letter "n"
is used to denote the independent variable. The discrete or digital signal is denoted by x(n).

XInt) 4
1.04
0.2 0
o8 08]
0.84 » B
0.7
0B+ 0.55
[J
|:|5_
0 0.35
. 0.3
0.2+
01
0.17 T
| T T ’
ol 91 27 3T 4T ST BT T I

Fig 2: Discrete Time Signal

Digital Signal: The signals that are discrete in time and quantized in amplitude are called
digital signal. The term "digital signal" applies to the transmission of a sequence of values of a
discrete-time signal in the form of some digits in the encoded form.

Representation of Discrete Time Signals

1. Functional representation

In functional representation, the signal is represented as a mathematical equation, as shown
in the following example.

#n) = = 05 n = =2
= 1.0 n = =1
= = 1.0 n = 0
= 0.6 n = 1
= 1.2 n = 2
= 1.5 n = 3
= 0 other n

2. Graphical representation

In graphical representation, the signal is represented in a two-dimensional plane. The
independent variable is represented in the horizontal axis and the value of the signal is
represented in the vertical axis as shown below

iin) &

il

[} 1 2

a-1.0

Fig 3: Discrete Time Signal

3. Tabular representation

In tabular representation, two rows of a table are used to represent a discrete time signal. In
the first row, the independent variable "n" is tabulated and in the second row the value of the
signal for each value of "n" are tabulated as shown in the following table I.

Table 1. Tabular representation

N | e 2]-1 o1
x(n) e |5 | LO[101 06 | 1.2]1.5

P
Lad

4. Sequence representation

In sequence representation, the discrete time signal is represented as a one-dimensional
array as shown in the following examples.

An infinite duration discrete time signal with the time origin, n = 0, indicated by the symbol - is
represented as, x(n) ={.....-0.5,1.0,-1.0,0.6, 1.2, 1.5, }

An infinite duration discrete time signal that satisfies the condition x(n) =0 forn< 0 is
represented as,

x(n) ={-1.0,0.6, 1.2, 1.5, ... }or x(n) = {~1.0, 0.6, 1.2, 1.5,}

A finite duration discrete time signal with the time origin, n = 0, indicated by the symbol - is
represented as, x(n) ={-0.5, 1.0,-1.0,0.6, 1.2, 1.5}

A finite duration discrete time signal that satisfies the condition x(n) =0forn< 0 is
represented as,

x(n)={-1.0,-0.6, 1.2, 1.5 } or x(n) ={-1.0, 0.6, 1.2, 1.5}

Standard Discrete Time Signals

1. Digital impulse signal or unit sample sequence

Bin uln)
1 1
Impulse signal, &(n)=1 ; n =0 I] I I I """"
=0 ;n=0 o n o 1 2z 3 4 5 p
Drigital impulse Unit step signal.
2. Unit step signal signal.
Unit step signal, uwin)= 1:n = 0 uin) 5
=0:n =10 e
g .-
z.-7T 1 | -----
3. Ramp signal 1. I
Ramp signal, u {n)=n :n = 0 g 1 2 3 4 5 n
0:n =10 Ramp signal.
4. Exponential signal
Exponential signal, gin)= a” :n = 0
gin) -0 in<t gin}
T D@1 - ‘ B 1
[] T'T'T"r_., il l | .
-:l| 1 2 3 a4 5 & 'n o1 2z 3 a n
Decreasing exponential signal. . Increasing exponential signal.

Fig 4: Standard Discrete Time Signals

Classification of Discrete Time Signals

The discrete time signals are classified depending on their characteristics. Some
ways of classifying discrete time signals are,

1. Deterministic and nondeterministic signals

2. Periodic and aperiodic signals

3. Symmetric and antisymmetric signals

4. Energy and power signals

5. Causal and noncausal signals
Deterministic and Nondeterministic Signals

The signals that can be completely specified by mathematical equations are called
deterministic signals. The step, ramp, exponential and sinusoidal signals are examples of
deterministic signals. The signals whose characteristics are random in nature are called
nondeterministic signals. The noise signals from various sources are best examples of
nondeterministic signals.

Periodic and Aperiodic Signals

When a discrete time signal x(n), satisfies the condition x(n + N) = x(n) for integer values of N,
then the discrete time signal x(n) is called periodic signal. Here N is the number of samples of
a period.

i.e, if, x(n + N) = x(n), for all n, then x(n) is periodic

The smallest value of N for which the above equation is true is called fundamental period. If
there is no value of N that satisfies the above equation, then x(n) is called aperiodic or
nonperiodic signal. When N is the fundamental period, the periodic signals will also satisfy the
condition x(n + kN) = x(n), where k is an integer. The periodic signals are power signals. The
discrete time sinusoidal and complex exponential signals are periodic signals when their
fundamental frequency, fo is a rational number.

N

Il Tl Bl Dl
IR

i) ={.......,1,2,-1,-1,2,1,2,-1,-1,2,1,2, =1, —1,.......}
T

. I . i
Periadic discrefe time signal

Fig 5. Periodic Discrete Time Signals

1 1

Symmetric (Even) and Antisymmetric (Odd) Signals

The discrete time signals may exhibit symmetry or antisymmetry with respect ton = 0.
When a discrete time signal exhibits symmetry with respect to n = 0 then it is called an even
signal. Therefore, the even signal satisfies the condition,

x(-n) = x(n)

When a discrete time signal exhibits antisymmetry with respect to n = 0, then it is called an
odd signal. Therefore the odd signal satisfies the condition,

X(-n) = -x(n)

X0)1

L

) E——

el =

S f—— 5

L e e
P (—

= =

ifn)={1,2,3,1,2,1,5,2,1} x(n)=|{1,2,-2,-1,0,1,2,—-2,—1}

T

Symmetric (or even) signal. Artisymmetric for odd) signal.

Fig 6. Symmetric and antisymmetric Discrete Time Signals

Energy and Power Signals

The energy E of a discrete time signal x(n) is defined as,

Energy. E z |x(n]|:

n=—a

The energy of a signal may be finite or infinite, and can be applied to complex valued and real
valued signals. If energy E of a discrete time signal is finite and nonzero, then the discrete time
signal is called an energy signal. The exponential signals are examples of energy signals. The
average power of a discrete time signal x(n) is defined as,

m

. 3] :

Power, P = lim — E |xin)|
Nove IN+1 n=-N

If power P of a discrete time signal is finite and nonzero, then the discrete time signal is called
a power signal. The periodic signals are examples of power signals. For energy signals, the
energy will be finite and average power will be zero. For power signals the average power is
finite and energy will be infinite.

% Forenergy signal, 0 <E< = and P=0

For power signal, 0 <P < == and E= =

Causal, Noncausal and Anticausal signals

A discrete time signal is said to be causal, if it is defined for n 3 0. Therefore if x(n) is
causal, then x(n) = 0 for n < 0. A discrete time signal is said to be noncausal, if it is defined for
either n £ 0, or for both n <0 and n > 0. Therefore if x(n) is noncausal, then x(n) #0forn<0. A
noncausal signal can be converted to causal signal by multiplying the noncausal signal by a

6

unit step signal, u(n). When a noncausal discrete time signal is defined only for n £ 0, it is
called an anticausal signal.

Discrete-time Fourier transform (DTFT)

The Discrete Time Fourier Transform (DTFT) is the member of the Fourier transform
family that operates on aperiodic, discrete signals. The best way to understand the DTFT is
how it relates to the DFT. To start, imagine that you acquire an N sample signal, and want to
find its frequency spectrum. By using the DFT, the signal can be decomposed into sine and
cosine waves, with frequencies equally spaced between zero and one-half of the sampling
rate. As discussed in the last chapter, padding the time domain signal with zeros makes the
period of the time domain longer, as well as making the spacing between samples in the
frequency domain narrower. As N approaches infinity, the time domain becomes aperiodic,
and the frequency domain becomes a continuous signal. This is the DTFT, the Fourier
transform that relates an aperiodic, discrete signal, with a periodic, continuous frequency

spectrum.

The mathematics of the DTFT can be understood by starting with the synthesis and analysis

equations

x[n] = zl j X(£2) eif2n dQ2 synthesis
T 27
+oco

X(2) = Z x[n] e i&2n analysis
n=-— oo

x[n] l» X(£2)
X(2) = Re{X(Q)} + jIm{X(Q)}

= |X($2)] ei ¥X(L2)

The spectrum of the DTFT is continuous, so either f or w can be used. The common choice is w,
because it makes the equations shorter by eliminating the always present factor of 2m.
Remember, when w is used, the frequency spectrum extends from 0 to i, which corresponds
to DC to one-half of the sampling rate. To make things even more complicated, many authors
use Q (an upper case omega) to represent this frequency in the DTFT, rather than w (a lower

case omega.

PROPERTIES OF THE FOURIER TRANSFORM

x[n] *-'Z* X(82)

Periodic:
X(R) = X(Q+27rm)
Symmetry:
x[n] real => X(-Q2) = X*(Q)
Re{X(Q)}
even
IX(£2)]
x|
X X(Q)
Time shifting:

x(n-n,] < &M X(Q)
Frequency shifting:
&% xin] O X(2-2,)

Linearity:

ax4 [n] +bx,[n] i aX,(R2) + bX,(£2)

Parseval’s relation:

+00o

> xlnli2 = %zflxmnz o2
m

n=-oco

CONVOLUTION PROPERTY

hin] » x[n] ‘—:Z* H(Q) X(2)

x[n] h{n] h[n] = x[n]
RES—— L
X(Q) H(S2) H(Q) X(£2)

aiflon hin] ei<% H(Y,)

H(2)

Discrete Fourier Transform (DET):

Definition (Discrete Fourier Transform): Given a finite sequence

x =[x(0), x(1),..., x(N —1)]

its Discrete Fourier Transform (DFT) is a finite sequence

X = DFT (x) =[X(0), X(1)...., X (N —1)]

where
N—1

X(k) = Zx(n)ka”, w, =e

n=0

Inverse Discrete Fourier Transform (IDET):

—j27/N

The inverse discrete Fourier transform of X(K) is defined as

N—1
> Xkl g = s N —1
k=0

1
"5 ey o4
For notation purpose discrete Fourier transform and inverse Fourier transform can be
represented by

X (k) = DFT [z(n)]
x(n) = ITDFT [X (k)]

Formula:

~N—1

X (k) =— S x(n)e 72T

o—0

N 1
IS

a-(72) — % § S X (r)st=TR

=0

Where K and n are in the range of 0,1,2...... N-1 For example, if N=4, K=0,1,2,3: N=0,1,2,3

Alternative Formula:

N—1
X(k) = D amWrr —— W = —i%F

=0

N —1
x(n) = { § X () WF =y,
N k=0

Properties of DET:
Periodicity property:

If X(k) is the N-point DFT of x(n), then
X(k+N)=X(K)
Linearity property:
If X1(K)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2Xx2(k)

nvolution property:
If X1(k) = DFT[x1(n)] & X2(K) = DFT[x2(n)], then
DFT[x(n)(N) x2(n)] = X1(k)X2(K)
Where@ indicates N-point circular convolution.
ltiplicati)

If X1(k) = DFT[x1(n)] & X2(K) = DFT[x2(n)], then

DFT[x1(n)x2(n)] = (UN)[XL(K{N) X2(K)]
Where @ Indicates N-point circular convolution.

Time reversal property:
If X(k) is the N-point DFT of x(n), then DFT[x(N-n)] = X(N—k)

Time shift property:

If X(K) is the N-point DFT of x(n), then

10

-~ }Km
DFT {x((n—m))y} X(k)e =N

Svymmetry properties:
If x(n)=xR(n)+jxI(n) is N-point complex sequence and X(kK)=XR(k)+jXI(K) is the

N- point DFT of x(n) where xR(n) & xI(n) are the real & imaginary parts of x(n) and
XR(K) & XI(k) are the those of X(k), then

() DFT[x (=X (N-K)

(i) DFT[X (N-n)]=X (k)

(i) DFTROI=W2XK+X (N-K)]

(iv) DFTIXIM)I=W2{)XK)-X (N-K)]

(v) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x*(N—n)]

(vi) DFT[xco(n)]=jX1(K) where xco(n):(1/2)[x(n)—x*(N—n)]

If x(n) is real, then

() If x(n) is real, then
a X(K=X (N-K)
b. XR(k)=XR(N-K)
(i) If x(n) is real, then
a) X(K)=X (N=K)
b) XR(k)=XR(N-k)
) XI(k)=-XI(N-Kk)
d) [X(K)I=X(N-K)|
e) [X(K)[=IX(N-K)|
f) 2ZX(k)=-2X(N-k)
(i) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x(N—n)]
(i) DFT[xco(n)]=jXI1(k) where xco(n)=(1/2)[x(n)—x(N—n)]

11

Problem

Compute 4-point DFT and 8-point DFT of causal three sample sequence given by

—

uln) = 3 0=nz=2
=0 ; else
Solution
By the definition of N-point DFT, the k™ complex coefiicient of X(k), for 0 € k £ N -1, is given by,
M=t =jpzin
Xk} = ¥ xinje ©
n=0
a) 4-point DFT(\, N =4)
a-i j2mkm 2 E ﬂ .
Xk) = ¥ xle ¢ =% xinje ? =x(0)e” +x(e 2 +x(2)e™
n=10 n=0
T E nk nk
= —p—p 2 p—p o — =i — _ iej
= 3t3e t3¢ =3 14cos 5 ~lsin +cos Tk Jf.mrrk]

For 4-point DFT, X(k) has to be evaluated fork =0,1, 2, 3.

Whenk = 0; Xi0) = %II + cos0 - jsin0 + cosO - jsind]
= %u #1-j0+1-j0) = 1 = 120
Whenk = 1; X(1) = ! 1+ cost - jsint + cost - jsinm
=R =g 2 g -

1 A
= 3040-j-1-j0)=—jo=2/-1/2=03332- 05

When k = 2: X(2)

1
E[I + 008 T - jSiNT + cosdm - isinEnI

1
S0 -1-j0+1-j0) = = = 033320

o | =

When k E[‘l + cus]—; - i!.in%It + cosdn - isin!‘.ﬂ]

3; X3

1 . . 11
= ElI+I2I+] —I—]ﬂ,‘l—IE_EH!Z_I].HMD.M
', The 4-point DFT sequence X(k) is given by,

X(k) = {120, 03337-05r 0.33320, 0.333/051)
». Magnitude Function, [X(k{={1, 0.333, 0.333, 0.333)
Phase Function, <X(k)={0, =05z, 0, 051}

Phase angles
are in radians.

12

b) 8-point DFT (\ N = 8)

-1 -ji2mkn 3 -jrkn ik -izk
Xk) = Y xime & =Y xinhe * =x(0)e’+x(Ne * +x(De ? [eis=cosqt jsing
n=0 n=0
! +] e#+ c# H»cosxk 'sinnk +cos":k 'sinxk
m = -— - — — _— —_— —_
30 3 3 4 P Z

For 8-point DFT, X(k) has to be evaluatedfork=0,1,2,3,4,5,6,7.
Whenk = 0; X(0) = %IHcosO—jsinO«fcosO—jsinOI
= %(l+l—j0+l-j0)=l = 120
Whenk = 1; X(1) = l[l + cos> - jsin£ + cos> - jsin-’l]
3 4 4 2 2
= 0.333(1 + 0.707 - jO.707 + O~ j1)

= 0.568 - j0.568 = 0.803£ - 0.785 = 0.803< - 0.25n
2r 2n 2n

0785 x 1t =0.25n

Whenk = 2; X(2) = -I—[l + cosZX - jsin— + cos— - isin——]
3 4 4 2 2

= 0333(1+0 ~j1l -1-jo)
= - j0.333 = 0333£-n/2 = 0.333£-0.5n
Whenk = 3; X(3) = -1-[1 + cos§-’-t- - jsingl - cosJ—n E jsinﬂt-]
3 4 4 2 2
= 0.333(1 - 0.707 - jO.707 + O + j1)

= 0.098 +j0.098 = 0.139.£0.785 = 0.139£0.25x

When k = 4; X(4)

1 4x .. 4n 4n . 41:]
—|[1 + cos— - jsin— + cos— - jsin—
4 a 2 2

= 0.333 (1-1-jO+1-j0) = 0.333 = 0.333£0

Whenk = 5; X(5)

1[1 + cos& T jsins—n + coss—x - jsins—x:I
3 4 4 2 2
= 0.333(1 - 0.707 + jO.707 + 0 - j1)
= 0.098 - j0.098 = 0.1392 - 0.785 = 0.1392£ - 0.25x
Whenk = 6; X(6) = -1-[1 5 EE o jsinf’1 P jsinﬂ]
3 4 4 2 2

= 033301+ 0+ jl -1-jo)

j0.333 = 0.3332n/2 = 0.33320.5x
1 1+ ms?—ﬂ—'sin?—ﬂ+ms?—m— 'sin?—ﬂ
3 3 7 N5

. . Phase angles
0.333 {1+ 0.707 + j0.707 + 0 + 1) are in radians.

0.568 + j0.568 = 0.803.20.785 = 0.80320.250

Whenk = 7: X(7)

', The 8-point DFT sequence X(k) is given by,
Xk} = {120, 0.803< -0.25%, 0.3332 -0.5xr, 0.1390.257n, 0.333.20, 01392 - 0.25n,

0.33320.5x, 0.803.20.25x)
-. Magnitude Function, [X(k)| = {1, 0.803, 0.333, 0.139, 0.333, 0.139, 0.333, 0.803]

Phase Function, LXk) = {0, =0.251, =051, 0.251, 0, -0.251, 051, 0.25n1)

Xkl 4 2X(k) 4
1.0 -, A 0.75 -
. ." o ‘l".‘
0.3+ “‘\ v" 850 ,'I '\‘
0.25 7 ;
0.6 7 AL e
.'. :' 0 -+ : . ’x‘ L =G
- 1] P g 3 ‘v K
o \ 4 \
: P E J 0.25n. . ;
't ". .\‘ .l'
0.2 l I 1 0.50% b S
'_"a' ‘.‘ ‘:' ‘-_'4
0 |) } AK 0.75x >
1 2 3 4 ; y
v ’ Phase spectrum of X(k) for N=4.
Magnitude spectrum of X(k) for N=4.
[X (k|4 ZX(k) ¢
1 :n.1 i 0.75 7
0.50 = o |
)5 -4 i "
0.25 x o

7

!
!
1

—4 > 0.75x >
¥
. $ & & X8 Phase spectrum of X(k) for N=8

Mugnitude spectrum of Xtk) for N=8. '
Fig 7. Magnitude and phasor representation of N=4,8 pont DFT Time Signhals

[courtesy: DSP by Nagoorkani]

East Fourier Transform (FET)

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete
Fourier transform (DFT) with reduced number of calculations. The computational
efficiency is achieved if we adopt a divide and conquer approach. This approach is based on
the decomposition of an N-point DFT into successively smaller DFTs. This basic approach
leads to a family of an efficient computational algorithms known collectively as FFT
algorithms. Radix-r FFT In an N-point sequence, if N can be expressed as N = r™, then the
sequence can be decimated into r-point sequences. For each r-point sequence, r-point DFT
can be computed. From the results of r-point DFT, the r2 -point DFTs are computed. From
the results of r2 -point DFTs, the r3 -point DFTs are computed and so on, until we get r™
point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this
method the number of stages of computation will be m times.

Radix-2 FET For radix-2 FFT, the value of N should be such that, N = 2™, so that the N-
point sequence is decimated into 2-point sequences and the 2-point DFT for each decimated
sequence is computed. From the results of 2-point DFTSs, the 4-point DFTs can be

14

computed. From the results of 4-point DFTs, the 8-point DFTs can be computed and so on,
until we get N-point DFT.

Number of Calculations in N-point DET

N2 number of complex multiplications and N(N — 1) number of complex additions
Number of Calculations in Radix-2 FFET

N/2log2N complex multiplications and N logoN complex additions.

Radix-2 FET alaorithms:
Decimation-In-Time (DIT) FET alaorithm:

The algorithm in which the decimation is based on splitting the sequence x(n) into
successively smaller sequences is called the decimation-in-time algorithm.
The N-point DFT of a sequence x(n) is given by

N-1
k

X(k)=Ex(n)WN"<, 0<k<N-1 1)
n=0

—i(27/N)
where WN=e . X(Kk) is periodic with period N i.e., X(k+N)=X(K).
Splitting Equ(1) into two, one for even-indexed samples of x(n) and the other for
odd- indexed samples of x(n), we have

X(K) = SX(OJWN™E SRR ot @
n even n odd

Substituting n=2n for n even and n=2n+1 for n odd, we have

N/2-1 N/2-1
X(k) = Zx(Zn)WNznk +Zx(2n+1)WN(zn+1)k
n=0 n=0
3-Point DET Using Radix-2 DIT EET

The input sequence is 8-point sequence. Therefore, N=8=23=r" Here,r=2and m
= 3. Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of
computation. The given 8-point sequence is decimated to 2-point sequences. For each 2-
point sequence, the 2-point DFT is computed. From the results of 2-point DFT, the 4-point
DFT can be computed. From the results of 4-point DFT, the 8-point DFT can be computed.

15

Let the given sequence be x(0), x(1), x(2), x(3), x(4),x(5), x(6), x(7), which consists of 8
samples. The 8-samples should be decimated into sequences of 2-samples. Before decimation

they are arranged in bit reversed order, as shown in table

MNormal order Bit reversed order
x{0) xf 000 w0y 4 D0)
x 1) =(001) xd) = 100
x(2) =010y x2) {0100
x(3) 011 X6} x(110)
x(4) = 100y s 1) x(001)
x(5) ®101) x(5) x(101)
x() =110y x3) =011
x(7) 111 x(T) x(111)

Fig 8. Bit reversal order of 2 point DFT

_Using the decimated sequences as input the 8-point DFT is computed. The fig shows the
three stages of computation of an 8-point DFT.

(0) —»
x(0) Compute
x{4) »| 2-point DFT > CO-‘"IDI["_: — X(0)
2-point DFTs
to — X(1)
21 get 4-point
2" compute e DFT — X(2)
2-point DFT omb ’
X(6) | <-pon Combine
4-point > X(3)
DFTs 1o ee
get 8-paint
x(1) —d > > e — X{4)
' Compute DFT
| | 2-point DFT | Combine (&
x(5) 2-point DFTs X(6
¥0 — X(6)
. get 4-point
xX3) ——» -
Compute DFT > X[7)
- 2-point DFT >
x(7) —pd

Fig 9.Block diagram representation of 8 pt DFT

Flow Graph for 8-Point DET using Radix-2 DIT FET
: A=2a —m\',):

y X
Wy s

L |
b —— % 2 B=a-bWy
bWy

Fig 10.Basic butterfly or flow graph of DIT rad ix-2 FFT.

8o

16

The signal flow graph |s also called butterfly diagram smce it resembles a butterfly
1 1 1

X{0)
1
1 1
—— \
1 1 W:
2w
R s
1> — \ - -
\ 1 .
||‘L’ \'
W, 1 1 / Vg
X(5) ® - -~
, M 4 'ﬂ‘ X>< W,
x3) o \

Fig 11 The flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIT FFT.

x(0)

dlw

X(3)

X(4)

/

>
.‘
-
-
i
Y=
-
>
=]

The DIF computation for an eight sequence is discussed in detail in this section. Let
x(n) be an 8-point sequence. Therefore N =8 =23 =r™ Here, r = 2 and m = 3. Therefore,
the computation of 8-point DFT using radix-2 FFT involves three stages of computation.
The samples of x(n) are,
x(0), x(1), x(2), x(3), x(4), x(5), x(6), X(7).

The above basic computation can be expressed by a signal flow graph shown in Fig

8 - a Asash
1
1 w X
0B =(a -bjWy

Basic butterfly or flow graph
of DIF radix-2 FFT.

17

x(0)

a X(0)

_/

PURRY -

N ><
>O<

\V/
N

x(3) .

W
x(4)

w X(2)

a

1 W,
. - A X(6)

X

1 i

W,

Lo 8 X(5)
-1

/AN

o X{3)

AR

1 w®
—1 Nt 1 1
g » .
1 1 0
/ \ W, >< "
paat - s v

& x7)

Fig 12. The flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIF FFT.

Problem:

An 8-point sequence is given by x(n) ={2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by
a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase

spectrum.

a) 800 | .]

The given sequence is first arranged in the bit reversed order

The sequence x{n) The sequence x{n) in
in normal order bit reversed order

x(0) =2 w(0) =

i) =1 wid) =1
%(2) =2 %(2) =2
%) =1 ub) =1
xi4) =1 x1)=1
w5) =2 %[5) =2
xib) =1 %3 =1
w(7) = w7} =

x(0)= 2

M
N
~

1-2 = —1
=1

Butterfly diagram for
first stage of radix-2 DIT FFT.

The 8-point DFT by radix-2 FFT involve 3 stages of computation with 4-butterfly
computations in each stage. The sequence rearranged in the bit reversed order forms the
input to the first stage. For other stages of computation the output of previous stage will be

the input for current stage.

Second stage computation

The input sequence to second stage computation={3,1,3,1,3,1,3,1}
The phase factors involved in second stage computation are W,° and W4

18

0
jezx L
Wf: t=el=1 e . 3+3%6
. 2 = ju= = ; Ao (=1)(—) 14
W,=e g z
3 3-3%=0
\ \
=TT 5
= cos| — | +Jsml—2 | % - e 2
J J
- i Butterfly diagram for
= second stage of radix-2 DIT FFT.

Third stage computation The input sequence to third stage computation = {6, 1j, 0,
5a?fdjv9’31j} The phase factors involved in third stage computation are Wz, Wt
8

o e g g
W, =e Bzp =1
2 ju = (=R 1 |
Wl =g B =g "=cnsl— + jsinl — |= —= = j—=
" 1 "{4, NN
4 7 ¥
Wi=e Foe !lzmsl_—|+]5|nl_71\]=_]
3 3 N r
u = 1w = e 1 1
Wi=g B=p 4 =g —\]+ sml— = - -
B gln [| N IE

6 - @ 6+6=12 = X(0)

1-| & . \ /,1_“(1,“

=1+j0.414 = X(1)

0+0x(—{)=0=X(2)

0
_1__ 1 1 1 1 . 2)
1+ =)+ (=1=)) bt et e e =14 14— =1+ 12.414 = X(3)
: Il ‘7 "Z ’ \"; }Vrz- l\"; V2 "r"
- 6-6=0=X(4)
/ \ \
ER (1-p—(- h,)[—if —Ll 1-,-1~ LsjL+j-L+-L| 1-|{1~ f=1-p.412=X(5)

v 2 v2 V2 2 y2) v2)

0-0x(~f)=0=X(5)

0_1_17 \

Tz ' J2 ‘ () f

5 ! (1,..)-;-1-,;.l-—l.--,.’_|J 14 |- l’ 1.,]_-,Lr_-L_y;hlluL,_'J_u;o.ua_xm
-1 V2 2

vz 2 v2 v2

Butterfly diagram for third stage of radix-2 DIT FFT of X(k) .
Fig 13. Butterfly diagram for third stage of radix-2 DIT FFT

b) 8-point DET by Radix-2 DIF-FFT
For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly

computation in each stage. The given sequence is the input to first stage. For other stages of

computations, the output of previous stage will be the input for current stage.

19

First stage computation
The input sequence for first stage of computation={2,1,2,1,1,2,1,2}

The phase factors involved in first stage computation are Ws®, Ws! , Wg2 and Ws®

0
j2r x =
Wy =e 8 =1
1 x \
j22 % = = (=« L n 1 .1
W =e 8ze 4=¢ --—jf sm[—]:—-- e
: o 7 o) i
2 x /
j2x - = T AN |4 -
Wi =e ﬂ:eZ:cos‘——’qv]su{»-—):-]
\ 2 5
: 3 in /
jam = = = 3n " 3r) .1
W, =e Bze 4 :cos‘——]usnr{«—]:— - j
. 4 4 75 72-
x{0) =
x(1) = - 1+2=3
x{2) = 2+1=3
x(3) = D 1203
x(4) = ok
[1 %) 1 1
x{(5) = (1—2'|l—=~1—; =——=+j—=
V2 2 ¥2 2
x(6) 4 (2-1)() =)
Jon o 1 » 1 W 1
o7) 2',1 - '{1-2,\[-1- —r_)—‘—._'|?
v2 v2 V2 v2

Butterfly diagram for first stage of radix-2 DIF FFT.
Fig 14. Butterfly diagram for first stage of radix-2 DIT FFT

The output sequence of first)
] 1 .1 .1 .1

i =.3 3,3 3,1, - + =l + H

stage of computation =1 2 JT} [e I]-2 |

L8

Second stage computation

The input sequence for second stage of computation =

[33331
'l-rrrr

1 .1 o1 1
TRE YRV

20

7., % 50 W (0 1 2
Croahl s
va vz V2 V2 v2

1 toy R % | 1) 2
(R R e AR
Fig 5 : Butterfly diagram for second stage of radix-2 DIF FFT.
Fig 15. Butterfly diagram for second stage of radix-2 DIT FFT

| .2 .2
=16,6,0,0,1-], =, 1+], | =
\'E '\'EJ

The output sequence of second stage of computation l
Third stage computation

: 6+6 =12 = X(0)
X
: —Se6—6=0=X(4)
0 a0 +0=0=X(2)
X
0 e&—pe— 0 -0 = 0 = X(6)
. 1 ; 2
1—]X(1—J)+JJ2_ =1+ j0.414 = X(1)
1
2 o 50
j—= (1—j)—j=—==1-j2.414 = X(5)
2 2 V2
14] (14]) + == =1+ j2.414 = X(3)
A
2 X 2
J'E' g (1+ J)—J—2——1~j0414 = X(7)

Butterfly diagram for !/m(/ stage of radix-2 DIF FFT.
Fig 16. Butterfly diagram for third stage of radix-2 DIT FFT

Correlation
Correlation is a measure of similarity between two signals. The general formula for

correlation is f,oo @1 (£) s (¢ —)t

There are two types of correlation:

21

1. Auto correlation
2. Cross correlation
A rrelation Function
It is defined as correlation of a signal with itself. Auto correlation function is a
measure of similarity between a signal & its time delayed version. It is represented with
R(1). Consider a signals x(t). The auto correlation function of x(t) with its time delayed

version is given by

Hy () = R(r) = ‘/_OO ()l — 71dE [+we shift]

— /Oo w($)z(t +)de [ve shift]

Where T = searching or scanning or delay parameter.

Properties

Auto correlation of power signal exhibits conjugate symmetry i.e. R(-r) = (-T)
Auto correlation function of power signal at r = 0 (at origin)is equal to total power of that
signal. i.e. R(0)=p
Auto correlation function of power signal R(0)«1/T. Auto correlation function of power
signal is maximum atr =0 i.e., |R(r)| < R(0)Vr
Auto correlation function and power spectral densities are Fourier transform pairs. i.e.,
F.TIR(DI=S(w)

sle) = fO7, R(w)e™ ™ dr

B = w7 % o —)

lati .

Cross correlation is the measure of similarity between two different signals.
Consider two signals x1(t) and x2(t). The cross correlation of these two signals R12(t) is
given by

(w1 = [m aq (Flxa (£ —) &2 [+=re shift]
= /Oo 2 (¥ + 7w () d# [-we shift]

Properties of Cross Correlation Function
Auto correlation exhibits conjugate symmetry i.e. Ri2(t)=R*21(—7).

Cross correlation is not commutative like convolution i.e. Ri2(T)#R21(—7)

22

T (Bt dt =0

If R12(0) = 0 means, if ~ , then the two signals are said to be orthogonal.

For power signal = '"=r—= /= =@="04 then two signals are said to be orthogonal. Cross

correlation function corresponds to the multiplication of spectrums of one signal to the

complex conjugate of spectrum of another signal. i.e.
Byol(r) +—— X (o) X ()
This also called as correlation theorem.

Realization of Discrete Time System:

Discrete Time IIR System

Let, H(z) = Transfer function of discrete time IR system.
The general form of transfer function of IR system s,

b, + b,z ' + b, =z & + ... + by, =z ™

— —» —
]+a,z'+21:z—+ + a, =

Basic Elements of Block Diagram

Hi=)

Elements of Time domain 7Z-domain
block diagram representation representation
x,(n) X;(n) + X4(n) X (2) X.(z)+ Xiz)
Adder
X,(n) X,(z)

. .o (1) ax(n) X(z) aX (z)
Constant multiplier H[: “‘l
Unitdelay element AUV pern IR X(z) z'X(z)

clay cieme 21) -
Unit advance element CLNEN e L '.“ ‘_,.[Z] . == X(2)

The different types of structures for realizing the IR systems are,
1. Direct form-1 structure
2. Direct form-11 structure

23

3. Cascade form structure
4. Parallel form structure

Direct Form-1 Str re of lIR m
X(z) »Y(z)
X(n) y(n)
v
z? :
z 'X(z) 2Y(2)
-1 g 3 y(n-1)
Z N }
27 X(2) 2 ¥Y(2)
i ¥(n-2)
! b
y 4
Z-«t!\-H‘x(Z) | ‘Z«MI‘Y(Z]
x(n<M-1)) y(n—(N-1))
+

7

z"% ‘
-M, NE »Y
z X(z) b o . “ay 4 127Y(2)
x(n—M) : y(n—N)

Direct form-1I structure of [IR system.
Fig.17.Direct form I structure of 1IR system
From the direct form-I structure it is observed that the realization of an Nth order discrete

time system with M number of zeros and N number of poles, involves M+N+1 number of
multiplications and M+N number of additions. Also this structure involves M+N delays
and so M+N memory locations are required to store the delayed signals.

When the number of delays in a structure is equal to the order of the system, the structure
is called canonic structure. In direct form-I structure the number of delays is not equal to

order of the system and so direct form-1 structure is noncanonic structure.

Direct Form-11 Structure of 1IR System
An alternative structure called direct form-11 structure can be realized which uses less

number of delay elements than the direct form-1I structure.
24

a3 _ W@ Y@

Let,
X(z) Xz} Wiz
Wiz) 1
where, = - — —
X(z) l+az +a,z° + .. tayz

Direct form-II structure of IIR system for N = M.

Fig.18.Direct form Il structure of I1IR system

Cascade Form Realization of IIR System The transfer function H(z) can be expressed as a product
of anumber of second-order or first-order sections

Y m
Z; = H(@) X Hy(2) X Hy(@) .. Ho(2)= 11 H,(z)

Hi{z) =

ey t c,.z_l + oy 2
dy+ dj; 2’ +dy 27
Cgi + €2
dy + dy 2

where, H;(z) =

or, H;(z) =

Cascade form realization of IIR system.

Fig.19.cascade form realization structure of IR system

Parallel Form Realization of IIR System The transfer function H(z) of a discrete time system can
be expressed as a sum of first and second-order sections, using partial fraction expansion
technique

25

Fig.19.cascade form realization structure of IR system

Xiz) Y (=)

FParallel form realizarion

»f IIR svsrem.

Fig.20.Parallel form realization structure of IR system

TEXT / REFERENCE BOOKS:

o ok

o ~

John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,
Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,
2009

Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,
McGrawHill Education, 4th Edition,2013

B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd
edition, 2009

Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010
Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,
3rd Edition,2010

Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.

A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th
Edition, 2012

26

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION
ENGINEERING

UNIT - 11l

Digital Signal Processing
SECA1506

1. FINITE IMPULSE RESPONSE DIGITAL FILTERS

2.1 Symmetric and Antisymmetric FIR filters

FIR filters are digital filters with finite impulse response. They are also known as non-
recursive digital filters as they do not have the feedback (a recursive part of a filter), even
though recursive algorithms can be used for FIR filter realization. FIR filters can be
designed using different methods, but most of them are based on ideal filter approximation.
The objective is not to achieve ideal characteristics, as it is impossible anyway, but to achieve
sufficiently good characteristics of a filter. The transfer function of FIR filter approaches
the ideal as the filter order increases, thus increasing the complexity and amount of time
needed for processing input samples of a signal being filtered. The resulting frequency
response can be a monotone function or an oscillatory function within a certain frequency
range. The waveform of frequency response depends on the method used in design process
as well as on its parameters.

This book describes the most popular method for FIR filter design that uses window
functions. The characteristics of the transfer function as well as its deviation from the ideal
frequency response depend on the filter order and window function in use.

Each filter category has both advantages and disadvantages. This is the reason why it is so
important to carefully choose category and type of a filter during design process.

FIR filters can have linear phase characteristic, which is not like IR filters that will be
discussed in Chapter 3. Obviously, in such cases when it is necessary to have a linear phase
characteristic, FIR filters are the only option available. If the linear phase characteristic is
not necessary, as is the case with processing speech signals, FIR filters are not good solution
at all.

sin(mt)+sin(3wt) sin(mt)-sin(3wt)

Fig.2.1. Hlustration of input and output signals of non-linear phase systems.

The system introduces a phase shift of 0 radians at the frequency of ®, and m radians at
three times that frequency. Input signal consists of natural frequency ® and one harmonic
with the same amplitude at three times that frequency. Figure 2-1. shows the block diagram
of input signal (left) and output signal (right). It is obvious that these two signals have
different waveforms. The power of signals is not changed, nor the amplitudes of harmonics,
only the phase of the second harmonic is changed.

If we assume that the input is a speech signal whose phase characteristic is not of the
essence, such distortion in the phase of the signal would be unimportant. In this case, the
system satisfies all necessary requirements. However, if the phase characteristic is of
importance, such a great distortion mustn’t be allowed.

In order that the phase characteristic of a FIR filter is linear, the impulse response must be
symmetric or anti-symmetric, which is expressed in the following way:

h[n] = h[N-n-1] ; symmetric impulse response (about its middle element)
h[n] = -h[N-n-1] ; anti-symmetric impulse response (about its middle element)

One of the drawbacks of FIR filters is a high order of designed filter. The order of FIR filter
is remarkably higher compared to an IIR filter with the same frequency response. This is
the reason why it is so important to use FIR filters only when the linear phase characteristic
IS very important.

A number of delay lines contained in a filter, i.e. a number of input samples that should be
saved for the purpose of computing the output sample, determines the order of a filter. For
example, if the filter is assumed to be of order 10, it means that it is necessary to save 10
input samples preceeding the current sample. All eleven samples will affect the output
sample of FIR filter.

The transform function of a typical FIR filter can be expressed as a polynomial of a complex
variable z-1. All the poles of the transfer function are located at the origin. For this reason,
FIR filters are guaranteed to be stable, whereas IIR filters have potential to become
unstable.

Finite impulse response (FIR) filter design methods

Most FIR filter design methods are based on ideal filter approximation. The resulting filter
approximates the ideal characteristic as the filter order increases, thus making the filter and
its implementation more complex.

The filter design process starts with specifications and requirements of the desirable FIR
filter. Which method is to be used in the filter design process depends on the filter
specifications and implementation. This chapter discusses the FIR filter design method using
window functions.

Each of the given methods has its advantages and disadvantages. Thus, it is very important
to carefully choose the right method for FIR filter design. Due to its simplicity and
efficiency, the window method is most commonly used method for designing filters. The
sampling frequency method is easy to use, but filters designed this way have small
attenuation in the stopband.

As we have mentioned above, the design process starts with the specification of desirable
FIR filter.

Basic concepts and FIR filter specification

First of all, it is necessay to learn the basic concepts that will be used further in this book.
You should be aware that without being familiar with these concepts, it is not possible to
understand analyses and synthesis of digital filters.

Figure 2.2 illustrates a low-pass digital filter specification. The word specification actually
refers to the frequency response specification.

IH(w)|
A

1#527//////////////////
1-8, y/
5, ‘ 7
" H) | |

Y

W

_

> 0
T

8 -

p s
Fig.2.2. A low-pass digital filter specification
* op - normalized cut-off frequency in the passband;

* s —normalized cut-off frequency in the stopband;

61 — maximum ripples in the passband;

62 — minimum attenuation in the stopband [dB];

=1

ap — maximum ripples in the passband; and
as — minimum attenuation in the stopband [dB].

- 1+ S,)
. = 20 It::rg,,Dk T |
a, = —20log,, ©.

Frequency normalization can be expressed as follows:

(€}

where:

_onf
f

5

fs is a sampling frequency;
fis a frequency to normalize; and
o is normalized frequency.

Table.3.1.Filters

Type of filter Frequency response ha[n]
[sinfm.(n—M)] . N=M
low-pass filter _l an-m)
ow-pass filter hy[n] =+ .
c - n=M
L n
| 1= 2) n=M
high-pass filter halnl=1 ain(a - _
_sin(w,(n I‘v’l}}; n=M
| wn-M)
Ir.sin(mw{nhi M) sin(mm{nhg M)) Ch=M
band-pass filter hy[n] = mn-M) mn=-M)
gy — Oy . B
I = n=M
|"sin(mm(nng M)) sm{mcz{nrv; M)) n=M
band-stop filter hy[n] = m(n—-M) " Uj“m -M)
| 1— c2 — ct n=Mm

The value of variable n ranges between 0 and N, where N is the filter order. A constant M
can be expressed as M = N/ 2. Equivalently, N can be expressed as N = 2M.

The constant M is an integer if the filter order N is even, which is not the case with odd
order filters. If M is an integer (even filter order), the ideal filter frequency response is
symmetric about its Mth sample which is found via expression shown in the table 2-2-1
above. If M is not an integer, the ideal filter frequency response is still symmetric, but not
about some frequency response sample.

Since the variable n ranges between 0 and N, the ideal filter frequency response has N+1
sample.

If it is needed to find frequency response of a non-standard ideal filter, the expression for
inverse Fourier transform must be used:

| ejm{n—h’l]dm

1%
hd[n]:_
g

Non-standard filters are rarely used. However, if there is a need to use some of them, the
integral above must be computed via various numerical methodes.

FIR filter design using window functions
The FIR filter design process via window functions can be split into several steps:

1. Defining filter specifications;
Specifying a window function according to the filter specifications;
Computing the filter order required for a given set of specifications;
Computing the window function coefficients;
Computing the ideal filter coefficients according to the filter order;

o oA wN

. Computing FIR filter coefficients according to the obtained window function and
ideal filter coefficients;

7. If the resulting filter has too wide or too narrow transition region, it is necessary to
change the filter order by increasing or decreasing it according to needs, and after that
steps 4, 5 and 6 are iterated as many times as needed.

The final objective of defining filter specifications is to find the desired normalized
frequencies (oc¢, ocl, oc2), transition width and stopband attenuation. The window
function and filter order are both specified according to these parameters.

Accordingly, the selected window function must satisfy the given specifications. After this
step, that is, when the window function is known, we can compute the filter order required
for a given set of specifications. When both the window function and filter order are known,
it is possible to calculate the window function coefficients w[n] using the formula for the
specified window function.

1. Rectangular WindowThe rectangular window is what you would obtain if you were to
simply segment a finite portion of the impulse response without any shaping in the time
domain:

wn)=10<n<M,

= 0 otherwise

2. Bartlett (or triangular) window

The Bartlett window is triangularly shaped:
2n

=0 otherwise
3. Hanning window

The Hanningwindow(or more properly, the von Hann window) is nothing more than a raised
cosine:

21mn
w(n) = 0.5 — 0.5 cos (W) <n<M,
=0 otherwise
4. Hamming window
21n
wi(n) = 0.54 — 0.46 cos (T) 0<n<M,

=0 otherwise
5. Blackmam window
The Hanning and Hamming have a constant and a cosine term; the Blackman window adds a
cosine at twice the frequency
21n 41n
w(n) = 0.42 — 0.5cos (T) + 0.08 cos (T) 0<n<M,

0 otherwise

After estimating the window function coefficients, it is necessary to find the ideal filter
frequency samples. The expressions used for computing these samples are discussed in
section 2.2.3 under lIdeal filter approximation. The final objective of this step is to obtain the
coefficients ha[n]. Two sequencies w[n] and hq[n] have the same number of elements.

The next step is to compute the frequency response of designed filter h[n] using the
following expression:

hn] = w[n]-hy[n]

Lastly, the transfer function of designed filter will be found by transforming impulse
response via Fourier transform:

H(e*) = i h[n]-e™ "

or via Z-transform:

H(z) = ih[n]z‘n

If the transition region of designed filter is wider than needed, it is necessary to increase the
filter order, reestimate the window function coefficients and ideal filter frequency samples,
multiply them in order to obtain the frequency response of designed filter and reestimate
the transfer function as well. If the transition region is narrower than needed, the filter
order can be decreased for the purpose of optimizing hardware and/or software resources.
It is also necessary to reestimate the filter frequency coefficients after that.

PROBLEMS

Use the window design method to design a linear phase FIR filter of order N = 24 to
approximate the following ideal frequency response magnitude

1 |w| <027

Hy(e’®)| =
HaeN =10 027 < || <7

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency
=0.2. With N = 24, the frequency response of the filter that is to be designed has the form

24
H(e;'(u) - Zh(n)e-jnw

n=0

Therefore, the delay of h(n) is = N/2 = 12, and the ideal unit sample response that is to be
windowed is

sin[0.2x(n — 12)]
(n = 12)x

hy(n) =

All that is left to do in the design is to select a window. With the length of the window fixed,
there is a trade-off between the width of the transition band and the amplitude of the
passband and stopband ripple. With a rectangular window, which provides the smallest
transition band,

09
Aw=2n- = 0.075x

and the filter is

sin[0.2r(n — 12)] 0<n<24
h(n) = (n—12)r
0 otherwise

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of

0.089. With a Hamming window, on the other hand,
2nn)]) sin[0.2x(n — 12)]

24 (n—12)x

and the stopband attenuation is 53 dB, or ? s = 0.0022. However, the width of the transition
band increases to

h(n) = [0.54 - 0.46cos(<n<24

33
Aw=2m - ey =0.275n

which, for most designs, would be too wide.

.Frequency sampling method:

The frequency sampling method allows us to design recursive and nonrecursive FIR filters
for both standard frequency selective and filters with arbitrary frequency response. A. No
recursive frequency sampling filters : The problem of FIR filter design is to find a finite—
length impulse response h (n) that corresponds to desired frequency response. In this
method h (n) can be determined by uniformly sampling, the desired frequency response Hp
(o) at the N points and finding its inverse DFT of the frequency samples.

Problem

Design of Optimum Equiripple Linear-Phase FIR
The window method and the frequency-sampling method are relatively simple

techniques for designing linear-phase FIR filters. However, they also possess someminor
disadvantages, , which may render them undesirablefor some applications. A major problem
is the lack of precise control of thecritical frequencies such ws.The filter design method
described in this section is formulated as a Chebyshevapproximation problem . It is viewed
as an optimum design criterion in thesense that the weighted approximation error between
the desired frequency responseand the actual frequency response is spread evenly across the
passband and evenly across the stopband of the filter minimizing the maximum error.
Theresulting

filter designs have ripples in both the passband and the stopband.To describe the design
procedure, let us consider the design of a lowpassfilter with passband edge frequency a>p
and stopband edge frequency .
Structure realization of FIR Filters

In signal processing, a digital filter is a system that performs mathematical operations on a
sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in
contrast to the other major type of electronic filter, the analog filter, which is anelectronic
circuit operating on continuous-time analog signals.

A digital filter system usually consists of an analog-to-digital converter to sample the input
signal, followed by a microprocessor and some peripheral components such as memory to
store data and filter coefficients etc. Finally a digital-to-analog converter to complete the
output stage. Program Instructions (software) running on the microprocessor implement the
digital filter by performing the necessary mathematical operations on the numbers received
from the ADC. In some high performance applications, an FPGA orASIC is used instead of
a general purpose microprocessor, or a specialized DSP with specific paralleled architecture
for expediting operations such as filtering.

Digital filters may be more expensive than an equivalent analog filter due to their increased
complexity, but they make practical many designs that are impractical or impossible as
analog filters. When used in the context of real-time analog systems, digital filters sometimes
have problematic latency (the difference in time between the input and the response) due
to the associated analog-to-digital and digital-to- analog conversions and anti-aliasing
filters, or due to other delays in their implementation.

Digital filters are commonplace and an essential element of everyday electronics such as
radios, cellphones, and AV receivers.

Characterization

A digital filter is characterized by its transfer function, or equivalently, its difference
equation. Mathematical analysis of the transfer function can describe how it will respond to
any input. As such, designing a filter consists of developing specifications appropriate to the
problem (for example, a second-order low pass filter with a specific cut-off frequency), and
then producing a transfer function which meets the specifications.

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer
function in the Z-domain; if it is causal, then it has the form:

_ B[E) _ bo+ bzt + bz 2+ +byz N
B A(z) S ld gzl a4 - dayz ™

where the order of the filter is the greater of N or M. See Z-transform's LCCD equation
for further discussion of this transfer function.

This is the form for a recursive filter with both the inputs (Numerator) and outputs
(Denominator), which typically leads to an IR infinite impulse response behaviour, but if

thedenominator is made equal to unity i.e. no feedback, then this becomes an FIR or
finite impulse response filter.

The impulse response, often denoted A(k) or hy, is a measurement of how a filter will
respond to the Kronecker delta function. Digital filters are typically considered in two
categories: infinite impulse response (IIR) and finite impulse response (FIR). In the case of
linear time-invariant FIR filters, the impulse response is exactly equal to the sequence of
filter coefficients:

n—1
Yn = E thﬂ—Fa
k=0

IR filters on the other hand are recursive, with the output depending on both current and
previous inputs as well as previous outputs. The general form of an IIR filter isthus:
M—1

n—1
E Omlin—m — Z b.‘cIﬂ—F.:
k=0

m=0
Plotting the impulse response will reveal how a filter will respond to a sudden, momentary
disturbance.

1.Difference equation

In discrete-time systems, the digital filter is often implemented by converting the transfer
function to a linear constant-coefficient difference equation (LCCD) via the Z-transform.
The discrete frequency-domain transfer function is written as the ratio of two polynomials.
For example:

(z41)

(z—7)(z+73)
This is expanded:

H(z) =

22 12241
H(z): 32—1_413_%

and to make the corresponding filter causal, the numerator and denominator are divided by
the highest order of : F4
142270 +27%2 Y(2)
1. 3.2
1+ 327t —z272 X(2)
The coefficients of the denominator, a; are the ‘feed-backward’ coefficients and the

coefficients of the numerator are the 'feed-forward"' coefficients, b#c. The resultant linear
difference equation is:

yln] = = Y- awyln — K]+ 3 bexin K

k=0

H(z) =

or, for the example above:

Y(z) 142271427

X(z) 1+ 433—1 — %z—z

rearranging terms:

= (1+ lz_l — gz_z)lf(z) =(1+22'+279)X(2)

4
then by taking the inverse z-transform:
1 3
= y[n] +7 [n —1] — gy[n — 2] =z[n| + 2zn — 1] + z[n — 2]
and finally, by solving for y[n].

yln] = = gl — 1]+ Syln — 2]+ xfn] + 2efn — 1] + xfn — 2

This equation shows how to compute the next output sample, , in terms of the past outputs,

y[n — P], the present input, :r,[n] and the past inputs. Applying the filter to an input in
this form is equivalent to a Direct Form I or Il realization, depending on the exact order of
evaluationAfter a filter is designed, it must be realized by developing a signal flow diagram
that describes the filter in terms of operations on sample sequences.

A given transfer function ma\é be realized in many ways. Consider how a simple expression
such as axr + bx + ¢ could be evaluated — one could also compute the

equivalent x(ﬂ' + b} 1T € In the same way, all realizations may be seen as
"factorizations™ of the same transfer function, but different realizations will have different
numerical properties. Specifically, some realizations are more efficient in terms of the
number of operations or storage elements required for their implementation, and others
provide advantages such as improved numerical stability and reduced round-off error.
Some structures are better for fixed-point arithmetic and others may be better for floating-
point arithmetic.

1.Direct Form |

A straightforward approach for IR filter realization is Direct Form I, where the difference
equation is evaluated directly. This form is practical for small filters, but may be inefficient
and impractical (numerically unstable) for complex designs.®®! In general, this form requires
2N delay elements (for both input and output signals) for a filter of order N.

x[n] » yin]

Fig.2.3. Direct form |

2. Direct Form 11

The alternate Direct Form Il only needs N delay units, where N is the order of the filter —
potentially half as much as Direct Form I. This structure is obtained by reversing the order
of the numerator and denominator sections of Direct Form I, since they are in fact two
linear systems, and the commutativity property applies. Then, one will notice that there are

two columns of delays (z_l) that tap off the center net, and these can be combined since
they are redundant, yielding the implementation as shown below.

The disadvantage is that Direct Form 11 increases the possibility of arithmetic overflow for
filters of high Q or resonance.™ It has been shown that as Q increases, the round-off noise of
both direct form topologies increases without bounds.! This is because, conceptually, the
signal is first passed through an all-pole filter (which normally boosts gain at the resonant
frequencies) before the result of that is saturated, then passed through an all-zero filter
(which often attenuates much of what the all-pole half amplifies).

b,
x[n }—b@ ; D—»(—P—» yin]

71
b
P (G
Z—}

AV

Fig.2.4. Direct form 11

3.Cascaded second-order sections

A common strategy is to realize a higher-order (greater than 2) digital filter as a cascaded
series of second-order "biquadratric' (or "'biquad") sections®® (see digital biquad filter).
The advantage of this strategy is that the coefficient range is limited.

Cascading direct form Il sections results in N delay elements for filters of order N
Cascading direct form | sections results in N+2 delay elements since the delay elements of
the input of any section (except the first section) are redundant with the delay elements of
the output of the preceding section.

4.Linear-Phase FIR Structures Phase FIR Structures

The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to
reduce the number of multipliers into almost half of that in the direct form implementations

Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response:
H(Z) = h(0) + h(DZ7'+ h(DZ2+h(3)Z 2+ h(DZ™*+h(DZ75 +
h(0)Z~°.Rearranging, we get

5 1
7 1 7 ll—o
h[O] h[1] h[2] "7/1[3]

: D D>

Fig.2.5. Linear phase FIRI

5.PolyphasePolyphase FIR Structures FIR Structures
The polyphase decomposition of H(z) leads to a parallel form structure.
To illustrate this approach, consider a causal FIR transfer function H(z) with N = 8:

HZ)=h(0)+h(D)Z"+h(2)Z2+hB)Z3+h(A)Z*+h(5)Z 5+ h(6)Z76+h(TZ77
+ h(8)Z78

H(z) can be expressed as a sum of two terms, with one term containing the even indexed
coefficients and the other con'@mmg the odd-indexed COEf(féSEngs 4 n(8)z-"
H(Z) = h(0) +h(2)Z7% + h(4)Z™* 4 +h(5)Z~* + h(7)Z~6]
= Fo(22) 4 z- 1B AL

Putting H(Z)

The subfilters in the polyphase realization of an FIR transfer function are also FIR filters
and can be realized using any methods. However, to obtain a canonic realization of the
overall structure, the delays in all subfilters must be shared.

The filters designed by considering all the infinite samples of impulse response are called

IR (Infinite Impulse Response) filters. In digital domain, the processing of infinite samples
of impulse response is practically not possible. Hence direct design of IIR filter is not
possible. Therefore, the IR filters are designed via analog filters. In design of IR filter, the
specification of an IIR filter is transformed to specification of an analog filter and an analog
filter with transfer function, H(s) is designed to satisfy the specification. Then the analog
filter is transformed to digital filter with transfer function, H(z). We know that the analog
filter with transfer function H(s) is stable if all its poles lie in the left half of the s-plane.
Consequently, if the conversion technique is to be effective, it should possess the following
desirable properties. 1. The imaginary axis in the s-plane should map into the unit circle in
the z-plane. Thus there will be a direct relationship between the two frequency variables in
the two domains. 2. The left-half of the s-plane should map into the interior of the unit circle
in the z-plane. Thus a stable analog filter will be converted to a stable digital filter. The
analog filter is designed by approximating the ideal frequency response using an error
function. A number of solutions to the approximation problem of analog filter design are
well developed. The popular among them are Butterworth and Chebyshev approximation.
The popular transformation techniques used for transforming analog filter transfer
function H(s) to digital filter transfer function H(z) are bilinear and impulse invariant
transformation. The digital transfer function H(z) can be realized in a software that runs on
a digital hardware (or it can be implemented in firmware). The frequency response H(e")
by letting z = ejw in the transfer function H(z) of the filter.

6. Design of IR filters

The ideal magnitude response, |[Ha (JW)| of the four basic types of analog filters are shown
in fig (a), (b), (c¢) and (d). The ideal magnitude response has sudden transition from
passband to stopband which is practically not realizable. Hence the ideal response is
approximated using a filter approximation function. The approximation problem is solved
to meet a specified tolerance in the passband and stopband. The shaded areas in the fig 7.1
shows the tolerance regions of the ideal frequency response. In the passband the magnitude
is approximated to unity within an error of dp . In the stopband the magnitude is
approximated to zero within an error of ds . Here the dp and ds are the limits of the
tolerance in the passband and stopband. The dp and ds are also called ripples. The
magnitude response of practical or approximated analog filters, [H(JW)| are shown in fig
7.1 (e), (), (g) and (h). The frequency repsonse of practical analog filter shows edges for
passband and stopband so that the tolerances are within specified limits. Now, the
specification of practical analog filter will be the following. W , = Passband edge frequency
in rad/second. W s = Stopband edge frequency in rad/second. Ap = Gain at passband edge
frequency As = Gain at stopband edge frequency.

Freguency selective filters: Ideal filter characteristics

Hae e Aol) ’

 ——— 0]
™

|
Swptang !

Figh : Nermoloed w
A

Fig'.2.6. Ideal filter characteristics
Impulse Invariant Transformation

The objective of impulse invariant transformation is to develop an IIR filter transfer
function whose impulse response is the sampled version of the impulse response of the
analog filter. The main idea behind this technique is to preserve the frequency response
characteristics of the analog filter. It can be stated that the frequency response of digital
filter will be identical with the frequency response of the corresponding analog filter if the
sampling time period T is selected sufficiently small (or the sampling frequency should
be high) to minimize (or avoid completely) the effects of aliasing.

| B LrnE o ERE 1

i+p,

Relation Between Analog and Digital Frequency in Impulse Invariant Transformation

Let, W = Analog frequency in rad/second.

w = Digital frequency in rad/sample

z = @
Digital frequency, w le or |Analog frequency, Q -l—l

Thus the mapping from the analog frequency W to the digital frequency w is many-to-

one. This reflects the effects of aliasing due to sampling.

Useful Impulse Invariant Transformation

! [L 1
" m- T
(s + p)™ {m = 1)! d@pt I — e Pilz
(& = a) 1 — e jeas BTy 2!
T s B al 1 X :
5+ ay + b | — Ze qeos bl + 7777 277
b e [zin bT) 2™
3] : P 1 1l 2
(3 + af + K 1 — 2& [eos bz + & E

Bilinear Transformation

The bilinear transformation is a conformal mapping that transforms the
imaginary axis of s-plane into the unit circle in the z-plane only once, thus avoiding
aliasing of frequency components. In this mapping all points in the left half of s-plane
are mapped inside the unit circle in the z-plane and all points in the right half of s-
plane are mapped outside the unit circle in the z-plane. The bilinear transformation
can be linked to the trapezoidal formula for numerical integration. Any analog

system is governed by a differential equation in time domain.

1
3 |—.r

T 1
In the s-domain transfer function, if "s" is substituted by the term '** the

resulting transfer function will be z-domain transfer function.

Relation Between Analog and Digital Filter Poles in Bilinear Transformation

The mapping of s-domain function to z-domain function by bilinear transformation is
a one to one mapping, that is, for every point in z-plane, there is exactly one
corresponding point in s-plane and vice versa. The transformation is accomplished

when,

" 3] . i LY
- Analog frequency, £ = T lan — - Dignal frequency, =2 1am" —

Specifications of Digital IIR Lowpass Filter

Let, H(e/W) = Frequency response of IIR filter.
|[H(ei")| = Magnitude response of IIR filter.

The magnitude response, |H(ei*)| of IIR filter will have a passband, transition band

and stop band.

The specification of the IIR filter can be expressed in any one of the following three

different ways.

Case i: Gain at passband and stopband edge frequency

Case ii : Attenuation at passband and stopband edge frequency
Case iii : Ripple at passband and stopband edge frequency

The gain can be expressed either in normal values or in decibels (dB). The
maximum value of normalized gain is unity and so the gain at band edge frequencies

will be less than 1. Therefore, the dB-gain will be negative.

Let, w, = Passband edge digital frequency in rad/sample.

w;s = Stopband edge digital frequency in rad/sample.

Ap = |H(eW)|w=wp = Gain (or magnitude) at passband edge frequency.
As = |H(ejw)|w=ws = Gain (or magnitude) at stopband edge frequency.

Ap,dB =20 log [|H(ejw)|w=wp] = dB-Gain (or dB-magnitude) at passband edge

frequency.

As,dB =20 log [|H(ejw)|w=ws] = dB-Gain (or dB-magnitude) at stopband edge
frequency. The gain in normal values can be converted to dB-gain or vice versa as

shown below.
Ap,dB =20 log Ap
A, = 10(Ap.dB/20)

As,dB =20 log As

A = 10(As,dB/20)

The attenuation is usually expressed in decibels (dB). Since the gain at edge
frequencies are less than 1, the attenuation in normal values will be greater than1,

and the dB-attenuation is positive.

1 X 2
Let,) === = Attenuation at passband edge frequency
f A H(e joo v
A (e*)
=0l

1 1

g, =—= § TCOE TR
A, |H(c“ il

= Attenuation at stopband edge frequency

o

i = 20log L |= 20log}

J = dB- Attenuation at passband edge frequency

= dB- Attenuation at stopband edge frequency

| 1
o, = 20log A = :mu;{l’m—"”,{_
LA IS

Ripple at passband and stopband edge frequency:

1
b] Poa
! A, &

A =8 o, = : =
A, B,

7. Transfer function of Analog Butterworth Lowpass Filter:

The analog filter transfer function of normalized and unnormalized butterworth
lowpass filters are given below.Let, N be the order of the filter. Let, H(sn) be the

normalized Butterworth lowpass filter transfer function. When N is even

1
l\,s.j-1,+|:|-,s.,1,+l

=T

His,) =

When N is odd,

M

1 S 1
His,)= :
o s"+JI.IIern+bk5n+I

K

where,b, = 2 aLn[M]
N

Table. Summary of Butterworth Lowpass Filter Normalized Transfer

Order,N MNormalized tansfer function,][(s-]

1
s, 1

1

2 S +1414s, +1

1
(8, + 1) (5458, +1)

1
(55 +0.7655, +1) (s, + 18485, +1)

1
(8, +1) (55 + 06185, +1) (55 + L618s, +1)

1
{52+ 19325, +1) (57 + 14145, +1) (55 +05185, +1)

Function

8.0rder of the Lowpass Butterworth Filter

In Butterworth filters the frequency response of the filter depends on the order, N
Hence the order N has to be estimated to satisfy the given specifications. Usually the
specifications of the filter are given in terms of gain at a passband and stopband

frequency. Let, Ap = Gain or Magnitude at a passband frequency W ;.

As = Gain or Magnitude at a stopband frequency W ;.

|1 .\fl 1 i lexg A8
tog | o | L0 1|
| {(VAS) -1 -]U”“)
Ny = g—=—0r—+—-=
o u[= N, =
%8| T : log :l
For bilinear transformation,
: N Q
Cutoff frequency, 2 = ————— o o 3
J c £ = {r}
2 :L) == tan—& - Il_—— =
R T 2 2
Alternatively, For impulse invariant transformation,
S Q
Cutoff frequency, Q = ——F— 0 = e ; Q.= 2
T T T
[.1 AR} 1F
where T is the sampling time.
Q,

Cutoff frequency, Q, = i
T

(ll.)l}lu_dg ll:

Alternatively,

L - Q,
Cutoff frequency, Q = .
(I(J“ lay, uB ~|]§

9. Design Procedure for Lowpass Digital Butterworth IR Filter
» The process of filter design begins with filter specifications which include the
filter characteristics (Lowpass, high-pass, band-pass, band-stop filter), filter
type, passband frequency, stopband frequency, transistion width frequency,
sampling frequency and filter length.)
» The second step is obtain filter response, H(w)
» Third step is to find the filter coefficient and acceptable filter.

» The last step is to implement filter coefficient and choose w appropriate filter

structure for filter implementation.
> There are 2 commons IR filter design
> 1. Butterworth (As the Filter Order, N increases, the transition band becomes
narrower).
> 2. Chebyshev Type
> The analog filter will be mapped to digital filter using transformation of s-domain to
z-domain. 2 methods to convert the analog filter to digital filter and vice versa;

> 1. Impulse Invariance method

N~

>
2. Bilinear Transformation method

I. Choose either bilinear or impulse invariant transformation, and determune e specifications of
equivalent analog filter. The gain or attennation of analog filter is same as digital filter. The band edge
frequencies are calculated wsing the following equations.

Let, W = Passhand edge analog frequency corresponding tow
W = Stopband edge analog frequency corresponding tow

For bilinear transformation,

u o Note - If either Tor F ix not
Q = % lan—;- specified then take T= 1 second.
)))
2 1 I
Q.- = lan% A If F is specified, then T 7

For impulse invariant transformation,

a =2

0 =

=

HlE o

1

2 Decide the order M of the filter. In order to estimate the order N, caleulate a parameter N | using the
following equation.

! [va] :I:|

og =
[vag)=1

N, = L L =

=ey

Choose N such that, N * N . Usually N is chosen as nearest integer just greater than N .

3. Determine the normalized transfer function, H(s) of the analog lowpass filter.
When N is even,

N
2 1
His,)= [] =———
k L]

When N is odd,

1 |
His)= I | -
ks s+ 1 :

Sy Llan+bl.lin+]

where, by, = 2sin] 20|

4. Calculate the analog cutofT frequency, W .

Cutoff frequency, Q = . S

[11,\f| IF

5 Determine the unnormalized analog transfer function His) of the lowpass filter.

His)=H(s,)| _=
"o,

When the order N is even, His) is obtained by letting s ® s/W_in equation (7.58).

=

i

S His)=

=
| ‘I:I vy
h + by s, + | s+ b Qs +

When the order N is odd, H(s) is obtained by letting s ® </W _in equation (7.59).

N=1

. 1T L N Q

- 1) sn+lhl-lI .‘iﬁ‘l‘bL.‘in‘l‘]l _s+ﬂ_. LI:'[|5:+I:>,,L£'1,_5+IJI_1
6. Determine the transfer function of digital filter, H(z). Using the chosen
transformation in step-1, transform H(s) to H(z). When impulse invariant

transformation is employed, if T < 1, then multiply H(z) by T to normalize the
magnitude.

7. Realize the digital filter transfer function H(z) by a suitable structure. 8. Verify the

design by sketching the frequency response H(ei%).

H{e!™) = H[.:}I

L=

10. Design of Lowpass Digital Chebyshev Filter

The analog Chebyshev filter is designed by approximating the ideal frequency
response using an error function. The approximation function is selected such that

the error is minimized over a prescribed band of frequencies.

l. Choose either bilinear or impulse invariant transformation, and determine the specifications of
equivalent analog filter. The gain or attenuation of analog filter is same as digital filter. The band edge
frequencies are calculated using the following equations.

Let, W_= Passband edge analog frequency corresponding to w .
W = Stopband edge analog frequency corresponding to w .

For bilinear transformation,

. o Note : If either Tor F_is not
0 = % lan—;- specified them take T= 1 sec.
r @ If F is specified, then T =
Q.= T LanT’ ' F,

‘r} -
0 =—L

T
ﬂ}:m’

T

2 Decide the order N of the filter. In order to estimate the order N, calculate a parameter N| using the
following equation. Choose N such that N 2 N . Usually N is chosen as nearest integer just greater than N .

sy -1
ench —|
| fag) -1)

h‘l = i b
cosh I|&|
.u|:|l

3. Determine the normalized transfer function H(s), of the filter.
When the order N is even,

o
= B
H(s,) = +
kol Sn+bs, + ¢

When the order N is odd,

S

H(S) = B(l g Bl

S+ C i s +b s+

where, b, = 2y, sm('-“:T”')

= v 212k - Hx
C, = yy t+ cos (T

Co™ ¥

w3 l(%-“')%*%r . [(:',,,,)i%}‘%

o =find)F
For even values of N, find B, such that,
H(0) = T
(1+ &)
For odd values of N, find B, such that,
H(0)~ 1

(Itis normal practice totake B » B, = B, ...~ B)).

k

4 Determine the unnormalized analog transfer function His) of the lowpass filter.

His)= His, JL‘_;

Here, W _= W= Passhand edge frequency.

When the order N is even, His) is obtained by letting & ® 2/W_in equation (7.88)
Iy

M
5 K 2
- H{!:j = lz[# :]zl Bkﬂc
It_lzlzl.liv]:rl‘:il.l+r|:||: l_|52+htﬂcs+|::kﬂ:

=D

When the order N is odd, H(s) is obtained by lefting s ® s/W _in equation (7.89).

MNe=1
B, B, ~ B, Q, B, 0
S+ gy o) S thy sty s+, 5 +b, Qs+ e 0F

2 His)=

e m—

T,

5 Determine the transfer function of digital filter, H(z). Using the chosen transformation,
in step- ltransform H(s) to Hiz). When impulse invariant transformation 15 employed, if T < 1, then
multiply H(z) by T to normalize the magnitude.

6. Realize the digital filter transfer function Hiz) by a suitable structure.

7. Verify the design by sketching the frequency response Hie™).

Hie!*®) = tl[.n'.||r s

TEXT / REFERENCE BOOKS:

o s

© N

John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,
Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall, 2009
Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,
McGrawHill Education, 4th Edition,2013

B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd
edition, 2009

Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010
Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,
3rd Edition,2010

Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.

A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th
Edition, 2012

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.séthyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION
ENGINEERING

UNIT - 111

SECA1506- Digital Signal Processing

UNIT Il Finite Word Length Effects

In digital representation the signals are represented as an array of binary
numbers, and the digital system employ a fixed size of binary called “word size or
word length” for number representation. This finite word size for number
representation leads to errors in input signals, intermediate signals in
computations and in the final output signals. In general, the various effects due to
finite precision representation of numbers in digital systems are called finite word
length effects.

Some of the finite word length effects in digital systems are given below.

- Errors due to quantization of input data.

- Errors due to quantization of filter coefficients.

- Errors due to rounding the product in multiplication.

- Errors due to overflow in addition.

- Limit cycles in recursive computations.

The two major methods of representing binary numbers are fixed point
representation and floating point representation.

Eixed point representation the digits allotted for integer part and fraction part are
fixed, and so the position of binary point is fixed. Since the number of digits is

fixed it is impossible to represent too large and too small numbers by fixed point
representation. Therefore the range of numbers that can be represented in fixed
point representation for a given binary word size is less when compared to floating
point representation.

In fixed point representation there are three different formats for representing
negative binary fraction numbers. They are,

1. Sign-magnitude format

2. One’s complement format

3. Two’s complement format

In sign magnitude format the negative value of a given number differ only in sign
bit (i.e., digit d0). The sign digit dO is zero for positive number and one for
negative number.

In one’s complement format the negative of the given number is obtained by bit
by bit complement of its positive representation.

In two’s complement format the negative of the given number is obtained by

taking one’s
complement of its positive representation and then adding one to the least
significant bit.

Eloating point representation the binary point can be shifted to desired position so
that number of digits in the integer part and fraction part of a number can be

varied. This leads to larger range of number that can be represented in floating
point representation.

Floating point number, Nt = M X2E

In various digital systems or computers, a variety of formats are employed for
floating point representation. The IEEE (Institute of Electrical and Electronic
Engineers) has proposed a standard format for floating point representation,
which is widely followed in digital computers. The IEEE-754 standard format for

32-bit single precision floating point number is shown in fig
31 30 23 22 0

S E M

1-bit field for sign ef number.

S =
E = B-bit field for expon ent.
M = 2 3-bit field for mantissa.

IEEE-754 format for 32-bit floating point num bher.
Fig 3.1 IEEE-754 format for 32 bit-floating point number

ison of Eixed Point and Eloating Poi ,

Fixed point representation

Floating point representation

1. In a b-bit binary the range of
numbers represented is less when
compared floating point representation.

1. In a b-bit binary the range of
numbers represented is large when
compared to fixed point
representation.

2. The position of binary point

2. The position of binary point

is fixed is variable.
3. The resolution is uniform 3. The resolution is variable
throughout

. | i

In fixed point or floating point arithmetic the size of the result of an operation (sum
or product) may be exceeding the size of binary used in the number system. In such cases
the low order bits has to be eliminated in order to store the result. The two methods of
eliminating these low order bits are truncation and rounding. This process is also referred
to as quantization via truncation and rounding. The effect of rounding and truncation is to

introduce an error whose value depends on the number of bits eliminated. The
characteristics of the errors introduced through either truncation or rounding depend on
the type of number representation. The truncation is the process of reducing the size of
binary number (or reducing the number of bits in a binary number) by discarding all bits
less significant than the least significant bit that is retained. In the truncation of a binary
number to b bits, all the less significant bits beyond b'™" bit are discarded. Rounding is the
process of reducing the size of a binary number to finite word size of b-bits such that the
rounded b-bit number is closest to the original unquantized number. The rounding process
consists of truncation and addition. In rounding of a number to b-bits, first the
unquantized number is truncated to b-bits by retaining the most significant b-bits. Then a
zero or one is added to the least significant bit of the truncated number depending on the
bit that is next to the least significant bit that is retained.

Pe, (€) o)
1
A A=2""°
-4 4 e
2 2
(b)
Pe ()
ki
A
A e

Probability density functions for (a) rounding; (b) truncation.

Fig 3.2 Probability density function for (a) rounding (b) Truncation
.

The decimal numbers that are encountered as filter coefficients, sum,
product, etc., in DSP applications will usually lie in the range of -1 to +1. When
“B” bit binary is selected to represent the decimal numbers, then 28 binary codes
are possible. Hence the range of decimal numbers has to be divided into 2B steps
and each step is represented by a binary code. Each step of decimal number is also
called quantization step.

. Quantization step size, = —g = = =75

~B-1 b

Where, R =Range of decimal number
B = Size of binary including sign bit

b =B — 1 = Size of binary excluding sign bit
Noise Variance (Power) D h ntization Error Signal

The quantized input signal of a digital system can be represented as a sum
of unquantized signal x(n) and error signal e(n) as shown in fig

E[n:ll
X ny

& 111 - i WL L "
- 1IN} = -+ hin}
x(n) — yin)) ¥in)
CLT1 system with LTI system with
unquantized input. quantized input.

Representation of input quantization noise in an LTI system.

Fig 3.3 Representation of input quantization noise in an LTI system.

In fig h(n) is the impulse response of the system and y(n) is the response or output
of the system due to input and error signal. The response of the system is given by
convolution of input and impulse response. For linear systems using distributive
property of convolution the response y¢(n) can be written as shown in equation
y¢(n) =xq(n) * h(n)
= [x(n) +e(n)] * h(n)
= [x(n) * h(n)] + [e(n) * h(n)]
Let, y¢(n) =y(n) +e(n)
where, y(n) = x(n) * h(n) = Output due to input signal x(n).
e(n) = e(n) * h(n) = Output due to error signal e(n).
The variance of the signal e(n) is called output noise power or steady state output
noise power (or variance) due to the quantization error signal. Using
autocorrelation function and the definition for variance of a discrete time signal,
the expression for output noise power is

M
-0y [”“F"i] '“‘]JJ“_IH_1’="
im])

where, piare poles of H(z) H(z) z* only the poles that lie inside the
unit circle in z-plane are considered.

Product Quantization Error

In realization structures of IR system, multipliers are used to multiply the signal
by constants. The output of the multipliers i.e, the products are quantized to finite
word length in order to store them in registers and to be used in subsequent

calculations. The error due to the quantization of the output of multiplier is
referred to as product quantization error.

The Noise Transfer Function (NTF) is defined as transfer function from the noise

source to the filter output (i.e., NTF is the transfer function obtained by treating
the noise source as actual input).

Q[a x(n)] = a x(n) + e(n)

Statistical model of fixed point product guantization.

Quantized product = Q[a x(n)] = a x(n) + e(n)
where, a x(n) = Unquantized product
e(n) = Product quantization error signal

Second-order direct form-1.

Product quantization noise models of IIR systems for direct form realization.
Fig 3.4 Product quantization noise models of IR systems for direct form
realization

The total steady state noise variance at the output of the system due to product
guantization errors is given by the sum of the output noise variances due to all the
Noise sources.

= Total output noise power due 10 product quantization error
(or Total roundofT noise power)

.} 2 o) Y

- 0

(6]

:Top ;lop ’

Limit Cycles

During periodic oscillations, the output y(n) of a system will oscillate between a
finite positive and negative value for increasing n or the output will become
constant for increasing n. Such oscillations are called limit cycles. These
oscillations are due to round-off errors in multiplication and overflow in addition.

Limit cycle oscillations are clearly unwanted (e.g. may be audible in speech/audio
applications)

Limit cycle oscillations can only appear if the filter has feedback. Hence FIR
filters cannot have limit cycle oscillations.

Types
1. zero input limit cycles
2. Overflow limit cycles

In recursive systems, if the system output enters a limit cycle, it will continue to
remain in limit cycle even when the input is made zero. Hence these limit cycles are
also called zero input limit cycles. In fixed point addition of two binary numbers
the overflow occurs when the sum exceeds the finite word length of the register
used to store the sum. The overflow in addition may lead to oscillations in the
output which is referred to as overflow limit cycles

In a limit cycle the amplitudes of the output are confined to a range of values,
which is called the dead band of the filter. For a first-order system described by
the equation, y(n) = ay(n-1) + x(n), the dead band is given by,

Dead band = £ to +
a 1 a 1 a

where, B = Number of binary bits (including sign bit) used to represent the
product. For a second-order system described by the equation, y(n) =aly(n - 1) +
a2 y(n - 2) + x(n), the dead band of the filter is given by,

- -B ~-B ~-B

Dead band = + to 4
I — |a, I — [a, I — |a,

Scaling to Prevent Overflow

The two methods of preventing overflow are saturation arithmetic and scaling the
input signal to the adder. In saturation arithmetic, undesirable signal distortion is
introduced. In order to limit the signal distortion due to frequent overflows, the
input signal to the adder can be scaled such that the overflow becomes a rare
event.

TEXT / REFERENCE BOOKS:

1. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,
Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,
2009

2. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,
McGrawHill Education, 4th Edition,2013

3. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd
edition, 2009

4. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010

5. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006

6. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,
3rd Edition,2010

7. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.

8. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th
Edition, 2012

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.séthyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION
ENGINEERING

UNIT - IV

SECA1506 - Digital Signal Processing

IV MULTIRATE SIGNAL PROCESSING

Intr ion to Multir ignal pr in

Single-rate systems: Sampling rates at the input and at the output and all internal
nodes are the same.

Multirate systems: DSP systems with unequal sampling rates at various parts of
the system.

The process of converting a signal from one sampling rate to another sampling
rate is called sampling rate conversion.
There are two ways for sampling rate conversion in the digital domain. They are,
1. Up-sampler/ Up- Converter/ Interpolator
2. Down-sampler/ Decimator / Sub-sample

Downsamplin r Decimation

Down sampling or decimation is the process of reducing the sampling rate by an integer
factor D.

Kfn]. E"Il:.n’} = KEDH’}
— 3

Fig.4.1 Decimator.

x(n) = Discrete time signal
D = Sampling rate reduction factor (and D is an integer)
Now, x(Dn) = Downsampled version of x(n)

W m] =af{mN]

A7) —“l N —

A] =amN]

:k,]':li “3131 23 0 1) QR
Keep only one
every N samples: T

3 2 2 \ I(5 $)L n

Fig 4.2 Time domaln representation of decimation

Spectrum of Down sampler

The spectrum of Down sampler is given by

5 G

1() _ Z X‘ (@ = 2nk) I)

k=0
Anti-aliasing Filter

When the input signal to the decimator is not bandlimited then the spectrum of decimated
signal has aliasing. In order to avoid aliasing the input signal should be bandlimited to p/D
for decimation by a factor D. Hence the input signal is passed through a lowpass filter with
a bandwidth of p/D before decimation. Since this lowpass filter is designed to avoid aliasing
in the output spectrum of decimator, it is called anti-aliasing filter.

Anti-akasing Down
fller sampler

—-Jn nﬂ—’J—-»

Fig 4.3 decimator with anti-aliasing filter.

Problem

sketch the spectrum of a down sampled signal for sampling rate reduction factor D =2, 3
and 4.

I K Y
Y(eiLU) - __1 Z X['e|lm—2nklf2,J

:_Xte|w!2:|+ Xl:eltm 2rr].|’2:|

lete'"'}|
|||!||||||||1||||||I||||| |||||I|||||||||||||||l||||||||||||||||||||||||||||||| |||||‘;”
—12n 11t 10 —9n —-Br —7Tn —4r -3 _ro On 1 12=n
Irg!
)({m'z
I |||||||||||| RN |'|\||| T
2x-Mn 10t 9 B 7 Gn -5m 4o - -2r © T 2t 3 4n B1 6n Tp B 9 10m 1n 12a
f‘ig.’.

ANWANAN

- - s — P(1)
CUELTTTTTT LT |||||m|l\ IH |II|I[]|||\ CCPTETTRRTTTEETEL T e e e e e ey e e ers 1™
0 T 2t 3n 4n S5m 6r 7n B8r 9n 10n MMrn 12n

42r 11n 10n 9n -8x -In -6n -t —4n 3n -2n X

Fig 3.

RSO RAA AR IRR RN ARARRRER Hlllls'

R 6xn -5n 4x 3n 2 X 0 n 2n 3n 4n

Fig. 4.4 spectrum of a down sampled signal for sampling rate reduction factor D =2

Problem

Consider the discrete time signal shown in fig 1. Sketch the down sampled version of the
signals for the sampling rate reduction factors, a) D =2b) D = 3.

x(n)={1,-1,1,-1,2,-2,2,-2,3,-3,3,-3}

Sampling rate reduction factor, D = 2.

x(2n) =x_,(n)=1{1,1,2,2,3,3}
Sampling rate reduction factor, D = 3.
x(3n) =x,,(n)={1,-1,2, -3}

4
X(n) 4 X :(n“; Xp(n) 4

o 1+ 234 5 ”"

x(n) decimated by 2 _]
’ x(n)decimated by 3.

Fig 4.5 Down sampled version of the signals for the sampling rate reduction factors D = 2

Upsampling (or Interpolation
The upsampling (or interpolation) is the process of increasing the samples of the discrete

time signal.
Let, x(n) = Discrete time signal
I = Sampling rate multiplication factor (and I is an integer).
The device which perform the process of upsampling is called upsampler (or interpolator).
Symbolically, the upsampler can be represented as shown in fig
yim =4 |

Fig 4.6 interpolator
Up sampling or interpolation is the process of increasing the sampling rate by an integer
factor I.

Up-Sampled Output of Signal
Input Ssgnal 18

16 @ 16 ®
7] ™ " ¢
12 ® ¢ P

% 10 g0 >

Fig 4.7 Time domain representation of interpolator

x(w)

‘ p " Input
/—\ / / \ / spectrum
N/ / /)

Y(w) ot OUtpUt
spectrum
for L=2

Fig 4.8 Spectrum of a upsampled signal for sampling rate reduction factor L =2
Anti-imaging Filter

The output spectrum of interpolator is compressed version of the input spectrum,
therefore, the spectrum of upsampled signal has multiple images in a period of 2p. When

upsampled by a factor of I, the output spectrum will have | images in a period of 2p, with
each image band limited to p/I. Since the frequency spectrum in the range 0 to z/l. are
unique, we have to filter the other images. Hence the output of upsampler is passed
through a lowpass filter with a bandwidth of n/I. Since this lowpass filter is designed to
avoid multiple images in the output spectrum, it is called anti-imaging filter.

Anti-imaging

Fig 4.9. Interpolator with anti-imaging filter.

Poly phase implementation of FIR filters for interpolator and decimator

Potential computational savings can be made within the process of decimation,
interpolation, and sampling-rate conversion. Polyphase filters is the name given to certain
realisations of multirate filtering operations, which facilitate computational savings in both
hardware and software.

Polyphase Structure of Decimator

In decimator, a lowpass filter called anti-aliasing filter is employed at the input in order to
bandlimit the input signal, so that aliasing is avoided in the output spectrum of decimator.
In order to reduce the computations in FIR filter, polyphase decomposition can be applied
to FIR filter to decompose into L sub-filters.

e e i = i i i i i ey

Fig 4.10 decimator with antialiasing filter

I G
Ijz Identity 15
L +) x(n) - - v xn) - - y(n)
X(z) Y(z) - X(z) Y{z)

Fig 4.11 Decimator with antialiasing filter further deduction of fig 4.10 using identity.

Polyphase Structure of Interpolator

In interpolator, a lowpass filter called anti-imaging filter is employed at the output in order to
eliminate the multiple images in the output spectrum of interpolator.

(2]

Anti-imaging
Interpala tar fillar

Xy} L]0 ey =

. Interpolator with
anti-imaging filter.

Fig 4.12 Interpolator with antialiasing filter

X{z)

Fig 4.11 Interpolator with antialiasing filter further deduction of fig 4.12 using identity

Sampling rate conversion

A common use of multirate signal processing is for sampling-rate conversion. Suppose a
digital signal x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled
at an interval T2. Then the techniques of decimation and interpolation enable this
operation, providing the ratio T1/T2 is a rational number i.e. L/M.

Sampling-rate conversion can be accomplished by L-fold expansion, followed by low-pass
filtering and then M-fold

Decimation, It is important to emphasis that the interpolation should be performed first
and decimation second, to preserve the desired spectral characteristics of Xx[n].
Furthermore by cascading the two in this manner, both of the filters can be combined into
one single low-pass filter.

Sampling-rate Low-pass Sampling-rate
expander filter COMmpresso
ol 1 1w 1 3]
F. LF.

Fig 4.12.Sampling-rate conversion by expansion, filtering, and decimation

An example of sampling-rate conversion would take place when data from a CD is
transferred onto a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To
enable this process the non-integer factor has to be approximated by a rational number:

L_ 48 160) osgas
M 441 147

Design of narrow band filters

A common need in electronics and DSP is to isolate a narrow band of frequencies from a
wider bandwidth signal. For example, you may want to eliminate 60 hertz interference in
an instrumentation system, or isolate the signaling tones in a telephone network. Two types
of frequency responses are available: the band-pass and the band-reject (also called a notch
filter). Figure 4.13 shows the frequency response of these filters,

15

I I I I I I I I
| a. Band-pass fraquency response | b. Band-reject frequaency response |
BW=0.0066
" 10 o 10
E E
= = BEW=0.033
g g
< [=<4
0.5 o single staze 0.5
Bw=ponss |] Cascade of
| three stamas
! !
o0 | 0.0 !
] &l 0.z 03 0= 05 o 0.1 0z 0.3 0.4 05
Freguency Fregoency

Figure 4.13 shows the frequency response of narrow band filters

Applications of Multirate signal processing
Applications of Multirate DSP Systems

Multirate signal processing is employed in the following systems.

1. Sub-band coding of speech signals and image compression

2. QMF (Quadrature Mirror Filters) for realizing alias-free LTI multirate systems

3. Narrowband FIR and IIR filters for various applications

4. Digital transmultiplexers for converting TDM (Time Division Multiplexed) signals to
FDM (Frequency Division Multiplexed) signals and vice versa

5. Oversampling A/D (Analog-to-Digital) and D/A (Digital-to-Analog) converters for high
quality digital audio systems and data loggers (or digital storage systems)

6. In digital audio systems the sampling rates of broadcasted signal, CD (Compact Disc),
MPEG (Motion Picture Expert Group) standard CD, etc., are different. Hence to
access signals from all these devices, sampling rate converters are needed in digital
audio systems.

7. In video broadcasting the American standard NTSC (National Television System

Committee) and European standard PAL (Phase Alternating Line) employ different
sampling rates. Hence to receive both the signals sampling rate converters are needed

in video receivers.

Advantages of Multirate Processing
The advantages of multirate processing of discrete time signals are given below.

1. The reduction in number of computations

2. The reduction in memory requirement (or storage) for filter coefficients and
intermediate results.
3. The reduction in the order of the system

4. The finite word length effects are reduced

Digital Filter Banks
A digital filter bank is a set of bandpass filters. The digital filter banks can be classified

into two types. They are,
i) Analysis filter banks
i) Synthesis filter banks

Analysis Filter Banks

An analysis filter bank is a set of bandpass filters with common input. The analysis
filter bank is used for spectrum analysis in which a signal is divided into a set of sub-band
signals. The analysis filter bank consists of M numbers of sub-band filters so that the input
signal x(n) is divided into M-numbers of sub-band signals.

x(n)

Figure 4.14 Analysis filter banks
Synthesis Filter Bank
A synthesis filter bank is a set of bandpass filters used to combine or synthesis a number of
sub-band Signals into a single composite signal as shown in fig 9.31. The synthesis filter
accepts M-numbers of sub-band signals wo(n), wl(n), w2(n), wM-1(n), combined to give
a signal, y(n). In fact the synthesis filter bank perform the reverse process of analysis filter
bank.

10

Figure 4.15 Synthesis Filter Bank

Applications of Multirate signal processing

In the digital audio industry, it is a common requirement to change the sampling rates
of band-limited sequences. This arises for example when an analog music waveform x,(t) is
to be digitized. Assuming that the significant information is in the band 22 kHz a
minimum sampling rate of 44 kHz is suggested. It is, however, necessary to perform analog
filtering before sampling to eliminate aliasing of out-of-band noise. Now the requirements
on the analog filter it should have a fairly flat passband and a narrow transition band (so
that only a small amount of unwanted energy is let in). Optimal filters for this purpose
(such as elliptic filters, which are optimal in the minimax sense) have a very nonlinear
phase response around the bandedge (i.e., around 22 kHz). In highquality music this is
considered to be objectionable. A common strategy to solve this problem is to oversample
X,(t) by a factor of two (and often four). Further applications of multirate filter banks in

digital audio are Subband Coding of Speech and Image Signals.

b-band Coding of Speech Siqnal

In sub-band coding of speech signals, the speech signal is divided into sub-bands,
decimated, encoded and transmitted to the receiver system. On the receiver side the
subband signals are decoded, interpolated and synthesized into the original speech signal.
The figure below shows the subband coding of speech signal.

In the transmission side, the input signal is split into M-numbers of non-overlapping
frequency bands using an analysis filter bank consisting of M-numbers of bandpass filters.

The output of each bandpass filter is decimated by a factor of D. The output of decimators

11

are encoded and transmitted. On the reception side, the received sub-band signals are
decoded and then interpolated to recover the missing samples. The output of interpolators
are applied to a synthesis filter bank consisting of M-numbers of bandpass filters to recover
the original signal.

Bandpass -
T
Bandpass =
Speech Signal = i >T|E1i§:|;lll:tﬂl.r: .i.:';-l.'a"ld
: st e
1
1
!
Bandpass =
—*_tiers
Bandpass
r (4] fer-1
Bandpass Synthe
D ecosdar o 5 yhthesized
Reczived M sub-band < : !
Speech Sigmna : :
i
i |
! i
i |
|

—l——— Bandpass
hal ﬂl filb=r-M

Figure 4.16 Sub-bands Coding of Speech Signals.

Speech compression

The processing of speech involves the analysis, coding, decoding, and synthesis of
speech sounds. The speech analyzer consists of normalizers, syllable, segmenters, sound
recognizers, sequencers, adapters, and memories which convert the speech elements into a
code. The speech synthesizer converts the code to speech by reproducing prerecorded
speech elements. There are many applications for the speech analyzer and synthesizer
ranging from limited vocabulary to complete communication systems. The most important
systems for the communication of speech information are the telephone, phonograph,
radio, sound motion picture, and television.

The main objective in the analysis of speech as applied to communication systems is to
provide a savings in the channel capacity required for transmission.e There are several
considerations involved in the use of the different speech elements in communication

systems as follows: the bit rate for the transmission of speech, the segmentation of speech,

12

the analysis of speech, the synthesis of speech. In order to analyze the different types of
speech, there must be some means for the segmentation of the flow of speech. The
segmentation involves sentences, word , syllables and phonemes.

Segmentation of speech into syllables reduces the number of speech segments and
Reduction of bandwidth. In conventional speech processing applications, speech signal is
encoded using fixed number of bits over the entire speech signal band. During the process,
the bandwidth requirement for speech transmission is relatively high which is of concern.
The QMF (Quadrature Mirror Filter) banks are the fundamental building blocks for
spectral splitting. The aim is to design a QMF filter and then pass a speech signal through
it. In speech signals most of the energy is present in the lower frequency bands. Signal
coding is the act of transforming the signal at hand to a more compact form, which can
then be transmitted with considerably smaller memory. The motivation behind this is the
fact that access to the unlimited amount of bandwidth, which is not possible.

Therefore there is a need to code and compress speech signals. By taking advantage of the
fact that most of the energy is present in a particular frequency band we can split the signal
into various bands depending on the information content and then code the subband
signals separately. The basic theory of multirate digital signal processing is introduced in
this section along with the two Sampling rate alteration devices namely up-sampler and

down-sampler.

liminati i f]

Multirate digital signal processing has a very important role in sub band coding of
speech, audio ,video and multiple carrier data transmission because of the high
computational efficiency of the multirate algorithms. The performance of a filter bank
based interference detection and suppression method to extract the original speech from
the interference contaminated speech using the perfect reconstruction (PR) property of the
Cosine Modulated filter bank.

13

o L]
TIME iN SECONDS

{
I '
Y g i b =l

.|

e
11T 7t

| -

FingY
INTRA

LapIC Paust

ADY STATE

INTRA

SYLLABIC PaUSE

AL I

Ay

|

0 22 04 o8
TIME IN SECONDS

1
o]

ACCUSTIC SyLLABLE

SECONS
ACOUSTIC SYLLABLE

ST ACOUSTIC SyLLABLE

AMPLITUDE

"START"

Figure 4.17 Segmentation of speech into syllables

"ANALYSIS SYNTHESIS
Ho(2) N1 I'N Gulz)
L IpD
C E
Hy®) N1 s S N G ™
E D e
R
1 8@ N1 . 1N Gul®
— He® N1 iw mElslN =
R T e w RECONSTRUCTION

SAMPLING

FILTER BANK

Figure 4.18 QMF filter

Amplitude

Ame

1o 4B

Figure 4.19 Sampled output of speech signal.

Xe(n) Vo(n)
—»| Holz) —» i‘\'o >

Xl(ll) \'l(l\)
S }—i‘(z) ‘_.$ Ny F—»
xaea(1) Vaa(n)
| Huea(2) iNu. —

Figure 4.20 Cosine modulated filter bank.

il I 4 |
e | |]| ,v
‘ | | 1 |
:T |
AV ' .4 v
- w LU 1200 14 | & 1500
Frequency m Hz

Neealond Fraquency(Pinadsmy smple

Figure 4.21 Signal with added interference

15

Figwe Spectnun of the wterference sdded ugnal

Arvp Iy de
- —————

Figure 4.22 Simulated response of speech process.
The interference suppressor is a critically sampled filter bank system. Modulated filter

banks are used to form analysis-synthesis filter banks that divide the received signal into
several channels (analysis part), and reconstruct the original signal from the sub-channels
(synthesis part). When a signal with added interference is applied to the analysis filter
banks, the signal interference appears at the output of one of the filter banks. The
spectrum of each sub band signal is estimated to identify the interference bands. For
interference suppression, the sub channels affected by the interference are not included in

the synthesis filter bank, resulting in notch filtering

jantive il

The goal of adaptive filters are to maintain or derive desired output signal characteristics
from a FIR or IIR filter. This goal is obtained via a feedback loop structure that feeds
measure of undesired signal characteristics (error) to the filter under consideration and
subsequently the filter updates its filter kernel with the fed coefficients to generate or
maintain the desired output signal characteristics. The calculation of new coefficients based

on the error signal feedback which is to be minimized is powered by some adapting

16

algorithms. The error is defined as the deviation of output signal from the desired signal
characteristics, such that, where d(n) is the desired signal, y(n) is the output signal and e(n)

IS the error signal, then the following formulas holds.

N—1

Yo = D W) x(n —)

=0

To derive the desired signal from the system, we first have to measure the error signal
through finding out mathematical correlation between samples of output signal and desired
signal. In short, from a higher point of view, this error signal is measured by subtracting
the first signal from the latter signal. Then, this error signal is optimally minimized via

updating operating filter’s coefficients through a live feedback loop.

The use of adaptive filters can be divided majorly into two groups. Firstly, to
continuously maintain the output signal unchanged from a running filter. Secondly, to
approximate a desired signal from the output signal of a filter. These both approach use the
same fundamental structure of the adaptive filter but they varies in terms of orientation

and applications.

Adaptive filters can be mainly structurally realized into two ways, namely, spatially
and functionally. Spatial structure discusses about the organization of filter components
without restricting corresponding filters desired functional output. On the other hand,
functional structure discusses about the functional role of the sub-systems of each adaptive
filter.

The most common used structure are direct form, cascade form, parallel form and

lattice. Transversal layout of adaptive filters are most commonly used, however, lattice

layout is also used when its advantages overrides the advantages of transversal layout.

17

Figure 4.23. Spatial Structure or Block Diagram

Error signal is the difference between output signal and desired signal. That is to say
that, error signal is the amount of signal component that adaptive filter optimally removes

when it converges and thus arriving at the desired condition.

Adaptive control algorithm is the algorithm that adaptive filter uses to iteratively
calculate the new coefficients that optimally reduces the power of error signal. The choice
of adaptive control algorithm depends on the data class, memory resources, computational
time, energy requirements and overall cost. The L-MSE and LSE are two commonly used

algorithm to calculate the updated coefficients.

ical | .

The musical sound generated by a musical instrument is due to mechanical vibrations
produced by a primary oscillator and then making other parts of the instrument to vibrate.
For example, in a violin the primary oscillator is a stretched piece of string and it is
vibrated by drawing a bow across it, which in turn vibrates the wooden body of the violin,
and these vibrations make the surrounding air to vibrate, which produces the musical

sound.

18

) |mh@m

»{ Decimator
mod — .
[Singlebit PCM code
stream
(- 20kHz 101MH: BkH:

Figure 4.24. High quality Analog to Digital conversion for digital audio

- Dusc 441 kHz 3528 kHz Speaker
/1\
.'—0_'\
S S> 14-but Low pass
» DAC filter
Oversampling
Laser EMF Error and time x8
Pickup [demodulation commection | digital

filter
| 14-bat Low-pass
M DAC [filter »

Figure 4.25. Multirate systems are used in a CD player when the music signal is converted
from digital into analog

Digital Music Synthesis: Music synthesis plays an important role in multimedia

applications, modern entertainment, and professional music systems. The various music
synthesis techniques used in the commercial systems are wavetable synthesis, spectral
modeling synthesis, nonlinear synthesis (or FM synthesis) and physical modeling
synthesis. In wavetable synthesis method, the digital data of one period of the desired
musical tone is stored in a table called wavetable. Then, using an IIR filter with no input
and the stored data as initial condition, the musical signal is constructed whenever needed.
In spectral modeling synthesis, the mathematical equation representing the sound signal is
used to generate the required music. The musical sound can be represented by an equation
consisting of summation of sinusoidal signals. A musical tone consists of a fundamental

tone frequency and its harmonics. Using suitable signal generation algorithm, the desired

19

musical tone can be generated. In nonlinear synthesis, the musical sound signal is
represented as a nonlinear frequency modulated sinusoidal signal containing a
fundamental frequency and harmonics of modulating signal. Using signal generation
algorithm, various musical tones can be generated for various fundamental frequency. This
method cannot be used to generate musics of natural instruments. In physical modeling
synthesis, a model of musical instrument like transfer function is constructed and the
system model is implemented in a digital hardware, that can be used to generate the musics

of an instrument.

The recording of musical programs are generally made in an acoustically inert studio. The
sound of each instrument is separately recorded using microphones placed closed to it and
then they are mixed using mixing system by a sound engineer. During mixing phase,
various audio effects are artificially generated using signal processing circuits and devices.
The modern trend is to use digital signal processing for these applications. Some of the
special effects that can be implemented during mixing process are echo generation,
reverberation, and chorus generation. Also, the musical sound signals can be passed

through equalizers to provide amplification or attenuation of some of the tone frequencies

Image enhancement,

The Mach band phenomenon is a good example of this property of the HVS. In an
Image 21 consisting of adjacent rectangular bands of different gray levels (called Mach
band), the perceived gray level near the edges is different than in the middle of the
rectangles. The edge near the darker band appears lighter and the one near the lighter

band appears darker than the middle of the rectangle.
For 2-D signals (images) only, however the concepts can be extended to M-D signals. A

2-D analog signal x a(t) is a function of the variable t which can be defined as a column

vector

20

it b Ty 5 Tos ty i T T ny
Ty = & LN
Ty Tea t2 Ty Tx n2

D is the sampling matrix made up of sampling vectors T1 and T2

The matrix D that generates LAT(D) is not unique and the lattice may or may not be
separable. A separable lattice is a lattice that can be represented by a diagonal matrix. For
example, the rectangular lattice has a sampling matrix form of Dr and matrix Dh can

generate a hexagonal sampling lattice.

T 0O
D, = T T
0 T | Dr=
Tnn -T2
- = - 1
- ® - - - (Ol
(2] - (Lo - S -
- (O] - - - @
© - @ ° ® -
- (O] - - - ©
® - O]} - 5] 04
- [- ® - &

L

Figure 4.26 Hexagonal resampling and decimation by 2 of a rectangular grid

21

(@)

Figure 4.27 Frequency domain support for hexagonal decimation filters: (a) Hex
decimation by 2 (b) Hex decimation by 4

(b)

x{n,m)
——

H-Z)

H(Z)

1 -
e e Band Y |

va-—)—

4

H-2)

e e Band 2

E5)
— Band 3

L—;—MQ

2

—

J—

Figure 4.28 Two-dimensional separable QMF bank system.

HD)
%

HED

Figure 4.29. Two-dimensional non-separable filter bank system

Original

signnll
@ [I

BO B1 B2 B3

B3

- H
L BO|B1| B2 B3
«> = B3 l l I l l
L H =
B2 O w8 Iwa T2

BO 1 =

L stands for lowpass branch and H stands for highpass branch
Figure 4.30. 1-D Subband decomposition structures.

TEXT / REFERENCE BOOKS:

o O b

oo

. John G. Proakis & Dimitris G.Manolakis, “Digital Signal Processing - Principles,

Algorithms & Applications”, Fourth Edition, Pearson education / Prentice Hall,
2009

. Sanjit K. Mitra , Digital Signal Processing: A Computer - Based Approach,

McGrawHill Education, 4th Edition,2013

. B.P.Lathi, “Signal Processing & Linear systems”, Oxford University Press, 2nd

edition, 2009

. Lyons, “Understanding Digital Signal Processing”, Prentice Hall, 3rd edition, 2010
. Johny R. Johnson, “Introduction to Digital Signal Processing”, PHI, 2006
. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, Pearson,

3rd Edition,2010

. Salivahanan, “Digital Signal Processing, 2nd Edition, TMH, 2010.
. A.Nagoor Kani, “Digital Signal Processing”, Tata McGrawHill Education, 4th

Edition, 2012

23

¢ “!j‘

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION
ENGINEERING

UNIT -V
DIGITAL SIGNAL PROCESSING -SECA1506

V.REALTIME DIGITAL SIGNAL PROCESSING

1 Introduction

Digital Signal Processors (DSPs) are microprocessors with the following
characteristics:

a) Real-time digital signal processing capabilities. DSPs typically have to
process data in real time, i.e., the correctness of the operation depends
heavily on the time when the data processing is completed.

b) High throughput. DSPs can sustain processing of high-speed streaming
data, such as audio and multimedia data processing.

c) Deterministic operation. The execution time of DSP programs can be
foreseen accurately, thus guaranteeing a repeatable, desired performance.

d) Re-programmability by software. Different system behavior might be
obtained by re-coding the algorithm executed by the DSP instead of by
hardware modifications.

DSPs appeared on the market in the early 1980s. Over the last 15 years they
have been the key enabling technology for many electronics products in fields
such as communication systems, multimedia, automotive, instrumentation and
military. Table 1 gives an overview of some of these fields and of the
corresponding typical DSP applications.

Figure 5.1 shows a real-life DSP application, namely the use of a Texas
Instruments (T1) DSP in a MP3 voice recorder—player. The DSP implements the
audio and encode functions. Additional tasks carried out are file management, user
interface control, and post-processing algorithms such as equalization and bass
management.

Table 1: A short selection of DSP fields of use and specific applications

Field

Application

Video conferencing / phone

Broadband | VVoice / multimedia over IP
Communication Digital media gateways (VOD)
i Satellite phone
Wireless
Base station
. Biometrics
Security

Consumer

Video surveillance

Entertainment

Digital still /video camera

Digital radio

Portable media player / entertainment
console

Interactive toys

Toys
Video game console
MRI
Medical Ultrasound
X-ray
) Scanner
Industrial and Point of sale . :
entertainment Vending machine
Factory automation
Industrial Industrial / machine / motor control

Vision system

Military and aerospace

Guidance (radar, sonar)

Avionics

Digital radio

Smart munitions, target detection

< s ROM
LCD Display LED CTLR — n
“ GPIO Flash
Keypad = .,_. » md EMIFS S‘O"’gc_
Stereo <
Headphones @O
DSP
Mono Speaker [:_] - Q_ e =
Audio 25 McBSP
Microphone @\ »| CODEC
Input
Stereo Audio/ SPI MM | Smart Card
Audio Line In g McBSP c/so { MMCSD |
Audio CODEC/ LED/) “‘;E""
Main/Core Audio Amp LCD Supply Supply g | "’“:“"'
nterface
- DC/DC Linear DC/DC Sync P Amplifier
Battery (p—» |Step-Down Regulator Boost Boost Charger B Logic
‘ Converter (LDO) Converter Converter 3 Power
&3 ADC/DAC
Power Management Otha:

Fig. 5.1: Use of Texas Instruments DSP in a MP3 player/recorder
system. Picture courtesy of Texas Instruments from www.ti.com.

Use in accelerators

DSPs have been used in accelerators since the mid-1980s. Typical uses include
diagnostics, machine protection and feedforward/feedback control. In diagnostics,
DSPs implement beam tune, intensity, emittance and position measurement systems.
For machine protection, DSPs are used in beam current and beam loss monitors.
For control, DSPs often implement beam controls, a complex task where beam
dynamics plays an important factor for the control requirements and
implementations. Other types of control include motor control, such as collimation
or power converter control and regulation.

DSPs are located in the system front-end. Figure 5.2 shows CERN’s
hierarchical controls infrastructure, a three-tier distributed model providing a clear
separation between Graphical User Interface (GUI), server, and device (front-end)
tiers.

DSPs are typically hosted on VME boards which can include one or more
programmable devices such as Complex Programmable Logic Devices (CPLDs) or
Field Programmable Gate Arrays (FPGASs). Daughtercards, indicated in Fig.5.2 as
dashed boxes, are often used; their aim is to construct a system from building blocks
and to customize it by different FPGA/DSP codes and by the daughtercards type.
DSPs and FPGAs are often connected to other parts of the system via low-latency
data links. Digital input/output, timing, and reference signals are also typically
available. Data are exchanged between the front-end computer and the DSP over
the VME bus via a driver.

http://www.ti.com/

5 MATLAB Java application LabView
o [CMW Java client || {[CMW Java client | ||CMW C++ client|
5 afs
2 {< Controls MiddleWare (CMW) >
é J L

r T =

CMW server £ 2
@ Real Time Task - 2
Q - 5 E
S Driver 20
[4 e wo
D m
DIGITAL I/O,

DIGITAL I/O,

LOW-LATENCY DATA LINKs, LOW-LATENCY DATA LINKs

RF REFERENCES, TIMINGS

FROM MACHINE TO MACHINE

Fig.5.2: Typical controls infrastructure used at CERN and DSP
characteristics location

2 DSP evolution and current scenery

DSPs appeared on the market in the early 1980s. Since then, they have undergone
an intense evolution in terms of hardware features, integration, and software
development tools. DSPs are now a mature technology. This section gives an
overview of the evolution of the DSP over their 25-year life span; specialized terms
such as ‘Harvard architecture’, ‘pipelining’, ‘instruction set’ or ‘JTAG’ are used.

DSP evolution: hardware features

In the late 1970s there were many chips aimed at digital signal processing; however,
they are not considered to be digital signal processing owing to either their limited
programmability or their lack of hardware features such as hardware multipliers.
The first marketed chip to qualify as a programmable DSP was NEC’s MPD7720, in
1981: it had a hardware multiplier and adopted the Harvard architecture. Another
early DSP was the TMS320C10, marketed by TI in 1982. Figure 5.3 shows a

selective chronological list of DSPs that have been marketed from the early 1980s
until now.

From a market evolution viewpoint, we can divide the two and a half decades
of DSP life span into two phases: a development phase, which lasted until the early
1990s, and a consolidation phase, lasting until now. Figure5.3 gives an overview of
the evolution of DSP features together with the first year of marketing for some DSP
families.

TMS320C10 ADSP ;“2 XX TMS320C40 TMS320C62xx TMS320C67XX
MPD7720 " TigerSH
TMS320C54xx ‘
= -
1980 1990 2000 [>
= = =
DEVELOPMENT CONSOLIDATION
* Harvard architecture = Parallel architectures
= Data format: = Many on-chip peripherals
« early '80s: fixed point = Multiprocessing support
« late '80s: floating point = Late '90s: improved debug capabilities
(often non IEEE). (ex: TI RTDX)
= DMA = Fewer manufacturers
» Fixed-width instruction set = Wider/few families (code compatibility).
= Specialised families.

Fig.5.3: Evolution of DSP features from their early days until now.
The first year of marketing is indicated at the top for some DSP
families.

During the market development phase, DSPs were typically based upon the
Harvard architecture. The first generation of DSPs included multiply, add, and
accumulator units. Examples are TI’s TMS320C10 and Analog Devices’ (ADI)
ADSP-2101. The second generation of DSPs retained the architectural structure of
the first generation but added features such as pipelining, multiple arithmetic units,
special address generator units, and Direct Memory Access (DMA). Examples
include TI’s TMS320C20 and Motorola’s DSP56002. While the first DSPs were
capable of fixed- point operations only, towards the end of the 1980s DSPs with
floating point capabilities started to appear. Examples are Motorola’s DSP96001
and TI’s TMS320C30. It should be noted that the floating-point format was not
always IEEE-compatible. For instance, the TMS320C30 internal calculations were
carried out in a proprietary format; a hardware chip converter. was available to
convert to the standard IEEE format. DSPs belonging to the development phase
were characterized by fixed-width instruction sets, where one of each instruction
was executed per clock cycle. These instructions could be complex, and
encompassing several operations. The width of the instruction was typically quite
short and did not overcome the DSP native word width. As for DSP producers, the
market was nearly equally shared between many manufacturers such as AT&T,
Fujitsu, Hitachi, IBM, NEC, Toshiba, Texas Instruments and, towards the end of
the 1980s, Motorola, Analog Devices and Zoran.

During the market consolidation phase, enhanced DSP architectures such as
Very Long Instruction Word (VLIW) and Single Instruction Multiple Data (SIMD)
emerged. These architectures increase the DSP performance through parallelism.
Examples of DSPs with enhanced architectures are TI’s TMS320C6xxx DSPs, which
was the first DSP to implement the VLIW architecture, and ADI’s TigerSHARC,
that includes both VLIW and SIMD features. The number of on-chip peripherals
increased greatly during this phase, as well as the hardware features that allow
many processors to work together. Technologies that allow real-time data exchange
between host processor and DSP started to appear towards the end of the 1990s.
This constituted a real sea change in DSP system debugging and helped the
developers enormously. Another phenomenon observed during this phase was the
reduction of the number of DSP manufacturers. The number of DSP families was
also greatly reduced, in favour of wider families that granted increased code
compatibility between DSPs of different generations belonging to the same family.
Additionally, many DSP families are not ‘general- purpose’ but are focused on
specific digital signal processing applications, such as audio equipment or control
loops.

DSP evolution: device integration
Table 2 shows the evolution over the last 25 years of some key device characteristics
and their expected values after the year 2010.

Table 2: Overview of DSP device characteristics as a function of time.
The last column refers to expected values.

\P&L 198 1990 2000 > 2010
Characteristic 0
Wafer size [inches] 3 6 12 18
Die size [mm] 50 50 50 5
Feature [um] 3 0.8 0.1 0.02
RAM [Bytes] 256 2000 3200 1

0 million

Clock [MHZz] 20 80 1000 10000
frequency
Power [MW/MIPS]| 250 125 0.1 0.001
Price [USD] 150 15 5 0.15

Wafer, die, and feature sizes are the basic key factors that define a chip
technology. The wafer size is the diameter of the wafer used in the semiconductor
manufacturing process. The die size is the size of the actual chips carved up in a
wafer. The feature size is the size of the smallest circuit component (typically a
transistor) that can be etched on a wafer; this is used as an overall indicator of the
density of an Integrated Circuit (IC) fabrication process. The trend in industry is to

8

go towards larger wafers and chip dies, so as to increase the number of working
chips that can be obtained from the same wafer; also called yield. For instance, the
current typical wafer size is 12 inches (300 mm), and some leading chip maker
companies plan to move to 18 inches (450 mm) within the first half of the next
decade. (It should be added that the issue is somewhat controversial, as many
equipment manufacturers fear that the 18 inches wafer size will lead to scale
problems even worse than for the 12 inches.) Feature size is decreasing, allowing
one to either have more functionality on a die or to reduce the die size while keeping
the same functionality. Transistors with smaller sizes require less voltage to drive
them; this results in a decrease of the core voltage from 5 V to 1.5 V. The 1/O voltage
has been lowered as well, with the caveat that it remains compatible with the
external devices used and their standard. A lower core voltage has been one of the
key factors enabling higher clock frequencies: in fact, the gap between high and low
state thresholds is tightened thus allowing a faster logic level transition.
Additionally, the reduced die size and lowered core voltage allow lower power
consumption, an important factor for portable or mobile system. Finally, the global
cost of a chip has decreased by at least a factor 30 over the last 25 years.

The trend towards a faster switching hardware (including chip over-clocking)
and smaller feature size carries the benefit of increased processing power and
throughput. There is a downside to it, however, represented by the electromigration
phenomenon. Electromigration occurs when some of the momentum of a moving
electron is transferred to a nearby activated ion, hence causing the ion to move from
its original position. Gaps or, on the contrary, unintended electrical connections can
develop with time in the conducting material if a significant number of atoms are
moved far from their original position. The consequence is the electrical failure of
the electronic interconnects and the consequent shortened chip lifetime.

DSP evolution: software tools

The improvement of DSP software tools from the early days until now
has been spectacular.

Code compilers have evolved greatly to be able to deal with the underlying
hardware complexity and the enhanced DSP architectures. At the same time, they
allow the developer to program more and more efficiently in high-level languages as
opposed to assembly coding. This speeds up considerably the code development time
and makes the code itself more portable across different platforms.

Advanced tools now allow the programming of DSPs graphically, i.e., by
interconnecting pre-defined blocks that are then converted to DSP code. Examples
of these tools are MATLAB Code Generation and embedded target products and
National Instruments' LabVIEW DSP Module.

High-performance simulators, emulator and debugging facilities allow the
developer to have a high visibility into the DSP with little or no interference on the
program execution. Additionally, multiple DSPs can be accessed in the same JTAG
chain for both code development and debugging.

DSP current scenery

The number of DSP vendors is currently somewhat limited: Analog Devices (ADI),
Freescale (formerly Motorola), Texas Instruments (T1), Renesas, Microchip and
VeriSilicon are the basic players. Amongst them, the biggest share of the market is
taken by only three vendors, namely ADI, Tl and Freescale. In the accelerator
sector one can find mostly ADI and Tl DSPs, hence most of the examples in this
document will be focused on them. Table 3 lists the main DSP families for ADI and
T1 DSPs, together with their typical use and performance.

Table 3: Main ADI and T1 DSP families, together with their typical use and
performance

Manufacturer Family Typical use and performance

TMS320C2x | Digital signal controllers

TI TMS320C5x | Power efficient

TMS320C6x | High performance

SHARC Medium performance. First ADI family (now three
generations)

ADI
TigerSHARC| High performance for multi-processor systems

Blackfin High performance and low power

3 DSP core architecture

DSP architecture has been shaped by the requirements of predictable and accurate
real-time digital signal processing. An example is the Finite Impulse Response (FIR)
filter, with the corresponding mathematical equation, where y is the filter output, x
is the input data and a is a vector of filter coefficients. Depending on the application,
there might be just a few filter coefficients or many hundreds or more.

y(n) = 2(& Sl k)

As shown in above Equation, the main component of a filter algorithm is the
‘multiply and accumulate’ operation, typically referred to as MAC. Coefficients
data have to be retrieved from the memory and the whole operation must be
executed in a predictable and fast way, so as to sustain a high throughput rate.
Finally, high accuracy should typically be guaranteed. These requirements are
common to many other algorithms performed in digital signal processing, such as
Infinite Impulse Response (1IR) filters and Fourier Transforms. Table 4 shows a
selection of processing requirements together with the main DSP hardware features
satisfying them.

10

Table 4: Main requirements and corresponding DSP hardware
implementations for predictable and accurate real-time digital signal
processing. The numbers in the first column refer to the section treating

the topic.
Processing Hardware implementations satisfying the
requirements requirement
e High-bandwidth memory architectures
3.2 Fast data access » Specialized addressing modes

e Direct Memory Access (DMA)

¢ MAC-centred

3.3 Fast computation | * Pipelining
« Parallel architectures (VLIW, SIMD)

3.4 Numerical fidelity |« Wide accumulator registers, guard bits, etc.

3.5 Fast execution e Hardware-assisted, zero-overhead loops, shadow
control registers, etc.

Fast data access

Fast data access refers to the need of transferring data to / from memory or DSP
peripherals, as well as retrieving instructions from memory. The hardware
implementations considered for this are three, namely a) high-bandwidth memory
architectures,

High-bandwidth memory architectures

Traditional general-purpose microprocessors are based upon the Von Neumann
architecture, shown in Fig.5.4(a). This consists of a single block of memory,
containing both data and program instructions, and of a single bus (called data bus)
to transfer data and instructions from/to the CPU. The disadvantage of this
architecture is that only one memory access per instruction cycle is possible, thus
constituting a bottleneck in the algorithm execution.

DSPs are typically based upon the Harvard architecture, shown in Fig.5.4(b),
or upon modified versions of it, such as the Super-Harvard architecture shown in
Fig.5.4(c). In the Harvard architecture there are separate memories for data and
program instructions, and two separate buses connect them to the DSP core. This
allows fetching program instructions and data at the same time, thus providing
better performance at the price of an increased hardware complexity and cost. The
Harvard architecture can be improved by adding to the DSP core a small bank of
fast memory, called ‘instruction cache’, and allowing data to be stored in the

11

program memory. The last-executed program instructions are relocated at run time
in the instruction cache. This is advantageous for instance if the DSP is executing a
loop small enough so that all its instructions can fit inside the instruction cache: in
this case, the instructions are copied to the instruction cache the first time the DSP
executes the loop. Further loop iterations are executed directly from the instruction
cache, thus allowing data retrieval from program and data memories at the same

time.

address bus

@) MEMORY
instructions CPU
& data

data bus

DSP chip

PM add b
PROGRAM JCCRESS DS DM address bus —

(b) LA MEMORY

instructions data only
& data PM data bus DM data bus

DSP chip

DM address bus

PROGRAM PM address bus BATA

MEMORY Instruction MEMORY

! : ach
(I instructions SACNE

& data

data only
DM data bus

PM data bus

Fig.5.4: (a) Von Neumann architecture, typical of traditional general-purpose

MiCroprocessors.
(b) Harvard and (c) Super-Harvard architectures, typical of DSPs.

Another more recent improvement of the Harvard architecture is the presence
of a ‘data cache’, namely a fast memory located close to the DSP core which is
dynamically loaded with data. Of course, the fact of having the cache memory very
close to the DSP allows clocking it at high speed, as routing wire delays are short.
Figure 5.5. shows the cache architecture for TI TMS320C67xx DSP, including both
program and data cache. There are two levels of cache, called Level 1 (L1) and Level
2 (L2). The L1 cache comprises 8 kbyte of memory divided into 4 kbyte of program
cache and 4 kbyte of data cache. The L2 cache comprises 256 kbyte of memory
divided into 192 kbyte mapped-SRAM memory and 64 kbyte dual cache memory.
The latter can be configured as mapped memory, cache or a combination of the two.

4-.{ Level 1 Program Cache ’
p §
o
<
o
DMA controller N DSP Core
and peripherals (2]
]
=
) f f
4-.{ Level 1 Data Cache J

Fig. 5.5: TI DSP TMS320C67xx family two-level cache architecture

12

Figure 6 shows the hierarchical memory architecture to be found in a modern
DSP. Typical levels of memory and corresponding access time, hardware
implementation, and size are also shown. As remarked above, a hierarchical
memory allows one to take advantage of both the speed and the capacity of different
memory types. Registers are banks of very fast internal memory, typically with
single-cycle access time. They are a precious DSP resource used for temporary
storage of coefficients and intermediate processing values. The L1 cache is typically
high-speed static RAM made of five or six transistors. The amount of L1 cache
available thus depends directly on the available chip space. A L2 cache needs
typically a smaller number of transistors hence can be present in higher quantities
inside the DSPs. Recent years have also seen the integration of DRAM memory
blocks into the DSP chip, thus guaranteeing larger internal memories with relatively
short access times. The Level 3 (L3) memory shown in Fig.5.6 is rarely present in
DSPs while the external memory is typically available. This is often a large memory
with long access times.

Access Hardware Size J\ ler &
[ns] implementation | [Byte] registers ST:S’(Z:
1 ~5 transistor /cell | 16K-32K L1 cache
5-10 ~2 transistor /cell | 512K-4M L2 cache
7
10-50 /L3 cache / external memory larger &
\ slower

Fig.5.6: DSP hierarchical memory architecture and typical number of access
clock cycles, hardware implementation, and size for different memory types

As shown above, cache memories improve the average system performance.
However, there are drawbacks to the presence of a cache in DSP-based systems,
owing to the lack of full predictability for cache hits. A missing cache hit happens
when the data or the instructions needed by the DSP are not stored in cache
memory, hence they have to be fetched from a slower memory with an execution
speed penalty. A situation causing a missing cache hit is, for instance, the flow
change due to branch instructions. The consequence is a difficult worst-case-
scenario prediction, which is particularly negative for DSP-based systems where it is
important to be able to calculate and predict the system time response. There may,
however, be methods used to limit these effects, such as the possibility for the user to
lock the cache so as to execute time-critical sections in a deterministic way.
Advanced cache organizations characterized by a uniform memory addressing are
also under study .

Specialized addressing modes

DSPs include specialized addressing modes and corresponding hardware support to
allow a rapid access to instruction operands through rapid generation of their

13

location in memory. DSPs typically support a wide range of specialized addressing
modes, tailored for an efficient implementation of digital signal processing
algorithms.

Figure 5.7 adds the address generator units to the basic DSP architecture
shown in Fig. 5.4(c). As in general-purpose processors, DSPs include a Program
Sequencer block, which manages program structure and program flow by supplying
addresses to memory for instruction fetches. Unlike general- purpose processors,
DSPs include address generator blocks, which control the address generation for
specialized addressing modes such as indexing addressing, circular buffers, and bit-
reversal addressing. The two last addressing modes are discussed below.

DSP chip
PM data DM data
addres;s addr eis DM address bus
SROGHAD ger?{a or generator s

MEMORY B
Instruction
cache

MEMORY

instructions
& data

data only

DM data bus

PM data bus

Fig. 5.7: Program sequencer and address generator units location within
a generic DSP core architecture

Circular buffers are limited memory regions where data are stored in a First-
In First-Out (FIFO) way; these memory regions are managed in a ‘wrap-around’
way, i.e., the last memory location is followed by the first memory location. Two sets
of pointers are used, one for reading and one for writing; the length of the step at
which successive memory locations are accessed is called ‘stride’. Address generator
units allow striding through the circular buffers without requiring dedicated
instructions to determine where to access the following memory location, error
detection and so on. Circular buffers allow storing bursts or continuous streams of
data and processing them in the order in which they have arrived. Circular buffers
are used for instance in the implementation of digital filters; strides higher than one
are useful in case of multi-rate signal processing. Figure5.8 shows the order in which
data are accessed for a read operation in case of an eleven-element circular buffer
and with a stride equal to four.

14

Address

0xA0 0000
0xA0 0004
0xA0 0008
0xA0 000C
0xA0 0010
0xA0 0014
0xA0 0018
0xA0 001C
0xA0 0020
0xA0 0024
0xA0 0028

0x0000 0001

0x0000 0002

0x0000 0003

0x0000 0004

0x0000 0005

0x0000 0006

0x0000 0007

0x0000 0008

0x0000 0009

0x0000 000A

0x0000 000B

' access

N

(+2c0nss

’|
e

\

N

’|
L

Ex: read accesses

{5 access

Fig. 5.8: Example of read data access order in a circular buffer
composed of 11 elements and with stride equal to 4 elements

Bit-reversal addressing, shown in Fig.5.9, is an essential step in the discrete
In fact, many implementations of the Fourier
transforms require a re-ordering of either the input or the output data that
corresponds to reversing the order of the bits in the array index. Figure 5.9 gives an
example of the bit-reversal mechanism. Carrying it out by software is very
demanding andwould result in using many CPU cycles, which are saved thanks to
the hardware bit-reversal functionality.

Fourier transforms calculation.

LSB

000
001
010
011
100
101
110
111

Address

Input
buffer

Bit-reversed

buffer

0x0000 0000

0x0000 0000

0x0000 0001

0x0000 0004

0x0000 0002

0x0000 0003

0x0000 0004

0x0000 0002

0x0000 0001

0x0000 0005

0x0000 0007

0x0000 0005

0x0000 0003

0x0000 0007

Address
LSB

000
100
010
110
001
101
011
11

Fig.5.9: Bit-reversal mechanism

15

Direct Memory Access (DMA) controller

The DMA controller is a second processor working in parallel with the DSP core
and dedicated to transferring information between two memory areas or between
peripherals and memory. In doing so the DMA controller frees the DSP core for

DSP

PM data DM data
PM address bus address address
PROGRAM generator generator

MEMORY

DM address bus

DATA
MEMORY

Instruction

instructions cache

& data

data only

DM data bus

PM data bus

~§
P

No?
I/0O, memory

Fig.5.10: An example of DMA controller location within a generic
DSP core

other processing tasks. Figure 5.10 shows an example of the DMA location within a
general DSP core architecture.

A DMA coprocessor can transfer data as well as program instructions, the
latter transfer corresponding typically to the case of code overlay, i.e., of code stored
in an external memory and moved to an internal memory (for instance L1) when
needed. Multiple and independent DMA channels are also available for greater
flexibility. Bus arbitration between the DMA and the DSP core is needed to avoid
colliding memory accesses when the DMA and the DSP core share the same bus to
access peripherals and/or memories. To prevent bottlenecks, recent DSPs typically
fit DMA controllers with dedicated buses.

Figure 5.11 shows the advantages of DMA for the DSP core efficient use: the
DSP core must set up the DMA but still there is a net gain in the DSP core
availability for other processing activities. Nowadays there are two classes of DMA
transfer configurations: register-based and RAM-based, the latter one also called
descriptor-based. In register-based DMA controllers the transfer set-up is done by
the DSP core via the registers set-up. This method is very efficient but allows mainly
simple DMA operations. In RAM-based DMA controllers the set-up parameters are
stored in memory. This method is preferred by powerful and recent DSPs as it

Read external |Process | Write external DSP
@) memory data data memory data core
Setup Process |Setup
(b) | LBMA data |DMA DSP+core
Move external Move external
memory data memory data DMA

Fig. 5.11: (a) Read—process—write data when the DSP core only is

16

present; (b) same activity when the DMA takes care of data transfers
allows great DMA transfer flexibility.

Figure 5.12 provides two examples of transfer configurations. Plot (a) shows a
chained DMA transfer, where the completion of a data transfer triggers a new
transfer. This type of data transfer is particularly suited to applications that require
a continuous data stream in input. Plot (b) shows a multi-dimensional data transfer,
obtained by changing the stride of the DMA transfer. This type of data transfer is
particularly useful for video applications.

Destination memory Source , Destination
memory memory
Start 1 -
5 W2iEa |56 |7)
8|9 |10/11]12|13|14 9
. 15(16/17|18]19/|20|21 10
: 22[23|24[25]26(27|28 11
S 29[30[3132|33[34|35 15
End 6 |v 36(37|38/40j40(41(42 .
Reset address 40
(@) (b)

Fig. 5.12: Examples of DMA transfer configurations. (a): chained DMA
transfer; (b): Multi- dimensional data transfer.

DSP external events and interrupts can be used to trigger a DMA data
transfer. DMA controllers can also generate interrupts to communicate with the
DSP core, for instance to inform it that a data transfer has been completed. An
example of a powerful and highly flexible DMA controller is that implemented for
TI’s TMS320C6000 family.

MAC-centred

The basic DSP arithmetic processing blocks are a) many registers; b) one or more
multipliers; ¢) one or more Arithmetic Logic Units (ALUs); d) one or more shifters.
These blocks work in parallel during the same clock cycle thus optimizing MAC as
well as other arithmetic operations. The blocks are shown in Fig.5.13 and are briefly
described below.

a) Registers: these are banks of very fast memory used to store intermediate
data processing. Very often they are wider than the DSP normal word
width, so as to provide a higher resolution during the processing.

b) Multiplier: it can carry out single-cycle multiplications and very often it
includes very wide accumulator registers to reduce round-off or truncation
errors. As a conseguence, truncation and round-off errors will happen only
at the end of the data processing, when the data is stored onto memory.
Sometimes an adder is integrated in the multiplier unit.

c) ALU: it carries out arithmetic and logical operations.

d) Shifters: it shifts the input value by one or more bits, left or right. In the
latter case, the shifter is called a barrel shifter and is especially useful in the
implementation of floating point add and subtract operations.

DSP

PM data DM data

address address DM address bus

gen/e\rator generator
% & =5y 12 DATA

P MEMORY
cache data only

PM address bus

PROGRAM
MEMORY

instructions
& data

PM data bus DM data bus

REGISTERS
normal/extended
precision

MULTIPLIER
Arithmetic Logic I/O, memory

SHIFTER(s)

Fig. 5.13: Basic DSP arithmetic processing blocks. The structure shown is that
of ADI SHARC.

Instruction pipelining

Instruction pipelining has become an important element to achieve high DSP
performance. It consists of dividing the execution of instructions into different stages
and executing the different instructions in parallel stages. The net result is an
increased throughput of the instruction execution. The whole process can be
compared to a factory assembly line, which produces cars for instance: more than
one car is in the assembly line at the same moment, at different stages of assembly.
This provides a production higher than the case where only one car at a time is
produced, where many specialized crews are idle waiting for the next car to require
their work.

Table 5 shows the basic pipelining stage into which each instruction is divided:

1. Fetch. The DSP calculates the address of the next instruction to execute and
retrieve the op- code, i.e., the binary word containing the operands and the
operation to be carried out on them.

2. Decode. The op-code is interpreted and sent to the corresponding functional
unit. The instruction is interpreted and the operands are retrieved.

3. Execute. The instruction is executed and the results are written onto the
registers.

18

Table 5: The three basic pipelining stages and corresponding
actions

Basic pipelining Action
stages

e Generate program fetch
Fetch address

e Read op-code

e Route op-code to functional
Decode unit

e Decode instruction
e Read operands

e Execute instruction

Execute e Write results back to registers

Figure 5.14 shows the advantage of a pipelined CPU with respect to a non-
pipelined CPU, in terms of processing time gain. In a non-pipelined CPU the
different instructions are executed serially, while in a pipelined CPU only the same
type of stages (e.g. Fetch, Decode and Execute) are serialized and different
instructions are executed in parallel. A pipeline is called fully-loaded if all stages are
executed at the same time; this corresponds to the maximum possible instruction
throughput. The depth of the pipeline, i.e., the number of stages into which an
instruction is divided, can vary from one processor to another. Generally speaking a
deeper pipeline allows the processor to execute faster, hence many processors sub-
divide pipeline stages into smaller steps, each one executed at each clock cycle. The
smaller the step, the faster the processor clock speed can be. An example of deep
pipeline is the TI TMS320C6713 DSP, which includes four fetch stages, two decode
stages, and up to ten execution stages.

There are drawbacks and limitations to the pipelining technique. One
drawback is the hardware and programming complexity required by it, for instance
in terms of capabilities needed in the compiler and the scheduler. This is especially
true in the case of deep pipelines. A limitation in the effective instruction execution
throughput is given by situations that prevent the pipeline from being fully-loaded.
These situations include pipeline flushes due to changes in the program flow, such as
code branches or interrupts. In this case, the DSP does not know which instructions
it should execute next until the branch instruction is executed. Other situations are
data hazards, namely when one instruction needs the result of a previous instruction
to be executed. Apart from a reduced throughput,

19

time , >

Clock cycles

One instruction.
N

i1 2 3 4 5 6 7 8 9

a) Non-pipelined “,F1I,DLI EJ F; [D, } E l Fs] Ds I E, l

CPU type :
i | F = Fetch
\ i | D = Decode
b) Pipelined I F,| D, | E E = Execute
F, | D, |E, Processing |
time gain |
F\: D 3 E.\‘ <—g>
—

Fully-loaded pipeline

Fig. 5.14: Instruction execution and processing time gain of a pipelined
CPU (plot b) with respect to a non-pipelined one (plot a)

these pipeline limitations cause a more difficult prediction of the worst-case
scenario. Techniques not described here are available to provide the DSP
programmer with a pipeline control; they include time-stationary pipeline control,
data-stationary control, and interlocked pipeline.

Parallel architectures

The DSP performance can be increased by an increased parallelism in the
instructions execution. Parallel-enhanced DSP architectures started to appear on the
market in the mid 1990s and were based on instruction-level parallelism, data-level
parallelism, or a combination of both. These two approaches are called Very Long
Instruction Word (VLIW) and Single-Input Multiple-Data (SIMD), respectively and
are discussed below.

VLIW architectures are based upon instruction level parallelism, i.e., many
instructions are issued at the same time and are executed in parallel by multiple
execution units. As a consequence, DSPs based on this architecture are also called
‘multi-issue’ DSP. This is an innovative architecture that was first used in the TI
TMS320C62xx DSP family. Figure 5.15 shows an example of the VLIW
architecture: eight, 32-bit instructions are packed together in a 256-bit wide
instruction which is fed to eight separate execution units. Characteristics of VLIW
architectures include simple and regular instruction sets. Instruction scheduling is
done at compile-time and not at run-time so as to guarantee a deterministic
behaviour. This means that the decision on which instructions have to be executed in
parallel is done when the program is compiled, hence the order does not change
during the program execution. A run-time scheduling would instead make the
scheduling dependent on data and resources availability, which could change for
different program executions. An important advantage of the VLIW architecture is
that it can increase the DSP performance for a wide range of algorithms.
Additionally, the architecture is potentially scalable, i.e., more execution units could
be added to allow a higher number of instructions to be executed in parallel. There
are disadvantages as well, such as the high memory use and power consumption

20

required by this architecture. From a programmer’s viewpoint, writing assembly
code for VLIW architecture is very complex and the optimization is often better left
to the compiler.

On-chip program memory

f 256 « 8 instructions
Dispatch
unit \
// 7/ I \\
o & KX ’ L 2" "
L1 S1 M1 D1 L2 S2 M2 D2
20 20 2R 2 TR T
Register file A Register file B
1) Legend ——
132 132 L: ALU
: S: Shifter, ALU
On-chip data memory M: Multiplier

D: Address generator

Fig.5.15: TI TMS320C6xxx family VLIW architecture

SIMD architectures are based on data-level parallelism, i.e., only one
instruction is issued at a time but the same operation specified by the instruction is
performed on multiple data sets. Figure 5.16 shows the example of a DSP based
upon the SIMD architecture: two 32-bit input registers provide four, 16-bit each,
data inputs. They are processed in parallel by two separate execution units that
carry out the same operation. The two, 16-bit data outputs are packed into a 32-bit
register. Typical SIMD architecture can support multiple data width and is most
effective on algorithms that require the processing of large data chunks. The SIMD
operation mode can be switched ON or OFF, for instance in the ADI SHARC DSP.
An advantage of the SIMD architecture is that it is applicable to other architectures;
an example is the ADI TigerSHARC DSP that comprises both VLIW and SIMD
characteristics. SIMD drawbacks include the fact that SIMD architectures are not
useful for algorithms that process data serially or that contain tight feedback loops.
It is sometimes possible to convert serial algorithms to parallel ones; however, the
cost is in reorganization penalties and in a higher program- memory usage, owing to
the need to re-arrange the instructions.

32-bit input registers:

‘ 16 bits ‘ 16 bits ‘ ‘ 16 bits ‘ 16 bits ‘ % ot inoate
Gy Same
operation

v v

N N 32-bit output register:
| 16bits | 16bits | 2 results

Fig. 5.16: Simplified schematics for ADI SHARC DSP as an
example of SIMD architecture

21

Numerical fidelity

Arithmetic operations such as additions and multiplications are the heart of DSP
systems. It is thus essential that the numerical fidelity be maximized, i.e., that errors
due to the finite number of bits used in the number representation and in the
arithmetic operations be minimized. DSPs have many ways to obtain this, ranging
from the numeric representation to dedicated hardware features.

As far as the number representation is concerned, DSPs can be divided into
two categories: fixed point and floating point.

Fixed-point DSPs perform integer as well as fractional arithmetic, and can
support data widths of 16, 24 or 32 bits. A fixed-point format can represent both
signed and unsigned integers and fractions. Fractional numbers can take values in
the [-1.0, 1.0] range and are often indicated as Qx.y, where ‘x’ indicates the number
of bits located before the binary point and °y’ the number of bits after it. Figure
5.17(a) shows how 16-bit signed fractional point numbers are coded. Signed
fractional numbers with 24-bit and 32-bit data width are coded in an equivalent way
as Q1.23 and Q1.31, respectively. They can take values in the same [-1.0, 1.0] range,
however, their resolution is higher than the 16-bit implementation.

Floating-point DSPs represent numbers with a mantissa and an exponent,
nowadays following the IEEE 754 standard shown in Fig.5.17(b) for a 32-bit
number. The mantissa dictates the number precision and the exponent controls its
dynamic range. Numbers are scaled so as to use the full word- length available,
hence maximizing the attainable precision.

15 14 10 31 30 23 22 o
[s4 f [s] e ° f

MSB LSB MSB LSB
2 “I: g2 2 2-15

binary point

bi int
e e = exponent, offset binary, -126 < e < 127

S = sign bit, O = pos, 1 = neg S = sign bit, O = pos, 1 = neg
f = fractional part T = fractional part, sign-magnitude + hidden bit
I Coded number x = (-1)% - O.f] | Coded number x = (-1)% - 2% - 1. I

() (b)

Fig.5. 17: (a): 16-bit signed fractional point, often indicated as Q1.15.

(b): IEEE 754 normalized representation of a single precision floating

point number.

Floating-point numbers provide a higher dynamic range, which can be
essential when dealing with large data sets and with data sets whose range cannot be
easily predicted. The dynamic range for a 32-bit number represented as fixed-point
and as floating-point is shown in Fig.5.18.

Fixed point ~ 180 dB
Dynamic range. |= 20 log, [—29°5t value <
’ o 10 | 'smallest value Floating point ~1500 dB

Fig.5.18: Dynamic range for 32-bit data, represented as 32-bit signed fractional

point and IEEE 754 normalized number

22

In addition to the different number formats available, DSPs provide hardware
ways to improve numerical fidelity. One example is represented by the large
accumulator registers, used to hold intermediate and final results of arithmetic
operations. These registers are several bits (at least four) wider than the normal
registers in order to prevent overflow as much as possible during accumulation
operations. The extra bits are called guard bits and allow one to retain a higher
precision in intermediate computation steps. Flags to indicate that an
overflow/underflow has happened are also available. These flags are often connected
to interrupts, thus allowing exception-handling routines to be called. Another means
DSPs have to improve numerical fidelity is saturated arithmetic. This means that a
number is saturated to the maximum value that can be represented, so as to avoid
wrap-around phenomena.

Fast-execution control

Here we show two important examples of how DSP can fast-execute control
instructions. The first example is the zero-overhead hardware loop and refers to the
program flow control in loops. The second example refers to how DSPs react to
interrupts.

Looping is a critical feature in many digital signal processing algorithms. An
important DSP feature is the implementation by hardware of looping constructs,
referred to as ‘zero-overhead hardware loop’. This allows DSP programmers to
initialize loops by setting a counter and defining the loop bounds, without spending
any software overhead to update and test loop counters or branching back to the
beginning of the loop.

The capability to service interrupts very quickly and in a deterministic way is
an important DSP characteristic. Interrupts are internal (for instance generated by
internal timers) or external (brought to the DSP code via pins) events that change
the DSP execution flow when they are serviced. The latency is the time elapsed from
when the interrupt event is triggered and when the DSP starts to execute the first
instruction of the corresponding Interrupt Service Routine (ISR). When an
interrupt is received and if the interrupt has a sufficiently-high priority, the DSP
must carry out the following actions:

a) stop its current activity;

b) save the information related to the interrupted activity (called context) into the

DSPstack;
¢) start servicing the interrupt.

The context corresponding to the interrupted activity can be restored when the
ISR has been executed and the previous activity is continued.

23

Table 6: Interrupt dispatchers available on the ADI ADSP21160M DSP. The
instruction cycle is 12.5 ps, hence the number of cycles can easily be converted to

time.
Interrupt dispatcher Cycles before Cycles after

ISR ISR

Normal 183 109

Fast 40 26

Super-fast (with alternate registers 34 10

set)

Final 24 15

More than one interrupt dispatcher is typically available in a DSP; this means
that the user can select the amount of context to be saved, knowing that a higher
number of saved registers implies a longer context switching time. An interesting
feature available in some DSPs, such as the ADI SHARC AD21160, is the presence
of two register sets, called ‘primary’ and ‘alternate’ for all the CPU’s key registers.
When an interrupt occurs, the alternate register set can be used, thus allowing a
very fast context switch. Table 6 shows the four interrupt dispatchers available on
the ADSP21160M DSP and their corresponding latency (‘Cycles before ISR’) and
context restore time (‘Cycles after ISR’. The ‘Final’ dispatcher is intended for use
with user-written assembly functions or C functions that have been compiled using
“4pragma interrupt’. In particular, this dispatcher relies on the compiler (or
assembly routine) to save and restore all appropriate registers.

DSP core example: TI TMS320C67x

Figure 5.19 shows TI’s TMS320C6713 DSP core architecture, as an example of
modern VLIW architecture implementing many of the characteristics described in
Section 3. This DSP is that used in the laboratory companion of the lectures upon
which this paper is based.

Boxes inside the yellow square belong to the DSP core architecture, which here
is considered to include the cache memory as well as the DMA controller. The white
boxes are components common to all C6000 devices; grey boxes are additional
features on the TMS320C6713 DSP.

24

| Cc6713 DSP

L1P Cache
— > Direct Mapped
4 KBytes

— = L2 'l
Memo
192 24

Enhanced e 1 C67x DSP Core

DMA Instruction Fetch Control
Controller Registers

Instruction Dispatch

p— o Channels Control

Instruction Decode Logic

Peripherals

— > Data Path A Data Path B Test

[A Register File] I B Register Filel In—Circuit

1 11§ 1313 3 | ===

IL1 IS1IM1]D1] IDZIMZISZILZI Interrupt

M == /
emory.
Cache

KBytes

L1D Cache
2—Way Set Associative
4 KBytes

Fig. 5.19: TI TMS320C6713 DSP core architecture. Picture courtesy
of TI.

The TMS320C6713 DSP is a floating point DSP with VLIW architecture. The
internal program memory is structured so that a total of eight instructions can be
fetched at every cycle. To give a numerical example, with a clock rate of 225 MHz
the C6713 DSP can fetch eight, 32-bit instructions every 4.4 ns. Features of the
C6713 include 264 kBytes of internal memory: 8 kB as L1 cache and 256 kB as L2
memory shared between program and data space. The processing of instructions
occurs in each of the two data paths (A and B), each of which contains four
functional units (.L, .S, .M, .D). An Enhanced DMA (EDMA) controller supports up
to 16 EDMA channels. Four of the sixteen channels (channels 8—11) are reserved for
EDMA chaining, leaving twelve EDMA channels available to service peripheral
devices.

4 DSP peripherals

The available peripherals are an important factor for the DSP choice. Peripherals
are here considered as belonging to two categories:

a) interconnect, discussed in Section 4.2;

b) services, such as timers, PLL and power management, discussed in Section
4.3.

DSP developers must in fact carefully evaluate the needs of their system in
terms of interconnect and services required, to avoid bottlenecks and reduced
system performance.

Modern DSPs often have several peripherals integrated on-chip, such as
UARTSs, serial, USB and video ports. There are benefits in using embedded
peripherals, such as fast performance and reduced power consumption. There are,
however, drawbacks, in that embedded peripherals can be less flexible across
applications and their unit cost might be higher.

The evolution of DSP-supported peripherals has been terrific over the last 20

25

years. From the original few parallel and serial ports, DSP can now support a wide
peripherals range, including those needed by audio/video streaming applications.
Often the DSP chip does not have pins to allow using all supported peripherals at
the same time. To overcome this limitation, the pins are multiplexed, i.e., the DSP
developer must select at boot time which peripherals he/she needs to have available.
An example of pin multiplexing referred to TI’s TMS320C6713 DSP is given in
Section 4.4.

An overview of interconnect and DSP services is given in Sections 4.2 and 4.3,
respectively. Hints on different interfacing possibilities to external memories and
data converter memories are provided in Sections 4.5 and 4.6, respectively. Finally,
a brief outline of the DSP booting process is given in Section 4.7.

Interconnect

The amount of supported interconnect and data 1/O is huge, so only a few examples
are given below, divided per interconnect type.

Serial interfaces

a) Serial Peripheral Interface (SPI): this is an industry-standard synchronous
serial link that supports communication with multiple SPI compatible
devices. The SPI peripheral is a synchronous, four-wire interface consisting
of two data pins, one device select pin, and a gated clock pin. With the two
data pins, it allows for full-duplex operation to other SPI compatible
devices. An example of DSP fitted with a SPI port is ADI’s Blackfin ADSP-
BF533.

b) Multichannel Buffered Serial Ports (McBSP) on TI’s DSPs: this serial
interface is based upon the standard serial port found in TMS320C2x and
TMS320C5x DSPs.

c) Multichannel Audio Serial Port (McASP) on TI’s DSPs: this is a serial port
optimized for the needs of multichannel audio applications. Each McASP
includes transmit and receive sections that can operate synchronized as well
as completely independent, i.e., with separate master clocks, bit clocks, and
data stream formats.

Parallel interfaces

a) ADD’s linkports are parallel interfaces that allow DSP-DSP as well as DSP-
peripheral connection. An example of their use for inter-DSP
communication to build multi-DSP systems is given in Sub-section 9.3.1.

b) Parallel Peripheral Interface (PPl) on ADI’s Blackfin DSP: this is a
multifunction parallel interface, configurable between 8 and 16 bits in
width. It supports bidirectional data flow and it includes three
synchronization lines and a clock pin for connection to an externally-
supplied clock. The PPI can receive data at clock speeds of up to 65 MHz,
while transmit rates can approach 60 MHz.

Other interfaces commonly found, for instance in TlI DSPs, are Peripheral
Component Interconnect (PCI) [29], Inter-Integrated Circuit (12C) , Host-Port

26

Interface (HPI) and General-Purpose Input/Output (GPI1O) .

Services

System services provide functionality that is common to embedded systems; the on-
chip hardware is generally accompanied by an API that allows one to easily
interface to them. A few examples of services are given below.

a) Timers: DSPs are typically fitted with one or more general-purpose timers
that are used to time or count events, generate interrupts to the CPU, or
send synchronization events to a DMA/EDMA controller.

b) PLL controller: it generates clock pulses for the DSP code and the
peripherals from internal or external clock signals.

c) Power Management: the power-down logic allows the reduction of clocking
so as to reduce power consumption. In fact, most of the operating power of
CMOS logic dissipates during circuit switching from one logic state to the
other. Significant power can be saved by preventing some of these level
switches.

d) Boot configuration: a variety of boot configurations are often available in
DSPs. They are user-programmable and determine what actions the DSP
performs after it has been reset to prepare for the initialization. These
actions include loading the DSP code load fromexternal memory or from an
external host. Some boot modes are outlined in Section 4.7

e) JTAG: this interface implements the IEEE standard 1149.1 and allows
emulation and debugging. A detailed description of its use can be found in
Section 7.2. Figure 5.20 shows a typical JTAG connector and corresponding
signals .

Signal Description En;:lalz:or Tsatra‘cizt
TMS Test mode select ouT IN
TDI Test data input ouT IN
- TDO Test data output IN ouT
Ut o Lty Test clock: 10.368 MHz clock source from
TDI| 3 4 | GND TCK emulation cable pod, that can be used to ouT IN
PD (Veo)| 5 ﬂ S _ drive the system test clock.
0| 7 8 | GND TRST Test reset ouT IN
TCK_ RET| 9 10 | GND EMUO Emulation pin 0 IN IN/JOUT
TCK | 11 12| GND EMU1 Emulation pin 1 IN IN/OUT
EMUO| 13 14 | EMUT Presence detect: it indicates that the
PD{Vcc) emulation cable is connected and that the IN ouT
power is powered up
TCK_RET Test clock return, input to the emulator IN ouT
GND Ground

Fig.5.20: Fourteen-pin JTAG header and corresponding signals.
Picture courtesy of T1I.

T1 C6713 DSP example

The peripherals available on TI’s TMS320C6713 DSP are shown in Fig. 21 as boxes
encircled by a yellow shape. The white boxes are components common to all C6000
devices, while grey boxes are additional features on the TMS320C6713 DSP.

Many peripherals are available on this DSP; however, there are pins that are
shared by more than one peripheral and are internally multiplexed. Most of these
pins are configured by software via a configuration register, hence they can be
programmed to switch functionality at any time. Others (such as the HPI pins) are
configured by external pullup/pulldown resistors at DSP chip reset; as a
consequence, only one peripheral has primary control of the function of these pins
after reset.

C6713 DSP

1 EMIF 0
16
1 >
1 MCcASP (2) Me1r320ry
= T 1 Enhanced KBytes C67x DSP Core
2 DMA Instruction Fetch Control
>
»
»
-

L1P Cache
Direct Mapped
4 KBytes

L2

i
Pin Multiplexing

Channels Instruction Dispatch ool

Instruction Decode Logic

Controller Registers
a | 12C (2)

Timer (2)

Data Path A Data Path B Test
’A Register File | ’ B Register File | In=Circuit

il BRI R
L1]s1]m1[p1]| [D2]m2]s2]L2] | Interrupt

Interrupt L2 Control
Selector Memory/
Cache
64

Power Down KBytes
Logic

P L1D Cache

LL
| I Controller 2-Way Set Associative
Boot
Configuration 4 KBytes

Fig.5.21: TI TMS320C6713 DSP available peripherals. Picture
courtesy of TI.

Memory interfacing

DSPs often have to interface with external memory, typically shared with host
processors or with other DSPs. The two main mechanisms available to implement
the memory interfacing are to use hardware interfaces already existing on the DSP
chip or to provide external hardware that carries out the memory interfacing. These
two methods are briefly mentioned below.

Hardware interfaces are often available on Tl as well as on ADI DSPs. An
example is T1 External Memory Interface (EMIF), which is a glueless interface to
memories such as SRAM, EPROM, Flash, Synchronous Burst SRAM (SBSRAM)
and Synchronous DRAM (SDRAM). On the TMS320C6713 DSP, for instance, the
EMIF provides 512 Mbytes of addressable external memory space. Additionally, the
EMIF supports memory width of 8 bits, 12 bits and 32 bits, including read/write of
both big- and little-endian devices.

28

When no dedicated on-chip hardware is available, the most common solution
for interfacing a DSP to an external memory is to add external hardware between
memory and DSP, as shown in Fig.5.22. Typically this is done by using a CPLD
or an FPGA which implements address decoding and access arbitration. Care must
be taken when programming the access priority and/or interleaved memory access
in the CPLD/FPGA. This is essential to preserve the data integrity. Synchronous
mechanisms should be preferred over asynchronous ones to carry out the data
interfacing.

H/W |,
Interface

L 3
v

v

Memory DSP

Fig. 5.22: Generic DSP—external memory interfacing scheme. Very often
the h/w interface consists of a CPLD or an FPGA.

Data converter interfacing

DSPs provide a variety of methods to interface with data converters such as ADCs.
On-chip peripherals are a very convenient data transfer mechanism, since data
converters are typically much slower than the DSPs they are interfaced with, hence
asking the DSP core to directly retrieve data from the converters is a waste of
valuable processing time.

Serial interfaces are often available in TI’s DSPs: peripherals such as McBSP
and McASP plus the powerful DMA allow an easy interface to many data converter
types. Another possible solution for T1 DSPs is to use the EMIF in asynchronous
mode together with the DMA.

In addition to serial interfaces, ADI Blackfin DSP provides a parallel interface,
namely the PPI interface mentioned in Section 4.2, as a convenient way to interact
with many converters. This interface typically allows higher sampling rates than the
serial interfaces.

A general solution for implementing the DSP—data converter interface is to use
an FPGA between DSP and converter, so as to re-buffer the data. Additional pre-
processing, such as filtering or down-conversion, can also be carried out in the
FPGA. This is the case for instance in CERN’s LEIR LLRF system, where
converters such as ADCs and DACs are hosted on daughtercards. Powerful FPGAs
located on the same daughtercards carry out pre-processing and diagnostics actions
under full DSP control.

Finally, mixed-signal DSPs, i.e., DSPs with embedded ADCs and/or DACs, are
also available. An example of mixed-signal DSP is ADI’s ADSP-21990, containing a
pipeline flash converter with eight independent analog inputs and sampling
frequency of up to 20 MHz.

DSP booting

The actions executed by the DSP immediately after a power-down or a reset are

29

called DSP boot and are defined by a certain number of configurable input pins.
This paragraph will focus on how the executable file(s) is uploaded to the DSP after
a power-down or reset. Two methods are available, which typically correspond to
differently built executables. More information on the code building process and on
the many file extensions can be found in Section 6.4.

The first method is to use the JTAG connector to directly upload to the
executable in the DSP. Upon a DSP power-down the code will typically not be
retained in the DSP and another code upload will be necessary. This method is used
during the system debugging phase, when additional useful information can be
gathered via the JTAG.

On operational systems the DSP loads the executable code without a JTAG
cable. Many methods are available for doing this, depending on the DSP family and
manufacturer; some general ways are described below.

a) No-boot. The DSP fetches instructions directly from a pre-determined
memory address, corresponding to EPROM or Flash memory and executes
them. On SHARC DSPs, for instance, the pre-defined start address is
typically 0x80 0004.

b) Host-boot. The DSP is stalled until the host configures the DSP memory.
For Tl TMS320C6xxx DSPs, for instance, this is done via the HPI interface.
When all necessary memory is initialized, the host processor takes the DSP
out of the reset state by writing in a HPI register.

¢) ROM-boot. A boot kernel is uploaded from ROM to DSP at boot time and
starts executing itself. The kernel copies data from an external ROM to the
DSP by using the DMA controller and overwrites itself with the last DMA
transfer. After the transfer is completed the DSP begins its program
execution. Figure 5.23 visualizes the Tl DSP process of booting from ROM
memory: the program (shown in green) has been moved from ROM to L2
and L1 Program (L1P) cache via EMIF and DMA.

VCC
L’—R VCC

Boot Config

L1P Cache

DMA

EMIF
3

v

£
S
@)
o
-

L1D Cache

Fig. 5.23: Example of TI TMS320C6x DSP booting from ROM memory.
The picture is courtesy of TI.

30

5 Real-time design flow: introduction

Figure 5.24 shows a time-ordered view of the various activities or phases that a real-
time system developer may be required to carry out during a new system
development. These activities will be treated in this document in a didactic rather
than in a time-related order, to allow even the un- experienced reader to build up
the knowledge needed at each step. It should be underlined that the real-time design
flow may be not totally forward-directed, and at each step the developer may have
to go back to a previous phase to make modifications or carry out additional tests.

Fig.5.24: Activities typically required to develop a new, DSP-based
system

The ‘system design’ phase may include both hardware and software design.
For hardware design, the developer must make choices such as the DSP type to use,
the hardware architecture/interfaces, and so on. For software design, choices such as
the code structure, the data flow and data exchange interfaces must be made. This
phase is treated in Section 9.

The ‘software development’ phase includes creating the DSP project and
writing the actual DSP code. Basic and essential information for this phase is given
in Section 6.

The ‘debug’ phase is a very critical one, where the developer must verify that
the code executes what it was meant to. Some debugging techniques as well as
different methodologies available (such as simulation and emulation) are described
in Section 7.

The ‘analysis and optimization’ phase allows the developer to optimize the
system for different goals, such as speed, memory, input/output bandwidth, or
power consumption. Analysis and optimization tools are described in Section 8,
together with some optimization guidelines.

Finally, the ‘system integration’ is the essential phase where the system is
integrated within the existing infrastructure and is therefore made fully operational.
It is not possible to give precise details on this phase owing to the many existing
control infrastructures. However, general guidelines and good practices are
discussed in Section 10.

31

6 Real-time design flow: software development

DSPs are programmed by software via a cross-compilation. This means that the
executable is created in a platform (such as a Windows- or a SUN-based machine)
different from the one that it runs on, i.e., the DSP itself. One reason for this is that
DSPs have limited and dedicated resources, hence it would not be convenient or
even possible to run a file system with a user-friendly development environment.

The choice of programming languages is vast, including native assembly
language as well as high-level languages such as C, C++, C extensions and dialects,
Ada and so on. High-level software tools such as MATLAB and National
Instruments allow one to automatically generate code files from graphical
interfaces, thus providing rapid prototyping methods.

The code-building tools are very often provided by the DSP manufacturers
themselves. Compilers and Integrated Development Environments (IDEs) are also
available from other sources, such as Green Hills Software. The trend is now
towards more powerful and user-friendly tools, capable of taming and using in the
best possible way the underlying hardware and software complexity.

Development set-up and environment

DSP executables are developed by using Integrated Development Environments
(IDEs) provided by DSP manufacturers; they integrate many functions, such as
editing, debugging, project files management, and profiling. Very often the licences
are bought on a ‘per-project’ basis, even if ADI provides also floating (i.e.,
networked) licences. The development environment for Tl and ADI DSPs are called
‘Code Composer Studio’ and ‘VisualDSP++’, respectively; they provide very similar
functionalities. It should be underlined that TI has recently made available free of
charge the compiler, assembler, optimizer and linker to non-commercial users.
However, neither the IDE nor a debugger were included, thus the developer must
still use the proprietary tools.

Figure 25 gives an example of a typical Code Composer screen. On the left-
hand side there is the list of all files included in the software project. At the centre of
the screen two windows show the code, as a C file (process.c) and as assembly code
(Dis-assembly window). A breakpoint has been set and the execution is stopped
there. Below the code windows, two memory windows are also visible, detailing the
data present at addresses 0x80000000 and following, and at addresses 0x40000030
and following. Data at address 0x80000002 is of a different colour because its value
changed recently. At the bottom of the IDE screen the following item are displayed:
a) the Compile/Link window, which details the results from the last code
compilation; b) the Watch window, which displays the value assumed by two C-
language variables and c) the Register window, which details the contents of all DSP
registers. On the right-hand side there are three graphs: the yellow ones show
memory regions, while the green one shows the Fast Fourier Transform of data
stored in memory as calculated by the

IDE.

32

x|

Hie £ s Window Help LOAD_func ,
ol c-code editor Disassembly = Memory
— o region plots
© - b S= s X
=== [4001DA89 0F200000 PUSH RO -
5] 4001DABA 62001BEF CALL accfmulate e,
[4001DABB 18740003 SUBI __ 3h JSP 659
= E [4001DABC S0400B02 LDIU ==AR3(2),RO
s 4001DASD OF200000 PUSH RO 882
o 4001DABE 62000217 CALL Long_UB_Proc
= 4001DABF 1540030C STI RO, *+AR3(12) 183,
4001DA90 18740001 SUBI 1h,SP _';l 128 254 384 511
S il 21/ |li252.27.2188) " [Time [Log |Auto Scale |
= X
H T =
PrOJeCt cr2dif (TmpProc, FftSize, TmpProc, Base): = — =
file accumulate (TmpProc, FftSize, Base): -
ret = Long_UB_] :::::
if (ret) /% then this meas 1is completed =/
ko1 CheckT: ((int=)xn /\\/\ /\ /\ FAN
o break: FFT on I \/ \/ Vv
& ~ace N TANG RINCH- S = Sl S
] TRTIRES memory data |peimme i jaussese 1
F 22 DRX INterface (32-Bit Hex - T1 Style) [=] B3 |[=]8 - X
- 80000000: 00000001 00000555 4J| 40000030: 40000400 =
80000002: 00000001 00000000 40000031: 40000COC
DSP MaIN 80000004: 00000000 000OOOFF 40000032: 4000140C
Merio(| | 80000006: (00000100 0000DOOO 40000033: 40001COC
h_,';l"" 80000008: 009896C1 FFFFFFFF 40000034: 4000240C
1 Mmemory (= : DDAADDAA FFEFFFEF [40000035: 40002C0C =
- 8000000C: FFFFFFFF FFFFFFFB 40000036: 4000340C_] (0130855 64.89% [FFTMag |Log |Auto Scale |Re
[Copyright (c) 1987-14l |[TmpProc,x = 0x0000061C 2 ||rR11 = 00 00000011 BK = 4001EC7A cC =0 |
Build Complete, [+Base = 0x4001D41C GIE = 1
0 Errors. 0 Warnin DP = 002F0000 DIE = 00000000
/ ST = D00060A0 IIE = 82000000 SET_| DSP
H RC = 00000000 IIF = 0000949
> .
| OYMbolic o || B 7 3009688 rvie so0icson registers
DSPHALTED debugglng s e |

Fig. 5.25: Screenshot from Code Composer, i.e., the TI DSP IDE. The
picture was taken in 1998 from the development of CERN’s AD
Schottky system.

Figure 5.26 shows a typical DSP-based system set-up. On the left-hand side the
DSP IDE runs on a PC, which is connected to the DSP via a JTAG emulator and
pod. This allows one to edit the code, compile it, download it to the hardware and
retrieve debug information. On the right-hand side the system exploitation is shown
whereby the DSP runs its program and a PowerPC board, running LynxOS and
acting as master VME, controls the DSP actions, downloads the control parameters,
and retrieves the resulting data.

System exploitation DSP code development/debugging

_~ VME crate

PowerPC board +
LynxOS ~
(MasterVME)

\d

Windows-based
PC

DSP board /

JTAG cable + emulator pod

Fig. 5.26: Typical system exploitation (on the left-hand side) and code
development (on the right- hand side) set-ups.

33

Languages: assembly, C, C++, graphical

The choice of the language(s) to be used for the DSP development is very important
and depends mainly on the selected DSP, as different DSPs may support different
languages. Often a DSP system will include both assembly and high-level languages;
the language choice or the chosen balance between the languages depends also on
the required processor workload, i.e., on how much the code should be optimized to
satisfy the requirements. The language choice is nowadays much larger than in the
past, mainly thanks to the improvements of compilers. Additionally, the increased
complexity of DSP hardware (see Section 3), such as deep pipelining, makes the
hand-optimization much more difficult. The main language choices include: a)
assembly language; b) high-level languages such as C, C dialects/extensions and
C++; c) graphical languages such as Matlab. These three choices are discussed
below.

Assembly language

The assembly language is very close to the hardware, as it explicitly works with
registers and it requires a detailed knowledge of the inner DSP architecture. To
write assembly code typically takes longer than to write high-level languages;
additionally, it is often more difficult to understand other people’s assembly
programs than to understand programs written in high-level languages. The
assembly grammar/style and the available instruction set/peripherals depend not
only on the DSP manufacture, but also on the DSP family and on the targeted DSP.
As a consequence, it might be difficult or even impossible to port assembly programs
from one DSP to another. For instance, for DSPs belonging to the TI C6xxx family
there is about an 85% assembly code compatibility, i.e., when going from a C62x to
a C64x DSP there are no issues but if moving from a C64x to a C62x one might have
to introduce some changes in the code owing to the different instruction set.

DSP applications have typically very demanding processing requirements. The
need to obtain the maximum processing performance has often led DSP
programmers to use assembly programming extensively. Nowadays the
improvements in code compilers and the increasing difficulty in hand- optimizing
assembly code have prompted DSP developers to use high-level languages more
often. However, in some DSPs there are still features available only in assembly,
such as the super-fast interrupt dispatcher for ADI’s ADSP21160M DSP shown in
Table 6. Very often, the bulk of the DSP code is written in high-level languages and
the parts needing a better performance may be written in assembly.

34

Figure 5.27 gives an example of how one line of C code is converted to the
corresponding assembly code for the T1 C6317 DSP. The upper window shows part
of the ‘SIN to_output RTDX.c’ file, which was included in the DSP laboratory
companion of the lectures described in this document; the lower ‘Disassembly’
window shows the resulting assembly code.

P breakpoint

{ SIN_to_output_<TDX.c =10/ x|
* Updste accunulated nomelized frég valie * 2| po \nit generates address
{ saccFroNrm += fregim; == —| & LD1 data path places
(a) 1t (*accrrgiim 2= 1.U) | value —A register file
*accFrgNmm -= 1.0;
else if (*accFrqNm < 0.0) {
waccFrgNmm += 1.0;
¥ Disassembly 2 / =10 x| Load 32"blt ’A3
L . e —
ﬁ { , " ,) Load 2x32 bit {A5,A4}
y UG & 2x32 bit {B5,B4}
OGN f W
|| Add 2x32 bit {8584}
\ 414 000050K,

I
Instruction Parallel T ——

address .. hine code instructions

Fig.5. 27: C and assembly language examples for the Tl C6713 DSP.
Window (a): C source code. Window (b): assembly code resulting from
the first C-code line in window (a).

High-level languages: C

The C language was developed in the early 1970s; three main standards exist,
referred to as ANSI, ISO, and C99 respectively. There are many reasons why it is
convenient to use the C language in DSP- based systems. The C language is very
popular and known by engineers and software developers alike; it is typically easier
to understand and faster to develop than assembly code. It supports features useful
for embedded systems such as control structures and low-level bit manipulations.
All DSPs are provided with a C compiler, hence it may be possible to port the C code
from one DSP to another.

There are, however, drawbacks to the use of standard C languages in DSP-
based systems. First, the executable resulting from a C-language source code is
typically slower than that derived from optimized assembly code and has a larger
size. The ANSI/ISO C language does not have support for typical DSP hardware
features such as circular buffers or non-flat memory spaces. Additionally, the
address at which data must be aligned can vary between different DSP
architectures: on some DSPs a 4-byte integer can start at any address, but on other
DSPs it could start for instance at even addresses only. As a consequence, the data
alignment obtained with ANSI/ISO C compilers may be incompatible with the data

35

alignment required by the DSP, thus leading to deadly bus errors. In the standard C
language there is no native support for fixed-point fractional variables, a serious
drawback for many DSPs and signal processing algorithms. Finally, the standard C
compiler data-type sizes are not standardized and may not fit the DSP native data
size, leading for instance to the replacement of fast hardware implementations with
slower software emulations. For instance, 64-bit double operations are available in
ADDI’s TigerSHARC as software emulations only; hence the declaration of variables
as double and not as float will result in slower execution. Table 8 shows how data-
type sizes can vary for different DSPs.

Table 8: Examples of data-type size for different DSPs

char int
. Processor . Processor

size size
8 ADI Blackfin 16 | ADI '21xx, Tl 'C54, C55
16 | ADI '21xx, TI'C54, 'C55 24 | Freescale 56x
24 | Freescale 56x 32 | ADI Blackfin, Tl 'C6x
32 | ADI Blackfin, Tl 'C6x 32 | ADI SHARC, TigerSHARC
32 | ADI SHARC, TigerSHARC

(a) (b)

Table 9 shows the data-type sizes and number format for the TI1 C6713 DSP.
The 2’s complement and binary formats are used for signed and unsigned numbers,
respectively.

Table 9: Data-type sizes and number format for the TI1 C6713 DSP

TI ‘C6713 DSP
Data type # bits Representation
char 8 ASCII
short 16 2's complement / binary
int 32 2's complement / binary
long 40 2's complement / binary
float 32 IEEE 32-bit
double 64 IEEE 64-bit

There are two main approaches to adapting the C language to specific DSPs
hardware and to the needs of signal processing applications. The first approach is
the definition of ‘intrinsic’ functions, i.e., of functions that map directly to optimized
DSP instructions. Table 10 shows some examples of intrinsic functions available in
T1 C6713 DSPs. The second approach is to ‘extend’ the C-language so as to include
specialized data types and constructs. Of course, the drawback of the latter
approach is a reduced portability of the resulting C language.

36

Table 10: TI1 C6713 intrinsic functions — some examples.

Intrinsic Description

Returns approximate 64-bit

double _rsqrdp(double src), double square root reciprocal

double _fabs(double src); Returns absolute value of src

Returns previous interrupt state
& enables interrupts

unit _enable_interrupts(void);

High-level languages: C++

The C++ programming language supports object-oriented programming and is the
language of choice for many business computer applications. C++ compilers are
often available for DSPs; some advantages of using it are the ability to provide a
higher abstraction layer and the upwards compatibility with the C language. There
are, however, several disadvantages, for instance the increased memory
requirements due to the more general constructs. Additionally, many application
programs and libraries rely on functions such as malloc() and free(), which need a
heap.

While the way to adapt the C-language to DSPs is to add features, the C++
language is adapted by trimming its features. C++ characteristics typically removed
are multiple inheritance and exception handling; the resulting code is more efficient
and the executable is smaller.

Graphical languages

A trend which has developed over the last five to ten years is to use graphical
programming to generate DSP code. Examples of programs and tools aimed at this
are the MATLAB, Hypersignal RIDE (now acquired by National Instruments) and
the LabVIEW DSP Module. These methodologies generate DSP executables that
often are not highly optimized, therefore not suitable for the implementation of
demanding DSP-based systems. However, they allow one to quickly move from the
design to the implementation phase, thus providing a rapid prototyping
methodology.

37

+«~— Matlab window

CS7&DSK T %
w0 " Digital filter

l.[:”:l—’ o block setup GUI
C

DATool

Pl [t Awlyss Tagets Ve Window Heb

Digtal Birl N8R pee% DEEEE~ D BMNONE W
Fiter Design

- Ourteet Fiter IArmation ——— . Magr

T —
Suckre OvectFomt
Ordec 2
St Yes
Sosce

FDATool

3 b o/
r(= HV'M\"VMI

<
Mayeue ()
u

Digttal Filer Cvder Treamocy [re——

Fiter Design & e e fr =] || e N
. e o

e . . E—

Digital filter S D =
block et || ——
u] ||| ool Lol e S o
~a po
enTe]

Fig. 5.28: MATLAB graphical programming used in the DSP laboratory
companion in these notes. The digital filter block can easily be set up by
using a user-friendly set-up GUI.

As an example, MATLAB provides tools such as Simulink, Real-Time
Workshop, Real-Time Workshop Embedded Coder, Embedded Target for TI
C6xxx DSPs and Link for Code Composer that allow generating embedded code for
Tl DSPs and downloading it directly into a DSP evaluation board. These tools
provide interfaces for the DSP peripherals, too. The DSP laboratory companion on
these notes was based upon Tl C6713 DSK and MATLAB tools. Figure 5.28 shows
the MATLAB graphical program that constituted one of the laboratory exercises.
MATLAB allows not only to interface immediately with the on-board CODEC by
using the ADC and DAC blocks, but also to set up through a user-friendly GUI the
digital filter to be implemented.

Real-time operating system

A Real-Time Operating System (RTOS) is a program that has real-time capabilities,
is downloaded to the DSP at boot time, and manages all DSP programs, typically
referred to as tasks. The RTOS interfaces tasks with peripherals such as DMA, 1/0
and memory, via an Application Program Interface (API), as shown in Fig.5.29.

38

DSP tasks

RTOS

1

API + library

T
- o - .

Other peripherals DMA I/0O Memory Timers

Fig.5.29: Embedded DSP software components

A RTOS is typically task-based and supports multiple tasks (often referred to
as threads) by time-sharing, i.e., by multiplexing the processor time over the active
tasks set. Each task has a priority associated to it and the RTOS schedules which
task should run depending on the priority. Very often this is done in a pre-emptive
way, meaning that when a high-priority task becomes ready for execution, it pre-
empts the execution of a lower-priority task, without having to wait for its turn in
the regular re-scheduling. Finally, RTOS have a small memory footprint, so as not
to have too negative an impact on the DSP executable size.

There are many advantages when using a RTOS to develop a DSP-based
system. For instance, the APl and library shown in Fig.5.29 provide a device
abstraction level between DSP hardware features and task implementation, thus
allowing a DSP developer to focus on the task rather than the hardware interface’s
design and coding. The DSP developer may have to just call different interfacing
functions in case the code should be ported to a different DSP, hence easing code
portability. A RTOS manages the task’s execution hence the developer can cleanly
structure the code, define appropriate priority levels for each task, and insure that
their execution meets critical real-time deadlines. System debug and optimization
can be improved, and memory protection can often be provided. There are,
however, drawbacks to the use of RTOS. As an example, a RTOS uses DSP
resources, such as processing time and DSP timers, for its own functioning.
Additionally, the RTOS turnover is typically quite high and royalties are often
required from developers.

Many RTOS are available at any time, typically targeted to a precise DSP
family or processor. Examples are TALON RTOS from Blackhawk, targeted at T
DSPs, and INTEGRITY RTOS from Green Hills Software or NUCLEUS RTOS
from Accelerated Technology, targeted at ADI Blackfin DSPs. It is worth
mentioning Linux-based OS, such as RT-Linux, RTAI and uLinux. Both RT-Linux
and RTAI use a small real-time kernel that runs Linux as a real-time task with
lower priority. The last RTOS listed above, uLinux, is a soft-time OS adapted to
ADI Blackfin DSPs. uLinux cannot always guarantee RTOS capabilities such as a
deterministic interrupt latency; however, it can typically satisfy the needs of
commercial products, where time constraints are often on the millisecond order as
dictated by the ability of the user to recognise glitches in audio and video signals.

39

Other RTOS worth mentioning are those provided and maintained by DSP
manufacturers. Both Tl and ADI provide royalties-free RTOS with similar
characteristics, such as a small memory footprint, multi-tasks and multi-priority
levels support. They are called DSP/BIOS for Tl and VisualDSP++ Kernel (VDK)
for ADI, and can optionally be included in the DSP code. In particular, TI
DSP/BIOS provides thirty priority levels and four classes of execution threads. The
thread classes, listed in order of decreasing priority, are Hardware Interrupts
(HWI), Software Interrupts (SWI), Tasks (TSK) and Background (IDL). Figure 5.30
shows how the processing time is shared between different threads in TI DSP/BIOS.
In the vertical scale the different threads are ordered by priority, the higher up
having more priority; in the horizontal scale the time is shown. Software interrupts
can be pre- empted by a higher-priority software interrupt or by a hardware
interrupt. Same-level interrupts are executed in a first-come, first-served way. Tasks
are capable of suspension (see Task TSK2 in Fig.5.30) as well as of pre-emption.

111
1

time

Fig. 5.30: DSP/BIOS prioritized thread execution example. Image courtesy of Texas
Instruments.

Code-building process

The DSP code-building process relies on a set of software development tools,
typically provided by DSP manufacturers. extensions for ADI and Tl DSPs are
shown at the bottom of the picture

TARGET

Ext
memory

Archiver

Source files
(.C++, C, . ASM)

Compiler & Loader/
assembler hex conv.
optimisers)
A
Linker -~
command file

ADT: doj Adr dxe Adr
il .0bj .cmd .out various

Fig.5. 31: Main elements of the code building process. Typical file.

40

Figure 5.31 shows the main elements and tools needed for the code-building
process. Source files are converted to object files by the compiler and the assembler.
Archiver tools allow the creation of libraries from object files; these libraries can
then be linked to object files to create an executable. The executable can be directly
downloaded from the IDE to the target DSP via a JTAG interface; as an alternative,
the executable can be converted to a special form and loaded to a memory external
to the DSP, from which the DSP itself will boot. The first approach is typically used
during the DSP development phase, while the second approach is more convenient
during system exploitation. Finally, the file extensions used at the different code-
building process steps for ADI and T1 DSPs are shown at the bottom of Fig.5.31.

Three tools, namely compiler, assembler, and linker, are used to generate
executable code from C/C++ or assembly source code. Figure 5.32 shows their use in
the code-building process on Tl DSPs. The tools’ main characteristics are
summarized in Sub-sections 6.4.1 to 6.4.3.

C/C++ .
source .

.sa | CIC++ compiler

. [
. |f e Parser

|

|

|

:
(a) Op'r <«t—[Optimizer i
|

|

|

|

e | (optional)
Assembly optimizer |
: T e A e g e R e e e Y =1
I Assembly | I, Code I
i | |preprocessor [—-/ generator | |

<Assemblers | i i H
. source . |: iWith the linker option (-2):

(©)

+Executable:
+ COFF file .

Fig.5.32: Generic code-building processing: (a) compiler; (b) assembler;
(c) linker. The picture is courtesy of TI.

C / C++ compiler for T1 C6xxx DSPs

The C/C++ compiler generates C6xxx assembler code (.asm extension) from C, C++
or linear assembly source files. The compiler can perform various levels of
optimization: high-level optimization is carried out by the optimizer, while low-
level, target-specific optimization occurs in the code generator. Finally, the compiler
includes a real-time library which is non-target-specific.

41

Assembler for TI*Cé6xxx DSPs

The assembler generates machine language object files from assembly files; the
object files format is the Common Object File Format (COFF). The assembler
supports macros both as inline functions and taken from a library; it also allows
segmenting the code into sections, a section being the smaller unit of an object file.
The COFF basic sections are

a) text for the executable code;
b) data for the initialized data;

c) bss for the un-initialized variables.

Linker for TI C6éxxx DSPs

The linker generates executable modules from COFF files as input. It resolves
undefined external references and assigns the final addresses to symbols and to the
various sections. A DSP system typically includes many types of memory and it is
often up to the programmer to place the most critical program code and data into
the on-chip memory. The linker allows allocating sections separately in different
memory regions, so as to guarantee an efficient memory access. An example of this
is shown in Fig.5.33.

Object file Target memory
.bss L > RAM
.data L » EEPROM

text

—|—> ROM

Fig.5.33: Example of sections allocation into different types of
target memory

The linker also allows one to clearly implement a memory map shared between
DSP and host processor; this is essential for instance to exchange data between
them.

7 Real-time design flow: debugging

The debugging phase is the most critical and least predictable phase in the real-time
design flow, especially for large systems. The debugging capabilities of the
development environment tools can make the difference between creating a
successful system and spiralling into an endless search for elusive bugs.

The starting point of this phase is an executable code, i.e., a code without

42

compilation and linker errors; the goal is to ascertain that the code behaves as
expected. The debugging tools and techniques have a strong impact on the amount
of time and effort needed to validate a DSP code.

There are many types of bugs: they can be repeatable or intermittent, the latter
being much tougher to track down than the first ones. Bugs can be due to the code
implementation, such as logical errors in the source code, or can derive from
external problems, i.e., hardware misbehaviours. The approaches and the tools to
debug a DSP code include simulation, emulation, and real-time debugging
techniques. Simulation tools allow running the DSP code on a software simulator
fitted with full visibility into DSP internal registers. Emulation tools embed debug
components into the target to allow an information flow between target and host
computer. Real-time debugging techniques allow a real- time data exchange between
host and target without stopping the DSP. These techniques are described in detail
in Sections 7.1. to 7.3.

SIMULATION
Behavi
ehaviour
TRADITIONAL ,
EMULATION (external events)
Behaviour / inter-task
REAL-TIME (time-related events)
DEBUGGING
System
(hiw — siw integration)

Fig.5.34: Debug steps and their suggested sequencing. The debug tools suited to
different steps are also shown.

The developer should not attempt to debug the DSP code as a whole, unless the
code itself is relatively short and simple. He is instead recommended to debug the
code in several steps: Fig.5.34 shows an example of steps and of their sequencing,
together with the appropriate debug tools and techniques. First, single tasks such as
functions and routines should be validated; this step can be carried out via
simulation only. Second, the behaviour of sub-systems or specific parts of the code
can be tested with respect to external events, such as ISR triggering. This part can
be carried out with the help of traditional emulation techniques. Third, the
behaviour of many tasks can be validated with respect to real-time constraints, such
as the proper frequency of ISR triggering. Once all system components have been
validated, the whole system can be tested. These last two steps profit particularly
from real-time debugging techniques.

Simulation

DSP software simulators have been available for more than fifteen years. They can

43

simulate CPU instruction sets as well as peripherals and interrupts, thus allowing
DSP code validation at a reduced cost and even before the hardware the code should
run on is available. Simulators provide a high visibility into the simulated target, in
that the user can execute the code step by step and look at the intermediate values
taken by internal DSP registers. Large amount of data can be collected and
analysed; resource usage can be evaluated and used for an optimized hardware
design.

Simulators are highly repeatable, since the same algorithm can be run in
exactly the same way over and over. The reader should note that this kind of
repeatability is difficult to obtain with other techniques, such as emulation, as
external events (for instance interrupts) are almost impossible to be precisely
repeated with hardware. Simulators may also allow measurement of the code
execution time, with limitations due to the type of simulator chosen. A useful feature
available with the TI C5x and Cé6x simulators is the ‘rewind’, which allows viewing
the past history of the application being executed on the simulator.

The main limitation common to DSP simulators is their execution speed,
several orders of magnitude slower than the target they simulate; in particular, the
more accurate the modelling of the DSP chip and corresponding peripherals, the
slower the simulation. DSP tool vendors have overcome this problem by providing
different simulators for the same DSP, providing a different level of chip and
peripherals modelling. Figure 5.35 shows some simulators available for T1 DSPs.
The reader should notice that Tl provides up to three simulators for each DSP,
namely:

a) CPU Cycle Accurate Simulator: This simulator models the instruction set,
timers, and external interrupts, allowing the debugging and optimization of
the program for code size and CPU cycles.

b) Device Functional Simulator: This simulator not only models instruction
set, timers, and external interrupts, but also allows features such as DMA,
Interrupt Selector, caches and McBSP to be programmed and used.
However, the true cycles of a DMA data transfer are not simulated.

c) Device Cycle Accurate Simulator: This simulator models all peripherals
and caches in a cycle-accurate manner, thus allowing the user to measure
the total device and stall cycles used by the application.

44

ioix]
File Edit Wiew Help
system Configuration | | availatble Factory Boards Family Platform Endianness
[[=|[a ~]
m BR:C6201 Device Simulatar CRZWx simulator Jittle
B B3 6713 D5k B Ca202 Device Simulakor CRZ%xE simulator little
Lo CPU_L BR: C6203 Device Simulator CEZwx simulator little
B:C5204 Device Simulatar CaZxx simulator it
B C6205 Device Simulatar CAZWX simulator Jittle
EF: 5211 Device Cyde Accurate Simulator CRZxx simulator Jittle
B C62 0 CPIU Cyele Accurate Simulator CRZWN simulator Jittle
BH: Ce41 1 Device Cycle Accurate Simulator CEehu simulator Jitkle
B C641 2 Device Cycle Accurate Simulatar Chdux simulator Jittle
R C5414 Device Cycle Accurate Simulatar Chdu simulator Jittle
ER: C5415 Device Cyde Accurate Simulator Chdy simulator Jittle
B C5416 Device Cycle Accurate Simulator Cha simulator little
B C 54 TP Cycle Accurate Simulator Chda simulator it
A DMe42 Device Cycle Accurate Simulator CEdwx simulator Jittle
ER: Ca701 Device Simulakor CATxx simulator liktle:
EF: 5711 Device Cyde Accurate Simulator CATxx simulator Jittle
BH: (6712 Device Cycle Accurate Simulator CETHN simulator Jitkle
R Co713 DSk BT dsk, e
BR:C6713 Device Cycle Accurate Simulatar CARTNN simulator Jittle
B Ca7xx CPU Cycle Accurate Simulator CATxx simulator Jittle
]
E® Factory Boards |ﬁ Custom Boards I ﬁ Create Board I
Save & Cluit I Hem: <4 fAdd I << Add Multiple |
[Drag a device driver to the left ko add a board to the system. v

Fig. 5.35: Example of DSP simulators available with TI’s Code
Composer Studio development environment

Emulation

The integration of processor, memory, and peripherals in a single silicon chip is
commonly referred to as System-On-a-Chip (SOC). This approach allows reducing
the physical distance between components, hence devices become smaller in size, run
faster, cost less to manufacture, and are typically more reliable. From a DSP code
developer’s viewpoint, the main disadvantage of this approach is the lack of access
to embedded signals, often referred to as vanishing visibility. In fact, many chip
packages (e.g., ball grid array) do not allow probing the chip pins; additionally,
internal chip busses are often not even available at the chip pins. Emulation
techniques restore the visibility needed for code debugging by embedding debug
components into the chip itself.

There are three main kinds of emulation, namely:

a) Monitor-based emulation: A supervisor program (called monitor) runs on
the DSP and uses one of the processor’s input—output interfaces to
communicate with the debugger program running on the host. The
debugging capabilities of this approach are more limited than those
provided by the two other approaches; additionally, the monitor presence
changes the state of the processor, for instance regarding the instruction

45

pipeline. The advantage is that it does not require emulation hardware,
hence its cost is lower.

b) Pod-based In Circuit Emulation (ICE): The target processor is replaced by
a device that acts like the original device, but is provided with additional
pins to make accessible and visible internal structures such as internal
busses. This emulation approach has the advantage of providing real-time
traces of the program execution. However, replacing the target processor
with a different and more complex device may create electrical loading
problems. Additionally, this solution is quite costly, the hardware is
different from the commercialized product and becomes quite difficult to
implement at high processor speed.

c) Scan-based emulation: Dedicated interfaces and debugging logic are
incorporated into commercially-available DSP chips. This on-chip logic is
responsible for monitoring the chip’s real-time operations, for stopping the
processor when for instance a breakpoint is reached, and for passing
debugging information to the host computer. An emulation controller
controls the flow of information to /from the target and can be located
either on the DSP board or on an external pod. Many types of target—host
interface exist. On the DSP board one can typically find a JTAG (IEEE
standard 1149.1) connector. On the host computer, parallel or USB ports
are often available.

The scan-based emulation technique has been widely preferred over the other
two since the late 1980s and is nowadays available on the vast majority of DSPs.
Figure 5.36 shows the TI XDS560 emulator, composed of a PC card, a cable with
JTAG interface to the target, and an emulation controller pod. Many emulators are
available on the market, with different interfaces and characteristics. As an
example, it is worth mentioning Spectrum Digital’s XDS510 USB galvanic JTAG
emulator, which provides voltage isolation.

Fig.5. 36: TI XDS560 emulator, composed of a card to install on the host
computer (PCI interface), a JTAG cable and an emulation controller
pod

46

Capabilities of scan-based emulators include source-level debugging, i.e., the
possibility to see the assembly instructions being executed and to access variables
and memory locations either by name or by address.

Capabilities such as writing to the standard output are available. As an
example, the printf() function allows printing DSP information on the debugger
GUI; the reader should, however, be aware that this operation can be extremely
time-consuming, and optimized functions (such as LOG_printf() for TI DSPs) should
be preferred.

Another common capability supported by emulation technology is the
breakpoint. A breakpoint freezes the DSP and allows the developer to examine DSP
registers, to plot the content of memory regions, and to dump data to files. Two
main forms of breakpoint exist, namely software and hardware. A software
breakpoint replaces the instruction at the breakpoint location with one creating an
exception condition that transfers the DSP control to the emulation controller. An
hardware breakpoint is implemented by using custom hardware on the target
device. The hardware logic can for instance monitor a set of addresses on the DSP
and stop the DSP code execution when a code fetch is performed at a specific
location. Breakpoints can be triggered also by a combination of addresses, data, and
system status. This allows DSP developers to analyse the system when for instance it
hangs, i.e., when the DSP program counter branches into an invalid memory
address. Intermittent bugs can also be tracked down.

It is important to underline that the debugging capabilities provided by
emulators allow mostly ‘stop-mode debugging’, in that the DSP is halted and
information is sent to the host computer at that moment. This debugging technique
is invasive and allows the developer to get isolated, although very useful, snapshots
of the halted application. To improve the situation, DSP tool vendors have developed
a more advanced debugging technology that allows real-time data exchange between
target and host. This technique is described next.

Real-time techniques

Over the last ten years, DSP vendors have developed techniques for a real-time data
exchange between target and host without stopping the DSP and with minimal
interference on the DSP run. This provides a continuous visibility into the way the
target operates. Additionally, it allows the simulation of data input to the target.

ADI’s real-time communication technology is called Background Telemetry
Channel (BTC) . This is based upon a shared group of registers accessible by the
DSP and by the host for reading and writing. It is currently supported on Blackfin
and ADSP-219s DSPs only.

TI’s real-time communication technology is called Real Time Data eXchange
(RTDX). Its main software and hardware components are shown in Fig. 37. A
collection of channels, through which data is exchanged, are created between target
and host. These channels are unidirectional and data can be sent across them
asynchronously. Tl provides two libraries, the RTDX target library and the RTDX
host library, that have to be linked to target and host applications, respectively. As
an example, the target application sends data to the host by calling functions in the

47

RTDX target library. These functions buffer the data to be sent and then give the
program flow control back to the calling program; after this, the RTDX target
library transmits the buffered data to the host without interfering in the target
application. RTDX is also supported when running inside a DSP simulator; to that
end, the DSP developer should link the target application with the RTDX simulator
target library corresponding to the chosen target. On the host side, data can be
visualized and treated from applications interfacing with the RTDX host library. On
Windows platforms a Microsoft Component Object Module (COM) interface is
available, allowing clients such as VisualBasic, VisualC++, Excel, LabView,
MATLAB and others.

TARGET HOST
DD JTAG ccs coM
interface — interface — e T
Target > > >
applic%tion target host I-Il_c-stt
< library library [« clien
Log file

Fig.5. 37: TI’s RTDX main components. The picture is courtesy of
TI

In 1998 TI implemented the original RTDX technology, which runs on
XDS510-class emulators. A high-speed RTDX version was developed later that
relies on additional DSP chip hardware features and on improved emulators,
namely the XDS560 class. These emulators make use of two non-JTAG pins in the
standard Tl JTAG connector to increase RTDX bandwidth. They are also
backwards compatible and can support standard RTDX, thus allowing higher data
transfer speed. The high-speed RTDX is supported in TI’s highest performance
DSPs, such as the TMS320C55x, TMS320C621x, TMS320C671x and TMS320C64x
families. Table 11 shows the data transfer speeds available with different
combinations of RTDX and emulators. RTDX offers a bandwidth of 10 to 20
kbytes/s, thus enabling real-time debugging of applications such as CD audio and
audio telephony. The high-speed RTDX with XDS560-class emulators provides a
data transfer speed higher than 2 Mbytes/s, thus allowing real-time visibility into
applications such as ADSL, hard-disk drives and videoconferencing .

48

Table 11: Data transfer speed as a function of the emulator type for

TI’s RTDX
Emulation type Speed
RTDX + XDS510 10-20
kbytes/s
RTDX + USB (ex: ‘C6713 DSK 10-20
board) kbytes/s
RTDX + XDS560 <130
kbytes/s
High speed RTDX + XDS560 > 2 Mbytes/s

8 Code analysis and optimization

Most DSP applications are subject to real-time constraints and stress the available
CPU and memory resources. As a consequence, code optimization might be required
to satisfy the application requirements.

DSP code can be optimized according to one or more parameters such as
execution speed, memory usage, input/output bandwidth, or power consumption.
Different parts of the code can be optimized according to different parameters. A
trade-off between code size and higher performance exists, hence some functions can
be optimized for execution speed and others for code size.

Code development environments typically allow defining several code
configuration releases, each characterized by different optimization levels. Figure 38
shows the project configurations available in TI Code Composer Studio. The
‘Release’ configuration comprises the higher optimization level, while the ‘Debug’
configuration enables debug features, which typically increase code size. Finally, the
user can specify a ‘Custom’ configuration where user-selectable debug and
optimization features are enabled.

49

Fle Edt View | Project Debug GEL Option Profie Tools DSP/BIOS Window Help
D] B SRR R A
|SIN_to_wm_R Use External Makefie... SHEEX LK ‘ R ‘ o }}'-
Export to Makefle.., | i
68| O addriestopropc...
- Save
V| T cose
ot |2 _5'3 Source Control 8
[T. = é CAtreis Fik Tl
[} B e
0 e 2 2]
P T Configuations of Done
¢ (= SIN_to_output_RTDX pit Add
pe =" buld Options. . —
/ e Specii ;:;,'.1r;~,: 7 Debug Re
% Function Level Opticns.,,, Release A ——
= Project Dependancies, .. Set Active
— Show Project Dependencies)
B |4 Show File Dependencies Help
o -ﬁ P Scan All File Dependencies
| == RecentProject Fies 7
R o HALTED | | Modfy the project configurations |/

Fig. 5.38: Choice of the DSP code project configurations in T1 Code
Composer

It is important to underline that debug and optimization phases are different
and often conflicting. In fact, an optimized code does not include any debug
information; additionally, the optimizer can re-arrange the code so that the
assembly code is not an immediate transposition of the original source code. The
reader is strongly encouraged to avoid using the debug and the optimize options
together; it is recommended instead to first debug the code and only then to enable
the optimization.

Switching the code optimizer ON

Compilers are nowadays very efficient at code optimization, allowing DSP
developers to write higher level code instead of assembly. To do this, compiles must
be highly customized, i.e., tightly targeted to the hardware architecture the code will
be running upon. However, current trends in software engineering include
retargeting compilers to DSP specialized architectures .

As previously mentioned, many kinds of optimization can be required. An
example is execution speed vs. executable size. Figure 5.39 shows how the user can
select one or the other in the Code Composer Studio development environment.

50

Build Options for SIN_to_output_RTDX.pjt (Custom MV

General Compder | Linker | Link Order |

99 9
f"CACASO7\Sin_to_output_with_RTDXASIN_to_output_RTDX_cB000_tw\
Oblu LI
Category: -~ Basic -

TaigetVesion: [C671% (mv6710) 7]

Advanced

Feedback A ¥
Files
Assembly
Patser Opt Level
Preprocessor

Diagnostics Program Level Opt.. INone _:J

Program Mode Comnpilation [-pm)
No Extemnal Var Refs (-pm -op3)
No Extemal Func Refs [pm -op1)
No Ext FuncAVar Refs [-pm -0p2)
External Func/Var Refs [-pm -op0)

| 0K I Cancel Help

Fig. 5.39: Choice of optimization levels in TI Code Composer. The plot
highlights execution speed vs. executable code size.

The reader should be aware that the optimizer can rearrange the code, hence
the code must be written in a proper way. Failing this, the actions generated by the
optimized code might be different from those desired and implemented by a non-
optimized code. Figure 5.40 shows two code snippets where the value assumed by
the memory location pointed to by ctrl determines the while() loop behaviour. In
particular, the DSP exits the while() loop if the ctrl content takes the value OxFF; the
ctrl content can be modified by another processor or execution thread. Both code
snippets will perform equally in case of non-optimization. However, in case of
optimization the left-hand side code will not evaluate the ctrl content at every while()
iteration, hence the DSP will remain forever in the loop. On the right-hand side
snippet, the volatile keyword disables memory optimization locally, thus forcing the
DSP to re-evaluate the ctrl content value at every while() loop iteration. This
guarantees the desired behaviour even when the code is optimized. The number of
volatile variables should be restricted to situations where they are strictly needed, as
they limit the compiler’s optimization.

while (*ctrl 1=0xFF); while (*ctrl I=0xFF);
BAD! GOOD

unsigned int *ctrl; ||Hvolatile unsigned int *ctrl;

Fig.5.40: Example of good and bad programming techniques. The left-
hand side code would likely result in a programming misbehaviour.

51

The recommended code development flow is to first write high-level code, such
as C or C++. This code can then be debugged and optimized, to comply with the
specified performance. In case the code runs still slower than desired, the time-
critical areas can be re-coded in linear assembly. If the code is still too slow, then the
DSP developer should turn to hand-optimized assembly code. Figure 5.41 shows a
comparison of the different programming techniques, with corresponding execution
efficiency and development effort.

Source Efficiency Effort

C/C++ Optimising 80-100% Low

ompiler

Assembly 95-100% Medium
Optimiser

Hand o i
ASM Optimised 100% High

Fig. 5.41: Comparison of programming techniques with corresponding
execution efficiency and estimated development effort. The picture is
courtesy of TI.

Analysis tools

DSP code often follows the 20/80 rule, which states that 20% of the software in an
application uses 80% of the processing time. As a consequence, the DSP developer
should first concentrate efforts on determining where to optimize, i.e., on
understanding where the execution cycles are mostly spent.

The best way to determine the parts of the code to optimize is to profile the
application. Over the last ten years DSP development environments have
considerably enlarged their offer of analysis tools. Some examples of TI’s CCS
analysis and tuning tools are:

a) Compiler consultant. It analyses the DSP code and provides
recommendations on how to optimize its performance. This includes
compiler optimization switches and programs, thus allowing a quick
improvement in performance. Figure 42 shows how to enable the compiler
consultant in CCS.

b) Cache tune. It provides a graphical visualization of memory reference
patterns and memory accesses, thus allowing the identification of problem
areas related for instance to memory access conflicts.

c) Code size tune. It profiles the application, collects data on individual
functions and determines the best combinations of compiler options to
optimize the trade-off between code size and execution speed.

52

d) Analysis ToolKit (ATK). It runs with DSP simulators only and allows one
to analyse the DSP code robustness and efficiency. The DSP developer should not
only know when to optimize, as described previously: he/she should also know when
to stop. In fact, there is a law of diminishing returns in the code analysis and
optimization process. It is thus important to take advantage of the improvements
that come with relatively little effort, and leave as a last resort those that are
difficult to implement and provide low- yield.

Finally, it is strongly recommended to make only one optimization change at
the same time; this will allow the developer to exactly map the optimization to its
result.

Build Options for SIN_to_output_RTDX.pjt {(Custom

General Compiler I Linker | Link Order |

a-q f_l
- 'CACASO7ASin_to_output_with_RTDXA\SIN_to_output_ RTDX_cB000_rtwh
obj"

=
Category: ~ Feedback
Basic [~ Show Banners (-verbose)
Advanced e
Feedback Interlisting: |None Ll
Files Y
Asseribly Opt Info File: |None Ll
Parser [~ Generate Optimizer Comments (-os)
Preprocessor . . . o
Diagnostics [~ Print Compiler Version (no compilation)

[~ Generate Single Iteration View of SP Loops [-mw)

[~ Generate Compiler Consultant Advice (-consultant)

Fig.5. 42: How the ‘Compiler Consultant Advice’ can be enabled in TI’s
CCS Development Environment

Programming optimization guidelines

This Section includes some general programming guidelines for writing efficient
code; these guidelines are applicable to the vast majority of DSP compilers. DSP
developers should, however, refer to the manuals of the development tools they are
using for more precise information on how to write efficient code.

Finally, it is strongly recommended to make only one optimization change at
the same time; this will allow the developer to exactly map the optimization to its
result.

— Guideline 1: Use the DMA when possible and allocate data in memory wisely

DMA controllers (see Sub-section 3.2.3) must be used whenever possible so as
to free the DSP core for other tasks. The linker (see Sub-section 6.4.3) should be
used for allocating data in memory so as to guarantee an efficient memory access.
Additionally, DSP developers should avoid placing arrays at the beginning or at the
very end of memory blocks, as this creates problems for software pipelining.
Software pipelining is a technique that optimizes tight loops by fetching a data set
while the DSP is processing the previous one. However, the last iteration of a loop

53

would attempt to fetch data outside the memory space, in case an array is placed on
the memory edge. Compilers must then execute the last iteration in a slower way
(‘loop epilogue’) to prevent this address error from happening. Some compilers,
such as the ADI Blackfin one, make available compiler options to specify that it is
safe to load additional elements at the end of the array.

— Guideline 2: Choose variable data types carefully

DSP developers should know the internal architecture of the DSP they are
working on, so as to be able to use native data type DSPs as opposed to emulated
ones, whenever possible. In fact, operations on native data types are implemented by
hardware, hence are typically very fast. On the contrary, operations on emulated
data types are carried out by software functions, hence are slower and use more
resources. An example of emulated data type is the double floating point format on
ADI’s TigerSHARC floating point DSPs. Another example is the floating point
format on ADI’s Blackfin family of fixed-point processors. In these DSPs the
floating point format is implemented by software functions that use fixed-point
multiply and ALU logic. In this last case a faster version of the same functions is
available with non-IEEE-compliant data formats, i.e., formats implementing a
‘relaxed’ IEEE version so as to reduce the computational complexity. Table 12
shows a, execution times comparison of IEEE-compliant and non-l1EEE-compliant
functions in ADI’s Blackfin BF533.

Table 12: Execution time of IEEE-compliant vs. non-1EEE-
compliant library functions for ADI’s Blackfin BF533

operation fast-ft IEEE-ft ratio
[cycles] [cycles]
multiply 93 241 0.4
add 127 264 05
subtract 161 329 0.5
divide 256 945 0.3
pow 8158 17037 05

- Guideline 3: Functions and function calls

Functions such as max(), min() and abs()are often single-cycle instruction and
should be used whenever possible instead of manually coding them. Figure 43 shows
on the right-hand side the max() function and on the left-hand side a manual
implementation of the same function. The advantage in terms of code efficiency of
using a single-cycle max() function is evident. Often more complex functions such as
FFT, IIR, or FIR filters are available in vendor-provided libraries. The reader is
strongly encouraged to use them, as their optimization is carried out at algorithm
level.

54

I
k=k-1, I*k=max (k-1, -1);

if(k <-1)
= -1; GOOD

BAD!

Fig. 5.43: Example of good and bad programming techniques

As few parameters as possible should be passed to a function. In fact,
parameters are typically passed to functions by using registers. However, the stack
is used when no more registers are available, thus slowing down the code execution
considerably.

— Guideline 4: Avoid data aliasing

Aliasing occurs when multiple variables point to the same data. For example,
two buffers overlap, two pointers point to the same software object or global
variables used in a loop. This situation can disrupt optimization, as the compiler will
analyse the code to determine when aliasing could occur. If it cannot work out if two
or more pointers point to independent addresses or not, the compiler will typically
behave conservatively, hence avoid optimization so as to preserve the program
correctness.

- Guideline 5: Write loops code carefully

Loops are found very often in DSP algorithms, hence their coding can strongly
influence the program execution performance. Function calls and control statements
should be avoided inside a loop, so as to prevent pipeline flushes (see Sub-section
3.3.2). Figure 5.44 shows an example of good and bad programming techniques
referred to control statements inside a for() loop: by moving the conditional
expression if...else outside the loop, as shown in the right-hand side code snippet,
one can reduce the number of times the conditional expression is executed.

for { if {
if {.}else {..} W for{.}
} }else {
BAD! } for {...}
GOOD

Fig. 5.44: Example of good and bad programming techniques

Loop code should be kept small, so as to fit entirely into the DSP cache memory
and to allow a local repeat optimization. In case of many nested loops, the reader
should be aware that compilers typically focus their optimization efforts on the
inner loop. As a consequence, pulling operations from the outer to the inner loop can

55

improve performance. Finally, it is recommended to use int or unsigned int data
types for loop counters instead of the larger-sized data type long.

— Guideline 6: Be aware of time-consuming operations

There are operations, such as the division, that do not have hardware support
for a single-cycle implementation. They are instead implemented by functions
implementing iterative approximations algorithms, such as the Newton—Raphson.
The DSP developer should be aware of that and try to avoid them when possible.
For example, the division by a power-of-two operation can be converted to the easier
right shift on unsigned variables. DSP manufacturers often provide indications on
techniques to implement the division instruction more efficiently .

Other operations are available from library functions. Examples are sine,
cosine and atan functions, very often needed in the accelerator sector for the
implementation of rotation matrixes and for rectangular to polar coordinates
conversion. If needed, custom implementations can be developed to obtain a
favourable ratio between precision and execution time. Table 13 shows the
comparison of different implementations of the same functions; in particular, the
second column shows a custom implementation used in CERN’s LEIR accelerator.
In this implementation, the sine, cosine and atan calculation algorithm has been
implemented by a polynomial expansion of the seventh order instead of the usual
Taylor series expansion.

Table 13: Execution times vs. different implementations of the same
functions

Execution time
[us]
Functio | CERN single- VisualDSP++ single- VisualDSP++ double-
n precision precision precision
implementation implementation implementation

cosine 0.25 0.59 55

sine (for a sine/cosine 0.59 5.3

couple)
atan 0.4125 1.4 5.6

Guideline 7: Be aware that DSP software heavily influences power optimization

DSP software can have a significant impact on power consumption: a software-
efficient in terms of the required processor cycles to carry out a task is often also
energy efficient. Software should be written so as to minimize the number of
accesses to off-chip memory; in fact, the power required to access off-chip memory
is usually much higher than that used for accessing on-chip memory. Power
consumption can be further optimized in DSPs that support selective disabling of
unused functional blocks (e.g., on-chip memories, peripherals, clocks, etc.). These

56

‘power down modes’ are available in ADI DSPs (such as Blackfin) as well as in TI
DSPs (such as the TMS320C6xxx family). Making a good use of these modes and
features can be difficult; however, APIls and specific software modules are available
to help. An example is TI’s DSP/BIOS Power Manager (PWRM) module, providing
a kernel-level API that interfaces directly to the DSP hardware by writing and
reading configuration registers. Figure 5.45 shows how this module is integrated in a
generic application architecture for DSPs belonging to TI’s TMS320C55x family.

Real-Time yigeo audio speech control
Threads thread

DSP/BIOS Kernel _

driver y driver PSL

Fig. 5.45: TI’s DSP/BIOS Power Manager (PWRM) module in a general
system architecture. Picture courtesy of Texas Instruments.

9 Real-time design flow: system design

This section deals with some aspects of digital systems design, particularly with
software and hardware architectures. Here the assumption is that the system to be
designed is based upon one or more DSPs. The reader should, however, be aware
that in the accelerator sector there are currently three main real-time digital signal
processing actors: DSPs, FPGAs and front-end computers. The front-end computers
are typically implemented by embedded General Purpose Processors (GPPs)
running a RTOS. Nowadays, the increase in clock speed allows GPPs to carry out
real-time data processing and slow control actions; in addition, there is a tendency
to integrate DSP hardware features and specialized instructions into GPPs, yielding
GPP hybrids. One example of such processors is given in Fig.5.46, showing the
PowerPC with Motorola’s Altivec extension. The Altivec 128-bit SIMD unit adds up
to 16 operations per clock cycle, in parallel to the Integer and Floating Point units,
and 162 instructions to the existing RISC architecture.

Fundamental choices to make when designing a new digital system are which
digital signal processing actors should be used and how tasks should be shared
between them. This choice requires detailed and up-to-date knowledge of the
different possibilities.

57

BRANCH UNIT

Instiuction
INTEGER FLOATING- ALTIVEC
UNIT POINT UNIT VECTOR UNIT
F 3y F F 3
- L 4 L 4

b

PROGRAM / DATA MEMORY

Fig. 5.46: Altivec technology: SIMD expansion to Motorola
PowerPC (G4 family)

In industry the choice of the DSP to use is often based on the ‘4P’ law:
Performance, Power consumption, Price and Peripherals. In the accelerator sector,
the power consumption factor is typically negligible. Other factors are instead
decisive, such as standardization in the laboratory, synergies with existing systems,
and possibilities of evolution to cover different machines. Last but not least, one
should consider the existing know-how in terms of tools and of hardware, which can
be directly translated to a shorter development time.

In this section three design aspects are considered and briefly discussed, namely:

a) DSP choice in Sections 9.1 and 9.2.
b) System architecture in Sections 9.3 to 9.6.

c) DSP code design in Sections 9.7 and 9.8.

DSP choice: fixed vs. floating-point DSPs

The reader can find a basic description of fixed- and floating-point number formats in

Section 3.4.

Fixed-point formats can typically be implemented in hardware in a cheaper
way, with better energy efficiency and less silicon than floating-point formats. Very
often fixed-point DSPs support a clock faster than floating-point DSPs; as an
example, TI fixed-point DSPs can currently be clocked up to 1.2 GHz, while TI
floating-point DSPs are clocked up to 300 MHz.

Floating-point formats are easier to use since the DSP programmer can mostly
avoid carrying out number scaling prior to each arithmetic operation. In addition,
floating-point numbers provide a higher dynamic range, which can be essential
when dealing with large data sets and with data sets whose range cannot be easily
predicted. The reader should be aware that floating-point numbers are not
equispaced, i.e., the gap between adjacent numbers depends on their magnitude:
large numbers have large gaps between them, and small numbers have small gaps.
As an example, the gap between adjacent numbers is higher than 10 for numbers of
the order of 2 - 108. Additionally, the error due to truncation and rounding during
the floating-point number scaling inside the DSP depends on the number magnitude,

58

too. This introduces a noise floor modulation that can be detrimental for high-
quality audio signal processing. For this reason, high-quality audio has been
traditionally implemented by using fixed-point numbers. However, a migration of
high-fidelity audio from fixed- to floating- point implementation is currently taking
place, so as to benefit from the greater accuracy provided by floating point numbers.

The choice between fixed- and floating-point DSP is not always easy and
depends on factors such as power consumption, price, and application type. As an
example, military radars need floating- point implementations as they rely in finding
the maximal absolute value of the cross-correlation between the sent signal and the
received echo. This is expressed as the integral of a function against an exponential;
the integral can be calculated by using FFT techniques that benefit from the floating
point dynamic range and resolution. For radar systems, the power consumption is
not a major issue. The floating-point DSP additional cost is not an issue either, as the
processor represents only a fraction of the global system cost. Another example is
the mobile TV. The core of this application is the decoder, which can be MPEG-2,
MPEG-4 or JPEG-2000. The decoding algorithms are designed to be performed in
fixed-point; the greater precision of floating-point numbers is not useful as the
algorithms are in general bit-exact.

It should be underlined that many digital signal processing algorithms are
often specified and designed with floating-point numbers, but are subsequently
implemented in fixed-point architectures so as to satisfy cost and power efficiency
requirements.

Finally, as mentioned in Section 8.3, some fixed-point DSPs make available
floating-point numbers and operations by emulating them in software (hence they
are slower than in a native floating-point DSP).

The fact that floating-point numbers are not equispaced has already been
mentioned. The reader might be interested in looking at some consequences of this
with an example from the LHC beam control implementation. Figure 47 shows a
zoom onto the beam loops part of the LHC beam control. The ‘Low-level Loops
Processor’ is a board including a TigerSHARC DSP and an FPGA. The FPGA
carries out some simple pre-processing and data interfacing, while the DSP
implements the low-level loops. In particular, the DSP calculates the frequency to be
sent to the cavities from the beam phase, radial position, synchrotron frequency, and
programmed frequency; these calculations are carried out in floating-point format.
The frequency to be sent to the cavities, referred to as F_out in Fig.5.47, must be
expressed as an unsigned, 16-bit integer. The desired frequency range to represent is
10 kHz, hence the needed resolution is 0.15 Hz. The LHC cavities work at a
frequency of about 400.78 MHz but the spacing of a single-precision, floating-point
number with magnitude of approximately 400 - 10° is higher than one. To avoid the
use of slower, double-precision, floating-point format, the beam loop calculations are
carried out as offset from 400.7819 MHz.

59

Phase Noise
Generator.

{ FRF Prog 1

Phase

Synchro loop i Discri
RF/Fprog phase switch ‘
Q. =
o o |LOW-level Phase
Loaps | VCXO Discri
Beam/Vt phase Processor ou
- BEAM
Phase loop
+ CONTROL
@ LOOPS di\lilger ._Frev Prog
o
¢ MODULE
Radial loop |&
. Master F RF Master F rev
FPGA BEAM
6} Fiber Optic
3 POS .
Radial PU MODULE
Front-end

= b

To Ring 1 Cavity Controllers

(fibers)

Fig. 5.47: LHC beam control — zoom onto the beam loops part

DSP choice: benchmarking

Benchmarking a DSP means evaluating it on a number of different metrics. Table

14 gives an example of some common metrics and corresponding units.

Table 14: Examples of DSP performance metric sets and
corresponding units

Metric

Unit

Maximum clock frequency

MHz

Millions of Instructions Per Second (MIPS)
Execution speed Millions of Operations Per Second (MOPS)

Number of Multiply-and-Accumulate operations per second

Memory bandwidth

Mbytes/s

Memory latency

Number of clock cycles

Power consumption

W or W/IMIPS

Good benchmarks are important for comparing DSPs and allow critical
business or technical decisions to be made. It should be underlined that benchmarks
can be misleading, thus should be considered in a critical way. As an example, the
maximum clock frequency of a DSP can be different from the instruction rates;
hence this parameter might not be indicative of the real DSP processing power.
Another example is the execution speed measured in MIPS: this metric is easy to

measure but it is often too simple to provide useful information about how a
processor would perform in a real application. VLIW architectures issue and
execute multiple instructions per instruction cycle. These processors usually use
simpler instructions that perform less work than the instructions typical of
conventional DSPs. As a consequence, MIPS comparison between VLIW-based DSP
and conventional ones is misleading.

More complex benchmarks are available; examples are the execution of
application tasks (typically called kernel functions) such as IIR filters, FIR filters, or
FFTs. Kernel function benchmarking is typically more reliable and is available from
DSP manufactures as well as from independent companies.

It is difficult to provide general guidelines to measure the efficacy of DSP
benchmarks for DSP selection. Two general rules should be followed: first, the
benchmark should perform the type of work the DSP will be expected to carry out
in the targeted application. Second, the benchmark should implement the work in a
way similar to what will be used in the targeted application.

System architecture: multiprocessor architectures

Multiprocessor architectures are those where two or more processors interact in
real-time to carry out a task. Right from their early days, many DSP families have
been designed to be compatible with multiprocessing operation; an example is the T
TMS320C40 family. Multiprocessing architectures are particularly suited for
applications with a high degree of parallelism, such as voice processing. In fact,
processing ten voice channels can be carried out by implementing a one-voice
channel, then repeating the process ten times in parallel. Applications requiring
multiprocessing computing to support processing of greater data flow include high-
end audio treatment, 3D graphics acceleration, and wireless communication
infrastructure, just to mention a few of.

There is another reason to move to multiprocessing systems. For many years
developers have been taking advantage of the steady progress in DSP performance.
New and faster processors would be available, allowing more powerful applications
to be implemented sometimes only for the price of porting existing code to the new
DSP. This favourable situation was driven by the steady progress of the
semiconductor industry that managed to pack more transistors into smaller
packages and at higher clock frequencies. The increased performance was enabled
by architectural innovations, such as VLIW, as well as added resources, such as on-
chip memories. In recent years, however, progress in single-chip performance has
been slowing down. The semiconductor industry has turned to parallelism to
increase performance. This is true not only for the DSP sector, but in general for
business computing. One example is the Intel Core Duo processors, including two
execution cores in a single processor, now the established platform for personal
computers and laptops.

Finally, the reader should be aware that development environments have
evolved to provide support for debugging multiple processor cores connected in the
same JTAG path . An example is TI’s Parallel Debug Manager [68], which is
integrated within the Code Composer Studio IDE.

61

Of the many possible multiprocessing forms, the multi-DSP and multi-core
approaches are considered and discussed in Sub-sections 9.3.1 and 9.3.2
respectively.

Multi-DSP architecture

Many separate DSP chips can co-operate to carry out a task providing an increased
system performance. One advantage of this approach is the scalability, i.e., the
ability to tune the system performance and cost to the required functionality and
processing performance by varying the number of DSP chips used.

The reader should, however, be aware that multi-DSP designs involve different
constraints than single-processing systems. Three key aspects must be taken into
account.

a) Tasks must be partitioned between processors. As an example, a single
processor can handle a task from start to end; as an alternative, a processor
can perform only a portion of the task, then pass the intermediate results to
another processor.

b) Resources such as memory and bus access must be shared between
processors so as to avoid bottlenecks. As an example, additional memory
may be added to store intermediate results. Organizing memory into
segments or banks allows simultaneous memory accesses without
contentions if different banks are accessed.

¢) A robust and fast inter-DSP communication means must be established. If
the communication is too complex or takes too much time, the advantage of
a multiprocessing can be lost.

Two examples of multi-DSP architectures based on ADI DSPs are shown in
Fig.5.48.

On the left-hand side (plot a) the point-to-point architecture is depicted, based
upon ADI linkport interconnect cable standard. Point-to-point interconnect
provides a direct connection between processor elements. This is particularly useful
when large blocks of intermediate results must be passed between two DSPs without
involving the others. Read/write transactions to external memory are saved by
passing data directly between two DSPs, thus allowing the use of slower memory
devices. Additionally, the point-to-point interconnect can be used to scale a design:
additional links can be added to have more DSPs interacting. This can be done
either directly or by bridging across several links.

62

SHARC [~ SHARC [~ SHARC SHARC SHARC SHARC

<+— Linkports +— Shared bus

SHARC [SHARC [SHARC SHARC SHARC SHARC

(a) {b)

Fig. 5.48: Examples of multi-DSP configurations. (a) point-to-point,
linkport-based and (b) cluster bus

On the right-hand side (plot b) the cluster bus architecture is depicted. A
cluster bus maps internal memory resources, such as registers and processor
memory addresses, directly onto the bus. This allows DSP code developers to
exchange data between DSPs using addresses as if each processor possessed the
memory for storing the data. Memory arbitration is managed by the bus master;
this avoids the need for complex memory or data sharing schemes managed by
software or by RTOS. The map includes also a common broadcast space for
messages that need to reach all DSPs. As an example, Fig. 49 shows the
TigerSHARC global memory map. The multiprocessing space maps the internal
memory space of each TigerSHARC processor in the cluster into any other
TigerSHARC processor. Each TigerSHARC processor in the cluster is identified by
its I1D; valid processor ID values are 0 to 7.

GLOBAL SPACE

0xFFFF FFFF

HOST

INTERMNAL SPACE 0x1000 0000

0x003F FFFF - MEMORY BAMNK 1
s

Ox0CO00 0000
MEMORY BANK O
=0

EXTERNAL SPACE
A

0x0020 0000

0x0800 0000

SDRAM
WSS

RESERWVED 0x0023 0000 3 0x0400 000D

PROCESSOR ID 7
Ox03CO 0O00

PROCESSOR ID 6
00020 0000 0x0280 0000

PROCESSOR ID 5
\‘\ Ox0340 G000

N - PROCESSOR ID 4

,

0x0018 OTFF “, = Ox0300 D000

T e, s \, & PROCESSOR ID 2
- 0x0018 0000 S o= OX02C0 0000

RESERVED “, @ PROCESSOR ID 2
0x0010 FFFF N w Ox0280 000D

INTERNAL MEMORY AN (=] PROCESSOR ID 1

BLOCK \ = N

0x0010 0000 , = Ox0240 0000

RESERVED \‘\ 5‘ PROCESSOR ID O
0x0008 FFFF ™ = 0x0200 0000

INTERMAL MEMORY AN EROADEAST

BLOCK 1

0x0008 0000 ‘\‘ - Ox01CO 0000
RESERVED ™ RESERVED
0x0000 FFFF 0x003F FFFF

INTERNAL MEMORY
BLOCK O - o S INTERNAL MEMORY
0x0000 0000 s Qx 0000 0000

L

Fig.5.49: ADI TigerSHARC TS101 global memory map. Picture courtesy of
Analog Devices

63

The reader should be aware that the two above-mentioned architectures,
namely point-to-point and cluster bus, are not mutually exclusive; on the contrary,
they can both be used in the same application as complementary solutions.

Multi-core architecture

In a multi-core architecture, multiple cores are integrated into the same chip. This
provides a considerable increase of the performance per chip, even if the
performance per core only increases slowly. Additionally, the power efficiency of
multi-core implementations is much better than in traditional single-core
implementations. This approach is a convenient alternative to DSP farms.

As the performance required by DSP systems keeps increasing, it is nowadays
essential for DSP developers to devise a processing extension strategy. Multi-core
architectures can provide it, in that the DSP performance is boosted without
switching to a different core architecture. This has the advantage that applications
can be based upon multiple instances of an already-proven core, rather than be
adapted to new architectures.

DSP multi-core architectures have been commercialized only recently;
however, the DSP market has relied for many years on co-processor technology
(also called on-chip accelerators) to boost performance. Figure5.50 shows the
evolution of DSP architecture. From the initial single-core architecture (a), the
single-core plus co-processor architecture soon emerged. The co-processor often
runs at the same frequency as the DSP, therefore ‘doubling’ the performance for the
targeted application. Co-processor examples are Turbo and Viterbi decoders for
communication applications. Finally, over the last few years the multi-core
architecture shown in plot (c) has emerged, which still includes co-processors.

Single-core DSP Single-core DSP Three-core DSP
+ co-processor + co-processor

(a) (b) (c)
Fig.5. 50: Multi-core and co-processor DSP architectures evolution.
Single-core DSP (a), single- core DSP plus coprocessor (b) and multi-
core DSP plus coprocessor (c).

Multi-core architectures are available in two different flavours, namely
Symmetric Multi- Processing (SMP) and Asymmetric Multi-Processing (AMP).
SMP architectures include two or more processors which are similar (or identical),
connected thorough a high-speed path and sharing some peripherals as well as
memory space. AMP architectures combine two different processors, typically a
microcontroller and a DSP, into a hybrid architecture.

It is possible to use a multi-core device in different ways. The different cores
can operate independently or they can cooperate for task completion. An efficient
inter-core communication may be needed in both cases, but it is particularly

64

important when two or more cores work together to complete a task. As for the
multi-DSP case discussed in Sub-section 9.3.1, it is important to decide how to share
resources to avoid bottlenecks and deadlocks, and to ensure that one core does not
corrupt the operation of another core. The resources must be partitioned not only at
board level, like in the single-core case, but at device level, too, thus adding increase
complexity. Figure5.51 shows an example of multi-core bus and memory hierarchy
architecture. L1 memories are typically dedicated to their own core as non-
partitioned between cores, as it may be inefficient to access them from other cores.
The L2 memory is an internal memory shared between the different cores, as
opposed to the single-core case where the L2 memory can be either internal or
external. The multi-core architecture must make sure that each core can access the
L2 memory and the arbitration must be such that cores are not locked out from
accessing this resource.

External system bus

L2 RAM (—L3 memory)

RAM RAM RAM L2 interconnect

inside device

Fig. 5.51: Multi-core bus and memory hierarchy example

Figure 5.52 shows the TMS320C5421 DSP as an example of a multi-core, SMP
DSP. The TMS320C5421 DSP is composed of two C54x DSP cores and is targeted at
carrier-class voice and video end equipment. The cores are 16-bit fixed-point and
the chip is provided with an integrated VITERBI accelerator. Four internal buses
and dual address generators enable multiple program and data fetches and reduce
memory bottlenecks.

65

Fig. 5.52 TMS320C5421 multi-core DSP as an SMP example. Picture

JTAG

2 KWords ROM 64 KWords RAM Emulation
Control
¥ :
- d
~ Program/Data Buses N Sotial Port (MeBSP)
l l I emp. Multi-channel Buffered
Serial Port (McBSP)
Multi-channel Bi d
= DMA B e e e s
% g:? g - 16-Bit Timer
s =
= Ch2 =
= C54x DSP CPU Ch3 E < 2GPI/0
= PLL Clock
g g:: g g > Gener:t%r
I _T_ <«=> 16BitHPI
—— b B
128 KWords RAM FIFO Interface IS
= I <=> 16-BitHPI
g DMA Multi-channel Buffered
g Cho0 2 Serial Port (McBSP)
< Ch1 i
5 C54x DSP CPU Ch?2 D~ o MBSP)
> Ch3 s Multi-channel Buffered
= Ch4 - _°§’_ Serial Port (McBSP)
= ChS ‘S e=> 16t Timer
== b m
I I I > 2GPl/O
PLL Clock
! Program/Data BuseIs §e—s] T BLECIGCK
2KWords ROM 64 KWords RAM Hed
ords ords Emulation

Control

courtesy of Texas Instruments, DSP selection guide 2007, p. 48.

The programming of multi-core system is generally more complex than in the
single-core case. In particular, the reader should be aware that multi-core code must
follow the re-entrance rules, to make sure that one core’s processing does not
corrupt the data used by another core’s processing. This approach is followed by
single-core processors, too, when implementing multi-tasking operations.

System architecture: radiation effects

Single-Event Upset (SEU) events are alterations in the behaviour of electronic
circuits induced by radiation. These alterations can be transient disruptions, such

as changes of logic states, or permanent IC alterations.

Techniques to mitigate these effects in ICs can be carried out at different levels,
namely:

a)

b)

c)

At device level, for instance by adding extra-doping layers to limit the

substrate charge collection.

At circuit level, for instance by adding decoupling resistors, diodes, or

transistors in the SRAM hardening.

At system level, with Error Detection And Correction (EDAC) circuitry or
with algorithm- based fault tolerance. An example of the latter approach is
the Triple Module Redundancy (TMR) algorithm or the newer Weighted

66

Checksum Code (WCC). The reader should, however, be aware that there
are limitations to what these algorithms can achieve. For instance, the
WCC method applied to floating-point systems may fail, as round off errors
may not be distinguished from functional errors caused by radiation.

Neither ADI nor TI currently provide any radiation-hard DSP. Third-party
companies have developed and marketed radiation-hard versions of ADI and TI
DSPs. An example is Space Micro Inc., based in San Diego, California. This
company devised the Proton 200k single-board computer based upon a Tl C67xx
DSP, fitted with EDAC circuitry and with a total dose tolerance higher than 100
krad.

The LHC power supply controllers are examples of mitigation techniques
applied to DSP. They are based upon non-radiation-hard TlI C32 DSPs and micro
controllers. The memory is protected with EDAC circuitry and by avoiding the use
of DSP internal memory, which cannot be protected. A watchdog system restarts the
power supply controller in the event of a crash. Radiation tests have been carried
out to check that the devised protection strategy is sufficient for normal operation.

System architecture: interfaces

An essential step in the digital system design is to clearly define the interfaces
between the different parts of the system. Figure 53 shows some typical building
blocks that can be found in a digital system, namely DSP(s), FPGA(s),
daughtercards, Master VME, machine timings, and signals.

The DSP system designer must define the interfaces between DSP(s) and the
other building blocks. It is strongly recommended to avoid hard-coding in the DSP
code the address of memory regions shared with other processing elements. On the
contrary, the linker should be used to allocate appropriately the software structures
in the DSP memory, as mentioned in Sub-section 6.4.3. Additionally, the DSP
developer should created data access libraries, so as to obtain a modular hence more
easily upgradeable approach.

CONTROL
INFRASTRUCTURE

DIGITAL I/O,
LOW-LATENCY DATA LINKs,
RF REFERENCES, TIMINGS

DIGITAL I/O,
LOW-LATENCY DATA LINKs

FROM MACHINE TO MACHINE

Fig. 5.53: Typical digital system building blocks and corresponding interfaces

67

System architecture: general recommendations

Basically all DSP chips present some anomalies on their expected behaviour. This is
especially true for the first release of DSP chips, as discovered anomalies are
typically solved on later releases. A list of all anomalies for a certain DSP release,
which includes also workarounds when possible, is normally available on the

i i McBSPs | i 3

i EMIF
MUx -

AIC23

=)
g
w
CPLD
SDRAM P
Host Port Int

| DSP

JTAG S— { Peripheral Exp

{2223

Bt | BB mon or
0123 0123

i3

o

£
(a) (b)

manufacturer’s website. The reader is strongly encouraged to look at those lists, so

as to avoid being delayed by already-known problems.

Fig.5. 54: Tl C6713 DSK evaluation board — picture (a) and board
layout (b)

A DSP system designer can gain useful software and hardware experience by
using evaluation boards in the early stages of system design. Evaluation boards are
typically provided by manufacturers for the most representative DSPs. They are
relatively inexpensive and are typically fitted with ADCs and DACs; they come with
the standard development environment and JTAG interface, too. The DSP designer
can use them to solve technical uncertainties and sometimes can even modify them
to quickly build a system prototype. Figure 5.54 shows TI’s C6713 DSK evaluation
board (a) and corresponding board layout (b); this evaluation board was that used
in the DSP laboratory companion of the lectures summarized in this paper.

DSP code design: interrupt-driven vs. RTOS-based systems.

A fundamental choice that the DSP code developer must make is how to trigger the
different DSP actions. The two main possibilities are via a RTOS or via interrupts.

An overview of RTOS is given in Section 6.3. RTOS can define different
threads, each one performing a specific action, as well as the corresponding threads’
priorities and triggers. RTOS-based systems have typically a clean design and many
built-in checks. The disadvantage of using RTOS is a potentially slower response to
external events (interrupts) and the use of DSP resources (such as some hardware
timings and interrupts) for the internal RTOS functioning.

Interrupt-driven systems associate actions directly to interrupts. The resource
use is therefore optimized. An example of interrupt-driven system is CERN’s LEIR
LLRF . Figure 5.55 shows some of its software components: a background task
triggered every millisecond carries out housekeeping actions, while a control task
triggered every 12.5 ps implements the beam control actions. Driving a system
through interrupts is very efficient with a limited number of interrupts. For a high

68

number of interrupts, the system can become very complex and its behaviour not
easily predictable.

ﬂ]]]ﬂﬂ]]]]]]]ﬂl Control task |:’ Background task
1ms
A e e R RS R R R R r R >
1 51 T 2 1 N
125 ps

Fig. 5.55: Example of an interrupt-driven system. Control and
background tasks are triggered by interrupts and are shown in red and
green, respectively.

DSP code design: good practice

A vast amount of literature is available on code design good practice. Here just a few
points are underlined, which are particularly relevant to embedded systems.

First, digital systems must not turn into tightly sealed black boxes. It is
essential that designers embed many diagnostics buffers in the DSP code, so as to
prevent this from happening. The diagnostics buffers could take many forms, such
as post-mortem, circular or linear buffers. They might be user-configurable and
must be visible from the application program.

Second, every new DSP code release should be characterized by a version
number, visible from the application level. The functionality and interface map
corresponding to a certain version number should be clearly documented, so as to
avoid painful misunderstandings between the many system layers. Source code
control is essential for managing complex software development projects, as large
projects require more than one DSP code developer working on many source files.
Source code control tools make it possible to keep track of the changes made to
individual source files and prevent files from being accessed by more than one
person at a time. DSP software development environments can often support many
source control providers. Code Composer Studio, for example, supports any source
control provider that implements the Microsoft SCC Interface.

Finally, DSP developers should also add checks on the execution duration, to
make sure the code does not overrun. This is particularly important for interrupt-
driven systems (mentioned in Section 9.7), where one or more interrupts may be
missed if the actions corresponding to an interrupt are not finished by the time the
next interrupt occurs. As an example, the minimum and maximum

69

number of clock cycles needed for executing a piece of code can be constantly
measured and monitored by the user at high level. All DSPs provide means to measure
the number of clock cycles required to execute a certain amount of code; the number
of clock cycles can then be easily converted into absolute time. Figure 56 shows a
possible implementation on ADI SHARC DSPS of the execution duration of a code
called ‘critical action’. SHARC processors have a set of registers called emuclk and
emuclk2 which make up a 64-bit counter. This counter is unconditionally incremented
during every instruction cycle on the DSP and is not affected by factors such as cache-
misses or wait-states. Every time emuclk wraps to zero, emuclk2 is incremented by one.
By determining the difference in the emuclk value between before and after the critical
action, the DSP developer can determine the number of clock cycles — hence the time
— to execute the code.

ustat3 = emuclk; // read time @execution start
CRITICAL
ACTION
r0 = emuclk; // read time @execution end
r1 = ustat3;
r1=r0-r1; // calculate execution time

Fig.5. 56: Execution duration measurement with emuclk registers in
the ADI SHARC DSP

The system integration is one of the final parts in the system development process. This
phase is extremely important as it can determine the success or the failure of a whole
system. In fact, a system which is well integrated can become operational, while a
system only partially integrated will often remain a ‘machine development’ tool, easily
forgotten.

During the system integration phase, the system is commissioned with respect to
data exchange with the control infrastructure and the application program(s). Two or
more groups, such as Instrumentation, Controls and Operation, can be involved in this
effort, depending on the laboratory’s organization. As a consequence, a coordination
and specification work is required.

Good system integration practices will depend on the laboratory’s organization
as well as on the system architecture. There are, however, some guidelines that can be
applied to most cases.

- Guideline 1: Work in parallel

70

All software layers needed in a system should be planned in parallel. Waiting
until the low-level part is completed before starting with the specification and/or with
the development of the other layers may result in unacceptable delays.

- Guideline 2: About interfaces

Section 9.5 summarized the many interfaces that can exist in a system. For a
successful system integration it is essential that the interfaces are specified clearly, are
agreed upon with all different parties and are fully documented. Recipes on how to set
up different software components of the system or on how to interact with them can be
really useful and speed up considerably system development as well as debugging. It is
recommended that all documents be kept updated and stored on servers accessible by
all parties involved. Remember: good fences make good neighbours.

- Guideline 3: Always include checks on the DSP inputs validity

The validity of all control inputs to the DSP should be checked. Alarms or
warnings should be raised if a control value falls outside the allowed range. This
mechanism will help the system integration part and could even prevent serious
malfunctioning from happening.

- Guideline 4: Add spare parameters

It is strongly recommended to map spare parameters between the DSP and
application program; they should have different formats for maximum flexibility.
These spare parameters allow adding debugging features or making some small
update without modifications to the intermediate software layers.

- Guideline 5: Code release and validation

The source code (and if possible the corresponding executable, too) should be
saved together with a description of its features and implemented interfaces. This will
allow going back to previous working releases in case of problems. Procedure and data
sets should also be defined for code validation.

Existing chip examples were often given and referenced to technical manuals or
application notes. Examples of DSP use in existing accelerator systems were also given
whenever possible.

The DSP field is of course very large and more information, as well as hands-on
practice, is required to become proficient in it. However, the author hopes that this
document and the references herein can be useful starting points for anyone wishing to
work with DSPs.

FPGA and Digital Signal Processing
Spartan-3 FPGA family overview

e The Spartan-3 family architecture consists of five fundamental programmable
functional elements:
Configurable Logic Blocks (CLBs) containing RAM-based Look-Up Tables (LUTS) to
implement logic and storage elements that can be used as flip-flops or latches. CLBs can
be programmed to perform a wide variety of logical functions as well as to
store data.
e Input/Output Blocks (10Bs) controlling the flow of data between the 1/O pins and the
internal logic of the device.
e 18-Kbit dual-port RAM blocks providing data storage.
e Multiplier blocks which accept two 18-bit binary numbers as inputs and calculate the
product.
e Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions for
distributing, delaying, multiplying, dividing, and phase shifting clock signals.
These elements are organized as shown in Figure 5.57. A ring of 10Bs surrounds a
regular array of CLBs. The XC3S400 device contains 896 CLBs, 288kbit embedded
RAM, 16 dedicated multipliers and 4 DCMs.

i ~ i

cLe Block RAM Mutipler

Fig.5.57 Spartan-3 family architecture
The main logic resource for implementing synchronous as well as combinatorial circuits is the
Configurable Logic Block (CLB). Each CLB comprises four interconnected slices, as shown in
Figure 5.58. These slices are grouped in pairs. Each pair is organized as a column with an
independent fast carry chain. The carry chain supports implementing arithmetic functions such
as addition.
All four slices have the following elements in common: two logic function generators (known as
Look-Up Tables), two flip-flops, wide-function multiplexers, carry logic, and auxiliary
arithmetic gates. The RAM-based Look-Up Table (LUT) is the main resource for implementing
logic functions.
Each of the two LUTs in a slice have four logic inputs and a single output.
This permits any four-variable Boolean logic operation to be programmed into them. Wide-
function multiplexers can be used to effectively combine

72

Leoft-Hand SLICEM
Logic or Distriduted RAM
or Shift Register

Right-Hand SLICEL
(Logic Only)

couT
‘.

»NJ] SLICE
X1Y1 Q==

cLe

Interconnect
CIN to Neighbors

Fig. 5.58. Configurable logic block
LUTs within the same CLB or across different CLBs, making logic functions with many more
input variables possible. Switch matrix (see Figure 2) allows programmable access into local
and global routing resources. Clock signals are distributed by dedicated low- capacitance, low
skew network well suited to carrying high-frequency signals.
Spartan-3 FPGAs are programmed by loading configuration data into static memory cells that
control all functional elements and routing resources. Before powering on the FPGA,
configuration data is stored externally in a PROM or some other nonvolatile medium either on
or off the board. After applying power, the configuration data is written to the FPGA using one
of the available modes, e.g. JTAG mode.
Memec Spartan-3 LC Development Board and P160 Analog Module
Memec Spartan-3 LC Development Board
The Spartan-3 LC Development Kit provides an easy-to-use evaluation platform for developing
designs and applications based on the Xilinx Spartan-3 FPGA family. The development board
utilizes the 400K-gate Xilinx Spartan- 3 device (XC3S400-4PQ208CES). The board includes a
50 MHz clock, a user clock socket, 29 user 1/0O header pins, an RS-232 port, a USB 2.0 slave
port, LEDs, switches, and additional user support circuits. The P160 Analog Module containing
A/D and D/A converters is connected to the main board by dedicated 160 pin socket.

‘ orms Paas o
RS RR ‘
»-41
‘ o
‘ 20 My Coes b - l
‘ 200
o ~ -
. ==
[T | N
‘ |
[RN
ncte » AT
‘ i " -‘{ User 1O Hascar
‘ 3 - - - 1‘.. -

otage Heguacny

Fig.5.60. Spartan-3 LC block diagram

73

A simplified block diagram of the Spartan-3 LC development board is shown in Figure 3.
Instructions for interfacing all included components are available in Memec Spartan-3 LC
User's Guide. In digital signal processing purposes, the most emphasis shall be put on using
ADC and DAC components.

2
Vemed®

P60 Connectos {JX1)
3
3

vostor (JX2)

‘_
.-
P 140 Conn

SysmemAce Connector P2

EEEER

of LE
|

y |om

i T - L?"f bad [
1 s IR) 5 7 e g

Fig.5.61. Spartan-3 LC Development board

A JTAG connector (J2, see Figure 4) provides interface to the board's JTAG chain. This chain
can be used to program the on-board ISP PROM and configure the Spartan-3 FPGA. The
JTAG chain consists of an XCF02S Platform Flash PROM followed by an XC3S400 FPGA. The
XCF02S Plat form Flash In System Programmable (ISP) PROM allows designers to store an
FPGA configuration in nonvolatile memory. The JTAG port on the Plat form Flash device is
used to program the PROM with an .mcs file created by iMPACT in the Xilinx ISE software
environment. Once the Flash has been programmed, the user can configure the Spartan-3
device by setting the Configuration Mode to Master Serial Mode (Jumper J1, see Figures 4 and
5). The Spartan-3 device configuration is initiated during power-up or by asserting the
PROGAMN signal (by pressing the SW2 switch). The FPGA can be also configured directly
through JTAG chain, without using of PROM. JTAG chain is connected into PC computer
through dedicated Parallel cable.

P160 Analog Module

supporting analog outputs. Both channels are identical. The Texas Instruments ADS807 12-bit,
53Msps A/D converters are used to convert incoming analog signals into 12-bit data for the
FPGA located on the baseboard. Analog outputs can be generated using the two DAC902 12-
bit, 165Msps D/A converters from Texas Instruments. Gain and filtering is provided on the D/A
outputs. Control of the ADCs and DACs is handled by the FPGA through the P160 digital
interface.

74

D/A Converters

The FPGA interfaces to the DACs through 12-bit registers, which add a clock cycle delay
between data out from the FPGA and the DAC analog outputs. Two independent data channels,
one channel for each DAC, are driven from the FPGA. The DACs interface signals are:
e bits of input data. Output voltage values corresponding to input
binary values are shown below.

LI | 3.5V
100000000000 | 2.5V
000000000000 | 1.5V
As can be easily seen, the DAC output is normally DC coupled for a 2 V peak-to-peak (Vp-p)
signal centered at 2.5 V.
e Two clock signals: DAC Clock (CLK) and Register Clock (CLKZ2), rising edge active.
The CLK2 signal latches the digital DAC data from the FPGA into the register. The
CLK signal latches the output data from the register into the DAC. On the falling edge
of the CLK signal, the DAC output changes to the newly latched value.
e Reference Select (RefSel) control signal, which makes possible to disable internal
reference voltage source and to use external reference input (Low = Internal, High =
External Reference).

e Power Down (PD) control signal (Low = Normal, High = Power Down Mode).

A/D converters
Texas Instruments ADS807 converters provide 12-bit resolution at up to 53 Msps. The digital
data out of the A/Ds is latched into external bu_ers and then passed to the FPGA through the
P160 interface. The range of the input voltage is dependent on the Full Scale Select control
signal to the
A/D. Before conversion the input signal is AC coupled, biased to 2.5 volts for unipolar
operation, and bu_ered through the op amp.The ADCs interface signals are:
e bits of output data (binary range **000000000000*" to ""111111111111").
e Full Scale Select control signal (FsSel). Setting this signal to a logic high allows a 1.5 Vp-
p input to the board. Setting the Full Scale Select to low, selects a 1 Vp-p input range to
the board (i.e. -0:5V voltage corresponds to "'000000000000 value and +0:5V
corresponds to "*111111111111" value).
o Reference Select (RefSel) control signal (Low = Internal Reference, High = External
Reference).
e Output Enable (OE) control signal (Low = Output Enabled, High = Tri-Stated outputs).
e Convert clock (CLK) signal. The ADS807 samples the input signal on the rising edge of
the CLK input. Output data values are valid at the outputs 6 clock cycles later, after the
rising edge of the clock.

75

Audio Signal Processing

Our sense of hearing provides us rich information about our environment with respect
to the locations and characteristics of sound producing objects. For example, we can
effortlessly assimilate the sounds of birds twittering outside the window and traffic
moving in the distance while following the lyrics of a song over the radio sung with
multi-instrument accompaniment. The human auditory system is able to process the
complex sound mixture reaching our ears and form high-level abstractions of the
environment by the analysis and grouping of measured sensory inputs. The process of
achieving the segregation and identification of sources from the received composite
acoustic signal is known as auditory scene analysis. It is easy to imagine that the machine
realization of this functionality (sound source separation and classification) would be
very useful in applications such as speech recognition in noise, automatic music
transcription and multimedia data search and retrieval. In all cases the audio signal
must be processed based on signal models, which may be drawn from sound production
as well as sound perception and cognition. While production models are an integral part
of speech processing systems, general audio processing is still limited to rather basic
signal models due to the diverse and wide-ranging nature of audio signals. Important
technological applications of digital audio signal processing are audio data compression,
synthesis of audio effects and audio classification. While audio compression has been the
most prominent application of digital audio processing in the recent past, the burgeoning
importance of multimedia content management is seeing growing applications of signal
processing in audio segmentation and classification. Audio classification is a part of the
larger problem of audiovisual data handling with important applications in digital
libraries, professional media production, education, entertainment and surveillance.
Speech and speaker recognition can be considered classic problems in audio retrieval
and have received decades of research attention. On the other hand, the rapidly growing
archives of digital music on the internet are now drawing attention to wider problems of
nonlinear browsing and retrieval using more natural ways of interacting with
multimedia data including, most prominently, music. Since audio records (unlike
images) can be listened to only sequentially, good indexing is valuable for effective
retrieval. Listening to audio clips can actually help to navigate audiovisual material
more easily than the viewing of video scenes. Audio classification is also useful as a front
end to audio compression systems where the efficiency of coding and transmission is
facilitated by matching the compression method to the audio type, as for example, speech
or music.

76

Audio Signal Characteristics

Audible sound arises from pressure variations in the air falling on the ear drum. The
human auditory system is responsive to sounds in the frequency range of 20 Hz to 20
kHz as long as the intensity lies above the frequency dependent “threshold of hearing”.
The audible intensity range is approximately 120 dB which represents the range between
the rustle of leaves and boom of an aircraft take-off. Figure 1 displays the human
auditory field in the frequencyintensity plane. The sound captured by a microphone is a
time waveform of the air pressure variation at the location of the microphone in the
sound field. A digital audio signal is obtained by the suitable sampling and quantization
of the electrical output of the microphone. Although any sampling frequency above 40
kHz would be adequate to capture the full range of audible frequencies, a widely used
sampling rate is 44,100 Hz, which arose from the historical need to synchronize audio
with video data. “CD quality” refers to 44.1 kHz sampled audio digitized to 16-bit word
length. Sound signals can be very broadly categorized into environmental sounds,
artificial sounds, speech and music. A large class of interesting sounds is timevarying in
nature with information coded in the form of temporal sequences of atomic sound
events. For example, speech can be viewed as a sequence of phones, and music as the
evolving pattern of notes. An atomic sound event, or a single gestalt, can be a complex
acoustical signal described by a specific set of temporal and spectral properties.
Examples of atomic sound events include short sounds such as a door slam, and longer
uniform texture sounds such as the constant patter of rain. The temporal properties of
an audio event refer to the duration of the sound and any amplitude modulations
including the rise and fall of the waveform amplitude envelope. The spectral properties
of the sound relate to its frequency components and their relative strengths

T T T

X Threshold
120 |- N—
Auditory fiekd 1 ofpain

dB (SPL)

-1 Audibility
curve
(threshold
of hearing)

| I
20 100 500 1,000 5000 10,000
Frequency (Mz)

Fig.5.62. The auditory field in the frequency-intensity plane. The sound pressure level is
measured in dB with respect to the standard reference pressure level of 20 micropascals.

77

Audio waveforms can be periodic or aperiodic. Except for the simple sinusoid, periodic
audio waveforms are complex tones comprising of a fundamental frequency and a series
of overtones or multiples of the fundamental frequency. The relative amplitudes and
phases of the frequency components influence the sound “colour” or timbre. Aperiodic
waveforms, on the other hand, can be made up of non-harmonically related sine tones or
frequency shaped noise. In general, a sound can exhibit both tone-like and noise-like
spectral properties and these influence its perceived quality. Speech is characterized by
alternations of tonal and noisy regions with tone durations corresponding to vowel
segments occurring at a more regular syllabic rate. Music, on the other hand, being a
melodic sequence of notes is highly tonal for the most part with both fundamental
frequency and duration varying over a wide range. Sound signals are basically physical
stimuli that are processed by the auditory system to evoke psychological sensations in the
brain. It is appropriate that the salient acoustical properties of a sound be the ones that
are important to the human perception and recognition of the sound. Hearing perception
has been studied since 1870, the time of Helmholtz. Sounds are described in terms of the
perceptual attributes of pitch, loudness, subjective duration and timbre. The human
auditory system is known to carry out the frequency analysis of sounds to feed the
higher level cognitive functions. Each of the subjective sensations is correlated with more
than one spectral property (e.g. tonal content) or temporal property (e.g. attack of a note
struck on an instrument) of the sound. Since both spectral and temporal properties are
relevant to the perception and cognition of sound, it is only appropriate to consider the
representation of audio signals in terms of a joint description in time and frequency.
While audio signals are non stationary by nature, audio signal analysis usually assumes
that the signal properties change relatively slowly with time. Signal parameters, or
features, are estimated from the analysis of short windowed segments of the signal, and
the analysis is repeated at uniformly spaced intervals of time. The parameters so
estimated generally represent the signal characteristics corresponding to the time center
of the windowed segment. This method of estimating the parameters of a time-varying
signal is known as “short-time analysis” and the parameters so obtained are referred to
as the “short-time” parameters. Signal parameters may relate to an underlying signal
model. Speech signals, for example, are approximated by the well-known source-filter
model of speech production. The source-filter model is also applicable to the sound
production mechanism of certain musical instruments where the source refers to a
vibrating object, such as a string, and the filter to the resonating body of the instrument.
Music due to its wide definition, however, is more generally modelled based on observed
signal characteristics as the sum of elementary components such as continuous
sinusoidal tracks, transients and noise.

78

Audio Signal Representations

The acoustic properties of sound events can be visualized in a time-frequency “image”
of the acoustic signal so much so that the contributing sources can often be separated by
applying gestalt grouping rules in the visual domain. Human auditory perception starts
with the frequency analysis of the sound in the cochlea.The time-frequency
representation of sound is therefore a natural starting point for machine-based
segmentation and classification. In this section we review two important audio signal
representations that help to visualize the spectro-temporal properties of sound, the
spectrogram and an auditory representation. While the former is based on adapting the
Fourier transform to time-varying signal analysis, the latter incorporates the knowledge
of hearing perception to emphasize perceptually salient characteristics of the signal.

Spectrogram

The spectral analysis of an acoustical signal is obtained by its Fourier transform which
produces a pair of real-valued functions of frequency, called the amplitude (or
magnitude) spectrum and the phase spectrum. To track the time-varying characteristics
of the signal, Fourier transform spectra of overlapping windowed segments are
computed at short successive intervals. Time domain waveforms of real world signals
perceived as similar sounding actually show a lot of variability due to the variable phase
relations between frequency components. The short-time phase spectrum is not
considered as perceptually significant as the corresponding magnitude or power
spectrum and is omitted in the signal representation. From the running magnitude
spectra, a graphic display of the time-frequency content of the signal, or spectrogram, is
produced. Figure 1 shows the waveform of a typical music signal comprised of several
distinct acoustical events as listed in Table 1. We note that some of the events overlap in
time. The waveform gives an indication of the onset and the rate of decay of the
amplitude envelope of the non-overlapping events. The spectrogram (computed with a
40 ms analysis window at intervals of 10 ms) provides a far more informative view of the
signal. We observe uniformly spaced horizontal dark stripes indicative of the steady
harmonic components of the piano notes. The frequency spacing of the harmonics is
consistent with the relative pitches of the three piano notes. The piano notes’ higher
harmonics are seen to decay fast while the low harmonics are more persistent even as the
overall amplitude envelope decays. The percussive (low tom and cymbal crash) sounds
are marked by a grainy and scattered spectral structure with a few weak inharmonic
tones. The initial duration of the first piano strike is dominated by high frequency
spectral content from the preceding cymbal crash as it decays. In the final portion of the
spectrogram, we can now clearly detect the simultaneous presence of piano note and
percussion sequence.

79

Table 2. A Description of the audio events corresponding to figure 5.62.

Time duration (seconds) Nature of sound event

0.00 to 0.15 Low Tom (Percussive stroke)

015w 1.4 Cymbal crash (percussive stroke)

1.4 to24 Piano note (Low pitch)

24t0 34 Piano note (High pitch)

34045 Piano note (Middle pitch) occurring
simultaneously as the low tom and
cymbal crash (from 0 to 1.4 sec)

The spectrogram by means of its time-frequency analysis displays the spectro-temporal
properties of acoustic events that may overlap in time and frequency. The choice of the
analysis window duration dictates the trade-off between the frequency resolution of
steady-state content versus the time resolution of rapidly time-varying events or
transients.

Audio Features for Classification

While the spectrogram and auditory signal representations discussed in the previous
section are good for visualization of audio content, they have a high dimensionality
which makes them unsuitable for direct application to classification. Ideally, we would
like to extract low-dimensional features from these representations (or even directly
from the acoustical signal) which retain only the important distinctive characteristics of
the intended audio classes. Reduced-dimension, decorrelated spectral vectors obtained
using a linear transformation of a spectrogram have been proposed in MPEG-7, the
audiovisual content description standard.

Waveform

1(* T T T -y T T -1
!

05

=]
"

Nomnalised amolilude
Q

I Il

: ' s ' M s
o 0s 1 15 2 25 3 35 4 45

Spectrogram

Fraguency (Hz)

d8

magnduce

Fig 5.63. (a) Waveform, and (b) spectrogram of the audio segment described in table 2

80

The vertical dotted lines indicate the starting instants of new events. The spectrogram
relative intensity scale appears at lower right.

A more popular approach to feature design is to use explicit knowledge about the salient
signal characteristics either in terms of signal production or perception. The goal is to
find features that are invariant to irrelevant transformations and have good
discriminative power across the classes. Feature extraction, an important signal
processing task, is the process of computing the numerical representation from the
acoustical signal that can be used to characterize the audio segment. Classification
algorithms typically use labeled training examples to partition the feature space into
regions so that feature vectors falling in the same region come from the same class. A
well-designed set of features for a given audio categorization task would make for robust
classification with reasonable amounts of training data. Audio signal classification is a
subset of the larger problem of auditory scene analysis. When the audio stream contains
many different, but non-simultaneous, events from different classes, segmentation of the
stream to separate class-specific events can be achieved by observing the transitions in
feature values as expected at segment boundaries. However when signals from the
different classes (sources) overlap in time, stream segregation is a considerably more
difficult task . Research on audio classification over the years has given rise to a rich
library of computational features which may be broadly categorized into physical
features and perceptual features. Physical features are directly related to the measurable
properties of the acoustical signal and are not linked with human perception. Perceptual
features, on the other hand, relate to the subjective perception of the sound, and
therefore must be computed using auditory models. Features may further be classified as
static or dynamic features. Static features provide a snapshot of the characteristics of the
audio signal at an instant in time as obtained from a short-time analysis of a data
segment. The longer-term temporal variation of the static features is represented by the
dynamic features and provides for improved classification. Figure 3 shows the structure
of such a feature extraction framework. At the lowest level are the analysis frames, each
representing windowed data of typical duration 10 ms to 40 ms. The windows overlap so
that frame durations can be significantly smaller, usually corresponding to a frame rate
of 100 frames per second. Each audio frame is processed to obtain one or more static
features. The features may be a homogenous set, like spectral components, or a more
heterogenous set. That is, the frame-level feature vector corresponds to a set of features
extracted from a single windowed audio segment centered at the frame instant. Next the
temporal evolution of frame-level features is observed across a larger segment known as
a texture window to extract suitable dynamic features or feature summaries. It has been
shown that the grouping of frames to form a texture window improves classification due
to the availability of important statistical variation information. However increasing the
texture window length beyond 1 sec does not improve classification any further. Texture

81

window durations typically range from 500 ms to 1 sec. This implies a latency or delay of
up to 1 sec in the audio classification task.

Texture window

A~ A ANANAA AL AN AN NN

\

Windowed X
analysis frames |/ \/

A

Feature extraction

Frame-lgvel
feature vectors

Feature temporal analysis

Feature
summaries

Fig.5.64. Audio feature extraction procedure Short-Time Energy

It is the mean squared value of the waveform values in the data frame and represents the
temporal envelope of the signal. More than its actual magnitude, its variation over time
can be a strong indicator of underlying signal content. It is computed as

N
5 9)
Bi= TZ | 2-(n) |

n=1

Band-Level Energy
It refers to the energy within a specified frequency region of the signal spectrum. It can
be computed by the appropriately weighted summation of the power spectrum as given

by

=

WIK] is a weighting function with non-zero values over only a finite range of bin indices
“k” corresponding to the frequency band of interest. Sudden transitions in the band-
level energy indicate a change in the spectral energy distribution, or timbre, of the
signal, and aid in audio segmentation. Generally log transformations of energy are used
to improve the spread and represent (the perceptually more relevant) relative
differences.

82

Spectral Centroid

It is the center of gravity of the magnitude spectrum. It is a gross indicator of spectral
shape. The spectral centroid frequency location is high when the high frequency content
is greater

[t

FIE] | X [K]

k=1

(1r = N
S | X, [K]

e >(4)
Since moving the major energy concentration of a signal towards higher frequencies
makes it sound brighter, the spectral centroid has a strong correlation to the subjective

sensation of brightness of a sound.

Spectral Roll-off

It is another common descriptor of gross spectral shape. The roll-off is given by

where K is the largest bin that fulfills

K x

SOIXK] <0853 | X, [k]

k=1 k=1
That is, the roll-off is the frequency below which 85% of accumulated spectral
magnitude is concentrated. Like the centroid, it takes on higher values for right-skewed
spectra.

Spectral Flux

It is given by the frame-to-frame squared difference of the spectral magnitude vector
summed across frequency as

Ay

Fr=Y (1 X [k] | = | Xeoa[K] |)?
k=1 e > (7)
It provides a measure of the local spectral rate of change. A high value of spectral flux
indicates a sudden change in spectral magnitudes and therefore a possible segment
boundary at the r th frame.

Audio Classification Systems

We review a few prominent examples of audio classification systems. Speech and music
dominate multimedia applications and form the major classes of interest. As mentioned

83

earlier, the proper design of the feature set considering the intended audio categories is
crucial to the classification task. Features are chosen based on the knowledge of the
salient signal characteristics either in terms of production or perception. It is also
possible to select features from a large set of possible features based on exhaustive
comparative evaluations in classification experiments. Once the features are extracted,
standard machine learning techniques to design the classifier. Widely used classifiers
include statistical pattern recognition algorithms such as the k nearest neighbours,
Gaussian classifier, Gaussian Mixture Model (GMM) classifiers and neural networks
[14]. Much of the effort in designing a classifier is spent collecting and preparing the
training data. The range of sounds in the training set should reflect the scope of the
sound category. For example, car horn sounds would include a variety of car horns held
continuously and also as short hits in quick succession. The model extraction algorithm
adapts to the scope of the data and thus a narrower range of examples produces a more
specialized classifier.

Speech-Music Discrimination

Speech-music discrimination is considered a particularly important task for intelligent
multimedia information processing. Mixed speech/music audio streams, typical of
entertainment audio, are partitioned into homogenous segments from which non-speech
segments are separated. The separation would be useful for purposes such as automatic
speech recognition and text alignment in soundtracks, or even simply to automatically
search for specific content such as news reports among radio broadcast channels.
Several studies have addressed the problem of robustly distinguishing speech from
music based on features computed from the acoustic signals in a pattern recognition
framework. Some of the efforts have applied well-known features from statistical speech
recognition such as LSFs and MFCC based on the expectation that their potential for the
accurate characterization of speech sounds would help distinguish speech from music.
Taking the speech recognition approach further, Williams and Ellis use a hybrid
connectionist-HMM speech recogniser to obtain the posterior probabilities of 50 phone
classes from a temporal window of 100 ms of feature vectors. Viewing the recogniser as a
system of highly tuned detectors for speech-like signal events, we see that the phone
posterior probabilities will behave differently for speech and music signals. Various
features summarizing the posterior phone probability array are shown to be suitable for
the speech-music discrimination task.

A knowledge-based approach to feature selection was adopted by Scheirer and Slaney |,
who evaluated a set of 13 features in various trained-classifier paradigms. The training
data, with about 20 minutes of audio corresponding to each category, was designed to
represent as broad a class of signals as possible. Thus the speech data consisted of
several male and female speakers in various background noise and channel conditions,
and the music data contained various styles (pop, jazz, classical, country, etc.) including
vocal music. Scheirer and Slaney evaluated several of the physical features, gether with

84

the corresponding feature variances over a one-second texture window. Prominent
among the features used were the spectral shape measures and the 4 Hz modulation
energy. Also included were the cepstral residual energy and, a new feature, the pulse
metric. Feature variances were found to be particularly important in distinguishing
music from speech. Speech is marked by strongly contrasting acoustic properties arising
from the voiced and unvoiced phone classes. In contrast to unvoiced segments and
speech pauses, voiced frames are of high energy and have predominantly low frequency
content. This leads to large variations in ZCR, as well as in spectral shape measures such
as centroid and roll-off, as voiced and unvoiced regions alternate within speech
segments. The cepstral residual energy too takes on relatively high values for voiced
regions due to the presence of pitch pulses. Further the spectral flux varies between
near-zero values during steady vowel regions to high values during phone transitions
while that for music is more steady. Speech segments also have a number of quiet or low
energy frames which makes the short-time energy distribution across the segment more
left-skewed for speech as compared to that for music. The pulse metric (or
“rhythmicness”) feature is designed to detect music marked by strong beats (e.g. techno,
rock). A strong beat leads to broadband rhythmic modulation in the signal as a whole.
Rhythmicness is computed by observing the onsets in different frequency channels of the
signal spectrum through bandpass filtered envelopes. There were no perceptual features
in the evaluated feature set. The system performed well (with about 4% error rate), but
not nearly as well as a human listener. Classifiers such as k-nearest neighbours and
GMM were tested and performed similarly on the same set of features suggesting that
the type of classifier and corresponding parameter settings was not crucial for the given
topology of the feature space. Later work [18] noted that music dominated by vocals
posed a problem to conventional speech-music discrimination due to its strong speech-
like characteristics. For instance, MFCC and ZCR show no significant differences
between speech and singing. Dynamic features prove more useful. The 4 Hz modulation
rate, being related to the syllabic rate of normal speaking, does well but is not sufficient
by itself. The coefficient of harmonicity together with its 4 Hz modulation energy better
captures the strong voiced-unvoiced temporal variations of speech and helps to
distinguish it from singing. Zhang and Kuo use the shape of the harmonic trajectories
(“spectral peak tracks”) to distinguish singing from speech. Singing is marked by
relatively long durations of continuous harmonic tracks with prominent ripples in the
higher harmonics due to pitch modulations by the singer. In speech, harmonic tracks are
steady or slowly sloping during the course of voiced segments, interrupted by unvoiced
consonants and by silence. Speech utterances have language-specific basic intonation
patterns or pitch movements for sentence clauses.

85

Audio Segmentation and Classification

Audiovisual data, such as movies or television broadcasts, are more easily navigated
using the accompanying audio rather than by observing visual clips. Audio clips provide
easily interpretable information on the nature of the associated scene such as for
instance, explosions and shots during scenes of violence where the associated video itself
may be fairly varied. Spoken dialogues can help to demarcate semantically similar
material in the video while a continuous background music would help hold a group of
seemingly disparate visual scenes together. Zhang and Kuo proposed a method for the
automatic segmentation and annotation of audiovisual data based on audio content
analysis. The audio record is assumed to comprise of the following nonsimultaneously
occurring sound classes: silence, sounds with and without music background including
the sub-categories of harmonic and inharmonic environmental sounds (e.g. touch tones,
doorbell, footsteps, explosions). Abrupt changes in the short-time physical features of
energy, zero-crossing rate and fundamental frequency are used to locate segment
boundaries between the distinct sound classes. The same short-time features, combined
with their temporal trajectories over longer texture windows, are subsequently used to
identify the class of each segment. To improve the speech-music distinction, spectral
peaks detected in each frame are linked to obtain continuous spectral peak tracks. While
both speech and music are characterized by continuous harmonic tracks, those of speech
correspond to lower fundamental frequencies and are shorter in duration due to the
interruptions from the occurrence of unvoiced phones and silences. Wold et al in a
pioneering work addressed the task of finding similar sounds in a database with a large
variety of sounds coarsely categorized as musical instruments, machines, animals, speech
and sounds in nature. The individual sounds ranged in duration from 1 to 15 seconds.
Temporal trajectories of short-time perceptual features such as loudness, pitch and
brightness were examined for sudden transitions to detect class boundaries and achieve
the temporal segmentation of the audio into distinct classes. The classification itself was
based on the salient perceptual features of each class. For instance, tones from the same
instrument share the same quality of sound, or timbre. Therefore the similarity of such
sounds must be judged by descriptors of temporal and spectral envelope while ignoring
pitch, duration and loudness level. The overall system uses the short-time features of
pitch, amplitude, brightness and bandwidth, and their statistics (mean, variance and
autocorrelation coefficients) over the whole duration of the sound.

Audio Coding Techniques and Comparison Analysis
Portable electronic devices such as smart mobile phones, digital cameras and digital

audio devices with audio players and recorders have been attractive now a days
particularly due to prevalence of MP3 audio files. MP3 is the popular name of MPEG-1
layer-3 audio. Moreover, the so-called MP3’s successor, MPEG-2 Advanced Audio
Coding (AAC), finalized as an international standard in 1997 which was developed to

86

achieve a higher quality than that of previous coder that is MP3. AAC reaches the same
sound quality as MP3 at about 70% of the bit rate. This way more compression is done
in AAC as compare with MP3. High quality audio compression has found its way in
many applications. Early research on audio has translated into standardization efforts of
ISO/IEC and ITU-R 10 years ago. In the last couple of years, Internet audio
broadcasting has come in powerful category of this type of high quality applications.
These techniques become more and more popular in many parts of the world because of
the business for the music industry.

Audio signal is the signal with frequency range of 20 Hz to 20 KHz. Human speeches and
other musical component’s sounds are merged together and it is called as audio signal.
Broadcast of audio used 16-bit PCM encoding at 44.1 kHz, such an application would
require a 1.4 Mbps channel for a stereo signal (44.1KHz*16bit=705.6 Kbps for Mono
audio signal). Since the beginning of the twentieth century, the art of sound coding,
transmission of audio signal, recording of audio signal, and also the mixing and
reproduction of it has been constantly evolving. Starting from the mono-phonic
technology, technologies on multichannel audio have been extended to include
stereophonic, quadraphonic, 5.1 channels, 7.1 channels etc. Compared with the
traditional mono or stereo audio signal the multichannel audio provides end users with a
better experience and becomes more and more appealing to music producers. So, an
efficient coding scheme is needed for the storage and transmission of multichannel audio
and this subject has attracted a lot of attention now a days.

There are several multichannel audio compression algorithms. Dolby AC-3 and MPEG
Advanced Audio Coding (AAC) are the two most prevalent perceptual digital audio
coding systems. Dolby AC-3 is the 3rd generation of digital audio compression systems
from Dolby Laboratories and has been used as the audio standard for High Definition
Television systems. It is capable of providing transparent audio quality at 384 kb/sec for
5.1 channels. This 5.1 channel technology is come in the categories of multichannel
audio. In MPEG family there are lots of different algorithms which can be used for
compression of audio file. MP3 is most popular technique used for audio compression
which supports to only up to two channels (stereo coding). There are also multichannel
audio compression algorithms. Among that AAC is currently the most powerful
multichannel audio coding algorithm of the MPEG family. It can support up to 96 audio
channels. These low bit rate multichannel audio compression algorithms are utilized
transform coding techniques to remove statistical redundancy within each channel of
multichannel audio file. The audio compression is possible with different audio coding
techniques. The audio file must be compressed without reducing the quality. Table 1
summarized brief history of MPEG family.

87

Table 3. Brief history of MPEG audio standards

Sampling "
Year | Standards rate Bl.l ”h Channels
K Hz Khbits/sec
MPEG-1 | 32,441,
g2 : : 7 _ A)
1992 Laver 1 48 32448 1-2
MPEG-1 | 32,441,
LV ¥ ¥ T -t
1992 Layer 11 48 32-384 1-2

Different audio techniques

1) Sum-Difference Stereo Transform Coding: The coder architecture for this technique
was explained by Johnston and Ferreira [2] and it is shown in Fig. 1. There are four
basic blocks for all perceptual coders. In the case of Perceptual Audio Coder (PAC), the
filter bank block is implemented by an MDCT (Modified Discrete Cosine Transform)
with the optional window switching abilities. The psychoacoustic analysis provides a
noise threshold for the L (left), R (Right), M (Sum), and S (Difference) channels, as may
be appropriate, for both the normal MDCT window and the optional shorter windows.
The thresholds for the left and right channels THRL and THRR are calculated. This two
thresholds are compared where the thresholds vary between left and right by less than
2dB, then the coder is switched into M/S mode, i.e. the left signal for that given band of
frequencies is replaced by M = (L+R)/2 and the right signal replaced by S = (L-R)/2.

Input Aude Quantize B
' —p— Rate Control. |~ \ secbie |
Datstream

Encoded Output

Fiiter
Bank

Compress

X

Fig.5.65. Block diagram of perceptual Audio coder

The method gives a substantial improvement over the dual monophonic case. The use of stereo
redundancy in a time and frequency varying way results in a substantial increase in encoded
signal quality.

2) Improving Joint Stereo Audio Coding by Adaptive Inter-channel Prediction: The above MS-
stereo coding does not achieve any improvement for the class of most critical test sequences. In
MS-stereo coding only the statistical dependencies between two samples of the left and right
channels of signals are considered. A stereophonic sound signal is characterized by level
differences as well as phase or time delay between the left and right channel signals. So, an
appropriate and efficient stereo redundancy reduction technique has to be taken into account.
So, for the improvement of it adaptive inter-channel predictor (AICP) is used, which
compensates a possible phase or time delay and exploits more than one value of the cross-
correlation function between the left and right channels of a sound signal [3]. From successive
samples of input signal x(n) in one channel the estimate of the actual sample of signal y(n) in the
other channel is calculated,

88

K
y(n) = Z a, - x(n-d-k)
S >(8)
Where, k is the predictor order ak is the predictor coefficients and d is a delay for
compensation of phase or time delay between the two signals. The prediction error is then,

elm) = y(n)— y(n) > (9)

Compared to the variance of y(n), the variance of the prediction error e(n) is reduced.
Therefore, a bit rate reduction is achieved by coding and transmitting e(n) instead of y(n). And

the prediction gain is given by the ratio of the variances.
¥
2 a. .~
{;= El.} 1-”” — .1'

ﬂejin]] o 2

V(1) {F=S L€, (1)

Q |

e(n)—

Fig.5.66.(a)Encoder block diagram of AICP

X, (n) — T > x,(7)

e, (m) @ 1 Q ; A

Fig.5.67(b) .Decoder Block diagram of AICP

Fig.5.66(a) and Fig.5.67 (b) show the encoder and decoder block diagram of AICP with
guantization. Where, x(n) and y(n) represent the samples of the left and right channel of a
stereophonic sound signal respectively and Q is the Quantizer, D is the Delay and P is the
Predictor. The Sum difference method does not achieve any improvement of some critical audio
file as told earlier, this improvement is done by AICP.

3. Scalable Audio Coder Based on Quantizer Units of MDCT Coefficients: A scalable codec has
been constructed by using transform coding and the basic modules of scalable coder (encoder
and decoder). The basic module is a quantizer that can quantize MDCT (Modified DCT)
coefficients transformed from a variety of frequency regions. This module works at bitrates of
more than 8 kb/s. Also the scalable structure can be changed according to the input signals. In
the scalable codec described here, the input-output signals are monaural and the sampling
frequency is 24 kHz. The total bit rate of this scalable codec is more than 8 kb/s [4]. The basic
module is mainly constructed from a Twin VQ (Transform-domain Weighted Interleave Vector

89

Quantization) codec. It is type of transform coding. Transform coder is used in audio coding.
This module is a quantizer for the MDCT coefficients. Here, 4-layer scalable codec as shown in
Fig. 3. This codec uses four basic modules with input sampling frequency of 24 kHz . This is a 4-
layered scalable codec, but it is possible to make any number of layers using these basic
modules. The basic module for first layer (#1) has a fixed range of input or output frequency
and other basic modules (#2, #3, #4) have a variable range of input or output frequency with
each frequency band width fixed. The frequency point information of each basic module is
added to the coded bit stream.

Moving region of the #n module

............................... »

Bits for m Scalable basic module of
encoding ¥ layer #n

Target bandwidth of input signal

y Bits

#1 I Frequency[KHz]
0 2 4 6 8 10 12

Fig.5.68 Hierarchical Structure of Scalable Codec

In Fig. 5.68, for example, the input 4-kHz signal is quantized in #1 module first and then its
guantization error is again quantized in #2 and #3 modules. Here also one can change the width
(frequency band width), height (number of bits for each frequency), and position (target
frequency) of the each module.

90

6ol

Part for bat stream generstion Part for beerarchocal ganttraton Part for MDCT

Fig.5.60 Structure of Scalable Decoder

Fig. 45.69 and 5.60 shows the Structure of Scalable Encoder. It has parts for MDCT,
hierarchical quantization and bit stream generation. In the MDCT, the input time-series signals
are transformed to MDCT coefficients according to its nature by particular transform points.
And the scalable decoder has 3 parts for analyzing the bit stream, hierarchical requantization
and Inverse MDCT. The Decoder is totally reversing then Encoder. The Decoder is shown in
Fig. 5. Subjective quality evaluation tests, for musical sound sources, showed that its sound
quality is better than MPEG-layer3 codec at 8, 16 and 24 kb/s when scalable codec is
constructed of 8-kb/s basic modules.

4. A Study of Why Cross Channel Prediction is not Applicable to Perceptual Audio Coding:
There has been a question that whether the compression rate of a multichannel perceptual
audio coder can be increased by applying the cross channel linear prediction (LP) in the time
domain or not. There exists correlation between two channels which can be removed by using
cross channel linear prediction. Hence, theoretically, by coding the prediction residual instead
of the original signal, the coder should achieve a higher compression ratio, at least without
considering the requirements of human perception. There is considerable correlation between
the channel pairs C-L, C-R, L-R, Ls-Rs, L-Ls, and R-Rs. The M/S stereo coding and intensity
stereo coding in the MPEG AAC can highly remove the correlation between the pairs L-R and
LsRs. But the rest of the channel pairs, it seems that one can take good advantage of the
correlation between C and L channel and between C and R channel. Means one can get some
coding gain by using C to predict L and R.

91

L | PredictLand R
R fromC in time |

domam (B B
r 5 Channel - :

- AAC Package bit

stream

encoder

:] Perceptual
Model

Flg.5.61 Prediction-incorporated AAC coder

the signal energy and coding bits in low frequency bands is also reducing, but increase the
coding bits in high frequency bands. So, the increase in high frequency bits exceeds the bit
reduction at low frequencies, which results in a net increase of coding bits required. So, overall
improvement is not done and this is the reason why cross channel prediction is not applicable to
perceptual audio coding.

5. MPEG-1 Layer-111 (MP3): MP3 is a lossy compression technique it means some audio
information is certainly lost by using this compression technique. This loss can be noticed
because the compression technique tries to control it. MPEG-1 audio describes three layers of
audio coding with the following properties: - Mono or stereo audio channels. - Sample rate 32
kHz, 44.1 kHz or 48 kHz. - Bit rates from 32 kbps to 448 kbps .

tttttt

Extermal Conwal
Fig.5.62 Block diagram of MP3 Encoder

Fig.5.62 shows the block diagram of MP3 encoder. There are two filter banks in a MPEG audio
algorithm, namely a filter bank and a hybrid polyphase/MDCT filter bank. The input PCM
samples are simultaneously given to a filter bank and a psychoacoustic model. This Filter bank
splits the signal into 32 equal sub bands in frequency domain and psychoacoustic model takes
the signal spectrum as input and it determines the ratio of signal energy to masking threshold
for each sub band. For better frequency resolution the 32 sub bands are further divided into
576 frequency lines by the MDCT. Here MDCT used is 12 point (short) or 36 point (long) with
50 % overlap and the type of MDCT (long or short window) is determined by the window
switching algorithm [6]. In Layer-3, these coder partitions are roughly equivalent to the critical
bands of human hearing system. If the quantization noise can be below the masking threshold
for each coder partition, then the compression result should be indistinguishable from the
original signal. The signal to masking ratio (SMR) which is calculated by the psychoacoustic
model is used by the quantizer to determine the number of bits that should be allocated for the
gquantization of the sub band coefficients. Here the quantization is done by the power-law

92

quantizer. The quantized values are coded by Huffman coding. Then Finally the Huffman
coded values are formed into a bit stream. A bit stream formatter is used to assemble the whole
bit stream. The encoded bit stream consists of quantized and coded spectral coefficients with
some side information like bit allocation information and quantizer step size information.

Reference
1. P. Rao, , Chapter in Speech, Audio, Image and Biomedical Signal Processing using Neural
Networks, (Eds.) Bhanu Prasad and S. R. Mahadeva Prasanna, Springer-Verlag, 2007.
2. Digital Signal processor fundamentals and system design.
M.E.Angolette, CERN, Geneva,Switzerland.

93

	SCHOOL OF ELECTRICAL AND ELECTRONICS
	II. FINITE IMPULSE RESPONSE DIGITAL FILTERS
	Finite impulse response (FIR) filter design methods
	FIR filter design using window functions

	.Frequency sampling method:
	Design of Optimum Equiripple Linear-Phase FIR
	Characterization
	1.Difference equation

	1. Direct Form I
	2. Direct Form II
	3. Cascaded second-order sections
	4. Linear-Phase FIR Structures Phase FIR Structures
	5. PolyphasePolyphase FIR Structures FIR Structures
	6. Design of IIR filters
	7. Transfer function of Analog Butterworth Lowpass Filter:
	8. Order of the Lowpass Butterworth Filter
	9. Design Procedure for Lowpass Digital Butterworth IIR Filter
	v.REALTIME DIGITAL SIGNAL PROCESSING
	Use in accelerators
	2 DSP evolution and current scenery
	DSP evolution: hardware features
	DSP current scenery
	3 DSP core architecture
	Fast data access
	4 DSP peripherals
	Interconnect
	5 Real-time design flow: introduction
	6 Real-time design flow: software development
	7 Real-time design flow: debugging
	8 Code analysis and optimization
	9 Real-time design flow: system design
	System architecture: multiprocessor architectures
	Multi-DSP architecture
	Multi-core architecture
	DSP code design: interrupt-driven vs. RTOS-based systems.
	Audio Signal Processing
	Audio Signal Characteristics
	Audio Signal Representations
	Spectrogram
	Audio Features for Classification
	Fig.5.64. Audio feature extraction procedure Short-Time Energy
	Band-Level Energy
	Spectral Centroid
	Spectral Roll-off
	Spectral Flux
	Speech-Music Discrimination
	Audio Segmentation and Classification
	Audio Coding Techniques and Comparison Analysis
	Different audio techniques

