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Basic Semiconductor Material Science and Solid-State Physics 
 

All terrestrial materials are made up of atoms.  Indeed, the ancient Greeks put this 

hypothesis forward over two millennia ago.  However, it was not until the twentieth 

century that the atomic theory of matter became firmly established as an unassailable, 

demonstrated fact.   Moreover, it is now known that properties of all common forms of 

matter (excluding such exotic forms as may exist under conditions only found in white 

dwarfs, neutron stars, or black holes) are, in principle, completely determined by the 

properties of individual constituent atoms and their mutual interactions.  Indeed, there are 

just over one hundred different types of atoms, viz., the chemical elements, as 

summarized on a standard periodic chart.  Most of these are quite rare and, worse yet, 

many are fundamentally unstable; only about two dozen are common and these make up 

the bulk of the natural world.  Fortunately, for the modern electronics industry, silicon is 

one of the most common elements found on planet Earth. 

Naturally, atoms were originally thought of as exceedingly small indivisible bits of 

solid matter.  Moreover, it would seem trivially obvious that the simplest form such a 

particle could assume is that of a miniscule “billiard ball”.  Even so, in addition to simple 

spherical form, early philosophers and scientists variously conceptualized atoms as 

having different sizes and geometrical shapes, e.g., cubes, polyhedra, etc.  Accordingly, 

these differences between the atoms themselves were thought to account for the wide 

variation of physical properties apparent in all material substances.  Furthermore, to 

account for chemical reactions and the formation of definite compounds, during the early 

development of modern chemistry it was even proposed that each type of atom might 

have a characteristic number and arrangement of “hooks” on its surface.  Of course, all of 

these early speculations have been superseded by modern atomic theory based on 

quantum mechanics in which an atom appears as a spherical structure having a central 

positively-charged, massive nucleus (composed of protons and neutrons) surrounded by a 

“cloud” of orbiting negatively-charged, light electrons.  Nevertheless, the primitive idea 

that physical differences and geometrical arrangements of constituent atoms are 

fundamentally significant to determine bulk properties of material substances has proven 

substantially correct.  Accordingly, each type of atom has a unique electronic 

configuration, which is determined by nuclear charge or atomic number, Z, and the 

quantum mechanical behavior of electrons bound in a Coulomb potential.  For a 

particular atomic species, four quantum numbers are required to specify the quantum 

state of any electron.  These are, n, the principal quantum number (corresponding broadly 

to electronic energy), l, the azimuthal quantum number (corresponding to the magnitude 

of electron orbital angular momentum), m, the magnetic quantum number (corresponding 

to a specific, but arbitrarily chosen component of electron orbital angular momentum), 

and, s, the spin quantum number (corresponding to one of two possible spin states of an 

electron).  The principal quantum number assumes strictly positive integer values, the 

azimuthal quantum number assumes non-negative integer values increasing from 0 to 

n 1, the magnetic quantum number takes integer values running consecutively from l to 

+l, and the spin quantum number takes only discrete half-integer values, +½ and ½.  

Therefore, each principal quantum shell (or energy level) is characterized by n azimuthal 

sub-shells and each azimuthal sub-shell is characterized by 2l +1 magnetic sub-levels.  In 
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this way the three quantum numbers, n, l, and m, serve to define specific atomic orbitals.  

(The role of the s quantum number will be considered subsequently.) 

 

Atomic Orbitals 

 

Although orbitals are defined mathematically over all space, one can visualize a 

particular orbital (if occupied) as a finite region in space for which the probability of 

observing an electron associated with a particular set of quantum numbers significantly 

differs from zero.  As such, it follows from quantum mechanical principles that an orbital 

does not have absolute significance, but depends on details of particular measurements or 

observations.  Moreover, as a practical matter, the most convenient physical variables to 

observe are conserved quantities, i.e., constants of motion, such as total energy, angular 

momentum, etc.  For this reason, the usual atomic quantum numbers, n, l, and m, are 

often treated as essential; however, this is really just useful convention and, in general, 

orbitals can be defined in terms of any dynamically complete set of variables.  Within this 

context, allowed values of the principal quantum number, n, can be thought of as defining 

a set of concentric spherical electron shells centered on the nucleus.  With respect to 

increasing energy, i.e., increasing n, each principal shell is characterized by the 

appearance of a new kind of orbital corresponding to the highest value of the azimuthal 

quantum number (which increases by unit value for each “new” principal shell) and the 

number of possible magnetic quantum numbers determines the number of the orbitals of 

each kind.  Thus, for l 0, there is only one kind of orbital of spherical shape called an s-

orbital.  For l 1, there are three orbitals, called p-orbitals, which are shaped like 

dumbbells.  Hence, each p-orbital is axially symmetric and oriented along a cartesian 

axis, viz., x, y, or z axis.  (Of course, coordinate axes can be chosen simply for 

convenience, hence illustrating the arbitrary nature of atomic orbitals as asserted 

previously.)  Similarly, for l 2, there are five orbitals of rosette shape which are called d-

orbitals.  These are also oriented with respect to specified axes; however, exact details are 

more complicated.  For higher values of the azimuthal quantum number new kinds of 

orbitals exist, e.g., f-orbitals in the case of l 3, but, they are generally not as important to 

chemical interactions and the bonding of crystals as are s, p, and d-orbitals.  By 

convention, atomic orbitals are generally designated by type (s, p, d, f, etc.) and principal 

quantum number.  Therefore, in order of increasing energy, the standard atomic orbitals 

are 1s, 2s, 2p, 3s, 3p, 4s, 3d, etc. 

The Pauli Exclusion Principle and Hund’s Rule determine the occupancy of any 

particular orbital.  Accordingly, the Pauli Exclusion Principle stipulates that no two 

electrons can be associated with exactly the same set of quantum numbers.  Therefore, 

since only two values for the s quantum number are possible, maximum occupancy of 

any single orbital is two, i.e., it can be occupied by one electron “spin up”, viz., spin 

quantum number equal to +½, and one electron “spin down”, viz., spin quantum number 

equal to ½.  Clearly, this is of great importance, since if all electrons could 

simultaneously occupy the orbital of lowest energy, atoms would collapse and ordinary 

matter could not exist.  In addition, Hund’s Rule stipulates that as a multi-electron 

structure is built up, all available orbitals of a given energy are first occupied singly, i.e., 

by electrons having the same spin quantum number, before they are “paired up”.  For 

atomic structures, this gives rise to Pauli’s well-known aufbau or “building”, principle.  
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For completeness, one should observe that in modified form these same rules generally 

apply to more complicated quantum mechanical systems, e.g., molecules and crystals, as 

well as to atoms. 

 

Chemical Bonding 

 

Compound materials are formed by chemical bonding.  This can be visualized as the 

“overlap” of two singly occupied, i.e., half-filled, atomic orbitals to form molecular 

orbitals and is illustrated schematically by the following figure. 

 

B
E



*

s,p,d,etc. s,p,d,etc.

 
Fig. 1: Molecular orbital diagram illustrating formation of a chemical bond 

 

Here, the horizontal dimension represents atomic separation and the vertical dimension 

represents electronic energy.  Clearly, if a pair of atoms is widely separated, then the 

system just consists of two singly occupied atomic orbitals (s, p, d, etc.) of equal energy.  

(Valence electrons are indicated schematically by “big black dots”.)  In contrast, if the 

atoms are brought into close proximity as indicated by the slanted lines, then atomic 

orbitals “mix” to form two molecular orbitals of different energy.  These are denoted 

conventionally as  and *-orbitals.  Naturally, the two electrons originally in separated 

atomic orbitals will both end up occupying the -orbital, i.e., the lowest energy orbital, 

since this implies an overall reduction of electronic energy by a specific amount, viz., EB.  

Such a situation indicates formation of a chemical bond between the two original atoms.  

Therefore, EB can be immediately identified with bond energy and, hence, the -orbital is 

called a bonding orbital.  Moreover, it is useful to consider what happens if the original 

atomic orbitals had been doubly occupied, i.e., filled.  This situation is illustrated by the 

following figure: 
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Fig. 2: Molecular orbital diagram illustrating non-bonding of filled atomic orbitals 

 

In this case, there are four electrons to be considered and, therefore, due to the Pauli 

Exclusion Principle, both  and *-orbitals must be fully occupied.  Clearly, this results 

in no net lowering of overall electronic energy; hence, no stable chemical bond is formed.  

Therefore, the *-orbital is identified as an anti-bonding orbital.  In a broad sense, 
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electrons occupying an anti-bonding orbital counteract the effect of electrons occupying a 

corresponding bonding orbital. 

A simple physical example of covalent chemical bonding is provided by formation of 

a hydrogen molecule from two separated hydrogen atoms.  Clearly, overlap of 1s orbitals, 

each of which is half-filled, results in a filled bonding orbital and an empty anti-bonding 

orbital.  Accordingly, the two electrons are localized between the two hydrogen nuclei as 

one expects from a classical picture of chemical bonding as sharing of electron pairs.  

Furthermore, this scheme also illustrates why helium does not form a diatomic species 

since obviously, any molecular helium structure has bonding and anti-bonding orbitals 

both completely filled.  Moreover, with appropriate modification, a similar scheme 

accounts for the occurrence of a number of elemental species as diatomic molecules, e.g., 

N2, O2, F2, Cl2, etc., rather than as isolated gas atoms.  In addition, formation of a 

chemical bond also illustrates a fundamental principle of quantum mechanics that any 

linear combination of some “old” set of orbitals to construct a “new” set of orbitals must 

conserve the total number of orbitals; however, in contrast, orbital energies generally do 

not remain the same in both sets.  Indeed, by definition bonding orbitals have lower 

energy than corresponding anti-bonding orbitals, which, of course, merely accounts for 

the binding energy associated with the resulting chemical bond.  Although some 

additional complexity is unavoidably introduced, essentially this same approach can be 

applied to the formation of bonds between any pair or even a larger group of atoms. 
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Semiconductors 
 

Digressing briefly from general consideration of electronic structure, one observes 

that in the periodic chart, metals appear to the left side and non-metals to the right side; in 

between are elements having properties intermediate to those of metals and non-metals.  

Consequently, this is precisely the location of the elemental semiconductors, in particular, 

silicon and germanium (Si and Ge).  Moreover, although germanium was the first 

semiconductor material to be successfully commercialized, its volume of use was soon 

exceeded by silicon, which is now dominant in the electronics industry and can be 

expected to remain so for the foreseeable future.  Both silicon and germanium are Group 

IVB elements and both have the same cubic crystal structure with lattice parameters of 

0.543 and 0.566 nm, respectively.  Furthermore, in addition to elemental semiconductors, 

compound semiconductors also exist.  The most commercially significant of these is 

gallium arsenide (GaAs), although more recently indium phosphide (InP) and gallium 

nitride (GaN) have significantly increased in importance.  Gallium arsenide, indium 

phosphide, gallium nitride, and other materials such as indium antimonide (InSb), 

aluminum arsenide (AlAs), etc., provide examples of III-V compound semiconductors.  

The origin of this designation is quite clear; one element comes from Group IIIB of the 

periodic chart and the other from Group VB.  Furthermore, bonding in III-V compounds 

is very similar to that of elemental semiconductors since the one electron “deficiency” of 

the Group IIIB element is exactly compensated by an “extra” electron associated with the 

Group VB element.  As a consequence, III-V semiconductors have substantially the same 

electronic structure as that of corresponding elemental semiconductors.  Within this 

context, it would seem plausible to extend such a scheme further.  Indeed, this is possible 

and additional materials called II-VI compound semiconductors are also found to exist.  

Obviously, this designation indicates the combination of Group IIB elements with Group 

VIB elements, in which case the Group IIB element is considered deficient by two 

electrons with this deficiency compensated by two extra electrons from the Group VIB 

element.  Examples of II-VI semiconductors are cadmium selenide (CdSe), mercury 

telluride (HgTe), etc.  Further consideration of compound semiconductors will not be 

entertained within the present context; however, it should be obvious that semiconductor 

materials are generally composed of elements from Group IVB or groups which are 

symmetric about Group IVB in the periodic chart.  In addition, although materials such as 

carbon (C) in the form of diamond, cubic boron nitride (BN), silicon carbide (SiC), etc., 

may behave as insulators at room temperature, these also become semiconductors at 

higher temperatures. 

It is obvious from the structure of silicon that its atomic coordination number is four.  

This follows directly from the electron configuration, which for silicon is characterized 

by four valence electrons in the outer atomic shell.  Moreover, one would expect on the 

basis of the primitive atomic electron configuration, that silicon should be characterized 

by a filled 3s orbital, two half-filled 3p orbitals and one empty 3p orbital.  However, as 

asserted previously, orbitals should not be considered as absolute, but merely as 

provisional descriptions of electronic motion.  In a mathematically precise sense, orbitals 

ultimately represent particular solutions of a linear partial differential equation in space 

and time, e.g., a one electron Schrödinger wave equation.  As is well-known from the 

mathematical theory of linear differential equations, the sum (or difference) of any two 
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particular solutions of the equation is itself a “new” particular solution.  This is called the 

Principle of Superposition.  Therefore, if one constructs four independent linear 

combinations of a single 3s and three 3p orbitals, then one obtains a mathematically 

equivalent group of four new orbitals called sp3 hybrids.  These hybrid orbitals are no 

longer characterized by exact values of electronic angular momentum or energy; 

however, they do exhibit tetrahedral coordination and, as such, are particularly useful for 

description of bonding in a silicon crystal.  Furthermore, one observes that each one of 

the sp3 orbitals is exactly half-filled.  Thus, the overlap of singly occupied sp3 orbitals 

from two adjacent silicon atoms results in the formation of a doubly occupied bonding 

orbital in complete analogy to the elementary case of the hydrogen molecule.  Hence, the 

covalently bonded crystal structure of silicon emerges naturally.  The case of germanium 

is identical, except that 4s and 4p orbitals are to be considered instead of 3s and 3p 

orbitals.  Similarly, gallium arsenide has a completely analogous structure.  In this case 

though, the situation is slightly more complicated.  For gallium atoms, one of the sp3 

orbitals can be regarded as empty with the remaining three half-filled.  Conversely, for 

arsenic atoms, one of the sp3 orbitals can be regarded as completely filled, again, with the 

remaining three half-filled.  Of course, this description is purely formal since by 

definition, all of the sp3 orbitals are mathematically equivalent.  Clearly, when these 

orbitals are overlapped to form a bulk crystal, the total number of electrons and orbitals is 

just the same as in the case of the corresponding elemental semiconductors.  In a formal 

sense, one may regard this as a consequence of the specific overlap of empty gallium sp3 

orbitals with filled arsenic sp3 orbitals.  Of course, the remaining half-filled orbitals from 

gallium and arsenic atoms also overlap just as in the case of silicon or germanium. 

 

The Electronic Structure of Crystals 

 

So far, consideration has been limited to the electronic structure of atoms and 

formation of covalent bonds between pairs of atoms.  A solid crystal is, of course, a much 

larger and more extended assemblage of atoms.  Nevertheless, quantum mechanical 

principles governing the formation of molecules are not essentially different when 

extended to whole crystals and is illustrated for silicon in the following figure: 

 

Conduction Band 

Valence Band

Eg
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p3

sp3
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EV
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(atoms interact to form

tetrahedral bonding geometry )
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Fig. 3: Molecular orbital diagram illustrating formation of energy bands in crystalline silicon 

 

This can be called the “molecular orbital approach” to the electronic structure of crystals.  

Although the mathematics is quite complicated and will not be considered further, one 
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observes that orbitals for a whole crystal can be obtained, in principle, by combining all 

of the atomic orbitals, e.g., sp3 hybrids, of constituent atoms in just the same way as 

atomic orbitals from two atoms are combined to form bonding and anti-bonding 

molecular orbitals, i.e., a chemical bond.  However, in the case of a crystal, linear 

combination of atomic orbitals results in band orbitals having energies falling in an 

essentially continuous range or energy band.  Moreover, band orbitals are generally 

delocalized over the entire crystal.  That is to say that the orbitals of a crystal are no 

longer necessarily identified with individual atoms or individual covalent bonds but 

generally exist throughout the entire body of the solid.  Even so, the band structure of 

crystal, at least in a broad sense, still corresponds to the formation of bonding and anti-

bonding molecular orbitals.  To be more specific, the lower energy or valence band 

corresponds to bonding.  Indeed, from a simplistic viewpoint, valence band orbitals can 

be regarded as linear combinations formed from all bonding orbitals constructed between 

pairs of constituent atoms of the crystal.  Similarly, the higher energy or conduction band 

is the anti-bonding analog and, again, conduction band orbitals can be primitively 

regarded as linear combinations of all of anti-bonding orbitals associated with atomic 

pairs.  In addition, a distinguishing feature of conduction band orbitals is that they are 

substantially more delocalized than corresponding valence band orbitals.  Therefore, if an 

electron undergoes a transition from the valence band to the conduction band by, for 

example, thermal or photo excitation, then it becomes essentially free to wander 

throughout the body of the crystal, i.e., it becomes a mobile carrier of electrical current.  

However, it must be cautioned that this picture is quite oversimplified.  In a real crystal, 

more than two bands are generally formed when all relevant atomic orbitals are 

overlapped.  In this case, the resulting band structure is generally quite complex and may 

have mixed bonding and anti-bonding character.  Fortunately, for understanding the 

behavior of solid-state electronic devices as well as many other characteristics of 

semiconductors, a simple uniform two band picture is usually quite sufficient. 

An obvious consequence of the construction of the electronic structure of a whole 

crystal from bonding and anti-bonding orbitals is the possible appearance of an energy 

gap, Eg.  Of course, the size of the gap depends not only on the binding energy of the 

crystal, but also on “widths” (measured on an energy scale) of the valence and 

conduction bands.  In insulating materials this gap is quite large, typically several 

electron-volts.  Thus, electrons are promoted from the valence band to the conduction 

band only by expenditure of a large amount of energy, hence, very few if any, mobile 

carriers are ever present within an insulator at ordinary temperatures.  In contrast, for 

some electrical conductors, viz., semimetals, valence and conduction bands may overlap 

so that there is no energy gap.  In this case, electronic transitions between valence and 

conduction bands require little or no energy.  In other kinds of conductors, viz., classical 

metals, the valence band is only partially filled which, again, results in a significant 

internal concentration of mobile carriers.  Of course, in general metals are characterized 

by large mobile carrier densities and are good electrical conductors.  Thus, as one might 

have guessed, semiconductors have properties that are intermediate between metals and 

insulators.  They have an energy gap, but it is relatively small, typically, on the order of 

one or two electron-volts or less.  Indeed, the gap is small enough so that it is possible for 

thermal excitation alone to promote a significant number of electrons from the valence 
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band to the conduction band and, thus, pure (i.e., intrinsic) semiconductors exhibit a 

small but significant electrical conductivity. 

Before proceeding, it should be noted that solid-state physicists take a completely 

different approach to the electronic structure of crystals and treat valence electrons as 

forming a “gas” that fills the entire volume of the solid.  From a quantum mechanical 

point of view, energy states, i.e., band orbitals, of such a system approximate plane 

waves.  Indeed, if the crystal had no internal structure plane waves would provide an 

exact description of electronic structure.  Accordingly, for a semiconductor crystal an 

energy gap appears as a consequence of explicit introduction of a periodic potential.  Of 

course, this periodic potential derives directly from the periodic structure of the crystal 

lattice.  To be more specific, spatial periodicity within the crystal causes standing wave 

states of specific energies to be allowed or forbidden depending on whether the waves 

concentrate electron density coincident or anti-coincident with extrema of the periodic 

potential (i.e., coincident or anti-coincident with atomic nuclei).  Furthermore, as should 

be expected, this picture is ultimately both complementary and equivalent to the 

molecular orbital approach in which bonding and anti-bonding orbitals also correspond to 

specific localizations of electron density. 

 

Bands in Intrinsic Semiconductors 

 

The band structure of any real crystalline semiconductor is quite complicated and 

allows for different types of behavior.  For example, silicon and germanium are said to be 

indirect band gap semiconductors and gallium arsenide a direct band gap semiconductor.  

To be precise, in a direct band gap semiconductor an electron can be promoted from the 

valence band to the conduction band directly with no change in momentum, e.g., by 

absorption of a photon.  Physically, this occurs because of favorable alignment and 

curvature (or shape) of energy bands as constructed in a momentum representation.  

Conversely, in an indirect band gap semiconductor similar promotion of an electron from 

the valence band to the conduction band requires interaction with the crystal lattice in 

order to satisfy the principle of momentum conservation, i.e., corresponding band 

alignment is unfavorable in “momentum space”.  In passing, it is worthwhile to mention 

that distinction between direct and indirect band gap materials is of little importance for 

conventional electronic devices, but is technologically significant for optoelectronic 

devices, e.g., light emitting diodes, laser diodes, etc., which require direct band gap 

semiconductors for operation. 

Even so, as asserted previously, for many (perhaps, most) practical situations detailed 

band structure is unimportant and can be greatly simplified into two aggregate bands, viz., 

valence and conduction bands.  Of course, just as in the case of atomic or molecular 

orbitals, electrons in a crystalline solid must satisfy the Pauli Exclusion Principle.  

Therefore, ignoring any effect of photo or thermal excitation, the valence band of a 

semiconductor can be regarded as completely filled and the conduction band as 

completely empty.  Therefore, the conductivity of a pure semiconductor is expected to be 

quite low since mobility of electrons in the valence band is small.  Naturally, this is 

merely a consequence of participation of the valence electrons in the bonding of the 

crystal lattice, which requires substantial localization of electron pairs between atomic 

nuclei.  Nevertheless, as noted previously, conductivity of a pure semiconductor increases 
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dramatically when electrons are promoted from the valence band into the conduction 

band since electrons in the conduction band are much freer to migrate than electrons in 

the valence band.  Thus, electron density is much less localized for conduction band 

orbitals in comparison with valence band orbitals.  Within this context, promotion of 

electrons into the conduction band leaves behind holes in the valence band that can be 

viewed as a sort of positively charged electron.  Indeed, holes and electrons exhibit an 

approximate symmetry since valence band holes can move through the crystal almost as 

freely as conduction band electrons.  Hence, within a semiconductor crystal, both 

electrons and holes can be treated formally as a distinct particles (or more correctly, 

quasi-particles) and can act as mobile carriers having opposite electrical charge. 

For clarity, it is important to distinguish an electron state of a band and a band orbital.  

To be specific, in analogy to a primitive atomic orbital, a band orbital is formally 

associated with two band states, each corresponding to one of the possible spin quantum 

numbers, viz., ½.  Therefore, on the basis of the Pauli Exclusion Principle, although 

maximum occupancy of a band orbital is two electrons, maximum occupancy of a band 

electron state is necessarily only one.  Naturally, at ordinary temperatures in a pure 

semiconductor, some electrons will be promoted to the conduction band by thermal 

excitation alone.  It has long been established that thermal equilibrium for a many 

electron system is described by the Fermi-Dirac distribution function: 
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Here, f(E), is the probability that an electron state of energy, E, is occupied.  The 

quantity, EF, is called Fermi energy and defines a characteristic energy for which it is 

equally likely that an electron state of precisely that energy will be either vacant or 

occupied, i.e., the state has an occupation probability of exactly one half.  Clearly, any 

band state must be either occupied or vacant and, moreover, the approximate symmetric 

behavior of electrons and holes implies that a vacant electronic state can just as well be 

regarded as an occupied hole state and vice versa.  Accordingly, it follows that the 

occupation probability for holes, fh(E), is trivially related to f(E) by the simple formula: 

 
f E f Eh ( ) ( )  1  

 

By convention, hole energy is written formally as the negative of electron energy since a 

hole deep in the valence band physically corresponds to a higher energy state than a hole 

at the top of the band.  Hence, it is easily demonstrated that holes also obey a Fermi-

Dirac distribution with corresponding Fermi energy of EF: 
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If one recalls that at finite temperatures the valence band is nearly full and the conduction 

band is nearly empty, then it is intuitively obvious that the Fermi energy must fall 

somewhere in the middle of the band gap.  Consequently, unless the Fermi energy falls 

within a band or very near the band edge, for any electron or hole state at ordinary 
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temperatures one can safely assume that |EEF |>>kT, and, consequently that the Fermi-

Dirac electron and hole distribution functions can be approximated satisfactorily by 

ordinary Maxwell-Boltzmann forms: 
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These expressions once again reflect the approximate symmetry in the behavior of holes 

and electrons.  In passing, one should observe that the Fermi energy does not necessarily 

correspond to the energy of any real electron or hole state.  In the most elementary sense, 

EF is merely a characteristic parameter of the Fermi-Dirac distribution function.  Indeed, 

for semiconductors (and insulators) the Fermi energy falls within the band gap where, in 

principle, energy states are absent.  However, it is often convenient to consider a 

hypothetical electron state with energy exactly equal to EF.  This is called the Fermi level 

and is usually represented as a flat line on an aggregate band diagram. 

If EC is defined as the energy at the bottom of the conduction band and EV as the 

energy at the top of the valence band, then the difference, ECEV, evidently corresponds 

to the band gap energy, Eg.  Consequently, the concentration of electrons at the 

conduction band edge, n, can be expressed as follows: 

 

n N eC
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Similarly, the concentration of holes at the valence band edge, p, is: 

 

p N eV

E E kTV F ( )/

 
 

The factors, NC and NV, respectively define effective electron and hole concentrations at 

the bottom of the conduction band and top of the valence band under conditions of full 

occupancy.  These values are independent of Fermi energy and depend only on the 

density of states for a specific semiconductor material.  If one multiplies these 

expressions together, it evidently follows that: 
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This expression is also independent of the Fermi energy and, hence, is independent of 

changes in carrier concentration.  The band gap energy is a characteristic property of the 

semiconductor material.  Thus, carrier concentrations in a semiconductor constitute a 

mass action equilibrium similar to mass action equilibria frequently encountered in 

classical chemical systems.  Accordingly, the equilibrium constant corresponds to the 

intrinsic carrier concentration, ni, defined such that: 

 

n N N ei V C

E kTg2


 /

 
 

Thus, ni, is the concentration of electrons at the conduction band edge in a pure 

semiconductor.  Likewise, ni is also the concentration of holes at the valence band edge in 
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a pure semiconductor.  It follows then that ni depends only on absolute temperature, T, 

and material constants of the semiconductor.  Furthermore, as a matter of common usage, 

for description of the electrical properties of semiconductors and unless otherwise 

explicitly stated, the terms “electron” and “hole” specifically denote a conduction band 

electron and a valence band hole. 

So far, it has been only assumed that the Fermi level must fall very near the center of 

the band gap.  Moreover, it is not difficult to demonstrate that this is, indeed, the case.  

Thus, from the preceding expressions, one can write: 
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Upon taking the natural logarithm of both sides, one can readily solve for the Fermi 

energy to obtain: 
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Physically, the parameters, NC and NV, are of the same order of magnitude; hence, the 

natural logarithm is relatively small.  Therefore, at ordinary temperatures, the second 

term of this expression is negligible in comparison to the first term.  Clearly, the first 

term just defines the midgap energy; hence, the Fermi level falls very near the center of 

the band gap.  The aggregate band structure for a pure semiconductor is shown in the 

following figure: 
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Fig. 4: Aggregate band diagram for an intrinsic semiconductor 

 

As a practical matter, for intrinsic silicon at ordinary temperatures EF lies slightly below 

midgap and differs from the midgap energy by only about one percent of Eg. 

In passing, one might naively suppose that in analogy to molecular and crystal 

bonding, the band gap energy in a semiconductor crystal simply corresponds to the 

covalent binding energy of the solid.  However, if this were true, a band gap should 

always exist within any crystalline solid since overall stability requires significant 

binding energy.  However, in reality, covalent bonds within a crystal cannot be 

considered in isolation and, moreover, significant interaction between electrons is to be 

expected, which causes resulting bands to be broadened in energy.  Therefore, although 

the difference of the average energies of conduction band and valence band states can be 

expected to correspond broadly to binding energy, the band gap energy is the difference 

of minimum conduction band energy, EC, and maximum valence band energy, EV, and, 
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consequently, band gap energy is typically much smaller that overall binding energy and 

in some cases disappears altogether if the valence band and conduction band happen to 

overlap (as in the case of a semimetal).  As observed previously, for an insulator, the 

band gap is quite large, but for a semiconductor the band gap is small enough so that 

electrons can be promoted from the valence band to the conduction band quite readily.  

(Again, in real materials the band structure is generally complicated; however, a simple 

picture assuming flat band edges is generally quite adequate to understand the electronic 

behavior of devices.) 

 

Extrinsic Doping 

 

Of course, in a pure or intrinsic semiconductor, promotion of an electron from the 

valence band to the conduction band results in the formation of a hole in the valence 

band.  Alternatively, this process could be thought of as the promotion of a hole from the 

conduction band into the valence band leaving an electron behind.  Within the context of 

a semiconductor crystal, holes and electrons appear on an equivalent footing.  Upon 

initial consideration, this may seem somewhat strange.  Indeed, one is naively tempted to 

consider electrons as somehow “more real” than holes.  It is quite true that electrons can 

be physically separated, i.e., removed into the vacuum, from a semiconductor crystal, and 

holes cannot.  (As will be seen subsequently, this defines the work function for the 

semiconductor.)  However, a vacuum electron cannot really be considered as physically 

equivalent to a mobile electron inside of a semiconductor crystal.  To understand why 

this is so, one observes that within the crystal, a mobile electron is more accurately 

thought of as a local increase in electron density rather than a single distinct electron 

which can, in principle, be separated from the crystal.  This picture quite naturally leads 

one to the view of a mobile hole as a corresponding local decrease in electron density.  

Such fluctuations in electron density are able to propagate throughout the lattice and 

behave as distinct particles with well-defined effective masses (or, again, more correctly, 

quasi-particles, since the density fluctuations themselves cannot be removed into the 

vacuum).  Furthermore, the effective mass of a mobile electron within the crystal lattice 

is quite different (typically much smaller) than the rest mass of an electron in the vacuum.  

This, again, illustrates fundamental non-equivalence of a vacuum electron and a mobile 

electron within the lattice.  Therefore, within this context, holes quite naturally appear as 

positively charged “particles” and electrons as negatively charged “particles”.  The well-

known approximate symmetry of conduction band electrons and valence band holes 

follows directly as a consequence and, as expected, both electrons and holes behave as 

mobile carriers of opposite electrical charge.  Of course, this idea is fundamental to any 

understanding of practical solid-state electronic devices. 

Again, the condition of thermal equilibrium requires that at ordinary temperatures in 

an intrinsic semiconductor, a small number of electrons will be promoted to the 

conduction band solely by thermal excitation.  To maintain charge neutrality, there 

clearly must be an equal number of holes in the valence band.  Obviously, this 

concentration is just the intrinsic carrier concentration, ni, as defined previously, and is a 

function only of the band gap energy, densities of states, and absolute temperature.  

However, ni, is not a function of the Fermi energy.  (It shall soon become evident why 

this assertion is so significant.)  In addition, it is important to consider the effect of 
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introduction of a small concentration of so-called shallow level impurities such as boron 

and phosphorus on the electronic structure of silicon.  Clearly, the periodic chart implies 

that phosphorus has five valence electrons per atom rather than four as in the case of 

silicon.  Accordingly, suppose that a phosphorus atom is substituted into the silicon 

lattice.  The phosphorus atom forms the expected four covalent bonds with adjacent 

silicon atoms.  Naturally, the four electrons associated with lattice bonding are simply 

incorporated into the valence band just as they would be for a silicon atom.  However, the 

fifth electron ends up in a localized shallow electronic state just below the conduction 

band edge.  These states are called donor states.  It turns out that for temperatures greater 

than about 100K, the silicon lattice has sufficient vibrational energy due to random 

thermal motion to promote this electron into the conduction band where it becomes a 

mobile carrier.  Once in the conduction band, the electron is delocalized, thus, becoming 

spatially separated from the phosphorus atom.  As a consequence, it is unlikely that an 

electron in a conduction band state will fall back into a donor state (even though it is of 

lower energy) and, thus, the phosphorus atom becomes a positively ionized impurity.  

Concomitantly, the density of conduction band states is several orders of magnitude 

larger than the density of donor states and since the Fermi-Dirac distribution implies that 

at ordinary temperatures the occupancy of any electronic state of energy near EC is quite 

small, it follows that any electron of comparable energy is overwhelmingly likely to 

occupy a conduction band state, regardless of spatial characteristics, i.e., localization or 

delocalization.  In any case, because the energy required to ionize the phosphorus atom is 

small in comparison to the band gap and is of the same order of magnitude as thermal 

energy, kT, effectively all of the substituted phosphorus atoms are ionized.  Thus, 

addition of a small amount of phosphorus to pure silicon causes the conductivity of the 

silicon to increase dramatically. 

Conversely, suppose that instead of phosphorus, a boron atom is substituted into the 

silicon lattice.  Boron has only three valence electrons instead of four.  As a consequence, 

boron introduces localized empty electronic states just above the valence band edge.  

These states are called acceptor states.  In analogy to donor states, for temperatures 

above about 100K, the vibrational energy of the silicon lattice easily promotes electrons 

from the valence band into acceptor states.  Alternatively, a boron atom could be thought 

of as having four valence electrons and a hole, i.e., a net of three valence electrons.  From 

this viewpoint, the ionization process can be considered as the promotion of a hole from 

an acceptor state into the valence band.  In either view, mobile holes appear in the 

valence band and the boron atom becomes a negatively ionized impurity.  As before, 

since holes are mobile it is unlikely that once an electron is in an acceptor state, it will 

fall back into the valence band.  Again, the energy required to ionize the boron atom is 

small in comparison to the band gap and is of the same order of magnitude as kT, hence, 

just as for phosphorus, effectively all of the substituted boron atoms become ionized.  In 

analogy to the introduction of mobile electrons into the conduction band by donor states, 

the appearance of mobile holes in the valence band also greatly increases the conductivity 

of the silicon crystal.  (Of course, just as for the case of donor states, acceptor states are 

also described by Fermi-Dirac statistics, which implies that since they lie near the valence 

band edge, they are very likely occupied.)  In general for silicon, Group VB elements act 

as donor impurities since they can contribute additional electrons to the conduction band.  

Likewise, Group IIIB elements act as acceptor impurities since they can trap electrons 
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from the valence band and, thus, generate additional holes (or one could say that they 

“donate” holes to the valence band).  This is the fundamental mechanism of extrinsic 

doping.  (Shallow level impurities are generally called dopants.)  Conventionally, a 

semiconductor crystal to which a controlled amount of a donor impurity has been added 

is said to be n-type since its electrical conductivity is the result of an excess concentration 

of negatively charged mobile carriers (electrons in the conduction band).  In contrast, a 

semiconductor crystal to which a controlled amount of acceptor impurity has been added 

is said to be p-type since its electrical conductivity is the result of an excess concentration 

of positively charged mobile carriers (holes in the valence band). 

In previous consideration of intrinsic semiconductors, it was asserted that the product 

of the concentration of electrons in the conduction band and holes in the valence band is 

equal to an equilibrium constant: 
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This result is also applicable in the case of extrinsically doped semiconductors.  

Furthermore, the semiconductor must remain electrically neutral overall.  Therefore, if NA 

and ND are identified as concentrations of acceptor and donor impurities in the crystal, 

then assuming complete impurity ionization, one finds that: 
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Combining these two expressions gives: 
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Here, nn and pp are defined as majority carrier concentrations, i.e., electron concentration 

in an n-type semiconductor and hole concentration in a p-type semiconductor.  Therefore, 

the quantity, NAND is the net impurity concentration.  Obviously, if the net impurity 

concentration vanishes, n and p are equal to ni even though acceptor and donor impurities 

are present.  Clearly, such a semiconductor is “intrinsic” and doping is said to be wholly 

compensated.  (This condition is not equivalent to a pure semiconductor as will become 

evident in subsequent discussion of mobility.)  Partial compensation occurs if both donor 

and acceptor impurities are present in different amounts. 

In practice, the net concentration of dopants is much larger than the intrinsic carrier 

concentration.  Thus, the preceding expressions simplify as follows: 

 

DApADn NNpNNn        ;      
 

 

Minority carrier concentrations, pn and np, are easily found from the carrier equilibrium 

condition. 
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Clearly, the concentration of minority carriers is many orders of magnitude smaller than 

the concentration of majority carriers for net impurity concentrations above 1012 cm3.  

Typically, practical doping concentrations are substantially larger than this. 

Obviously, since the occupancy of the electron states of the crystal is altered by 

doping, the Fermi level in a doped semiconductor can no longer be expected to be at 

midgap.  If the doping concentration is not too large, as is usually the case, it is a simple 

matter to determine the Fermi energy within the context of Maxwell-Boltzmann statistics.  

One observes that the ratio of mobile carrier concentrations is trivially constructed from 

fundamental definitions: 
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For convenience, one takes the natural logarithm of both sides to obtain: 
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The first two terms on the right hand side are immediately recognizable as Fermi energy 

for an intrinsic semiconductor, i.e., the so-called intrinsic Fermi energy, which is 

conventionally denoted as Ei, hence: 
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Of course, as determined previously, Ei lies very close to midgap.  Naturally, the majority 

carrier concentration is determined by the dopant concentration and the minority carrier 

concentration is then obtained from the carrier equilibrium.  Therefore, in the case of an 

n-type semiconductor: 
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Similarly, in the case of a p-type semiconductor: 
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As observed previously, it is usual for the net impurity concentration to far exceed the 

intrinsic carrier concentration.  In this case, the preceding expressions simplify 

respectively for n-type and p-type cases as follows: 
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It is immediately obvious that Fermi energy, EF, is greater than the intrinsic energy, Ei, 

for an n-type semiconductor and less than Ei for p-type.  This is illustrated by the 

following diagrams: 

 

Eg

N
E

E
N

V

V

C

C

Ei

EF

Conduction Band 

Valence Band

Shallow Donor States

                

Eg

N
E

E
N

V

V

C

C

Ei

EF

Conduction Band 

Valence Band

Shallow Acceptor States

 

n-type                                                                       p-type 

Fig. 5: Aggregate band diagrams for n and p-type extrinsic semiconductors 

 

One recognizes immediately that this is consistent with the definition of the Fermi level 

as corresponding to the energy for which the occupation probability is one half.  Clearly, 

if additional electrons are added to the conduction band by donors, then the Fermi level 

must shift to higher energy.  Conversely, if electrons are removed from the valence band 

by acceptors, the Fermi level shifts to lower energy. 

Of course, the Fermi level in extrinsic semiconductor must also depend on 

temperature as well as net impurity concentration as illustrated in the following figure: 

 

  
Fig. 6: Effect of temperature on Fermi level shift in extrinsic silicon 
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Clearly, as temperature increases, for a given impurity concentration, the magnitude of 

any shift in Fermi level due to extrinsic doping decreases correspondingly.  This is easily 

understood if one observes that total carrier concentration must be the sum of extrinsic 

and intrinsic contributions.  Obviously, at very low temperatures (nearly absolute zero) 

the carrier concentration is also very low.  In this case, the thermal energy of the crystal is 

insufficient either to promote electrons from the valence band to the conduction band or 

to ionize shallow level impurities.  Hence, mobile carriers are effectively “frozen out” 

and the crystal is effectively non-conductive.  However at about 100K in silicon, the 

thermal energy is sufficient for shallow level impurities to become ionized.  In this case, 

the mobile carrier concentration becomes essentially identical to the net dopant impurity 

concentration.  (Thus, the previous assumption of complete dopant impurity ionization in 

silicon at ordinary temperatures is evidently justified.)  Therefore, over the so-called 

extrinsic range, majority carrier concentration is dominated entirely by net dopant 

concentration and remains essentially fixed until, in the case of silicon, ambient 

temperatures reach nearly 450K.  Of course, minority carrier concentration is 

determined by the value of the carrier equilibrium constant, i.e., ni, at any given ambient 

temperature.  At high temperature, thermal excitation of intrinsic carriers becomes 

dominant and the majority carrier concentration begins to rise exponentially.  Of course, 

there must also be a corresponding exponential increase in minority carrier concentration.  

Indeed, as temperature increases further, any extrinsic contribution to carrier 

concentrations becomes negligible and the semiconductor becomes effectively intrinsic.  

This behavior is illustrated by the following figure: 

 

  
Fig. 7: Effect of temperature on mobile electron concentration in--solid line: n-type 

extrinsic silicon (N
D
=1.15(1016) cm3) and--dashed line: intrinsic silicon 
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Although this figure only illustrates the behavior of n-type silicon, one expects that p-

type silicon has entirely equivalent behavior. 

In passing, the difference between the Fermi energy and intrinsic Fermi energy in an 

extrinsic semiconductor is often expressed as an equivalent electrical potential, viz., the 

Fermi potential, F, which is formally defined, thus: 
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Here, of course, q is the fundamental unit of charge, 1.602(1019) C.  In addition, it is 

important to observe that if net dopant concentration becomes too high, i.e., the Fermi 

level approaches a band edge, then an elementary analysis can no longer be applied.  This 

is true primarily for two reasons: First of all, it is no longer possible to approximate 

Fermi-Dirac statistics with Maxwell-Boltzmann statistics for band edge states.  In 

addition, interaction between carrier spins becomes important at very high mobile carrier 

concentration.  (This is characteristic of a so-called degenerate fermion fluid, hence, a 

semiconductor doped at this level is said to be degenerate.)  Second, shallow level 

impurities are no longer effectively all ionized.  This is also a consequence of the high 

carrier concentration, which tends to repopulate ionized shallow level states.  Indeed, if 

the Fermi level coincides exactly with shallow level states of either type (as is the case 

for very high dopant concentration), then one expects the occupancy of these states to be 

exactly one half.  In practice, this condition is only realized for dopant concentrations in 

excess of 1018 cm3.  Critical dopant concentrations in solid-state electronic devices are 

typically lower than this. 
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Carrier Mobility 
 

Naturally, in order for a semiconductor crystal to conduct significant electrical 

current, it must have a substantial concentration of mobile carriers (viz., electrons in the 

conduction band or holes in the valence band).  Moreover, carriers within a crystalline 

conductor at room temperature are always in a state of random thermal motion and, 

analogous to the behavior of ordinary atmospheric gas molecules, as temperature 

increases the intensity of this motion also increases.  Of course, in the absence of an 

external field net current through the bulk of the crystal must exactly vanish.  That is to 

say that the flux of carriers is the same in all directions and that there is no net electrical 

current flow out of or into the crystal.  However, if an external electric field generated by 

an external potential difference is applied, then carriers tend to move under the influence 

of the applied field resulting in net current flow and, consequently, mobile carriers must 

have some average drift velocity due to the field.  (This is exactly analogous to the 

motion of molecules of a fluid under the influence of hydrodynamic force, i.e., a pressure 

gradient.) 

At this point an obvious question arises; how large is this drift velocity?  In principle, 

it is possible to estimate its size by simple consideration of Newton’s Second Law, i.e., 

“force equals mass times acceleration”: 

 

F ma  
 

Clearly, the force “felt” by any carrier is qE, i.e., just the simple product of carrier 

charge with electric field strength.  Therefore, it follows that: 
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Here, m* is identified as effective carrier mass.  Considering the case of electrons first, of 

course, m* cannot be expected to be the identical to vacuum electron mass, but is, in fact, 

considerably smaller.  Accordingly, since a mobile electron within a semiconductor 

crystal has less inertia, under the influence of an applied force it initially accelerates more 

rapidly than would a free electron in a vacuum.  Physically, this is consistent with a 

picture of an electron in the conduction band as merely a density fluctuation, rather than a 

distinct individual particle.  Indeed, just as waves on the ocean may move faster than the 

water itself, electron density fluctuations may propagate more rapidly than the 

background “fluid”, viz., valence electron density.  As one might expect, it is also found 

that holes have an effective mass which is similar in size (usually somewhat greater, due 

to substantially larger inertia) as effective electron mass.  Likewise, a hole in the valence 

band can also be identified as a fluctuation of background electron density.  (Of course, 

in contrast to electrons, free particle mass for holes must remain undefined.)  

Furthermore, the difference in effective masses for holes and electrons is a consequence 

of the detailed band structure.  Hence, within the aggregate two band picture of a 

semiconductor, effective carrier masses are conveniently treated as fundamental material 

parameters.  Accordingly, if one assumes that applied electric field is constant (usually a 
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good approximation on a size scale commensurate with crystal structure), then one can 

trivially integrate Newton’s Second Law: 

 

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Here, v  is defined as carrier drift velocity.  Obviously, electrons and holes have drift 

velocities of opposite sign (i.e., they drift in opposite directions) due to their opposite 

electric charges.  Clearly, this formulation assumes that carriers do not accelerate 

indefinitely under the influence of an applied field, but rather, that they reach a limiting 

drift velocity due to scattering within the bulk of the crystal. 

Concomitantly, it is not at all clear what value should be used for t in the preceding 

expression.  Thus, to estimate t, one must return to the equilibrium picture of carrier 

motion in a solid.  In this case, just as for an ordinary gas, it is possible to define a mean 

time between collisions, col.  However, for a semiconductor, collisions between carriers 

and the crystal lattice itself dominate rather than collisions between carriers only as 

would be analogous to the behavior of gas molecules.  Consequently, scattering can be 

greatly increased by the presence of defects, impurities, etc.  In any case, if one formally 

substitutes col for t, then one can write: 
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Thus, one finds that carrier drift velocity is proportional to applied field and the 

associated constant of proportionality is called carrier mobility, : 

 
v E   

 

In general, hole and electron mobilities are conventionally considered as specific 

properties of the semiconductor itself and are treated as characteristic material 

parameters. 

For completeness, it should be further emphasized that this primitive treatment of 

carrier motion is only applicable when external electric field strength is relatively low 

(<1000 V/cm) and, conversely, that at high values of the field, carrier drift velocity is no 

longer simply proportional to applied field, but tends toward a constant value called the 

saturated drift velocity.  Indeed, it is quite easy to understand the cause of this behavior.  

At low field strength, random thermal motion is the dominant part of overall carrier 

motion and as a consequence, col must be effectively independent of field strength.  In 

contrast, at high field directed carrier motion dominates.  In this case, col becomes 

inversely related to the field strength and, consequently, tends to cancel out the field 

dependence of the carrier drift velocity.  Alternatively, saturated drift velocity can be 

considered as broadly analogous to terminal velocity for an object “falling” through a 

constant field of force (such as a sky diver falling through the atmosphere before opening 

his or her parachute).  Within this context, electron and hole mobilities in pure silicon are 

illustrated in the following figure as functions of electric field strength: 
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Fig. 8: Effect of applied electric field on carrier drift velocity (intrinsic silicon) 

 

Clearly, the saturated drift velocity for electrons is approximately 8.5(106) centimeters 

per second and for holes about half that value. 

Of course, mean time between collisions, col, can be expected to be determined by 

various scattering mechanisms; however, a fundamental mechanism is found to be lattice 

scattering.  This occurs because the crystal lattice always has finite vibrational energy 

characteristic of ambient temperature.  Indeed, fundamental quantum mechanical 

principles require that this energy does not vanish even in the limit that the lattice 

temperature falls to absolute zero.  However, if the vibrational energy characteristic of 

the lattice becomes sufficiently small (i.e., temperature is very low), scattering becomes 

insignificant and superconductivity is observed.  Of course, this occurs only at deep 

cryogenic temperatures.  In any case, quantum mechanical treatment of lattice vibration 

results in the definition of fundamental vibrational quanta called phonons.  Indeed, these 

are similar to the quanta of the electromagnetic field, i.e., photons, and, as such, exhibit 

particle-like behavior within the crystal.  Without going into great detail, lattice scattering 

can be thought as the result of collisions between mobile carriers (electrons and holes) 

and phonons. 

A second important scattering mechanism is ionized impurity scattering.  Essentially, 

this is a consequence of electrostatic, i.e., Coulombic, fields surrounding ionized impurity 

atoms within the crystal.  Of course, ionized impurities are introduced into the crystal 

lattice by extrinsic doping and, thus, one should expect that, in general, carrier mobilities 

will decrease as doping increases.  This is, indeed, observed experimentally.  

Furthermore, an important point to be made is that although donors and acceptors become 

oppositely charged within the lattice, overall effects of electrostatic scattering do not 

depend on the sign of the charge.  Therefore, both donor and acceptor atoms can be 

expected to have similar influence on carrier mobility.  Clearly, this implies that in 

contrast to the effect of ionized impurities on carrier equilibrium for which donors and 

acceptors compensate each other, the effect of ionized impurities on carrier scattering is 

cumulative and, as such, compensation should not be expected.  Accordingly, in contrast 
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to carrier concentrations which depend on the difference of acceptor and donor 

concentrations, ionized impurity scattering depends on the sum of acceptor and donor 

concentrations.  Therefore, although acceptor and donor impurities compensate each 

other in terms of extrinsic doping, they still invariably contribute to reduction of carrier 

mobility.  Accordingly, carrier mobility in compensated intrinsic semiconductor will 

necessarily be lower than in pure semiconductor (which is also, of course, intrinsic).  

Within this context, the effect of impurity concentration on overall carrier mobilities in 

silicon (at a nominal ambient temperature of 300 K) is illustrated below: 

 

  

Fig. 9: Effect of total impurity concentration on carrier mobility (and diffusivity) in silicon 

 

Moreover, the curves appearing in the figure can be satisfactorily represented by the 

empirical formula: 
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This kind of mobility model was first formulated in the late 1960’s by Caughey and 

Thomas.  By convention, x can denote either electrons or holes, i.e., e or h, denoting 

electrons or holes, respectively, and  
0

x  and  x  are evidently to be interpreted as intrinsic 

and compensated carrier mobilities, which, respectively, for electrons and holes have 

typical values and 1414 and 471 centimeters squared per volt second and 68.5 and 44.9 

centimeters squared per volt second.  Likewise, x is defined as a “reference” impurity 

concentration, which, again, for electrons and holes has typical values of 9.20(1016) and 

2.23(1017) impurity atoms per cubic centimeter.  In contrast, the exponent, , differs little 

between electrons and holes typically having values of 0.711 and 0.719, respectively. 
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For completeness, an obvious third scattering mechanism that one could corresponds 

to collisions between mobile carriers of opposite charge (i.e., scattering of electrons by 

holes and vice versa).  However, as observed previously, in doped semiconductors, one 

type of carrier generally predominates so that the effect of this type of scattering is 

negligible.  Similarly, scattering between carriers of the same type is also possible; 

however, since total momentum and electric charge is rigorously conserved during such a 

collision, there is no net effect of this type of scattering on the mobility.  Therefore, as 

stated at the outset, carrier-carrier scattering processes can be ignored in comparison to 

carrier-lattice scattering processes. 

Within this context, one can consider the current, I, flowing in a hypothetical 

rectangular crystal of heavily doped n-type semiconductor: 
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Here, e is electron mobility, V is an applied potential, L is the physical length of the 

crystal, and A is its cross sectional area.  If one recalls Ohm’s Law, resistance can be 

defined as follows: 
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A similar expression is obtained for the flow of holes in a p-type rectangular 

semiconductor crystal: 
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Here, of course, h is hole mobility.  Clearly, for an intrinsic or lightly doped 

semiconductor, flow of both electrons and holes must be considered.  Accordingly, 

resistance is given by the general formula: 
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Obviously, this expression is applicable to any doping concentration since majority 

carriers dominate for heavy doping (thus, simplifying this expression to the two forms 

appearing above) and, moreover, evidently corresponds to the conventional combination 

of two parallel resistances.  Therefore, resistivity, , which is an intensive material 

property (i.e., independent of size and shape of the material), is identified thus: 
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Of course, by definition, resistivity is the reciprocal of conductivity. 
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Clearly, resistivity is generally a function of carrier concentrations and mobilities.  

Therefore, one expects that the resistivity of p-type silicon should be higher than the 

resistivity of n-type silicon having equivalent net dopant impurity concentration.  

Furthermore, since the dependence of mobility on impurity concentration is relatively 

weak, if net dopant impurity concentration is increased, then resistivity should decrease 

due to a corresponding increase of majority carrier concentration (even though ionized 

impurity scattering may further reduce mobility).  This behavior in uncompensated 

extrinsic silicon is illustrated by the following figure: 

 

  
Fig. 10: Resistivity of bulk silicon as a function of impurity concentration 

 

Clearly, determination of resistivity requires determination of both mobility and carrier 

concentration.  Of course, carrier concentration depends on net impurity concentration, 

i.e., the difference between donor and acceptor concentrations.  However, it is total 

impurity concentration, i.e., the sum of donor and acceptor concentrations that must be 

considered to determine mobility.  Obviously, the behavior of resistivity as a function of 

impurity concentration is not simple and depends on the combined behavior of carrier 

concentrations and mobilities.  (However, the “kink” in the plot of resistivity at high 

values of impurity concentration which is evident in the preceding figure can be 

attributed to reduction of carrier mobilities due to ionized impurity scattering.) 

As might be expected, at ordinary temperatures it is found to good approximation that 

temperature dependence of the contribution of lattice scattering to carrier mobility, 

denoted as,  x

L, is described by an inverse power law.  (As usual, x denotes either 

electrons or holes as is appropriate and T denotes absolute temperature.)  Accordingly,  x

L 

can be represented as follows: 
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By definition, T0 is some predefined reference temperature (typically 300 K).  Here,  is 

a positive exponent, which from fundamental theoretical considerations can be expected 

to have a value of  2
3 , but which empirical measurements indicate has a value close to 2 

for intrinsic silicon.  In contrast, temperature dependence of the contribution of ionized 

impurity scattering to mobility can be described by a normal power law, thus: 
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In analogy, to the case of lattice scattering,  is a positive exponent, which for moderate 

impurity concentration, again, has a theoretical value of  2
3 , but falls to zero for very high 

concentration.  (Indeed, empirical measurements indicate that  may even become 

negative for very high concentrations, thus, inverting the power law dependence.)  Of 

course, CI is total concentration (rather than net concentration) of both positively and 

negatively charged ionized impurities, i.e., CINA+ND, x T( )0  is a constant parameter 

(again, to be regarded as reference impurity concentration) defined at the reference 

temperature, T0,, and the exponent, , is an adjustable parameter, which frequently in the 

case of small variation in doping concentration for simplicity can be taken as unity.  

(However, in practice, values of  between  3
2  and ¾ are generally more realistic.) 

Naturally, total mobility, x, for carrier type, x, can be constructed from partial 

contributions specific to different scattering mechanisms in analogy to the combination of 

parallel resistances.  Therefore, x(T) is immediately obtained as a sum of reciprocals, 

thus: 
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In passing, it should be noted that this formulation describes actual behavior of carrier 

mobility reasonably well for impurity concentrations below ~1018 per cubic centimeter, 

but much more poorly for higher concentrations approaching dopant solubility limits in 

which case carrier mobilities are severely underestimated.  Even so, this expression is 

useful for explicit consideration of the temperature dependence of electron and hole 

mobilities in moderately doped silicon.  Furthermore, an explicit expression for the 

behavior of resistivity as a function of temperature is readily constructed.  Again, for 

extrinsic silicon if one considers majority carriers only, then one can write: 
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Here, nx is n if x is e and nx is p if x is h.  Clearly, if CI vanishes,  is a monotonic 

increasing function of T.  However, if CI is non-zero, then  may reach a minimum at 
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some finite temperature.  To determine this temperature, one differentiates the above 

expression as follows: 
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If one sets the derivative equal to zero and solves for the temperature, one obtains the 

result: 
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Clearly, at low temperature, if CI is sufficiently large so that Tmin is >100 K, resistivity 

is dominated by ionized impurity scattering.  In this case,  decreases with temperature 

and the semiconductor is said to have a negative thermal coefficient of resistance (TCR).  

In contrast, at higher temperature and/or lower dopant concentration, lattice scattering 

dominates resistivity.  In this case,  increases with temperature and the semiconductor is 

said to have a positive (or normal) TCR. 
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Crystal Structure 

 

It is useful to begin any discussion of crystal structure with an elementary definition 

of some crystallographic terms.  First of all, crystals are made up of identical, repeating 

arrangements of atoms called unit cells.  By definition, a unit cell is the smallest volume 

of a crystalline solid that exhibits the symmetry properties of the whole crystal.  Just 

seven basic crystal systems are known.  These are, cubic, hexagonal, tetragonal, 

orthorhombic, trigonal, monoclinic, and triclinic.  These may be further classified into 

fourteen Bravais lattice types: 

  
Fig. 11: The fourteen Bravais lattices 

 

Of these types, for semiconductors the face centered cubic (FCC) system is of most 

importance.  Fortunately, cubic lattices are also the easiest Bravais lattices to visualize 

and understand. 
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It is clear from the elementary structure of the Bravais lattices that each unit cell has 

several lattice points.  In terms of the actual physical structure of a solid material, each 

lattice point is associated with a basis group.  Thus, the lattice basis group for a particular 

crystal is a definite group of atoms associated with each lattice point.  In the simplest case 

(which, for example, occurs in the case of some elemental metals) the basis group 

consists of just a single atom, in which case one atom occupies each lattice point.  Of 

course, the lattice basis group must be identical for all lattice points.  Obviously, for 

compound materials the basis group must consist of more than one atom since it cannot 

be defined as one kind of atom at one lattice point and another kind of atom at a different 

lattice point.  Thus, one finds that in general, the basis group of a lattice consists of a 

definite repeating group of atoms.  In some cases, the basis group may be identified with 

an actual covalent molecule that maintains its identity even when the lattice breaks up 

during melting or sublimation, (e.g., as in the case of ice, water, and water vapor).  

However, in many cases, the basis group also breaks up with the lattice itself during 

change of phase (e.g., as in the case of metallic or ionic solids).  Finally, basis groups and 

unit cells should not be confused.  Both are repeating groups of atoms, however, the basis 

group does not exhibit all of the symmetry properties of the whole crystal. 

It is found that even for some elemental materials, the basis group consists of more 

than one atom.  This is precisely the case for elemental silicon for which the lattice basis 

group consists of two atoms.  To understand why this is so, one observes that the Bravais 

lattice for silicon is easily identified from powder x-ray diffraction patterns as FCC.  

However, one also recalls from previous consideration of electronic structure, that silicon 

has tetrahedral coordination due to the tetrahedral geometry of the sp3 hybrid orbitals.  

Clearly, if a single silicon atom is inserted at each point of an FCC lattice, the resulting 

atomic coordination is not tetrahedral.  However, if a two-atom basis group is inserted in 

the FCC lattice, tetrahedral coordination can be realized.  The result is the diamond cubic 

structure, which can be thought of as two interpenetrating FCC lattices offset one quarter 

of the unit cell dimension in each direction: 

  

Fig. 12: Diamond cubic crystal structure 
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Obviously, the archetype of this structure is elemental carbon, viz., diamond.  It is well 

known that the diamond cubic structure has a high degree of symmetry including several 

mirror planes and two, three, and fourfold rotation axes.  This is a direct consequence of 

the high degree of symmetry associated with tetrahedral coordination.  In general, the 

group of symmetry properties serves as a unique specification of any crystal structure.  In 

passing, one should note that the compound semiconductor, gallium arsenide, GaAs, has 

essentially the same structure as elemental silicon or germanium.  However, for GaAs, 

the lattice basis group must consist of two different types of atoms, viz., one Ga and one 

As, instead of two identical atoms, i.e., either Si or Ge.  This also corresponds to a cubic 

crystal structure, similar to the diamond cubic structure, called zincblende (after the 

naturally occurring mineral form of zinc sulfide, ZnS). 

Another important term one often encounters in connection with semiconductor 

materials is crystal orientation.  To see what is meant by crystal orientation, one returns 

to the basic unit cell which in the most general case, i.e., a triclinic system, must be 

described by six independent lattice parameters (three lengths and three angles).  

However, again because of its high symmetry, a cubic system requires only a single 

lattice parameter, a, namely, the unit cell length.  (Clearly, for a cubic system, the unit 

cell length is the same in all three directions and all the angles are 90.)  Thus, one 

naturally defines a coordinate system for the solid with the lattice parameter as the basic 

unit of length.  Thus, in this “direct” space, any point within the crystal having all integer 

coordinates corresponds to a corner lattice point, i.e., vertex, of a unit cell. 

Crystal orientation is generally specified by Miller indices, (h,k,l).  The exact 

definition of Miller indices as coordinates in “reciprocal” space is quite technical in 

nature and is beyond the scope of the present course; however a simple definition may 

suffice in terms of the three direct space coordinate axis intercepts.  Since three points 

uniquely determine a geometric plane, the three axis intercepts define a crystallographic 

plane.  Perhaps, the simplest example is provided by a plane that intersects each axis at a 

distance of one lattice parameter from the origin, i.e., the plane has unit intercepts on 

each coordinate axis.  This is primitively identified as the [111] crystallographic plane.  

In contrast, if one considers a plane that is parallel to the y and z axes, but has unit 

intercept on the x axis, how should this plane be designated?  Clearly, from a strictly 

geometric point of view, the corresponding y and z axis intercepts for such a non-

intersecting plane have “receded to infinity”.  It is found that a consistent designation 

results if the Miller indices, h, k, and l, are identified as reciprocals of the x, y, and z axis 

intercepts instead of the intercepts themselves.  Thus, the reciprocal of  formally 

corresponds to zero and the plane in question is consequently designated as [100].  Using 

this scheme, a plane that is parallel to the z axis, but has unit intercepts on the x and y 

axes is designated as [110].  Clearly, the case of [111] remains unchanged since unity is 

self-inverse.  Indeed, it turns out that the definition of Miller indices as reciprocals of 

coordinate axis intercepts quite naturally follows from a general description of crystal 

diffraction phenomena in terms of three dimensional Fourier transforms.  A further 

important observation to be made at this point is that since the coordinate origin in direct 

space is always translatable by an integral number of lattice parameters, the designation 

[hkl] really defines a family of planes rather than a single unique plane.  (These families 

of planes take on particular importance for description of crystal diffraction phenomena.)  

Furthermore, although crystallographic planes can be arbitrarily specified, they are 
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generally only useful when they correspond to a plane of atoms having a regular pattern, 

i.e., a two dimensional lattice. 

Digressing briefly, it is important to note that within the general context of 

semiconductor processing, the designation of crystallographic planes (and crystal 

orientation) is generic in nature.  Of course, in a strict sense Miller indices, [100], [010], 

and [001] must denote different families of crystallographic planes; however, all of these 

planes correspond to a face of the unit cell.  Accordingly, again, as a consequence of the 

high degree of symmetry characteristic of the diamond cubic structure, all of these planes 

are electrically and structurally equivalent.  Thus, any crystallographic plane 

corresponding to a face of the unit cell is generically called a “[100]” plane.  Likewise, 

any crystallographic plane that “cuts” a unit cell face diagonally and is also parallel to an 

edge of the unit cell is called a “[110]” plane.  Similarly, any crystallographic plane that 

intersects three non-adjacent vertices of the unit cell is called a “[111]” plane.  These 

generic planes are illustrated below: 
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Fig. 13: Representative crystallographic planes 

 

Clearly, in each unit cell, there must be three different, i.e., non-parallel, [100] planes, six 

different [110] planes, and four different [111] planes. 

In practice, physical crystals are generally designated by the orientation of their 

surfaces.  In the case of semiconductor crystals, i.e., silicon substrates, this is the 

crystallographic plane parallel to the surface used for device fabrication.  Thus, a silicon 

crystal, i.e., a substrate, which has a surface parallel to the unit cell face, is designated 

[100].  Similarly, if the surface can be thought of as intersecting three opposite corners of 

the unit cell, then the crystal is designated [111].  These two orientations are essentially 

the only ones ever used for device fabrication with [100] being much, much more 

common since it is used exclusively for fabrication of CMOS devices.  A small amount 

of [111] material is still used for fabrication of bipolar devices for which very shallow 

doping is desirable.  In principle, [110] substrates could be manufactured; however such 

material is of no real practical use and, as such, is very rare. 

Clearly, the atomic arrangement for each of these surfaces, i.e., [100], [111], and 

[110], is different.  Directly related to this is the density of dangling bonds that are left 

behind if one breaks or “cleaves” a crystal parallel to a particular crystallographic plane.  

Naturally, this density is directly related to the surface energy of a crystal of a particular 

orientation.  Therefore, one can primitively estimate relative surface energy by simply 
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counting the number of bonds broken per unit cell if one cleaves the crystal along a given 

plane and then dividing by the surface area of that plane within the unit cell.  (In reality, 

this simple picture is generally complicated by the occurrence of surface reconstruction, 

which lowers surface energy by overlapping neighboring dangling bonds.)  One finds that 

in the diamond cubic structure, for a [100] plane, four bonds per unit cell must be broken 

in order to cleave the crystal.  Obviously, the unit cell area associated with this cleavage 

just equals the square of the lattice parameter, a 2.  Similarly, for cleavage parallel to a 

[111] plane, only three bonds per unit cell must be broken.  Obviously, a [111] plane 

forms an equilateral triangle within the unit cell with each side having a length of a 2 .  

The height of the equilateral triangle is a 3 2 , thus, the corresponding area is 

a a2 22 3 2 2 3 2  .  Finally, for [110] cleavage, again only three bonds must be 

broken.  The corresponding area of a [110] plane within the unit cell is, of course, a2 2 .  

One, therefore, can determine primitive dangling bond densities, n100, n111, and n110 as 

follows: 
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Clearly, the dangling bond density for a [110] plane is much lower than either for a [100] 

or a [111] plane.  Therefore, it follows that the crystal binding energy across a [110] 

surface is particularly low.  Hence, a diamond cubic crystal should be much more easily 

broken parallel to a [110] surface than parallel to either a [100] or [111] surface.  It turns 

out that [110] surfaces do indeed correspond to the natural cleavage planes of a silicon 

crystal.  This can be demonstrated rather dramatically by breaking silicon substrates of 

different orientation from the center using a diamond-tipped scribe.  One finds that [100] 

substrates naturally separate into quarters and [111] substrates into sixths. 
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Crystal Growth 
 

Considering more practical matters, integrated circuits are fabricated on single crystal 

silicon substrates which are mirror-like, polished circular disks called wafers (4”/100 mm 

dia. 525 m thick, 6”/150 mm dia. 675 m thick, 8”/200 mm dia., and 12”/300 mm dia., 

etc.).  At present, the largest wafers commonly used in integrated circuit manufacturing 

are 300 mm although there is still substantial usage of smaller sizes, viz., 200 mm.  In 

addition, substrates of 450 mm (18”) are under development by wafer manufacturers and 

are currently being used by a few manufacturers.  Wafers are cut as slices from large 

single crystal ingots of silicon called boules.  Of course, this silicon ultimately comes 

from quartzite sand, which is a naturally occurring mineral form of silicon dioxide, SiO2.  

Typically, the raw oxide is reduced to metallurgical grade silicon in an electric furnace 

using carbon as the reducing agent: 

 

SiO C Si CO2   2 2  
 

This material still contains substantial impurity and to obtain electronic grade silicon, 

metallurgical grade silicon is reacted with hydrogen chloride or chlorine: 

 

Si HCl SiHCl H3 2  3  
 

Si Cl SiCl2 4 2  
 

This produces volatile chlorides, i.e., trichlorosilane (SiHCl3) or tetrachlorosilane (SiCl4), 

which are then carefully distilled and reduced again to silicon by pyrolysis in pure 

hydrogen (or some other high quality reducing agent).  The resulting electronic grade 

polycrystalline material is quite pure and has as little as 0.05 ppb (50 ppt) of residual 

boron as the most common impurity. 

There are two major crystal growth techniques.  These are the Czochralski or CZ 

process and the float zone or FZ process.  In the CZ process, electronic grade 

polycrystalline silicon is placed in a quartz crucible surrounded by graphite heat shielding 

and then heated to the molten state in an inert atmosphere by electrical heating elements.  

A seed rod having proper orientation is dipped into the melt and then controllably 

withdrawn.  Naturally, the seed is much smaller in diameter than the desired crystal and, 

thus, the initial stage of CZ growth requires solidification outward from the seed to 

establish the desired diameter.  Once diameter is established, the boule is slowly and 

controllably withdrawn such that molten silicon solidifies with the desired orientation and 

a large crystal is built up or “pulled”.  During the growth process, both the boule and the 

crucible are rotated to enhance uniformity.  Of course, all of this requires very precise 

measurement and control of temperature and heat flux, which generally can be achieved 

for large diameter crystals only by sophisticated computer feedback and control.  

Typically, a CZ apparatus can hold many kilograms of molten silicon.  (This, of course, 

depends on the size of the wafers being produced and has greatly increased over the last 

forty years.)  The resulting boule is substantially free of crystal defects; however, it does 

contain oxygen contamination arising from the quartz crucible and carbon contamination 

from elsewhere (graphite shields, susceptor, etc.).  In contrast, in the FZ method, a solid 
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electronic grade polycrystalline silicon rod is recrystallized and then refined using a 

“needles eye” furnace.  Thus, the FZ method is essentially a classical zone refining 

technique.  It produces the highest purity silicon available; however FZ silicon is 

generally quite brittle.  Indeed, oxygen and carbon contamination in CZ silicon both 

enhances mechanical strength and allows for the application of internal gettering 

methods.  For these reasons, the vast majority of silicon wafers used in integrated circuit 

fabrication are manufactured using the CZ process. 

 

The Czochralski Process 

 

From the point of view of integrated circuit manufacturing, it is desirable for the 

starting silicon wafers not to be intrinsic, but rather to be uniformly doped with some 

shallow level impurity, i.e., B, P, As, Sb, etc.  Thus, as well as crystal orientation, 

background doping (hence, majority carrier type and resistivity) is generally specified 

when wafers are purchased.  Therefore, it is usual for the melt, hence, the grown ingot to 

be intentionally “contaminated” with a known quantity of shallow level dopant impurity.  

Therefore, control of dopant concentration and distribution during a CZ growth process is 

of fundamental importance. 

As an initial description of Czochralski growth, it is usual to assume rapid stirring 

conditions, which implies that any excess impurity that might exist in the immediate 

vicinity of the growth interface is quickly dispersed into the melt.  Consequently, such 

conditions imply that the melt is thoroughly mixed and, accordingly, concentration of any 

impurity is uniform throughout the melt, i.e., right up to the freezing interface.  

Physically, this corresponds to very slow growth of the crystal such that the rate that 

impurity is dispersed throughout the melt is large in comparison to the rate that impurity 

is incorporated into the freezing crystal.  Furthermore, one can safely assume that 

impurity diffusion within the solid crystal itself is unimportant since the diffusion 

coefficient of impurity in the liquid is many orders of magnitude larger than the 

corresponding solid diffusion coefficient.  The CZ growth process can be represented 

pictorially as follows: 

 

x=0

dx
Cs

Cl

 

Fig. 14: Schematic diagram of the Czochralski (CZ) process 
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The arrow denotes the pulling direction.  The dimension, x, is the length of crystal pulled 

from the melt, hence, the mass of crystal solidified, W, is just Ax, such that A is the cross 

sectional area of the ingot (assumed to be uniform) and  is the density of silicon.  

Naturally, Cl is the volume concentration of solute, i.e., dopant impurity, atoms in the 

melt and Cs is the volume concentration of solute atoms in the solid crystal.  Clearly, at 

any given point during crystal growth and under the assumption of rapid stirring, Cl is 

uniform throughout the melt; however, Cs is a function of the position along the boule, 

i.e., a function of x.  Accordingly, if S is defined as the total number of solute atoms 

within the melt, then the differential number of solute atoms lost from the melt due to 

freezing a differential length of crystal is: 
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Here, the negative sign is formally included to indicate that atoms are lost from the melt 

to the growing crystal.  Clearly, for a differential change in the length of the boule, i.e., 

differential pull distance, dx, a corresponding differential mass of solid, dW, is added to 

the crystal.  Obviously, these differential quantities are related simply as follows: 

 

AdxdW   
 

At an arbitrary point in the crystal growth for which a crystal of length, x, and mass, W, 

has been solidified, the mass of the remaining melt is just the difference, WoW, such that 

Wo is the initial mass of the melt before any crystal has been solidified, i.e., pulled.  Thus, 

it follows that the concentration of solute in the melt is given by: 
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One formally solves this expression for S and combines it with the differential expression 

to obtain: 
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This is a differential expression that relates the concentration of impurity atoms in the 

melt to the mass of the crystal at any stage during the growth process. 

At this point, one might naively assume that the concentrations of impurity in the 

melt and in the solid are exactly equal; however, this is not the case.  At a definite 

temperature such situations are described by a thermodynamic distribution equilibrium 

characterized by a constant coefficient, K, which is formally defined in the present case 

as the concentration ratio, Cs/Cl.  In physical terms, one can regard this equilibrium as 

consequence of the fact that impurity atoms do not “fit” into the crystalline silicon lattice 
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as well as silicon atoms.  Therefore, one expects that impurity atoms will be incorporated 

into the freezing solid at a lower intrinsic rate than are silicon atoms themselves and, 

thus, impurity atoms will tend to be “rejected” back into the melt.  Accordingly, K can be 

expected to be generally less than one.  As is established by experimental observations 

and shown in the following table, this is generally found to be the case: 

 

Dopant K 

B 0.72 

P 0.32 

As 0.27 

Sb 0.020 

Ga 0.0072 

Al 0.0018 

In 0.00036 

Table 1: Distribution Coefficients for shallow level impurities in silicon 

 

Therefore, the preceding expression takes the form: 
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This expression is readily integrated directly as follows: 
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As with other parameters, So is defined as the initial number of solute atoms in the melt, 

which, of course, is determined by the simple formula: 
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Here, Co is just the initial impurity concentration in the melt.  For convenience, the 

integration variable W  is formally replaced with a new variable, w, defined as WoW , 

hence: 
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Clearly, the indicated integration is elementary, thus: 
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Moreover, it follows immediately from the elementary properties of logarithms that: 
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Obviously, one inverts the logarithm on each side to obtain: 
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This is more conveniently expressed in terms of initial melt weight and impurity 

concentration, which are generally known before crystal growth starts, hence: 
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Furthermore, S has been previously related to melt concentration, Cl: 
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Therefore, it immediately follows that: 
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Of course, it is concentration of dopant in the solid crystal that is really of interest, but 

this is trivially obtained from the distribution equilibrium: 
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Thus, the impurity concentration in the solid and the melt is determined at all stages of 

crystal growth under rapid stirring conditions.  This expression may be recast as a 

function of ingot length as follows: 
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Physically, this equation describes variation of impurity concentration along the length of 

a CZ grown ingot under rapid stirring conditions.  Clearly, at the “seed end”, i.e., x0, of 

the boule, impurity concentration just corresponds to the simple distribution equilibrium.  

However, as the growth process proceeds, impurity is rejected from the growing crystal, 

and the concentration of the melt increases.  This causes the concentration of impurity to 

increase in the boule as a function of distance from the seed end.  This is shown in the 

following figure for several values of K (the individual curves are labeled by the 

corresponding value of K): 
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Fig. 15: Doping profile of a CZ crystal assuming rapid stirring 

 

By definition, the seed end of the boule corresponds to a length fraction of zero.  In 

contrast, the “butt end” is opposite of the seed end (i.e., a length fraction nearly unity) 

and contains the last material solidified.  Of course, dopant concentration ratio as 

indicated in the figure is just Cs/Co.  Clearly, the closer that K is to unity, the more 

uniform the doping profile obtained. 

As might be expected, for realistic values of mixing, growth, and transport rates, the 

rejection rate of impurity at the growing crystal interface exceeds the rate at which 

impurities can be transported back into the bulk of the melt.  Hence, the rapid stirring 

condition is not satisfied and breaks down.  Consequently, in the vicinity of the growth 

interface impurity concentration builds up above the value observed in the bulk melt.  

Accordingly, this causes the crystal to be doped more heavily than would be expected 
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under rapid stirring conditions.  This behavior can be understood by assuming that a 

stagnant boundary layer of thickness, , exists between the solid/melt interface and the 

bulk of the melt.  Therefore, if D represents the impurity diffusion coefficient within the 

melt and if R is the “instantaneous” pull rate, i.e., dx/dt, then assuming nearly steady-

state conditions, the impurity concentration in the stagnant region near the growth 

interface may be described by the expression: 
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Here, C is local solute concentration within the melt and x is distance from the growth 

interface.  Clearly, C must converge to the uniform concentration, Cl, if x becomes 

large.  Physically, the first term in the preceding expression accounts for diffusion of 

impurity atoms away from the growth interface back into the melt, and is a direct 

consequence of Fick’s Second Law.  Likewise, the second term accounts for removal of 

impurity from the melt due to freezing.  Mathematically, this term has the appearance of 

a “net drift” due to some external “potential”, but instead physically describes net motion 

of material due to pulling the crystal.  Indeed, there must indeed be a net motion of 

impurity atoms with respect to the growth interface simply due to solidification, i.e., in 

principle, all impurity atoms eventually must “pass through” the growth interface.  This 

amounts to an overall relative motion of impurity atoms that can be regarded equivalently 

as being due to movement of the growth interface with respect to a stationary melt, or to 

movement of the melt with respect to a stationary growth interface, or as some 

combination of the two.  (Terms describing convective flow of the melt are absent since 

the boundary layer is assumed to be stagnant.)  Naturally, under conditions of nearly 

steady state, diffusion and freezing terms must effectively balance each other.  For 

simplicity, C is identified with the derivative, dC/dx, thus, the preceding equation 

becomes: 
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Clearly, this expression can be trivially integrated; however, instead of a definite integral 

it is convenient to construct an indefinite form as follows: 
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Here, 0C  and 

C  are defined, respectively, as solute concentration gradients at the 

growth interface (x0) and far away from the growth interface (x).  Naturally, 

numerical values of 0C  and 

C  correspond to imposition of suitable boundary 

conditions.  Accordingly, as asserted previously, far away from the growth interface 

concentration of dopant impurity can be expected to be uniform, which implies that 

C  

vanishes.  Thus, the preceding formula can be further simplified: 
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To determine 0C  diffusion and rejection fluxes of impurity atoms at the growth interface 

are assumed to be equal.  Of course, this is consistent with the original differential 

equation describing the effects of diffusion and freezing in the stagnant boundary layer, 

and implies that the solute concentration profile across the growth interface and boundary 

layer remains essentially in a steady state (or at least only very slowly varying one).  

Thus, for a unit area of growth interface, one can write: 

 

 )(0 sl CCRCD 
 

 

Clearly, the term on the left just comes from Fick’s First Law, which relates diffusion 

flux linearly to concentration gradient.  Obviously, the number of impurity atoms per unit 

volume rejected back into the melt must just be the difference of impurity concentrations 

in the melt and in the solid exactly at the growth interface.  (By definition, Cl
 is the 

impurity concentration exactly at the growth interface.)  Therefore, the term on the right 

is the rejection flux and is just the product of the interfacial concentration difference and 

the instantaneous pull rate, R; hence, it follows that: 
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It is a simple matter to integrate this expression across the entire boundary layer to obtain 

the expression: 
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Here, the solute concentration at the boundary layer edge, i.e., x, has been assumed 

to be the uniform bulk concentration, Cl.  Of course, this condition is not strictly realized 

unless x; however, it is reasonable to assume that  is sufficiently large so that the 

concentration for x is only negligibly different from Cl.  This expression is easily 

rearranged into a more convenient form: 
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At this point, one redefines the ratio, ls CC / , as an effective segregation coefficient, Ke, 

since an enriched boundary layer lies between the bulk and the growth interface.  (Of 

course, the ratio, ls CC / , must equal the actual segregation coefficient, K, since Cl
 is 

defined as the concentration at the actual growth interface.)  Therefore, the preceding 

expression becomes: 
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Obviously, one solves for Ke as follows: 
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Upon formally taking the reciprocal the desired expression is obtained, thus: 
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This result is applied to an actual CZ growth process by just substituting Ke into 

expressions obtained previously for rapid stirring conditions.  The parameter, R/D, is 

called normalized growth parameter and in practice is determined empirically for a given 

crystal growing apparatus.  Clearly, if the normalized growth parameter is made 

sufficiently large (for example, by increasing the pull rate), then Ke tends toward unity, 

and this will result in a more uniform distribution of dopant along the length of the boule.  

Conversely, if the pull rate and, therefore, the normalized growth parameter becomes 

small, then Ke tends toward K.  Obviously, this just corresponds to a return to rapid 

stirring conditions. 

Both D and R can be adjusted by a judicious choice of process conditions, e.g., 

temperature and pull rate.  What about ?  It turns out that  is a function of the rotation 

rate of the boule for which an empirical relationship has been determined experimentally: 

 
2161318.1  D  

 

Here,  is the viscosity of the melt and  is rotation rate.  The pull rate, R, is closely 

related to the actual growth rate of the crystal, however, the instantaneous growth rate 

may differ from R because of thermal fluctuations, supercooling, etc.  Indeed, if the pull 

rate is relatively small, the instantaneous growth rate may become negative (this is called 

re-melting).  This can adversely affect both defect structure and doping distribution on a 

microscopic scale.  In particular, if re-melting is not strongly suppressed by the use of a 

sufficiently large pull rate, the crystal may exhibit defect “swirl patterns” and dopant 

striations.  Moreover, convective transport within the melt may also redistribute 

impurities non-uniformly.  This is especially significant in the case of oxygen which is 

dissolved from the quartz crucible at the melt periphery.  Indeed, because of these kinds 

of variations it is difficult to produce large diameter, lightly doped CZ wafers, i.e., with a 

resistivity exceeding 100  cm.  Recently, immersion of the crucible during crystal 

growth in a strong magnetic field (the magnetic Czochralski or MCZ process) has been 
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found to allow control of convective transport, which improves uniformity of large 

diameter crystals (>300 mm).  As wafer sizes increase this may be expected to become an 

industry standard.  Additionally, if the pull rate is low, the solidified crystal may be held 

for quite a long time above 950C.  This may allow sufficient time for thermally 

generated “microdefects” to form.  The formation of such microdefects is effectively 

quenched if the pull rate exceeds a rate of roughly 2 mm/min. 

Clearly, the normalized growth parameter and, hence, the effective segregation 

coefficient can be modified by changing rotation and pull rates during crystal growth.  

Indeed, it is common commercial practice to program growth parameters so as to obtain a 

uniform impurity concentration over a large fraction of an ingot.  Accordingly, crystal 

growth proceeds in distinct phases:  First, during an initial growth phase, as asserted 

previously, crystal diameter is built up to the desired dimension.  Next, programmed pull 

and rotation rates are applied.  This results in a crystal of constant impurity concentration 

over a large fraction of its length.  Of course, at some point the melt is substantially 

exhausted and it becomes impossible to sustain a uniform composition.  This defines a 

third growth phase during which the crystal is rapidly pulled out of the melt. 

 

Zone Refining 

 

As noted at the outset, in CZ growth there can be considerable carbon and oxygen 

contamination that comes from the quartz and graphite components of the process 

equipment.  In general, this contamination causes no problem and perhaps may be 

beneficial since, as observed previously, ultrapure silicon is actually mechanically more 

fragile than ordinary CZ silicon and, also, as will be made evident subsequently, oxygen 

contamination may be used to good effect to set up an internal gettering scheme.  

However, there are some cases for which ultrahigh purity is desired, viz., 1-10 K cm).  

This material is most conveniently fabricated by zone refining.  Again, to reiterate, within 

the industry substrates fabricated this way are called float zone (FZ) wafers. 

To understand zone refining, suppose that just as in CZ growth, some impurity 

dissolved in molten silicon is in equilibrium with solid crystal.  Once again, the 

distribution (or segregation) coefficient, K, is defined: 
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Of course, Cs is the impurity concentration within the solid and Cl is the impurity 

concentration in the liquid.  Moreover, again, just as for Czochralski growth it is possible 

to maintain the system in a steady state, but not in rigorous thermal equilibrium, such that 

an effective distribution coefficient, Ke, is applicable instead of absolute distribution 

coefficient, K. 

In practice, the basic technique of zone refining is to pass a solid piece of material, 

e.g., an ingot of silicon, through a circular heating element, viz., “needles eye”.  This 

creates a molten zone that slowly moves from one end of the ingot to the other.  (Of 

course, migration of the molten zone along the ingot can be accomplished either by 

moving the ingot through a fixed heating element or by moving the heating element 

holding the ingot in a fixed position.)  In any case, as the molten zone migrates and as a 
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consequence of the distribution equilibrium, impurities are collected in the molten 

material and “swept” preferentially to one end of the ingot.  Consequently, the rate that 

the molten zone passes through the ingot is analogous to the pull rate in the Czochralski 

process.  Thus, the effective distribution coefficient should be essentially determined by 

the zone migration rate.  Within this context, one expects that Ke should be significantly 

larger than K (or even, perhaps, approach unity) if the molten zone is moved very rapidly 

through the ingot and, in contrast, should approach or essentially equal K if the molten 

zone is moved very slowly.  For clarity, it is instructive to consider a single pass zone 

refining process, which may be represented pictorially as follows: 
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Fig. 16: Schematic diagram of the Float Zone (FZ) process 

 

Here, L is the length of the molten zone, Cs is redefined as the impurity concentration in 

the refined section of the ingot, and Co is the impurity concentration in the unrefined 

section.  The variable, x, represents linear distance along the ingot (with the zone refining 

process initiated conventionally at x0).  If S is the number of impurity atoms in the 

molten zone and A is the cross sectional area of the ingot, then the differential change in S 

as the molten zone passes through the ingot is given by: 

 

dS C Adx C Adxo s   
 

This equation is just a formal expression of the difference in the rate that impurity atoms 

are added to the molten zone due to melting of unrefined material to the rate that they are 

lost to the melt at the freezing interface.  Clearly, the impurity concentration in the liquid, 

Cl, is just S/AL.  Hence, if one assumes that the distribution of impurity at the freezing 

interface is governed by the effective distribution coefficient, Ke, then it follows that: 
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(Obviously, the term, CoA, is proportional to the rate that impurity atoms enter the liquid 

at the melting interface and, likewise, KeS/L is proportional to the rate that impurity 

atoms are removed from the melt at the freezing interface.)  If one assumes that the initial 

impurity concentration, Co, is uniform throughout the unrefined section of the ingot, then, 
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this differential equation is easily integrated by means of an exponential integrating 

factor.  Accordingly, if one defines a new solute parameter, Q, as Sexp(Ke/L), then one 

obtains: 
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Therefore, it follows trivially that: 
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Recasting this expression in terms of S yields the result: 
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The boundary condition for )0(S  must just be CoAL since melting an unrefined portion of 

the ingot of volume AL forms the initial molten zone.  Upon substitution, one obtains: 
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If one uses the definition of Cl and the distribution equilibrium, it follows that: 
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This expression describes the concentration of initially uniformly distributed impurity 

after single pass zone refining. 

Further purification can be achieved by additional zone refining.  The equation 

describing the process is just the same as before, however, the initial impurity 

concentration is no longer uniform; hence, the original differential equation must be 

modified as follows: 
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Here, C xo( )  is an arbitrary (i.e., non-uniform) initial impurity distribution.  Again, this 

expression is recast in terms of Q: 
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Therefore, one obtains: 
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Naturally, this differential equation is easily integrated formally to give: 
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Following the result for constant Co, one identifies )0(Q  as )0(oC AL and recasts this 

expression in terms of S: 
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It immediately follows from the distribution equilibrium at the freezing interface that the 

solute concentration in the refined ingot is given by the expression: 
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Of course, to determine )(xCs  numerically, prior knowledge of C xo( )  is required.  

Naturally, C xo( )  may be the result of a previous zone refining pass or may be a “grown-

in” distribution due to a particular set of process parameters for a CZ growth process. 

Within this context, if one substitutes the concentration profile obtained previously 

for single pass zone refining of an initially uniform ingot into the preceding expression, 

one obtains: 
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Here, )(xCs  is evidently the concentration profile of the ingot following two zone 

refining passes.  Clearly, the integrals are all of elementary form and can be constructed 

explicitly to give the result: 
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Of course, Co retains the usual definition as initial uniform impurity concentration in the 

ingot.  Naturally, one can compare this expression for two passes to the single pass result 
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and also to the initial uniform impurity concentration.  Clearly, at the starting, i.e., seed, 

end of the ingot, the impurity concentration was, of course, just Co prior to zone refining.  

After a single pass, this is reduced to KeCo.  After two passes this is further reduced to 
2

eK Co.  Clearly, since Ke is smaller than one, this shows that the seed end of the ingot is 

progressively purified.  Concentration profiles for one and two zone refining passes with 

various effective distribution coefficients are shown in the following figure: 
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Fig. 17: Doping profile of an FZ crystal following one (narrow line)  

and two (wide line) zone refining passes 

 

Of course, the dopant concentration ratio is, again, just Cs/Co.  The horizontal axis is the 

number of zone lengths refined.  (Hence, by definition, the seed end of the ingot 

corresponds to zero zone lengths.)  One observes that in contrast to the Czochralski 

process for which an effective distribution coefficient near unity is desired, in zone 

refining better results are obtained the smaller the value of Ke.  (Of course, Ke can never 

become smaller than K itself.)  Clearly, this implies that a slow rate of migration of the 

molten zone through the ingot is desirable. 

Physically, zone refining literally sweeps impurity atoms toward one end of the ingot, 

i.e., the end toward which the molten zone moves.  Since, no impurity is physically 

removed from the ingot this end actually becomes more impure.  However, zone refining 

process parameters can be set up in such a way that the impure end is a reasonably small 

part of the total volume of the ingot.  Clearly, if zone refining is repeated many times, the 

bulk of an ingot can be refined to ultrahigh purity and the impure end can simply be 
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removed resulting in a large amount of highly refined material.  Of particular importance 

is the production of wafers with low oxygen content since these cannot be produced using 

the CZ process.  Of course, zone refining does not leave impurity uniformly distributed.  

If this is a requirement, then once the impure end has been removed, the ingot can be heat 

treated to redistribute impurity more uniformly.  To reiterate, the main advantage of the 

float-zone process is the very low impurity concentration in the silicon crystal.  In 

particular the oxygen and carbon concentrations are much lower as compared to the CZ 

process, since the melt does not come into contact with a quartz crucible, and no hot 

graphite container is used.  As a practical matter, FZ ingots are produced from an initial 

polycrystalline silicon ingot, which is seeded with a crystal of desired orientation at the 

start of the process.  Alternatively, a monocrystalline ingot can be further purified by 

zone refining.  Even so, the FZ process is more expensive than then CZ process, and, at 

present, crystal diameter is limited to 200 mm. 



 47 

Intrinsic Defects in Semiconductors 
 

In all previous consideration of crystal structure and crystal growth, for simplicity it 

has been assumed that the silicon crystal lattice is entirely free of defects.  Of course, in 

reality, this cannot be true since at any temperature greater than absolute zero, no crystal 

of finite size can be absolutely perfect.  Indeed, there are a number of different types of 

defects that can exist within the crystal lattice of any pure material.  In general, such 

intrinsic lattice defects can be broadly classified in terms of dimensionality, viz., point, 

line, plane, and spatial or volume defects.  Moreover, any foreign species present within 

the crystal lattice may obviously also be regarded as a kind of defect.  As a matter of 

semantic terminology, such impurities are to be regarded as extrinsic lattice defects; 

however, as will become evident subsequently, these may actually initiate the appearance 

of intrinsic defects.  In any case, it is useful to limit discussion (at least temporarily) to 

the various types of intrinsic defects, i.e., defects that do not require the presence of 

foreign atoms. 

 

Point Defects 

 

Naturally, point defects are the simplest kinds of defects that can exist within a crystal 

lattice of which the most elementary example is a vacancy (also called a Schottky defect).  

As a conceptual matter, a vacancy can be regarded as the result of a hypothetical process 

in which an atom is removed from a lattice site within the bulk of the crystal and 

transferred to the crystal surface.  (Within this context, the term “lattice site” refers to an 

actual atomic site within the crystal and, therefore, is not the generally the same as a 

lattice point associated with the corresponding Bravais lattice.)  As might be expected, 

formation of a vacancy requires a net energy input into the silicon lattice, which is 

approximately 2.3 eV.  Physically, this energy corresponds to breaking bonds within the 

bulk and reforming bonds on the surface.  In addition, a small portion is associated with 

reorganization or restructuring of the lattice.  That the energy is positive is to be expected 

since binding energy of an atom within the bulk is greater in magnitude (i.e., more 

negative) than that of an atom on the surface.  Of course, 2.3 eV is large compared to the 

mean thermal energy at room temperature; hence, at 300K normal thermal fluctuations 

can produce only a very small concentration of vacancies within an ordinary silicon 

crystal. 

A second type of intrinsic point defect is a self-interstitial.  This kind of defect can be 

thought of as the “inverse” of a vacancy for which an atom of the crystal is hypothetically 

transferred from the surface into the interior.  However, since no unoccupied lattice site is 

generally available at some arbitrary location within the crystal lattice, the excess atom 

must “squeeze” into an interstitial site existing within the lattice.  Typically, within a 

close packed solid, interstitial sites are small and formation of an interstitial defect 

requires an even larger energy input than formation of a vacancy.  Obviously, this implies 

that self-interstitial defects (or just interstitials) should be very rare within such materials 

(as is, indeed, the case).  In contrast, silicon is characterized by the relatively open 

diamond cubic structure, for which there are five interstitial sites per unit cell.  Moreover, 

these are reasonably large; hence, in silicon, formation energy of a self-interstitial is 
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commensurate to that of a vacancy.  Formation of both a vacancy and self-interstitial is 

illustrated pictorially as follows: 

 

              

(a)                                                                                      (b) 

Fig. 18: Intrinsic point defect formation: (a) vacancy; (b) interstitial 

 

For clarity, the locations of interstitial sites within the diamond cubic structure are shown 

in the following figure: 

 
Fig. 19: Interstitial sites in the diamond cubic structure 

 

Naturally, a vacancy and interstitial can form simultaneously if an atom is displaced from 

a lattice site into a nearby interstitial site.  Since, the newly formed interstitial and 

vacancy are in close proximity, the strain introduced into the lattice is less than in the 

case of isolated vacancies and interstitials.  Hence, the formation energy of a vacancy-

interstitial pair is reduced in comparison to the total formation energy required to produce 

an isolated vacancy and isolated interstitial.  Accordingly, an associated vacancy-

interstitial pair is regarded as a particular type of defect and; hence, is called a Frenkel 

defect. 
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In passing, instructive analogies can be made with other dynamic equilibria.  In 

particular, vacancies and interstitials can be considered in a generalized sense as 

“solutes” in a “solution” for which the solid silicon lattice is regarded as “solvent”.  

Furthermore, once formed, in analogy to ordinary solutes in aqueous solutions, vacancies 

and interstitials do not remain stationary, but, can migrate, i.e., diffuse, due to random 

thermal motion within the “solvent medium”, i.e., the crystal lattice.  In addition, thermal 

generation of vacancies and interstitials, i.e., Frenkel defects, can be expected to be 

governed by a mass action equilibrium analogous to the mobile carrier equilibrium or the 

autodissociation equilibrium of water (which defines the well-known pH scale).  In this 

sense, vacancies and interstitials have a relationship to an undefected silicon crystal that 

is analogous to the relationship of hydroxide and hydronium ions to pure water.  

Therefore, one expects that vacancies and interstitials must satisfy an equilibrium 

expression of the form: 

 

eqKIV ]][[  

 

Here, the left hand side is the product of vacancy and interstitial concentrations (denoted 

as [V ] and [I ], respectively).  Of course, Keq is a thermodynamic equilibrium constant 

and, as such, depends on temperature.  This process can be represented schematically as a 

kind of “chemical” equilibrium: 

 

            





            

Fig. 20: Vacancy-interstitial “chemical” equilibrium 

 

Clearly, the figure on the left represents an undefected lattice.  The figure on the right 

represents “dissociation” of the lattice into a vacancy and an interstitial.  It is further 

worthwhile to observe that vacancies and interstitials strongly interact and can also 

recombine, resulting in a significant release of energy.  (Physically, one can regard a 

vacancy and an interstitial as exerting an attractive force toward each other.) 

Of course, various other combinations of point defects can also occur.  For example, 

the formation of a single vacancy requires the breakage of four crystal bonds, but the 

formation of a di-vacancy requires the breakage of only six bonds and not eight.  

Consequently, the formation of a di-vacancy requires less energy per defect than the 

formation of an isolated vacancy.  (This is similar to the formation of a Frenkel defect.)  

It turns out that di-vacancies are commonly present within a silicon lattice.  Conversely, 

di-interstitials, i.e., atoms in adjacent interstitial sites, are formed with difficulty (if at all) 

since this requires introduction of a large amount of strain energy into the silicon lattice.  
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Within the present context, a di-vacancy could be viewed as a “bound state” of two 

vacancies.  Thus, similar to a vacancy-interstitial pair, self-interaction of two vacancies 

can be considered to be the result of an attractive force (though weaker than the attraction 

between vacancies and interstitials).  Conversely, consistent with the high lattice strain 

energy associated with the formation of di-interstitial defects, one expects interstitials to 

exert a mutually repulsive force. 

 

Line Defects 

 

A line defect is called a dislocation.  In general, two ideal types of dislocations exist, 

viz., edge and screw.  Ideal edge and screw dislocations are illustrated by the following 

figure: 

 

 

(a)                                                                                         (b) 

Fig. 21: Ideal (a) edge dislocation; (b) screw dislocation 

 

Of these two types, edge dislocations are the easiest to visualize and, conceptually, an 

ideal edge dislocation can be considered as the result of hypothetical insertion of an 

extraneous “half-plane” of atoms along one of the crystallographic directions into an 

otherwise non-defective crystal lattice.  By definition, the edge of the inserted half-plane 

corresponds to the dislocation line or axis.  (In the (a) figure above, the dislocation axis 

associated with an edge dislocation lies along line segment AD.)  Clearly, the crystal 

lattice must be disrupted in close proximity to the dislocation; however, far from the 

dislocation the crystal lattice remains relatively “perfect”.  Obviously, there must also be 

a localized increase in strain energy corresponding to the existence of a dislocation within 

the crystal lattice.  Concomitantly, an ideal screw dislocation is more difficult to 

visualize, but is formed if the crystal is “sheared” parallel to the axis of the dislocation.  

For a pure screw dislocation, no extraneous plane of atoms is required; however atomic 
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planes within the lattice are displaced into an arrangement resembling a “spiral staircase”.   

Again, the corresponding disruption of the crystal structure in proximity to the 

dislocation axis results in a local increase in crystal strain energy. (In the (b) figure, the 

line segment AD again coincides with the dislocation axis of an ideal screw dislocation.)  

Of course, the presence of defects of any dimensionality within an otherwise perfect 

crystal lattice can be expected to be associated with a localized increase in potential, i.e., 

strain, energy.  This is easily understood if one recalls that binding energy is maximized 

within a perfect, undefected lattice.  Since potential energy of any bound state is by 

definition, a negative quantity, any localized weakening of crystal bonding must 

correspond to a localized increase in potential energy.  Therefore, it is obvious that any 

disturbance in crystal bonding can be expected to be fundamentally associated with the 

presence of defects.  Therefore, it is not surprising that under the influence of an 

externally applied stress, dislocations of both types can move with relative ease along a 

corresponding slip plane.  (In the case of point defects, such motion corresponds to stress 

enhanced diffusion.)  Generally, the dislocation axis lies in the slip plane.  (Obviously, 

the planar section EFGH in the preceding (a) figure coincides with a slip plane.)  

Moreover, although the dislocation moves, the atoms themselves do not move 

significantly.  Indeed, all that is necessary for a dislocation to move is a localized 

rearrangement in crystal bonding. 

Line defects, i.e., dislocations, can also interact with point defects naturally present 

within the lattice.  This is most easily understood for the simple case of a pure edge 

dislocation.  Suppose that due to the random thermal motion of the lattice, a vacancy 

migrates to the dislocation axis.  Clearly, this is equivalent to the removal of an atom 

from the edge of the extraneous half-plane that defines the dislocation axis.  This process 

is called vacancy capture.  Of course, in this case the atom lost from the half-plane ends 

up in a nearby lattice site.  Conversely, suppose that an atom migrates away from the 

dislocation axis to form an interstitial.  Again, this is equivalent to removal of an atom 

from the extraneous half plane, but in this case, an interstitial defect has been formed.  

Not surprisingly, this process is called interstitial generation.  Accordingly, both 

processes, i.e., interstitial generation or vacancy capture, cause the dislocation axis to 

“climb” out of its associated slip plane.  Clearly, these processes are essentially identical 

to formation of vacancy-interstitial pairs (Frenkel defects) or recombination of a vacancy 

and an interstitial; however, here they occur in close proximity to a dislocation.  

Obviously, one expects that rates and, perhaps other characteristics of these processes 

will be substantially affected by localized strain energy associated with the dislocation. 

Dislocations can be characterized quantitatively in terms of the Burgers vector, b.  To 

define b, one first considers a path taken within the crystal that, by definition, would 

return exactly to its starting point if no line defects are present, viz., Burgers circuit.  

Clearly, the path is closed and its length corresponds to some integral number of lattice 

parameters.  If instead of a perfect crystal, the Burgers circuit encloses the axis of a 

dislocation, it is no longer closed and the starting and ending points are now separated by 

a small displacement.  This displacement determines the Burgers vector.  (In the diagram 

of a pure screw dislocation appearing previously, the length of the Burgers vector is 

represented by the parameter, b.)  Edge and screw dislocations are characterized by the 

orientation of the Burgers vector with respect to the dislocation axis.  Clearly, for a pure 

screw dislocation, b is parallel to the dislocation axis.  In contrast for a pure edge 
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dislocation b is perpendicular to the dislocation axis.  Of course, in real crystals the 

situation is rarely ideal and dislocations occur in loops and tangles and, thus, are 

generally not perfectly straight lines.  Accordingly, they are neither purely edge or screw, 

but are of “mixed” character.  Indeed, if one “follows” a dislocation through a crystal, it 

can appear as edge or screw or some intermediate mixture at different locations.  

Therefore, for a real dislocation in a real crystal, b and its orientation with respect to the 

dislocation axis varies from point to point. 

 

Plane Defects 

 

As asserted within the context of line defects, within a crystalline solid dislocations 

generally form closed dislocation loops.  (Clearly, an unclosed dislocation must terminate 

somewhere on the surface of the crystal.)  Of course, by definition, an edge dislocation 

corresponds to the edge of a partial atomic plane.  Thus, if an edge dislocation forms a 

closed loop, there must be a corresponding partial atomic plane either present or absent 

within the crystal lattice.  In this way a pure edge dislocation loop defines the boundary 

of an ideal planar defect called a stacking fault.  If the dislocation loop corresponds to the 

absence of part of an atomic plane, the corresponding stacking fault is said to be intrinsic.  

Conversely, an extrinsic stacking fault is formed if a partial atomic plane is inserted into 

the crystal.  Intrinsic and extrinsic stacking faults are illustrated pictorially by the 

following figures: 

 

                           

(a)                                                                                                (b) 

Fig. 22: Ideal (a) intrinsic stacking fault; (b) extrinsic stacking fault 
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Naturally, just as for dislocations, real stacking faults can be expected to be more 

complicated than just these idealized types. 

A third kind of ideal planar defect is a twin or growth fault.  This fault occurs if the 

stacking order of crystalline layers is inverted symmetrically with respect to some plane 

within the crystal.  Thus, a twin fault is not bounded by a dislocation loop.  In particular, 

for a diamond cubic lattice, twins are formed by reversal of the atomic stacking order 

about a [111] plane.  Moreover, one observes that if a twin fault extends through the 

entire body of an otherwise perfect crystalline solid, it is more natural to regard the whole 

solid as consisting of two separate perfect crystals joined at the twin plane.  Indeed, if 

twin faults are present to any great degree, one expects the regularity of the overall 

“crystal” to be severely disrupted.  In this case, such material is more properly regarded 

as a polycrystalline solid with individual crystalline regions separated by disordered 

regions called grain boundaries.  In practice, twin faults should never be present in 

substrates used for semiconductor device fabrication. 

 

Spatial Defects 

 

Obviously, spatial (or volume or bulk) defects can be formed by concentration of 

defects of lower dimensionality.  For example, vacancies can coalesce to form bulk voids.  

Growth and stacking faults can concentrate to form grain boundaries.  (In this case, the 

single crystal character of the lattice is disrupted and the material, thus, becomes 

polycrystalline.)  Indeed, defect density may become so large that all crystal structure is 

effectively lost and the material is essentially amorphous, i.e., without any long-range 

order.  Indeed, from the point of view of processing, any significant quantity of 

dislocations, stacking faults, or bulk defects in electrically active surface layers of a wafer 

generally cause poor device performance and low yield.  Accordingly, such defects are 

technologically unacceptable and, usually, are not present in the starting material, but 

may be caused by subsequent process conditions during device fabrication, e.g., thermal 

shock, mechanical damage, etc.  (Some of the causes of these kinds of defects will be 

considered subsequently in connection with ion implantation, etc.)  In any case, spatial 

defects need not be considered further since they are catastrophic to device performance 

and must be rigorously eliminated from any practical fabrication process. 
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Thermodynamics of Intrinsic Point Defects 
 

As asserted previously, formation of intrinsic point defects within a silicon lattice is 

generally caused by random thermal motion of the atoms within the lattice itself.  At 

room temperature, thermal energy is small in comparison to the binding energy of the 

lattice, thus, very few defects are formed; however, this number is not zero, therefore, 

spontaneous defect generation can be described by thermodynamics.  Moreover, before 

proceeding further, it is important to define some basic thermodynamic terms.  In 

particular, there are four classical thermodynamic state functions.  These are the potential 

energies, E, internal energy, and, H, enthalpy, and free energies, A and G, called 

Helmholtz and Gibbs free energies, respectively.  As a matter of generality, E and A are 

applicable to thermodynamic systems for which volume is constant.  Likewise, H and G 

are applicable to thermodynamic systems for which pressure is constant.  For systems 

including only condensed phases, e.g., crystalline solids, this distinction is irrelevant and 

E and H can be considered identical as also can A and G.  Therefore, when considering 

the behavior of crystalline solids, one can refer to potential or internal energy and free 

energy without ambiguity.  In addition to E, H, G, and A, two additional thermodynamic 

quantities are important.  These are absolute or thermodynamic temperature, T, and 

entropy, S.  Temperature is, of course, a familiar concept, however entropy is much less 

familiar.  Within a broad context, entropy is a measure of disorder or randomness 

characteristic of a physical system.  For example, entropy increases during melting of a 

solid material even though temperature remains constant. 

How does one determine these quantities for a crystalline material?  As might be 

expected, internal energy can be identified with the total binding energy of the crystal.  

However, the identity of free energy is not as obvious.  By definition, free energy is an 

amount of energy associated with a thermodynamic system which is available to “do 

work”, that is to say, to drive some physical process.  Physically, the product of 

temperature and entropy, TS, relates internal energy and free energy.  Specifically, TS 

must be subtracted from internal energy to obtain free energy. 

 

A E TS   
 

Thus, TS is identified as just that part of the internal energy which corresponds to random 

thermal motion and, therefore, is not externally available.  Furthermore, before 

continuing with a specific discussion of point defects, it is important to note that for most 

thermodynamic systems, absolute values of thermodynamic functions are not available.  

However, changes in thermodynamic functions relative to some reference state will serve 

just as well.  Therefore, instead of absolute values of E, H, G, A, and S, relative values 

denoted as E, H, G, A, and S, are used, thus: 

 

  A E T S   
 

This expression is readily applied to the generation of point defects within a silicon 

crystal.  (For a solid, a convenient thermodynamic reference state is a defect free crystal.) 

Beginning with consideration of vacancy generation, one defines N as the number of 

atomic lattice sites and M as the number of vacancies existing in some unit volume of the 
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crystal.  Clearly, N is easily determined by inspection of the diamond cubic crystal 

structure.  Therefore, it is desirable to specify M as a function of N and T.  Thus, if Ev is 

the energy of formation of a single vacancy (approximately 2.3 eV), then, considering a 

unit volume of crystal, the free energy change for the formation of M vacancies 

corresponds to the expression: 

 
  A M E T SMv v Mv   

 

Here, AMv is the free energy of formation of M vacancies and SMv is the associated 

entropy change.  Physically, the entropy change can be formally separated into two parts, 

SMv

C , “configurational” entropy and, SMv

X , “excess” entropy.  Configurational entropy 

arises from an increase in disorder associated with an introduction of M vacancies into a 

perfect crystal lattice.  To determine configurational entropy, one recalls Boltzmann’s 

famous relation that fundamentally defines entropy: 

 

WlnkS   
 

Here, entropy, S, in an absolute sense, is related to the natural logarithm of the number of 

equivalent, but distinguishable microscopic arrangements, W, associated with a particular 

physical system.  The constant of proportionality is Boltzmann’s constant, k.  (Indeed, it 

is Boltzmann’s relation that provides the fundamental definition of k.)  One observes 

from elementary probability theory that the number of possible distinguishable 

arrangements of M vacancies in N lattice sites, WMv, simply corresponds to the binomial 

coefficient: 

 

WMv

N
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Clearly, configurational entropy for a perfect crystal, i.e., a crystal with zero vacancies, 

vanishes since there is only one distinguishable arrangement, i.e., the one with every 

lattice site occupied.  Therefore, Boltzmann’s relation and the preceding formula can be 

combined to determine the configurational entropy change, SMv

C , as follows: 
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For simplicity, one can ignore excess entropy, SMv

X , which may be thought of as caused 

by change in the number available vibrational states of the crystal due to introduction of 

M vacancies.  (SMv

X  is generally small.)  Thus, the free energy change is given by: 

 
 A M E kT N kT M kT N MMv v    ln ! ln ! ln( )! 

 

This expression can be further modified using Stirling’s approximation for large 

factorials: 
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ln ! lnN N N N   
 

Hence, it follows that: 

 
 A M E NkT N MkT M N M kT N MMv v     ln ln ( ) ln( )  

 

Thus, the free energy of formation of M vacancies is a function of temperature, energy of 

formation of a single vacancy, number of lattice sites, and number of vacancies. 

Physically, for some definite temperature thermodynamic processes for which the 

free energy change is large and negative spontaneously occur.  Conversely, those for 

which the free energy change is large and positive are non-spontaneous and do not occur, 

i.e., the reverse process is spontaneous.  If the free energy change exactly vanishes, i.e., 

forward and reverse processes have the same tendency to occur, then the process is in a 

state of equilibrium.  Clearly, as expressed above, AMv corresponds to formation of M 

vacancies in a perfect crystal.  The number of vacancies will be stable, i.e., in 

equilibrium, if the free energy change is positive either for the formation of additional 

vacancies or the loss of existing vacancies.  This means that addition of one more 

vacancy or removal of a vacancy does not change free energy.  Mathematically, this 

implies that AMv is at an extremum; hence, one considers the partial derivative of AMv 

taken with respect to the number of vacancies, M: 

 


M
A E kT M kT N MMv v    ln ln( )

 
 

Clearly, the condition of equilibrium requires that the value of AMv is at a minimum with 

respect to M.  Thus, the derivative appearing on the left hand side above must vanish; 

hence one finds that: 
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Generally, M is small in comparison to N.  Therefore, one may replace NM with N and 

construct the exponential to obtain a final result: 
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As desired, this formula expresses the functional relationships for the number (or density) 

of vacancies in terms of N and T.  It has the form of a product of an exponential factor 

which contains the temperature dependence (i.e., a “Boltzmann factor”) and a “pre-

exponential” factor which is characteristic of the material (in this case, it is N, the number 

or density of atomic lattice sites).  For completeness, if the excess entropy term had been 

included as a “correction”, the preceding formula would be simply modified as follows: 
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It is commonly the case for thermally activated processes to be described by expressions 

of this form. 

Silicon self-interstitial defects can be treated analogously.  Thus, the free energy 

change for the formation of M interstitials is as follows: 

 

MiiMi STEMA 
 

 

Here, Ei is the formation energy of an interstitial.  Obviously, AMi is the free energy of 

formation of M interstitials and SMi is the associated entropy change.  Again, the entropy 

change can be divided into configurational and excess parts.  As expected, the 

configurational part is of the form: 
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However, to evaluate the configurational entropy change, one must consider the number 

of interstitial spaces per unit volume, N, rather than the number of lattice sites.  Of 

course, N and N are easily related by noting that there are eight lattice sites in a diamond 

cubic unit cell, but only five interstitial sites, thus: 
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Within this context, one can immediately write: 
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The analysis proceeds just as in the case of vacancies, hence: 
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Obviously, excess entropy can again be treated as a correction.  Naturally, the 

concentration of Frenkel defects can also be obtained by a similar analysis.  Of course, 

the formation energy, Ef, must be appropriate for Frenkel defects and a slight 

modification must be made to the entropy term; however, the result is essentially the 

same as obtained previously in the case of vacancies with Ef replacing Ev. 

Within this context, a vacancy-interstitial thermodynamic equilibrium constant, Keq, 

can be constructed directly from the preceding results: 
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The similarity between the vacancy-interstitial equilibrium and hole-electron equilibrium 

is evidently apparent.  Clearly, the energy required to create an isolated vacancy and an 

isolated interstitial is just Ev+Ei.  This is analogous to the band gap energy in the case 

of mobile carriers.  Furthermore, the product of lattice site density and interstitial site 

density, 5N 2/8, plays exactly the same role as the product of effective densities of states.  

As expected, Keq is a function of temperature, but not defect concentrations. 

To conclude consideration of point defects, one observes that the presence of a 

vacancy theoretically results in four unsatisfied bonds that normally bind an atom in the 

vacant lattice site to its immediate neighbors.  These “dangling” bonds can be viewed as 

half-filled sp3 orbitals which are able to accept (theoretically, at least) as many as four 

extra electrons from the normal valence band.  In this case, the vacancy becomes 

negatively charged leaving behind holes in the valence band.  Depending on the energy 

of these localized states relative to the band gap, a vacancy can act much like a dopant 

atom.  It is also possible for vacancies to donate electrons to the conduction band if the 

atomic configuration allows some or all of the dangling sp3 orbitals to overlap.  Indeed, 

since various atomic rearrangements can occur to reduce the energy of the vacancy, the 

situation can become quite complicated.  Suffice it to say that vacancies can become 

electrically active and act like acceptor, donor, or deep level states.  Furthermore, 

interstitial defects can also become electrically active since they also locally disturb the 

overall symmetry of the crystal.  Interstitials typically become positively charged and 

exhibit donor-like behavior.  (This behavior will be discussed in more detail in 

connection with diffusion mechanisms.) 
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Foreign Impurities 
 

So far, only intrinsic defects have been considered, which, by definition, are the only 

kind of defects that can exist in a pure silicon crystal.  However, if one allows for the 

existence of foreign impurity atoms within the crystal, other kinds of defects become 

possible.  Indeed, substitution of electrically active dopant impurity atoms into crystal 

lattice sites normally occupied by silicon can be thought of as a kind of crystal point 

defect.  Of course, such defects are desirable since they can be used intentionally to 

modify the electrical characteristics of the silicon crystal in an advantageous way.  

However, shallow level dopants, can also occupy interstitial sites, in which case, dopant 

atoms are no longer electrically active and, therefore, not beneficial.  (Indeed, it is 

important to reduce the interstitial concentration of dopants to be as small as possible.)  

Indeed, foreign atoms can occupy either lattice, i.e., substitutional, or interstitial sites, 

which with the exception of substitution of shallow level dopant atoms, generally has the 

undesirable effect of introducing electronic states near the middle of the band gap.  

Furthermore, in addition to point defects associated with impurities, foreign atoms can 

also agglomerate to form bulk defects called precipitates.  (Often precipitates will 

“decorate” other crystal defects such as dislocations or stacking faults.)  If such 

precipitates become large, they can disrupt the background crystal structure.  Again, this 

is generally catastrophic; however, in contrast for the case of oxygen, precipitates can 

actually be manipulated to beneficial effect by allowing an internal (or intrinsic) 

gettering scheme to be realized. 

 

Effects of Oxygen and Carbon 

 

As asserted previously, oxygen and carbon are normally occurring contaminants in 

silicon produced by the CZ method.  Indeed, oxygen is introduced into the silicon by 

dissolution of the quartz crucible itself.  Typical concentrations are in the range of 1017 to 

1018 cm3.  Furthermore, oxygen concentration can be enhanced by the presence of other 

impurities such as boron.  Typically, about 95% of all oxygen atoms occupy interstitial 

sites and, therefore, are truly dissolved in the crystal.  The remaining 5% exist as 

“complexes” such as SiO4.  Even so, interstitial oxygen is found to increase the yield 

strength of silicon.  This increase can be as much as 25% greater than pure silicon and 

significantly improves the mechanical characteristics of wafers.  Typically, the effect 

increases with oxygen concentration until the solid solubility limit is exceeded and 

oxygen precipitates are formed.  An additional effect of oxygen contamination is 

formation of donor states in the crystal.  This is thought to be caused by SiO4 complexes 

and or complexes formed with acceptor atoms.  Clearly, in the second case, the presence 

of oxygen doubly compensates the acceptor impurity by essentially converting it to a 

donor.  Of course, these effects must be closely controlled to maintain a stable resistivity. 

In contrast to oxygen, carbon atoms are generally substituted into silicon lattice sites.  

(This is expected since carbon is a Group IVB element.)  Carbon is neither electrically 

active, i.e., it does not act as either a donor or acceptor, nor does it tend to form 

precipitates as does oxygen.  Even so, its presence is generally undesirable because 

carbon tends to enhance precipitation of oxygen and formation of intrinsic point defects. 
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Internal Gettering 

 

Internal gettering is an important process technique that has found wide use in various 

fabrication processes.  In general, gettering methods are used to sequester harmful defects 

and impurities away from the electrically active areas of a device or circuit.  The 

terminology of gettering actually derives from the days of vacuum tube electronics when 

a chemically active material or getter, e.g., an alkali metal such as cesium or potassium, 

was placed inside the glass envelop before final evacuation and seal.  After sealing, the 

tube was heated to activate the getter, thus, removing residual oxygen and nitrogen gases 

from the interior atmosphere.  The situation for semiconductor electronics is similar 

except that instead of residual gases, it is desirable to remove metallic contaminants and 

associated defects.  (Metallic contamination, e.g., iron, nickel, chromium, etc., is 

particularly destructive to device performance.) 

It has long been known that a region of crystal damage captures contaminant atoms 

and defects.  This occurs because lattice energy must be increased in order to “fit” foreign 

contaminant atoms either into lattice or interstitial sites.  This additional energy is not 

required if pre-existing defects already disrupt the lattice.  Hence, in the course of thermal 

processing contaminant atoms diffuse and tend to be collected by defects.  Furthermore, 

defects themselves are not stationary, but also migrate during thermal processing.  In 

general, increases in lattice energy associated with isolated defects tend to be reduced if 

defects congregate into a damaged region.  To promote this process, it is useful to create 

a defected or damaged region intentionally somewhere on or within the wafer prior to 

thermal processing.  If, for example, the damaged region is on the backside of a wafer, 

then contaminants and defects are effectively removed from the front side.  Since, 

integrated circuit elements are customarily fabricated on the front of the wafer such a 

scheme can be quite beneficial.  However, this does not mean that all defects and 

contamination can be rendered innocuous.  Therefore, due care must still be taken to 

prevent defect formation and contamination.  There are a number of ways to set up an 

effective gettering scheme.  Early implementations required introduction of defects into 

the backside of the wafer by sand blasting or rapid oxidation in a phosphorus 

oxytrichloride, POCl3, ambient.  More recently, high dose argon ion implantation or 

polysilicon deposition on the wafer backside have been used for this same purpose.  All 

of these methods are conceptually similar and can be called extrinsic or external gettering 

because they require external doping or damage.  In all cases, the damage is created as 

late in the process as possible to minimize the possibility of the defects being annealed 

out by subsequent thermal processing, and thus, re-releasing deleterious impurities 

previously captured back into the bulk. 

In contrast, internal gettering schemes, which manipulate primary impurities, viz., 

oxygen, introduced during manufacturing of the substrates themselves (CZ process), have 

become attractive.  A typical scheme begins by driving off oxygen from the wafer surface 

(in which active devices will be subsequently fabricated) by means of an initial high 

temperature anneal step in an inert ambient, e.g., argon.  At high temperature, oxygen is 

very mobile in silicon and is easily lost through the surface.  This creates a denuded zone 

at the surface of the crystal.  Conceptually, the formation of this denuded zone can be 

considered as a kind of inverse doping, in which impurity atoms are lost from the surface 

rather than added.  Naturally, the thickness of the denuded zone depends on the 
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temperature and length of heat treatment.  Following the denuding step, wafers are then 

annealed at lower temperature to nucleate oxygen clusters within the bulk silicon.  Of 

course, this occurs in the bulk below the denuded zone because the oxygen concentration 

exceeds the solid solubility limit at the lower temperature.  (As indicated previously, it is 

thought that carbon also plays some role in the nucleation of oxygen clusters, i.e., oxide 

precipitates.)  When a sufficient degree of nucleation has been achieved, annealing 

temperature is then raised to induce a faster cluster growth rate.  Once an oxide 

precipitate reaches a critical size, the resulting lattice strain causes formation of 

dislocation loops and stacking faults.  These defects then act as active gettering sites.  It is 

important to note that the temperature in the growth phase cannot be taken too high, 

otherwise the concentration will fall below the solid solubility limit and oxygen clusters 

will redissolve rather than grow.  To understand this process more fully, it is worthwhile 

to consider the behavior of oxide precipitates in some detail. 

Nucleation and growth of oxide precipitates can again be treated from a 

thermodynamic point of view.  Thus, one can write down an expression for the free 

energy of formation of an oxide precipitate comprised of N stoichometric units, e.g., 

moles, of silicon dioxide, SiO2: 
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Here, A (do not confuse with the free energy change, A) is the surface area of a single 

precipitate and V is its corresponding volume.  The parameters,  and g, are, respectively, 

free energy of formation of new silicon/silicon oxide interface per unit area, i.e., solid 

surface tension, and the lattice strain energy per unit volume induced by an oxide 

precipitate.  The thermodynamic quantities, 
2SiOE  and 

2SiOS , are energy and entropy of 

formation of one stoichometric unit of SiO2 from one stoichometric unit of silicon atoms 

within the lattice and two stoichometric units of oxygen atoms in interstitial sites.  

Extensive reference tables of standard heats (enthalpies) of formation and entropies have 

been compiled and this information can be used to estimate these quantities for oxide 

formation within the silicon lattice.  (For a condensed phase, heat and energy of 

formation can, of course, be considered as the same.)  In particular, the entropy change 

must include a configurational contribution obtained by an analysis very similar to the 

preceding treatment of vacancies and silicon self-interstitials.  Similarly, the energy 

change must include contributions from various binding energies associated with the 

silicon crystal lattice, oxygen interstitials, and oxide precipitates.  (For more details, refer 

to Appendix A.) 

If, for simplicity, precipitates are regarded as spherical, then this equation can be 

modified as follows: 
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Here, n is stoichometric density, which relates number of stoichometric units to volume.  

(Specifically, n can be specified in moles/cm3 by dividing the ordinary mass density of 

SiO2 by the formula weight.)  The standard energy of formation of SiO2 is negative since 
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oxidation of silicon is exothermic.  Similarly, the entropy change is also negative since 

SiO2 is more ordered than dissolved oxygen atoms randomly distributed in silicon.  

However, due to the explicit negative sign, the entropy term must make a positive 

contribution to A.  Furthermore, both the strain, g, and surface energy, , terms make 

positive contributions to the free energy.  Therefore, only if the formation energy term is 

sufficiently negative, is it possible for the cubic term to be negative and oxide precipitates 

to be thermodynamically stable.  Clearly, if temperature is sufficiently high (as is 

characteristic of denuding), then formation energy is totally compensated by entropy and 

strain terms.  Thus, at high temperature oxide precipitates of any size are unstable and 

dissolve into the silicon lattice.  However, even at lower temperatures there are further 

complications.  In particular, since the surface energy coefficient is positive, the quadratic 

term must dominate the cubic term as oxide precipitate radius tends toward zero.  Thus, 

very small oxygen clusters can never be thermodynamically stable under any condition.  

Clearly, after denuding at high temperature (1100C), oxide precipitates are most likely 

absent, having been dissolved.  One might ask then, how could oxide precipitates ever be 

reformed?  What is required is some non-equilibrium nucleation process.  To consider 

this question, it is useful to digress briefly and discuss the nature of thermodynamic 

equilibrium in general. 

By definition, thermodynamic equilibrium defines a dynamic, not a static steady state.  

This means that both “forward” and “reverse” processes occur at the same rate which, of 

course, results in a net rate of zero, i.e., a steady state.  Thus, in the present case, small 

oxygen clusters are randomly forming and dissolving continuously within the bulk silicon 

crystal.  Clearly, if the net process is shifted away from equilibrium (by changing 

temperature, for example), forward and reverse rates are no longer equal with the 

thermodynamically favored one, i.e., the one with a negative free energy change, 

occurring at a higher rate.  However, if the process is still relatively close to equilibrium, 

then the non-favored process, i.e., the one with a positive free energy change, will still 

proceed to some degree.  This condition will persist until equilibrium is re-established 

under new conditions in which case, both rates are once again equal.  To apply this 

concept to oxide precipitate formation, suppose that after the denuding step, temperature 

is reduced rapidly.  Obviously, at the lower temperature, oxide precipitates larger than 

some critical radius are stable.  However, after denuding, essentially no oxygen clusters 

exist in the bulk.  Therefore, the system is not at equilibrium since there are no oxygen 

clusters present to undergo the “reverse” process, i.e., dissolution of oxygen clusters.  

Therefore, only the “forward” process, i.e., formation of oxygen clusters, can proceed to 

any appreciable extent.  Thus, if the annealing temperature is reduced after denuding and 

if the oxygen concentration in the wafer is sufficiently high, even though they are not 

strictly thermodynamically stable, some oxygen clusters will form spontaneously.  

Clearly, during nucleation, oxygen clusters are continuously and randomly nucleated and 

re-dissolved.  However, it is clear from the preceding form given for the free energy of a 

precipitat, that if by chance an oxygen cluster grows larger than the critical radius, 

continued growth becomes more favorable than dissolution.  Therefore, during the 

nucleation step, one expects some oxygen clusters to form and some fraction of these to 

grow larger than the critical radius instead of re-dissolving.  Clearly, the temperature 

chosen for the nucleation process must be sufficiently low so that the critical radius is 

reasonably small. 
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The size of the critical radius can be determined by consideration of the partial 

derivative of free energy with respect to cluster radius: 
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Clearly, maximum free energy must correspond to the critical radius, because a cluster of 

this size has the same tendency to either grow larger or re-dissolve, i.e., the free energy 

change for both processes is negative.  Thus, one sets the partial derivative equal to zero 

and solves as follows: 
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From this one immediately obtains: 
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Clearly, the lower the temperature, the larger the magnitude of the denominator and, 

hence, the critical radius is reduced.  As observed previously, a small critical radius is 

desirable since this reduces the range of instability or nucleation gap and results in more 

efficient formation of oxide precipitates.  One might ask, why not nucleate oxygen 

clusters at room temperature (or even lower)?  Thermodynamically, this might be 

favorable, however the rate of oxygen cluster formation becomes so low that such a 

process is so slow as to be completely impractical.  Therefore, in practice it is found that 

annealing temperatures of a few hundred degrees are optimal for oxygen cluster 

nucleation. 

As asserted previously, after sufficient oxygen cluster nucleation is achieved, it is 

desirable to raise the annealing temperature to promote further growth of oxide 

precipitates.  Of course, this causes re-dissolution of smaller nuclei since the critical 

radius becomes larger at higher temperature.  (Clearly, oxide precipitates, which are 

smaller than the new critical radius defined by the higher temperature, but which were 

stable at the lower temperature of the nucleation process, become unstable and 

redissolve.)  However, precipitates of radius larger than the critical radius at the higher 

temperature remain stable and, indeed, tend to grow larger.  In addition, the increased 

processing temperature results in faster precipitate growth (and less processing time).  

Finally, once oxide precipitates become sufficiently large, they induce defects 

(dislocations and stacking faults) in the surrounding silicon lattice.  These become active 

gettering sites and due to the initial denuding step, as desired, defects are absent within a 

surface layer which is typically at least a few microns thick.  Of course, it is precisely in 

this undefected surface layer that active integrated circuit elements are to be fabricated.  

Thus, internal gettering provides a particularly elegant scheme in which active gettering 

sites are naturally located in close proximity to, but do not interfere with critical circuit 

elements.  To summarize, the general characteristics of an internal gettering process can 

be illustrated as follows: 
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Fig. 23: Internal gettering process (a) denuding; (b) nucleation; (c) precipitate growth 

 

Several factors serve to limit the size of oxide precipitates.  First of all, it is obvious that 

once the available supply of dissolved oxygen is exhausted, precipitates can no longer 

grow larger.  Second, very large precipitates result in high lattice strain.  This exerts a 

very high pressure and associated large positive contribution to free energy, thus, 

retarding further growth and limiting precipitate size.  In passing, it should be noted that 

thermal processing used for an internal gettering scheme need not be separate from 

thermal processing used for other purposes.  This is attractive since fewer individual 

process steps are required in the whole integrated circuit fabrication process. 
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Ingot and Substrate Characterization 
 

Classical methods for studying crystal defect structure are the metallographic 

methods.  These require the use of selective etches which delineate the defect structure of 

the material.  Various etches have been formulated for different kinds of defects in 

different kinds of materials and silicon is no exception.  Selective etching can delineate 

many line, plane, and spatial defects.  Therefore, once, the sample has been prepared, the 

delineated defect structure can be examined directly by optical microscopy.  There are 

several common defect etches used for single crystal silicon.  Virtually all of these 

contain hydrofluoric acid and a chemical oxidizing agent.  (These go by a variety of 

names, e.g., Secl etch, Wright etch, Yang etch, etc.)  Each one is optimized for a 

particular defect structure or related use.  The idea is the same in all cases; the etchant 

attacks the defected area because bonding in the lattice is disrupted allowing preferential 

attack by the etching chemistry.  Typically, dislocations intersecting the crystal surface 

will result in a pyramidal shaped etch pit.  Stacking faults will be revealed as linear 

features (planar features seen edge on) often with precipitates visible at the ends.  Of 

course, defect etching is a destructive technique since it removes parts of the substrate 

surface.  Nevertheless, metallographic techniques are still quite useful for process 

development and characterization. 

 

X-ray Methods 

 

It has been known for many years that atomic spacing characteristic of solid crystals 

is of just the right size to act as a diffraction grating for x-rays.  Thus, x-ray diffraction is 

a powerful tool for the characterization of crystalline materials.  The essential geometry 

of x-ray diffraction is illustrated below: 

 



 

(a)                                                                                                (b) 

Fig. 24: X-ray diffraction (a) constructive interference; (b) destructive interference 
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Briefly, atomic crystal planes defined by Miller indices, i.e., [hkl], act as specific 

reflectors for x-rays of a definite wavelength and incident angle, , (known as the Bragg 

angle).  By varying the incident angle of monochromatic x-rays illuminating a single 

crystal, one can image a regular array of diffraction maxima.  Such a pattern is called a 

Laue pattern and is characteristic of the material itself.  Indeed, the Laue pattern can be 

used to construct a detailed picture of the atomic structure of a crystalline solid.  (This is 

called x-ray crystallography.)  It turns out that individual diffraction maxima of a Laue 

pattern correspond to points of a lattice defined in reciprocal space.  (Reciprocal space 

was mentioned previously in connection with crystal orientation.)  Each point of the 

reciprocal lattice corresponds to a reflection from a specific set of atomic planes, i.e., a 

specific set of Miller indices.  In general, the more sharply defined the diffraction 

maxima are, the better is the quality of the crystal.  (A complete treatment of 

crystallography is far beyond the scope of the present course.)  The closely related Laue 

back-scatter method is used to characterize large silicon crystals, e.g., as-grown boules.  

This is because the crystal is usually too thick for classical transmission diffraction 

patterns to be obtained.  Thus, for this method an unfiltered, broad wavelength band x-ray 

source is reflected from the surface of a boule and, thus, a Laue pattern is generated.  

However, the pattern is distorted since diffraction comes from various radiation 

wavelengths.  Even so, this has the advantage of alleviating the need to move the sample 

to the exact Bragg angle as is necessary if a monochromatic x-ray source is used.  

Obviously, the lattice parameter is known a priori since the crystal is known to be silicon.  

Hence, the resulting back-scatter diffraction pattern allows precise determination of 

orientation and overall crystal quality.  Accordingly, this method is used routinely by 

wafer manufacturers. 

X-ray topography is another important imaging technique useful for the 

characterization of crystalline materials.  Contrast is achieved through changes in the 

interplanar spacing existing within a crystal.  (Changes in interplanar spacing change 

diffracted intensity if the crystal is oriented near a Bragg angle.)  Homogenous strain 

and/or the defect structure of the crystal cause these changes.  In x-ray topography a 

monochromatic, collimated source of x-rays is needed.  Such an x-ray source can be 

realized either through use of apertures and filters or by use of a collimating crystal.  In 

the second case, the crystal is oriented such that incident x-rays at the desired wavelength 

are reflected at a Bragg angle.  (This also serves to produce a monochromatic beam since 

only one wavelength meets the Bragg criterion.)  Dislocations, stacking faults, and 

precipitates all can be made visible using this technique.  In addition, edge and screw 

dislocations can be distinguished.  In the case of an edge dislocation, if the plane of 

reflection is perpendicular to the axis of the dislocation, i.e., coincides with the slip plane, 

no contrast will be generated since the lattice spacing in this direction is minimally 

affected by the defect.  A similar situation holds for a screw dislocation.  Again, for a 

screw dislocation, no contrast is generated by reflection from the slip plane; however 

contrast is generated by reflections from planes perpendicular to the slip plane.  

Furthermore, edge and screw dislocations have characteristic intensity ratios for 

reflections parallel and perpendicular to the dislocation axis, which allows them to be 

easily distinguished.  The double-crystal topographic arrangement also allows for 

measurement of strain in a crystal.  In this case, the x-ray beam must be highly 
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monochromatic and collimated.  The sample is oriented at a Bragg angle and reflected 

intensity maximized.  Following this “setup procedure”, the sample is then “rocked” 

through the maximum to generate an accurate diffraction lineshape.  The width of the line 

is a direct measurement of the strain in the crystal.  Such rocking curves are a direct 

indication of crystal quality since the existence of strain is often the result of defects. 

 

Other Methods 

 

Transmission electron microscopy (TEM) is another important material 

characterization technique.  It is analogous to ordinary transmission optical microscopy 

except that the image is formed by electron waves rather than light waves.  One 

disadvantage of TEM for the characterization of silicon substrates is that it requires a 

very thin section that is effectively transparent to electrons.  This often requires tedious 

preparation using various chemical and physical techniques to thin a section of the 

sample.  In practice, TEM is more useful for the characterization of process induced 

defects in the substrate rather than determination of starting material quality and, as such, 

is typically used for failure analysis.  Indeed, very good images of dislocations, stacking 

faults, twins, precipitates, and volume defects can be obtained.  In addition, electron 

diffraction patterns can also be obtained which are analogous to Laue x-ray diffraction 

patterns. 

Fourier transform infrared spectroscopy (FTIR) is often used to determine the 

oxygen content of CZ substrates.  Typical values of oxygen concentration in CZ wafers 

are in the 5(1017) cm–3 range.  For intrinsic gettering, characterization of this 

concentration is highly important and is often specified by wafer fabricators. 
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Wafer Finishing 
 

Silicon wafers are, of course, fabricated and finished from ingots (or boules), which 

are produced almost exclusively using the CZ process.  As might be expected, many of 

the actual details of wafer finishing are proprietary; however, it is worthwhile to 

summarize generic processes.  First of all, no as-grown ingot has a perfectly constant 

radius and typically has an uneven surface that typically appears rippled or wavy along 

the length of the ingot; therefore the ingot must be cut and ground to a specified shape.  

For integrated circuit manufacturing, this is a circular cross section of up to 450 mm in 

diameter (however, 200 and 300 mm diameters are still more common).  In contrast, for 

solar cells this is usually a square cross section with rounded corners.  Of course, due to 

the hardness of elemental silicon, diamond tooling is necessary for this operation.  Once 

the desired shape has been fabricated, raw slices of specified thickness (usually from few 

hundred microns for small wafers to roughly a millimeter for large wafers) are then cut 

from the ingot using a sophisticated wire saw and diamond abrasive slurry.  Slicing is 

illustrated schematically below: 

 

 

Fig. 25: Slicing of a silicon ingot (here shaped for solar cell fabrication) 

 

In addition, wafer edges are shaped, i.e., rounded, after slicing to prevent crack 

propagation and consequent fragility.  Of course, the raw sawn surface is not to be 

expected to be suitable for device fabrication and must be polished. 

Accordingly, chemical mechanical polishing (CMP) of wafers is done using a planar 

polishing machine and a chemically active slurry.  Typically the slurry consists of fumed 

silica (SiO2) dispersed in an alkaline solution (pH~12-14).  Polishing pads are made of 

highly engineered composite textiles, typically of polyurethane or polyester.  (In passing, 

it should be noted that this type of processing, long used to fabricate wafers, has more 

recently been introduced to integrated circuit manufacture as well.)  A pictorial 

representation of CMP is shown in the following figure: 

 



 69 

Spindle

Pad

Table

Wafer Insert

Carrier

Capture Ring

 
 

Fig. 26: Schematic of CMP machine 

 

Here, slurry is introduced to the pad through a nozzle (not shown) and is entrained 

underneath the wafer by the rotation.  For clarity, a single wafer configuration is 

illustrated; however, multiple wafers may be polished simultaneously on the same pad.  

Moreover, it might seem surprising that wafer and pad rotation is in the same direction; 

however, an elementary kinematic analysis readily demonstrates that the magnitude of 

relative surface velocity between the wafer and pad is more uniform in this configuration.  

(Indeed, relative surface velocity magnitude is exactly the same over the entire wafer 

surface if rotation rates of the pad and the wafer are exactly equal; however, this can 

result in “pattern coincidence; therefore, it is usual to rotate the pad and wafer at slightly 

different rates such that the ratio of the rates is irrational.) 

Slurry residue is removed after polishing by specialized surface cleaning equipment 

while the wafers are still wet.  Final chemical cleans follows (if necessary) and the 

finished wafers are packaged under ultraclean conditions.  Within this context, wafer 

surfaces must approach atomic flatness, i.e., any roughness must be on the nanometer 

scale or less.  It might seem that this would be difficult to achieve; however, this is not 

the case. 
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Silicon Nanowires 
 

Of course, over the whole history of modern semiconductor processing, wafers have 

represented (and continue to represent) the dominant physical form for semiconductor 

grade silicon used in microelectronic fabrication.  Over time, the only significant change 

in this situation has been a continuing increase in wafer diameter (and coincident scaling 

of thickness) from less than 50 mm in the late 1950’s to as large as 450 mm substrates at 

present.  (Indeed, larger wafer sizes have been proposed, but it remains to be seen if these 

can be cost effective.)  In any case, in analogy to structural steel it is likely that silicon 

wafers will remain an important item of commerce for many years to come.  In contrast, 

whiskers of various materials have been known for more than fifty years.  (The usage of 

the rubric “nanowires” is of relatively recent advent.)  Indeed, a detailed description of 

silicon nanowire growth by researchers at Bell Labs appeared as early as 1964.  Even so, 

for much of this time such structures remained at best merely laboratory curiosities and at 

worst appeared as troublesome defects in conventional manufacturing processes.  It has 

only been in the last decade or so that “nanostructures” have become a specific object of 

research. 

 

Vapor-liquid-solid (VLS) Growth Process 

 

In contrast to growth of bulk silicon crystals, silicon nanowires are commonly grown 

using the vapor-liquid-solid or VLS process.  This requires small, i.e., nanometer-sized, 

particles of metal to be deposited on the surface of a larger substrate crystal.  As ambient 

temperature is raised, the metal particles melt and absorb silicon from a gaseous 

precursor (usually silane, SiH4) catalyzing silicon crystal growth at the liquid-solid 

interface.  Clearly, as suggested by the term VLS, process temperature must be chosen 

such that the substrate remains solid, the catalyst is liquid, and the precursor vapor 

pressure is sufficient to supply silicon to the growth process at a sufficient rate.  

Accordingly, it is evident that nanowire growth requires establishment of favorable 

thermodynamic conditions across two heterogeneous phase boundaries, viz., the vapor-

liquid interface at the surface of the catalyst droplet and the liquid-solid interface between 

the catalyst and the growing nanowire.  (Obviously, the liquid-solid interface has some 

similarity to the melt-ingot interface in conventional CZ and FZ crystal growth 

processes.)  Within this context, it might seem that such conditions would be difficult to 

realize in practice; however, this is not the case.  Indeed, a number of metals can serve as 

catalysts in the VLS process.  Moreover, just as in conventional crystal growth, the 

orientation of the underlying substrate determines the orientation of the growing 

nanowire.  However, in contrast to growth of bulk crystals not all nanowire orientations 

can be realized.  The reason for this is due to basic thermodynamic constraints associated 

with the VLS process and for silicon nanowires only growth of the [111] orientation is 

found to be practical.  Naturally, other kinds of nanowire materials can be expected to 

have different orientation dependence.  In any case, typical characteristics of VLS growth 

are illustrated in the following figure: 
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Fig. 27: Vapor-liquid-solid (VLS) process (a) catalyst on substrate; (b) growth; (c) finished nanowire 

 

In general, nanowire length can be controlled by growth time; however, due to geometric 

as well as other effects considerable variation is to be expected. 

Obviously, before silicon nanowires can be grown a suitable catalyst material must be 

identified.  Clearly, such a catalyst should satisfy at least two fundamental requirements:  

First of all, it should have a reasonably low melting point with respect to silicon and, 

second, silicon and the catalyst material should form a well-defined eutectic alloy.  

Within this context, it turns out that metallic gold is the most common catalyst used for 

growth of silicon nanowires.  At first glance this might seem unlikely since the melting 

point of pure gold is nominally, 1064C; however, an alloy having atomic composition 

18.6% silicon-81.4% gold, melts at only 363C and, moreover, forms a eutectic mixture.  

This is illustrated by the well-known gold-silicon binary alloy phase diagram as shown in 

the following figure: 
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Fig. 28: Gold-silicon binary alloy phase diagram 

 

Physically, a eutectic alloy corresponds to a binary mixture of materials, typically metals, 

having well-defined composition and minimum melting point.  Below this temperature all 

mixtures irrespective of composition are solid.  Thus, regions in the figure labeled “A” 

and “B” denote mixtures consisting of liquid eutectic and either solid gold or silicon, 

respectively.  Accordingly, “liquidus” curves rise on either side of the “eutectic point” 

and define boundaries between the liquid phase and two-phase solid-liquid mixtures.  

(Likewise, “solidus” curves correspond to the horizontal line.)  As might be expected, 

liquidus terminal points are identified with pure materials and, thus, in the gold-silicon 

phase diagram can be identified merely as standard melting points for gold or silicon.  

For completeness, it should be noted that other metals, e.g., aluminum, copper, etc., can 

also be used to grow silicon nanowires and, moreover, in analogy to gold form relatively 

low melting eutectic alloys. 

Of course, once a catalyst material has been chosen, particles of this material must be 

controllably deposited or synthesized on the surface of the seed substrate.  Accordingly, 

there are several different techniques for this, but perhaps the simplest method is to first 

deposit a catalyst film at low temperature (e.g., near room temperature) by vacuum 

evaporation (or some other suitable technique).  Upon subsequent heat treatment, if the 

deposited film is very thin (typically less than 10 nm) recrystallization causes a 

continuous film to break up into individual small crystallites.  This phenomenon is called 

agglomeration and is particularly favored for thin films of noble (or semi-noble) metals 

such as gold.  Of course, this produces a wide distribution in particle size which generally 

results in a similar variation in finished nanowire length.  Nevertheless, this process is 

very simple and economical.  Alternatively, pre-formed catalyst particles of controlled 

size may be deposited on the seed.  Indeed, colloidal gold particles of various sizes are 

commercially available and can be readily used as catalysts for silicon nanowire growth.  

Of course, there is usually substantial cost associated with manufacture of the particles; 

A B 

liquid 

solid 
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however, this may be offset with higher quality nanowires.  Obviously, both of these 

techniques produce random distributions of silicon nanowires on the seed substrate 

surface.  It comes as no surprise that a more regular distribution might be technologically 

desirable.  Naturally, this requires fabrication of some kind of regular template.  Within 

this context, various techniques using self-assembly have been suggested; however, the 

most reliable method is direct photolithographic transfer of a regular pattern to a layer of 

masking material covering the seed substrate surface.  After processing the result is a 

regular array of openings to the underlying silicon seed, which then can be coated with 

catalyst and a regular array of nanowires grown.  Moreover, since the geometry of the 

template can be precisely controlled a tight distribution of nanowire diameter and length 

is to be expected. 

Clearly, once catalyst particles are in place, nanowire growth can begin.  This is 

generally done at a temperature higher than the melting point of the catalyst-silicon 

eutectic in an atmosphere containing hydrogen and silane or chlorosilane.  Accordingly, 

the silicon containing precursor gas is pyrolyzed on the surface of the catalyst droplet 

releasing silicon which dissolves in the catalyst.  The concentration of silicon in the 

molten catalyst is controlled by a heterogeneous equilibrium between the gas phase and 

catalyst-silicon solution.  In addition, a separate heterogeneous equilibrium exists 

between the catalyst droplet and the growing solid nanowire.  In particular, once the 

concentration of silicon becomes sufficiently high within the molten eutectic, solid 

silicon crystallizes at the melt-solid interface.  Moreover, this crystallization preserves 

crystal orientation of the underlying substrate.  In principle, such a process can continue 

as long as precursor gas is supplied to support the growth process.  Within this context, 

one might wonder why silicon nanowires grow only from the catalyst-wire interface.  

Indeed, direct epitaxial growth of silicon has been known for decades and, moreover, is 

widely used in commercial fabrication.  The reason that direct growth does not occur at 

any appreciable rate during nanowire growth is, naturally, a consequence of the catalyst.  

Indeed, this is the fundamental function of any catalyst, which by definition does not 

change overall thermodynamics of a chemical reaction, but increases the rate due to a 

lowering of energetic barriers.  In this case, catalyzed growth occurs at a much lower 

temperature, e.g., 500-600C, in comparison to direct growth, which requires 

temperatures of 1000 to 1100C. 

 

Nanowire Processing 

 

Obviously, although single crystal silicon, nanowires have a much different physical 

form than wafers.  This requires substantially different processing strategies to produce 

useful devices.  (Indeed, no widespread commercial applications of silicon nanowires 

have as yet appeared, although there is extensive research directed toward applications 

such as chemical and bio-sensors, low temperature electronics, photovoltaics, etc.)  First 

of all, nanowires generally must be “harvested” from the growth substrate and deposited 

on some other prefabricated substrate; therefore, they must be detached either by etching 

or by some mechanical release method.  Concomitantly, it is evident from their size that 

nanowires cannot be handled individually, but are usually dispersed in a liquid carrier to 

form an “ink”.  In addition, after growth nanowires are generally not all the same length 

and, moreover, some may be defective, e.g., branched or curved.  Therefore, some 
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filtering process must be applied to select desirable nanowires and reject defective ones.  

Again, this is an area of active research, but suffice it to say that it is not an easy problem 

and simple implementations of filters generally do not work due to clogging and other 

difficulties.  Coincident with this are various requirements for accurate placement of 

nanowires.  Naturally, this strongly depends on the application.  In the case of 

photovoltaics a random deposition may be acceptable as long as density can be controlled 

to facilitate uniform light capture and good electrical connections.  However, for more 

sophisticated applications of nanowires as electronic devices, precise placement is 

necessary.  To accomplish this, it has long been known that non-spherical structures 

dispersed in a flowing liquid tend to become oriented with respect to the direction of the 

flow.  In addition, electrostatic capture may be employed to deposit nanowires at precise 

locations and, moreover, to sort them (at least partially) with respect to length. 
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Amorphous Silicon Dioxide 
 

So far, both electronic and material properties of single crystal silicon have been 

considered in some detail.  In addition, effects of defects and impurities have also been 

considered.  All of these properties are essential to modern solid-state electronics; 

however, if the characteristics of the semiconductor material itself were all that was 

important, silicon would actually present little (if any) advantage over germanium or 

gallium arsenide.  (Indeed, some other semiconductor might very well be better suited 

from the point of view of carrier mobility, etc.)  Accordingly, there is another material, 

quite different from single crystal silicon, which is also of essential importance, viz., 

amorphous silicon dioxide.  Within this context, it is worthwhile to compare the most 

obvious characteristics of single crystal silicon and amorphous silicon dioxide, i.e., quartz 

glass: 1) silicon is crystalline, quartz glass is amorphous, 2) silicon conducts heat and 

electricity reasonably well, quartz glass is a poor conductor of both, 3) silicon is an 

opaque, metallic appearing material (although it is transparent at infrared wavelengths), 

quartz glass is very transparent well into the ultraviolet region of the spectrum. 

Indeed, the success of silicon solid-state electronics is due, in no small part, to the fact 

that high quality amorphous silicon dioxide thin films are easily produced by direct 

oxidation of silicon.  Therefore, even though germanium was commercialized earlier than 

silicon and, moreover, although it has higher intrinsic electron and hole mobilities, 

because a high quality, chemically stable germanium dioxide (GeO2) layer cannot be 

formed on a germanium surface by direct oxidation (germanium monoxide (GeO) 

sublimes at 710ºC) represents a serious limitation.  As a consequence, silicon is the 

material of choice for industrial production of the vast majority of solid-state electronic 

devices (although germanium and especially silicon-germanium alloys have undergone 

somewhat of a renaissance in recent years, but generally in combination with silicon).  

Similar issues also exist for compound semiconductors such as gallium arsenide (GaAs), 

silicon carbide (SiC), etc.  Indeed, as a practical matter, a semiconductor material other 

than silicon will be used only if it has some unique property that silicon does not have.  

For example, because of higher carrier mobilities GaAs and more recently indium 

phosphide (InP) have found some commercial use for fabrication of high speed, high 

frequency devices, such as amplifiers for cell telephones and wireless information 

networks.  In addition, GaAs and other III-V materials are direct band gap 

semiconductors and, thus, useful for optoelectronic devices such as lasers and light 

emitting diodes (LEDs), which are applications for which silicon is not well suited.  

Similarly, silicon carbide may be useful if high temperature operation is required since it 

has a much larger band gap than silicon.  (Diamond also has similar semiconductor 

characteristics.)  Other semiconductors, such as indium antimonide (InSb), cadmium 

selenide (CdSe), etc., may find use as specialty optical detectors or emitters; however, the 

production volume remains small and integration level low.  Consequently, silicon 

successfully competes with (e.g., in device speed) or surpasses (e.g., in integration level) 

all other semiconductor materials for all but a few specific applications.  In any case, the 

silicon/silicon dioxide material system is dominant and is likely to remain so for the 

foreseeable future.  This remains true regardless of any consideration that essentially 

without exception, all other semiconductor materials are much rarer than silicon and, 

consequently, inherently more expensive.  (However, in practice the cost of the substrate 
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is generally only a small part of the cost of a finished integrated circuit or other solid-

state electronic device.) 

Direct oxidation of the surface of a silicon wafer at high temperature in an oxidizing 

atmosphere is known conventionally as thermal oxidation.  The resulting thin quartz 

glass film is known as thermal oxide.  As observed at the outset, quartz glass is not 

crystalline, but is amorphous with an open random network structure.  This is in distinct 

contrast with silicon, which, of course, has a very well-defined crystal structure.  The 

fundamental unit of the network structure is the SiO4 tetrahedron.  A diagrammatic 

representation of an SiO2 network is shown below: 

 

Silicon Atom

Bridging Oxygen Atom

Non-bridging Oxygen Atom

Hydroxyl Group

Acceptor Dopant Atom (B, etc.)

Donor Dopant Atom (P, As, etc.)

Free Cation (Na   , etc.)+

Free Anion (Cl   , etc.)


 

Fig. 29: Diagrammatic representation of quartz glass network structure 

 

(Here, for convenience SiO4 tetrahedrons are represented two dimensionally as triangles.)  

Indeed, thermal oxide has characteristics of both a liquid (e.g., short-range order) and a 

solid (e.g., rigidity and elasticity).  Although the network structure of quartz glass is 

thermodynamically unstable below 1710ºC, the rate of devitrification, i.e., crystallization, 

is negligible below 1000ºC.  Therefore, once formed, thermal oxide is very stable under 

normal conditions. 

Amorphous silicon dioxide has a well-defined refractive index of 1.46 and density of 

2.27 g/cm3.  In a perfect structure, each SiO4 tetrahedron is joined to four other tetrahedra, 

one at each apex.  This implies that oxygen atoms must bridge between silicon atoms.  

Thus, in an ideal structure, each oxygen atom is bonded to two silicon atoms and each 

silicon atom is bonded to four oxygen atoms (hence, the stoichometric formula SiO2).  

This results in a much less dense structure than single crystal silicon; therefore, the 

network structure of SiO2 includes voids of various shape and size.  Furthermore, the 

exact structure of these voids is generally process dependent.  Additionally, some of the 
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tetrahedra in the network may not be attached at all apexes.  In this case, the oxygen atom 

must be bound to some other type of atom since two bonds are required.  This is 

commonly hydrogen resulting in the incorporation of a hydroxyl (OH) group into the 

network structure.  It is also possible for the silicon to become trigonally coordinated 

with only three oxygen atoms attached.  Two of these are attached to other tetrahedra, the 

third one is unattached, i.e., non-bridging, and is, in principle, doubly bonded to the 

silicon atom. 

For the purposes of integrated circuit fabrication, thermal oxidation is a very effective 

process.  It produces thin films of amorphous SiO2 having a dense uniform network 

structure in comparison to other methods of thin film fabrication such as evaporation or 

chemical vapor deposition (CVD).  The material properties of thermal oxide are quite 

uniform and invariant over time.  Furthermore, even though it has an open structure, 

diffusion rates of many species in amorphous SiO2 are quite low.  Of particular 

importance are the usual shallow level impurities, B, P, As, Sb, Ga, etc.  These species 

typically form oxides that themselves become strongly bound within the network (as 

illustrated in the preceding figure).  Thus, SiO2 is a very good mask for doping particular 

regions on the wafer surface.  (This will be considered in more detail in later treatment of 

diffusion and ion implant processes.)  Other species, which do not become bound in the 

network structure, diffuse quite rapidly in SiO2.  In particular, hydrogen diffuses quite 

readily as does oxygen, water, and a number of small inorganic anions and cations.  All 

of these species diffuse through the voids in the network structure.  (As will become 

evident, the fact that SiO2 is permeable to H2, O2, and H2O is of essential significance.) 
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Thermal Oxidation of Clean Silicon 
 

As indicated previously, thermal oxidation of a clean silicon surface in an ambient 

oxidizing atmosphere is, perhaps, the most fundamental of all integrated circuit 

fabrication process.  Physically, it is an example of a heterogeneous (gas-solid) chemical 

reaction.  In conventional practice, either dry oxygen or pyrogenic steam is used as an 

oxidant.  (Pyrogenic steam is produced by burning hydrogen and oxygen inside the 

oxidation furnace.)  The two overall reactions are as follows: 

 

Si O SiO 2 2  
 

Si H O SiO H  2 22 2 2  
 

Clearly, so-called dry oxidation in oxygen produces no gaseous products; however, wet 

oxidation in steam produces hydrogen as a byproduct. 

 

The Deal-Grove Model of Thermal Oxidation 

 

In general, an overall heterogeneous chemical reaction can be separated into several 

transport and reaction steps.  First of all, the gaseous reactant must be transported from 

the bulk of the ambient gas atmosphere to the substrate surface.  Accordingly, the flux of 

reactant to the substrate surface can be described by a simple mass transport equation: 

 

 )(1 SGG CChF 
 

 

Here, F1 is oxidant flux to the substrate surface, CG is bulk concentration of oxidant, CS is 

the concentration of oxidant in proximity to the wafer surface, and hG is a linear mass 

transport coefficient.  This expression accounts for depletion effects in the gas phase due 

to consumption of oxidant by the reaction.  Second, oxidant is dissolved in the surface of 

the thermal oxide film and diffuses to the Si/SiO2 interface, hence: 
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Here, F2 is oxidant flux diffusing through the growing thermal oxide film, Co is dissolved 

oxidant concentration at the oxide surface, Ci is the dissolved oxidant concentration in the 

oxide at the Si/SiO2 interface, D is the oxidant diffusivity in thermal oxide, and x is the 

thermal oxide layer thickness.  Third, assuming first order kinetics, the oxidation reaction 

at the Si/SiO2 interface corresponds to the expression: 

 

isCkF 3  
 

In this case, F3 is the oxidant flux (or, more correctly, a pseudo-flux) due to consumption 

of reactant by the oxidation reaction and ks is a first order rate constant for the reaction.  
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Of course, oxidant concentrations, CS and Co, cannot be expected to be equal, but rather, 

to satisfy a heterogeneous distribution equilibrium across the gas-solid interface, viz., 

Henry’s Law: 

 

S

o

C

C
H 

 
 

Here, H is a distribution coefficient and is defined in analogy to distribution coefficients 

associated with crystal growth (except that the heterogeneous phases are gas and solid 

rather than liquid and solid).  Clearly, H is closely related to the equilibrium solubility of 

the gaseous oxidant species in quartz glass and, naturally, is dependent on temperature 

and the microstructure of the glass.  As has been noted previously, in the case of wet 

oxidation, a gaseous product, namely hydrogen, is formed.  For generality, the diffusion 

flux of hydrogen back out of the oxide should also be considered since Le Chatelier’s 

Principle implies that any local increase of hydrogen in proximity of the Si/SiO2 interface 

must reduce the reaction rate, i.e., favor the back reaction.  However, since hydrogen is a 

small molecule and diffuses rapidly, it does not build up and its effects can be ignored. 

Clearly, for dry oxidation no gaseous products are formed and preceding expressions are 

entirely sufficient.  Furthermore, assuming that wafer dimensions are much larger than 

film thickness, a one dimensional picture of thermal oxidation is satisfactory and is 

illustrated by the following figure: 

 

Thermal SiO2 Film

F1

Si Substrate Gas

F2

F3

C

x

CGCS

Co

Ci

 

Fig. 30: Diagrammatic representation of the thermal oxidation of a clean silicon surface 

 

Here, oxidant concentration, C, is plotted versus perpendicular dimension relative to the 

wafer surface.  By definition, oxidant concentration within the silicon substrate is 

negligible. 

Thus, assuming conditions of quasi-steady state, i.e., assuming that any transients are 

small, all fluxes are taken to be equal.  Accordingly, if one applies the distribution 

equilibrium and identifies F1 as equal to F3, one obtains: 
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Naturally, one solves this expression for CG: 
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Equivalently, one can identify F2 as equal to F3: 
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Consequently, this expression is solved for Co: 
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The two preceding expressions can be combined by substitution of this equation into the 

previous formula for CG: 
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Inverting this equation to obtain an explicit form for Ci yields the desired result: 
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Thus, the oxidant concentration at the Si/SiO2 interface has been formally related to the 

concentration of oxidant in the gas phase.  Of course, the concentration, CG, is just fixed 

by gas pressure inside the furnace. 

Naturally, the reaction flux, F3, must be proportional to the thermal oxide growth rate; 

hence, one can write: 
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Here, N is a proportionality constant relating the number of oxidant species arriving at the 

interface per unit area to the thickness of SiO2 grown on that same area if all oxidant 

species react with the substrate.  Of course, N is determined directly by consideration of 

the reaction stoichometry and the density of the thermal oxide film.  Clearly, this first 

order differential equation is easily integrated to give: 
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Here, t0 represents an initial condition, which in principle corresponds to some pre-

existing thermal oxide layer thickness of x0; therefore, one has: 
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Thus, t0 is the time necessary to pre-grow a thermal oxide layer of thickness, x0, under 

prevailing conditions, i.e., growth conditions defined by current values of hG, CG, D, ks, 

H, and N.  Of course, in actual processing, the pre-existing oxide layer may be grown 

under different conditions; however, the properties of thermal oxide are sufficiently 

uniform so that only the thickness, x0, is relevant to subsequent processing.  Clearly, if x0 

equals 0, then t0 equals 0. 

Rather than expressing t as a function of x, it is desirable to express x as a function of 

t.  This is easily accomplished by means of the quadratic formula: 
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Thus, one obtains the general relationship between thermal oxide film thickness and 

growth time characteristic of the Deal-Grove model.  From this formula, two important 

asymptotic expressions can be obtained.  The first of these corresponds to the limit that t 

tends toward .  In this case, only the second term within the radical remains significant, 

hence: 
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This defines the so-called parabolic growth regime.  The second form is obtained if t + t0 

vanishes.  In this case, one expands the radical as a Taylor series from which it follows 

that: 
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This defines the so-called linear growth regime.  Clearly, unless t0 is small, i.e., the initial 

oxide thickness is very small or absent, the linear growth regime cannot be realized. 

Physically, the parabolic growth regime corresponds to the classical case of a 

diffusion limited process for which the rate limiting step is diffusion of oxidant through a 

relatively thick oxide film.  Conversely, the linear growth regime corresponds to the case 

of a reaction limited process for which the rate limiting step is the interfacial reaction 

between oxidant species and the silicon substrate.  In passing, one observes that another 

limiting regime, that of a mass transport limited process, is possible in principle.  This 

situation would occur if oxidant became depleted in the gas phase in close proximity to 

the substrate surface.  Clearly, this requires very rapid consumption of oxidant species by 

the oxidation process.  However, in practice, oxidant transport in the gas phase is much 

more rapid than either diffusion of oxidant through the growing oxide film or the 

interfacial reaction itself.  Therefore, a mass transport limited regime is never realized in 

conventional thermal oxidation processes, i.e., for practical purposes, the coefficient, hG, 

can be treated as indefinitely large. 

In practice, one does not usually know (or care to know) all of the values of the 

various transport, equilibrium, and reaction rate coefficients.  However, they can be 

collected into two aggregate rate constants, A and B, defined as follows: 
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Therefore, in terms of A and B, the previous results can be recast as follows: 
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Similarly, the parabolic and linear limiting forms are: 
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By convention, B is known as the parabolic rate constant and B/A as the linear rate 

constant.  Values for A and B (and or B and B/A) have been determined over a variety of 

conditions.  Using these values, it is found that the Deal-Grove model describes thermal 
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oxidation very well over a wide temperature range, viz., 700-1300C.  This is illustrated 

by the following figure: 

 

 
Fig. 31: Scaled thickness vs time for thermal oxidation (solid curve: Deal-Grove model; broken curves: 

linear and parabolic limits) 

 

In practice, any conventional oxidation process used for integrated circuit fabrication will 

almost certainly be included within this temperature range. 

 

Temperature Dependence of Oxidation Rate 

 

Although, the Deal-Grove model is applicable over a wide range of temperatures, 

oxidation rate is strongly temperature dependent.  As might be expected, this dependence 

has a classical Arrhenius form: 
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Here,  can be identified as either the parabolic or linear rate constant.  By definition, any 

reaction or process that is characterized by an Arrhenius form is said to be thermally 

activated and, accordingly, Ea, is identified as activation energy.  To understand the 

precise meaning of Ea, one should think of any process (chemical reaction, diffusion, etc.) 

as a transition from some stable reactant state to a stable product state.  In order, for both 

the reactant and the product state to be stable, the system must pass through some 

unstable “high energy” transition state (conventionally indicated by the symbol, ‡) 

during the process.  Clearly, the transition state provides a “barrier” to free conversion of 
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reactants into products.  Such a “chemical” description of thermally activated processes 

can be represented pictorially as follows: 

 

Reactant

Product

Transition

Ea

E

Energy
‡

Process Coordinate
 

Fig. 32: Energetic relationship of transition, reactant, and product states 

 

The horizontal dimension is defined as process coordinate, which is just a symbolic 

representation of the aggregate dynamics of the process.  The vertical dimension 

represents thermodynamic internal energy.  Thus, E is the thermodynamic internal 

energy change for the overall process and Ea is the energy change taken between the 

reactant state and the transition state.  (Thus, Ea can be thought of as a kind of formation 

energy for the transition state.)  Clearly, because the energy of the transition state is 

higher than either the reactant or product states, it forms an energy barrier for the process 

and reactant and product states tend to be stable once they are formed.  However, if 

thermal fluctuations randomly generate some of the transition state from the reactant 

state, then the product state is easily formed.  Of course, the reverse process can also 

occur. 

Digressing briefly, the case for which the product state has a lower internal energy 

than the reactant state is called an exoenergetic process since energy is released to the 

environment during the process.  This situation is illustrated by the preceding figure.  

Conversely, if the product state has a higher internal energy than the reactant state, 

energy must be absorbed and the process is called endoenergetic.  Obviously, the reverse 

of an exoenergetic process must be endoenergetic and vice-versa.  (The terms 

exoenergetic and endoenergetic are analogous to the more common terms, exothermic 

and endothermic, except that they refer specifically to internal energy, rather than 

enthalpy.)  Obviously, in the endoenergetic case, the activation energy must be larger 

than the internal energy change, E, since it must be the sum of the activation energy for 

the reverse exoenergetic process, Ea, and E.  Of course, thermally activated processes 

for which reactant and product states are of equal internal energy, e.g., diffusion, can be 

called aenergetic.  However, the activation energy for an aenergetic process does not 

necessarily vanish and, clearly, is the same in both “forward” and “reverse” directions. 

It is found that oxidation of clean silicon is a thermally activated, exoenergetic, i.e., 

exothermic, process.  Therefore, Arrhenius forms can be expected to represent 

temperature dependence of the linear and parabolic rate constants satisfactorily.  
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However, before providing specific values for activation energies and pre-exponential 

factors, it is important to note that oxidation rate is also found to depend on the 

orientation of the wafer surface, that is to say, that one finds that oxidation rates differ on 

[100] and [111] surfaces.  Various models have been formulated to explain orientation 

dependence, however, in all of these it is attributed to differences in surface atom 

concentration and specific activation energy (derived from steric effects, etc.)  For 

substrates commonly used in integrated circuit fabrication, one invariably finds that [111] 

wafers oxidize faster than [100] wafers under the same conditions.  Since orientation is a 

property of the substrate only and does not affect the structure of the oxide once it is 

grown, i.e., thermal oxide grown on [111] substrates is essentially identical to oxide 

grown on [100] substrates, one expects that orientation dependence enters the Deal-Grove 

model only through the specific rate constant, ks.  Therefore, it is to be expected that only 

the linear rate constant depends on orientation and that the parabolic rate constant is 

independent of orientation, as is, indeed, the case.  Arrhenius forms for various process 

conditions and orientations appear in the following table: 

 

Process B/A for [100] B/A for [111] B 

Dry Oxidation 1.03(103)
 kTe

00.2

 1.73(103)
 kTe

00.2

 0.214
 kTe

23.1

 

Steam Oxidation 2.70(104)
 kTe

05.2

 4.53(104)
 kTe

05.2

 0.107
 kTe

79.0

 

Note: Activation energies are in eV’s, B/A is in m/sec, B is in m2/sec 

Table 2: Arrhenius forms for thermal oxidation rate constants 

 

Clearly, steam oxidation is much faster than dry oxidation.  Therefore, steam oxidation is 

advantageous for the growth of relatively thick oxide layers.  These are typically field or 

isolation oxides, which surround devices and insulate the substrate from overlying 

wiring, etc.  However, for oxides, usually thin, that are used as integral parts of devices, 

such as a gate insulator (or gate oxide), dry oxidation is generally used because it 

produces a higher quality Si/SiO2 interface.  The quality of this interface is critical for 

good electrical performance.  (In the case of very thin oxides, this distinction breaks 

down.  Indeed, the fabrication of ultrathin oxide layers is currently of great interest.) 

Another process variable that is available to change oxidation rate is oxidant pressure.  

It is evident from the Deal-Grove model that B is proportional to oxidant concentration, 

CG.  Of course, CG is just proportional to pressure (or partial pressure) through the usual 

gas laws.  Therefore, both the linear and parabolic rate constants simply scale linearly 

with pressure.  This provides several advantages.  First of all, one can grow thick oxides 

much more rapidly at elevated pressure.  However, “thermal budget”, i.e., the total 

exposure of the substrate to elevated temperature, rather than process time itself, is often 

a more important consideration in practical integrated circuit fabrication.  Therefore, it is 

also advantageous to reduce the thermal budget without adversely affecting process time 

by lowering temperature and compensating the resulting lowered growth rate by 

increasing process pressure.  An added benefit is that at lower temperature thermally 

activated defect generation is also reduced.  Finally, for very thin oxides, the growth rate 

at normal atmospheric pressure may be too fast for adequate process control of oxide 
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thickness.  In this case, pressure (or partial pressure) can be reduced to a sub-atmospheric 

value to lower the growth rate and provide a more controllable process. 

 

Deviations from the Deal-Grove Model 

 

Before proceeding further, it is necessary to observe that there is one important 

deviation from the Deal-Grove model.  In particular, the Deal-Grove model is unable to 

explain the kinetics associated with very thin oxide growth in dry oxygen.  Specifically, a 

very rapid initial growth phase is observed.  After this initial phase, the process follows 

the Deal-Grove model.  Empirically, it is found that for dry oxide films of thickness 

greater than about 20 nm, the Deal-Grove model can be applied by assuming an initial 

fictitious oxide thickness of about this thickness, i.e., one assumes that this initial film 

grows so rapidly that it can be taken as an initial condition for the Deal-Grove model.  Of 

course, fabrication by dry oxidation of thin SiO2 films having thickness on the order of 20 

nm or less requires careful experimental characterization of growth kinetics in any initial 

growth regime.  In contrast, a rapid initial growth phase is not observed for wet oxidation 

and the Deal-Grove model can be used to describe all stages of the process.  (Wet 

oxidation is generally used for thick oxides anyway; however, recently there has been a 

renewed interest in using wet oxidation at very low temperature for fabrication of very 

thin oxide layers.) 

The initial rapid growth phase in dry oxygen may be explained by observing that 

since no pre-existing oxide layer is present, the oxygen concentration is initially very 

high at the substrate surface.  In this case, it is plausible that oxygen dissolves 

appreciably in the substrate itself to create a thin oxygen rich surface layer or oxygen-

diffused zone.  Of course, one expects the solubility of oxygen in silicon to be much less 

than in silicon dioxide, however, since little or no surface oxide is present, the 

concentration may still become significant.  Thus, one can regard oxidation in the 

oxygen-diffused zone as more of a volume reaction than a surface reaction, i.e., oxidation 

is occurring at an appreciable rate throughout the whole thickness of the oxygen-diffused 

zone.  Therefore, since the whole thickness of the oxygen-diffused zone is rapidly 

converted to oxide, the apparent surface oxidation rate is “abnormally” high.  Of course, 

once an initial oxide layer of sufficient thickness is formed, the concentration of oxygen 

at the interface falls and the oxygen-diffused zone disappears.  Obviously, this must 

correspond to the onset of Deal-Grove kinetics.  Alternatively, the initial rapid growth 

phase might be a consequence of deviation of the surface reaction kinetics from first 

order when the oxygen concentration is very high.  (This is not necessarily inconsistent 

with the existence of an oxygen-diffused zone.) 

For wet oxidation two observations can be made.  First of all, water does not appear 

to dissolve or diffuse appreciably into silicon, hence, if any diffused zone is formed, it 

must be very thin.  Secondly, the surface reaction in wet oxidation is inherently more 

rapid than in dry oxidation, which also serves to reduce the relative importance of any 

initial oxidation phase. 
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Oxidation Induced Defects 

 

Under some conditions, thermal oxidation can produce oxidation induced stacking 

faults aligned with [111] planes.  These stacking faults are typically extrinsic and, of 

course, are bounded by dislocations.  Moreover, it is thought that oxidation induced 

stacking faults occur because thermal oxidation generates interstitial defects.  Indeed, 

during normal oxidation, about one out of a thousand silicon atoms at the interface does 

not become incorporated into the growing oxide layer, but instead, diffuses back into the 

silicon lattice as an interstitial defect.  Clearly, if the oxide growth rate is sufficiently 

high, these interstitials cannot come to equilibrium with vacancies, but rather “condense” 

as extrinsic stacking faults.  (One recalls that an extrinsic stacking fault can be regarded 

as insertion of an extra plane of atoms.) 

Within this context, it is found that stacking fault growth is thermally activated and is 

characterized by an Arrhenius form up to about ~1200C.  Above this temperature, 

stacking faults no longer grow larger, but shrink (a process called “retrogrowth”).  This 

behavior can be understood if one recalls that the melting point of silicon is nominally 

1414C.  Naturally, at a temperature near the melting point, one expects that lattice 

defects will be rapidly “annealed out” due to high atomic mobility.  Furthermore, growth 

of oxidation induced stacking faults is found to be dependent on substrate orientation, 

majority carrier type, and defects.  Accordingly, the growth rate of stacking faults is 

greater for [100] than for [111] substrates and stacking fault density is greater on n-type 

rather than p-type.  Generally, the distribution of surface nucleated stacking fault lengths 

is very narrow.  Furthermore, it is found that even for thick oxides, stacking fault growth 

is almost completely suppressed if oxidation temperature is reduced below 950C.  

However, if it is desirable oxidize silicon substrates at higher temperature (perhaps to 

obtain a good Si/SiO2 interface), subsequent high temperature annealing in an inert 

ambient can substantially reduce stacking faults. 

Empirical observations indicate that for oxidation at the same temperature and time, 

the average length of oxidation induced stacking faults is greater for wet oxidation than 

for dry oxidation.  This suggests that stacking fault length depends on oxidation rate as, 

indeed, is found to be the case.  (However, if the same thickness of oxide is grown at a 

given temperature, wet oxidation will produce shorter stacking faults than dry oxidation 

since the oxidation time is much shorter.)  Within this context, an empirical formula has 

been proposed to characterize dependence of stacking fault growth rate on oxidation rate 

as follows: 

 

21 KRK
dt

dl n

ox 
 

 

Here, l is stacking fault length, Rox is oxidation rate, and n, K1, and K2 are constant 

parameters.  The exponent, n, is found to have a value of about 0.4.  Therefore, 

dependence of stacking fault growth rate on oxidation rate is sub-linear and as indicated 

above, at some fixed temperature and oxide thickness, smaller stacking faults will be 

formed by a higher growth rate oxidation process.  This suggests that high pressure 

oxidation should be useful for reduction of oxidation induced defects. 
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Kinetic Effects of Defects, Dopants, Chlorine, etc. 

 

Defects in the silicon substrate are invariably associated with disruption in lattice 

bonding.  Therefore, since lattice bonds are already broken, one expects that both wet and 

dry oxidation rates should be increased by the presence of defects.  Although difficult to 

characterize quantitatively, this phenomenon is frequently observed.  Furthermore, the 

effect of shallow level dopant concentration on oxidation rate is an important 

consideration for silicon integrated circuit fabrication.  Indeed, it is well known that high 

dopant levels (>1018 cm3) tend to accelerate both dry and wet thermal oxidation.  The 

underlying cause of this is imperfectly understood; however, it may be a consequence of 

changes within the oxide structure itself due to the presence of dopants or enhanced 

defect generation within the substrate.  Of course, any effect on oxide structure, hence, on 

oxidant diffusion coefficient, can be expected to change the parabolic rate constant.  

Accordingly, it has long been known that boron preferentially segregates into the oxide; 

therefore, since boron is trivalent rather than tetravalent, one may plausibly suppose that 

the oxide network structure should be weakened and oxidant diffusion enhanced.  

Conversely, defect generation within the substrate increases the surface reaction rate, but 

should not substantially affect oxide structure.  Accordingly, the linear rate constant 

should be affected, but, not the parabolic rate.  This evidently is the case for phosphorus 

and arsenic, which do not preferentially segregate into oxide.  Clearly, oxidation of doped 

or defected silicon can be expected to deviate substantially from the Deal-Grove model.  

(Interaction between oxidation and dopant diffusion will be treated in more detail later.) 

Chlorine (Cl2) and chlorine containing species (e.g., hydrogen chloride (HCl), 

trichloroethane (TCA), etc.) can be added to an oxidizing ambient with beneficial effects.  

Empirically, the presence of chlorine is found to improve the quality of the Si/SiO2 

interface.  This may be partially a consequence of increased volatilization of metallic 

impurities.  In addition, an increase in both linear and parabolic rate constants is also 

observed with the addition of chlorine or chlorine containing species to the oxidizing 

ambient.  This may be due to two factors: First, enhanced vacancy generation at the 

Si/SiO2 interface due to direct reaction of chlorine with silicon to produce volatile silicon 

chlorides, which allows more silicon migration to the surface or oxygen entrapment at the 

surface.  Both of these effects should serve to enhance the rate.  Second, chlorine 

incorporation into the oxide opens and expands the network structure resulting in an 

increase in the oxidant diffusion coefficient. 
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The Effect of Electric Field on the Semiconductor Surface 
 

Before proceeding with detailed consideration of the Si/SiO2 interface, capacitance-

voltage analysis, device structures, etc., it is necessary to consider the fundamental effect 

of an electric field on the surface of a semiconductor.  To begin, one recalls, again, the 

physical meaning of the Fermi level (i.e., Fermi energy) which, within Fermi-Dirac 

statistics is defined as the energy, EF, for which electronic population probability is 

exactly one half.  However, Fermi energy has further thermodynamic significance as the 

free energy of mobile carriers.  Thus, for an amorphous or crystalline solid in thermal 

equilibrium, irrespective of whether it is a conductor, insulator, or semiconductor, EF 

must have the same value everywhere within the solid.  This is trivially obvious if the 

solid has uniform composition, however, at equilibrium, this condition must be satisfied 

even if the solid changes properties over some lateral dimension due to extrinsic doping 

or even gross changes in composition.  Indeed, this behavior is fundamental to any 

understanding of contacts and junctions in semiconductors and metals. 

Thus, in addition to band gap, crystallographic parameters, various thermodynamic 

equilibrium constants, etc., another important basic material property is work function, 

which is defined as the energy (typically expressed in electron-volts) required to remove 

an electron from within a specific material to a state of rest in the vacuum, i.e., to the 

vacuum level.  Work functions are also commonly quoted in terms of equivalent electrical 

potential, i.e., in volts.  Of course, energy and potential are directly related by electrical 

charge, which for electrons and holes has magnitude of one fundamental unit, i.e., 

nominally 1.602(1019) C.  Consequently, energy and electrical potential units are often 

carelessly treated as interchangeable; however, for consistency and to avoid confusion, 

work functions should be regarded as having units of energy.  Physically, the work 

function is evidently a measure of aggregate electronic binding energy in the solid and is 

classically observed by applying a negative electrical potential, i.e., a voltage, to some 

material (presumably having a reasonably clean surface) in a vacuum and measuring 

resulting current flow to an unbiased, i.e., grounded, counter electrode also in the 

vacuum.  (Alternatively, a positive potential can be applied to the counter electrode with 

the material grounded.)  Accordingly, the observed current is not a slowly varying 

function of bias voltage, but exhibits a definite threshold which is characteristic of the 

work function of the material.  (Indeed, this effect was first observed by Thomas Edison 

when he placed a second, biasable electrode inside a light bulb, which, as such, can be 

regarded as the world’s first electronic device, the vacuum diode.)  Typically, this 

threshold is found to be a few volts; hence, the work function is a few electron-volts.  

This is to be expected since this energy is of the same order of magnitude as electronic 

binding energies of electrons in atoms.  Naturally, every solid material is, in principle, 

characterized by a different work function but, in practice, it may be very difficult to 

measure (as in the case of insulators). 

Within this context, it is useful to consider the simple case of a surface contact 

between two dissimilar metals.  In metals, the Fermi level generally does not fall in a 

band gap as it does in semiconductors or insulators.  This situation can be realized 

physically two ways.  In the most common case of a classical metal, the Fermi level falls 

within an occupied band, therefore, this band evidently can be only partially filled.  

Hence, electrons can easily make transitions between occupied and empty band states and 
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are as a consequence, entirely delocalized, i.e., mobile.  In the case of a semimetal, an 

empty band overlaps a completely occupied band.  Obviously, the Fermi level must fall at 

the top edge of the occupied band.  Thus, a semimetal is analogous to a semiconductor 

having a zero or negative band gap.  Again, electrons are delocalized and, hence, mobile.  

In any case, electronic states in metals are generally occupied right up to the Fermi level 

and, as a consequence, metals are characterized both by a large density of mobile, i.e., 

itinerant or conduction, electrons (of the same order as the atomic density) and the 

absence of a band gap.  (For completeness, it must be noted that mobile carriers in some 

metals appear to be positively charged and, hence, are more properly regarded as holes; 

however, this does not substantially change the basic picture of metallic conduction.) 

As a “thought experiment”, the following figure illustrates what happens when two 

dissimilar metals are brought into intimate contact.  Here, Evac is the energy of the 

vacuum level (conventionally taken to be zero), 
1FE  is the Fermi level of “metal 1”, and 

1 is the associated work function.  Similarly, 
2FE  is the Fermi level of “metal 2” and 2 

is the associated work function: 
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Fig. 33: Appearance of a contact potential at the interface of two dissimilar metals 

 

As is indicated by the shaded regions in the figure, in a metal at low temperature, 

electrons occupy all available quasi-continuous band states up to the Fermi level.  Of 

course, the Fermi levels, 
1FE  and 

2FE  must fall below Evac since electrons are in bound 

states.  If the two metals are widely separated in space (as indicated on the left side of the 

preceding figure), electronic equilibrium is not established and the Fermi levels do not 

necessarily coincide.  Of course, in isolation, the Fermi levels differ from the vacuum 

level precisely by the work function; however, since the work functions are unequal, a 

free energy difference exists between electrons in metal 1 and metal 2.  Therefore, if the 

two metals are brought into close proximity, i.e., into contact, a spontaneous transient 

current flows.  Physically, this current flow transfers electrons from the metal with the 

smaller work function (in this case, metal 1) to the metal with the larger work function 

(metal 2).  Naturally, current continues to flow until thermodynamic equilibrium is 

established for mobile carriers.  Of course, the condition of equilibrium requires that the 

Fermi level, EF, must be the same in both metals.  Thus, as a consequence of charge 

transfer, at equilibrium an electrical potential difference appears between the two metals.  
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This is called contact potential and simply corresponds to the quotient of difference of 

the work functions, , and fundamental charge.  Clearly, a contact potential exactly 

compensates initial disequilibrium arising from any difference in Fermi levels.  However, 

due to the high density of mobile carriers within a metal, an electric field cannot exist 

within the bulk, hence, all of the contact potential difference must occur at the interface.  

(This is illustrated on the right side of the preceding figure.)  Furthermore, since the 

width of the interface is, at most, on the order of a few atomic diameters, the required 

number of electrons transferred in order to produce a potential difference corresponding 

to  is, in fact, very small in comparison to the density of mobile carriers.  As a result, for 

a metal-metal contact, it is extremely difficult if not impossible to measure the contact 

potential directly since any attempt to do so causes additional transient current flow 

which disturbs the equilibrium, i.e., “shorts out” the potential.  (In essence, any practical 

measuring equipment becomes part of the whole system and participates in the 

equilibrium.) 

The situation for contact between a semiconductor and a metal is similar, with the 

added feature that, because of the existence of a band gap, moderate electric fields can 

exist within the bulk of a semiconductor.  Typically, the work function of a metal, e.g., 

aluminum, titanium, etc., is less than that of an intrinsic semiconductor.  For elemental 

materials, this supposition is easily rationalized from the periodic chart since metallic 

behavior is characterized by decreasing ionization potentials.  (However, as will become 

evident subsequently, in the case of extrinsically doped semiconductors this situation may 

become inverted.)  The following figure illustrates the case of a surface contact between a 

metal and intrinsic semiconductor, viz., silicon: 
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Fig. 34: Appearance of a contact potential at the interface of a metal and intrinsic semiconductor 

 

Of course, 
MFE  is the Fermi level of the metal and M is the associated work function.  

Likewise, 
SiFE  is the Fermi level of the semiconductor and Si is its work function.  Just 

as in the case of two dissimilar metals, if one brings an intrinsic semiconductor and a 

metal into close proximity, the metal tends to lose electrons to the semiconductor simply 

because available energy states for electrons in the semiconductor are of lower energy, 

i.e., because the Fermi level is lower in the semiconductor.  Transient current flows until 
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equilibrium is established and the Fermi level becomes the same in both the metal and the 

semiconductor.  However, in contrast to the case of two metals, the transfer of electrons 

to the semiconductor results in an electric field that penetrates the surface and causes the 

band structure of the semiconductor to “bend”.  If, as has been assumed, the metal work 

function is smaller than the semiconductor work function, then the bands must bend 

“downward”.  This can be understood by observing that electrons transferred to the 

semiconductor from the metal occupy states in the conduction band.  (Of course, carrier 

equilibrium implies that some electrons recombine with holes; however, this is only a 

small fraction of electrons transferred.)  Since these excess electrons are supplied from an 

external source, holes do not appear in the valence band.  Hence, the situation is very 

similar to the case arising from shallow donor levels and the surface of the semiconductor 

is no longer intrinsic, but becomes n-type.  Accordingly, this implies that in proximity to 

the surface, the Fermi level must lie above the intrinsic level.  However, the condition of 

equilibrium requires that the Fermi level is the same everywhere, thus, to satisfy this 

condition the energy of the bands themselves must shift.  Of course, the electrostatic field 

arising from charge separation due to net electron transfer from the metal to the 

semiconductor tends to confine excess electrons in the semiconductor in close proximity 

to the surface.  Therefore, at a distance sufficiently deep in the semiconductor bulk, the 

semiconductor remains intrinsic.  This implies, as is shown on the right side of the figure 

that the bands bend smoothly in the region that the electric field penetrates into the 

semiconductor. 

One can further consider the effect of extrinsic doping.  In the case of a p-type 

semiconductor, the Fermi level in the bulk is shifted below the intrinsic level, Ei, by an 

amount corresponding to the Fermi potential, F.  Nevertheless, the effect of a metal 

contact remains unchanged and the bands bend as illustrated for lightly and heavily 

doped p-type substrates in the following figure: 
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Fig. 35: Depletion and inversion of p-type extrinsic semiconductor due to a metal contact 

 

(In these diagrams and those that follow, F is to be understood as a measure of the 

energy magnitude, |EFEi|.)  Again, when the metal and semiconductor initially come 

into intimate contact, electrons are lost from the metal.  Of course, in comparison to an 

intrinsic semiconductor, the effective work function for a p-type semiconductor is larger 

and downward band bending must be greater.  However, in contrast to the intrinsic case, 
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instead of occupying empty conduction band states, electrons recombine with excess 

holes in the valence band.  If the net acceptor dopant concentration is sufficiently large 

(i.e., heavy doping), an excess concentration of holes still remains at the surface once 

equilibrium is established.  However, near the surface, the distance between the valence 

band edge and the Fermi level is increased, hence, the density of majority carriers (i.e., 

holes) is decreased and, thus, effective acceptor doping is reduced.  This condition is 

called depletion and corresponds to the left diagram in the preceding figure.  Naturally, 

there is still net charge separation due to electron transfer and a corresponding surface 

electrostatic field. 

Obviously, the intrinsic level bends along with the bands, therefore, in a doped 

semiconductor the possibility exists that the bands may bend far enough so that the 

intrinsic level and the Fermi level actually intersect.  This typically happens if doping is 

light and in the case of a p-type semiconductor majority carriers change from holes to 

electrons such that at the surface the semiconductor changes from p-type to n-type.  This 

condition is called inversion and is illustrated by the right diagram in the preceding 

figure.  Inversion in a p-type semiconductor can be understood if one observes that upon 

initial contact, as before, electrons from the metal recombine with holes in the valence 

band.  However, if acceptor doping is sufficiently low, all extrinsic holes are effectively 

consumed, i.e., recombine, before equilibrium is established.  At this point, the intrinsic 

and Fermi levels are exactly equal and the semiconductor surface becomes effectively 

intrinsic even though acceptor impurities are present.  Consequently, additional electrons 

transferred from the metal must occupy empty conduction band states and, thus, the 

semiconductor surface becomes n-type.  Of course, both depleted and inverted regions 

are necessarily confined to a layer of semiconductor near the surface associated with 

band bending. 

In contrast to the case of a p-type semiconductor, in an n-type semiconductor the 

Fermi level in the bulk is shifted above the intrinsic level, Ei, again, by an amount 

corresponding to the Fermi potential, F.  Therefore, in comparison to the intrinsic case, 

the effective work function for an n-type semiconductor is smaller.  This allows several 

possibilities.  First of all, if F is not too large, then the effective work function of the 

semiconductor is still larger than for the metal and the bands still bend downward as in 

the p-type case, but the degree of bending is necessarily less.  Again, electrons are 

transferred from the metal to the semiconductor; however, in this case rather than 

recombining with holes in the valence band, electrons immediately occupy the 

conduction band.  Thus, the concentration of majority carriers (i.e., electrons) is increased 

at the surface and effective doping is enhanced.  This condition is called accumulation 

and is illustrated by the left diagram in the following figure.  Moreover, it can happen that 

for a judicious choice of donor impurity concentration, the Fermi potential exactly offsets 

the work function difference between the metal and semiconductor.  In this case, no 

charge transfer is required to establish equilibrium and the bands are not bent.  This is 

called the flat band condition and is illustrated by the right diagram in the following 

figure: 
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Fig. 36: Flat band condition and accumulation of n-type extrinsic semiconductor due to a metal contact 

 

However, if the Fermi potential for an n-type semiconductor is sufficiently large, the 

effective semiconductor work function may actually be smaller than the metal work 

function.  In this case, electrons are transferred from the semiconductor to the metal 

instead of from the metal to the semiconductor and bands are bent “upward” instead of 

downward.  Obviously, the majority carrier concentration is reduced at the semiconductor 

surface; hence, this again corresponds to depletion.  However, in this case depletion is a 

consequence of the direct loss of electrons from the semiconductor to the metal rather 

than recombination of excess electrons from the metal with holes in the semiconductor.  

In both cases, a space charge region appears in the surface layer of the semiconductor due 

to the presence of “uncovered” ionized impurity atoms.  (Clearly, these charges are not 

mobile since they are fixed in the silicon lattice.)  Of course, depletion of n-type silicon 

due to a metal contact is also represented by a band diagram, thus: 
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Fig. 37: Depletion of n-type extrinsic semiconductor due to a metal contact 

 

All of these cases illustrate that penetration of the semiconductor surface by an electric 

field alters effective doping at the surface from the net extrinsic doping of the bulk.  

These are all examples of field effect.  So far, these fields have been regarded as arising 

from charge transfer induced by work function differences; however, it should be 

apparent that field effects must arise any time an electric field penetrates a semiconductor 

crystal irrespective of the source of the field. 
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The MOS Capacitor 
 

In the previous case of metal-semiconductor contacts, one could consider application 

of an external potential difference between the metal and semiconductor to attempt to 

either reduce or enhance field effects caused by work function differences alone.  This is 

actually possible to a limited extent; however, if the magnitude of the applied potential 

becomes too great, a large amount of current will flow resulting in difficulties.  (By no 

means, however, should metal-semiconductor contacts be considered useless, indeed, 

they form components of many useful solid-state electronic devices.)  To remedy this 

situation, suppose that instead of just bringing metal and semiconductor into contact, that 

a thin layer of insulator is inserted between them.  Typically, this is thermally grown 

silicon dioxide (but, other insulators can also be used with similar effect).  The resulting 

structure is called a metal-oxide-semiconductor capacitor or just an MOS capacitor.  

Again, to establish equilibrium, charge transfer occurs in such a way as to bring the 

Fermi levels into correspondence.  However, since the insulating layer is present, a sheet 

of charge of opposite polarity builds up at each insulator interface.  The situation is 

similar to the simple metal-semiconductor case, except that part of the electric field 

penetrates the insulator.  This condition is illustrated below: 
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Fig. 38: Band diagrams for an unbiased MOS capacitor 

 

Here, the oxide layer is represented by the parallelogram separating metal and 

semiconductor bands.  (The width of the parallelogram corresponds to oxide thickness 

and the slope of the top and bottom sides to internal electric field strength.)  For p-type 

silicon having a metal contact on the silicon dioxide layer, just as for a direct metal-

semiconductor contact, the bands generally bend downward and the semiconductor 

becomes depleted or even inverted.  Of course, the degree of depletion (or inversion) is 

dependent on substrate doping, but the amount of band bending is not as great as in the 

case of a metal-semiconductor contact since some of the electric field penetrates the 

oxide layer, i.e., the potential due to the work function difference (contact potential) is 

distributed over both the oxide layer and a surface layer in the semiconductor.  The 

situation remains similar for n-type silicon.  Depending on the metal work function and 

substrate doping, the bands may bend upward or downward (corresponding respectively 

to accumulation or depletion and inversion), but again, not as much as in the case of a 

direct metal contact. 

Within this context, since thermal oxide is an excellent insulator, it becomes possible 

to apply a much greater potential difference, i.e., bias voltage, between the metal and 
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semiconductor without an associated large current flow than is possible in the case of a 

simple metal-semiconductor contact.  In passing, it should be noted that application of an 

external potential difference causes the Fermi levels in the metal and semiconductor in 

both simple direct metal contacts and MOS structures to become offset.  The magnitude 

of the offset is, of course, exactly the energy gained by an electron “falling through” the 

applied potential difference.  Therefore, the sign of the Fermi level offset is opposite the 

sign of the external potential difference since electrostatic potential is conventionally 

defined with respect to positive rather than negative charge.  Thus, a negative potential 

difference between the metal and semiconductor causes a positive energy offset between 

the metal and semiconductor Fermi levels.  Conversely, a positive potential difference 

between the metal and semiconductor causes a negative energy offset between the metal 

and semiconductor Fermi levels.  (This situation is also characteristic of contact 

potentials in the absence of any external bias.) 

 

Capacitance-Voltage Response of an MOS Capacitor 

 

Application of an external bias voltage to an MOS capacitor, allows the surface layer 

of either n-type or p-type semiconductor to be accumulated, depleted, or inverted at will.  

Moreover, in contrast to the case of an ideal parallel plate capacitor, which has a constant 

capacitance for any value of applied voltage, the capacitance of an MOS structure 

changes as a function of the condition of the semiconductor surface, i.e., the capacitance 

is different depending on whether the semiconductor surface is accumulated, depleted, or 

inverted.  In addition, the capacitance-voltage (CV) response of an MOS capacitor 

depends both on the characteristics of the oxide layer and the semiconductor substrate.  

(As will become evident subsequently, the CV response of an MOS capacitor provides 

very useful information regarding the behavior and quality of a Si/SiO2 interface.) 

In practice, observation of CV response generally requires “sweeping” bias voltage 

and simultaneously measuring capacitance.  In the p-type case, accumulation occurs if the 

applied bias is sufficiently negative.  Clearly, this implies that a large concentration of 

majority carriers (i.e., holes) is attracted to the semiconductor surface by the negative bias 

voltage.  Accordingly, if the bias voltage is made more positive, hole concentration at the 

semiconductor surface must decrease.  Moreover, a fixed bias can be found such that the 

surface hole concentration becomes just equal to the hole concentration due to bulk 

acceptor doping.  In this case, the bands are flat (which formally specifies flat band 

voltage).  Therefore, any further increase in applied bias must cause the semiconductor 

surface to become depleted.  Obviously, increasing the bias voltage still further will cause 

the surface to become first intrinsic and then inverted.  At very high positive bias voltage, 

the concentration of electrons in the inversion layer becomes large.  Of course, the 

behavior of n-type semiconductor can be expected to be inverted with respect to bias 

voltage, but otherwise completely analogous.  Naturally, accumulation for n-type 

semiconductor will occur at sufficiently high positive bias voltage (instead of negative).  

As bias is reduced, accumulation is followed by the flat band condition and then 

depletion as the majority carrier concentration (i.e., electrons) falls below the bulk 

electron concentration due to net donor doping.  Further reduction of bias voltage to 

negative values results first in an intrinsic surface and then in an inversion layer as holes 
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become majority carriers.  These six applied bias conditions of an MOS capacitor are 

illustrated in the following figure: 
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Fig. 39: Behavior of an MOS structure for both p and n-type substrates under various conditions of bias 

 

Clearly, bias voltage increases from negative to more positive values as one sequentially 

considers band diagrams from top to bottom and as expected, p and n-type 

semiconductors exhibit complementary behavior. 

Considering the case of an MOS capacitor fabricated on p-type silicon, if one initially 

applies a negative voltage to the “gate” (i.e., the metal contact), it is clear that majority 

carriers, i.e., holes, will be attracted to the surface forming an accumulation layer, i.e., 
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the bands are strongly bent upward, increasing the effective doping of the surface relative 

to the bulk.  In this case, a sheet of negative charge will appear at the metal-oxide 

interface and a sheet of positive charge will appear at the silicon-silicon oxide interface.  

Clearly, this is similar to the simple case of a charged parallel plate capacitor.  Thus, the 

capacitance per unit area, called Cox, just corresponds to the elementary formula: 

 

o

ox
ox

x
C




 
 

Here, ox is the dielectric constant of silicon dioxide (0.34 pF/cm) and xo is nominal oxide 

thickness.  If the magnitude of the negative voltage is reduced, i.e., bias voltage is 

increased toward zero, then curvature of the bands decreases and, likewise, the degree of 

accumulation decreases.  Clearly, at some point, the bands will not be bent and the 

surface will not be accumulated (or depleted), i.e., the silicon is neutral everywhere.  This 

is, of course, merely the flat band condition, which for this case occurs at a small 

negative bias since work functions for metals, e.g., aluminum, typically are smaller than 

for p-type silicon.  Under this condition, the external potential exactly compensates the 

intrinsic potential arising from the work function difference.  As voltage is further 

increased through zero to positive values, the bands bend the opposite direction, i.e., 

downward.  (Clearly, it has already been established that the bands are bent downward at 

zero bias.)  In the case of a positive bias, but not too positive, one can easily visualize that 

majority carriers will be repelled from the surface, thus, creating a region devoid of 

mobile carriers.  This is called the depletion region.  Consequently, to satisfy charge 

conservation requirements of the system, the depletion region must have a net negative 

space charge.  Of course, this space charge is provided by uncovered ionized dopant 

atoms, i.e., in this case most likely negatively charged boron atoms.  Since these negative 

charges are not mobile, the conductivity of the depletion region is much lower than the 

bulk semiconductor.  It follows then that the capacitance per unit area of an MOS 

structure in depletion, is the series combination of the oxide capacitance per unit area as 

defined previously and a depletion layer capacitance per unit area, Cd: 
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Here, s is the semiconductor dielectric constant (1.04 pF/cm for Si) and xd, is defined as 

depletion width.  Clearly, xd is not a physical thickness of a thin film in the same sense as 

xo, but is an electrical equivalent thickness.  (This will be treated in more detail 

subsequently.)  Naturally, if positive bias is increased still further, the bands continue to 

bend downward until the intrinsic level and the Fermi level are just equal at the surface.  

This defines the onset of inversion since as positive bias is increased further electrons 

accumulate at the semiconductor surface to form an inversion layer.  Thus, as asserted 

previously, the semiconductor surface becomes effectively n-type.  An additional 

increase of bias voltage results in greater accumulation of electrons in the inversion layer 

without substantial depletion of the underlying semiconductor.  Therefore, once an 
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inversion layer is fully formed, the semiconductor does not deplete any further and xd 

reaches a maximum value, max

dx .  Obviously, maximum depletion capacitance per unit 

area, Cs, is defined as follows: 
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Therefore, to summarize, in accumulation the capacitance per unit area of an MOS 

structure, C, is just Cox.  At the onset of depletion, C is the series combination of Cox and 

Cd and, hence, must be less than Cox.  Therefore, as the surface becomes more depleted C 

decreases until at the onset of inversion it approaches a minimum value equal (or nearly 

equal) to the series combination of Cox and Cs.  Under equilibrium conditions, when a full 

inversion layer is formed, C just returns to Cox since the inversion layer once again acts as 

one electrode of a simple parallel plate capacitor, thus, effectively removing any effect of 

Cs from observation.  Of course, the behavior of an MOS capacitor fabricated on an n-

type substrate is analogous except the sign sense of the bias voltage must be reversed, 

i.e., accumulation for an n-type substrate occurs at positive bias voltage and inversion 

occurs at negative bias voltage. 

 

The Surface Potential and Field 

 

Within this context, the electrostatic potential and field within a semiconductor 

surface layer can be readily analyzed quantitatively.  For simplicity, the semiconductor 

will be considered as a uniformly doped, semi-infinite silicon crystal in thermal 

equilibrium.  Accordingly, the semiconductor surface is defined by a plane located at 

x0 perpendicular to the x axis.  Hence, the bulk of the semiconductor is characterized 

by positive values of x.  Naturally, an electrostatic surface potential, , is defined directly 

from Poisson’s equation: 
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Here, )(x  is net charge density.  Clearly, )(x  can be written as just the sum of 

contributions from mobile carriers and ionized dopant atoms: 
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Of course, in contrast to the simple case of bulk semiconductor, carrier concentrations 

near the surface are explicit functions of x; however ND and NA remain independent of x 

due to the assumption of uniform doping.  It follows from fundamental definitions 

previously given that: 
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Hence, one makes use of carrier equilibrium to construct expressions for carrier 

concentrations as a function of x: 
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Moreover, these expressions can be rearranged to obtain expressions for carrier 

concentrations in terms of the intrinsic level: 
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Clearly, hole concentration appears on the left and electron concentration on the right.  Of 

course, the intrinsic level is also a function of depth, x, since it bends with the bands.  As 

usual, for light to moderate doping these expressions can be regarded as explicitly of 

Maxwellian form.  Obviously, it follows that: 
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Naturally, deep within the bulk, i.e., in the limit that x , the condition of charge 

neutrality must be satisfied, hence: 
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Here, Ei denotes the intrinsic level in the bulk, i.e., beyond the region of band bending.  

Thus, these results can be readily combined to give an explicit expression for the charge 

density: 

 
















 







 


kT

EE

kT

ExE
qnx FiFi

i sinh
)(

sinh2)(
 

 

Of course, it follows from the Maxwellian forms that the electrostatic surface potential, 

, is fundamentally related to the intrinsic level as follows: 
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Naturally, the “zero” of the potential may be always chosen arbitrarily.  Clearly, the 

preceding expression implies that  vanishes if the intrinsic level and the Fermi level are 

exactly equal; hence, Poisson’s equation takes the form: 
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Here,  is obviously identified as (EFEi)/q.  For convenience, dimensionless thermal 

potentials,  and  are defined as q/kT and q/kT, respectively: 
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Upon inspection, a characteristic length, i, called the intrinsic Debye length can be 

identified with the following combination of constants: 
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It remains to formally integrate Poisson’s equation. 

One begins by defining an integrating factor by means of the following elementary 

identity: 
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At this point, one multiplies Poisson’s equation by 2(d/dx) to obtain: 
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If one defines s and ds/dx, respectively, as  and d/dx characteristic of the 

semiconductor surface, i.e., x0, then this expression can be cast into definite integral 

form as follows: 
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Here, integration is taken from the surface into the bulk of the semiconductor.  

Obviously, d/dx must be proportional to the electric field, hence: 
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The integrals can be simplified by substitution of elementary forms, therefore one obtains 

the result: 
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Accordingly, at the surface of the semiconductor the electric field is determined in terms 

of the dimensionless potential at the surface and in the bulk: 
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Here, “sgn” denotes the signum function, which merely specifies the sign as positive 

(bands bend downward) or negative (bands bend upward).  Accordingly, total charge per 

unit area, Qs, is easily obtained using Gauss’ Law 
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Surface charge density versus bias voltage for both p and n-type semiconductor is shown 

in the following figure.  (In practice, bias voltage can be regarded as surface potential, s, 

plus some constant offset.) 
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Fig. 40: Surface potential versus bias voltage (red indicates negative charge, blue positive charge) 

 

If one identifies s as the the potential difference between the surface and the bulk, 

s, one finds that for a p-type substrate Qs declines rapidly as s, i.e., potential bias, 
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is increased from accumulation to the flat band condition (at which point, by definition Qs 

vanishes).  As s is increased beyond the flat band condition, i.e., to positive values, the 

magnitude of Qs increases slowly as the semiconductor surface is depleted.  Obviously, 

inversion must begin when s is equal to F, the Fermi potential in the bulk.  (One notes 

that F is equal to  for a p-type substrate.)  Furthermore, this implies that intrinsic and 

actual Fermi levels are exactly equal at the surface.  However, one finds that the 

magnitude of Qs still increases only slowly until s is approximately twice the bulk Fermi 

potential.  This defines the condition of weak inversion.  For values of s more positive 

than 2F, the magnitude of Qs increases rapidly, thus, defining strong inversion.  Clearly, 

strong inversion in a p-type semiconductor occurs if the Fermi level is as far above the 

intrinsic level at the surface as it is below the intrinsic level in the bulk.  (Of course, an n-

type substrate exhibits analogous behavior with corresponding sign senses reversed.) 

 

The Depletion Approximation 

 

Of particular importance in CV analysis is knowledge of the surface field when the 

semiconductor is in depletion.  In this case, carrier concentrations are small and can be 

ignored within the depletion region.  Furthermore, the depletion region is formally treated 

as a layer of definite width, xd.  This is called the depletion approximation.  Therefore, 

Poisson’s equation takes the simplified approximate form: 
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Moreover, since carrier concentrations are ignored, the assumption of uniform doping can 

be suspended and doping densities treated as general functions of x.  Within this context, 

it is useful to define the potential at the depletion region edge as, d, and the potential 

difference across the depletion region, , as  d.  Thus, Poisson’s equation is easily 

recast in terms of  as follows: 
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One readily integrates this expression from the depletion edge toward the semiconductor 

surface: 
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Of course, the electric field, E(x), vanishes at the edge of the depletion region.  

Furthermore, E(x) is just the negative of the potential gradient; hence, one can integrate a 

second time as follows: 
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If the order of the integrals over x and x is formally inverted, then the integral over x is 

readily simplified to give: 
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Obviously, this expression can be simplified no further without explicit knowledge of the 

net impurity distribution. 

If, for simplicity, one again assumes uniform doping, the previous expression can 

easily be recast as follows: 
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Thus, within this approximation, band bending has a parabolic shape as a function of 

distance from the surface of the semiconductor.  Furthermore, s is obtained by formally 

setting x equal to zero: 
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One can construct an approximate expression for the corresponding electric field by 

directly differentiating: 
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Of course, the field at the surface is, again, obtained if x is set equal to zero: 
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Likewise, the total charge per unit area in the depletion region is determined from Gauss’ 

Law: 
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Alternatively, this expression follows just from elementary consideration of net impurity 

concentration.  Furthermore, one finds that capacitance per unit area of the depletion 

region is just Qs /s as might be expected.  For completeness, it is useful to observe that 

within the depletion approximation the magnitude of Qs as a function of s is of simple 

square root form: 
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Of course, for n-type and p-type semiconductors Qs is negative and positive, respectively.  

Within this context, this formula is plotted in the previous figure and corresponds to the 

“parabolic” curve coinciding with depletion.  Clearly, as might be expected, the depletion 

approximation is no longer applicable upon the onset of inversion. 

 

Maximum Depletion Width 

 

The maximum depletion width expected under equilibrium conditions for a p-type 

substrate can be determined by inverting the previous approximate expression for s and 

replacing s by 2F, i.e., corresponding to the onset of strong inversion: 
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Naturally, this formula can be generalized to both n and p-type substrates by the simple 

expedient of replacing NAND with absolute value: 

 

DA

Fs
d

NNq
x




 2max

 
 

Of course, it follows from fundamental considerations that: 
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Hence, the Fermi potential is related to impurity concentrations as follows: 
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One substitutes this formula into the expression for the maximum depletion width, max

dx , 

to obtain the desired result: 
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It follows immediately that maximum capacitance of the depletion layer, Cs, corresponds 

to the formula: 
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In practice, both Cox and Cs are measured experimentally.  These values can then be used 

to determine oxide thickness and substrate doping.  However, these quantities are better 

measured by different methods and this is not the primary use of CV analysis, which is 

characterization of the electrical quality of an oxide film and the Si/SiO2 interface. 
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Capacitance-Voltage Measurement 
 

Capacitance-voltage (CV) measurements are conventionally made using a dedicated 

test fixture situated within a light excluding enclosure to prevent measurement errors due 

to extraneous photo-generated currents.  Typically, an unpatterned oxide layer is 

fabricated on a high quality silicon substrate, which is then metallized with a thin film of 

aluminum.  The thin film is patterned to form MOS capacitors, either at the time of 

deposition by use of a shadow mask or by means of conventional photolithography and 

chemical etching.  Alternatively, MOS capacitors can be fabricated by depositing, heavily 

doping, and patterning a polysilicon thin film instead of aluminum.  The advantage of the 

use of aluminum is that the deposition and patterning are very convenient; however, 

heavily doped polysilicon most closely approximates a finished transistor structure.  

Usually, electrical connection to the completed MOS capacitor is made to the topside 

aluminum or polysilicon contact by means of a thin tungsten probe and to the backside of 

the wafer by use of a conductive “chuck” which allows a partial vacuum to be drawn 

under the wafer, i.e., a “vacuum chuck”, thus facilitating electrical contact.  Although not 

absolutely necessary for capacitance measurements, it is generally advantageous to 

remove any pre-existing insulating layers from the back of the wafer.  (Indeed, it is usual 

for a layer of oxide to be grown on the back as well as the front of a wafer during thermal 

oxidation.)  This is easily done by etching in hydrofluoric acid, hydrogen fluoride vapor, 

or some other method.  If backside contact is found to be especially critical, the whole 

back of the wafer optionally may be metallized.  Furthermore, in practice, it is usual for 

the backside contact, i.e., the silicon substrate, to be held at ground and the frontside 

contact, i.e., aluminum or polysilicon, to be biased at some potential.  In general, it is 

found that useful information is obtained from CV measurements made for two different 

conditions, viz., quasistatic and high frequency.  (Typically, this data is used to construct 

a “CV plot” which graphically displays MOS capacitance (or capacitance per unit area) 

as a function of bias voltage.) 

 

Quasistatic Conditions 

 

As might be expected, quasistatic conditions correspond closely to equilibrium.  

Conventionally, a quasistatic CV measurement is made by sweeping bias voltage applied 

to an MOS capacitor so that the surface of the semiconductor changes from inversion to 

depletion and then to accumulation.  During this procedure, displacement current is 

measured as a function of time.  (Obviously, displacement current is just the transient 

charging current of the capacitor.)  Ideally, there is no true conduction current flowing 

through the oxide layer.  Even so, a small amount of “leakage current” invariably flows 

through any “real” oxide layer.  Of course, for quasistatic measurements to be useful the 

oxide must not be too “leaky”, otherwise, conduction current will be added to 

displacement current and measurements will be inaccurate.  (Generally, for a high quality 

oxide this current is negligible and can be ignored.)  Within this context, modern, 

computer-controlled CV analysis equipment can automatically correct for leakage (if it is 

not too large or erratic), thus, extending the usefulness of CV measurements to less than 

perfect oxide layers.  Obviously, integration of charging current over time merely results 

in a measurement of the charge stored in the MOS capacitor; hence, capacitance as a 
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function of voltage is determined by elementary identification of the product of 

capacitance and voltage as stored charge, i.e., CVQ. 

Clearly, if the surface of the semiconductor is either in accumulation or inversion, a 

layer of charged mobile carriers is present directly beneath the oxide.  (For notational 

convenience, an italicized C denotes capacitance per unit area and a non-italicized C 

denotes absolute capacitance.)  Thus, the measured capacitance, Cmax, is just the 

capacitance of the oxide layer alone (equal to CoxA such that, by definition, A is the area 

of the gate, i.e., the frontside contact).  In contrast, if the semiconductor is depleted, there 

is no layer of mobile carriers present underneath the oxide, i.e., at the Si/SiO2 interface.  

However, mobile carriers are present underneath the depletion region.  Therefore, in 

depletion, the measured capacitance consists of the series combination of the oxide 

capacitance and the capacitance of the depletion layer.  Of course, this combined 

capacitance must be less than Cmax.  Accordingly, as the voltage is swept from inversion 

to accumulation, during depletion the capacitance decreases from Cmax to a minimum, 

Cmin, corresponding to maximum depletion layer width and then rises again as the 

semiconductor becomes accumulated.  (By definition, Cmin is capacitor area, A, times 

minimum capacitance per unit area, Cmin.)  This essential behavior illustrated in the 

following figure: 
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Fig. 41: Idealized quasistatic CV plot (p-type substrate; accumulation at left) 

 

Clearly, Cmin is related to Cox and Cs as follows: 
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As defined previously, xo and ox are, respectively, thickness and dielectric constant of 

SiO2.  Likewise, max

dx  and s are maximum thickness and dielectric constant of the 

depletion layer.  Of course, electrical charges are still present within the depletion region 

due to ionized impurity atoms; however, these charges are fixed and do not move in 
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response to an applied bias (at low temperatures).  Consequently, these fixed charges can 

make no contribution to displacement current and do not result in a contribution to 

measured capacitance. 

 

High Frequency Conditions 

 

In quasistatic measurements, capacitance is measured directly by integrating charging 

current.  However, CV measurements can also be made by superimposing a small 

sinusoidally oscillating (AC) signal on the voltage sweep and measuring the 

corresponding impedance directly as a function of bias voltage.  (This requires the use of 

a high precision impedance meter.)  In this case, capacitance measured under conditions 

of accumulation and depletion can be expected to be the same as observed in quasistatic 

measurements, i.e., conditions still remain near equilibrium.  However, if the frequency 

of the AC signal is sufficiently high, capacitance measured under a condition of inversion 

is not the same as in the quasistatic case.  The explanation for this is quite simple and is a 

direct consequence of non-equilibrium behavior of the inversion layer.  Physically, any 

inversion layer must be formed from minority carriers generated in the depletion region 

and swept to the surface by the electric field.  (Of course, minority carriers may be also 

generated in the bulk and diffuse into the depletion region.)  Equilibrium conditions 

imply that there is sufficient time (by definition) for the inversion layer carrier 

concentration to respond to any changes in applied field.  However, if the material quality 

of the silicon is good, carrier generation-recombination processes occur very slowly, with 

a time constant on the order of milliseconds.  Therefore, for an applied AC voltage in the 

megahertz range, the response of the inversion layer is simply too slow to “follow” the 

signal and similar to ionized dopant impurity atoms, the inversion layer appears fixed 

with respect to the AC component of the bias.  (Of course, the inversion layer does 

respond to the primary voltage sweep.)  This behavior is shown in the following figure: 
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Fig. 42: Idealized high frequency CV plot (p-type substrate; accumulation at left) 

 

Therefore, for high frequency conditions, the capacitance per unit area measured in 

inversion is the series combination of oxide capacitance per unit area and capacitance per 
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unit area of the depletion region.  Furthermore, since, the depletion width reaches a 

maximum value, the combined capacitance per unit area saturates at Cmin. 

 

Interpretation of Ideal Capacitance-Voltage Measurements 

 

In principle, measurements of capacitance versus voltage can be made either by 

sweeping the applied voltage from accumulation to inversion ( to + voltage for p-type; + 

to  for n-type) or inversion to accumulation (+ to  voltage for p-type;  to + for n-type).  

For quasistatic measurements the direction of the sweep makes essentially no difference 

in the form of the CV plot, again, since the MOS capacitor remains nearly at equilibrium.  

However, for high frequency measurements, the form of the CV plot can differ in the 

inversion region depending on the direction and rate of the voltage sweep.  As asserted 

previously, this behavior is due to the kinetics of minority carrier generation.  Clearly, if 

the time constant for generation-recombination processes is long (indicative of a high 

quality substrate), then the inversion layer may not fully form during a fast voltage sweep 

from accumulation to inversion.  Thus, the depletion region may grow larger than one 

would otherwise expect for equilibrium conditions.  This phenomenon is called deep 

depletion and is illustrated below: 
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Fig. 43: Deep depletion for sweep from accumulation to inversion (p-type substrate; accumulation at left) 

 

Although deep depletion is generally a nuisance in conventional CV analysis and, as 

such, to be avoided, it is possible to take advantage of this effect to determine the time 

constant of carrier generation-recombination processes, i.e., minority carrier lifetime, for 

the substrate.  As asserted previously, generation-recombination is slow for a high quality 

substrate; hence, minority carrier lifetime is long.  However, minority carrier lifetime is 

significantly shortened (on the order of microseconds) in defected or contaminated 

semiconductor due enhancement generation-recombination processes.  Moreover, if 

minority carrier lifetime is short, not only is deep depletion absent, but, even at high 

frequency one may observe the onset of equilibrium behavior, i.e., MOS capacitance 

increases in inversion.  Accordingly, minority carrier lifetime can be estimated by 

determining the dependence of inversion capacitance on sweep rate.  The derivative of 
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this function extrapolated back to equilibrium conditions is proportional to minority 

carrier lifetime. 

In practice, to avoid deep depletion, high frequency CV measurements are nearly 

always made by sweeping the applied bias voltage from inversion to accumulation.  

Furthermore, prior to application of the voltage sweep, the substrate is fully inverted by 

appropriate biasing and illumination of the surface.  (Illumination enhances the formation 

of an inversion layer by providing photo-generated minority carriers.)  Of course, the 

voltage sweep itself should be made without illumination.  One finds that the form of 

associated CV plots essentially depends on oxide thickness and the substrate doping 

(among other factors).  Obviously, ideal MOS capacitance per unit area, C, is constructed 

by the usual series combination: 
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(In accumulation, xd vanishes, in inversion, xd is equal to max

dx , and in depletion xd varies 

smoothly between these two values.)  Clearly, if substrate doping is constant, an increase 

in oxide thickness reduces the capacitance of the oxide layer; thus, the total MOS 

capacitance is also reduced.  Furthermore, the position of the depletion region as a 

function of bias moves to higher values of voltage magnitude since it is really the electric 

field magnitude at the interface which determines surface conditions (i.e., a higher 

voltage magnitude must be applied across a thicker oxide to obtain the same electric field 

magnitude at the Si/SiO2 interface.)  Conversely, if oxide thickness is constant, a change 

in substrate doping causes a corresponding change in depletion layer capacitance.  This is 

easy to understand because increasing (or decreasing) substrate doping causes the 

maximum width of the depletion layer to be reduced (or increased).  Therefore, for a 

specified oxide thickness, Cox remains constant and Cmin changes as a function of 

substrate doping; however, the position of the onset of depletion as a function of voltage 

remains unaffected. 

 

The Effect of Fixed Charges 

 

Ideally, there is essentially no uncovered charge within a high quality thermal oxide 

layer.  However, in reality, it is possible for charges to become more or less permanently 

trapped within the oxide layer or at the Si/SiO2 interface.  Furthermore, in many cases 

these charges behave as if they are fixed.  Therefore, in analogy to ionized impurity 

atoms in the substrate, such fixed oxide charges do not participate in nor are changed by 

charging the MOS capacitor.  However, the existence of extraneous fixed charges does 

cause an overall shift in the position of the depletion region with respect to applied bias 

voltage.  This is easily understood in elementary terms, since if one solves Poisson’s 

equation, one finds that a layer of fixed charge inside the oxide layer just results in a 

constant potential offset.  This is most conveniently analyzed by considering the 

capacitance and voltage for which the semiconductor is in a flat band condition. 

Accordingly, one begins by considering surface differential capacitance per unit area 

in the semiconductor substrate subject to the assumption that the MOS capacitor is 
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essentially at equilibrium.  Obviously, this limits consideration to low frequency or 

quasistatic conditions.  Clearly, for an arbitrary surface potential, i.e., arbitrary bias 

voltage, it follows from the fundamental definition of depletion layer capacitance that: 

 

sds CQ 
 

 

Here, Qs and s denote differential changes in surface charge density and potential.  

(Absolute values appear so that this analysis can be applied to either n or p-type 

substrates.)  Clearly, the partial derivative of surface charge density with respect to 

dimensionless surface potential is directly obtained from the explicit expression for Qs 

constructed previously: 
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Clearly, one determines capacitance per unit area directly by multiplying the preceding 

expression by q/kT, hence: 
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It is convenient to define a dimensionless band bending potential, s, as s, hence: 
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Of course, the flat band condition occurs when s exactly vanishes; hence, one must 

consider the limit: 
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Here, FB

dC  is defined as the value of Cd at flat band conditions.  To determine the limit, 

one formally substitutes exponentials for hyperbolic functions  
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Next, one makes use of the Taylor series of the exponential function such that: 
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Obviously, high order terms are negligible in the series expansions; hence, only low order 

terms have been retained, viz., linear in the numerator and quadratic in the denominator.  

Thus, it follows immediately from the elementary relationship of exponential and 

hyperbolic functions that: 
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Likewise, it follows immediately from the definition of Fermi potentials that: 

 

in

np

2

)()(
cosh




 
 

Furthermore, in an extrinsically doped semiconductor, majority carriers predominate, 

hence, one can approximate the preceding expression explicitly in terms of net doping 

density: 
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Thus, the capacitance of the depletion layer per unit area subject to flat band conditions 

has the form: 
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Accordingly, extrinsic Debye length is defined as follows: 
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Physically, Debye length is a characteristic distance that some external electric field can 

penetrate a neutral semiconductor surface without substantially perturbing the 

semiconductor away from neutrality.  (This external field can arise either from a contact 

potential or an applied bias.)  Thus, Debye length can be interpreted as an “effective 

shielding distance”.  In many physical systems multiple Debye lengths can be identified.  

(Indeed, for a semiconductor, both intrinsic and extrinsic Debye lengths are commonly 

defined.)  Moreover, it is evident that the shortest Debye length can be expected to 

dominate (provided that it is substantially shorter than the nearest alternative).  Indeed, 
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for a typical extrinsic semiconductor at room temperature, D<<i.  Thus, it is reasonable 

that FB

dC  is simply s/D.  Obviously, flat band capacitance per unit area, CFB, is readily 

constructed, thus: 
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As expected, CFB appears as a series combination of oxide and depletion layer 

capacitances. 

If substrate doping is known, CFB is easily determined from measured values of Cox 

and Cmin obtained from a high frequency CV plot.  First of all, one observes that 

maximum depletion width and extrinsic Debye length are related directly as follows: 
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Thus, CFB takes the form: 
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Naturally, Cs is directly related to Cmin as follows: 
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Therefore, it immediately follows that: 
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Of course, this expression is easily recast in terms of absolute flat band capacitance, CFB, 

and measured values of absolute capacitances, Cmax and Cmin, again, obtained from a high 

frequency CV plot: 
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This formula frequently appears in practical guides to CV measurements.  Clearly, CFB is 

the series combination of capacitances, CoxA and FB

dC A.  Furthermore, once CFB has been 
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determined, flat band voltage, VFB, is easily specified from experimental data (i.e., one 

just “reads off” the voltage that corresponds to CFB from the CV plot). 

Ideally, the flat band voltage should correspond just to the effective work function 

difference between the metal contact and the doped silicon substrate.  However, if 

uncovered charges are present within the oxide layer, then the flat band voltage 

corresponds to the expression: 
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Here, )(xox  is charge density in the oxide and is regarded as a function of depth from 

the oxide surface.  (This expression is easily derived from Poisson’s equation.)  Clearly, 

the nearer a charge is the Si/SiO2 interface, the larger is its contribution to flat band 

voltage.  In many cases, it is reasonable to assume that all of the oxide charge is located 

at or very near the Si/SiO2 interface.  In this case, one defines fixed charge per unit area, 

Qf; hence, the above expression takes the form: 
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Almost invariably, Qf is found to be positive, in which case VFB is more negative than the 

work function difference.  Hence, if positive fixed charges are present near the Si/SiO2 

interface, then the CV plot is translated to more negative values of bias voltage, but 

functional form remains undistorted.  This translation from the ideal flat band voltage 

corresponding to the simple work function difference, to flat band voltage experimentally 

observed in a CV plot is called flat band shift, VFB, and is illustrated below: 
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Fig. 44: Flat band shift due to oxide fixed charge (p-type substrate; accumulation at left) 
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Clearly, the actual CV plot is shifted by VFB toward more negative bias voltage in 

comparison to the ideal CV plot.  The flat band shift, VFB, has a magnitude of Qf /Cox 

and, therefore, is a direct measure of fixed charge density. 

Physically, fixed charges arise from a variety of sources.  They may be “grown in” 

due to the oxidation process itself or they may be the result of contamination or radiation 

damage.  Of particular interest are fixed charges that arise as a result of mobile ion 

contamination (K+, Na+, Li+, etc.).  Mobile ion contamination may be differentiated from 

other types of fixed charge by use of a bias stress test.  The technique is as follows: First, 

an initial high frequency CV measurement is made.  Second, a large positive bias is 

applied to the gate and simultaneously the substrate is heated to 200C.  This treatment 

should serve to sweep any mobile ions dissolved in the oxide to the Si/SiO2 interface.  

Third, the bias is removed, the substrate cooled, and a second CV measurement is made.  

If the second CV plot is translated to more negative values in comparison to the initial 

CV plot, but there is no significant distortion in the shape, then the presence of mobile 

ion contamination within the oxide layer is indicated.  This result can be confirmed by 

applying a large negative bias to the gate and, again, heating the substrate.  A CV plot 

obtained after this treatment should show some evidence of “recovery”, i.e., translation of 

the CV plot back to more positive values. 

 

The Effect of Interface Traps and Fast Surface States 

 

Other important phenomena readily observable in CV measurements are the existence 

of interface traps and fast surface states at the Si/SiO2 interface.  Theoretically, such 

interface quantum states must arise naturally due to the broken symmetry caused by 

termination of the crystal lattice at a surface.  Furthermore, these states may have 

characteristic energies that lie within the band gap of the bulk crystal, thus, reducing 

minority carrier lifetime.  Physically, interface traps and fast surface states can be 

regarded as arising from unsatisfied, i.e., dangling, bonds which appear upon transition 

from single crystal silicon to amorphous silicon dioxide.  Generally, it is found that the 

density and energy distribution of interface traps and fast surface states is very dependent 

on processes and/or materials.  Semantically, the difference between interface traps and 

fast surface states is somewhat vague; however a useful distinction can be made by 

consideration of time constants.  Within this context, a fast surface state has a charging 

time constant sufficiently short so that its response is observable in a high frequency CV 

measurement.  This causes distortion and “stretch-out” of the corresponding CV plot.  In 

contrast, an interface trap has a longer charging time constant so that distortion of high 

frequency CV measurements is minimal.  Of course, both fast surface states and interface 

traps are observable in quasistatic CV measurements.  Obviously, if significant distortion 

is visible in a measured high frequency CV plot, then the quality of the Si/SiO2 interface 

is very poor and no further analysis is required.  Such distortion is illustrated in the 

following figure 
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Fig. 45: Distortion due to fast surface states (p-type substrate; accumulation at left) 

 

As a practical matter, it has long been known that fast surface states can be “passivated” 

by means of low temperature heat treatment (400-450C) in a hydrogen containing 

ambient, e.g., in “forming gas”.  (Presumably, the hydrogen diffuses to the Si/SiO2 

interface and satisfies dangling bonds.) 

However, if high frequency CV measurements exhibit minimal distortion, then 

measurement of interface trap capacitance per unit area, Cit, is particularly useful as a 

quantitative measure of the quality of a Si/SiO2 interface.  In practice, Cit can be 

determined by a direct comparison of quasistatic and high frequency CV data taken for 

the same capacitor.  Obviously, the essence of the method relies on the charging kinetics 

of interface traps.  Again, in a quasistatic measurement, interface traps result in a 

contribution to capacitor charging current, but since time constants of interface traps are 

relatively long, the effect of interface traps is absent (or at least greatly reduced) in a high 

frequency measurement.  Therefore, the difference between quasistatic and high 

frequency CV measurements under conditions of depletion allows direct determination of 

Cit: 
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Here, LF

dC  and HF

dC  are depletion layer capacitances per unit area obtained respectively 

by observation of quasistatic and high frequency MOS capacitances per unit area, CLF and 

CHF.  Clearly, in the preceding formulation, observed depletion layer capacitance is 

regarded as the series combination of interface trap capacitance and “true” depletion layer 

capacitance.  Of course, absolute interface trap capacitance, Cit, is just CitA and, thus, 

corresponds to the formula: 
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Obviously, CLF and CHF are observed quasistatic (i.e., low frequency) and high frequency 

MOS capacitances and, naturally, Cmax is just CoxA.  Alternatively, one can define C 

simply as the difference between high frequency and low frequency capacitances, i.e., 

CLFCHF: 
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Of course, it is desirable for Cit to be small. 

To express these measurements in a more fundamental form, it is possible to relate Cit 

directly to total interface trap density, Dit.  To begin, one observes that interface traps 

may exhibit either acceptor-like or donor-like behavior.  Physically, this means that 

acceptor-like traps behave in analogy to shallow level impurity states associated with 

acceptor dopant atoms and, hence are negatively charged when occupied by electrons.  

Conversely, donor-like trap states behave similarly to shallow level impurity states 

arising from donor dopant atoms and are positively charged when occupied by holes, i.e., 

unoccupied by electrons.  Of course, in contrast to shallow level impurity states, which 

are distributed throughout the bulk of the semiconductor crystal, interface trap states are 

localized at the Si/SiO2 interface.  Physically, at equilibrium interface trap charge per unit 

area due to acceptor-like traps, a

itQ , corresponds to the integral expression: 
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Here, a

itD  is the density of acceptor-like interface trap states and f(E) is the Fermi-Dirac 

distribution function for electrons.  In this analysis the rigorous Fermi-Dirac distribution 

function must be used since interface trap states may have energies close to the Fermi 

level, i.e., inside the band gap.  Of course, an explicit factor of q must also appear since 

electrons carry a single negative fundamental unit of charge.  Naturally, a complementary 

expression for interface trap charge per unit area due to donor-like traps, d

itQ , can be also 

be constructed as a definite integral as follows: 
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Of course, d

itD  is the density of donor-like interface trap states and in this case, the factor 

q appears since holes are positively charged.  Furthermore, 1 f(E) appears within the 

integrand instead of f(E) since the charged state of a donor-like trap corresponds to an 

unoccupied electronic state.  In both of the preceding expressions, the integral is taken 

over energies within the band gap. 
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Of course, during a CV measurement, bias voltage is slowly varied, which causes a 

corresponding variation in the surface potential, s.  Therefore, one can write: 
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Here, a

itQ  and d

itQ  are variations in interface trap charge associated with acceptor-like 

and donor-like states, respectively, and Qit is the variation in total interface trap charge.  

By definition, qs is the difference between the actual Fermi level and the intrinsic Fermi 

level at the Si/SiO2 interface.  Therefore, it is clear that if s becomes more negative, 

acceptor-like states discharge (become neutral) and donor-like states become charged.  

Conversely, if s becomes more positive, acceptor-like states become negatively charged 

and donor-like states discharge.  Since, capacitance is always defined to be positive, it 

follows that Cit is merely Qit/s, hence: 
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Here, Dit is the total interface trap density and is the sum of a

itD  and d

itD .  As a matter of 

mathematics, the partial derivative with respect to s can be formally replaced with a 

partial derivative with respect to E: 
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From the well-known form of the Fermi-Dirac distribution function, an explicit 

expression for the partial derivative immediately follows: 
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This function is sharply peaked about a value of E equal to qs with a peak width of order 

kT.  Therefore, a good approximation to the exact integral is obtained if one assumes that 

Dit is constant over an energy interval of order kT, i.e., one assumes that Dit is a smooth, 

slowly varying function of energy, thus: 
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Provided that s is has a value that does not locate the Fermi level near the band edges, it 

is obvious that the Fermi-Dirac distribution function difference is very close to unity, 

hence: 

 

itit DqC 2
 

 

It is clear from this expression that the physical interpretation of Dit is the number of trap 

quantum states per unit energy per unit area defined on an energy domain characteristic 

of the band gap. 

A typical plot of Dit with respect to surface state energy is shown in the following 

figure: 

 

 

Fig. 46: Interface state density as a function of electronic energy for [111] and [100] silicon surfaces 

 

Clearly, Cit and, hence, Dit are functions of bias voltage applied during quasistatic and 

high frequency CV measurements.  If one recalls the position of the Fermi level at the 

semiconductor surface for the various conditions of bias, a physical interpretation of this 

behavior is readily formulated.  Accordingly, irrespective of substrate doping, if the 

applied bias of an MOS capacitor is swept from negative to positive values, then the 

surface Fermi level effectively moves upward through the band gap due to changes in 

band bending.  By definition, electronic energy states below the Fermi level tend to be 

occupied, while those above the Fermi level tend to be empty.  Therefore, as the Fermi 
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level moves upward through the band gap, empty electronic states, i.e., interface trap 

states and fast surface states, of corresponding energy become occupied.  Since electrons 

carry one fundamental unit of charge, these transitions make a directly observable 

contribution to Cit.  The bias voltage at which an interface trap becomes charged is 

directly related to its energy and, hence, its position relative to the band gap.  Thus, 

observation of Cit allows Dit to be determined as a function of electronic energy measured 

relative to the band gap as is shown in the preceding figure.  Within this context, a 

common “rule of thumb” is that Dit should no more than 1(1011) cm–2 eV–1.  Clearly, this is 

easily realized on a [100] silicon surface, but not on a [111] surface.  (Since, a stable 

switching threshold is essential to reliable operation of modern CMOS transistors, it is 

critical to obtain a low density of interface traps; hence, this provides a major motivation 

for the usual preference of [100] silicon substrates for device fabrication.) 
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Current-Voltage Measurement 
 

Of course, if a dielectric thin film, e.g., thermal silicon dioxide, is to serve as a high 

quality insulator, then as asserted previously, it is desirable that very little current, i.e., 

leakage current, should flow if the insulator layer is subjected to normal bias conditions.  

Therefore, in addition to desirable capacitance-voltage (CV) characteristics, a thermal 

oxide layer must also have desirable current-voltage (IV) characteristics.  Obviously, 

these can also be measured using the same MOS structures as fabricated for CV 

measurements.  However, physical interpretation is substantially simpler than in the case 

of CV analysis since the semiconductor substrate, provided that it is sufficiently 

conductive, is unimportant in IV characterization of a thermal oxide layer. 

In principle, IV measurement is quite simple and simply requires biasing the oxide 

layer at a designated voltage and then measuring resultant current flow.  In practice, one 

observes the measured current as a function of bias voltage.  However, this is exactly 

what was done in a quasi-static CV measurement.  So, what is the difference between IV 

and quasi-static CV measurements?  To be specific, there are two major differences.  

First of all, for a quasi-static CV measurement, transient displacement current, i.e., 

capacitor charging current, is measured.  In contrast, for an IV measurement, one is 

interested only in steady-state (DC) current, i.e., true conduction current, which continues 

to flow after the transient has decayed, i.e., after the MOS capacitor has become fully 

charged at the applied bias voltage.  (Indeed, as asserted previously, this current must be 

formally subtracted from displacement current in order to obtain an accurate quasi-static 

CV plot.)  Second, the bias voltage in an IV measurement is generally carried to values 

for which the oxide layer breaks down, i.e., fails as an insulator.  Moreover, once break 

down has occurred, the oxide layer is permanently damaged, thus IV measurements can 

be made one time only on any particular MOS structure, i.e., IV testing is essentially 

destructive.  This requires that a substantial number of test structures must be measured 

in order to generate meaningful statistics.  Clearly, break down of the oxide at the outset 

caused by application of a large initial bias voltage must be avoided.  Therefore, IV 

measurements should be made by sweeping voltage bias slowly from zero toward either 

positive or negative values, but not as in a CV measurement by sweeping from positive to 

negative voltages through zero bias (or the reverse). 

 

Conduction Mechanisms 

 

For relatively thick oxide layers, the IV response of “good” oxide is quite simple.  At 

voltage biases well below break down, very little current flows (on the order of a few 

pA/cm2).  However, once break down occurs, current rises very rapidly.  On a semi-

logarithmic plot (i.e., current plotted on a logarithmic scale versus voltage or electric field 

plotted on a linear scale) an ideal thick oxide IV response appears as a flat or slowly 

rising curve below break down at which point the plot becomes essentially vertical.  

Obviously, if a large amount of current flows at voltage biases significantly lower than 

the expected break down voltage, then the oxide quality is poor.  Of course, break down 

voltage must be directly dependent on oxide film thickness; however break down field 

strength is essentially independent of thickness.  In general, break down fields for high 

quality oxides are of magnitude 10-12 MV/cm. 



 123 

For thin oxides, IV response is complicated by the phenomenon of quantum 

mechanical tunneling (which is a fundamental physical phenomenon that is a direct 

consequence of the Heisenberg Uncertainty Principle).  To be specific, it is impossible to 

confine particles (such as electrons) completely by a finite potential barrier (such as 

provided by a layer of thermal oxide in an MOS structure).  Therefore, some current can 

always be expected to “leak”, even through a materially “perfect” insulator completely 

free of defects.  Within this context, in a typical plot of IV response, tunneling current 

appears as a rising characteristic in the region just below break down.  However, particle 

confinement substantially depends on barrier thickness, and thus, is significant only for 

very thin oxide layers.  This is apparent in the following figure, which illustrates typical 

IV responses for “thick”, “thin”, and “very thin” oxide layers: 
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Fig. 47: Idealized current-field characteristics of thick, thin, and very thin thermal oxide layers 

 

Here, for simplicity break down field strength is taken to be the same for each oxide 

layer; however in actual practice it is likely to be somewhat more variable.  In general, 

tunneling current is essentially independent of oxide quality. 

Physically, it is found that at low bias voltages, several electrical conduction 

mechanisms can exist within thermal oxide.  Naturally, the presence of foreign impurities 

can greatly enhance conduction due to the introduction of physical defects (pinholes, 

etc.).  For impurity free oxides, however, Frenkel-Poole emission and Fowler-Nordheim 

tunneling are the most common low-field conduction mechanisms.  As asserted 

previously, tunneling is a normal phenomenon that cannot be prevented, and which 

allows charge carriers, e.g., electrons, to pass through a potential barrier even though 

available energy for such a process is insufficient.  (This accounts for the terminology; 

since such a particle does not “pass over” the barrier, but “tunnels through” the barrier.)  

Accordingly, it follows directly from elementary quantum mechanics that the current-

field characteristic for Fowler-Nordheim tunneling has an athermal exponential 

characteristic of the form: 
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Here, AFN and Eo are characteristic constants, J is leakage current density, and E is applied 

field strength.  (A more fundamental expression for Eo can be written in terms of an oxide 

barrier height, electron effective mass, the fundamental unit of charge, and Planck’s 

constant.)  Of course, Fowler-Nordheim tunneling is important in high quality oxides 

only if they are very thin.  However, if there are a large number of “trap states” for 

electrons distributed within the oxide layer, then tunneling can occur “trap-to-trap”.  This 

mechanism causes a dramatic increase in leakage current in comparison to oxides which 

have a low trap state density, i.e., that are essentially trap free.  Furthermore, trap states 

are generally associated with the fixed oxide charges that are observable in CV 

measurements.  Of course, a large amount of oxide fixed charge and an associated high 

density of trap states is indicative of a poor quality oxide.  Therefore, a large amount of 

oxide leakage current observed at a low bias voltage can be expected to be correlated 

with a high trap state density. 

Frenkel-Poole emission is also mediated by electronic trap states and occurs if the 

electric field within the oxide layer becomes large enough so that electrons trapped 

within the oxide layer are directly injected into the conduction band of the 

semiconductor.  Consequently, it is found that the current-field characteristic for Frenkel-

Poole emission has the form: 
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Here, AFP is a “pre-exponential” constant and B is a barrier height characteristic of the 

oxide trap states.  Clearly, in contrast to tunneling, Frenkel-Poole emission is a thermally 

activated process.  Another less important conduction mechanism similar to Frenkel-

Poole emission is Schottky emission, which also has a thermally activated current-field 

characteristic: 
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Here, A* is a coefficient known as “effective Richardson constant” and B is, again, trap 

barrier height.  Both Frenkel-Poole and Schottky emission processes should be negligible 

in high quality thermal oxide, since both mechanisms require a reasonably large density 

of trap states within the oxide.  Typically, a large density of trap states is the result of 

contamination, damage, and/or generally poor processing. 

Two other possible oxide conduction mechanisms are ohmic and ionic conduction.  

Both of these are thermally activated: 
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Clearly, these are just Arrhenius forms defined such that Eae and Eai are, respectively, 

activation energies for ohmic and ionic conduction processes and Ae and Ai are 

corresponding pre-exponential factors.  Neither one of these conduction mechanisms 

should ever be observed in high quality thermal oxide.  By definition, ionic conduction 

can only occur if the oxide is greatly contaminated with some type of mobile ionic 

species, e.g., sodium.  Ohmic conduction can occur only if the chemical composition of 

the oxide layer is disturbed. 

For completeness, it is worthwhile to consider conduction mechanisms associated 

with normal oxide break down.  If the electric field becomes very high, the current 

density through the oxide may become mobility limited. 

 

3

2

8

9

o

ox

eox

x

V
J




 
 

Clearly, in this expression the electric field does not itself appear, but rather J depends on 

bias voltage directly.  Furthermore, ox

e  is identified as electronic mobility within the 

oxide layer and is analogous to electronic mobility as defined for the semiconductor 

substrate.  Physically, just as in the semiconductor substrate itself, mobility is determined 

by electron scattering from atomic species, i.e., silicon and oxygen atoms.  Of course, 

since silicon dioxide is an insulator, one expects that ox

e  should be much smaller than the 

corresponding electronic mobility of silicon.  If the electric field strength due to the 

applied bias voltage is relatively small, electron scattering processes are essentially 

elastic and cause no changes in the oxide network structure.  However, at or near break 

down, the electric field strength becomes large.  In this case, free electrons injected into 

the surface of the oxide layer collide with bound atomic electrons causing them also to 

become free and then to be accelerated by the applied bias.  This process is called 

electron impact ionization.  The newly freed electrons can then collide with additional 

bound atomic electrons, thus multiplying the current in a “chain reaction” or avalanche.  

This accounts for the rapidly rising current-field characteristic typical of oxide break 

down.  In these circumstances it is not surprising that the high current density associated 

with avalanche break down permanently damages the oxide layer. 

 

Oxide Reliability 

 

In addition to determination of interface trap density, leakage current, or break down 

field, an additional critical criterion for oxide quality is reliability, which is quantified as 

an estimate of expected performance of an oxide layer over some projected usable 

lifetime.  Common methods for determination of oxide reliability are charge-dependent-

breakdown (QDB) and time-dependent-breakdown (TDDB) analysis.  In QDB analysis, 

an MOS capacitor is biased using a constant current source.  Obviously, as current is 

“pumped into” the capacitor, bias voltage must rise until, finally, the capacitor breaks 

down.  Total injected charge is determined simply by multiplying the applied current by 

the time to reach break down.  In general, the larger the total injected charge, the more 

reliable the oxide layer.  In contrast, in TDDB analysis, bias voltage is held constant.  In 
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this case, the current flowing through the capacitor is variable.  Again, the MOS structure 

is subject to electrical stress until break down is observed.  In principle, TDDB analysis 

does not require a particular bias voltage, which may be chosen consistent with device 

characteristic or simply for convenience.  Even so, if the chosen bias is too small, then 

the length of time to observe break down may become extremely long.  Conversely, if the 

bias voltage is too high, TDDB results may not correspond closely to actual operating 

conditions.  In practice, the bias level for TDDB analysis should be set about twice the 

maximum bias to which an oxide layer will be subjected during normal operation. 

For both QDB and TDDB analysis, results will differ depending on whether electrons 

are injected into the oxide layer from the substrate or from the gate.  Therefore, for 

purposes of comparison, one must adopt a consistent measurement technique.  Also, a 

reasonably large number of MOS capacitors must be measured to obtain an acceptable 

degree of statistical confidence.  In practice, QDB and TDDB data is interpreted by 

construction of a cumulative probability plot, which has total injected charge (i.e., QDB) 

or time (i.e., TDDB) required to observe failure (i.e., oxide break down) as the horizontal 

axis and fraction failed, i.e., failure probability, as the vertical axis.  If, for example, a 

sample of one hundred MOS capacitors is tested until break down is observed, a 

cumulative probability plot is constructed by ranking measurements from the smallest 

observed injected charge or shortest time observed for break down and plotting rank 

against charge or time.  In this case, the rank corresponds directly to probability of failure 

measured in per cent as illustrated in the following figure: 
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Fig. 48: Cumulative probability plots showing good reliability, poor reliability, and “infant” mortality 

 

Obviously, sample size need not restricted to any particular number, e.g., one hundred, 

but may be chosen arbitrarily provided statistical confidence is sufficient. 

A “good” QDB or TDDB result is characterized by a nearly vertical distribution of 

data points.  This indicates that all of the measured structures are very similar in 

behavior.  Naturally, the larger the average total injected charge or the longer the average 

time required for break down, the more reliable the oxide.  In contrast, the data points 

may be distributed more horizontally over some range of probability.  This indicates that 

the behavior of the measured structures is inconsistent and that the failure probability 
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distribution is very broad or perhaps even bimodal.  Such a result is almost certainly 

caused by defects or damage in the oxide layer and, in general, represents a “bad” result.  

Within this context, there is one special case worth consideration, which is characterized 

by a horizontal distribution of points at low probability above which the points are 

distributed more vertically and about a reasonably high value of average charge or time.  

This is characteristic of “infant” mortality.  Obviously, it is desirable to eliminate such 

behavior; however this is not always practical in the fabrication process itself.  An 

alternative (albeit a somewhat costly one) is to perform a “burn-in” in which finished 

devices are stressed well beyond normal operating conditions.  Presumably, this 

precipitates early or infant failures and the remaining devices should have reliability 

characteristics of the vertically distributed points. 

In general, one observes that absolute QDB and TDDB results will vary with respect 

to measurement conditions (i.e., injected current density, bias voltage, temperature, etc.).  

However, QDB and TDDB results observed under different conditions can be directly 

compared by application of a suitable reliability model.  In this case, one obtains a mean 

time to failure or MTTF extrapolated from actual measurement conditions to some 

normal operating condition.  There are several reliability models available for this 

purpose and there is still considerable debate regarding which model is more realistic.  

However, if TDDB measurements are made at several bias voltages, it is straightforward 

to extrapolate average break down time at a value of electric field consistent with normal 

operation.  Although not always possible, it is desirable that this result, i.e., MTTF, 

should be quite long (perhaps, even a few hundred years).  In practice, the desired 

extrapolation may be made by plotting average break down time versus electric field or 

reciprocal field.  Physically, use of the reciprocal field is justifiable since the logarithm of 

Fowler-Nordheim tunneling current density is proportional to 1/E.  However in practice, 

more realistic estimates of MTTF seem to be obtained from empirical extrapolations 

using just the electric field itself.  Ideally, for QDB measurements, the actual charge 

required for oxide failure should be independent of the magnitude of forced current.  In 

this case, MTTF can be estimated just from the measured value of QDB and oxide 

leakage current characteristic of normal operation.  However, as a practical matter QDB 

may be found to depend on forcing current.  In this case, an extrapolation of QDB to 

operating conditions can be made in close analogy to methods for extrapolation of MTTF 

from TDDB measurements. 
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Physical Characterization of Thermal Oxide 
 

In addition to electrical characterization of thermal oxide using CV or IV methods, 

there are other useful physical techniques for characterization of thermal oxide films.  

These generally rely on optical measurements and are used to measure physical film 

thickness, refractive index, etc. 

 

Reflectance Spectroscopy and Interferometry 

 

In general, it is well known that a transparent thin film having a thickness 

commensurate with the wavelength of visible electromagnetic radiation will appear 

colored when it is illuminated by a broad band white light source, e.g., sunlight or other 

incandescent source.  This is caused by interference between light reflected from the top 

and bottom interfaces of the thin film.  Of course, the intensity of the various reflected 

spectral components is determined by the relative phase between the two reflections.  

Naturally, the most intense reflected wavelengths will be those for which reflected 

components are “in-phase”, i.e., interference is constructive.  Consequently, it is evident 

that not all components of illuminating white light are reflected uniformly and, thus, the 

reflected light appears colored rather than white.  (This same phenomenon is readily 

observed in everyday life in the colors generated by thin oil or soap films.)  The apparent 

color or more precisely the spectral composition of the reflected light is directly related to 

the thickness of the thin film.  This phenomenon is summarized in the following table: 

 

m     Apparent Color m     Apparent Color m     Apparent Color 

0.00     Metallic or white 

0.05     Tan 

0.07     Brown 

0.10     Dark violet to red-violet 

0.12     Royal blue 

0.15     Light blue to metallic 

blue 

0.17     Metallic to very light 

yellow-green 

0.20     Light gold or yellow; 

slight metallic look 

0.22     Gold with slight yellow-

orange 

0.25     Orange to melon 

0.27     Red-violet 

0.30     Blue to violet-blue 

0.31     Blue 

0.32     Blue to blue-green 

0.34     Light green 

0.35     Green to yellow-green 

0.36     Yellow-green 

0.37     Green-yellow 

0.39     Yellow 

0.41     Light orange 

0.42     Carnation pink 

0.44     Violet-red 

0.46     Red-violet 

0.47     Violet 

0.48     Blue-violet 

0.49     Blue 

0.50     Blue-green 

0.52     Green; quite strong 

0.54     Yellow-green 

0.56     Green-yellow 

0.57     Yellow; washed out 

toward gray 

0.58     Light orange or yellow 

with a pink cast 

0.60     Carnation pink 

0.63     Violet-red 

0.68     Blue-gray; washed out 

with a red cast 

0.72     Blue-green to green; 

strong 

0.77     Yellow; washed out 

0.80     Orange; quite strong 

0.82     Salmon 

0.85     Light red-violet; dull 

0.86     Violet 

0.87     Blue-violet 

0.89     Blue 

0.92     Blue-green 

0.95     Yellow-green; dull 

0.97     Yellow; somewhat 

washed out 

0.99     Orange 

1.00     Carnation pink 

1.02     Violet-red 

1.05     Red-violet 

1.06     Violet 

1.07     Blue-violet 

1.10     Green 

1.11     Yellow-green 

1.12     Green 

1.18     Violet 

1.20     Violet-red 

Table 3: Apparent colors of thermal oxide of various thickness (in m; viewed normal to the surface) 
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Here, oxide thickness is specified in micrometers and apparent colors are specified 

empirically.  Naturally, reflectance spectroscopy allows quantification and relies on 

analysis of the spectral composition of normally reflected light from an oxide thin film.  

Indeed, in simplest form no equipment other than a “calibrated human eyeball” is 

required.  As is clear from the preceding table, experienced observers can easily estimate 

oxide thickness to within a few nanometers.  However, in recent years, automated 

instrumentation has been developed which is both more accurate and convenient than 

simple visual observation.  In addition, these instruments collect reflected light through a 

microscope objective, which allows thickness measurements to be made at very precise 

locations on the substrate surface.  This is particularly useful for characterization of 

partially fabricated devices.  Indeed, if multiple positions are measured using some 

predefined pattern that essentially samples the whole wafer, then the data can be 

conveniently rendered into a “map” of thickness. 

If instead of a broad band light source, a monochromatic light source (such as a laser) 

is used, reflectance spectroscopy becomes reflectance interferometry.  Rather than as an 

“after-the-fact” characterization method, reflectance interferometry is most useful as an 

“in-situ” measuring technique, which can be incorporated into processing equipment 

allowing film thickness to be measured during growth or removal (e.g., by etching or 

polishing). 

 

Monochromatic and Spectroscopic Ellipsometry 

 

Ellipsometry is a second optical interferometric technique that is frequently used to 

characterize transparent thin films, e.g., thermal oxide.  In its simplest form, a 

monochromatic beam of light (typically from a laser diode) is resolved into two 

independent polarized components.  These are reflected from the wafer surface at some 

fixed angle.  A second variable polarizer then analyzes the reflected light.  It is well 

known from classical electromagnetic field theory that light components polarized 

parallel and perpendicular with respect to the surface exhibit different, independent 

behavior with respect to reflection.  As before for reflectance spectroscopy, interference 

occurs between light reflected from the top and bottom interfaces of the oxide layer.  

Moreover, the intensity and phase of each polarized component of the reflected light is 

characteristically dependent on thickness and refractive index of the thin film.  Since, the 

two polarized components are independent, monochromatic ellipsometry can make 

simultaneous measurements of both thickness and refractive index of an oxide layer.  In 

addition, ellipsometry is inherently more precise than a reflectance spectroscopy and is 

particularly useful for characterization of very thin oxide layers.  Ellipsometry can be 

extended either by measuring at various angles of reflection, (multiangle ellipsometry) or 

by using various wavelengths of light (multiwavelength ellipsometry).  In both of these 

cases, each measurement made at different angles or wavelengths provides two 

independent values of thickness and refractive index.  For a single thin film (such as a 

thermal oxide layer) these can be used to increase the accuracy of the overall 

measurement.  However, a more common application of these techniques is 

simultaneous, independent measurement of refractive indices and thicknesses of two or 

more “stacked” transparent thin film layers. 
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Extending ellipsomety further, if an intense broad band light source is used, 

ellipsometric measurements can be made over a continuous range of wavelengths.  This 

is spectroscopic ellipsometry.  Clearly, since two independent measurements can be made 

at any particular wavelength, the amount of information available in a single 

spectroscopic ellipsometric measurement is quite large.  Again, this is useful for 

characterization of multilayer thin films, however, for characterization thermal oxide 

spectroscopic ellipsometry can be used to accurately account for the optical properties of 

the Si/SiO2 interface and/or the semitransparent surface layers of the substrate itself.  In 

practice, this requires extensive numerical fitting to some “model” of the oxide or Si/SiO2 

interface.  In recent years, several systems have been developed which provide 

algorithmic support for spectroscopic ellipsometry.  This allows very accurate 

characterization of thin thermal oxide films. 

 

Prism Coupling 

 

A third optical technique that can be used for thin film characterization is prism 

coupling.  This method is used less frequently at present than previously since it suffers 

from the disadvantage that, in contrast to ellipsometry or reflectance spectroscopy which 

are non-contacting; a small prism must come in contact with the thin film surface.  The 

prism is made of a transparent material chosen so that the interface between the prism 

and the thin film layer forms a totally reflecting interface.  Physically, it turns out that if 

the prism-thin film couple is rotated with respect to a monochromatic optical source (i.e., 

a laser) some of the totally reflected light “leaks out” into the thin film due to the 

phenomenon of evanescent coupling.  As might be expected, the degree of evanescent 

coupling depends on refractive index and thickness of the thin film material and appears 

as a series of interference fringes that are a function of angular position.  In practice, if 

several interference fringes (more than three or four) can be observed, then both thickness 

and refractive index of the thin film can be determined.  Prism coupling is most 

applicable to relatively thick transparent thin films.  This is useful since both reflectance 

spectroscopy and ellipsometry typically become less accurate for thick films due to cyclic 

error, etc. 
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Pre-Oxidation Cleaning 
 

It is critical that prior to any thermal oxidation process, the silicon surface should be 

scrupulously cleaned.  Typically, this is done by treating the wafers in two successive 

chemical solutions conventionally called “SC-1” and “SC-2” (surface cleans 1 and 2).  

The precise composition of these solutions is somewhat variable; however, SC-1 is 

generically formulated as a 10:1 mixture of commercial ammonium hydroxide (NH4OH) 

and hydrogen peroxide (H2O2) solutions heated to about 80C.  Similarly, SC-2 is also 

approximately a 10:1 mixture of commercial hydrochloric acid (HCl) and hydrogen 

peroxide (H2O2) solutions, again, heated to about 80C.  Naturally, all starting materials 

must be “electronic grade”.  These mixtures are also sometimes diluted with an 

equivalent volume of de-ionized water; however, this is not a requirement.  It has been 

shown that SC-1 is effective primarily for removal of organic contamination and SC-2 for 

removal of metallic species.  Therefore, any type of contamination is substantially 

reduced by sequential treatment in SC-1 and SC-2.  Originally, of course, these cleans 

were carried out in simple static tanks.  As particle control has become more critical, 

recirculation, filtration, and automation have been added.  Alternatively, it is common 

practice to use completely automated spray chemical processors in which wafers are 

cleaned, rinsed, and dried without any external intervention. 

In addition to contamination, it is often desirable to remove any pre-existing “native 

oxide” from the silicon surface.  (Native oxide is a naturally occurring thin oxidized layer 

one to two nm thick on the surface of silicon that arises from routine exposure to oxygen 

and water vapor in the atmosphere.)  This may be done by a short etch in unbuffered 50:1 

hydrofluoric acid solution following cleaning in SC-1 and SC-2.  (Buffered oxide etch or 

BOE should not be used because it contains the salt, ammonium fluoride, which can form 

particles on the surface.)  Removal of native oxide is thought to result in a “hydrogen 

terminated” silicon surface, which is believed to persist perhaps one to four hours 

depending on conditions, before the native oxide layer is reformed. 

In addition to wet chemical treatments, vapor phase processing using anhydrous 

hydrogen fluoride is also an option for pre-oxidation cleaning.  In recent years, various 

systems have been developed for this purpose.  Some of these have even been integrated 

with the oxidation process.  None of these seem to have proved entirely satisfactory both 

in terms of cost and performance. 
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Ultra-Thin Insulators 
 

As will become evident in more detail subsequently, in a very real sense an MOS 

transistor is the solid-state analog of an old-fashioned vacuum tube.  (It is an MOS 

capacitor built on top of a semiconductor resistor hence, the term “transfer resistor” or 

transistor.)  Obviously, any bias voltage applied to the gate modulates current flow in the 

channel.  Of course, the conduction channel is electrically connected to the circuit wiring 

on each end (source and drain contacts).  Therefore, the gate is insulated and ideally 

should not supply any current to the channel.  Within this context, one observes that 

state-of-the-art MOS transistors require fabrication of ultra-thin gate insulators which, in 

addition, must satisfy stringent performance specifications.  Indeed, insulating properties 

must not only be excellent, but since the gate electrode is generally made of heavily 

doped CVD polysilicon, metal, or metal alloy, the gate insulator must also block any 

migration of metal atoms or shallow level dopant impurity, in particular boron, from the 

gate electrode into the conduction channel as well.  (If there is any significant dopant 

contamination of the channel from the polysilicon gate electrode, the transistor threshold 

voltage will have unacceptable variation.) 

 

Reoxidized Nitrided Oxide 

 

Unfortunately, a pure thermal oxide film has poor characteristics with respect 

blocking dopant migration from the polysilicon (particularly in the case of boron).  This 

problem may be addressed by direct incorporation nitrogen into a thermal gate oxide 

film.  Within this context, one might ask, why not just use pure silicon nitride?  Certainly, 

nitride is a good insulator and, indeed, very thin nitride layers can be produced by CVD 

or even direct thermal nitridation of a silicon surface.  However, a silicon nitride/silicon 

interface has a very high density of interface traps.  Within the context of MOS transistor 

performance, this causes a severe degradation of effective carrier mobility in the channel.  

(In practical terms, this appears as a high channel resistance or low drive current.)  As a 

practical matter, it is found that if the nitrogen concentration exceeds one atomic per cent 

at the gate oxide/silicon interface there is a significant degradation of device 

performance.  Thus, one would ideally like to have a graded nitrogen concentration in the 

gate oxide with the concentration relatively high at the polysilicon/gate oxide interface 

and low at the gate oxide/silicon interface.  However, this is difficult to achieve in 

practice. 

The most practical process for formation of a nitrided oxide is the addition of either 

nitrous (N2O) or nitric (NO) oxide directly to the oxidizing ambient.  Unfortunately, since 

further oxidation tends to convert nitride to oxide, this also results in the occurrence of 

maximum nitrogen concentration precisely at the gate oxide/silicon interface.  Thus, for a 

one step oxidation process, the total concentration of nitrogen in the oxide must be kept 

low.  This suggests implementation of a two step process as a possible improvement.  In 

the first step a relatively nitrogen rich oxide is grown.  This is followed by “reoxidation” 

in non-nitrogen containing ambient.  Since new oxide is formed only at the gate 

oxide/silicon interface, the interfacial nitrogen concentration falls rapidly.  However, 

again since oxidation converts nitride to oxide, the nitrogen content of the entire film also 

falls.  Thus, the growth rate of oxide at the interface must be balanced with the 
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conversion of nitride to oxide in the bulk of the film.  Fortunately, this trade-off can be 

achieved since it is found in practice that only a small nitrogen concentration is effective 

at blocking “boron penetration”. 

In passing, it is worthwhile to mention other alternative approaches for fabrication of 

nitrided gate oxide.  In particular, very shallow ion implantation of nitrogen either into a 

preformed gate oxide or into the silicon substrate itself upon which a subsequent gate 

oxide is grown have both been tried.  In either case, results do not appear to be as good as 

that obtained using some form of N2O or NO oxidation processes. 

 

Rapid Thermal Oxidation 

 

Alternatively, rapid thermal oxidation (RTO) can also produce a high quality oxide.  

Typically, RTO is implemented by use of high intensity quartz-halogen lamps rather than 

ordinary resistive heating elements as a heat source.  Of course, the conventional tube 

configuration is generally not optimal for RTO, which is much more compatible with 

“single wafer processing”.  Accordingly, individual wafers are typically suspended on 

rings or pins within a small process chamber to reduce thermal mass and allow rapid 

change of the temperature.  Indeed, it is possible to achieve a very high wafer surface 

temperature (>1000C) quite quickly, e.g., in less than a minute.  Therefore, in principle, 

thin gate oxides can be controllably grown in a very short period of time.  In practice, 

RTO processes have suffered from problems of repeatability and control and, thus, have 

not been used widely for conventional oxidation. 

 

Post Oxidation Annealing 

 

As observed previously, for a high quality gate oxide, Dit should be no more than 

1(1011) cm–2 eV–1.  If this is to be achieved in a single oxidation step, this requires 

oxidation at very high temperature.  (Conventionally, this favors dry oxidation over steam 

since the lower rate allows for better thickness control.)  Alternatively, post-oxidation 

annealing in an inert ambient at high temperature (>1000C) can reduce an unacceptably 

high post-oxidation Dit to a desirable value.  Presumably, this “repairs” the Si/SiO2 

interface.  Of course, it goes almost without mentioning that any high quality oxidation 

process requires scrupulous pre-cleaning of the substrate surface. 

 

Limitation of Conventional Oxidation Technology 

 

The channel length for the current device generation is 20 nm (or less).  Such short 

channel lengths require gate insulator thicknesses equivalent to no more than 1-2 nm of 

pure silicon dioxide in order to achieve desirable device characteristics.  (If the gate 

insulator thickness is not scaled with the channel length, resulting transistors suffer from 

severe “short channel effect”.)  Fabrication of such thin layers requires careful 

processing, although, perhaps somewhat surprisingly, process conditions using 

conventional quartz tube furnaces can be found that result in high yield and very reliable 

insulating films.  In principle, thin oxides can be produced by either diluting the oxidant 

with inert gas and/or reducing the oxidation temperature.  In the latter case, a subsequent 

high temperature anneal in an inert ambient is needed to reduce interface trap density.  In 
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practice, even high quality thin oxide films generally must be modified or replaced to 

reduce current flowing between the gate electrode and the channel.  Indeed, this is not 

due to formation of defects in thin oxide films and there is no inherent problem in 

fabrication of such thin films by thermal oxidation; however, current resulting directly 

from quantum mechanical tunneling of electrons through the oxide layer can be expected 

to be impracticably large.  This presents a very severe limitation on device performance.  

Therefore, either physical characteristics of thermal oxide must be markedly improved 

(not likely), a new device architecture must be invented (e.g., the recently introduced “tri-

gate” structure), or some other methodology must be found. 

Obviously, one solution to the problem of thin gate insulators is partial or complete 

replacement of thermal silicon dioxide with some other material.  Any such material must 

have a large dielectric constant, i.e., “high-k”, such that physical thickness can be much 

larger than the physical thickness of an electrically equivalent silicon dioxide layer.  

These are generally identified with oxides and/or silicates of heavy metals such as 

zirconium, tantalum, or hafnium.  (Other possibilities include a host of perovskite 

materials.)  Of course, as one might imagine such a radical change in device structure is 

not to be undertaken unless out of absolute necessity since it is precisely the unique 

compatibility of the silicon-silicon dioxide material system that makes modern solid-state 

electronics really possible.  In particular, for any insulator different from thermal oxide a 

much poorer silicon/insulator interface, viz., high trap density, is to be expected.  Even so, 

in recent years these kinds of changes have been required for the most advanced device 

structures.  Accordingly, successful integration of such materials requires careful 

engineering and close attention to processing.  In particular, silicates have been attractive 

since they combine some of the essential properties of silicon dioxide with larger values 

of the dielectric constant. 
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Impurity Diffusion in Semiconductors 
 

In the practical fabrication of solid-state electronic devices, it is generally necessary 

to introduce controlled amounts of various shallow level impurities, i.e., dopants (B, P, or 

As), into particular regions within the silicon crystal.  Indeed, boundaries between 

regions inside the volume of the wafer for which extrinsic doping changes from p-type to 

n-type or vice-versa form electrically active structures called pn-junctions.  (Along with 

MOS capacitors, pn-junctions are the most important fundamental components of solid-

state devices.)  In general, although the wafer may have some uniform background 

doping added to the original melt during manufacture of the substrate itself, it is usual for 

additional dopants to be introduced through the surface of wafer.  These are commonly 

restricted to specific laterally defined regions of the wafer surface by some type of mask, 

i.e., one type of dopant might be introduced into some particular area (or areas) and other 

types of dopants introduced elsewhere.  In any case, the vertical and lateral distribution of 

these dopant atoms may be precisely manipulated by carefully controlled diffusion.  Such 

diffusion processes are thermally activated and, thus, are carried out in quartz tube 

furnaces very similar to those used for thermal oxidation.  (However, the atmosphere 

inside the furnace generally will be inert or reducing rather than oxidizing.) 

 

Linear Transport Processes 

 

Diffusion of shallow level dopants in semiconductors, e.g., silicon, is a specific 

example of a broad class of physical processes called transport processes.  Other 

examples are conduction of heat and electricity and viscous fluid flow.  Physically, 

transport processes are characteristic of physical systems which are not in 

thermodynamic equilibrium.  Indeed, from a theoretical point of view, transport processes 

are dissipative in nature, which when occurring within some physical system, proceed to 

establish the system in equilibrium at which time any net transport comes to a halt.  (The 

general study of transport processes and the approach to equilibrium is called non-

equilibrium thermodynamics.)  Conventionally, transport processes are considered within 

the context of a linear phenomenology, which means that they are described by 

expressions of the generic form: 

 

baba XJ L
 

 

Here, Ja is defined as flux (or, more generally, a flux vector) identified with transport of 

some physical property, a, e.g., mass, momentum, energy, charge, etc.  Similarly, Xb is 

defined as driving or thermodynamic force, identified with a disequilibrium in some 

physical property, b, e.g., gradients of concentration, fluid velocity, temperature, 

electrical potential, etc.  Physically, a thermodynamic force quantifies the magnitude of 

any disequilibrium driving net transport processes.  Thus, fluxes and forces are related by 

the parameter, Lab, called a phenomenological transport coefficient.  In the most general 

formulation (as above), fluxes and forces formally appear as column vector components 

and transport coefficients as square matrix elements.  This allows for the possibility that a 

force in one physical property, b, may drive a flux in some different physical property, a.  

Indeed, such “cross effects” are commonly observed.  Representative examples are 
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provided by thermal diffusion or thermoelectric effects in which case a temperature 

gradient drives material or electrical transport respectively.  Clearly, cross effect transport 

coefficients correspond to off-diagonal matrix elements as defined by the preceding 

general expression.  Of course, “direct effects” for which a force in a physical property 

drives a flux in the same property correspond to diagonal matrix elements and, therefore, 

are generally more important than cross effects.  Obviously, ordinary diffusion, heat and 

electrical transport, viscous fluid flow, etc. provide elementary examples of just such 

processes.  Therefore, to describe impurity diffusion in semiconductors, it is only 

necessary to consider direct effects, i.e., only diffusive forces and fluxes.  In such a case, 

the general matrix expression can be simplified to a simple linear proportionality: 

 

aaa XJ L
 

 

In this expression, the direct effect transport coefficient, La, represents an ordinary 

numerical quantity rather than a matrix element.  Clearly, for impurity diffusion, a 

corresponds to some impurity species, hence, La is identified as diffusivity of a (usually 

symbolized as Da).  In passing, it is, again, useful to observe that this same linear 

phenomenology can be applied to various specific physical situations that might 

superficially appear unrelated.  Therefore, several specific cases are summarized as 

follows: 

 

Ohm’s Law of electrical conduction:  j = E = E/ 

J = electric current density, j 

(units: A/cm2) 
X = electric field, E = V 

(units: V/cm) 

V = electrical potential 

L = conductivity,  = 1/ 

(units: mho/cm) 

 = resistivity ( cm) 

Fourier’s Law of heat transport:  q = T 

J = heat flux, q 

(units: W/cm2) 
X = thermal force, T 

(units: K/cm) 

T = temperature 

L = thermal conductivity,  

(units: W/K cm) 

Fick’s Law of diffusion: F = DC 

J = material flux, F 

(units: /sec cm2) 
X = diffusion force, C 

(units: /cm4) 

C = concentration 

L = diffusivity, D 

(units: cm2/sec) 

Newton’s Law of viscous fluid flow: Fu = u 

J = fluid velocity flux, Fu 

(units: /sec2 cm) 

X = viscous force, u 

(units: /sec) 

u = fluid velocity 

L=viscosity,  

(units: /sec cm) 

Table 4: Summary of common linear transport phenomena 

 

Here, the subscript a has been dropped and J, X, and L correspond to the simple linear 

transport relation: 



 137 

 

XJ  L  
 

Clearly, the preceding correspondences are useful because once one type of transport 

process is considered, e.g., impurity diffusion, any results obtained can be immediately 

applied to other types of transport by the simple expedient of redefinition and/or 

substitution of the appropriate phenomenological parameters. 

Limiting further consideration specifically to the case of impurity diffusion, one 

considers transport of impurity species through a hypothetical bar of some solid material, 

e.g., semiconductor, having a uniform cross section.  Furthermore, for additional 

simplicity, one assumes that the concentration of impurity species varies only along the 

length of the bar and is constant over any given cross section.  Thus, assuming that 

transport fluxes remain constant over some small time interval, t, then the net change 

per unit time in the number of impurity atoms in a small volume element of width, x, 

located at a distance, x, from the end of the bar is given by the simple difference 

expression: 
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Here, N is the number of impurity atoms found within the volume element, F(x) is 

impurity flux, and A is the cross sectional area of the bar.  This is illustrated by the 

following figure: 
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Fig. 49: Diffusion in a rectangular bar of constant cross section 

 

If impurity concentration, C, is defined as usual as the quotient of N divided with volume, 

then one obtains: 
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In the limit that the material volume element is allowed to become arbitrarily thin, the 

right hand side of this expression can just be identified as the negative of the derivative of 
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the material flux with respect to x.  Similarly, the left hand side can be identified as the 

derivative of concentration with respect to time, hence: 
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Here, partial derivatives are written since C and F are functions of both position and time.  

Of course, material flux and concentration are related by Fick’s Law, which in a single 

dimension has the form: 

 

x

C
DF





 
 

Here, D is the diffusivity of the impurity species.  If the two preceding equations are 

formally combined, one obtains a single second order linear partial differential equation 

as follows: 
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This equation is conventionally called Fick’s equation, Fick’s Second Law, or just the 

diffusion equation.  Clearly, it is a closed form expression for concentration as a function 

of position and time.  (By convention, Fick’s First Law is just the linear transport relation 

defined previously.)  Furthermore, within the present context, the diffusion equation has 

been derived in a one dimensional form.  For an elementary description of impurity 

diffusion in semiconductors this is adequate.  However, in more complicated situations 

diffusion in more than one dimension must be considered.  Obviously, Fick’s Second 

Law can be generalized to all three dimensions just by replacing the second order partial 

derivative with the Laplacian: 
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In summary, Fick’s Laws are useful for the description of diffusion of relatively dilute 

solutes.  If the concentration becomes sufficiently high, due to interactions between 

solute atoms D may become dependent on the concentration, C.  In this case, diffusion 

becomes non-linear and is much more difficult to treat mathematically. 

 

Solution of Fick’s Equation 

 

Construction of a general solution of the diffusion equation in one dimension is quite 

straightforward.  First of all, one must separate the space and time variables.  This can be 

accomplished by assuming that the concentration, C, is a formal product of a function of 

position, g(x), and a function of time, f (t): 
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Upon substitution of this form, it follows that: 
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Clearly, all of the x dependence appears on the left hand side and all of the t dependence 

appears on the right hand side.  Since the variables have now been separated, one can set 

each side equal to an unknown “separation constant”.  Therefore, the arbitrary constant, 

, is defined such that: 
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The form, 2, is used purely for mathematical convenience.  These two ordinary 

differential equations are easily integrated by elementary methods.  In the case of the 

time equation one has: 

 

ttDf  lnln 2
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Here, t is an unknown constant.  In the case of the space equation, one immediately 

recognizes that the solution can be expressed as either a sine or a cosine: 

 

xgxg xx  cos       ;      sin 21  
 

However, it is more convenient to express this in equivalent form as a complex 

exponential: 
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Here, x is a second unknown constant.  Thus, it follows that a particular solution of the 

diffusion equation, C, can be written as follows: 
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In this expression,  is the product of the arbitrary constants t and x and, thus, is itself 

an unknown constant.  Obviously, the separation constant, , labels each particular 

solution. 
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It is well known that particular solutions of linear differential equations satisfy the 

Principle of Superposition.  Simply stated, this means that if any two functions are 

independent solutions of some differential equation, then the sum (or difference) of the 

two is also a solution.  Thus, if one considers  to be a continuous variable, it follows that 

a general solution of the diffusion equation can be written as an integral, i.e., a limiting 

sum, over all particular solutions: 
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Here,  is now treated as an unknown function of .  It is desirable to express () in 

terms of some initial condition, C0(x), defined such that: 
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Upon inspection, one observes that C0(x) is just the ordinary Fourier transform of ().  

Furthermore, Fourier transformation is easily inverted, therefore, () can be written 

explicitly as follows: 
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Clearly, the “inverse Fourier transform” is identical to the “forward Fourier transform” 

except that a factor of 1/2 appears.  (These forms can be made exactly identical if one 

removes a factor of 2  from the denominator of the above expression in which case 

one finds that C0(x) and  2)(  define a formal “Fourier transform pair”.)  Thus, 

substitution of the above result into the expression for C(x,t) yields: 
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This expression can be further simplified by completion of the square in the exponent: 
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The integral over  can be determined using standard methods (e.g., complex contour 

integration), however it is essentially an integral over a Gaussian function and is found to 

be equal to Dt/ : 
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Clearly, impurity concentration at any time, t, is completely determined by the initial 

concentration.  Indeed, this is a completely general result and is applicable for any initial 

concentration, C0(x). 

 

Instantaneous Source 

 

A specific form for C0(x) that is of particular interest can be represented 

mathematically as follows: 

 

)(2)( 00 xxNxC 
 

 

Here, )( 0xx  is a Dirac delta function, which is defined to be zero everywhere except 

in the case that xx0 where it becomes infinite.  Furthermore, the integral of )( 0xx  

over x is finite and equal to one.  This is called an instantaneous source.  An instructive 

way to view a delta function is as a normalized Gaussian function, which has a standard 

deviation of zero.  Therefore, this initial concentration corresponds to an infinitely thin 

sheet of impurity located at a position, x0.  Within this context, the coefficient, N, is the 

number of dopant atoms per unit area of the sheet and is called dose.  (The factor of 2 

included in the definition of C0(x) is a geometrical factor which accounts for the fact that 

a wafer is, perhaps, better regarded as a semi-infinite diffusion domain rather than an 

infinite domain.)  Thus, C(x,t) can be trivially determined if one substitutes the preceding 

form for C0(x): 
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Integration over x is trivial due to the delta function, hence: 
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Clearly, an instantaneous source results in a Gaussian concentration profile.  (The 

terminology “concentration profile” is generally used to describe dependence of impurity 

concentration in a one dimensional sense.) 

In practice, a Gaussian concentration profile describes an impurity diffusion process 

for which an “infinitely thin” initial layer of dopant, i.e., shallow level impurity, is 

deposited on the wafer surface.  This surface deposition is followed by diffusion at 

elevated temperature for some time, t.  Obviously, since x0 is zero by definition, the 

concentration profile takes the simplified form: 
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Here, Cs is surface concentration and is equal to DtN / .  Obviously, for t equal to 

zero, Cs is infinite just as one expects from the original delta function concentration 

profile. 

 

Constant Source 

 

A second initial concentration profile, which is generally useful for the description of 

impurity diffusion has the explicit form: 

 

 ))(1(2)( 00 xxHCxC s 
 

 

Here, )( 0xxH   is a Heaviside or unit step function and is formally defined to be equal to 

zero if xx0 and equal to one if xx0.  Thus, C0(x) is equal to 2Cs if xx0 and equal to 

zero if xx0.  This is called a constant source.  Clearly, upon substitution the step 

function “cuts off” the integral above a value of x0 and one obtains the result: 
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This integral is modified by defining a new integration variable x equal to xx, hence: 
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The integral cannot be constructed in closed form but has a standard definition in terms 

of the error function, erf(x) or complementary error function, erfc(x): 
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Hence, a constant source results in a complementary error function concentration profile. 

In contrast to the previous case, this type of concentration profile describes impurity 

diffusion processes for which the surface of the wafer remains in equilibrium with some 

dopant source (solid, liquid, or gaseous) during exposure to elevated temperature, i.e., 

during the diffusion process.  Therefore, the surface concentration can generally be 

identified as the maximum solid solubility of the dopant in silicon.  Hence, it is usual to 

set x0 to zero and, thus, the concentration profile takes the form: 
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Clearly, the surface impurity concentration remains constant in the case of a 

complementary error function profile.  In contrast, for a Gaussian profile, Cs decreases as 

t/1 .  Furthermore, the total integrated amount of impurity present within the wafer is 

constant in the case of an instantaneous source; however, it continues to increase in the 

case of a constant source.  Physically, this is easily understood if one observes that all 

impurity species diffused into the wafer are initially present in an instantaneous source.  

However, a constant source continues to introduce impurity atoms into the wafer surface 

during the diffusion process. 
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Characterization of Dopant Diffusion 
 

The most elementary method for characterization of dopant diffusions are 

measurements of surface contact current-voltage, i.e., resistance.  These are usually made 

using some type of four terminal configuration such as a direct surface probe i.e., a four 

point probe, or patterned structures fabricated during processing as a test key (or test 

element group, TEG). 

It is useful to digress here and point out that confusion sometimes occurs between the 

terms resistivity and sheet resistance.  Resistivity has been defined previously for 

extrinsically doped silicon; however, it is a property of any conductor.  Moreover, it 

should be re-emphasized that resistivity is an intensive physical property and, therefore, is 

independent of the amount or shape of the material, e.g., silicon.  Furthermore, it is the 

reciprocal of the electrical conductivity, which is a standard linear transport coefficient as 

defined previously.  Therefore, in terms of a linear transport relation, i.e., Ohm’s Law, 

one can write: 

 

jE   
 

Here, j is current density, which has units of A/cm2 and E is electric field, which has units 

of V/cm.  Of course, one recalls that an ohm, , is defined as a volt per ampere, V/A; 

hence, as expected, , has units of  cm.  This expression is quite general and is 

applicable if linear phenomenology provides an adequate description of electrical 

transport processes (which is almost invariably the case). 

In contrast, sheet resistance, Rs, is a characteristic property of a thin conducting film 

and is commonly expressed in terms of “ohms per square” or /sq.  (Shallow diffusions 

or epitaxial layers can be generally treated as thin conductive films.)  However, this 

terminology can lead to confusion, since “per square” does not mean “per unit area”.  

Indeed, it turns out that one should regard sheet resistance as a “hybrid” material property 

which is intensive in two dimensions, specifically, the two horizontal dimensions parallel 

to the surface of the thin film, and extensive in the third vertical dimension, i.e., 

perpendicular to the thin film surface.  Thus, Rs depends on film thickness, but not area.  

Therefore, “per square” denotes any square unit of film regardless of size.  Resistance is 

measured, assuming a uniform current distribution, “across” the square.  For materials 

with uniform physical properties, resistivity and sheet resistance are related by a simple 

formula: 
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Here, xf is just thin film thickness.  However, sheet resistance remains well-defined even 

if material resistivity varies vertically (as in a diffusion process).  In this case, the 

measured sheet resistance is to be considered as a parallel combination of thin sheets of 

uniform resistivity stacked one on top of another.  Accordingly, if one identifies the 

thickness of each sheet as xj, then one can write: 
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Clearly, in the limit that xj tends to zero, a corresponding integral formula is obtained: 
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Hence, (x) can be directly determined from dopant concentration profile.  The upper 

limit, xJ, is called junction depth. 

 

Surface Probing 

 

Consider a single, arbitrarily sharp conductive probe contacting a semi-infinite 

volume, i.e., substrate, of conductive material.  Suppose that this probe is injecting a total 

current, I, into the material: 

 

I

r

Substrate

 

Fig. 50: Current injection into a semi-infinite substrate from a single probe 

 

Ignoring any effects of the surface, the current diverges from the probe tip into the 

medium through a series of concentric hemispherical shells of equipotential.  Clearly, the 

current density through each shell is I/2r2.  (Of course, 2r2 is just the surface area of a 

hemisphere of radius, r.)  The electric field across each hemispherical shell is just 

V/r, such that V is the “voltage drop” and r is the shell thickness.  The negative 

sign appears because voltage decreases as radius increases.  If one applies Ohm’s Law 

and allows the shell thickness to tend toward zero, then one obtains the simple formula: 
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This formula can be trivially integrated as follows: 
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If the boundary condition is adopted that voltage falls to zero at large distances, i.e., as r 

tends to infinity, then this equation takes the simple form: 
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Physically, V is voltage measured at a radial distance, r, from the probe tip subject to this 

boundary condition.  Therefore, one observes that if r is zero, the measured voltage 

becomes infinite.  This, of course, is not a realistic situation, but would be true for an 

“infinitely sharp” probe tip with a radius of zero.  However, any real probe tip evidently 

must have some finite radius.  Consequently, the preceding formula can only be applied 

when r is large in comparison to the probe tip radius.  In practice, this condition is easily 

satisfied and presents no practical problem. 

At this point, suppose that, instead of a single probe, one contacts the surface of the 

semi-infinite volume with four probes.  Furthermore, suppose that these probes are all 

arranged in a line, equally spaced at some fixed distance, s, and, for convenience are 

labeled 1 through 4.  As a condition of measurement, suppose current is being forced 

through the end probes, i.e., 1 and 4, such that a current, I, enters the semi-infinite 

volume through probe 1 and leaves the volume through probe 4: 
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I I
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Fig. 51: Probe arrangement for a conventional 4-point probe 

 

Of course, assuming equivalent boundary conditions for each probe, the voltage at any 

point within the volume is just the superposition, i.e., the sum, of the voltages due to each 

probe separately.  Thus, one can apply the formula for a single probe to obtain: 
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Here, r1 is identified as radial distance from probe 1 and r4 as radial distance from probe 

4 to some arbitrary point within the volume.  In practice, potential is measured at probes 
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2 and 3.  Furthermore, these measurements are made using a high impedance volt meter 

such that very little current (ideally no current) flows through probes 2 and 3.  Therefore, 

any “IR drops” due to the probes themselves are insignificant and the voltage measured at 

probes 2 and 3 just corresponds to the preceding formula, hence: 
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Clearly, for probe 2, r1 is equal to s and r4 is equal to 2s.  Conversely, for probe 3, these 

quantities are just reversed.  Hence, the voltage difference, V, between probes 2 and 3 is 

just the simple difference: 
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In practice, this formula is rearranged to solve for resistivity as follows: 
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Moreover, it is usual for I and s to be preset parameters and V to be measured. 

Of course, the preceding formula is applicable to determination of resistivity of a bulk 

substrate; however, if the conductive material cannot be considered as a semi-infinite 

volume, then this expression must be modified.  Naturally, the case of a thin film 

represents the limit that thickness of conductive material, xf.  Even so, analysis of a probe 

on a thin film still remains similar to the case of a semi-infinite volume.  Again, suppose 

that a single probe is injecting a current, I, but in this case into a thin film: 
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Fig. 52: Current injection into a thin film substrate from a single probe 

 

Obviously, injected current diverges through a series of circular (or more correctly very 

short cylindrical) equipotential shells such that current density through each shell is 

I/2rxf.  (Clearly, 2r is just the circumference of a circle of radius, r, hence 2rxf is the 

surface area of a cylindrical element.)  As before, electric field across each shell is just 
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V/r, such that V is voltage drop and r is shell thickness.  (Again, a negative sign 

appears because voltage decreases as radius increases.)  Clearly, if one applies Ohm’s 

Law and allows shell thickness to tend toward zero, one obtains a simple formula: 
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Here, the fundamental relationship between sheet resistance and resistivity has been 

formally substituted.  Again, one trivially integrates to obtain: 
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However, in contrast to the case of a semi-infinite volume, one cannot assume that 

voltage falls to zero at large distances since ln does not vanish.  Nevertheless, this is of 

no consequence, since it is only voltage differences that will actually be measured. 

Naturally, one supposes that four probes are arranged on the surface just as before; 

with the additional requirement that film thickness, xf, is negligible in comparison to 

probe spacing, s.  Again, voltages due to each probe are superimposed and one finds that 

divergent terms corresponding to primed variables subtract out.  Thus, for probes 1 and 4 

“forcing” a current, I, it follows that: 
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As before, voltages are measured at probe 2 and probe 3.  Of course, the values of r1 and 

r4 are just the same as in the semi-infinite case: 
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It follows immediately that: 
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Therefore, upon rearrangement sheet resistance, Rs, is readily obtained: 
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This formula appears frequently as an expression for sheet resistance.  Obviously, the 

factor, /ln2, is an irrational number which to ten decimal places has a value 

4.532360142.  One further observes the rather remarkable result that, in contrast to the 
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case of a semi-infinite volume, probe spacing does not explicitly appear.  Therefore, as 

long as the four probes are equally spaced and spacing is large in comparison to thin film 

thickness, for any forcing current, I, the voltage drop, V, remains the same irrespective 

of s.  Therefore, it is not surprising that sheet resistance measurements are inherently very 

reproducible. 

Of course, it can happen that film thickness is not negligible in comparison to the 

probe spacing.  In this “thick film” case, the simple one dimensional analysis appearing 

previously is not satisfactory.  Consequently, to obtain correct results, one must apply a 

two dimensional analysis.  This is complicated (requiring application of two dimensional 

Green’s functions) and will not be considered further.  However, without going into 

details, the result of such an analysis can be cast in terms of the semi-infinite formula and 

a correction factor, G: 
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It is found that G has the explicit form: 
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Naturally, one must recover the thin film result in the limit that u tends to zero.  Of 

course, it follows from the fundamental definition of sinhu that in this limit, sinhu is 

asymptotic to u itself.  Hence, one just replaces sinhu in the formula for G with u to 

obtain: 
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This immediately gives the required result: 
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Obviously, in the limit that film thickness tends toward infinity, G must tend to unity and 

the semi-infinite result recovered.  Of course, for large values of u, hyperbolic sines can 

be replaced with exponentials, thus: 
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Indeed, G becomes unity as film thickness becomes indefinitely large. 
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In all of the preceding analysis, it has been assumed that the conductive material is 

infinite in extent in any direction parallel to the surface.  In practical circumstances, this 

may not be the case.  To treat these situations, geometrical correction factors have been 

determined.  Such a “corrected” formula for sheet resistance has generic form: 
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In this case, Fg is identified as a geometrical correction factor.  Again, without going into 

explicit details, it is found that for a circular substrate of finite diameter, d, measured 

exactly at the center, Fg has the form: 
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Clearly, if the ratio of d to s is reasonably large, then Fg is close to unity and the 

uncorrected formula is recovered.  (One can determine the required ratio of d/s for a 

particular prescribed measurement precision by careful analysis of the above formula.)  

This is easily satisfied for silicon wafers, but perhaps not for small irregular samples.  

Another significant geometrical configuration occurs if it is necessary to measure 

resistivity or sheet resistance near the edge of a sample.  Again, an appropriate correction 

factor has been determined.  In this case, if the probe array is placed perpendicular to the 

sample edge (assumed to be straight), then Fg is found to have the form: 
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Similarly, if the probe array is placed parallel to the sample edge, then Fg is found to be: 

 
 

22 )/(1

1

)/2(1

2
1

1

sdsd

Fg









 
 

Here, d is redefined as the distance from the probe array to the sample edge.  Generally, if 

d is greater than 4s, then these corrections are unnecessary.  (Obviously, 4s is roughly the 

width of the probe head.)  As might be expected, there are a number of additional 

corrections for orientation of the probe array and other geometrical shapes. 

Another more useful method for obtaining accurate sheet resistance measurements on 

finite samples requires simultaneous application of two measurement configurations.  In 

the “normal” configuration, as defined previously, current is forced through probes 1 and 

4 and voltage is measured between probes 2 and 3.  There is nothing physically unique 

about this probe configuration.  In principle, one can force current between any two 
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probes and measure voltage between the other two and extract a value for sheet 

resistance.  Accordingly, one can obtain an independent measurement of sheet resistance 

by using an alternate probe configuration.  The most common practice is inversion of two 

of the probes.  In such a configuration, V is measured between probes 2 and 4 and 

current is forced between probes 1 and 3.  Applying a similar analysis as before, it is a 

simple matter to construct an expression for sheet resistance for this configuration as 

follows: 
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Assuming that actual sheet resistance is the same for both normal and alternate probe 

configurations, one can determine the correction factor electrically by measuring Rs in 

both alternate and normal configurations.  Obviously, if the two measurements are the 

same, then the correction factor is unity.  However, if they do not agree, Fg can be 

determined as a function of alt

s

norm

s RR /  such that norm

sR  and alt

sR  are sheet resistances 

measured in normal and alternate configurations respectively.  Typically, Fg is 

represented as a truncated power series: 
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Expansion coefficients, A0, A1, and A2 are determined empirically.  In practice, the 

equipment manufacturer incorporates determination of the correction factor directly into 

the hardware and software of modern probes and wafer sheet resistance mappers.  Thus, 

an end user does not usually need to determine Fg explicitly. 

 

Junction Depth Measurement 

 

Typically, diffusion profiles are characterized by diffusing a desired dopant species 

into the surface of a “test wafer” that has some uniform background dopant 

concentration, CB, of the opposite type.  Clearly, a pn-junction is formed at some junction 

depth, xJ, below the wafer surface at which the diffused concentration profile, C(x,t), 

exactly equals CB.  As a consequence of the electrical properties of a pn-junction, the 

diffused surface layer is essentially isolated electrically from the remainder of the 

underlying substrate.  Hence, four point probe measurements can be applied directly to 

determine the sheet resistance of the doped layer.  However, the diffusion profile cannot 

be characterized precisely by sheet resistance measurements alone, but if combined with 

a junction depth measurement, a reasonable estimate of diffusion profile, subject to 

specific processing conditions, e.g., instantaneous or constant sources, can be made. 

A classical method for measuring junction depth, requires milling a small area of the 

surface of a test wafer having the desired diffusion (and, thus, a known sheet resistance) 

using either a spherical (ball bevel) or cylindrical (groover) grinder.  One then treats the 

exposed silicon with a chemical solution that “stains” regions of one extrinsic doping 
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type, i.e., either p or n-type silicon.  (These stains typically consist of a solution of acids 

or bases and metal salts, which either preferentially etch or “plate out” on one doping 

type.)  The position of the stained boundary can be determined using a calibrated optical 

microscope and then related to the actual junction depth by analysis of the original 

milling geometry.  Alternatively, the wafer can be cleaved and stained and the junction 

depth measured directly using a scanning electron microscope (SEM).  If one assumes a 

standard doping profile and provided that the product of diffusivity and processing time, 

Dt, is known, then junction depth, xJ, is related to surface doping concentration, Cs, as 

follows for a Gaussian profile: 
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A corresponding expression can be constructed for a complementary error function 

profile: 
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Of course, CB is the background dopant concentration of opposite type into which the 

desired species has been diffused.  Therefore, assuming a given mathematical form for 

the diffusion profile, junction depth alone determines surface doping concentration. 

Alternatively, average resistivity,  , can be identified as the product of sheet 

resistance and junction depth, RsxJ.  Indeed, for standard diffusion profiles, viz., Gaussian 

and complementary error function profiles,   and Cs can be related directly for a 

specified CB.  These relationships are summarized graphically for both p-type and n-type 

diffusions as follows: 

 

 

p-type diffusion                                                   n-type diffusion 

Fig. 53: Surface concentration versus average resistivity for a Gaussian profile 
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p-type diffusion                                                   n-type diffusion 

Fig. 54: Surface concentration versus average resistivity for a complementary error function profile 

 

Here, the relationship between  , xJ, and Cs corresponds to the integral formula: 
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Of course, (x) is directly related to the concentration profile and background doping.  

Therefore, in practice surface concentration can be determined separately by measuring 

Rs and xJ, constructing  , and “reading off” Cs from the associated graph.  However, it is 

clear that Cs can also be determined directly from a junction depth measurement without 

any prior knowledge of Rs or  .  Of course, these two results can agree only if the 

assumed concentration profile is substantially correct.  (In this way, either Gaussian or 

complementary error function profiles can be confirmed.) 

 

Shallow and Non-Ideal Concentration Profiles 

 

Unfortunately, these classical techniques are really only applicable if junctions are 

reasonably deep.  However, for state-of-the-art processes, junctions typically have 

become quite shallow making direct measurement of junction depth very difficult.  

Furthermore, even if the junction depth is not too shallow, if the concentration profile is 

non-ideal, i.e., it is not of either Gaussian or complementary error function form, then 

incorrect or inconclusive results will be obtained.  To remedy this, sophisticated analysis 

techniques have been developed that allow direct measurement of the concentration 

profile as a function of vertical depth from the wafer surface.  The most accurate of these 

is secondary ion mass spectrometry (SIMS).  In this method, the surface of the wafer is 

controllably sputtered away in a vacuum chamber using energetic argon ions.  The 
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sputtered material is collected and mass analyzed.  The amount of each atomic species 

present within the sample can be quantitatively related to observed peak heights in the 

mass spectrum.  Furthermore, detection limits in SIMS analysis are well below what is 

necessary for analysis of typical dopant concentrations.  In practice, “mass signal” is 

observed as a function of sputtering time, thus the concentration profile of a diffused 

species (i.e., a shallow level dopant) is easily obtained by relating sputtering time to 

depth in the wafer. 

For routine analysis, SIMS may be too expensive and time consuming.  However, 

spreading resistance or incremental sheet resistance measurements can also be used to 

determine concentration profile.  In contrast to SIMS, which can detect any atomic 

species, these techniques can only detect the net concentration of electrically active 

extrinsic dopants.  To make spreading resistance measurements, the surface of the 

diffused wafer is milled at a very shallow angle so that at the deepest point the milled 

surface extends well below the junction.  Following this procedure, two point probes are 

moved down the incline and the resistance is measured as a function of position.  This 

resistance varies in a way that is directly related to the concentration profile.  Incremental 

sheet resistance is a very similar technique in which incremental amounts of the wafer 

surface are successively removed by etching or milling.  Sheet resistance is measured 

between each etching or milling step using a standard four point probe.  Again, the 

measured sheet resistance varies as a function of the total amount of surface material 

removed in a way that can be directly related to the concentration profile.  Both of these 

techniques are only semi-quantitative due to difficulties involved controlling the milling 

angle and/or milling or etch rates.  Typically, spreading resistance or incremental sheet 

resistance measurements are calibrated using SIMS. 
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Electrical Behavior of pn-Junctions 
 

To consider what happens electrically in a pn-junction, one can, again, consider a 

thought experiment.  Suppose that two blocks of semiconductor of opposite extrinsic 

doping, i.e., one block is n-type and one is p-type, are initially separated widely.  If these 

blocks are then joined, a net transfer of carriers from one block to the other must occur in 

order to establish equilibrium.  Obviously, this situation is similar to the “simpler” cases 

of a metal-semiconductor contact and an MOS capacitor.  Furthermore, just as in these 

previous cases, if the whole system is to be in equilibrium, then the Fermi level must be 

constant throughout the entire combined volume of the two blocks.  It comes as no 

surprise that this requires that valence and conduction bands must become bent in the 

region of the junction.  This situation is illustrated below: 
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Fig. 55: Band diagrams for an unbiased pn-junction 

 

The position of the junction is determined as the point that the intrinsic Fermi level and 

the actual Fermi level intersect.  Of course, this defines the exact position at which the 

semiconductor changes from one type to the other, i.e., it is intrinsic at the junction.  

Moreover, even though this structure is hypothetically constructed by joining separate 

blocks of material, the physical mechanism used to form a pn-junction is immaterial to its 

electrical behavior.  Obviously, in practice dopant diffusion processes can be used to 

form pn-junctions intentionally. 

 

An Unbiased pn-Junction 

 

A clear consequence of the existence of a junction is the existence of an internal or 

intrinsic electric field in the junction region.  Returning to the previous thought 

experiment, one can easily see the cause of this behavior.  Suppose that the two opposite 

type semiconductor blocks are brought together suddenly.  At the instant of initial 

contact, mobile carriers are not in equilibrium since the Fermi levels do not coincide, i.e., 

carrier concentrations are constant right up to the interface between the two blocks.  

Furthermore, ignoring the effects of non-equilibrium generation-recombination 

processes, electron and hole fluxes, Fe and Fh, everywhere within the joined blocks of 
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semiconductor (including the region near the junction) are governed by linear transport 

equations of the form: 

 

En
x

n
DF eee 






 
 

Ep
x

p
DF hhh 






 
 

Here, Dx and x are carrier diffusivity and mobility (x is either e or h, thus, denoting either 

electrons or holes), and E is electric field.  Clearly, the first term on the right hand side of 

both of these expressions comes from Fick’s Law and describes diffusion of mobile 

carriers due to a concentration gradient.  Similarly, the second term comes from Ohm’s 

Law and describes drift of mobile carriers under the influence of an electric field, E.  

Obviously, the change of sign of the drift terms is due to opposite charges of electrons 

and holes.  In contrast, there is no sign change for diffusion terms since diffusion is 

independent of carrier electrical charge.  (These equations illustrate coupling of different 

thermodynamic forces with the same transport flux.)  Of course, corresponding current 

densities, je and jh, are trivially obtained from fluxes simply by multiplying by carrier 

charge: 
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Clearly, the ohmic terms have the expected form of electric field divided by resistivity. 

Within this context, it is clear that immediately when the two blocks touch, majority 

carriers from each side must diffuse across the junction since a large concentration 

gradient exists.  (Of course, when majority carriers diffuse to the other side of the 

junction, they then become minority carriers since, by definition, the semiconductor type 

changes at the junction.)  Initially, there is no drift since there is no intrinsic electric field.  

However, carrier mass action equilibrium requires that a large non-equilibrium excess 

concentration of minority carriers cannot be built up.  Therefore, excess minority carriers 

rapidly recombine with majority carriers resulting in the depletion of majority carriers in 

both types of semiconductor in the vicinity of the junction.  Obviously, depletion is 

greatest at the junction and decreases as distance from the junction increases.  

Furthermore, just as in the case of an MOS capacitor or metal-semiconductor contact, 

depletion also causes ionized impurity atoms to become uncovered.  This implies the 

existence of a space charge within the depletion region around the junction.  Naturally, an 

electric field must exist in this region of space charge.  (One should note that the terms 

“space charge region” and “depletion region” are synonymous and describe different 

aspects of the same physical phenomenon.)  Obviously, in the thought experiment the 

depletion region begins to form just as soon as the two blocks of semiconductor touch, 
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however, this process cannot continue indefinitely.  Returning to the transport equations, 

one observes that as the space charge increases, the strength of the associated internal 

electric field must also increase.  Therefore, the magnitude of the drift component of net 

carrier current increases in response to the build up of an internal electric field.  

Furthermore, the drift current naturally opposes the diffusion current.  Thus, the internal 

electric field can increase only until drift and diffusion currents become exactly equal and 

opposite, i.e., net carrier current vanishes.  At this point, carrier equilibrium is established 

in the region of the junction as well as elsewhere throughout the volume of the 

semiconductor and no further net carrier transport occurs. 

The electrostatic characteristics of an unbiased pn-junction are illustrated in the 

following figure: 
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Fig. 56: Electrostatic characteristics of an unbiased pn-junction 

 

It is clear from the band diagram for an ideal abrupt pn-junction, that the space charge 

density, , in the junction is dipolar and abruptly changes sign from positive on the n-

type side to negative on the p-type side.  Of course, Maxwell’s equation relating electric 

field, E, to charge density is: 
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Thus, the electric field is in the same direction (defined as positive to the right) on both 

sides of the junction, i.e., E “points” from n-type to p-type.  Obviously, E reaches a 

maximum value exactly at the junction.  Of course, the existence of the internal field 

implies a “built-in” or diffusion potential, V: 
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Clearly, V is more positive on the n-type side of the junction. 

It should be noted in passing, that in the preceding figure, net doping levels on each 

side of the junction are represented as approximately equal in magnitude.  In actual 

practice, this is not usually the case.  Typically, one doping concentration will be much 

larger that the other, but the total amount of uncovered positive and negative charges in 

the junction depletion region must be the same irrespective of doping.  Hence, in such a 

case the junction must be asymmetric with the width of the depletion layer on the lightly 

doped side being much larger than on the heavily doped side.  However, this does not 

substantially change the situation.  Similarly, diffused junctions are not abrupt but, 

generally are “graded” (i.e., the net doping concentration decreases smoothly from some 

higher concentration far from the junction, to a lower concentration in the junction 

region).  Again, this does not greatly change the behavior of a pn-junction (although 

graded junctions do exhibit some behavioral characteristics that are different than those 

of abrupt junctions). 

Naturally, Fermi potentials, Fn and Fp can be defined on each side of the junction, 

and far away from the junction region (i.e., far outside the depletion layer), one can write: 
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Here, Nn and Np are net donor and net acceptor concentrations on each side of the junction 

and Ein and Eip are corresponding intrinsic Fermi energies.  (Recall that the Fermi 

potential, F, is defined for an extrinsically doped semiconductor as |EiEF|/q.)  Clearly, 

the maximum value of the diffusion potential, Vpn, is just the sum of n-type and p-type 

Fermi potentials, hence: 
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Naturally, this can be simplified if extrinsic doping levels far exceed the intrinsic carrier 

concentration: 
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Obviously, Vpn is analogous to the contact potential defined in the case of a simple metal-

metal junction (i.e., contact).  Of course, it arises from the effective work function 

difference between extrinsic n-type and p-type semiconductor.  However, since electric 

fields can penetrate semiconductors, in contrast to a metal-metal junction, a depletion 

layer of measurable thickness appears at a pn-junction and the potential difference is 

“stretched out” over a much larger volume of material.  Depending on actual levels of 

extrinsic doping, for silicon Vpn is typically in the neighborhood of 0.6-0.7 volts. 

 

The Effect of Forward and Reverse Bias on a pn-Junction 

 

So far, only an unbiased pn-junction has been considered, however, if a voltage is 

applied across the junction, then one expects some current to flow.  Within this context, 

the internal potential acts as a barrier to current flow from the p-type side to the n-type 

side of the junction.  Hence, the existence of the diffusion potential indicates that a pn-

junction can be expected to conduct electrical current through the junction more easily in 

one direction than the other.  Indeed this is found to be the case and such a device is 

called a semiconductor diode.  (For this reason, Vpn is sometimes called “diode potential” 

or “diode drop” or VBE.) 

In forward bias, the p-type side of the junction is held positive with respect to the n-

type side.  Thus, the applied field opposes the internal field.  This reduces the drift 

component of the carrier flux and results in a higher net flux of majority carriers toward 

the junction from each side due to diffusion.  Thus, the depletion region shrinks in 

forward bias.  (However, in principle it cannot ever be completely removed even by a 

very large forward bias.)  Of course, when majority carriers reach the junction, they 

recombine which (since they are of opposite charge) corresponds to a net current flow 

through the junction.  Clearly, only a limited amount of current can flow before the 

applied potential substantially offsets the diffusion potential.  At this point, the junction 

“turns on” and current flows very easily.  In contrast, in the case of reverse bias, the n-

type side of the junction is held positive with respect to the p-type side.  Hence, the 

applied potential enhances the diffusion potential.  This further reduces the net flux of 

majority carriers into the vicinity of the junction and, therefore, increases the size of the 

depletion region.  Thus, current flowing through the junction is greatly reduced.  

However, it does not fall all the way to zero.  This is a result of minority carrier 

generation.  Of course, there is always generation and recombination of electrons and 

holes due random thermal fluctuations.  (This is just the source of the intrinsic carrier 

concentration.)  This process occurs even in the depletion region.  Therefore, in reverse 

bias, minority carriers spontaneously generated by thermal excitation in or very near the 

depletion region are swept across the junction by the field and, as such, are said to be 
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“injected” by the field.  This leads to the appearance of a small reverse current through 

the junction.  Since there is no potential barrier to the flow of minority carriers, the 

reverse current should have a simple constant characteristic unaffected by any applied 

potential since it is fixed solely by the generation-recombination rate in the vicinity of the 

junction. 

The preceding description of current flow through a biased pn-junction can be cast in 

a mathematical form if one considers diffusion (or recombination) and drift (or 

generation) fluxes and/or current densities through the junction.  Suppose one applies an 

external potential, V, to the junction, such that V is defined as positive in forward bias and 

negative in reverse bias.  One recalls that the energy distribution for mobile carriers is 

governed by Fermi-Dirac statistics, however, as is usual one assumes that it is allowable 

to use an approximate Maxwell-Boltzmann form.  Thus, diffusion fluxes, Fed and Fhd, for 

electrons and holes, respectively, can be written as follows: 
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Clearly, the exponential factor accounts for the fraction of electrons and holes having 

sufficient energy to surmount the potential barrier associated with the junction.  Of 

course, the net diffusion flux of electrons is toward the p-type side of the junction (i.e., to 

the right with respect to the preceding figure) and the net diffusion flux of holes is toward 

the n-type side of the junction (i.e., to the left).  Consequently, if the junction is unbiased, 

the diffusion fluxes just correspond to the expressions: 
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However, since there is no net flow of carriers across an unbiased junction, drift flux due 

to thermal generation of carriers within the depletion region and diffusion flux from the 

neutral volume are exactly equal and opposite; hence, one finds that: 
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Here, Feg and Fhg are identified as electron and hole generation fluxes.  As observed 

previously, generation fluxes are not affected by the applied potential, thus net fluxes of 

electrons and holes are obtained by combining drift and diffusion fluxes as follows: 
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As usual, carrier fluxes are converted to current densities simply by multiplying by 

carrier charge.  In addition, signs will be rationalized so that current is considered 

positive when flowing from the p-type side of the junction to the n-type side.  One finds 

that: 
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Here, je0 and jh0 are the magnitudes of electron and hole generation current densities.  Of 

course, total current density through the junction just corresponds to the simple sum: 
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This is the Shockley or ideal diode equation and is a fundamental characteristic of pn-

junctions.  Obviously, j0 is the total generation current density due to both electrons and 

holes.  For practical diodes, the diode equation is trivially rendered into absolute current 

rather than current density by consideration of appropriate geometrical parameters, 

hence: 

 








  10
kT

qV

eII
 

 

Thus, one finds that a pn-junction has an exponential current-voltage characteristic: 
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Fig. 57: Current-voltage characteristic of a biased pn-junction 

 

Here, I0 is called saturated reverse current.  In common terminology, if the value of I0 

becomes too large, then the pn-junction is said to be “leaky”.  The primary cause of this 

problem is the enhancement of minority carrier generation due to contamination and/or 

defects. 

In practice, the diode equation is commonly modified by inclusion of an empirical 

ideality factor, n, as follows: 
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Obviously for some specific device this takes the form: 
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In general, n is a fitting parameter that allows for measured departure of diode IV 

characteristics from the ideal Shockley equation.  Physically, the ideality factor is related 

to geometry of the junction and distribution of electron-hole recombination with respect 

to the associated depletion region.  Moreover, for any junction that approximates an 

infinite planar junction, recombination is generally negligible in the depletion region and, 

consequently, n can be expected to be very close to 1.  Conversely, if geometry is non-

ideal and recombination in the depletion region dominates then n can be expected to be 

near 2. 

Within this context, irrespective of ideality the diode equation does not account for 

any “series” resistance due to the bulk semiconductor itself.  Accordingly, in very high 

forward bias in which case current may become very large, the exponential characteristic 

can be expected to become combined with a linear characteristic due to IR drop.  

Furthermore, if either forward or reverse bias becomes too large, then the pn-junction 

“breaks down” due to a high electric field in the junction region.  This behavior is similar 

to the case of oxide break down.  In simplistic terms, carriers are accelerated so rapidly 

by the applied field that they collide with bound electrons of lattice atoms and cause 

impact ionization.  This results in a chain reaction of carrier generation or an avalanche.  

As might be expected, this can be destructive, permanently degrading the junction.  (Even 

so, there are devices such as Zener diodes that do operate in or near junction breakdown.) 

 

Capacitance-Voltage Response of a pn-Junction 

 

It is clear that there is net charge storage associated with a pn-junction.  Physically, 

this takes the form of two oppositely charged space charge layers.  Hence, to a good 

approximation a pn-junction behaves similar to a classical parallel plate capacitor.  

Therefore, just as in the case of an MOS capacitor, one can apply the depletion 

approximation to determine the potential in the space charge region.  Accordingly, one 

easily adapts the general expression obtained for MOS capacitors, thus: 
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Here, p(xp) and n(xn) are internal potentials defined respectively on the p-type and n-

type sides of the junction.  The coordinates, xp and xn, are distances measured from the 

junction boundary.  (Obviously, the “sign sense” of xp and xn must be opposite.)  By 

definition, xdp and xdn are widths of p-type and n-type space charge layers.  (Again, one 

should note that the space charge layer on the p-type side is negative and the space charge 

layer on the n-type side is positive.)  Clearly, the total depletion layer width is just the 

sum of xdp and xdn.  For generality, net doping densities are assumed to be position 
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dependent in the above equations.  Thus, these expressions can be applied to the more 

general case of a graded junction; however, for an abrupt junction the net doping 

densities are constant on each side of the junction and, therefore, can be simplified as 

follows: 
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By definition the potentials vanish at the edges of the depletion region. 

In the simple case of a symmetrically doped pn-junction, i.e., Nn and Np equal, and in 

the absence of any external bias, p(0) and n(0) must exactly equal the Fermi potentials, 

Fp and Fn, which are, in fact, precisely equal, hence: 
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Here, F, Nd, and x0d are, respectively, Fermi potential, net dopant concentration (either 

acceptors or donors), and space charge width on one side of an unbiased symmetric 

junction.  Clearly, for this simple case one can use explicit expressions for the Fermi 

potentials to determine unbiased depletion widths as follows: 
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Of course, the total space charge width, x0tot, is the sum of space charge widths on each 

side of the junction, which in this simple case is just 2x0d.  Moreover, if extrinsic doping 

dominates as is usual, then the preceding formula can be simplified, thus: 
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It is evident that space charge width becomes smaller if net doping increases and 

conversely, becomes larger if net doping is decreased.  Furthermore, one finds that these 

expressions are very similar to the corresponding expression for the maximum depletion 

width of an MOS capacitor. 

The situation becomes more complicated for an asymmetrically doped junction.  In 

this case, Fp and Fn are not precisely equal to p(0) and n(0), but satisfy the weaker 

condition that the internal electrical potential must be continuous across the junction.  

Nevertheless, the diffusion potential must just be the sum of p(0) and n(0) and, thus, 

one can write: 
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Of course, Vpn is also the sum of the Fermi potentials, but this relation does not imply that 

p(0) and n(0) are equal to Fp and Fn, respectively.  Clearly, they may differ by some 

compensating potential offset.  (Indeed, this offset vanishes only if junction doping is 

symmetric.)  In addition, the total uncovered charge per unit area on each side of the 

junction must be of opposite sign, but equal magnitude, Q0, hence: 
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These two relations can be combined to construct expressions relating space charge 

widths to diffusion potential for both sides of an asymmetrically doped junction, thus: 
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It is a simple matter to rearrange these expressions to obtain the conventional identities: 
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Naturally, the total space charge width, x0tot, is, again, merely the sum of space charge 

widths on each side of the junction: 
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Of course, the diffusion potential is also a function of dopant concentrations.  Therefore, 

the explicit expression for Vpn obtained previously can be substituted explicitly such that: 
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Upon inspection of the preceding expressions, it is clear that if doping asymmetry is 

large, essentially all of the space charge region will be located on the lightly doped side 

of the junction and, consequently, x0tot will be approximately equal to just the depletion 

width of the lightly doped side alone. 

Similar considerations apply to a biased pn-junction.  Again, the internal potential is 

identified as the sum of p(0) and n(0): 
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However, the total potential is a combination of diffusion potential and external bias, V.  

Of course, the combination is written as a formal difference because by convention a 

forward bias opposes the diffusion potential and reverse bias enhances it.  Thus, one 

observes that as expected, for any reverse bias, the total depletion layer width increases in 

comparison to the unbiased case.  Conversely, for forward bias, total depletion layer 

width can be expected to decrease.  This is clearly the case if the external bias is less than 

the diffusion potential.  However, forward bias is increased beyond Vpn, negative values 

are obtained from the preceding formula.  Clearly, this situation is unphysical since it 

implies that at least one of the space charge widths must have an imaginary value.  

However, this is of no real consequence and just reflects the inapplicability of the 

depletion approximation in the case of a large forward bias and associated very thin space 

charge layers. 

Naturally, one can define the positive quantity, Q, as the magnitude of total charge 

per unit area of the junction stored in each space charge layer (i.e., the total charge per 

unit area stored in the positive space charge region, i.e., on the n-type side of the junction, 

is Q, and the total charge per unit area stored in the negative space charge region, i.e., on 

the p-type side of the junction, is Q).  Clearly, just as for an unbiased junction, Q can be 

related to net concentrations and space charge widths as follows: 
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One can recast the previous expression for VpnV in terms of Q thus: 
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This equation can now be rearranged to give an explicit charge-voltage relation: 
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Capacitance per unit area of a pn-junction is evidently obtained as the as the formal 

derivative of Q with respect to V.  (The derivative must be taken with respect to V 

because the capacitor, i.e., junction, is charged by a reverse bias and is discharged by a 

forward bias.) 
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Accordingly, one obtains the standard form of the capacitance-voltage relation for a pn-

junction: 
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Obviously, pn-junction capacitance can be measured accurately only in reverse bias since 

in forward bias very large currents flow.  Therefore, for convenience the reciprocal of the 

square of capacitance is plotted versus the negative of the bias voltage: 
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Fig. 58: Capacitance-voltage characteristic of a biased pn-junction 

 

In this case, a linear plot is obtained.  Moreover, if one extrapolates back to the abscissa 

intercept, it is clear that this should just correspond to the diffusion potential.  

Furthermore, the slope of the plot is related to net dopant concentrations on each side of 

the junction.  (In particular, for an asymmetric junction the slope is approximately 

proportional to the net dopant concentration on the more lightly doped side.) 

 

Relationship of Low Field Mobility to Carrier Diffusivity 

 

The behavior of a pn-junction has been determined in terms of diffusion and drift of 

carriers in the junction region.  Of course, diffusion is characterized by carrier diffusivity, 

Dx, such that x denotes either electrons or holes.  Physically, within a very general 

phenomenological context, carrier diffusivity can be related to an internal “dynamic 

friction” of the medium, fx, thus: 
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This expression is known as the Nernst-Einstein relation.  Of course, in a “resistive” 

medium by definition dynamic friction relates the velocity of a particle, v, to some 

applied force, F: 
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Clearly, if friction is increased, then as one expects, particle velocity is decreased.  

Furthermore, in the absence of friction, i.e., fx vanishes, v diverges to infinity.  This is just 

a consequence of Newton’s Second Law.  Classically, if no friction opposes the applied 

force, the particle is accelerated indefinitely and velocity increases without limit. 

In the case of carrier drift, the applied force just arises from the electrostatic field, E, 

and hence, can be identified as qE, (such that the upper sign corresponds to holes and 

the lower sign to electrons). 
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Obviously, mobility, x, is trivially identified as q/fx.  This just follows from the 

elementary definition of mobility.  Therefore, it immediately follows from the Nernst-

Einstein relation that: 
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Here, a fundamental relationship is found between carrier mobility and diffusivity.  

However, this equation is applicable only in the limit of a low field for which the drift 

velocity of carriers is smaller than average thermal velocity.  If the field becomes too 

large, this condition is no longer satisfied and drift velocity saturates as a function of 

applied field. 
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The Photovoltaic Effect 
 

In addition to conventional solid-state electronics, single crystal silicon is widely used 

for harvest of solar energy.  This is a result of the photovoltaic effect, which can be 

understood by considering light absorption in a semiconductor material.  As noted 

previously semiconductors may be classified as having either a direct or an indirect band 

gap depending on whether an electron can be promoted directly from the valence band to 

the conduction band without interaction with the lattice, i.e., with phonons.  Although this 

distinction is important for construction of light emitting devices such as light emitting 

diodes or semiconductor lasers, both direct and indirect band gap semiconductors absorb 

photons having energy larger than the band gap.  Physically, absorption of light results in 

formation of hole-electron pairs in excess of equilibrium thermal generation.  

Consequently, in analogy to the application of an electrical bias to a pn-junction, 

illumination of a junction results in non-equilibrium conditions.  This can be represented 

mathematically by addition of photocurrent density, jL, to the usual diode current: 
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Of course, for a practical photovoltaic device, this expression takes the form: 
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These are “ideal” photodiode equations.  Moreover, for conceptual convenience in both 

of these expressions, the sense of current direction is formally inverted with respect to the 

original Shockley diode equation; hence, IL is photocurrent characteristic of some definite 

illumination condition.  Clearly, the effect of photocurrent is simply to shift the current-

voltage characteristic of a pn-junction diode as illustrated in the following figure: 
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Fig. 59: The photovoltaic effect 
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By definition, ISC is “short circuit” current, which flows through an illuminated junction 

when both sides are held at the same potential and, as such, is ideally the same as the 

photocurrent, IL.  Similarly, VOC is “open circuit” voltage and is the potential measured 

across the junction when no current is allowed to flow.  Moreover, it is clear that 

photocurrent generated by absorption of light normally flows out of the p-type side of the 

junction and into the n-type side. 

 

Solar Cells 

 

In general, a simple pn-junction does not provide the most favorable structure for 

harvest of solar energy.  This is because photocurrent is collected almost exclusively 

from the depletion region, which is, typically, only a few microns thick at most.  

Therefore, it is advantageous to place a region of intrinsic silicon between p-type and n-

type sides of the junction.  Such a structure is called a pin-junction.  As a practical matter, 

this region is typically 150 to 250 microns thick.  Accordingly, light is efficiently 

collected throughout the entire intrinsic volume, which, naturally, is effectively depleted.  

It should be evident that it is highly desirable for the carrier recombination rate to be low, 

which, represents a fundamental limitation of the efficiency of a semiconductor 

photovoltaic device.  Indeed, for silicon solar cells the maximum theoretical efficiency 

corresponding to the Shockley-Queisser limit is about 30%.  The best practical devices 

(backside contact single crystal silicon with sophisticated anti-reflection technology) 

have efficiencies approaching 24-25%. 

As is often convenient, complex electronic devices can be satisfactorily modeled as 

combinations of simple devices arranged in an “equivalent circuit”.  Accordingly, 

practical silicon solar cell may be represented schematically as the following equivalent 

circuit: 

 

 

Fig. 60: Equivalent circuit of a silicon solar cell 

 

Here, the current source (circle with arrow inside) just represents the photocurrent, IL, as 

defined above.  Likewise, ID is the diode current as defined by the Shockley diode 

equation.  However, in addition parasitic resistances, RS and RSH, are also included.  These 

are known, respectively, as series resistance and shunt resistance.  Both are undesirable, 

and it would seem obvious that series resistance should be as low as possible since it 

impedes the flow of current to the outside world.  In contrast, shunt resistance should be 

as high as possible since it “shorts out” the device.  Physically, series resistance generally 

arises in non-ideal connections between the silicon substrate and external wiring.  This 
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can be a result of either poor design or poor fabrication processes.  Concomitantly, shunt 

resistance is caused by internal losses within the cell and is commonly the result of poor 

diode characteristics.  Typically, low shunt resistance is the result of defective 

manufacturing rather than poor design.  In any case, IV characteristics of a practical solar 

cell are readily represented by modifying the ideal expression as follows: 
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Here, V is the potential difference generated across the output terminals of the device due 

to illumination.  Unfortunately, because I appears explicitly in the exponent, this equation 

cannot be solved in closed form.  Of course, by definition, VOC implies that I is zero, 

hence: 
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If, as is desirable, shunt resistance is large, then the left hand side of this expression can 

be replaced by zero and one obtains the ideal formula: 
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At reasonable illumination, viz., “one sun”, IL is generally much larger than I0 and “1” can 

be ignored in the logarithm.  Typically, for a crystalline silicon solar cell VOC has a value 

similar to junction diffusion potential, i.e., 500 to 700 millivolts.  Conversely, ISC implies 

that V vanishes, which gives: 
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Again, this formula can be simplified subject to some reasonable approximation, which in 

this case is that shunt resistance is very much larger than series resistance.  If, in addition, 

the exponential can be approximated by a truncated power series, then it follows that: 
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Clearly, if series resistance can be ignored altogether, then ISC trivially reduces to the 

photocurrent. 
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Optimal Operation of a Photovoltaic Device 

 

Obviously, VOC and ISC cannot correspond to the optimal operating point of a solar 

cell.  This is determined when output power is maximized.  In general, for any electrical 

generating device, output power corresponds to the product of current supplied to the 

outside world and the supply voltage, which in the present case is just the product, IV.  

Clearly, the device can supply no power to the external world under either short or open 

circuit conditions.  Concomitantly, for some external load attached to a solar cell supply 

voltage must fall below VOC and operating current below ISC.  Nevertheless, the product, 

IV, does not vanish indicating that light energy absorbed is supplied as power to an 

external load.  The relationship between characteristic IV and PV curves and optimal 

supply voltage and operating current, Vmax and Imax, for a solar cell are illustrated in the 

following figure: 
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Fig. 61: Solar cell IV and PV curves 

 

Accordingly, the derivative of output power, P, with respect to supply voltage, V, 

vanishes at the optimal operating point.  Within this context, the derivative of P with 

respect to V is constructed implicitly from the IV characteristic as follows: 
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Thus, it immediately follows that: 
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This expression can be rearranged to formulate an explicit expression for the current 

derivative, thus: 

 

 


















SH

kT
IRVq

S

SH

kT
IRVq

R
eI

kT

q
R

R
eI

kT

q

dV

dI

S

S

1
1

1

)(

0

)(

0

 
 

As is evident from the preceding figure the derivative must be uniformly negative.  

Combining expressions one obtains: 
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Of course, the left hand side vanishes at the optimal operating point, which, in principle, 

allows Vmax and Imax to be uniquely determined.  In practice, the preceding equation can 

only be solved numerically.  Within this context, fill factor, F, is defined by the ratio: 
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Typically, fill factor is quoted in per cent and is larger the more “square” the IV curve 

appears.  Indeed, although physically impossible, it is evident that if Vmax and Imax 

corresponded exactly with VOC and ISC, then the IV curve would be precisely a rectangle 

and F would be exactly 100%.  Conversely, if IV curves become “squashed” or 

“rounded” due to unfavorable values of parasitic resistances or poor diode characteristics, 

then fill factor falls to low values, e.g., below 40%.  Accordingly, fill factor provides a 

useful figure of merit for quality of a solar cell. 

Fill factor is directly related to efficiency, , which can be defined precisely as 

follows: 
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As indicated previously efficiency is usually quoted in percent and; hence, is defined as 

the quotient of maximal power, viz., ImaxVmax, with incident power due to illumination, Pin.  

Typically, efficiency is defined under conditions of “one sun”, which assumes a standard 

solar spectrum and a power density of nominally one kilowatt per square meter under 

conditions of perpendicular solar illumination.  Therefore, a solar cell (or array) having 

20% efficiency and one square meter in area could, in principle supply two hundred watts 

of power.  In practice, it is difficult to achieve high efficiency due to various factors such 
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as sun angle, shading, etc.  Accordingly, different strategies are adopted to mitigate these 

factors.  For example, a solar panel might be combined with a mechanism that changes 

orientation and tilt during the day to track the sun.  Even so, intermittency remains a 

serious problem for all forms of renewable energy.  For this reason integration of solar 

energy with the existing electrical grid is difficult since it adds complexity to large scale 

power management.  One solution for this is large-scale battery storage; however, cost 

and inefficiency still remain serious obstacles. 

 

Light Emitting Diodes 

 

It comes as no surprise that the photovoltaic effect can be inverted.  This means that 

flow of a current through a diode results in emission rather than absorption of 

electromagnetic radiation.  Such a device is called a light emitting diode or LED.  An 

important distinction to be made between an LED and a photovoltaic is that although a 

photovoltaic can be made from both direct and indirect band gap semiconductors; 

because an LED requires a direct photonic transition, a direct band gap semiconductor, 

such as gallium arsenide, is necessary.  Consequently, silicon cannot be used for an LED.  

Physically, light is emitted from an LED if the junction is fully turned on in forward bias, 

i.e, if the applied bias voltage substantially exceeds the diffusion potential.  Typically, the 

“on” voltage is 2 to 3 volts.  The emitted wavelength is determined by the band gap of the 

semiconductor, which in the case of GaAs is 1.424 eV and, therefore, infrared. 

The earliest LEDs appeared as practical electronic components in 1962 and emitted 

low-intensity infrared light.  More specifically, in the fall of 1961, James R. Biard and 

Gary Pittman, employees of Texas Instruments, Inc., observed that in strong forward bias 

a gallium arsenide diode emitted infrared light.  Subsequently, Biard and Pittman filed a 

patent entitled “Semiconductor Radiant Diode”, which described a zinc diffused GaAs 

pn-junction LED.  Texas Instruments then began to manufacture infrared diodes and in 

October of 1962 announced the first LED commercial product which emitted at 900 nm.  

(Indeed, such infrared LEDs are still frequently used as transmitting devices in remote 

controls for consumer electronics.)  A visible-spectrum (red) LED was invented in 1962 

by Nick Holonyak, Jr., an employee of the General Electric Company.  As might be 

expected, the first visible-light LEDs were also of low intensity, and limited to red 

(commensurate with band gaps of GaAs and alloys such as AlGaAs).  Even so, early 

visible-light LEDs were frequently used as indicator lamps for electronic devices, 

replacing small and unreliable incandescent bulbs.  Concomitantly, they were packaged 

in seven-segment displays and, thus, used as digital readouts as commonly seen in digital 

clocks.  Ten years later in 1972, M. George Craford, a former graduate student of 

Holonyak, invented the first yellow LED and improved the brightness of red and red-

orange LEDs by a factor of ten.  A few years later in 1976, T. P. Pearsall developed the 

first high-brightness, high-efficiency LEDs for optical fiber telecommunications by 

synthesizing semiconductor materials specifically adapted to light wavelengths optimized 

for optical fiber transmission.  More recently, other III-V semiconductors having larger 

direct band gap, such as gallium nitride, have allowed development of LEDs of almost 

any color.  Consequently, very high brightness LEDs are currently available for visible, 

ultraviolet, and infrared wavelengths.  Accordingly, blue LEDs have been combined with 

a broad spectrum phosphor to produce very bright white LEDs useful for environmental 
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and task lighting.  In such applications, LEDs have substantial advantage over 

incandescent lamps such as lower energy consumption, longer lifetime, improved 

mechanical and electrical reliability, reduced size, and faster switching.  Consequently, 

light emitting diodes are currently used in applications as diverse as aviation lighting, 

automotive headlamps, advertising, general lighting, traffic signals, and camera flashes.  

Even so, LEDs bright enough for ambient room lighting are still relatively expensive and 

require more precise current and heat management than incandescent or compact 

fluorescent lamps of comparable luminosity.  Nevertheless, it is generally expected that 

LED lighting will eventually replace conventional lamps and become ubiquitous. 
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Atomic Processes of Diffusion 
 

Just as for other processes such as oxidation, diffusion is thermally activated and can 

be considered within a thermodynamic context.  Therefore, the free energy change 

associated with a diffusion process can be represented by the fundamental expression: 
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For diffusion in a silicon crystal, the internal energy change, ED, is determined by the 

net number of bonds broken during diffusion.  Obviously, an overall diffusion process 

may require bond breakage for atoms to migrate, however, these bonds subsequently 

reform; hence, net bond breakage, discounting the effects of lattice defects, etc., can be 

expected to be nearly zero.  Therefore, the energetic contribution to free energy change is 

negligible.  In contrast, entropy is the thermodynamic measure of disorder; hence, 

addition of an impurity has a similar effect on the entropy of a perfect crystal as found 

previously for the addition of point defects.  (Indeed, the effect is very similar since an 

impurity can be treated as just another kind of point defect in addition to vacancies and 

interstitials.)  Therefore, mixing of an impurity into a pure material increases disorder, 

and thus, must increase entropy.  The classical expression for the entropy change 

associated with mixing two pure materials, A and B, is: 
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Here, NA and NB are the number of atoms of species A and species B respectively.  (Of 

course, the argument of the logarithm is the “number of distinguishable arrangements” of 

NA atoms of species A and NB atoms of species B, i.e., a binomial coefficient.)  As usual, 

since NA and NB are very large numbers, one can express the logarithm as a sum of 

logarithms and further simplify the result by means of Stirling’s approximation: 
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Naturally, it is desirable to recast this expression in terms of concentrations, CA and CB, 

rather than absolute numbers of impurity species.  Therefore, if V is identified as the 

volume of material, then it follows that “entropy of mixing” has the form: 
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In passing, it is worthwhile to note that material (or mole) fractions, XA and XB, are also 

defined respectively as NA/(NA+NB) and NB/(NA+NB) or CA/(CA+CB) and CB/(CA+CB).  

Hence, entropy of mixing can be expressed in terms of XA and XB, thus: 
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Here, N is just the total number of atoms, NA+ NB.  (This is the conventional expression 

for entropy of mixing often appearing in textbooks.) 

Naturally, if one identifies species A as silicon and species B as impurity, then it 

follows that: 
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Of course, the concentration of silicon atoms is much larger than the concentration of 

impurity atoms; hence, the first logarithmic term can be ignored as negligible, i.e., ln  1 

vanishes, therefore: 
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Here, NI is the total number of impurity atoms, i.e., CI V.  Thus, the free energy change 

associated with diffusion is: 
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Obviously, the concentration of silicon atoms can be determined by observing that there 

are eight atoms per unit cell in a diamond cubic structure, hence, CSi, is merely 8/a3 and a 

is just the lattice parameter as usual.  One finds that for a dopant concentration of 1016 

cm3 at 1000C, the free energy change per unit volume, i.e., AD /V, is approximately 

200 J cm3.  This is a negative free energy change and clearly illustrates that diffusion 

occurs spontaneously. 

 

Diffusion Mechanisms 

 

To characterize impurity diffusion in crystalline materials atomistically, two distinct 

diffusion mechanisms must be considered.  These are interstitial and substitutional 

diffusion.  Both of these mechanisms require participation of point crystalline defects, 

viz., interstitials and vacancies.  The interstitial mechanism is perhaps the easiest to 

visualize.  As one might expect, interstitial diffusion occurs when migrating atoms 

“jump” between interstitial sites within the crystal lattice.  If the “jumping” atom is 
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silicon, this is trivially equivalent to the migration of an interstitial defect (specifically, a 

silicon self-interstitial defect, as considered previously).  However, if the migrating atom 

is an impurity, the result is diffusion of impurity species.  One expects this process to be 

thermally activated; hence, temperature dependence of interstitial diffusion is 

characterized by an Arrhenius form: 
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Here, Di can be the diffusivity of either impurity or silicon self-interstitials, Qi is 

activation energy for this same process, and Doi is an associated pre-exponential factor, 

i.e., infinite temperature diffusivity.  Of course, Qi can be regarded physically as 

formation energy of some transition state.  In the case of interstitial diffusion, this is 

related to a transient increase in strain energy of the crystal lattice as a diffusing atom 

migrates from one interstitial site to another.  Since, the diamond cubic structure is 

relatively open; activation energy for interstitial diffusion can be expected to be relatively 

small.  Of course, specific values of Doi and Qi will depend on the nature of the diffusing 

species and can be expected to differ for impurity atoms or silicon self-interstitials. 

Similarly, substitutional diffusion is also a thermally activated process requiring 

participation of vacancies instead of interstitials.  In this case, the activation energy 

consists of two components.  The first is related to the formation energy of a vacancy 

since diffusion by this mechanism cannot occur unless there is a vacancy in close 

proximity to an impurity atom.  This contrasts with interstitial diffusion since no 

additional energy is required for the formation of an interstitial site (these are 

permanently present in the lattice).  The second component is an activation energy 

associated with the migration of a vacancy from one lattice site to an adjacent one.  (This 

two component formulation is similar to the form appearing previously for vacancy 

equilibrium.)  Thus, simple vacancy diffusivity, D , can also expressed as an Arrhenius 

form: 
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In analogy to the previous case of interstitial diffusion Do is infinite temperature 

diffusivity.  However, Qf is the contribution to activation energy due to vacancy 

formation and Qm is the contribution due to vacancy migration.  Physically, activation 

energies, Qm and Qi are of similar size and relatively small (typically less than 1 eV).  In 

contrast, Qf is much larger (typically 3 to 5 eV’s); hence, the overall activation energy 

for vacancy diffusion is significantly larger than for interstitial diffusion.  Accordingly, 

for any definite temperature, one expects D to be much smaller than Di.  Therefore, in 

general, one expects interstitial impurities, e.g., heavy metals, etc., to diffuse much more 

rapidly than substitutional impurities, e.g., shallow level dopants, which diffuse by a 

vacancy mechanism.  This is indeed found to be the case. 

A third diffusion mechanism called the interstitialcy mechanism occurs when a 

silicon self-interstitial exchanges with a substituted impurity atom.  Consequently, this 
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mechanism requires interaction of interstitial defects with substitutional impurities and 

can be regarded within the context of a dynamical equilibrium: 
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Here, the subscript, l, denotes an atom substituted in the lattice and the subscript i denotes 

an interstitial atom.  One can formally define an equilibrium constant, K, as follows: 
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As a matter of convention, the square brackets denote atomic concentrations of each 

species in the crystal lattice.  Since, the concentration of silicon atoms in lattice sites is 

large and practically constant, an effective equilibrium constant, K, can be defined as the 

quotient, K/[Sil].  Therefore, one expects that the contribution of the interstitialcy 

mechanism to the total diffusivity, D, for a substitutional impurity is proportional to the 

ratio of the concentration of impurity atoms in interstitial sites to the concentration in 

lattice sites.  Thus, in terms of the effective equilibrium constant, D is given by: 
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Of course, Do is diffusivity in the absence of silicon self-interstitial defects.  Thus, one 

expects that in the presence of silicon self-interstitial defects, the diffusivity of 

substitutional impurities should be enhanced. 

 

Defect Charge and Dopant Diffusivity 

 

Naturally, intrinsic point defects are associated with localized electronic states, which 

may have energies lying somewhere (i.e., either shallow or deep) within the band gap.  

Furthermore, these defect states can interact with the normal band states of the crystal 

and, in the process change charge state.  Therefore, point defects may become charged in 

analogy to shallow level impurity atoms and/or interface traps.  Thus, if one considers 

total diffusivity as a sum of contributions from point defects of various types and charge 

states, one expects that activation energies and pre-exponential factors will not 

necessarily be the same for each contribution.  Therefore, impurity diffusion requires 

detailed consideration of these different contributions.  Moreover, since, shallow level 

dopants are substitutional impurities and diffuse primarily by a vacancy mechanism, the 

effect of neutral and charged vacancies must be included in any formulation for dopant 

diffusivity. 

To begin an analysis of dopant diffusion, one first observes that silicon vacancies 

exist in equilibrium with mobile carrier concentrations.  These defect-carrier equilibria 

can be formally represented as follows: 
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Here, V x, V , V =, V +, and V ++, denote respectively, neutral, singly and doubly negative, 

and singly and doubly positive charged vacancies.  Of course, h+ and e denote mobile 

holes and electrons.  Naturally, thermodynamic equilibrium constants, 

VK , 

VK , 

VK , and 



VK  are defined as usual.  Individual equilibria can also be combined to give overall 

expressions.  Clearly, the total vacancy concentration, [V ], is just the sum of all charge 

state contributions: 
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As has been observed previously, vacancies can diffuse in a semiconductor crystal just as 

dopants can.  Therefore, the total diffusion coefficient for vacancies can be expressed as a 

sum of contributions from each distinct charge state: 
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Naturally, each contribution is weighted by the fraction of each vacancy charge state 

relative to the total vacancy concentration. 

At this point, rather than considering each type of impurity species separately, 

substitutional silicon self-diffusion can be considered as a typical vacancy mediated 

diffusion process.  Thus, one formally relates the silicon self-diffusion coefficient, DSi, to 

simple vacancy diffusivity as follows: 
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Here, f is identified as an as yet undetermined “correlation factor”.  Upon substitution, 

one finds: 
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Therefore, the contribution to the silicon self-diffusion coefficient due to a particular 

vacancy charge state, r, is defined formally, thus: 
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In principle, if diffusivity contributions from each particular type of charged vacancy are 

known, one can construct the silicon self-diffusion coefficient. 

Clearly, since mobile carrier concentrations participate directly in the defect 

equilibria, they must affect the concentrations of charged vacancies.  Thus, DSi(r) is 

evidently a function of extrinsic doping.  Therefore, it is useful to consider silicon self-

diffusion in intrinsic silicon as a reference or standard state.  Indeed, values have been 

experimentally determined for DSi(r) in intrinsic silicon and are conventionally denoted 

as rDSi : 
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Here, fi is, again, a correlation factor, but specifically for intrinsic silicon, and [V r]i is the 

concentration of V r in intrinsic silicon.  One immediately can express DSi in terms of the 
rDSi ’s: 
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Clearly, since neutral vacancies do not strongly interact electrically with mobile carrier 

concentrations, it is plausible to assume that that the diffusivity of neutral vacancies is 

relatively unaffected by carrier concentrations, hence, correlation factors and neutral 

vacancy concentrations satisfy the relation: 
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This assumption yields an expression for DSi in terms of intrinsic and extrinsic defect 

concentrations: 
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Of course, the defect concentrations are related to carrier concentrations by defect-carrier 

equilibria.  Thus, equilibrium defect concentrations can be replaced by equilibrium 

carrier concentrations: 
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Typically, it is found that, in addition to neutral vacancies, charged vacancies having the 

same polarity as majority carriers, i.e., opposite of ionized impurity atoms, make 

significant contributions to diffusivity, i.e., V  and V = in n-type silicon and V + and V ++ in 

p-type.  Thus, it is useful to apply carrier equilibrium and rearrange the preceding 

expression as follows: 
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In practice, each of the rDSi ’s has been found to have an Arrhenius form: 
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Since values of r

oD Si  and rQSi  have been experimentally observed, DSi is easily calculated 

for any given temperature. 

Of course, diffusion of any substitutional impurity is similar to silicon self-diffusion.  

(Obviously, characteristic activation energies and pre-exponential factors will differ, but 

the general form of the diffusivity can be expected to be similar.)  Therefore, upon 

application of this same analysis, an expression for impurity diffusivity is easily obtained 

which is entirely analogous to the preceding expression for silicon self-diffusivity.  Thus, 

one can write: 
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Obviously, this expression has been obtained just by replacing the subscript “Si” with “I” 

to denote an arbitrary substitutional impurity species.  Naturally, the r

ID ’s can also be 

expected to be of Arrhenius form: 
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Furthermore, just as for silicon self-diffusion, values of r

oID  and r

IQ  have been measured 

for various dopant species.  Therefore, contributions to impurity diffusivity, r

ID , can 

easily be obtained as a function of temperature.  Characteristic values for r

oD Si  and rQSi  
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and r

oID  and r

IQ  for the most important diffusion mechanisms are collected in the 

following table: 

 

Atomic Species 

I 

Diffusion Mechanism 

V r 

r

oID  

(cm2/sec) 

r

IQ  

(eV) 

Si V x 

V  

V = 

V + 

0.015 

16 

10 

1180 

3.89 

4.54 

5.1 

5.09 

As V x 

V  

0.066 

12.0 

3.44 

4.05 

B V x 

V + 

0.037 

0.76 

3.46 

3.46 

Ga V x 

V + 

0.374 

28.5 

3.39 

3.92 

P V x 

V  

V = 

3.85 

4.44 

44.2 

3.66 

4.00 

4.37 

Sb V x 

V  

0.214 

15.0 

3.65 

4.08 

N V x 0.05 3.65 

Table 5: Arrhenius forms for defect mediated contributions to substitutional diffusivities 

 

Of course, it is important to note that values of the intrinsic carrier concentration must be 

determined by the carrier equilibrium at the process temperature.  Typically, the process 

temperature is relatively high, (>900C); hence, it is usually the case that ni will dominate 

over any extrinsic doping.  Therefore, carrier concentration ratios in the preceding 

expression will often approach unity and, thus DI reduces to the simple expression: 
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Furthermore, in most cases DI is dominated by only one or two terms. 
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Electric Field Effect 

 

Because dopant atoms are ionized within the crystal lattice, any internal electric field 

can affect diffusivity.  Of course, in the region of the junction just such an electric field 

exists due to the depletion region.  This internal electric field is determined by the 

gradient of the Fermi potential.  One recalls that the Fermi potential is given by the 

expression: 
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Thus, to within a sign the internal electric field, E, is just the spatial derivative of the 

Fermi potential: 

 

F
x

E 



 

 
 

Of course, the upper sign denotes an n-type diffusion and the lower sign a p-type 

diffusion. 

Naturally, diffusion of ionized dopant impurities is a transport process entirely 

analogous to transport of mobile carriers.  Thus, in the presence of an electric field, the 

total diffusion flux will have both a diffusive contribution (from Fick’s Law) and a drift 

contribution (from Ohm’s Law): 
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Clearly, sign options cancel out and the second term is explicitly negative for both n-type 

and p-type semiconductor.  Moreover, if only one type of impurity is dominant (as is 

usual), the Fermi potential has the form: 
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Here, CI can be either acceptor or donor concentration.  Thus, one substitutes as follows: 
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Considering the dopant concentration, CI, as an explicit function of x, one can construct 

the derivative to obtain: 
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Thus, one can define the electric field coefficient, h: 
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Therefore, the linear transport relation takes the form: 
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Here, DI h can be considered as an effective diffusivity, which takes into account the 

electric field effect.  Clearly, any internal electric field serves to enhance diffusion.  If CI 

greatly exceeds the intrinsic concentration, i.e., CI ni, then h evidently approaches a 

value of 2.  In contrast, if intrinsic carriers dominate, i.e., CI ni, then h is essentially 

unity.  Furthermore, the electric field effect introduces concentration dependence into the 

effective diffusivity which causes the transport equations to become non-linear. 

 

Non-Linear Diffusion 

 

At very high impurity concentrations (viz., near the solubility limit) dopant diffusivity 

generally becomes concentration dependent and corresponding diffusion processes 

necessarily become non-linear.  Moreover, in addition to the effect of an internal electric 

field, at high concentrations dopant clusters or complexes can also form, which normally 

tend to reduce effective diffusivity.  Consequently, enhancement of diffusivity due to 

interaction of ionized impurity atoms and mobile carriers can be offset by complex or 

cluster formation at very high concentrations.  In any case, irrespective of cause or 

precise behavior, i.e., enhancement or suppression of diffusive transport, treatment of 

concentration dependent diffusion requires appropriate modification of the fundamental 

transport relation (Fick’s First Law), which then takes the more general form: 
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Clearly, this expression no longer is applicable to a strict linear phenomenology; 

however, one can still construct a non-linear form of the diffusion equation by the usual 

method, thus: 
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Unfortunately, this equation cannot be solved using the Principle of Superposition.  

(Indeed, non-linear differential equations are at best difficult and usually impossible to 

solve.)  Even so, concentration profiles associated with non-linear diffusion processes are 

readily constructed by numerical methods. 

Of course, for any accurate numerical description of non-linear diffusion knowledge 

of the functional dependence of diffusivity on concentration is required, which in practice 

must generally be determined by experiment.  Concomitantly, a convenient technique for 

determination of D(C) requires formal integration of the non-linear diffusion equation 

subject to the specific restriction that concentration can be expressed in terms of a single 

variable, , defined formally as tx 2/ .  Subject to this restriction, the non-linear 

diffusion equation can be transformed as follows: 
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These expressions are obtained by elementary application of the chain rule; hence, one 

finds that: 
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Naturally, the remaining coordinate derivative can be rewritten as a derivative with 

respect to , thus: 

 

 




















 C
CD

t

C

t

x
)(

4

1

4 2
3

 
 

Within this context, the original non-linear partial differential equation has been reduced 

to a non-linear ordinary differential equation: 
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Clearly, a complementary error function concentration profile can be considered as a 

function of tx 2/  only and, as such, satisfies the required restriction.  (Of course, this 

corresponds to the special case that D(C) is strictly constant.)  In contrast, the Gaussian 

concentration profile cannot be considered as a function only of tx 2/ .  Consequently, 

constant source boundary conditions are naturally adapted to non-linear diffusion by 

defining the concentration, C, as a constant, Co, for x < 0 and t0 and as vanishing for 

x >0 and t0.  In terms of , this implies that C equals Co if  tends toward  and that 

C equals 0 if  tends toward .  Accordingly, one can formally integrate the preceding 

expression to obtain: 
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Here, (C) is to be regarded as the formal inverse function of the concentration profile, 

C().  In this form, this equation can be used to characterize any dependence of 

diffusivity on concentration.  Clearly, C/ must vanish as  tends toward .  Thus, it 

follows that: 
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This is the Boltzmann-Matano formula.  Within this context, x(C,t) should be interpreted 

as the formal inverse of C(x,t) with t regarded as a fixed parameter. 

The classical procedure for experimental determination of diffusivity is construction 

of a couple (i.e., heterojunction) consisting of two different materials.  Furthermore, this 

method can be readily adapted to silicon by deposition of a uniform, heavily-doped layer 

(glass, polysilicon, etc.) on the silicon surface as a diffusion source or by carrying out a 

constant source diffusion in which the surface is always maintained at the solubility limit 

of the diffusing species.  In any case, the sample is heat treated at a fixed temperature for 

a prescribed time interval and the resulting concentration profile is measured (by, 

perhaps, SIMS or some other applicable method) after which, the experimental 

concentration profile is numerically converted to an “inverse profile” for which diffused 

distance, x, measured relative to the original interface is determined as a function of 

concentration.  Graphical integration and differentiation of this data allows determination 

of the concentration dependence of diffusivity using the Boltzmann-Matano formula.  

Alternatively, to analyze experimental results one might fit a measured concentration 

profile to a model profile constructed as an explicit functional form incorporating 

adjustable parameters.  Accordingly, an exponential-power function provides a 

convenient model profile, thus: 
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Obviously, , , Co, and  D  are adjustable parameters, which can be interpreted as 

dimensionless exponent and offset coefficients, surface concentration, and effective 

diffusivity.  Moreover, this formulation is consistent with required boundary conditions 

from which it follows that: 
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In passing, it is instructive to observe that the parameter groupings,  
eCo  and  D , are 

logically equivalent to Co and  D  and, as such, can be considered as more “natural” 

adjustable parameters.  (Even so, physical interpretation of Co and  D  is more 

straightforward and less complicated.)  In any case, formal inversion of C() is a simple 

matter of elementary algebra, hence: 

 

 

































1

ln
2

)(
C

eCD
C o

 
 

Likewise, the derivative is easily constructed from elementary differential identities as 

follows: 
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These expressions are combined in the Boltzmann-Matano formula to give an explicit 

expression for D(C): 
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Obviously, the second term within the integrand can be trivially identified as C.  

Unfortunately, the remaining integral term cannot be constructed in closed form; even so, 

it is desirable to transform the integration variable, thus: 
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Upon substitution, one immediately obtains the expression: 
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As a matter of pure mathematics, the integral term can be formally identified with an 

incomplete gamma function, (a,x), which for real-valued parameters, a and x, has the 

standard definition: 
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Clearly, in the preceding expression for D(C),  
 1  corresponds to a and 
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ln  to x.  

(Obviously, the complementary error function itself corresponds to a special case of the 

incomplete gamma function for which a has a value of exactly ½.)  Within this context, it 

is evident that if C(x,t) corresponds precisely with a complementary error function, then 

diffusivity must be rigorously independent of concentration.  Indeed, for high impurity 

concentrations near the couple interface (i.e., substrate surface), a complementary error 

function profile can be fit reasonably well to an exponential-power model profile using 

typical values for  of between 0.4 and 0.5 and for  of between 1.8 and 2.  In contrast, 

agreement is generally not so good for the profile “tail”; however, in this region of low 

impurity concentration far from the interface linear diffusion should predominate for any 

concentration profile and, thus, determination of concentration dependence of diffusivity 

is of little importance.  (Consequently, an exponential-power model profile can be 

expected to provide a realistic approximation to actual diffused profiles in the “near 

surface” region.) 

 

Fast Diffusers and Other Contaminants 

 

Of course, shallow level dopant species are generally substitutional impurities in 

semiconductors since they appear in adjacent columns in the periodic chart and, thus have 

similar atomic sizes and valencies as the elemental semiconductor atoms, viz., silicon, 

germanium, etc.  In contrast, many other species (such as metal atoms) do not “fit” well 

into the semiconductor crystal structure and, hence, often occupy interstitial sites.  

Naturally, in analogy to vacancies and substitutional impurities, interstitial species 

(including silicon self-interstitials) can also interact with mobile carriers and, thus 

become charged.  Therefore, the diffusion mechanism for an interstitial species can also 

be analyzed in terms of contributions from neutral and charged defects.  However, as 

observed previously, activation energies associated with vacancy diffusion mechanisms 

are generally larger than activation energies associated with interstitial diffusion 

mechanisms.  Therefore, overall diffusivities of interstitial species can be expected to be 

much larger than for substitutional impurities.  Accordingly, many metallic species are 

very fast diffusers.  This would be of no consequence if metal atoms did not also interact 

with mobile carriers.  Unfortunately, such interactions generally degrade the performance 

of solid-state devices. 

It is worthwhile to digress briefly to consider just how this degradation comes about.  

Of course, as is the case with any other imperfection in the crystal structure, (e.g., 

defects, interfaces, etc.), the presence of interstitial metal atoms causes electronic states to 

appear within the band gap.  Typically, these states are localized at the site of the metal 

atom, and as usual, can be rationalized physically as dangling bonds and/or extra atomic 

orbitals derived from the metal atom electronic structure.  The detailed nature of these 

states is immaterial within the present context.  What is important is that these states 

interact with mobile carriers and substantially increase the overall rate of carrier 

generation-recombination.  Of course, thermally activated carrier generation and 
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recombination is occurring continuously within the crystal.  However, in a perfect 

intrinsic semiconductor crystal, only the process of thermal promotion of an electron 

from the valence band to the conduction band generates all mobile carriers.  Furthermore, 

the rate of electron-hole recombination in a perfect crystal can be expected to be slow 

since band states are strongly delocalized, i.e., in order to recombine an electron and a 

hole must come into close proximity and “collide”.  The situation is not substantially 

changed by the addition of dopant impurities to the crystal since the localized states 

associated with these species are shallow, i.e., near a band edge.  (Of course, the major 

effect of shallow level states is just to change mobile carrier concentrations, i.e., render 

intrinsic semiconductor either p-type or n-type, but not substantially to increase the rate 

of electron-hole recombination.)  In contrast, metal atoms are generally deep level 

impurities, which by definition are associated with electronic states lying near the center 

of the band gap.  Such states do not greatly affect overall carrier concentrations, but they 

do act as recombination centers.  This may be understood by considering the following 

figure. 
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Fig. 62: Mobile carrier recombination due to deep level states 

 

Here, intrinsic silicon has been contaminated by some species that causes localized 

electronic states to appear just above the center of the band gap.  Of course, since these 

states lie above the Fermi level, the probability that a given state will be empty is greater 

than one half.  Suppose that a mobile electron “wandering” through the conduction band 

encounters an empty deep level state.  Since this state is lower in energy than the 

conduction band state, it is likely that this electron will “fall” into the deep level state and 

become captured.  Of course, if this happens, the deep level state acquires a relative 

negative charge due to the occupying electron.  Likewise, if a mobile hole encounters the 

same deep level state, it may easily recombine with the captured electron.  (This process 

may be equally well viewed either, as the captured electron falling into the empty valence 

band state represented by the hole or the hole falling into the deep level state to annihilate 

the electron.)  One might ask why this process should enhance the overall rate of carrier 

recombination?  After all, the aggregate result is just the same; a conduction band 

electron has recombined with a valence band hole.  In simple terms, a justification can be 

made, again, by considering mobile carriers as a kind of gas.  In an ordinary gas, the 

collision rate of molecules is directly related to size or more precisely “collision cross 

section”.  This is true for mobile carriers inside a semiconductor crystal as well.  

Naturally, collision cross sections of mobile carriers can be expected to be much smaller 

than the cross sectional area of an atomic species.  However, an interaction of a mobile 

carrier (either an electron or a hole) and deep level recombination center can be 

considered as a sort of collision between the mobile carrier and an atom.  Clearly, the 
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collision cross section (or more precisely, the “capture cross section”) for this process can 

be expected to be much larger than the cross section for a direct electron-hole 

recombination and, therefore the rate of the overall recombination becomes much larger.  

(In equivalent terms, one observes that minority carrier lifetime is reduced.)  Of course, 

the rate of the inverse generation process is similarly enhanced.  Accordingly, if one 

returns to consideration of a pn-junction, and recalls that the saturated reverse current is 

directly related to the rate of carrier generation within the depletion region of the 

junction, it is clear that deep level states must cause a significant increase junction 

leakage current. 

Some of the most destructive contaminants are commonly occurring metals such as 

iron, nickel, chromium, copper, etc.  As expected and as shown by the following table 

these can have very high diffusivities: 

 

Atomic Species Mechanism, 

Temperature, etc. 

DoI 

(cm2/sec) 

QI 

(eV) 

Ge substitutional 6.25(105) 5.28 

Cu (300-700C) 

(800-1100C) 

4.7(103) 

0.04 

0.43 

1.0 

Ag  2(103) 1.6 

Au substitutional 

interstitial 

(800-1200C) 

2.8(103) 

2.4(104) 

1.1(103) 

2.04 

0.39 

1.12 

Pt  150-170 2.22-2.15 

Fe  6.2(103) 0.87 

Co  9.2(104) 2.8 

C  1.9 3.1 

S  0.92 2.2 

O2  0.19 2.54 

H2  9.4(103) 0.48 

He  0.11 1.26 

Table 6: Arrhenius forms for various contaminant species 
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In general, scrupulous care must be taken to exclude dangerous metallic species from 

device fabrication processes.  Of course, gettering methods and rigorous pre-diffusion 

surface cleaning can be used to reduce effective metallic contamination.  However, the 

best method is prevention, that is to say avoidance of metal contamination altogether by 

disciplined handling and process control. 

 

Non-Implanted Dopant Sources and Practical Diffusion Processes 

 

Solid, liquid, and gaseous materials may all be used as non-implanted sources for 

shallow level dopants.  Typically, all of these sources will produce surface doping 

concentrations near the solubility limit.  Physically, solid solubility corresponds to a 

thermodynamic equilibrium constant and; hence, can be characterized as a function of 

temperature for various impurity species is shown below: 

 

 

Fig. 63: Solid solubilities of various impurity species in silicon 

 

In practice, solid sources fall into two categories: deposited thin films and preformed 

substrates.  Preformed substrates, such as boron nitride or phosphorous and arsenic 

impregnated ceramic disks, are used by alternating them with silicon substrates in a 
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quartz tube furnace.  The dopants diffuse through the ambient at the high temperature of 

the diffusion process and deposit on the substrate surface.  Typically, solid sources must 

be activated by a high temperature anneal in oxygen to form a volatile surface oxide and 

are then used for dopant “pre-deposition”.  Following pre-deposition, the preformed 

substrates are removed from the furnace and the substrates (with dopant deposited on the 

surface) are subjected to a second higher temperature “drive”.  Obviously, this creates a 

Gaussian diffusion profile.  One problem encountered in this kind of doping process is 

the formation of a heavily doped surface oxide on the wafer surface.  This oxide layer 

must be removed before further processing to prevent undesirable, accidental doping of 

other unrelated wafers.  In the case of phosphorus and arsenic, this is not difficult, 

however, borosilicate glass formed by boron doping is difficult to remove and typically 

must be “cracked” using a steam anneal. 

Out diffusion of impurity species from deposited thin films such as in-situ doped 

chemical vapor deposited polycrystalline silicon or doped “spin-on-glass” (SOG) can also 

be used to dope semiconductor substrates.  Clearly, these diffusion processes closely 

approximate constant source diffusions with surface concentrations very near the 

solubility limit.  Once the diffusion process is completed the doped SOG must be 

removed by etching; however, polysilicon is often not removed and is retained as a 

component of finished devices. 

The methodology for use of gases or volatile liquids as dopant sources is very similar.  

Typical liquid or gaseous source materials are listed in the following table: 

 

Dopant Species 

I 

Liquid Source Gaseous Source 

Boron, B Boron Trichloride, BCl3 

Boron Tribromide, BBr3 

Diborane, B2H6 

Phosphorus, P Phosphorus Oxychloride, 

POCl3 

Phosphorus Tribromide, PBr3 

Phosphine, PH3 

Arsenic, As  Arsine, AsH3 

Table 7: Dopant containing volatile liquids and gases used as diffusion sources 

 

In practice, dopant containing gases or volatile liquids are introduced into a gas stream 

containing a small, controlled amount oxygen mixed with nitrogen or an inert gas.  This 

gas stream is then introduced into a quartz tube furnace containing semiconductor 

substrates at high temperature.  The oxygen is necessary to produce volatile dopant 

oxides that then deposit on substrate surfaces.  (This is similar to the previous case of 

solid sources.)  Obviously, dopant containing gases are easily added directly to the gas 

stream entering the furnace using high precision valves and flow meters.  Typically, 

liquids are introduced into a diffusion furnace using a “bubbler”.  A bubbler is a glass or 

metal vessel held at a fixed temperature through which a stream of “carrier gas” is 

passed.  Since, the vapor pressure of a volatile liquid is a function only of temperature 
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then, for some fixed flow rate of carrier gas, the concentration of dopant containing vapor 

in the gas stream remains constant.  In all cases, control of the effective flow rate of 

dopant into the furnace is very important in order to achieve a consistent doping profile. 

At this point, a number of practical observations can be made concerning various 

dopant diffusion processes.  As asserted previously, at high concentrations (near the 

solubility limit) dopant diffusion may become non-linear, which is likely due to the 

formation of ionized impurity-vacancy complexes.  Indeed, these complexes can be 

regarded as “chemical” species formed within the crystalline medium by the “reaction” of 

ionized dopant atoms and charged vacancies.  In particular, ionized arsenic forms 

complexes with both singly and doubly charged negative vacancies.  Corresponding 

equilibria can be written as follows: 

 

VV 2As        2As

 

 
 

VV As        As

 

 
 

Here, AsV and AsV2 denote uncharged arsenic-vacancy complexes.  At lower arsenic 

concentration, arsenic diffusion is linear and is dominated by neutral and singly charged 

negative vacancies.  The behavior of ionized phosphorus is similar, however only one 

kind of negatively charged phosphorus-vacancy complex is formed: 

 




 VV P        P

 
 

It is further found that at high concentration, although neutral and singly charged negative 

vacancies both contribute phosphorus diffusion is dominated by doubly charged negative 

vacancies.  However, if phosphorus concentration is reduced, the diffusion mechanism 

changes to one dominated by singly charged negative vacancies.  As one might expect, 

boron diffusion is mediated by neutral and positively charged vacancies.  In general, 

complex formation is not important for boron and the dominant diffusion mechanism is 

dominated by singly charged positive vacancies. 

 

Diffusion in Polycrystalline Silicon 

 

Since doped polycrystalline silicon (i.e., polysilicon) is commonly used as a dopant 

source for single crystal silicon, it is instructive to digress briefly to consider dopant 

diffusion in polysilicon itself.  In general, due to the existence of grain boundaries in 

polycrystalline materials, viz., polysilicon, diffusion fluxes must be divided into 

contributions from bulk and grain boundary diffusion.  Indeed, shallow level dopant 

impurities in polysilicon, in particular phosphorus and arsenic, may preferentially 

segregate into grain boundaries.  (Boron does not significantly segregate into grain 

boundaries.)  Of course, in the specific case of polysilicon, bulk diffusivity can be 

generally expected to be of a similar magnitude (maybe somewhat larger depending on 

processing conditions) as the corresponding diffusivity in single crystal silicon.  
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However, as is often the case in many materials, grain boundary diffusivity is typically 

much, much larger.  Indeed, grain boundary diffusivity can be as much as six orders of 

magnitude larger than bulk diffusivity.  However, it is obvious that the amount of the 

material volume occupied by grain boundaries is a relatively small fraction of the total 

material volume (unless the grains are extremely small).  Therefore, the total diffusion 

flux can be represented as follows: 
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Here, Dbulk and DGB are bulk and grain boundary diffusivities, fGB is the fraction of 

material occupied by grain boundaries, and kGB is a grain boundary segregation 

coefficient.  Naturally, diffusivities can be expressed as Arrhenius forms, therefore: 
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Typically, the activation energy for grain boundary diffusion, QGB, is much smaller than 

the activation energy for bulk diffusion, Qbulk.  This is easily understood since no vacancy 

formation energy is required for grain boundary diffusion.  It is often found to be the case 

that bulk diffusion will dominate at high temperatures just due to geometrical factors and 

that grain boundary diffusion will dominate at low temperatures due to the lower 

activation energy.  The temperature for which bulk and grain boundary diffusion fluxes 

are equal is called the Tamman temperature. 
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Interaction of Diffusion and Oxidation Processes 
 

Before considering interactions between diffusion and oxidation processes, it is useful 

to recall that diffusion in amorphous dielectrics, e.g., thermal oxide, is conceptually a 

much simpler process than diffusion in crystalline semiconductors.  Specifically, there is 

no interaction with mobile carriers to be considered and many species just diffuse 

through existing voids and spaces within the network structure.  This is similar to 

interstitial diffusion in silicon, and consequently the activation energy can be expected to 

be quite low.  (In particular, molecular species such as water and oxygen diffuse in 

thermal oxide in this way.)  Alternatively, “network formers” such as boron, phosphorus, 

and arsenic are generally oxidized along with silicon and, accordingly, are “dissolved” in 

thermal oxide, i.e., become directly incorporated into the glassy network structure.  As 

such, network formers are analogous to substitutional impurities, i.e., dopants, in 

crystalline silicon and, thus, diffuse much more slowly.  Of course, one important 

difference between dielectrics and semiconductors is that very high electric fields can be 

sustained within dielectrics.  Therefore, field enhanced diffusion due to drift in an 

externally applied electric field can become very important.  This is particularly true for 

metallic species, such as sodium, that easily become ionized in thermal oxide. 

Of course, in a bulk silicon crystal, vacancies and interstitials exist in a well-defined 

equilibrium.  Therefore, both interstitial and vacancy concentrations can usually be 

treated as constant throughout the bulk.  However, one important exception to this 

situation occurs in the vicinity of a growing thermal oxide interface.  As observed 

elsewhere, during oxidation as many as one out of a thousand silicon atoms at the 

interface fail to become incorporated into the growing oxide film and become silicon 

self-interstitials.  Clearly, the growing oxide interface provides a source of interstitial 

defects that then can readily diffuse into the bulk.  Thus, in addition to condensing into 

extrinsic stacking faults, these interstitials contribute to enhancement of dopant 

diffusivity in proximity of the thermal oxide interface through the interstitialcy 

mechanism.  This is called oxidation enhanced diffusion.  The degree of enhancement 

depends largely on process conditions (temperature, oxidant species, oxidant pressure, 

substrate orientation, etc.).  Observed enhancement is largest for [100] substrates and 

effectively absent for [111] substrates.  (Of course, the reason for this orientation 

dependence has to do with the detailed structure of [100] and [111] interfaces.) 

In addition to oxidation enhanced diffusion, extrinsically doped silicon can interact 

with a growing silicon dioxide layer through dopant segregation.  This provides another 

example of a thermodynamic distribution equilibrium; however, instead of determining 

the relation of solute concentrations between solid and liquid phases of silicon (as in the 

case of crystal growth), this equilibrium determines the relation between solute 

concentrations in crystalline silicon and amorphous silicon dioxide.  Thus, the dopant 

segregation coefficient, mI, at the Si/SiO2 interface has the fundamental definition: 
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Here, ox

IC  is the concentration of impurity, I, in thermal oxide and, of course, CI is the 

concentration of the same impurity in silicon.  Of course, as a thermodynamic 

equilibrium constant mI is temperature dependent.  Moreover, in contrast to solid-melt 

distribution equilibria important in crystal growth, it has been found experimentally that 

depending on specific impurity atoms, mI may be either greater or less than unity.  In 

particular, phosphorus, arsenic, and antimony all have mI’s about 10 and, thus, segregate 

preferentially into the silicon substrate.  In contrast, mI for boron (i.e., mB) has a value of 

0.1 to 0.3 depending on conditions.  (Some researchers have reported that the value of mB 

is a function of both temperature and oxidizing ambient.)  In any case, boron 

preferentially segregates into the oxide layer. 

Naturally, combined effects of dopant segregation and diffusion (irrespective of 

oxidation enhanced or not) can be expected to affect surface doping concentrations if a 

thermal oxide layer is grown on extrinsically doped silicon.  Moreover, it would seem 

transparently obvious that the degree to which surface doping is affected should strongly 

depend on relative rates of diffusion and oxidation.  Indeed, this is the case and it is found 

that boron surface concentration can be substantially reduced if a thermal oxide is grown 

on a boron diffusion.  Dopant segregation is illustrated in the following figure: 

 

 

Fig. 64: Dopant redistribution during thermal oxidation 
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Conversely, because they tend to be rejected by the growing oxide, the surface 

concentration of n-type dopants such as phosphorus or arsenic can be greatly increased 

by thermal oxidation.  In extreme cases, the surface concentration can exceed the solid 

solubility limit for the dopant species in which case precipitates form at the Si/SiO2 

interface.  Of course, any precipitated dopant cannot be electrically active.  In practice, 

such extreme effects must be avoided and it may become necessary to readjust the 

surface concentration by additional doping or diffusion. 
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Ion Implantation 
 

Ion implantation is currently the method of choice for introduction of dopant species 

into semiconductor substrates for state-of-the-art integrated circuit fabrication.  Indeed, 

this process affords much better control of the impurity concentration profile for shallow 

and/or low dose doping than is possible using classical non-implanted diffusion 

processes.  To understand why this is so, one need only consider conventional furnace 

doping.  In the case of a constant source, the surface concentration is effectively at the 

solubility limit during the entire process.  Typically, this concentration is quite high 

which makes this method unsuitable for very low doses.  Similarly, in the case of an 

instantaneous source generated by conventional pre-deposition, the dopant surface 

concentration is, again, effectively at the solubility limit.  Furthermore, since dose cannot 

be controlled directly, i.e., surface concentration, not dose, is determined by the solubility 

limit at a given temperature, small process variations, e.g., in time or temperature, can 

cause relatively large variations in dose.  Also, an additional complication may arise 

because after a pre-deposition, all of the dopant atoms are effectively on the surface of 

the substrate.  In this situation, dose control can become difficult because dopant can 

evaporate from the substrate surface during a subsequent high temperature drive process.  

(This problem can be remedied by use of a “cover oxide” or other judicious modification 

of process conditions.)  In contrast, ion implantation is not subject to any of these 

limitations.  First of all, very small amounts of dopant can be accurately measured and 

precisely introduced into the silicon wafer.  Moreover, dose rather than concentration is 

measured directly during ion implantation.  Secondly, dopant atoms are deposited at 

some depth below the surface of the semiconductor and, therefore, they are much less 

easily lost during any subsequent diffusion drive (or other heat treatment). 

Conceptually, ion implantation is extremely simple.  Dopant containing source gases, 

e.g., arsine (AsH3), phosphine (PH3), diborane (B2H6), etc., are initially ionized in an 

electrical discharge within a vacuum chamber or “source”.  A high voltage power supply 

is used to “extract” atomic ions from the discharge.  These extracted ions are then sorted 

according to mass by dispersion in a strong magnetic field, i.e., by magnetic mass 

spectrometry.  The desired ions are then selected and electrostatically accelerated through 

a final high voltage stage to the desired energy.  Typical acceleration energies range from 

a few thousand to a few hundred thousand electron-volts.  The resulting pure, 

monoenergetic ion beam enters the “end station” and strikes the wafer (or target).  Since 

the beam cross section is typically much smaller than the wafer diameter, to obtain a 

uniform dose, electrostatic deflection of the beam to “scan” the wafer is required.  In 

addition, mechanical motion of the wafer stage can also be used to augment electrostatic 

scanning and to average out directional effects.  Implanted dose is controlled by directly 

measuring beam current (using a “Faraday cup” or some other device) and integrating 

over time.  Modern ion implanters can easily achieve doses below 1011 cm2.  This is far 

lower than is achievable using conventional doping methods. 

Of course, the nature of the interaction of an ion beam with a crystalline solid is 

strongly dependent on the incident ion kinetic energy.  At very low energy, ions do not 

penetrate the target crystal and are just deposited on the surface, i.e., so-called ion beam 

deposition or ion beam plating.  At higher energy, the impinging ions deposit kinetic 

energy just in the first few surface layers.  This causes sputtering which scatters atoms of 
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the crystalline solid from the surface into the ambient and, thence onto surrounding 

surfaces.  (Indeed, this is the underlying physical process for physical vapor deposition 

(PVD) of thin films.)  At still higher energy, ions penetrate the surface and come to rest 

inside the crystal.  This is, of course, ion implantation.  At the highest energies, 

impinging ions penetrate very deeply and can be applied to sophisticated analytical 

techniques, e.g., Rutherford back-scattering (RBS).  Obviously, a collateral effect of 

penetration of ions into a crystalline solid is the creation of damage and disorder within 

the crystal lattice.  Therefore, an important aspect of ion implantation processes requires 

control and/or elimination of these effects.  (Indeed, ion implantation of species such as 

argon (Ar), silane (SiH4), or germane (GeH4), etc., can be used intentionally to damage or 

amorphize the crystal for gettering or other purposes.) 

 

Elementary Hard Sphere Collision Dynamics 

 

As asserted previously, for ion kinetic energies in the range of a few thousand 

electron-volts to several hundred thousand (or even several million) electron-volts, ions 

impinging on a solid surface penetrate into the interior and then come to rest.  (At kinetic 

energies above several million electron-volts, ions can completely pass through the solid 

and, also nuclear reactions may occur which induce radioactivity!)  Obviously, when 

impinging ions penetrate a crystalline solid, they must collide with atoms inside the solid 

and lose energy.  Furthermore, since kinetic energies of implanted ions are much higher 

than atomic bond energies of the solid, ion-atom collisions can generally be treated as 

isolated collisions between free particles, i.e., atomic binding energy can be neglected.  In 

the simplest picture, these collisions can be viewed as collisions between two hard 

spheres (i.e., one treats ions and atoms as “billiard balls”).  Although the actual ion-atom 

interaction is much more complicated, this simplistic approach provides at least a 

qualitative insight into the form of observed implant concentration profiles. (Of course, a 

hard sphere collision is only a simplified approximation to a real physical process; 

however, if collision energy is relatively large, a hard sphere approximation often gives 

quite reasonable results.) 

To describe hard sphere collisions, one first defines a vector, vi, as incident velocity 

of an implanted ion and a second vector, iv , as the resulting ion velocity after collision 

with a silicon atom.  The initial silicon atom velocity vector, vs, is taken to be zero since 

it is reasonable to consider silicon atoms as initially at rest within the crystal lattice.  The 

recoil velocity vector, sv , of a silicon atom is, of course, its velocity after it is struck by 

an implanted ion.  Other parameters which characterize a collision between an ion and a 

silicon atom are impact parameter, b, which is the “center-to-center miss distance” (by 

definition, if b vanishes the collision is “dead center”) and scattering angle, , which is 

the deflection angle of the incident ion due to the collision. 

Of course, as in any two-body collision, total momentum must be conserved, 

therefore: 
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Here, mi is ion mass and ms is the mass of a silicon atom.  (Of course, masses are 

unchanged by collision.)  Likewise, kinetic energy must also be conserved, hence: 
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(Here, vi, iv , and sv  are just defined as the magnitudes of vi, iv , and sv , respectively.)  

From these two conditions, the characteristics of the collision are completely determined. 

Within this context, the geometry of a collision of two hard spheres is illustrated by 

the following figure: 
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Fig. 65: Geometry of a collision between two hard spheres 

 

Clearly, when two hard spheres collide, the entire interaction occurs as an instantaneous 

impulse just at the moment they “touch”.  Furthermore, this impulse is directed along a 

line connecting the centers of the two spheres.  This direction defines the apse of the 

collision and is characterized by a unit vector, k̂ , which by definition “points” outward 

from the center of the silicon atom at the moment of contact.  Thus, if G is defined as a 

scalar quantity that corresponds to impulse strength, then incident, scattered, and recoil 

velocities are formally related as follows: 
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Clearly, these expressions trivially satisfy momentum conservation.  Thus, to determine 

G, one substitutes these two expressions into the formula for energy conservation to 

obtain the result: 
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Obviously, 2

iivm  can be subtracted from both sides, hence: 
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One explicitly solves for the impulse strength in terms of a dot product taken between the 

incident ion velocity and the apse unit vector: 
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As one intuitively might expect, G depends on atomic masses, incident ion velocity 

magnitude, and the apse angle, .  (Clearly, cos is just kv ˆi  divided by vi.)  The 

quantity, mims /(mi+ms), often appears in the classical mechanics of binary collisions and 

is called reduced mass.  Accordingly, one can substitute for G to obtain expressions for 

the scattered ion velocity and the recoil velocity of a silicon atom: 
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Clearly, the dot product, kv ˆi  is just determined by the geometry of the collision. 

One observes from the collision geometry that k̂  can be decomposed into 

components parallel and perpendicular to incident ion velocity as follows: 
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Here, || v̂  is a unit vector parallel to vi and 
v̂  is a unit vector perpendicular to vi.  The 

sine of the angle, , is just the ratio of impact parameter to the combined radii of the ion 

and silicon atom, .  (Clearly, 2 is collision cross section.)  The negative cosine of  

appears in the above expression because, clearly, kv ˆˆ
||   must be formally negative, thus: 

 

2

2

1cos      ;      sin






bb

 
 

These expressions are trivially substituted into the expression for k̂ , to obtain: 
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Hence, it follows that: 
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This result is formally substituted back into the velocity expressions: 
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Obviously, the velocities can also be resolved in terms of parallel and perpendicular 

components: 
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It is convenient to collect terms as follows: 
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In passing, one observes that the scattering angle, , is just 2. 

If Ei is defined as the kinetic energy of the incident ion, i.e., 2/2

iivm , kinetic energies 

of the scattered ion and recoil atom are easily determined from the preceding expressions: 
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Of particular interest is the energy transfer efficiency from the incident ion to the silicon 

atom.  If one considers a collision for which mi and ms are equal: 
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However, if mi<<ms, then: 
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Similarly, if mi>>ms, then: 

 

i

i

s
s E

b

m

m
E 












2

2

1
4

 
 

Clearly, maximum energy transfer occurs for collisions for which the impact parameter 

vanishes.  Furthermore, kinetic energy is most efficiently transferred if the mass of the 

ion is equal to the mass of a silicon atom.  (For common dopants, this is most closely 

realized in the case of phosphorus.) 

It is also instructive to consider the normal components of scattered ion velocity and 

recoil velocity of a silicon atom.  It follows from the general result that: 
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Of course, ion implantation does not correspond to just a single collision, but many 

separate collisions.  Naturally, the collisions that are most important in stopping an 

implanted ion are collisions with small impact parameter, i.e., nearly centered collisions.  

Accordingly, for a perfectly centered collision, normal components of iv  and sv  are 

readily constructed as follows: 
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Clearly, if mi< ms, then  0|| )ˆ(
 

vv i  is negative.  This means that light implanted ions tend to 

be scattered back toward the surface, i.e., back-scattered.  Conversely, if mi > ms, then 

 
0|| )ˆ(

 
vv i  is positive and heavy ions tend to be scattered forward into the bulk, i.e., 

forward-scattered.  Obviously, if mi equals ms, then  0|| )ˆ(
 

vv i  vanishes.  This implies that 

in the case of equal ion and atom masses, a dead center collision stops the ion.  In 

passing, it is worthwhile to observe that for a given ion kinetic energy, ion velocity 
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magnitude has an inverse relationship with ion mass, i.e., vi equals ii mE /2 .  Thus, the 

heavier the ion, the lower is its velocity for some equivalent kinetic energy.  Therefore, 

one expects heavy ions to penetrate much less than light ions.  This is indeed the case.  

Furthermore, since kinetic energy transfer is inefficient if the mass difference is large, for 

light ions, e.g., boron, penetration is even more enhanced. 

 

Implant Range and Straggle 

 

The preceding formulation of hard sphere collisions provides a qualitative description 

of ion implantation; however an accurate description requires a more sophisticated 

model.  Physically, there are two important scattering mechanisms for ions implanted into 

silicon.  These are electronic and nuclear scattering.  The terminology is self-explanatory.  

In general, electronic scattering corresponds to interaction of atomic electrons of 

impinging ions and silicon atoms.  In descriptive terms, this process is somewhat similar 

to viscous drag in a liquid medium.  Thus, the electrons can be considered to behave 

collectively much like a fluid.  In contrast, nuclear scattering corresponds to direct 

interaction of ion and silicon atom nuclei.  This process more closely resembles 

elementary hard sphere scattering.  Of course, both of these scattering mechanisms 

ultimately bring the ion to rest, i.e., stop the ion.  Typically, it is found that nuclear 

stopping dominates at low energy and electronic stopping at high energy (although for 

light species, electronic stopping may dominate at all useful energies).  Of course, exact 

details depend on substrate and implanted species.  Extensive calculations have been 

made to describe both of these mechanisms within the context of dopant ion implantation 

into single crystal silicon. 

In reality, the actual path that an ion follows during implantation may be quite 

convoluted (resembling a bolt of lightning).  However, the average of the total integrated 

distance traveled by an ion is well-defined and is called range.  Of course, what is of real 

interest in integrated circuit fabrication is not the total distance an ion travels, but is, 

rather, the average penetration depth normal to the silicon surface.  This is the net 

distance an ion travels perpendicular to the substrate surface and is called projected 

range.  Extensive tables and databases for projected range have been compiled for 

various dopant species implanted into silicon (as well as into silicon dioxide, silicon 

nitride, and photoresist).  Additionally, there are several computational algorithms that 

use “Monte Carlo methods” to determine projected range. 

Obviously, one does not expect that all of the ions will come to rest at exactly the 

projected range, but that there will be a distribution of penetration depths.  The broadness 

of this distribution, measured normal to the surface (normal variance) is called projected 

straggle.  If the implanted species distribution corresponds to a normal Gaussian, this is 

just the ordinary standard deviation.  In addition, it is clear that implanted ions will have a 

lateral variance (not necessarily the same as the normal variance) as well.  This is a 

measure of how far an ion moves laterally relative to the point of initial penetration of the 

substrate surface and is called lateral straggle.  In general, the ratio of lateral straggle to 

projected straggle is greater than unity for light ions and is less than unity for heavy ions.  

Again, one can rationalize this behavior in terms of the propensity of light ions to back-

scatter and heavy ions to forward-scatter.  Typical values of range and straggle are 

summarized in the following figures: 
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Fig. 66: Projected range in Si and SiO2 for B, P, and As 

 

 

Fig. 67: Projected and later straggle in Si for B, P, and As 

 

Obviously, for blanket implantation, lateral straggle is not an issue; however, for a 

patterned implant, it is important. 
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Summary of the LSS Model of Ion Implantation 

 

Calculation of range and straggle for ions implanted into silicon is quite complicated 

and beyond the scope of the present course.  However, Lindhard, Scharff, and Schiott 

have carried out numerical modeling of ion implantation (i.e., the LSS model).  Within 

the LSS model, dimensionless energy and range,  and , are defined as follows: 
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Here, E and R are incident ion kinetic energy and ion range, N is atomic density of the 

solid (for silicon this is eight divided by the lattice parameter cubed), Mi and Zi are mass 

and atomic numbers of an implanted ion, Ms and Zs are mass and atomic numbers of a 

substrate atom (for silicon these are 28 and 14, respectively), and  is a characteristic 

length given by the formula: 
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The parameter, a0, is the Bohr radius, i.e., mean electronic orbital radius for a hydrogen 

atom, and has a value of 0.529 Å. 

The functional relationship between  and  has been calculated within the LSS 

model.  The result is quite complicated, however, at low energy the relationship between 

 and  can be approximated as a simple proportionality: 
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Here,  is a dimensionless constant.  This expression can be rewritten in terms of R and E 

as follows: 
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It is convenient to convert atom density, N, to substrate mass density, s, and collect 

remaining factors into an aggregate constant, K: 
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For silicon, K is found to have an approximate value of 6(107) g cm2 keV1. 
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Projected range and projected straggle can also be approximated within the context of 

the LSS model.  The following expressions are obtained: 
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These expressions are appropriate for estimation of implant range, projected range, and 

projected straggle, however if very precise values are needed they are inadequate.  (More 

precise data is available in tabular, graphical, and/or electronic form.) 

 

Implant Damage 

 

It is clear from consideration of both simple hard sphere collision dynamics and the 

LSS model that as an implanted ion travels through a crystalline solid, a significant 

number of target atoms are displaced from lattice sites due to recoil.  Furthermore, if the 

kinetic energy of the recoiling atom is sufficiently high, additional lattice atoms may be 

displaced due to recoil from secondary collisions.  Thus, after ion implantation, the 

crystal lattice may be substantially damaged.  Indeed, in the worst case, an implanted 

semiconductor crystal is completely amorphized, i.e., all crystal ordering is destroyed.  

Within the context of the LSS model, nuclear and electronic stopping curves have been 

calculated and are shown below: 

 

 

Fig. 68: Nuclear and electronic stopping as a function of dimensionless velocity 

 

Of course,  and  are identified as dimensionless range and energy, hence 2
1

  

corresponds to dimensionless velocity or momentum.  In this figure, 1, 2, and 3 are 

dimensionless energies corresponding respectively to maximum nuclear stopping, equal 
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nuclear and electronic stopping, and maximum electronic stopping.  It is clear from the 

figure that, as previously asserted, nuclear stopping dominates at low ion energy (or 

velocity) and electronic stopping dominates at high ion energy (or velocity).  

Furthermore, since nuclear scattering directly implies displacement of atomic nuclei, 

most of the damage due to implantation can be attributed to the nuclear stopping 

mechanism.  (Indeed, this is consistent with a view of nuclear scattering as resembling a 

simple two body collision.)  In contrast, in electronic scattering, kinetic energy lost by an 

implanted ion causes electronic excitation rather than recoil.  (In terms of a two body 

collision this corresponds to a large impact parameter or “grazing” collision.)  Thus, most 

of the damage associated with implantation can be expected to occur at “end-of-range” 

(EOR) just before an implanted ion comes to rest.  This further implies that the region of 

maximal damage due to implantation should occur at or near the maximum of the 

corresponding implanted concentration profile.  This is indeed found to be the case.  In 

particular, since light ions tend to back-scatter into the damaged region, the damage 

maximum and concentration maximum often closely coincide.  For heavier ions, the 

damage maximum occurs closer to the surface than the concentration maximum due to 

forward-scattering.  Furthermore, since the nuclear stopping is generally less dominant 

for light ions, implant damage is substantially less than in the case of heavy ions.  

Typically, even at moderate dose, ion implantation of a heavy species such as arsenic or 

antimony results in complete amorphization.  In contrast, implantation of boron may 

result in severe lattice damage, but not in amorphization. 

As indicated previously, sometimes it is desirable to damage the semiconductor 

crystal lattice intentionally without the introduction of dopant impurities.  This may be 

for the purpose of gettering contamination, intentional pre-amorphization for the benefit 

later ion implantation or other processing, etc.  In any case, this can be accomplished by 

implantation of silicon or germanium (or even tin).  Clearly, these species do not act as 

either acceptor or donor impurities since they have a valence of four.  Alternatively, 

argon ion implantation can be used to create damage.  (Obviously, argon cannot 

substitute into the crystal lattice since it is a noble gas.) 

 

Channeling 

 

Range has been defined previously as the average integrated distance traveled by an 

implanted ion after it enters the solid and before it comes to rest.  However, a hidden 

assumption in this simple definition is that the atoms of the crystalline solid are randomly 

distributed.  Of course, this cannot be really true for a crystal since it is, by definition, 

characterized by a high degree of symmetry and order.  Therefore, it comes as no surprise 

that if a crystallographic direction of the target solid, i.e., a silicon wafer, coincides with 

the incident direction of incoming ions, then the range deviates from what is expected in 

an amorphous solid.  In particular the range becomes much larger and the implanted 

concentration profile becomes extremely skewed into the bulk.  This phenomenon is 

called channeling and is easily visualized as the result of an implanted ion following a 

relatively unimpeded path through the solid due to crystallographic order.  Furthermore, 

since the diamond cubic structure is relatively open, one expects channeling to be a 

severe problem for implantation into single crystal silicon. 
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However, channeling can be greatly reduced by the simple expedient of misaligning 

implant and crystallographic directions.  This is illustrated below for a high energy 

arsenic implant into [111] silicon: 

 

 

Fig. 69: Effect of channeling and tilt in a high energy arsenic implant 

 

Several features are evident in this figure.  First of all, as expected, in comparison to a 

purely Gaussian profile, the implanted arsenic concentration profile is naturally skewed 

into the bulk due to forward-scattering.  Second, if the implant direction is exactly 

aligned normal to the [111] crystallographic direction, then channeling is severe.  

However, by misaligning implant and crystallographic directions by only 5, channeling 

is almost entirely eliminated.  Of course, implant misalignment can be achieved by 

simply tilting the substrate in the end station of the implanter.  In addition, the substrates 

themselves can be sawed a few degrees off the exact crystallographic orientation during 

manufacture.  Both of these are done in practice.  Also, channeling can be reduced by use 

of an amorphous screening layer or, as indicated previously, a pre-amorphizing implant 

of silicon or germanium. 

 

Practical Ion Implantation Processes 

 

The general characteristics of a practical ion implantation process, including 

channeling and lattice damage are illustrated in the following figure for an antimony 

implant into silicon: 
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Fig. 70: Antimony implantation into single crystal silicon 

 

If the dose is light, as in (a), then only isolated defects are generated within the silicon 

crystal.  For a somewhat higher dose, (b), isolated defects begin to coalesce to form 

regions of damage.  If the dose is made still higher, (c), then the damaged regions 

combine to form an amorphous layer below the substrate surface (relatively near the 

concentration maximum).  Finally, for a very high dose, the amorphized region reaches 

all the way to the surface.  In addition, the effect of channeling is shown in the above 

figure by the series of parallel damaged regions extending deep into the wafer.  In some 

form, this behavior will be realized during implantation of any atomic species.  (Of 

course, for a light species a fully amorphized region may not be formed unless the dose is 

extremely high.) 

In practice, implantation processes are carried out at low temperature.  Indeed, 

modern implanters have temperature controlled end stations that, among other things, 

allow photoresist to be used directly as an implant mask.  (Formerly, implantation 

required the use of a silicon oxide or silicon nitride mask.)  Of course, the thickness and 

stopping power of the masking material must be sufficient to block implanted species 

from reaching the interior of the wafer.  In contrast, any masking material used in 

conventional diffusion processes must withstand the high ambient temperature of the 

furnace.  Other problems that one may encounter in practice are “knock-on” and 

generation of oxide fixed charge or interface traps.  Knock-on occurs when an implanted 

ion scatters an atom (usually oxygen) from a surface oxide layer, e.g., a screen oxide) 

into the bulk.  This creates interstitial defects, which tend to reduce carrier mobility.  

Typically, screen oxides have been used to collect impurities, e.g., metal atoms, which 

can be deposited on the wafer surface due to secondary scattering within the implanter.  

More recently, improvements in equipment design have made screen oxides generally 

unnecessary.  Likewise, implantation into a permanent oxide layer, e.g., a field or other 

cover oxide, can create damage that ultimately appears as fixed charge or interface traps 

and, also, is not removed by subsequent heat treatment.  Of course, these problems must 

be controlled by process and equipment design as well as by careful monitoring. 
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Equipment related issues can also create practical problems in an implantation 

process.  Some of these include incorrect dose or energy, striping, or “blast defects”.  

Obviously, incorrect dose or energy results if internal monitors either fail or become 

uncalibrated.  In particular, measurement of dose is critical and requires integration of an 

effectively continuous measurement of “beam current” as a function of time.  As 

observed previously, in conventional ion implanters the ion beam entering the end station 

has a much smaller radius than the wafer.  Therefore, in order to implant species into the 

entire wafer, the beam must be “scanned” in a raster pattern across the wafer surface.  

This is accomplished by electrostatic deflection of the ion beam or a combination of 

electrostatic deflection and mechanical motion of the wafer itself.  Striping results if the 

beam scan becomes misaligned.  In such a case, either undoped or doubly doped implant 

stripes are formed.  Blast defects are the result of accumulation of a large positive 

electrostatic charge on the wafer surface during implantation.  These are formed when the 

accumulated charge catastrophically discharges as an arc.  Blast defects quite literally 

appear as small pits or craters in the wafer surface.  Obviously, some provision must be 

made to neutralize excess electrostatic charge built up on the wafer during implantation.  

This can be done by incorporating a neutralizing grid or “flood gun” within the end 

station. 

 

Implantation of Molecular Species 

 

In addition to atomic species, it is sometimes advantageous to implant molecular 

species.  The most common example of this is implantation into silicon of the molecular 

ion, BF2

+, derived from the source gas boron trifluoride (BF3).  Obviously, to control dose 

and energy, dissociation of the molecular ion in the beam itself must be avoided.  

However, once the ion enters the substrate it is quickly dissociated into boron and 

fluorine atoms.  The primary reason for the use of BF2

+ implantation is to allow the 

formation of shallow p-type regions.  Naturally, since it is very light, even at low energy 

an atomic boron ion penetrates deeply into the silicon substrate.  In addition, boron ions 

are also very prone to channeling.  Therefore, it is quite difficult to form a shallow p-type 

region using conventional boron implantation.  In contrast, for the purpose of ion 

implantation into a silicon substrate, BF2

+ behaves as a heavy species and gives a much 

shallower implanted concentration profile.  Furthermore, the associated implanted 

fluorine atoms generally do not degrade device performance.  Fluorine is generally lost 

from the wafer during subsequent high temperature processing since silicon fluorides are 

quite volatile.  However, care must be taken if the dose is very high.  In this case, there is 

some evidence of complex (or compound) formation between silicon, boron, and 

fluorine, which degrades the quality of the silicon crystal.  Obviously, due to these 

additional complexities, BF2

+ implantation into silicon should not be used unless it is 

found to be absolutely necessary. 
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Implanted Concentration Profiles and Subsequent Diffusion 
 

When a pure, monoenergetic bean of ions is implanted into a silicon substrate, as one 

might expect, the concentration has well-defined depth dependence.  To first order, this 

concentration depth profile can be considered as a Gaussian of the form: 
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Clearly, this concentration profile is similar to an instantaneous source diffusion profile 

except that the maximum concentration occurs at a depth or distance, RP, below the 

surface, i.e., at the projected range.  The maximum concentration is unknown, but may be 

determined in terms of the total dose, Ntot.  Of course, Ntot is obtained by integrating over 

the concentration profile as follows: 
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Here, it has been assumed that maximum of the implanted concentration profile is 

significantly below the surface (thus, allowing the limits of the integral to be uncritically 

regarded as  to  instead of 0 to ). 
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Projected range and straggle are obtained either by calculation or from tabulated data. 

 

Skewed Profiles 

 

Of course, a Gaussian form for an implanted concentration profile is just a first order 

approximation to the actual profile.  In practice, implanted profiles generally exhibit 

skewness due to the scattering characteristics of ions by substrate atoms.  By definition, 

skewness is a measure of the asymmetry of some distribution about the distribution 

average.  (Clearly, an implanted concentration profile can be regarded as the distribution 

of ion depths.)  As was found in the simple hard sphere model, lighter ions tend to back-

scatter toward the substrate surface, while heavy ions tend to forward-scatter into the 

bulk.  This causes implant profiles for light ions, e.g., boron, to be skewed toward the 

surface and implant profiles for heavy ions, e.g., arsenic, to be skewed toward the bulk.  

If skewness is not too extreme, implanted concentration profiles may be constructed by 

joining two Gaussian profiles at some “model range”, RM: 
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Here, the model range and projected range are related by the empirical expression: 
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Similarly, the projected straggle corresponds to just the average straggle: 
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Typically, profile parameters are obtained from experimental data. 

 

Four Moment Profiles 

 

Of course, implanted profiles may deviate significantly from a simple Gaussian and 

in addition to skewness, they may exhibit kurtosis.  By definition, kurtosis is a measure of 

“peak sharpness” of a distribution or profile.  If skewness and kurtosis are both 

significant, a four moment distribution is required to describe implanted concentration 

profiles adequately.  The Pearson distribution function, f (x), is often used for this 

purpose, which by definition, satisfies the first order differential equation: 
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Naturally, the Pearson distribution is unit-normalized: 
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Accordingly, projected range, RP, projected straggle, RP, skewness, , and kurtosis, , 

are defined by the first four moments of the distribution as follows: 
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These are related to the four parameters, a, b0, b1, and b2, by the expressions: 

 

 

181210

)3(
2

2

1



 PR

ba

 
 

 

181210

)43(
2

24

0



 PR

b

 
 

181210

236
2

2

2



b

 
 

Moreover, if the “b-parameters” satisfy the inequality, 140 20

2

1  bbb , then the Pearson 

distribution can be represented as an analytical form.  In this case, an explicit formula 

may be written for the implanted concentration profile as follows: 
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This formula can be used to fit very accurately experimental implanted concentration 

profiles.  (Of course, Co, is determined by integrating the distribution to obtain the total 

dose.) 

 

Two-Dimensional Profiles 

 

Although “blanket” implantation into unpatterned wafers is sometimes applicable, it 

is more common to implant wafers covered with some thin film, e.g., thermal oxide, 

patterned with open “windows” etched down to the underlying silicon wafer surface.  In 

practice, this overlying film is sufficiently thick so that it serves as a mask for implanted 

ions allowing them to penetrate into the silicon substrate in some areas, but not in others.  

In this case, it is important to understand the distribution of implanted ions at pattern 

edges.  Accordingly, if one considers a hypothetical case in which all impinging ions 

enter the surface of the substrate at a single definite point, it is clear that the “vertical” 

depth profile, C(x), as is required can still be represented as a simple Gaussian, skewed 

Gaussian, or four moment form.  However, since scattering is a random process, it is 

further reasonable to assume that a “horizontal” or lateral profile can be represented as a 
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simple Gaussian.  Thus, the corresponding two-dimensional profile is easily constructed 

as the formal product of depth and lateral profiles: 
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Here, y is horizontal distance from the “penetration point” and, of course, RL is lateral 

straggle.  Clearly, the lateral concentration profile must be radially symmetric about the 

penetration point, i.e., y equal to zero. 

To describe a realistic situation, this hypothetical distribution must be combined with 

some appropriate “masking” function that describes the detailed window shapes in the 

overlying thin film mask.  This can be very complicated, however, if one considers the 

case of an indefinitely long “stripe” having edges at a, the masking function is a simple 

“step function” form, hence: 
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Here, C(x ,y) is not a “true” two-dimensional concentration profile, but is a depth profile 

taken at a distance, y, measured perpendicularly from the “centerline” of the stripe.  

Although the integral cannot be constructed analytically, it can be represented in terms of 

complementary error functions, thus: 
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Clearly, this functional form illustrates that the concentration of implanted species does 

not abruptly cut off at feature edges, but instead “feathers out” due to lateral straggle. 

 

Penetration of Masking and Screening Layers 

 

Of course, characteristics of an implanted concentration profile for an ionic species of 

a given incident kinetic energy is dependent on the composition of the substrate due to 

differences in stopping mechanisms.  Although not an exact relationship, range and 

straggle both typically exhibit an inverse relationship to substrate density.  Thus, range 

and straggle in low density materials such as photoresist, are large.  In contrast, range and 

straggle in high density materials, e.g., heavy metals, are small.  This is important for 

practical ion implant processes, because various materials are used as masking layers for 

ion implantation.  In addition, materials such as silicon dioxide or polycrystalline silicon 

are also used as screening layers.  Clearly, the only difference between screening and 
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masking layers is that a screening layer is intended to allow a significant portion of the 

implant to penetrate into the underlying silicon substrate, but a masking layer is not.  As a 

practical matter, implant profiles within screening or masking layers can be estimated by 

scaling vertical distances relative to silicon using the ratio of projected ranges. 

An accurate description of the implant profile near a feature edge requires detailed 

knowledge of the masking function, M, which along with masking material thickness, xt, 

takes into account mask composition, wall angle, implant angle, etc.  An appropriate 

expression might be constructed as follows: 
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Here, the radial distance, y, has been resolved into two mutually perpendicular cartesian 

distances, y1 and y2.  (Clearly, this is required to treat rectangular shaped features.) 

 

Diffusion of a Gaussian Implant Profile 

 

In general, an implanted concentration profile serves as the initial condition for 

subsequent diffused concentration profiles.  It is quite straightforward to apply the 

general solution of the diffusion equation constructed previously: 
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Of course, C(x) is just the implanted diffusion profile.  For a general implanted profile, 

the diffused concentration profile, C(x,t), can only be obtained by numerical evaluation 

of the above expression.  However, in the case that C(x) is substantially Gaussian, the 

integral can be constructed explicitly if one substitutes as follows: 
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One proceeds by combining exponential functions and completing the square in the 

resulting argument.  The detailed manipulations of the exponents are as follows: 
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Next, one defines a new integration variable, u: 
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Upon substitution of u, the exponents take the form: 
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At this point, one completes the square in the u terms as follows: 
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The last two terms can be formally combined to yield the result: 
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Clearly, the last term has the form of a perfect square.  Naturally, one substitutes back 

into the original expression to obtain: 
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The integral can be constructed explicitly and has a value of exactly  .  Therefore, it 

follows that: 
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If one compares this result with the original expression for an instantaneous source 

profile, it is clear that the result of diffusion of a Gaussian implant profile is also a 

Gaussian profile.  However, this profile differs from an instantaneous source profile in 

two aspects.  First, the origin of the Gaussian is not at the wafer surface, i.e., x0, but 

rather is at xRP.  Second, the standard deviation is not simply Dt2  as expected from 

diffusion only, but corresponds to the combined variances due to both implant and 

diffusion, DtRP 22  .  This is easily understood if one again considers an instantaneous 

source.  Clearly, a Gaussian profile generated by some simple linear diffusion process 

remains Gaussian during any subsequent diffusion.  This is true even if the diffusivity 

changes (due to changing the temperature, etc.) provided that no non-linearities arise.  

Naturally, the standard deviation of the profile increases during subsequent diffusion.  

Thus, diffusion of a Gaussian implant profile is very similar to diffusion of a Gaussian 

diffusion profile, i.e., an instantaneous source diffusion. 

 

Thermal Budget 

 

The preceding observations are quite general and allow estimation of the total 

variance of any doping profile due to subsequent thermal processing.  Such estimates are 

typically cast in terms of total “Dt”.  Simply stated, total Dt is obtained by considering all 

high temperature individual process steps (oxidations, diffusions, etc.), multiplying 

dopant diffusivity at the temperature of each step by the associated process time, and 

adding all of these results together, thus: 
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As asserted previously, the square root of 2(Dt)tot is the expected average displacement of 

an arbitrary dopant atom due to all subsequent thermal processing.  Therefore, for 

classical diffusion processes, the total variance of the dopant concentration profile is 

estimated by the expression: 
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Of course, for combined implant-diffusion processes, projected straggle must also be 

included: 

 

tot

2

tot )(2 DtRP 
 

 

Clearly, tot can be used to estimate how much particular junction depths will change due 

to thermal processing. 

Obviously, control of thermal processing is a critical issue for any practical chip 

fabrication process.  Within this context, it is typical for total allowable Dt or “thermal 

budget” to be set by the most critical diffusion profile (or junction depth).  Of course, this 

is ultimately determined by the desired performance of devices in the finished circuit.  
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For example, junction depths of source/drain diffusions in CMOS devices cannot be 

allowed to become too large, otherwise transistors will suffer from unacceptable “short 

channel effect”.  Similarly, adequate separation must be maintained between device 

diffusions and isolation diffusions.  If this separation becomes too small or vanishes 

altogether (i.e., diffusions overlap), then large “parasitic” junction capacitances will be 

introduced into the circuit resulting in an overall lowering of speed and collateral loss of 

performance.  Indeed, there are many other critical criteria that can serve to set thermal 

budget.  In general, the prevailing trend is toward progressively smaller and smaller 

thermal budgets. 
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Implant Activation and Removal of Damage 
 

In contrast to classical non-implant, diffusion processes, implanted dopant atoms are 

not initially substituted into the crystal lattice.  Of course, a dopant atom cannot be 

electrically active, i.e., act as an acceptor or donor impurity, unless it occupies a silicon 

atom site within the diamond cubic crystal lattice.  Therefore, additional, post-implant 

heat treatment is required for implant activation, i.e., to cause dopant atoms to substitute 

into the crystal lattice.  In addition, after ion implantation, the crystal lattice is very likely 

to be substantially damaged.  Indeed, in the case of complete amorphization all crystal 

ordering is lost.  This might seem at first to represent a catastrophic situation, however it 

has been found that subsequent, moderate heat treatment results in efficient 

recrystallization of amorphous regions as well as substitution of dopant atoms into lattice 

sites.  Unfortunately, repair of crystal damage outside of amorphized regions is more 

difficult.  Thus, some unrepaired, EOR defects often remain after post-implant annealing.  

Accordingly, it is critical to design the overall implantation process so that residual EOR 

defects do not degrade finished device performance. 

In the case of implantation of a light species such as boron into silicon, damage repair 

is particularly difficult since amorphous regions are likely not to be present at all.  

Indeed, in severe cases, recrystallization of a heavily boron implanted region can result in 

polycrystalline rather than single crystalline silicon.  Obviously, if any grain boundaries 

extend through a junction, then the corresponding device will fail due to reverse leakage 

through the junction.  Typically, this problem is avoided by a pre-amorphizing implant of 

silicon or germanium followed by boron implantation.  (In addition, pre-amorphization 

should reduce any channeling.) 

 

Furnace Annealing and Transient Enhanced Diffusion 

 

The usual method for post implantation anneals has been the use of a conventional 

quartz tube furnace.  In this case, ion implanted wafers are annealed in an inert ambient 

such as nitrogen or argon.  Clearly, such a process is very similar in principle to a 

classical diffusion drive.  Indeed, as described previously, out-diffusion from an 

implanted region is often desirable and within this context, ion implantation takes the 

place of a classical pre-deposition.  However, as observed previously, in contrast to 

dopant pre-deposition, ion implantation always results in some damage to the crystal 

lattice.  Moreover, it is found that, depending on the location and severity of the damaged 

region, dopant diffusion during subsequent annealing can be significantly enhanced.  

However, this enhancement is temporary and persists only until recrystallization is 

substantially complete.  Even so, the resulting concentration profile can be substantially 

different than one would expect for an undamaged lattice.  This phenomenon is called 

transient enhanced diffusion or TED.  Physically, TED arises because the activation 

energy for diffusion in damaged silicon is much lower than in undamaged silicon.  This is 

easily understood within the context of the vacancy mechanism.  Obviously, the number 

of vacancies per unit volume will be much higher in regions of damage.  (In this sense, 

TED is similar to diffusion in polycrystalline silicon.)  The practical result is that 

implanted species initially diffuse much faster than expected and resulting concentration 

profiles and junction depths become, respectively broader and deeper. 
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Physically, activation energy for solid phase epitaxy (SPE), i.e., recrystallization of an 

amorphized layer overlying a crystalline layer, is about 2.3 eV for silicon.  In contrast, 

activation energy for generation and diffusion of point defects is about 5 eV.  Thus, if 

implant conditions are sufficient to create a fully amorphized layer, recrystallization 

occurs readily at moderate temperature by SPE.  Indeed, annealing temperatures should 

be kept low to promote SPE since repair of the lattice by this mechanism is essentially 

complete.  At higher temperatures, point defect generation and diffusion compete with 

SPE and damage repair is not as efficient.  However, once amorphous regions have been 

recrystallized, if possible the temperature should be raised to above 900C to “anneal 

out” any remaining defects.  Clearly, if an amorphous region is not produced by 

implantation, higher temperatures are required for damage repair since SPE does not 

occur.  In this case, annealing a partially damaged layer at low temperature is undesirable 

since stable extended defects such as dislocation loops can be formed by condensation of 

point defects.  These stable defects are very difficult to remove even in a subsequent high 

temperature anneal.  In the absence of an amorphized region, full activation of implanted 

dopants, particularly boron, typically requires a temperature in excess of 950C, 

although, partial activation occurs as low as 450C.  If an amorphous layer exists, 

activation occurs along with recrystallization since dopant atoms are readily incorporated 

into the lattice. 

 

Rapid Thermal Annealing 

 

Clearly, furnace annealing requires a reasonably long process time, typically a least a 

fraction of an hour to, perhaps, several hours.  This is particularly troublesome if TED as 

well as ordinary diffusion is to be minimized.  This limitation can be overcome by rapid 

thermal annealing or RTA.  Practical RTA systems utilize high intensity infrared/optical 

radiation which heats the substrate to a very high temperature in a very short period of 

time, typically a few seconds.  As a consequence, the most important characteristic of 

rapid thermal annealing is that many physical processes do not have time to come to 

equilibrium.  This is especially important in the case of implant annealing and activation.  

As observed previously, activation energy of recrystallization of amorphized material, 

i.e., solid phase epitaxy or SPE, is quite low in comparison to the activation energy of 

diffusion processes.  Of course, low activation energy implies that the rate constant of the 

process is large.  Therefore, recrystallization occurs much more rapidly than diffusion 

and amorphized regions are rapidly recrystallized with substantially less dopant diffusion 

than can be achieved using conventional furnace annealing.  For this reason, RTA is 

widely used for implant anneals. 

To consider RTA in more detail, one observes that there are three natural mechanisms 

of heat transfer.  These are conduction, convection, and radiation.  Of course, conduction 

is a linear transport process analogous to diffusion and as asserted previously, the rate 

that heat energy is transported is proportional to the gradient in temperature, i.e., 

Fourier’s Law.  This can be recast in a form corresponding to the usual expression of 

Ohm’s Law: 

 

WRT th
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Here, T is temperature difference (or drop) between the substrate and, perhaps, a hot 

chuck on which the substrate rests.  Clearly, T is analogous to a voltage drop in the 

ordinary electrical case of Ohm’s Law.  Accordingly, W is “thermal current” and Rth is 

thermal resistance.  (Naturally, the relationship between thermal resistance and thermal 

conductivity is analogous to the relationship between ordinary electrical resistance and 

electrical conductivity, i.e., reciprocal resistivity.)  Obviously, to achieve rapid heating, 

thermal resistance must be made as low as possible.  In practical systems this is achieved 

by various clamping mechanisms and/or introduction of gas with a high thermal 

conductivity, e.g., helium, between the hot chuck and the back of the substrate.  Indeed, 

these techniques are not limited to RTA systems, but are useful in any situation for which 

rapid thermal equilibration is desirable. 

Convection can be identified with macroscopic flow of a working fluid between some 

heat source and a cold object.  As a consequence of the flow, heat energy is transported.  

Obviously, convection cannot occur in a vacuum.  Natural examples of convection can be 

observed on many different scales, which range from a pot of water boiling on a kitchen 

stove to thunderstorms, tectonic movement of the continental plates, and transport of heat 

from the core to the surface of the sun.  In all cases, the basic phenomenon is the same: 

the temperature of some fluid is raised by contact with a heat source.  This results in a 

change in density of the fluid and a corresponding mechanical disequilibrium, usually 

due to the influence of gravity.  The disequilibrium causes the fluid to move toward the 

cold object, which becomes heated as a consequence of heat transfer from the fluid.  The 

density of the cooled fluid is again changed, which results in macroscopic motion of the 

working fluid back toward the heat source.  Again, a linear relationship can be used to 

describe natural convection: 

 

 ThTThQ concoldhotcon  )(
 

 

Here, Q represents the rate of heat transfer, hcon is some convective heat transfer 

coefficient, and, of course, T is, again, temperature difference.  Obviously, this 

expression is analogous to ordinary expressions for mass transfer.  This comes as no 

surprise since convective heat transfer requires a collateral mass transfer of the working 

fluid.  Convection can also be augmented by the forced flow of a hot fluid.  In this case, a 

mechanical pump is used to enhance or even replace convective flow.  This might be 

considered as a fourth form of heat transport. 

Neither conduction nor convection, irrespective of whether natural or forced, is 

generally able to deliver sufficient heat energy to a small substrate in the short time 

required for RTA processes.  Therefore, radiation is the primary mechanism of heat 

transfer for rapid thermal annealing.  Of course, the total exitance of a perfectly “black 

body” is described by the well-known Stefan-Boltzmann equation: 

 
4)( TTM   

 

By definition, total exitance, M(T ), is the thermal power per unit area radiated by a black 

body with absolute temperature, T,  is emissivity, which for a black body is independent 
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of radiation wavelength, and  is the Stefan-Boltzmann constant, which has a value of 

5.6697(108) W/m2 K4. 

As one might expect, emissivity of real material objects is dependent on wavelength.  

In this case, spectral exitance, M(T ), corresponds to Planck’s radiation law: 
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Here, 1 and 2 are the first and second radiation constants, which have values of 

3.7142(1016) Wm2 and 1.4388(102) mK, respectively.  Obviously, total exitance is 

obtained by integration of M(T ) over all wavelengths.  (If emissivity is independent of 

wavelength, i.e., the body is “black”, and, naturally, the result of this integration is just 

the Stefan-Boltzmann equation.)  Of course, (,T ) is emissivity at a specified 

wavelength, , and, moreover, emissivity may also generally depend on temperature.  

Therefore, when radiation falls on a surface, it may be reflected, absorbed, or transmitted 

and fundamental energy conservation requires that: 

 

),(),(1),( TTT   
 

By definition, (,T ) and (,T ) are reflectance and transmittance.  Obviously, for 

opaque materials, transmittance vanishes. 

To estimate the rate of heat transfer by radiation, it is not necessary to know the 

detailed dependence of emissivity on wavelength, but rather to replace (,T ) with an 

average value.  In this case, one obtains: 

 

 AFTTQ ss )( 44 
 

 

Here, A represents heated substrate area and F is some configuration coefficient or “view 

factor”.  Again, Q represents the rate of heat transfer and  is the Stefan-Boltzmann 

constant.  Clearly, s and  are average emissivities of the illumination source and the 

substrate, respectively, and Ts and T are corresponding temperatures.  Consequently, it is 

clear that the power density radiated by a hot object is proportional to the fourth power of 

its temperature.  Therefore, the rate of radiative heat transfer is proportional to the 

difference of the temperature of the illumination source and the substrate each raised to 

the fourth power.  In contrast, the rate of heat transfer due to either conduction or 

convection is proportional to the simple temperature difference, i.e., heat transfer is a 

linear function of the temperature of the heat source.  Physically, this implies that 

conduction and convection will be important at low temperatures, but radiation will 

dominate heat transfer at high temperatures. 

A fundamental practical difficulty with RTA is the measurement and control of 

temperature.  In the most primitive systems, this is done “open loop” by just setting the 

overall radiative power of the illumination source.  However, this does not compensate 

for any differences in emissivity of the substrate, which often are quite significant.  
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Indeed, the same mechanism which causes transparent thin films to exhibit coloration 

corresponds to a fundamental change in effective emissivity of the substrate.  Therefore, 

considerable effort has been expended to develop techniques for rapid and accurate 

temperature measurement.  The most common devices for temperature measurement are 

optical pyrometers.  In general, these determine the spectral distribution of radiation 

emitted by the substrate and determine the corresponding radiant or black body 

temperature.  Pyrometers are attractive for this application because they do not require 

direct contact with the substrate and have relatively fast response times.  However, they 

are subject to errors due to emissivity variations.  These can be corrected by using two or 

more pyrometers with different spectral responses or by careful calibration using 

thermocouples and an appropriate test substrate.  In the first case, complicated algorithms 

are used to determine the correction.  In the second case, a calibration, which corresponds 

closely to the actual substrate, is determined.  Other non-pyrometric techniques, which 

rely on mechanical or acoustical techniques have been suggested.  However, pyrometry 

remains the dominant method of temperature measurement and control in RTA.  Other 

issues associated with RTA are uniformity of heating and thermoplastic stresses.  

Obviously, non-uniformities in heating result in temperature non-uniformity of the 

substrate and can arise due to non-uniform illumination and/or losses at edges or contact 

points of the substrate.  These problems are generally correctable by equipment design 

such as well-designed shielding or the use of susceptors made out of a highly conductive 

material, e.g., silicon carbide or graphite. 
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Appendix A: The Thermodynamics of Oxygen in Silicon 
 

The formation of oxide precipitates within a silicon crystal lattice has been treated in 

general; however it is instructive to consider actual quantitative data.  For convenience, 

an oxide precipitate is assumed to be a small, spherical particle of SiO2 embedded within 

an otherwise perfect silicon crystal.  Of course, the standard formation reaction for silicon 

dioxide is as follows: 

 

22 SiO    )(O    )Si(  gs  
 

As a matter of chemistry, a standard formation reaction defines a process for which one 

mole of some material (in this case, SiO2) is formed from corresponding elements in 

standard state.  (Here, this is crystalline silicon and oxygen gas.)  Extensive tabulations of 

thermodynamic data for formation reactions have been compiled and are summarized for 

silicon, oxygen, and silicon dioxide in the following table: 
 

Thermodynamic Potentials of Silicon, Oxygen, and Silicon Dioxide: 

 Hf* Gf* S** 

Si(s) 0 0 18.81 
4.50 

O2(g) 0 0 205.152 
49.03 

SiO2(quartz) 

SiO2(cristobalite)† 

SiO2(tridymite)† 

SiO2(quartz glass)† 

-910.7 
-217.7 

-909.5 
-217.37 

-909.1 
-217.27 

-903.5 
-215.94 

-856.3 
-204.7 

-855.5 
-204.46 

-855.3 
-204.42 

-850.7 
-203.33 

41.46 
9.909 

42.68 
10.20 

43.5 
10.4 

46.9 
11.2 

* kJ/mole (italics: kcal/mole); ** J/moleK (italics: cal/moleK) 

† data taken from Handbook of Chemistry and Physics-1
st
 Student Ed. (1988), all other data taken from 

CODATA Key Values for Thermodynamics 

 

Of course, standard conditions are defined as 298.15K and an ambient pressure of one 

atmosphere.  Clearly, the thermodynamic potentials for all forms of silicon dioxide 

(quartz, cristobalite, tridymite, and glass) are quite similar. 

However, within the silicon lattice, oxygen is not in gaseous diatomic form.  

Therefore, to be applicable to oxide precipitation, the formation reaction must be 

modified as follows: 

 

2SiO    )2O(    )Si(  ints  
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Here, O(int) denotes oxygen atoms occupying interstitial sites within the silicon crystal 

lattice.  Clearly, this reaction and the standard formation reaction are related by a third 

reaction that represents dissolution of oxygen gas in the silicon lattice and which can be 

formally written as follows: 

 

)2O(    )(O2 intg   
 

If the standard free energy of this reaction can be found, then the standard free energy of 

the previous reaction is easily determined. 

For this purpose, it is useful to consider the dissolution of oxygen in solid silicon as a 

microscopic process.  Obviously, oxygen molecules must react with the silicon lattice to 

form oxygen interstitials.  This is represented schematically below: 
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Of course, this is just an alternative representation of the dissolution reaction appearing 

above, however, the silicon lattice is included explicitly.  Clearly, the overall enthalpy 

change for this process must include contributions from strain energy associated with an 

oxygen interstitial, binding energy of an oxygen molecule, and binding energy of an 

oxygen atom within the silicon crystal.  One expects the first two of these contributions to 

be positive and the last one to be negative.  However, with the exception of the binding 

energy of molecular oxygen, these contributions are not readily determined.  In contrast, 

the entropy change can be represented as the difference of the configurational entropy 

change due to random distribution of oxygen atoms in interstitial sites, CSO , and the 

standard entropy of oxygen gas, )(
2O TS : 
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Here, NO is the number of oxygen interstitials and NA is Avogadro’s number.  Of course, a 

standard entropy is also associated with the silicon lattice itself; however, if the lattice is 

not disrupted by oxygen interstitials, this entropy can be taken to be unchanged when 

oxygen interstitials are introduced into the lattice and therefore makes no contribution to 

S.  (One should note here that S is defined as the entropy change associated with the 

formation of NO oxygen interstitials.) 

Naturally, if N is defined as the number of interstitial sites in the crystal, then the 

configurational entropy change is easily represented as a binomial coefficient: 
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As is usual, one applies Stirling’s approximation to obtain: 
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One formally adds and subtracts NOlnN  to the quantity within the parenthesis, from 

which it follows that: 
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Clearly, one expects that N will be much larger than NO, hence the second logarithmic 

term can be ignored, thus: 
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Conceptually, it is convenient to replace absolute numbers of oxygen interstitials and 

interstitial sites, NO and N, by corresponding concentrations, CO and C.  Furthermore, S 

can be recast as a molar quantity if one rescales the right hand side by the ratio, NA/NO.  

Thus, it follows that: 
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Since there are five interstitial sites per diamond cubic unit cell, it follows that C is just 

5/a3, such that a is just the lattice parameter for silicon.  Therefore, one finds that C is 

approximately 3.123(1022) cm3.  Furthermore, kNA is the ordinary ideal gas constant, R, 

which has a nominal value of 8.31441 J/moleK. 

The standard entropy of oxygen gas at any temperature and one atmosphere pressure 

can be obtained from the standard entropy at 298K by means of the integral formula: 
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Here, Cp is the molar heat capacity at a constant pressure of one atmosphere.  If one 

assumes that oxygen is an ideal diatomic gas, then Cp has the value of 7R/2, hence it 

follows that: 
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Alternatively, )(
2O TS  can be determined more accurately from published curve fits for 

the temperature dependence of constant pressure heat capacity, Cp(T). 
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Here, a, b, c, and d, are empirical coefficients.  Thus, one obtains: 
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For convenience, an aggregate coefficient, B, can be defined in terms of a, b, c, d, and the 

standard entropy of oxygen gas: 
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Hence, )(
2O TS  has the following form: 
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For oxygen gas, published values for a, b, c, and d are 34.602 J/moleK, 1.0795(103) 

J/moleK2, 0 J/moleK3, and 785377 JK/mole, respectively.  From these values, one 

finds B equal to 3.2777 J/moleK. 

Obviously, it follows from the fundamental definition of Gibbs free energy that for 

the oxygen dissolution reaction: 
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Obviously, H is unknown.  However, an method for the determination of H is afforded 

by the oxygen solubility equilibrium.  Of course, G vanishes if dissolved oxygen is in 

equilibrium with ambient oxygen gas.  Therefore, it follows that: 
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Here, )(O TCsat  is saturated interstitial oxygen concentration at an absolute temperature, T.  

As shown in the following figure, this quantity has been determined experimentally over 

the temperature range 1000-1300C: 
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Fig. A1: Interstital oxygen solubility as a function of temperature 

 

Clearly, the saturated oxygen interstitial concentration varies from 1017 to 1018 cm3 over 

the given temperature range.  This is consistent with typical oxygen concentrations 

observed in CZ silicon wafers.  Furthermore, it seems clear from the trend, that the solid 

solubility of oxygen in silicon should further decrease when extrapolated to lower 

temperatures.  This effect is likely the result of an increased strain energy contribution to 

enthalpy due to increased lattice rigidity at lower temperatures.  Accordingly, if these 

concentrations are used to determine H(T ), one finds that resulting values are negative, 

but relatively small.  Of course, negative values imply that energy is released when 

oxygen dissolves in a silicon crystal.  This can be rationalized if one considers 

experimentally measured binding energies.  In particular, Si-Si and O-O binding energies 

are observed to be 326.8 kJ/mole (78.1 kcal/mole) and 498.34 kJ/mole (119.106 

kcal/mole), respectively.  These can be compared to the Si-O binding energy, which is 

found to be 798.7 kJ/mole (190.9 kcal/mole).  Clearly, the formation of Si-O bonds from 

Si-Si and O-O bonds is strongly exothermic.  (This is also clear just from the large, 

negative formation enthalpy of silicon dioxide.)  However, lattice strain largely offsets 

this so that the magnitude of the enthalpy of formation for oxygen interstitials is fairly 
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small.  Calculated values for the enthalpy of formation for oxygen interstitials is given in 

the following figure: 
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Fig. A2: Enthalpy of formation of interstitial oxygen as a function of temperature 

(Heavy line: Cp obtained from empirical curve fit;  Light line: Cp taken as 7R/2) 

 

Here, Cp has been estimated both from an empirical curve fit (heavy line) or as a 

constant, 7R/2 (light line).  The difference is found to be only about 3 kJ/mole and a 

simple linear fit is quite sufficient to describe the temperature dependence of both results.  

Hence, H(T ) can be represented by the empirical linear expression: 

 

0)( HTcTH p 
 

 

From the curve fit data, the parameters, cp and H0 are found to be 0.12459 kJ/moleK 

and 124.87 kJ/mole, respectively.  Similarly, for Cp taken as 7R/2, cp and H0 are found 

to be 0.11873 kJ/moleK and 120.52 kJ/mole, respectively.  This expression may be 

substituted into the expression for G to obtain the empirical result: 
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This is the Gibbs free energy of formation per mole of oxygen interstitials for an 

elemental silicon crystal having an oxygen interstitial concentration of CO. 

Conventional enthalpy of formation of SiO2 as a function of temperature is readily 

obtained by integrating over the heat capacity for SiO2 as follows: 
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Again, as in the case of elemental oxygen, Cp(T) for SiO2 as is expressed as an empirical 

curve fit.  This result is then combined with H(T ) for oxygen dissolution to obtain the 

quantity, 
2SiOH , hence: 
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This is represented by the figure: 
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Fig. A3: Enthalpy of formation of bulk silicon dioxide in silicon as a function of temperature 
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Here, 
2SiOH , defined as enthalpy of formation of bulk silicon dioxide from elemental 

silicon and oxygen interstitials (ignoring surface and strain energies associated with 

precipitates), corresponds to the heavy plot.  This is contrasted with ordinary enthalpy of 

formation of SiO2 (corresponding to the light plot).  Clearly, over the temperature range 

1000-1300K, 
2SiOH  varies only by about 120 kJ/mole. 

Of course, entropies for silicon, oxygen, and silicon dioxide can be determined as a 

function of temperature in an entirely analogous fashion.  These quantities can be 

combined with the enthalpy of formation obtained previously to obtain the conventional 

Gibbs free energy of formation of SiO2 as a function of temperature.  Naturally, the 

resulting Gibbs free energy of formation is then combined with G(T) for oxygen 

dissolution to obtain the quantity, 
2SiOG , hence: 
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As before, this relation is represented figuratively as follows: 
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Fig. A4: Gibbs free energy of formation of bulk silicon dioxide in silicon as a function of temperature 
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Of course, 
2SiOG  is Gibbs free energy of formation of bulk silicon dioxide from 

elemental silicon and oxygen interstitials (again, ignoring any precipitate surface and 

strain energies).  Clearly, the Gibbs free energy has a much larger temperature variation 

than enthalpy.  Furthermore, unlike enthalpy, Gibbs free energy is a function of 

interstitial oxygen concentration.  This is illustrated by the heavy plots of various colors 

in the preceding figure.  As one would expect, when interstitial oxygen concentration 

decreases, 
2SiOG  becomes more positive (i.e., oxide formation from interstitial oxygen is 

less favored.)  As for enthalpy, the light plot corresponds to the conventional Gibbs free 

energy of formation of SiO2.  Clearly, if at some temperature the ordinary Gibbs free 

energy of formation and 
2SiOG  are equal (i.e., corresponding plots intersect), then the 

associated concentration of oxygen interstitials, CO, can be identified with the solubility 

limit, i.e., G(T ), as defined previously, exactly vanishes.  Furthermore, since elemental 

oxygen gas is no longer a formal reactant for formation of bulk silicon dioxide from 

interstitial oxygen, all reactant and product phases can be considered condensed.  

Therefore, enthalpy, 
2SiOH , is equivalent to internal energy, 

2SiOE , and, likewise Gibbs 

free energy, 
2SiOG , is equivalent to Helmholtz free energy, 

2SiOA .  Along with 

appropriate expressions for surface and strain energies, these quantities can be used to 

describe oxygen precipitation in silicon. 
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Appendix B: Transistors 
 

Of course, the transistor is the most important semiconductor device and has enabled 

essentially all of modern solid-state electronics.  However, as a matter of history, 

electronics began with vacuum tubes.  As indicated previously, in 1880 Thomas Edison 

discovered that a two-element vacuum tube exhibits asymmetric conduction of current, 

viz., the so-called “Edison effect”.  Even so, it was not until the early twentieth century 

that the British physicist, John Ambrose Fleming, discovered that the Edison effect could 

be used to detect radio waves.  Accordingly, Fleming developed and patented a two-

element vacuum tube, which came to be known as the “diode”.  Subsequently, three-

element vacuum tubes or “triodes” were developed in the first decade of the twentieth 

century by Lee de Forest and others.  Most importantly, triodes enabled development of 

the first true electronic amplifiers resulting in great improvement of telephony as well as 

radio transmitters and receivers.  Physically, a vacuum tube operates by biasing two 

electrodes, conventionally called the “filament” and the “plate”.  In operation, the 

filament is heated to a high temperature such that electrons can easily be thermionically 

emitted into the vacuum.  Accordingly, if the plate is positive with respect to the filament, 

electrons are extracted and current flows.  Conversely, if the plate is negative with respect 

to the filament, current does not flow.  This is essentially the Edison effect.  Moreover, as 

asserted above, a two-element tube is a diode; however, if a third electrode, called the 

“grid” (since it is usually a wire mesh or screen) is installed between the filament and 

plate, a bias voltage placed on the grid can modulate current flow.  It is this “field effect” 

that allows a triode to operate as an electronic amplifier. 

As early as 1925 it was recognized that field effect might also occur within crystalline 

solids.  Indeed, the first patent for a field effect transistor (or FET) was filed in Canada by 

Austrian-Hungarian physicist, Julius Edgar Lilienfeld.  Subsequently, in 1934 German 

physicist, Oskar Heil, also patented a field effect transistor of different design.  Even so, 

no practical devices were ever built or tested.  This is most likely a consequence of the 

lack of high purity semiconductor materials at that time.  The development of high 

quality semiconductor crystals was motivated by the need during the Second World War 

for fast diodes, which were used in radars as a frequency mixer element in microwave 

receivers.  Vacuum tubes were found to be too slow, but solid-state diodes fabricated 

from extremely pure germanium were found to be suitable.  After the war, John Bardeen 

and Walter Brattain working under William Shockley at Bell Telephone Laboratories, 

succeeded in building the first operational “crystal triode”, i.e., transistor, in 1947.  

However, this was not a FET, but rather a point-contact transistor.  Although 

commercialized by the Western Electric Company, point-contact transistors were 

unfortunately found to be too fragile and were soon replaced by the junction transistor 

invented by Shockley in 1948.  Subsequently, the junction field effect transistor or JFET 

was also successfully fabricated.  (Actually, Bardeen, Brattain, Shockley, and others were 

trying to fabricate a JFET when the point-contact transistor was discovered since the 

JFET more closely resembles Lilienfeld’s original conception.) 

Solid-state electronics was dominated by junction devices until the 1960’s, but these 

subsequently have been supplanted by the metal-oxide-semiconductor field effect 

transistor or MOSFET.  The first practical MOSFET was invented and patented in 1959 

by Dawon Kahng and Martin M. (John) Atalla, again, at Bell Telephone Laboratories.  
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As the name suggests, this device combines an MOS capacitor with a pn-junction.  

Accordingly, MOSFET’s are both structurally and operationally different from junction 

transistors.  Within this context, devices are made by fabricating an insulating layer on 

the surface of a semiconductor containing a pn-junction which defines the conductive 

“channel”.  As for a simple MOS capacitor, a gate electrode is formed on the top of the 

insulator.  Typically, the semiconductor is crystalline silicon and the insulator is 

thermally oxidized silica.  As noted previously, for this material combination the density 

of localized electron traps at the Si/SiO2 interface can be quite low.  Consequently, well-

made silicon MOSFET’s are inherently free from trapping and scattering of carriers. 

 

Bipolar Transistors 

 

Both point-contact and junction transistors are bipolar, which means that electrons 

and holes are majority carriers in different parts of the device; hence, current flowing 

through the device is carried by both electrons and holes.  Physically, a bipolar junction 

transistor or BJT consists of two “back-to-back” pn-junctions that are in close proximity 

such that depletion regions interact.  Accordingly, there are two kinds of bipolar 

transistors, viz., npn and pnp.  These designations specify the arrangement of the 

interacting junctions.  A schematic representation of an npn BJT is shown in the 

following figure: 
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Fig. 71: Schematic of an npn BJT 

 

Of course, a pnp is identical except that donor and acceptor doping is inverted.  Here, E, 

B, and C denote emitter, base, and collector connections.  (These designations descend 

from the original point-contact transistor for which in particular the “base” was a slab of 

semiconductor, viz., germanium, to which “emitter” and “collector” point contacts were 

made.)  Concomitantly, the two junctions are called “base-emitter” and “base-collector” 

junctions.  In normal operation, for an npn transistor the base-emitter junction is forward 

biased (i.e., base is positive with respect to the emitter) and the base-collector junction is 

reverse biased (i.e., base is negative with respect to the emitter).  A BJT is a current 

controlled device and in normal operation is governed by the equations: 
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Here,  and  are identified as “common base” and “common emitter” current gains, 

respectively.  Clearly, these two parameters are not independent and, as such, are 

determined by the physical characteristics of the transistor structure.  The value of  is 

usually close to unity, e.g., 0.980 to 0.998, which implies that  has a value between 49 

and 499.  Within this context, it is clear that IE is determined by the diode equation for 

which VBE is to be interpreted as the potential difference across the base-emitter junction.  

Typically, this is just the diffusion potential and, hence, is 0.5 to 0.7 volts in normal 

operation.  (Obviously, I0 remains defined as reverse saturation current just as in the case 

of a simple diode.)  For completeness, if both junctions are forward biased, the transistor 

is said to be “saturated” and if both junctions are reversed biased the transistor is said to 

be “cut-off”.  In saturation, current flowing through the device is large and essentially 

independent of base current or VBE.  Conversely, in cut-off only very small leakage 

currents flow.  It is possible to operate the device in inverted mode in which the base-

collector junction is forward biased and the base-emitter junction is reverse biased.  In 

principle if the device is exactly symmetric normal and inverted operation would have 

identical characteristics; however, as is evident from the figure, BJT’s are generally 

asymmetric and inverted operation exhibits inferior characteristics. 

 

Unipolar Transistors 

 

In contrast to bipolar transistors all kinds of FET’s are unipolar, which means that 

current is carried through the device either by electrons, viz., n-channel, or holes, viz., p-

channel.  In this regard, as asserted previously FET’s resemble a vacuum tube triode, 

which are also unipolar devices, i.e., current is carried by electrons.  A schematic of a p-

channel JFET is shown below: 
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Fig. 72: Schematic of a p-channel JFET 
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Clearly, with the exception of external connections this figure is essentially identical to 

previous figure of an npn transistor and, thus, also consists of back-to-back junctions; 

however, operation is quite different.  (In practice, the deep n-type region is reverse 

biased and, as such, serves to confine carriers, viz., holes, to the channel.)  Of course, in 

analogy to a BJT an n-channel JFET corresponds to inversion of donor and acceptor 

doping.  As a matter of convention, S, G, and D denote source, gate, and drain 

connections.  Concomitantly, if the gate is relatively unbiased and if the source is more 

positive than the drain, current can be expected to flow through the channel between 

source and drain.  However, if the gate is biased positively with respect to the channel, 

i.e., the gate-channel junction is reverse biased, then the depletion region expands and 

reduces effective conductivity of the channel.  Indeed, if the channel is sufficiently thin, 

the depletion region can extend all the way across the channel, thus, effectively 

“pinching” it off so that very little current flows.  In this case, the JFET is said to be 

“off”.  In general, this kind of operation is characteristic of a “depletion mode” FET. 

Clearly, if the gate-channel junction is forward biased, an undesirably large current 

flows through the gate into the channel.  Therefore, JFET’s are generally not operated in 

this mode.  However, if the gate is insulated as in a MOSFET, operation in “enhancement 

mode” is possible.  Such a device is illustrated as follows: 
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Fig. 73: Schematic of an enhancement mode n-channel MOSFET 

 

Here, the light gray region is an insulator, typically formed of thermal oxide, although for 

very small devices other types of dielectrics may be used.  Obviously, as asserted 

previously, a MOSFET is the combination of an MOS capacitor and pn-junctions.  In any 

case, if the surface is accumulated or depleted under the MOS structure, very little 

current, i.e., only leakage current, can flow between the source and drain.  However, as 

the surface becomes inverted the surface becomes n-type and substantial current can 

flow.  Indeed, in strong inversion the device becomes saturated in analogy to a BJT.  

Physically, source-drain current, ID is determined by the bias voltage applied to the gate.  

Therefore, a FET is a voltage controlled device.  In the case that the channel is 

accumulated or depleted, ID is approximated by the expression: 
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Here, VGS is the potential difference between gate and source connections and Vt is 

threshold voltage.  In practice, Vt is determined by device structure and broadly 

corresponds to the potential associated with minimum capacitance of the MOS structure.  

Concomitantly, the ideality factor, n, corresponds to the formula: 
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Of course, Cox are Cs are oxide and depletion capacitances per unit area defined just as for 

a simple MOS capacitor.  Naturally, the preceding expression is characteristic of cut-off 

and corresponds to VGS < Vt.  Accordingly, in normal operation, i.e., VGS > Vt and 

VDS < (VGSVt), ID can be represented as follows: 
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As might be expected, VDS is the potential difference between drain and source 

connections,  is effective carrier mobility, and w and l are surface width and length 

dimensions of the channel.  Naturally, in saturation, i.e., VGS > Vt and VDS (VGSVt), ID 

becomes independent of VDS, hence: 
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This expression does not account for anomalies and is applicable only to ideal devices for 

which l is much greater than w. 

For completeness, a depletion mode MOSFET is illustrated by the following figure, 

thus: 
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Fig. 74: Schematic of a depletion mode n-channel MOSFET 

 

Clearly, operation of this device can be expected to be similar to an n-channel JFET, that 

is to say, if the gate is sufficiently negative with respect to the channel, the semiconductor 

surface is depleted and the channel becomes “pinched off”.   
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State-of-the-Art Devices 

 

In conclusion, transistor structure has progressed far beyond the simple ideal 

structures described previously.  The current state-of-the-art is embodied by devices with 

channel lengths of 32 to 22 nm or less.  The former is still of planar design, but includes 

modifications such as a stressed channel and high-k gate dielectric.  The reason for using 

stressed materials is to increase carrier mobility.  Indeed, it has long been known that 

stress causes “splitting” of the band structure, which is characterized by sub-bands in 

which carriers have lower effective mass and, thus, higher mobility.  As a practical 

matter, stress can be induced by epitaxial deposition of SiGe alloy on a pure silicon 

substrate.  In this case, the SiGe alloy has a slightly larger lattice parameter than pure 

silicon, which results in biaxial stress in the deposited layer.  In addition, stress may be 

modified and controlled by deposition of intrinsically stressed dielectric layers over the 

channel.  As noted elsewhere, high-k gate dielectric is needed to reduce gate to channel 

leakage current which is inherent in ordinary thermal silica. 

Reduction of channel length to 22 nm or less requires even more radical modification 

of transistor structure.  In this case, a three dimensional “FinFET” structure has been 

introduced.  Such a structure is characterized by a thin “blade” or “fin” of silicon, which 

is almost completely isolated from the substrate.  The gate can then “wrap around” the fin 

on three sides, a so-called “tri-gate” structure, thus, resulting in more effective control of 

the channel. 

 


