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Abstract 

The equipment connected to an electricity distribution network usually needs some kind of power 

conditioning, typically rectification, which produces a nonsinusoidal line current due to the 

nonlinear input characteristic. With the steadily increasing use of such equipment, line current 

harmonics have become a significant problem. Their adverse effects on the power system are well 

recognized. They include increased magnitudes of neutral currents in three-phase systems, 

overheating in transformers and induction motors, as well as the degradation of system voltage 

waveforms. Several international standards now exist, which limit the harmonic content due to line 

currents of equipment connected to electricity distribution networks. As a result, there is the need 

for a reduction in line current harmonics, or Power Factor Correction - PFC. 

 In this dissertation, we address several issues concerning the application to single-phase PFC 

of various high-frequency switching converter topologies. The inherent PFC properties of second-

order switching converters operating in Discontinuous Inductor Current Mode – DICM are well 

known, and Boost converters are widely used. However, their output voltage is always higher than 

the amplitude of the rectified-sinusoid input voltage. In addition, it is expected that the level of the 

differential-mode EMI is much higher in DICM, as compared to the Continuous Inductor Current 

Mode – CICM. Therefore, we first investigated the requirements for the EMI filter for a PFC stage 

based on a Boost converter operating in DICM.  

 The high-level of differential-mode EMI that is associated with DICM operation prompted 

our interest to investigate the application of two-switch fourth-order converters for PFC. The 

switching cell of these converters contains two inductors, which can operate in DICM or in CICM, 

and one capacitor, which can operate in Discontinuous Capacitor Voltage Mode – DCVM or in 

Continuous Capacitor Voltage Mode – CCVM. As a consequence, in these topologies several 

combinations of operating modes can be obtained, which have characteristics that otherwise cannot 

be obtained in second-order switching converters.  

 We analyze three fourth-order topologies operating in DCVM and CICM, which have both an 

input current with reduced high-frequency content and an inherent PFC property. One of the 

converters, i.e. the Buck converter with an LC input filter, is then selected for a more detailed 

analysis. In addition, a fourth-order topology with galvanic isolation and operating in DCVM and 

CICM is presented and analyzed, as well. 
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 We also consider the operation in CCVM and CICM, which is analyzed for a fourth-order 

topology with step-down conversion ratio. The ‘zero-ripple’ technique is applied to obtain an input 

current having a very low high-frequency content, and average current mode control is used to 

shape the input current. 

 Methods for improving the efficiency of the PFC stage are addressed, too. We compare 

several Boost-type topologies that have lower conduction losses than the combined diode bridge 

and Boost converter, as well as one fourth-order topology that is able to operate with bipolar input 

voltage, in other words it can perform direct AC/DC conversion.  

 Finally, we propose a novel Zero Voltage Transition – ZVT topology, which reduces the 

switching losses by creating zero voltage switching conditions at the turn-on of the active switch. 

This topology can be used in a variety of converters, for DC/DC or PFC applications. 

 

 

 

 

 

 

 

 



 5

Preface 

It has been a pleasure for me to work on this dissertation. I hope the reader will find it not only 

interesting and useful, but also comfortable to read.  

 The research reported here has been carried out at the Helsinki University of Technology 

(HUT), Espoo, Finland, at the Power Electronics Laboratory. I am greatly indebted to many persons 

for helping me complete this dissertation. 

 First and foremost, I am most grateful to my advisor, Professor Jorma Kyyrä, whose valuable 

scientific guidance and encouraging attitude have motivated much of the research described in this 

dissertation. Jorma is a very gifted and dedicated professor, and I consider myself fortunate to have 

worked under his guidance. He created an environment extremely favorable for research and paved 

my way in every possible mode. I can only wish him all the best for the future. Thank you for 

everything, Jorma. 

 I also express my gratitude to Professor Seppo J. Ovaska for his support and wise advice 

during my postgraduate studies. 

 Professor Johann W. Kolar, from the Swiss Federal Institute of Technology, Zurich, 

Switzerland, and Professor Frede Blaabjerg, from the Aalborg University, Aalborg, Denmark, are 

thanked for pre-examining this dissertation and for their valuable comments and suggestions. 

 I want to thank all the staff at the Power Electronics Laboratory, particularly Dr. Xiao-Zhi 

Gao, Vesa Tuomainen and Juha Wallius, with whom I shared the office, for their contribution to a 

pleasant work environment. Vesa and Juha are also thanked for helping me improve my knowledge 

of the Finnish language.  

 Thanks are due to Leena Väisänen and to Tuula Mylläri, secretaries at the Power Electronics 

Laboratory at different stages, for their kind assistance. Ismo Vainiomäki, laboratory engineer at the 

time, is thanked for his advice on software and computer administration, and Ilkka Hanhivaara, 

laboratory technician, for his help on practical matters. 

 Donald J. N. Smart is thanked for checking the language used in this dissertation. The errors 

possibly remaining in the text have been introduced by me alone at the final stages of the revision. 

 I am grateful to my parents and sister for their moral support and understanding. They are 

very important to me.  



 6

 Last but not least, I want to express my gratitude to my loving wife Ioana, for her support and 

patience during this work, and to our daughter Silvia, for constantly reminding me with less 

patience but no less love, that there is life outside the office. 

 The financial support from the Graduate School of Electrical Engineering, the Foundation of 

the Finnish Society of Electronics Engineers (EIS), the Finnish Cultural Foundation, the Imatran 

Voima Foundation, the Ella and Georg Ehrnrooth Foundation, and from Tekniikan Edistämissäätiö, 

is deeply appreciated. 

 

 Helsinki, November 2001 

 Vlad Grigore 



 7

Table of Contents 

Abstract................................................................................................................................................ 3 

Preface ................................................................................................................................................. 5 

Table of Contents ................................................................................................................................ 7 

List of Publications.............................................................................................................................. 9 

List of Abbreviations ......................................................................................................................... 10 

List of Symbols.................................................................................................................................. 12 

1 Introduction................................................................................................................................... 17 

1.1 Nonlinear loads and their effect on the electricity distribution network............................... 17 

1.2 Standards regulating line current harmonics ......................................................................... 19 

1.3 Power Factor Correction - PFC............................................................................................. 22 

1.4 Aim of this dissertation ......................................................................................................... 24 

2 Overview of Methods for PFC...................................................................................................... 27 

2.1 Passive PFC........................................................................................................................... 28 

2.2 Low-frequency active PFC.................................................................................................... 34 

2.3 High-frequency active PFC................................................................................................... 36 

2.3.1 Second-order switching converters applied to PFC.................................................... 36 

2.3.2 Operation in Continuous Inductor Current Mode - CICM ......................................... 40 

2.3.3 Operation in Discontinuous Inductor Current Mode - DICM .................................... 42 

2.3.4 EMI filter requirements .............................................................................................. 46 

3 Fourth-Order Switching Converters ............................................................................................. 49 

3.1 Generation of fourth-order switching converters .................................................................. 50 

3.2 Characteristic properties of fourth-order switching converters............................................. 51 

3.3 The ‘zero-ripple’ technique................................................................................................... 52 

3.4 Application for PFC with operation in CICM and CCVM ................................................... 55 

3.5 Discontinuous Capacitor Voltage Mode – DCVM ............................................................... 56 

3.6 The inherent PFC property.................................................................................................... 57 

3.6.1 Operation in DICM and CCVM ................................................................................. 58 

3.6.2 Operation in DCVM and CICM ................................................................................. 58 

4 Methods for Improving the Efficiency ......................................................................................... 59 

4.1 Reduction of conduction losses............................................................................................. 59 

4.2 Reduction of switching losses ............................................................................................... 60 



 8

5 Summary of Publications ..............................................................................................................66 

5.1 EMI filter requirements .........................................................................................................66 

5.1.1 Publication [P1]...........................................................................................................66 

5.2 Fourth-order switching converters operating in DCVM and CICM......................................68 

5.2.1 Publication [P2]...........................................................................................................68 

5.2.2 Publication [P3]...........................................................................................................75 

5.2.3 Publication [P4]...........................................................................................................79 

5.2.4 Conclusions of publications [P2]-[P4] ........................................................................84 

5.3 Fourth-order switching converters operating in CCVM and CICM......................................85 

5.3.1 Publication [P5]...........................................................................................................85 

5.4 Reduction of conduction losses .............................................................................................90 

5.4.1 Publication [P6]...........................................................................................................90 

5.5 Reduction of switching losses................................................................................................95 

5.5.1 Publication [P7]...........................................................................................................95 

5.5.2 Publication [P8]...........................................................................................................97 

5.6 Contribution of the author......................................................................................................99 

6 Conclusions and Discussions ......................................................................................................100 

6.1 Main results..........................................................................................................................100 

6.2 Scientific importance of the author’s work..........................................................................102 

6.3 Topics for future research ....................................................................................................103 

7 References ...................................................................................................................................105 

Appendix A: Publications [P1]-[P8] 

Appendix B: Errata 

 



 9

List of Publications 

This dissertation consists of an introductory part and the following eight publications, which are 

referred to by [P1]-[P8] in the text: 

[P1] V. Grigore, J. Rajamäki, J. Kyyrä, “Input filter design for power factor correction converters 

operating in discontinuous conduction mode,” in Record of the 1999 IEEE International 

Symposium on Electromagnetic Compatibility, Seattle, WA, USA, 1999, pp. 145-150. 

[P2] V. Grigore, J. Kyyrä, “Properties of DC/DC converters operating in discontinuous capacitor 

voltage mode,” in Proceedings of the IEEE Nordic Workshop on Power and Industrial 

Electronics, NORPIE/98, Espoo, Finland, 1998, pp. 19-24. 

[P3] V. Grigore, J. Kyyrä, “High power factor rectifier based on Buck converter operating in 

discontinuous capacitor voltage mode,” IEEE Transactions on Power Electronics, vol. 15, 

no. 6, pp. 1241-1249, Nov. 2000. 

[P4] V. Grigore, J. Kyyrä, “Analysis of a high power factor rectifier based on discontinuous 

capacitor voltage mode operation,” in Record of the 30th IEEE Power Electronics Specialists 

Conference, PESC’99, Charleston, SC, USA, 1999, pp. 93-98. 

[P5] V. Grigore, J. Kyyrä, “A step-down converter with low-ripple input current for power factor 

correction,” in Proceedings of the 14th IEEE Applied Power Electronics Conference, 

APEC’00, New Orleans, LA, USA, 2000, pp. 188-196. 

[P6] V. Grigore, J. Kyyrä, “Topologies for unity power factor AC/DC conversion with reduced 

conduction losses,” in Proceedings of the 8th European Conference on Power Electronics 

and Applications, EPE’99, Lausanne, Switzerland, 1999, CD-ROM, 10 pages. 

[P7] V. Grigore, J. Kyyrä, “A new zero-voltage-transition PWM Buck converter,” in 

Proceedings of the 9th IEEE Mediterranean Electrotechnical Conference, MELECON’98, 

Tel-Aviv, Israel, 1998, pp. 1241-1245. 

[P8] V. Grigore, J. Kyyrä, “A 500W (50V@10A) ZVT Forward Converter”, in Proceedings of 

the 13th IEEE Applied Power Electronics Conference, APEC’98, Anaheim, CA, USA, 1998, 

pp. 614-619. 



 10

List of Abbreviations 

The abbreviations listed here are used in the introductory part of this dissertation. The abbreviations 

used in [P1]-[P8] may be publication specific and are defined within each publication. 

 

AC   Alternating Current 

BIFRED Boost Integrated with Flyback Rectifier Energy storage DC-DC converter 

CCVM  Continuous Capacitor Voltage Mode 

CENELEC European Committee for Electrotechnical Standardization 

CICM  Continuous Inductor Current Mode 

CISPR  International Committee for Radio Interference 

DC   Direct Current 

DCVM  Discontinuous Capacitor Voltage Mode 

DICM  Discontinuous Inductor Current Mode 

EMI   Electromagnetic Interference 

FCC   Federal Communications Commission 

IEC    International Electrotechnical Committee 

IEEE   Institute of Electrical and Electronics Engineers 

IGBT   Insulated Gate Bipolar Transistor 

LC   Circuit composed of an inductor L and a capacitor C 

LCD   Circuit composed of an inductor L, a capacitor C and a diode D 

LISN   Line Impedance Stabilization Network 

MOSFET Metal Oxide Semiconductor Field Effect Transistor 

PCC   Point of Common Coupling 

PFC   Power Factor Correction 

PWM  Pulse Width Modulation 



 11

QR   Quasi-Resonant 

RC   Circuit composed of a resistor R and a capacitor C 

RMS   Root Mean Square 

SEPIC   Single Ended Primary Inductance Converter 

VDE   German Association for Electrical, Electronic & Information Technologies 

ZCS   Zero Current Switching 

ZCT   Zero Current Transition 

ZVS   Zero Voltage Switching 

ZVT   Zero Voltage Transition 

 

 

 

 

 

 



 12

List of Symbols 

The symbols listed here are used in the introductory part of this dissertation. The symbols used in 

[P1]-[P8] may be publication specific and are defined within each publication. 

 

sT
�    average of variable �  , over one switching period sT  

∧
�    small perturbations of variable �  around the operating point 

C    ideal capacitor 

C    capacitance of C  

DSC    drain-source capacitance of a MOSFET 

d    duty-cycle 

( )d s
∧

   Laplace transform of d
∧

 

1d    normalized discharge time of a capacitor in DCVM 

2d    normalized discharge time of an inductor in DICM 

D    diode  

D    constant duty-cycle d  

1D    constant normalized discharge time of a capacitor in DCVM 

sf    switching frequency 

HG    transfer function of the compensator in the high-bandwidth current loop 

LG    transfer function of the compensator in the low-bandwidth voltage loop 

fH    transfer function of the EMI filter 

1i dH −    control-to-input-current transfer function 

Si dH −   control-to-switch-current transfer function 

i    instantaneous current or 

   index variable 

( )i s
∧

   Laplace transform of i
∧
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1 Introduction  

1.1 Nonlinear loads and their effect on the electricity distribution network 

The equipment connected to an electricity distribution network usually needs some kind of power 

conditioning, typically rectification, which produces a nonsinusoidal line current due to the 

nonlinear input characteristic. The most significant examples of nonlinear loads are reviewed next.  

 Line-frequency diode rectifiers convert AC input voltage into DC output voltage in an 

uncontrolled manner. Single-phase diode rectifiers are needed in relatively low power equipment 

that need some kind of power conditioning, such as electronic equipment (e.g. TVs, office 

equipment, battery chargers, electronic ballasts) and household appliances. For higher power, three-

phase diode rectifiers are used, e.g. in variable-speed drives and industrial equipment. In both 

single- and three-phase rectifiers, a large filtering capacitor is connected across the rectifier output 

to obtain DC output voltage with low ripple. As a consequence, the line current is nonsinusoidal. 

Line-frequency phase-controlled rectifiers are used for controlling the transfer of energy between 

the AC input and the adjustable DC output. They are applied, for example, in some DC and AC 

motor drives with regenerative capabilities, or for controlling the light intensity in incandescent 

lamps or the temperature in resistive heaters. In every case, the line current is nonsinusoidal. Gas-

discharge lamps with line-frequency ballast are nonlinear loads, as well. Hence, their line current is 

nonsinusoidal.  

 In most of these cases, the amplitude of odd harmonics of the line current is considerable with 

respect to the fundamental. As an example, a single-phase diode rectifier is presented in Fig. 1.1, 

together with its line current and voltage waveforms. The odd harmonics of the line current, 

normalized to the fundamental, are shown in the same figure. The normalized amplitudes of the 3rd, 

5th, 7th and 9th harmonics are significant.  

 While the effect of a single low power nonlinear load on the network can be considered 

negligible, the cumulative effect of several nonlinear loads is important. Line current harmonics 

have a number of undesirable effects on both the distribution network and consumers [IEE92], 

[Red95], [Red96a], [Red97]. These effects include: 

• Losses and overheating in transformers, shunt capacitors, power cables, AC machines and 

switchgear, leading to premature aging and failure. 
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• Excessive current in the neutral conductor of three-phase four-wire systems, caused by odd 

triplen current harmonics (triple-n: 3rd, 9th, 15th, etc.). This leads to overheating of the neutral 

conductor and tripping of the protective relay.  

• Reduced power factor, hence less active power available from a wall outlet having a certain 

apparent power rating. 

• Electrical resonances in the power system, leading to excessive peak voltages and RMS 

currents, and causing premature aging and failure of capacitors and insulation. 

• Distortion of the line voltage via the line impedance, as shown in Fig. 1.1, where the typical 

worst-case values, line 0.4R = Ω  and line 800 �L =  [Red01], have been considered. The effect is 

stronger in weaker grids. The distorted line voltage may affect other consumers connected to the 

electricity distribution network. For example, some electronic equipment is dependent on accurate 

determination of aspects of the voltage wave shape, such as amplitude, RMS and zero-crossings. 

• Telephone interference. 

• Errors in metering equipment. 

• Increased audio noise. 

• Cogging or crawling in induction motors, mechanical oscillation in a turbine-generator 

combination or in a motor-load system. 

 

a)

AC

Line impedance

Rline Lline

b)

c)  

Fig. 1.1 Single-phase diode bridge rectifier: a) Schematic; b) Typical line current and voltage waveforms; 

c) Odd line current harmonics normalized to the fundamental. 
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1.2 Standards regulating line current harmonics 

The previously mentioned negative effects of line current distortion have prompted a need for 

setting limits for the line current harmonics of equipment connected to the electricity distribution 

network. Standardization activities in this area have been carried out for many years. As early as 

1982, the International Electrotechnical Committee - IEC published its standard IEC 555-2 [IEC82], 

which was also adopted in 1987 as European standard EN 60555-2, by the European Committee for 

Electrotechnical Standardization - CENELEC. Standard IEC 555-2 has been replaced in 1995 by 

standard IEC 1000-3-2 [IEC95], also adopted by CENELEC as European standard EN 61000-3-2. 

 Standard IEC 1000-3-2 applies to equipment with a rated current up to and including 16Arms 

per phase which is to be connected to 50Hz or 60Hz, 220-240Vrms single-phase, or 380-415Vrms 

three-phase mains. Items of electrical equipment are categorized into four classes (A, B, C and D), 

for which specific limits are set for the harmonic content of the line current. The standard has been 

revised several times and a second edition was published in 2000 [IEC00] with an amendment in 

2001 [IEC01]. Next, we present the current harmonic limits and the present status in equipment 

classification, with a discussion on the changes in the definition of Class D equipment. We want to 

point out that the standard defines also a procedure for applying the limits, as well as exceptions and 

special provisions which should be taken into account when assessing conformity. Most notably, 

the limits do not apply for equipment with rated powers of 75W or less (it may be reduced to 50W 

in the future), other than lighting equipment.  

 Class A includes: balanced three-phase equipment; household appliances, excluding 

equipment identified as Class D; tools, excluding portable tools; dimmers for incandescent lamps; 

and audio equipment. Equipment not specified in one of the other three classes should be 

considered as Class A equipment. The limits for Class A are presented in Table 1.1.  

 Class B equipment includes: portable tools; and nonprofessional arc welding equipment. The 

limits for this class are those shown in Table 1.1, multiplied by a factor of 1.5. 

 Class C includes lighting equipment. For an active input power greater than 25W, the 

harmonic currents should not exceed the limits presented in Table 1.2 (except for dimmers for 

incandescent lamps, which belong to Class A). Discharge lighting equipment having an active input 

power smaller than or equal to 25W should comply with one of the following two sets of 

requirements: the harmonic currents should not exceed the Class D power-related limits, shown in 

Table 1.3, column 2; or, the third harmonic current, expressed as a percentage of the fundamental 
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current, should not exceed 86% and the fifth should not exceed 61%, with the input current 

waveform satisfying a special provision of the standard. 

 The harmonic limits for Class D are presented in Table 1.3. They are defined in both power-

related and absolute terms. Initially, Class D included equipment having an active input power less 

than or equal to 600W, and an input current waveform – normalized to its peak value, pkI  – which 

stays within the envelope shown in Fig. 1.2 for at least 95% of the duration of each half-period, 

assuming that the peak of the line current waveform coincides with the center line M [IEC95]. For 

example, devices which comply with this definition are equipment having a front-end composed of 

a diode bridge and filtering capacitor as shown in Fig. 1.1a), and having an input current as shown 

in Fig. 1.1b). Class D equipment was penalized indiscriminately by the power-related harmonic 

limits, regardless of its impact on the electricity distribution system. In addition to that, the 

definition based on the Class D envelope allowed for techniques aiming merely at changing the 

classification of the equipment from Class D to Class A by modifying the shape of the input current, 

to avoid the Class D power-related limits. However, the definition of Class D has been changed 

[IEC01], to include equipment that can be shown to have a significant impact on the electricity 

distribution network. Under current definition, Class D includes equipment having an active input 

power less than or equal to 600W, of the following types: personal computers, personal computer 

monitors; and television receivers.  

 

1

0.35

π

π/3

π/2

M

ωLt

π/3 π/3

i−
Ipk

 

Fig. 1.2 Envelope of the input current used to classify Class D equipment, as defined in the first edition of 

IEC 1000-3-2. 
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Table 1.1 Limits for Class A equipment in standard IEC 1000-3-2. 

Harmonic order Maximum permissible  
harmonic current 

n A 

Odd harmonics 
3  2.30  
5  1.14  
7  0.77  
9  0.40  

11  0.33  
13  0.21  

15 39n≤ ≤  
15

0.15
n

⋅  

Even harmonics 

2  1.08  

4  0.43  
6  0.30  

8 40n≤ ≤  
8

0.23
n

⋅  

 

Table 1.2 Limits for Class C equipment in standard IEC 1000-3-2. 

Harmonic order Maximum permissible harmonic current 
expressed as a percentage of the input 
current at the fundamental frequency 

n % 

2  2  

3  30 PF ∗⋅  

5  10  
7  7  

9  5  
11 39n≤ ≤  

(odd harmonics only) 

3  

PF ∗  is the circuit power factor 

 

Table 1.3 Limits for Class D equipment in standard IEC 1000-3-2. 

Harmonic order Maximum permissible 
harmonic current per 

watt 

Maximum permissible  
harmonic current 

n mA/W A 

3  3.4  2.30  
5  1.9  1.14  
7  1.0  0.77  
9  0.5  0.40  

11  0.35  0.33  

13 39n≤ ≤  
3.85

n
 As in Class A 
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 Besides standard IEC 1000-3-2, there are also other documents addressing the control of 

current harmonics. Standard IEC/TS 61000-3-4 [IEC98] 1 gives recommendations applicable to 

equipment with rated current greater than 16Arms per phase and intended to be connected to 50Hz or 

60Hz mains, with nominal voltage up to 240Vrms single-phase, or up to 600Vrms three-phase. 

 Standard IEEE 519-1992 [IEE92] gives recommended practices and requirements for 

harmonic control in electrical power systems, for both individual consumers and utilities. The limits 

for line current harmonics are given as a percentage of the maximum demand load current LI  

(fundamental frequency component) at the Point of Common Coupling – PCC at the utility. They 

decrease as the ratio sc LI I  decreases, where scI  is the maximum short-circuit current at the PCC, 

meaning that the limits are lower in weaker grids. The standard covers also high voltage loads, of 

much higher power, which are not addressed by IEC 1000-3-2. 

 This subchapter reflects the status at the moment of writing. However, standards are evolving 

and changes are expected to them in the future.  

 The dissertation focuses on methods to achieve compliance with standard IEC 1000-3-2 in 

single-phase systems.  

1.3 Power Factor Correction - PFC 

Reduction of line current harmonics is needed in order to comply with the standard. This is 

commonly referred to as the Power Factor Correction – PFC, which may be misleading. Therefore, 

some clarification is needed. 

 The power factor, PF, is defined as the ratio of the active power P to the apparent power S: 

  
P

PF
S

= . (1.1) 

 For purely sinusoidal voltage and current, the classical definition is obtained: 

  cosPF ϕ= , (1.2) 

where cosϕ  is the displacement factor of the voltage and current. In a classical sense, PFC means 

compensation of the displacement factor.  

                                                 
1 As of 1st of January 1997, all IEC publications have been issued with a designation in the 60000 series.  
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 We assume the line voltage to be sinusoidal, since in most cases the total harmonic voltage 

distortion is quite low, e.g. the total harmonic distortion of the line voltage shown in Fig. 1.1 is 

2%vTHD ≅ . However, the line current is nonsinusoidal when the load is nonlinear. Therefore, the 

classical definition of the power factor does not apply. For sinusoidal voltage and nonsinusoidal 

current, (1.1) can be expressed as: 

  rms 1, rms 1, rms
p

rms rms rms

cos
cos cos

V I I
PF K

V I I

ϕ
ϕ ϕ= = = . (1.3) 

The factor 

  [ ]p 1, rms rms p, 0,1K I I K= ∈ , (1.4) 

describes the harmonic content of the current with respect to the fundamental. In this case, the 

power factor depends on both harmonic content and displacement factor. It appears that there is no 

standard term which can be used to denote the factor defined by (1.4). Some authors refer to it as 

the ‘purity factor’ [Kel92], while others as the ‘distortion factor’ [Red94a]. We believe that ‘purity 

factor’ describes its meaning more accurately, as the factor is unity for a pure sinusoidal current, 

and it decreases as the harmonic content increases. Moreover, defining it as ‘distortion factor’ is in 

contradiction with the definition given by the IEEE Standard Dictionary on Electrical and 

Electronics Terms [IEE96, pp. 306], which considers it as a synonym for the total harmonic 

distortion factor, the latter being defined for the line current as:  

  

2
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I

THD
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∞

==
∑

 (1.5) 

It is straightforward to show that the relation between pK  and iTHD  is: 

  p 2

1
.

1 i

K
THD

=
+

 (1.6) 

 Standard IEC 1000-3-2 sets limits on the harmonic content of the current but does not 

specifically regulate the purity factor pK  or the total harmonic distortion of the line current iTHD . 
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The values of pK  and iTHD  for which compliance with IEC 1000-3-2 is achieved depend on the 

power level. For low power level, even a relatively distorted line current may comply with the 

standard. In addition to this, it can be seen from (1.6) that the distortion factor pK  of a waveform 

with a moderate iTHD  is close to unity (e.g. p 0.989K =  for 15%iTHD = ). Considering (1.3) as 

well, the following statements can be made: 

• A high power factor can be achieved even with a substantial harmonic content. The power 

factor PF is not significantly degraded by harmonics, unless their amplitude is quite large (low pK , 

very large iTHD ). 

• Low harmonic content does not guarantee high power factor ( pK  close to unity, but low 

cosϕ ). 

 Most of the research on PFC for nonlinear loads, including the research reported in this 

dissertation, is actually related to the reduction of the harmonic content of the line current. There are 

several solutions to achieve PFC [Red94a]. Depending on whether active switches (controllable by 

an external control input) are used or not, PFC solutions can be categorized as passive or active. In 

passive PFC, only passive elements are used in addition to the diode bridge rectifier, to improve the 

shape of the line current. Obviously, the output voltage is not controllable. For active PFC, active 

switches are used in conjunction with reactive elements in order to increase the effectiveness of the 

line current shaping and to obtain controllable output voltage. The switching frequency further 

differentiates the active PFC solutions into two classes. In low-frequency active PFC, switching 

takes place at low-order harmonics of the line-frequency and it is synchronized with the line 

voltage. In high-frequency active PFC, the switching frequency is much higher than the line-

frequency. An overview of methods for PFC is presented in Chapter 2. 

1.4 Aim of this dissertation 

To better define the scope of the research reported in this dissertation, let us consider the widely 

used block diagram of a power supply that is shown in Fig. 1.3, where PFC is performed by a high-

frequency switching DC/DC converter that shapes the input current as close as possible to a 

sinusoidal waveform which is in phase with the line voltage. Thus, from the electrical point of view, 

the equipment connected to the line behaves like a resistive load. The voltage on the storage 

capacitor at the output of the PFC stage has a ripple at twice the line-frequency (e.g. 100Hz for a 

European line). Therefore, a second DC/DC switching converter is used to provide a tightly 

regulated output voltage and, eventually, to provide galvanic isolation. As an example, a typical 
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telecom power supply uses a Forward DC/DC converter to convert the 380-400Vdc output voltage 

of the PFC stage, to 48Vdc output voltage, as well as to provide galvanic isolation. The load of the 

PFC stage can be also an inverter in AC drives applications. 

PFCAC Diode
bridgeEMI filter DC/DC converter Load

 

Fig. 1.3 Block diagram of a power supply with active PFC. 

 While the high-frequency switching PFC stage reduces the line current harmonics, it also has 

drawbacks, such as: it introduces additional losses, thus reducing the overall efficiency; it increases 

the EMI, due to the high-frequency content of the input current; and it increases the complexity of 

the circuit, with negative effects on the reliability of the equipment, as well as on its size, weight 

and cost. The general aim of this dissertation is to investigate high-frequency switching circuit 

topologies and methods to be applied in the PFC stage, which would alleviate some of the 

aforementioned drawbacks. The research addresses several aspects which can be divided into three 

topics. 

 First, we investigate input filter requirements for a PFC stage based on a Boost converter 

operating in Discontinuous Inductor Current Mode – DICM, focusing on the interaction between 

the input filter and the PFC stage. The background related to this topic is presented in the next 

chapter, in Subsection 2.3.4, and results are reported in publication [P1], which is summarized in 

Section 5.1. 

 Second, we explore the possibilities of realizing a PFC stage having characteristics such as: 

input current with reduced high-frequency content, to minimize the input current filtering 

requirements; inherent PFC property, to simplify the control circuit; step-down characteristic, to 

obtain an output voltage lower than the amplitude of the rectified-sinusoid input voltage. To this 

objective, fourth-order switching converters are investigated. Research related to this area is 

reviewed in Chapter 3. The results of our research are reported in publications [P2]-[P5] and are 

summarized in Sections 5.2 and 5.3. 

 Third, we study circuit techniques to improve the efficiency of the PFC stage by lowering the 

conduction losses and/or the switching losses. The background related to this area is presented in 

Chapter 4. Conduction losses in the combined diode bridge and PFC stage can be diminished, in 
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principle, by having less switches in the power path, and/or by reducing their average and RMS 

currents. Four Boost-based PFC stages, as well as the use of one fourth-order switching converter 

which is able to operate with bipolar input voltage (thus eliminating the need for a diode bridge), 

are evaluated in publication [P6], which is summarized in Section 5.4. Switching losses can be 

reduced using soft-switching techniques. A novel Zero Voltage Transition – ZVT technique, which 

can be applied to both the converter used in the PFC stage and the downstream converter for output 

voltage regulation, is presented in publications [P7] and [P8] which are summarized in Section 5.5.  
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2 Overview of Methods for PFC  

As mentioned in the previous chapter, the diode bridge rectifier, shown again in Fig. 2.1a), has 

nonsinusoidal line current. This is because most loads require a supply voltage 2V  with low ripple, 

which is obtained by using a correspondingly large capacitance of the output capacitor fC . 

Consequently, the conduction intervals of the rectifier diodes are short and the line current consists 

of narrow pulses with an important harmonic content.  

 The simplest way to improve the shape of the line current, without adding additional 

components, is to use a lower capacitance of the output capacitor fC . When this is done, the ripple 

of the output voltage increases and the conduction intervals of the rectifier diodes widen. The shape 

of the input current becomes also dependent on the type of load that the rectifier is supplying, 

resistive or constant power, as opposed to the case of negligible output voltage ripple where the 

type of load does not affect the line current. This solution can be applied if the load accepts a 

largely pulsating DC supply voltage and it is used, for example, in some handheld tools. The 

concept is highlighted by the simulated waveforms shown in Fig. 2.1b), for two values of the output 

capacitor and assuming constant power load. The shape of the input current is improved to a certain 

extent with the lower capacitance, at the expense of increased output voltage ripple, as can be seen 

also from the results listed in the caption of Fig. 2.1.  
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Fig. 2.1 Diode bridge rectifier: a) Schematic; b) Line voltage and line current (upper plot), and output 

voltage (lower plot), with 1 rms230VV =  and constant power load 200WP = . With f 470 �C = , the line 

current has p 0.409K = , cos 0.991ϕ =  and 0.405PF = , and the output voltage ripple is 2 12VV∆ = . With 

f 68 �C = , the line current has p 0.619K = , cos 0.910ϕ =  and 0.563PF = , and the output voltage ripple is 

2 78VV∆ = . 
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 We would like to clarify here that, throughout this chapter, the purity factor pK , the 

displacement factor cosϕ  and the power factor PF , are given only as basic information on the 

PFC properties of the simulated circuits, and they are not relevant as such for assessing compliance 

with standard IEC 1000-3-2. 

 The method presented above has severe limitations: it does not reduce substantially the 

harmonic currents and the output voltage ripple is large, which is not acceptable in most of the 

cases. Several other methods to reduce the harmonic content of the line current in single-phase 

systems exist, and an overview of the representative ones is presented next. 

2.1 Passive PFC 

Passive PFC methods use additional passive components in conjunction with the diode bridge 

rectifier from Fig. 2.1. One of the simplest methods is to add an inductor at the AC-side of the diode 

bridge, in series with the line voltage as shown in Fig. 2.2a), and to create circuit conditions such 

that the line current is zero during the zero-crossings of the line voltage [Moh95, pp. 91-94]. The 

maximum power factor that can be obtained is 0.76PF = , with the theoretical assumption of 

constant DC output voltage. We should note here that in reality, as explained later on in this 

chapter, the DC output voltage of the PFC circuit has ripple at twice the line-frequency, ripple that 

is also dependent on the load current. Simulated results for the rectifier with AC-side inductor are 

presented in Fig. 2.2b), where the inductance aL  has been chosen so as to maximize the power 

factor.  
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Fig. 2.2 Rectifier with AC-side inductor: a) Schematic; b) Line voltage and line current with 

1 rms230VV = , resistive load 500R = Ω , f 470 �C = , and a 130mHL = . The line current has p 0.888K = , 

cos 0.855ϕ =  and 0.759PF = . The output voltage is 2 257VV = . 
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 The inductor can be also placed at the DC-side, as shown in Fig. 2.3a) [Dew81], [Kel92]. The 

inductor current is continuous for a large enough inductance dL . In the theoretical case of near-

infinite inductance, the inductor current is constant, so the input current of the rectifier has a square 

shape and the power factor is 0.9PF = . However, operation close to this condition would require a 

very large and impractical inductor, as illustrated by the simulated line current waveform for 

d 1HL =  (without aC ), shown in Fig. 2.3b). For lower inductance dL , the inductor current becomes 

discontinuous. The maximum power factor that can be obtained in such a case is 0.76PF = , the 

operating mode being identical to the case of the AC-side inductor previously discussed. An 

improvement of the power factor can be obtained by adding the capacitor aC  as shown in           

Fig. 2.3a), which compensates for the displacement factor cosϕ . A design for maximum purity 

factor pK  and unity displacement factor cosϕ  is possible, leading to a maximum obtainable power 

factor 0.905PF =  [Kel89]. This is exemplified by the simulated line current for d 275mHL =  and 

a 4.8 �C = , which is shown in Fig. 2.3b).  
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Fig. 2.3 Rectifier with DC-side inductor: a) Schematic; b) Line voltage and line current with 

1 rms230VV = , resistive load 500R = Ω , and f 470 �C = . With d 1HL =  and without aC , the line current has 

p 0.897K = , cos 0.935ϕ =  and 0.839PF = , and the output voltage is 2 205VV = . With d 275mHL =  and 

with a 4.8 �C = , the line current has p 0.905K = , cos 0.999ϕ =  and 0.904PF = , and the output voltage is 

2 232VV = . 

 The shape of the line current can be further improved by using a combination of low-pass 

input and output filters [Moh95, pp. 488-489]. There are also several solutions based on resonant 

networks which are used to attenuate harmonics. For example, a band-pass filter of the series-

resonant type, tuned at the line-frequency, is introduced in-between the AC source and the load, as 
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shown in Fig. 2.4 together with simulated waveforms. For 50/60Hz networks, large values of the 

reactive elements are needed. Therefore, this solution is more practical for higher frequencies, such 

as for 400Hz and especially 20kHz networks [Vor90a]. 

 The solution using a band-stop filter of the parallel-resonant type [Pra90] is presented in    

Fig. 2.5 together with simulated waveforms. The filter is tuned at the third harmonic, hence it 

allows for lower values of the reactive elements when compared to the series-resonant band-pass 

filter. 
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Fig. 2.4 Rectifier with series-resonant band-pass filter: a) Schematic; b) Line voltage and line current with 

1 rms230VV = , resistive load 500R = Ω , f 470 �C = , s 1.5HL =  and s 6.75 �C = . The line current has 

p 0.993K = , cos 0.976ϕ =  and 0.969PF = . The output voltage is 2 254VV = . 
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Fig. 2.5 Rectifier with parallel-resonant band-stop filter: a) Schematic; b) Line voltage and line current 

with 1 rms230VV = , resistive load 500R = Ω , f 470 �C = , p 240mHL =  and p 4.7 �C = . The line current 

has p 0.919K = , cos 0.999ϕ =  and 0.918PF = . The output voltage is 2 266VV = . 
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 Another possibility is to use a harmonic trap filter. The harmonic trap consists of a series-

resonant network, connected in parallel to the AC source and tuned at a harmonic that must be 

attenuated [Eri97, pp. 575-582]. For example, the filter shown in Fig. 2.6a)-b) has two harmonic 

traps, which are tuned at the 3rd and 5th harmonic, respectively, as shown in Fig. 2.6c). As seen from 

Fig. 2.6d), the line current improvement is very good, at the expense of increased circuit 

complexity. Harmonic traps can be used also in conjunction with other reactive networks, such as a 

band-stop filter [Red91]. 
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Fig. 2.6 Rectifier with harmonic trap filter: a) Schematic; b) Simulation circuit for the frequency response 

of the harmonic trap filter; c) Frequency response ( ) ( )1 ri s i s  of the harmonic trap filter with 1 400mHL = , 

3 200mHL = , 3 5.6 �C = , 3 0.1R = Ω , 5 100mHL = , 5 4.04 �C = , and 5 0.1R = Ω ; d) Line voltage and line 

current with 1 rms230VV = , resistive load 500R = Ω , f 470 �C = , and filter values from c). The line current 

has p 0.999K = , cos 0.999ϕ =  and 0.998PF = . The output voltage is 2 395VV = . 
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 The capacitor-fed rectifier, shown in Fig. 2.7 together with simulated waveforms, is a very 

simple circuit that ensures compliance with standard IEC 1000-3-2 for up to approximately 250W 

input power at a 230Vrms line voltage. The conversion ratio is a function of aX R , where 

( )a L a1X Cω= . Therefore, it is possible to obtain a specific output voltage, which is nevertheless 

lower than the amplitude of the line voltage and strongly dependent on the load. Despite the 

harmonic current reduction, the power factor is extremely low. This is not due to current harmonics, 

but to the series-connected capacitor that introduces a leading displacement factor cosϕ . An 

advantage could be that the leading displacement factor cosϕ  can assist in compensating for 

lagging displacement factors elsewhere [Sok98]. 
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Fig. 2.7 Capacitor-fed rectifier: a) Schematic; b) Line voltage and line current with 1 rms230VV = , resistive 

load 500R = Ω , f 4700 �C = , and a 16 �C = . The line current has p 0.995K = , cos 0.052ϕ =  and 

0.0517PF = . The output voltage is 2 12VV = . 

 The rectifier with an additional inductor, capacitor, and diode – LCD rectifier – is shown in 

Fig. 2.8, together with simulated waveforms. The added reactive elements have relatively low 

values. The idea behind the circuit is linked to the previous definition of Class D of the IEC 1000-3-

2 standard, which was based on the envelope shown in Fig. 1.2. The circuit changes the shape of the 

input current and, while only a limited reduction of the harmonic currents can be obtained, it was 

also possible to change the classification of the circuit from Class D to Class A. The power-related 

limits of Class D were avoided and the absolute limits of Class A could be met for low power, in 

spite of the line current being relatively distorted [Red98]. However, as presented in Chapter 1, the 

definition of Class D has been changed and techniques aiming at changing the classification of 

equipment from Class D to Class A have lost their applicability.  
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Fig. 2.8 Rectifier with an additional inductor, capacitor and diode (LCD): a) Schematic; b) Line voltage 

and line current with 1 rms230VV = , resistive load 500R = Ω , f 470 �C = , 1 40 �C = , and d 10mHL = . The 

line current has p 0.794K = , cos 0.998ϕ =  and 0.792PF = . The output voltage is 2 304VV = . 

 Finally, the valley-fill rectifier is shown in Fig. 2.9, together with simulated waveforms 

[Spa91], [Kit98]. The circuit reduces the harmonic content of the line current but the output voltage 

has a large variation and the load of the rectifier must be able to tolerate it. 

b)a)

V2
v1

C1

i1

Dr 1
Dr 2

Dr 3
Dr 4

L
O
A
D

D1

D2

C2

D3

 

Fig. 2.9 Valley-fill rectifier: a) Schematic; b) Line voltage and line current (upper plot), and output 

voltage (lower plot), with 1 rms230VV = , constant power load 200WP = , and 1 2 470 �C C= = . The line 

current has p 0.921K = , cos 0.999ϕ =  and 0.920PF = . The output voltage ripple is 2 168VV∆ = . 

 Passive power factor correctors have certain advantages, such as simplicity, reliability and 

ruggedness, insensitivity to noise and surges, no generation of high-frequency EMI and no high-

frequency switching losses. On the other hand, they also have several drawbacks. Solutions based 

on filters are heavy and bulky, because line-frequency reactive components are used. They also 



34 

have poor dynamic response, lack voltage regulation and the shape of their input current depends on 

the load. Even though line current harmonics are reduced, the fundamental component may show an 

excessive phase shift that reduces the power factor. Moreover, circuits based on resonant networks 

are sensitive to the line-frequency. In harmonic trap filters, series-resonance is used to attenuate a 

specific harmonic. However, parallel-resonance at different frequencies occurs too, which can 

amplify other harmonics [Eri97, pp. 575-582].  

 Better characteristics are obtained with active PFC circuits, which are reviewed in the 

following two subchapters. 

2.2 Low-frequency active PFC 

Three representative solutions are presented in Fig. 2.10. The phase-controlled rectifier is shown in 

Fig. 2.10a), and its control signals in Fig. 2.10b). It is derived from the rectifier with a DC-side 

inductor from Fig. 2.3, where diodes are replaced with thyristors. According to [Kel90], depending 

on the inductance dL  and the firing-angle α , a near-unity purity factor pK  or displacement factor 

cosϕ  can be obtained. However, the overall power factor PF  is always less than 0.9. In [Kel91], 

the inductance dL  and firing angle α  are chosen to maximize pK . This implies a lagging 

displacement factor cosϕ  that is compensated for by an additional input capacitance aC . This 

approach is similar to that used in [Kel89] for the diode bridge rectifier with a DC-side inductor, 

and discussed in the previous subchapter. This solution offers controllable output voltage, is simple, 

reliable, and uses low-cost thyristors. On the negative side, the output voltage regulation is slow and 

a relatively large inductance dL  is still required.  

 Second-order switching converters are introduced in the next subchapter, as they are mainly 

used at high switching frequencies. However, it is also possible to use them at low switching 

frequencies, as explained next. The low-frequency switching Boost converter is shown in             

Fig. 2.10c). The active switch S  is turned on for the duration onT , as illustrated in Fig. 2.10d), so as 

to enlarge the conduction interval of the rectifier diodes [Zuc97]. It is also possible to have multiple 

switchings per half line-cycle, at low switching frequency, in order to improve the shape of the line 

current [Red91]. Nevertheless, the line current has a considerable ripple.  

 The low-frequency switching Buck converter is shown in Fig. 2.10e) [Red91]. Theoretically, 

the inductor current is constant for a near-infinite inductance dL . The switch is turned on for the 

duration onT  and the on-time intervals are symmetrical with respect to the zero-crossings of the line 

voltage, as illustrated in Fig. 2.10f). The line current is square with adjustable duty-cycle. For a 
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lower harmonic content of the line current, multiple switchings per line-cycle can be used. 

However, the required inductance dL  is large and impractical.  

 To conclude, low-frequency switching PFC offers the possibility to control the output voltage 

in certain limits. In such circuits, switching losses and high-frequency EMI are negligible. 

However, the reactive elements are large and the regulation of the output voltage is slow. 

a) b)

t

t

TL

Control
signal

Ton Ton

v1

S S

Ld

S

D

Dr 1
Dr 2

Dr 3
Dr 4

v1

+
Cf-

R V2

LdS

Dr 1
Dr2

Dr 3
Dr 4

v1

+
Cf-

R V2
D

c) d)

e) f)

t

t

TL

Control
signal

Ton Ton

v1

S S

ωLt

Control
signal

v1

ωLt

αα
2π

Th1, Th4 Th2, Th3

v1

+
Cf-

R V2

Ld

Ca

Th1 Th2

Th3 Th4

 

Fig. 2.10 Low-frequency active PFC: a) Controlled rectifier with DC-side inductor, with b) phase-control; 

c) Boost converter, with d) one commutation per half line-cycle; e) Buck converter, with f) one commutation 

per half line-cycle. 
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2.3 High-frequency active PFC 

The PFC stage can be realized by using a diode bridge and a DC/DC converter with a switching 

frequency much higher than the line-frequency. In principle, any DC/DC converter can be used for 

this purpose, if a suitable control method is used to shape its input current or if it has inherent PFC 

properties. Regardless of the particular converter topology that is used, the output voltage carries a 

ripple on twice the line-frequency. This is because, on the one hand, in a single-phase system the 

available instantaneous power varies from zero to a maximum, due to the sinusoidal variation of the 

line voltage. On the other hand, the load power is assumed to be constant. The output capacitor of 

the PFC stage buffers the difference between the instantaneous available and consumed power, 

hence the low-frequency ripple. Next, we present the application of second-order switching 

converters for PFC. 

2.3.1 Second-order switching converters applied to PFC 

The first-order switching cell is shown in Fig. 2.11a). The active switch S  is controlled by an 

external control input. In a practical realization, this switch would be implemented, for example, by 

a MOSFET or an IGBT. The state of the second switch, which is diode D , is indirectly controlled 

by the state of the active switch and other circuit conditions. The switching cell also contains a 

storage element, which is the inductor L .  

 The basic Buck, Boost and Buck-Boost converters are generated from this switching cell, as 

shown in Fig. 2.11b), d) and f), respectively. Considering also the output filtering capacitor, they 

are second-order circuits. The output filtering capacitor can be assimilated to a voltage source. 

Hence, the ports of the switching cell are connected to voltage sources, a fact which explains why 

the storage element of the switching cell is an inductor and not a capacitor. 

 The converters can operate in Continuous Inductor Current Mode – CICM, where the inductor 

current never reaches zero during one switching cycle, or Discontinuous Inductor Current Mode - 

DICM, where the inductor current is zero during intervals of the switching cycle. There are specific 

characteristics associated with these operating modes, which determine the method used to shape 

the input current in a PFC application. These operating mode-specific characteristics are described 

in Subsections 2.3.2 and 2.3.3. However, first let us describe three characteristics that are important 

for a PFC application, which are dependent mainly on the specific topology rather than on the 

operating mode. 
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Fig. 2.11 Second-order switching converters and their application for high-frequency active PFC, assuming 

operation in CICM: a) First-order switching cell, from which second-order switching converter are 

generated; b) Buck converter, with c) waveforms; d) Boost converter, with e) waveforms; f) Buck-Boost 

converter, with g) waveforms. 

 In a PFC application, the input voltage is the rectified line voltage ( )1 1 Lsinv t V tω= ⋅ . The 

output voltage 2V  is assumed to be constant. The first characteristic, which is determined by the 

conversion ratio of the converter, is the relation between the obtainable output voltage 2V  and the 

amplitude 1V  of the sinusoidal input voltage. 
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 The second characteristic refers to the shape of the filtered (line-frequency) input current. If 

the converter is able to operate throughout the entire line-cycle, a sinusoidal line current can be 

obtained. Otherwise the line current is distorted, being zero in a region around the zero-crossings of 

the line voltage where the converter cannot operate. 

 The third characteristic is related to the high-frequency content of the input current. We 

consider that the input current is continuous if it is not interrupted by a switching action. This means 

that the inductor is placed in series at the input and only the inductor current ripple determines the 

high-frequency content of the input current. For CICM operation, the inductor current ripple can be 

relatively low, a situation in which the input current has a reduced high-frequency content. 

Conversely, the input current is discontinuous if it is periodically interrupted by the switching 

action of a switch placed in series at the input. In such a case, the high-frequency content of the 

input current is large, even in CICM operation. The terms continuous/discontinuous input current 

should not be confused with CICM/DICM, which refer to the inductor current. 

 We now briefly characterize second-order converters in the light of these topology-specific 

characteristics. The converters are shown in Fig. 2.11 together with waveforms relevant for a PFC 

application, assuming operation in CICM. We need to clarify here that the given waveforms are 

only for supporting the explanation of the topology-specific characteristics. In reality, the switching 

frequency is much higher than the line-frequency and the input current waveform is dependent also 

on the type of control that is used.  

 The Buck converter, shown in Fig. 2.11b), has step-down conversion ratio. Therefore, it is 

possible to obtain an output voltage 2V  lower than the amplitude 1V  of the input voltage. However, 

the converter can operate only when the instantaneous input voltage 1v  is higher than the output 

voltage 2V , i.e. only during the interval ( )L ,tω α α∈ − , where ( )2 1arcsin V Vα = . Hence, the line 

current of a power factor corrector based on a Buck converter has crossover distortions, as 

illustrated in Fig. 2.11c). Moreover, the input current of the converter is discontinuous. 

Consequently, even in CICM, the input current has a significant high-frequency component that has 

to be filtered out. Some PFC applications based on this topology are reported in [End92] and 

[Spi97]. 

 The Boost converter is shown in Fig. 2.11d). It has a step-up conversion ratio; hence the 

output voltage 2V  is always higher than the amplitude 1V  of the input voltage. Operation is possible 

throughout the line-cycle so the input current does not have crossover distortions. As illustrated in 

Fig. 2.11e), the input current is continuous, because the inductor is placed in series at the input. 
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Hence, an input current with reduced high-frequency content can be obtained when operating in 

CICM. For these reasons, the Boost converter operating in CICM is widely used for PFC        

[Eri97, pp. 24-29, pp. 627-645]. 

 The Buck-Boost converter, shown in Fig. 2.11f), can operate either as a step-down or a step-

up converter. This means that the output voltage 2V  can be higher or lower than the amplitude 1V  of 

the input voltage, which gives freedom in specifying the output voltage. Operation is possible 

throughout the line-cycle and a sinusoidal line current can be obtained. However, the output voltage 

is inverted, which translates into higher voltage stress for the switch. Moreover, similar to the Buck 

converter, the input current is discontinuous with significant high-frequency content, as illustrated 

in Fig. 2.11g). The topology-specific characteristics are summarized in Table 2.1. 

 In addition to these basic converters, the two-switch Buck + Boost converter [Gha93],   

[Eri97, pp. 149] is an interesting solution. It operates as a Buck converter when the input voltage is 

higher than the output voltage and as a Boost converter when the input voltage is lower than the 

output voltage. Therefore, operation is possible throughout the line-cycle and the output voltage can 

be varied in a wide range, in a similar manner to the Buck-Boost converter. Another positive aspect 

is that, due to its non-inverted output voltage, the voltage stress of the switches is lower than in a 

Buck-Boost converter. However, this topology has an increased number of switches which leads to 

higher cost and conduction losses.  

 

Table 2.1. Topology-specific characteristics. 

 Conversion characteristic  Crossover distortions Input current 

Buck Step-down, 2 1V V<  

Yes, because operation            

is possible only for  

( )L ,tω α α∈ − , 2

1

arcsin
V

V
α =  

Discontinuous 

Boost Step-up, 2 1V V>  No Continuous 

Buck-Boost Step-down/up 2 1V V><   No Discontinuous 
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 Having examined characteristics that are determined mainly by the topology, we describe next 

characteristics that are determined by the operating mode. 

2.3.2 Operation in Continuous Inductor Current Mode - CICM 

In this operating mode, the inductor current never reaches zero during one switching cycle and there 

is always energy stored in the inductor. The volt·seconds applied to the inductor must be balanced 

throughout the line-cycle by continuously changing the duty-cycle of the converter using an 

appropriate control method.  

 An example of a control scheme is shown in Fig. 2.12. The low-bandwidth outer loop with 

characteristic ( )LG s  is used to keep the output voltage of the PFC stage constant and to provide the 

error signal v . The high-bandwidth inner loop with characteristic ( )HG s  is used to control the 

input current. A multiplier is used to provide a reference xyv , which is proportional to the error 

signal v  and which has a modulating signal with the desired shape for the input current. Fig. 2.12 

shows the most common situation, where the modulating signal is the rectified-sinusoid input 

voltage 1v . Depending on the topology of the PFC stage, it may be beneficial to use as a 

modulating signal the difference between the input voltage and the output voltage [Red92a]. 
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Fig. 2.12 Example of the control scheme for PFC using a switching converter operating in CICM. 
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 The control circuit can be simplified by eliminating the multiplier and the sensing of the line 

voltage. In this case the modulating signal is xyv v= , and it is essentially constant over the line-

cycle, because v  is the control signal from the low-bandwidth output voltage controller. Therefore, 

the input current is clamped to a value proportional with v  and its shape approaches a square 

waveform. The simplification of the control circuit leads to a more distorted line current, but 

compliance with the standard can be obtained up to approximately 500W for a 230Vrms input 

voltage. Furthermore, if the edges of the line current waveform are softened, thus obtaining a nearly 

trapezoidal waveform, compliance up to several kW can be obtained [Red96b]. 

 There are several ways to implement the high-bandwidth inner loop [Eri97, pp. 636-639]. In 

peak current mode control, well-known from DC/DC converters, the active switch is turned on with 

constant switching frequency, and turned off when the upslope of the inductor current reaches a 

level set by the outer loop. This gives instant over-current switch protection, but also makes the 

control very sensitive to noise. Moreover, the control is inherently unstable at duty-cycles 

exceeding 0.5; a compensating ramp must be added to the inductor ramp to solve this problem. 

Finally, in peak current mode control there is an inherent peak to average current error. 

Consequently, the average inductor current cannot follow accurately the current reference signal set 

by the outer loop. In a Boost-based PFC converter with sinusoidal reference, this leads to crossover 

distortions and line current harmonics [Red94b]. However, if the simplicity of the control circuit is 

of primary interest, rather than the quality of the line current waveform, then peak current mode 

control with input current clamping is attractive [Mak95], [Can96].  

 A better control method is the average current mode control, where the average of the 

inductor current, instead of the peak, is compared to the current program level. This offers better 

noise rejection and stability, when compared to peak current mode control. Because the average of 

the current is controlled, a line current waveform of a very good quality can be obtained. 

Consequently, average current mode control is widely used in PFC applications [Dix90a], [Dix90b]. 

Its implementation is somewhat more complicated when compared with that of the peak current 

mode control, because an additional operational amplifier is needed in the current loop. 

 Yet another method is hysteretic control, where the inductor current is kept within a 

regulation band [Zho90]. Its main advantage is its simple implementation. However, the variable 

switching frequency associated with it is a drawback. 

 Finally, charge nonlinear carrier control is an approach where the integral of the current 

through the switch is compared with a nonlinear carrier voltage generated by the controller. 
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Alternatively, the peak of the switch current is used for comparison in peak current nonlinear carrier 

control, which has nevertheless higher noise sensitivity. These methods offer the advantage of 

eliminating the multiplier from the control circuit, and the need for sensing the sinusoidal input 

voltage. Furthermore, no operational amplifier is needed in the current loop. However, the nonlinear 

carrier is obtained assuming that the controlled converter operates in CICM, which explains the 

main drawback of the method: the line current is distorted in DICM operation, i.e. at light load and 

around the zero-crossings of the line voltage [Mak96]. 

2.3.3 Operation in Discontinuous Inductor Current Mode - DICM 

In this operating mode, for second-order converters shown in Fig. 2.13a), the inductor current Li  

varies from zero to a maximum and returns back to zero before the beginning of the next switching 

cycle, as presented in Fig. 2.13b).  

 Throughout this dissertation, we will use the term ‘input resistance’ 1r  of a switching 

converter to refer to the average input resistance calculated as the ratio of the average input voltage 

and the average input current, over one switching cycle sT . The input voltage 1v  can be considered 

to be constant during one switching period sT , because the switching frequency is much higher than 

the line-frequency. Hence, as depicted in Fig. 2.13a), the input resistance of the analyzed converters 

can be defined as: 

  ( ) ( )
( )

s

1
1

1 T

v t
r t

i t
= , (2.1) 

where ( )
s

1 T
i t  is the average of the input current 1i  over one switching period sT  [Eri97, pp. 370-

381]. Based on the operating principle of the converters and on the waveforms shown in               

Fig. 2.13b), as well as assuming a rectified-sinusoid input voltage 1v , it is straightforward to 

calculate the expressions ( )1r t  of the input resistance that are presented in Table 2.2. 

 The input resistance of the Buck-Boost converter depends only on inductance L , switching 

period sT  and duty-cycle d . If operation in DICM is ensured throughout the line-cycle and if d  is 

kept constant, then the input resistance 1r  is constant. As a consequence, the average input current 

( )
s

1 T
i t  tracks the shape of the input voltage and the converter has an inherent PFC property. In 

contrast to CICM operation, in DICM there is no need for the controller to adjust the duty-cycle 

over the line-cycle to perform PFC. 
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Fig. 2.13 Second-order switching converters: a) Definition of the input resistance ( )1r t ; b) The inductor 

current ( )Li t  and the input current ( )1i t , when operating in DICM. 

 As can be seen in Table 2.2, the input resistance of the Buck converter is not constant 

throughout the line-cycle. However, its variation decreases and inherent PFC property improves, 

when the ratio 2 1V V  is decreased. As explained previously, the line current has crossover 

distortions too, which are however less disturbing when the ratio 2 1V V  is decreased. However, 

compliance with standard IEC 1000-3-2 can be obtained up to a relatively high power, when the 

output voltage 2V  is low enough when compared to the amplitude 1V  of the sinusoidal input voltage 

[Spi97]. 
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Table 2.2. Inherent PFC properties of second-order switching converters operating in DICM.  

 Input resistance ( )1r t  Inherent PFC 

Buck ( ) ( ) 2
1 L2

2 1s

1 L

2 1
, , � � ����	


1
sin

VL
r t t

V Vd T
V t

ω α α α

ω

 
 
 = ∈ =
 −  

 

Fair 

Improves when 

2 1V V  is decreased 

Boost ( ) ( )1 L
1 L2

2s

sin2
1 , 0,

V tL
r t t

Vd T

ω ω
 

= − ∈ 
 

 

Fair 

Improves when 

2 1V V  is increased 

Buck-Boost ( ) ( )1 L2
s

2
, 0,

L
r t t

d T
ω= ∈  Excellent 

 

 The Boost converter has an imperfect inherent PFC property, as well. Its input resistance 

changes throughout the line-cycle, but the variation decreases and inherent PFC property improves 

when the ratio 2 1V V  is increased. Taking into account the fact that the line current does not have 

crossover distortions, compliance with the standard is achieved comfortably. 

 The inherent PFC property of second-order switching converters operating in DICM can be 

explained by the fact that the volt·seconds applied to the inductor are inherently balanced every 

switching cycle, so the duty-cycle d  can be kept constant. The excellent inherent PFC property of 

the Buck-Boost converter is explained by the very good control of the quantity of energy that is 

transferred in each switching cycle from input to output. During the on-time of the active switch, 

energy is transferred only from the input voltage source to the inductor. During the off-time of the 

active switch, there is only energy transfer from the inductor to the output, until the energy stored in 

inductor is depleted. The quantity of energy transferred during each switching cycle depends only 

on the input voltage 1v  and the input resistance 1r . In the Buck converter there is as well a 

‘parasitic’ transfer of energy from input to output, during the on-time of the active switch. Likewise, 

in the Boost converter there is a ‘parasitic’ transfer of energy from input to output during the off-

time of the active switch. This ‘parasitic’ transfer is dependent on the 2 1V V  ratio, which explains 

the degradation of the inherent PFC property in these converters. 
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 The main advantage of using switching converters operating in DICM for PFC applications is 

the simplicity of the control method. Since there is no need to continuously adjust the duty-cycle d  

to perform PFC, only a voltage loop is needed to regulate the voltage across the storage capacitor. 

The bandwidth of the voltage loop has to be low (e.g. 10-15Hz), in order to filter out the output 

voltage ripple at twice the line-frequency. The simple control of converters with inherent PFC 

makes them attractive for low-cost applications. They can be used in a power conversion chain as 

shown in Fig. 1.3 or as stand-alone converters, if their low-frequency output voltage ripple can be 

tolerated. In the latter case, the Flyback converter, which offers isolation and is functionally 

equivalent to the Buck-Boost converter, is often used [Tan93]. 

 Besides these applications, converters with inherent PFC are essential for integrating the PFC 

stage with the output voltage regulation stage into a so-called single-stage converter. An example is 

the BIFRED converter (Boost Integrated with Flyback Rectifier/Energy storage/DC-DC converter) 

[Mad92], which is shown in Fig. 2.14. The input stage is a Boost converter operating in DICM for 

PFC, and the output stage is a Flyback converter for output voltage regulation. The active switch is 

shared by the two stages. Capacitor C  is the energy storage capacitor and sees the low-frequency 

(e.g. 100Hz) and the high-frequency switching ripple, while fC  is the output capacitor seeing only 

the high-frequency switching ripple. This is potentially a low-cost solution, since there is only one 

switch and one control circuit. However, DICM operation translates into a high peak current 

through the switch, which has a negative impact on efficiency. As a consequence, the concept is 

advantageous only for low power applications, for example up to a few hundred watts, when 

compared to the two-stage approach. Several single-stage converters have been developed based on 

similar principles. For example, a Boost input stage is used in [Tak91], [Red94c] and [Hub97], 

while [Oba98] uses a Buck-Boost input stage. 
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Fig. 2.14 Example of a single-stage converter with PFC: the BIFRED converter. 
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2.3.4 EMI filter requirements 

The high-frequency ripple of the input current of switching converters generates differential-mode 

EMI, while the common-mode EMI is a result of secondary, usually parasitic, effects [Tih95,       

pp. 150]. Typically, the differential-mode EMI is dominant below 2MHz, while the common-mode 

EMI is dominant above 2MHz [Wu96]. In this dissertation, one important aspect when analyzing 

various converter topologies is the high-frequency ripple of the input current; hence, we only 

address the differential-mode EMI and the requirements for the input filter that are related to it. 

 A high-frequency active PFC stage significantly increases the differential-mode EMI, 

typically by 30dB to 60dB according to [Red96a], and an EMI filter must be used to comply with 

EMI standards. There are three main requirements concerning the design of the EMI filter for a PFC 

stage [Vla96]. To discuss them, let us consider a one-stage LC filter, as shown in Fig. 2.15a).  
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Fig. 2.15 One-stage LC filter for attenuating differential-mode EMI: a) Schematic; b) Phasor diagram of 

line-frequency components of the system currents and voltages; c) The Thévenin equivalent circuit.  

 The first requirement for the EMI filter is to provide the required attenuation, in order to 

ensure compliance with the EMI standards. 

 Fig. 2.15b) shows the phasor diagram of the line-frequency components of the system 

currents and voltages. We assume that the input current gi  of the PFC stage is sinusoidal and in 

phase with the input voltage gv  which, assuming that the voltage drop across the filter inductor aL  

is very small at line-frequency, is essentially equal to the line voltage iv . The capacitive current CI , 

which is proportional to aC , introduces a displacement angle ϕ  between the line current iI  and the 

line voltage iV , which degrades the power factor.  
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 This leads to the second requirement for the EMI filter: the displacement angle ϕ  must be 

kept low. Hence, the capacitance aC  that can be used is upper limited  

  a maxC C< , (2.2) 

where maxC  is a function of the acceptable displacement factor cosϕ . As a consequence, the 

inductance aL  is lower limited 

  a minL L> , (2.3) 

in order to have a product a aL C  that gives the required attenuation. 

 The third requirement is related to the overall stability of the system. It is known that unstable 

operation may occur due to the interaction between the EMI filter and the power stage. This 

phenomenon is analyzed in several publications, including [Jan92] for peak current mode controlled 

DC/DC converters, and [Red92b] and [Spi99] for power factor correctors with average current 

mode control. To explain it, let us consider the Thévenin equivalent circuit shown in Fig. 2.15c), of 

the EMI filter/PFC stage interconnection from Fig. 2.15a). fH  is the transfer function of the filter, 

ofZ  is the output impedance of the EMI filter and icZ  is the input impedance of the PFC stage. 

From the equivalent circuit, we can write: 

  
( )
( )

( )
( )
( )

( )
( )

g f f

ofi f

ic

1
1+

v s H s H s

Z sv s T s
Z s

= =
+

, (2.4) 

where f of icT Z Z=  can be considered as a loop gain that must satisfy the Nyquist criterion for 

stability. The interaction between the EMI filter and the power converter is minimized and no 

instabilities can arise in the system, if f 1T � . This means that the modulus of the output 

impedance of the EMI filter must be much lower than the modulus of the input impedance of the 

power converter, of icZ Z� . This criterion has been largely used especially for DC/DC converters 

[Mid76], [Mid78]. However, the aforementioned condition may be difficult to fulfill in a PFC 

application. This is because, at the resonant frequency of the EMI filter, the modulus of the output 

impedance ofZ  has a maximum that is proportional to a aL C , which cannot be set arbitrarily 

low since aC  is upper limited according to (2.2) and aL  is lower limited according to (2.3). Hence, 
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in a PFC application it is possible to have f 1T > , especially at low icZ , i.e. at low line voltage and 

high load current. Therefore, if the input impedance icZ  shows an excessive positive phase shift, 

then f of icT Z Z=  may not satisfy the Nyquist criterion for stability and instabilities occur [Spi99]. 

For this reason, it is important to know the input impedance icZ  of the PFC stage, in order to be 

able to perform the stability analysis. In publication [P1], we determine the input impedance of a 

PFC stage based on the Boost converter operating in DICM.  
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3 Fourth-Order Switching Converters  

Several characteristics of second-order switching converters were discussed in the previous chapter, 

from the PFC application point of view. It is evident that topological and/or operating mode related 

properties impose some constraints when applying these topologies to PFC. 

 To begin with, it is not possible to have inherent PFC property and a reduced high-frequency 

content of the input current at the same time. Indeed, the inherent PFC property is obtained in 

DICM operation, which leads naturally to a significant high-frequency content of the input current 

that has to be filtered out. Moreover, high peak and RMS switch currents are associated with DICM 

operation, thus increasing the rating of the switches, as well as the conduction losses. 

 Secondly, an output voltage that is lower than the amplitude of the input voltage could be 

useful in some applications, but this characteristic cannot be associated with a reduced high-

frequency content of the input current. On the one hand, Buck or Buck-Boost converters could be 

used to obtain a low output voltage, but their input current is naturally discontinuous. On the other 

hand, Boost converter operating in CICM would allow a reduced high-frequency content of the 

input current, but its output voltage is higher than the amplitude of the input voltage, typically    

380-400Vdc for a PFC application with an universal input voltage of 90-265Vrms.  

 We conclude that input current with reduced high-frequency content, inherent PFC property 

and step-down conversion ratio are conflicting requirements in second-order converters. This fact 

constitutes the motivation for investigating the possibility of obtaining such characteristics using 

more complex converter topologies. Several DC/DC converter topologies are systematically 

generated in [Tym88], including converters with more than two switches and/or of higher order. 

Converters with more than two switches are not considered in this dissertation, because of the 

higher semiconductor component count and possibly increased control complexity. Therefore, two-

switch converters of higher order are considered next. 

 Third-order converters could be obtained from second-order switching cells, which, in their 

turn, could be obtained by adding an inductor or a capacitor to the first-order switching cell shown 

in Fig. 2.11. However, it can be seen from Fig. 2.11 that the voltage applied at any of the switching 

cell’s ports has a DC component. Therefore, an inductor cannot be added in parallel with any of 

these ports. It is not possible to add the inductor in series with one of the switches either, because 

there would be no path for the current to flow when the switch turns off. Finally, an inductor added 
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in the branch already containing inductor L  would be redundant. Let us now consider a capacitor, 

this cannot be added in series to any branch of the switching cell, because the conduction is 

unidirectional and the current through every branch has a DC component. Furthermore, a capacitor 

connected in parallel at any of the ports of the switching cell is actually connected in parallel to the 

input voltage source, or to the output capacitor, or to the series connection between the input 

voltage source and the output capacitor, which makes it redundant. Having said this, fourth-order 

converters, which are generated from third-order switching cells, are investigated in the next 

section. 

3.1 Generation of fourth-order switching converters 

Two-switch third-order switching cells are composed of one active switch, one passive switch 

(diode), two inductors and one capacitor. There are many switching cells that can be obtained by 

combining these elements. However, according to [Tym88], only those five shown in Fig. 3.1 are 

distinct (the notation Cell C – Cell G is as in [Tym88]). That is to say, other two-switch third-order 

switching cells are electrically equivalent to one of these five cells. 
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Fig. 3.1 Third-order switching cells and generation of fourth-order converters. 
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 As shown in Fig. 3.1, a switching cell is placed in-between the input voltage source and the 

output capacitor and load. A family of converters is obtained by rotating the switching cell in all 

possible combinations. A total of 27 different two-switch fourth-order converters can be obtained 

[Tym88, Cell C – Cell G]. The switches are shown as generic components in Fig. 3.1. The resulting 

converter topology defines the conduction direction of the switches and determines which is the 

active one. 

 Several two-switch fourth-order topologies have been known and used in DC/DC applications 

for many years. It is not surprising that they are, in fact, members of a larger family of converters 

generated from one of the switching cells shown in Fig. 3.1. For example, the well-�
�

�����

converter [Cuk77a] and the two-inductor Boost and Buck converters [Whi87] belong to the family 

generated from Cell C. The SEPIC converter belongs to the family generated from Cell G. 

3.2 Characteristic properties of fourth-order switching converters 

Fourth-order converters have some characteristics, which are described next, that cannot be 

obtained in second-order topologies. 

• It is possible to associate continuous input current with a step-down or step-down/up 

conversion ratio. This is not possible in Buck or Buck-Boost converters. In addition to that, in some 

of the topologies, the output current is continuous, as well. For example, the two-inductor Buck 

converter presented in [Whi87] is a topology with step-down characteristic and continuous 

	
����������� �����
���� ���� ���� ��
������� 	�� �
� �������� ��� �� ����-down/up topology where both 

input and output currents are continuous. 

• Converters generated from Cell G have conversion ratios that are not encountered at all in 

second-order converters. The SEPIC converter has a step-down/up conversion ratio without having 

an inverted output voltage, as opposed to both the Buck-������ �
�� ����� Other two topologies 

belonging to this family can operate with bipolar input voltage (though, both switches must be 

active and must allow reverse conduction, e.g. through the body diode or an anti-parallel diode). 

Therefore, it is possible to obtain AC/DC conversion without the need of a diode bridge. 

• By properly coupling the inductors, the ripple of the current in one of the inductors can be 

reduced to a great extent. This is discussed in more detail in Section 3.3. 

• More than two operating modes are possible in fourth-order converters, as described in 

[Cuk79] and [Mak91]. Each of the inductors 1L  and 2L  can operate in CICM or DICM. In addition 
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to that, while the voltage on the output capacitor of the switching converter is assumed to be 

constant over one switching cycle, capacitor C  belonging to the switching cell has two possible 

operating modes. In Continuous Capacitor Voltage Mode – CCVM, the voltage on the capacitor is 

never clamped to a certain level during one switching cycle. This behavior is similar to that of an 

inductor in CICM. Conversely, in Discontinuous Capacitor Voltage Mode – DCVM, the voltage on 

the capacitor is clamped to a certain value during one switching cycle. This operating mode is 

described in more detail in Section 3.5. Similarly to DICM, DCVM offers inherent PFC property, 

which is discussed in Section 3.6. 

• The increased order of the circuit implies more complex dynamics, as it has been shown for 

example in [Cuk77a], [Mid79] and [Vor96]. 

3.3 The ‘zero-ripple’ technique 

The coupled inductor technique can be applied in a DC circuit in order to reduce the current ripple 

in an inductor. It can be used, for example, to reduce the ripple of the input/output current of a 

switching converter. The underlying principle is described next. 

 Let us consider the coupled inductors 1L  and 2L  as shown in Fig. 3.2. This winding 

arrangement can be described by the equations: 

  
1

1 2
L 1 12

di di
v L L

dt dt
= + , (3.1) 

  
2

2 1
L 2 12

di di
v L L

dt dt
= + . (3.2) 

L1

i1 i2

L2
vL2

vL1

.           .

 

Fig. 3.2 Coupled inductors. 
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The mutual inductance 12L  is given by 

  12 1 2L k L L= , (3.3) 

where k  is the coupling factor of the inductors. If we now consider that equal voltages 

  
1 2L Lv v= , (3.4) 

are applied to the inductors, it follows from (3.1) and (3.2) that 

  ( ) ( )1 2
1 12 2 12

di di
L L L L

dt dt
− = − . (3.5) 

From (3.5) it can be seen that the ripple of the current in either of the inductors can be cancelled, if 

the inductors are suitably coupled. Ripple in inductor 1L  can be cancelled if 2 12L L= . Considering 

(3.3), this is equivalent to having a ‘zero-ripple’ coupling factor 

  2
zr

1

L
k

L
= . (3.6) 

Similarly, ripple in inductor 2L  can be cancelled if 1 12L L= , which is equivalent to having a ‘zero-

ripple’ coupling factor  

  1
zr

2

L
k

L
= . (3.7) 

 Having two inductors, fourth-order switching converters offer the opportunity to apply this 

technique, provided that the voltages applied to the inductors fulfill the condition in (3.4). ‘Zero-

ripple’ input or output current can be obtained, depending on the topology and on the requirements 

of the application. Moreover, a single integrated magnetic component can be used to realize the 

coupled inductors. As a consequence, a reduction of size and cost can be potentially obtained as 

compared to using two separate inductors. 
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 In order to illustrate how the ‘zero-ripple’ technique can be applied in fourth-order converters, 

let us consider� ���� ���� ��
������� ����� 	�� ���

� 	
� Fig. 3.3, for which this technique has been 

presented in [Cuk77b]. If capacitors C  and fC  are modeled as ideal voltage sources (infinite 

capacitance), and if resistive voltage drops are neglected, it can be easily seen that the voltages 

applied to inductors 1L  and 2L  are always equal. Therefore, cancellation of the current ripple in 

either of the inductors can be obtained. In reality, C  and fC  have finite capacitance, so the voltage 

across them has a certain ripple. As a consequence, the condition 
1 2L Lv v=  cannot be accurately 

fulfilled. For this reason, the current ripple can be reduced to a great extent but it cannot be 

cancelled. Hence, the quotation marks in ‘zero-ripple’ have been used. In addition to that, it is 

difficult to ensure that a coupling factor as defined by (3.6) or (3.7) is obtained with precision in a 

practical implementation. 

 The ‘zero-ripple’ technique is presented in some detail in [Sev85, pp. 273-282]. A more 

comprehensive analysis is made in [Kol97], where it is shown that ‘zero-ripple’ structures 

correspond to an integration of an LC filter into the respective converter structure. This leads 

possibly to a higher power density when compared to a separate arrangement of filter and converter. 

However, it has to be pointed out that, in several fourth-order topologies, the filtering capacitor of 

the integrated LC filter acts also as an essential element for the energy transfer between the input 

�
������������ ��	
�����������
������!� 

 The application of this technique can be found in a number of other publications, as well. In 

[Cap88] it is pointed out that the ‘zero-ripple’ technique can be applied to two-inductor Buck and 

Boost converters in [Whi87]. Applications of these topologies for DC/DC conversion and using the 

‘zero-ripple’ technique are also discussed in [Mar91] and [Zha93]. Finally, in [Wan96], the ‘zero-

ripple’ technique is applied to a fourth-order modified Boost converter. 
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3.4 Application for PFC with operation in CICM and CCVM 

As stated in Chapter 1, one aim of the research reported in this dissertation is to investigate 

converter topologies having an input current with reduced high-frequency content. For this reason, 

the research concentrates on CICM operation for both inductors 1L  and 2L , and on those 

topologies having an inductor in series at the input side. Besides operation in CICM for 1L  and 2L , 

in this section we also consider the case when capacitor C  is operating in CCVM. The first aspect 

to be discussed is that the converter does not have inherent PFC properties in this operating mode. 

Similar to second-order converters operating in CICM, the duty-cycle of the switch must be 

controlled, in order to shape the line current. In principle, any of the control methods described in 

Subsection 2.3.2 can be applied, but the more complex dynamics of a fourth-order converter have to 

be taken into account.  

 Let us consider as an example the SEPIC converter, which is shown in Fig. 3.4. Its application 

for PFC, with average current mode control, is discussed in [Dix93a]. As can be seen, there is a 

loop consisting of the input voltage source, inductor 1L , capacitor C  and inductor 2L , in which the 

only damping is provided by the parasitic resistances. This explains the pair of (practically) 

undamped complex conjugated poles in the control-to-switch-current transfer function [Dix93b]. In 

a DC/DC application, the capacitance C  may be in a similar range as that of the output filtering 

capacitor. Therefore, the pair of undamped complex conjugated poles would be at a low enough 

frequency, where the control loop has enough gain to damp any resonance that might occur. 

However, the situation is different in a PFC application, where the voltage on capacitor C  varies 

over the line-cycle (e.g. in the SEPIC converter the capacitor voltage follows the shape of the 

rectified line voltage). As a consequence, the capacitance C  that can be used is limited to a value 

(e.g. a few � ) that is much lower than it would be in a DC/DC application. The position of the 

undamped complex conjugated poles is at a much higher frequency, where the gain of the current 

loop is insufficient to damp oscillations. Therefore, an RC series network placed in parallel to the 

capacitor is needed, to provide effective damping of the complex conjugated poles. A PFC based on 

�����
��"#$%&���
��������	���	�������������	
�[Spi94a], where average current mode control and a 

damping RC network are used to obtain stable operation, as well as in [Jay98], where inductors are 

coupled and nonlinear carrier control is applied. 

 The second aspect to be considered is that the limited capacitance C  that can be used in a 

PFC application has a negative effect also on the effectiveness of the ‘zero-ripple’ technique, when 

compared to a DC/DC application. This is explained by the larger voltage ripple on capacitor C  or, 
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Fig. 3.4 SEPIC converter. 

from another point of view, by the higher resonant frequency of the LC filter that is embedded in 

the converter structure. However, the results can still be very good. In [Wal00] we have applied the 

fourth-order modified Boost converter from [Wan96] for PFC, and obtained a reduction of the input 

current ripple from almost 1A to approximately 50mA. In [P5], we discuss the PFC application of a 

fourth-order step-down topology with coupled inductors, which is useful to achieve a step-down 

conversion ratio, as well as an input current with very low ripple. 

3.5 Discontinuous Capacitor Voltage Mode – DCVM 

Let us consider in more detail how DCVM can be obtained and explain how it can be considered as 

the dual of DICM. Both operating modes are illustrated in Fig. 3.5. 

 DICM is obtained in second-order converters by periodically switching the inductor between 

a positive voltage source V+  and a negative voltage source V− . This makes the current Li  increase 

linearly from zero to its peak value and then to decrease linearly back to zero. The current cannot 

reverse direction and it is clamped to zero. This is because conduction through inductor L  is always 

unidirectional, as it can be seen from Fig. 2.11. The unidirectional conduction is illustrated in       

Fig. 3.5 by the diode D  placed in series with inductor L .  

 DCVM can be obtained if a capacitor C  is periodically switched between a positive current 

source I+  and a negative current source I− . This makes the voltage Cv  increase linearly from zero 

to its peak value and then to decrease linearly back to zero. When it reaches zero, the voltage is 

clamped, which is illustrated in Fig. 3.5 by the diode D  placed in parallel across the capacitor.  

 The previous two paragraphs only explain the underlying principle for discontinuous 

operating modes. In fourth-order switching converters, depending on the actual topology, the 

current/voltage may be clamped to a different level. Still, the operating mode that is obtained is 

discontinuous. It has to be pointed out also that the ideal sources, the changeover switch and the 
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Fig. 3.5 Illustration of discontinuous operating modes: a) DICM; b) DCVM. 

diode in Fig. 3.5 are not actual components of the analyzed converters. The circuits are only 

intended to illustrate the principle and their operation should not be considered in a strict way. 

 It can be seen that DCVM can be considered as a dual of DICM. For DICM, two voltage 

sources and one inductor are needed, whereas to obtain DCVM, two current sources and one 

capacitor are required. DCVM can be obtained in fourth-order converters if the following 

conditions are met: 

• The topology allows for a charge and discharge sequence of capacitor C , as shown in         

Fig. 3.5b). 

• Capacitance C  is low enough to allow the voltage variation shown in Fig. 3.5b). In addition 

to that, inductors 1L  and 2L  from Fig. 3.1 operate in CICM, and they implement the current 

sources from Fig. 3.5. These issues are discussed in detail in publications [P2]-[P4]. 

3.6 The inherent PFC property 

It has been pointed out in [Tse97a] and [Tse98a] that the inherent PFC property is related to 

operation in a discontinuous conduction mode. That is to say, inherent PFC can be achieved in 

either DICM or DCVM. We shall discuss separately the use of discontinuous conduction modes in 

fourth-order switching converters to achieve the inherent PFC property. 
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3.6.1 Operation in DICM and CCVM 

In this case, the inherent PFC property is obtained using DICM for inductors 1L  and 2L , while 

capacitor C  operates in CCVM. The current through the inductors is not necessarily clamped to 

'����� ���� ��������� 	
� �� ���� ��
������� 
	��� (���� 	
�������� ������	
 � 	
� )%&*�� ���� �����
��� ����

clamped periodically at a non-zero value. However, the sum of the currents is zero during the 

clamping intervals, therefore their combined dynamics is reduced [Tse97a]. The inherent PFC 

property can be demonstrated in the same manner as that used for second-order converters.  

 +� 
��(��� ��� ����	���	�
�� ��
� (�� ���
�� 	
� ���� �	��������,� (����� �
� ���� ���� ��
������� 	
�

[Brk92]�� �
� ���� �
�� "#$%&� ��
�������� 	
� [Pom94], and on the SEPIC converter in [Spi94b]. 

However, an input current with reduced high-frequency content, which is one aim of the research 

presented in this dissertation, cannot be obtained using DICM. Therefore, this combination of 

operating modes will not be addressed further. 

3.6.2 Operation in DCVM and CICM 

Inherent PFC can be obtained also by using DCVM operation for capacitor C  and CICM operation 

for inductors 1L  and 2L  [Tse97a], [Tse98a]. Moreover, if one of the inductors is placed in series at 

the input of the converter, we can produce an input current with reduced high-frequency content. As 

stated in Chapter 1, these are two of the characteristics we would like to obtain for the PFC stage. 

However, there are few publications addressing the operation of fourth-order converters in DCVM 

and CICM. Therefore, we explored this topic further. Reference [Ism92] investigates the application 

of DICM or DCVM to achieve PFC in a three-����������	�	����+�������
�������������	
 �	
�)&-*�

is analyzed in [Lin97], and [Tse97b] presents a single-stage converter based on this operating mode. 

DCVM operation of the Buck converter with an LC input filter is addressed in [Lee97], but we 

provide a more comprehensive analysis in publications [P2] and [P3]. Furthermore, in [P4] we 

present and analyze a Flyback-derived isolated converter operating in DCVM.   
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4 Methods for Improving the Efficiency 

The PFC stage performs an additional power processing operation, and therefore it has a negative 

impact on the overall efficiency of the power supply. In this dissertation, we aim at improving its 

efficiency by reducing the switch conduction losses in the combined diode bridge and PFC stage, as 

well as on circuit techniques for reducing the switching losses. 

4.1 Reduction of conduction losses 

Conduction losses are caused by the current flowing through a non-ideal switching device in the on-

state, which determines a certain voltage drop on the device. A static model of the switching device 

is useful for estimating the conduction losses [Kre98, pp. 454-464]. Static models are presented in 

Fig. 4.1, for on-state diode and MOSFET, devices that are considered in publication [P6] for 

comparing the conduction losses of the analyzed topologies. 

b)a)

≡ 
VD rDiDDiD

iS

≡ 
rDSiSS

 

Fig. 4.1 Static models for an on-state switching device: a) Diode; b) MOSFET. 

 As shown in Fig. 4.1, the static characteristic of the on-state diode can be modeled as a 

voltage source DV  in series with a resistor Dr . On the other hand, the appropriate static model for 

the on-state MOSFET is just a resistor DSr . With these models, it is straightforward to calculate the 

conduction losses of diode D: 

  2
D, cond D D, av D D, rmsP V I r I= + , (4.1) 

where D, avI  and D, rmsI  are the average and RMS diode currents, respectively. Similarly, the 

conduction losses of switch S (MOSFET) are expressed as: 

  2
S, cond DS S, rmsP r I= , (4.2) 
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where S, rmsI  is the RMS switch current. 

 Naturally, the total conduction losses of the combined diode bridge and PFC stage are the sum 

of the individual conduction losses of the switches. Considering also (4.1) and (4.2), we can 

conclude that one way to diminish the total conduction losses is to reduce the number of switches 

that are in the power path and/or to reduce the average/RMS currents flowing through the switches, 

assuming that the DSr  of MOSFETs and the DV  and Dr  of diodes remain unchanged. In our 

research, which is reported in publication [P6], we take mainly this circuit-oriented approach. A 

second possibility is the device-oriented approach, i.e. using MOSFETs with lower DSr  and diodes 

having lower DV  and Dr . The two approaches are interrelated, in the sense that circuit techniques 

can be used to lower the voltage stress of the switches, thus allowing the use of switches having 

lower losses. A good example of this is the three-phase Vienna rectifier which, being a three-level 

topology, allows the use of devices with lower voltage rating [Kol94]. On the other hand, as shown 

in publication [P6], the circuit-oriented approach may lead to topologies that have fewer switches in 

the power path, but also impose a higher voltage stress on them. As a result, switches with higher 

voltage rating and therefore with higher losses need to be used. 

4.2 Reduction of switching losses 

The commutation process of real switching devices takes a certain time, during which the 

instantaneous power dissipated in the device can be very large. Therefore, switching losses are a 

major reason for decreased efficiency in converters. To discuss the reasons for them, let us consider 

once more the first-order switching cell and the Buck converter, which are shown again in Fig. 4.2. 
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Fig. 4.2 a) Hard-switching cell; b) Buck converter. 
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The switching cell is labeled ‘hard-switching cell’, because there is no mechanism in place to 

decrease the switching losses. The inductor current I  is assumed to be constant, fact which gives 

specific characteristics to the switching mechanism. In addition, the switching mechanism depends 

for certain aspects on the types of switching devices that are used. We will discuss here the cases 

where the active switch S  is either a MOSFET or an IGBT, and the passive switch is a p-n type 

silicon diode. The sources of switching losses [Eri97, pp. 94-104] are summarized next. 

• During turn-on and turn-off of the active switch S , the switch voltage Sv  and the switch 

current Si  have simultaneously non-negligible values, so a significant instantaneous power 

S S Sp v i=  is dissipated in the switch. The energy lost at turn-off is particularly significant in IGBTs, 

due to the current tailing that occurs during this transition. 

• Some amount of minority charge is stored in diode D  while it is conducting. When the diode 

turns off, the stored charge must be removed during the reverse recovery process, before it can 

establish a reverse biased operating point. While some of the charge is removed by recombination 

within the diode, a part rQ  is recovered through a negative current Di , which flows through the 

active switch as well. On the other hand, while this process takes place, the active switch voltage is 

practically S 1v V= , because the diode remains forward biased. As a consequence, the reverse 

recovery process of the diode induces switching losses in the active switch S .  

• When the active switch S  is turned on, its parasitic capacitance, e.g. for a MOSFET the drain-

source capacitance DSC , is shunted and the energy stored in it is dissipated in the switch. 

• When a switch is conducting, inductances effectively in series with it, e.g. the leakage 

inductance of a transformer, the interconnection and the package inductances, store energy, which is 

dissipated at turn-off. 

 Switching losses can be reduced using soft-switching techniques. To begin with, switching 

losses induced by the diode reverse recovery are proportional to the stored charge rQ . At its turn, 

rQ  depends on the on-state diode current Di I= , as well as and on the rate of variation Ddi dt  at 

turn-off, which is limited only by the external circuit; the higher I  and Ddi dt  are, the higher rQ  

is. However, rQ  is reduced if the rate of variation of the diode current is limited, typically 

D 100 A �di dt <  [Jan98]. As a result, switching losses are reduced, as well. This technique is used 

in some passive snubbers, e.g. in [Lev97], where a small auxiliary inductor is used to limit the rate 

of variation of the diode current. 
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 The capacitive turn-on losses can be theoretically eliminated and the overlap of non-

negligible active switch voltage and current can be avoided at turn-on, by using the Zero Voltage 

Switching – ZVS technique. Basically, this technique consists of forcing to zero the active switch 

voltage, prior to its turn-on, by creating a resonance between an inductor and a capacitor. The 

inductor also limits the rate of variation of the diode current, so losses due to the reverse recovery 

are reduced as well. The ZVS technique has been applied in a variety of topologies, such as the 

resonant and quasi-resonant – QR converters [Eri97, pp. 659-707, pp. 726-731]. The ZVS-QR 

switching cell is depicted in Fig. 4.3a), and a ZVS-QR Buck converter where the active switch S  is 

a MOSFET, is shown in Fig. 4.3b). The resonant process involves capacitor rC , which consists of 

the output capacitance of the switch with possibly an auxiliary parallel-connected capacitor, and the 

inductor rL . It starts after the active switch S  is turned off and diode D  begins conducting. The 

switch voltage has essentially a sinusoidal variation and it returns to zero after a certain time offT , 

instance when the active switch S  is turned on again with zero voltage on it. ZVS is achieved, but  
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Fig. 4.3 ZVS topologies: a) ZVS-QR switching cell; b) ZVS-QR Buck converter; c) ZVT switching cell; 

d) ZVT Buck converter. 
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the off-time offT  of the active switch is practically fixed. Therefore, the control of the converter has 

to be done using variable switching frequency, instead of fixed switching frequency. Moreover, 

while the active switch S  is blocked, its peak voltage is higher in the ZVS-QR converter, when 

compared to its hard-switching counterpart, e.g. in the ZVS-QR Buck converter the switch voltage 

stress is higher than the input voltage 1V . Higher switch voltage stress and variable-frequency 

control are the main drawbacks of the ZVS-QR converters. A modified quasi-resonant topology has 

been proposed in [Hua95], which solves the problem of variable-frequency control, at the expense 

of increased complexity. In this solution, an auxiliary active switch is used to shunt the resonant 

inductor rL , thus interrupting the resonant process for a certain interval in order to enable operation 

with fixed switching frequency. Nevertheless, the problem of increased switch voltage stress 

remains.  

 Better characteristics are obtained in Zero Voltage Transition – ZVT topologies, at the 

expense of increased complexity. Here, to achieve ZVS, switch voltage and current waveforms are 

changed only during commutation intervals, the behavior of the ZVT converter being otherwise 

identical to that of the hard-switching converter. In converter topologies having only one active 

switch, the ZVT technique is implemented with an auxiliary circuit, which consists of an additional 

active switch, an auxiliary inductor, for the resonant process that discharges the drain-source 

capacitance of the switch and for limiting the rate of change of the diode current at turn-off, as well 

as a few other passive components. Several ZVT topologies have been published, e.g. in [Fre93], 

[Hua94], [Mos95], [Jou96] and [Smi97]. The topology from [Hua94] is presented in Fig. 4.3c)-d), 

as an example. The auxiliary switch rS  is turned on before turning on the main active switch S . 

This initiates a resonant process, which creates zero voltage switching conditions for the main 

active switch. The time intervals where the auxiliary circuit is active are very short when compared 

to the switching period; hence, except for the commutation intervals, the waveforms of the ZVT 

Buck converters are the same as those of the hard-switching Buck converter. 

 The ZVS and ZVT techniques presented above reduce the switching losses which are due to 

the reverse recovery of the diode and to the capacitive discharge when the active switch turns on, 

and they can be applied also when the main active switch is an IGBT. On the other hand, the 

switching losses at turn-off due to the current tailing of the IGBT can be reduced using the Zero 

Current Switching – ZCS technique, which consists of forcing to zero the active switch current, 

prior to its turn-off. This technique can be considered as a dual of the ZVS technique, and it is used, 

for example, in resonant and quasi-resonant converters [Eri97, pp. 659-707, pp. 712-726]. The 
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ZCS-QR switching cell is depicted in Fig. 4.4a), and a ZCS-QR Buck converter where the active 

switch S  is an IGBT, is shown in Fig. 4.4b). The resonant process, involving the capacitor rC  and 

the inductor rL , starts when the active switch S  is turned on and diode D  ceases conducting. The 

switch current has an essentially sinusoidal variation, and it returns back to zero after a certain time 

onT . The on-time onT  of the active switch is practically fixed, and a variably-frequency control must 

be used to control the output voltage. In addition to this, the peak switch current is higher in a ZCS-

QR converter, when compared to its hard-switching counterpart. It can be seen that ZVS-QR and 

ZCS-QR converters have dual behavior. A modified ZCS-QR switching cell, which solves the 

problem of variable-frequency control, has been proposed in [Hua95]. An auxiliary switch is used 

in series with the resonant capacitor rC , to interrupt the resonant process for a certain interval, thus 

allowing for fixed-frequency operation. The idea is similar to that used by the same authors in their 

modified ZVS-QR switching cell and discussed previously. However, the solution still has the 

drawback of high peak switch current.  

b)a)

d)c)

ZCS-QR switching cell

S

D

L

Lr

Cr

ZCT switching cell

S D

L

Lr

Cr

DrSr

ZCS-QR Buck converter

V2

+
V1 -

L

D
Cf R

S
Lr

Cr

Ds

ZCT Buck converter

V2

+
V1

-

L

D

Cf R
Sr

S

Dr

Lr

Cr

Ds

 

Fig. 4.4 ZCS topologies: a) ZCS-QR switching cell; b) ZCS-QR Buck converter; c) ZCT switching cell; 

d) ZCT Buck converter. 
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 Zero Current Transition – ZCT topologies, working on similar principles as the ZVT 

topologies, have been proposed as well. An example is the topology shown in Fig. 4.4c)-d) 

[Hua95]. The auxiliary switch rS  is turned on prior to turning off the main switch S , and it initiates 

a resonant process that shapes to zero the current through S . In this way, the main switch can be 

turned off with zero current through it. 

 While having increased complexity as a main drawback, ZVT and ZCT topologies have also 

clear advantages. The switching losses are reduced, without the need to alter the switch waveforms 

during the conduction intervals of the main switches. In addition to this, because the operation of 

the original hard-switching converter is altered only during switching intervals, the design of the 

converter itself and of its control circuit can be made in a similar manner as for the original hard-

switching converter.  

 Our research concerning the reduction of switching losses, which is reported in this 

dissertation, focused on ZVT topologies. In publication [P7], we present a novel ZVT Buck 

converter. The ZVT operating principle can be applied to other converters as well, for example to 

the forward converter as presented in publication [P8], or to a PFC Boost converter as presented in 

[Bar98]. 
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5 Summary of Publications 

In this chapter, we present a summary of the original publications which constitute this dissertation 

and which are attached in Appendix A. 

 The publications are divided into five categories. In Section 5.1, we summarize publication 

[P1], in which input filtering requirements for a PFC stage based on Boost converter operating in 

DICM are examined. In the following two sections, research is extended to fourth-order switching 

converters. In Section 5.2, we summarize publications [P2]-[P4], in which fourth-order switching 

converters operating in DCVM and CICM are investigated and their application for PFC is 

analyzed. Furthermore, PFC based on a fourth-order switching converter operating in CCVM and 

CICM is analyzed in publication [P5] and summarized in Section 5.3. The last two sections address 

methods to improve the efficiency of the PFC stage. Section 5.4 summarizes publication [P6], 

which examines the possibility of improving its efficiency by reducing the conduction losses in the 

combined diode bridge and PFC stage. Finally, Section 5.5 summarizes publications [P7] and [P8], 

which present a ZVT technique that improves the efficiency by reducing switching losses to a great 

extent. 

 The author’s contribution to the work is stated in Section 5.6 and the major conclusions of the 

work are postponed until Chapter 6.  

5.1 EMI filter requirements 

5.1.1 Publication [P1] 

In Subsection 2.3.4, we discussed the general requirements for the EMI filter of a PFC stage. In this 

publication, we analyze the particularities of these requirements when the PFC stage is a Boost 

converter operating in DICM. 

 We first present a case analysis for a 100W PFC stage based on a Boost converter, operating 

with a rms220V  rectified input voltage and having a dc380V  output voltage. The differential-mode 

EMI is determined by simulation and the model of a 50 / 50 �Ω  Line Impedance Stabilization 

Network – LISN [Tih95, pp. 36] is used to measure it. Three cases are considered: operation in 

DICM with constant on-time and constant switching frequency, operation in DICM with constant 

on-time and variable switching frequency (DICM borderline operation) and, as a reference for 
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comparison, operation in CICM with average current mode control. Not surprisingly, at constant 

switching frequency, the differential-mode EMI is higher when operating in DICM when compared 

to operation in CICM, with approximately 20dB -  for the analyzed case. On the other hand, in 

variable-frequency DICM operation, the differential-mode EMI is lower when compared to the 

fixed frequency DICM operation, but it extends to a lower frequency, i.e. to the minimum switching 

frequency. 

 We proceed by discussing the EMI filter requirements for DICM operation. The requirements 

of providing the necessary switching noise attenuation, while ensuring low displacement angle ϕ , 

apply in the same way as for CICM operation. Therefore, we focus on the third requirement 

discussed in Subsection 2.3.4, namely ensuring overall system stability.  

 As explained in Subsection 2.3.4, it is important to know the input impedance icZ  of the PFC 

stage, in order to check if f of icT Z Z=  satisfies the Nyquist criterion for stability, where ofZ  is the 

output impedance of the EMI filter. To calculate the input impedance icZ , a time-invariant model of 

the converter is needed, this can be obtained by using an averaging method. Low-frequency models 

for PFC converters operating in DICM were developed in the past by averaging signals over half 

line-cycle, models which are useful for designing the low-bandwidth voltage control loop [Rid89], 

[Gla95]. However, the resonant frequency of the EMI filter is decades above the line-frequency; 

hence, a high-frequency model of the PFC stage is needed to study the interaction with the EMI 

filter. For this, we use the averaged ‘PWM switch’ approach, in which the active switch and the 

diode are replaced by a time-invariant equivalent circuit that is obtained by averaging quantities 

over one switching period sT  [Vor90b]. It is recognized that in a PFC application, the circuit is not 

in a stationary state, when considering its operation over one switching cycle, meaning that the 

current through the output capacitor has a DC component. Therefore, the circuit is first transformed 

to its stationary state equivalent, in which an additional load resistance models the DC component 

of the output capacitor current. The nonlinear equations resulting from the circuit are linearized 

around the operating point and then the input impedance is calculated. 

 The application of this method is presented in details for a Boost converter operating in DICM 

and with constant on-time and constant switching frequency, with the constant on-time and variable 

switching frequency case being similar. The modulus and phase characteristic of the calculated 

input impedance are shown in Fig. 5.1. The operating point of the converter is changing over the 

line-cycle, so it only makes sense to consider these characteristics starting from a frequency much 

higher than the line-frequency, e.g. at least ten times higher. As mentioned before, the resonant 
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frequency of the EMI filter is much higher than the line-frequency too, so the model is appropriate 

for studying its interaction with the PFC stage. The input impedance icZ  shows no phase-shift 

starting from a low frequency, e.g. approx. 100Hz, as can be seen from Fig. 5.1. As a consequence, 

f of icT Z Z=  satisfies the Nyquist criterion and there are no instabilities due to the interaction 

between the EMI filter and the PFC stage. 

 

Fig. 5.1 Input impedance icZ  of the Boost converter operating in DICM, with a constant on-time and a 

constant switching frequency. 

5.2 Fourth-order switching converters operating in DCVM and CICM 

5.2.1 Publication [P2] 

For this publication, we first inspected the two-switch fourth-order topologies from [Tym88, Cell C 

– Cell G], in order to select a number of them for further investigation. Several factors were taken 

into account, such as the ability to operate in DCVM, the conversion ratio, the voltage and current 

stress of the switches, as well as the type of input and output currents, i.e. continuous or 

discontinuous. One topology for each type of conversion ratio, i.e. step-down, step-up and step-

down/up was selected, with preference for those topologies in which both input and output currents 

are continuous. The selected topologies are shown in Fig. 5.2a). Inductor 1L  is a high-frequency 
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reactive element, whereas 2L  can be either a low- or a high-frequency reactive element. By low-

frequency reactive element we mean an inductor or a capacitor that can be modeled at line-

frequency as an ideal current or voltage source, respectively. In contrast, a high-frequency reactive 

element can be modeled as an ideal source at switching frequency, but not at line-frequency.  
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Fig. 5.2 a) Selected fourth-order switching converters; b) Capacitor voltage ( )Cv t  and voltage ( )’
1v t  

when operating in DCVM. 
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 Let us first examine the operation of the selected converters over one switching cycle. During 

this interval, currents through 1L  and 2L  can be considered to be constant. Furthermore, capacitor 

C  operates in DCVM and its voltage varies as shown in Fig. 5.2b). The first topology is derived 

from Cell D and it resembles a Boost converter with an LC output filter. If we model the input and 

output inductors as current sources, it can be viewed as a current step-down converter, having the 

output current lower than the input current. Therefore, it can be considered as the dual of the 

voltage step-down Buck converter, which has its output voltage lower than the input voltage. The 

second topology is derived from Cell D as well, and it resembles a Buck converter with an LC input 

filter. Viewed as a current step-up converter, whose output current is higher than the input current, 

it is the dual of the voltage step-up Boost converter, which has its output voltage higher than the 

input voltage. The third topology is derived from Cell C��
��	��	������������
��������%��
����
�	����

it as a current step-down/up converter, it is the dual of the voltage step-down/up Buck-Boost 

converter. One conclusion is that topologies in Fig. 5.2 are duals of the second-order topologies 

from Fig. 2.13, at least if we consider their behavior during one switching cycle. 

 As shown in Fig. 5.2, the input resistance 1r  is defined as: 

  ( ) ( )
( )

1
1

1

v t
r t

i t
= . (5.1) 

At line-frequency, the reactance of the high-frequency inductor 1L  is low when compared to 1r , so 

it does not significantly affect the line current waveform; hence, it can be neglected. Therefore, as 

shown also in Fig. 5.2,  

  ( ) ( )
( )

( )
( )

s
11

1
1 1

’
T

v tv t
r t

i t i t
= ≅ , (5.2) 

where ( )
s

1’ T
v t  is the average of 1’v  over one switching period sT . Based on the operating 

principle of the converters and on the waveforms shown in Fig. 5.2, we calculated the expressions 

of ( )1r t . These, as well as the inherent PFC properties, are summarized in Table 5.1. The duality 

between selected fourth-order converters operating in DCVM and second-order converters 

operating in DICM is further highlighted by comparing Table 5.1 with Table 2.2.  

 It can be seen from Table 5.1 that DCVM operation offers inherent PFC property and that, 

�������	����	
������	�
������������
������� 	�� ����(�������
 ��� ������������������� 	���� %
������ 	���
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input resistance is only a function of the duty-cycle d , switching period sT  and capacitance C . On 

the other hand, the input resistance of the other two selected topologies is dependent also on the 

normalized discharging time 1d  of capacitor C , and consequently on the ratio of inductor currents 

( ) ( )2 1i t i t , a dependence which degrades to a certain extent the inherent PFC property. The 

expressions of inductor currents ( )1i t  and ( )2i t  are not defined in Table 5.1, because they depend 

on whether 2L  is a low- or a high-frequency storage element. 

 

Table 5.1. Inherent PFC properties of selected fourth-order switching converters operating in DCVM. 
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 In publication [P2], we consider that inductor 2L  is a low-frequency storage element. 

Therefore, 2i  is continuous over the line-cycle, constant for the theoretical case of infinite 2L , and it 

can be considered as the dual of the constant voltage 2V  in second-order converters. Let us consider 

also that the input voltage is the rectified line voltage ( )1 1 Lsinv t V tω= ⋅ , and that the average input 

resistance 1r  is constant. Then, the input current has a sinusoidal shape ( )1 1 Lsini t I tω= ⋅  and it can 

be considered as the dual of the rectified line voltage ( )1 1 Lsinv t V tω= ⋅  in second-order converters. 

With these assumptions, we can state that fourth-order converters operating in DCVM and second-

order converters operating in DICM have dual behavior not only during one switching cycle, but 

throughout the line-cycle as well. We use the term low-frequency duality to refer to this behavior. 
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 Following this general study, we select for further analysis the Buck converter with an LC 

input filter, which is redrawn in Fig. 5.3 together with its characteristic waveforms when operating 

in DCVM. The main reason for selecting it, even if its inherent PFC property is not perfect, is that it 

has the lowest voltage stress of the switches amongst the converters selected in the first phase. As 

can be seen from Fig. 5.2, the maximum voltage across the switches is the peak voltage across 

capacitor C . Hence, switch voltage stress is a major issue in DCVM and it must be minimized. 
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Fig. 5.3 Buck converter with an LC input filter: a) Schematic; b) Characteristic waveforms when 

operating in DCVM. 

 First, we make an analysis over one switching cycle, whose main results are the relationships 

for the normalized discharging time 1D  of capacitor C , the average input resistance 1R  and the 

voltage stress of the switches. These results are needed for the next step, when the operation with a 

rectified-sinusoid input voltage is analyzed. In addition, we identify the conditions to minimize the 

influence of the variable term 2 1i i  on 1r , in other words the conditions to improve the inherent PFC 



73 

property. We define a coefficient ( )PFC 11K D D= − , which should be as large as possible to 

minimize the aforementioned influence. It is found that coefficient PFCK  increases as the duty-cycle 

D  decreases, and when the coefficient ( )s2K T RC=  increases. Hence, operation at low duty-

cycle D  and high K  is favorable (e.g. we obtain PFC 8K ≅  with 0.2D =  and 500K = ). In 

conclusion, inherent PFC property can be improved to a great extent by suitably selecting the 

operating conditions. 

 After the analysis over one switching cycle, we extend the analysis to a half line-cycle 

interval, considering operation with rectified-sinusoid input voltage. We calculate the conversion 

ratio SIN 2 1M V V= , where 2V  is the output voltage and 1V  is the amplitude of the rectified-sinusoid 

input voltage, by equating the input and output energy over a half line-cycle. The conversion ratio is 

plotted in Fig. 5.4, for several values of coefficient K . The continuous line shows the conversion 

ratio when we take into account the influence of the variable term in 1r , whereas the dashed line 

shows the conversion ratio obtained by neglecting the variable term in 1r . As expected, the 

difference between the two results is very small at low duty-cycle D  and high K , where the 

influence of the variable term in 1r  is minimal, and increases for higher duty-cycle D  and/or lower 

K . Fig. 5.4 shows as well the boundary between DCVM and CCVM operation.  
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Fig. 5.4 Buck converter with an LC input filter operating in DCVM: the conversion ratio SINM  when 

operating with a rectified-sinusoid input voltage and with 2L  as a low-frequency storage element. 
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 Fig. 5.5 shows the switch voltage stress coefficient SIN
S S 1K V V= , where SV  is the voltage 

stress of the switches and 1V  is the amplitude of the rectified-sinusoid input voltage. It can be seen 

that the voltage stress of the switches is quite high. The minimum switch voltage stress is SIN
S 2K = , 

twice the amplitude of the rectified-sinusoid input voltage. It occurs when operating on the DCVM 

boundary, which is the horizontal axis in Fig. 5.5. The dashed line shows the limit of SIN
SK  when 

K → ∞ . 

 Finally, simulated waveforms for a 120W converter operating with a 220Vrms rectified input 

voltage and having a 24Vdc output voltage are presented in Fig. 5.6. They highlight the fact that, 

when the output inductor 2L  is a low-frequency storage element, operation is possible throughout 

the line-cycle and the input current does not have crossover distortions. This is due to the fact that 

the converter is actually a current step-up converter, which can operate whenever the input current 

is lower than the output current, and there is a low-frequency duality with the voltage step-up Boost 

converter. 
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Fig. 5.5 Buck converter with an LC input filter operating in DCVM: the switch voltage stress coefficient 
SIN
SK  when operating with a rectified-sinusoid input voltage and with 2L  as a low-frequency storage 

element. 
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Fig. 5.6 Simulated waveforms: input current – upper trace; voltage on capacitor C  – middle trace; output 

voltage – lower trace. 

5.2.2 Publication [P3] 

The low-frequency duality assumed in publication [P2] is obtained with 1L  as high-frequency and 

2L  as low-frequency storage elements. However, this leads to a very large and impractical inductor 

2L . Therefore, this assumption is relaxed in publication [P3], where we assume that both 1L  and 

2L  are high-frequency storage elements, which leads to an easier implementation in practice. With 

this assumption, we present a comprehensive analysis of the converter from Fig. 5.3, when 

operating in DCVM as a high power factor rectifier. We determine important characteristics such as 

the conversion ratio, the boundary between DCVM and CCVM operation and the switch voltage 

stress, which are not presented in [Lee97]. When 2L  is a high-frequency storage element, the 

analyzed converter is the dual of the Boost converter operating in DICM only when we consider its 

operation over one switching cycle. We use the term high-frequency duality to describe this 

behavior. 

 First, we make an analysis over one switching cycle. Naturally, the characteristic waveforms 

are the same as those in publication [P2] and shown in Fig. 5.3 because, over one switching cycle, 

the converter behaves in a similar manner. Moreover, the analysis over one switching cycle is, to a 

great extent, similar. 
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 Second, we extend the analysis to a half line-cycle interval and consider operation with 

rectified-sinusoid input voltage ( )1 1 Lsinv t V tω= ⋅  and constant output voltage 2V . Inductor 2L  is 

only a high-frequency storage element, so its current varies over a half line-cycle from zero to a 

maximum. Consequently, the converter behavior over half line-cycle is different from that 

presented in publication [P2]. To be more precise, the converter behaves like a voltage step-down 

Buck converter, rather than a current step-up converter. As a result, it cannot operate when the 

instantaneous input voltage is lower than the output voltage. Hence, as shown in Fig. 5.7, the line 

current is zero outside the interval ( )1 L 1, 2t t T t∈ − , where -1
1 L SINarcsint Mω= ⋅  and SIN 2 1M V V=  

is the conversion ratio when operating with rectified-sinusoid input voltage. Operation with 

capacitor C  in DCVM is possible only during the interval ( )2 L 2, 2t t T t∈ − , where 

( )-1
2 L SIN 1arcsint M D tω= ⋅ > . It would appear that the inherent PFC property is lost during interval 

( ) ( )1 2 L 2 L 1, 2 , 2t t t T t T t∈ ∪ − − . However, the PFC property is maintained because inductor 2L  

operates in DICM during this interval. By properly selecting inductance 2L , the input resistance 

with 2L  in DICM can be set close to the input resistance with C  in DCVM, thus obtaining a 

smooth line current transition from one interval to the other, as depicted in Fig. 5.7.  
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Fig. 5.7 Operating modes during a half line-cycle. 

 Considering the aforementioned issues, we determine the analytical expressions for the input 

resistance 1r , as well as for the inductor currents 1i  and 2i . Afterwards, the analysis proceeds in a 

similar manner as in publication [P2], by equating the input and output energy over a half line-

cycle. In this publication we take into consideration the converter efficiency η , as well. We obtain 

the conversion ratio SINM , which is plotted in Fig. 5.8 for several values of the coefficient 

( )s2K T RC= , and for two efficiencies, 1η =  and 0.8η = . Obviously, at a certain duty-cycle D , 
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the conversion ratio decreases for lower efficiency. The plot also shows the boundary between 

DCVM and CCVM operation. From Fig. 5.8, we can also see that, when the output current 

decreases (load resistance R  increases, coefficient K  decreases), the operating point moves 

upwards and eventually enters the CCVM region. Hence, DCVM operation is possible from a 

minimum load current upwards.  
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Fig. 5.8 Buck converter with an LC input filter operating in DCVM: the conversion ratio SINM  when 

operating with a rectified-sinusoid input voltage and with 2L  as a high-frequency storage element. 

 

 The switch voltage stress coefficient SIN
S S 1K V V=  is plotted in Fig. 5.9. The boundary 

between DCVM and CCVM operation is at SIN
S 2K =  and the dotted line identifies the limit of 

SIN
SK  when K → ∞ . The switch voltage stress is dependent on the operating point and it is quite 

sensitive to its variations. For this reason, it is advantageous to keep the operating point fixed, in 

order to have both a constant conversion ratio and a well-defined switch voltage stress, when the 

load resistance R  changes. This can be done by keeping the duty-cycle D  constant and by 

changing the switching period sT , in order to keep constant the coefficient ( )s2K T RC= . In other 

words, fixed duty-cycle variable-frequency control should be used. 
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Fig. 5.9 Buck converter with an LC input filter operating in DCVM: the switch voltage stress coefficient 
SIN
SK  when operating with a rectified-sinusoid input voltage and with 2L  as a high-frequency storage 

element. 

 

 Based on the analytical results, we designed and constructed a 100W high power factor 

rectifier having a 48Vdc output voltage and operating with a 90-265Vrms universal input voltage. 

Theoretical and experimental results agree reasonably well for practical purposes. Operation in 

DCVM has a negative impact on efficiency. The turn-on of the active switch with high voltage 

across it greatly increases switching losses. In addition, the switches must be rated at a higher 

voltage as compared to CCVM operation; hence, they tend to have larger conduction losses. The 

measured efficiency is in the range of 80% for 100W output power and 100kHz switching 

frequency, and 85% for 50W output power and 50kHz switching frequency. 

 Line current waveforms are presented in Fig. 5.10. It can be seen that the line current has 

crossover distortions, as expected. However, its harmonic content is well below the limits specified 

in the IEC 1000-3-2 standard for Class A equipment. Generally speaking, the maximum power level 

for which compliance with the standard can be achieved decreases as the conversion ratio SINM  

increases: a larger SINM  leads to longer interval where the converter cannot operate, hence to a 

higher harmonic content and a lower power for which compliance is achieved. 
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Fig. 5.10 Experimental line current at full load (100W) for: a) 90Vrms input, 1A/div; b) 110Vrms input, 

1A/div; c) 220Vrms input, 0.5A/div; d) 255Vrms input, 0.5A/div. Time scale: 5ms/div. 

5.2.3 Publication [P4] 

The converters that are analyzed in publications [P2] and [P3] do not have galvanic isolation. This 

prompted our interest to investigate the possibility of implementing galvanic isolation, in addition to 

the general aims of this dissertation. In this publication, we analyze a Flyback-derived fourth-order 

converter. The converter and its characteristic waveforms when operating in DCVM are presented 

in Fig. 5.11. While the topology is similar to that of the BIFRED converter [Mad92], shown in       

Fig. 2.14, its operation is radically different. In the analyzed converter, both the input inductor and 

the magnetizing inductance of the transformer are high-frequency reactive elements and operate in 

CICM. The primary side capacitor operates in DCVM to ensure an inherent PFC property. In 

contrast, in the BIFRED converter, the primary side capacitor is a low-frequency storage element, 
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i.e. its voltage can be considered constant, and the input inductor operates in DICM to ensure an 

inherent PFC property. 
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Fig. 5.11 Flyback-derived converter: a) Schematic; b) Characteristic waveforms when operating in DCVM. 
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 First, an analysis over one switching cycle is made. This analysis reveals that the average 

input resistance of the converter is constant, meaning that the inherent PFC property is excellent. 

On the other hand, the voltage stress of the active switch is ( )S 12 1V V D= − . This is higher than for 

the Buck converter with an LC input filter operating in DCVM, in which the switch voltage stress is 

S 12V V=  when operating on the DCVM border. 

 The analysis is then extended to a half line-cycle interval considering the operation with a 

rectified-sinusoid input voltage ( )1 1 Lsinv t V tω= ⋅  and a constant output voltage 2V . The line 

current is sinusoidal because, besides having a constant average input resistance, the converter is 

able to operate throughout the line-�.������������������	��������	�	��������������������������
�������

operating in DCVM, which were summarized in Table 5.1. With these considerations, we equate 

the input and output energy, taking into account the converter efficiency η, as well. The purpose is 

to calculate the conversion ratio SIN 2 1M V V= , the boundary between DCVM and CCVM 

operation, as well as the voltage stress coefficient SIN
S S 1K V V=  of the active switch and the voltage 

stress coefficient SIN
D D 1K V V=  of the secondary side diode. The conversion ratio SINM  is plotted 

in Fig. 5.12 for several values of the coefficient ( )s2K T RC=  and for two efficiencies, 1η =  and 

0.8η = . It is natural that the conversion ratio for a certain duty-cycle D  decreases when the 

efficiency is lower. Interestingly, the conversion ratio is not dependent on the turns-ratio of the 

Flyback transformer. This can be easily explained by taking into account the fact that the output 

voltage 2V  is only a function of the input energy and of the load resistance R . Moreover, the input 

energy is determined by the average input resistance of the converter, which is not dependent on the 

turns-ratio.  

 However, the border between DCVM and CCVM operation is dependent on the turns-ratio 

2 1n N N= . From Fig. 5.12 we can see that the available DCVM operating area increases as the 

turns-ratio n  increases. This is explained by the fact that the magnetizing current mI , which 

discharges capacitor C  as seen from Fig. 5.11, is proportional to the turns-ratio n . A higher n  

means a higher discharging current mI ; hence, a lower normalized discharging time 1D  and a larger 

area where the condition 1D D<  is fulfilled and operation in DCVM is possible. 

 On the other hand, as seen from Fig. 5.13, the diode voltage stress coefficient SIN
DK  increases 

as well, as the turns-ratio n  increases. In conclusion, while a larger n  increases the area where 

DCVM is possible, it also raises the voltage stress of diode D . Hence, a trade-off must be made. 

However, the turns-ratio n  does not affect the active switch voltage stress coefficient SIN
SK , which, 

as seen from Fig. 5.13, is dependent only on the duty-cycle D . 
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Fig. 5.12 Flyback-derived fourth-order converter operating in DCVM: the conversion ratio SINM  when 

operating with a rectified-sinusoid input voltage. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

D − duty−cycle

K
SS

IN
, K

DS
IN

 −
 S

w
itc

h 
an

d 
ou

tp
ut

 d
io

de
 v

ol
ta

ge
 s

tr
es

s 
co

ef
fic

ie
nt

s

K
D
SIN, n=0.5

K
D
SIN, n=1

K
S
SIN

 

Fig. 5.13 Flyback-derived fourth-order converter operating in DCVM: the active switch voltage stress 

coefficient SIN
SK  and the diode voltage stress coefficient SIN

DK  when operating with a rectified-sinusoid input 

voltage. 
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 As seen from Fig. 5.12, the operating point tends to leave the DCVM operating area when the 

load current decreases (load resistance R  increases, coefficient K  decreases). At the same time, as 

can be seen from Fig. 5.13, the switch voltage stress coefficients are dependent on the operating 

point, as well. This behavior is similar to that of the converter analyzed in publication [P3], and an 

analogue reasoning can be used to conclude that it is more advantageous to compensate for load 

variations by using fixed duty-cycle variable-frequency control, thus keeping the operating point 

fixed and having a well-defined switch voltage stress.  

 Based on the analytical results, an experimental circuit has been designed and built, with the 

purpose of validating the concept. The converter has s 100kHzf =  switching frequency, a 50Vrms 

input voltage and a 20Ω load. The experimental output voltage is 10.5Vdc, while the theoretical 

value for 0.8η =  is 12.7Vdc. As for the experimental results from publication [P3], the difference 

between the experimental and theoretical results can be explained mainly by the fact that capacitor 

C  is not operating in DCVM over the entire half line-cycle. The experimental results from         

Fig. 5.14 prove the inherent PFC property of the circuit and its ability to operate throughout the 

entire line-cycle. 

 

 

Fig. 5.14  Experimental waveforms: rectified line voltage – upper trace, 50V/div; switch voltage Sv  – 

middle trace, 100V/div; inductor current 1i  – lower trace, 0.5A/div. Time scale: 2ms/div. 
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5.2.4 Conclusions of publications [P2]-[P4] 

Publications [P2]-[P4] cover several aspects concerning the application of DCVM for PFC: an 

analysis of suitable fourth-order topologies, analysis of inherent PFC property offered by DCVM 

operation, the application of low-frequency and high-frequency duality, and the possibility of 

obtaining galvanic isolation. Besides the specific characteristics presented in each publication, 

several general conclusions can be drawn, regarding the operation of fourth-order converters in 

DCVM and their application for PFC. 

• By choosing a suitable topology and using DCVM, it is possible to obtain simultaneously 

characteristics such as input and output currents with reduced high-frequency content, inherent PFC 

property, and step-down characteristic, aims that are stated in Chapter 1 of this dissertation. In 

addition, galvanic isolation can be implemented. 

• DCVM operation is possible from a minimum load current upwards. The converter enters 

CCVM for a load current below the minimum. Conversely, DICM operation in second-order 

switching converters is possible up to a maximum load current. The converter enters CICM for a 

load current above the maximum. 

• High switch voltage stress is associated with DCVM operation. Conversely, DICM operation 

implies high switch current stress. 

• In DCVM, the active/passive switch turns off/on with zero voltage across it. Conversely, in 

DICM the active/passive switch turns on/off with zero current through it. 

• In both DCVM and DICM, the operating point is load dependent. In DICM, variable duty-

cycle fixed-frequency control can be used to compensate for load variations. However, analysis 

shows that in DCVM it is advantageous to use fixed duty-cycle variable-frequency control to 

compensate for load variations. Thus, the operating point is fixed and the switch voltage stress is 

well defined. 

 The characteristics of DCVM operation are summarized in Table 5.2 and compared with 

those of DICM operation, highlighting their duality. We can conclude that an inherent PFC property 

can be obtained while having an input current with reduced high-frequency content, at the expense 

of a high switch voltage stress and the need to use fixed duty-cycle variable-frequency control. 
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Table 5.2. Comparison of DICM and DCVM characteristics. 

 DICM DCVM 

Switch stress High current High voltage 

Discontinuous 

mode possible 

From no load up to a certain 

maximum load current 

From maximum load current down 

to a certain minimum load current 

Control  
Fixed-frequency                 

Variable duty-cycle 

Variable-frequency                 

Fixed duty-cycle 

 

5.3 Fourth-order switching converters operating in CCVM and CICM 

5.3.1 Publication [P5] 

In this publication, we investigate the application for PFC of a fourth-order converter having step-

down characteristic and operating in CCVM and CICM. The topology, shown in Fig. 5.15 together 

with characteristic waveforms, has been presented in [Whi87] as a two-inductor Buck converter, 

and later on in [Tym88], with little or no analysis. Its application as a DC/DC converter has been 

reported in [Zha93]. We consider it interesting for a PFC application because it has a step-down 

characteristic and a continuous input current, which are two of the aims of this dissertation. 

Moreover, we apply the ‘zero-ripple’ technique in order to obtain an input current with very low 

ripple. Due to its operation in CICM and CCVM, the converter does not have an inherent PFC 

property, so a suitable control method (e.g. as shown in Fig. 2.12) has to be used to shape its input 

current.  

 Similar to the Buck converter, the converter under consideration cannot operate when the 

instantaneous voltage is lower than the output voltage. Therefore, when applying it for PFC, the 

resulting line current has crossover distortions. In the beginning, the aim is to select a modulation 

strategy. Several modulation strategies, which can be used when applying a step-down converter for 

PFC, are reviewed in this publication [Red92a], [Red96b]. They are differentiated by the method 

used to generate the reference for shaping the line current ( xyv  in Fig. 2.12). 
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Fig. 5.15 Two-inductor Buck converter: a) Schematic; b) Characteristic waveforms when operating in 

CCVM. 

We select the modified sine wave modulation, where the reference signal is proportional to the 

difference between the rectified line voltage and the output voltage. The main reason for this 

selection is that we choose to reference the control circuit to the positive output rail from Fig. 5.15, 

in order to avoid the need for an isolated gate driver for the active switch S . In this case, the 

difference between the rectified line voltage and the output voltage is readily available, and the 

modified sine wave modulation can be implemented easily.  

 The shape of the line current when using modified sine wave modulation is shown in          

Fig. 5.16. We compare it with the Class D template as defined by the first version of standard      

IEC 1000-3-2 [IEC95], with the purpose of determining the maximum output voltage that can be 

specified while having an operation in Class A. Although the definition of Class D has been 

changed recently, as explained in Chapter 1, the analysis was relevant at the time when [P5] was 

published, and therefore it is summarized here. Analysis shows that the line current with modified 

sine wave belonged to Class A if 2 10.7294V V< ⋅ , where 2V  is the output voltage and 1V  is the 

amplitude of the rectified-sinusoid input voltage so, from this point of view, there was a relatively 
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large degree of freedom in specifying the output voltage. It is also shown that modified sine wave 

modulation gives compliance with Class A limits for a significant maximum input power, over a 

wide range of output voltages (e.g. almost 5kW for 230Vrms input voltage and 48Vdc output 

voltage). 

α

1

0.35

β π
π-απ-β

π−
3

π−
2

2π−
3
−

ωLt

 

Fig. 5.16 Modified sine wave and Class D template. 

 Having considered the modulation issues, the analysis proceeds by determining the 

expressions of several important waveforms, which are plotted in Fig. 5.17, considering that the 

inductor currents and the voltage on capacitor C  are constant over one switching cycle. The 

purpose of calculating the aforementioned expressions is twofold. First, the voltage and/or current 

stress of various components of the circuit can be calculated. Second, we obtain information 

concerning the variation of the operating point throughout the line-cycle, which is very important 

for the small-signal analysis that follows. 

 The small-signal analysis is made for the purpose of calculating transfer functions of the 

converter, which are needed to design the current loop of the control circuit (e.g. the characteristic 

( )HG s  of the high-bandwidth controller in Fig. 2.12). The analysis is made using the averaged 

‘PWM switch’ approach, in which the active switch S  and the diode D  are replaced with a time-

invariant equivalent circuit that is obtained by averaging quantities over one switching period sT . 

The resulting nonlinear circuit equations are linearized around the operating point and then the 

required transfer functions are calculated [Vor90b]. We calculate the control-to-input-current 

( ) ( ) � ( )11
Hi d s i s d s− = �  transfer function, which is needed if the input current is sensed, as well as 

the control-to-switch-current ( ) ( ) � ( )SS
Hi d s i s d s− = �  transfer function, which is needed if the 

switch current is sensed. The ‘^’ character denotes small perturbations of the quantity around the 

operating point where the analysis is made. If we examine the circuit in Fig. 5.15, and take into 

account that we reference the control circuit to the positive output rail, it appears advantageous to 

sense the switch current in our application, so we use the control-to-switch-current transfer 

function. 



88 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

v 1,
 n

V
2
/V

1

 ↓ 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

d

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

i 1,
 n

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

i o,
 n

0 2 4 6 8 10 12 14 16 18 20
0

1

2

i L2
, n

Time [ms]  

Fig. 5.17 Theoretical normalized waveforms of the two-inductor Buck converter when operating with a 

rectified-sinusoid input voltage, for 2 dc48VV =  and 1 rms230VV = . From the upper to the lower trace: 1,nv  - 

rectified-sinusoid input voltage 1v  normalized to the amplitude 1V ; d  - duty-cycle; 1,ni  - input current 1i  

normalized to the load current 2I ; o,ni  - output current oi  normalized to the load current 2I ; 
2L ,ni  - current 

2Li  normalized to the load current 2I .  

In our analysis, we also take into account the fact that inductors 1L  and 2L  are coupled with 

coupling coefficient k , with the purpose of implementing the ‘zero-ripple’ technique. However, it 

would be unrealistic to consider that a coupling factor having exactly the ‘zero-ripple’ value zrk , 

given by (3.6), can be implemented in practice. Therefore, we assume that k  approaches zrk , 

zrk k→ . 

 The calculated transfer functions reveal the complex dynamics of the converter, which can be 

summarized as follows: 

• The transfer functions’ coefficients are functions of the duty-cycle D  and of the normalized 

output current o, ni , both of which have a large variation over a half line-cycle, as seen from         

Fig. 5.17. Therefore, the transfer functions are time-varying and their shapes change throughout the 

line-cycle. Under such circumstances, the stability of the converter can be assessed by using the 

quasi-static approximation, i.e. assuming that its dynamics are much faster than the variation of its 

operating point, and by checking the phase margin at several operating points throughout the line-

cycle.  
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• The relative position of a zero in the control-to-switch-current transfer function is dependent 

on whether the coupling coefficient k  is smaller or larger than the ‘zero-ripple’ value zrk . 

• Both transfer functions exhibit a pair of undamped complex conjugated poles, which may 

generate instabilities, as explained in Section 3.4.  

 Based on the theoretical analysis, we have designed and built a 200W rectifier, having a 

48Vdc output voltage and operating with a 230Vrms input voltage and 100kHz switching frequency. 

Average current mode control was implemented successfully in the high-bandwidth controller. We 

used a series RC network connected in parallel to capacitor 1C , in order to damp the 

aforementioned complex conjugated poles. In this case, the control-to-switch-current transfer 

function was obtained by PSpice simulation and by using the average model of the converter. 

Experimental waveforms are presented in Fig. 5.18. As expected, the line current has crossover 

distortions, but compliance with standard IEC 1000-3-2 is comfortably achieved. By using the 

‘zero-ripple’ technique, an input current with less than 50mA ripple was obtained. Finally, the 

measured efficiency was in the range of 88.5-92%. 

 In conclusion, we present in this paper the application for PFC of a fourth-order step-down 

converter, where ‘zero-ripple’ technique was applied. With this topology, we can achieve an output 

voltage lower than the amplitude of the line voltage, as well as an input current with very low 

ripple. 

 

Fig. 5.18 Experimental waveforms: line voltage – upper trace, 200V/div; input current – lower trace, 

1A/div. Time scale: 5ms/div. 
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5.4 Reduction of conduction losses 

5.4.1 Publication [P6] 

In this publication, we investigate the possibility of lowering the conduction losses of the AC/DC 

conversion stage with PFC, by reducing the number of switches in the power path. Four second-

order topologies and a fourth-order one are analyzed and their conduction losses are estimated. We 

assume operation in CICM for the second-order topologies and operation in CICM and CCVM for 

the fourth-order one. 

 The well-known topology consisting of a cascaded diode bridge and a Boost converter is 

shown in Fig. 5.19, where ( )1 1 Lsinv t V tω= . In this topology, which we use as a reference, there are 

always three switches in the power path, i.e. two diodes in the bridge plus one of the switches in the 

Boost converter.  

v1 S
+

L D

Cf
-

R V2

Dr 1
Dr2

Dr 3
Dr 4

 

Fig. 5.19 Cascaded diode bridge and Boost converter PFC stage. 

 Topologies having fewer switches in the power path are presented in Fig. 5.20. Among them, 

those shown in Fig. 5.20 a)-c) are Boost-type. Their operation is essentially the same as that of the 

cascaded diode bridge and Boost converter; hence, the relationship between the conversion ratio 

and the duty-cycle d  of the active switch(es) is: 

  2

1 L

1

sin 1

V

V t dω
=

−
. (5.3) 

 The Boost-type PFC stage with a modified diode bridge, shown in Fig. 5.20a), has been 

presented in [Cho98]. There are three switches in the power path when the active switch S  is 

conducting, i.e. aD , S  and 
4rD  when 1 0v > , or bD , S  and 

3rD  when 1 0v < . On the other hand,  
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Fig. 5.20 Topologies for AC/DC conversion with PFC, having fewer switches in the power path: a) Boost-

type PFC stage with a modified diode bridge; b) Boost-type PFC stage with two active switches; c) Boost-

type PFC stage with a bi-directional switch; d) Fourth-order switching converter able to operate with a 

bipolar input voltage. 

there are only two switches in the power path when the active switch S  is not conducting, i.e. 
1r

D  

and 
4rD  when 1 0v > , or 

2rD  and 
3rD  when 1 0v < . It can be seen from (5.3) that the duty-cycle d  

is lower around the peak of the sinusoidal input voltage, when compared to the zero-crossings 

region. Assuming a sinusoidal variation of the line current, this means that the duty-cycle d  is low 

when the line current is high; hence, much of the energy is transferred to the load during the off-

time of the active switch S , when only two switches are in the power path. As a consequence, a 

good reduction in the conduction losses is expected. 

 The Boost-type PFC stage with two active switches, shown in Fig. 5.20b), has been presented 

in [Mar96]. In this topology, there are always only two switches in the power path. Therefore, 

conduction losses are reduced to an even greater extent, at the expense of an additional active 

switch. Similar observations apply for the Boost-type PFC stage with a bi-directional switch 

[Vin98], shown in Fig. 5.20c). 
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 Let us now reconsider the topology from Fig. 5.19. We can see that the bipolar input voltage 

is first rectified, and then the resulting unipolar voltage is applied to the Boost converter. The 

Boost-type topologies from Fig. 5.20a)-c) rely on a rectification action, as well. The question arose 

if there is any switching converter topology that is able to operate with a bipolar input voltage while 

having unipolar output voltage, without relying on a rectification action, that is to say having a 

bipolar conversion ratio. The answer is positive: two fourth-order switching converters generated by 

Cell G from Fig. 3.1, i.e. G1 and G3 in [Tym88], are able to operate with bipolar input voltage and 

unipolar output voltage. Among them, topology G3, shown in Fig. 5.20d), is advantageous for a 

PFC application because its input current is continuous, while in the other one the input current is 

discontinuous. 

 During the positive half line-cycle, the active switch 1S  is controlled with duty-cycle d, and 

2D  is the free-wheeling diode. The conversion ratio is: 

  ( )2
1

1

1
1, , 0, 0.5

1 2

V d
v d

v d

−= ∈ ∞ > <
−

. (5.4) 

On the other hand, during the negative half line-cycle, the active switch 2S  is controlled with the 

duty-cycle d and 1D  is the free-wheeling diode. In this case, the conversion ratio is: 

  ( )2
1

1

0, , 0, 0.5
1 2

V d
v d

v d
= − ∈ ∞ < <

−
. (5.5) 

At first sight, this topology may offer a possibility to reduce the conduction losses, because only 

one switch is in the conduction path at any moment. 

 To compare the described topologies, we first determine the voltage and current stress of the 

switches. We consider sinusoidal variation of the input voltage 1 1 L( ) sinv t V tω=  and constant 

output voltage 2V . We also assume that a control circuit shapes the input current to the sinusoidal 

waveform 1 1, rms L( ) 2 sini t I tω= , and that the duty-cycle d varies according to (5.3), (5.4) or (5.5), 

depending on the specific topology. With these assumptions, we determine the maximum voltage 

and current of the switches and, using the method described in [Eri97, pp. 604-608], we calculate 

the average and RMS currents of the switches. A first observation is that the maximum voltage and 

current of the switches are considerably larger in the topology from Fig. 5.20d), when compared to 
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the Boost-based topologies. For a topology with k active switches, a total active switch stress 

coefficient can be defined, 

  a , max , rms
1

k

i i
i

S V I
=

= ∑ , (5.6) 

where , maxiV  is the maximum voltage and , rmsiI  is the RMS current of the active switch Si      

[Eri97, pp. 177]. Moreover, considering the converter load power P , an active switch utilization 

factor can be defined as: 

  a
a

P
U

S
= . (5.7) 

This factor depends not only on the voltage and current stress of the switches, but also on the 

number of active switches that are required; hence, it is a good measure for comparing various 

topologies. Factor aU  is plotted in Fig. 5.21 for the analyzed topologies, considering an universal 

input voltage 1 rms90 265VV = −  and 2 dc400VV =  output voltage. The best switch utilization factor is 

achieved by the Boost-type topologies having only one active switch, followed by the Boost-type 

topologies having two active switches. The converter able to operate with bipolar input voltage has 

the lowest active switch utilization factor, due to the large voltage and current stress of the switches. 

 We then consider a case study, to compare the analyzed topologies from the conduction losses 

point of view. Besides the aforementioned input and output voltage specifications, we assume 

200WP =  and 100% efficiency. Conduction losses are estimated with the static models for on-

state switching devices that are described in Section 4.1, and using in (4.1) and (4.2) the calculated 

expressions for the average and RMS currents of the switches. As device parameters, we used 

D 0.6VV =  and D 0.015r = Ω  for diodes, and DS 0.8r = Ω  for the MOSFETs. The estimated 

conduction losses are plotted in Fig. 5.22, normalized to the conduction losses of the basic topology 

from Fig. 5.19, which is used as a reference for our analysis. The best reduction of the conduction 

losses is achieved by the two-switch Boost-type topologies from Fig. 5.20b)-c). Less improvement 

is obtained in the Boost-type PFC stage from Fig. 5.20a), which has nevertheless a better active 

switch utilization coefficient aU . Finally, the converter which is able to operate with bipolar input 

voltage has higher conduction losses than the cascaded diode bridge and Boost converter. Even if it 

has only one switch in the power path, the conduction losses are high due to the larger current stress 
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Fig. 5.21 Active switch utilization coefficient aU . 
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Fig. 5.22 Conduction losses for (1) cascaded diode bridge and Boost PFC stage from Fig. 5.19, (2) Boost-

type PFC stage with a modified diode bridge from Fig. 5.20a), (3) Boost-type PFC stage with two active 

switches from Fig. 5.20b), (4) Boost-type PFC stage with a bi-directional switch from Fig. 5.20c) and (5) 

fourth-order switching converter able to operate with a bipolar input voltage from Fig. 5.20d). The values are 

normalized to the conduction losses of (1). 
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of the switches. We must also point out that this result has been obtained when using the same 

device parameters for all the analyzed topologies. However, higher voltage rated switches would 

have to be used in the converter that can operate with bipolar input, switches that tend to have even 

larger conduction losses. 

5.5 Reduction of switching losses 

5.5.1 Publication [P7] 

In this publication, we present a novel ZVT Buck converter. The topology is shown in Fig. 5.23, 

where the load and the output filtering capacitor are modeled by the voltage source 2V . We assume 

that the active switch is a MOSFET, which is modeled by the ideal switch 1S , the body diode 1D  

and the drain-source capacitance DSC , which in Fig. 5.23 is included in 1C . ZVT is implemented 

by an auxiliary circuit, which we first reported in [Gri97]. The auxiliary circuit creates ZVS 

conditions for the active switch 1S  and limits the rate of change of the current through diode D  at 

turn-off. It consists of the active switch rS , diodes rD  and 2D , inductor rL  and capacitors 1C  and 

2C . Besides DSC , capacitor 1C  may eventually include an additional paralleled capacitor. When 

the main switch is turned off, the additional capacitor provides an alternative path for the current to 

reduce turn-off losses, and limits the rate of change of the switch voltage to reduce the EMI noise 

[Tse98b].  
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Fig. 5.23 ZVT Buck converter. 
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 The operating principle is highlighted by the simulated waveforms from Fig. 5.24. The 

proposed topology basically makes use of a half-wave resonance, to transfer the energy from 1C  to 

the auxiliary capacitor 2C , from where it is recovered afterwards. The main switch 1S  turns on with 

ZVS, the auxiliary switch rS  turns off with ZCS, and the diode D  has a controlled reverse 

recovery. When compared to other ZVT topologies having partially similar operating principle, the 

presented topology has certain advantages and disadvantages. 

 

Fig. 5.24 Relevant simulated switching waveforms. 

• The topologies presented in [Fre93] and [Hua94] make use of a half-wave resonance as well, 

to discharge capacitor 1C . However, in those topologies, the resonance is interrupted when 1C  is 

completely discharged and when there is still some energy left in the resonant inductor. In [Fre93], 

to ensure that this energy is recovered after the resonant process ends, the ratio 2 1V V  of the output 

and input voltages must satisfy a condition that is dependent on the specific converter topology 

[Smi97]. For example, the condition is 1 2 2V V<  in a Boost converter, which is major drawback for 

a PFC application. Nevertheless, the auxiliary switch turns off with ZCS. In [Hua94], there is no 

constraint on 2 1V V , but the auxiliary switch turns off under hard-switching conditions. On the 

other hand, the topology presented in this publication has no constraint on 2 1V V , and the auxiliary 

switch turns off with ZCS. 
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• The topology presented in [Mos95] uses an additional capacitor as well, to store temporarily 

the energy removed from 1C . However, it uses a full-wave resonance. i.e. the resonant current is 

allowed to reverse. During the negative half cycle, the resonant current flows through the main 

switch, increasing its current stress and the conduction losses. On the other hand, in the proposed 

topology there is no additional current stress for the main switch. 

• The main disadvantage of the proposed topology is the diode 2D  placed in the power path, 

because it introduces additional conduction losses. In addition, the voltage stress of diode 2D  adds 

to the voltage stress of diode D . However, these drawbacks can be reduced to a certain extent. The 

voltage stress of 2D  is a function of the capacitances ratio 2 1C C , the higher this ratio, the lower 

the voltage stress. Thus, by selecting a higher ratio 2 1C C , the voltage stress of diode 2D  is 

reduced, and consequently the additional voltage stress of diode D . As a result, a diode rated at a 

lower voltage can be selected for 2D , with resultant reduced forward voltage drop and less 

conduction losses. On the other hand, the larger ratio 2 1C C  translates into a longer resonant 

interval 14t , so a tradeoff must be made.  

 To conclude, we present in this publication a novel ZVT Buck topology, in which the main 

switch 1S  turns on with ZVS, the diode D  has a controlled reverse recovery and the auxiliary 

switch rS  turns off with ZCS. The operating principle of the proposed topology can applied to a 

variety of switching converters, for either DC/DC or PFC applications, for example to the forward 

converter as presented in publication [P8], and to the PFC Boost converter as presented in [Bar98]. 

5.5.2 Publication [P8] 

In this publication, we apply to a forward converter the ZVT technique described in publication 

[P7], with the aim of evaluating the benefits in terms of efficiency. As an application for the 

converter, we consider a 500W power factor corrected rectifier for telecommunications equipment. 

The schematic of the analyzed converter is shown in Fig. 5.25, where the auxiliary circuit for 

implementing ZVT has been added to the hard-switching converter.  

 The efficiencies of the hard-switching and ZVT forward converters are evaluated by 

simulation, which is done using MicroSim PSpice software and taking into account only the losses 

in the switching devices. The graphs of estimated efficiencies are plotted in Fig. 5.26, considering a 

50-500W load range. The switching frequency is 110kHz. It can be seen that the efficiency is 

improved, approximately from 2% at light load to 5.5% at full load. The graphs of total losses in the 

hard-switching and in the ZVT forward converter are plotted in Fig. 5.27, which shows also the 
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distribution of losses between the main circuit and the auxiliary circuit in the ZVT converter. It can 

be concluded that, even if the auxiliary circuit for implementing ZVT introduces additional losses, 

the total losses are lower in the ZVT case when compared to the hard-switching case, hence the 

efficiency is improved. 
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Fig. 5.25 ZVT Forward converter. 

 

Fig. 5.26  Hard-switching vs. ZVT forward converter: efficiency comparison (simulated). 
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Fig. 5.27 Total losses with hard-switching vs. ZVT, and distribution of losses between the main circuit and 

the auxiliary circuit of the ZVT forward converter (simulated). 

5.6 Contribution of the author  

The author carried out the research work reported in publications [P1]-[P8] and, except for 

publication [P1], wrote the manuscripts alone. In publication [P1], the author wrote the major part 

of the manuscript. Lic. Tech. Jyri Rajamäki wrote the part that refers to the composite IEC (CISPR), 

FCC and VDE conducted EMI limits, as well as the part that summarizes the input filter design 

criteria. He also read the final text and commented it.  

 All the research work has been done under the guidance of Prof. Jorma Kyyrä, who provided 

valuable and constructive ideas. The regular academic discussions held with him played an 

important role in advancing the research process and the publication work. Prof. Kyyrä also read the 

manuscripts, gave useful scientific comments, and revised the language and the writing style. 

 The co-authors have seen the aforementioned description of the contributions and agree with 

it. None of the publications have been used as part of someone else’s academic thesis or 

dissertation.  
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6 Conclusions and Discussions 

This chapter summarizes the main results of the research. We also assess the scientific importance 

of the work and discuss possible future research topics. 

6.1 Main results 

We first analyzed the requirements for the EMI filter of a PFC stage based on a Boost converter 

operating in DICM. As expected, the differential-mode conducted EMI is larger in DICM when 

compared to CICM, when constant switching-frequency is used and for the same power level, 

which supports our motivation to investigate higher-order topologies. It was also shown that for 

both the constant and the variable switching-frequency cases, the input impedance of the converter 

is practically purely resistive and no instabilities can arise from the interaction with the EMI filter. 

 After that, we extended our research by examining two-switch fourth-order topologies, the 

aim being to explore the possibility of realizing a PFC stage having an input current with reduced 

high-frequency content, inherent PFC property and an output voltage lower than the amplitude of 

the sinusoidal input voltage. 

 We first considered the operation in DCVM and CICM, and three topologies were initially 

selected, i.e. the Boost converter with an LC output filter, the Buck converter with an LC input filter 
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topologies have both inherent PFC properties and an input current with reduced high-frequency 

content. We also showed that, if both inductors are high-frequency storage elements, there is a high-

frequency duality, i.e. over one switching cycle, between the selected topologies and the second-

order topologies operating in DICM. On the other hand, if the output inductor is a low-frequency 

storage element, then a low-frequency duality is obtained, meaning that the duality applies for the 

behavior over the line-cycle as well. After these considerations, we selected the Buck converter 

with an LC input filter for further investigation, because it has the lowest switch voltage stress of 

the topologies selected in the first phase, and an output voltage lower than the amplitude of the 

sinusoidal input voltage can be obtained. We present an extensive analysis of both the operation 

with low-frequency and high-frequency output inductor. Important characteristics are determined, 

such as the conversion ratio and the switch voltage stress when operating with a rectified-sinusoid 

input voltage, as well as design criteria. A simulation example is presented for the low-frequency 

output inductor case, showing that a nearly sinusoidal line current can be obtained in this case. For 
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the high-frequency output inductor case, a prototype has been designed and built. As expected, the 

line current has crossover distortions, but the harmonic content is well below the standard limits. 

The simulated and experimental results confirm the analytical ones, as well as the functionality of 

the Buck converter with an LC input filter as a power factor corrector, when operating in DCVM 

and CICM.  

 The possibility of implementing galvanic isolation has been addressed, as well. We presented 

a Flyback-derived fourth-order topology operating in DCVM and CICM, for which an extensive 

analysis was performed and a prototype has been built. The converter has excellent inherent PFC 

properties and the line current is sinusoidal, as confirmed by the experimental waveforms. 

 A major conclusion from the analysis of fourth-order converters operating in DCVM and 

CICM is that, while offering both inherent PFC properties and an input current with reduced high-

frequency content, this operating mode leads to high switch voltage stress. Nevertheless, the switch 

voltage stress can be minimized to a certain extent by properly selecting the operating point of the 

converter. 

 Operation in CCVM and CICM was considered as well, for a two-switch fourth-order 

topology having both step-down conversion ratio and continuous input current. The ripple of the 

input current can be reduced to a great extent by coupling the two inductors with a suitable coupling 

coefficient, i.e. by using the ‘zero-ripple’ technique. Small-signal analysis was used to derive the 

control-to-input-current and the control-to-switch-current transfer functions, which are needed to 

close the high-bandwidth current loop. The transfer functions reveal the complex dynamics of the 

converter, and the existence of a pair of complex conjugated poles that need to be damped to avoid 

instabilities. A prototype has been designed and built, in which average current mode control has 

been implemented successfully and an input current with very low ripple has been obtained by 

using the ‘zero-ripple’ technique. 

 The focus of the research then shifted towards reducing the conduction losses in the combined 

diode bridge and Boost converter. Therefore, we investigated topologies having fewer switches in 

the power path: one Boost-type topology with a modified diode bridge, two Boost-type topologies 

having two active switches, as well as a fourth-order topology that is able to operate with a bipolar 

input voltage. At first sight, the fourth-order converter topology is very attractive, because it has 

only one switch in the power path. It can realize direct AC/DC conversion with PFC, without the 

need for a diode bridge to perform the rectification of the input voltage. The conclusion of this 

analysis is that the best reduction of the conduction losses is obtained in the Boost-type topologies 
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having two active switches, while the Boost-type topology with modified diode bridge is a good 

cost/performance tradeoff. The fourth-order topology, while initially attractive, is subjected to high 

voltage and current stress of the switches. Therefore, even if it has only one switch in the power 

path, it has higher conduction losses.  

 Finally, we concentrated on reducing the switching losses by using ZVS and we proposed a 

novel ZVT Buck converter. We then applied the proposed technique to a 500W forward converter, 

for which simulations show an efficiency improvement approximately from 2% at light load to 

5.5% at full load. Even if the technique is presented for DC/DC applications, its versatility allows 

the application to converters used for PFC applications as well.  

6.2 Scientific importance of the author’s work 

In this dissertation, we have investigated several issues concerning the application of various 

topologies in single-phase PFC. We considered in the beginning the application of the DICM Boost 

converter for PFC, for which we used an averaging method to calculate the input impedance 

characteristic. It has been recognized that in a PFC application the converter is not operating in a 

stationary state, meaning that the current through the output capacitor has a DC component, when 

we consider the operation over one switching cycle. Therefore, a stationary state equivalent circuit 

must be used. 

 After that, special attention has been given to fourth-order topologies, as means for obtaining 

characteristics that otherwise cannot be obtained in second-order ones. All the two-switch fourth-

order topologies that can be generated from the switching cells presented in Section 3.1 have been 

carefully examined. Among them, those considered as representative for our aims were selected and 

analyzed in our publications.  

 We have pointed out the duality that exists between the selected fourth-order converters 

operating in DCVM and CICM, and second-order converters operating in DICM. A thorough 

analysis of the Buck converter with an LC input filter operating in DCVM and CICM has been 

made, which enables a very good understanding of the advantages and disadvantages offered by this 

operating mode. In addition, the analytical results represent a concrete design tool, which was not 

available previously. We have also analyzed a fourth-order topology with galvanic isolation, 

operating in the DCVM in CICM, operating mode that has not been considered before for this 

topology. 
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 The fourth-order topology with step-down characteristic and operating in CCVM and CICM 

has been used in the past in DC/DC applications. However, its application for PFC has not been 

proposed nor studied. We demonstrate its applicability as a power factor corrector, when an output 

voltage lower than the amplitude of the input voltage, as well as a low high-frequency content of the 

input current, are needed. The small-signal analysis was particularly useful, as it shows the complex 

dynamics of the converter. The analysis takes into account the coupling factor used to reduce the 

ripple of the input current, as well as the variation of the operating point of the converter throughout 

the line-cycle. 

 Besides comparing several Boost-type topologies with lower conduction losses, we have 

pointed out the possibility of performing direct AC/DC conversion with PFC. This can be done by 

using a fourth-order topology able to operate with a bipolar input voltage, the aim being the 

reduction of the conduction losses. Unfortunately, the analysis shows that conduction losses are not 

decreased, because of the higher current stress of the switches.  

 Even if the analyzed fourth-order topologies cannot be considered as being new, several 

aspects concerning their application for PFC, which have been discussed in this section, are 

original. The number of topologies that are analyzed in our papers is inherently limited. However, 

the information concerning the characteristics of a specific operating mode is of course useful when 

analyzing other fourth-order topologies in the same operating mode. In addition, the methodology 

that is used in our publications can be applied to the entire class of fourth-order converters, be it for 

example an analysis of the DCVM and CICM operation, or the small-signal analysis of the CCVM 

and CICM operation.  

 Finally, we have presented an original ZVT topology, which is based on the principle of 

creating a half-wave resonance to transfer the charge from the parasitic capacitance of the active 

switch to an auxiliary capacitor, from where it is recovered afterwards. This technique can be used 

in a variety of converters, for either DC/DC or PFC applications. 

6.3 Topics for future research 

In this dissertation, we have analyzed the application for PFC of only few of the fourth-order 

topologies. Other topologies might offer characteristics that are interesting for specific applications 

and therefore could be worth investigating. We have also seen that the ‘zero-ripple’ technique can 

be applied in fourth-order converters. However, in a PFC application, its effectiveness is restricted 
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by the limited amount of capacitance that can be used in the fourth-order switching cell. This is an 

issue that it is worth investigating in more detail.  

 Finally, more specific design criteria for the proposed ZVT Buck converter should be derived. 

In addition to that, the application of the proposed ZVT technique to other types of converters is 

worth investigating. Its operating principle might also prove useful in developing other types of 

ZVT converters.  
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