
Group Sharing and Random Access in

Cryptographic Storage File Systems

by

Kevin E. Fu

B.S. Computer Science and Engineering
MIT, 1998

Submitted to the Department of Electrical Engineering and Computer
Science in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

c© 1999 Kevin E. Fu. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 18, 1999

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ronald L. Rivest

E. S. Webster Professor of Electrical Engineering and Computer
Science

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



Group Sharing and Random Access in Cryptographic

Storage File Systems

by

Kevin E. Fu

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 1999 in Partial Fulfillment of the Requirements for the Degree
of Master of Engineering in Electrical Engineering and Computer Science

Abstract

Traditional cryptographic storage uses encryption to ensure confidentiality of file data.
However, encryption can prevent efficient random access to file data. Moreover, no
cryptographic storage file system allows file sharing with similar semantics to UNIX
group sharing. The Cryptographic Storage File System (Cepheus) provides confiden-
tiality and integrity of data while enabling efficient random access and file sharing
using mechanisms similar to UNIX groups. Cepheus uses a delayed-write-encryption
policy for caching, delayed re-encryption for distributed re-encryption, and a hash
tree structure beneath the inode for integrity. While maintaining confidentiality and
integrity, the cost of reading a block is O(1) amortized over a sequential read of the
entire file of n blocks. Writes execute in worst-case O(logn) time.

Thesis Supervisor: Ronald L. Rivest
Title: E. S. Webster Professor of Electrical Engineering and Computer Science

3



Acknowledgments

Sivaramakrishnan Rajagopalan and Bill Aiello guided my work on cryptographic stor-

age at Telcordia Technologies (formerly Bellcore) in Morristown, New Jersey. Ron

Rivest endowed much advice as my on-campus thesis advisor. Their guidance and sug-

gestions greatly improved the design of Cepheus. Telcordia Technologies supported

my research with a graduate fellowship in the MIT VI-A program.

Portions of Cepheus code derive from David Mazières’ Secure File System of the

Parallel and Distributed Operating Systems Group at the MIT Laboratory for Com-

puter Science[22]. Parts of the low-level file system originated from my 6.033 team’s

X-File System[12]. Drew Samnick implemented many of the Remote Procedure Calls

for his Advanced Undergraduate Project. Other persons deserving credit for help or

guidance include Derek Atkins, Giovanni Di Crescenzo, Neil Haller, Sam Hartman,

Jeff Hu, Frans Kaashoek, Marcus Kuhn, Anna Lysyanskaya, and Jerome Saltzer. Fi-

nally, my fiancée, Teresa, deserves much gratitude for putting up with my midnight

coding and bitter moods during this long ordeal. Just one more degree, I promise.

4



Contents

1 Introduction 13

1.1 Background: UNIX File Systems . . . . . . . . . . . . . . . . . . . . 14

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Group Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Random Access . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Related Work: Case Studies . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Cryptographic File System . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Secure FileSystem . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.3 Transparent Cryptographic File System . . . . . . . . . . . . . 28

1.4.4 SecureDrive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.5 SecureDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.6 CryptDisk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Common Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Key Management & Sharing . . . . . . . . . . . . . . . . . . . 33

1.5.2 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.3 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.4 Encryption Costs . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.5.5 Fine-grained Access Control . . . . . . . . . . . . . . . . . . . 34

1.5.6 Key Changes & Revocation . . . . . . . . . . . . . . . . . . . 35

1.5.7 Intrusion Tolerance . . . . . . . . . . . . . . . . . . . . . . . . 35

1.5.8 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



1.5.9 Trust in System Administrators . . . . . . . . . . . . . . . . . 35

1.5.10 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Design Requirements 37

2.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.2 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.3 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.4 Secure Group Sharing . . . . . . . . . . . . . . . . . . . . . . 38

2.1.5 Efficient Random Access . . . . . . . . . . . . . . . . . . . . . 39

2.2 Failure Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Intolerable Failures . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.2 Tolerable Failures . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Cryptographic Storage Trust Model . . . . . . . . . . . . . . . . . . . 40

2.3.1 Trust Model Principals . . . . . . . . . . . . . . . . . . . . . . 40

2.3.2 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3.3 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.4 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.5 Group Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Cepheus Design 47

3.1 Group Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Random Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Delayed Re-encryption . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Buffer Cache: Delayed Encryption . . . . . . . . . . . . . . . . 51

3.3 File System Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Inodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Authenticity/Integrity Check Field . . . . . . . . . . . . . . . 52

3.3.3 Crash Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Client Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Buffer Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6



3.4.2 File Server Communication . . . . . . . . . . . . . . . . . . . 56

3.5 User Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 File Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7 Group Database Server . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8.1 Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8.2 Initialization Vector . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8.3 Authenticity/Integrity Check Field . . . . . . . . . . . . . . . 61

3.8.4 Delayed Re-encryption . . . . . . . . . . . . . . . . . . . . . . 63

3.8.5 Buffer Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Implementation Details 65

4.1 User Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Client Daemon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 File Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Group Database Server . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Questions for Cryptographic Storage 71

5.1 Network Versus Storage Encryption . . . . . . . . . . . . . . . . . . . 71

5.2 File Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Group Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Incremental Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Delayed Re-encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.7 Orphaned Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.8 Brittleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.9 Encrypted Swap File . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Key Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.11 Trust of System Administrator . . . . . . . . . . . . . . . . . . . . . . 75

5.12 Unattended Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7



6 Conclusion 77

8



List of Figures

1-1 The layout of data and metadata on the physical disk. . . . . . . . . 14

1-2 The inode contains file attributes and pointers to data blocks. Singly

and doubly indirect blocks allow a small inode to address a large

amount of file data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1-3 A complex example of a directory mapping file names to inodes. Thick

boxes represent data blocks while thin boxes represent inodes. . . . . 18

1-4 This diagram of CFS is based on Blaze’s paper and an article on cryp-

tographic file systems[4, 35]. Dashed lines represent a confidential area

protected by encryption. . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-5 In Blaze’s OFB+ECB mode, the OFB mode first computes interme-

diate plaintext blocks IPi offline. When a plaintext block Pi needs

encryption, it is first XORed with IPi, IV, and a function of the block

number and seed. This is encrypted in ECB mode for the final ciphertext. 24

1-6 In Yerushalmi’s OFB+ECB mode, the OFB mode first computes in-

termediate plaintext blocks IPi offline, as is done in Blaze’s mode.

When a plaintext block Pi needs encryption, it is first encrypted in

ECB mode, then XORed with IPi. This allows for easier incremental

changes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1-7 SFS interfaces to MS-DOS as a device driver with raw access to the

physical disk. The thick dotted line represents confidential storage. . 27

2-1 Interactions among the trust model principals in Cepheus. . . . . . . 41

9



3-1 The client daemon (CD) acts as an NFS loopback server on the client

workstation. The CD asks the appropriate user agent (UA) to encrypt,

decrypt, sign, or verify data. Each CD communicates with the appro-

priate file server (FS). The FS checks with the group database server

(GDS) for authentication and authorization of a user agent. The thick

dotted line represents confidential storage. . . . . . . . . . . . . . . . 48

3-2 In Cepheus, file data is encrypted in CBC mode on a per block basis.

Block ciphers typically have two 8-byte inputs. . . . . . . . . . . . . . 49

3-3 The data pointer contains an IV and hash node in addition to the

pointer to the data block. . . . . . . . . . . . . . . . . . . . . . . . . 49

3-4 Using one direct, one singly indirect, and one doubly indirect data

pointer, a single inode in Cepheus can address up to 514MB of data. . 52

3-5 The authenticity/integrity check field (AICF) for the file data consists

of a cryptographic hash tree. Contents of the dashed box appear in

the inode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3-6 An example of reading a block: after the client daemon intercepts a

read request from the NFS loopback server, it obtains a block through

the following method. Had the block already existed in the cache, the

client daemon would skip these steps and simply return the cached data. 55

3-7 A pseudo-random function seeded with a block number and one shared

IV could generate new IVs. . . . . . . . . . . . . . . . . . . . . . . . . 61

3-8 In PCBC mode, Ci = the encryption of Pi
⊕
IPi−1

⊕
Ci−1. . . . . . . 62

4-1 The client daemon (CD) forks into two processes. CD REGISTER and

CD NFS LOOPBACK share memory for a registration data. The user

agent (UA) and CD NFS LOOPBACK share memory for the buffer

cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4-2 This picture shows the order of operations for emacs to read a block

from Cepheus. Step 8 actually goes across the network to the file

server’s kernel[16]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10



List of Tables

1.1 A comparison of cryptographic storage file systems. . . . . . . . . . . 33

5.1 Access depending on available keys. When a user has the key to a

directory, but not to its parent directory, access semantics are undefined. 74

11



Chapter 1

Introduction

Very frequently, a user of crypt will forget to remove a cleartext file after

producing an encrypted version. Such cleartext can only be described as

‘gold’[25]. –Robert H. Morris

Cryptographic storage file systems can protect long-term information from unau-

thorized disclosure and modification. This thesis proposes the Cryptographic Storage

File System (CSFS – pronounced Cepheus), a file system to provide secure group

sharing and efficient random access1. Cepheus expands upon existing cryptographic

file system models by cryptographically enforcing traditional UNIX©R file system se-

mantics without imposing significant performance penalties2.

This thesis consists of five chapters. Chapter 1 gives a general background on the

UNIX file system, analyzes several existing cryptographic storage file systems, and

motivates research in cryptographic storage. Chapter 2 outlines our requirements for

Cepheus and states our assumptions of trust. Chapter 3 presents our design to satisfy

the constraints of chapter 2. Chapter 4 describes the implementation details. Chap-

ter 5 summarizes future directions and unresolved questions regarding cryptographic

storage. Finally, chapter 6 concludes our results.

1Cepheus was the king of Ethiopia, husband of Cassiopeia, father of Andromeda, and fellow
Argonaut with Jason. His name is also the only decent thing that sounds at all like Cepheus.

2UNIX is a registered trademark licensed exclusively through X/Open Company Ltd.

13



1.1 Background: UNIX File Systems

This section describes the basic ideas and terminology behind a simplified UNIX file

system. We explain the file system details necessary to understand the rest of this

document. For more precise definitions, see the Berkeley Fast File System paper[23].

If you are already familiar with file system internals, you can skip ahead to the next

section.

To introduce the concepts in the UNIX file system, we begin with with a list

of terminology. A file is the basic unit of storage in a file system. For instance,

/etc/passwd is a name which refers to a file containing account information as data.

A file system consists of software to store and retrieve files.

A partition refers to the stored data referenced by a file system. It typically resides

on a disk consisting of rotating magnetic platters. Partitions are also known as disk

partitions or volumes. Partitions divide into many consecutive blocks typically of a

fixed size (e.g., 4KB). The block I/O interface contains methods to manipulate a

partition down to the granularity of a block. That is, one cannot write a single byte

to a partition. Rather, one must rewrite the entire block that contains the changed

byte. Regions of blocks fall into several structures: a superblock, a freemap, an inode

table, and data blocks. Figure 1-1 shows the arrangement of structures on a partition.

We explain each structure below.

Disk

FreemapSuperblock Inode Table Data

Figure 1-1: The layout of data and metadata on the physical disk.

14



Superblock

The superblock acts as a road map to the rest of the disk partition. It keeps track of

critical information necessary to mount the file system. For instance, you might find

the following in a superblock:

• magic number

• number of blocks

• location of freemap

• location of inode table

• number of free inodes

• location of data blocks

• last time of a file system consistency check

• number of mounts since last consistency check

• dirty bit

The information in the superblock is established during initialization of the parti-

tion. Should the partition fall into an inconsistent state (e.g., from a power failure),

the superblock can help to reconstruct the disk partition.

The superblock also records a magic number which can help to determine whether

or not the data are valid. If this magic number is not intact, we know something

disturbed the superblock. It is also useful to check whether values in the superblock

make sense. For example, if the location of the inode table is past the end of the disk,

we can assume that corruption has occurred and the superblock data should not be

used.

The mount count and the dirty bit signal mandatory consistency checks. The

mount count keeps track of how many times we have remounted the partition. Typ-

ically there is a threshold number of mounts before a mandatory consistency check

takes place. We set the dirty bit during every mount operation. During a shutdown,

the file system clears the dirty bit to denote a cleanly unmounted partition. If the

file system finds a set dirty bit when mounting a partition, it knows that the file

system was shut down unexpectedly. An investigation would proceed to check the

15



consistency of the partition. The fsck program attempts to recover data which may

have been corrupted by partially completed operations.

Freemap

The freemap follows the superblock. It contains a simple table with one bit repre-

senting each block of the disk partition. Bit i in the freemap indicates whether block

i is currently free. In this way, the file system can readily find free blocks without

having to search the entire disk. There are more scalable ways of keeping track of

free blocks. For instance, XFS uses a B+ tree to keep track of extents of contiguous

data[40].

Inode Table

Storage in a file system falls into two categories: data and metadata. Data make up

the essential cargo of a file system. The whole point of a file system is to store data

in an easily retrievable fashion. Metadata consist of the bookkeeping necessary to

maintain the file system. For instance, a file in the UNIX file system is represented

by an inode which contains metadata necessary to locate the contents of the file. An

inode stores the attributes and pointers to data of one file. The inode table consists

of a sequence of blocks which contain all the inodes. Since inodes are often statically

allocated during initialization, the number of inodes corresponds to the maximum

number of files that can exist. Allowing a large number of inodes provides for the

storage of many files, but requires more space for the inode table. However, modern

file systems allow some flexibility with dynamically allocated inodes. An inode often

has the following attributes:

• index number

• access rights

• reference count

• file type

• generation number for NFS file handles

16



• most recent access time

• most recent modification time

• creation time

• owner

• group

• file size

The access rights define read, write, and execute permissions for the owner, group,

and others. The reference count keeps track of the number of directory entries pointing

to an inode. When this number reaches zero, the file system can release the inode and

data. The file type denotes how to interpret the data of the file. Common file types

include: regular file, directory, and symbolic link. The generation number becomes

useful when using network file systems. It helps to prevent client workstations from

accidentally overwriting changes made by another client.

T
o 

D
at

a 
B

lo
ck

s

Direct

Direct

Direct
Direct

Direct

T
o 

D
at

a 
B

lo
ck

s

Attributes

In
od

e

Doubly indirect
Singly indirect 

T
 O

   
 D

 A
 T

 A
   

   
B

 L
 O

 C
 K

 SSingly Indirect Pointers

Direct Pointers
Direct Pointers

Figure 1-2: The inode contains file attributes and pointers to data blocks. Singly and
doubly indirect blocks allow a small inode to address a large amount of file data.

In addition to keeping attributes, an inode maintains pointers to data blocks

as shown in figure 1-2. Data pointers are either direct, singly indirect, or doubly

indirect. Indirect pointers allow inodes to remain relatively small3. A singly indirect

pointer references a data block which contains many direct pointers. Doubly indirect

3Because common operations such as ls read several inodes at a time without needing data
pointers, the inodes need to be small.

17



pointers work similarly. Hence, an inode can address large amounts of data while

directly housing only a small number of pointers.

inodefilename

file1.txt

foo.c

...

22

42

Inode #42 Inode #22
Directory Entries for /

/tmp/bar.cData Pointers Data Pointers

Attributes

(symbolic link)

Data Pointers

Inode #1

Attributes

(directory)

Attributes

(hard link)

Figure 1-3: A complex example of a directory mapping file names to inodes. Thick
boxes represent data blocks while thin boxes represent inodes.

Directories

Note that an inode has no location for a file name. Rather, directories keep track

of the file name to inode mapping. In figure 1-3, inode #1 represents the root di-

rectory. In the context of this directory, file1.txt and foo.c refer to inodes #22

and #42 respectively. foo.c represents a typical hard link to an inode. A hard link

points directly to an inode which in turn points to the file data. A second kind of

link, a symbolic link, involves an extra level of indirection. The associated file data

actually reference a path to another file name as in the case of inode #22. The path

/file1.txt resolves to the path /tmp/bar.c. Note that a symbolic link may point to

any file path, whereas a hard link can only point to inodes within the same partition.

1.2 Motivation

We motivate the use of cryptographic storage through several examples and trends.

Cryptographic file systems offer several security advantages over existing information

protection methods. For instance, manual file encryption is cumbersome. One may

encrypt a file and then decrypt whenever necessary. However, this clearly offers no

transparency to the user. Moreover, manual file encryption protects only what the

user knows about. Manual file encryption cannot protect temporary files or swapped

18



out memory. Building cryptography into a file system allows transparent operation

and helps prevent such accidental disclosure.

Reportedly 20,000 credit card numbers were stolen from Netcom, a leading In-

ternet service provider[21]. Had a cryptographic file system been used to store the

information, the incident may have been prevented. Tony Liss and Paul Tipton ex-

perienced information theft of their draft paper on the top quark[19]. After storing

the draft in an obscure directory, another person at Fermilab managed to read the

file. Shortly thereafter, some data were posted in a facetious report to an electronic

bulletin board. Although the incident was minor, one learns that “security through

obscurity” alone is not sufficient and existing file systems are ineffective against the

insider threat.

Some researchers argue that a machine should cryptographically protect all of its

resources (e.g., memory or the bus). However, today’s general-purpose workstations

cannot easily protect its resources against malicious local users. For instance, emacs

run over an X connection would disclose the text of a document. There is cleartext

Interprocess Communication (IPC) between the X server and X client. Moreover,

research has yet to produce cryptographic protection of memory with tolerable access

delays. For instance, the MemGuard program protects individual words in memory.

The overhead ranges from several thousand to several hundred thousand percent of a

normal memory access[10]. The benefit of securing every part of a client workstation

is much less than gained from simply using a cryptographic file system and trusting

the local machine.

According to Ross Anderson, insiders cause the majority of problems in the UK

medical record system[1]. A recent ASIS report says that 75% of intellectual property

theft involved an insider with a trusted relationship[26]. Marcus Ranum gives a

high estimate that 80% of recorded security incidents are inside jobs[30]. While the

exact percentage of insider influence varies greatly, one would agree that insiders

are responsible for a significant portion, if not the majority, of privacy invasions.

A cryptographic file system can transparently protect against many inside attacks.

Bribing a system administrator would no longer be of use. Even if an adversary

19



managed to obtain encrypted files, the files are useless without the key. This separates

the responsibility of storage management from information privacy[32].

Network traffic encryption can prevent outside attacks, but does little to prevent

inside attacks. Traffic encryption does nothing to prevent a file system adminis-

trator from abusing privileges. On the other hand, cryptographic storage provides

truly end-to-end encryption[33]. Cryptographically secure storage decreases the value

gained from traffic encryption. Moreover, file servers become the bottlenecks in traf-

fic encryption, especially when public key cryptography is involved. For every client

workstation, the file server will have to perform encryption and decryption of data.

In cryptographic storage, however, much of the computation moves to the client side,

thereby removing bottlenecks from the server. The clients perform all the encryption

and decryption. The file server must only check for authentication and authorization

of requests.

Cryptographic storage can also provide for secure recovery of lost data. One could

send in a hard drive for repair without worrying about leakage of information[32]. The

data recovery can take place without compromising confidentiality. Another good

reason to use a cryptographic file system is for protection against your computer or

hard disk being lost or stolen. This is especially true for laptops or other mobile

machines[9].

1.3 Focus

Most research in cryptographic file systems centers on fast and reliable storage for

a single user. In addition to providing confidentiality, integrity, and availability,

Cepheus focuses on group sharing and random access.

1.3.1 Group Sharing

Existing cryptographic file systems either do not address file sharing or discourage

file sharing. We recognize that group sharing in the UNIX file system is rare, but

allowing sharing adds tremendous power[38]. If sharing in the UNIX file system were

20



augmented with semantics similar to that of access control lists (ACLs) in AFS, we

believe sharing would be more widely used. Currently, creation and membership

maintenance in the UNIX file system and Sun’s Network File System require inter-

vention by a system administrator. Moreover, a user can be active in just one group

at a time, and a file can have permissions for just one group. Cepheus allows secure

sharing within cryptographic storage.

1.3.2 Random Access

Encryption adds an obvious overhead to reading and writing files. Cepheus exploits

caches, delayed re-encryption, and encryption modes to diffuse the impact of encryp-

tion. Much of the motivation for efficient random access comes from research on

incremental cryptography[3].

1.4 Related Work: Case Studies

A cryptographic file system does everything a traditional file system does, but in a

secure manner. For instance, file data may be kept confidential or protected from

unauthorized modification. Under reasonable cryptographic assumptions (e.g., it is

computationally infeasible to decrypt a block without the key), we can prove proper-

ties of security.

Cryptographic file systems come in two varieties. Cryptographic network file sys-

tems protect the information sent between a user’s workstation and the file server.

For instance, Dave Mazières’ Secure File System stores plaintext on the file server,

but protects the link to the client[22]. Cryptographic network file systems are ap-

propriate when the file server is trusted not to disclose or alter stored data. On the

other hand, cryptographic storage file systems keep files encrypted on the file server.

The users need not trust the file server to protect confidentiality. Below we focus our

case studies on cryptographic storage file systems.

21



1.4.1 Cryptographic File System

The Cryptographic File System (CFS) introduced a relatively robust cryptographic

storage system for the UNIX operating system[4]. Matt Blaze from AT&T Bell Lab-

oratories developed CFS in 1993. Development continues, but not on a regular basis.

CFS pushes confidentiality into data storage. Although several other file systems

had already incorporated cryptography to secure network file transmissions, CFS is

the first well-documented UNIX cryptographic storage file system. CFS investigates

the question of where encryption should be placed in a file system: at the low-level

hardware or the user-level. Several goals guided the CFS design including the issues

of key management, transparency, and portability.

In a manual file encryption system, the user inputs a password or key whenever

encryption or decryption takes place. Instead of requiring a password for each en-

cryption operation, CFS asks the user once per login for a password. This password

acts as a seed to compute a key stream. CFS eliminates the problem of re-entering

passwords, but can generate new difficulties in password management. A user may

need to remember several passwords to protect unrelated directories.

Transparent performance and access semantics allow users to perform necessary

tasks without knowledge of or interference from the underlying cryptography. That is,

one should not notice significant differences from a traditional UNIX file system. CFS

succeeds in hiding most of the cryptography. When using one encryption password,

CFS does not incur noticeable performance penalties after an initial pause to compute

the key stream. Moreover, access semantics work as in a normal UNIX file system.

However, simultaneous use of several passwords will cause many key streams to be

loaded into memory. In the extreme case, CFS can cause thrashing by filling up all

memory with key streams.

Because CFS runs in user mode, no kernel modification is necessary to use CFS

(see figure 1-4). Moreover, the code has been ported to several UNIX flavors including

SunOS and Linux. On the other hand, if CFS were implemented in the kernel itself,

much context switching could be avoided. But an in-kernel implementation would

22



have prevented the ease of portability.

CFS provides end-to-end encryption from the client back to the client. All en-

cryption operations take place on the client machine. The server is trusted to reliably

store and retrieve information and not to alter storage. The user must completely

trust the client machine and anyone who can gain root access on the client machine.

For instance, the root user could access the password or key stream by searching

/dev/kmem.

NFS Client

User Programs

System Call Interface

read /crypt/foo.c

Virtual File System (VFS)

Encryption/Decryption Engine

UNIX FS Client

Local or Remote Disk

U
se

r 
M

od
e

K
er

ne
l M

od
e

CFS Daemon

NFS Loopback

Figure 1-4: This diagram of CFS is based on Blaze’s paper and an article on cryp-
tographic file systems[4, 35]. Dashed lines represent a confidential area protected by
encryption.

Directories serve as the atomic level of access protection. To reduce the number of

key streams, CFS tags an entire directory with one key. That is, one specifies access

permissions to files grouped together in a directory rather than to individual files.

This differs from traditional UNIX file systems, but is similar to access semantics of

the Andrew File System (AFS).

CFS protects data, file names, and symbolic links from disclosure outside the

trusted computing base. However, no protection is given to metadata such as file

sizes and time stamps. This allows existing utilities such as the fsck partition sal-

vaging program to perform normally. CFS offers no protection against unauthorized

modification. If a bit of the stored ciphertext flips, the user might notice a corrupted

64-byte block of plaintext. The goals of the CFS design do not include emergency

23



+ + ++ + +++ +

Block CipherBlock Cipher

IP1 IP2

Block Cipher
OFB Mode

IPn

P1

key1 key1 key1

IC1 IC2

ECB Mode
Block Cipher

C1

key2 Block Cipherkey2 Block Cipherkey2

C2 Cn

ICn

P2 PnIV IV IV

IPn-1

f(1,s) f(2,s) f(n,s)

s

Figure 1-5: In Blaze’s OFB+ECB mode, the OFB mode first computes intermediate
plaintext blocks IPi offline. When a plaintext block Pi needs encryption, it is first
XORed with IPi, IV, and a function of the block number and seed. This is encrypted
in ECB mode for the final ciphertext.

key recovery or protection against denial of service.

Under the hood CFS employs the DES block cipher in Output-Feedback and

Electronic Codebook (OFB+ECB) mode to create a key stream from a password.

Figure 1-5 depicts this operation. All files in a directory use the same key, but each

file has its own initialization vector (IV) tied to the inode number. CFS crunches the

password into two 56-bit DES keys which determine the key stream in the OFB+ECB

mode. By computing the key stream offline, CFS trades memory for speed. To my

knowledge, no literature analyzes the OFB+ECB mode. However, Yoav Yerushalmi

independently developed a similar OFB+ECB mode as shown in figure 1-6[43]. The

OFB+ECB method is considered a natural solution.

For individual users, CFS is stable, easy to use, and transparent. However, some

desirable goals are not addressed. The notion of file sharing does not exist. In

order to share a directory, a user must disclose the directory key. In fact, the CFS

documentation states, “The system is designed to be installed on individual single-

24



+ +key

+key key

Block Cipherkey

Block Cipher

IP2

IC2

P2

C2

IPn-1

Block Cipherkey
OFB Mode

ECB Mode
Block Cipher

IPn

ICn

Pn

Cn

Block Cipher

IV

IP1

key

Block Cipher
IC1

P1

C1

Figure 1-6: In Yerushalmi’s OFB+ECB mode, the OFB mode first computes inter-
mediate plaintext blocks IPi offline, as is done in Blaze’s mode. When a plaintext
block Pi needs encryption, it is first encrypted in ECB mode, then XORed with IPi.
This allows for easier incremental changes.

user workstations. You really should not install it on a shared file or compute [sic]

server, even though such a configuration is technically possible.”

Because passwords directly encrypt files, CFS has the advantage that only the

holder of the password can access files. No key ring waits to be stolen by an adver-

sary. However, this makes re-encryption and emergency access difficult. No native

password changing procedures exist. You would have to copy the appropriate files to

a new directory, which would re-encrypt the files with a new password. In chapter

3, we explain a delayed re-encryption technique to avoid some of this latency. Emer-

gency access or key escrow could help recover lost passwords, but it would also give

adversaries an easier task to acquire a key (e.g., through bribery or the “rubber-hose”

method).

Blaze explains several other important issues in two papers concerning his cryp-

tographic file system[4, 5]. Anyone wishing to research cryptographic file systems

should read these papers.

25



1.4.2 Secure FileSystem

The Secure FileSystem (SFS) implements a cryptographic storage file system for

MS-DOS4. Despite its underlying operation system, SFS has a surprising number of

creative and useful features. The primary goal of SFS is to protect bulk data stored

on a disk[13]. Peter Gutmann, a graduate student at the University of Auckland in

New Zealand, developed SFS until 1995. Although discussion about SFS appears

occasionally in Usenet, all development has ceased. As Gutmann also worked with

the early developers of PGP, a lot of paranoia rubbed off onto SFS. For instance, the

SFS documentation explains that “35 separate overwrite passes” help to prevent the

leakage of decrypted information. In order to be free of intellectual property problems

and export restrictions, SFS avoids patented algorithms and was developed outside

the United States. Gutmann does not release the source code because companies

developing other DOS-based cryptographic file systems could copy it5.

Since SFS operates entirely on a single machine, the user must only trust the

local operating system and hardware. No concept of a “superuser” exists in the early

versions of MS-DOS. SFS protects against disclosure of data to unauthorized persons

who may gain physical access after files are encrypted. From the documentation,

it is unclear whether SFS protects sensitive metadata or provides security against

unauthorized modification. The protection granularity consists of an entire logical

partition of data.

The most interesting feature of SFS is the emergency access mechanism. To safe-

guard against data loss, this mechanism can recover lost passwords. The emergency

access mechanism employs Shamir’s secret sharing scheme in which trusted escrow

agents receive n key fragments[37]. Any m-sized subset of the n agents can recover

the key. However, no smaller subset can feasibly recover the key. Unlike the big-

brother-ish escrow mechanisms of the Clipper Chip, SFS does not give any agent the

immediate ability to easily recover a key. Because m of the n pieces are needed to

4The Secure FileSystem by Gutmann and the Secure File System by Mazières are completely
unrelated.

5Gutmann also blames any design problems on DOS.

26



harvest the master key, m users must collude to surreptitiously recover a key.

SFS uses the Cipher Feedback (CFB) mode of the Message Digest Cipher with

the Secure Hash Standard (MDC/SHS) encryption algorithm, designed by Gutmann

himself. The password generates an intermediate key by iterating a one-way hash

function over the password several hundred times. This intermediate key can decrypt

the master key which in turn decrypts/encrypts the data on the disk. Bruce Schneier

comments that using a hash function for encryption is dangerous since the hash

function designers did not intend for such use[36].

User Programs MS-DOS

read E:\foo.c

S
ys

te
m

 C
al

l I
nt

er
fa

ce

SFS Device Driver

Encryption/Decryption Engine

Local Disk

Figure 1-7: SFS interfaces to MS-DOS as a device driver with raw access to the
physical disk. The thick dotted line represents confidential storage.

The SFS documentation boasts of moderate performance and excellent memory

usage. On an average 486 desktop system, SFS requires as little as 7.5KB of RAM.

Unlike CFS and TCFS (the next case study), SFS uses direct access to IDE and SCSI

hard drives for better performance. Figure 1-7 depicts the model of operation. This

probably hurt portability as SFS exists only for MS-DOS. However, Gutmann notes

that the SFS design does not limit itself to any particular operating system.

SFS offers two timeout mechanisms to deter compromises. Passwords have finite

lifetimes. When a password expires, SFS requires a new password to protect the

master key. However, this does not protect against direct attacks to the master

key encrypted with the old password. Changing a password just reduces the risk of

compromising the currently encrypted master key. A second timeout can unmount the

file system after a period of inactivity. Should a user absentmindedly walk away from

the console, the file system will automatically unmount itself to prevent unauthorized

access from the console.

27



In unimplemented design ideas, Gutmann explains an anti-duress measure such

that adversaries cannot prove you know the key, and you can provide a reasonable

proof that you do not know the key[14]. Gutmann’s scheme is a form of secret

sharing. Assuming you are dealing with a reasonable adversary, you can prevent the

disclosure of your key while staying alive. More recent literature describes theoretical

techniques for deniable encryption where a user can later disclose a fake key to reveal

an alternative plaintext[6].

On the downside, SFS is not easily portable. With the advent of Windows95, some

of the features of SFS require extra effort. Because MS-DOS is dreadfully simple,

SFS does not need to worry about many of the security problems found in the UNIX

operating system (e.g., multiple users or root access). Currently all development on

SFS has ceased. Gutmann has instead pursued the development a cryptographic

library called CryptLib. At least one commercial cryptographic storage file system

uses this library[42]. Consult the SFS documentation for further information on its

use and implementation[13].

1.4.3 Transparent Cryptographic File System

The Transparent Cryptographic File System (TCFS) seeks to improve upon the se-

curity model set by CFS[7]. Several students and faculty developed TCFS at the

Universitá di Salerno in Italy during 1997. The early development was lead by G.

Cattaneo, G. Persiano, A. Del Sorbo, A. Cozzolino, E. Mauriello, and R. Pisapia.

New releases of TCFS appear on a regular basis. TCFS aims to offer the feel of

the Network File System (NFS) ©R without the feeling of insecurity6. TCFS works

fundamentally the same as CFS in figure 1-4, except that TCFS is an in-kernel im-

plementation.

One of the principle tenets of TCFS is not to trust the server except to store

files. When a client machine attempts to access an encrypted file, the encrypted file

blocks are sent over the network. Upon arrival, the blocks are decrypted on the client

6NFS is a trademark of Sun Microsystems, Inc.

28



machine. TCFS extends the UNIX file attributes to include an encryption bit. When

this bit is set, TCFS protects the file with encryption.

As is with CFS, the metadata are not encrypted. Although some confidentiality

may be lost to file sizes and file names, existing utilities such as the fsck disk recovery

program will continue to operate normally. The documentation does not explain

whether mechanisms exist to protect against unauthorized modification. Each user’s

standard login password decrypts a key ring to access files. Therefore, all files with the

encryption bit set are encrypted by the owner’s key. No built-in data loss protection

exists. TCFS currently supports compile-time options for ciphers including DES,

IDEA, and RC5. Keys are stored in a global key file which can be accessed by a

user’s password.

A recently released version of TCFS implements a group secret sharing protocol.

A file can be opened only when a certain threshold number of group members log in

simultaneously. All group members must log into the same workstation. This is not

similar to the concept of group sharing in the UNIX file system.

TCFS has a strong following, but is somewhat less robust and well documented

compared to CFS. For instance, a likely buffer overflow in an old key generation pro-

gram could potentially expose root access. The program uses the getpass system call

and is Set-User-ID (SUID) root. An SUID root program will run with root permis-

sions, regardless of what user executed the program. Because TCFS requires changes

to the login binary, it does not interoperate well with other authentication systems

such as Kerberos or S/Key one-time passwords. On the other hand, TCFS is easily

available because Italy currently has no export restrictions on cryptography. TCFS

has regular releases and will likely become more robust as development continues.

1.4.4 SecureDrive

SecureDrive cryptographically protects entire partitions and disks in MS-DOS[39].

Edgar Swank and Mike Ingle worked on SecureDrive as a freeware project from 1993

until 1996. The model of SecureDrive matches that of SFS in figure 1-7. Unfortu-

nately, the available design documentation for SecureDrive consists of a lot of source

29



code and an installation guide. SecureDrive hopes to encourage the use of encryp-

tion by making encryption easy to use. SecureDrive works on a limited basis in

Windows95.

One interesting feature of SecureDrive is the key file. One can create a file of

random bits in lieu of a password. This greatly increases the entropy to better thwart

brute force attacks. The key file can be generated by any program. For instance, PGP

2.6.2 offers an undocumented feature to create cryptographically strong random bits.

Swank explains two desirable features of a key file. First, the key file better represents

the notion of a physical key. You can carry the key file on a disk. This also means that

if you lose the disk, you lose your files. Or if someone finds your key file, that person

could decrypt your files. Second, a key file allows anti-duress measures, popularly

known as the anti “rubber hose” technique. A court order may require you to reveal

your password. However, by erasing your key file, you yourself can no longer decrypt

the files.

As with SFS, this file system enjoys the simplicity of MS-DOS. The user must trust

the local operating system and hardware. SecureDrive protects against disclosure.

It is unclear whether SecureDrive protects against unauthorized modification. The

issue of denial of service does not apply since SecureDrive does not consider network

usage. For data loss protection, SecureDrive suggests an out-of-band mechanism

for emergency key recovery. If you use a key file, you can use any available escrow

program to split your key amongst trusted third parties. This is completely left to the

discretion of the user. For secure tape backups, SecureDrive has no native methods.

But you can use a raw disk writing program to copy ranges of cylinders to a file, then

backup the file.

The granularity of protection is the volume or disk partition. That is, an entire

partition will share the same password and cryptographic key. Everything on the

disk partition except the boot sector is encrypted. The documentation suggests cre-

ating multiple partitions if several users plan to use the same computer. However,

SecureDrive is not designed to handle secure file sharing.

SecureDrive uses the IDEA cipher in CFB mode. The MD5 hash function converts

30



the user’s password into a 128-bit IDEA key. If a key file is used, the key file is

XORed with the key derived from the optional password. The disk serial number,

track numbers, and sector numbers are used as part of the IV to make encryption of

each sector unique.

SecureDrive requires minimal memory – the Terminate and Stay Resident (TSR)

program consumes only 2.7KB of RAM. Since encryption takes place at the sector

level, the encryption routines are completely transparent to the user. Changing pass-

words or key files can move slowly. An entire drive must be decrypted with the old

key while encrypting with the new key. This may be more secure than storing a

password-protected key file on the disk itself, but the process is slow. SecureDrive

comes with source code.

1.4.5 SecureDevice

This freeware device driver for MS-DOS is a direct descendent of SecureDrive. Hence,

its model is the same as in figure 1-7. SecureDevice uses the IDEA cipher to protect

volumes of data[20]. Max Loewenthal and Arthur Helwig developed SecureDevice in

the Netherlands in 1994. SecureDevice uses a single file as a virtual disk volume. This

allows much more flexibility, but suffers performance drawbacks because of its location

above another file system. SecureDevice uses the same trust model as SecureDrive

and SFS.

Very little documentation explains the internals of SecureDevice. The unit of

granularity is the virtual disk volume. In other words, one key protects everything.

According to the source code, the CFB mode of IDEA protects the virtual disk

volume. Encryption takes place on a per-sector basis. Each sector on a volume is

encrypted separately with a different IV. To generate the IDEA key, SecureDevice

takes the MD5 hash of the user’s password. A different master IV is used for each

volume created. SecureDevice then mixes the master IV with the 32-bit sector number

to produce a unique IV for each sector. As with SecureDrive, changing a key suffers

performance drawbacks. Since the password is directly used for encryption, an entire

volume must go through a lengthy decryption and encryption routine.

31



Because SecureDevice stores the encrypted disk volume as a single file, backups are

extremely simple. Just copy the file to a remote device such as a tape drive. However,

fragmentation of a large volume can lead to instability. If a file is fragmented into

more than 50 pieces on the disk, DOS will become unstable. A disk defragmentation

program is necessary to correct this problem.

1.4.6 CryptDisk

CryptDisk ensures the confidentiality of entire partitions on the Macintosh[29]. This

is a shareware product written in 1995 by Will Price, then a graduate student at the

University of Southern California. CryptDisk has since become a commercial product

called PGPdisk[28].

As in SecureDevice, a special container file acts as a virtual disk. To mount an

encrypted partition, one simply drags the icon of the container file to the icon of

the CryptDisk application. One can then access individual files of the encrypted

partition – as if they were regular files. As with SFS, CryptDisk will unmount all

volumes after an inactivity timeout. An emergency recovery option exists to decrypt

an entire volume should it ever have problems mounting. The drag-and-drop nature

of the Macintosh makes the file system almost completely transparent to the user.

The trusted computing base is the same as the DOS-based cryptographic file

systems previously discussed. Since the Macintosh operating system does not have

the concepts of multiple users or a root account, CryptDisk must only trust the local

operating system and hardware. The model is virtually the same as in figure 1-7.

CryptDisk protects files using the IDEA encryption algorithm in CFB mode with

an IV that varies every 512 bytes. CryptDisk uses a master key derived from a

function of a password. The password may be up to 128 characters in length, and is

hashed an arbitrary number of times and salted with random data to insure a good

key. Session keys protect individual files. A file’s session key derives from the master

key and a publicly known, random salt value. The salt varies for each file. Because

CryptDisk uses a master key to obtain file keys, it is easy to change the password.

Price warns that buffers in memory could be swapped to disk by virtual memory.

32



In other words, an IDEA key may be inadvertently written to disk, allowing anyone

at the console to grab the key. Bruce Schneier points out that Norton Diskreet

suffered from this problem as well[36]. Peter Gutmann discusses such swap file issues

in archives of the sfs-crypt mailing list[13].

1.5 Common Features

This section examines the common features in cryptographic storage file systems.

Table 1.1 summarizes differences among the case studies. In this section, “the file

systems” refers to all of the case studies.

File System Granularity of Protection Operating System Unique Feature
CFS Directory SunOS, Linux Networkable
SFS Partition MS-DOS Emergency Recovery
TCFS User Account Linux Threshold Sharing
SecureDrive Partition MS-DOS Key Files
SecureDevice Partition MS-DOS Easy Backup
CryptDisk Partition MacOS Drag-and-Drop

Table 1.1: A comparison of cryptographic storage file systems.

1.5.1 Key Management & Sharing

Most of the file systems leave key management up to the user. That is, sharing

involves disclosing your personal password. If a cryptographic file system promotes

sharing, it should have a transparent mechanism to obtain keys when necessary,

rather than forcing the user to juggle many passwords. Furthermore, to integrate a

cryptographic file system with existing authentication systems such as Kerberos or

SecureID, a design must not mandate a specific method for user authentication.

1.5.2 Portability

Based on the amount of online discussion, CFS is by far the most widely used cryp-

tographic file system. One of the driving forces behind CFS is portability. Because

33



CFS uses an NFS loopback server rather than the VFS/Vnode interface of the kernel,

CFS quickly ports to other UNIX systems. However, such portability comes at the

cost of context switching between kernel and user mode. When CFS is used over a

network, files must travel through several NFS servers.

1.5.3 Transparency

General users will not welcome a cryptographic file system unless the internal cryp-

tographic routines are transparent. Fortunately, most of the file systems have a good

level of transparency. Changes in access semantics and performance are not usually

noticeable for small files. Traditional file system utilities such as fsck would other-

wise require significant modification. By making the cryptography transparent, users

can perform their tasks unhindered, and file system utilities can operate without

modification.

1.5.4 Encryption Costs

Since encryption can add significant delays for file I/O, cryptographic file systems try

to reduce the amount of encryption and decryption. For instance, CFS uses a novel

method of encryption in the OFB+ECB mode[4]. This mode allows pre-computation

of part of the key stream. When a block requires encryption, the file system must

simply XOR a pre-computed key stream and encrypt a block.

1.5.5 Fine-grained Access Control

Cryptographic file systems must choose an appropriate level of protection granularity.

By grouping files together protected by one key, significantly fewer cycles are spent

creating key streams. However, the grouping also increases potential damage from a

lost or stolen key. The examined file systems have granularity ranging from directories

to partitions.

34



1.5.6 Key Changes & Revocation

Changing a key or revoking group membership should not consume an excessive

amount of CPU time. Users demand that normal operations run in a reasonable

amount of time. For instance, TCFS uses a login password to decrypt a key ring. If

the login password changes, one need only re-encrypt the key ring. The files protected

by the keys in the key ring do not necessarily require re-encryption. By using indirec-

tion, it is possible to minimize the cascading effects of a key change or membership

revocation. However, this may result in a penalty to security. An adversary could

mount an attack on the system by using old key rings. Therefore, it is not appropriate

to use simple key indirection if an adversary steals a key ring.

1.5.7 Intrusion Tolerance

Cryptographic file systems must tolerate some level of intrusion. For instance, a user

should not be able to use his or her password to decrypt a global password file for every

user. File systems should also tolerate collusion amongst system administrators[11].

Often secret sharing schemes can drive the probability of compromise to near zero.

1.5.8 Reliability

Escrow is a touchy issue. But some form of key recovery is necessary since users often

forget passwords. This may not be important for temporal data such as email, but

it is important for long-term storage. A lost key implies lost data. Escrow or highly

reliable backups forgo some security for the persistence of data.

1.5.9 Trust in System Administrators

One feature of a cryptographic file system is that the user needs not trust the system

administrator to keep files confidential. However, the system administrator should

perform his or her job of maintaining hardware and performing backups. In all of the

case studies, the file systems trust the system administrator to maintain file integrity

and keep files available.

35



1.5.10 Integrity

Most cryptographic file systems provide confidentiality, but not integrity[17]. That

is, an adversary could undetectably change bits on the disk. The legitimate user

might only notice a corrupted block of plaintext. The file systems do not detect

unauthorized modification. A user might notice modifications when garbled files

appear. In networked file systems, some mechanism to detect tampering is necessary.

MACs or digital signatures may help, but re-signing files continuously will have serious

performance drawbacks.

36



Chapter 2

Design Requirements

Here we list the necessary properties and features of our cryptographic storage file

system. First, we state the general criteria of Cepheus. Next, we classify failures as

tolerable or intolerable. Finally, a trust model is developed and justified. In the next

chapter, we propose a design to meet the criteria.

2.1 Design Criteria

Cepheus protects the confidentiality, integrity, and availability of storage. The fol-

lowing criteria guided the design of Cepheus:

• Ensure the confidentiality of file data and directory contents

• Maintain integrity of file data, directory contents, and metadata

• Provide for availability of file data, directory contents, and metadata

• Facilitate simple group sharing with similar semantics to the UNIX file system

• Allow efficient random access to file data, directory contents, and metadata

2.1.1 Confidentiality

Cepheus must protect file data and directory contents from unauthorized access. This

includes information such as file names and data blocks, but not metadata such as

37



modification times, data block pointers, and other stat information found in the in-

ode. Only users explicitly granted access should be able to read the plaintext contents.

For instance, a system administrator does not implicitly have access to plaintext. This

separates the privilege of storage management from that of confidentiality[32].

We do not protect confidentiality of metadata in order to enable better crash

recovery. For instance, if data block pointers were encrypted, the file server could

not piece together a partially written file. While this may allow for limited traffic

analysis, we consider the ability to recover from failures more important.

2.1.2 Integrity

Cepheus must detect damage to integrity of file data, directory contents, and meta-

data. However, this does not require prevention against unauthorized alteration. We

explain prevention in the next paragraph. For integrity we merely stipulate unautho-

rized alterations be detectable. This allows users to know with certainty that a file is

what it claims to be. An adversary cannot add to file contents or change metadata

without being detected.

2.1.3 Availability

We explain the difference between integrity and availability in subsection 2.3.4. Be-

cause integrity can only detect unauthorized alterations, we further require prevention

of unauthorized alterations. For instance, if an unauthorized user deleted all the files,

the requirements of subsection 2.1.2 still hold. The deletions are detectable. File

data, directory contents, and metadata must be readily available and not subject to

simple denial of service attacks.

2.1.4 Secure Group Sharing

Cepheus must allow for group sharing with similar semantics to those of the UNIX

file system. However, the permissions must be cryptographically enforced. As an

example, consider a file with group read access, but no write access. A group member

38



should not be able to create authentic writes even though the group member can

decrypt and read file contents. Only a group owner should have the ability to add

new members to the group.

2.1.5 Efficient Random Access

Cepheus file reads and writes must perform similarly to that of a traditional file

system. For instance, reading the last or first byte of a file should take approximately

the same time. Moreover, encryption should be used conservatively by minimizing

online cryptographic operations. Operating on a small file should execute quickly.

Operating on a large file should perform efficiently.

2.2 Failure Conditions

All systems are subject to uncontrollable failures. However, tolerable failures should

be recoverable. Below we classify failures as tolerable or intolerable. For tolerable

events, we discuss necessary properties of recovery.

2.2.1 Intolerable Failures

We expect all hardware to operate correctly or to recover on its own. Cepheus does

not attempt to recover from catastrophic failures beneath the block I/O level. For

instance, the underlying media (i.e., the hard drive) should ensure reliable storage of

information. Strategies such as the Redundant Array of Inexpensive Disks (RAID)

can make the likelihood of unrecoverable failure extremely low.

2.2.2 Tolerable Failures

Several events can cause a file system to enter an inconsistent state. In such tolerable

failures, Cepheus must recover to a consistent state. In a typical UNIX file system,

an unexpected power failure could leave a partially written file. This may cause the

inode table to be inconsistent with the freemap, for example. Also, writes to the

39



cache may not have been fully flushed to disk, leading to lost file data. Kernel panics

and other software crashes are treated just like power failures since the end result

is the same. Cepheus must also recover from incomplete operations resulting from

client crashes, file server crashes, and group database server crashes. The next section

describes these modules in more depth.

Since Cepheus introduces the idea of cryptographic integrity built into a file sys-

tem, it must gracefully recover from integrity check failures. If a file contains unau-

thorized modifications, the file system should return an error and refuse to serve the

file. The user agent can recover damaged files through reconciliation with the user.

Similar constraints apply when a key is lost or decryption fails.

2.3 Cryptographic Storage Trust Model

This section defines and defends a trust model for Cepheus. We incrementally build

up our trust model, ensuring that Cepheus stays as secure as conventional file systems

and wherever possible more secure. Recall that Cepheus has five criteria for storage:

confidentiality, integrity, availability, group sharing, and random access. Random

access to file data is independent of the principals in our trust model. This issue

appears in the next chapter. We first define the principals in our model, then begin

with a trust model for confidentiality.

2.3.1 Trust Model Principals

Below are the principals in our trust model, as depicted by figure 2-1.

• A client machine is a multi-user workstation. A client daemon and one or more

user agents run on this machine.

• A client daemon communicates with user agents and file servers.

• A user agent acts on behalf of the user and retrieves file and group keys. It

responds to requests from the client daemon and communicates with the group

database server. Each user has a user agent.

40



• A file server stores and retrieves files for client daemons. It also communicates

with the group database server.

• A group database server maintains group membership information, user public

keys, and group symmetric keys. It responds to requests from file servers and

user agents.

• A network connects client machines, file servers, and the group database server.

The network is publicly accessible.

• A group consists of a list of users which share a common privilege for file access.

User Agent

Client Daemon

Client Machine

User Agent

User Agent Network

Group Keys

File Server

Network

Group Database Server

Network

Figure 2-1: Interactions among the trust model principals in Cepheus.

2.3.2 Confidentiality

Files remain confidential if and only if users with explicit permission can understand

the stored file data. For instance, a file server administrator should not implicitly be

able to decrypt the files; encrypted files are opaque to the server. Client-side encryp-

tion can easily provide for confidentiality. A simple trust model for the confidentiality

of file data and directory contents is as follows:

1. A file server maintains the reliable storage of files.

41



2. A user agent is completely trusted by the user. It performs decryption and

encryption at the request of the client daemon. It trusts that client daemon

requests are authentic and that the client daemon will not disclose plaintext to

unauthorized parties.

3. A client machine will not snoop in the buffer cache or keys of the user agents.

It is either a single-user machine, or the users trust all persons who effectively

have root access.

4. A client daemon trusts that file system requests from the kernel are authentic.

It maintains a buffer cache of plaintext and ciphertext for each user, and asks

user agents to perform decryption and encryption.

5. The principals trust the network only for reliable packet delivery.

Clearly, this model is more secure than that of a conventional file system. Only

the user agent has access to plaintext. This is the model used by most conventional

cryptographic storage file systems.

2.3.3 Integrity

To provide for integrity, it must be possible to verify that no unauthorized person has

modified the file data, directory contents, or metadata. For instance, if the file server

or network were to flip a bit of the encrypted file, the user agent should detect the

alteration. Cryptographic hashes, message authentication codes, or digital signatures

can provide for integrity. In addition to the trust model for confidentiality, we require:

6. At the request of the client daemon, user agents create and verify an integrity

field that is not easily forged.

7. The file server and group database server will not collude with users to obtain

unauthorized privileges.

8. The client daemon will not request a user agent to create an integrity field for

bogus data.

42



Since only the user agent can create a valid integrity field, the user agent can detect

unauthorized changes. Other users and the file server cannot feasibly construct an

authentic integrity field on their own. But a user with read access could collude

with the file server to gain authenticated write access. For this reason, our trust

model forbids such collusion. It is possible to omit this requirement with digital

signatures, but we have not discovered an efficient mechanism to do so. Note that

these requirements do not hurt or improve confidentiality. Moreover, we still maintain

a more secure system than a conventional file system.

2.3.4 Availability

In network link security, one works to secure a link between two end points. If an in-

tegrity check fails, the client can simply ask for a retransmission. But in cryptographic

storage, the client is both the starting and ending point. There is no opportunity for

retransmission if an encrypted file is lost. Consequently, cryptographic storage must

rely on prevention rather than detection to preserve integrity. This leads to our third

goal, availability.

Denial of service attacks are notoriously difficult to prevent. For instance, a

malicious user could consume all the resources of the file server by making bogus

requests. Such an attack reduces the availability of a service. The next paragraphs

explain what is necessary to achieve reasonable availability.

Cryptographic storage can separate the responsibility of storage management from

that of confidentiality[32]. Unfortunately, we cannot entirely separate storage man-

agement from availability. Consider two trust models of a server administrator: the

first model trusts the server administrator merely for reliable storage. The server

acts on requests to read and write files. A second model additionally trusts the server

administrator to verify authorization of user requests.

In both models, the client can maintain confidentiality and detect failures of in-

tegrity. But availability requires cooperation with the server. If the file server per-

forms no authorization, a benevolent server cannot distinguish authorized users from

unauthorized users. Hence, the server cannot prevent unauthorized reads and writes.

43



If the server performs authorization, we can prevent unauthorized requests to modify

files and metadata. In the worst case (a malicious server), the trust models result

in the same availability; a malicious server can ignore authorization. But in the

expected case (a benevolent server), the second model can prevent unauthorized re-

quests. Consequently, unauthorized users cannot simply remove files. Moreover, we

can improve confidentiality. Unauthorized users must exert effort to break the au-

thorization mechanism before they can attack the confidentiality. In addition to the

trust model for confidentiality and integrity, we require:

9. The file server reliably stores files and verifies authenticity and authorization of

requests by consulting with the group database server. The file server believes

in the authenticity of user information from the group database server. There

is an integrity-protected link to the group database server.

10. The group database server responds correctly to authorization requests and

maintains authentication and authorization information of users.

If the encryption keys are not derivable from the authentication process, confiden-

tiality, integrity, and availability remain independent of each other.

2.3.5 Group Sharing

With group sharing, a single key allows a group member to access files assigned to

the group. Unfortunately, giving away a group key also gives away the ability to add

new group members. However, the file server can prevent this unauthorized spread

of privileges. The file server verifies that a user belongs to a group by consulting with

the group database server. Our trust model additionally requires:

11. The file server is trusted not to obey requests for which the group database

server denies access. The file server believes in the authenticity of group mem-

bership information from the group database server.

12. The group database server keeps up-to-date membership lists and distributes

group keys.

44



13. Only user agents with group write access can create authentic integrity fields.

14. Users are trusted to be responsible and not disclose private information through

covert channels.

We now have all the features of a conventional network file system, but we have

provided for each in a secure manner. We note that for strict confidentiality with

group sharing, we must include item 14 in the trust model. Otherwise group sharing

could affect confidentiality of files. A user could simply redistribute plaintext in an

out-of-band channel. Furthermore, a group member with read access could collude

with a file server to create valid integrity fields.

Our final trust model enables confidentiality, integrity, and availability in a net-

work file system with group sharing. We were not able to tighten the trust model

any further without losing confidentiality, integrity, or availability. With this model

in mind, we can now design Cepheus in the next chapter.

45



Chapter 3

Cepheus Design

We first discuss fundamental concepts for group sharing and random access. Then

we describe the four modules of Cepheus: the user agent, the client daemon, the file

server daemon, and the group database server. Figure 3-1 shows how the modules

interact. We rationalize how the design of Cepheus complies with the requirements

given in chapter 2. Finally, we summarize design alternatives.

3.1 Group Sharing

Group sharing consists of two ideas: maintaining group membership lists and main-

taining group access rights. A group database server facilitates for the former while

the file server and file structures take care of latter. Section 3.3 explains the details

of the file structures. We discuss the group database server in section 3.7.

Much of the group sharing depends on the concept of a lock box. We use this term

in reference to a key encrypted with another key. The lock box metaphor corresponds

to the lock box used by real estate agents. A realtor can attach a small lock box to the

door of a house for sale. Within the box is the key to the house. Anyone who knows

the combination to the lock box can indirectly obtain the house key. In this way, the

lock box can exist out in the public, but only authorized persons can open the lock

box to reveal the protected key. Lock boxes are similar to master key systems[8].

47



Requests

User

UA

CD

UA

UA

Key Management RPCs

Disk

FS

Client-Side Server-Side

Plaintext Cache

NFS Loopback

File System RPCs

Checks
Authentication

Encryption/Decryption

Group Database Server

Figure 3-1: The client daemon (CD) acts as an NFS loopback server on the client
workstation. The CD asks the appropriate user agent (UA) to encrypt, decrypt, sign,
or verify data. Each CD communicates with the appropriate file server (FS). The FS
checks with the group database server (GDS) for authentication and authorization of
a user agent. The thick dotted line represents confidential storage.

3.2 Random Access

In a traditional file system, the running time of a read or write request is mostly

independent of the location of the data in the file. For instance, reading the last

block of a 40MB file should take about as long as reading the first block of a 40MB

file. Below we explain how Cepheus preserves this independence.

Cepheus encrypts each file data block separately. Figure 3-2 depicts the encryption

of one file data block. Because a block cipher typically has an input size of 8 bytes,

we must split the 8KB file data block into 1024 smaller blocks, P1...P1024. We use

RC5 with the cipher block chaining (CBC) mode to encrypt these smaller blocks[31].

The CBC mode allows one to chain several encryptions together. Before encrypting

a plaintext block, the mode first XORs the previous ciphertext with the current

plaintext. When using an initialization vector (IV), this mixing action lets a single

key securely encrypt several chained blocks. Since all blocks within a file use the

same key, we use IVs to make sure similar plaintext blocks in a file do not encrypt to

48



similar ciphertext blocks. Each 8KB block in Cepheus has its own 8-byte IV, stored

in the data pointer as shown in figure 3-3.

+ +

Block CipherkeyBlock Cipher

IV

key

C1C0

P1

Block Cipherkey

Cn

Pn

Cn-1

Figure 3-2: In Cepheus, file data is encrypted in CBC mode on a per block basis.
Block ciphers typically have two 8-byte inputs.

Reading file data involves two operations: decrypting data blocks and verifying

an authenticity/integrity check field (AICF). After Cepheus obtains the encrypted

block, IV, and file key, the block can be decrypted. With the plaintext block and

AICF, Cepheus can verify the integrity of the file data.

Similarly, writing file data involves encrypting data blocks and creating an AICF.

However, the exact writing procedure, which we explain in subsection 3.3.2, is more

involved. Whenever Cepheus writes a block, the IV changes as well. This prevents

an adversary from analyzing the history of a file (e.g., what part of the file changed).

We note that Blaze’s CFS uses IVs for a different reason. CFS uses an IV to prevent

similar blocks from appearing in different files because several files within a directory

share the same key.

Pointer

Contents
of a Data Initialization Vector

Address
Disk 

4-Byte 8-Byte

Cryptographic Hash
20-Byte 

Figure 3-3: The data pointer contains an IV and hash node in addition to the pointer
to the data block.

49



3.2.1 Delayed Re-encryption

When a group member departs from a group, the corresponding group key must

also change. Moreover, the contents of lock boxes protected by that group key must

change. In other words, all files associated with the group require re-encryption. Re-

encrypting thousands of files at once would introduce significant delay. To avoid this

delay, we relax the requirements of re-encryption due to group membership changes.

Re-encryption results from two basic causes: group reorganization and key com-

promises. For each cause, we recognize a satisfactory way to perform re-encryption[15].

In casual group reorganization, we can simply mark a file to be re-encrypted, putting

off the re-encryption as long as possible. Such delayed re-encryption permits a former

group member to read old cached data, but not new updates. AFS uses a similar

model because little can be done to disallow the client from reading its own cache.

On the other hand, a key compromise requires more immediate attention. Expedited

re-encryption would quickly re-encrypt files in the case of serious emergencies. Since

we expect most causes to have a benign nature (group reorganization), Cepheus uses

delayed re-encryption by default.

To invoke delayed re-encryption, the owner first marks the cryptographic dirty bit

of the file and sets up a new file key in a lock box. Then any group member with

write access can later re-encrypt the file and clear the dirty bit. The file does not

need re-encryption until someone makes a change to the file. Note that the entire

file must be re-encrypted at once. We do not allow one portion of the file to remain

encrypted in an old key. We can get away with this lazy behavior because of the

same reason AFS does not prevent a client from reading its cache. We perceive one

problematic issue with transparency. For example, delayed re-encryption may cause

unexpected delay when a re-keyed file is opened in append mode. Cepheus would

have to re-encrypt the whole file, not just the appended data.

50



3.2.2 Buffer Cache: Delayed Encryption

Almost all file systems use a buffer cache of recently read blocks. The cache allows

fast access to blocks we expect to read again soon. With the addition of cryptography,

a cache becomes even more useful. Cepheus uses a plaintext and ciphertext buffer

cache on the client-side to absorb file writes and redundant encryption. A delayed

write policy waits for a set period of time before writing the dirty blocks to the

file server[41]. Since a newly-written block is often overwritten or deleted within a

few minutes of its creation, the delayed write policy can absorb many unnecessary

writes[27]. In a similar manner, our buffer cache delays encryption of newly-written

blocks. Hence, a delayed encryption policy can significantly reduce the amount of

encryption for file writes. On the other hand, delayed writes can make recoverability

more complex. If a client machine crashes before flushing buffers to disk, files may

become inconsistent.

3.3 File System Structures

Cepheus augments the metadata found in an inode. We add a few twists to the

traditional UNIX file system for cryptographic storage. We did not intend to squeeze

every cycle using techniques from the Berkeley Fast File System or XFS[23, 40].

However, no part of the design prohibits the use of advanced structures found in such

file systems. Much of the structure is based on the X-File System[12].

All data on the disk is written in 8KB blocks. For instance, inodes are grouped

together to fill a block. Ideally, structures should be a power of two to pack the blocks

tightly. We use a large block size to reduce the overhead of encryption and to absorb

several writes into one re-encryption operation.

3.3.1 Inodes

In addition to the standard fields, our inode contains the following attributes:

• owner lock box (file key locked for owner’s use only)

51



• group lock box (file key locked for group’s use only)

• owner old lock box (old file key locked for owner’s use only)

• group old lock box (old file key locked for group’s use only)

• authenticity/integrity check field

• group key ID

• file key ID

• old file key ID

256
Data
Pointers

...

256
Data
Pointers

...

256 Data
Pointers

...

AICF

256 Data
Pointers

...
Key Lock Boxes

In
od

e

Doubly Indirect Data Pointer

Singly Indirect Data Pointer

Direct Data Pointer D
at

a 
B

lo
ck

T
o 

D
at

a 
B

lo
ck

s

T
 O

   
 D

 A
 T

 A
   

   
B

 L
 O

 C
 K

 S

Attributes

Figure 3-4: Using one direct, one singly indirect, and one doubly indirect data pointer,
a single inode in Cepheus can address up to 514MB of data.

The lock boxes contain encrypted file keys. Only authorized users can obtain

the key to open the lock boxes. We keep the previous version of the lock boxes for

purposes of delayed re-encryption. A file owner updates the current lock boxes to

re-key a file. If the old and current lock boxes differ, a user agent realizes the file

requires re-encryption. Once the file is re-encrypted with the new key, the old lock

box is set to the contents of the current lock box.

3.3.2 Authenticity/Integrity Check Field

Cepheus uses an authenticity/integrity check field (AICF) to verify the integrity of file

data and metadata[17]. The slanted tree structure of the AICF parallels exactly the

structure of the direct, singly indirect, and doubly indirect data pointers in figure 1-

2. This leads to a natural structure that flows conveniently with existing file system

52



operations. For instance, the IV tends to be read immediately before reading its

related data block. This significantly reduces the number of disk reads at the cost of

a large branching factor.

Each data pointer contains a 20-byte hash of its data. Figure 3-5 denotes this

20-byte value with a circled H. At the top of the tree, the AICF is the keyed hash of

its children.

8KB Data
Block

8KB Data
Block

8KB Data
Block

H H H H HHH

Metadata

8KB Data
Block

8KB Data
Block

8KB Data
Block

8KB Data
Block

Pointer
Direct Data

H H H

...
256 Pointers 256 Pointers

256 Pointers256 Pointers

...

Inode AICF

8KB Singly Indirect
Data Pointer Block

8KB Doubly Indirect
Data Pointer Block

8KB Singly Indirect
Data Pointer Block

8KB Singly Indirect
Data Pointer Block

H

... ...
Figure 3-5: The authenticity/integrity check field (AICF) for the file data consists of
a cryptographic hash tree. Contents of the dashed box appear in the inode.

We use the HMAC construction of Bellare, Canetti, and Krawczyk as our keyed

cryptographic hash[2]. The HMAC function is defined as

HMACk(x) = F (k, pad1, F (k, pad2, x))

where the commas represent concatenation, k is the key, pad1 and pad2 are sequences

of a known constant, F is cryptographic hash, and x is the data being authenticated.

In Cepheus, we use SHA1 as F and the file key as k.

Only someone with the file key can verify or create the AICF. If the file server

colludes with an outsider (breaking our trust model), our design does not guarantee

integrity. We would like to loosen this trust requirement, but we have not been able

to avoid public-key techniques for such a model.

Reading an integrity-protected block works as follows. The client daemon obtains

53



the encrypted block in question and the inode containing the AICF. The client daemon

then requests all the data pointer blocks which contain siblings to the nodes on the

hash path from the block in question to the AICF. Next, the client daemon passes

this information to the user agent for verification. The user agent verifies the hashes

along the path from the block to the AICF. If the AICF is correct, the user agent

returns the plaintext to the client daemon.

By caching these answers, we can avoid much recomputation for subsequent

reads[18]. The client daemon caches data pointers in 8KB blocks. Moreover, the

user agent will not recompute a hash for already verified paths. Hence, the cost of

reading a block without interleaved writes is O(1) amortized over a sequential read

of the entire file of n blocks. We will read each data pointer once and compute each

hash node exactly once.

Writing an integrity-protected block works in a similar manner. After writing a

block to the buffer cache, the user agent schedules the block for encryption and a new

AICF. The client daemon will eventually propagate updated data pointer blocks and

the AICF to the file server. In the worst case, a write will take O(logn) time to re-

compute a path from the block in question to the AICF. However, the large branching

factor (256) makes the depth of the tree at most three levels. This is effectively a

constant factor.

3.3.3 Crash Recovery

Since our file server uses its own file structures, we must create our own version of

fsck. As the structures are very similar to conventional file systems, it should not be

extremely difficult to make modifications to fsck. Because we keep old lock boxes in

the inode, we can attempt recovery of partially re-encrypted files.

If the plaintext cache is not flushed to disk because of a crash, the changes will be

lost, but the file system will remain consistent. We could try other caching policies

for better reliability at the cost of performance. We expect some problems related to

integrity when the file server attempts to salvage a damaged partition. Since parts of

the disk may be lost, the AICFs will report spurious errors.

54



3.4 Client Daemon

The client daemon acts as a dummy process to intercept local file system calls (see

figure 3-6). The client daemon acts on requests from the kernel, makes requests of

the user agent, and communicates with the file server. By using an NFS loopback

server, we can avoid writing any in-kernel code. The loopback server pretends to be

an NFS server, acting on file requests to a virtual directory.

return plaintext
block

please decrypt and
check integrity

return encrypted
block

CD

time

get block

UA FS

Figure 3-6: An example of reading a block: after the client daemon intercepts a
read request from the NFS loopback server, it obtains a block through the following
method. Had the block already existed in the cache, the client daemon would skip
these steps and simply return the cached data.

3.4.1 Buffer Cache

An important decision involved placement of the plaintext and ciphertext cache in

the client daemon. However, we made several arguments to keep the cache in the

user agent. In the end, all of the arguments to keep the cache in the user agent were

either impractical or obviated by the interface between the client daemon and user

agent.

We decided to place the cache in the client daemon for three reasons. First, the

client daemon will unavoidably see the flow of plaintext through the NFS loopback

server. Hence, the user must trust the client daemon anyway. Because only one pro-

cess on a machine can intercept NFS requests, one client daemon must intercept the

file requests for all the users. Second, keeping the cache in the client daemon reduces

55



context switching and unnecessary memory copies. All decryptions and encryptions

can happen in-place. The user agent can easily encrypt and decrypt information us-

ing shared memory by request of the client daemon. Third, we reduce the number of

client RPC handles. Each client of the file server must obtain a client RPC handle

by contacting the file server. The handle acts as a name to make requests of the file

server. If each user agent were to contact the file server, the user agents would each

need a client RPC handle. By making all file server requests flow through the client

daemon, we reduce the number of client RPC handles. Moreover, the client daemon

is a more natural place to keep track of client RPC handles.

While the client daemon controls the cache, the user agent can easily specify a

storage location for the cache. For instance, the agent could ask the client daemon

to store the cache in a locally encrypted file, a PCMCIA disk, or in memory.

We could have used other policies for flushing dirty blocks to disk. For instance,

the write-on-close policy waits to write buffers until the file closes. We avoid this

policy because with large files, the encryption can be costly if we wait for the file to

close. The delayed encryption allows us to flush all writes related to a particular file

after a set period of time.

3.4.2 File Server Communication

A second decision involved who should talk to the file server. We decided to let the

client daemon function as a NFS loopback server – listening for file requests. Because

the client daemon now talks to several different processes, both local and remote, the

implementation involves multitasking and shared memory. We explain these details

in section 4.2.

3.5 User Agent

The user agent responds to requests from the client daemon and communicates with

the group database server. The user entrusts the user agent with his or her long-term

private key. Whenever the agent needs to retrieve a file key or group key, it contacts

56



the group database server and opens the appropriate lockboxes with the user’s private

key.

3.6 File Server

The file server responds to Remote Procedure Calls (RPCs) from the client daemon.

The server also has a raw interface to a disk and implements 13 system calls:

• getattr: get file attributes

• setattr: set files attributes

• lookup: look up file name

• read: read from file

• write: write to file

• lock: lock or re-lock a file for a bounded duration

• unlock: unlock a file

• read dp block: read an indirect data pointer block

• write dp block: write an indirect data pointer block

• statfs: get file system attributes

• create: create file

• link: create link to file

• unlink: decrement a file’s reference count

Many of the above RPCs come from the NFS protocol. However, noticeably

absent are the readlink, remove, rename, symlink, mkdir, rmdir, and readdir

RPCs. Because the file server has no access to plaintext directories, the client must

take care of all operations to directory entries. For this reason, we added a locking

mechanism to achieve atomicity of client daemon RPCs which each generate several

file server RPCs.

Note, we must also authenticate and authorize individual RPCs. If an adversary

could forge authentic file server RPCs, we could not ensure availability of data. Hence,

the RPCs require cryptographic authentication in addition to the confidentiality and

integrity provided by Cepheus.

57



To check authorization, the file server obtains information from the group database

server over an integrity-protected link. The group database server and file server can

exchange long-term public keys through an out-of-band mechanisms. Each could then

use the public keys to negotiate session keys.

The authentication of read requests is optional. Since file data is encrypted, one

should not have to rely on access control, but we do not want to tempt fate. We set

as default authentication of read requests, but the file server administrator can toggle

this option to tune performance.

The file server must also make requests to the group database service. To reduce

the online communication cost with the group database server, the file server peri-

odically requests a complete dump of the authorization database. This allows for

quick membership verification. Moreover, the file server can send the locked group

keys when a user agent requests a file. In this way, the user agent need not always

communicate with the group database service to obtain a group key.

3.7 Group Database Server

The group database server maintains the master list of group membership and user

public keys. It also facilitates the distribution of shared symmetric group keys. We

assume there exists a mechanism to initially add authenticated public keys of system

administrators to the group database server. Further operations use the following

RPCs:

• Add User: If authorized, given a name and public key PK, return a new UID

and store PK. If name already used, error.

• Delete User: If authorized, mark UID and PK UID as disabled. Remove UID

from all group lists. Error if UID is currently a group owner.

• List users: If authorized, list all names of users.

• User 2 UID: If authorized, given a user’s name, return the UID.

58



• UID 2 User: If authorized, given a UID, return user’s name.

• Get User PK: If authorized, given a UID, return the PK UID.

• Set User PK: If authorized, given a UID and PK UID, store the PK.

• Get User Permissions: If authorized, find a bitmask representing the group

database permissions of a user.

• Set User Permissions: If authorized, set the group database permissions of a

user according to a bitmask.

• Add Group: If authorized, given a new group name and group key encrypted

with creator’s PK, return a group ID. Group is owned by the creator.

• Delete Group: If authorized, given a GID, delete all info about the group.

• List Groups: If authorized, list GIDs

• Group Name 2 GKID: If authorized, given a group name, return its group key

ID. If does not exist, error.

• GKID 2 Group Name: If authorized, given a group key ID, return its name. If

does not exist, error.

• Get Group Key: If requester is in the membership, return G PK UID. The user

can then decrypt with his secret key SK. [authorization depends on UID and

GID of requester]

• Add Group Member: If authorized, given a GID, UID, and group key encrypted

in UID’s PK, add UID to the membership (G PK UID).

• Delete Group Member: If authorized, given a GID and a UID, remove UID

from the membership and delete G PK UID. [authorization depends on UID

and GID of requester]

• List Group Members: If authorized, given a GID, return the UIDs of member-

ship. [authorization depends on UID and GID of requester]

59



• Change Group Key: Complex. Every member needs the new key. If autho-

rized, given a new key encrypted with owner’s PK, and the same key encrypted

with each member’s key, flush the old membership and replace. [authorization

depends on UID and GID of requester]

• Change Group Owner: Bestow another user with ownership of a group.

• Get Member’s Groups: If authorized, return a list of all the groups which

contain the member.

• User in Group: Returns whether a user is a member of a group.

The server operates in a manner such that it never sees a symmetric group key

in the clear. When a user agent encounters a file protected with a group key, it

contacts the group database server for a lock box containing the group key. The

group key leads to another key which can decrypt the file. Since only the file owners

and group members can open the lock boxes, files data and directory contents remain

confidential.

This authentication system uses public key cryptography, but it could could have

been implemented using secret key cryptography. Secret key cryptography may exe-

cute faster, but public key cryptography is more straightforward to conceptualize and

design.

3.8 Design Alternatives

This section discusses alternatives to our design and reasons for their non-inclusion.

3.8.1 Ciphers

We selected RC5 because it can quickly generate key schedules, but no part of the

design prohibits the use of another cipher (e.g., DES or the coming AES). We could

have also used VRA or SEAL in a pseudo-random function mode instead of a block

cipher. That is, the cipher is given a block number, a key, and a length. The cipher

60



then returns the appropriate pseudo-random mask for that extent. The mask is

simply XORed with the plaintext. A drawback here is that re-encryption with the

same key is subject to a chosen plaintext attack. If an adversary were to chose a

plaintext, obtain the encryption, then see the encryption of a changed block, the

adversary could simply XOR the old plaintext with the old encryption to obtain the

key. The key would reveal the new plaintext.

3.8.2 Initialization Vector

We considered using one IV per file rather than one IV per block. This led to a few

options. We could use one file IV as a seed to generate a pseudo-random IV for each

block of that file as shown in figure 3-7. This would conserve space and allow the

data blocks to be well-aligned on 8KB boundaries. However, changing any IV would

require changing all IVs.

inode

8192 Data BytesIV

8192 Data Bytes

...

Figure 3-7: A pseudo-random function seeded with a block number and one shared
IV could generate new IVs.

3.8.3 Authenticity/Integrity Check Field

We considered another mode for integrity. In his discussion on cryptographic pro-

tection of storage, Stephen Kent described the plaintext-ciphertext block chaining

(PCBC) mode[17]. Figure 3-8 explains the structure of this mode. The nice feature

about PCBC is that one change in the ciphertext will affect the rest of the file after

61



the change. The plaintext feedback propagates errors forward. This allows easy de-

tection of unauthorized modification when the integrity field is the last block, but it

also makes the storage much more brittle. One corrupted bit could ruin a file.

+ +

+ + +

Block Cipher

C1

Block Cipher Block Cipher

C2 Cn

key key key

C1 CIn-1

P1

IV

IP1 IP2

PnP2

IPn-1

Figure 3-8: In PCBC mode, Ci = the encryption of Pi
⊕
IPi−1

⊕
Ci−1.

If we were not to use a hash tree, the entire file would need to be downloaded,

decrypted, and hashed in order to verify the integrity of just a single block. This

would seriously prevent efficient random access for file reads.

We could have used a plain cryptographic hash, rather than a keyed hash for

the integrity file of the file data. However, this requires that the plaintext remain

confidential. Since a chosen plaintext attack is easy to mount and the inode metadata

is not kept confidential, we kept the root of the AICF tree as a keyed hash.

Another alternative to a keyed hash is a digital signature. Our design tries to

avoid overuse of public key cryptography because it is significantly slower than most

symmetric key cryptography. However, we estimate that most files will not often

require re-signing because most large binary files are read-only.

62



3.8.4 Delayed Re-encryption

Our initial design allowed parts of a file to be encrypted by many different keys.

That is, we would only re-encrypt a block with the new key if that block changed.

We opted for a simple scheme whereby the entire file is re-encrypted when the key

changes. If different blocks within a file can have different keys, our inode will have

an unbounded size and maintaining security will become more complex.

3.8.5 Buffer Cache

We considered three policies for cache consistency[41]. The simplest strategy, write

through, writes a block to the file server immediately. The block remains in the client’s

cache for future reading. This achieves consistency, but does not reduce the amount

of encryption or number of writes to the file server. A second strategy, delayed write,

waits to write a block to the file server until the block is about to be ejected by the

replacement policy[27]. But a client may not see another client’s changes immediately

– depending on timing. A third strategy, write-on-close, waits to flush buffers until a

file closes. For implementation reasons, we chose the delayed write strategy. However,

the third strategy would have a better balance between consistency and performance.

63



Chapter 4

Implementation Details

We implemented Cepheus in Red Hat 5.1 with the Linux kernel version 2.0.34. The

implementation uses the standard Linux RPC package with the UDP protocol. For

the purpose of quickly getting most of the functionality to work, we made several

simplifications to the model of Cepheus. In particular, we integrated most of the user

agent and client daemon as one process. This allowed the file system to quickly come

online. The user gives the client daemon his or her secret key. To intercept file system

requests, the client daemon acts as an NFS loopback server for the 15 standard NFS

RPCs[24]. The NFS loopback client is built-in with the Linux kernel.

4.1 User Agent

We implemented most of the user agent functions in the client daemon. However,

the user agent still contains the command-line interface to maintain users and group

membership.

4.2 Client Daemon

The client daemon actually consists of two related processes. When the CD starts,

it forks into a user agent registration process and an NFS loopback process. The

CD REGISTER and CD NFS LOOPBACK processes have shared memory and a file

65



descriptor for message passing (see figure 4-1).

CD_REGISTER CD_NFS_LOOPBACK

CD

fork()

UA Plaintext CachesUA Registration

UA

Figure 4-1: The client daemon (CD) forks into two processes. CD REGISTER and
CD NFS LOOPBACK share memory for a registration data. The user agent (UA)
and CD NFS LOOPBACK share memory for the buffer cache.

CD REGISTER listens for new UAs and handles the mutual authentication of

the UA. The UA executes a file setgid to the group csfs to connect to a well-known,

named stream pipe for a UNIX domain socket. When a UA connects, CD REGISTER

adds the UA to the state shared with CD NFS LOOPBACK. For each registered

UA, this state includes a user ID (UID), semaphore on UID’s buffer cache, pointer to

shared memory of UID’s buffer cache, length of memory, and a pointer to the next

UA.

CD NFS LOOPBACK listens for NFS RPCs from the local kernel. When a

request comes in, the CD NFS LOOPBACK determines the UID of the request

and sends a message to the appropriate (and already registered) UA. The UA and

CD NFS LOOPBACK share memory. In particular, they share memory of the buffer

cache. CD NFS LOOPBACK asks the UA to encrypt and decrypt this shared mem-

ory. In this way, the UA does not have to disclose its keys to the CD.

66



NFS Loopback Server

There are a few tedious items to please the NFS loopback server. First, the client must

run a modified mountd. The mountd program responds to mount requests (e.g., mount

-t nfs localhost:/csfs /csfs). We use mountd only to please NFS semantics and

to get the initial file handle of the virtual file system, /csfs.

With mountd and the client daemon running, one simply types cd /csfs/hostname

to mount a remote Cepheus file server. The kernel notices that /csfs is a NFS

mount point and forwards the request to the client daemon. The daemon then checks

if /csfs/hostname is already mounted. If not, the client daemon connects to the

remote file server.

4.3 File Server

The file server offers 13 RPCs as mentioned in the previous chapter. Most of the

RPCs parallel that of the NFS RPCs. We require the RPC library to authenticate

the RPCs. The file server also has its own file system. We store an entire Cepheus

partition as a virtual disk. That is, we store the partition as a file in the standard

Linux file system.

Because the NFS loopback server is stateless, we have no way to determine if a

file is open or closed. Hence, we surrendered to using a delayed write policy instead

of the encrypt-on-close policy. Had we implemented Cepheus in the kernel, we could

detect a close operation. We expect a future version of Cepheus to operate partially

within the kernel.

4.4 Group Database Server

The group database server keeps lists of groups and the group keys. For key distri-

bution, a group owner sends the group key encrypted in each group member’s public

key. While this does not scale well as group sizes increase, it greatly simplifies key

distribution and keys are not disclosed to the group database server itself.

67



In addition to the AICF for file data, we must also authenticate the requests

themselves. For instance, the group database server must verify the authenticity and

authorization of an ADDUSER request. We had several options of where to place the

authentication:

• In the RPC library

• In additional RPC arguments

• Embedded in arguments needing authentication and authorization

We chose the first case because it can easily authenticate the all the RPC argu-

ments. In the second case, the authentication mechanism is less transparent. More-

over, RPC already has a special argument for authentication. Had we chosen the

last case, we would only authenticate parts of an RPC request. We might forget

authentication of a seemingly innocent argument.

In SunRPC, each RPC request includes a generic authenticator. We simply use

a standard authentication protocol in place of the default authentication mechanism.

In security, it is better to err on the more secure side. By protecting all the arguments

in each RPC request, we guarantee the authenticity of the entire request.

4.5 Status

At this time of writing, most of the code is written. We still have to finish the buffer

cache on the client. Reads from the buffer cache work, but the delayed write policy

has not been implemented yet. Preliminary performance results give an optimistic

view of integrity protection of cryptographic storage. Amortized reads add very little

overhead compared to the network delays from NFS.

Cepheus borrowed parts of the code from the Secure File System[22]. The cryp-

tography involves the GNU multi-precision number package to handle public key

operations. We use the Rabin-Williams public key algorithm for signatures, SHA1

for cryptographic hashes, and RC5 for the block cipher.

68



System Call Interface

Device Driver VFS Networking

emacs

NFSUFS

User Space

Kernel Space

Storage 
Media

2

3

4

5
6

7

1

socket

12

11

10

9

Client Daemon

8

Figure 4-2: This picture shows the order of operations for emacs to read a block from
Cepheus. Step 8 actually goes across the network to the file server’s kernel[16].

69



Chapter 5

Questions for Cryptographic

Storage

In the course of designing Cepheus, we considered several questions regarding crypto-

graphic storage. In this chapter we briefly discuss some of the interesting questions.

5.1 Network Versus Storage Encryption

What are the advantages of cryptographic storage file systems versus those of cryp-

tographic network file systems? Cryptographic network file systems protect a link

between two end points and work securely if both end points are non-adversarial.

Cryptographic storage file systems protect a link from users to users and performs

well for read-only data. Cryptographic storage also separates confidentiality from

storage management[32].

The Secure File System by Dave Mazières (same name as SFS, but different file

system) implements two kinds of cryptographic file services: read-only and read-

write[22]. Binary system files do not change often and therefore do not need to be

re-encrypted. Moreover, SFS uses client caching and time leases on files to offset the

cost of encryption. For read-only data, a cryptographic storage file system makes

more sense than a cryptographic network file system. A cryptographic storage file

system provides true end-to-end encryption. That is, user to user rather than user to

71



file server.

5.2 File Permissions

The UNIX file system provides three kinds of access permissions: read, write, and

execute. An interesting problem exists when granting read access, but not write

access, in a cryptographic file system. If a single key protects a file, how does one

grant the ability to decrypt, but not modify and re-encrypt? One answer is to have

multiple keys, one for encryption/decryption and one for the AICF. A similar but

less harmful situation exists when a user has write access, but not read access (e.g.,

appending to a log file).

5.3 Group Sharing

How important is sharing for cryptographic storage? Sharing is uncommon, but adds

valuable functionality if designed well[38]. Group sharing in the UNIX file system is

not well suited to network file systems. If you have a stand-alone machine, it is easy to

use groups. You edit /etc/group as necessary. But in NFS, system administrators

must intervene for all group membership changes: creating a group, adding group

members, removing group members, and so on. In the Andrew File System (AFS),

users take advantage of group sharing because there is minimal intervention by system

administrators. We would like to see a cryptographic storage file system that uses

access control lists rather than the permissions in the UNIX file system.

The semantics of group sharing is also unclear. For instance, who owns a group?

The question in the UNIX file system is mute: root owns and maintains the groups.

But in a cryptographic file system, we need to redefine group ownership and group

administration abilities. Users must take on roles previously held by omnipotent

system administrators.

72



5.4 Incremental Cryptography

Incremental methods could help alleviate some of the burden of encryption[43]. In-

cremental encryption can speed up file encryption because most files are created by

people who tend to follow patterns. Such patterns include appending more often

than modifying files, reading more often than writing, creating small files, and not

sharing too often[34]. Most files are decrypted more often than encrypted. In the

case of public key cryptography, the decryption should be made to run faster than the

encryption. Unfortunately, the UNIX file system does not operate in an incremental

fashion. The UNIX file system does not allow inserts as does a database. To fully ex-

ploit incremental cryptography, we may need to implement security at the application

level[43]. However, incrementally changing keys may alleviate costs of re-encryption

in cryptographic storage file systems. Incremental methods would require significant

changes to the file system interface.

5.5 Delayed Re-encryption

What consistency problems are expected from delayed encryption? Cepheus uses

delayed writes and delayed re-encryption to avoid unnecessary encryption. Problems

could arise if a set of files has not been fully re-encrypted after two key changes in a

row. Should the file system wait until the first re-encryption finishes? There may be

other ways to delay or avoid encryption. For instance, one could throttle the amount

of encryption.

5.6 Integrity

The XFS file system from Silicon Graphics uses an adaptive approach to storing file

data[40]. B+ trees keep the every file structure balanced. A similar strategy could

reduce the average running time for creation and validation of integrity fields. For

instance, we could reorganize the hash tree structure of the AICF such that data that

changes often tends to affect the same path in the tree.

73



5.7 Orphaned Directories

An orphaned directory results when two directories with a parental relationship have

different cryptographic keys. This is best illustrated by an example. Consider a

directory /home and a subdirectory /home/fubob. Recall that a directory maps file

names to inode numbers. To list the contents of the /home/fubob directory, the

file system must first locate the inode for /home by reading the contents of the /

directory1. With the inode for /home, the file system can read the directory contents

to find the mapping from /home/fubob to another inode. Finally, the file system uses

the inode for /home/fubob to list the directory contents.

Now assume that different cryptographic keys protect the /home and /home/fubob

directories. The following table results:

Have /home/fubob key Not have /home/fubob key
Have /home key Access to both directories Access to /home

Not have /home key Undefined No access

Table 5.1: Access depending on available keys. When a user has the key to a directory,
but not to its parent directory, access semantics are undefined.

Having the key for /home/fubob is useless if the key for /home is not available.

There would be no way to locate the inode for /home/fubob. A cryptographic file

system will have to define the access semantics under such cases. To have directory

access independent from a parent directory, the file system cannot secure directory

contents.

5.8 Brittleness

How can we avoid making the file system brittle[32]? If someone forgets a password,

data may be lost. A single bit error can render a file useless under some chaining

techniques[32]. We need to take extra precautions to avoid accidentally losing data.

Data recovery and the ordering of operations is important. This thesis did not con-

centrate on the issue of brittleness, mainly because it is an extremely hard problem.

1For bootstrapping, the / directory has a hard-coded inode number.

74



5.9 Encrypted Swap File

How useful is an encrypted swap file? Once power is lost, the swap file could be

quickly purged by forgetting the key. We have yet to find much documentation of

encrypted swap files.

5.10 Key Rings

Where should keys be stored? We do not want to lose our keys, but we also do not

want to carry large key rings. Cepheus uses the authorization server as a central

repository for keys. But users could modify the user agent to use a local key ring.

Key rings are more easily stolen, but a repository becomes a central point of failure.

5.11 Trust of System Administrator

Can integrity and availability be achieved without trusting the file server? With

public key cryptography, we can separate integrity from storage management. But

we have yet to find a way to separate availability from storage management. It seems

obvious that the two are inseparable, but there could be a way to partially separate

availability from storage management.

5.12 Unattended Access

How can daemon processes access encrypted areas of a disk? Should they? To print

a postscript document, you must use lpr. Your file travels across the network to the

printer in the clear. Can and should unattended programs be able to safely acquire

cryptographic keys without user intervention? What are the end points?

75



Chapter 6

Conclusion

Cepheus provides confidentiality of file data and directory contents. It also maintains

integrity and availability of file data, directory contents, and metadata. Cepheus

implements a secure group sharing mechanism. If file systems become more ACL-

based, we expect sharing to become more common.

We introduced delayed re-encryption. File owners can re-key a file while letting

group members perform the re-encryption. A plaintext and ciphertext buffer cache

uses a delayed write strategy to avoid unnecessary re-encryption.

In order for cryptographic storage to be widely used, cryptographic file systems

will need to be compatible with existing file system interfaces. Moreover, the cryp-

tographic file system must be at least as good as existing file systems in speed and

functionality. The author also discovered that adding cryptography to a file sys-

tem complicates the design several times over! In the future, we expect to develop

Cepheus into a fully functional system. Moreover, we hope to use an asynchronous

RPC package to process requests more efficiently.

77



Bibliography

[1] R. Anderson. Personal Communication, August 1997.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message

Authentication. In N. Koblitz, editor, Advances in Cryptology – Crypto 96

Proceedings, number 1109 in Lecture Notes in Computer Science.

Springer-Verlag, 1996.

[3] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental Cryptography: The

Case of Hashing and Signing. In Y. Desmedt, editor, Advances in Cryptology –

Crypto 94 Proceedings, number 839 in Lecture Notes in Computer Science.

Springer-Verlag, 1994.

[4] M. Blaze. A Cryptographic File System for UNIX. In Proceedings of 1st ACM

Conference on Communications and Computing Security, pages 158–165,

Fairfax, VA, 1993.

[5] M. Blaze. Key Management in an Encrypting File System. In Proceedings of

the Summer USENIX Technical Conference, 1994.

[6] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable Encryption. In

Advances in Cryptology – Crypto 97 Proceedings, Lecture Notes in Computer

Science. Springer-Verlag, 1997.

[7] G. Cattaneo, G. Persiano, A. Del Sorbo, A. Cozzolino, E. Mauriello, and

R. Pisapia. Design and Implementation of a Transparent Cryptographic File

System for UNIX. http://tcfs.dia.unisa.it/, 1997.

79



[8] G. Chick and S. Tavares. Flexible Access Control with Master Keys. In

Advances in Cryptology – Crypto 89 Proceedings, number 435 in Lecture Notes

in Computer Science, pages 316–322. Springer-Verlag, 1990.

[9] D. Coskun. Personal Communication, July 1998.

[10] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,

P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic Adaptive

Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of the 7th

USENIX Security Symposium, San Antonio, TX, January 1998.

[11] Y. Deswarte, L. Blain, and J. Fabre. Intrusion tolerance in distributed

computing systems. In Proceedings IEEE Symposium on Security and Privacy,

pages 110–121, Oakland, 1991.

[12] K. Fu, P. McCormick, and J. Nicholson. A Simple File System: The X-File

System. 6.033 Lab Paper. Contact fubob@mit.edu, 1997.

[13] P. Gutmann. Secure File System v1.20.

http://www.cs.auckland.ac.nz/∼pgut001/sfs/, 1995.

[14] P. Gutmann. Key safeguarding/anti-duress measures in cryptosystems.

http://www.mit.edu:8008/bloom-picayune/crypto/1389, August 1997.

[15] S. Hartman. Personal Communication, 1997.

[16] J. Hu. Personal Communication, April 1999.

[17] S. Kent. Protecting Externally Supplied Software in Small Computers. PhD

thesis, MIT, September 1988.

[18] B. W. Lampson. Hints for computer system design. In Proceedings of the Ninth

ACM Symposium on Operating Systems Principles, pages 33–48, October 1983.

Published as Operating Systems Review 17, 5 (1983).

[19] T. Liss and P. Tipton. The Discovery of the Top Quark. Scientific American,

pages 54–59, September 1997.

80



[20] M. Loewenthal and A. Helwig. SecureDevice v1.4.

ftp://ftp.demon.co.uk/pub/ibmpc/dos/apps/secdev/, 1994.

[21] J. Markoff. How a Computer Sleuth Traced a Digital Trail. New York Times,

February 1995.

[22] D. Maziéres. Security and Decentralized Control in the SFS Global File

System. Master’s thesis, MIT, 1998.

[23] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast File System for UNIX.

ACM Transactions on Computer Systems, 2(3):181–197, August 1984.

[24] Sun Microsystems. RFC1094 - NFS: Network File System Protocol

Specification, 1989. ftp://ds.internic.net/rfc/rfc1094.txt.

[25] R. H. Morris. UNIX Operating System Security. Technical Journal 8, AT&T

Bell Laboratories, October 1984.

[26] ASIS Online. 1995/96 Trends in Intellectual Property Loss Special Report.

http://www.asisonline.com/, March 1996.

[27] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. Kunze, M. D. Kupfer, and

J. G. Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System.

In Symposium on Operating Systems Principles, pages 15–24, 1985.

[28] PGPdisk. http://www.pgp.com/, 1997.

[29] W. Price. CryptDisk. http://www.primenet.com/∼wprice/, 1995.

[30] M. Ranum. Security Policies & Practices. In 11th Systems Administration

Conference, October 1997.

[31] R. Rivest. The RC5 Encryption Algorithm. In Bart Preneel, editor,

Proceedings of 1994 Fast Software Encryption: Second International Workshop,

Leuven, Belgium, volume 1008 of Lecture Notes in Computer Science, pages

86–96. Springer-Verlag, 1995.

81



[32] J. H. Saltzer. Hazards of File Encryption. MIT Laboratory for Computer

Science Request for Comments 208, MIT, May 1981.

http://mit.edu/Saltzer/www/publications/csrrfc208.html.

[33] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System

Design. ACM Transactions on Computer Systems, 2(4):277–288, November

1984.

[34] M. Satyanarayanan. A Survey of Distributed File Systems. Annual Review of

Computer Science, pages 73–104, 1990.

[35] J. Schmidt. Die Geheimniskrämer: Verschlüsselnde Dateisysteme für Linux. c’t

magazin, 19:228–230, 1998. http://www.heise.de/ct/.

[36] B. Schneier. Applied Cryptography – Protocols, Algorithms, and Source Code in

C. John Wiley & Sons, New York, second edition, 1996.

[37] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11),

November 1979.

[38] M. Spasojewic and M. Satyanarayanan. A Usage Profile and Evaluation of a

Wide-Area Distributed File System. In Proceedings of the Winter 1994

USENIX Conference, pages 307–323, San Francisco, CA, 1994.

[39] E. Swank. SecureDrive v1.4B.

http://www.stack.nl/∼galactus/remailers/securedrive.html, 1996.

[40] A. Sweeny, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck.

Scalability in the XFS File System. In Proceedings of the 1996 USENIX

Annual Technical Conference, 1996.

http://www.usenix.org/publications/library/proceedings/sd96/.

[41] A. Tanenbaum. Modern Operating Systems. Prentice Hall, Upper Saddle River,

New Jersey, 1992.

[42] A. Tormasov. TorDisk. http://www.bpdconsulting.com/TorDisk/, 1997.

82



[43] Y. Yerushalmi. Incremental Cryptography. Master’s thesis, MIT, May 1997.

83



Biographical Note

Kevin Edward Fu was born on February 21, 1976 in South Charleston, West

Virginia. He graduated from West Ottawa High school in Holland, Michigan in

1994, then earned a B.S. degree in Computer Science and Engineering from MIT in

1998. He belongs to the Sigma Xi and Eta Kappa Nu honor societies and has been

active with ACM, the USENIX Association, and the National Senior Classical

League. He serves as a general editor for the ACM Crossroads magazine. Kevin is

married to Teresa K. Lai ’98.

85


