
OpenAFS for Mac OS X

Jean-Matthieu Schaffhauser
schaffhauser.jm@euro.apple.com

April 8, 2003

1

Draft - v0.1 OpenAFS for Mac OS X

Contents

1 Overview 3
1.1 What is AFS ? . 3
1.2 What is a Cell ? . 3
1.3 What are the benefits of using AFS ? . 3
1.4 What is this document ? . 3

2 Requirements 4
2.1 Obtaining OpenAFS . 4

3 Server Installation 5
3.1 Use the source, Luke . 5

3.1.1 OpenAFS Security Advisory 2003-001 5
3.1.2 Patch the source, Luke !! . 5
3.1.3 Building OpenAFS on Jaguar . 5

3.2 Before we start ... 6
3.3 Starting the AFS Server . 7
3.4 Defining Cell Name and Membership for Server Process 7
3.5 Starting the Database Server Process . 7
3.6 Initializing Cell Security . 8
3.7 Starting the File Server, Volume Server and Salvager 10
3.8 Starting the Server Portion of the Update Server 11
3.9 Installing Client Functionality . 11

3.9.1 Defining Cell Membership for Client Processes 12
3.9.2 Creating the Client CellServDB File 12
3.9.3 Configuring the Cache . 13
3.9.4 Configuring the Cache Manager . 13

3.10 Shutdown and initialization script . 14
3.11 Configuring the Top Level of the AFS filespace 15

4 Client installation 15

5 References 16

2 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

1 Overview

1.1 What is AFS ?

AFS is a distributed filesystem that enables co-operating hosts (clients and servers) to effi-
ciently share filesystem resources across both local area and wide area networks. Clients hold
a cache for often used objects (files), to get quicker access to them.
AFS is based on a distributed file system originally developed at the Information Technology
Center at Carnegie-Mellon University that was called the ”Andrew File System”. ”Andrew”
was the name of the research project at CMU - honouring the founders of the University. Once
Transarc was formed and AFS became a product, the ”Andrew” was dropped to indicate that
AFS had gone beyond the Andrew research project and had become a supported, product
quality filesystem. However, there were a number of existing cells that rooted their filesystem
as /afs. At the time, changing the root of the filesystem was a non-trivial undertaking. So, to
save the early AFS sites from having to rename their filesystem, AFS remained as the name
and filesystem root.
IBM branched the source of the AFS product, and made a copy of the source available for
community development and maintenance. They called the release OpenAFS.

1.2 What is a Cell ?

An AFS cell is a collection of servers grouped together administratively and presenting a
single, cohesive filesystem. Typically, an AFS cell is a set of hosts that use the same Internet
domain name (like for example apple.com). Users log into AFS client workstations which re-
quest information and files from the cell’s servers on behalf of the users. Users won’t know on
which server a file which they are accessing, is located. They even won’t notice if a server will
be located to another room, since every volume can be replicated and moved to another server
without user an user noticing. The files are always accessable. Well it’s like NFS on steroids :)

1.3 What are the benefits of using AFS ?

The main strengths of AFS are its: caching facility (on client side, typically 100M to 1GB),
security features (Kerberos 4 based, access control lists), simplicity of addressing (you just
have one filesystem), scalability (add further servers to your cell as needed), communications
protocol.

1.4 What is this document ?

This document aims to be a step-by-step tutorial explaining how to properly set up OpenAFS
on a Mac OS X. Through the next pages, we’ll detail how to get a server ready to distributed
files using AFS as well as how a client can be easily configured to access shared resources on
a network.
This document is based on OpenAFS original documentation.

3 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

2 Requirements

We won’t detail here OpenAFS structure. Basically, rights are granted thanks to tickets one
can obtain after a valid authentification. Like in a Kerberos scheme, a ticket has a specified
lifetime. When time comes, the ticket has to be renewed. As you probably guessed, time
is not an option here. To ensure the validity of a ticket, we’ll setup both client and server
to use the very accurate and pratical Network Time Protocol, aka NTP. Nothing’s easier on
Mac OS X, just open the System Preferences dialog, click on Date & Time and select
the Network Time tabview. Check the Use a network time server box and select a NTP
server in the corresponding combo list as show in Figure 1.

Figure 1: Configuring Network Time Protocol on Mac OS X

2.1 Obtaining OpenAFS

OpenAFS is freely available from http://www.openafs.org. In this tutorial, we’ll use the
binary package for Mac OS X available from OpenAFS-1.2.8 release page. Just browse through
openafs.org pages to obtain OpenAFS.pkg. Double-click on the file freshly downloaded
and follow the installation procedure as usual. Note that you’ll use this same package whether
you want to setup an AFS server or an AFS client host.
OpenAFS is now deployed on your system. It is time to configure your first AFS server.

4 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

3 Server Installation

3.1 Use the source, Luke

If you don’t want to use the package for Mac OS X provided by OpenAFS.org, you can always
buid it yourself. Here’s what you’ve got to. First, download openafs-1.2.8 source code and
store it, for example, in /usr/src. Otherwise, go on to Section 3.2.

3.1.1 OpenAFS Security Advisory 2003-001

The OpenAFS Project has just released a security advisory detailing a cryptographic weak-
ness in Kerberos v4 which allows an attacker to compromise OpenAFS servers.
A cryptographic weakness in version 4 of the Kerberos protocol allows an attacker to use a
chosen-plaintext attack to impersonate any principal in a realm. OpenAFS kaserver imple-
ments version 4 of the Kerberos protocol, and therefore is vulnerable. An attacker that knows
a shared cross-realm key between any remote realm and the local realm can impersonate any
principal in the local realm to AFS database servers and file servers in the local cell, and
other services in the local realm. An attacker that can create arbitrary principal names in a
realm can also impersonate any principal in that realm.
If your realm has no shared keys, and does not allow users to create arbitrary principal names,
you are not exposed to this vulnerability.
There are no known publicly-available exploits for this vulnerability at this time.

3.1.2 Patch the source, Luke !!

Here’s how you’ll patch OpenAFS. You’ll first untar openafs-1.2.8-src.tar.gz and then
apply the patch released by the OpenAFS Project.

cd /usr/src && tar -zxvf openafs-1.2.8-src.tar.gz
cd openafs-1.2.8
patch -p 1 < ../kaserver-disable-krb4-crossrealm-20030317.delta

3.1.3 Building OpenAFS on Jaguar

Here are details on how you should build OpenAFS on Mac OS X. Using configure in the top
level directory, configure for your AFS system type, providing the necessary flags:

#./configure --with-afs-sysname=ppc_darwin_60 --enable-transarc-paths

There are two modes for directory path handling: ”Transarc mode” and ”default”.

• In Transarc mode, we retain compatibility with Transarc/IBM AFS tools by putting
client configuaration files in /usr/vice/etc, and server files in /usr/afs under the tradi-
tional directory layout.

• In default mode, files are located in standardized locations, usually under $(prefix).

Client programs, libraries, and related files always go in standard irectories under $(prefix).
This rule covers things that would go into $(bindir), $(includedir), $(libdir), $(mandir),
and $(sbindir).
Other files get located in the following places:

5 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

Directory Transarc mode Default mode
viceetcdir /usr/vice/etc $(sysconfdir)/openafs
afssrvdir /usr/afs/bin (servers) $(libexecdir)/openafs
afsconfdir /usr/afs/etc $(sysconfdir)/openafs/server
afslocaldir /usr/afs/local $(localstatedir)/openafs
afsdbdir /usr/afs/db $(localstatedir)/openafs/db
afslogdir /usr/afs/logs $(localstatedir)/openafs/logs
afsbosconfig $(afslocaldir)/BosConfig $(afsconfdir)/BosConfig
afsbosserver $(afsbindir)/bosserver $(sbindir)/bosserver

Once your software is properly configured it is time to compile it. Issue the following
command and go grab a cup of coffee.

make

Next, run

make dest

This command will create a Transarc-style dest tree in SYS NAME/dest where SYS NAME is the
AFS sysname of the system you built for. Finally, copy this directory to the folder you’d like
OpenAFS to be installed in.

cp -R dest /Library/OpenAFS/Tools

You’re done ! You’ve successfully build and install OpenAFS on your system. Let’s move on
to the real stuff.

3.2 Before we start ...

This section is all about restoring OpenAFS standard hierarchy. I realised while trying to
make it work that it could help a lot to issue the following commands :

ln -s /Library/OpenAFS/Tools/root.server/usr/afs/ /usr/afs
ln -s /Library/OpenAFS/Tools/root.client/usr/vice /usr/vice
cp -pR /var/db/openafs/etc/* /usr/afs/etc
rm -rf /var/db/openafs/etc && ln -s /usr/afs/etc /var/db/openafs/etc

One more thing and we’ll be totally ready. I recommend you add the following paths to
your shell $PATH variable. Using bash, issue the following command :

export PATH=$PATH:/Library/OpenAFS/Tools/bin:/usr/afs/bin

If you prefer tcsh, or csh, here’s what you have to do

setenv PATH $PATH:/Library/OpenAFS/Tools/bin:/usr/afs/bin

Add this to your /.bashrc or /.cshrc for extra fun :)

6 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

3.3 Starting the AFS Server

Make sure no CellServDB nor ThisCell file exists. Remove them if they do:

rm -f /usr/afs/etc/{ThisCell,CellServDB}

Next you will run the bosserver command to initialize the Basic OverSeer (BOS)Server,
which monitors and controls other AFS server processes on its server machine. Think of it
as init for the system. Include the -noauth flag to disable authorization checking, since you
haven’t added the admin user yet.
Warning : Disabling authorization checking gravely compromises cell security. You must
complete all subsequent steps in one uninterrupted pass and must not leave the machine
unattended until you restart the BOS Server with authorization checking enabled. Well this
is what the AFS documentation says :)

bosserver -noauth &

Verify that the BOS Server created /usr/afs/etc/CellServDB and /usr/afs/etc/ThisCell

ls -l /usr/afs/etc/
lrwxr-xr-x 1 root wheel 23 Mar 25 17:35 CellServDB
lrwxr-xr-x 1 root wheel 21 Mar 25 17:35 ThisCell

3.4 Defining Cell Name and Membership for Server Process

Now assign your cells name. There are some restrictions on the name format. Two of the
most important restrictions are that the name cannot include uppercase letters or more than
64 characters. Remember that your cell name will show up under /afs, so you might want
to choose a short one.
Note : In the following and every instruction in this guide, for the ¡server name¿ argument
substitute the full-qualified hostname (such as jimmy.lab.euro.apple.com) of the machine
you are installing. For the ¡cell name¿ argument substitute your cell’s complete name (such
as afslab)
Run the bos setcellname command to set the cell name:

bos setcellname <server name> <cell name> -noauth

Issue the bos listhosts command to verify that the machine you are installing is now
registered as the cell’s first database server machine.

bos listhosts <server name> -noauth
Cell name is <cell name>

Host 1 is <server name>

3.5 Starting the Database Server Process

Next use the bos create command to create entries for the four database server processes
in the /usr/afs/local/BosConfig file. The four processes run on database server machines
only.

7 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

1. kaserver
The Authentification Server maintains the Authentification Database. This can be
replaced by a Kerberos 5 daemon.

2. buserver
The Backup Server maintains the Backup Database

3. ptserver
The Protection Server maintains the Protection Database

4. vlserver
The Volume Location Server maintains the Volume Location Database (VLDB).

bos create <server name> kaserver simple /usr/afs/bin/kaserver \
-cell <cell name> -noauth

bos create <server name> buserver simple /usr/afs/bin/buserver \
-cell <cell name> -noauth

bos create <server name> ptserver simple /usr/afs/bin/ptserver \
-cell <cell name> -noauth

bos create <server name> vlserver simple /usr/afs/bin/vlserver \
-cell <cell name> -noauth

Verify all server are running :

bos status <server name> -noauth
Instance kaserver, currently running normally.
Instance buserver, currently running normally.
Instance ptserver, currently running normally.
Instance vlserver, currently running normally.

3.6 Initializing Cell Security

Now we’ll initialize the cell’s security mechanisms. We’ll begin by creating the following
two initial entries in the Authentification Database: The main administrative account, called
admin by convention and an entry for the AFS server processes, called afs. No user logs
in under the identity afs, but the Authentication Server’s Ticket Granting Service (TGS)
module uses the account to encrypt the server tickets that it grants to AFS clients. This
sounds pretty much like Kerberos .
Enter kas interactive mode

kas -cell <cell name> -noauth
ka> create afs
initial_password: afs_passwd
Verifying, please re-enter initial_password:
ka> create admin
initial_password: admin_passwd
Verifying, please re-enter initial_password:
ka> examine afs

8 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

User data for afs
key (0) cksum is 2632011835, last cpw: Tue Mar 25 18:06:37 2003
password will never expire.
An unlimited number of unsuccessful authentications is permitted.
entry never expires. Max ticket lifetime 100.00 hours.
last mod on Tue Mar 25 18:06:37 2003 by <none>
permit password reuse

ka> setfields admin -flags admin
ka> examine admin

User data for admin (ADMIN)
key (0) cksum is 2800900319, last cpw: Tue Mar 25 18:06:50 2003
password will never expire.
An unlimited number of unsuccessful authentications is permitted.
entry never expires. Max ticket lifetime 25.00 hours.
last mod on Tue Mar 25 18:07:30 2003 by <none>
permit password reuse

Run the bos adduser command, to add the admin user to the /usr/afs/etc/UserList.

bos adduser <server name> admin -cell <cell name> -noauth

Issue the bos addkey command to define the AFS Server encryption key in /usr/afs/etc/KeyFile
Note: If asked for the input key, give the password you entered when creating the afs entry
with kas.

bos addkey <server name> -kvno 0 -cell <cell name> -noauth
input key: afs_passwd
Retype input key: afs_passwd

Issue the bos listkeys command to verify that the checksum for the new key in the KeyFile
file is the same as the checksum for the key in the Authentication Database’s afs entry.

bos listkeys <server name> -cell <cell name> -noauth
key 0 has cksum checksum

You can safely ignore any error messages indicating that bos failed to get tickets or that
authentication failed.
If the keys are different, issue the following commands, making sure that the afs passwd
string is the same in each case. The checksum strings reported by the kas examine and bos
listkeys commands must match; if they do not, repeat these instructions until they do,
using the -kvno argument to increment the key version number each time.

kas -cell <cell name> -noauth
ka> setpassword afs -kvno 1
new_password: afs_passwd
Verifying, please re-enter initial_password: afs_passwd
ka> examine afs
User data for afs
key (1) cksum is checksum ...

9 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

ka> quit

bos addkey <server name> -kvno 1 -cell <cell name> -noauth
Input key: afs_passwd
Retype input key: afs_passwd

bos listkeys <server name> -cell <cell name> -noauth
key 1 has cksum checksum

Issue the pts createuser command to create a Protection Database entry for the admin user
Note: By default, the Protection Server assigns AFS UID 1 to the admin user, because it is
the first user entry you are creating. If the local password file (/etc/passwd or equivalent)
already has an entry for admin that assigns a different UID use the -id argument to create
matching UID’s

pts createuser -name admin [-id 42] -cell <cell name> -noauth

Issue the pts adduser command to make the admin user a member of the system:administrators
group, and the pts membership command to verify the new membership.

pts adduser admin system:administrators -cell <cell name> -noauth
pts membership admin -cell <cell name> -noauth
Groups admin (id: 42) is a member of:

system:administrators

Restart all AFS Server processes

bos restart <server name> -all -cell <cell name> -noauth

3.7 Starting the File Server, Volume Server and Salvager

Start the fs process, which consists of the File Server, Volume Server and Salavager (fileserver,
volserver and salvager processes).

bos create <server name> fs fs /usr/afs/bin/fileserver \
/usr/afs/bin/volserver \

/usr/afs/bin/salvager \
-cell <cell name> -noauth

Verify all processes are running

bos status <server name> -long -noauth
Instance kaserver, (type is simple) currently running normally.

Process last started at Tue Mar 25 18:20:48 2003 (5 proc starts)
Last exit at Tue Mar 25 18:20:48 2003
Last error exit at Tue Mar 25 18:06:30 2003, by exiting with code 255
Command 1 is ’/usr/afs/bin/kaserver’

Instance buserver, (type is simple) currently running normally.
Process last started at Tue Mar 25 18:20:48 2003 (3 proc starts)

10 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

Last exit at Tue Mar 25 18:20:48 2003
Command 1 is ’/usr/afs/bin/buserver’

Instance ptserver, (type is simple) currently running normally.
Process last started at Tue Mar 25 18:20:48 2003 (3 proc starts)
Last exit at Tue Mar 25 18:20:48 2003
Command 1 is ’/usr/afs/bin/ptserver’

Instance vlserver, (type is simple) currently running normally.
Process last started at Tue Mar 25 18:20:48 2003 (3 proc starts)
Last exit at Tue Mar 25 18:20:48 2003
Command 1 is ’/usr/afs/bin/vlserver’

Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Tue Mar 25 18:23:51 2003 (2 proc starts)
Command 1 is ’/usr/afs/bin/fileserver’
Command 2 is ’/usr/afs/bin/volserver’
Command 3 is ’/usr/afs/bin/salvager’

Your next action depends on whether you have ever run AFS file server machines in the cell :

• If you are installing the first AFS Server ever in the cell create the first AFS volume,
root.afs.
Note : For the partition name argument, substitute the name of one of the machine’s
AFS Server partitions. By convention these partitions are named /vicepx, where x is
in the range of a-z.

vos create <server name> /vicepa root.afs -cell <cell name> -noauth

• If there are existing AFS file server machines and volumes in the cell issue the vos sncvldb
and vos syncserv commands to synchronize the VLDB (Volume Location Database) with
the actual state of volumes on the local machine. This will copy all necessary data to
your new server.

/usr/afs/bin/vos syncvldb <server name> -cell <cell name> -verbose -noauth
/usr/afs/bin/vos syncserv <server name> -cell <cell name> -verbose -noauth

3.8 Starting the Server Portion of the Update Server

bos create <server name> upserver simple \
"/usr/afs/bin/upserver -crypt /usr/afs/etc \
-clear /usr/afs/bin" -cell <cell name> -noauth

3.9 Installing Client Functionality

The machine you are installing is now an AFS file server machine, database server machine,
system control machine, and binary distribution machine. Now make it a client machine by
completing the following tasks

11 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

1. Define the machine’s cell membership for client processes

2. Create the client version of the CellServDB file

3. Define cache location and size

4. Create the /Network/afs directory and start the Cache Manager

3.9.1 Defining Cell Membership for Client Processes

Every AFS client machine has a copy of the /usr/vice/etc/ThisCell file on its local disk
to define the machine’s cell membership for the AFS client programs that run on it. The
ThisCell file you created in the /usr/afs/etc directory is used only by server processes.
Among other functions, the ThisCell file on a client machine determines the following :

• The cell in which users authenticate when they log onto the machine, assuming it is
using an AFS-modified login utility.

• The cell in which users authenticate by default when they issue the klog command.

• The cell membership of the AFS server processes that the AFS command interpreters
on this machine contact by default.

Change to the /usr/vice/etc directory and remove the symbolic link created when you
started the BOS server.

cd /usr/vice/etc
rm ThisCell

Create the ThisCell file as a copy of the /usr/afs/etc/ThisCell file. Defining the same
local cell for both server and client processes leads to the most consistent AFS performance.

cp /usr/afs/etc/ThisCell ThisCell

3.9.2 Creating the Client CellServDB File

The /usr/vice/etc/CellServDB file on a client machine’s local disk lists the database server
machines for each cell that the local Cache Manager can contact. If there is no entry in the
file for a cell, or if the list of database server machines is wrong, then users working on this
machine cannot access the cell. The chapter in the IBM AFS Administration Guide about
administering client machines explains how to maintain the file after creating it.
As the afsd program initializes the Cache Manager, it copies the contents of the CellServDB
file into kernel memory. The Cache Manager always consults the list in kernel memory rather
than the CellServDB file itself. Between reboots of the machine, you can use the fs newcell
command to update the list in kernel memory directly; see the chapter in the IBM AFS
Administration Guide about administering client machines.
Remove the symbolic link created when you started the BOS server

rm CellServDB
cp /usr/afs/etc/CellServDB ./

12 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

3.9.3 Configuring the Cache

The Cache Manager uses a cache on the local disk or in machine memory to store local
copies of files fetched from file server machines. As the afsd program initializes the Cache
Manager, it sets basic cache configuration parameters according to definitions in the local
/usr/vice/etc/cacheinfo file. The file has three fields :

1. The first field names the local directory on which to mount the AFS filespace. The
conventional location is the /Network/afs directory.

2. The second field defines the local disk directory to use for the disk cache. The con-
ventional location is the /usr/vice/cache directory, but you can specify an alternate
directory if another partition has more space available. There must always be a value
in this field, but the Cache Manager ignores it if the machine uses a memory cache.

3. The third field specifies the number of kilobyte (1024 byte) blocks to allocate for the
cache.

3.9.3.1 Configuring a Disk or Memory Cache
To configure the disk cache, perform the following procedures: Create the local directory to
use for caching. The following instruction shows the conventional location, /usr/vice/cache. If
you are devoting a partition exclusively to caching, as recommended, you must also configure
it, make a file system on it, and mount it at the directory created in this step.

mkdir /usr/vice/cache

Create the cacheinfo file to define the configuration parameters discussed previously. The
following instruction shows the standard mount location, /afs or /Network/afs on Mac OS
X, and the standard cache location, /usr/vice/cache.

echo "/Network/afs:/usr/vice/cache:#blocks" > /usr/vice/etc/cacheinfo

The following example defines the disk cache size as 50,000 KB:

echo "/Network/afs:/usr/vice/cache:50000" > /usr/vice/etc/cacheinfo

3.9.4 Configuring the Cache Manager

The afsd program sets several cache configuration parameters as it initializes the Cache
Manager, and starts daemons that improve performance. You can use the afsd command’s
arguments to override the parameters’ default values and to change the number of some of
the daemons. Depending on the machine’s cache size, its amount of RAM, and how many
people work on it, you can sometimes improve Cache Manager performance by overriding the
default values. For a discussion of all of the afsd command’s arguments, see its reference page
in the IBM AFS Administration Reference.
See the /Library/StartupItems/OpenAFS/OpenAFS file to configure the Cache Manager.
Add the -nosettime flag, because this is a file server machine that is also a client. The
flag prevents the machine from picking a file server machine in the cell as its source for the
correct time, which client machines normally do. File server machines instead use NTPD (as
controlled by the runntp process) or another protocol to synchronize their clocks.
Add the -memcache flag if the machine is to use a memory cache.

13 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

3.10 Shutdown and initialization script

The AFS client is now ready, the Cache manager is properly configure. In this section, we’ll
first shutdown the AFS server then we’ll restart it using our Startup item.
Issue the bos shutdown command to shut down the AFS server processes other than the
BOS Server. Include the -wait flag to delay return of the command shell prompt until all
processes shut down completely.

bos shutdown <server name> -wait -noauth

Issue the ps command to learn the bosserver process’s process ID number (PID), and then
the kill command to stop it.

ps -aux | grep bosserver
kill -15 bosserver_PID

Then, reboot your server or just issue :

/Library/StartupItems/OpenAFS/OpenAFS
Starting AFS Server processes
Starting afsd
afsd: All AFS daemons started.

Note : check that your device in mounted in /vicepa before executing the script.
Wait for the message that confirms that Cache Manager initialization is complete.
On machines that use a disk cache, it can take a while to initialize the Cache Manager for
the first time, because the afsd program must create all of the Vn files in the cache directory.
Subsequent Cache Manager initializations do not take nearly as long, because the Vn files
already exist.
As a basic test of correct AFS functioning, issue the klog command to authenticate as the
admin user. Provide the password (admin passwd) you defined before.

klog admin
Password: admin_passwd

Issue the tokens command to verify that the klog command worked correctly

tokens

Tokens held by the Cache Manager:

User’s (AFS ID 42) tokens for afs@<cell name> [Expires Apr 8 16:44]
--End of list--

Issue the bos status command to verify that the output for each process reads Currently
running normally.

/usr/afs/bin/bos status <server name>

Change directory to the local file system root (/) and issue the fs checkvolumes command.

cd / && fs checkvolumes
All volumeID/name mappings checked.

14 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

3.11 Configuring the Top Level of the AFS filespace

First you need to set some acl’s, so that any user can lookup /Network/afs.

fs setacl /Network/afs system:anyuser rl

Issue the vos create command to create the root.cell volume. Then issue the fs mkmount
command to mount it as a subdirectory of the /Network/afs directory, where it serves as
the root of your cell’s local AFS filespace. Finally, issue the fs setacl command to create
an ACL entry for the system:anyuser group (or system:authuser group).For the partition
name argument, substitute the name of one of the machine’s AFS server partitions (such as
/vicepa). For the cellname argument, substitute your cell’s fully-qualified Internet domain
name (such as lab.euro.apple.com).

vos create <server name> <partition> root.cell
Volume 536870915 created on partition <partition> of <server name>
fs mkmount /Network/afs/<cellname> root.cell
fs setacl /Network/afs/<cellname> system:anyuser rl

Optionaly you can create a link to shortened cell name :

cd /Network/afs
ln -s lab.euro.apple.com <cell name>

Issue the fs mkmount command to create a read/write mount point for the root.cell volume.
By convention, the name of a read/write mount point begins with a period, both to distinguish
it from the regular mount point and to make it visible only when the -a flag is used on the
ls command.

fs mkmount /Network/afs/.lab.euro.apple.com root.cell -rw

You now have a working AFS filespace. If you logged into Mac OS X as root, open a Finder
window and go to /Network/afs. Try to drop a file and see what happens.

4 Client installation

Setting up an AFS client is much easier than you could imagine. For this task, I definitely rec-
ommend you download the package provided by the OpenAFS Project. Install it, then modify
two files located in the /var/db/openafs/etc folder. As you probably already guessed, these
files are known as CellServDB and ThisCell. Make them look as the ones residing on your
server and reboot or execute OpenAFS startup script. Voila ! Open a Terminal and issue
the klog command :

klog admin
Password :

You will get a valid ticket from the AFS server and will be able to access the AFS cell within
seconds.

15 Apple Computer, France

Draft - v0.1 OpenAFS for Mac OS X

5 References

Your AFS server is far from being optimized or secure at this point. Moreover AFS has tons
of a features we didn’t discust here. Go browse the documentation to learn more about it ;-)

• OpenAFS Documentation - http://www.openafs.org/doc/index.htm

• OpenAFS Download - http://www.openafs.org/release/latest.html

16 Apple Computer, France

	Overview
	What is AFS ?
	What is a Cell ?
	What are the benefits of using AFS ?
	What is this document ?

	Requirements
	Obtaining OpenAFS

	Server Installation
	Use the source, Luke
	OpenAFS Security Advisory 2003-001
	Patch the source, Luke !!
	Building OpenAFS on Jaguar

	Before we start ...
	Starting the AFS Server
	Defining Cell Name and Membership for Server Process
	Starting the Database Server Process
	Initializing Cell Security
	Starting the File Server, Volume Server and Salvager
	Starting the Server Portion of the Update Server
	Installing Client Functionality
	Defining Cell Membership for Client Processes
	Creating the Client CellServDB File
	Configuring the Cache
	Configuring the Cache Manager

	Shutdown and initialization script
	Configuring the Top Level of the AFS filespace

	Client installation
	References

