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Abstract

The ext2 and ext3 filesystems on LinuxR© are
used by a very large number of users. This
is due to its reputation of dependability, ro-
bustness, backwards and forwards compatibil-
ity, rather than that of being the state of the
art in filesystem technology. Over the last few
years, however, there has been a significant
amount of development effort towards making
ext3 an outstanding filesystem, while retaining
these crucial advantages. In this paper, we dis-
cuss those features that have been accepted in
the mainline Linux 2.6 kernel, including direc-
tory indexing, block reservation, and online re-
sizing. We also discuss those features that have
been implemented but are yet to be incorpo-
rated into the mainline kernel: extent maps,
delayed allocation, and multiple block alloca-
tion. We will then examine the performance
improvements from Linux 2.4 ext3 filesystem
to Linux 2.6 ext3 filesystem using industry-
standard benchmarks features. Finally, we will
touch upon some potential future work which is
still under discussion by the ext2/3 developers.

1 Introduction

Although the ext2 filesystem[4] was not the
first filesystem used by Linux and while other
filesystems have attempted to lay claim to be-
ing the native Linux filesystem (for example,
when Frank Xia attempted to rename xiafs to
linuxfs), nevertheless most would consider the
ext2/3 filesystem as most deserving of this dis-
tinction. Why is this? Why have so many sys-
tem administrations and users put their trust in
the ext2/3 filesystem?

There are many possible explanations, includ-
ing the fact that the filesystem has a large and
diverse developer community. However, in
our opinion, robustness (even in the face of
hardware-induced corruption) and backwards
compatibility are among the most important
reasons why the ext2/3 filesystem has a large
and loyal user community. Many filesystems
have the unfortunate attribute of beingfrag-
ile. That is, the corruption of a single, unlucky,
block can be magnified to cause a loss of far
larger amounts of data than might be expected.
A fundamental design principle of the ext2/3
filesystem is to avoid fragile data structures by
limiting the damage that could be caused by the
loss of a single critical block.
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This has sometimes led to the ext2/3 filesys-
tem’s reputation of being a little boring, and
perhaps not the fastest or the most scalable
filesystem on the block, but which is one of the
most dependable. Part of this reputation can
be attributed to the extremely conservative de-
sign of the ext2 filesystem [4], which had been
extended to add journaling support in 1998,
but which otherwise had very few other mod-
ern filesystem features. Despite its age, ext3
is actually growing in popularity among enter-
prise users/vendors because of its robustness,
good recoverability, and expansion characteris-
tics. The fact thate2fsck is able to recover
from very severe data corruption scenarios is
also very important to ext3’s success.

However, in the last few years, the ext2/3 de-
velopment community has been working hard
to demolish the first part of this common wis-
dom. The initial outline of plans to “modern-
ize” the ext2/3 filesystem was documented in a
2002 Freenix Paper [15]. Three years later, it is
time to revisit those plans, see what has been
accomplished, what still remains to be done,
and what further extensions are now under con-
sideration by the ext 2/3 development commu-
nity.

This paper is organized into the following sec-
tions. First, we describe about those fea-
tures which have already been implemented
and which have been integrated into the main-
line kernel in Section 2. Second, we discuss
those features which have been implemented,
but which have not yet been integrated in main-
line in Section 3 and Section 4. Next, we ex-
amine the performance improvements on ext3
filesystem during the last few years in Sec-
tion 5. Finally, we will discuss some potential
future work in Section 6.

2 Features found in Linux 2.6

The past three years have seen many discus-
sions of ext2/3 development. Some of the
planned features [15] have been implemented
and integrated into the mainline kernel during
these three years, including directory indexing,
reservation based block allocation, online re-
sizing, extended attributes, large inode support,
and extended attributes in large inode. In this
section, we will give an overview of the design
and the implementation for each feature.

2.1 Directory indexing

Historically, ext2/3 directories have used a sim-
ple linked list, much like the BSD Fast Filesys-
tem. While it might be expected that the
O(n) lookup times would be a significant per-
formance issue, the Linux VFS-level direc-
tory cache mitigated the O(n) lookup times for
many common workloads. However, ext2’s
linear directory structure did cause significant
performance problems for certain applications,
such as web caches and mail systems using the
Maildir format.

To address this problem, various ext2 develop-
ers, including Daniel Phillips, Theodore Ts’o,
and Stephen Tweedie, discussed using a B-tree
data structure for directories. However, stan-
dard B-trees had numerous characteristics that
were at odds with the ext2 design philosophy of
simplicity and robustness. For example, XFS’s
B-tree implementation was larger than all of
ext2 or ext3’s source files combined. In addi-
tion, users of other filesystems using B-trees
had reported significantly increased potential
for data loss caused by the corruption of a high-
level node in the filesystem’s B-tree.

To address these concerns, we designed a rad-
ically simplified tree structure that was specifi-
cally optimized for filesystem directories[10].
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This is in contrast to the approach used by
many other filesystems, including JFS, Reis-
erfs, XFS, and HFS, which use a general-
purpose B-tree. Ext2’s scheme, which we
dubbed “HTree,” uses 32-bit hashes for keys,
where each hash key references a range of en-
tries stored in a leaf block. Since internal
nodes are only 8 bytes, HTrees have a very
high fanout factor (over 500 blocks can be ref-
erenced using a 4K index block), two levels of
index nodes are sufficient to support over 16
million 52-character filenames. To further sim-
plify the implementation, HTrees are constant
depth (either one or two levels). The combina-
tion of the high fanout factor and the use of a
hash of the filename, plus a filesystem-specific
secret to serve as the search key for the HTree,
avoids the need for the implementation to do
balancing operations.

We maintain forwards compatibility in old ker-
nels by clearing theEXT3_INDEX_FL when-
ever we modify a directory entry. In order to
preserve backwards compatibility, leaf blocks
in HTree are identical to old-style linear di-
rectory blocks, and index blocks are prefixed
with an 8-byte data structure that makes them
appear to non-HTree kernels as deleted direc-
tory entries. An additional advantage of this
extremely aggressive attention towards back-
wards compatibility is that HTree directories
are extremely robust. If any of the index nodes
are corrupted, the kernel or the filesystem con-
sistency checker can find all of the directory en-
tries using the traditional linear directory data
structures.

Daniel Phillips created an initial implementa-
tion for the Linux 2.4 kernel, and Theodore
Ts’o significantly cleaned up the implementa-
tion and merged it into the mainline kernel dur-
ing the Linux 2.5 development cycle, as well
as implementing e2fsck support for the HTree
data structures. This feature was extremely
well received, since for very large directories,

performance improvements were often better
by a factor of 50–100 or more.

While the HTree algorithm significantly im-
proved lookup times, it could cause some per-
formance regressions for workloads that used
readdir() to perform some operation of all
of the files in a large directory. This is caused
by readdir() returning filenames in a hash-
sorted order, so that reads from the inode table
would be done in a random order. This perfor-
mance regression can be easily fixed by mod-
ifying applications to sort the directory entries
returned byreaddir() by inode number. Al-
ternatively, anLD_PRELOADlibrary can be
used, which intercepts calls toreaddir()
and returns the directory entries in sorted order.

One potential solution to mitigate this perfor-
mance issue, which has been suggested by
Daniel Phillips and Andreas Dilger, but not yet
implemented, involves the kernel choosing free
inodes whose inode numbers meet a property
that groups the inodes by their filename hash.
Daniel and Andreas suggest allocating the in-
ode from a range of inodes based on the size
of the directory, and then choosing a free in-
ode from that range based on the filename hash.
This should in theory reduce the amount of
thrashing that results when accessing the inodes
referenced in the directory in readdir order. In
it is not clear that this strategy will result in a
speedup, however; in fact it could increase the
total number of inode blocks that might have
to be referenced, and thus make the perfor-
mance ofreaddir() + stat() workloads
worse. Clearly, some experimentation and fur-
ther analysis is still needed.

2.2 Improving ext3 scalability

The scalability improvements in the block layer
and other portions of the kernel during 2.5
development uncovered a scaling problem for
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ext3/JBD under parallel I/O load. To address
this issue, Alex Tomas and Andrew Morton
worked to remove a per-filesystem superblock
lock (lock_super() ) from ext3 block allo-
cations [13].

This was done by deferring the filesystem’s
accounting of the number of free inodes and
blocks, only updating these counts when they
are needed bystatfs() or umount() sys-
tem call. This lazy update strategy was en-
abled by keeping authoritative counters of the
free inodes and blocks at the per-block group
level, and enabled the replacement of the
filesystem-widelock_super() with fine-
grained locks. Since a spin lock for every
block group would consume too much mem-
ory, a hashed spin lock array was used to pro-
tect accesses to the block group summary in-
formation. In addition, the need to use these
spin locks was reduced further by using atomic
bit operations to modify the bitmaps, thus al-
lowing concurrent allocations within the same
group.

After addressing the scalability problems in
the ext3 code proper, the focus moved to the
journal (JBD) routines, which made exten-
sive use of the big kernel lock (BKL). Alex
Tomas and Andrew Morton worked together
to reorganize the locking of the journaling
layer in order to allow as much concurrency
as possible, by using a fine-grained locking
scheme instead of using the BKL and the per-
filesystem journal lock. This fine-grained lock-
ing scheme uses a new per-bufferhead lock
(BH_JournalHead ), a new per-transaction
lock (t_handle_lock ) and several new per-
journal locks (j_state_lock , j_list_
lock , and j_revoke_lock ) to protect the
list of revoked blocks. The locking hierarchy
(to prevent deadlocks) for these new locks is
documented in theinclude/linux/jbd.
h header file.

The final scalability change that was needed

was to remove the use ofsleep_on() (which
is only safe when called from within code run-
ning under the BKL) and replacing it with the
newwait_event() facility.

These combined efforts served to improve
multiple-writer performance on ext3 notice-
ably: ext3 throughput improved by a factor
of 10 on SDET benchmark, and the context
switches are dropped significantly [2, 13].

2.3 Reservation based block allocator

Since disk latency is the key factor that affects
the filesystem performance, modern filesys-
tems always attempt to layout files on a filesys-
tem contiguously. This is to reduce disk head
movement as much as possible. However, if
the filesystem allocates blocks on demand, then
when two files located in the same directory are
being written simultaneously, the block alloca-
tions for the two files may end up getting inter-
leaved. To address this problem, some filesys-
tems use the technique ofpreallocation, by an-
ticipating which files will likely need allocate
blocks and allocating them in advance.

2.3.1 Preallocation background

In ext2 filesystem, preallocation is performed
on the actual disk bitmap. When a new disk
data block is allocated, the filesystem internally
preallocates a few disk data blocks adjacent to
the block just allocated. To avoid filling up
filesystem space with preallocated blocks too
quickly, each inode is allowed at most seven
preallocated blocks at a time. Unfortunately,
this scheme had to be disabled when journal-
ing was added to ext3, since it is incompatible
with journaling. If the system were to crash be-
fore the unused preallocated blocks could be re-
claimed, then during system recovery, the ext3
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journal would replay the block bitmap update
change. At that point the inode’s block map-
ping could end up being inconsistent with the
disk block bitmap. Due to the lack of full
forced fsck for ext3 to return the preallocated
blocks to the free list, preallocation was dis-
abled when the ext3 filesystem was integrated
into the 2.4 Linux kernel.

Disabling preallocation means that if multiple
processes attempted to allocate blocks to two
files in the same directory, the blocks would be
interleaved. This was a known disadvantage of
ext3, but this short-coming becomes even more
important with extents (see Section 3.1) since
extents are far more efficient when the file on
disk is contiguous. Andrew Morton, Mingming
Cao, Theodore Ts’o, and Badari Pulavarty ex-
plored various possible ways to add preallo-
cation to ext3, including the method that had
been used for preallocation in ext2 filesystem.
The method that was finally settled upon was a
reservation-based design.

2.3.2 Reservation design overview

The core idea of the reservation based alloca-
tor is that for every inode that needs blocks, the
allocator reserves a range of blocks for that in-
ode, called a reservation window. Blocks for
that inode are allocated from that range, instead
of from the whole filesystem, and no other in-
ode is allowed to allocate blocks in the reserva-
tion window. This reduces the amount of frag-
mentation when multiple files are written in the
same directory simultaneously. The key differ-
ence between reservation and preallocation is
that the blocks are only reserved in memory,
rather than on disk. Thus, in the case the system
crashes while there are reserved blocks, there is
no inconsistency in the block group bitmaps.

The first time an inode needs a new block,
a block allocation structure, which describes

the reservation window information and other
block allocation related information, is allo-
cated and linked to the inode. The block allo-
cator searches for a region of blocks that fulfills
three criteria. First, the region must be near the
ideal “goal” block, based on ext2/3’s existing
block placement algorithms. Secondly, the re-
gion must not overlap with any other inode’s
reservation windows. Finally, the region must
have at least one free block. As an inode keeps
growing, free blocks inside its reservation win-
dow will eventually be exhausted. At that point,
a new window will be created for that inode,
preferably right after the old with the guide of
the “goal” block.

All of the reservation windows are indexed via
a per-filesystem red-black tree so the block al-
locator can quickly determine whether a par-
ticular block or region is already reserved by a
particular inode. All operations on that tree are
protected by a per-filesystem global spin lock.

Initially, the default reservation window size
for an inode is set to eight blocks. If the reser-
vation allocator detects the inode’s block allo-
cation pattern to be sequential, it dynamically
increases the window size for that inode. An
application that knows the file size ahead of the
file creation can employ an ioctl command to
set the window size to be equal to the antici-
pated file size in order to attempt to reserve the
blocks immediately.

Mingming Cao implemented this reservation
based block allocator, with help from Stephen
Tweedie in converting the per-filesystem reser-
vation tree from a sorted link list to a red-black
tree. In the Linux kernel versions 2.6.10 and
later, the default block allocator for ext3 has
been replaced by this reservation based block
allocator. Some benchmarks, such as tiobench
and dbench, have shown significant improve-
ments on sequential writes and subsequent se-
quential reads with this reservation-based block
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allocator, especially when a large number of
processes are allocating blocks concurrently.

2.3.3 Future work

Currently, the reservation window only lasts
until the last process writing to that file closes.
At that time, the reservation window is released
and those blocks are available for reservation or
allocation by any other inode. This is necessary
so that the blocks that were reserved can be re-
leased for use by other files, and to avoid frag-
mentation of the free space in the filesystem.

However, some files, such as log files and
UNIX R© mailbox files, have aslow growthpat-
tern. That is, they grow slowly over time, by
processes appending a small amount of data,
and then closing the file, over and over again.
For these files, in order to avoid fragmentation,
it is necessary that the reservation window be
preserved even after the file has been closed.

The question is how to determine which files
should be allowed to retain their reservation
window after the last close. One possible so-
lution is to tag the files or directories with an
attribute indicating that they contain files that
have a slow growth pattern. Another possibil-
ity is to implement heuristics that can allow the
filesystem to automatically determines which
file seems to have a slow growth pattern, and
automatically preserve the reservation window
after the file is closed.

If reservation windows can be preserved in this
fashion, it will be important to also implement
a way for preserved reservation windows to be
reclaimed when the filesystem is fully reserved.
This prevents an inode that fails to find a new
reservation from falling back to no-reservation
mode too soon.

2.4 Online resizing

The online resizing feature was originally de-
veloped by Andreas Dilger in July of 1999 for
the 2.0.36 kernel. The availability of a Logi-
cal Volume Manager (LVM), motivated the de-
sire for on-line resizing, so that when a logical
volume was dynamically resized, the filesys-
tem could take advantage of the new space.
This ability to dynamically resize volumes and
filesystems is very useful in server environ-
ments, where taking downtime for unmounting
a filesystem is not desirable. After missing the
code freeze for the 2.4 kernel, the ext2online
code was finally included into the 2.6.10 ker-
nel and e2fsprogs 1.36 with the assistance of
Stephen Tweedie and Theodore Ts’o.

2.4.1 The online resizing mechanism

The online resizing mechanism, despite its
seemingly complex task, is actually rather sim-
ple in its implementation. In order to avoid a
large amount of complexity it is only possible
to increase the size of a filesystem while it is
mounted. This addresses the primary require-
ment that a filesystem that is (nearly) full can
have space added to it without interrupting the
use of that system. The online resizing code de-
pends on the underlying block device to handle
all aspects of its own resizing prior to the start
of filesystem resizing, and does nothing itself
to manipulate the partition tables of LVM/MD
block devices.

The ext2/3 filesystem is divided into one or
more block allocation groups of a fixed size,
with possibly a partial block group at the end
of the filesystem [4]. The layout of each block
group (where the inode and block allocation
bitmaps and the inode table are stored) is kept
in the group descriptor table. This table is
stored at the start of at the first block group, and
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consists of one or more filesystem blocks, de-
pending on the size of the filesystem. Backup
copies of the group descriptor table are kept in
more groups if the filesystem is large enough.

There are three primary phases by which a
filesystem is grown. The first, and simplest, is
to expand the last partial block group (if any)
to be a full block group. The second phase is
to add a new block group to an existing block
in the group descriptor table. The third phase
is to add a new block to the group descriptor
table and add a new group to that block. All
filesystem resizes are done incrementally, go-
ing through one or more of the phases to add
free space to the end of the filesystem until the
desired size is reached.

2.4.2 Resizing within a group

For the first phase of growth, the online resizing
code starts by briefly locking the superblock
and increasing the total number of filesystem
blocks to the end of the last group. All of the
blocks beyond the end of the filesystem are al-
ready marked as “in use” by the block bitmap
for that group, so they must be cleared. This
is accomplished by the same mechanism that
is used when deleting a file—ext3_free_
blocks() and can be done without lock-
ing the whole filesystem. The online resizer
simply pretends that it is deleting a file that
had allocated all of the blocks at the end of
the filesystem, andext3_free_blocks()
handles all of the bitmap and free block count
updates properly.

2.4.3 Adding a new group

For the second phase of growth, the online
resizer initializes the next group beyond the

end of the filesystem. This is easily done be-
cause this area is currently unused and un-
known to the filesystem itself. The block
bitmap for that group is initialized as empty,
the superblock and group descriptor backups (if
any) are copied from the primary versions, and
the inode bitmap and inode table are initialized.
Once this has completed successfully the on-
line resizing code briefly locks the superblock
to increase the total and free blocks and inodes
counts for the filesystem, add a new group to
the end of the group descriptor table, and in-
crease the total number of groups in the filesys-
tem by one. Once this is completed the backup
superblock and group descriptors are updated
in case of corruption of the primary copies. If
there is a problem at this stage, the next e2fsck
will also update the backups.

The second phase of growth will be repeated
until the filesystem has fully grown, or the last
group descriptor block is full. If a partial group
is being added at the end of the filesystem the
blocks are marked as “in use” before the group
is added. Both first and second phase of growth
can be done on any ext3 filesystem with a sup-
ported kernel and suitable block device.

2.4.4 Adding a group descriptor block

The third phase of growth is needed periodi-
cally to grow a filesystem over group descrip-
tor block boundaries (at multiples of 16 GB for
filesystems with 4 KB blocksize). When the
last group descriptor block is full, a new block
must be added to the end of the table. How-
ever, because the table is contiguous at the start
of the first group and is normally followed im-
mediately by the block and inode bitmaps and
the inode table, the online resize code needs
a bit of assistance while the filesystem is un-
mounted (offline) in order to maintain compat-
ibility with older kernels. Either atmke2fs
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time, or for existing filesystems with the assis-
tance of theext2prepare command, a small
number of blocks at the end of the group de-
scriptor table are reserved for online growth.
The total amount of reserved blocks is a tiny
fraction of the total filesystem size, requiring
only a few tens to hundreds of kilobytes to grow
the filesystem 1024-fold.

For the third phase, it first gets the next re-
served group descriptor block and initializes a
new group and group descriptor beyond the end
of the filesystem, as is done in second phase of
growth. Once this is successful, the superblock
is locked while reallocating the array that in-
dexes all of the group descriptor blocks to add
another entry for the new block. Finally, the
superblock totals are updated, the number of
groups is increased by one, and the backup su-
perblock and group descriptors are updated.

The online resizing code takes advantage of the
journaling features in ext3 to ensure that there
is no risk of filesystem corruption if the resize
is unexpectedly interrupted. The ext3 journal
ensures strict ordering and atomicity of filesys-
tem changes in the event of a crash—either the
entire resize phase is committed or none of it
is. Because the journal has no rollback mech-
anism (except by crashing) the resize code is
careful to verify all possible failure conditions
prior to modifying any part of the filesystem.
This ensures that the filesystem remains valid,
though slightly smaller, in the event of an error
during growth.

2.4.5 Future work

Future development work in this area involves
removing the need to do offline filesystem
manipulation to reserve blocks before doing
third phase growth. The use of Meta Block
Groups [15] allows new groups to be added to

the filesystem without the need to allocate con-
tiguous blocks for the group descriptor table.
Instead the group descriptor block is kept in the
first group that it describes, and a backup is kept
in the second and last group for that block. The
Meta Block Group support was first introduced
in the 2.4.25 kernel (Feb. 2004) so it is reason-
able to think that a majority of existing systems
could mount a filesystem that started using this
when it is introduced.

A more complete description of the online
growth is available in [6].

2.5 Extended attributes

2.5.1 Extended attributes overview

Many new operating system features (such as
access control lists, mandatory access con-
trols, Posix Capabilities, and hierarchical stor-
age management) require filesystems to be able
associate a small amount of custom metadata
with files or directories. In order to implement
support for access control lists, Andreas Gru-
enbacher added support for extended attributes
to the ext2 filesystems. [7]

Extended attributes as implemented by Andreas
Gruenbacher are stored in a single EA block.
Since a large number of files will often use the
same access control list, as inherited from the
directory’s default ACL as an optimization, the
EA block may be shared by inodes that have
identical extended attributes.

While the extended attribute implementation
was originally optimized for use to store ACL’s,
the primary users of extended attributes to date
have been the NSA’s SELinux system, Samba
4 for storing extended attributes from Windows
clients, and the Lustre filesystem.

In order to store larger EAs than a single
filesystem block, work is underway to store
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large EAs in another EA inode referenced from
the original inode. This allows many arbitrary-
sized EAs to be attached to a single file, within
the limitations of the EA interface and what
can be done inside a single journal transaction.
These EAs could also be accessed as additional
file forks/streams, if such an API were added to
the Linux kernel.

2.5.2 Large inode support and EA-in-inode

Alex Tomas and Andreas Dilger implemented
support for storing the extended attribute in an
expanded ext2 inode, in preference to using a
separate filesystem block. In order to do this,
the filesystem must be created using an inode
size larger than the default 128 bytes. Inode
sizes must be a power of two and must be no
larger than the filesystem block size, so for a
filesystem with a 4 KB blocksize, inode sizes
of 256, 512, 1024, 2048, or 4096 bytes are
valid. The 2 byte field starting at offset 128
(i_extra_size ) of each inode specifies the
starting offset for the portion of the inode that
can be used for storing EA’s. Since the starting
offset must be a multiple of 4, and we have not
extended the fixed portion of the inode beyond
i_extra_size , currentlyi_extra_size
is 4 for all filesystems with expanded inodes.
Currently, all of the inode past the initial 132
bytes can be used for storing EAs. If the user at-
tempts to store more EAs than can fit in the ex-
panded inode, the additional EAs will be stored
in an external filesystem block.

Using the EA-in-inode, a very large (seven-fold
improvement) difference was found in some
Samba 4 benchmarks, taking ext3 from last
place when compared to XFS, JFS, and Reis-
erfs3, to being clearly superior to all of the
other filesystems for use in Samba 4. [5] The in-
inode EA patch started by Alex Tomas and An-
dreas Dilger was re-worked by Andreas Gruen-
bacher. And the fact that this feature was such a

major speedup for Samba 4, motivated it being
integrated into the mainline 2.6.11 kernel very
quickly.

3 Extents, delayed allocation and
extent allocation

This section and the next (Section 4) will dis-
cuss features that are currently under develop-
ment, and (as of this writing) have not been
merged into the mainline kernel. In most cases
patches exist, but they are still being polished,
and discussion within the ext2/3 development
community is still in progress.

Currently, the ext2/ext3 filesystem, like other
traditionalUNIX filesystems, uses a direct, indi-
rect, double indirect, and triple indirect blocks
to map file offsets to on-disk blocks. This
scheme, sometimes simply called an indirect
block mapping scheme, is not efficient for large
files, especially large file deletion. In order to
address this problem, many modern filesystems
(including XFS and JFS on Linux) use some
form of extent maps instead of the traditional
indirect block mapping scheme.

Since most filesystems try to allocate blocks in
a contiguous fashion, extent maps are a more
efficient way to represent the mapping between
logical and physical blocks for large files. An
extentis a single descriptor for a range of con-
tiguous blocks, instead of using, say, hundreds
of entries to describe each block individually.

Over the years, there have been many discus-
sions about moving ext3 from the traditional in-
direct block mapping scheme to an extent map
based scheme. Unfortunately, due to the com-
plications involved with making an incompati-
ble format change, progress on an actual imple-
mention of these ideas had been slow.
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Alex Tomas, with help from Andreas Dilger,
designed and implemented extents for ext3. He
posted the initial version of his extents patch
on August, 2003. The initial results on file cre-
ation and file deletion tests inspired a round of
discussion in the Linux community to consider
adding extents to ext3. However, given the con-
cerns that the format changes were ones that all
of the ext3 developers will have to support on
a long-term basis, and the fact that it was very
late in the 2.5 development cycle, it was not in-
tegrated into the mainline kernel sources at that
time.

Later, in April of 2004, Alex Tomas posted
an updated extents patch, as well as addi-
tional patches that implemented delayed allo-
cation and multiple block allocation to the ext2-
devel mailing list. These patches were reposted
in February 2005, and this re-ignited interest
in adding extents to ext3, especially when it
was shown that the combination of these three
features resulted in significant throughput im-
provements on some sequential write tests.

In the next three sections, we will discuss how
these three features are designed, followed by a
discussion of the performance evaluation of the
combination of the three patches.

3.1 Extent maps

This implementation of extents was originally
motivated by the problem of long truncate
times observed for huge files.1 As noted above,
besides speeding up truncates, extents help im-
prove the performance of sequential file writes
since extents are a significantly smaller amount
of metadata to be written to describe contigu-
ous blocks, thus reducing the filesystem over-
head.

1One option to address the issue is performing asyn-
chronous truncates, however, while this makes the CPU
cycles to perform the truncate less visible, excess CPU
time will still be consumed by the truncate operations.

Most files need only a few extents to describe
their logical-to-physical block mapping, which
can be accommodated within the inode or a
single extent map block. However, some ex-
treme cases, such as sparse files with random
allocation patterns, or a very badly fragmented
filesystem, are not efficiently represented using
extent maps. In addition, allocating blocks in a
random access pattern may require inserting an
extent map entry in the middle of a potentially
very large data representation.

One solution to this problem is to use a tree
data structure to store the extent map, either a
B-tree, B+ tree, or some simplified tree struc-
ture as was used for the HTree feature. Alex
Tomas’s implementation takes the latter ap-
proach, using a constant-depth tree structure. In
this implementation, the extents are expressed
using a 12 byte structure, which include a
32-bit logical block number, a 48-bit physical
block number, and a 16-bit extent length. With
4 KB blocksize, a filesystem can address up to
1024 petabytes, and a maximum file size of 16
terabytes. A single extent can cover up to 216

blocks or 256 MB.2

The extent tree information can be stored in
the inode’si_data array, which is 60 bytes
long. An attribute flag in the inode’si_flags
word indicates whether the inode’si_data ar-
ray should be interpreted using the traditional
indirect block mapping scheme, or as an ex-
tent data structure. If the entire extent infor-
mation can be stored in thei_data field, then
it will be treated as a single leaf node of the
extent tree; otherwise, it will be treated as the
root node of inode’s extent tree, and additional
filesystem blocks serve as intermediate or leaf
nodes in the extent tree.

At the beginning of each node, theext3_
ext_header data structure is 12 bytes long,

2Currently, the maximum block group size given a 4
KB blocksize is 128 MB, and this will limit the maxi-
mum size for a single extent.
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and contains a 16-bit magic number, 2 16-bit
integers containing the number of valid entries
in the node, and the maximum number of en-
tries that can be stored in the node, a 16-bit inte-
ger containing the depth of the tree, and a 32-bit
tree generation number. If the depth of the tree
is 0, then root inode contains leaf node infor-
mation, and the 12-byte entries contain the ex-
tent information described in the previous para-
graph. Otherwise, the root node will contain
12-byte intermediate entries, which consist of
32-bit logical block and a 48-bit physical block
(with 16 bits unused) of the next index or leaf
block.

3.1.1 Code organization

The implementation is divided into two parts:
Generic extents support that implements ini-
tialize/lookup/insert/remove functions for the
extents tree, and VFS support that allows
methods and callbacks likeext3_get_
block() , ext3_truncate() , ext3_
new_block() to use extents.

In order to use the generic extents layer, the
user of the generic extents layer must declare its
tree via anext3_extents_tree structure.
The structure describes where the root of the
tree is stored, and specifies the helper routines
used to operate on it. This way one can root
a tree not only ini_data as described above,
but also in a separate block or in EA (Extended
Attributes) storage. The helper routines de-
scribed by structext3_extents_helpers
can be used to control the block allocation
needed for tree growth, journaling metadata,
using different criteria of extents mergability,
removing extents etc.

3.1.2 Future work

Alex Tomas’s extents implementation is still a
work-in-progress. Some of the work that needs
to be done is to make the implementation in-
dependent of byte-order, improving the error
handling, and shrinking the depth of the tree
when truncated the file. In addition, the extent
scheme is less efficient than the traditional indi-
rect block mapping scheme if the file is highly
fragmented. It may be useful to develop some
heuristics to determine whether or not a file
should use extents automatically. It may also
be desirable to allow block-mapped leaf blocks
in an extent-mapped file for cases where there
is not enough contiguous space in the filesys-
tem to allocate the extents efficiently.

The last change would necessarily change the
on-disk format of the extents, but it is not only
the extent format that has been changed. For
example, the extent format does not support
logical block numbers that are greater than 32
bits, and a more efficient, variable-length for-
mat would allow more extents to be stored in
the inode before spilling out to an external tree
structure.

Since deployment of the extent data struc-
ture is disruptive because it involved an non-
backwards-compatible change to the filesystem
format, it is important that the ext3 developers
are comfortable that the extent format is flexi-
ble and powerful enough for present and future
needs, in order to avoid the need for additional
incompatible format changes.

3.2 Delayed allocation

3.2.1 Why delayed allocation is needed

Procrastination has its virtues in the ways of an
operating system. Deferring certain tasks un-
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til an appropriate time often improves the over-
all efficiency of the system by enabling optimal
deployment of resources. Filesystem I/O writes
are no exception.

Typically, when a filesystemwrite() sys-
tem call returns success, it has only copied the
data to be written into the page cache, mapped
required blocks in the filesystem and marked
the pages as needing write out. The actual
write out of data to disk happens at a later
point of time, usually when writeback opera-
tions are clustered together by a background
kernel thread in accordance with system poli-
cies, or when the user requests file data to
be synced to disk. Such an approach ensures
improved I/O ordering and clustering for the
system, resulting in more effective utilization
of I/O devices with applications spending less
time in thewrite() system call, and using
the cycles thus saved to perform other work.

Delayed allocation takes this a step further,
by deferring the allocation of new blocks in
the filesystem to disk blocks until writeback
time [12]. This helps in three ways:

• Reduces fragmentation in the filesystem
by improving chances of creating contigu-
ous blocks on disk for a file. Although
preallocation techniques can help avoid
fragmentation, they do not address frag-
mentation caused by multiple threads writ-
ing to the file at different offsets simul-
taneously, or files which are written in a
non-contiguous order. (For example, the
libfd library, which is used by the GNU
C compiler will create object files that are
written out of order.)

• Reduces CPU cycles spent in repeated
get_block() calls, by clustering allo-
cation for multiple blocks together. Both
of the above would be more effective when
combined with a good multi-block alloca-
tor.

• For short lived files that can be buffered
in memory, delayed allocation may avoid
the need for disk updates for metadata cre-
ation altogether, which in turn reduces im-
pact on fragmentation [12].

Delayed allocation is also useful for the Ac-
tive Block I/O Scheduling System (ABISS) [1],
which provides guaranteed read/write bit rates
for applications that require guaranteed real-
time I/O streams. Without delayed allocation,
the synchronous code path forwrite() has
to read, modify, update, and journal changes to
the block allocation bitmap, which could dis-
rupt the guaranteed read/write rates that ABISS
is trying to deliver.

Since block allocation is deferred until back-
ground writeback when it is too late to return an
error to the caller ofwrite() , thewrite()
operation requires a way to ensure that the
allocation will indeed succeed. This can be
accomplished by carving out, or reserving, a
claim on the expected number of blocks on disk
(for example, by subtracting this number from
the total number of available blocks, an op-
eration that can be performed without having
to go through actual allocation of specific disk
blocks).

Repeated invocations of ext3_get_
block()/ext3_new_block() is not
efficient for mapping consecutive blocks,
especially for an extent based inode, where it is
natural to process a chunk of contiguous blocks
all together. For this reason, Alex Tomas
implemented an extents based multiple block
allocation and used it as a basis for extents
based delayed allocation. We will discuss
the extents based multiple block allocation in
Section 3.3.
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3.2.2 Extents based delayed allocation im-
plementation

If the delayed allocation feature is enabled for
an ext3 filesystem and a file uses extent maps,
then the address space operations for its inode
are initialized to a set of ext3 specific routines
that implement the write operations a little dif-
ferently. The implementation defers allocation
of blocks fromprepare_write() and em-
ploys extent walking, together with the multiple
block allocation feature (described in the next
section), for clustering block allocations maxi-
mally into contiguous blocks.

Instead of allocating the disk block in
prepare_write() , the the page is marked
as needing block reservation. Thecommit_
write() function calculates the required
number of blocks, and reserves them to make
sure that there are enough free blocks in the
filesystem to satisfy the write. When the
pages get flushed to disk bywritepage()
or writepages() , these functions will walk
all the dirty pages in the specified inode, clus-
ter the logically contiguous ones, and submit
the page or pages to the bio layer. After the
block allocation is complete, the reservation
is dropped. A single block I/O request (or
BIO) is submitted for write out of pages pro-
cessed whenever a new allocated extent (or the
next mapped extent if already allocated) on
the disk is not adjacent to the previous one,
or whenwritepages() completes. In this
manner the delayed allocation code is tightly
integrated with other features to provide best
performance.

3.3 Buddy based extent allocation

One of the shortcomings of the current ext3
block allocation algorithm, which allocates one
block at a time, is that it is not efficient enough

for high speed sequential writes. In one ex-
periment utilizing direct I/O on a dual Opteron
workstation with fast enough buses, fiber chan-
nel, and a large, fast RAID array, the CPU lim-
ited the I/O throughput to 315 MB/s. While
this would not be an issue on most machines
(since the maximum bandwidth of a PCI bus
is 127 MB/s), but for newer or enterprise-class
servers, the amount of data per second that can
be written continuously to the filesystem is no
longer limited by the I/O subsystem, but by the
amount of CPU time consumed by ext3’s block
allocator.

To address this problem, Alex Tomas designed
and implemented a multiple block allocation,
called mballoc, which uses a classic buddy data
structure on disk to store chunks of free or used
blocks for each block group. This buddy data
is an array of metadata, where each entry de-
scribes the status of a cluster of 2n blocks, clas-
sified as free or in use.

Since block buddy data is not suitable for de-
termining a specific block’s status and locating
a free block close to the allocation goal, the tra-
ditional block bitmap is still required in order
to quickly test whether a specific block is avail-
able or not.

In order to find a contiguous extent of blocks
to allocate, mballoc checks whether the goal
block is available in the block bitmap. If it is
available, mballoc looks up the buddy data to
find the free extent length starting from the goal
block. To find the real free extent length, mbal-
loc continues by checking whether the physical
block right next to the end block of the pre-
viously found free extent is available or not.
If that block is available in the block bitmap,
mballoc could quickly find the length of the
next free extent from buddy data and add it up
to the total length of the free extent from the
goal block.

For example, if block M is the goal block and
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is claimed to be available in the bitmap, and
block M is marked as free in buddy data of or-
der n, then initially the free chunk size from
block M is known to be 2n. Next, mballoc
checks the bitmap to see if blockM + 2n + 1
is available or not. If so, mballoc checks the
buddy data again, and finds that the free extent
length from blockM + 2n + 1 is k. Now, the
free chunk length from goal block M is known
to be 2n + 2k. This process continues until at
some point the boundary block is not available.
In this manner, instead of testing dozens, hun-
dreds, or even thousands of blocks’ availability
status in the bitmap to determine the free blocks
chunk size, it can be enough to just test a few
bits in buddy data and the block bitmap to learn
the real length of the free blocks extent.

If the found free chunk size is greater than the
requested size, then the search is considered
successful and mballoc allocates the found free
blocks. Otherwise, depending on the allocation
criteria, mballoc decides whether to accept the
result of the last search in order to preserve the
goal block locality, or continue searching for
the next free chunk in case the length of con-
tiguous blocks is a more important factor than
where it is located. In the later case, mballoc
scans the bitmap to find out the next available
block, then, starts from there, and determines
the related free extent size.

If mballoc fails to find a free extent that sat-
isfies the requested size after rejecting a pre-
defined number (currently 200) of free chunks,
it stops the search and returns the best (largest)
free chunk found so far. In order to speed up the
scanning process, mballoc maintains the total
number of available blocks and the first avail-
able block of each block group.

3.3.1 Future plans

Since in ext3 blocks are divided into block
groups, the block allocator first selects a block
group before it searches for free blocks. The
policy employed in mballoc is quite simple: to
try the block group where the goal block is lo-
cated first. If allocation from that group fails,
then scan the subsequent groups. However, this
implies that on a large filesystem, especially
when free blocks are not evenly distributed,
CPU cycles could be wasted on scanning lots
of almost full block groups before finding a
block group with the desired free blocks crite-
ria. Thus, a smarter mechanism to select the
right block group to start the search should im-
prove the multiple block allocator’s efficiency.
There are a few proposals:

1. Sort all the block groups by the total num-
ber of free blocks.

2. Sort all the groups by the group fragmen-
tation factor.

3. Lazily sort all the block groups by the to-
tal number of free blocks, at significant
change of free blocks in a group only.

4. Put extents into buckets based on extent
size and/or extent location in order to
quickly find extents of the correct size and
goal location.

Currently the four options are under evaluation
though probably the first one is a little more in-
teresting.

3.4 Evaluating the extents patch set

The initial evaluation of the three patches (ex-
tents, delayed allocation and extent alloca-
tion) shows significant throughput improve-
ments, especially under sequential tests. The
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tests show that the extents patch significantly
reduces the time for large file creation and re-
moval, as well as file rewrite. With extents
and extent allocation, the throughput of Di-
rect I/O on the aforementioned Opteron-based
workstation is significantly improved, from 315
MB/sec to 500MB/sec, and the CPU usage is
significantly dropped from 100% to 50%. In
addition, extensive testing on various bench-
marks, including dbench, tiobench, FFSB [11]
and sqlbench [16], has been done with and
without this set of patches. Some initial analy-
sis indicates that the multiple block allocation,
when combined with delayed allocation, is a
key factor resulting in this improvement. More
testing results can be obtained fromhttp://

www.bullopensource.org/ext4 .

4 Improving ext3 without changing
disk format

Replacing the traditional indirect block map-
ping scheme with an extent mapping scheme,
has many benefits, as we have discussed in the
previous section. However, changes to the on-
disk format that are not backwards compati-
ble are often slow to be adopted by users, for
two reasons. First of all, robust e2fsck sup-
port sometimes lags the kernel implementation.
Secondly, it is generally not possible to mount
the filesystem with an older kernel once the
filesystem has been converted to use these new
features, preventing rollback in case of prob-
lems.

Fortunately, there are a number of improve-
ments that can be made to the ext2/3 filesys-
tem without making these sorts of incompatible
changes to the on-disk format.

In this section, we will discuss a few of fea-
tures that are implemented based on the current

ext3 filesystem. Section 4.1 describes the ef-
fort to reduce the usage of bufferheads struc-
ture in ext3; Section 4.2 describes the effort
to add delayed allocation without requiring the
use of extents; Section 4.3 discusses the work to
add multiple block allocation; Section 4.4 de-
scribes asynchronous file unlink and truncate;
Section 4.5 describes a feature to allow more
than 32000 subdirectories; and Section 4.6 de-
scribes a feature to allow multiple threads to
concurrently create/rename/link/unlink files in
a single directory.

4.1 Reducing the use of bufferheads in ext3

Bufferheads continue to be heavily used in
Linux I/O and filesystem subsystem, even
though closer integration of the buffer cache
with the page cache since 2.4 and the new block
I/O subsystem introduced in Linux 2.6 have in
some sense superseded part of the traditional
Linux buffer cache functionality.

There are a number of reasons for this. First of
all, the buffer cache is still used as a metadata
cache. All filesystem metadata (superblock,
inode data, indirect blocks, etc.) are typi-
cally read into buffer cache for quick reference.
Bufferheads provide a way to read/write/access
this data. Second, bufferheads link a page to
disk block and cache the block mapping infor-
mation. In addition, the design of bufferheads
supports filesystem block sizes that do not
match the system page size. Bufferheads pro-
vide a convenient way to map multiple blocks
to a single page. Hence, even the generic multi-
page read-write routines sometimes fall back to
using bufferheads for fine-graining or handling
of complicated corner cases.

Ext3 is no exception to the above. Besides the
above reasons, ext3 also makes use of buffer-
heads to enable it to provide ordering guaran-
tees in case of a transaction commit. Ext3’s or-
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dered mode guarantees that file data gets writ-
ten to the disk before the corresponding meta-
data gets committed to the journal. In order
to provide this guarantee, bufferheads are used
as the mechanism to associate the data pages
belonging to a transaction. When the transac-
tion is committed to the journal, ext3 uses the
bufferheads attached to the transaction to make
sure that all the associated data pages have been
written out to the disk.

However, bufferheads have the following dis-
advantages:

• All bufferheads are allocated from the
“buffer_head” slab cache, thus they con-
sume low memory3 on 32-bit architec-
tures. Since there is one bufferhead
(or more, depending on the block size)
for each filesystem page cache page, the
bufferhead slab can grow really quickly
and consumes a lot of low memory space.

• When bufferheads get attached to a page,
they take a reference on the page. The ref-
erence is dropped only when VM tries to
release the page. Typically, once a page
gets flushed to disk it is safe to release its
bufferheads. But dropping the bufferhead,
right at the time of I/O completion is not
easy, since being in interrupt handler con-
text restricts the kind of operations feasi-
ble. Hence, bufferheads are left attached
to the page, and released later as and when
VM decides to re-use the page. So, it is
typical to have a large number of buffer-
heads floating around in the system.

• The extra memory references to buffer-
heads can impact the performance of
memory caches, the Translation Looka-
side Buffer (TLB) and the Segment

3Low memory is memory that can be directly mapped
into kernel virtual address space, i.e. 896MB, in the case
of IA32.

Lookaside Buffer4 (SLB). We have ob-
served that when running a large NFS
workload, while the ext3 journaling thread
kjournald() is referencing all the transac-
tions, all the journal heads, and all the
bufferheads looking for data to flush/clean
it suffers a large number of SLB misses
with the associated performance penalty.
The best solution for these performance
problems appears to be to eliminate the
use of bufferheads as much as possible,
which reduces the number of memory ref-
erences required by kjournald().

To address the above concerns, Badari
Pulavarty has been working on removing
bufferheads usage from ext3 from major
impact areas, while retaining bufferheads for
uncommon usage scenarios. The focus was on
elimination of bufferhead usage for user data
pages, while retaining bufferheads primarily
for metadata caching.

Under the writeback journaling mode, since
there are no ordering requirements between
when metadata and data gets flushed to disk,
eliminating the need for bufferheads is rel-
atively straightforward because ext3 can use
most recent generic VFS helpers for writeback.
This change is already available in the latest
Linux 2.6 kernels.

For ext3 ordered journaling mode, however,
since bufferheads are used as linkage between
pages and transactions in order to provide flush-
ing order guarantees, removal of the use of
bufferheads gets complicated. To address this
issue, Andrew Morton proposed a new ext3
journaling mode, which works without buffer-
heads and provides semantics that are some-
what close to that provided in ordered mode[9].
The idea is that whenever there is a transaction
commit, we go through all the dirty inodes and

4The SLB is found on the 64-bit Power PC.



2005 Linux Symposium • 85

dirty pages in that filesystem and flush every
one of them. This way metadata and user data
are flushed at the same time. The complexity of
this proposal is currently under evaluation.

4.2 Delayed allocation without extents

As we have discussed in Section 3.2, de-
layed allocation is a powerful technique that
can result in significant performance gains,
and Alex Tomas’s implementation shows some
very interesting and promising results. How-
ever, Alex’s implementation only provide de-
layed allocation when the ext3 filesystem
is using extents, which requires an incom-
patible change to the on-disk format. In
addition, like past implementation of de-
layed allocation by other filesystems, such as
XFS, Alex’s changes implement the delayed
allocation in filesystem-specific versions of
prepare_write() , commit_write() ,
writepage() , and writepages() , in-
stead of using the filesystem independent rou-
tines provided by the Linux kernel.

This motivated Suparna Bhattacharya, Badari
Pulavarty and Mingming Cao to implement de-
layed allocation and multiple block allocation
support to improve the performance of the ext3
to the extent possible without requiring any on-
disk format changes.

Interestingly, the work to remove the use
of bufferheads in ext3 implemented most
of the necessary changes required for de-
layed allocation, when bufferheads are not re-
quired. Thenobh_commit_write() func-
tion, delegates the task of writing data to
thewritepage() andwritepages() , by
simply marking the page as dirty. Since
the writepage() function already has to
handle the case of writing a page which is
mapped to a sparse memory-mapped files,
the writepage() function already handles

block allocation by calling the filesystem spe-
cific get_block() function. Hence, if the
nobh_prepare_write function were to
omit call get_block() , the physical block
would not be allocated until the page is ac-
tually written out via thewritepage() or
writepages() function.

Badari Pulavarty implemented a relatively
small patch as a proof-of-concept, which
demonstrates that this approach works well.
The work is still in progress, with a few lim-
itations to address. The first limitation is
that in the current proof-of-concept patch, data
could be dropped if the filesystem was full,
without thewrite() system call returning -
ENOSPC.5 In order to address this problem, the
nobh_prepare_write function must note
that the page currently does not have a phys-
ical block assigned, and request the filesys-
tem reserve a block for the page. So while
the filesystem will not have assigned a spe-
cific physical block as a result ofnobh_
prepare_write() , it must guarantee that
whenwritepage() calls the block allocator,
the allocation must succeed.

The other major limitation is, at present, it
only worked when bufferheads are not needed.
However, thenobh code path as currently
present into the 2.6.11 kernel tree only sup-
ports filesystems when the ext3 is journaling in
writeback mode and not in ordered journaling
mode, and when the blocksize is the same as the
VM pagesize. Extending thenobh code paths
to support sub-pagesize blocksizes is likely not
very difficult, and is probably the appropriate
way of addressing the first part of this short-
coming.

5The same shortcoming exists today if a sparse file
is memory-mapped, and the filesystem is full when
writepage() tries to write a newly allocated page to
the filesystem. This can potentially happen after user
process which wrote to the file viammap() has exited,
where there is no program left to receive an error report.
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However, supporting delayed allocation for
ext3 ordered journaling using this approach is
going to be much more challenging. While
metadata journaling alone is sufficient in write-
back mode, ordered mode needs to track I/O
submissions for purposes of waiting for com-
pletion of data writeback to disk as well, so
that it can ensure that metadata updates hit the
disk only after the corresponding data blocks
are on disk. This avoids potential exposures
and inconsistencies without requiring full data
journaling[14].

However, in the current design of generic multi-
page writeback routines, block I/O submis-
sions are issued directly by the generic rou-
tines and are transparent to the filesystem spe-
cific code. In earlier situations where buffer-
heads were used for I/O, filesystem specific
wrappers around generic code could track I/O
through the bufferheads associated with a page
and link them with the transaction. With the
recent changes, where I/O requests are built di-
rectly as multi-page bio requests with no link
from the page to the bio, this no longer applies.

A couple of solution approaches are under con-
sideration, as of the writing of this paper:

• Introducing yet another filesystem spe-
cific callback to be invoked by the generic
multi-page write routines to actually issue
the I/O. ext3 could then track the number
of in-flight I/O requests associated with
the transaction, and wait for this to fall to
zero at journal commit time. Implement-
ing this option is complicated because the
multi-page write logic occasionally falls
back to the older bufferheads based logic
in some scenarios. Perhaps ext3 ordered
mode writeback would need to provide
both the callback and the page buffer-
head tracking logic if this approach is em-
ployed.

• Find a way to get ext3 journal commit to
effectively reuse a part the fsync/O_SYNC
implementation that waits for writeback to
complete on the pages for relevant inodes,
using a radix-tree walk. Since the journal
layer is designed to be unaware of filesys-
tems [14], this could perhaps be accom-
plished by associating a (filesystem spe-
cific) callback with journal commit, as re-
cently suggested by Andrew Morton[9].

It remains to be seen which approach works out
to be the best, as development progresses. It
is clear that since ordered mode is the default
journaling mode, any delayed allocation imple-
mentation must be able to support it.

4.3 Efficiently allocating multiple blocks

As with the Alex Tomas’s delayed allocation
patch, Alex’s multiple block allocator patch re-
lies on an incompatible on-disk format change
of the ext3 filesystem to support extent maps.
In addition, the extent-based mballoc patch also
required a format change in order to store data
for the buddy allocator which it utilized. Since
oprofile measurements of Alex’s patch indi-
cated the multiple block allocator seemed to
be responsible for reducing CPU usage, and
since it seemed to improve throughput in some
workloads, we decided to investigate whether it
was possible to obtain most of the benefits of a
multiple block allocator using the current ext3
filesystem format. This seemed to be a reason-
able approach since many of the advantages of
supporting Alex’s mballoc patch seemed to de-
rive from collapsing a large number of calls to
ext3_get_block() into much fewer calls
to ext3_get_blocks() , thus avoiding ex-
cess calls into the journaling layer to record
changes to the block allocation bitmap.

In order to implement a multiple-block allo-
cator based on the existing block allocation
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bitmap, Mingming Cao first changedext3_
new_block() to accept a new argument
specifying how many contiguous blocks the
function should attempt to allocate, on a best
efforts basis. The function now allocates the
first block in the existing way, and then contin-
ues allocating up to the requested number of ad-
jacent physical blocks at the same time if they
are available.

The modifiedext3_new_block() function
was then used to implement ext3’sget_
blocks() method, the standardized filesys-
tem interface to translate a file offset and a
length to a set of on-disk blocks. It does this
by starting at the first file offset and translat-
ing it into a logical block number, and then tak-
ing that logical block number and mapping it to
a physical block number. If the logical block
has already been mapped, then it will continue
mapping the next logical block until the requi-
site number of physical blocks have been re-
turned, or an unallocated block is found.

If some blocks need to be allocated, first
ext3_get_blocks() will look ahead to
see how many adjacent blocks are needed, and
then passes this allocation request toext3_
new_blocks() , searches for the requested
free blocks, marks them as used, and re-
turns them toext3_get_blocks() . Next,
ext3_get_blocks() will update the in-
ode’s direct blocks, or a single indirect block
to point at the allocated blocks.

Currently, this ext3_get_blocks() im-
plementation does not allocate blocks across an
indirect block boundary. There are two rea-
sons for this. First, theJBD journaling re-
quests the filesystem to reserve the maximum
of blocks that will require journaling, when a
new transaction handle is requested viaext3_
journal_start() . If we were to allow
a multiple block allocation request to span an
indirect block boundary, it would be difficult
to predict how many metadata blocks may get

dirtied and thus require journaling. Secondly, it
would be difficult to place any newly allocated
indirect blocks so they are appropriately inter-
leaved with the data blocks.

Currently, only the Direct I/O code path
uses the get_blocks() interfaces; the
mpage_writepages() function calls
mpage_writepage() which in turn calls
get_block() . Since only a few work-
loads (mainly databases) use Direct I/O,
Suparna Bhattacharya has written a patch
to change mpage_writepages() use
get_blocks() instead. This change
should be generically helpful for any
filesystems which implement an efficient
get_blocks() function.

Draft patches have already been posted to
the ext2-devel mailing list. As of this writ-
ing, we are trying to integrate Mingming’s
ext3_get_blocks() patch, Suparna Bhat-
tacharya’smpage_writepage() patch and
Badari Pulavarty’s generic delayed allocation
patch (discussed in Section 4.2) in order to
evaluate these three patches together using
benchmarks.

4.4 Asynchronous file unlink/truncate

With block-mapped files and ext3, truncation
of a large file can take a considerable amount
of time (on the order of tens to hundreds of sec-
onds if there is a lot of other filesystem activ-
ity concurrently). There are several reasons for
this:

• There are limits to the size of a sin-
gle journal transaction (1/4 of the jour-
nal size). When truncating a large frag-
mented file, it may require modifying so
many block bitmaps and group descriptors
that it forces a journal transaction to close
out, stalling the unlink operation.
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• Because of this per-transaction limit, trun-
cate needs to zero the [dt]indirect blocks
starting from the end of the file, in case it
needs to start a new transaction in the mid-
dle of the truncate (ext3 guarantees that a
partially-completed truncate will be con-
sistent/completed after a crash).

• The read/write of the file’s [dt]indirect
blocks from the end of the file to the be-
ginning can take a lot of time, as it does
this in single-block chunks and the blocks
are not contiguous.

In order to reduce the latency associated with
large file truncates and unlinks on the LustreR©
filesystem (which is commonly used by sci-
entific computing applications handling very
large files), the ability for ext3 to perform asyn-
chronous unlink/truncate was implemented by
Andreas Dilger in early 2003.

The delete thread is a kernel thread that ser-
vices a queue of inode unlink or truncate-to-
zero requests that are intercepted from nor-
mal ext3_delete_inode() and ext3_
truncate() calls. If the inode to be un-
linked/truncated is small enough, or if there is
any error in trying to defer the operation, it is
handled immediately; otherwise, it is put into
the delete thread queue. In the unlink case, the
inode is just put into the queue and the delete
thread is woke up, before returning to the caller.
For the truncate-to-zero case, a free inode is al-
located and the blocks are moved over to the
new inode before waking the thread and return-
ing to the caller. When the delete thread is woke
up, it does a normal truncate of all the blocks on
each inode in the list, and then frees the inode.

In order to handle these deferred delete/truncate
requests in a crash-safe manner, the inodes
to be unlinked/truncated are added into the
ext3 orphan list. This is an already exist-
ing mechanism by which ext3 handles file un-
link/truncates that might be interrupted by a

crash. A persistent singly-linked list of in-
ode numbers is linked from the superblock and,
if this list is not empty at filesystem mount
time, the ext3 code will first walk the list and
delete/truncate all of the files on it before the
mount is completed.

The delete thread was written for 2.4 kernels,
but is currently only in use for Lustre. The
patch has not yet been ported to 2.6, but the
amount of effort needed to do so is expected
to be relatively small, as the ext3 code has
changed relatively little in this area.

For extent-mapped files, the need to have asyn-
chronous unlink/truncate is much less, because
the number of metadata blocks is greatly re-
duced for a given file size (unless the file is very
fragmented). An alternative to the delete thread
(for both files using extent maps as well as in-
direct blocks) would be to walk the inode and
pre-compute the number of bitmaps and group
descriptors that would be modified by the oper-
ation, and try to start a single transaction of that
size. If this transaction can be started, then all
of the indirect, double indirect, and triple in-
direct blocks (also referenced as [d,t] indirect
blocks) no longer have to be zeroed out, and
we only have to update the block bitmaps and
their group summaries, reducing the amount of
I/O considerably for files using indirect blocks.
Also, the walking of the file metadata blocks
can be done in forward order and asynchronous
readahead can be started for indirect blocks to
make more efficient use of the disk. As an
added benefit, we would regain the ability to
undelete files in ext3 because we no longer have
to zero out all of the metadata blocks.

4.5 Increased nlinks support

The use of a 16-bit value for an inode’s link
count (i_nlink ) limits the number of hard
links on an inode to 65535. For directories, it
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starts with a link count of 2 (one for “.” and one
for “..”) and each subdirectory has a hard link
to its parent, so the number of subdirectories is
similarly limited.

The ext3 implementation further reduced this
limit to 32000 to avoid signed-int problems.
Before indexed directories were implemented,
the practical limit for files/subdirectories was
about 10000 in a single directory.

A patch was implemented to overcome this
subdirectory limit by not counting the subdi-
rectory links after the counter overflowed (at
65000 links actually); instead, a link count of
one is stored in the inode. The ext3 code al-
ready ignores the link count when determining
if a directory is full or empty, and a link count
of one is otherwise not possible for a directory.

Using a link count of one is also required be-
cause userspace tools like “find” optimize their
directory walking by only checking a number
of subdirectories equal to the link count minus
two. Having a directory link count of one dis-
ables that heuristic.

4.6 Parallel directory operations

The Lustre filesystem (which is built on top of
the ext3 filesystem) has to meet very high goals
for concurrent file creation in a single directory
(5000 creates/second for 10 million files) for
some of its implementations. In order to meet
this goal, and to allow this rate to scale with
the number of CPUs in a server, the implemen-
tation of parallel directory operations (pdirops)
was done by Alex Tomas in mid 2003. This
patch allows multiple threads to concurrently
create, unlink, and rename files within a single
directory.

There are two components in the pdirops
patches: one in the VFS to lock individual en-
tries in a directory (based on filesystem pref-
erence), instead of using the directory inode

semaphore to provide exclusive access to the
directory; the second patch is in ext3 to imple-
ment proper locking based on the filename.

In the VFS, the directory inode semaphore ac-
tually protects two separate things. It protects
the filesystem from concurrent modification of
a single directory and it also protects the dcache
from races in creating the same dentry multiple
times for concurrent lookups. The pdirops VFS
patch adds the ability to lock individual dentries
(based on the dentry hash value) within a direc-
tory to prevent concurrent dcache creation. All
of the places in the VFS that would takei_sem
on a directory instead calllock_dir() and
unlock_dir() to determine what type of
locking is desired by the filesystem.

In ext3, the locking is done on a per-directory-
leaf-block basis. This is well suited to the
directory-indexing scheme, which has a tree
with leaf blocks and index blocks that very
rarely change. In the rare case that adding an
entry to the leaf block requires that an index
block needs locking the code restarts at the top
of the tree and keeps the lock(s) on the index
block(s) that need to be modified. At about
100,000 entries, there are 2-level index blocks
that further reduce the chance of lock collisions
on index blocks. By not locking index blocks
initially, the common case where no change
needs to be made to the index block is im-
proved.

The use of the pdirops VFS patch was also
shown to improve the performance of the tmpfs
filesystem, which needs no other locking than
the dentry locks.

5 Performance comparison

In this section, we will discuss some perfor-
mance comparisons between the ext3 filesys-
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tem found on the 2.4 kernel and the 2.6 ker-
nel. The goal is to evaluate the progress ext3
has made over the last few years. Of course,
many improvements other than the ext3 spe-
cific features, for example, VM changes, block
I/O layer re-write, have been added to the Linux
2.6 kernel, which could affect the performance
results overall. However, we believe it is still
worthwhile to make the comparison, for the
purpose of illustrating the improvements made
to ext3 on some workload(s) now, compared
with a few years ago.

We selected linux 2.4.29 kernel as the base-
line, and compared it with the Linux 2.6.10
kernel. Linux 2.6.10 contains all the features
discussed in Section 2, except the EA-in-inode
feature, which is not relevant for the bench-
marks we had chosen. We also performed the
same benchmarks using a Linux 2.6.10 ker-
nel patched with Alex Tomas’ extents patch
set, which implements extents, delayed allo-
cation, and extents-based multiple block allo-
cation. We plan to run the same benchmarks
against a Linux 2.6.10 kernel with some of the
patches described in Section 4 in the future.

In this study we chose two benchmarks. One
is tiobench, a benchmark testing filesystem
sequential and random I/O performance with
multiple running threads. Another benchmark
we used is filemark, a modified postmark[8]
benchmark which simulates I/O activity on a
mail server with multiple threads mode. File-
mark was used by Ray Bryant when he con-
ducted filesystem performance study on Linux
2.4.17 kernel three years ago [3].

All the tests were done on the same 8-CPU
700 MHZ Pentium III system with 1 GB RAM.
All the tests were run with ext3’s writeback
journaling mode enabled. When running tests
with the extents patch set, the filesystem was
mouted with the appropriate mount options to
enable the extents, multiple block allocation,
and delayed allocation features. These test runs
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Figure 1: tiobench sequential write throughput
results comparison
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Figure 2: tiobench sequential read throughput
results comparison

are shown as “2.6.10_writeback_emd ”
in the graphs.

5.1 Tiobench comparison

Although there have been a huge number of
changes between the Linux 2.4.29 kernel to the
Linux 2.6.10 kernel could affect overall perfor-
mance (both in and outside of the ext3 filesys-
tem), we expect that two ext3 features, remov-
ing BKL from ext3 (as described in Section 2.2)
and reservation based block allocation (as de-
scribed in Section 2.3) are likely to signifi-
cantly impact the throughput of the tiobench
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benchmark. In this sequential write test, mul-
tiple threads are sequentially writing/allocating
blocks in the same directory. Allowing allo-
cations concurrently in this case most likely
will reduces the CPU usage and improves the
throughput. Also, with reservation block al-
location, files created by multiple threads in
this test could be more contiguous on disk, and
likely reduce the latency while writing and se-
quential reading after that.

Figure 1 and Figure 2 show the sequential write
and sequential read test results of the tiobench
benchmark, on the three selected kernels, with
threads ranging from 1 to 64. The total files
size used in this test is 4GB and the blocksize
is 16348 byte. The test was done on a single
18G SCSI disk. The graphs indicate signifi-
cant throughput improvement from the 2.4.29
kernel to the Linux 2.6.10 kernel on this par-
ticular workload. Figure 2 shows the sequen-
tial read throughput has been significantly im-
proved from Linux 2.4.29 to Linux 2.6.10 on
ext3 as well.

When we applied the extents patch set, we saw
an additional 7-10% throughput improvement
on tiobench sequential write test. We suspect
the improvements comes from the combination
of delayed allocation and multiple block alloca-
tion patches. As we noted earlier, having both
features could help lay out files more contigu-
ously on disk, as well as reduce the times to
update the metadata, which is quite expensive
and happens quite frequently with the current
ext3 single block allocation mode. Future test-
ing are needed to find out which feature among
the three patches (extents, delayed allocation
and extent allocation) is the key contributor of
this improvement.

5.2 Filemark comparison

A Filemark execution includes three phases:
creation, transaction, and delete phase. The
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Figure 3: Filemark benchmark transaction rate
comparison

transaction phase includes file read and ap-
pend operations, and some file creation and re-
moval operations. The configuration we used
in this test is the so called “medium system”
mentioned in Bryant’s Linux filesystem perfor-
mance study [3]. Here we run filemark with 4
target directories, each on a different disk, 2000
subdirectories per target directory, and 100,000
total files. The file sizes ranged from 4KB
to 16KB and the I/O size was 4KB. Figure 3
shows the average transactions per second dur-
ing the transaction phase, when running File-
mark with 1, 8, 64, and 128 threads on the three
kernels.

This benchmark uses a varying number of
threads. We therefore expected the scalability
improvements to the ext3 filesystem in the 2.6
kernel should improve Linux 2.6’s performance
for this benchmark. In addition, during the
transaction phase, some files are deleted soon
after the benchmark creates or appends data to
those files. The delayed allocation could avoid
the need for disk updates for metadata changes
at all. So we expected Alex’s delayed allocation
to improve the throughput on this benchmark as
well.

The results are shown in Figure 3. At 128
threads, we see that the 2.4.29 kernel had sig-
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nificant scalability problems, which were ad-
dressed in the 2.6.10 kernel. At up to 64
threads, there is approximately a 10% to 15%
improvement in the transaction rate between
Linux 2.4.29 and Linux 2.6.10. With the ex-
tents patch set applied to Linux 2.6.10, the
transaction rate is increased another 10% at 64
threads. In the future, we plan to do futher work
to determine how much of the additional 10%
improvement can be ascribed to the different
components of the extents patch set.

More performance results, both of the bench-
mark tests described above, and additional
benchmark tests expected to be done be-
fore the 2005 OLS conference can be
found at http://ext2.sourceforge.
net/ols05-testing .

6 Future Work

This section will discuss some features that are
still on the drawing board.

6.1 64 bit block devices

For a long time the Linux block layer limited
the size of a single filesystem to 2 TB (232∗
512-byte sectors), and in some cases the SCSI
drivers further limited this to 1TB because of
signed/unsigned integer bugs. In the 2.6 ker-
nels there is now the ability to have larger block
devices and with the growing capacity and de-
creasing cost of disks the desire to have larger
ext3 filesystems is increasing. Recent vendor
kernel releases have supported ext3 filesystems
up to 8 TB and which can theoretically be as
large as 16 TB before it hits the 232 filesys-
tem block limit (for 4 KB blocks and the 4 KB
PAGE_SIZE limit on i386 systems). There is
also a page cache limit of 232 pages in an ad-
dress space, which are used for buffered block

devices. This limit affects both ext3’s internal
metadata blocks, and the use of buffered block
devices when running e2fsprogs on a device to
create the filesystem in the first place. So this
imposes yet another 16TB limit on the filesys-
tem size, but only on 32-bit architectures.

However, the demand for larger filesystems is
already here. Large NFS servers are in the
tens of terabytes, and distributed filesystems
are also this large. Lustre uses ext3 as the back-
end storage for filesystems in the hundreds of
terabytes range by combining dozens to hun-
dreds of individual block devices and smaller
ext3 filesystems in the VFS layer, and having
larger ext3 filesystems would avoid the need to
artificially fragment the storage to fit within the
block and filesystem size limits.

Extremely large filesystems introduce a num-
ber of scalability issues. One such concern is
the overhead of allocating space in very large
volumes, as described in Section 3.3. Another
such concern is the time required to back up
and perform filesystem consistency checks on
very large filesystems. However, the primier is-
sue with filesystems larger than 232 filesystem
blocks is that the traditional indirect block map-
ping scheme only supports 32-bit block num-
bers. The additional fact that filling such a large
filesystem would take many millions of indi-
rect blocks (over 1% of the whole filesystem,
at least 160 GB of just indirect blocks) makes
the use of the indirect block mapping scheme
in such large filesystems undesirable.

Assuming a 4 KB blocksize, a 32-bit block
number limits the maximum size of the filesys-
tem to 16 TB. However, because the superblock
format currently stores the number of block
groups as a 16-bit integer, and because (again
on a 4 KB blocksize filesystem) the maximum
number of blocks in a block group is 32,768
(the number of bits in a single 4k block, for
the block allocation bitmap), a combination of
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these constraints limits the maximum size of
the filesystem to 8 TB.

One of the plans for growing beyond the 8/16
TB boundary was to use larger filesystem
blocks (8 KB up to 64 KB), which increases
the filesystem limits such as group size, filesys-
tem size, maximum file size, and makes block
allocation more efficient for a given amount of
space. Unfortunately, the kernel currently lim-
its the size of a page/buffer to virtual memory’s
page size, which is 4 KB for i386 processors.
A few years ago, it was thought that the advent
of 64-bit processors like the Alpha, PPC64, and
IA64 would break this limit and when they be-
came commodity parts everyone would be able
to take advantage of them. The unfortunate
news is that the commodity 64-bit processor ar-
chitecture, x86_64, also has a 4 KB page size
in order to maintain compatibility with its i386
ancestors. Therefore, unless this particular lim-
itation in the Linux VM can be lifted, most
Linux users will not be able to take advantage
of a larger filesystem block size for some time.

These factors point to a possible paradigm shift
for block allocations beyond the 8 TB bound-
ary. One possibility is to use only larger ex-
tent based allocations beyond the 8 TB bound-
ary. The current extent layout described in Sec-
tion 3.1 already has support for physical block
numbers up to 248 blocks, though withonly232

blocks (16 TB) for a single file. If, at some
time in the future larger VM page sizes be-
come common, or the kernel is changed to al-
low buffers larger than the the VM page size,
then this will allow filesystem growth up to 264

bytes and files up to 248 bytes (assuming 64 KB
blocksize). The design of the extent structures
also allows for additional extent formats like a
full 64-bit physical and logical block numbers
if that is necessary for 4 KBPAGE_SIZEsys-
tems, though they would have to be 64-bit in
order for the VM to address files and storage
devices this large.

It may also make sense to restrict inodes to the
first 8 TB of disk, and in conjunction with the
extensible inode table discussed in Section 6.2
use space within that region to allocate all in-
odes. This leaves the > 8 TB space free for ef-
ficient extent allocations.

6.2 Extensible Inode Table

Adding an dynamically extensible inode table
is something that has been discussed exten-
sively by ext2/3 developers, and the issues that
make adding this feature difficult have been dis-
cussed before in [15]. Quickly summarized,
the problem is a number of conflicting require-
ments:

• We must maintain enough backup meta-
data about the dynamic inodes to allow us
to preserve ext3’s robustness in the pres-
ence of lost disk blocks as far as possible.

• We must not renumber existing inodes,
since this would require searching and up-
dating all directory entries in the filesys-
tem.

• Given the inode number the block alloca-
tion algorithms must be able to determine
the block group where the inode is located.

• The number of block groups may change
since ext3 filesystems may be resized.

Most obvious solutions will violate one or more
of the above requirements. There is a clever
solution that can solve the problem, however,
by using the space counting backwards from
231− 1, or “negative” inode. Since the num-
ber of block groups is limited by 232/(8 ∗
blocksize), and since the maximum number of
inodes per block group is also the same as the
maximum number of blocks per block group
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is (8 ∗ blocksize), and if inode numbers and
block numbers are both 32-bit integers, then
the number of inodes per block group in the
“negative” inode space is simply(8∗blocksize)
- normal-inodes-per-blockgroup. The location
of the inode blocks in the negative inode space
are stored in a reserved inode.

This particular scheme is not perfect, however,
since it is not extensible to support 64 bit block
numbers unless inode numbers are also ex-
tended to 64 bits. Unfortunately, this is not so
easy, since on 32-bit platforms, the Linux ker-
nel’s internal inode number is 32 bits. Worse
yet, theino_t type in thestat structure is
also 32 bits. Still, for filesystems that are utiliz-
ing the traditional 32 bit block numbers, this is
still doable.

Is it worth it to make the inode table extensi-
ble? Well, there are a number of reasons why
an extensible inode table is interesting. Histori-
cally, administrators and themke2fs program
have always over-allocated the number of in-
odes, since the number of inodes can not be in-
creased after the filesystem has been formatted,
and if all of the inodes have been exhausted,
no additional files can be created even if there
is plenty of free space in the filesystem. As
inodes get larger in order to accommodate the
EA-in-inode feature, the overhead of over-
allocating inodes becomes significant. There-
fore, being able to initially allocate a smaller
number of inodes and adding more inodes later
as needed is less wasteful of disk space. A
smaller number of initial inodes also makes the
the initial mke2fs takes less time, as well as
speeding up thee2fsck time.

On the other hand, there are a number of dis-
advantages of an extensible inode table. First,
the “negative” inode space introduces quite a
bit of complexity to the inode allocation and
read/write functions. Second, as mentioned
earlier, it is not easily extensible to filesystems

that implement the proposed 64-bit block num-
ber extension. Finally, the filesystem becomes
more fragile, since if the reserved inode that
describes the location of the “negative” inode
space is corrupted, the location of all of the ex-
tended inodes could be lost.

So will extensible inode tables ultimately be
implemented? Ultimately, this will depend on
whether an ext2/3 developer believes that it is
worth implementing—whether someone con-
siders extensible inode an “itch that they wish
to scratch.” The authors believe that the ben-
efits of this feature only slightly outweigh the
costs, but perhaps not by enough to be worth
implementing this feature. Still, this view is not
unanimously held, and only time will tell.

7 Conclusion

As we have seen in this paper, there has been
a tremendous amount of work that has gone
into the ext2/3 filesystem, and this work is con-
tinuing. What was once essentially a simpli-
fied BSD FFS descendant has turned into an
enterprise-ready filesystem that can keep up
with the latest in storage technologies.

What has been the key to the ext2/3 filesystem’s
success? One reason is the forethought of the
initial ext2 developers to add compatibility fea-
ture flags. These flags have made ext2 easily
extensible in a variety of ways, without sacri-
ficing compatibility in many cases.

Another reason can be found by looking at the
company affiliations of various current and past
ext2 developers: Cluster File Systems, Digeo,
IBM, OSDL, Red Hat, SuSE, VMWare, and
others. Different companies have different pri-
orities, and have supported the growth of ext2/3
capabilities in different ways. Thus, this di-
verse and varied set of developers has allowed
the ext2/3 filesystem to flourish.
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The authors have no doubt that the ext2/3
filesystem will continue to mature and come
to be suitable for a greater and greater number
of workloads. As the old Frank Sinatra song
stated, “The best is yet to come.”

Patch Availability

The patches discussed in this paper can be
found at http://ext2.sourceforge.
net/ols05-patches .
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