Aim of this note is to provide
mathematical tools used in applications, and a certain theoretical background
that would make other parts of mathematical analysis accessible to the student of physical science.
Topics covered includes: Power series and trigonometric series, Fourier
integrals, Pointwise convergence of Fourier series, Summability of Fourier
series, Periodic distributions and Fourier series, Metric, normed and inner
product spaces, Orthogonal expansions and Fourier series, Classical orthogonal
systems and series, Eigenvalue problems related to differential equations,
Fourier transformation of well-behaved functions, Fourier transformation of
tempered distributions, General distributions and Laplace transforms.

This note
starts by introducing the basic concepts of function spaces and operators, both
from the continuous and discrete viewpoints. It introduces the Fourier and
Window Fourier Transform, the classical tools for function analysis in the
frequency domain.

The aim of this note is to give an introduction to nonlinear Fourier
analysis from a harmonic analyst’s point of view. Topics covered includes: The
nonlinear Fourier transform, The Dirac scattering transform, Matrix-valued
functions on the disk, Proof of triple factorization, The SU(2) scattering
transform, Rational Functions as Fourier Transform Data.

Author(s): Terence Tao, Christoph Thiele and Ya-Ju
Tsai

This lecture note
explains the following topics: Integration theory, Finite Fourier Transform,
Fourier Integrals, Fourier Transforms of Distributions, Fourier Series, The
Discrete Fourier Transform and The Laplace Transform.

This lecture note covers the following topics: Cesaro
summability and Abel summability of Fourier series, Mean square convergence of
Fourier series, Af continuous function with divergent Fourier series,
Applications of Fourier series Fourier transform on the real line and basic
properties, Solution of heat equation Fourier transform for functions in Lp,
Fourier transform of a tempered distribution Poisson summation formula,
uncertainty principle, Paley-Wiener theorem, Tauberian theorems, Spherical
harmonics and symmetry properties of Fourier transform, Multiple Fourier series
and Fourier transform on Rn.

This book
explains the following topics: Infinite Sequences, Infinite Series and
Improper Integrals, Fourier Series, The One-Dimensional Wave Equation, The
Two-Dimensional Wave Equation, Introduction to the Fourier Transform,
Applications of the Fourier Transform and Bessel’s Equation.

This note covers the following topics:
Orthonormal Sets, Variations on the Theme, The Riemann-Lebesgue Lemma, The
Dirichlet, Fourier and Fejer Kernels, Fourier Series of Continuous Functions,
Fejers Theorem, Regularity, Pointwise Convergence, Termwise Integration,
Termwise Differentiation.

New analytical strategies and techniques are necessary to meet
requirements of modern technologies and new materials. In this sense, this book
provides a thorough review of current analytical approaches, industrial
practices, and strategies in Fourier transform application.

This note covers the following topics: The Fourier transform, Convolution, Fourier-Laplace Transform,
Structure Theorem for distributions and Partial Differential Equation.

Goal of this note is to explain
Mathematical foundations for digital image analysis, representation and
transformation. Covered topics are: Sampling Continuous Signals, Linear Filters
and Convolution, Fourier Analysis, Sampling and Aliasing.

This note provides an introduction to harmonic analysis and Fourier analysis
methods, such as Calderon-Zygmund theory, Littlewood-Paley theory, and the
theory of various function spaces, in particular Sobolev spaces. Some selected
applications to ergodic theory, complex analysis, and geometric measure theory
will be given.

This note covers the following topics: A Motivation for Wavelets, Wavelets
and the Wavelet Transform, Comparision of the Fourier and Wavelet Transforms,
Examples.

This
note covers the following topics: Introduction and terminology, Fourier series,
Convergence of Fourier series, Integration of Fourier series, Weierstrass
approximation theorem, Applications to number theory, The isoperimetric
inequality and Ergodic theory.

This book covers the following topics: Historical
Background, Definition of Fourier Series, Convergence of Fourier Series,
Convergence in Norm, Summability of Fourier Series, Generalized Fourier Series
and Discrete Fourier Series.