This manuscript provides a brief introduction to Real and
(linear and nonlinear) Functional Analysis. Topics covered
includes: Banach and Hilbert spaces, Compact operators, The main
theorems about Banach spaces, Bounded linear operators, Lebesgue
integration, The Lebesgue spaces Lp, The Fourier transform,
Interpolation, The Leray-Schauder mapping degree, The stationary
Navier-Stokes equation and Monotone operators.
This PDF covers the following topics related to
Functional Analysis : Banach and Hilbert spaces, Bounded linear operators, Main
principles of functional analysis, Compact operators, Elements of spectral
theory, Self-adjoint operators on Hilbert space.
Author(s): Roman Vershynin, Department of Mathematics,
University of Michigan
This
note covers the following topics related to functional analysis: Normed Spaces, Linear Operators, Dual Spaces, Normed Algebras, Invertibility,
Characters and Maximal Ideals.