This note will develop the
K-theory of Banach algebras, the theory of extensions of C algebras, and the
operator K-theory of Kasparov from scratch to its most advanced aspects. Topics
covered includes: Survey of Topological K-Theory, Operator K-Theory,
Preliminaries, K-theory Of Crossed Products, Theory Of Extensions, Kasparov’s Kk-theory.

This note will develop the
K-theory of Banach algebras, the theory of extensions of C algebras, and the
operator K-theory of Kasparov from scratch to its most advanced aspects. Topics
covered includes: Survey of Topological K-Theory, Operator K-Theory,
Preliminaries, K-theory Of Crossed Products, Theory Of Extensions, Kasparov’s Kk-theory.

This book covers the following topics:
Topological K-Theory, Topological Preliminaries on Vector Bundles, Homotopy,
Bott Periodicity and Cohomological Properties, Chern Character and Chern
Classes, Analytic K-Theory, Applications of Adams operations, Higher Algebraic
K-Theory, Algebraic Preliminaries and the the Grothendieck
Group, The Whitehead and the Steinberg Groups.

This is one day
going to be a textbook on K-theory, with a particular emphasis on connections
with geometric phenomena like intersection multiplicities.

The primary purpose of this
note is to examine many of these K-theoretic invariants, not from a historical
point of view, but rather a posteriori, now that K-theory is a mature subject.

This
note covers the following topics: The exact
sequence of algebraic K-theory, Categories of modules and their equivalences,
Brauer group of a commutative ring, Brauer-Wall group of graded Azumaya
algebras and The structure of the Clifford Functor.

This
book covers the following topics: Categories and functors, Transformations and equivalences, Universal
properties, Homotopy theory, Homotopy theory of categories, Waldhausen
K-theory, Quillen K-theory, Abelian and exact categories.

This
two-volume handbook offers a compilation of techniques and results in
K-theory. These two volumes consist of chapters, each of which is
dedicated to a specific topic and is written by a leading expert.

This book covers the following topics: Projective Modules and Vector Bundles, The Grothendieck group K_0, K_1 and
K_2 of a ring, higher K-theory, The Fundamental Theorems of higher K-theory
and the higher K-theory of Fields.