Mathematics Books Probability Theory Books

Probability and Stochastic Processes with Applications

Probability and Stochastic Processes with Applications

Probability and Stochastic Processes with Applications

This text assumes no prerequisites in probability, a basic exposure to calculus and linear algebra is necessary. Some real analysis as well as some background in topology and functional analysis can be helpful. This note covers the following topics: Limit theorems, Probability spaces, random variables, independence, Markov operators, Discrete Stochastic Processes, Continuous Stochastic Processes, Random Jacobi matrices, Symmetric Diophantine Equations and Vlasov dynamics.

Author(s):

s382 Pages
Similar Books
Probability Theory and Statistics Lecture notes

Probability Theory and Statistics Lecture notes

The aim of the notes is to combine the mathematical and theoretical underpinning of statistics and statistical data analysis with computational methodology and practical applications. Topics covered includes: Notion of probabilities, Probability Theory, Statistical models and inference, Mean and Variance, Sets, Combinatorics, Limits and infinite sums, Integration.

s294 Pages
Notes on Probability Theory and Statistics

Notes on Probability Theory and Statistics

This note explains the following topics: Probability Theory, Random Variables, Distribution Functions, And Densities, Expectations And Moments Of Random Variables, Parametric Univariate Distributions, Sampling Theory, Point And Interval Estimation, Hypothesis Testing, Statistical Inference, Asymptotic Theory, Likelihood Function, Neyman or Ratio of the Likelihoods Tests.

s138 Pages
Lecture Notes   Probability Theory

Lecture Notes Probability Theory

This book explains the following topics: Probability spaces, Random variables, Independence, Expectation, Convergence of sequences of random variables.

s275 Pages
Probability and Stochastic Processes

Probability and Stochastic Processes

This book covers the following topics: Basic Concepts of Probability Theory, Random Variables, Multiple Random Variables, Vector Random Variables, Sums of Random Variables and Long-Term Averages, Random Processes, Analysis and Processing of Random Signals, Markov Chains, Introduction to Queueing Theory and Elements of a Queueing System.

sNA Pages
Markov Random Fields and Their Applications

Markov Random Fields and Their Applications

This book presents the basic ideas of the subject and its application to a wider audience. Topics covered includes: The Ising model, Markov fields on graphs, Finite lattices, Dynamic models, The tree model and Additional applications.

s147 Pages
Probability and Stochastic Processes with Applications

Probability and Stochastic Processes with Applications

This text assumes no prerequisites in probability, a basic exposure to calculus and linear algebra is necessary. Some real analysis as well as some background in topology and functional analysis can be helpful. This note covers the following topics: Limit theorems, Probability spaces, random variables, independence, Markov operators, Discrete Stochastic Processes, Continuous Stochastic Processes, Random Jacobi matrices, Symmetric Diophantine Equations and Vlasov dynamics.

s382 Pages
Probability Theory The Logic of Science

Probability Theory The Logic of Science

This book is addressed to readers who are already familiar with applied mathematics at the advanced undergraduate level or preferably higher. Topics covered includes: Plausible Reasoning, Quantitative Rules, Elementary Sampling Theory, Elementary Hypothesis Testing, Queer Uses For Probability Theory, Elementary Parameter Estimation, Central, Gaussian Or Normal Distribution.

s95 Pages
Introduction to Probability clark edu

Introduction to Probability clark edu

This note provides an introduction to probability theory and mathematical statistics that emphasizes the probabilistic foundations required to understand probability models and statistical methods. Topics covered includes the probability axioms, basic combinatorics, discrete and continuous random variables, probability distributions, mathematical expectation, common families of probability distributions and the central limit theorem.

sNA Pages
Probability, Random Processes, and Ergodic Properties

Probability, Random Processes, and Ergodic Properties

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Grinstead and Snells Introduction to Probability

Grinstead and Snells Introduction to Probability

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
A quick refresher for Counting techniques and Probability

A quick refresher for Counting techniques and Probability

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Beyond PROBABILITY

Beyond PROBABILITY

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Introduction to Probability pdf

Introduction to Probability pdf

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Stochastic Analysis Notes

Stochastic Analysis Notes

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Lecture Notes on Probability Theory and Random Processes (Walrand J pdf)

Lecture Notes on Probability Theory and Random Processes (Walrand J pdf)

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Introduction to Probability (Grinstead C.M. and Snell J.L)

Introduction to Probability (Grinstead C.M. and Snell J.L)

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages