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1. Introduction

The usual trouble that people have with ‘calculus’ (not counting general math phobias) is with algebra,
not to mention arithmetic and other more elementary things.

Calculus itself just involves two new processes, differentiation and integration, and applications of these
new things to solution of problems that would have been impossible otherwise.

Some things which were very important when calculators and computers didn’t exist are not so important
now. Some things are just as important. Some things are more important. Some things are important but
with a different emphasis.

At the same time, the essential ideas of much of calculus can be very well illustrated without using calcu-
lators at all! (Some not, to0o).

Likewise, many essential ideas of calculus can be very well illustrated without getting embroiled in awful
algebra or arithmetic, not to mention trigonometry.

At the same time, study of calculus makes clear how important it is to be able to do the necessary algebra
and arithmetic, whether by calculator or by hand.

2. Inequalities

It is worth reviewing some elementary but important points:

First, a person must remember that the only way for a product of numbers to be zero is that one or more
of the individual numbers be zero. As silly as this may seem, it is indispensable.

Next, there is the collection of slogans:

e positive times positive is positive

e negative times negative is positive
e negative times positive is negative
e positive times negative is negative

Or, more cutely: the product of two numbers of the same sign is positive, while the product of two num-
bers of opposite signs is negative.

Extending this just a little: for a product of real numbers to be positive, the number of negative ones must
be even. If the number of negative ones is odd then the product is negative. And, of course, if there are
any zeros, then the product is zero.

Solving inequalities: This can be very hard in greatest generality, but there are some kinds of problems
that are very ‘do-able’. One important class contains problems like Solve:

5(rx—1(z+4)(z—2)(z+3) <0

That is, we are asking where a polynomial is negative (or we could ask where it’s positive, too). One im-
portant point is that the polynomial is already factored: to solve this problem we need to have the polyno-
mial factored, and if it isn’t already factored this can be a lot of additional work. There are many ways to
format the solution to such a problem, and we just choose one, which does have the merit of being more
efficient than many.



We put the roots of the polynomial
Plz)=5(z—1)(z+4)(z—2)(x+3)=5x—-1)(z — (—4)) (z - 2) (z — (-3))
in order: in this case, the roots are 1, —4,2, —3, which we put in order (from left to right)
<4< 3<l<2<.
The roots of the polynomial P break the numberline into the intervals

(—o0,—4), (—4,-3), (-3,1), (1,2), (2,+00)

On each of these intervals the polynomial is either positive all the time, or negative all the time, since if
it were positive at one point and negative at another then it would have to be zero at some intermediate
point!

For input z to the right (larger than) all the roots, all the factors z +4, £+ 3, z — 1,  — 2 are positive, and
the number 5 in front also happens to be positive. Therefore, on the interval (2,400) the polynomial P(z)
is positive.

Next, moving across the root 2 to the interval (1,2), we see that the factor x — 2 changes sign from posi-
tive to negative, while all the other factors x — 1,  + 3, and x + 4 do not change sign. (After all, if they
would have done so, then they would have had to be 0 at some intermediate point, but they weren’t, since
we know where they are zero...). Of course the 5 in front stays the same sign. Therefore, since the func-
tion was positive on (2,+00) and just one factor changed sign in crossing over the point 2, the function is
negative on (1,2).

Similarly, moving across the root 1 to the interval (—3,1), we see that the factor  — 1 changes sign from
positive to negative, while all the other factors  — 2, x + 3, and = 4+ 4 do not change sign. (After all, if
they would have done so, then they would have had to be 0 at some intermediate point). The 5 in front

stays the same sign. Therefore, since the function was negative on (1,2) and just one factor changed sign
in crossing over the point 1, the function is positive on (—3,1).

Similarly, moving across the root —3 to the interval (—4, —3), we see that the factor z + 3 = = — (=3)
changes sign from positive to negative, while all the other factors x — 2, x — 1, and = + 4 do not change
sign. (If they would have done so, then they would have had to be 0 at some intermediate point). The
5 in front stays the same sign. Therefore, since the function was positive on (—3,1) and just one factor
changed sign in crossing over the point —3, the function is negative on (—4, —3).

Last, moving across the root —4 to the interval (—oo, —4), we see that the factor z + 4 = x — (—4) changes
sign from positive to negative, while all the other factors x — 2, x — 1, and x + 3 do not change sign. (If
they would have done so, then they would have had to be 0 at some intermediate point). The 5 in front
stays the same sign. Therefore, since the function was negative on (—4, —3) and just one factor changed
sign in crossing over the point —4, the function is positive on (—oo, —4).

In summary, we have
P(z) =5(x —1)(z+4)(x —2)(x+3) >0 on (2,+00)

Plx)=5(zx—1)(x+4)(z—2)(z+3)<0on (1,2)
P(z)=5(x—1)(x+4)(x —2)(x+3) >0o0n (-3,1)
P(x)=5(x—1)(z+4)(z—2)(x+3) <0on (—4,-3)
P(z)=5(x—-1)(z+4)(x —2)(z+3) >0 on (—oo, —4)

In particular, P(z) < 0 on the union
(1,2)U(—4,-3)

of the intervals (1,2) and (—4, —3). That’s it.



As another example, let’s see on which intervals
P(z) = =3(1 + 2?)(2® — 4)(2® — 22 + 1)
is positive and and on which it’s negative. We have to factor it a bit more: recall that we have nice facts
2® —a? = (z—a) (z+a) = (z—a) (z - (~a))

2? —2ax +a®> = (z —a) (z — a)

so that we get
P(x)=-3(1+2})(z—2)(z +2)(x — 1)(x — 1)

It is important to note that the equation 22 + 1 = 0 has no real roots, since the square of any real number
is non-negative. Thus, we can’t factor any further than this over the real numbers. That is, the roots of
P, in order, are

-2 << 1 (twice!) <2

These numbers break the real line up into the intervals

(—o00,—2), (—2,1), (1,2), (2,+00)

For z larger than all the roots (meaning « > 2) all the factors z + 2, x — 1, x — 1, x — 2 are positive, while
the factor of —3 in front is negative. Thus, on the interval (2,400) P(z) is negative.

Next, moving across the root 2 to the interval (1,2), we see that the factor z — 2 changes sign from pos-
itive to negative, while all the other factors 1 + 22, (z — 1)2, and x + 2 do not change sign. (After all,

if they would have done so, then they would have be 0 at some intermediate point, but they aren’t). The
—3 in front stays the same sign. Therefore, since the function was negative on (2, +00) and just one factor
changed sign in crossing over the point 2, the function is positive on (1,2).

A new feature in this example is that the root 1 occurs twice in the factorization, so that crossing over the
root 1 from the interval (1,2) to the interval (—2,1) really means crossing over two roots. That is, two
changes of sign means no changes of sign, in effect. And the other factors (1 + z2), z + 2, 2 — 2 do not
change sign, and the —3 does not change sign, so since P(z) was positive on (1,2) it is still positive on
(—2,1). (The rest of this example is the same as the first example).

Again, the point is that each time a root of the polynomial is crossed over, the polynomial changes sign.
So if two are crossed at once (if there is a double root) then there is really no change in sign. If three roots
are crossed at once, then the effect is to change sign.

Generally, if an even number of roots are crossed-over, then there is no change in sign, while if an odd
number of roots are crossed-over then there is a change in sign.



#2.1 Find the intervals on which f(z) = z(x — 1)(x + 1) is positive, and the intervals on which it is
negative.

#2.2 Find the intervals on which f(x) = (3z —2)(x — 1)(z + 1) is positive, and the intervals on which it is
negative.

#2.3 Find the intervals on which f(x) = (3z —2)(3 —x)(z + 1) is positive, and the intervals on which it is
negative.

3. Domain of functions

A function f is a procedure or process which converts input to output in some way. A traditional mathe-
matics name for the input is argument, but this certainly is confusing when compared with ordinary En-
glish usage.

The collection of all ‘legal’ ‘reasonable’ or ‘sensible’ inputs is called the domain of the function. The col-
lection of all possible outputs is the range. (Contrary to the impression some books might give, it can be
very difficult to figure out all possible outputs!)

The question ‘What’s the domain of this function?’ is usually not what it appears to be. For one thing, if
we are being formal, then a function hasn’t even been described if its domain hasn’t been described!

What is really meant, usually, is something far less mysterious. The question usually really is ‘What
numbers can be used as inputs to this function without anything bad happening?’.

For our purposes, ‘something bad happening’ just refers to one of

e trying to take the square root of a negative number

e trying to take a logarithm of a negative number

e trying to divide by zero

e trying to find arc-cosine or arc-sine of a number bigger than 1 or less than —1

Of course, dividing by zero is the worst of these, but as long as we insist that everything be real numbers
(rather than complez numbers) we can’t do the other things either.

For example, what is the domain of the function

flz)=va2-17

Well, what could go wrong here? No division is indicated at all, so there is no risk of dividing by 0. But
we are taking a square root, so we must insist that 22 — 1 > 0 to avoid having complex numbers come up.
That is, a preliminary description of the ‘domain’ of this function is that it is the set of real numbers x so
that 22 — 1 > 0.

But we can be clearer than this: we know how to solve such inequalities. Often it’s simplest to see what
to exclude rather than include: here we want to exclude from the domain any numbers x so that 22 —1 < 0
from the domain.

We recognize that we can factor
Pol= -+ =(@-1) @ (-1)
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This is negative exactly on the interval (—1,1), so this is the interval we must prohibit in order to have
just the domain of the function. That is, the domain is the union of two intervals:

(=00, —1] U1, 4+00)

#3.4 Find the domain of the function
fay= 522
24 x—2

That is, find the largest subset of the real line on which this formula can be evaluated meaningfully.

#3.5 Find the domain of the function
x—2

==

#3.6 Find the domain of the function

4. Lines (and other items in Analytic Geometry)

Let’s review some basic analytic geometry: this is description of geometric objects by numbers and by
algebra.

The first thing is that we have to pick a special point, the origin, from which we’ll measure everything
else. Then, implicitly, we need to choose a unit of measure for distances, but this is indeed usually only
implicit, so we don’t worry about it.

The second step is that points are described by ordered pairs of numbers: the first of the two numbers
tells how far to the right horizontally the point is from the origin (and negative means go left instead

of right), and the second of the two numbers tells how far up from the origin the point is (and negative
means go down instead of up). The first number is the horizontal coordinate and the second is the ver-
tical coordinate. The old-fashioned names abscissa and ordinate also are used sometimes.

Often the horizontal coordinate is called the z-coordinate, and often the vertical coordinate is called the y-
coordinate, but the letters z,y can be used for many other purposes as well, so don’t rely on this labelling!

The next idea is that an equation can describe a curve. It is important to be a little careful with use of
language here: for example, a correct assertion is

The set of points (x,y) so that x> + y? = 1 is a circle.

It is not strictly correct to say that 2 + y? = 1 is a circle, mostly because an equation is not a circle, even
though it may describe a circle. And conceivably the x,y might be being used for something other than
horizontal and vertical coordinates. Still, very often the language is shortened so that the phrase ‘The set
of points (z,y) so that’is omitted. Just be careful.

The simplest curves are lines. The main things to remember are:

e Slope of a line is rise over run, meaning vertical change divided by horizontal change (moving from left
to right in the usual coordinate system).
e The equation of a line passing through a point (z,,y,) and having slope m can be written (in so-called
point-slope form)

y=m@—a) 4y Or Y- yo=mlx—a,)

8



e The equation of the line passing through two points (21,y1), (22, y2) can be written (in so-called two-
point form) as
Y1 — Y2
=——(@-z)+n
1 — T2
e ...unless 1 = x2, in which case the two points are aligned vertically, and the line can’t be written that
way. Instead, the description of a vertical line through a point with horizontal coordinate x; is just

xr =T

Of course, the two-point form can be derived from the point-slope form, since the slope m of a line
through two points (z1,y1), (z2,y2) is that possibly irritating expression which occurs above:

Y
Ty — X2

m

And now is maybe a good time to point out that there is nothing sacred about the horizontal coordinate
being called ‘z’ and the vertical coordinate ‘y’. Very often these do happen to be the names, but it can be
otherwise, so just pay attention.

#4.7 Write the equation for the line passing through the two points (1,2) and (3, 8).
#4.8 Write the equation for the line passing through the two points (—1,2) and (3, 8).
#4.9 Write the equation for the line passing through the point (1,2) with slope 3.
#4.10 Write the equation for the line passing through the point (11, —5) with slope —1.

5. Elementary limits

The idea of limit is intended to be merely a slight extension of our intuition. The so-called ¢, §-definition
was invented after people had been doing calculus for hundreds of years, in response to certain relatively
pathological technical difficulties. For quite a while, we will be entirely concerned with situations in which
we can either ‘directly’ see the value of a limit by plugging the limit value in, or where we transform the
expression into one where we can just plug in.

So long as we are dealing with functions no more complicated than polynomials, most limits are easy to
understand: for example,

11r1}34x2+3:c—7:4~(3)2+3~(3)—7:38
T—r

A4 +3x -7 4-(3)243-(3)—-7 38
lim = = —
w=3  2— a2 2 - (3)2 -7

The point is that we just substituted the ‘3’ in and nothing bad happened. This is the way people evalu-
ated easy limits for hundreds of years, and should always be the first thing a person does, just to see what
happens.

#5.11 Find limg_,5 222 — 3z + 4.



#5.12 Find lim,_,»

x+1
243"

#5.13 Find lim,_,; v + 1.

6. Limits with cancellation

But sometimes things ‘blow up’ when the limit number is substituted:

Ick. This is not good. However, in this example, as in many examples, doing a bit of simplifying algebra
first gets rid of the factors in the numerator and denominator which cause them to vanish:

2 _ _
P9 (@-3)@+d) . (@+3) _(+3)
z—=3 r —3 z—3 x—3 r—3 1 1

Here at the very end we did just plug in, after all.

The lesson here is that some of those darn algebra tricks (‘identities’) are helpful, after all. If you have a
‘bad’ limit, always look for some cancellation of factors in the numerator and denominator.

In fact, for hundreds of years people only evaluated limits in this style! After all, human beings can’t re-
ally execute infinite limiting processes, and so on.

#6.14 Find lim,_,o 52

z2—4

#6.15 Find lim,, 5 £=2

#6.16 Find lim, 3 -2

7. Limits at infinity

Next, let’s consider

. 22+ 3
lim

rz—o00 H —

The hazard here is that oo is not a number that we can do arithmetic with in the normal way. Don’t even
try it. So we can’t really just ‘plug in’ co to the expression to see what we get.

On the other hand, what we really mean anyway is not that = ‘becomes infinite’ in some mystical sense,
but rather that it just ‘gets larger and larger’. In this context, the crucial observation is that, as x gets
larger and larger, 1/x gets smaller and smaller (going to 0). Thus, just based on what we want this all to
mean,

lim — =0
T—00 I
T—00 I
T—00 I

and so on.

10



This is the essential idea for evaluating simple kinds of limits as x — oo: rearrange the whole thing so that
everything is expressed in terms of 1/z instead of z, and then realize that

lim is the same as lim
—00 1 50
z

So, in the example above, divide numerator and denominator both by the largest power of x appearing

anywhere:
2 +3 . 242 243y 243-0
lim = lim L =1 = =

= = =-2
T—o0 § — X I%oog—l y—=05y—1 5-0-1

The point is that we called 1/z by a new name, ‘y’, and rewrote the original limit as x — oo as a limit
as y — 0. Since 0 is a genuine number that we can do arithmetic with, this brought us back to ordinary
everyday arithmetic. Of course, it was necessary to rewrite the thing we were taking the limit of in terms
of 1/z (renamed ‘y’).

Notice that this is an example of a situation where we used the letter ‘y’ for something other than the
name or value of the vertical coordinate.

#7.17 Find lim, o 555

. . 2243
#7.18 Find lim,_, w_f_rl .

#7.19 Find lim, o0 552

. . 712
#7.20 Flnd hmw_)oo m

8. Limits of exponential functions at infinity

It is important to appreciate the behavior of exponential functions as the input to them becomes a large
positive number, or a large negative number. This behavior is different from the behavior of polynomials
or rational functions, which behave similarly for large inputs regardless of whether the input is large pos-
itive or large negative. By contrast, for exponential functions, the behavior is radically different for large
positive or large negative.

As a reminder and an explanation, let’s remember that exponential notation started out simply as an ab-
breviation: for positive integer n,

M =2x2x2x...x2 (n factors)
10" =10x 10 x 10 X ... x 10  (n factors)
1\" 1 1 1 1
- =l=])x{=)x(=])x...x|= (n factors)
2 2 2 2 2

From this idea it’s not hard to understand the fundamental properties of exponents (they’re not laws
at all):

a"t =axaxax...xa  (m+n factors)
m+n
=(axaxax...xa)x(axaxax...xa)=a" xa"

m n

11



and also

a™=(axaxax...xa)=

mn

=(axaxax...xa)X...x(axaxax...xa)=(a"™)"

m m

n

at least for positive integers m,n. Even though we can only easily see that these properties are true when
the exponents are positive integers, the extended notation is guaranteed (by its meaning, not by law) to
follow the same rules.

Use of other numbers in the exponent is something that came later, and is also just an abbreviation, which
happily was arranged to match the more intuitive simpler version. For example,

1
a ==
a
and (as consequences)
a" " = anx(—l) — (an)—l — i

(whether n is positive or not). Just to check one example of consistency with the properties above, notice

that

g—al —qoxe-y o L1

= = — =
a~t  1/a

This is not supposed to be surprising, but rather reassuring that we won’t reach false conclusions by such
manipulations.

Also, fractional exponents fit into this scheme. For example
a'’?=ya a®=./]3a
a/t=/[4a o =/[5a

This is consistent with earlier notation: the fundamental property of the n'® root of a number is that its
n*™ power is the original number. We can check:

a=a'=(a/""=q

Again, this is not supposed to be a surprise, but rather a consistency check.

Then for arbitrary rational exponents m/n we can maintain the same properties: first, the definition is
just
@/ = (V[na)™

One hazard is that, if we want to have only real numbers (as opposed to complex numbers) come up, then
we should not try to take square roots, 4™ roots, 6" roots, or any even order root of negative numbers.

For general real exponents = we likewise should not try to understand a” except for a > 0 or we’ll have to
use complex numbers (which wouldn’t be so terrible). But the value of ¢* can only be defined as a limit:
let 1,79, ... be a sequence of rational numbers approaching x, and define

a® =lim a™
K3

We would have to check that this definition does not accidentally depend upon the sequence approaching
x (it doesn’t), and that the same properties still work (they do).

12



The number e is not something that would come up in really elementary mathematics, because its reason
for existence is not really elementary. Anyway, it’s approximately

e = 2.71828182845905

but if this ever really mattered you’d have a calculator at your side, hopefully.

With the definitions in mind it is easier to make sense of questions about limits of exponential functions.
The two companion issues are to evaluate

lim a”
r—+00
lim a”
r—r—00
Since we are allowing the exponent z to be real, we’d better demand that a be a positive real number (if
we want to avoid complex numbers, anyway). Then

+oo if a>1
lim o = 1 if a=1

pohee 0 if O<a<l
0 if a>1

lim a® = 1 if a=1

e 400 if O<a<1

To remember which is which, it is sufficient to use 2 for a > 1 and % for 0 < a < 1, and just let z run
through positive integers as it goes to +o0o. Likewise, it is sufficient to use 2 for ¢ > 1 and % for0 <a<1,
and just let x run through negative integers as it goes to —oc.

9. Theidea of the derivative of a function

First we can tell what the idea of a derivative is. But the issue of computing derivatives is another thing
entirely: a person can understand the idea without being able to effectively compute, and vice-versa.

Suppose that f is a function of interest for some reason. We can give f some sort of ‘geometric life’ by
thinking about the set of points (x,y) so that

flx)=y

We would say that this describes a curve in the (x,y)-plane. (And sometimes we think of z as ‘moving’
from left to right, imparting further intuitive or physical content to the story).

For some particular number z,, let y, be the value f(z,) obtained as output by plugging z, into f as in-
put. Then the point (x,,¥y,) is a point on our curve. The tangent line to the curve at the point (x,,y,)
is a line passing through (z,,y,) and ‘flat against’ the curve. (As opposed to crossing it at some definite
angle).

The idea of the derivative f'(x,) is that it is the slope of the tangent line at x, to the curve. But this isn’t
the way to compute these things...

10. Derivatives of polynomials

There are just four simple facts which suffice to take the derivative of any polynomial, and actually of
somewhat more general things.

13



First, there is the rule for taking the derivative of a power function which takes the nth power of its in-
put. That is, these functions are functions of the form f(z) = 2™. The formula is

d

" n—1
dx

=nx

That is, the exponent comes down to become a coefficient in front of the thing, and the exponent is de-
creased by 1.

The second rule, which is really a special case of this power-function rule, is that derivatives of constants
are zero:

d
%C—O

for any constant c.

The third thing, which reflects the innocuous role of constants in calculus, is that for any functions f of x

d d
&= w!

The fourth is that for any two functions f, g of x, the derivative of the sum is the sum of the derivatives:

d

d d
%(f-i-g)— %f—i—%g

Putting these four things together, we can write general formulas like

(ax™ + ba" + caP) = a-ma™ P +b-na"" 4 paP!

dx

and so on, with more summands than just the three, if so desired. And in any case here are some exam-
ples with numbers instead of letters:

d
— 52 =533 = 1522
dx

d
%(3;107—%5:33 —11)=3-72% +5-32% — 0 = 212° + 1522

d
d—(2—3x2—2x3):0—3-21;—2-3302:—695—6302
X

d

dx(—x4 +22° 4+ 1) = —42® + 2 52t + 0 = —42® + 102

Even if you do catch on to this idea right away, it is wise to practice the technique so that not only can
you do it in principle, but also in practice.

#10.21 Find 4 (327 + 52° — 11)
; d

#10.22 Find -
: d

#10.23 Find -

.1 d
#10.24 Find -

2?2 4+ 52° + 2)
xt 4+ 225 + 1)

(
(
(_
(=322 — 23 — 11)

14



11. More general power functions

It’s important to remember some of the other possibilities for the exponential notation ™. For example

and so on. The good news is that the rule given just above for taking the derivative of powers of z still is
correct here, even for exponents which are negative or fractions or even real numbers:

d _
LT =" 1

dx

Thus, in particular,
d d 1 1 .
_ = g3 =_g"32
d:z:\/;: dzx 2x
d1 d _,
B - -
drz  do. . x2

When combined with the sum rule and so on from above, we have the obvious possibilities:

d 5 d
—(32% = Tx + 2= — (322 — Tz? + 527 2) = 61 —

1
-5 _1 -3
dzx dx T Oz

N~

The possibility of expressing square roots, cube roots, inverses, etc., in terms of exponents is a very impor-
tant idea in algebra, and can’t be overlooked.

#11.25 Find L (327 + 5/ — 11)
#11.26 Find L (2 + 5z + 3)
#11.27 Find 4L (7 — % + 527)

12. Quotient rule

The quotient rule is one of the more irritating and goofy things in elementary calculus, but it just couldn’t
have been any other way. The general principle is

d(f)_f’g—g’f
de \g) ¢

The main hazard is remembering that the numerator is as it is, rather than accidentally reversing the roles
of f and g, and then being off by 4, which could be fatal in real life.

d 1\ 41 (@-2)—-1-Z£(@x-2) 0-(x-2)-1-1 -1
d;v(x—Q) B (x —2)2 B (x —2)2 -~ (z—-2)2
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d (z—1 :(xfl)/(fo)f(xfl)(:er)’i1-(x72)7(:c71)~1
=

de \z—2 (x —2)2 (x —2)2
:(;v—2)—(x—1): -1
(z —2)? (z—2)?

d (5x3+x) _ (bz*+x) (2—2") - (5z® + ) (2 —2")

do \ 2— a7 (2 —27)2
(1522 +1) - (2—27) — (5ad + x) - (—T7aC)
- 2=y

and there’s hardly any point in simplifying the last expression, unless someone gives you a good reason. In
general, it’s not so easy to see how much may or may not be gained in ‘simplifying’, and we won’t make
ourselves crazy over it.

#12.28 Find & (Z=1)

. d 1
#12.29 Find L (-1;)

#12.30 Find L (=))

3

. 7‘/133
#12.31 Find %(21+ﬂ)

13. Product Rule

Not only will the product rule be of use in general and later on, but it’s already helpful in perhaps unex-
pected ways in dealing with polynomials. Anyway, the general rule is

%(fg) =flg+fd

While this is certainly not as awful as the quotient rule just above, it is not as simple as the rule for sums,
which was the good-sounding slogan that the derivative of the sum is the sum of the derivatives. It is not
true that the derivative of the product is the product of the derivatives. Too bad. Still, it’s not as bad as
the quotient rule.

One way that the product rule can be useful is in postponing or eliminating a lot of algebra. For example,
to evaluate

%((x3+x2+x+1)(x4+x3+2x+1))

we could multiply out and then take the derivative term-by-term as we did with several polynomials
above. This would be at least mildly irritating because we’d have to do a bit of algebra. Rather, just ap-
ply the product rule without feeling compelled first to do any algebra:

%((x3+x2+x+1)(x4+:c3+2x+1))

=@+ +2+ 1)@+ 3+ 2+ D)+ (@B 2+ D)@t + 2+ 22+ 1)
=B+ 22+ D)t + 23+ 20+ 1) + (23 + 22+ + 1)(42® + 322 +2)
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Now if we were somehow still obliged to multiply out, then we’d still have to do some algebra. But we can
take the derivative without multiplying out, if we want to, by using the product rule.

For that matter, once we see that there is a choice about doing algebra either before or after we take the
derivative, it might be possible to make a choice which minimizes our computational labor. This could
matter.

#13.32 Find
#13.33 Find
#13.34 Find
#13.35 Find

(23 = 1)(a® + 23 +1))

(2?2 + 2+ 1) (2t — 2% +1).

(@3 + 22 + 2+ 1) (2t + 22 + 1))
(23 + 2%+ 2+ 1)(2z 4+ V1))

14. Chain rule

The chain rule is subtler than the previous rules, so if it seems trickier to you, then you’re right. OK. But
it is absolutely indispensable in general and later, and already is very helpful in dealing with polynomials.

The general assertion may be a little hard to fathom because it is of a different nature than the previous
ones. For one thing, now we will be talking about a composite function instead of just adding or multiply-
ing functions in a more ordinary way. So, for two functions f and g,

dx
There is also the standard notation
(fog)(z) = f(g(x))
for this composite function, but using this notation doesn’t accomplish so very much.

A problem in successful use of the chain rule is that often it requires a little thought to recognize that
some formula is (or can be looked at as) a composite function. And the very nature of the chain rule picks
on weaknesses in our understanding of the notation. For example, the function

F(z) = (1+2%)'°

is really obtained by first using z as input to the function which squares and adds 1 to its input. Then the
result of that is used as input to the function which takes the 100th power. It is necessary to think about
it this way or we’ll make a mistake. The derivative is evaluated as

d
cT(l + 2319 = 100(1 + 2%)%? - 22
X

To see that this is a special case of the general formula, we need to see what corresponds to the f and g in

the general formula. Specifically, let

f(input) = (input)*®

g(input) = 1 4 (input)?

The reason for writing ‘input’ and not ‘x’ for the moment is to avoid a certain kind of mistake. But we
can compute that
f/(input) = 100(input)®?

¢’ (input) = 2(input)
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The hazard here is that the input to f is not x, but rather is g(z). So the general formula gives

%(1 + 23100 = f'(g(z)) - ¢ (x) = 100g(z)" - 22 = 100(1 + 22)*° - 22

More examples:
d d 1
—VBr+2=—@Bz+2)"2=-3z+2)"Y%.3
dx T dx( T+2) 2( z+2)

d
d—(3x5 —z4+ 14" =11(32° — 2 4+ 14)1° - (152* — 1)
X

It is very important to recognize situations like

d n __ n—1
%(am—l—b) =n(ax +b) a

for any constants a, b,n. And, of course, this includes

d 1
—vVar+b= §(asc—|—b)71/2~a

dz
d 1 —a
- - = N 2.qg=— " _
draxr+b (az +0)7" - (az + b)?

Of course, this idea can be combined with polynomials, quotients, and products to give enormous and ex-
cruciating things where we need to use the chain rule, the quotient rule, the product rule, etc., and pos-
sibly several times each. But this is not hard, merely tedious, since the only things we really do come in
small steps. For example:

d (1+vVz+2\ (Q+vVz+2)-(1+72) - (1+Va+2) ((1+72)%)
dx ( (14 72)% > a ((1+72)%)?

by the quotient rule, which is then

(3@ +2)7Y2) - (1+72)% — L+ Vo +2) - (1 + 7))
(1 + 72)%)2

because our observations just above (chain rule!) tell us that

d 1 —1/2 ;1 —1/2
T T+ —2(:E+2) (x+2) f2(z+2)

Then we use the chain rule again to take the derivative of that big power of 1 + 7x, so the whole thing
becomes

A@+2)71) 1+72)3 - 1+ vV +2)- (33(1+72)32.7)
(1 + 7x)33)2

Although we could simplify a bit here, let’s not. The point about having to do several things in a row to
take a derivative is pretty clear without doing algebra just now.

#14.36 Find L ((1 — 2%)'%)
#14.37 Find 4 /z—3
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15. Tangent and Normal Lines

One fundamental interpretation of the derivative of a function is that it is the slope of the tangent line to
the graph of the function. (Still, it is important to realize that this is not the definition of the thing, and
that there are other possible and important interpretations as well).

The precise statement of this fundamental idea is as follows. Let f be a function. For each fized value z,
of the input to f, the value f'(z,) of the derivative f’ of f evaluated at x, is the slope of the tangent line
to the graph of f at the particular point (z,, f(x,)) on the graph.

Recall the point-slope form of a line with slope m through a point (z,,y,):
y_yo:m(x_xo)

In the present context, the slope is f/(z,) and the point is (z,, f(z,)), so the equation of the tangent line
to the graph of f at (z,, f(2,)) is
y — fxo) = f'(20)(x — x0)

The normal line to a curve at a particular point is the line through that point and perpendicular to the
tangent. A person might remember from analytic geometry that the slope of any line perpendicular to a
line with slope m is the negative reciprocal —1/m. Thus, just changing this aspect of the equation for the
tangent line, we can say generally that the equation of the normal line to the graph of f at (x,, f(x,)) is

-1
f(wo)

y_f(xo):

(x — z)

The main conceptual hazard is to mistakenly name the fized point ‘x’, as well as naming the variable coor-
dinate on the tangent line ‘x’. This causes a person to write down some equation which, whatever it may
be, is not the equation of a line at all.

Another popular boo-boo is to forget the subtraction — f(z,) on the left hand side. Don’t do it.

So, as the simplest example: let’s write the equation for the tangent line to the curve y = 22 at the point
where = 3. The derivative of the function is ¥y’ = 2z, which has value 2 -3 = 6 when © = 3. And the
value of the function is 3-3 =9 when x = 3. Thus, the tangent line at that point is

y—9=06(z—3)

The normal line at the point where x = 3 is

So the question of finding the tangent and normal lines at various points of the graph of a function is just
a combination of the two processes: computing the derivative at the point in question, and invoking the
point-slope form of the equation for a straight line.
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#15.42 Write the equation for both the tangent line and normal line to the curve y = 322 — x + 1 at the
point where x = 1.

#15.43 Write the equation for both the tangent line and normal line to the curve y = (x — 1)/(xz + 1) at
the point where = = 0.

16. Critical points, monotone increase and decrease

A function is called increasing if it increases as the input x moves from left to right, and is called de-
creasing if it decreases as x moves from left to right. Of course, a function can be increasing in some
places and decreasing in others: that’s the complication.

We can notice that a function is increasing if the slope of its tangent is positive, and decreasing if the
slope of its tangent is negative. Continuing with the idea that the slope of the tangent is the derivative:
a function is increasing where its derivative is positive, and is decreasing where its derivative is negative.

This is a great principle, because we don’t have to graph the function or otherwise list lots of values to
figure out where it’s increasing and decreasing. If anything, it should be a big help in graphing to know in
advance where the graph goes up and where it goes down.

And the points where the tangent line is horizontal, that is, where the derivative is zero, are critical
points. The points where the graph has a peak or a trough will certainly lie among the critical points, al-
though there are other possibilities for critical points, as well.

Further, for the kind of functions we’ll deal with here, there is a fairly systematic way to get all this infor-
mation: to find the intervals of increase and decrease of a function f:

e Compute the derivative f’ of f, and solve the equation f’(x) = 0 for x to find all the critical points,
which we list in order as 1 < 20 < ... < .

o (If there are points of discontinuity or non-differentiability, these points should be added to the list! But
points of discontinuity or non-differentiability are not called critical points.)

e We need some auziliary points: To the left of the leftmost critical point x; pick any convenient point ¢,,
between each pair of consecutive critical points x;, ;11 choose any convenient point ¢;, and to the right of
the rightmost critical point z,, choose a convenient point t,.

e Evaluate the derivative f’ at all the auziliary points t;.

e Conclusion: if f/(¢;41) > 0, then f is increasing on (x;,z;11), while if f/(¢;11) < 0, then f is decreasing
on that interval.

e Conclusion: on the ‘outside’ interval (—oo, x,), the function f is increasing if f'(t,) > 0 and is decreasing
if f'(t,) < 0. Similarly, on (z,,0), the function f is increasing if f’(t,) > 0 and is decreasing if f'(t,) < 0.

It is certainly true that there are many possible shortcuts to this procedure, especially for polynomials of
low degree or other rather special functions. However, if you are able to quickly compute values of (deriva-
tives of!) functions on your calculator, you may as well use this procedure as any other.

Exactly which auziliary points we choose does not matter, as long as they fall in the correct intervals,
since we just need a single sample on each interval to find out whether f’ is positive or negative there.
Usually we pick integers or some other kind of number to make computation of the derivative there as
easy as possible.
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It’s important to realize that even if a question does not directly ask for critical points, and maybe does
not ask about intervals either, still it is implicit that we have to find the critical points and see whether
the functions is increasing or decreasing on the intervals between critical points. Examples:

Find the critical points and intervals on which f(z) = 22 + 2z + 9 is increasing and decreasing: Compute
f'(z) = 22 4+ 2. Solve 2z + 2 = 0 to find only one critical point —1. To the left of —1 let’s use the auziliary
point t, = —2 and to the right use t; = 0. Then f/(—2) = —2 < 0, so f is decreasing on the interval
(=00, —1). And f’(0) =2 >0, so f is increasing on the interval (—1, c0).

Find the critical points and intervals on which f(z) = 2% — 122 + 3 is increasing, decreasing. Compute
f'(z) = 322 —12. Solve 322 — 12 = 0: this simplifies to 22 —4 = 0, so the critical points are +2. To the left

of —2 choose auxiliary point t, = —3, between —2 and = 2 choos