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ABSTRACT

In this course, we develop the basic notions of Manifolds and Geometry, with applications

in physics, and also we develop the basic notions of the theory of Lie Groups, and their

applications in physics.
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The material in this course is intended to be more or less self contained. However, here

is a list of some books and other reference sources that may be helpful for some parts of

the course:

1. J.G. Hocking and G.S. Young, Topology, (Addison-Wesley, 1961). This is a very

mathematical book on topological spaces, point-set topology, and some more advanced

topics in algebraic topology. (Not for the faint-hearted!)

2. T. Eguchi, P.B. Gilkey and A.J. Hanson. Gravitation, Gauge Theories and Differen-

tial Geometry, Physics Reports, 66, 213 (1980). This is a very readable exposition of

the basic ideas, aimed at physicists. Some portions of this course are based fairly ex-

tensively on this article. It also has the merit that it is freely available for downloading

from the web, as a PDF file. Go to http://www.slac.stanford.edu/spires/hep/, type

”find a gilkey and a hanson”, and follow the link to Science Direct for this article.

Note that Science Direct is a subscription service, and you must be connecting from

a URL in the tamu.edu domain, in order to get free access.

3. H. Georgi, Lie Algebras and Particle Physics, Perseus Books Group; 2nd edition

(September 1, 1999). This is quite a useful introduction to some of the basics of Lie

algebras and Lie groups, written by a physicist for physicists. It is a bit idiosyncratic

in its coverage, but what it does cover is explained reasonably well.

4. R. Gilmore, Lie Groups Lie Algebras and Some of Their Applications, John Wiley &

Sons, Inc (1974). A more complete treatment of the subject. Quite helpful, especially

as a reference work.
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1 Manifolds

One of the most fundamental constructs in geometry is the notion of a Manifold. A manifold

is, in colloquial language, the arena where things happen. Familiar examples are the three-

dimensional space that we inhabit and experience in everyday life; the surface of a ball,

viewed as a two-dimensional closed surface on which, for example, an ant may walk; and

the four-dimensional Minkowski spacetime that is the arena where special relativity may

be formulated. In order to give a reasonably precise description of a manifold, it is helpful

first to give a few rather formal definitions. It is not the intention in this course to make

everything too formal and rigorous, so we shall try to strike a balance between formality

and practical utility as we proceed. In particular, if things seem to be getting too abstract

and rigourous at any stage, there is no need to panic, because it will probably just be a

brief interlude before returning to a more intuitive and informal discussion.

In this spirit, let us begin with some formal definitions.

1.1 Some set-theoretic concepts

A set is a collection of objects, or elements; typically, for us, these objects will be points in

a manifold. A set U is a subset of a set V if every element of U is also an element of V . If

there exist elements in V that are not in the subset U , then U is called a proper subset of

V .

If U is a subset of V then the complement of U in V , denoted by V − U , is the set of

all elements of V that are not in U . If U is a subset but not a proper subset, then V − U

contains no elements at all. This set containing no elements is called the empty set, and is

denoted by ∅. By definition, therefore, ∅ is a subset of every set.

The notion of the complement can be extended to define the difference of sets V and U ,

even when U is not a subset of V . Thus we have

V \U = {x : x ∈ V and x /∈ U} . (1.1)

If U is a subset of V then this reduces to the complement defined previously.

Two sets U and V are equal, U = V , if every element of V is an element of U , and vice

versa. This is equivalent to the statement that U is a subset of V and V is a subset of U .

From two sets U and V we can form the union, denoted by U ∪ V , which is the set of

all elements that are in U or in V . The intersection, denoted by U ∩ V , is the set of all

elements that are in U and in V . The two sets U and V are said to be disjoint if U ∩V = ∅,
i.e. they have no elements in common.
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Some straightforwardly-established properties are:

A ∪B = B ∪A , A ∩B = B ∩A ,

A ∪ (B ∪ C) = (A ∪B) ∪ C , A ∩ (B ∩ C) = (A ∩B) ∩C , (1.2)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) , A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) .

If A and B are subsets of C, then

C − (C −A) = A , C − (C −B) = B ,

A− (A\B) = A ∩B ,

C − (A ∪B) = (C −A) ∩ (C −B) ,

C − (A ∩B) = (C −A) ∪ (C −B) . (1.3)

1.2 Topological Spaces

Before being able to define a manifold, we need to introduce the notion of a topological

space. This can be defined as a point set S, with open subsets Oi, for which the following

properties hold:

1. The union of any number of open subsets is an open set.

2. The intersection of a finite number of open subsets is an open set.

3. Both S itself, and the empty set ∅, are open.

It will be observed that the notion of an open set is rather important here. Essentially,

a set X is open if every point x inside X has points round it that are also in X. In other

words, every point in an open set has the property that you can wiggle it around a little

and it is still inside X. Consider, for example, the set of all real numbers r in the interval

0 < r < 1. This is called an open interval, and is denoted by (0, 1). As its name implies, the

open interval defines an open set. Indeed, we can see that for any real number r satisfying

0 < r < 1, we can always find real numbers bigger than r, and smaller than r that still

themselves lie in the open interval (0, 1). By contrast, the interval 0 < r ≤ 1 is not open;

the point r = 1 lies inside the set, but if it is wiggled to the right by any amount, no matter

how tiny, it takes us to a point with r > 1, which is not inside the set.

Given the collection {Oi} of open subsets of S, we can define the notion of the limit

point of a subset, as follows. A point p is a limit point of a subset X of S provided that
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every open set containing p also contains a point in X that is distinct from p. This definition

yields a topology for S, and with this topology, S is called a Topological Space.

Some further concepts need to be introduced. First, we define a basis for the topology

of S as some subset of all possible open sets in S, such that by taking intersections and

unions of the members of the subset, we can generate all possible open subsets in S. An

open cover {Ui} of S is a collection of open sets such that every point p in S is contained in

at least one of the Ui. The topological space S is said to be compact if every open covering

{Ui} has a finite sub-collection {Ui1 , · · · , Uin} that also covers S.

Finally, we may define the notion of a Hausdorff Space. The topological space S is said

to obey the Hausdorff axiom, and hence to be an Hausdorff Space, if, for any pair of distinct

points p1 and p2 in S, there exist disjoints open sets O1 amd O2, each containing just one

of the two points. In other words, for any distinct pair of points p1 and p2, we can find a

small open set around each point such that the two open sets do not overlap.1

We are now in a position to move on to the definition of a manifold.

1.3 Manifolds

Before giving a formal definition of a manifold, it is useful to introduce what we will recognise

shortly as some very simple basic examples. First of all, consider the real line, running from

minus to plus infinity. Slightly more precisely, we consider the open interval (−∞,∞), i.e.

the set of points x such that −∞ < x < ∞. We denote this by the symbol IR (the letter

R representing the real numbers). In fact IR is the prototype example of a manifold; it is a

one-dimensional topological space parameterised by the points on the real line.

A simple extension of the above is to consider the n-dimensional space consisting of n

copies of the real line. We denote this by IRn. A familiar example is three-dimensional

Euclidean space, with Cartesian coordinates (x, y, z). Thus our familiar three-dimensional

space can be called the 3-manifold IR3.

We can now give a formal definition of a smooth n-manifold, with a smooth atlas of

charts, as

1. A topological space S

2. An open cover {Ui}, which are known as patches

1The great mathematician and geometer Michael Atiyah gave a nice colloquial definition: “A topological

space is Hausdorff if the points can be housed off.” One should imagine this being spoken in a rather plummy

English accent, in which the word “off” is pronounced “orff.”

5



3. A set (called an atlas) of maps φi : Ui → IRn called charts, which define a 1-1 relation

between points in Ui and points in an open ball in IRn, such that

4. If two patches U1 and U2 intersect, then both φ1 ◦φ−1
2 and φ2 ◦ φ−1

1 are smooth maps

from IRn to IRn.

The set-up described here will be referred to as an n-dimensional manifold M . Some-

times we shall use a superscript or subscript n, and write M n or Mn.

What does all this mean? The idea is the following. We consider a topological space S,

and divide it up into patches. We choose enough patches so that the whole of S is covered,

with overlaps between neighbouring patches. In any patch, say U1, we can establish a rule,

known as a mapping, between points in the patch and points in some open connected region

(called an open ball) in IRn. This mapping will be chosen such that it is 1-1 (one to one),

meaning that there is a unique invertible relation that associates to each point in U1 a

unique point in the open ball in IRn, and vice versa. We denote this mapping by φ1. This

is the notion of choosing coordinates on the patch U1. See Figure 1.

M

U
1 Rnφ

1

Figure 1: The map φ1 takes points in U1 into an open ball in IRn

Now consider another patch U2, which has some overlap with U1. For points in U2 we

make another mapping, denoted by φ2, which again gives a 1-1 association with points in an

open ball in IRn. Now, consider points in the topological space S that lie in the intersection

of U1 and U2. For such points, we have therefore got two different rules for mapping into a

copy of IRn: we have the mapping φ1, and the mapping φ2. We are therefore in a position

to go back and forth between the two copies of IRn. Note that we can do this because each

of φ1 and φ2 was, by definition, an invertible map.

We can start from a point in the open ball in the second copy of IRn, and then apply

the inverse of the mapping φ2, which we denote by φ−1
2 , to take us back to a point in the

patch U2 that is also in U1. Then, we apply the map φ1 to take us forward to the open ball
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in the first copy of IRn. The composition of these two operations is denoted by φ1 ◦ φ−1
2 .

Alternatively, we can go in the other order and start from a point in the open ball of the

first copy of IRn that maps back using φ−1
1 to a point in U1 that is also in U2. Then, we

apply φ2 to take us into the second copy of IRn. Going in this direction, the whole procedure

is therefore denoted by φ2 ◦ φ−1
1 . See Figure 2.

M

U
1 Rnφ

1

R

φ
n

2

U2

φ
2 ο φ

1
−1

Figure 2: φ2 ◦ φ−1
1 maps IRn into IRn for points in the intersection U1 ∩ U2

Whichever way we go, the net effect is that we are mapping between a point in one copy of

IRn and a point in another copy of IRn. Suppose that we choose coordinates (x1, x2, · · · , xn)

on the first copy, and coordinates (x̃1, x̃2, · · · , x̃n) on the second copy. Collectively, we can

denote these by xi, and x̃i, where 1 ≤ i ≤ n. In the first case, the composition φ1 ◦ φ−1
2

is therefore giving us an expression for the xi as functions of the x̃j . In the second case,

φ2 ◦ φ−1
1 is giving us x̃i as functions of the xj.

So far, we have discussed this just for a specific point that lies in the intersection of U1

and U2. But since we are dealing with open sets, we can always wiggle the point around

somewhat, and thus consider an open set of points within the intersection U1 ∩ U2. Thus

our functions xi = xi(x̃j) and x̃i = x̃i(xj) can be considered for a range of xi and x̃i values.

This allows us to ask the question of whether the functions are smooth or not; in other

words, are the xi differentiable functions of the x̃j, and vice versa? Thus we are led to

the notion of a Differentiable Manifold, as being a manifold where the coordinates covering

any pair of overlapping patches are smooth, differentiable functions of one another. One

can, of course, consider different degrees of differentiability; in practice, we shall tend to

assume that everything is C∞ differentiable, meaning that we can differentiate infinitely

many times.

The functions that describe how the xi depend on the x̃j, or how the x̃i depend on the

xj , are called the transition functions in the overlap region.

Two atlases are said to be compatible if, wherever there are overlaps, the transition
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functions are smooth.

It is worth emphasising at this point that all this talk about multiple patches is not

purely academic. The reason why we have been emphasising this issue is that in general we

need more than one coordinate patch to cover the whole manifold. To illustrate this point,

it is helpful to consider some examples.

1.3.1 The circle; S1

We have already met the example of the real line itself, as the one-dimensional manifold

IR. This manifold can be covered by a single coordinate patch, namely we just use the

coordinate x, −∞ < x <∞.

There is another example of a one-dimensional manifold that we can consider, namely

the circle, denoted by S1. We can think of the circle as a real line interval, where the

right-hand end of the line is identified with the left-hand end. Thus, for the unit circle, we

can take a coodinate interval 0 ≤ θ < 2π, with the rule that the point θ = 2π is identified

with the point θ = 0. However, θ is not a good coordinate everywhere on the circle, because

it has a discontinuity where it suddently jumps from 2π to 0. To cover the circle properly,

we need to use (at least) two coordinate patches.

To see how this works, it is convenient to think of the standard unit circle x2 + y2 =

1 centred on the origin in the (x, y) plane, and to consider the standard polar angular

coordinate θ running counter-clockwise around the circle. However, we shall only use θ to

describe points on the circle corresponding to 0 < θ < 2π. Call this patch, or set of points,

U1. Introduce also another angular coordinate, called θ̃, which starts from θ̃ = 0 (more

precisely, we shall consider only θ̃ > 0, not allowing θ̃ = 0 itself) over on the left-hand side

at θ = π, and runs around counter-clockwise until it (almost) returns to its starting point

as θ̃ approaches 2π. We shall use θ̃ only in the interval 0 < θ̃ < 2π. This patch of S1 will be

called U2. Thus we have the patch U1, which covers all points on S1 except (x, y) = (1, 0),

and the patch U2, which covers all points on S1 except (x, y) = (−1, 0). The intersection

of U1 and U2 therefore comprises all points on S1 except for the two just mentioned. It

therefore comprises two disconnected open intervals, one consisting of points on S 1 that lie

above the x axis, and the other comprising points on S1 that lie below the x axis. We may

denote these two intervals by (U1 ∩ U2)+ and (U1 ∩ U2)− respectively. See Figure 3.

The map φ1 from points in U1 into IR is very simple: we have chosen just to use θ,

lying in the open interval 0 < θ < 2π. For U2, we have the map φ2 into the open interval

0 < θ̃ < 2π in IR. The relation between the two coordinates in the overlap region defines
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θ=0

θ=2πθ=0

θ=2π
∼

∼

S 1

Figure 3: The coordinates θ and θ̃ cover the two patches of S1

the transition functions. Since we have an overlap region comprising two disconnected open

intervals, we have to define the transition functions in each interval. This can be done easily

by inspection, and we have

(U1 ∩ U2)+ : θ̃ = θ + π

(U1 ∩ U2)− : θ̃ = θ − π . (1.4)

It is obvious, in this example, that the transition functions are infinitely differentiable.

1.3.2 The 2-sphere; S2

For a second example, consider the 2-sphere, denoted by S2. We can think of this as the

surface of the unit ball in Euclidean 3-space. Thus, if we introduce coordinates (x, y, z) on

Euclidean 3-space IR3, we define S2 as the surface

x2 + y2 + z2 = 1 . (1.5)

We can think of using the spherical polar coordinates (θ, φ) on S2, defined in the standard

way:

x = sin θ cosφ , y = sin θ sinφ , z = cos θ . (1.6)

However, these coordinates break down at the north pole N, and at the south pole S, since

at these points θ = 0 and θ = π there is no unique assignment of a value of φ. Instead, we

can introduce stereographic coordinates, and define two charts:
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For a point P on the sphere, take the straight line in IR3 that starts at the north pole N,

passes through P, and then intersects the z = 0 plane at (x, y) . A simple geometric calcula-

tion shows that if the point P has spherical polar coordinates (θ, φ), then the corresponding

point of intersection in the z = 0 plane is at

x = cot 1
2θ cosφ , y = cot 1

2θ sinφ . (1.7)

This mapping from points in S2 into points in IR2 works well except for the point N itself:

the north pole gets mapped out to infinity in the (x, y) plane. Let us call U− the patch of

S2 comprising all points except the north pole N.

We can get a well-defined mapping for a second patch U+, consisting of all points in

S2 except the south pole S, by making an analogous stereographic mapping from the south

pole instead. A simple geometric calculation shows that the straight line in IR3 joining the

south pole to the point on S2 parameterised by (θ, φ) intersects the z = 0 plane at

x̃ = tan 1
2θ cosφ , ỹ = tan 1

2θ sinφ . (1.8)

Thus we have a mapping given by (1.7) from U− into IR2, with coordinates (x, y), and a

mapping given by (1.8) from U+ into IR2, with coordinates (x̃, ỹ).

In the intersection U−∩U+, which comprises all points in S2 except the north and south

poles, we can look at the relation between the corresponding coordinates. From (1.7) and

(1.8), a simple calculation shows that we have

x̃ =
x

x2 + y2
, ỹ =

y

x2 + y2
. (1.9)

Conversely, we may express the untilded coordinates in terms of the tilded coordinates,

finding

x =
x̃

x̃2 + ỹ2
, y =

ỹ

x̃2 + ỹ2
. (1.10)

It is easy to see that these transition functions defining the relations between the tilded and

the untilded coordinates are infinitely differentiable, provided that x2 + y2 is not equal to

zero or infinity. In other words, the transition functions are infinitely differentiable provided

we omit the north and south poles; i.e. , they are infinitely differentiable everywhere in the

overlap of the two patches.

The construction we have just described has provided us with an atlas comprising two

charts. Clearly there was nothing particularly special about the way we chose to do this,

except that we made sure that our atlas was big enough to provide a complete covering of

S2. We could, for example, add some more charts by repeating the previous discussion for
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pairs of charts obtained by stereographic projection from (x, y, z) = (1, 0, 0) and (−1, 0, 0),

and from (0, 1, 0) and (0,−1, 0) as well. We would then in total have a collection of six

charts in our atlas. A crucial point, though, which was appreciated even in the early days

of map-making, is that you cannot cover the whole of S2 with a single chart.

1.3.3 Incompatible Atlases

It is not necessarily the case that the charts in one atlas are compatible with the charts

in another atlas. A simple example illustrating this can be given by considering the one-

dimensional manifold IR. We have already noted that this can be covered by a single chart.

Let us take z to represent the real numbers on the interval −∞ < z < ∞. We can choose

a chart given by the mapping

φ : x = z . (1.11)

We can also choose another chart, defined by the mapping

φ̃ : x̃ = z1/3 . (1.12)

Over the reals, each mapping gives a 1-1 relation between points z in the original manifold

IR, and points in the copies of IR coordinatised by x or x̃ respectively. However, these two

charts are not compatible everywhere, since we have the relation x̃ = x1/3, which is not

differentiable at x = 0.

1.3.4 Non-Hausdorff manifolds

In practice we shall not be concerned with non-Hausdorff manifolds, but is is useful to give

an example of one, since this will illustrate that they are rather bizarre, and hence do not

usually arise in situations of physical interest.

Consider the following one-dimensional manifold. We take the real lines y = 0 and y = 1

in the (x, y) plane IR2. Thus we have the lines (x, 0) and (x, 1). Now, we identify the two

lines for all points x > 0. Thus we have a one-dimensional manifold consisting of two lines

for x ≤ 0, which join together to make one line for x > 0. Now, consider the two points

(0, 0) and (0, 1). These two points are distinct, since we are only making the identification

of (x, 0) and (x, 1) for points where x is strictly positive. However, any open neighbourhood

of (0, 0) necessarily intersects any open neighbourhood of (0, 1), since slightly to the right

of x = 0 for any x, no matter how small, the two lines are identified. Thus, in Atiyah’s

words, the points (0, 0) and (0, 1) cannot be “housed off” into separate disjoint subsets.

The only one-dimensional Hausdorff manifolds are IR and S1.
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1.3.5 Compact vs. non-compact manifolds

When discussing topological spaces, we gave the definition of a compact topological space

S as one for which every open covering {Ui} has a finite sub-collection {Ui1 , · · · , Uin} that

also covers S. The key point in this definition is the word “every.” To illustrate this, let us

consider as examples the two simple one-dimensional manifolds that we have encountered;

IR and S1. As we shall see, IR is non-compact, whilst S1 is compact.

First, consider IR. Of course we can actually just use a single open set to over the whole

manifold in this case, since if it is parameterised by the real number z, we just need to take

the single open set −∞ < z <∞. Clearly if we took this as our open covering U then there

exists a finite sub-collection (namely U itself – no one said the sub-collection has to be a

proper sub-collection) which also covers IR.

However, we can instead choose another open covering as follows. Let Uj be the open

set defined by j − 1
2 < z < j + 3

2 . Thus Uj describes an open interval of length just less

than 2. Clearly {Uj} for all integers j provides us with an open covering for IR, since each

adjacent pair Uj and Uj+1 overlap. However, it is impossible to choose a finite subset of the

Uj that still provides an open cover of IR. By exhibiting an open covering for which a finite

sub-collection does not provide an open covering of the manifold, we have proved that IR is

not compact. A manifold that is not compact is called, not surprisingly, non-compact.

Now, consider instead the manifold S1. We saw in section (1.3.1) that we can cover S1

with a minimum of two open sets. We could, of course, use more, for example by covering

the circumference of the circle in short little sections of overlapping open sets. However, no

matter how short we take the intervals, they must always have a non-zero length, and so

after laying a finite number around the circle, we will have covered it all. We could choose

an infinity of open sets that covered S1, for example by choosing intervals of length 1 (in

the sense 0 < z < 1) distributed around the circumference according to the rule that each

sucessive interval starts at a point where the angle θ has advanced by 1
2 relative to the start

of the previous interval. Since the circumference of the circle is traversed by advancing θ

by 2π, it follows from the fact that π is transcendental that none of these unit intervals will

exactly overlap another. However, it will be the case that we can choose a finite subset of

these open intervals that is already sufficient to provide an open cover.

No matter what one tries, one will always find that a finite collection of any infinite

number of open sets covering S1 will suffice to provide an open cover. Thus the manifold

S1 is compact.

Of the other examples that we have met so far, all the manifolds IRn are non-compact,
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and the manifold S2 is compact.

1.3.6 Functions on manifolds

A real function f on a manifold M is a mapping

f : M → IR (1.13)

that gives a real number for each point p in M . If for some open set U in M we have a

coordinate chart φ such that U is mapped by φ into IRn, then we have a mapping

f ◦ φ−1 : IRn → IR . (1.14)

If the coordinates in IRn are called xi, then the mapping (1.14) can be written simply as

f(xi). In colloquial language we can say that f(xi) represents the value of f at the point

in M specified by the coordinates xi. In other words, now that it is understood that we

may well need different coordinate patches to cover different regions of the manifold, we

can usually just think of the chosen coordinates in some patch as being “coordinates on the

manifold,” and proceed without explicitly reciting the full rigmarole about the mapping φ

from M into IRn.

The function f(xi) is called a smooth function if it is a differentiable function of the

coordinates xi in the patch where they are valid.

1.3.7 Orientable manifolds

A manifold is said to be orientable if it admits an atlas such that in all overlapping regions

between charts, the Jacobian of the relation between the coordinate systems satisfies

det
(∂xi

∂x̃j

)
> 0 . (1.15)

1.4 Tangent vectors

We now turn to a discussion of vectors, and tensors, on manifolds.

We should begin this discussion by forgetting certain things about vectors that we

learned in kindergarten. There, the concept of a vector was introduced through the notion

of the position vector, which was an arrow joining a point A to some other point B in

three-dimensional Euclidean space. This is fine if one is only going to talk about Euclidean

space in Cartesian coordinates, but it is not a valid way describing a vector in general. If

the space is curved, such as the sphere, or even if it is flat but described in non-cartesian
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coordinates, such as Euclidean 3-space described in spherical polar coordinates, the notion

of a vector as a line joining two distant points A and B breaks down. What we can do is

take the infinitesimal limit of this notion, and consider the line joining two points A and

A + δA. In fact what this means is that we think of the tangent plane at a point in the

space, and imagine vectors in terms of infinitesimal displacements in this plane.

To make the thinking a bit more concrete, consider a 2-sphere, such as the surface of

the earth. A line drawn between Ney York and Los Angeles is not a vector; for example,

it would not make sense to consider the “sum” of the line from New York to Los Angeles

and the line from Los Angeles to Tokyo, and expect it to satisfy any meaningful addition

rules. However, we can place a small flat sheet on the surface of the earth at any desired

point, and draw very short arrows in the plane of the sheet; these are tangent vectors at

that particular point on the earth.

The concept of a vector as an infinitesimal displacement makes it sound very like the

derivative operator, and indeed this is exactly what a vector is. Suppose we consider some

patch U in the manifold M , for which we introduce local coordinates xi in the usual way.

Now consider a path passing through U , which may therefore be described by specifying

the values of the coordinates of points along the path. We can do this by introducing a

parameter λ that increases monotonically along the path, and so points in M along the

path are specified by

xi = xi(λ) . (1.16)

Consider now a smooth function f defined on M . The values of f at points along the

path are therefore given by f(xi(λ)). By the chain rule, we shall have

df

dλ
=

n∑

i=1

∂f

∂xi

dxi(λ)

dλ
,

=
∂f

∂xi

dxi(λ)

dλ
(1.17)

Note that here, and throughout this course, we shall be using the Einstein summation

convention, as is done in the second line, in which the summation over an index that

appears exactly twice is understood.

We may define the directed derivative operator along the path by

V ≡ d

dλ
, (1.18)

which is a map taking smooth functions to IR:

f → V f =
df

dλ
(1.19)
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This obeys the linearity property

V (f + g) = V f + V g (1.20)

for any pair of smooth functions f and g, and also the Leibnitz property

V (fg) = (V f)g + f(V g) . (1.21)

Such a map is called a tangent vector at the point p where the evaluation is made.

If we have two different tangent vectors at the point p (corresponding to directional

derivatives along two different curves that intersect at p), let us call them V = d/dλ and

Ṽ = d/dλ̃, then linearity means that we shall have

(V + Ṽ )f = V f + Ṽ f . (1.22)

We can also multiply tangent vectors by constants and they are again tangent vectors. Thus

the space of tangent vectors at a point p ∈M is a vector space, which is called the Tangent

Space at p, and denoted by Tp(M). Its dimension is n, the dimension of the manifold M .

This can be seen by considering Taylor’s theorem in the local coordinate system xi:

f(x) = f(xp) + hi ∂f

∂xi
+ · · · , (1.23)

where hi ≡ xi − xi
p and xi

p denotes the coordinates corresponding to the point p. Therefore

if we define

V i ≡ V xi =
dxi

dλ
, (1.24)

then we shall have

V f = V i ∂f

∂xi
, (1.25)

and so we can take ∂/∂xi as a basis for the vector space of tangent vectors at the point

p. This shows that the dimension of the tangent vector space is equal to the number of

coordinates xi, which is in turn equal to the dimension n of the manifold M . In order to

abbreviate the writing, we shall commonly write

∂i ≡
∂

∂xi
(1.26)

to denote the tangent vector basis.

To summarise, we can write the tangent vector V = d/dλ as

V = V i ∂i , (1.27)
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where V i are the components of the vector V with respect to the basis ∂i;

V i =
dxi(λ)

dλ
. (1.28)

(Of course here we are using the Einstein summation convention that any dummy index,

which occurs twice in a term, is understood to be summed over the range of the index.)

Notice that there is another significant change in viewpoint here in comparison to the

“kindergarten” notion of a vector. We make a clear distinction betwen the vector itself,

which is the geometrical object V defined quite independently of any coordinate system by

(1.18), and its components V i, which are coordinate-dependent.2 Indeed, if we imagine now

changing to a different set of coordinates x′i in the space, related to the original ones by

x′i = x′i(xj), then we can use the chain rule to convert between the two bases:

V = V j ∂

∂xj
= V j ∂x

′i

∂xj

∂

∂x′i
≡ V ′i ∂

∂x′i
. (1.29)

In the last step we are, by definition, taking V ′i to be the components of the vector V with

respect to the primed coordinate basis. Thus we have the rule

V ′i =
∂x′i

∂xj
V j , (1.30)

which tells us how to transform the components of the vector V between the primed and

the unprimed coordinate system. This is the fundamental defining rule for how a vector

must transform under arbitrary coordinate transformations. Such transformations are called

General Coordinate Transformations.

Let us return to the point alluded to previously, about the vector as a linear differential

operator. We have indeed been writing vectors as derivative operators, so let’s see why that

is very natural. Suppose we have a smooth function f defined on M . As we discussed before,

we can view this, in a particular patch, as being a function f(xi) of the local coordinates

we are using in that patch. It is also convenient to suppress the i index on the coordinates

xi in the argument here, and just write f(x). Now, if we wish to evaluate f at a nearby

point xi + ξi, where ξi is infinitesimal, we can just make a Taylor expansion:

f(x+ ξ) = f(x) + ξi ∂i f(x) + · · · , (1.31)

2However, it sometimes becomes cumbersome to use the longer form of words “the vector whose com-

ponents are V i,” and so we shall sometimes slip into the way of speaking of “the vector V i.” One should

remember, however, that this is a slightly sloppy way of speaking, and the more precise distinction between

the vector and its components should always be borne in mind.
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and we can neglect the higher terms since ξ is assumed to be infinitesimal. Thus we see

that the change in f is given by

δf(x) ≡ f(x+ ξ) − f(x) = ξi ∂i f(x) , (1.32)

and that the operator that is implementing the translation of f(x) is exactly what we earlier

called a vector field,

ξi ∂i , (1.33)

where

δxi ≡ (xi + ξi) − xi = ξi . (1.34)

Having defined Tp(M), the tangent space at the point p ∈ M , we can then define the

so-called “tangent bundle” as the space of all possible tangent vectors at all possible points:

T (M) = ∪p∈M Tp(M) . (1.35)

This space is a manifold of dimension 2n, since to specify a point in it one must specify the

n coordinates of M and also an n-dimensional set of basis tangent vectors at that point.

It is sometimes called the “velocity space,” since it is described by a specification of the

positions and the “velocities” ∂/∂xi.

1.4.1 Non-coordinate bases for the tangent space

In the discussion above, we have noted that ∂i ≡ ∂/∂xi forms a basis for the tangent space

Tp(M) at a point p in M . This is called a coordinate basis. We can choose to use different

bases; any choice of n basis vectors that span the vector space is equally valid. Thus we

may introduce quantities Ea
i, where 1 ≤ a ≤ n (and, as usual, 1 ≤ i ≤ n), and take our n

basis vectors to be

Ea = Ea
i ∂i . (1.36)

As long as we have det(Ea
i) 6= 0, this basis will span the tangent space. Note that Ea

i need

not be the same at each point in M ; we can allow it to depend upon the local coordinates

xi:

Ea = Ea
i(x) ∂i . (1.37)

A common terminology is to refer to Ea
i as the inverse vielbein (we shall meet the vielbein

itself a little later). The coordinate index i is commonly also called a world index, while the

index a is commonly called a tangent space index.
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In addition to the general coordinate transformations xi → x′i = x′i(x) that we discussed

previously, we can also now make transformations on the tangent space index. In other

words, we can make transformations from one choice of non-coordinate basis Ea
i to another,

say E′
a
i. This transformation can itself be different at different points in M :

Ea → E′
a = Λa

b(x)Eb . (1.38)

Note that if we have a vector V = V i ∂i, where V i are its components in the coordinate

basis ∂i, we can also write it as

V = V aEa , (1.39)

where V a denotes the tangent-space components of V with respect to the basis Ea. Since V

itself is independent of the coice of basis, it follows that the components V a must transform

in the inverse fashion to the transformation (1.38) of Ea, which we write as

V a → V ′a = Λa
b(x)V

b , (1.40)

where

Λa
b Λc

b = δa
c . (1.41)

It is straightforward to see that (1.38) and (1.40), together with (1.41), implies that V given

in (1.39) is invariant under these local tangent-space transformations. In matrix notation,

we can associate Λa
b with the matrix Λ, whose rows are labelled by a, and columns by b.

Then from (1.41) we have that Λa
b corresponds to the inverse, Λ−1. If we view the set of

n basis vectors Ea as a row vector denoted by E , and the set of tangent-space components

V a as a column vector denoted by V, then (1.38) and (1.40) can be written as

E ′ = E Λ−1 , V ′ = ΛV . (1.42)

1.5 Co-vectors

We have so far met the concept of vectors V , which can be expanded in a coordinate basis

∂i or a general tangent-space basis Ea: V = V i ∂i = V aEa. For every vector space X, there

exists the notion of its dual space X∗, which is the space of linear maps

X∗ : X → IR . (1.43)

What this means is that if V is any vector in X, and ω is any co-vector in X ∗, then there

exists a rule for making a real number from V and ω. We introduce the notation

〈ω|V 〉 ∈ IR (1.44)
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to denote this rule. The operation is linear, and so we have

〈ω|U + V 〉 = 〈ω|U〉 + 〈ω|V 〉 ,

〈ω|λV 〉 = λ 〈ω|V 〉 , (1.45)

where U and V are any two vectors, and λ is any real number.

Just as one expands vectors with respect to some basis Ea, namely V = V aEa, so one

expands co-vectors with respect to a dual basis, which we shall denote by ea. Thus we write

ω = ωa e
a. By definition, the basis and its dual satisfy

〈ea|Eb〉 = δa
b . (1.46)

From the linearity of the mapping from X to X∗, we therefore have that

〈ω|V 〉 = 〈ωa e
a|V bEb〉

= ωa V
b 〈ea|Eb〉 = ωa V

b δb
a

= ωa V
a . (1.47)

Note that under the change of basis Ea given in (1.38), it follows that the dual basis ea

must transform inversely, namely

ea → e′a = Λa
b e

b , (1.48)

so that the defining property (1.46) is preserved for the primed basis and its dual. Corre-

spondingly, the invariance of ω itself under the change of basis requires that its components

ωa transform as

ωa → ω′
a = Λa

b ωb . (1.49)

At every point p in the manifold M we define the cotangent space T ∗
p (M) as the dual of

the tangent space Tp(M). The cotangent bundle T ∗(M) is then defined as the space of all

possible co-vectors at all possible points:

T ∗(M) = ∪p∈M T ∗
p (M) . (1.50)

Like the tangent bundle T (M), the cotangent bundle has dimension 2n, since the manifold

M is n-dimensional and there are n linearly independent co-vectors at each point.

An example of a co-vector is the differential of a function. Suppose f(x) is a function

on M . Its differential, df , is called a differential 1-form. It is also variously known as the

differential, the exterior derivative, or the gradient, of f . It is defined by

〈df |V 〉 = V f (1.51)
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for any vector V . Recall that V f is the directional derivative of f along the vector V . If we

work in a coordinate basis then the basis for tangent vectors is ∂i ≡ ∂/∂xi. Correspondingly,

the dual basis for co-vectors is dxi. By definition, therefore, we have

〈dxi|∂j〉 = δi
j . (1.52)

This all makes sense, and fits with our intuitive notion of taking the coordinate differential

of f , namely

df = ∂if dx
i , (1.53)

as can be seen by a simple calculation:

〈df |V 〉 ≡ V f = V i∂if

= 〈∂if dx
i|V j ∂j〉 = ∂if V

j〈dxi|∂j〉 = ∂if V
j δi

j

= ∂if V
i . (1.54)

In a coordinate basis, a general co-vector or 1-form ω is expressed as

ω = ωi dx
i . (1.55)

As with a vector, the geometrical object ω itself is independent of any specific choice of

coordinates, whilst its components ωi will change when one changes coordinate frame. We

can calculate how this happens by implementing a change of coordinate system, xi → x′i =

x′i(xj), and applying the chain rule for differentiation:

ω = ωi dx
i = ωi

∂xi

∂x′j
∂x′j

≡ ω′
j dx

′j , (1.56)

where in the second line this is simply the definition of what we mean by the components

of ω in the primed frame. Thus we read off

ω′
j =

∂xi

∂x′j
ωi . (1.57)

This may be compared with the transformation rule (1.30) for the components of a vector.

Of course, if we form the scalar quantity 〈ω|V 〉 then we have

〈ω|V 〉 = ωi V
j〈dxi|∂j〉 = ωi V

j δi
j = ωi V

i , (1.58)

and it is an immediate consequence of (1.30), (1.57) and the chain rule that this is inde-

pendent of the choice of coordinates, as befits a scalar quantity:

ω′
i V

′i =
∂xj

∂x′i
∂x′i

∂xk
ωj V

k =
∂xj

∂xk
ωj V

k = δj
k ωj V

k = ωj V
j . (1.59)
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1.6 An interlude on vector spaces and tensor products

For the sake of completeness, and by way of introduction to the next section, it is perhaps

useful to pause here and define a couple of widely-used and important concepts.

Let us begin with the idea of a Vector Space. A vector spaceX is a set that is closed under

finite vector addition and under scalar multiplication. In the general case, the elements are

members of a field3 F , in which case X is called a vector space over F . For now, at least,

our interest lies in vector spaces over the real numbers.

The prototype example of a vector space is IRn, with every element represented by an

n-tuplet of real numbers (a1, a2, · · · , an), where the rule of vector addition is achieved by

adding component-wise:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) , (1.60)

and scalar multiplication, for example by the real number r, is component-wise:

r (a1, a2, . . . , an) = (r a1, r a2, . . . , r an) . (1.61)

In general, for any elements A, B and C in the vector space X, and any scalars r and

s in the field F , one has the rules:

Commutativity: A+B = B +A ,

Associativity of vector addition: (A+B) + C = A+ (B +C) ,

Additive identity: 0 +A = A+ 0 = A ,

Additive inverse: A+ (−A) = 0 ,

Associativity of scalar multiplication: r (sA) = (r s)A ,

Distributivity of scalar sums: (r + s)A = r A+ sA ,

Distributivity of vector sums: r (A+B) = r A+ r B ,

Identity for scalar multiplication: 1A = A . (1.62)

Now, let us turn to tensor products. The Tensor Product of two vector spaces X and

Y , denoted by X ⊗Y , is again a vector space. It obeys a distributive law, in the sense that

if X, Y and Z are vector spaces, then

X ⊗ (Y + Z) = (X ⊗ Y ) + (X ⊗ Z) . (1.63)

3A Field is any set of elements that satisfies axioms of addition and multiplication, and is a commutative

division algebra. Examples of fields are the real numbers IR, the complex numbers IC, and the rational

numbers. By contrast, the integers are not a field, since division of integers by integers does not give the

integers.
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If elements of the vector spaces X and Y are denoted by x and y respectively, then the

tensor-product vector space X⊗Y is spanned by elements of the form x⊗ y. The following

rules are satisfied:

(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y ,

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2 ,

λ (x⊗ y) = (λx) ⊗ y = x⊗ (λ y) , (1.64)

where λ is any scalar. Note that 0 ⊗ y = x⊗ 0 = 0.

If αi is a basis of vectors for X, and βj is a basis of vectors for Y , then αi ⊗ βj for all

(i, j) gives a basis for X ⊗ Y . In other words, we can expand any vectors x and y in the

vector spaces X and Y in the forms

x =
∑

i

xi αi , y =
∑

j

yj βj , (1.65)

and we can expand any vector z in the tensor-product vector space Z = X ⊗ Y as

z =
∑

i,j

zij αi ⊗ βj . (1.66)

Note that if the dimensions of the vector spaces X and Y are p and q, i.e. one needs

a set of p basis vectors for X, and a set of q basis vectors for Y , then the tensor product

X ⊗ Y has dimension pq. For example, if we take the tensor product IRp ⊗ IRq, we get a

tensor product vector space of dimension pq that is actually just IRpq.

1.7 Tensors

Having introduced the notion of vectors and co-vectors, it is now straightforward to make

the generalisation to tensors of arbitrary rank. By this is meant geometrical objects which

live in a tensor product space, involving, say, p factors of the tangent space Tp(M), and q

factors of the cotangent space T ∗
p (M). Such a tensor is said to be of type (p, q), and to have

rank (p+q). Suppose T is such a tensor. We can then express it in terms of its components

in a coordinate basis as

T = T i1···ip
j1···jq ∂i1 ⊗ ∂i2 ⊗ · · · ⊗ ∂ip ⊗ dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjq . (1.67)

With the standard philosophy that the tensor T itself is a geometrical object which exists

independently of any choice of frame, we therefore see by comparing with its expansion in

a primed coordinate frame,

T = T ′i1···ip
j1···jq ∂

′
i1 ⊗ ∂′i2 ⊗ · · · ⊗ ∂′ip ⊗ dx′j1 ⊗ dx′j2 ⊗ · · · ⊗ dx′jq , (1.68)
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where of course ∂ ′i ≡ ∂/∂x′i, that the components will transform according to the rule

T ′i1···ip
j1···jq =

∂x′i1

∂xk1
· · · ∂x

′ip

∂xkq

∂x`1

∂x′j1
· · · ∂x

`q

∂x′jq
T k1···kp

`1···`q . (1.69)

In other words, there is a factor of the type ∂x′i

∂xk for each vector index, just like the trans-

formation for V i in (1.30), and a factor of the type ∂x`

∂x′j for each co-vector index, just like

in the transformation of ωi in (1.57).

One can view (1.69) as the defining property of a tensor, or, more precisely, the defining

property of a general-coordinate tensor, i.e. a tensor with respect to general coordinate

transformations. Namely, we can say that T is a type (p, q) tensor under general-coordinate

transformations if and only if its components T i1···ip
j1···jq transform like (1.69) under general

coordinate transformations.

It is obvious that if T and U are two tensors of type (p, q), then T + U is also a tensor

of type (p, q). One proves this by the standard technique of showing that the components

of T + U transform in the proper way under general coordinate transformations.

It is rather obvious that we can take arbitrary products of tensors and thereby obtain

new tensors. For example, if V is a (1, 0) tensor (i.e. a vector), and if ω is a (0, 1) tensor

(i.e. a co-vector, or 1-form), then W ≡ V ⊗ ω is a tensor of type (1, 1), with components

W i
j = V i ωj . (1.70)

It is clear from the transformation rules (1.30) and (1.57) for V i and ωj that the components

W i
j transform in the proper way, namely as in (1.69) with p = q = 1. This product is called

the Outer Product of V and ω. This terminology signifies that no index contractions are

being made, and so the rank of the product tensor is equal to the sum of the ranks of the

two tensor factors. In general, we can take the outer product of two tensor of types (p, q)

and p′, q′), thereby obtaining a tensor of type (p+ p′, q + q′).

Note that the Kronecker delta symbol δi
j is nothing but the set of components of a very

specific tensor δ of type (1, 1). It is known as an invariant tensor, since it takes the identical

form in any coordinate frame. Thus if we take the standard definition of the Kronecker delta

in a particular coordinate frame, namely

δi
j = 1 , if i = j , δi

j = 0 , if i 6= j , (1.71)

and then compute the components of δ in another coordinate frame, under the assumption

that it is a tensor, then from (1.69) we obtain

δ′ij = δk
`

∂x′i

∂xk

∂x`

∂x′j
=
∂x′i

∂x′j
= δi

j , (1.72)
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and so it has the same numerical set of components in all coordinate frames.

Another operation that takes tensors into tensors is called Contraction. We can illustrate

this with a tensor of type (2, 2); the generalisation to the arbitrary case is immediate.

Suppose T is of type (2, 2), with components T ij
k`. We can form a tensor of type (1, 1) by

contracting, for example, the first upper index and the first lower index:

Xj
` ≡ T ij

i` . (1.73)

(Recall that as always, the summation convnetion is operating here, and so the repeated i

index is understood to be summed over 1 ≤ i ≤ n.) The proof that X j
` so defined is indeed

a tensor is to verify that it transforms properly under general coordinate transformations:

X ′j
` ≡ T ′ij

i` = Tmn
pq
∂x′i

∂xm

∂x′j

∂xn

∂xp

∂x′i
∂xq

∂x′`

= Tmn
pq δ

p
m

∂x′j

∂xn

∂xq

∂x′`
= Tmn

mq
∂x′j

∂xn

∂xq

∂x′`

= Xn
q
∂x′j

∂xn

∂xq

∂x′`
. (1.74)

Note that the crucial point is that the transformation matrices for the upper and lower i

indices are inverses of one another, and so in the second line we just obtain the Kronecker

delta δp
m that implements the contraction of indices on the unprimed tensor Tmn

pq, giving

back Xn
q. It is clear that the same thing will happen for a contraction of an upper and a

lower index in any tensor.

A common example of an index contraction, and one which we have in fact already

encountered, is in the formation of the so-called Inner Product. If V is a vector and ω is a

co-vector or 1-form, then their inner product is given by

〈ω|V 〉 = ωi V
i , (1.75)

as in (1.58). This can be viewed as taking the index contraction on their outer product

W i
j ≡ V i ωj defined as in (1.70): W i

i = V iωi. Not surprisingly, since this produces a

tensor of type (0, 0) (otherwise known as a scalar), it is invariant under general coordinate

transformations, as we saw earlier.

Note that one can also perform the operations of symmetrisation or antisymmetrisation

of a tensor, and this yields another tensor for which these properties are preserved under

general coordinate transformations. For example, if Tij is a general 2-index tensor we can

define its symmetric and antisymmetric parts:

Sij = 1
2(Tij + Tji) , Aij = 1

2 (Tij − Tji) , (1.76)
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and that Tij = Sij + Aij. It is easy to see that Sij and Aij are both tensors, and that Sij

is symmetric in all coordinate frames, and Aij is antisymmetric in all coordinate frames.

It is useful to have a notation indicating a symmetrisation or antisymmetrisation over sets

of indices. This is done by the use of round or square brackets, respectively. Thus we can

rewrite (1.76) as

Sij = T(ij) ≡ 1
2(Tij + Tji) , Aij = T[ij] ≡ 1

2 (Tij − Tji) . (1.77)

More generally, symmetrisation and antisymmetrisation over n indices is defined by

T(i1···in) ≡ 1

n!

(
Ti1···in + even permutations + odd permutations

)
,

T[i1···in] ≡ 1

n!

(
Ti1···in + even permutations − odd permutations

)
. (1.78)

We shall see later that totally antisymmetric tensors of type (0, p) play an especially

important role in geometry. They are the p-index generalisation of the co-vector or 1-form,

and are known as p-forms.

1.8 The Metric Tensor

At this point, we introduce an additional structure on the manifold M , namely the notion

of a metric. As its name implies, this is a way of measuring distances in M . It should be

emphasised from the outset that there is no unique way of doing this, although very often it

may be the case that there is a natural preferred choice of metric (up to scaling), suggested

by the symmetries of the problem.

Mathematically, we may simply define the metric as a smooth assignment to the tangent

space at each point of the manifold a real inner product, or bilinear form, which is linear

over functions. We shall also require that this bilinear form be symmetric. Thus if U and

V are any vectors, then a metric g is a bilinear map from U and V into the reals

g(U, V ) ∈ IR , (1.79)

with the following properties

g(U, V ) = g(V,U) , g(λU, µV ) = λµ g(U, V ) , (1.80)

where λ and µ are arbitrary real numbers. We shall also demand that the metric g be

non-degenerate, which means that if

g(U, V ) = 0 (1.81)
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for all V , then it must be that U = 0.

Stated in more prosaic terms, the definitions above amount to saying that we have a

real type (0, 2) symmetric tensor, with components gij , with the non-degeneracy condition

that det(gij) 6= 0. In terms of components, we have

g(U, V ) = gij U
i V j . (1.82)

Since gij is symmetric, it will have real eigenvalues; in general it will have s positive eigen-

values and t negative eigenvalues. Since we are requiring that det(gij) 6= 0, it follows that

s and t will be the same for all points in the coordinate patch, since for an eignevalue to

change sign it would have to pass through zero at some point, which would then give a

vanishing determinant. The signature of the metric is defined to be s − t. The two cases

that commonly arise are when t = 0 and so s = n = dimM , and s = n − 1, t = 1. In

the former case the associated geometry is called Riemannian Geometry. In the latter, (or

indeed in any case where s and t are both non-vanishing), the associated geometry is called

Pseudo-Riemannian. The situation where t = 1 arises in physics in special and general

relativity, with the negative eigenvalue being associated with the time direction.

The physical interpretation of the metric is that it gives the separation between two

infinitesimally-separated points in the manifold. Supposing that these points correspond to

the local coordinate values xi and xi + dxi, the separation ds between them is given by

ds2 = gij dx
i dxj . (1.83)

Note that in the case of Riemannian geometry, ds2 ≥ 0, with ds2 = 0 if and only if dxi = 0.

In pseudo-Riemannian geometry, on the other hand, ds2 can have either sign, depending on

whether the positive contribution from the spatial directions outweighs, or is outweighed

by, the negative contribution from the time direction or directions. The separation of the

neighbouring points is then said to be spacelike, timelike or null, depending on whether ds2

is positive, negative or zero.

Probably the most familiar example of a metric is the rule for measuring distances in

Euclidean space. If we have two infinitesimally-separated points in IR3 with coordinates xi

and xi + dxi, then, as we know from the work of Pythagoras, the square of the distance ds

between the points can be written as

ds2 = δij dx
i dxj . (1.84)

In this case the metric tensor g has components gij = δij . Of course this instantly generalises

to an arbitrary dimension.
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If we use speherical polar coordinates (θ, φ) on the 2-sphere, then the standard metric,

namely the one induced on the unit S2 via its embedding in IR3 that we discussed earlier,

is

ds2 = dθ2 + sin2 θ dφ2 , (1.85)

as is easily established by elementary geometry. It can also be dervived by direct substitution

into (1.84) of the expressions

x1 = sin θ cosφ , x2 = sin θ sinφ , x3 = cos θ (1.86)

giving the Cartesian coordinates in IR3 of points on the unit sphere.

Viewing gij as a symmetric n × n matrix, whose determinant is assumed to be non-

zero, we can take its inverse, obtaining another symmetric tensor whose components we

shall denote by gij . The statement that this corresponds to the inverse of the matrix with

components gij is therefore that

gij g
jk = δi

k , (1.87)

which is just the component form of the matrix equation g g−1 = 1l. It is easy to verify

that gjk is indeed a tensor, by verifying that with gij and δi
k transforming in their known

tensorial ways, equation (1.87) transforms tensorially provided that gjk transforms in the

standard way for a tensor of type (2, 0).

It is now obvious that if U and V are two vectors, then the quantity gij U
i V j transforms

as a scalar, i.e. it is invariant under general coordinate transformations. This quantity is

known as the inner product of the two vectors U and V .

Note that another way of viewing this is that we can think of gij as “lowering the

index” on U i or on V i, so that we are then contracting the upper and the lower index on

the components of a vector and a 1-form or co-vector, respectively. This then makes contact

with the notion of the inner product of a vector and a 1-form, which we defined in section

1.7. Because gij is invertible, we do not “lose information” by lowering the index; we can

always raise it back up again with the inverse metric gij , getting back to where we started,

by virtue of equation (1.87). Because of this fact, it is conventional to use the same symbol

for the quantity with the index lowered using gij , or raised using gij . Thus for example, we

define

Vi ≡ gij V
j , W i ≡ gij Wj . (1.88)

It is obvious from the properties of tensors discussed in section (1.7) that if V is a vector with

components V i, then the downstairs components Vi ≡ gij V
j transform as the components
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of a co-vector. More generally, if any indices on the components of any tensor are lowered

or raised using the metric tensor or its inverse, one gets the compoents of a tensor again.

Note that if we are in the Riemannian case, where the eigenvalues of gij are all positive,

then we must have that

gij V
i V j ≥ 0 , (1.89)

with equality achieved if and only if V i = 0. By contrast, in the pseudo-Riemannian case

where there is one or more time directions, the inner product gij V
i V j can in general have

either sign, and there can exist so-called null vectors for which gij V
i V j = 0, with V i 6= 0.

1.9 Covariant differentiation

A familiar concept in Cartesian tensor analysis is that if one acts on the components of any

tensor field with the partial derivatives ∂i ≡ ∂/∂xi, one gets the components of another

tensor field, with an additional index.4 However, this property as it stands is very specific

to the case of Cartesian tensors. The crucial point is that in Cartesian tensor analysis one

does not allow general coordinate transformations between coordinate frames, but rather,

one restricts to a very special subset, namely transformations with constant coefficients,

namely

xi → x′i = M i
j x

j , (1.90)

where M i
j are constants.

In order to retain the useful property of having a derivative operator that maps tensor

fields into tensor fields in the case of arbitrary coordinate transformations, it will be neces-

sary to introduce a new type of derivative, called the Covariant Derivative. To introduce

this, let us begin by seeing what goes wrong if we just try to act with the partial derivative.

Suppose V i is a vector under general coordinate transformations (so it transforms as in

(1.30)). Let us consider the quantity

W i
j ≡

∂V i

∂xj
. (1.91)

Is this a tensor? To test it, we calculate W ′i
j , to see if it is the proper tensorial transform

of W i
j. We get:

W ′i
j ≡

∂V ′i

∂x′j
=

∂x`

∂x′j
∂

∂x`

(∂x′i

∂xk
V k
)

=
∂x`

∂x′j
∂x′i

∂xk

∂V k

∂x`
+
∂x`

∂x′j
∂2x′i

∂x` ∂xk
V k ,

4We now use “tensor” as a generic term, which can include the particular cases of a scalar, and a vector.

28



=
∂x`

∂x′j
∂x′i

∂xk
W k

` +
∂x`

∂x′j
∂2x′i

∂x` ∂xk
V k . (1.92)

So the answer is no; the first term by itself would have been fine, but the second term

here has spoiled the general coordinate transformation behaviour. Of course there is no

mystery behind what we are seeing here; the second term has arisen because the derivative

operator has not only landed on the vector V k, giving us what we want, but it has also

landed on the transformation matrix ∂x′i/∂xk. This problem was avoided in the case of

the Cartesian tensors, because we only required that they transform nicely under constant

transformations (1.90).

Now, we shall define the covariant derivative ∇j of a vector V i as follows:

∇j V
i ≡ ∂j V

i + Γi
jk V

k . (1.93)

It is defined to have precisely the correct transformation properties under general coordinate

transformations to ensure that the quantity

T i
j ≡ ∇j V

i (1.94)

does transform like a tensor. The crucial point here is that Γi
jk itself is not a tensor. It is

called a Connection, in fact.

We may also impose on the quantities Γi
jk the symmetry condition

Γi
jk = Γi

kj , (1.95)

and usually this is done. It will be assumed that (1.95) holds in all our subsequent discus-

sions, unless otherwise specified.

First, let us see how we would like Γi
jk to transform, and then, we shall show how to

construct such an object. By definition, we want it to be such that

∂x′i

∂xk

∂x`

∂x′j
∇` V

k = ∇′
j V

′i ≡ ∂′j V
′i + Γ′i

jk V
′k . (1.96)

Wrtiting out the two sides here, we get the requirement that

∂x′i

∂xk

∂x`

∂x′j

(
∂` V

k + Γk
`m V m

)
=

∂x`

∂x′j
∂`

( ∂x′i

∂xm
V m

)
+ Γ′i

jk
∂x′k

∂xm
V m

=
∂x`

∂x′j
∂x′i

∂xm
∂` V

m +
∂x`

∂x′j
∂2x′i

∂x` ∂xm
V m + Γ′i

jk
∂x′k

∂xm
V m . (1.97)

The required equality of the left-hand side of the top line and the right-hand side of the

bottom line for all vectors V m allows us to deduce that we must have

∂x′i

∂xm

∂x`

∂x′j
Γk

`m =
∂x′k

∂xm
Γ′i

jk +
∂x`

∂x′j
∂2x′i

∂x` ∂xm
. (1.98)
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Multiplying this by ∂xm/∂x′n then gives us the result that

Γ′i
jn =

∂x′i

∂xk

∂x`

∂x′j
∂xm

∂x′n
Γk

`m − ∂xm

∂x′n
∂x`

∂x′j
∂2x′i

∂x` ∂xm
. (1.99)

This dog’s breakfast is the required transformation rule for Γi
jk. Notice that the first term

on the right-hand side is the “ordinary” type of tensor transformation rule. The presence

of the second term shows that Γi
jk is not in fact a tensor, because it doesn’t transform like

one.

The above calculation is quite messy, but hopefully the essential point comes across

clearly; the purpose of the ugly second term in the transformation rule for Γi
jk is precisely

to remove the ugly extra term that we encountered which prevented ∂j V
i from being a

tensor.

Luckily, it is quite easy to provide an explicit construction for a suitable quantity Γi
jk

that has the right transformation properties. First, we need to note that we should like to

define a covariant derivative for any tensor, and that it should satisfy Leibnitz’s rule for

the differentiation of products. Now the need for the covariant derivative arises because

the transformation of the components of a vector or a tensor from one coordinate frame

to another involves non-constant transformation matrices of the form ∂x′i/∂xj . Therefore

on a scalar, which doesn’t have any indices, the covariant derivative must be just the same

thing as the usual partial derivative. Combining this fact with the Leibnitz rule, we can

work out what the covariant derivative of a vector with a downstairs index must be:

∂j (V i Ui) = (∂j V
i)Ui + V i ∂j Ui , usual Leibnitz rule ,

= ∇j (V i Ui) = (∇j V
i)Ui + V i ∇j Ui , covariant Leibnitz rule ,(1.100)

= (∂j V
i + Γi

jk V
k)Ui + V i ∇j Ui , from definition of ∇j V

i .

Comparing the top line with the bottom line, the two ∂j V
i terms cancel, leaving

V i ∂j Ui = V i ∇j Ui + Γi
jk V

k Ui . (1.101)

Changing the labelling of dummy indices to

V i ∂j Ui = V i ∇j Ui + Γk
ji V

i Uk , (1.102)

we see that if this is to be true for all possible vectors V i then we must have

∇j Ui = ∂j Ui − Γk
jiUk . (1.103)

This gives us what we wanted to know, namely how the covariant derivative acts on vectors

with downstairs indices.
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It is straightforward to show, with similar techniques to the one we just used, that the

covariant derivative of an arbitrary tensor with p upstairs indices and q downstairs indices

is given by using the two rules (1.93) and (1.103) for each index; (1.93) for each upstairs

index, and (1.103) for each downstairs index. Thus we have

∇iT
j1···jp

k1···kq = ∂iT
j1···jp

k1···kq + Γj1
i` T

`j2···jp
k1···kq + Γj2

i` T
j1`j3···jp

k1···kq + · · ·

+Γjp
i` T

j1···jp−1`
k1···kq − Γ`

ik1
T j1···jp

`k2···kq − Γ`
ik2
T j1···jp

k1`k3···kq − · · ·

−Γ`
ikq T

j1···jp
k1···kq−1` . (1.104)

Note that a trivial case is when we apply the covariant derivative to a scalar. Since this

has no indices of either type, it follows that the covariant derivative is exactly the same as

the standard partial derivative:

∇if = ∂if , (1.105)

for any scalar function f . Commonly, we may write ∇if rather than the more fundamental

but identical expression ∂if , simply for the sake of uniformity of appearance in equations.

Now, recall that in section 1.8 we introduced the notion of the metric tensor gij . Cal-

culating its covariant derivative using (1.103) for each downstairs index, we find

∇k gij = ∂k gij − Γ`
ki g`j − Γ`

kj gi` . (1.106)

We can now give an explicit construction of the connection Γi
jk. We do this by making

the additional requirement that we should like the metric tensor to be covariantly constant,

∇k gij = 0. This is a very useful property to have, since it means, for example, that if we

look at the scalar product V iW j gij of two vectors, we shall have

∇k(V
iW j gij) = (∇k V

i)W j gij + V i (∇k W
j) gij . (1.107)

Remembering our rule that we shall in fact freely write W j gij as Wi, and so on, it should

be clear that life would become a nightmare if the metric could not be taken freely through

the covariant derivative!

Luckily, it turns out that all the things we have been asking for are possible. We can

find a connection Γi
jk that is symmetric in jk, gives us a covariant derivative that satisfies

the Leibnitz rule, and for which ∇k gij = 0. We can find it just by juggling around the

indices in equation (1.106). To do this, we write out ∇k gij = 0 using (1.106) three times,

with different labellings of the indices:

∂k gij − Γ`
ki g`j − Γ`

kj gi` = 0 ,
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∂i gkj − Γ`
ik g`j − Γ`

ij gk` = 0 , (1.108)

∂j gik − Γ`
ji g`k − Γ`

jk gi` = 0 ,

Now, add the last two equations and subtract the first one from this. Since we are requiring

Γi
jk to be symmetric in jk, we therefore get

∂i gkj + ∂j gik − ∂k gij − 2Γ`
ij gk` = 0 . (1.109)

Multiplying this by the inverse metric gkm, we immediately obtain the following expression

for Γi
jk (after finally relabelling indices for convenience):

Γi
jk = 1

2g
i` (∂j g`k + ∂k gj` − ∂` gjk) . (1.110)

This is known as the Christoffel Connection, or sometimes the Affine Connection.

It is a rather simple matter to check that Γi
jk defined by (1.110) does indeed have the

required transformation property (1.99) under general coordinate transformations. Actu-

ally, there is really no need to check this point, since it is logically guaranteed from the

way we constructed it that it must have this property. So we leave it as an “exercise to

the reader,” to verify by direct computation. The principle should be clear enough; one

simply uses the expression for Γi
jk given in (1.110) to calculate Γ′i

jk, in terms of ∂ ′i and g′ij

(which can be expressed in terms of ∂i and gij using their standard tensorial transformation

properties). It then turns out that Γ′i
jk is related to Γi

jk by (1.99).

Notice that Γi
jk is zero if the metric components gij are all constants. This explains

why we never see the need for Γi
jk if we only look at Cartesian tensors, for which the metric

is just δij . But as soon as we consider any more general situation, where the components of

the metric tensor are functions of the coordinates, the Christoffel connection will become

non-vanishing. Note that this does not necessarily mean that the metric has to be one

on a curved space (such as the 2-sphere that we met earlier); even a flat metric written

in “curvilinear coordinates” will have a non-vanishing Christoffel connection. As a simple

example, suppose we take the metric on the plane,

ds2 = dx2 + dy2 , (1.111)

and write it in polar coordinates (r, θ) defined by

x = r cos θ , y = r sin θ . (1.112)

It is easy to see that (1.111) becomes

ds2 = dr2 + r2 dθ2 . (1.113)
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If we label the (r, θ) coordinates as (x1, x2) then in the metric ds2 = gij dx
i dxj we shall

have

gij =

(
1 0

0 r2

)
, gij =

(
1 0

0 r−2

)
. (1.114)

Using (1.110), simple algebra leads to the following results:

Γ1
11 = 0 , Γ1

12 = 0 , Γ1
22 = −r ,

Γ2
11 = 0 , Γ2

12 =
1

r
, Γ2

22 = 0 . (1.115)

The covariant derivative allows us to obtain a new general-coordinate tensor by applying

it to any tensor field. Since the metric is, by construction, covariantly constant, we can freely

take it through covariant derivatives as and when we wish. Since the covariant derivative

is tensorial, it follows that any contraction of indices, performed with the metric tensor or

its inverse if the two contracted indices are both vector-like or both co-vector-like, will also

be a tensor.

For example, if V is a vector, with components V i, then the quantity ∇i V
i is a scalar.

Recalling that ∇if (or equivalently ∂if) transforms as the components of a co-vector,

it follows that ∇i∇if is a scalar, where, of course, ∇i is defined by ∇i = gij ∇j. In fact

this second-order differential operator is very important, and since it arises frequently it is

customary to use a special symbol to denote it:

f ≡ ∇i∇if (1.116)

for any scalar f . Since it clearly reduces to the traditional Laplace operator if one specialises

to IRn with Cartesian coordinates, it is, not surprisingly, called the Laplacian. It is the

natural generalisation of the Cartesian-space Laplacian, which, unlike g ij ∂i∂j , always maps

a scalar into another scalar, in any manifold with any metric and choice of local coordinate

system. Explicitly, written out using the affine connection, it can be written, when acting

on f , as

gij ∂i ∂j f − gij Γk
ij ∂k f . (1.117)

It is evident looking at the expression (1.110) for the affine connection that in general

it can be quite tiresome to calculate Γi
jk, especially if the dimension n is large, since there

are so many components to evaluate. In certain cases, and in fact the calculation of the

scalar Laplacian is one of them, the task can be greatly simplified because only a specific

contracted subset of the Γi
jk are needed, namely

gij Γk
ij , (1.118)
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as can be seen from (1.117). From (1.110) we have

gij Γk
ij = 1

2g
ij gk` (∂i g`j + ∂j gi` − ∂` gij) ,

= gij gk` ∂i g`j − 1
2g

k` gij ∂` gij ,

= −gij g`j ∂i g
k` − 1

2g
k` gij ∂` gij ,

= −δi
` ∂i g

k` − 1
2g

k` gij ∂` gij ,

= −∂` g
k` − 1

2g
k` gij ∂` gij . (1.119)

Note that in getting to the third line, we have use that gk` g`j = δk
j , which is constant, and

so (∂i g
k`) g`j + gk` (∂i g`j) = 0.

Now we use one further trick, which is to note that as a matrix expression, g ij ∂` gij is

just tr(g−1 ∂` g). But for any symmetric matrix we can write5

detg = etr log g , (1.120)

and so

∂` detg = (det g) tr(g−1 ∂` g) . (1.121)

Thus we have

1
2g

ij ∂` gij =
1√
g
∂`

√
g , (1.122)

where we use the symbol g here to mean the determinant of the metric gij .

Putting all this together, we have

gij ∇i ∂j f = gij ∂i ∂j f + (∂i g
ij) ∂j f + gij 1√

g
(∂i

√
g) ∂j f , (1.123)

after making some convenient relabellings of dummy indices. Now we can see that all the

terms on the right-hand side assemble together very nicely, giving us the following simple

expression for the Laplacian:

f = ∇i ∇i f =
1√
g
∂i

(√
g gij ∂j f

)
. (1.124)

This general expression gives us the Laplacian in an arbitrary coordinate system, for an

arbitrary metric.

As a first example, suppose we choose to use polar coordinates (r, θ) in the plane IR2,

for which the metric will be ds2 = dr2 + r2 dθ2. From (1.114) we instantly see that the

5Prove by diagonalising the matrix, so that g −→ diag(λ1, λ2, . . . , λn). This means that detg =
∏

i
λi,

while etr log g = e

∑
i
log λi , and so the result is proven.
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determinant of the metric is g = r2, so plugging into (1.124) we get

gij ∇i ∂j f =
1

r
∂i

(
r gij ∂j f

)
,

=
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
. (1.125)

This can be recognised as the standard expression for the Laplacian in two-dimensional flat

space, written in polar coordinates.

As a slightly less trivial example, consider Euclidean 3-space, written in terms of spher-

ical polar coordinates (r, θ, φ). These, of course, are related to the Cartesian coordinates

(X,Y,Z) by

X = r sin θ cosφ , Y = r sin θ sinφ , Z = cos θ . (1.126)

The metric, written in terms of the spherical polar coordinates, is therefore

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 . (1.127)

The determinant is given by g = r4 sin2 θ and so from (1.124) we get that the Laplacian is

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2

[ 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2 θ

∂2ψ

∂φ2

]
. (1.128)

Again, we can recognise the familiar three-dimensional Laplacian, written in spherical polar

coordinates.

We close this discussion of the covariant derivative with a few further remarks. First, a

matter of notation. A fairly widespread abbreviated notation for indicating partial differ-

entiation and covariant differentiation is as follows:

Vi,j ≡ ∂jVi , Vi;j ≡ ∇jVi . (1.129)

In this example, we have chosen the case of a co-vector, but obviously the same comma and

semicolon notation can be used for any type of tensor.

One other remark concerns applications of the covariant derivative. We introduced it by

demanding the existence of a generalisation of the partial derivative that had the property

of mapping tensors into tensors. In fact it essentially replaces the partial derivative in all

situations where one is generalising from Cartesian tensor analysis to general-coordinate

tensor analysis. In other words, if one has a tensorial equation in the context of Cartesian

tensor analysis, and one wants to know how to generalise it to a tensorial equation in the

general-coordinate tensor case, the rule can be more or less universally stated as “replace

∂i by ∇i everywhere.” Or, in the notation mentioned in the previous paragraph, “replace
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commas by semicolons.” In particular, one can easily show that this is always the correct

rule to follow if one wants to convert a tensorial equation in flat Euclidean space from one

written using Cartesian coordinates to one written using arbitrary curvilinear coordinates.

There can be certain subtleties that sometimes arise if one wants to generalise a tensorial

equation written in flat space to a tensorial equation for an arbitrary curved space, and we

shall be discussing these shortly. But to a good approximation, the rule of “comma goes to

semicolon” is a pretty reliable one.

1.10 The Riemann curvature tensor

Since the covariant derivative maps tensors into tensors, it follows also that if we compute

the commutator of two covariant derivatives, namely

[∇i,∇j ] ≡ ∇i∇j −∇j∇i , (1.130)

then this operator will also map tensors into tensors. Ostensibly this is a second-order

differential operator, but in fact it is actually a purely algebraic operator, with no derivatives

at all. This may seem surprising at first sight, but recalling that in the case of Euclidean

space written in Cartesian coordinates it is the same as [∂i, ∂j ], which is identically zero

since partial derivatives commute, it is not so remarkable after all. In fact, the commutator

[∇i,∇j] is an object that characterises the curvature of the metric gij (or more precisely, of

the connection Γi
jk). In fact, it gives rise to the so-called Riemann tensor.

First, let us look at [∇i,∇j] acting on scalars. From the expression (1.103) for the

covariant derivative acting on a co-vector we have that

∇i∇j f = ∇i∂jf = ∂i∂jf − Γk
ij ∂kf . (1.131)

From this it follows that

[∇i,∇j]f = −(Γk
ij − Γk

ji) ∂kf , (1.132)

since partial derivatives commute. Recalling that we also imposed the symmetry condition

Γk
ij = Γk

ji, it therefore follows that

[∇i,∇j ]f = 0 . (1.133)

Things are different if we instead consider acting on a vector with [∇i,∇j]. Now, we

have

∇i∇jV
k = ∂i∇jV

k + Γk
i` ∇jV

` − Γ`
ij∇`V

k (1.134)
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and so on calculating the commutator the symmetry of Γk
ij in ij implies the last term will

drop out, leaving

[∇i,∇j]V
k = ∂i(∂jV

k + Γk
j` V

`) + Γk
i` (∂jV

` + Γ`
jm V m) − (i↔ j) (1.135)

which, after distributing the derivatives yields

[∇i,∇j ]V
k = (∂iΓ

k
jm − ∂jΓ

k
im + Γk

i` Γ`
jm − Γk

j` Γ`
im)V m . (1.136)

We see that as promised, there are no derivative terms at all left acting on the components

V k of the vector V . Although it is not manifest, we know from general arguments that the

quantity in brackets multiplying V k here must be a tensor, and we can rewrite (1.136) as

[∇i,∇j]V
k = Rk

`ij V
` , (1.137)

where we have defined the Riemann tensor

Ri
jk` = ∂kΓ

i
`j − ∂`Γ

i
kj + Γi

km Γm
`j − Γi

`m Γm
kj . (1.138)

One could laboriously verify that the quantity Ri
jk` is indeed a tensor, by evaluating

it in a primed coordinate system and using the known transformation properties of ∂i and

Γi
jk, but there really is no need to do so, since as remarked above, we know from our

construction that it must be a tensor.

The Riemann tensor has several symmetry properties, most of which are slightly non-

obvious, but can be proven by simply grinding out the algebra. First of all, there is a

symmetry that is trivial to see, just by inspection of the definition (1.138):

Ri
jk` = −Ri

j`k . (1.139)

The non-obvious ones are the cyclic identity

Ri
jk` +Ri

k`j +Ri
`jk = 0 , (1.140)

and two symmetries that follow after lowering the first index with the metric:

Rijk` = −Rjik` , Rijk` = Rk`ij , (1.141)

where Rijk` ≡ gim Rm
jk`. There is also a differential identity satisfied by the Riemann

tensor, namely

∇mR
i
jk` + ∇kR

i
j`m + ∇`R

i
jmk = 0 . (1.142)

This is called the Bianchi identity.
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Whereas the antisymmetry in the last index-pair in (1.139) is obvious merely from

the definition (1.138), the other symmetries and identities follow only after one uses the

expression (1.110) for Γi
jk. Note that the Riemann tensor would have fewer symmetries

if we did not impose the condition (1.95) on Γi
jk. We shall not give details here, since it

would be a bit of a diversion from the main thread of the development. Note that using

the definition of total antisymmetrisation in (1.78), the cyclic identity (1.140) and Bianchi

identity (1.142) can be written as

Ri
[jk`] = 0 , ∇[mR

i
|j|k`] = 0 . (1.143)

In writing the Bianchi identity in this way we have introduced another piece of standard

notation, namely that indices enclosed by vertical lines, such as |j| in the above, are omitted

from the antisymmetrisation.

The Riemann tensor characterises the curvature of the metric gij . To see how this works,

first let us consider the case of flat Euclidean space, with the metric gij = δij . Obviously

the Riemann tensor vanishes for this metric, since it is constructed (see eqn (1.138)) from

the affine connection Γi
jk and its first derivatives, and the affine connection is itself zero

since it is constructed (see eqn (1.110)) from the first derivatives of the components of the

metric.

What about flat Euclidean space written in some other coordinate system, such as

polar coordinates on IR2? We saw earlier that the components of the affine connection are

now non-zero (see eqn (1.115)), so one might think that the Riemann tensor now has the

possibility to be non-zero. However, the crucial point is that the Riemann tensor is a tensor,

which means that if its components vanish in any coordinate frame then they vanish in all

coordinate frames. This is an immediate consequence of the linearlity of the transformation

of the components of any tensor field; see equation (1.69). One could instead demonstrate

explicitly that the Riemann tensor vanishes by thrashing out the calculation of substituting

the affine connection (1.115) into (1.138), but aside from being educational there is no point,

since the general argument about the linearity of the tensor transformation already proves

it must vansih.

In fact it can be shown that conversely, if the Riemann tensor of a metric gij vanishes

then locally, at least, there always exists a general coordinate transformation xi → x′i =

x′i(xj) that puts it in the form g′ij = δij .

By contrast, suppose we now consider the metric ds2 = dθ2 + sin2 θ dφ2 on the unit
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2-sphere. Taking the coordinates to be x1 = θ, x2 = φ, we have

gij =

(
1 0

0 sin2 θ

)
, gij =

(
1 0

0 1
sin2 θ

)
. (1.144)

Simple algebra using (1.110) leads to the following results for the comonents of the Christof-

fel connection:

Γ1
11 = 0 , Γ1

12 = 0 , Γ1
22 = − sin θ cos θ ,

Γ2
11 = 0 , Γ2

12 = cot θ , Γ2
22 = 0 . (1.145)

From the symmetries of the Riemann tensor given above, it follows that in two dimensions

there is only one independent component, and one easily finds that this is given by

R1
212 = sin2 θ . (1.146)

For the 2-sphere, therefore, with its standard metric, we find that the Riemann tensor is

non-zero; the metric has curvature.

1.10.1 The meaning of curvature

We have introduced the curvature tensor Ri
jk` as the thing that arises when taking the

commutator of covariant derivatives acting on a vector or tensor. It is instructive also to

examine what it means from a more geometrical standpoint. To do this, we first need to

introduce the notion of parallel transport. Suppose we have a curve in the manifold M ,

parameterised by xi = xi(λ), where λ increases monotonically along the path. Suppose

that at some point along the path we have a vector V , with components V i in the local

coordinate system we are using. We now wish to carry this vector along the curve, by

parallel transport. The easiest way of seeing what this means is by thinking first about

the case of Euclidean space, with a Cartesian coordinate system. Parallel transport means

picking up the vector as if it were a little arrow, and carrying it along the path keeping it

parallel to its original orientation at all times. In other words, the components of V will

remain unchanged along the path, and so

dV i

dλ
= 0 . (1.147)

Note that another way of writing this, using the chain rule, is

dxj

dλ
∂jV

i = 0 . (1.148)
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Now let us consider the generalisation of this concept of parallel transport to an arbi-

trary manifold. What will be the analogue of (1.147) and (1.148)? Clearly (1.147) and

(1.148) wouldn’t make sense in general, since they are not tensorial equations. (They don’t

transform like vectors under general coordinate transformations, for the usual reason that

the transformation matrix used in expressing V ′i = ∂x′i/∂xj V j will get differentiated by

the d/dλ.) It is immediately clear what we should do; replace the ∂i in (1.148) by ∇i; this is

in fact the only possible change that can give us a covariantly-transforming equation. Thus

we write the parallel-transport equation as

DV i

Dλ
≡ dxj

dλ
∇jV

i =
dxj

dλ
(∂jV

i + Γi
jk V

k) = 0 . (1.149)

One can easily see that if one is in Euclidean space, and one transforms from Cartesian

coordinates to an arbitrary coordinate system, then the equation (1.149) is derivable from

(1.148). When one is in a general curved space, rather than Euclidean space, it is necessary

to define what one means by parallel transport. The expression in (1.149) provides that

definition. It is in fact the only possible covariant equation one could write down, that is

constructed purely from first derivatives of the vector field, and that specialises properly to

the Euclidean space case.

Having defined parallel transport, let us look at what happens if we parallel transport

a vector around an infinitesimal closed curve C in M , starting and finishing at the point

xi = 0. At some point xi(λ) along the path, it therefore follows from (1.149) that an

infinitesimal further displacement δxi along it will result in the following change in V i:

δV i = −Γi
jk(x)V

k(x) δxj . (1.150)

Since the entire closed curve is itself infinitesimal in size, we can evaluate V i(x) and Γi
jk(x)

in terms of their expressions at the origin of the curve, by using Taylor’s theorem up to first

order in xi:

V i(x) = V i(0) + xj ∂jV
i(0) = V i(0) − xj Γi

jk(0)V
k(0) + O(x2) ,

Γi
jk(x) = Γi

jk(0) + x` ∂`Γ
i
jk(0) + O(x2) . (1.151)

We want to see how the vector is changed after it has been carried all the way around the

closed infinitesimal curve C by parallel transport. We evaluate this by integrating around

the curve:

∆V i =

∮

C
δV i = −

∮

C
Γi

jk(x)V
k(x) dxj . (1.152)
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Using the expressions in (1.151), and working just up to linear order in xi, we therefore find

∆V i = −Γi
jk(0)V

k(0)

∮

C
dxj − [∂`Γ

i
jk(0) − Γi

jm(0) Γm
`k(0)]V

k(0)

∮
x` dxj . (1.153)

The first term is zero, because dxj is an exact differential, and so it is equal to the

difference between xi at the start and the finish of the curve. But since the curve is closed,

the start and finish are the same point and hence the integral gives zero.

For the remaining term in (1.153), we may note that the integral is antisymmetric in `

and j, since we have ∮

C
x` dxj =

∮

C
d(x` xj) −

∮

C
xj dx` , (1.154)

and the first term on the right-hand side is zero because d(x` xj) is an exact differential.

Thus we may rewrite (1.153) as

∆V i = −1
2 [∂`Γ

i
jk − ∂jΓ

i
`k − Γi

jm Γm
`k + Γi

`m Γm
jk]V

k
∮
x` dxj , (1.155)

where we have suppressed the (0) arguments on the connection and vector. Comparing with

the expression (1.138) for the Riemann tensor, we see that, after some index reorganisation

we have

∆V i = −1
2R

i
jk` V

j
∮

C
xk dx` . (1.156)

The integral
∮
C x

k dx` just gives the area element of the infinitesimal loop. Think, for

example, of an infinitesimal loop taken to be a rectangle in the (x, y) plane, with its four

vertices at

(x, y) = (0, 0) , (∆x, 0) , (∆x,∆y) , (0,∆y) . (1.157)

If we define ∆Aij =
∮
C x

i dxj , then it is easy to see that

∆A11 = ∆A22 = 0 , ∆A12 = −∆A21 = ∆x∆y , (1.158)

where x1 ≡ x and x2 ≡ y. Thus ∆Aij is the area element of the loop, with its indices

indicating the plane in which the loop lies. The upshot from (1.156) is that after parallel-

transporting a vector V around an infinitesimal closed loop spanned by the area element

∆Aij , the components of the vector are changed by an amount ∆V i, given by

∆V i = −1
2R

i
jk` V

j ∆Ak` . (1.159)

Thus the Riemann tensor characterises the way in which vectors are modified by parallel

transport around closed curves. In particular, if the space is flat, there will be no change.
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1.10.2 The Ricci tensor, Ricci scalar and Weyl tensor

By contracting indices on the Riemann tensor, one can form tensors of lower rank, namely

2 and 0. First, by taking one contraction, we form the Ricci tensor

Rij = Rk
ikj . (1.160)

It follows from the prevsiously-discussed symmetries of the Riemann tensor that the Ricci

tensor is symmetric, i.e. Rij = Rji.

A further contraction of the Ricci tensor, performed with the use of the inverse metric,

yields the Ricci scalar

R = gij Rij . (1.161)

It follows from the Bianchi identity (1.142) that the divergence of the Ricci tensor is related

to the gradient of the Ricci scalar:

∇iRij = 1
2∇jR . (1.162)

In several contexts, most notably in general relativity, another tensor that plays a very

important role is the Einstein tensor, whose definition is

Gij = Rij − 1
2Rgij . (1.163)

Note that from (1.162) it follows that

∇iGij = 0 . (1.164)

This fact that the Einstein tensor is conserved is very crucial in general relativity.

Another important notion is a special type of metric called an Einstein metric. An

Einstein metric is defined to be one whose Ricci tensor satisfies

Rij = λ gij , (1.165)

where λ is a constant. Note that if the dimension n is greater than 2, we can prove that λ

must be a constant, if we merely begin by assuming that (1.165) holds for some function λ.

The proof is as follows: Taking the divergence of (1.165), and using (1.162), we find that

1
2∇jR = ∇jλ . (1.166)

On the other hand, contracting (1.165) with gij we obtain

R = nλ . (1.167)
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Combining the two equations gives

(n− 2)∇jλ = 0 , (1.168)

and hence λ must be a constant if n > 2. Einstein metrics are of considerable importance

in physics and mathematics, and we shall encounter them frequently later in the course.

Since they are obtained by contracting indcies on the Riemann tensor, the information

contained in the Ricci tensor or Ricci scalar is in general less than that contained in the full

Riemann tensor; the mapping is non-reversible and one cannot reconstruct the Riemann

tensor from the Ricci tensor. In fact the “extra” information that is contained in the

Riemann tensor but not in the Ricci tensor is characterised by a tensor called the Weyl

tensor, defined in n dimensions by

Ci
jk` = Ri

jk`−
1

n− 2
(Ri

k gj`−Ri
` gjk +Rj` δ

i
k −Rjk δ

i
`)+

1

(n− 1)(n− 2)
R (δi

k gj`−δi
` gjk) .

(1.169)

The Weyl tensor has the property, as can easily be verified from (1.169), that the contraction

Ci
jik is zero.

Although it naturally arises as a (1, 3) tensor, the expression for the Weyl tensor in

terms of the Riemann tensor looks a little more elegant if we write it with the upper index

lowered, to give

Cijk` = Rijk`−
1

n− 2
(Rik gj`−Ri` gjk+Rj` gik−Rjk gi`)+

1

(n− 1)(n− 2)
R (gik gj`−gi` gjk) .

(1.170)

One can show by a lengthy but straightforward calculation that the Weyl tensor C i
jk`

is conformally invariant, in the following sense. Suppose we have two metrics, gij and g̃ij ,

which are related to one another by what is called a conformal transformation:

g̃ij = Ω2 gij . (1.171)

Here, the factor Ω is allowed to depend arbitrarily on the coordinates. After some algebra,

involving first calculating the relation between the affine connections Γi
jk and Γ̃i

jk for the

two metrics using (1.110), and then the relation between the two Riemann tensors R i
jk` and

R̃i
jk` using (1.138), one eventually finds that the two type (1, 3) Weyl tensors are identical,

C̃i
jk` = Ci

jk` . (1.172)

1.10.3 Index-free notation: Torsion and curvature

It may not have escaped the reader’s attention that the discussion in the last few sections

has become somewhat more “index oriented” than in the earlier parts of these lecture notes.
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This is largely because when it comes to doing practical calculations, the use of indices, and

explicit coordinate frames, generally makes things easier. However, it is perhaps worthwhile

to look at a couple of topics we have already covered from a more geometrical and abstract

standpoint. If nothing else, this may help anyone who wants to look at textbooks or papers

that adopt an abstract approach.

Let us begin with the covariant derivative. We can define a connection ∇ at a point p

in the manifold M as a rule that assigns to each vector field X a differential operator ∇X

which maps a vector field Y to another vector field ∇XY , with the following properties:

Tensor in X: ∇fX+gY Z = f∇XZ + g∇Y Z ,

Linear in Y : ∇X(αY + βZ) = α∇XY + β∇XZ ,

Leibnitz: ∇X(fY ) = X(f)Y + f ∇XY , (1.173)

where X, Y and Z are vector fields, f and g are functions on M , and α and β are constants.

We can say that ∇XY is the covariant derivative of Y along the direction of X. In more

familiar index notation, then if we give the vector ∇XY the name W , i.e. W = ∇XY , then

we shall have

W i = Xj ∇jY
i . (1.174)

Of course once we write it out in components, the first property in (1.173), namely that

∇XY is tensorial in X, is obvious, since if we multiply X i by a function in (1.174), clearly

the expression is simply multiplied by that function. The point about being “tensorial” in

X, which is not a priori obvious in the abstract definition, and thus needs to be stated as

one of the defining properties, is the following. We have seen repreatedly that the thing

that can stop something transforming as a tensor is if a derivative lands on a transformation

matrix ∂xi/∂x′j or ∂x′i/∂xj when one transforms from one coordinate frame to another.

The statement that ∇fXY = f∇XY is sufficient to ensure that we will not run into any

trouble from the transformation matrix applied to the vector X getting differentiated when

we change coordinates.

We now define the torsion tensor T by

T (X,Y ) = ∇XY −∇YX − [X,Y ] , (1.175)

where X and Y are arbitrary vector fields, and the bracket [X,Y ] is simply the commutator

of vector fields, giving another vector. If we act with this vector on a function f in the

usual way (recall that a vector V acting on a function f returns another function, namely
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V f = V i∂if , which is the directed derivative of f along V ), we have

[X,Y ]f = X(Y f) − Y (Xf) , (1.176)

where X(Y f) just means the directed derivative of Y f along X. If we define W = [X,Y ],

then in components we have

W i = Xj∂jY
i − Y j∂jX

i . (1.177)

One easily verifies by explicitly changing to a new coordinate system that W i indeed trans-

forms in the proper manner for the components of a vector. (This exercise was on the first

problem sheet.) Note that from (1.177) we can easily see that

[fX, Y ] = f [X,Y ] − (Y f)X , [X, fY ] = f [X,Y ] + (Xf)Y . (1.178)

Returning now to the definition of the torsion tensor T in (1.175), we can check that

this is indeed tensorial in X and Y , namely

T (fX, Y ) = fT (X,Y ) , (1.179)

and similarly in Y , for any function f . For example, we have

T (fX, Y ) = ∇fXY −∇Y (fX) − [fX, Y ] ,

= f∇XY − f∇YX − (Y f)X − f [X,Y ] + (Y f)X ,

= f(∇XY −∇YX − [X,Y ]) ,

= fT (X,Y ) , (1.180)

where we have made use of the last equation in (1.173), and the first equation in (1.178).

Obviously, the calculation for T (X, fY ) proceeds identically.

Note that T (X,Y ) itself is a vector. Writing out (1.175) in terms of components, we see

that it gives

[T (X,Y )]i = Xj∇jY
i − Y j∇jX

i −Xj∂jY
i + Y j∂jX

i ,

= Xj(∂jY
i + Γi

jkY
k) − Y j(∂jX

i + Γi
jkX

k) −Xj∂jY
i + Y j∂jX

i ,

= (Γi
jk − Γi

kj)X
jY k . (1.181)

We may define the components of the torsion tensor by

[T (X,Y )]i ≡ T i
jk X

jY k (1.182)
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for any vector fields X and Y , and so we have

T i
jk = (Γi

jk − Γi
kj) . (1.183)

It is of course, from its definition (1.175), antisymmetric in its lower indices j and k, as we

see in (1.183). If we make our usual assumption that Γi
jk will be symmetric in its lower

indices then the torsion vanishes, T i
jk = 0. With a more general choice of connection,

the torsion can be non-zero. Note that despite looking like a differential operator, the

calculations above show that T (X,Y ) is actually purely algebraic.

The abstract way of defining the Riemman tensor is rather similar. Given arbitrary

vector fields X, Y and Z we define

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z , (1.184)

where, of course, [∇X ,∇Y ]Z just means ∇X(∇Y Z) − ∇Y (∇XZ). Again, one can verify

from the previous definitions that R(X,Y )Z is tensorial in X, Y and Z, which we could

summarise in the single equation

R(fX, gY )(hZ) = fghR(X,Y )Z (1.185)

for any functions f , g and h. This property again means that despite superficial appearances,

R(X,Y )Z defined in (1.184) is not a differential operator, but is purely algebraic. Note that

R(X,Y )Z itself is a vector. If we define

[R(X,Y )Z]i ≡ Ri
jk`Z

jXkY ` , (1.186)

then a straightforward calculation from (1.184) shows that Ri
jk` is precisely given by the

same expression (1.138) that we obtained previously.

1.11 Differential Forms

1.11.1 Definition of a p-form

We have already remarked that totally-antisymmetric co-tensors play a particularly impor-

tant rôle in mathematics and physics. Recall that when we expand any co-tensor ω of type

(0, p) in a coordinate basis, we shall have

ω = ωi1···ip dx
i1 ⊗ · · · ⊗ dxip . (1.187)

If ωi1···ip should happen to be totally antisymmetric in its indices, then we can choose to

antisymmetrise the basis itself. Thus, for the two-index case, we define

dxi ∧ dxj ≡ dxi ⊗ dxj − dxj ⊗ dxi , (1.188)
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for the three-index case, we define

dxi ∧ dxj ∧ dxk ≡ dxi ⊗ dxj ⊗ dxk + dxj ⊗ dxk ⊗ dxi + dxk ⊗ dxi ⊗ dxj

−dxi ⊗ dxk ⊗ dxj − dxj ⊗ dxi ⊗ dxk − dxk ⊗ dxj ⊗ dxi ,(1.189)

and so on. In general we shall have

dxi1 ∧ · · · ∧ dxip ≡ dxi1 ⊗ · · · ⊗ dxip + even permutations

−odd permutations . (1.190)

From its definition, we see that the wedge product is antisymmetric, and so, for example,

dxi ∧ dxj = −dxj ∧ dxi . (1.191)

Suppose that A is a rank-p totally antisymmetric co-tensor. Then using the definition

above we can write

A =
1

p!
Ai1···ip dx

i1 ∧ · · · ∧ dxip . (1.192)

Such a co-tensor is called a p-form. Suppose that analogously, B is a q-form. It is straight-

forward to see, using the definitions above, that we must have

A ∧B = (−1)pq B ∧A . (1.193)

Note that a scalar field is a 0-form, and a co-vector field is a 1-form.

1.11.2 Exterior derivative

We now define the exterior derivative, which acts on a p-form field and produces from it a

(p+ 1)-form. Acting on a 0-form field f , it gives the 1-form df defined by

〈df |V 〉 = V f (1.194)

where V is any vector, and as usual V f just means V i∂if . Acting on a p-form A, expanded

as in (1.192), the exterior derivative is defined by

dA =
1

p!
(dAi1 ···ip) ∧ dxi1 ∧ · · · dxip . (1.195)

Note that, as we have already observed in section 1.5, the definition (1.194) is equivalent to

the component equation

df = ∂if dx
i . (1.196)
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Likewise, we can re-express the definition (1.195) as

dA =
1

p!
(∂jAi1···ip) dx

j ∧ dxi1 ∧ · · · ∧ dxip . (1.197)

Since dA is a (p+ 1)-form, which we can expand in terms of its components as

dA =
1

(p+ 1)!
(dA)j1···jp+1

dxj1 ∧ · · · ∧ dxjp+1 , (1.198)

we see, by comparing with (1.197), that the components of dA are given by

(dA)j1···jp+1
= (p+ 1) ∂[j1Aj2···jp+1] , (1.199)

where the square brackets, denoting total antisymmetrisation, were defined in (1.78).

It is straightforward to check, by performing the standard arbitrary change of coor-

dinates from xi to x′i = x′i(xj), that the components of the (p + 1)-form dA do indeed

transform in the correct way for the components of a co-tensor of rank (p + 1). In other

words, the “undesirable” terms that arise when one simply takes the partial derivatives

of the components of a general tensor all miraculously cancel out when one looks at the

special case of the totally-antisymmetrised partial derivatives of the components of a totally-

antisymmetric rank-p co-tensor.

Two very important properties of the exterior derivative are the following. First, it is

easily seen from the definitions that if A is a p-form and B is a q-form, then the following

Leibnitz rule holds:

d(A ∧B) = dA ∧B + (−1)pA ∧ dB . (1.200)

Secondly, it is also easy to see from the definition of d that if it acts twice, it automatically

gives zero, i.e.

d2 ≡ 0 . (1.201)

This just follows from (1.197), which shows that d is an antisymmetric derivative, while on

the other hand partial derivatives commute. For example, if we apply d twice to a scalar

function f , we get

d2f = d(∂if dx
i) = ∂j∂if dx

j ∧ dxi = ∂[j∂i]f dx
j ∧ dxi , (1.202)

where, in the last step, we have placed the antisymmetrisation brackets around the i and j

indices just to emphasise that this antisymmetry is being enforced by the contraction onto

the wedge product dxj∧dxi. It is now manifest that d2f = 0, since obviously ∂i∂jf = ∂j∂if .

Similarly, if A is a 1-form then applying d twice gives

d2A = d(∂jAi dx
j ∧ dxi) = ∂k∂jAi dx

k ∧ dxj ∧ dxi = ∂[k∂jAi] dx
k ∧ dxj ∧ dxi , (1.203)
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and again the fact that the partial derivatives commute immediately implies that we must

have d2A = 0.

It is worth remarking that in three dimensions, using Cartesian coordinates on IR3, the

statement d2f = 0 is probably more familiar as the statement that

curl grad f = 0 , (1.204)

i.e. ~∇× ~∇f = 0: Recall that if one writes out the three components of this equation, it says

∂x∂yf − ∂y∂xf = 0 , ∂y∂zf − ∂z∂yf = 0 , ∂z∂xf − ∂x∂zf = 0 , (1.205)

which is just the statement ∂[i∂j]f = 0. In fact a bit later, after we have introduced the

further concept of Hodge dualisation, we shall be able to give a more extensive comparison

between the notation of differential forms and three-dimensional Cartesian tensor analysis.

There is another remark that can be made now, although we shall have much more to

say about the matter later on. We have noted that d2 = 0 when acting on any differential

form of any degree. This means that if B is the p-form given by B = dA, where A is any

(p− 1)-form, then we shall have that dB = 0. Any differential form ω that satisfies dω = 0

is called a closed form. Any differential form B that is written as B = dA is called an exact

form. Thus we have the statement that any exact form is closed. What about the converse?

Suppose we have a closed differential p-form ω, i.e. it satisfies dω = 0. Can we necessarily

write it as ω = dν, for some (p− 1)-form ν? Tha answer is that locally, we can always find

a (p− 1)-form ν that gives ω = dν. However, it might be that the (p− 1)-form ν is singular

somewhere on the manifold M , even though ω is completely non-singular.

If the manifold is IRn, meaning that it is topologically trivial, then the local differential

equations that one would solve in order to find the (p− 1)-form ν whose exterior derivative

produces the closed p-form ω will have a globally-defined non-singular solution (if ω is non-

singular), and so we can say that in this case all closed forms are exact. But if the manifold

has non-trivial topology, such as, for example, the 2-sphere, then not all closed forms are

exact. This is an extremely important topic in differential geometry, and it is one to which

we shall return in due course.

1.12 Integration, and Stokes’ Theorem

Integration over manifolds is a natural generalisation of the familiar idea of integration.

The most basic integral we could consider is the one-dimensional integral of f(x):
∫ f2

f1

df = f2 − f1 = [f ]x2
x1
, (1.206)
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where f1 and f2 denote the values of the function f at the begining and end of the integration

range. The expression (1.206) is known as the fundamental theorem of calculus. In the

language of differential forms, we can view (1.206) as the integration of the 1-form df over

the 1-dimensional manifold that is the line interval along which the integration is performed.

If we call this manifold M , then its endpoints, at x1 and x2, correspond to the boundary

of M . The boundary of any manifold is a manifold of one dimension less (for example the

2-sphere can be thought of as the boundary of the unit ball in IR3). Thus in our example,

the boundary of the 1-dimensional manifold of the line interval consists of the two points,

x1 and x2; these are of dimension zero. In general, we denote the boundary of a manifold

M by ∂M .

The one-dimensional integral (1.206) can then be written as

∫

M
df =

∫

∂M
f . (1.207)

The “integral” on the right-hand side here is a bit degenerate, since it is an integral over

the zero-dimensional manifold consisting of just the two endpoints of the line interval. A

zero-dimensional integral is nothing but the difference of the values of the “integrand” at

the points on the 0-manifold;

∫

∂M
f = [f ]x2

x1
= f2 − f1 . (1.208)

The reason for writing the integral in the somewhat esoteric way (1.207) is that it admits an

immediate generalisation to the much more interesting case of integration of p-forms over

p-manifolds.

Just as a 1-form, such as the differential df , can be integrated over a 1-manifold, so a

p-form is integrated over a p-dimensional manifold. This is perfectly reasonable, since a

p-form A is written as

A =
1

p!
Ai1···ip dx

i1 ∧ · · · ∧ dxip , (1.209)

which involves a p-fold tensor product of coordinate differentials. The evaluation of the inte-

gral of A over a p-dimensional manifold M proceeds just like traditional multi-dimensional

integrals. For example, if we have a 2-form A = a(x, y)dx ∧ dy, and we wish to integrate it

over a 2-manifold M that is spanned by the local coordinates x and y, then we would just

have ∫

M
A =

∫ x2

x1

dx

∫ y2

y1

dy a(x, y) , (1.210)

where the limits on the x and y integrals are such that the integration is over the entire

2-volume of the manifold M .
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If we have a p-form A that is exact, that is to say that it can be expressed as A = dω,

where ω is some (p− 1)-form, then a very important theorem, called Stokes’ theorem, says

that ∫

M
dω =

∫

∂M
ω . (1.211)

In order for this to be valid, ω must be a smooth (p − 1)-form on the manifold M over

which the integration is performed. Note that (1.211 is a generalisation of our previous 1-

dimensional integral in (1.207). The proof of Stokes’ theorem is very analogous to the way

Stokes’ theorem and the divergence theorem are proved in 3-dimensional vector calculus.

Essentially, one breaks the integration region up into little hypercubes, and shows that the

“volume integral” over each hypercube can be turned into an integral over its boundary

surface. We shall not pause to prove Stokes’ theorem (1.211), but we shall take a look

presently at special cases that reduce to the familiar Stokes’ and diverence theorems of

vector calculus.

First, a few remarks:

1. If M is an n-manifold without boundary (such as the surface of a sphere), then

∂M = ∅, and it follows that for any exact n-form σ, we must have
∫
M σ = 0. This

follows from Stokes’ theorem. Suppose that the exact form σ is written as σ = dα,

where α is some (n− 1)-form. Then using (1.211) we shall have

∫

M
σ =

∫

M
dα =

∫

∂M
α = 0 , (1.212)

where the last step follows from the fact that we are supposing M has no boundary;

∂M = ∅.

2. Just as the exterior derivative d has the property that d2 = 0, so manifolds have the

“dual” property that ∂2 = 0, i.e. the boundary of a boundary is zero. We prove this

by taking ω to be an arbitrary (n− 2)-form, and applying Stokes’ theorem twice:

0 =

∫

M
d2ω =

∫

∂M
dω =

∫

∂2M
ω . (1.213)

(The initial 0 of course comes from the fact that d2ω vanishes identically.) Since

(1.213) is true for any (n − 2)-form ω, it follows that ∂2M must be zero for any M .

This is clearly a reasonable result. For example, we take the boundary of the unit

ball in IR3, and we get S2. And sure enough, S2 has no boundary.

As one would expect and hope, the integration of an n-form over an n-manifold is

independent of the choice of coordinates that one uses. It may, of course, be convenient in
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practice to choose a specific coordinate system, but crucially, we will get the same answer

if we change to any other coordinate system. Suppose we choose local coordinates xi on an

n-manifold M , and integrate the n-form6

ω = f dx1 ∧ dx2 ∧ · · · ∧ dxn (1.214)

over M . Under a change of coordinates xi → x′i = x′i(xj), we shall therefore have

ω = f
∂x1

∂x′i1
∂x2

∂x′i2
· · · ∂x

n

∂x′in
dx′i1 ∧ dx′i2 ∧ · · · ∧ dx′in

= f
∂x1

∂x′i1
∂x2

∂x′i2
· · · ∂x

n

∂x′in
εi1i2···in dx′1 ∧ dx′2 ∧ · · · ∧ dx′n , (1.215)

where εi1i2···,in is defined to be +1 if (i1, i2, . . . , in) is an even permutation of (1, 2, . . . , n),

−1 if it is an odd permutation, and 0 if it is no permuation at all (meaning that at least

two index values must be equal). With a bit of thought, one can recognise that

∂x1

∂x′i1
∂x2

∂x′i2
· · · ∂x

n

∂x′in
εi1i2···in =

∣∣∣
∂x

∂x′

∣∣∣ , (1.216)

where
∣∣∣ ∂x
∂x′

∣∣∣ means the Jacobian of the transformation from the xi to the x′j coordinates,

i.e.
∣∣∣
∂x

∂x′

∣∣∣ = det
( ∂xi

∂x′j

)
. (1.217)

This accords with what one knows from elementary mathematics, namely that if one changes

variables in a multi-dimensional integral, one must multiply the integrand by the Jacobian

of the transformation. If the reader is in doubt about the steps above, it is well worthwhile

to look explicitly at the case of a 2-dimensional integral of a 2-form. Thus one has

∫
fdx ∧ dy =

∫
f
( ∂x
∂x′

dx′ +
∂x

∂y′
dy′
)
∧
( ∂y
∂x′

dx′ +
∂y

∂y′
dy′
)

=

∫
f
( ∂x
∂x′

∂y

∂y′
− ∂x

∂y′
∂y

∂x′

)
dx′ ∧ dy′ . (1.218)

So we see that the antisymmetry of the wedge product automatically handles the Jacobian

transformation when changing variables.

Integration over a manifold probes properties that go beyond just the local structure in

a neighbourhood. A very simple illustration is provided by the following example. Suppose

we have a circle, S1, for which we set up a local coordinate θ, with 0 < θ < 2π. We already

saw in section 1.3.1 that this coordinate cannot be well-defined everywhere on S 1; here, we

have omitted the point θ = 0 (which is identified with θ = 2π). However, suppose for a

6Note that any n-form in n dimensions must simply be of the form of a function times the wedge product

of all the coordinate differentials.
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moment we mistakenly thought that θ was well-defined everywhere on S1, meaning that

θ was a well-defined function on S1. We could quickly discover the mistake by applying

Stokes’ theorem and encountering the following contradiction:

2π =

∫

S1
dθ =

∫

∂S1
θ = 0 . (1.219)

On the left-hand side, we present the standard integration around the unit-radius circle; in

the middle step we have used Stokes’ theorem to convert the integral of dθ around S 1 into

an integral of θ over the boundary of S1; on the right-hand side we have used the fact that

S1 has no boundary, and therefore this integral vanishes.

The mistake in the above sequence of steps was, of course, in the application of Stokes’

theorem. The point is that θ is not a well-defined smooth function on S1; it undergoes a

discontinuous jump from 2π to 0 as one rotates anticlockwise and passes the point (x, y) =

(1, 0) on the circle. Thus θ is not a smooth 0-form, and so Stokes’ theorem cannot be

used. Note that when we write dθ, we are really using a bit of a short-hand. What is

meant is the 1-form that is expressed locally as ω ≡ dθ when 0 < θ < 2π, i.e. in the

patch called U1 in section 1.3.1. To cover the patch of S1 that include (x, y) = (1, 0) (but

excludes (x, y) = (−1, 0)), i.e. the patch called U2 in 1.3.1, we can use the coordinate θ̃.

The globally-defined 1-form can be written as ω ≡ dθ̃ in that patch. Note that everywhere

in the overlap region U1 ∩ U2, the two expressions dθ and dθ̃ for the 1-form agree. The

essential point to note here is that there exists a globally-defined 1-form ω, but there exists

no globally-defined 0-form whose exterior derivative gives ω. Thus ω is a closed 1-form that

is not exact. It is in fact the volume form on S1; its integral over S1 gives the 1-dimensional

“volume” of the unit circle; i.e. 2π.

To see this using Stokes’ theorem, we can do the following. Divide the unit circle into

two hemispheres (or, perhaps, we should say “hemicircles,”), namely the H1 defined by

points on x2 + y2 = 1 in IR2 with x < 0, and H2 defined by points with x > 0. In other

words, H1 is the left-hand half of the circle, and H2 is the right-hand half. On H1 we can

use θ as coordinate, since H1 lies entirely within the patch U1, whilst on H2 we can use θ̃

as coordinate, since H2 lies entirely within the patch U2. Then we may calculate as follows:
∫

S1
ω =

∫

H1

ω +

∫

H2

ω =

∫

H1

dθ +

∫

H2

dθ̃

=

∫

∂H1

θ +

∫

∂H2

θ̃

= [θ]
3π/2
π/2 + [θ̃]

3π/2
π/2 = π + π = 2π . (1.220)

Note that our applications of Stokes’ theorem are completely valid here, since in each of
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the patches where we are using it, ω is written as the exterior derivative of a function that

is well-defined and non-singular within that patch.

As another example, consider the 2-form

ω = sin θ dθ ∧ dφ (1.221)

on S2, where we use spherical polar coordinates (θ, φ) in a patch (excluding the north

and south poles, as discussed in section 1.3.2). This is another example of a form that

exists everywhere, but which cannot be written globally as a the exterior derivative of a

globally-defined 1-form. Obviously, we could write it locally as ω = dν, where

ν = − cos θ dφ , (1.222)

but this is singular at θ = 0 and θ = π, since at these points (the north and south poles)

the 1-form dφ is ill-defined, since the cicle parameterised by φ has shrunk to zero radius at

the poles. Note, however, that because d2 = 0 when applied to any p-form, we can always

add df to ν, where f is any function, and the exterior derivative of the modified ν will again

give ω. Thus, we may define the two 1-forms

ν± = ν ± dφ = (− cos θ ± 1)dφ . (1.223)

These are well-defined within the patches called U± in section 1.3.2 respectively. Thus ν+

is well-defined at the north pole, θ = 0, since the coefficient of dφ vanishes there. However,

it is ill-defined at the south pole, θ = π, because the coefficient of dφ does not vanish there.

Thus ν+ is well-defined everywhere in the patch U+. The situation for ν− is similar, except

that it is well-defined everywhere in U− (the sphere minus the north pole).

With these preliminaries, we can now see what happens if we apply (or misapply) Stokes’

theorem. First, the naive misapplication: If we just say ω = dν, and mistakenly assume

ν = − cos θ dφ is globally-defined on S2 we get

4π =

∫

S2
sin θ dθ ∧ dφ =

∫

S2
ω =

∫

S2
dν =

∫

∂S2
ν = 0 , (1.224)

where in the last step we have used that S2 has no boundary. Now, let’s see how we can

instead use Stokes’ theorem correctly, by being careful about where the various 1-forms are

well-defined. To do this, introduce the notation H± to denote the northern and southern

hemispheres of S2. Now we can write

∫

S2
ω =

∫

H+

ω +

∫

H−

ω =

∫

H+

dν+ +

∫

H−

dν−
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=

∫

∂H+

ν+ +

∫

∂H−

ν− =

∫

S1
ν+ +

∫

(−S1)
ν−

=

∫

S1
dφ+

∫

(−S1)
(−dφ) = 2π + 2π = 4π . (1.225)

Here, we have split the volume integral over S2 into the sum over the two hemispheres,

and in each case we have replaced the volume-form ω by its expression as the exterior

derivative of a 1-form that is globally-defined within that hemisphere. Now, we we apply

Stokes’ theorem, we convert the volume integrals over hemispheres into integrals around

their boundaries (i.e. the equatorial circle). We must be careful about the orientations

of the circles; we have that ∂H+ is the positively-oriented equatorial circle, but ∂H− has

the opposite orientation. Thus, when we put the two contributions together, we correctly

recover the 2-dimensional “volume” of the unit S2.

1.13 The Levi-Civita Tensor and Hodge Dualisation

1.13.1 The Levi-Civita Tensor

The totally-antisymmetric tensor εijk in 3-dimensional Cartesian tensor calculus is a familiar

object. It is defined by saying that εijk is +1, −1 or 0 depending on whether ijk is an

even permutation of 123, an odd permutation, or no permutation at all (such as 112).

We already introduced an analogous n-dimensional totally-antisymmetric object εi1···in in

equation (1.215). However, we must be careful; this object is not a tensor under general

coordinate transformations.

Let us first of all define εi1···in with downstairs indices. We shall say

εi1···in = ±1, 0 , (1.226)

where we have +1 if {i1 . . . , in} is an even permutation of the numerically-ordered index

values {1, . . . , n}, we have −1 if it is an odd permutation, and we have 0 if it is no permu-

tation at all. We define εi1···in to have these values in all coordinate frames, which means

that, by definition, we have

ε′i1···in = εi1···in . (1.227)

Is it a tensor? The answer is no, and we can prove this by showing that it does not transform

as a tensor. Suppose it did, and so we start in a coordinate frame xi with the components

being ±1 and 0, as defined above. We could then work out its components in a primed

frame, giving

ε̃i1···in =
∂xj1

∂x′i1
· · · ∂x

jn

∂x′in
εj1···jn . (1.228)
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(We avoid using ε′i1···in to denote the transformed components in the primed frame because

we are currently testing whether the transformed components, calculated assuming that

εi1···in is a tensor, agree with our definition of ε′i1···in given in (1.227). As we shall see, they

do not agree.)

The right-hand side of (1.228) can be recognised as giving

∣∣∣
∂x

∂x′

∣∣∣ εi1···in , (1.229)

where
∣∣∣ ∂x
∂x′

∣∣∣ is the Jacobian of the transformation, i.e. the determinant of the transformation

matrix ∂xj/∂x′i. This follows from the identity that

M j1
i1 · · ·M jn

inεj1···jn = det(M) εi1 ···in (1.230)

for any n×n matrix. (Check it for n = 2, if you doubt it.) Since (1.229) is not simply equal

to εi1···in , we see that εi1···in , defined to be ±1 and 0 in all frames, does not transform as a

tensor. Instead, it is what is called a Tensor Density.

A quantity with components Hi1···ip is said to be a tensor density of weight w if it

transforms as

H ′
i1···ip =

∣∣∣
∂x′

∂x

∣∣∣
w ∂xj1

∂x′i1
· · · ∂x

j1

∂x′i1
Hj1···jp , (1.231)

under general coordinate transformations. Of course ordinary tensors, for which w = 0, are

the special case of tensor densities of weight 0.

Noting that
∣∣∣∂x′

∂x

∣∣∣ =
∣∣∣ ∂x
∂x′

∣∣∣
−1

, we see from (1.229) that εi1···in transforms as a tensor

density of weight 1 under general coordinate transformations, namely

ε′i1···in =
∣∣∣
∂x′

∂x

∣∣∣
∂xj1

∂x′i1
· · · ∂x

j
n

∂x′in
εj1···jn . (1.232)

Furthermore, it is indeed an invariant tensor density, i.e. ε′i1···in = εi1···in ; it takes the same

numerical values in all coordinate frames.

We can make an honest tensor by multiplying εi1···in by a scalar density of weight −1.

Such an object can be built from the metric tensor. Consider taking the determinant of the

inverse metric. Since we have already introduced the notation that g ≡ det(gij), it follows

that we shall have det(gij) = 1/g. Thus we may write

1

g
=

1

n!
gi1j1 · · · ginjn εi1···in εj1···jn . (1.233)

(Again, if this is not obvious to you, check it for the case n = 2.) Changing to a primed

coordinate system, and recalling that εi1···in is an invariant tensor density, we therefore have

1

g′
=

1

n!
g′i1j1 · · · g′injn εi1···in εj1···jn

56



=
1

n!
gk1`1 · · · gkn`n

∂x′i1

∂xk1
· · · ∂x

′in

∂xkn

∂x′j1

∂x`1
· · · ∂x

′jn

∂x`n
εi1···in εj1···jn

=
∣∣∣
∂x′

∂x

∣∣∣
2 1

g
. (1.234)

This shows that g′ =
∣∣∣∂x′

∂x

∣∣∣
−2
g; i.e. that g is a scalar density of weight −2. Hence

√
|g| is a

scalar density of weight −1, and so we may define the tensor (i.e. with weight 0)

εi1···in ≡
√
|g| εi1···in . (1.235)

We shall universally use the notation εi1···in for the honest tensor, and εi1···in for the tensor

density whose components are ±1, 0. The totally-antisymmetric tensor εi1···in is called the

Levi-Civita tensor.

Some further remarks are in order at this point. First, we shall always define εi1···in to be

+1 if its indices are an even permutation of the numerically-ordered index values 1, . . . , n,

to be −1 for an odd permutation, and 0 for no permutation. For the tensor density with

upstairs indices, we define them to be numerically given by

εi1···in ≡ (−1)t εi1···in , (1.236)

where t is the number of negative eigenvalues of the metric gij . The typical cases will be

t = 0 if we are doing Riemannian geometry, and t = 1 in special or general relativity.

The second remark is to note that εi1···in is not given by raising the indices on εi1···in

using inverse metrics. This is the one and only exception to the otherwise universal rule

that when we use the same symbol on an object with upstairs indices and an object with

downstairs indices, the former is related to the latter by raising the indices with inverse

metrics.

The third remark is that εi1···in is a tensor density of weight −1. Thus we have tensors

εi1···in and εi1···in related to the corresponding tensor-densities by

εi1···in =
√
|g| εi1···in , εi1···in =

1√
|g| ε

i1···in . (1.237)

Note that εi1···in is obtained by raising the indices on εi1···in with inverse metrics. This

accords with our second remark above.

The fourth remark is that if the number of negative eigenvalues t of the metric is odd,

then the determinant g is negative. This is why we have written
√
|g| in the definitions of

the totally-antisymmetric tensors εi1···in and εi1···in . If we know we are in a situation where

t = 0 (or more generally t =even), we typically just write
√
g. If on the other hand we know

we are in a situation where t = 1 (or more generally t =odd), we typically write
√−g.
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There are some very important identities that are satisfied by the product of two Levi-

Civita tensors. Firstly, one can establish that

εi1···in εj1···jn = n! (−1)t δi1 ···in
j1···jn

, (1.238)

where as usual t is the number of negative eigenvalues of the metric, and we have defined

δ
i1 ···ip
j1···jp

≡ δ
[i1
[j1

· · · δin]
jn] . (1.239)

Note that for any antisymmetric tensor Ai1···ip we have

Ai1···ip δ
i1···ip
j1···jp

= Aj1···jp . (1.240)

It is quite easy to prove (1.238) by enumerating the possible sets of choices for the index

values on the left-hand side and on the right-hand side, and verifying that the two expres-

sions agree. Of course one need not verify every single possible set of index assignments,

since both the left-hand side and the right-hand side are manifestly totally antisymmetric

in the i indices, and in the j indices. In fact this means one really only has to check one

case, which could be, for example, {i1, . . . , in} = {1, . . . , n} and {j1, . . . , jn} = {1, . . . , n}.
With a little thought, it can be seen that once the two sides are shown to agree for this set

of index choices, they must agree for any possible set of index choices.

It is also useful to record the expression one gets if one contracts p of the indices on a

pair of Levi-Civita tensors. The answer is

εi1···iqk1···kp εj1···jqk1···kp = p! q! (−1)t δ
i1 ···iq
j1···jq

, (1.241)

where we have defined q ≡ n − p in n dimensions. The proof is again just a matter of

enumerating inequivalent special cases, and checking the equality of the two sides of the

equation for each such case. Again, if one spends enough time thinking about it, one

eventually sees that it is almost trivially obvious. Note that (1.238) is just the special case

of (1.241) when p = 0.

As an example, in three dimensions with positive-definite metric signature, we have

εijk ε`mn = 6δijk
`mn = δi

`δ
j
mδ

k
n + δj

` δ
k
mδ

i
n + δk

` δ
i
mδ

j
n − δi

`δ
k
mδ

j
n − δj

`δ
i
mδ

k
n − δk

` δ
j
mδ

i
n ,

εijm εk`m = 2δij
k` = δi

kδ
j
` − δj

kδ
i
` . (1.242)

These, or at least the second identity, should be very familiar from Cartesian tensor analysis.
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1.13.2 The Hodge dual

Suppose we have a p-form ω in n dimensions. It is easy to count the number Np of inde-

pendent components ωi1···ip in a general such p-form: the antisymmetry implies that the

answer is

Np =
n!

p! (n− p)!
. (1.243)

For example, for a 0-form we have N0 = 1, and for a 1-form we have N1 = n. These are

exactly what one expects for a scalar and a co-vector. For a 2-form we have N2 = 1
2n(n−1),

which again is exactly what one expects for a 2-index antisymmetric tensor (it is just like

counting the independent components of a general n× n antisymmetric matrix).

It will be noticed from (1.243) that we have

Np = Nn−p , (1.244)

i.e. the number of independent components of a p form is the same as the number of

independent components of an (n− p)-form in n dimensions. This suggests the possibility

that there could exist a 1-1 mapping between p-forms and (n−p)-forms, and indeed precisely

such a mapping exists. It is called Hodge Duality, and it is implemented by means of the

Levi-Civita tensor.

Suppose a p-form ω is expanded in a coordinate basis in the usual way, as

ω =
1

p!
ωi1···ip dx

i1 ∧ · · · ∧ dxip . (1.245)

We can define a Hodge dual basis for q = n− p forms, as

∗(dxi1 ∧ · · · ∧ dxip) =
1

q!
εj1···jq

i1···ip dxj1 ∧ · · · dxjq . (1.246)

We can then read off the Hodge dual of ω, namely

∗ω =
1

p! q!
εj1···jq

i1···ip ωi1···ip dx
j1 ∧ · · · dxjq . (1.247)

Comparing with the standard definition of a q-form, we can therefore read off the compo-

nents of the q-form ∗ω, whose expansion is

∗ω =
1

q!
(∗ω)j1···jq dx

j1 ∧ · · · ∧ dxjq . (1.248)

Thus from (1.247) we read off

(∗ω)j1···jq =
1

p!
εj1···jq

i1···ip ωi1···ip . (1.249)
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Equation (1.249) gives the mapping from the p-form ω to its Hodge dual, the q = n− p

form ∗ω. It was said earlier that this is a 1-1 mapping, and so we must be able to invert

it. This is easily done, by making use of the identity (1.241) for the contraction of two

Levi-Civita tensors on some of their indices. Thus, taking the Hodge dual of the Hodge

dual of ω, making use of the basic defining equation (1.249), we shall have

(∗∗ω)i1···ip =
1

p! q!
εi1···ip

j1···jq εj1···jq

k1···kp ωk1···kp

=
(−1)pq

p! q!
εi1···ip

j1···jq εk1···kp
j1···jq ωk1···kp

=
(−1)pq+t

p! q!
p! q! δ

k1 ···kp

i1···ip ωk1···kp

= (−1)pq+t ωi1···ip . (1.250)

In getting to the second line, the shifting of the block of q indices (j1 · · · jq) through the

block of p indices (k1 · · · kp) on the second Levi-Civita tensor has given rise to the (−1)pq

factor, since each interchange of an index pair produces a minus sign. In getting to the

third line, we have used the identity (1.241). In getting to the fourth line, we have used the

basic property (1.240) of the multi-index Kronecker delta tensor. The upshot, therefore, is

that applying the Hodge dual operation twice to a p-form ω in n dimensions, we get

∗∗ω = (−1)pq+t ω , (1.251)

where q = n− p, and where t is the number of time directions (i.e. the number of negative

eigenvalues of the metric tensor).

In cases where pq+t is even, we shall have that ∗∗ω = ω, which means that the operator

∗ itself has eigenvalues ±1. If the dimension n is even, say n = 2m, an m-form ω is mapped

into another m-form by the Hodge ∗ operator, and so if m2 + t is even, we can make ±
eigenstates under ∗, defined by

ω± = 1
2 (ω ± ∗ω) . (1.252)

these have the property that

∗ω± = ±ω± , (1.253)

and they are known as self-dual or anti-self-dual forms respectively. This possibility there-

fore arises in Riemannian geometry (i.e. t = 0) in dimensions n = 4, 8, 12, . . .. In pseudo-

Riemannian geometry with a single time dimension (i.e. t = 1), (anti)-self-duality is instead

possible in dimensions n = 2, 6, 10, . . ..

The Hodge dual provides a nice way of taking the inner product of two p-forms. Suppose

we have two p-forms, A and B in an n-dimensional manifold M . Defining q = n − p as
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usual, we shall have

∗A ∧B =
1

(p!)2 q!
εi1···iq

j1···jp Aj1···jp Bk1···kp dx
i1 ∧ · · · ∧ dxiq ∧ dxk1 ∧ · · · ∧ dxkp

=
(−1)t

(p!)2 q!
εi1···iq

j1···jp Aj1···jp Bk1···kp ε
i1···iqk1···kp dx1 ∧ dx2 ∧ · · · ∧ dxn

=
(−1)t

(p!)2 q!
εi1···iq

j1···jp Aj1···jp Bk1···kp ε
i1···iqk1···kp

√
|g| dx1 ∧ dx2 ∧ · · · ∧ dxn

=
1

p!
Aj1···jp Bk1···kp δ

k1 ···kq

i1···iq

√
|g| dx1 ∧ dx2 ∧ · · · ∧ dxn

=
1

p!
Ai1···ip B

i1···ip
√
|g| dx1 ∧ dx2 ∧ · · · ∧ dxn . (1.254)

Thus we can write

∗A ∧B =
1

p!
Ai1···ip B

i1···ip ∗1l , (1.255)

where

∗1l =
1

n!
εi1···in dx

i1 ∧ · · · ∧ dxin =
√
|g| dx1 ∧ dx2 ∧ · · · ∧ dxn . (1.256)

Note that ∗1l, which is the Hodge dual of the constant 1, calculated using the standard rule

(1.246) applied to a 0-form, is the volume form. For example, in Cartesian coordinates on

Euclidean 2-space, where the metric is just ds2 = dx2 + dy2, we would have ∗1l = dx ∧ dy,
whilst in polar coordinates, where the metric is ds2 = dr2 + r2dθ2, we would have ∗1l =

rdr ∧ dθ. Thus equation (1.255) shows that ∗A∧B is equal to 1/p! times the volume form,

multiplied by the inner product

|A · B| ≡ Ai1···ip B
i1···ip (1.257)

of the two p-forms A and B. The inner product is manifestly symmetric under the exchange

of A and B, and so we have

∗A ∧B = ∗B ∧A =
1

p!
|A · B| ∗1l . (1.258)

Of course if the metric has all positive eigenvalues (i.e. t = 0), then the inner product is

positive semi-definite, in the sense that

|A · A| ≥ 0 , (1.259)

with equality if and only if A = 0.
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1.14 The δ Operator and the Laplacian

1.14.1 The adjoint operator δ; covariant divergence

Let A and B be two p-forms. We may define the quantity (A,B) by

(A,B) ≡
∫

M
∗A ∧B , (1.260)

where, by (1.258), the integrand is the n-form proportional to the volume form times the

inner product of A and B. Like the unintegrated inner product, it is the case that if the

metric has all positive eigenvalues, then (A,B) is positive semi-definite, in the sense that

(A,A) ≥ 0 , (1.261)

with equality if and only if A vanishes everywhere in M . Note that from (1.258) we also

have that

(A,B) = (B,A) . (1.262)

Suppose now we have a p-form ω and (p − 1)-form ν. Using the definition (1.260) we

may form the quantity (ω, dν). Let us assume that the n-manifold M has no boundary. By

using Stokes’ theorem, we can perform the following manipulation:

(ω, dν) =

∫

M
∗ω ∧ dν = (−1)q

∫

M
d(∗ω ∧ ν) − (−1)q

∫

M
d∗ω ∧ ν

= (−1)q
∫

∂M
∗ω ∧ ν − (−1)q

∫

M
d∗ω ∧ ν

= (−1)q+1
∫

M
d∗ω ∧ ν = (−1)pq+p+t

∫

M
∗(∗d∗ω) ∧ ν

= (−1)pq+p+t (∗d∗ω, ν) , (1.263)

where as usual we have defined q ≡ n − p. Thus it is natural to define the adjoint of the

exterior derivative, which is called δ, to be such that for any p-form ω and any (p− 1)-form

ν, we shall have

(ω, dν) = (δω, ν) , (1.264)

with

δ ≡ (−1)pq+p+t ∗d∗ = (−1)np+t ∗d∗ . (1.265)

Of course from (1.262) we shall also have

(ν, δω) = (dν, ω) . (1.266)

Note that using (1.265) and (1.251) we can immediately see that δ has the property that

δ2 = 0 (1.267)
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when acting on any p-form. Note that δ maps a p-form to a (p− 1)-form.

We know that d maps a p-form ω to a (p+ 1)-form, and that the Hodge dual ∗ maps a

p-form to an (n−p)-form in n dimensions. It is easy to see, therefore, that the operator ∗d∗
applied to a p-form gives a (p− 1)-form. What is the object ∗d∗ω? It is actually related to

something very simple, namely the divergence of ω, with components ∇kωki1···ip−1
. To show

this is straightforward, although a little lengthy. For the sake of completeness, we shall

give the derivation here. Those steps in the argument that are analogous to ones that have

already been spelt out in previous derivations will be performed this time without further

comment. We shall have

ω =
1

p!
ωi1···ip dx

i1 ∧ · · · ∧ dxip ,

∗ω =
1

p! q!
ωi1···ip εj1···jq

i1···ip dxj1 ∧ · · · ∧ dxjq ,

d∗ω =
1

p! q!
∂k(ωi1···ip εj1···jq

i1···ip) dxk ∧ dxj1 ∧ · · · ∧ dxjq ,

∗d∗ω =
1

p! q! (p− 1)!
∂k(ωi1···ip εj1···jq

i1···ip) ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1

=
1

p! q! (p− 1)!
∂k(ω

i1···ip εj1···jqi1···ip) ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1

=
(−1)pq

p! q! (p− 1)!
∂k(ω

i1···ip εi1···ipj1···jq) ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1

=
(−1)pq

p! q! (p− 1)!
∂k(ω

i1···ip
√
|g| εi1···ipj1···jq) ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1

=
(−1)pq

p! q! (p− 1)!
∂k(ω

i1···ip
√
|g|) εi1···ipj1···jq ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1

=
(−1)pq

p! q! (p− 1)!

1√
|g| ∂k(ω

i1···ip
√
|g|) εi1···ipj1···jq ε`1···`p−1

kj1···jq dx`1 ∧ · · · ∧ dx`p−1 ,

(1.268)

where the only new type of manipulation so far is to replace the Levi-Civita tensor εi1···in by
√
|g| εi1···in , take the Levi-Civita tensor density εi1···in outside the partial derivative (which

can be done since it has constant components ±1 and 0), and then restore it to the Levi-

Civita tensor by dividing out by
√
|g| once it is outside the partial derivative. It is helpful

at this point to define the object

Yk
i1···ip ≡ 1√

|g| ∂k(
√
|g|ωi1···ip) , (1.269)

which we will shortly be able to turn into something recognisable. Continuing to the next

step that follows on from the last line in (1.268), we can write

∗d∗ω =
(−1)pq

p! q! (p− 1)!
Y k

i1···ip ε
i1···ip

j1···jq ε`1···`p−1 k
j1···jq dx`1 ∧ · · · dx`p−1
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=
(−1)pq+t

(p− 1)!
Y k

i1···ip δ
i1 ···ip
`1···`p−1 k dx

`1 ∧ · · · dx`p−1

=
(−1)pq+t

(p− 1)!
Y k

`1···`p−1 k dx
`1 ∧ · · · dx`p−1

=
(−1)pq+p+1+t

(p− 1)!
Y k

k`1···`p−1
dx`1 ∧ · · · dx`p−1 . (1.270)

Now, we have

Y k
k`1···`p−1

= Yk
km1···mp−1 g`1m1

· · · g`p−1 mp−1

=
1√
|g| ∂k(

√
|g|ωkm1···mp−1) g`1m1

· · · g`p−1 mp−1

= (∇k ω
km1···mp−1) g`1m1

· · · g`p−1 mp−1

= ∇kωk`1···`p−1
, (1.271)

where the step of passing to the third line involves using results derived in section 1.9, and

the symmetry of Γi
jk in its two lower indices. (A special case, for a 2-index antisymmetric

tensor, was on Problem Sheet 2.)

Finally, we are approaching the bottom line, namely that we have found

∗d∗ω =
(−1)pq+p+t+1

(p− 1)!
∇kωki1···ip−1

dxi1 ∧ · · · ∧ dxip−1 . (1.272)

In other words, we have shown that the components of the (p− 1)-form ∗d∗ω are given by7

(∗d∗ω)i1···ip−1
= (−1)pq+p+t+1 ∇kωki1···ip−1

. (1.273)

Comparing this with (1.265), we see that for any p-form ω, we shall have

(δω)i1 ···ip−1
= −∇kωki1···ip . (1.274)

7Note that although this derivation may have seemed like a bit of a long song and dance, much of this

was because, for pedagodgic reasons, all the logical steps have been spelt out. Additionally, we presented

rather carefully the mechanism by which the partial derivative turned into a covariant divergence. We

could have short-circuited quite a few of those steps by making the following argument: We know that the

exterior derivative d maps a p-form to a (p + 1)-form, and we know that the Hodge ∗ maps a p-form to

an (n − p)-form. Therefore we know that ∗d∗ω must be a (p − 1)-form, and therefore that it must be an

honest tensorial object. Thus, as soon as we saw the ∂k appear in the expression for d∗ω, we know on the

grounds of covariance, that we must be able to replace the partial derivative by a covariant one, since the

answer must be covariant, so what else could it be? All we are doing by replacing ∂k by ∇k is making a

“hidden” non-manifest covariance into an explicit manifest covariance. If we allow ourselves to make that

replacement, we more quickly end up at the same conclusion.
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1.14.2 The Laplacian

We have already met the covariant Laplacian operator that acts on scalars. Here, we give

the generalisation to a Laplacian operator that acts on p-forms of any rank. It is defined by

∆ ≡ dδ + δd . (1.275)

Since d maps p-forms to (p + 1)-forms, and δ maps p-forms to (p − 1)-forms, we see that

each of the two terms in ∆ maps a p-form back into a p-form, and thus so does ∆ itself.

If we apply ∆ to a scalar f , then, noting that δf ≡ 0 (since δf would be a (−1)-form,

which doesn’t exist), we shall have

∆f = δdf = −∇i∇if . (1.276)

Thus when acting on scalars, ∆ is the negative of what one commonly calls the Laplacian

in more elementary contexts. It is actually rather natural to include the minus sign in the

definition, because ∆ = −∇i∇i is then a positive operator when acting on scalars, in the

case that the metric has all positive eigenvalues.

In fact, more generally, we can see that ∆ defined by (1.275) is a positive operator when

acting on any p-form, in the case that the metric has all positive eigenvalues (i.e. t = 0). To

see this, let ω be an arbitrary p-form, and assume that M is a compact n-manifold equipped

with a positive-definite metric. Then we shall have

(ω∆ω) = (ω, dδω) + (ω, δdω) = (dω, dω) + (δω, δω) . (1.277)

As noted previously, we have (A,A) ≥ 0, with equality if and only if A = 0, and so we

conclude that

(ω,∆ω) ≥ 0 , (1.278)

with equality if and only if ∆ω = 0. A p-form ω that satisfies ∆ω = 0 is called an harmonic

p-form. Furthermore, (1.277) shows that ∆ω = 0 if and only if

dω = 0 , δω = 0 . (1.279)

We already met the notion of a closed p-form ω, as being one for which dω = 0. We can

also introduce the notion of a co-closed p-form ω, as being one for which δω = 0. Thus we

have seen that on a manifold without boundary, equipped with a positive-definite metric,

a p-form is harmonic if and only if it is both closed and co-closed.

We have already seen that when acting on scalars f (i.e. 0-forms), the Laplacian operator

is given by

∆f = − f , (1.280)
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where we define

≡ ∇i∇i . (1.281)

It is straightforward to evaluate the Laplacian acting on forms of higher degree, by making

use of the expressions (1.199) and (1.274) for the components of dω and δω. For example,

acting on a 1-form V , and on a 2-form ω, one finds

(∆V )i = − Vi +Rij V
j ,

(∆ω)ij = − ωij − 2Rikj` ω
k` +Rik ω

k
j +Rjk ωi

k . (1.282)

Note that the curvatures arise because terms in the expression for ∆ give rise to commutators

of covariant derivatives.

1.15 Spin connection and curvature 2-forms

When we introduced the notations of the covariant derivative, in section 1.9, and the Rie-

mann tensor, in section 1.10, this was done in the framework of a choice of coordinate

basis. We have already discussed the idea of using a non-coordinate basis for the tangent

and co-tangent frames, and here we return to this, in order to introduce a different way of

defining the connection and curvature. It is, in the end, equivalent to the coordinate-basis

description, but it has various advantages, including (relative) computational simplicity.

We begin by “taking the square root” of the metric gij , by introducing a vielbein, which

is a basis of 1-forms ea = eai dx
i, with the components ea

i having the property

gij = ηab e
a
i e

b
j . (1.283)

Here the indices a are local-Lorentz indices, or tangent-space indices, and ηab is a “flat”

metric, with constant components. The language of “local-Lorentz” indices stems from

the situation when the metric gij has Minkowskian signature (which is (−,+,+, . . . ,+) in

sensible conventions). The signature of ηab must be the same as that of gij , so if we are

working in general relativity with Minkowskian signature we will have

ηab = diag (−1, 1, 1, . . . , 1) . (1.284)

If, on the other hand, we are working in a space with Euclidean signature (+,+, . . . ,+),

then ηab will just equal the Kronecker delta, ηab = δab, or in other words

ηab = diag (1, 1, 1, . . . , 1) . (1.285)

66



Of course the choice of vielbeins ea as the square root of the metric in (1.283) is to some

extent arbitrary. Specifically, we could, given a particular choice of vielbein ea, perform an

orthogonal-type transformation to get another equally-valid vielbein e ′a, given by

e′a = Λa
b e

b , (1.286)

where Λa
b is a matrix satisfying the (pseudo)orthogonality condition

ηab Λa
c Λb

d = ηcd . (1.287)

Note that Λa
b can be coordinate dependent. If the n-dimensional manifold has a Euclidean-

signature metric then η = 1l and (1.287) is literally the orthogonality condition ΛT Λ = 1l.

Thus in this case the arbitrariness in the choice of vielbein is precisely the freedom to

make local O(n) rotations in the tangent space, where O(n) denotes the group of n × n

orthogonal matrices. If the metric signature is Minkowskian, then instead (1.287) is the

condition for Λ to be an O(1, n − 1) matrix; in other words, one then has the freedom

to perform local Lorentz transformations in the tangent space. We shall typically use the

words “local Lorentz transformation” regardless of whether we are working with metrics of

Minkowskian or Euclidean signature.

The vielbein ea is a local-Lorentz vector-valued 1-form. That is, it is a 1-form carrying

in addition a local-Lorentz vector index. It transforms covariantly under local-Lorentz

transformations, i.e. in the manner given in equation (1.286). It is natural, at this point,

to introduce the general notion of local-Lorentz tensor-valued p-forms. Thus we could

consider the object V a1···ar
b1···bs , which is a p-form carrying in addition r upstairs local-

Lorentz indices and s downstairs local-Lorentz indices. By definition, under local-Lorentz

transformations, it transforms as

V a1···ar
b1···bs −→ V ′a1···ar

b1···bs = Λa1
c1 · · ·Λar

cr Λb1
d1 · · ·Λbs

ds V c1···cr
d1···ds , (1.288)

where we define

Λa
b ≡ ηac η

bd Λc
d . (1.289)

The transformation in (1.288) is exactly like an old-fashioned Lorentz transformation of

a Lorentz tensor V a1···ar
b1···bs , except that here Λa

b can be position-dependent, and also

V a1···ar
b1···bs is also a p-form.

What happens if we take the exterior derivative of the local-Lorentz tensor-valued p-

form V a1···ar
b1···bs? Obviously, for reasons that are now very familiar, we do not get a

local-Lorentz tensor-valued (p+1)-form, because when we test its transformation under the
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appropriate analogue of (1.288), we run into trouble from the exterior derivative landing on

the local-Lorentz transformation matrix. To illustrate the point, while avoiding the clutter

of large numbers of indices, consider the case of a local-Lorentz vector-valued p-form, V a.

It transforms as

V ′a = Λa
b V

b . (1.290)

Now check the transformation of dV a:

dV ′a = d(Λa
b V

b) = Λa
b dV

b + dΛa
b ∧ V b . (1.291)

The second term has spoiled the covariant transformation law.

The remedy, as in our previous discussion of the covariant derivative, is to introduce a

modified “covariant exterior derivative.” Note that the covariance we are speaking of here

is local-Lorentz covariance. To do this, we introduce the spin connection, or connection

1-forms, ωa
b = ωa

bi dx
i, and the torsion 2-forms T a = 1

2T
a
ij dx

i ∧ dxj , by defining

T a = dea + ωa
b ∧ eb . (1.292)

We shall require by definition that T a transform covariantly as a local-Lorentz vector-valued

2-form, and we shall deduce the necessary transformation rule of ωa
b accordingly. Thus we

shall have

T ′a = Λa
b T

b = Λa
b de

b + Λa
b ω

b
c ∧ ec

= de′a + ω′a
b ∧ e′b = d(Λa

b e
b) + ω′a

b ∧ Λb
c e

c

= Λa
b de

b + dΛa
b ∧ eb + ω′a

b ∧ Λb
c e

c . (1.293)

Equating the first and the last lines gives, after an index relabelling,

Λa
b de

b + Λa
b ω

b
c ∧ ec = Λa

b de
b + dΛa

c ∧ ec + ω′a
b ∧ Λb

c e
c , (1.294)

from which we can read off that

Λa
b ω

b
c = dΛa

c + ω′a
b Λb

c . (1.295)

Multiplying by Λd
c to remove the Λ factor on the right-hand side, we have, after a further

relabelling of indices,

ω′a
b = Λa

c ω
c
d Λb

d − dΛa
c Λb

c . (1.296)

Noting that from (1.287) and (1.289) we have Λa
c Λb

c = δa
b , which in the obvious matrix

notation reads ΛΛ−1 = 1l, we can write (1.296) in a matrix notation as

ω′ = ΛωΛ−1 − dΛΛ−1 . (1.297)
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Equivalently, this can be written as

ω′ = ΛωΛ−1 + Λ dΛ−1 , (1.298)

or, back in indices,

ω′a
b = Λa

c ω
c
d Λb

d + Λa
c dΛb

c . (1.299)

This is the transformation rule that we shall use, telling us how the spin connection trans-

forms under local-Lorentz transformations. As we would expect, it does not transform

covariant under local-Lorentz transformations, owing to the presence of the second term.

This is exactly what is needed in order to ensure that the torsion T a does transform covari-

antly.

The notion of a Lorentz-covariant exterior derivative, which we shall call D, can now

be extended to the general case of the Lorentz tensor-valued p-form V a1···ar
b1···bs that we

introduced earlier. Thus we define

DV a1···ar
b1···bs ≡ dV a1···ar

b1···bs + ωa1
c ∧ V ca2···ar

b1···bs + · · · + ωar
c ∧ V a1···ar−1c

b1···bs

−ωc
b1 ∧ V a1 ···ar

cb2···bs − · · · − ωc
bs ∧ V a1···ar

b1···bs−1c . (1.300)

The pattern here should now be very familiar; there is one spin-connection term to co-

variantise each of the local-Lorentz indices on V a1···ar
b1···bs . It is now just a straightfoward

exercise to verify that DV a1···ar
b1···bs as defined here does indeed transform covariantly under

local-Lorentz transformations. In other words, we have

D′V ′a1···ar
b1···bs = Λa1

c1 · · ·Λar
cr Λb1

d1 · · ·Λbs

ds DV c1···cr
d1···ds . (1.301)

In order to prove this, it is helpful to look just at a simple case of a Lorentz tensor-valued

p-form V a
b, in order to avoid getting bogged down in a morass of indices. It is obvious,

once one has checked for V a
b, that the proof will go in just the same way if there are more

indices.

In fact, one can avoid the need for indices at all by writing the V a
b example in a matrix

notation. We note first that

V ′a
b = Λa

c Λd
b V

c
d , (1.302)

which translates into V ′ = ΛV Λ−1 in matrix notation. Next, we rewrite DV a
b in matrix

notation. Thus

DV a
b = dV a

b + ωa
c ∧ V c

b − ωc
b ∧ V a

c

= dV a
b + ωa

c ∧ V c
b − (−1)p V a

c ∧ ωc
b , (1.303)
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and in this latter form it can be re-expressed in the obvious matrix notation as

DV = dV + ω ∧ V − (−1)p V ∧ ω . (1.304)

Following a few simple steps, and using (1.298), one easily shows that

D′V ′ ≡ dV ′ + ω′ ∧ V ′ − (−1)pV ′ ∧ ω′

= Λ(DV )Λ−1 , (1.305)

which establishes the covariance of the transformation.

Next, we define the curvature 2-forms Θa
b, via the equation

Θa
b = dωa

b + ωa
c ∧ ωc

b . (1.306)

It is straightforward to show, by the same techniques as we used above, that in the obvious

matrix notation, in which (1.306) is written as

Θ = dω + ω ∧ ω , (1.307)

then Θ transforms covariantly under local-Lorentz transformations, viz.

Θ′ = ΛΘΛ−1 . (1.308)

To summarise, the vielbein, spin-connection, torsion and curvature forms transform under

local-Lorentz transformations as

e′ = Λe , ω′ = ΛωΛ−1 + Λ dΛ−1 ,

T ′ = ΛT , Θ′ = ΛΘΛ−1 . (1.309)

The covariant exterior derivative D will commute nicely with the process of contracting

tangent-space indices with ηab, provided we require that the local-Lorentz metric ηab be

Lorentz-covariantly constant, Dηab = 0. From (1.300), we therefore have

D ηab ≡ dηab − ωc
a ηcb − ωc

b ηac = 0 . (1.310)

Since we are taking the components of ηab to be literally constants, it follows from this

equation, which is known as the equation of metric compatibility, that

ωab = −ωba , (1.311)

where ωab is, by definition, ωa
b with the upper index lowered using ηab: ωab ≡ ηac ω

c
b.

With this imposed, it is now the case that we can take covariant exterior derivatives of

70



products, and freely move the local-Lorentz metric tensor ηab through the derivative. This

means that we get the same answer if we differentiate the product and then contract some

indices, or if instead we contract the indices and then differentiate. This is the analogue of

our requirement that ∇igjk = 0 in the previous coordinate-basis discussion of the covariant

derivative.

In addition to the requirement of metric compatibiilty we usually also choose a torsion-

free spin-connection, meaning that we demand that the torsion 2-forms T a defined by (1.292)

vanish. In fact equation (1.292), together with the metric-compatibility condition (1.311),

now determine ωa
b uniquely. In other words, the two conditions

dea = −ωa
b ∧ eb , ωab = −ωba (1.312)

have a unique solution. It can be given as follows. Let us say that, as a definition of the

coefficients cbc
a, the exterior derivatives of the vielbeins ea are given by

dea = −1
2cbc

a eb ∧ ec , (1.313)

where the structure functions cbc
a are, by definition, antisymmetric in bc. Then the solution

for ωab is given by

ωab = 1
2(cabc + cacb − cbca) e

c , (1.314)

where cabc ≡ ηcd cab
d. It is easy to check by direct substitution that this indeed solves the

two conditions (1.312).

The procedure, then, for calculating the curvature 2-forms for a metric gij with vielebeins

ea is the following. We write down a choice of vielbein, and by taking the exterior derivative

we read off the coefficients cbc
a in (1.313). Using these, we calculate the spin connection

using (1.314). Then, we substitute into (1.306), to calculate the curvature 2-forms.

Each curvature 2-form Θa
b has, as its components, a tensor that is antisymmetric in

two coordinate indices. This is in fact the Riemann tensor, defined by

Θa
b = 1

2R
a
bij dx

i ∧ dxj . (1.315)

We may always use the vielbein ea
i , which is a non-degenerate n×n matrix in n dimensions,

to convert between coordinate indices i and tangent-space indices a. For this purpose we

also need the inverse of the vielbein, denoted by E i
a, and satisfying the defining properties

Ei
a e

a
j = δi

j , Ei
a e

b
i = δa

b . (1.316)
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Then we may define Riemann tensor components entirely within the tangent-frame basis,

as follows:

Ra
bcd ≡ Ei

cE
j
d R

a
bij . (1.317)

In terms of Ra
bcd, it is easily seen from the various definitions that we have

Θa
b = 1

2R
a
bcd e

c ∧ ed . (1.318)

From the Riemann tensor Rabcd two further tensors can be defined, as we did in the

earlier coordinate-basis discussion, namely the Ricci tensor Rab and the Ricci scalar R:

Rab = Rc
acb , R = ηabRab . (1.319)

We again find that the Riemann tensor and Ricci tensor have the following symmetries,

which can be proved straightforwardly from the definitions above:

Rabcd = −Rbacd = −Rabdc = Rcdab ,

Rabcd +Racdb +Radbc = 0 , (1.320)

Rab = Rba .

1.15.1 Relation to the coordinate-basis connection and curvature

As we mentioned above, the spin connection ωa
b and the curvature 2-forms Θa

b are really

giving an equivalent description of the connection and curvature that we introduced in the

eralier coordinate-basis discussion. To make this more precise, we may define a covariant

derivative Di that is covariant with respect to both general coordinate transformations and

local-Lorentz transformations. Acting on the vielbein, for example, we shall have

Die
a
j ≡ ∂ie

a
j + ωa

bi e
b
j − Γk

ij e
a
k . (1.321)

The extension of this definition to arbitrary Lorentz-valued general coordinate tensors

should be obvious; it is just the appropriate combination of ωa
b terms to covariantise each

local-Lorentz index as in (1.300), and Γi
jk terms to covariantise each coordinate index, as

in (1.104).

The vielbein and its inverse can be used to map invertibly between coordinate indices

and local-Lorentz indices. We would therefore like to have the property that Die
a
j = 0, so

that these mappings will commute with covariant differentiation. This is in fact possible,

and by requiring that Die
a
j = 0 we can obtain a relation between the spin connection ωa

b

and the affine connection Γi
jk. Thus, from (1.321) we find that Die

a
j = 0 implies

∂ie
a
j + ωa

bi e
b
j − Γk

ij e
a
k = 0 . (1.322)
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Multiplying by ηac e
c
k and symmetrising in kj gives

∂igjk − Γ`
ij gg` − Γ`

ik gj` = 0 , (1.323)

which is the same as we saw from (1.106) when we required ∇igjk = 0. If we again multiply

(1.322) by ηac e
c
k, but this time antisymmetrise in ij, we obtain

T i
jk = 2Γi

[jk] , (1.324)

where T i
jk is the torsion tensor defined by (1.292), with the upper local-Lorentz index

converted to a coordinate index using the inverse vielbein: T i
jk = Ei

a T
a
jk. We see that

(1.324) agrees with our previous coordinate-index result in (1.183).

Comparing the curvatures obtained by the two approaches is a slightly involved calcu-

lation. Multiplying (1.322) by an inverse vielbein, one can easily see that

Γk
ij = Ek

a ∂ie
a
j +Ek

a ω
a
bi e

b
j . (1.325)

Substituting this into the expression (1.138) for the components of the Riemann tensor R i
jk`

in a coordinate basis, and then converting the first two indices to local-Lorentz indices using

Ra
bk` = eai E

j
b R

i
jk`, one can, with some perseverance, show that is equal to the expression

for Ra
bk` that came from (1.307) and (1.315).

2 General Relativity; Einstein’s Theory of Gravitation

2.1 The Equivalence Principle

Men occasionally stumble over the truth, but most of them pick themselves up and hurry off

as if nothing ever happened — Sir Winston Churchill

Contrary to what one might have expected, Einstein’s theory of General Relativity is

not based on a yet-further abstraction of the already counter-intuitive theory of Special

Relativity. In fact, perhaps remarkably, it has as its cornerstone an observation that is

absolutely familiar and intuitively understandable in everyday life. So familiar, in fact, that

it took someone with the genius of Einstein to see it for what it really was, and to extract

from it a profoundly new way of understanding the world. Sadly, even though this happened

ninety years ago, not everyone has yet caught up with the revolution in understanding that

Einstein achieved. Nowhere is this more apparent than in the teaching of mechanics in a

typical undergraduate physics course.
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The cornerstone of Special Relativity is the observation that the speed of light is the same

in all inertial frames. From this the consequences of Lorentz contraction, time dilation, and

the covariant behaviour of the fundamental physical laws under Lorentz transformations all

logically follow. The intuition for understanding Special Relativity is not profound, but it

has to be acquired, since it is not the intuition of our everyday experience. In our everyday

lives velocities are so small in comparison to the speed of light that we don’t notice even a

hint of special-relativistic effects, and so we have to train ourselves to imagine how things will

behave when the velocities are large. Of course in the laboratory it is now a commonplace

to encounter situations where special-relativisitic effects are crucially important.

The cornerstone of General Relativity is the Principle of Equivalence. There are many

ways of stating this, but perhaps the simplest is the assertion that gravitational mass and

inertial mass are the same.

In the framework of Newtonian gravity, the gravitational mass of an object is the con-

stant of proportionality Mgrav in the equation describing the force on an object in the

Earth’s gravitational field ~g:

~F = Mgrav ~g =
GMearthMgrav ~r

r3
, (2.1)

where ~r is the position vector of a point on the surface of the Earth.

More generally, if Φ is the Newtonian gravitational potential then an object with grav-

itational mass Mgrav experiences a gravitational force given by

~F = −Mgrav
~∇Φ . (2.2)

The inertial mass Minertial of an object is the constant of proportionality in Newton’s

second law, describing the force it experiences if it has an acceleration ~a relative to an

inertial frame:

~F = Minertial~a . (2.3)

It is a matter of everyday observation, and is confirmed to high precision in the laboratory

in experiments such as the Eötvös experiment, that

Mgrav = Minertial . (2.4)

It is an immediate consequence of (2.1) and (2.3) that an object placed in the Earth’s

gravitational field, with no other forces acting, will have an acceleration (relative to the

surface of the Earth) given by

~a =
Mgrav

Minertial
~g . (2.5)
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From (2.4), we therefore have the famous result

~a = ~g , (2.6)

which says that all objects fall at the same rate. This was supposedly demonstrated by

Galileo in Pisa.

More generally, if the object is placed in a Newtonian gravitational potential Φ then

from (2.2) and (2.3) it will suffer an acceleration given by

~a = − Mgrav

Minertial

~∇Φ = −~∇Φ , (2.7)

with the second equality holding if the inertial and gravitational masses of the object are

equal.

In Newtonian mechanics, this equality of gravitational and inertial mass is noted, the

two quantities are set equal and called simply M , and then one moves on to other things.

There is nothing in Newtonian mechanics that requires one to equate Mgrav and Minertial.

If experiments had shown that the ratio Mgrav/Minertial were different for different objects,

that would be fine too; one would simply make sure to use the right type of mass in the

right place. For a Newtonian physicist the equality of gravitational and inertial mass is

little more than an amusing coincidence, which allows one to use one symbol instead of two,

and which therefore makes some equations a little simpler.

The big failing of the Newtonian approach is that it fails to ask why is the gravitational

mass equal to the inertial mass? Or, perhaps a better and more scientific way to express

the question is what symmetry in the laws of nature forces the gravitational and inertial

masses to be equal? The more we probe the fundamental laws of nature, the more we find

that fundamental “coincidences” just don’t happen; if two concepts that a priori look to

be totally different turn out to be the same, nature is trying to tell us something. This, in

turn, should be reflected in the fundamental laws of nature.

Einstein’s genius was to recognise that the equality of gravitational and inertial mass is

much more than just an amusing coincidence; nature is telling us something very profound

about gravity. In particular, it is telling us that we cannot distinguish, at least by a local

experiment, between the “force of gravity,” and the force that an object experiences when

it accelerates relative to an inertial frame. For example, an observer in a small closed box

cannot tell whether he is sitting on the surface of the Earth, or instead is in outer space in

a rocket accelerating at 32 ft. per second per second.

The Newtonian physicist responds to this by going through all manner of circumlocu-

tions, and talks about “fictitious forces” acting on the rocket traveller, etc. Einstein, by
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contrast, recognises a fundamental truth of nature, and declares that, by definition, gravity

is the force experienced by an object that is accelerated relative to an inertial frame. Win-

ston Churchill’s observation, reproduced under the heading of this chapter, rather accurately

describes the reaction of the average teacher of Newtonian physics.

Einstein’s message is: If it looks like gravity, smells like gravity and feels like gravity,

then it is gravity!

Once this point is recognised, all kinds of muddles and confusions in Newtonian physics

disappear. The observer in the closed box does not have to sneak a look outside before he

is allowed to say whether he is experiencing a gravitational force or not. An observer in free

fall, such as an astronaut orbiting the Earth, or a person who has fallen out of a window,

is genuinely weightless because, by definition, he is in a free-fall frame and thus there is no

gravity, locally at least, in his frame of reference. A child sitting on a rotating roundabout

(or merry-go-round) in a playground is experiencing an outward gravitational force, which

can unashamedly be called a centrifugal force (with no need for the quotation marks and

the F-word “fictitious” that is so beloved of 218 lecturers!). Swept away completely is the

muddling notion of the fictitious “force that dare not speak its name.”

Notice that in the new order, there is a radical change of viewpoint about what consti-

tutes an inertial frame. If we neglect any effects due to the Earth’s rotation, a Newtonian

physicist would say that a person standing in a laboratory is in an inertial frame. By

contrast, in general relativity we say that a person who has jumped out of the laboratory

window is (temporarily!) in an inertial frame. A person standing in the laboratory is ac-

celerating relative to the inertial frame; indeed, that is why he is experiencing the force of

gravity.

To be precise, the concept that one introduces in general relativity is that of the local

inertial frame. This is a free-fall frame, such as that of the person who jumped out of the

laboratory, or of the astronaut orbiting the Earth. We must, in general, insist on the word

“local,” because, as we shall see later, if there is curvature present then one can only define

a free-fall frame in a small local region. For example, an observer falling out of a window in

College Station is accelerating relative to an observer falling out of a window in Cambridge,

since they are moving, with increasing velocities, along lines that are converging on the

centre of the Earth. In a small enough region, however, the concept of the free-fall inertial

frame makes sense.

Having recognised the equivalence of gravity and acceleration relative to a local iner-

tial frame, it becomes evident that we can formulate the laws of gravity, and indeed all
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the fundamental laws of physics, in a completely frame-independent manner. To be more

precise, we can formulate the fundamental laws of physics in such a way that they take the

same form in all frames, whether or not they are locally inertial. In fact, another way of

stating the equivalence principle is to assert that the fundamental laws of physics take the

same form in all frames, i.e. in all coordinate systems. Not surprisingly, perhaps, the way

to make this manifest is to use the formalism of general tensor calculus that we have been

studying.

2.2 A Newtonian Interlude

Before proceeding with the main development, it is perhaps worthwhile to pause and con-

sider in more detail how the Einsteinian way of thinking provides a superior framework for

solving problems even in Newtonian gravity. Perhaps the best way to do this is by consid-

ering a couple of “218 level problems,” to see how simply they can be solved by adopting

the framework of the general relativist.

2.2.1 The helium balloon

(1) Consider a helium balloon held on a string, which is in a car accelerating uniformly

with acceleration a. What angle does the string make with the vertical?

In the frame of the car, gravity has two components, namely the Earth’s gravity g acting

downwards, and a component a directed backwards, which is due to the car’s acceleration.

The vector sum of these two gives a net gravity of strength g̃ =
√
g2 + a2, which is directed

downwards and backwards, making an angle θ = arctan(a/g) to the vertical. The balloon

rises in the gravitational field such that the string is parallel to the direction of gravity, and

so it therefore tilts forwards by the angle θ = arctan(a/g).

It is a while since I have solved such problems by the “traditional” method of the 218

class, but I suspect one would have to draw force diagrams with bouyant forces, reaction

forces, etc., etc. I think it is clear that Einstein’s method is simpler.

2.2.2 The grandfather clock

(2) For unclear reasons, a grandfather clock is to be set up in a truck that is accelerating

with acceleration a. At what angle to the vertical must the clock be set, in order that

it will function properly, and at what rate will it run?
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For the general relativist, this is essentially the same problem as the previous one. For

a grandfather clock to function properly, it must be oriented vertically in the gravitational

field. Therefore it should be tilted forwards by an angle θ = arctan(a/g). The period of

its pendulum (of length `, say) will be T̃ = 2π
√
`/g̃, since g̃ =

√
g2 + a2 is the strength of

the gravitational field. This compares with the period T = 2π
√
`/g when the truck is not

accelerating. Thus the period of the pendulum is smaller by the factor

T̃

T
=

√
g

g̃
=
(
1 +

a2

g2

)−1/4
(2.8)

when it is set up in the accelerating truck.

I don’t even want to contemplate how one would solve this problem by the traditional 218

methods! It would, I think, be considerably harder than the general relativist’s approach,

by which one can solve these problems in one’s head.

Not only does the general relativist’s approach have the merit of simplicity, it also

emphasises the essential unity of the subject. Using traditional “218 methods,” each problem

such as (1) or (2) above has to be solved by its own method, and the essential point that one

is really solving the same problem each time is lost in a haze of force diagrams, bouyancy

forces, reaction forces, etc.

After this little Newtonian interlude, let us now return to general relativity in all its

glory.

2.3 The Geodesic Equation

Consider first a particle in Minkowski spacetime, on which no external forces are acting. We

shall denote the spacetime coordinates by xµ, where 0 ≤ µ ≤ 3, with µ = 0 corresponding

to the time coordinate. The Minkowski metric is then

ds2 = ηµν dx
µ dxν , (2.9)

where

η = diag (−1, 1, 1, 1) . (2.10)

(We are using units here where the speed of light is set equal to 1. For example, distance

is measured in light-seconds.) The quantity ds2 gives the squared interval between two

neighbouring spacetime “events,” at (x0, x1, x2, x3) and (x0+dx0, x1+dx1, x2+dx2, x3+dx3).

One also has the notion of the proper-time interval dτ between the events, where

dτ2 = −ds2 = −ηµν dx
µ dxν . (2.11)
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If the two events are at the same spatial location, so that dx1 = dx2 = dx3 = 0, then the

proper-time interval is just equal to the coordinate time interval dt, where t = x0. Thus,

for example, proper time is the coordinate time in the rest frame of a particle.

Assuming that the particle is not massless (so that it has a rest frame), we can use the

elapse of proper time to parameterise the motion of the particle. In other words, we can

say that the particle’s spacetime coordinates at proper time τ are given by xµ(τ). Clearly

the particle will move in a straight line, since no external forces are acting, and we can

characterise this by the equation
d2xµ(τ)

dτ2
= 0 . (2.12)

Actually, it will be convenient to suppose that we start out using a coordinate system

x′µ, so that the equation for the particle’s motion is

d2x′µ(τ)

dτ2
= 0 . (2.13)

Now we transform to a completely arbitrary system of coordinates xµ; these can be related

to the x′µ by any general coordinate transformation. Using the chain rule, we therefore

have from (2.13) that
d2xµ

dτ2
+
∂xµ

∂x′ν
∂2x′ν

∂xρ∂xσ

dxρ

dτ

dxσ

dτ
= 0 . (2.14)

We can also calculate the metric tensor gµν in the unprimed coordinate system, by using

the chain rule:

ds2 = ηαβ dx
′α dx′β =

∂x′α

∂xµ

∂x′β

∂xν
ηαβ dx

µ dxν ≡ gµν dx
µ dxν , (2.15)

and so

gµν =
∂x′α

∂xµ

∂x′β

∂xν
ηαβ . (2.16)

Similarly, the inverse metric is given by

gµν =
∂xµ

∂x′α
∂xν

∂x′β
ηαβ . (2.17)

It is a straightforward, if somewhat tedious, exercise to verify from the definition (1.110) of

the affine connection that the equation (2.14) is nothing but

d2xµ

dτ2
+ Γµ

νρ
dxν

dτ

dxρ

dτ
= 0 . (2.18)

We derived equation (2.18) by rewriting the equation for a particle in free straight-line

motion in Minkowski spacetime in an arbitrary coordinate system. However, (2.18) is in

fact a completely covariant equation, and we can adopt it as the definition of “straight-line
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motion” for a particle in any spacetime. More properly, we should not say straight-line

motion, since that is a rather ambiguous notion. Instead, we call it Geodesic motion. Thus

(2.18) is the Geodesic Equation, which describes the motion of a massive particle in free-fall

motion in any spacetime, flat or curved.

One can easily see, from the definition of the covariant derivative, that (2.18) can be

written as
dxν

dτ
∇ν

dxµ

dτ
= 0 . (2.19)

This makes it manifest that the geodesic equation is covariant, since clearly dxµ/dτ are

the components of a vector. In fact, we could have got directly from (2.13) to (2.18) for

a particle in Minkowski spacetime rewritten in the unprimed coordinate system, simply by

noting that (2.13) can be written as

dx′ν

dτ
∂′ν
dx′µ

dτ
= 0 , (2.20)

and then noting that under a change of coordinates, this must become an equation that is

covariant with respect to general coordinate transformations. Thus it must become (2.19),

since there is no other possible covariant equation one could write down.

The geodesic equation (2.18) is the analogue in general relativity of Newton’s second

law applied to the case of a particle in a gravitational field. To see this, it is useful to

consider the geodesic equation in the Newtonian limit, where the gravitational field is very

weak and stationary, and the particle is moving slowly. It will be convenient to split the

spacetime coordinate index µ into µ = (0, i), where i ranges only over the spatial index

values, 1 ≤ i ≤ 3. Saying that the velocity is small (compared with the speed of light)

means that
∣∣∣
dxi

dt

∣∣∣ << 1 . (2.21)

From (2.11) it follows that coordinate time t and proper time τ are essentially the same,

and thus we also have
dx0

dτ
≈ 1 . (2.22)

Consider now the spatial components of the geodesic equation (2.18). In this Newtonian

limit, it therefore approximates to

d2xi

dt2
+ Γi

00 = 0 . (2.23)

Furthermore, since we are assuming the gravitational field is weak, we can assume that

the metric is nearly flat, in which case we can choose a coordinate system in which it is
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approximated by small deviations from the Minkowski metric:

gµν = ηµν + hµν , (2.24)

where the deviations hµν are very small compared to 1. From the expression (1.110) for the

Christoffel connection, we therefore have, with the stationarity assumption ∂hµν/∂t = 0,

that

Γi
00 ≈ −1

2∂ih00 . (2.25)

Thus the geodesic equation reduces in the Newtonian limit to

d2xi

dt2
= 1

2∂ih00 . (2.26)

We now compare this with the Newtonian equation for a particle moving in a gravita-

tional field. If the Newtonian potential is Φ, then the equation of motion following from

Newton’s second law (assuming that the gravitational and inertial masses are equal!) is

d2xi

dt2
= −∂iΦ . (2.27)

Comparing with (2.26), we see that

h00 = −2Φ . (2.28)

(We can take the constant of integration to be zero, since at large distance, where the

Newtonian potential vanishes, the metric should reduce to exactly the Minkowski metric.)

Notice that in general relativity the equality of gravitational and inertial mass is built in

from the outset; the geodesic equation (2.18) makes no reference to the mass of the particle.

Another important point is to note that in the geodesic equation (2.18), the Christoffel

connection Γµ
νρ is playing the rôle of the “gravitational force,” since it is this term that

describes the deviation from “linear motion” d2xµ/dτ2 = 0. The fact that the gravitational

force is described by a connection, and not by a tensor, is just as one would hope and

expect. The point is that gravity can come or go, depending on what system of coordinates

one uses. In particular, if one chooses a free-fall frame, in which the metric at any given

point can be taken to be the Minkowski metric, and the first derivatives can also be taken

to vanish at the point, then the Christoffel connection vanishes at the point also. Thus

indeed, we have the vanishing of gravity (weightlessness) in a local free-fall frame.
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2.4 The Einstein Field Equation

So far, we have seen how matter responds to gravity, namely, the geodesic equation which

shows how matter moves under the influence of the gravitational field. The other side of

the coin is to see how gravity is determined by matter. The equation which controls this is

the Einstein field equation. This is the analogue of the Newtonian equation

∇2 Φ = 4πGρ , (2.29)

which governs the Newtonian gravitational potential Φ in the presence of a mass density ρ.

Here G is Newton’s constant.

The required field equation in general relativity can be expected, like Newton’s field

equation, to be of order 2 in derivatives. Again we can proceed by considering first the

Newtonian limit of general relativity. Since, as we have seen, the deviation h00 of the metric

component g00 from its Minkowskian value −1 is equal to −2Φ in the Newtonian limit, we

are led to expect that the Einstein field equation should involve second derivatives of the

metric. We also expect that it should be a tensorial equation, since we would like it to have

the same form in all coordinate frames. Luckily, there exist candidate tensors constructed

from the metric, since, as we saw earlier, the Riemann tensor, and its contractions to the

Ricci tensor and Ricci scalar, involve second derivatives of the metric. Some appropriate

construct built from the curvature will therefore form the “left-hand side” of the Einstein

equation.

There remains the question of what will sit on the right-hand side, generalising the mass

density ρ. There is again a natural tensor generalisation, namely the energy-momentum

tensor, or stress tensor, Tµν . This is a symmetric tensor that describes the distribution

of mass (or energy) density, momentum flux density, and stresses in a matter system.

Specifically, if we decompose the four-dimensional spacetime index µ as µ = (0, i) as before,

then T00 describes the mass density, T0i describes the 3-momentum flux, and Tij describes

the stresses within the matter system.

A very important feature of the energy-momentum tensor for a closed system is that it

is conserved, meaning that

∇µ Tµν = 0 . (2.30)

This is analogous to the conservation law ∇µJµ = 0 for the 4-vector current density in

electromagnetism. In that case, the conservation law ensures that charge is conserved, and

by integrating J0 over a closed spatial 3-volume and taking a time derivative, one shows

that the rate of change of total charge within the 3-volume is balanced by the flux of electric
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current out of the 3-volume. Analogously, (2.30) ensures that the rate of change of total

energy within a closed 3-volume is balanced by the momentum flux out of the region.

If we are to build a field equation whose right-hand side is a constant multiple of Tµν , it

follows, therefore, that the left-hand side must also satisfy a conservation condition. There

is precisely one symmetric 2-index tensor built from the curvature that has this property,

namely the Einstein tensor

Gµν ≡ Rµν − 1
2Rgµν , (2.31)

which we met in equation (1.163). Thus our candidate field equation is Gµν = λTµν , i.e.

Rµν − 1
2Rgµν = λTµν , (2.32)

for some universal constant λ, which we may determine by requiring that we obtain the

correct weak-field Newtonian limit.

In a situation where the matter system has low velocities, its energy-momentum tensor

will be dominated by the T00 component, which describes the mass density ρ. Thus to find

the Newtonian limit of (2.32), we should examine the 00 component. To do this, it is useful

first to take the trace of (2.32), by multiplying by gµν . This gives

−R = λ gµν Tµν . (2.33)

Since Tµν is dominated by T00 = ρ, and the metric is nearly the Minkowski metric (so

g00 ≈ −1), we see that

R ≈ λ ρ (2.34)

in the Newtonian limit. Thus, (2.32) reduces to

R00 ≈ 1
2λρ . (2.35)

It is easily seen from the expression (1.138) for the Riemann tensor, and the definition

(1.160) for the Ricci tensor, that from (2.25) the component R00 is dominated by

R00 ≈ ∂iΓ
i
00 ≈ −1

2∂i∂
i h00 . (2.36)

From (2.28) we therefore have that R00 ≈ ∇2 Φ in the Newtonian limit, and hence, from

(2.35), we obtain the result

∇2 Φ ≈ 1
2λ ρ . (2.37)

It remains only to compare this with Newton’s equation (2.29), thus determining that

λ = 8πG.
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In summary, therefore, we have shown that the Einstein field equation

Rµν − 1
2Rgµν = 8π G Tµν (2.38)

has the correct Newtonian limit.

Note that the Einstein equation is a gravitational analogue of the field equation in

Maxwell’s theory of electromagnetism. Let us consider Maxwell’s equations in Minkowski

spacetime for simplicity. One introduces the antisymmetric Maxwell tensor Fµν , whose

components are given in terms of the 3-vector electric field and magnetic field by

F0i = −Fi0 = −Ei , Fij = εijkBk . (2.39)

The Maxwell field-strength tensor F = 1
2Fµν dx

µ ∧dxν (which is a 2-form) can be expressed

in terms of the exterior derivative of the 1-form gauge potential A = Aµ dx
µ, namely

F = dA, or in terms of components,

Fµν = ∂µAν − ∂νAµ . (2.40)

The Maxwell field equation then reads

∂µ F
µν = −4π Jν , (2.41)

where Jµ is the 4-vector current density, with components

J0 = ρe , J i = ji . (2.42)

Here ρe is the electric charge density and the 3-vector ~j, with components ji, is the 3-vector

current density. By considering the cases ν = 0 and ν = i in the Maxwell equation (2.41),

one recovers the familiar 3-vector Maxwell equations

~∇ · ~E = 4π ρe , ~∇× ~B − ∂ ~E

∂t
= 4π~j (2.43)

respectively.8 In terms of the gauge potential A introduced in (2.40), the Maxwell equation

(2.41) is of second-order in derivatives.

8We have chosen units where the permitivity and permeability of free space are set to 1. Note that all

the dimensionful so-called “fundamental constants,” such as the speed of light, the permitivity of free space,

Newton’s constant, etc., are in actuality not really fundamental at all, but merely reflect the fact that we

sometimes choose, for no logically necessary reason, to use different systems of units for measuring quantities

that could perfectly well be measured in the same units. An example, which we met already, is that one can

set the speed of light equal to 1 if one measures distance in light-seconds.
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Note that with F written, locally at least, as F = dA, we have dF = 0, which reads in

component language

∂[µ Fνρ] = 0 . (2.44)

Taking the two distinct cases (µνρ) = (0, i, j) and (µνρ) = (ijk), this implies

~∇× ~E +
∂ ~B

∂t
= 0 , ~∇ · ~B = 0 (2.45)

respectively. These are the remaining two Maxwell equations in terms of 3-vector notation.

These are really identities, rather than field equations. In fact there is a close analogy

with the notion of curvature in differential geometry, with F being the curvature of the

connection A, and the equation dF = 0 being a Bianchi identity.

The Einstein equation (2.38) and the Maxwell equation (2.41) have considerable simi-

larities, namely a left-hand side that is a curvature built from the fundamental field of the

theory, and a right-hand side that is a source term, built from quantities such as mass or

charge densities, currents, etc.

The discussion of the Maxwell equations that we gave above was in the case of a

Minkowski spacetime background. It is, however, almost a triviality to generalise this

to the case of an arbitrary spacetime background. We need to find a generally-covariant

generalisation of the Minkowski-spacetime equation (2.41). The answer is trivially easy;

the only generally-covariant equation, with the same number of derivatives, that has the

property of reducing to (2.41) in Minkowski spacetime is

∇µ F
µν = −4π Jν , (2.46)

and so this is what the Maxwell field equation in a general spacetime must be. The other

“half” of the Maxwell equations, namely the Bianchi identity (2.44), requires no modification

at all, since, as we well know, (2.44) is already a generally-covariant equation.

We have described above the form of the Maxwell equations in a general curved space-

time. In order to complete the discussion of the Einstein-Maxwell system, we need to

consider the Einstein equation. The energy-momentum tensor for the electromagnetic field

is given by

Tµν =
1

4π
(Fµρ Fν

ρ − 1
4F

2 gµν) , (2.47)

where F 2 = F µν Fµν . We then substitute this into the Einstein equation (2.38). Setting

Newton’s constant G = 1 for convenience, the complete system of equations for gravity and

electromagnetism, known collectively as the Einstein-Maxwell equations, is therefore

Rµν − 1
2Rgµν = 2(Fµρ Fν

ρ − 1
4F

2 gµν) ,
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∇µF
µν = 0 ,

∂[µ Fνρ] = 0 . (2.48)

(Note that we have taken the 4-vector current Jµ to be zero here. In other words, we the

equations we have written are for the pure Einstein-Maxwell system, with no additional

charged matter present.)

2.5 The Schwarzschild Solution

Although the Einstein equation (2.38) and the Maxwell equation (2.41) have quite a lot in

common, there is, however, a very important difference, which reflects itself in the difficulty

of solving the equation, and in the richness of the solutions.

The left-hand side of the Maxwell equation is linear in the basic gauge field A, whereas

the basic field in general relativity, i.e. the metric tensor gµν , appears highly non-linearly

in the left-hand side of the Einstein equation. As a result, when one looks for solutions to

the field equations in general relativity, one is faced with the problem of solving non-linear,

rather than linear, differential equations.

On account of the non-linearity of the Einstein equation, it came as a considerable

surprise to everybody in 1916 (one year after Einstein published his general theory of rela-

tivity) when Karl Schwarzschild succeeded in obtaining the exact solution for a spherically

symmetric mass distribution. It was more or less his final achievement; he died in Russia a

few months later, having enlisted to fight in the First World War.

The Schwarzschild solution is arguably the most important solution in general relativity.

It is the analogue of the solution for the electric field outside a spherical charge distribution

in Maxwell’s theory, but it is enormously more subtle and intriguing. In fact, it was really

only in the 1960’s that it was properly understood, and taken seriously in its own right. It

is the solution describing a spherically-symmetric black hole.

The derivation of the Schwarzschild solution is rather straightforward, and in view of

its simplicity, we shall present it here. After a sequence of arguments, based on symmetry

considerations together with the fact that one can choose coordinates arbitrarily in general

relativity, it can be established that with a convenient choice of coordinate system, the

metric for a static and spherically-symmetric geometry can be written in the form

ds2 = −B(r) dt2 +A(r) dr2 + r2 (dθ2 + sin2 θ dφ2) , (2.49)

where A(r) and B(r) are as-yet arbitrary functions of the radial variable r. They will be

determined by solving the Einstein equation. Note that if we were to set A(r) = B(r) = 1,
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we would just get the metric

ds2 = −dt2 + dr2 + r2 (dθ2 + sin2 θ dφ2) , (2.50)

which is nothing but Minkowski spacetime with the spatial Euclidean 3-metric written in

spherical polar coordinates.

Our interest is in the case of a source-free static spherically-symmetric solution, which

is the gravitatiional analogue of the point charge in electrodynamics. Thus we wish to solve

the Einstein equation (2.38) with Tµν = 0. By taking the trace (i.e. by multiplying by

gµν), we immediately see that the Ricci scalar must vanish, and hence the vacuum Einstein

equation reduces to the Ricci-flat condition

Rµν = 0 . (2.51)

To solve this, we take the assumed metric form (2.49), and then calculate the Christoffel

connection, the Riemann tensor, and finally the Ricci tensor. Demanding that this be zero

will then give us some non-linear equations for the metric functions A(r) and B(r). Taking

the coordinate indices to be

x0 = t , x1 = r , x2 = θ , x3 = φ , (2.52)

it is not hard to see from (1.110) that the non-vanishing components of the Christoffel

connection Γµ
νρ are given by

Γ0
01 =

B′

2B
,

Γ1
00 =

B′

2A
, Γ1

11 =
A′

2A
, Γ1

22 = − r

A
, Γ1

33 = −r sin2 θ

A
,

Γ2
12 =

1

r
, Γ2

33 = − sin θ cos θ ,

Γ3
13 =

1

r
, Γ3

23 = cot θ . (2.53)

(Of course, as always the symmetry in the lower two indices is understood, so we do not

need to list the further components that are implied by this.) The notation here is that

A′ = dA/dr and B ′ = dB/dr.

Plugging into the definition of the Rieman tensor, and then contracting to get the Ricci

tensor, one then finds that the non-vanishing components are given by

R00 =
B′′

2A
− B′

4A

(A′

A
+
B′

B

)
+
B′

rA
,

R11 = −B
′′

2B
+
B′

4B

(A′

A
+
B′

B

)
+
A′

rA
,
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R22 = 1 +
r

2A

(A′

A
− B′

B

)
− 1

A
,

R33 = R22 sin2 θ . (2.54)

To solve the Ricci-flatness condition (2.51) we first note that setting AR00 +BR11 = 0

gives
1

r

(
B′ +

A′B
A

)
= 0 , (2.55)

which implies (AB)′ = 0. Thus we have

AB = constant . (2.56)

Now at large distance, we expect the metric to approach Minkowski spacetime, and so it

should approach (2.50). This determines that A(r) and B(r) should both approach 1 at

large distance, and hence we see that the constant in the solution (2.56) should be 1, and

so A = 1/B.

From the condition R22 = 0, we then obtain the equation

1 − rB′ −B = 0 , (2.57)

which can be written as

(rB)′ = 1 . (2.58)

The solution to this, with the requirement that B(r) approach 1 at large r, is given by

B = 1 +
a

r
, (2.59)

where a is a constant. It is straightforward to verify that all the Einstein equations implied

by Rµν = 0 are now satisfied.

Recalling that we showed previously that in the weak-field Newtonian limit, the metric

gµν is approximately of the form gµν = ηµν +hµν with h00 = −2Φ, where Φ is the Newtonian

gravitational potential (see equation (2.28)), it follows that the constant a in (2.59) can be

determined, by considering the Newtonian limit. Thus we shall have a = −2GM , where G

is Newton’s constant. Usually, in general relativity we choose units where G = 1, and so

we arrive at the Schwarzschild solution

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2 (dθ2 + sin2 θ dφ2) . (2.60)

This describes the gravitational field outside a spherically-symmetric static mass M .

As expected, the solution approaches Minkowski spacetime at large radius. It is clear

that something rather drastic happens to the metric when r approaches 2M . This radius,
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known as the Schwarzschild Radius, was thought for many years to correspond to some

singularity of the solution. It was really only in the 1950’s that it was first understood that

the apparent singularity is merely a result of using a system of coordinates that becomes

ill-behaved there. There is nothing singular about the solution as such. For example, the

curvature is perfectly finite there, and in fact the only place where there is a curvature

singularity is at r = 0.

There is, nevertheless, something intrinsically special about the Schwarzschild radius.

The coordinate system in which the metric (2.60) is written is one that it well-adapted

to describing the large-radius, or asymptotically flat, region. The coefficient of dt2 passes

through 0 and becomes positive for r < 2M , which means that t has then become a spatial

coordinate. At the same time, the coefficient of dr2 becomes negative, and so inside the

region r < 2M the coordinate r has become timelike.

What is happening is that the light cones (i.e. the trajectories followed by the light-fronts

coming from a flash of light) are tilting over more and more as one approaches r = 2M

from the outside. This means that it is getting harder and harder for anything to escape

out to infinity. Eventually, by the time one reaches r = 2M , not even light is able to escape

to the future. This is what is called an event horizon. Nothing can escape to the outside

from within the event horizon, and it is for this reason that John Wheeler coined the term

black hole to describe the object.

The full global structure of black holes was finally understood in the 1960’s. At that

stage, they were still thought to be rather abstract and physically unrealistic objects, al-

though work by Hawking, Penrose and others had by then established that it was inevitable

that stars beyond a certain mass would eventually inevitably collapse to black holes, once

the nuclear reactions supporting them against gravitational collapse were exhausted.

In much more recent times it has been understood that there is a giant black hole sitting

at the centre of virtually every galaxy, including our own.

It should also be emphasised that the Schwarzschild solution can be used to describe

the geometry outside any spherically-symmetric and stationary mass distribution, such as

a non-rotating star or planet. In that case, the Schwarzschild solution itself would apply

only down to the radius of the surface of the object (i.e. only in the exterior region where

there is no matter). Inside the object, one would match on the metric that arises as the

solution of the Einstein equation with a Tµν source term, where Tµν is the energy-momentum

tensor for the matter of which the star or planet is composed. The solution is then precisely

analogous to solving Maxwell’s equations for the field outside a spherically-symmetric charge
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distribution. Outside the charged object, one is just solving the vacuum Maxwell equation,

which leads to a potential Q/r where Q is the total charge of the configuration. Inside the

object, one has to solve the Maxwell equation with the detailed charge distribution as the

source. The two are matched at the surface of the charged object.

Thus, for example, the Schwarzschild metric (2.60) describes the exact gravitational

field outside the sun (assuming that we neglect effects of rotation), with M being the mass

of the sun. Of course in a case such as this, the solution (2.60) applies down to r = rsun,

the radius of the sun. This radius is very much greater than the Schwarzschild radius 2M

for a black hole whose mass is that of the sun (which would be about 1km).

2.6 Orbits Around a Star or Black Hole

In section 2.3, we derived the geodesic equation (2.18), which describes how a test particle

will move in an arbitrary gravitational field. We can now use this equation to study the

orbits of particles moving in the Schwarzschild geometry. This allows us to study, for exam-

ple, planetary orbits around the sun. In particular, we can then investigate the deviation

from the usual Kepler laws of planetary orbits implied by general relativity. We can also

consider orbits in the more extreme situation of a black hole.

In order to study the geodesic equation in detail, it is useful first to show how it can be

derived from a variational principle. This works as follows. We consider the Lagrangian

L = 1
2gµν ẋ

µ ẋν , (2.61)

where a dot denotes a derivative with respect to the proper time τ that parameterises the

path xµ(τ) of the particle. (We are assuming here that the particle is not massless, so that

we can use the proper time to parameterise its path.) The geodesic equation (2.18) can

then be derived by requiring that the action

I =

∫
L dτ (2.62)

be stationary with respect to variations of the path xµ(τ). To show this, we perform the

following manipulations:

δI =

∫
δL dτ = 1

2

∫
(gµν ẋ

µ δẋν + 1
2∂ρgµν ẋ

µ ẋν δxρ) dτ

=

∫ (
− d

dτ
(gµρẋ

µ) + 1
2∂ρgµν ẋ

µ ẋν
)
δxρ dτ

=

∫ (
− gµρ ẍ

µ − ∂νgµρ ẋ
ν ẋµ + 1

2∂ρgµν ẋ
µ ẋν

)
δxρ dτ . (2.63)
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In the first line, we have simply varied the path xν(τ), with the second term taking into

account that gµν itself depends on xρ. In the second line, we have integrated the first term by

parts, throwing the derivative off the δxν and onto its cofactor. We also, for convenenience,

relabelled the dummy index ν in the first term as ρ, so that we could pull out a factor δxρ

overall. In the third line we distributed the d/dτ in the first term, using the chain rule to

differentiate gµρ which depends on xν which depends on τ .

Demanding that the action be stationary under this infinitesimal variation of the path

amounts to requiring that δI = 0 for any δxρ, which therefore means that

gµρ ẍ
µ + ∂νgµρ ẋ

ν ẋµ − 1
2∂ρgµν ẋ

µ ẋν = 0 . (2.64)

Note that all we have been doing here is deriving the Euler-Lagrange equations

d

dτ

( ∂L
∂ẋµ

)
− ∂L
∂xµ

= 0 , (2.65)

for the Lagrangian (2.61), where L depends on a set of coordinates xµ and their velocities

ẋµ.

In view of the symmetry of ẋµ ẋν under the interchange of µ and ν, we can rewrite (2.64)

as

gµρ ẍ
µ + 1

2(∂νgµρ + ∂µgνρ − ∂ρgµν) ẋµ ẋν = 0 . (2.66)

Finally, multiplying by gσρ we obtain

ẍσ + 1
2g

σρ(∂νgµρ + ∂µgνρ − ∂ρgµν) ẋµ ẋν = 0 , (2.67)

and then from the definition (1.110) we can recognise this as precisely the geodesic equation

(2.18), namely (after an index relabelling)

ẍµ + Γµ
νρ ẋ

ν ẋρ = 0 . (2.68)

Before proceeding, it is worth pausing to note, as an aside, that we can use the result

above as a convenient way to calculate the Christoffel connection components in any metric.

We just write down the Lagrangian (2.61), derive the Euler-Lagrange equations (2.65) in

the standard way, and organise the resulting equation (after raising the free index ν using

gµν , for each value of µ, in the form (2.68). We can then simply read off the Christoffel

connection components. The nice thing about this calculation is that each Euler-Lagrange

equation (i.e. for each value of µ) provides the results for all the connection components

Γµ
νρ for all ν and ρ in one go.
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Here’s an example, for the 2-sphere metric ds2 = dθ2 +sin2 θdφ2 that we studied earlier.

The Lagrangian is therefore

L = 1
2 θ̇

2 + 1
2 sin2 θ φ̇2 , (2.69)

leading to the Euler-Lagrange equations

θ̈ + sin θ cos θ φ̇2 = 0 , sin2 θ φ̈+ 2 sin θ cos θ θ̇φ̇ = 0 . (2.70)

Thus we read off, taking x1 = θ, x2 = φ, that

Γ1
22 = sin θ cos θ , Γ2

12 = cot θ . (2.71)

(Take care about the factor of 1
2 when reading off a component such as Γ2

12!)

The upshot of this somewhat lengthy diversion is that we have a rather simple way of

obtaining the geodesic equation without the necessity of slogging out the expressions for all

the components of the Christoffel connection. There is one further thing we should do, and

that is to note that for the actual path followed by the particle, the Lagrangian (2.61) is

equal to − 1
2 . This is easily seen; we just note that it is given by

L = 1
2gµν ẋ

µ ẋν = 1
2gµν

dxµ

dτ

dxν

dτ
= 1

2

gµν dx
µ dxν

dτ2
= −1

2

dτ2

dτ2
= −1

2 . (2.72)

Let us now apply the above discussion to the case of geodesics in the geometry of the

Schwarzschild metric (2.60). We therefore consider the Lagrangian

L = −1
2B ṫ2 + 1

2B
−1 ṙ2 + 1

2r
2(θ̇2 + sin2 θ φ̇2) , (2.73)

where as before

B = 1 − 2M

r
. (2.74)

As in any Lagrangian problem, if L does not depend on a particular coordinate q (i.e. it

is what is called an “ignorable coordinate”), then one has an associated first integral, since

its Euler-Lagrange equation
d

dτ

(∂L
∂q̇

)
− ∂L
∂q

= 0 (2.75)

reduces to
d

dτ

(∂L
∂q̇

)
= 0 , (2.76)

which can be integrated to give
∂L
∂q̇

= constant . (2.77)

In our case, t and φ are ignorable coordinates, and so we have the two first integrals

B ṫ = E , r2 sin2 θ φ̇ = J , (2.78)
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for integration constants E and J . The first of these is associated with energy conservation,

and the second with angular-momentum conservation. We also have (2.72), which is like

another first integral, giving

Bṫ2 −B−1 ṙ2 − r2θ̇2 − r2 sin2 φ̇2 = 1 . (2.79)

Of course one can plug (2.78) into (2.79).

It is easy to see, because of the symmetries of the problem, that just as in Newtonian

mechanics, planetary orbits will lie in a plane. Because of the symmetries, we can, without

loss of generality, take this to be the equatorial plane, θ = 1
2π. (The test of the assertion

that the motion lies in a plane is to verify that the Euler-Lagrange equation for θ implies

that θ̈ = 0 if we set θ = 1
2π and θ̇ = 0. In other words, if one starts the particle off

with motion in the equatorial plane, it stays in the equatorial plane. We leave this as an

exercise.)

If we proceed by taking θ = 1
2π we have three first integrals for the three coordinates t,

φ and r, and so the Euler-Lagrange equation for r is superfluous (since we already know its

first integral). From (2.78) and (2.79) we therefore have

(
1 − 2M

r

)
ṫ = E , r2 φ̇ = J , ṙ2 = E2 −

(
1 +

J2

r2

)(
1 − 2M

r

)
. (2.80)

Note that the third equation has been obtained by substituting the first two into (2.79),

and using also (2.74).

If we rewrite the third equation in (2.80) as

ṙ2 + V (r) = E2 , (2.81)

where

V (r) =
(
1 +

J2

r2

)(
1 − 2M

r

)
, (2.82)

then it can be recognised as the equation for the one-dimensional motion of a particle

of mass m = 2 in the effective potential V (r). It is worth remarking that if we were

instead solving the problem of planetary orbits in Newtonian mechanics, we would have

V (r) = J2/r2 − 2M/r. The extra term 1 in the general relativistic expression (2.82) is

just a shift in the zero point of the total energy E2, corresponding to the rest mass of the

particle. The important difference in general relativity is the extra term −2MJ 2/r3 that

comes from multiplying out the factors in (2.82). As we shall see, this term implies that

the major axis of an elliptical planetary orbit will precess, rather than remaining fixed as
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it does in the Newtonian case. This is a testable prediction of general relativity, that has

indeed been verified.

The nature of the orbits is determined by the shape of the effective potential V (r) in

equation (2.82). In particular, the crucial question is whether it has any critical points

(where the derivative vanishes). From (2.82) we have

dV

dr
= −2J2

r3
+

2M

r2
+

6MJ2

r4
, (2.83)

and so dV/dr = 0 if

r =
J2 ± J

√
J2 − 12M2

2M
. (2.84)

If J2 < 12M2 there are therefore no critical points, and the effective potential just

plunges from V = 1 at r = ∞ to V = −∞ as r goes to zero. There are no orbits possible

in this case.

If J2 > 12M2, the effective potential V (r) has two critical points, at radii r± given by

r± =
J2 ± J

√
J

2 − 12M2

2M
. (2.85)

The effective potential attains a maximum at r = r−, and a local minimum at r = r+.

There is a potential well in the region r0 ≤ r ≤ ∞, where V (r0) = 1 and r0 occurs at

some value greater than r− and less than r+. If the integration constant E (related to

the energy of the particle) is appropriately chosen, we can then obtain orbits in which r

oscillates between turning points that lie within the region r0 ≤ r ≤ ∞.

The simplest case to consider is a circular orbit, achieved when r = r+ so that we are

sitting at the local minimum at the bottom of the potential well. This will be achieved if

E2 = V (r+) , (2.86)

since then, as can be seen from (2.81), we shall have ṙ = 0 and so r = r+ for all τ .

To analyse the orbits in general, it is useful, as in the Newtonian case, to introduce a

new variable u instead of r, defined by

u =
M

r
. (2.87)

We also define a rescaled angular momentum parameter J̃ , defined by

J̃ =
J

M
. (2.88)
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Since r and φ are both functions of τ it is then convenient to consider r, or the new variable

u, as a function of φ. Elementary algebra shows that (2.81) gives rise to

(du
dφ

)2
+ (1 − 2u)(u2 + J̃−2) = E2 J̃−2 . (2.89)

In deriving this, we have used that du/dφ = u̇/φ̇, and we have substituted for φ̇ from (2.80).

The circular orbit discussed above corresponds, of course, to du/dφ = 0, and so if we

say this occurs at u = u0, with energy given by E0, we shall have

J̃−2 = u0(1 − 3u0) , (2.90)

coming from the condition that dV/dr = 0 at r = r0 = M/u0, and also

(1 − 2u0)(u
2
0 + J̃−2) = E2

0 J̃
−2 , (2.91)

coming from (2.89) with du/dπ = 0. Plugging (2.90) into (2.91), we can rewrite (2.91) as

E2
0 =

(1 − 2u0)
2

1 − 3u0
. (2.92)

Thus we have J̃ and E0 expressed in terms of the rescaled inverse radius u0 of the circular

orbit.

Having established the description of the circular orbit, we now consider an elliptical

orbit. A convenient way to describe this is to think of keeping J̃ the same, and u0 the

same, but changing to a different energy E. Simple algebra shows that (2.89) can then be

rewritten as

(du
dφ

)2
+ (1 − 6u0)(u− u0)

2 − 2(u− u0)
3 = (E2 −E2

0) J̃−2 . (2.93)

Written in this way, it is manifest that we revert to the circular orbit with u = u0 if we take

the energy to be E = E0.

The equation (2.93) is not easily solved analytically in terms of elementary functions.

However, for our purposes it suffices to obtain an approximate solution. To do this we

consider a slightly elliptical orbit, which can be described by writing

u = u0 (1 + ε cosωφ) . (2.94)

Here ε is the eccentricity, and we are going to take |ε| << 1. Plugging into (2.93), and

working only up to order ε2, we find

u2
0ω

2 sin2 ωφ+ (1 − 6u0)ε
2 cos2 ωφ = (E2 −E2

0)J̃−2 . (2.95)
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Thus our trial solution does indeed work, up to order ε2, if we have

ω2 = 1 − 6u0 , E2 = E2
0 + J̃2u2

0 (1 − 6u0) ε
2 . (2.96)

The important equation here is the first one. From the form of the trial solution (2.94),

we see that to go from one perihelion i.e. closest approach to the sun) to the next, the φ

coordinate should advance through an angle ∆φ, where

ω∆φ = 2π . (2.97)

Thus the azimuthal angle should advance by

∆φ =
2π√

1 − 6u0
. (2.98)

If ∆φ had been equal to 2π, the orbit would be a standard ellipse, returning to its perihelion

after exactly a 2π rotation. Instead, we have the situation that ∆φ is bigger than 2π, and so

the azimuthal angle must advance by a bit more than 2π before the next perihelion. Thus

the perihelion advances by an angle δφ per orbit, where

δφ = ∆φ− 2π . (2.99)

Now, we already noted that for a star such as the sun, the radius at its surface is hugely

greater than the Schwarzschild radius for an object of the mass of the sun. Therefore

since planetary orbits are certainly outside the sun (!), we have r0 >> M , and so, from

(2.87), we have u0 << 1. We can therefore use a binomial approximation for (1−6u0)
−1/2 =

1+3u0+· · · in (2.98), implying from (2.99) that the advance of the perihelion is approximated

by

δφ ≈ 6πu0 =
6πM

r0
. (2.100)

Clearly the effect will be largest for the planet whose orbital radius r0 is smallest. This can

be understood intuitively since it is experiencing the greatest gravitational attraction (it is

deepest in the sun’s gravitational potential), and so it experiences the greatest deviation

from Newtonian gravity. In our solar system, it is therefore the planet Mercury that will

exhibit the largest perihelion advance.

We can easily restore the dimensionful constants G and c in any formula at any time,

just by appealing to dimensional analysis, i.e. noting that Newton’s constant and the speed

of light have dimensions

[G] = M−1 L3 T−2 , [c] = LT−1 . (2.101)
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Thus equation (2.100) becomes

δφ ≈ 6πGM

c2r0
. (2.102)

Putting in the numbers, this amounts to about 43 seconds of arc per century, for the advance

of the perihelion of Mercury. Tiny though it is, this prediction has indeed been confirmed

by observation, providing a striking vindication for Einstein’s theory of general relativity.

3 Lie Groups and Algebras

3.1 Definition of a Group

Let us begin by defining a group. A group is a set A with the following additional structure:

1. A law of composition such that for each pair of elements a1 and a2, we get a third

element denoted by a1 ◦ a2.

2. The law of composition must be associative, i.e.

a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3 . (3.1)

3. There must exist a unit element e, such that for any element a we have

e ◦ a = a ◦ e = a . (3.2)

4. For every element a in A, there must exist an inverse element a−1 such that

a ◦ a−1 = a−1 ◦ a = e . (3.3)

Some examples illustrating cases where there is a group structure, and where there isn’t,

are the following:

(a) The set of integers, Z, with addition as the law of composition, form a group. The

identity element is 0, and the inverse of the integer n is the integer −n:

n+ 0 = 0 + n = n ,

n+ (−n) = (−n) + n = 0 . (3.4)

(b) The set of integers, with multiplication as the law of composition, do not form a group.

An identity element exists ((i.e. 1), but the inverse of the integer n is 1/n, which is

not a member of the set of integers Z.
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(c) The two integers {1,−1} form a group under multiplication. This is called the group

Z2.

(d) The set IR of all real numbers −∞ < r <∞ forms a group under addition.

(e) The set IR does not form a group under multiplication, since although the identity

element exists (i.e. 1), not every element of IR has an inverse; the inverse of 0 does

not exist.

(f) The set IR+ of all positive real numbers 0 < r <∞ forms a group under multiplication.

In all the examples (a), (c), (d) and (f) of groups, we have the feature that a ◦ b = b ◦ a
for any elements a and b. If all group elements satisfy this commutativity property, the

group is said to be abelian. If there exist group elements for which a ◦ b 6= b ◦ a, the group

is said to be non-abelian.

An example of a non-abelian group is the set of all real n×nmatrices with non-vanishing

determinant, where the law of composition is matrix multiplication. The condition of non-

vanishing determinant ensures that every group element a has an inverse (the usual matrix

inverse a−1). However, matrix multiplication is non-commutative, and so in general ab 6= ba.

In our examples above, we have included discrete groups, where the number of elements

is finite (as in case (c), where the group Z2 has two elements) or infinite (as in case (a),

where the group Z has a countable infinity of elements). We have also given an example of

continuous groups, namely IR in case (d), and IR+ in case (f).

A finite group is said to be of order n if it has n elements. For example Z2 is of order 2,

while the group Z of integers under addition is of (countable) infinite order. All continuous

groups are of uncountable infinite order. A useful way of characterising the “size” of a

continuous group is by means of its dimension. The dimension of a continuous group is the

number of independent continuous functions, or coordinates, that are needed in order to

parameterise all the group elements. For example, for the group IR of real numbers under

addition, we need the single real parameter x, where −∞ < x <∞.

One can form higher-dimension groups by taking tensor products of lower-dimension

groups. For example, IRn (the n-fold tensor product of IR) is a group of dimension n, since

we need n real parameters xi, one for each copy of IR.

Note that we can also have groups for fields other than just the real numbers. For

example, consider IC, the group of complex numbers under addition. To parameterise a

point in IC we need one complex number z, which we can write as z = x + i y in terms of
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two real numbers x and y. Thus we would say that IC has complex dimension 1, and hence

real dimension 2.

In this course, we shall be principally interested in continuous groups. In fact, we shall be

interested in continuous groups with some extra structure, which are known as Lie groups.

3.2 Lie Groups

A Lie group of real dimension n is a set G that

1. Is a continuous group

2. Is an n-dimensional differentiable manifold

In other words, a Lie group is a continuous group in which the elements g in some patch

can be parameterised by a set of n real numbers, or coordinates. In the overlap region

between two patches, the first set of coordinates must be differentiable functions of the

second set, and vice versa. This is exactly the notion of a differentiable manifold as we

encountered earlier in these lectures.

The group combination law, and the taking of the inverse, should be smooth operations,

i.e.

(a) The coordinates of the product g ′′ = gg′ of two group elements g and g′ should be

differentiable functions of the coordinates of g and g ′, provided that all three elements

g, g′ and g′′ lie in a patch where a common set of coordinates can be used.

(b) The coordinates of g−1 should be differentiable functions of the coordinates of g,

whenever g and g−1 are covered by the same coordinate patch.

As in our earlier discussion of differentiable manifolds, we will encounter examples of

Lie groups where more than one coordinate patch is needed in order to cover the whole

group. In fact, this is the case in general; only in exceptional cases, such as IRn, can one

use a single coordinate patch to cover the entire group.

A simple example of a Lie group where more than one coordinate patch is required is

provided by the group U(1) of all unit-modulus complex numbers. Obviously, such numbers

g form a group under multiplication (since if g1 and g2 have unit modulus, then so does

g1g2). We can view the elements g as points on the unit circle x2 + y2 = 1 in the complex

plane, where z = x+i y. This shows that the group U(1) of unit-modulus complex numbers
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is isomorphic to the circle, S1. That is to say, there exists a 1-1 map between elements of

U(1) and elements of S1, which preserves the group combination law.

Locally, therefore, we can parameterise U(1) by means of a coordinate θ, by writing

group elements g as

g = ei θ , 0 ≤ θ < 2π . (3.5)

We now get into all the familiar issues that we encoutered in our earlier discussion of

manifolds; we cannot use θ to cover all of S1, since it suffers a discontinuous jump from 2π

to 0 as one crosses the point (x, y) = (1, 0) on the circle. As in section 1.3.1, we can introduce

a second coordinate θ̃ that starts from θ̃ = 0 at (x, y) = (−1, 0), and cover S1 in patches

using θ for all points except (x, y) = (1, 0), and θ̃ for all points except (x, y) = (−1, 0). Since,

as in (1.4), we have θ̃ = θ + π in the upper semicircular overlap (x > 0), and θ̃ = θ − π in

the lower semicircular overlap (x < 0), it follows that we have

ei θ̃ = −ei θ (3.6)

in the entire overlap region. One easily verifies that all the conditions of differentiablity,

etc., are satisfied.

It will be useful at this stage to enumerate examples of some of the most common

groups that one encounters in physics and mathematics. Before doing so, we give one

further definition:

A subgroup H of a group G is a subset of G for which the following properties hold:

1. The identity element e of G is contained in H

2. If h1 and h2 are any elements of H, then h1 ◦ h2 is an element of H, where ◦ is the

group composition law of G.

3. If h belongs to H, then so does h−1, where h−1 means the inverse of h according to

the group inverse law of G.

If H is a subgroup of G, this is denoted by

H ⊂ G . (3.7)

3.2.1 General linear group, GL(n, IR)

Let M(n, IR) denote the set of all real n× n matrices with non-vanishing determinant. As

we have already remarked, these matrices form a group under multiplication, which is called
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the General linear group. The requirement of non-vanishing determinant ensures that each

matrix A has an inverse, A−1. Clearly, the requirement of non-vanishing determinant is

compatible with the group combination law, since if detA 6= 0 and detB 6= 0 then

det(AB) = (detA)(detB) 6= 0 . (3.8)

The dimension of GL(n, IR) is equal to the number of independent components of a general

n × n real matrix, namely n2. Obviously, the requirement of non-vanishing determinant

places a restriction on the parameters, but since it is in the form of an inequality (detA 6= 0)

rather than an equality, it does not reduce the number of parameters needed to characterise

a general such matrix.

One can also consider the complex analogue, GL(n, IC), of n×n complex matrices of non-

vanishing determinant. Now, we need n2 complex parameters to specify a general GL(n, IC)

matrix, and so this group has complex dimension n2, implying real dimension 2n2.

3.2.2 Special linear group, SL(n, IR)

Many of the groups that arise in physics and mathematics are subgroups of GL(n, IR) or

GL(n, IC). The simplest example is the Special linear group, SL(n, IR). This is defined to

be the set of all real n× n matrices A with unit determinant, detA = 1. Obviously this is

a subgroup of GL(n, IR). It is also obvious that the requirement detA = 1 is compatible

with the group combination law (matrix multiplication), since if A and B are any two real

matrices with unit determinant, we have

det(AB) = (detA)(detB) = 1 . (3.9)

The condition detA = 1 imposes 1 real equation on the n2 parameters of a GL(, IR)

matrix, and so we have

dimSL(n, IR) = n2 − 1 . (3.10)

In a similar manner, we can define SL(n, IC), as the subgroup of GL(n, IC) comprising

all n× n complex matrices with unit determinant. This will have real dimension

dimSL(n, IC) = 2n2 − 2 , (3.11)

since the condition detA = 1 now imposes one complex equation, or in other words 2 real

equations, on the 2n2 real parameters of GL(n, IC).
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3.2.3 Orthogonal group, O(n, IR)

These groups are very important in physics, since, amongst other things, they describe

rotations in n-dimensional Euclidean space. O(n, IR) is defined as the subgroup of GL(n, IR)

comprising all real n× n matrices A for which

AAT = 1l , (3.12)

where AT denotes the transpose of the matrix A. Obviously these have non-vanishing

determinant, since

det(AAT ) = (detA)(detAT ) = (detA)2 = det 1l = 1 , (3.13)

and hence detA = ±1. Furthermore, it is obvious that the orthogonality condition (3.12)

is compatible with the group multiplication law, since if A and B are orthogonal matrices,

then so is (AB):

(AB)(AB)T = ABBTAT = AAT = 1l . (3.14)

Furthermore, if A is orthogonal then so is A−1, and so the inverse also belongs to the subset.

Usually, unless specified otherwise, it is assumed that the orthogonal groups are com-

posed of real orthogonal matrices, and so O(n, IR) is commonly written simply as O(n).

The dimension of O(n, IR) can be calculated by counting the number of independent

equations that the orthogonality condition

AAT − 1l = 0 (3.15)

imposes on a general n× n real matrix. Since AAT is a symmetric matrix,

(AAT )T = (AT )TAT = AAT , (3.16)

it follows that (3.15) contains the same number of independent equations as there are in an

n× n symmetric matrix, namely 1
2n(n+ 1). Therefore we have

dimO(n, IR) = n2 − 1
2n(n+ 1) = 1

2n(n− 1) . (3.17)

Note that we can also consider the subgroup SO(n, IR) of O(n, IR) comprising all n× n

orthogonal matrices with unit determinant. We saw above that the orthogonality condition

implied detA = ±1, and so now we are restricting to the subset of orthogonal matrices A

for which detA = +1. Obviously this is compatible with the group multiplication law, and

the group inverse. Since there are no additional continuous equations involved in imposing
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the restriction detA = +1, the dimension of SO(n, IR) is the same as the dimension of

O(n, IR):

dimSO(n, IR) = 1
2n(n− 1) . (3.18)

Note that SO(n, IR) is a subgroup of SL(n, IR), but O(n, IR) is not.

3.2.4 Unitary group, U(n)

The unitary group U(n) is defined as the subgroup of GL(n, IC) comprising all complex n×n
matrices A that are unitary:

AA† = 1l , (3.19)

where A† ≡ (AT )∗ is the hermitean conjugate of A (i.e. the complex conjugate of the

transpose). Again, one easily checks that the unitary condition is conpatible with the

matrix multiplication law of group combination, and with the inverse. By counting the

number of independent equations implied by the restriction (3.19), one straightforwardly

sees that the real dimension of U(n) is given by

dimU(n) = n2 . (3.20)

Note that the case n = 1 corresponds to complex numbers of unit modulus; we already

met the group U(1) in our earlier discussion.

3.2.5 Special unitary group, SU(n)

U(n) matrices A satisfy AA† = 1l, and so

det(AA†) = (detA)(detAT )∗ = (detA)(detA)∗ = |detA|2 = 1 , (3.21)

meaning that detA is a complex number of unit modulus. If we impose the further restric-

tion

detA = 1 , (3.22)

this says that the phase of the complex number is 0, and therefore it imposes 1 further

real condition on the components of the U(n) matrix. Since the condition detA = 1 is

obviously compatible with the law of multiplication and the group inverse, we see that the

group of special unitary n×n matrices, denoted by SU(n), is a subgroup of U(n) with real

dimension given by

dimSU(n) = n2 − 1 . (3.23)
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3.2.6 Some properties of SU(2)

We have already seen in detail for the ablian group U(1) how it is isomorphic to the circle,

S1. The general U(1) group element g is written as g = ei θ, where θ is the coordinate on

S1, and all the usual caveats about needing to cover S1 in patches apply.

Now, let us look at a slightly more complicated example, namely the non-abelian group

SU(2). For many purposes SU(2) is a very useful example to study, because it encapsulates

many of the generic features of any non-abelian Lie group. For now, we shall focus in

particular on the global structure of the SU(2) group manifold. As we shall see, it is

isomorphic to the 3-sphere S3.

To begin, consider the group U(2) of unitary 2 × 2 matrices, whose elements we may

write as

A =

(
a b

c d

)
, (3.24)

where (
a b

c d

) (
ā c̄

b̄ d̄

)
=

(
1 0

0 1

)
. (3.25)

In other words the complex numbers (a, b, c, d) are subject to the conditions

aā+ bb̄ = 1 , cc̄+ dd̄ = 1 , ac̄+ bd̄ = 0 . (3.26)

The first two equations are real, and so each imposes 1 real condition on the 4 complex

numbers. The third equation is complex, and so it imposes 2 further real conditions, making

4 real conditions in total. Thus we are leaft with 8− 4 = 4 real numbers characterising the

general U(2) matrix, in accordance with our earlier counting.

Now we impose the further condition detA = 1, in order to restrict to the subgroup

SU(2). This implies the further condition

ad− bc = 1 . (3.27)

(This is only one additional real condition, since the previous U(2) conditions already

ensured that detA must have unit modulus.) Thus SU(2) has dimension 8 − 4 − 1 = 3.

Multiplying (3.27) by c̄, and using (3.26), we can easily see that

c = −b̄ , d = ā , (3.28)

and in fact that these two equations, together with (3.27), imply the three equations in

(3.26). The upshot, therefore, is that we have parameterised the most general SU(2) matrix

in the form

A =

(
a b

−b̄ ā

)
, (3.29)

104



where

aā+ bb̄ = 1 . (3.30)

Thus A is written in terms of the two complex numbers a and b, subject to the single real

constraint (3.30).

If we now write a = x1 + ix2 and b = x3 + ix4 in terms of the four real numbers

(x1, x2, x3, x4), we see that the constraint (3.30) is

x2
1 + x2

2 + x2
3 + x2

4 = 1 . (3.31)

This can be interpreted as the the restriction of the coordinates (x1, x2, x3, x4) on IR4 to the

unit 3-sphere. Since we have established a 1-1 mapping between points in S 3 and points

in SU(2), and the mapping is clearly compatible with the group combination rule (matrix

multiplication), we have therefore shown that SU(2) and S3 are isomorphic,

SU(2) ∼= S3 . (3.32)

Having seen the isomorphisms U(1) ∼= S1 and SU(2) ∼= S3, one might wonder whether

any of the other Lie groups are isomorphic to spheres. In fact one can show that S 1 and S3

are the only spheres that are isomorphic to group manifolds. We shall return to this point

later.

3.3 The Classical Groups

At this point, it is appropriate to give a complete description of all the so-called Classical Lie

groups. To do so, recall from section (1.4.1) that we introduced the notion of a set of basis

vectors Ei on a vector space. (We shall use indices i, j, . . . here to label the basis vectors,

rather than a, b, . . . as in section (1.4.1).) We may now define the various classical groups

in terms of transformations between bases for an n-dimensional vector space V , together

with some possible additional structure imposed on the vector space.

3.3.1 The General Linear Group

This group requires the least structure, and is defined purely in terms of transformations

of the vector space itself. Thus we may define a new basis E ′
i, related to Ei by

E′
i = Ai

j Ej , (3.33)

for some set of n2 quantities Ai
j, which may be thought of as the components of an n× n

matrix A with rows labelled by i and columns labelled by j.
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In order that the change of basis be non-singular, so that we can invert to get Ei

expressed in terms of E ′
j, it must be that detA 6= 0. Thus we define GL(n, IR) as the

group of all real n×n matrices with non-vanishing determinant; it is the group of arbitrary

non-singular changes of basis for a real n-dimensional vector space.

In a similar fashion, we can define GL(n, IC), comprising n × n complex matrices A

with detA 6= 0, as the group of arbitrary non-singular transformations of an n-dimensional

complex vector space.

3.3.2 The Special Linear Group

To define the special linear groups, we form the n-fold antisymmetric tensor product of

the vector space V . To do this we proceed in a manner analogous to our discussion of

differential p-forms, and take the tensor product of p copies of V , and then perform a total

antisymmetrisation over the indices labelling the basis vectors:

Ei1 ∧ · · · ∧Eip ≡ Ei1 ⊗ · · · ⊗Eip + even permutations − odd permutations . (3.34)

Then, we define Ω as the n-fold antisymmetric product:

Ω ≡ E1 ∧E2 ∧ · · · ∧En . (3.35)

This is called the volume element of the vector space. Clearly we can write this as

Ω =
1

n!
εi1i2···in Ei1 ∧Ei2 ∧ · · · ∧Ein , (3.36)

where we define ε12···n = +1, and conversely

Ei1 ∧Ei2 ∧ · · · ∧Ein = εi1i2···in Ω , (3.37)

where we also define ε12···n = +1.

If we again perform a linear transformation to a new basis E ′
i, given by

E′
i = Ai

j Ej , (3.38)

then the quantity Ω transforms to

Ω′ =
1

n!
εi1i2···in E′

i1 ∧E′
i2 ∧ · · · ∧E′

in

=
1

n!
εi1i2···in Ai1

j1 Ai2
j2 · · ·Ain

jjEj1 ∧Ej2 ∧ · · · ∧Ejn

=
1

n!
εi1i2···in Ai1

j1 Ai2
j2 · · ·Ain

jj εj1j2···jn Ω ,

= (detA)Ω . (3.39)
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We may therefore define the subsets of GL(n, IR) or GL(n, IC) matrices that preserve the

volume element Ω, i.e. for which

Ω′ = (detA)Ω = Ω , (3.40)

by imposing the requirement that detA = 1. Thus we have the groups SL(n, IR) and

SL(n, IC) of volume-preserving linear transformations on the n-dimensional real or complex

vectore space.

3.3.3 Metrics on Vector Spaces

The remaining classical groups are defined by introducing an additional structure on the

vector space V , namely a metric. This is closely analogous to our discussion of metrics in

differential geometry, with the main difference here being that we do not necessarily insist

on having a symmetric metric.

We define a metric on the vector space V as a function on V which provides a rule for

associating a number f to each pair of vectors u and v in V :

(u, v) = f . (3.41)

If V is a real vector space then f is real, whilst if v is a complex vector space then f is in

general complex.

The metric is required to satisfy the following properties:

(u, v + w) = (u, v) + (u,w) ,

(u+ v, w) = (u,w) + (v, w) ,

(u, λ v) = λ (u, v) , (3.42)

for any vectors (u, v, w), and for any number λ. In the case of a real vector space, λ is real,

whilst for a complex vector space λ is complex. There is one further condition, which takes

one of two possible forms. We have either Bilinear Metrics or Sesquilinear Metrics, which

satisfy one or other of the folliwing two conditions:

Bilinear metrics: (λu, v) = λ (u, v) , (3.43)

Sesquilinear metrics: (λu, v) = λ̄ (u, v) . (3.44)

Note that the possibility of a sesquilinear metric arises only in the case of a complex vector

space, whilst bilinear metrics can arise either for real or complex vector spaces.
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The components of the metric, with respect to a basis Ei, are defined by

gij ≡ (Ei, Ej) . (3.45)

For any pair of vectore u and v, expanded in terms of components as u = uiEi, v = viEi,

we have

Bilinear: (u, v) = (uiEi, v
jEj) = uivj(Ei, Ej) = giju

ivj , (3.46)

Sesquilinear: (u, v) = (uiEi, v
jEj) = ūivj(Ei, Ej) = gij ū

ivj , (3.47)

(3.48)

Under a change of basis E ′
i = Ai

j Ej we have g′ij = (E′
i, E

′
j) = (Ai

kEk, Aj
`E`) and hence

Bilinear: g′ij = Ai
k Aj

` gk` , (3.49)

Sesquilinear: g′ij = Āi
k Aj

` gk` . (3.50)

We can now define subgroups of GL(n, IR) or GL(n, IC) matrices by choosing a metric

structure on the vector space V , and requiring that the GL(n) matrices leave the metric gij

invariant.9 Thus we have metric-preserving subgroups if

Bilinear: Ai
k Aj

` gk` = gij , (3.51)

Sesquilinear: Āi
k Aj

` gk` = gij . (3.52)

We must verify that GL(n) matrices subject to these conditions do indeed form a group;

namely that products of such matrices also satisfy the metric-preserving condition, and that

the inverse of any such matrix also satisfies the condition. For example, for the bilinear

case, if we suppose that A and B satisfy (3.51), then we shall have

(AB)i
k (AB)j

` gk` = Ai
mBm

k Aj
nBn

` gk`

= Ai
mAj

n gmn

= gij , (3.53)

which proves that (AB) satisfies (3.51) too. Multiplying (3.51) by (A−1)m
i (A−1)n

j gives

gmn = (A−1)m
i (A−1)n

j gij , (3.54)

which shows that A−1 also satisfies (3.51). The proofs for the sequilinear case are almost

identical.
9We shall adopt the convention that when we refer simply to GL(n), we mean in general that this could

be GL(n, IR) or GL(n, IC).
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We can now classify all the possible metric-preserving groups by classifying all the

possible canonical forms for non-singular metrics gij . In other words, we want to enumerate

all the genuinely inequivalent possible choices for gij , modding out by equivalences such as

mere relabellings of indices, or whatever.

3.3.4 Canonical Forms for Bilinear Metrics

In the bilinear case we can write an arbitrary metric as a sum of its symmetric and anti-

symmetric parts:

gij = g(ij) + g[ij] , (3.55)

where, as usual, we use the notation

g(ij) ≡ 1
2 (gij + gji) , g[ij] ≡ 1

2(gij − gji) . (3.56)

We can then discuss the symmetric and antisymmetric parts separately.

For the symmetric part, we note that under a change of basis E ′
i = Si

j Ej , the metric

transforms to

g′ij = Si
k Sj

` gk` , (3.57)

and for a symmetric gij one can always find a choice of Si
j that diagonalises g′ij . By rescaling

the new basis vectors, we can then make these diagonal entries equal to +1 or −1. Thus in

general we can assume that we have

g(ij) =




1
. . .

1

−1
. . .

−1




, (3.58)

where there are p entries +1 on the upper part of the diagonal, and q entries −1 on the

remaining lower part of the diagonal, where p + q = n. For much of the time, we shall be

concerned with the case where p = n and q = 0, so that gij = δij .

If gij is antisymmetric, then in order to be non-singular it must be that the dimension

n is even. To see this, suppose gT = −g, and take the determinant:

det gT = det(−g) = det(−1l) det g = (−1)n det g . (3.59)

But from the properties of the determinant we have det gT = det g, and thus we conclude

that if det g 6= 0 we must have (−1)n = 1, and hence n must be even, n = 2m. By an
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appropriate change of basis the antisymmetric matrix can be cast into a block-diagonal

form:

g[ij] =




0 λ1

−λ1 0

0 λ2

−λ2 0
. . .

0 λm

−λm 0




. (3.60)

By rescaling the new basis vectors, we can choose λi = 1 for all i, giving

g[ij] =




0 1

−1 0

0 1

−1 0
. . .

0 1

−1 0




. (3.61)

Thus g[ij] has m eigenvalues +1, and m eigenvalues −1.

Alternatively, by permuting the basis elements the antisymmetric metric can be cast

into the anti-diagonal form

g[ij] =




1
. . .

1

−1
. . .

−1




. (3.62)

3.3.5 Canonical Forms for Sesquilinear Metrics

These arise only for complex vector spaces. We can write a general sesquilinear metric as a

sum of its Hermitean and anti-Hermitean parts:

gij = g
(H)
ij + g

(AH)
ij , (3.63)

where

g
(H)
ij ≡ 1

2(gij + ḡji) , g
(AH)
ij ≡ 1

2(gij − ḡji) . (3.64)
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However, since multiplication of an anti-Hermitean matrix by i gives an Hermitean matrix,

there is effectively no distinction to be made between the two cases, and therefore we may

assume without loss of generality that the metric is Hermitean. By change of basis, such a

matrix can be diagonalised, and after rescaling its diagonal entries can be made to be ±1.

Thus we may take the sesquilinear metric gij to have the canonical form

gij =




1
. . .

1

−1
. . .

−1




, (3.65)

where there are p entries +1 in the upper diagonal, and q entries −1 in the remaining lower

part of the diagonal, where p + q = n. Commonly, we shall be concerned with the case

where q = 0, and hence gij = δij .

3.3.6 The Metric-Preserving Groups

Having established the canonical forms of the possible non-degenerate metrics on the vector

spaces, we see that there are three classes of examples of metric-preserving groups. These

are:

Metric Group Notation

Bilinear Symmetric Orthogonal O(p, q; IR), O(p, q; IC)

n = p+ q

Bilinear Antisymmetric Symplectic Sp(2m; IR), Sp(2m; IC)

n = 2m

Sesquilinear Symmetric Unitary U(p, q; IC)

n = p+ q

We shall now describe each of these three classes of metric-preserving groups.

Orthogonal Groups:

The bilinear symmetric metric has the form (3.58). If we consider the case p = n, q = 0,

forn which gij = δij , the metric-preserving condition is

Ai
k Aj

` δk` = δij , (3.66)
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which in matrix language reads

AAT = 1l . (3.67)

This is just the condition for orthogonal matrices that we discussed previously. When the

matrices are real, we abbreviate the general notation O(n, 0; IR) to simply O(n). The group

O(n) is called the the compact form of the orthogonal group in n dimensions. This means, as

we shall discuss later, that the group manifold has finite volume. The various possibilities

O(p, q; IR) with p and q both non-zero correspond to different non-compact forms of the

orthogonal group in n = p + q dimensions. Again, when we are talking about the real

case we usually omit the IR, and just call it O(p, q). The non-compact forms have group

manifolds of infinite volume.

As well as the q = 0 compact form, for which O(n) is just the rotation group in n

dimensions, the case when p = n − 1, q = 1 also arises commonly in physics; this is the

Lorentz group in n dimensions, which is the group of symmetries of Minkowski spacetime

in special relativity. Thus, the usual four-dimensional Lorentz group is O(3, 1).

We saw already, by counting the number of conditions implied by (3.67), that O(n) has

dimension 1
2n(n − 1). The counting is identical for all the non-compact forms. For the

complex case, there is just a doubling of the real dimension, since every component that

was previously real can now be complex. Thus we have

Dim(O(p, q; IR)) = 1
2n(n− 1) ,

Dim(O(p, q; IC)) = n(n− 1) , (3.68)

where n = p+ q.

For all the orthogonal groups one can see by taking the determinant of the defining

equation (3.51) that detA = ±1 for all matrices. Once can always impose the further

condition detA = +1, yielding the special orthogonal groups SO(p, q; IR) and SO(p, q; IC)

as subgroups of O(p, q; IR) and O(p, q; IC) respectively. They have the same dimensions as

the orthogonal groups, since no continuous parameters are lost when one imposes the sign

choice detA = +1.

Symplectic Groups:

For these, the canonical form of the metric is given by (3.62), with the matrices satisfying

Aik Aj
` gk` = gij . (3.69)

Since the left-hand side is automatically antisymmetric for any A (and so, of course, is

the right-hand side), it follows that this equation imposes 1
2n(n− 1) constraints on the n2
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components of an arbitrary matrix A. Thus we have the real dimensions

Dim(Sp(n; IR)) = 1
2n(n+ 1) ,

Dim(Sp(n; IC)) = n(n+ 1) , (3.70)

where n = 2m. The symplectic groups as defined here are all non-compact.

One can also impose a unit-determinant condition, giving subgroups SSp(n; IR) and

SSp(n; IC) of Sp(n; IR) and Sp(n; IC) respectively. Again, since the Sp(n; IR) and Sp(n; IC)

matrices already satisfied detA = ±1, the imposition of the unit-determinant condition

implies no loss of continuous parameters, and so the dimensions of SSp(n; IR) and SSp(n; IC)

are again 1
2n(n+ 1) and n(n+ 1) respectively.

Unitary Groups:

The canonical form of the sesquilinear symmetric metric is given by (3.65). If we consider

the case p = n, q = 0, then gij = δij , and the metric-preserving condition (3.52) just becomes

Āi
k Aj

` δk` = δij , (3.71)

which in matrix notation reads ĀAT = 1l. By complex conjugating, this becomes

AA† = 1l , (3.72)

which is just the unitary condition that we met previously when describing the matrices

U(n). This is the compact form of the unitary group; the more general possibilities U(p, q; IC)

(which we usually just write as U(p, q) with p+q = n are non-compact forms of U(n). They

all have real dimension given by

Dim(U(p, q)) = n2 , (3.73)

where n = p+ q, as we discussed previously for U(n).

One can impose the unit-determinant condition, yielding the subgroup SU(p, q) of

U(p, q), which has

Dim(SU(p, q)) = n2 − 1 , n = p+ q . (3.74)

We close this section with a few further remarks:

(1) We have considered groups defined for vector spaces over the real numbers and the

complex numbers. One can also consider vector spaces over the field of quaternionic
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numbers.10 Some of the multiplication operations must be handled with care, since

quaternion multiplication is itself non-commutative. Groups based on quaternion-

valued matrices can be defined.

(2) Once can consider matrices that are both unitary and symplectic. Thus we may define

the so-called Unitary-symplectic group USp(2m) of matrices that are simultaneously

in U(2m) and Sp(2m; IC):

USp(2m) = U(2m) ∩ Sp(2m; IC) . (3.75)

(3) Some of the classical groups of low dimension are isomorphic, or homomorphic.11

Some examples are:

Dimension 3: SU(2) ∼= SO(3) ∼= USp(2)

SU(1, 1) ∼= SO(2, 1) ∼= Sp(2, ; IR) ∼= SL(2, IR)

Dimension 6: SO(4) ∼= SU(2) × SU(2)

SO(3, 1) ∼= SL(2; IC)

SO(2, 2) ∼= SL(2; IR) × SL(2; IR)

Dimension 10: SO(5) ∼= USp(4)

SO(3, 2) ∼= Sp(4; IR)

Dimension 15: SO(6) ∼= SU(4)

SO(4, 2) ∼= SU(2, 2)

SO(3, 3) ∼= SL(4, IR) . (3.76)

10These are ordered pairs of complex numbers, generalising the description of complex numbers as ordered

pairs of real numbers. See my lecture notes for 615 Mathematical Methods, for a detailed discussion of the

four division algebras; real numbers, complex numbers, quaternions and octonions.
11Two groups are homomorphic if there is a mapping between them that preserves the group combination

law, but the mapping is not 1-1.
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3.4 Lie Algebras

3.4.1 Introduction

So far, we have been looking at the structure of the entire set of matrices that form a group

under multiplication. For many purposes, it is not necessry to study the entire group–it is

sufficient to look at the elements in the neighbourhood of the identity.

The local structure of the group can be probed by looking at elements of the form

g = 1l + εX , (3.77)

where |ε| << 1, and so we can work just to order ε. The object X is called a generator

of the group. The local structure in the neighbourhood of the identity is called the Lie

Algebra.

Commonly, we denote a Lie group by the symbol G, and its associated Lie algebra by

G.

The elements of the full group can be obtained by exponentiating the generators of the

Lie algebra. For a compact group (where the group manifold has a finite volume), one

usually takes the generators to be Heritean matrices,

Xa = X†
a , a = 1, . . . ,dimG . (3.78)

The group elements can then be obtained by exponentiation:

g = exp(iαa Xa) . (3.79)

Here, the quantities αa are parameters, which can be thought of as coordinates on the group

manifold.

Let us consider the example of the group SU(2). The three algebra generators can be

taken to be the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.80)

We can write the SU(2) group elements as

g = exp(iαa σa) . (3.81)

Writing αa = αna, where na is a unit 3-vector, na na = 1, we can use the multiplication

algenra of the Pauli matrices,

σa σb = δab 1l + i εabc σc (3.82)
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to show that

(αa σa)
2 = α2 (na σa)

2 = α2 na nb (δab 1l + i εabc σc)

= α2 na nb δab 1l = α2 1l , (3.83)

and hence, using the definition of the exponential

expX =
∞∑

m=0

1

m!
Xm , (3.84)

we get

g = exp(iαa σa) = 1l cosα+ ina σa sinα . (3.85)

Comparing with our previous parameterisation of SU(2) matrices in equation (3.29), where

the compex numbers a and b were subject to the constraint |a|2 + |b|2 = 1 in (3.30), we have

a = cosα+ in3 sinα , b = (n2 + in1) sinα . (3.86)

3.4.2 Structure Constants

Consider the group elements

A = ei λ Xa , B = ei λ Xb , (3.87)

obtained by exponentiating the a’th and b’th generators with parameter λ. Then

ABA−1B−1 = ei λXa εiλXbe−iλXa ε−iλXb

= (1 + iλXa − 1
2λ

2X2
a + · · ·)(1 + iλXb − 1

2λ
2X2

b + · · ·) ×

(1 − iλXa − 1
2λ

2X2
a + · · ·)(1 − iλXb − 1

2λ
2X2

b + · · ·)

= 1 − λ2 [Xa, Xb] + O(λ3) , (3.88)

where [Xa, Xb] is the commutator, [Xa, Xb] = XaXb −XbXa. Since ABA−1B−1 must also

be an element of the group, we must be able to write it as

ABA−1B−1 = ei β
c Xc , (3.89)

for some constants βc. If we take λ→ 0, we have

1 − λ2 [Xa, Xb] = 1 + iβcXc , (3.90)

and so βc is of order λ2. We may write

βc = −fab
c λ2 , (3.91)
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since βc denotes a set of constants that depend upon the choice of generators Xa and Xb.

Thus we have

[Xa, Xb] = i fab
cXc . (3.92)

The constants fab
c are called the structure constants of the Lie algebra.

The structure constants fab
c have the following important properties. Firstly, since

[Xa, Xb] = −[Xb, Xa], we must have antisymmetry on the first two indices,

fab
c = −fba

c . (3.93)

Secondly, we may observe that the generators obey the Jacobi Identity:

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]] = 0 . (3.94)

This is obvious from the matrix representation; one just has to write out the total of

12 terms, and see that there is a pairwise cancellation. It is also true from the abstract

definition of generators, as a consequence of the associativity of the group multiplication

law. Thus, one can derive the Jacobi identity from expanding out

eiλXa (eiλXb eiλXc) = (eiλXa (eiλXb) eiλXc (3.95)

to order λ3. Substituting [Xa, Xb] = i fab
cXc into the Jacobi identity (3.94), we get

fbc
d fad

e + fca
d fbd

e + fab
d fcd

e = 0 . (3.96)

This is also commonly referred to as the Jacobi identity.

Let us consider the example of the Lie Algebra of SU(2), which, as we have seen, is

generated by the the three Pauli matrices σa given in (3.80). Specifically, we shall choose a

normalisattion where we take as our SU(2) generators

Xa = 1
2σa . (3.97)

From elementary computations, summarised in the multiplication rules (3.82), it follows

that

[Xa, Xb] = i εabcXc , (3.98)

(There is no distinction between upstairs and downstairs indices in this case.) Comparing

with (3.92), we see that the structure constants for SU(2) are then given by

fab
c = εabc . (3.99)
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In our SU(2) example, we do not need to distinguish between upstairs and downstairs

indices on the structure constants. In general, the indices are raised and lowered using the

so-called Cartan-Killing Metric. It may be defined as follows:12

gab ≡ −1
2fac

d fbd
c . (3.100)

It is obviously symmetric in a and b. (Note that this is constructed from the structure

constants in their “natural” up and down positions.) Upstairs indices may be lowered using

the Cartan-Killing metric, and, assuming its inverse gab exists, indices may also be raised.

Using the Cartan-Killing metric, we may lower the upstairs index on the structure constants

fab
c, giving

fabc = gcd fab
d . (3.101)

One can show, using the Jacobi identity (3.96), that fabc is totally antisymmetric in its

indices. From its definition it is clearly antisymmetric in ab, so it remains only to show it

is antisymmetric in one other pair, say a and c. This is shown by the following calculation:

−2fabc = −2fab
d gdc = fab

d fde
f fcf

e

= −fab
d fed

f fcf
e

= fbe
d fad

f fcf
e + fea

d fbd
f fcf

e

= fad
f fbe

d fcf
e − fae

d fcf
e fbd

f

= fad
f fbe

d fcf
e − fad

f fce
d fbf

e

= −fad
f ffe

d fbc
e = fad

f fef
d fbc

e

= −2gae fbc
e = −2fbca . (3.102)

Thus we see that fabc = −fcba, which was to be proved. We can, of course, express the total

antisymmetry of the structure constants in the equation

fabc = f[abc] . (3.103)

12Commonly, the Cartan-Killing metric is defined to be (−2) times the one defined here. This is only a

matter of convention, and it is not important, as long as one is consistent in one’s choice. The advantage

of the convention we are choosing is that the metric is positive definite (all positive eigenvalues) for a

compact group. The normalising factor is chosen so that for SU(2), with fab
c = εabc, we shall have gab =

− 1

2
εacd εbdc = 1

2
εacd εbcd = δab, so that indeed we can, as stated above, avoid the distinction between up and

down indices in this case. It should be emphasised also that the Cartan-Killing metric is completely distinct

from the metrics on the vector spaces that we discussed previously when giving the classification of classical

groups.
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3.4.3 Simple and Semi-Simple Lie Algebras

First, we define the notion of an Invariant Subalgebra. Let Y be any generator in a Lie

algebra G. This has an invariant subalgebra H if, for every generator X in H,

[X,Y ] = X ′ , (3.104)

where X ′ is another generator in H, for any Y in G. Note that X ′ can be zero. Obviously

the entire Lie algebra G fulfils the requirements for being an invariant subalgebra, and so

it is useful to define a Proper Invariant Subalgebra as an invariant subalgbra that is strictly

smaller than G itself.

We may now define a Simple Lie Algebra, as being a Lie algbera that has no proper

invariant subalgebras.

A special case of an invariant subalgebra is an Abelian Invariant Subalgebra. If X is an

element of an abelian invariant subalgebra, If Y is any element in the full algebra G, then

there is an abelian invariant subalgebra H if, for every generator X in H,

[X,Y ] = 0 (3.105)

for all Y in G. Each such generator X corresponds to a U(1) factor (or in the non-compact

case an IR factor) in the Lie algebra G. If Xa, for some given value of a, is such an abelian

generator then it follows from [Xa, Xb] = i fab
cXc that

fab
c = 0 for all b and c . (3.106)

In this case it follows that the Cartan-Killing metric

gab = −1
2fac

d fbd
c (3.107)

has a zero eigenvalue, since we shall have gab = 0 for all b. Thus if gab has p zero eigenvalues

then there are p abelian invariant factors U(1) or IR in the Lie algebra. Note that if there

are any such factors we shall have det(gab = 0, and so the metric is not invertible.

A Lie algebra with no abelian invariant subalgebras is called a Semi-Simple Lie Algebra.

At the level of the Lie group, we may say that a semi-simple Lie group has no U(1) or

IR factors. A simple Lie group is not a product of subgroups.

A consequence of the above is that when discussing the classification of Lie groups we

may concentrate on the simple Lie groups.
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3.4.4 Properties of the Lie Algebra Generators

Here, we re-examine the defining conditions for our classification of Lie groups, but now

at the infinitesimal level of the Lie algebra. Recall that we encountered three classes of

metric-preserving classical groups, corresonding to having a bilinear symmetric, bilinear

antisymmetric, or sequilinear symmetric metric on the vector space on which the matrices

act.

To avoid the risk of confusion with the Cartan-Killing metric, let us for now use the

symbol Gij to denote the invariant metric on the vector space. Thus for the bilinear metrics,

we had that the matrices Ai
j acting on the vector space preserve Gij according to

Ai
k Aj

`Gk` = Gij . (3.108)

In matrix notation, this reads

AGAT = G . (3.109)

For the Lie algebra, we can express A via exponentiation of the Lie algebra generators Xa,

as

A = eiα
a Xa . (3.110)

For generators close to the identity we can take the coefficients αa to be very small, and

work only to linear order in αa. Thus we may write

A = 1l + iαaXa , (3.111)

neglecting the higher-order terms from expanding the exponential in a Taylor series. The

metric-preserving condition (3.109) becomes

(1l + iαa Xa)G (1l + iαbXb) = G , (3.112)

which, to linear order in α gives

G+ iαa (Xa G+GXT
a ) = G , (3.113)

and hence

XaG+GXT
a = 0 . (3.114)

In the case of a bilinear symmetric metric, and choosing the compact form where it has all

positive eigenvalues, the canonical form was just G = 1l, and hence (3.114) becomes just

Xa = −XT
a , (3.115)
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i.e. that Xa is antisymmetric. This, then, is the condition on the generators of O(n) or

SO(n). Since we are taking the generators to be Hermitean, this means they are imaginary.

For bilinear antisymmetric metrics, the canonical form for G is given in (3.62). With

this choice for G, the equations (3.114) give the conditions on the generators Xa for Sp(2m).

Finally, for sequilinear symmetric metrics, the metric-preserving condition (3.71) reads,

in matrix notation,

AGA† = G . (3.116)

In the infinesimal form for generators A = ei αa Xa close to the identity, this becomes

XaG−GX†
a = 0 . (3.117)

The canonical form for G is is given in (3.65). For the compact case (i.e. SU(n)), we have

G = 1l, and then (3.117) becomes simply

Xa = X†
a , (3.118)

i.e. Xa is Hermitean. (Recall that this is what saw in our SU(2) example discussed previ-

ously.)

3.5 Roots and Weights

3.5.1 Notation

We have been thinking of the generators Xa as being matrices, but we can instead think of

them as linear operators acting on states (as in quantum mechanics). We can then consider

the matrix elements [Xa]ij of the generators Xa, defined by

[Xa]ij = 〈i|Xa|j〉 (3.119)

in a Dirac Bra and Ket notation, where the states are normalised such that

〈i|j〉 = δij . (3.120)

An arbitrary state |Ψ〉 can be expressed as a linear combination of states |i〉:

|Ψ〉 =
∑

i

ai |i〉 . (3.121)

The expansion coefficients ai can be read off by multiplying by 〈j|:

〈j|Ψ〉 =
∑

i

ai 〈j|i〉 =
∑

i

ai δij = aj , (3.122)
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whence we have

|Ψ〉 =
∑

i

|i〉 〈i|Ψ〉 . (3.123)

Since this is true for any state |Ψ〉, we have the Completeness Relation

∑

i

|i〉 〈i| = 1l . (3.124)

We can now calculate the action of Xa on |i〉, obtaining

Xa|i〉 =
∑

j

|j〉 〈j|Xa |i〉 =
∑

j

|j〉 [Xa]ji . (3.125)

This shows that the states |j〉 can be thought of as row vectors, with the matrix [Xa]ji

associated with the linear operator Xa acting by matrix multiplication from the right.

3.5.2 The Example of SU(2)

Here, we shall review some basic results about the construction of the representations of

the SU(2) algebra. This will probably be very familiar from quantum mechanics. The

purpose of doing this is that the procedures used for studying SU(2) will generalise to any

Lie algebra, as we shall see in subsequent sections.

We saw in 3.4.2 that the structure constants of SU(2) are given by fab
c = εabc. Thus if

we call the generators Ja, with a = 1, 2, 3, then we shall have

[J1, J2] = i J3 , [J2, J3] = i J1 , [J3, J1] = i J2 . (3.126)

These are, of course, just the familiar commutation relations of the angular momentum

generators in quantum mechanics.

Suppose we have an N -dimensional irreducible representation of SU(2). (This is what is

known in quantum mechanics as a spin-(2N+1) representation.) Since the operators Ja are

Hermitean, we can choose a basis of states in the representation such that J3 is diagonal.13

Since the numberN of states in the representation is finite, and they are all, by construc-

tion, eigenstates of J3, it follows that there must exist a state with the largest eigenvalue,

say λ. Let us denote this state by |λ, α〉, where we have introduced α as an additional index

which will label distinct states having the same eigenvalue λ, in case it should turn out that

there is a degeneracy. By definition, we shal have

J3 |λ, α〉 = λ |λ, α〉 . (3.127)

13We cannot, of course, simultaneously have J1 or J2 being diagonal, since J1 and J2 do not commute

with J3.
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We can always orthonormalise these states so that

〈λ, α|λ, β〉 = δαβ . (3.128)

We now define

J± ≡ 1√
2

(J1 ± i J2) . (3.129)

From (3.126), it follows that we shall have the commutation relations

[J3, J±] = ±J± , [J+, J−] = J3 . (3.130)

On a state |µ〉, with eigenvalue µ, i.e. J3 |µ〉 = µ |µ〉, we have

J3 J± |µ〉 = [J3, J±] |µ〉 + J± |µ〉

= ±J± |µ〉 + µJ± |µ〉

= (µ± 1) |µ〉 . (3.131)

As will be familiar from quantum mechanics, the operators J± are called raising and lowering

operators, since they increase or decrease the J3 eigenvalue.

Since we are assuming |λ, α〉 has the highest possible eigenvalue in the N -dimensional

representation, it follows that we must have

J+ |λ, α〉 = 0 , (3.132)

since if it were non-vanishing, it would by virtue of (3.131) have the larger eigenvalue λ+1,

which is impossible.

We know from (3.131) that J− |λ, α〉 is a state with J3 eigenvalue λ− 1, and so we may

write

J− |λ, α〉 = Nλ(α) |λ − 1, α〉 , (3.133)

for some constant Nλ(α). The Hermitean conjugate of (3.133) is given by

〈λ, α| J+ = N̄λ(α) 〈λ − 1, α| . (3.134)

(Recall that J1 and J2 are Hermitean, so J †
− = J+.) We therefore have

N̄λ(β)Nλ(α) 〈λ − 1, β|λ − 1, α〉 = 〈λ, β|J+ J− |λ, α〉

= 〈λ, β|[J+, J−] |λ, α〉

= 〈λ, β|J3 |λ, α〉

= λ 〈λ, β|λ, α〉

= λ δαβ . (3.135)
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It then follows from (3.128) that we can choose

〈λ− 1, β|λ − 1, α〉 = δαβ , (3.136)

and that we can choose Nλ(α) to be real, independent of α, and given by

Nλ(α) = Nλ ≡
√
λ . (3.137)

Note that we shall also have

J+ |λ− 1, α〉 =
1

Nλ
J+ J− |λ, α〉 =

1

Nλ
[J+, J−] |λ, α〉

=
1

Nλ
J3 |λ, α〉 =

1

Nλ
λ |λ, α〉

= Nλ |λ, α〉 . (3.138)

Note also that J± raises or lowers the J3 eigenvalue without changing α.

Proceeding by considering J− |λ− 1, α〉, the same argument as above shows that there

are orthonormal states |λ− 1, α〉 satisfying

J− |λ− 1, α〉 = Nλ−1 |λ− 2, α〉 , J+ |λ− 2, α〉 = Nλ−1 |λ− 1, α〉 , (3.139)

for certain real constants Nλ−1. Continuing, we shall have

J− |λ− k, α〉 = Nλ−k |λ− k − 1, α〉 , J+ |λ− k − 1, α〉 = Nλ−k |λ− k, α〉 . (3.140)

The constants Nµ are determined as follows:

N2
λ−k = N2

λ−k 〈λ− k, α|λ − k, β〉

= 〈λ− k, α| J+ J− |λ− k, β〉

= 〈λ− k, α| [J+, J−] |λ− k, β〉 + 〈λ− k, α| J− J+ |λ− k, β〉

= 〈λ− k, α| J3 |λ− k, β〉 +N 2
λ−k+1 〈λ− k + 1, α|λ− k + 1, β〉

= λ− k +N 2
λ−k+1 . (3.141)

Thus we have

N2
λ = λ ,

N2
λ−1 −N2

λ = λ− 1 ,

N2
λ−2 −N2

λ−1 = λ− 2 ,

...

N2
λ−2 −N2

λ−1 = λ− k . (3.142)
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Thus by adding these, we get

N2
λ−k = (k + 1)λ − 1

2k(k + 1)

= 1
2(k + 1)(2λ− k) . (3.143)

Eventually, if we act sufficiently many times with J−, we must reach a state (or states)

in the representation with the lowest possible eigenvalue under J3. (This must be the case,

since we have assumed there are only a finite number of states in the representation.) Thus

for some integer n, it must be that we have a state (or states) |λ− n, α〉 such that

J− |λ− n, α〉 = 0 , (3.144)

and therefore Nλ−n = 0. It follows from (3.143) that

λ = 1
2n . (3.145)

Since n is an integer, we see that the highest J3 eigenvalue λ is an integer or half-integer,

and that all the other states in the representation have J3 eigenvalues µ that are likewise

either all integers or all half-integers. These J3 eigenvalues lie in integer steps between + 1
2n

and −1
2n. The highest eigenvalue λ = 1

2n is usually called the Spin, and denoted by j.

There are in total (2j + 1) eigenvalues in the range between j and −j.
Since the raising and lowering operators change the J3 eigenvalue without changing α,

it follows that different values of α correspond to disjoint and independent representations

of SU(2). For a so-called Irreducible Representation, there is just one α, and so we don’t

need to carry around the α label any more.

We normally denote the full set of states in an irreducible representation of SU(2) by

|m, j〉, where j is the spin that labels the representation, and m is the J3 eigenvalue of each

state;

J3 |m, j〉 = m |m, j〉 . (3.146)

We have seen that m can take integer-spaced values in the interval

−j ≤ m ≤ j . (3.147)

The total number of states in the spin-j representation is therefore (2j + 1).

To use the terminology that we shall be using for the more general discussion of repre-

sentations for arbitrary Lie algebras, we call |j, j〉 the Highest Weight State in the irreducible

representation, and the state |m, j〉 is said to have weight m.
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The states |m, j〉 can be shown to be orthogonal, in the sense that

〈m, j|m′, j′〉 = 0 , unless m = m′ and j = j′ . (3.148)

The orthogonality for different values of m is easy to see. We just sandwich J3 in the inner

product, and use the facts that

J3 |m′, j′〉 = m′ |m′, j′〉 , 〈m, j| J3 = m 〈m, j| . (3.149)

(The second equation follows just from Hermitean conjugation of J3 |m, j〉 = m |m, j〉,
noting that J3 itself is Hermitean.) Thus we can evaluate (3.148) two ways, depending on

whether we act with J3 to the left or the right, leading to

(m−m′) 〈m, j|m′, j′〉 = 0 . (3.150)

This immediately shows that 〈m, j|m′, j′〉 = 0 if m 6= m′.

It remains to prove that 〈m, j|m, j ′〉 = 0 unless j = j ′. Without loss of generaliity, we

may assume j ′ > j, and consider

〈j, j| J− |j + 1, j′〉 = Nλ−k 〈j, j|j, j ′〉 , (3.151)

where Nλ−k can be read off from (3.143). Being careful about the meaning of the symbols,

we see that λ = j ′ and λ− k = j + 1, which then implies that

N2
λ−k = 1

2(k + 1)(2λ − k) = 1
2 (j′ − j)(j′ + j + 1) . (3.152)

This is manifestly non-zero (since J ′ > j, and both j and j ′ are non-negative). On the other

hand the left-hand side of (3.151) is clearly zero, since 〈j, j| J− is the Hermitean conjugate

of J+ |j, j〉, which is obviously zero since |j, j〉 is the highest-weight state. Therefore we

conclude from (3.151) that

〈j, j|j, j ′〉 = 0 . (3.153)

By analogous calculations, making repeated applications of J+ and J− operators, we

can similarly show that

〈m, j|m, j ′〉 = 0 (3.154)

for all values of m, which is what we wanted to establish.14 Having established the orthog-

onality of the states, we can now normalise them so that they satisfy

〈m, j|m′, j′〉 = δmm′ δjj′ . (3.155)

14There is in fact a much simpler proof of the orthogonality (3.154), which follows by inserting the

Hermitean operator J2 ≡ JaJa. This operator (the “total angular momentum,” in the language of quantum
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3.5.3 Arbitrary Simple Lie Algebras

Consider an arbitrary compact simple Lie algebra G. Suppose we have matrices Xa in some

particular representation D of G, which generate the algebra, [Xa, Xb] = i fab
cXc. We can

normalise the generators so that

tr(X†
a Xb) = λ δab , (3.156)

for some positive constant λ.

We can divide the generators Xa into two categories:

1) A maximal set of m mutually-commuting Hermitean generators that can be simulta-

neously diagonalised. These are denoted by Hi, and they are called the generators of

the Cartan Subalgebra. They are the generalisation of J3 in the SU(2) algebra.

2) The remaining generators are organised into raising and lowering operators denoted

by E~α, where the subscript ~α on a given such generator E~α denotes an m-component

vector label for that generator, whose significance will be explained below. The gen-

erators E~α are the generalisation of J± in the SU(2) case.

A decomposition of this type can always be made. Having organised the generators in

this fashion, we will have the following structure of commutation relations:

[Hi,Hj ] = 0 , [Hi, E~α] = αiE~α ,

[E~α, E~β
] = N

~α,~β
E

~α+~β
, if ~α 6= −~β ,

[E~α, E−~α] =
∑

i

αiHi . (3.157)

Since the basis and normalisation of the Cartan generators is not yet specified, we can

arrange things so that

tr(HiHj) = kD δij , (3.158)

where kD is some constant that depends upon the representation D.

mechanics) has the property J2 |m, j〉 = j(j + 1) |m, j〉, and hence we have

〈m, j| J2 |m, j
′〉 = j(j + 1) 〈m, j|m, j

′〉 = j
′(j′ + 1) 〈m, j|m, j

′〉

by acting either to the right or the left. Thus we have

(j′ − j)(j′ + j + 1) 〈m, j|m, j
′〉 = 0 ,

which shows (3.154) when j 6= j′. The reason why we have not used ths proof is that it does not generalise

to the case of arbitrary Lie groups, unlike the proof we have presented earlier.
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The meaning of the vector subscript ~α on a generator E~α is now apparent. Because

of the way we have organised them, the generators E~α are all eigenstates with respect to

all m of the Cartan generators Hi, in the sense given on the top line of (3.157): Each

commutator [Hi, E~α], for each value of the index i labelling the Cartan generators, gives a

constant multiple of E~α itself. That constant is called αi, and the set of these eigenvalues, or

weights, is assembled into an m-component vector ~α that is used as a label for the particular

generator E~α:

~α = (α1, α2, . . . , αm) . (3.159)

The total set of generators therefore comprise the m Cartan generators Hi, and the re-

maining ones E~α, where the vector label ~α on each such generator indicates the eigenvalues,

or weights, of that particular generator under the Cartan generators.

The meanings of the other commutation relations in (3.157) are as follows. Firstly,

the relations [Hi,Hj] = 0 obviously just say that the Cartan generators commute amongst

themselves. The commutation relation for [E~α, E~β ] shows that if one picks any two of the

raising and lowering operators, E~α and E~β , then their commutator will in general produce

another generator whose eigenvalues under the Cartan generators are ~α + ~β. This can be

easily understood, by writing out the Jacobi identity:

0 = [Hi, [E~α, E~β
]] + [E~α, [E~β

,Hi]] + [E~β
, [Hi, E~α]]

= [Hi, [E~α, E~β
]] − [E~α, [Hi, E~β

]] − [[Hi, E~α], E~β
]

= [Hi, [E~α, E~β
]] − βi [E~α, E~β

] − αi [E~α, E~β
] . (3.160)

Hence we have

[Hi, [E~α, E~β]] = (αi + βi) [E~α, E~β]] . (3.161)

The constant N~α,~β in the commutation relation (3.157) is dependent on how the generators

are normalised. Note that it might be that for a given pair of generators E~α and E~β
that

their commutator vanishes, in which case N
~α,~β

will be zero. The calculation in (3.160) and

(3.161) shows that if their commutator is non-vanishing, then the weights of the resulting

generator E
~α+~β

will be ~α + ~β. This should make clear why it is that we can think of the

generators E~α as raising or lowering operators; when one commutes E~α with any other

generator E~β
, one gets another generator whose weight is the original ~β boosted by the

addition of ~α. Whether we call a given E~α a raising operator or a lowering operator will

depend upon the way in which we classify the weights ~α as being positive or negative. We

shall explain this in detail later.
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There is one exception to the above, and that is if one considers the commutator of

generator E~α with its “negative,” namely E−~α. The calculation in (3.160) and (3.161) is

still valid, and it now shows that [E~α, E−~α] will have zero weights under all the Cartan

generators. This means in fact that [E~α, E−~α] will be a linear combination of the Cartan

generators themselves. As it turns out, the coefficients in this sum over Cartan generators

are as given in the final line of (3.157).

Before proceeding with the general discussion, let us return briefly to our earlier example

of SU(2), to see how it fits in this general framework. We organised the generators Ji,

satisfying (3.126), into the combinations J± and J3 as in (3.129), and found that they

satisfied (3.130). Casting this into our general framework, we shall have

H1 = J3 , E1 = J+ , E−1 = J− . (3.162)

Note that since we have just one Cartan generator in this case, our vectors ~α labelling

the raising and lowering generators E~α are just 1-component objects, i.e. numbers. The

generators satisfy

[H1, E1] = E1 , [H1, E−1] = −E−1 , [E1, E−1] = H1 , (3.163)

which can be compared with the general set-up in (3.157). One should be careful to under-

stand the notation here. We call the Cartan generator H1, with its “1” subscript simply

indicating that it is the first (and only!) Cartan generator of SU(2). The “1” subscript

on E1, on the other hand, denotes that E1 has weight 1 under the Cartan generator. The

lowering operator E−1 has subscript −1 because it has weight −1 under the Cartan gen-

erator. In this SU(2) example the algebra is so small (only three generators in total) that

we aren’t seeing any of the [E~α, E~β
] ∼ E

~α+~β
type commutation relations, because we don’t

have enough generators to play with. As we proceed, we shall look at more complicated

examples that have more “beef.”

To proceed, it will be useful to look at how the generators act on states in a represen-

tation. Suppose we denote some representation of a Lie algebra G by D. Since the Cartan

generators Hi commute, we can organise the states so that each one is simultaneously an

eigenvector under each Cartan generator. Let us represent a state in the representation by

|~µ,D〉, satisfying

Hi |~µ,D〉 = µi |~µ,D〉 . (3.164)

What we have done here is to label the state by its weights ~µ under the Cartan generators.

The vector ~µ is, not surprisingly, called the weight vector of the state.
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First, we shall consider a very particular representation, called the adjoint representa-

tion. Every algebra has an adjoint representation; its dimension (i.e. the number of states

in the representation) is just equal to the dimension of the algebra itself. In fact we can

simply use the straucture constants fab
c themselves to construct a matrices of the adjoint

representation. Let Ya be a matrix whose components are (Ya)b
c, where b labels rows and

c labels columns, given by

(Ya)
b
c = i fac

b . (3.165)

Evaluating the matrix commutator, we shall have

[Ya, Yb]
c
d = (Ya)

c
e (Yb)

e
d − (Yb)

c
e (Ya)

e
d

= −fae
c fbd

e + fbe
c fad

e

= −fae
c fbd

e − fbe
c fda

e

= fde
c fab

e

= −fab
e fed

c

= i fab
e (Ye)

c
d , (3.166)

and so we have

[Ya, Yb] = i fab
c Yc . (3.167)

(We used the Jacobi identity (3.96) in getting from the 3’rd to the 4’th line above.)

We can look at this also at the level of the states. In the adjoint representation we can

associate a state with each generator Xa of the Lie algebra G, and denote it by |Xa〉, for

a = 1, . . . ,dim G. With the generators normalised as in (3.156), we define the states |Xa〉
such that

〈Xa|Xb〉 = λ−1 tr(X†
aXb) = δab . (3.168)

From the discussion above, we see that the matrix elements of the generators will then be

given by

〈Xa|Xb|Xc〉 = −i fcb
a , (3.169)

where we have normalised the states so that 〈Xa|Xb〉 = δa
b . Using the completeness relation

|Xc〉 〈Xc| = 1l, we then have

Xa |Xb〉 = |Xc〉 〈Xc|Xa|Xb〉

= |Xc〉 (Ya)
c
b

= |Xc〉 (i fab
c)

= |[Xa, Xb]〉 , (3.170)
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since [Xa, Xb] = i fab
cXc. Thus we have

Xa |Xb〉 = |[Xa, Xb]〉 . (3.171)

Of the total of n =dim G states in the adjoint representation, we know that m =rank G
of them, which we can denote by |Hi〉, will have zero weights:

Hi |Hj〉 = |[Hi,Hj]〉 = 0 . (3.172)

The remaining n−m states will all be associated with the raising and lowering generators

E~α, and so we denote these by |E~α〉. They therefore satisfy

Hi |E~α〉 = |[Hi, E~α]〉 = αi |E~α〉 . (3.173)

Note that the raising and lowering generators are not Hermitean, and in fact the Her-

mitean conjugate of a raising generator gives a lowering generator, and vice versa. (Recall

that in the SU(2) example we had J †
± = J∓, since J± = (J1 ± i J2)/

√
2, and J1 and J2

themselves are Hermitean.) To see this, consider

[Hi, E~α]† = (HiE~α)† − (E~αHi)
†

= E†
~αH

†
i −H†

i E
†
~α

= E†
~αHi −HiE

†
~α

= −[Hi, E
†
~α] (3.174)

and so we have from [Hi, E~α] = αiE~α that

[Hi, E
†
~α] = −αiE

†
~α . (3.175)

It is therefore natural to write

E†
~α = E−~α . (3.176)

As usual, we normalise the states to have unit length, and so we shall have

〈E~α|E~β
〉 = δ

~α,~β
≡ δα1β1

δα2β2
· · · δαmβm ,

〈Hi|Hj〉 = δij . (3.177)

We shall return in a moment to considering the states in an arbitrary representation

D of the Lie algebra G. Before doing so, let us just recapitulate that in the discussion

above, we have considered specifically the states |Hi〉 and |E~α〉 of the n-dimensional adjoint

representation. They satisfy the eigenvalue equations

Hi |Hj〉 = 0 , Hi |E~α〉 = αi |E~α〉 . (3.178)
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For a general representation, the eigenvalues of the various states with respect to the Car-

tan generators Hi are called the weights of the states. In the special case of the adjoint

representation that we have been considering, the weights are called the roots. Thus we say

that |E~α〉 has the root vector ~α.

3.5.4 Arbitrary irreducible representation

Now let us return to considering an arbitrary irreducible representation D of the Lie algebra

G. The state |~µ,D〉 satisfies

Hi |~µ,D〉 = µi |~µ,D〉 , (3.179)

and ~µ is called the weight vector of the state. By a standard manipulation that is precisely

analogous to the one we performed for SU(2), we see that the generator E~α acts as a raising

or lowering operator on this state:

HiE~α |~µ,D〉 = [Hi, E~α] |~µ,D〉 +E~αHi |~µ,D〉

= αiE~α |~µ,D〉 + µiE~α |~µ,D〉

= (µi + αi)E~α |~µ,D〉 . (3.180)

Of course we shall also have

HiE−~α |~µ,D〉 = (µi − αi)E−~α |~µ,D〉 . (3.181)

Thus, as with SU(2) we then define |~µ± ~α,D〉 as the states with weights (~µ± ~α), and

write

E±~α |~µ,D〉 = N±~α,~µ |~µ± ~α,D〉 . (3.182)

The N±~α,~µ are constants to be determined. As usual, the states will all be normalised to

unit length.

Now, in the adjoint representation, the state |E~α〉 has weight ~α, i.e. Hi |E~α〉 = αi |E~α〉.
Therefore E−~α |E~α〉 has weight zero, and so it must be a linear combination of the zero-

weight states |Hi 〉:
E−~α |E~α〉 = ci |Hi〉 . (3.183)

We can determine the constants ci by noting that

〈Hj|E−~α |E~α〉 = ci 〈Hj|Hi〉 = ci δij = cj . (3.184)
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Thus we have

cj = 〈Hj |E−~α |E~α〉 = 〈E~α|E~α |Hj〉

= 〈E~α| [E~α,Hj]〉 = −〈E~α| [Hj, E~α]〉

= −αj 〈E~α|E~α〉 = −αj . (3.185)

Since by definition E−~α |E~α〉 = | [E−~α, E~α]〉, we have proved that

| [E−~α, E~α]〉 = −αi |Hi〉 , (3.186)

and hence that

[E~α, E−~α] = αiHi , (3.187)

which we had asserted previously in (3.157).

Now, let us return again to the consideration of an arbitrary representation D of the

Lie algebra G. Consider

〈~µ,D| [E~α, E−~α] |~µ,D〉 = αi 〈~µ,D|Hi|~µ,D〉

= αi µi 〈~µ,D|~µ,D〉

= ~α · ~µ . (3.188)

On the other hand, we have

〈~µ,D| [E~α, E−~α] |~µ,D〉 = 〈~µ,D|E~α E−~α |~µ,D〉 − 〈~µ,D|E−~α E~α |~µ,D〉

= |N−~α,~µ|2 − |N~α,~µ|2 , (3.189)

(see (3.182)), and so we have

~α · ~µ = |N−~α,~µ|2 − |N~α,~µ|2 . (3.190)

We also have

N−~α,~µ = 〈~µ− ~α,D|E−~α|~µ,D〉

= 〈~µ− ~α,D|E†
~α|~µ,D〉

= 〈~µ,D|E~α|~µ− ~α,D〉∗

= N̄~α,~µ−~α , (3.191)

and so (3.190) gives

|N~α,~µ−~α|2 − |N~α,~µ|2 = ~α · ~µ . (3.192)
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Since we are assuming that the representation D is finite dimensional, it must be that

if we apply E~α or E−~α repeatedly we must eventually get zero, since each application adds

or subtracts ~α to the weight ~µ. (This is the direct analogue of the argument for SU(2) that

repeated application of J+ or J− on a finite-dimensional state must eventually give zero.)

Suppose, then, that for some non-negative integers p and q, we have that

|~µ+ p ~α,D〉 6= 0 , |~µ− q ~α,D〉 6= 0 , (3.193)

but that

E~α |~µ+ p ~α,D〉 = 0 , E−~α |~µ− q ~α,D〉 = 0 . (3.194)

It therefore follows from (3.182) that

N~α,~µ+p ~α = 0 , N−~α,~µ−q ~α = 0 , (3.195)

and then using (3.191) the second of these equations implies

N̄~α,~µ−(q+1) ~α = 0 . (3.196)

Now we can solve for the coefficients N~α,~µ, by following a strategy that is again precisely

analogous to the one we used for SU(2). From (3.192) we can write

|N~α,~µ+(p−1) ~α|2 − 0 = ~α · (~µ+ p ~α) ,

|N~α,~µ+(p−2) ~α|2 − |N~α,~µ+(p−1) ~α|2 = ~α · (~µ+ (p− 1) ~α) ,

...

|N~α,~µ|2 − |N~α,~µ+~α|2 = ~α · (~µ+ ~α) ,

|N~α,~µ−~α|2 − |N~α,~µ|2 = ~α · ~µ ,
...

|N~α,~µ−q ~α|2 − |N~α,~µ−(q−1) ~α|2 = ~α · (~µ− (q − 1) ~α) ,

0 − |N~α,~µ−q ~α|2 = ~α · (~µ− q ~α) . (3.197)

Adding up all these equations gives

0 = (p+ q + 1) ~α · ~µ+ 1
2~α

2 [p(p+ 1) − q(q + 1)]

= (p+ q + 1) [~α · ~µ+ 1
2~α

2 (p− q)] , (3.198)

and hence we conclude that
2~α · ~µ
~α2

= −(p− q) . (3.199)
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In particular, note that the right-hand side is an integer.

One can straightfowardly obtain explicit expressions for all the N~α,~µ from the above

equations, but actually we shall not need them. The main result, which will be of very

great importance, is (3.199).

First, we apply the general result (3.199) to the special case of the adjoint representation.

This is especially important because the weights ~µ are the roots of the algebra. We shall

in general denote roots by early letters in the Greek alphabet, usually ~α and ~β. Since

Hi |E~β
〉 = βi |E~β

〉, it follows from (3.199) that

2~α · ~β
~α2

= −(p− q) = m, (3.200)

where we have simply defined the integer m = q − p. On the other hand, we could equally

well have applied E±~β
repeatedly to |E~α〉, rather than applying E±~α repeatedly to |E~β

〉,
and so we must also have

2~α · ~β
~β2

= −(p′ − q′) = m′ . (3.201)

Multiplying (3.200) and (3.201) gives

cos2 θ = 1
4mm

′ , (3.202)

where

cos θ ≡ ~α · ~β
|~α| |~β|

, (3.203)

and θ is the angle between the root vectors ~α and ~β. Since m and m′ are integers, we have

the very important result that only certain very special angles are possible:

mm′ θ

0 90o

1 60o, 120o

2 45o, 135o

3 30o, 150o

4 0o, 180o

An implicit assumption in the discussion above was that for each root vector ~α there

is a unique operator E~α. In other words, we have been implicitly assuming that every

generator has a different root vector. This is easily proved, by supposing that there could

exist two independent generators E~α and E′
~α with the same root vector ~α, and deriving a
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contradiction. Thus we begin by supposing that there exist independent states |E~α〉 and

|E′
~α〉 satisfying

Hi |E~α〉 = αi |E~α〉 , Hi |E′
~α〉 = αi |E′

~α〉 . (3.204)

As usual, we can always choose our two hypothetically independent states so that

〈E′
~α|E~α〉 = 0 . (3.205)

(If they were not orthogonal, we could define an orthogonal pair by the standard procedure

of taking linear combinations – this is sometimes called Gram-Schmidt orthogonalisation.)

Repeated application of E±~α to |E′
~α〉 shows, using (3.199), that

2~α · ~α
~α2

= −(p− q) = 2 . (3.206)

However, we can furthermore show that E−~α |E′
~α〉 = 0, and hence that q = 0. To see

this, we note that it must be a zero-weight state (since ~α− ~α = 0), and so

E−~α |E′
~α〉 = ci |Hi〉 (3.207)

for some constants ci. Therefore we have

ci = 〈Hi|E−~α |E′
~α〉

= 〈E′
~α|E~α |Hi〉

= 〈E′
~α| [E~α,Hi]〉

= −αi 〈E′
~α|E~α〉

= 0 , (3.208)

where the last step follows from the orthogonality (3.205). Thus we have proved that q = 0,

and so (3.206) gives

2 = −p , (3.209)

which is a contradiction since by definition p is non-negative. Hence we conclude that there

is only one generator with any given value for its root vector.

3.5.5 SU(3) as an example

It will be helpful at this stage to consider an example in detail. After SU(2), which, as we

have seen, is not complicated enough to illustrate all the features of the general situation,

the next simplest example is SU(3). The algebra has dimension 8, and it can be represented

by 3× 3 Hermitean traceless matrices. A convenient basis is the set of so-called Gell-Mann

136



matrices λa, which are an SU(3) generalisation of the Pauli matrices of SU(2). They are

given by

λ1 =




0 1 0

1 0 0

0 0 0


 , λ2 =




0 −i 0

i 0 0

0 0 0


 ,

λ4 =




0 0 1

0 0 0

1 0 0


 , λ5 =




0 0 −i

0 0 0

i 0 0


 ,

λ6 =




0 0 0

0 0 1

0 1 0


 , λ7 =




0 0 0

0 0 −i

0 i 0


 ,

λ3 =




1 0 0

0 −1 0

0 0 0


 , λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 . (3.210)

By inspection, we can see that these provide a basis of Hermitian traceless 3 × 3 matrices.

The two written on the bottom line, λ3 and λ8, are diagonal, and so they obviously commute

with each other. In fact these are the maximal set of mutually-commuting Hermitian

matrices, and so we can take them to define the Cartan subalgebra.

Defining generators Ta = 1
2λa, we obtain the SU(3) algebra with a canonical normali-

sation of the structure constants,

[Ta, Tb] = i fab
c Tc . (3.211)

Obviously, we can work out all the fab
c if we wish, simply by slogging out the evaluation of

all the commutators. Note that the Ta have been normalised so that

tr(TaTb) = 1
2δab . (3.212)

It should also be noted that T1, T2 and T3 generate an SU(2) subalgebra. This is obvious

from the fact that λ1, λ2 and λ3 are just of the form

λa =

(
σa 0

0 1

)
, (3.213)

where σa are the 2 × 2 Pauli matrices. Note also that the pair (λ4, λ5) are very similar to

the pair (λ1, λ2), except for their non-zero entries being in the 13 and 31 positions in the

matrix, rather than 12 and 21. Likewise the pair (λ5, λ6) are also similar, excet that they

have their non-zero entries instead in the 23 and 32 positions in the matrix.
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As we already indicated, we shall take the Cartan subalgebra generators Hi to be

H1 = T3 , H2 = T8 . (3.214)

Since there are two of them, SU(3) has rank 2.

The Gell-Mann matrices provide a 3-dimensional representation of SU(3). As we know

from our earlier discussion, we can just think of the group SU(3) in terms of 3 × 3 special

unitary matrices acting on a 3-dimensional vector space, which, at the infinitesimal level,

becomes Hermitian traceless matrices acting on the vector space. We can also view the

vectors in the vector space as states.

A convenient basis of vectors for the 3-dimensional representation of SU(3) is therefore

simply

V1 =




1

0

0


 , V2 =




0

1

0


 , V3 =




0

0

1


 . (3.215)

Their eigenvalues under H1 and H2 can be read off by inspection, since H1 and H2 are

diagonal. Thus the eigenvalues under (H1,H2) for the vectors V1, V2 and V3 are

V1 : (1
2 ,

1
2
√

3
) , V2 : (−1

2 ,
1

2
√

3
) , V3 : (0,− 1√

3
) . (3.216)

We can write the states corresponding to V1, V2 and V3 as

V1 = |12 , 1
2
√

3
〉 , V2 = | − 1

2 ,
1

2
√

3
〉 , V3 = |0,− 1

2
√

3
〉 , (3.217)

where we are labelling the states by their weights under (H1,H2). This three-dimensional

representation is called the 3 of SU(3). It can also be called the Defining Representation,

since it is the basic representation arising from the definition of the SU(3) algebra in terms

of Hermitean traceless matrices acting on a three-dimensional complex vector space.

We can plot the weights of the states in the 3 of SU(3) on the plane, with axes cor-

responding to the weights under H1 and H2 respectively. The result, called the Weight

Diagram for the 3 representation, is depicted in Figure 4 below.

We have already seen from the general discussion that the raising and lowering operators

E~α must take us between states in a representation. Thus we are led to define

E1,0 = 1√
2
(T1 + iT2) = 1√

2




0 1 0

0 0 0

0 0 0


 ,

E−1,0 = 1√
2
(T1 − iT2) = 1√

2




0 0 0

1 0 0

0 0 0


 ,
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Figure 4: The weight diagram for the 3 representation of SU(3)

E1
2 ,

√
3

2

= 1√
2
(T3 + iT4) =




0 0 1

0 0 0

0 0 0


 ,

E
−1

2 ,−
√

3
2

= 1√
2
(T3 − iT4) =




0 0 0

0 0 0

1 0 0


 ,

E
−1

2 ,

√
3

2

= 1√
2
(T5 + iT6) =




0 0 0

0 0 1

0 0 0


 ,

E1
2 ,−

√
3

2

= 1√
2
(T5 − iT6) =




0 0 0

0 0 0

0 1 0


 . (3.218)

The action of these matrices on the three basis vectors Vi defined in (3.215) is easily

seen by inspection. For example, we have

E−1,0 V1 = 1√
2
V2 . (3.219)

The reason for writing it with the (−1, 0) 2-vector subscript is therefore clear; it has taken

a state with weight ~µ = ( 1
2 ,

1
2
√

3
) into a state with weight (− 1

2 ,
1

2
√

3
). We know in general

that

E~α |~µ〉 = N~α,~µ |~µ+ ~α〉 , (3.220)
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and so in this case we can deduce that the operator E−1,0 has weight ~α = (− 1
2 ,

1
2
√

3
) −

(1
2 ,

1
2
√

3
) = (−1, 0). One can similarly check for all the other combinations defined in (3.218)

that the subscript label is simply the root vector ~α associated with that particular raising

or lowering operator.

What we have now achieved is to reorganise the original 8 generators Ta of SU(3) into

two Cartan generators Hi, and the 6 raising and lowering operator combinations E~α in

(3.218). One can also directly verify by slogging out the commutators that these satisfy

[Hi, E~α] = αiE~α . (3.221)

The six vectors ~α are the six root vectors of the SU(3) algebra. They are given by

~α = (1, 0) , (−1, 0) , ( 1
2 ,

1
2

√
3) , (− 1

2 ,−1
2

√
3) , (−1

2 ,
1
2

√
3) , (1

2 ,−1
2

√
3) . (3.222)

They can be plotted in a weight diagram too. Since we are talking here of the adjoint

representation, for which the weights of the E~α are called the roots, the resulting weight

diagram in this case is called the Root Diagram for SU(3). It is depicted in Figure 5 below.

As can be seen, the six roots lie at the vertices of a regular hexagon. Note, in particular,

that the angles between adjacent roots are all 60o. This is consistent with our findings from

equation (3.202), which led to the discrete list of possible angles between root vectors given

in the table below (3.202).
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Figure 5: The root diagram for SU(3)

Note that the adjoint representation, being eight-dimensional, can also be denoted as

the 8 of SU(3). We could plot all eight weight vectors in a weight diagram too. It will,
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obviously, consist of the six points in the root diagram shown in Figure 5, together with

two extra points sitting at the origin, corresponding to the zero-weight vectors of the two

Cartan states |H1〉 and |H2〉.

3.5.6 Simple Roots

To begin, we introduce the notion of ordering weight vectors. To do this, we first define

positive and negative weight vectors.

• A weight vector ~µ = (µ1, µ2, . . . , µm) is said to be positive if its first non-zero compo-

nent, working from the left, is positive. This is written ~µ > 0. Similarly, ~µ is said to

be negative, written as ~µ < 0, if its first non-zero component, working from the left,

is negative. If all its components are zero, ~µ has zero weight.

This definition might seem somewhat arbitrary, and indeed it is. For example, there is

no pre-ordained or unique choice of what order to write the Cartan generators in. If we

chose a different ordering for them, then this would amount to shuffling around the order of

the components in all the weight vectors. What was a positive weight vector for one choice

of labelling of the Cartan generators could be a negative weight vector for another choice of

labelling. One could also perform redefinitions of the Cartan generators that amounted to

more than just rr-ordering them. One could make any non-singular redefinition involving

taking linear combinations of the original set of Cartan generators, with real coefficients,

and get another equally valid set.

It is true, therefore, that the definition of positivity and negativity of weight vectors is

in that sense arbitrary. The point is, though, that in the end it doesn’t matter. Although

the specifics of which weight vectors may be positive, and which negative, can change under

a change of basis for the Cartan generators, all the statements and theorems we are going

to use will work equally well for any choice. The only important thing is that one must fix

on a basis and then stick with it.

If ~µ and ~ν are two weight vectors, then we say that ~µ > ~ν if ~µ−~ν is positive. Note that

if ~µ > ~ν, and ~ν > ~λ, then it follows that ~µ > ~λ. This is easily proven from the definition of

positivity.

We are now in a position to define the highest weight in a finite-dimensional represen-

tation, as the weight that is greater than the weights of any of the other states in the

representation. As in the case of SU(2), there is in general a unique highest-weight state
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in the representation. Starting from this state, the entire set of states in the representation

can be built up, by acting with the lowering and raising operators E~α.

Now that we have defined the notion of positivity and negativity of weights, we are final

in a position to define which amongst the E~α are raising operators, and which are lowering

operators. Recalling that the roots vectors ~α are just the weights of the non-zero weight

states in the adjoint representation, we define:

• E~α is a raising operator if ~α is positive, and E~α is a lowering operator if ~α is negative.

Since, as we saw, E†
~α = E−~α, and since obviously if ~α is positive then −~α is negative, it

follows that the full set of root vectors splits into equal-sized subsets of positive root vectors

and negative root vectors. For every positive root vector ~α, there is an equal and opposite

negative root vector −~α.

Note that if we act with E~α on the highest-weight state in a representation, then we

shall necessarily get zero if ~α is positive. This follows from the fact that, as we saw earlier,

acting with E~α on a state |~µ〉 with weight ~µ gives a state proportional to |~µ+~α〉 with weight

~µ+ ~α. Therefore if α > 0 it follows that ~µ+ ~α > ~µ, so if |~µ〉 was already the highest-weight

state in the representation, then |~µ+ ~α〉 cannot exist.

Next, we define the notion of a simple root:

• A simple root is a positive root that cannot be written as the sum of two positive

roots.

The simple roots determine the entire structure of the group.

An important theorem that we can easily prove is that if ~α and ~β are ant two simple

roots, then ~β − ~α is not a root. The proof is as follows:

If ~β − ~α were a positive root, then from the identity

~β = ~α+ (~β − ~α) (3.223)

we would have that ~β can be written as the sum of two positive roots, which contradicts

the fact that ~β is a simple root. Conversely, if ~β − ~α were a negative root, then from the

identity

~α = ~β + (~α− ~β) (3.224)

we would have that ~α can be written as the sum of two positive roots, which contradicts

the fact that ~α is a simple root. If ~β− ~α is neither a positive root nor a negative root, then

it is not a root at all. This completes the theorem.
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Having established that ~β − ~α is not a root if roots ~α and ~β are simple roots, it follows

that we must have

E−~α |E~β
〉 = 0 . (3.225)

Now recall the master formula (3.199), i.e.

2~α · ~µ
~α2

= −(p− q) . (3.226)

where the states |µ+ p~α〉 and |µ− q~α〉 exist but |µ+ (p+ 1)~α〉 and |µ− (q + 1)~α〉 do not,

where p and q are non-negative integers. Applying this to the state |E~β〉 in the adjoint

representation, so ~µ = ~β, we have from (3.225) that q = 0, and hence

2~α · ~β
~α · ~α = −p , (3.227)

for any pair of simple roots ~α and ~β.

Knowing the integer p for each pair of simple roots ~α and ~β determines the angles

between all the simple roots, and the relative lengths of the simple roots. Recall once again

that p is the integer that tells us how many times we can commute E~α with E~β
before we

get zero.

We can, of course, interchange the roles of ~α and ~β in the above discussion. If the state

|~β + p′ ~α〉 exists, but |~β + (p′ + 1) ~α〉 does not, then we shall have

2~α · ~β
~β2

= −p′ . (3.228)

Multiplying (3.225) by (3.228), we find that

cos θ = − 1
2

√
p p′ ,

|~β|
|~α| =

√
p

p′
, (3.229)

where θ is the angle between ~α and ~β. Note that we have

π

2
≤ θ < π , i.e. ~α · ~β ≤ 0 . (3.230)

(We cannot have θ = π, because that would imply ~β was a positive multiple of −~α, which

is impossible if ~α and ~β are both positive. In fact from (3.229), the allowed angles between

a pair of simple roots are

θ =
π

2
,

2π

3
,

3π

4
,

5π

6
, (3.231)

or, in degrees,

θ = 90o , 120o , 135o , 150o . (3.232)

We can prove that the simple roots have the following properties:
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(1) The simple roots of a Lie algebra are linearly independent.

To see this, label the simple roots by ~αa. Note that a here is an index that labels each

simple root; let us suppose there are N of them. Suppose that the simple roots were

linearly dependent. Then, for some coefficients ca, we would have the relation

N∑

a=1

ca ~αa = 0 . (3.233)

Now, in general some of the constants ca will be positive, and some will be negative.

Divide the summation into two separate sums over these cases, and define

~y =
∑

a with ca>0

ca ~αa , ~z =
∑

a with ca<0

(−ca) ~αa . (3.234)

Equation (3.233) is now expressed as

~y = ~z . (3.235)

Now clearly, from the construction, ~y and ~z are both positive, since they are each the

sum of positive (in fact simple) roots with positive coefficients. From (3.235) we get

~y2 = ~y · ~z . (3.236)

Since we have shown above that ~α · ~β ≤ 0 for any pair of simple roots, its follows that

~y · ~z ≤ 0. Thus from (3.236) we obtain a contradiction, since ~y2 ≥ 0, with equality if

and only if ~y = 0, which it clearly cannot be. The conclusion is that the supposition

(3.233) of a linear dependence among the simple roots is false. Hence, we have proved

that the simple roots must all be linearly independent.

(2) Any positive root ~γ can be written as a sum of simple roots ~αa, with non-negative

integer coefficients ka, i.e. ~γ =
∑

a ka ~αa.

If ~γ is itself simple, the statement is obviously true. If ~γ is not simple, then it must

be possible to split it as ~γ = ~γ1 + ~γ2, where ~γ1 and ~γ2 are positive roots. (Recall

that the simple roots are those positive roots that cannot be written as the sum of

positive roots. Therefore, by definition, any positive root that is not simple must be

expressible as a sum of positive roots.) If either ~γ1 or ~γ2 is not simple, then split them

again. Continuing iteratively, one must eventually end up with ~γ decomposed as a

sum over simple roots, with non-negative integer coefficients.

(3) The number of simple roots is m =rank G
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To prove this, we first note that since the simple roots are m-component vectors (the

weights of the corresponding root generator under the m Cartan generators Hi), there

can be at most m of them. This is an immediate consequence of Property 1 above,

where we showed that the simple roots are all linearly independent.

Suppose, now, that there were less than m simple roots. We could then choose a basis

for the Cartan generators so that all the simple roots had a 0 as their first component,

i.e. ~α = (0, α2, . . . , αm) for every simple root ~α. It would then follow that the first

component of every root vector would be zero, since they are all expressible as sums

over simple roots. In other words, we would have that

[H1, E~γ ] = 0 (3.237)

for every raising or lowering operator E~γ . Of course we also have [H1,Hi] = 0 for

all i. The conclusion would then be that H1 would commute with every generator in

the Lie algebra G. In other words, H1 would be a generator of an abelian invariant

subalgebra. But at the outset of our discussion of the classification, we agreed to

exclude such cases, and only classify the simple Lie algebras. Therefore, we conclude

that for a simple Lie algebra G, the number of simple roots is equal to rank G, i.e. it

is equal to the number of Cartan generators.

Let us see now in more detail how we express the positive roots as sums of simple roots.

In the process, we shall see how one builds up the entire Lie algebra from the knowledge of

the simple roots.

Our task, then, is to discover which vectors

~γ =
∑

~α

k~α ~α (3.238)

are positive root vectors in the algebra, where ~α are the simple roots, and k~α are non-

negative integers.15 The of all the positive roots, together with their negatives, form what

is called the Root System of the Lie algebra G. It is useful to define

k =
∑

~α

k~α , (3.239)

which is called the level number of the particular root ~γ that is constructed in (3.238). We

can then in turn consider roots at level 1, level 2, level 3, and so on.

15Hopefully by now it will be completely clear what is meant by equation (3.238). We are using ~α as a

generic vector label to denote the set of all simple roots.

145



First, we note that the roots at level 1 are just the simple roots themselves, since it

must be that all the k~α are zero except for one of them, which equals 1.

At k = 2, there would appear to be two possibilties. We could satisfy (3.239) with k = 2

either by having all k~α = 0 except for one simple root, say ~α1, for which k~α1
= 2. Or, we

could satisfy it by having all k~α = 0 except for two different simple roots, say ~α1 and ~α2 ,

with k~α1
= k~α2

= 1. The first of these possibilities does not arise; in other words, there is

never a positive root given by 2~α1, where ~α1 is a simple root. The proof is easy. To get a

state with weight 2~α1 in the adjoint representation, we would build it as E~α1
|E~α1

〉. But

E~α1
|E~α1

〉 = |[E~α1
, E~α1

]〉 = 0 , (3.240)

since any generator commutes with itself.

At k = 2 we are left, therefore, with the possibility that we make a state E~α1
|E~α2

〉,
where ~α1 and ~α2 are two different simple roots. We now use the master formula

2~α1 · ~α2

~α2
1

= −(p− q) (3.241)

(see (3.200)). Recall that we showed previously that if ~α1 and ~α2 are simple roots, then

~α2 − ~α1 is not a root. Therefore q = 0 in (3.241). If ~α1 · ~α2 < 0 (i.e. it is strictly less then

zero), then ~α1 + ~α2 must be a root, since (3.241) therefore implies that p > 0, and hence

p ≥ 1 . (3.242)

Recall the significance of p; we know from the construction of the master formula that

~α2 + p ~α1 is a root, but ~α2 + (p+ 1)~α1 is not. Without further knowledge about the details

of the algebra we don’t know in this case, where we are supposing that ~α1 · ~α2 < 0, whether

p = 1 or p > 1, but we do know that p is at least 1, and so we know that ~α2 + ~α1 is a root.

If in fact p > 1, then we would have that ~α2 + 2~α1 is a root also. Of course the knowledge

of the details of the algebra that we need in order to make a definite statement about the

value of p is to know exactly what ~α1 · ~α2 is equal to, and what ~α2 is equal to.

For k ≥ 3 the process of building up the root system obviously gets more and more

complicated. Suppose we have found all the roots up to and including level k = n. A vector

~γ+ ~α at level k = n+ 1 is obtained by acting on a state at level k = n having root vector ~γ

with the simple root generator E~α. Is this new vector ~γ + ~α a root vector? Again, we use

the master formula, to get
2~α · ~γ
~α2

= −(p− q) . (3.243)

Unlike at level 2, we no longer know in general that q = 0, since ~γ is not simple. But we can

determine q by looking at all the roots we have built up so far at levels k < n. Knowing q,
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and knowing the value of ~α · ~γ, we will therefore be able to calculate p. If p > 0 (strictly),

then we will know that ~γ + ~α is a root.

Proceeding in this way, we can build up all the roots at the level k = n+ 1, and then

pass on to the next level, k = n+ 2. We continue this process until all the roots have been

found. The endpoint of the process is when one has reached some level number at which

one fails to find any further roots. The procedure terminates here, and teh task is complete.

It should be clear from this discussion that the key to everything is the master formula

(3.200). The only information we need to know is the lengths of the simple roots, and the

angles between the simple roots. Everything else then follows mechanically, and the entire

root system can be worked out. Note that we do not even need to know the basis for the

Cartan generators; i.e. we do not need to know the specific components of the simple root

vectors. Only the lengths, and the angles, are important.

Let us return to our SU(3) example at this point. We had the list (3.222) of the six

root vectors, which we can write more succinctly as

~α = (±1, 0) , ±( 1
2 ,

1
2

√
3) , ±( 1

2 ,−1
2

√
3) . (3.244)

Using the rule that a root is positive if its first non-zero component, working from the left,

is positive, we see that the three positive roots are

(1, 0) , ( 1
2 ,

1
2

√
3) , (1

2 ,−1
2

√
3) . (3.245)

We know that since SU(3) has rank 2 (there are 2 Cartan generators), it must have 2

simple roots. This example is sufficiently elementary that we can spot the simple roots by

inspection; they are

~α1 = (1
2 ,

1
2

√
3) , ~α2 = (1

2 ,−1
2

√
3) . (3.246)

Clearly the third positive root is given by

~α1 + ~α2 = (1, 0) . (3.247)

From (3.246) we see that

~α2
1 = ~α2

2 = 1 , ~α1 · ~α2 = −1
2 . (3.248)

This means that the angle between the two simple roots is 120o.

Of course in this SU(3) example we had the advantage of already having constructed

the algebra, and so we already knew the entire root system. As a practice for what we shall

be doing later, when we come at an algebra “from the other end” and start out knowing
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only the properties of its simple roots, let us pretend for SU(3) that we know only the

information given in (3.248).

We now try to build the entire SU(3) root system, using the procedure outlined above.

Thus at level k = 1 we have the two simple roots ~α1 and ~α2. At level 2, we can only consider

~γ = ~α1 + ~α2. Is this a root? We plug into the master formula (3.241), knowing that q = 0,

and we get, using the results in (3.248), that

2~α1 · ~α2

~α2
1

= −1 = −p , (3.249)

and hence ~α2 + ~α1 is a root, but ~α2 + 2~α1 is not. We could run the argument round the

other way, exchanging the roles of ~α1 and ~α2, and thereby deduce that ~α1 + 2~α2 is not a

root either. Thus we have already learnt that for SU(3) we have roots:

Level k = 1 : ~α1 , ~α2

Level k = 2 : ~α1 + ~α2

Level k = 3 : Nothing (3.250)

Once one has found no vectors at all at a given level, the process terminates; all the positive

roots have been found.

3.5.7 Dynkin Diagrams

We have seen that once the lengths of the simple roots are known, and the angles between

them, then the entire root system can be determined. Once the root system is known, the

entire Lie algebra is known,

[Hi,Hj] = 0 , [Hi, E~α] = αiE~α ,

[E~α, E−~α] = αiHi , [E~α, E~β
] = N

~α,~β
E

~α+~β
, (3.251)

where ~α 6= ~β.16

It is useful, therefore, to have a compact way of summarising all the necessary informa-

tion about the lengths and angles for the simple roots. This can be done in what is called

16To be precise, with what we have studied so far we will know which of the constants N~α,~β is zero and

which is non-zero, since we will know the root system, so we will know which commutators [E~α, E~β] produce

non-zero results and which produce zero. If one needs to know the values of the non-vanishing constants

N~α,~β , they can be worked out from the chain of equations we derived in section 3.5.4 by repeatedly acting

with the raising and lowering operators.
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a Dynkin Diagram. Recall that the angles θ between simple roots satisfy 1
2π ≤ θ < π, and

that θ can only take the discrete values

θ = 90o , 120o , 135o , 150o . (3.252)

As we saw above, in the case of SU(3) the angle between its two simple roots is 120o.

In a Dynkin diagram, each simple root is represented by a circle. The angle between

two simple roots is indicated by the number of lines joining the two roots, according to the

rule

θ = 90o No lines

θ = 120o One line

θ = 135o Two lines

θ = 150o Three lines . (3.253)

There is also the question of indicating the lengths of the simple roots. Although it is

not immediately obvious, it turns out that in fact the simple roots in any given simple Lie

algebra can only have two possible lengths. We can call these short roots and long roots.

Thus we merely need a notation for each circle, representing a simple root, to indicate

whether that particular root is a short one or a long one. This is done by filling in the circle

(i.e. a black circle) if it is a short root, while leaving it hollow (i.e. a white circle) if it is a

long root.17

In our SU(3) example, the two simple roots have equal length. In all cases where all the

roots have equal length, the convention is to call them long roots, and thus represent them

by open circles. A Lie algebra where all the simple roots have the same length is called a

Simply-laced Lie algebra.

The Dynkin diagram for SU(2) will consist of just a single circle, since there is just one

simple root:

◦ (3.254)

For SU(3), we have two simple roots, of equal length, and with an angle of 120o between

them. The SU(3) Dynkin diagram is therefore

◦—◦ (3.255)

17Of course, when drawing Dynkin diagrams on a blackboard there is a reversal of the roles, in the sense

that a filled-in circle (a short root) will actually be white, while an open circle (a long root) will be black.
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3.5.8 Fundamental Weights

Consider a simple Lie algebra G that has rank m. There are m simple roots, which we

shall call ~αi, with the index i that labels the simple roots ranging from 1 ≤ i ≤ m.18

Consider an arbitrary finite-dimensional irreducible representation D, and suppose that its

highest-weight state is

|~µ,D〉 . (3.256)

In other words, we have Hi|~µ,D〉 = µi |~µ,D〉, and ~µ is bigger than the weights of any of the

other states in the representation.

From its definition, it therefore follows that ~µ+ ~γ is not a weight in the representation

D, for any positive root ~γ. In fact, it suffices to say that ~µ+ ~αi is not a weight for any of

the m simple roots ~αi. Thus we have the statement

E~αi
|~µ,D〉 = 0 . (3.257)

Recall now the master formula (3.199), i.e.

2~α · ~µ
~α2

= −(p− q) , (3.258)

which was derived for any state |~µ,D〉 in an irreducible representation D, and any root

vector ~α, where the non-negative integers p and q were defined by the fact that ~µ+ p ~α and

~µ−q ~α are weights in the representation, but ~µ+(p+1) ~α and ~µ− (q+1) ~α are not. Taking

~α in (3.258) to be any of the simple roots ~αi, it follows from (3.257) that p = 0 for each i,

and so we have
2~αi · ~µ
~α2

i

= qi for each i , (3.259)

where the qi are non-negative integers.

Since we have established that the ~αi are m linearly independent m-component vectors,

it follows that the qi specify the highest-weight vector ~µ completely. Each set of non-negative

integers qi determines a highest-weight vector, and so each set of qi specifies an irreducible

representation D of the Lie algebra G. The complete set of states in D are then built up

by repeatedly acting on the highest-weight state |~µ,D〉 with the lowering operators E−~αi
,

18Take care not to confuse the index i on ~αi, which labels the different simple roots, and the index i that

we typically use to label the components of a given vector, such as when we write ~µ = (µ1, µ2, . . . , µm), and

we call these components µi. The way to distinguish between the two usages is that if the index i appears

on a quantity with an arrow, as in ~αi, then it is labelling a set of vectors (such as simple roots), whereas if

the index i appears on a quantity without an arrow, such as µi, it is labelling the components of a specific

vector.
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where ~αi are the simple roots. Needless to say, the master formula (3.258) will play a central

role in working out what the full set of states in D are.

It is convenient at this point ot introduce the so-called Fundamental Weight Vectors ~µi,

which are defined to be the highest-weight vectors corresponding to taking all of the qi = 0

except for one, which is taken to be unity. There are m possible choices; we define

~µ1 ↔ qi = (1, 0, 0, . . . , 0)

~µ2 ↔ qi = (0, 1, 0, . . . , 0)

...

~µm ↔ qi = (0, 0, . . . , 0, 1) . (3.260)

From their definition, it follows using (3.258) that

2~αi · ~µj

~α2
i

= δij . (3.261)

The m irreducible representations whose highest-weight vectors are the fundamental weight

vectors ~µi are called the Fundamental Representations of the Lie algebra G.

The highest-weight vector of any irreducible representation D, specified by a set of

non-negative integers qi = (q1, q2, . . . , qm), is given by

~µ =
∑

i

qi ~µi . (3.262)

This way of characterising a representation by means of the integers qi is known as describing

it by means of the Highest-weight labelling.

3.5.9 Examples in SU(3)

As we saw already (see (3.246)), the simple root vectors for SU(3) are given by

~α1 = (1
2 ,

1
2

√
3) , ~α2 = (1

2 ,−1
2

√
3) . (3.263)

It follows from (3.261) that the two fundamental weight vectors for SU(3) are given by

~µ1 = (1
2 ,

1
2
√

3
) , ~µ2 = (1

2 ,− 1
2
√

3
) . (3.264)

We have in fact already encountered the fundamental weight vector ~µ1, when we looked

at the 3-dimensional representation 3 of SU(3). The three states are listed in (3.217), and it

is evident by inspection that the state with the highest weight is | 12 , 1
2
√

3
〉. We now recognise

the 3 representation as the one characterised by taking qi = (1, 0).
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Let us look now at the other fundamental representation of SU(3), specified by qi =

(0, 1). Thus has ~µ2 = (1
2 ,− 1

2
√

3
) as its highest-weight vector. The idea now is to build

up the rest of the states in this representation. We know straight away that ~µ2 − ~α2 is a

weight, but ~µ2 − ~α1 and ~µ2 − 2~α2 are not. (This follows from the master formula (3.258),

together with the previous observation that, by definition, pi = 0 for any of the simple roots

~αi acting on the highest-weight states.) So we know there is a state

E−~α2
|~µ2〉 = c |~µ2 − ~α2〉 , (3.265)

for some non-zero constant c. Note that ~µ2 − ~α2 = (0, 1/
√

3). Now we descend a level, by

acting on |~µ2 − ~α2〉 with lowering operators. We know that E−~α2
will annihilate it, since

we established ~µ2 − 2~α2 is not a weight.

The only remaining option is to act with E−~α1
. Applying the master formula (3.258),

we have
2~α1 · (~µ2 − ~α2)

~α2
1

= 1 = −(p− q) . (3.266)

But p = 0, since ~µ2−~α2 +~α1 is not a weight. We can see this, i.e. that E~α1
|~µ2−~α2〉 = 0, by

considering E~α1
E−~α2

|~µ2〉. Now, we know that [E~α1
, E−~α2

] = 0, since we proved in general

that the difference of simple roots is never a root. Therefore, proving E~α1
E−~α2

|~µ2〉 = 0 is

equivalent to proving E−~α2
E~α1

|~µ2〉 = 0, and this is obvious, since |~µ2〉 is the highest-weight

state and so E~α1
|~µ2〉 = 0. Having proved p = 0, equation (3.266) shows that q = 1, and so

~µ2 − ~α2 − ~α1 is a weight.

Similar arguments show that E−~α1
and E−~α2

both annihilate |~µ2 − ~α2 − ~α1〉, and so the

construction of the representation with highest-weight vector ~µ2 is complete. It has three

states, with weights

~µ2 = (1
2 ,− 1

2
√

3
) , ~µ2 − ~α2 = (0, 1√

3
) , ~µ2 − ~α2 − ~α1 = (−1

2 ,− 1
2
√

3
) (3.267)

These can be plotted on a weight diagram, depicted in Figure 6. We can see that it is

just an upside-down version of the original 3 representation. For reasons that will become

apparent, it is called the 3 representation.

3.5.10 Weyl Reflections

Strictly speaking, our derivation of the three states of the 3 representation of SU(3) is

not yet complete. Although we could argue from the master formula (3.258) that no other

weights could arise, it does still leave open the question of whether there might exist more
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Figure 6: The weight diagram for the 3 representation of SU(3)

than one state with any of the three weights that we found. One useful tool that helps to

rule out such a possibility is called the Weyl Reflection Formula. This says the following:

If ~µ is a weight of a state in an irreducible representation D, and ~α is any root, then

~µ′ = ~µ−
(2~α · ~µ

~α2

)
~α (3.268)

is also a weight of a state in the representation D. The proof consists of showing that if ~µ ′

is substituted into the master formula, it passes the test of being a permissible weight. The

key point is that, from (3.268), we have

2~α · ~µ′
~α2

= −2~α · ~µ
~α2

, (3.269)

and hence if ~µ passes the test for being a weight, then so does ~µ′.

A consequence of the Weyl reflection formula is that the degeneracy of states with weight

~µ is identical to the degeneracy of states with weights ~µ′.

Notice that the Weyl reflection formula (3.268) constructs a weight ~µ′ by reflection of ~µ

in the hyperplane19 orthogonal to the root ~α. To see this, consider the vector

~v = ~µ−
(~α · ~µ
~α2

)
~α . (3.270)

Obviously we have ~v · ~α = 0. We also obviously have that ~µ+ ~µ′ lies along ~v; in fact from

(3.268) and (3.270) we have ~µ+ ~µ′ = 2~v. This proves the assertion.

19In our SU(3) example, which is rank 2, the roots and weights live in a 2-dimensional space, and so the

“hyperplane” orthogonal to a root ~α is a line.
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The set of all reflections, for all the roots ~α, is called the Weyl Group. It is a discrete

symmetry of the weight daigram.

In our SU(3) example, take another look at the root diagram of Figure 5. Recall that

we identified the simple roots ~α1 and ~α2 in (3.246), and the remaining positive root ~α1 + ~α2

in (3.247). In Figure 5, ~α1 is therefore the dot in the top right, and ~α2 is the dot in the

bottom right. ~α1 +~α2 is the dot in the middle right. The hyperplanes (i.e. lines) orthogonal

to these vectors therefore comprise the H2 axis (perpendicular to ~α1 + ~α2), and lines at

+30o and −30o to the H1 axis. In other words these lines make 60o angles to each other.

Imagine these lines as mirrors, and it is clear that a dot placed at a generic point on the

weight diagram will acquire 5 image points under these reflections, making six dots in total,

at the vertices of a regular hexagon. This is illustrated in Figure 7 below.

H

H

1

2

Figure 7: The Weyl reflection lines for SU(3). The NW-SE line is perpendicular to ~α1,

the SW-NE line is perpendicular to ~α2, and the vertical line is perpendicular to ~α1 + ~α2.

A generically-placed dot (the black circle) acquires 5 image points (the open circles) under

the set of Weyl reflections

A dot that is placed at a special point, sitting actually on the surface of one of the

mirrors, will only acquire 2 image points.

Now let us go back to our 3 representation of SU(3). Start with the highest-weight state

~µ2, which is the bottom right vertex of the triangle in Figure 6. This is clearly at one of the

special points, which sits on one of the mirrors. It therefore acquires just two image points,

which are exactly the two other weights in the representation, which we already calculated.
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This is illustrated in Figure 8 below.

���
�

H

H

1

2

Figure 8: The highest weight (bottom right dot) of the 3̄ representation of SU(3) acquires

2 image dots under Weyle reflections, filling out the entire irreducible representation.

At this stage, we know from our general discussion of the Weyl group that the degen-

eracies of all the Weyl-reflected weights are the same. Since for the 3 representation we

are able to get all three weights from the highest-weight state by reflection, we need only

demonstrate that the highest-weight state is unique (i.e. not degenerate), and we will have

proved that all three states are non-degenerate, and hence that there really are exactly three

states and no more.

It is easy to prove, for any representation of any simple Lie algbera, that the highest-

weight state is unique, i.e. that there is a unique state with the highest weight ~µ. Recall

that, by definition, the states in a representation are built up by acting in all posible ways

with raising and lowering operators on a state with the highest weight ~µ. Without yet

assuming that there is a unique highest-weight state, consider one such, say |~µ〉, and now

build up the representation. It will be obtained as the set of all non-vanishing states of the

form

E~γ1
E~γ2

· · ·E~γn
|~µ〉 , for all n , (3.271)

where each of (~γ1, ~γ2, . . . , ~γn) is any of the root vectors of the algebra. We can immediately

exclude all positive roots, since by repeated commutation we can move them to the right,

where they hit |~µ〉 and annihilate it. They get progressively less positive as they form

commutators with negative-root generators along the way, but the net effect is that any
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non-vanishing state obtained in (3.271) is actually expressible as a (possibly smaller number)

of purely negative-root generators acting on |~µ〉. (This is an important point, and so if you

don’t immediately see it, try playing around with an example in order to see why it is true.)

Having established that we need only consider states in (3.271) where all the operators

have negative root-vectors, it is now manifest that we will never build a second state with

the weight ~µ of the highest weight. Thus the highest-weight state is unique.

Going back to our example of the 3 of SU(3), this completes the proof that it really is

a representation with exactly three states, i.e. with no degeneracy.

3.5.11 Complex Representations

Suppose Ta are the generators of a Lie algebra G, in some represenation D. We have

[Ta, Tb] = i fab
c Tc , (3.272)

where the structure constants fab
c are real. Complex conjugating, we therefore have

[T ∗
a , T

∗
b ] = −i fab

c T ∗
c , (3.273)

and so we see that the (−T ∗
a ) generate the same algebra as Ta. The representation of G

using the the generators (−T ∗
a ) is called the complex conjugate of the representation D of

the generators Ta, and it is denoted by D.

If D is equivalent to D, then we say that D is a real representation. If D is inequivalent

to D, then we say that D is a complex representation.

Suppose that ~µ is a weight in the representation D, i.e. there is a corresponding state

with

Hi |~µ,D〉 = µi |~µ,D〉 . (3.274)

It then follows that D has a corresponding state with weight −~µ. The reason for this is

that the Cartan generators for D are −H∗
i , and furthermore, we know that Hi has the

same eigenvalues as H∗
i . This is because the Cartan generators are Hermitean, and so they

eigenvalues are real. The upshot is that the highest weight of D is the negative of the lowest

weight of D. Since the highest weight determines the entire representation, it follows that

D is real if its lowest weight is the negative of its highest weight

If this is not the case, the representation is complex.

Let us consider some examples. In the defining representation of SU(3), i.e. the 3

representation depicted in Figure 4. Its highest weight is the fundamental weight vector

~µ1; this corresponds to the top right dot in the weight diagram. Its lowest weight is the
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reflection across the H2 axis, i.e. the dot on the top left, which is −~µ2, where ~µ2 is the

other fundamental weight vector of SU(3). Manifestly, the lowest-weight vector is not the

negative of the highest-weight vector, and so we conclude that the 3 of SU(3) is a complex

representation. Indeed, as we already saw, there is another three-dimensional representation

which is just the upside-down version of the 3, namely the 3 that we constructed, and that

is depicted in Figure 6. This has ~µ2 as its highest weight.

In terms of the highest-weight labelling, where the representation is specified by the

integers qi and the highest weight is ~µ =
∑

i qi ~µi, the 3 and the 3 representations are the

(1, 0) and the (0, 1) respectively. It is no coincidence that one is obtained from the other

by exchanging the first and second components of their highest-weight labels.

Consider an SU(3) representation defined by qi = (m,n). By definition, this has as its

highest weight the vector

~µ = m~µ1 + n ~µ2 , (3.275)

where ~µ1 and ~µ2 are the fundamental weight vectors defined earlier, which satisfy 2~α ·
~µj/(~α

2
i ) = δij . It follows therefore that the lowest-weight state in the (m,n) representation

has weight

−n~µ1 −m~µ2 . (3.276)

The highest weight of the complex conjugate representation (m,n)∗ is therefore given by

n ~µ1 +m~µ2 , (3.277)

from which we see that (m,n)∗ = (n,m). It is now very easy to recognise which represen-

tations of SU(3) are real, and which are complex: A representation (m,n) is real if m = n,

and complex if m 6= n.

Let us discuss two more examples of SU(3) representations before moving on to other

matters. First, consider the representation (1, 1), which, in view of the above discussion, is

real. In fact we already know this representation. By definition, its highest-weight vector is

~µ = ~µ1 + ~µ2 = (1, 0) . (3.278)

(Recall that the fundamental weight vectors were given in (3.264).) Now, recall that when

we studied the adjoint representation of SU(3), we found that the three positive root vectors

were the two simple roots ~α1 and ~α2 given in (3.246), and the vector ~α1 + ~α2. This last is

obviously the highest-weight vector in the adjoint representation. From (3.246) we have

~α1 + ~α2 = (1, 0) . (3.279)
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Thus we see that the highest-weight vector of the qi = (1, 1) representation is precisely the

highest-weight vector of the adjoint representation. It follows that the (1, 1) representation

is the adjoint representation.

If we didn’t already know everything about the adjoint representation of SU(3), we

could easily construct it from the knowledge of the simple roots, and the highest-weight

vector in (3.278). By definition, since q1 = 1 and q2 = 1, we know that ~µ− ~α1 and ~µ− ~α2

are weights but ~µ− 2α1 and ~µ− 2~α2 are not. Applying the master formula (3.258) to the

weight ~µ− ~α1, we find
2~α2 · (~µ− ~α1)

2~α2
2

= 2 = −(p− q) . (3.280)

Since ~µ − ~α1 + ~α2 is not a weight (we know this because ~α1 − ~α2 is not a root), we have

p = 0, and hence q = 2. This means ~µ − ~α1 − ~α2 and ~µ − ~α1 − 2~α2 are weights, but

~µ−~α1−3~α2 is not. Interchanging the rôles of ~α1 and ~α2 when applying the master formula,

we also learn that ~µ− 2~α1 − ~α2 is a weight but ~µ − 3~α1 − ~α2 is not. Finally, we find that

2~α2 · (~µ − 2~α1 − ~α2)/(~α
2
2) = 1, and since ~µ − 2~α1 is not a weight, we have q = 1 and so

(~µ − 2~α1 − 2~α2 is a weight. Applying the master formula to all our newly-found weights,

we discover that there can be no more, and the process has terminated. The weights we

have found by this process comprise six non-zero weights, which live on the six vertices

of the hexagon in Figure 5, and the weight ~µ − ~α1 − ~α2 = 0. This lives at the origin. It

was not included in Figure 5 because there, we were specifically plotting the roots, i.e. the

non-zero-weight vectors of the adjoint represenation. When we plot the weight diagram of

the adjoint representation, which should of course include the zero-weight states too.

For the record, the non-zero weights found above lie in Figure 5 as follows. At the far

right we have ~µ. Top-right is ~µ− ~α2, and bottom-right is ~µ− ~α1. Far-left is ~µ− 2~α1 − 2~α2;

top-left is ~µ− ~α1 − 2~α2; and bottom-left is ~µ− 2~α1 − ~α2.

There is a small subtlety about the zero-weight vector ~µ− ~α1 − ~α2. There are actually

two linearly-independent zero-weight states, which we can write as

E−~α1
E−~α2

|~µ〉 , and E−~α2
E−~α1

|~µ〉 . (3.281)

The reason why these are independent is that the commutator [E−~α1
, E−~α2

] is non-zero

(it gives a constant times E−~α1−~α2
), and so the two orderings of the lowering operators in

(3.281) can, and indeed do, give different states. This can be proved by a rather simple

argument.

It is, of course, precisely to be expected that there should be two linearly-independent

zero-weight states in the adjoint representation; they are nothing but the Cartan states
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|H1〉 and |H2〉.
For a second, and final example of an SU(3) representation, consider the qi = (2, 0)

representation, which is complex. Its highest-weight vector is ~µ = 2~µ1 = (1, 1/
√

3). Since

q1 = 2 we know ~µ− ~α1 and ~µ− 2~α1 are weights but ~µ− 3~α1 is not. We can proceed again

using the master formula (3.258), to build up all the weights. Recall that one can also make

use of the Weyl reflection properties derived earlier. Either way, one soon arrives at the

conclusion that there are six weights in the representation, namely

~µ = (1, 1√
3
) , ~µ− ~α1 = (1

2 ,− 1
2
√

3
) ,

~µ− 2~α1 = (0,− 2√
3
) , ~µ− ~α1 − ~α2 = (0, 1√

3
) ,

~µ− 2~α1 − 2~α2 = (−1, 1√
3
) , ~µ− 2~α1 − ~α2 = (−1

2 ,− 1
2
√

3
) . (3.282)

The weight diagram for this six-dimensional representation is given in Figure 9 below.
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Figure 9: The 6 representation of SU(3). The highest-weight state ~µ = 2~µ1 is at the top

right of the triangle.

3.5.12 Two Theorems about ~α Strings

As we have been seeing, one can extract an enormous amount of information from the

“master formula” (3.258). In fact, it lies at the heart of the entire procedure for constructing

irreducible representations of Lie algebras. Some of the things one learns from using (3.258)

are specific to the details of the particular Lie algebra one is studying, as encoded in the
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information about the lengths of the simple roots and the angles between them. Other

things are rather general, such as the results about the allowed angles between simple

roots.

Here are two more general results, which can be derived from the master formula (3.258).

It is useful to know these, when constructing the root system, because they can save a lot

of time. They are both concerned with what we may call ~α Strings, namely sets of roots in

the root system that are obtained by adding or subtracting the root vector ~α repeatedly to

a given root vector ~γ:

(1) A string of roots ~γ + k ~α has no gaps.

Imagine that we start with the integer k being sufficiently small (which could mean

large and negative) that ~γ + k, ~α is not a root, and we increase k until we get an

allowed root. We now keep increasing k until again we reach a vector that is not an

allowed root. The theorem states that if we keep increasing k further, it is not possible

to find any further allowed roots. In other words, an ~α string of roots cannot have

segments of allowed roots with a gap of disallowed vectors in between.

We can prove this by the time-honoured procedure of supposing the contrary, and

arriving at a contradiction. Suppose, therefore, that we did have a gap in a string of

allowed roots. We can characterise this by supposing that we have roots

· · · , ~β − 2~α , ~β − ~α , ~β , (3.283)

and then a gap where there are no roots, and then a further set of allowed roots

~β′ , ~β′ + ~α , ~β′ + 2~α , · · · , (3.284)

where

~β′ = ~β + n ~α , n ≥ 2 . (3.285)

In particular, we are supposing that ~β + ~α is not a root, and ~β′ − ~α is not a root.

Applying the master formula (3.258), these last two facts imply that

2~α · ~β
~α2

= −(p− q) = q ,

2~α · ~β′
~α2

= −(p′ − q′) = −p′ . (3.286)

Using (3.285) in the second of these equations, we therefore obtain

q + p′ + 2n = 0 . (3.287)
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This is a contradiction, since q and p′ are non-negative, and n ≥ 2. Therefore, the

~α-string cannot have gaps.

2) No string of roots can have more than 4 roots in the chain

Again, the proof is by contradiction. Suppose we had a string of 5 or more roots.

Without loss of generality, we could then pick a root, let’s call it ~β, somewhere in the

middle, such that we have roots

· · · , ~β − 2~α , ~β − ~α , ~β , ~β + ~α , ~β + 2~α , , · · · , (3.288)

where ~α is a simple root.

Now, we know that that

2~α = (~β + 2~α) − ~β and 2(~β + ~α) = (~β + 2~α) + ~β (3.289)

are not roots, since if ~γ is a root 2~γ can never be a root. (This follows from the fact

that [E~γ , E~γ ] = 0.) Applying the master formula (3.258), with ~α replaced by ~β, andd

~µ replaced by (~β + 2~α), we know from (3.289) that p = q = 0 and so

~β · (~β + 2~α)

~β2
= 0 . (3.290)

By the same token, we know that

−2~α = (~β − 2~α) − ~β and 2(~β − ~α) = (~β − 2~α) + ~β (3.291)

are not roots, and so applying the master formula here we obtain

~β · (~β − 2~α)

~β2
= 0 . (3.292)

Adding (3.290) and (3.292) we arrive at the conclusion

~β2

~β2
= 0 , (3.293)

which is a contradiction. Hence we cannot have more than 4 roots in a string of roots

~γ + k ~α.

3.6 Root Systems for the Classical Algebras

3.6.1 The SU(N) Algebras: An

An arbitrary N ×N unitary matrix can be written as U = ei H , where H is hermitean. The

unit-determinant condition detU = 1 is equivalent to the tracelessness condition trH = 0.
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Therefore the generators of SU(N) are the set of all hermitean traceless N × N matrices,

Ta. Let us choose a basis so that

tr(Ta Tb) = 1
2δab . (3.294)

The maximal set of mutually commuting matrices amongst the Ta can most conveniently

be taken to be the diagonal matrices, so these will form the Cartan subalgebra. Thus we

can take

H1 = 1√
2

diag (1,−1, 0, 0, 0, . . . , 0, 0) ,

H2 = 1
2
√

3
diag (1, 1,−1, 0, 0, . . . , 0, 0) ,

H3 = 1
2
√

6
diag (1, 1, 1,−, 0, . . . , 0, 0) ,

...

Hj = 1√
2j(j+1)

diag (1, 1, 1, . . . , 1,−j, 0, 0, . . . , 0, 0) ,
...

HN−1 = 1√
2N(N−1)

diag (1, 1, 1, 1, 1, . . . , 1, 1,−(N − 1)) , (3.295)

where in the penultimate line Hj has j entries of 1 before the −j. These are normalised so

that

tr(HiHj) = 1
2δij . (3.296)

Since there are (N − 1) of them, we conclude that SU(N) has rank (N − 1). In Cartan’s

classification, SU(N) is denoted by AN−1. The A indicates the special unitary sequence of

algebras, and the subscript indicates the rank.

The N×N matrices generate the N -dimensional represenation of SU(N), i.e. the defin-

ing representation. The matrices act by matrix multiplication on the N states of the vector

space,

|~ν1〉 =




1

0

0
...

0

0




, |~ν2〉 =




0

1

0
...

0

0




, · · · , |~νN 〉 =




0

0

0
...

0

1




. (3.297)

Their weights, ~νk, i.e. their eigenvalues under Hj, are easily seen to be

~ν1 = (1
2 ,

1
2
√

3
, 1

2
√

6
, . . . , 1√

2j(j+1
, . . . , 1√

2N(N−1)
) ,
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~ν2 = (−1
2 ,

1
2
√

3
, 1

2
√

6
, . . . , 1√

2j(j+1
, . . . , 1√

2N(N−1)
) ,

~ν3 = (0,− 1√
3
, 1

2
√

6
, . . . , 1√

2j(j+1
, . . . , 1√

2N(N−1)
) ,

...

~νN = (0, 0, 0, . . . , 0, . . . ,− (N−1)√
2N(N−1)

) . (3.298)

When we introduced the notion of positivity or negativity of weight vectors, we used the

rule that the sign of the first non-zero component working from the left would determine

the sign of the root. As we emphasised then, this is a completely arbitrary choice. In fact

here, it is preferrable to work in from the right; i.e. , we shall say that a weight is positive

(negative) if its first non-zero component working from the right is positive (negative).

Under this scheme, we have

~ν1 > ~ν2 > ~ν3 > · · · > ~νN−1 > ~νN . (3.299)

The raising and lowering operators will be built from complex combinations of the off-

diagonal hermitean matrices. Specifically, we may define the N ×N matrix Eij, which has

zeros everywhere except at row i, column j, where the component is equal to 1/
√

2. It is

manifest that these act as raising and lowering operators on the set of fundamental states

|~νk〉, according to the rule

Eij |νk〉 = 1√
2
δjk |~νi〉 . (3.300)

Now the differences between the weights are necessarily roots, since in general E~α |~µ〉 =

c |~µ+ ~α〉. Thus we know that roots are given by

~νi − ~νj , for any i 6= j . (3.301)

In fact since we get N(N − 1) roots by this construction, we see that these constitute all

the roots of SU(N).20 From (3.299) we see that the positive roots are given by

~νi − ~νj , i < j . (3.302)

The simple roots are then clearly given by

~αi = ~νi − ~νi+1 , 1 ≤ i ≤ N − 1 . (3.303)

20SU(N) has dimension N2 − 1, and it has rank (N − 1), so there are (N 2 − 1) − (N − 1) = N(N − 1)

roots.
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Explicitly, they are given by

~α1 = (1, 0, 0, . . . , 0, 0) ,

~α2 = (−1
2 ,

√
3

2 , 0, . . . , 0, 0) ,

~α3 = (0,− 1√
3
,
√

2
3 , . . . , 0, 0) ,

...

~αj = (0, 0, 0, . . . ,−
√

j−1
2j ,

√
j+1
2j , 0, . . . , 0, 0) ,

...

~αN−1 = (0, 0, 0, . . . , 0,−
√

N−2
2(N−1) ,

√
N

2(N−1) ) . (3.304)

It is straightforward to check from the above that the simple roots of SU(N) satisfy

~αi · ~αi = 1 , for each i ,

~αi · ~αi+1 = −1
2 , for each i ,

~αi · ~αj = 0 , i 6= j and i 6= j ± 1 . (3.305)

Note that we can summarise all these dot products in the single equation

~αi · ~αj = δi,j − 1
2δi,j+1 − 1

2δi,j−1 . (3.306)

From these, it follows that the angle between any pair of adjacent simple roots is 120o, while

the angle between any pair of non-adjacent simple roots is 90o. All the simple roots have

the same length. It therefore follows that the Dynkin diagram for SU(n) is

◦— ◦ — ◦ — ◦ · · · ◦ — ◦ — ◦ , (3.307)

where there are N − 1 circles. We can label them ~α1, ~α2, ~α3, . . . , ~αN−2, ~αN−1.

There is a more convenient way to parameterise the roots of SU(N). Let us first make

a shift by 1, and consider SU(n + 1), which has rank n and is called An in the Dynkin

classification scheme. We then introduce a set of (n+ 1) mutually-orthogonal unit vectors

~ei in IRn+1, for 1 ≤ i ≤ n+ 1, satisfying

~ei · ~ej = δij . (3.308)

We can choose a basis where

~ei = (0, 0, 0, . . . , 0, 1, 0, . . . , 0, 0) , (3.309)
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where the only non-zero entry is the 1 in the i’th component. The root vectors of An then

lie in the n-dimensional hyperplane orthogonal to

~v = ~ε1 + ~e2 + ~e3 + · · · + ~en + ~en+1 . (3.310)

They are given by

~ei − ~ej , (3.311)

and are positive if i > j, and negative if i < j.21 The simple roots are clearly given by

~αi = ~ei − ~ei+1 , 1 ≤ i ≤ n . (3.312)

For example, we can write the non-simple positive root ~e1 − ~e3 as

~e1 − ~e3 = (~e1 − ~e2) + (~e2 − ~e3) = ~α1 + ~α2 . (3.313)

From (3.312) we clearly have

~αi · ~αj = 2δi,j − δi,j+1 − δi,j−1 . (3.314)

Up to an overall normalisation factor (which is totally irrelevant as far as determing the

structure of the algebra is concerned), this is equivalent to what we had in equation (3.306).

3.6.2 The SO(N) Algebras: Bn and Dn

The SO(N) algebra is generated by N ×N matrices that are imaginary and antisymmetric.

This can be seen by exponentiating to get SO(N) group elements. Thus if A is antisym-

metric, then eiA is orthogonal:

(ei A)T (ei A) = (ei A
T

) (ei A) = (e−i A) (ei A) = 1l . (3.315)

Our general rule is that we take our generators to be Hermitean, and so if they are anti-

symmetric, they must be imaginary.

Here, we must divide the discussion into two cases, depending on whether N is even or

odd. First, let us consider the even case, N = 2n. The SO(2n) algebras are called Dn in

the Dynkin classification.

21We have now reverted to determining the sign of a vector by the sign of its first non-zero component

starting from the left.
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For Dn = SO(2n), we consider the set of all imaginary antisymmetric 2n× 2n matrices.

We can take the Cartan generators, of which there are n, to be

H1 =




σ2 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .

0 0 0 · · · 0




, H2 =




0 0 0 · · · 0

0 σ2 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .

0 0 0 · · · 0




,

H3 =




0 0 0 · · · 0

0 0 0 · · · 0

0 0 σ2 · · · 0
...

...
...

. . .

0 0 0 · · · 0




, · · · Hn =




0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .

0 0 0 · · · σ2




,

where each entry represents a 2 × 2 matrix, and σ2 is the second Pauli matrix,

σ2 =

(
0 −i

i 0

)
. (3.316)

Note that tr(HiHj) = 2δij . Note also that Dn = SO(2n) has rank n.

We can now consider the states of the 2n-dimensional defining representation (corre-

sponding to the 2n×2n matrices acting on the 2n-dimensional vector space). We can write

these states as

|1〉 =




1

i

0

0
...

0

0




, |2〉 =




1

−i

0

0
...

0

0




, |3〉 =




0

0

1

i
...

0

0




, |4〉 =




0

0

1

−i
...

0

0




, (3.317)

and so on, up to

|2n− 1〉 =




0

0

0

0
...

1

i




, |2n〉 =




0

0

0

0
...

1

−i




. (3.318)
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These vectors have been chosen because they are eigenvectors under the Cartan generators

H)i. In fact they clearly have weight vectors as follows:

|1〉 : (1, 0, 0, . . . , 0, 0) = ~e1 ,

|2〉 : (−1, 0, 0, . . . , 0, 0) = −~e1 ,

|3〉 : (0, 1, 0, . . . , 0, 0) = ~e2 ,

|4〉 : (0,−1, 0, . . . , 0, 0) = −~e2 ,
...

|2n− 1〉 : (0, 0, 0, . . . , 0, 1) = ~en ,

|2n〉 : (0, 0, 0, . . . , 0,−1) = −~en . (3.319)

As in our SU(N) discussion, we can now read off the root vectors of SO(2n), since we

know that the difference between any pair of weights in the defining representation must

be a root. Thus the full set of roots is given by

±~ei ± ~ej , i ≤ j , (3.320)

where the ± signs can be chosen independently. The positive roots are then

~ei ± ~ej , i < j , (3.321)

and we can easily then see that the simple roots are given by

~αi = ~ei − ~ei+1 , 1 ≤ i ≤ n− 1 ,

~αn = ~en−1 + ~en . (3.322)

In other words, one can easily check that using these, one can build all the positive roots

in (3.321) by taking sums of the ~αi with non-negative integer coefficients.

It follows from (3.322) that all n simple roots have the same length:

~α2
1 = ~α2

2 = ~α2
3 = · · · = ~α2

n = 2 , (3.323)

and that their dot products are given by

~α1 · ~α2 = ~α2 · ~α3 = ~α3 · ~α4 = · · · = ~αn−2 · ~αn−1 = −1 ,

~αn−2 · ~αn = −1 , ~αn−1 · ~αn = 0 . (3.324)
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All other dot products not listed here are zero. The Dynkin diagram for Dn = SO(n) is

shown in Figure 10 below.22

~α1 α2 ~αn−3 ~αn−2 ~αn−1

◦ — ◦ — · · · · · · — ◦ — ◦ — ◦
|
◦
~αn

Figure 10. The Dynkin diagram for SO(2n), which is called Dn in the Dynkin classi-

fication. It has rank n, and it is simply-laced.

Now, let us consider SO(2n + 1), which is known as Bn in the Dynkin classification.

Like SO(2n), this has rank n. We can take the Cartan generators to be

H1 =




σ2 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 0 0




, H2 =




0 0 0 · · · 0 0

0 σ2 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 0 0




,

H3 =




0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 σ2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 0

0 0 0 · · · 0 0




, Hn =




0 0 0 · · · 0 0

0 0 0 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · σ2 0

0 0 0 · · · 0 0




, (3.325)

where again σ2 is the Pauli matrix given in (3.316). Note that here, every entry in the

matrix represents a 2 × 2 submatrix, except for the entries down the far right column, and

along the bottom row, which are just numbers (i.e. 1 × 1 matrices). The reason for this

is, of course, that the matrices here are (2n + 1) × (2n + 1) in dimension, and so there

22Note that it is customarily drawn with the right-hand end twisted anti-clockwise through 45o, so that

there are two “ears” formed by ~αn−1 and ~αn. This is entirely equivalent, since only the pattern of connecting

lines and the type of circle (open or closed) has any significance. The reason for displaying it as in Figure

10 is simply because I don’t know how to construct the necessary 45o lines using Latex.
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is a left-over strip around the right and the bottom, after we have filled in the rest with

2 × 2 blocks. This is also why we don’t get an extra Cartan generator when we move from

SO(2n) to SO(2n+ 1).

The states of the (2n+1)-dimensional defining representation will comprise the (2n+1)-

component column vectors

|1〉 =




1

i

0

0
...

0

0

0




, |2〉 =




1

−i

0

0
...

0

0

0




, |3〉 =




0

0

1

i
...

0

0

0




, |4〉 =




0

0

1

−i
...

0

0

0




, (3.326)

and so on, up to

|2n− 1〉 =




0

0

0

0
...

1

i

0




, |2n〉 =




0

0

0

0
...

1

−i

0




, |2n+ 1〉 =




0

0

0

0
...

0

0

1




. (3.327)

Note that the first 2n of these are just like the 2n-component state vectors of SO(2n),

except that they now have an extra 0 entry at the bottom. The weights of these states

under the Cartan generators Hi can be read off by inspection:

|1〉 : (1, 0, 0, . . . , 0, 0) = ~e1 ,

|2〉 : (−1, 0, 0, . . . , 0, 0) = −~e1 ,

|3〉 : (0, 1, 0, . . . , 0, 0) = ~e2 ,

|4〉 : (0,−1, 0, . . . , 0, 0) = −~e2 ,
...

|2n− 1〉 : (0, 0, 0, . . . , 0, 1) = ~en ,

|2n〉 : (0, 0, 0, . . . , 0,−1) = −~en ,
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|2n+ 1〉 : = (0, 0, 0, . . . , 0, 0) ,

(3.328)

As before, the raising and lowering operators in the SO(2n+1) algebra will map amongst

the states of the defining representation, and so we can read off the root vectors as the

differences between their weight vectors. Thus we have that the roots are given by

±~ei ± ~ej , i < j ,

and ±~ei . (3.329)

The positive roots are

~ei ± ~ej , i < j ,

and ~ei , (3.330)

and so the simple roots are given by

~αi = ~ei − ~ei+1 , 1 ≤ i ≤ n− 1 ,

~αn = ~en . (3.331)

From (3.331) we see that

~α2
1 = ~α2

2 = · · · = ~α2
n−2 = ~α2

n−1 = 2 , ~α2
n = 1 . (3.332)

Thus ~αi for 1 ≤ i ≤ n− 1 are long roots, and ~αn is a short root. Unlike An = SU(n+ 1),

and Dn = SO(2n), therefore, Bn = SO(2n + 1) is not simply-laced. The remaining non-

vanishing dot products are

~α1 · ~α2 = ~α2 · ~α3 = · · · = ~αn−2 · ~αn−1 = ~αn−1 · ~αn = −1 . (3.333)

From these results, it follows that each simple root makes an angle of 120o with the adjacent

one, except for ~αn, which makes an angle of 135o with ~αn−1. The Dynkin diagram for

Bn = SO(2n+ 1) is shown in Figure 11 below.

~α1 α2 ~αn−2 ~αn−1 ~αn

◦ — ◦ — · · · · · · — ◦ — ◦ === •

Figure 11. The Dynkin diagram for SO(2n + 1), which is called Bn in the Dynkin

classification. It has rank n, and it is not simply-laced.
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3.6.3 The Sp(2n) Algebras: Cn

Sp(2n) is generated by 2n× 2n matrices X that satisfy

XG+GXT = 0 , (3.334)

where G = −GT is some non-degenerate antisymmetric matrix. We can write G, and the

generators X, as tensor products of 2 × 2 and n× n matrices. We take

G = σ2 ⊗ 1l , (3.335)

where 1l is the n × n unit matrix, and σ2 is the second Pauli matrix, as given in (3.316).

The tensor product can be understood as follows: one thinks of the 2n×2n matrix as being

composed of four n× n blocks, with each block composed of the second matrix factor (the

n × n matrix after the ⊗ sign) multiplied by the corresponding component of the 2 × 2

matrix. Thus (
a b

c d

)
⊗A =

(
aA bA

cA dA

)
. (3.336)

In particular, we shall have

G =

(
0 −i 1l

i 1l 0

)
. (3.337)

However, one does not actually need to construct the 2n× 2n matrices explicitly like this.

One can perfectly well just manipulate the matrices in their tensor product forms. The

rules for multiplication of matrices written in tensor-product form are simply

(A⊗B) (C ⊗D) = (AC) ⊗ (BD) . (3.338)

The generators X are first of all, as always, Hermitean matrices, and in addition they

must satisfy (3.334). With G given by (3.335), it follows that the set of all X can be

obtained from the following sets of matrices:

1l ⊗A , σ1 ⊗ S1 , σ2 ⊗ S2 , σ3 ⊗ S3 . (3.339)

Here A denotes arbitrary n × n imaginary antisymmetric matrices, S1, S2 and S3 denote

arbitrary n × n real symmetric matrices, and σi are the three Pauli matrices, as given in

(3.80). Counting the total number of real generators X, we therefore get

dim Sp(2n) = 1
2n(n− 1) + 3 × 1

2n(n+ 1) = n(2n+ 1) . (3.340)

In the explicit 2n× 2n format, as in (3.336), one has
(
A 0

0 A

)
,

(
0 S1

S1 0

)
,

(
0 −iS2

iS2 0

)
,

(
S3 0

0 −S3

)
. (3.341)
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One can easily verify that all these matrices satisfy the defining relation (3.334).

The subset 1l⊗A and σ3⊗S3, with the additional condition that S3 be traceless, generate

an SU(n) subalgebra of Sp(2n), since we shall have
(
A+ S3 0

0 A− S3

)
=

(
T 0

0 −T ∗

)
, (3.342)

with T = A+ S3 being Hermitean and traceless. (Recall that A is imaginary and antisym-

metric, whilst S3 is real and symmetric.) It is convenient, therefore, to choose the Sp(2n)

Cartan subalgebra to include the Cartan subalgebra of SU(n). We can therefore choose

(n− 1) of the Sp(2n) Cartan subalgebra matrices to be the given by taking matrices T in

(3.342) that are just the diagonal traceless SU(n) Cartan matrices given in (3.295). There

is one more matrix in Sp(2n) that commutes with these, namely

Hn =
1√
2n

σ3 ⊗ 1l . (3.343)

Thus we have in total n Cartan generators, so Sp(2n) has rank n. It is known as Cn in the

Cartan classification.

The full set of generators in the SU(n) subalgebra comprise Sp(2n) matrices that com-

mute with Hn. Thus we can first enumerate the Sp(2n) roots that lie in the SU(n) sub-

algebra; they will simply be give by the differences of weights ~νi of the defining represen-

tation of SU(n), which were given in (3.298. These are (n − 1)-component vectors (since

SU(n) = An−1 has rank (n− 1)), and so we can write the corresponding Sp(2n) roots as

(~νi − ~νj, 0) , (3.344)

where we have appended a zero as the n’th component (since the SU(n) matrices all have

zero weight under Hn). The remaining Sp(2n) generators that are not contained in SU(n)

consist of matrices which can be organised into raising and lowering operators of the form

(σ1 ± iσ2) ⊗ Sk` , (3.345)

where Sk` is the symmetric n× n matrix with components (Sk`)ij given by

(Sk`)ij = δik δj` + δi` δjk . (3.346)

They satisfy

[Hn, (σ1 ± iσ2) ⊗ Sk`] = ± 2√
2n

(σ1 ± iσ2) ⊗ Sk` , (3.347)

and

[Hi, (σ1 ± iσ2) ⊗ Sk`] = ±(~νk + ~ν`)i (σ1 ± iσ2) ⊗ Sk` , 1 ≤ i ≤ n− 1 . (3.348)
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The full set of Sp(2n) roots are therefore given by

(~νi − ~νj, 0) , i 6= j ,

±
(
~νi + ~νj,

√
2

n

)
, all i, j . (3.349)

The positive roots comprise the subset

(~νi − ~νj, 0) , i < j ,

±
(
~νi + ~νj,

√
2

n

)
, all i, j , (3.350)

and hence the simple roots are

~αi = (~νi − ~νi+1, 0) , 1 ≤ i ≤ n− 1 ,

~αn =
(
2~νn,

√
2

n

)
. (3.351)

These therefore satisfy dot-product relations as follows. For 1 ≤ i ≤ n − 1, they are the

same as for SU(n), namely

~αi · ~αj = 1 , i = j ,

~αi · ~αj = −1
2 i = j ± 1 ,

~αi · ~αj = 0 , otherwise . (3.352)

The dot-product relations involving the n’th simple root are

~αi · ~αn = 0 , 1 ≤ i ≤ n− 2 ,

~αn−1 · ~αn = −1 ,

~αn · ~αn = 2 . (3.353)

We see that the simple roots ~αi with 1 ≤ i ≤ n− 1 are all “short,” having length 1, whilst

~αn is “long,” with length
√

2. The Dynkin diagram for Sp(2n) = Cn is given by

~α1 α2 ~αn−2 ~αn−1 ~αn

• — • — · · · · · · — • — • === ◦

Figure 11. The Dynkin diagram for Sp(2n), which is called Cn in the Dynkin classi-

fication. It has rank n, and it is not simply-laced.
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Note that a simpler way to write the root vectors is by defining a set of n orthonomral

unit vectors ~ei in IRn, satisfying ~ei · ~ej = δij . The positive roots are given by

~ei ± ~ej , i < j , and 2~ei . (3.354)

The simple roots are given by

~αi = ~ei − ~ei+1 , 1 ≤ i ≤ n− 1 , and 2~en . (3.355)

3.6.4 The Exceptional Lie Algebras

So far, we have examined in detail the so-called classical Lie algebras, which are the ones that

are definined by the action matrices on a vector space. In the case of the orthogonal, unitary

and symplectic groups, the matrices are required to preserve a metric on the vector space.

We have seen how to analyse all the classical groups in terms of the Cartan decomposition,

we have found their root systems, and hence we have constructed their Dynkin diagrams.

In this section, we discuss the remaining simple Lie algebras. It might come as a surprise

that there exist any more, and indeed they were discovered much later. As it turns out there

are precisely five more simple Lie algebras, in addition to the infinite sequences of the An,

Bn, Cn and Dn algebras that we have already met. They are named G2, F4, E6, E7 and E8,

and they are known as the exceptional Lie algebras. The reason why they were discovered

later is that they are not defined in terms of their action via matrix multiplication on

vector spaces; i.e. they do not correspond to groups of metric-preserving matrices. Instead,

we define them by directly constructing their root systems, which, as we have seen, are fully

encoded in the Dynkin diagram.

Effectively, then, the idea is that we establish the necessary and sufficient condititions

under which a Dynkin diagram is valid. All valid Dynkin diagrams define Lie algebras, and

so by classifying all valid Dynkin diagrams, we classify all Lie algberas.

There is insufficient time in this lecture course to present the classification procedure in

detail, so at this stage we shall just give the basic facts, accompanied with a brief summary

of how the results are proved.

We begin with the following observations. The simple roots of any simple Lie algebra,

of rank m, satisfy:

1. They are m linearly-independent m-vectors.

2. If ~α and ~β are simple roots, then

2~α · ~β
~α · ~α (3.356)
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is a non-positive integer.

3. The simple roots must be indecomposable, i.e. their Dynkin diagram nmust be con-

nected. If the Dynkin diagram comprised two or more disconnected pieces, then the

Lie algebra would not be simple.

Any connected Dynkin diagram describes a simple Lie algebra. A system of vectors that

satisfies conditions 1, 2 and 3 above is called a Π system. Every Π system corresponds to

a simple Lie algebra. Our task, therefore, is to classify all possible Π systems.

We can begin by just focusing on the angles between the simple roots ~αi. Thus we define

the unit vectors

~ui =
~αi

|~αi|
. (3.357)

We saw earlier that the simple roots can only have angles 90o, 120o, 135o or 150o between

them. Thus when i 6= j we have

~ui · ~uj = −
√
r

4
, 0 ≤ r ≤ 3 , (3.358)

where r is an integer, whilst

~ui · ~uj = 1 , when i = j . (3.359)

Since the dot product of a non-vanishing vector with itself is strictly positive, we have

( N∑

i=1

~ui

)
·
( N∑

j=1

~uj

)
> 0 , (3.360)

and hence
N∑

i=1

~ui · ~ui + 2
∑

i<j

~ui · ~uj > 0 , (3.361)

and hence we have

Theorem 1:

N + 2
∑

i<j

~ui · ~uj > 0 . (3.362)

Suppose that ~v1, ~v2, . . . , ~vp are a set of p orthonormal vectors in the root space, where

p ≤ rankG, satisfying

~vi · ~vj = δij . (3.363)

Then for any unit vector ~u in the root space, ~u ·~vi is the direction cosine cos(~u,~vi) of ~u with

respect to ~vi, and we have
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Theorem 2:

p∑

i=1

(~u · ~vi)
2 =

p∑

i=1

cos2(~u,~vi) ≤ 1 . (3.364)

Equality implies ~u lies in the subspace spanned by the ~vi, i.e. that ~u is linearly dependent

on ~vi. Inequality implies that ~u and ~vi are all linearly independent.

Using Theorems 1 and 2, we can classify all Dynkin diagrams. To do this, we establish

a number of intermediate results.

(1) A Dynkin diagram cannot have loops. For example, we cannot have three circles

where each is joined by a line to each of the other circles, forming a triangular loop.

Here is the proof:

If two roots ~ui and ~uj are connected, then by (3.358) they satisfy

2~ui · ~uj ≤ −1 . (3.365)

If N roots are connected in a loop, we must therefore have at least N lines, so

2
∑

i<j

~ui · ~uj ≤ −N . (3.366)

However, by Theorem 1 (equation (3.362)), we have

2
∑

i<j

~ui · ~uj > −N . (3.367)

Equations (3.366) and (3.367) contradict each other, and hence the supposition that

loops can exist must be false.

(2) A Dynkin diagram cannot have more than two double lines. For example, the following

cannot occur:

◦— ◦ — ◦ —◦ === ◦ === ◦ === ◦ . (3.368)

Numbering the roots 1, 2, 3, . . . , 7, starting from the left, we have

2~u1 · ~u2 = 2~u2 · ~u3 = 2~u3 · ~u4 = −1 ,

2~u4 · ~u5 = 2~u5 · ~u6 = 2~u6 · ~u7 = −
√

2 . (3.369)

Plugging into the left-hand side of equation (3.362, we get

N + 2
∑

i<j

~ui · ~uj = 7 − (1 + 1 + 1 +
√

2 +
√

2 +
√

2) , (3.370)
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which is negative. This contradicts Theorem 1, since (3.362) says that in a valid

Dynkin diagram this quantity should be positive. Hence the supposition that the

diagram above could exist is false. One can similarly prove that no Dynkin diagram

with more than one double root can exist.

(3) A Dynkin diagram cannot have more than one triple line. For example, the following

cannot occur:

◦— ◦ —◦ ≡≡≡ ◦ ≡≡≡ ◦ . (3.371)

For this diagram, we shall have

N + 2
∑

i<j

~ui · ~uj = 5 − (1 + 1 +
√

3 +
√

3) , (3.372)

which is negative. This contradicts equation (3.362) of Theorem 1, and hence the

diagram is not a valid Dynkin diagram. Similar arguments show that no diagram

with more than one triple line is valid.

(4) If the lines joining any two ~ui’s in a Dynkin diagram are cut, the result is a sum of

two disconnected Dynkin diagrams.

Cutting the lines amounts to removing some root vectors from the root space. The

remaining ones generate a subalgebra.

(5) The maximum number of lines that can connect to any vertex in a Dynkin diagram

is 3. The proof is as follows:

Let vertices ~v1, ~v2, ~v3, . . . be connected to the vertex ~u. Since there can be no loops,

we must have ~vi · ~vj = 0 for all i 6= j, and so ~vi · ~vj = δij . Let the number of lines

joining the vertex ~vi to the vertex ~u be ni. We therefore have

~u · ~vi = −
√
ni

4
, (3.373)

with ni = 1, 2 or 3. Hence we have

∑

i

(~u · ~vi)
2 =

∑

i

ni

4
. (3.374)

Now ~umust be linearly independent of the ~vi, since this is one of the defining properties

of a Π system. By Theorem 2, we must therefore have

∑

i

(~u · ~vi)
2 < 1 . (3.375)
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Comparing with (3.374) we therefore have

∑

i

ni < 4 , (3.376)

and so the total number of lines joining any vertex must be less than 4.

An immediate consequence of this property is that there can only be one Dynkin

diagram with a triple line, namely

◦ ≡≡≡ ◦ . (3.377)

Recall that we are not yet worrying about the lengths of the simple roots; our current

arguments are all concerned just with the angles between the simple roots. We are

not at this stage making any statement about the relative lengths of the roots. Thus

the diagram (3.377) is not being claimed to be a true Dynkin diagram; it is what one

would see if one would see if one were blind to whether circles were open or filled in.

As we shall see later, the actual Dynkin diagram involving a triple line is like (3.377),

except that one circle is opem, and the other is filled.

(6) Any set of vertices ~ui in a Dynkin diagram that are joined by a simple chain (i.e.

vertices joined by single lines) can be shrunk to a single vertex, and the resulting

diagram will again be a valid Dynkin diagram.

Thus, for example, one could shrink

◦ === ◦— ◦ — ◦ — ◦ — · · ·—◦ === ◦ (3.378)

to

◦ === ◦ === ◦ , (3.379)

and if the upper diagram were valid, then the lower would be too. Of course the

lower one in this example is not valid, since the middle vertex has four lines joining

it, which we proved to be impossible. The power of this “shrinking theorem” is that

it enables to see immediately that the upper diagram (3.378) is not a valid Dynkin

diagram either.

Proof:

We have presented above various properties that valid Dynkin diagrams must have.

Due to lack of time, we will not present all the properties. Suffice it to say that after some

effort, one can eventually establish a complete set of properties of valid Dynkin diagrams.
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By applying these considerations, one can then give an enumeration of all valid Dynkin

diagrams, and hence of all simple Lie algebras. The upshot is that in addition to the four

series that we have already met, namely

An = SU(n+ 1) , Bn = SO(2n+ 1) , Dn = SO(2n) , Cn = Sp(2n) , (3.380)

there are exactly five additional isolated cases, denoted by

G2 , F4 , E6 , E7 , E8 (3.381)

in the Dynkin classification. As always, the subscript denotes the rank of the algebra. Their

Dynkin digrams are

G2 ◦ ≡≡≡ •

F4 ◦—◦ === •—•

and then E6 is given by

o — o — o — o

|
o

|
o

E7 is given by

o — o — o — o — o — o

|
o

and E8 is given by

o — o — o — o — o — o — o

|
o

The dimensions of these exceptional Lie algebras are

G2 14
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F4 52

E6 78

E7 133

E8 248

The algebra G2 arises in a number of contexts in physics and mathematics. It is, for

example, associated with a symmetry of the algebra of the octonions. In many ways E8 is

the most interesting of all. It also arises in various contexts in mathematics and physics.

For example, it plays a very important role in string theory.
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