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1. Smooth manifolds

1.1. Linear algebra.

Definition 1.1 (Tensor product). Let V and W be real vector spaces. The tensor product
of V and W , denoted V ⊗W , is the real vector space spanned by elements of the form
v ⊗ w with v ∈ V and w ∈ W , and subject to the relations

(1) distributivity: (v1+v2)⊗w = (v1⊗w)+(v2⊗w) and v⊗(w1+w2) = (v⊗w1)+(v⊗w2)
(2) linearity: if λ ∈ R then λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw)

Warning 1.2. It is not true in general that every element of V ⊗W has an expression of
the form v ⊗w. Rather, every element of V ⊗W can be written (not uniquely) as a finite
sum of the form

∑
i vi ⊗ wi.

Example 1.3. If {vi} is a basis for V and {wj} is a basis for W then {vi ⊗ wj} is a basis
for V ⊗W . Hence we have

dim(V ⊗W ) = dim(V )× dim(W )

Example 1.4. There are isomorphisms U⊗ (V ⊗W ) ∼= (U⊗V )⊗W given by u⊗ (v⊗w)→
(u⊗ v)⊗ w and V ⊗W ∼= W ⊗ V given by v ⊗ w → w ⊗ v.
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Example 1.5. If V is a real vector space, the tensor product of V with itself n times is
denoted V ⊗n.

The disjoint union of V ⊗n over all n is an associative algebra, with ⊗ as the operation.
This algebra is called the tensor algebra TV .

Definition 1.6 (Symmetrization and antisymmetrization). Let I be the (two-sided) ideal
in TV generated by all elements of the form v⊗v for v ∈ V . The tensor product operation
descends to the quotient ΛV := TV/I and makes it into an algebra, the exterior algebra of
V .

In a similar way, we can define I ′ to be the (two-sided) ideal generated by all elements
of the form v ⊗ w − w ⊗ v and define SV := TV/I ′ to be the symmetric algebra of V .

The grading on TV descends to ΛV and SV and makes them into graded algebras. The
pieces of rank n are denoted ΛnV and SnV respectively.

1.2. Duals and wedge product. We denote the dual Hom(V,R) of V by V ∗ (if V is a
complex vector space, we write V ∗ for Hom(V,C) by abuse of notation). Then (V ⊗n)∗ =
(V ∗)⊗n for each n, with pairing defined by

(ξ1 ⊗ · · · ⊗ ξn)(v1 ⊗ · · · ⊗ vn) = ξ1(v1)ξ2(v2) · · · ξn(vn)

We would like the relation ΛnV ∗ = (ΛnV )∗ to hold; but we have defined ΛnV as a quotient
of V ⊗n so it would be more natural (although an abuse of notation), and much more
convenient for the purposes of computation, to define ΛnV ∗ as a subalgebra of (V ∗)⊗n.

We introduce the notation of wedge product, defined by the formula

ξ1 ∧ · · · ∧ ξn :=
∑
σ

(−1)sign(σ)ξσ(1) ⊗ · · · ⊗ ξσ(n)

where the sum is taken over all permutations σ of the indices, and the sign of the permu-
tation is the parity of the number of elementary transpositions needed to express it. With
this definition, the pairing of ΛnV ∗ with V ⊗n takes the form

(ξ1 ∧ · · · ∧ ξn)(v1 ⊗ · · · ⊗ vn) = det(ξi(vj))

Observe that this formula vanishes on the ideal I, so it is well defined on the quotient ΛnV .
If we define

Altn(ξ1 ⊗ · · · ⊗ ξn) :=
1

n!
ξ1 ∧ · · · ∧ ξn

then it is easy to observe that Altn is a projection; i.e. Altn ◦ Altn = Altn.
It is sometimes also convenient to think of ΛnV ∗ as the space of antisymmetric multilinear

operator on V n, in which case we write

(ξ1 ∧ · · · ∧ ξn)(v1, v2, · · · , vn) = det(ξi(vj))

The main example we have in mind is that V should be TpM , the tangent space to a
smooth manifold M at a point p, and V ∗ is the cotangent space T ∗pM . It is common to
consider sections of the bundle ΛnT ∗M for various n (i.e. differential forms), but much
more unusual to consider sections of ΛnTM for n > 1.

In order for wedge product (as defined above) to be associative, we must introduce some
fudge factors. Let α ∈ (V ∗)⊗p and β in (V ∗)⊗q. Then
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(p+ q)!Altp+q(α⊗ β) = Altp+q(p!Altp(α))⊗ (q!Altq(β))

Hence for α ∈ ΛpV ∗ and β ∈ ΛqV ∗ we define

α ∧ β :=
p! q!

(p+ q)!
Altp+q(α⊗ β)

and observe that the resulting product makes Λ∗V ∗ into an associative algebra, extending
the definition implicit in the notation above.

1.3. Inner products.

Definition 1.7 (Inner product). If V is a real vector space, an inner product on V is an
element q ∈ V ∗ ⊗ V ∗. It is symmetric if q(u, v) = q(v, u) and antisymmetric if q(u, v) =
−q(v, u) for all u, v ∈ V . Symmetric and antisymmetric inner products can be thought of
as elements of S2V ∗ and Λ2V ∗ respectively.

An inner product is nondegenerate if for all v there is u so that q(v, u) 6= 0.

If we choose a basis ei for V and write v ∈ V as a (column) vector in this basis, then
every inner product corresponds to a matrix Q, and q(u, v) = uTQv. A change of basis
replaces Q by a matrix of the form STQS for some invertible matrix S. An inner product
is (anti)symmetric if and only if Q is (anti)symmetric in the usual sense.

Example 1.8. If q is antisymmetric and nondegenerate, then V has even dimension 2n, and
q is conjugate to a symplectic form. That is, q is represented (in some basis) by the 2n×2n
matrix

J :=

(
0 I
−I 0

)
where I is the n× n identity matrix.

Example 1.9. If q is symmetric and nondegenerate, then q is represented by a diagonal
matrix Q with p diagonal entries equal to 1 and n − p diagonal entries equal to −1. The
signature of q is the tuple (p, n − p) (sometimes if the dimension n is understood the
signature is defined to be the difference p− (n− p) = 2p− n).
1.4. Lie algebras.

Definition 1.10 (Lie algebra). A (real) Lie algebra is a (real) vector space V with a
bilinear operation [·, ·] : V ⊗ V → V called the Lie bracket satisfying the following two
properties:

(1) (antisymmetry): for any v, w ∈ V , we have [v, w] = −[w, v]; and
(2) (Jacobi identity): for any u, v, w ∈ V , we have [u, [v, w]] = [[u, v], w] + [v, [u,w]].

If we write the operation [u, ·] : V → V by adu, then the Jacobi identity can be rewritten
as the formula

adu[v, w] = [aduv, w] + [v, aduw]

i.e. that adu satisfies a “Leibniz rule” (one also says it acts as a derivation) with respect to
the Lie bracket operation.

Example 1.11. Let V be any vector space, and define [·, ·] to be the zero map. Then V is
a commutative Lie algebra.
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Example 1.12. Let V be an associative algebra, and for any u, v ∈ V define [u, v] := uv−vu.
This defines the structure of a Lie algebra on V .

Example 1.13. Let V be Euclidean 3-space, and define the Lie bracket to be cross product
of vectors.

Example 1.14 (Heisenberg algebra). Let V be 3-dimensional with basis x, y, z and define
[x, y] = z, [x, z] = 0, [y, z] = 0. The 1-dimensional subspace spanned by z is an ideal, and
the quotient is a 2-dimensional commutative Lie algebra.

1.5. Some matrix Lie groups. Lie algebras arise most naturally as the tangent space at
the identity to a Lie group. This is easiest to understand in the case of matrix Lie groups;
i.e. groups of n×n real or complex matrices which are smooth submanifolds of Rn2 or Cn2

(with coordinates given by the matrix entries).

Example 1.15 (Examples of matrix Lie groups). The most commonly encountered examples
of real and complex matrix Lie groups are:

(1) G = GL(n), the group of invertible n× n matrices.
(2) G = SL(n), the group of invertible n× n matrices with determinant 1.
(3) G = O(n), the group of invertible n× n matrices satisfying AT = A−1.
(4) G = Sp(2n), the group of invertible 2n × 2n matrices satisfying ATJA = J where

J :=
(

0 I
−I 0

)
.

(5) G = U(n), the group of invertible n × n complex matrices satisfying A∗ = A−1

(where A∗ denotes the complex conjugate of the transpose).

If G is a matrix Lie group, the Lie algebra g can be obtained as the vector space of
matrices of the form γ′(0) where γ : [0, 1] → G is a smooth family of matrices in G, and
γ(0) = Id.

1.6. Manifolds and charts. Let U be an open subset of Rn. A function F : U → Rm is
smooth if the coordinate functions Fi : U → R are infinitely differentiable as a function of
the coordinate functions xj on the domain. A homeomorphism F : U → V between open
subsets of Rn is a diffeomorphism if it is smooth and has a smooth inverse.

A smooth manifoldM is a manifold covered by open sets Ui (called charts) together with
homeomorphisms ϕi : Ui → Rn for some n, so that if Ui ∩ Uj is nonempty, the transition
function

ϕij := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

is a diffeomorphism between open subsets of Rn.

1.7. Vector fields. Let M be a smooth manifold of dimension n. We suppose that we
understand the tangent bundle of Rn, and then we can define the tangent bundle TM by
locally pulling back TRn on coordinate charts, and using the derivative of the transition
function to glue the bundle together on overlaps.

If f is a smooth function on Rn and v is a vector, then it makes sense to take the
partial derivative of f in the direction v. If we fix coordinates xi on Rn, then we can write
v =

∑
vi

∂
∂xi

and then

v(f) :=
∑

vi
∂f

∂xi
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(in the sequel we will often abbreviate ∂
∂xi

by ∂i). Using coordinate functions on open
charts gives us a way to take the derivative of a smooth function f on M along a vector
field X on M . Note that at each point p the vector Xp acts as a derivation of the ring of
germs of smooth functions at p; that is, Xp(fg) = Xp(f)g + fXp(g). In fact, a vector at a
point can be defined as a linear derivation of the ring of germs of smooth functions at that
point, and a vector field can be defined as a smoothly varying family of derivations.

We denote the space of smooth vector fields on M by X(M). A smooth map g : N →M
induces a smooth map dg : TN → TM satisfying dg(X)(f) = X(f ◦ g) for any vector field
X on N and smooth function f on M . Note that the composition f ◦ g is also written g∗f
and called the pullback of f by g.

A vector v ∈ TpM can also be thought of as an equivalence class of germ of smooth path
γ : [0, 1] → M with γ(0) = v, where v(f) = (f ◦ γ)′(0). In this case we write γ′(0) = v,
although really we should write dγ(∂t|0) = v, where we think of t as the coordinate on
[0, 1], and ∂t|0 as the unit tangent to [0, 1] at 0.

Definition 1.16 (Lie bracket). If X, Y ∈ X(M) and f is a smooth function, we define
the Lie bracket of X and Y , denoted [X, Y ], to be the vector field which acts on functions
according to the formula

[X, Y ](f) := X(Y (f))− Y (X(f))

One can check that this is a derivation at each point, and varies smoothly if X and Y do,
so it is a vector field.

The Lie bracket is antisymmetric and satisfies the Jacobi identity, so it makes X(M) into
a Lie algebra.

1.8. Differential forms. The cotangent bundle T ∗M is defined to be the dual bundle to
TM ; i.e. the bundle whose fiber at each point is the dual to the corresponding fiber of
TM . Sections of T ∗M are called covectors or 1-forms. In local coordinates xi, a 1-form
can be expressed as α :=

∑
αidxi.

We define Ωm to be the space of smooth sections of the bundle ΛmT ∗M , whose fiber
at each point p is equal to ΛmT ∗pM . An element of Ωm is called a (smooth) m-form. We
also define Ω0 = C∞(M), the space of smooth functions on M (implicitly, we are using
the “identity” Λ0V = R for a real vector space V ). An m-form can be expressed in local
coordinates as a sum

ω =
∑
J

αJdxJ

where J denotes a multi-index of length m, so that dxJ stands for an expression of the
form dxJ := dxj1 ∧ dxj2 ∧ · · · ∧ dxjm for some j1 < j2 < · · · < jm.

Definition 1.17 (Exterior derivative). There is a linear operator d : Ωm → Ωm+1 defined
in local coordinates by

d(αJdxJ) =
∑
i

(∂iαJ)dxi ∧ dxJ

Exterior derivative satisfies a Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ
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and furthermore satisfies d(dω) = 0 for any ω (the latter identity is usually expressed by
saying d2 = 0). It follows that d makes Ω∗ into a chain complex of real vector spaces,
whose homology is the de Rham cohomology of M , and is denoted H∗dR(M). Explicitly, an
m-form ω is said to be closed if dω = 0, and to be exact if there is some m− 1-form α with
dα = ω. Then Hm

dR(M) is defined to be the quotient of the vector space of closed m-forms
by the vector subspace of exact m-forms.

Theorem 1.18 (De Rham isomorphism). There is a canonical isomorphism H∗dR(M) =
H∗(M ;R) where the right hand side denotes singular cohomology with R coefficients.

This theorem is usually proved by methods of sheaf cohomology, where the necessary
local ingredient is the Poincaré Lemma, which says that on any smooth convex open subset
U of Rn, a closed form is necessarily exact. Closed forms on M can be expressed locally
as closed forms on Rn using coordinate charts, and the fact that for any g : N → M and
any form ω on M , we have d(g∗ω) = g∗(dω).

Forms and collections of vector fields can be paired in the obvious way, so that if ω ∈
Ωm, and X1, X2, · · · , Xm ∈ X(M) then ω(X1, · · · , Xm) is a smooth function obtained by
contracting covectors with vectors and antisymmetrizing. A single vector field X may be
contracted with an m-form ω to give an (m − 1)-form; this is denoted ιXω; the operator
ιX is called interior product with X. Contraction and exterior product are related by the
formula

dω(Y0, · · · , Ym) =
∑

(−1)iYi(ω(Y0, · · · , Ŷi, · · · , Ym))

+
∑
i<j

(−1)i+jω([Yi, Yj], Y0, · · · , Ŷi, · · · , Ŷj, · · · , Ym)

The special case
dα(X, Y ) = Xα(Y )− Y α(X)− α([X, Y ])

for α a 1-form is very useful.

Algebraically, for each point p there is a maximal ideal mp in C∞(M) consisting of
smooth functions that vanish at p, and we can identify T ∗pM with the quotient mp/m

2
p. If

α is a 1-form and αp is represented by the function f ∈ mp then for any vector Xp ∈ TpM
we have αp(Xp) = Xp(f). In fact, one has αp = dfp, so that the identity X(f) = df(X)
holds generally.

Wedge product and exterior derivative give Ω∗ the structure of a coalgebra, which is
dual (in a certain sense) to the Lie algebra X.

1.9. Integration.

1.10. Lie derivative and Cartan’s formula. Let M be a closed manifold (i.e. M is
compact and without boundary). If X is a smooth vector field onM then for every p there
is a unique smooth map γ : R→M so that dγ(∂t|s) = Xγ(s) for all s ∈ R. We say γ is an
integral curve of X through p. For any t there is a diffeomorphism φt : M → M defined
by φt(γ(s)) = γ(s+ t) for all integral curves γ as above.

If Y is a covariant tensor then we can define the Lie derivative LXY by the formula

(LXY )(p) := lim
t→0

1

t
(dφ−t(Y (φt(p))− Y (p))
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Similarly, if ξ is contravariant then define

(LXξ)(p) := lim
t→0

1

t
(φ∗t (ξ(φt(p)))− ξ(p))

Theorem 1.19 (Properties of Lie derivative). The Lie derivative satisfies the following
properties:

(1) for f ∈ C∞(M) we have LXf = X(f)
(2) for Y ∈ X(M) we have LXY = [X, Y ]
(3) for ω ∈ Ω∗ we have LXω = ιXdω + dιXω
(4) for ω ∈ Ωm and Y1, Y2, · · · , Ym ∈ X we have

LX(ω(Y1, · · · , Ym)) = (LXω)(Y1, · · · , Ym) +
∑

ω(Y1, · · · , [X, Yi], · · · , Ym)

1.11. Frobenius’ Theorem. Let M be a smooth n manifold and let ξ be a smooth p-
dimensional distribution; i.e. a smoothly varying p-dimensional subspace of TM at each
point. A distribution is integrable if through every point there passes (locally) a smooth
p-dimensional submanifold S so that TS = ξ. Locally, we can choose coordinates so that
ξ is everywhere spanned by ∂i for 1 ≤ i ≤ p, and the submanifolds S can be taken to be
translates of a coordinate subspace.

Theorem 1.20 (Frobenius). Let M be a smooth manifold, and ξ a smooth distribution.
The distribution ξ is integrable if and only if one of the following two (equivalent) properties
hold:

(1) The set of vector fields X which are everywhere tangent to ξ are closed under Lie
bracket; i.e. the form a Lie subalgebra of X(M).

(2) The set of forms α which annihilate ξ (i.e. α(X1, X2, · · · , Xr) = 0 whenever the
Xi are tangent to ξ) are a differential ideal. That is, they are closed under taking
wedge product with Ω∗ and exterior d.

Frobenius theorem gives another example of the duality between Lie algebras and differ-
ential graded algebras; here the subalgebra tangent to ξ is dual to the quotient differential
algebra of forms modulo forms that annihilate ξ.

2. Some examples

2.1. The sphere.

2.2. The hyperbolic plane.

3. Riemannian metrics

3.1. The metric.

Definition 3.1 (Riemannian metric). LetM be a smooth manifold. A Riemannian metric
is a symmetric positive definite inner product 〈·, ·〉p on TpM for each p ∈ M so that for
any two smooth vector fields X, Y the function p → 〈X, Y 〉p is smooth. A Riemannian
manifold is a smooth manifold with a Riemannian metric. For v ∈ TpM the length of v is
〈v, v〉1/2, and is denoted |v|.
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In local coordinates xi, a Riemannian metric can be written as a symmetric tensor
g := gijdxidxj. The notion of a Riemannian metric is supposed to capture the idea that a
Riemannian manifold should look like Euclidean space “to first order”.

Example 3.2. In Rn a choice of basis determines a positive definite inner product by declar-
ing that the basis elements are orthonormal. The linear structure on Rn lets us identify
TpRn with Rn, and we can use this to give a Riemannian metric on Rn. With this Rie-
mannian metric, Rn becomes Euclidean space En.
Example 3.3 (Smooth submanifold). Let S be a smooth submanifold of Euclidean space.
For p ∈ S the inner product on TpEn restricts to an inner product on TpS thought of as
a linear subspace of TpEn. The same construction works for a smooth submanifold of any
Riemannian manifold, and defines an induced Riemannian metric on the submanifold.

A smooth map f : N →M between Riemannian manifolds is an isometric immersion if
for all p ∈ N , the map df : TpN → Tf(p)M preserves inner products; i.e. if

〈u, v〉p = 〈df(u), df(v)〉f(p)

for all vectors u, v ∈ TpN . The tautological map taking a smooth submanifold to itself is
an isometric immersion for the induced Riemannian metric.

A famous theorem of Nash says that any Riemannian manifold M of dimension n may
be isometrically immersed (actually, isometrically embedded) in Euclidean EN for N ≥
m(m+ 1)(3m+ 11)/2. This theorem means that whenever it is convenient, we can reason
about Riemannian manifolds by reasoning about smooth submanifolds of Euclidean space
(however, it turns out that this is not always a simplification).

Some restriction on the dimension N are necessary.

Example 3.4 (Hilbert). The round sphere S2 embeds isometrically in E3 (one can and
usually does take this as the definition of the metric on S2). The hyperbolic plane H2

does admit local isometric immersions into E3, but Hilbert showed that it admits no global
immersion. The difference is that a positively curved surface can be locally developed as
the boundary of a convex region, and the rigidity this imposes lets one find global isometric
immersions (the best theorem in this direction by Alexandrov says that a metric 2-sphere
with non-negative curvature (possibly distributional) can be isometrically realized as the
boundary of a convex region in E3, uniquely up to isometry). If one tries to immerse a
negatively curved surface in E3, one must “fold” it in order to fit in the excessive area; the
choice of direction to fold imposes more and more constraints, and as one tries to extend
the immersion the folds accumulate and cause the surface to become singular.

If 〈·, ·〉 and 〈·, ·〉′ are two positive definite inner products on a vector space, then so is
any convex combination of the two products (i.e. the set of positive definite inner products
on a vector space V is a convex subset of S2V ∗). Thus any smooth manifold may be given
a Riemannian metric by taking convex combinations of inner products defined in charts,
using a partition of unity.

Definition 3.5. If γ : I →M is a smooth path, the length of γ is defined to be

length(γ) :=

∫ 1

0

|γ′(t)|dt
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and the energy of γ is

energy(γ) :=
1

2

∫ 1

0

〈γ′(t), γ′(t)〉γ(t)dt

Energy here should be thought of the elastic energy of a string made from some flexible
material. There is another physical interpretation of this quantity: the integrand can be
thought of as the kinetic energy of a moving particle of unit mass, and then the integral is
what is known to physicists as the action.

Note that the length of a path does not depend on the parameterization, but the energy
does. In fact, by the Cauchy-Schwarz inequality, for a given path the parameterization
of least energy is the one for which |γ′| is constant; explicitly, the least energy for a
parameterization of a path of length ` is `2/2.

A path-connected Riemannian manifold is a metric space (in the usual sense), by defining
the distance from p to q to be the infimum of the length of all smooth paths from p to q.
A Riemannian manifold is complete if it is complete (in the usual sense) as a metric space.

3.2. Connections.

Definition 3.6. If E is a smooth bundle on M , a connection on E is a bilinear map

∇ : X(M)× Γ(E)→ Γ(E)

where we write ∇(X,W ) as ∇XW , satisfying the properties
(1) (tensor): ∇fXW = f∇XW ; and
(2) (Leibniz): ∇X(fW ) = (Xf)W + f∇XW .

Note that since ∇ is tensorial in the first term, we can also write ∇W ∈ Γ(T ∗M)⊗Γ(E).

Definition 3.7. Let E be a smooth bundle, and ∇ a connection on E. If γ : I → M is a
smooth path, a section W of E is parallel along γ if ∇γ′W = 0 along γ(I).

Really we should think of the pullback bundle γ∗E over I. Usual existence and unique-
ness theorems for ODEs imply that for any W0 ∈ Eγ(0) there is a unique extension of W0

to a parallel section W of γ∗E over I. Thus, a connection on E gives us a canonical way
to identify fibers of E along a smooth path in M . If we let ei be a basis for E locally, then
we can express any W as W =

∑
wiei. Then by the properties of a connection,

0 = ∇γ′W =
∑

γ′(wi)ei +
∑

wi∇γ′ei

which is a system of first order linear ODEs in the variables wi.

A connection ∇ on E determines a connection on E∗ implicitly (which by abuse of
notation we also write ∇) by the Leibniz formula

X(α(W )) = (∇Xα)W + α(∇XW )

In particular, a family of bases for E which is parallel along some path is dual to a family
of bases for E∗ which are parallel along the same path.

Example 3.8. If E is a trivialized bundle E = M ×Rn then by convention ∇X = X on E.
Hence ∇Xf = X(f) for a function f (equivalently, ∇f = df on functions).
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Example 3.9 (Functorial construction of connections). There are several functorial con-
structions of connections. For example, if ∇i are connections on bundles Ei for i = 1, 2 we
can define

(∇1 ⊕∇2)(W1 ⊕W2) := ∇1W1 ⊕∇2W2

and
(∇1 ⊗∇2)(W1 ⊗W2) := ∇1W1 ⊗W2 +W1 ⊗∇2W2

In this way a connection on a bundle E induces connections on ΛnE and SnE etc.

Lemma 3.10. ∇ commutes with contraction of tensors.

Proof. If W is a section of E and V is a section of E∗ then

∇X(V ⊗W ) = (∇XV )⊗W + V ⊗ (∇XW )

whereas
X(V (W )) = (∇XV )(W ) + V (∇XW )

as can be seen by expressing V and W in terms of local dual parallel (along some path)
bases and using the Leibniz rule. This proves the lemma when there are two terms. More
generally, by the properties of a connection,

∇X(V (W )A⊗ · · · ⊗ Z) = X(V (W ))(A · · ·Z) +
∑

V (W )(A · · · ∇XI · · ·Z)

= (∇XV )(W )(A · · ·Z) + V (∇XW )(A · · ·Z) +
∑

V (W )(A · · · ∇XI · · ·Z)

proving the formula in general. �

As a special case, if A ∈ E∗1 ⊗ · · · ⊗ E∗n and Yi ∈ Ei then

X(A(Y1, · · · , An)) = (∇XA)(Y1, · · · , Yn) +
∑
i

A(Y1, · · · ,∇XYi, · · · , Yn)

Definition 3.11. If E is a bundle with a (fibrewise) inner product (i.e. a section q ∈
Γ(S2E∗)) a connection on E is metric (or compatible with the inner product) if ∇q = 0;
equivalently, if

d(q(U, V )) = q(∇U, V ) + q(U,∇V )

Plugging in X ∈ X(M), the metric condition is equivalent to Xq(U, V ) = q(∇XU, V ) +
q(U,∇XV ).

If E has a (fiberwise) metric, and ∇ is a metric connection, then |W | is constant along
any path for which W is parallel.

3.3. The Levi-Civita connection. Suppose M is a Riemannian manifold. A connection
∇ on TM is metric if X〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉 for all X, Y, Z ∈ X(M). A
Riemannian manifold usually admits many different metric connections. However, there is
one distinguished metric connection which uses the symmetry of the two copies of X(M)
in the definition of ∇.

Definition 3.12. Let ∇ be a connection on TM . The torsion of ∇ is the expression

Tor(V,W ) := ∇VW −∇WV − [V,W ]

A connection on TM is torsion-free if Tor = 0.
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The properties of a connection imply that Tor is a tensor.
A connection on TM induces a connection on T ∗M and on S2T ∗M and so forth. The

condition that ∇ is a metric connection is exactly that the metric g ∈ S2T ∗M is parallel.
The condition that ∇ is torsion-free says that for the induced connection on T ∗M , the
composition

Γ(T ∗M)
∇−→ Γ(T ∗M ⊗ T ∗M)

π−→ Γ(Λ2T ∗M)

is equal to exterior d, where π is the quotient map from tensors to antisymmetric tensors.

Theorem 3.13 (Levi-Civita). Let M be a Riemannian manifold. There is a unique
torsion-free metric connection on TM called the Levi-Civita connection.

Proof. Suppose ∇ is metric and torsion-free. By the metric property, we have

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
and similarly for the other two cyclic permutations of X, Y, Z. Adding the first two per-
mutations and subtracting the third, and using the torsion-free property to eliminate ex-
pressions of the form ∇XY −∇YX gives the identity

2〈∇XY, Z〉 = X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X, Y 〉+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉
This shows uniqueness. Conversely, defining ∇ by this formula one can check that it
satisfies the properties of a connection. �

Example 3.14. On Euclidean En with global coordinates xi the vector fields ∂i are parallel
in the Levi-Civita connection. If Y is a vector field, Xp is a vector at p and γ : [0, 1]→ En
is a smooth path with γ(0) = p and γ′(0) = Xp then (∇XY )(p) = d

dt
Y (γ(t))|t=0.

Example 3.15. If S is a smooth submanifold of En, the ordinary Levi-Civita connection
on En restricts to a connection on the bundle TEn|S. If we think of TS as a subbundle,
then at every p ∈ S there is a natural orthogonal projection map π : TpEn → TpS. We
can then define a connection ∇T := π ◦∇ on TS; i.e. the “tangential part” of the ambient
connection. For X, Y, Z ∈ X(S) we have

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 = 〈∇T
XY, Z〉+ 〈Y,∇T

XZ〉
so ∇T is a metric connection. Similarly, since [X, Y ] is in X(S) whenever X and Y are, the
perpendicular components of ∇XY and of ∇YX are equal, so ∇T is torsion-free. It follows
that ∇T is the Levi-Civita connection on S.

The case of a smooth submanifold is instructive. We can imagine defining parallel
transport along a path γ in S by “rolling” the tangent plane to S along γ, infinitesimally
projecting it to TS as we go. Since the projection is orthogonal, the plane does not
“twist” in the direction of TS as it is rolled; this is the geometric meaning of the fact that
this connection is torsion-free. In the language of flight dynamics, there is pitch where
the submanifold S is not flat and roll where the curve γ is not “straight”, but no yaw; see
Figure 1. By the Nash embedding theorem, the Levi-Civita connection on any Riemannian
manifold can be thought of in these terms.

Suppose we choose local smooth coordinates x1, · · · , xn onM , and vector fields ∂i := ∂
∂xi

which are a basis for TM at each point locally. To define a connection we just need to
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Figure 1. The Levi-Civita connection pitches and rolls but does not yaw
(figure courtesy of NASA [8]).

give the values of ∇∂i∂j for each i, j (to reduce clutter we sometimes abbreviate ∇∂i to ∇i

when the coordinates xi are understood).

Definition 3.16 (Christoffel symbols). With respect to local coordinates xi, the Christoffel
symbols of a connection ∇ on TM are the functions Γkij defined by the formula

∇i∂j =
∑
k

Γkij∂k

3.4. Second fundamental form. Suppose N ⊂M is a smoothly embedded submanifold.
We write ∇> and ∇⊥ for the components of ∇ in TN and νN , the normal bundle of N in
M (so that TM |N = TN ⊕ νN).

Definition 3.17 (Second fundamental form). For vectors X, Y ∈ TpN define the second
fundamental form II(X, Y ) ∈ νpN by extending X and Y to vector fields on N (locally),
and using the formula II(X, Y ) := ∇⊥XY .

Lemma 3.18. The second fundamental form is tensorial (and therefore well-defined) and
symmetric in its two terms. i.e. it is a section II ∈ Γ(S2(T ∗N)⊗ νN).

Proof. Evidently II(X, Y ) is tensorial in X, so it suffices to show that it is symmetric. We
compute

∇⊥XY = ∇XY −∇>XY = ∇YX −∇>YX = ∇⊥YX

where we use the fact that both ∇ and ∇> are torsion-free. �

Remark 3.19. The “first fundamental form” on N is simply the restriction of the inner
product on M to TN ; i.e. it is synonymous with the induced Riemannian metric on N .
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4. Geodesics

4.1. First variation formula. If γ : [0, 1]→M is a smooth curve, a smooth variation of
γ is a map Γ : [0, 1] × (−ε, ε) → M such that Γ(·, 0) : [0, 1] → M agrees with γ. For each
s ∈ (−ε, ε) we denote the curve Γ(·, s) : [0, 1]→ M by γs : [0, 1]→ M and think of this as
defining a 1-parameter family of smooth curves.

Let t and s be the coordinates on the two factors of [0, 1] × (−ε, ε). Pulling back the
bundle TM to [0, 1]× (−ε, ε) under Γ∗ lets us think of the vector fields T := ∂

∂t
and S := ∂

∂s
as vector fields on M locally, and compute their derivatives with respect to the connection
on Γ∗TM pulled back from the Levi-Civita connection. Note that in this language, T := γ′s.
This lets us compute the derivative of length(γs) with respect to s. Since length does not
depend on parameterization, we are free to choose a parameterization for which |γ′| is
constant and equal to ` := length(γ).

Theorem 4.1 (First variation formula). Let γ : [0, 1] → M be a smooth curve parame-
terized proportional to arclength with length(γ) = `, and let Γ : [0, 1] × (−ε, ε) → M be a
smooth one-parameter variation. Let γs : [0, 1]→M denote the restriction Γ(·, s) : [0, 1]→
M . Then there is a formula

d

ds
length(γs)|s=0 = `−1

(
〈S, T 〉|10 −

∫ 1

0

〈S,∇TT 〉dt
)

Proof. This is an exercise in the properties of the Levi-Civita connection. By definition,
we have

d

ds
length(γs) =

d

ds

∫ 1

0

〈T, T 〉1/2dt =

∫ 1

0

S〈T, T 〉1/2dt

=

∫ 1

0

〈T, T 〉−1/2〈∇ST, T 〉dt

where we used the fact that the Levi-Civita connection is a metric connection. Since γ is
parameterized proportional to arclength, we have 〈T, T 〉−1/2 = `−1 at s = 0. Since S and
T are the derivatives of coordinate functions, [S, T ] = 0. Since the Levi-Civita connection
is torsion-free, we deduce

d

ds
length(γs)|s=0 = `−1

∫ 1

0

〈∇TS, T 〉dt = `−1

∫ 1

0

T 〈S, T 〉 − 〈S,∇TT 〉dt

where we used again the fact that the Levi-Civita connection is a metric connection to
replace 〈∇TS, T 〉 = T 〈S, T 〉−〈S,∇TT 〉. Integrating out

∫ 1

0
T 〈S, T 〉dt = 〈S, T 〉|10 we obtain

the desired formula. �

4.2. Geodesics. It follows that if Γ is a smooth variation with endpoints fixed (i.e. with
S = 0 at 0 and 1) then γ (parameterized proportional to arclength) is a critical point for
length if and only if ∇γ′γ

′ := ∇TT = 0.

Definition 4.2 (Geodesic). A smooth curve γ : [a, b] → M is a geodesic if it satisfies
∇γ′γ

′ = 0.
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Note that γ′〈γ′, γ′〉 = 2〈∇γ′γ
′, γ′〉 so geodesics are necessarily parameterized proportional

to arclength. Recall that for any smooth curve, the unique parameterization minimizing
energy is the one proportional to arclength. It follows that geodesics are also critical points
for the first variation of energy. This is significant, because as critical points for length,
geodesics are (almost always) degenerate, since they admit an infinite dimensional space
of reparameterizations which do not affect the length. By contrast, most geodesics are
nondegenerate critical points for energy, and the Hessian of the energy functional always
has a finite dimensional space on which it is null or negative definite (so that the index of
a geodesic as a critical point for energy can be defined). We return to this point when we
come to derive the Second variation formula in § 5.7.

Geodesics have the following homogeneity property: if γ : (−ε, ε)→M is a smooth geo-
desic with γ(0) = p and γ′(0) = v ∈ TpM , then for any T 6= 0 the map σ : (−ε/T, ε/T )→
M defined by σ(t) = γ(tT ) is also a smooth geodesic, now with σ(0) = p and σ′(0) = Tv.
In other words, at least on their maximal domains of definition, two geodesics with the
same initial point and proportional derivatives at that point have the same image, and
differ merely by parameterizing that image at different (constant) speeds. By taking T
sufficiently small, σ may be defined on the entire interval [0, 1].

In local coordinates the equations for a geodesic can be expressed in terms of Christoffel
symbols. Recall that we defined the Christoffel symbols in terms of local coordinates xi by
the formula

∇i∂j =
∑
k

Γkij∂k

We think of the coordinates xi as functions of t implicitly by xi(t) := xi(γ(t)), and then
γ′ =

∑
i x
′
i∂i. With this notation, the equations for a geodesic can be expressed as

0 = ∇γ′γ
′ = ∇∑

i x
′
i∂i

∑
j

x′j∂j

=
∑
i

x′i∇i

∑
j

x′j∂j =
∑
k

x′′k∂k +
∑
i,j,k

x′ix
′
jΓ

k
ij∂k

where we used the Leibniz rule for a connection, and the chain rule
∑

i x
′
i∂ix

′
k = x′′k. This

reduces, for each k, to the equation

x′′k +
∑
i,j

x′ix
′
jΓ

k
ij = x′′k(t) +

∑
i,j

x′i(t)x
′
j(t)Γ

k
ij(x1(t), · · · , xn(t)) = 0

where we have stressed with our notation the fact that each Γkij is a (possibly complicated)
function of the xis which in turn are a function of t. This is a system of second order ODEs
for the functions xi(t), and therefore there is a unique solution defined on some interval
t ∈ (−ε, ε) for given initial values γ(0) = p and γ′(0) = v.

4.3. The exponential map. Because of local existence and uniqueness of geodesics with
prescribed initial values and initial derivatives, we can make the following definition:

Definition 4.3 (Exponential map). The exponential map exp is a map from a certain open
domain U in TM (containing the zero section) to M , defined by exp(v) = γv(1), where
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v ∈ TpM , and γ : [0, 1] → M is the unique smooth geodesic with γ(0) = p and γ′(1) = v
(if it exists). The restriction of exp to its domain of definition in TpM is denoted expp.

The homogeneity property of geodesics (discussed in § 4.2) shows that expp is defined
on an open (star-shaped) subset of TpM containing the origin, for each p.

Lemma 4.4. For all p there is an open subset U ⊂ TpM containing the origin so that the
restriction expp : U →M is a diffeomorphism onto its image.

Proof. Since expp is smooth, it suffices to show that d expp : T0TpM → TpM is nonsingular.
But if we identify T0TpM with TpM using its linear structure, the definition of exp implies
that d expp : TpM → TpM is the identity map; in particular, it is nonsingular. �

Lemma 4.4 is a purely local statement; the map expp, even if it is defined on all of TpM ,
is typically not a global diffeomorphism, or even a covering map.

Example 4.5. On S2, the geodesics are the arcs of great circles, parameterized at unit
speed. Thus for any point p, the map expp is a diffeomorphism from the open unit disk of
radius π in TpM to S2 − q, where q is antipodal to p. But expp maps the entire boundary
circle identically to the point q, so d expp does not even have full rank there.

The exponential map lets us define certain kinds of local coordinates in which some
calculations simplify considerably. Let ei be an orthonormal basis of TpM , and define
smooth coordinates xi on expp(U) (for some sufficiently small neighborhood U of 0 in
TpM so that the restriction of expp to this neighborhood is a diffeomorphism) by letting
x1, · · · , xn be the coordinates of the point expp(

∑
xiei). These coordinates are called

normal coordinates. In these coordinates, the geodesics through the origin have the form
xi(t) = ait for some arbitrary collection of real constants ai. Thus the geodesic equations
at t = 0 (i.e. at the origin) reduce to

∑
i,j aiajΓ

k
ij|p = 0 for all k. Since ai and aj are

arbitrary, it follows that we have Γkij|p = 0; i.e. ∇v∂i|p = 0 for any vector v ∈ TpM .

Lemma 4.6 (Gauss’ Lemma). If ρ(t) := tv is a ray through the origin in TpM and
w ∈ Tρ(t)TpM is perpendicular to ρ′(t), then d expp(w) is perpendicular to d expp(ρ

′(t)).

In words, Gauss’ Lemma says that if we exponentiate (orthogonal) polar coordinates
r, θi on TpM , then the image of the radial vector field d expp(∂r) (which is tangent to the
geodesics through p) is perpendicular to the level sets exp(r = constant).

Proof. Use polar coordinates r, θ on the 2-dimensional subspace of TpM spanned by w and
v. The vector field R := d expp(∂r) is everywhere tangent to the geodesics through the
origin, and has constant speed; i.e. |R| = ` (we scale the polar coordinates so that we are
interested at d exp at the point in TpM where r = 1 and θ = 0). Let T := d expp(∂θ), which
vanishes at p. We want to show that 〈R, T 〉 = 0. We can think of R and T as tangent
vector fields along a 1-parameter variation of smooth curves such that the integral curves
of R with a constant value of θ are geodesics γθ through p parameterized at unit speed,
and therefore have constant length. Thus by the first variation formula,

0 =
d

dθ
length(γθ) = `−1

(
〈T,R〉|10 −

∫ 1

0

〈T,∇RR〉dt
)

But ∇RR = 0 by the geodesic property, and T (0) = 0. So 〈R, T 〉 = 0, as claimed. �
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By abuse of notation we write the function r ◦ exp−1
p on M just as r, and we let ∂r

denote the vector field on M obtained by pushing forward the radial vector field ∂r on
TpM . Gauss’ Lemma can be expressed by saying that ∂r (onM) is the gradient vector field
of the function r (also onM). By this we mean the following. Any vector field V onM can
be written (at least near p) in the form V =

∑
vi∂i+vr∂r where ∂i is short for d expp(

∂
∂θi

) in
polar coordinates on TpM . Gauss’ Lemma is the observation that 〈∂i, ∂r〉 = 0 throughout
the image of expp. Then vr = X(r) = 〈∂r, X〉 (in general, the gradient vector field of a
function f is the unique vector field grad(f) defined by the property 〈grad(f), X〉 = X(f)
for all vectors X; it is obtained from df by using the inner product to identify Γ(T ∗M)
with Γ(TM) ).

Gauss’ Lemma is the key to showing that geodesics are locally unique distance minimiz-
ers. That is,

Corollary 4.7. Let Br(0) ⊂ TpM be a ball of radius r on which expp is a diffeomorphism.
Then the following are true:

(1) For any v ∈ Br(0), the curve γv : [0, 1] → M is the unique curve joining p to
expp(v) of length at most |v| (up to reparameterization). Thus on expp(Br(0)) the
function r ◦ exp−1

p (where r is radial distance in TpM) agrees with the function
dist(p, ·).

(2) If q is not in expp(Br(0)) =: Br(p) then there is some q′ in ∂Br(p) so that

dist(p, q) = dist(p, q′) + dist(q′, q)

In particular, dist(p, q) ≥ r.

Proof. Let σ : [0, 1] → M be a smooth curve from p to expp(v). When restricted to the
part with image in expp(Br(0)), we have an inequality |σ′| ≥ 〈σ′, ∂r〉 = σ′(r) and therefore

length(σ) =

∫ 1

0

|σ′|dt ≥ r(σ(1))− r(σ(0))

with equality if and only if σ′ is of the form f∂r for some non-negative function f . This
proves the first claim.

To prove the second part of the claim, for any smooth σ : [0, 1]→M from p to q, there
is some first point q′(σ) ∈ ∂Br(0) on the curve, and the length of the path from p to q′(σ)
is at least r. Taking a sequence of curves whose length approaches dist(p, q), and using
the compactness of ∂Br(0), we extract a subsequence for which there is a limit q′ as in the
statement of the claim. �

4.4. The Hopf-Rinow Theorem. Since geodesics are so important, and their short time
existence and uniquess are so useful, it is important to know when they can be extended
for all time. The answer is given by the Hopf-Rinow theorem.

Theorem 4.8 (Hopf-Rinow). The following are equivalent:
(1) M is a complete metric space with respect to dist; or
(2) for some p ∈M the map expp is defined on all TpM ; or
(3) for every p ∈M the map expp is defined on all TpM .
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Any of these conditions imply that any two points p, q of M can be joined by a geodesic γ
with length(γ) = dist(p, q).

Note that the first hypothesis is evidently satisfied whenever M is closed (i.e. compact
and without boundary). Note too that the last conclusion is definitely weaker than the
first three conditions; for example, it is satisfied by the open unit disk in En, which is not
complete as a metric space.

Proof. Suppose expp : TpM → M is globally defined, and let q ∈ M be arbitrary. There
is some v ∈ TpM with |v| = 1 so that dist(p, expp(sv)) + dist(expp(sv), q) = dist(p, q) for
some s > 0. Let γ : [0,∞) → M be the geodesic with γ(0) = p and γ′(0) = v, so that
γ(t) = expp(tv). The set of t such that dist(p, γ(t))+dist(γ(t), q) = dist(p, q) is closed, so let
t be maximal with this property. We claim γ(t) = q and |t| = dist(p, q). For if not, there is
some small r and some point q′ ∈ ∂Br(γ(t)) so that dist(γ(t), q′)+dist(q′, q) = dist(γ(t), q).
Let σ : [0, r] → M be the unit speed geodesic with σ(0) = γ(t) and σ(r) = q′. Then
dist(p, q′) = length(γ([0, t]) ∪ σ([0, r])), and therefore these two paths fit together at σ(0)
to form a smooth geodesic, contrary to the definition of t. In particular, it follows that
expp is surjective, and for every q there is a geodesic of length dist(p, q) from p to q. Now if
qi is a Cauchy sequence, we can find vi ∈ TpM with expp(vi) = qi and |vi| = dist(p, qi). By
compactness, the vi have a subsequence converging to some v, and expp(v) = q is a limit
of the qi. This shows that (2) implies (1).

Conversely, suppose M is complete with respect to dist. We deduce that expp is defined
everywhere for every p. Let v ∈ TpM and let t be the supremum of the numbers s so that
expp(sv) is defined. Then expp(sv) is a Cauchy sequence as s→ t, and therefore limits to
some point q. It follows that γv([0, t)) extends continuously by adding an endpoint q. In
a small ball centered around q there is some q′ = γv(s) and w ∈ TqM with expq(w) = q′.
Then defining σw(u) = expq(uw) for small u we get that σw((0, u]) agrees with γv([t−u, t))
(with opposite orientation) so we may take the union of γv([0, t)) with σw([−u, u]) and
thereby extend γv. In particular, t is infinite, and expp is globally defined for any p. This
shows that (1) implies (3). The implication (3) implies (2) is obvious.

Finally, the argument we already gave showed that (3) implies that any two points p, q
can be joined by a geodesic of length dist(p, q). �

5. Curvature

5.1. Curvature. The failure of holonomy transport along commuting vector fields to com-
mute itself is measured by curvature. Informally, curvature measures the infinitesimal
extent to which parallel transport depends on the path joining two endpoints.

Definition 5.1 (Curvature). Let E be a smooth bundle with a connection ∇. The curva-
ture (associated to ∇) is a trilinear map

R : X(M)× X(M)× Γ(E)→ Γ(E)

which we write R(X, Y )Z ∈ Γ(E), defined by the formula

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z
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Remark 5.2. It is an unfortunate fact that many authors use the notation R(X, Y )Z to
denote the negative of the expression for R(X, Y )Z given in Definition 5.1. This is an
arbitrary choice, but the choice propagates, and it makes it difficult to use published
formulae without taking great care to check the conventions used. Our choice of notation
is consistent with Cheeger-Ebin [2] and with Kobayashi-Nomizu [5] but is inconsistent with
Milnor [7].

Although a priori it appears to depend on the second order variation of Z near each
point, it turns out that the curvature is a tensor. The following proposition summarizes
some elementary algebraic properties of R.

Proposition 5.3 (Properties of curvature). For any connection ∇ on a bundle E the
curvature satisfies the following properties:

(1) (tensor): R(fX, gY )(hZ) = (fgh)R(X, Y )Z for any smooth f, g, h
(2) (antisymmetry): R(X, Y )Z = −R(Y,X)Z
(3) (metric): if ∇ is a metric connection, then 〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉

Thus we can think of R(·, ·) as a section of Ω2(M) ⊗ Γ(End(E)) with coefficients in the
Lie algebra of the orthogonal group of the fibers. If E = TM and ∇ is torsion-free, then it
satisfies the so-called Jacobi identity:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

Consequently, the Levi-Civita connection on TM satisfies the following symmetry:

〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉

The Jacobi identity is sometimes also called the first Bianchi identity. The symme-
try/antisymmetry identities, and the fact that R is a tensor, means that if we define
R(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉 then R ∈ Γ(S2Λ2(T ∗M)).

Proof. Antisymmetry is obvious from the definition. We compute: ∇fX∇YZ = f∇X∇YZ
whereas

∇Y∇fXZ = ∇Y (f∇XZ) = f∇Y∇XZ + Y (f)∇XZ

on the other hand [fX, Y ] = f [X, Y ]− Y (f)X so

∇[fX,Y ]Z = f∇[X,Y ]Z − Y (f)∇XZ

so R is tensorial in the first term. By antisymmetry it is tensorial in the second term.
Finally,

∇X∇Y (fZ) = ∇Xf∇YZ +∇XY (f)Z

= f∇X∇YZ +X(f)∇YZ + Y (f)∇XZ +X(Y (f))Z

and there is a similar formula for ∇Y∇X(fZ) with X and Y reversed, whereas

∇[X,Y ](fZ) = f∇[X,Y ]Z + (X(Y (f))− Y (X(f)))Z

and we conclude that R is tensorial in the third term too. To see the metric identity, let’s
use the tensoriality of R to replace X and Y by commuting vector fields with the same
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value at some given point, and compute

〈∇X∇YZ,W 〉 = X〈∇YZ,W 〉 − 〈∇YZ,∇XW 〉
= X(Y 〈Z,W 〉)−X〈Z,∇YW 〉 − 〈∇YZ,∇XW 〉
= X(Y 〈Z,W 〉)− 〈∇XZ,∇YW 〉 − 〈∇YZ,∇XW 〉 − 〈Z,∇X∇YW 〉

Subtracting off 〈∇Y∇XZ,W 〉 expanded similarly, the first terms cancel (since by hypoth-
esis [X, Y ] = 0), the second and third terms cancel identically, and we are left with
−〈Z,R(X, Y )W 〉 as claimed.

To prove the Jacobi identity when ∇ on TM is torsion-free, we again use tensoriality to
reduce to the case of commuting vector fields. Then the term ∇X∇YZ in R(X, Y )Z can
be rewritten as ∇X∇ZY which cancels a term in R(Z,X)Y and so on.

The last symmetry (under interchanging (X, Y ) with (Z,W )) follows formally from the
metric property, the antisymmetry of R under interchanging X and Y , and the Jacobi
identity. �

5.2. Curvature and representation theory of O(n). The full Riemann curvature ten-
sor is difficult to work with directly; fortunately, there are simpler “curvature” tensors
capturing some of the same information, that are easier to work with.

Definition 5.4 (Ricci curvature). The Ricci curvature tensor Ric is the 2-tensor

Ric(X, Y ) = trace of the map Z → R(Z,X)Y

If we choose an orthonormal basis ei then Ric(X, Y ) =
∑

i〈R(ei, X)Y, ei〉. The symme-
tries of the Riemann curvature tensor imply that Ric is a symmetric bilinear form on TpM
at each point p.

Definition 5.5 (Scalar curvature). The scalar curvature s is the trace of Ric (relative to
the Riemannian metric); i.e. s =

∑
iRic(ei, ei).

The trace-free Ricci tensor, denoted Ric0, is the normalization

Ric0 = Ric− s

n
g

where g denotes the metric.

The definitions of the Ricci and scalar curvatures may seem mysterious and unmotivated
at first. But a little representation theory makes their meaning more clear.

We think of the curvature R as a section of ⊗4T ∗M by the formula R(X, Y, Z,W ) :=
〈R(X, Y )Z,W 〉. For each point p, the automorphism group of TpM is isomorphic to the
orthogonal group O(n), and in fact TpM and T ∗pM are isomorphic as O(n)-modules, and
both isomorphic to the standard representation, which we denote E for brevity, so that
R ∈ ⊗4E. However, the symmetries of R mean that it is actually contained in S2Λ2E.
Furthermore the Bianchi identity shows that R is in the kernel of the O(n)-equivariant
map b : S2Λ2E → S2Λ2E defined by the formula

b(T )(X, Y, Z,W ) =
1

3
(T (X, Y, Z,W ) + T (Y, Z,X,W ) + T (Z,X, Y,W ))
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It can be shown that Im b = Λ4E, and we obtain the decomposition S2Λ2E = Ker b⊕ Im b
and we see that R ∈ Ker b. Now, Λ4E is irreducible as an O(n)-module, but Ker b is not (at
least for n > 2). In fact, there is a contraction S2Λ2E → S2E obtained by taking a trace
over the second and fourth indices, and we see that Ric ∈ S2E is obtained by contracting
R. Finally, S2E is not irreducible as an O(n) module, since it contains an O(n)-invariant
vector, namely the invariant inner product on E (and its scalar multiples). This writes
S2E = S2

0E ⊕ R where the trace S2E → R takes Ric to s, and Ric0 is the part in S2
0E.

The part of R in the kernel of the contraction S2Λ2E → S2E is called the Weyl curvature
tensor, and is denoted W . For n 6= 4 these factors are all irreducible (for n < 4 some of
them vanish). But for n = 4 there is a further decomposition of W into “self dual” and
“anti-self dual” parts coming from the exceptional isomorphism o(4) = o(3)⊕ o(3).

5.3. Sectional curvature. The Riemannian metric on M induces a (positive-definite)
symmetric inner product on the fibers of Λp(TM) for every p. For p = 2 we have a formula

‖X ∧ Y ‖2 = 〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2

Geometrically, ‖X ∧ Y ‖ is the area of the parallelogram spanned by X and Y in TpM .
As observed above, the curvature R also induces a symmetric inner product on each

Λ2(TpM), and the ratio of the two inner products is a well-defined function on the space
of rays P(Λ2TpM). This leads to the following definition:

Definition 5.6 (Sectional curvature). Let σ be a 2-dimensional subspace of TpM , and let
X, Y be a basis for σ. The sectional curvature of σ, denoted K(σ), is the ratio

K(σ) :=
〈R(X, Y )Y,X〉
‖X ∧ Y ‖2

Note that since both R and ‖ · ‖ are symmetric inner products on Λ2TpM , the definition
is independent of the choice of basis. Since a symmetric inner product on a vector space
can be recovered from the length function it induces on vectors, it follows that the full
tensor R can be recovered from its ratio with the Riemannian inner product as a function
on P(Λ2TpM). Since the Grassmannian of 2-planes in V is an irreducible subvariety of
P(Λ2V ) it follows that the full tensor R can be recovered from the values of the sectional
curvature on all 2-planes in TM .

Remark 5.7. It might seem more natural to consider 〈R(X, Y )X, Y 〉 instead in the defini-
tion of K, but this would give sectional curvature the “wrong” sign. One justification for
the sign ultimately comes from the Gauss-Bonnet formula, which relates the sign of the
average sectional curvature to the sign of the Euler characteristic (for a closed, oriented
surface).

Authors that use the opposite definition of R (see Remark 5.2) will in fact use an
expression of the form 〈R(X, Y )X, Y 〉 in their formula for sectional curvature, so that the
meaning of “positive sectional curvature” is unambiguous.

LetN be a smooth submanifold ofM . It is instructive to compare the sectional curvature
of a 2-plane σ contained in TpN in N and in M . Choose vector fields X and Y in X(N),
and for convenience let’s suppose [X, Y ] = 0. Evidently ‖X∧Y ‖2 = ‖X‖2‖Y ‖2 is the same
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whether computed in M or in N . We compute

KM(σ) · ‖X ∧ Y ‖2 = KN(σ) · ‖X ∧ Y ‖2 + 〈∇X∇⊥Y Y −∇Y∇⊥XY,X〉

On the other hand, 〈∇⊥XY, Z〉 = 0 for any X, Y, Z ∈ X(N) and therefore 〈∇X∇⊥Y Y,X〉 =
−〈∇⊥Y Y,∇⊥XX〉 (and similarly for the other term). Using the symmetry of the second
fundamental form, we obtain the so-called Gauss equation:

KN(σ) · ‖X ∧ Y ‖2 = KM(σ) · ‖X ∧ Y ‖2 + 〈II(X,X), II(Y, Y )〉 − ‖II(X, Y )‖2

In the special case that N is codimension one and co-orientable, the normal bundle νN
may be identified with the trivial line bundle R×N over N , and II may be thought of as
an ordinary symmetric inner product on N . Using the metric inner product on N , we may
express II as a symmetric matrix, by the formula II(X, Y ) = 〈II(X), Y 〉.

Definition 5.8 (Mean curvature). Let N be a codimension one co-orientable submanifold
of M . If we express II as a symmetric matrix by using the metric inner product, the
eigenvalues of II are the principal curvatures, the eigenvectors of II are the directions of
principal curvature, and the average of the eigenvectors (i.e. 1/ dim(N) times the trace) is
the mean curvature, and is denoted H.

For a surface S in E3, the sectional curvature can be derived in a straightforward way
from the geometry of the Gauss map.

Definition 5.9 (Gauss map). Let N be a codimension 1 co-oriented smooth submanifold
of En. The Gauss map is the smooth map g : N → Sn−1, the unit sphere in En, determined
uniquely by the property that the oriented tangent space TpN and Tg(p)Sn−1 are parallel
for each p ∈ N .

Another way to think of the Gauss map is in terms of unit normals. If N is codimension
1 and co-oriented, the normal bundle νN is canonically identified with R × N and has a
section whose value at every point is the positive unit normal. On the other hand, νN is
a subbundle of TEn|N , and the fiber at every point is canonically identified with a line
through the origin in En. So the unit normal section σ can be thought of as taking values
in the unit sphere; the map taking a point on N to its unit normal (in Sn−1) is the Gauss
map, so by abuse of notation we can write σ = g (in Euclidean coordinates).

The Gauss map is related to the second fundamental form as follows:

Lemma 5.10. For vectors u, v ∈ TpN we have II(u, v) = −〈dg(u), v〉.

Proof. Extend u, v to vector fields U, V on N near p. Then 〈σ, V 〉 = 0 where σ is the unit
normal field, so

〈∇Uσ, V 〉+ 〈σ,∇UV 〉 = 0

Now, 〈σ,∇UV 〉 = ∇⊥UV = II(U, V ) after identifying νN with R×N . Furthermore, ∇Uσ =
dσ(U) = dg(U), and the lemma is proved. �

Corollary 5.11. For a smooth surface S in E3 the form K · darea = g∗darea; i.e. the
pullback of the area form on S2 under g∗ is K times the area form on S, where K is the
sectional curvature (thought of as a function on S).
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Proof. At each point p ∈ S we can choose an orthonormal basis e1, e2 for TpS which
are eigenvectors for II. If the eigenvalues (i.e. the principal curvatures) are k1, k2 then
dg(ei) = −kiei and therefore the Gauss equation implies that KS = k1k2 at each point.
But this is the determinant of dg (thought of as a map from TpS to Tg(p)S2 = TpS). �

At a point where S is convex, the principal curvatures both have the same sign, and S
is positively curved. At a saddle point, the principal curvatures have opposite signs, and
S is negatively curved.

5.4. The Gauss-Bonnet Theorem. If S is an oriented surface and γ : [0, 1] → S is
a smooth curve, we can think of the image of γ (locally) as a smooth submanifold, and
compute its second fundamental form.

Definition 5.12 (Geodesic curvature). Let γ be a smooth curve in S with positive unit
normal field σ. The geodesic curvature of γ, denoted kg, is defined by the formula

kg =
〈II(γ′, γ′), σ〉
〈γ′, γ′〉

Hence if γ is parameterized by arclength, |kg| = ‖∇γ′γ
′‖.

The following theorem was first proved for Gauss for closed surfaces, and extended by
Bonnet to surfaces with boundary. We give a proof for surfaces in E3 to emphasize the
relationship of this theorem to the geometry of the Gauss map. The proof of the general
case will be deferred until we discuss characteristic classes in § 7.

Theorem 5.13 (Gauss-Bonnet for surfaces in E3). Let S be a smooth oriented surface in
E3 with smooth boundary ∂S. Then∫

S

Kdarea +

∫
∂S

kγdlength = 2πχ(S)

Proof. We first prove this theorem for a smooth embedded disk in S2.
Let D be a smooth embedded disk in S2 with oriented boundary γ, and suppose the

north pole is in the interior of D and the south pole is in the exterior. Let (θ, φ) be polar
coordinates on S2, where φ = 0 is the “north pole”, and θ is longitude. The sectional
curvature K is identically equal to 1, and therefore

Kdarea = sin(φ)dφ ∧ dθ = d(− cos(φ)dθ)

at least away from the north pole, where dθ is well-defined. If C is a small negatively-
oriented circle around the north pole, the integral of the 1-form − cos(φ)dθ around C is
2π. Therefore by Stokes’ theorem,∫

D

Kdarea +

∫
γ

cos(φ)dθ = 2π

Let’s parameterize γ by arclength, so that |γ′| = 1. We would like to show that∫
γ

cos(φ)dθ =

∫
γ

kgdlength

Geometrically, kg measures the infinitesimal rate at which parallel transport around γ ro-
tates relative to γ′, so

∫
γ
kgdlength is just the total angle through which Tγ(0)S2 rotates
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after parallel transport around the loop γ. On the other hand, cos(φ)dθ(γ′) is the infin-
itesimal rate at which parallel transport around γ rotates relative to ∂θ. Since ∂θ and γ′
are homotopic as nonzero sections of TS2|γ, it follows that these integrals are the same.
Thus we have proved the Gauss-Bonnet theorem∫

D

Kdarea +

∫
∂D

kgdlength = 2π

for a smooth embedded disk in S2.
On the other hand, we have already shown that for any smooth surface S in E3 the Gauss

map pulls backKdarea on S2 toKdarea on S. Furthermore, the pullback of the Gauss map
commutes with parallel transport, so the integral of kg along a component of ∂S is equal
to the integral of kg along the image of ∂S under the Gauss map. We can write Kdarea
as exterior d applied to the pullback of − cos(φ)dθ away from small neighborhoods of the
preimage of the north and south poles. The signed number of preimages of these points
is the index of the vector field on S obtained by pulling back ∂θ. By the Poincaré-Hopf
formula, this index is equal to χ(S). Hence∫

S

Kdarea +

∫
∂S

kgdlength = 2πχ(S)

for any smooth compact surface in E3 (possibly with boundary). �

Example 5.14 (Foucault’s pendulum). Even the case of a disk D ⊂ S2 is interesting; it
says that the area of the disk is equal to the total angle through which parallel transport
around ∂D rotates the tangent space.

Imagine a heavy pendulum swinging back and forth over some fixed location on Earth.
As the Earth spins on its axis, the pendulum precesses, as though being parallel transported
around a circle of constant latitude. The total angle the pendulum precesses in a 24 hour
period is equal to 2π minus the area enclosed by the circle of latitude (in units for which
the total area of Earth is 4π). Thus at the north pole, the pendulum makes a full rotation
once each day, whereas at the equator, it does not precess at all. See Figure 2.

5.5. Jacobi fields. To get a sense of the geometric meaning of curvature it is useful to
evaluate our formulas in geodesic normal coordinates. It can then be seen that the curvature
measures the second order deviation of the metric from Euclidean space.

Fix some point p ∈ M and let v, w be vectors in TpM . For small s consider the 1-
parameter family of rays through the origin in TpM defined by

ρs(t) = (v + sw)t

and observe that exp ◦ρs is a geodesic through p with tangent vector at zero equal to
v + sw. We can think of this as a 2-parameter family Γ : [0, 1] × (−ε, ε) → M with
Γ(t, s) = exp ◦ρs(t), and define T and V (at least locally in M) to be dΓ(∂t) and dΓ(∂s)
respectively, thought of as vector fields along (the image of) Γ. For each fixed s the image
Γ : [0, 1] × s → M is a radial geodesic through p, so ∇TT = 0 throughout the image.
Since T and V commute, we have [T, V ] = 0 and ∇TV = ∇V T and we obtain the identity
R(T, V )T = ∇T∇V T = ∇T∇TV .
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Figure 2. Foucault’s pendulum precesses at a rate depending on the latitude.

Definition 5.15 (Jacobi equation). Let V be a vector field along a geodesic γ, and let
γ′ = T along γ. The Jacobi equation is the equation

R(T, V )T = ∇T∇TV

for V , and a solution is called a Jacobi field.

If we let ei be a parallel orthonormal frame along a geodesic γ with tangent field T , and
let t parameterize γ proportional to arclength, and V =

∑
viei, then ∇T∇TV =

∑
i v
′′
i ei

while R(T, V )T =
∑

j vjR(T, ej)T so the Jacobi equations may be expressed as a system
of second order linear ODEs:

v′′i =
∑
j

vj〈R(T, ej)T, ei〉

and therefore there is a unique Jacobi field V along T with a given value of V (0) and
V ′(0) := ∇TV |t=0.

Conversely, given V (0) and V ′(0) we choose a smooth curve σ(s) with σ′(0) = V (0) and
extend T and V ′(0) to parallel vector fields along σ. Define Γ : [0, 1] × (−ε, ε) → M by
Γ(t, s) = expσ(s)(t(T + sV ′(0))). Then we get vector fields U := dΓ(∂t) and S := dΓ(∂s)
such that U is tangent to the geodesics, and S gives their variation. Then [S, U ] = 0 and
∇UU = 0 so R(U, S)U = ∇U∇US along Γ. On the other hand, U = T along γ, and S = σ′

along σ (so that S(σ(0)) = V (0)), and ∇US|σ(0) = ∇SU |σ(0) = ∇S(T + sV ′(0))||σ(0) =
V ′(0). So the restriction of S to γ is the unique Jacobi field with first order part V (0), V ′(0).
It follows that Jacobi fields along a geodesic γ are exactly the variations of γ by geodesics.

Consider our original one-parameter variation Γ(t, s) := expp((v + sw)t) where now we
choose v and w to be orthonormal at TpM , and let T, V be dΓ(∂t) and dΓ(∂s) respectively.
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Note that V is a Jacobi field along γ(·) := Γ(·, 0) with V (0) = 0 and V ′(0) = w. We
compute the first few terms in the Taylor series for the function t→ 〈V (γ(t)), V (γ(t))〉 at
t = 0 (note that V ′(t) := V ′(γ(t)) = (∇TV )(γ(t)) and so on).

〈V, V 〉|t=0 = 0

〈V, V 〉′|t=0 = 2〈V, V ′〉|t=0 = 0

〈V, V 〉′′|t=0 = 2〈V ′, V ′〉|t=0 + 2〈V ′′, V 〉|t=0 = 2‖w‖2 = 2

〈V, V 〉′′′|t=0 = 6〈V ′′, V ′〉|t=0 + 2〈V ′′′, V 〉|t=0 = 0

where we use the Jacobi equation to write V ′′ = R(T, V )T which vanishes at t = 0 (since
it is tensorial, and V vanishes at t = 0). On the other hand,

V ′′′|t=0 = ∇T (R(T, V )T )|t=0 = (∇TR)(T, V )T |t=0 +R(T, V ′)T |t=0 = R(T, V ′)T |t=0

where we used the Leibniz formula for covariant derivative of the contraction of the tensor
R with T, V, T , and the fact that ∇TT = 0 and V |t=0 = 0. Hence

〈V, V 〉′′′′|t=0 = 8〈V ′′′, V ′〉|t=0 + 6〈V ′′, V ′′〉|t=0 + 2〈V ′′′′, V 〉|t=0

= 8〈R(v, w)v, w〉 = −8K(σ)

where σ is the 2-plane spanned by v and w. In other words,

‖V (t)‖2 = t2 − 1

3
K(σ)t4 +O(t5)

Thus: in 2-planes with positive sectional curvature, radial geodesic diverge slower than in
Euclidean space, whereas in 2-planes with negative sectional curvature, radial geodesics
diverge faster than in Euclidean space.

5.6. Conjugate points and the Cartan-Hadamard Theorem.

Definition 5.16 (Conjugate points). Let p ∈M , and let v ∈ TpM . We say q := expp(v) is
conjugate to p along the geodesic γv if d expp(v) : TvTpM → TqM does not have full rank.

Lemma 5.17. Let γ : [0, 1] → M be a geodesic. The points γ(0) and γ(1) are conjugate
along γ if and only if there exists a non-zero Jacobi field V along γ which vanishes at the
endpoints.

Proof. Let w ∈ TvTpM be in the kernel of d expp(v), and by abuse of notation, use w also
to denote the corresponding vector in TpM . Define Γ(s, t) := expp((v+sw)t). Then dΓ(∂s)
is a Jacobi field along γv which vanishes at p = γv(0) and q = γv(v).

Conversely, suppose V is a nonzero Jacobi field along γ with V (0) = V (1) = 0. Then if
we define Γ(s, t) := expγ(0)((γ

′(0)+sV ′(0))t), then V = dΓ(∂s), and d expp(γ
′(0))(V ′(0)) =

V (1) = 0. �

It follows that the definition of conjugacy is symmetric in p and q (which is not immediate
from the definition).

The Jacobi equation and Lemma 5.17 together let us use curvature to control the ex-
istence and location of conjugate points (and vice versa). One important example of this
interaction is the Cartan-Hadamard Theorem:
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Theorem 5.18 (Cartan-Hadamard). Let M be complete and connected, and suppose the
sectional curvature satisfies K ≤ 0 everywhere. Then exp is nonsingular, and therefore
expp : TpM → M is a covering map. Hence (in particular), the universal cover of M is
diffeomorphic to Rn, and πi(M) = 0 for all i > 1.

Proof. The crucial observation is that the condition K ≤ 0 implies that for V a Jacobi
field along a geodesic γ, the length squared 〈V, V 〉 is convex along γ. We compute

d2

dt2
〈V, V 〉 = 2〈V ′′, V 〉+ 2〈V ′, V ′〉

= −2〈R(T, V )V, T 〉+ 2〈V ′, V ′〉
= −2K(σ) · ‖T ∧ V ‖2 + 2〈V ′, V ′〉 ≥ 0

where σ is the 2-plane spanned by T and V . Since 〈V, V 〉 ≥ 0, if V (0) = 0 but V ′(0) 6= 0
(say), then 0 is the unique minimum of 〈V, V 〉, and therefore γ(0) is not conjugate to
any other point. Hence d exp is nonsingular at every point, and expp : TpM → M is an
immersion. The Riemannian metric on M pulls back to a Riemannian metric on TpM in
such a way that radial lines through the origin are geodesics. Thus, by the Hopf-Rinow
Theorem (Theorem 4.8) the metric on TpM is complete, and therefore expp is a covering
map. �

Suppose γ is a geodesic with γ′ = T , and V is a Jacobi field along γ. Then

d2

dt2
〈T, V 〉 =

d

dt
〈T, V ′〉 = 〈T, V ′′〉 = 〈T,R(T, V )T 〉 = 0

by the Jacobi equation, and the symmetries of R. Hence we obtain the formula

〈T, V 〉 = 〈T, V (0)〉+ 〈T, V ′(0)〉t

This shows that the tangential part of a Jacobi field is of the form (at + b)γ′ for some
constants a, b and therefore one may as well restrict attention to normal Jacobi fields. In
particular, we deduce that if a Jacobi field V vanishes at two points on γ (or more), then
V and V ′ are everywhere perpendicular to γ.

5.7. Second variation formula. Let γ : [a, b] → M be a unit-speed geodesic, and let
Γ : [a, b]× (−ε, ε)× (−δ, δ)→M be a 2-parameter variation of γ. Denote the coordinates
on the three factors of the domain of Γ as t, v, w, and let dΓ(∂t) = T , dΓ(∂v) = V ,
dΓ(∂w) = W . We let γv,w : [a, b]→M be the restriction of Γ to the interval with constant
(given) values of v and w.

Theorem 5.19 (Second variation formula). For |v|, |w| small, let γv,w : [a, b] → M be a
2-parameter variation of a geodesic γ : [a, b] → M . We denote γ′v,w by T , and let V and
W be the vector fields tangent to the variations. Then there is a formula

d2

dvdw
length(γv,w)|v=w=0 = 〈∇WV, T 〉|ba

+

∫ b

a

〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉 − T 〈V, T 〉T 〈W,T 〉dt
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Proof. As in the derivation of the first variation formula (i.e. Theorem 4.1) we compute

d2

dvdw
length(γv,w) =

d

dw

∫ b

a

〈∇TV, T 〉
‖T‖

dt

Differentiating under the integral, we get

LHS =

∫ b

a

〈∇W∇TV, T 〉+ 〈∇TV,∇WT 〉
‖T‖

− 〈∇TV, T 〉〈∇WT, T 〉
‖T‖3

dt

=

∫ b

a

〈R(W,T )V, T 〉+ 〈∇T∇WV, T 〉+ 〈∇TV,∇WT 〉
‖T‖

− 〈∇TV, T 〉〈∇WT, T 〉
‖T‖3

dt

Evaluating this at (0, 0) where ‖T‖ = 1 and ∇TT = 0 we get

LHS|0,0 =

∫ b

a

〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉+ T 〈∇WV, T 〉 − T 〈V, T 〉T 〈W,T 〉dt

= 〈∇WV, T 〉|ba +

∫ b

a

〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉 − T 〈V, T 〉T 〈W,T 〉dt

as claimed. �

This formula becomes more useful if we specialize the kinds of variations we consider.
Let’s consider normal variations; i.e. those with V and W perpendicular to T along
γ. Since reparameterization does not affect the length of the curve, any variation with
endpoints fixed can be reparameterized to be perpendicular. If either V or W vanishes at
the endpoints, the first term drops out too, and we get

d2

dvdw
length(γv,w)|v=w=0 =

∫ b

a

〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉dt

Definition 5.20 (Index form). Let V(γ) (or just V if γ is understood) denote the space of
smooth vector fields along γ which are everywhere perpendicular to γ′, and V0 the subspace
of perpendicular vector fields along γ that vanish at the endpoints. The index form is the
symmetric bilinear form I on V is defined by

I(V,W ) :=

∫ b

a

〈∇TV,∇TW 〉 − 〈R(W,T )T, V 〉dt

With this definition the index form is manifestly seen to be symmetric. However, it can
also be re-written as follows:

I(V,W ) =

∫ b

a

T 〈∇TV,W 〉 − 〈∇T∇TV,W 〉 − 〈R(V, T )T,W 〉dt

= 〈∇TV,W 〉|ba −
∫ b

a

〈∇T∇TV −R(T, V )T,W 〉dt

We deduce the following corollary from the second variation formula:
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Corollary 5.21. Suppose I is positive definite on V0. Then γ is a unique local minimum
for length among smooth curves joining p to q. More generally, the null space of I on V0

is exactly the set of Jacobi fields along γ which vanish at the endpoints.

Proof. The first statement follows from the second variation formula and the definition of
the index form.

If V and W vanish at the endpoints, then

I(V,W ) = −
∫ b

a

〈∇T∇TV −R(T, V )T,W 〉dt

so V is in the null space of I (i.e. I(V, ·) is identically zero) if and only if V is a Jacobi
field. �

In particular, I has a non-trivial null space if and only if γ(a) and γ(b) are conjugate
along γ, and the dimension of the null space of I is the dimension of the null space of d exp
at the relevant point.

We have already seen (Corollary 4.7) that radial geodesics emanating from a point p
are (globally!) the unique distance minimizers up to any radius r such that expp is a
diffeomorphism when restricted to the ball of radius r. It follows (by essentially the same
argument) that every geodesic is locally distance minimizing up to its first conjugate point.
On the other hand, suppose q is conjugate to p along γ, and let r be another point on γ
beyond q (so that p = γ(0), q = γ(t) and r = γ(t′) for some t′ > t). Since q is conjugate
to p, there is a nonzero Jacobi field V along γ which vanishes at p and q, tangent to a
variation of γ (between p and q) by smooth curves γt which start and end at p and q, and
for which length(γt) = length(γ) + o(t2). Since V (q) = 0 but V is nonzero we must have
V ′(q) 6= 0 and therefore γt makes a definite angle at q with γ, for small positive t. So
we have a 1-parameter family of piecewise smooth curves from p to r, obtained by first
following γt from p to q, and then following γ from q to r. Moreover, the length of these
curves is constant to second order. But rounding the corner near q reduces the length of
these curves by a term of order t2, so we conclude that γ is not locally distance minimizing
past its first critical point.

5.8. Symplectic geometry of Jacobi fields. If we fix a geodesic γ and a point p on γ,
the Jacobi fields along γ admit a natural symplectic structure, defined by the pairing

ω(U, V ) := 〈U, V ′〉 − 〈U ′, V 〉

evaluated at the point p. This form is evidently antisymmetric, and is nondegenerate in
view of the identification of the space of Jacobi fields with TpM×TpM . On the other hand,
it turns out that the pairing is independent of the point p:

d

dt
ω(U, V ) = 〈U, V ′′〉 − 〈U ′′, V 〉 = 〈U,R(T, V )T 〉 − 〈R(T, U)T, V 〉 = 0

If we trivialize the normal bundle ν to γ as ν = Rn−1×γ by choosing a parallel orthonormal
frame ei, then the coordinates of a basis of Jacobi fields and their derivatives in terms of
this frame as a function of t can be thought of as a 1-parameter family of symplectic
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matrices J(t) ∈ Sp(2n − 2,R). In coordinates as a block matrix, the derivative J ′(t) has
the form

J ′ =

(
0 Id

〈R(T, ei)T, ej〉 0

)
One consequence of the existence of this symplectic structure is a short proof that con-

jugate points along a geodesic are isolated:

Lemma 5.22 (Conjugate points are isolated). Let γ be a geodesic with initial point p. The
set of points that are conjugate along γ to p is discrete.

Proof. Suppose q = γ(s) is a conjugate point, and let V be a Jacobi field vanishing at p
and at q. Let U be any other Jacobi field vanishing at p. Then ω(U, V ) = 0 because both
U and V vanish at p. But this implies that 〈U(q), V ′(q)〉 = 〈U ′(q), V (q)〉 = 0, so U(q) is
perpendicular to V ′(q). If q were not isolated as a conjugate point to p, there would be a
one-parameter family of nontrivial Jacobi fields Vt with Vt(0) = 0 and V0 = V vanishing to
first order (in t) at γ(s+ t). But if Vt = V + tU + o(t2) then

d

dt
‖Vt(s+ t)‖|t=0 =

1

2

d2

dt2
〈Vt(s+ t), Vt(s+ t)〉|t=0 = ‖V ′(q)‖2 + ‖U(q)‖2 > 0

where the first equality follows from L’Hôpital’s rule, and the second follows from the fact
(derived above) that V ′ and U are perpendicular at q. �

The following Lemma shows that Jacobi fields are the “most efficient” variations with
given boundary data, at least on geodesic segments without conjugate points.

Lemma 5.23 (Index inequality). Let γ be a geodesic from p to q with no conjugate points
along it, and let W be a section of the normal bundle along γ with W (p) = 0. Let V be the
unique Jacobi field with V (p) = W (p) = 0 and V (q) = W (q). Then I(V, V ) ≤ I(W,W )
with equality if and only if V = W .

Proof. For simplicity, let p = γ(0) and q = γ(1). Let Vi be a basis of Jacobi fields along γ
vanishing at p. Since W also vanishes at p and since there are no conjugate points along
γ (so that the Vi are a basis throughout the interior of γ) we can write W =

∑
i fiVi, and

V =
∑

i fi(1)Vi. Then

I(W,W ) =

∫ 1

0

〈W ′,W ′〉+ 〈R(T,W )T,W 〉dt

=

∫ 1

0

T 〈W,W ′〉 − 〈W,W ′′〉+ 〈R(T,W )T,W 〉dt

=

∫ 1

0

T 〈W,W ′〉 − 〈W,
∑

f ′′i Vi + 2
∑

f ′iV
′
i 〉dt

=

∫ 1

0

T 〈W,W ′〉 − T 〈W,
∑

f ′iVi〉+ 〈W ′,
∑

f ′iVi〉 − 〈W,
∑

f ′iV
′
i 〉dt
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where going from line 2 to line 3 we used the Jacobi equation
∑
fiV

′′
i =

∑
fiR(T, Vi)T .

Now ∫ 1

0

T 〈W,W ′ −
∑

f ′iVi〉dt = 〈W (1),
∑

fiV
′
i (1)〉 = 〈V (1), V ′(1)〉 = I(V, V )

On the other hand, 〈Vi, V ′j 〉 = 〈V ′i , Vj〉 for any i, j by the symplectic identity, and the fact
that the Vi all vanish at 0. So

〈W ′,
∑

f ′iVi〉 − 〈W,
∑

f ′iV
′
i 〉 = 〈

∑
f ′iVi +

∑
fiV

′
i ,
∑

f ′iVi〉 − 〈W,
∑

f ′iV
′
i 〉

= 〈
∑

f ′iVi,
∑

f ′iVi〉 ≥ 0

Integrating, we get I(V, V ) ≤ I(W,W ) with equality if and only if f ′i = 0. �

An elegant corollary of the index inequality is the following theorem of Myers, general-
izing a theorem of Bonnet:

Theorem 5.24 (Myers–Bonnet). Let M be a complete Riemannian manifold. Suppose
there is a positive constant H so that Ric(v, v) ≥ (n − 1)H for all unit vectors v. Then
every geodesic of length ≥ π/

√
H has conjugate points. Hence the diameter of M is at

most π/
√
H, and M is compact and π1(M) is finite.

Proof. Let γ : [0, `]→M be a unit-speed geodesic, and ei an orthonormal basis of perpen-
dicular parallel fields along γ. Define vector fields Wi := sin(πt/`)ei along M . Then we
compute ∑

I(Wi,Wi) = −
∑∫ `

0

〈Wi,W
′′
i +R(Wi, T )T 〉dt

=

∫ `

0

(sin(πt/`))2
(
(n− 1)π2/`2 − Ric(T, T )

)
dt

so if Ric(T, T ) > (n− 1)H and ` ≥ π/
√
H then

∑
I(Wi,Wi) < 0. It follows that some Wi

has I(Wi,Wi) < 0. If γ had no conjugate points on [0, `+ ε] then by Lemma 5.23 we could
find a nonzero Jacobi field Vε with Vε(0) = 0 and Vε(`+ε) = W+ε and I(Vε, Vε) < 0. Taking
the limit as ε → 0 we obtain a Jacobi field V with I(V, V ) < 0 and V (0) = V (`) = 0,
which is absurd. Thus γ has a conjugate point on [0, `].

Since geodesics fail to (even locally) minimize distance past their first conjugate points, it
follows that the diameter ofM is at most π/

√
H, soM is compact. Passing to the universal

cover does not affect the uniform lower bound on Ric, so we deduce that the universal cover
is compact too, and with the same diameter bound; hence π1(M) is finite. �

5.9. Spectrum of the index form. It is convenient to take the completion of V0 with
respect to the pairing

(V,W ) =

∫ b

a

〈V,W 〉dt

This completion is a Hilbert space H, and the operator −∇T∇T · +R(T, ·)T : H → H is
(at least formally, where defined) self-adjoint (this is equivalent to the symmetry of the
index form). We denote the operator by L, and call it the stability operator. If we choose a
parallel orthonormal basis of the normal bundle ν along γ, then we can think of H as the
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L2 completion of the space of smooth functions on [a, b] (vanishing at the endpoints) taking
values in Rm (where m = n− 1). In these coordinates, we can write L = ∆ + F where F
is a (fixed smooth) function on [a, b] with values in symmetric m ×m matrices acting on
Rm in the usual way. Note that we are using the “geometer’s Laplacian” ∆ = − d2

dt2
which

differs from the more usual (algebraic) Laplacian by a sign.
For simplicity, let’s first consider the case m = 1, so that L = ∆+f where f is just some

smooth function, and let’s consider the spectrum of this operator restricted to functions
which vanish at the endpoints. The main theorem of Sturm-Liouville theory says that the
eigenvalues λi of L are real, and can be ordered so that λ1 < λ2 < · · · and so that there are
only finitely many eigenvalues in (−∞, s] for any s, and the corresponding eigenvectors ξi
form an orthonormal basis for H. Moreover, the eigenvalues and eigenvectors (normalized
to have L2 norm equal to 1) vary continuously as a function of f and of the endpoints
a, b. For fixed f , and for b sufficiently close to a, the spectrum is strictly positive. As b
is increased, finitely many eigenvalues might become negative; the index is the number of
negative eigenvalues. At a discrete set of values of b, there is a zero in the spectrum; we
say that such values of b are conjugate to a. Evidently, at a non-conjugate value b, the
index of L on the interval [a, b] is equal to the number of points in the interior conjugate
to a.

The picture is similar for general m. The eigenvalues of ∆ + F are real, and there
are only finitely many (counted with multiplicity) in any interval of the form (−∞, s].
The eigenfunctions corresponding to different eigenvalues are orthogonal, and (suitably
normalized) they form a complete orthonormal basis for H. If b is not conjugate to a along
γ, the index of L (i.e. the number of negative eigenvalues, counted with multiplicity) is
equal to the number of conjugate points (also counted with multiplicity) to a along γ in
the interval [a, b].

This index has another interpretation which can be stated quite simply in the language
of symplectic geometry, though first we must explain the rudiments of this language. First
consider Cm with its standard Hermitian form. The imaginary part of this form is a
symplectic form ω on R2m = Cm, and the Lagrangian subspaces of R2m are exactly the
totally real subspaces of Cm. The unitary group U(m) acts transitively on the set of totally
real subspaces of Cm, and the stabilizer of a subspace is conjugate to O(m). Thus, the space
of Lagrangian subspaces of R2m can be obtained as the symmetric space Λm := U(m)/O(m)
(this space is also sometimes called the Shilov boundary of Sp(2m)). The group Sp(2m)
acts on Λm on the left; at the level of matrices, every symplectic matrix M has a unique
(polar) factorization as M = PQ where P is self-adjoint and positive definite, and Q is in
U(m). This defines a projection Sp(2m) → U(m) (which is a homotopy equivalence) and
thereby an orbit map Sp(2m)→ Λm. Note that dim(Λm) = m(m+ 1)/2.

Example 5.25. When m = 1 then U(1) = S1 and O(1) = Z/2Z, so Λ1 = RP1. When m = 2
then there is a map det2 : U(2)/O(2)→ S1 whose fiber is SU(2)/SO(2) = S2. So Λ2 is an
S2 bundle over S1 whose holonomy is the antipodal map.

Let π ∈ Λm be a Lagrangian subspace of R2m. The train of π, denoted Σπ ⊂ Λm, is the set
of Lagrangian subspaces of R2m which are not transverse to π. The train is a codimension
one real analytic subvariety, and has a well-defined co-orientation, even though neither it
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nor Λm are orientable in general. If we fix another Lagrangian π′ transverse to π, then
we can decompose R2m = π ⊕ π′ and for every other σ the symplectic form determines a
symmetric quadratic form Iπ,π′ on σ, as follows: if zi ∈ σ decompose as zi = xi + yi with
xi ∈ π, yi ∈ π′ then Iπ,π′(z1, z2) = ω(x1, y2). This is symmetric, since

ω(x1, y2)− ω(x2, y1) = ω(x1, y2) + ω(y1, x2) = ω(x1 + y1, x2 + y2) = 0

The tangent cone to the train TπΣπ decomposes TπΛm into chambers, corresponding to σ
near π on which Iπ,π′ has a particular signature; the positive side of TπΣπ consists of those
σ on which Iπ,π′ is positive definite.

There is a cone field C on Λm which assigns to every π ∈ Λm the positive side of
TπΣπ. The cone field points to one side all along any train Σπ and gives it its canonical
co-orientation.

Definition 5.26 (Maslov index). If γ : [0, 1]→ Λm is a 1-parameter family of Lagrangian
subspaces, the Maslov index of γ, denoted µ(γ), is the algebraic intersection number of γ
with the train of γ(0).

Now let’s return to Riemannian geometry. Fix a geodesic γ and a basis of orthonormal
parallel vector fields e1, · · · , em orthogonal to γ, and let R2m denote the symplectic vector
space of normal Jacobi fields along γ, whose value and derivative at some basepoint p ∈ γ,
expressed in terms of the ei, give the 2m coordinates. The space of Jacobi fields vanishing
at p = γ(0) is a Lagrangian subspace π of R2m, and the coordinates of these Jacobi fields
at points γ(t) defines a 1-parameter family of Lagrangian subspaces in Λm (which by abuse
of notation we also denote γ). If γ(t) is not conjugate to γ(0) along γ, the index form I
is nondegenerate on L2 normal vector fields on γ([0, t]), vanishing at the endpoints. With
this notation, the index of I is just the Maslov index of the path γ([0, t]) in Λm. It counts
the number of conjugate points to γ(0) between γ(0) and γ(t), with multiplicity; this is
precisely the algebraic intersection number of γ (in Λm) with the train Σπ. The only
nontrivial point is the fact that the sign of each intersection point is positive, which is a
restatement of the content of Lemma 5.22 in this language. This explains why the (Maslov)
index can only increase along γ, and never decrease (as might happen for an arbitrary path
of Lagrangians).

Geometrically, a vector X in the Lie algebra sp(2m,R) determines a vector field VX on
Λm (by differentiating the orbits of a 1-parameter group of symplectomorphisms tangent
to X). The vector field VX points to the positive side of the train Σπ at a Lagrangian σ
if ω(Xv, v) > 0 for all nonzero v in σ ∩ π (here we think of X acting on R2m by ordinary
matrix multiplication). The set of X in sp(2m,R) such that ω(Xv, v) ≥ 0 for all v ∈ R2m

is a conjugation invariant cone. In particular, a matrix of the form XF := ( 0 Id
F 0 ) is in this

cone if and only if F is negative definite. If X(t) is in the positive cone for all t, a path in
Λm obtained by integrating the vector field VX(t) has only positive intersections with every
train. This has the following consequence, first observed by Arnol’d [1], generalizing the
classical Sturm comparison theorem.

Theorem 5.27 (Comparison Theorem). Let F (t) and G(t) be symmetric m×m matrices
for each t, and suppose for each t that F (t) ≤ G(t) (in the sense that F (t)− G(t) has all
eigenvalues nonpositive). Then the index of ∆+F is at least as large as the index of ∆+G
on any interval.
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Proof. Starting at some fixed π ∈ Λm, the matrices F (t) and G(t) determine one-parameter
families of Lagrangian subspaces γ(t) and δ(t) as integral curves of the (time-dependent)
vector fields VF and VG on Λm respectively. By hypothesis, for each t the elementsW (t) :=
XF (t)−XG(t) of the Lie algebra are contained in the positive cone. The endpoint γ(1) is
obtained from δ(1) by integrating the time dependent vector field corresponding to the path
S(t)W (t)S(t)−1 in sp(2m,R), where S(t) is a suitable 1-parameter family of symplectic
matrices. Since the positive cone is conjugation invariant, it follows that γ is homotopic
rel. endpoints to a path obtained from δ by concatenating it with a path tangent to the
cone field; such a path can only have non-negative intersection with any train, so the index
of γ is at least as big as that of δ. �

6. Lie groups and homogeneous spaces

6.1. Abstract Lie Groups. We have met several concrete (matrix) Lie groups already;
in fact, it would be hard to develop much of the theory of smooth manifolds (let alone
Riemannian manifolds) without at least an implicit understanding of certain matrix Lie
groups. On the other hand, Lie groups themselves (and spaces obtained from them) are
among the most important examples of manifolds.

Definition 6.1 (Lie groups and algebras). Let G admit both the structure of a group and
a smooth manifold. G is a Lie group if the multiplication map G×G→ G and the inverse
map G→ G are smooth. The Lie algebra g is the tangent space to G at the origin.

Example 6.2 (Myers–Steenrod). If M is any Riemannian manifold, Myers–Steenrod [6]
showed that the group of isometries Isom(M) is a Lie group. One way to see this is
to observe (e.g. by using the exponential map) that if M is connected, and ξ is any
orthonormal frame at any point p ∈ M , an isometry of M is determined by the image of
ξ. So if we fix ξ, we can identify Isom(M) with a subset of the frame bundle of M , and
see that this gives it the structure of a smooth manifold.

We often denote the identity element of a Lie group by e ∈ G, so that g = TeG.
For every g ∈ G there are diffeomorphisms Lg : G → G and Rg : G → G called

(respectively) left and right multiplication, defined by Lg(h) = gh and Rg(h) = hg for
h ∈ G. Note that L−1

g = Lg−1 and R−1
g = Rg−1 . The maps g → Lg and g → Rg−1 are

homomorphisms from G to Diff(G).
A vector fieldX onG is said to be left invariant if dLg(X) = X for all g ∈ G. SinceG acts

transitively on itself with trivial stabilizer, the left invariant vector fields are in bijection
with elements of the Lie algebra, where X(e) ∈ g = TeG determines a left-invariant vector
field X by X(g) = dLgX(e) for all g, and conversely a left-invariant vector field restricts to
a vector in TeG. So we may (and frequently do) identify g with the space of left-invariant
vector fields on G. If X and Y are left-invariant vector fields, then so is [X, Y ], since for
any smooth map φ between manifolds, dφ([X, Y ]) = [dφ(X), dφ(Y )]. Thus Lie bracket of
vector fields on G induces a Lie bracket on g, satisfying the properties in Definition 1.10
(in particular, it satisfies the Jacobi identity).

Definition 6.3 (1-parameter subgroup). A smooth map γ : R → G is a 1-parameter
subgroup if it is a homomorphism; i.e. if γ(s+ t) = γ(s)γ(t) for all s, t ∈ R.
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Suppose γ : R→ G is a 1-parameter subgroup, and let X(e) = γ′(0) ∈ TeG = g. Let X
be the corresponding left-invariant vector field on G. Differentiating the defining equation
of a 1-parameter subgroup with respect to t at t = 0, we get

γ′(s) = dγ(s)(X(e)) = X(γ(s))

so that γ is obtained as the integral curve through e of the left-invariant vector field X.
Conversely, if X is a left-invariant vector field, and γ is an integral curve of X through
the origin, then γ is a 1-parameter subgroup. Thus we see that every X(e) ∈ g arises as
the tangent vector at e to a unique 1-parameter subgroup. Note that left multiplication
permutes the integral curves of any left-invariant vector field; thus every left-invariant
vector field X on G is complete (i.e. an integral curve through any point can be extended
to (−∞,∞)).

A vector field X on any manifold M determines a 1-parameter family of (at least locally
defined) diffeomorphisms φt : M → M by φ′t(p) = X(φt(p)). Formally, we can let eX
denote the infinite series

eX := Id +X +
X2

2!
+
X3

3!
+ · · ·

which we interpret (where it converges) as a differential operator on the smooth functions
on M . Let f be a smooth function on M , and if we pick some point p we can write
f(t) = f(φt(p)). If M , f and X are real analytic, we can express f(t) as a power series in
t with a positive radius of convergence, and observe that with notation, Xnf(t) = f (n)(t).
Thus Taylor’s theorem gives rise to the identity

eXf(p) = f(φ1(p))

at least on the domain of definition of φ1. This formula suggests an abuse of notation,
using the expression eX to denote the (partially defined) diffeomorphism φ1 ∈ Diff(M).

If X ∈ g and γ : R → G is the unique 1-parameter subgroup with γ′(0) = X, then
φt(g) = gγ(t) for any t and any g, so we suggestively write eX = γ(1), and think of
“exponentiation” as defining a map g→ G (note that the integral curves of the left invariant
vector fieldX are obtained from a singular integral curve γ(t) by left translation by elements
g ∈ G). Note that the derivative of this map at 0 is the identity map g→ g, and therefore
exponentiation is a diffeomorphism from some neighborhood of 0 in g to some neighborhood
of e in G, although it is not typically globally surjective.

Remark 6.4. If G is given a Riemannian metric, then there is an exponential map expe :
g→ G in the usual sense of Riemannian geometry. As we shall see, this is closely related
to exponentiation (as defined above), but the two maps are different in general, and we
use different notation exp(X) and eX to distinguish the two maps.

Suppose G acts smoothly on a manifoldM ; i.e. there is given a smooth map G×M →M
so that for any g, h ∈ G and p ∈M we have g(h(p)) = (gh)(p). We can think of an action as
a homomorphism ρ : G→ Diff(M). For each X ∈ g and associated 1-parameter subgroup
γ : R → G with γ′(0) = X we get a 1-parameter family of diffeomorphisms φt := ρ ◦ γ(t)
on M . Define dρ(X) ∈ X(M) to be the vector field tangent to φt; i.e. dρ(X) := d

dt
φt|t=0.

Then dρ([X, Y ]) = [dρ(X), dρ(Y )]. Said another way, the map dρ : g → X(M) is a
homomorphism of Lie algebras. By exponentiating, we get the identity ρ(eX) = edρ(X).
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Exponentiation satisfies the formula esX = γ(s) so that esXetX = e(s+t)X for any s, t ∈ R.
Moreover, if [X, Y ] = 0 then esX and etY commute for any s and t, by Frobenius’ theorem,
and eX+Y = eXeY = eY eX in this case. We have already observed that exponentiation
defines a diffeomorphism from a neighborhood of 0 in g to a neighborhood of e in G; we
denote the inverse by log. Formally, if we use the power series for log to define

log(g) = (g − e)− 1

2
(g − e)2 +

1

3
(g − e)3 + · · ·+ (−1)m

m
(g − e)m + · · ·

and make it operate on functions f on G by (gf)(h) = f(hg) and extend by linearity and
take limits, then log(eX) = X (as operators on smooth functions) for X in a small enough
neighborhood of 0 in g. We can therefore write

log(eXeY ) =
∑
k

(−1)k−1

k

∑
h

Xp1Y q1 · · ·XphY qh

p1!q1! · · · ph!qh!

where the sum is taken over all expessions with pi + qi > 0 for each i. It turns out that
the terms with the p1 + · · · + pk + q1 + · · · + qk = n can be grouped together as a formal
rational sum of Lie polynomials in X and Y ; i.e. expressions using only the Lie bracket
operation (rather than composition). Thus one obtains the following:

Theorem 6.5 (Campbell-Baker-Hausdorff Formula). For X, Y ∈ g sufficiently close to 0,
if we define eXeY = eZ then there is a convergent series expansion for Z:

Z = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]]− 1

24
[Y, [X, [X, Y ]]]− · · ·

An explicit closed formula for the terms involving n-fold brackets was obtained by
Dynkin. Note that if g is a nilpotent Lie algebra — i.e. if there is a uniform n for
which any n-fold bracket vanishes — then the CBH formula becomes a polynomial, which
converges everywhere. The CBH formula shows that the group operation of a Lie group
can be reconstructed (at least on a neighborhood of the identity) from its Lie algebra.

Definition 6.6 (Adjoint action). The group G acts on itself by conjugation; i.e. there is a
map G→ Aut(G) sending g → Lg ◦Rg−1 . Conjugation fixes e. The adjoint action of G on
g is the derivative of the conjugation automorphism at e; i.e. the map Ad : G → Aut(g)
defined by Ad(g)(Y ) = d(Lg ◦Rg−1)Y .

The adjoint action of g on g is the map ad : g → End(g) defined by ad(X)(Y ) =
d
dt
Ad(etX)(Y )|t=0.

If we think of g as a smooth manifold, the adjoint action is a homomorphism Ad : G→
Diff(g) and its derivative is a homomorphism of Lie algebras ad : g → X(g). Thus we
obtain the identity ead(X) = Ad(eX). Since all maps and manifolds under consideration
are real analytic, this identity makes sense when interpreted as power series expansions of
operators.

Let X ∈ g denote both a vector in TeG and the corresponding left-invariant vector field.
Let φt denote the flow associated to X, so that φt(g) = getX . For any other vector field Y
on G (left invariant or not) recall that the Lie derivative is defined by the formula

(LX(Y ))(p) := lim
t→0

dφ−t(Y (φt(p)))− Y (p)

t
= [X, Y ]
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Now suppose Y is left-invariant. If we write Y (e) = d
ds
esY |s=0 then we get the formula

(LX(Y ))(e) =
d

dt
dφ−t(Y (φt(e)))|t=0 =

∂

∂t

∂

∂s
φ−t(e

tXesY )|t=0,s=0 =
∂

∂t

∂

∂s
etXesY e−tX |t=0,s=0

where we use the fact that φt(e) = etX , and the fact that the left-invariant vector field Y
at etX is tangent to etXesY . Thus we see from the definitions that ad(X)(Y ) = [X, Y ].

This is consistent with expanding the first few terms of the power series to derive the
following estimate:

etXY e−tX = Y + [tX, Y ] +O(t2)

If we write similarly ad(X)n(Y ) = [X, [X, [· · · , [X, Y ] · · · ]]] then the identity ead(X) =
Ad(eX) becomes the formula

eXY e−X =
∞∑
n=0

ad(X)n(Y )

n!

which can be seen directly by computing

eXY e−X =
∞∑
n=0

n∑
m=0

(−1)n−mXmY Xn−m

m!(n−m)!

and using the formula ad(X)n(Y ) =
∑n

m=0

(
n
m

)
(−1)n−mXmY Xn−m which can be proved

by induction.
Note that the Jacobi identity for Lie bracket on g is equivalent to the fact that g acts

on g by derivations under the adjoint representation; i.e.

ad(X)([Y, Z]) = [ad(X)(Y ), Z] + [Y, ad(X)(Z)]

Proposition 6.7 (Singularities of exponentiation). For any X, Y ∈ g, there is a formula

eX+tY e−X = et
ead(X)−Id

ad(X)
Y+O(t2)

It follows that the map g→ G sending X → eX is singular at X if and only if ad(X) has
an eigenvalue of the form 2mπi for some nonzero integer m.

Here the expression ead(X)−Id
ad(X)

means the formal power series
∑∞

n=0 ad(X)n/(n+ 1)!

Proof. Let’s define for each s the vector B(s) ∈ g = TeG by

B(s) :=
d

dt
es(X+tY )e−sX |t=0

so that we are interested in computing B(1). We claim B′(s) = Ad(esX)Y . To see this,
compute

B(s+ ∆s)−B(s) =
d

dt

(
esXe−s(X+tY )e(s+∆s)(X+tY )e−(s+∆s)X

)
|t=0 +O((∆s)2)

=
d

dt

(
esXe(∆s)(X+tY )e−(s+∆s)X

)
|t=0 +O((∆s)2)

Therefore

B′(s) = Ad(esX) lim
∆s→0

d
dt
e(∆s)(X+tY )|t=0

∆s
= Ad(esX)(Y )
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Writing Ad(esX) = es ad(X) and integrating we obtain∫ 1

0

Ad(esX)ds =
ead(X) − Id
ad(X)

and the proposition is proved. �

Example 6.8 (SL(2,R)). Unlike the exponential map on complete Riemannian manifolds,
exponentiation is not typically surjective for noncompact Lie groups. The upper half-space
model of hyperbolic 2-space H2 consists of the subset of z ∈ C with Im(z) > 0. The group
SL(2,R) acts on H2 by Möbius transformations(

a b
c d

)
· z =

az + b

cz + d

The kernel consists of the center ±Id, and the image is the group PSL(2,R) which acts
transitively and faithfully on H2 by isometries. Every 1-parameter family of isometries in
H2 is one of three kinds:

(1) Elliptic subgroups; these are conjugate to
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
which fixes i ∈ C and acts

on the unit tangent circle by rotation through angle 2θ;
(2) Parabolic subgroups; these are conjugate to ( 1 t

0 1 ) which fixes ∞ and acts by trans-
lation by t;

(3) Hyperbolic subgroups; these are conjugate to
(
et 0
0 e−t

)
which fixes 0 and∞ and acts

by dilation by e2t.

Since SL(2,R) double-covers PSL(2,R), they have isomor-
phic Lie algebras, and there is a bijection between 1-
parameter subgroups. In particular, any matrix in SL(2,R)
with trace in (−∞,−2) is not in the image of exponentiation.
Identifying PSL(2,R) with the unit tangent bundle of H2

under the orbit map shows that it is diffeomorphic to an open
S1 ×D2, and SL(2,R) is the connected double-cover (which
is also diffeomorphic to S1 ×D2).
In the (adjacent) figure, two fundamental domains for

SL(2,R) are indicated, together with the image of exponen-
tiation. Elliptic subgroups are indicated in red, parabolic
subgroups in green, and hyperbolic subgroups in blue. The
dotted vertical lines are “at infinity”. The white gaps are
matrices with trace < −2 and the slanted dotted lines are
matrices with trace −2 which are not in the image of expo-
nentiation.

6.2. Homogeneous spaces. The left and right actions of G on itself induce actions on
the various tensor bundles associated to G as a smooth manifold, so it makes sense to say
that a volume form, or a metric (or some other structure) is left-invariant, right-invariant,
or bi-invariant.

Since G acts on itself transitively with trivial point stabilizers, a left-invariant tensor
field is determined by its value at e, and conversely any value of the field at e can be
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transported around by the G action to produce a unique left-invariant field with the given
value (a similar statement holds for right-invariant tensor fields). The left and right actions
commute, giving an action of G×G on itself; but now, the point stabilizers are conjugates of
the (anti-)diagonal copy of G, acting by the adjoint representation. Thus: the bi-invariant
tensor fields are in bijection with the tensors at e fixed by the adjoint representation.

The adjoint representation Ad : G → Aut(g) is an example of a linear representation.
Given a group G and a linear representation ρ : G→ GL(V ), any natural operation on V
gives rise to new representations of G. Hence there are natural actions of G on V ∗, on all
the tensor powers of V and V ∗, on the symmetric or alternating tensor powers, and so on.
Fixed vectors for the action form an invariant subspace V G. The derivative of the linear
representation determines a map dρ : g → gl(V ), and from the definition we see that V G

is in the kernel of dρ(g). Conversely, for connected ρ(G) we have the converse:

Lemma 6.9 (Fixed subspace). Let ρ : G → GL(V ) be a linear representation with fixed
subspace V G. If ρ(G) is connected, then V G is precisely the kernel of dρ(g); i.e. V G =
∩X∈g ker(dρ(X)).

Proof. We have already seen that ker(dρ(X)) contains V G. Conversely, for any v ∈
ker(dρ(X)) and any X ∈ g, we have ρ(eX)v = edρ(X)v = v so v is fixed by every el-
ement of a 1-parameter subgroup of ρ(G). Since ρ(G) is a Lie group, the 1-parameter
subgroups fill out a neighborhood of the origin, so fix(v) is open. But an open subgroup
of a connected topological group contains the connected component of the identity. Since
ρ(G) is connected by assumption, we are done. �

Example 6.10 (Invariant bilinear form). Suppose G is a Lie group and ρ : G→ GL(V ) has
connected image. If β is a bilinear form on V (i.e. an element of ⊗2V ∗) then β is invariant
under ρ(G) if and only if

(dρ(X)β)(u, v) := β(dρ(X)u, v) + β(u, dρ(X)v) = 0

for all u, v ∈ V and X ∈ g.

Suppose h is a subspace of g which is closed under Lie bracket; i.e. h is a Lie subalgebra
of g. Thinking of the elements of h as left-invariant vector fields on G, Frobenius’ theorem
(i.e. Theorem 1.20) says that the distribution spanned by h at each point is integrable,
and tangent to a left-invariant foliation of G, of dimension equal to dim(h). The leaf of
this foliation through e is itself a Lie subgroup H of G (with Lie algebra h) when given its
induced path topology, but it will not in general be closed in G.

Example 6.11 (Irrational foliation on a torus). Let G be the flat torus R2/Z2 with addition
as the group law. Then g = R2 with the trivial bracket. Any nonzero v ∈ g spans a
1-dimensional Lie algebra h, and the integral curves of the associated left-invariant vector
field on the torus are the lines of constant slope. If the slope is irrational, these lines are
dense in G.

Conversely, if H ⊂ G is a subgroup which is also an immersed submanifold, the tangent
space h to H at e is a Lie subalgebra of g. A subalgebra h for which [g, h] ⊂ h is called an
ideal. The group H associated to h by exponentiating is normal if and only if h is an ideal.

If H is closed, the quotient space G/H is naturally a manifold with a transitive G action
(coming from left multiplication of G on itself), and the map G→ G/H has the structure
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of a principal H-bundle coming from the H action. Since h is a Lie subalgebra, ad(v)
preserves h for all v ∈ h, and similarly Ad(h) preserves h for all h ∈ H. So the adjoint
representation Ad : H → Aut(g) descends to Ad : H → Aut(g/h), where g/h is the tangent
space at the image of e to G/H.

A smooth manifold M admitting a transitive (smooth) G action for some Lie group G
is said to be a homogeneous space for G. If we pick a basepoint p ∈ M the orbit map
G → M sending g → g(p) is a fibration of G over M with fibers the conjugates of the
point stabilizers, which are closed subgroups H. Thus we see that homogeneous spaces for
G are simply spaces of the form G/H for closed Lie subgroups H of G.

An action of G on a homogeneous spaceM = G/H is effective if the map G→ Diff(G/H)
has trivial kernel. It is immediate from the definition that the kernel is precisely equal to
the normal subgroup H0 := ∩ggHg−1, which may be characterized as the biggest normal
subgroup of G contained in H. If H0 is nontrivial, then we may define G′ = G/H0 and
H ′ = H/H0, and then G/H = G′/H ′ is a homogeneous space for G′, and the action of G
on G/H factors through an action of G′. Thus when considering homogeneous spaces one
may always restrict attention to homogeneous spaces with effective actions.

Proposition 6.12 (Invariant metrics on homogeneous spaces). Let G be a Lie group and
let H be a closed Lie subgroup with Lie algebras g and h respectively.

(1) The G-invariant tensors on the homogeneous space G/H are naturally isomorphic
with the Ad(H) invariant tensors on g/h.

(2) Suppose G acts effectively on G/H. Then G/H admits a G-invariant metric if and
only if the closure of Ad(H) in Aut(g) is compact.

(3) If G/H admits a G-invariant metric, and G acts effectively on G/H, then G admits
a left-invariant metric which is also right-invariant under H, and its restriction to
H is bi-invariant.

(4) If G is compact, then G admits a bi-invariant metric.

Proof. (1): Any G-invariant tensor on G/H may be restricted to THG/H = g/h whose
stabilizer is H acting by a suitable representation of Ad(H). Conversely, any Ad(H)-
invariant tensor on g/h can be transported around G/H by the left G action by choosing
coset representatives.

(2): If G acts effectively on G/H, then for any left-invariant metric on G the group G
embeds into the isometry group G∗ and H embeds into the the isotropy group H∗, the
subgroup of G∗ fixing the basepoint H ∈ G/H. By Myers-Steenrod (see Example 6.2) G∗
and H∗ are Lie groups, with Lie algebras g∗ and h∗, and since G is effective, the natural
maps g → g∗ and h → h∗ are inclusions. Since H∗ is a closed subgroup of an orthogonal
group of some dimension, it is compact, and therefore so is its image Ad(H∗) ∈ Aut(g∗).

On any compact group, a right-invariant metric gives rise to a right-invariant volume
form which can be rescaled to have total volume 1. Let ω be such a right-invariant volume
form on Ad(H∗). For any inner product 〈·, ·〉 on g∗ define a new inner product 〈·, ·〉′ by

〈X, Y 〉′ :=
∫

Ad(H∗)

〈Ad(h)(X),Ad(h)(Y )〉ω(h)
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Note that 〈·, ·〉′ is positive definite if 〈·, ·〉 is. Then for any z ∈ H∗ we have

〈Ad(z)(X),Ad(z)(Y )〉′ =
∫

Ad(H∗)

〈Ad(hz)(X),Ad(hz)(Y )〉ω(h)

=

∫
Ad(H∗)

〈Ad(h)(Z),Ad(h)(Y )〉R∗z−1ω(hz−1) = 〈X, Y 〉′

by the right-invariance of ω. Thus Ad(H∗) (and therefore Ad(H)) acts by isometries on g∗

for some positive definite inner-product, and therefore the restriction of Ad(H) preserves
a positive definite inner-product on g. Hence Ad(H) is contained in the orthogonal group
of this inner-product, which is compact, and therefore the closure of Ad(H) is compact.

Conversely, if the closure of Ad(H) is compact, by averaging any metric under a right-
invariant volume form on Ad(H) as above we obtain an Ad(H)-invariant metric on g. Let
p be the orthogonal complement p = h⊥ of h in this Ad(H)-invariant metric. Then Ad(H)
fixes p and preserves its inner metric. Identifying p = g/h we get an Ad(H)-invariant
metric on g/h and a G-invariant metric on G/H.

(3): If G acts effectively on G/H and G/H admits a G-invariant metric, then by (2),
Ad(H) has compact closure in Aut(g), and preserves a positive-definite inner product on
g. This inner product defines a left-invariant Riemannian metric on G as in (1), and its
restriction to H is Ad(H)-invariant, and is therefore bi-invariant, since the stabilizer of a
point in H under the H ×H action coming from left- and right- multiplication is Ad(H).

(4): Since G is compact, so is Ad(G). Thus Ad(G) admits a right-invariant volume form,
and by averaging any positive-definite inner product on g under the Ad(G) action (with
respect to this volume form) we get an Ad(G)-invariant metric on g, and a bi-invariant
metric on G. �

Example 6.13 (Killing form). The Killing form is the 2-form β on g defined by

β(X, Y ) = tr(ad(X)ad(Y ))

Since the trace of a product is invariant under cyclic permutation of the factors, β is
symmetric. Furthermore, for any Z,

β(ad(Z)(X), Y ) = tr(ad([Z,X])ad(Y )) = tr([ad(Z), ad(X)]ad(Y ))

= tr(ad(Z)ad(X)ad(Y )− ad(X)ad(Z)ad(Y ))

= −tr(ad(X)ad(Z)ad(Y )− ad(X)ad(Y )ad(Z))

= −tr(ad(X)[ad(Z), ad(Y )]) = −tr(ad(X), ad([Z, Y ]))

= −β(X, ad(Z)(Y ))

Hence by Example 6.10 the form β is Ad(G)-invariant, and therefore determines a bi-
invariant symmetric 2-form on G (which by abuse of notation we also denote β). A Lie
algebra g is semisimple if β is nondegenerate. A Lie algebra g is said to be reductive if
it admits some nondegenerate Ad(G)-invariant symmetric 2-form; hence every semisimple
Lie algebra is reductive by definition. Not every reductive Lie algebra is semisimple: for
example, every abelian Lie algebra is reductive.

Let h be the maximal subspace on which β(h, ·) = 0. Then h is an ideal, since
β(ad(Z)(X), Y ) = −β(X, ad(Z)(Y )).



NOTES ON RIEMANNIAN GEOMETRY 41

6.3. Formulae for left- and bi-invariant metrics.

Proposition 6.14 (Left-invariant metric). Let 〈·, ·〉 be a left-invariant metric on G, and
let X, Y, Z,W be left-invariant vector fields corresponding to vectors in g. Let ∇ be the
Levi-Civita connection on G associated to the metric.

(1) ∇XY = 1
2

([X, Y ]− ad∗(X)(Y )− ad∗(Y )(X)) where ad∗(W ) denotes the adjoint of
the operator ad(W ) with respect to the inner product, for any W ∈ g;

(2) 〈R(X, Y )Z,W 〉 = 〈∇XZ,∇YW 〉 − 〈∇YZ,∇XW 〉 − 〈∇[X,Y ]Z,W 〉.

Proof. We know that the Levi-Civita connection satisfies

〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉 − 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉)

proving (1). To prove (2) first note that left-invariance implies X〈∇YZ,W 〉 = 0 for any
X, Y, Z,W and therefore 〈∇X∇YZ,W 〉 = −〈∇YZ,∇XW 〉. The formula follows immedi-
ately from this. �

Corollary 6.15 (Bi-invariant metric). Let 〈·, ·〉 be a bi-invariant metric on G, and let
X, Y, Z,W be left-invariant vector fields corresponding to vectors in g. Let ∇ be the Levi-
Civita connection on G associated to the metric.

(1) ∇XY = 1
2
[X, Y ];

(2) 〈R(X, Y )Z,W 〉 = 1
4

(〈[X,W ], [Y, Z]〉 − 〈[X,Z], [Y,W ]〉);
(3) 〈R(X, Y )Y,X〉 = 1

4
‖[X, Y ]‖2;

(4) 1-parameter subgroups are geodesics; hence exponentiation agrees with the exponen-
tial map (in the metric) on g.

Proof. By bullet (1) from Proposition 6.12 we see ad∗(X) = −ad(X) for any X and for any
bi-invariant metric. Thus (1) follows from the bullet (1) from Proposition 6.14. Similarly,
(2) follows from bullet (2) from Proposition 6.14, and (3) follows from (2).

If γ(t) = etX is a 1-parameter subgroup, then γ′ = X and ∇γ′γ
′ = ∇XX = [X,X] = 0.

This proves (4). �

Bullet (3) says that every bi-invariant metric on any Lie group is non-negatively curved,
and is flat only on abelian subgroups and their translates. In fact, for any nonzero X ∈ g
we have Ric(X) > 0 unless ad(X) = 0; that is, unless X is in the center of g. For any Lie
algebra g, we let z denote the center of g; i.e.

z = {X ∈ g such that [X, Y ] = 0 for all Y ∈ g}
Note that z is an ideal, and therefore exponentiates to a normal subgroup Z of G. On the
other hand, if G admits a bi-invariant metric, and I is an ideal in g, then I⊥ is also an
ideal, since for any Y ∈ I and Z ∈ I⊥,

0 = 〈[X, Y ], Z〉 = 〈Y, [X,Z]〉
so [X,Z] ∈ I⊥ for all X ∈ g. Thus we have a natural splitting as Lie algebras g = z ⊕ h.
Note that since the metric is bi-invariant, exponentiation agrees with the exponential map
and is surjective.

Now suppose G is simply-connected. The splitting g = z⊕h exponentiates to G = Z×H
and we observe that G is isometric to the product of Z with H. Since z is abelian, Z is
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Euclidean. Since h is simple and admits a bi-invariant metric, the Ricci curvature of H is
bounded below by a uniform positive constant, so by Myers–Bonnet (Theorem 5.24), H is
compact.

6.4. Riemannian submersions.

Definition 6.16 (Riemannian submersion). Let π : M → N be a submersion; i.e. a
smooth map such that dπ has rank equal to the dimension of N at each point. Let
V = ker(dπ). Suppose M and N are Riemannian manifolds, and H = V ⊥. Then π is a
Riemannian submersion if dπ|H is an isometry.

Note that TM = V ⊕ H as vector bundles. The bundle V is known as the vertical
bundle, and H is the horizontal bundle. Note that V is integrable, by Frobenius’ theorem,
but H will typically not be. In fact, the failure of H to be integrable at a point p measures
the “difference” between the metric on N near π(p) and the metric on M in the direction
of H near p. A precise statement of this is O’Neill’s Theorem, to be proved below.

Let π : M → N be a Riemannian submersion. For any vector field X on N there is a
unique vector field X̄ on M contained in H such that dπ(X̄) = X. If γ : [0, 1] → N is a
smooth curve, and q ∈M is a point with π(q) = γ(0) then there is a unique horizontal lift
γ̄ : [0, 1]→M with π ◦ γ̄ = γ and γ̄′ horizontal. Informally, we can think of H as defining
a connection on the “bundle” over N whose fibers are the point preimages of π.

Given a vector field Y onM we denote by Y V and Y H the vertical part and the horizontal
part of Y ; i.e. the orthogonal projection of Y to V and H respectively.

Lemma 6.17. Let X and Y be vector fields on N with lifts X̄ and Ȳ .
(1) [X̄, Ȳ ]H = [X, Y ]; in fact, for any two vector fields X̃, Ỹ on M with dπ(X̃) = X

and dπ(Ỹ ) = Y , we have dπ([X̃, Ỹ ]) = [X, Y ].
(2) [X̄, Ȳ ]V is tensorial in X and Y (i.e. its value at a point q only depends on the

values of X and Y at π(q)).

Proof. (1) is proved by computing how the two vector fields operate on smooth functions
on N . Let f be a smooth function on N , so that X̃(f ◦ π) = (X(f)) ◦ π and similarly for
Y . Then

dπ([X̃, Ỹ ])(f) = (X̃Ỹ − Ỹ X̃)(f ◦ π) = ((XY − Y X)f) ◦ π = ([X, Y ]f) ◦ π
(2) is proved by calculation. Let T be a vertical vector field; i.e. a section of V . Then if

we denote the Levi-Civita connection on M by ∇̄, we compute

〈[X̄, Ȳ ], T 〉 = 〈∇̄X̄ Ȳ − ∇̄Ȳ X̄, T 〉
= X̄〈Ȳ , T 〉 − 〈Ȳ , ∇̄X̄T 〉 − Ȳ 〈X̄, T 〉+ 〈X̄, ∇̄Ȳ T 〉
= 〈X̄, ∇̄Ȳ T 〉 − 〈Ȳ , ∇̄X̄T 〉

which is tensorial in X and Y . �

Compare the tensoriality of [X̄, Ȳ ]V to the tensoriality of the second fundamental form
of a submanifold.

We now prove O’Neill’s Theorem, which precisely relates the curvature of N to the
curvature of M and the failure of integrability of H.
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Theorem 6.18 (O’Neill). Let π : M → N be a Riemannian submersion. For any vector
fields X and Y on N , there is a formula

K(X, Y ) = K(X̄, Ȳ ) +
3

4
‖[X̄, Ȳ ]V ‖2

where the left hand side is evaluated at a point p ∈ N , and the right hand side is evaluated
at any point q ∈M with π(q) = p.

Proof. By bullet (1) of Lemma 6.17, for any vector fieldsX, Y, Z onN we have 〈[X̄, Ȳ ], Z̄〉 =
〈[X, Y ], Z〉. Similarly, by the definition of a Riemannian submersion we have X̄〈Ȳ , Z̄〉 =
X〈Y, Z〉 for any X, Y, Z ∈ X(N). As in the proof of Theorem 3.13, 〈∇̄X̄ Ȳ , Z̄〉 can be
expressed as a linear combination of expressions of the form X̄〈Ȳ , Z̄〉 and 〈[X̄, Ȳ ], Z̄〉 and
therefore 〈∇̄X̄ Ȳ , Z̄〉 = 〈∇XY, Z〉 and consequently X̄〈∇̄Ȳ Z̄, W̄ 〉 = X〈∇YZ,W 〉.

If T is a vertical vector field, bullet (1) of Lemma 6.17 gives 〈[X̄, T ], Ȳ 〉 = 0. As in
Theorem 3.13 we compute

〈∇̄X̄ Ȳ , T 〉 =
1

2
{X̄〈Ȳ , T 〉+ Ȳ 〈X̄, T 〉 − T 〈X̄, Ȳ 〉+ 〈[X̄, Ȳ ], T 〉 − 〈[X̄, T ]Ȳ 〉 − 〈[Ȳ , T ], X̄〉}

=
1

2
〈[X̄, Ȳ ], T 〉

and therefore we obtain ∇̄X̄ Ȳ = ∇XY + 1
2
[X̄, Ȳ ]V . Similarly,

〈∇̄T X̄, Ȳ 〉 = 〈∇̄X̄T, Ȳ 〉 = −〈∇̄X̄ Ȳ , T 〉 = −1

2
〈[X̄, Ȳ ]V , T 〉

Hence we compute

〈∇̄X̄∇̄Ȳ Z̄, W̄ 〉 = 〈∇X∇YZ,W 〉 −
1

4
〈[Ȳ , Z̄]V , [X̄, W̄ ]V 〉

and likewise

〈∇̄[X̄,Ȳ ]Z̄, W̄ 〉 = 〈∇[X,Y ]Z,W 〉 −
1

2
〈[Z̄, W̄ ]V , [X̄, Ȳ ]V 〉

Setting Z̄ = Ȳ and X̄ = W̄ , the theorem follows. �

Now let G be a Lie group, and H a closed subgroup. There is a submersion G→ G/H.
If G/H admits a G-invariant metric, then by bullet (3) from Proposition 6.12, G admits a
left-invariant metric which is bi-invariant underH. The associated inner product on g splits
as g = h ⊕ h⊥ in an Ad(H) invariant way, and we see that G → G/H is a Riemannian
submersion for these metrics. If we denote h⊥ = p then p is tangent to the horizontal
distribution, and h is tangent to the vertical distribution on G.

So let X, Y be orthonormal vectors in p with respect to the Ad(H) invariant metric.
From bullet (2) from Proposition 6.14, and from Theorem 6.18 we can compute

K(dπ(X), dπ(Y )) = ‖ad∗(X)(Y ) + ad∗(Y )(X)‖2 − 〈ad∗(X)(X), ad∗(Y )(Y )〉

− 3

4
‖[X, Y ]p‖2 − 1

2
〈[[X, Y ], Y ], X〉 − 1

2
〈[[Y,X], X], Y 〉
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6.5. Locally symmetric spaces.

Definition 6.19 (Locally symmetric). A Riemannian manifold M is locally symmetric if
for each p ∈ M there is some positive number r so that the map expp(v) → expp(−v) for
|v| ≤ r is an isometry of the ball Br(p) to itself.

7. Characteristic classes

7.1. Moving frames. Let E be a smooth (real or complex) bundle overM with structure
group G, and let∇ be a connection onM for which parallel transport respects the structure
group.

We can choose local coordinates on E of the form E|Ui
= Ui × Rn or E|Ui

= Ui × Cn so
that on the overlaps Ui ∩ Uj the transition maps between fibers take values in G acting in
the given way on Rn or Cn.

In a local chart, let s1, · · · , sn be a basis of sections of E. Then the covariant derivative
can be expressed in the form

∇
∑
i

fisi =
∑
i

dfi ⊗ si +
∑
i,j

fiωij ⊗ sj

where ω is a matrix of 1-forms. If we identify G with its image in Aut(Rn) or Aut(Cn), then
we can think of g as a Lie algebra of matrices, and then we can think of ω as a 1-form with
coefficients in g. Informally, we can write ∇ = d+ ω. Covariant differentiation extends to
Ω∗ ⊗ Γ(E) by the Leibniz formula

∇(α⊗ s) = dα⊗ s+ (−1)deg(α)α ∧ (ds+ ω ⊗ s)
In the same local coordinates, we can express the curvature as follows. Apply one further

covariant derivative to get the formula

∇(∇s) = d(ds+ ω ⊗ s) + ω ∧ ds− ω ∧ ω ⊗ s
= dω ⊗ s− ω ∧ ω ⊗ s

In other words, in local coordinates we can express the curvature of the connection as a
2-form Ω taking values in g by the formula Ω := ∇2 = dω − ω ∧ ω. We interpret this
formula as follows: if u, v are vectors in TpM then

R(u, v)si =
∑
j

Ωij(u, v)sj

If G is a subgroup of the orthogonal group O or the unitary group U then we can choose
a basis of orthonormal sections si, we can simply write

〈R(u, v)si, sj〉 = Ωij(u, v)

7.2. The Gauss-Bonnet Theorem. We use this formalism to give a short proof of the
Gauss-Bonnet Theorem, valid for arbitrary surfaces (i.e. those not necessarily embedded
in E3).

Let S be an oriented surface with a Riemannian metric. We can think of the tangent
bundle TS as a C bundle with structure group U(1), by means of the exceptional isomor-
phism U(1) = SO(2). If we let s be a unit length section of TS (locally) then in terms of
s we can write the Levi-Civita connection as d+ω where ω is a 1-form with coefficients in
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the Lie algebra of U(1); i.e. in iR. Similarly we have Ω = dω − ω ∧ ω = dω (because the
Lie algebra of U(1) is abelian). The sectional curvature can be expressed in the form

K =
〈R(X, Y )s, is〉
‖X ∧ Y ‖

and therefore we have simply Kdarea = idω.
Stokes theorem gives ∫

S

Kdarea =

∫
∂S

iω + lim
ε→0

∫
Ci(ε)

iω

where each Ci(ε) is a small circle of radius ε around one of the singularities of s. The
Poincaré-Hopf formula says that if we make s tangent along the boundary, the number of
singularities (counted with sign) is equal to χ(S). Each singularity contributes 2π to the
integral (as can be seen by integrating ω over a small loop around a singularity). On the
other hand,

∫
∂S
iω is the negative of the amount of twisting of TS under parallel transport

around ∂S, relative to s|∂S. If we choose s tangent to ∂S this is just (the negative of) the
integral of geodesic curvature on the boundary, and we obtain:

Theorem 7.1 (Gauss-Bonnet). Let S be a compact Riemannian surface (possibly with
boundary). Then ∫

S

Kdarea +

∫
∂S

kgdlength = 2πχ(S)

7.3. Chern classes. Once we have seen this formalism, it is natural to consider the (real)
2-form i

2π
Ω associated to any U(1)-bundle E. For a general G-bundle the matrix-valued

2-form Ω depends on a choice of local section, but transforming the section s by s → gs
where g is a section of G, transforms Ω by Ω → gΩg−1. In the case of U(1) this implies
that Ω is a well-defined 2-form. Since in every local coordinate it is exact, it is actually
a closed 2-form, and therefore represents some class [ i

2π
Ω] ∈ H2

dR(M ;R). We denote this
class by c1.

To understand the meaning of c1, we must pair it with a 2-dimensional homology class.
This means that we take a closed oriented surface S and map it to M by f : S → M ,
and then consider c1(f∗[S]). Equivalently, we can pull E back to f ∗E over S and compute
f ∗c1([S]). This means just integrating i

2π
Ω over S, where now Ω is the curvature 2-form of

the (pulled back) connection on f ∗E.
Exactly as we argued in § 7.2, if we choose a generic section s of f ∗E then each singularity

of s contributes 1 or −1 to the integral, and we see that f ∗c1([S]) is the obstruction to
finding a nonzero section of f ∗E. In particular, it is an integer, and does not depend on the
choice of connection. Thus, we have shown that i

2π
Ω determines a class c1(E) ∈ H2(M ;Z)

called the first Chern class, which depends only on the smooth bundle E (as a U(1) bundle),
and not on the choice of connection.

8. Hodge theory

8.1. The Hodge star. Let V be a vector space with a positive definite symmetric inner
product. As we have observed, the inner product on V determines an inner product on
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all natural vector spaces obtained from V . For instance, on Λp(V ) it determines an inner
product, defined on primitive vectors by

〈v1 ∧ · · · ∧ vp, w1 ∧ · · · ∧ wp〉 := det〈vi, wj〉

Thus, if e1, · · · , en is an orthonormal basis for V , the vectors of the form ei1 ∧ · · ·∧ eip with
i1 < · · · < ip are an orthonormal basis for Λp(V ).

Definition 8.1 (Orientation). Suppose V is n-dimensional, so that Λn(V ) is isomorphic
to R (though not canonically). An orientation on V is a choice of connected component of
Λn(V )−0 whose elements are said to be positively oriented (with respect to the orientation).

Definition 8.2 (Hodge star). If V is an oriented inner product space, there is a linear map
∗ : Λp(V )→ Λn−p(V ) for each p, defined with respect to any orthonormal basis e1, · · · , en
by the formula

∗(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ en
where the sign is + if e1 ∧ · · · ∧ en is positively oriented, and − otherwise.

Applying Hodge star twice defines a map ∗2 : Λp(V ) → Λp(V ) which (by looking at
the effect on each basis vector) is just multiplication by (−1)p(n−p). Moreover, the inner
product may be expressed simply in terms of Hodge star by

〈v, w〉 = ∗(w ∧ ∗v) = ∗(v ∧ ∗w)

for any v, w ∈ Λp(V ).

8.2. Hodge star on differential forms. Suppose that M is a smooth manifold, and
Ωp(M) denotes the space of smooth p-forms. A Riemannian metric on M determines a
positive definite inner product on TxM and thereby on T ∗xM and Λp(T ∗xM) for each x ∈M .
An orientation on M determines an orientation on Λn(T ∗xM) for each x. Then applying
Hodge star to p-forms fiber by fiber defines a linear operator ∗ : Ωp(M)→ Ωn−p(M). With
this notation, the volume form of M is just ∗1; i.e. Hodge star applied to the function 1,
thought of as a section of Ω0(M).

The pointwise pairing on Λp(T ∗xM) can be integrated against the volume form ∗1. Since
∗2 = 1 on functions, this gives the following symmetric positive definite bilinear pairing on
Ωp(M):

〈α, β〉 :=

∫
M

α ∧ ∗β

On a Riemannian manifold, it is sometimes convenient to introduce notation for the
canonical isomorphisms between vector fields and 1-forms coming from the metric. We
denote the map Ω1(M) → X(M) by ] and the inverse by [. Thus (for example) the
gradient grad(f) of a smooth function is (df)].

Definition 8.3. If X is a vector field on an oriented Riemannian manifold M , the diver-
gence of X, denoted div(X), is the function defined by div(X) := ∗d ∗X[.

Note if ω := ∗1 is the oriented volume form, then LXω = dιX(ω) = div(X)ω. That is to
say, a vector field is divergence free if and only if the flow it generates is volume-preserving.
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Definition 8.4. The Laplacian on functions is the operator ∆ := −div ◦ grad. In terms
of Hodge star, this is the operator ∆ = − ∗ d ∗ d.

More generally, if we define δ : Ωp(M) → Ωp−1(M) by δ = (−1)n(p+1)+1 ∗ d∗ then the
Laplacian on p-forms is the operator ∆ := δd+ dδ.

Lemma 8.5. Let M be a closed and oriented Riemannian manifold. The operator δ is the
adjoint of d on Ωp(M). That is, for any α ∈ Ωp−1(M) and β ∈ Ωp(M) we have

〈dα, β〉 = 〈α, δβ〉
Consequently ∆ is self-adjoint; i.e. 〈∆α, β〉 = 〈α,∆β〉 for any α, β ∈ Ωp(M).

Proof. We compute

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗ β = dα ∧ ∗β − α ∧ ∗δβ
because (p− 1)(n− p− 1) + (p− 1) is odd. By Stokes’ theorem,

∫
M
d(α ∧ ∗β) = 0, so δ is

the adjoint of d. That ∆ is self-adjoint is immediate. �

Lemma 8.6. ∆α = 0 if and only if dα = 0 and δα = 0.

Proof. One direction is obvious. To see the other direction,

〈∆α, α〉 = 〈(dδ + δd)α, α〉 = 〈δα, δα〉+ 〈dα, dα〉 = ‖dα‖2 + ‖δα‖2

So ∆α = 0 implies dα = 0 and δα = 0. �

A form α is closed if dα = 0. We say it is co-closed if δα = 0 and harmonic if ∆α = 0.
Thus, Lemma 8.6 says that α is harmonic if and only if it is closed and co-closed.

Denote the space of harmonic p-forms by Hp.

Lemma 8.7. A p-form is closed if and only if it is orthogonal to δΩp+1. Similarly, a
p-form is co-closed if and only if it is orthogonal to dΩp−1. Hence a p-form is harmonic if
and only if it is orthogonal to both δΩp+1 and dΩp−1, which are themselves orthogonal.

Proof. Since 〈dα, β〉 = 〈α, δβ〉, we have dα = 0 if and only if α is orthogonal to δβ for all
β. The second statement is proved similarly. Finally, 〈dα, δβ〉 = 〈d2α, β〉 = 0. �

Suppose C0
d−→ C1

d−→ · · · d−→ Cn is a chain complex of finite dimensional vector spaces.
Pick a positive definite inner product on each vector space, and define δ to be the adjoint
of d. Then as above, an element of Cp is in ker(d) if and only if it is orthogonal to δCp+1,
and similarly an element of Cp is in ker(δ) if and only if it is orthogonal to dCp−1. Since
Cp is finite dimensional, this implies that ker(d) = (δCp+1)⊥. Since dCp−1 ⊂ ker(d) we can
identify the homology group Hp with the orthogonal complement of dCp−1 in ker(d); i.e.
Hp = (dCp−1)⊥ ∩ ker(d) = ker(d) ∩ ker(δ). Thus we have an orthogonal decomposition

Cp = Hp ⊕ dCp−1 ⊕ δCp+1

where Hp = ker(d) ∩ ker(δ).
For infinite dimensional vector spaces, we cannot take orthogonal complements. How-

ever, the Hodge theorem says that the terms in the complex of smooth forms on a closed,
oriented manifold admit such a decomposition, and therefore we may identify the har-
monic p-forms Hp with the de Rham cohomology groups Hp

dR. Said another way, each
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(real) cohomology class on a closed, oriented Riemannian manifold admits a unique har-
monic representative.

In fact, once one knows that a cohomology class admits a harmonic representative α,
that representative is easily seen to be unique. For, any two cohomologous forms differ by
an exact form, so if α′ = α + dβ is harmonic, then dδdβ = 0 so δdβ is closed. But the
closed forms are orthogonal to the co-exact forms, so since δdβ is co-exact, it is orthogonal
to itself; i.e. δdβ = 0. Again, since the co-closed forms are orthogonal to the exact forms,
since dβ is exact, it is orthogonal to itself, and therefore dβ = 0, proving uniqueness.

Another immediate corollary of the definition is that a harmonic p-form α (if it exists)
is the unique minimizer of ‖α‖2 in its cohomology class. For, since harmonic forms are
orthogonal to exact forms, ‖α + dβ‖2 = ‖α‖2 + ‖dβ‖2 ≥ ‖α‖2 with equality iff dβ = 0.

8.3. The Hodge Theorem.

Theorem 8.8 (Hodge). Let M be a closed, oriented Riemannian manifold. Then there
are orthogonal decompositions

Ωp(M) = Hp ⊕∆Ωp = Hp ⊕ dδΩp ⊕ δdΩp = Hp ⊕ dΩp−1 ⊕ δΩp+1

Furthermore, Hp is finite dimensional, and is isomorphic to the de Rham cohomology group
Hp
dR.

We do not give a complete proof of this theorem, referring the reader to Warner [11],
§ 6.8. But it is possible to explain some of the main ideas, and how the proof fits into a
bigger picture.

The main analytic principle underlying the proof is the phenomenon of elliptic regularity.
To state this principle we must first define an elliptic linear differential operator.

Let Ω be an open domain in Rn. For a vector α := (α1, · · · , αn) of non-negative integers,
we introduce the following notation: |α| := α1 + · · · + αn, xα := xα1

1 · · ·xαn
n , and ∂α :=

∂α1
1 · · · ∂αn

n .

Definition 8.9. A linear differential operator on Rn of order k is an operator of the form

Lf :=
∑
|α|≤k

aα(x)∂αf

If k is even, the operator L is (strongly) elliptic if there is an estimate of the form

(−1)k/2
∑
|α|=k

aα(x)ξα ≥ C|ξ|k

for some positive constant C, for all x ∈ Ω and all ξ ∈ T ∗xRn = Rn.

The function σx on T ∗xRn defined by σx(ξ) :=
∑
|a|=k aα(x)ξα is called the symbol of L

at x. For a linear differential operator on sections of some smooth bundle on a manifold,
the symbol is a tensor field. For L a linear operator on functions of order 2, L is elliptic if
and only if the symbol is a negative definite symmetric inner product on T ∗M .

Algebraically, the symbol can be expressed in the following terms. For smooth bundles
E and F over M , let Diffk(E,F ) denote the space of differential operators of order ≤ k
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from Γ(E) to Γ(F ). There are inclusions Diffl(E,F ) → Diffk(E,F ) for any l ≤ k. Then
the symbol map fits into an exact sequence

0→ Diffk−1(E,F )→ Diffk(E,F )
σ−→ Hom(Sk(T ∗M)⊗ E,F )→ 0

Example 8.10. We compute the Laplacian ∆ = −div◦grad on functions on a closed, oriented
Riemannian manifold. In local coordinates xi we express the metric as

∑
gijdx

i⊗ dxj and
define gij to be the coefficients of the inverse matrix; i.e.

∑
k g

ikgkj = δij where δij is the
Kronecker delta, which equals 1 if i = j and 0 otherwise. In these coordinates, the volume
form ω is

√
det(gij)dx

1 ∧ · · · ∧ dxn, and the ] and [ isomorphisms are ] : dxi →
∑

j g
ij∂j

and [ : ∂i →
∑

j gijdx
j.

In coordinates, gradf = (df)] = (
∑

i ∂
ifdxi)] =

∑
gij∂if∂j. The formula for the diver-

gence can be derived by using the fact that it is the adjoint of the gradient; hence for any
vector field X we have

〈X, gradf〉 =

∫
M

〈X i∂i, g
kj∂kf∂j〉

√
det(g)dx1 ∧ · · · ∧ dxn

=

∫
M

X i(∂kf)gkjgij
√

det(g)dx1 ∧ · · · dxn

=

∫
M

X i(∂if)
√

det(g)dx1 ∧ · · · dxn

= −
∫
M

f · ∂i(X i
√

det(g))dx1 ∧ · · · dxn

= 〈f,− 1√
det(g)

∂i(X
i
√

det(g))〉

where we sum over repeated indices (repressed in the notation to reduce clutter). Note
that the penultimate step was integration by parts; these local formulae must therefore be
interpreted chart by chart where the coordinates are defined. In particular, we obtain the
formula

divX = −
∑
i

1√
det(g)

∂i(X
i
√

det(g))

and therefore

∆f = −
∑
i,j

1√
det(g)

∂j(g
ij
√

det(g)∂if) = −gij∂j∂if + lower order terms

We therefore see that the symbol σ(∆) is a quadratic form on T ∗M which is the negative
of the inner product coming from the metric. In particular, this quadratic form is negative
definite, so ∆ is elliptic.

Here in words is the crucial analytic property of ellipticity. Let L be an elliptic operator
of order k (on functions, for simplicity). Suppose we want to solve an equation of the
form Lu = f for some fixed (smooth) function f . Ellipticity lets us bound the kth order
derivatives of a solution u in terms of lower order derivatives of u and in terms of f .
Inductively, all the derivatives of a solution may be estimated from the first few derivatives
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of u. This process, known as elliptic bootstrapping, shows that a weak (L2) solution u
actually has enough regularity that it is smooth.

In our context, elliptic regularity (for the Laplacian acting on p-forms) takes the following
form.

Proposition 8.11. (1) Let ` be a weak (i.e. L2) solution to ∆ω = α; that is, a bounded
linear functional ` on Ωp (in the L2 norm) so that `(∆∗ϕ) = 〈α, ϕ〉 for all ϕ ∈ Ωp.
Then there is ω ∈ Ωp such that `(β) = 〈ω, β〉. In particular, ∆ω = α.

(2) Let αi be a sequence in Ωp such that ‖αi‖ and ‖∆αi‖ are uniformly bounded. Then
some subsequence converges in L2.

Note that ∆∗ = ∆, so that a weak solution ` to ∆ω = α is one satisfying `(∆ϕ) = 〈α, ϕ〉
for all ϕ ∈ Ωp. Assuming this proposition, we can prove the Hodge theorem as follows.

Proof. If we can show Hp is finite dimensional, the latter two isomorphisms follow formally
from the first, by what we have already shown. Thus we just need to show that Hp is finite
dimensional, and Ωp = Hp ⊕∆Ωp.

Suppose Hp is infinite dimensional, and let ϕi be an infinite orthonormal sequence.
Bullet (2) from Proposition 8.11 says that ϕi contains a subsequence which converges in
L2, which is a contradiction. Thus Hp is finite dimensional, with an orthonormal basis
ω1, · · · , ωm.

If α ∈ Ωp is arbitrary, we can write

α = β +
∑
〈α, ωi〉ωi

where β ∈ (Hp)⊥. Now, ∆Ωp is contained in (Hp)⊥, since ∆ is self-adjoint. So it suffices
to show that for every α ∈ (Hp)⊥ the equation ∆ω = α has a weak solution, since then by
bullet (1) from Proposition 8.11 it has a smooth solution.

So suppose α ∈ (Hp)⊥ and define ` on ∆Ωp by

`(∆ϕ) = 〈α, ϕ〉

Note that ` is well-defined, since if ∆ϕ1 = ∆ϕ2 then ϕ1 − ϕ2 ∈ Hp which is orthogonal to
α. We must show that ` is bounded.

Let ϕ ∈ Ωp and write ϕ = ψ +
∑
〈ϕ, ωi〉ωi. Then

|`(∆ϕ)| = |`(∆ψ)| = |〈α, ψ〉| ≤ ‖α‖‖ψ‖

Now, we claim that there is some uniform constant C so that ‖ψ‖ ≤ C‖∆ψ‖ for all
ψ ∈ (Hp)⊥. For otherwise we can take some sequence ψi ∈ (Hp)⊥ with ‖ψi‖ = 1 and
‖∆ψi‖ → 0, and by bullet (2) of Proposition 8.11 some subsequence converges in L2. But
if we define the L2 limit to be the weak operator `′(φ) = limi→∞〈ψi, φ〉 then `′(∆φ) =
limi→∞〈ψi,∆φ〉 = limi→∞〈∆ψi, φ〉 = 0 so `′ is weakly harmonic (i.e. a weak solution to
∆ω = 0), so there is some ψ∞ ∈ Hp with 〈ψi, β〉 → 〈ψ∞, β〉. But then ‖ψ∞‖ = 1 and
ψ∞ ∈ (Hp)⊥ which is a contradiction, thus proving the claim.

So in conclusion,

|`(∆ϕ)| = ‖α‖‖ψ‖ ≤ C‖α‖‖∆ψ‖ = C‖α‖‖∆ϕ‖
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so ` is a bounded linear operator on ∆Ωp, and therefore by the Hahn-Banach theorem
extends to a bounded linear operator on Ωp. Thus ` is a weak solution to ∆ω = α and
therefore a strong solution ω exists. So (Hp)⊥ = ∆Ωp as claimed. �

We now explain the main steps in the proof of Proposition 8.11, for the more general case
of an elliptic operator L of order k. For more details, see e.g. Warner [11], pp. 227–251,
Rosenberg [10], pp. 14–39 or Gilkey [4], Ch. 1.

If we work in local coordinates, the analysis on M reduces to understanding analogous
operators on the space C∞c (Ω) of compactly supported smooth functions in an open domain
Ω ⊂ Rn, and its completions in various norms. For each s define the sth Sobolev norm on
C∞c (Ω) to be

‖f‖s :=
(∑
|α|≤s

‖∂αf‖2
)1/2

In other words, a sequence of functions fi converges in ‖ · ‖s if the functions and their
derivatives of order ≤ s converge in L2. The completion in the norm ‖ · ‖s is denoted
Hs(Ω), and is called the sth Sobolev space.

The basic trick is to use Fourier transform to exchange differentiation for multiplication.
If we work in local coordinates, the Fourier transform F on Rn is the operator

F(f)(ξ) :=
1

(2π)n

∫
Rn

e−ix·ξf(x)dx

It is well-defined on the space of compactly supported smooth functions C∞c (Rn), and is
an isometry in the L2 norm, and therefore extends as an isometry to L2(Rn).

Fourier transform satisfies the following properties:
(1) it interchanges multiplication and convolution:

F(f ∗ g) = F(f)F(g), F(fg) = F(f) ∗ F(g)

(2) its inverse is given by the transform f(x) =
∫
Rn e

ix·ξF(f)(ξ)dξ;
(3) it interchanges differentiation and coordinate multiplication:

F(Dαf) = ξαF(f), F(xαf) = DαF(f)

here we use the notation Dα for (−i)|α|∂α.
From the third property above one obtains an estimate of the Sobolev norm in terms of

Fourier transform of the form

‖f‖s ∼
(∫

Rn

|F(f)|2(1 + |ξ|2)sdξ
)1/2

Then the definition of an elliptic operator gives rise to a fundamental inequality of the
following form:

Theorem 8.12 (Gårding’s Inequality). Let L be elliptic of order k. Then for any s there
is a constant C so that

‖f‖s+k ≤ C(‖Lf‖s + ‖f‖s)
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Proof. We have

‖f‖2
s+k ∼

∫
Rn

|F(f)(ξ)|2(1 + |ξ|2)s+kdξ

When |ξ| is small, (1 + |ξ|2)s+k is comparable to (1 + |ξ|2)s. When |ξ| is big, (1 +
|ξ|2)s+k is comparable to |σ(L)(ξ)|2(1 + |ξ|2)s, because L is elliptic. Since Fourier trans-
form interchanges differentiation and coordinate multiplication, ‖Lf‖2

s can be approxi-
mated by an integral over Rn, where the integrand is itself approximated (for big |ξ|) by
|F(f)(ξ)|2|σ(L)(ξ)|2(1 + |ξ|2)s. The estimate follows. �

This is largely where the role of ellipticity figures into the story. The remainder of the
argument depends on fundamental properties of Sobolev norms.

Theorem 8.13 (Properties of Sobolev norms). Let Ω be a domain in Rn, and let Hs(Ω)
denote the completion of C∞c (Ω) in the sth Sobolev norm.

(1) (Rellich Compactness): if t > s the inclusion Ht(Ω)→ Hs(Ω) is compact.
(2) (Sobolev Embedding): if f ∈ Hk(Ω) then f ∈ Cs(Ω) for all s < k − n

2
.

Proof. To prove Rellich compactness, one first argues that for any sequence fi with ‖fi‖t
bounded, there is a subsequence for which F(fi) converges uniformly on compact subsets.
Once this is done, after taking Fourier transforms, we only need to control

‖fi − fj‖2
s ∼

∫
R

|F(fi)− F(fj)|2(1 + |ξ|2)sdξ

for regions of the form R = {ξ such that |ξ| > r}. But since ‖fi − fj‖t is bounded, it
follows that we have a uniform estimate of the form∫

R

|F(fi)− F(fj)|2(1 + |ξ|2)tdξ < C

Thus ∫
R

|F(fi)− F(fj)|2(1 + |ξ|2)sdξ ≤
∫
R

(1 + r2)s−t
∫
R

|F(fi)− F(fj)|2(1 + |ξ|2)tdξ

≤ C · (1 + r2)s−t

which is arbitrarily small when r is large.
The Sobolev embedding theorem is proved by first using Cauchy-Schwarz (applied to

the inverse Fourier transform) to estimate the value of a function f at a point in terms of
‖f‖k:

|f(x)| =
∣∣∣∣∫

Rn

eix·ξF(f)(ξ)dξ

∣∣∣∣
=

∣∣∣∣∫
Rn

eix·ξ(1 + |ξ|2)−k/2(1 + |ξ|2)k/2F(f)(ξ)dξ

∣∣∣∣
≤
(∫

Rn

(1 + |ξ|2)−kdξ

)1/2

·
(∫

Rn

|F(f)(ξ)|2(1 + |ξ|2)kdξ

)1/2

The points is that if k > n/2, the first term is finite, so f(x) ≤ C · ‖f‖k for some universal
(dimension-dependent) constant C.
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Since any f ∈ Hk is the limit in the Sobolev k norm of a sequence of smooth functions
fi, this estimate implies that fi → f uniformly, so we deduce that f is continuous. Higher
derivatives are controlled in a similar manner. �

Now, Theorem 8.12 and Rellich Compactness (i.e. Theorem 8.13 bullet (1)) together
imply that if αi is a sequence in Ωp with ‖αi‖ and ‖∆αi‖ bounded, then ‖αi‖2 is bounded,
and therefore the image of the αi in L2 contains a convergent subsequence, thus proving
Proposition 8.11, bullet (2).

Similarly, if ω is an L2 solution to ∆ω = α, then we can estimate ‖ω‖2+k ≤ C · (‖α‖k +
‖ω‖k) by Theorem 8.12, so inductively we can show ω ∈ Hs for all s. Then Sobolev Em-
bedding (i.e. Theorem 8.13 bullet (2)) proves that ω in C∞, thus proving Proposition 8.11,
bullet (1). This completes the sketch of the proof of Proposition 8.11 and the Hodge
Theorem.

8.4. Weitzenböck formulae. Once we have discovered the idea of taking the adjoint of
a differential operators like d, it is natural to study adjoints of other (naturally defined)
differential operators, and their properties.

If we think of ∇ as a differential operator ∇ : ΩpM → T ∗M ⊗ ΩpM then giving these
spaces their natural inner product, we can define an adjoint ∇∗ and form the Bochner
Laplacian ∇∗∇, which is a self-adjoint operator from Ωp to itself.

It turns out that ∆ and ∇∗∇ have the same symbol, and therefore their difference is
a priori a differential operator of order 1. But because both operators are “natural”, the
symbol of their difference should be invariant under the action of the orthogonal group of
T ∗xM for each x. Of course, the only invariant such vector is zero, so the difference turns
out to be of 0th order — i.e. it is a tensor field, and can be expressed in terms of the
curvature operator.

In the special case of 1-forms, this simplifies considerably, and one has the Bochner
formula:

Proposition 8.14 (Bochner formula). On 1-forms, there is an identity

∆ = ∇∗∇+ Ric

Here we think of Ric as a symmetric quadratic form on T ∗xM for each x by identifying
it with TxM using the metric.

Proof. We already know that the composition of ∇ with antisymmetrization agrees with
d. If we let e1, · · · , en be a local orthonormal frame for TM , and let η1, · · · , ηn denote a
dual basis for T ∗M , then

dω =
∑
i

ηi ∧∇eiω

and by the properties of the Hodge star in an orthonormal basis,

δω = −
∑
i

ι(ei)∇eiω

Thus we can compute
δdω = −

∑
i,j

ι(ej)∇ej(ηi ∧∇eiω)



54 DANNY CALEGARI

and
dδω =

∑
i,j

ηi ∧∇ei(−ι(ej)∇ejω)

If we work at a point p where the ei are normal geodesic coordinates, so that ∇ei|p = 0,
then we get

δdω|p = −
∑
i,j

ι(ej)ηi ∧∇ej∇eiω|p

and
dδω|p = −

∑
i,j

ηi ∧ ι(ej)∇ei∇ejω|p

�

9. Minimal surfaces
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