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CHAPTER 1

Smooth manifolds

1. Tangent vectors, cotangent vectors and tensors

1.1. Lemma. Let F : Mm → Nn be a smooth map. Suppose that (x1, . . . , xm) are local co-
ordinates on M and (y1, . . . , yn) local coordinates on N . Then

F∗( ∂
∂xj ) = ∂(yiF )

∂xj
∂

∂yi , 1 ≤ j ≤ m,(1.2)

F ∗(dyi) = ∂(yiF )
∂xj dxj = d(yiF ), 1 ≤ i ≤ n(1.3)

The (n×m)-matrix
(

∂(yiF )
∂xj

)
is the matrix for F∗ and the (m×n)-matrix

(
∂(yiF )

∂xj

)t

is the matrix
for F ∗. In other words,(

F∗
∂

∂x1 . . . F∗
∂

∂xm

)
=
(

∂
∂y1 . . . ∂

∂yn

)(
∂(yiF )

∂xj

)
F

∗dy1

...
F ∗dyn

 =
(

∂(yiF )
∂xj

) dx1

...
dxm


Proof. F ∗(dyi)( ∂

∂xj ) = dyi(F∗( ∂
∂xj )) = F∗

(
∂

∂xj

)
(yi) = ∂yiF

∂xj . �

2. The tangent bundle of a smooth manifold

3. Vector fields, covector fields, tensor fields, n-forms

1.4. Proposition. The differential d : C∞(M)→ T 1(M) is an R-linear map satisfying the
derivational rules

d(uv) = (du)v + u(dv), d
(

u
v

)
=

du
v
− udv

v2
=
vdu− udv

v2

for all smooth functions u, v ∈ C∞(M) (where v(p) 6= 0 for all p ∈M in the last formula).
If F : M → N is a smooth map, then the diagram

C∞(M)

d
��

C∞(N)F∗
oo

d
��

T 1(M) T 1(N)F∗
oo

commutes meaning that F ∗(du) = d(uF ) for all u ∈ C∞(N).

1.5. Example. Let s : Rn+1 → R be the smooth map s(x) = |x|2 =
∑n+1

i=1 (xi)2. Then
s−1(1) = Sn ⊂ Rn is the sphere of radius R. The differential ds =

∑
2xidxi is the linear

map Rn+1 = TpRn+1 → R given by dsp(v) =
∑

2pivi = 2〈p, v〉 with kernel ker dsp = p⊥ at any
point p 6= 0. Let p be any point of Sn and ι∗ : TpS

n → TpRn+1 = Rn+1 the linear map induced
by the inclusion, ι. For any tangent vector X ∈ TpS

n, ds(ι∗X) = X(sι) = X(1) = 0. Hence the
tangent space at p is the kernel of dsp,

TpS
n = p⊥ ⊂ Rn+1 = TpRn+1

and the tangent bundle of Sn,

TSn = {(p, v) ⊂ Sn ×Rn+1 | 〈v, p〉 = 0} ⊂ Sn ×Rn+1
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6 1. SMOOTH manifoldS

is the vector bundle whose fibre over any p ∈ Sn is p⊥. A smooth vector field on Sn is a smooth
map v : Sn → Rn+1 such that v(p) ⊥ p for all p ∈ Sn. Show that any odd sphere has a vector field
without zeros. Does S2 admit a smooth vector field with no zeros? Can you describe TRPn? Can
you describe TM if M = f−1(0) consists of the manifold solutions to the equation f(x) = 0 for
some smooth map f : Rn+1 → R?

1.6. Definition. A smooth
(
k
`

)
-tensor field on M is a smooth section of the tensor bundle

T k
` (M)→M .

Particular cases are
• T 0

0 (M) = C∞(M)
• T 0

1 (M) consists of vector fields on M
• T 1

0 (M) consists of 1-forms on M
Tensor fields admit

• T k1
`1

(M)× T k1
`1

(M) ⊗−→ T k1+k2
`1+`2

(M) (tensor product of tensor fields)

• T k+1
`+1 (M) tr−→ T k

` (M) (contraction of tensor fields)

1.7. Example. Let ω ∈ T 1
0 (M) be a 1-form and X ∈ T 0

1 (M) a vector field on M . Then

X ⊗ ω ∈ T 1
1 (M) is

(
1
1

)
-tensor field with contraction tr(X ⊗ ω) = ω(X) (5.7).

In a coordinate patch any
(
k
`

)
-tensor field A is (5.5) a C∞(M)-linear combination

(1.8) A = Aj1···j`

i1···ik
∂j1 ⊗ · · · ∂j`

⊗ dxi1 ⊗ · · ·dxik

of tensor products of the basis tensor fields and basis 1-forms. The smooth functions Aj1···j`

i1···ik
are

called the components of the tensor field A.
The tensor algebra ofM is the graded algebra T ∗(M) =

∑∞
k=0 T k(M) equipped with the tensor

product T r(M) × T s(M) ⊗−→ T r+s(M). If F : M → N is a smooth map, F ∗ : T k(N)→ T k(M)
is the linear map given by F ∗(A)(X1, . . . , Xk) = A(F∗X1, . . . , F∗Xk) for all A ∈ T k(N) and all
smooth vector fields X1, . . . , Xk on M .

1.9. Lemma. T ∗(M) is a graded algebra. F ∗ : T ∗(N)→ T ∗(M) is a homomorphism of C∞(N)-
algebras: F ∗(aω ⊗ η) = F ∗(a)F ∗(ω)⊗ F ∗(η).



CHAPTER 2

Riemannian manifolds

Riemann’s idea was that in the infinitely small, on a scale much smaller than the the smallest
particle, we do not know if Euclidean geometry is still in force. Therefore we better not assume that
this is the case and instead open up for the possibility that in the infinitely small there may be other
length functions, there may be other inner products on the tangent space! A Riemannian manifold
is a smooth manifold equipped with inner product, which may or may not be the Euclidean inner
product, on each tangent space.

1. Riemannian metric

2.1. Definition. A Riemannian metric on a smooth manifold M is a symmetric, positive

definite
(

2
0

)
-tensor g ∈ T 2

0 (M).

In a coordinate frame we may write

g = gijdx
i ⊗ dxj , gij = g(∂i, ∂j)

This means that g(U i∂i, V
j∂j) = gijU

iV j and in particular that

(2.1) 〈∂i, ∂i〉 = gii, 〈∂i, ∂j〉 = gij

Note that there are only 1
2n(n+ 1) different functions here as gij = gji by symmetry.

2.2. Remark. Since the metric tensor is symmetric, it is traditional to write it in a basis of
symmetric tensors. The symmetrization of ω ⊗ η is the tensor

ωη =
1
2
(ω ⊗ η + η ⊗ ω)

Note that ωη = ηω and that ω2 = ωω = ω ⊗ ω. Observe that

g = gijdxidxj = 2
n∑

i=1

gii(dxi)2 + 2
∑

1≤i<j≤n

gijdxidxj

2.3. Lemma. Let F : M → N be an immersion and g a Riemannian metric on N .

(1) F ∗g is a Riemannian metric on M .
(2) If g = gijdyidyj in a coordinate frame on N , then

F ∗(g)|F−1(U) = gijdyiFdyjF

Proof. It is a general fact that F ∗(g) is a smooth 2-form on M (1.9). F ∗(g) is symmetric
because g is symmetric and it is positive definite because g is positive definite and F∗ is injective

on each fibre. F ∗(gijdyidyj)
(1.9)
= gijF

∗dyiF ∗dyj (1.4)
= gijdyiFdyjF . �

For instance if F : U →M is a parameterization (an inverse chart) of an open subset of M ⊂
Rm, then the pull-back of the induced metric on M is

(2.4) F ∗(g) = F ∗(δijdxidxj) = δijdF
idF j =

m∑
i=1

(dF i)2

These expressions are tensor fields living in the tensor algebra T ∗(M) of M .
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8 2. RIEMANNIAN MANIFOLDS

2.5. Example. (Graphs) Let M ⊂ Rn ×R be the graph of the smooth function f : M → R.
Then s(x) = (x, f(x)) is a diffeomorphism so that the Riemannian manifold (M, ι∗gn+1) is isometric
to (Rn, s∗gn+1) where the metric s∗gn+1 is

s∗(
n+1∑
i=1

(dxi)2) =
n∑

i=1

(dxi)2 +
( ∂f
∂xi

dxi
)2 =

n∑
i=1

(dxi)2 +
∂f

∂xi

∂f

∂xj
dxidxj

=
(
δij +

∂f

∂xi

∂f

∂xj

)
dxidxj =

n∑
i=1

(
1 + (

∂f

∂xi
)2
)
(dxi)2 + 2

∑
1≤i<j≤n

∂f

∂xi

∂f

∂xj
dxidxj

2.6. Example. let S2
+ be the upper hemisphere on S2 ⊂ R3 considered as the graph of the

function f(x, y) =
√

1− x2 − y2 defined on the unit ball B2 ⊂ R2. Then (S2
+, ι

∗g3) is isometric
to (B2, s∗g3) where

s∗g3 = (dx)2 + (dy)2 +

(
−x√

1− x2 − y2
dx+

−y√
1− x2 − y2

dy

)2

=
1− y2

1− x2 − y2
(dx)2 +

1− x2

1− x2 − y2
(dy)2 +

2xy
1− x2 − y2

dxdy

This means (2.1) that

〈∂x, ∂x〉 =
1− y2

1− x2 − y2
, 〈∂y, ∂y〉 =

1− x2

1− x2 − y2
, 〈∂x, ∂y〉 =

xy

1− x2 − y2

at the point (x, y) ∈ B2. In this metric, the basis tangent vectors, ∂x and ∂y, are not orthogonal
at any point of the unit ball away from the axes. If we consider the curve γ(t) = (t, 0), −1 ≤ t ≤ 1,
then the tangent vector γ∗( d

dt ) = d(xγ)
dt ∂x + d(yγ)

dt ∂y = ∂x so that the length of this curve is

Ls∗(g)(γ) =
∫ +1

−1

|γ∗(
d

dt
)|dt =

∫ +1

−1

√
1

1− t2
dt = π

What is the distance between (0,−1/2) and (1/2, 0)? What is the curve of shortest length between
these two points?

2.7. Example. (Surface of revolution in R3)

2.8. Definition. A smooth map F : (M, g)→ (N,h) between two Riemannian manifolds is an
isometry if g = F ∗h; if g(X,Y ) = h(F∗X,F∗Y ) for all tangent vectors X,Y ∈ TpM , p ∈M .

Two Riemannian manifolds are isometric if we can deform one into the other by bending but
not stretching. Is the upper unit hemisphere S2

+ ⊂ R3 isometric to the open unit ball B2 ⊂ R2?
Certainly, the diffeomorphism s : B2 → S2

+ from Example 2.6 is not an isometry as for instance
〈∂x, ∂x〉 6= 1 or because the tangent vectors ∂x and ∂y are not orthogonal throughout any open
(nonempty) subspace of B2. But there are many other diffeomorphisms and maybe we could
find one that preserves the metrics? To decide if this is the case we need to find invariants of
Riemannian metrics. Is S2

+ curved? And what does that mean? We need to develop some theory
to answer these questions.

In order to decide if two given Riemannian manifolds are isometric we have to know have
the metric tensor transforms under change of coordinate system? (Remember that the coordinate
expression for a metric is an artefact of the coordinate system and not an intrinsic property of the
metric.)

2.9. Lemma. Let φ : Rn →M and ψ : Rn →M be parameterizations of the same open subspace
of M . If

φ∗(g) = aijdxidxj , ψ∗(g) = bijdyidyj

then

(aij) =
(

∂yi

∂xj

)t

(bij)
(

∂yi

∂xj

)
where y = ψφ−1.
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Proof. Put P =
(

∂yi

∂xj

)
. Then (1.1)

y∗

dy1

...
dyn

 = P

dx1

...
dxn


Therefore

aijdxidxj = φ∗g = (ψy)∗g = y∗(ψ∗g) = y∗(bijdyidyj)

= y∗(
(
dy1 . . . dyn

)
(bij)

dy1

...
dyn

)

=
(
dx1 . . . dxn

)
P t(bij)P

dx1

...
dxn


so that (aij) = P t(bij)P . �

Suppose that φ∗g = aijdxidxj for some parameterization φ. Is M locally flat? In other
words, does there exist a re-parameterization ψ = φy of M such that ψ∗g = δijdyidyj? Such a
re-parameterization exists if and only if the set of 1

2n(n− 1) PDEs

(gij) =
(

∂yi

∂xj

)t (
∂yi

∂xj

)
,

or equivalently,

(2.10) gij =
n∑

k=1

∂yk

∂xi
∂yk

∂xj , 1 ≤ i ≤ j ≤ n,

has a solution y = (y1, . . . , yn). Riemann showed (in an essay that was never properly recognized)
that (2.10) is equivalent to

∂2y`

∂xi∂xj
= Γk

ij
∂y`

∂xk , 1 ≤ i, j, ` ≤ n,

and thereby that (2.10) has a solution if and only if

Rm
jk` = 0, 1 ≤ j, k, `,m ≤ n,

where the Γk
ij (the Christoffel symbols) and the Rm

jk` are certain functions defined in terms of the
functions gij . This was the birth of the Riemann curvature tensor Rm

jk`! This direct approach,
however, is not the one used today since it is conceptually simpler first to introduce a device called
a connection that will enable us to work in a coordinate-free way on M .

2.11. Example. (Cylinders are flat.) Let γ(s) = (x(s), y(s)), a < s < b, be a smooth curve in
R2 such that the tangent γ∗( d

ds ) = x′(s)∂x + y′(s)∂y 6= 0 for all t. Let M ⊂ R3 be the cylinder
over γ, the surface with parameterization φ(s, t) = (x(s), y(s), z(t)) where z(t) = t. Then (2.3),

φ∗(g3) = (dx)2 + (dy)2 + (dz)2 = (x′(s)ds)2 + (y′(s)ds)2 + (dt)2 = |γ∗(
d
ds

)|2(ds)2 + (dt)2

What are Riemann’s equations in this case? Is there a solution?

2. The three model geometries

The model geometries are Euclidean geometry, spherical geometry, and hyperbolic geometry.



10 2. RIEMANNIAN MANIFOLDS

2.1. Euclidean geometry. Euclidean geometry is the geometry of the Riemannian manifold
(Rn, gn) where

gn = δijdx
idxj =

n∑
i=1

(dxi)2

meaning that gn(U i∂i, V
j∂j) =

∑n
i=1 U

iV i. (The straight line over the g is to remind you of
Euclidean geometry.)

The isometry group of Euclidean geometry

Isom(Rn, gn) = Aff(n) = Rn o O(n)

acts transitively on Rn by the rule (v,A)(x) = v +Ax. The isotropy subgroup at 0 ∈ Rn is O(n)
and the projection

O(n)→ Aff(n) = O(TRn)→ Aff(Rn)/O(n) = Rn

is the unit n-frame bundle of Euclidean geometry Rn.

2.2. Spherical geometry. Spherical geometry is the geometry of the Riemannian manifold
(Sn

R, g
n
R) where

Sn
R = {(ξ, τ) ∈ Rn ×R | |ξ|2 + τ2 = R2}

is the n-sphere of radius R and gn
R = ι∗

(∑n
i=1(dξi)

2 + (dτ)2
)

is the restriction of the Euclidean
metric on Rn ×R.

The isometry group of spherical geometry

Isom(Sn
R, gR) = O(n+ 1)

(The smooth action of O(n + 1) ⊂ Aff(n + 1) on Rn+1 restricts to a smooth action on Sn –
and in fact these are all isometries.) O(n + 1) acts transitively on Sn. The isotropy subgroup at
N = (0, . . . , 0, 1) ∈ Sn is O(n) and the projection

O(n)→ O(TSn) = O(n+ 1)→ O(n+ 1)/O(n) = Sn

is the unit n-frame bundle of spherical geometry Sn.

2.12. Proposition. Stereographic projection σ : Sn
R −N → Rn is given by

σ(ξ, τ) =
R

R− τ
ξ

and the inverse is given by

σ−1(u) = (ξ(u), τ(u)), ξ(u) =
2R2u

|u|2 +R2
, τ(u) = R

|u|2 −R2

|u|2 +R2

Stereographic projection is a diffeomorphism.

Proof. Elementary. �

2.13. Proposition. The Riemannian manifold (Sn
R −N, gn

R) is isometric to the Riemannian
manifold (Rn, (σ−1)∗gn

R) where

(σ−1)∗gn
R =

4R4

(R2 + |u|2)2
gn

is conformally equivalent to the Euclidean metric.

Proof. By 2.3

(σ−1)∗gR =
n∑

j=1

(dξj)2 + (dτ)2
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We will now use the derivation rules 1.4. The denominator of ξ and τ is |u|2+R2 and d(|u|2+R2) =
d(|u|2) =

∑
2ujduj which we shall write as 2〈u, du〉. Because

dξj = d

(
2R2u

|u|2 +R2

)
=

2R2duj

|u|2 +R2
− 4R2uj〈u, du〉

(|u|2 +R2)2

dτ = d

(
R
|u|2 −R2

|u|2 +R2

)
= R

2〈u, du〉
(|u|2 +R2)2

−R (|u|2 −R2)2〈u, du〉
(|u|2 +R2)2

=
2R〈u, du〉(|u|2 +R2)− 2R〈u, du〉(|u|2 −R2)

(|u|2 +R2)2

=
4R3〈u, du〉
(|u|2 +R2)2

we get
n∑

j=1

(dξj)2 =
n∑

j=1

(
4R4(duj)2

|u|2 +R2
+

16R4(uj)2〈u, du〉
(|u|2 +R2)4

− 16R4ujduj〈u, du〉
(|u|2 +R2)3

)

=
4R4(duj)2

(|u|2 +R2)2

n∑
j=1

(duj)2 +
16R4|u|2〈u, du〉2

(|u|2 +R2)4
− 16R4〈u, du〉2

(|u|2 +R2)3

=
4R4(duj)2

(|u|2 +R2)2
gn +

16R4|u|2〈u, du〉 − 16R4|u|2〈u, du〉2 − 16R6〈u, du〉2

(|u|2 +R2)4

=
4R4(duj)2

(|u|2 +R2)2
gn − 16R6〈u, du〉2

(|u|2 +R2)4

=
4R4(duj)2

(|u|2 +R2)2
gn − (dτ)2

�

2.14. Hyperbolic geometry. Hyperbolic geometry is the geometry of the Riemannian man-
ifold (Hn

R, h
n
R) where

Hn
R = {(ξ, τ) ∈ Rn ×R+ | |ξ|2 − τ2 = −R2}

id the hyperbolic space n-space of radius R and hn
R = ι∗

(∑n
i=1(dξ

i)2 − (dτ)2
)

is the restriction of
the Minkowski metric on Rn ×R. Let N = (0, . . . , 0, R) ∈ Hn

R be the north pole.

2.15. Remark. (Minkowski metric) Let m be the inner product on Rn+1 with matrix D =
diag(1, . . . , 1,−1). We can view m both as an inner product on the vector space Rn (〈X,Y 〉 =
m(X,Y ) = XtDY ) or as a Minkowski metric on the manifold Rn+1 (〈Xi∂i, Y

i∂i〉 = m(X,Y )).
For each p ∈ Hn

R, the tangent space

TpH
n
R = p⊥ ⊂ Rn+1 = TpRn+1

exactly as in 1.5.

Let
O(n, 1) = {A ∈ GL(n,R) | AtDA = D}

be the group of linear automorphisms of Rn+1 that preserve the inner product. The columns (or
rows) of each A ∈ O(n, 1) form an orthogonal basis for Rn+1 of vectors of length 1, . . . , 1,−1.
The elements of the Lie group O(n, 1) preserve the subspace {(ξ, τ) ∈ Rn+1 | |(ξ, τ)|2 = −R2} of
vectors of square length −R2. This subspace has two connected components. Let O+(n, 1) be the
subgroup of O(n, 1) consisting of the elements that take the connected component Hn

R to itself.
The Lie group O+(n, 1) acts transitively on Hn

R; given any v ∈ Hn
R, we can find an A ∈ O+(n, 1)

whose last column is 1
Rv so that AN = v where N is the north pole. The isotropy subgroup at N

consists of the A ∈ O+(n, 1) whose last column is (0, . . . , 0, 1). The isotropy subgroup, isomorphic
to O(n), act transitively on the tangent space TNH

n
R. The projection

O(n)→ O(THn
R) = O+(n, 1)→ O+(n, 1)/O(n) = Hn

R

is the unit n-frame bundle of Hn
R.
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2.16. Proposition. Hyperbolic stereographic projection π : Hn
R → Bn

R is given by

π(ξ, τ) =
Rξ

R+ τ

and its inverse is given by

π−1(u) = (ξ(u), τ(u)), ξ(u) =
2R2u

R2 − |u|2
, τ(u) = R

R2 + |u|2

R2 − |u|2

Hyperbolic stereographic projection is a diffeomorphism.

Proof. Elementary. �

2.17. Proposition. The Riemannian manifold (Hn
R, h

n
R) is isometric to the Riemannian man-

ifold (Bn(R), (π−1)∗hn
R) where

(π−1)∗(hn
R) =

4R4

(R2 − |u|2)2
gn

is conformally equivalent to the Euclidean metric.

Proof. By 2.3 (applied to the Minkowski metric)

(σ−1)∗hR =
n∑

j=1

(dξj)2 − (dτ)2

Using that d(R2 − |u|2) = −2〈u, du〉 and 1.4 we get

dξj =
2R2duj

R2 − |u|2
+

2R2uj2〈u, du〉
(R2 − |u|2)2

dτ = R
2〈u, du〉
R2 − |u|2

+R
(R2 + |u|2)2〈u, du〉

(R2 − |u|2)2

=
2R3〈u, du〉 − 2R|u|2〈u, du〉+ 2R3〈u, du〉+ 2R|u|2〈u, du〉

(R2 − |u|2)2

=
4R3〈u, du〉
(R2 − |u|2)2

Therefore
n∑

j=1

(dξj)2 =
n∑

j=1

(
2R2duj

R2 − |u|2
+

4R2uj〈u, du〉
(R2 − |u|2)2

)2

=
4R4

(R2 − |u|2)2
n∑

j=1

(duj)2 +
16R4|u|2〈u, du〉

(R2 − |u|2)4
+

16R4〈u, du〉2

(R2 − |u|2)3

=
4R4

(R2 − |u|2)2
gn +

16R4|u|2〈u, du〉+ 16R6〈u, du〉2 − 16R4|u|2〈u, du〉2

(R2 − |u|2)4

=
4R4

(R2 − |u|2)2
gn +

16R6〈u, du〉2

(R2 − |u|2)4

=
4R4

(R2 − |u|2)2
gn + (dτ)2

�

Let Un = {(x, y) ∈ Rn−1 ×R | y > 0} be the upper half plane in Rn.

2.18. Proposition. The Riemannian manifold (Hn
R, h

n
R) is isometric to the smooth manifold

Un equipped with the Riemannian metric R2 1
y2 g

n.

Proof. A computation. �

Does the hyperbolic plane H2 embed isometrically in R3? Any Riemannian ma embeds iso-
metrically into some Euclidean space [6].
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3. Connections

Let E → M be a smooth vector bundle over M and E(M) the C∞(M)-module of smooth
sections. A connection on E is a recipe for how to differentiate a section of E along a vector field.

2.19. Definition. A connection on E is a map

T (M)× E(M) ∇−→ E(M)

(X,Y )→ ∇XY

which is C∞(M)-linear in X and R-linear in Y and satisfies the product rule

∇X(fY ) = (Xf)Y + f∇XY

for all f ∈ C∞(M).

There always are connections, for instance the 0-connection given by ∇XY = 0.

2.20. Lemma. The value ∇XY (p) at the point p ∈M only depends on Y in a neighborhood of
p and X at p.

Proof. Let us first focus on Y -variable. By linearity, it is enough to show that if Y = 0 in a
neighborhood U of p, then ∇XY (p) = 0. Choose a smooth bump function φ such that φ(p) = 1
and φ = 0 outside U . Then φY is the zero section so that

0 = ∇X0 = ∇X(φY ) = (Xφ)Y + φ∇XY

Evaluating at p, we get 0 = ∇XY (p) since Y (p) = 0 and φ(p) = 1.
Next, we focus on the X-variable. By an argument similar to the one just given, we first show

that if X is 0 in a neighborhood of p, then 0 = ∇XY (p). Suppose now that we only know that X
vanishes at the point p, X(p) = 0. Choose a moving frame Ei in a neighborhood of p. Extend the
locally defined vector fields Ei to globally defined smooth vector fields. There are smooth functions
Xi such that X = XiEi in a neighborhood of p. Then ∇XY (p) = ∇XiEi

Y (p) since X and XiEi

are equal in a neighborhood of p. By C∞(M)-linearity in X,

∇XiEi
Y = Xi∇Ei

Y

which evaluated at p is 0 since Xi(p) = 0 for all i. �

We are particularly interested in connections on the tangent bundle of M .

2.21. Definition. A linear connection is a connection T (M)×T (M) ∇−→ T (M) on the tangent
bundle of M .

Are there any linear connections, apart from the 0-connection, on M?

2.22. Example. The Euclidean connection ∇X(Y j∂j) = X(Y j)∂j is a nonzero linear connec-
tion on Euclidean space M = Rn. Note that ∇∂i

∂j = 0, 1 ≤ i, j ≤ n. A smooth vector field
Y = Y i∂i on Rn is the same thing as a smooth map Y = Y iEi : Rn → Rn. The derivative in the
direction of (tangent) vector X of the map Y = Y iEi is X(Y ) = X(Y i)Ei. For consistency sake
we better declare the derivative of the vector field Y = Y i∂i to be ∇XY = X(Y i)∂i to ensure that
the diagram

C∞(Rn,Rn) X // C∞(Rn,Rn)

T (Rn)
∇X // T (Rn)

commutes.

If we can construct connections on Rn, maybe we can define a connection in each coordinate
patch on M and then put them together? What does a connection look like locally?
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2.23. Lemma. Suppose that U is an open subspace of M that admit a moving frame Ei. The
linear connection ∇ on M restricts to linear connection on U . If X = XiEi and Y = Y jEj are
vector fields on U then

∇XY = (XY k +XiY jΓk
ij)Ek

where the n3 smooth functions Γk
ij are the Christoffel symbols given by ∇Ei

Ej = Γk
ijEk.

Proof. We compute

∇XY = ∇X(Y jEj) = XY jEj + Y j∇XEjXY
jEj + Y j∇XiEi

Ej = XY jEj +XiY j∇Ei
Ej

= XY jEj +XiY jΓk
ijEk = XY kEk +XiY jΓk

ijEk = (XY k +XiY jΓk
ij)Ek

where we use the Christoffel symbols. �

Thus we see that we can express ∇XY by means of the n3 smooth functions Γk
ij . Conversely,

for any choice of n3 smooth functions Γk
ij we can define ∇XY , X,Y ∈ T (U) by the above formula

and that will be a connection. So a linear connection on U is the same thing as a collection of n3

smooth functions on U .
In particular if M is a smooth manifold and {Uα} a smooth atlas on M then can find a linear

connection ∇α on each Uα. In order to construct a linear connection on M , let {φα} be a smooth
partition of unity subordinate to {Uα}.

Theorem 2.24. (Existence of connections) Any smooth manifold M has many linear connec-
tions:

∇XY =
∑
α

φα∇α
XY

is a linear connection on M .

Armed with a linear connection we know how to differentiate vector fields along vector fields.
But as a bonus we can even differentiate arbitrary tensor fields along vector fields!

2.25. Lemma. (Existence and uniqueness of the covariant derivative of a tensor field) Let
T (M)× T (M) ∇−→ T (M) be a linear connection on M (2.21). Then there are unique connections

T (M)× T k
` (M) ∇−→ T k

` (M)

on all tensor bundles T k
` (M)→M such that

(1) ∇Xf = Xf for all f ∈ T 0
0 (M) = C∞(M)

(2) ∇XY is the given linear connection for all vector fields Y ∈ T 1
0 (M)

(3) ∇X(A⊗B) = ∇XA⊗B +A⊗∇XB

(4) ∇X trA = tr∇XA for all A ∈ T k+1
`+1 (M)

Namely, for any 1-form ω, ∇Xω is the 1-form given by

(2.26) (∇Xω)(Y ) = X(ω(Y ))− ω(∇XY )

and, in general, for any
(
k
`

)
-tensor A ∈ T k

` (M), ∇XA is the
(
k
`

)
-tensor given by

(2.27) (∇XA)(ω1, . . . , ω`, Y1, . . . , Yk) = X(A(ω1, . . . , ω`, Y1, . . . , Yk))

−
k∑

i=1

A(ω1, . . . , ω`, Y1, . . . ,∇XYi, . . . , Yk)−
∑̀
j=1

A(ω1, . . . ,∇Xωj , . . . , ω
`, Y1, . . . , Yk)

for any choice of k vector fields Y1, . . . , Yk and ` 1-forms ω1, . . . , ω` on M .

Proof. Let’s assume that we have connections that satisfy items (1)–(4). What is the cov-
ariant derivative of a 1-form ω? For any two vector fields X and Y ,

X(ω(Y ))
(1)
= ∇X(ω(Y ))

(1.7)
= ∇X(tr(ω ⊗ Y ))

(4)
= tr∇X(ω ⊗ Y )

(3)
= tr(∇Xω ⊗ Y + ω ⊗∇XY )

(1.7)
= (∇Xω)(Y ) + ω(∇XY )
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which is (2.26). So we are forced to define ∇Xω as in (2.26). But then there is at most one
possibility for ∇XA since any tensor is a sum of a smooth function times tensor products of vector
fields and 1-forms (combine the local expression (1.8) for a tensor with a smooth partition of unity).
This shows uniqueness.

To show existence, use (2.26) to define the covariant derivative of a 1-form and then use (2.27)
to define ∇XA in general. Check that this definition satisfies (1)–(4). �

2.28. Definition. The total covariant derivative ∇ : Tk
` (M)→ Tk+1

` (M) is given by

∇A(ω1, . . . , ω`, Y1, . . . , Yk, X) = (∇XA)(ω1, . . . , ω`, Y1, . . . , Yk)

for all A ∈ T k
` (M).

Note that the total covariant derivative of the tensor field A ∈ T k
` (M) is zero if and only if

the covariant derivative of A along all vector fields is zero: ∇A = 0 ⇐⇒ ∀X ∈ T (M) : ∇XA = 0.

2.29. Example. There are total covariant derivatives

C∞(M) = T 0
0 (M) ∇−→ T 1

0 (M) ∇−→ T 2
0 (M) ∇−→ T 3

0 (M) ∇−→ · · ·

If u ∈ C∞(M) is a smooth function and X a vector field, then

(∇u)(X) = ∇X(u) = X(u) = du(X)

so that ∇u = du.
The 2-form ∇2u = ∇∇u is called the covariant Hessian of u. If X and Y a vector fields, then

(∇2u)(Y,X) = (∇∇u)(Y,X)
(2.28)
= (∇X∇u)(Y )

(2.26)
= X((∇u)(Y ))−∇u(∇XY )

∇u=du= X(Y (u))− (∇XY )(u)

Consequently,
∇2u = 0 ⇐⇒ ∀X,Y ∈ T (M) : Y (X(u)) = (∇Y X)(u)

2.30. Example. If g ∈ T 2
0 (M) is the Riemannian metric, then ∇g is the 3-form given by

(∇g)(X,Y, Z)
(2.28)
= (∇Zg)(X,Y )

(2.27)
= Zg(X,Y )− g(∇ZX,Y )− g(X,∇ZY )

for any three vector fields X,Y, Z. Consequently

∇g = 0 ⇐⇒ ∀X,Y, Z ∈ T (M) : Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉

for all vector fields X,Y, Z.

2.31. Example. There are total covariant derivatives

T (M) = T 0
1 (M) ∇−→ T 1

1 (M) ∇−→ T 2
1 (M) ∇−→ · · ·

If V ∈ T 0
1 (M) is a vector field then ∇V is the

(
1
1

)
-tensor given by

(∇V )(ω,X) = (∇XV )(ω) = ω(∇XV )

If V = V i∂i in local coordinates, then

(∇V )(dxi, ∂j) = dxi(∇∂j
V ) = dxi(∇∂j

V k∂k) = dxi(∂jV
k∂k + V kΓ`

jk∂`) = ∂jV
i + V kΓi

jk

and therefore
∇V = (∂jV

i + V kΓi
jk)∂i ⊗ dxj

We say that the vector field V is parallel if ∇V = 0. Since

∇V = 0 ⇐⇒ ∀X ∈ T (M) : ∇XV = 0,

V is parallel iff the covariant derivative of V along any vector field is zero. What tensor is ∇2V ?
What does it mean if ∇2V = 0?
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4. Geodesics and parallel translation along curves

Let γ : I →M be a smooth curve on M .

2.32. Definition. For any t ∈ I, the tangent vector

•
γ (t) = γ∗(

d
dt

(t)) ∈ Tγ(t)M,
•
γ (t)f =

d(f ◦ γ)
dt

(t), f ∈ C∞(M)

is called the velocity vector of γ at the point γ(t).

If x is a coordinate system around γ(t0) and xγ = (γ1, . . . , γn) then

(2.33)
•
γ (t) =

dγi

dt
(t)∂i(γ(t))

as a special case of (1.2).

2.34. Remark. We say that the curve γ, defined in an open neighborhood of 0, represents
the tangent vector V ∈ TpM if γ(0) = p and

•
γ (0) = V . Then V f =

•
γ (0)f = d

dt (fγ)(0) for any
smooth function f ∈ C∞(M) and F∗V is represented by the image curve Fγ for any smooth map
F : M → N .

2.35. Definition. A vector field along γ is a smooth map V : I → TM such that the diagram

TM

��
I

V

=={{{{{{{{
γ

// M

commutes. A vector field V along is extendible if V (t) = V (γ(t)) for some vector field V on a
neighborhood of γ(I). The C∞(I)-module of all vector fields along γ is denoted T (γ).

The velocity field
•
γ (t) is an example of a vector field along γ.

The formulation of the lemma below makes use of 2.20.

2.36. Lemma (Covariant differentiation along a curve). Let ∇ be a connection on M . There
exists precisely one R-linear map Dt : T (γ)→ T (γ) such that

Dt(fV ) =
df
dt
V + fDtV, f ∈ C∞(I), V ∈ T (γ)

DtV = ∇•
γ(t)

V V extendible

• If Ei is a local frame around γ(t0) and V = V jEj, then

DtV =
dV j

dt
Ej + V j∇•

γ(t)
Ej

for t near t0.
• If x is a coordinate system around γ(t0) and V = V j∂j, then

DtV = (
dγk

dt
+ Γk

ij

dγi

dt
V j)∂k

for t near t0.

A curve on M is as close as possible to being a straight line if the curve at all times just
continues in the direction of

•
γ (t), if its velocity

•
γ (t) does not change. No change means zero

covariant derivative.

2.37. Definition. A smooth curve γ is a geodesic (with respect to the connection ∇) if the

covariant derivative of its velocity field vanishes, Dt

•
γ= 0.

A geodesic is a curve that follows its own nose. A geodesic is a curve with constant velocity.
Light rays follow geodesics in space-time.
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If x is a coordinate system around some point γ(t0) of γ, then γ is a geodesic iff

(2.38)
d2γk

dt2
+ Γk

ij

dγi

dt
dγj

dt
= 0

near t0. In principle, we could determine geodesics by solving this equation. In practice, this is
close to impossible. Instead we try to identify some properties that a geodesic must have (2.54,
2.58).

2.39. Proposition (Existence and uniqueness of geodesics). Let p be a point on M and
V ∈ TpM a tangent vector at p There exists a unique maximal geodesic γV : I →M defined on an

open interval containing 0 such that γV (0) = p and
•
γV (0) = V .

2.40. Lemma (Rescaling lemma). Let V ∈ TpM be a tangent vector at p ∈ M and let c ∈ R
be a real number. The geodesic γcV is defined at t iff the geodesic γV is defined at ct and then
γcV (t) = γV (ct).

Proof. Consider the maximal geodesic γV : I →M . Put γ(t) = γV (ct) for all t ∈ c−1I. Then
γ(t) is a geodesic because it satisfies (2.38) in any coordinate system and it is defined at c−1t. In

fact, γ(t) = γcV (t) as γ(0) = γV (0) = p and
•
γ (0) = cV . �

A vector field along a curve is parallel if it doesn’t change; no change meaning zero covariant
derivative. A curve is a geodesic if it has a parallel velocity field.

2.41. Definition. A vector field V along γ is parallel if it does not change along γ, DtV = 0.

2.42. Proposition. Let γ be a curve on M . Suppose that p0 = γ(t0) is a point on γ and
V0 ∈ Tp0M a tangent vector at that point. There exists precisely one parallel vector field V along
γ such that V (t0) = V0.

5. The Riemannian connection

On a Riemannian manifold there is a preferred connection.

Theorem 2.43 (The fundamental theorem of Riemannian geometry). A Riemannian manifold
admits precisely one symmetric connection compatible with the metric.

This particular connection is called the Riemannian connection or the Levi–Civitta connection.

2.44. Definition. The connection ∇ is symmetric if

∇XY −∇Y X = [X,Y ]

for all vector fields X,Y ∈ T (M).

2.45. Lemma. Let Ei be a local moving frame such that [Ei, Ej ] = 0, 1 ≤ i, j ≤ n (for instance
Ei = ∂i could be a coordinate frame). Then ∇ is symmetric if and only if

Γk
ij = Γk

ji, 1 ≤ i, j, k ≤ n

Proof. ∇Ei
Ej −∇Ej

Ei = (Γk
ij − Γk

ji)Ek. �

2.46. Definition. The connection ∇ is compatible with the metric g if

X 〈Y,Z〉 = 〈∇XY, Z〉+ 〈X,∇XZ〉

for any three vector fields X,Y, Z ∈ T (M).

2.47. Lemma. Let Ei be a local moving frame. Then ∇ is compatible with the metric g if and
only if

Ekgij = Γ`
kigj` + Γ`

kjgi`, 1 ≤ i, j, k, ` ≤ n

Proof. Ek 〈Ei, Ej〉 − 〈∇Ek
Ei, Ej〉 − 〈Ei,∇Ek

Ej〉 = Ekgij − Γ`
kigj` − Γ`

kjgi`. �
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Proof of Theorem 2.43. We first show uniqueness. Assume that ∇ is a symmetric con-
nection that is compatible with g. Then

X 〈Y, Z〉 2.44= 〈∇XY,Z〉+ 〈Y,∇XZ〉
2.46= 〈∇XY,Z〉+ 〈Y,∇ZX〉+ 〈Y, [X,Z]〉

for any three vector fields X,Y, Z ∈ T (M). Permute X,Y, Z cyclically, obtain

X 〈Y, Z〉 − Z 〈X,Y 〉+ Y 〈X,Z〉 = 2 〈∇XY, Z〉+ 〈Y, [X,Z]〉 − 〈X, [Z, Y ]〉+ 〈Z, [Y,X]〉

and conclude that

(2.48) 〈∇XY, Z〉 =
1
2

(X 〈Y, Z〉 − Z 〈X,Y 〉+ Y 〈X,Z〉 − 〈Y, [X,Z]〉+ 〈X, [Z, Y ]〉 − 〈Z, [Y,X]〉)

This equation shows that ∇, if it exists, is determined by the metric.
Next, we show existence. We will define ∇ in any open submanifold where we have a moving

frame Ei with [Ei, Ej ] = 0 (for instance in a chart domain). The only possibility is to put

(2.49) Γk
ij =

1
2
gk` (Eigj` − E`gij + Ejgi`)

because

(2.50) Γk
ijgk` = 〈∇Ei

Ej , E`〉 =
1
2

(Eigj` − E`gij + Ejgi`)

by equation (2.48). Since Γk
ij = Γk

ji and

Γ`
kigj`+Γ`

i`gi` = Γ`
kig`j +Γ`

i`g`i
2.50=

1
2

(Ekgij − Ejgik + Eigjk)+
1
2

(Ekgij − Eigjk + Ejgik) = Ekgij

this connection ∇ is symmetric and compatible with g (2.45, 2.47). �

2.51. Example. The Euclidean connection ∇ (2.22) is the Riemannian connection on Euc-
lidean space Rn for it is symmetric and compatible with the Euclidean metric g (2.1) since Γk

ij = 0.

What is the Riemannian connection in spherical and hyperbolic space?

2.52. Lemma. Let ∇ be a connection and g a metric on M . The following conditions are
equivalent:

(1) ∇ and g are compatible (2.46)
(2) ∇g = 0
(3) d

dt 〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉 whenever V,W are vector fields along a smooth curve
(4) 〈V,W 〉 is constant whenever V,W are parallel vector fields along a smooth curve
(5) Parallel transport is an isometry

Proof. (1) ⇐⇒ (2): 2.30
(3) =⇒ (4) =⇒ (5) : Obvious.
(5) =⇒ (3) : Let P1, . . . , Pn be parallel vector fields that are orthonormal at one point of the curve
and hence orthonormal at any point. Write V = V iPi and W = W iPi. Then 〈V,W 〉 =

∑
V iW i

and (2.36) DtV = dV i

dt Pi and DtW = dW i

dt Pi. Hence

〈DtV,W 〉+ 〈V,DtW 〉 =
∑ dV i

dt
W i +

∑
V i dW

i

dt
=

d
dt

∑
V iW i =

d
dt
〈V,W 〉

(3) =⇒ (1) : Let Y and Z be smooth vector fields on M and let γ be a smooth curve, γ(0) = p,
•
γ (0) = X(p). Then

Xp 〈Y, Z〉 =
•
γ (0) 〈Y, Z〉 =

d
dt
〈Y,Z〉 = 〈DtY,Z〉+ 〈Y,DtZ〉 =

〈
∇Xp

Y, Z
〉

+
〈
Y,∇Xp

Z
〉

(1) =⇒ (3) : Let p = γ(0), choose a vector field X with X(p) =
•
γ (0), and choose an orthonormal

moving frame, Ei, around p. Then

0 = X 〈Ei, Ej〉 = 〈∇XEi, Ej〉+ 〈Ei,∇XEj〉
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since ∇ and g are compatible Write V = V iEi and W = W jEj . Then DtV =
•
V i Ei + V i∇XEi,

and similarly for W , at the point p (2.36). Therefore,

〈DtV,W 〉+ 〈V,DtW 〉 = (
•
V i W j + V i

•
W j) 〈Ei, Ej〉+ V iW j(〈∇XEi, Ej〉+ 〈Ei,∇XEj〉)

=
∑

(
•
V i W i + V i

•
W i) =

d
dt

∑
V iW i =

d
dt
〈V,W 〉

�

2.53. Lemma (Covariant differentiation commutes with lowering and raising of indices (5.2)).
If the connection ∇ is compatible with the metric then the diagram

T k+1
` (M)

∇X

��

] // T k
`+1(M)

∇X

��

[
oo

T k+1
` (M)

] // T k
`+1(M)

[
oo

commutes for any vector field X.

Proof. It will be enough to prove this for vector fields (k = 0 = `)). Suppose that X,U, V
are vector fields. The claim is ∇X(V [) = (∇XV )[. We compute

(∇X(V ])(U) = X(V ])−V ](∇XU) = X 〈U, V 〉−〈∇XU, V 〉 = 〈∇XU, V 〉+〈U,∇XV 〉−〈∇XU, V 〉

= 〈U,∇XV 〉 = (∇XV )](U)

using (2.26) and (2.46). �

2.54. Corollary. Riemannian geodesics have constant speed.

Proof. d
dt |

•
γ (t)|2 = d

dt 〈
•
γ (t),

•
γ (t)〉 = 2〈Dt

•
γ (t),

•
γ (t)〉 = 0. �

6. Connections on submanifolds and pull-back connections

Let (M, g) be a Riemannian manifold and M ⊂ M be an embedded submanifold. Suppose
that we have a connection ∇ on M . How can we obtain a connection on the submanifold M?

For any tangent vector Xp ∈ TpM , let XT
p ∈ TpM denote the orthogonal projection of Xp.

2.55. Proposition (Existence of uniqueness of tangential connections). There exists precisely
one connection ∇T on M such that

∇T
XY =

(
∇XY

)T
whenever X,Y are vector fields on M and X,Y their restrictions to M . If ∇ is the Riemannian
connection on M , then ∇T is the Riemannian connection on M .

2.56. Lemma. Let ∇ be a connection and let X,Y ∈ T (M) be vector fields on M . Then
∇XY (p) only depends on X(p) and Y along a curve tangent to X(p).

Proof. ∇XY (p) = ∇•
γ(0)

Y (p) = DtY (0) for any curve γ : (−ε, ε)→M with γ(0) = p and
•
γ (0) = X(p). �

2.57. Proposition (Pull-back connections). Let φ : M →M be a diffeomorphism and ∇ a
connection on M .

Let (also) ∇ be the map that makes the diagram

T (M)× T (M)

φ∗×φ∗ ∼=
��

∇ //___ T (M)

φ∗∼=
��

T (M)× T (M)
∇ // T (M)

commutative. Thus φ∗∇XY = ∇φ∗Xφ∗Y for all X,Y ∈ T (M).
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(1) ∇ is a connection on M .
(2) Covariant differentiation wrt ∇ makes the diagram

T (γ)
Dt //

φ∗ ∼=
��

T (γ)

φ∗ ∼=
��

T (φγ)
Dt

// T (φγ)

commutative. Thus φ∗DtV = Dtφ∗V for any vector field V along the curve γ in M .
(3) Assume that M and M are Riemannian manifolds and that φ is an isometry. If ∇

the Riemannian connection on M , then ∇ is the Riemannian connection on M . Thus
φ∗∇XY = ∇φ∗Xφ∗ for all X,Y ∈ T (M).

2.58. Corollary. Isometries of Riemannian manifolds take Riemannian geodesics to Rieman-
nian geodesics.

Proof. Let φ : (M, g)→ (M, g) be an isometry of Riemannian manifolds. Then the connec-
tion on M is the pull-back of the connection on M (2.57.(3)). Let γV , V ∈ TpM , be a geodesic on
M . Then

Dt((φγV )•) = Dt(φ∗
•
γ)

2.57.(2)
= φ∗Dt(

•
γ) = φ∗0 = 0

so that φγV = γφ∗V . �

7. Geodesics in the three geometries

We determine the geodesics in Euclidean, spherical, and hyperbolic geometry.

2.59. Euclidean geometry. The Riemannian connection on Rn is the Euclidean connection
(2.22).

Let p = (0, . . . , 0) ∈ Rn and V = (1, 0, . . . , 0) ∈ TpRn. We know that there is a unique
maximal geodesic γV running through p with velocity V . We also know that φγV = γV for any
isometry φ ∈ O(n) of Rn preserving (p, V ). The map φ(ξ1, ξ2, ξ3, . . . , ξn) = (ξ1,−ξ2, ξ3, . . . , ξn)
is such an isometry (it is a diffeomorphism and it preserves |ξ|). Thus γV must have ξ2γV = 0.
Similarly, ξ3γV = 0, . . . , ξnγV = 0. Thus γV must run along the ξ1-axis. Since it has constant
speed and

•
γV (0) = V , we must have

γV (t) = (t, 0, . . . , 0)

This was just one geodesic! But since Rn is homogeneous and isotropic, we have in fact determined
all geodesics: The geodesics in Euclidean geometry are the straight lines. For any point not on a
geodesic there is a unique geodesic passing through that point parallel to the given geodesic.

2.60. Spherical geometry. The Riemannian connection on

Sn
R = {(ξ, τ) ∈ Rn ×R | |ξ|2 + τ2 = R2} ⊂ Rn+1

is the tangential connection (2.55) arising from the Euclidean connection on ambient Rn+1.
Let N = (0, . . . , R) ∈ Sn

R be the North Pole and V = (1, 0, . . . , 0) ∈ TN§nR. What is γV , the
geodesic running through N with velocity V ? Using the isometries that change sign on ξi for
2 ≤ i ≤ n we see, as above, that γV must run in the intersection of Sn

R and the ξ1τ -plane. Thus

(2.61) γV (t) = (R sin(t/R), 0, . . . , 0, R cos(t/R))

We conclude that the geodesics in spherical geometry are great circles, the intersection of Sn
R with

planes through the origin. For any point not on a geodesic there is a no geodesic passing through
that point parallel to the given geodesic.
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2.62. Hyperbolic geometry. The Riemannian connection on

Hn
R = {(ξ, τ) ∈ Rn ×R+ | |ξ|2 − τ2 = −R2} ⊂ Rn+1

is the tangential connection (2.55) arising from the Euclidean connection, considered as the Rieman-
nian connection of Minkowski metric |(ξ, τ)|2 = |ξ|2 − τ2, on ambient Rn+1.

Let N = (0, . . . , R) ∈ Sn
R be the North Pole and V = (1, 0, . . . , 0) ∈ TN§nR. What is γV , the

geodesic running through N with velocity V ? Using the isometries that change sign on ξi for
2 ≤ i ≤ n we see, as above, that γV must run in the intersection of Hn

R and the ξ1τ -plane. Thus

(2.63) γV (t) = (R sinh(t/R), 0, . . . , 0, R cosh(t/R))

We conclude that the geodesics in hyperbolic geometry are great hyperbolas, the intersection of
Hn

R with planes through the origin. (The isometry group O(n, 1)+ takes planes through the origin,
u⊥, to planes through the origin.) For any point not on a geodesic there are uncountably many
geodesic passing through that point parallel to the given geodesic.

8. The exponential map and normal coordinates

Let M be a Riemannian manifold with Riemannian connection ∇ (2.43). Put

E = {V ∈ TM | γV is defined at 1}

where γV , V ∈ TpM , is the geodesic through γ(0) = p with velocity
•
γ (0) = V (2.39). We define

(2.64) exp: E →M by exp(V ) = γV (1)

meaning that exp(V ) is obtained by following the geodesic with initial velocity vector V for one
time unit. We let expp denote the restriction of exp to Ep = E ∩ TpM .

2.65. Proposition (Properties of the exponential map). Let exp: E →M be the exponential
map on the manifold M .

(1) E is an open subspace of TM and exp: E →M is a smooth map.
(2) Ep is star-shaped around 0 for each p ∈M .
(3) expp : Ep →M takes straight lines through 0 ∈ TpM to geodesics through p: expp(tV ) =

γV (t) (where both functions are defined for the same set of ts).
(4) (expp)∗ : T0TpM = TpM → TpM is the identity map.
(5) The exponential map commutes with isometries: The diagram

TpM

expp

��

φ∗ // TpM

expφ(p)

��
M

φ
// M

commutes for any isometry φ : M →M .

Proof. We defer the proof of (1). Let V ∈ TpM and t ∈ R. Then

tV ∈ Ep ⇐⇒ expp is defined at tV ⇐⇒ γtV is defined at 1 ⇐⇒ γV is defined at t

and for such a t, expp(tV ) = γtV (1) = γV (t) by the Rescaling lemma (2.40). In particular,

V ∈ Ep ⇐⇒ γV is defined at 1 =⇒ γV is defined at s ⇐⇒ sV ∈ Ep
when 0 < s ≤ 1. Thus Ep is star-shaped around 0. Assuming that Ep is open in TpM and that expp

is smooth we now compute the differential of expp. Since the tangent vector V ∈ T0TpM = TpM
is (2.34) represented by the image curve t→ tV , (expp)∗ is represented by curve exp(tV ) = γV (t)

with
•
γV (0) = V . Thus (expp)∗V = V . If φ : M →M is an isometry, then φγV = γφ∗V (2.58) so

that φ expp(V ) = φγV (1) = γφ∗V (1) = expφ(p)(φ∗V ).
The geodesic vector field G on TM is the defined by

G(V )f =
d
dt

∣∣∣
t=0

(f
•
γV (t)), f ∈ C∞(TM)
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where
•
γV(t) is curve on TM obtained by taking the velocity of the geodesic γV . Note that

γV (t0 + t) = γ•
γV (t0)

(t) so that

G(
•
γV (t0))f =

d
dt

∣∣∣
t=0

f(
•
γV (t+ t0)) =

d
dt

∣∣∣
t=t0

f(
•
γV (t))

where t0 is an arbitrary point in the open interval of definition for γV . This means that integral
curves for the vector field G are velocity fields along geodesics. By a general theorem, there exists
a smooth map θ : O → TM , defined on an open subspace O ⊂ R× TM containing 0× TM , such
that θ(t, V ) is the maximal integral curve for G through V ∈ TM at time t = 0. Hence

E = {V ∈ TM | (1, V ) ∈ O} = i−1
1 O, i1(V ) = (1, V ),

is open and exp(V ) = πθ(1, V ) is smooth as a composition of smooth maps (π : TM →M is the
projection). �

2.66. Example. Let N = (0, 0, 1) be the North Pole of S2 ⊂ R3 and let V be a unit vector
in the tangent space TNS

2 = N⊥. The exponential map expN : TNS
2 = N⊥ → S2 takes the unit

speed radial line tV to the unit speed geodesic whose trace is the intersection of S2 with the plane
through 0 ∈ R3 containing N and V .

Normal coordinates is special coordinate system determined by the metric.
Let Up ⊂ TpM be an open subset, star-shaped around 0, of the tangent space such that

expp : Up → U is a diffeomorphism between Up and an open subset U of M . Choose an orthonormal
basis Ei for TpM (with inner product gp) and an orthonormal basis ei for Rn (with standard inner
product g). Let E : (Rn, g)→ (TpM, gp) be the isometry given by Eei = Ei. Then

(2.67) x = E−1 ◦ exp−1
p : M ⊃ U → x(U) ⊂ Rn M

x

66TpM
exppoo RnEoo

are normal coordinates around p. (We will often forget to mention E so that V can stand for a
tangent vector V ∈ TpM as well as a vector V ∈ Rn.) The smooth function

(2.68) r : U − p→ R, r(q) = |x(q)| =
√∑

xi(q)2 = |V |g (expp(V ) = q)

is the radial distance function and the unit radial vector field on U − p, denoted

(2.69)
∂

∂r
(q), q ∈ U − p,

is the vector field formed by the velocity vectors of the unit speed radial geodesic; to any q ∈ U −p
it associates the velocity of the unit speed radial geodesic through q.

If BR(0) ⊂ Up, then

BR(p) = expp(BR(0)) = {q ∈ x(U) | r(q) ≤ R}
BR(p) = expp(BR(0)) = {q ∈ x(U) | r(q) < R}
SR(p) = expp(∂BR(0)) = {q ∈ x(U) | r(q) = R}

is a (closed) geodesic ball , respectively, a geodesic sphere around p. (Make a drawing of the
situation!)

2.70. Proposition (Properties of normal coordinates). Let x : U → x(U) be normal coordin-
ates (2.67) around p.

(1) x(γEV (t)) = tV for all V ∈ TpM and for all small t. (In normal coordinates, the geodesics
through p are straight lines through 0.)

(2) x(p) = 0, ∂
∂xi (p) = Ei, gij(p) = δij, Γk

ij(p) = 0, ∂kgij(p) = 0.

(3) ∂
∂r = xi(q)

r(q)
∂

∂xi for all q ∈ U − p.

Proof. (1) x−1(tV ) = expp(tEV ) = γEV (t).

(2) x−1(0) = expp(0) = p. Let γ(t) = x−1(tei) be the ith coordinate axis. Then
•
γ (t) = ∂

∂xi (γ(t))
in general (2.33). In this case, γ(t) = x−1(tei) = expp(tEi) = γEi

(t) is the geodesic through

γ(0) = p with velocity
•
γ (0) = Ei. Thus Ei = ∂

∂xi (p). The components of the Riemannian metric
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g at p are gij(p) = g( ∂
∂xi (p), ∂

∂xj (p)) = g(Ei, Ej) = δij . The radial curve γ(t) = x−1(t(ei + ej)) is
a geodesic so its coordinates γk satisfy the ODEs (2.38) which in this particular case means that
Γk

ij(γ(t)) = 0 for all t. For t = 0, we get Γk
ij(p) = 0. In other words, ∇∂i

∂j(p) = 0 for all i, j. Then
also

∂kgij(p) = ∂k 〈∂i, ∂j〉 (p) = 〈∇∂k
∂i(p), ∂j(p)〉+ 〈∂i(p),∇∂k

∂j(p)〉 = 0 + 0 = 0

since the Riemannian connection is compatible with the Riemannian metric (2.46).
(3) Let q ∈ U − p. Suppose that x(q) = V ∈ Rn. Then xi(q) = V i and r(q) = |x(q)| = |V | (2.68).
The unit speed radial geodesic from p to q is γ(t) = expp(tV/|V |), 0 ≤ t ≤ |V |. Its velocity vector

is
•
γ (t) = V i

|V |
∂

∂xi (γ(t)) (2.33); at q, in particular, its velocity is V i

|V |
∂

∂xi (q) = xi(q)
r(q)

∂
∂xi (q). �

Let Γ: (−ε, ε)× [a, b]→M be a variation of the curve γ(t) = Γ(0, t). We write (s, t) for points
in (−ε, ε)× [a, b] (so that the interval [a, b] is placed on the vertical t-axis!). Let Γs(t) = Γ(s, t) =
Γt(s) so that Γs is a a curve in the t-direction (a main curve) and Γt is a curve in the s-direction
(a transverse curve). Let

∂tΓ(s, t) =
d
dt

Γs(t) =
•
Γs (t) = Γ∗(

∂

∂t
), ∂sΓ(s, t) =

d
ds

Γt(s) =
•
Γt (s) = Γ∗(

∂

∂s
),

be the velocities of the main, respectively, the transverse curves. We may view the main velocity
field ∂tΓ as a vector field along a transverse curve Γt and consider its covariant derivative Ds∂tΓ
along Γt. Similarly, we may view the transverse velocity field ∂sΓ as a vector field along a main
curve Γs and consider its covariant derivative Dt∂sΓ along Γs.

2.71. Lemma (Symmetry Lemma). Ds∂tΓ = Dt∂sΓ or Ds

•
Γs= Dt

•
Γt.

Proof. This is a local question. Choose a coordinate system x around Γ(s0, t0). In local

coordinates, xΓ(s, t) = (Γ1(s, t), . . . ,Γn(s, t)) and (2.33) ∂t =
•
Γs= ∂Γi

∂t ∂i, ∂s =
•
Γt= ∂Γi

∂s ∂i. In local
coordinates there is a formula for the covariant derivative along a curve (2.36). Using that formula,
we get that

Ds∂tΓ =
(
∂2Γk

∂s∂t
+ Γk

ij

∂Γi

∂s

∂Γj

∂t

)
∂k

and there is a similar formula for Dt∂Γt except that the s and t swap places. The point is now
that the Riemannian connection is symmetric so that the Christoffel symbols are symmetric in i
and j (2.45). �

The variational field

(2.72) V (t) =
•
Γt (t, 0) = Γ∗(0,t)(

∂

∂s
)

is the restriction to γ(t) of the transverse vector field
•
Γt.

2.73. Lemma (First Variation of smooth curves). d
dsL(Γs)(0) =

〈
V,

•
γ
〉 ∣∣∣b

a
−
∫ b

a

〈
V,Dt

•
γ
〉
dt

when γ(t) is a unit speed curve.

Proof. We differentiate the function s→ L(Γs) and then evaluate the result at s = 0. Using
that the connection is compatible with the metric (2.52) and The Symmetry lemma we get

d
ds
L(Γs) =

d
ds

∫ b

a

|
•
Γs (t)|dt =

∫ b

a

∂

∂s

〈•
Γs,

•
Γs

〉1/2

dt
2.52=

∫ b

a

1

|
•
Γs |

〈
Ds

•
Γs,

•
Γs

〉
dt

2.71=
∫ b

a

1

|
•
Γs |

〈
Dt

•
Γt,

•
Γs

〉
dt
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When s = 0,
•
Γs=

•
Γ0=

•
γ, |

•
γ | = 1, and

•
Γs (0, t) = V (t) so that

d
ds
L(Γs)(0) =

∫ b

a

〈
DtV,

•
γ
〉
dt

2.52=
∫ b

a

(
d
dt

〈
V,

•
γ
〉
−
〈
V,Dt

•
γ
〉)

dt

=
〈
V (b),

•
γ (b)

〉
−
〈
V (a),

•
γ (a)

〉
−
∫ b

a

〈
V,Dt

•
γ
〉
dt

�

2.74. Lemma (Gauss lemma). In a normal neighborhood of a point p we have:

(1) The geodesic spheres are orthogonal to the geodesic rays.
(2)

〈
∂
∂r , Y

〉
= Y (r) = dr(Y ) for any tangent vector Y ∈ TqM , q 6= p (In other words,

grad r = ∂
∂r ).

Proof. Let q = expp(V ) where V 6= 0. Then x(q) = V and r(q) = |V | = R. The claim is
that

W ⊥ V =⇒ (expp)∗W ⊥
•
γV (1)

for any W ∈ TV TpM = TpM (where V ⊥ = TV SR(0)). Let σ(s) be a curve in SR(0) that represents
W , σ(0) = V ,

•
σ (0) = W . Consider the variation Γ(s, t) = expp(tσ(s)) of γV (t) = expp(tV ). Put

S = ∂sΓ and T = ∂tΓ. Note that the curves in the t-direction, t → expp(tσ(s)), are geodesics of
velocity T and speed |T | = |σ(s)| = R. Hence DtT = 0 and |T | = R is constant. It follows that

∂

∂t
〈S, T 〉 (2.52)

= 〈DtS, T 〉+ 〈S,DtT 〉 = 〈DtS, T 〉
(2.71)
= 〈DsT, T 〉

(2.52)
=

1
2
∂

∂s
|T |2 = 0

where we use that the connection is compatible with the metric and symmetric. Thus

〈S, T 〉(0, 0) = 〈S, T 〉(0, 1)

since 〈S, T 〉(s, t) is independent of t. We know compute

S(0, 0) =
•
Γ0 (0) = 0, S(0, 1) =

•
Γ1 (0) = (expp)∗W, T (0, 1) =

•
γV (1)

as Γ0(s) = p, Γ1(s) = expp(σ(s)), and Γ0(t) = expp(tV ) = γV (t). It follows that

0 = 〈S, T 〉(0, 0) = 〈S, T 〉(0, 1) = 〈(expp)∗W,
•
γV (1)〉

which is the first item of the lemma.
We now know that there is an orthogonal decomposition TqM = R ∂

∂r (q) ⊕ TqSR(p) for we

have already seen that ∂
∂r (q) is the unit vector proportional to

•
γV (1). Any Y ∈ TqM therefore

admits an orthogonal decomposition of the form Y = α ∂
∂r (q) +X where α ∈ R and X ∈ TqSR(p)

is tangent to the geodesic sphere. Hence〈
∂

∂r
(q), Y

〉
= α| ∂

∂r
(q)|2 = α

because X(r) = 0 as r is constant on SR(p). On the other hand,

Y∗(r) = (α
∂

∂r
(q) +X)(r) = α

∂

∂r
(q)(r)

where
∂

∂r
(q)(r) =

(
xi

r
∂i

)(∑
(xi)2

)1/2

=
∑ xi

r

2xi

2r
=
r2

r2
= 1

and we have proved also the second item of the lemma. �

31.03.05
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9. The Riemann distance function

Let M be a connected Riemannian manifold.

2.75. Definition. A regular curve on M is a smooth map γ : [a, b]→M such that
•
γ (t) 6= 0

for all t ∈ [a, b]. The real number

Lγ =
∫ b

a

|
•
γ (t)|dt

is the length of the regular curve γ.
A piecewise regular curve on M is a continuous map γ : [a, b]→M such that γ|[ai−1, ai] is

regular for some subdivision a = a0 < a1 < · · · < an = b of [a, b]. The real number

Lγ =
∑

L(γ|[ai−1, ai])

is the length of the piecewise regular curve γ.

A piecewise regular curve γ on M has a velocity vector
•
γ (t) at all points t which is not one of

the break points ai. At a break point ai, we let

∆i

•
γ=

•
γ (a+

i )−
•
γ (a−i )

denote the jump between the velocity from the left,
•
γ (a−i ) ∈ Tγ(ai), and from the right,

•
γ (a+

i ).

2.76. Proposition. (1) The length of a (piecewise) regular curve is invariant under re-
parametrization.

(2) Any regular curve has a unit speed parameterization.

Proof. Let γ : [a, b]→M be a regular curve.
(1) Let t : [c, d]→ [a, b] be a bijective smooth map with t′(s) 6= 0 for all s ∈ [c, d]. Then

(γ ◦ t)•(s) = t′(s)
•
γ (t(s))

so that ∫ d

c

|(γ ◦ t)•(s)|ds = ±
∫ d

c

|
•
γ (t(s))|t′(s)ds =

∫ b

a

|
•
γ (t)|dt

where the + applies if t′ > 0 and the − applies if t′ < 0.
(2) Let s : [a, b]→ [0, L(γ)] be the smooth map s(t) =

∫ t

a
|
•
γ (t)|dt. Then s′(t) = |

•
γ (t)| by the

Fundamental theorem of Calculus. Let t be the inverse function. Then (γ ◦t)•(s) = t′(s)
•
γ (t(s)) =

1
s′(t)

•
γ (t) is a unit speed curve. �

2.77. Lemma. Any two points in M can be connected by a piecewise regular curve.

Proof. Since connected and locally path-connected spaces are path-connected, M is path-
connected [5, §17]. Given any two points, p and q inM , there exists a continuous curve γ : [0, 1]→M
connecting them. By the Lesbesgue number lemma [5, §19], there is a subdivision 0 = a0 < a1 <
· · · < an = 1 of [0, 1] such that γ([ai−1, ai]) is contained in a coordinate neighborhood x : U → Rn

such that x(U) is a ball. Replace γ([ai−1, ai]) by a smooth curve within this coordinate neighbor-
hood between the two end-points. �

2.78. Definition. The function d : M ×M → [0,∞) given by

d(p, q) = inf{L(γ) | γ is a piecewise regular curve from p to q}
is the Riemann distance function.

We all know from general topology that all topological manifolds are metrizable. On a Rieman-
nian manifold we can construct an explicit metric.

2.79. Lemma. d is a metric on the topological space M .

Let Γ: [−ε, ε]× [a, b]→M be a fixed endpoint variation of the unit speed piecewise regular
curve γ(t) = Γ(0, t).

For each s, the length of the piecewise regular curve Γs is L(Γs). What is the rate of change
of the length of the main curves near γ (hoping that this length function is smooth)?

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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Theorem 2.80 (First variation formula for piecewise smooth curves). Let γ be a unit speed
piecewise regular curve and Γ any piecewise smooth variation of γ. Then

d
ds

∣∣∣
s=0

L(Γs) = −
∫ b

a

〈
V,Dt

•
γ
〉
dt−

n−1∑
i=1

〈
V (ai),∆i

•
γ
〉

where V is the variational field along γ.

Proof. Since L(Γs) =
∑
L(Γs|[ai−1, ai]) is a sum, just add the contributions from each

subinterval [ai−1, ai] where we are in the smooth situation (2.73). Remember that the endpoints
are fixed under the variation so that the variational field is 0 at the endpoints. �

The formula shows that the length decreases when we vary γ in the direction of the jumps at
the points ai or vary γ is the direction of the acceleration Dt

•
γ between the points ai.

2.81. Lemma. Any vector field V (which vanishes at the endpoints) along a piecewise smooth
curve is the variational field of some (fixed endpoint) variation of the curve.

Proof. Thanks to compactness, we can find ε > 0 so that ±εV (t) ∈ E ⊂ TM for all t ∈ [a, b].
Let Γ(s, t) exp(sV (t)) for (s, t) ∈ (−ε, ε)× [a, b]. Then Γ is a piecewise smooth variation of γ whose
transverse curves are geodesics with velocity d

ds

∣∣∣
s=0

Γ(s, t) = d
ds

∣∣∣
s=0

exp(sV (t)) 2.65= V (t). �

2.82. Corollary. (1) Piecewise regular minimizing curves of constant speed are geodesics.
(2) Geodesics are locally minimizing curves.

Proof of first part of 2.82. Let γ be a minimizing curve. For any vector field V along
γ, the expression on the right hand side of the equation in 2.80 is 0 as L(γs) has a minimum at

s = 0. Use this to show first that Dt

•
γ (t0) = 0 at any point which is not a break point. Thus γ is

a piecewise geodesic. Next show that there are no break points so that γ is in fact a geodesic. �

What we showed was in fact that geodesics are critical points of the functional L.
Is there a minimizing curve between any two points of M? Are minimizing curves unique?

No, there are uncountably many minimizing curves between the North Pole and the South Pole.
Or look at the situation where you want to go to the other shore of a lake, there are usually two
possibilities. Only if two points are sufficiently close, then there is in fact a unique minimizing
curve between them.

Theorem 2.83. Let p be a point of M and BR(p) a closed geodesic ball around p.

(1) For any point q ∈ BR(p) in the geodesic ball there is a unique minimizing curve from p to
q, namely the radial geodesic. Then d(p, q) = r(q) where r is the radial distance function
(2.68).

(2) For any point q 6∈ BR(p) outside the geodesic ball there is a point x ∈ SR(p) such that
d(p, q) = R+ d(x, q). Then d(p, q) > R.

Proof. (1) Suppose that q ∈ BR(p) lies in the geodesic ball around p and that r(q) = r where
r is the radial distance function (2.68) for that ball. The radial unit speed geodesic from p to q is
γ(t) = expp(tV ), t ∈ [0, r], where V ∈ TpM is the unit vector with expp(rV ) = q. This curve has
length r so that d(p, q) ≤ r.

Now let σ : [a, b]→M be any piecewise regular unit speed curve from p to q. Let a0 be the
last point where r(σ(t)) = 0 and b0 the first point after a0 such that r(σ(t)) = r. Then σ|[a0, b0]Make a drawing!
runs inside the closed geodesic ball of radius r. On the interval (a0, b0] we decompose the velocity

(2.84)
•
σ (t) = α(t)

∂

∂r
(α(t)) +X(t)

into its radial component along the unit radial vector field (2.69) and a component X(t) ⊥ ∂
∂r .

Then

α(t) =
〈
•
σ (t),

∂

∂r

〉
2.74=

•
σ (t)(r) =

d
dt

(rσ), 1 = | •σ (t)|2 = |α(t)|2 + |X(t)|2 ≥ |α(t)|2
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for t ∈ (a0, b0] and therefore

b− a = L(σ) ≥ L(σ|[a0, b0]) = b0 − a0 ≥ limδ→0

∫ b0

a0+δ

α(t)dt = limδ→0

∫ b0

a0+δ

d
dt

(rσ)dt

= limδ→0(r(q)− r(σ(a0 + δ))) = r(q) = r

Since σ was an arbitrary curve, we have shown that the radial geodesic γ is minimizing and that
d(p, q) = R.

We will now show that γ is the only minimizing curve (up to reparametrization). Suppose
that σ : [0, r]→M is some minimizing unit speed curve from p to q. Then the inequalities in the
above computation are in fact equalities so that α(t) = 1 for all t. Then X(t) = 0 and (2.84) says
that σ(t) is an integral curve through p for the radial unit vector field. So is γ. Uniqueness of
integral curves implies that σ(t) = γ(t) for all t ∈ [0, r].
(2) Suppose that q 6∈ BR(p). By compactness, there is a point x ∈ SR(p) such that d(x, q)
is minimal. Then d(p, q) ≤ d(p, x) + d(x, q) = R + d(x, q). Suppose that d(p, q) < d(p, x) +
d(x, q) = R + d(x, q). Then there exists a piecewise smooth curve σ connecting p and q of length
L(σ) < R + d(x, q). Let σ1 be the first part of σ that runs entirely inside the closed geodesic ball
from p to a point on SR(p), and let σ2 be the last part of σ that runs entirely outside the closed
geodesic ball from a point of SR(p) to q. Then

R+ d(x, q) > L(σ) ≥ L(σ1) + L(σ2) ≥ R+ L(σ2)

because L(σ1) ≥ R by the first part of this theorem. Now L(σ2) < d(x, q) so that the start-point
of σ2 is a point on SR(p) that is closer to q than x. Contradiction! �

05.04.05
A smooth curve γ : I →M is locally minimizing if any t0 ∈ I has a neighborhood such that

γ|[t1, t2] is minimizing for all t1 < t2 in this neighborhood.

Proof of second part of 2.82. Let γ be a geodesic and γ(t0) a point on γ. Choose a
uniformly geodesic neighborhood W around γ(t0). The preimage γ−1(W ) is a union of open
intervals. Let I0 ⊂ I be the interval containing t0. If t1, t2 ∈ I0 then γ|[t1, t2] is geodesic in
W ⊂ Bδ(γ(t1)) through γ(t1) so it is a radial geodesic in Bδ(γ(t1)), hence (2.83) minimizing. �

Also when we go beyond where expp is injective we can sometimes find minimizing curves,
they may no longer be unique, though. (Look at curves on S2 from N to S.)

2.85. Lemma. Suppose that there is a point p ∈M such that the exponential map at p is defined
on the whole tangent space TpM . Then there is a minimizing curve, of the form t → expp(tV ),
0 ≤ t ≤ d(p, q) for some unit vector V ∈ TpM , from p to any other point in M .

Proof. Let q be some point different from p and let T = d(p, q) > 0 be the distanec between
p and q.

Choose a closed geodesic ball, BR(p), around p. We may assume that q is outside this ball, ie
T > R, for otherwise we already know that there exists a minimizing curve from p to q (2.83). Let
x be a point on SR(p) that realizes the distance between SR(p) and q and let γ be the unit speed
radial geodesic from p through x. By assumption, γ is defined for all t ≥ 0. The miracle is that γ
goes through q: γ(T ) = q.

To see this, consider the set

S = {b ∈ [0, T ] | d(p, q) = d(p, γ(b)) + d(γ(b), q)}

By using the continuity of the distance function d one can show that S is closed (take a sequence
of points in S). From 2.83 we know that [0, R] ⊂ S. Let A = supS and put y = γ(A). Then
T = d(p, q) = d(p, y) + d(y, q) = A + d(y, q) as A ∈ S. Suppose that A < T . Choose a closed
geodesic ball Bδ(y) around y where 0 < δ < T − A. Let z be the point on the geodesic sphere
Sδ(y) such that d(y, q) = δ+ d(z, q) (2.83) and let τ be the unique radial unit speed geodesic from
y to z. The piecewise smooth curve γ|[0, A] ∪ τ from p to z has length A+ δ and as

d(p, z) ≥ d(p, q)− d(z, q) = T − (d(y, q)− δ) = T − (T −A− δ) = A+ δ
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it is minimizing, hence a geodesic (2.82), in particular a smooth curve with no breaks. Thus
γ|[0, A] and τ must fit together to form the geodesic γ|[0, A+ δ] by uniqueness of geodesics. Now
z = γ(A+ δ) and d(p, z) = A+ δ so that

d(p, z) + d(z, q) = (A+ δ) + (T −A− δ) = T = d(p, q)

which contradicts that A is the supremum of S.
Now we know that T ∈ S so that

T = d(p, q) = d(p, γ(T )) + d(γ(T ), q) = L(γ|[0, T ]) + d(γ(T ), q) = T + d(γ(T ), q)

so that d(γ(T ), q) = 0 and γ(T ) = q. �

Now comes a definition that will only be used for a very short time!

2.86. Definition. A Riemannian manifold is geodesically complete if all maximal geodesics
are defined for all of R.

07.04.05
R2 is geodesically complete, B2

1(0) is not.
Recall that a metric space is complete if all Cauchy sequences converge. Compact metric

spaces are complete.

Theorem 2.87 (Hopf–Rinow). M is complete as a metric space ⇐⇒ M is geodesically
complete.

Proof. Suppose that M is complete as a metric space. The claim is that all geodesics are
defined for all time. Suppose that there is some unit speed maximal geodesic γ : (a, b)→M that
cannot be extended beyond b. Let ti ∈ (a, b) be an increasing sequence of points converging to
b. Then γ(ti) is Cauchy for d(γ(ti), γ(tj)) ≤ L(γ|[ti, tj ]) = |ti − tj |. Let q = lim q(ti). Choose a
uniformly geodesic neighborhood W around q and a δ > 0 such that W ⊂ Bδ(p) for all p ∈ W .
This means that any unit speed geodesic through a point of W exists at least in a time span of δ.
Choose tj so that tj > b− δ and q(tj) ∈W . Then we can extend the geodesic γ near tj for at least
time δ beyond tj . Contradiction!

Next sssume that there is a point p ∈ M such that expp is defined for all TpM . Let (qi) be a
Cauchy sequence. We can assume that p 6= qi for all i (if not, throw away some of the qi). Choose
Vi ∈ TpM such that t→ expp(tVi), 0 ≤ t ≤ 1, is a minimizing radial geodesic from p to qi (2.85).
Then d(p, qi) =

∫ 1

0
|Vi|dt = |Vi|. Since Cauchy sequences are bounded, the sequence (Vi) is bounded

in TpM . Any bounded sequence in the inner product space TpM contains a convergent subsequence
by compactness. Suppose that Vik

→ V ∈ TpM . Then qik
= expp(Vik

) → expp(V ) ∈ M by
continuity of expp. Any Cauchy sequence containing a convergent subsequence is itself convergent.
Thus lim qi = expp(V ). �

In the future we will not bother to say ‘geodesically complete’ but just say ‘complete’.
We actually proved that the conditions
(1) M is metric complete
(2) All maximal geodesics in M are defined on R
(3) All maximal geodesics through one point of M are defined on R

are equivalent and that any of these conditions imply
(4) There is a minimizing curve between any two points of M .

The Heine–Borel theorem holds in any complete Riemannian manifold.



CHAPTER 3

Curvature

1. The Riemann curvature tensor

The Riemann curvature tensor is the obstruction to flatness.

3.1. Definition. The Riemann curvature tensor is the (5.6) (3, 1)-tensor R(X,Y, Z, ω) =
ω(R(X,Y )Z) corresponding to the C∞(M)-multilinear map

T(M)× T(M)× T(M) R−→ T(M), (X,Y, Z)→ R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

(in a somewhat unorthodox notation) called the Riemann curvature endomorphism.

3.2. Proposition. The map from 3.1 is C∞(M)-multilinear.

Proof. The function is clearly R-multilinear.
Note that [fX, Y ] = f [X,Y ]− Y (f)X by computing [fX, Y ](g). The computation

∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z = f∇X∇Y Z −∇Y (f∇XZ)− f∇[X,Y ]Z + Y (f)∇XZ

= f∇X∇Y Z−Y (f)∇XZ−f∇Y∇XZ−f∇[X,Y ]Z+Y (f)∇XZ = f(∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z)

shows that the function is C∞(M)-linear in the X-variable.
The function is anti-symmetric in the X and Y -variables, so it is also C∞(M)-linear in the

Y -variable.
A direct computation as above shows that is also C∞(M)-linear in the Z-variable. �

Equivalently, the Riemann curvature tensor is the (4, 0)-tensor field Rm = R[ given by (5.8)

Rm(X,Y, Z,W ) = R(W,Y,Z,W [) = W [(R(X,Y )Z) = 〈R(X,Y )Z,W 〉

In local coordinates (xi), the components of the curvature tensors

R = R `
ijk dx

i ⊗ dxj ⊗ dxk ⊗ ∂`, Rm = Rijk`dx
i ⊗ dxj ⊗ dxk ⊗ dx`

are given by
R(∂i, ∂j)∂k = R `

ijk ∂`

so that

(3.3) Rijk` = 〈R(∂i, ∂j)∂k, ∂`〉 =
〈
R m

ijk ∂m, ∂`

〉
= g`mR

m
ijk , R m

ijk = gm`Rijk`

3.4. Example. In Euclidean geometry (Rn, g), ∇X(Y k∂k) = X(Y k)∂k, and (2.22) shows that
R(∂i, ∂j)∂k = 0 as the basis vector fields commute, [∂i, ∂j ] = 0. Thus R = 0 on Rn. On S2 with
spherical coordinates the curvature tensor is nonzero in that R(∂θ, ∂φ)∂φ = −∂θ.

3.5. Lemma (Symmetries in the Riemann curvature tensor). Let R and Rm be the curvature
tensor of a Riemannian manifold.

(1) Rm is anti-symmetric in the first two variables: Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W )
(2) Rm is anti-symmetric in the last two variables: Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z)
(3) Rm is symmetric between the first two variables and the last two variables: Rm(X,Y, Z,W ) =
−Rm(Z,W,X, Y )

(4) Rm satisfies a cyclic permutation property of the first three variables:

Rm(X,Y, Z,W ) + Rm(Z,X, Y,W ) + Rm(Y,Z,X,W ) = 0

known as the First Bianchi identity.

29
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(5) ∇Rm satisfies a cyclic permutation property of the last three variables:

∇Rm(X,Y, Z, V,W ) +∇Rm(X,Y,W,Z, V ) +∇Rm(X,Y, V,W,Z) = 0

known as the Second or Differential Bianchi identity.

In a local coordinate frame these identities are equivalent to

(1) Rijk` = −Rjik`

(2) Rijk` = −Rij`k

(3) Rijk` = −Rk`ij

(4) Rijk` +Rkij` +Rjki` = 0
(5) Rijk`;m +Rijmk;` +Rij`m;k = 0

Proof. Each item is a more or less clever calculation.
(1) Clear.
(2) It is enough to show that Rm(X,Y, Z, Z) = 0 as we see by expanding Rm(X,Y, Z+W,Z+W )
using multilinearity. Now

XY |Z|2 − Y X|Z|2 = [X,Y ]|Z|2

2.46⇐⇒ 2(〈∇X∇Y Z,Z〉+ 〈∇Y Z,∇XZ〉)− 2(〈∇Y∇XZ,Z〉+ 〈∇XZ,∇Y Z〉) = 2
〈
∇[X,Y ]Z,Z

〉
⇐⇒ 〈∇X∇Y Z,Z〉 − 〈∇Y∇XZ,Z〉 =

〈
∇[X,Y ]Z,Z

〉
⇐⇒ Rm(X,Y, Z, Z) = 0

�

3.6. Proposition. The Riemann curvature tensor Rm is invariant under local isometries.

Proof. If φ : M → M̃ is a (local) isometry then R̃m(φ∗X,φ∗Y, φ∗Z, φ∗W ) = Rm(X,Y, Z,W )
by (2.57.(3)). �

3.7. Example. The curvature tensor in Euclidean geometry is R = 0. The curvature tensor
of S2 is not zero as, for instance, R( ∂

∂φ ,
∂
∂θ ) ∂

∂φ = − ∂
∂θ so that Rm( ∂

∂φ ,
∂
∂θ ,

∂
∂θ ) = g11 = −R2 sin2 φ

using spherical coordinates as in [4, Exercise 5.7]. Thus S2 is not locally isometric to R2.

A Riemannian manifold is flat if any point has a neighborhood isometric to an open subspace
of Rn.

Theorem 3.8. M is flat ⇐⇒ R = 0.

Proof. We have already established one direction. What remains is to show that if R = 0
is a neighborhood of a point p then there are coordinates (yi) near p so that gij = δij in these
coordinates. Since this is a local question we may as well assume that M = Rn and p = 0.

Put Ei = ∂i(0) so that (E1, . . . , En) is the standard orthonormal basis for T0Rn.
First, we extend Ej to a vector field on Rn. Let Ej be the unique parallel vector field along

the x1 axis t→ (t, 0, . . . , 0) with Ej(0) = Ej . Next, for each fixed x1
0, let Ej be the unique parallel

vector field along the line t → (x1
0, t, 0, . . . , 0) satisfying the initial condition that at t = 0 it is

Ej(x1
0, t, 0, . . . , 0). The vector field Ej is now defined in the x1x2-plane. Continue this way. The

result is a smooth vector field on Rn.
R = 0 =⇒ Ej is parallel. By construction, Ej is parallel along the x1-axis. Thus ∇∂1Ej = 0 at
any point on the x1-axis. By construction, Ej is parallel along the lines (x1

0, x
2, 0 . . . , 0, . . . , 0).

Thus ∇∂2Ej = 0 at any point in the x1x2-plane. Also the vector field ∇∂1Ej is parallel along the
lines (x1

0, x
2, 0 . . . , 0, . . . , 0), ∞ < x2 <∞, for

∇∂2∇∂1Ej = ∇∂1∇∂2Ej = ∇∂10 = 0

since R = 0 and [∂1, ∂2] = 0. Thus ∇∂1Ej is the parallel vector field along this line with value
∇∂1Ej(x1, 0, . . . , 0) = 0 at x2 = 0. That vector field is the zero vector field. We conclude that
∇∂1Ej = 0 at all points in the x1x2-plane. Continue this way and conclude that ∇∂1Ej =
0, . . . ,∇∂n

Ej = 0 at all points in x1x2 · · ·xn-space. Thus ∇XEj = 0 for any vector field X by
C∞(Rn)-linearity.
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Compatibility =⇒ (E1, . . . , En) is an orthonormal frame. Since the Riemannian connection is com-
patible with the inner product, parallel translation preserves the inner product (2.52): For a point
in the x1x2-plane for instance〈

Ei(x1, x2, 0, . . . , 0), Ej(x1, x2, 0, . . . , 0)
〉

=
〈
Ei(x1, , 0, . . . , 0), Ej(x1, 0, . . . , 0)

〉
= 〈Ei(0, . . . , 0), Ej(0, . . . , 0)〉 = 〈Ei, Ej〉 = δij

In general, we see in this way that (E1, . . . , En) is an orthonormal moving frame.
Symmetry =⇒ the vector fields E1, . . . , En commute. We have [Ei, Ej ] = ∇EiEj − ∇EjEi = 0
since the Riemannian connection is symmetric (2.44).

Finally, a theorem of elementary differential geometry says that the vector fields Ei are co-
ordinate vector fields for some coordinate system (yi) near 0. Thus gij = δij for this coordinate
system. �

14.04.05

2. Ricci curvature, scalar curvature, and Einstein metrics

3.9. Definition. Ricci curvature is the trace on the first and last variable of the Riemann
curvature endomorphism: Rc = tr(R) = trg(Rm) ∈ T 2

0 (M).

This simply means that Ricci curvature is the tensor given by

Rc(X,Y ) = tr (U → R(U,X)Y )

Ricci curvature is a (2, 0)-tensor with components

Rcij = Rkij
k = gk`Rkij` = g`kRkij` = R`

ij` = Rk
ijk

The symmetries of the Riemann curvature give
• Rcij = Rkij

k = Rj
k

ki = Rjk
k

i

• Rcij = Rkij
k = −Rikj

k = −Rki
k

j

• Rcij = Rj
k

ki = Rk
jik = Rcji

where the last line means that the Ricci tensor is symmetric.

3.10. Definition. Scalar curvature is the trace with respect to g (5.26) of the Ricci curvature:
S = trg Rc.

Scalar curvature is the smooth function on M given by

S = Rcj
j = Rij

ji

3.11. Definition. The divergence operators div are the maps

T 0
` (M) ∇−→ T 1

` (M) tr−→ T 0
`−1(M), T k

0 (M) ∇−→ T k+1
0 (M)

trg−−→ T k−1
0 (M)

where in the last case the trace is taken with respect to the covariant differentiation index and some
other lower index.

ForX ∈ T 0
` (M), div(X)j1···j`−1 = Xj1···j`−1i

;i and forX ∈ T k
0 (M), div(X)i1···ik−1 = Xi1···ik−1j;

j .
For example

• the divergence of a vector field X = Xj∂j ∈ T0
1(M) is the smooth function div(X) = Xi

;i

• the divergence of the Ricci curvature tensor Rc ∈ T 2
0 (M) is the covector field div(Rc) ∈

T 1
0 (M) with components

div(Rc)m = Rcmj;
j = Rimj

i j
;

We compute this tensor below (3.12).
• the divergence of the metric g is div(g) = trg(∇g) = trg(0) = 0 because ∇g = 0 as the

connection and the metric are compatible (2.52).
• the divergence of the product Sg = S ⊗ g of the scalar curvature and the metric is

div(Sg) = trg(∇(Sg)) = trg(∇S⊗g+S⊗∇g) = trg(∇S⊗g) = S;jgi
j = S;jδ

j
i = S;i = ∇S

because (S ⊗ g)mij = S;mgij .

3.12. Lemma (Contracted Bianchi identity). div(Rc) = 1
2∇S or S;m = 2Rcmj;

j = 2Rimj
i j
; .
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Proof. Start with the Differential Bianchi identity

Rijk`;m +Rijmk;` +Rij`m;k = 0

and take the g-trace over i and `,

Rijk ;m
i +Rijmk;

i +R i
ij m;k = 0

and take the g-trace over j and k,

R ji
ij ;m +Rijm

j i
; +R i j

ij m; = 0

The first term we recognize as S;m. The second term is −R j i
jim ; = −div(Rc)m. The third term is

−R i j
ijm ; = −div(Rc)m. �

19.04.05
3.13. Definition. The metric g is an Einstein metric if it is proportional to its Ricci curvature

at any point: Rc = λg for some smooth function λ on M .

In fact, the function λ is implicitly given by the Einstein equation:

Rc = λg =⇒ trg(Rc) = trg(λg) ⇐⇒ S = λn ⇐⇒ λ =
1
n
S

because trg(g) = n = dimM (5.26).

3.14. Proposition. Any connected Riemannian manifold of dimension > 2 with an Einstein
metric has constant scalar curvature.

Proof. Rc = 1
nS ⊗ g =⇒ div(Rc) = 1

ndiv(S ⊗ g) ⇐⇒ 1
2∇S = 1

n∇S
n>2=⇒ ∇S = 0. so that S

is constant on each component of M . �

3.15. Example (Curvature of surfaces). Let M be a Riemannian manifold of dimension 2, a
Riemann surface. Let K = 1

2S denote the function that is half of the scalar cuvature (we shall
later call it the Gaussian curvature of the surface). Let (E1, E2) be an orthonormal basis for the
tangent space TpM at some point p of M .
Riemann curvature: The Riemann curvature tensor has 24 = 16 componentsRijk` = Rm(Ei, Ej , Ek, E`),
1 ≤ i, j ≤ 2. However, for (anti-)symmetry reasons Riik` = 0 = Rijkk, so that

R1221 = R2112 = −R2121 = −R1212

are the only nonzero components.
Ricci curvature: The components of Rc = trg(R) are Rcij = R1ij

1 + R2ij
2 = R1ij1 + R2ij2. Here

we use that R1ij
1 = g1kR1ijk = δk

1R1ijk = R1ij1 since the basis is orthonormal so that the matrix
for g and its inverse are identity matrices. Hence

Rc11 = R2112 = R1221 Rc12 = 0
Rc21 = 0 Rc22 = R1221

are the components of Ricci curvature.
Scalar curvature: S = trg(Rc) = Rc1

1 + Rc2
2 = Rc11 + Rc22 = 2R1221. so that R1221 = 1

2S = K.
We conclude that K = R1221 = Rc11 = Rc22 so that scalar curvature determines Ricci and

Riemann curvature for surfaces.
Until now we have been working with an orthonormal basis. Let us now consider an arbitrary

basis (X,Y ) for TpM . Then

E1 =
X

|X|
, E2 =

Y −
〈
Y, X

|X|

〉
X
|X|

|Y −
〈
Y, X

|X|

〉
X
|X| |

is the orthonormal basis obtained by applying the Gram–Schmidt process to (X,Y ). From the
above computations

Rc(X,Y ) = Rc(X1E1 +X2E2, Y
1E1 + Y 2E2) = X1Y 1Rc11 +X2Y 2Rc22

= KX1Y 1 +KX2Y 2 = K 〈X,Y 〉

Rm(X,Y, Z,W ) = K(〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉)

http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Gram.html
http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Schmidt.html
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For the last equation, note that both sides are multilinear and equal in case X,Y, Z,W ∈ {E1, E2};
try for instance (X,Y, Z,W ) = (E1, E2, E2, E1). In the special case where Z = Y and W = X this
equation gives that

(3.16) K =
Rm(X,Y, Y,X)
|X|2|Y |2 − 〈X,Y 〉2

The denominator here is the area of the parallelogram spanned by vectors X and Y .

See ‘A compendium of Surfaces’ in [8] for much more information about surfaces.

3. Riemannian submanifolds

Let (M̃, g) be a Riemannian manifold and M ⊂ M̃ an embedded submanifold equipped with
the induced metric, also called g. The 2nd fundamental form of the Riemannian submanifold M

is the difference between the Riemannian connections ∇̃ and ∇. (The 1st fundamental form is the
metric g.)

The ambient tangent bundle TM̃ |M →M splits

TM̃ |M = TM ⊕NM
into the orthogonal direct sum of the tangent bundle of M with the normal bundle NM →M .

Any section of TM̃ |M splits orthogonally into a direct sum of its tangential and normal part.
If X,Y ∈ T (M) are smooth vector fields on M , then ∇̃XY is a well-defined (2.56) section of
TM̃ |M . We already know (2.55) that ∇XY is the tangential component of ∇̃XY . If we write
II(X,Y ) for the normal component then the orthogonal splitting of ∇̃XY has the form

(3.17) ∇̃XY = (∇̃XY )T + (∇̃XY )⊥ = ∇XY︸ ︷︷ ︸
TpM

+ II(X,Y )︸ ︷︷ ︸
NpM

(Gauss formula)

where the normal component II(X,Y ) ∈ NM is called the second fundamental form. Equivalently,

II(X,Y ) = ∇̃XY −∇XY

is the difference between the extrinsic connection ∇̃ and the intrinsic connection ∇.

3.18. Lemma. Let M ⊂ M̃ be a Riemannian submanifold and II : T (M)× T (M)→ N (M)
its second fundamental form.

(1) II C∞(M)-bilinear and symmetric.
(2) If X,Y ∈ T (M) are vector fields and N ∈ N (M) a normal field on M then

(3.19)
〈
∇̃XN,Y

〉
= −〈N, II(X,Y )〉 (Weingarten equation)

(3) If X,Y, Z,W ∈ T (M) are vector fields on M then

(3.20) R̃m(X,Y, Z,W ) = Rm(X,Y, Z,W )− 〈II(X,W ), II(Y, Z)〉+ 〈II(X,Z), II(Y,W )〉
(Gauss equation)

(4) Let γ : I →M be a curve in M and V a vector field in M along γ. Then

(3.21) D̃tV = DtV + II(
•
γ, V ) (Gauss formula along a curve)

Proof. (2)
〈
∇̃XY,N

〉
+
〈
Y, ∇̃XN

〉
= ∇̃X 〈N,Y 〉 = ∇̃X(0) = 0 where

〈
∇̃XY,N

〉
= 〈II(X,Y ), N〉.

(3) Riemann curvature computed in ambient space is

R̃m(X,Y, Z,W ) =
〈
∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,W

〉
Observe that

〈
∇̃[X,Y ]Z,W

〉
=
〈
∇[X,Y ]Z,W

〉
because the normal part of the first vector does not

contribute to the inner product with a vector tangent to M . Observe also that〈
∇̃X∇̃Y Z,W

〉
=
〈
∇̃X(∇Y Z + II(Y,Z)),W

〉
=
〈
∇̃X∇Y Z,W

〉
+
〈
∇̃XII(Y, Z),W

〉
= 〈∇X∇Y ,W 〉 − 〈II(Y, Z), II(X,W )〉



34 3. CURVATURE

It now follows that

R̃m(X,Y, Z,W ) = Rm(X,Y, Z,W )− 〈II(Y,Z), II(X,W )〉+ 〈II(X,Z), II(Y,W )〉

which is Gauss’s equation. �

3.21. Remark (Gauss formula for the velocity field along a curve). If we apply the Gauss

formula along a curve to the special case where V =
•
γ is the velocity field then we get that

D̃t

•
γ= Dt

•
γ +II(

•
γ,

•
γ)

and we see that

• If γ is a geodesic in M , then D̃t

•
γ= II(

•
γ,

•
γ). Thus II(V, V ), V ∈ TpM , is the acceleration

at p in M̃ of the geodesic γV in M .
• If the curve γ in M is a geodesic in M̃ , then γ is also a geodesic in M and II(

•
γ,

•
γ) = 0.

Thus II(V, V ) = 0 if the geodesic γV in M̃ , V ∈ TpM ⊂ TpM̃ , happens to stay inside M .
Since the second fundamental form is a symmetric bilinear form is it completely determined by its
quadratic function V → II(V, V ).

3.22. Gaussian and mean curvature of codimension one Euclidean embeddings.
We consider the simplest case of a Riemannian submanifold, namely that of (an orientable) hyper-
surface in Euclidean space, Mn ⊂ Rn+1. We shall associate curvature to the embedding.

Choose a normal field N that is nonzero at every point of M . (This is possible if M is
orientable; in any case it is possible to choose such a normal field locally.) Using N , we may write
the second fundamental form II : T (M)× T (M)→ N (M) as

II(X,Y ) = h(X,Y )N so that
〈
∇XY,N

〉
= 〈II(X,Y ), N〉 = |N |2h(X,Y )

where h ∈ T 2
0 (M) is symmetric (2, 0)-tensor onM , the scalar second fundamental form. In this case

of a codimension one embedding into Euclidean space Rn+1 the Gauss and Weingarten formulas
specialize to

∇XY =

TpM︷ ︸︸ ︷
∇XY +

NpM︷ ︸︸ ︷
h(X,Y )N (Gauss formula)(3.23)

|N |2h(X,Y ) =
〈
∇XY,N

〉
= −

〈
∇XN,Y

〉
(Weingarten equation for N)(3.24)

Rm(X,Y, Z,W ) = |N |2(h(X,W )h(Y, Z)− h(X,Z)h(Y,W )) (Gauss equation)(3.25)

For the Gauss equation (3.25) note that R̃m = 0 in Euclidean space and that the inner product
〈II(X,W ), II(Y, Z)〉 = 〈h(X,W )N,h(Y, Z)N〉 = |N |2h(X,W )h(Y, Z).

The shape operator s ∈ T 1
1 (M) is defined by

(3.26) ∀X,Y ∈ T (M) : 〈sX, Y 〉 = |N |h(X,Y ) =
1
|N |

〈
∇XY,N

〉
= − 1
|N |

〈
∇XN,Y

〉
meaning that s[ = |N |h or s = |N |h] (5.12) is obtained from h by raising an index. The shape
operator

sX = − 1
|N |
∇XN

informs about the shape of M since it measures the variation of the normal field N as it moves on
M . The shape operator is self-adjoint,

〈sX, Y 〉 = |N |h(X,Y ) = |N |h(Y,X) = 〈sY,X〉 = 〈X, sY 〉

because h is symmetric. Therefore TpM has an orthonormal basis E1, . . . , En of eigenvectors,
sEi = κiEi, for s.

3.27. Definition. The principal directions and the principal curvatures of the embedding
M ⊂ M̃ are the orthonormal eigenvectors and the eigenvalues of the shape operator. The Gauss
curvature and the mean curvature of the embedding M ⊂ M̃ is the determinant, K = det s =

∏
κi,

and 1/nth of the trace, H = 1
n tr s = 1

n

∑
κi, of s.
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Principal curvatures are invariants of the embedding and not invariants of the manifold; see
[4, p 5–6] for examples. It therefore came as a total surprise that the product of the two principal
curvatures of an embedded surface does not depend on the embedding but only on the surface
itself.

3.28. Remark (The shape operator in a local frame). Suppose that (Ei) is a local frame. The
components of s = |N |h] are (5.27)

si
j = |N |hi

j = |N |gjkhik

and we obtain the formulas

H =
1
n

tr s =
1
n
|N |gijhij , K = det s = |N |n det(hij)

det(gij)

for the mean and Gaussian curvature. If N is a unit normal field, the Gaussin curvature is the
determinant of the 2nd fundamental form relative to the determinant of the 1st fundamental form.
Inserting hij = h(Ei, Ej) = 1

|N |2
〈
∇Ei

Ej , N
〉

from the Weingarten equation (3.24) we can also
write

H =
1

n|N |
gij
〈
∇EiEj , N

〉
, K =

1
|N |n

det(
〈
∇Ei

Ej , N
〉
)

det(gij)

for the mean and Gaussian curvature.

Theorem 3.29 (Theorema Egregium, Gauss 1828). The Gaussian curvature of a Riemannian
embedding M2 ⊂ R3 of a Riemannian surface in R3 does not depend on the embedding but only
on the Riemann surface itself. (In fact, the Gaussian curvature of the embedding equals half the
scalar curvature of the surface.)

Proof. Choose an orthonormal local frame (E1, E2) and a unit normal field N for M (to
make life a little easier). Then the Gaussian curvature of the Riemannian submanifold M

K
3.28= det(hij) = h(E1, E1)h(E2, E2)− h(E1, E2)2

(3.25)
= Rm(E1, E2, E2, E1)

3.15=
1
2
S

equals half of the scalar curvature of the Riemannian manifold M . �

In Gauss’ original formulation the theorem goes something like

If an area in E3 can be developed (i.e. mapped isometrically) into another area
of E3, the values of the Gaussian curvatures are identical in corresponding points

Gauss received a prize from the University of Copenhagen for this theorem.
We can therefore speak of the ‘Gaussian curvature’ of an (orientable) Riemann surface (as we

did in (3.15)).

3.30. Example (The shape of a parameterized surface in R3). Let X(u, v) be a parameteriz-
ation of a surface in M ⊂ R3. The vectors Xu = X∗(∂u) = ∂Xi

∂u ∂i and Xv = X∗(∂v) = ∂Xi

∂v ∂i (1.2)
form a basis for the tangent space of the surface. In this basis, the metric, the 1st fundamental
form, is

g =
(
〈Xu, Xu〉 〈Xu, Xv〉
〈Xv, Xu〉 〈Xv, Xv〉

)
, g−1 =

1
det g

(
〈Xv, Xv〉 − 〈Xu, Xv〉
− 〈Xv, Xu〉 〈Xu, Xu〉

)
,

The cross product N = Xu×Xv is an everywhere nonzero normal field. The vector Xuu = ∇Xu
Xu,

Xuu = ∇XuXu = ∇Xu(∂Xi

∂u ∂i)
(2.22)
= Xu(∂Xi

∂u )∂i
(2.34)
=

∂2Xi

∂2u
∂i

is simply obtained by differentiating each of the three coordinate functions in X twice wrt u. The
2nd fundamental form is

h =
1

2|N |

(
〈Xuu, N〉 〈Xuv, N〉
〈Xvu, N〉 〈Xvv, N〉

)

http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Gauss.html
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The formulas from 3.28 take the form

H =
1

2|N |
〈Xv, Xv〉 〈Xuu, N〉 − 2 〈Xu, Xv〉 〈Xuv, N〉+ 〈Xu, Xu〉 〈Xvv, N〉

〈Xu, Xu〉 〈Xv, Xv〉 − 〈Xu, Xv〉2

K =
1
|N |2

〈Xuu, N〉 〈Xvv, N〉 − 〈Xuv, N〉2

〈Xu, Xu〉 〈Xv, Xv〉 − 〈Xu, Xv〉2

In particular, if M is the graph of the function f , then X(u, v) = (u, v, f(u, v)), Xu = (1, 0, fu),
Xv = (0, 1, fv), Xuu = (0, 0, fuu), Xuv = (0, 0, fuv), Xvv = (0, 0, fvv). As N = Xu × Xv =
(−fu,−fv, 1) the formula gives the equation

H =
fuu(1 + f2

v ) + fvv(1 + f2
v )− 2fuvfufv

2(1 + f2
u + f2

v )3/2
, K =

fuufvv − f2
uv

(1 + f2
u + f2

v )2

for the mean and Gaussian curvature of a graph of a function of two variables. We see that a graph
is isometric to a plane if and only if fuufvv = fuvfuv. (The next example is a generalization.)

3.31. Example (The shape of a graph). Let M ⊂ Rn be the graph of the smooth function
f : Rn → R. We shall write fi for the ith partial derivative ∂f/∂ui and fij for ∂2f/∂ui∂uj . The
embedding X(u) = (u, f(u)), u ∈ Rn, is a parameterization of the graph. As in (3.30) the vectors

Xi = ∂i + fi∂n = (0, . . . , 0, 1, 0, . . . , 0, fi), 1 ≤ i ≤ n,

form a basis for the tangent space TpM of the graph. Thus gij =
〈
Xi, Xj

〉
= δij + fifj and

N = −
∑

fi∂i + ∂n = (−f1,−f2, . . . ,−fn, 1)

is a nonzero normal field. Now, ∇XiXj = fij∂n as in (3.30) so that
〈
∇XiXj , N

〉
= fij . From

(3.28) we get the expressions

H =
fijg

ij

2
√

1 +
∑

i f
2
i

, K =
1
|N |n

det(fij)
det(gij)

=
det(fij)

(1 +
∑

i f
2
i )n/2 det(δij + fifj)

for the mean and the Gaussian curvature of a graph.

4. Sectional curvature

Let (M, g) be a Riemannian manifold. We shall give a geometric interpretation of the Riemann
curvature Rm tensor of M .

Let p be a point of M . For each 2-dimensional subspace Π of the tangent space TpM , let
SΠ ⊂ M be the surface in M that is the image under expp of Π, or rather the image of the
part of Π where expp is a diffeomorphism, SΠ = expp(Π ∩ εp). We give SΠ the induced metric
so that SΠ ⊂ M is a Riemannian embedding. Note that the tangent space of SΠ is TpSΠ =
Tp expp(Π ∩ εp) = (expp)∗T0Π = T0Π = Π ⊂ TpM (2.34, 2.65).

3.32. Definition. Sectional curvature at p ∈M is the function that to any tangent plane Π ⊂
TpM to the manifold associates the Gaussian curvature K(Π) = K(SΠ)p at p of the Riemannian
surface Sπ.

3.33. Proposition. The sectional curvature of the tangent plane Π ⊂ TpM is

K(Π) =
Rm(X,Y, Y,X)
|X|2|Y |2 − 〈X,Y 〉2

where X,Y is any basis for Π.

Proof. For any V ∈ TpSΠ = Π, the geodesic γV in M runs inside SΠ. Gauss formula for the
velocity of a curve (3.21) implies that II(V, V ) = 0. Since the second fundamental form vanishes
at p, Gauss’ equation (3.20) says that Rm(X,Y, Z,W ) is the Riemann curvature tensor for the
surface SΠ at p for all X,Y, Z,W ∈ TpSΠ. Now (3.16) tells us about the Gaussian curvature of SΠ

at p. �
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In particular, if the oriented Riemannian manifold Mn ⊂ Rn+1 sits as an embedded codi-
mension one manifold in Rn+1 with Euclidean or Minkowski metric then (3.33, 3.25) the sectional
curvature is

(3.34) K(X,Y ) = |N |2h(X,X)h(Y, Y )− h(X,Y )2

g(X,X)g(Y, Y )− g(X,Y )2
=

1
|N |2

〈
∇XX,N

〉 〈
∇Y Y,N

〉
−
〈
∇XY,N

〉2
〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2

where N is a nowhere zero normal field.

3.35. Proposition. The sectional curvatures determine the Riemann curvature tensor of M .

Exactly how you get Riemann curvature out of sectional curvature is a bit complicated [1,
(1.10)]. It is easier to explain how you get Ricci and scalar curvature.

Let E1 ∈ TpM be a unit vector. Expand (E1) to an orthonormal basis E1, E2, . . . , En for TpM .
Then

Rc(E1, E1) = Rc11 =
∑

Rk11
k =

∑
k

Rk11k =
∑

k

Rm(E1, Ek, Ek, E1) =
∑
k>1

K(E1, Ek)

S = Rck
k =

∑
k

Rckk =
∑
j,k

Rjkkj =
∑
j,k

Rm(Ej , Ek, Ek, Ej) =
∑
j 6=k

K(Ej , Ek)

where we write K(X,Y ) for the Gaussian curvature K(span{X,Y }) of the plane spanned by the
independent vectors X and Y .

We shall next see that the three model geometries, Euclidean, spherical, and hyperbolic, are
Riemannian manifolds of constant sectional curvature, space forms.

3.36. Euclidean geometry. In Euclidean geometry (2.1, 2.59) the curvature tensor Rm = 0
(3.4) so that the sectional curvature K(Π) = 0 for any plane Π ⊂ TpRn at any point p ∈ Rn.

3.37. Spherical geometry. In spherical geometry (2.2, 2.60), the tangent space TpS
n
R = p⊥

(1.5) so that the normal space NpS
n
R = Rp is the line through p. Thus Np = 1

Rp is the outward
pointing unit normal vector field. For any point p ∈ Sn

R and any unit tangent vector V ∈ TpS
n
R,

Gauss formula for the velocity field of a curve (3.21) tells us that

II(V, V ) = − 1
R
N and h(V, V ) = − 1

R

as this is the acceleration of the geodesic through p with unit speed V , the great circle through
p tangent to V ∈ p⊥. Consider for instance the geodesic γ through (0, . . . , 0, R) with unit speed
•
γ (0) = (1, 0, . . . , 0) as in (2.61). Its acceleration is

••
γ (0) = − 1

R2
γ(0) = − 1

R
(
1
R
γ(0)) = − 1

R
N(γ(0))

Since h(V, V ) = − 1
R for all unit tangent vectors V , h(U, V ) = 0 for any orthonormal pair U, V of

tangent vectors. Formula (3.34) tells us that the sectional curvature of Sn
R

K(Π) =
1
R2

is constant. 27.04.05

3.38. Hyperbolic geometry. In hyperbolic geometry (2.14, 2.62), the tangent space TpH
n
R =

p⊥ (2.15) so that the normal space NpH
n
R = Rp is the line through p. Thus Np = 1

Rp is a normal
vector field of constant square length |N |2 = −1. For any point p ∈ Hn

R and any unit tangent
vector X ∈ TpH

n
R, Gauss formula for the velocity field of a curve (3.21) tells us that

II(V, V ) =
1
R
N and h(V, V ) =

1
R

as this is the acceleration of the geodesic through p with unit speed V , the great hyperbola through
p tangent to V ∈ p⊥. Consider for instance the geodesic γ through (0, . . . , 0, R) with unit speed
•
γ (0) = (1, 0, . . . , 0) as in (2.63). Its acceleration is

••
γ (0) =

1
R2

γ(0) =
1
R

(
1
R
γ(0)) =

1
R
N(γ(0))
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Since h(V, V ) = 1
R for all unit tangent vectors V , h(U, V ) = 0 for any orthonormal pair U, V of

tangent vectors. Formula (3.34) tells us that the sectional curvature of Hn
R

K(Π) = − 1
R2

is constant.
For space forms there are explicit formulas for the curvature tensors.

3.39. Proposition. In a Riemannian manifold with constant sectional curvature C,

R(X,Y )Z = C [〈Y, Z〉X − 〈X,Z〉Y ]

Rm(X,Y, Z,W ) = C [〈X,W 〉 〈Y, Z〉 − 〈X,Z〉 〈Y,W 〉]
Rc(X,Y ) = (n− 1)C 〈X,Y 〉

S = n(n− 1)C

Proof. The first and the second equation are equivalent. Both sides of the second equation
are tensors with the symmetry properties of the curvature tensor. Thus they are equal if they
are equal for (X,Y, Z,W ) = (X,Y, Y,X) with orthonormal X,Y (3.35). In that case the LHS is
K(X,Y ) = C and the RHS is C.

Both sides of the third equation are symmetric tensors. Thus they are equal if they are equal
for (X,Y ) = (X,X) with X a unit vector. In that case the LHS is (n− 1)C by the formula below
3.35 and the RHS is also (n− 1)C.

The formula below 3.35 says that constant sectional curvature C implies constant scalar
curvature of value n(n− 1)C. �

3.40. Example (The shape of the sphere). Since we know the 2nd fundamental form of
the sphere (3.37) we also know the shape operator. In fact, the shape operator (3.26) for the
codimension one Euclidean embedding Sn

R ⊂ Rn+1 is the symmetric isomorphism

s : TpS
n
R = p⊥ → TpS

n
R = p⊥, s(V ) = − 1

R
V

for this is clearly self-adjoint and its bilinear form, or quadratic function, is given by 〈sV, V 〉 =
− 1

R = h(V, V ) when |V | = 1. Thus the principal curvatures all equal − 1
R and the mean and

Gaussian curvatures of the embedding Sn
R ⊂ Rn+1 are

H =
1
n

tr(s) = − 1
R
, K = det(s) =

(−1)n

Rn

The sign depends on the choice of unit normal field.

5. Jacobi fields

Let γ : [a, b]→M be a geodesic from γ(a) = p to γ(b) = q.

3.41. Definition. A smooth vector field J along γ is a Jacobi field if

DtDtJ +R(J,
•
γ)

•
γ= 0 (Jacobi equation)

3.42. Proposition (Existence and uniqueness of Jacobi fields). There is an isomorphism of
vector spaces

{Jacobi fields along γ} → TpM × TpM : J → (J(a), DtJ(a))

Proof. The claim is that for any given X,Y ∈ TpM there exists a unique Jacobi field J along
γ such that J(p) = X and DtJ(p) = Y . Let (Ei(t)) be an orthonormal frame of parallel vector
fields along γ. Write J = J iEi. The vector field J is Jacobi if and only if

∀i : 〈DtDtJ,Ei〉 = −
〈
R(J,

•
γ)

•
γ,Ei

〉
The LHS is

〈DtDtJ,Ei〉 =
d2

dt2
〈J,Ei〉 =

d2J i

dt2
Ei

and the RHS is

−
〈
R(J,

•
γ)

•
γ,Ei

〉
= −

〈
R(Ej ,

•
γ)

•
γ,Ei

〉
Jj = −Rm(Ej ,

•
γ,

•
γ,Ei)Jj
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In matrix notation the requirement is

d2

dt2

J
1

...
Jn

 = −
(
(Rm(Ej ,

•
γ,

•
γ,Ei)

)J
1

...
Jn


This 2nd order linear system of ODEs has a unique solution with the given initial conditions. �

3.43. Lemma. Suppose that V is smooth vector field along a smooth variation of γ through
geodesics Γ: (−ε, ε)× [a, b]→M . Then

DsDtV −DtDsV = R(∂sΓ, ∂tΓ)V

Proof. Choose local coordinates x : M → Rn. Let xΓ(s, t) = (Γ1(s, t), . . . ,Γn(s, t)) and V =
V i(s, t)∂i be the local expressions for Γ and V . By properties of the covariant derivative along a
curve (2.36)

DtV = Dt(V i∂i) =
∂V i

∂t
∂i + V iDt∂i

and

DsDtV = Ds(
∂V i

∂t
∂i + V iDt∂i) = Ds(

∂V i

∂t
∂i) +Ds(V iDt∂i)

=
∂2V i

∂s∂t
∂i +

∂V i

∂t
Ds∂i +

∂V i

∂s
Dt∂i + V iDsDt∂i

When we compute the difference DsDtV −DtDsV many terms cancel and we are left with

DsDtV −DtDsV = V i(DsDt −DtDs)∂i

Since the vector field ∂i and its covariant derivative are extendible,

V i(DsDt−DtDs)∂i = V i(∇∂sΓ∇∂tΓ∂i−∇∂tΓ∇∂tΓ∂i) = V i(∇∂sΓ∇∂tΓ−∇∂tΓ∇∂tΓ)∂i = R(∂sΓ, ∂tΓ)V

where the last equality uses that [∂sΓ, ∂tΓ] = [Γ∗(∂s),Γ∗(∂t)] = Γ∗[∂s, ∂t] = Γ∗(0) = 0. �

3.44. Proposition.

{Jacobi fields along γ} = {Variational fields of smooth variations of γ through geodesics}

Proof. We shall only prove sup. Let Γ: (−ε, ε)× [a, b]→M be a smooth variation of γ
through geodesics. Lemma 3.43 applied to the vector field ∂tΓ along Γ says that

DsDt∂tΓ−DtDs∂tΓ = R(∂sΓ, ∂tΓ)∂tΓ

In the first term, Dt∂tΓ = 0 as each main curve is a geodesic. In the second term, Ds∂tΓ = Dt∂sΓ
by the Symmetry Lemma 2.71. Thus the equation says that

DtDt∂sΓ +R(∂sΓ, ∂tΓ)∂tΓ = 0

At s = 0, ∂sΓ = V is the variational field and ∂tΓ =
•
γ is the velocity field of γ so that we have the

Jacobi equation DtDtV +R(V,
•
γ)

•
γ= 0.

The opposite inclusion is also true [1], but we shall need it here. �

For each Y ∈ TpM , let JY be the Jacobi field along γ with JY (a) = 0 and DtJY (a) = 0. Here
is an explicit description of JY .

3.45. Proposition (Jacobi fields vanishing at p). Let γ(t) = expp(tT ), T ∈ TpM , |T | = 1, be
the unit speed parametrization of γ (defined for t such that tT ∈ εp ⊂ TpM). For any Y ∈ TpM ,

JY (t) = t(expp)∗tT (Y )

Proof. The variation Γ(s, t) = expp(t(T + sY )) is a smooth variation of γ through the radial
geodesics t → expp(t(T + sY )). Its variational field J is therefore a Jacobi field. The tangent
vector J(t) at γ(t) is represented by the curve

s→ expp(tT + stY )

and hence J(t) = (expp)∗tT (tY ) = t(expp)∗tT (Y ) = tU(t) and DtJ = Dt(tU) = U + tDtU where
U(t) = (expp)∗tT (Y ). In particular, J(0) = 0 and DtJ(0) = U(0)Y = (expp)∗(Y ) = Y . �
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A Jacobi field J along γ is normal if
〈
J(t),

•
γ (t)

〉
= 0 for all t.

3.46. Lemma. A Jacobi field J along γ is normal iff J(0) and DtJ(0) are orhtogonal to
•
γ (0)

iff J vanishes at two points.

Proof. The point is that
〈
J,

•
γ
〉

is an affine function, t→ at+ b, of t because

d2

dt2

〈
J,

•
γ
〉

=
d

dt

〈
DtJ,

•
γ
〉

=
〈
DtDtJ,

•
γ
〉

= −
〈
R(J,

•
γ)

•
γ,

•
γ
〉

= Rm(J,
•
γ,

•
γ,

•
γ) = 0

by anti-symmetry of the Riemann curvature tensor. If such a function vanishes at two points or
itself and its derivative vanishes at one point, then it is identically zero. �

The vector space of normal Jacobi fields is isomorphic to
•
γ (0)⊥×

•
γ (0)⊥ of dimension 2n− 2.

The vector space of normal Jacobi fields J along γ with J(p) = 0 is isomorphic to
•
γ (0)⊥ of

dimension n− 1.
The Jacobi fields that are not normal are linear combinations of the two Jacobi fields J0 =

•
γ

and J1 = tJ0 with J0(0) =
•
γ (0), DtJ0(0) = 0 and J1(0) = 0, DtJ1(0) =

•
γ (0) and DtDtJ0 = 0 =

DtDtJ1.

3.47. Conjugate points. We say that two points on a geodesic segment γ are conjugate if
there exists a nonzero Jacobi (necessarily normal) field along γ that vanishes at p and q. The
dimension of the vector space of all such Jacobi fields is the multiplicity of conjugacy.

3.48. Corollary. Consider the smooth function expp : εp →M . Let q = expp(rT ) 6= p be a
point on the geodesic γ(t) = expp(tT ). Then

expp is not a local diffeomorphism at rT ⇐⇒ p and q are conjugate points

Proof. The Jacobi fields that vanish at p are JY = t(expp)∗tT (Y ) (3.45). The value of such
a Jacobi field at q = expp(rT ) is JY (r) = t(expp)∗tT (Y ). Thus there is nonzero Jacobi field that
vanishes at p and q iff there is a nonzero vector in the kernel of (expp)∗rT . �

3.49. Jacobi fields in constant sectional curvature manifolds. Jacobi fields have par-
ticularly simple descriptions in Riemannian manifolds with constant sectional curvature.

3.50. Proposition (Normal Jacobi fields in constant sectional curvature manifolds). Suppose
that M is a Riemannian manifold of constant sectional curvature C. Let γ be a unit speed geodesic
in M with γ(0) = p and

•
γ (0) = T where T is a unit vector in TpM . For any Y ∈ T⊥, the normal

Jacobi field JY is
JY (t) = uC(t)Y (t)

where Y (t) is the parallel vector field along γ with Y (0) = Y and

uC(t) =


R sin(t/R) C = 1/R2

t C = 0
R sinh(t/R) C = −1/R2

is the solution to
••
uC +CuC = 0, uC(0) = 0,

•
uC (0) = 1.

Proof. Put J(t) = uC(t)Y (t). Then DtJ = u′CY and DtDtJ = u′′CY = −CJ as Y (t) is
parallel. Thus J(0) = 0 and DtJ(0) = Y . By construction, J is orthogonal to γ (2.52). It is a
Jacobi field because (3.39)

R(J,
•
γ)

•
γ= C

[
〈
•
γ,

•
γ〉J − 〈J,

•
γ〉

•
γ
]

= CJ = −DtDtJ

as γ has unit speed and J is normal to γ. We conclude that J = JY . �

Look at concrete Jacobi fields along geodesics in Rn and Sn
R obtained by variations through

geodesics.
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3.51. Proposition (Space form metrics in normal coordinates). Let M be a Riemannian mani-
fold of constant sectional curvature C and p a point of M . Consider the smooth map expp : εp →M .
Let T ∈ TpM be a unit vector and r > 0 a positive scalar such that rT ∈ εp. Put q = expp(rT ).
The induced isomorphism (expp)∗rT : TpM → TqM satisifies

|(expp)∗rTY |2q = |Y ⊥|2p +
uC(r)2

r2
|Y T |2p, Y ∈ TrTTpM = TpM

where Y = Y ⊥ + Y T are the components of Y orthogonal and tangent to the sphere through rT .

Proof. Let γ(t) = expp(tT ) be the unit speed geodesic from p to q.
The Gauss lemma (2.74) says that

|(expp)∗rTY |2q = |(expp)∗rT (Y ⊥ + Y T )|2q = |(expp)∗rT (Y ⊥)|2q + |(expp)∗rT (Y T )|2q

as the components (expp)∗rT (Y ⊥) and (expp)∗rT (Y T ) are orthogonal.
The radial component Y ⊥ equals λT for some λ > 0. Thus (expp)∗rTY

⊥ is represented by the
radial curve

s→ expp(rT + sλT ) = γ(r + sλ)

and therefore (expp)∗rT (Y ⊥) = λ
•
γ (r) has length |λ| = |λT |p = |Y ⊥|p. Thus (expp)∗rT preserves

length in the radial direction.
The normal Jacobi field J = J 1

r Y T (3.45) has value 0 at p and value J(r) = r(expp)∗rT ( 1
rY

T ) =
(expp)∗rT (Y T ) at q. Now,

J(t) =
1
r
uC(t)Y T (t)

according to the description of normal Jacobi fields in manifolds of constant sectional curvature
(3.50) so that we may compute the length of J at any point γ(t) on γ as

|J(t)|2γ(t) =
uC(t)2

r2
|Y T |2p

for the length of any parallel vector field is constant (2.52). In particular, the length of J at q is

|(exp)∗rT (Y T )|2q = |J(r)|2q =
uC(r)2

r2
|Y T |2p

as asserted. �

The above proposition says that constant sectional curvature metrics expressed in normal
coordinates (2.67)

M TpM
exppoo Rn

∼=oo

only depend on the function uC so only depend on C.

3.52. Corollary (Local uniqueness of manifolds of constant sectional curvature). Let M0

and M1 be two Riemannian manifolds of constant sectional curvature C. Any two points, p0 ∈M0

and p1 ∈M1, have isometric neighborhoods.

Proof. An isometry can be constructed as the composite in

(Tp0M0, g0)

exp0

��

(Rn, gn)
∼= //∼=oo (Tp1M1, g1)

exp1

��
M0

//_____________ M1

where the upper horizontal maps are linear isometries and the other maps are understood to be
defined only locally and to be diffeomorphisms. Since a space form metric in a normal neighborhood
around a point is determined by the the inner product at the tangent space of the point, this is an
isometry. �



42 3. CURVATURE

3.53. Second variation formula. For any variation Γ of the geodesic γ(t) = Γ(0, t) we know
that

γ is minimizing =⇒ d

ds
L(Γs)(0) = 0 and

d2

ds2
L(Γs)(0) ≥ 0

But what is the second derivative?

3.54. Lemma. Let γ : [a, b]→M be a unit speed geodesic and Γ: (−ε, ε)× [a, b]→M a smooth
variation of γ. Then

d2

ds2
L(Γs)(0) =

∫ b

a

(
|DtV

⊥|2 − Rm(V ⊥,
•
γ,

•
γ, V ⊥)

)
dt+

〈
Ds∂sΓ,

•
γ
〉 ∣∣∣b

a

where V ⊥ is the normal part of V .

Proof. In the proof of 2.73 we saw that the first derivative of the curve length function is

d

ds
L(Γs) =

∫ b

a

〈Dt∂sΓ, ∂tΓ〉
|∂tΓ|

dt =
∫ b

a

〈Dt∂sΓ, ∂tΓ〉 〈∂tΓ, ∂tΓ〉−1/2
dt

Differentiating once more we get that the second derivative is

d2

ds2
L(Γs) =

∫ b

a

d

ds

(
〈Dt∂sΓ, ∂tΓ〉 〈∂tΓ, ∂tΓ〉−1/2

)
dt

=
∫ b

a

(
〈DsDt∂sΓ, ∂tΓ〉

|∂tΓ|
+
〈Dt∂sΓ, Ds∂tΓ〉

|∂tΓ|
− 〈Dt∂sΓ, ∂tΓ〉 〈Ds∂tΓ, ∂tΓ〉

|∂tΓ|3

)
dt

where
DsDt∂sΓ = DtDs∂sΓ +R(∂sΓ, ∂tΓ)∂sΓ (3.43)

Ds∂tΓ = Dt∂sΓ (2.71)

At s = 0, |∂tΓ| = |
•
γ | = 1, and ∂sΓ = V so that

d2

ds2
L(Γs)(0) =

∫ b

a

(〈
DtDs∂sΓ,

•
γ
〉
− Rm(V,

•
γ,

•
γ, V ) + |DtV |2 −

〈
DtV,

•
γ
〉2
)
dt

In the first term we still use ∂sΓ and not V . Since γ is a geodesic and Dt

•
γ= 0, the first term is∫ b

a

〈
DtDs∂sΓ,

•
γ
〉
dt =

∫ b

a

d

dt

〈
Ds∂sΓ,

•
γ
〉
dt =

〈
Ds∂sΓ,

•
γ
〉 ∣∣∣b

a

Now look at the last two terms. Split V = V T +V ⊥ into the tangential and the normal part. The
tangential component, V T =

〈
V,

•
γ
〉 •
γ, has covariant derivative

Dt(V T ) = Dt(
〈
V,

•
γ
〉 •
γ) =

〈
DtV,

•
γ
〉 •
γ= (DtV )T

and therefore also Dt(V ⊥) = (DtV )⊥. It follows that

|DtV |2 = |(DtV )T |2 + |(DtV )⊥|2 =
〈
DtV,

•
γ
〉2

+ |DtV
⊥|2

or |DtV |2−
〈
DtV,

•
γ
〉2

= |DtV
⊥|2. Finally we note that the tangential part of V does not contribute

to Rm(V,
•
γ,

•
γ, V ) because Rm(

•
γ,

•
γ,

•
γ, V ) = 0 = Rm(V,

•
γ,

•
γ,

•
γ). �

Theorem 3.55 (Second Variational Formula). Let γ : [a, b]→M be a unit speed geodesic and
Γ: (−ε, ε)× [a, b]→M a piecewise smooth proper variation of γ. Then

d2

ds2
L(Γs)(0) =

∫ b

a

(
|DtV

⊥|2 − Rm(V ⊥,
•
γ,

•
γ, V ⊥)

)
dt

where V ⊥ is the normal part of V .
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Proof. We appply the formula from 3.54 to each of the rectangels (−ε, ε) × [ai−1, ai] where
Γ is smooth. This gives that d2

ds2L(Γs)(0) equals∫ b

a

(
|DtV

⊥|2 − Rm(V ⊥,
•
γ,

•
γ, V ⊥)

)
dt+

n∑
i=1

〈
Ds∂sΓ(a−i ),

•
γ (ai)

〉
−
〈
Ds∂sΓ(a+

i−1),
•
γ (ai)

〉
Note thatDs∂sΓ(a−i ) = Ds∂sΓ(a+

i ) because this vector field only depends on Γ along the line t = ai.

Thus the contributions from the points ai telescope to
〈
Ds∂sΓ(b),

•
γ (b)

〉
−
〈
Ds∂sΓ(a),

•
γ (a)

〉
which

is 0 since the variation keeps the end-points fixed. �

The expression in the Second Variational Formula is the quadratic function I(V ⊥, V ⊥) of the
bilienar form (the index form)

(3.56) I(V,W ) =
∫ b

a

(
〈DtV,DtW 〉 − Rm(V,

•
γ,

•
γ,W )

)
dt

defined for all piecewise smooth normal proper vector fields V and W along γ. If V and W happen
to be smooth then the integrand is

d

dt
〈DtV,W 〉 − 〈DtDtV,W 〉 − Rm(V,

•
γ,

•
γ,W ) = −

〈
DtDtV +R(V,

•
γ)

•
γ,W

〉
+
d

dt
〈DtV,W 〉

so that the index form may be written

I(V,W ) = −
∫ b

a

〈
DtDtV +R(V,

•
γ)

•
γ,W

〉
dt+ 〈DtV,W 〉

∣∣∣b
a

In general, there may be points a = a0 < a1 < · · · ak = b where V and W are not smooth and then

(3.57) I(V,W ) = −
∫ b

a

〈
DtDtV +R(V,

•
γ)

•
γ,W

〉
dt−

k−1∑
i=1

〈
DtV (a+

i )−DtV (a−i ),W (ai)
〉

which shows the connection to the Jacobi equation.

3.58. Corollary. If γ is a unit speed minimizing curve then γ is a geodesic and I(V, V ) ≥ 0
for any picewise smooth proper normal vector field V along γ.

Proof. Any such V is the variational field for some proper variation of γ (2.81). Since γ is
minimizing, d

dsL(Γs)(0) = 0 so that γ is a unit speed geodesic (2.82) and d2

ds2L(Γs)(0) = I(V, V ) ≥ 0
by the Second Variation Formula (3.55). �

Theorem 3.59. Let γ be a geodesic segment from p to q. If γ contains an interior point
conjugate to p, then γ is not minimizing.

Proof. It suffices to find a proper normal vector field V along γ with index form I(V, V ) < 0.
By assumption there exists a nontrivial Jacobi field J vanishing at p and at some interior point

γ(c). The Jacobi field J is normal since it vanishes at two points (3.46), and DtJ(c) 6= 0 as J is
not the zero field (3.42). Extend J to a piecewise smooth normal vector field by J = 0 from γ(c)
to q.

Now choose a smooth normal proper vector field W along γ such that W (c) = −DtJ(c−)
(by using a smooth bump function). Since J is a piecewise smooth Jacobi field I(J, J) = 0 and
I(J,W ) = −|DtJ(c−)|2 (3.57). For any ε ∈ R we have

I(J + εW, J + εW ) = −2ε|DtJ(c−)|2 + ε2I(W,W )

which is negative when ε is close to 0. �
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6. Comparison theorems

Theorem 3.60 (Jacobi field Comparison). Suppose that the sectional curvature is bounded
from above by some constant C, K ≤ C, in the manifold M . For T, Y ∈ TpM , T ⊥ Y , let γ be the
unit speed geodesic through p ∈ M in direction T ∈ TpM and JY the normal Jacobi field along γ
with JY (p) = 0 and DtJY (p) = Y . Then the inequality

|JY (t)| ≥ uC(t)|Y |
holds for t ∈ [0, πR] if C = 1/R2 > 0 and for all t ≥ 0 if C ≤ 0. (The Jacobi field is longer than
it would have been had the sectional curvature been constant.)

Proof. We may as well assume that Y is a unit vector. The claim is then that |J(t)| ≥ |uC(t)|
for certain values of t where J is short for JY . The function uC is the solution to

••
u +Cu = 0 so

we want to apply the Sturm comparison theorem with u = uC and v = |J |. We need to verify that
v(0) = 0, that v is differentiable at 0 with

•
v (0) = 1, and that d2

dt2 |J(t)|+C|J(t)| ≥ 0 in an interval
[0, T ].
v(0) = 0: This is clear because J(0) = 0.
•
v (0) = 0: It is not a priori clear that the function v = |J, J | = 〈J, J〉1/2 is differentiable at 0. But
J(t) = tU(t) for a certain vector field U (3.45) so that the difference quotient

|J(t)| − |J(0)|
t− 0

= |U(t)|, t > 0,

converges to |U(0)| = |DtJ(0)| = |Y | = 1 for t→ 0+. Thus v is differentiable at 0 and
•
v (0) = 1.

Since v(0) = 0 and
•
v (0) = 1 > 0, v(t) = |J(t)| is postive on some interval (0, T ). In this

interval v(t) = |J(t)| = 〈J, J〉1/2 is smooth and we can compute its derivatives.
••
v +Cv ≥ 0: We compute (using the Schwartz inequality and the Jacobi equation)

d2

dt2
|J | = d

dt

(
〈DtJ, J〉

1
|J |

)
=

〈
D2

t J, J
〉

+ 〈DtJ,DtJ〉
|J |

− 〈DtJ, J〉2

|J |3

=
−Rm(J,

•
γ,

•
γ, J)

|J |
+
|DtJ |2

|J |
− 〈DtJ, J〉2

|J |3

≥ −Rm(J,
•
γ,

•
γ, J)

|J |
+
|DtJ |2

|J |
− |DtJ |2|J |2

|J |3

=
−Rm(J,

•
γ,

•
γ, J)

|J |
=
−Rm(J,

•
γ,

•
γ, J)

|J |2
|J | = −K(J,

•
γ)|J |

≥ −C|J |
and obtain the required estimate.

We can therefore conclude from the Sturm comparison theorem that |J(t)| ≥ |uC(t)| on [0, T ].
If C ≤ 0, the function uC has no zeros on (0,∞), so |J(t)| can not become 0 either on this interval
and we can take T =∞. If C = 1/R2 > 0, then |J(t)| can not attain a zero before πR and we can
take T = πR. �

3.61. Corollary (Conjugate Point Comparison Theorem). Suppose that the sectional curvature
is bounded from above by some constant C, K ≤ C, in the manifold M . If C = 1/R2 > 0, then
there are no points conjugate to p in the geodesic ball BπR(p) of radius πR. If C ≤ 0, then there
are no points at all conjugate to p.

Theorem 3.62 (Metric Comparison Theorem). Suppose that K ≤ C in the manifold M . Then
we have that

|(expp)∗rTY |2q ≥ |Y ⊥|2p +
uC(r)2

r2
|Y T |2p, Y ∈ TrTTpM = TpM

in the situation of 3.51. If C ≤ 0, then

|(expp)∗rTY |2q ≥ |Y |2p
meaning that expp does not decrease length.
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Proof. The proof is the same as in 3.51 execpt that at some point we must replace an equality
by the inequality from 3.60. �

Theorem 3.63 (Cartan–Hadamard). Let M be a connected, complete Riemannian manifold
of nonpositive sectional curvature. Then expp : TpM →M is the universal covering space of M
(for any point p ∈ M). In particular, M is a K(π, 1), and if M is simply connected, then
expp : TpM →M is a diffeomorphism.

3.64. Lemma. Let φ : M̃ →M be local isometry between two connected Riemannian manifolds.
If M̃ is complete, then φ is a covering map.

Proof of Theorem 3.63. The exponential map expp is defined on all of TpM because M
is complete (2.87); it is a local diffeomorphism since p has no conjugate points (3.48, 3.61). If we
let g̃ = exp∗p(g) be the pull-back metric, then expp is a local isometry (TpM, g̃) → (M, g). The
Riemannian manifold (TpM, g̃) is complete because the straight line t → tY , Y ∈ TpM , defined
for all t, is a geodesic as its image under the local isometry expp is a geodesic. Lemma 3.64 now
implies that expp is a covering map. �





CHAPTER 4

Space-times

Hall’s book on relativity [2] is in the library. Hawking and Ellis [3] or O’Neill [7] are also a
possibilities.

Let now M be a 4-dimensional smooth manifold with a Lorentz metric. Einstein’s gravitational
tensor is

G = Rc− 1
2
Sg = Rc− 1

2
trg(Rc)g

The g-trace of G is

trg(G) = trg(Rc)− 1
2
4S = S − 2S = −S

since trg(g) = 4 in this case (5.26). Therefore

Rc = G+
1
2
Sg = G− 1

2
(−S)g = G− 1

2
trg(G)g

and we see that G and Rc determine each other, they contain the same information. The gravita-
tional tensor has zero divergence (3.11),

div(G) = div(Rc− 1
2
Sg) =

1
2
∇S − 1

2
∇S = 0

as div(Rc) = 1
2∇S by the Contracted Bianchi identity (3.12).

Einstein says that gravitation is not a force but a geometrical property of spacetime. A particle
in free fall, under the influence of gravity alone, will follow a geodesic in spacetime. When you
throw a stone it will trace out a geodesic in spacetime. Einstein’s equation

T =
1
8π
G

says that the stress-energy tensor T of matter is proportional to the gravitational tensor. This
is not a mathematical statement but (an assertion about) a law of nature just like Newton’s law
of inertia. Einstein’s equation tells how matter generates Ricci curvature of space-time. The
equation div(T ) = 0 tells how Ricci curvature moves matter. There is no definition of matter – it
is something that has stress–energy ... Check out

Baez and Bunn: The meaning of Einstein’s equation
Sean M. Carroll: Lecture Notes on General Relativity

Clifford M. Will: The Confrontation between General Relativity and Experiment.
Apparently T is determined by the distribution of mass/energy and the equation then expresses

the impact of matter on the Ricci curvature of spacetime [7].
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http://math.ucr.edu/home/baez/einstein/einstein.pdf
http://pancake.uchicago.edu/~carroll/notes/
http://relativity.livingreviews.org/Articles/lrr-2001-4/




CHAPTER 5

Multilinear Algebra

We review some vector space constructions from linear algebra.

1. Tensors

An endomorphism of a vector space V is a special case of a tensor on V . Thus tensors are
generalized endomorphisms or, in coordinates, generalized matrices. The formal definition goes as
follows.

Let V be a finite dimensonal real vector space and V ∗ = Hom(V,R) the dual space of linear
forms on V .

5.1. Lemma. There are natural isomorphisms between the following three vector spaces

• Bilinear maps V ∗ × V A−→ R
• Linear maps V ∗ B−→ Hom(V,R)
• Linear maps V C−→ Hom(V ∗,R)

given by A(ω, v) = B(ω)(v) = C(v)(ω). In particular, the evaluation morphism ev : V ∗ × V → R,
given by ev(ω, v) = ω(v), corresponds to the identity V ∗ = Hom(V,R) and to the isomorphism
V → Hom(V ∗,R) given by v → (ω → ω(v)).

5.2. Definition. The
(
k
`

)
-tensor space of V is the vector space T k

` (V ) of all R-multilinear

homomorphisms
V ∗ × · · · × V ∗︸ ︷︷ ︸

`

×V × · · · × V︸ ︷︷ ︸
k

→ R

An element of T k
` (V ) is called a

(
k
`

)
-tensor.

The tensor product of A ∈ T k1
`1

(V ) and B ∈ T k2
`2

(V ), is the multilinear map A⊗B ∈ T k1+k2
`1+`2

(V )
given as the composite

V ∗ × · · · × V ∗︸ ︷︷ ︸
`1+`2

×V × · · · × V︸ ︷︷ ︸
k1+k2

= V ∗ × · · · × V ∗︸ ︷︷ ︸
`1

×V × · · · × V︸ ︷︷ ︸
k1

×V ∗ × · · · × V ∗︸ ︷︷ ︸
`2

×V × · · · × V︸ ︷︷ ︸
k2

A×B−−−→ R×R ·−→ R

where · is multiplication in the ring R.

A
(
k
`

)
-tensor A ∈ T k

` (V ) eats ` covectors ω1, . . . , ω` ∈ V ∗ and k vectors v1, . . . , vk ∈ V and

spits out a real number A(ω1, . . . , ω`, v1, . . . , vk) ∈ R.
Some special cases of tensor spaces are
• T 0

0 (V ) = R
• T 1

0 (V ) = Hom(V,R) = V ∗

• T 0
1 (V ) = Hom(V ∗,R)

5.1∼= V

• T 1
1 (V ) = {V ∗ × V A−→ R} = {V → Hom(V ∗,R)} = {V s−→ V } = Hom(V, V ), A(ω, v) =
ω(sv).

• T k
` (V ) ∼= T `

k(V ∗)
• T k

0 is a contravariant and T 0
` a covariant endofunctor of the category of finite dimensional

real vector spaces.
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There is a bilinear map

T 0
1 (V )× T 1

0 (V ) = V × V ∗ ⊗−→ T 1
1 (V ) = {V ∗ × V → R}

given by (u ⊗ φ)(ψ, v) = ψ(u)φ(v). Note that if Ei is a basis for V and φj the dual basis for V ∗,
then Ei ⊗ φj is a basis for T 1

1 (V ) = Hom(V, V ).
Guided by the principle that tensors are generalized endomorphisms we define, more generally,

the tensor product as the bilinear map

T k1
`1

(V )× T k2
`2

(V ) ⊗−→ T k1+k2
`1+`2

(V )

(A,B)→ A⊗B

given by

(A⊗B)(ω1, . . . , ω`1 , ω`1+1, . . . , ω`1+`2 , v1, . . . , vk1 , vk1+1, . . . , vk1+k2)

= A(ω1, . . . , ω`1 , v1, . . . , vk1)B(ω`1+1, . . . , ω`1+`2 , vk1+1, . . . , vk1+k2)

5.3. Lemma. dimT k
` (V ) = (dimV )k+`

Proof. Let E1, . . . , En be a basis for V and φ1, . . . , φn the dual basis for V ∗ given by φi(Ej) =
δj
i , n = dimV . Then the set

(5.4) {Ej1 ⊗ · · · ⊗ Ej`
⊗ φi1 ⊗ · · · ⊗ φik | 1 ≤ i1, . . . , ik, j1, . . . , j` ≤ n}

is a basis for T k
` (V ): These multilinear maps are clearly linearly independent and since

(5.5) A =
∑

Aj1···j`

i1···ik
Ej1 ⊗ · · · ⊗ Ej`

⊗ φi1 ⊗ · · · ⊗ φik , Aj1···j`

i1···ik
= A(φj1 , . . . , φj` , Ei1 , . . . , Eik

)

for any multilinear map A ∈ T k
` (V ), they generate T k

` (A) �

The convention is that vectors have a lower index so that components of vectors have an upper
index: V = V jEj . Similarly, covectors have an upper index and their components have a lower
index: ω = ωiφ

i.
Now comes a more natural way of considering tensors (as generalized endomorphisms). We

have already seen the special case of T 1
1 (V ) = Hom(V, V ). In general, we may view T k

`+1(V ) as the
vector space of all multilinear maps (V ∗)` × V k → V .

5.6. Lemma. There is an isomorphismbetween the vector space T k
`+1(V ) of all multilinear

homomorphisms

V ∗ × · · · × V ∗︸ ︷︷ ︸
`+1

×V × · · · × V︸ ︷︷ ︸
k

A−→ R

and the vector space of all multilinear homomorphisms

V ∗ × · · · × V ∗︸ ︷︷ ︸
`

×V × · · · × V︸ ︷︷ ︸
k

B−→ V

given by
A(ω, ω1, . . . , ω`, v1, . . . , vk) = ωB(ω1, . . . , ω`, v1, . . . , vk)

Proof. As in 5.1 there is an isomorphism bewteen

• the vector space of multilinear maps V ∗ × (V ∗)` × V k A−→ R and
• the vector space of multilinear maps (V ∗)` × V k B−→ Hom(V ∗,R) ∼= V .

given by A(ω, ψ, v) = ωB(ψ, v). �

The trace homomorphism tr : T 1
1 (V ) = Hom(V, V )→ R = T 0

0 (V ) is the unique homomorphism
that makes the diagram

V × V ∗

ev
##GGGGGGGGG
⊗ // T 1

1 (V )

tr
||yyyyyyyy

R



2. TENSORS OF INNER PRODUCT SPACES 51

commutative; it is given by tr(v ⊗ φ) = φ(v). For eample, tr(id) = dimV . More generally, we
define the tr : T k+1

`+1 → T k
` (V ) to be the unique homomorphism that makes the diagram

V × T k
` (V )× V ∗

ev

&&MMMMMMMMMMMM
⊗ // T k+1

`+1 (V )

tr
{{ww

ww
ww

ww
w

R

commutative; it is given by tr(v ⊗A⊗ φ) = φ(v)A for all tensors A ∈ T k
` (V ).

5.7. Lemma (Contraction of tensors). For each k and ` there exits a unique R-linear map

tr : T k+1
`+1 (V )→ T k

` (V )

such that tr(v ⊗A⊗ φ) = φ(v)A for all v ∈ V = T 0
1 (V ), A ∈ T k

` (V ) and φ ∈ V ∗ = T 1
0 (V ).

Proof. The only possibility is the linear map whose values on the basis (5.4) is

tr(Ej ⊗ Ej1 ⊗ · · · ⊗ Ej`
⊗ φi1 ⊗ · · · ⊗ φik ⊗ φi) = δj

iEj1 ⊗ · · · ⊗ Ej`
⊗ φi1 ⊗ · · · ⊗ φik

and this map actually has the property because

tr(v ⊗A⊗ ω) = tr(viEi ⊗A⊗ ωjφ
j) = ωjv

iδj
iA = ω(v)A

for all v ∈ V and ω ∈ V ∗. �

The tensor algebra of V is the graded algebra T ∗(V ) =
⊕∞

k=0 T
k(V ) with tensor product as

product. T ∗ is a contravariant functor.

2. Tensors of inner product spaces

If V has an inner product then there is an isomorphism

T 1
1 (V ) = Hom(V, V )

∼=−→ {V × V → R} = T 2
0 (V )

under which the endomorphism s : V → V and the bilinear map h : V × V → R correspond to each
other if 〈su, v〉 = h(u, v). Since tensors are generalized endomorphisms, there should be a similar
correspondence for all tensor spaces.

Suppose that V has an inner product g = 〈 , 〉 ∈ T 2(V ). The inner product induces isomorph-
isms 〈

v, ω]
〉

= ω(v) V
[ //V ∗
]

oo v[(u) = 〈u, v〉

or, more generally,

V ∗ × · · · × V ∗︸ ︷︷ ︸
`

×V × V × V · · · × V︸ ︷︷ ︸
k

[ //V ∗ × · · · × V ∗︸ ︷︷ ︸
`

×V ∗ × V × V · · · × V︸ ︷︷ ︸
k

]
oo

inverse to each other. Composition with these isomorphism induces isomorphism of tensor spaces

T k+1
` (V )

] // T k
`+1(V )

[
oo

given by

A[(φ1, . . . , φ`, v1, v2, . . . , vk+1) = A(φ1, . . . , φ`, v[
1, v2, . . . , vk+1), A ∈ T k

`+1(V )

B](φ1, . . . , φ`, φ`+1, v1, . . . , vk) = B(φ1, . . . , φ`, (φ`+1)], v1, . . . , vk), B ∈ T k+1
` (V )

and again inverse to each other.
If we consider the tensor space T k

`+1(V ) as the vector space of all multilinear maps (V ∗)`×V k →
V as in (5.6) (and now act on the last variable) then

(5.8) A[(φ1, . . . , φ`, v1, . . . , vk, vk+1) = A(φ1, . . . , φ`, v1, . . . , vk, v
[
k+1)

= v[
k+1A(φ1, . . . , φ`, v1, . . . , vk) =

〈
A(φ1, . . . , φ`, v1, . . . , vk), vk+1

〉
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and, equivalently,

(5.9) B(φ1, . . . , φ`, v1, . . . , vk, vk+1) = (B[)](φ1, . . . , φ`, v1, . . . , vk, vk+1)〈
B](φ1, . . . , φ`, v1, . . . , vk), vk+1

〉
for B ∈ T k+1

` (V ). In other words, A and B correspond to each other under the isomorphisms

{(V ∗)` × V k+1 → R} = T k+1
` (V )

] // T k
`+1(V ) = {(V ∗)` × V k+1 → V }

[
oo

if and only if

(5.10) A(φ1, . . . , φ`, v1, . . . , vk+1) =
〈
B(φ1, . . . , φ`, v1, . . . , vk), vk+1

〉
5.11. Definition. The trace with respect to g is the linear map

trg : T k+1
` (V )

]−→ T k
`+1(V ) tr−→ T k−1

` (V )

where we dualize the first V -variable and take the trace with respect to the new V ∗ and the next
V -variable.

5.12. Example. The (2, 0)-tensor h ∈ T 2
0 (V ) and the (1, 1)-tensor s ∈ Hom(V, V ) correspond

to each other, s = h] or h = s[, if and only if h(v1, v2) = 〈s(v1), v2〉. The trace with respect to g
of h is trg h = tr s.

3. Coordinate expressions

Let V be a real vector space with basis E1, . . . , En and dual basis φ1, . . . , φn so that the set
(5.4) is a basis for the tensor space T k

` (V ). For any tensor A ∈ T k
` (V ), the coordinates of A (5.5)

with respect to this basis,

Aj1···j`

i1···ik
= A(φj1 , . . . , φj` , Ei1 , . . . , Eik

),

are called the components of A.

5.13. Kronecker’s δ. The components of the
(

1
1

)
-tensor δ ∈ T 1

1 (V ) given by δ(ω, v) = ω(v)
are

(5.14) δj
i = δ(φj , Ei) = φj(Ei) =

{
1 i = j

0 i 6= j

5.15. Endomorphisms. Let A : V → V be an endomorphism of V . The components of A,

viewed (5.6) as the
(

1
1

)
-tensor A ∈ T 1

1 (V ) given by A(ω, v) = ω(Av), are Aj
i = A(φj , Ei) = φjAEi,

the entries in the matrix for A wrt basis Ei.

5.16. Tensor product. If A ∈ T k1
`1

(V ) and B ∈ T k2
`2

(V ) then

(5.17) (A⊗B)j1···j`1 j`1+1···j`1+`2
i1···ik1 ik1+1···ik1+k2

= A
j1···j`1
i1···ik1

B
j`1+1···j`1+`2
ik1+1···ik1+k2

5.18. Trace. If the tensor A ∈ T `+1
k (V ) has components Aj1···j`+1

i1···ik+1
meaning that

A =
∑

A
j1···j`+1
i1···ik+1

Ej1 ⊗ · · · ⊗ Ej`+1 ⊗ φi1 ⊗ · · · ⊗ φik+1

then

tr(A) =
∑

A
j1···j`+1
i1···ik+1

tr(Ej1 ⊗ Ej2 ⊗ · · · ⊗ Ej`+1 ⊗ φi1 ⊗ · · · ⊗ ⊗φik ⊗ φik+1)

=
∑

A
j1···j`+1
i1···ik+1

δj1
ik+1

Ej2 ⊗ · · · ⊗ Ej`+1 ⊗ φi1 ⊗ · · · ⊗ φik

=
∑

A
mj2···j`+1
i1···ikm Ej2 ⊗ · · · ⊗ Ej`+1 ⊗ φi1 ⊗ · · · ⊗ φik

which means that the components of tr(A) ∈ T k
` (V ) are

(5.20) tr(A)j2···j`+1
i1···ik

= A
mj2···j`+1
i1···ikm

a sum of the components of A.
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5.21. Inner product. The inner product on V is a symmetric (2, 0)-tensor g ∈ T 2
0 (V ) whose

components

(5.22) gij = g(Ei, Ej) = 〈Ei, Ej〉
form a symmetric matrix (gij).

5.23. Raising and lowering of the index. Since

(vjEj)[ = vjE[
j = vjE[

j(Ei)φi = vj 〈Ei, Ej〉φi = gijv
jφi

we may write

(vjEj)[ = viφ
i where vi = gijv

j , (ωiφ
i)] = ωjEj where ωj = gijωi

because the linear map V
[−→ V ∗ has matrix (gij) so that the inverse map V

]←− V ∗ has (gij)−1 =
(gij) as its matrix. We get vi from vj by lowering the index and ωj from ωi by raising the index.

More generally, if A ∈ T k
`+1(V ), then the components of A[ ∈ T k+1

` (V ) are

(A[)j1···j`

ii1···ik
= gijA

j1···j`j
i1···ik

because

A[(φj1 , . . . , φj` , Ei, Ei1 , . . . , Eik
) = A(φj1 , . . . , φj` , E[

i , Ei1 , . . . , Eik
)

= gijA(φj1 , . . . , φj` , φj , Ei1 , . . . , Eik
) = gijA

j1···j`j
i1···ik

and if B ∈ T k+1
` (V ), then the components of B] ∈ T k

`+1(V ) are

(5.25) (B])j1···j`j
i1···ik

= gijBj1···j`

ii1···ik

because

B](φj1 , . . . , φj` , φj , Ei1 , . . . , Eik
) = B(φj1 , . . . , φj` , (φj)], Ei1 , . . . , Eik

)

= gijB(φj1 , . . . , φj` , Ei, Ei1 , . . . , Eik
) = gijBj1···j`

ii1···ik

Here are some special cases:
• gi

j = gkjgik = δj
i .

• If the basis Ei is orthonormal so that (gij) and its inverse are identity matrices, (A[)j1···j`

ii1···ik
=

gijA
j1···j`j
i1···ik

= δi
jA

j1···j`j
i1···ik

= Aj1···j`i
i1···ik

and (B])j1···j`j
i1···ik

= Bj1···j`

ji1···ik
.

5.26. Trace with respect to g. If B ∈ T k+1
` (V ) has components Bj1···j`

i1···ik+1
then the com-

ponents of trg(B) ∈ T k−1
` (V ) are

trg(B)j1···j`

i3···ik+1

(5.20)
= (B])j1···j`j

ji3···ik+1

(5.25)
= gijBj1···j`

iji3···ik+1

if we remember to take the trace at the right places.

5.27. Example. Let h ∈ T 2
0 (V ) is a (2, 0)-tensor and s ∈ T 1

1 (V ) the corresponding endo-
morphism of V as in 5.12. Then

hij = h(Ei, Ej) = 〈sEi, Ej〉 =
〈
si

kEk, Ej

〉
= si

kgkj

or, equivalently, si
j = gjkhik. Lowering an index in s gives h and rasing an index in h gives s.

The problem we are solving here (hidden behind a lot of formalistic notation) is how to construct
s : V → V from knowledge of 〈sX, Y 〉 = h(X,Y . Then trg h = tr s = si

i = gijhij . In particular if
h = g is the metric, then trg(g) = gi

i = n.





CHAPTER 6

Non-euclidean geometry

Historical account of non-euclidean geometry.

6.1. Axiom (Parallel axiom of euclidean geometry). For any straight line L and any point P
outside L there is a unique line through P that does not meet L.

6.2. Axiom (Parallel axiom of spherical geometry). For any straight line L and any point P
outside L there is no line through P that does not meet L.

6.3. Axiom (Parallel axiom of hyperbolic geometry). For any straight line L and any point P
outside L there are at least two lines through P that do not meet L.

1. The hyperbolic plane

The hyperbolic plane of radius R is the Riemannian manifold

H2
R = {(ξ, τ) ∈ R2 ×R+ | |ξ|2 − τ2 = −R2} ⊂ R2 ×R = R3

with metric induced from the Minkowski metric on R3. Equivalently, the hyperbolic plane of
radius R is the disc of radius R

B2
R(0) = {u ∈ R2 | |u| < R}

equipped with the metric induced from H2
R under hyperbolic stereographic projection

π : H2
R → B2

R(0), π−1(u) =
(

2R2u

R2 − |u|2
, R

R2 + |u|2

R2 − |u|2

)
which is a diffeomorphism.

Stereograhic projection induces a correspondence between geodesics in the two models since
isometries preserve geodesics. Since the geodesics in the hyperboloid model H2

R are the curves

{(ξ, τ) ∈ H2
R | (ξ, τ) · (α, β) = 0}, R3 3 (α, β) 6= 0,

the geodesics in the disc model are the curves

{u ∈ B2
R(0) | π−1(u) · (α, β) = 0} = {u ∈ B2

R(0) | 2Ru · α+ (R2 + |u|2)β = 0}
parametrized as constant speed curves. If β = 0, this is a straight line through 0. If β 6= 0, we
replace (α, β) by a parallel vector of the form (−α, 1) and get

{u ∈ B2
R(0) | |u−Rα|2 + |Rα|2 = R2} = {u ∈ B2

R(0) | |u−Rα|2 = R2(1− |Rα|2)}
If |α| ≥ 1, this is the empty set. When |α| < 1, this is part of a circle with center Rα and radius
R
√

1− |α|2. If we let u0 denote either of the two points where the circle meets the boundary of
the disc, then we see that

|u0 −Rα|2 + |Rα|2 = |u0|2

which means that u0 − Rα ⊥ u0 so that the center, Rα, of the circle lies on the tangent to the
boundary circle at u0. We conclude that the geodesics in the ball model are straight lines through
0 and circular arcs meeting the boudary circle in right angles.

The geodescis crossing the boundary of the hyperbolic plane of radius 1 at the point (1, 0) are
• circular arcs with radius V > 0 and center (1,±V ) on T
• the straight line through (1, 0) perpendicular to T

where T is the tangent at (1, 0) to the boundary circle.

6.4. Definition. The Voronöı distance between the point P and the circle c with centre C and
radius R is V (c, P ) =

√
|CP |2 −R2.
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Figure 1. Geodesics in the hyperbolic plane

Figure 2. Two lines through P that do not meet the green line!

If P is outside the circle, V (c, P ) is the length of the tangent segments through P ; V (c, P ) = 0
when P is on the circle; and V (c, P ) is purely imaginary when P is inside the circle.

The centers of the geodesic circular arcs through a point P0 in the hyperbolic plane B2
R(0) of

radius R are the points P for which

|P0P | = V (∂B2
R(0), P )

meaning that the euclidean distance to P0 equals the Voronöı distance to the boundary circle
∂B2

R(0). This locus is the perpendicular bisector of P0P
′
0 where P ′0 is the point where the radius

through P0 crosses the boundary circle.
If P1 and P2 are two given points in B2

R(0), not on the same diameter, then the center of the
geodesic through P1 and P2 is the point Q for which

|P1Q| = V (∂B2
R(0), Q) = |P2Q|

meaning that Q is the intersection of the two bisecting lines associated to P1 and P2 as just
described.

It is known that the hyperbolic plane embeds isometrically into euclidean R5 but not into R3.
It is unknown if there exists an isometric embedding of the hyperbolic plane into R4.
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Figure 3. The unique geodesic through two given points
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