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1. Lévy’s characterisation of Brownian motion 57
2. Changes of measure and the Cameron–Martin–Girsanov theorem 61
3. The martingale representation theorem 67
4. Brownian local time 70

Chapter 5. Stochastic differential equations 73
1. Definitions of solution 73
2. Notions of uniqueness 76
3. Strong existence 79
4. Connection to partial differential equations 82

Index 93

3





CHAPTER 1

A possible motivation: diffusions

Why study stochastic calculus? In this chapter we discuss one possible motivation.

1. Markov chains

Let (Xn)n≥0 be a (time-homogeneous) Markov chain on a finite state space S. As you
know, Markov chains arise naturally in the context of a variety of model of physics, biology,
economics, etc. In order to do any calculation with the chain, all you need to know are two
basic ingredients: the initial distribution of the chain λ = (λj)j∈S defined by

λi = P(X0 = i) for all i ∈ S
and the one-step transition probabilities P = (pij)i,j∈S defined by

pij = P(Xn+1 = j|Xn = i) for all i, j ∈ S, n ≥ 0.

We now ask an admittedly pure mathematical question: given the ingredients, can we
build the corresponding Markov chain? That is, given a λ such that

λi ≥ 0 for all i ∈ S, and
∑
i∈S

λi = 1

and P such that
λij ≥ 0 for all i, j ∈ S, and

∑
j∈S

pij = 1

does there exist a Markov chain with initial distribution λ and transition matrix P? More
precisely, does there exist a probability space (Ω,F ,P) and a collection of measurable maps
Xn : Ω→ S such that

P(X0 ∈ i) = λi for all i ∈ S
and satisfying the Markov property

P(Xn+1 = in+1|Xn = in, . . . , X0 = i0) = pin,in+1 for all i0, . . . , in+1 ∈ S and n ≥ 0?

The answer is yes, of course.
Here is one construction, involving a random dynamical system. For each i, let Iij ⊆ [0, 1]

be an interval of length pij such that the intervals (Iij)j∈S are disjoint.1 Define a function
G : S × [0, 1]→ S by

G(i, u) = j when u ∈ Iij.
1For instance, if S is identified with {1, 2, 3, . . .} then let

Iij =

[
j−1∑
k=1

pik,

j∑
k=1

qik

)
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Now let X0 be a random taking values in S with law λ, and let U1, U2, . . . be independent
random variables uniformly distributed on the interval [0, 1] and independent of X0. Finally
define (Xn)n≥0 recursively by

Xn+1 = G(Xn, Un+1) for n ≥ 0.

Then it is easy to check that X is a Markov chain with the correct transition probabilities.
The lesson is that we can construct a Markov chain X given the basic ingredients λ and

P . What can be said about the continuous time, continuous space case?

2. Continuous-time Markov processes

In this section, we consider a continuous-time Markov process (Xt)t≥0 on the state space
S = R. What are the relevant ingredients now? Obviously, we need an initial distribution
λ, a probability measure on R such that

λ(A) = P(X0 ∈ A) for all Borel A ⊆ R.
In this course, we are interested in continuous Markov processes (also known as diffusions),
so we expect that over a short time horizon, the process has not moved too far. Heuristically
we would expect that when ∆t > 0 is very small, we have

‘ E(Xt+∆t|Xt = x) ≈ x+ b(x)∆t ’

‘ Var(Xt+∆t|Xt = x) ≈ σ(x)2∆t ’

for some functions b and σ.
Now given the function b and σ can we actually build a Markov process X whose infin-

itesimal increments have the right mean and variance? One way to answer this question is
to study stochastic differential equations.

3. Stochastic differential equations

Inspired by our construction of a Markov chain via a discrete-time random dynamical
system, we try to build the diffusion X introduced in the last section via the continuous
time analogue. Consider the stochastic differential equation

Ẋ = b(X) + σ(X)N

where the dot denotes differentiation with respect to the time variable t and where N is some
sort of noise process, filling the role of the sequence (Un)n≥1 of i.i.d. uniform random variables
appearing the Markov chain construction. In particular, we will assume that (Nt)t≥0 is a
Gaussian white noise, but roughly speaking the important property is that Ns and Nt are
independent for s 6= t.

3.1. Case: σ = 0. In this case there is no noise, so we are actually studying an ordinary
differential equation

(*) Ẋ = b(X)

where the dot denotes differentiation with respect to the time variable t. When studying
this system, we are lead to a variety of questions: For what types of b does the ordinary
differential equation (*) have a solution? For what types of b does the ODE have a unique
solution? Here is a sample answer:
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Theorem. If b is Lipschitz, i.e. there is a constant C > 0 such that

‖b(x)− b(y)‖ ≤ C‖x− y‖ for all x, y

then there exists a unique solution to equation (*).

3.2. The general case. Actually the above theorem holds in the more general SDE

(**) Ẋ = b(X) + σ(X)N

This generalisation is due to Itô:

Theorem. If b and σ are Lipschitz, then the SDE (**) has a unique solution.

Now notice that in the Markov chains example, we had a causality principle in the sense
that the solution (Xn)n≥0 of the random dynamical system

Xn+1 = G(Xn, Un+1)

can be written Xn = Fn(X0, U1, . . . , Un) for a deterministic function Fn : S × [0, 1]n → S.
In particular, given the initial position X0 and the driving noise U1, . . . , Un it is possible to
reconstruct Xn. Does the same principle hold in the continuous case?

Mind-bendingly, the answer is sometimes no! And this is not because of some technicality
about what is meant by measurability: we will see an explicit example of a continuous time
Markov process X driven by a white noise process N in the sense that it satisfies the SDE
(**), yet somehow the X is not completely determined by X0 and (Ns)0≤s≤t.

However, it turns out things are nice in the Lipschitz case:

Theorem. If b and σ are Lipschitz, then the unique solution of the SDE (**) is a
measurable function of X0 and (Ns)0≤s≤t.

4. Markov calculations

The Markov property can be exploited to do calculations. For instance, let (Xn)n≥0 be
a Markov chain, and define

u(n, i) = E(f(Xn)|X0 = i)

for some fixed function f : S → R. Then clearly

u(0, i) = f(i) for all i ∈ S
and

u(n+ 1, i) =
∑
j∈S

P(X1 = j|X0 = i)E(f(Xn+1)|X1 = j)

=
∑
j∈S

piju(n, j)

and hence
u(n, i) = (P nf)(i)

where P n denotes the n-th power of the one-step transition matrix. We now explore the
analogous computation in continuous time.

Let (Xt)t≥0 be the diffusion with infinitesimal characteristics b and σ. Define the transi-
tion kernel P (t, x, dy) by

P (t, x, A) = P(Xt ∈ A|X0 = x)
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for any Borel set A ⊆ R. The transition kernels satisfy the Chapman–Kolmogorov equation:

P (s+ t, x, A) =

∫
P (s, x, dy)P (t, y, A).

Associated to the transition kernels we can associate a family (Pt)t≥0 of operators on suitably
integrable measurable functions defined by

(Ptf)(x) =

∫
P (t, x, dy)f(y) = E[f(Xt)|X0 = x].

Note that the Chapman–Kolmogorov equations then read

Ps+t = PsPt.

Since P0 = I is the identity operator, the family (Pt)t≥0 is called the transition semigroup of
the Markov process.

Suppose that there exists an operator L such that

Pt − I
t
→ L

as t ↓ 0 in some suitable sense. Then L is called the infinitesimal generator of the Markov
process. Notice that

d

dt
Pt = lim

s↓0

Ps+t − Pt
s

= lim
s↓0

(Ps − I)Pt
s

= LPt.
This is called the Kolmogorov backward equation. More concretely, let

u(t, x) = E[f(Xt)|X0 = x]

for some given f : R→ R. Note that

u(t, x) =

∫
P (t, x, dy)f(y)

= (Ptf)(x)

and so we expect u to satisfy the equation

∂u

∂t
= Lu

with initial condition u(0, x) = f(x).
The operator L can be calculated explicitly in the case of the solution of an SDE. Note

that for small t > 0 we have by Taylor’s theorem

(Ptg)(x) = E[g(Xt)|X0 = x]

≈ E[g(x) + g′(x)(Xt − x) +
1

2
g′′(x)(Xt − x)2|X0 = x]

≈ g(x) +

(
b(x)g′(x) +

1

2
σ(x)2g′′(x)

)
t
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and hence if there is any justice in the world, the generator is given by the differential
operator

L = b
∂

∂x
+

1

2
σ(x)2 ∂

2

∂x2
.

4.1. The case b = 0 and σ = 1. From the discussion above, we are lead to solve the
PDE

u(0, x) = f(x)

∂u

∂t
=

1

2

∂2

∂x2
.

This is a classical equation of mathematical physics, called the heat equation, studied by
Fourier among others. There is a well-known solution given by

u(t, x) =

∫
1√
2πt

e−
(x−y)2

2t f(y)dy.

On the other hand, we know that

u(t, x) = E[f(Xt)|X0 = x]

where (Xt)t≥0 is a Markov process with infinitesimal drift b = 0 and infinitesimal variance
σ2 = 1. Comparing these to formulas, we discover that conditional on X0 = x, the law of
Xt is N(x, t), the normal distribution with mean x and variance t. Given the central role
played by the normal distribution, this should not come as a big surprise.

The goal of these lecture notes is to fill in many of the details of the above discussion.
And along the way, we will learn other interesting things about Brownian motion and other
continuous-time martingales! Please send all comments and corrections (including small
typos and major blunders) to me at m.tehranchi@statslab.cam.ac.uk.
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CHAPTER 2

Brownian motion

1. Motivation

Recall that we are interested in making sense of stochastic differential equations of the
form

Ẋ = b(X) + σ(X)N

where N is some suitable noise process. We now formally manipulate this equation to see
what properties we would want from this process N . The next two sections are devoted to
proving that such a process exists.

Note that we can integrate the SDE to get

Xt+∆t = Xt +

∫ t+∆t

t

b(Xs)ds+

∫ t+∆t

t

σ(Xs)Ns ds

≈ Xt + b(Xt)∆t+ σ(Xt)W (t, t+ ∆t]

where we think of N is as the density of a ‘random (signed) measure’ W so that formally

W (A) =

∫
A

Ns ds

Since we want

‘ E(Xt+∆t|Xt = x) ≈ x+ b(x)∆t ’

‘ Var(Xt+∆t|Xt = x) ≈ σ(x)2∆t ’

we are looking to construct a ‘white noise’ W that has these properties:

• W (A ∪B) = W (A) +W (B) when A and B are disjoint,
• E[W (A)] = 0, and
• E[W (A)2] = Leb(A) for suitable sets A.

2. Isonormal process and white noise

In this section we introduce the isonormal processes in more generality than we need to
build the white noise to drive our SDEs. It turns out that the generality comes at no real
cost, and actually simplifies the arguments.

Let H be a real, separable Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.

Definition. An isonormal process on H is a process {W (h), h ∈ H} such that

• (linearity) W (ag + bh) = aW (g) + bW (h) a.s. for all a, b ∈ R and g, h ∈ H,
• (normality) W (h) ∼ N(0, ‖h‖2) for all h ∈ H.

Assuming for the moment that we can construct an isonormal process, we now record a
useful fact for future reference.
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Proposition. Suppose that {W (h) : h ∈ H} is an isonormal process.

• For all h1, . . . , hn ∈ H the random variables W (h1), . . . ,W (hn) are jointly normal.
• Cov(W (g),W (h)) = 〈g, h〉.

In particular, if 〈g, h〉 = 0 then W (g) and W (h) are independent.

Proof. Fix θ1, . . . , θn ∈ R. Using linearity, the joint characteristic function is

E[ei(θ1W (h1)+...+θnW (hn))] = E[eiW (θ1h1+...+θnhn)]

E[e−
1
2
‖θ1h1+...+θnhn‖2 ]

which the the joint characteristic function of mean-zero jointly normal random variables with
Cov(W (hi),W (hj)) = 〈hi, hj〉. �

Now we show that we construct an isonormal process.

Theorem. For any real separable Hilbert space, there exists a probability space (Ω,F ,P)
and a collection of measurable maps W (h) : Ω→ R for each h ∈ H such that {W (h), h ∈ H}
is an isonormal process.

Proof. Let (Ω,F ,P) be a probability space on which an i.i.d. sequence (ξk)k of N(0, 1)
random variables is defined. Let (gk)k be an orthonormal basis of H, and for any h ∈ H let

Wn(h) =
n∑
k=1

ξk〈h, gk〉.

As the sum of independent normals, we have Wn(h) ∼ N
(
0,
∑n

k=1〈h, gk〉2
)
.

With respect to the filtration σ(ξ1, . . . , ξn), the sequence Wn(h) defines a martingale.
Since by Parseval’s formula

sup
n

E[Wn(h)2] =
∞∑
k=1

〈h, gk〉2 = ‖h‖2

the martingale is bounded in L2(P) and hence converges to a random variable W (h) on an
almost sure set Ωh. Therefore,

W (ag + bh) = lim
n
Wn(ag + bh) = lim

n
aWn(g) + bWn(h) = aW (g) + bW (h)

on the almost sure set Ωag+bh ∩ Ωg ∩ Ωh. Finally, for any θ ∈ R, we have by the dominated
convergence theorem

E[eiθW (h)] = lim
n

E[eiθWn(h)]

= lim
n
e−

1
2
θ2

∑n
k=1〈h,gk〉2 = e−

1
2
θ2‖h‖2

so by the uniqueness of the characteristic functions W (h) ∼ N(0, ‖h‖2). �

Now we can introduce the process was motivated in the previous section.

Definition. Let (E, E , µ) be a measure space. A Gaussian white noise is a process
{W (A) : A ∈ E , µ(A) <∞} satisfying

• (finite additivity) W (A ∪ B) = W (A) + W (B) a.s. for disjoint measurable sets A
and B,
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• (normality) W (A) ∼ N(0, µ(A)) for all Borel A.

Theorem. Suppose (E, E , µ) is a measure space such that L2(E, E , µ) is separable.1 Then
there exists a Gaussian white noise on {W (A) : A ∈ E , µ(A) <∞}.

Proof. Let {W (h) : h ∈ L2(µ)} be an isonormal process. Without too much confusion,
we use the same notation (a standard practice in measure theory) to define

W (A) = W (1A).

Note that if A and B are disjoint we have

W (A ∪B) = W (1A∪B)

= W (1A + 1B)

= W (1A) +W (1B)

= W (A) +W (B).

Also, the first two moments can be calculated as

E[W (A)] = E[W (1A)] = 0

and

E[W (A)2] = E[W (1A)2]

= ‖1A‖2
L2

=

∫
1Adµ

= µ(A).

�

As a concluding remark, note that if A and B are disjoint then

〈1A,1B〉L2 =

∫
1A∩Bdµ = 0

and hence W (A) and W (B) are independent.

3. Wiener’s theorem

The previous section shows that there is some hope in interpreting the SDE

Ẋ = b(X) + σ(X)N

as the integral eqution

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)W (ds)

1Let Ef = {A ∈ E : µ(A) < ∞} be the measurable sets of finite measure. Define a pseudo-metric d on
Ef by d(A,B) = µ(A∆B) where the symmetric difference is defined by A∆B = (A ∩Bc) ∪ (Ac ∩B). Say A

is equivalent to A′ iff d(A,A′) = 0, and let Ẽf be collection of equivalence classes of Ef . Then the Hilbert

space L2(E, E , µ) is separable if and only if the metric space (Ẽf , d) is separable.
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where W is the white noise on ([0,∞),B,Leb). There still remains a problem: we have only
shown that W (·, ω) is finitely additive for almost all ω ∈ Ω. It turns out that W (·, ω) is not
countably additive, so the usual Lebesgue integration theory will not help us!

So, let’s lower our ambitions and consider the case where σ(x) = σ0 is constant. In this
case we should have the integral equation

Xt = X0 +

∫ t

0

b(Xs)ds+ σ0Wt

where Wt = W (0, t] is the ‘distribution function’ of white noise set function W . This seems
easier than the general case, except that a nagging technicality remains: how do we make
sense of the remaining integral? Why should this be a problem? Recall that for each set A,
the random variable W (A) = W (1A) was constructed via an infinite series that converged
on an almost sure event ΩA. Unfortunately, ΩA depends on A in a complicated way, so it
is not at all clear that we can define Wt = W (0, t] simultaneously for all uncountable t ≥ 0
since it might be the case that ∩t≥0Ω(0,t] is not measurable or even empty. This is a problem,
since we need to check that t 7→ b(Xt(ω)) is measurable for almost all ω ∈ Ω to use the
Lebesgue integration theory.... Fortunately, its possible to do the construction is such a way
that t 7→ Wt(ω) is continuous for almost all ω. This we call a Brownian motion.

Definition. A (standard) Brownian motion is a stochastic process W = (Wt)t≥0 such
that

• W0 = 0 a.s.
• (stationary increments) Wt −Ws ∼ N(0, t− s) for all 0 ≤ s < t,
• (independent increments) For any 0 ≤ t0 < t1 < · · · < tn, the random variables
Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are independent.
• (continuity) W is continuous, meaning P(ω ∈ Ω : t 7→ Wt(ω) is continuous ) = 1.

Theorem (Wiener 1923). There exists a probability space (Ω,F ,P) and a collection of
random variables Wt : Ω → R for each t ≥ 0 such that the process (Wt)t≥0 is a Brownian
motion.

As we seen already, we can take the Gaussian white noise {W (A) : A ⊂ [0,∞)}, and set
Wt = W (0, t]. Then we will automatically have W0 = 0, and since

Wt −Ws = W (s, t] ∼ N(0, t− s)
for 0 ≤ s < t, the increments are stationary. Furthermore, as discussed in the last section,
the increments over disjoint intervals are uncorrelated and hence independent. Therefore,
we need only show continuity. The main idea is to revisit the construction of the isonormal
process, and now make a clever choice of orthonormal basis of L2.

First we need a lemma that says we need only build a Brownian motion on the interval
[0, 1] because we can concatenate independent copies to build a Brownian motion on the
interval [0,∞). The proof is an easy exercise.

Lemma. Let (W
(n)
t )0≤t≤1, n = 1, 2, . . . be independent Brownian motions and let

Wt = W
(1)
1 + · · ·+W

(n)
1 +W

(n+1)
t−n for n ≤ t < n+ 1

Then (Wt)t≥0 is a Brownian motion.
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Now the clever choice of basis is this:

Definition. The set of functions

{1; h0
0; h0

1, h
1
1; . . . , ;h0

n, . . . , h
2n−1
n ; . . .}

where
hkn = 2n/2

(
1[k2−n,(k+1/2)2−n) − 1[(k+1/2)2−n,(k+1)2−n)

)
is called the Haar functions.

Lemma. The collection of Haar functions is an orthonormal basis of L2[0, 1].

We will come back to prove this lemma at the of the section. Finally, we introduce some
useful notation:

Hk
n(t) = 〈hkn,1(0,t]〉L2

=

∫ t

0

hkn(s)ds.

Proof of Wiener’s theorem. Let ξ∗ and (ξkn)n,k be a collection of independentN(0, 1)
random variables, and consider the event

Ω0 =

{
ω :

∞∑
n=0

sup
0≤t≤1

∣∣∣∣∣
2n−1∑
k=0

ξkn(ω)Hk
n(t)

∣∣∣∣∣ <∞
}
.

Note that for every ω ∈ Ω0, the partial sums W
(N)
t (ω) converge uniformly in t where

W
(N)
t (ω) = tξ∗(ω) +

N∑
n=0

2n−1∑
k=0

ξkn(ω)Hk
n(t).

Since t 7→ W
(N)
t (ω) is continuous, and the uniform limit of continuous functions is continuous,

we need only show that Ω0 is almost sure.
Now note that, for fixed n, the supports of the functions H0

n, . . . , H
2n−1
n are disjoint.

Hence

sup
0≤t≤1

∣∣∣∣∣
2n−1∑
k=0

ξknH
k
n(t)

∣∣∣∣∣ = 2−n/2−1 max
0≤k≤2n−1

|ξkn|.
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Now, for any p > 1 we have

E max
0≤k≤2n−1

|ξkn| ≤
(
E max

0≤k≤2n−1
|ξkn|p

)1/p

by Jensen’s inequality

≤

(
E

2n−1∑
k=0

|ξkn|p
)1/p

= (2ncp)
1/p

where

cp = E(|ξ|p)

= π−1/22p/2Γ(
p+ 1

2
).

Now, choosing any p > 2 yields

E
∞∑
n=0

sup
0≤t≤1

∣∣∣∣∣
2n−1∑
k=0

ξknH
k
n(t)

∣∣∣∣∣ =
∞∑
n=0

2−n/2−1E( max
0≤k≤2n−1

|ξkn|)

≤ c1/p
p 2−1

∞∑
n=0

2−n(1/2−1/p) <∞.

This shows that P(Ω0) = 1. �

And to fill in a missing detail:

Proof that the Haar functions are a basis. The orthogonality and normalisa-
tion of the Haar functions is easy to establish.

First we will show that the set of functions which are constant over intervals of the form
[k2−n, (k + 1)2−n) are dense in L2[0, 1]. There are many ways of seeing this. Here is a
probabilistic argument: for any f ∈ L2[0, 1], let

fn =
2n−1∑
k=0

fknI
k
n

where

Ikn = 1[k2−n,(k+1)2−n)

and

fkn = 2n
∫ (k+1)2−n

k2−n

f(x)dx.

Then fn → f in L2 (and almost everywhere). To see this, consider the family of sigma-fields

Fn = σ([k2−n, (k + 1)2−n) : 0 ≤ k ≤ 2n − 1)

on [0, 1]. For any f ∈ L2[0, 1] let

fn = E(f |Fn)

where the expectation is with respect to the probability measure P = Leb. Since σ(∪n≥0Fn)
is the Borel sigma-field on [0, 1], the result follows from the martingale convergence theorem.
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Now we will show that every indicator of a dyadic interval is a linear combination of Haar
functions. This is done inductively on the level n. Indeed for k = 2j we have

I2j
n+1 =

1

2
(Ijn + 2−n/2hjn)

and for k = 2j + 1 we have

I2j+1
n+1 =

1

2
(Ijn − 2−n/2hjn).

�

4. Some sample path properties

Recall from our motivating discussion that would like to think of the Brownian motion
as the integral

Wt =

∫ t

0

Nsds

for some noise process N . Is there any chance that this notation can be anything but formal?
No:

Theorem (Paley, Wiener and Zygmund 1933). Let W be a scalar Brownian motion
defined on a complete probability space. Then

P{ω : t 7→ Wt(ω) is differentiable somewhere } = 0.

Proof. First, we will find a necessary condition that a function f : [0,∞) → R is
differentiable at a point. The idea is to express things in such a way that computations of
probabilities are possible when applied to the Brownian sample path.

Recall that to say a function f is differentiable at a point s ≥ 0 means that for any δ > 0
there exists an ε > 0 such that for all t ≥ 0 in the interval (s− ε, s+ ε) the inequality

|f(t)− f(s)− (t− s)f ′(s)| ≤ δ|t− s|
holds.

So suppose f is differentiable at s. By setting δ = 1, we know there exists an ε0 > 0 such
that for all 0 ≤ ε < ε0 and t1, t2 ∈ [s, s+ ε] we have

|f(t1)− f(t2)| ≤ |f(t1)− f(s)− (t1 − s)f ′(s)|+ |f(t2)− f(s)− (t2 − s)f ′(s)|+ |(t2 − t1)f ′(s)|
≤ |t1 − s|+ |t2 − s|+ |t2 − t1||f ′(s)|
≤ (2 + |f ′(s)|)ε

by the triangle inequality. In particular, there exists an integer M ≥ 4(2 + |f ′(s)|) and
integer N ≥ 4/ε0 such that

|f(t1)− f(t2)| ≤M/n

whenever n > N and t1, t2 ∈ [s, s + 4/n]. (The reason for the mysterious factor of 4 will
become apparent in a moment.)

Note that any n > N , there exists an integer i such that s ≤ i/n < s + 1/n. For this
integer i, the four points i/n, (i + 1)/n, (i + 2)/n, (i + 3)/n are all contained in the interval
[s, s+ 4/n]. And in particular,

|f( j+1
n

)− f( j
n
)| ≤M/n
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for j = i, i+ 1, i+ 2. Finally, there exists an integer K ≥ s, and therefore i < nK + 1.
Therefore, we have shown that

{ω : t 7→ Wt(ω) is differentiable somewhere } ⊆ N

where

N =
⋃
M

⋃
K

⋃
N

⋂
n>N

⋃
i≤nK

i+2⋂
j=i

Aj,n,M

and

Aj,n,M = {|W(j+1)/n −Wj/n| ≤M/n}.

Note that the sets Aj,n,M are increasing in M , in the sense that Aj,n,M ⊆ Aj,n,M+1. Similarly,
the sets

⋃
K

⋃
i≤nK Aj,n,M are increasing in K. Hence from basic measure theory and the

definition of Brownian motion we have the following estimates:

P(N ) = sup
M,K

P

(⋃
N

⋂
n>N

⋃
i≤nK

i+2⋂
j=i

Aj,n,M}

)
continuity of P

≤ sup
M,K

lim inf
n→∞

P

( ⋃
i≤nK

i+2⋂
j=i

Aj,n,M

)
Fatou’s lemma

≤ sup
M,K

lim inf
n→∞

nK∑
i=0

P

(
i+2⋂
j=i

Aj,n,M

)
subadditivity of P

= sup
M,K

lim inf
n→∞

[
(nK + 1)P (A0,n,M)3 ]

The last step follows from the fact that the increments W(j+1)/n−Wj/n are independent and
each have the N(0, 1/n) distribution.

Note that

P(|Wt| ≤ r) =

∫ r/
√
t

−r/
√
t

e−x
2/2

√
2π

dx

≤ C
r√
t

where C =
√

2/π and hence

P(A0,n,M) = P(|W1/n| ≤M/n) ≤ C
M√
n
.

Putting this together yields

P(N ) ≤ sup
M,K

lim inf
n→∞

[
(nK + 1)

(
C
M√
n

)3
]

= 0.

�
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Remark. It should be clear from the argument that differentiability of a function at
a point means that we can control the size of increments of the function over p disjoints
intervals, where p ≥ 1 is any integer, and so

{ω : t 7→ Wt(ω) is differentiable somewhere } ⊆ Np
where

Np =
⋃
M

⋃
K

⋃
N

⋂
n>N

⋃
i≤nK

i+p−1⋂
j=i

{|W(j+1)/n −Wj/n| ≤M/n}

The somewhat arbitrary choice of p = 3 in the proof above is to ensure that n1−p/2 → 0.

So, sample paths of Brownian motion are continuous but nowhere differentiable. It is
possible to peer even deeper into the fine structure of Brownian sample paths. The following
results are stated without proof since we will not use them in future lectures.

Theorem. Let W be a scalar Brownian motion.

• The law of iterated logarithms. (Khinchin 1933) For fixed t ≥ 0,

lim sup
δ↓0

Wt+δ −Wt√
2δ log log 1/δ

= 1 a.s.

• The Brownian modulus of continuity. (Lévy 1937)

lim sup
δ↓0

maxs,t∈[0,1],|t−s|<δ |Wt −Ws|√
2δ log 1/δ

= 1 a.s.

5. Filtrations and martingales

Recall that we are also interested in Markov processes with infinitesimal characteristics

E[Xt+∆t|Xt = x] ≈ x+ b(x)∆t and Var(Xt+∆t|Xt = x) ≈ σ(x)2∆t

with corresponding formal differential equation

Ẋ = f(X) + σ(X)N.

If σ(x) = σ0 and b is measurable, we can define the solution of the differential equation to
be a continuous process (Xt)t≥0 such that

Xt = X0 +

∫ t

0

b(Xs)ds+ σ0Wt

where W is a Brownian motion. We still haven’t proven2 that this equation has a solution,
but at least we know how to interpret all of the terms.

But we are also interested in Markov processes whose increments have a state-dependent
variance, where the function σ is not necessarily constant. It seems that the next step in our
programme is to give meaning to the integral equation

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)W (ds)

2When b is Lipschitz, one strategy is to use the Picard–Lindelöf theorem as suggested on the first example
sheet. On the fourth example sheet you are asked to construct a solution of the SDE, only assuming that b
is measurable and of linear growth and that σ0 6= 0.
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where W is the Gaussian white noise on [0,∞). Unfortunately, this does not work:

Definition. A signed measure µ on a measurable space (E, E) is a set function of the
form µ(A) = µ+(A) − µ−(A) for all A ∈ E , where µ± are measures (such that at least one
of µ+(A) or µ−(A) is finite for any A to avoid ∞−∞). For convenience, we will also insist
that both measures µ± are sigma-finite.

Theorem. Let {W (A) : A ⊆ [0,∞)} be a Gaussian white noise with Var[W (A)] =
Leb(A) defined on a complete probability space. Then

P(ω : A 7→ W (A, ω) is a signed measure ) = 0

The following proof depends on this result of real analysis:

Theorem (Lebesgue). If f : [0,∞)→ R is monotone, then f is differentiable (Lebesgue)-
almost everywhere.

Proof. Suppose that W (·, ω) is a signed measure for some outcome ω. Then t 7→
W ((0, t], ω) = µ+(0, t] − µ−(0, t] is the difference of two monotone functions and hence is
differentiable almost everywhere. But we have proven that the probability that this map is
differentiable some where is zero! �

Nevertheless, all hope is not lost. The key insights that will allow us to give meaning to
the integral

∫ t
0
asdWs are that

• the Brownian motion W is a martingale, and
• we need not define the integral for all processes (at)t≥0, since it is sufficient for our

application to consider only processes that do not anticipate the future in some
sense.

We now discuss the martingale properties of the Brownian motion. Recall some defini-
tions:

Definition. A filtration F = (Ft)t≥0 is an increasing family of sigma-fields, i.e. Fs ⊆ Ft
for all 0 ≤ s ≤ t.

Definition. A process (Xt)t≥0 is adapted to a filtration F iff Xt is Ft-measurable for all
t ≥ 0.

Definition. An adapted process (Xt)t≥0 is a martingale with respect to the filtration
F iff

(1) E(|Xt|) <∞ for all t ≥ 0,
(2) E(Xt|Fs) = Xs for all 0 ≤ s ≤ t.

Our aim is to show a Brownian motion is a martingale. But in what filtration?

Definition. A Brownian motion W is a Brownian motion in a filtration F (or, equiv-
alently, the filtration F is compatible with the Brownian motion W ) iff W is adapted to F
and the increments (Wu −Wt)u∈[t,∞) are independent of Ft for all t ≥ 0.

Example. The natural filtration

FWt = σ(Ws, 0 ≤ s ≤ t)

is compatible with a Brownian motion W . This a direct consequence of the definition.

20



The reason that we have introduced this definition is that we will soon find it useful
sometimes to work with filtrations bigger than a Brownian motion’s natural filtration.

Theorem. Let W be a Brownian motion in a filtration F. Then the following processes
are martingales:

(1) The Brownian motion itself W .
(2) W 2

t − t.
(3) eiθWt+θ2t/2 for any complex θ, where i =

√
−1

Proof. This is an easy exercise in using the independence of the Brownian increments
and computing with the normal distribution. �

The above theorem has an important converse.

Theorem. Let X be a continuous process adapted to a filtration F such that X0 = 0 and

eiθXt+θ2t/2

is a martingale. Then X is a Brownian motion in F.

Proof. By assumption

E(ei θ(Xt−Xs)|Fs) = e−θ
2(t−s)/2.

for all θ ∈ R and 0 ≤ s ≤ t.
So fix 0 ≤ s ≤ t0 < t1 < · · · < tn and θ1, . . . , θn ∈ Rd. By iterating expectations we have

E(ei
∑n

k=1 θk(Xtk
−Xtk−1

)|Fs) = E[E(ei
∑n

k=1 θk(Xtk
−Xtk−1

)|Ftn−1)|Fs]

= E[ei
∑n−1

k=1 θk(Xtk
−Xtk−1

)E(eiθn·(Xtn−Xtn−1 )|Ftn−1)|Fs]

= E[ei
∑n−1

k=1 θk(Xtk
−Xtk−1

)|Fs]e−θ
2
n(tn−tn−1)/2

= · · ·

= e−
1
2

∑n
k=1 θ

2
k(tk−tk−1)

Since the conditional characteristic function of the increments (Xt1 −Xt0 , . . . , Xtn −Xtn−1)
given Fs is not random, we can conclude that (Xu−Xs)u≥s is independent of Fs. Details are
in the footnote3. Furthermore, by inspecting this characteristic function, we can conclude

3Fix a set A ∈ Fs. Define two measures on Rn by

µ(B) = P({(Xt1 −Xt0 , . . . , Xtn −Xtn−1) ∈ B} ∩A)

and
ν(B) = P((Xt1 −Xt0 , . . . , Xtn −Xtn−1

) ∈ B)P(A).

Note that for any θ ∈ Rn, we have∫
eiθ·yµ(dy) = E(ei

∑n
k=1 θk(Xtk

−Xtk−1
)
1A)

= E(ei
∑n

k=1 θk(Xtk
−Xtk−1

))P(A)

=

∫
eiθ·yν(dy).

Since characteristic functions characterise measures, we have µ(B) = ν(B) for all measurable B ⊆ Rn, and
hence the random vector (Xt1−Xt0 , . . . , Xtn−Xtn−1) is independent of the event A. Since this independence

holds for all 0 ≤ s ≤ t0 < t1 < · · · < tn, the sigma-field σ(Xu −Xs : u ≥ s) is independent of Fs.

21



that the increments are independent with distribution Xt −Xs ∼ N(0, |t− s|). Finally, the
process is assumed to be continuous, so it must be a Brownian motion.

�

6. The usual conditions

We now discuss some details that have been glossed over up to now. For instance, we
have used the assumption that our probability space is complete a few times. Recall what
that means:

Definition. A probability space (Ω,F ,P) is complete iff F contains all the P-null sets.
That is to say, if A ⊆ B and B ∈ F and P(B) = 0, then A ∈ F and P(A) = 0.

For instance, in our discussion of the nowhere differentiability of Brownian sample paths,
we only proved that the set

{ω : t 7→ Wt(ω) is somewhere differentiable }
is contained in an event N of probability zero. But is the set above measurable? In general,
it may fail to be measurable since the condition involves estimating the behaviour of the
sample paths at an uncountable many points t ≥ 0. But, if we assume completeness, this
technical issue disappears.

And as we assume completeness of our probability space, we will also employ a convenient
assumption on our filtrations.

Definition. A filtration F satisfies the usual conditions iff

• F0 contains all the P-null sets, and
• F is right-continuous in that Ft =

⋂
ε>0Ft+ε for all t ≥ 0.

Why do we need the usual conditions? It happens to make life easier in that the usual
conditions guarantee that there are plenty of stopping times...

Definition. A stopping time is a random variable T : Ω→ [0,∞] such that {T ≤ t} ∈
Ft for all t ≥ 0.

Theorem. Suppose the filtration F satisfies the usual conditions. Then a random time
T is a stopping time iff {T < t} ∈ Ft for all t ≥ 0.

Proof. First suppose that {T < t} ∈ Ft for all t ≥ 0. Since for any N ≥ 1 we have

{T ≤ t} =
⋂
n≥N

{T < t+ 1/n}

and each event {T < t+ 1/n} is in Ft+1/n ⊆ Ft+1/N by assumption, then

{T ≤ t} ∈
⋂
N

Ft+1/N = Ft

by the assumption of right-continuity. Hence T is a stopping time.
Conversely, now suppose that {T ≤ t} ∈ Ft for all t ≥ 0. Since

{T < t} =
⋃
n

{T ≤ t− 1/n}
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and each event {T ≤ t− 1/n} is in Ft−1/n ⊆ Ft by the definition of stopping time, then by
the definition of sigma-field the union

{T < t} ∈ Ft
is measurable as claimed. �

Theorem. Suppose X is a right-continuous n-dimensional process adapted to a filtration
satisfying the usual conditions. Fix an open set A ⊆ Rn and let

T = inf{t ≥ 0 : Xt ∈ A}.
Then T is a stopping time.

Proof. Let f : [0,∞)→ Rn be right-continuous. Suppose that for some s ≥ 0 we have
f(s) ∈ A. Since A is open, there exists a δ > 0 such that

f(s) + y ∈ A
for all ‖y‖ < δ. Since f is right-continuous, there exists ε > 0 such that ‖f(s) − f(u)‖ < δ
for all u ∈ [s, s+ ε). In particular, for all rational q ∈ [s, s+ ε) we have

f(q) ∈ A.

Now, by the previous theorem is enough to check that {T < t} ∈ Ft for each t ≥ 0. Note
that

{T < t} = {Xs ∈ A for some s ∈ [0, t)}

=
⋃

q∈[0,t)∩Q

{Xq ∈ A}

where Q is the set of rationals. Since Xq is Fq-measurable by the assumption that X is
adapted, then {Xq ∈ A} ∈ Fq ⊆ Ft. And since the set of rationals is countable, the union
is in Ft also. �

Remark. Note that by the definition of infimum, the event {T = t} involves the be-
haviour of X shortly after time t. The usual conditions help smooth over these arguments.

One of the main reasons why the usual conditions were recognised as a natural assumption
to make of a filtration is that they appear in the following famous theorem. The proof is
omitted since this is done in Advanced Probability.
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Theorem (Doob’s regularisation.). If X is a martingale with respect to a filtration sat-
isfying the usual conditions, then X has a right-continuous4, modification, i.e. a right-
continuous process X∗ such that

P(Xt = X∗t ) = 1 for all t ≥ 0.

In the previous lectures, we have discussed filtrations without checking that the usual
conditions are satisfied. Do we have to go back and reprove everything? Fortunately, the
answer is no since we have been dealing with continuous processes:

Theorem. Let X be a right-continuous martingale with respect to a filtration F. Then
X is also martingale for F∗ where

F∗t = σ

(⋂
ε>0

Ft+ε ∪ {P− null sets}

)
Proof. We need to show that for any 0 ≤ s ≤ t that

E[Xt|F∗s ] = Xs

which means that for any A ∈ F∗s , the equality

E[(Xt −Xs)1A] = 0

holds.
First, by the definition of null set, for any A ∈ F∗s we can find a set B ∈ Fs+ such that

1A = 1B a.s.

so it is enough to show that
E[(Xt −Xs)1B] = 0.

Now, since X is an F martingale, we have

E[Xt|Fs+ε] = Xs+ε

for any s+ ε ≤ t. Hence, since B ∈ Fs+ ⊆ Fs+ε we have

E[(Xt −Xs+ε)1B] = 0.

Now note that Xs+ε → Xs a.s. as ε ↓ 0 by the assumption of right-continuity, and that
the collection of random variables (Xs+ε)ε∈[0,t−s] is uniformly integrable by the martingale
property. Therefore,

E[(Xt −Xs)1A] = E[(Xs+ε −Xs)1B]→ 0.

�

With these considerations in mind, we now state an assumption that will be in effect
throughout the course:

Assumption. All filtrations are assumed to satisfy the usual conditions, unless otherwise
explicitly stated.

We are now ready to move on to the main topic of the course.

4... in fact the sample paths are càdlàg, which is an abbreviation for continue à droite, limite à gauche
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CHAPTER 3

Stochastic integration

1. Overview

The goal of this chapter is to construct the stochastic integral. Recall that from our
motivating discussion, we would like to give meaning to integrals of the form

Xt =

∫ t

0

KsdMs.

where M is a Brownian motion and K is non-anticipating in some sense.
It turns out that a convenient class of integrands K are the predictable processes, and a

convenient class of integrators M are the continuous local martingales. In particular, if K
is compatible with M is a certain sense, then the integral X can be defined, and it is also a
local martingale.

What we will see is that for each continuous local martingale M there exists a continuous
non-decreasing process 〈M〉, called its quadratic variation, which somehow measures the
‘speed’ of M . The compatibility condition to define the integral is that∫ t

0

K2
sd〈M〉s <∞ a.s. for all t ≥ 0.

Note that since 〈M〉 is non-decreasing, we can interpret the above integral as a Lebesgue–
Stieltjes integral for each outcome ω ∈ Ω, i.e. we don’t need a new integration theory to
understand it. Finally, to start to appreciate where this compatibility condition comes from,
it turns out that the quadratic variation of the local martingale X is given by

〈X〉t =

∫ t

0

K2
sd〈M〉s.

That is the outline of the programme. In particular, we need to define some new vocab-
ulary, including what is meant by a local martingale. This is the topic of the next section.

2. Local martingales and uniform integrability

As indicated in the last section, a starring role in this story is played by local martingales:

Definition. A local martingale is a right-continuous adapted process X such that there
exists a non-decreasing sequence of stopping times Tn ↑ ∞ such that the stopped process

XTn −X0 = (Xt∧Tn −X0)t≥0

is a martingale for each n. The localising sequence (Tn)n≥1 is said to reduce X to martingale.
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Remark. Note that the definition can be simplified under the additional assumption
that X0 is integrable: a local martingale is an adapted process X such that there exists
stopping times Tn ↑ ∞ for which the stopped process

XTn = (Xt∧Tn)t≥0

is a martingale for each n.
This simplifying assumption holds in several common contexts. For instance, it is often

the case that F0 is trivial, in which case X0 is constant and hence integrable. Also, the
local martingales defined by stochastic integration are such that X0 = 0, so the integrability
condition holds automatically.

This definition might seem mysterious, so we will now review the notion of uniform
integrability:

Definition. A family X of random variables is uniformly integrable if and only if X is
bounded in L1 and

sup
X∈X

A:P(A)≤δ

E(|X|1A)→ 0

as δ ↓ 0.

Remark. Recall that to say X is bounded in Lp for some p ≥ 1 means

sup
X∈X

E(|X|p) <∞.

There is an equivalent definition of uniform integrability that is sometimes easier to use:

Proposition. A family X is uniformly integrable if and only if

sup
X∈X

E(|X|1{|X|≥k})→ 0

as k ↑ ∞.

. The reason to define the notion of uniform integrability is because it is precicely the
condition that upgrades convergence in probability to convergence in L1:

Theorem (Vitali). The following are equivalent:

(1) Xn → X in L1(Ω,F ,P).
(2) Xn → X in probability and (Xn)n≥1 is uniformly integrable.

Here are some sufficient conditions for uniform integrability:

Proposition. Suppose X is bounded in Lp for some p > 1. Then X is uniformly
integrable.

Proof. By assumption, there is a C > 0 such that E(|X|p) ≤ C for all X ∈ X . So if
P(A) ≤ δ then by Hölder’s inequality

sup
X∈X

E(|X|1A) ≤ sup
X∈X

E(|X|p)1/pP(A)1−1/p

≤ C1/pδ1−1/p → 0.

�
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Proposition. Let X be an integrable random variable on (Ω,F ,P), and let G be a
collection of sub-sigma-fields of F ; i.e. if G ∈ G, then G is a sigma-field and G ⊆ F . Let

Y = {E(X|G) : G ∈ G}
Then Y is uniformly integrable.

Proof. For all Y ∈ Y we have

P(|Y | > k) ≤ E(|Y |)
k

≤ E(|X|)
k

→ 0

as k ↑ ∞ by Markov’s inequality and the conditional Jensen inequality. So let

δ(k) = sup
Y ∈Y

P(|Y | > k).

Now, if Y = E(X|G) then Y is G-measurable, and particular, the event {|Y | > k} is in G.
Then

E(|Y |1{|Y |>k}) ≤ E(|X|1{|Y |>k})
≤ sup

A:P(A)≤δ(k)

E(|X|1A),

where the first line follows from the conditional Jensen inequality and iterating conditional
expectation. Since the bound does not depend on which Y ∈ Y was chosen, and vanishes as
k ↑ ∞, the theorem is proven. �

An application of the preceding result is this:

Corollary. Let M be a martingale. Then for any finite (non-random) T > 0, (Mt)0≤t≤T
is uniformly integrable.

Proof. Note that Mt = E(MT |Ft) for all 0 ≤ t ≤ T . �

The lesson is that on a finite time horizon, a martingale is well-behaved. Things are
more complicated over infinite time horizons.

Theorem (Martingale convergence theorem). Let M be a martingale (in either discrete
time or in continuous time, in which case we also assume that M is right-continuous) which
is bounded in L1. Then there exists an integrable random variable M∞ such that

Mt →M∞ a.s. as t ↑ ∞.
The convergence is in L1 if and only if (Mt)t≥0 is uniformly integrable, in which case

Mt = E(M∞|Ft) for all t ≥ 0.

Corollary. Non-negative martingales converge.

Proof. We need only check L1 boundedness:

sup
t≥0

E(|Mt|) = sup
t≥0

E(Mt)

= E(M0) <∞.
�
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Here is an example of a martingale that converges, but that is not uniformly integrable:

Example. Let
Xt = eWt−t/2

where W is a Brownian motion in its own filtration F. As we have discussed, X is a
martingale. Since it is non-negative, it must converge. Indeed, by the Brownian law of large
numbers Wt/t→ 0 as t ↑ ∞. In particular, there exists a T > 0 such that W/t < 1/4 for all
t ≥ T . Hence, for t ≥ T we have

Xt = (eWt/t−1/2)t ≤ e−t/4 → 0.

In this case X∞ = 0. Since Xt 6= E(X∞|Ft), the martingale X is not uniformly integrable.
(This also provides an example where the inequality in Fatou’s lemma is strict.)

Let’s dwell on this example. Let Tn = inf{t ≥ 0 : Xt > n}, where inf ∅ = +∞, and
note these are stopping time for F. Since t 7→ Xt is continuous and convergent as t → ∞,
the random variable suptXt is finite-valued. In particular, for almost all ω, there is an N
such that Tn(ω) = +∞ for n ≥ N . Now XTn is well-defined, with XTn = 0 when Tn = +∞.
Also, since the stopped martingale (Xt∧Tn)t≥0 is bounded (and hence uniformly integrable),
we have

Xt∧Tn = E(XTn|Ft)
The intuition is that the rare large values of XTn some how balance out the event where
XTn = 0.

Now, to get some insight into the phenomenon that causes local martingales to fail to be
true martingales, let’s introduce a new process Y defined as follows: for 0 ≤ u < 1, let

Yu = Xu/(1−u)

and
Gu = Fu/(1−u).

Note that Y is just X, but running at a much faster clock. In particular, it is easy to see
that (Yu)0≤u<1 is a martingale for the filtration (Gu)0≤u<1. But let’s now extend for u ≥ 1
the process by

Yu = 0

and the filtration by
Gu = F∞ = σ (∪t≥0Ft) .

The process (Yu)u≥0 is not a martingale over the infinite horizon, since, for instance 1 = Y0 6=
E(Y1) = 0. Indeed, the process (Yu)0≤u≤1 is not even a martingale.

The process Y actually is a local martingale. Indeed, let

Un = inf{u ≥ 0 : Yu > n}
where inf ∅ = +∞ as always. We will show that Yu∧Un = E(YUn|Gu) for all u ≥ 0 and hence
the stopped process Y Un is a martingale. We will look at the two cases u ≥ 1 and u < 1
separately.

Note that for u ≥ 1, we have Gu = F∞ and in particular YUn is Gu measurable. Hence

E(YUn|Gu) = YUn

= YUn1{Un<u} + Yu1{Un=+∞} = Yu∧Un
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Figure 1. The typical graphs of t 7→ Xt(ω), above, and u 7→ Yu(ω), below,
for the same outcome ω ∈ Ω.

since Un takes values in [0, 1) ∪ {+∞} and Yu = 0 = Y∞ when u ≥ 1.
For 0 ≤ u < 1, let t = u/(1− u) and note

Tn =

{
Un/(1− Un) on {Un < 1}
+∞ on {Un = +∞}

In particular, we have

E(YUn |Gu) = E(XTn|Ft)
= XTn∧t

= YUn∧u

as claimed.

Now we see that local martingales are martingales ‘locally’, and what can prevent them
from being true martingales is a lack of uniform integrability. To formalise this, we introduce
a useful concept:
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Definition. A right-continuous adapted process X is in class D (or Doob’s class) iff the
family of random variables

{XT : T a finite stopping time }

is uniformly integrable. The process is in class DL (or locally in Doob’s class) iff for all t ≥ 0
the family

{Xt∧T : T a stopping time }
is uniformly integrable.

Proposition. A martingale is in class DL. A uniformly integrable martingale is in
class D.

Proof. Let X be a martingale and T a stopping time. Note that by the optional
sampling theorem

E(Xt|FT ) = Xt∧T .

In particular, we have expressed Xt∧T as the conditional expectation of an integrable random
variable Xt, and hence the family is uniformly integrable.

If X is uniformly integrable, we have Xt → X∞ in L1, so we can take the limit t → ∞
to get

E(X∞|FT ) = XT .

Hence {XT : T stopping time } is uniformly integrable. �

Proposition. A local martingale X is a true martingale if X is in class DL.

Proof. Without loss, suppose X0 = 0. Since X is a local martingale, there exists a
family of stopping times Tn ↑ ∞ such that XTn is a martingale. Note that Xt∧Tn → Xt

a.s. for all t ≥ 0. Now if X is in class DL, we have uniform integrability and hence we can
upgrade: Xt∧Tn → Xt in L1. In particular Xt is integrable and

E(Xt|Fs) = E(lim
n
Xt∧Tn|Fs)

= lim
n

E(Xt∧Tn|Fs)

= lim
n
Xs∧Tn

= Xs.

�

The last thing to say about continuous local martingales is that we can find an explicit
localising sequence of stopping times.

Proposition. Let X be a continuous local martingale, and let

Sn = inf{t ≥ 0 : |Xt −X0| > n}.

Then (Sn)n reduces X −X0 to a bounded martingale.

Proof. Again, assume X0 = 0 without loss. By definition, there exists a sequence of
stopping times (TN)N increasing to ∞ such that the process XTN is a martingale for each
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N . Since Sn is a stopping time, the stopped process (XTN )Sn = XTN∧Sn is a martingale.
Furthermore, it is bounded and hence uniformly bounded, so we have

E[XSn|Ft] = E[lim
N
XTN∧Sn|Ft]

= lim
N

E[XTN∧Sn|Ft]

= lim
N
XTN∧Sn∧t

= XSn
t .

�

3. Square-integrable martingales and quadratic variation

As previewed at the beginning of the chapter, for each continuous local martingale M
there is an adapted, non-decreasing process 〈M〉, called its quadratic variation, that measures
the ‘speed’ of M in some sense. In order to construct this process, we need to first take step
back and consider the space of square-integrable martingales.

We will use the notation

M2 = {X = (Xt)t≥0 continuous martingale with sup
t≥0

E(X2
t ) <∞}

Note that if X ∈M2 then by the martingale convergence theorem

Xt → X∞ a.s. and in L2

Since (X2
t )t≥0 is a submartingale, the map t 7→ E(X2

t ) is increasing, and hence

sup
t≥0

E(X2
t ) = E(X2

∞)

Also, recall Doob’s L2 inequality: for X ∈M2 we have

E(sup
t≥0

X2
t ) ≤ 4E(X2

∞).

So, every element X ∈ M2 can be associated with an element X∞ ∈ L2(Ω,F ,P). Since
L2 is a Hilbert space, i.e. a complete inner product space, it is natural to ask ifM2 has the
same structure. The answer is yes. Completeness is important because we will want to take
limits soon.

Theorem. The vector space M2 is complete with respect to the norm

‖X‖M2 = (E[X2
∞])1/2.

Proof. Let (Xn)n be a Cauchy sequence in M2, which means

E[(Xn
∞ −Xm

∞)2]→ 0

as m,n→∞.
We now find a subsequence (nk)k such that

E[(Xnk
∞ −Xnk−1

∞ )2] ≤ 2−k.
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Note that by Jensen’s inequality and Doob’s inequality, that

E

(∑
k

sup
t≥0
|Xnk

t −X
nk−1

t |

)
≤
∑
k

E
(

sup
t≥0
|Xnk

t −X
nk−1

t |2
)1/2

≤
∑
k

2E
(
|Xnk
∞ −Xnk−1

∞ |2
)1/2

≤
∑
k

21−k/2 <∞.

Hence, there exists an almost sure set on which the sum

Xnk
t = Xn0

t +
k∑
i=1

Xni
t −X

ni−1

t

converges uniformly in t ≥ 0. Since each Xnk is continuous, so is the limit process X∗.
Now since the family of random variables (Xn

∞)n is bounded in L2, and hence uniformly
integrable, we have

E(X∗∞|Ft) = lim
n

E(Xn
∞|Ft)

= lim
n
Xn
t

= X∗t

so X∗ is a martingale. �

We now introduce a notion of convergence that is well-suited to our needs:

Definition. A sequence of processes Zn converges uniformly on compacts in probability
(written u.c.p.) iff there is a process Z such that

P( sup
s∈[0,t]

|Zn
s − Zs| > ε)→ 0

for all t > 0 and ε > 0.

With this, we are ready to construct the quadratic variation:

Theorem. Let X be a continuous local martingale, and let

〈X〉(n)
t =

∑
k≥1

(Xt∧tnk −Xt∧tnk−1
)2

where we will use the notation tnk = k2−n. There there exists a continuous, adapted, non-
decreasing process 〈X〉 such that

〈X〉(n) → 〈X〉 u.c.p.

as n→∞. The process 〈X〉 is called the quadratic variation of X.

The proof will make repeated use of this elementary observation:
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Lemma (Martingale Pythagorean theorem). Let X ∈ M2 and (tn)n an increasing se-
quence such that tn ↑ ∞. Then

E(X2
∞) = E(X2

t0
) +

∞∑
n=1

E[(Xtn −Xtn−1)
2].

Proof of lemma. Note that martingales have uncorrelated increments: if i ≤ j − 1
then

E[(Xti −Xti−1
)(Xtj −Xtj−1

)] = E[(Xti −Xti−1
)E(Xtj −Xtj−1

|Ftj−1
)]

= 0

by the tower and slot properties of conditional expectation. Hence

E(X2
tN

) = E

(Xt0 +
N∑
n=1

Xtn −Xtn−1

)2


= E(X2
t0

) +
N∑
n=1

E[(Xtn −Xtn−1)
2].

Now take the supremum over N of both sides. �

Proof of existence of quadratic variation. There is no loss to suppose that
X0 = 0. For now, we will also suppose that X is uniformly bounded, so that there ex-
ists a constant C > 0 such that |Xt(ω)| ≤ C for all (t, ω) ∈ [0,∞) × Ω. This is a big
assumption that will have to be removed later.

Since X ∈M2, the limit X∞ exists. In particular,

〈X〉(n)
t − 〈X〉

(n)

2−nb2ntc = (Xt −X2−nb2ntc)
2 → 0 as t ↑ ∞,

the limit

〈X〉(n)
∞ = sup

k
〈X〉(n)

tnk

is unambiguous. By the Pythagorean theorem

E(〈X〉(n)
∞ ) = E(X2

∞) ≤ C2

so 〈X〉(n)
∞ is finite almost surely.

Now, define a new process M (n) by

M
(n)
t =

1

2
(X2

t − 〈X〉
(n)
t ).

Note that since X is continuous, so is M (n). Also, by telescoping the sum, we have

M
(n)
t =

∞∑
k=1

Xtnk−1
(Xt∧tnk −Xt∧tnk−1

).
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In particular, M (n) is a martingale, since each term1 in the sum is. By the Pythagorean
theorem

E[(M (n)
∞ )2] = E

∞∑
k=1

X2
tnk−1

(Xtnk
−Xtnk−1

)2

≤ C2E
∞∑
k=1

(Xtnk
−Xtnk−1

)2

= C2E(X2
∞)

≤ C4

since X is bounded by C.
For future use, note that

E[(〈X〉(n)
∞ )2] = E[(X2

∞ − 2M (n)
∞ )2]

≤ 2E[X4
∞] + 8E[(M (n)

∞ )2]

≤ 10C4

from the boundedness of X and the previous estimate.
By some more rearranging of terms, we have the formula

M (n)
∞ −M (m)

∞ =
∞∑
j=1

(Xj2−n −Xbj2m−nc2−m)(X(j+1)2−n −Xj2−n),

for n > m, and once more by the Pythagorean theorem, letting Zm = sup|s−t|≤2−m |Xs −Xt|

E[(M (n)
∞ −M (m)

∞ )2] = E

[
∞∑
j=1

(Xj2−n −Xbj2m−nc2−m)2(X(j+1)2−n −Xj2−n)2

]

≤ E

[
sup

|s−t|≤2−m

(Xs −Xt)
2

∞∑
j=1

(X(j+1)2−n −Xj2−n)2

]
= E

[
Z2
m〈X〉(n)

∞
]

≤ E
[
Z4
m

]1/2 E [(〈X〉(n)
∞ )2

]1/2
≤
√

10C2E(Z4
m)1/2

by the Cauchy–Schwarz inequality and the previous estimate. Now

Zm = sup
|s−t|≤2−m

|Xs −Xt| → 0 a.s.

by the uniform continuity2 X, and that |Zm| ≤ 2C, so that E(Z4
m) → 0 by the dominated

convergence theorem. This shows that the sequence (M (n))n is Cauchy.

1If Y is a uniformly integrable martingale and K is bounded and Ft0-measurable then K(Yt − Yt∧t0)
defines a uniformly integrable martingale. We need only show E[K(Y∞−Yt0)|Ft] = K(Yt−Yt∧t0) which can
be checked by considering the cases t ∈ [0, t0] and t ∈ (t0,∞) separately.

2The map t 7→ Xt is continuous by assumption, and it is uniformly continuous since Xt → X∞.
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By the completeness of M2, there exists a limit continuous martingale M∗. Let

〈X〉 = X2 − 2M∗.

Note that 〈X〉 is continuous and adapted, since the right-hand side is. By Doob’s maximal
inequality

E[sup
t≥0

(〈X〉(n)
t − 〈X〉t)2] = 4E[sup

t≥0
(M

(n)
t −M∗

t )2]

≤ 16E[(M (n)
∞ −M∗

∞)2]→ 0

so that

〈X〉(n) → 〈X〉 uniformly in L2.

By passing to a subsequence, we can assert uniform almost sure convergence. Since

〈X〉(n)
t − 〈X〉

(n)

2−nb2ntc = (Xt −X2−nb2ntc)
2 → 0 as n ↑ ∞,

by the continuity of X, and t 7→ 〈X〉(n)

2−nb2ntc is obviously non-decreasing, the almost sure

limit 〈X〉 is also non-decreasing.
Now we will remove the assumption that X is bounded. For every N ≥ 1 let

TN = inf{t ≥ 0 : |Xt| > N}.
Note that for every N , the process XTN is a bounded martingale. Hence the process

〈XTN 〉 is well-defined by the above construction. But since

〈XTN+1〉(n)
t − 〈XTN 〉(n)

t

{
= 0 if t ≤ TN
≥ 0 if t > TN

for each n, just by inspecting the definition, we also have

〈XTN+1〉t − 〈XTN 〉t
{

= 0 if t ≤ TN
≥ 0 if t > TN

for the limit. In particular, the monotonicity allows us to define 〈X〉 by

〈X〉t = sup
N
〈XTN 〉t

= lim
N→∞

〈XTN 〉t.

That 〈X〉 is adapted and non-decreasing follows from the above definition. And since 〈X〉t =
〈XTN 〉t on {t ≤ TN}, and the stopping times TN → ∞ as N → ∞, we can conclude that
〈X〉 is continuous also.

Finally, for any t > 0 and ε > 0, we have

P( sup
s∈[0,t]

|〈X〉s − 〈X〉(n)
s | > ε) ≤ P( sup

s∈[0,t]

|〈X〉s − 〈X〉(n)
s | > ε, and TN ≥ t) + P(TN < t)

≤ P(sup
s≥0
|〈XTN 〉s − 〈XTN 〉(n)

s | > ε) + P(TN < t).

By first sending n→∞ then N →∞, we establish the u.c.p. convergence. �

Now that we have constructed the quadratic variation process, we explore some of its
properties.
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Proposition. For every X ∈M2, the process

M = X2 − 〈X〉
is a continuous, uniformly integrable martingale. In particular,

E[〈X〉∞] = E[(X∞ −X0)2] = E[X2
∞]− E[X2

0 ].

Proof. Assume without loss that X0 = 0. Let

TN = inf{t ≥ 0 : |Xt| > N}
The proof from last time shows that the process

(XTN )2 − 〈XTN 〉
is a continuous square-integrable martingale for all N , and hence

E(X2
TN
− 〈X〉TN |Ft) = X2

TN∧t − 〈X〉TN∧t
Since X2

TN
≤ supt≥0X

2
t for all N , which is assumed integrable, the first term above converges

by the dominated convergence theorem. Also, since N 7→ 〈X〉TN is non-negative and non-
decreasing, second term above converges as N →∞ by the monotone convergence theorem.
Hence

E(M∞|Ft) = Mt

This shows M is a uniformly integrable martingale. �

Assuming that we can calculate the quadratic variation of a given local martingale, the
following theorem gives a useful sufficient condition to check whether the local martingale is
actually a true martingale.

Proposition. Suppose X is a continuous local martingale with X0 = 0. If E(〈X〉∞) <
∞ then X ∈M2 and

E[〈X〉∞] = E[X2
∞].

Proof. Suppose E[〈X〉∞] <∞. Then, by the monotone convergence theorem

E[sup
t≥0

X2
t ] = lim

N
E[ sup

0≤t≤TN
X2
t ]

= lim
N

E[sup
t≥0

(XTN
t )2]

≤ lim
N

4 E[(X2
TN

]

= lim
N

4 E[〈X〉TN ]

= 4 E[〈X〉∞] <∞
where Doob’s inequality was used in the third line. In particular, since for any stopping time
XT is dominated by the integrable random variable supu≥0 |Xu|, the local martingale X is
class D and hence is a true martingale. �

Corollary. If E(〈X〉t) <∞ for all t ≥ 0, then X is a true martingale and

E[X2
t ] = E(〈X〉t).

Proof. Apply the previous proposition to the stopped process X t = (Xs)0≤s≤t. �
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Remark. Be careful with the wording of the preceding results! In particular, we will
see an example of a continuous local martingale X such that supt≥0 E(X2

t ) < ∞ but is not
a true martingale. Indeed, for this example E(〈X〉t) =∞ for all t > 0.

The following corollary is easy, but is surprisingly useful:

Corollary. If X is a continuous local martingale such that 〈X〉t = 0 for all t, then
Xt = X0 a.s. for all t ≥ 0.

Proof. By the previous proposition, since E(〈X〉∞) <∞ then

sup
t≥0

E[(Xt −X0)2] = E(〈X〉∞) = 0.

�

The next result needs a definition. Recall that we are interested in developing an integra-
tion theory for (random) functions on [0,∞). The following definition is intimately related
to the Lebesgue–Stieltjes integration theory.

Definition. For a function f : [0,∞)→ R, define ‖f‖t,var by

‖f‖t,var = sup
0≤t0<...<tn≤t

n∑
k=1

|f(tk)− f(tk−1)|.

A function f is of finite variation iff ‖f‖t,var <∞ for all t ≥ 0.

Example. If f is monotone, then f is of finite variation. Indeed, in this case

‖f‖t,var = |f(t)− f(0)|.

The above example essentially classifies all finite variation functions:

Proposition. If f is of finite variation, then f = g−h where g and h are non-decreasing.

Proof. For a partition 0 ≤ t0 < t1 < . . . < tn ≤ s < t we have
n∑
k=1

|f(tk)− f(tk−1)|+ |f(t)− f(s)| ≤ ‖f‖t,var

by definition. Taking the supremum over the sub-partition of [0, s] yields

(*) ‖f‖s,var + |f(t)− f(s)| ≤ ‖f‖t,var

Hence

‖f‖s,var − f(s) ≤ ‖f‖s,var + |f(t)− f(s)| − f(t)

≤ ‖f‖t,var − f(t).(**)

Let g(t) = ‖f‖t,var and h(t) = g(t) − f(t). By (*) g is non-decreasing. and by (**) so is
h. �

Now back to stochastic processes...

Proposition. If X is a continuous local martingale of finite variation (i.e. t 7→ Xt(ω)
is of finite-variation for almost all ω), then X is almost surely constant.
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Proof. Since the quadratic variation process 〈X〉 is the u.c.p. limit of processes 〈X〉(n),

for any fixed t ≥ 0, we can find a subsequence such that 〈X〉(n)
t →〉X〉t a.s Now

〈X〉t = lim
n

∞∑
k=1

(Xt∧tnk −Xt∧tnk−1
)2

≤ ‖X‖t,var lim sup
n

sup
s1,s2∈[0,t]
|s1−s2|≤2−n

|Xs1 −Xs2| = 0

by the uniform continuity of t 7→ Xt(ω) on the compact [0, t] for almost all ω and the
assumption that ‖X(ω)‖t,var <∞ for almost all ω.

The result now follows from the above corollary. �

Finally, an important application of this proposition.

Theorem. (Characterisation of quadratic variation) Suppose X is a continuous local
martingale and A is a continuous adapted process of finite variation such that A0 = 0. The
process X2 − A is a local martingale if and only if A = 〈X〉.

Example. It is an easy exercise to see that W 2
t −t is a martingale, where W is a Brownian

motion. Hence 〈W 〉t = t. We will shortly see a striking converse of this result due to Lévy.

Proof. Suppose that X0 = 0. Let (Tn)n reduce X to a square-integrable martingale.
Then Since (XTn)2 − 〈XTn〉 = (X2 − 〈X〉)Tn is a martingale, then X2 − 〈X〉 is a local
martingale. For general X0, note that X2 − 〈X〉 = (X −X0)2 − 〈X〉+ 2X0(X −X0) +X2

0 .
The term 2X0(X −X0) +X2

0 is also local martingale, proving the ‘if’ direction.
Now suppose that X2−A is a local martingale. Then (X2−〈X〉)− (X2−A) = A−〈X〉

is a local martingale. But A − 〈X〉 is of finite variation. Hence, the difference A − 〈X〉 is
almost surely constant. �

4. The stochastic integral

Now with our preparatory remarks about local martingales and quadratic variation out
of the way, we are ready to construct the stochastic integral, the main topic of this course.

We first introduce our first space of integrands.

Definition. A simple predictable process Y = (Yt)t>0 is of the form

Yt(ω) =
n∑
k=1

Hk(ω)1(tk−1,tk](t)

where 0 ≤ t0 < . . . < tn are not random, and for each k the random variable Hk is bounded
and Ftk−1

measurable. That is to say, Y is an adapted process with left-continuous, piece-wise
constant sample paths.

Notation. The collection of all simple predictable processes will be denoted S. The
collection of continuous local martingales will be denoted Mloc.

And here is the first definition of the integral:
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Definition. If X ∈Mloc and Y ∈ S, then the stochastic integral is defined by∫ t

0

YsdXs =
n∑
k=1

Hk(Xt∧tk −Xt∧tk−1
)

Proposition. If X ∈ Mloc and Y ∈ S then
∫
Y dX is a continuous local martingale

and 〈∫
Y dX

〉
t

=

∫ t

0

Y 2
s d〈X〉s

=
n∑
k=1

H2
k(〈X〉t∧tk − 〈X〉t∧tk−1

).

Proof. For of all, note that there is no loss assuming X0 = 0. Now, to show that∫
Y dX is a local martingale, we need to find a sequence of stopping times (Tn)n such that

the (
∫
Y dX)Tn is a martingale. The natural choice is Tn = inf{t ≥ 0 : |Xt| > n}. Therefore,

we need only show that if X is a bounded martingale then so is
∫
Y dX. This can be

confirmed term by term: if s ≤ tk−1 then

E[Hk(Xtk −Xtk−1
)|Fs] = E[HkE(Xtk −Xtk−1

|Ftk−1
)|Fs]

= 0

= Hk(Xs∧tk −Xs∧tk−1
)

and if s ≥ tk−1 then

E[Hk(Xtk −Xtk−1
)|Fs] = HkE(Xtk −Xtk−1

|Fs)
= Hk(Xs∧tk −Xs∧tk−1

)

where in both cases the assumption that the random variable Hk is bounded and Ftk−1
-

measurable is used to justify pulling it out of the conditional expectations.
The verification of the quadratic variation formula is left as an exercise. One method is

to use the characterisation of quadratic variation, and show that(∫
Y dX

)2

−
∫
Y 2d〈X〉

is a local martingale. By localisation, we can assume X is bounded as before. Now apply
the Pythagorean theorem. Another method is to show that the sum of the squares of the
increments of the integral converge to the correct expression. �

Corollary (Itô’s isometry). If Y ∈ S and X ∈M2 then
∫
Y dX ∈M2 and

E

[(∫ ∞
0

YsdXs

)2
]

= E
[∫ t

0

Y 2
s d〈X〉s

]
Proof. Since Y is bounded and has a bounded number of jumps and since X is square

integrable, one checks that

E

[(
sup
t≥0

∫ t

0

YsdXs

)2
]
<∞

39



by the triangle inequality, for instance. Hence
(∫

Y dX
)2−

∫
Y 2d〈X〉 is a uniformly integrable

martingale and hence the claim. �

The next stage in the programme is to enlarge the space of integrands. The idea is
that we should be able define the stochastic integral of certain limits of simple predictable
processes by using the completeness of M2. What limits should we consider?

There are several ways to view a stochastic process Y . For instance, either as a collection
of random variables ω → Yt(ω) for each t ≥ 0, or as a collection of sample paths t→ Yt(ω)
for each ω ∈ Ω. There is a third view that will prove fruitful: consider (t, ω) 7→ Yt(ω) as a
function on [0,∞)×Ω. Since we are interested in probability, we need to define a sigma-field:

Definition. The predictable sigma-field, denoted P is the sigma-field generated by sets
of the form (s, t] × A where 0 ≤ s ≤ t and A ∈ Fs. Equivalently, the predictable sigma-
field is the smallest sigma-field for which each simple predictable process (t, ω) 7→ Yt(ω) is
measurable.

Now motivated from the discussion above, for fixed X ∈M2, we construct a measure µX
on the predictable sigma-field P as follows: For almost every ω ∈ Ω, the map t 7→ 〈X〉t(ω)
is continuous and non-decreasing. Hence, we can associate with it the Lebesgue-Stieltjes
measure

〈X〉(·, ω)

on the Borel subsets of [0,∞). This measure has the property that

〈X〉((s, t], ω) = 〈X〉t(ω)− 〈X〉s(ω).

We can use this measure as a kernel, and define µX on P by

µX(dt× dω) = 〈X〉(dt, ω)P(dω).

In particular, we have the following equality

µX((s, t]× A) = E[(〈X〉t − 〈X〉s)1A]

for A ∈ Fs and 0 ≤ s ≤ t. Finally, we let L2(X) = L2([0,∞)×Ω,P , µX) denote the Hilbert
space of square-integrable predictable processes with norm

‖Y ‖2
L2(X) =

∫
[0,∞)×Ω

Y 2dµX

= E
∫ ∞

0

Y 2
s d〈X〉s.

In particular, if we want to extend the definition of the stochastic integral to include inte-
grands more general then simple predictable processes, a natural place to look is the space
L2(X).

We will use the following notation:

if X ∈M2 then ‖X‖M2 = E(X2
∞)1/2.

Proposition. For simple predictable Y ∈ S and X ∈M2 we have

‖Y ‖L2(X) =

∥∥∥∥∫ Y dX

∥∥∥∥
M2

.

Proof. This is just Itô’s isometry in different notation. �
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Proposition. Given a sequence of simple predictable processes Yn ∈ S which converge
Yn → Y in L2(X), there exists a martingale M ∈M2 such that∫

Y ndX →M in M2.

Furthermore, if Ỹn → Y in L2(X) and
∫
Ỹ dX → M̃ in M2, then M = M̃ .

Proof. Note that the sequence of integrands Yn is Cauchy in L2(X). By Itô’s isometry,
the sequence of integrals

∫
YndX is Cauchy inM2. And since we know that the spaceM2 of

continuous square-integrable martingales is complete, we can assert the existence of a limit
M to the Cauchy sequence.

For the second part, we just use a standard argument:

‖M − M̃‖M2 ≤ ‖M −Mn‖M2 + ‖M̃ − M̃n‖M2 + ‖Mn − M̃n‖M2

= ‖M −Mn‖M2 + ‖M̃ − M̃n‖M2 + ‖Yn − Ỹn‖L2(X)

≤ ‖M −Mn‖M2 + ‖M̃ − M̃n‖M2 + ‖Y − Yn‖L2(X) + ‖Y − Ỹn‖L2(X)

→ 0

where Mn =
∫
YndX and M̃n =

∫
ỸndX and hence

Mn − M̃n =

∫
(Yn − Ỹn)dX.

�

Now we state a standard result from measure theory:

Proposition. Let µ be a finite measure on a measurable space (E, E), and let A be a
π-system of subsets of E generating the sigma-field E. Then the set of functions of the form

n∑
i=1

ai1Ai
, ai ∈ R and Ai ∈ A,

is dense in Lp(E, E , µ) for any p ≥ 1.

Corollary. When X ∈M2, the simple predictable process S are dense in L2(X). That
is to say, for any predictable process Y ∈ L2(X), we can find a sequence (Yn)n of simple
predictable processes such that

‖Y − Yn‖L2(X) → 0.

The above proposition justifies this definition:

Definition. For a martingale X ∈ M2 and a square-integrable predictable process Y
which is the L2(X) limit of a sequence Yn ∈ S, the stochastic integral

∫
Y dX is defined to

be the (unique) M2 limit of the sequence
∫
YndX.

The next result says that the stochastic integral behaves nicely with respect to stopping:

Theorem. Fix X ∈ M2 and Y ∈ L2(X), and a stopping time T . Then XT ∈ M2 and
Y 1(0,T ] ∈ L2(µX) and

(1) 〈XT 〉 = 〈X〉T
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(2)
∫
Y 1(0,T ]dX =

∫
Y dXT =

(∫
Y dX

)T
Proof. By the optional sampling theorem, the stopped martingale XT is still a martin-

gale, and by Doob’s inequality

‖XT‖2
M2 = E(X2

T ) ≤ E(sup
t≥0

X2
t )

≤ 4E(X2
∞) = 4‖X‖M2 <∞.

and hence XT ∈M2 as claimed.
Also the process 1(0,T ] is adapted and left-continuous, so it is predictable. And since Y

is predictable by assumption, so is the product Y 1(0,T ]. We also have the calculation

E
∫ ∞

0

(Ys1(0,T ](s))
2d〈X〉s ≤ E

∫ ∞
0

Y 2
s d〈X〉s <∞

so Y 1(0,T ] ∈ L2(X) as claimed.
(1) This is an exercise.

(2) First we show that

∫
Y dXT =

(∫
Y dX

)T
.

Case: Simple predictable Y ∈ S. This is obvious. Indeed, let Y have the representation

Y =
n∑
k=1

Hk1(tk−1,tk].

Then ∫ t

0

YsdX
T
s =

n∑
k=1

Hk(X
T
t∧tk −X

T
t∧tk−1

)

=
n∑
k=1

Hk(XT∧t∧tk −XT
T∧t∧tk−1

)

=

(∫
Y dX

)T
t

Case: General Y ∈ L2(X). Let (Y n)n be a sequence in S converging to Y in L2(X). We

have already shown that
∫
Y ndXT =

(∫
Y ndX

)T
for each n.

•
∫
Y ndXT →

∫
Y dXT in M2. Proof: Y n → Y in L2(XT ) also, since

E
∫ ∞

0

(Y n
s − Ys)2d〈XT 〉s = E

∫ T

0

(Y n
s − Ys)2d〈X〉s

≤ E
∫ ∞

0

(Y n
s − Ys)2d〈X〉s → 0.

And by the definition of stochastic integral,
∫
Y ndXT →

∫
Y dXT .

•
(∫

Y ndX
)T → (∫

Y dX
)T

in M2. Proof: note that if Mn → M in M2, then

(Mn)T →MT also, since

‖(Mn)T −MT‖M2 = ‖(Mn −M)T‖M2 ≤ 2‖Mn −M‖M2 .
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And since
∫
Y ndX →

∫
Y dX by the definition of stochastic integral, we are done.

Now show that

∫
Y 1(0,T ]dX =

(∫
Y dX

)T
.

Case: Simple predictable Y ∈ S and T takes only a finite number of values 0 ≤ s1 < · · · <
sN . The process 1(0,T ] is a simple and predictable since

1(0,T ] =
N∑
k=1

1{T=sk}1(0,sk]

=
N∑
k=1

1{T>sk−1}1(sk−1,sk]

where s0 = 0. Note that {T > sk−1} = {T ≤ sk−1}c ∈ Fsk−1
since T is a stopping time.

Consequently, the product Y 1(0,T ] ∈ S. As before, we have the identity∫ t

0

Ys1(0,T ](s)dXs =

(∫
Y dX

)T
t

by expanding both sides into finite sums and routine book-keeping.
Case: Simple predictable Y ∈ S and general stopping time T . The process Y 1(0,T ] is
generally not simple. So we approximate it by Tn = (2−nd2nT e) ∧ n. Note that Tn is a
stopping time taking only a finite number of values since

{Tn ≤ t} =

{
{T ≤ k2−n} if k2−n ≤ t < (k + 1)2−n, k < n2n

Ω if t ≥ n

•
∫
Y 1(0,Tn]dX →

∫
Y 1(0,T ]dX in M2. Proof. Note that Y 1(0,Tn] → Y 1(0,T ] in L2(X)

since Tn → T a.s. and

E
∫ ∞

0

(Ys1(0,Tn](s)− Ys1(0,T ](s))
2d〈X〉s → 0

by the dominated convergence theorem. Now apply the definition of stochastic
integral.

•
(∫

Y dX
)Tn → (∫

Y dX
)T

in M2 . Proof. Let M =
∫
Y dX. Then |MTn −MT |2

converges to 0 a.s. and is dominated by the integrable random variable 2 supt≥0M
2
t ,

so the result follows from the dominated convergence theorem.

Case: General Y ∈ L2(X) and general stopping time T . Let (Y n)n be a sequence in S
converging to Y in L2(X). We have already shown (

∫
Y ndX)T → (

∫
Y dX)T . So we now

show
∫
Y n

1(0,T ]dX →
∫
Y 1(0,T ]dX. Proof. We need only show that Y n

1(0,T ] → Y 1(0,T ] in
L2(X). But

E
∫ ∞

0

(Y n
s 1(0,T ](s)− Ys1(0,T ](s))

2d〈X〉s ≤ E
∫ ∞

0

(Y n
s − Ys)2d〈X〉s → 0.

�

The above proof is a bit tedious, but the result allows us to extend the definition of sto-
chastic integral in considerably. Before making this extension, we make an easy observation:
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Proposition. Let X ∈ M2 and Y ∈ L2(X). If S and T are stopping times such that
S ≤ T a.s., then ∫ t

0

Ys1(0,S](s)dX
S
s =

∫ t

0

Ys1(0,T ](s)dX
T
s

on the event {t ≤ S}.

Proof. The left integral is
(∫

Y dX
)
t∧S and the right is

(∫
Y dX

)
t∧T so they agree on

{t ≤ S}. �

Proposition. Suppose X is a continuous local martingale with X0 = 0 and Y is a
predictable process such that∫ t

0

Y 2
s d〈X〉s <∞ a.s. for all t ≥ 0.

Let

Tn = inf

{
t ≥ 0 : |Xt| > n or

∫ t

0

Y 2
s d〈X〉s > n

}
.

Then (Tn)n is an increasing sequence of stopping times which have the property that XTn ∈
M2 and Y 1(0,Tn] ∈ L2(XTn). Let

M (n) =

∫
Y 1(0,Tn]dX

Tn .

Then there is a continuous local martingale M such that M (n) →M u.c.p.

Proof. By the preceding proposition on the event {Tn ≥ t} we have that M
(n)
t = M

(N)
t

for all N ≥ n. Hence for every t ≥ 0 the sequence M
(n)
t converges almost surely to a random

variable Mt. In particular, we have

P( sup
s∈[0,t]

|M (n)
s −Ms| > ε) ≤ P(Tn > t)→ 0.

for every ε > 0. Note that MTn = M (n), and since MTn is a continuous martingale for each
n, the limit process M is a continuous local martingale. �

Definition. Suppose X is a continuous local martingale with X0 = 0 and Y is a
predictable process such that∫ t

0

Y 2
s d〈X〉s <∞ a.s. for all t ≥ 0.

Then the stochastic integral ∫
Y dX

is defined to be the u.c.p. limit of
∫
Y 1(0,Tn]dX

Tn where

Tn = inf

{
t ≥ 0 : |Xt| > n or

∫ t

0

Y 2
s d〈X〉s > n

}
.
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Remark. Note that this definition of the stochastic integral actually does not depend
on the particular localising sequence of stopping times. For instance, let (Un)n be another
increasing sequence of stopping times Un → ∞ with the properties that XUn ∈ M2 and
Y 1(0,Un] ∈ L2(XUn). Then ∫

Y 1(0,Un]dX
Un →

∫
Y dX.

Indeed, note that(∫
Y 1(0,Un]dX

Un

)Tm
=

(∫
Y 1(0,Tm]dX

Tm

)Un

=

(∫
Y dX

)Tm∧Un

.

Example. Here is the typical example of a local martingale that we shall encounter.
Let a = (at)t≥0 be an adapted, continuous process and let W = (Wt)t≥0 be a Brownian
motion. Note that a is predictable and locally bounded, and that W is a martingale. Hence
the stochastic integral Mt =

∫ t
0
asdWs defines a continuous local martingale M . It is a true

martingale if

E
∫ t

0

a2
sds <∞ for all t ≥ 0.

5. Semimartingales

We have now seen three mutually consistent definitions of stochastic integral as we have
generalised, step by step, the class of integrands and integrators. We will now give a final
one. First a definition:

Definition. A continuous semimartingale X is a process of the form

Xt = X0 + At +Mt

where A is a continuous adapted process of finite variation and M is a continuous local
martingale and A0 = M0 = 0.

Proposition. The decomposition of a continuous semimartingale is unique.

Proof. Suppose

X = X0 + A+M = X0 + A′ +M ′.

Then A − A′ = M ′ −M is a continuous martingale of finite variation. Hence, it is almost
surely constant. �

We will define integrals with respect to semimartingales in the obvious way∫
Y dX =

∫
Y dM +

∫
Y dA

where the second integral on the right is a Lebesgue–Stieltjes integral. For completeness, we
now recall some facts about such integrals.
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5.1. An aside on Lebesgue–Stieltjes integration. Recall, that if g is non-decreasing
and right-continuous, there exists a unique measure µg such that µg(a, b] = g(b)− g(a). We
can then define the Lebesgue–Stieltjes integral via∫

A

φ(s)dg(s) =

∫
1Aφ µg

for a Borel set A and measurable function φ such that the function 1Aφ is µg-integrable.

Proposition. Suppose φ is locally-µg integrable, and let

Φ(t) =

∫
(0,t]

φ(s) dg(s).

Then Φ is right-continuous. If g is continuous, then Φ is also continuous.

Proof. Write

Φ(t+ h)− Φ(t) =

∫
1(t,t+h]φ dµg

and note that 1(t,t+h]φ → 0 everywhere as h ↓ 0, and is uniformly dominated by 1(t,t+1]|φ|.
Right-continuity then follows from the dominated convergence theorem.

Similary, write

Φ(t)− Φ(t− h) =

∫
1(t−h,t]φ dµg.

If g is continuous, then 1(t−h,t]φ → 0 almost everywhere, since µg{t} = 0. Apply the domi-
nated convergence theorem again for left-continuity. �

When g is continuouss, there is no confusion then using the notation∫
(0,t]

φ(s)dg(s) =

∫ t

0

φ(s) dg(s).

Of course, we have already been using this type of integral to give sense to expressions such
as
∫
Y 2d〈X〉.

Now, if f is of finite variation, we can write f = g−h where g and h are non-decreasing.
If f is continuous, more is true:

Theorem. Suppose f is continuous and of finite variation. Then f = g−h where g and
h are non-decreasing and continuous.

Proof. From last time, we need only show that t 7→ ‖f‖t,var is continuous.
First we begin with some vocabulary and two easy observations. A partition of the

interval [a, b] is a finite set P = {p1, . . . , pN} such that a ≤ p1 < · · · < pN ≤ b. First, observe
that if P and P ′ are partitions of [0, T ] such that P ⊆ P ′, then the inequality∑

P

|f(pk)− f(pk−1)| ≤
∑
P ′

|f(pk)− f(pk−1)|

holds by the triangle inequality. Second, observe that if P [0, s] is a partition of [0, s] and
P [s, T ] is a partition of [s, T ] we have

‖f‖T,var ≥
∑
P [0,s]

|f(pk)− f(pk−1)|+
∑
P [s,T ]

|f(pk)− f(pk−1)|
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by the definition of the left-hand side. By taking the supremum over all such partitions
P [0, s] we have ∑

P [s,T ]

|f(pk)− f(pk−1)| ≤ ‖f‖T,var − ‖f‖t,var

for any partition P [s, T ] of [s, T ].
Now, fix a T > 0 and an ε > 0. Pick any 0 < t < T . By continuity, there exists a δ > 0

such that |f(s) − f(t)| < ε for t − δ ≤ s ≤ t + δ. Now, by the definition of the variation
norm, there exists a partition 0 ≤ p1 < · · · < pN ≤ T such that

(*) ‖f‖T,var ≤ ε+
N∑
k=1

|f(pk)− f(pk−1)|

By the first observation above, we can find (perhaps by refining the partition) a number M
such that pM−1 ≥ t− δ, pM = t and pM+1 ≤ t+ δ. Now expanding the inequality (*) yields

‖f‖T,var ≤ ε+
∑

P [0,t−δ]

|f(pk)− f(pk−1)|+ |f(t)− f(pM−1)|

+ |f(pM)− f(t)|+
∑

P [t+δ,T ]

|f(pk)− f(pk−1)|

≤ 3ε+ ‖f‖t−δ,var + ‖f‖T,var − ‖f‖t+δ,var

where P [0, t − δ] = {p1, . . . , pM−1} and P [t + δ, T ] = {pM+1, . . . , pN} and we have used the
second observation. Hence, by the monotonicity of t 7→ ‖f‖t,var we have

‖f‖t+δ,var − 3ε ≤ ‖f‖t−δ,var ≤ ‖f‖t,var ≤ ‖f‖t+δ,var ≤ ‖f‖t−δ,var + 3ε.

Taking ε ↓ 0 shows that t 7→ ‖f‖t,var is continuous. �

Remark. If f is only assumed right-continuous, the above proof can be modified to
show that g is right-continuous also. Similarly, if f is only left-continuous, we can show g is
left-continuous by a similar argument.

Now if f is continuous and of finite variation, we can define the Lebesgue–Stieltjes integral
as ∫ t

0

φ(s)df(s) =

∫ t

0

φ(s)dg(s)−
∫ t

0

φ(s)dh(s)

where g, h are non-decreasing continuous functions such that f = g − h. Note that this
integral does not depend on decomposition. Indeed, if f = g−h = g′−h′ then g+h′ = g′+h
and hence∫ t

0

φ(s)d[g(s) + h′(s)] =

∫ t

0

φ(s)d[g′(s) + h(s)]⇒∫ t

0

φ(s)dg(s)−
∫ t

0

φ(s)dh(s) =

∫ t

0

φ(s)dg′(s)−
∫ t

0

φ(s)dh′(s)

The integral is of finite variation since it can be written as the difference of monotone
functions:∫ t

0

φ(s)df(s) =

∫ t

0

φ(s)+dg(s) +

∫ t

0

φ(s)−dh(s)−
∫ t

0

φ(s)− dg(s)−
∫ t

0

φ(s)+dh(s).
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Also note if f is finite variation and g(t) = ‖f‖t,var then for 0 ≤ s ≤ t we have

|f(s)− f(t)| ≤ g(t)− g(s)

and hence for h = g − f ,

|h(s)− h(t)| ≤ 2[g(t)− g(s)].

In particular, the measure µh associated with the non-decreasing process h is such that
µh(A) ≤ 2µg(A) for all A, and hence we have∥∥∥∥∫ φ df

∥∥∥∥
t,var

≤ 3

∫ t

0

|φ(s)|dg(s).

We will use the notation
∫
|φ| |df | to denote the integral on the right-hand side above.

Definition. Let X = X0 +A+M be a continuous semimartingale. Let Lloc(X) denote
the set of predictable processes such that∫ t

0

|Ys| |dAs|+
∫ t

0

Y 2
s d〈M〉s <∞ a.s. for all t ≥ 0.

We single out a useful subset of Lloc(X):

Definition. A predictable process Y is locally bounded iff there exists a non-decreasing
sequence of stopping times TN ↑ ∞ and constants CN > 0 such that

|Yt(ω)|1{t≤TN (ω)} ≤ CN for all (t, ω)

for each N .

Definition. Let X = X0 + A + M be a continuous semimartingale and Y ∈ Lloc(X).
The integral

∫
Y dX is defined as the continuous semimartingale with decomposition∫

Y dX =

∫
Y dA+

∫
Y dM.

The first integral on the right is a path-by-path Lebesgue–Stieltjes integral so is continuous
and of finite variation, while the second integral is a continuous local martingale defined via
Itô’s isometry and localisation.

6. Summary of properties

Continuing the story, we need to consider the quadratic variation of a semimartingale:

Definition. Let X be a continuous semimartingale such that X = X0 +M + A where
M is a continuous local martingale and A is a continuous adapted process of finite variation.
Then

〈X〉 = 〈M〉.

This definition is consistent with our existing notion of quadratic variation by the fol-
lowing proposition:
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Proposition. Let X be a continuous semimartingale, and let

〈X〉nt =
∑
k≥1

(Xt∧tnk −Xt∧tnk−1
)2

where tnk = k2−n. Then

〈X〉n → 〈X〉 u.c.p.

as n→∞.

Proof. We already know that 〈M〉n → 〈M〉 = 〈X〉 u.c.p. By expanding the squares,
we have for any t ≤ T ,

|〈X〉nt − 〈M〉nt | =

∣∣∣∣∣∑
k≥1

(At∧tnk − At∧tnk−1
)[2(Mt∧tnk −Mt∧tnk−1

) + (At∧tnk − At∧tnk−1
)]

∣∣∣∣∣
≤ ‖A‖T,var sup

u,v∈[0,T ]

|u−v|≤2−n

|2(Mu −Mv) + Au − Av|

→ 0 a.s.

by the uniform continuity of 2M + A on the compact [0, T ]. �

A related notion we will also find useful:

Definition. Let X and Y be continuous semimartingales. Then the quadratic covaria-
tion is defined by

〈X, Y 〉 =
1

4

(
〈X + Y 〉 − 〈X − Y 〉

)
.

(This is called the polarisation identity.)

Remark. The quadratic covariation notation resembles an inner product. Note however,
that 〈X, Y 〉 is not a number but a stochastic process, i.e a map (t, ω) 7→ 〈X, Y 〉t(ω).

We now collect together a list of useful facts about quadratic covariation.

Theorem. Let X and Y be continuous semimartingales.

(1)
∑

k≥1(Xt∧tnk −Xt∧tnk−1
)(Yt∧tnk − Yt∧tnk−1

)→ 〈X, Y 〉t u.c.p.

(2) (Kunita–Watanabe inequality). If X and Y are continuous semimartingales and
H ∈ Lloc(X) and K ∈ Lloc(Y ), then∫ t

0

HsKsd〈X, Y 〉s ≤
(∫ t

0

H2
sd〈X〉s

)1/2(∫ t

0

K2
sd〈Y 〉s

)1/2

(3) If A is of finite variation, then 〈A,X〉 = 0.
(4) The map that sends the pair X, Y to 〈X, Y 〉 is symmetric and bilinear.
(5) If M and N are in M2, then MN − 〈M,N〉 is a uniformly integrable martingale.
(6) (Characterisation) Suppose M and N are continuous local martingales. Then 〈M,N〉

is the unique continuous adapted process of finite variation A with A0 = 0 such that
MN − A is a local martingale.

(7) If X and Y are independent, then 〈X, Y 〉 = 0.
(8) If H ∈ Lloc(X) then

〈∫
HdX

〉
=
∫
H2d〈X〉.
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(9) (Kunita–Watanabe identity) If H ∈ Lloc(X) then〈
Y,

∫
HdX

〉
=

∫
Hd〈X, Y 〉.

Proof. (1) This is just a consequence of polarisation identity and the definition of
quadratic variation.
(2) This proof was not done in the lectures. We start with a result from real analysis. Let
f , φ and ψ be continuous, where φ and ψ are increasing and f is a finite variation function
and such that

(*) 2ab|f(t)− f(s)| ≤ a2[φ(t)− φ(s)] + b2[ψ(t)− ψ(s)]

for all 0 ≤ s ≤ t and all real a, b. Then

(**)

∫ t

0

α(s)β(s)df(s) ≤
(∫ t

0

α(s)2dφ(s)

)1/2(∫ t

0

β(s)2dψ(s)

)1/2

for all t ≥ 0 and any α ∈ L2(dφ) and β ∈ L2(dψ).
To see this, it enough to suppose f is increasing. Fix a, b and let

F (t) = a2φ(t) + b2ψ(t)− 2abf(t)

Note that by equation (*) the function F is increasing, and hence corresponds to a Lebesgue–
Stieltjes measure µF . In particular, since µF (A) ≥ 0 we have

2abµf (A) ≤ a2µφ(A) + b2µψ(A)

for any Borel A. If α and β are simple functions, then the above equation implies

(***) 2

∫
αβdf ≤

∫
α2dφ+

∫
β2dψ.

The validity of the above inequality for non-negative α, β follows from the monotone con-
vergence theorem, and for general α, β by the inequality αβ ≤ |α| |β|.

Finally, in equation (***), replace α with cα and replace β with β/c for a positive real
c. Minimising the resulting expression over c > 0 yields inequality (**).

The Kunita–Watanabe inequality follows from the fact there is an almost sure set Ω0

such that equation (*) holds where f = 〈X, Y 〉(ω), φ = 〈X〉(ω) and ψ = 〈ψ〉(ω). Indeed, by
the u.c.p. convergence of 〈X〉(n), 〈Y 〉(n) and 〈X, Y 〉(n) there is an almost sure set Ω0 and a
subsequence (nk)k such that

〈X〉(nk)
t (ω)→ 〈X〉t(ω)

simultaneously for all t ≥ 0 with similar statements applying to 〈Y 〉 and 〈X, Y 〉. We are
done since it is easy to see that

2ab〈X, Y 〉(n)
t (ω) ≤ a2〈X〉(n)

t + b2〈X〉(n)
t (ω).

(3) If X = X0 + A′ + M then 〈X + A〉 = 〈X − A〉 = 〈M〉, and so this follows from the
polarisation identity.
(4) The symmetry and bilinearity are obvious from (1).
(5) Since M2 is a vector space, if M,N ∈ M2 then both M + N and M − N are in
M2. By an earlier result on quadratic variation of square integrable martingales, both
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(M +N)2−〈M +N〉 and (M−N)2−〈M−N〉 are uniformly integrable martingales. Hence,
so is

MN − 〈M,N〉 =
1

4

[
(M +N)2 − (M −N)2

]
− 1

4

[
〈M +N〉 − 〈M −N〉

]
.

(6) This follows from localising (5) and the uniqueness of the semimartingale decomposition.
(7) We may assume X and Y are local martingales by (3). First suppose X and Y are
square-integrable martingales. Let FX,Y be the filtration generated by X and Y . Since
FX,Yt ⊆ Ft we have

E(X∞|FX,Yt ) = E[E(X∞|Ft)|FX,Yt ] = Xt

and hence X is a FX,Y martingale. Similarly, so is Y .
By the assumed independence of the processes X and Y , the random variables X∞ and

Y∞ are conditionally independent given FX,Yt . Indeed, recall that FX,Yt is generated by
events of the form {Xu ∈ A} ∩ {Yv ∈ B} where A,B are Borel and 0 ≤ u, v ≤ t. Now the
product XY is also an FX,Y martingale since

E(X∞Y∞|FX,Yt ) = E(X∞|FX,Yt )E(Y∞|FX,Yt ) = XtYt.

As we have proved in the first chapter, the martingale property is not affected by replacing
a given filtration F by the smallest completed right-continuous filtration F∗ containing F, we
now know that XY is a martingale with respect to a filtration satisfying the usual conditions,
so the previously proven results of stochastic calculus are applicable. In particular, by (5),
the quadratic variation is 〈X, Y 〉 = 0, at least when computed with respect to this filtration.
But the limit in (1) makes no reference to the filtration, so the 〈X, Y 〉 = 0.

For general local martingales X and Y with with X0 = Y0 = 0, let

Sk = inf{t ≥ 0 : |Xt| > k} and Tk = inf{t ≥ 0 : |Yt| > k}
so that XSk and Y Tk are independent bounded martingales. In particular, the product
XSkY Tk is a martingale. Therefore, the stopped process (XSkY Tk)Sk∧Tk = (XY )Sk∧Tk is a
martingale, and hence XY is a local martingale.
(8) It is enough to consider the case where X is a local martingale. And by localisation, we
can assume X ∈M2 and H ∈ L2(X). We must show that M = (

∫
HdX)2 −

∫
H2d〈X〉 is a

martingale. We already know that this is the case when H is simple. So let (Hn)n ∈ S be
such that Hn → H in L2(X). Since

∫
HndX →

∫
HdX in M2 we have(∫ ∞

0

HndX

)2

→
(∫ ∞

0

HdX

)2

in L1(Ω)

Similarly, ∫ ∞
0

H2
nd〈X〉 →

∫ ∞
0

H2
nd〈X〉 in L1(Ω).

The remainder of the proof is on the example sheet.
(9) Again, we need only consider the case where X and Y are local martingales. By (5), we
must show that Z = Y

∫
HdX −

∫
Hd〈X, Y 〉 is a local martingale. By localisation, we can

assume X and Y are square-integrable martingales and H ∈ L2(X), in which case we must
show that Z is a true martingale. When H = K1(s0,s1] for a bounded Fs0-measurable K we
have

Zt = KYt(Xs1∧t −Xs0∧t)−K(〈X, Y 〉s1∧t − 〈X, Y 〉s0∧t)
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which is martingale by (5) and a routine calculation with conditional expectations. By
linearity Z is a martingale whenever H is simple.

Finally, let (Hn)n ∈ S be such that Hn → H in L2(X). Since
∫
HndX in M2 we have

E
∣∣∣∣Y∞ ∫ ∞

0

(H −Hn)dXs

∣∣∣∣ ≤ E(Y 2
∞)1/2E

(∫ ∞
0

(H −Hn)2d〈X〉s
)1/2

→ 0

and

E
∣∣∣∣∫ ∞

0

(H −Hn)d〈X, Y 〉s
∣∣∣∣ ≤ E

(∫ ∞
0

(H −Hn)2d〈X〉s
)1/2

E(〈Y 〉∞)1/2 → 0

by the Kunita–Watanabe inequality and the Cauchy–Schwarz inequality. The proof con-
cludes as in (8). �

Here are some more properties:

Proposition. Let X be a continuous semimartingale and Y ∈ Lloc(X). Let K be a
Fs-measurable random variable. Then KY 1(s,∞) ∈ Lloc(X) and∫

KY 1(s,∞)dX = K

∫
Y 1(s,∞)dX.

Theorem. Let X be a continuous semimartingale and let B ∈ Lloc(X) and A ∈ Lloc(
∫
B dX).

Then AB ∈ Lloc(X) and ∫
A d

(∫
B dX

)
=

∫
AB dX.

Proof. On the example sheet you are asked to prove this claim when the integrator is
of finite variation. Assuming that the chain rule formula holds in this case, we have∫

A2d

〈∫
BdX

〉
=

∫
A2d

∫
B2d〈X〉 =

∫
A2B2d〈X〉

and hence AB ∈ Lloc(X).
We only consider the case where X is a local martingale. The claim is true if A ∈ S

is simple and predictable just by comparing the sums defining both integrals and using the
above proposition. By localisation we assume that X ∈ M2 and let An ∈ S such that
An → A in L2(

∫
BdX). But

E

[(∫ ∞
0

(At − Ant )d

∫ t

0

BsdXs

)2
]

= E
[∫ ∞

0

(At − Ant )2d

〈∫
tBdX

〉
t

]
= E

[∫ ∞
0

(At − Ant )2B2
t d〈X〉t

]
= E

[(∫ ∞
0

(At − Ant )BtdXt

)2
]

�

Remark. We will adopt a more compact differential notation. For instance, if

Yt = Y0 +

∫ t

0

BsdXs

52



we will write
dY = B dX

which should only be considered short-hand for the corresponding integral equation. Indeed,
recall that our chief example of a continuous martingale is Brownian motion, and the sample
paths of Brownian motion are nowhere differential. Hence the differential notation can only
be considered formally. Nevertheless, the notation is useful since the above chain rule can
be expressed as

A dY = AB dX.

7. Itô’s formula

We are now ready for Itô’s formula, probably the single most useful result of stochastic
calculus. It says that a smooth function of n semimartingales is again a semimartingale with
an explicit decomposition.

Theorem (Itô’s formula). Let X = (X1, . . . , Xn) be an n-dimensional continuous semi-
martigale, let f : Rn → R be twice continuously differentiable. Then

f(Xt) = f(X0) +
n∑
i=1

∫ t

0

∂f

∂xi
(Xs) dX

i
s +

1

2

n∑
i,j=1

∫ t

0

∂2f

∂xi∂xj
(Xs) d〈X i, Xj〉s

Remark. Notice that all of the integrands continuous and adapted and hence locally
bounded and predictable, and in particular, all integrands are well-defined.

Remark. Itô’s formula is equivalently expressed as

df(X) =
n∑
i=1

∂f

∂xi
dX i +

1

2

n∑
i,j=1

∂2f

∂xi∂xj
d〈X i, Xj〉

If X is of finite variation, then 〈X i, Xj〉 = 0, and Itô’s formula reduces to chain rule of
ordinary calculus. The extra quadratic co-variation term that appears in the general case is
sometimes called Itô’s correction term.

Example. Let X be a scalar continuous semimartingale, and let Y = eX . Then

dY = Y dX +
1

2
Y d〈X〉.

We will use this fact many times.

Remark. Before giving a detailed proof, let us first consider the underlying reason why
Itô’s formula works. Simply put, it is Taylor’s formula expanded to the second order.

Indeed, expand f(Xt) about the point Xs, where 0 ≤ s ≤ t so that

f(Xt) = f(Xs) +
n∑
i=1

∂f

∂xi
(Xs)(X

i
t −X i

s) +
1

2

n∑
i,j=1

∂2f

∂xi∂xj
(Xs)(X

i
t −X i

s)(X
j
t −Xj

s ) + . . .

by Taylor’s theorem. In ordinary calculus, the second order terms are much smaller than
the first order terms, so that in the limit s→ t, they can be ignored. However, in stochastic
calculus, non-trivial local martingales have positive quadratic variation, and so the second
order terms usually contribute a non-zero term to the limit. Hence, we are left with the Itô
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correction terms involving second derivatives and quadratic covariations. Nevertheless, the
third and higher order terms are still relatively small and can be ignored.

To turn this argument into a proof, we would need to control the third and higher order
terms that we have discarded. Instead, we present a simpler proof that uses the density of
polynomials in the set of continuous functions.

We will prove Itô’s formula via a series of lemmas.

Lemma. Let X be a continuous semimartingale, and Y locally bounded, adapted and
left-continuous. Then ∑

k≥1

Ytnk−1
(Xt∧tnk −Xt∧tnk−1

)→
∫ t

0

YsdXs u.c.p

where tnk = k2−n.

Remark. This lemma differs from similar results proven so far because, rather than
asserting by density the existence of an approximating sequence (Y n)n of simple predictable
process, we are given one explicitly. This is where we will use the left-continuity of Y .

Proof of the lemma. If X = X0 + A + M where A is of finite variation and M is a
local martingale, it is enough to prove∑

k≥1

Ytnk (At∧tnk − At∧tnk−1
)→

∫ t

0

YsdAs u.c.p

and ∑
k≥1

Ytnk (Mt∧tnk −Mt∧tnk−1
)→

∫ t

0

YsdMs u.c.p

First we consider the convergence of the ‘dM ’ integral. As usual, we can assume Y is
uniformly bounded and that M is square integrable. Now note that the predictable process

Y n =
∑
k≥1

Ytnk1(tnk−1,t
n
k ]

is bounded and converges to Y pointwise by left-continuity. Hence

E
∫ ∞

0

(Y n
s − Ys)2d〈M〉s → 0

by the dominated convergence theorem and hence
∫
Y ndM →

∫
Y dM in M2. The u.c.p.

convergence in the general case follows from a composition of Chebychev’s inequalty, Doob’s
inequality and localisation.

Now the ‘dA’ integral. Assuming A is of bounded variation and that Y is bounded then

sup
t≥0

∣∣∣∣∫ t

0

(Y n
s − Ys)dAs

∣∣∣∣ ≤ 3

∫ ∞
0

|Y n
s − Ys||dAs| → 0

by the dominated convergence theorem. The general case follows from localisation.
�

Now we come to the stochastic integration by parts formula. It says that the product of
continuous semimartingales is again a semimartingale with an explicit decomposition.
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Lemma (Stochastic integration by parts or product formula). Let X and Y be continuous
semimartingales. Then

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + 〈X, Y 〉t.

Proof of the integration by parts formula. First we consider the case X = Y .
Then by the approximation lemma

2

∫ t

0

XsdXs = lim
n

∑
k≥1

2Xtnk−1
(Xt∧tnk −Xt∧tnk−1

)

= lim
n

∑
k≥1

X2
t∧tnk
−X2

t∧tnk−1
− (Xt∧tnk −Xt∧tnk−1

)2

= X2
t −X2

0 − 〈X〉t
where tnk = k2−n.

Now we apply the polarisation identity:

2

∫ t

0

(Xs + Ys)d(Xs + Ys) = (Xt + Yt)
2 − (X0 + Y0)2 − 〈X + Y 〉t

2

∫ t

0

(Xs − Ys)d(Xs − Ys) = (Xt − Yt)2 − (X0 − Y0)2 − 〈X − Y 〉t

The result follows from subtracting the above equations and dividing by 4. �

Proof of Itô’s formula. We do the n = 1 case. The other cases are similar. First
we prove Itô’s formula for monomials. We proceed by induction. Itô’s formula holds for
X0 = 1. So, suppose

d(Xm) = mXn−1dX +
m(m− 1)

2
Xm−2d〈X〉

Now note that by bilinearity and the Kunita–Watanabe identity

d〈Xm, X〉 = mXm−1d〈X〉+
m(m− 1)

2
Xm−2d〈〈X〉, X〉

= mXm−1d〈X〉

where we have used to fact that 〈X〉 is of finite variation to assert 〈〈X〉, X〉 = 0. Now by
the the integration by parts formula

d(Xm+1) =d(XmX)

=XmdX +Xd(Xm) + d〈Xm, X〉

=XmdX +

(
mXmdX +

m(m− 1)

2
Xmd〈X〉

)
+mXm−1d〈X〉

=(m+ 1)XndX +
(m+ 1)n

2
Xn−1d〈X〉,

completing the induction. Note that we have used the stochastic chain rule (lecture 11) to go
from the second to third line. By linearity, we have also proven Itô’s formula for polynomials.
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Now, for general f ∈ C2, let us suppose X = X0 + M + A where X0 is a bounded
F0-measurable random variable, M is a bounded martingale and A is of bounded variation.
Therefore, there is a constant N > 0 such that |Xt(ω)| ≤ N for all (t, ω). Now by the
Weierstrass approximation theorem, given an n > 0, there exists a polynomial pn such that
the C2 function hn = f − pn satisfies the bound

|hn(x)|+ |h′n(x)|+ |h′′n(x)| ≤ 1/n for all x ∈ [−N,N ]

where the h′ denotes the derivative of h, etc. Since Itô’s formula holds for polynomials, we
have

f(Xt)− f(X0)−
∫ t

0

f ′(Xs)dXs −
1

2

∫ t

0

f ′′(Xs)d〈X〉s

= hn(Xt)− hn(X0)−
∫ t

0

h′n(Xs)dXs −
1

2

∫ t

0

h′′n(Xs)d〈X〉s

But by a now familiar argument, the terms on the right-side converge u.c.p. to 0 as n→∞.
Now, for general X = X0 +M + A, let

TN = inf{t ≥ 0 : |Xt| > N, ‖A‖t,var > N}.
We have shown

f(XTN
t ) = f(X0) +

∫ t

0

f ′(XTN
s )dXTN

s −
1

2

∫ t

0

f ′′(XTN
s )d〈XTN 〉s

= f(X0) +

∫ t∧TN

0

f ′(Xs)dXs +
1

2

∫ t∧TN

0

f ′′(Xs)d〈X〉s

(Note that the above formula holds even on the event {|X0| > N}, since in this case we have
TN = 0 and both integrals vanish.) Sending N →∞ completes the proof. �
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CHAPTER 4

Applications to Brownian motion

1. Lévy’s characterisation of Brownian motion

We now see a striking application of Itô’s formula.

Theorem (Lévy’s characterisation of Brownian motion). Let X be a continuous d-
dimensional local martingale such that X0 = 0 and

〈Xj, Xj〉t =

{
t if i = j
0 if i 6= j.

Then X is a standard d-dimensional Brownian motion.

Proof. Fix a constant vector θ ∈ Rd and let

Mt = eiθ·Xt+‖θ‖2t/2.

By Itô’s formula,

dMt = Mt

(
i θ · dXt +

‖θ‖2

2
dt

)
− 1

2
Mt

d∑
i,j=1

θiθjd〈X i, Xj〉t

= i Mtθ · dXt

and so M is a continuous local martingale, as it is the stochastic integral with respect
to a continuous local martingale. On the other hand, since |Mt| = e‖θ‖

2t/2 and hence
E(sups∈[0,t] |Ms|) < ∞ the local martingale M is in fact a true martingale. Thus for all
0 ≤ s ≤ t we have

E(Mt|Fs) = Ms

which implies

E(ei θ·(Xt−Xs)|Fs) = e−‖θ‖
2(t−s)/2.

That X is a Brownian motion in the filtration is a consequence of a result proven in a
previous chapter. �

The next result follows directly from Lévy’s characterisation theorem.

Theorem (Dambis, Dubins–Schwarz 1965). Let X be a scalar continuous local martin-
gale for a filtration F, such that X0 = 0 and 〈X〉∞ = ∞ a.s. Define a family of stopping
times by

T (s) = inf{t ≥ 0 : 〈X〉t > s},
and a family of random variables by

Ws = XT (s)
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and a family of sigma-fields by
Gs = FT (s).

Then G = (Gs)s≥0 is a filtration and the process W is a Brownian motion in G.

Proof. For a fixed outcome ω ∈ Ω, the map t → 〈X〉t(ω) is continuous and non-
decreasing. Hence, the map s→ T (s, ω) is increasing and right-continuous. The relationship
is illustrated below. Since T (s) ≤ T (s′) a.s. whenever 0 ≤ s ≤ s′, we have the inclusion

FT (s) ⊆ FT (s′) and so G is a filtration.
Now we will show that W is continuous. To see what we need to prove, consider the

figure. For the given realisation, we have

〈X〉t1 = 〈X〉t0
so that Ws0 = Xt1 while lims↑s0 Ws = Xt0 . To show continuity, we must show Xt1 = Xt0 .
That is to say, that X and 〈X〉 have the same intervals of constancy.

So fix t0 ≥ 0 and let
T = inf{u ≥ t0 : 〈X〉u > 〈X〉t0}

so that T (ω) = t1 in the figure. Define a process Y = (Yu)u≥0 by

Yu = Xu∧T∨t0 −Xu∨t0

=

∫ u

0

1(t0,T ](r)dXr

Note that Y is a continuous local martingale and that

〈Y 〉∞ =

∫ ∞
0

1(t0,T ](r)d〈X〉r

= 〈X〉T − 〈X〉t0 = 0

by the definition of T and the continuity of 〈X〉. Hence, Y is almost surely constant and
XT = Xt0 . This does the job for a fixed t0.

Now let
Sr = inf{t ≥ r : 〈X〉t > 〈X〉r}

and
Tr = inf{t ≥ r : Xt 6= Xr}.
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We have show that Tr = Sr a.s. for each r. Hence Tr = Sr for all rational r a.s. But since
S and T are right-continuous, we have Sr = Tr for all r a.s. So X and 〈X〉 have the same
intervals of constancy afterall. In particular, we can conclude that W is continuous.

Now we show that W is a local martingale in G. Let

τN = inf{t ≥ 0 : |Xt| > N}
so that XτN is a bounded F-martingale for each N . Let σN = 〈X〉τN so that

E(WσN∧s1|Gs0) = E(XτN∧T (s1)|FT (s0))

= XτN∧T (s0)

= WσN∧s0

for any 0 ≤ s0 ≤ s1, by the optional sampling theorem. Hence W σN is a G-martingale. Note
that σN →∞ since 〈X〉∞ =∞, and hence we have shown W is a local martingale.

Finally, note that 〈W 〉s = 〈X〉T (s) = s for all s ≥ 0, and hence W is a Brownian motion
by Lévy’s characterisation theorem. �

We now rewrite the conclusion of the above theorem, and remove the assumption that
〈X〉∞ =∞ a.s.

Theorem. Let X be a continuous local martingale with X0 = 0. Then X is a time-
changed Brownian motion in the sense that there exists a Brownian motion W , possibly
defined on an extended probability space, such that Xt = W〈X〉t.

Proof. It is an exercise to show that limt→∞Xt(ω) exists on the set {〈X〉∞ < ∞}.
Therefore, the process

Ws = XT (s) +

∫ s

0

1{u>〈X〉∞}dBu

is well-defined, where B is a Brownian motion independent of X. Note that W is a local
martingale and

〈W 〉s = 〈X〉T (s) +

∫ s

0

1{u>〈X〉∞}du

= s ∧ 〈X〉∞ + (s− 〈X〉∞)+

= s

so W is a Brownian motion by Lévy’s characterisation. �

1.1. Remark on the conformal invariance of complex Brownian motion. This
section is an attempt to illustrate the application of a variant of the Dambis–Dubins–Schwarz
theorem to complex Brownian motion.

Let X and Y be independent real Brownian motions and let W = X + iY be a complex
Brownian motion. Let f : C → C be holomorphic. Our aim is to show that there exists
another complex Brownian motion Ŵ and a non-decreasing process A such that

f(Wt) = f(0) + ŴAt

Let u and v be real functions such that

f(x+ iy) = u(x, y) + iv(x, y).
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Recall that u and v are C∞, satisfy the Cauchy–Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

and are harmonic
∂2u

∂x2
+
∂2u

∂y2
= 0 =

∂2v

∂x2
+
∂2v

∂y2
.

Hence, by Itô’s formula we have

df(W ) =

(
∂u

∂x
dX +

∂u

∂y
dY +

1

2

∂2u

∂x2
d〈X〉+

∂2u

∂x∂y
d〈X, Y 〉+

1

2

∂2u

∂x2
d〈Y 〉

)
+ i

(
∂v

∂x
dX +

∂v

∂y
dY +

1

2

∂2v

∂x2
d〈X〉+

∂2v

∂x∂y
d〈X, Y 〉+

1

2

∂2v

∂x2
d〈Y 〉

)
=

(
∂u

∂x
dX +

∂u

∂y
dY

)
+ i

(
−∂u
∂y
dX +

∂u

∂x
dY

)
.

If we define real processes U and V by f(W ) = f(0) + U + iV , we see that

〈U, V 〉 = 0

and
〈U〉 = 〈V 〉 = A

where A is the non-decreasing process given by

dAt =

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dt = |f ′(Wt)|2dt.

As before, we have

Ut = X̂At and Vt = ŶAt

where X̂ and Ŷ are independent Brownian motions.
An application of this representation is this claim. Let W be a two-dimensional Brownian

motion. Then for any a ∈ R2 such that a 6= 0, we have

P(Wt = a for any t ≥ 0) = 0.

The idea of the proof is to identify W = (X, Y ) with the complex Brownian motion X + iY
and the point a = (α, β) with the complex number α + iβ. Consider the holomorphic

function f(w) = a(1 − ew) so by the above argument, we have f(W ) = ŴA for another

complex Brownian motion Ŵ and a non-decreasing process A. Assuming1 A∞ =∞ a.s., we
have the following equalities

P(Wt = a for any t ≥ 0) = P(Ŵt = a for any t ≥ 0)

= P(ŴAt = a for any t ≥ 0)

= P(eWt = 0 for any t ≥ 0)

from which the claim follows.

1In this case, we see that dAt = |f ′(Wt)|2dt = |a|2e2Xtdt. By the recurrence of scalar Brownian motion
we can conclude A∞ =∞.
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2. Changes of measure and the Cameron–Martin–Girsanov theorem

The notion of a continuous semimartingale is rather robust. We have seen that if X is
a semimartingale, then so is the stochastic integral

∫
Y dX. Also, Itô’s formula shows that

if f is smooth enough, then f(X) is again a semimartingale. In this section, if we will see
that often when we change the underlying probability measure P, the process X remains
a semimartingale under the new probability measure Q. To make this all precise we first
introduce a definition:

Definition. Let (Ω,F) be a measurable space and let P and Q be two probability
measures on (Ω,F). The measures P and Q are equivalent, written P ∼ Q, iff

P(A) = 0⇔ Q(A) = 0.

(or equivalently, iff P(A) = 1⇔ Q(A) = 1. )

It turns out that equivalent measures can be characterized by the following theorem.
When there are more than one probability measure floating around, we use the notation EP

to denote expected value with respect to P, etc.

Theorem (Radon–Nikodym theorem). The probability measure Q is equivalent to the
probability measure P if and only if there exists a random variable Z such that P(Z > 0) = 1
and

Q(A) = EP(Z1A)

for each A ∈ F .

Note that EP(Z) = 1 by putting A = Ω in the conclusion of theorem. Also, by the usual
rules of integration theory, if ξ is a non-negative random variable then

EQ(ξ) = EP(Zξ).

If Q ∼ P, then the random variable Z is called the density, or the Radon–Nikodym derivative,
of Q with respect to P, and is often denoted

Z =
dQ
dP

.

In fact, by the definition of equivalence of measure, we also have Q(Z > 0) = 1 and hence P
also has a density with respect to Q given by

dP
dQ

=
1

Z
.

In particular,

P(A) = EQ
(

1

Z
1A

)
for all A ∈ F .

Example. To anticipate the Cameron–Martin–Girsanov theorem, we first consider a
very simple and explicit example. It turns out that the main features of the theorem are
already present in this example, though the method of proof of the general theorem will use
the efficient tools of stochastic calculus developed in the previous lectures.
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Let X be an n-dimensional random vector with the N(0, I) distribution under a measure
P. Fix a vector a ∈ Rn and let

Z = ea·X−‖a‖
2/2.

Note that Z is positive and EP(Z) = 1. So we can define an equivalent measure Q by

dQ
dP

= ea·X−‖a‖
2/2.

How does X look under this new measure? Well, pick a bounded measurable f and consider
the integral

EQ[f(X)] = EP[ea·X−‖a‖
2/2f(X)]

=

∫
Rn

1

(2π)n/2
ea·x−‖a‖

2/2f(x)e−‖x‖
2/2dx

=

∫
Rn

1

(2π)n/2
f(x)e−‖x−a‖

2/2dx.

We recognise the density of the N(a, I) distribution in the final integral. Hence, we have the
conclusion that X − a ∼ N(0, I) under Q.

Let X be a continuous martingale under a measure P. We now explore what X looks
like under an equivalent measure Q. The measures Q that we consider will be such that

dQ
dP

= Z∞

where Z is a positive, continuous, uniformly integrable martingale with Z0 = 1.

Theorem. For a given probability measure P, suppose Z is a strictly positive P-uniformly
integrable martingale. Let X be a continuous P-local martingale. Define an equivalent mea-
sure Q by

dQ
dP

= Z∞.

Then the process X − 〈X, logZ〉 is a Q-local martingale.

Proof. Note by Itô’s formula

d logZ =
dZ

Z
− d〈Z〉

2Z2

so by the Kunita–Watanabe identity we have

d〈X, logZ〉 =
d〈X,Z〉

Z
.

Let X̂ = X−〈X, logZ〉. The key observation is that X̂Z is a P-local martingale because
of the calculation

d(X̂Z) = Z(dX − d〈X,M〉) + X̂ dZ + d〈X,Z〉

= Z dX + X̂ dZ

By localisation we can assume that X̂ is bounded. Since Z is a uniformly integrable
P-martingale then Z is in class D, i.e.

{ZT : T bounded stopping time }
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is uniformly P-integrable for all t ≥ 0. By boundedness, the collection

{X̂TZT : T bounded stopping time }
is also P-uniformly integrable, and hence the local martingale X̂Z is actually a uniformly
integrable P-martingale. In particular, X̂tZt → X̂∞Z∞ in L1(P) and P-a.s. (and Q-a.s. by
equivalence) By Bayes’s formula we have

EQ(X̂∞|Ft) =
EP(Z∞X̂∞|Ft)
EP(Z∞|Ft)

= X̂t

This shows that X̂ = X − 〈X, logZ〉 is a Q-martingale. �

A useful result which we have already used implicitly is the following:

Proposition (Representation of positive local martingales). A positive, continuous pro-
cess Z is a local martingale if and only if Z = eM−〈M〉/2 for some continuous local martingale
M .

Proof. Suppose Z is a positive local martinglae. Let

Mt =

∫ t

0

dZs
Zs

,

so that

〈M〉t =

∫ t

0

d〈Z〉s
Z2
s

.

Now by Itô’s formula we have

d logZ = dM − 1

2
d〈M〉.

Conversely, if Z = eM−〈M〉/2 for a local martingale M , then Itô’s formula says

dZ = ZdM.

and hence Z is a local martingale. �

Definition. For a continuous semimartingale X, we will use the notation E(X) =
eX−〈X〉/2 to denote the stochastic (or Doléans-Dade) exponential.

An important application of the previous theorem is this natural generalisation of the
above Gaussian example:

Theorem (Cameron–Martin–Girsanov). Fix a probability measure P and let W be an
n-dimensional a P-Brownian motion and let α be an n-dimensional predictable process such
that ∫ ∞

0

‖αs‖2ds <∞ P− a.s.

Let

Zt = E
(∫

α · dW
)
t

= e
∫ t
0 αs·dWs− 1

2

∫ t
0 ‖αs‖2ds
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and suppose that Z is a P-uniformly integrable martingale. Let

dQ
dP

= Z∞

The process

Ŵt = Wt −
∫ t

0

αsds

defines a Q-Brownian motion.

Proof. By the previous theorem, the process Ŵ is a Q-local martingale. Also, note
by example sheet 3, u.c.p convergence and hence the calculation of quadratic variation is
unaffected by equivalent changes of measure. Now note that

〈Ŵ i, Ŵ j〉t = 〈W i,W j〉t =

{
t if i = j
0 if i 6= j

so Ŵ is a Q-Brownian motion by Lévy’s characterisation. �

We now discuss when Z is a true martingale, but not necessarily uniformly integrable.

Definition. Probability measures P and Q on a measurable space (Ω,F) with filtration
F are locally equivalent iff for every t ≥ 0, the restrictions P|Ft and Q|Ft are equivalent.

Theorem (Radon–Nikodym, local version). If the measures P and Q are locally equiv-
alent then there exists a positive P-martingale Z with E(Z0) = 1 such that

dQ|Ft

dP|Ft

= Zt.

Proof. To lighten the notation, let Pt = P|Ft and Qt = Q|Ft . Note that by the ‘standard
machine’ of measure theory,

EPt(X) = EP(X)

if X is non-negative and Ft-measurable.
Now, by the Radon–Nikodym theorem, for every t ≥ 0 there exists an Ft measurable

positive random variable Zt such that

dQt

dPt
= Zt.

We need only show that Z is a P-martingale. Let 0 ≤ s ≤ t and let A ∈ Fs. By the definition
of the Radon–Nikodym density, we have

Qs(A) = EPs(Zs1A) = EP(Zs1A)

Also, since A ∈ Ft as well, we have

Qt(A) = EP(Zt1A)

Of course Qs(A) = Qt(A) since A ∈ Fs ⊆ Ft. Since A was arbitrary, we have shown

EP(Zt|Fs) = Zs.

�
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Remark. Locally equivalent measures P and Q are actually equivalent if F = σ
(⋃

t≥0Ft
)

and the Radon–Nikodym density martingale Z is uniformly integrable. In this case there
exists a positive random variable Z∞ such that Zt → Z∞ a.s. and in L1(Ω,F ,P) and such
that

dQ
dP

= Z∞.

Example. Let P a probability measure such that the process W is a real Brownian
motion, and let Q be a probability measure such that the process Ŵ is a Brownian motion,
where Ŵt = Wt + at for some constant a 6= 0. The measures P and Q are locally equivalent
with density process

dQ|Ft

dP|Ft

= e−aWt−a2t/2

by the Cameron–Martin theorem. Note that the density process is a P martingale, but it is
not uniformly integrable, so the measures Q and P are not equivalent. Indeed, note that

P
(
Wt

t
→ 0 as t→∞

)
= 1

but

Q
(
Wt

t
→ 0 as t→∞

)
= Q

(
Ŵt

t
→ a as t→∞

)
= 0.

For these theorems to be useful, we need some criterion to check whether a positive local
martingale is actually uniformly integrable.

Proposition. Let M be a continuous local martingale with M0 = 0 and let

Z = eM−〈M〉/2.

(1) Z is a local martingale and supermartingale.
(2) Z is a true martingale if and only if E(Zt) = 1 for all t ≥ 0.
(3) Zt → Z∞ a.s., and Z is a uniformly integrable martingale if and only if E(Z∞) = 1.

(4) (Novikov’s criterion (1973)) If E(e
1
2
〈M〉∞) < ∞, then Z is a uniformly integrable

martingale.

Proof. Items (1) and (2) are on example sheet 2. For (3), non-negative martingales
are bounded in L1 and hence converge by the martingale convergence theorem. And if
E(Z∞) = 1 = limt↑∞ E(Zt) then Zt → Z∞ by in L1 Scheffé’s lemma. Convergence in L1

implies uniform integrability by Vitali’s theorem. �

To prove Novikov’s theorem, we first establish two lemmas. This proof is inspired by a
paper of Krylov.

Lemma. Let X be a continuous local martingale with X0 = 0. Then for any p, q > 1 and
stopping time T , we have

E (E(X)pT ) ≤ E(e
pq(pq−1)
2(q−1)

〈X〉∞)
q−1
q .
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Proof. First note the identity

E(X)p = E(pqX)1/q exp
(
pq(pq−1)
2(q−1)

〈X〉
) q−1

q
.

By Hölder’s inequality we have

E (E(X)pT ) ≤ E (E(pqX)T )
1
q E(e

pq(pq−1)
2(q−1)

〈X〉T )
q−1
q .

Now E(pqX) is a supermartingale, so E(E(pqX)T ) ≤ 1 by the optional sampling theorem.
The result follows from the inequality 〈X〉T ≤ 〈X〉∞. �

Lemma. Let X be a continuous local martingale with X0 = 0. Then for any p > 1, we
have

E (E(pX)∞) ≥ E (E(X)∞)p E(e
p2

2
〈X〉∞)−

p−1
p .

Proof. As above, note the identity

E(X) = E(pX)
1
p exp

(
p
2
〈X〉

) p−1
p .

Then Hölder’s inequality implies

E[E(X)∞] ≤ E[E(pX)∞]
1
pE[e

p
2
〈X〉∞ ]

p−1
p

≤ E[E(pX)∞]
1
pE[e

p2

2
〈X〉∞ ]

p−1

p2

where the second line follows from Jensen’s inequality. �

Proof of Novikov’s criterion. Suppose E[e
1
2
〈M〉∞ ] <∞.

Note that
pq(pq − 1)

q − 1
> 1

for all p, q > 1, and

lim
q↓1

lim
p↓1

pq(pq − 1)

q − 1
= 1

Therefore, for any 0 < a < 1 we can find p, q > 1 such that a2 pq(pq−1)
q−1

= 1 and hence

E (E(aM)pT ) ≤ E(e
1
2
〈M〉∞)

q−1
q <∞

by the first lemma. In particular, the collection

{E(aM)T : T stopping time }
is bounded in Lp, and hence uniformly integrable. That means the local martingale E(aM)
is in class D, implying it is a uniformly integrable martingale and hence

E [E(aM)∞] = 1.

By the second lemma we have

E (E(M)∞) ≥ E (E(aM)∞)1/a E(e
1

2a2
〈aM〉∞)a−1

= E(e
1
2
〈M〉∞)a−1

The conclusion follows upon sending a ↑ 1. �
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3. The martingale representation theorem

Now we ask explore the characterisation of local martingales, not in a general probability
space, but in the special but important case where all measurable events are generated by a
Brownian motion.

Theorem (Itô’s martingale representation theorem). Let (Ω,F ,P) be a probability space
on which a d-dimensional Brownian motion W = (Wt)t≥0 is defined, and let the filtra-
tion (Ft)t≥0 be the (completed, right-continuous) filtration generated by W . Assume F =
σ
(⋃

t≥0Ft
)
.

Let M = (Mt)t≥0 be a càdlàg locally square-integrable local martingale. Then there exists

an Leb× P-unique predictable d-dimensional process α = (αt)t>0 such that
∫ t

0
‖αs‖2ds <∞

almost surely for all t ≥ 0 and

Mt = M0 +

∫ t

0

αs · dWs.

In particular, the local martingale M is continuous.

Proof. (Uniqueness) Suppose

Mt = M0 +

∫ t

0

α′s · dWs

for another predictable process α′. Then by subtracting these two representations we have∫ t

0

(αs − α′s) · dWs = 0 for all t ≥ 0.

Since right-hand side is a square-integrable martingale, we can apply Itô’s isometry

E
∫ ∞

0

‖αs − α′s‖2ds = 0

from which the uniqueness follows. �

For existence we proceed via a series of lemmas:

Lemma (from local martingales to martingales). Suppose M is a locally square integrable
local martingale, so that there exists an increasing sequence (Tn)n of stopping times such
that the stopped processes MTn are square-integrable martingales. If we can find an integral
representation MTn = M0 +

∫
αndW for each n, then there exists a predictable α ∈ Lloc(W )

such that

M = M0 +

∫
αdW.

Proof. Note that we have

(MTn+1)Tn = M0 +

∫
αn+1

1(0,Tn]dW

and hence αn = αn+1
1(0,Tn] by uniqueness. In particular, we can find the unique integral

representation of M by setting

αt(ω) = αnt (ω) on {(t, ω) : t ≤ Tn(ω)}.
�
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Let M be a locally square-integrable local martingale. By lemma the above, in order to
show that M has the stochastic representation property, it is enough to show that for every
stopping time T such that MT is a square integrable martingale there exists an α ∈ L2(W )
such that MT = M0 +

∫
α · dW . Hence we may assume M is a square-integrable martingale.

Lemma (from martingales to random variables). Suppose that X ∈ L2(P) has the prop-
erty that

X = x+

∫ ∞
0

αs · dWs

for a constant x and a predictable process α such that

E
∫ ∞

0

‖αs‖2ds <∞.

Then

E(X|Ft) = x+

∫ t

0

αs · dWs

Proof. Let

Mt = x+

∫ t

0

αs · dWs.

Note that M is a continuous local martingale, as it is the stochastic integral with respect to
the martingale W with quadratic variation

〈M〉t =

∫ t

0

‖αs‖2ds.

Since 〈M〉∞ is integrable by assumption, the local martingale X is in fact square integrable
martingale. Hence

E(X|Ft) = Mt.

�

Let M be a square-integrable martingale. By the martingale convergence theorem, there
is a square-integrable random variable X such that Mt = E(X|Ft). By the last lemma, in
order to show the integral representation of M , it is enough to show that for every X ∈ L2(P)
exists a real x and α ∈ L2(W ) such that X = x+

∫∞
0
αs · dWs.

Lemma (from random variables to approximations). Suppose Xn → X in L2(P) and
each Xn has the form

Xn = xn +

∫ ∞
0

αnsdWs.

where αn ∈ L2(W ). Then X has the form

X = x+

∫ ∞
0

αsdWs.

where α ∈ L2(W ).
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Proof. Note that by Itô’s isometry

E[(Xn −Xm)2] = (xn − xm)2 + E
∫ ∞

0

‖αns − αms ‖ds→ 0.

Hence the sequences (xn) and (αn)n are Cauchy in R and L2(W ) respectively. The conclusion
follows from completeness. �

From the above lemma, to show that a random variable X ∈ L2(P) has the integral
representation property, it is enough to exhibit a sequence Xn → X in L2(P) such that each
Xn has the integral representation property. In particular, to show that every element of
L2(P) has the integral representation property, it is enough to show that a dense subset of
L2(P) has the integral representation property.

Lemma (density of cylindrical functions). Random variables of the form

f(Wt1 −Wt0 , . . . ,WtN −WtN−1
)

are dense in L2(P).

Proof. Introduce the notation tnk = k2−n and let

Gn = σ(Wtnk
−Wtnk−1

, 1 ≤ k ≤ 22n).

Note that Gn ⊆ Gn+1 and F =
(⋃

n Gn
)
. Given a X ∈ L2(P), let Xn = E(X|Gn). By the

martingale convergence theorem we have Xn → X in L2(P) . But by measurability, there
exists a function f : (Rd)N → R such that

Xn = f(Wtnk
−Wtnk−1

, 1 ≤ k ≤ N)

where N = 22n. �

To establish the integral representation property for every element of L2(P), the above
lemma says we only need to show that every X ∈ L2(P) of the form

X = f(Wtk −Wtk−1
, 1 ≤ k ≤ N)

has the integral representation property.

Lemma (density of exponentials). Fix a dimension d and let µ be a probability measure
on Rd. Consider the complex vector space of functions on Rd defined by

E = span{eiθ·x : θ ∈ Rd}
Then E is dense in the L2(µ).

Proof. Let f ∈ L2(µ) be orthogonal to E, that is to say∫
f(x)eiθ·xµ(dx) = 0 for all θ ∈ Rd.

This means that f(x) = 0 for µ-a.e. x. First of all, by considering the real and imaginary
parts of f separately, we may assume f is real valued. Now let dν± = f±dµ. Note that
ν± are finite measures since f ∈ L2 ⊆ L1. Now, the above equation and the uniqueness of
characteristic functions of finite measures implies ν+ = ν−, or equivalently f+ = f− µ-a.e.
But µ{f+ > 0, f− > 0) = 0 and hence f = 0 µ-a.e.

Hence the closure of E is Ē = E⊥⊥ = {0}⊥ = L2(µ) as desired. �
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By the above lemma, to establish the integral representation of cylindrical random vari-
ables, it is enough to establish the integral representation of exponentials.

Lemma. Let
X = ei

∑N
k=1 θk·(Wtk

−Wtk−1
)

for fixed θk ∈ Rn and 0 ≤ t0 < . . . < tN . Then there exists a constant x and a predictable
process α valued in Cn such that

E
∫ ∞

0

‖αs‖2ds <∞.

and

X = x+

∫ ∞
0

αs · dWs.

Proof. Let
β = i

∑
k

θk1(tk−1,tk]

and

M =

∫
βdW.

Note that
X = CE(M)∞

where C = e−
∑

k ‖θk‖2(tk−tk−1)/2 = E(X).
By Itô’s formula

E(M)∞ = 1 +

∫ ∞
0

E(M)sβs · dWs

we have the desired integral representation with

α = CE(M)β

since ∫ ∞
0

‖αs‖2ds ≤ C4
∑
k

‖θk‖2(tk − tk−1) <∞.

�

This concludes the proof of the martingale representation theorem.

4. Brownian local time

Let W be a one-dimensional Brownian motion, and fix x0 ∈ R. For the sake of motivation,
let

f(x) = |x− x0|
with ‘derivative’

f ′(x) = sign(x− x0) =

 +1 if x > x0

0 if x = x0

−1 if x < x0

and ‘second derivative’
f ′′(x) = 2δ(x− x0)

70



where δ is the Dirac delta function. If Itô’s formula was applicable, we would have

(*) |Wt − x0| = |x0|+
∫ t

0

sign(Ws − x0)dWs +

∫ t

0

δ(Ws − x0)ds.

Now remember, the Dirac delta function is operationally defined by∫ ∞
−∞

g(x)δ(x− x0)dx = g(x0)

for smooth functions g. Of course, the correct way of viewing the above equation is to
interpret the notation δ(x − x0)dx as the measure with a single atom, assigning unit mass
to x = x0. Is there a similar interpretation of equation (*)?

Definition. The local time of the Brownian motion W at the point x up to time t is
defined by

Lxt = |Wt − x| − |x| −
∫ t

0

sign(Ws − x)dWs.

For fixed x, it turns out that (Lxt )t≥0 is a non-decreasing process. Furthermore, it increases
precisely on the x level set of the Brownian motion. Since this set is of Lebesgue-measure
0 almost surely, the local time is another time scale, singular with respect to the natural dt
time scale. But it can be computed in terms of the Lebesgue measure of the amount of time
the Brownian motion spends in a small neighbourhood of x:

Theorem.
1

2ε
Leb(s ∈ [0, t] : |Ws − x| ≤ ε)→ Lxt u.c.p.

Proof. Without loss assume x = 0. Let

fε(x) =

{
|x| if |x| > ε
1
2ε
x2 + ε

2
if |x| ≤ ε

Itô’s formula yields

fε(Wt) = fε(0) +

∫ t

0

f ′ε(Ws)dWt +
1

2

∫ t

0

f ′′ε (Ws)ds

=
ε

2
+

∫ t

0

f ′ε(Ws)dWt +
1

2ε
Leb(s ∈ [0, t] : |Ws| ≤ ε).

Since fε(x)→ |x| uniformly, we have

fε(Wt)−
ε

2
→ |Wt| uniformly almost surely.

Also note that
f ′ε(x)→ sign(x) for all x ∈ R.

and that
|f ′ε(x)− sign(x)| ≤ 1 for all (x, ε)

so that

E

[
sup

0≤s≤t

(∫ s

0

[f ′ε(Ws)− sign(Ws)]dWs

)2
]
≤ 4E

[∫ t

0

[f ′ε(Ws)− sign(Ws)]
2ds

]
→ 0
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by the dominated convergence theorem. In particular, the stochastic integral converges
uniformly on compacts in probability. �

Remark. The proof above is not quite rigorous, since we have proved Itô’s formula only
for twice-continuously differentiable functions, but the function fε has a discontinuous second
derivative. So actually, we really should deal with the discontinuities of f ′′ε by approximating
it with a smooth function, then take the limit as above...

There are lots of interesting facts about Brownian local time, but we will not need them
in this course. Here is one stated without proof.

Theorem. Let W be a Brownian motion, L0 its local time at 0 and Mt = sup0≤s≤tWt

its running maximum. Then the two dimensional processes (|W |, L0) and (M −W,M) have
the same law.

Finally, we can also define local time for continuous semimartingales:

Definition. If X is a continuous semimartingale, the local time of X at the point x up
to time t is

Lxt = |Xt − x| − |X0 − x| −
∫ t

0

g(Xs − x)dXs

where g = 1[0,∞) − 1(−∞,0) = sign + 1{0}.

The following theorem shows that the above definition is useful:

Theorem (Tanaka’s formula). Let f be the difference of two convex functions (so that
f is continuous, has a right-derivative f ′+ at each point, and the function f ′+ is of finite
variation) Let X be a continuous semimartingale and (Lxt ) its local time. Then

f(Xt) = f(X0) +

∫ t

0

f ′+(Xs)dXs +

∫ ∞
−∞

Lxt df
′
+(x).
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CHAPTER 5

Stochastic differential equations

1. Definitions of solution

The remaing part of the course is to study so-called stochastic differential equations, i.e.
equations of the form

(*) dXt = b(Xt)dt+ σ(Xt)dWt

where the functions b : Rn → Rn and σ : Rn → Rn×d are given and W is an d-dimensional
Brownian motion.

Recall our motivation. If X satisfies equation (*) then it should be the case that

Xt+∆t = Xt +

∫ t+∆t

t

b(Xs)ds+

∫ t+∆t

t

σ(Xs)dWs.

Assuming that b and σ are sufficiently well-behaved, in particular, so that the dW integral
is a square-integrable martingale, we should be able to conclude (by Itô’s isometry) that

E(Xt+∆t|Ft) ≈ Xt + b(Xt)∆t and Cov(Xt+∆t|Ft) ≈ σ(Xt)σ(Xt)
>∆t

when ∆t > 0 is small. Indeed, it is the formal calculation above which often leads applied
mathematicians, physicists, economists, etc to consider equation (*) in the first place.

A solution of the SDE (*) consists of the following ingredients:

(1) a probability space (Ω,F ,P) with a (complete right-continuous) filtration F =
(Ft)t≥0,

(2) a d-dimensional Brownian motion W compatible with F,
(3) an adapted X process such that b(X) and σ(X) are predictable and∫ t

0

‖b(Xs)‖ds <∞ and

∫ t

0

‖σ(Xs)‖2ds <∞ a.s. for all t ≥ 0

where ‖σ‖2 = trace(σσT) is the Frobenius (a.k.a. Hilbert–Schmidt) matrix norm,
and

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs

for all t ≥ 0.

Item (3) is obviously the integral version of the formal differential equation (*). The integra-
bility conditions are to ensure that the dt integral can be interpreted as a pathwise Lebesgue
integral and the dW integral is well-defined according to our stochastic integration theory.

It turns out there are two useful notions solution to an SDE. The first one seems very
natural to me:
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Definition. A strong solution of the SDE (*) takes as the data the functions b and σ
along with the probability space (Ω,F ,P) and the Brownian motion W . The filtration F is
assumed to be generated by W . The output is the process X.

Note that assuming that X is adapted to the filtration generated by W says that X is
a functional of the Brownian sample path W . That is, given only the infinitesimal char-
acteristics of the dynamics (the functions b and σ) and the realisation of the ‘noise’, the
process X can be reconstructed. Strong solutions are consistent with a notion of causality,
in that the driving noise ‘causes’ the random fluctuations of X. It is this assumption which
distinguishes strong solutions from weak solutions:

Definition. A weak solution of the SDE (*) takes as the data the functions b and σ.
The output is the probability space (Ω,F ,P), the filtration F, the Brownian motion W and
the process X.

From the point of stochastic modelling, weak solutions are in some sense more natural.
Indeed, from an applied perspective, the natural input is the infinitesimal characteristics b
and σ. The Brownian motion W could be considered an auxiliary process, since the process
of interest is really X.

Example (Tanaka’s example). The purpose of the following example is illustrate the
difference between the notions of weak and strong solutions.

Consider the SDE with n = d = 1 and

(**) dXt = g(Xt)dWt, X0 = 0

where

g(x) = sign(x) + 1{x=0}

=

{
1 if x ≥ 0
0 if x < 0.

First we show that this equation has a weak solution. Let (Ω,F ,P) be a probability space on
which a Brownian motion X is defined. Let F be any filtration compatible with X. Define
a local martingale W by

Wt =

∫ t

0

g(Xs)dXs.

Note that the quadratic variation of W is

〈W 〉t =

∫ t

0

g(Xs)
2d〈X〉s = t

and hence W is a Brownian motion by Lévy’s characterisation. Now note that

Xt =

∫ t

0

g(Xs)
2dXs

=

∫ t

0

g(Xs)dWs.

Therefore, the setup (Ω,F ,P), F, W and X form a weak solution of the SDE (**).
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Now we show that Tanaka’s SDE does not have a strong solution. First we need a little
fact. Let X be a Brownian motion. Then∫ t

0

g(Xs)dXs −
∫ t

0

sign(Xs)dXs = 0

since the expected quadratic variation of the left-hand side is

E
∫ t

0

1{Xs}dx =

∫ t

0

P(Xs = 0)ds = 0.

Now let X is be any solution of (*). Note that X is a Brownian motion since

〈X〉t =

∫ t

0

g(Xs)
2ds = t.

The crucial observation is that W can be recovered from X by

Wt =

∫ t

0

g(Xs)dXs

=

∫ t

0

sign(Xs)dXs

= |Xt| − lim
ε↓0

1

2ε
Leb(s ∈ [0, t] : |Xs| ≤ ε).

In particular, the random variable Wt is measurable with respect to σ(|Xs| : 0 ≤ s ≤ t).
Suppose, for the sake of finding a contradiction, that X is a strong solution. Then X is

adapted to the filtration generated by W . But W is determined by |X|. In particular, this
says that we can determine the sign of the random variable Xt just by observing (|Xs|)s≥0,
an absurdity!

The existence of weak, but not strong, solutions might come as a surprise. Indeed,
consider the SDE

dXt = b(Xt)dt+ σ(Xt)dWt.

It is natural to approximate this equation setting X̂0 = X0 and discretising

X̂tk = X̂tk−1
+ b(X̂tk−1

)(tk − tk−1) + σ(X̂tk−1
)(Wtk −Wtk−1

)

for a family of times 0 ≤ t0 < t1 < . . .. By construction, the random variable X̂tk is mea-
surable with respect to the sigma-field generated by the random variables X0,Wt0 , . . . ,Wtk .
One could say that there is a ‘causality principle’, in the sense that the Brownian motion is
‘driving’ the dynamics of X̂.

The bizarre phenomenon is that somehow this measurable dependence on the driving
noise may not hold for the SDE. In particular, in some cases such as Tanaka’s example, it is
impossible to reconstruct Xt only from X0 and (Ws)0≤s≤t – some other external randomisa-
tion is necessary.
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2. Notions of uniqueness

Just as there are at least two notions of solution of an SDE, there are at least two notions
of uniqueness of those solutions.

Again, we’re studying the SDE

(*) dXt = b(Xt)dt+ σ(Xt)dWt

Definition. The SDE (*) has the pathwise uniqueness property iff for any two solutions
X and X ′ defined on the same probability space (Ω,F ,P), filtration F and Brownian motion
W such that X0 = X ′0 a.s., we must have

P(Xt = X ′t for all t ≥ 0) = 1.

We see that the notion of pathwise uniqueness can be too strict for some equations. Here
is another notion of uniqueness, which might be more suitable for stochastic modelling:

Definition. The SDE (*) has the uniqueness in law property iff for any two weak
solutions (Ω,F ,P,F, X,W ) and (Ω′,F ′,P′,F′, X ′,W ′) such that X0 ∼ X ′0, we must have

(Xt)t≥0 ∼ (X ′t)t≥0.

Example (Tanaka’s example, continued.). Again we’re considering the SDE

(**) dXt = g(Xt)dWt, X0 = 0

where g(x) = sign(x) + 1{x=0}. Suppose that X is a weak solution of Tanaka’s SDE. Note
that

d(−Xt) = −g(Xt)dWt

= [g(−Xt)− 21{Xs=0}]dWt

As before, we conclude that ∫ t

0

1{Xs=0}dWt = 0

by computing the expected quadratic variation by Fubini’s theorem. Hence

d(−Xt) = g(−Xt)dWt.

In particular −X is also weak solution of the SDE (**), and the pathwise uniqueness property
does not hold.

On the other hand, note that every weak solution of the Tanaka’s SDE are Brownian
motions. Hence, the SDE does have the uniqueness in law property.

Example. Consider the ODE

dXt = 2
√
Xtdt, X0 = 0

There is no uniqueness, since there is a whole family of solutions

Xt =

{
0 if t ≤ T
(t− T )2 if t > T.

The problem is the function b(x) = 2
√
x is not smooth at x = 0, since b′ is unbounded.

Therefore, it seems that a natural condition to impose to ensure path-wise uniqueness is
smoothness.
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Theorem. The SDE (*) has path-wise uniqueness if the functions b and σ are locally
Lipschitz, in that for every N > 0 there exists a constant KN > 0 such that

‖b(x)− b(y)‖ ≤ KN‖x− y‖ and ‖σ(x)− σ(y)‖ ≤ KN‖x− y‖
for all x, y such that ‖x‖ ≤ N and ‖y‖ ≤ N .

Before we launch into the proof, we will need a lemma that is of great importance in
classical ODE theory.

Theorem (Gronwall’s lemma). Suppose there are constants a ∈ R and b > 0 such that
the locally integrable function f satisfies

f(t) ≤ a+ b

∫ t

0

f(s)ds for all t ≥ 0.

Then
f(t) ≤ aebt for all t ≥ 0.

Proof. By the assumption of local integrability we can apply Fubini’s theorem to con-
clude ∫ t

s=0

∫ s

u=0

beb(t−s)f(u)du ds =

∫ t

u=0

∫ t

s=u

beb(t−s)f(u)ds du

=

∫ t

u=0

(eb(t−u) − 1)f(u)du.

Hence, we have ∫ t

0

f(s)ds =

∫ t

0

e(t−s)
(
f(s)− b

∫ s

0

f(u)du

)
ds

≤
∫ t

0

eb(t−s)a ds

=
a

b
(ebt − 1)

and so the result follows from substituting this bound into the inequality

f(t) ≤ a+ b

∫ t

0

f(s)ds

≤ a+ a(ebt − 1)

= aebt.

�

Proof of path-wise uniqueness. Let X and X ′ be two solutions of (*) defined on
the same probability space with X0 = X ′0. Fix an N > 0 and let TN = inf{t ≥ 0 : |Xt| >
N or |X ′t| > N}. Finally,

f(t) = E(‖Xt∧TN −X ′t∧TN‖
2).

We will show that f(t) = 0 for all t ≥ 0. By the continuity of the sample paths of X and X ′

this will imply
P( sup

0≤t≤TN
‖Xs −X ′s‖ = 0) = 1.
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By sending N →∞, we will conclude that X and X ′ are indistinguishable.
Now, by Itô’s formula, we have

‖Xt∧TN −X ′t∧TN‖
2 =

∫ t∧TN

0

2(Xs −X ′s) · {[b(Xs)− b(X ′s)]ds+ [σ(Xs)− σ(X ′s)]dWs}

+

∫ t∧TN

0

‖σ(Xs)− σ(X ′s)‖2ds

Note that the integrand of the dW integral is bounded on {t ≤ TN}, so the dW integral
is a mean-zero martingale. Hence, computing the expectation of both sides and using the
Lipschitz bound yields

f(t) =E
∫ t∧TN

0

2(Xs −X ′s) · [b(Xs)− b(X ′s)]ds+ E
∫ t∧TN

0

‖σ(Xs)− σ(X ′s)‖2ds

≤(2KN +K2
N)

∫ t

0

f(s)ds

The conclusion now follows from Gronwall’s lemma. �

The following theorem shows that uniqueness in law really is a weaker notion than path-
wise uniqueness.

Theorem (Yamada–Watanabe). If an SDE has the pathwise uniqueness property, then
it has the uniqueness in law property.

Sketch of the proof. The essential idea is to take two weak solutions, and then
couple them onto the same probability space in order to exploit the pathwise uniqueness.

Let (Ω,P,F ,F,W,X) and (Ω′,P′,F ′,F′,W ′, X ′) be two weak solutions of the SDE. Sup-
pose X0 ∼ X ′0 ∼ λ for a probability measure λ on Rn.

Let Ck denotes the space of continuous functions from [0,∞) into Rk. We can define a
probability measures on Rn × Cd × Cn by the rule

µ(A×B × C) = P(X0 ∈ A,W ∈ B,X ∈ C).

Since X0 and W are independent under P, we factorise this measure as

µ(dx, dw, dy) = λ(dx)W(dw)ν(x,w; dy)

where W is the Wiener measure on Rd and where ν is the regular conditional probability
measures on Cn such that

ν(X0,W ;C) = P(X ∈ C|X0,W ).

Define µ′ similarly and note that

µ′(dx, dw, dy) = λ(dx)W(dw)ν ′(x,w; dy)

where ν ′ is defined analogously.
Now let Ω̂ = Rn × Cd × Cn × Cn be the sample space and P̂ be the probability measure

defined by

P̂(dx, dw, dy, dy′) = λ(dx)W(dw)ν(x,w; dy)ν ′(x,w; dy′).
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Finally define X̂0(x,w, y, y′) = x, Ŵt(x,w, y, y
′) = w(t), and X̂t(x,w, y, y

′) = y(t) and

X̂ ′t(x,w, y, y
′) = y′(t). Note that X̂ and X̂ ′ are two solutions of the SDE such that X̂0 = X̂ ′0

P̂-a.s. By pathwise uniqueness, we have

P̂(X̂t = X̂ ′t for all t ≥ 1) = 1.

Hence

P(X ∈ C) = P̂(X̂ ∈ C)

= P̂(X̂ ′ ∈ C)

= P′(X ′ ∈ C)

proving that X and X ′ have the same law. �

It remains to find easy-to-check sufficient conditions that an SDE has the uniqueness in
law property. It turns out that this condition is intimately related to the Markov property,
as well as the existence of solutions to certain PDEs. We will return this later.

3. Strong existence

Just as smoothness of the functions b and σ was sufficient for uniqueness, it is not very
surprising that smoothness is also sufficient for existence. But now we will assume not only
local smoothness, but a global smoothness.

To see what kind of bad behaviour the global Lipschitz assumption rules out, we consider
an example with locally, but not globally, Lipschitz coefficients:

dXt = X2
t dt.

The unique solution is given by

Xt =
X0

1−X0t
.

If X0 > 0, then the solution only exists on the bounded interval [0, 1/X0).

Theorem (Itô). Suppose b and σ are globally Lipschitz, in the sense that there exists a
constant K > 0 such that

‖b(x)− b(y)‖ ≤ K‖x− y‖ and ‖σ(x)− σ(y)‖ ≤ K‖x− y‖ for all x, y ∈ Rd.

Then there exists a unique strong solution to the SDE

dXt = b(Xt)dt+ σ(Xt)dWt.

Furthermore, if E(‖X0‖p) <∞ for some p ≥ 2 then

E( sup
0≤s≤t

‖Xs‖p) <∞

for all t ≥ 0.

Here is one way to proceed. First note the following: suppose that we can prove the
existence of a strong solution X1 to the SDE for any initial condition X0 on an interval
[0, T ], where T > 0 is not random and does not depend on X0. That is to say, suppose we
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can find a measurable map sending X0 and the Brownian motion (Wt)0≤t≤T to the process
X1 where

X1
t = X0 +

∫ t

0

b(X1
s )ds+

∫ t

0

σ(X1
s )dWs for 0 ≤ t ≤ T

Then we can now use this same map with the intial condition X1
T and the Brownian motion

(Wu+T −WT )u∈[0,T ] to construct a process X2 so that

X2
u = X1

T +

∫ u

0

b(X2
s )ds+

∫ u

0

σ(X2
s )d(Ws+T −WT ) for 0 ≤ u ≤ T

Now we set

Xt = X0 +X1
t 1{0<t≤T} +X2

t−T1{T<t≤2T}.

The process X is a solution of the SDE on [0, 2T ]. Indeed, since X = X1 on the interval
[0, T ], and X1 solves the SDE, we need only check that X solves the SDE on [T, 2T ]:

Xt = X1
T +

∫ t−T

0

b(X2
s )ds+

∫ t−T

0

σ(X2
s )d(Ws+T −WT )

= X0 +

∫ T

0

b(X1
s )ds+

∫ T

0

σ(X1
s )dWs +

∫ t

T

b(X2
s−T )ds+

∫ t

T

σ(X2
s−T )dWs

= X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs.

By continuing this procedure, we can patch together solutions on the intervals [(N−1)T,NT ]
for N = 1, 2, . . . to get a solution on [0,∞).

With the above goal in mind, we recall Banach’s fixed point theorem, also called the
contraction mapping theorem. We state it in the form relevant for us.

Theorem. Suppose B is a Banach space with norm ||| · |||, and F : B → B is such that

|||F (x)− F (y)||| ≤ c|||x− y||| for all x, y ∈ B

for some constant 0 < c < 1. Then there exists a unique fixed point x∗ ∈ B such that

F (x∗) = x∗.

Proof of strong existence. Fix an intial condition X0 and let F be defined by

F (Y )t = X0 +

∫ t

0

b(Ys)ds+

∫ t

0

σ(Ys)dWs

for adapted continuous processes Y = (Yt)t≥0. Indeed, if Y ∗ is a fixed point of F then Y ∗ is
a solution of the SDE.

The art of the proof of this theorem is to find a reasonable Banach space B of adapted
processes on which to apply the Banach fixed point theorem. The specific choice of B is
somewhat arbitrary, since no matter how we arrive at a solution, it must be unique by the
strong uniqueness theorem from last lecture.

Now, we find a convenience Banach space. For an adapted continuous Y , let

|||Y ||| = E( sup
t∈[0,T ]

‖Yt‖2)1/2
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for a non-random T > 0 to be determined later. We consider the vector space B defined by

B = {Y : |||Y ||| <∞}.

Then B is a Banach space, i.e. complete, for the norm. (The proof of this fact is similar to
the proof that the space M2 of continuous square-integrable martingales is complete.) We
now assume that X0 is square-integrable without loss1.

Now we show that F is a contraction:

|||F (X)− F (Y )|||2 ≤ 2E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

[b(Xs)− b(Ys)]ds
∥∥∥∥2
)

+ 2E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

[σ(Xs)− σ(Ys)]dWs

∥∥∥∥2
)

Here we use the Lipschitz assumption combined with Jensen’s inequality:

E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

b(Xs)− b(Ys)ds
∥∥∥∥2
)
≤ TE

(∫ T

0

‖b(Xs)− b(Ys)‖2ds

)
≤ K2T 2 E( sup

t∈[0,T ]

‖Xt − Yt‖2)]

and here we use Lipschitz assumption combined with Burkholder’s inequality:

E

(
sup

0≤t≤T

∥∥∥∥∫ t

0

[σ(Xs)− σ(Ys)]dWs

∥∥∥∥2
)
≤ 4E

(∫ T

0

‖σ(Xs)− σ(Ys)‖2ds

)
≤ 4K2T E( sup

t∈[0,T ]

‖Xt − Yt‖2)]

and hence

|||F (X)− F (Y )|||2 ≤ (2T + 8)K2T |||X − Y |||2.

So, if we choose T small enough that c2 = (2T + 8)K2T < 1, we can apply the Banach fixed
point theorem as promised – once we check that the map F sends B to B. Clearly for any
X ∈ B, the process F (X) is adapted and continuous. Also, we have the triangle inequality,

|||F (X)||| ≤ |||F (X)− F (0)|||+ |||F (0)|||
≤ c|||X|||+ |||F (0)|||

so it is enough to show F (0) ∈ B. But

F (0)t = X0 + tb(0) + σ(0)Wt

which is easily seen to belong to B. �

1... since otherwise we could use the norm

||||Y |||| = E(e−‖X0‖ sup
t∈[0,T ]

‖Yt‖2)1/2

instead...
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4. Connection to partial differential equations

One of the most useful aspects of the theory of stochastic differential equations is their
link to partial differential equations.

The main idea for this section is contained in this result:

Theorem (Feynman–Kac formula, Kolmogorov equation). Let X be a weak solution of
the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

and suppose v : [0, T ]× Rn → R is C2, bounded and satisfies the PDE

∂v

∂t
+
∑
i

bi
∂v

∂xi
+

1

2

∑
i,j

aij
∂2v

∂xi∂xj
= 0

where
aij =

∑
k

σikσjk

with terminal condition
v(T, x) = φ(x) for all x ∈ Rn.

Then
v(t,Xt) = E [φ(XT )|Ft]

Proof. Let Mt = v(t,Xt) and note that by Itô’s formula and the fact that v satisfies a
certain PDE, we have

dMt =
∑
ij

σij
∂v

∂xi
dW j.

Hence M is a local martingale. But since M is bounded by assumption, M is a true mar-
tingale. �

The main reason for studying stochastic differential equations is that solutions to SDEs
provide examples of continuous time Markov processes.

Definition. An adapted process X is called a Markov process in the filtration F iff

E[φ(Xt)|Fs] = E[φ(Xt)|Xs]

for all bounded measurable functions φ : Rn → R and 0 ≤ s ≤ t.

Recall that if U and V are random variables such that V is measurable with respect to
the sigma-field σ(U) generated by U , then there exists a measurable function f such that
V = f(U). In particular, that for integrable ξ, the conditional expectation E(ξ|U) is defined
to be a σ(U)-measurable random variable, and hence we have E(ξ|U) = f(U) for some f .

We the above comment is mind, if X is Markov, then for any bounded measurable φ and
0 ≤ s ≤ t, there exists a function Ps,tφ such that

E[φ(Xt)|Fs] = Ps,tφ(Xs).

Definition. The Markov process is called time-homogeneous if Ps,tφ = P0,t−sφ for all
bounded measurable φ and 0 ≤ s ≤ t.

Proposition. If X is a continuous Markov process, then the conditional law of a Markov
process (Xt)t∈[s,∞) given the whole history Fs only depends on Xs.
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Proof. This argument is in essence the same as that on page 21.
Note that since X is continuous we need only show that its conditional finite-dimensional

distributions only depend on Xs. Therefore, fixing s = t0 < t1 . . . < tk we consider the
conditional joint characteristic function of Xt1 , . . . , Xtk . Let θ1, . . . , θk ∈ Rn, and note by
iterating expectations that we have

E[eiθ1·Xt1+...+iθk·Xtk |Ft0 ] = E[eiθ1·Xt1+...+iθk·Xtk−1E(eiθk·Xtk |Ftk−1
)|Ft0 ]

= E[eiθ1·Xt1+...+iθk·Xtk−1gk−1(Xtk−1
)|Ft0 ]

= . . .

= g0(Xt0)

= E[eiθ1·Xt1+...+iθk·Xtk |Xt0 ]

where gj is the bounded measurable function defined recursively by gk = 1 and

E(eiθj ·Xtj gj(Xtj)|Xtj−1
) = gj−1(Xtj−1

).

�

For the rest of the section we fix some notation: We are concerned with the SDE

(SDE) dX = b(X)dt+ σ(X)dW, X0 = x

It turns out that there is a differential operator L associated to (*) defined by

L =
∑
i

bi
∂

∂xi
+

1

2

∑
i,j

aij
∂2

∂xi∂xj
.

where
aij =

∑
k

σikσjk

This operator L is called the generator of X, and is the continuous space analogue of the
so-called Q-matrix from the theory of Markov processes on countable state spaces.

Finally, we are concerned with the PDE

(PDE)
∂u

∂t
= Lu, u(0, x) = φ(x)

This PDE is usually called Kolmogorov’s equation .

Theorem. Suppose the equation (SDE) has a weak solution X for every choice of initial
condition X0 = x ∈ Rn. Furthermore, suppose the equation (PDE) has a bounded C2 solution
u for each bounded φ. Then equation (SDE) has the uniqueness in law property, the process
X is Markov, and the equation (PDE) has a unique solution given by

u(t, x) = E [φ(Xt)|X0 = x]

Proof. Fix a non-random T > 0 and a bounded φ. Let u be a bounded solution to
(PDE) and set v(s, x) = u(T − s, x). Note that

∂v

∂s
+ Lv = 0, v(T, x) = φ(x)

so by the theorem at the beginning of this section we have

v(s,Xs) = E[φ(XT )|Fs].
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Since the left side is Xs measurable, we have

E[φ(XT )|Fs] = E[φ(XT )|Xs].

Since this holds for all 0 ≤ s ≤ T and all bounded φ, we see that X is Markov.
Now setting s = 0, we have

u(T,X0) = v(0, X0) = E[φ(XT )|X0]

showing that the bounded solutions to equation (PDE) is uniquely determined by the initial
condition φ.

Now, to see that uniqueness in law property of equation (SDE), we note as before, that
by continuity the law of the solution is determined by its finite-dimensional distributions,
and that these are determined by joint characteristic functions, which can be computed
recursively as the unique solution of equation (PDE) with the appropriate boundary condi-
tion. �

Remark. Notice the interplay of existence and uniqueness above. The existence of the
solution of the SDE implies the uniqueness of the solution of the PDE, since if there was a
solution to the PDE, it would have to be given by the specific formula. On the other hand,
the existence of the solution of the PDE implies the uniqueness of law of the SDE since the
law of the solution of the SDE is characterised completely by the solutions of the PDE.

The above theorem has a converse:

Theorem. Suppose X is a weak solution of (SDE) and is a time-homogeneous Markov
process such that P(Xt ∈ A|X0 = x) > 0 for t > 0, any open set A and any initial condition
x ∈ Rn. Let

u(t, x) = E [φ(Xt)|X0 = x] .

for bounded φ. If u is C2, then u satisfies equation (PDE).

Proof. Fix a non-random T > 0, and let v(s, x) = u(T − s, x) as before. Now

v(s, x) = E [φ(XT−s)|X0 = x]

= E [φ(XT )|Xs = x]

by time-homogeneity. Hence

v(s,Xs) = E [φ(XT )|Fs]

by the Markov property. Hence M = v(s,Xs) defines a martingale. Finally, since v is C2 by
assumption we can apply Itô’s formula:

dMs =

(
∂v

∂s
+ Lv

)
ds+

∑
ij

σij
∂

∂xi
dW j.

Since M is a martingale, the drift term must vanish for Leb × P-almost every (t, ω) by the
uniqueness of the semimartingale decomposition. The conclusion follows from the assump-
tion that the derivatives of the v are continuous and that X visits every point with positive
probability. �

There are lots of ways to generalise the above discussion. For instance,
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Theorem. Suppose X is a weak solution of

dX = b(X)dt+ σ(X)dW

and that u is C2 solution of

∂u

∂t
= Lu+ gu+ f, u(0, x) = φ(x)

where φ, g, f are bounded. Suppose that sup0≤t≤T |u(t, x)| is bounded for each T > 0.
Then

u(t, x) = E
[
e
∫ t
0 g(Xs)dsφ(Xt) +

∫ t

0

e
∫ t
0 g(Xu)duf(Xs)ds|X0 = x

]
4.1. Formulation in terms of the transition density. We will now consider the

density formulation of the Kolmogorov equations. That is, we study the equations that arise
when the Markov process X has a density p(t, x, y) with respect to Lebesgue measure, i.e.

E[φ(Xt)|X0 = x] =

∫
φ(y)p(t, x, y)dy

In this section, we will use the word claim for mathematical statements which are not true in
general, but for which there exists a non-empty but unspecified set of hypotheses such that
the statement can be proven. And rather than proofs, we include ideas, which involve some
formal manipulations without proper justification. The claims can be turned into theorems
by identifying conditions sufficient to justify these manipulations.

Claim (Kolmogorov’s backward equation). The transition density, if it exists, should
satisfy the PDE

∂p

∂t
= Lxp

with initial condition

p(0, x, y) = δ(x− y).

Idea. Fix a φ and let

E[φ(Xt)|X0 = x] = u(t, x).

In the previous section, we showed that if u is smooth enough then

∂u

∂t
= Lu.

Writing u in terms of the transition density, and supposing that we can interchange integra-
tion and differentiation, we have∫

∂p

∂t
(t, x, y)φ(y)dy =

∫
Lxp(t, x, y)φ(y)dy.

Since φ is arbitrary, we must have that p satisfies the PDE. �

Kolmogorov’s backward equation is simply

dPt
dt

= LPt
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where (Pt)t≥0 is the transition semigroup of X, i.e. where

(Ptf)(x) = E[f(Xt)|X0 = x].

Formally speaking, the solution of this (operator valued) ODE is given by

Pt = etL.

Hence, we should expect the semigroup to satisfy Kolmogorov’s forward equation

dPt
dt

= PtL

as well. To formulate this equation in terms of the transition density, we first need to define
some notation.

Definition. The formal adjoint of L is the second order partial differential operator L∗
defined by

L∗φ = −
∑
i

∂

∂xi
(biφ) +

1

2

∑
i,j

∂2

∂xi∂xj
(aijφ).

Remark. Let 〈φ, ψ〉L2 =
∫
φ(x)ψ(x)dx be the usual inner product on the space L2 of

square-integrable functions on Rn. Note that if φ and ψ are smooth and compactly supported,
then

〈φ,L∗ψ〉L2 =

∫ [
−φ(x)

∑
i

∂

∂xi
(biψ)(x) +

1

2
φ(x)

∑
i,j

∂2

∂xi∂xj
(aijψ)(x)

]
dx

=

∫ [
ψ(x)

∑
i

bi(x)
∂φ

∂xi
(x) +

1

2
ψ(x)

∑
i,j

aij(x)
∂2φ

∂xi∂xj
(x)

]
dx

= 〈Lφ, ψ〉L2

by integrating by parts.

Claim (Kolmogorov’s forward equation/Fokker–Planck equation). The transition den-
sity p should satisfy the PDE

∂p

∂t
= L∗yp.

with initial condition

p(0, x, y) = δ(x− y).

Idea. Suppose φ is smooth and compactly supported. By Itô’s formula

φ(Xt) = φ(X0) +

∫ t

0

(Lφ)(Xs)ds+Mt
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where M is a local martingale. Since M is bounded on bounded intervals, M is a true
martingale and therefore∫

p(t, x, y)φ(y)dy = φ(x) +

∫ t

0

∫
p(s, x, y)Lyφ(y)dy

= φ(x) +

∫ t

0

∫
L∗yp(s, x, y)f(y)dy

by formal integration by parts. Now formally differentiate with respect to t. �

Example. Consider the SDE

dXt = dWt, X0 = x

where W is a n-dimensional Brownian motion, so that Xt = x+Wt. Since the increments of
X are normally distributed, it is easy to see that in this case the transition density is given
by

p(t, x, y) =
1

(2πt)n/2
exp

(
−‖y − x‖

2

2t

)
Also, in this case, the generator is given by

L =
1

2

d∑
i=1

∂2

∂x2
i

=
1

2
∆

where ∆ is the Laplacian operator. Notice that L = L∗ in this case. You should check that
the given density solves both of the corresponding Kolmogorov equations.

We now turn our attention to invariant measures. A probability measure µ on Rn is
invariant for the Markov process defined by the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

if X0 ∼ µ implies Xt ∼ µ for all t ≥ 0.

Claim. Suppose p̂ is a probability density and satisfies

L∗p̂ = 0.

Then p̂ is an invariant density.

Idea. Let

u(t, x) =

∫
E[φ(Xt)|X0 = x]
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and suppose u satisfies the Kolmogorov equation ∂u
∂t

= Lu. Then∫
u(t, x)p̂(x)dx−

∫
φ(x)p̂(x)dx =

∫ ∫ t

0

∂u

∂t
(s, x)p̂(x)ds ds

=

∫ t

0

∫
Lu(t, x)p̂(x)dx

=

∫ t

0

∫
u(t, x)L∗p̂(x)dx

= 0.

by Fubini’s theorem and integration by parts. �

Example. Consider the gradient system

dXt = −∇G(Xt)dt+ εdWt

where n = d, b = −∇G, σ = εI and G : Rn 7→ R is a smooth, strictly convex function taking
its minimum at the unique point x∗.

In the case where ε = 0, one can show that for all initial condition X0 ∈ Rn, we have

Xt → x∗ as t→∞.
What happens when ε > 0?

The generator in this case is

L = −∇G · ∇+
ε2

2
∆

One can then confirm that that an invariant density is

p̂(x) = Ce−2G(x)/ε2

where C > 0 is the normalising constant.
In example sheet 3, you were asked to find a Gaussian invariant density for the Ornstein–

Uhlenbeck process, corresponding to the case G(x) = ‖x‖2/2.
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4.2. An application of stochastic analysis to PDEs. This section is not exam-
inable. Our goal is to see a probablistic approach to finding sufficient conditions on the
coefficients b and σ such that the PDE

∂u

∂t
= Lu, u(0, ·) = φ

has a solution. We have seen that if

u(t, x) = E[φ(Xt)|X0 = x]

and if u is smooth, then u is a solution.
As a warm-up, suppose that n = 1, that b = 0, that σ = 1 and hence Xt = X0 +Wt. In

this case

u(t, x) =

∫
φ(x+

√
tz)

e−z
2/2

√
2π

dz

Assuming φ is smooth with all derivatives bound, we have by integration by parts

∂u

∂t
(t, x) =

∫
φ′(x+

√
tz)

e−z
2/2

√
2π

dz

=

∫
φ(x+

√
tz)

z√
t

e−z
2/2

√
2π

dz

= E
[
φ(x+Wt)

Wt

t

]
.

The important point is that even if φ is not smooth, the last equation makes sense whenever
t > 0.

We will suppose that b and σ are smooth with bounded derivatives. This implies that
the SDE has a strong solution. We will also suppose that σ is bounded from below. What
we will see is that if

u(t, x) = E[φ(Xx
t )]

where Xx is the SDE started at X0 = x, then for each (t, x) there exists an integrable random
variable πxt such that

∂u

∂t
(t, x) = E[φ(Xx

t )πxt ]

with similar statements for n > 1. In particular, the function u(t, ·) is differentiable even is
the bounded function φ is not differentiable.

To begin to see how to prove such a statement, we very briefly discuss Malliavin calculus.
Our setting is a probability space (Ω,F ,P) supporting a Brownian motion W which generates
the filtration.

Definition. A random variable ξ is called smooth if there is smooth function F : Rk → R
with all bounded derivative and 0 ≤ t0 < . . . < tk such that

ξ = F (Wt1 −Wt0 , . . . ,Wtk −Wtk−1
).

Definition. The Malliavin derivative of a smooth random variable is a process Dξ
defined by

Dtξ =
k∑
i=1

∂F

∂xi
(Wt1 −Wt0 , . . . ,Wtk −Wtk−1

)1(ti−1,ti](t)
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The key property of the Malliavin derivative is the following integration by parts formula:

Theorem. Suppose ξ is smooth and α is a simple predictable process. Then

E
[∫ ∞

0

(Dtξ)αt dt

]
= E

[
ξ

∫ ∞
0

αt dWt

]
.

Proof. Suppose

α =
k∑
i=1

Ki1(ti−1,ti]

where Ki is bounded and Fti−1
-measurable. Hence

E
[∫ ∞

0

(Dtξ)αt dt

]
= E

k∑
i=1

∂F

∂xi
(Wt1 −Wt0 , . . . ,Wtk −Wtk−1

)Kti(ti − ti−1)

= E
k∑
i=1

F (Wt1 −Wt0 , . . . ,Wtk −Wtk−1
)Kti(Wti −Wti−1

)

= E
[
ξ

∫ ∞
0

αt dWt

]
.

where we have used the Gaussian integration by parts formula. �

It is the above integration by parts formula is what allows us to extend the definition of
the Malliavin derivative to a larger class of random variables. We skip the details, but the
idea is that this extended definition has the convenient property that

E
[∫ ∞

0

(Dtξ)αt dt

]
= E

[
ξ

∫ ∞
0

αt dWt

]
.

holds for all ξ in the domain D of the derivative operator D and all α ∈ L2(W ).
Now we turn our attention to the solutions of the SDE:

Xx
t = x+

∫ t

0

b(Xx
s )ds+

∫ t

0

σ(Xx
s )dWs.

Let

Y x
t =

∂Xx
t

∂x
.

Differentiating the integral equation (assuming integration and differentiation can be inter-
changed) yields

Y x
t = 1 +

∫ t

0

b′(Xx
s )Y x

s ds+

∫ t

0

σ′(Xx
s )Y x

s dWs.

On the other hand, computing the Malliavin derivative of both sides of the integral
equation yields

DtX
x
T =

∫ T

t

b′(Xx
s )DtX

x
s ds+

∫ t

t

σ(Xx
s )DtX

x
s dWs + σ(Xx

t )

for 0 ≤ t ≤ T , from which we have

DtX
x
T =

Y x
T

Y x
t

σ(Xx
t ).
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In particular, we have the identity

Y x
T =

Y x
t

σ(Xx
t )
DtX

x
T for all 0 ≤ t ≤ T

=
1

T

∫ T

0

Y x
t

σ(Xx
t )
DtX

x
Tdt.

∂u

∂t
(t, x) = E [φ′(Xx

t )Y x
t ]

= E
[

1

t

∫ t

0

φ′(Xx
t )DsX

x
t

Y x
s

σ(Xx
s )
ds

]
= E

[
1

t

∫ t

0

Dsφ(Xx
t )

Y x
s

σ(Xx
s )
ds

]
= E [φ(Xx

t )πxt ]

where

πxt =
1

t

∫ t

0

Y x
s

σ(Xx
s )
dWs.

This is called the Bismut–Elworthy–Li formula. This little calculation is just the beginning
of an interesting story.
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Doléans-Dade exponential, 63
Doob’s inequality, 31

equivalent probability measures, 61

filtration, 20
finite variation, 37
finite variation and continuous, 46
Frobenius norm, 73

genarator of a Markov process, 83
Gronwall’s lemma, 77

Haar basis, 15

isonormal process, 11
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