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Chapter 1

Algebra / Precalculus Review

1.1 Exponent and logarithm rules
Exponent rules

Here is a list of exponent rules you should be familiar with. In calculus, we use
these exponent rules to rewrite a given expression in a way that makes it easier to
perform calculus operations on the expression.

Theorem 1.1 (Exponent rules I) Let x, a, b and n be numbers, where x 6= 0. Then:

• xaxb = xa+b

• xa

xb
= xa−b

• x0 = 1

• x−a = 1
xa

• (xa)b = xab

• n
√
x = x1/n (in particular,

√
x = x1/2)

• xm/n = n
√
xm = ( n

√
x)m (this last way of writing xm/n is most useful)
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1.1. Exponent and logarithm rules

EXAMPLE 1
Simplify each expression as much as possible and write the answer so that it has
no radical signs (i.e. no√ or 3

√ , etc.) or fractions with xs in the denominators:

1. 642/3

Solution: 642/3 =
(

3
√

64
)2

= 42 = 16.

2. 2−3

Solution: 2−3 = 1
23 = 1

8 .

3. 4−5/2

Solution: 4−5/2 = 1
45/2 = 1

(
√

4)5 = 1
25 = 1

32 .

4. 3x4x−2(x3)3

Solution: 3x4x−2(x3)3 = 3x4x−2x9 = 3x4−2+9 = 3x11.

5. 1
x7

Solution: 1
x7 = x−7

6. 2x2

x4

Solution: 2x2

x4 = 2x2−4 = 2x−2

7.
√
x

Solution:
√
x = x1/2

8. 4√
x7

Solution: 4√
x7 = 4

x7/2 = 4x−7/2

Remark on existence of square roots:
√
x DNE if x < 0, and

√
x means only

the nonnegative square root of x, i.e.
√

25 = 5, not ±5. This is so that the process
of taking a square root is a function (later).

Remark on simplifying square roots: For any positive number x,(√
x
)2

= x.

But, if you do the square root and the squaring in the other order, the operations
don’t cancel: √

x2 =

In general, if n is even then n
√
xn = |x|, but if n is odd, then n

√
xn = x.
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1.1. Exponent and logarithm rules

Theorem 1.2 (Exponent rules II) Let x, a, b and n be numbers, where x 6= 0. Then:

• (xy)a = xaya

•
(
x
y

)a
= xa

ya

EXAMPLE 2
Simplify each expression as much as possible, and write the answer so that it has
no radical signs or fractions with xs in the denominators:

1.
(
x
3

)−3

Solution:
(
x
3

)−3
= x−3

3−3 = x−3
1

27
= 27x−3.

2. x2
√

x
2

Solution: x2
√

x
2 = x2

√
x√
2 = x2 x1/2

√
2 = x2+1/2

√
2 = x5/2

√
2 .

3. (2x)3x4

(4x)2

Solution: (2x)3x4

(4x)2 = 23x3x4

42x2 = 8x7

16x2 = 1
2x

5.

4. x0 3
√

2(2x)2

Solution: x0 3
√

2(2x)2 = 1 3
√

2(22)(x2) = 3
√

8x2 = 3
√

8 3
√
x2 = 2x2/3.

WARNING: In general,

(x+ y)a 6= xa + ya and (x− y)a 6= xa − ya

As a special case of this, when a = −1 we see that

1
x+ y

6= 1
x

+ 1
y

and
A

x+ y
6= A

x
+ A

y
.
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1.1. Exponent and logarithm rules

Logarithm rules

Logarithms are the “inverse” operation of exponentials:

Definition 1.3 Let y and b be positive numbers. To say that x is the logarithm base
b of y means that by = x, i.e.

x = logb y ⇐⇒ bx = y.

The common logarithm of y is the logarithm base 10 of y, i.e.

x = log y ⇐⇒ 10x = y.

Euler’s constant is an irrational number denoted by e. It is approximately 2.7182818...
The natural logarithm of y is the logarithm base e of y, i.e.

x = ln y ⇐⇒ ex = y.

(Logarithms of non-positive numbers are not defined.)

The reason why we care about the number e and natural logarithms has to do
with calculus: it turns out that calculus operations are “easier” when dealing with
natural exponentials and logarithms rather than exponentials and logarithms with
bases other than e.

Notation: ex is also written exp(x), so exp(3x2 + y) means e3x2+y, etc.

EXAMPLE 3
Evaluate the following expressions:

1. log 10000
Solution: 104 = 10000, so log 10000 = log10 10000 = 4.

2. log3
1
27

Solution: 3−3 = 1
33 = 1

27 , so log3
1
27 = −3.

3. log6 36
Solution: 62 = 36 so log6 36 = 2.

4. log4 32
Solution: We know 32 = 4 · 4 · 2 = 4 · 4 · 41/2 = 41+1+1/2 = 45/2 so log4 32 = 5

2 .

5. ln e9

Solution: ln e9 = 9.
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1.1. Exponent and logarithm rules

As with exponent rules, it is often convenient to rewrite expressions with loga-
rithms in them before doing calculus:

Theorem 1.4 (Logarithm Rules) Let b, C and D be positive numbers, and let n be
any number. Then:

• logb(CD) = logbC + logbD

• logb
(
C
D

)
= logbC − logbD

• logb 1 = 0

• logb
(

1
D

)
= − logbD

• logb(Cn) = n logbC

• blogb C = C

• logb bC = C

EXAMPLE 4
Use properties of logarithms to expand each logarithmic expression as much as
possible:

1. ln a5

b2

Solution: ln a5

b2 = ln a5 − ln b2 = 5 ln a− 2 ln b

2. log3
√

5r
Solution: log3

√
5r = log3(5r)1/2 = 1

2 log3(5r) = 1
2 log3 5 + 1

2 log3 r

EXAMPLE 5
Suppose x = log2 A, y = log2 B and z = log2 C. Find the following, in terms of x, y
and z:

1. log2 AB
2

2. log2
8C
A
√
B

3. A8

9



1.1. Exponent and logarithm rules

EXAMPLE 6
Write each of these expressions as the logarithm of a single quantity:

1. log x+ log y
Solution: log x+ log y = log(xy)

2. 3 log x− 1
2 log y

Solution: 3 log x− 1
2 log y = log x3 − log y1/2 = log x3

y1/2

The world’s most underrated exponent rule allows you to write an arbitrary
exponent as an exponent with base e:

Theorem 1.5 (Change of base formula for exponents) Let A and B be numbers
with A > 0. Then:

AB = eB lnA.

EXAMPLE 7
Rewrite the following expressions as a single exponent, so that the base of the
exponent is e:

1. e3exe−2y

Solution: e3exe−2y = e3+x−2y.

2. (e2x)4e−3x

Solution: (e2x)4e−3x = e2x·4e−3x = e8xe−3x = e8x−3x = e5x.

3. 53x

Solution: 53x = e3x ln 5 by the preceding Theorem.

4. e2x4x

Solution: e2x4x = e2xex ln 4 = e(2+ln 4)x.

A similar rule allows you to write an arbitrary logarithm in terms of natural
logarithms:

Theorem 1.6 (Change of base formula for logarithms) Let B and C be positive
numbers. Then:

logB C = lnC
lnB.

10



1.1. Exponent and logarithm rules

EXAMPLE 8

1. Rewrite the following expression in terms of natural logarithms: log x

2. Rewrite the following expression in terms of natural logarithms: 4 log3(4x)

3. Suppose x = lnA and y = lnB. What is logAB in terms of x and y?

Solution: logAB = lnB
lnA = y

x
.

EXAMPLE 9
Solve the following equations for x:

1. e3x − 4 = 0

2. log3(4x− 1) = 2

11



1.2. Functions

1.2 Functions
Question: What is a function?

Definition 1.7 Let A and B be sets. A function f from A to B is

We denote such a function by writing “f : A → B”. The set A of inputs is called the
domain of f . The set of outputs of the function is called the range of f .

In Math 220, we study functions where:

• the domain is R, the set of real numbers (sometimes the domain is a subset
of R like an interval), and

• the outputs are also real numbers.

Such a function f is often denoted by the symbols “f : R→ R”.

Example: Let f be the function R → R which takes the input, squares it, and
then adds 3 to produce the output.

To describe this function f , we could take some example inputs and see what
the outputs are, arranging the results in a table:

INPUT OUTPUT

-2

-1

0

1

2

12



1.2. Functions

Rather than continuing to list inputs and outputs like this, it is easier to take a
generic input (something we call x and figure out what the generic output is. This
output is called f(x). Writing down a formula for f(x) in terms of x is sufficient to
describe any function f : R→ R; such a formula is called a “rule” for the function.

In the example on the previous page, we can therefore describe the function by
writing

f(x) = x2 + 3.

Definition 1.8 Let f : A → B and let x ∈ A. We write the output associated to
input x as f(x); this is pronounced “f of x”. A formula for f(x) in terms of x is
called a rule for the function.

Notation:

f (x)

Idea: Think of the x as a placeholder which represents where the input goes.
Given a rule for f , you take whatever input you are given and replace all the xs in
the rule with that input.

EXAMPLE 1
Let f(x) = 2x2 + x. Compute and simplify the following expressions:

1. f(2) = 2 · 22 + 2 = 2 · 4 + 2 = 10.

2. f(−1)

3. f(x) + f(3)

4. f(trumpet)

5. f(hamburger) = 2(hamburger)2 + hamburger

6. f(2x)

7. f(x− 1)

8. f(x)− f(1)

13



1.2. Functions

9. f(x+ h)

10. f(x+3)−f(x)
3

WARNING: All your life you have been told that parenthesis means multipli-
cation, i.e. 3(2) = 6 or a(b + c) = ab + ac. The parenthesis in the definition of
f(x) do not mean multiplication. In particular, f(x) does not mean f times x, and
f(a+ b) is not the same thing as f(a) + f(b) (in general). f(x) means:

“the output of function f when x is the input”.

and is better denoted by the diagram

x
f−→ f(x)

The graph of a function f : R→ R
Earlier, we saw the following table of values for the function whose rule is f(x) =
x2 + 3:

INPUT OUTPUT
x f(x)

-2 7

-1 4

0 3

1 4

2 7

-2 -1 1 2

1

2

3

4

5

6

7

14



1.2. Functions

Turning each of the inputs and outputs to the function into an ordered pair and
plotting all these points produces a picture called the graph of the function. Note
that since every input has at most one output, functions from R to R must pass the
Vertical Line Test (i.e. every vertical line must hit the graph in at most one point).

Operations on functions

Definition 1.9 Let f and g be functions from R to R and let c be a constant. Then,
the functions f + g, f − g, fg, cf , f

g
and f ◦ g are defined by

• (f + g)(x) = f(x) + g(x)

• (f − g)(x) = f(x)− g(x)

• (fg)(x) = f(x)g(x)

• (cf)(x) = c f(x)

•
(
f
g

)
(x) = f(x)

g(x)

• (f ◦ g)(x) = f(g(x))

f ◦ g is called the composition of f and g.

EXAMPLE 2
Suppose f(x) = x+ 2 and g(x) = x2. Then:

1. (f + g)(x) = x+ 2 + x2

2. (fg)(x) = (x+ 2)x2

3. (2g)(4) = 2g(4) = 2(42) = 2 · 16 = 32

4. (f − g)(3) = (3 + 2)− (32) = −4

5. (f ◦ g)(x) =

6. (g ◦ f)(x) =

7. (f ◦ f)(x) =

15



1.2. Functions

EXAMPLE 3
Given each function F , write F = f ◦ g where f and g are “easy” functions:

1. F (x) = (3x− 2)12

Solution: f(x) = x12; g(x) = 3x− 2

2. F (x) = ln7 x

3. F (x) = ln x7

4. F (x) = 5 cos(ex + 2x− 1)

5. F (x) = e−x

Piecewise-defined functions

Consider the function

f(x) =
{

1− x x < −1
x2 x ≥ −1 .

This means that to evaluate f at a number x, you look at which inequality x sat-
isfies, then apply the corresponding formula. So a table of values for this f looks
like

x −3 −2 −1.5 −1 −.5 0 1 2

f(x)

and the graph of f looks like

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

4

16



1.2. Functions

EXAMPLE 4
Graph this function:

f(x) =
{
x2 x 6= 2
−1 x = 2

-5 -4 -3 -2 -1 1 2 3 4 5

-2

-1

1

2

3

4

5

6

Common functions whose graphs you should know

f(x) = x f(x) = x2 f(x) = x3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

f(x) = 1
x

f(x) = |x| f(x) = ex

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

1

1

e

f(x) = ln x f(x) = sin x f(x) = cos x

1 e

1

-2 Π -
3 Π

2
-Π -

Π

2

Π

2
Π

3 Π

2
2 Π

-1

1

-2 Π -
3 Π

2
-Π -

Π

2

Π

2
Π

3 Π

2
2 Π

-1

1

17



1.3. Lines

Transformations on functions

It is useful to know how the graph of a function changes if you alter the rule of the
function a little bit. Suppose you know the graph of function f . Then:

Altered version of function f
(all cs are positive numbers) Corresponding transformation on the graph

f(x) + c graph shifts up c units

f(x)− c graph shifts down c units

f(x+ c) graph shifts left c units

f(x− c) graph shifts right c units

cf(x) graph stretched vertically by factor of c
(taller if c > 1, shorter if 0 < c < 1)

f(−x) graph reflected through y-axis

−f(x) graph reflected through x-axis

1.3 Lines
By far the most important class of functions are lines. Reasons:

1. Linear equations model a large class of real-world problems

2. Linear equations are relatively easy to work with.

3. You can often approximate the solution to hard problems (using calculus
techniques) by considering something related to a linear equation.

18



1.3. Lines

Question: What “determines” a line? That is, what makes one line different
from another one?

1.

2.

Definition 1.10 The slope of a line is the ratio of the rise of the line to its run, i.e. for
any two points on the line (x1, y1) and (x2, y2), the slope of the line is given by

m = y2 − y1

x2 − x1
.

If m > 0, then the line goes up
from left to right. In this case,
the greater m is, the steeper
the line is.

If m = 1, the line goes up at a
45◦ angle.

If m = 0, the line is horizontal.

If m < 0, then the line goes down
from left to right. In this case,
the more negative m is, the
steeper the line is.

If m = −1, the line goes down at a
45◦ angle.

Vertical lines have undefined slope.

EXAMPLE 1
Find the slope of the line passing through the points (2,−5) and (4, 11).

Solution: m = y2−y1
x2−x1

= 11−(−5)
4−2 = 16

2 = 8.

19



1.3. Lines

Given the slope m of a line, and a point (x0, y0) on the line, one can write the
equation of the line as follows:

Definition 1.11 The point-slope formula of a line with slope m passing through
(x0, y0) is

y = y0 +m(x− x0).

You may be familiar with the “slope-intercept” formula y = mx + b for a line.
The point-slope formula

y = y0 +m(x− x0)

is equivalent, because it can be rewritten as

It is extremely useful to know the point-slope formula, because it is easier
than the y = mx+ b formula to apply in calculus.

EXAMPLE 2
Write the equation of the line passing through (2,−5) and (6,−7).

EXAMPLE 3
Write the equation of the line passing through (−3,−2) with slope 2

5 .

NOTE: Vertical lines do not have a slope, so their equation cannot be written
using the point-slope formula. The equation of a vertical line is x = h, where h is a
constant. For example, the vertical line passing through (6,−5) is x = 6.
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1.4. Trigonometry

1.4 Trigonometry
Trigonometry is the study of triangles. In particular, the key concept of trigonom-

etry is that given a triangle, the ratio of the lengths of any two sides of that triangle
depend only on the angles of the triangle (and not on the side lengths). To re-
late side lengths and ratios of side lengths to angle measurements, we invent six
trigonometric functions, which can be arrived at two different ways:

Definition 1.12 (Triangle definition of the trig functions) Consider a right tri-
angle with one angle measuring t, labelled as below:

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!

x

y
r

t

Then we define:

• the sine of t, by sin t = opposite
hypotenuse = y

r

• the cosine of t, by cos t = adjacent
hypotenuse = x

r

• the tangent of t, by tan t = opposite
adjacent = y

x

• the cotangent of t, by cot t = adjacent
opposite = x

y

• the secant of t, by sec t = hypotenuse
adjacent = r

x

• the cosecant of t, by csc t = hypotenuse
opposite = r

y
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1.4. Trigonometry

Definition 1.13 (Unit circle definition of the trig functions) Let t be a real num-
ber. Imagine a string of length t, which is laid along the circle of radius 1 centered at
the origin starting at the point (1, 0) (the string is laid counterclockwise if t > 0 and
clockwise if t < 0):

Wherever the string stops, call that point (x, y). Based on this, we define

• sin t = y

• cos t = x

• tan t = y
x

• cot t = x
y

• sec t = 1
x

• csc t = 1
y

The two definitions above are the same, so long as the angle t is measured in
radians. (This is one of the many reasons why mathematicians prefer radians to
degrees.) The advantage of the unit circle method is that it allows you to evaluate
trig functions at angles measuring less than 0 or more than 90◦ = π

2 .

Notice that we can determine the signs of the six trig functions by looking at
the signs of x and y, i.e. looking at the quadrant the angle t lies in:
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1.4. Trigonometry

Either way you choose to define the trig functions, it is straightforward to de-
duce the following relationships:

Theorem 1.14 (Trigonometric identites) Given the trig functions as defined above,
the following identities hold for all x:

• Quotient identities:

1. tan x = sinx
cosx

2. cotx = cosx
sinx

• Reciprocal identities:

1. cotx = 1
tanx

2. secx = 1
cosx

3. cscx = 1
sinx

• Pythagorean identities:

1. sin2 x+ cos2 x = 1
2. 1 + cot2 x = csc2 x

3. 1 + tan2 x = sec2 x

• Odd-even identities:

1. sin(−x) = − sin x
2. cos(−x) = cos x
3. tan(−x) = − tan x

Using these identities and the “All Scholars Take Calculus” rules, you can find
the values of all six trig functions if you are given the value of one trig function,
and the sign of a second trig function:

EXAMPLE 1
Find the values of all six trig functions of θ, if sin θ = 7

11 and tan θ < 0.
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1.4. Trigonometry

Computing values of the trig functions at special angles

You are responsible for computing any trig function at any multiple of π/6 or π/4
radians; virtually all problems in this course will use radians rather than degrees.
You should especially know the following values of sine, cosine and tangent:

x 0 π
6

π
4

π
3

π
2 π 3π

2

x in degrees 0◦ 30◦ 45◦ 60◦ 90◦ 180◦ 270◦

sin x 0 1
2

√
2

2

√
3

2 1 0 −1

cosx 1
√

3
2

√
2

2
1
2 0 −1 0

tan x 0 1√
3 1

√
3 DNE 0 DNE

EXAMPLE 2
Compute each of these:

1. cos 3π
4

2. sin −7π
6

3. cot 5π
6

4. sec 3π
2

5. tan −π3

6. cos 5π
3

7. sin 7π
2

8. tan 5π
4
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1.4. Trigonometry

Inverse trigonometric functions

Definition 1.15 The arctangent (a.k.a. inverse tangent) function is the function
arctan : R→ R defined by

arctan x = an angle (in radians) between
−π
2 and

π

2 , whose tangent is x.

The arcsine (a.k.a. inverse sine) function is the function arcsin : [−1, 1] → R
defined by

arcsin x = an angle (in radians) between
−π
2 and

π

2 , whose sine is x.

EXAMPLES

• arctan 1 = π
4 because tan π

4 = 1.

• arcsin
√

3
2 = π

3 because sin π
3 =

√
3

2 .

Notation: arctan x is sometimes written as tan−1 x, and arcsin x is sometimes
written as sin−1 x.

Graphs of arctangent and arcsine:

f(x) = arctan x f(x) = arcsin x

-1 1

- π

2

- π

4

π

4

π

2

-1 - 1
2

1
2 1

- π
2

- π
6

π
6

π
2

Theorem 1.16 (Properties of arctangent and arcsin) These hold for all real num-
bers x, y:

• arctan(−x) = − arctan x and arcsin(−x) = − arcsin x.

• y = arctan x ⇐⇒ x = tan y

• y = arcsin x ⇐⇒ x = sin y
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1.5. Homework exercises

1.5 Homework exercises
1. Evaluate each expression:

a) 4−2 b) 1441/2 c) 275/3 d)
(

1
4

)−3/2

2. Write each expression in the form �x�, where each of the two squares repre-
sent constants:

a) 5
√
−32x3

b) 8
3√8x4

c) (3x)4x2

d) (3x)2

18x3

e)
√

7x
f)
√
x4

3. Simplify each expression as much as possible:

a)
√

25x2
b)

√
2(2

√
2(2x)2)2

4. Use properties of logarithms to expand the given logarithmic expression as
much as possible:

a) log17
2
3 b) ln s2

√
r3 c) log 3e2x4

5. Suppose A = ln x, B = ln y and C = ln z. Rewrite the following in terms of
A,B and C:

a) ln
(
x
y

)2

b) ln xe4√y

c) ln x−3z2e

d) logx y

e) eA

f) e4C

6. Write each of these as a logarithm of a single quantity:

a) ln(x− 2)− ln(x+ 2)
b) 2 ln x+ 3 ln y − 1

4 ln z
c) 3 [ln x+ ln(x+ 1)]

7. Simplify the following expressions:

a) e4 ln 2

b) ln(e−2/3)
c) 5log5 7

d) e
1
3 ln 27

e) 2e2 ln 3

f) ex ln y

g) log 1099

h) 2log8 32
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1.5. Homework exercises

8. Write each of the following expressions as a single exponential term, where
the base of the exponent is e:

a) e5e−3

b) e3
3√e

c) e−2

e−5

d) e2xee4y

e3e2ye7x

e) 57

f) (3x)4x

g) 23

h) e7x32x

i) e−3x

2x

9. Rewrite the following in terms of natural logarithms:

a) log y b) 3 log4 11 c) log1/2
2
3

10. Solve the following equations for x:

a) ex = 4
b) ln x = 5
c) ln(x− 1)− 1 = 0

d) e2 lnx = 3
e) 5e2x = 17
f) ln x− 3 = 0

11. Let f(x) = x2 − 3 and let g(x) = 3− x. Compute and simplify:

a) f(−4)
b) g(−2)
c) (f − g)(1)
d) (fg)(4)

e) (f ◦ g)(2)
f) (f ◦ f)(0)
g) g(bulldog)
h) g(x+ 3)

i)
√
g(1)

j) g(
√
x)

k) (f + g)(x+ 1)
l) (fg)(2x)

12. Let h(x) = 2 + x4. Compute and simplify:

a)
√
h(
√
x)

b) h(x− 1)
c) h(x)− h(1)
d) h(x)− 1

e) 4h(2x)
f) h(x2 + 1)

13. Let f(x) = x3. Compute and simplify:

f(x+ h)− f(x)
h

14. Let f(x) = x2 − x. Compute and simplify:

f(1 + h)− f(1)
h
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1.5. Homework exercises

15. Let f(x) = x+ 2. Compute and simplify:

f(x)− f(t)
x− t

16. Let

f(x) =
{

2x+ 1 x < 1
2x+ 2 x ≥ 1

Evaluate f(−1), f(0), f(1) and f(2).

17. Sketch the graph of the function

f(x) =
{

1− x x < 1
x+ 1 x ≥ 1

18. Sketch the graph of the function

f(x) =
{

x x 6= 1
−1 x = 1

19. The graphs of unknown functions f and g are given below:

f g
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

Use these graphs to estimate answers to the following questions:

a) Find f(−2)
b) Find g(3).
c) Find g(−3).
d) Find (f + g)(−1).
e) Find (f ◦ g)(3).
f) Find (fg)(1).
g) Find all value(s) x (if any) such that f(x) = g(x).
h) Find all value(s) x (if any) for which f(x) = −1.
i) Find all value(s) x (if any) for which g(x) = 0.
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1.5. Homework exercises

20. Suppose the graph below is the picture of a function where the output of
the function is a company’s profit (in millions of dollars), and the input is
the price at which the company sells its product. At (roughly) what price
should the company sell its product, if its goal is to make as much money as
possible? How much profit will be made at this price?

0 10 20 30 40 50 60 70 80 90 100
price

10

20

30

40

50

60

70

80

90

100
profit

21. Determine which one or ones of the following pictures (a)-(d) depict situa-
tions where y is a function of x.

a)

-4 -2 2 4

-4

-2

2

4

b)

-4 -2 2 4

-4

-2

2

4

c)

-4 -2 2 4

-4

-2

2

4

d)

-4 -2 2 4

-4

-2

2

4

22. Suppose y = f(x) is a function whose graph is:

f

-3 -2 -1 1 2 3

-2

-1

1

2

Sketch the graphs of the following functions:

a) y = f(x+ 5)
b) y = f(x)− 5

c) y = f(−x)
d) y = −f(x) + 5

e) y = f(x− 2) + 1
f) y = −f(−x)
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1.5. Homework exercises

23. Sketch the graphs of the following functions:

a) y = 2 sin x
b) y = (x− 3)2 + 1
c) y = − ln x

d) y = e−x

e) y = cos(−x)
f) y = −(x+ 2)3

g) y = −|x|+ 2
h) y = − 1

x

i) y = −(x+ 2)2 − 4

24. Estimate the slope of each of the following lines by looking at its graph (as-
sume the scales on the x- and y-axes are the same):

a)

-4 -2 2 4

-4

-2

2

4

b)

-4 -2 2 4

-4

-2

2

4

c)

-4 -2 2 4

-4

-2

2

4

d)

-4 -2 2 4

-4

-2

2

4

e)

-4 -2 2 4

-4

-2

2

4

25. Find the slope of the line passing through these pairs of points:

a) (3,−4) and (5, 2)
b) (−1

2 ,
2
3) and (−3

4 ,
1
6)

c) (a, b) and (a+ s, b+ r)

d) (2, 7) and (2,−1)
e) (x, f(x)) and (x+ h, f(x+ h))
f) (−1, 4) and (5,−8)

26. Find the equation of the line with each set of properties:

a) passes through (0, 3) and has slope 3
4

b) passes through the origin; m = 2
3

c) passes through (2, 1) and (0,−3)
d) passes through (−3,−2); m = 4
e) passes through (2, 6) and is vertical

f) passes through (−4, 2) and is horizontal

g) passes through (5, 1) and (5, 8)
h) passes through (−7, 3) and (2,−5)

27. Suppose sin x = 5
13 . Assuming the values of the other five trig functions of x

are positive, find them.

28. Suppose cosx = 7
25 . If tan x < 0, find the values of the other five trig functions

of x.

29. Suppose cscx = 5
2 . What is sin x?

30. Suppose tan x = 2. If cosx < 0, what is sin x?
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1.5. Homework exercises

31. Compute each of the following (if they are not defined, say so). Try to do
these without looking anything up (to simulate how you will have to do these
things on quizzes and exams).

a) sin π
3

b) cos π
2

c) tan π
4

d) cos 0
e) cos π

6

f) cos 2π
3

g) sin 3π
2

h) cot 3π
4

i) sin 0
j) sec π

k) tan π
6

l) sin 7π
4

m) sec π
3

n) tan 3π
2

o) sin π

p) csc 5π
6

q) sec −π4
r) sin −5π

6

s) tan−π
t) tan −8π

3

32. Evaluate each of the following:

a) arcsin 1
2

b) arcsin 0

c) arctan 1

d) arctan
(
−
√

3
)

e) arctan
√

3
3

f) arcsin −
√

3
2

g) arcsin−1
h) arctan−1

i) arcsin −
√

2
2

Answers

DISCLAIMER: Throughout the lecture notes, the provided answers are an-
swers only (not complete solutions) and may contain errors and/or typos.

1. a) 1
16 b) 12 c) 243 d) 8

2. a) −2x3/5

b) 2x−4/3

c) 81x6

d) 1
2x
−1

e)
√

7x1/2

f) x2

3. a) 5|x| b) 8|x|

4. a) log17 2− log17 3
b) 2 ln s+ 3

2 ln r
c) log 3 + 2 log e+ 4 log x

5. a) 2A− 2B
b) A+ 4 + 1

2B

c) −3A+ 2C + 1
d) B

A

e) x

f) z4

6. a) ln
(
x−2
x+2

)
b) ln (x2y3 4

√
z) c) ln [x(x+ 1)]3

7. a) 16
b) −2

3

c) 7
d) 3

e) 18
f) yx

g) 99
h) 25/3
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1.5. Homework exercises

8. a) e2

b) e8/3

c) e3

d) e−5x+2y−2

e) e7 ln 5

f) e4x ln(3x)

g) eln 23

h) e7x+2x ln 3

i) e−3x−x ln 2

9. a) ln y
ln 10 b) 3 ln 11

ln 4 c) ln(2/3)
ln(1/2) = ln 2−ln 3

− ln 2

10. a) x = ln 4
b) x = e5

c) x = e+ 1

d) x =
√

3
e) x = 1

2 ln 17
5

f) x = e3

11. a) 13
b) 5
c) −4
d) −13

e) −2
f) 6
g) 3− bulldog

h) −x

i)
√

2
j) 3−

√
x

k) (x+ 1)2 − x− 1
l) (4x2 − 3)(3− 2x)

12. a)
√

2 + x2

b) 2 + (x− 1)4

c) x4 − 1
d) x4 + 1

e) 8 + 64x4

f) 2 + (x2 + 1)4

13. 3x2 + 3xh+ h2

14. h+ 1

15. 1

16. f(−1) = −1; f(0) = 1; f(1) = 4; f(2) = 6.

17.

-3 -2 -1 1 2 3

-1

1

2

3

18.

-2 -1 1 2

-2

-1

1

2

19. a) −1
b) 0
c) DNE

d) 4
e) 1
f) 4

g) x = 1
h) x = −4, x = −2
i) x = 3

20. The price should be roughly $32, and their profit will be about $67, 000, 000.
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1.5. Homework exercises

21. (a) and (d) are functions y = f(x); (b) and (c) are not.

22. a)

-7 -6 -5 -4 -3 -2 -1 1 2 3

-2

-1

1

2

b)

-3 -2 -1 1 2 3

-6

-5

-4

-3

-2

-1

1

c)

-3 -2 -1 1 2 3

-2

-1

1

2

d)
-3 -2 -1 1 2 3

-1

1

2

3

4

5

6

7

e)
-1 1 2 3 4 5

-1

1

2

3

f)

-3 -2 -1 1

-2

-1

1

2

23. a)
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-3

-2

-1

1

2

3

b) -1 1 2 3 4 5 6

-1

1

2

3

4

5

6

c)

-1 1 2 3 4 5 6

-3

-2

-1

1

2

3

d)
-3 -2 -1 1 2 3 4

-1

1

2

3

4

5

e)
-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-3

-2

-1

1

2

3

f)

-5 -4 -3 -2 -1 1

-3

-2

-1

1

2

3

g)

-3 -2 -1 1 2 3

-2

-1

1

2

3

h)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

i)

-5 -4 -3 -2 -1 1

-8

-7

-6

-5

-4

-3

-2

-1

1
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1.5. Homework exercises

24. a) 0 b) ≈ 1
3 c) ≈ −1 d) DNE e) ≈ 4

25. a) 3
b) 2

c) r
s

d) DNE

e) f(x+h)−f(x)
h

f) −2

26. a) y = 3
4x+ 3

b) y = 2
3x

c) y = 2x− 3
d) y = −2 + 4(x+ 3)

e) x = 2
f) y = 2
g) x = 5
h) y = −5 + −8

9 (x− 2)

27. cosx = 12
13 ; tan x = 5

12 ; cotx = 12
5 ; secx = 13

12 ; cscx = 13
5 .

28. sin x = −24
25 ; tan x = −24

7 ; cotx = −7
24 ; secx = 25

7 ; cscx = −25
24 .

29. 2
5

30. −2√
5

31. a)
√

3
2

b) 0
c) 1
d) 1

e)
√

3
2

f) −1
2

g) −1
h) −1

i) 0
j) −1

k)
√

3
3

l) −
√

2
2

m) 2
n) DNE

o) 0
p) 2

q)
√

2
r) −1

2

s) 0
t)
√

3

32. a) π
6

b) 0
c) π

4

d) −π3
e) π

6

f) −π3

g) −π2
h) −π4
i) −π4
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Chapter 2

Limits

2.1 The idea of the limit
Warmup: Given the graphs of each of these functions, tell me the value of f(2):

(1)

-1 1 2 3 4

-1

1

2

3

4

(3)

-1 1 2 3 4

-1

1

2

3

4

(2)

-1 1 2 3 4

-1

1

2

3

4

Answers:

(1)

(2)

(3)
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2.1. The idea of the limit

Modified warmup: Here is the graph of some function f . The portion of the
graph above x = 2 is “covered” (by a strip of tape, for example). Based only on
what you see, what would you guess the value of f(2) is?

-1 1 2 3 4

-1

1

2

3

4

First idea of the limit: graphical interpretation

Suppose you can see the entire graph of a function f except for the possible point
on the graph sitting above (or below) x = a. If, based on the picture, you’d guess
that f(a) = L, then you say

“the limit as x approaches a of f(x) is L”

and you’d write

lim
x→a

f(x) = L or “f(x)→ L as x→ a′′.

Examples: In the modified warmup above,

lim
x→2

f(x) =

In all three warmup examples,
lim
x→2

f(x) =

Note: f(2) is different in the three warmup examples. In one example, f(2) doesn’t
even exist!

36



2.1. The idea of the limit

In general, if you have a function f which satisfies

lim
x→a

f(x) = L,

then the graph of f should look like one of these three pictures:

or or

Back to the modified warmup:

-1 1 2 3 4

-1

1

2

3

4

In this example, we said lim
x→2

f(x) = 1.
Why is 1 the most reasonable guess for the value of f(2)?

Second idea of the limit: approximation via tables

To say
lim
x→a

f(x) = L

means that as x gets closer and closer to a (without ever reaching a), the corre-
sponding values f(x) of the function get closer and closer to L.
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2.1. The idea of the limit

EXAMPLE 1

lim
x→0

sin x− x
x3 = ?

Solution: The first idea of the limit requires a graph to apply, and we don’t have a
graph.

To implement the second idea of the limit, let’s take x−values which get closer
and closer to 0 and see if the corresponding f(x)−values approach a number:

x .1 .05 .01 .001 .0000001

sinx−x
x3 −.166583 −.166646 −.166666 −.166666 −.166666

x -.1 - .05 -.01 -.001 -.0000001

sinx−x
x3 −.166583 −.166646 −.166666 −.166666 −.166666

Based on this, we can conjecture that

lim
x→0

sin x− x
x3 =

IMPORTANT:

This suggests that the graph of f(x) = sinx−x
x3 looks like

or or
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2.1. The idea of the limit

The method of the previous example sometimes works well, but it can lie:

EXAMPLE 2
Let f(x) = cos 1

x
.

lim
x→0

f(x) = ?

Solution: Here’s a graph of f(x):

1

10 π

1

8 π

1

6 π

1

5 π

1

4 π

1

3 π

1

2 π

-1

1

Let’s try the method of Example 1:

x 1
2π

1
4π

1
6π

1
100π

1
1000π

f(x)

x 1
3π

1
5π

1
7π

1
101π

1
1001π

f(x)
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2.2. One-sided limits

Third idea of the limit: formal definition

Suppose f(x) is defined for all x near a but possibly not at a. If f(x) is as close to L
as we like for all x sufficiently close to a (but not a itself), we say

lim
x→a

f(x) = L.

In Example 2, there is no L such that f(x) = cos 1
x

stays close to L for all x near
0. Therefore

2.2 One-sided limits
EXAMPLE 3

Let

f(x) = |x|
x

=
{

1 if x > 0
−1 if x < 0 .

lim
x→0

f(x) = ?

Solution: Here is a graph of f :

-3 -2 -1 1 2 3

-2

-1

1

2
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2.2. One-sided limits

Definition 2.1 Suppose f(x) is defined for all x near a with x > a. If (whenever x
gets closer and closer to a from the right, f(x) approaches L), then we say the limit of
f(x) as x approaches a from the right is L and we write

lim
x→a+

f(x) = L.

Suppose f(x) is defined for all x near a with x < a. If (whenever x gets closer and
closer to a from the left, f(x) approaches L), then we say the limit of f(x) as x
approaches a from the left is L and we write

lim
x→a−

f(x) = L.

These are also called, respectively, left-hand limits and right-hand limits. Collec-
tively, left- and right-hand limits are referred to as one-sided limits.

Example: In the previous example where f(x) = |x|
x

,

lim
x→0+

f(x) = lim
x→0−

f(x) =

Theorem 2.2 lim
x→a

f(x) exists only if lim
x→a+

f(x) and lim
x→a−

f(x) both exist and are
equal. In this situation,

lim
x→a

f(x) = lim
x→a+

f(x) = lim
x→a−

f(x).

Example: For the function f(x) = |x|
x

, since

lim
x→0+

f(x) = 1 6= −1 = lim
x→0−

f(x),

we see that
lim
x→0

f(x) DNE.
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2.2. One-sided limits

EXAMPLE 4
Consider the following graph of some unknown function f :

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

-4

-3

-2

-1

1

2

3

4

5

6

Based on this graph, find the following:

1. lim
x→2

f(x)

2. lim
x→0

f(x)

3. f(2)

4. f(0)

5. lim
x→2+

f(x)

6. lim
x→−3−

f(x)

7. lim
x→−3+

f(x)

8. lim
x→−3

f(x)

9. f(4)

10. lim
x→4+

f(x)

11. lim
x→4−

f(x)

12. lim
x→4

f(x)
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2.3. Infinite limits and limits at infinity

2.3 Infinite limits and limits at infinity
Consider the function f(x) = 1

x
. What happens to f(x) as x→ 0?

x 1 .5 .1 .001 .0000001

f(x) 1 2 10 1000 1000000

x -1 - .5 -.1 -.001 -.0000001

f(x) −1 −2 −10 −1000 −1000000

-4 -2 2 4

-4

-2

2

4

We invent new notation to describe this situation. We say

lim
x→0+

1
x

=∞ and lim
x→0−

1
x

= −∞.
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2.3. Infinite limits and limits at infinity

Formally:

• to say lim
x→a+

f(x) =∞means that as x gets closer and closer to a from the right,

the numbers f(x) grow without bound.

a

• to say lim
x→a+

f(x) = −∞ means that as x gets closer and closer to a from the

right, the numbers f(x) become more and more negative without bound.

a

• to say lim
x→a−

f(x) =∞means that as x gets closer and closer to a from the left,

the numbers f(x) grow without bound.

a

• to say lim
x→a−

f(x) = −∞ means that as x gets closer and closer to a from the

left, the numbers f(x) become more and more negative without bound.

a

All these situations are called infinite limits. The graphical description of an
infinite limit is as follows:
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2.3. Infinite limits and limits at infinity

Definition 2.3 If lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞, we say the vertical line

x = a is a vertical asymptote (VA) for f(x).

Example: x = 0 is a VA for f(x) = 1
x
.

NOTE: ∞ is not a number. It is only a symbol. However, in the context of
limits,∞ can be manipulated in some ways as if it was a number (we’ll see how in
Chapter 3). For now you should remember these facts:

lim
x→0+

1
x

=∞ lim
x→0−

1
x

= −∞

One infinite limit to memorize:

lim
x→0+

ln x = −∞

1 e

1

Other infinite limits are computed using techniques we will study later, using
some rules of arithmetic with∞.
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2.3. Infinite limits and limits at infinity

Limits at infinity

We want to consider the values of f(x) when x gets larger and larger without
bound. For example, suppose f(x) = 1

x
:

x 1 10 10000 10100 1010000

f(x) 1 1
10

1
10000

1
10100

1
1010000

We say lim
x→∞

f(x) = L if

• (heuristically) when x grows without bound, f(x) approaches L.
• (graphically) the graph of f looks like

L

or

L

We say lim
x→−∞

f(x) = L if

• (heuristically) when x becomes more and more negative without bound, f(x)
approaches L.

• (graphically) the graph of f looks like

L

or
L

Definition 2.4 If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the horizontal line y = L

is a horizontal asymptote (HA) for f(x).
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2.3. Infinite limits and limits at infinity

EXAMPLE

Consider the following graph of some unknown function f :

-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

Based on this graph, find the following:

1. lim
x→∞

f(x)

2. lim
x→−∞

f(x)

3. lim
x→−3+

f(x)

4. lim
x→−3−

f(x)

5. lim
x→−3

f(x)

6. lim
x→3+

f(x)

7. lim
x→3−

f(x)

8. lim
x→3

f(x)

9. the equation(s) of any vertical asymptote(s) of f

10. the equation(s) of any horizontal asymptote(s) of f
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2.4. Homework exercises

2.4 Homework exercises
In Problems 1-2 below, use a calculator or computer to complete the tables and

use the results to estimate the value of the limit:

1.
lim
x→3

x− 3
x2 − 7x+ 12

x 2.9 2.99 2.999
f(x)
x 3.1 3.01 3.001

f(x)

2.

lim
x→−2

√
2− x− 2
x+ 2

x -2.1 -2.01 -2.001
f(x)
x -1.9 -1.99 -1.999

f(x)

3. Find the value of the following limit using tables similar to Problems 1 and
2. (This time, you have to pick your own x values.)

lim
x→0

ln(x+ 1)− x
x2

4. Find the value of the following limit using tables similar to Problems 1 and
2. (Again, you have to pick your own x values.)

lim
x→1

1− 2
x+1

x− 1

5. Complete the following charts for the function f(x) = |x−5|
x−5 :

x 5.1 5.01 5.001
f(x)
x 4.9 4.99 4.999

f(x)

What do these charts suggest to you about lim
x→5

|x−5|
x−5 ?
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2.4. Homework exercises

6. Given the graph of f below, evaluate the given expressions. If the quantity
does not exist, say so.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

a) lim
x→−5

f(x)

b) f(−5)
c) lim

x→−1
f(x)

d) lim
x→1−

f(x)

e) lim
x→1+

f(x)

f) lim
x→1

f(x)

g) lim
x→4−

f(x)

h) lim
x→4+

f(x)

i) lim
x→4

f(x)

j) f(4)

7. Given the graph of g below, evaluate the given expressions. If the quantity
does not exist, say so.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

a) lim
x→−8

g(x)

b) f(−8)
c) lim

x→−5
g(x)

d) lim
x→0−

g(x)

e) lim
x→1

g(x)

f) lim
x→7−

g(x)

g) lim
x→7+

g(x)

h) lim
x→7

g(x)
i) g(7)
j) lim

x→−2−
g(x)
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2.4. Homework exercises

8. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• f(0) is not defined;
• lim

x→0
f(x) = 4;

• f(2) = 6;
• lim

x→2
f(x) = 3.

9. Sketch a graph of a function f which has all of the following five properties
(there are many possible correct answers):

• lim
x→−1+

f(x) = 3;

• lim
x→−1−

f(x) = −2;

• lim
x→2−

f(x) DNE;

• f(2) = 0;
• lim

x→2+
f(x) = 3.

10. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→3

f(x) = −1;
• f(3) = 2;
• lim

x→−4−
f(x) = −5;

• lim
x→−4+

f(x) = −1.

In Problems 11-12 below, complete the tables (use a calculator or computer if
necessary) and use the results to estimate the value of the limit:

11.
lim
x→∞

4x+ 3
2x− 1

x 10 100 1000 106 1010

f(x)

12.
lim
x→∞

−6x√
4x2 + 5

x 10 100 1000 106 1010

f(x)
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2.4. Homework exercises

In Problems 13-18 below, graph the function inside the limit using Mathematica
(or a calculator) and use the graph of the function to estimate lim

x→∞
f(x):

13. f(x) = |x|
x+1

Hint: Mathematica code to plot this function (where x ranges from −10 to 10)
is

Plot[ Abs[x] / (x+1), {x, -10, 10}]

14. f(x) = lnx√
x

Hint: Mathematica code to plot this function is

Plot[ Log[x] / Sqrt[x], {x, -10, 10}]

15. f(x) = sinx
x

16. f(x) = x arctan
(

1
x

)
17. f(x) = x−

√
x(x− 1)

18. f(x) = x+1
x
√
x

In Problems 19-20 below, complete the tables (use a calculator or computer if
necessary) and use the results to estimate the value of the limit:

19.
lim
x→1+

2 + x

1− x

x 2 1.1 1.01 1.0001 1.000001
f(x)

20.

lim
x→3−

x2 + 7
x− 3

x 2 2.9 2.99 2.9999 2.999999
f(x)

In Problems 21-26 below, graph the function inside the limit using Mathematica (or
a calculator) and use the graph of the function to estimate the given limit:

21. lim
x→π−

sec(x2 )

Hint: Mathematica code to plot this function (where x ranges from −10 to 10)
is

Plot[ Sec[x/2], {x, -10, 10}]
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2.4. Homework exercises

22. lim
x→π+

sec(x2 )

23. lim
x→0

(x−1)2

x2

24. lim
x→π−

(cotx− secx)

25. lim
x→4−

3x2−6x+5
x2−5x+4

26. lim
x→1−

x−4
ex−e

27. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = x2 + 3
x3 − 5x2 + 4x.

Hint: Mathematica code to plot this function (where x ranges from −10 to 10)
is

Plot[ (x^2 + 3)/(x^3 - 5x^2 + 4x), {x, -10, 10}]

Make sure to use parentheses to surround the numerator and denominator
when using Mathematica.

28. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = 2x2 − 8x− 42
x2 − 25 .

29. By using Mathematica to graph the function, find the equation of any horizon-
tal and/or vertical asymptotes of the function

f(x) = (x− 3)(x+ 4)(x− 7)
x(x− 3)(x+ 1) .
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2.4. Homework exercises

30. Given the graph of f below, evaluate the given limits.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

a) lim
x→∞

f(x)

b) lim
x→−∞

f(x)

c) lim
x→−5−

f(x)

d) lim
x→−5+

f(x)

e) lim
x→−5

f(x)

f) lim
x→1+

f(x)

g) lim
x→1−

f(x)

h) lim
x→1

f(x)

31. Given the graph of g below, evaluate the given limits.

-5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-3

-2

-1

1

2

3

4

5

6

7

a) lim
x→∞

g(x)

b) lim
x→−∞

g(x)

c) lim
x→2−

g(x)

d) lim
x→2+

g(x)

e) lim
x→2

g(x)

f) lim
x→5+

g(x)

g) lim
x→5−

g(x)

h) lim
x→5

g(x)

53



2.4. Homework exercises

32. Sketch a graph of a function f which has all of the following three properties
(there are many possible correct answers):

• lim
x→1+

f(x) =∞;

• lim
x→1−

f(x) = −∞;

• lim
x→∞

f(x) = 3.

33. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→−4

f(x) =∞;

• lim
x→−∞

f(x) = 5;
• lim

x→∞
f(x) = −2;

• f(0) = −3.

34. Sketch a graph of a function f which has all of the following four properties
(there are many possible correct answers):

• lim
x→2−

f(x) = 4;

• lim
x→2+

f(x) =∞;

• f(2) = −1;
• lim

x→−∞
f(x) = lim

x→∞
f(x) = 2.

Answers

1. lim
x→3

x−3
x2−7x+12 = −1

2. lim
x→−2

√
2−x−2
x+2 = −1

4

3. −1
2

4. 1
2

5. lim
x→5

|x−5|
x−5 DNE (left- and right-hand

limits are unequal)

6. a) 1
b) −3
c) −1
d) 1
e) DNE

f) DNE

g) 5
h) 1
i) DNE

j) 1

7. a) −4
b) 2
c) −2
d) 3
e) about −2.5
f) about 1.5
g) −3
h) DNE
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2.4. Homework exercises

i) DNE

j) −5

8. Many answers are possible.

9. Many answers are possible.

10. Many answers are possible.

11. lim
x→∞

4x+3
2x−1 = 2

12. lim
x→∞

−6x√
4x2+5 = −3

13. 1

14. 0

15. 0

16. 1

17. 1
2

18. 0

19. lim
x→1+

2+x
1−x = −∞

20. lim
x→3−

x2+7
x−3 = −∞

21. ∞

22. −∞

23. ∞

24. −∞

25. −∞

26. ∞

27. HA: y = 0
VA: x = 0, x = 1, x = 4.

28. HA: y = 2
VA: x = 5, x = −5.

29. HA: y = 1
VA: x = 0, x = −1.

30. a) 3
b) −2
c) −∞
d) ∞
e) DNE

f) −∞
g) −∞
h) −∞

31. a) ∞
b) 1
c) ∞
d) ∞
e) ∞
f) ∞
g) −∞
h) DNE

32. Many answers are possible.

33. Many answers are possible.

34. Many answers are possible.
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Chapter 3

Computing Limits

3.1 Continuity
Recall the modified warmup example from an earlier lecture:

-1 1 2 3 4

-1

1

2

3

4

What is f(2)?

We don’t know the answer, but we said that the most “reasonable” guess was 1.

Why was this the most “reasonable” guess?
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3.1. Continuity

Mathematically, this is described by the notion of “continuity”. For example:

Functions whose graphs have no breaks are called “continuous”.

More precisely:

Definition 3.1 A function f is called continuous at the point x = a if

1. f(a) exists;

2. lim
x→a

f(x) exists (i.e. lim
x→a+

f(x) = lim
x→a−

f(x)); and

3. lim
x→a

f(x) = f(a) (i.e. lim
x→a+

f(x) = lim
x→a−

f(x) = f(a)).

Otherwise we say f is discontinuous at x = a.

The word continuous is abbreviated “cts”.

Definition 3.2 A function f is called continuous on an interval if it is continuous
at every point in that interval. A function f is called continuous if it is continuous
at every point in its domain.
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3.1. Continuity

Classification of discontinuities

When looking at the graph of a function, its easier to tell where the function is
discontinuous than where it is continuous, because the discontinuities in a function
usually stand out.

It turns out that there are four types of discontinuities (it’s not critical that you
know this vocabulary):

1. removable discontinuity (a.k.a. hole discontinuity): lim
x→a

f(x) exists but ei-
ther f(a) DNE or f(a) 6= lim

x→a
f(x):

a

f(a)

a

2. jump discontinuity: lim
x→a−

f(x) and lim
x→a+

f(x) both exist but are not equal:

a a a

3. infinite discontinuity: lim
x→a+

f(x) or lim
x→a−

f(x) = ±∞:

a a

4. oscillating discontinuity: lim
x→a+

f(x) or lim
x→a−

f(x) DNE because of too many

wiggles:

a
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3.1. Continuity

Dictionary of continuous functions

What is important is that you have a working knowledge of functions which are
continuous.

In particular, the following functions are continuous, because there are no breaks
in their graphs:

Theorem 3.3 Suppose f and g are continuous functions. Then:

1. f + g, f − g, fg, and f ◦ g are continuous; and

2. f
g

is continuous at all x where g(x) 6= 0.

Theorem 3.4 Any function made up of powers of x, sines and cosines, arcsines, arct-
angents, exponentials and/or logarithms using addition, subtraction, and/or multipli-
cation is continuous (at every point of its domain).

Theorem 3.5 Any function which is the quotient of functions made up of powers of
x, sines, cosines, arcsines, arctangents, exponentials and/or logarithms is continuous
everywhere except where the denominator is zero.

EXAMPLES

f(x) = 3 arcsin(x2 + 4) cos5
( 3x
x2 + 4

)
− 5esin(3x8−5) ln(x4 + 3)

is continuous everywhere on its domain.

g(x) = x3 + 3 cos(2x2 − 5)− 6x−4 sin 3√x

x− 3

is continuous everywhere except x = 3.

59



3.2. Evaluation of limits

3.2 Evaluation of limits
First concept: limits behave “nicely” with respect to arithmetic

Theorem 3.6 (Main Limit Theorem) Suppose lim
x→a

f(x) and lim
x→a

g(x) both exist and
are finite, where a is either ±∞ or a finite number. Then:

1. lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x);

2. lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x);

3. lim
x→a

[k f(x)] = k · lim
x→a

f(x) for any constant k;

4. lim
x→a

[f(x)g(x)] =
[
lim
x→a

f(x)
] [

lim
x→a

g(x)
]
;

5. lim
x→a

[
f(x)
g(x)

]
=

lim
x→a

f(x)

lim
x→a

g(x) provided the denominator is nonzero.

6. lim
x→a

n

√
f(x) = n

√
lim
x→a

f(x) provided both sides exist.

7. lim
x→a

ef(x) = exp
(

lim
x→a

f(x)
)

.

8. lim
x→a

ln f(x) = ln
(

lim
x→a

f(x)
)

.

Second concept: evaluate limits of cts functions by plugging in

If f is continuous at a, then lim
x→a

f(x) = f(a).

Third concept: ignore f(a) in general

f(a) has nothing to do with the value of lim
x→a

f(x).

The second and third concepts seem contradictory, but aren’t.

Fourth concept: manipulate expressions with∞ using rules

Although∞ is not a number, it can be mainpulated in some ways as if it is a num-
ber.

See the next page for details.
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3.2. Evaluation of limits

Some arithmetic rules with∞: (useful to compute some limits)

Let c ∈ R. Then:

∞± c =∞
c · ∞ =∞ if c > 0
∞ ·∞ =∞
∞∞ =∞
c · ∞ = −∞ if c < 0
∞
c

=∞ if c > 0
∞
c

= −∞ if c < 0
c

∞
= 0

√
∞ =∞

ln∞ =∞

e∞ =∞
e−∞ = 0
∞
0 = ±∞

(need careful analysis to
determine the sign)

c

0 = ±∞ so long as c 6= 0

(need careful analysis to
determine the sign)

∞c =
{
∞ if c > 0
0 if c < 0

Warning:

0
0 is indeterminate

∞−∞ is indeterminate
0 · ∞ is indeterminate
∞
∞

is indeterminate

∞0 is indeterminate
00 is indeterminate

“Indeterminate” means that these expressions can work out to be different
things depending on the context (we will see how to compute some of these in
Section 8.2).
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3.2. Evaluation of limits

Evaluating limits at infinity

The most important examples of limits to understand how to evaluate are those
for which x→∞ (i.e. limits at infinity):

EXAMPLE 1

lim
x→∞

4 + 3x2

8x2 + 3x+ 2

Remark: this example could have been phrased differently: suppose you were
asked to find the horizontal asymptotes of f(x) = 4+3x2

8x2+3x+2 . In this case, you’d
compute the limit as above, and identify the HA as

Rephrasing this as a story problem: Suppose the population of an endangered
species in a national park at time x, in thousands, is given by f(x) = 4+3x2

8x2+3x+2 (the
function from Example 1). What is the long-term population of this species in this
park projected to be?

EXAMPLE 2

lim
x→∞

−3− 5x2

2x4 − x+ 5
2
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3.2. Evaluation of limits

EXAMPLE 3

lim
x→∞

2x2 + 7x− 2
x− 1

EXAMPLE 4

lim
x→∞

x√
2x2 + 1

63



3.2. Evaluation of limits

General principle behind examples 1-4: Suppose f is a rational function, i.e.
has form

f(x) = amx
m + am−1x

m−1 + am−2x
m−2 + ...+ a2x

2 + a1x+ a0

bnxn + bn−1xn−1 + bn−2xn−2 + ...+ b2x2 + b1x+ b0
.

Then:

1. If m < n (i.e. largest power in numerator < largest power in denomina-
tor), then

lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

2. If m > n (i.e. largest power in numerator > largest power in denomina-
tor), then

lim
x→∞

f(x) = lim
x→−∞

f(x) = ±∞.

3. If m = n (i.e. largest powers in numerator and denominator are equal),
then

lim
x→∞

f(x) = lim
x→−∞

f(x) = am
bn
.

Other limits at infinity to memorize:

lim
x→∞

e−x = 0 lim
x→∞

ex =∞

lim
x→∞

ln x =∞

lim
x→∞

arctan x = π

2 lim
x→−∞

arctan x = −π2

EXAMPLE 5

lim
x→∞

(
e−3x + arctan 2x

)

EXAMPLE 6

lim
x→∞

sin x
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3.2. Evaluation of limits

Evaluation of limits of continuous functions

Key fact: If f is continuous at a, then lim
x→a

f(x) = f(a).

EXAMPLE 7

lim
x→3

x2 + 3
x− 1

EXAMPLE 8

lim
x→π

2

3 cos 2x

EXAMPLE 9

lim
x→0

e2x
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3.2. Evaluation of limits

Evaluation of limits of functions which are not known to be
continuous

Given limit lim
x→a

f(x), start by plugging in a to the function f .

1. if you get a number when you plug in, almost always this is the answer (and
the function is actually continuous at a);

2. if you get nonzero
0 , the limit is infinite; carefully analyze the sign of f(x) to

determine whether the answer is∞ or −∞;

3. if you get 0
0 , use an algebraic technique to rewrite f :

a) if f can be factored, factor and cancel terms;
b) if f contains square roots which are added or subtracted, multiply through

by the conjugate (then factor and cancel);
c) if f contains “fractions within fractions”, clear the denominators of the

interior fractions (then factor and cancel).

EXAMPLE 10

lim
x→3+

(
2

(x− 3)2 + 2x2
)

EXAMPLE 11

lim
x→5

x2 − 3x− 10
x2 + x− 20
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3.2. Evaluation of limits

EXAMPLE 11

lim
x→2+

4
4− x2

EXAMPLE 12

lim
x→2−

4
4− x2

EXAMPLE 13

lim
x→2

4
4− x2

Solution: From Examples 12 and 13, we see that

lim
x→2+

4
4− x2 6= lim

x→2−
4

4− x2 .

Therefore the two-sided limit

lim
x→2

4
4− x2 DNE.

67



3.2. Evaluation of limits

EXAMPLE 14

lim
x→3

x2 + 2x− 15
x2 − 7x+ 12

EXAMPLE 15

lim
x→−2

x2 − 3x− 15
x3 + 5x2 + 6x
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3.2. Evaluation of limits

More complicated examples

Key idea: if you get 0
0 when you plug in, eventually you have to factor and cancel.

But in complicated situations, you first have to do some preliminary algebra to
rewrite the function. Here are some worked-out examples which illustrate some
techniques:

EXAMPLE 16

lim
x→−1

1
x

+ 1
1

x+2 − 1

Solution: When I look at this, I see “fractions inside fractions”. In such a problem,
here is the procedure:

Multiply through the top and bottom of the “big fraction”
by the “small denominators”.

In this example, the “small denominators” are x and x+2, and the “big fraction”
is the entire function

1
x

+1
1
x+2−1 . So you get

lim
x→−1

1
x

+ 1
1

x+2 − 1 = lim
x→−1

(
1
x

+ 1
)

(x)(x+ 2)(
1

x+2 − 1
)

(x)(x+ 2)
Now distribute:

= lim
x→−1

1
x
(x)(x+ 2) + 1(x)(x+ 2)

1
x+2(x)(x+ 2)− 1(x)(x+ 2)

= lim
x→−1

x+ 2 + x(x+ 2)
x− x(x+ 2)

= lim
x→−1

x+ 2 + x2 + 2x
x− x2 − 2x

= lim
x→−1

x2 + 3x+ 2
−x2 − x

Now factor and cancel:

= lim
x→−1

(x+ 2)(x+ 1)
−x(x+ 1)

= lim
x→−1

x+ 2
−x

= −1 + 2
−(−1) = 1.
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3.2. Evaluation of limits

EXAMPLE 17

lim
t→4

√
t− 2
t− 4

Solution: I see a square root term plus/minus another term in the numerator of the
fraction. In such a situation, here is the procedure:

Multiply through the top and bottom by the “conjugate” of the square root
term.

In this problem, the “conjugate” of
√
t − 2 is

√
t + 2 (see below for more on

conjugates). So you get

lim
t→4

√
t− 2
t− 4 = lim

t→4

(√
t− 2

) (√
t+ 2

)
(t− 4)

(√
t+ 2

)

Now notice the numerator is of the form
(A−B)(A+B), which becomes A2 −B2.

Don’t multiply out the bottom.

= lim
t→4

t− 4
(t− 4)

(√
t+ 2

)
= lim

t→4

1√
t+ 2

= 1√
4 + 2

= 1
4 .

How to find conjugates:

Expression Conjugate Example Conjugate of example

� +
√
4 �−

√
4 3 +

√
x− 1 3−

√
x− 1

�−
√
4 � +

√
4 5−

√
2x 5 +

√
2x

√
� +
√
4
√
�−

√
4
√
t+ 3 +

√
x− 1

√
t+ 3−

√
x+ 1

√
�−

√
4
√
� +
√
4

√
u−
√

3x
√
u+
√

3x
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3.3. Homework exercises

3.3 Homework exercises
1. Consider the function f whose graph is given below:

-5 5

-6

-4

-2

2

4

6

a) At what value(s) of x, if any, is f not continuous?

b) At what value(s) of x, if any, does f have a removable discontinuity?

c) At what value(s) of x, if any, does f have a jump discontinuity?

d) At what value(s) of x, if any, does f have an infinite discontinuity?

e) At what value(s) of x, if any, does f have an oscillating discontinuity?

2. Consider the function g whose graph is given below:

-4 -2 2 4 6 8 10

-2

2

4

6

a) At what value(s) of x, if any, does g have a removable discontinuity?

b) At what value(s) of x, if any, does g have a jump discontinuity?

c) At what value(s) of x, if any, does g have an infinite discontinuity?

d) At what value(s) of x, if any, does g have an oscillating discontinuity?

71



3.3. Homework exercises

In Problems 3-14, evaluate the given limit (algebraically, by hand). If the limit
does not exist, say so.

3. lim
x→∞

x2+3
x3−2

4. lim
x→∞

x2+3
x2−2

5. lim
x→∞

x2+3
x−2

6. lim
x→∞

3−2x2+x
4x(x−1)

7. lim
x→∞

√
x

x+1

8. lim
x→∞

x+1√
4x2−x

9. lim
x→−∞

7x3

x3+1

10. lim
x→∞

ln(4x+ 1)

11. lim
x→∞

8 arctan x2

12. lim
x→∞

4
ex+x

13. lim
x→∞

e4x−5

14. lim
x→∞

e−x
2

15. Suppose that the population of emperor penguins (in thousands of penguins)
in Antarctica at time t (in years) is given by the function p(t) = 350

1+ 3
4 e
−t/35 .

Estimate the long-term population of emperor penguins in Antarctica.

16. After taking a certain antibiotic, the concentration C (in ppm) of a drug in a
patient’s bloodstream is given by C(t) = t

40t2−80 where t (in hours) is the time
after taking the antibiotic. What is the long-term concentration of the drug in
the patient’s bloodstream? (Write your answer with correct units.)

17. If you are r km from the center of a black hole, general relativity theory sug-
gests that the velocity of a light wave at your position is given by v(r) =
300000r−7800000

r
km/sec. If you are very, very far away from the black hole,

what is the velocity of a light wave at your position? (Write your answer
with correct units.)

In Problems 18-47, evaluate the given limit (algebraically, by hand). If the limit
does not exist, say so.

18. lim
x→2−

x−3
x−2

19. lim
x→5+

x2

x2−25

20. lim
x→−2+

x+3
x2+x−2

21. lim
x→4

x+2
(x−4)2

22. lim
x→0−

(
x2 − 1

x

)

23. lim
x→0+

x+1
ex−1

24. lim
x→0+

3
sinx

25. lim
x→0−

3
sinx

26. lim
x→4

x+2
x−4

27. lim
x→3+

ln(x− 3)

28. lim
x→−2

(x2 − 4x)

72



3.3. Homework exercises

29. lim
x→3

x+5
x2−1

30. lim
x→0

e−x

31. lim
x→5

3
√
x+ 3

32. lim
x→π

tan
(
x
3

)
33. lim

x→−3
sin πx

34. lim
x→e2

ln x2

35. lim
x→5+

x
x2−5

36. lim
x→−1

arctan x

37. lim
x→3

1
x
− 1

3
x+3

38. lim
x→2

f(x), where f(x) =
{
x+ 2 x < 2
x2 x ≥ 2

Hint: Consider the left- and right-hand limits at x = 2 separately.

39. lim
x→2

f(x), where f(x) =


2x+ 1 x < 2

8 x = 2
x2 − 1 x > 2

Hint: Consider the left- and right-hand limits at x = 2 separately.

40. lim
x→−2

x2−3x−10
x2+5x+6

41. lim
x→4

x2−16
x2+x−20

42. lim
x→1

x3−3x2+2x
x−1

43. lim
x→0

x3+2x2+x
x2−x

44. lim
x→3

x2−x−6
2x2−7x+3

45. lim
x→2

1
x
− 1

2
x−2

Hint: Use the method of Example 16.

46. lim
x→0

√
x+7−

√
7

x

Hint: Use the method of Example 17.

47. lim
x→1

1−x√
x+3−2

Hint: Use the method of Example 17.

73



3.3. Homework exercises

In Problems 48-51, find the equations of all horizontal and vertical asymptotes
of the given function.

Hint: for the VA, you need to find values of c for which lim
x→c±

f(x) = ±∞. This

means that when you evaluate the limit, you need to get nonzero
0 .

48. f(x) = 3−x
x+2

49. f(x) = x2−4
x+1

50. f(x) = x+10
x2−8x+15

51. f(x) = 2x2−8x+10
x2−11x+30

Answers

1. a) x = −5, x = 1, x = 3
b) x = −5
c) x = 3
d) x = 1
e) no such x

2. a) no such x

b) x = 0
c) x = 2
d) x = 6

3. 0

4. 1

5. ∞

6. −1
2

7. 0

8. 1
2

9. 7

10. ∞

11. 4π

12. 0

13. ∞

14. 0

15. 200000 penguins

16. 0 ppm

17. 300000 km/sec

18. ∞

19. ∞

20. −∞

21. ∞

22. ∞

23. ∞

24. ∞

25. −∞

26. DNE

27. −∞

28. 12
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3.3. Homework exercises

29. 1

30. 1

31. 2

32.
√

3

33. 0

34. 4

35. 1
4

36. −π4

37. 0

38. 4

39. DNE

40. −7

41. 8
9

42. −1

43. −1

44. 1

45. −1
4

46. 1
2
√

7

47. −4

48. HA: y = −1; VA: x = −2

49. HA: none; VA: x = −1

50. HA: y = 0; VA: x = 3, x = 5

51. HA: y = 2; VA: x = 6 (not x = 5)
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Chapter 4

Introduction to Derivatives

4.1 Odometers and speedometers
Suppose you get in your car and drive to Grand Rapids. There are two ways to

record your motion as a function of elapsed time t:

1.

2.

As an example, here are two graphs representing the same trip:

0 10 20 30 40 50 60
time t

odometer reading

0 10 20 30 40 50 60
time t

speedometer reading

Essentially, the content of Math 220 centers on the conversion from one of these
pictures to the other. In particular, we want to know:

1.

2.

In Chapters 4-8, we focus on the first question above and its other applications.
We will turn to the second question in Chapter 9.
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4.1. Odometers and speedometers

First major problem of calculus

Given a function f = f(t) which represents the
position of an object at time t, compute the object’s

instantaneous velocity at time t.

Motivation: Given the graph of a position function (i.e. a function which rep-
resents an odometer), what attribute(s) of that graph are relevant to understanding
the velocity (i.e. speedometer)?

EXAMPLES

Here, you are given a series of pictures which represent odometers (that is, the
x−axis represents time and the y−axis represents an odometer reading). On the
blank graph to the right, sketch the graph of the corresponding speedometer (that
is, the graph of a function where x represents elapsed time and y represents the
velocity at time x).

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

(four more graphs on the next page)
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4.1. Odometers and speedometers

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

time t

odometer reading

time t

speedometer reading

Punchline: Given a function f which measures distance traveled at time t, the
corresponding velocity at time t is the slope or steepness of the graph of f at time t.

But what is meant by “slope”? We know how to find the slope of a line (from
high-school algebra), but what is meant by the “slope” of a curve?

The Big Idea:
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4.1. Odometers and speedometers

Tangent lines and differentiability

Definition 4.1 Given a function f and a number x in the domain of f , the tangent
line to f at x (if it exists) is the line which most closely approximates the graph of f
at points very near x.

Question 1: What is meant by “most closely” approximating the graph of f?
What makes one line a “better” approximation than another?

Question 1 (a): Is it possible for a function f to have more than one tangent line
at x?

Question 2: What does it mean (conceptually) for the tangent line to f to exist
at x? Why might a tangent line not exist at x?

Definition 4.2 A function is called differentiable at x if it has a tangent line at x.

Theorem 4.3 (Differentiability implies continuity) Suppose f : R → R is dif-
ferentiable at x. Then f must be continuous at x.

Theorem 4.4 A function f fails to be differentiable at x if:

1. f is not continuous at x; or

2. the tangent line to f at x is vertical; or

3. the graph of f has a corner or cusp at x.
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4.1. Odometers and speedometers

Second major problem of calculus

Given a function f and a particular number x
(sometimes I’ll use a for the value of x),

find (if possible) the slope of the line tangent to f at x.

Why else might we care about finding the slope of a tangent line to a graph?

Business / economics:

20 40 60 80 100 120
price

5000

10000

150000

200000

250000
profit

Optometry:
0.5 1.0 1.5 2.0x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

y

(There will be other reasons coming later.)

Can we find the slope of a tangent line to a graph using just algebra?
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4.2. Definition of the derivative

4.2 Definition of the derivative
Recall: the second major problem of calculus is to find the slope of the line tan-

gent to f at x.

Let’s try to solve this problem theoretically, thinking of the following picture:

x

f(x)
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4.2. Definition of the derivative

Back to the first major problem
(find instantaneous velocity given position function)

Note: An object’s average velocity over some interval of time is given by

vavg = change in object’s position
elapsed time

.

Therefore if the object’s position at time t is given by f(t), then the object’s average
velocity between times t1 and t2 is

v[t1,t2] =

So the object’s velocity over the time interval [x, x+ h] is

v[x,x+h] =

and its instantaneous velocity at time x should be
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4.2. Definition of the derivative

Notice that the formula

lim
h→0

f(x+ h)− f(x)
h

solves both of the two major problems of calculus posed earlier in this chapter.
This motivates the following definition:

Definition 4.5 (Limit definition of the derivative) Let f : R → R be a function
and let x be in the domain of f . If the limit

lim
h→0

f(x+ h)− f(x)
h

exists and is finite, say that f is differentiable at x. In this case, we call the value of
this limit the derivative of f and denote it by f ′(x) or df

dx
or dy

dx
.

The word “differentiable” is abbreviated “diffble”.

Some algebraic manipulation of the derivative formula:

Theorem 4.6 (Alternate limit definition of the derivative) Let f : R → R be a
function and let f be differentiable at x. Then

f ′(x) = lim
t→x

f(t)− f(x)
t− x

.
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4.2. Definition of the derivative

Notation and verbiage

• “derivative” is a noun. The verb form of this noun is “differentiate”, i.e. to
“differentiate” a function means to compute the derivative of that function.

• Given a function f and a particular value of x (say 4), the derivative of f at
x = 4 is denoted

These denote a number, which is the slope of the line tangent to f at x = 4.

• The fractional notation with “d”s above is called Leibniz notation.

The derivative as an operator

We can also think of the derivative as a function. But it is a different kind of
function than the ones you are used to. You are used to functions like f(x) = x2,
where

The derivative is a new kind of function. Its inputs and outputs aren’t numbers;
they are functions. This makes differentiation into something called an operator:

Definition 4.7 An operator is a function whose inputs and outputs are themselves
functions.

When thought of as an operator, the operation of differentiation is usually de-
noted d

dx
or D or just ′. In particular,

d

dx
(blah) = derivative of (blah)

(blah)′ = derivative of (blah)

The output of the differentiation operator is itself a function, which we denote
by
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4.2. Definition of the derivative

The function f ′ takes input x (a number) and produces as its output f ′(x) the
slope of the line tangent to f at x.

At this point, we know that the derivative is used to compute the following
quantities:

1. f ′(x) gives the slope of the tangent line to f at the value x;

2. f ′(x) gives the slope of the curve f at the value x;

3. f ′(t) gives the instantaneous velocity of an object at time t, given that the
object’s position at time t is f(t);

4. f ′(x) gives the instantaneous rate of change of y = f(x) with respect to x.

Units: If y = f(x) is measured in some unit Uy and x is measured in some unit
Ux, then the units of f ′(x) are Uy/Ux. For example, if y is measured in lbs and x is
measured in ft, then f ′(x) will be measured in lbs/ft.

Question: What is the equation of the line tangent to differentiable function f
at the point where x = a (a is a constant)?

We will return to this formula many times, so it is good to remember it:

Theorem 4.8 (Tangent line equation) Suppose f is differentiable at a. Then the
equation of the line tangent to f at x = a is

y = f(a) + f ′(a)(x− a).
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4.2. Definition of the derivative

EXAMPLE 1
Use the definition of derivative to compute the slope of the line tangent to f(x) =√
x at the point (9, 3).

EXAMPLE 2
Use the definition of derivative to compute the instantaneous velocity of an object
at time 4, given that the object’s position (in m) at time t (in sec) is given by f(t) =
t2 − t.
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4.2. Definition of the derivative

EXAMPLE 3
Let f(x) = |x|. Find f ′(0).

Conceptual solution: Sketch the graph of f :

Justification of this: Again, use the definition:

f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

|h| − 0
h

= lim
h→0

|h|
h
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4.3. Estimating derivatives using tables or graphs

4.3 Estimating derivatives using tables or graphs
EXAMPLE 1

A straight piece of wire is placed over a heat source, so that at various points on
the wire, the temperature of the wire is different. Here is a table which gives some
temperature measurements at various points on the wire:

t T (t)
(cm from left end of wire) (degrees Fahrenheit)

0 76
6 94
10 110
12 102
16 85

1. Use the information in this table to estimate T (8). Show the computations
that lead to your answer, and write your answer with correct units.

2. What does your answer to Question 1 mean, in the context of this problem?

3. Use the information in this table to estimate T ′(8). Show the computations
that lead to your answer, and write your answer with correct units.

4. What does your answer to Question 3 mean, in the context of this problem?
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 2
During a flight, an airplane crew takes periodic measurements of the distance they
have travelled and the amount of fuel left in their fuel tank. Their results are de-
scribed in the following chart:

t
(minutes after takeoff) 0 30 60 120 200 240

x
(miles travelled) 0 170 405 945 1595 1775

f
(thousands of gallons) 18 14 12 7 5 1.5

1. Use the information in this table to estimate dx
dt

∣∣∣
t=90

. Show the computations
that lead to your answer, and write your answer with correct units.

2. What does your answer to Question 1 mean, in the context of this problem?

3. Use the information in this table to estimate df
dt

∣∣∣
t=220

. Show the computations
that lead to your answer, and write your answer with correct units.

4. What does your answer to Question 1 mean, in the context of this problem?

5. What is the rate of fuel consumption of this aircraft per mile travelled, when
the aircraft is at cruising speed? Show the computations that lead to your
answer, and write your answer with correct units.
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 3
Given below is the graph of some unknown function f :

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6

-5

-4

-3

-2

-1

1

2

3

4

Use this graph to answer the questions below:

1. Give the values of x at which f is not continuous.

2. Give the values of x at which f is not differentiable.

3. Estimate f(1).

4. Estimate f ′(1).

5. Estimate f ′(−5).

6. Find two values of x for which f ′(x) = 0.

7. Estimate df
dx

∣∣∣
x=5

90



4.3. Estimating derivatives using tables or graphs

EXAMPLE 4 (TRICKIER)
The graph of some unknown function f is given below.

17

2
9

19

2
10

21

2
11

23

2
12

x

1050

1100

1150

1200

1250

1300

1350

1400

1450

1500
f(x)

1. Use this graph to estimate f ′(10).

2. Use your estimate from Question 1 to write the equation of the line tangent
to f at x = 10.
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4.3. Estimating derivatives using tables or graphs

EXAMPLE 5
The graph of some unknown function f is given below at left. On the right-hand
axes, sketch the graph of f ′.

-10 -8 -6 -4 -2 2 4 6 8 10

-10

-8

-6

-4

-2

2

4

6

8

10

-10 -8 -6 -4 -2 2 4 6 8 10

-10

-8

-6

-4

-2

2

4

6

8

10
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4.4. Homework exercises

4.4 Homework exercises
In Problems 1-4, you are given the graph of an odometer. Sketch the graph of

the corresponding speedometer.

1.

time t

odometer reading

2.

time t

odometer reading

3.

time t

odometer reading

4.

time t

odometer reading

In Problems 5-10, you must compute all derivatives using the definition of
derivative (do not use any “rules” you may know if you have already taken calcu-
lus).

5. Let f(x) = 4− 2
3x. Find f ′(x).

6. Find the derivative of f(x) = 1
x+3 .

7. Compute dy
dx

if y =
√

3x− 2.

8. Find the equation of the line tangent to the function f(x) = x3+1 when x = 1.

9. Suppose that the power supplied to a machine (in kilowatts) at time t (in
hours) is P =

√
t. Find the instantaneous rate of change in the power sup-

plied to the machine at time 4; write your answer with correct units.

10. Find the instantaneous velocity of an object at time 6, given that the object’s
position (in miles) at time t (in hours) is f(t) = 2t2 +3t−1; write your answer
with correct units.

11. Use Mathematica to sketch a graph of the function f(x) = |3x2 − 15x+ 12|;
use this graph to determine the values of x at which f is not differentiable.

93



4.4. Homework exercises

12. Given the following graph of function f , give all the values x at which f is
not differentiable:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

13. Use the graph of the function f given below to answer the following ques-
tions:

-10-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

a) Estimate f(−6).

b) Estimate f ′(−6).

c) Estimate a value of x between −3 and 5 for which f ′(x) = 0.
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4.4. Homework exercises

d) Find all values of x at which f is not continuous.

e) Find all values of x at which f is not differentiable.

f) Estimate df
dx

∣∣∣
x=−3

.

g) Is f ′(2) positive, negative or zero? Explain.

h) Estimate dy
dx

∣∣∣
x=5

.

i) Estimate limx→∞ f(x).

j) Estimate limx→∞ f
′(x).

k) Find the slope of the function f when x = −3.

l) Find the equation of the line tangent to f when x = −3.

m) Find the equation of the line tangent to f when x = 8.

n) On the graph above, sketch the graph of the tangent line to x when x =
2.

14. A botanist measures the height, in inches, of a plant each day after it sprouts.
Her data is gathered in the following table:

t
(days) 0 1 3 4 8 10

h
(height in inches) 0 2 8 9 10 10

a) Use the given data to estimate h′(6). Show the computations that lead
to your answer, and write your answer with correct units.

b) What does your answer to part (a) mean, in the context of this problem?

c) Use the given data to estimate h′(1). Show the computations that lead
to your answer, and write your answer with correct units.

d) What does your answer to part (c) mean, in the context of this problem?

15. As time passes, a scientist records the temperature and pressure of a gas in-
side a chamber as the chamber is heated. His data is summarized in the
following table:

time t
(minutes after start

of experiment)
0 1 2 4 5 6 8

pressure P
(pressure in kPa) 696 764 818 891 916 935 963

temperature T
(◦ C) 20 48 71 102 112 120 132
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4.4. Homework exercises

a) Use the given data to estimate dP
dt

∣∣∣
t=1

. Show the computations that lead
to your answer, and write your answer with correct units.

b) What does your answer to part (a) mean, in the context of this problem?

c) Use the given data to estimate dT
dt

∣∣∣
t=2

. Show the computations that lead
to your answer, and write your answer with correct units.

d) What does your answer to part (c) mean, in the context of this problem?

e) Use the given data to estimate the rate of change in temperature with
respect to time when t = 3. Show the computations that lead to your
answer, and write your answer with correct units.

f) Use the given data to estimate the rate of change in temperature with
respect to the change in pressure when t = 5. Show the computations
that lead to your answer, and write your answer with correct units.

16. Given the graph of f below at left, estimate f ′(30) and f ′(80).

f

0 10 20 30 40 50 60 70 80 90 100

30

60

90

120

150

180

210

240

270

300

g

0 1 2 3 4 5 6 7 8 9 10 11 12

30

60

90

120

150

180

210

240

270

300

17. Given the graph of g above at right:

a) Estimate g′(5).

b) Write the equation of the line tangent to g when x = 5.

c) Estimate dg
dx

∣∣∣
x=6

.

d) Sketch the graph of g′(x).

In Problems 18-21, you are given the graph of an unknown function f . Sketch
the graph of the function f ′.
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18.
-8 -6 -4 -2 2 4 6 8

-6

-4

-2

2

4

6

8

19.
-10 -8 -6 -4 -2 2 4 6

-10

-8

-6

-4

-2

2

4

6

8

10

20.
-10 -8 -6 -4 -2 2 4 6

-8

-6

-4

-2

2

4

6

8

21.
-10 -8 -6 -4 -2 2 4 6

-8

-6

-4

-2

2

4

6

8

Answers

1.

time t

speedometer reading

2.

time t

speedometer reading

3.

time t

speedometer reading

4.

time t

speedometer reading

5. −2
3
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4.4. Homework exercises

6. −1
x2+6x+9

7. 3
2
√

3x−2

8. y = 2 + 3(x− 1)

9. P ′(4) = 1
4 kw/hr

10. 27 mi/hr

11. x = 1 and x = 4

12. x = −5 (cusp), x = −2 (discontinuous), x = 2 (discontinuous), x = 4 (corner),
x = 9 (vertical tangency)

13. a) 3
b) 0
c) x ≈ −1/2
d) x = −5, x = 3, x = 4
e) x = −5, x = −2, x = 3, x = 4, x = 6
f) 1
g) Positive, since the graph goes up from left to right at x = 2.

h) −2
i) 3
j) 0

k) 1
l) y = 1(x+ 3) + 3 (a.k.a. y = x+ 6)

m) y ≈ (2/3)(x− 8) + 1.5
n) The line should go through (2, f(2)) and have positive slope, lying tan-

gent to the graph at (2, f(2)).

14. a) h′(6) ≈ h(8)−h(4)
8−4 = 10−9

8−4 = 1
4 in/day (answer can vary somewhat)

b) On day 6, the plant is growing at a rate of 1
4 inches per day.

c) h′(1) ≈ h(1)−h(0)
1−0 = 2−0

1−0 = 2 and h′(1) ≈ h(3)−h(1)
3−1 = 8−2

3−1 = 3; averaging
these gives h′(1) ≈ 2.5 in/day (this answer can vary somewhat)

d) On day 1, the plant is growing at a rate of 2.5 inches per day.

15. a) dP
dt

∣∣∣
t=1
≈ P (1)−P (0)

1−0 = 764−696
1 = 68 and dP

dt

∣∣∣
t=1
≈ P (2)−P (1)

2−1 = 818−764
1 = 54;

averaging these gives dP
dt

∣∣∣
t=1
≈ 61 kPa/min (answer can vary some-

what)
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4.4. Homework exercises

b) 1 minute after the start of the experiment, the pressure in the chamber is
increasing at a rate of 61 kPa/min.

c) dT
dt

∣∣∣
t=2
≈ T (2)−T (1)

2−1 = 71−48
1 = 23 and dT

dt

∣∣∣
t=2
≈ T (4)−T (2)

4−2 = 102−71
2 = 15.5;

averaging these gives dT
dt

∣∣∣
t=2
≈ 19.25 kPa/min (answer can vary some-

what)

d) dT
dt

∣∣∣
t=3
≈ T (4)−T (2)

4−2 = 102−71
2 = 15.5 kPa/min (answer can vary somewhat)

e) dT
dP

∣∣∣
t=5
≈ T (5)−T (4)

P (5)−P (4) = 112−102
916−891 = 10

25 = .4 and dT
dP

∣∣∣
t=5
≈ T (6)−T (5)

P (6)−P (5) = 120−112
935−916 =

8
19 ≈ .421; averaging these gives dT

dP

∣∣∣
t=5
≈ .411 kPa/min (answer can

vary somewhat)

16. f ′(30) ≈ 6; f ′(80) ≈ −3

17. a) ≈ 45
b) y = 120 + 45(x− 5)
c) ≈ 120

d)

g'

4

18.
-8 -6 -4 -2 2 4 6 8

-6

-4
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19. -10 -8 -6 -4 -2 2 4 6
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-4

-2

2

4

6
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20. -10 -8 -6 -4 -2 2 4 6

-8

-6

-4
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6
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21. -10 -8 -6 -4 -2 2 4 6
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2

4

6

8
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4.5. Review problems for Exam 1

4.5 Review problems for Exam 1
WARNING!

Most, but not all exam questions look like things you’ve seen before (in home-
work, examples from class, review sheets, quizzes old exams, etc.)

I reserve the right to occasionally ask original questions, that may be different
from anything you’ve seen before, that apply course concepts.

WARNING!

At any time, you may be asked to compute something which doesn’t exist or is
equal to ±∞. You are always responsible for recognizing these situations and
answering appropriately.

Mathematica questions

1. For each problem, you are given a problem that a student was trying to
solve on Mathematica, and what the student typed in. What they typed in
is WRONG. Explain why what they typed in is wrong, and write what the
command should have been:

a) The student wants to find the sine of π/6, but types in Sin(Pi/6)

b) The student wants to find log 7, but types in Log[7]

c) The student wants to solve the equation x2 + 3x = 7, but types in
Solve[x^2 + 3x = 7, x]

d) The student wants to define function f(x) = x2, but types in f[x] = x^2

e) The student wants to evaluate 32+9
63−17 , but types in [32+9]/[63-17]

f) The student wants to define function f(x) = x−1
x+1 , but types in

f[x_] = x-1/x+1

2. In each problem, you are given some code in Mathematica (the code works).
Determine what output Mathematica will give you.

a) f[x_] = x^2 + x; f[3]

b) Cos[2 Pi/3]

c) g[x_] = 1/x-1; g[x+1]

d) Solve[x+3 ==5, x]
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4.5. Review problems for Exam 1

e) Factor[x^2 - 4, x]

3. Suppose you typed in the following command into Mathematica:

Plot[x^3 Log[x^2 + 1], {x, -3, 5}, PlotRange -> {0,4}]

a) What function is being plotted? (Write the function in hand-written no-
tation, not Mathematica syntax.)

b) What x−value will be at the left edge of the graph?

c) What y−value will be at the top of the graph?

Questions related mostly to Chapter 1

4. Write each[ expression in the form �x�, where each of the two squares rep-
resent constants:

a) 2
x7 b)

5√
x2

8 c) 2(3x4)2x5 d) 3
√
x

9x2

5. Let f(x) = x2.

a) Find f(3).

b) Find all x such that f(x) = 4.

c) Simplify 3f(2x)− f(x) + 2x.

d) Simplify f(x+h)−f(x)
h

.

6. Write the equation of the line that has slope −2 and passes through the point
(−2, 3).

Questions related mostly to Chapter 2

7. Sketch the graph of some function g with all six of the following properties:

• g(−3) and g(4) DNE;
• lim

x→−3
g(x) =∞;

• lim
x→1

g(x) = 2
• g(1) = 0;
• lim

x→4+
g(x) = −3;

• lim
x→4−

g(x) = 2.
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4.5. Review problems for Exam 1

8. The graph of some unknown function f is given.

-10 -8 -6 -4 -2 2 4 6 8 10

-6

-4

-2

2

4

6

8

10

Use that graph to estimate the following quantities;

a) lim
x→−2−

f(x)

b) lim
x→−2+

f(x)

c) lim
x→0

f(x)

d) lim
x→3−

f(x)

e) f(3)
f) lim

x→3+
f(x)

g) lim
x→5

f(x)

h) f(5)
i) lim

x→∞
f(x)

j) the equation of any horizontal
asymptote of f

k) the equation of any vertical
asymptote of f

Questions related mostly to Chapter 3

In Problems 9-19, evaluate the following limits:

9. lim
x→−3

2x+6
4x2−36

10. lim
x→3+

(x+3)2
√
x−3

11. lim
x→−1

2−
√
x+5

x2−1

12. lim
x→10

√
10x

2x+5

13. lim
x→π

cos
(

4
3x
)

14. lim
x→0+

cscx
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4.5. Review problems for Exam 1

15. lim
x→∞

x+3√
x2−1

16. lim
x→∞

(3 + 2e−4x)

17. lim
x→∞

2x−5
8x+3

18. lim
x→2

x3−3x2+2x
x2+5x−14

19. lim
x→2

h(x), where

h(x) =
{
x2 x ≥ 2
3x x < 2

20. Suppose that at time t, some quantity q is given by the function q(t) = x(x+2)
2x2−3x+5 .

What will the value of q be in the long run?

21. Find all horizontal and vertical asymptotes of the function f(x) = x+3
x2−16x+15 .

Questions related mostly to Chapter 4

22. Compute the derivative of f(x) = 2
x

using the definition of derivative.

23. Write the equation of the line tangent to g(x) = 4x2 when x = −1. (You
must use the definition of derivative to compute any derivatives used in this
problem.)

24. Sketch the graph of a function f which has all four of the following proper-
ties:

• f is continuous at all real numbers other than −3 and 3;
• f is differentiable at all real numbers other than −3,−1, 1 and 3;
• f ′(2) = 0;
• f ′(−4) = 1.

25. Sketch the graph of a function g which has all six of the following properties:

• g is continuous at all real numbers other than −4 and 1;
• lim

x→∞
g(x) = 0;

• lim
x→−4+

g(x) = 2;

• lim
x→−4−

g(x) = −3;

• g′(5) = 2;
• lim

x→1
g(x) =∞.

26. A nurse measures the heart rate of a patient at various times t, where t is the
number of hours that have passed since 12 : 00 PM. Her data is recorded in
the following chart:

t
(hours after 12 : 00 PM) 0 1

2 1 2 4 6

r(t)
(beats per minute) 92 80 74 70 66 64
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4.5. Review problems for Exam 1

a) Use the given data to estimate r′(3). Show the computations leading to
your answer, and write your answer with correct units.

b) What does your answer to part (a) mean, in the context of this problem?

c) Estimate r′(1
2) using the given data, showing the computations leading

to your answer and writing your answer with correct units.

27. In business, the rate of change of the output with respect to the number of
employee labor hours is called the productivity of the labor force. Suppose
that the function f , whose graph is given below, represents the output (in
thousands of units produced) from t labor hours of work.

0 200 400 600 800 1000
labor hours t

2

4

6

8
output f(t)

Use this graph to estimate the answers to these questions (answer with cor-
rect units):

a) What is the output from 350 labor hours of work?

b) What is the productivity at 650 labor hours of work?

c) For what number of labor hours is the productivity greatest?

d) Sketch a graph of the productivity, as a function of the number of labor
hours.

28. The graph of some unknown function h is pictured below. Use this graph to
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sketch a graph of h′.

0 2 4 6 8 10

2

4

6

8

Answers to these review problems

1. a) Used parentheses instead of brackets: command should have been Sin[Pi/6]
b) Log computes natural logarithm, not logarithm base 10: command should

have been Log10[7] or Log[10,7].
c) Equation inside solve command needs two equal signs, not one: should

have been Solve[x^2 + 3x == 7, x]
d) Missing underscore after the x: command should have been f[x_] = x^2
e) Used brackets instead of parentheses: should have been (32+9)/(63-17)
f) Forgot parentheses: should have been f[x_] = (x-1)/(x+1)

2. a) 12
b) −1/2
c) 1

x+1 − 1

d) 2
e) (x − 2)(x + 2) (the order doesn’t

matter)

3. a) x3 ln(x2 + 1)
b) −3
c) 4

4. a) 2x−7 b) 1
8x

2/5 c) 18x13 d) 1
3x
−3/2

5. a) 9
b) x = 2,−2

c) 11x2 + 2x
d) 2x+ h

6. y = 3− 2(x+ 2)
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7. Answers may vary; one possibility is given below:

-5 5 10

-6

-4

-2

2

4

6

8

8. a) DNE
b) 1
c) 2
d) −∞
e) DNE
f) ∞
g) 1
h) −2
i) −1
j) y = −1 (I would accept y = 6 also although that was not my intent)

k) x = 3

9. −1/12

10. ∞

11. 1/8

12. 2

13. −1/2

14. ∞

15. 1

16. 5

17. 1
4

18. 2
9

19. DNE (left- and right- hand limits unequal)
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20. 1
2

21. HA: y = 0; VA: x = 1, x = 15

22. You must use the limit definition here:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

2
x+h −

2
x

h
= lim

h→0

(
2

x+h −
2
x

)
(x+ h)x

h(x+ h)x

= lim
h→0

2x− 2(x+ h)
h(x+ h)x

= lim
h→0

2x− 2x− 2h
h(x+ h)x

= lim
h→0

−2h
h(x+ h)x

= lim
h→0

−2
(x+ h)x = −2

x2 .

23. The tangent line passes through (−1, g(−1)) = (−1, 4). The slope of this line
is g′(−1) which we compute using the limit definition:

g′(−1) = lim
t→−1

g(t)− g(−1))
t− (−1) = lim

h→0

4t2 − 4
t+ 1 = lim

t→−1

4(t+ 1)(t− 1)
t+ 1

= lim
t→−1

4(t− 1) = 4(−2) = 8.

The tangent line therefore has equation y = 4 + 8(x+ 1).

24. Answers may vary; one graph is shown below at left.

-8 -6 -4 -2 2 4 6
-1

1

2

3

4

5

-8 -6 -4 -2 2 4 6 8 10 12

-4

-2

2

4

25. Answers may vary; one graph is shown above at right.

26. a) r′(3) ≈ r(4)−r(2)
4−2 = 66−70

2 = −2.

b) At 3 : 00 PM, the patient’s heart rate is decreasing at a rate of 2 (beats
per minute) per hour.

c) r′(1
2) ≈ r( 1

2 )−r(0)
1
2−0 = 80−92

1
2−0 = −24; also, r′(1

2) ≈ r(1)−r( 1
2 )

1− 1
2

= 74−80
1
2

= −6.

Averaging these, the best estimate is r′(1
2) = −15 (beats per minute) per

hour.
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27. a) f(350) ≈ 750 units.

b) f ′(650) ≈ 5 units per hour.

c) f ′ is greatest at around t = 450.

d)

0 200 400 600 800 1000

28.

2 4 6 8 10
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Chapter 5

Elementary Differentiation
Rules

MOTIVATING EXAMPLE

Compute the derivative f ′(0), given that

f(x) = (x+ 2)4√cosx.

Practical approach to the answer: Graph f using the Mathematica code

Plot[(x+2)^4 Sqrt[Cos[x]], {x, -2, 2}]

to obtain this graph of f , then estimate the value of f ′(0):

-2 -1 1 2

10

20

30

40

50

60

Problem with this practical approach:

Analytic solution: based on what we know so far, the exact answer is

f ′(0) = lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

f(h)− f(0)
h

= lim
h→0

(h+ 2)4
√

cosh− 24

h
=
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5.1. Constant function and power rules

Goal: we want to figure out how to compute derivatives without using the limit
definition (and without having to resort to estimates coming from graphs and/or
tables).

General procedure for computing derivatives

1. Memorize the derivatives of a few basic functions

(power, exponential, trigonometric, logarithmic, etc.)

2. Learn some rules which tell you how to compute the derivatives of more
complicated functions in terms of the derivatives you have memorized.

Over the next two chapters we will develop these rules, which allow us to com-
pute derivatives without having to resort to the limit definition. Eventually we will
come to a list of rules which are given on page 162 in Section 6.6.

5.1 Constant function and power rules
EXAMPLE 1

Find the derivative of f(x) = c, where c is a constant.

First, what should this be? The graph of f(x) = c is a ,

whose slope is . So f ′(x) should equal .

Justification of this intuition:

Theorem 5.1 (Constant Function Rule) Let c be a constant. Then d
dx

(c) = 0.
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5.1. Constant function and power rules

EXAMPLE 2
Find the derivative of f(x) = mx+ b, where m and b are constants.

First, what should this be? The graph of f(x) = mx+ b is a (straight) line, whose

slope is . So f ′(x) should equal .

Justification of this intuition:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

[m(x+ h) + b]− [mx+ b]
h

=

Theorem 5.2 (Linear Function Rule) If f(x) = mx+ b, then f ′(x) = m.
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5.1. Constant function and power rules

EXAMPLE 3
Find the derivative of f(x) = x2.

Solution:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

[(x+ h)2]− [x2]
h

= lim
h→0

[x2 + 2xh+ h2]− x2

h

= lim
h→0

2xh+ h2

h

=

EXAMPLE 4
Find the derivative of f(x) = xn, where n is a nonnegative integer.

Solution:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

[(x+ h)n]− [xn]
h

= lim
h→0

[xn + nxn−1h+ ...+ hn]− xn
h

(continued on next page)
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From the previous page,

f ′(x) = lim
h→0

[xn + nxn−1h+ ...+ hn]− xn
h

= lim
h→0

nxn−1h+ ...+ hn

h

= lim
h→0

(
nxn−1 + ...+ hn−1

)

= nxn−1.

EXAMPLE 5
Find the derivative of f(x) =

√
x.

Solution: Just to show you that you can use either definition of derivative, we’ll
do this example with the alternate definition:

f ′(x) = lim
t→x

f(t)− f(x)
t− x

= lim
t→x

√
t−
√
x

t− x

= lim
t→x

(√
t−
√
x
)

(t− x) ·

(√
t+
√
x
)

(√
t+
√
x
)

= lim
t→x

t− x
(t− x)

(√
t+
√
x
)

= lim
t→x

1√
t+
√
x

= 1√
x+
√
x

= 1
2
√
x
.
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EXAMPLE 6
Find the derivative of f(x) = 1

x
.

Solution:

f ′(x) = lim
t→x

f(t)− f(x)
t− x

= lim
t→x

1
t
− 1

x

t− x

=

Examples 1-6 illustrate the following general principle:

Theorem 5.3 (Power Rule) Let f(x) = xn, where n 6= 0. Then f ′(x) = nxn−1.

The Power Rule can also be written this way: d
dx

(xn) = nxn−1 whenever n 6= 0.

Theorem 5.4 (Special cases of the Power Rule) .

• d
dx

(x) = 1

• d
dx

(mx+ b) = m

• d
dx

(
1
x

)
= −1

x2

• d
dx

(
√
x) = 1

2
√
x

• d
dx

(x2) = 2x
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5.2. Linearity rules

EXAMPLE 7
An object’s position (in meters) at time t (measured in seconds) is given by y = t4.
Find the object’s velocity at time 3.

OLD SOLUTION:

v(3) = f ′(3) = lim
h→0

f(3 + h)− f(3)
h

= lim
h→0

(3 + h)4 − 34

h
= · · ·

NEW SOLUTION:

5.2 Linearity rules
Question: Do derivatives add/subtract/multiply/divide as expected?

In particular, if f and g are differentiable functions,

• does (f + g)′ = f ′ + g′ ?

• does (f − g)′ = f ′ − g′ ?

• does (cf)′ = c · f ′ when c is a constant?

• does (fg)′ = f ′ · g′?

• does
(
f
g

)′
= f ′

g′
?
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5.2. Linearity rules

Theorem 5.5 (Sum Rule) If f and g are differentiable at x, then f+g is differentiable
at x and (f + g)′(x) = f ′(x) + g′(x).

Proof of the Sum Rule: By definition, (f + g)(x) means f(x) + g(x). Now using
the definition of the derivative,

(f + g)′(x) = lim
h→0

(f + g)(x+ h)− (f + g)(x)
h

= lim
h→0

[f(x+ h) + g(x+ h)]− [f(x) + g(x)]
h

= lim
h→0

f(x+ h)− f(x) + g(x+ h)− g(x)
h

= lim
h→0

f(x+ h)− f(x)
h

+ lim
h→0

g(x+ h)− g(x)
h

= f ′(x) + g′(x).

Theorem 5.6 (Difference Rule) If f and g are differentiable at x, then f − g is
differentiable at x and (f − g)′(x) = f ′(x)− g′(x).

Proof of the Difference Rule: similar to the proof of the Sum Rule.

Theorem 5.7 (Constant Multiple Rule) If f is differentiable at x, then cf is differ-
entiable at x for any constant c and (cf)′(x) = c · f ′(x).

Proof of the Constant Multiple Rule:

(cf)′(x) = lim
h→0

(cf)(x+ h)− (cf)(x)
h

= lim
h→0

c f(x+ h)− c f(x)
h

= lim
h→0

c[f(x+ h)− f(x)]
h

= c lim
h→0

[f(x+ h)− f(x)]
h

= c f ′(x).
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5.2. Linearity rules

Together, the Sum Rule, Difference Rule and Constant Multiple Rule are called
the linearity rules for differentiation (for reasons that you learn in linear algebra
(Math 322)).

EXAMPLE 1
Compute the derivative of y = 3x2 + 2

√
x− 1.

EXAMPLE 2
Suppose the cost of producing x units of a drug is given by c(x) = 10x15 − 8x + 7.
Find the instantaneous rate of change in the cost when x = 1.

EXAMPLE 3
Let y = 3 3

√
x− 2

3x3 + (3x− 2)2. Find dy
dx

.
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5.3. Derivatives of sine, cosine and tangent

WARNING: Products do not behave nicely under differentiation. Here is an
example to show why (fg)′ 6= f ′ · g′:

Suppose f(x) = x2 and g(x) = x3.

Then f ′(x) = 2x and g′(x) = 3x2.
Therefore the product of the derivatives is f ′(x)g′(x) = (2x)(3x2) = 6x3.

BUT (fg)(x) = f(x)g(x) = x2x3 = x5.

Therefore the derivative of the product is (fg)′(x) =

5.3 Derivatives of sine, cosine and tangent
Question:

d

dx
(sin x) = ?

d

dx
(cosx) = ?

d

dx
(tan x) = ?

To address these questions, we will use the limit definition of derivative for
each function. In computing these derivatives, we will need some trigonometric
identities, which are listed here for convenience:

sin(x+ h) = sin x cosh+ cosx sin h (5.1)

cosx = 1− 2 sin2
(
x

2

)
(5.2)

cos(x+ h) = cos x cosh− sin x sin h (5.3)

tan(x+ h) = tan x+ tan h
1− tan x tan h (5.4)

1 + tan2 x = sec2 x (5.5)
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5.3. Derivatives of sine, cosine and tangent

EXAMPLE

Find the derivative of f(x) = sin x.

What should this derivative be? Hint: look back at page 78.

Justification of this intuition:

d

dx
(sin x) = lim

h→0

sin(x+ h)− sin x
h

= lim
h→0

sin x cosh+ cosx sin h− sin x
h

(by trig identity (5.1) above)

= lim
h→0

(cosx)sin h
h

+ lim
h→0

(sin x)cosh− 1
h

= cosx
(

lim
h→0

sin h
h

)
+ sin x

(
lim
h→0

cosh− 1
h

)
.

Side question 1:

lim
h→0

sin h
h

= ?

Solution to side question 1:

1

1

cos h

sin h

h

From this picture, it is clear that

area of pink triangle ≤ area of blue pizza wedge ≤ area of green triangle

1
2(base)(height) ≤ angle

2π (π radius2) ≤ 1
2(base)(height)
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5.3. Derivatives of sine, cosine and tangent

From the previous page, we have

1
2(cosh)(sin h) ≤ h

2 ≤ 1
2(1)(tan h)

1
2 cosh sin h ≤ h

2 ≤ 1
2

sinh
cosh

cosh sin h ≤ h ≤ sinh
cosh

cosh ≤ h
sinh ≤

1
cosh

1
cosh ≥ sinh

h
≥ cosh

These inequalities “prove” the relationships between the graphs of cosh, sinh
h

and 1
cosh seen below:

cos h

1

cos h

sinh

h

-1 - 1

2
0

1

2
1

1

2

1

3

2

2

We can conclude that since

lim
h→0

cosh = cos 0 = 1 and lim
h→0

1
cosh = 1

1 = 1,

that

Side question 2:

lim
h→0

cosh− 1
h

= ?
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5.3. Derivatives of sine, cosine and tangent

Solution to side question 2:

lim
h→0

cosh− 1
h

= lim
h→0

1− 2 sin2
(
h
2

)
− 1

h
(by trig identity (5.2) on page 118)

= lim
h→0

−2 sin2
(
h
2

)
h

= lim
u→0

−2 sin2 u

2u (by setting u = h

2 so that h = 2u)

= lim
u→0
−1 · sin u · sin u

u
=

Returning to the computation of the derivative of sin x:

d

dx
(sin x) = cos x

(
lim
h→0

sin h
h

)
+ sin x

(
lim
h→0

cosh− 1
h

)
(from page 119)

= cosx · 1 + sin x · 0
= cosx.

EXAMPLE

Find the derivative of f(x) = cos x.

What should this derivative be? Hint: look back at page 78.

Justification of this intuition:

d

dx
(cosx) = lim

h→0

cos(x+ h)− cosx
h

= lim
h→0

cosx cosh− sin x sin h− cosx
h

(by trig identity (5.3) on page 118)

= lim
h→0

(cosx)cosh− 1
h

− lim
h→0

(sin x)sin h
h

= cosx · 0− sin x · 1 (by the two side questions)
= − sin x.
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5.3. Derivatives of sine, cosine and tangent

EXAMPLE

Find the derivative of f(x) = tan x.

Solution:

d

dx
(tan x) = lim

h→0

tan(x+ h)− tan x
h

= lim
h→0

tanx+tanh
1−tanx tanh − tan x

h
(by trig identity (5.4) on page 118)

= lim
h→0

tan x+ tan h− tan x(1− tan x tan h)
h(1− tan x tan h)

= lim
h→0

tan x+ tan h− tan x+ tan2 x tan h
h(1− tan x tan h)

= lim
h→0

tan h+ tan h tan2 x

h(1− tan x tan h)

= lim
h→0

tan h(1 + tan2 x)
h(1− tan x tan h)

= lim
h→0

tan h sec2 x

h(1− tan x tan h) (by trig identity (5.5) on page 118)

= sec2 x · lim
h→0

sin h
cosh · h · (1− tan x tan h)

= sec2 x · lim
h→0

( 1
cosh

)(sin h
h

)
1

1− tan x tan h

= sec2 x · 1
1 · (1) · 1

1− tan x · 0 (by the first side question)

= sec2 x.

Theorem 5.8 (Derivatives of Sine, Cosine and Tangent)

d

dx
(sin x) = cos x d

dx
(cosx) = − sin x d

dx
(tan x) = sec2 x

The derivatives of cotx, secx and cscx, as well as the derivatives of arctan x
and arcsin x will be derived in the next chapter.
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5.3. Derivatives of sine, cosine and tangent

EXAMPLE 1
Find f ′(x) if f(x) = 2 sin x− 3 cosx+ 4.

EXAMPLE 2
Find dy

dx
if y =

√
x3 + 5x− 2 tan x.

EXAMPLE 3
Let y = 4 cos x− 2. Find the slope of the line tangent to this curve when x = π

2 .
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5.4. Derivatives of exponential and logarithmic functions

5.4 Derivatives of exponential and logarithmic functions
Question:

d

dx
(ex) = ?

d

dx
(ln x) = ?

EXAMPLE

Find the derivative of f(x) = ex.

Solution: Go back to the limit definition of derivative:

d

dx
(ex) = lim

h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex(eh − 1)
h

= ex ·
[
lim
h→0

eh − 1
h

]

Side question 3:

lim
h→0

eh − 1
h

= ?

Solution to side question 3: We will estimate this limit by means of charts, as
in Chapter 2:

h .1 .05 .01 .001 .0000001

eh−1
h

1.052 1.025 1.005 1.0005 1.

h -.1 - .05 -.01 -.001 -.0000001

eh−1
h

.9516 .9754 .995 .9995 1.

Based on these charts, it seems reasonable to conclude that

lim
h→0

eh − 1
h

=
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5.4. Derivatives of exponential and logarithmic functions

and therefore, returning to the example,

d

dx
(ex) = ex

[
lim
h→0

eh − 1
h

]
= ex · 1 = ex.

Theorem 5.9 (Derivative of the natural exponential function)) d
dx

(ex) = ex.

In Section 6.5, we will derive the following rule for the natural logarithm func-
tion:

Theorem 5.10 (Derivative of the natural logarithm function) d
dx

(ln x) = 1
x
.

EXAMPLE 1
Find the slope of the line tangent to the function f(x) = 3 ln x+

√
x at x = 4.

EXAMPLE 2
Find the derivative of y = 2ex − 4 sin x+ cosx− 2x6 − 1.

EXAMPLE 3
Find the derivative of λ(z) = log10 z.
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5.5. Higher-order derivatives

5.5 Higher-order derivatives
We will see that many problems can be studied not just by differentiating a

function once, but by repeatedly differentiating it many times. First, we establish
notation to describe this procedure:

Definition 5.11 Let f : R→ R be a function.

• The zeroth derivative of f , sometimes denoted f (0), is just the function f itself.

• The first derivative of f , sometimes denoted f (1) or dy
dx

, is just f ′.

• The second derivative of f , denoted f ′′ or f (2) or d2y
dx2 , is the derivative of f ′; in

other words, f ′′ = (f ′)′. The third derivative of f , denoted f ′′′ or f (3) or d3y
dx3 ,

is the derivative of f ′′; in other words, f ′′′ = ((f ′)′)′.

• More generally, the nth derivative of f , denoted f (n) or dny
dxn

,is the derivative of
f (n−1); in other words f (n) = ((((f ′)′) · · ·′)′.

EXAMPLE 1
Let f(x) = 2x6. Find f ′′′(x).

EXAMPLE 2
If y = cosx+ sin x, find d2y

dx2

∣∣∣
x=π/4

.
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5.5. Higher-order derivatives

Physical interpretation of the second derivative

Suppose an object’s position on a number line after t seconds of elapsed time is
given by f(t). Then

f ′(t) = rate of change of position = velocity

f ′′(t) = (f ′)′(t) = rate of change of velocity =

EXAMPLE 3
A bee is flying back and forth along a number line, so that its position after t units
of time is f(t) = −1

3 t
3 + 3t2. What is the velocity of the object at the instant where

its acceleration is zero?
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5.5. Higher-order derivatives

Graphical interpretation of the second derivative

Let f be a twice- differentiable function. Then

f ′(x) = slope of graph of f at x

f ′′(x) = (f ′)′(x) = rate of change of slope at x

EXAMPLE 4
Let k be a constant and define f(x) = 1

2kx
2 + (1− k)x + 1

2k. Examine the behavior
of f(x) at x = 1 for various k:

f(1) = 1
2k + 1− k + 1

2k = 1

f ′(x) = kx+ 1− k ⇒ f ′(1) = k + 1− k = 1
f ′′(x) = k ⇒ f ′′(1) = k

0 1

4

1

2

3

4
1 5

4

3

2

7

4
2

1

4

1

2

3

4

1

5

4

3

2

7

4

2
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5.5. Higher-order derivatives

Compiling information from the first and second derivative, we can determine
the general shape of a graph near a value x as follows:

f ′(x) > 0 f ′(x) < 0 f ′(x) = 0

f ′′(x) > 0

f ′′(x) < 0

f ′′(x) = 0

Before the days of Mathematica and graphics calculators, this is how people
learned to sketch the graphs of functions.

EXAMPLE 5
Suppose f is some unknown function such that f(3) = −2, f ′(3) = 1 and f ′′(3) = 2.
Sketch a picture of what the graph of f looks like near x = 3:

-1 1 2 3 4 5

-3

-2

-1

1

2

3
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5.5. Higher-order derivatives

EXAMPLE 6
Suppose f is some function whose graph is given below:

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

1. Estimate f(−6).

2. Estimate f ′(−6).

3. Estimate f ′(1).

4. Estimate f ′′(1).

5. Estimate f ′′(−3).

6. Estimate a value of x for which f ′(x) = 0 but f ′′(x) < 0.

7. Estimate a value of x for which f ′(x) < 0 but f ′′(x) > 0.

8. Is f ′′(9) positive, negative, or zero? Explain.

9. Is f ′′(−7) positive, negative, or zero? Explain.
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5.5. Higher-order derivatives

EXAMPLE 7
Suppose that you look at your Fitbit periodically to measure the number of steps
you have walked and record what you see in the following table:

time t
(minutes after noon) 0 2 5 7 11 15

steps taken f(t) 0 35 115 147 163 191
Use the table above to estimate the answers to these questions. Show your work;
use correct mathematical language and use appropriate units.

1. How fast are you walking at 12:06 PM?

2. What is your acceleration at 12:07 PM? Use appropriate units.

131



5.5. Higher-order derivatives

EXAMPLE 8
The graph of some unknown function f is given below at left. Sketch the graph of
f ′′ on the right-hand axes:

0 2 4 6 8

2

4

6

8

2 4 6 8

-4

-2

2

4
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5.6. Homework exercises

5.6 Homework exercises
In these problems (and in all future problems), you may (and should) use differen-
tiation rules to compute any necessary derivatives (i.e. you do not have to use the
limit definition).

1. Find dy
dx

if y = 3.

2. Find f ′(x) if f(x) = x6 + 2
√
x.

3. Find d
dx

(
3x− 4

5x + 1
)
.

4. A business estimates that if it employs x thousands of people, then its profit,
in millions of dollars, is given by the function f(x) = 2x3 + 2− x−1. Find the
rate of change of the business’ profit relative to the change in x, when x = 2.

5. Find the derivative of h(x) = (x− 2)(x2 + 4).

6. Find the slope of the line tangent to y = 2x5/2 − x3/2 when x = 4.

7. Find the equation of the line tangent to f(x) = 3− x4 + 1
x

when x = 1.

8. Suppose an object is traveling along a number line so that its position at time
t is f(t) = 2t− 4t−2. Find the object’s velocity when t = 2.

9. Suppose an object’s position at time t is given by f(t) = 4t2 − 5t+ 2. Find all
times t where the velocity of the object is −1.

10. Find f ′(x) if f(x) = 3 + 4x− 3
√
x.

11. Find d
dx

√
2x.

12. Find the derivative of f(x) = x2−1√
x

.

13. Find f ′(x) if f(x) = 2
3 sin x+ 3

4 cosx− x2.

14. Find the derivative of y = 2− x− 4 tan x.

15. Let f(x) = cos x− 3. Find df
dx

∣∣∣
x=π/4

.

16. Find the slope of the line tangent to y = 3 tan x− cosx when x = π
6 .

17. Find the instantaneous velocity of an object at time t, if the object’s position
at time t is f(t) = 3t+ sin t.

18. Let g(x) = 4ex − 5x+ sin x. Find g′(x).

19. Find the derivative of f(x) = 4− 3
x

+ 2 ln x.
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5.6. Homework exercises

20. Find the derivative of y = 3ex when x = 0.

21. Find the derivative of f(x) = ln x+ 4 3
√
x.

22. Find the second derivative of f(x) = x3 − 1
x

+ 4 sin x.

23. Find σ′′(x) if σ(x) = 2
3x

6 − 2
x

+ 4.

Note: σ is the Greek letter sigma.

24. Let y = 2 sin θ. Find d2y
dθ2 .

25. Find d2f
dx2

∣∣∣
x=1

if f(x) =
(

2
x

+
√
x
)
.

26. If f(x) = 4ex − 5x4 + 3x, find f ′′(x).

27. Find the third derivative of f(x) = ln x when x = 2.

28. Find the 33rd derivative of f(x) = ex.

29. Let f(x) = sin x. Find f (801)(x).

30. Find the acceleration of an object at time 3, if the object’s position at time t is
f(t) = 2t3 − t2 + 4t.

31. Find the acceleration of an object at time 2π
3 , if the object’s velocity at time t is

v(t) = 3 sin t+ 2.

32. An object moves in such a fashion that its position after t units of time is
f(t) = et − 2t. As time passes, is the object speeding up or slowing down?

33. An object moves in such a fashion that its position at time t is f(t) = t3 − 9t2.
Find all times t where the acceleration of the object is zero.

34. Suppose f is some unknown function such that f(4) = 0, f ′(4) = −1 and
f ′′(4) = 5. Sketch a picture of what the graph of f looks like near x = 4.

35. Suppose g is some unknown function such that g(−1) = 3, g′(−1) = 0 and
g′′(−1) = −2

5 . Sketch a picture of what the graph of g looks like near x = −1.

36. Suppose f is some unknown function such that f(4) = 1, f ′(4) = 1
7 and

f ′′(4) = −2
3 . Sketch a picture of what the graph of f looks like near x = 4.
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5.6. Homework exercises

37. Pictured below is the graph of some unknown function f .

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9
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-4

-3

-2

-1

1
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3

4

5

6

7

8

Use the graph to determine, with justification, whether each of the following
quantities are positive, negative, or zero:

a) f(5)
b) f ′(5)
c) f ′′(5)

d) f(−6)
e) f ′(−6)
f) f ′′(−6)

g) f(−1)
h) f ′(−1)
i) f ′′(−1)

j) f(3)
k) f ′(3)
l) f ′′(3)

38. Pictured below is the graph of some unknown function g.

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9
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Use the graph to answer the following questions:

a) Estimate g′′(1).

b) Estimate g′′(5).

c) Estimate g′′(−7).

d) Find a value of x such that g′(x) = 0 but g′′(x) > 0.

e) Find a value of x such that g′(x) = 0 but g′′(x) < 0.

f) Find a value of x for which g′′(x) DNE.
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5.6. Homework exercises

39. The position of a bug which is crawling back and forth along the x-axis at
various times t are given in the following chart:

time t
(seconds) 0 1 4 8 12

position x(t)
(inches) 14 7 −5 40 220

a) Use the information in the chart to estimate x′(3). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

b) In the context of this problem, what does your answer to part (a) mean?

c) In the context of this problem, what is the significance of the sign of your
answer to part (a)?

d) Use the information in the chart to estimate x′′(6). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

e) In the context of this problem, what does your answer to part (d) mean?

f) In the context of this problem, what is the significance of the sign of your
answer to part (d)?

40. During a snowstorm, you periodically measure the depth of snow that has
fallen outside your house. Your observations are recorded in the following
table:

time t
(hours) 0 1 3 4 5 7 8

depth of snow f(t)
(inches) 0 6 15 18 20 21 24

a) Use the information in the chart to estimate f ′(4). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

b) In the context of this problem, what does your answer to part (a) mean?

c) Use the information in the chart to estimate f ′′(6). Show the computa-
tions that lead to your answer, and write your answer with appropriate
units.

d) In the context of this problem, what does your answer to part (c) mean?
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5.6. Homework exercises

41. The graph of some unknown function g is shown below at left. Use this graph
to sketch graphs of the functions g′ and g′′.

g

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

f

-8 -6 -4 -2 2 4 6

-8

-6

-4

-2

2

4

6

42. The graph of some unknown function f is shown above at right. Use this
graph to sketch graphs of the functions f ′ and f ′′.

43. The graph of some unknown function h is shown below. Use this graph to
sketch graphs of the functions h′, h′′ and h′′′.

h

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

44. Sketch the graph of any differentiable function f which has all of the follow-
ing properties:

• f ′(3) > 0;
• f ′′(3) < 0;
• f ′(−1) > 0;
• f ′′(−1) > 0.
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5.6. Homework exercises

45. Sketch the graph of any differentiable function g which has all of the follow-
ing properties:

• g′(5) < 0;
• g′′(5) < 0;
• g′(0) = 0;
• g′′(0) < 0.

46. Sketch the graph of any differentiable function h which has all of the follow-
ing properties:

• h′(2) = 0;
• h′(2) > 0;
• h′(−4) > 0;
• h′′(−4) = 0.

Answers

1. 0

2. 6x5 + 1√
x

3. 3 + 4
5x
−2

4. 97
4

5. 3x2 − 4x+ 4

6. 37

7. y = 3− 5(x− 1)

8. 3

9. t = 1
2

10. 4− 1
3x
−2/3

11.
√

2
2
√
x

12. 3
2x

1/2 − x−1/2

13. 2
3 cosx− 3

4 sin x− 2x

14. −1− 4 sec2 x

15. −
√

2
2

16. 9
2

17. 3 + cos t

18. 4ex − 5 + cos x

19. 3x−2 + 2
x

20. 3

21. 1
x

+ 4
3x
−2/3

22. 6x− 2x−3 − 4 sin x

23. 20x4 − 4x−3

24. −2 sin θ

25. 15
4

26. 4ex − 60x2

27. 1
4

28. ex.

29. f(x) = cos x

30. 34

31. −3
2

32. Speeding up (since acceleration is
positive)

33. t = 3
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5.6. Homework exercises

34. Passes through (4, 0), slope of tangent line is −1 and lies above the tangent
line at 4:

2 4 6 8

-3

-2

-1

1

2

3

4

35. Passes through (−1, 3), curved downward such that the “peak” of the graph
is at (−1, 3):

-3 -2 -1 0 1 2

1

2

3

4

36. Passes through (4, 1), slope of tangent line is 1
7 , and graph lies below the

tangent line:

1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

37. a) f(5) = 0 (graph at x−axis at x = 5)

b) f ′(5) > 0 (graph going up from left to right)

c) f ′′(5) > 0 (graph lies above tangent line)

d) f(−6) > 0 (graph above x−axis at x = −6)

e) f ′(−6) > 0 (graph going up from left to right)

f) f ′′(−6) < 0 (graph lies below tangent line)

g) f(−1) > 0 (graph above x−axis at x = −1)

h) f ′(−1) < 0 (graph going down from left to right)

i) f ′′(−1) = 0 (graph is straight at x = −1)

j) f(3) < 0 (graph below x−axis at x = 3)

k) f ′(3) = 0 (tangent line horizontal)

l) f ′′(3) > 0 (graph lies above tangent line)
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5.6. Homework exercises

38. a) 0
b) ≈ 1

4 (a small positive number)

c) ≈ −5 (a negative number)

d) x ≈ −5.25, x ≈ 8.1
e) x ≈ −6.8, x ≈ −2.8
f) x = −2

39. a) x′(3) ≈ x(4)−x(1)
4−1 = −5−7

4−1 = −4 in/sec.

b) The bug’s velocity at time 3 is −4 in/sec.

c) Since the velocity is negative, the bug is moving from right to left at time
3.

d) x′(6) ≈ x(8)−x(4)
8−4 = 40−(−5)

8−4 = 11.25 in/sec;

x′(10) ≈ x(12)−x(8)
12−8 = 220−40

12−8 = 45 in/sec;

x′′(6) ≈ x′(10)−x′(6)
10−6 = 45−11.25

10−6 ≈ 8 in/sec2.

e) The bug’s acceleration at time 6 is 8 in/sec2.

f) Since the acceleration is positive, the bug is speeding up at time 6.

40. a) f ′(4) ≈ f(5)−f(4)
5−4 = 2 and f ′(4) ≈ x(4)−x(3)

4−3 = 3; averaging these we esti-
mate f ′(4) ≈ 2.5 in/hr.

b) At time 4, the snow is falling at a rate of 2.5 inches per hour.

c) f ′(5) ≈ f(5)−f(4)
5−4 = 2 and f ′(7) ≈ f(7)−f(5)

7−5 = 1
2 . Then, f ′′(6) ≈ f ′(7)−f ′(5)

7−5 =
1
2−2

2 = −3
4 in/hr2.

d) At time 6, since f ′′(6) < 0, the rate at which the snow is falling is de-
creasing (i.e. the snowstorm is “letting up”).

41.

g'

g''

-8 -6 -4 -2 2 4 6 8
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5.6. Homework exercises

42.

h'

h''

-8 -6 -4 -2 2 4 6 8

43.

h'

h''

h'''
-8 -6 -4 -2 2 4 6 8

44. Answers may vary; one possible answer is

-1 3

45. Answers may vary; one possible answer is

5

46. Answers may vary; one possible answer is

-4 2
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Chapter 6

Intermediate Differentiation
Rules

6.1 Product rule
Question: What is d

dx
(fg) (a.k.a. (fg)′) in terms of f , g, f ′ and g′?

First, what is (fg)′ not equal to?

Some intiution involving units: Suppose x is time (measured in sec) and f(x) and
g(x) are both distances (measured in meters). Then

f ′(x) is , which is measured in .

g′(x) is , which is measured in .

So f ′(x)g′(x) would be measured in .

But (fg)(x) = f(x)g(x) is , which is measured in ,

which means (fg)′(x) would be measured in .
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6.1. Product rule

More intuition: Suppose you have a rectangle whose length is l and whose width
is w. This makes the area lw. Suppose you increase l and w by a small amount.
How much does the area change?

l

w

Justification of this intuition:

(fg)′(x) = lim
h→0

(fg)(x+ h)− (fg)(x)
h

= lim
h→0

f(x+ h) g(x+ h)− f(x) g(x)
h

= lim
h→0

f(x+ h) g(x+ h)− f(x) g(x+ h) + f(x) g(x+ h)− f(x) g(x)
h

= lim
h→0

[
f(x+ h) g(x+ h)− f(x) g(x+ h)

h
+ f(x) g(x+ h)− f(x) g(x)

h

]

= lim
h→0

[
g(x+ h)f(x+ h)− f(x)

h

]
+ lim

h→0

[
f(x)g(x+ h)− g(x)

h

]
= g(x) f ′(x) + f(x) g′(x).

This work proves the following theorem:

Theorem 6.1 (Product Rule) Let f and g be differentiable at x. Then fg is differen-
tiable at x and

(fg)′(x) = f ′(x) g(x) + g′(x) f(x).
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6.1. Product rule

The Product Rule says, in English, the following:

the derivative of a product is “the derivative of the first times the second plus the
derivative of the second times the first”.

EXAMPLE 1
Find y′ if y = 3x2 sin x.

EXAMPLE 2
Find the slope of the line tangent to f(x) = (2x3 + 4x− 1) tan x, at x = 0.

EXAMPLE 3
Find d2y

dx2 if y = x4ex.

Solution: First, by the Product Rule,

dy

dx
= 4x3ex + exx4.

EXAMPLE 4
Find f ′(x) if f(x) = cos2 x.
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6.2. Quotient rule

6.2 Quotient rule
Theorem 6.2 (Quotient Rule) Let f and g be differentiable at x, where g(x) 6= 0.
Then f

g
is differentiable at x and

(
f

g

)′
(x) = f ′(x) g(x)− g′(x) f(x)

[g(x)]2 .

The proof of this is similar to the proof of the Product Rule and is omitted.

The Quotient Rule says, in English, the following:

the derivative of a quotient is “the derivative of the top times the bottom minus the
derivative of the bottom times the top, all over the bottom squared”.

EXAMPLE 1
Find θ′(x) if θ(x) = 2

√
x−3x+1
5 lnx .

EXAMPLE 2
Let f(x) = x2+1

x2−1 . Find the slope of the line tangent to f when x = 0.
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6.2. Quotient rule

EXAMPLE 3
Suppose that at time t (measured in seconds), the energy in a nuclear reaction is
3et
t

Joules. Find the rate of change of the energy with respect to time.

EXAMPLE 4
Find f ′(x) if

f(x) = 3 tan x+ 6x2 − 5x+ 2
−4 cosx− 3x−2/3 + 2 .
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6.3. Derivatives of secant, cosecant and cotangent

6.3 Derivatives of secant, cosecant and cotangent
The quotient rule can be used to compute the derivatives of secx, cscx and

cotx. You can either memorize the answers that are derived below, or remember
how to “re-compute” them using the quotient rule, as necessary.

EXAMPLE 1
Find the derivative of f(x) = sec x.

d

dx
(secx) = d

dx

( 1
cosx

)

=

EXAMPLE 2
Find the derivative of f(x) = csc x.

Solution:

d

dx
(cscx) = d

dx

( 1
sin x

)
= (1)′ · sin x− (sin x)′ · 1

(sin x)2

= 0 · sin x− cosx · 1
sin2 x

= − cosx
sin2 x

= − 1
sin x ·

cosx
sin x = − cscx cotx.

EXAMPLE 3
Find the derivative of f(x) = cot x.

Solution:

d

dx
(cotx) = d

dx

(cosx
sin x

)

=
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6.3. Derivatives of secant, cosecant and cotangent

Theorem 6.3 (Derivatives of secant, cosecant and cotangent)

d

dx
(secx) = sec x tan x d

dx
(cscx) = − cscx cotx d

dx
(cotx) = − csc2 x

EXAMPLE 4
Find the instantaneous rate of change of the function f(x) = 2x secx + 1 when
x = 0.

EXAMPLE 5
Let y = secx+3 cotx

x−sinx . Find dy
dx

.
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6.3. Derivatives of secant, cosecant and cotangent

EXAMPLE 6
Suppose an object’s position, measured in feet, at time t, measured in seconds, is
given by f(t) = et sec t. Find the object’s velocity and acceleration at time 0.

EXAMPLE 7
Find d

dt

(
2
√
t csc t

)
.

EXAMPLE 8
Find g′

(
π
3

)
if g(t) = t2 sin t.

Solution: First, by the Product Rule, g′(t) = 2t sin t+ (cos t)t2.

⇒ g′
(
π

3

)
= 2

(
π

3

)
sin

(
π

3

)
+ cos

(
π

3

)
·
(
π

3

)2

= 2
(
π

3

) √3
2 + 1

2

(
π2

9

)

= π
√

3
3 + π2

18 .
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6.4. Chain rule

6.4 Chain rule
Question: Given differentiable functions f and g, find the derivative of f ◦ g in

terms of f , f ′, g and g′.

Motivating example:

Suppose Mrs. Young is moving 5 times as fast as Mrs. Underwood.

Suppose also that Mrs. Underwood is moving 3 times as fast as Mrs. Xavier.

What is the relationship between Mrs. Young’s speed and Mrs. Xavier’s speed?

Answer:

In the language of derivatives, the motivating example becomes the following
question:

“If
dy

du
= 5 and

du

dx
= 3, what is

dy

dx
?”

The answer is found as follows:

The general idea described here is what is called the Chain Rule:

Theorem 6.4 (Chain Rule, Leibniz notation)

dy

dx
= dy

du
· du
dx
.
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6.4. Chain rule

EXAMPLE 1
Find dy

dx
if y =

√
sin x.

Continuing with this example, let F (x) =
√

sin x. Then,

151



6.4. Chain rule

Theorem 6.5 (Chain Rule, prime notation) If f and g are differentiable functions,
then f ◦ g is differentiable and

(f ◦ g)′(x) = f ′(g(x)) g′(x).

I like to think of a composition as having an “outside” part (the f ) and an “in-
side” part (the g). The Chain Rule says, in English, the following:

the derivative of a composition is “the derivative of a composition is the derivative of
the outside, with the inside plugged in, times the derivative of the inside”.

EXAMPLE 2

Find d
dx

[(
1
x
− sin x

)4
]
.

EXAMPLE 3
Find y′, if y =

√
3x+ 4.
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6.4. Chain rule

EXAMPLE 4
Find the equation of the line tangent to F (x) = (3x2 − 3x− 1)9 when x = 1.

EXAMPLE 5
If an object’s position, in feet, at time x (measured in minutes) is given by f(x) =
e−t, find the object’s velocity and acceleration at time x.

EXAMPLE 6
Compute the second derivative of y = cos(x2).
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6.4. Chain rule

When to use the Product Rule, as opposed to the Chain Rule
EXAMPLE

d

dx

(
x2 sin x

)
vs.

d

dx

(
sin x2

)

Use of the Chain Rule in conjunction with other rules
EXAMPLES

Find the derivative of each of these functions:

1. y = 2x ln(4x2 + 1)

2. f(x) = x2 cos3 x− 4x tan2 x
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6.4. Chain rule

3. y = (ex+x2−2)3

(x−3−1)3/2

4. f(x) = sin
(

lnx−2
cosx+x

)
Solution: Start with the Chain Rule, because “sin” doesn’t mean anything by
itself:

f ′(x) = outside′(inside) · (inside)′

= cos
(

ln x− 2
cosx+ x

)
·
(

ln x− 2
cosx+ x

)′

Now use the Quotient Rule to compute the inside′:

f ′(x) = cos
(

ln x− 2
cosx+ x

)
·

1
x
(cosx+ x)− (− sin x+ 1)(ln x− 2)

(cosx+ x)2

5. g(x) = cos(
√

secx)
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6.5. Implicit differentiation

6.5 Implicit differentiation
Another application of the Chain Rule

Suppose z = sin y and y = f(x), where you don’t know what the function f is.

dz

dx
= ?

Answer: By the Chain Rule,

EXAMPLE 1
Suppose that y is some unknown function of x. Find d

dx
(y2 + 6y − 2).

Note: If y is a constant, rather than a function of x, then d
dx

(y2 + 6y − 2) =

EXAMPLE 2
d
dx

(x4 − sin y + 5) = ?

156



6.5. Implicit differentiation

EXAMPLE 3
d
dx

(y3 sin x) = ?

Implicit differentiation of equations
MOTIVATING EXAMPLE

Consider the equation x2 + y2 = 25.

This equation is not a function, for two reasons:

1.

2.

Suppose you wanted to write the equation of the tangent line to x2 + y2 = 25
at some point. You would need to compute dy

dx
at that point to get the slope. But

which equation do you differentiate:

y =
√

25− x2 or y = −
√

25− x2

In this example, the choice is obvious:
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6.5. Implicit differentiation

But for a more interesting equation, there is no way to tell which equation to
use. Consider the equation

4(y2 − x2) = y4.

If you solve for y, you will get four different solutions:

There’s no (easy) way to tell which solution goes with which graph.

Question: Is there a way to compute dy
dx

for some equation without solving for
y in terms of x?

Answer: Yes. The method is called implicit differentiation. To implement it,
start with the equation and differentiate both sides with respect to x (i.e. “take d

dx

of both sides”).

General procedure to implement implicit differentiation:

1. Take d
dx

of both sides (as with the examples earlier).

2. If you are given x and/or y values, plug them in.

3. Solve for dy
dx

.
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6.5. Implicit differentiation

EXAMPLE 4
Find the slope of the line tangent to the circle x2 + y2 = 25 at the point (3,−4).

Follow up question # 1: What is the equation of the line tangent to the circle x2 +
y2 = 25 at (3,−4)?

Follow up question # 2: In the preceding example, how would you determine
the value of the second derivative at (3,−4) (i.e. how would you measure the
concavity of the circle)?
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6.5. Implicit differentiation

EXAMPLE 5
Find dy

dx

∣∣∣
x=3,y=3

for the equation x3 + y3 − 6xy = 0.

EXAMPLE 6
Find dy

dx
for the equation x+ e2xy = 10.
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6.5. Implicit differentiation

Theoretical applications of implicit differentiation

Implicit differentiation can be used to justify derivative rules for complicated func-
tions:

EXAMPLE 7
Use implicit differentiation to verify that the derivative of ln x is 1

x
:

y = ln x ⇔ ey = x

d

dx
(ey) = d

dx
(x)

EXAMPLE 8
Find the derivative of f(x) = arctan x.

Solution: As in the previous example, rewrite the function and use implicit differ-
entiation:

y = arctan x⇔ x = tan y

1 = sec2 y
dy

dx

1 = (1 + tan2 y) dy
dx

1 = (1 + x2) dy
dx

1
1 + x2 = dy

dx

EXAMPLE 9
Find the derivative of f(x) = arcsin x.
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6.6. Summary of differentiation rules

6.6 Summary of differentiation rules
Derivatives of functions that you should memorize:

Constant Functions d
dx

(c) = 0

Power Rule d
dx

(xn) = nxn−1 (so long as n 6= 0)

Special cases of the Power Rule: d
dx

(mx+ b) = m

d
dx

(
√
x) = 1

2
√
x

d
dx

(
1
x

)
= −1

x2

d
dx

(x2) = 2x

Trigonometric Functions d
dx

(sin x) = cos x
d
dx

(cosx) = − sin x
d
dx

(tan x) = sec2 x

d
dx

(cotx) = − csc2 x

d
dx

(secx) = sec x tan x
d
dx

(cscx) = − cscx cotx

Exponential Function d
dx

(ex) = ex

Natural Log Function d
dx

(ln x) = 1
x

Inverse Trig Functions d
dx

(arctan x) = 1
x2+1

d
dx

(arcsin x) = 1√
1−x2

Rules that tell you how to differentiate more complicated functions:

Sum Rule (f + g)′(x) = f ′(x) + g′(x)

Difference Rule (f − g)′(x) = f ′(x)− g′(x)

Constant Multiple Rule (kf)′(x) = k · f ′(x) for any constant k

Product Rule (fg)′(x) = f ′(x) g(x) + g′(x) f(x)

Quotient Rule
(
f
g

)′
(x) = f ′(x) g(x)−g′(x) f(x)

[g(x)]2

Chain Rule (f ◦ g)′ (x) = f ′(g(x)) g(x)
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6.7. Homework exercises

6.7 Homework exercises
1. Let g(x) = (x2 + 1)(x2 − 3x+ 4). Find g′(x).

2. Let f(x) = 4x2 ln x. Find df
dx

.

3. Find the derivative of f(x) = x
x2−x+1 .

4. Find g′(1) if g(x) = x√
x+1 .

5. Differentiate f(x) = sinx
x2 .

6. Find the derivative of f(x) =
√
x sin x.

7. Find dy
dx

if y = (2x3 − x−2/3)ex.

8. Find the instantaneous velocity of an object at time t = π
3 , if the position of

the object is given by f(t) = t2 sin t.

9. Find d
dx

[
(1

4x
2 − 1) ln x

]
.

10. Find the second derivative of f(x) = x ln x.

11. a) Find f ′(2) if f(x) = 2 sin x 5
√
x.

b) Explain in your own words what your answer to part (a) means.

12. Differentiate f(x) = x2+1
x3−1 .

13. Find y′ if y = cosx√
x

.

14. Find the slope of the line tangent to the graph of f(x) = 4 cosx sin x when
x = π

4 .

15. Find the acceleration of a particle at time t, given that the particle’s position
at time t is 3t2−4

t2+1 .

16. Let y = 8x9−sinx
lnx+5 . Find dy

dx
.

17. Find f ′(π) if f(x) = x2 sin x.

18. Find the equation of the line tangent to the graph of y = cosx
x

when x = π/2.

19. Find the equation of the line tangent to f(x) = (x − 1)(x2 − 2) at the point
(0, 2).

20. Suppose f ′′′(x) = 2x cosx. Find f (4)(x).

21. Suppose f and g are functions such that f(3) = 2, f ′(3) = −1, g(3) = 4 and
g′(3) = 2. Find (fg)′(3) and

(
f
g

)′
(3).
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6.7. Homework exercises

22. Here is a table which lists of values of functions f , g, f ′ and g′:

x −4 −3 −2 −1 0 1 2 3 4
f(x) 2 1 −2 −5 3 0 1 2 3
f ′(x) 3 −1 4 2 −1 3 2 2 5
g(x) 2 −5 0 3 1 −4 2 0 −2
g′(x) 3 −2 −1 −2 4 1 0 3 7

Use this information to compute the following quantities:

a) (fg)′(2)
b) (fg)′(0)

c)
(
f
g

)′
(4)

d) (f + 3g)′(−1)

e)
(

f
f+g

)′
(2)

f) h′(3), if h(x) = x2f(x)
g) k′(−2), if k(x) = 4x3g(x)

h) d
dx

(
x
g(x)

)∣∣∣
x=−1

23. The graphs of two functions f and g are shown below:

f

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4

g

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4

Use the graphs to estimate these quantities:

a) (fg)′(0)
b) (fg)′(3)

c)
(
f
g

)′
(2)

d)
(
f
g

)′
(−5)

e) b′(6), if b(x) = 5xg(x)
f) d

dx

(
g(x)
x

)∣∣∣
x=−6

24. A team of biologists studies the behavior of a bacteria colony under the effect
of exposure to radiation as time passes. They produce graphs of functions
n and m, where n(t) is the bacteria population (measured in thousands of
bacteria) at time t (measured in hours), and m(t) is the number of mutated
bacteria (measured in thousands of bacteria) at time t (measured in hours).
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6.7. Homework exercises

Graphs of these functions are shown below:

n

m

0 2 4 6 8 10
time

2

4

6

8

10

thousands of bacteria

a) Let p be the proportion of bacteria that have mutated at time t. Write p
as a function of m and n.

b) Estimate p′(7) from the given graphs. Write your answer with appropri-
ate units.

c) In terms of the context of this problem, what does your answer to part
(b) mean?

25. Suppose that at time t (measured in months), a raw material needed by a
business costs c(t) dollars per unit. Suppose also that at time t (in months),
the business estimates that it needs x(t) units of the material. If the graphs
of c and x are as given below, what is the instantaneous rate of change of the
company’s total raw material costs relative to time, when t = 7?

c

0 2 4 6 8 10
time

200

400

600

800

1000
cost (per unit)

x

0 2 4 6 8 10
time

10

20

30

40

50
# units needed
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6.7. Homework exercises

In Problems 26-33, find the derivative of the given function.

26. f(x) = 2 cotx

27. y = 3x4 cscx

28. f(x) = −1
x2 + secx− 4 sin x

29. f(x) = secx
x

30. y = x sin x− 2x
cotx

31. f(x) = 1
4
√
x+ 3− 5 cscx

32. y = 4
√
x+ 6 tan x− 3 cotx

33. f(x) = ln x sin x

34. a) Find the derivative of f(x) = (x− 3)−3 using the Chain Rule.

b) Find the derivative of f(x) = (x− 3)−3 by rewriting the function (to get
rid of the negative exponent) and using the Quotient Rule.

c) Verify that the answers you got in (a) and (b) are the same.

35. Find the derivative of y = (2x− 3)8.

36. Find f ′(2) if f(x) =
√

8− x.

37. Find dy
dx

if y = 3
√

4x2 + 5.

38. Differentiate π(x) = csc2 x.

Note: In this problem, π is not the number π; it is just the name of the function.

39. Find the derivative of f(x) = 4 ln(cosx).

40. Suppose an object’s position at time t is cos
(

3πt
2

)
. Find the velocity of the

object at the instant t = 1.

41. Find d2y
dx2 if y = (5x− 1)−3.

42. Find the derivative of f(x) = e5x.

43. Find the derivative of f(x) = sin(x2 ).

44. Find the slope of the line tangent to f(x) = 3 cos(x2) when x = 0.

45. Find y′ if y = sec 1
x
− x2.

46. Let f(x) = 1
4 sin4(2x). Find f ′(x).

47. Find the equation of the line tangent to f(x) =
√
x2 + 2x+ 8 when x = 2.

48. Suppose an object’s position at time t is given by f(t) = (t2 + 3)e2t. Find the
velocity of the object when t = 0.

49. Suppose f and g are functions such that f(1) = 4, f ′(1) = −3, f(3) = 2,
f ′(3) = 5, g(3) = 1 and g′(3) = 2. Find (fg)′(3) and (f ◦ g)′(3).
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6.7. Homework exercises

50. Suppose dy
du

= 3 and du
dx

= 6. What is dy
dx

?

51. Suppose dy
dx

= 8 and du
dx

= 4. What is dy
du

?

52. Suppose dy
dv

= 5 and dx
dv

= 3. What is dy
dx

?

53. Use the table of values given in Problem 22 above to compute the following
quantities:

a) (f ◦ g)′(2)
b) (g ◦ f)′(−3)
c) (f ◦ f)′(0)
d) (g ◦ f)′(4)
e) r′(1), if r(x) = g(2x)

f) h′(2), if h(x) = (f(x))2

g) H ′(2), if H(x) = f(x2)
h) k′(0), if k(x) = f(g(x) cosx)
i) z′(−2), if z(t) = x2f(g(t))
j) w′(1), if w(x) = g(f(x)g(x))

54. Use the graphs given in Problem 23 above to estimate these quantities:

a) (f ◦ g)′(0)
b) (g ◦ f)′(0)
c) (f ◦ g)′(6)

d) (f ◦ f)′(−5)
e) r′(−1), if r(x) = f(2x)
f) h′(−2), if h(x) = (g(x))2

In Problems 55-74, find the derivative of the given function.

55. f(x) = x2(x− 2)4

56. f(x) = x
√

4− x2

57. f(x) =
(

1−2x
x+1

)5

58. f(x) =
√
x cosx

59. f(x) = x3−2√
x6+1

60. f(x) = sin
(
x+1
x−1

)
61. f(x) = cos(tan x)

62. f(x) = cos x tan x

63. f(x) = cos(x tan x)

64. y = cot4(5x+ 1)

65. y =
√

x
x−1

66. f(x) = esinx

67. f(x) = e2x−5

68. g(x) = ln(x2 + 8x+ 5)

69. f(x) = sec2(4x)

70. f(x) = 3
x
−
√
x+ x2 sin x

71. f(x) = 2 + ln x− x7e4x

72. f(x) = 3+x2 cotx
4
√
x−sin(ex)

73. f(x) = 5x

Hint: Use the log rule AB = eB lnA

to rewrite f ; then take the deriva-
tive using the Chain Rule.

74. f(x) = x2x
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75. Compute d
dx

(3y2 + 5y).

76. Compute d
dx

(4y5 − 3x3).

77. Compute d
dx

(y2e3x).

78. Compute d
dx

(4x3y2).

In problems 79-84, find the derivative dy
dx

.

79. x2 + y2 = 49

80. x3 − xy + y2 = 4

81. sin x+ 2 cos 2y = 1

82. x = cos(xy)

83. ex = x
ey

84. ln y = cosx

85. Find the slope of the line tangent to x2y − y3 = −8 at the point (0, 2).

86. Find the equation of the line tangent to (x2 + y2)2 = 4x2y at the point (1, 1).

87. Find the equation of the line tangent to the elllipse x2

2 + y2

8 = 1 at (1, 2).

88. Find the slope of the line tangent to the hyperbola y2

6 −
x2

8 = 1 at the point
(−2,−3).

89. Find d2y
dx2 if x2 + y2 = 4.

Hint: First find dy
dx

, then take the derivative of that expression implicitly.

90. Find d2y
dx2 if y2 = sin x.

In Problems 91-96, find the derivative of the given function.

91. f(x) = arctan 2x

92. f(x) = x3 arctan x

93. f(x) = arcsin x− 1
x

+ ln x− 2

94. f(x) = 4 arcsin 3x

95. f(x) = x arctan 2x

96. f(x) = earctanx
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Answers

1. 2x(x2 − 3x+ 4) + (2x− 3)(x2 + 1)

2. 8x ln x+ 4x

3. x2−x+1−x(2x−1)
(x2−x+1)2 .

4. 3
8

5. x2 cosx−2x sinx
x4

6. 1
2
√
x

sin x+
√
x cosx

7. (6x2 + 2
3x
−5/3)ex + (2x3 − x−2/3)ex

8. π
√

3
3 + π2

18

9. 1
2x ln x+ (1

4x
2 − 1) 1

x

10. 1
x

11. a) 2 5
√

2 cos 2 + 2
52−4/5 sin 2

b) The answer in part (a) is some
number which gives the slope
of the line tangent to f at x =
2.

12. 2x(x3−1)−3x2(x2+1)
(x3−1)2

13.
−
√
x sinx− 1

2
√
x

cosx
x

.

14. 0

15. 14(1−3x2)
(1+x2)3

16. (72x8−cosx)(lnx+5)− 1
x

(8x9−sinx)
(lnx+5)2

17. −π2.

18. y = − 2
π
(x− π

2 )

19. y = 2− 2x

20. 2 cosx− 2x sin x

21. (fg)′(3) = 0;
(
f
g

)′
(3) = −1

2 .

22. a) 4
b) 11
c) −31

4

d) −4
e) 4

9

f) 30
g) 32
h) −7

9

23. Answers can vary a bit here:

a) 0
b) 1

3

c) −2
d) 3

25

e) −15
f) 1

4

24. a) p(t) = m(t)
n(t)

b) p′(7) ≈ 1
4 hr−1

c) At time 7, the proportion of
mutated bacteria is increasing
at a rate of 1/4 per hour.

25. −675 dollars per month

26. −2 csc2 x

27. 12x3 cscx− 3x4 cscx cotx

28. 2x−3 + secx tan x− 4 cosx

29. x secx tanx−secx
x2

30. sin x+ x cosx− 2 cotx+2x csc2 x
cot2 x

31. 1
8
√
x

+ 5 cscx cotx

32. 1
4x
−3/4 + 6 sec2 x+ 3 csc2 x
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33. 1
x

sin x+ ln x cosx

34. −3(x− 3)−4

35. 16(2x− 3)7

36. −1
2
√

6

37. 8x
3 (4x2 + 5)−2/3

38. −2 csc2 x cotx

39. −4 tan x

40. 3π
2

41. 300(5x− 1)−5

42. 5e5x

43. 1
2 cos x

2

44. 0

45. −1
x2 sec 1

x
tan 1

x
− 2x

46. 2 sin3(2x) cos(2x)

47. y = 4 + 3
4(x− 2)

48. 6

49. (fg)′(3) = 9; (f ◦ g)′(3) = −6.

50. 18

51. 2

52. 5
3

53. a) 0
b) −1
c) −2
d) 15
e) −4
f) 4
g) 20

h) 12
i) −8
j) −48

54. a) 0
b) 4

3

c) 1
4

d) 0
e) 2
f) −3

55. 2x(x− 2)4 + 4(x− 2)3x2

56.
√

4− x2 − x2
√

4−x2

57. 5
(

1−2x
x+1

)4
· −2(x+1)−(1−2x)

(x+1)2

58. 1
2
√
x cosx · (cosx− x sin x)

59.
3x2√x6+1− 6x5

2
√
x6+1

(x3−2)

x6+1

60. cos
(
x+1
x−1

)
· −2

(x−1)2

61. − sin(tan x) sec2 x

62. − sin x tan x+ cosx sec2 x

63. − sin(x tan x) · (tan x+ x sec2 x)

64. −20 cot3(5x+ 1) csc2(5x+ 1)

65. 1
2
√

x
x−1
· −1

(x−1)2

66. esinx cosx

67. 2e2x−5

68. 2x+8
x2+8x+5

69. 8 sec2(4x) tan(4x)

70. −3
x2 − 1

2
√
x

+ 2x sin x+ x2 cosx

71. 1
x
− 7x6e4x − 4x7e4x
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72.
(2x cotx−x2 csc2 x)(4

√
x−sin(ex))−( 2√

x
−ex cos(ex))(3+x2 cotx)

(4
√
x−sin(ex))2

73. 5x ln 5

74. x2x(2 ln x+ 2)

75. 6y dy
dx

+ 5 dy
dx

76. 20y4 dy
dx
− 9x2

77. 2y dy
dx
e3x + 3e3xy2

78. 12x2y2 + 8x3y dy
dx

79. −x
y

80. y−3x2

2y−x

81. cosx
4 sin 2y

82. − cscxy−y
x

83. ex+2y−ey
−xey

84. −y sin x

85. 0

86. y = 1

87. y = 2− 2(x− 1)

88. 1
2

89. −4
y3 .

90. −2y2 sinx−cos2 x
4y3

91. 2
1+(2x)2

92. 3x2 arctan x+ x3

x2+1

93. 1√
1−x2 + 1

x2 + 1
x

94. 12√
1−9x2

95. arctan 2x+ 2x
1+4x2

96. earctanx · 1
1+x2
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6.8 Review problems for Exam 2
Mathematica questions

1. Write Mathematica commands which will compute the derivative of the func-
tion f(x) = 3 sin(2x4 − 8) tan(3 ln x) when x = 4.

2. Write Mathematica commands which will compute the eighth derivative of
the function f(x) = 2

x
− cscx.

3. Write the output you will get (either in Mathematica syntax or hand-written
notation) when you execute the following commands in Mathematica:

g[x_] = Log[x] +3

g’’[2]

4. Write the output you will get (either in Mathematica syntax or hand-written
notation) when you execute the following commands in Mathematica:

h[x_] = Cos[x] + 3x^(20)

D[h[x], {x, 42}]

Questions from Chapters 5 and 6

5. Explain in your own words, without referring to the Product Rule, why
(fg)′(x) is generally not equal to f ′(x)g′(x).

6. a) Find f ′(1) if f(x) = (
√
x+ 3)(2x3 − 4x+ 1).

b) Explain, in your own words, what the answer to part (a) means.

7. Find the equation of the tangent line to the graph of y = 3x2 −
√
x at x = 4.

8. Suppose that a company’s profit (in millions of dollars), if it produces x units
of a product, is given by P (x) = 3

3√x + 1. Find the instantaneous rate of
change of the company’s product with respect to the number of units pro-
duced, when 27 units are produced.

9. Suppose the position, in inches, of an object moving along an axis at time t,
in seconds, is given by

f(t) = t2 + cos t+ 2.

a) Find the velocity of the object at time π.

b) Find the acceleration of the object at time 0.

10. Differentiate the function f(x) = 4
√
x+ 3 cosx− 2ex + 4.
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11. Find g′(x), if g(x) = 1+sinx
x lnx .

12. Find y′ if y = (1− 3x)(cotx− cscx).

13. Find the slope of the line tangent to the curve 12x5 − 2xy3 + y4 = 12 at the
point (1, 2).

14. Find the derivative of f(x) = (9x3 + 1)2 sin 5x.

15. Find the second derivative of y = arctan(6x+ 1).

16. Find y′ if y = x2−3 cosx
2x+sec 4x .

17. Find the derivative of h(x) = 3
√
x cosx.

18. Find d
dx

(
3

2x2 − 2x−1/5 + 3
8x3/2

)
.

19. Suppose y = (x5 − 3x2 + sin x). Find d
dx

(y3 − 2y + 1) (in terms of x).

20. a) Suppose f(x) = cos 4x+ 2x3 − 1. Find f ′′′(x).
b) Suppose f(x) = sin 2x. What is f (400)(x)?

21. Find the zeroth derivative of the function f(x) = esinx.

22. Suppose f is some function which satisfies f(5) = 2, f ′(5) = −3, f ′′(5) = −1.
Sketch a picture which illustrates what the graph of f looks like near x = 5.

23. Sketch a graph of a function g which has all six of the given properties:

• f ′(−3) = 2;
• f ′′(−3) = −1;
• f ′(2) = 1

4 ;
• f ′′(2) = 2;
• f ′(7) = 0;
• f ′′(7) = 2

5 .

24. Given below are the graphs of two unknown functions f and g.

f

-8 -6 -4 -2 2 4 6 8 10 12

-6

-4

-2

2

4

6

8

10

g

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Use these graphs to estimate the following quantities:
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a) f ′′(5)

b) (f ◦ g)′(1)

c) (g ◦ f)′(−1)

d) (fg)′(−2)

e) (fg)′(−3)

f)
(
g
f

)′
(0)

g) h′(7), where h(x) = x2f(x)

h) d
dx

(g(2x))
∣∣∣
x=3

25. Given the graph of g in Problem 24, sketch rough graphs of the functions g′

and g′′.

26. Given the graphs of f and g in Problem 24, determine whether the following
quantities are positive, negative, zero, or do not exist:

a) g′′(−2))
b) g′(2)
c) g′(5)

d) g′′(5)
e) f ′′(0)
f) g′′(0)

27. The national debt of a country, in millions of dollars, is given in the following
table:

time t
(years after 1980) 0 6 10 15 20 28 40

debt f(t)
(millions of dollars) 30 40 48 60 80 118 210

a) The national deficit is the rate of change of the country’s debt. Use the
data in the table to estimate the country’s deficit in 1998. Show the work
that leads to your answer, and write your answer with correct units.

b) What is the calculus notation (with f and/or t) that expresses what you
estimated in part (a)?

c) Use the data in the table to estimate the rate of change of the country’s
deficit in 2008. Show the work that leads to your answer, and write your
answer with correct units.

d) What is the calculus notation (with f and/or t) that expresses what you
estimated in part (c)?
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Answers

1. This takes two lines as shown here:

f[x_] = 3 Sin[2x^4 - 8] Tan[3 Log[x]]
f’[4]

2. This could be done in one line:

D[2/x - Csc[x], {x, 8}]

A different (but less good) way to do this is in two lines:

f[x_] = 2/x - Csc[x]

f’’’’’’’’[x]

3. −1
4

4. − cosx

5. There are several different answers, but one involves units. The units of
(fg)′(x) are

(units of f )(units of g)
(units of x)

but the units of f ′(x)g′(x) are

(units of f )
(units of x)

· (units of g)
(units of x)

which aren’t the same.

6. a) Use the Product Rule to find f ′(x); then f ′(1) = 15
2 .

b) The slope of the line tangent to f at x = 1 is 15
2 ; alternatively, the instan-

taneous rate of change of f(x) with respect to x at x = 1 is 15
2 .

7. y = 46 + 95
4 (x− 4).

8. −1
81 millions of dollars per unit.

9. a) v(π) = 2π
b) a(0) = 1.

10. f(x) = 2√
x

+−3 sin x− 2ex.

11. Use the Quotient Rule to get

g′(x) = x cosx ln x− (ln x+ 1)(1 + sin x)
(x ln x)2 .
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12. Use the Product Rule to get

y′ = −3(cotx− cscx) + (− csc2 x+ cscx cotx)(1− 3x).

13. Use implicit differentiation to get the slope; then the tangent line has equation

y = 2 + (x− 1).

14. Use the Product Rule, then the Chain Rule to get

f ′(x) = 2(9x3 + 1)(27x2) sin 5x+ (5 cos 5x)(9x3 + 1)2.

15. Use the Chain Rule for the first derivative, then the Quotient and Chain rules
for the second derivative to get y′′ = −72(1+6x)

(1+(1+6x)2)2 .

16. Use the Quotient Rule to get

y′ = (2x+ 3 sin x)(2x+ sec 4x)− (2 + sec 4x tan 4x · 4)(x2 − 3 cosx)
(2x+ sec 4x)2 .

17. Use the Chain Rule, then the Product Rule for the IN ′ part to get

h′(x) = 1
3 (x cosx)−2/3 · [cosx− x sin x] .

18. −3x−3 + 2
5x
−6/5 − 9

16x
−5/2

19. (3(x5 − 3x2 + sin x)2 − 2)(5x4 − 6x+ cosx)

20. a) f ′′′(x) = −64 sin 3x
b) f (400)(x) = 2400 sin 2x

21. esinx.

22. The graph passes through (5, 2), has tangent line with slope −3 (i.e. goes
down steeply from left to right) and bends below the tangent line (i.e. frowns)
since f ′′(5) < 0. An example of such a graph is this one:

5

2
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23. Answers may vary; here is one possible graph:

f

-8 -6 -4 -2 2 4 6 8 10

-6

-4

-2

2

4

6

8

10

24. a) f ′′(5) = 0
b) (f ◦ g)′(1) = f ′(g(1))g′(1) = 0
c) (g ◦ f)′(−1) = g′(f(−1))f ′(−1) = 1

2

d) (fg)′(−2) = f ′(−2)g(−2) + f(−2)g′(−2) = −3 + 5 = 2
e) (fg)′(−3) = f ′(−3)g(−3) + f(−3)g′(−3) which DNE

f)
(
g
f

)′
(0) = g′(0)f(0)−f ′(0)g(0)

[g(0)]2 = 1
6

g) h′(7) = 56 + 49(2/3)

h) d
dx

(g(2x))
∣∣∣
x=3

= g′(6) · 2 = 1

25. Here are the graphs of g′ and g′′, with the relevant x-values marked:

g'

-1 2 5

g''

2

26. a) g′′(−2)) is negative

b) g′(2) is positive

c) g′(5) is zero

d) g′′(5) is positive

e) f ′′(0) is zero

f) g′′(0) is negative
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27. a) This is roughly the rate of change of the debt when t = 18, which is
approximately

f(20)− f(15)
20− 15 = 20

5 = 4million dollars / year.

b) f ′(28) ≈ 4.

c) From the table, the deficit at about t = 24 is roughly

f(28)− f(20)
28− 20 = 118− 80

8 = 38
8 = 19

4

and the deficit at about time t = 34 is roughly

f(40)− f(28)
40− 28 = 210− 118

40− 28 = 92
12 = 23

3 .

That means the rate of change of the deficit when t = 28 is roughly

23
3 −

19
4

34− 24 = 92
12 −

57
12
10 = 35

120 = 7
24million dollars per year per year.

d) f ′′(28) ≈ 7
24 .
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Chapter 7

Optimization Analysis

7.1 What is an optimization problem?
There are many situations in the real world where you need to determine how

to make some quantity as large or as small as possible. Here are some examples:

EXAMPLE 1
If an archer shoots an arrow into the air at angle θ from the ground, it will travel
a horizontal distance of v sin 2θ

g
, where v and g are constants. At what angle should

the archer shoot the arrow to make it travel as far as possible? (Equivalently, what
is the maximum range of the archer?)

EXAMPLE 2
An epidemic spreads through a population in such a way that the number of in-
fected people, I , is a function of the number of susceptible people, x, by the for-
mula

I(x) = 4 ln
(
x

30

)
− x+ 30.

What is the maximum number of people who will become infected?

EXAMPLE 3
A patient’s temperature change T , when given dose d of some medicine, is given
by

T =
(

1− d

3

)
d2

What dosage maximizes this temperature change?
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EXAMPLE 4
A farmer has 50 feet of fence with which to build a rectangular pen. What dimen-
sions of the pen make its area as big as possible?

EXAMPLE 5
A box with a square base and no top is to be constructed from plywood. If there is
48 square feet of plywood available, and if the length, width and height of the box
must be at least 1 foot, what is the largest volume of a box that can be made?

Common characteristics of Examples 1-5

1. In each example, there is some quantity you are allowed to “choose”; this
quantity is the variable.

2. In each example, there is a second quantity which depends on the vari-
able. This quantity is called the utility; the goal of the problem is to
maximize or minimize the utility.

Any problem which asks you to maximize or minimize a utility function de-
pending on one (or more) variables is called an optimization problem.

Here is the variable and utility for each of the first three examples on the previ-
ous page:

Variable Utility

Example 1

Example 2

Example 3
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Constrained optimization problems

Examples 4 and 5 are a little different, because there are two variables present in
the problem.

In Math 220, we can only solve an optimization problem with two or more
variables if there is some extra information which relates the variables. This extra
information is called a constraint on the variables. (Take Math 320 - Calculus III -
if you want to learn how to solve general optimization problems with more than
one variable.)

Variables Utility Constraint

Example
4

Example
5

We call problems like Examples 1 to 3 free optimization problems and problems
like Examples 4 and 5 constrained optimization problems.

• Free optimization problem:

• Constrained optimization problem:
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Converting a constrained optimization problem to a free
optimization problem

The techniques of Math 220 are best suited to solving free optimization problems.
So if you are given a constrained optimization problem, you first have to convert
it to a free optimization problem by

1.

2.

Let’s see how this works in Examples 4 and 5:

EXAMPLE 4
(variables x and y) (utility A = xy) (constraint 2x+ 2y = 50)

EXAMPLE 5
(variables x and y) (utility V = x2y) (constraint x2 + 4xy = 20)

Henceforth we will focus on solving free optimization problems. Keep in mind
that whenever you are given a constrained optimization problem, the first step is
to convert it to a free optimization as above.
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7.2 Theory of optimization
Our goal is to determine the maximum and minimum of some utility function

f(x). To understand how this is done, we first need a lot of vocabulary:

Definition 7.1 Given a function f and a specified domain D of that function:

1. We say f has an absolute maximum (a.k.a. global maximum) at x = c if
f(x) ≤ f(c) for all x ∈ D. In this case f(c) is called the absolute (global)
maximum value of f on D.

2. We say f has an absolute minimum (a.k.a. global minimum) at x = c if
f(x) ≥ f(c) for all x ∈ D. In this case f(c) is called the absolute (global)
minimum value of f on D.

3. We say f has a local maximum (a.k.a. relative maximum) at x = c if f(x) ≤
f(c) for all x ∈ D sufficiently close to c. In this case f(c) is called a local
(relative) maximum value of f on D.

4. We say f has a local minimum (a.k.a. relative minimum) at x = c if f(x) ≥
f(c) for all x ∈ D sufficiently close to c. In this case f(c) is called a local
(relative) minimum value of f on D.

5. Collectively, all maxima and minima are called extrema.

Note: If one says “f has a local maximum of 5 at 3”, then one means that 5 is
the y−value and 3 is the x−value, i.e. that the maximum is at the point (3, 5).

Note: A function can have lots of local maxs/local mins, but has at most one
global max and at most one global min. A list of all the local maxs (local mins) of a
function always includes the global max (global min).

183



7.2. Theory of optimization

EXAMPLES

For each of the following graphs, identify all global extrema and all local minima.
At all local extrema which are not endpoints, find the derivative of the function at
the extrema.

h

-5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6

GLOBAL MAX:

GLOBAL MIN:

LOCAL MAX:

LOCAL MIN:

g

-3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

GLOBAL MAX:

GLOBAL MIN:

LOCAL MAX:

LOCAL MIN:

H

-5 -4 -3 -2 -1 1 2 3 4 5

-1

1

2

3

GLOBAL MAX: 2, at x = −4

GLOBAL MIN: none (there is no point
on the graph at (0, 0))

LOCAL MAX:
{

2 at x = −4
1.5 at x = 2

LOCAL MIN: none

k

-5 -4 -3 -2 -1 1 2 3 4 5

-1

1

2

3

GLOBAL MAX: 3, at all x

GLOBAL MIN: 3, at all x

LOCAL MAX: 3, at all x

LOCAL MIN: 3, at all x
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f

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

GLOBAL MAX: 6 at x = −4

GLOBAL MIN: DNE

LOCAL MAX:
{

2.5 at x = 2 f ′(2) =
6 at x = −4 f ′(−4) =

LOCAL MIN: −3 at x = −1 f ′(−1) =

Definition 7.2 An optimization problem is a problem in which you are asked to
find the absolute maximum and/or absolute minimum value of a function on some
domain.

Question 1: Does a function necessarily have an absolute maximum and/or
absolute minimum? (In other words, does a generic optimization problem neces-
sarily have a solution?)

Theorem 7.3 (Max-Min Existence Theorem) If f is continuous on a closed and
bounded interval [a, b], then f has a global maximum value and a global minimum
value on that interval.

Note: The preceding theorem may fail if f is not cts, or if the interval is not
closed, or if it is not bounded.

Question 2: How do you find the absolute maximum value and/or absolute
minimum value of some function on some domain? (In other words, how do you
solve an optimization problem?)
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Definition 7.4 A critical point (a.k.a. CP) of a function f is a number c such that
f ′(c) = 0 or f ′(c) does not exist.

Note: Critical points are numbers, not points. (They are the x-coordinates of
points).

Theorem 7.5 (Critical Point Theorem) All local extrema of a function (and there-
fore all global extrema) on an interval must occur at

1. endpoints of the interval, and/or

2. critical points of f lying in the interval.

Note: Not all critical points are local extrema.

The Critical Point Theorem suggests a method of finding the global extrema of
a function on an interval:

To optimize function f on interval [a, b]:

1. Find the critical points of f by

(a) setting f ′(x) = 0 and solving for x, and
(b) finding all x for which f ′(x) DNE.

2. Discard any critical points which are not inside the interval [a, b].

3. Plug each of the remaining critical points, as well as the two endpoints a
and b, into the function f .

The largest number you get is the absolute maximum, and the smallest
number you get is the absolute minimum.

EXAMPLE A
Find the absolute extrema of the function f(x) = 8− x2 on the interval [−4, 2].

186



7.2. Theory of optimization

EXAMPLE B
Find the absolute extrema of the function f(x) = 2x3− 6x2 + 1 on the interval [1, 3].

Solution: First, find CPs: Second, test CPs and endpoints:

f ′(x) = 6x2 − 12x .

f ′(x) = 0 : 6x2 − 12x = 0
6x(x− 2) = 0
x = 0, x = 2

f ′(x) DNE : no such points

⇒ CPs: x = 0, x = 2

EXAMPLE C
Find the absolute extrema of the function f(x) = 9 3

√
x on the interval [−1, 8].

Solution: First, find CPs: Second, test CPs and endpoints:

f ′(x) = 9
(

1
3

)
x−2/3 = 3

x2/3 .

f ′(x) = 0 : 3
x2/3 = 0
3 = 0
no such points

f ′(x) DNE : 3
x2/3 DNE
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Solving optimization word problems

General procedure to solve optimization word problems

1. Read the problem carefully, and draw a picture if necessary.

2. Identify any variable(s) and the utility (the quantity that needs to be max-
imized and/or minimized).

3. If there is more than one variable, find a constraint and convert the prob-
lem to a free optimization problem using the procedure outlined on p.
182.

4. Optimize the utility function using the procedure on p. 186 (find critical
points, plug in critical points and endpoints to the utility, and choose the
maximum and/or minimum value).

5. Make sure you answer the question that is asked.

EXAMPLE 1 (FROM PAGE 180)
If an archer shoots an arrow into the air at angle θ from the ground, it will travel a
horizontal distance of 1000 sin 2θ ft. What is the maximum range of the archer?

188



7.2. Theory of optimization

EXAMPLE 4 (FROM PAGE 181)
A farmer has 50 feet of fence with which to build a rectangular pen. What dimen-
sions of the pen make its area as big as possible?

EXAMPLE 5 (FROM PAGE 181)
A box with a square base and no top is to be constructed from plywood. If there is
48 square feet of plywood available, and if the length, width and height of the box
must be at least 1 foot, what is the largest volume of a box that can be made?
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EXAMPLE 2 (FROM PAGE 180)
An epidemic spreads through a population in such a way that the number of in-
fected people, I (measured in thousands), is a function of the number of suscepti-
ble people, x (measured in thousands), by the formula

I(x) = 4 ln
(
x

30

)
− x+ 30.

What is the maximum number of people who will become infected?
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7.3 Graphical analysis using derivatives
Tone

-4 -1 2

Definition 7.6 1. A function f is called increasing on an open interval if for any
x1 and x2 in that interval,

x1 ≤ x2 implies f(x1) ≤ f(x2).

2. A function f is called decreasing on an open interval if for any x1 and x2 in
that interval,

x1 ≤ x2 implies f(x1) ≥ f(x2).

3. A function f is called monotone on an open interval if it is either increasing or
decreasing on that interval.

Note: Constant functions are both increasing and decreasing.

Note: Functions are always said to increase or decrease on an open interval, not
at a point.
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Theorem 7.7 (Monotonicity Test) If f is differentiable on (a, b), then

1. f ′(x) > 0 on (a, b)⇒ f is increasing;

2. f ′(x) < 0 on (a, b)⇒ f is decreasing.

EXAMPLE

Determine whether or not the function f(x) = lnx
x

is increasing or decreasing on
the interval (0, 1). Determine whether or not f is increasing or decreasing on the
interval (4, 5).

Solution: Whether or not the function is increasing or decreasing depends on
whether the derivative f ′(x) is positive or negative. By the Quotient Rule,

f ′(x) =
1
x
· x− 1 · ln x

x2 = 1− ln x
x2 .

When x ∈ (0, 1),

When x ∈ (4, 5),

Concavity

Definition 7.8 Let f : R→ R be a function.

1. f is called concave up on an open interval if f ′ is increasing on that interval.

2. f is called concave down on an open interval if f ′ is decreasing on that inter-
val.

3. A number c is called an inflection point of f if the concavity of f changes at c.
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Theorem 7.9 (Concavity Test) Let f be a function so that f ′′ exists on (a, b). Then:

1. if f ′′(x) > 0 for all x ∈ (a, b), then f is concave up on (a, b);

2. if f ′′(x) < 0 for all x ∈ (a, b), then f is concave down on (a, b).

3. c is an inflection point of f if and only if the sign of f ′′ changes at c.

Remark: Based on the discussion from Chapter 5, if a function is concave up
at/near x, then it will lie above the tangent line at x. If a function is concave down
at/near x, then it will lie below the tangent line at x. If the function crosses its
tangent line at x, then x is an inflection point of f .

EXAMPLE

Determine whether the function f(x) = x2e−x is concave up or concave down on
the interval (1, 2).

Solution: By the Product and Chain Rules,

f ′(x) = 2xe−x − x2e−x

and

f ′′(x) = [2e−x − 2xe−x]− [2xe−x − x2e−x] = 2e−x − 4xe−x + x2e−x

= e−x(2− 4x+ x2)

When x ∈ (1, 2),
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EXAMPLE

Find the inflection points of the function f(x) = x3 + 3x2 − 2x+ 1.

Solution: Compute the second derivative of f :

f ′(x) = 3x2 + 6x− 2

f ′′(x) = 6x+ 6

The second derivative can also be used to classify critical points as local maxima
or local minima using the following test:

Theorem 7.10 (Second Derivative Test) Suppose f ′(c) = 0 and that f ′′ is contin-
uous on an open interval containing c. Then:

1. if f ′′(c) > 0, then f has a local minimum at c;

2. if f ′′(c) < 0, then f has a local maximum at c;

3. if f ′′(c) = 0, then this test is inconclusive.

More sophisticated ideas along the lines of the Second Derivative Test were
developed in your lab assignment on applications of derivatives. These ideas are
summarized in this theorem:

Theorem 7.11 (nth Derivative Test) Suppose f is continuous on an open interval
containing c and f ′(c) = f ′′(c) = f ′′′(c) = ...f (n−1)(c) = 0 but f (n)(c) 6= 0. Then:

1. if n is even and f (n)(c) > 0, then f has a local minimum at c;

2. if n is even and f (n)(c) < 0, then f has a local maximum at c;

3. if n is odd, then f has no local extremum at c.

Before the days of Mathematica and graphics calculators, this is how people
learned to sketch the graphs of functions. In 2019, it is more useful to use these
ideas to study applied optimization problems.
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EXAMPLE 2 (FROM PAGES 180 AND 191)
An epidemic spreads through a population in such a way that the number of in-
fected people, I (measured in thousands), is a function of the number of suscepti-
ble people, x (measured in thousands of people), by the formula

I(x) = 4 ln
(
x

30

)
− x+ 30.

What is the maximum number of people who will become infected?

Recall from the work on page 191: we said our goal was to maximize I(x) on
(0,∞). We found earlier that

I ′(x) = 4
x
− 1

and therefore the critical points of I are

x = 0 (where I ′(x) DNE);

x = 4 (where I ′(x) = 0).

To determine whether or not x = 4 is the location of an extremum, we can use
some analysis from this section:

I ′′(x) = −4
x2 ⇒ I ′′(4) = −4

42 = −1
4 < 0
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7.4 More examples of optimization problems
EXAMPLE 6

A farmer grows zucchini. He has 10 acres available to plant; if he plants x acres his
profit/loss will be 2x3 − 33x2 + 108x dollars. How many acres should the farmer
plant (assuming he wants to make as much money as possible)?
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EXAMPLE 7
In the human body, arteries must branch repeatedly to deliver blood to the entire
body. Suppose a small artery branches off from a large artery at angle θ ∈ [0, π2 ];
the energy lost due to friction in this setting is approximately

E = csc θ + 1− cot θ
16 .

Find the value of θ that minimizes the energy loss.

Solution: First, write E as E = csc θ + 1
16 (1− cot θ) and differentiate to get

E ′(θ) = − csc θ cot θ + 1
16 csc2 θ.

Next, find critical points: let E ′(θ) = 0 and solve for θ to get

0 = − csc θ cot θ + 1
16 csc2 θ

0 = csc θ
(
− cot θ + 1

16 csc θ
)

csc θ = 1
sin θ is never zero, so the only critical point is where − cot θ + 1

16 csc θ = 0.
Rewriting with trig identities, we get

− cos θ
sin θ + 1

16 sin θ = 0 ⇒ − cos θ + 1
16 = 0 ⇒ cos θ = 1

16 ⇒ θ = arccos 1
16 .

Plug the endpoints θ = 0 and θ = π
2 and the critical point arccos 1

16 into the utility
E:

θ = 0 : E = csc 0 + 1−cot 0
16 = 1 + 1−DNE

16 which DNE.

θ = arccos 1
16 : E = csc(arccos 1

16) + 1
16

(
1− cot(arccos 1

16)
)

= 16√
255 + 1

16

(
1− 1√

255

)
= 1

16

(
1 +
√

255
)
.

θ = π
2 : E = csc π

2 + 1−cot π2
16 = 1 + 1−0

16 = 17
16 .

Notice 1
16

(
1 +
√

255
)
< 1

16

(
1 +
√

256
)

= 1
16(1 + 16) = 17

16 , so the absolute minimum
is at θ = arccos 1

16 .
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EXAMPLE 8
A 12” by 12” square sheet of cardboard is made into an open box (i.e. no top)
by cutting squares of equal size out of each corner and folding up the sides along
the dotted lines (see the pictures below). Find the dimensions of the box with the
largest volume.
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EXAMPLE 9
Find the maximum area of a rectangle if one side of the rectangle is on the x−axis
and two corners of the rectangle are to be on the graph of y = 12− 1

3x
2 (this graph

is shown below):

-8 -6 -4 -2 2 4 6 8

3

6

9

12

15
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EXAMPLE 10
Michigan wants to build a new stretch of highway to link two sites on either side
of a river (see the picture below) which is 2 miles wide. The second site is 12 miles
downriver from the first site. It costs the state $13 million per mile to build over
water and $5 million per mile to build over land. How should the state build its
road to minimize costs?

River

� - y
12 mi CITY 2

yCITY 1

2 mi

Solution: First, it only makes sense to build a bridge in a straight line over the
river, then to build along the riverbank to the other city. So the road goes along the
solid lines shown below:

y
y

2

x12− x

√
4 + x2

@
@
@

@
@

Letting x be as indicated in the picture, that means the cost of the road is

C(x) = cost of road along shore + cost of bridge

= 5(12− x) + 13
√

4 + x2.

Our goal is to maximize this utility on the interval [0, 12]. First, differentiate (use
the Chain Rule on the second term):

C ′(x) = −5 + 13
2
√

4 + x2
· (2x) = −5 + 13x√

4 + x2
.

Set this equal to zero and solve for x (details omitted, ask me if you don’t follow
this):

0 = −5 + 13x√
4 + x2

⇒ 5 = 13x√
4 + x2

⇒ x = ±5
6

Plug the endpoints x = 0 and x = 12 and the critical point x = 5
6 into the utility

C; you will find that the minimum value of C is when x = 5
6 . Therefore the state

should angle the bridge so that it goes 5/6 mile downastream as it crosses the river.
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7.5 Homework exercises
In Problems 1-10, you are given a word problem. Identify the utility and write
the utility as a function of one variable. (You do not need to actually solve the
problem.)

1. Find the maximum product of two numbers whose sum is 12.

2. On a given day, the rate of traffic flow on a conjested roadway is given by
F (v) = v

24+.01v2 , where v is the velocity of the traffic. Find the velocity which
maximizes the rate of traffic flow.

3. A farmer will build a rectangular pen, where one side of the pen is against a
river (and does not need to be fenced). If he wants the pen to enclose an area
of 3 acres, what is the minimum amount of fence that he can use?

4. Find the maximum sum of two numbers, where the second number is three
times the reciprocal of the first.

5. A box has a square base. Find the maximum volume of the box, if the surface
area of the box is 300 square cm (assume that the box has a top and a bottom).

6. The potential energy of a particle moving along an axis (say the x−axis) is
E = b

(
a2

x2 − a
x

)
where a, b are positive constants and x > 0. What value of x

minimizes this potential energy?

7. A box with four sides and a bottom, but no top, has a square base. Find the
minimum surface area of the box, if its volume is to be 80 cubic cm.

8. A rectangular box (with a top and bottom) has its length equal to twice its
width. Find the maximum volume of the box, if the surface area of the box is
120 square inches.

9. Suppose the perimeter of a rectangle is P units, where P is a constant. Find
the maximum area of such a rectangle.

10. A 6-foot tall wall runs parallel to the side of a building, 4 feet away from the
building. Find the minimum length of a ladder that can lean up against the
building and touch the ground, while just touching the top of the wall.

Hint: Write the utility as a function of the angle the ladder makes with the
ground.
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In Problems 11-16, you are given a graph of some unknown function f . In each
picture, you should assume the graph continues to the left and right (i.e. that the
extreme left and right ends of the graph have arrows on them). For each function:

(a) Give the location of any local minima of f ;

(b) Find the global minimum value of f on the interval [−1, 4];

(c) Give the location of any local maxima of f ;

(d) Find the global maximum value of f on the interval [−1, 4].

11.
-5 -4 -3 -2 -1 1 2 3 4 5

-5

-4

-3

-2

-1

1

2

3

4

5

12.
-5 -4 -3 -2 -1 1 2 3 4 5
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In Problems 17-24, find all critical points of the given function.

17. f(x) = x2(x2 − 4)

18. f(x) = 3x1/5 + 2

19. f(x) = x3 − 3x+ 4

20. f(x) = |x|
Hint: consider the graph of f .

21. f(x) = 4e−x

22. f(x) = x7/3 − 28x1/3

23. f(x) = 3x
x2−1

24. f(x) = sin x+ cosx
Hint: in #24, find only the critical points of f between 0 and 2π.

25. Show that the functions f(x) and ef(x) have the same set of critical points.

Hint: Let g(x) = ef(x). Explain why solving g′(x) = 0 and f ′(x) = 0 gives the
same solutions.

In Problems 26-35, find the absolute extrema of the given function on the indi-
cated interval.

26. f(x) = sin x+ cosx on [0, 2π]

27. f(x) = x2/3 on [−1, 27]

28. f(x) = x3 − 12x+ 4 on [−3, 5]

29. f(x) = x3 − 12x+ 4 on [−3, 0]

30. f(x) = 1
2e
−x2 on [−4, 4]

31. f(x) = 5 on [−3, 4]

32. f(x) = x
x−2 on [3, 5]

33. f(x) = 3x
x2−1 on [0, 2]

34. f(x) = 5− x on [1, 4]

35. f(x) = arctan(x2) on [0, 1]

36. If a person eats n sausages, then they will get heartburn in the amount of
h(n) = −n3 + 12n. If a person has the most amount of heartburn possible
from eating sausages, how many sausages do they eat?

37. A farmer has 96 feet of fence with which to build a rectangular pen divided
into two pieces as follows:
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What dimensions should the farmer use to build her pen, if she wants the
enclosed area to be as big as possible?

38. In an endurance contest, athletes start 2 miles out to sea need to reach a lo-
cation which is 2 miles inland and three miles east of their initial location
(assume the seashore runs east-west). If an athlete can run 10 miles per hour
and swim 5 miles per hour, what is the minimum amount of time she will
need to reach the finish? (Use Mathematica to compute the derivative of your
utility function, then use the NSolve command in Mathematica to solve for the
critical point.)

39. Suppose that if a company spends x hundred dollars on advertising, then
their profit will be P (x) = −3x3 + 225x2 − 3600x+ 18000. How much should
the company spend on advertising if they want to maximize their profit, as-
suming that they only have enough capital to spend $3000 on advertising?

40. A box is made with a square base and no top. If the surface area of the box is
80 square units, what is the largest possible volume of the box?

In Problems 41-44, you are given a function f and an interval (a, b). Determine,
with justification, the sign of f ′ on (a, b). Use the sign of f ′ to draw a conclusion
about the behavior of f on (a, b).

41. f(x) = x2 + 1
x2 on (0, 1)

42. f(x) = ex − e−x on (−1, 1)

43. f(x) = −2x3 + 3x2 − 5 on (2, 3)

44. f(x) = ln(x+ 1
x
) on (0, 1)

In Problems 45-49, find all the local extrema of the given function, and classify
them as local maxima or local minima.

45. y = x4 + 4x3 + 4x2 − 3

46. f(x) = x ln x

47. f(x) = x2 − 16
x

48. f(x) = e1/x2

Hint: The result of Problem 25 may be
useful.

49. f(x) = x+ 1
x

In Problems 50-53, you are given a function f and an interval (a, b). Determine,
with justification, the sign of f ′′ on (a, b). Use the sign of f ′′ to draw a conclusion
about the behavior of f on (a, b).

50. f(x) = ex + e−x on (−∞,∞)

51. f(x) = x4 − 16x3 + 5 on (6, 7)

52. f(x) = −5 sin x on (π2 , π)

53. f(x) = ln(x+ 1
x
) on (0, 1)
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In Problems 54-58, find all inflection points of the function.

54. f(x) = x3 − 3x2 + 4x− 1

55. f(x) = x+ 1
x

56. f(x) = xe−2x

57. f(x) = x2 + 2x+ 3

58. f(x) = sin x− cosx
(Hint: in #58, only find the inflection
points between 0 and 2π)

59. Suppose f is some function such that f ′(2) = f ′′(2) = f ′′′(2) = 0 and f (4)(2) =
−3. Is x = 2 the location of a local maximum, local minimum, or neither?

60. Suppose f is some function such that f ′(4) = f ′′(4) = f ′′′(4) = ... = f (14)(4) =
0 and f (15)(4) = 2. Is x = 4 the location of a local maximum, local minimum,
or neither?

61. Suppose f is some function such that f ′(−1) = f ′′(−1) = f ′′′(−1) = ... =
f (11)(−1) = 0 and f (12)(−1) = −5. Is x = −1 the location of a local maximum,
local minimum, or neither?

62. Suppose f is some function such that f ′(0) = f ′′(0) = f ′′′(0) = ... = f (100)(0) =
0 and f (101)(0) = −17. Is x = 0 the location of a local maximum, local mini-
mum, or neither?

63. Suppose f is some function such that f ′(4) = f ′′(4) = f ′′′(4) = ... = f (99)(4) =
0 and f (100)(4) = 2

3 . Is x = 4 the location of a local maximum, local minimum,
or neither?

64. Let f(x) = x2

x2+1 for x > 0. Determine where the graph of f is steepest (i.e.
where the slope of the graph is a maximum).

65. The Gompertz growth curve, whose formula is

W (t) = ae−be
−t
,

is useful in several fields (including biology and economics). Assuming a
and b are positive constants, find the value of t at which the rate of change of
W (t) with respect to t is largest.

66. Suppose that a worker can make Q(t) = −t3 + 12t2 + 60t items in t hours.

a) Explain why the efficiency of the worker at time t can be measured by
Q′(t).

b) Find the time at which the worker is most efficient.
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67. A rectangular poster is to be made which consists of a printed region and an
unprinted margin, which is 3 inches on the top and bottom but 2 inches on
the left and right side. If the total area of the poster is to be 120 square inches,
what dimensions of the poster maximize the area of the printed region?

68. Suppose a wire of length 4 ft is cut into two pieces. Each piece is bent to form
a square; find the largest possible combined area from the two pieces.

69. The velocity of air moving through a person’s windpipe is V (r) = Cr2(A−r)
for constants C and A, where r is the radius of the windpipe.

a) Find the radius which maximizes this velocity.

b) Suppose that normally, a person’s windpipe has radius A. When a per-
son coughs, the windpipe changes radius so that air moves through the
windpipe as quickly as possible. Based on your answer to (a), does a
person’s windpipe get wider or narrower when a person coughs?

70. Find the point on the curve y =
√
x which is closest to the point (2, 0). Hint:

Don’t minimize the distance to the point; minimize the square of the distance
to the point.

71. To transmit data (like a music file) electronically, the file has to be translated
into a sequence of 0s and 1s so that it can be read by a computer or phone.
An important computation related to the coding of files by 0s and 1s is the
computation of a quantity called entropy, which is given by the following
formula:

h(x) = x ln x+ (1− x) ln(1− x)
Find the value of x ∈ (0, 1) which maximizes the entropy h.

72. A 12−inch wide piece of sheet metal is bent to form a rain gutter. A cross-
section of the gutter is shown in the picture below. What value of θ maxi-
mizes the volume of water that can be held by the gutter?

4 in
θθ

4 in4 in

Answers

1. The utility is the product, denoted by U(x) = x(12− x).

2. The utility is the rate of traffic flow, denoted by F (v) = v
24+.01v2 .
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7.5. Homework exercises

3. The utility is the amount of fence used, denoted by A(x) = x + 6
x

or A(x) =
2x+ 3

x
, depending on your setup.

4. The utility is the sum of the numbers, denoted by U(x) = x+ 3
x
.

5. The utility is the volume of the box, denoted by V (x) = x2 · 300−2x2

4x .

6. The utility is the energy, denoted by E(x) = b
(
a2

x2 − a
x

)
.

7. The utility is the surface area of the box, denoted by S(x) = x2 + 320
x

.

8. The utility is the volume of the box, denoted by V (w) = 2
3w(60− 2w2).

9. The utility is the area of the rectangle, denoted by A(x) = x(P−2x
2 ).

10. The utility is the length of the ladder, denoted by L(θ) = 6 csc θ + 4 sec θ.

11. a) x = −4, x = 0, x = 3.5
b) −2.2
c) x = −1.2, x = 1.4
d) .4

12. a) all x are local mins

b) 3
c) all x are local maxs

d) 3

13. a) x = −3
b) −1.2
c) no local max

d) 5

14. a) x = −1
b) 0
c) no local max

d) no absolute max

15. a) x = 2

b) −2
c) x = −2
d) no absolute max

16. a) x = 2
b) −2
c) x = −2
d) 3

17. x = 0, x =
√

2, x = −
√

2

18. x = 0

19. x = 1, x = −1

20. x = 0

21. None

22. x = 0, x = 2, x = −2

23. x = 1, x = −1

24. x = π
4 ,

5π
4

25. Let g(x) = ef(x). By the Chain Rule, the derivative of g is g′(x) = ef(x)f ′(x).
Since ef(x) always exists and is never zero, g′(x) = 0 only if f ′(x) = 0 and g′(x)
DNE only if f ′(x) DNE. Thus g(x) and f(x) have the same critical points.
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7.5. Homework exercises

26. Max is
√

2 at π/4; min is −
√

2 at 5π/4

27. Max is 9 at x = 27; min is 0 at x = 0

28. Max is 69 at x = 5; min is −12 at x = 2

29. Max is 20 at x = −2; min is 4 at x = 0

30. Max is 1
2 at x = 0; min is 1

2e
−16 at x = ±4

31. Max and min are 5 occuring at all x

32. Max is 3 at x = 3; min is 5
3 at x = 5

33. No max or min because of the asymptote at x = 1

34. Max is 4 at x = 1; min is 1 at x = 4

35. Max is π
4 at x = 1; min is 0 at x = 0

36. 2 sausages

37. Relative to the picture in the homework assignment, the height should be 16
feet and the width (all the way across) should be 24 feet.

38. .728134 hours

39. $3000

40. 160
√

5
3 cubic units.

41. f ′(x) = 2x − 2x−3 = 2x−3(x4 − 1) = (+)(−) < 0 on (0, 1), so f is decreasing
on (0, 1).

42. f ′(x) = ex + e−x > 0 on (−1, 1), so f is increasing on (−1, 1).

43. f ′(x) = −6x2+6x = −6(x)(x+1) = (−)(+)(+) < 0 on (2, 3), so f is decreasing
on (2, 3).

44. f ′(x) = 1
x+ 1

x

·
(
1− 1

x2

)
= 1

+(−) < 0 on (0, 1), so f is decreasing on (0, 1).

45. x = 0 local min; x = −1 local max; x = −2 local min

46. x = 1
e

local min

47. x = −2 local min

48. No local extrema

49. x = −1 local max; x = 1 local min
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7.5. Homework exercises

50. f ′′(x) = ex + e( − x) > 0 on (−∞,∞), so f is concave up on (−∞,∞).

51. f ′′(x) = 12x2 − 96x = 12x(x − 8) = 12(+)(−) < 0 on (6, 7), so f is concave
down on (6, 7).

52. f ′′(x) = 5 sin x > 0 on (π2 , π), so f is concave up on (π2 , π).

53. f ′′(x) = 4x
(x2+1)2 = +

+ > 0 on (0, 1), so f is concave up on (0, 1).

54. x = 1

55. None

56. x = 1

57. None

58. x = π
4 ; x = 5π

4

59. local maximum

60. neither

61. local maximum

62. neither

63. local minimum

64. The graph is steepest at x = 1√
3 .

65. At t = ln b.

66. a) The efficiency of the worker is the rate at which the worker makes items;
this rate is given by the derivative Q′(t).

b) At t = 4.

67. The width should be 4
√

5 inches and the height should be 6
√

5 inches.

68. 1 sq ft. (Cut the wire into a piece of length 4 ft and a piece of length 0 ft.)

69. a) r = 2A/3.

b) It gets narrower, since 2A/3 is less than A.

70.
(

3
2 ,
√

3
2

)
71. x = 1

2

72. θ = π
4
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Chapter 8

Other Applications of
Differentiation

8.1 Tangent line and quadratic approximation
Motivation: Suppose you wanted to estimate

√
102 without the use of a calcu-

lator. (Put another way, how does your calculator produce an approximation of√
102? )

A way of rephrasing this is as follows: let f(x) =
√
x. What is the approximate

value of f(102)?

What we know is that f(100) =
√

100 = 10, and since 102 is a little bit bigger
than 100,

√
102 should be a bit bigger than 10. But how much bigger?

To address this issue, we use the ideas of calculus. Recall from Chapter 4 that
the tangent line to a function at x = 100 is the line which most closely approximates
the function at values near 100. Let’s give a name to the tangent line at 100 and call
it L.

20 40 60 80 100 120 140 160 180 200

2

4

6

8

10

12

14

99. 99.5 100. 100.5 101. 101.5 102. 102.5 103.

9.9

10.

10.1
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8.1. Tangent line and quadratic approximation

Now from a calculation we did on page 85 of these notes, we found that the
tangent line to a function f at a is

L(x) = f(a) + f ′(a)(x− a).

In our setting, f(x) =
√
x so f ′(x) = 1

2
√
x

and a = 100. So we have

L(x) = f(a) + f ′(a)(x− a)
= f(100) + f ′(100)(x− 100)

=
√

100 + 1
2
√

100
(x− 100)

= 10 + 1
20(x− 100).

The whole point of this is that the tangent line closely approximates the original
function, so

√
102 = f(102) ≈ L(102) = 10 + 1

20(102− 100) = 10 + 2
20 = 10.1.

Note: the actual value of
√

102 is 10.0995... so our approximation of 10.1 is correct
to four decimal places.

Definition 8.1 (Linear approximation) Given a differentiable function f and a num-
ber a at which you can easily compute f(a) and f ′(a), the values f(x) for x close to a
can be estimated by the formula

f(x) ≈ L(x) = f(a) + f ′(a)(x− a).

This procedure is called tangent line approximation or linear approximation.

The function L(x) described above (which depends on f and a) has lots of
names. It is also denoted P1(x) and is called:

1. the tangent line to f at a;
2. the linearization of f at a;
3. the standard linear approximation to f at a; and
4. the first Taylor polynomial of f centered at a.
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8.1. Tangent line and quadratic approximation

EXAMPLE 1
Estimate 4

√
17 using tangent line approximation.

Note: You do not need to know the formula for f to perform a tangent line
approximation. All you need to know are the values of f(a) and f ′(a) (these two
numbers can often be determined experimentally if f is some unknown function
dealing with some experiment).

EXAMPLE 2
A biologist is growing bacteria in a petri dish. At 2:00 PM, she estimates that there
are 20000 living bacteria in the dish, and that the number of bacteria is growing at
a rate of 500 bacteria per minute. Use tangent line approximation to estimate the
number of bacteria in the dish at 2:05 PM.

A more interesting calculus problem: In the example above will the answer
overestimate, or underestimate the number of bacteria that are actually in the dish?
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8.1. Tangent line and quadratic approximation

0 5
time

20000

22500

# of bacteria

To get a better approximation which accounts for this kind of error, we approx-
imate f not by a line but by a parabola which has the same slope and concavity as
f at a.

Question: What would the equation of this parabola be?

Let’s call this parabola Q(x). Since Q(x) is a parabola, we could write

Q(x) =

but it is actually easier to write the equation of this parabola “centered at a”, i.e.

Q(x) = c0 + c1(x− a) + c2(x− a)2.

To find c0, c1 and c2, use the concept that Q has to have the same value, slope and
concavity as f at a.

The value of Q at a is

This should be the same as the value of f at a, which is

Conclusion:
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8.1. Tangent line and quadratic approximation

The slope of Q at a is

This should be the same as the slope of f at a, which is

Conclusion:

The concavity of Q at a is Q′′(a) = 2c2.

This should be the same as the concavity of f at a, which is

Conclusion:

From all this, we know that

Q(x) = c0 + c1(x− a) + c2(x− a)2.

where
c0 = f(a) c1 = f ′(a) c2 = 1

2f
′′(a).

To summarize:

Definition 8.2 (Quadratic approximation) Given a twice-differentiable function
f and a number a at which you can easily compute f(a), f ′(a) and f ′′(a), the val-
ues f(x) for x close to a can be approximated by the formula

f(x) ≈ Q(x) = f(a) + f ′(a)(x− a) + 1
2f
′′(a)(x− a)2.

This procedure is called quadratic approximation.

In general, quadratic approximation of a function is more accurate than lin-
ear approximation. In Math 230, you will learn how to approximate functions f
by polynomials of larger degree which can produce highly accurate estimates to
problems.

The function Q(x) described above (which depends on f and a) also has lots of
names. It is also denoted P2(x) and is called:

1. parabolic approximation to f at a;
2. the standard quadratic approximation to f at a; and
3. the second Taylor polynomial of f at a.
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8.1. Tangent line and quadratic approximation

EXAMPLE 3
Approximate

√
102 using quadratic approximation.

EXAMPLE 4
Suppose the biologist in Example 2 assumes (in addition to what she knew in Ex-
ample 2) that the number of bacteria in her petri dish at time t is given by a function
whose second derivative at 2:00 PM is 10. Estimate the number of bacteria in her
dish at 2:15 PM using quadratic approximation.
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8.1. Tangent line and quadratic approximation

EXAMPLE 5
A pharmacy researcher measures a patient’s blood pressure periodically after re-
ceiving a dose of an experimental medicine. His data is collected in the following
table:

t
(minutes after dosage) 0 1 2 3 4

P (t)
(blood pressure in mmHg) 230 190 162 142 128

Use quadratic approximation at t = 3 to estimate the patient’s blood pressure at
time 6.
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8.1. Tangent line and quadratic approximation

Differentials

We will now establish some additional notation which will be used later in the
course. Given a function y = f(x), we create a new function with 2 inputs and one
output. The two inputs are:

x = an “initial” value of x
dx = a change in the value of x

Thus, we think of x as changing from x to x + dx. Given these inputs, we de-
fine dy to be the estimated change in y that we would compute using tangent line
approximation at x:

dy = L(x+ dx)− L(x)
= [f(x) + f ′(x)(x+ dx− x)]− [f(x) + f ′(x)(x− x)]
= [f(x) + f ′(x) dx]− [f(x)]
= f ′(x) dx.

The quantities dy and dx are called differentials. They represent small changes in y
and x, respectively and are related by the formula

dy = f ′(x) dx

.

EXAMPLE 6
Suppose y = 2x6 + sin x− 3. Compute dy (in terms of x and dx).
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8.2. L’Hôpital’s rule

A picture associated to differentials:

x x+Δx

f(x)

f(x+Δx)

In principle dy ≈ the actual change in y, since L(x) ≈ f(x).

8.2 L’Hôpital’s rule
Recall that most limits are evaluated by “plugging in”, i.e.

lim
x→5

2x+ 1
x− 3 = 2(5) + 1

5− 3 = 11
2 .

Other limits are not so easy:

lim
x→2

x2 − 4
x− 2

lim
x→0

sin x
x
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8.2. L’Hôpital’s rule

The 0
0 obtained by plugging in 2 to the expression x2−4

x−2 or by plugging in 0 to
sinx
x

is called an “indeterminate form”. Note that both examples above are of the
form 0

0 , but evaluate to different answers. More generally:

Definition 8.3 An indeterminate form is an expression which can work out to one
of many different answers, depending on the context.

Examples of indeterminate forms:

0
0

∞
∞

0 · ∞ ∞−∞ 1∞ ∞0 00

Forms which are not indeterminate:

0
nonzero constant

= 0 nonzero constant
0 = ±∞

∞
0 = ±∞ 0

∞
= 0 0 · 0 = 0 01 = 0 10 = 1

(nonzero constant)0 = 1 ∞
nonzero constant

= ±∞ nonzero constant
∞

= 0

In Chapter 3, we learned to evaluate limits that have indeterminate forms in
them by factoring and cancelling, or performing other algebraic manipulations
(like conjugating square roots and clearing fractions within fractions).

One additional, and very useful, method to evaluate indeterminate forms in
limits is called L’Hôpital’s Rule:
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8.2. L’Hôpital’s rule

Theorem 8.4 (L’Hôpital’s Rule) Suppose f and g are differentiable functions. Sup-
pose also that either

lim
x→a

f(x) = lim
x→a

g(x) = 0

or
lim
x→a

f(x) = lim
x→a

g(x) = ±∞.

Then:
lim
x→a

f(x)
g(x)

L= lim
x→a

f ′(x)
g′(x) .

Application: Expressions like 0
0 or ∞∞ can often be evaluated by taking deriva-

tives of the top and bottom independently, then plugging in a.

WARNING: We are not differentiating f
g

here. To do this, use the quotient rule
(but that has nothing to do with the evaluation of the limit).

WARNING: Be sure that the limit you are calculating is a common (i.e. easy)
indeterminate form before using L’Hôpital’s Rule.

Notation: The symbol L= is used to denote usage of L’Hôpital’s Rule. It is just
an equals sign, and the L tells the reader that you are using L’Hôpital’s Rule.

EXAMPLE 1

lim
x→2

x2 − 4
x− 2

EXAMPLE 2

lim
x→0

sin x
x
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8.2. L’Hôpital’s rule

EXAMPLE 3

lim
x→0

3
x2

EXAMPLE 4

lim
x→3

x− 3
2x+ 1

EXAMPLE 5

lim
x→∞

7 + 2x2

x2 − 3x+ 1

EXAMPLE 6

lim
x→0

cosx− 1
x2

Solution:

lim
x→0

cosx− 1
x2 =

′′0′′
0

L= lim
x→0

− sin x
2x =

′′0′′
0

L= lim
x→0

− cosx
2 = 0

2 = 0.
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8.2. L’Hôpital’s rule

EXAMPLE 7

lim
x→∞

x2

x+ 1

EXAMPLE 8
Evaluate this limit, where n is a positive integer:

lim
x→∞

xn

ex

Harder indeterminate forms

You can also evaluate other indeterminate forms (like 0 ·∞,∞−∞, 1∞,∞0, 00) by
first doing some algebra, then using L’Hôpital’s Rule:

EXAMPLE 9

lim
x→∞

x sin
(1
x

)
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8.2. L’Hôpital’s rule

EXAMPLE 10

lim
x→0+

(cscx− cotx)

Solution:
lim
x→0+

(cscx− cotx) =′′ ∞−∞′′ which is indeterminate

Rewrite as

lim
x→0+

(cscx− cotx) = lim
x→0+

( 1
sin x −

cosx
sin x

)
= lim

x→0+

1− cosx
sin x =

′′0′′
0

L= lim
x→0+

sin x
cosx = 0

1 = 0.

EXAMPLE 11

lim
x→∞

(
1 + 1

x

)x
Note: The answer to this problem should be memorized.
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8.2. L’Hôpital’s rule

WARNING: L’Hôpital’s Rule is a dangerous thing to rely on too much for two
reasons:

(1)

EXAMPLE 12

lim
x→0

cosx− 1 + 1
2x

2

ex − 1− x− 1
2x

2 − 1
6x

3

(2)

EXAMPLE 13

lim
x→∞

√
x2 + 1
x
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8.3. Newton’s method

8.3 Newton’s method
Goal: use calculus to quickly and accurately approximate solutions to equa-

tions.

First, to solve any equation in one variable, it is sufficient to solve equations
where one side is equal to zero (i.e. to find roots a.k.a. x-intercepts of functions).
This is because if you are given an equation of the form

g(x) = h(x)

you can rewrite it as

g(x)− h(x) = 0 or h(x)− g(x) = 0.

So our goal is: given function f , find (or at least approximate) r such that f(r) =
0. The procedure we will use is called Newton’s method and works as follows:

Newton’s method

1. Guess the value of r. Call your
guess x0 (x0 is called the “initial
guess” or “seed”).

2. Draw the tangent line to f at x0.

3. Find the x−intercept of the tan-
gent line from step (2). Call this
x−int x1.

(Ideally, x1 is closer to r than x0
is.)

4. Draw the tangent line to f at x1.

5. Find the x−intercept of the tan-
gent line from step (2). Call this
x−int x2.

(Ideally, x2 is closer to r than x1
is.)

6. Repeat the procedure over and
over: given xn, sketch the tan-
gent line to f at xn; call this
x−int of this tangent line xn+1.

7. You get a sequence of points
x0, x1, x2, x3, ...

The numbers xn should (hope-
fully) get closer and closer to r,
so they approximate r better and
better as n gets larger.

r x0

f(x0)
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8.3. Newton’s method

Let’s implement this procedure for an arbitrary function f and initial guess x0:

The tangent line to f at xn has equation

and xn+1, the x−intercept of this line is found as follows:

EXAMPLE 1
Approximate a solution to x3−x = 2 by using Newton’s method with initial guess
2 and two steps.
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8.3. Newton’s method

EXAMPLE 2
Approximate a solution to x3 − x = 2 by using Newton’s method and getting an
approximation correct to 4 decimal places.

Newton’s method on Mathematica

Newton’s method is easy to implement on Mathematica. You need three lines of
code, all in the same cell. For example, to implement Newton’s method for the
function f(x) = x2 − 2 where x0 = 3 and you want to perform 6 iterations (to find
x6), just type

f[x_] = x^2 - 2;
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton, 3, 6]

and execute (all three lines at once). The first line defines the function f , the second
line gives a name to the formula you iterate in Newton’s method, and the last line
iterates the formula and spits out the results.

The resulting output for the code listed above is:

{3, 1.83333, 1.46212, 1.415, 1.41421, 1.41421, 1.41421}

These numbers are x0, x1, x2, ..., x6 so for example, x2 = 1.46212 and x4 = 1.41421...
and x6 = 1.41421 (the same as x4 to 5 decimal places).

To implement Newton’s method for a different function, different initial guess
and different number of iterations, simply change the formula for f , change the 3
to the appropriate value of x0 and the 6 to the number of times you want to iterate
Newton’s method.
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8.3. Newton’s method

EXAMPLE 3
Use Newton’s method to approximate the solution to

cos 2x+ 3x = sin x.

Obtain an approximation which is accurate to four decimal places.

Mathematica code:
f[x_] = Cos[2x] + 3x - Sin[x];
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton,-1/2,10]

output:

{-1/2, -0.373791, -0.367115, -0.367093, -0.367093, -0.367093,
-0.367093, -0.367093, -0.367093, -0.367093, -0.367093 }

Potential problems with Newton’s method
EXAMPLE 4

Use Newton’s method to find a solution of

x1/3 = 0

using initial guess x = 1.

-10 -5 5 10

-4

-2

2

4
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8.3. Newton’s method

EXAMPLE 5
Use Newton’s method to find a solution of

2x− x2 = 0

using initial guess x = 1.

-2 -1 1 2 3 4

-2

-1

1

2

EXAMPLE 6
Use Newton’s method to find a solution of

x3 − 2x+ 2 = 0

using initial guess x = 0.

-2 -1 1 2

-2

-1

1

2

3

4
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8.3. Newton’s method

EXAMPLE 7
Here is a graph of f(x) = 1

2(x+ 2)(x− 3)(x− 4)(x− 5) + 4:

x1 r x0

This function has two roots, a negative one which is about −2 and a positive
one which is about 3. If you use initial guess x0 = 3.4, you get the following:

x1 = −8.9451;x2 = −6.28878;x3 = −4.38652; ... xn → −1.96114

which is the negative root. In other words, you get a root, but not the root you
wanted.

Major reasons why Newton’s method fails

1. “overshooting” (as in Example 4) - caused by vertical tangency at the root

2. f ′(xn) being equal to zero for some n (as in Example 5) - caused by hori-
zontal tangency at xn

3. periodicity in the sequence xn (as in Example 6) - caused by “poor” or
“unlucky” initial guess

4. getting an unexpected root (as in Example 7) - caused by having a point
where f ′(x) is small too close to the root you want

Reasons for the failure of Newton’s method can always be explained graphi-
cally.

230



8.4. Related rates

8.4 Related rates
EXAMPLE 1

The volume of a spherical bubble is given by V = 4
3πr

3 (where r is in mm and V is
in mm3). If the radius of the bubble is growing at a rate of 3 mm/sec, how fast is
the volume growing when the radius is 2 mm?

This is an example of a related rates problem. Related rates problems are de-
scribed as follows:

•

(In the example, the radius and the volume are changing)

•

(In the example, you are given the rate of change of the radius)

•

(In the example, you are asked to compute the rate of change of the volume)

Conceptually, the key thing about solving related rates problems is to understand
that there is a hidden variable in the problem:

Given information in the example:

To solve this problem, start with the equation relating V and r, and differentiate
it with respect to t (i.e. take d

dt
of both sides):
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8.4. Related rates

General procedure to solve related rates problems:

1. Make sure the problem is a related rates problem (there should be 2 or
more quantities changing that are related by an equation; you should
be given the rate of change of one quantity and be asked for the rate of
change of the other quantity).

2. Identify the quantities that are changing in the problem, and give them
variable names. If necessary, draw a picture to help you do this. (Don’t
give variable names to quantities which don’t change.)

3. Write the equation that relates the quantities from Step 2.

4. Take d
dt

of both sides of the equation from Step 3.

5. Plug in the values of the variables and solve for the unknown.

EXAMPLE 2
A 13-foot long ladder leans up against a wall. Someone comes along and pushes
the bottom of the ladder toward the wall at a rate of 2 feet per second. How fast
is the top of the ladder moving up the wall when the bottom of the ladder is 5 feet
away from the wall?
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8.4. Related rates

EXAMPLE 3
A conical cup with height 12 in and radius 4 in is being filled with water at the rate
of 6π in3/sec. How fast is the water depth in the cone changing when the water is
6 in deep?
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8.4. Related rates

EXAMPLE 4
A wide receiver lines up 20 yards to the left of the center. He runs at a constant
speed of 8 yards per second. The quarterback takes the snap, drops back 4 yards,
and stops. The receiver runs downfield for 1 sec, then turns 90◦ left and runs
toward the sideline. Let θ be the angle between the line from the center to the
quarterback and the line from the quarterback to the receiver; find how fast θ is
changing 1.5 seconds after the snap.
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8.5 Homework exercises
In Problems 1-4 below, compute the linear approximation L(x) to f at the given
value of a:

1. f(x) = 5
√
x, a = 1

2. f(x) = cot x, a = π/4

3. f(x) = sin 3x, a = π

4. f(x) = xex, a = 0

In Problems 5-8 below, compute the quadratic approximationQ(x) to f at the given
value of a:

5. f(x) = x2/3, a = 27

6. f(x) = 4 cosx, a = π

7. f(x) = ln(x+ 1), a = 0

8. f(x) = 3 secx, a = 0

In Problems 9-16 below, estimate the following quantities using tangent line ap-
proximation:

9.
√

50

10. (8.1)3

11. ln(1.3)

12. e.2

13. 3
√

66

14. sin(.2)

15. arctan(1/3)

16. cos(π2 + 1/8)

17. Is the estimate you made in problem 9 an overestimate or an underestimate?
Explain (without obtaining a decimal approximation to

√
50 using a com-

puter or calculator).

18. Is the estimate you made in problem 10 an overestimate or an underestimate?
Explain (without obtaining a decimal approximation to (8.1)3 using a com-
puter or calculator).

In Problems 19-22 below, estimate the following quantities using quadratic approx-
imation:

19. 173/2

20. cos 1
2

21. e1/3

22.
√

150
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23. After turning his gas grill on, a cook looks at the grill’s internal temperature
regularly, writing what he sees in the following table:

t
(minutes after grill is lit) 0 1 2 4 5

T (t)
(temperature in ◦F) 70 240 320 440 475

a) Use linear approximation to estimate what the temperature of the grill
will be 7 minutes after it is turned on.

b) Use quadratic approximation to estimate what the temperature of the
grill will be 7 minutes after it is turned on.

c) Use the same quadratic approximation you computed in part (b) to es-
timate what the temperature of the grill will be 13 minutes after it is
turned on.

d) Does your answer to part (c) make sense? Explain.

e) What about the procedure of quadratic approximation made our answer
to part (c) so far off?

In Problems 24-27, compute the differential dy.

24. y = 3x2 − 4

25. y = x
√

1− x2

26. y = arcsin x

27. y = e3x

28. a) Compute dy if y = 1
2x

3, when x = 2 and dx = .1.

b) Sketch a picture representing the computation done in part (a) of this
problem, labelling x, dx and dy appropriately.

29. a) Compute dy if y = 1− x4, when x = 1 and dx = .1.

b) Sketch a picture representing the computation done in part (a) of this
problem, labelling x, dx and dy appropriately.

In problems 30-43, compute the indicated limit (indicating if the limit is ±∞ or
does not exist):

30. lim
x→3

2x−6
x2−9

31. lim
x→0

√
4−x2−2
x

32. lim
x→0

2ex−2x−2
x2

33. lim
x→3

x2−2x−3
x−3

34. lim
x→2

x2+10
x+2

35. lim
x→0

sin 4x
sin 9x
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36. lim
x→∞

3x2−2x+1
2x2+3

37. lim
x→∞

x4

ex/3

38. lim
x→∞

lnx
x2

39. lim
x→∞

ex

x9

40. lim
x→∞

2000x2014

ex

41. lim
x→2+

(
8

x2−4 −
x
x−2

)
Hint: Add the fractions by finding a
common denominator.

42. lim
x→∞

x1/x

Hint: Follow the procedure of Exam-
ple 11 on page 224.

43. lim
x→0

xx

44. Approximate (by hand) a solution to 2x3 + x2 − x = −1 by using Newton’s
method with initial guess x = −1 and two steps.

45. Approximate (by hand) a solution to x5 = 4 by using Newton’s method with
initial guess x = 1 and two steps.

In Problems 46-49, use Mathematica to estimate a solution to the following equa-
tions using Newton’s method; solutions should be correct to 4 decimal places:

46. x3 = 3

47. x5 + x = 1

48. 3
√
x− 1 = x

49. 2x3 = cosx

In Problems 50-52, use Mathematica to estimate all solutions to the following equa-
tions using Newton’s method; solutions should be correct to 4 decimal places.

Hint: First, have Mathematica plot both functions on the same xy−plane; use
the plot to determine the number of solutions to the equation. For each solution,
run Newton’s method with an initial guess close to the x−value of the appropriate
solution.

50. ex−5 = ln x 51. arctan 2x = x2 − 1 52. 6 sin x
6 = 8x− x3
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In Problems 53-60, use the graph of some unknown function f shown here. As you
can see, the equation f(x) = 0 has two solutions, r1 (the negative one, near−5) and
r2 (the positive one, near 8).

r1 r2-12 -10 -8 -6 -4 -2 2 4 6 8 10 12

53. Suppose you were to execute Newton’s method for this function with initial
guess x = 4. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

54. Suppose you were to execute Newton’s method for this function with initial
guess x = −6. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

55. Suppose you were to execute Newton’s method for this function with initial
guess x = −10 (assume that −10 is the x−coordinate of the “peak” of the
function). Will this produce an approximation to r1 or r2 (or will it not work
at all)? Explain.

56. Suppose you were to execute Newton’s method for this function with initial
guess x = 3. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

57. Suppose you were to execute Newton’s method for this function with initial
guess x = −1. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

58. Suppose you were to execute Newton’s method for this function with initial
guess x = 2. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.
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59. Suppose you were to execute Newton’s method for this function with initial
guess x = −7.5. Will this produce an approximation to r1 or r2 (assume that
the slope at −7.5 is a very small positive number)? Explain.

60. Suppose you were to execute Newton’s method for this function with initial
guess x = 10. Will this produce an approximation to r1 or r2 (or will it not
work at all)? Explain.

61. Attempt Newton’s method on the function f(x) = 4x3 − 12x2 + 12x− 3 with
initial guess x = 3

2 . Try lots of iterations.

a) What happens?

b) Sketch the graph of the function f using Mathematica and explain, via
the graph, the phenomenon you observe in part (a).

62. If every edge of a cube is expanding at a rate of 2 cm/sec, how fast is the
volume of the cube changing when each side is 12 cm long?

63. At a sand gravel plant, sand is falling off a conveyor onto a conical pile at
a rate of 10 cubic feet per minute. The diameter of the base of the pile is
roughly three times the altitude of the pile. At what rate is the height of the
pile changing when the pile is 15 feet high?

64. The combined electrical resistance R of R1 and R2 connected in parallel is
given by

1
R

= 1
R1

+ 1
R2

where R,R1 and R2 are measured in ohms. If R1 is increasing at the rate of 1
ohm per minute and R2 is increasing at the rate of 1.5 ohms per minute, how
fast is R changing when R1 is 50 ohms and R2 is 75 ohms?

65. An oil tanker has an accident and oil pours out of the tanker at a rate of 20 ft3

per minute. If the oil spill is in the shape of a cylinder with thickness 1
120 feet,

determine the rate at which the radius of the oil spill is increasing when the
radius is 500 feet.

66. A Ferris wheel is 50 ft in diameter and its center is located 30 feet above the
ground. If the wheel rotates once every 2 minutes, how fast is a passenger
rising when she is 42.5 feet above the ground?

Hint: convert the rotational speed to radians per minute.

67. A rocket blasts off directly upward from the ground. If the height of the
rocket at time t (measured in the number of seconds after lift-off) is 50t2 feet,
find the rate of change of the angle of elevation to an observer who is 2000 feet
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away from the launch pad, 10 seconds after lift-off. (The angle of elevation is
measured between the ground and a line from the observer to the rocket.)

68. In the same situation as Problem 67, find the rate of change of the distance
from the rocket to the observer (at the same instant as in Problem 67).

69. As a space shuttle moves into space, an astronaut’s weight decreases. An
astronaut weighing 650 N at sea level has a weight of w = 650

(
6400

6400+h

)
at

h kilometers above sea level. If the shuttle is moving away from Earth at 6
km/sec, at what weight is the astronaut’s weight changing when h = 1.2 km?

70. Two cars approach an intersection, one heading east toward the intersection
at 30 km per hour and one heading south toward the intersection at 40 km per
hour. At what rate are the cars approaching one another when the first car is
.1 km from the intersection and the other is .075 m from the intersection?
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Answers

1. L(x) = 1 + 1
5(x− 1)

2. L(x) = 1− 2(x− π
4 )

3. L(x) = −3(x− π)

4. L(x) = x

5. Q(x) = 9 + 2
9(x− 27)− 1

729(x− 27)2

6. Q(x) = −4 + 2(x− π)2

7. Q(x) = x− x2

2

8. Q(x) = 3 + 3
2x

2

9. 99
14

10. 531.2

11. .3

12. 1.2

13. 97
24

14. .2

15. 1
3

16. −1/8

17. Overestimate, because f ′′(49) < 0.

18. Underestimate, because f ′′(8) > 0.

19. 2243
32

20. 7
8

21. 25
18

22. 4703
384

23. a) 545◦ F (answers may vary)

b) 520◦ F (answers may vary)

c) 355◦ F (answers may vary)

d) No, because the grill should be hotter at time 13 than it was at time 5.

e) Since we approximated using a parabolaQ that opens downward, even-
tually Q starts to decrease. But the temperature T probably continues to
increase; it is just that it increases at a slower rate.

24. 6x dx

25.
√

1−x2− −2x2

2
√

1−x2

1−x2 dx = 1
(1−x2)3/2 dx

26. 1√
1−x2 dx

27. 3e3x dx

28. a) .6
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b)

f
L

dy Δy

dxx

2.00 2.05 2.10 2.15

3.8

4.0

4.2

4.4

4.6

4.8

5.0

29. a) −.4

b)

f

L

dy

dx
x

1.00 1.05 1.10 1.15

-0.8

-0.6

-0.4

-0.2

0.2

30. 1
3

31. 0

32. 1

33. 4

34. 7
2 (this is not indeterminate)

35. 4
9

36. 3
2

37. 0

38. 0

39. ∞

40. 0

41. −3
2

42. 1

43. 1

44. −235
189

45. 35893
25600

46. 1.44225

47. .754878

48. 7.8541

49. .721406

50. 1.01884 and 5.53738

51. −.482303 and 1.49966

52. −2.65184, 0 and 2.65184

53. r2

54. r1

55. won’t work (since tangent line at x = −10 never hits x−axis)

56. r2

57. won’t work (tangent line at x = −1 is vertical)
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58. won’t work (function not differentiable at x = 2

59. r2 (tangent line at −7.5 hits x−axis close to r2)

60. r2

61. a) Starting with the second iteration, you get infinity.

b) If you sketch the picture associated to Newton’s method, after the first
iteration the tangent line is horizontal.

62. 864 cm3/sec

63. 8
405π feet per minute

64. 3
5 ohm per minute

65. 12
5π feet per minute

66. 25
√

3π
2 ≈ 68.018 ft / min.

67. 2
29 radians per sec

68. 5000√
29 feet per sec

69. −.432 N/sec

70. 48 km/hour
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8.6 Review problems for Exam 3
Note: There are no questions on this exam involving Mathematica syntax.

Questions from Chapter 6

1. Find all the critical points of the following functions:

f(x) = 2
3x

3 + 4x2 − 24x+ 2 f(x) = x8/3 − x2/3

2. Suppose f(x) = x+ 1
x2 .

a) Determine, with justification, whether f is increasing or decreasing on
the interval (0, 1).

b) Determine, with justification, whether f is concave up or concave down
on the interval (0, 1).

c) Based on your answers to (a) and (b), select the shape below which best
represents the graph of f on the interval (0, 1).

3. Find the absolute maximum value and absolute minimum value of the func-
tion f(x) = x−1

x2+8 on the interval [−5, 5].

4. Find the absolute maximum value and absolute minimum value of the func-
tion f(x) = 8− 12x− 3x2 on the interval [0, 2].

5. Suppose that a company’s profit if they make x units of their product is
P (x) = 20000 + 4000x− x2 dollars.

a) Assuming they have the capability to make up to 1000 units, what is the
maximum profit they can make? How many units should they make to
ensure this profit?

b) Assuming they have the capability to make 3000 units, what is the max-
imum profit they can make? How many units should they make to en-
sure this profit?

6. A box with a square base must have a surface area of 150 square units. Find
the dimensions of the box, if the box is to be as large as possible.

7. Find the point on the curve y = x2 which is closest to (0, 3).
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8. A sheet of paper of size 10 inches by 10 inches is made into a box by cutting
squares out from each of the four corners of the paper and folding the tabs
up to make a box. If the volume of the box is to be as big as possible, what
size squares should be cut out from the box?

Questions from Chapter 8

9. Compute the linear approximation L(x), and the quadratic approximation
Q(x), to f(x) = e2x when a = 0.

10. Approximate the following quantities using tangent line approximation:

(1.25)10 √
124

Determine, with justification, whether each of these approximations are over-
estimates or underestimates.

11. Approximate cos(1/5) using quadratic approximation.

12. Evaluate each of the following limits:

lim
x→3

x3 − 27
x2 − 9 lim

x→0

ln(x+ 1)
x

lim
x→∞

√
9x4 − 1
x2 + 3

13. Evaluate each of the following limits:

lim
x→∞

xe−x lim
x→0+

(x2 + 1)lnx

14. Use Newton’s method, with 2 steps and initial guess 1, to approximate a
solution of the equation x4 = 2x+ 1.

15. Suppose you are trying to find a solution of the equation ln x+x = 0 and that
after three steps of Newton’s method, you have obtained x3 = 1. Compute
x4.

16. Suppose the roots of the following function are labelled, from left to right, as
r1, r2 and r3.

-10 -5 5 10

-5

5
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a) If you implement Newton’s method with initial guess 5, which of the
three roots will you get? Explain.

b) Suppose you implement Newton’s method with initial guess 0. Estimate
the value of x1 from looking at the graph.

Answers (with some comments)

1. For the first function, x = −6 and x = 2.

For the second function, x = 1
2 , x = −1

2 , x = 0 (0 comes from setting the
denominator of the derivative equal to zero).

2. a) f ′(x) = 1− 2
x3 < 0 on (0, 1), so f is decreasing on (0, 1).

b) f ′′(x) = 6
x4 > 0, so f is concave up on (0, 1).

c) The graph which is decreasing and concave up is the second one from
the left.

3. The derivative is f ′(x) = 1(x2+8)−2x(x−1)
(x2+8)2 = −x2+2x+8

(x2+8)2 ; the denominator of this
derivative is never zero but the derivative is zero when x = −2, x = 4. Testing
these critical points and the endpoints, we see the absolute maximum is 1/8
at x = 4 and the absolute minimum is −1/4 at x = −2.

4. The only critical point is where f ′(x) = 0 which is at x = −2, which you
discard since it isn’t in [0, 2]. The absolute maximum is 8 at x = 0 and the
absolute minimum is −28 at x = 2.

5. a) Their largest profit is 3020000, if they make 1000 units. (Throw out the
critical point 2000 since it is not in [0, 1000].)

b) Their largest profit is 4020000, if they make 2000 units.

6. The surface area is 2x2 + 4xh = 150; solve this constraint for h to get h =
150−2x2

4x . We want to maximize V = x2h = x2 150−2x2

4x = 1
4(150x − 2x3). Set

V ′(x) = 0 to obtain x = 5. Solve for h to get h = 5 as well; the dimensions are
therefore 5× 5× 5.

7. Minimize the square of the distance from the point (x, x2) to (0, 3); the square
of this distance is f(x) = (x−0)2 +(x2−3)2 = x4−5x2 +9. Take the derivative
to get f ′(x) = 4x3 − 10x; set this equal to zero and solve for x to get x =

√
5
2 .

The corresponding y−value is 5
2 , so the point is

(√
5
2 ,

5
2

)
.

8. Once you fold the box, the dimensions of the box are length 10 − 2x, width
10−2x and height x so the volume is V (x) = x(10−2x)2 = 4x3−40x2 + 100x.
We need to maximize this on [0, 5]. Now V ′(x) = 12x2 − 80x + 100 = (12x −
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20)(x−5). So the critical points are x = 5 and x = 5
3 ; the maximum is at x = 5

3 ,
so the squares you need to cut out are 5

3 ×
5
3 .

9. L(x) = 1 + 2x; Q(x) = 1 + 2x+ 2x2

10. (1.25)10 ≈ 3.5 (use f(x) = x10 and a = 1);
√

124 ≈ 11 + 3
22 (use f(x) =

√
x and

a = 121). The first answer is an underestimate since f ′′(1) = 90 > 0 and the
second answer is an overestimate since f ′′(121) < 0.

11. cos(1/5) ≈ 1− 1
2

(
1
5

)2
= 49

50 .

12.

lim
x→3

x3 − 27
x2 − 9 = 9

2; lim
x→0

ln(x+ 1)
x

= 1; lim
x→∞

√
9x4 − 1
x2 + 3 = 3

13. For the first limit, rewrite it as lim
x→∞

x
ex

then use L’Hôpital’s Rule. The answer
works out to be 0.

For the second limit, rewrite it as lim
x→0+

elnx ln(x2+1) and compute the limit of

the term inside the exponent by rewriting it as ln(x2+1)
1

ln x
and using L’Hôpital’s

Rule. Eventually, the limit of the term inside the exponent is 0 so the original
limit works out to e0 = 1.

14. 49
30 (I get x1 = 2 along the way.)

15. Apply Newton’s method once to get x4 = 1
2 .

16. a) r2, since the tangent line at x = 5 intercepts the x−axis near r2.

b) It looks like the tangent line at x = 0 intercepts the x−axis near 7, so
x1 ≈ 7.
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Chapter 9

Theory of the Definite Integral

9.1 Motivating problems: area and displacement
Recall that to define the derivative of a function, we started with a real-world

problem we wanted to solve:

Then, we approximated the solution to that problem (by finding the slope of
some secant line):

Next, we observed how the approximation got better:

This told us how to define the answer to the problem (using a limit):

(In principle, we don’t use this definition to compute derivatives; we use rules
like the Power Rule, Product Rule, Chain Rule, etc.)

248



9.1. Motivating problems: area and displacement

For the rest of the semester, we will consider two new classes (actually only one
class) of real-world problems.

We need to define a new mathematical object which will solve these problems.

To create this new object, we will:
1. Approximate the answer to the problem.
2. Observe how the approximation gets better.
3. Define the answer to the problem using a limit.

What are the two new classes of real-world problems?

1.

2.

First remark: Problems (1) and (2) above are really the same problem in dis-
guise. Why?

Suppose you are in a car and you look at the speedometer once an hour:

(hr) t 0 1 2 3
(mph) v(t) 40 43 38 34

How far do you travel from t = 0 to t = 4 (i.e. what is your displacement from
time 0 to time 4)?

0 1

2
1 3

2
2 5

2
3 7

2
4
time

32

33

34

35

36

37

38

39

40

41

42

43

44

45
velocity

This is just an approximation. How might the approximation improve?
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Suppose you look at the speedometer every 30 minutes:

(hr) t 0 1/2 1 · · ·
(mph) v(t) 40 41 43 · · ·

0 1

2
1 3

2
2 5

2
3 7

2
4
time

32

33

34

35

36

37

38

39

40

41

42

43

44

45
velocity

Take more and more measurements:

0 1

2
1 3

2
2 5

2
3 7

2
4
time

32

33

34

35

36

37

38

39

40

41

42

43

44

45
velocity

This suggests:

displacement of an object
from t = 0 to t = 4,

given velocity function v(t)
= area under the graph of v

from t = 0 to t = 4

250



9.1. Motivating problems: area and displacement

More generally: Suppose an object’s position at time t is given by function f(t).
Then its displacement from time t = a to time t = b is f(b)− f(a).

At the same time, its velocity at time t is given by f ′(t), and the displacement
from time a to time b is equal to the area under the graph of f ′ from t = a to t = b.
Putting this together, we have the following important idea:

area under the graph of f ′

from t = a to t = b
= f(b)− f(a)

This means: the problems of finding the area between the graph of a function
and the x−axis, and the problem of finding displacement given velocity, are really
the same problem. The process that solves these problems is probably something
like “differentiation in reverse”.

EXAMPLE 1
Suppose that the velocity (in m/sec) of a bird at time t (in seconds) is given by
v(t) = 2

3t+ 4
3 . Find the distance travelled by the bird between time 0 and time 6.
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EXAMPLE 2
In each situation A through D described below:

1. Based on the description given, sketch a graph of the velocity, plotted against
time.

2. Determine how far you travel between time t = 0 and t = 3 (throughout this
assignment, t is in hours).

3. Determine how far you travel between times t = 5 and t = 9.

4. Without being given any other information, do you know what your odome-
ter reading is at time t = 4? If so, what is it?

5. Without being given any other information, do you know what your odome-
ter reading is at time t = 8? If so, what is it?

6. Suppose your odometer reading at time t = 0 is 0. Now, do you know the
odometer readings at time 8? If so, what is it?

7. Suppose your odometer reading at time t = 0 is 10000. Now, do you know
the odometer readings at time 8? If so, what is it?

8. Suppose your odometer reading at time t = 0 is C, where C is an arbitrary
constant. What is the odometer reading at time 4? What is the odometer
reading at time 8?

Situation A: Assume that the velocity at all times is 60 miles per hour.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10

20

30

40

50

60

70

80

90

100
velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:
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Situation B: Assume that the velocity is 50 miles per hour for the first six hours,
then 80 miles per hour at all times after the first six hours.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10

20

30

40

50

60

70

80

90

100
velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:

Situation C: Assume that the velocity at time x is equal to x.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

1

2

3

4

5

6

7

8

9

10

11

12
velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:

Situation D: Assume that the velocity at time x is equal to x2.

0 1 2 3 4 5 6 7 8 9 10 11 12
time t

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
velocity v(t) Displacement from t = 0 to t = 3:

Displacement from t = 5 to t = 9:

Odometer reading at t = 4:

Odometer reading at t = 8:

If initially 0, odometer reading at t = 8:

If initially 10000, odometer reading at t = 8:

If initially C, odometer reading at t = 8:
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9.1. Motivating problems: area and displacement

Concepts illustrated in the preceding example

• At the beginning of the semester, we discussed the “big picture” problem
of converting from a function which represents an odometer to a function
which represents a speedometer. The operation we eventually cooked up to
do this is differentiation. In other words:

ODOMETER DERIVATIVE−→ SPEEDOMETER

POSITION DERIVATIVE−→ VELOCITY

f(x) DERIVATIVE−→ f ′(x)

• Now, we are looking at the same problem in the other direction. That is, we
want to assume we are given a speedometer (i.e. a function that represents
velocity), and we want to determine the function that was the odometer:

ODOMETER ←− SPEEDOMETER

POSITION ←− VELOCITY

? ?←− f(x)

• If you are given a function f which represents your velocity, then you cannot
use f by itself to determine your odometer reading at a certain time (because
you didn’t know what the original odometer reading was).

• But, if you are given a function f which represents your velocity and you are
given an initial odometer reading (a.k.a. the odometer reading at time a),
then you can determine your odometer reading at any time t by the formula

odometer reading
at time t =

original odometer reading
+

area under velocity function
from time a to time t

EXAMPLE 3
The graph of some function f ′ is given below at left. If f(0) = 2, sketch the graph
of f on the middle axes. On the right-hand axes, sketch all possible graphs of f (if
you don’t know f(0)).

1 2 3 4 5 6

-3

-2

-1

1

2

3

1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4

1 2 3 4 5 6

-4

-3

-2

-1

1

2

3

4
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9.2. Riemann sums

9.2 Riemann sums
Summation notation

Suppose ak is some expression which can be computed in terms of k. (ak is like
a(k).) For example, if ak = k2 + k, then

a1 = 12 + 1 = 2 a2 = 22 + 2 = 6 a3 = 32 + 3 = 12 etc.

Frequently in mathematics we want to add together values of ak where k ranges
over some set. For example, we might want to add up

a2 + a3 + a4 + a5 + ...+ a20.

We use the following notation to represent this kind of addition:

Definition 9.1 Given numbers a1, a2, ... the sum from k = 1 to n of ak is

n∑
k=1

ak = a1 + a2 + a3...+ an.

(More generally,
n∑

k=m
ak = am + am+1 + am+2 + ...+ an.)

EXAMPLE 1
Write the expression 32

2 + 42

2 + 52

2 + ...+ 172

2 in Σ-notation.

EXAMPLE 2

Compute
3∑

k=0

2
k+1 .
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9.2. Riemann sums

Approximating the area under a function

Idea: Approximate the area under a function by finding the total area of some rect-
angles.

Definition 9.2 Given an interval [a, b], a partition P is a (finite) list of numbers
{x0, x1, x2, ..., xn} such that a = x0 < x1 < ... < xn−1 < xn = b. Such a partition
divides [a, b] into n subintervals; the kth subinterval is [xk−1, xk]. For each k, set
∆xk = xk−xk−1; ∆xk is called the width of the kth subinterval. Call the largest ∆xk
the norm of the partition; denote the norm by ||P||.

EXAMPLE 3
a = 0; b = 1; P = {0, 1

4 ,
3
4 ,

7
8 , 1}.

EXAMPLE 4
P = partition of [a, b] into n equal-length subintervals.
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9.2. Riemann sums

Definition 9.3 Given function f : [a, b] → R and given partition P = {x0, ..., xn}
of [a, b], a Riemann sum associated to P for f is any expression of the form

n∑
k=1

f(ck)∆xk

where for all k, ck belongs to the kth subinterval of P . The points c1, c2, ..., cn are called
test points for the Riemann sum.

a = x0 x1 x2 x3 x4 b=x5

A Riemann sum approximates the area under f(x) from x = a to x = b by
adding up areas of rectangles as above. Different choices of P and different choices
of ck (even for the same P) give different Riemann sums.

In the following examples, f(x) = 2x − x2, [a, b] = [0, 2], and P = {0, 1
2 , 1,

7
4 , 2}.

Therefore: 
∆x1 = x1 − x0 = 1

2 − 0 = 1
2

∆x2 = x2 − x1 = 1− 1
2 = 1

2
∆x3 = x3 − x2 = 3

4
∆x4 = 1

4 .

By choosing different test points, we get different Riemann sums for this partition.
On the next page, we describe some specific kinds of Riemann sums one should
know how to compute:
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9.2. Riemann sums

1. Left sum: choose ck = xk−1 = left endpoint of kth subinterval.

x0=0 x1=
1

2
x2=1 x3=

7

4
x4=2

1

2

3

4

1

4∑
k=1

f(ck)∆xk =

2. Right sum: choose ck = xk = right endpoint of kth subinterval.

x0=0 x1=
1

2
x2=1 x3=

7

4
x4=2

1

2

3

4

1

4∑
k=1

f(ck)∆xk =

3. Upper sum: choose ck to be the x−value corresponding to abs max of f on
kth subinterval.

x0=0 x1=
1

2
x2=1 x3=

7

4
x4=2

1

2

3

4

1

4∑
k=1

f(ck)∆xk =

4. Lower sum: choose ck to be the x−value corresponding to abs min of f on
kth subinterval.

x0=0 x1=
1

2
x2=1 x3=

7

4
x4=2

1

2

3

4

1

4∑
k=1

f(ck)∆xk =
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9.2. Riemann sums

Note: The actual area under a function f is always greater than any lower sum,
and less than any upper sum (no matter the choice of P).

Note: If f is increasing, then

Note: If f is decreasing, then

EXAMPLE

Estimate the area under f(x) = x3 from x = 0 to x = 1 by using a lower sum for a
partition into 6 subintervals of equal length.

This sum works out to be

0
(1

6

)
+ 1

216

(1
6

)
+ 1

27

(1
6

)
+ 1

8

(1
6

)
+ 8

27

(1
6

)
+ 125

216

(1
6

)
= 25

144 .
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9.3. Definition of the definite integral

9.3 Definition of the definite integral
In the last section: we approximated the area under f from a to b by the Rie-

mann sum
n∑
k=1

f(ck)∆xk

Next task:

Key observation: As ||P|| → 0, the rectangles under the graph of f get skinnier
and skinnier, so the corresponding Riemann sum estimates become more and more
exact. So

lim
||P||→0

n∑
k=1

f(ck)∆xk

should give the exact area under the graph. This motivates the following defini-
tion:

Definition 9.4 (Limit definition of the integral) Given function f : [a, b] → R,
the definite integral of f from a to b is

∫ b

a
f(x) dx = lim

||P||→0

n∑
k=1

f(ck)∆xk

if this limit exists (in Math 220 and Math 230, it always will). If the limit exists, we
say f is integrable on [a, b].)

Notation:

Two ways to think about the integral:

1. The definite integral is “continuous addition of areas of rectangles of in-
finitely small width”.

2. The definite integral is “accumulation” of values of f from x = a to x = b.
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9.3. Definition of the definite integral

Some integrals can be computed without doing any sophisticated calculus:

EXAMPLE 1
Evaluate the following definite integrals:

1.
∫ 7

4
5 dx

2.
∫ 8

4

1
4x dx

3.
∫ 3

−3

√
9− x2 dx

4.
∫ 1

−2
(3− |x|) dx
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9.3. Definition of the definite integral

Evaluating an integral using the definition of integral is much harder:

EXAMPLE 2
Compute ∫ 1

0
x dx

using the limit definition of the definite integral.

Aside: The answer is

Computation using the limit definition:

∫ 1

0
x dx = lim

||P||→0

n∑
k=1

f(ck)∆xk

We need to choose partitions whose norm→ 0,
and we need to choose a type of Riemann sum.
I will choose a partition into n equal-length subintervals,
and compute a left-hand Riemann sum, for simplicity.

= lim
n→∞

n∑
k=1

f
(

0 + k
[1− 0

n

])
·
(1− 0

n

)

= lim
n→∞

n∑
k=1

f

(
k

n

)
· 1
n

= lim
n→∞

n∑
k=1

k

n
· 1
n

= lim
n→∞

1
n2

n∑
k=1

k

= lim
n→∞

1
n2 (1 + 2 + 3 + ...+ n).

Now the question is, what is 1 + 2 + 3 + ...+ n?
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9.4. Elementary properties of Riemann integrals

From the previous page,∫ 1

0
x dx = lim

n→∞

1
n2 (1 + 2 + 3 + ...+ n)

= lim
n→∞

1
n2 ·

n(n+ 1)
2

= lim
n→∞

n2 + n

2n2

= lim
n→∞

n+ 1
2n

L= lim
n→∞

1
2 = 1

2 .

This example was very hard (even though the integrand was very simple). This
suggests that computing integrals like∫ π

0
sin x dx or

∫ 4

1
x5 dx

using the definition of definite integral is impossible. We need another method,
which we will discuss in Section 9.5.

9.4 Elementary properties of Riemann integrals
Theorem 9.5 All continuous functions are integrable.

Definition 9.6 Let a < b and let f : [a, b]→ R be integrable. Then

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.
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9.4. Elementary properties of Riemann integrals

Definition 9.7 Let f : [a, b]→ R. Then
∫ a
a f(x) dx = 0.

Theorem 9.8 (Linearity properties of integrals) Let f and g be integrable; let k
be any constant. Then:

1.
∫ b
a [f(x) + g(x)] dx =

∫ b
a f(x) dx+

∫ b
a g(x) dx;

2.
∫ b
a [f(x)− g(x)] dx =

∫ b
a f(x) dx−

∫ b
a g(x) dx;

3.
∫ b
a k f(x) dx = k

∫ b
a f(x) dx.

WARNING: integrals are not multiplicative nor divisive:

∫ b

a
[f(x)g(x)] dx 6=

[∫ b

a
f(x) dx

] [∫ b

a
g(x) dx

]

∫ b

a

f(x)
g(x) dx 6=

∫ b
a f(x) dx∫ b
a g(x) dx

Theorem 9.9 (Inequality properties of integrals) Let f and g be integrable. Then:

1. (Positivity Law) If f(x) ≥ 0 on [a, b], then
∫ b
a f(x) dx ≥ 0.

2. (Monotonicity Law) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x) dx ≤∫ b

a g(x) dx.

3. (Max-Min Inequality) Let m and M be the absolute min value and absolute
max value of f on [a, b], respectively. Then

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a).

f

g

a b

f

a b

m

M
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9.4. Elementary properties of Riemann integrals

Theorem 9.10 (Additivity property of integrals) Suppose f is integrable. Then
for any numbers a, b and c,

∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

f

a b c

f

a c

Note: It is possible for integrals to be negative (so integrals actually compute
something called “signed area”):

a b
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9.4. Elementary properties of Riemann integrals

EXAMPLE 1
Suppose f and g are functions such that∫ 7

3
f(x) dx = 6

∫ 8

7
f(x) dx = 4 and

∫ 7

3
g(x) dx = 2.

1. Find
∫ 8

3 f(x) dx.

2. Find
∫ 3

7 f(x) dx.

3. Find
∫ 4

4 f(x) dx.

4. Find
∫ 7

3 [4f(x) + 5g(x)] dx.

5. Find
∫ 7

3 [f(x) + 2x] dx.
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9.4. Elementary properties of Riemann integrals

EXAMPLE 2
Here is the graph of some unknown function f :

-10 -8 -6 -4 -2 2 4 6 8 10

-5

-3

-1

1

3

5

Use the graph to estimate the answers to the following integrals:

1.
∫ 2
−1 f(x) dx

2.
∫−4
−6 10f(x) dx

3.
∫ 3

5 f(x) dx

4.
∫ 7

5 f(x) dx

5.
∫−2
−2 f(x) dx
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9.5. Fundamental Theorem of Calculus

9.5 Fundamental Theorem of Calculus
Recall from Section 9.3 that it is virtually impossible to compute integrals using

the limit definition. So, in order to compute integrals, we need some new ideas.
The theory that follows is motivated by the idea from page 252, which suggests
that ∫ b

a
f ′(x) dx = f(b)− f(a).

Based on this idea, to evaluate an integral like∫ 4

1
x5 dx,

we should think of x5 as f ′(x) and try to find f(x). Just by “guessing” (for now),
we see that f(x) = 1

6x
6 works. So if we let f(x) = 1

6x
6, we have

∫ 4

1
x5 dx =

∫ 4

1
f ′(x) dx = f(4)− f(1) = 1

646 − 1
616 = 1365

2 .

In this section we justify that this idea works in general. To do this, we need some
new terminology:

Definition 9.11 Given function f , an antiderivative of f is a function F such that
F ′ = f .

EXAMPLES

F (x) = x2 − 3 is an antiderivative of f(x) = 2x.

F (x) = x2 is an antiderivative of f(x) = 2x.

F (x) = x2 + C is an antiderivative of f(x) = 2x for any constant C.

Question: Are there any other antiderivatives of f(x) = 2x?
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9.5. Fundamental Theorem of Calculus

Theorem 9.12 (Antiderivative Theorem) Suppose F and G are both antideriva-
tives of the same function f . Then, for all x, F (x) = G(x) + C.

Proof: Let H(x) = F (x)−G(x). Then

H ′(x) = F ′(x)−G′(x) = f(x)− f(x) = 0.

so H is a function whose derivative is everywhere zero. That means H have slope
zero, so it be a horizontal line, i.e. must be a constant function (this seems obvious,
but is actually very deep - take Math 430 (Advanced Calculus) to see how to prove
this).

Thus H(x) = F (x)−G(x) = C so F (x) = G(x) + C where C is constant. �

Remark: The point of the Antiderivative Theorem is that any two antideriva-
tives of the same function must differ by at most a constant.

(So there are no other antiderivatives of f(x) = 2x other than F (x) = x2 + C.)

Essentially this means that if you have found one antiderivative of a function,
you have found them all (by adding an arbitrary constant).

Theorem 9.13 (Fundamental Theorem of Calculus I) (Differentiation of Inte-
grals) Let f be continuous on [a, b]. Consider a new function

F (x) =
∫ x

a
f(t) dt.

Then:

1. F is cts and diffble on [a, b]; and

2. F ′(x) = f(x).

Picture:
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9.5. Fundamental Theorem of Calculus

Physical interpretation:

Mathematical significance of this part of the FTC:

1. The FTC reveals that differentiation and integration are inverse operations
(because it says that if you start with a function f , take its integral (to get F )
and then take the derivative of that, you get back to the function f that you
started with).

2. The FTC guarantees that every continuous function has an antiderivative:
given function f(x), the function F (x) =

∫ x
a f(t) dt is an antiderivative of f

for any choice of a.

Proof of FTC Part I: By the definition of derivative,

F ′(x) = lim
h→0

F (x+ h)− F (x)
h

= lim
h→0

1
h

(∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

)

. = lim
h→0

1
h

∫ x+h

x
f(t) dt.

Now by the Max-Min Inequality, by letting m and M be the minimum and maxi-
mum values of f on [x, x+ h], we have

m(x+ h− x) ≤
∫ x+h

x
f(t) dt ≤M(x+ h− x)

⇒ mh ≤
∫ x+h

x
f(t) dt ≤Mh

⇒ m ≤ 1
h

∫ x+h

x
f(t) dt ≤M

As h→ 0, m and M both go to f(x), so the inside quantity must go to f(x) as well,
i.e.

F ′(x) = lim
h→0

1
h

∫ x+h

x
f(t) dt = f(x). �
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9.5. Fundamental Theorem of Calculus

Now for our last big theorem. Remember that the goal is to develop a method to
evaluate integrals that doesn’t use the limit definition. We are now able to achieve
this goal:

Theorem 9.14 (Fundamental Theorem of Calculus Part II) (Evaluation of In-
tegrals) Let f be continuous on [a, b]. Suppose F is any antiderivative of f . Then

∫ b

a
f(x) dx = F (b)− F (a).

Notation: The expression F (b)− F (a) is written [F (x)]ba or F (x)|ba.

Proof: Let G(x) =
∫ x
a f(t) dt. G′(x) = f(x) by the first part of the Fundamental

Theorem of Calculus. By the Antiderivative Theorem, if F is any antiderivative of
f , F (x) = G(x) + C. Then

F (b)− F (a) = G(b) + C − (G(a) + C)
= G(b)−G(a)

=
∫ b

a
f(t) dt−

∫ a

a
f(t) dt

=
∫ b

a
f(t) dt− 0

=
∫ b

a
f(t) dt

=
∫ b

a
f(x) dx (since the t and x are dummy variables).

Physical interpretation of this part of the FTC: Suppose F (x) gives the posi-
tion of an object at time x. Then the object’s velocity is F ′(x). This part of the FTC
says that the displacement of the object from time a to time b equals the area under
the velocity function F ′ from a to b, as suggested earlier in this chapter.

More general interpretation: Suppose F (x) is any quantity. Then the rate of
change of F with respect to x is F ′(x). This part of the FTC says that the integral
of the rate of change, i.e. the accumulation of the rate of change, is equal to the
net change in F from x = a to x = b.

Mathematical significance of this part of the FTC: This result provides a mech-
anism to evaluate definite integrals without having to compute limits of Riemann
sums. In particular, if you can find any one antiderivative of f that is easy to work
with (say F ), then you can evaluate integrals of f by subtracting values of F .
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9.5. Fundamental Theorem of Calculus

You are responsible for being able to state both parts of the FTC and explain
their physical interpretation and mathematical significance.

EXAMPLE 1
Evaluate the integral: ∫ 4

3
x dx

EXAMPLE 2
Suppose an object is moving along a line so that its velocity at time t is 3 sec2 t. Find
the distance traveled by the object between times t = 0 and t = π/4.
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9.5. Fundamental Theorem of Calculus

EXAMPLE 3
In an electrical circuit, the current is the instantaneous rate of change of the charge.
If the current in a circuit at time t (in seconds) is 2 + 1

4 sin t amperes, find the net
change in the charge from time π

2 to time π. (P.S. An ampere times a second is a
coulomb, a unit of charge.)

EXAMPLE 4
A tank is being filled with fluid at a non-constant rate: at time t (in seconds), the
rate at which the tank is being filled is 2t(4 − t) L/sec. Find the amount of fluid
that is poured in the tank during the first 3 seconds.

The Fundamental Theorem of Calculus reduces the problem of computing in-
tegrals to the problem of finding antiderivatives. Thus it is important to be able to
find antiderivatives of functions, and we address this task in the next chapter.
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9.6. Homework exercises

9.6 Homework exercises
1. During a car trip, let v(t) represent the car’s speedometer reading (in miles

per hour) at time t (measured in hours after the beginning of the car trip).
Suppose that the graph of v(t) for 0 ≤ t ≤ 10 is as given below:

0 2 4 6 8 10
time t

20

40

60

80

100
velocity v(t)

Use this graph to estimate the answers to the following questions (answer
with appropriate units):

a) What is the speedometer reading 2 hours after the trip starts?

b) What is the acceleration of the car at time 6?

c) Is the car speeding up, or slowing down at time 3? Explain.

d) Is the car moving forward or backward at time 6? Explain.

e) Find the distance the car travels during the first 3 hours of the trip.

f) Find the distance the car travels between times 4 and 9.

g) If the odometer reading of the car at the beginning of the trip is 1000,
find the odometer reading six hours later.

h) If the odometer reading of the car at time 5 is 2000, what was the odome-
ter reading three hours earlier?
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9.6. Homework exercises

2. On Mars, a rover is moving back and forth along a dirt track so that at time
t (measured in seconds), its velocity (measured in cm/sec) is given by the
function v whose graph is given below for 0 ≤ t ≤ 10:

2 4 6 8 10
time t

-4

-2

2

4

velocity v(t)

Use this graph to estimate the answers to the following questions (answer
with appropriate units):

a) What is the velocity of the rover at time 8?

b) At what time(s) is the velocity of the rover equal to 1 cm/sec?

c) What is the acceleration of the rover at time 7?

d) Is the rover moving forward or backward at time 6? Explain.

e) Find the displacement of the rover from time 0 to time 3.

f) Find the displacement of the rover from time 6 to time 10.

g) Suppose the initial position of the rover is 0. Find all times when the
position of the rover is 8.

h) Suppose the initial position of the rover is 4. Sketch a crude graph of the
position of the rover, as a function of t.

3. In each part of this problem, you are given the graph of the derivative f ′ of
some function f for 0 ≤ x ≤ 10, and the value of f at one value of x. Use this
information to sketch the graph of f for 0 ≤ x ≤ 10.

a) f(3) = 2; f ′ has graph
2 4 6 8 10

-2

2
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9.6. Homework exercises

b) f(0) = 4; f ′ has graph

0 2 4 6 8 10

2

4

c) f(0) = −3; f ′ has graph
2 4 6 8 10

-2

2

d) f(0) = 5; f ′ has graph
2 4 6 8 10

-2

2

4. Suppose the graph of some derivative g′ is as given below. On a single set of
axes, sketch all possible graphs of g:

g'

2 4 6 8 10

-2

2

4

6

In Problems 5-8, write the following sums in Σ−notation:

5. 1
3 + 1

4 + 1
5 + 1

6 + ...+ 1
19

6. 5
72 + 5

82 + 5
92 + ...+ 5

262

7. 24

4 + 25

5 + 26

6 + ...+ 214

14

8. 3
82

√
2 + 3

83

√
3 + 3

84

√
4 + ...+ 3

825

√
25

In Problems 9-11, evaluate the given sum by hand (simplify your answer):
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9.6. Homework exercises

9.
7∑

n=1
2n 10.

4∑
n=0

cos πn 11.
6∑

n=3
n2

In Problems 12-14, evaluate each of the following sums using Mathematica. Note:

to evaluate a sum of the form
N∑

n=M
an in Mathematica, use the following syntax:

Sum[an, {n, M, N}]

For example, to evaluate
9∑

n=2
n2, execute Sum[n^2, {n, 2, 9}]. (You can also get

a Σ on the Basic Math Assistant Pallette.)

12.
13∑
n=2

1
n

13.
35∑
n=1

12n+4n2+n3

6400 14.
17∑
n=1

cos
(
π
2n
)

3n2

15. Consider the partition P = {2, 3, 8, 10, 13}.
a) Sketch a picture of this partition.
b) What interval is this a partition of?
c) How many subintervals comprise this partition?
d) What is x3 for this partition?
e) What is the second subinterval of the partition?
f) What is ∆x1?
g) What is ||P||?

16. Consider the partition P of [5, 12] into 70 equal-length subintervals.

a) What is x20 for this partition?
b) What is the twelfth subinterval of the partition?
c) What is ∆x32?
d) What is ||P||?

17. Let f(x) = 1 + 2x − x2. Consider the partition P = {0, 1
4 ,

1
2 , 1} of the interval

[0, 1].

a) Calculate the value of the Riemann sum associated to P where the test
points cj are chosen to be the midpoints of their respective subintervals.

b) Sketch a picture which reflects the area being calculated in the Riemann
sum you computed in part (a).

c) What is the smallest possible value of any Riemann sum associated to
the partition P? Explain your answer.

d) What is the largest possible value of any Riemann sum associated to the
partition P? Explain your answer.

e) What do your answers to parts (c) and (d) of this question tell you about
the possible value of the area under f from x = 0 to x = 1?
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18. Let f(x) = 4 sin x and let P = {0, π/3, π/2, 5π/6, π}.

a) Calculate the right-hand Riemann sum associated to this partition.

b) Sketch a picture which reflects the area being calculated in part (a).

c) Calculate the lower Riemann sum associated to this partition.

d) Sketch a picture which reflects the area being calculated in part (c).

19. Let f(x) = 2x2 + 1.

a) Compute the left-hand Riemann sum associated to the partition of [1, 4]
into three equal-length subintervals.

b) Sketch a picture which reflects the area being calculated in part (a).

c) Compute the upper sum associated to the partition of [1, 4] into six equal-
length subintervals.

d) Sketch a picture which reflects the area being calculated in part (c).

20. Let f be an unknown function with the following table of values:

x −3 −1 1 4 10 11
f(x) 2 1 2 0 3 5

a) Use a left-hand Riemann sum to estimate the area under the graph of f
from x = −1 to x = 4.

b) Use a right-hand Riemann sum to estimate the area under the graph of
f from x = 1 to x = 11.

c) Can you compute an upper Riemann sum for f associated to the par-
tition P = {−3,−1, 1, 4}? If so, explain why and compute it. If not,
explain why you do not have enough information to compute this Rie-
mann sum.

21. Suppose that the velocity of a rocket t seconds after it is launched is given by
function v, some of whose values are given in the following table:

t
(seconds after launch) 0 1 2 4 8 9 10 12

v(t)
(m/sec) 0 2 5 13 30 75 110 240

Suppose also that the acceleration of the rocket is positive at all times between
t = 0 and t = 12.

a) Use a left-hand Riemann sum to estimate the distance the rocket travels
in the first 8 seconds after it is launched.
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b) Use a right-hand Riemann sum to estimate the distance the rocket trav-
els between times t = 4 and t = 10.

c) Can you compute an upper Riemann sum for f associated to the par-
tition P = {0, 2, 4, 8, 12}? If so, explain why and compute it. If not,
explain why you do not have enough information to compute this Rie-
mann sum.

In Problems 22-24, write a definite integral which computes the desired area. (You
do not actually need to compute the integral.)

22. The area between the graph of the function f(x) = sin x and the x−axis from
x = 0 to x = π/2.

23. The area between the graph of the function f(x) = x6 and the x−axis from
x = −3 to x = 4

24. The area between the graph of the function f(x) = arctan x and the x−axis
from x = 0 to x = 1.

In Problems 25-32, evaluate each definite integral:

25.
∫ 6

2 3 dx

26.
∫ 11

8 0 dx

27.
∫ 7

0 5x dx

28.
∫ 2

0 (2x+ 3) dx

29.
∫ 8

5 (20− 2x) dx

30.
∫ 4
−4
√

16− x2 dx

31.
∫ 4

0 |x− 3| dx

32.
∫ 2

0
√

4− x2 dx

33. Assuming the following two statements,∫ 5

0
f(x) dx = 10 and

∫ 9

5
f(x) dx = 2.

compute each of the following:

(a)
∫ 9

0
f(x) dx (b)

∫ 5

0
2f(x) dx (c)

∫ 0

5
f(x) dx (d)

∫ 3

3
f(x) dx

34. Assuming the following two statements,∫ 4

0
f(x) dx = 7 and

∫ 4

2
f(x) dx = 6.

compute each of the following:

(a)
∫ 2

0
f(x) dx (b)

∫ 4

0
7f(x) dx (c)

∫ 4

0
[f(x) + 9] dx
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35. Assuming the following two statements,∫ 8

5
f(x) dx = 4 and

∫ 8

5
g(x) dx = 7.

compute each of the following:

(a)
∫ 8

5
[2f(x)+3g(x)] dx (b)

∫ 8

5
[g(x)−f(x)] dx (c)

∫ 7

3
f(x) dx+

∫ 3

7
f(x) dx

36. Assume that f is an unknown function with the following properties:∫ 3

0
f(x) dx = 7

∫ 5

3
f(x) dx = −3

∫ 8

5
f(x) dx = 2

Also, assume g and h are unknown functions whose graphs are given below:

g

2 4 6 8 10

-2

2

4

6

8

h

2 4 6 8 10

-12

-6

6

12

Use this information to compute the folllowing quantities:

a)
∫ 3

0 [f(x) + g(x)] dx
b)

∫ 7
3 3g(x) dx

c)
∫ 5

8 [f(x)− h(x)] dx
d)

∫ 8
3 [2g(x) + 4f(x)] dx

e)
∫ 8

0 [f(x) + g(x) + h(x)] dx
f)
∫ 3

5 [h(x)− 2f(x)] dx
g)

∫ 5
0 (h(x)− 2) dx

h)
∫ 2

0 (g(x) + 3x) dx

In Problems 37-44, classify each statement as TRUE or FALSE:

37. F (x) = sin(x2) is an antiderivative of f(x) = cos(x2).

38. F (x) = 3x2 is an antiderivative of f(x) = 6x.

39. F (x) = 3x2 is the only antiderivative of f(x) = 6x.

40. If F is an antiderivative of f , then for any constant C, F (x) − C is an an-
tiderivative of f as well.
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41. If F is an antiderivative of f , then for any constant C, C F (x) is an antideriva-
tive of f as well.

42. All antiderivatives of f(x) = sec2 x are of the form tan x+ C.

43. If F is an antiderivative of some continuous function f , then
∫
f(x) dx =

F (x).

44. If F is an antiderivative of some continuous function f , then
∫ b
a f(x) dx =

F (b)− F (a).

In Problems 45-49, compute the indicated definite integral by using the Funda-
mental Theorem of Calculus:

45.
∫ 7

3 4x3 dx

46.
∫ π/2
π/3 cosx dx

47.
∫ 3

0 (12t2 − 6t) dt

48.
∫ ln 6

0
1
2e
x dx

49.
∫ 10

7
1
x
dx

50. A syringe is being emptied at a non-constant rate: at time t (in seconds), the
rate at which the syringe is being emptied is 4 sin t+ 2 cos t mL/sec. Find the
amount of liquid drained from the syringe in the first π

4 seconds.

51. If the current in an electrical current at time t (in seconds) is t − 2
t

amperes,
find the net change in the charge in the circuit from time 1 to time 3.

52. A truck’s velocity at time t (in hours) is v(t) = 40t(t+ 1) miles per hour. How
far does the truck travel in the first 30 minutes of its journey?

Answers

1. a) 30 mi/hr

b) −10 mi/hr2

c) The car is speeding up, because the acceleration (i.e. the slope of v) is
positive at t = 3.

d) The car is moving forward, because the velocity (i.e. the height of the
graph of v) is positive at t = 6.

e) 135
2 = 67.5 miles

f) 195 miles
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g) 1220
h) 1855

2. a) v(8) = 2 cm/sec

b) t = 3.5 sec, t = 7.5 sec

c) 2 cm/sec2

d) The rover is moving backward, because the velocity is negative at t = 6.

e) 11 cm

f) 4 cm

g) t = 2, t = 7

h)

0 2 4 6 8 10
time t

4

position f(t)

3. a)

2 4 6 8 10

2

4

b)

0 2 4 6 8 10

4

c) 2 4 6 8 10

-3

d)

0 2 4 6 8 10

5
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4.

2 4 6 8 10

5.
19∑
n=3

1
n

6.
26∑
n=7

5
n2

7.
14∑
n=4

2n
n

8.
25∑
n=2

3
8n
√
n

9. 56

10. 1

11. 86

12. 785633
360360

13. 4641
64

14. 432

15. a)
2 3 8 10 13

b) [2, 13]
c) 4
d) 10
e) [3, 8]
f) 1
g) 5

16. a) [6.9, 7]
b) [6.1, 6.2]
c) .1
d) .1
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17. a) 215
128

b)

0 1

8

1

4

3

8

1

2

3

4
1

1

2

c) The smallest possible value is the lower Riemann sum associated to P ,
which is 95

64 .

d) The largest possible value is the upper Riemann sum associated to P ,
which is 115

64 .

e) The actual area under the function f must be greater than the lower sum
(i.e. greater than 95

64 and less than the upper sum (i.e. less than 115
64 ).

18. a) (4+2
√

3)π
3

b)

0 π

3

π

2
5 π

6
π

1

2

3

4

c) π
√

3
3

d)

0 π

3

π

2
5 π

6
π

1

2

3

4

19. a) 31

b)

0 1 2 3 4

4

8

12

16

20

c) 211
4 = 52.75

d)

0 1 2 3 4

5

10

15

20

25

30

35

40

20. a) 2
b) 23
c) You do not have enough

information, because you
do not know the maximum
value f achieves on each
subinterval of P .
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21. a) 64 m

b) 305 m

c) Since the acceleration is pos-
itive, v is increasing. This
means that the upper sum co-
incides with the right-hand
sum, which is 1116 m.

22.
∫ π/2

0 sin x dx

23.
∫ 4
−3 x

6 dx

24.
∫ 1

0 arctan x dx

25. 12

26. 0

27. 245
2

28. 10

29. 21

30. 8π

31. 5

32. π

33. a) 12

b) 20

c) −10
d) 0

34. a) 1

b) 49

c) 43

35. a) 29

b) 3

c) 0

36. a) 23.5

b) 48
c) −26
d) 36
e) 66.5
f) −18
g) 38
h) 18

37. FALSE (the derivative of sin(x2) is
cos(x2) · 2x)

38. TRUE (the derivative of 3x2 is 6x)

39. FALSE (3x2 + 1 is also an an-
tiderivative)

40. TRUE (the derivative of F (x)− c is
also f(x))

41. FALSE (the derivative of 2F (x) is
2f(x), not f(x))

42. TRUE (by the Antiderivative The-
orem)

43. FALSE (
∫
f(x) dx = F (x) + C)

44. TRUE (this is the Fund. Thm. of
Calculus Part 2)

45. 74 − 34

46. 1−
√

3
2

47. 81

48. 5
2

49. ln 10− ln 7

50. 4−
√

2 mL

51. 4− ln 9 coulombs

52. 20
3 miles
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Chapter 10

Integration Rules

10.1 General integration concepts
In Chapter 9, we formally defined the definite integral as a limit of Riemann

sums: ∫ b

a
f(x) dx = lim

||P||→0

n∑
j=1

f(cj) ∆xj

This expression gives the area under function f from x = a to x = b.

We saw that in practice, it is mostly impossible to compute integrals by evalu-
ating these limits. To actually compute a definite integral, one uses the following
theorem:

Theorem 10.1 (Fundamental Theorem of Calculus Part II) (Evaluation of In-
tegrals) Let f be continuous on [a, b]. Suppose F is any antiderivative of f . Then

∫ b

a
f(x) dx = F (b)− F (a).

This suggests that it is important to find antiderivatives of functions. Recall:

Definition 10.2 Given function f , an antiderivative of f is a function F such that
F ′ = f .
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10.1. General integration concepts

Definition 10.3 Given function f , the indefinite integral of f , denoted
∫
f(x) dx,

is the set of all antiderivatives of f .

At this point, we have two objects which look the same but are very different:

Definite Integral Indefinite Integral∫ b

a
f(x) dx

∫
f(x) dx

EXAMPLE 1
If f(x) = 2x, then ∫

f(x) dx =
∫ 4

−1
f(x) dx =

EXAMPLE 2
Suppose

∫
f(x) dx = cosx+ C. Compute∫ π/2

π/3
f(x) dx

and find f(x).

General principle illustrated by the previous example:

This means that each of the derivatives we learned earlier in the semester turns
into an integral that we know now:
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d

dx
(C) = 0 ⇒

d

dx
(xn) = nxn−1(if n 6= 0) ⇒

d

dx
(ex) = ex ⇒

∫
ex dx = ex + C

d

dx
(ln x) = 1

x
⇒

∫ 1
x
dx = ln x+ C

d

dx
(arctan x) = 1

x2 + 1 ⇒
∫ 1
x2 + 1 dx = arctan x+ C

d

dx
(arcsin x) = 1√

1− x2
⇒

∫ 1√
1− x2

dx = arcsin x+ C

d

dx
(sin x) = cos x ⇒

∫
cosx dx = sin x+ C

d

dx
(cosx) = − sin x ⇒

∫
(− sin x) dx = cosx+ C

d

dx
(tan x) = sec2 x ⇒

∫
sec2 x dx = tan x+ C

d

dx
(cotx) = − csc2 x ⇒

∫
csc2 x dx = − cotx+ C

d

dx
(secx) = secx tan x ⇒

∫
secx tan x dx = secx = C

d

dx
(cscx) = − cscx cotx ⇒

∫
cscx cotx dx = − cscx+ C

Furthermore, since differentiation is linear, so is integration. We have:

Theorem 10.4 (Linearity of Definite Integration) Suppose f and g are integrable
functions. Then:

1.
∫ b
a [f(x) + g(x)] dx =

∫ b
a f(x) dx+

∫ b
a g(x) dx;

2.
∫ b
a [f(x)− g(x)] dx =

∫ b
a f(x) dx−

∫ b
a g(x) dx;

3.
∫ b
a [k · f(x)] dx = k

∫ b
a f(x) dx for any constant k.
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Theorem 10.5 (Linearity of Indefinite Integration) Suppose f and g are integrable
functions. Then:

1.
∫

[f(x) + g(x)] dx =
∫
f(x) dx+

∫
g(x) dx;

2.
∫

[f(x)− g(x)] dx =
∫
f(x) dx−

∫
g(x) dx;

3.
∫

[k · f(x)] dx = k
∫
f(x) dx for any constant k.

NOTE: Integration is not multiplicative nor divisive:∫
f(x)g(x) dx 6=

(∫
f(x) dx

)
·
(∫

g(x) dx
)

∫ (
f(x)
g(x)

)
dx 6=

∫
f(x) dx∫
g(x) dx

EXAMPLE 3
Compute the integral: ∫

−1
4 csc2 x dx

EXAMPLE 4
Suppose a bicyclist is driving down a road so that her velocity at time t is 3−2t+t9.

(a) Find the displacement of the bicyclist from time 1 to time 2.

(b) If the position of the bicyclist at time 0 is 4, find the position at time 1.

EXAMPLE 5
Compute the integral: ∫ (

2
3
√
x

+ 5
x

)
dx
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EXAMPLE 6
Compute the integral: ∫

(4 cosx− 3x5 + 2ex) dx

EXAMPLE 7
Compute the integral: ∫ (sin x

7 + 4
1 + x2 − 2

)
dx

EXAMPLE 8
A Math 230 student is asked to compute this integral:∫

x sec2 x dx

After some substantial work, the student obtains the answer

ln(cosx) + x tan x+ C.

Is the student’s answer correct? Why or why not?
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Here is a list of integration rules which, together with linearity, allows you to
do most easy integrals:

Theorem 10.6 (Integration Rules to Memorize) .

Constant Rules: ∫
0 dx = C∫
M dx = Mx+ C

Power Rules: ∫
xn dx = xn+1

n+ 1 + C (so long as n 6= −1)∫ 1
x
dx = ln |x|+ C

Trig Functions: ∫
sin x dx = − cosx+ C∫
cosx dx = sin x+ C∫

sec2 x dx = tan x+ C∫
csc2 x dx = − cotx+ C∫

secx tan x dx = secx+ C∫
cscx cotx dx = − cscx+ C

Exponential Functions: ∫
ex dx = ex + C

Inverse Trig Functions : ∫ 1
x2 + 1 dx = arctan x+ C∫ 1√
1− x2

dx = arcsin x+ C
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Note: There are some integrals which we don’t know yet. They include:∫
tan x dx

∫
cotx dx

∫
secx dx

∫
sin(x2) dx

∫
ln x dx, etc.

Some (most) of these integrals will be discussed in Math 230 (alternatively,
some of them can be computed using Mathematica, but some integrals are known
to be impossible to compute, even with an infinitely powerful computer!).

10.2 Rewriting the integrand
Sometimes it is useful to use algebra, or a trigonometric identity, or a logarithm

rule, to rewrite the integrand before computing an integral.

EXAMPLE 1
Find the area under the graph of f(x) = (x2−1)2

x
between x = 1 and x = 2.
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EXAMPLE 2
Compute the integral ∫

tan2 x dx

EXAMPLE 3
Compute the integral ∫

ln (2x) dx

10.3 Elementary u-substitutions
MOTIVATING EXAMPLE

Let f(x) = sin(x3).

Goal: Recognize integrands which arise as the result of the Chain Rule.

Idea: Identify the presence of a function and its derivative in the integrand.
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GENERALIZATION OF THE MOTIVATING EXAMPLE

Consider the function F (g(x)), where F ′ = f . Then

d

dx
[F (g(x))] = F ′(g(x)) · g′(x) = f(g(x)) · g′(x)

Theorem 10.7 (Integration by u−substitution - Indefinite Integrals)∫
f(g(x)) · g′(x) dx =

∫
f(u) du by setting u = g(x).

Procedure for indefinite integration by u−substitution:

1. Make sure you can’t just “write the answer” to the integral without a
substitution.

2. Check the integrand to make sure a u−substitution is appropriate:

• The integral should not be one you have memorized.
• The integrand should have two terms multiplied together.
• One of the terms being multiplied should be the derivative of part

of the other term (i.e. the terms should be related).

3. Let u = the term whose derivative stands by itself.

4. Write the derivative of u in Leibniz notation, then multiply through by
an appropriate constant to match what is in the integral.

5. Substitute in the integral so that all xs are replaced with us as appropriate.

6. Integrate with respect to u.

7. Back-substitute to get an answer in terms of x.
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A picture to explain the logic:

EXAMPLE 1
Compute the integral: ∫ (

6x2 + 3
)4
x dx
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EXAMPLE 2
Compute the integral: ∫

27(z3 + 1)9z2 dz

EXAMPLE 3
Compute the integral: ∫

tan3(3x+ 1) sec2(3x+ 1) dx

Solution:

Let u = tan(3x+ 1).

⇒ du

dx
= sec2(3x+ 1) · 3

⇒ du = 3 sec2(3x+ 1) dx

⇒ 1
3du = sec2(3x+ 1) dx
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EXAMPLE 4
Compute the integral: ∫

sin(3x+ 2) dx

EXAMPLE 5
Compute the integral: ∫

(5x− 2)12 dx

Solution:

Let u = 5x− 2

⇒ du

dx
= 5

⇒ du = 5 dx

⇒ 1
5du = dx

Now the integral becomes

∫
u12 1

5 du = 1
5 ·

u13

13 + C = 1
65u

13 + C = 1
65(5x− 2)13 + C.

The general principle illustrated by the preceding examples is called the Linear
Replacement Principle:

Theorem 10.8 (Linear Replacement Principle) Suppose
∫
f(x) dx = F (x) + C.

Then for any constants m and b,∫
f(mx+ b) dx = 1

m
F (mx+ b) + C.
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EXAMPLE 6
Compute these integrals without actually doing the u-substitution:∫

2e5x dx
∫ 4

2x− 3 dx

Some integrals require rewriting before performing a substitution:

EXAMPLE 7
Compute the integral: ∫

tan x dx

EXAMPLE 8
Find all functions g whose derivative is g′(x) = xe−x/2.
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Substitution in definite integrals
EXAMPLE 9

Compute the integral: ∫ 4

1

1√
x(
√
x+ 1)3 dx

Theorem 10.9 (Integration by u−substitution - Definite Integrals) By way of
the u-substitution u = g(x),

∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(u) du.
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Procedure for definite integration by u−substitution:

1. Make sure you can’t just “write the answer” to the integral without a
substitution.

2. Check the integrand to make sure a u−substitution is appropriate:

• The integral should not be one you have memorized.
• The integrand should have two terms multiplied together.
• One of the terms being multiplied should be the derivative of part

of the other term (i.e. the terms should be related).

3. Let u = the term whose derivative stands by itself.

4. Write the derivative of u in Leibniz notation, then multiply through by
an appropriate constant to match what is in the integral.

5. Substitute in the integral so that all xs are replaced with us as appropriate.

6. Change the limits of integration to values of u using the formula from
Step 3.

7. Integrate with respect to u (don’t back-substitute for x).

EXAMPLE 10
Find the distance travelled by an object between times 0 and π/2, if its velocity at
time t is ecos t sin t.
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EXAMPLE 11
Compute the integral: ∫ ln 3

0

ex

ex + 1 dx
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10.4 Homework exercises
In Problems 1-6, an advanced student was asked to compute the given integral.
Determine, in part by taking an appropriate derivative, whether or not the stu-
dent’s answer was correct:

1. Problem:
∫

cosx dx; proposed answer: sin x

2. Problem:
∫

ln x dx; proposed answer: 1
x

+ C

3. Problem:
∫ 1
x+3 dx; proposed answer: ln(x+ 3) + C

4. Problem:
∫ 1
x2+25 dx; proposed answer: ln(x2 + 25) + C

5. Problem:
∫ 1
x2+25 dx; proposed answer: 1

5 arctan x
5 + C

6. Problem:
∫ 4
x2−1 dx; proposed answer: 2 ln(1− x) + 2 ln(1 + x) + C

In Problems 7-12, an advanced student was asked to compute the given integral,
and got an answer which is close, but wrong. After taking a derivative of the
student’s answer, use the derivative you get to “fix” the student’s answer, making
it correct.

7. Problem:
∫

cos 2x dx; wrong answer: sin 2x+ C

8. Problem:
∫ 1

3x−4 dx; wrong answer: ln(3x− 4) + C

9. Problem:
∫

csc2 x dx; wrong answer: cotx+ C

10. Problem:
∫
e3x dx; wrong answer: e3x + C

11. Problem:
∫

2e−x/4 dx; wrong answer: 2e−x/4 + C

12. Problem:
∫

sin3 2x cos 2x dx; wrong answer: sin4 2x+ C

13. Compute
∫

0 dx.

14. Compute
∫ 6

4 5 dx.

15. Evaluate
∫ 5

3 x dx.

16. Find
∫

4x dx.

17. Find all antiderivatives of f(x) = x+ 3.

18. Compute
∫ 1

0
3
√
x2 dx

19. Suppose that the rate at which a tank is being filled with water at time t is 5et
gal/min. Find the amount of water put in the tank between times 0 and 4.
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10.4. Homework exercises

20. Find the area under the graph of f(x) = 4
x

between x = 2 and x = 9.

21. Compute
∫

(2x3 − x) dx.

22. Compute the integral
∫

(sec2 x− 7 sin x) dx.

23. Compute the indefinite integral of 3
x2 + csc2 x with respect to x.

24. Suppose that the rate at which energy is used by a machine at time t is given
by 2 sec t tan t J/sec. Find the energy consumption between times π

4 and π
3 .

25. Find the area under the graph of y = 1 + 4
x2 from x = 1 to x = 2.

26. Compute
∫ ex

4 dx.

27. Evaluate
∫ ( 6√

x
+ 1

x

)
dx.

28. Find all antiderivatives of f(x) = x3/2 + 4x+ 2.

29. Compute
∫ 1
−1(x3 − x2) dx.

30. Find
∫
dx.

31. Compute
∫

(2− cscx cotx) dx.

32. Find the indefinite integral of f(x) = x3 + 4 cosx with respect to x.

33. Suppose an object is moving back and forth along a line so that its accelera-
tion at time t is a(t) = −5t in/sec2. If the object’s velocity at time 2 is 3 in/sec,
what is its velocity at time 5?

34. Suppose a bee is moving along a number line so that its velocity at time t is
v(t) = t2 + 3 cm/sec. If at time 1 the bee is at position −4, what is its position
at time 4?

35. Suppose a bug is crawling along a number line so that its acceleration at time
t is a(t) = 1

10 cos t meters per hour squared.

a) If its velocity at time 0 is 1
5 meters per hour and its position at time 0 is

1, what is its position at time π?

b) If its velocity at time 0 is 1 meter per hour and its position at time 0 is 0,
what is its position at time π

3 ?

36. Suppose f is a function such that the slope of the line tangent to f at x is
4x− 1. If f passes through the point (4, 0), what is f(−2)?
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10.4. Homework exercises

In Problems 37-42, use Mathematica to compute the indicated integrals (write the
answers as you would write them by hand).

Note: Mathematica computes integrals using the Integrate command. For exam-
ple, to compute the definite integral

∫ 4
2 x

2 dx using Mathematica, execute

Integrate[x^2, {x, 2, 4}]

and to compute the indefinite integral
∫
x2 dx using Mathematica, execute

Integrate[x^2, x]

(The x in the command is necessary and corresponds to the dx in the integral.) You
can also get an integral sign on the Basic Math Assistant.

37.
∫

secx dx
Note: When you compute an indefinite integral using Mathematica, something
important is missing from its answer.

38.
∫

ln x dx

39.
∫ π/4

0 tan x dx

40.
∫ 1

0 arctan x dx

41.
∫
x3e−x dx

42.
∫ 3
x2−x dx

In Problems 43-47, you are given a definite integral and a u-substitution. Perform
the u-substitution to rewrite the integral as a simpler integral (be sure to change
the limits from x-values to u-values). You do not need to evaluate the integral.

43.
∫ 3
−2

2x
x2+5 dx; u = x2 + 5

44.
∫ 7

3 e
8x dx; u = 8x

45.
∫ 1

0 20(x7 + 3)x6 dx; u = x7 + 3

46.
∫ π/4

0 sin3 x cosx dx; u = sin x

47.
∫ ln 4

0
ex

ex+1 dx; u = ex + 1
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10.4. Homework exercises

In Problems 48-66, compute the indicated integral:

48.
∫ 8

1

√
2
x
dx

49.
∫

(2− x)
√
x dx

50.
∫ x2+2−3x3+1

x4 dx

51.
∫ 2

0 (x+ 1)(3x− 2) dx

52.
∫ 5−ex

e2x dx

53.
∫ (lnx)2

x
dx

54.
∫ √

3− x2(−2x) dx

55.
∫
x3(x4 − 1)5 dx

56.
∫ 3

2+7x dx

57.
∫

5x 3
√

1− x2 dx

58.
∫ 6x2

1+x3 dx

59.
∫ 3

2
6x2

(1+x3)3 dx

60.
∫

sin πx dx

61.
∫

cos 2x dx

62.
∫ 3

4 cos x
2 dx

63.
∫

tan4 x sec2 x dx

64.
∫ π/2
π/6 cotx dx

65.
∫

3e2x dx

66.
∫ 9

1
1√

x(1+
√
x)2 dx

67. Suppose that the rate of fuel consumption of a motor at time t is te−t2 L/min.
Compute the amount of fuel consumed by the motor in the first minute of
operation.

68. Find the area under the graph of y = x(x2 + 1)3 from x = 0 to x = 1.

69. Suppose that an object is moving back and forth along a number line so that
its velocity at time t is v(t) = 4t2

√
t3 + 1 ft/sec. What is the object’s displace-

ment from time 1 sec to time 2 sec?
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10.4. Homework exercises

Answers

1. Wrong (missing the +C)

2. Wrong

3. Correct

4. Wrong

5. Correct

6. Correct

7. 1
2 sin 2x+ C

8. 1
3 ln(3x− 4) + C

9. − cotx+ C

10. 1
3e

3x + C

11. −8e−x/4 + C

12. 1
8 sin4 2x+ C

13. C

14. 10

15. 8

16. 2x2 + C

17. 1
2x

2 + 3x+ C

18. 3
5

19. 5e4 − 5 gal

20. 4 ln 9− 4 ln 2

21. 1
2x

4 − 1
2x

2 + C

22. tan x+ 7 cosx+ C

23. − 3
x
− cotx+ C

24. 4− 2
√

2 J

25. 3

26. ex

4 + C

27. 12
√
x+ ln |x|+ C

28. 2
5x

5/2 + 2x2 + 2x+ C

29. −2
3

30. x+ C

31. 2x+ cscx+ C

32. 1
4x

4 + 4 sin x+ C

33. −99
2 in/sec

34. 26

35. a) π+6
5

b) 1
20 + π

3

36. −18

37. − ln[cos(x/2) − sin(x/2)] +
ln[cos(x/2) + sin(x/2)] + C

38. −x+ x ln x+ C

39. ln 2
2

40. 1
4(π − ln 4)

41. e−x(−6− 6x− 3x2 − x3) + C

42. 3(ln(1− x)− ln x) + C

43.
∫ 14

9
1
u
du

44.
∫ 56

24
1
8e
u du

45.
∫ 4

3
10
3 u du

46.
∫√2/2

0 u3 du

47.
∫ 5

2
1
u
du

48. 8−
√

8

306



10.4. Homework exercises

49. 4
3x

3/2 − 2
5x

5/2 + C

50. −x−3 − x−1 − 3 ln x+ C

51. 6

52. −5
2 e
−2x + e−x + C

53. 1
3(ln x)3 + C

54. 2
3(3− x2)3/2 + C

55. 1
24(x4 − 1)6 + C

56. 3
7 ln(2 + 7x) + C

57. −15
8 (1− x2)4/3 + C

58. 2 ln(x3 + 1) + C

59. −1
282 + 1

81

60. −1
π

cos πx+ C

61. 1
2 sin 2x+ C

62. 3
2 sin x

2 + C

63. 1
5 tan5 x+ C

64. ln 2

65. 3
2e

2x + C

66. 1
2

67. e−1
2e L

68. 49
40

69. 24− 16
9

√
2 ft
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Chapter 11

Introduction to Differential
Equations

11.1 Terminology and examples
Mathematics in a nutshell

1. Start with some real-world problem.

2. Build a mathematical model or mathematical object that represents the prob-
lem (this often involves writing down variables and equations).

3. Find the solution of the model from Step 2.

4. Generalize the solution and develop the corresponding theory (so you can
adapt the solution technique to as many other similar problems as possible).
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11.1. Terminology and examples

EXAMPLES 1-4

Example 1
A rectangle is 3 units
longer than it is wide.
If its area is 54, what

is its side length?

→

Let x = width.
x + 3 = length.

A = 54
x(x + 3) = 54.

→
x = 6

(6× 9)
(throw out x = −9)

Example 2 (physics)
An object falls to
earth, starting at

height 100m. What
is its height after

t seconds?

Example 3 (biology)
If you eat a raw

hamburger, how much
E. coli is in your

system t minutes later?

Example 4
(pharmacokinetics)

Give a patient dose D
of a drug every 24 hours.
What is the concentration

of the drug in the
patient’s bloodstream

after t hours?
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11.1. Terminology and examples

The model of Example 1 above is a “numerical equation”:

• both sides of the equation are numbers;

• the object is to solve for numbers x such that the equation holds.

The models of Examples 2, 3 and 4 above are examples of (ordinary) differential
equations (ODEs):

• both sides of the equation are thought of as functions of an independent
variable (t in these examples);

• there is another variable (y in Example 2, x in Example 3, C in Example 4)
which depends on that independent variable;

• the equation contains derivatives of the dependent variable with respect to
the independent variable;

• the object is to solve for the explicit relationship between the variables.

More examples of ODEs:

EXAMPLES 5-8
5. y′ + xy = 3x2

Assumption:

This equation can also be written as:

6. x2y′′′ + (x2 − 3xy)y′′ + 2y′y = 3xy′ − 4

7. y′ · y′′′ = y

Assumption:

8. x′′ + c1x
′ + c0x = 0 (describes motion of damped oscillator)

Assumption:
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11.1. Terminology and examples

EXAMPLE 9

dy

dt
= 3y

Assumption: y = y(t)

In Example 9,

• y = e3t is a solution because

• y = 2e3t is a solution because

• y = Ke3t is a solution for any constant K because

• y = t2 is not a solution because

Question: Are there any solutions to Example 9 other than y = Ke3t?
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11.1. Terminology and examples

Some ODEs are particularly easy to solve. Suppose dy
dx

= g(x) (i.e. there’s only
an x on the right-hand side). Then

y(x) =
∫
g(x) dx

by the Fundamental Theorem of Calculus (in particular, notice that there will be
infinitely many solutions, parameterized by a single constant C).

EXAMPLE 10

dy

dt
= 6t2

EXAMPLE 11

y′′ = 2

These constants (the K in Example 9, the C in Example 10, and the C and D
in Example 11) are typical of solutions to ODEs, because solving an ODE is akin
to indefinite integration. For a general ODE (not just one of the form dy

dx
= g(x),

we expect arbitrary constants in the description of the solution. The number of
constants in the solution is equal to the highest order of derivative occuring in
the equation, i.e.

y′′′ − 3y = x2 + 3⇒

y + x
d2y

dx2 = x3 − dy

dx
⇒

y(8) + 3 = x⇒
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11.2. Vector fields and qualitative analysis of first-order ODEs

Sometimes you know additional information which allows you to solve for the
constant(s):

EXAMPLE 12
Suppose a bug travels along a line with velocity at time t given by v(t) = 2t− 4. If
at time 0, the bug is at position 7, what is the bug’s position at time t?

11.2 Vector fields and qualitative analysis of first-order ODEs
Definition 11.1 An ODE is called first-order if it can be rewritten y′ = g(x, y) for
some function g of x and y.

EXAMPLE 1

3xy′ + 2xy = cos y · y′ − ex
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11.2. Vector fields and qualitative analysis of first-order ODEs

Suppose we have a first-order ODE y′ = g(x, y). Associated to this ODE is a
vector field (a.k.a. slope field) in the following sense: at every point (x, y) in the
plane, draw a short line segment or arrow of slope g(x, y) passing through (x, y).
The collection of all these line segments/arrows is the “vector field” of the ODE.

EXAMPLE 2

y′ = 2x

-3 -

5

2
-2

-

3

2
-1

-

1

2

1

2
1 3

2
2 5

2
3

-3

-2

-1

1

2

3

The vector field suggests what the solutions of the first-order ODE y′ = g(x, y)
look like. If y(x) is a solution, then the graph of y(x) must be tangent to all of the
line segments associated to all the (x, y) on the graph. Put another way,

“the solutions have to have graphs which flow with the line segments of the vector field”

In the example y′ = 2x, it appears that the solutions are parabolas. That is the
case, because
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11.2. Vector fields and qualitative analysis of first-order ODEs

EXAMPLE 3

y′ = xy

-3 -

5

2
-2

-

3

2
-1

-

1

2

1

2
1 3

2
2 5

2
3

-3

-2

-1

1

2

3

Notice first that

• there appear to be infinitely many different solutions,
• but given any one point (x0, y0), there is only one possible solution which

passes through that point.

What are the solutions to the ODE of this example (y′ = xy)?
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11.2. Vector fields and qualitative analysis of first-order ODEs

Mathematica is an extremely useful tool for drawing vector fields associated to
ODEs. To sketch the vector field associated to ODE y′ = g(x, y), use the following
code (which is explained below). The code is to be typed in one Mathematica cell
and executed all together.

g[x_,y_] := 3y;
VectorPlot[{1,g[x,y]}, {x, -3, 3}, {y, -3, 3},
VectorPoints -> 20, Axes -> True,
VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

An explanation of the code (and things you can change):

1. The first line defines g(x, y). For example, this code will produce the vector
field for y′ = 3y.

2. The second line controls the range of the picture; for example, this will sketch
the vector field for x ranging from −3 to 3 and y ranging from −3 to 3.

3. The third line tells Mathematica how many arrows to draw in each direction,
and to include the x− and y−axes in the picture.

4. The fourth line controls the size of the arrows and is optional, but I think
these choices make for a nice picture.

5. The last line tells Mathematica what color to draw the arrows.

Note: In principle, you don’t type this code over and over. You can get this
code from the file “vectorfields.nb” (available on my webpage) and you simply
copy and paste the cells into your Mathematica notebooks, editing the formula for
g(x, y) and the plot range as necessary.

The above code produces this picture:

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
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11.2. Vector fields and qualitative analysis of first-order ODEs

As mentioned earlier, solutions to an ODE must “flow with” the vector field of
the ODE. This allows you to qualitatively study solutions to ODEs by examining
the picture of the vector field associated to the ODE.

EXAMPLE 4
Below is a picture of the vector field associated to some first-order ODE y′ = g(x, y):

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

1. Write the equation of two explicit solutions to this ODE:

2. On the above picture, sketch the graph of the solution satisfying y(−2) = 1.

3. Suppose y(−2) = 0. Estimate y(2).

4. Suppose y(0) = 3. Find lim
x→∞

y(x).

5. Suppose y(2) = 0. Find lim
x→−∞

y(x).
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11.3. Solving separable ODEs

In many of the questions of the previous example, you are given a point (x0, y0)
that the solution of the ODE is to pass through (for example, in Question 2 you are
given x0 = −2, y0 = 1).

Definition 11.2 A point (x0, y0) through which a solution to an ODE must pass is
called an initial value. An ODE, together with an initial value, is called an initial
value problem. A solution of an initial value problem is called a particular solu-
tion of the ODE; the set of all particular solutions of the ODE is called the general
solution of the ODE.

EXAMPLE

y′ = 2x is a first-order ODE, whose general solution is y = x2 + C.{
y′ = 2x
y(0) = 1 is an initial value problem, whose particular solution is y = x2 + 1.

Our observation that solutions to ODEs have to “flow with” the vector field
leads to the following important theorem:

Theorem 11.3 (Existence / Uniqueness Theorem for First-Order ODEs) Given
a “reasonable” first-order ODE and an initial value (x0, y0), there is one and only one
solution of that ODE satisfying that initial value.

Logic behind this theorem:

11.3 Solving separable ODEs
In the previous section we learned how to study a first-order ODE qualitatively

(by looking at a picture of the associated vector field).
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11.3. Solving separable ODEs

Question: Can you explicitly solve a first-order ODE y′ = g(x, y) for the solu-
tions y(x)?

Answer:

Definition 11.4 A first-order ODE is called separable if it can be rewritten in the
form f(y)y′ = h(x) for functions f of y and h of x.

In other words, an ODE is separable if one can separate the variables, i.e. put
all the y on one side and all the x on the other side.

Theoretical solution of separable, first-order ODEs

Suppose you have a separable, first-order ODE. Then, by replacing the y′ with dy
dx

,
it can be rewritten as

f(y) dy
dx

= h(x).

Integrate both sides with respect to x to get

∫
f(y) dy

dx
dx =

∫
h(x) dx

On the left-hand side, perform the u−substitution u = y(x), du = dy
dx
dx to get∫

f(u) du =
∫
h(x) dx

Assuming F and H are antiderivatives of f and h, respectively, we get

F (u) = H(x) + C

which, since u = y = y(x), is equivalent to the solution

F (y) = H(x) + C.

Note: We only need a constant on one side of the equation, because the constants
on the two sides can be combined into one.
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11.3. Solving separable ODEs

A shortcut:

The following method involves the writing of things that are technically incorrect,
but always works. Again start with a separable, first-order ODE. Again, replace
the y′ with dy

dx
to get

f(y) dy
dx

= h(x).

Now, pretend that the dy
dx

is a fraction and “multiply” through by dx to get

f(y) dy = h(x) dx.

Now, integrate both sides: ∫
f(y) dy =

∫
h(x) dx

This gives the same solution as before:

F (y) = H(x) + C.

The shortcut above suggests the following method to solve separable ODEs:

Procedure to solve separable ODEs:

1. Replace y′ with dy
dx

in the equation.

2. Separate the variables, i.e. put all the y (with the dy) on one side of the
equation, and all the x (with the dx) on the other side of the equation.

3. Integrate both sides, putting the arbitrary constant on one side.

4. If the problem contains an initial value, plug it in for x and y and solve
for the constant.

5. If the problem asks for a solution of the form y(x), solve the solution for
y.
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11.3. Solving separable ODEs

EXAMPLE 4
Find the general solution of the ODE y′ = xy.
(Recall that this example was studied qualitatively on page 316.)

EXAMPLE 5
Solve the following initial value problem:{

y′ = 2x− 2xy
y(1) = −2

321



11.4. Exponential and logistic models

EXAMPLE 6
Solve the ODE y′ = −x

y
. Without sketching a vector field, describe geometrically

what the graphs of the solutions look like.

11.4 Exponential and logistic models
EXAMPLE 1

Experiments have shown that the rate at which a radioactive element decays is
directly proportional to the amount present. (Radioactive elements are chemically
unstable elements that decay, or decompose, into stable elements as time passes.)
Suppose that if you start with 20 grams of a radioactive substance, in 2 years you
will have 15 grams of radioactive substance left.

1. How much radioactive substance will you have after 7 years?

2. How long will it take for you to only have 5 grams of radioactive substance
left?
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11.4. Exponential and logistic models

Exponential growth and decay

The preceding example can be generalized as follows:

Whenever the rate of change of quantity y is proportional to y itself, then y(t)
satisfies the ODE

y′ = ky,

where k is called the proportionality constant. This ODE has solution

y(t) = Cekt

where C = y(0) is the initial amount of quantity y present in the system.

When k < 0, this model is called exponential decay. We see the following:

When k > 0, this model is called exponential growth. We see the following:

EXAMPLE 2
The amount of money in an account increases via an exponential growth model.
If there is $200 in the account initally and $350 in the account after 3 years, how
much will be in the account after 10 years?
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11.4. Exponential and logistic models

Logistic growth and decay

Population biology models seek to determine or estimate the population y of a
species in terms of the time t. Suppose the species reproduces at rate K. This
means that the rate of change in y should be something like K times y. This makes
sense if the population is small. But if the population gets too big (say greater than
some number L), there is not enough food in the ecosystem to support all of the
organisms, so the population won’t grow despite reproduction, because the organ-
isms starve. A differential equation representing this type of situation is called a
logistic equation and has the following form:

y′ = K y (L− y)

In a logistic equation, K is a constant called the rate of reproduction and L is a
constant called the carrying capacity or limiting capacity of the system.

Question: What is the general solution of a logistic equation?

Solution: First, a preliminary algebra calculation (related to something you
learn in Math 230 called “partial fraction decompositions”):[ 1

L

y
+

1
L

L− y

]
=

1
L

(L− y)
y(L− y) +

1
L

(y)
y(L− y) =

1
L

(L− y + y)
y(L− y) =

1
L

(L)
y(L− y) = 1

y(L− y) .

Now for the differential equation:

dy

dx
= K y (L− y)

1
y(L− y) dy = K dx[ 1

L

y
+

1
L

L− y

]
dy = K dx (by the algebra calculation above)

∫ [ 1
L

y
+

1
L

L− y

]
dy =

∫
K dx

1
L

ln y − 1
L

ln(L− y) = Kx+ C

ln y − ln(L− y) = KLx+ C
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11.4. Exponential and logistic models

Because the method of solution on the previous page is so long and compli-
cated, the answer we get should be memorized:

Theorem 11.5 (Solution of the logistic equation) The general solution of the lo-
gistic equation y′ = Ky(L− y) is

y = L

1 + Ce−KLt
.

EXAMPLE 3
Suppose you release 1000 elk into a game refuge. Suppose that 5 years later there
are 104 elk. If the carrying capacity of the game refuge is 4000 elk, and the elk
population follows a logistic model, how many elk will be in the game refuge 15
years after the initial release?
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11.4. Exponential and logistic models

EXAMPLE 4
Suppose y measures the concentration of a certain medicine in a patient’s blood
(so that the maximum possible value of y is 1. If the drug is removed from the
patient’s system at rate .002, and the patient receives a dose of the medicine that
makes her initial concentration of the medicine be .045, and if the concentration of
the drug follows a logistic model,

1. Write the initial value problem represented by this situation.

2. Write the formula which gives the concentration of the drug at time t.
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11.5. Homework exercises

11.5 Homework exercises
1. Verify that the equation y = 3e4x is a solution of the differential equation
y′ = 4y.

2. Verify that for any constant C, y = Ce4x is a solution of the differential equa-
tion y′ = 4y.

3. Verify that for any constant C, y = Cex
2 is a solution of the differential equa-

tion dy
dx

= 2xy.

4. Verify that the equation y = sin x cosx− cos2 x is a solution of the differential
equation 2y + y′ = 2 sin(2x)− 1 satisfying y(π/4) = 0.

5. Solve for y if dy
dx

= 3x2.

6. Solve for y if dy
dx

= x−2
x

.

7. Solve for y if d2y
dx2 = x−2.

In Problems 8-11, use Mathematica to sketch the vector field corresponding to the
given first-order ODE (the appropriate Mathematica code can be found on page 317
or in the file vectorfields.nb on my web page). Your viewing window should be
[−6, 6]× [−6, 6].

8. dy
dx

= 1
10y(4− y)

9. dy
dx

= x
x+y

10. dy
dx

= 2xy − y2

11. dy
dx

= e−x sin(πy)

12. Consider the first-order ODE dy
dx

= 1
5x cos(πy/6).

a) Use Mathematica to sketch the vector field associated to this ODE.

b) Based on the picture you see, give one explicit solution of the ODE.

c) Let y = f(x) be the solution to this ODE passing through the origin.
Find lim

x→∞
f(x) and lim

x→−∞
f(x).

d) Let y = f(x) be as in part (c). Estimate f(4) and f(−4).

e) Let y = h(x) be the solution to this ODE passing through (0,−2). Esti-
mate the smallest positive value of x such that h(x) = 0.
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11.5. Homework exercises

13. Consider the first-order ODE dy
dx

= 1
4(y3 − 16y).

a) Use Mathematica to sketch the vector field associated to this ODE.

b) Based on the picture you see, give three explicit solutions of the ODE.

c) Let y = f(x) be the solution to this ODE passing through (0, 1). Find
lim
x→∞

f(x).

d) Let y = h(x) be the solution to this ODE passing through (2,−2). Find
lim
x→∞

h(x).

14. Consider the first-order ODE dy
dx

= 2x+ y.

a) Use Mathematica to sketch the vector field associated to this ODE.

b) Let y = f(x) be the solution to this ODE passing through (−1, 1). Esti-
mate f(1).

In Problems 15-17, solve the indicated differential equation.

15. dy
dx

= x
y

16. (2 + x)y′ = 3y

17. yy′ = sin x

In Problems 18-22, solve the indicated initial value problem.

18.
{ √

x+√yy′ = 0
y(1) = 4

19.
{
y(1 + x2)y′ − x(1 + y2) = 0
y(0) =

√
3

20.
{
yy′ − ex = 0
y(0) = 6

21.
{

dy
dx

= ex−2y

y(0) = 0

22.
{

dy
dx

= y
4+x

y(0) = 1

23. Suppose you have 300 mg of a radioactive substance initially, and that after
8 years you have 280 mg of the substance remaining.

a) How much will you have left after 35 years?

b) How long will it take you to have 200 mg of the substance left?

24. Radioactive radium has a half-life of 1599 years (this means that if you start
with a certain amount of it, after 1599 years you will have half as much as
you started with). What percent of an initial sample of radium will be present
after 100 years?
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25. Assume that an initial investment of $750 is placed in an account. If the
amount of money in that account increases exponentially so that it takes 7.75
years to double, what is the annual rate of growth?

26. Assume that an initial investment of $50 is placed in an account. If the
amount of money in that account increases exponentially and there is $63
in the account after 3 years,

a) How long will it take the account to be worth $100?

b) How much money will be in the account after 10 years?

27. Suppose that the size of a bacteria culture follows a logistic equation. At time
t = 0 the bacteria culture weighs 1 gram, and two hours later the culture
weighs 2 grams. Suppose further that the maximum possible mass of the
culture is 10 grams.

a) Write the initial value problem which models the mass of the bacteria
culture.

b) Find the mass of the culture after 5 hours.

c) At what time will the mass of the culture be 8 grams?

28. A conservation organization releases 25 Florida panthers into a game pre-
serve. After 2 years, there are 39 panthers in the preserve. Assume that the
number of panthers in the preserve follows a logistic model with carrying
capacity 200.

a) Write the initial value problem which models the panther population.

b) How many panthers will be alive after 5 years?

c) When will the population reach 100?

29. Suppose y measures the concentration of dope in a professional athlete’s
system (scaled so that the maximum possible value of y is 1). Suppose the
amount of dope in the athlete’s system is .3 immediately after he takes a
dose. If the concentration of dope in the athlete’s system needs to be less
than .1 for him to pass a drug test, how long does he need to wait after his
dose in order to pass the test (assume the concentration in his system follows
a logistic model with k = −.05)?
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Answers

1. y′ = 12e4x = 4y.

2. y′ = 4Ce4x = 4y.

3. y′ = Cex
22x = 2xy.

4. Differentiate to get y′ = cos2 x −
sin2 x + 2 sin x cosx. Now 2y +
y′ = 2 sin x cosx−2 cos2 x+cos2 x−
sin2 x+ 2 sin x cosx = 4 sin x cosx−
1 = 2 sin 2x − 1 as desired. Last,
y(π/4) = 0 by direct calculation.

5. y = x3 + C

6. y = x− 2 ln x+ C

7. y = − ln x+ Cx+D

8. -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

9. -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

10. -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

11. -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

12. a) -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

b) y = 3 (also y = −3, y = 9, y =
−9)

c) Both answers are 3.

d) Both answers are about 1.7.

e) Roughly x = 5.
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13. a) -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

b) y = 4, y = 0, y = −4
c) 0
d) 0

14. a) -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

b) 1

15. 1
2y

2 = 1
2x

2 + C

16. ln y = 3 ln(x+2)+C (this simplifies
to y = K(x+ 2)3

17. 1
2y

2 = − cosx+ C

18. y = (9− x3/2)2/3

19. 1+y2

1+x2 = 4

20. 1
2y

2 = ex + 17

21. 1
2e

2y = ex − 1
2

22. ln y = ln(x+4)−ln 4 (this simplifies
to y = 1

4(x+ 4)

23. a) 221.836 mg

b) 47 years

24. 95.7%

25. 8.943%

26. a) 8.9976 years

b) $108.03

27. a)
{
y′ =

(
1
20 ln 9

4

)
y(10− y)

y(0) = 1
b) 270

59

c) t ≈ 8.838

28. a)
{
y′ =

(
1
20 ln 9

4

)
y(10− y)

y(0) = 25
b) 70
c) After 7.37 years

29. 27 days
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11.6 Review problems for Exam 4
Problems from Chapter 9

1. Precisely state both parts of the Fundamental Theorem of Calculus.

2. What is the difference between the concepts of definite integral and indefinite
integral?

Note: It is not correct to say that one of them has numbers on the integral
sign and one doesn’t; this only tells you the difference between the notation,
not the difference between the underlying concepts.

3. Why is it important to write the dx with the integral sign? There is a theoret-
ical answer and a practical answer; you should give both.

4. Suppose f and g are functions such that∫ 4

2
f(x) dx = 5;

∫ 7

2
f(x) dx = 3;

∫ 7

2
g(x) dx = 2.

Compute the following:

a)
∫ 7

4 f(x) dx
b)

∫ 2
4 f(x) dx

c)
∫ 7

2 (3f(x)− 2g(x)) dx
d)

∫ 4
2 (f(x)− x) dx

5. Let f(x) = x2, and let P be the partition {−6,−3,−2, 0}.

a) What is ||P||?
b) Using the usual indexing of numbers in a partition, what is ∆x2?

c) Using the usual indexing of numbers in a partition, what number is x1?

d) Estimate the area under f(x) from x = −6 to x = 0 by finding the left
Riemann sum associated to the partition P .

e) Is your answer to part (d) an overestimate, or an underestimate, of the
actual area under f from x = −5 to x = 0? Explain your answer.
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6. Use the graph of the function f given below to estimate the given values:

-2 -1 1 2 3 4 5 6 7 8 9 10

-2

-1

1

2

3

4

5

6

7

8

a)
∫ 2
−1 2f(x) dx

b)
∫ 6

3 f(x) dx
c)
∫ 0

2 f(x) dx
d)

∫ 1
1 4f(x) dx

Problems from Chapter 10

In Problems 7-16, evaluate the indicated integrals:

7.
∫ 3
−2(x2 − 2x) dx

8.
∫ ( 2

x5 + 3−
√
x
)
dx

9.
∫ π
π/4

sinx
2 dx

10.
∫

2 csc 3x cot 3x dx

11.
∫ (x−2)2

2x3 dx

12.
∫

sin8 x cosx dx

13.
∫√19

2 3x
√
x2 − 3 dx

14.
∫

6(3x4 − 7)12x3 dx

15.
∫ 5

2x−1 dx

16.
∫

(ex + 1)2 dx

17. Suppose an object is moving so that its acceleration at time t is a(t) = 24t2 +
120tm/sec2. If the velocity of the object at time 0 is 20 m/sec and the position
of the object at time 0 is −30, find the position and velocity of the object at
time 2.

18. Suppose that the rate at which electricity is used by a house at time t (mea-
sured in days) is given by f(t) = (1

4t
3 + 4)3t2 kW/day. Find the total amount

of electricity used by the house from t = 2 to t = 4.

Problems from Chapter 11

19. Find the general solution of the ODE 4y2y′ = sin x.

20. Find the solution to this initial value problem:{
dy
dx

= y2x2 + y2

y(2) = 3
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21. Use the picture below of a vector field associated to some ODE to answer the
following questions:

-5 0 5

-5

0

5

a) Give one explicit solution to the differential equation.

b) On the vector field above, sketch the graph of the solution to this ODE
passing through the point (5,−4).

c) Let y = f(x) be the solution to this ODE passing through the point (2, 0).

i. Estimate f(3).
ii. Estimate f ′(3).

iii. Estimate lim
x→∞

f(x).

iv. Estimate lim
x→−∞

f(x).

22. Suppose a bacterial culture has 300 cells in it initially. If after 1 hour, the
culture has increased to 800 cells, what will the population be after 12 hours?
Assume the number of cells in the culture grows exponentially.

23. Suppose the population of fish in a lake is given by a logistic equation where
the carrying capacity is 800 fish, and the rate of reproduction is .025 (per
year). If there are currently 8 fish in the lake, how many fish will be in the
lake 20 years from now?
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Answers

1. • One part (differentiation of integrals): Let f be continuous on [a, b] and
let F (x) =

∫ x
a f(t) dt. Then F is differentiable on [a, b] and F ′(x) = f(x).

• Other part (evaluation of integrals): Let f be continuous on [a, b] and
let F be any antiderivative of f . Then

∫ b
a f(x) dx = F (b)− F (a).

2. A definite integral is a number which represents the area under the graph of
f on some interval of x−values; an indefinite integral is the set of antideriva-
tives of a function, i.e. is a set of functions.

3. From a theoretical perspective, the dx represents the widths of really thin
rectangles whose areas are being added up to give the area under a function,
so without the dx, these widths are incorrectly being set to 1. From a practical
perspective, the dx tells you the type of integral you are computing, tells you
the variable of the integral, and helps with u-substitutions.

4. a)
∫ 7

4 f(x) dx =
∫ 7

2 f(x) dx−
∫ 4

2 f(x) dx = 3− 5 = −2.
b)

∫ 2
4 f(x) dx = −

∫ 4
2 f(x) dx = −5.

c)
∫ 7

2 (3f(x)− 2g(x)) dx = 3
∫ 7

2 f(x) dx− 2
∫ 7

2 g(x) dx = 3(3)− 2(2) = 5.
d)

∫ 4
2 (f(x)− x) dx =

∫ 4
2 f(x) dx−

∫ 4
2 x dx = 5− [1

2x
2]42 = 5− [8− 2] = −1.

5. a) ||P|| = 3, the width of the widest subinterval.
b) ∆x2 = −2− (−3) = 1.
c) x1 = −3. (The first number is x0.)
d) The Riemann sum is f(−6) ·3+f(−3) ·1+f(−2) ·2 = 36 ·3+9 ·1+4 ·2 =

108 + 9 + 8 = 125.
e) Since f ′(x) = 2x, f ′(x) < 0 for x ∈ [−6, 0] so f is decreasing on the inter-

val. Thus the left Riemann sum is also the upper sum for this partition,
hence it overestimates the actual area under f from x = −6 to x = 0.

6. a)
∫ 2
−1 2f(x) dx = 2

∫ 2
−1 f(x) dx = 2(3)(3) = 18 (the integral is 3(3) since it is

the area of a rectangle with height 3 and width 3).
b)

∫ 6
3 f(x) dx is the area of two triangles; the left-hand triangle has vertices

(3, 2), (3, 0) and (5, 0) so it has area 1
2(2)(2) = 2 and the right-hand trian-

gle has vertices (5, 0), (6, 0) and (6, 1) so it has area 1
2(1)(1) = 1

2 . So the
total area is 2 + 1

2 = 5
2 .

c)
∫ 0

2 f(x) dx = −
∫ 2

0 f(x) dx = −(2)(3) = −6.
d)

∫ 1
1 4f(x) dx = 0.

7.
∫ 3
−2(x2−2x) dx =

[
x3

3 − x
2
]3
−2

=
[

33

3 − 32
]
−
[

(−2)3

3 − (−2)2
]

= [9−9]−[−8
3 −4] =

20
3 .
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8.
∫ ( 2

x5 + 3−
√
x
)
dx = 2

∫
x−5 dx+

∫
3 dx−

∫
x1/2 dx = 2x−4

4 + 3x− x3/2

3/2 + C =
−1
2 x
−4 + 3x− 2

3x
3/2 + C.

9.
∫ π
π/4

sinx
2 dx = −1

2 cosx|ππ/4 = −1
2 cos π − −1

2 cos π
4 = 1

2 + 1
2
√

2 = 1
2 +

√
2

4 .

10. Let u = 3x so that du = 3dx and 2
3du = 2dx. Then after substituting, the

integral becomes
∫ 2

3 cscu cotu du = −2
3 cscu+ C = −2

3 csc 3x+ C.

11. Multiply out the numerator and split the integral:∫ (x− 2)2

2x3 dx =
∫ x2 − 4x+ 4

2x3 dx

=
∫ (1

2x
−1 − 2x−2 + 2x−3

)
dx

= 1
2

∫
x−1 dx− 2

∫
x−2 dx+ 2

∫
x−3 dx.

= 1
2 ln x+ 2x−1 − x−2 + C.

12. Let u = sin x so that du = cosx dx. After substituting, this becomes
∫
u8 du =

1
9u

9 + C = 1
9 sin9 x+ C.

13. Let u = x2 − 3 so that du = 2x dx and 3
2du = 3x dx. Now, when x = 2,

u = 22 − 3 = 1 and when x =
√

19, u = (
√

19)2 − 3 = 16. So substituting into
the integral, we get

∫ 16
1

3
2
√
u du = 3

2
u3/2

3/2 |
16
1 = u3/2|16

1 = 163/2−13/2 = 64−1 = 63.

14. Let u = 3x4 − 7 so that du = 12x3 dx and 1
2du = 6x3 dx. Substituting into the

integral, we obtain
∫ 1

2u
12 du = 1

2
u13

13 + C = 1
26(3x4 − 7)13 + C.

15. Let u = 2x − 1 so that du = 2dx and 1
2du = dx. Then the integral becomes

5
2

1
u
du = 5

2 ln u+ C = 5
2 ln(2x− 1) + C.

16. Multiply out, then integrate:
∫

(e2x + 2ex + 1) dx = 1
2e

2x + 2ex + x+ C.

17. First, v(t) =
∫
a(t) dt =

∫
(24t2 + 120t) dt = 8t3 + 60t2 +C. To find C, note that

v(0) = 20 so 20 = 8(0)3 + 60(0)2 + C so C = 20. Then v(t) = 8t3 + 60t2 + 20.

Now, p(t) =
∫
v(t) dt =

∫
(8t3 + 60t2 + 20) dt = 2t4 + 20t3 + 20t + D. To find

D, note that p(0) = −30 so −30 = 2(0)4 + 20(0)3 + 20(0) + D so D = −30.
Therefore the position is p(t) = 2t4 + 20t3 + 20t− 30 m.

Finally, the position at time 2 is p(2) = 2(2)4 + 20(2)3 + 20(2) − 30 = 32 +
160 + 40− 30 = 202 and the velocity at time 2 is v(2) = 8(2)3 + 60(2)2 + 20 =
64 + 240 + 20 = 324 m/sec.

18. We need to compute
∫ 4

2 (1
4t

3 + 4)3t2 dt. Use the u−sub u = 1
4t

3 + 4, du = 3
4t

2 to
get

∫ 20
6

4
3u

3 du = 1
3u

4|20
6 = 1

3(204 − 64) kW.
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19. Separate variables to get 4y2 dy = sin x dx; then integrate both sides to get
4
3y

3 = − cosx+ C.

20. Factor the right-hand side to get dy
dx

= y2(x2 + 1); then divide both sides by y2

and write in differential form (i.e. “multiply by dx”) to get 1
y2dy = (x2 + 1)dx.

Integrate both sides to get
∫
y−2 dy =

∫
(x2 + 1) dx, i.e. −y−1 = 1

3x
3 + x + C.

Plugging in 2 for x and 3 for y and solving for C, we get C = −5. So the
solution is −y−1 = 1

3x
3 + x− 5.

21. a) y = −2 and y = 3 are both acceptable answers.

b) This curve approaches −2 as x → −∞, decreases, passes through (5, 4),
then heads southeast.

c) i. f(3) ≈ 2.
ii. f ′(3) ≈ 1, the slope of the curve at x = 3.

iii. lim
x→∞

f(x) = 3.

iv. lim
x→−∞

f(x) = −2.

22. The exponential growth equation is y = Cekt. Substituting in t = 0, y = 300,
we get C = 300 so y = 300ekt. Now substituting in t = 1, y = 800 we get
800 = 300ek·1, i.e. k = ln 8

3 . Now when t = 12, y = 300eln(8/3)·12 = 300 · (8/3)12.

23. The logistic equation is y = L
1+Ce−kLt = 800

1+Ce−.025·800t = 800
1+Ce−20t . Substituting

in t = 0 and y = 8, we get 8 = 800
1+C , i.e. C = 99. This gives the equation

y = 800
1+99e−20t ; plugging in t = 20 we get 800

1+99e−400 fish in the lake after 20 years.
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Appendix A

Mathematica information

A.1 General Mathematica principles
Mathematica is an extremely useful and powerful software package / program-

ming language invented by a mathematician named Stephen Wolfram. Early ver-
sions of Mathematica came out in the late 1980s and early 1990s; the most recent
version (which is loaded onto machines at FSU as of 2017) is Mathematica 11.

Mathematica does symbolic manipulation of mathematical expressions; it solves
all kinds of equations; it has a library of important functions from mathematics
which it recognizes while doing computations; it does 2- and 3-dimensional graph-
ics; it has a built-in word processor tool; it works well with Java and C++; etc. One
thing it doesn’t do is prove theorems, so it is less useful for a theoretical mathemati-
cian than it is for an engineer or college student.

A bit about how Mathematica works: When you use the Mathematica program,
you are actually running two programs. The “front end” of Mathematica is the part
that you type on and the part you see. This part actually resides on the machine at
which you are seated. The “kernel” is the part of Mathematica that actually does the
calculations. If you type in 2 + 2 and hit [SHIFT]+[ENTER], the front end “sends”
that information to the kernel which actually does the computation. The kernel
then “sends” the result back to the front end, which displays the output 4 on the
screen. Essentially, the way one uses Mathematica is by typing some “stuff” in, hit-
ting [SHIFT]+[ENTER] to execute that stuff, and getting some output back from
the program.

About Mathematica notebooks and cells: The actual files that Mathematica
produces that you can edit and save are called notebooks and carry the file designa-
tion *.nb; they take up little space and can easily be saved to Google docs or on a
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flash drive, or emailed to yourself if you want them somewhere you can retrieve
them. Suggestion: when saving any file, include the date in the file name (so it is
easier to remember which file you are supposed to be open).

A Mathematica notebook is broken into cells. A cell can contain text, input, or
output. A cell is indicated by a dark blue, right bracket (a “]”) on the right-hand
side of the notebook. To select a cell, click that bracket. This highlights the “]”
in blue. Once selected, you can cut/copy/paste/delete cells as you would high-
lighted blocks of text in a Word document.

To change the formatting of a cell, select the cell, then click“Format / Style”
and select the style you want. You may want to play around with this to see what
the various styles look like. There are three particularly important styles:

• input: this is the default style for new cells you type
• output: this is the default style for cells the kernel produces from your com-

mands
• text: changing a cell to text style allows you to make comments in between

the calculations

Executing mathematical commands: To execute an input cell, put the cursor
anywhere in the cell and hit [ENTER]. Well, not any [ENTER]; you have to use
the [ENTER] on the numeric keypad at the far-right edge of the keyboard. The
[ENTER] next to the apostrophe key (a.k.a. [RETURN]) gives you only a carriage
return. You can also hold down the [SHIFT] key and hit either [ENTER] or [RE-
TURN] to execute a command.
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Important general concepts re: Mathematica syntax

1. Multiplication: use a star or a space: 2 * 3 or 2 3 will multiply numbers;
a x means a times x; ax means the variable ax (in Mathematica, variables do
not have to be named after one letter; they can be named by words or other
strings of characters as well).

2. Parentheses: used for grouping and multiplication only. Parentheses mean
“times” in Mathematica, and always mean that you intend to multiply what
is in front of the parenthesis by what is inside the parenthesis.

3. Brackets: must be used to surround the input of any function or built-in
Mathematica command. For example, to evaluate a function f(x), you would
type f[x], not f(x). Essentially, square brackets mean “of” in Mathematica.

4. Capitalization: All Mathematica commands and built-in functions begin with
capital letters. For example, to find the sine of π, typing sin(pi) or sin[pi]
does you no good (the first version would be the variable “sin” times the
variable “pi”, for instance). The correct syntax is Sin[Pi]. Similarly, e is E
and i is I in Mathematica.

5. Spaces: Mathematica commands do not have spaces in them; for example, the
inverse function of sine is ArcSin, not Arc Sin or Arcsin.

6. Pallettes: Lots of useful commands are available on the Basic Math Assistant
Pallette, which can be brought up by clicking “Pallettes / Basic Math Assis-
tant” on the toolbar. If you click on a button in the pallette, what you see
appears in the cell. The tab halfway down this palette marked d

∫
Σ has cal-

culus commands, and the tab to the right of the d
∫

Σ has matrix commands.

7. Logarithms: Mathematica does not know what Ln is. For natural logarithms
(base e), type "Log[ ]". For common logarithms (base 10), type "Log10[ ]".

8. % refers to the last output (like “Ans” on a TI-calculator).

9. Help: To get help on a command, type “?” followed by the command you
don’t understand. If necessary, click the � you get at the end of the help
blurb to open a help browser. You can also find out how to do lots of stuff in
Mathematica by using Google: search for what you want help on.

10. Mathematica gives exact answers (i.e. not decimals) for everything if possible.
If you need a decimal approximation, use the command N[ ]. For example,
N[Pi] spits out 3.14159...

11. If Mathematica freezes up in the middle of a calculation, click “Evaluation /
Abort Evaluation” on the toolbar.
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A.2 Mathematica quick reference guides
Basic operations

Expression Mathematica syntax

SP
EC

IA
L

SY
M

BO
LS e E

π Pi
i (i.e.

√
−1) I

∞ Infinity (or use Basic Math Assistant palette)

A
R

IT
H

M
ET

IC

3 + 4x 3 + 4x
5− 7 5 - 7

8z 8z or 8 z or 8 * z
xy x y (don’t forget the space)
7
3 7/3

x−7+2y
a−7b To get the fraction bar, type [CONTROL]+/

then use [TAB] to move between the top and bottom√
32 Sqrt[32]

(or type [CONTROL]+2 to get a√ sign)
(or use Basic Math Assistant palette)

4
√

40 40^(1/4) (or use Basic Math Assistant palette)
|x− 3| Abs[x-3]

30! (factorial) 30!

EX
PS

A
N

D
LO

G
S ln 3 Log[3]

log6 63 Log[6,63]
log 18 Log10[18] or Log[10,18]

27y 2^(7y)
(or type 2, then [CONTROL]+6, then 7y)
(or use Basic Math Assistant palette)

ex−5+x2 E^(x-5+x^2) or Exp[x-5+x^2]
(or use Basic Math Assistant palette)

TR
IG

sin π Sin[Pi]
cos(x(y + 1)) Cos[x(y+1)]
cot

(
2π
3 + 3π

4

)
Cot[2 Pi/3 + 3 Pi/4]

arctan 1 ArcTan[1]

Objective Mathematica syntax
To call the preceding output %

To get a decimal approximation to the N[%] (or click numerical value)
preceding output
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Solving equations (see also section A.4)

Objective Mathematica syntax
Find exact solution(s) to equation Solve[lhs == rhs, x]
of form lhs = rhs (two equals signs)

(works only with polynomials
or other relatively “easy”
equations)

Find decimal approximation(s) NSolve[lhs == rhs, x]
to solution(s) of equation lhs = rhs (two equals signs)

(works only with “easy” equations)

Find decimal approximation(s) to FindRoot[lhs == rhs, {x,guess}]
to solution(s) of equation lhs = rhs (two equals signs)

Defining functions

Objective Mathematica syntax
Define a function f(x) = formula f[x_] = formula

(one equals sign, underscore after x)

Tables and graphs (see also Section A.3)

Objective Mathematica syntax
Generate table of values for f Table[{x,f[x]}, {x,xmin,xmax,step}]

(put //TableForm at end of command
to arrange output in a table)

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax}]

Plot multiple graphs at once Plot[{formula,formula, ..., formula},
{x,xmin,xmax}]

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with range of y−values specified PlotRange -> {ymin,ymax}]

Plot the graph of f(x) = formula Plot[formula, {x,xmin,xmax},
with x- and y-axes on same scale PlotRange -> {ymin,ymax},

AspectRatio -> Automatic]
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Function operations and calculus

Expression Mathematica syntax

f(x+ 3) (if f is a function) f[x+3]
xf(2x)− x2f(x) x f[2x] - x^2 f[x]

(spaces important)
(f ◦ g)(x) f[g[x]]

lim
x→4

f(x) Limit[f[x], x -> 4]

f ′(3) f’[3]
g′′′(x) g’’’[x] or D[g[x],{x,3}]

∫
x2 dx Integrate[x^2,x]

(or use
∫

sign on Basic Math Assistant palette)∫ 5
2 cosx dx Integrate[Cos[x], {x, 2, 5}]

(or use
∫ �
� sign on Basic Math Assistant palette)

(for a decimal approximation, use NIntegrate)

12∑
k=1

f(k) Sum[f[k], {k, 1, 12}]

(or use Basic Math Assistant palette)

∞∑
k=1

blah Sum[blah, {k, 1, Infinity}]

(or use Basic Math Assistant palette)

Other
Objective Mathematica syntax
Factor a polynomial Factor[ ]

Multiply an expression out Expand[ ]
(i.e. “FOIL” an expression)
(i.e. “undo” factoring)

Simplify an expression Simplify[ ]
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A.3 Graphing functions with Mathematica
Defining a function in Mathematica

To graph a function y = f(x) on Mathematica, you usually start by defining the
function. For example, to define a function like f(x) = 3 cos 4x− x, execute

f[x_] = 3 Cos[4x] - x

You could just as well use a different letter for the independent variable. For ex-
ample, typing

f[t_] = 3 Cos[4t] - t

would accomplish the same thing as above. However, don’t mix and match! Typ-
ing

f[x_] = 3 Cos[4t] - t

doesn’t accomplish anything, because there is a x on the left-hand side, and a t on
the right-hand side.

The general syntax for defining a function is

function name[variable_] = formula

it is important to include the underscore after the variable to tell Mathematica you
are defining a function.

The basic Plot command

Immediately after defining a function as above, you will get (underneath your out-
put) a list of suggested follow-up commands. One of these is plot. If you click the
word plot, you will get a graph of the function you just defined. Here, Mathemat-
ica picks a range of x- and y-values it thinks will work well for the function you
defined. It is useful to remember the syntax of this Plot command:

Plot[formula, {variable, xmin, xmax}]

In this command:

• formula is the function you want the graph of. It could be an expression like
f[x] or f[t], or a typed-out formula like 3 Cos[4x] - x.

• variable is the name of the independent variable (usually x or t); this must
match the variable in the formula.
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• xmin and xmax are numbers which represent, respectively, the left-most and
right-most values of the independent variable shown on the graph. For ex-
ample, if your Plot command has {x,-3,5} in it, then the graph will go from
x = −3 to x = 5.

Here is an example, which plots f(x) = 3 cos 4x− x from x = −10 to x = 10:

Plot[3 Cos[4x] - x, {x, -10,10}]
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-10

-5

5

10

Plotting multiple functions at once

Suppose you want to plot more than one function on the same set of axes. To do
this, you tweak the earlier Plot command by replacing the formula with a list of
formulas inside squiggly braces, separated by commas. Thus the command you
execute looks something like this:

Plot[{formula1, formula2, ...}, {variable, xmin, xmax}]

For example, the following command plots sin 2x, 2 sin x and sin x+ 2 on the same
set of axes:

Plot[{Sin[2x], 2 Sin[x], Sin[x] + 2}, {x, -2 Pi, 2 Pi}]

-6 -4 -2 2 4 6

-2

-1

1

2

3

In Mathematica 10, the first graph you type will be blue; the second graph you type
will be orange; the third graph you type is green; other graphs are in other colors.
To change the way the graphs look, consult the end of this section.
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Specifying a range of y-values

By default, Mathematica just chooses a range of y-values it thinks will make the
graph look good. If you want to force Mathematica to use a particular range of y-
values, then you have to insert a phrase in the Plot command called PlotRange.
This goes after the {x,xmin,xmax} and after another comma, but before the clos-
ing square bracket. The general command is

Plot[{formulas}, {var,xmin,xmax}, PlotRange -> {ymin,ymax}]

and an example of the code, which plots sin x on the viewing window [−π, π] ×
[−2, 3] is

Plot[Sin[x], {x, -Pi, Pi}, PlotRange -> {-2,3}]
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Making the x- and y-axes have the same scale on the screen

Here is the graph of f(x) = 3 cos 4x − x that Mathematica produces with the com-
mand

Plot[3 Cos[4x] - x, {x, -10,10}]
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If you look at this graph, the distance from the origin to (5, 0) looks a lot longer
than the distance from the origin to (0, 5). But in actuality, both these distances
are 5 units. The graph is distorted so that it fits nicely on your screen. To fix
the distortion (you might want to do this if you needed to estimate the slope of
a graph accurately), insert the command AspectRatio -> Automatic into the Plot
command (similar to how you would insert a PlotRange command). This forces
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the number of pixels on your screen representing one unit in the x direction to
be equal to the number of pixels on your screen representing one unit in the y
direction. Here is the general syntax:

Plot[{formulas}, {var,xmin,xmax}, AspectRatio -> Automatic]

This command can also be used with the PlotRange command:

Plot[{formulas}, {var,xmin,xmax}, PlotRange -> {ymin,ymax},
AspectRatio -> Automatic]

Here is an example command:

Plot[3 Cos[4x] - x, {x, -10,10}, AspectRatio -> Automatic]
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Changing the appearance of the curves

As mentioned earlier, by default Mathematica graphs all the functions with solid
lines, using different colors for different formulas on the same picture. To change
this, insert various directives into the Plot command using PlotStyle. Here are
some examples:

Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Thick]
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Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dashed]
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Plot[3 Cos[4x] - x, {x, -10,10}, PlotStyle -> Dotted]
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If you are plotting more than one function at once, then after the PlotStyle ->,
you can type a list of graphics directives, separated by commas, enclosed by a set
of squiggly braces. The directives will be applied to each function you are graph-
ing, in the same order as they are typed after the PlotStyle ->. For example, this
command plots x, 2x and 3x, where x is thick and black, 2x is red and dotted, and
3x is blue and dashed:

Plot[{x,2x,3x}, {x, -3,3},
PlotStyle -> {{Thick, Black}, {Dotted, Red}, {Blue, Dashed}}]
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A.4 Solving equations with Mathematica
There are three methods to solve an equation using Mathematica. They have

something in common: to solve an equation, the equation must be typed with two
equals signs where the = is. (A single equal sign is used in Mathematica to assign
values to variables, which doesn’t apply in the context of solving equations.)

The Solve command

To solve an equation of the form lhs = rhs, execute

Solve[lhs == rhs, variable]

where variable is the name of the variable you want to solve for. For example, to
solve x2 − 2x− 7 = 0 for x, execute Solve[x^2 - 2x - 7 == 0, x].

You can solve an equation for one variable in terms of others: for example,
Solve[a x + b == c, x] solves for x in terms of a, b and c.

WARNING: The advantage of the Solve command is that it gives exact an-
swers (no decimals); this can be a pro or con (as sometimes the exact answers are
horrible to write down). The disadvantage is that it only works on polynomial, ra-
tional and other “easy” equations. It won’t work on equations that mix-and-match
trigonometry and powers of x like x2 = cosx.

The NSolve command

NSolve works exactly like Solve, except that it gives decimal approximations to the
solutions. It has the same drawback as Solve in that it only works on reasonably
“easy” equations. The syntax is

NSolve[lhs == rhs, variable]

The FindRoot command

To find decimal approximations to equations that are too hard for the Solve and
NSolve commands, use FindRoot. This executes a numerical algorithm to estimate
a solution to an equation. The good news is that this command always works; the
bad news is that it requires an initial “guess” as to what the solution is (usually
you determine the initial guess by graphing both sides of the equation and seeing
roughly where the graphs cross). For example, to find a solution to x2 = cosx near
x = 1, execute

FindRoot[x^2 == Cos[x], {x, 1}]
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and to find a solution to the same equation near x = −1, execute

FindRoot[x^2 == Cos[x], {x, -1}]

(these probably won’t give the same solution). The general syntax for this com-
mand is

FindRoot[lhs==rhs, {variable,guess}]

A.5 Code for Newton’s method
You need three lines of code, all in the same cell. For example, to implement

Newton’s method for the function f(x) = x2 − 2 where x0 = 3 and you want to
perform 6 iterations (to find x6), just type

f[x_] = x^2 - 2;
Newton[x_] = N[x - f[x]/f’[x]];
NestList[Newton, 3, 6]

and execute (all three lines at once). The first line defines the function f , the second
line gives a name to the formula you iterate in Newton’s Method, and the last line
iterates the formula and spits out the results.

The resulting output for the code listed above is:

{3, 1.83333, 1.46212, 1.415, 1.41421, 1.41421, 1.41421}

These numbers are x0, x1, x2, ..., x6 so for example, x2 = 1.46212 and x4 = 1.41421...
and x6 = 1.41421 (the same as x4 to 5 decimal places).

To implement Newton’s method for a different function, different initial guess
and different number of iterations, simply change the formula for f , change the 3
to the appropriate value of x0 and the 6 to the number of times you want to iterate
Newton’s method.
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A.6 Code for Riemann sums
In this section we discuss how to compute left- and right- Riemann sums us-

ing Mathematica. Ultimately, to do a Riemann sum you need to execute three com-
mands found later in this section; for now we explain where these commands come
from.

1. Defining the function f

First, recall that to define a function you use an underscore. For example, the
following command defines f to be the function f(x) = x2:

f[x_] = x^2

2. Defining the partition P

Defining a partition in Mathematica is easy. Just use braces, and list the numbers
from smallest to largest. For example, to define the partition P = {0, 1, 5

2 , 4, 7}, just
execute

P = {0, 1, 5/2, 4, 7}

We often use partitions which divide [a, b] into n equal-length subintervals. To
create such a partition in Mathematica, use the Range command. For example, to
define a partition of [0, 2] into 10 equal-length subintervals, execute the following:

P = Range[0, 2, (2-0)/10]

The 0 is a, the 2 is b, and the last number 2-0/10 is b−a
n

, the width of each subin-
terval. In general, to split [a, b] into n equal-length subintervals, execute

P = Range[a,b,(b-a)/n]

3. How to get to the individual numbers in a partition P

Suppose you have defined a partitionP = {x0, x1, ..., xn} in Mathematica. To call
one of the elements of P , use double brackets as shown below. There is a catch:
in handwritten math notation, we write our partitions starting with index 0. But
Mathematica starts its partitions with index 1. So if P = {0, 1, 5/2, 4, 7} has been
defined in Mathematica, executing
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P[[3]]

generates the output 5
2 , which we think of as x2, not x3.

In general, once you have typed in a partition P ,

• execute P[[j]] to get the (j − 1)th term xj−1, and

• execute P[[j+1]] to get the jth term xj .

4. How to do sums (not necessarily Riemann sums) in Mathematica

Suppose you want to compute some sum which is written in Σ−notation. To
do this, open the Basic Math Assistant pallette and click the [d

∫ ∑] button (located
under the phrase “Basic Commands”). In the first column of buttons, you will see
a
∑

which you can click on to put a
∑

in your cell. You will get boxes to type all
the pieces of the sum in.

5. An explanation of how to generate a Riemann sum for a function

First, remember that in any Riemann sum, ∆xj = xj − xj−1. From the remarks
earlier in this section, we know that in Mathematica this expression is P[[j+1]] - P[[j]].

Next, suppose we are doing a left-hand sum. Then the test points cj satisfy

cj = left endpoint of the jth subinterval
= left endpoint of [xj−1, xj]
= xj−1.

Therefore, cj = xj−1 should be P[[j]] in Mathematica code, and f(cj) is f[ P[[j]] ].

Putting this together, the right Mathematica code for a left-hand Riemann sum
(assuming you have defined your function f and your partition P) is

n∑
j = 1

f[ P[[j]] ] (P[[j + 1]] - P[[j]])

6. The final commands for left- and right-hand Riemann sums

From above, we came up with the following sequence of commands for com-
puting a left-hand Riemann sum:
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Syntax to compute a left-hand Riemann sum

To evaluate a left-hand Riemann sum, execute the following commands:

f[x_] = x^2
(or whatever your function is)

P = {0, 1/2, 3/4, 1}
(or whatever your partition is)

∑n
j = 1 f[ P[[j]] ] (P[[j+1]] - P[[j]])
(n is the number of subintervals)

To evaluate a right-hand sum, the only thing that changes is the test point cj ,
which goes from the left endpoint xj−1 (i.e. P[[j]]) to the right endpoint xj (i.e.
P[[j+1]]). Thus the commands for computing a right-hand Riemann sum are
similar:

Syntax to compute a right-hand Riemann sum

To evaluate a right-hand Riemann sum, execute the following commands:

f[x_] = x^2
(or whatever your function is)

P = {0, 1/2, 3/4, 1}
(or whatever your partition is)

∑n
j = 1 f[ P[[j+1]] ] (P[[j+1]] - P[[j]])
(n is the number of subintervals)
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A.7 Code for vector fields and differential equations
Code to plot a vector field

Here is an example of the syntax which produces the vector field associated to a
first-order ODE (type this all in one cell):

g[x_,y_] : = 3y;
VectorPlot[{1,g[x,y]},{x,-3,-3},{y,-3,3}, VectorPoints -> 20,
Axes -> True, VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange]

What this command does: First, the function g(x, y) is defined in the first line. If
you wanted to sketch a vector field for a different equation, you can change the 3y
here to whatever formula is given by g(x, y). Second, the VectorPlot command
tells Mathematica to sketch the vector field. The relevant ingredients here are as
follows:

• The {x, -3, 3} and {y, -3, 3} tell Mathematica to produce a picture that
runs from x = −3 to x = 3 and y = −3 to y = 3, i.e. it specifies the range of
the picture.

• The VectorPoints -> 20 tells Mathematica how many vectors to draw. If
you change 20 to a larger number, you get more densely drawn arrows. This
produces a more accurate picture of the vector field, but the program will
take longer to run. On the other hand, if you change 20 to a smaller (positive)
number, less arrows will be drawn, resulting in a less dense picture.

• The Axes -> True tells Mathematica to draw the x- and y- axes on the picture.
• The VectorScale -> {Automatic, Automatic, None} tells Mathematica to make

sure all the vectors are scaled so that you can see them (without this com-
mand many of the vectors drawn would be too small to see).

• The VectorStyle -> Orange tells Mathematica to make the vectors orange.
An interesting thing to do is to replace this command with the following
phrase: VectorColorFunction -> Hue to get a ’tie-dye’ looking picture.

Code to produce a stream plot

Here is a command which plots both the vector field and some solution curves to
the differential equation y′ = g(x, y). It comes from taking the command above
and adding some additional programming inside the VectorPlot command:

g[x_,y_] : = 3y;
VectorPlot[{1,g[x,y]},{x,-3,-3},{y,-3,3}, VectorPoints -> 20,
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Axes -> True, VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange, StreamPoints -> 35, StreamScale -> Full,
StreamStyle -> {Blue, Thick}]

As before, the first line defines g(x, y); the {x, -3, 3} and {y, -3, 3} deter-
mine the range of the picture; the VectorPoints -> 20 tell Mathematica how many
arrows to draw; Axes -> True tells Mathematica to draw the x- and y- axes; and
the VectorScale command ensures the vectors are big enough to see.

What’ s new here are the commands regarding "Streams". The StreamPoints -> 35
asks Mathematica to draw 35 stream lines (a stream line is a graph that ’ follows’
the vector field as described in lecture). If you lower the number 35, less stream
lines are drawn and if you increase the number, more stream lines are drawn.

The StreamScale -> Full command ensures that the stream lines are connected
when they should be (so that you get a much better picture). The last bit tells Math-
ematica what color to make the stream lines and to make them thick.

Code to produce a steam plot through a particular point

Suppose you wanted to draw one stream line that went through one specified
point. In this case, you modify the above command by changing the StreamPoints
directive from 35 to {{a,b}} where you want to draw the stream line through the
point (a, b). For example, in the above picture, if you wanted the stream line pass-
ing through the point (1, 2), your command would be :

g[x_,y_] : = 3y;
VectorPlot[{1,g[x,y]},{x,-3,-3},{y,-3,3}, VectorPoints -> 20,
Axes -> True, VectorScale -> {Automatic, Automatic, None},
VectorStyle -> Orange, StreamPoints -> {{1,2}}, StreamScale -> Full,
StreamStyle -> {Blue, Thick}]

Euler’s method

All this code is available in the file eulermethod.nb, available on my web page.
To implement Euler’s method using Mathematica, first run this block of code

once each time you start Mathematica to define a program called euler:

euler[f_, {t_, t0_, tn_}, {y_, y0_}, steps_] :=
Block[{told = t0, yold = y0, thelist = {{t0, y0}}, t, y, h},
h = N[(tn - t0)/steps];
Do[tnew = told + h;
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ynew = yold + h *(f /.{t -> told, y -> yold});
thelist = Append[thelist, {tnew, ynew}];
told = tnew;
yold = ynew, {steps}];

Return[thelist];]

Once the above command is executed, you can then implement Euler’s method
with:

euler[formula, {t,t0, tn}, {y,y0}, n]

Here,
• (t0, y0) is the initial value;
• tn is the value of t where you want to estimate y (i.e. the ending value of t);
• n is the number of steps.

To get only the last point in the list (which is usually what you are most interested
in), tweak this command as follows:

euler[3y, {t,1,3}, {y,-1}, 400][[401]]

The number in the double brackets should always be one more than the num-
ber of steps.

Plotting the points coming from Euler’s method

Surround the euler command with ListPlot[ ]:

ListPlot[euler[3y, {t, 1,3}, {y, -1}, 400]]
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Difference Rule, 116
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differential equation, 310
differentials, 217
differentiate, 84
differentiation rules, summary, 162
differentiation, implicit, 156, 158
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355
Existence-Uniqueness Theorem for first-

order ODEs, 318
Exponent rules, 5
exponent rules, 7
exponential decay, 323
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first derivative, 126
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functions in Mathematica, 342, 344
functions, operations on, 15
Fundamental Theorem of Calculus Part

I, 269
Fundamental Theorem of Calculus Part
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general solution (of ODE), 318
global maximum, 183
global minimum, 183
graph (of a function), 14
graphing with Mathematica, 342, 344
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higher-order derivative, 126
hole discontinuity, 58
horizontal asymptote, 46

implicit differentiation, 156, 158
increasing, 191
indefinite integral, 287
indeterminate form, 61, 219
inequality properties of integrals, 264
infinite discontinuity, 58
infinite limits, 44
infinity, arithmetic rules with, 61
inflection point, 192
initial value, 318
initial value problem, 318
instantaneous velocity, 82, 85
integrable, 260
integral, additivity property of, 265
integral, definite, 260
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integral, linearity properties of, 264
integration by u-substitution (definite

integrals), 299
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integration by u-substitution (indefi-
nite integrals), 294

integration rules, 291
inverse sine, definition of, 25
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jump discontinuity, 58

L’Hôpital’s Rule, 220
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left-hand limits, 41
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limit at infinity, 46
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limit, approximation via tables, 37
limit, formal definition, 40
limit, graphical interpretation, 36
limit, infinite, 44
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limit, one-sided, 41
limit, right-hand, 41
limiting capacity, 324
linear approximation, 211
Linear Function Rule, 111
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local maximum, 183
local maximum value, 183
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local minimum value, 183
logarithm base b, 8
logarithm rules, 9
logarithm, common, 8
logarithm, definition, 8
logarithm, natural, 8
logarithmic function, derivative of, 125
logistic equation, 324
logistic equation, solution of, 325
lower Riemann sum, 258

Main Limit Theorem, 60
Max-Min Existence Theorem, 185

Max-Min Inequality, 264
maximum, absolute, 183
maximum, global, 183
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minimum, absolute, 183
minimum, global, 183
minimum, local, 183
minimum, relative, 183
monotone, 191
Monotonicity Law, 264
Montonicity Test, 192

natural logarithm, 8
Newton’s method, 225
Newton’s method, Mathematica code,

227, 350
Newton’s method, problems with, 228
norm (of a partition), 256
notebook (Mathematica), 339

ODE, 310
ODE, first-order, 313
one-sided limits, 41
operations on functions, 15
optimization problem, 185
optimization problem, constrained, 181
optimization problem, free, 181
optimization procedure, 186, 188
ordinary differential equation, 310
oscillating discontinuity, 58

particular solution (of ODE), 318
partition, 256
piecewise-defined function, 16
point-slope formula, 20
Positivity Law, 264
Power Rule, 114
Product Rule, 143
Product Rule vs. Chain Rule, 154
properties of arcsine and arctangent,

25
proportionality constant, 323
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quadratic approximation, 214
Quotient Rule, 145

range (of a function), 12
rate of reproduction (logistic equation),

324
related rates, 231
relative maximum, 183
relative minimum, 183
removable discontinuity, 58
Riemann sum, 257
right Riemann sum, 258
right-hand limits, 41
rule (of a function), 13

second derivative, 126
Second Derivative Test, 194
second derivative, graphical interpre-

tation, 128
separable (ODE), 319
shifts on functions, 18
slope (of a curve), 85
slope (of a line), 19
slope field, 314
slope-intercept formula, 20
solving equations with Mathematica, 342
solving separable ODEs, 320
subinterval, 256
sum, 255
Sum Rule, 116
summation notation, 255

tangent line, 79
tangent line approximation, 211
tangent line, equation of, 85
third derivative, 126
tone, 191
transformations on functions, 18
trig functions, derivative of, 122, 148
trigonometric functions, definition of,

21, 22
trigonometric identities, 23

units of the derivative, 85

upper Riemann sum, 258
utility, 180

variable (optimization problem), 180
vector field, 314
vector field, Mathematica code, 316
vector field, interpretation of, 317
velocity, instantaneous, 82, 85
vertical asymptote, 45
Vertical Line Test, 15

width (of a subinterval), 256

zeroth derivative, 126
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