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Chapter 1

Introduction

The difference between advanced calculus and calculus is that all the theorems are
proved completely and the role of plane geometry is minimized. Instead, the notion of
completeness is of preeminent importance. Silly gimmicks are of no significance at all.
Routine skills involving elementary functions and integration techniques are supposed to
be mastered and have no place in advanced calculus which deals with the fundamental
issues related to existence and meaning. This is a subject which places calculus as part
of mathematics and involves proofs and definitions, not algorithms and busy work.

An orderly development of the elementary functions is included but it is assumed the
reader is familiar enough with these functions to use them in problems which illustrate
some of the ideas presented.
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Chapter 2

The Real And Complex
Numbers

2.1 The Number Line And Algebra Of The Real Num-
bers

To begin with, consider the real numbers, denoted by R, as a line extending infinitely far
in both directions. In this book, the notation, ≡ indicates something is being defined.
Thus the integers are defined as

Z ≡{· · · − 1, 0, 1, · · · } ,

the natural numbers,

N ≡ {1, 2, · · · }

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q ≡
{m
n

such that m,n ∈ Z, n ̸= 0
}

are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4
-�

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that
R has the following algebra properties, listed here as a collection of assertions called
axioms. These properties will not be proved which is why they are called axioms rather
than theorems. In general, axioms are statements which are regarded as true. Often
these are things which are “self evident” either from experience or from some sort of
intuition but this does not have to be the case.

Axiom 2.1.1 x+ y = y + x, (commutative law for addition)

Axiom 2.1.2 x+ 0 = x, (additive identity).

9
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Axiom 2.1.3 For each x ∈ R, there exists −x ∈ R such that x+ (−x) = 0, (existence
of additive inverse).

Axiom 2.1.4 (x+ y) + z = x+ (y + z) , (associative law for addition).

Axiom 2.1.5 xy = yx, (commutative law for multiplication).

Axiom 2.1.6 (xy) z = x (yz) , (associative law for multiplication).

Axiom 2.1.7 1x = x, (multiplicative identity).

Axiom 2.1.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multi-
plicative inverse).

Axiom 2.1.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others
besides R) which has two such operations satisfying the above axioms is called a field.
Division and subtraction are defined in the usual way by x− y ≡ x+ (−y) and x/y ≡
x
(
y−1

)
. It is assumed that the reader is completely familiar with these axioms in the

sense that he or she can do the usual algebraic manipulations taught in high school and
junior high algebra courses. The axioms listed above are just a careful statement of
exactly what is necessary to make the usual algebraic manipulations valid. A word of
advice regarding division and subtraction is in order here. Whenever you feel a little
confused about an algebraic expression which involves division or subtraction, think of
division as multiplication by the multiplicative inverse as just indicated and think of
subtraction as addition of the additive inverse. Thus, when you see x/y, think x

(
y−1

)
and when you see x − y, think x + (−y) . In many cases the source of confusion will
disappear almost magically. The reason for this is that subtraction and division do not
satisfy the associative law. This means there is a natural ambiguity in an expression
like 6 − 3 − 4. Do you mean (6− 3) − 4 = −1 or 6 − (3− 4) = 6 − (−1) = 7? It
makes a difference doesn’t it? However, the so called binary operations of addition and
multiplication are associative and so no such confusion will occur. It is conventional to
simply do the operations in order of appearance reading from left to right. Thus, if you
see 6− 3− 4, you would normally interpret it as the first of the above alternatives.

In the first part of the following theorem, the claim is made that the additive inverse
and the multiplicative inverse are unique. This means that for a given number, only one
number has the property that it is an additive inverse and that, given a nonzero number,
only one number has the property that it is a multiplicative inverse. The significance
of this is that if you are wondering if a given number is the additive inverse of a given
number, all you have to do is to check and see if it acts like one.

Theorem 2.1.10 The above axioms imply the following.

1. The multiplicative inverse and additive inverses are unique.

2. 0x = 0, − (−x) = x,

3. (−1) (−1) = 1, (−1)x = −x

4. If xy = 0 then either x = 0 or y = 0.

Proof:Suppose then that x is a real number and that x + y = 0 = x + z. It is
necessary to verify y = z. From the above axioms, there exists an additive inverse, −x
for x. Therefore,

−x+ 0 = (−x) + (x+ y) = (−x) + (x+ z)
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and so by the associative law for addition,

((−x) + x) + y = ((−x) + x) + z

which implies

0 + y = 0 + z.

Now by the definition of the additive identity, this implies y = z. You should prove the
multiplicative inverse is unique.

Consider 2. It is desired to verify 0x = 0. From the definition of the additive identity
and the distributive law it follows that

0x = (0 + 0)x = 0x+ 0x.

From the existence of the additive inverse and the associative law it follows

0 = (−0x) + 0x = (−0x) + (0x+ 0x)

= ((−0x) + 0x) + 0x = 0 + 0x = 0x

To verify the second claim in 2., it suffices to show x acts like the additive inverse of
−x in order to conclude that − (−x) = x. This is because it has just been shown that
additive inverses are unique. By the definition of additive inverse,

x+ (−x) = 0

and so x = − (−x) as claimed.
To demonstrate 3.,

(−1) (1 + (−1)) = (−1) 0 = 0

and so using the definition of the multiplicative identity, and the distributive law,

(−1) + (−1) (−1) = 0.

It follows from 1. and 2. that 1 = − (−1) = (−1) (−1) . To verify (−1)x = −x, use 2.
and the distributive law to write

x+ (−1)x = x (1 + (−1)) = x0 = 0.

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (−1)x = −x
as claimed.

To verify 4., suppose x ̸= 0. Then x−1 exists by the axiom about the existence of
multiplicative inverses. Therefore, by 2. and the associative law for multiplication,

y =
(
x−1x

)
y = x−1 (xy) = x−10 = 0.

This proves 4. �
Recall the notion of something raised to an integer power. Thus y2 = y × y and

b−3 = 1
b3 etc.

Also, there are a few conventions related to the order in which operations are per-
formed. Exponents are always done before multiplication. Thus xy2 = x

(
y2
)
and is not

equal to (xy)
2
. Division or multiplication is always done before addition or subtraction.

Thus x − y (z + w) = x − [y (z + w)] and is not equal to (x− y) (z + w) . Parentheses
are done before anything else. Be very careful of such things since they are a source of
mistakes. When you have doubts, insert parentheses to resolve the ambiguities.

Also recall summation notation.
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Definition 2.1.11 Let x1, x2, · · · , xm be numbers. Then

m∑
j=1

xj ≡ x1 + x2 + · · ·+ xm.

Thus this symbol,
∑m

j=1 xj means to take all the numbers, x1, x2, · · · , xm and add them
all up. Note the use of the j as a generic variable which takes values from 1 up to
m. This notation will be used whenever there are things which can be added, not just
numbers.

As an example of the use of this notation, you should verify the following.

Example 2.1.12
∑6

k=1 (2k + 1) = 48.

Be sure you understand why

m+1∑
k=1

xk =
m∑

k=1

xk + xm+1.

As a slight generalization of this notation,

m∑
j=k

xj ≡ xk + · · ·+ xm.

It is also possible to change the variable of summation.

m∑
j=1

xj = x1 + x2 + · · ·+ xm

while if r is an integer, the notation requires

m+r∑
j=1+r

xj−r = x1 + x2 + · · ·+ xm

and so
∑m

j=1 xj =
∑m+r

j=1+r xj−r.

Summation notation will be used throughout the book whenever it is convenient to
do so.

Example 2.1.13 Add the fractions, x
x2+y + y

x−1 .

You add these just like they were numbers. Write the first expression as x(x−1)
(x2+y)(x−1)

and the second as
y(x2+y)

(x−1)(x2+y) . Then since these have the same common denominator,

you add them as follows.

x

x2 + y
+

y

x− 1
=

x (x− 1)

(x2 + y) (x− 1)
+

y
(
x2 + y

)
(x− 1) (x2 + y)

=
x2 − x+ yx2 + y2

(x2 + y) (x− 1)
.
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2.2 Exercises

1. Consider the expression x+ y (x+ y)− x (y − x) ≡ f (x, y) . Find f (−1, 2) .

2. Show − (ab) = (−a) b.

3. Show on the number line the effect of multiplying a number by −1.

4. Add the fractions x
x2−1 + x−1

x+1 .

5. Find a formula for (x+ y)
2
, (x+ y)

3
, and (x+ y)

4
. Based on what you observe

for these, give a formula for (x+ y)
8
.

6. When is it true that (x+ y)
n
= xn + yn?

7. Find the error in the following argument. Let x = y = 1. Then xy = y2 and so
xy − x2 = y2 − x2. Therefore, x (y − x) = (y − x) (y + x) . Dividing both sides by
(y − x) yields x = x + y. Now substituting in what these variables equal yields
1 = 1 + 1.

8. Find the error in the following argument.
√
x2 + 1 = x + 1 and so letting x = 2,√

5 = 3. Therefore, 5 = 9.

9. Find the error in the following. Let x = 1 and y = 2. Then 1
3 = 1

x+y = 1
x + 1

y =

1 + 1
2 = 3

2 . Then cross multiplying, yields 2 = 9.

10. Find the error in the following argument. Let x = 3 and y = 1. Then 1 = 3− 2 =
3− (3− 1) = x− y (x− y) = (x− y) (x− y) = 22 = 4.

11. Find the error in the following.

xy + y

x
= y + y = 2y.

Now let x = 2 and y = 2 to obtain

3 = 4

12. Show the rational numbers satisfy the field axioms. You may assume the associa-
tive, commutative, and distributive laws hold for the integers.

2.3 Set Notation

A set is just a collection of things called elements. Often these are also referred to as
points in calculus. For example {1, 2, 3, 8} would be a set consisting of the elements
1,2,3, and 8. To indicate that 3 is an element of {1, 2, 3, 8} , it is customary to write
3 ∈ {1, 2, 3, 8} . 9 /∈ {1, 2, 3, 8} means 9 is not an element of {1, 2, 3, 8} . Sometimes a rule
specifies a set. For example you could specify a set as all integers larger than 2. This
would be written as S = {x ∈ Z : x > 2} . This notation says: the set of all integers, x,
such that x > 2.

If A and B are sets with the property that every element of A is an element of
B, then A is a subset of B. For example, {1, 2, 3, 8} is a subset of {1, 2, 3, 4, 5, 8} , in
symbols, {1, 2, 3, 8} ⊆ {1, 2, 3, 4, 5, 8} . The same statement about the two sets may also
be written as {1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8}.

The union of two sets is the set consisting of everything which is contained in at least
one of the sets, A or B. As an example of the union of two sets, {1, 2, 3, 8}∪{3, 4, 7, 8} =
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{1, 2, 3, 4, 7, 8} because these numbers are those which are in at least one of the two sets.
In general

A ∪B ≡ {x : x ∈ A or x ∈ B} .
Be sure you understand that something which is in both A and B is in the union. It is
not an exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the
sets. Thus {1, 2, 3, 8} ∩ {3, 4, 7, 8} = {3, 8} because 3 and 8 are those elements the two
sets have in common. In general,

A ∩B ≡ {x : x ∈ A and x ∈ B} .

When with real numbers, [a, b] denotes the set of real numbers, x, such that a ≤ x ≤ b
and [a, b) denotes the set of real numbers such that a ≤ x < b. (a, b) consists of the set
of real numbers, x such that a < x < b and (a, b] indicates the set of numbers, x such
that a < x ≤ b. [a,∞) means the set of all numbers, x such that x ≥ a and (−∞, a]
means the set of all real numbers which are less than or equal to a. These sorts of sets
of real numbers are called intervals. The two points, a and b are called endpoints of
the interval. Other intervals such as (−∞, b) are defined by analogy to what was just
explained. In general, the curved parenthesis indicates the end point it sits next to
is not included while the square parenthesis indicates this end point is included. The
reason that there will always be a curved parenthesis next to ∞ or −∞ is that these
are not real numbers. Therefore, they cannot be included in any set of real numbers.
It is assumed that the reader is already familiar with order which is discussed in the
next section more carefully. The emphasis here is on the geometric significance of these
intervals. That is [a, b) consists of all points of the number line which are to the right
of a possibly equaling a and to the left of b. In the above description, I have used the
usual description of this set in terms of order.

A special set which needs to be given a name is the empty set also called the null set,
denoted by ∅. Thus ∅ is defined as the set which has no elements in it. Mathematicians
like to say the empty set is a subset of every set. The reason they say this is that if it
were not so, there would have to exist a set, A, such that ∅ has something in it which is
not in A. However, ∅ has nothing in it and so the least intellectual discomfort is achieved
by saying ∅ ⊆ A.

If A and B are two sets, A \ B denotes the set of things which are in A but not in
B. Thus

A \B ≡ {x ∈ A : x /∈ B} .
Set notation is used whenever convenient.

2.4 Order

The real numbers also have an order defined on them. This order may be defined
by reference to the positive real numbers, those to the right of 0 on the number line,
denoted by R+ which is assumed to satisfy the following axioms.

Axiom 2.4.1 The sum of two positive real numbers is positive.

Axiom 2.4.2 The product of two positive real numbers is positive.

Axiom 2.4.3 For a given real number x one and only one of the following alternatives
holds. Either x is positive, x = 0, or −x is positive.

Definition 2.4.4 x < y exactly when y+(−x) ≡ y−x ∈ R+. In the usual way,
x < y is the same as y > x and x ≤ y means either x < y or x = y. The symbol ≥ is
defined similarly.
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Theorem 2.4.5 The following hold for the order defined as above.

1. If x < y and y < z then x < z (Transitive law).

2. If x < y then x+ z < y + z (addition to an inequality).

3. If x ≤ 0 and y ≤ 0, then xy ≥ 0.

4. If x > 0 then x−1 > 0.

5. If x < 0 then x−1 < 0.

6. If x < y then xz < yz if z > 0, (multiplication of an inequality).

7. If x < y and z < 0, then xz > zy (multiplication of an inequality).

8. Each of the above holds with > and < replaced by ≥ and ≤ respectively except for
4 and 5 in which we must also stipulate that x ̸= 0.

9. For any x and y, exactly one of the following must hold. Either x = y, x < y, or
x > y (trichotomy).

Proof: First consider 1, the transitive law. Suppose x < y and y < z. Why is
x < z? In other words, why is z − x ∈ R+? It is because z − x = (z − y) + (y − x) and
both z − y, y − x ∈ R+. Thus by 2.4.1 above, z − x ∈ R+ and so z > x.

Next consider 2, addition to an inequality. If x < y why is x + z < y + z? it is
because

(y + z) +− (x+ z) = (y + z) + (−1) (x+ z)

= y + (−1)x+ z + (−1) z
= y − x ∈ R+.

Next consider 3. If x ≤ 0 and y ≤ 0, why is xy ≥ 0? First note there is nothing
to show if either x or y equal 0 so assume this is not the case. By 2.4.3 −x > 0 and
−y > 0. Therefore, by 2.4.2 and what was proved about −x = (−1)x,

(−x) (−y) = (−1)2 xy ∈ R+.

Is (−1)2 = 1? If so the claim is proved. But − (−1) = (−1)2 and − (−1) = 1 because

−1 + 1 = 0.

Next consider 4. If x > 0 why is x−1 > 0? By 2.4.3 either x−1 = 0 or −x−1 ∈ R+.
It can’t happen that x−1 = 0 because then you would have to have 1 = 0x and as was
shown earlier, 0x = 0. Therefore, consider the possibility that −x−1 ∈ R+. This can’t
work either because then you would have

(−1)x−1x = (−1) (1) = −1

and it would follow from 2.4.2 that −1 ∈ R+. But this is impossible because if x ∈ R+,
then (−1)x = −x ∈ R+ and contradicts 2.4.3 which states that either −x or x is in R+

but not both.
Next consider 5. If x < 0, why is x−1 < 0? As before, x−1 ̸= 0. If x−1 > 0, then as

before,
−x
(
x−1

)
= −1 ∈ R+

which was just shown not to occur.
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Next consider 6. If x < y why is xz < yz if z > 0? This follows because

yz − xz = z (y − x) ∈ R+

since both z and y − x ∈ R+.
Next consider 7. If x < y and z < 0, why is xz > zy? This follows because

zx− zy = z (x− y) ∈ R+

by what was proved in 3.
The last two claims are obvious and left for you. This proves the theorem.
Note that trichotomy could be stated by saying x ≤ y or y ≤ x.

Definition 2.4.6 |x| ≡
{

x if x ≥ 0,
−x if x < 0.

Note that |x| can be thought of as the distance between x and 0.

Theorem 2.4.7 |xy| = |x| |y| .

Proof: You can verify this by checking all available cases. Do so. �

Theorem 2.4.8 The following inequalities hold.

|x+ y| ≤ |x|+ |y| , ||x| − |y|| ≤ |x− y| .

Either of these inequalities may be called the triangle inequality.

Proof: First note that if a, b ∈ R+ ∪ {0} then a ≤ b if and only if a2 ≤ b2. Here is
why. Suppose a ≤ b. Then by the properties of order proved above,

a2 ≤ ab ≤ b2

because b2 − ab = b (b− a) ∈ R+ ∪ {0} . Next suppose a2 ≤ b2. If both a, b = 0 there is
nothing to show. Assume then they are not both 0. Then

b2 − a2 = (b+ a) (b− a) ∈ R+.

By the above theorem on order, (a+ b)
−1 ∈ R+ and so using the associative law,

(a+ b)
−1

((b+ a) (b− a)) = (b− a) ∈ R+

Now

|x+ y|2 = (x+ y)
2
= x2 + 2xy + y2

≤ |x|2 + |y|2 + 2 |x| |y| = (|x|+ |y|)2

and so the first of the inequalities follows. Note I used xy ≤ |xy| = |x| |y| which follows
from the definition.

To verify the other form of the triangle inequality,

x = x− y + y

so
|x| ≤ |x− y|+ |y|

and so
|x| − |y| ≤ |x− y| = |y − x|
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Now repeat the argument replacing the roles of x and y to conclude

|y| − |x| ≤ |y − x| .

Therefore,
||y| − |x|| ≤ |y − x| .

This proves the triangle inequality.

Example 2.4.9 Solve the inequality 2x+ 4 ≤ x− 8

Subtract 2x from both sides to yield 4 ≤ −x − 8. Next add 8 to both sides to get
12 ≤ −x. Then multiply both sides by (−1) to obtain x ≤ −12. Alternatively, subtract
x from both sides to get x+4 ≤ −8. Then subtract 4 from both sides to obtain x ≤ −12.

Example 2.4.10 Solve the inequality (x+ 1) (2x− 3) ≥ 0.

If this is to hold, either both of the factors, x+1 and 2x−3 are nonnegative or they
are both non-positive. The first case yields x + 1 ≥ 0 and 2x − 3 ≥ 0 so x ≥ −1 and
x ≥ 3

2 yielding x ≥ 3
2 . The second case yields x + 1 ≤ 0 and 2x − 3 ≤ 0 which implies

x ≤ −1 and x ≤ 3
2 . Therefore, the solution to this inequality is x ≤ −1 or x ≥ 3

2 .

Example 2.4.11 Solve the inequality (x) (x+ 2) ≥ −4

Here the problem is to find x such that x2 + 2x + 4 ≥ 0. However, x2 + 2x + 4 =
(x+ 1)

2
+ 3 ≥ 0 for all x. Therefore, the solution to this problem is all x ∈ R.

Example 2.4.12 Solve the inequality 2x+ 4 ≤ x− 8

This is written as (−∞,−12].

Example 2.4.13 Solve the inequality (x+ 1) (2x− 3) ≥ 0.

This was worked earlier and x ≤ −1 or x ≥ 3
2 was the answer. In terms of set

notation this is denoted by (−∞,−1] ∪ [ 32 ,∞).

Example 2.4.14 Solve the equation |x− 1| = 2

This will be true when x − 1 = 2 or when x − 1 = −2. Therefore, there are two
solutions to this problem, x = 3 or x = −1.

Example 2.4.15 Solve the inequality |2x− 1| < 2

From the number line, it is necessary to have 2x − 1 between −2 and 2 because
the inequality says that the distance from 2x − 1 to 0 is less than 2. Therefore, −2 <
2x− 1 < 2 and so −1/2 < x < 3/2. In other words, −1/2 < x and x < 3/2.

Example 2.4.16 Solve the inequality |2x− 1| > 2.

This happens if 2x − 1 > 2 or if 2x − 1 < −2. Thus the solution is x > 3/2 or
x < −1/2. Written in terms of intervals this is

(
3
2 ,∞

)
∪
(
−∞,− 1

2

)
.

Example 2.4.17 Solve |x+ 1| = |2x− 2|

There are two ways this can happen. It could be the case that x + 1 = 2x − 2 in
which case x = 3 or alternatively, x+ 1 = 2− 2x in which case x = 1/3.

Example 2.4.18 Solve |x+ 1| ≤ |2x− 2|



18 CHAPTER 2. THE REAL AND COMPLEX NUMBERS

In order to keep track of what is happening, it is a very good idea to graph the two
relations, y = |x+ 1| and y = |2x− 2| on the same set of coordinate axes. This is not a
hard job. |x+ 1| = x+ 1 when x > −1 and |x+ 1| = −1− x when x ≤ −1. Therefore,
it is not hard to draw its graph. Similar considerations apply to the other relation. The
result is

�
�
�
�

�
�
�
�

�

@
@

@
@

�
�
�
�
�
�
�
�
�

A
A
A
A
A
A

1/3 3

y = |x+ 1|

Equality holds exactly when x = 3 or x = 1
3 as in the preceding example. Consider x

between 1
3 and 3. You can see these values of x do not solve the inequality. For example

x = 1 does not work. Therefore,
(
1
3 , 3
)
must be excluded. The values of x larger than 3

do not produce equality so either |x+ 1| < |2x− 2| for these points or |2x− 2| < |x+ 1|
for these points. Checking examples, you see the first of the two cases is the one which
holds. Therefore, [3,∞) is included. Similar reasoning obtains (−∞, 13 ]. It follows the
solution set to this inequality is (−∞, 13 ] ∪ [3,∞).

Example 2.4.19 Suppose ε > 0 is a given positive number. Obtain a number, δ > 0,
such that if |x− 1| < δ, then

∣∣x2 − 1
∣∣ < ε.

First of all, note
∣∣x2 − 1

∣∣ = |x− 1| |x+ 1| ≤ (|x|+ 1) |x− 1| . Now if |x− 1| < 1, it
follows |x| < 2 and so for |x− 1| < 1,∣∣x2 − 1

∣∣ < 3 |x− 1| .

Now let δ = min
(
1, ε3

)
. This notation means to take the minimum of the two numbers,

1 and ε
3 . Then if |x− 1| < δ,∣∣x2 − 1

∣∣ < 3 |x− 1| < 3
ε

3
= ε.

2.5 Exercises

1. Solve (3x+ 2) (x− 3) ≤ 0.

2. Solve (3x+ 2) (x− 3) > 0.

3. Solve x+2
3x−2 < 0.

4. Solvex+1
x+3 < 1.

5. Solve (x− 1) (2x+ 1) ≤ 2.

6. Solve (x− 1) (2x+ 1) > 2.

7. Solve x2 − 2x ≤ 0.

8. Solve (x+ 2) (x− 2)
2 ≤ 0.

9. Solve 3x−4
x2+2x+2 ≥ 0.
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10. Solve 3x+9
x2+2x+1 ≥ 1.

11. Solve x2+2x+1
3x+7 < 1.

12. Solve |x+ 1| = |2x− 3| .

13. Solve |3x+ 1| < 8. Give your answer in terms of intervals on the real line.

14. Sketch on the number line the solution to the inequality |x− 3| > 2.

15. Sketch on the number line the solution to the inequality |x− 3| < 2.

16. Show |x| =
√
x2.

17. Solve |x+ 2| < |3x− 3| .

18. Tell when equality holds in the triangle inequality.

19. Solve |x+ 2| ≤ 8 + |2x− 4| .

20. Solve (x+ 1) (2x− 2)x ≥ 0.

21. Solve x+3
2x+1 > 1.

22. Solve x+2
3x+1 > 2.

23. Describe the set of numbers, a such that there is no solution to |x+ 1| = 4−|x+ a| .

24. Suppose 0 < a < b. Show a−1 > b−1.

25. Show that if |x− 6| < 1, then |x| < 7.

26. Suppose |x− 8| < 2. How large can |x− 5| be?

27. Obtain a number, δ > 0, such that if |x− 1| < δ, then
∣∣x2 − 1

∣∣ < 1/10.

28. Obtain a number, δ > 0, such that if |x− 4| < δ, then |
√
x− 2| < 1/10.

29. Suppose ε > 0 is a given positive number. Obtain a number, δ > 0, such that if
|x− 1| < δ, then |

√
x− 1| < ε. Hint: This δ will depend in some way on ε. You

need to tell how.

2.6 The Binomial Theorem

Consider the following problem: You have the integers Sn = {1, 2, · · · , n} and k is an
integer no larger than n. How many ways are there to fill k slots with these integers
starting from left to right if whenever an integer from Sn has been used, it cannot be
re used in any succeeding slot?

k of these slots︷ ︸︸ ︷
, , , , · · · ,

This number is known as permutations of n things taken k at a time and is denoted
by P (n, k). It is easy to figure it out. There are n choices for the first slot. For each
choice for the fist slot, there remain n − 1 choices for the second slot. Thus there are
n (n− 1) ways to fill the first two slots. Now there remain n− 2 ways to fill the third.
Thus there are n (n− 1) (n− 2) ways to fill the first three slots. Continuing this way,
you see there are

P (n, k) = n (n− 1) (n− 2) · · · (n− k + 1)
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ways to do this.
Now define for k a positive integer,

k! ≡ k (k − 1) (k − 2) · · · 1, 0! ≡ 1.

This is called k factorial. Thus P (k, k) = k! and you should verify that

P (n, k) =
n!

(n− k)!

Now consider the number of ways of selecting a set of k different numbers from Sn. For
each set of k numbers there are P (k, k) = k! ways of listing these numbers in order.

Therefore, denoting by

(
n
k

)
the number of ways of selecting a set of k numbers from

Sn, it must be the case that(
n
k

)
k! = P (n, k) =

n!

(n− k)!

Therefore, (
n
k

)
=

n!

k! (n− k)!
.

How many ways are there to select no numbers from Sn? Obviously one way. Note the
above formula gives the right answer in this case as well as in all other cases due to the
definition which says 0! = 1.

Now consider the problem of writing a formula for (x+ y)
n
where n is a positive

integer. Imagine writing it like this:

n times︷ ︸︸ ︷
(x+ y) (x+ y) · · · (x+ y)

Then you know the result will be sums of terms of the form akx
kyn−k. What is ak? In

other words, how many ways can you pick x from k of the factors above and y from
the other n− k. There are n factors so the number of ways to do it is(

n
k

)
.

Therefore, ak is the above formula and so this proves the following important theorem
known as the binomial theorem.

Theorem 2.6.1 The following formula holds for any n a positive integer.

(x+ y)
n
=

n∑
k=0

(
n
k

)
xkyn−k.

2.7 Well Ordering Principle And Archimedean Prop-
erty

Definition 2.7.1 A set is well ordered if every nonempty subset S, contains a
smallest element z having the property that z ≤ x for all x ∈ S.

Axiom 2.7.2 Any set of integers larger than a given number is well ordered.
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In particular, the natural numbers defined as

N ≡{1, 2, · · · }

is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 2.7.3 (Mathematical induction) A set S ⊆ Z, having the property that
a ∈ S and n+ 1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x ≥ a.

Proof: Let T ≡ ([a,∞) ∩ Z)\S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = ∅. If T ̸= ∅ then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It
must be the case that b > a since by definition, a /∈ T. Then the integer, b− 1 ≥ a and
b − 1 /∈ S because if b − 1 ∈ S, then b − 1 + 1 = b ∈ S by the assumed property of S.
Therefore, b− 1 ∈ ([a,∞) ∩ Z) \S = T which contradicts the choice of b as the smallest
element of T. (b− 1 is smaller.) Since a contradiction is obtained by assuming T ̸= ∅, it
must be the case that T = ∅ and this says that everything in [a,∞) ∩ Z is also in S. �

Mathematical induction is a very useful device for proving theorems about the inte-
gers.

Example 2.7.4 Prove by induction that
∑n

k=1 k
2 = n(n+1)(2n+1)

6 .

By inspection, if n = 1 then the formula is true. The sum yields 1 and so does the
formula on the right. Suppose this formula is valid for some n ≥ 1 where n is an integer.
Then

n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)
2

=
n (n+ 1) (2n+ 1)

6
+ (n+ 1)

2
.

The step going from the first to the second line is based on the assumption that the
formula is true for n. This is called the induction hypothesis. Now simplify the expression
in the second line,

n (n+ 1) (2n+ 1)

6
+ (n+ 1)

2
.

This equals

(n+ 1)

(
n (2n+ 1)

6
+ (n+ 1)

)
and

n (2n+ 1)

6
+ (n+ 1) =

6 (n+ 1) + 2n2 + n

6

=
(n+ 2) (2n+ 3)

6

Therefore,

n+1∑
k=1

k2 =
(n+ 1) (n+ 2) (2n+ 3)

6

=
(n+ 1) ((n+ 1) + 1) (2 (n+ 1) + 1)

6
,

showing the formula holds for n+1 whenever it holds for n. This proves the formula by
mathematical induction.
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Example 2.7.5 Show that for all n ∈ N, 1
2 ·

3
4 · · ·

2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 <

1√
3
which is obviously true. Suppose

then that the inequality holds for n. Then

1

2
· 3
4
· · · 2n− 1

2n
· 2n+ 1

2n+ 2
<

1√
2n+ 1

2n+ 1

2n+ 2

=

√
2n+ 1

2n+ 2
.

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if

and only if (
1√

2n+ 3

)2

=
1

2n+ 3
>

2n+ 1

(2n+ 2)
2

which occurs if and only if (2n+ 2)
2
> (2n+ 3) (2n+ 1) and this is clearly true which

may be seen from expanding both sides. This proves the inequality.
Lets review the process just used. If S is the set of integers at least as large as 1 for

which the formula holds, the first step was to show 1 ∈ S and then that whenever n ∈ S,
it follows n+ 1 ∈ S. Therefore, by the principle of mathematical induction, S contains
[1,∞) ∩ Z, all positive integers. In doing an inductive proof of this sort, the set, S is
normally not mentioned. One just verifies the steps above. First show the thing is true
for some a ∈ Z and then verify that whenever it is true for m it follows it is also true
for m+ 1. When this has been done, the theorem has been proved for all m ≥ a.

Definition 2.7.6 The Archimedean property states that whenever x ∈ R, and
a > 0, there exists n ∈ N such that na > x.

This is not hard to believe. Just look at the number line. Imagine the intervals
[0, a), [a, 2a), [2a, 3a), · · · . If x < 0, you could consider a and it would be larger than x.
If x ≥ 0, surely, it is reasonable to suppose that x would be on one of these intervals, say
[pa, (p+ 1) a). This Archimedean property is quite important because it shows every
fixed real number is smaller than some integer. It also can be used to verify a very
important property of the rational numbers.

Axiom 2.7.7 R has the Archimedean property.

Theorem 2.7.8 Suppose x < y and y− x > 1. Then there exists an integer, l ∈
Z, such that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this
can be proved. If x < 1 then x2 < x contradicting the assertion that x is the smallest
natural number. Therefore, 1 is the smallest natural number. This shows there is no
integer, y, satisfying x < y < x+ 1 since otherwise, you could subtract x and conclude
0 < y − x < 1 for some integer y − x.

Now suppose y − x > 1 and let

S ≡ {w ∈ N : w ≥ y} .

The set S is nonempty by the Archimedean property. Let k be the smallest element of
S. Therefore, k − 1 < y. Either k − 1 ≤ x or k − 1 > x. If k − 1 ≤ x, then

y − x ≤ y − (k − 1) =

≤0︷ ︸︸ ︷
y − k + 1 ≤ 1
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contrary to the assumption that y − x > 1. Therefore, x < k − 1 < y and this proves
the theorem with l = k − 1. �

It is the next theorem which gives the density of the rational numbers. This means
that for any real number, there exists a rational number arbitrarily close to it.

Theorem 2.7.9 If x < y then there exists a rational number r such that x <
r < y.

Proof:Let n ∈ N be large enough that

n (y − x) > 1.

Thus (y − x) added to itself n times is larger than 1. Therefore,

n (y − x) = ny + n (−x) = ny − nx > 1.

It follows from Theorem 2.7.8 there exists m ∈ Z such that

nx < m < ny

and so take r = m/n. �

Definition 2.7.10 A set, S ⊆ R is dense in R if whenever a < b, S∩(a, b) ̸= ∅.

Thus the above theorem says Q is “dense” in R.
You probably saw the process of division in elementary school. Even though you

saw it at a young age it is very profound and quite difficult to understand. Suppose
you want to do the following problem 79

22 . What did you do? You likely did a process of
long division which gave the following result.

79

22
= 3 with remainder 13.

This meant
79 = 3 (22) + 13.

You were given two numbers, 79 and 22 and you wrote the first as some multiple of
the second added to a third number which was smaller than the second number. Can
this always be done? The answer is in the next theorem and depends here on the
Archimedean property of the real numbers.

Theorem 2.7.11 Suppose 0 < a and let b ≥ 0. Then there exists a unique
integer p and real number r such that 0 ≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p+ 1 be the smallest element of S. Then pa ≤ b because p+ 1 is the smallest in S.
Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b− pa ≥ a and so b ≥ (p+ 1) a contradicting p+ 1 ∈ S. Therefore, r < a
as desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1, 2, both work and r2 > r1.
Then a little algebra shows

p1 − p2 =
r2 − r1
a

∈ (0, 1) .

Thus p1 − p2 is an integer between 0 and 1, contradicting Theorem 2.7.8. The case
that r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows that
p1 = p2. �

This theorem is called the Euclidean algorithm when a and b are integers.
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2.8 Exercises

1. By Theorem 2.7.9 it follows that for a < b, there exists a rational number between
a and b. Show there exists an integer k such that

a <
k

2m
< b

for some k,m integers.

2. Show there is no smallest number in (0, 1) . Recall (0, 1) means the real numbers
which are strictly larger than 0 and smaller than 1.

3. Show there is no smallest number in Q ∩ (0, 1) .

4. Show that if S ⊆ R and S is well ordered with respect to the usual order on R
then S cannot be dense in R.

5. Prove by induction that
∑n

k=1 k
3 = 1

4n
4 + 1

2n
3 + 1

4n
2.

6. It is a fine thing to be able to prove a theorem by induction but it is even better
to be able to come up with a theorem to prove in the first place. Derive a formula
for
∑n

k=1 k
4 in the following way. Look for a formula in the form An5 + Bn4 +

Cn3 +Dn2 + En + F. Then try to find the constants A,B,C,D,E, and F such
that things work out right. In doing this, show

(n+ 1)
4
=(

A (n+ 1)
5
+B (n+ 1)

4
+ C (n+ 1)

3
+D (n+ 1)

2
+ E (n+ 1) + F

)
−An5 +Bn4 + Cn3 +Dn2 + En+ F

and so some progress can be made by matching the coefficients. When you get
your answer, prove it is valid by induction.

7. Prove by induction that whenever n ≥ 2,
∑n

k=1
1√
k
>
√
n.

8. If r ̸= 0, show by induction that
∑n

k=1 ar
k = a rn+1

r−1 − a
r

r−1 .

9. Prove by induction that
∑n

k=1 k = n(n+1)
2 .

10. Let a and d be real numbers. Find a formula for
∑n

k=1 (a+ kd) and then prove
your result by induction.

11. Consider the geometric series,
∑n

k=1 ar
k−1. Prove by induction that if r ̸= 1, then

n∑
k=1

ark−1 =
a− arn

1− r
.

12. This problem is a continuation of Problem 11. You put money in the bank and
it accrues interest at the rate of r per payment period. These terms need a little
explanation. If the payment period is one month, and you started with $100 then
the amount at the end of one month would equal 100 (1 + r) = 100+100r. In this
the second term is the interest and the first is called the principal. Now you have
100 (1 + r) in the bank. How much will you have at the end of the second month?
By analogy to what was just done it would equal

100 (1 + r) + 100 (1 + r) r = 100 (1 + r)
2
.
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In general, the amount you would have at the end of nmonths would be 100 (1 + r)
n
.

(When a bank says they offer 6% compounded monthly, this means r, the rate per
payment period equals .06/12.) In general, suppose you start with P and it sits in
the bank for n payment periods. Then at the end of the nth payment period, you
would have P (1 + r)

n
in the bank. In an ordinary annuity, you make payments,

P at the end of each payment period, the first payment at the end of the first
payment period. Thus there are n payments in all. Each accrue interest at the
rate of r per payment period. Using Problem 11, find a formula for the amount
you will have in the bank at the end of n payment periods? This is called the
future value of an ordinary annuity. Hint: The first payment sits in the bank for
n − 1 payment periods and so this payment becomes P (1 + r)

n−1
. The second

sits in the bank for n− 2 payment periods so it grows to P (1 + r)
n−2

, etc.

13. Now suppose you want to buy a house by making n equal monthly payments.
Typically, n is pretty large, 360 for a thirty year loan. Clearly a payment made
10 years from now can’t be considered as valuable to the bank as one made today.
This is because the one made today could be invested by the bank and having
accrued interest for 10 years would be far larger. So what is a payment made
at the end of k payment periods worth today assuming money is worth r per
payment period? Shouldn’t it be the amount, Q which when invested at a rate
of r per payment period would yield P at the end of k payment periods? Thus
from Problem 12 Q (1 + r)

k
= P and so Q = P (1 + r)

−k
. Thus this payment

of P at the end of n payment periods, is worth P (1 + r)
−k

to the bank right
now. It follows the amount of the loan should equal the sum of these “discounted
payments”. That is, letting A be the amount of the loan,

A =
n∑

k=1

P (1 + r)
−k
.

Using Problem 11, find a formula for the right side of the above formula. This is
called the present value of an ordinary annuity.

14. Suppose the available interest rate is 7% per year and you want to take a loan for
$100,000 with the first monthly payment at the end of the first month. If you want
to pay off the loan in 20 years, what should the monthly payments be? Hint:
The rate per payment period is .07/12. See the formula you got in Problem 13
and solve for P.

15. Consider the first five rows of Pascal’s1 triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

What is the sixth row? Now consider that (x+ y)
1
= 1x + 1y , (x+ y)

2
=

x2+2xy+y2, and (x+ y)
3
= x3+3x2y+3xy2+y3. Give a conjecture about that

(x+ y)
5
.

16. Based on Problem 15 conjecture a formula for (x+ y)
n
and prove your conjecture

by induction. Hint: Letting the numbers of the nth row of Pascal’s triangle

1Blaise Pascal lived in the 1600’s and is responsible for the beginnings of the study of probability.
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be denoted by
(
n
0

)
,
(
n
1

)
, · · · ,

(
n
n

)
in reading from left to right, there is a relation

between the numbers on the (n+ 1)
st

row and those on the nth row, the relation
being

(
n+1
k

)
=
(
n
k

)
+
(

n
k−1

)
. This is used in the inductive step.

17. Let
(
n
k

)
≡ n!

(n−k)!k! where 0! ≡ 1 and (n+ 1)! ≡ (n+ 1)n! for all n ≥ 0. Prove that

whenever k ≥ 1 and k ≤ n, then
(
n+1
k

)
=
(
n
k

)
+
(

n
k−1

)
. Are these numbers,

(
n
k

)
the

same as those obtained in Pascal’s triangle? Prove your assertion.

18. The binomial theorem states (a+ b)
n

=
∑n

k=0

(
n
k

)
an−kbk. Prove the binomial

theorem by induction. Hint: You might try using the preceding problem.

19. Show that for p ∈ (0, 1) ,
∑n

k=0

(
n
k

)
kpk (1− p)n−k

= np.

20. Using the binomial theorem prove that for all n ∈ N,
(
1 + 1

n

)n ≤ (1 + 1
n+1

)n+1

.

Hint: Show first that
(
n
k

)
= n·(n−1)···(n−k+1)

k! . By the binomial theorem,

(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)(
1

n

)k

=

n∑
k=0

k factors︷ ︸︸ ︷
n · (n− 1) · · · (n− k + 1)

k!nk
.

Now consider the term n·(n−1)···(n−k+1)
k!nk and note that a similar term occurs in

the binomial expansion for
(
1 + 1

n+1

)n+1

except that n is replaced with n + 1

whereever this occurs. Argue the term got bigger and then note that in the

binomial expansion for
(
1 + 1

n+1

)n+1

, there are more terms.

21. Prove by induction that for all k ≥ 4, 2k ≤ k!

22. Use the Problems 21 and 20 to verify for all n ∈ N,
(
1 + 1

n

)n ≤ 3.

23. Prove by induction that 1 +
∑n

i=1 i (i!) = (n+ 1)!.

24. I can jump off the top of the Empire State Building without suffering any ill
effects. Here is the proof by induction. If I jump from a height of one inch, I
am unharmed. Furthermore, if I am unharmed from jumping from a height of n
inches, then jumping from a height of n+ 1 inches will also not harm me. This is
self evident and provides the induction step. Therefore, I can jump from a height
of n inches for any n. What is the matter with this reasoning?

25. All horses are the same color. Here is the proof by induction. A single horse is
the same color as himself. Now suppose the theorem that all horses are the same
color is true for n horses and consider n+1 horses. Remove one of the horses and
use the induction hypothesis to conclude the remaining n horses are all the same
color. Put the horse which was removed back in and take out another horse. The
remaining n horses are the same color by the induction hypothesis. Therefore, all
n+ 1 horses are the same color as the n− 1 horses which didn’t get moved. This
proves the theorem. Is there something wrong with this argument?

26. Let

(
n

k1, k2, k3

)
denote the number of ways of selecting a set of k1 things, a set

of k2 things, and a set of k3 things from a set of n things such that
∑3

i=1 ki = n.

Find a formula for

(
n

k1, k2, k3

)
. Now give a formula for a trinomial theorem, one

which expands (x+ y + z)
n
. Could you continue this way and get a multinomial

formula?
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2.9 Completeness of R
By Theorem 2.7.9, between any two real numbers, points on the number line, there
exists a rational number. This suggests there are a lot of rational numbers, but it is not
clear from this Theorem whether the entire real line consists of only rational numbers.
Some people might wish this were the case because then each real number could be
described, not just as a point on a line but also algebraically, as the quotient of integers.
Before 500 B.C., a group of mathematicians, led by Pythagoras believed in this, but
they discovered their beliefs were false. It happened roughly like this. They knew they
could construct the square root of two as the diagonal of a right triangle in which the
two sides have unit length; thus they could regard

√
2 as a number. Unfortunately, they

were also able to show
√
2 could not be written as the quotient of two integers. This

discovery that the rational numbers could not even account for the results of geometric
constructions was very upsetting to the Pythagoreans, especially when it became clear
there were an endless supply of such “irrational” numbers.

This shows that if it is desired to consider all points on the number line, it is necessary
to abandon the attempt to describe arbitrary real numbers in a purely algebraic manner
using only the integers. Some might desire to throw out all the irrational numbers, and
considering only the rational numbers, confine their attention to algebra, but this is
not the approach to be followed here because it will effectively eliminate every major
theorem of calculus. In this book real numbers will continue to be the points on the
number line, a line which has no holes. This lack of holes is more precisely described
in the following way.

Definition 2.9.1 A non empty set, S ⊆ R is bounded above (below) if there
exists x ∈ R such that x ≥ (≤) s for all s ∈ S. If S is a nonempty set in R which is
bounded above, then a number, l which has the property that l is an upper bound and
that every other upper bound is no smaller than l is called a least upper bound, l.u.b. (S)
or often sup (S) . If S is a nonempty set bounded below, define the greatest lower bound,
g.l.b. (S) or inf (S) similarly. Thus g is the g.l.b. (S) means g is a lower bound for S
and it is the largest of all lower bounds. If S is a nonempty subset of R which is not
bounded above, this information is expressed by saying sup (S) = +∞ and if S is not
bounded below, inf (S) = −∞.

Every existence theorem in calculus depends on some form of the completeness
axiom. In an appendix, there is a proof that the real numers can be obtained as
equivalence classes of Cauchy sequences of rational numbers.

Axiom 2.9.2 (completeness) Every nonempty set of real numbers which is bounded
above has a least upper bound and every nonempty set of real numbers which is bounded
below has a greatest lower bound.

It is this axiom which distinguishes Calculus from Algebra. A fundamental result
about sup and inf is the following.

Proposition 2.9.3 Let S be a nonempty set and suppose sup (S) exists. Then for
every δ > 0,

S ∩ (sup (S)− δ, sup (S)] ̸= ∅.

If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) ̸= ∅.

Proof:Consider the first claim. If the indicated set equals ∅, then sup (S)− δ is an
upper bound for S which is smaller than sup (S) , contrary to the definition of sup (S)
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as the least upper bound. In the second claim, if the indicated set equals ∅, then
inf (S)+δ would be a lower bound which is larger than inf (S) contrary to the definition
of inf (S) .This proves the proposition.

2.10 Existence Of Roots

What is 5
√
7 and does it even exist? You can ask for it on your calculator and the

calculator will give you a number which multiplied by itself 5 times will yield a number
which is close to 7 but it isn’t exactly right. Why should there exist a number which
works exactly? Every one you find, appears to be some sort of approximation at best.
If you can’t produce one, why should you believe it is even there? The following is an
argument that roots exist. You fill in the details of the argument. Basically, roots exist
because of completeness of the real line. Here is a lemma.

Lemma 2.10.1 Suppose n ∈ N and a > 0. Then if xn − a ̸= 0, there exists δ > 0
such that whenever

y ∈ (x− δ, x+ δ) ,

it follows yn − a ̸= 0 and has the same sign as xn − a.

Proof: Using the binomial theorem,

yn = (y − x+ x)
n

=

n−1∑
k=0

(
n
k

)
(y − x)n−k

xk + xn

Let |y − x| < 1. Then using the triangle inequality, it follows that for |y − x| < 1,

|yn − xn| ≤ |y − x|
n−1∑
k=0

(
n
k

)
|x|k ≡ C |x− y|

where, as indicated, C =
∑n−1

k=0

(
n
k

)
|x|k. Let δ be small enough that the right side

is less than |xn − a| . For example, you could let

δ = min

(
|xn − a|

2C
, 1

)
Then if y ∈ (x− δ, x+ δ) ,

|yn − xn| ≤ C |x− y| < Cδ ≤ |xn − a|

It follows that on the number line, yn must be between a and xn. Consequently,
yn − a ̸= 0 and has the same sign as xn − a. (Draw a picture.) �

xn c xnc

Theorem 2.10.2 Let a > 0 and let n > 1. Then there exists a unique x > 0
such that xn = a.
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Proof: Let S denote those numbers y ≥ 0 such that tn−a < 0 for all t ∈ [0, y]. One
such number is 0. If a ≥ 1, then a short proof by induction shows an > a and so, in this
case, S is bounded above by a. If a < 1, then another short argument shows (1/a)

n
> a

and so S is bounded above by 1/a. By completeness, there exists x, the least upper
bound of S. Thus for all y ≤ x, yn − a < 0 since if this is not so, then x was not a
least upper bound to S. If xn − a > 0, then by the lemma, yn − a > 0 on some interval
(x− δ, x+ δ). Thus x fails to be a the least upper bound because an upper bound is
x − δ/2. If xn − a < 0, then by the lemma, yn − a < 0 on some interval (x− δ, x+ δ)
and so x is not even an upper bound because S would then contain [0, x + δ). Hence
the only other possibility is that xn − a = 0. That is, x is an nth root of a.

This has shown that a has a positive nth root. Could it have two? Suppose x, z
both work. If z > x, then by the binomial theorem,

zn = (x+ z − x)n =
n∑

k=0

(
n
k

)
xn−k (z − x)k

= xn +

n−1∑
k=0

(
n
k

)
xn−k (z − x)k = a+

n−1∑
k=0

(
n
k

)
xn−k (z − x)k > a.

Turning the argument around, it is also not possible that z < x. Thus the nth root is
also unique. �

From now on, we will use this fact that nth roots exist whenever it is convenient to
do so.

2.11 Exercises

1. Let S = [2, 5] . Find supS. Now let S = [2, 5). Find supS. Is supS always a
number in S? Give conditions under which supS ∈ S and then give conditions
under which inf S ∈ S.

2. Show that if S ̸= ∅ and is bounded above (below) then supS (inf S) is unique.
That is, there is only one least upper bound and only one greatest lower bound.
If S = ∅ can you conclude that 7 is an upper bound? Can you conclude 7 is a
lower bound? What about 13.5? What about any other number?

3. Let S be a set which is bounded above and let −S denote the set {−x : x ∈ S} .
How are inf (−S) and sup (S) related? Hint: Draw some pictures on a number
line. What about sup (−S) and inf S where S is a set which is bounded below?

4. Which of the field axioms is being abused in the following argument that 0 = 2?
Let x = y = 1. Then

0 = x2 − y2 = (x− y) (x+ y)

and so

0 = (x− y) (x+ y) .

Now divide both sides by x− y to obtain

0 = x+ y = 1 + 1 = 2.

5. Give conditions under which equality holds in the triangle inequality.
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6. Let k ≤ n where k and n are natural numbers. P (n, k) , permutations of n things
taken k at a time, is defined to be the number of different ways to form an ordered
list of k of the numbers, {1, 2, · · · , n} . Show

P (n, k) = n · (n− 1) · · · (n− k + 1) =
n!

(n− k)!
.

7. Using the preceding problem, show the number of ways of selecting a set of k
things from a set of n things is

(
n
k

)
.

8. Prove the binomial theorem from Problem 7. Hint: When you take (x+ y)
n
, note

that the result will be a sum of terms of the form, akx
n−kyk and you need to de-

termine what ak should be. Imagine writing (x+ y)
n
= (x+ y) (x+ y) · · · (x+ y)

where there are n factors in the product. Now consider what happens when you
multiply. Each factor contributes either an x or a y to a typical term.

9. Prove by induction that n < 2n for all natural numbers, n ≥ 1.

10. Prove by the binomial theorem and Problem 7 that the number of subsets of a
given finite set containing n elements is 2n.

11. Let n be a natural number and let k1 + k2 + · · · kr = n where ki is a non negative
integer. The symbol (

n

k1k2 · · · kr

)
denotes the number of ways of selecting r subsets of {1, · · · , n} which contain
k1, k2 · · · kr elements in them. Find a formula for this number.

12. Is it ever the case that (a+ b)
n
= an + bn for a and b positive real numbers?

13. Is it ever the case that
√
a2 + b2 = a+ b for a and b positive real numbers?

14. Is it ever the case that 1
x+y = 1

x + 1
y for x and y positive real numbers?

15. Derive a formula for the multinomial expansion, (
∑p

k=1 ak)
n
which is analogous

to the binomial expansion. Hint: See Problem 8.

16. Suppose a > 0 and that x is a real number which satisfies the quadratic equation,

ax2 + bx+ c = 0.

Find a formula for x in terms of a and b and square roots of expressions involving
these numbers. Hint: First divide by a to get

x2 +
b

a
x+

c

a
= 0.

Then add and subtract the quantity b2/4a2. Verify that

x2 +
b

a
x+

b2

4a2
=

(
x+

b

2a

)2

.

Now solve the result for x. The process by which this was accomplished in adding
in the term b2/4a2 is referred to as completing the square. You should obtain the
quadratic formula2,

x =
−b±

√
b2 − 4ac

2a
.

2The ancient Babylonians knew how to solve these quadratic equations sometime before 1700 B.C.
It seems they used pretty much the same process outlined in this exercise.
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The expression b2 − 4ac is called the discriminant. When it is positive there are
two different real roots. When it is zero, there is exactly one real root and when
it equals a negative number there are no real roots.

17. Suppose f (x) = 3x2 + 7x− 17. Find the value of x at which f (x) is smallest by
completing the square. Also determine f (R) and sketch the graph of f. Hint:

f (x) = 3

(
x2 +

7

3
x− 17

3

)
= 3

(
x2 +

7

3
x+

49

36
− 49

36
− 17

3

)
= 3

((
x+

7

6

)2

− 49

36
− 17

3

)
.

18. Suppose f (x) = −5x2 + 8x − 7. Find f (R) . In particular, find the largest value
of f (x) and the value of x at which it occurs. Can you conjecture and prove a
result about y = ax2 + bx + c in terms of the sign of a based on these last two
problems?

19. Show that if it is assumed R is complete, then the Archimedean property can be
proved. Hint: Suppose completeness and let a > 0. If there exists x ∈ R such
that na ≤ x for all n ∈ N, then x/a is an upper bound for N. Let l be the least
upper bound and argue there exists n ∈ N ∩ [l − 1/4, l] . Now what about n+ 1?

20. Suppose you have an infinite sequence of numbers a1 ≤ a2 ≤ · · · . Also suppose
there exists an upper bound L such that each ak ≤ L. Review what it means for
the limit of a sequence to exist and verify that limn→∞ an = sup {ak} . In other
words, the limit equals the least upper bound of the numbers {a1, a2, · · · } .

2.12 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number
is considered a point in the plane which can be identified in the usual way using the
Cartesian coordinates of the point. Thus (a, b) identifies a point whose x coordinate is
a and whose y coordinate is b. In dealing with complex numbers, such a point is written
as a + ib. For example, in the following picture, I have graphed the point 3 + 2i. You
see it corresponds to the point in the plane whose coordinates are (3, 2) .

q 3 + 2i

Multiplication and addition are defined in the most obvious way subject to the
convention that i2 = −1. Thus,

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

and

(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd

= (ac− bd) + i (bc+ ad) .
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Every non zero complex number, a + ib, with a2 + b2 ̸= 0, has a unique multiplicative
inverse.

1

a+ ib
=

a− ib
a2 + b2

=
a

a2 + b2
− i b

a2 + b2
.

You should prove the following theorem.

Theorem 2.12.1 The complex numbers with multiplication and addition de-
fined as above form a field satisfying all the field axioms listed on Page 9.

The field of complex numbers is denoted as C. An important construction regard-
ing complex numbers is the complex conjugate denoted by a horizontal line above the
number. It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the
following formula is easy to obtain.(

a+ ib
)
(a+ ib) = a2 + b2.

Definition 2.12.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√
a2 + b2.

Thus, denoting by z the complex number, z = a+ ib,

|z| = (zz)
1/2

.

With this definition, it is important to note the following. Be sure to verify this. It
is not too hard but you need to do it.

Remark 2.12.3 : Let z = a+ ib and w = c+ id. Then |z − w| =
√
(a− c)2 + (b− d)2.

Thus the distance between the point in the plane determined by the ordered pair, (a, b)
and the ordered pair (c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance
formula which you should have seen in either algebra of calculus, this distance is defined
as √

(2− 1)
2
+ (5− 8)

2
=
√
10.

On the other hand, letting z = 2 + i5 and w = 1 + i8, z − w = 1− i3 and so

(z − w) (z − w) = (1− i3) (1 + i3) = 10

so |z − w| =
√
10, the same thing obtained with the distance formula.

Notation 2.12.4 From now on I will sometimes use the symbol F to denote either C
or R, rather than fussing over which one is meant because it often does not make any
difference.

The triangle inequality holds for the complex numbers just like it does for the real
numbers.

Theorem 2.12.5 Let z, w ∈ C. Then

|w + z| ≤ |w|+ |z| , ||z| − |w|| ≤ |z − w| .
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Proof: First note |zw| = |z| |w| . Here is why: If z = x+ iy and w = u+ iv, then

|zw|2 = |(x+ iy) (u+ iv)|2 = |xu− yv + i (xv + yu)|2

= (xu− yv)2 + (xv + yu)
2
= x2u2 + y2v2 + x2v2 + y2u2

Now look at the right side.

|z|2 |w|2 = (x+ iy) (x− iy) (u+ iv) (u− iv) = x2u2 + y2v2 + x2v2 + y2u2,

the same thing. Thus the rest of the proof goes just as before with real numbers. Using
the results of Problem 6 on Page 34, the following holds.

|z + w|2 = (z + w) (z + w) = zz + zw + wz + ww

= |z|2 + |w|2 + zw + wz

= |z|2 + |w|2 + 2Re zw

≤ |z|2 + |w|2 + 2 |zw| = |z|2 + |w|2 + 2 |z| |w|
= (|z|+ |w|)2

and so |z + w| ≤ |z|+ |w| as claimed. The other inequality follows as before.

|z| ≤ |z − w|+ |w|

and so

|z| − |w| ≤ |z − w| = |w − z| .

Now do the same argument switching the roles of z and w to conclude

|z| − |w| ≤ |z − w| , |w| − |z| ≤ |z − w|

which implies the desired inequality. This proves the theorem.

2.13 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

4. For those who know about the trigonometric functions from calculus or trigonom-
etry3, De Moivre’s theorem says

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt)

for n a positive integer. Prove this formula by induction. Does this formula
continue to hold for all integers, n, even negative integers? Explain.

5. Using De Moivre’s theorem from Problem 4, derive a formula for sin (5x) and one
for cos (5x). Hint: Use Problem 18 on Page 26 and if you like, you might use
Pascal’s triangle to construct the binomial coefficients.

3I will present a treatment of the trig functions which is independent of plane geometry a little later.
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6. If z, w are complex numbers prove zw = zw and then show by induction that
z1 · · · zm = z1 · · · zm. Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this says the

conjugate of a product equals the product of the conjugates and the conjugate of
a sum equals the sum of the conjugates.

7. Suppose p (x) = anx
n+an−1x

n−1+· · ·+a1x+a0 where all the ak are real numbers.
Suppose also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

8. I claim that 1 = −1. Here is why.

−1 = i2 =
√
−1
√
−1 =

√
(−1)2 =

√
1 = 1.

This is clearly a remarkable result but is there something wrong with it? If so,
what is wrong?

9. De Moivre’s theorem of Problem 4 is really a grand thing. I plan to use it now
for rational exponents, not just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference
between raising numbers to integer powers and raising numbers to non integer
powers?

10. Review Problem 4 at this point. Now here is another question: If n is an integer,
is it always true that (cos θ − i sin θ)n = cos (nθ)− i sin (nθ)? Explain.

11. Suppose you have any polynomial in cos θ and sin θ. By this I mean an expression
of the form

∑m
α=0

∑n
β=0 aαβ cos

α θ sinβ θ where aαβ ∈ C. Can this always be

written in the form
∑m+n

γ=−(n+m) bγ cos γθ +
∑n+m

τ=−(n+m) cτ sin τθ? Explain.

12. Does there exist a subset of C, C+ which satisfies 2.4.1 - 2.4.3? Hint: You might
review the theorem about order. Show −1 cannot be in C+. Now ask questions
about −i and i. In mathematics, you can sometimes show certain things do not
exist. It is very seldom you can do this outside of mathematics. For example,
does the Loch Ness monster exist? Can you prove it does not?



Chapter 3

Set Theory

3.1 Basic Definitions

A set is a collection of things called elements of the set. For example, the set of integers,
the collection of signed whole numbers such as 1,2,−4, etc. This set whose existence
will be assumed is denoted by Z. Other sets could be the set of people in a family or
the set of donuts in a display case at the store. Sometimes parentheses, { } specify
a set by listing the things which are in the set between the parentheses. For example
the set of integers between −1 and 2, including these numbers could be denoted as
{−1, 0, 1, 2}. The notation signifying x is an element of a set S, is written as x ∈ S.
Thus, 1 ∈ {−1, 0, 1, 2, 3}. Here are some axioms about sets. Axioms are statements
which are accepted, not proved.

Axiom 3.1.1 Two sets are equal if and only if they have the same elements.

Axiom 3.1.2 To every set, A, and to every condition S (x) there corresponds a set, B,
whose elements are exactly those elements x of A for which S (x) holds.

Axiom 3.1.3 For every collection of sets there exists a set that contains all the elements
that belong to at least one set of the given collection.

Axiom 3.1.4 The Cartesian product of a nonempty family of nonempty sets is nonempty.

Axiom 3.1.5 If A is a set there exists a set, P (A) such that P (A) is the set of all
subsets of A. This is called the power set.

These axioms are referred to as the axiom of extension, axiom of specification, axiom
of unions, axiom of choice, and axiom of powers respectively.

It seems fairly clear you should want to believe in the axiom of extension. It is
merely saying, for example, that {1, 2, 3} = {2, 3, 1} since these two sets have the same
elements in them. Similarly, it would seem you should be able to specify a new set from
a given set using some “condition” which can be used as a test to determine whether
the element in question is in the set. For example, the set of all integers which are
multiples of 2. This set could be specified as follows.

{x ∈ Z : x = 2y for some y ∈ Z} .

In this notation, the colon is read as “such that” and in this case the condition is being
a multiple of 2.

Another example of political interest, could be the set of all judges who are not
judicial activists. I think you can see this last is not a very precise condition since

35
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there is no way to determine to everyone’s satisfaction whether a given judge is an
activist. Also, just because something is grammatically correct does not mean
it makes any sense. For example consider the following nonsense.

S = {x ∈ set of dogs : it is colder in the mountains than in the winter} .

So what is a condition?
We will leave these sorts of considerations and assume our conditions make sense.

The axiom of unions states that for any collection of sets, there is a set consisting of all
the elements in each of the sets in the collection. Of course this is also open to further
consideration. What is a collection? Maybe it would be better to say “set of sets” or,
given a set whose elements are sets there exists a set whose elements consist of exactly
those things which are elements of at least one of these sets. If S is such a set whose
elements are sets,

∪{A : A ∈ S} or ∪ S

signify this union.
Something is in the Cartesian product of a set or “family” of sets if it consists of

a single thing taken from each set in the family. Thus (1, 2, 3) ∈ {1, 4, .2} × {1, 2, 7} ×
{4, 3, 7, 9} because it consists of exactly one element from each of the sets which are
separated by ×. Also, this is the notation for the Cartesian product of finitely many
sets. If S is a set whose elements are sets,∏

A∈S

A

signifies the Cartesian product.
The Cartesian product is the set of choice functions, a choice function being a func-

tion which selects exactly one element of each set of S. You may think the axiom of
choice, stating that the Cartesian product of a nonempty family of nonempty sets is
nonempty, is innocuous but there was a time when many mathematicians were ready
to throw it out because it implies things which are very hard to believe, things which
never happen without the axiom of choice.

A is a subset of B, written A ⊆ B, if every element of A is also an element of B.
This can also be written as B ⊇ A. A is a proper subset of B, written A ⊂ B or B ⊃ A
if A is a subset of B but A is not equal to B,A ̸= B. A ∩B denotes the intersection of
the two sets, A and B and it means the set of elements of A which are also elements of
B. The axiom of specification shows this is a set. The empty set is the set which has
no elements in it, denoted as ∅. A ∪B denotes the union of the two sets, A and B and
it means the set of all elements which are in either of the sets. It is a set because of the
axiom of unions.

The complement of a set, (the set of things which are not in the given set ) must be
taken with respect to a given set called the universal set which is a set which contains
the one whose complement is being taken. Thus, the complement of A, denoted as AC

( or more precisely as X \A) is a set obtained from using the axiom of specification to
write

AC ≡ {x ∈ X : x /∈ A}

The symbol /∈ means: “is not an element of”. Note the axiom of specification takes
place relative to a given set. Without this universal set it makes no sense to use the
axiom of specification to obtain the complement.

Words such as “all” or “there exists” are called quantifiers and they must be under-
stood relative to some given set. For example, the set of all integers larger than 3. Or
there exists an integer larger than 7. Such statements have to do with a given set, in
this case the integers. Failure to have a reference set when quantifiers are used turns
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out to be illogical even though such usage may be grammatically correct. Quantifiers
are used often enough that there are symbols for them. The symbol ∀ is read as “for
all” or “for every” and the symbol ∃ is read as “there exists”. Thus ∀∀∃∃ could mean
for every upside down A there exists a backwards E.

DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of
which is contained in some universal set, U . Then

∪
{
AC : A ∈ S

}
= (∩{A : A ∈ S})C

and
∩
{
AC : A ∈ S

}
= (∪{A : A ∈ S})C .

These laws follow directly from the definitions. Also following directly from the defini-
tions are:

Let S be a set of sets then

B ∪ ∪{A : A ∈ S} = ∪{B ∪A : A ∈ S} .

and: Let S be a set of sets show

B ∩ ∪{A : A ∈ S} = ∪{B ∩A : A ∈ S} .

Unfortunately, there is no single universal set which can be used for all sets. Here is
why: Suppose there were. Call it S. Then you could consider A the set of all elements
of S which are not elements of themselves, this from the axiom of specification. If A
is an element of itself, then it fails to qualify for inclusion in A. Therefore, it must not
be an element of itself. However, if this is so, it qualifies for inclusion in A so it is an
element of itself and so this can’t be true either. Thus the most basic of conditions you
could imagine, that of being an element of, is meaningless and so allowing such a set
causes the whole theory to be meaningless. The solution is to not allow a universal set.
As mentioned by Halmos in Naive set theory, “Nothing contains everything”. Always
beware of statements involving quantifiers wherever they occur, even this one. This little
observation described above is due to Bertrand Russell and is called Russell’s paradox.

3.2 The Schroder Bernstein Theorem

It is very important to be able to compare the size of sets in a rational way. The most
useful theorem in this context is the Schroder Bernstein theorem which is the main
result to be presented in this section. The Cartesian product is discussed above. The
next definition reviews this and defines the concept of a function.

Definition 3.2.1 Let X and Y be sets.

X × Y ≡ {(x, y) : x ∈ X and y ∈ Y }

A relation is defined to be a subset of X × Y . A function f, also called a mapping, is a
relation which has the property that if (x, y) and (x, y1) are both elements of the f , then
y = y1. The domain of f is defined as

D (f) ≡ {x : (x, y) ∈ f} ,

written as f : D (f)→ Y . Another notation which is used is the following

f−1 (y) ≡ {x ∈ D (f) : f (x) = y}

This is called the inverse image.
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It is probably safe to say that most people do not think of functions as a type of
relation which is a subset of the Cartesian product of two sets. A function is like a
machine which takes inputs, x and makes them into a unique output, f (x). Of course,
that is what the above definition says with more precision. An ordered pair, (x, y)
which is an element of the function or mapping has an input, x and a unique output
y,denoted as f (x) while the name of the function is f . “mapping” is often a noun
meaning function. However, it also is a verb as in “f is mapping A to B ”. That which
a function is thought of as doing is also referred to using the word “maps” as in: f maps
X to Y . However, a set of functions may be called a set of maps so this word might
also be used as the plural of a noun. There is no help for it. You just have to suffer
with this nonsense.

The following theorem which is interesting for its own sake will be used to prove the
Schroder Bernstein theorem.

Theorem 3.2.2 Let f : X → Y and g : Y → X be two functions. Then there
exist sets A,B,C,D, such that

A ∪B = X, C ∪D = Y, A ∩B = ∅, C ∩D = ∅,

f (A) = C, g (D) = B.

The following picture illustrates the conclusion of this theorem.

B = g(D)

A -

� D

C = f(A)

YX

f

g

Proof:Consider the empty set, ∅ ⊆ X. If y ∈ Y \ f (∅), then g (y) /∈ ∅ because ∅
has no elements. Also, if A,B,C, and D are as described above, A also would have this
same property that the empty set has. However, A is probably larger. Therefore, say
A0 ⊆ X satisfies P if whenever y ∈ Y \ f (A0) , g (y) /∈ A0.

A ≡ {A0 ⊆ X : A0 satisfies P}.

Let A = ∪A. If y ∈ Y \ f (A), then for each A0 ∈ A, y ∈ Y \ f (A0) and so g (y) /∈ A0.
Since g (y) /∈ A0 for all A0 ∈ A, it follows g (y) /∈ A. Hence A satisfies P and is the
largest subset of X which does so. Now define

C ≡ f (A) , D ≡ Y \ C, B ≡ X \A.

It only remains to verify that g (D) = B. It was just shown that g (D) ⊆ B.
Suppose x ∈ B = X \ A. Then A ∪ {x} does not satisfy P and so there exists

y ∈ Y \ f (A ∪ {x}) ⊆ D such that g (y) ∈ A ∪ {x} . But y /∈ f (A) and so since A
satisfies P, it follows g (y) /∈ A. Hence g (y) = x and so x ∈ g (D). Hence g (D) = B. �

Theorem 3.2.3 (Schroder Bernstein) If f : X → Y and g : Y → X are one to
one, then there exists h : X → Y which is one to one and onto.

Proof:Let A,B,C,D be the sets of Theorem3.2.2 and define

h (x) ≡
{

f (x) if x ∈ A
g−1 (x) if x ∈ B
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Then h is the desired one to one and onto mapping. �
Recall that the Cartesian product may be considered as the collection of choice

functions.

Definition 3.2.4 Let I be a set and let Xi be a set for each i ∈ I. f is a choice
function written as

f ∈
∏
i∈I

Xi

if f (i) ∈ Xi for each i ∈ I.

The axiom of choice says that if Xi ̸= ∅ for each i ∈ I, for I a set, then∏
i∈I

Xi ̸= ∅.

Sometimes the two functions, f and g are onto but not one to one. It turns out that
with the axiom of choice, a similar conclusion to the above may be obtained.

Corollary 3.2.5 If f : X → Y is onto and g : Y → X is onto, then there exists
h : X → Y which is one to one and onto.

Proof: For each y ∈ Y , f−1 (y) ≡ {x ∈ X : f (x) = y} ≠ ∅. Therefore, by the axiom
of choice, there exists f−1

0 ∈
∏

y∈Y f
−1 (y) which is the same as saying that for each

y ∈ Y , f−1
0 (y) ∈ f−1 (y). Similarly, there exists g−1

0 (x) ∈ g−1 (x) for all x ∈ X. Then
f−1
0 is one to one because if f−1

0 (y1) = f−1
0 (y2), then

y1 = f
(
f−1
0 (y1)

)
= f

(
f−1
0 (y2)

)
= y2.

Similarly g−1
0 is one to one. Therefore, by the Schroder Bernstein theorem, there exists

h : X → Y which is one to one and onto. �

Definition 3.2.6 A set S, is finite if there exists a natural number n and a
map θ which maps {1, · · · , n} one to one and onto S. S is infinite if it is not finite.
A set S, is called countable if there exists a map θ mapping N one to one and onto
S.(When θ maps a set A to a set B, this will be written as θ : A → B in the future.)
Here N ≡ {1, 2, · · · }, the natural numbers. S is at most countable if there exists a map
θ : N→S which is onto.

The property of being at most countable is often referred to as being countable
because the question of interest is normally whether one can list all elements of the set,
designating a first, second, third etc. in such a way as to give each element of the set a
natural number. The possibility that a single element of the set may be counted more
than once is often not important.

Theorem 3.2.7 If X and Y are both at most countable, then X × Y is also at
most countable. If either X or Y is countable, then X × Y is also countable.

Proof:It is given that there exists a mapping η : N → X which is onto. Define
η (i) ≡ xi and consider X as the set {x1, x2, x3, · · · }. Similarly, consider Y as the set
{y1, y2, y3, · · · }. It follows the elements ofX×Y are included in the following rectangular
array.

(x1, y1) (x1, y2) (x1, y3) · · · ← Those which have x1 in first slot.
(x2, y1) (x2, y2) (x2, y3) · · · ← Those which have x2 in first slot.
(x3, y1) (x3, y2) (x3, y3) · · · ← Those which have x3 in first slot.

...
...

...
...

.
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Follow a path through this array as follows.

(x1, y1) → (x1, y2) (x1, y3) →
↙ ↗

(x2, y1) (x2, y2)
↓ ↗

(x3, y1)

Thus the first element of X × Y is (x1, y1), the second element of X × Y is (x1, y2), the
third element of X × Y is (x2, y1) etc. This assigns a number from N to each element
of X × Y. Thus X × Y is at most countable.

It remains to show the last claim. Suppose without loss of generality that X is
countable. Then there exists α : N→ X which is one to one and onto. Let β : X×Y → N
be defined by β ((x, y)) ≡ α−1 (x). Thus β is onto N. By the first part there exists a
function from N onto X × Y . Therefore, by Corollary 3.2.5, there exists a one to one
and onto mapping from X × Y to N. �

Theorem 3.2.8 If X and Y are at most countable, then X ∪ Y is at most
countable. If either X or Y are countable, then X ∪ Y is countable.

Proof:As in the preceding theorem,

X = {x1, x2, x3, · · · }

and
Y = {y1, y2, y3, · · · } .

Consider the following array consisting of X ∪ Y and path through it.

x1 → x2 x3 →
↙ ↗

y1 → y2

Thus the first element of X ∪ Y is x1, the second is x2 the third is y1 the fourth is y2
etc.

Consider the second claim. By the first part, there is a map from N onto X × Y .
Suppose without loss of generality that X is countable and α : N→ X is one to one and
onto. Then define β (y) ≡ 1, for all y ∈ Y ,and β (x) ≡ α−1 (x). Thus, β maps X × Y
onto N and this shows there exist two onto maps, one mapping X ∪ Y onto N and the
other mapping N onto X ∪ Y . Then Corollary 3.2.5 yields the conclusion. �

Note that by induction this shows that if you have any finite set whose elements are
countable sets, then the union of these is countable.

3.3 Equivalence Relations

There are many ways to compare elements of a set other than to say two elements are
equal or the same. For example, in the set of people let two people be equivalent if they
have the same weight. This would not be saying they were the same person, just that
they weighed the same. Often such relations involve considering one characteristic of
the elements of a set and then saying the two elements are equivalent if they are the
same as far as the given characteristic is concerned.

Definition 3.3.1 Let S be a set. ∼ is an equivalence relation on S if it satisfies
the following axioms.
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1. x ∼ x for all x ∈ S. (Reflexive)

2. If x ∼ y then y ∼ x. (Symmetric)

3. If x ∼ y and y ∼ z, then x ∼ z. (Transitive)

Definition 3.3.2 [x] denotes the set of all elements of S which are equivalent
to x and [x] is called the equivalence class determined by x or just the equivalence class
of x.

With the above definition one can prove the following simple theorem.

Theorem 3.3.3 Let ∼ be an equivalence class defined on a set, S and let H
denote the set of equivalence classes. Then if [x] and [y] are two of these equivalence
classes, either x ∼ y and [x] = [y] or it is not true that x ∼ y and [x] ∩ [y] = ∅.

3.4 Exercises

1. The Barber of Seville is a man and he shaves exactly those men who do not shave
themselves. Who shaves the Barber?

2. Do you believe each person who has ever lived on this earth has the right to do
whatever he or she wants? (Note the use of the universal quantifier with no set in
sight.) If you believe this, do you really believe what you say you believe? What
of those people who want to deprive others their right to do what they want? Do
people often use quantifiers this way? (This is not hypothetical. Tyrants usually
seek to deprive others of their agency to do what they want. Do they have a right
to do this?)

3. President Bush, when he found there were no weapons of mass destruction said
we would give the Iraqi’s “freedom”. He is protecting our “freedom”. What
is freedom? Is there an implied quantifier involved? Is there a set mentioned?
What is the meaning of the statement? Could it mean different things to different
people?

4. DeMorgan’s laws are very useful in mathematics. Let S be a set of sets each of
which is contained in some universal set, U . Show

∪
{
AC : A ∈ S

}
= (∩{A : A ∈ S})C

and
∩
{
AC : A ∈ S

}
= (∪{A : A ∈ S})C .

5. Let S be a set of sets show

B ∪ ∪{A : A ∈ S} = ∪{B ∪A : A ∈ S} .

6. Let S be a set of sets show

B ∩ ∪{A : A ∈ S} = ∪{B ∩A : A ∈ S} .

7. Show the rational numbers are countable, this is in spite of the fact that between
any two integers there are infinitely many rational numbers. What does this show
about the usefulness of common sense and instinct in mathematics?
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8. Show the set of all subsets of N, the natural numbers, which have 3 elements,
is countable. Is the set of all subsets of N which have finitely many elements
countable? How about the set of all subsets of N?

9. We say a number is an algebraic number if it is the solution of an equation of the
form

anx
n + · · ·+ a1x+ a0 = 0

where all the aj are integers and all exponents are also integers. Thus
√
2 is an

algebraic number because it is a solution of the equation x2 − 2 = 0. Using the
observation that any such equation has at most n solutions, show the set of all
algebraic numbers is countable.

10. Let A be a nonempty set and let P (A) be its power set, the set of all subsets of
A. Show there does not exist any function f , which maps A onto P (A). Thus
the power set is always strictly larger than the set from which it came. Hint:
Suppose f is onto. Consider S ≡ {x ∈ A : x /∈ f (x)}. If f is onto, then f (y) = S
for some y ∈ A. Is y ∈ f (y)? Note this argument holds for sets of any size.

11. The empty set is said to be a subset of every set. Why? Consider the statement:
If pigs had wings, then they could fly. Is this statement true or false?

12. If S = {1, · · · , n}, show P (S) has exactly 2n elements in it. Hint: You might try
a few cases first.

13. Let S denote the set of all sequences which have either 0 or 1 in every entry. You
have seen sequences in calculus. They will be discussed more formally later. Show
that the set of all such sequences cannot be countable. Hint: Such a sequence can
be thought of as an ordered list a1a2a3 · · · where each ai is either 0 or 1. Suppose
you could list them all as follows.

a1 = a11a12a13 · · ·
a2 = a21a22a23 · · ·
a3 = a31a32a33 · · ·

...

Then consider the sequence a11a22a33 · · · . Obtain a sequence which can’t be in
the list by considering the sequence b1b2b3 · · · where bk is obtained by changing
akk. Explain why this sequence can’t be any of the ones which are listed.

14. Show that the collection of sequences a1a2 · · · an such that each ak is either 0 or 1
such that ak = 0 for all k larger than n is countable. Now show that the collection
of sequences consisting of either 0 or 1 such that ak is 0 for all k larger than some
n is also countable. However, the set of all sequences of 0 and 1 is not countable.

15. Prove Theorem 3.3.3.

16. Let S be a set and consider a function f which maps P (S) to P (S) which satisfies
the following. If A ⊆ B, then f (A) ⊆ f (B). Show there exists A such that
f (A) = A. Hint: You might consider the following subset of P (S) .

C ≡ {B ∈ P (S) : B ⊆ f (B)}

Then consider A ≡ ∪C. Argue A is the “largest” set in C which implies A cannot
be a proper subset of f (A).
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Functions And Sequences

4.1 General Considerations

The concept of a function is that of something which gives a unique output for a given
input.

Definition 4.1.1 Consider two sets, D and R along with a rule which assigns
a unique element of R to every element of D. This rule is called a function and it is
denoted by a letter such as f. The symbol, D (f) = D is called the domain of f. The
set R, also written R (f) , is called the range of f. The set of all elements of R which
are of the form f (x) for some x ∈ D is often denoted by f (D) . When R = f (D), the
function f is said to be onto. It is common notation to write f : D (f) → R to denote
the situation just described in this definition where f is a function defined on D having
values in R.

Example 4.1.2 Consider the list of numbers, {1, 2, 3, 4, 5, 6, 7} ≡ D. Define a function
which assigns an element of D to R ≡ {2, 3, 4, 5, 6, 7, 8} by f (x) ≡ x+1 for each x ∈ D.

In this example there was a clearly defined procedure which determined the function.
However, sometimes there is no discernible procedure which yields a particular function.

Example 4.1.3 Consider the ordered pairs, (1, 2) , (2,−2) , (8, 3) , (7, 6) and let

D ≡ {1, 2, 8, 7} ,

the set of first entries in the given set of ordered pairs, R ≡ {2,−2, 3, 6} , the set of
second entries, and let f (1) = 2, f (2) = −2, f (8) = 3, and f (7) = 6.

Sometimes functions are not given in terms of a formula. For example, consider the
following function defined on the positive real numbers having the following definition.

Example 4.1.4 For x ∈ R define

f (x) =

{
1
n if x = m

n in lowest terms for m,n ∈ Z
0 if x is not rational

(4.1)

This is a very interesting function called the Dirichlet function. Note that it is not
defined in a simple way from a formula.

Example 4.1.5 Let D consist of the set of people who have lived on the earth except
for Adam and for d ∈ D, let f (d) ≡ the biological father of d. Then f is a function.

43
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This function is not the sort of thing studied in calculus but it is a function just the
same. When D (f) is not specified, it is understood to consist of everything for which
f makes sense. The following definition gives several ways to make new functions from
old ones.

Definition 4.1.6 Let f, g be functions with values in F. Let a, b be points of F.
Then af + bg is the name of a function whose domain is D (f)∩D (g) which is defined
as

(af + bg) (x) = af (x) + bg (x) .

The function fg is the name of a function which is defined on D (f) ∩D (g) given by

(fg) (x) = f (x) g (x) .

Similarly for k an integer, fk is the name of a function defined as

fk (x) = (f (x))
k

The function f/g is the name of a function whose domain is

D (f) ∩ {x ∈ D (g) : g (x) ̸= 0}

defined as
(f/g) (x) = f (x) /g (x) .

If f : D (f)→ X and g : D (g)→ Y, then g ◦ f is the name of a function whose domain
is

{x ∈ D (f) : f (x) ∈ D (g)}

which is defined as
g ◦ f (x) ≡ g (f (x)) .

This is called the composition of the two functions.

You should note that f (x) is not a function. It is the value of the function at the
point x. The name of the function is f. Nevertheless, people often write f (x) to denote
a function and it doesn’t cause too many problems in beginning courses. When this is
done, the variable x should be considered as a generic variable free to be anything in
D (f) .

Sometimes people get hung up on formulas and think that the only functions of
importance are those which are given by some simple formula. It is a mistake to think
this way. Functions involve a domain and a range and a function is determined by what
it does. This is an old idea. See Luke 6:44 where Jesus says essentially that you know
a tree by its fruit. See also Matt. 7 about how to recognize false prophets. You look
at what it does to determine what it is. As it is with people and trees, so it is with
functions.

Example 4.1.7 Let f (t) = t and g (t) = 1 + t. Then fg : R→ R is given by

fg (t) = t (1 + t) = t+ t2.

Example 4.1.8 Let f (t) = 2t+ 1 and g (t) =
√
1 + t. Then

g ◦ f (t) =
√
1 + (2t+ 1) =

√
2t+ 2

for t ≥ −1. If t < −1 the inside of the square root sign is negative so makes no sense.
Therefore, g ◦ f : {t ∈ R : t ≥ −1} → R.
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Note that in this last example, it was necessary to fuss about the domain of g ◦ f
because g is only defined for certain values of t.

The concept of a one to one function is very important. This is discussed in the
following definition.

Definition 4.1.9 For any function f : D (f) ⊆ X → Y, define the following set
known as the inverse image of y.

f−1 (y) ≡ {x ∈ D (f) : f (x) = y} .

There may be many elements in this set, but when there is always only one element in
this set for all y ∈ f (D (f)) , the function f is one to one sometimes written, 1 − 1.
Thus f is one to one, 1 − 1, if whenever f (x) = f (x1) , then x = x1. If f is one to
one, the inverse function f−1 is defined on f (D (f)) and f−1 (y) = x where f (x) = y.
Thus from the definition, f−1 (f (x)) = x for all x ∈ D (f) and f

(
f−1 (y)

)
= y for all

y ∈ f (D (f)) . Defining id by id (z) ≡ z this says f ◦ f−1 = id and f−1 ◦ f = id . Note
that this is sloppy notation because the two id are totally different functions.

Polynomials and rational functions are particularly easy functions to understand
because they do come from a simple formula.

Definition 4.1.10 A function f is a polynomial if

f (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where the ai are real or complex numbers and n is a nonnegative integer. In this case
the degree of the polynomial, f (x) is n. Thus the degree of a polynomial is the largest
exponent appearing on the variable.

f is a rational function if

f (x) =
h (x)

g (x)

where h and g are polynomials.

For example, f (x) = 3x5 + 9x2 + 7x+ 5 is a polynomial of degree 5 and

3x5 + 9x2 + 7x+ 5

x4 + 3x+ x+ 1

is a rational function.
Note that in the case of a rational function, the domain of the function might not

be all of F. For example, if

f (x) =
x2 + 8

x+ 1
,

the domain of f would be all complex numbers not equal to −1.
Closely related to the definition of a function is the concept of the graph of a function.

Definition 4.1.11 Given two sets, X and Y, the Cartesian product of the two
sets, written as X × Y, is assumed to be a set described as follows.

X × Y = {(x, y) : x ∈ X and y ∈ Y } .

F2 denotes the Cartesian product of F with F. Recall F could be either R or C.

The notion of Cartesian product is just an abstraction of the concept of identifying
a point in the plane with an ordered pair of numbers.
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Definition 4.1.12 Let f : D (f)→ R (f) be a function. The graph of f consists
of the set,

{(x, y) : y = f (x) for x ∈ D (f)} .

Note that knowledge of the graph of a function is equivalent to knowledge of the
function. To find f (x) , simply observe the ordered pair which has x as its first element
and the value of y equals f (x) .

4.2 Sequences

Functions defined on the set of integers larger than a given integer are called sequences.

Definition 4.2.1 A function whose domain is defined as a set of the form

{k, k + 1, k + 2, · · · }

for k an integer is known as a sequence. Thus you can consider f (k) , f (k + 1) , f (k + 2) ,
etc. Usually the domain of the sequence is either N, the natural numbers consisting of
{1, 2, 3, · · · } or the nonnegative integers, {0, 1, 2, 3, · · · } . Also, it is traditional to write
f1, f2, etc. instead of f (1) , f (2) , f (3) etc. when referring to sequences. In the above
context, fk is called the first term, fk+1 the second and so forth. It is also common to
write the sequence, not as f but as {fi}∞i=k or just {fi} for short.

Example 4.2.2 Let {ak}∞k=1 be defined by ak ≡ k2 + 1.

This gives a sequence. In fact, a7 = a (7) = 72 + 1 = 50 just from using the formula
for the kth term of the sequence.

It is nice when sequences come in this way from a formula for the kth term. However,
this is often not the case. Sometimes sequences are defined recursively. This happens,
when the first several terms of the sequence are given and then a rule is specified which
determines an+1 from knowledge of a1, · · · , an. This rule which specifies an+1 from
knowledge of ak for k ≤ n is known as a recurrence relation.

Example 4.2.3 Let a1 = 1 and a2 = 1. Assuming a1, · · · , an+1 are known, an+2 ≡
an + an+1.

Thus the first several terms of this sequence, listed in order, are 1, 1, 2, 3, 5, 8,· · · .
This particular sequence is called the Fibonacci sequence and is important in the study
of reproducing rabbits. Note this defines a function without giving a formula for it.
Such sequences occur naturally in the solution of differential equations using power
series methods and in many other situations of great importance.

For sequences, it is very important to consider something called a subsequence.

Definition 4.2.4 Let {an} be a sequence and let n1 < n2 < n3, · · · be any
strictly increasing list of integers such that n1 is at least as large as the first number in
the domain of the function. Then if bk ≡ ank

, {bk} is called a subsequence of {an} .

For example, suppose an =
(
n2 + 1

)
. Thus a1 = 2, a3 = 10, etc. If

n1 = 1, n2 = 3, n3 = 5, · · · , nk = 2k − 1,

then letting bk = ank
, it follows

bk =
(
(2k − 1)

2
+ 1
)
= 4k2 − 4k + 2.
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4.3 Exercises

1. Let g (t) ≡
√
2− t and let f (t) = 1

t . Find g ◦ f. Include the domain of g ◦ f.

2. Give the domains of the following functions.

(a) f (x) = x+3
3x−2

(b) f (x) =
√
x2 − 4

(c) f (x) =
√
4− x2

(d) f (x) =
√

x 4
3x+5

(e) f (x) =
√

x2−4
x+1

3. Let f : R→ R be defined by f (t) ≡ t3 + 1. Is f one to one? Can you find a
formula for f−1?

4. Suppose a1 = 1, a2 = 3, and a3 = −1. Suppose also that for n ≥ 4 it is known
that an = an−1+2an−2+3an−3. Find a7. Are you able to guess a formula for the
kth term of this sequence?

5. Let f : {t ∈ R : t ̸= −1}→ R be defined by f (t) ≡ t
t+1 . Find f

−1 if possible.

6. A function f : R→ R is a strictly increasing function if whenever x < y, it follows
that f (x) < f (y) . If f is a strictly increasing function, does f−1 always exist?
Explain your answer.

7. Let f (t) be defined by

f (t) =

{
2t+ 1 if t ≤ 1
t if t > 1

.

Find f−1 if possible.

8. Suppose f : D (f)→ R (f) is one to one, R (f) ⊆ D (g) , and g : D (g)→ R (g) is
one to one. Does it follow that g ◦ f is one to one?

9. If f : R→ R and g : R→ R are two one to one functions, which of the following
are necessarily one to one on their domains? Explain why or why not by giving a
proof or an example.

(a) f + g

(b) fg

(c) f3

(d) f/g

10. Draw the graph of the function f (x) = x3 + 1.

11. Draw the graph of the function f (x) = x2 + 2x+ 2.

12. Draw the graph of the function f (x) = x
1+x .

13. Suppose an = 1
n and let nk = 2k. Find bk where bk = ank

.

14. If Xi are sets and for some j, Xj = ∅, the empty set. Verify carefully that∏n
i=1Xi = ∅.
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15. Suppose f (x) + f
(
1
x

)
= 7x and f is a function defined on R\ {0} , the nonzero

real numbers. Find all values of x where f (x) = 1 if there are any. Does there
exist any such function?

16. Does there exist a function f , satisfying f (x)− f
(
1
x

)
= 3x which has both x and

1
x in the domain of f?

17. In the situation of the Fibonacci sequence show that the formula for the nth term
can be found and is given by

an =

√
5

5

(
1 +
√
5

2

)n

−
√
5

5

(
1−
√
5

2

)n

.

Hint: You might be able to do this by induction but a better way would be to
look for a solution to the recurrence relation, an+2 ≡ an + an+1 of the form rn.
You will be able to show that there are two values of r which work, one of which

is r = 1+
√
5

2 . Next you can observe that if rn1 and rn2 both satisfy the recurrence
relation then so does crn1 + drn2 for any choice of constants c, d. Then you try to
pick c and d such that the conditions, a1 = 1 and a2 = 1 both hold.

18. In an ordinary annuity, you make constant payments, P at the beginning of each
payment period. These accrue interest at the rate of r per payment period. This
means at the start of the first payment period, there is the payment P ≡ A1. Then
this produces an amount rP in interest so at the beginning of the second payment
period, you would have rP + P + P ≡ A2. Thus A2 = A1 (1 + r) + P. Then at
the beginning of the third payment period you would have A2 (1 + r) + P ≡ A3.
Continuing in this way, you see that the amount in at the beginning of the nth

payment period would be An given by An = An−1 (1 + r) + P and A1 = P. Thus
A is a function defined on the positive integers given recursively as just described
and An is the amount at the beginning of the nth payment period. Now if you
wanted to find out An for large n, how would you do it? One way would be to use
the recurrance relation n times. A better way would be to find a formula for An.
Look for one in the form An = Czn + s where C, z and s are to be determined.
Show that C = P

r , z = (1 + r) , and s = −P
r .

19. A well known puzzle consists of three pegs and several disks each of a different
diameter, each having a hole in the center which allows it to be slid down each
of the pegs. These disks are piled one on top of the other on one of the pegs,
in order of decreasing diameter, the larger disks always being below the smaller
disks. The problem is to move the whole pile of disks to another peg such that
you never place a disk on a smaller disk. If you have n disks, how many moves
will it take? Of course this depends on n. If n = 1, you can do it in one move. If
n = 2, you would need 3. Let An be the number required for n disks. Then in
solving the puzzle, you must first obtain the top n− 1 disks arranged in order on
another peg before you can move the bottom disk of the original pile. This takes
An−1 moves. Explain why An = 2An−1 + 1, A1 = 1 and give a formula for An.
Look for one in the form An = Crn + s. This puzzle is called the Tower of Hanoi.
When you have found a formula for An, explain why it is not possible to do this
puzzle if n is very large.
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4.4 The Limit Of A Sequence

The concept of the limit of a sequence was defined precisely by Bolzano.1 The following
is the precise definition of what is meant by the limit of a sequence.

Definition 4.4.1 A sequence {an}∞n=1 converges to a,

lim
n→∞

an = a or an → a

if and only if for every ε > 0 there exists nε such that whenever n ≥ nε ,

|an − a| < ε.

Here a and an are assumed to be complex numbers but the same definition holds more
generally.

In words the definition says that given any measure of closeness ε, the terms of the
sequence are eventually this close to a. Here, the word “eventually” refers to n being
sufficiently large. The above definition is always the definition of what is meant by the
limit of a sequence. If the an are complex numbers or later on vectors, the definition

remains the same. If an = xn + iyn and a = x+ iy, |an − a| =
√

(xn − x)2 + (yn − y)2.
Recall the way you measure distance between two complex numbers.

Theorem 4.4.2 If limn→∞ an = a and limn→∞ an = â then â = a.

Proof:Suppose â ̸= a. Then let 0 < ε < |â− a| /2 in the definition of the limit. It
follows there exists nε such that if n ≥ nε, then |an − a| < ε and |an − â| < ε. Therefore,
for such n,

|â− a| ≤ |â− an|+ |an − a|
< ε+ ε < |â− a| /2 + |â− a| /2 = |â− a| ,

a contradiction. �

Example 4.4.3 Let an = 1
n2+1 .

Then it seems clear that

lim
n→∞

1

n2 + 1
= 0.

In fact, this is true from the definition. Let ε > 0 be given. Let nε ≥
√
ε−1. Then if

n > nε ≥
√
ε−1,

it follows that n2 + 1 > ε−1 and so

0 <
1

n2 + 1
= an < ε..

Thus |an − 0| < ε whenever n is this large.
Note the definition was of no use in finding a candidate for the limit. This had to

be produced based on other considerations. The definition is for verifying beyond any
doubt that something is the limit. It is also what must be referred to in establishing
theorems which are good for finding limits.

1Bernhard Bolzano lived from 1781 to 1848. He was a Catholic priest and held a position in
philosophy at the University of Prague. He had strong views about the absurdity of war, educational
reform, and the need for individual concience. His convictions got him in trouble with Emporer Franz
I of Austria and when he refused to recant, was forced out of the university. He understood the need
for absolute rigor in mathematics. He also did work on physics.
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Example 4.4.4 Let an = n2

Then in this case limn→∞ an does not exist.

Example 4.4.5 Let an = (−1)n .

In this case, limn→∞ (−1)n does not exist. This follows from the definition. Let
ε = 1/2. If there exists a limit, l, then eventually, for all n large enough, |an − l| < 1/2.
However, |an − an+1| = 2 and so,

2 = |an − an+1| ≤ |an − l|+ |l − an+1| < 1/2 + 1/2 = 1

which cannot hold. Therefore, there can be no limit for this sequence.

Theorem 4.4.6 Suppose {an} and {bn} are sequences and that

lim
n→∞

an = a and lim
n→∞

bn = b.

Also suppose x and y are in F. Then

lim
n→∞

xan + ybn = xa+ yb (4.2)

lim
n→∞

anbn = ab (4.3)

If b ̸= 0,

lim
n→∞

an
bn

=
a

b
. (4.4)

Proof: The first of these claims is left for you to do. To do the second, let ε > 0 be
given and choose n1 such that if n ≥ n1 then

|an − a| < 1.

Then for such n, the triangle inequality implies

|anbn − ab| ≤ |anbn − anb|+ |anb− ab|
≤ |an| |bn − b|+ |b| |an − a|
≤ (|a|+ 1) |bn − b|+ |b| |an − a| .

Now let n2 be large enough that for n ≥ n2,

|bn − b| <
ε

2 (|a|+ 1)
, and |an − a| <

ε

2 (|b|+ 1)
.

Such a number exists because of the definition of limit. Therefore, let

nε > max (n1, n2) .

For n ≥ nε,

|anbn − ab| ≤ (|a|+ 1) |bn − b|+ |b| |an − a|

< (|a|+ 1)
ε

2 (|a|+ 1)
+ |b| ε

2 (|b|+ 1)
≤ ε.

This proves 4.3. Next consider 4.4.
Let ε > 0 be given and let n1 be so large that whenever n ≥ n1,

|bn − b| <
|b|
2
.
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Thus for such n,∣∣∣∣anbn − a

b

∣∣∣∣ = ∣∣∣∣anb− abnbbn

∣∣∣∣ ≤ 2

|b|2
[|anb− ab|+ |ab− abn|]

≤ 2

|b|
|an − a|+

2 |a|
|b|2
|bn − b| .

Now choose n2 so large that if n ≥ n2, then

|an − a| <
ε |b|
4
, and |bn − b| <

ε |b|2

4 (|a|+ 1)
.

Letting nε > max (n1, n2) , it follows that for n ≥ nε,∣∣∣∣anbn − a

b

∣∣∣∣ ≤ 2

|b|
|an − a|+

2 |a|
|b|2
|bn − b|

<
2

|b|
ε |b|
4

+
2 |a|
|b|2

ε |b|2

4 (|a|+ 1)
< ε. �

Another very useful theorem for finding limits is the squeezing theorem.

Theorem 4.4.7 Suppose limn→∞ an = a = limn→∞ bn and an ≤ cn ≤ bn for
all n large enough. Then limn→∞ cn = a.

Proof: Let ε > 0 be given and let n1 be large enough that if n ≥ n1,

|an − a| < ε/2 and |bn − a| < ε/2.

Then for such n,

|cn − a| ≤ |an − a|+ |bn − a| < ε.

The reason for this is that if cn ≥ a, then

|cn − a| = cn − a ≤ bn − a ≤ |an − a|+ |bn − a|

because bn ≥ cn. On the other hand, if cn ≤ a, then

|cn − a| = a− cn ≤ a− an ≤ |a− an|+ |b− bn| . �

As an example, consider the following.

Example 4.4.8 Let

cn ≡ (−1)n 1

n

and let bn = 1
n , and an = − 1

n . Then you may easily show that

lim
n→∞

an = lim
n→∞

bn = 0.

Since an ≤ cn ≤ bn, it follows limn→∞ cn = 0 also.

Theorem 4.4.9 limn→∞ rn = 0. Whenever |r| < 1.
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Proof:If 0 < r < 1 if follows r−1 > 1. Why? Letting α = 1
r − 1, it follows

r =
1

1 + α
.

Therefore, by the binomial theorem,

0 < rn =
1

(1 + α)
n ≤

1

1 + αn
.

Therefore, limn→∞ rn = 0 if 0 < r < 1. Now in general, if |r| < 1, |rn| = |r|n → 0 by
the first part. �

An important theorem is the one which states that if a sequence converges, so does
every subsequence. You should review Definition 4.2.4 on Page 46 at this point.

Theorem 4.4.10 Let {xn} be a sequence with limn→∞ xn = x and let {xnk
} be

a subsequence. Then limk→∞ xnk
= x.

Proof: Let ε > 0 be given. Then there exists nε such that if n > nε, then |xn − x| <
ε. Suppose k > nε. Then nk ≥ k > nε and so

|xnk
− x| < ε

showing limk→∞ xnk
= x as claimed. �

Theorem 4.4.11 Let {xn} be a sequence of real numbers and suppose each
xn ≤ l (≥ l)and limn→∞ xn = x. Then x ≤ l (≥ l) . More generally, suppose {xn}
and {yn} are two sequences such that limn→∞ xn = x and limn→∞ yn = y. Then if
xn ≤ yn for all n sufficiently large, then x ≤ y.

Proof: Suppose not. Suppose that xn ≤ l but x > l. Then for n large enough,

|xn − x| < x− l

and so
x− xn < x− l which implies xn > l

a contradiction. The case where each xn ≥ l is similar. Consider now the last claim.
For n large enough,

y − x ≥ (yn − ε)− (xn + ε) ≥ (yn − xn)− 2ε ≤ −2ε

Since ε is arbitrary, it follows that y − x ≥ 0. �

4.5 The Nested Interval Lemma

In Russia there is a kind of doll called a matrushka doll. You pick it up and notice it
comes apart in the center. Separating the two halves you find an identical doll inside.
Then you notice this inside doll also comes apart in the center. Separating the two
halves, you find yet another identical doll inside. This goes on quite a while until the
final doll is in one piece. The nested interval lemma is like a matrushka doll except
the process never stops. It involves a sequence of intervals, the first containing the
second, the second containing the third, the third containing the fourth and so on. The
fundamental question is whether there exists a point in all the intervals. Sometimes
there is such a point and this comes from completeness.
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Lemma 4.5.1 Let Ik =
[
ak, bk

]
and suppose that for all k = 1, 2, · · · ,

Ik ⊇ Ik+1.

Then there exists a point, c ∈ R which is an element of every Ik.

Proof:Since Ik ⊇ Ik+1, this implies

ak ≤ ak+1, bk ≥ bk+1. (4.5)

Consequently, if k ≤ l,
al ≤ al ≤ bl ≤ bk. (4.6)

Now define
c ≡ sup

{
al : l = 1, 2, · · ·

}
By the first inequality in 4.5, and 4.6

ak ≤ c = sup
{
al : l = k, k + 1, · · ·

}
≤ bk (4.7)

for each k = 1, 2 · · · . Thus c ∈ Ik for every k and this proves the lemma. The reason for
the last inequality in 4.7 is that from 4.6, bk is an upper bound to

{
al : l = k, k + 1, · · ·

}
.

Therefore, it is at least as large as the least upper bound. �
This is really quite a remarkable result and may not seem so obvious. Consider the

intervals Ik ≡ (0, 1/k) . Then there is no point which lies in all these intervals because
no negative number can be in all the intervals and 1/k is smaller than a given positive
number whenever k is large enough. Thus the only candidate for being in all the intervals
is 0 and 0 has been left out of them all. The problem here is that the endpoints of the
intervals were not included, contrary to the hypotheses of the above lemma in which all
the intervals included the endpoints.

4.6 Exercises

1. Find limn→∞
n

3n+4 .

2. Find limn→∞
3n4+7n+1000

n4+1 .

3. Find limn→∞
2n+7(5n)
4n+2(5n) .

4. Find limn→∞
√

(n2 + 6n)− n. Hint: Multiply and divide by
√
(n2 + 6n) + n.

5. Find limn→∞
∑n

k=1
1

10k
.

6. Suppose {xn + iyn} is a sequence of complex numbers which converges to the
complex number x+ iy. Show this happens if and only if xn → x and yn → y.

7. For |r| < 1, find limn→∞
∑n

k=0 r
k. Hint: First show

∑n
k=0 r

k = rn+1

r−1 −
1

r−1 . Then
recall Theorem 4.4.9.

8. Using the binomial theorem prove that for all n ∈ N,
(
1 + 1

n

)n ≤ (1 + 1
n+1

)n+1

.

Hint: Show first that
(
n
k

)
= n·(n−1)···(n−k+1)

k! . By the binomial theorem,

(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)(
1

n

)k

=

n∑
k=0

k factors︷ ︸︸ ︷
n · (n− 1) · · · (n− k + 1)

k!nk
.
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Now consider the term n·(n−1)···(n−k+1)
k!nk and note that a similar term occurs in the

binomial expansion for
(
1 + 1

n+1

)n+1

except you replace n with n+ 1 whereever

this occurs. Argue the term got bigger and then note that in the binomial expan-

sion for
(
1 + 1

n+1

)n+1

, there are more terms.

9. Prove by induction that for all k ≥ 4, 2k ≤ k!

10. Use the Problems 21 and 8 to verify for all n ∈ N,
(
1 + 1

n

)n ≤ 3.

11. Prove limn→∞
(
1 + 1

n

)n
exists and equals a number less than 3.

12. Using Problem 10, prove nn+1 ≥ (n+ 1)
n
for all integers, n ≥ 3.

13. Find limn→∞ n sinn if it exists. If it does not exist, explain why it does not.

14. Recall the axiom of completeness states that a set which is bounded above has a
least upper bound and a set which is bounded below has a greatest lower bound.
Show that a monotone decreasing sequence which is bounded below converges to
its greatest lower bound. Hint: Let a denote the greatest lower bound and recall
that because of this, it follows that for all ε > 0 there exist points of {an} in
[a, a+ ε] .

15. Let An =
∑n

k=2
1

k(k−1) for n ≥ 2. Show limn→∞An exists and find the limit.

Hint: Show there exists an upper bound to the An as follows.

n∑
k=2

1

k (k − 1)
=

n∑
k=2

(
1

k − 1
− 1

k

)
= 1− 1

n
≤ 1.

16. Let Hn =
∑n

k=1
1
k2 for n ≥ 2. Show limn→∞Hn exists. Hint: Use the above

problem to obtain the existence of an upper bound.

17. Let In = (−1/n, 1/n) and let Jn = (0, 2/n) . The intervals, In and Jn are open
intervals of length 2/n. Find ∩∞n=1In and ∩∞n=1Jn. Repeat the same problem for
In = (−1/n, 1/n] and Jn = [0, 2/n).

18. Show the set of real numbers [0, 1] is not countable. That is, show that there can
be no mapping from N onto [0, 1]. Hint: Show that every sequence, the terms
consisting only of 0 or 1 determines a unique point of [0, 1] . Call this map γ. Show
it is onto. Also show that there is a map from [0, 1] onto S, the set of sequences of
zeros and ones. This will involve the nested interval lemma. Thus there is a one
to one and onto map α from S to [0, 1] by Corollary 3.2.5. Next show that there
is a one to one and onto map from this set of sequences and P (N). Consider

θ ({an}∞n=1) = {n : an = 1}

Now suppose that f : N → [0, 1] is onto. Then θ ◦ α−1 ◦ f is onto P (N). Recall
that there is no map from a set to its power set. Review why this is.

19. Show that if I and J are any two closed intervals, then there is a one to one and
onto map from I to J . Thus from the above problem, no closed interval, however
short can be countable.
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4.7 Compactness

4.7.1 Sequential Compactness

First I will discuss the very important concept of sequential compactness. This is a
property that some sets have. A set of numbers is sequentially compact if every sequence
contained in the set has a subsequence which converges to a point in the set. It is
unbelievably useful whenever you try to understand existence theorems.

Definition 4.7.1 A set, K ⊆ F is sequentially compact if whenever {an} ⊆ K
is a sequence, there exists a subsequence, {ank

} such that this subsequence converges to
a point of K.

The following theorem is part of the Heine Borel theorem.

Theorem 4.7.2 Every closed interval [a, b] is sequentially compact.

Proof: Let {xn} ⊆ [a, b] ≡ I0. Consider the two intervals
[
a, a+b

2

]
and

[
a+b
2 , b

]
each

of which has length (b− a) /2. At least one of these intervals contains xn for infinitely
many values of n. Call this interval I1. Now do for I1 what was done for I0. Split it
in half and let I2 be the interval which contains xn for infinitely many values of n.
Continue this way obtaining a sequence of nested intervals I0 ⊇ I1 ⊇ I2 ⊇ I3 · · · where
the length of In is (b− a) /2n. Now pick n1 such that xn1 ∈ I1, n2 such that n2 > n1

and xn2 ∈ I2, n3 such that n3 > n2 and xn3 ∈ I3, etc. (This can be done because in each
case the intervals contained xn for infinitely many values of n.) By the nested interval
lemma there exists a point c contained in all these intervals. Furthermore,

|xnk
− c| < (b− a) 2−k

and so limk→∞ xnk
= c ∈ [a, b] . �

4.7.2 Closed And Open Sets

I have been using the terminology [a, b] is a closed interval to mean it is an interval
which contains the two endpoints. However, there is a more general notion of what it
means to be closed. Similarly there is a general notion of what it means to be open.

Definition 4.7.3 Let U be a set of points. A point p ∈ U is said to be an
interior point if whenever |x− p| is sufficiently small, it follows x ∈ U also. The set of
points, x which are closer to p than δ is denoted by

B (p, δ) ≡ {x ∈ F : |x− p| < δ} .

This symbol, B (p, δ) is called an open ball of radius δ. Thus a point, p is an interior
point of U if there exists δ > 0 such that p ∈ B (p, δ) ⊆ U . An open set is one for
which every point of the set is an interior point. Closed sets are those which are
complements of open sets. Thus H is closed means HC is open.

What is an example of an open set? The simplest example is an open ball.

Proposition 4.7.4 B (p, δ) is an open set.

Proof: It is necessary to show every point is an interior point. Let x ∈ B (p, δ) .
Then let r = δ − |x− p|. It follows r > 0 because it is given that |x− p| < δ. Now
consider z ∈ B (x, r) .

|z − p| ≤ |z − x|+ |x− p|
< r + |x− p| = δ − |x− p|+ |x− p| = δ
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and so z ∈ B (p, δ) . That is B (x, r) ⊆ B (p, δ) . Since x was arbitrary, this has shown
every point of the ball is an interior point. Thus the ball is an open set. �

Definition 4.7.5 Let A be any nonempty set and let x be a point. Then x is
said to be a limit point of A if for every r > 0, B (x, r) contains a point of A which is
not equal to x.

Example 4.7.6 Consider A = N, the positive integers. Then none of the points of A
is a limit point of A because if n ∈ A,B (n, 1/10) contains no points of N which are not
equal to n.

Example 4.7.7 Consider A = (a, b) , an open interval. If x ∈ (a, b) , let

r = min (|x− a| , |x− b|) .

Then B (x, r) ⊆ A because if |y − x| < r, then

y − a = y − x+ x− a ≥ x− a− |y − x|
= |x− a| − |y − x| > |x− a| − r ≥ 0

showing y > a. A similar argument which you should provide shows y < b. Thus y ∈
(a, b) and x is an interior point. Since x was arbitrary, this shows every point of (a, b)
is an interior point and so (a, b) is open.

Theorem 4.7.8 Let A be a nonempty set. A point a is a limit point of A if and
only if there exists a sequence of distinct points of A, {an} which converges to a, none
of which equal a. Also a nonempty set, A is closed if and only if it contains all its limit
points.

Proof: Suppose first it is a limit point of A. There exists a1 ∈ B (a, 1)∩A such that
a1 ̸= a. Now supposing distinct points, a1, · · · , an have been chosen such that none are
equal to a and for each k ≤ n, ak ∈ B (a, 1/k) , let

0 < rn+1 < min

{
1

n+ 1
, |a− a1| , · · · , |a− an|

}
.

Then there exists an+1 ∈ B (a, rn+1) ∩ A with an+1 ̸= a. Because of the definition of
rn+1, an+1 is not equal to any of the other ak for k < n+1. Also since |a− am| < 1/m,
it follows limm→∞ am = a. Conversely, if there exists a sequence of distinct points of A
converging to a none of which equal a, then B (a, r) contains all an for n large enough.
Thus B (a, r) contains infinitely many points of A since all are distinct. This establishes
the first part of the theorem.

Now consider the second claim. If A is closed then it is the complement of an open
set. Since AC is open, it follows that if a ∈ AC , then there exists δ > 0 such that
B (a, δ) ⊆ AC and so no point of AC can be a limit point of A. In other words, every
limit point of A must be in A. Conversely, suppose A contains all its limit points. Then
AC does not contain any limit points of A. It also contains no points of A. Therefore, if
a ∈ AC , since it is not a limit point of A, there exists δ > 0 such that B (a, δ) contains
no points of A different than a. However, a itself is not in A because a ∈ AC . Therefore,
B (a, δ) is entirely contained in AC . Since a ∈ AC was arbitrary, this shows every point
of AC is an interior point and so AC is open. �

Corollary 4.7.9 Let A be a nonempty set and denote by A′ the set of limit points
of A. Then A ∪A′ is a closed set and it is the smallest closed set containing A.
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Proof: Is it the case that (A ∪A′)
C
is open? This is what needs to be shown if the

given set is closed. Let p /∈ A ∪A′. Then since p is neither in A nor a limit point of A,
there exists B (p, r) such that B (p, r) ∩ A = ∅. Therefore, B (p, r) ∩ A′ = ∅ also. This
is because if z ∈ B (p, r) ∩A′, then

B (z, r − |p− z|) ⊆ B (p, r)

and this smaller ball contains points of A since z is a limit point. This contradiction
shows that B (p, r) ∩ A′ = ∅ as claimed. Hence (A ∪A′)

C
is open because p was an

arbitrary point of (A ∪A′)
C
. Hence A ∪A′ is closed as claimed.

Now suppose C ⊇ A and C is closed. Then if p is a limit point of A, it follows from
Theorem 4.7.8 that there exists a sequence of distinct points of A converging to p. Since
C is closed, and these points of A are all in C, it follows that p ∈ C. Hence C ⊇ A∪A′.
�

Theorem 4.7.10 If K is sequentially compact and if H is a closed subset of K
then H is sequentially compact.

Proof: Let {xn} ⊆ H. Then sinceK is sequentially compact, there is a subsequence,
{xnk

} which converges to a point, x ∈ K. If x /∈ H, then by Theorem 4.7.8, which says
HC is open, it follows there exists B (x, r) such that this open ball contains no points
of H. However, this is a contradiction to having xnk

→ x which requires xnk
∈ B (x, r)

for all k large enough. Thus x ∈ H and this has shown H is sequentially compact. �
Thus every closed subset of a closed interval is sequentially compact. This is equiv-

alent to the following corollary.

Corollary 4.7.11 Every closed and bounded set in R is sequentially compact.

Proof: Let H be a closed and bounded set in R. Then H is a closed subset of some
interval of the form [a, b] . Therefore, it is sequentially compact. �

In fact, one can go the other way.

Proposition 4.7.12 A nonempty set K ⊆ R is sequentially compact if and only if
it is closed and bounded.

Proof: From the above corollary, if the set is closed and bounded, then it is se-
quentially compact. Suppose now that K is sequentially compact. Why is it closed and
bounded? If it is not bounded, then you could pick {kn}∞n=1 such that |kn| ≥ n. Since
K is sequentially compact, it follows that there is a subsequence,

{
knj

}
which satisfies

lim
j→∞

knj = k ∈ K

However, this is impossible because this convergence can only take place if
{
knj

}∞
j=1

is bounded which it is not. Thus K is bounded. Why must it be closed? Suppose
K fails to contain p where p is a limit point of K. Then from Theorem 4.7.8 there
exists a sequence of distinct points of K {pn} such that limn→∞ pn = p /∈ K. This
is a contradiction because the sequential compactness of K requires the existence of a
subsequence {pnk

} such that limk→∞ pnk
= q ∈ K. However, limk→∞ pnk

= p and so
p ∈ K after all. This proves the proposition. �

What about the sequentially compact sets in C?

Definition 4.7.13 A set S ⊆ C is bounded if there is some r > 0 such that
S ⊆ B (0, r) .
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Theorem 4.7.14 Let H ⊆ C. Then H is closed and bounded if and only if H
is sequentially compact.

Proof: Let H be a closed and bounded set in C. Then H ⊆ B (0, r) for some r.
Therefore,

H ⊆ {x+ iy : x ∈ [−r, r] and y ∈ [−r, r]} ≡ Q

because if x+iy ∈ B (0, r) , then
√
x2 + y2 ≤ r and so both |x| , |y| ≤ r which is the same

as saying x ∈ [−r, r] and y ∈ [−r, r] . Now let {xn + iyn}∞n=1 be a sequence of points
in H. Then {xn} is a sequence of points in [−r, r] and {yn} is a sequence of points in
[−r, r] . It follows from Theorem 4.7.2 there exists a subsequence of {xn} , {xnk

} which
converges to a point x in [−r, r] . Then {ynk

} is a sequence of points in [−r, r] and so it

has a subsequence,
{
ynkl

}∞

l=1
which converges to a point y ∈ [−r, r] . Thus

{
xnkl

}∞

l=1

converges to x ∈ [−r, r] by Theorem 4.4.10 and as just noted,
{
ynkl

}∞

l=1
converges to

y ∈ [−r, r] . It follows from the definition of distance in C that

xnkl
+ iynkl

→ x+ iy ∈ Q.

However, H is closed and so x+ iy ∈ H.
Now suppose H is sequentially compact. Why is it closed and bounded? If it is

not bounded, then there exists {zk} ⊆ H and this sequence is not bounded. Therefore,
there is a subsequence, {znk

} such that limk→∞ |znk
| =∞. However, since H is sequen-

tially compact, this requires that there exists a further subsequence which converges to
something in H, which is impossible because convergent sequences must be bounded.
If H is not closed, then there exists a point w which is a limit point of H but not in
H. Since it is a limit point, there exists a sequence {zn} ⊆ H of distinct points such
that limn→∞ zn = w. However, a subsequence must converge to a point in H but this
implies that w ∈ H because every subsequence converges to w. Hence w ∈ H after all
which is a contradiction. �

What are some examples of closed and bounded sets in F?

Proposition 4.7.15 Let D (z, r) denote the set of points,

{w ∈ F : |w − z| ≤ r}

Then D (z, r) is closed and bounded. Also any set of the form

[a, b] + i [c, d]

is closed and bounded. Thus sets D (z, r) and [a, b] + i [c, d] are sequentially compact.

Proof: In case F = R, there is nothing to show.

D (z, r) = [z − r, z + r]

Therefore, assume F = C in what follows. Consider D (z, r) first. First note the set is
bounded because

D (z, r) ⊆ B (0, |z|+ 2r)

Here is why. Let x ∈ D (z, r) . Then |x− z| ≤ r and so

|x| ≤ |x− z|+ |z| ≤ r + |z| < 2r + |z| .

It remains to verify it is closed. Suppose then that y /∈ D (z, r) . This means |y − z| > r.
Consider the open ball B (y, |y − z| − r) . If x ∈ B (y, |y − z| − r) , then

|x− y| < |y − z| − r
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and so by the triangle inequality,

|z − x| ≥ |z − y| − |y − x| > |x− y|+ r − |x− y| = r

Thus the complement of D (z, r) is open and so D (z, r) is closed.
The second kind of set is sequentially compact. If xn + iyn ∈ [a, b] + i [c, d] . Then

there is a subsequence such that {xnk
} converges to a point x in [a, b] and a further

subsequence
{
ynkl

}
which converges to a point y in [c, d]. Then

lim
l→∞

xnkl
+ iynkl

= x+ iy ∈ [a, b] + i [c, d] .

Therefore, this set is both closed and bounded. �

4.7.3 Compactness And Open Coverings

In Proposition 4.7.12 it was shown that sequential compactness in R is the same as
closed and bounded. Here we give the traditional definition of compactness and show
that this is also equivalent to closed and bounded.

Definition 4.7.16 A set K is called compact if whenever C is a collection of
open sets such that K ⊆ ∪C, there exists a finite subset of open sets {U1, · · · , Um} ⊆ C
such that K ⊆ ∪mi=1Ui. In words, it says that every open cover admits a finite subcover.

Proposition 4.7.17 Every closed interval [a, b] is compact.

Proof: Suppose not. Then there exists an open cover C which admits no finite
subcover. Consider the two intervals

[
a, a+b

2

]
,
[
a+b
2 , b

]
. At least one of these fails to

have a finite open cover from C. Otherwise, there would be a finite open cover of [a, b] .
Pick the interval which fails to have a finite open cover from C. Call this interval I2. It
is half the length of I1 ≡ [a, b]. Now do for I2 exactly what was done for I1. Split it in
half and take the half which fails to have a finite subcover. Continue obtaining a nested
sequence of closed intervals such that the length of In is 2n−1 times the length of I1. By
the nested interval lemma, there exists a point p which is in all these intervals. Thus
p ∈ U ∈ C. Therefore, there exists δ > 0 such that (p− δ, p+ δ) ⊆ U . Now for all n
large enough, the length of In which contains p, is less than δ. Hence, In is contained in
U contrary to the definition of In which required that it admit no finite subcover from
C. �

Now here is the main result, often called the Heine Borel theorem.

Theorem 4.7.18 Let K be a nonempty set in R. Then K is compact if and
only if K is closed and bounded.

Proof: First suppose K is closed and bounded. Then K ⊆ [−p, p] for suitably large
p. Thus from Proposition 4.7.17, [−p, p] is compact. Then if C is an open cover of K,
it follows that D ≡ C ∪ (R \K) is an open cover of [−p, p]. It follows that there are
finitely many of the open sets in D which cover K. However, R \K contains no points
of K and so if this finite set includes this one, you can simply delete it and still have an
open cover of K.

Conversely, suppose that K is compact. Why is it closed and bounded? Suppose
first it is not closed. Then there exists a limit point p which is not in K. By Theorem
4.7.8 there exists a sequence of distinct points of K {pn} such that limn→∞ pn = p /∈ K.
Then p is the only limit point of this sequence. Hence

Cn ≡ ∪∞k=npk ∪ {p}
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is a closed set. Then since p /∈ K,

{R \ Cn}∞n=1

is an open cover of K but it admits no finite subcover. This is because the sequence
of open sets is increasing and R \ Cn fails to contain pn ∈ K. Thus K is closed. Why
is K bounded? If not, there exists a sequence {kn}∞n=1 ⊆ K such that |kn| > n. This
sequence cannot have any limit points. Hence ∪∞j=nkj ≡ Cn is a closed set. The open

sets {R \ Cn}∞n=1 provide an open cover which admits no finite subcover since it is an
increasing sequence of open sets, the nth of which fails to include kn. �

This theorem and the earlier result shows that in R, sequential compactness, com-
pactness and closed and bounded are all the same thing. The same conclusion can be
drawn for C.

4.8 Exercises

1. Show the intersection of any collection of closed sets is closed and the union of
any collection of open sets is open.

2. Show that if H is closed and U is open, then H \ U is closed. Next show that
U \H is open.

3. Show the finite intersection of any collection of open sets is open.

4. Show the finite union of any collection of closed sets is closed.

5. Suppose {Hn}Nn=1 is a finite collection of sets and suppose x is a limit point of
∪Nn=1Hn. Show x must be a limit point of at least one Hn.

6. Give an example of a set of closed sets whose union is not closed.

7. Give an example of a set of open sets whose intersection is not open.

8. Give an example of a set of open sets whose intersection is a closed interval.

9. Give an example of a set of closed sets whose union is open.

10. Give an example of a set of closed sets whose union is an open interval.

11. Give an example of a set of open sets whose intersection is closed.

12. Give an example of a set of open sets whose intersection is the natural numbers.

13. Explain why F and ∅ are sets which are both open and closed when considered as
subsets of F.

14. Let A be a nonempty set of points and let A′ denote the set of limit points of A.
Show A ∪ A′ is closed. Hint: You must show the limit points of A ∪ A′ are in
A ∪A′.

15. Let U be any open set in F. Show that every point of U is a limit point of U.

16. Suppose {Kn} is a sequence of sequentially compact nonempty sets which have the
property that Kn ⊇ Kn+1 for all n. Show there exists a point in the intersection
of all these sets, denoted by ∩∞n=1Kn.

17. Now suppose {Kn} is a sequence of sequentially compact nonempty sets which
have the finite intersection property, every finite subset of {Kn} has nonempty
intersection. Show there exists a point in ∩∞n=1Kn.
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18. Show that any finite union of sequentially compact sets is compact.

19. Start with the unit interval, I0 ≡ [0, 1] . Delete the middle third open interval,
(1/3, 2/3) resulting in the two closed intervals, I1 = [0, 1/3]∪ [2/3, 1] . Next delete
the middle third of each of these intervals resulting in I2 = [0, 1/9] ∪ [2/9] ∪
[2/3, 5/9] ∪ [8/9, 1] and continue doing this forever. Show the intersection of all
these In is nonempty. Letting P = ∩∞n=1In explain why every point of P is a
limit point of P . Would the conclusion be any different if, instead of the middle
third open interval, you took out an open interval of arbitrary length, each time
leaving two closed intervals where there was one to begin with? This process
produces something called the Cantor set. It is the basis for many pathological
examples of unbelievably sick functions as well as being an essential ingredient in
some extremely important theorems.

20. In Problem 19 in the case where the middle third is taken out, show the total
length of open intervals removed equals 1. Thus what is left is very “short”. For
your information, the Cantor set is uncountable. In addition, it can be shown there
exists a function which maps the Cantor set onto [0, 1] , for example, although you
could replace [0, 1] with the square [0, 1] × [0, 1] or more generally, any compact
metric space, something you may study later.

21. Show that there exists an onto map from the Cantor set P just described onto
[0, 1]. Show that this is so even if you do not always take out the middle third,
but instead an open interval of arbitrary length, leaving two closed intervals in
place of one. It turns out that all of these Cantor sets are topologically the same.
Hint: Base your argument on the nested interval lemma. This will yield ideas
which go somewhere.

22. Suppose {Hn} is a sequence of sets with the property that for every point x, there
exists r > 0 such that B (x, r) intersects only finitely many of the Hn. Such a
collection of sets is called locally finite. Show that if the sets are all closed in
addition to being locally finite, then the union of all these sets is also closed. This
concept of local finiteness is of great significance although it will not be pursued
further here.

23. Show every closed and bounded subset of F is compact. Hint: You might first
show every set of the form [a, b] + i [c, d] is compact by considering sequences of
nested intervals in both [a, b] and [c, d].

24. Show a set, K is compact if and only if whenever K ⊆ ∪B where B is a set whose
elements are open balls, it follows there are finitely many of these sets, B1, · · · , Bm

such that
K ⊆ ∪mk=1Bk

In words, every open cover of open balls admits a finite subcover.

25. Show every sequentially compact set in C is a closed subset of some rectangle of
the form [−a, a]× [−a, a]. From Problem 23, what does this say about sequentially
compact sets being compact? Explain.

26. Now suppose K is a compact subset of F which means every open cover admits a
finite subcover. Show that K must be contained in some set of the form [−r, r] +
i [−r, r] . When you have done this, show K must be sequentially compact. Hint:
If the first part were not so, {(−n, n)× (−n, n)}∞n=1 would be an open cover but,
does it have a finite subcover? For the second part, you knowK ⊆ [−r, r]+i [−r, r]
for some r. Now if {xn + iyn}∞n=1 is a sequence which has no subsequence which
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converges to a point inK, you know from Proposition 4.7.15 and Theorem 23, since
[−r, r] + i [−r, r] is sequentially compact, there is a subsequence, {xnk

+ iynk
}∞k=1

which converges to some x + iy ∈ [−r, r] + i [−r, r]. Suppose x + iy /∈ K and
consider the open cover of K given by {On}∞n=1 where

On ≡ {y : |y − x| > 1/n} .

You need to verify the On are open sets and that they are an open cover of K
which admits no finite subcover. From this you get a contradiction.

27. Show that every uncountable set of points in F has a limit point. This is not nec-
essarily true if you replace the word, uncountable with the word, infinite. Explain
why.

4.9 Cauchy Sequences And Completeness

You recall the definition of completeness which stated that every nonempty set of real
numbers which is bounded above has a least upper bound and that every nonempty
set of real numbers which is bounded below has a greatest lower bound and this is a
property of the real line known as the completeness axiom. Geometrically, this involved
filling in the holes. There is another way of describing completeness in terms of Cauchy
sequences which will be discussed soon.

Definition 4.9.1 {an} is a Cauchy sequence if for all ε > 0, there exists nε
such that whenever n,m ≥ nε,

|an − am| < ε.

A sequence is Cauchy means the terms are “bunching up to each other” as m,n get
large.

Theorem 4.9.2 The set of terms (values) of a Cauchy sequence in F is bounded.

Proof: Let ε = 1 in the definition of a Cauchy sequence and let n > n1. Then from
the definition,

|an − an1
| < 1.

It follows that for all n > n1,
|an| < 1 + |an1 | .

Therefore, for all n,

|an| ≤ 1 + |an1 |+
n1∑
k=1

|ak| . �

Theorem 4.9.3 If a sequence {an} in F converges, then the sequence is a Cauchy
sequence.

Proof: Let ε > 0 be given and suppose an → a. Then from the definition of
convergence, there exists nε such that if n > nε, it follows that

|an − a| <
ε

2

Therefore, if m,n ≥ nε + 1, it follows that

|an − am| ≤ |an − a|+ |a− am| <
ε

2
+
ε

2
= ε

showing that, since ε > 0 is arbitrary, {an} is a Cauchy sequence. �
The following theorem is very useful.
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Theorem 4.9.4 Suppose {an} is a Cauchy sequence in F and there exists a
subsequence, {ank

} which converges to a. Then {an} also converges to a.

Proof: Let ε > 0 be given. There exists N such that if m,n > N, then

|am − an| < ε/2.

Also there exists K such that if k > K, then

|a− ank
| < ε/2.

Then let k > max (K,N) . Then for such k,

|ak − a| ≤ |ak − ank
|+ |ank

− a|
< ε/2 + ε/2 = ε. �

The next definition has to do with sequences which are real numbers.

Definition 4.9.5 The sequence of real numbers, {an} , is monotone increasing
if for all n, an ≤ an+1. The sequence is monotone decreasing if for all n, an ≥ an+1.
People often leave off the word “monotone”.

If someone says a sequence is monotone, it usually means monotone increasing.
There exist different descriptions of completeness. An important result is the fol-

lowing theorem which gives a version of completeness in terms of Cauchy sequences.
This is often more convenient to use than the earlier definition in terms of least upper
bounds and greatest lower bounds because this version of completeness, although it is
equivalent to the completeness axiom for the real line, also makes sense in many situ-
ations where Definition 2.9.1 on Page 27 does not make sense, C for example because
by Problem 12 on Page 34 there is no way to place an order on C. This is also the case
whenever the sequence is of points in multiple dimensions.

It is the concept of completeness and the notion of limits which sets analysis apart
from algebra. You will find that every existence theorem in analysis depends on the
assumption that some space is complete.

Theorem 4.9.6 Every Cauchy sequence in R converges if and only if every non-
empty set of real numbers which is bounded above has a least upper bound and every
nonempty set of real numbers which is bounded below has a greatest lower bound.

Proof: First suppose every Cauchy sequence converges and let S be a nonempty
set which is bounded above. Let b1 be an upper bound. Pick s1 ∈ S. If s1 = b1, the
least upper bound has been found and equals b1. If (s1 + b1) /2 is an upper bound to
S, let this equal b2. If not, there exists b1 > s2 > (s1 + b1) /2 so let b2 = b1 and s2 be
as just described. Now let b2 and s2 play the same role as s1 and b1 and do the same
argument. This yields a sequence {sn} of points of S which is monotone increasing and
another sequence of upper bounds, {bn} which is monotone decreasing and

|sn − bn| ≤ 2−n+1 (b1 − s1)

Therefore, if m > n

|bn − bm| ≤ bn − sm ≤ bn − sn ≤ 2−n+1 (b1 − s1)

and so {bn} is a Cauchy sequence. Therefore, it converges to some number b. Then b
must be an upper bound of S because if not, there would exist s > b and then

bn − b ≥ s− b
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which would prevent {bn} from converging to b. The claim that every nonempty set of
numbers bounded below has a greatest lower bound follows similarly. Alternatively, you
could consider −S ≡ {−x : x ∈ S} and apply what was just shown.

Now suppose the condition about existence of least upper bounds and greatest lower
bounds. Let {an} be a Cauchy sequence. Then by Theorem 4.9.2 {an} ⊆ [a, b] for
some numbers a, b. By Theorem 4.7.2 there is a subsequence, {ank

} which converges to
x ∈ [a, b] . By Theorem 4.9.4, the original sequence converges to x also. �

Theorem 4.9.7 If either of the above conditions for completeness holds, then
whenever {an} is a monotone increasing sequence which is bounded above, it converges
and whenever {bn} is a monotone sequence which is bounded below, it converges.

Proof: Let a = sup {an : n ≥ 1} and let ε > 0 be given. Then from Proposition
2.9.3 on Page 27 there exists m such that a − ε < am ≤ a. Since the sequence is
increasing, it follows that for all n ≥ m, a − ε < an ≤ a. Thus a = limn→∞ an. The
case of a decreasing sequence is similar. Alternatively, you could consider the sequence
{−an} and apply what was just shown to this decreasing sequence. �

By Theorem 4.9.6 the following definition of completeness is equivalent to the original
definition when both apply.

Definition 4.9.8 Whenever every Cauchy sequence in some set converges, the
set is called complete.

Theorem 4.9.9 F is complete.

Proof: Suppose {xn + iyn}∞n=1 be a Cauchy sequence. This happens if and only if
{xn} and {yn} are Cauchy sequences because

|xm − xn| ≤ |xm + iym − (xn + iyn)|
|ym − yn| ≤ |xm + iym − (xn + iyn)|

and the right hand side is assumed to be small whenever m,n are large enough. Thus
there exists x such that xn → x and y such that y → y. Hence, xn + iyn → x+ iy. �

4.9.1 Decimals

You are all familiar with decimals. In the United States these are written in the form
.a1a2a3 · · · where the ai are integers between 0 and 9.2 Thus .23417432 is a number
written as a decimal. You also recall the meaning of such notation in the case of a
terminating decimal. For example, .234 is defined as 2

10 +
3

102 +
4

103 . Now what is meant
by a nonterminating decimal?

Definition 4.9.10 Let .a1a2 · · · be a decimal. Define

.a1a2 · · · ≡ lim
n→∞

n∑
k=1

ak
10k

.

Proposition 4.9.11 The above definition makes sense. Also every number in [0, 1]
can be written as such a decimal.

2In France and Russia they use a comma instead of a period. This looks very strange but that is
just the way they do it.
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Proof: Note the sequence
{∑n

k=1
ak

10k

}∞
n=1

is an increasing sequence. Therefore, if
there exists an upper bound, it follows from Theorem 4.9.7 that this sequence converges
and so the definition is well defined.

n∑
k=1

ak
10k
≤

n∑
k=1

9

10k
= 9

n∑
k=1

1

10k
.

Now

9

10

(
n∑

k=1

1

10k

)
=

n∑
k=1

1

10k
− 1

10

n∑
k=1

1

10k
=

n∑
k=1

1

10k
−

n+1∑
k=2

1

10k

=
1

10
− 1

10n+1

and so
n∑

k=1

1

10k
≤ 10

9

(
1

10
− 1

10n+1

)
≤ 10

9

(
1

10

)
=

1

9
.

Therefore, since this holds for all n, it follows the above sequence is bounded above. It
follows the limit exists.

Now suppose x ∈ [0, 1). Let a1

10 ≤ x <
a1+1
10 where a1 is an integer between 0 and 9.

If integers a1, · · · , an each between 0 and 9 have been obtained such that

n∑
k=1

ak
10k
≤ x <

n−1∑
k=1

ak
10k

+
an + 1

10n

(
∑0

k=1 ≡ 0). Then from the above,

10n

(
x−

n∑
k=1

ak
10k

)
< 1

and so there exists an+1 such that

an+1

10
≤ 10n

(
x−

n∑
k=1

ak
10k

)
<
an+1 + 1

10

which shows that

an+1

10n+1
≤

(
x−

n∑
k=1

ak
10k

)
<
an+1 + 1

10n+1

Therefore,

x = lim
n→∞

n∑
k=1

ak
10k

because the distance between the partial sum up to n and x is always no more than
1/10n. In case x = 1, just let each an = 9 and observe that the sum of the geometric
series equals 1. �

An amusing application of the above is in the following theorem. It gives an easy
way to verify that the unit interval is uncountable.

Theorem 4.9.12 The interval [0, 1) is not countable.
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Proof: Suppose it were. Then there would exist a list of all the numbers in this
interval. Writing these as decimals,

x1 ≡ .a11a12a13a14a15 · · ·
x2 ≡ .a21a22a23a14a25 · · ·
x3 ≡ .a31a32a33a34a35 · · ·

...

Consider the diagonal decimal,

.a11a22a33a44 · · ·

Now define a decimal expansion for another number in [0, 1) as follows.

y ≡ .b1b2b3b4 · · ·

where |bk − akk| ≥ 4. Then

|y − xk| ≥
4

10k

Thus y is not equal to any of the xk which is a contradiction since y ∈ [0, 1). �

4.9.2 lim sup and lim inf

Sometimes the limit of a sequence does not exist. For example, if an = (−1)n , then
limn→∞ an does not exist. This is because the terms of the sequence are a distance
of 1 apart. Therefore there can’t exist a single number such that all the terms of the
sequence are ultimately within 1/4 of that number. The nice thing about lim sup and
lim inf is that they always exist. First here is a simple lemma and definition. First
review the definition of inf and sup on Page 27 along with the simple properties of these
things.

Definition 4.9.13 Denote by [−∞,∞] the real line along with symbols ∞ and
−∞. It is understood that ∞ is larger than every real number and −∞ is smaller
than every real number. Then if {An} is an increasing sequence of points of [−∞,∞] ,
limn→∞An equals ∞ if the only upper bound of the set {An} is ∞. If {An} is bounded
above by a real number, then limn→∞An is defined in the usual way and equals the
least upper bound of {An}. If {An} is a decreasing sequence of points of [−∞,∞] ,
limn→∞An equals −∞ if the only lower bound of the sequence {An} is −∞. If {An} is
bounded below by a real number, then limn→∞An is defined in the usual way and equals
the greatest lower bound of {An}. More simply, if {An} is increasing,

lim
n→∞

An ≡ sup {An}

and if {An} is decreasing then

lim
n→∞

An ≡ inf {An} .

Lemma 4.9.14 Let {an} be a sequence of real numbers and let Un ≡ sup {ak : k ≥ n} .
Then {Un} is a decreasing sequence. Also if Ln ≡ inf {ak : k ≥ n} , then {Ln} is an
increasing sequence. Therefore, limn→∞ Ln and limn→∞ Un both exist.

Proof: Let Wn be an upper bound for {ak : k ≥ n} . Then since these sets are
getting smaller, it follows that for m < n, Wm is an upper bound for {ak : k ≥ n} . In
particular if Wm = Um, then Um is an upper bound for {ak : k ≥ n} and so Um is at
least as large as Un, the least upper bound for {ak : k ≥ n} . The claim that {Ln} is
decreasing is similar. �

From the lemma, the following definition makes sense.
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Definition 4.9.15 Let {an} be any sequence of points of [−∞,∞]

lim sup
n→∞

an ≡ lim
n→∞

sup {ak : k ≥ n}

lim inf
n→∞

an ≡ lim
n→∞

inf {ak : k ≥ n} .

Theorem 4.9.16 Suppose {an} is a sequence of real numbers and that

lim sup
n→∞

an

and
lim inf

n→∞
an

are both real numbers. Then limn→∞ an exists if and only if

lim inf
n→∞

an = lim sup
n→∞

an

and in this case,
lim
n→∞

an = lim inf
n→∞

an = lim sup
n→∞

an.

Proof: First note that

sup {ak : k ≥ n} ≥ inf {ak : k ≥ n}

and so from Theorem 4.4.11,

lim sup
n→∞

an ≡ lim
n→∞

sup {ak : k ≥ n}

≥ lim
n→∞

inf {ak : k ≥ n}

≡ lim inf
n→∞

an.

Suppose first that limn→∞ an exists and is a real number. Then by Theorem 4.9.3 {an}
is a Cauchy sequence. Therefore, if ε > 0 is given, there exists N such that if m,n ≥ N,
then

|an − am| < ε/3.

From the definition of sup {ak : k ≥ N} , there exists n1 ≥ N such that

sup {ak : k ≥ N} ≤ an1 + ε/3.

Similarly, there exists n2 ≥ N such that

inf {ak : k ≥ N} ≥ an2 − ε/3.

It follows that

sup {ak : k ≥ N} − inf {ak : k ≥ N} ≤ |an1 − an2 |+
2ε

3
< ε.

Since the sequence, {sup {ak : k ≥ N}}∞N=1 is decreasing and {inf {ak : k ≥ N}}∞N=1 is
increasing, it follows from Theorem 4.4.11

0 ≤ lim
N→∞

sup {ak : k ≥ N} − lim
N→∞

inf {ak : k ≥ N} ≤ ε

Since ε is arbitrary, this shows

lim
N→∞

sup {ak : k ≥ N} = lim
N→∞

inf {ak : k ≥ N} (4.8)
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Next suppose 4.8. Then

lim
N→∞

(sup {ak : k ≥ N} − inf {ak : k ≥ N}) = 0

Since sup {ak : k ≥ N} ≥ inf {ak : k ≥ N} it follows that for every ε > 0, there exists
N such that

sup {ak : k ≥ N} − inf {ak : k ≥ N} < ε

Thus if m,n > N, then
|am − an| < ε

which means {an} is a Cauchy sequence. Since R is complete, it follows from Theorem
4.9.6 that limn→∞ an ≡ a exists. By Theorem 4.4.7, the squeezing theorem, it follows

a = lim inf
n→∞

an = lim sup
n→∞

an �

With the above theorem, here is how to define the limit of a sequence of points in
[−∞,∞].

Definition 4.9.17 Let {an} be a sequence of points of [−∞,∞] . Then limn→∞ an
exists exactly when

lim inf
n→∞

an = lim sup
n→∞

an

and in this case
lim
n→∞

an ≡ lim inf
n→∞

an = lim sup
n→∞

an.

The significance of lim sup and lim inf, in addition to what was just discussed, is
contained in the following theorem which follows quickly from the definition.

Theorem 4.9.18 Suppose {an} is a sequence of points of [−∞,∞] . Let

λ = lim sup
n→∞

an.

Then if b > λ, it follows there exists N such that whenever n ≥ N,

an ≤ b.

If c < λ, then an > c for infinitely many values of n. Let

γ = lim inf
n→∞

an.

Then if d < γ, it follows there exists N such that whenever n ≥ N,

an ≥ d.

If e > γ, it follows an < e for infinitely many values of n.

The proof of this theorem is left as an exercise for you. It follows directly from the
definition and it is the sort of thing you must do yourself. Here is one other simple
proposition.

Proposition 4.9.19 Let limn→∞ an = a > 0. Then

lim sup
n→∞

anbn = a lim sup
n→∞

bn.
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Proof: This follows from the definition. Let λn = sup {akbk : k ≥ n} . For all n
large enough, an > a− ε where ε is small enough that a− ε > 0. Therefore,

λn ≥ sup {bk : k ≥ n} (a− ε)

for all n large enough. Then

lim sup
n→∞

anbn = lim
n→∞

λn ≡ lim sup
n→∞

anbn

≥ lim
n→∞

(sup {bk : k ≥ n} (a− ε))

= (a− ε) lim sup
n→∞

bn

Similar reasoning shows

lim sup
n→∞

anbn ≤ (a+ ε) lim sup
n→∞

bn

Now since ε > 0 is arbitrary, the conclusion follows. �

4.9.3 Shrinking Diameters

It is useful to consider another version of the nested interval lemma. This involves a
sequence of sets such that set (n+ 1) is contained in set n and such that their diameters
converge to 0. It turns out that if the sets are also closed, then often there exists a unique
point in all of them.

Definition 4.9.20 Let S be a nonempty set. Then diam (S) is defined as

diam (S) ≡ sup {|x− y| : x, y ∈ S} .

This is called the diameter of S.

Theorem 4.9.21 Let {Fn}∞n=1 be a sequence of closed sets in F such that

lim
n→∞

diam (Fn) = 0

and Fn ⊇ Fn+1 for each n. Then there exists a unique p ∈ ∩∞k=1Fk.

Proof: Pick pk ∈ Fk. This is always possible because by assumption each set is
nonempty. Then {pk}∞k=m ⊆ Fm and since the diameters converge to 0 it follows {pk}
is a Cauchy sequence. Therefore, it converges to a point, p by completeness of F. Since
each Fk is closed, it must be that p ∈ Fk for all k. Therefore, p ∈ ∩∞k=1Fk. If q ∈ ∩∞k=1Fk,
then since both p, q ∈ Fk,

|p− q| ≤ diam (Fk) .

It follows since these diameters converge to 0, |p− q| ≤ ε for every ε. Hence p = q. �
A sequence of sets, {Gn} which satisfies Gn ⊇ Gn+1 for all n is called a nested

sequence of sets.
The next theorem is a major result called Bair’s theorem. It concerns the intersection

of dense open sets.

Definition 4.9.22 An open set U ⊆ F is dense if for every x ∈ F and r >
0, B (x, r) ∩ U ̸= ∅.

Theorem 4.9.23 Let {Un} be a sequence of dense open sets. Then ∩nUn is
dense.
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Proof: Let p ∈ F and let r0 > 0. I need to show D ∩ B(p, r0) ̸= ∅. Since U1 is
dense, there exists p1 ∈ U1 ∩ B(p, r0), an open set. Let p1 ∈ B(p1, r1) ⊆ B(p1, r1) ⊆
U1 ∩ B(p, r0) and r1 < 2−1. This is possible because U1 ∩ B (p, r0) is an open set and
so there exists r1 such that B (p1, 2r1) ⊆ U1 ∩B (p, r0). But

B (p1, r1) ⊆ B (p1, r1) ⊆ B (p1, 2r1)

because B (p1, r1) = {x ∈ X : d (x, p) ≤ r1}. (Why?)

� r0 p

p1·

There exists p2 ∈ U2 ∩B(p1, r1) because U2 is dense. Let

p2 ∈ B(p2, r2) ⊆ B(p2, r2) ⊆ U2 ∩B(p1, r1) ⊆ U1 ∩ U2 ∩B(p, r0).

and let r2 < 2−2. Continue in this way. Thus

rn < 2−n,

B(pn, rn) ⊆ U1 ∩ U2 ∩ ... ∩ Un ∩B(p, r0),

B(pn, rn) ⊆ B(pn−1, rn−1).

The sequence, {pn} is a Cauchy sequence because all terms of {pk} for k ≥ n are
contained in B (pn, rn), a set whose diameter is no larger than 2−n. Since X is complete,
there exists p∞ such that

lim
n→∞

pn = p∞.

Since all but finitely many terms of {pn} are in B(pm, rm), it follows that p∞ ∈
B(pm, rm) for each m. Therefore,

p∞ ∈ ∩∞m=1B(pm, rm) ⊆ ∩∞i=1Ui ∩B(p, r0). �

The countable intersection of open sets is called a Gδ set.

4.10 Exercises

1. Suppose x = .3434343434 where the bar over the last 34 signifies that this repeats
forever. In elementary school you were probably given the following procedure for
finding the number x as a quotient of integers. First multiply by 100 to get 100x =
34.34343434 and then subtract to get 99x = 34. From this you conclude that x =

34/99. Fully justify this procedure. Hint: .34343434 = limn→∞ 34
∑n

k=1

(
1

100

)k
now use Problem 7.

2. Let a ∈ [0, 1]. Show a = .a1a2a3 · · · for some choice of integers in {0, 1, 2, · · · , 9},
a1, a2, · · · if it is possible to do this. Give an example where there may be more
than one way to do this.

3. Show every rational number between 0 and 1 has a decimal expansion which either
repeats or terminates.
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4. Using Corollary 3.2.5, show that there exists a one to one and onto map θ from the
natural numbers N onto Q, the rational number. Denoting the resulting countable
set of numbers as the sequence {rn} , show that if x is any real number, there exists
a subsequence from this sequence which converges to that number.

5. Consider the number whose decimal expansion is .010010001000010000010000001· · · .
Show this is an irrational number.

6. Prove
√
2 is irrational. Hint: Suppose

√
2 = p/q where p, q are positive integers

and the fraction is in lowest terms. Then 2q2 = p2 and so p2 is even. Explain why
p = 2r so p must be even. Next argue q must be even.

7. Show that between any two integers there exists an irrational number. Next show
that between any two numbers there exists an irrational number. You can use the
fact that

√
2 is irrational if you like.

8. Let a be a positive number and let x1 = b > 0 where b2 > a. Explain why there

exists such a number, b. Now having defined xn, define xn+1 ≡ 1
2

(
xn + a

xn

)
.

Verify that {xn} is a decreasing sequence and that it satisfies x2n ≥ a for all n and
is therefore, bounded below. Explain why limn→∞ xn exists. If x is this limit,
show that x2 = a. Explain how this shows that every positive real number has a
square root. This is an example of a recursively defined sequence. Note this does
not give a formula for xn, just a rule which tells how to define xn+1 if xn is known.

9. Let a1 = 0 and suppose that an+1 = 9
9−an

. Write a2, a3, a4. Now prove that for

all n, it follows that an ≤ 9
2 + 3

2

√
5. Find the limit of the sequence. Hint: You

should prove these things by induction. Finally, to find the limit, let n → ∞ in
both sides and argue that the limit a, must satisfy a = 9

9−a .

10. If limn→∞ an = a, does it follow that limn→∞ |an| = |a|? Prove or else give a
counter example.

11. Show the following converge to 0.

(a) n5

1.01n

(b) 10n

n!

12. Suppose limn→∞ xn = x. Show that then limn→∞
1
n

∑n
k=1 xk = x. Give an exam-

ple where limn→∞ xn does not exist but limn→∞
1
n

∑n
k=1 xk does.

13. Suppose r ∈ (0, 1) . Show that limn→∞ rn = 0. Hint: Use the binomial theorem.
r = 1

1+δ where δ > 0. Therefore, rn = 1
(1+δ)n < 1

1+nδ , etc.

14. Prove limn→∞
n
√
n = 1.Hint: Let en ≡ n

√
n−1 so that (1 + en)

n
= n. Now observe

that en > 0 and use the binomial theorem to conclude 1 + nen + n(n−1)
2 e2n ≤ n.

This nice approach to establishing this limit using only elementary algebra is in
Rudin [31].

15. Find limn→∞ (xn + 5)
1/n

for x ≥ 0. There are two cases here, x ≤ 1 and x > 1.
Show that if x > 1, the limit is x while if x ≤ 1 the limit equals 1. Hint: Use the
argument of Problem 14. This interesting example is in [10].

16. Find lim supn→∞ (−1)n and lim infn→∞ (−1)n . Explain your conclusions.

17. Give a careful proof of Theorem 4.9.18.
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18. Let λ = lim supn→∞ an. Show there exists a subsequence, {ank
} such that

lim
k→∞

ank
= λ.

Now consider the set S of all points in [−∞,∞] such that for s ∈ S, some subse-
quence of {an} converges to s. Show that S has a largest point and this point is
lim supn→∞ an.

19. Let {an} ⊆ R and suppose it is bounded above. Let

S ≡ {x ∈ R such that x ≤ an for infinitely many n}

Show that for each n, sup (S) ≤ sup {ak : k ≥ n} . Next explain why sup (S) ≤
lim supn→∞ ak. Next explain why the two numbers are actually equal. Explain
why such a sequence has a convergent subsequence. For the last part, see Problem
18 above.

20. Let λ = lim infn→∞ an. Show there exists a subsequence, {ank
} such that limk→∞ ank

=
λ. Now consider the set, S of all points in [−∞,∞] such that for s ∈ S, some sub-
sequence of {an} converges to s. Show that S has a smallest point and this point
is lim infn→∞ an. Formulate a similar conclusion to Problem 19 in terms of lim inf
and a sequence which is bounded below.

21. Prove that if an ≤ bn for all n sufficiently large that

lim inf
n→∞

an ≤ lim inf
n→∞

bn,

lim sup
n→∞

an ≤ lim sup
n→∞

bn.

22. Prove that
lim sup

n→∞
(−an) = − lim inf

n→∞
an.

23. Prove that if a ≥ 0, then

lim sup
n→∞

aan = a lim sup
n→∞

an

while if a < 0,
lim sup

n→∞
aan = a lim inf

n→∞
an.

24. Prove that if limn→∞ bn = b, then

lim sup
n→∞

(bn + an) = b+ lim sup
n→∞

an.

Conjecture and prove a similar result for lim inf .

25. Give conditions under which the following inequalities hold.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn.

Hint: You need to consider whether the right hand sides make sense. Thus you
can’t consider −∞+∞.

26. Give an example of a nested sequence of nonempty sets whose diameters converge
to 0 which have no point in their intersection.
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27. Give an example of a nested sequence of nonempty sets Sn such that Sn % Sn+1

whose intersection has more than one point. Next give an example of a nested
sequence of nonempty sets Sn, Sn % Sn+1which has 2 points in their intersection.

28. For F = R or C, suppose F = ∪∞n=1Hn where each Hn is closed. Show that at
least one of these must have nonempty interior. That is, one of them contains an
open ball. You can use Theorem 4.9.23 if you like.
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Chapter 5

Infinite Series Of Numbers

5.1 Basic Considerations

Earlier in Definition 4.4.1 on Page 49 the notion of limit of a sequence was discussed.
There is a very closely related concept called an infinite series which is dealt with in
this section.

Definition 5.1.1 Define

∞∑
k=m

ak ≡ lim
n→∞

n∑
k=m

ak

whenever the limit exists and is finite. In this case the series is said to converge. If it
does not converge, it is said to diverge. The sequence {

∑n
k=m ak}

∞
n=m in the above is

called the sequence of partial sums. This is always the definition. Here it is understood
that the ak are in F, but it is the same definition in more general situations.

From this definition, it should be clear that infinite sums do not always make sense.
Sometimes they do and sometimes they don’t, depending on the behavior of the partial
sums. As an example, consider

∑∞
k=1 (−1)

k
. The partial sums corresponding to this

symbol alternate between −1 and 0. Therefore, there is no limit for the sequence of
partial sums. It follows the symbol just written is meaningless and the infinite sum
diverges.

Example 5.1.2 Find the infinite sum,
∑∞

n=1
1

n(n+1) .

Note 1
n(n+1) = 1

n −
1

n+1 and so
∑N

n=1
1

n(n+1) =
∑N

n=1

(
1
n −

1
n+1

)
= − 1

N+1 + 1.

Therefore,

lim
N→∞

N∑
n=1

1

n (n+ 1)
= lim

N→∞

(
− 1

N + 1
+ 1

)
= 1.

Proposition 5.1.3 Let ak ≥ 0. Then {
∑n

k=m ak}
∞
n=m is an increasing sequence. If

this sequence is bounded above, then
∑∞

k=m ak converges and its value equals

sup

{
n∑

k=m

ak : n = m,m+ 1, · · ·

}
.

When the sequence is not bounded above,
∑∞

k=m ak diverges.

75
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Proof: It follows {
∑n

k=m ak}
∞
n=m is an increasing sequence because

n+1∑
k=m

ak −
n∑

k=m

ak = an+1 ≥ 0.

If it is bounded above, then by the form of completeness found in Theorem 4.9.6 on Page
63 it follows the sequence of partial sums converges to sup {

∑n
k=m ak : n = m,m+ 1, · · · }.

If the sequence of partial sums is not bounded, then it is not a Cauchy sequence and so
it does not converge. See Theorem 4.9.3 on Page 62. �

In the case where ak ≥ 0, the above proposition shows there are only two alternatives
available. Either the sequence of partial sums is bounded above or it is not bounded
above. In the first case convergence occurs and in the second case, the infinite series
diverges. For this reason, people will sometimes write

∑∞
k=m ak <∞ to denote the case

where convergence occurs and
∑∞

k=m ak =∞ for the case where divergence occurs. Be
very careful you never think this way in the case where it is not true that all ak ≥ 0.
For example, the partial sums of

∑∞
k=1 (−1)

k
are bounded because they are all either

−1 or 0 but the series does not converge.
One of the most important examples of a convergent series is the geometric series.

This series is
∑∞

n=0 r
n. The study of this series depends on simple high school algebra

and Theorem 4.4.9 on Page 51. Let Sn ≡
∑n

k=0 r
k. Then

Sn =

n∑
k=0

rk, rSn =

n∑
k=0

rk+1 =

n+1∑
k=1

rk.

Therefore, subtracting the second equation from the first yields

(1− r)Sn = 1− rn+1

and so a formula for Sn is available. In fact, if r ̸= 1,

Sn =
1− rn+1

1− r
.

By Theorem 4.4.9, limn→∞ Sn = 1
1−r in the case when |r| < 1. Now if |r| ≥ 1, the limit

clearly does not exist because Sn fails to be a Cauchy sequence (Why?). This shows
the following.

Theorem 5.1.4 The geometric series,
∑∞

n=0 r
n converges and equals 1

1−r if
|r| < 1 and diverges if |r| ≥ 1.

If the series do converge, the following holds.

Theorem 5.1.5 If
∑∞

k=m ak and
∑∞

k=m bk both converge and x, y are numbers,
then

∞∑
k=m

ak =
∞∑

k=m+j

ak−j (5.1)

∞∑
k=m

xak + ybk = x
∞∑

k=m

ak + y
∞∑

k=m

bk (5.2)

∣∣∣∣∣
∞∑

k=m

ak

∣∣∣∣∣ ≤
∞∑

k=m

|ak| (5.3)

where in the last inequality, the last sum equals +∞ if the partial sums are not bounded
above.
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Proof: The above theorem is really only a restatement of Theorem 4.4.6 on Page
50 and the above definitions of infinite series. Thus

∞∑
k=m

ak = lim
n→∞

n∑
k=m

ak = lim
n→∞

n+j∑
k=m+j

ak−j =

∞∑
k=m+j

ak−j .

To establish 5.2, use Theorem 4.4.6 on Page 50 to write

∞∑
k=m

xak + ybk = lim
n→∞

n∑
k=m

xak + ybk

= lim
n→∞

(
x

n∑
k=m

ak + y
n∑

k=m

bk

)

= x

∞∑
k=m

ak + y

∞∑
k=m

bk.

Formula 5.3 follows from the observation that, from the triangle inequality,∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
∞∑

k=m

|ak|

and so ∣∣∣∣∣
∞∑

k=m

ak

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ ≤
∞∑

k=m

|ak| . �

Recall that if limn→∞An = A, then limn→∞ |An| = |A|.

Example 5.1.6 Find
∑∞

n=0

(
5
2n + 6

3n

)
.

From the above theorem and Theorem 5.1.4,

∞∑
n=0

(
5

2n
+

6

3n

)
= 5

∞∑
n=0

1

2n
+ 6

∞∑
n=0

1

3n

= 5
1

1− (1/2)
+ 6

1

1− (1/3)
= 19.

The following criterion is useful in checking convergence. All it is saying is that the
series converges if and only if the sequence of partial sums is Cauchy. This is what the
given criterion says. However, this is not new information.

Theorem 5.1.7 Let {ak} be a sequence of points in F. The sum
∑∞

k=m ak con-
verges if and only if for all ε > 0, there exists nε such that if q ≥ p ≥ nε, then∣∣∣∣∣∣

q∑
k=p

ak

∣∣∣∣∣∣ < ε. (5.4)

Proof: Suppose first that the series converges. Then {
∑n

k=m ak}
∞
n=m

is a Cauchy
sequence by Theorem 4.9.3 on Page 62. Therefore, there exists nε > m such that if
q ≥ p− 1 ≥ nε > m, ∣∣∣∣∣

q∑
k=m

ak −
p−1∑
k=m

ak

∣∣∣∣∣ =
∣∣∣∣∣∣

q∑
k=p

ak

∣∣∣∣∣∣ < ε. (5.5)

Next suppose 5.4 holds. Then from 5.5 it follows upon letting p be replaced with
p+1 that {

∑n
k=m ak}

∞
n=m

is a Cauchy sequence and so, by Theorem 4.9.9, it converges.
By the definition of infinite series, this shows the infinite sum converges as claimed. �
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5.1.1 Absolute Convergence

Definition 5.1.8 A series
∞∑

k=m

ak

is said to converge absolutely if
∞∑

k=m

|ak|

converges. If the series does converge but does not converge absolutely, then it is said
to converge conditionally.

Theorem 5.1.9 If
∑∞

k=m ak converges absolutely, then it converges.

Proof: Let ε > 0 be given. Then by assumption and Theorem 5.1.7, there exists
nε such that whenever q ≥ p ≥ nε,

q∑
k=p

|ak| < ε.

Therefore, from the triangle inequality,

ε >

q∑
k=p

|ak| ≥

∣∣∣∣∣∣
q∑

k=p

ak

∣∣∣∣∣∣ .
By Theorem 5.1.7,

∑∞
k=m ak converges. �

In fact, the above theorem is really another version of the completeness axiom. Thus
its validity implies completeness. You might try to show this.

One of the interesting things about absolutely convergent series is that you can “add
them up” in any order and you will always get the same thing. This is the meaning of
the following theorem. Of course there is no problem when you are dealing with finite
sums thanks to the commutative law of addition. However, when you have infinite sums
strange and wonderful things can happen because these involve a limit.

Theorem 5.1.10 Let θ : N→ N be one to one and onto. Suppose

∞∑
k=1

ak

converges absolutely. Then
∞∑
k=1

aθ(k) =

∞∑
k=1

ak

Proof: From absolute convergence, there exists M such that

∞∑
k=M+1

|ak| < ε

Since θ is one to one and onto, there exists N ≥ M such that {1, 2, · · · ,M} ⊆
{θ (1) , θ (2) , · · · , θ (N)} . It follows that it is also the case that

∞∑
k=N+1

∣∣aθ(k)∣∣ < ε
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This is because the partial sums of the above series are each dominated by a partial
sum for

∑∞
k=M+1 |ak| since every index θ (k) equals some n for n ≥M + 1. Then since

ε is arbitrary, this shows that the partial sums of
∑
aθ(k) are Cauchy. Hence, this series

does converge and also ∣∣∣∣∣
M∑
k=1

ak −
N∑

k=1

aθ(k)

∣∣∣∣∣ ≤
∞∑

k=M+1

|ak| < ε

Hence ∣∣∣∣∣
∞∑
k=1

ak −
∞∑
k=1

aθ(k)

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑
k=1

ak −
M∑
k=1

ak

∣∣∣∣∣+
∣∣∣∣∣
M∑
k=1

ak −
N∑

k=1

aθ(k)

∣∣∣∣∣
+

∣∣∣∣∣
N∑

k=1

aθ(k) −
∞∑
k=1

aθ(k)

∣∣∣∣∣ <
∞∑

k=M+1

|ak|+ ε+
∞∑

k=N+1

∣∣aθ(k)∣∣ < 3ε

Since ε is arbitrary, this shows the two series are equal as claimed. �
So what happens when series converge only conditionally?

Example 5.1.11 Consider the series
∑∞

k=1 (−1)
k 1

k . Show that there is a rearrange-
ment which converges to 7 although this series does converge. (In fact, it converges to
− ln 2 for those who remember calculus.)

First of all consider why it converges. Notice that if Sn denotes the nth partial sum,
then

S2n − S2n−2 =
1

2n
− 1

2n− 1
< 0

S2n+1 − S2n−1 = − 1

2n+ 1
+

1

2n
> 0

S2n − S2n−1 =
1

2n

Thus the even partial sums are decreasing and the odd partial sums are increasing. The
even partial sums are bounded below also. (Why?) Therefore, the limit of the even
partial sums exists. However, it must be the same as the limit of the odd partial sums
because of the last equality above. Thus limn→∞ Sn exists and so the series converges.
Now I will show later below that

∑
k

1
2k and

∑
k

1
2k−1 both diverge. Include enough

even terms for the sum to exceed 7. Next add in enough odd terms so that the result
will be less than 7. Next add enough even terms to exceed 7 and continue doing this.
Since 1/k converges to 0, this rearrangement of the series must converge to 7. Of course
you could also have picked 5 or −8 just as well. In fact, given any number, there is a
rearrangement of this series which converges to this number.

Theorem 5.1.12 (comparison test) Suppose {an} and {bn} are sequences of
non negative real numbers and suppose for all n sufficiently large, an ≤ bn. Then

1. If
∑∞

n=k bn converges, then
∑∞

n=m an converges.

2. If
∑∞

n=k an diverges, then
∑∞

n=m bn diverges.

Proof: Consider the first claim. From the assumption, there exists n∗ such that
n∗ > max (k,m) and for all n ≥ n∗ bn ≥ an. Then if p ≥ n∗,

p∑
n=m

an ≤
n∗∑

n=m

an +

k∑
n=n∗+1

bn

≤
n∗∑

n=m

an +

∞∑
n=k

bn.
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Thus the sequence,{
∑p

n=m an}
∞
p=m is bounded above and increasing. Therefore, it con-

verges by completeness. The second claim is left as an exercise. �

Example 5.1.13 Determine the convergence of
∑∞

n=1
1
n2 .

For n > 1,
1

n2
≤ 1

n (n− 1)
.

Now

p∑
n=2

1

n (n− 1)
=

p∑
n=2

[
1

n− 1
− 1

n

]
= 1− 1

p
→ 1

Therefore, letting an = 1
n2 and bn = 1

n(n−1)

A convenient way to implement the comparison test is to use the limit comparison
test. This is considered next.

Theorem 5.1.14 Let an, bn > 0 and suppose for all n large enough,

0 < a <
an
bn
≤ an
bn

< b <∞.

Then
∑
an and

∑
bn converge or diverge together.

Proof:Let n∗ be such that n ≥ n∗, then
an
bn

> a and
an
bn

< b

and so for all such n,
abn < an < bbn

and so the conclusion follows from the comparison test. �
The following corollary follows right away from the definition of the limit.

Corollary 5.1.15 Let an, bn > 0 and suppose

lim
n→∞

an
bn

= λ ∈ (0,∞) .

Then
∑
an and

∑
bn converge or diverge together.

Example 5.1.16 Determine the convergence of
∑∞

k=1
1√

n4+2n+7
.

This series converges by the limit comparison test above. Compare with the series
of Example 5.1.13.

lim
n→∞

(
1
n2

)(
1√

n4+2n+7

) = lim
n→∞

√
n4 + 2n+ 7

n2

= lim
n→∞

√
1 +

2

n3
+

7

n4
= 1.

Therefore, the series converges with the series of Example 5.1.13. How did I know what
to compare with? I noticed that

√
n4 + 2n+ 7 is essentially like

√
n4 = n2 for large
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enough n. You see, the higher order term n4 dominates the other terms in n4 + 2n+ 7.
Therefore, reasoning that 1/

√
n4 + 2n+ 7 is a lot like 1/n2 for large n, it was easy to see

what to compare with. Of course this is not always easy and there is room for acquiring
skill through practice.

To really exploit this limit comparison test, it is desirable to get lots of examples of
series, some which converge and some which do not. The tool for obtaining these exam-
ples here will be the following wonderful theorem known as the Cauchy condensation
test.

Theorem 5.1.17 Let an ≥ 0 and suppose the terms of the sequence {an} are
decreasing. Thus an ≥ an+1 for all n. Then

∞∑
n=1

an and

∞∑
n=0

2na2n

converge or diverge together.

Proof:This follows from the inequality of the following claim.
Claim:

n∑
k=1

2ka2k−1 ≥
2n∑
k=1

ak ≥
n∑

k=0

2k−1a2k .

Proof of the Claim: Note the claim is true for n = 1. Suppose the claim is true
for n. Then, since 2n+1 − 2n = 2n, and the terms, an, are decreasing,

n+1∑
k=1

2ka2k−1 = 2n+1a2n +
n∑

k=1

2ka2k−1 ≥ 2n+1a2n +
2n∑
k=1

ak

≥
2n+1∑
k=1

ak ≥ 2na2n+1 +
2n∑
k=1

ak ≥ 2na2n+1 +
n∑

k=0

2k−1a2k =
n+1∑
k=0

2k−1a2k . �

Example 5.1.18 Determine the convergence of
∑∞

k=1
1
kp where p is a positive number.

These are called the p series.

Let an = 1
np . Then a2n =

(
1
2p

)n
. From the Cauchy condensation test the two series

∞∑
n=1

1

np
and

∞∑
n=0

2n
(

1

2p

)n

=
∞∑

n=0

(
2(1−p)

)n
converge or diverge together. If p > 1, the last series above is a geometric series having
common ratio less than 1 and so it converges. If p ≤ 1, it is still a geometric series but
in this case the common ratio is either 1 or greater than 1 so the series diverges. It
follows that the p series converges if p > 1 and diverges if p ≤ 1. In particular,

∑∞
n=1 n

−1

diverges while
∑∞

n=1 n
−2 converges.

Example 5.1.19 Determine the convergence of
∑∞

k=1
1√

n2+100n
.

Use the limit comparison test.

lim
n→∞

(
1
n

)(
1√

n2+100n

) = 1

and so this series diverges with
∑∞

k=1
1
k .

Sometimes it is good to be able to say a series does not converge. The nth term test
gives such a condition which is sufficient for this. It is really a corollary of Theorem
5.1.7.



82 CHAPTER 5. INFINITE SERIES OF NUMBERS

Theorem 5.1.20 If
∑∞

n=m an converges, then limn→∞ an = 0.

Proof:Apply Theorem 5.1.7 to conclude that

lim
n→∞

an = lim
n→∞

n∑
k=n

ak = 0. �

It is very important to observe that this theorem goes only in one direction. That is,
you cannot conclude the series converges if limn→∞ an = 0. If this happens, you don’t
know anything from this information. Recall limn→∞ n−1 = 0 but

∑∞
n=1 n

−1 diverges.
The following picture is descriptive of the situation.

∑
an converges

lim an = 0

an = n−1

5.2 Exercises

1. Determine whether the following series converge and give reasons for your answers.

(a)
∑∞

n=1
1√

n2+n+1

(b)
∑∞

n=1

(√
n+ 1−

√
n
)

(c)
∑∞

n=1
(n!)2

(2n)!

(d)
∑∞

n=1
(2n)!

(n!)2

(e)
∑∞

n=1
1

2n+2

(f)
∑∞

n=1

(
n

n+1

)n
(g)

∑∞
n=1

(
n

n+1

)n2

2. Determine whether the following series converge and give reasons for your answers.

(a)
∑∞

n=1
2n+n
n2n

(b)
∑∞

n=1
2n+n
n22n

(c)
∑∞

n=1
n

2n+1

(d)
∑∞

n=1
n100

1.01n

3. Find the exact values of the following infinite series if they converge.

(a)
∑∞

k=3
1

k(k−2)

(b)
∑∞

k=1
1

k(k+1)

(c)
∑∞

k=3
1

(k+1)(k−2)

(d)
∑N

k=1

(
1√
k
− 1√

k+1

)



5.3. MORE TESTS FOR CONVERGENCE 83

4. Suppose
∑∞

k=1 ak converges and each ak ≥ 0. Does it follow that
∑∞

k=1 a
2
k also

converges?

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.

6. If
∑∞

n=1 an and
∑∞

n=1 bn both converge and an, bn are nonnegative, can you con-
clude the sum,

∑∞
n=1 anbn converges?

7. If
∑∞

n=1 an converges and an ≥ 0 for all n and bn is bounded, can you conclude∑∞
n=1 anbn converges?

8. Determine the convergence of the series
∑∞

n=1

(∑n
k=1

1
k

)−n/2
.

9. Is it possible there could exist a decreasing sequence of positive numbers, {an}
such that limn→∞ an = 0 but

∑∞
n=1

(
1− an+1

an

)
converges? (This seems to be a

fairly difficult problem.)Hint: You might do something like this. Show

lim
x→1

1− x
− ln (x)

=
1− x

ln (1/x)
= 1

Next use a limit comparison test with

∞∑
n=1

ln

(
an
an+1

)
Go ahead and use what you learned in calculus about ln and any other techniques
for finding limits. These things will be discussed better later on, but you have
seen them in calculus so this is a little review.

10. Suppose
∑
an converges conditionally and each an is real. Show it is possible to

add the series in some order such that the result converges to 13. Then show it is
possible to add the series in another order so that the result converges to 7. Thus
there is no generalization of the commutative law for conditionally convergent
infinite series. Hint: To see how to proceed, consider Example 5.1.11.

5.3 More Tests For Convergence

5.3.1 Convergence Because Of Cancellation

So far, the tests for convergence have been applied to non negative terms only. Some-
times, a series converges, not because the terms of the series get small fast enough, but
because of cancellation taking place between positive and negative terms. A discussion
of this involves some simple algebra.

Let {an} and {bn} be sequences and let

An ≡
n∑

k=1

ak, A−1 ≡ A0 ≡ 0.

Then if p < q

q∑
n=p

anbn =

q∑
n=p

bn (An −An−1) =

q∑
n=p

bnAn −
q∑

n=p

bnAn−1
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=

q∑
n=p

bnAn −
q−1∑

n=p−1

bn+1An = bqAq − bpAp−1 +

q−1∑
n=p

An (bn − bn+1) (5.6)

This formula is called the partial summation formula.

Theorem 5.3.1 (Dirichlet’s test) Suppose An ≡
∑n

k=1 ak is bounded and limn→∞ bn =
0, with bn ≥ bn+1 for all n. Then

∞∑
n=1

anbn

converges.

Proof:This follows quickly from Theorem 5.1.7. Indeed, letting |An| ≤ C, and
using the partial summation formula above along with the assumption that the bn are
decreasing, ∣∣∣∣∣

q∑
n=p

anbn

∣∣∣∣∣ =
∣∣∣∣∣bqAq − bpAp−1 +

q−1∑
n=p

An (bn − bn+1)

∣∣∣∣∣
≤ C (|bq|+ |bp|) + C

q−1∑
n=p

(bn − bn+1)

= C (|bq|+ |bp|) + C (bp − bq)

and by assumption, this last expression is small whenever p and q are sufficiently large.
�

Definition 5.3.2 If bn > 0 for all n, a series of the form
∑

k (−1)
k
bk or∑

k (−1)
k−1

bk is known as an alternating series.

The following corollary is known as the alternating series test.

Corollary 5.3.3 (alternating series test) If limn→∞ bn = 0, with bn ≥ bn+1, then∑∞
n=1 (−1)

n
bn converges.

Proof:Let an = (−1)n . Then the partial sums of
∑

n an are bounded and so Theo-
rem 5.3.1 applies. �

In the situation of Corollary 5.3.3 there is a convenient error estimate available.

Theorem 5.3.4 Let bn > 0 for all n such that bn ≥ bn+1 for all n and limn→∞ bn =
0 and consider either

∑∞
n=1 (−1)

n
bn or

∑∞
n=1 (−1)

n−1
bn. Then∣∣∣∣∣

∞∑
n=1

(−1)n bn −
N∑

n=1

(−1)n bn

∣∣∣∣∣ ≤ |bN+1| ,∣∣∣∣∣
∞∑

n=1

(−1)n−1
bn −

N∑
n=1

(−1)n−1
bn

∣∣∣∣∣ ≤ |bN+1|

See Problem 8 on Page 93 for an outline of the proof of this theorem along with
another way to prove the alternating series test.

Example 5.3.5 How many terms must I take in the sum,
∑∞

n=1 (−1)
n 1

n2+1 to be closer

than 1
10 to

∑∞
n=1 (−1)

n 1
n2+1?
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From Theorem 5.3.4, I need to find n such that 1
n2+1 ≤

1
10 and then n − 1 is the

desired value. Thus n = 3 and so∣∣∣∣∣
∞∑

n=1

(−1)n 1

n2 + 1
−

2∑
n=1

(−1)n 1

n2 + 1

∣∣∣∣∣ ≤ 1

10

Definition 5.3.6 A series
∑
an is said to converge absolutely if

∑
|an| con-

verges. It is said to converge conditionally if
∑
|an| fails to converge but

∑
an converges.

Thus the alternating series or more general Dirichlet test can determine convergence
of series which converge conditionally.

5.3.2 Ratio And Root Tests

A favorite test for convergence is the ratio test. This is discussed next. It is at the
other extreme from the alternating series test, being completely oblivious to any sort of
cancellation. It only gives absolute convergence or spectacular divergence.

Theorem 5.3.7 Suppose |an| > 0 for all n and suppose

lim
n→∞

|an+1|
|an|

= r.

Then
∞∑

n=1

an

 diverges if r > 1
converges absolutely if r < 1
test fails if r = 1

.

Proof: Suppose r < 1. Then there exists n1 such that if n ≥ n1, then

0 <

∣∣∣∣an+1

an

∣∣∣∣ < R

where r < R < 1. Then
|an+1| < R |an|

for all such n. Therefore,

|an1+p| < R |an1+p−1| < R2 |an1+p−2| < · · · < Rp |an1 | (5.7)

and so if m > n, then |am| < Rm−n1 |an1 | . By the comparison test and the theorem on
geometric series,

∑
|an| converges. This proves the convergence part of the theorem.

To verify the divergence part, note that if r > 1, then 5.7 can be turned around for
some R > 1. Showing limn→∞ |an| = ∞. Since the nth term fails to converge to 0, it
follows the series diverges.

To see the test fails if r = 1, consider
∑
n−1 and

∑
n−2. The first series diverges

while the second one converges but in both cases, r = 1. (Be sure to check this last
claim.) �

The ratio test is very useful for many different examples but it is somewhat unsatis-
factory mathematically. One reason for this is the assumption that an > 0, necessitated
by the need to divide by an, and the other reason is the possibility that the limit might
not exist. The next test, called the root test removes both of these objections. Before
presenting this test, it is necessary to first prove the existence of the pth root of any
positive number. This was shown earlier in Theorem 2.10.2 but the following lemma
gives an easier treatment of this issue based on theorems about sequences.
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Lemma 5.3.8 Let α > 0 be any nonnegative number and let p ∈ N. Then α1/p

exists. This is the unique positive number which when raised to the pth power gives α.

Proof: Consider the function f (x) ≡ xp − α. Then there exists b1 such that
f (b1) > 0 and a1 such that f (a1) < 0. (Why?) Now cut the interval [a1, b1] into two
closed intervals of equal length. Let [a2, b2] be one of these which has f (a2) f (b2) ≤ 0.
Now do for [a2, b2] the same thing which was done to get [a2, b2] from [a1, b1]. Continue
this way obtaining a sequence of nested intervals [ak, bk] with the property that

bk − ak = 21−k (b1 − a1) .

By the nested interval theorem, there exists a unique point x in all these intervals.
Generalizing Theorem 4.4.6 slightly to include the product of of the terms of finitely
many sequences, it follows from Theorem 4.4.11 that

f (x) f (x) = lim
k→∞

f (ak) f (bk) ≤ 0

Hence f (x) = 0. �

Theorem 5.3.9 Suppose |an|1/n < R < 1 for all n sufficiently large. Then

∞∑
n=1

an converges absolutely.

If there are infinitely many values of n such that |an|1/n ≥ 1, then

∞∑
n=1

an diverges.

Proof: Suppose first that |an|1/n < R < 1 for all n sufficiently large. Say this holds
for all n ≥ nR. Then for such n,

n
√
|an| < R.

Therefore, for such n,

|an| ≤ Rn

and so the comparison test with a geometric series applies and gives absolute convergence
as claimed.

Next suppose |an|1/n ≥ 1 for infinitely many values of n. Then for those values of n,
|an| ≥ 1 and so the series fails to converge by the nth term test. �

Stated more succinctly the condition for the root test is this: Let

r = lim sup
n→∞

|an|1/n

then
∞∑

k=m

ak

 converges absolutely if r < 1
test fails if r = 1
diverges if r > 1

To see the test fails when r = 1, consider the same example given above,
∑

n
1
n and∑

n
1
n2 .

A special case occurs when the limit exists.
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Corollary 5.3.10 Suppose limn→∞ |an|1/n exists and equals r. Then

∞∑
k=m

ak

 converges absolutely if r < 1
test fails if r = 1
diverges if r > 1

Proof: The first and last alternatives follow from Theorem 5.3.9. To see the test
fails if r = 1, consider the two series

∑∞
n=1

1
n and

∑∞
n=1

1
n2 both of which have r = 1 but

having different convergence properties. The first diverges and the second converges. �

5.4 Double Series

Sometimes it is required to consider double series which are of the form

∞∑
k=m

∞∑
j=m

ajk ≡
∞∑

k=m

 ∞∑
j=m

ajk

 .

In other words, first sum on j yielding something which depends on k and then sum
these. The major consideration for these double series is the question of when

∞∑
k=m

∞∑
j=m

ajk =
∞∑

j=m

∞∑
k=m

ajk.

In other words, when does it make no difference which subscript is summed over first?
In the case of finite sums there is no issue here. You can always write

M∑
k=m

N∑
j=m

ajk =

N∑
j=m

M∑
k=m

ajk

because addition is commutative. However, there are limits involved with infinite sums
and the interchange in order of summation involves taking limits in a different order.
Therefore, it is not always true that it is permissible to interchange the two sums. A
general rule of thumb is this: If something involves changing the order in which two
limits are taken, you may not do it without agonizing over the question. In general,
limits foul up algebra and also introduce things which are counter intuitive. Here is an
example. This example is a little technical. It is placed here just to prove conclusively
there is a question which needs to be considered.

Example 5.4.1 Consider the following picture which depicts some of the ordered pairs
(m,n) where m,n are positive integers.
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0 q
0 q

0 q
0 q

0 q
0 q

0 q

-c q
-c q

-c q
-c q

-c q
-c q

a q
c q

c q
c q

c q
c q

b q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

0 q
0 q

The numbers next to the point are the values of amn. You see ann = 0 for all n,
a21 = a, a12 = b, amn = c for (m,n) on the line y = 1 + x whenever m > 1, and
amn = −c for all (m,n) on the line y = x− 1 whenever m > 2.

Then
∑∞

m=1 amn = a if n = 1,
∑∞

m=1 amn = b−c if n = 2 and if n > 2,
∑∞

m=1 amn =
0. Therefore,

∞∑
n=1

∞∑
m=1

amn = a+ b− c.

Next observe that
∑∞

n=1 amn = b ifm = 1,
∑∞

n=1 amn = a+c ifm = 2, and
∑∞

n=1 amn =
0 if m > 2. Therefore,

∞∑
m=1

∞∑
n=1

amn = b+ a+ c

and so the two sums are different. Moreover, you can see that by assigning different
values of a, b, and c, you can get an example for any two different numbers desired.

Don’t become upset by this. It happens because, as indicated above, limits are taken
in two different orders. An infinite sum always involves a limit and this illustrates why
you must always remember this. This example in no way violates the commutative law
of addition which has nothing to do with limits. However, it turns out that if aij ≥ 0
for all i, j, then you can always interchange the order of summation. This is shown next
and is based on the following lemma. First, some notation should be discussed.

Definition 5.4.2 Let f (a, b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B
are sets which means that f (a, b) is either a number, ∞, or −∞. The symbol, +∞
is interpreted as a point out at the end of the number line which is larger than every
real number. Of course there is no such number. That is why it is called ∞. The
symbol, −∞ is interpreted similarly. Then supa∈A f (a, b) means sup (Sb) where Sb ≡
{f (a, b) : a ∈ A} .

Unlike limits, you can take the sup in different orders.

Lemma 5.4.3 Let f (a, b) ∈ [−∞,∞] for a ∈ A and b ∈ B where A,B are sets.
Then

sup
a∈A

sup
b∈B

f (a, b) = sup
b∈B

sup
a∈A

f (a, b) .
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Proof: Note that for all a, b, f (a, b) ≤ supb∈B supa∈A f (a, b) and therefore, for all
a, supb∈B f (a, b) ≤ supb∈B supa∈A f (a, b). Therefore,

sup
a∈A

sup
b∈B

f (a, b) ≤ sup
b∈B

sup
a∈A

f (a, b) .

Repeat the same argument interchanging a and b, to get the conclusion of the lemma.
�

Lemma 5.4.4 If {An} is an increasing sequence in [−∞,∞], then

sup {An} = lim
n→∞

An.

Proof: Let sup ({An : n ∈ N}) = r. In the first case, suppose r < ∞. Then letting
ε > 0 be given, there exists n such that An ∈ (r − ε, r]. Since {An} is increasing, it
follows if m > n, then r − ε < An ≤ Am ≤ r and so limn→∞An = r as claimed. In
the case where r = ∞, then if a is a real number, there exists n such that An > a.
Since {Ak} is increasing, it follows that if m > n, Am > a. But this is what is meant
by limn→∞An =∞. The other case is that r = −∞. But in this case, An = −∞ for all
n and so limn→∞An = −∞. �

Theorem 5.4.5 Let aij ≥ 0. Then

∞∑
i=1

∞∑
j=1

aij =
∞∑
j=1

∞∑
i=1

aij .

Proof: First note there is no trouble in defining these sums because the aij are all
nonnegative. If a sum diverges, it only diverges to ∞ and so ∞ is the value of the sum.
Next note that

∞∑
j=r

∞∑
i=r

aij ≥ sup
n

∞∑
j=r

n∑
i=r

aij

because for all j,
∞∑
i=r

aij ≥
n∑

i=r

aij .

Therefore,
∞∑
j=r

∞∑
i=r

aij ≥ sup
n

∞∑
j=r

n∑
i=r

aij = sup
n

lim
m→∞

m∑
j=r

n∑
i=r

aij

= sup
n

lim
m→∞

n∑
i=r

m∑
j=r

aij = sup
n

n∑
i=r

lim
m→∞

m∑
j=r

aij

= sup
n

n∑
i=r

∞∑
j=r

aij = lim
n→∞

n∑
i=r

∞∑
j=r

aij =
∞∑
i=r

∞∑
j=r

aij

Interchanging the i and j in the above argument proves the theorem. �
The following is the fundamental result on double sums.

Theorem 5.4.6 Let aij ∈ F and suppose

∞∑
i=r

∞∑
j=r

|aij | <∞ .
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Then
∞∑
i=r

∞∑
j=r

aij =

∞∑
j=r

∞∑
i=r

aij

and every infinite sum encountered in the above equation converges.

Proof:By Theorem 5.4.5

∞∑
j=r

∞∑
i=r

|aij | =
∞∑
i=r

∞∑
j=r

|aij | <∞

Therefore, for each j,
∑∞

i=r |aij | < ∞ and for each i,
∑∞

j=r |aij | < ∞. By Theorem

5.1.9 on Page 78,
∑∞

i=r aij ,
∑∞

j=r aij both converge, the first one for every j and the
second for every i. Also,

∞∑
j=r

∣∣∣∣∣
∞∑
i=r

aij

∣∣∣∣∣ ≤
∞∑
j=r

∞∑
i=r

|aij | <∞

and
∞∑
i=r

∣∣∣∣∣∣
∞∑
j=r

aij

∣∣∣∣∣∣ ≤
∞∑
i=r

∞∑
j=r

|aij | <∞

so by Theorem 5.1.9 again,
∞∑
j=r

∞∑
i=r

aij ,
∞∑
i=r

∞∑
j=r

aij

both exist. It only remains to verify they are equal. By similar reasoning you can
replace aij with Re aij or with Im aij in the above and the two sums will exist.

The real part of a finite sum of complex numbers equals the sum of the real parts.
Then passing to a limit, it follows

Re
∞∑
j=r

∞∑
i=r

aij =
∞∑
j=r

∞∑
i=r

Re aij

and similarly,

Im

∞∑
i=r

∞∑
j=r

aij =

∞∑
i=r

∞∑
j=r

Im aij

Note 0 ≤ (|aij |+Re aij) ≤ 2 |aij | . Therefore, by Theorem 5.4.5 and Theorem 5.1.5 on
Page 76

∞∑
j=r

∞∑
i=r

|aij |+
∞∑
j=r

∞∑
i=r

Re aij =

∞∑
j=r

∞∑
i=r

(|aij |+Re aij)

=
∞∑
i=r

∞∑
j=r

(|aij |+Re aij)

=

∞∑
i=r

∞∑
j=r

|aij |+
∞∑
i=r

∞∑
j=r

Re aij

=
∞∑
j=r

∞∑
i=r

|aij |+
∞∑
i=r

∞∑
j=r

Re aij



5.4. DOUBLE SERIES 91

and so

Re
∞∑
j=r

∞∑
i=r

aij =
∞∑
j=r

∞∑
i=r

Re aij =
∞∑
i=r

∞∑
j=r

Re aij = Re
∞∑
i=r

∞∑
j=r

aij

Similar reasoning applies to the imaginary parts. Since the real and imaginary parts of
the two series are equal, it follows the two series are equal. �

One of the most important applications of this theorem is to the problem of multi-
plication of series.

Definition 5.4.7 Let
∑∞

i=r ai and
∑∞

i=r bi be two series. For n ≥ r, define

cn ≡
n∑

k=r

akbn−k+r.

The series
∑∞

n=r cn is called the Cauchy product of the two series.

It isn’t hard to see where this comes from. Formally write the following in the case
r = 0:

(a0 + a1 + a2 + a3 · · · ) (b0 + b1 + b2 + b3 · · · )

and start multiplying in the usual way. This yields

a0b0 + (a0b1 + b0a1) + (a0b2 + a1b1 + a2b0) + · · ·

and you see the expressions in parentheses above are just the cn for n = 0, 1, 2, · · · .
Therefore, it is reasonable to conjecture that

∞∑
i=r

ai

∞∑
j=r

bj =
∞∑

n=r

cn

and of course there would be no problem with this in the case of finite sums but in the
case of infinite sums, it is necessary to prove a theorem. The following is a special case
of Merten’s theorem.

Theorem 5.4.8 Suppose
∑∞

i=r ai and
∑∞

j=r bj both converge absolutely1. Then

( ∞∑
i=r

ai

) ∞∑
j=r

bj

 =

∞∑
n=r

cn

where

cn =

n∑
k=r

akbn−k+r.

Proof: Let pnk = 1 if r ≤ k ≤ n and pnk = 0 if k > n. Then

cn =
∞∑
k=r

pnkakbn−k+r.

1Actually, it is only necessary to assume one of the series converges and the other converges abso-
lutely. This is known as Merten’s theorem and may be read in the 1974 book by Apostol listed in the
bibliography.
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Also,

∞∑
k=r

∞∑
n=r

pnk |ak| |bn−k+r| =
∞∑
k=r

|ak|
∞∑

n=r

pnk |bn−k+r|

=
∞∑
k=r

|ak|
∞∑

n=k

|bn−k+r|

=
∞∑
k=r

|ak|
∞∑

n=k

∣∣bn−(k−r)

∣∣
=

∞∑
k=r

|ak|
∞∑

m=r

|bm| <∞.

Therefore, by Theorem 5.4.6

∞∑
n=r

cn =

∞∑
n=r

n∑
k=r

akbn−k+r =

∞∑
n=r

∞∑
k=r

pnkakbn−k+r

=
∞∑
k=r

ak

∞∑
n=r

pnkbn−k+r =
∞∑
k=r

ak

∞∑
n=k

bn−k+r

=
∞∑
k=r

ak

∞∑
m=r

bm �

5.5 Exercises

1. Determine whether the following series converge absolutely, conditionally, or not
at all and give reasons for your answers.

(a)
∑∞

n=1 (−1)
n 2n+n

n2n

(b)
∑∞

n=1 (−1)
n 2n+n

n22n

(c)
∑∞

n=1 (−1)
n n

2n+1

(d)
∑∞

n=1 (−1)
n 10n

n!

(e)
∑∞

n=1 (−1)
n n100

1.01n

(f)
∑∞

n=1 (−1)
n 3n

n3

(g)
∑∞

n=1 (−1)
n n3

3n

(h)
∑∞

n=1 (−1)
n n3

n!

(i)
∑∞

n=1 (−1)
n n!

n100

2. Suppose
∑∞

n=1 an converges. Can the same thing be said about
∑∞

n=1 a
2
n? Explain.

3. A person says a series converges conditionally by the ratio test. Explain why his
statement is total nonsense.

4. A person says a series diverges by the alternating series test. Explain why his
statement is total nonsense.

5. Find a series which diverges using one test but converges using another if possible.
If this is not possible, tell why.
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6. If
∑∞

n=1 an and
∑∞

n=1 bn both converge, can you conclude the sum,
∑∞

n=1 anbn
converges?

7. If
∑∞

n=1 an converges absolutely, and bn is bounded, can you conclude
∑∞

n=1 anbn
converges? What if it is only the case that

∑∞
n=1 an converges?

8. Prove Theorem 5.3.4. Hint: For
∑∞

n=1 (−1)
n
bn, show the odd partial sums are

all no larger than
∑∞

n=1 (−1)
n
bn and are increasing while the even partial sums

are at least as large as
∑∞

n=1 (−1)
n
bn and are decreasing. Use this to give another

proof of the alternating series test. If you have trouble, see most standard calculus
books.

9. Use Theorem 5.3.4 in the following alternating series to tell how large n must be

so that
∣∣∣∑∞

k=1 (−1)
k
ak −

∑n
k=1 (−1)

k
ak

∣∣∣ is no larger than the given number.

(a)
∑∞

k=1 (−1)
k 1

k , .001

(b)
∑∞

k=1 (−1)
k 1

k2 , .001

(c)
∑∞

k=1 (−1)
k−1 1√

k
, .001

10. Consider the series
∑∞

k=0 (−1)
n 1√

n+1
. Show this series converges and so it makes

sense to write
(∑∞

k=0 (−1)
n 1√

n+1

)2
. What about the Cauchy product of this

series? Does it even converge? What does this mean about using algebra on
infinite sums as though they were finite sums?

11. Verify Theorem 5.4.8 on the two series
∑∞

k=0 2
−k and

∑∞
k=0 3

−k.

12. You can define infinite series of complex numbers in exactly the same way as
infinite series of real numbers. That is w =

∑∞
k=1 zk means: For every ε > 0 there

exists N such that if n ≥ N, then |w −
∑n

k=1 zk| < ε. Here the absolute value is

the one which applies to complex numbers. That is, |a+ ib| =
√
a2 + b2. Show

that if {an} is a decreasing sequence of nonnegative numbers with the property
that limn→∞ an = 0 and if ω is any complex number which is not equal to 1
but which satisfies |ω| = 1, then

∑∞
n=1 ω

nan must converge. Note a sequence
of complex numbers, {an + ibn} converges to a + ib if and only if an → a and
bn → b. See Problem 6 on Page 53. There are quite a few things in this problem
you should think about.

13. Suppose limk→∞ sk = s. Show it follows limn→∞
1
n

∑n
k=1 sk = s.

14. Using Problem 13 show that if
∑∞

j=1
aj

j converges, then it follows

lim
n→∞

1

n

n∑
j=1

aj = 0.

15. Show that if {pi}∞i=1 are the prime numbers, then
∑∞

i=1
1
pi

= ∞. That is, there

are enough primes that the sum of their reciprocals diverges. Hint: Let ϕ (n)
denote the number of primes less than equal to n. Then explain why

n∑
k=1

1

k
≤

ϕ(n)∏
k=1

(
1 +

1

pk

)
≤

ϕ(n)∏
k=1

e1/pk = e
∑ϕ(n)

k=1 1/pk

and consequently why limn→∞ ϕ (n) = ∞ and
∑∞

i=1
1
pi

= ∞. You supply the
details for the above.
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Chapter 6

Continuous Functions

The concept of function is far too general to be useful in calculus. There are various
ways to restrict the concept in order to study something interesting and the types of
restrictions considered depend very much on what you find interesting. In Calculus,
the most fundamental restriction made is to assume the functions are continuous. Con-
tinuous functions are those in which a sufficiently small change in x results in a small
change in f (x) . They rule out things which could never happen physically. For exam-
ple, it is not possible for a car to jump from one point to another instantly. Making
this restriction precise turns out to be surprisingly difficult although many of the most
important theorems about continuous functions seem intuitively clear.

Before giving the careful mathematical definitions, here are examples of graphs of
functions which are not continuous at the point x0.

x

y
•c
x0 1 2−2 −1

1

2

You see, there is a hole in the picture of the graph of this function and instead
of filling in the hole with the appropriate value, f (x0) is too large. This is called a
removable discontinuity because the problem can be fixed by redefining the function at
the point x0. Here is another example.

x

y rb
x0 1 2−2 −1

1

2

You see from this picture that there is no way to get rid of the jump in the graph
of this function by simply redefining the value of the function at x0. That is why it is
called a nonremovable discontinuity or jump discontinuity. Now that pictures have been
given of what it is desired to eliminate, it is time to give the precise definition.

95
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The definition which follows, due to Cauchy1 and Weierstrass2 is the precise way
to exclude the sort of behavior described above and all statements about continuous
functions must ultimately rest on this definition from now on.

Definition 6.0.1 A function f : D (f) ⊆ F → F is continuous at x ∈ D (f) if
for each ε > 0 there exists δ > 0 such that whenever y ∈ D (f) and

|y − x| < δ

it follows that
|f (x)− f (y)| < ε.

A function f is continuous if it is continuous at every point of D (f) .

In sloppy English this definition says roughly the following: A function f is con-
tinuous at x when it is possible to make f (y) as close as desired to f (x) provided
y is taken close enough to x. In fact this statement in words is pretty much the way
Cauchy described it. The completely rigorous definition above is due to Weierstrass.
This definition does indeed rule out the sorts of graphs drawn above. Consider the
second nonremovable discontinuity. The removable discontinuity case is similar.

2 + ϵ

2− ϵ
r
a

x0

x0 + δ

x0 − δ

1 2−2 −1

1

2

f(x)

x
@
@

@@

�
�
��

For the ε shown you can see from the picture that no matter how small you take δ,
there will be points, x, between x0−δ and x0 where f (x) < 2−ε. In particular, for these

1Augustin Louis Cauchy 1789-1857 was the son of a lawyer who was married to an aristocrat. He
was born in France just after the fall of the Bastille and his family fled the reign of terror and hid in
the countryside till it was over. Cauchy was educated at first by his father who taught him Greek and
Latin. Eventually Cauchy learned many languages. He was also a good Catholic.

After the reign of terror, the family returned to Paris and Cauchy studied at the university to be
an engineer but became a mathematician although he made fundamental contributions to physics and
engineering. Cauchy was one of the most prolific mathematicians who ever lived. He wrote several
hundred papers which fill 24 volumes. He also did research on many topics in mechanics and physics
including elasticity, optics and astronomy. More than anyone else, Cauchy invented the subject of
complex analysis. He is also credited with giving the first rigorous definition of continuity.

He married in 1818 and lived for 12 years with his wife and two daughters in Paris till the revolution
of 1830. Cauchy refused to take the oath of allegiance to the new ruler and ended up leaving his family
and going into exile for 8 years.

Notwithstanding his great achievements he was not known as a popular teacher.
2Wilhelm Theodor Weierstrass 1815-1897 brought calculus to essentially the state it is in now. When

he was a secondary school teacher, he wrote a paper which was so profound that he was granted a
doctor’s degree. He made fundamental contributions to partial differential equations, complex analysis,
calculus of variations, and many other topics. He also discovered some pathological examples such as
space filling curves. Cauchy gave the definition in words and Weierstrass, somewhat later produced the
totally rigorous ε δ definition presented here. The need for rigor in the subject of calculus was only
realized over a long period of time.
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values of x, |f (x)− f (x0)| > ε. Therefore, the definition of continuity given above
excludes the situation in which there is a jump in the function. Similar reasoning shows
it excludes the removable discontinuity case as well. There are many ways a function
can fail to be continuous and it is impossible to list them all by drawing pictures. This
is why it is so important to use the definition. The other thing to notice is that the
concept of continuity as described in the definition is a point property. That is to say
it is a property which a function may or may not have at a single point. Here is an
example.

Example 6.0.2 Let

f (x) =

{
x if x is rational
0 if x is irrational

.

This function is continuous at x = 0 and nowhere else.

To verify the assertion about the above function, first show it is not continuous at
x if x ̸= 0. Take such an x and let ε = |x| /2. Now let δ > 0 be completely arbitrary.
In the interval, (x− δ, x+ δ) there are rational numbers, y1 such that |y1| > |x| and
irrational numbers, y2. Thus |f (y1)− f (y2)| = |y1| > |x| . If f were continuous at x,
there would exist δ > 0 such that for every point, y ∈ (x− δ, x+ δ), |f (y)− f (x)| < ε.
But then, letting y1 and y2 be as just described,

|x| < |y1| = |f (y1)− f (y2)|
≤ |f (y1)− f (x)|+ |f (x)− f (y2)| < 2ε = |x| ,

which is a contradiction. Since a contradiction is obtained by assuming that f is contin-
uous at x, it must be concluded that f is not continuous there. To see f is continuous
at 0, let ε > 0 be given and let δ = ε. Then if |y − 0| < δ = ε, Then

|f (y)− f (0)| = 0 if y is irrational

|f (y)− f (0)| = |y| < ε if y is rational.

either way, whenever |y − 0| < δ, it follows |f (y)− f (0)| < ε and so f is continuous at
x = 0. How did I know to let δ = ε? That is a very good question. The choice of δ for
a particular ε is usually arrived at by using intuition, the actual ε δ argument reduces
to a verification that the intuition was correct. Here is another example.

Example 6.0.3 Show the function f (x) = −5x+ 10 is continuous at x = −3.

To do this, note first that f (−3) = 25 and it is desired to verify the conditions for
continuity. Consider the following.

|−5x+ 10− (25)| = 5 |x− (−3)| .

This allows one to find a suitable δ. If ε > 0 is given, let 0 < δ ≤ 1
5ε. Then if 0 <

|x− (−3)| < δ, it follows from this inequality that

|−5x+ 10− (25)| = 5 |x− (−3)| < 5
1

5
ε = ε.

Sometimes the determination of δ in the verification of continuity can be a little
more involved. Here is another example.

Example 6.0.4 Show the function f (x) =
√
2x+ 12 is continuous at x = 5.



98 CHAPTER 6. CONTINUOUS FUNCTIONS

First note f (5) =
√
22. Now consider:∣∣∣√2x+ 12−

√
22
∣∣∣ = ∣∣∣∣ 2x+ 12− 22

√
2x+ 12 +

√
22

∣∣∣∣
=

2
√
2x+ 12 +

√
22
|x− 5| ≤ 1

11

√
22 |x− 5|

whenever |x− 5| < 1 because for such x,
√
2x+ 12 > 0. Now let ε > 0 be given. Choose

δ such that 0 < δ ≤ min
(
1, ε

√
22
2

)
. Then if |x− 5| < δ, all the inequalities above hold

and ∣∣∣√2x+ 12−
√
22
∣∣∣ ≤ 2√

22
|x− 5| < 2√

22

ε
√
22

2
= ε.

Exercise 6.0.5 Show f (x) = −3x2 + 7 is continuous at x = 7.

First observe f (7) = −140. Now∣∣−3x2 + 7− (−140)
∣∣ = 3 |x+ 7| |x− 7| ≤ 3 (|x|+ 7) |x− 7| .

If |x− 7| < 1, it follows from the version of the triangle inequality which states ||s| − |t|| ≤
|s− t| that |x| < 1 + 7. Therefore, if |x− 7| < 1, it follows that∣∣−3x2 + 7− (−140)

∣∣ ≤ 3 ((1 + 7) + 7) |x− 7|

= 3 (1 + 27) |x− 7| = 84 |x− 7| .

Now let ε > 0 be given. Choose δ such that 0 < δ ≤ min
(
1, ε

84

)
. Then for |x− 7| < δ,

it follows ∣∣−3x2 + 7− (−140)
∣∣ ≤ 84 |x− 7| < 84

( ε
84

)
= ε.

The following is a useful theorem which can remove the need to constantly use the
ε, δ definition given above.

Theorem 6.0.6 The following assertions are valid

1. The function af + bg is continuous at x when f , g are continuous at x ∈ D (f) ∩
D (g) and a, b ∈ F.

2. If and f and g are each continuous at x, then fg is continuous at x. If, in addition
to this, g (x) ̸= 0, then f/g is continuous at x.

3. If f is continuous at x, f (x) ∈ D (g) ⊆ F, and g is continuous at f (x) ,then g ◦ f
is continuous at x.

4. The function f : F→ R, given by f (x) = |x| is continuous.

Proof: First consider 1.) Let ε > 0 be given. By assumption, there exist δ1 > 0
such that whenever |x− y| < δ1, it follows |f (x)− f (y)| < ε

2(|a|+|b|+1) and there exists

δ2 > 0 such that whenever |x− y| < δ2, it follows that |g (x)− g (y)| < ε
2(|a|+|b|+1) . Then

let 0 < δ ≤ min (δ1, δ2) . If |x− y| < δ, then everything happens at once. Therefore,
using the triangle inequality

|af (x) + bf (x)− (ag (y) + bg (y))|



99

≤ |a| |f (x)− f (y)|+ |b| |g (x)− g (y)|

< |a|
(

ε

2 (|a|+ |b|+ 1)

)
+ |b|

(
ε

2 (|a|+ |b|+ 1)

)
< ε.

Now consider 2.) There exists δ1 > 0 such that if |y − x| < δ1, then |f (x)− f (y)| <
1. Therefore, for such y,

|f (y)| < 1 + |f (x)| .

It follows that for such y,

|fg (x)− fg (y)| ≤ |f (x) g (x)− g (x) f (y)|+ |g (x) f (y)− f (y) g (y)|

≤ |g (x)| |f (x)− f (y)|+ |f (y)| |g (x)− g (y)|
≤ (1 + |g (x)|+ |f (y)|) [|g (x)− g (y)|+ |f (x)− f (y)|]
≤ (2 + |g (x)|+ |f (x)|) [|g (x)− g (y)|+ |f (x)− f (y)|]

Now let ε > 0 be given. There exists δ2 such that if |x− y| < δ2, then

|g (x)− g (y)| < ε

2 (1 + |g (x)|+ |f (y)|)
,

and there exists δ3 such that if |x−y| < δ3, then

|f (x)− f (y)| < ε

2 (2 + |g (x)|+ |f (x)|)

Now let 0 < δ ≤ min (δ1, δ2, δ3) . Then if |x−y| < δ, all the above hold at once and so

|fg (x)− fg (y)| ≤

(2 + |g (x)|+ |f (x)|) [|g (x)− g (y)|+ |f (x)− f (y)|]

< (2 + |g (x)|+ |f (x)|)
(

ε

2 (2 + |g (x)|+ |f (x)|)
+

ε

2 (2 + |g (x)|+ |f (x)|)

)
= ε.

This proves the first part of 2.) To obtain the second part, let δ1 be as described above
and let δ0 > 0 be such that for |x−y| < δ0,

|g (x)− g (y)| < |g (x)| /2

and so by the triangle inequality,

− |g (x)| /2 ≤ |g (y)| − |g (x)| ≤ |g (x)| /2

which implies |g (y)| ≥ |g (x)| /2, and |g (y)| < 3 |g (x)| /2.
Then if |x−y| < min (δ0, δ1) ,∣∣∣∣f (x)g (x)

− f (y)

g (y)

∣∣∣∣ = ∣∣∣∣f (x) g (y)− f (y) g (x)g (x) g (y)

∣∣∣∣
≤ |f (x) g (y)− f (y) g (x)|(

|g(x)|2
2

)
=

2 |f (x) g (y)− f (y) g (x)|
|g (x)|2
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≤ 2

|g (x)|2
[|f (x) g (y)− f (y) g (y) + f (y) g (y)− f (y) g (x)|]

≤ 2

|g (x)|2
[|g (y)| |f (x)− f (y)|+ |f (y)| |g (y)− g (x)|]

≤ 2

|g (x)|2

[
3

2
|g (x)| |f (x)− f (y)|+ (1 + |f (x)|) |g (y)− g (x)|

]
≤ 2

|g (x)|2
(1 + 2 |f (x)|+ 2 |g (x)|) [|f (x)− f (y)|+ |g (y)− g (x)|]

≡M [|f (x)− f (y)|+ |g (y)− g (x)|]

where M is defined by

M ≡ 2

|g (x)|2
(1 + 2 |f (x)|+ 2 |g (x)|)

Now let δ2 be such that if |x−y| < δ2, then

|f (x)− f (y)| < ε

2
M−1

and let δ3 be such that if |x−y| < δ3, then

|g (y)− g (x)| < ε

2
M−1.

Then if 0 < δ ≤ min (δ0, δ1, δ2, δ3) , and |x−y| < δ, everything holds and∣∣∣∣f (x)g (x)
− f (y)

g (y)

∣∣∣∣ ≤M [|f (x)− f (y)|+ |g (y)− g (x)|]

< M
[ε
2
M−1 +

ε

2
M−1

]
= ε.

This completes the proof of the second part of 2.)

Note that in these proofs no effort is made to find some sort of “best” δ. The problem
is one which has a yes or a no answer. Either it is or it is not continuous.

Now consider 3.). If f is continuous at x, f (x) ∈ D (g) ⊆ F, and g is continuous at
f (x) ,then g◦f is continuous at x. Let ε > 0 be given. Then there exists η > 0 such that
if |y−f (x)| < η and y ∈ D (g) , it follows that |g (y)− g (f (x))| < ε. From continuity of
f at x, there exists δ > 0 such that if |x−z| < δ and z ∈ D (f) , then |f (z)− f (x)| < η.
Then if |x−z| < δ and z ∈ D (g ◦ f) ⊆ D (f) , all the above hold and so

|g (f (z))− g (f (x))| < ε.

This proves part 3.)

To verify part 4.), let ε > 0 be given and let δ = ε. Then if |x−y| < δ, the triangle
inequality implies

|f (x)− f (y)| = ||x| − |y||
≤ |x−y| < δ = ε.

This proves part 4.) and completes the proof of the theorem. �
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6.1 Equivalent Formulations Of Continuity

There is a very useful way of thinking of continuity in terms of limits of sequences found
in the following theorem. In words, it says a function is continuous if it takes convergent
sequences to convergent sequences whenever possible.

Theorem 6.1.1 A function f : D (f)→ F is continuous at x ∈ D (f) if and
only if, whenever xn → x with xn ∈ D (f) , it follows f (xn)→ f (x) .

Proof: Suppose first that f is continuous at x and let xn → x. Let ε > 0 be given.
By continuity, there exists δ > 0 such that if |y − x| < δ, then |f (x)− f (y)| < ε.
However, there exists nδ such that if n ≥ nδ, then |xn − x| < δ and so for all n this
large,

|f (x)− f (xn)| < ε

which shows f (xn)→ f (x) .

Now suppose the condition about taking convergent sequences to convergent se-
quences holds at x. Suppose f fails to be continuous at x. Then there exists ε > 0 and
xn ∈ D (f) such that |x− xn| < 1

n , yet

|f (x)− f (xn)| ≥ ε.

But this is clearly a contradiction because, although xn → x, f (xn) fails to converge to
f (x) . It follows f must be continuous after all. �

Theorem 6.1.2 Suppose f : D (f)→ R is continuous at x ∈ D (f) and suppose
f (xn) ≤ l (≥ l) where {xn} is a sequence of points of D (f) which converges to x. Then
f (x) ≤ l (≥ l) .

Proof: Since f (xn) ≤ l and f is continuous at x, it follows from Theorem 4.4.11
and Theorem 6.1.1,

f (x) = lim
n→∞

f (xn) ≤ l.

The other case is entirely similar. �
The following is a useful characterization of a continuous function which ties together

many of the above conditions. I am being purposely vague about the domain of the
function and its range because this theorem is a general result which holds whenever it
makes sense.

Theorem 6.1.3 Let f be a function defined on D (f). The following are equiv-
alent.

1. f is continuous on D (f)

2. For every ε > 0 and x ∈ D (f) there exists δ > 0 such that if |y − x| < δ and
y ∈ D (f) , then |f (x)− f (y)| < ε.

3. For every x ∈ D (f) , if xn → x where each xn ∈ D (f) , then f (x) = limn→∞ f (xn).

4. Whenever U is open, f−1 (U) equals the intersection of an open set with D (f) .

5. Whenver C is closed, f−1 (C) is the intersection of a closed set with D (f) .
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Proof: To say that f is continuous on D (f) is to say that it is continuous at every
x ∈ D (f). Therefore, 1.) implies 2.). If 2 .) holds then by definition f is continuous at
every x ∈ D (f) so it is continuous onD (f). Thus the first two conditions are equivalent.
These are equivalent to the third condition by Theorem 6.1.1. Thus the first three
conditions are equivalent. Now suppose the fouth condition holds that “inverse images
of open sets are open”. Why is f continuous at x ∈ D (f)? This is obviously so because
if you take U = B (f (x) , ε) , then f−1 (B (f (x) , ε)) = V ∩D (f) . Since x ∈ V ∩D (f) ,
it follows that there is some δ > 0 such that B (x, δ) ⊆ V since V is open. Therefore,
if y ∈ B (x, δ) ∩ D (f) , it follows that f (y) ∈ B (f (x) , ε) and so in other words, if
|x− y| < δ with y ∈ D (f) , then |f (x)− f (y)| < ε. Hence f is continuous at every
x ∈ D (f). Thus f is continuous on D (f). Conversely, suppose f is continuous on
D (f) and let U be open. Consider x ∈ f−1 (U) . By assumption f is continuous at x.
Let ε > 0 be such that B (f (x) , ε) ⊆ U . Then by the definition of continuity, there
exists δx > 0 such that if |y − x| < δx and y ∈ D (f) , then f (y) ∈ B (f (x) , ε) . In other
words,

B (x, δx) ∩D (f) ⊆ f−1 ( B (f (x) , ε)) ⊆ f−1 (U)

Hence

f−1 (U) = ∪x∈f−1(U) (B (x, δx) ∩D (f)) =
(
∪x∈f−1(U)B (x, δx)

)
∩D (f)

which is the intersection of an open set with D (f). Thus the first four conditions are
equivalent. Now let C be closed and suppose condition 4.)

f−1 (C) ∪ f−1
(
CC
)
= D (f)

Since every x ∈ D (f) either has f (x) ∈ C or f (x) /∈ C.(
f−1 (C) ∩D (f)

)
∪
(
f−1

(
CC
)
∩D (f)

)
= D (f)

Now since CC is open, there is an open set V such that

f−1
(
CC
)
∩D (f) = V ∩D (f)

Hence f−1 (C) ∩ D (f) = V C ∩ D (f). Thus 4.) implies 5.). Now assume 5.). Then
if C is closed, there is a closed set H such that f−1 (C) ∩ D (f) = H ∩ D (f) . Then
HC ∩D (f) = f−1

(
CC
)
∩D (f) which is an open set intersected with D (f) . It follows,

since a generic open set is of the form CC , that 4.) holds. �

6.2 Exercises

1. Let f (x) = 2x+ 7. Show f is continuous at every point x. Hint: You need to let
ε > 0 be given. In this case, you should try δ ≤ ε/2. Note that if one δ works in
the definition, then so does any smaller δ.

2. Suppose D (f) = [0, 1]∪{9} and f (x) = x on [0, 1] while f (9) = 5. Is f continuous
at the point, 9? Use whichever definition of continuity you like.

3. Let f (x) = x2 + 1. Show f is continuous at x = 3. Hint:

|f (x)− f (3)| =
∣∣x2 + 1− (9 + 1)

∣∣
= |x+ 3| |x− 3| .

Thus if |x− 3| < 1, it follows from the triangle inequality, |x| < 1 + 3 = 4 and so

|f (x)− f (3)| < 4 |x− 3| .

Now try to complete the argument by letting δ ≤ min (1, ε/4) . The symbol, min
means to take the minimum of the two numbers in the parenthesis.
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4. Let f (x) = 2x2 + 1. Show f is continuous at x = 1.

5. Let f (x) = x2 + 2x. Show f is continuous at x = 2. Then show it is continuous
at every point.

6. Let f (x) = |2x+ 3|. Show f is continuous at every point. Hint: Review the two
versions of the triangle inequality for absolute values.

7. Let f (x) = 1
x2+1 . Show f is continuous at every value of x.

8. If x ∈ R, show there exists a sequence of rational numbers, {xn} such that xn → x
and a sequence of irrational numbers, {x′n} such that x′n → x. Now consider the
following function.

f (x) =

{
1 if x is rational
0 if x is irrational

.

Show using the sequential version of continuity in Theorem 6.1.1 that f is discon-
tinuous at every point.

9. If x ∈ R, show there exists a sequence of rational numbers, {xn} such that xn → x
and a sequence of irrational numbers, {x′n} such that x′n → x. Now consider the
following function.

f (x) =

{
x if x is rational
0 if x is irrational

.

Show using the sequential version of continuity in Theorem 6.1.1 that f is contin-
uous at 0 and nowhere else.

10. Suppose y is irrational and yn → y where yn is rational. Say yn = pn/qn. Show
that limn→∞ qn =∞. Now consider the function

f (x) ≡
{

0 if x is irrational
1
q if x = p

q where the fraction is in lowest terms

Show that f is continuous at each irrational number and discontinuous at every
nonzero rational number.

11. Suppose f is a function defined on R. Define

ωδf (x) ≡ sup {|f (y)− f (z)| : y, z ∈ B (x, δ)}

Note that these are decreasing in δ. Let

ωf (x) ≡ inf
δ>0

ωδf (x)

Explain why f is continuous at x if and only if ωf (x) = 0. Next show that

{x : ωf (x) = 0} = ∩∞m=1 ∪∞n=1

{
x : ω(1/n)f (x) <

1

m

}
Now show that ∪∞n=1

{
x : ω(1/n)f (x) <

1
m

}
is an open set. Explain why the set

of points where f is continuous must always be a Gδ set. Recall that a Gδ set is
the countable intersection of open sets.

12. Show that the set of rational numbers is not a Gδ set. That is, there is no sequence
of open sets whose intersection is the rational numbers. Extend to show that no
countable dense set can be Gδ. Using Problem 11, show that there is no function
which is continuous at a countable dense set of numbers but discontinuous at every
other number.
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13. Use the sequential definition of continuity described above to give an easy proof
of Theorem 6.0.6.

14. Let f (x) =
√
x show f is continuous at every value of x in its domain. For now,

assume
√
x exists for all positive x. Hint: You might want to make use of the

identity,
√
x−√y =

x− y√
x+
√
y

at some point in your argument.

15. Using Theorem 6.0.6, show all polynomials are continuous and that a rational
function is continuous at every point of its domain. Hint: First show the function
given as f (x) = x is continuous and then use the Theorem 6.0.6. What about the
case where x can be in F? Does the same conclusion hold?

16. Let f (x) =

{
1 if x ∈ Q
0 if x /∈ Q and consider g (x) = f (x)

(
x− x3

)
. Determine where

g is continuous and explain your answer.

17. Suppose f is any function whose domain is the integers. Thus D (f) = Z, the
set of whole numbers, · · · ,−3,−2,−1, 0, 1, 2, 3, · · · . Then f is continuous. Why?
Hint: In the definition of continuity, what if you let δ = 1

4? Would this δ work
for a given ε > 0? This shows that the idea that a continuous function is one for
which you can draw the graph without taking the pencil off the paper is a lot of
nonsense.

18. Give an example of a function f which is not continuous at some point but |f | is
continuous at that point.

19. Find two functions which fail to be continuous but whose product is continuous.

20. Find two functions which fail to be continuous but whose sum is continuous.

21. Find two functions which fail to be continuous but whose quotient is continuous.

22. Suppose f is a function defined on R and f is continuous at 0. Suppose also that
f (x+ y) = f (x) + f (y) . Show that if this is so, then f must be continuous at
every value of x ∈ R. Next show that for every rational number, r, f (r) = rf (1) .
Finally explain why f (r) = rf (1) for every r a real number. Hint: To do this
last part, you need to use the density of the rational numbers and continuity of f.

6.3 The Extreme Values Theorem

The extreme values theorem says continuous functions achieve their maximum and
minimum provided they are defined on a sequentially compact set.

Lemma 6.3.1 Let K ⊆ F be sequentially compact and let f : K → R be continuous.
Then f is bounded. That is there exist numbers, m and M such that for all x ∈ [a, b] ,

m ≤ f (x) ≤M.

Proof: Suppose f is not bounded above. Then there exists {xn} , a sequence of
points inK such that f (xn) ≥ n. SinceK is sequentially compact, there is a subsequence
{xnk

} and a point inK, x such that xnk
→ x. Then by Theorem 6.1.1, f (xnk

)→ f (x) ∈
R and this is a contradiction to f (xnk

) > nk. Thus f must be bounded above. Similarly,
f must be bounded below. �
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Example 6.3.2 Let f (x) = 1/x for x ∈ (0, 1) .

Clearly, f is not bounded. Does this violate the conclusion of the above lemma? It
does not because the end points of the interval involved are not in the interval. The
same function defined on [.000001, 1) would have been bounded although in this case
the boundedness of the function would not follow from the above lemma because it fails
to include the right endpoint.

The next theorem is known as the max min theorem or extreme value theorem.

Theorem 6.3.3 Let K ⊆ F be sequentially compact and let f : K → R be
continuous. Then f achieves its maximum and its minimum on K. This means there
exist, x1, x2 ∈ K such that for all x ∈ K,

f (x1) ≤ f (x) ≤ f (x2) .

Proof: By Lemma 6.3.1 f (K) has a least upper bound, M. If for all x ∈ K,

f (x) ̸= M, then by Theorem 6.0.6, the function g (x) ≡ (M − f (x))−1
= 1

M−f(x)

is continuous on K. Since M is the least upper bound of f (K) there exist points,
x ∈ K such that (M − f (x)) is as small as desired. Consequently, g is not bounded
above, contrary to Lemma 6.3.1. Therefore, there must exist some x ∈ K such that
f (x) = M. This proves f achieves its maximum. The argument for the minimum is
similar. Alternatively, you could consider the function h (x) = M − f (x) . Then use
what was just proved to conclude h achieves its maximum at some point, x1. Thus
h (x1) ≥ h (x) for all x ∈ I and so M − f (x1) ≥ M − f (x) for all x ∈ I which implies
f (x1) ≤ f (x) for all x ∈ I. �

In fact a continuous function takes compact sets to compact sets. This is another of
those big theorems which tends to hold whenever it makes sense. Therefore, I will be
vague about the domain and range of the function f .

Theorem 6.3.4 Let D (f) ⊇ K where K is a compact set. Then f (K) is also
compact.

Proof: Suppose C is an open cover of f (K). Then by Theorem 6.1.3, since f is
continuous, it satisfies the inverse image of open sets being open condition. For U ∈ C,

f−1 (U) = OU ∩D (f) , where OU is open

Thus {OU : U ∈ C} is an open cover of K. Hence there exist {OU1 , · · · , OUn} each open
whose union contains K. It follows that {U1, · · · , Un} is an open cover of f (K). �

6.4 The Intermediate Value Theorem

The next big theorem is called the intermediate value theorem and the following picture
illustrates its conclusion. It gives the existence of a certain point.

x

y

c

za b

s(b, f(b))
(a, f(a)) s
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You see in the picture there is a horizontal line, y = c and a continuous function
which starts off less than c at the point a and ends up greater than c at point b. The
intermediate value theorem says there is some point between a and b shown in the
picture as z such that the value of the function at this point equals c. It may seem this
is obvious but without completeness the conclusion of the theorem cannot be drawn.
Nevertheless, the above picture makes this theorem very easy to believe. Here is a useful
lemma.

Lemma 6.4.1 If f is continuous on the closed interval [a, b] and for some x ∈
[a, b] , f (x) ̸= c, then there exists δ > 0 such that for y ∈ [a, b] ∩ (x− δ, x+ δ) , the
sign of f (y) − c is constant. That is, it is either always positive or always negative
depending on the sign of f (x)− c.

Proof: Let ε = |f (x)− c| > 0 by assumption. Then let δ correspond to this ε in
the definition of continuity.

Case 1: f (x)− c > 0. Then for y ∈ [a, b] ∩ (x− δ, x+ δ) , f (x)− f (y) < f (x)− c
and so 0 < f (y)− c.

Case 2: f (x)−c < 0. Then for y ∈ [a, b]∩(x− δ, x+ δ) , f (y)−f (x) < c−f (x)and
so 0 > f (y)− c. �

Next here is a proof of the intermediate value theorem.

Theorem 6.4.2 Suppose f : [a, b] → R is continuous and suppose f (a) < c <
f (b) . Then there exists x ∈ (a, b) such that f (x) = c.

Proof: Let d = a+b
2 and consider the intervals [a, d] and [d, b] . If f (d) ≥ c, then on

[a, d] , the function is ≤ c at one end point and ≥ c at the other. On the other hand, if
f (d) ≤ c, then on [d, b] , f ≥ 0 at one end point and ≤ 0 at the other. Pick the interval
on which f has values which are at least as large as c and values no larger than c. Now
consider that interval, divide it in half as was done for the original interval and argue
that on one of these smaller intervals, the function has values at least as large as c and
values no larger than c. Continue in this way. Next apply the nested interval lemma to
get x in all these intervals. In the nth interval, let xn, yn be points of this interval such
that f (xn) ≤ c, f (yn) ≥ c. Now |xn − x| ≤ (b− a) 2−n and |yn − x| ≤ (b− a) 2−n and
so xn → x and yn → x. Therefore,

f (x)− c = lim
n→∞

(f (xn)− c) ≤ 0

while

f (x)− c = lim
n→∞

(f (yn)− c) ≥ 0.

Consequently f (x) = c and this proves the theorem. The last step follows from Theorem
6.1.1. �

Here is another proof of this major theorem.
Proof: Since f (a) < c, the set, S defined as

S ≡ {x ∈ [a, b] : f (t) ≤ c for all t ∈ [a, x]}

is nonempty. In particular a ∈ S. Note that b /∈ S by assumption. Let z ≡ sup (S).
By Lemma 6.4.1, since f (a) < c it follows that z ∈ (a, b). By the same lemma again, if
f (z) ̸= c, then z ̸= sup (S). Hence f (z) = c. �

Lemma 6.4.3 Let ϕ : [a, b]→ R be a continuous function and suppose ϕ is 1− 1 on
(a, b). Then ϕ is either strictly increasing or strictly decreasing on [a, b] .
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Proof: First it is shown that ϕ is either strictly increasing or strictly decreasing on
(a, b) .

If ϕ is not strictly decreasing on (a, b), then there exists x1 < y1, x1, y1 ∈ (a, b) such
that

(ϕ (y1)− ϕ (x1)) (y1 − x1) > 0.

If for some other pair of points, x2 < y2 with x2, y2 ∈ (a, b) , the above inequality does
not hold, then since ϕ is 1− 1,

(ϕ (y2)− ϕ (x2)) (y2 − x2) < 0.

Let xt ≡ tx1+(1− t)x2 and yt ≡ ty1+(1− t) y2. Then xt < yt for all t ∈ [0, 1] because

tx1 ≤ ty1 and (1− t)x2 ≤ (1− t) y2
with strict inequality holding for at least one of these inequalities since not both t and
(1− t) can equal zero. Now define

h (t) ≡ (ϕ (yt)− ϕ (xt)) (yt − xt) .
Since h is continuous and h (0) < 0, while h (1) > 0, there exists t ∈ (0, 1) such that
h (t) = 0. Therefore, both xt and yt are points of (a, b) and ϕ (yt) − ϕ (xt) = 0 contra-
dicting the assumption that ϕ is one to one. It follows ϕ is either strictly increasing or
strictly decreasing on (a, b) .

This property of being either strictly increasing or strictly decreasing on (a, b) carries
over to [a, b] by the continuity of ϕ. Suppose ϕ is strictly increasing on (a, b) . (A similar
argument holds for ϕ strictly decreasing on (a, b) .) If x > a, then let zn be a decreasing
sequence of points of (a, x) converging to a. Then by continuity of ϕ at a,

ϕ (a) = lim
n→∞

ϕ (zn) ≤ ϕ (z1) < ϕ (x) .

Therefore, ϕ (a) < ϕ (x) whenever x ∈ (a, b) . Similarly ϕ (b) > ϕ (x) for all x ∈ (a, b). �
Corollary 6.4.4 Let f : (a, b) → R be one to one and continuous. Then f (a, b) is
an open interval, (c, d) and f−1 : (c, d)→ (a, b) is continuous.

Proof 1: Since f is either strictly increasing or strictly decreasing, it follows that
f (a, b) is an open interval, (c, d) . Assume f is decreasing. Now let x ∈ (a, b). Why is
f−1 is continuous at f (x)? Since f is decreasing, if f (x) < f (y) , then y ≡ f−1 (f (y)) <
x ≡ f−1 (f (x)) and so f−1 is also decreasing. Let ε > 0 be given. Let ε > η > 0 and
(x− η, x+ η) ⊆ (a, b) . Then f (x) ∈ (f (x+ η) , f (x− η)) . Let

δ = min (f (x)− f (x+ η) , f (x− η)− f (x)) .
Then if

|f (z)− f (x)| < δ,

it follows
z ≡ f−1 (f (z)) ∈ (x− η, x+ η) ⊆ (x− ε, x+ ε)

so ∣∣f−1 (f (z))− x
∣∣ = ∣∣f−1 (f (z))− f−1 (f (x))

∣∣ < ε.

This proves the theorem in the case where f is strictly decreasing. The case where f is
increasing is similar. �

Proof 2: Note that since f is either strictly increasing or strictly decreasing, it maps
an open interval to an open interval. Now let U be an open set. Thus U = ∪x∈UIx
where Ix is an open interval. Then(

f−1
)−1

(U) =
(
f−1

)−1
(∪x∈UIx) = ∪x∈U

(
f−1

)−1
(Ix)

= ∪x∈U

(
f−1

)−1
(Ix ∩ (a, b)) = ∪x∈Uf (Ix ∩ (a, b))

which is a union of open intervals and is therefore, open. �
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6.5 Connected Sets

Some sets are connected and some are not. The term means roughly that the set is in
one “one piece”. The concept is a little tricky because it is defined in terms of not being
something else. First we give another definition.

Definition 6.5.1 Let S be a set. Then S̄, called the closure of S consists of
S ∪ S′ where S′ denotes the set of limit points of S.

Note that it is obvious from the above definition that if S ⊆ T, then S̄ ⊆ T̄ .

Definition 6.5.2 A set S is said to be separated if it is of the form

S = A ∪B, where Ā ∩B = B̄ ∩A = ∅

A set S is connected if it is not separated.

Example 6.5.3 Consider S = [0, 1) ∪ (1, 2]. This is separated. Therefore, it is not
connected.

To see this, note that [0, 1) = [0, 1] which has empty intersection with (1, 2]. Similarly
(1, 2] = [1, 2] and has empty intersection with [0, 1).

One of the most important theorems about connected sets is the following.

Theorem 6.5.4 Suppose U and V are connected sets having nonempty intersec-
tion. Then U ∪ V is also connected.

Proof: Suppose U ∪V = A∪B where A∩B = B ∩A = ∅. Consider the sets A∩U
and B ∩ U. Since

(A ∩ U) ∩ (B ∩ U) = (A ∩ U) ∩
(
B ∩ U

)
= ∅,

It follows one of these sets must be empty since otherwise, U would be separated. It
follows that U is contained in either A or B. Similarly, V must be contained in either
A or B. Since U and V have nonempty intersection, it follows that both V and U are
contained in one of the sets A,B. Therefore, the other must be empty and this shows
U ∪ V cannot be separated and is therefore, connected. �

How do connected sets relate to continuous real valued functions?

Theorem 6.5.5 Let f : X → R be continuous where X is connected. Then
f (X) is also connected.

Proof: To do this you show f (X) is not separated. Suppose to the contrary
that f (X) = A ∪ B where A and B separate f (X) . Then consider the sets f−1 (A)
and f−1 (B) . If z ∈ f−1 (B) , then f (z) ∈ B and so f (z) is not a limit point of A.
Therefore, there exists an open ball U of radius ε for some ε > 0 containing f (z)
such that U ∩ A = ∅. But then, the continuity of f and the definition of continuity
imply that there exists δ > 0 such that f (B (z, δ)) ⊆ U . Therefore z is not a limit
point of f−1 (A) . Since z was arbitrary, it follows that f−1 (B) contains no limit points
of f−1 (A) . Similar reasoning implies f−1 (A) contains no limit points of f−1 (B). It
follows that X is separated by f−1 (A) and f−1 (B) , contradicting the assumption that
X was connected. �

On R the connected sets are pretty easy to describe. A set, I is an interval in R
if and only if whenever x, y ∈ I then (x, y) ⊆ I. The following theorem is about the
connected sets in R.
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Theorem 6.5.6 A set C in R is connected if and only if C is an interval.

Proof: Let C be connected. If C consists of a single point p, there is nothing
to prove. The interval is just [p, p] . Suppose p < q and p, q ∈ C. You need to show
(p, q) ⊆ C. If

x ∈ (p, q) \ C
let C ∩ (−∞, x) ≡ A, and C ∩ (x,∞) ≡ B. Then C = A ∪ B and the sets A and B
separate C contrary to the assumption that C is connected.

Conversely, let I be an interval. Suppose I is separated by A and B. Pick x ∈ A
and y ∈ B. Suppose without loss of generality that x < y. Now define the set,

S ≡ {t ∈ [x, y] : [x, t] ⊆ A}

and let l be the least upper bound of S. Then l ∈ A so l /∈ B which implies l ∈ A. But
if l /∈ B, then for some δ > 0,

(l, l + δ) ∩B = ∅
contradicting the definition of l as an upper bound for S. Therefore, l ∈ B which implies
l /∈ A after all, a contradiction. It follows I must be connected. �

Another useful idea is that of connected components. An arbitrary set can be written
as a union of maximal connected sets called connected components. This is the concept
of the next definition.

Definition 6.5.7 Let S be a set and let p ∈ S. Denote by Cp the union of
all connected subsets of S which contain p. This is called the connected component
determined by p.

Theorem 6.5.8 Let Cp be a connected component of a set S. Then Cp is a
connected set and if Cp ∩ Cq ̸= ∅, then Cp = Cq.

Proof: Let C denote the connected subsets of S which contain p. If Cp = A ∪ B
where

A ∩B = B ∩A = ∅,
then p is in one of A or B. Suppose without loss of generality p ∈ A. Then every set
of C must also be contained in A since otherwise, as in Theorem 6.5.4, the set would
be separated. But this implies B is empty. Therefore, Cp is connected. From this, and
Theorem 6.5.4, the second assertion of the theorem is proved.�

This shows the connected components of a set are equivalence classes and partition
the set.

Probably the most useful application of this is to the case where you have an open
set and consider its connected components.

Theorem 6.5.9 Let U be an open set on R. Then each connected component is
open. Thus U is a countable union of disjoint open intervals.

Proof: Let C be a connected component of U . Let x ∈ C. Since U is open, there
exists δ > 0 such that

(x− δ, x+ δ) ⊆ U
Hence this open interval is also contained in C because it is connected and shares a
point with C which equals the union of all connected sets containing x. Thus each
component is both open and connected and is therefore, an open interval. Each of these
disjoint open intervals contains a rational number. Therefore, there are countably many
of them. �

To emphasize what the above theorem shows, it states that every open set in R is
the countable union of open intervals. It is really nice to be able to say this.
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6.6 Exercises

1. Give an example of a continuous function defined on (0, 1) which does not achieve
its maximum on (0, 1) .

2. Give an example of a continuous function defined on (0, 1) which is bounded but
which does not achieve either its maximum or its minimum.

3. Give an example of a discontinuous function defined on [0, 1] which is bounded
but does not achieve either its maximum or its minimum.

4. Give an example of a continuous function defined on [0, 1)∪ (1, 2] which is positive
at 2, negative at 0 but is not equal to zero for any value of x.

5. Let f (x) = x5+ax4+ bx3+ cx2+dx+e where a, b, c, d, and e are numbers. Show
there exists real x such that f (x) = 0.

6. Give an example of a function which is one to one but neither strictly increasing
nor strictly decreasing.

7. Show that the function f (x) = xn − a, where n is a positive integer and a is a
number, is continuous.

8. Use the intermediate value theorem on the function f (x) = x7 − 8 to show
7
√
8 must exist. State and prove a general theorem about nth roots of positive

numbers.

9. Prove
√
2 is irrational. Hint: Suppose

√
2 = p/q where p, q are positive integers

and the fraction is in lowest terms. Then 2q2 = p2 and so p2 is even. Explain why
p = 2r so p must be even. Next argue q must be even.

10. Let f (x) = x −
√
2 for x ∈ Q, the rational numbers. Show that even though

f (0) < 0 and f (2) > 0, there is no point in Q where f (x) = 0. Does this
contradict the intermediate value theorem? Explain.

11. It has been known since the time of Pythagoras that
√
2 is irrational. If you throw

out all the irrational numbers, show that the conclusion of the intermediate value
theorem could no longer be obtained. That is, show there exists a function which
starts off less than zero and ends up larger than zero and yet there is no number
where the function equals zero. Hint: Try f (x) = x2− 2. You supply the details.

12. A circular hula hoop lies partly in the shade and partly in the hot sun. Show there
exist two points on the hula hoop which are at opposite sides of the hoop which
have the same temperature. Hint: Imagine this is a circle and points are located
by specifying their angle, θ from a fixed diameter. Then letting T (θ) be the
temperature in the hoop, T (θ + 2π) = T (θ) . You need to have T (θ) = T (θ + π)
for some θ. Assume T is a continuous function of θ.

13. A car starts off on a long trip with a full tank of gas. The driver intends to drive
the car till it runs out of gas. Show that at some time the number of miles the
car has gone exactly equals the number of gallons of gas in the tank.

14. Suppose f is a continuous function defined on [0, 1] which maps [0, 1] into [0, 1] .
Show there exists x ∈ [0, 1] such that x = f (x) . Hint: Consider h (x) ≡ x− f (x)
and the intermediate value theorem. This is a one dimensional version of the
Brouwer fixed point theorem.
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15. Let f be a continuous function on [0, 1] such that f (0) = f (1) . Let n be a
positive integer. Show there must exist c ∈

[
0, 1− 1

n

]
such that f

(
c+ 1

n

)
= f (c).

Hint: Consider h (x) ≡ f
(
x+ 1

n

)
− f (x). Consider the subintervals

[
k−1
n , kn

]
for

k = 1, · · · , n − 1. You want to show that h equals zero on one of these intervals.
If h changes sign between two successive intervals, then you are done. Assume
then, that this does not happen. Say h remains positive. Argue that f (0) <
f
(
n−1
n

)
. Thus f

(
n−1
n

)
> f (1) = f

(
n−1
n + 1

n

)
. It follows that h

(
1− 1

n

)
< 0 but

h
(
1− 2

n

)
> 0.

16. Use Theorem 6.5.5 and the characterization of connected sets in R to give a quick
proof of the intermediate value theorem.

17. A set is said to be totally disconnected if each component consists of a single point.
Show that the Cantor set is totally disconnected but that every point is a limit
point of the set. Hint: Show it contains no intervals other than single points.

18. A perfect set is a non empty closed set such that every point is a limit point. Show
that no perfect set in R can be countable. Hint: You might want to use the fact
that the set of infinite sequences of 0 and 1 is uncountable. Show that there is a
one to one mapping from this set of sequences onto a subset of the perfect set.

19. Suppose f : K → R where K is a compact set and f is continuous. Show that
f achieves its maximum and minimum by using Theorem 6.3.4 and the charac-
terization of compact sets in R given earlier which said that such a set is closed
and bounded. Hint: You need to show that a closed and bounded set in R has a
largest value and a smallest value.

6.7 Uniform Continuity

There is a theorem about the integral of a continuous function which requires the notion
of uniform continuity. This is discussed in this section. Consider the function f (x) = 1

x
for x ∈ (0, 1) . This is a continuous function because, by Theorem 6.0.6, it is continuous
at every point of (0, 1) . However, for a given ε > 0, the δ needed in the ε, δ definition
of continuity becomes very small as x gets close to 0. The notion of uniform continuity
involves being able to choose a single δ which works on the whole domain of f. Here is
the definition.

Definition 6.7.1 Let f be a function. Then f is uniformly continuous if for
every ε > 0, there exists a δ depending only on ε such that if |x− y| < δ then
|f (x)− f (y)| < ε.

It is an amazing fact that under certain conditions continuity implies uniform con-
tinuity.

Theorem 6.7.2 Let f : K → F be continuous where K is a sequentially compact
set in F. Then f is uniformly continuous on K.

Proof: If this is not true, there exists ε > 0 such that for every δ > 0 there exists
a pair of points, xδ and yδ such that even though |xδ − yδ| < δ, |f (xδ)− f (yδ)| ≥ ε.
Taking a succession of values for δ equal to 1, 1/2, 1/3, · · · , and letting the exceptional
pair of points for δ = 1/n be denoted by xn and yn,

|xn − yn| <
1

n
, |f (xn)− f (yn)| ≥ ε.
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Now sinceK is sequentially compact, there exists a subsequence, {xnk
} such that xnk

→
z ∈ K. Now nk ≥ k and so

|xnk
− ynk

| < 1

k
.

Consequently, ynk
→ z also. ( xnk

is like a person walking toward a certain point and
ynk

is like a dog on a leash which is constantly getting shorter. Obviously ynk
must also

move toward the point also. You should give a precise proof of what is needed here.)
By continuity of f and Theorem 6.1.2,

0 = |f (z)− f (z)| = lim
k→∞

|f (xnk
)− f (ynk

)| ≥ ε,

an obvious contradiction. Therefore, the theorem must be true. �
The following corollary follows from this theorem and Theorem 4.7.2.

Corollary 6.7.3 Suppose K is a closed interval, [a, b] , a set of the form [a, b] +
i [c, d] , or

D (z, r) ≡ {w : |z − w| ≤ r} .
Then f is uniformly continuous.

6.8 Exercises

1. A function f is Lipschitz continuous or just Lipschitz for short if there exists a
constant, K such that

|f (x)− f (y)| ≤ K |x− y|
for all x, y ∈ D. Show every Lipschitz function is uniformly continuous.

2. If |xn − yn| → 0 and xn → z, show that yn → z also. This was used in the proof
of Theorem 6.7.2.

3. Consider f : (1,∞)→ R given by f (x) = 1
x . Show f is uniformly continuous even

though the set on which f is defined is not sequentially compact.

4. If f is uniformly continuous, does it follow that |f | is also uniformly continuous?
If |f | is uniformly continuous does it follow that f is uniformly continuous? An-
swer the same questions with “uniformly continuous” replaced with “continuous”.
Explain why.

5. Suppose f is a function defined on D and λ ≡ inf {f (x) : x ∈ D} . A sequence
{xn} of points of D is called a minimizing sequence if limn→∞ f (xn) = λ. A
maximizing sequence is defined analogously. Show that minimizing sequences and
maximizing sequences always exist. Now let K be a sequentially compact set
and f : K → R. Show that f achieves both its maximum and its minimum
on K by considering directly minimizing and maximizing sequences. Hint: Let
M ≡ sup {f (x) : x ∈ K} . Argue there exists a sequence, {xn} ⊆ K such that
f (xn) → M. Now use sequential compactness to get a subsequence, {xnk

} such
that limk→∞ xnk

= x ∈ K and use the continuity of f to verify that f (x) = M.
Incidentally, this shows f is bounded on K as well. A similar argument works to
give the part about achieving the minimum.

6. Let f : D → R be a function. This function is said to be lower semicontinuous3

at x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows

f (x) ≤ lim inf
n→∞

f (xn) .

3The notion of lower semicontinuity is very important for functions which are defined on infinite
dimensional sets. In more general settings, one formulates the concept differently.
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Suppose D is sequentially compact and f is lower semicontinuous at every point
of D. Show that then f achieves its minimum on D.

7. Let f : D → R be a function. This function is said to be upper semicontinuous at
x ∈ D if for any sequence {xn} ⊆ D which converges to x it follows

f (x) ≥ lim sup
n→∞

f (xn) .

Suppose D is sequentially compact and f is upper semicontinuous at every point
of D. Show that then f achieves its maximum on D.

8. Show that a real valued function is continuous if and only if it is both upper and
lower semicontinuous.

9. Give an example of a lower semicontinuous function which is not continuous and
an example of an upper semicontinuous function which is not continuous.

10. Suppose {fα : α ∈ Λ} is a collection of continuous functions. Let

F (x) ≡ inf {fα (x) : α ∈ Λ}

Show F is an upper semicontinuous function. Next let

G (x) ≡ sup {fα (x) : α ∈ Λ}

Show G is a lower semicontinuous function.

11. Let f be a function. epi (f) is defined as

{(x, y) : y ≥ f (x)} .

It is called the epigraph of f . We say epi (f) is closed if whenever (xn, yn) ∈ epi (f)
and xn → x and yn → y, it follows (x, y) ∈ epi (f) . Show f is lower semicontinuous
if and only if epi (f) is closed. What would be the corresponding result equivalent
to upper semicontinuous?

6.9 Sequences And Series Of Functions

When you understand sequences and series of numbers it is easy to consider sequences
and series of functions.

Definition 6.9.1 A sequence of functions is a map defined on N or some set of
integers larger than or equal to a given integer, m which has values which are functions.
It is written in the form {fn}∞n=m where fn is a function. It is assumed also that the
domain of all these functions is the same.

In the above, where do the functions have values? Are they real valued functions?
Are they complex valued functions? Are they functions which have values in Rn? It
turns out it does not matter very much and the same definition holds. However, if you
like, you can think of them as having values in F. This is the main case of interest here.

Example 6.9.2 Suppose fn (x) = xn for x ∈ [0, 1] . Here is a graph of the functions
f (x) = x, x2, x3, x4, x5.
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x

y

Definition 6.9.3 Let {fn} be a sequence of functions. Then the sequence con-
verges pointwise to a function f if for all x ∈ D, the domain of the functions in the
sequence,

f (x) = lim
n→∞

fn (x)

This is always the definition regardless of where the fn have their values.

Thus you consider for each x ∈ D the sequence of numbers {fn (x)} and if this
sequence converges for each x ∈ D, the thing it converges to is called f (x).

Example 6.9.4 In Example 6.9.2 find limn→∞ fn.

For x ∈ [0, 1), limn→∞ xn = fn (x) = 0.At x = 1, fn (1) = 1 for all n so limn→∞ fn (1) =
1. Therefore, this sequence of functions converges pointwise to the function f (x) given
by f (x) = 0 if 0 ≤ x < 1 and f (1) = 1. However, given small ε > 0, and n, there is
always some x such that |f (x)− fn (x)| > ε. Just pick x less than 1 but close to 1.
Then f (x) = 0 but fn (x) will be close to 1.

Pointwise convergence is a very inferior thing but sometimes it is all you can get.
It’s undesirability is illustrated by Example 6.9.4. The limit function is not continuous
although each fn is continuous. Now here is another example of a sequence of functions.

Example 6.9.5 Let fn (x) =
1
n sin

(
n2x

)
.

In this example, |fn (x)| ≤ 1
n so this function is close to 0 for all x at once provided n

is large enough. There is a difference between the two examples just given. They both
involve pointwise convergence, but in the second example, the pointwise convergence
happens for all x at once. In this example, you have uniform convergence. Here is a
picture of the first four of these graphed on [−π, π] .

x

y

Definition 6.9.6 Let {fn} be a sequence of functions defined on D. Then {fn}
is said to converge uniformly to f if it converges pointwise to f and for every ε > 0
there exists N such that for all n ≥ N

sup
x∈D
|f (x)− fn (x)| < ε

The following picture illustrates the above definition.
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f
��	

The dotted lines define sort of a tube centered about the graph of f and the graph
of the function fn fits in this tube.

The reason uniform convergence is desirable is that it drags continuity along with it
and imparts this property to the limit function.

Theorem 6.9.7 Let {fn} be a sequence of functions defined on D which are
continuous at z and suppose this sequence converges uniformly to f. Then f is also
continuous at z. If each fn is uniformly continuous on D, then f is also uniformly
continuous on D.

Proof: Let ε > 0 be given and pick z ∈ D. By uniform convergence, there exists N
such that if n > N, then for all x ∈ D,

|f (x)− fn (x)| < ε/3. (6.1)

Pick such an n. By assumption, fn is continuous at z. Therefore, there exists δ > 0
such that if |z − x| < δ then

|fn (x)− fn (z)| < ε/3.

It follows that for |x− z| < δ,

|f (x)− f (z)| ≤ |f (x)− fn (x)|+ |fn (x)− fn (z)|+ |fn (z)− f (z)|
< ε/3 + ε/3 + ε/3 = ε

which shows that since ε was arbitrary, f is continuous at z.
In the case where each fn is uniformly continuous, and using the same fn for which

6.1 holds, there exists a δ > 0 such that if |y − z| < δ, then

|fn (z)− fn (y)| < ε/3.

Then for |y − z| < δ,

|f (y)− f (z)| ≤ |f (y)− fn (y)|+ |fn (y)− fn (z)|+ |fn (z)− f (z)|
< ε/3 + ε/3 + ε/3 = ε

This shows uniform continuity of f . �

Definition 6.9.8 Let {fn} be a sequence of functions defined on D. Then the
sequence is said to be uniformly Cauchy if for every ε > 0 there exists N such that
whenever m,n ≥ N,

sup
x∈D
|fm (x)− fn (x)| < ε

Then the following theorem follows easily.

Theorem 6.9.9 Let {fn} be a uniformly Cauchy sequence of F valued functions
defined on D. Then there exists f defined on D such that {fn} converges uniformly to
f.
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Proof: For each x ∈ D, {fn (x)} is a Cauchy sequence. Therefore, it converges to
some number because of completeness of F. (Recall that completeness is the same as
saying every Cauchy sequence converges.) Denote by f (x) this number. Let ε > 0 be
given and let N be such that if n,m ≥ N,

|fm (x)− fn (x)| < ε/2

for all x ∈ D. Then for any x ∈ D, pick n ≥ N and it follows from Theorem 4.4.11

|f (x)− fn (x)| = lim
m→∞

|fm (x)− fn (x)| ≤ ε/2 < ε. �

Corollary 6.9.10 Let {fn} be a uniformly Cauchy sequence of functions continuous
on D. Then there exists f defined on D such that {fn} converges uniformly to f and f
is continuous. Also, if each fn is uniformly continuous, then so is f.

Proof: This follows from Theorem 6.9.9 and Theorem 6.9.7. �
Here is one more fairly obvious theorem.

Theorem 6.9.11 Let {fn} be a sequence of functions defined on D. Then it
converges pointwise if and only if the sequence {fn (x)} is a Cauchy sequence for every
x ∈ D. It converges uniformly if and only if {fn} is a uniformly Cauchy sequence.

Proof: If the sequence converges pointwise, then by Theorem 4.9.3 the sequence
{fn (x)} is a Cauchy sequence for each x ∈ D. Conversely, if {fn (x)} is a Cauchy
sequence for each x ∈ D, then since fn has values in F, and F is complete, it follows the
sequence {fn (x)} converges for each x ∈ D. (Recall that completeness is the same as
saying every Cauchy sequence converges.)

Now suppose {fn} is uniformly Cauchy. Then from Theorem 6.9.9 there exists f
such that {fn} converges uniformly on D to f. Conversely, if {fn} converges uniformly
to f on D, then if ε > 0 is given, there exists N such that if n ≥ N,

|f (x)− fn (x)| < ε/2

for every x ∈ D. Then if m,n ≥ N and x ∈ D,

|fn (x)− fm (x)| ≤ |fn (x)− f (x)|+ |f (x)− fm (x)| < ε/2 + ε/2 = ε.

Thus {fn} is uniformly Cauchy. �
As before, once you understand sequences, it is no problem to consider series.

Definition 6.9.12 Let {fn} be a sequence of functions defined on D. Then( ∞∑
k=1

fk

)
(x) ≡ lim

n→∞

n∑
k=1

fk (x) (6.2)

whenever the limit exists. Thus there is a new function denoted by

∞∑
k=1

fk (6.3)

and its value at x is given by the limit of the sequence of partial sums in 6.2. If for all
x ∈ D, the limit in 6.2 exists, then 6.3 is said to converge pointwise.

∑∞
k=1 fk is said

to converge uniformly on D if the sequence of partial sums,{
n∑

k=1

fk

}
converges uniformly. If the indices for the functions start at some other value than 1,
you make the obvious modification to the above definition as was done earlier with series
of numbers.
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Theorem 6.9.13 Let {fn} be a sequence of functions defined on D. The series∑∞
k=1 fk converges pointwise if and only if for each ε > 0 and x ∈ D, there exists Nε,x

which may depend on x as well as ε such that when q > p ≥ Nε,x,∣∣∣∣∣∣
q∑

k=p

fk (x)

∣∣∣∣∣∣ < ε

The series
∑∞

k=1 fk converges uniformly on D if for every ε > 0 there exists Nε such
that if q > p ≥ Nε then

sup
x∈D

∣∣∣∣∣∣
q∑

k=p

fk (x)

∣∣∣∣∣∣ < ε (6.4)

Proof: The first part follows from Theorem 5.1.7. The second part follows from
observing the condition is equivalent to the sequence of partial sums forming a uniformly
Cauchy sequence and then by Theorem 6.9.11, these partial sums converge uniformly
to a function which is the definition of

∑∞
k=1 fk. �

Is there an easy way to recognize when 6.4 happens? Yes, there is. It is called the
Weierstrass M test.

Theorem 6.9.14 Let {fn} be a sequence of functions defined on D. Suppose
there exists Mn such that sup {|fn (x)| : x ∈ D} < Mn and

∑∞
n=1Mn converges. Then∑∞

n=1 fn converges uniformly on D.

Proof: Let z ∈ D. Then letting m < n∣∣∣∣∣
n∑

k=1

fk (z)−
m∑

k=1

fk (z)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk (z)| ≤
∞∑

k=m+1

Mk < ε

wheneverm is large enough because of the assumption that
∑∞

n=1Mn converges. There-
fore, the sequence of partial sums is uniformly Cauchy on D and therefore, converges
uniformly to

∑∞
k=1 fk on D. �

Theorem 6.9.15 If {fn} is a sequence of functions defined on D which are
continuous at z and

∑∞
k=1 fk converges uniformly, then the function

∑∞
k=1 fk must also

be continuous at z.

Proof: This follows from Theorem 6.9.7 applied to the sequence of partial sums of
the above series which is assumed to converge uniformly to the function

∑∞
k=1 fk. �

6.10 Sequences Of Polynomials, Weierstrass Approx-
imation

It turns out that if f is a continuous real valued function defined on an interval, [a, b]
then there exists a sequence of polynomials, {pn} such that the sequence converges
uniformly to f on [a, b]. I will first show this is true for the interval [0, 1] and then
verify it is true on any closed and bounded interval. First here is a little lemma which
is interesting for its own sake in probability. It is actually an estimate for the variance
of a binomial distribution.

Lemma 6.10.1 The following estimate holds for x ∈ [0, 1] and m ≥ 2.

m∑
k=0

(
m

k

)
(k −mx)2 xk (1− x)m−k ≤ 1

4
m
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Proof: Using the binomial theorem,

m∑
k=0

(
m

k

)
(k −mx)2 xk (1− x)m−k

=
m∑

k=0

(
m

k

)
k2xk (1− x)m−k − 2mx

m∑
k=0

(
m

k

)
kxk (1− x)m−k

+m2x2

=
m∑

k=0

(
m

k

)
k (k − 1)xk (1− x)m−k

+
m∑

k=0

(
m

k

)
kxk (1− x)m−k

−2mx
m∑

k=0

(
m

k

)
kxk (1− x)m−k

+m2x2

=
m∑

k=2

m!

(k − 2)! (m− k)!
xk (1− x)m−k

+

(1− 2mx)

m∑
k=1

m!

(k − 1)! (m− k)!
xk (1− x)m−k

+m2x2

=
m−2∑
k=0

m!

k! (m− 2− k)!
xk+2 (1− x)(m−2)−k

+

(1− 2mx)
m−1∑
k=0

m!

k! ((m− 1)− k)!
xk+1 (1− x)(m−1)−k

+m2x2

= m (m− 1)x2 + (1− 2mx)mx+m2x2

= m2x2 −mx2 +mx− 2m2x2 +m2x2 = mx (1− x) = m

(
1

4
−
(
x− 1

2

)2
)
≤ m

4
�

Now let f be a continuous function defined on [0, 1] . Let pn be the polynomial
defined by

pn (x) ≡
n∑

k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k

. (6.5)

Theorem 6.10.2 The sequence of polynomials in 6.5 converges uniformly to f
on [0, 1]. These polynomials are called the Bernstein polynomials.

Proof: By the binomial theorem,

f (x) = f (x)
n∑

k=0

(
n

k

)
xk (1− x)n−k

=
n∑

k=0

(
n

k

)
f (x)xk (1− x)n−k

and so by the triangle inequality

|f (x)− pn (x)| ≤
n∑

k=0

(
n

k

) ∣∣∣∣f (kn
)
− f (x)

∣∣∣∣xk (1− x)n−k
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At this point you break the sum into two pieces, those values of k such that k/n is close
to x and those values for k such that k/n is not so close to x. Thus

|f (x)− pn (x)| ≤
∑

|x−(k/n)|<δ

(
n

k

) ∣∣∣∣f (kn
)
− f (x)

∣∣∣∣xk (1− x)n−k

+
∑

|x−(k/n)|≥δ

(
n

k

) ∣∣∣∣f (kn
)
− f (x)

∣∣∣∣xk (1− x)n−k
(6.6)

where δ is a positive number chosen in an auspicious manner about to be described.
Since f is continuous on [0, 1] , it follows from Theorems 4.7.2 and 6.7.2 that f is
uniformly continuous. Therefore, letting ε > 0, there exists δ > 0 such that if |x− y| <
δ, then |f (x)− f (y)| < ε/2. This is the auspicious choice for δ. Also, by Lemma 6.3.1
|f (x)| for x ∈ [0, 1] is bounded by some number M. Thus 6.6 implies that for x ∈ [0, 1] ,

|f (x)− pn (x)| ≤
∑

|x−(k/n)|<δ

(
n

k

)
ε

2
xk (1− x)n−k

+2M
∑

|nx−k|≥nδ

(
n

k

)
xk (1− x)n−k

≤ ε

2
+ 2M

∑
|nx−k|≥nδ

(
n

k

)
(k − nx)2

n2δ2
xk (1− x)n−k

≤ ε

2
+

2M

n2δ2

n∑
k=0

(
n

k

)
(k − nx)2 xk (1− x)n−k

Now by Lemma 6.10.1 there is an estimate for the last sum. Using this estimate yields
for all x ∈ [0, 1] ,

|f (x)− pn (x)| ≤
ε

2
+

2M

n2δ2
n

4
=
ε

2
+

M

2nδ2
.

Therefore, whenever n is sufficiently large that

M

2nδ2
<
ε

2
,

it follows that for all n this large and x ∈ [0, 1] ,

|f (x)− pn (x)| <
ε

2
+
ε

2
= ε. �

Now this theorem has been done, it is easy to extend to continuous functions defined
on [a, b]. This yields the celebrated Weierstrass approximation theorem.

Theorem 6.10.3 Suppose f is a continuous function defined on [a, b]. Then
there exists a sequence of polynomials, {pn} which converges uniformly to f on [a, b].

Proof: For t ∈ [0, 1] , let h (t) = a + (b− a) t. Thus h maps [0, 1] one to one and
onto [a, b] . Thus f ◦ h is a continuous function defined on [0, 1] . It follows there exists
a sequence of polynomials {pn} defined on [0, 1] which converges uniformly to f ◦ h on
[0, 1]. Thus for every ε > 0 there exists Nε such that if n ≥ Nε, then for all t ∈ [0, 1] ,

|f ◦ h (t)− pn (t)| < ε.

However, h is onto and one to one and so for all x ∈ [a, b] ,∣∣f (x)− pn (h−1 (x)
)∣∣ < ε.
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Now note that the function x→ pn
(
h−1 (x)

)
is a polynomial because

h−1 (x) =
x− a
b− a

.

More specifically, if

pn (t) =
m∑

k=0

akt
k

it follows

pn
(
h−1 (x)

)
=

m∑
k=0

ak

(
x− a
b− a

)k

which is clearly another polynomial. �

6.11 Ascoli Arzela Theorem∗

This is a major result which plays the role of the Heine Borel theorem for the set of
continuous functions. I will give the version which holds on an interval, although this
theorem holds in much more general settings. First is a definition of what it means for
a collection of functions to be equicontinuous. In words, this happens when they are all
uniformly continuous simultaneously.

Definition 6.11.1 Let S ⊆ C ([0, T ]) where C ([0, T ]) denotes the set of func-
tions which are continuous on the interval [0, T ] . Thus S is a set of functions. Then S
is said to be equicontinuous if whenever ε > 0 there exists a δ > 0 such that whenever
f ∈ S and |x− y| < δ, it follows

|f (x)− f (y)| < ε

The set of functions is said to be uniformly bounded if there is a positive number M
such that for all f ∈ S,

sup {|f (x)| : x ∈ [0, T ]} ≤M

Then the Ascoli Arzela theorem says the following.

Theorem 6.11.2 Let {fn}∞n=1 ⊆ C ([0, T ]) be uniformly bounded and equicon-
tinuous. Then there exists a uniformly Cauchy subsequence.

Proof: Let ε > 0 be given and let δ correspond to ε/4 in the definition of equicon-
tinuity. Let 0 = x0 < x1 < · · · < xn = T where these points are uniformly spaced
and the distance between successive points is T/n < δ. Then the points {fn (x0)}∞n=1

is a bounded set in F. By the Heine Borel theorem, there is a convergent subsequence{
fk(0) (x0)

}∞
k(0)=1

. Thus {k (0)} denotes a strictly increasing sequence of integers. Then

the same theorem implies there is a convergent subsequence of this one, denoted as k (1)
such that limk(1)→∞ fk(1) (x0) and limk(1)→∞ fk(1) (x1) both exist. Then take a subse-

quence of
{
fk(1)

}
called k (2) such that for xi = x0, x1, x2, limk(2)→∞ fk(2) (xi) exists.

This can be done because if a sequence converges then every subsequence converges
also. Continue this way. Denote by {k} the last of these subsequences. Thus for each
xi of these equally spaced points of the interval, limk→∞ fk (xi) converges. Thus there
exists m such that if k, l ≥ m, then for each of these xi,

|fk (xi)− fl (xi)| <
ε

4
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Let x ∈ [0, T ] be arbitrary. Then there is xi such that xi ≤ x < xi+1. Hence, for
k, l ≥ m,

|fk (x)− fl (x)| ≤ |fk (x)− fk (xi)|+ |fk (xi)− fl (xi)|+ |fl (xi)− fl (x)|

By the assumption of equicontinuity, this implies

|fk (x)− fl (x)| ≤ |fk (x)− fk (xi)|+ |fk (xi)− fl (xi)|+ |fl (xi)− fl (x)|

<
ε

4
+
ε

4
+
ε

4
< ε

This has shown that for every ε > 0 there exists a subsequence {fk} with the property
that

sup
x∈[0,T ]

|fk (x)− fl (x)| < ε

provided k, l are large enough. The argument also applies with no change to a given
subsequence in place of the original sequence of functions. That is, for any subsequence
of the original one, there is a further subsequence which satisfies the above condition.
In what follows {fik}∞k=1 will denote a subsequence of

{
f(i−1)k

}∞
k=1

. Let εi = 1/2i so

that limi→∞ εi = 0. Then let {fik}∞k=1 denote a subsequence which corresponds to εi
in the above construction. Consider the following diagram.

f11, f12, f13, f14, · · ·
f21, f22, f23, f24, · · ·
f31, f32, f33, f34, · · ·

...

The Cantor diagonal sequence is fk = fkk in the above. That is, it is the sequence

f11, f22, f33, f44, · · ·

Then from the construction, fj , fj+1, fj+2, · · · is a subsequence of {fjk}∞k=1 . Therefore,
there exists m such that k, l > m,

sup
x∈[0,T ]

|fk (x)− fl (x)| < εj

However, these εj converge to 0 and this shows that the diagonal sequence {fj}∞j=1 just
described is a uniformly Cauchy sequence. �

The process of obtaining this subsequence is called the Cantor diagonal process and
occurs in other situations.

From this follows an easy corollary.

Corollary 6.11.3 Let {fn}∞n=1 ⊆ C ([0, T ]) be uniformly bounded and equicontinu-
ous. Then there exists a subsequence which converges uniformly to a continuous function
f defined on [0, T ].

Proof: From Theorem 6.9.11 the uniformly Cauchy subsequence from the Ascoli
Arzela theorem above converges uniformly to a function f . Now Theorem 6.9.7 this
function f is also continuous because, by this theorem, uniform convergence takes con-
tinuity with it and imparts it to the limit function. �

This theorem and corollary are major results in the theory of differential equations.
There are also infinite dimensional generalizations which have had great usefulness in
the theory of nonlinear partial differential equations.
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6.12 Exercises

1. Suppose {fn} is a sequence of decreasing positive functions defined on [0,∞)
which converges pointwise to 0 for every x ∈ [0,∞). Can it be concluded that
this sequence converges uniformly to 0 on [0,∞)? Now replace [0,∞) with (0,∞) .
What can be said in this case assuming pointwise convergence still holds?

2. If {fn} and {gn} are sequences of functions defined onD which converge uniformly,
show that if a, b are constants, then afn + bgn also converges uniformly. If there
exists a constant, M such that |fn (x)| , |gn (x)| < M for all n and for all x ∈ D,
show {fngn} converges uniformly. Let fn (x) ≡ 1/x for x ∈ (0, 1) and let gn (x) ≡
(n− 1) /n. Show {fn} converges uniformly on (0, 1) and {gn} converges uniformly
but {fngn} fails to converge uniformly.

3. Show that if x > 0,
∑∞

k=0
xk

k! converges uniformly on any interval of finite length.

4. Let x ≥ 0 and consider the sequence
{(

1 + x
n

)n}
. Show this is an increasing

sequence and is bounded above by
∑∞

k=0
xk

k! .

5. Show for every x, y real,
∑∞

k=0
(x+y)k

k! converges and equals( ∞∑
k=0

yk

k!

)( ∞∑
k=0

xk

k!

)

6. Consider the series
∑∞

n=0 (−1)
n x2n+1

(2n+1)! . Show this series converges uniformly on

any interval of the form [−M,M ] .

7. Formulate a theorem for a series of functions which will allow you to conclude the
infinite series is uniformly continuous based on reasonable assumptions about the
functions in the sum.

8. Find an example of a sequence of continuous functions such that each function is
nonnegative and each function has a maximum value equal to 1 but the sequence
of functions converges to 0 pointwise on (0,∞) .

9. Suppose {fn} is a sequence of real valued functions which converges uniformly
to a continuous function f. Can it be concluded the functions fn are continuous?
Explain.

10. Let h (x) be a bounded continuous function. Show the function f (x) =
∑∞

n=1
h(nx)
n2

is continuous.

11. Let S be a any countable subset of R. Show there exists a function f defined on R
which is discontinuous at every point of S but continuous everywhere else. Hint:
This is real easy if you do the right thing. It involves Theorem 6.9.15 and the
Weierstrass M test.

12. By Theorem 6.10.3 there exists a sequence of polynomials converging uniformly
to f (x) = |x| on the interval [−1, 1] . Show there exists a sequence of polynomials,
{pn} converging uniformly to f on [−1, 1] which has the additional property that
for all n, pn (0) = 0.

13. If f is any continuous function defined on [a, b] , show there exists a series of the
form

∑∞
k=1 pk, where each pk is a polynomial, which converges uniformly to f on

[a, b]. Hint: You should use the Weierstrass approximation theorem to obtain
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a sequence of polynomials. Then arrange it so the limit of this sequence is an
infinite sum.

14. Sometimes a series may converge uniformly without the Weierstrass M test being
applicable. Show

∞∑
n=1

(−1)n x
2 + n

n2

converges uniformly on [0, 1] but does not converge absolutely for any x ∈ R. To
do this, it might help to use the partial summation formula, 5.6.

15. Suppose you have a collection of functions S ⊆ C ([0, T ]) which satisfy

max
x∈[0,T ]

|f (x)| < M, sup
0≤x<y≤T

|f (x)− f (y)|
|x− y|γ

< K

where γ ≤ 1. Show there is a uniformly convergent subsequence of S which con-
verges uniformly to some continuous function. The second condition on f is called
a Holder condition and such functions are said to be Holder continuous. These
functions are denoted as C0,γ ([0, T ]) and this little problem shows that the em-
bedding of C0,γ ([0, T ]) into C ([0, T ]) is compact.
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Chapter 7

The Derivative

Some functions have them and some don’t. Some have them at some points and not at
others. This chapter is on the derivative. Functions which have derivatives are somehow
better than those which don’t. To begin with it is necessary to discuss the concept of a
limit of a function. This is a harder concept than continuity and it is also harder than
the concept of the limit of a sequence or series although that is similar. One cannot
make any rational sense of the concept of derivative without an understanding of limits
of a function.

7.1 Limit Of A Function

In this section, functions will be defined on some subset of R having values in F. Thus
the functions could have real or complex values.

Definition 7.1.1 Let f be a function which is defined on D (f) where D (f) ⊇
(x− r, x)∪ (x, x+ r) for some r > 0. Note that f is not necessarily defined at x. Then

lim
y→x

f (y) = L

if and only if the following condition holds. For all ε > 0 there exists δ > 0 such that if

0 < |y − x| < δ,

then,
|L− f (y)| < ε.

If everything is the same as the above, except y is required to be larger than x and f
is only required to be defined on (x, x+ r) , then the notation is

lim
y→x+

f (y) = L.

If f is only required to be defined on (x− r, x) and y is required to be less than x,with
the same conditions above, we write

lim
y→x−

f (y) = L.

Limits are also taken as a variable “approaches” infinity. Of course nothing is “close”
to infinity and so this requires a slightly different definition.

lim
x→∞

f (x) = L

125
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if for every ε > 0 there exists l such that whenever x > l,

|f (x)− L| < ε (7.1)

and

lim
x→−∞

f (x) = L

if for every ε > 0 there exists l such that whenever x < l, 7.1 holds.

The following pictures illustrate some of these definitions.

c
c

x

a

b

sc c

x

b

sc

In the left picture is shown the graph of a function. Note the value of the function
at x equals c while limy→x+ f (y) = b and limy→x− f (y) = a. In the second picture,
limy→x f (y) = b. Note that the value of the function at the point x has nothing to do
with the limit of the function in any of these cases. The value of a function at x is
irrelevant to the value of the limit at x! This must always be kept in mind. You do
not evaluate interesting limits by computing f (x)! In the above picture, f (x) is always
wrong! It may be the case that f (x) is right but this is merely a happy coincidence
when it occurs and as explained below in Theorem 7.1.6, this is sometimes equivalent
to f being continuous at x.

Theorem 7.1.2 If limy→x f (y) = L and limy→x f (y) = L1, then L = L1.

Proof:Let ε > 0 be given. There exists δ > 0 such that if 0 < |y − x| < δ, then

|f (y)− L| < ε, |f (y)− L1| < ε.

Therefore, for such y,

|L− L1| ≤ |L− f (y)|+ |f (y)− L1| < ε+ ε = 2ε.

Since ε > 0 was arbitrary, this shows L = L1. �
The above theorem holds for any of the kinds of limits presented in the above

definition.
Another concept is that of a function having either ∞ or −∞ as a limit. In this

case, the values of the function do not ever get close to their target because nothing can
be close to ±∞. Roughly speaking, the limit of the function equals ∞ if the values of
the function are ultimately larger than any given number. More precisely:

Definition 7.1.3 If f (x) ∈ R, then limy→x f (x) = ∞ if for every number l,
there exists δ > 0 such that whenever |y − x| < δ, then f (x) > l. limx→∞ f (x) =∞ if
for all k, there exists l such that f (x) > k whenever x > l. One sided limits and limits
as the variable approaches −∞, are defined similarly.
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It may seem there is a lot to memorize here. In fact, this is not so because all the
definitions are intuitive when you understand them. Everything becomes much easier
when you understand the definitions. This is usually the way it works in mathematics.

In the following theorem it is assumed the domains of the functions are such that the
various limits make sense. Thus, if limy→x is used, it is to be understood the function
is defined on (x− δ, x) ∪ (x, x+ δ) for some δ > 0. However, to avoid having to state
things repetitively this symbol will be written to symbolize limy→x+ or limy→x− and
in either of these cases, it is understood the function is defined on an appropriate set
so that the limits make sense. Thus in the case of limy→x+ the function is understood
to be defined on an interval of the form (x, x+ δ) with a similar convention holding for
limy→x−.

Theorem 7.1.4 In this theorem, the symbol limy→x denotes any of the limits
described above. Suppose limy→x f (y) = L and limy→x g (y) = K where K and L are
numbers, not ±∞. Then if a, b are numbers,

lim
y→x

(af (y) + bg (y)) = aL+ bK, (7.2)

lim
y→x

fg (y) = LK (7.3)

and if K ̸= 0,

lim
y→x

f (y)

g (y)
=
L

K
. (7.4)

Also, if h is a continuous function defined in some interval containing L, then

lim
y→x

h ◦ f (y) = h (L) . (7.5)

Suppose f is real valued and limy→x f (y) = L. If f (y) ≤ a all y near x either to the
right or to the left of x, then L ≤ a and if f (y) ≥ a then L ≥ a.

Proof:The proof of 7.2 is left for you. It is like a corresponding theorem for contin-
uous functions. Next consider 7.3. Let ε > 0 be given. Then by the triangle inequality,

|fg (y)− LK| ≤ |fg (y)− f (y)K|+ |f (y)K − LK|
≤ |f (y)| |g (y)−K|+ |K| |f (y)− L| . (7.6)

There exists δ1 such that if 0 < |y − x| < δ1, then

|f (y)− L| < 1,

and so for such y, and the triangle inequality, |f (y)| < 1 + |L| . Therefore, for 0 <
|y − x| < δ1,

|fg (y)− LK| ≤ (1 + |K|+ |L|) [|g (y)−K|+ |f (y)− L|] . (7.7)

Now let 0 < δ2 be such that for 0 < |x− y| < δ2,

|f (y)− L| < ε

2 (1 + |K|+ |L|)
, |g (y)−K| < ε

2 (1 + |K|+ |L|)
.

Then letting 0 < δ ≤ min (δ1, δ2), it follows from 7.7 that

|fg (y)− LK| < ε

and this proves 7.3. Limits as x→ ±∞ and one sided limits are handled similarly.
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The proof of 7.4 is left to you. It is just like the theorem about the quotient of
continuous functions being continuous provided the function in the denominator is non
zero at the point of interest.

Consider 7.5. Since h is continuous at L, it follows that for ε > 0 given, there exists
η > 0 such that if |y−L| < η, then

|h (y)− h (L)| < ε

Now since limy→x f (y) = L, there exists δ > 0 such that if 0 < |y−x| < δ, then

|f (y)− L| < η.

Therefore, if 0 < |y−x| < δ,
|h (f (y))− h (L)| < ε.

The same theorem holds for one sided limits and limits as the variable moves toward
±∞. The proofs are left to you. They are minor modifications of the above.

It only remains to verify the last assertion. Assume f (y) ≤ a. It is required to show
that L ≤ a. If this is not true, then L > a. Letting ε be small enough that a < L − ε,
it follows that ultimately, for y close enough to x, f (y) ∈ (L− ε, L+ ε) which requires
f (y) > a contrary to assumption. �

A very useful theorem for finding limits is called the squeezing theorem.

Theorem 7.1.5 Suppose f, g, h are real valued functions and that

lim
x→a

f (x) = L = lim
x→a

g (x)

and for all x near a,
f (x) ≤ h (x) ≤ g (x) .

Then
lim
x→a

h (x) = L.

Proof: If L ≥ h (x) , then

|h (x)− L| ≤ |f (x)− L| .

If L < h (x) , then
|h (x)− L| ≤ |g (x)− L| .

Therefore,
|h (x)− L| ≤ |f (x)− L|+ |g (x)− L| .

Now let ε > 0 be given. There exists δ1 such that if 0 < |x− a| < δ1,

|f (x)− L| < ε/2

and there exists δ2 such that if 0 < |x− a| < δ2, then

|g (x)− L| < ε/2.

Letting 0 < δ ≤ min (δ1, δ2), if 0 < |x− a| < δ, then

|h (x)− L| ≤ |f (x)− L|+ |g (x)− L|
< ε/2 + ε/2 = ε. �

Theorem 7.1.6 For f : I → R, and I is an interval of the form (a, b) , [a, b), (a, b],
or [a, b] , then f is continuous at x ∈ I if and only if limy→x f (y) = f (x) .
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Proof: You fill in the details. Compare the definition of continuous and the defini-
tion of the limit just given. �

Example 7.1.7 Find limx→3
x2−9
x−3 .

Note that x2−9
x−3 = x+ 3 whenever x ̸= 3. Therefore, if 0 < |x− 3| < ε,∣∣∣∣x2 − 9

x− 3
− 6

∣∣∣∣ = |x+ 3− 6| = |x− 3| < ε.

It follows from the definition that this limit equals 6.
You should be careful to note that in the definition of limit, the variable never

equals the thing it is getting close to. In this example, x is never equal to 3. This
is very significant because, in interesting limits, the function whose limit is being taken
will not be defined at the point of interest. The habit students acquire of plugging in
the point to take the limit is only good on useless and uninteresting limits which are
not good for anything other than to give a busy work exercise.

Example 7.1.8 Let

f (x) =
x2 − 9

x− 3
if x ̸= 3.

How should f be defined at x = 3 so that the resulting function will be continuous there?

The limit of this function equals 6 because for x ̸= 3,

x2 − 9

x− 3
=

(x− 3) (x+ 3)

x− 3
= x+ 3

Therefore, by Theorem 7.1.6 it is necessary to define f (3) ≡ 6.

Example 7.1.9 Find limx→∞
x

1+x .

Write x
1+x = 1

1+(1/x) . Now it seems clear that limx→∞ 1+(1/x) = 1 ̸= 0. Therefore,

Theorem 7.1.4 implies

lim
x→∞

x

1 + x
= lim

x→∞

1

1 + (1/x)
=

1

1
= 1.

Example 7.1.10 Show limx→a
√
x =
√
a whenever a ≥ 0. In the case that a = 0, take

the limit from the right.

There are two cases. First consider the case when a > 0. Let ε > 0 be given.
Multiply and divide by

√
x+
√
a. This yields∣∣√x−√a∣∣ = ∣∣∣∣ x− a√

x+
√
a

∣∣∣∣ .
Now let 0 < δ1 < a/2. Then if |x− a| < δ1, x > a/2 and so∣∣√x−√a∣∣ = ∣∣∣∣ x− a√

x+
√
a

∣∣∣∣ ≤ |x− a|(√
a/
√
2
)
+
√
a

≤ 2
√
2√
a
|x− a| .

Now let 0 < δ ≤ min
(
δ1,

ε
√
a

2
√
2

)
. Then for 0 < |x− a| < δ,

∣∣√x−√a∣∣ ≤ 2
√
2√
a
|x− a| < 2

√
2√
a

ε
√
a

2
√
2
= ε.

Next consider the case where a = 0. In this case, let ε > 0 and let δ = ε2. Then if

0 < x− 0 < δ = ε2, it follows that 0 ≤
√
x <

(
ε2
)1/2

= ε.
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7.2 Exercises

1. Find the following limits if possible

(a) limx→0+
|x|
x

(b) limx→0+
x
|x|

(c) limx→0−
|x|
x

(d) limx→4
x2−16
x+4

(e) limx→3
x2−9
x+3

(f) limx→−2
x2−4
x−2

(g) limx→∞
x

1+x2

(h) limx→∞−2 x
1+x2

2. Find limh→0

1
(x+h)3

− 1
x3

h .

3. Find limx→4
4
√
x−

√
2√

x−2
.

4. Find limx→∞
5√3x+ 4

√
x+7

√
x√

3x+1
.

5. Find limx→∞
(x−3)20(2x+1)30

(2x2+7)25
.

6. Find limx→2
x2−4

x3+3x2−9x−2 .

7. Find limx→∞
(√

1− 7x+ x2 −
√
1 + 7x+ x2

)
.

8. Prove Theorem 7.1.2 for right, left and limits as y →∞.

9. Prove from the definition that limx→a
3
√
x = 3

√
a for all a ∈ R. Hint: You might

want to use the formula for the difference of two cubes,

a3 − b3 = (a− b)
(
a2 + ab+ b2

)
.

10. Prove Theorem 7.1.6 from the definitions of limit and continuity.

11. Find limh→0
(x+h)3−x3

h

12. Find limh→0

1
x+h− 1

x

h

13. Find limx→−3
x3+27
x+3

14. Find limh→0

√
(3+h)2−3

h if it exists.

15. Find the values of x for which limh→0

√
(x+h)2−x

h exists and find the limit.

16. Find limh→0

3
√

(x+h)− 3
√
x

h if it exists. Here x ̸= 0.

17. Suppose limy→x+ f (y) = L1 ̸= L2 = limy→x− f (y) . Show limy→x f (x) does not
exist. Hint: Roughly, the argument goes as follows: For |y1 − x| small and y1 > x,
|f (y1)− L1| is small. Also, for |y2 − x| small and y2 < x, |f (y2)− L2| is small.
However, if a limit existed, then f (y2) and f (y1) would both need to be close
to some number and so both L1 and L2 would need to be close to some number.
However, this is impossible because they are different.
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18. Suppose f is an increasing function defined on [a, b] . Show f must be continuous
at all but a countable set of points. Hint: Explain why every discontinuity of f
is a jump discontinuity and

f (x−) ≡ lim
y→x−

f (y) ≤ f (x) ≤ f (x+) ≡ lim
y→x+

f (y)

with f (x+) > f (x−) . Now each of these intervals (f (x−) , f (x+)) at a point, x
where a discontinuity happens has positive length and they are disjoint. Further-
more, they have to all fit in [f (a) , f (b)] . How many of them can there be which
have length at least 1/n?

19. Let f (x, y) = x2−y2

x2+y2 . Find limx→0 (limy→0 f (x, y)) and limy→0 (limx→0 f (x, y)) .
If you did it right you got −1 for one answer and 1 for the other. What does this
tell you about interchanging limits?

20. The whole presentation of limits above is too specialized. Let D be the domain
of a function f . A point x not necessarily in D, is said to be a limit point of
D if B (x, r) contains a point of D not equal to x for every r > 0. Now define
the concept of limit in the same way as above and show that the limit is well
defined if it exists. That is, if x is a limit point of D and limy→x f (x) = L1 and
limy→x f (x) = L2, then L1 = L2. Is it possible to take a limit of a function at a
point not a limit point of D? What would happen to the above property of the
limit being well defined? Is it reasonable to define continuity at isolated points,
those points which are not limit points, in terms of a limit as is often done in
calculus books?

21. If f is an increasing function which is bounded above by a constant, M, show that
limx→∞ f (x) exists. Give a similar theorem for decreasing functions.

7.3 The Definition Of The Derivative

The following picture of a function y = o (x) is an example of one which appears to be
tangent to the line y = 0 at the point (0, 0) .

������
XXXXXX

y = o(x) y = ε|x|

δ(0, 0)

You see in this picture, the graph of the function y = ε |x| also where ε > 0 is just
a positive number. Note there exists δ > 0 such that if |x| < δ, then |o (x)| < ε |x| or in
other words,

|o (x)|
|x|

< ε.

You might draw a few other pictures of functions which would have the appearance of
being tangent to the line y = 0 at the point (0, 0) and observe that in every case, it will
follow that for all ε > 0 there exists δ > 0 such that if 0 < |x| < δ, then

|o (x)|
|x|

< ε. (7.8)
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In other words, a reasonable way to say a function is tangent to the line y = 0 at (0, 0)
is to say for all ε > 0 there exists δ > 0 such that 7.8 holds. In other words, the function
y = o (x) is tangent at (0, 0) if and only if

lim
x→0

|o (x)|
|x|

= 0.

Definition 7.3.1 A function y = k (x) is said to be o (x) if

lim
x→0

|k (x)|
|x|

= 0 (7.9)

As was just discussed, in the case where x ∈ R and k is a function having values
in R this is geometrically the same as saying the function is tangent to the line y = 0
at the point (0, 0). This terminology is used like an adjective. k (x) is o (x) means 7.9
holds. Thus o (x) = 5o (x) , o (x) + o (x) = o (x) , etc. The usage is very imprecise and
sloppy, leaving out exactly the details which are of absolutely no significance in what
is about to be discussed. It is this sloppiness which makes the notation so useful. It
prevents you from fussing with things which do not matter.

Now consider the case of the function y = g (x) tangent to y = b+mx at the point
(c, d) .

�
�
�
�

�s(c, d)
y = g(x)y = mx+ b

Thus, in particular, g (c) = b+mc = d. Then letting x = c+ h, it follows x is close
to c if and only if h is close to 0. Consider then the two functions

y = g (c+ h) , y = b+m (c+ h) .

If they are tangent as shown in the above picture, you should have the function

k (h) ≡ g (c+ h)− (b+m (c+ h))

= g (c+ h)− (b+mc)−mh
= g (c+ h)− g (c)−mh

tangent to y = 0 at the point (0, 0). As explained above, the precise meaning of this
function being tangent as described is to have k (h) = o (h) . This motivates (I hope)
the following definition of the derivative which is the precise definition free of pictures
and heuristics.

Definition 7.3.2 Let g be a F valued function defined on an open set in F
containing c. Then g′ (c) is the number, if it exists, which satisfies

g (c+ h)− g (c)− g′ (c)h = o (h)

where o (h) is defined in Definition 7.3.1.

The above definition is more general than what will be extensively discussed here. I
will usually consider the case where the function is defined on some interval contained
in R. In this context, the definition of derivative can also be extended to include right
and left derivatives.
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Definition 7.3.3 Let g be a function defined on an interval, [c, b). Then g′+ (c)
is the number, if it exists, which satisfies

g+ (c+ h)− g+ (c)− g′+ (c)h = o (h)

where o (h) is defined in Definition 7.3.1 except you only consider positive h. Thus

lim
h→0+

|o (h)|
|h|

= 0.

This is the derivative from the right. Let g be a function defined on an interval, (a, c].
Then g′− (c) is the number, if it exists, which satisfies

g− (c+ h)− g− (c)− g′− (c)h = o (h)

where o (h) is defined in Definition 7.3.1 except you only consider negative h. Thus

lim
h→0−

|o (h)|
|h|

= 0.

This is the derivative from the left.

I will not pay any attention to these distinctions from now on. In particular I will
not write g′− and g′+ unless it is necessary. If the domain of a function defined on a
subset of R is not open, it will be understood that at an endpoint, the derivative meant
will be the appropriate derivative from the right or the left. First I need to show this is
well defined because there cannot be two values for g′ (c) .

Theorem 7.3.4 The derivative is well defined because if

g (c+ h)− g (c)−m1h = o (h)

g (c+ h)− g (c)−m2h = o (h) (7.10)

then m1 = m2.

Proof: Suppose 7.10. Then subtracting these,

(m2 −m1)h = o (h)− o (h) = o (h)

and so dividing by h ̸= 0 and then taking a limit as h→ 0 gives

m2 −m1 = lim
h→0

o (h)

h
= 0.

Note the same argument holds for derivatives from the right or the left also. �
Now the derivative has been defined, here are some properties.

Lemma 7.3.5 Suppose g′ (c) exists. Then there exists δ > 0 such that if |h| < δ,

|g (c+ h)− g (c)| < (|g′ (c)|+ 1) |h| (7.11)

o (|g (c+ h)− g (c)|) = o (h) (7.12)

g is continuous at c.
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Proof: This follows from the definition of g′ (c) .

g (c+ h)− g (c)− g′ (c)h = o (h)

and so there exists δ > 0 such that if 0 < |h| < δ,

|g (c+ h)− g (c)− g′ (c)h|
|h|

< 1

By the triangle inequality,

|g (c+ h)− g (c)| − |g′ (c)h| ≤ |g (c+ h)− g (c)− g′ (c)h| < |h|

and so

|g (c+ h)− g (c)| < (|g′ (c)|+ 1) |h|

Next consider the second claim. By definition of the little o notation, there exists a
δ1 > 0 such that if

|g (c+ h)− g (c)| < δ1,

then

o (|g (c+ h)− g (c)|) < ε

|g′ (c)|+ 1
|g (c+ h)− g (c)| . (7.13)

But from the first inequality, if |h| < δ, then

|g (c+ h)− g (c)| < (|g′ (c)|+ 1) |h|

and so for |h| < min
(
δ, δ1

(|g′(c)|+1)

)
, it follows

|g (c+ h)− g (c)| < (|g′ (c)|+ 1) |h| < δ1

and so from 7.13,

o (|g (c+ h)− g (c)|) <
ε

|g′ (c)|+ 1
|g (c+ h)− g (c)|

<
ε

|g′ (c)|+ 1
(|g′ (c)|+ 1) |h| = ε |h|

and this shows

lim
h→0

o (|g (c+ h)− g (c)|)
|h|

= 0

because for nonzero h small enough,

o (|g (c+ h)− g (c)|)
|h|

< ε.

This proves 7.12.
The assertion about continuity follows right away from 7.11. Just let h = x− c and

the formula gives

|g (x)− g (c)| < (|g′ (c)|+ 1) |x− c| �

Of course some functions do not have derivatives at some points.

Example 7.3.6 Let f (x) = |x| . Show f ′ (0) does not exist.
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If it did exist, then
|h| − f ′ (0)h = o (h)

Hence, replacing h with −h,

|−h| − f ′ (0) (−h) = o (−h)

and so, subtracting these,

2f ′ (0)h = o (−h)− o (h) = o (h)

and so

2f ′ (0) =
o (h)

h
.

Now letting h→ 0, it follows f ′ (0) = 0 if it exists. However, this would say

|h| = o (h)

which is false. Thus f ′ (0) cannot exist. However, this function has right derivatives at
every point and also left derivatives at every point. For example, consider f ′ (0) as a
right derivative. For h > 0

f (h)− 0− 1h = 0 = o (h)

and so f ′+ (0) = 1. For h < 0,
f (h) = −h

and so
f (h)− f (0)− (−1)h = 0 = o (h)

and so f ′− (0) = −1. You should show f ′ (x) = 1 if x > 0 and f ′ (x) = −1 if x < 0.
The following diagram shows how continuity at a point and differentiability there

are related.

f ′(x)exists

f is continuous at x

7.4 Continuous And Nowhere Differentiable

How bad can it get in terms of a continuous function not having a derivative at some
points? It turns out it can be the case the function is nowhere differentiable but every-
where continuous. An example of such a pathological function different than the one I
am about to present was discovered by Weierstrass in 1872. Before showing this, here
is a simple observation.

Lemma 7.4.1 Suppose f ′ (x) exists and let c be a number. Then letting g (x) ≡
f (cx) ,

g′ (x) = cf ′ (cx) .
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Here the derivative refers to either the derivative, the left derivative, or the right deriva-
tive. Also, if f (x) = a+ bx, then

f ′ (x) = b

where again, f ′ refers to either the left derivative, right derivative or derivative. Fur-
thermore, in the case where f (x) = a+ bx,

f (x+ h)− f (x) = bh.

Proof: It is known from the definition that

f (x+ h)− f (x)− f ′ (x)h = o (h)

Therefore,

g (x+ h)− g (x) = f (c (x+ h))− f (cx) = f ′ (cx) ch+ o (ch)

and so

g (x+ h)− g (x)− cf ′ (cx)h = o (ch) = o (h)

and so this proves the first part of the lemma. Now consider the last claim.

f (x+ h)− f (x) = a+ b (x+ h)− (a+ bx) = bh

= bh+ 0 = bh+ o (h) .

Thus f ′ (x) = b. �
Now consider the following description of a function. The following is the graph of

the function on [0, 1] .

�
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The height of the function is 1/2 and the slope of the rising line is 1 while the slope
of the falling line is −1. Now extend this function to the whole real line to make it
periodic of period 1. This means f (x+ n) = f (x) for all x ∈ R and n ∈ Z, the integers.
In other words to find the graph of f on [1, 2] you simply slide the graph of f on [0, 1]
a distance of 1 to get the same tent shaped thing on [1, 2] . Continue this way. The
following picture illustrates what a piece of the graph of this function looks like. Some
might call it an infinite sawtooth.
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Now define

g (x) ≡
∞∑
k=0

4−kf
(
4kx
)
.

Letting Mk = 4−k, an application of the Weierstrass M test shows g is everywhere
continuous. This is because each function in the sum is continuous and the series
converges uniformly on R.
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Also note that f has a right derivative and a left derivative at every point, denoted
by f ′± (x) to save on notation, and f ′± (x) equals either 1 or −1. Suppose g′ (x) exists at
some point and let hm = bm4−m where bm equals either 1 or −1. Then

g (x+ bm4−m)− g (x)
bm4−m

=
1

bm4−m

∞∑
k=0

1

4k
[
f
(
4k
(
x+ bm4−m

))
− f

(
4kx
)]

(⋆)

Since f is periodic of period 1, the terms where k > m − 1 are zero and so the above
sum reduces to

1

bm

m−1∑
k=0

4m

4k

[
f

(
4kx+ bm

4k

4m

)
− f

(
4kx
)]

(*)

Now choose bm either 1 or −1 such that there is no vertex of the graph of f between

4m−1x + bm
4m−1

4m and 4m−1x. This is possible because these two points are 1/4 apart
and the vertices of f are 1/2 apart. Then it follows that for k < m − 1, there is no

vertex of f between 4kx+ bm
4k

4m and 4kx. To see this, suppose there were. Say N + 1
2

is between these. Then multiply all by 4m−1−k and note that(
N +

1

2

)
4m−1−k = integer

Then you would have this integer between 4m−1x+bm
4m−1

4m and 4m−1x which was chosen
to not be so since f has vertices at the integers. Therefore, for each k ≤ m − 1, the

graph of f which joins
(
4kx, f

(
4kx
))

and
(
4kx+ bm

4k

4m , f
(
4kx+ bm

4k

4m

))
is a straight

line. Hence the expression in * reduces to

1

bm

m−1∑
k=0

4m

4k
f ′
(
4kx
)
bm

4k

4m
=

m−1∑
k=0

f ′±
(
4kx
)

where f ′±
(
4kx
)
= ±1.

Suppose g′ (x) exists. Then ⋆ reduces to

g (x+ bm4−m)− g (x)
bm4−m

= g′ (x) +
o (bm4−m)

bm4−m
=

m−1∑
k=0

f ′±
(
4kx
)

but this is impossible because as m→∞, the left side converges to g′ (x) but the right
side cannot do so because the kth term of the sum fails to converge to 0 as k →∞. Just
consider for large l,m = 2l + 2 and m = 2l + 1 in the above equation. It would imply

2l+1∑
k=0

f ′±
(
4kx
)
−

2l∑
k=0

f ′±
(
4kx
)
=
o
(
b2l+24

−(2l+2)
)

b2l+24−(2l+2)
−
o
(
b2l+14

−(2l+1)
)

b2l+14−(2l+1)

However, the left side is at least as large as 1 in absolute value while the right side is
small for all l large enough. The reason that the left side is at least as large as 1 is
that if ak, bk are each equal to either 1 or −1, then

∑2l
k=1 ak +

∑2l
k=1 bk must be even

because ak + bk is either 0, 2, or −2. Thus the sum on the left reduces to one of these
three numbers added to either 1 or −1. This is not small.

This proves the following theorem.

Theorem 7.4.2 There exists a function defined on R which is continuous and
bounded but fails to have a derivative at any point.



138 CHAPTER 7. THE DERIVATIVE

7.5 Finding The Derivative

Obviously there need to be simple ways of finding the derivative when it exists. There
are rules of derivatives which make finding the derivative very easy. In the following the-
orem, the derivative could refer to right or left derivatives as well as regular derivatives.

Theorem 7.5.1 Let a, b be numbers and suppose f ′ (t) and g′ (t) exist. Then
the following formulas are obtained.

(af + bg)
′
(t) = af ′ (t) + bg′ (t) . (7.14)

(fg)
′
(t) = f ′ (t) g (t) + f (t) g′ (t) . (7.15)

The formula, 7.15 is referred to as the product rule.
If f ′ (g (t)) exists and g′ (t) exists, then (f ◦ g)′ (t) also exists and

(f ◦ g)′ (t) = f ′ (g (t)) g′ (t) .

This is called the chain rule. In this rule, for the sake of simiplicity, assume the deriva-
tives are real derivatives, not derivatives from the right or the left. If f (t) = tn where
n is any integer, then

f ′ (t) = ntn−1. (7.16)

Also, whenever f ′ (t) exists,

f ′ (t) = lim
h→0

f (t+ h)− f (t)
h

where this definition can be adjusted in the case where the derivative is a right or left
derivative by letting h > 0 or h < 0 only and considering a one sided limit. This is
equivalent to

f ′ (t) = lim
s→t

f (s)− f (t)
t− s

with the limit being one sided in the case of a left or right derivative.

Proof:7.14 is left for you. Consider 7.15

fg (t+ h)− fg (t) = f (t+ h) g (t+ h)− f (t) g (t+ h) + f (t) g (t+ h)− f (t) g (t)

= g (t+ h) (f (t+ h)− f (t)) + f (t) (g (t+ h)− g (t))

= g (t+ h) (f ′ (t)h+ o (h)) + f (t) (g′ (t)h+ o (h))

= g (t) f ′ (t)h+ f (t) g′ (t)h+ f (t) o (h)

+ (g (t+ h)− g (t)) f ′ (t)h+ g (t+ h) o (h)

= g (t) f ′ (t)h+ f (t) g′ (t)h+ o (h)

because by Lemma 7.3.5, g is continuous at t and so

(g (t+ h)− g (t)) f ′ (t)h = o (h)

While f (t) o (h) and g (t+ h) o (h) are both o (h) . This proves 7.15.
Next consider the chain rule. By Lemma 7.3.5 again,

f ◦ g (t+ h)− f ◦ g (t) = f (g (t+ h))− f (g (t))
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= f (g (t) + (g (t+ h)− g (t)))− f (g (t))

= f ′ (g (t)) (g (t+ h)− g (t)) + o ((g (t+ h)− g (t)))

= f ′ (g (t)) (g (t+ h)− g (t)) + o (h)

= f ′ (g (t)) (g′ (t)h+ o (h)) + o (h)

= f ′ (g (t)) g′ (t)h+ o (h) .

This proves the chain rule.
Now consider the claim about f (t) = tn for n an integer. If n = 0, 1 the desired

conclusion follows from Lemma 7.4.1. Suppose the claim is true for n ≥ 1. Then let
fn+1 (t) = tn+1 = fn (t) t where fn (t) ≡ tn. Then by the product rule, induction and
the validity of the assertion for n = 1,

f ′n+1 (t) = f ′n (t) t+ fn (t) = tntn−1 + tn = ntn+1

and so the assertion is proved for all n ≥ 0. Consider now n = −1.

(t+ h)
−1 − t−1 =

−1
t (t+ h)

h =
−1
t2
h+

(
−1

t (t+ h)
+

1

t2

)
h

=
−1
t2
h+

h2

t2 (t+ h)
= − 1

t2
h+ o (h) = (−1) t−2h+ o (h)

Therefore, the assertion is true for n = −1. Now consider f (t) = t−n where n is a

positive integer. Then f (t) = (tn)
−1

and so by the chain rule,

f ′ (t) = (−1) (tn)−2
ntn−1 = −nt−n−1.

This proves 7.16.
Finally, if f ′ (t) exists,

f ′ (t)h+ o (h) = f (t+ h)− f (t) .

Divide by h and take the limit as h→ 0, either a regular limit or a limit from one side
or the other in the case of a right or left derivative.

f ′ (t) = lim
h→0

(
f (t+ h)− f (t)

h
+
o (h)

h

)
= lim

h→0

f (t+ h)− f (t)
h

. �

Note the last part is the usual definition of the derivative given in beginning calculus
courses. There is nothing wrong with doing it this way from the beginning for a function
of only one variable but it is not the right way to think of the derivative and does not
generalize to the case of functions of many variables where the definition given in terms
of o (h) does.

Corollary 7.5.2 Let f ′ (t) , g′ (t) both exist and g (t) ̸= 0, then the quotient rule
holds. (

f

g

)′

=
f ′ (t) g (t)− f (t) g′ (t)

g (t)
2

Proof: This is left to you. Use the chain rule and the product rule. �
Higher order derivatives are defined in the usual way.

f ′′ ≡ (f ′)
′



140 CHAPTER 7. THE DERIVATIVE

etc. Also the Leibniz notation is defined by

dy

dx
= f ′ (x) where y = f (x)

and the second derivative is denoted as

d2y

dx2

with various other higher order derivatives defined in the usual way.
The chain rule has a particularly attractive form in Leibniz’s notation. Suppose

y = g (u) and u = f (x) . Thus y = g ◦ f (x) . Then from the above theorem

(g ◦ f)′ (x) = g′ (f (x)) f ′ (x)

= g′ (u) f ′ (x)

or in other words,
dy

dx
=
dy

du

du

dx
.

Notice how the du cancels. This particular form is a very useful crutch and is used
extensively in applications.

7.6 Mean Value Theorem And Local Extreme Points

When you are on top of a hill, you are at a local maximum although there may be other
hills higher than the one on which you are standing. Similarly, when you are at the
bottom of a valley, you are at a local minimum even though there may be other valleys
deeper than the one you are in. The word, “local” is applied to the situation because
if you confine your attention only to points close to your location, you are indeed at
either the top or the bottom.

Definition 7.6.1 Let f : D (f) → R where here D (f) is only assumed to be
some subset of F. Then x ∈ D (f) is a local minimum (maximum) if there exists δ > 0
such that whenever y ∈ B (x, δ) ∩ D (f), it follows f (y) ≥ (≤) f (x) . The plural of
minimum is minima and the plural of maximum is maxima.

Derivatives can be used to locate local maxima and local minima. The following
picture suggests how to do this. This picture is of the graph of a function having a local
maximum and the tangent line to it.

Note how the tangent line is horizontal. If you were not at a local maximum or local
minimum, the function would be falling or climbing and the tangent line would not be
horizontal.
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Theorem 7.6.2 Suppose f : U → R where U is an open subset of F and suppose
x ∈ U is a local maximum or minimum. Then f ′ (x) = 0.

Proof: Suppose x is a local maximum and let δ > 0 is so small that B (x, δ) ⊆ U.
Then for |h| < δ, both x and x + h are contained in B (x, δ) ⊆ U . Then letting h be
real and positive,

f ′ (x)h+ o (h) = f (x+ h)− f (x) ≤ 0.

Then dividing by h it follows from Theorem 7.1.4 on Page 127,

f ′ (x) = lim
h→0

(
f ′ (x) +

o (h)

h

)
≤ 0

Next let |h| < δ and h is real and negative. Then

f ′ (x)h+ o (h) = f (x+ h)− f (x) ≤ 0.

Then dividing by h

f ′ (x) = lim
h→0

f ′ (x) +
o (h)

h
≥ 0

Thus f ′ (x) = 0. The case where x is a local minimum is handled similarly. Alternatively,
you could apply what was just shown to −f (x). �1

Points at which the derivative of a function equals 0 are sometimes called critical
points. Included in the set of critical points are those points where f ′ fails to exist.

7.7 Exercises

1. If f ′ (x) = 0, is it necessary that x is either a local minimum or local maximum?
Hint: Consider f (x) = x3.

2. A continuous function f defined on [a, b] is to be maximized. It was shown above
in Theorem 7.6.2 that if the maximum value of f occurs at x ∈ (a, b) , and if f is
differentiable there, then f ′ (x) = 0. However, this theorem does not say anything
about the case where the maximum of f occurs at either a or b. Describe how to
find the point of [a, b] where f achieves its maximum. Does f have a maximum?
Explain.

3. Show that if the maximum value of a function f differentiable on [a, b] occurs at the
right endpoint, then for all h > 0, f ′ (b)h ≥ 0. This is an example of a variational
inequality. Describe what happens if the maximum occurs at the left end point
and give a similar variational inequality. What is the situation for minima?

4. Find the maximum and minimum values and the values of x where these are
achieved for the function f (x) = x+

√
25− x2.

5. A piece of wire of length L is to be cut in two pieces. One piece is bent into
the shape of an equilateral triangle and the other piece is bent to form a square.
How should the wire be cut to maximize the sum of the areas of the two shapes?
How should the wire be bent to minimize the sum of the areas of the two shapes?
Hint: Be sure to consider the case where all the wire is devoted to one of the
shapes separately. This is a possible solution even though the derivative is not
zero there.

1Actually, the case where the function is defined on an open subset of F and yet has real values is
not too interesting. However, this is information which depends on the theory of functions of a complex
variable which is not being considered in this book.
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6. Lets find the point on the graph of y = x2

4 which is closest to (0, 1) . One way to

do it is to observe that a typical point on the graph is of the form
(
x, x

2

4

)
and

then to minimize the function f (x) = x2 +
(

x2

4 − 1
)2
. Taking the derivative of f

yields x+ 1
4x

3 and setting this equal to 0 leads to the solution, x = 0. Therefore,

the point closest to (0, 1) is (0, 0) . Now lets do it another way. Lets use y = x2

4 to
write x2 = 4y. Now for (x, y) on the graph, it follows it is of the form

(√
4y, y

)
.

Therefore, minimize f (y) = 4y + (y − 1)
2
. Take the derivative to obtain 2 + 2y

which requires y = −1. However, on this graph, y is never negative. What on
earth is the problem?

7. Find the dimensions of the largest rectangle that can be inscribed in the ellipse,
x2

9 + y2

4 = 1.

8. A function f, is said to be odd if f (−x) = −f (x) and a function is said to be
even if f (−x) = f (x) . Show that if f is even, then f ′ is odd and if f is odd, then
f ′ is even. Sketch the graph of a typical odd function and a typical even function.

9. Find the point on the curve, y =
√
25− 2x which is closest to (0, 0) .

10. A street is 200 feet long and there are two lights located at the ends of the street.
One of the lights is 1

8 times as bright as the other. Assuming the brightness of
light from one of these street lights is proportional to the brightness of the light
and the reciprocal of the square of the distance from the light, locate the darkest
point on the street.

11. Find the volume of the smallest right circular cone which can be circumscribed
about a sphere of radius 4 inches.
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12. Show that for r a rational number and y = xr, it must be the case that if this
function is differentiable, then y′ = rxr−1.

13. Let f be a continuous function defined on [a, b] . Let ε > 0 be given. Show there
exists a polynomial p such that for all x ∈ [a, b] ,

|f (x)− p (x)| < ε.

This follows from the Weierstrass approximation theorem, Theorem 6.10.3. Now
here is the interesting part. Show there exists a function g which is also continuous
on [a, b] and for all x ∈ [a, b] ,

|f (x)− g (x)| < ε

but g has no derivative at any point. Thus there are enough nowhere differentiable
functions that any continuous function is uniformly close to one. Explain why
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every continuous function is the uniform limit of nowhere differentiable functions.
Also explain why every nowhere differentiable continuous function is the uniform
limit of polynomials. Hint: You should look at the construction of the nowhere
differentiable function which is everywhere continuous, given above.

14. Consider the following nested sequence of compact sets, {Pn}. Let P1 = [0, 1],
P2 =

[
0, 13

]
∪
[
2
3 , 1
]
, etc. To go from Pn to Pn+1, delete the open interval which

is the middle third of each closed interval in Pn. Let P = ∩∞n=1Pn. By Problem
16 on Page 60, P ̸= ∅. If you have not worked this exercise, now is the time to do
it. Show the total length of intervals removed from [0, 1] is equal to 1. If you feel
ambitious also show there is a one to one onto mapping of [0, 1] to P . The set P
is called the Cantor set. Thus P has the same number of points in it as [0, 1] in
the sense that there is a one to one and onto mapping from one to the other even
though the length of the intervals removed equals 1. Hint: There are various
ways of doing this last part but the most enlightenment is obtained by exploiting
the construction of the Cantor set rather than some silly representation in terms
of sums of powers of two and three. All you need to do is use the theorems in the
chapter on set theory related to the Schroder Bernstein theorem and show there
is an onto map from the Cantor set to [0, 1]. If you do this right it will provide
a construction which is very useful to prove some even more surprising theorems
which you may encounter later if you study compact metric spaces.

15. ↑ Consider the sequence of functions defined in the following way. Let f1 (x) = x on
[0, 1]. To get from fn to fn+1, let fn+1 = fn on all intervals where fn is constant. If
fn is nonconstant on [a, b], let fn+1(a) = fn(a), fn+1(b) = fn(b), fn+1 is piecewise
linear and equal to 1

2 (fn(a) + fn(b)) on the middle third of [a, b]. Sketch a few
of these and you will see the pattern. The process of modifying a nonconstant
section of the graph of this function is illustrated in the following picture.
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Show {fn} converges uniformly on [0, 1]. If f(x) = limn→∞ fn(x), show that
f(0) = 0, f(1) = 1, f is continuous, and f ′(x) = 0 for all x /∈ P where P is
the Cantor set of Problem 14. This function is called the Cantor function.It is a
very important example to remember especially for those who like mathematical
pathology. Note it has derivative equal to zero on all those intervals which were
removed and whose total length was equal to 1 and yet it succeeds in climbing
from 0 to 1. Isn’t this amazing? Hint: This isn’t too hard if you focus on getting
a careful estimate on the difference between two successive functions in the list
considering only a typical small interval in which the change takes place. The
above picture should be helpful.

16. Let

f (x) =

{
1 if x ∈ Q
0 if x /∈ Q

Now let g (x) = x2f (x) . Find where g is continuous and differentiable if anywhere.

7.8 Mean Value Theorem

The mean value theorem is possibly the most important theorem about the derivative
of a function of one variable. It pertains only to a real valued function of a real variable.
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The best versions of many other theorems depend on this fundamental result. The mean
value theorem is based on the following special case known as Rolle’s theorem2. It is an
existence theorem and like the other existence theorems in analysis, it depends on the
completeness axiom.

Theorem 7.8.1 Suppose f : [a, b]→ R is continuous,

f (a) = f (b) ,

and
f : (a, b)→ R

has a derivative at every point of (a, b) . Then there exists x ∈ (a, b) such that f ′ (x) =
0.

Proof: Suppose first that f (x) = f (a) for all x ∈ [a, b] . Then any x ∈ (a, b) is a
point such that f ′ (x) = 0. If f is not constant, either there exists y ∈ (a, b) such that
f (y) > f (a) or there exists y ∈ (a, b) such that f (y) < f (b) . In the first case, the
maximum of f is achieved at some x ∈ (a, b) and in the second case, the minimum of f
is achieved at some x ∈ (a, b). Either way, Theorem 7.6.2 implies f ′ (x) = 0. �

The next theorem is known as the Cauchy mean value theorem. It is the best version
of this important theorem.

Theorem 7.8.2 Suppose f, g are continuous on [a, b] and differentiable on (a, b) .
Then there exists x ∈ (a, b) such that

f ′ (x) (g (b)− g (a)) = g′ (x) (f (b)− f (a)) .

Proof:Let
h (x) ≡ f (x) (g (b)− g (a))− g (x) (f (b)− f (a)) .

Then letting x = a and then letting x = b, a short computation shows h (a) = h (b) .
Also, h is continuous on [a, b] and differentiable on (a, b) . Therefore Rolle’s theorem
applies and there exists x ∈ (a, b) such that

h′ (x) = f ′ (x) (g (b)− g (a))− g′ (x) (f (b)− f (a)) = 0. �

Letting g (x) = x, the usual version of the mean value theorem is obtained. Here is
the usual picture which describes the theorem.

���������
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a b

Corollary 7.8.3 Let f be a continuous real valued function defined on [a, b] and dif-
ferentiable on (a, b) . Then there exists x ∈ (a, b) such that f (b)− f (a) = f ′ (x) (b− a) .

Corollary 7.8.4 Suppose f ′ (x) = 0 for all x ∈ (a, b) where a ≥ −∞ and b ≤ ∞.
Then f (x) = f (y) for all x, y ∈ (a, b) . Thus f is a constant.

2Rolle is remembered for Rolle’s theorem and not for anything else he did. Ironically, he did not
like calculus.
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Proof: If this is not true, there exists x1 and x2 such that f (x1) ̸= f (x2) . Then
by the mean value theorem,

0 ̸= f (x1)− f (x2)
x1 − x2

= f ′ (z)

for some z between x1 and x2. This contradicts the hypothesis that f ′ (x) = 0 for all x.
This proves the theorem in the case that f has real values. In the general case,

f (x+ h)− f (x)− 0h = o (h) .

Then taking the real part of both sides,

Re f (x+ h)− Re f (x) = Re o (h) = o (h)

and so Re f ′ (x) = 0 and by the first part, Re f must be a constant. The same reasoning
applies to Im f and this proves the corollary. �

Corollary 7.8.5 Suppose f : C→ C and f ′ (x) = 0 for all x. Then f is a constant.

Proof: Let t ∈ R and consider h (t) = f (x+ t (y − x))− f (x) . Then by the chain
rule,

h′ (t) = f ′ (x+ t (y − x)) (y − x) = 0

and so by Corollary 7.8.4 h is a constant. In particular,

h (1) = f (y)− f (x) = h (0) = 0

which shows f is constant since x, y are arbitrary. �

Corollary 7.8.6 Suppose f ′ (x) > 0 for all x ∈ (a, b) where a ≥ −∞ and b ≤ ∞.
Then f is strictly increasing on (a, b) . That is, if x < y, then f (x) < f (y) . If f ′ (x) ≥ 0,
then f is increasing in the sense that whenever x < y it follows that f (x) ≤ f (y) .

Proof: Let x < y. Then by the mean value theorem, there exists z ∈ (x, y) such
that

0 < f ′ (z) =
f (y)− f (x)

y − x
.

Since y > x, it follows f (y) > f (x) as claimed. Replacing < by ≤ in the above equation
and repeating the argument gives the second claim. �

Corollary 7.8.7 Suppose f ′ (x) < 0 for all x ∈ (a, b) where a ≥ −∞ and b ≤ ∞.
Then f is strictly decreasing on (a, b) . That is, if x < y, then f (x) > f (y) . If f ′ (x) ≤ 0,
then f is decreasing in the sense that for x < y, it follows that f (x) ≥ f (y)

Proof: Let x < y. Then by the mean value theorem, there exists z ∈ (x, y) such
that

0 > f ′ (z) =
f (y)− f (x)

y − x
.

Since y > x, it follows f (y) < f (x) as claimed. The second claim is similar except
instead of a strict inequality in the above formula, you put ≥ . �
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7.9 Exercises

1. Sally drives her Saturn over the 110 mile toll road in exactly 1.3 hours. The speed
limit on this toll road is 70 miles per hour and the fine for speeding is 10 dollars
per mile per hour over the speed limit. How much should Sally pay?

2. Two cars are careening down a freeway weaving in and out of traffic. Car A
passes car B and then car B passes car A as the driver makes obscene gestures.
This infuriates the driver of car A who passes car B while firing his handgun at
the driver of car B. Show there are at least two times when both cars have the
same speed. Then show there exists at least one time when they have the same
acceleration. The acceleration is the derivative of the velocity.

3. Show the cubic function f (x) = 5x3 + 7x− 18 has only one real zero.

4. Suppose f (x) = x7 + |x|+ x− 12. How many solutions are there to the equation,
f (x) = 0?

5. Let f (x) = |x− 7| + (x− 7)
2 − 2 on the interval [6, 8] . Then f (6) = 0 = f (8) .

Does it follow from Rolle’s theorem that there exists c ∈ (6, 8) such that f ′ (c) = 0?
Explain your answer.

6. Suppose f and g are differentiable functions defined on R. Suppose also that it
is known that |f ′ (x)| > |g′ (x)| for all x and that |f ′ (t)| > 0 for all t. Show that
whenever x ̸= y, it follows |f (x)− f (y)| > |g (x)− g (y)| . Hint: Use the Cauchy
mean value theorem, Theorem 7.8.2.

7. Show that, like continuous functions, functions which are derivatives have the
intermediate value property. This means that if f ′ (a) < 0 < f ′ (b) then there
exists x ∈ (a, b) such that f ′ (x) = 0. Hint: Argue the minimum value of f occurs
at an interior point of [a, b] .

8. Find an example of a function which has a derivative at every point but such that
the derivative is not everywhere continuous.

9. Consider the function

f (x) ≡
{

1 if x ≥ 0
−1 if x < 0

.

Is it possible that this function could be the derivative of some function? Why?

10. Suppose c ∈ I, an open interval and that a function f, defined on I has n + 1
derivatives. Then for each m ≤ n the following formula holds for x ∈ I.

f (x) =

m∑
k=0

f (k) (c)
(x− c)k

k!
+ f (m+1) (y)

(x− c)m+1

(m+ 1)!
(7.17)

where y is some point between x and c. Fix c, x in I. LetK be a number, depending
on c, x such that

f (x)−

(
f (c) +

n∑
k=1

f (k) (c)

k!
(x− c)k +K (x− c)n+1

)
= 0

Now the idea is to find K. To do this, let

F (t) = f (x)−

(
f (t) +

n∑
k=1

f (k) (t)

k!
(x− t)k +K (x− t)n+1

)
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Then F (x) = F (c) = 0. Therefore, by Rolle’s theorem there exists y between
c and x such that F ′ (y) = 0. Do the differentiation and solve for K. This is
the main result on Taylor polynomials approximating a function f . The term

f (m+1) (y) (x−c)m+1

(m+1)! is called the Lagrange form of the remainder.

11. Let f be a real continuous function defined on the interval [0, 1] . Also suppose
f (0) = 0 and f (1) = 1 and f ′ (t) exists for all t ∈ (0, 1) . Show there exists n
distinct points {si}ni=1 of the interval such that

n∑
i=1

f ′ (si) = n.

Hint: Consider the mean value theorem applied to successive pairs in the following
sum.

f

(
1

3

)
− f (0) + f

(
2

3

)
− f

(
1

3

)
+ f (1)− f

(
2

3

)
12. Now suppose f : [0, 1]→ R is continuous and differentiable on (0, 1) and f (0) = 0

while f (1) = 1. Show there are distinct points {si}ni=1 ⊆ (0, 1) such that

n∑
i=1

(f ′ (si))
−1

= n.

Hint: Let 0 = t0 < t1 < · · · < tn = 1 and pick xi ∈ f−1 (ti) such that these xi
are increasing and xn = 1, x0 = 0. Explain why you can do this. Then argue

ti+1 − ti = f (xi+1)− f (xi) = f ′ (si) (xi+1 − xi)

and so
xi+1 − xi
ti+1 − ti

=
1

f ′ (si)

Now choose the ti to be equally spaced.

7.10 Derivatives Of Inverse Functions

It happens that if f is a differentiable one to one function defined on an interval, [a, b] ,
and f ′ (x) exists and is non zero then the inverse function f−1 has a derivative at the
point f (x) . Recall that f−1 is defined according to the formula

f−1 (f (x)) = x.

Let f : [a, b]→ R be a continuous function. Recall from Theorem 7.5.1

f ′ (a) ≡ lim
x→a+

f (x)− f (a)
x− a

, f ′ (b) ≡ lim
x→b−

f (x)− f (b)
x− b

.

Recall the notation x→ a+ means that only x > a are considered in the definition
of limit, the notation x → b− defined similarly. Thus, this definition includes the
derivative of f at the endpoints of the interval and to save notation,

f ′ (x1) ≡ lim
x→x1

f (x)− f (x1)
x− x1

where it is understood that x is always in [a, b] .
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Theorem 7.10.1 Let f : [a, b] → R be continuous and one to one. Suppose

f ′ (x1) exists for some x1 ∈ [a, b] and f ′ (x1) ̸= 0. Then
(
f−1

)′
(f (x1)) exists and is

given by the formula,
(
f−1

)′
(f (x1)) =

1
f ′(x1)

.

Proof:By Lemma 6.4.3, and Corollary 6.4.4 on Page 107 f is either strictly increas-
ing or strictly decreasing and f−1 is continuous. Therefore there exists η > 0 such that
if 0 < |f (x1)− f (x)| < η, then

0 < |x1 − x| =
∣∣f−1 (f (x1))− f−1 (f (x))

∣∣ < δ

where δ is small enough that for 0 < |x1 − x| < δ,∣∣∣∣ x− x1
f (x)− f (x1)

− 1

f ′ (x1)

∣∣∣∣ < ε.

It follows that if 0 < |f (x1)− f (x)| < η,∣∣∣∣f−1 (f (x))− f−1 (f (x1))

f (x)− f (x1)
− 1

f ′ (x1)

∣∣∣∣ = ∣∣∣∣ x− x1
f (x)− f (x1)

− 1

f ′ (x1)

∣∣∣∣ < ε

Therefore, since ε > 0 is arbitrary,

lim
y→f(x1)

f−1 (y)− f−1 (f (x1))

y − f (x1)
=

1

f ′ (x1)
�

The following obvious corollary comes from the above by not bothering with end
points.

Corollary 7.10.2 Let f : (a, b) → R, where −∞ ≤ a < b ≤ ∞ be continuous
and one to one. Suppose f ′ (x1) exists for some x1 ∈ (a, b) and f ′ (x1) ̸= 0. Then(
f−1

)′
(f (x1)) exists and is given by the formula,

(
f−1

)′
(f (x1)) =

1
f ′(x1)

.

This is one of those theorems which is very easy to remember if you neglect the
difficult questions and simply focus on formal manipulations. Consider the following.

f−1 (f (x)) = x.

Now use the chain rule on both sides to write(
f−1

)′
(f (x)) f ′ (x) = 1,

and then divide both sides by f ′ (x) to obtain

(
f−1

)′
(f (x)) =

1

f ′ (x)
.

Of course this gives the conclusion of the above theorem rather effortlessly and it is
formal manipulations like this which aid in remembering formulas such as the one given
in the theorem.

Example 7.10.3 Let f (x) = 1 + x2 + x3 + 7. Show that f has an inverse and find(
f−1

)′
(8) .

I am not able to find a formula for the inverse function. This is typical in useful
applications so you need to get used to this idea. The methods of algebra are insufficient
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to solve hard problems in analysis. You need something more. The question is to
determine whether f has an inverse. To do this,

f ′ (x) = 2x+ 3x2 + 7 > 0

By Corollary 7.8.6 on Page 145, this function is strictly increasing on R and so it has an
inverse function although I have no idea how to find an explicit formula for this inverse
function. However, I can see that f (0) = 8 and so by the formula for the derivative of
an inverse function, (

f−1
)′
(8) =

(
f−1

)′
(f (0)) =

1

f ′ (0)
=

1

7
.

7.11 Derivatives And Limits Of Sequences

When you have a function which is a limit of a sequence of functions, when can you
say the derivative of the limit function is the limit of the derivatives of the functions in
the sequence? The following theorem seems to be one of the best results available. It is
based on the mean value theorem. First of all, recall Definition 6.9.6 on Page 114 listed
here for convenience.

Definition 7.11.1 Let {fn} be a sequence of functions defined on D. Then {fn}
is said to converge uniformly to f if it converges pointwise to f and for every ε > 0
there exists N such that for all n ≥ N

|f (x)− fn (x)| < ε

for all x ∈ D.

To save on notation, denote by

||k|| ≡ sup {|k (ξ)| : ξ ∈ D} .

Then
||k + l|| ≤ ||k||+ ||l|| (7.18)

because for each ξ ∈ D,
|k (ξ) + l (ξ)| ≤ ||k||+ ||l||

and taking sup yields 7.18. From the definition of uniform convergence, you see that fn
converges uniformly to f is the same as saying

lim
n→∞

||fn − f || = 0.

Now here is the theorem. Note how the mean value theorem is one of the principal
parts of the argument.

Theorem 7.11.2 Let (a, b) be a finite open interval and let fk : (a, b) → R be
differentiable and suppose there exists x0 ∈ (a, b) such that

{fk (x0)} converges,

{f ′k} converges uniformly to a function g on (a, b) .

Then there exists a function f defined on (a, b) such that

fk → f uniformly,

and
f ′ = g.
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Proof: Let c ∈ (a, b) and define

gn (x, c) ≡
{

fn(x)−fn(c)
x−c if x ̸= c

f ′n (c) if x = c
.

Also let
||h|| ≡ sup {|h (x)| : x ∈ (a, b)} .

Thus hk → h uniformly means ||hk − h|| → 0.
Claim 1: For each c, x → gn (x, c) converges uniformly to a continuous function

hc, on (a, b) and hc (c) = g (c).
Proof: First note that each x → gn (x, c) is continuous. Next consider the claim

about uniform convergence. Let x ̸= c. Then by the mean value theorem applied to the
function x→ fn (x)− fm (x),

|gn (x, c)− gm (x, c)|

=

∣∣∣∣fn (x)− fm (x)− (fn (c)− fm (c))

x− c

∣∣∣∣
= |f ′n (ξ)− f ′m (ξ)| ≤ |f ′n (ξ)− g (ξ)|+ |g (ξ)− f ′m (ξ)|
≤ ||f ′n − g||+ ||f ′m − g||

By the assumption that {f ′n} converges uniformly to g, it follows each of the last two
terms converges to 0 as n, m→∞. If x = c, then

|gn (c, c)− gm (c, c)| = |f ′n (c)− f ′m (c)| ≤ ||f ′n − g||+ ||f ′m − g||

Thus x → gn (x, c) is uniformly Cauchy and must converge uniformly to a continuous
function hc by Theorem 6.9.7 and Corollary 6.9.10. Also hc (c) = g (c) by the assumption
that f ′k converges uniformly to g. This proves the first claim.

Claim 2: fn converges uniformly to a function f.
Proof: From the definition of gn in the case where c = x0,

fn (x)− fn (x0) = gn (x, x0) (x− x0) . (7.19)

Hence from the above claim, fn converges uniformly because it is given that fn (x0)
converges to f (x0).

Now to complete the proof of the theorem, for c given and x ̸= c,

f (x)− f (c)
x− c

= lim
n→∞

fn (x)− fn (c)
x− c

= lim
n→∞

gn (x, c) = hc (x) .

Since hc is continuous,

f ′ (c) = lim
x→c

f (x)− f (c)
x− c

= lim
x→c

hc (x) = hc (c) = g (c) . �

7.12 Exercises

1. It was shown earlier that the nth root of a positive number exists whenever n is a
positive integer. Let y = x1/n. Prove y′ (x) = 1

nx
(1/n)−1.

2. Now for positive x and p, q positive integers, y = xp/q is defined by y = q
√
xp. Find

and prove a formula for dy/dx.

3. For 1 ≥ x ≥ 0, and p ≥ 1, show that (1− x)p ≥ 1− px. Hint: This can be done
using the mean value theorem. Define f (x) ≡ (1− x)p − 1 + px and show that
f (0) = 0 while f ′ (x) ≥ 0 for all x ∈ (0, 1) .
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4. Using the result of Problem 3 establish Raabe’s Test, an interesting variation on
the ratio test. This test says the following. Suppose there exists a constant, C
and a number p such that ∣∣∣∣ak+1

ak

∣∣∣∣ ≤ 1− p

k + C

for all k large enough. Then if p > 1, it follows that
∑∞

k=1 ak converges absolutely.
Hint: Let bk ≡ k−1+C and note that for all k large enough, bk > 1. Now conclude
that there exists an integer, k0 such that bk0 > 1 and for all k ≥ k0 the given
inequality above holds. Use Problem 3 to conclude that∣∣∣∣ak+1

ak

∣∣∣∣ ≤ 1− p

k + C
≤
(
1− 1

k + C

)p

=

(
bk
bk+1

)p

showing that |ak| bpk is decreasing for k ≥ k0. Thus |ak| ≤M/bpk =M/ (k − 1 + C)
p
.

Now use comparison theorems and the p series to obtain the conclusion of the the-
orem.

5. The graph of a function y = f (x) is said to be concave up or more simply “convex”
if whenever (x1, y1) and (x2, y2) are two points such that yi ≥ f (xi) , it follows that
for each point, (x, y) on the straight line segment joining (x1, y1) and (x2, y2) , y ≥
f (x) . Show that if f is twice differentiable on an open interval, (a, b) and f ′′ (x) >
0, then the graph of f is convex.

6. Show that if the graph of a function f defined on an interval (a, b) is convex, then
if f ′ exists on (a, b) , it must be the case that f ′ is a non decreasing function. Note
you do not know the second derivative exists.

7. Convex functions defined in Problem 5 have a very interesting property. Suppose
{ai}ni=1 are all nonnegative, sum to 1, and suppose ϕ is a convex function defined
on R. Then

ϕ

(
n∑

k=1

akxk

)
≤

n∑
k=1

akϕ (xk) .

Verify this interesting inequality.

8. If ϕ is a convex function defined on R, show that ϕ must be continuous at every
point.

9. Prove the second derivative test. If f ′ (x) = 0 at x ∈ (a, b) , an interval on which
f is defined and both f ′, f ′′ exist and are continuous on this interval, then if
f ′′ (x) > 0, it follows f has a local minimum at x and if f ′′ (x) < 0, then f has a
local maximum at x. Show that if f ′′ (x) = 0 no conclusion about the nature of
the critical point can be drawn. It might be a local minimum, local maximum or
neither.

10. Recall the Bernstein polynomials which were used to prove the Weierstrass ap-
proximation theorem. For f a continuous function on [0, 1] ,

pn (x) =
n∑

k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k

It was shown these converge uniformly to f on [0, 1] . Now suppose f ′ exists and
is continuous on [0, 1] . Show p′n converges uniformly to f ′ on [0, 1] . Hint: Differ-
entiate the above formula and massage to finally get

p′n (x) =

n−1∑
k=0

(
n− 1

k

)(
f
(
k+1
n

)
− f

(
k
n

)
1/n

)
xk (1− x)n−1−k

.
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Then form the (n− 1) Bernstein polynomial for f ′ and show the two are uniformly
close. You will need to estimate an expression of the form

f ′
(

k

n− 1

)
−
f
(
k+1
n

)
− f

(
k
n

)
1/n

which will be easy to do because of the mean value theorem and uniform continuity
of f ′.

11. In contrast to Problem 10, consider the sequence of functions

{fn (x)}∞n=1 =

{
x

1 + nx2

}∞

n=1

.

Show it converges uniformly to f (x) ≡ 0. However, f ′n (0) converges to 1, not
f ′ (0). Hint: To show the first part, find the value of x which maximizes the

function
∣∣∣ x
1+nx2

∣∣∣ . You know how to do this. Then plug it in and you will have an

estimate sufficient to verify uniform convergence.



Chapter 8

Power Series

8.1 Functions Defined In Terms Of Series

It is time to consider functions other than polynomials. In particular it is time to give a
mathematically acceptable definition of functions like ex, sin (x) and cos (x) . It has been
assumed these functions are known from beginning calculus but this is a pretence. Most
students who take calculus come through it without a complete understanding of the
circular functions. This is because of the reliance on plane geometry in defining them.
Fortunately, these functions can be completely understood in terms of power series
rather than wretched plane geometry. The exponential function can also be defined in
a simple manner using power series.

Definition 8.1.1 Let {ak}∞k=0 be a sequence of numbers. The expression,

∞∑
k=0

ak (x− a)k (8.1)

is called a Taylor series centered at a. This is also called a power series centered at a.
It is understood that x and a ∈ F, that is, either C or R.

In the above definition, x is a variable. Thus you can put in various values of x and
ask whether the resulting series of numbers converges. Defining D to be the set of all
values of x such that the resulting series does converge, define a new function f defined
on D having values in F as

f (x) ≡
∞∑
k=0

ak (x− a)k .

This might be a totally new function one which has no name. Nevertheless, much can
be said about such functions. The following lemma is fundamental in considering the
form of D which always turns out to be of the form B (a, r) along with possibly some
points, z such that |z − a| = r. First here is a simple lemma which will be useful.

Lemma 8.1.2 limn→∞ n1/n = 1.

Proof: It is clear n1/n ≥ 1. Let n1/n = 1 + en where 0 ≤ en. Then raising both
sides to the nth power for n > 1 and using the binomial theorem,

n = (1 + en)
n
=

n∑
k=0

(
n

k

)
ekn ≥ 1 + nen + (n (n− 1) /2) e2n

≥ (n (n− 1) /2) e2n

153
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Thus

0 ≤ e2n ≤
n

n (n− 1)
=

1

n− 1

From this the desired result follows because∣∣∣n1/n − 1
∣∣∣ = en ≤

1√
n− 1

. �

Theorem 8.1.3 Let
∑∞

k=0 ak (x− a)
k

be a Taylor series. Then there exists
r ≤ ∞ such that the Taylor series converges absolutely if |x− a| < r. Furthermore,
if |x− a| > r, the Taylor series diverges. If λ < r then the Taylor series converges
uniformly on the closed disk |x− a| ≤ λ.

Proof: Note

lim sup
k→∞

∣∣∣ak (x− a)k∣∣∣1/k = lim sup
k→∞

|ak|1/k |x− a| .

Then by the root test, the series converges absolutely if

|x− a| lim sup
k→∞

|ak|1/k < 1

and diverges if

|x− a| lim sup
k→∞

|ak|1/k > 1.

Thus define

r ≡


1/ lim supk→∞ |ak|

1/k
if ∞ > lim supk→∞ |ak|

1/k
> 0

∞ if lim supk→∞ |ak|
1/k

= 0

0 if lim supk→∞ |ak|
1/k

=∞

Next let λ be as described. Then if |x− a| ≤ λ, then

lim sup
k→∞

∣∣∣ak (x− a)k∣∣∣1/k = lim sup
k→∞

|ak|1/k |x− a| ≤ λ lim sup
k→∞

|ak|1/k ≤
λ

r
< α < 1

It follows that for all k large enough and such x,
∣∣∣ak (x− a)k∣∣∣ < αk. Then by the

Weierstrass M test, convergence is uniform. �
Note that the radius of convergence r is given by

lim sup
k→∞

|ak|1/k r = 1

Definition 8.1.4 The number in the above theorem is called the radius of con-
vergence and the set on which convergence takes place is called the disc of convergence.

Now the theorem was proved using the root test but often you use the ratio test to
find the interval of convergence. This kind of thing is typical in math so get used to it.
The proof of a theorem does not always yield a way to find the thing the theorem speaks
about. The above is an existence theorem. There exists an interval of convergence from
the above theorem. You find it in specific cases any way that is most convenient.

Example 8.1.5 Find the disc of convergence of the Taylor series
∑∞

n=1
xn

n .
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Use Corollary 5.3.10.

lim
n→∞

(
|x|n

n

)1/n

= lim
n→∞

|x|
n
√
n
= |x|

because limn→∞
n
√
n = 1 and so if |x| < 1 the series converges. The points satisfying

|z| = 1 require special attention. When x = 1 the series diverges because it reduces

to
∑∞

n=1
1
n . At x = −1 the series converges because it reduces to

∑∞
n=1

(−1)n

n and the
alternating series test applies and gives convergence. What of the other numbers z
satisfying |z| = 1? It turns out this series will converge at all these numbers by the
Dirichlet test.

Example 8.1.6 Find the radius of convergence of
∑∞

n=1
nn

n! x
n.

Apply the ratio test. Taking the ratio of the absolute values of the (n+ 1)
th

and
the nth terms

(n+1)(n+1)

(n+1)n! |x|
n+1

nn

n! |x|
n = (n+ 1)

n |x|n−n = |x|
(
1 +

1

n

)n

→ |x| e

Therefore the series converges absolutely if |x| e < 1 and diverges if |x| e > 1. Conse-
quently, r = 1/e. This problem assumes that you remember from calculus the last limit.
If not, this will be discussed later.

8.2 Operations On Power Series

It is desirable to be able to differentiate and multiply power series. The following
theorem says you can differentiate power series in the most natural way on the interval
of convergence, just as you would differentiate a polynomial. This theorem may seem
obvious, but it is a serious mistake to think this. You usually cannot differentiate an
infinite series whose terms are functions even if the functions are themselves polynomials.
The following is special and pertains to power series. It is another example of the
interchange of two limits, in this case, the limit involved in taking the derivative and
the limit of the sequence of finite sums.

When you formally differentiate a series term by term, the result is called the derived
series.

Theorem 8.2.1 Let
∑∞

n=0 an (x− a)
n
be a Taylor series having radius of con-

vergence R > 0 and let

f (x) ≡
∞∑

n=0

an (x− a)n (8.2)

for |x− a| < R. Then

f ′ (x) =

∞∑
n=0

ann (x− a)n−1
=

∞∑
n=1

ann (x− a)n−1
(8.3)

and this new differentiated power series, the derived series, has radius of convergence
equal to R.

Proof: Let |x− a| < r < R and let λ < 1 be such that lim supn→∞ |an|
1/n

r < λ.

Such a λ exists because lim supn→∞ |an|
1/n

= 1/R, 0 if R = ∞. Thus if R < ∞,
lim supn→∞ |an|

1/n
r = r/R < 1.
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Then for all n large enough, |an| rn < λn where
∑

n λ
n converges.

Let δ be small enough that if |h| < δ, then |x+ h− a| < r also. Then for |h| < δ,
consider the difference quotient.

f (x+ h)− f (x)
h

=
1

h

∞∑
k=0

ak

(
(x+ h− a)k − (x− a)k

)
By the mean value theorem, there exists θnh ∈ (0, 1) such that

f (x+ h)− f (x)
h

=
1

h

∞∑
k=0

ak

(
(x+ h− a)k − (x− a)k

)
=

1

h

∞∑
k=1

akk (x+ θnhh− a)k−1
h =

∞∑
k=1

akk (x+ θnhh− a)k−1

=

∞∑
k=1

akk
[
(x+ θnhh− a)k−1 − (x− a)k−1

]
+

∞∑
k=1

akk (x− a)k−1

By the mean value theorem again, there exists αnh ∈ (0, 1) such that

=

∞∑
k=2

θnhhakk (k − 1) (x+ αnhh− a)k−2
+

∞∑
k=1

akk (x− a)k−1

The second series is the derived series. Consider the first.∣∣∣∣∣
∞∑
k=2

θnhhakk (k − 1) (x+ αnhh− a)k−2

∣∣∣∣∣ ≤ h

∞∑
k=2

k (k − 1) |ak| |x+ αnhh− a|k−2

≤ r2h
∞∑
k=2

k (k − 1) |ak| rk

Now
lim sup

k→∞
(k (k − 1))

1/k |ak|1/k r = lim sup
k→∞

|ak|1/k r < λ

and so the series converges. Hence, letting h→ 0 yields the desired result that

lim
h→0

f (x+ h)− f (x)
h

=
∞∑
k=1

akk (x− a)k−1 �

As an immediate corollary, it is possible to characterize the coefficients of a Taylor
series.

Corollary 8.2.2 Let
∑∞

n=0 an (x− a)
n
be a Taylor series with radius of convergence

r > 0 and let

f (x) ≡
∞∑

n=0

an (x− a)n . (8.4)

Then

an =
f (n) (a)

n!
. (8.5)

Proof: From 8.4, f (a) = a0 ≡ f (0) (a) /0!. From Theorem 8.2.1,

f ′ (x) =

∞∑
n=1

ann (x− a)n−1
= a1 +

∞∑
n=2

ann (x− a)n−1
.
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Now let x = a and obtain that f ′ (a) = a1 = f ′ (a) /1!. Next use Theorem 8.2.1 again
to take the second derivative and obtain

f ′′ (x) = 2a2 +
∞∑

n=3

ann (n− 1) (x− a)n−2

let x = a in this equation and obtain a2 = f ′′ (a) /2 = f ′′ (a) /2!. Continuing this way
proves the corollary. �

This also shows the coefficients of a Taylor series are unique. That is, if

∞∑
k=0

ak (x− a)k =
∞∑
k=0

bk (x− a)k

for all x in some open set containing a, then ak = bk for all k.

Example 8.2.3 Find the sum
∑∞

k=1 k2
−k.

It may not be obvious what this sum equals but with the above theorem it is easy
to find. From the formula for the sum of a geometric series, 1

1−t =
∑∞

k=0 t
k if |t| < 1.

Differentiate both sides to obtain

(1− t)−2
=

∞∑
k=1

ktk−1

whenever |t| < 1. Let t = 1/2. Then

4 =
1

(1− (1/2))
2 =

∞∑
k=1

k2−(k−1)

and so if you multiply both sides by 2−1,

2 =

∞∑
k=1

k2−k.

The above theorem shows that a power series is infinitely differentiable. Does it go
the other way? That is, if the function has infinitely many continuous derivatives, is
it correctly represented as a power series? The answer is no. See Problem 6 on Page
175 for an example. In fact, this is an important example and distinction. The modern
theory of partial differential equations is built on just such functions which have many
derivatives but no power series.

8.3 The Special Functions Of Elementary Calculus

8.3.1 The Functions, sin, cos, exp

With this material on power series, it becomes possible to give an understandable treat-
ment of the exponential function exp and the circular functions, sin and cos .

Definition 8.3.1 Define for all x ∈ R

sin (x) ≡
∞∑
k=0

(−1)k x2k+1

(2k + 1)!
, cos (x) ≡

∞∑
k=0

(−1)k x2k

(2k)!

exp (x) ≡
∞∑
k=0

xk

k!
.
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Observation 8.3.2 The above series converge for all x ∈ F. This is most easily
seen using the ratio test. Consider the series for sin (x) first. By the ratio test the series
converges whenever

lim
k→∞

|x|2k+3

(2k+3)!

|x|2k+1

(2k+1)!

= lim
k→∞

1

(2k + 3) (2k + 1)
|x|2

is less than 1. However, this limit equals 0 for any x and so the series converges for all
x. The verification of convergence for the other two series is left for you to do and is
no harder.

Now that sin (x) and cos (x) have been defined, the properties of these functions
must be considered. First, here is a fundamental lemma.

Lemma 8.3.3 Suppose y is an R valued differentiable function and it solves the
initial value problem,

y′′ + y = 0, y (0) = 0, y′ (0) = 0

Then y (x) = 0.

Proof: Multiply the equation by y′ and use the chain rule to write

d

dt

(
1

2
(y′)

2
+

1

2
y2
)

= 0.

Then by Corollary 7.8.5 1
2 (y

′)
2
+ 1

2y
2 equals a constant. From the initial conditions,

y (0) = y′ (0) = 0, the constant can only be 0. �

Theorem 8.3.4 sin′ (x) = cos (x) and cos′ (x) = − sin (x) . Also cos (0) = 1,
sin (0) = 0 and

cos2 (x) + sin2 (x) = 1 (8.6)

for all x. Also sin (−x) = − sin (x) while cos (−x) = cos (x) and the usual trig. identities
hold,

sin (x+ y) = sin (x) cos (y) + sin (y) cos (x) (8.7)

cos (x+ y) = cos (x) cos (y)− sin (x) sin (y) (8.8)

Proof: That sin′ (x) = cos (x) and cos′ (x) = − sin (x) follows right away from
differentiating the power series term by term using Theorem 8.2.1. It follows from the
series that cos (0) = 1 and sin (0) = 0 and sin (−x) = − sin (x) while cos (−x) = cos (x)
because the series for sin (x) only involves odd powers of x while the series for cos (x)
only involves even powers.

For x ∈ R, let f (x) = cos2 (x) + sin2 (x) , it follows from what was just discussed
that f (0) = 1. Also from the chain rule,

f ′ (x) = 2 cos (x) (− sin (x)) + 2 sin (x) cos (x) = 0

and so by Corollary 7.8.5, f (x) is constant for all x ∈ R. But f (0) = 1 so the constant
can only be 1. Thus

cos2 (x) + sin2 (x) = 1

as claimed.



8.3. THE SPECIAL FUNCTIONS OF ELEMENTARY CALCULUS 159

It only remains to verify the identities. Consider 8.7 first. Fixing y and considering
both sides as a function of x, it follows from the above that both sides of the identity
satisfy the initial value problem

y′′ + y = 0, y (0) = sin (y) , y′ (0) = cos (y)

Therefore, the difference satisfies the initial value problem of Lemma 8.3.3. Therefore,
by this lemma, the difference equals 0. The next identity is handled similarly. This
proves the theorem.

Proposition 8.3.5 The following important limits hold for a, b ̸= 0.

lim
x→0

sin (ax)

bx
=
a

b
, lim

x→0

1− cos (x)

x
= 0.

Proof: From the definition of sin (x) given above,

sin (ax)

bx
=

∑∞
k=0 (−1)

k (ax)2k+1

(2k+1)!

bx
=
ax+

∑∞
k=1 (−1)

k (ax)2k+1

(2k+1)!

bx

=
a+

∑∞
k=1 (−1)

k (ax)2k

(2k+1)!

b

Now ∣∣∣∣∣
∞∑
k=1

(−1)k (ax)
2k

(2k + 1)!

∣∣∣∣∣ ≤
∞∑
k=1

|ax|2k =
∞∑
k=1

(
|ax|2

)k
=

(
|ax|2

1− |ax|

)

whenever |ax| < 1. Thus

lim
x→0

∞∑
k=1

(−1)k (ax)
2k

(2k + 1)!
= 0

and so

lim
x→0

sin (ax)

bx
=
a

b
.

The other limit can be handled similarly.
It is possible to verify the functions are periodic.

Lemma 8.3.6 There exists a positive number a, such that cos (a) = 0.

Proof:To prove this, note that cos (0) = 1 and so if it is false, it must be the case
that cos (x) > 0 for all positive x since otherwise, it would follow from the intermediate
value theorem there would exist a point, x where cosx = 0. Assume cos (x) > 0 for all
x. Then by Corollary 7.8.6 it would follow that t→ sin t is a strictly increasing function
on (0,∞) . Also note that sin (0) = 0 and so sin (x) > 0 for all x > 0. This is because,
by the mean value theorem there exists t ∈ (0, x) such that

sin (x) = sin (x)− sin (0) = (cos (t)) (x− 0) > 0.

By 8.6, |f (x)| ≤ 1 for f = cos and sin . Let 0 < x < y. Then from the mean value
theorem,

− cos (y)− (− cos (x)) = sin (t) (y − x)
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for some t ∈ (x, y) . Since t→ sin (t) is increasing, it follows

− cos (y)− (− cos (x)) = sin (t) (y − x) ≥ sin (x) (y − x) .

This contradicts the inequality |cos (y)| ≤ 1 for all y because the right side is unbounded
as y →∞. �

Theorem 8.3.7 Both cos and sin are periodic.

Proof: Define a number, π such that

π

2
≡ inf {x : x > 0 and cos (x) = 0}

Then π
2 > 0 because cos (0) = 1 and cos is continuous. On

[
0, π2

]
cos is positive and so

it follows sin is increasing on this interval. Therefore, from 8.6, sin
(
π
2

)
= 1. Now from

Theorem 8.3.4,

cos (π) = cos
(π
2
+
π

2

)
= − sin2

(π
2

)
= −1, sin (π) = 0

Using Theorem 8.3.4 again,

cos (2π) = cos2 (π) = 1 = cos (0) ,

and so sin (2π) = 0. From Theorem 8.3.4,

cos (x+ 2π) = cos (x) cos (2π)− sin (x) sin (2π) = cos (x)

Thus cos is periodic of period 2π. By Theorem 8.3.4,

sin (x+ 2π) = sin (x) cos (2π) + cos (x) sin (2π) = sin (x)

Using 8.6, it follows sin is also periodic of period 2π. This proves the theorem.
Note that 2π is the smallest period for these functions. This can be seen by observing

that the above theorem and proof imply that cos is positive on(
0,
π

2

)
,

(
3π

2
, 2π

)
and negative on

(
π
2 ,

3π
2

)
and that similar observations on sin are valid. Also, by consid-

ering where these functions are equal to 0, 1, and -1 along with where they are positive
and negative, it follows that whenever a2+ b2 = 1, there exists a unique t ∈ [0, 2π) such
that cos (t) = a and sin (t) = b. For example, if a and b are both positive, then since
cos is continuous and strictly decreases from 1 to 0 on

[
0, π2

]
, it follows there exists a

unique t ∈ (0, π/2) such that cos (t) = a. Since b > 0 and sin is positive on (0, π/2) ,
it follows sin (t) = b. No other value of t in [0,2π) will work since only on (0, π/2) are
both cos and sin positive. If a > 0 and b < 0 similar reasoning will show there exists a
unique t ∈ [0, 2π) with cos (t) = a and sin (t) = b and in this case, t ∈ (3π/2, 2π) . Other
cases are similar and are left to the reader. Thus, every point on the unit circle is of
the form (cos t, sin t) for a unique t ∈ [0, 2π).

This shows the unit circle is a smooth curve, however this notion will not be consid-
ered here.

Corollary 8.3.8 For all x ∈ R

sin (x+ 2π) = sin (x) , cos (x+ 2π) = cos (x)
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Proof: Let y (x) ≡ sin (x+ 2π) − sin (x) . Then from what has been shown above,
y′ (0) = y (0) = 0. It is also clear from the above that y′′ + y = 0. Therefore, from
Lemma 8.3.3 y = 0. Differentiating the identity just obtained yields the second identity.
�

Are these the same as the circular functions you studied very sloppily in calculus
and trigonometry? They are.

If sin (x) defined above and sin (x) studied in a beginning calculus class both satisfy
the initial value problem

y′′ + y = 0, y (0) = 0, y′ (0) = 1

then they must be the same. However, if you remember anything from calculus you
will realize sin (x) used there does satisfy the above initial value problem. If you don’t
remember anything from calculus, then it does not matter about harmonizing the func-
tions. Just use the definition given above in terms of a power series. Similar considera-
tions apply to cos .

Of course all the other trig. functions are defined as earlier. Thus

tanx =
sinx

cosx
, cotx ≡ cosx

sinx
, secx ≡ 1

cosx
, cscx ≡ 1

sinx
.

Using the techniques of differentiation, you can find the derivatives of all these.
Now it is time to consider the exponential function exp (x) defined above. To do

this, it is convenient to have the following uniqueness theorem.

Lemma 8.3.9 Suppose
y′ − y = 0, y (0) = 0

Then y = 0. Also for all x ∈ R, exp(−x)(exp(x)) = 1

Proof: The function exp has been defined above in terms of a power series. From
this power series and Theorem 8.2.1 it follows that exp solves the above initial value
problem. Multiply both sides of the differential equation by exp (−x) . Then using the
chain rule and product rule,

d

dx
(exp (−x) y (x)) = 0

and so exp (−x) y (x) = C, a constant. The constant can only be 0 because of the initial
condition. Therefore,

exp (−x) y (x) = 0

for all x.
Now I claim exp (−x) and exp (x) are never equal to 0. This is because by the chain

rule, abusing notation slightly,

(exp (−x) exp (x))′ = − exp (−x) exp (x) + exp (−x) exp (x) = 0

and so
exp (−x) exp (x) = C

a constant. However, this constant can only be 1 because this is what it is when x = 0,
a fact which follows right away from the definition in terms of power series. �

Theorem 8.3.10 The function exp satisfies the following properties.

1. exp (x) > 0 for all x ∈ R, limx→∞ exp (x) =∞, limx→−∞ exp (x) = 0.
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2. exp is the unique solution to the initial value problem

y′ − y = 0, y (0) = 1 (8.9)

3. For all x, y ∈ F
exp (x+ y) = exp (x) exp (y) (8.10)

4. exp is one to one mapping R onto (0,∞) .

Proof: To begin with consider 8.10. Fixing y it follows from the chain rule and the
definition using power series that

x→ exp (x+ y)− exp (x) exp (y)

satisfies the initial value problem of Lemma 8.3.9 and so it is 0. This shows 8.10.

8.9 has already been noted. It comes directly from the definition and was proved
in Lemma 8.3.9. The claim that exp (x) > 0 was also established in the proof of this
lemma.

Now from the power series, it is obvious that exp (x) > 0 if x > 0 and by Lemma

8.3.9, exp (x)
−1

= exp (−x) , so it follows exp (−x) is also positive. Since exp (x) >∑2
k=0

xk

k! , it is clear limx→∞ exp (x) =∞ and it follows from this that limx→−∞ exp (x) =
0.

It only remains to verify 4. Let y ∈ (0,∞) . From the earlier properties, there exist
x1 such that exp (x1) < y and x2 such that exp (x2) > y. Then by the intermediate
value theorem, there exists x ∈ (x1, x2) such that exp (x) = y. Thus exp maps onto
(0,∞). It only remains to verify exp is one to one. Suppose then that x1 < x2. By the
mean value theorem, there exists x ∈ (x1, x2) such that

exp (x) (x2 − x1) = exp′ (x) (x2 − x1) = exp (x2)− exp (x1) .

Since exp (x) > 0, it follows exp (x2) ̸= exp (x1). �

8.3.2 ln And logb

In this section, the inverse function of x→ exp (x) is considered.

Definition 8.3.11 ln is the inverse function of exp . Thus ln : (0,∞) → R ,
ln (exp (x)) = x, and exp (ln (x)) = x. The number e is that number such that ln (e) = 1.

By Corollary 7.10.2, it follows ln is differentiable. This makes possible the following
simple theorem.

Theorem 8.3.12 The following basic properties are available for ln .

ln′ (x) =
1

x
. (8.11)

Also for all x, y > 0,

ln (xy) = ln (x) + ln (y) , (8.12)

ln (1) = 0, ln (xm) = m ln (x) (8.13)

for all m an integer.
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Proof: Since exp (ln (x)) = x and ln′ exists, it follows

x ln′ (x) = exp (ln (x)) ln′ (x) = exp′ (ln (x)) ln′ (x) = 1

and this proves 8.11. Next consider 8.12.

xy = exp (ln (xy)) , exp (ln (x) + ln (y)) = exp (ln (x)) exp (ln (y)) = xy.

Since exp was shown to be 1-1, it follows ln (xy) = ln (x) + ln (y) . Next exp (0) = 1 and
exp (ln (1)) = 1 so ln (1) = 0 again because exp is 1-1. Let

f (x) = ln (xm)−m ln (x) .

f (1) = ln (1)−m ln (1) = 0. Also, by the chain rule,

f ′ (x) =
1

xm
mxm−1 −m 1

x
= 0

and so f (x) equals a constant. The constant can only be 0 because f (1) = 0. This
proves the last formula of 8.13 and completes the proof of the theorem. �

The last formula tells how to define xα for any x > 0 and α ∈ R. I want to stress this
is something new. Students are often deceived into thinking they know what xα means
for α a real number. There is no place for such deception in mathematics, however.

Definition 8.3.13 Define xα for x > 0 and α ∈ R by the following formula.

ln (xα) = α ln (x) .

In other words,
xα ≡ exp (α ln (x)) .

From Theorem 8.3.12 this new definition does not contradict the usual definition in
the case where α is an integer.

From this definition, the following properties are obtained.

Proposition 8.3.14 For x > 0 let f (x) = xα where α ∈ R. Then f ′ (x) = αxα−1.

Also xα+β = xαxβ and (xα)
β
= xαβ.

Proof: First consider the claim about the sum of the exponents.

xα+β ≡ exp ((α+ β) ln (x)) = exp (α ln (x) + β ln (x))

= exp (α ln (x)) exp (β ln (x)) ≡ xαxβ .

ln
(
(xα)

β
)
= β ln (xα) = αβ ln (x) , ln

(
xαβ

)
= αβ ln (x) .

The claim about the derivative follows from the chain rule. f (x) = exp (α ln (x)) and
so

f ′ (x) = exp (α ln (x))
α

x
≡ α

x
xα = α

(
x−1

)
xα = αxα−1. �

Definition 8.3.15 Define logb for any b > 0, b ̸= 1 by

logb (x) ≡
ln (x)

ln (b)
.

Proposition 8.3.16 The following hold for logb (x) .

1. blogb(x) = x, logb (b
x) = x.
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2. logb (xy) = logb (x) + logb (y)

3. logb (x
α) = α logb (x)

Proof:

blogb(x) ≡ exp (ln (b) logb (x)) = exp

(
ln (b)

ln (x)

ln (b)

)
= exp (ln (x)) = x

logb (b
x) =

ln (bx)

ln (b)
=
x ln (b)

ln (b)
= x

This proves 1.
Now consider 2.

logb (xy) =
ln (xy)

ln (b)
=

ln (x)

ln (b)
+

ln (y)

ln (b)
= logb (x) + logb (y) .

Finally,

logb (x
α) =

ln (xα)

ln (b)
= α

ln (x)

ln (b)
= α logb (x) .

8.4 The Binomial Theorem

The following is a very important example known as the binomial series.

Example 8.4.1 Find a Taylor series for the function (1 + x)
α
centered at 0 valid for

|x| < 1.

Use Theorem 8.2.1 to do this. First note that if y (x) ≡ (1 + x)
α
, then y is a solution

of the following initial value problem.

y′ − α

(1 + x)
y = 0, y (0) = 1. (8.14)

Next it is necessary to observe there is only one solution to this initial value problem.
To see this, multiply both sides of the differential equation in 8.14 by (1 + x)

−α
. When

this is done, one obtains

d

dx

(
(1 + x)

−α
y
)
= (1 + x)

−α

(
y′ − α

(1 + x)
y

)
= 0. (8.15)

Therefore, from 8.15, there must exist a constant, C, such that

(1 + x)
−α

y = C.

However, y (0) = 1 and so it must be that C = 1. Therefore, there is exactly one solution
to the initial value problem in 8.14 and it is y (x) = (1 + x)

α
.

The strategy for finding the Taylor series of this function consists of finding a series
which solves the initial value problem above. Let

y (x) ≡
∞∑

n=0

anx
n (8.16)

be a solution to 8.14. Of course it is not known at this time whether such a series exists.
However, the process of finding it will demonstrate its existence. From Theorem 8.2.1
and the initial value problem,

(1 + x)

∞∑
n=0

annx
n−1 −

∞∑
n=0

αanx
n = 0
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and so
∞∑

n=1

annx
n−1 +

∞∑
n=0

an (n− α)xn = 0

Changing the variable of summation in the first sum,

∞∑
n=0

an+1 (n+ 1)xn +

∞∑
n=0

an (n− α)xn = 0

and from Corollary 8.2.2 and the initial condition for 8.14 this requires

an+1 =
an (α− n)
n+ 1

, a0 = 1. (8.17)

Therefore, from 8.17 and letting n = 0, a1 = α, then using 8.17 again along with this
information,

a2 =
α (α− 1)

2
.

Using the same process,

a3 =

(
α(α−1)

2

)
(α− 2)

3
=
α (α− 1) (α− 2)

3!
.

By now you can spot the pattern. In general,

an =

n of these factors︷ ︸︸ ︷
α (α− 1) · · · (α− n+ 1)

n!
.

Therefore, the candidate for the Taylor series is

y (x) =
∞∑

n=0

α (α− 1) · · · (α− n+ 1)

n!
xn.

Furthermore, the above discussion shows this series solves the initial value problem on
its interval of convergence. It only remains to show the radius of convergence of this
series equals 1. It will then follow that this series equals (1 + x)

α
because of uniqueness

of the initial value problem. To find the radius of convergence, use the ratio test. Thus
the ratio of the absolute values of (n+ 1)

st
term to the absolute value of the nth term

is ∣∣∣α(α−1)···(α−n+1)(α−n)
(n+1)n!

∣∣∣ |x|n+1∣∣∣α(α−1)···(α−n+1)
n!

∣∣∣ |x|n = |x| |α− n|
n+ 1

→ |x|

showing that the radius of convergence is 1 since the series converges if |x| < 1 and
diverges if |x| > 1.

The expression, α(α−1)···(α−n+1)
n! is often denoted as

(
α
n

)
. With this notation, the

following theorem has been established.

Theorem 8.4.2 Let α be a real number and let |x| < 1. Then

(1 + x)
α
=

∞∑
n=0

(
α

n

)
xn.
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There is a very interesting issue related to the above theorem which illustrates the
limitation of power series. The function f (x) = (1 + x)

α
makes sense for all x > −1

but one is only able to describe it with a power series on the interval (−1, 1) . Think
about this. The above technique is a standard one for obtaining solutions of differential
equations and this example illustrates a deficiency in the method.

To completely understand power series, it is necessary to take a course in complex
analysis. It turns out that the right way to consider Taylor series is through the use of
geometric series and something called the Cauchy integral formula of complex analysis.
However, these are topics for another course.

8.5 Exercises

1. In each of the following, assume the relation defines y as a function of x for values
of x and y of interest and find y′ (x) .

(a) xy2 + sin (y) = x3 + 1

(b) y3 + x cos
(
y2
)
= x4

(c) y cos (x) = tan (y) cos
(
x2
)
+ 2

(d)
(
x2 + y2

)6
= x3y + 3

(e) xy2+y
y5+x + cos (y) = 7

(f)
√
x2 + y4 sin (y) = 3x

(g) y3 sin (x) + y2x2 = 2x
2

y + ln |y|
(h) y2 sin (y)x+ log3 (xy) = y2 + 11

(i) sin
(
x2 + y2

)
+ sec (xy) = ex+y + y2y + 2

(j) sin
(
tan

(
xy2
))

+ y3 = 16

(k) cos (sec (tan (y))) + ln (5 + sin (xy)) = x2y + 3

2. In each of the following, assume the relation defines y as a function of x for values
of x and y of interest. Use the chain rule to show y satisfies the given differential
equation.

(a) x2y + sin y = 7,
(
x2 + cos y

)
y′ + 2xy = 0.

(b) x2y3 + sin
(
y2
)
= 5, 2xy3 +

(
3x2y2 + 2

(
cos
(
y2
))
y
)
y′ = 0.

(c) y2 sin (y) + xy = 6,(
2y (sin (y)) + y2 (cos (y)) + x

)
y′ + y = 0.

3. Show that if D (g) ⊆ U ⊆ D (f) , and if f and g are both one to one, then f ◦ g is
also one to one.

4. The number e is that number such that ln e = 1. Prove ex = exp (x) .

5. Find a formula for dy
dx for y = bx. Prove your formula.

6. Let y = xx for x ∈ (0,∞). Find y′ (x) .

7. The logarithm test states the following. Suppose ak ̸= 0 for large k and that

p = limk→∞
ln

(
1

|ak|

)
ln k exists. If p > 1, then

∑∞
k=1 ak converges absolutely. If

p < 1, then the series,
∑∞

k=1 ak does not converge absolutely. Prove this theorem.
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8. Suppose f (x+ y) = f (x) + f (y) and f is continuous at 0. Find all solutions to
this functional equation which are continuous at x = 0. Now find all solutions
which are bounded near 0. Next if you want an even more interesting version of
this, find all solutions whose graphs are not dense in the plane. (A set S is dense
in the plane if for every (a, b) ∈ R×R and r > 0, there exists (x, y) ∈ S such that√

(x− a)2 + (y − b)2 < r

This is called the Cauchy equation.

9. Suppose f (x+ y) = f (x) f (y) and f is continuous and not identically zero. Find
all solutions to this functional equation. Hint: First show the functional equation
requires f > 0.

10. Suppose f (xy) = f (x)+ f (y) for x, y > 0. Suppose also f is continuous. Find all
solutions to this functional equation.

11. Using the Cauchy condensation test, determine the convergence of
∑∞

k=2
1

k ln k .
Now determine the convergence of

∑∞
k=2

1
k(ln k)1.001

.

12. Find the values of p for which the following series converges and the values of p
for which it diverges.

∞∑
k=4

1

lnp (ln (k)) ln (k) k

13. For p a positive number, determine the convergence of

∞∑
n=2

lnn

np

for various values of p.

14. Determine whether the following series converge absolutely, conditionally, or not
at all and give reasons for your answers.

(a)
∑∞

n=1 (−1)
n ln(k5)

k

(b)
∑∞

n=1 (−1)
n ln(k5)

k1.01

(c)
∑∞

n=1 (−1)
n 10n

(1.01)n

(d)
∑∞

n=1 (−1)
n
sin
(
1
n

)
(e)

∑∞
n=1 (−1)

n
tan

(
1
n2

)
(f)

∑∞
n=1 (−1)

n
cos
(

1
n2

)
(g)

∑∞
n=1 (−1)

n
sin
( √

n
n2+1

)
15. De Moivre’s theorem says

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt)

for n a positive integer. Prove this formula by induction. Does this formula
continue to hold for all integers, n, even negative integers? Explain.
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16. Using De Moivre’s theorem, show that if z ∈ C then z has n distinct nth roots.
Hint: Letting z = x+ iy,

z = |z|
(
x

|z|
+ i

y

|z|

)
and argue

(
x
|z| ,

y
|z|

)
is a point on the unit circle. Hence z = |z| (cos (θ) + i sin (θ)) .

Then
w = |w| (cos (α) + i sin (α))

is an nth root if and only if (|w| (cos (α) + i sin (α)))
n
= z. Show this happens

exactly when |w| = n
√
|z| and α = θ+2kπ

n for k = 0, 1, · · · , n.

17. Using De Moivre’s theorem from Problem 15, derive a formula for sin (5x) and
one for cos (5x).

18. Suppose
∑∞

n=0 an (x− c)
n
is a power series with radius of convergence r. Show

the series converge uniformly on any interval [a, b] where [a, b] ⊆ (c− r, c+ r) .

19. Find the disc of convergence of the series
∑

xn

np for various values of p. Hint: Use
Dirichlet’s test.

20. Show

ex =
∞∑
k=0

xk

k!

for all x ∈ R where e is the number such that ln e = 1. Thus

e =
∞∑
k=0

1

k!
.

Show e is irrational. Hint: If e = p/q for p, q positive integers, then argue

q!

(
p

q
−

q∑
k=0

1

k!

)

is an integer. However, you can also show

q!

( ∞∑
k=0

1

k!
−

q∑
k=0

1

k!

)
< 1

21. Let a ≥ 1. Show that for all x > 0, you have the inequality

ax > ln (1 + xa) .

8.6 L’Hôpital’s Rule

There is an interesting rule which is often useful for evaluating difficult limits called
L’Hôpital’s1 rule. The best versions of this rule are based on the Cauchy Mean value
theorem, Theorem 7.8.2 on Page 144.

1L’Hôpital published the first calculus book in 1696. This rule, named after him, appeared in this
book. The rule was actually due to Bernoulli who had been L’Hôpital’s teacher. L’Hôpital did not
claim the rule as his own but Bernoulli accused him of plagarism. Nevertheless, this rule has become
known as L’Hôpital’s rule ever since. The version of the rule presented here is superior to what was
discovered by Bernoulli and depends on the Cauchy mean value theorem which was found over 100
years after the time of L’Hôpital.
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Theorem 8.6.1 Let [a, b] ⊆ [−∞,∞] and suppose f, g are functions which sat-
isfy,

lim
x→b−

f (x) = lim
x→b−

g (x) = 0, (8.18)

and f ′ and g′ exist on (a, b) with g′ (x) ̸= 0 on (a, b). Suppose also that

lim
x→b−

f ′ (x)

g′ (x)
= L. (8.19)

Then

lim
x→b−

f (x)

g (x)
= L. (8.20)

Proof: By the definition of limit and 8.19 there exists c < b such that if t > c, then∣∣∣∣f ′ (t)g′ (t)
− L

∣∣∣∣ < ε

2
.

Now pick x, y such that c < x < y < b. By the Cauchy mean value theorem, there
exists t ∈ (x, y) such that

g′ (t) (f (x)− f (y)) = f ′ (t) (g (x)− g (y)) .

Since g′ (s) ̸= 0 for all s ∈ (a, b) it follows from the mean value theorem g (x)−g (y) ̸= 0.
Therefore,

f ′ (t)

g′ (t)
=
f (x)− f (y)
g (x)− g (y)

and so, since t > c, ∣∣∣∣f (x)− f (y)g (x)− g (y)
− L

∣∣∣∣ < ε

2
.

Now letting y → b−, ∣∣∣∣f (x)g (x)
− L

∣∣∣∣ ≤ ε

2
< ε.

Since ε > 0 is arbitrary, this shows 8.20.
The following corollary is proved in the same way.

Corollary 8.6.2 Let [a, b] ⊆ [−∞,∞] and suppose f, g are functions which satisfy,

lim
x→a+

f (x) = lim
x→a+

g (x) = 0, (8.21)

and f ′ and g′ exist on (a, b) with g′ (x) ̸= 0 on (a, b). Suppose also that

lim
x→a+

f ′ (x)

g′ (x)
= L. (8.22)

Then

lim
x→a+

f (x)

g (x)
= L. (8.23)

Here is a simple example which illustrates the use of this rule.

Example 8.6.3 Find limx→0
5x+sin 3x
tan 7x .
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The conditions of L’Hôpital’s rule are satisfied because the numerator and denomi-
nator both converge to 0 and the derivative of the denominator is nonzero for x close to
0. Therefore, if the limit of the quotient of the derivatives exists, it will equal the limit
of the original function. Thus,

lim
x→0

5x+ sin 3x

tan 7x
= lim

x→0

5 + 3 cos 3x

7 sec2 (7x)
=

8

7
.

Sometimes you have to use L’Hôpital’s rule more than once.

Example 8.6.4 Find limx→0
sin x−x

x3 .

Note that limx→0 (sinx− x) = 0 and limx→0 x
3 = 0. Also, the derivative of the

denominator is nonzero for x close to 0. Therefore, if limx→0
cos x−1

3x2 exists and equals L,
it will follow from L’Hôpital’s rule that the original limit exists and equals L. However,
limx→0 (cosx− 1) = 0 and limx→0 3x

2 = 0 so L’Hôpital’s rule can be applied again
to consider limx→0

− sin x
6x . From L’Hôpital’s rule, if this limit exists and equals L, it

will follow that limx→0
cos x−1

3x2 = L and consequently limx→0
sin x−x

x3 = L. But from

Proposition 8.3.5, limx→0
− sin x

6x = −1
6 . Therefore, by L’Hôpital’s rule, limx→0

sin x−x
x3 =

−1
6 .

Warning 8.6.5 Be sure to check the assumptions of L’Hôpital’s
rule before using it.

Example 8.6.6 Find limx→0+
cos 2x

x .

The numerator becomes close to 1 and the denominator gets close to 0. Therefore,
the assumptions of L’Hôpital’s rule do not hold and so it does not apply. In fact there is
no limit unless you define the limit to equal +∞. Now lets try to use the conclusion of
L’Hôpital’s rule even though the conditions for using this rule are not verified. Take the
derivative of the numerator and the denominator which yields −2 sin 2x

1 , an expression
whose limit as x→ 0+ equals 0. This is a good illustration of the above warning.

Some people get the unfortunate idea that one can find limits by doing experiments
with a calculator. If the limit is taken as x gets close to 0, these people think one can
find the limit by evaluating the function at values of x which are closer and closer to
0. Theoretically, this should work although you have no way of knowing how small you
need to take x to get a good estimate of the limit. In practice, the procedure may fail
miserably.

Example 8.6.7 Find limx→0
ln|1+x10|

x10 .

This limit equals limy→0
ln|1+y|

y = limy→0
( 1

1+y )
1 = 1 where L’Hôpital’s rule has been

used. This is an amusing example. You should plug .001 in to the function
ln|1+x10|

x10 and
see what your calculator or computer gives you. If it is like mine, it will give 0 and will
keep on returning the answer of 0 for smaller numbers than .001. This illustrates the
folly of trying to compute limits through calculator or computer experiments. Indeed,
you could say that a calculator is as useful for understanding limits as a bicycle is for
swimming. Those who pretend otherwise are either guilty of ignorance or dishonesty.

There is another form of L’Hôpital’s rule in which limx→b− f (x) = ±∞ and limx→b− g (x) =
±∞.

Theorem 8.6.8 Let [a, b] ⊆ [−∞,∞] and suppose f, g are functions which sat-
isfy,

lim
x→b−

f (x) = ±∞ and lim
x→b−

g (x) = ±∞, (8.24)
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and f ′ and g′ exist on (a, b) with g′ (x) ̸= 0 on (a, b). Suppose also

lim
x→b−

f ′ (x)

g′ (x)
= L. (8.25)

Then

lim
x→b−

f (x)

g (x)
= L. (8.26)

Proof: By the definition of limit and 8.25 there exists c < b such that if t > c, then∣∣∣∣f ′ (t)g′ (t)
− L

∣∣∣∣ < ε

2
.

Now pick x, y such that c < x < y < b. By the Cauchy mean value theorem, there
exists t ∈ (x, y) such that

g′ (t) (f (x)− f (y)) = f ′ (t) (g (x)− g (y)) .

Since g′ (s) ̸= 0 on (a, b) , it follows from mean value theorem g (x)−g (y) ̸= 0. Therefore,

f ′ (t)

g′ (t)
=
f (x)− f (y)
g (x)− g (y)

and so, since t > c, ∣∣∣∣f (x)− f (y)g (x)− g (y)
− L

∣∣∣∣ < ε

2
.

Now this implies ∣∣∣∣∣∣f (y)g (y)

(
f(x)
f(y) − 1

)
(

g(x)
g(y) − 1

) − L
∣∣∣∣∣∣ < ε

2

where for all y large enough, both f(x)
f(y)−1 and g(x)

g(y)−1 are not equal to zero. Continuing

to rewrite the above inequality yields∣∣∣∣∣∣f (y)g (y)
− L

(
g(x)
g(y) − 1

)
(

f(x)
f(y) − 1

)
∣∣∣∣∣∣ < ε

2

∣∣∣∣∣∣
(

g(x)
g(y) − 1

)
(

f(x)
f(y) − 1

)
∣∣∣∣∣∣ .

Therefore, for y large enough,∣∣∣∣f (y)g (y)
− L

∣∣∣∣ ≤
∣∣∣∣∣∣L− L

(
g(x)
g(y) − 1

)
(

f(x)
f(y) − 1

)
∣∣∣∣∣∣+ ε

2

∣∣∣∣∣∣
(

g(x)
g(y) − 1

)
(

f(x)
f(y) − 1

)
∣∣∣∣∣∣ < ε

due to the assumption 8.24 which implies

lim
y→b−

(
g(x)
g(y) − 1

)
(

f(x)
f(y) − 1

) = 1.

Therefore, whenever y is large enough,∣∣∣∣f (y)g (y)
− L

∣∣∣∣ < ε

and this is what is meant by 8.26. �
As before, there is no essential difference between the proof in the case where x→ b−

and the proof when x→ a+. This observation is stated as the next corollary.
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Corollary 8.6.9 Let [a, b] ⊆ [−∞,∞] and suppose f, g are functions which satisfy,

lim
x→a+

f (x) = ±∞ and lim
x→a+

g (x) = ±∞, (8.27)

and f ′ and g′ exist on (a, b) with g′ (x) ̸= 0 on (a, b). Suppose also that

lim
x→a+

f ′ (x)

g′ (x)
= L. (8.28)

Then

lim
x→a+

f (x)

g (x)
= L. (8.29)

Theorems 8.6.1 8.6.8 and Corollaries 8.6.2 and 8.6.9 will be referred to as L’Hôpital’s
rule from now on. Theorem 8.6.1 and Corollary 8.6.2 involve the notion of indetermi-
nate forms of the form 0

0 . Please do not think any meaning is being assigned to the
nonsense expression 0

0 . It is just a symbol to help remember the sort of thing described
by Theorem 8.6.1 and Corollary 8.6.2. Theorem 8.6.8 and Corollary 8.6.9 deal with
indeterminate forms which are of the form ±∞

∞ . Again, this is just a symbol which is
helpful in remembering the sort of thing being considered. There are other indetermi-
nate forms which can be reduced to these forms just discussed. Don’t ever try to assign
meaning to such symbols.

Example 8.6.10 Find limy→∞

(
1 + x

y

)y
.

It is good to first see why this is called an indeterminate form. One might think
that as y →∞, it follows x/y → 0 and so 1+ x

y → 1. Now 1 raised to anything is 1 and
so it would seem this limit should equal 1. On the other hand, if x > 0, 1 + x

y > 1 and
a number raised to higher and higher powers should approach ∞. It really isn’t clear
what this limit should be. It is an indeterminate form which can be described as 1∞.
By definition, (

1 +
x

y

)y

= exp

(
y ln

(
1 +

x

y

))
.

Now using L’Hôpital’s rule,

lim
y→∞

y ln

(
1 +

x

y

)
= lim

y→∞

ln
(
1 + x

y

)
1/y

= lim
y→∞

1
1+(x/y)

(
−x/y2

)
(−1/y2)

= lim
y→∞

x

1 + (x/y)
= x

Therefore,

lim
y→∞

y ln

(
1 +

x

y

)
= x

Since exp is continuous, it follows

lim
y→∞

(
1 +

x

y

)y

= lim
y→∞

exp

(
y ln

(
1 +

x

y

))
= ex.
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8.6.1 Interest Compounded Continuously

Suppose you put money in the bank and it accrues interest at the rate of r per payment
period. These terms need a little explanation. If the payment period is one month,
and you started with $100 then the amount at the end of one month would equal
100 (1 + r) = 100 + 100r. In this the second term is the interest and the first is called
the principal. Now you have 100 (1 + r) in the bank. This becomes the new principal.
How much will you have at the end of the second month? By analogy to what was just
done it would equal

100 (1 + r) + 100 (1 + r) r = 100 (1 + r)
2
.

In general, the amount you would have at the end of n months is 100 (1 + r)
n
.

When a bank says they offer 6% compounded monthly, this means r, the rate per
payment period equals .06/12. Consider the problem of a rate of r per year and com-
pounding the interest n times a year and letting n increase without bound. This is what
is meant by compounding continuously. The interest rate per payment period is then
r/n and the number of payment periods after time t years is approximately tn. From
the above the amount in the account after t years is

P
(
1 +

r

n

)nt
(8.30)

Recall from Example 8.6.10 that limy→∞

(
1 + x

y

)y
= ex. The expression in 8.30 can be

written as

P
[(

1 +
r

n

)n]t
and so, taking the limit as n→∞, you get

Pert = A.

This shows how to compound interest continuously.

Example 8.6.11 Suppose you have $100 and you put it in a savings account which
pays 6% compounded continuously. How much will you have at the end of 4 years?

From the above discussion, this would be 100e(.06)4 = 127. 12. Thus, in 4 years, you
would gain interest of about $27.

8.7 Exercises

1. Find the limits.

(a) limx→0
3x−4 sin 3x

tan 3x

(b) limx→π
2 − (tanx)

x−(π/2)

(c) limx→1
arctan(4x−4)
arcsin(4x−4)

(d) limx→0
arctan 3x−3x

x3

(e) limx→0+
9sec x−1−1
3sec x−1−1

(f) limx→0
3x+sin 4x
tan 2x

(g) limx→π/2
ln(sin x)
x−(π/2)

(h) limx→0
cosh 2x−1

x2
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(i) limx→0
− arctan x+x

x3

(j) limx→0
x8 sin 1

x

sin 3x

(k) limx→∞ (1 + 5x)
2
x

(l) limx→0
−2x+3 sin x

x

(m) limx→1
ln(cos(x−1))

(x−1)2

(n) limx→0+ sin
1
x x

(o) limx→0 (csc 5x− cot 5x)

(p) limx→0+
3sin x−1
2sin x−1

(q) limx→0+ (4x)
x2

(r) limx→∞
x10

(1.01)x

(s) limx→0 (cos 4x)
(1/x2)

2. Find the following limits.

(a) limx→0+
1−

√
cos 2x

sin4(4
√
x)
.

(b) limx→0
2x

2
−25x

sin
(

x2

5

)
−sin(3x)

.

(c) limn→∞ n
(

n
√
7− 1

)
.

(d) limx→∞

(
3x+2
5x−9

)x2

.

(e) limx→∞

(
3x+2
5x−9

)1/x
.

(f) limn→∞

(
cos 2x√

n

)n
.

(g) limn→∞

(
cos 2x√

5n

)n
.

(h) limx→3
xx−27
x−3 .

(i) limn→∞ cos
(
π

√
4n2+13n

n

)
.

(j) limx→∞
(

3
√
x3 + 7x2 −

√
x2 − 11x

)
.

(k) limx→∞
(

5
√
x5 + 7x4 − 3

√
x3 − 11x2

)
.

(l) limx→∞

(
5x2+7
2x2−11

) x
1−x

.

(m) limx→∞

(
5x2+7
2x2−11

) x ln x
1−x

.

(n) limx→0+

ln
(
e2x

2
+7

√
x
)

sinh(
√
x)

.

(o) limx→0+
7
√
x− 5

√
x

9
√
x− 11

√
x
.

3. Find the following limits.

(a) limx→0+ (1 + 3x)
cot 2x

(b) limx→0
sin x−x

x2 = 0



8.8. MULTIPLICATION OF POWER SERIES 175

(c) limx→0
sin x−x

x3

(d) limx→0
tan(sin x)−sin(tan x)

x7

(e) limx→0
tan(sin 2x)−sin(tan 2x)

x7

(f) limx→0
sin(x2)−sin2(x)

x4

(g) limx→0
e
−(1/x2)

x

(h) limx→0

(
1
x − cot (x)

)
(i) limx→0

cos(sinx)−1
x2

(j) limx→∞

(
x2
(
4x4 + 7

)1/2 − 2x4
)

(k) limx→0
cos(x)−cos(4x)

tan(x2)

(l) limx→0
arctan(3x)

x

(m) limx→∞

[(
x9 + 5x6

)1/3 − x3]
4. Suppose you want to have $2000 saved at the end of 5 years. How much money

should you place into an account which pays 7% per year compounded continu-
ously?

5. Using a good calculator, find e.06−
(
1 + .06

360

)360
. Explain why this gives a measure

of the difference between compounding continuously and compounding daily.

6. Consider the following function 2

f (x) =

{
e−1/x2

for x ̸= 0
0 for x = 0

Show that f (k) (0) = 0 for all k so the power series of this function is of the form∑∞
k=0 0x

k but the function is not identically equal to 0 on any interval containing
0. Thus this function has all derivatives at 0 and at every other point, yet fails
to be correctly represented by its power series. This is an example of a smooth
function which is not analytic. It is smooth because all derivatives exist and are
continuous. It fails to be analytic because it is not correctly given by its power
series in any open set.

8.8 Multiplication Of Power Series

Next consider the problem of multiplying two power series.

Theorem 8.8.1 Let
∑∞

n=0 an (x− a)
n
and

∑∞
n=0 bn (x− a)

n
be two power se-

ries having radii of convergence r1 and r2, both positive. Then( ∞∑
n=0

an (x− a)n
)( ∞∑

n=0

bn (x− a)n
)

=

∞∑
n=0

(
n∑

k=0

akbn−k

)
(x− a)n

whenever |x− a| < r ≡ min (r1, r2) .

2Surprisingly, this function is very important to those who use modern techniques to study differen-
tial equations. One needs to consider test functions which have the property they have infinitely many
derivatives but vanish outside of some interval. The theory of complex variables can be used to show
there are no examples of such functions if they have a valid power series expansion. It even becomes
a little questionable whether such strange functions even exist at all. Nevertheless, they do, there are
enough of them, and it is this very example which is used to show this.
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Proof: By Theorem 8.1.3 both series converge absolutely if |x− a| < r. Therefore,
by Theorem 5.4.8 ( ∞∑

n=0

an (x− a)n
)( ∞∑

n=0

bn (x− a)n
)

=

∞∑
n=0

n∑
k=0

ak (x− a)k bn−k (x− a)n−k
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
(x− a)n . �

The significance of this theorem in terms of applications is that it states you can
multiply power series just as you would multiply polynomials and everything will be all
right on the common interval of convergence.

This theorem can be used to find Taylor series which would perhaps be hard to find
without it. Here is an example.

Example 8.8.2 Find the Taylor series for ex sinx centered at x = 0.

All that is required is to multiply
ex︷ ︸︸ ︷

1 + x+
x2

2!
+
x3

3!
· · ·




sin x︷ ︸︸ ︷
x− x3

3!
+
x5

5!
+ · · ·


From the above theorem the result should be

x+ x2 +

(
− 1

3!
+

1

2!

)
x3 + · · ·

= x+ x2 +
1

3
x3 + · · ·

You can continue this way and get the following to a few more terms.

x+ x2 +
1

3
x3 − 1

30
x5 − 1

90
x6 − 1

630
x7 + · · ·

I don’t see a pattern in these coefficients but I can go on generating them as long as I
want. (In practice this tends to not be very long.) I also know the resulting power series
will converge for all x because both the series for ex and the one for sinx converge for
all x.

Example 8.8.3 Find the Taylor series for tanx centered at x = 0.

Lets suppose it has a Taylor series a0 + a1x+ a2x
2 + · · · . Then

(
a0 + a1x+ a2x

2 + · · ·
)

cos x︷ ︸︸ ︷
1− x2

2
+
x4

4!
+ · · ·

 =

(
x− x3

3!
+
x5

5!
+ · · ·

)
.

Using the above, a0 = 0, a1x = x so a1 = 1,
(
0
(−1

2

)
+ a2

)
x2 = 0 so a2 = 0.

(
a3 − a1

2

)
x3 =

−1
3! x

3 so a3 − 1
2 = −1

6 so a3 = 1
3 . Clearly one can continue in this manner. Thus the

first several terms of the power series for tan are

tanx = x+
1

3
x3 + · · · .
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You can go on calculating these terms and find the next two yielding

tanx = x+
1

3
x3 +

2

15
x5 +

17

315
x7 + · · ·

This is a very significant technique because, as you see, there does not appear to be a
very simple pattern for the coefficients of the power series for tanx. Of course there are
some issues here about whether tanx even has a power series, but if it does, the above
must be it. In fact, tan (x) will have a power series valid on some interval centered at 0
and this becomes completely obvious when one uses methods from complex analysis but
it isn’t too obvious at this point. If you are interested in this issue, read the last section
of the chapter. Note also that what has been accomplished is to divide the power series
for sinx by the power series for cosx just like they were polynomials.

8.9 Exercises

1. Find the radius of convergence of the following.

(a)
∑∞

k=1

(
x
2

)n
(b)

∑∞
k=1 sin

(
1
n

)
3nxn

(c)
∑∞

k=0 k!x
k

(d)
∑∞

n=0
(3n)n

(3n)! x
n

(e)
∑∞

n=0
(2n)n

(2n)! x
n

2. Find
∑∞

k=1 k2
−k.

3. Find
∑∞

k=1 k
23−k.

4. Find
∑∞

k=1
2−k

k .

5. Find
∑∞

k=1
3−k

k .

6. Show there exists a function f which is continuous on [0, 1] but nowhere differen-
tiable and an infinite series of the form

∑∞
k=1 pk (x) where each pk is a polynomial

which converges uniformly to f (x) on [0, 1] . Thus it makes absolutely no sense
to write something like f ′ (x) =

∑∞
k=1 p

′
k (x) . Hint: Use the Weierstrass approx-

imation theorem.

7. Find the power series centered at 0 for the function 1/
(
1 + x2

)
and give the radius

of convergence. Where does the function make sense? Where does the power series
equal the function?

8. Find a power series for the function f (x) ≡ sin(
√
x)√

x
for x > 0. Where does f (x)

make sense? Where does the power series you found converge?

9. Use the power series technique which was applied in Example 8.4.1 to consider
the initial value problem y′ = y, y (0) = 1. This yields another way to obtain the
power series for ex.

10. Use the power series technique on the initial value problem y′ + y = 0, y (0) = 1.
What is the solution to this initial value problem?
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11. Use the power series technique to find solutions in terms of power series to the
initial value problem

y′′ + xy = 0, y (0) = 0, y′ (0) = 1.

Tell where your solution gives a valid description of a solution for the initial value
problem. Hint: This is a little different but you proceed the same way as in
Example 8.4.1. The main difference is you have to do two differentiations of the
power series instead of one.

12. Find several terms of a power series solution to the nonlinear initial value problem

y′′ + a sin (y) = 0, y (0) = 1, y′ (0) = 0.

This is the equation which governs the vibration of a pendulum. Explain why
there exists a power series which gives the solution to the above initial value
problem. It might be useful to use the formula of Problem ?? on Page ??. Multiply
the equation by y′ and identify what you have obtained as the derivative of an
interesting quantity which must be constant.

13. Suppose the function ex is defined in terms of a power series, ex ≡
∑∞

k=0
xk

k! . Use
Theorem 5.4.8 on Page 91 to show directly the usual law of exponents,

ex+y = exey.

Be sure to check all the hypotheses.

14. Let fn (x) ≡
(
1
n + x2

)1/2
. Show that for all x,

||x| − fn (x)| ≤
1√
n
.

Thus these approximate functions converge uniformly to the function f (x) = |x|.
Now show f ′n (0) = 0 for all n and so f ′n (0)→ 0. However, the function f (x) ≡ |x|
has no derivative at x = 0. Thus even though fn (x)→ f (x) for all x, you cannot
say that f ′n (0)→ f ′ (0) .

15. Let the functions, fn (x) be given in Problem 14 and consider

g1 (x) = f1 (x) , gn (x) = fn (x)− fn−1 (x) if n > 1.

Show that for all x,
∞∑
k=0

gk (x) = |x|

and that g′k (0) = 0 for all k. Therefore, you can’t differentiate the series term by
term and get the right answer3.

16. Use the theorem about the binomial series to give a proof of the binomial theorem

(a+ b)
n
=

n∑
k=0

(
n

k

)
an−kbk

whenever n is a positive integer.

3How bad can this get? It can be much worse than this. In fact, there are functions which are
continuous everywhere and differentiable nowhere. We typically don’t have names for them but they
are there just the same. Every such function can be written as an infinite sum of polynomials which
of course have derivatives at every point. Thus it is nonsense to differentiate an infinite sum term by
term without a theorem of some sort.
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17. Find the power series for sin
(
x2
)
by plugging in x2 where ever there is an x in

the power series for sinx. How do you know this is the power series for sin
(
x2
)
?

18. Find the first several terms of the power series for sin2 (x) by multiplying the

power series for sin (x) . Next use the trig. identity, sin2 (x) = 1−cos(2x)
2 and the

power series for cos (2x) to find the power series.

19. Find the power series for f (x) = 1√
1−x2

.

20. Let a, b be two positive numbers and let p > 1. Choose q such that

1

p
+

1

q
= 1.

Now verify the important inequality

ab ≤ ap

p
+
bq

q
.

Hint: You might try considering f (a) = ap

p + bq

q −ab for fixed b > 0 and examine
its graph using the derivative.

21. Using Problem 20, show that if α > 0, p > 1, it follows that for all x > 0(
p− 1

p
x+

α

p
x1−p

)p

≥ α.

22. Using Problem 21, define for p > 1 and α > 0 the following sequence

xn+1 ≡
p− 1

p
xn +

α

p
x1−p
n , x1 > 0.

Show limn→∞ xn = x where x = α1/p. In fact show that after x1 the sequence
decreases to α1/p.

23. Consider the sequence
{(

1 + x
n

)n}∞
n=1

where x is a positive number. Using the
binomial theorem show this sequence is increasing. Next show the sequence con-
verges.

24. Consider the sequence
{(

1 + x
n

)n+1
}∞

n=1
where x is a positive number. Show this

sequence decreases when x < 2. Hint: You might consider showing (1 + y)
(x/y)+1

is increasing in y provided x ≤ 2. To do this, you might use the following obser-
vation repeatedly. If f (0) = 0 and f ′ (y) > 0, then f (y) ≥ 0. There may also be
other ways to do this.

8.10 The Fundamental Theorem Of Algebra

The fundamental theorem of algebra states that every non constant polynomial having
coefficients in C has a zero in C. If C is replaced by R, this is not true because of the
example, x2 + 1 = 0. This theorem is a very remarkable result and notwithstanding
its title, all the best proofs of it depend on either analysis or topology. It was proved
by Gauss in 1797. The proof given here follows Rudin [31]. See also Hardy [19] for a
similar proof, more discussion and references. You can also see the interesting article
on Wikipedia. You google fundamental theorem of algebra and go to this site. There
are many ways to prove it. This articale claims the first completely correct proof was
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done by Argand in 1806. The shortest proof is found in the theory of complex analysis
and is a simple application of Liouville’s theorem.

Recall De Moivre’s theorem, Problem 15 on Page 167 from trigonometry which is
listed here for convenience.

Theorem 8.10.1 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Recall that this theorem is the basis for proving the following corollary from trigonom-
etry, also listed here for convenience, see Problem 16 on Page 168.

Corollary 8.10.2 Let z be a non zero complex number and let k be a positive integer.
Then there are always exactly k kth roots of z in C.

Lemma 8.10.3 Let ak ∈ C for k = 1, · · · , n and let p (z) ≡
∑n

k=1 akz
k. Then p is

continuous.

Proof:
|azn − awn| ≤ |a| |z − w|

∣∣zn−1 + zn−2w + · · ·+ wn−1
∣∣ .

Then for |z − w| < 1, the triangle inequality implies |w| < 1 + |z| and so if |z − w| < 1,

|azn − awn| ≤ |a| |z − w|n (1 + |z|)n .

If ε > 0 is given, let

δ < min

(
1,

ε

|a|n (1 + |z|)n
)
.

It follows from the above inequality that for |z − w| < δ, |azn − awn| < ε. The function
of the lemma is just the sum of functions of this sort and so it follows that it is also
continuous.

Theorem 8.10.4 (Fundamental theorem of Algebra) Let p (z) be a nonconstant
polynomial. Then there exists z ∈ C such that p (z) = 0.

Proof:Suppose not. Then

p (z) =

n∑
k=0

akz
k

where an ̸= 0, n > 0. Then

|p (z)| ≥ |an| |z|n −
n−1∑
k=0

|ak| |z|k

and so
lim

|z|→∞
|p (z)| =∞ (8.31)

because the |z|n term dominates all the others for large |z|. More precisely,

|p (z)| ≥ |z|n
(
|an| −

n−1∑
k=0

|ak|
|z|k

|z|n

)

and since n > k, all those terms in the sum are small for large |z|. Now let

λ ≡ inf {|p (z)| : z ∈ C} .
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By 8.31, there exists an R > 0 such that if |z| > R, it follows that |p (z)| > λ+ 1.
Therefore,

λ ≡ inf {|p (z)| : z ∈ C} = inf {|p (z)| : |z| ≤ R}
= inf

{
|p (x+ iy)| : x2 + y2 ≤ R2

}
≥ inf {|p (x+ iy)| : |x| ≤ R and |y| ≤ R}
≥ inf {|p (z)| : z ∈ C} ≡ λ

By Theorem 6.3.3 on Page 105 there exists w such that |p (w)| = λ. A contradiction is
obtained if |p (w)| = 0 so assume |p (w)| > 0. Then consider

q (z) ≡ p (z + w)

p (w)
.

It follows q (z) is of the form

q (z) = 1 + ckz
k + · · ·+ cnz

n

where ck ̸= 0. The reason the constant term is 1 is because q (0) = 1. It is also true that
|q (z)| ≥ 1 by the assumption that |p (w)| is the smallest value of |p (z)| . Now let θ ∈ C
be a complex number with |θ| = 1 and

θckw
k = − |w|k |ck| .

If

w ̸= 0, θ =
−
∣∣wk
∣∣ |ck|

wkck

and if w = 0, θ = 1 will work. Now let ηk = θ so η is a kth root of θ and let t be a small
positive number.

q (tηw) ≡ 1− tk |w|k |ck|+ · · ·+ cnt
n (ηw)

n

which is of the form
1− tk |w|k |ck|+ tk (g (t, w))

where limt→0 g (t, w) = 0. Letting t be small enough this yields a contradiction to
|q (z)| ≥ 1 because eventually, for small enough t,

|g (t, w)| < |w|k |ck| /2

and so for such t,

|q (tηw)| < 1− tk |w|k |ck|+ tk |w|k |ck| /2 < 1 �

8.11 Some Other Theorems

First recall Theorem 5.4.8 on Page 91. For convenience, the version of this theorem
which is of interest here is listed below.

Theorem 8.11.1 Suppose
∑∞

i=0 ai and
∑∞

j=0 bj both converge absolutely. Then( ∞∑
i=0

ai

) ∞∑
j=0

bj

 =

∞∑
n=0

cn

where

cn =

n∑
k=0

akbn−k.

Furthermore,
∑∞

n=0 cn converges absolutely.
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Proof:It only remains to verify the last series converges absolutely. Letting pnk
equal 1 if k ≤ n and 0 if k > n. Then by Theorem 5.4.5 on Page 89

∞∑
n=0

|cn| =
∞∑

n=0

∣∣∣∣∣
n∑

k=0

akbn−k

∣∣∣∣∣
≤

∞∑
n=0

n∑
k=0

|ak| |bn−k| =
∞∑

n=0

∞∑
k=0

pnk |ak| |bn−k|

=
∞∑
k=0

∞∑
n=0

pnk |ak| |bn−k| =
∞∑
k=0

∞∑
n=k

|ak| |bn−k|

=
∞∑
k=0

|ak|
∞∑

n=0

|bn| <∞. �

The above theorem is about multiplying two series. What if you wanted to consider( ∞∑
n=0

an

)p

where p is a positive integer maybe larger than 2? Is there a similar theorem to the
above?

Definition 8.11.2 Define∑
k1+···+kp=m

ak1ak2 · · · akp

as follows. Consider all ordered lists of nonnegative integers k1, · · · , kp which have the
property that

∑p
i=1 ki = m. For each such list of integers, form the product, ak1ak2 · · · akp

and then add all these products.

Note that
n∑

k=0

akan−k =
∑

k1+k2=n

ak1ak2

Therefore, from the above theorem, if
∑
ai converges absolutely, it follows( ∞∑

i=0

ai

)2

=
∞∑

n=0

( ∑
k1+k2=n

ak1
ak2

)
.

It turns out a similar theorem holds for replacing 2 with p.

Theorem 8.11.3 Suppose
∑∞

n=0 an converges absolutely. Then if p is a positive
integer, ( ∞∑

n=0

an

)p

=
∞∑

m=0

cmp

where

cmp ≡
∑

k1+···+kp=m

ak1 · · · akp .
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Proof:First note this is obviously true if p = 1 and is also true if p = 2 from the

above theorem. Now suppose this is true for p and consider (
∑∞

n=0 an)
p+1

. By the
induction hypothesis and the above theorem on the Cauchy product,( ∞∑

n=0

an

)p+1

=

( ∞∑
n=0

an

)p( ∞∑
n=0

an

)

=

( ∞∑
m=0

cmp

)( ∞∑
n=0

an

)

=

∞∑
n=0

(
n∑

k=0

ckpan−k

)

=
∞∑

n=0

n∑
k=0

∑
k1+···+kp=k

ak1 · · · akpan−k

=
∞∑

n=0

∑
k1+···+kp+1=n

ak1 · · · akp+1 �

This theorem implies the following corollary for power series.

Corollary 8.11.4 Let
∞∑

n=0

an (x− a)n

be a power series having radius of convergence, r > 0. Then if |x− a| < r,( ∞∑
n=0

an (x− a)n
)p

=

∞∑
n=0

bnp (x− a)n

where
bnp ≡

∑
k1+···+kp=n

ak1 · · · akp .

Proof: Since |x− a| < r, the series,
∑∞

n=0 an (x− a)
n
, converges absolutely. There-

fore, the above theorem applies and( ∞∑
n=0

an (x− a)n
)p

=

∞∑
n=0

 ∑
k1+···+kp=n

ak1 (x− a)
k1 · · · akp (x− a)

kp

 =

∞∑
n=0

 ∑
k1+···+kp=n

ak1
· · · akp

 (x− a)n . �

With this theorem it is possible to consider the question raised in Example 8.8.3
on Page 176 about the existence of the power series for tanx. This question is clearly
included in the more general question of when( ∞∑

n=0

an (x− a)n
)−1

has a power series.
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Lemma 8.11.5 Let f (x) =
∑∞

n=0 an (x− a)
n
, a power series having radius of con-

vergence r > 0. Suppose also that f (a) = 1. Then there exists r1 > 0 and {bn} such
that for all |x− a| < r1,

1

f (x)
=

∞∑
n=0

bn (x− a)n .

Proof:By continuity, there exists r1 > 0 such that if |x− a| < r1, then

∞∑
n=1

|an| |x− a|n < 1.

Now pick such an x. Then

1

f (x)
=

1

1 +
∑∞

n=1 an (x− a)
n

=
1

1 +
∑∞

n=0 cn (x− a)
n

where cn = an if n > 0 and c0 = 0. Then∣∣∣∣∣
∞∑

n=1

an (x− a)n
∣∣∣∣∣ ≤

∞∑
n=1

|an| |x− a|n < 1 (8.32)

and so from the formula for the sum of a geometric series,

1

f (x)
=

∞∑
p=0

(
−

∞∑
n=0

cn (x− a)n
)p

.

By Corollary 8.11.4, this equals

∞∑
p=0

∞∑
n=0

bnp (x− a)n (8.33)

where
bnp =

∑
k1+···+kp=n

(−1)p ck1 · · · ckp .

Thus |bnp| ≤
∑

k1+···+kp=n |ck1
| · · ·

∣∣ckp

∣∣ ≡ Bnp and so by Theorem 8.11.3,

∞∑
p=0

∞∑
n=0

|bnp| |x− a|n ≤
∞∑
p=0

∞∑
n=0

Bnp |x− a|n

=
∞∑
p=0

( ∞∑
n=0

|cn| |x− a|n
)p

<∞

by 8.32 and the formula for the sum of a geometric series. Since the series of 8.33
converges absolutely, Theorem 5.4.5 on Page 89 implies the series in 8.33 equals

∞∑
n=0

( ∞∑
p=0

bnp

)
(x− a)n

and so, letting
∑∞

p=0 bnp ≡ bn, this proves the lemma. �
With this lemma, the following theorem is easy to obtain.
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Theorem 8.11.6 Let f (x) =
∑∞

n=0 an (x− a)
n
, a power series having radius

of convergence r > 0. Suppose also that f (a) ̸= 0. Then there exists r1 > 0 and {bn}
such that for all |x− a| < r1,

1

f (x)
=

∞∑
n=0

bn (x− a)n .

Proof: Let g (x) ≡ f (x) /f (a) so that g (x) satisfies the conditions of the above
lemma. Then by that lemma, there exists r1 > 0 and a sequence, {bn} such that

f (a)

f (x)
=

∞∑
n=0

bn (x− a)n

for all |x− a| < r1. Then

1

f (x)
=

∞∑
n=0

b̃n (x− a)n

where b̃n = bn/f (a) . �
There is a very interesting question related to r1 in this theorem. Consider f (x) =

1 + x2. In this case r = ∞ but the power series for 1/f (x) converges only if |x| < 1.
What happens is this, 1/f (x) will have a power series that will converge for |x− a| < r1
where r1 is the distance between a and the nearest singularity or zero of f (x) in the
complex plane. In the case of f (x) = 1 + x2 this function has a zero at x = ±i. This
is just another instance of why the natural setting for the study of power series is the
complex plane. To read more on power series, you should see the book by Apostol [3]
or any text on complex variable.
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Chapter 9

The Riemann And Riemann
Stieltjes Integrals

The integral originated in attempts to find areas of various shapes and the ideas involved
in finding integrals are much older than the ideas related to finding derivatives. In fact,
Archimedes1 was finding areas of various curved shapes about 250 B.C. using the main
ideas of the integral. What is presented here is a generalization of these ideas. The main
interest is in the Riemann integral but if it is easy to generalize to the so called Riemann
Stieltjes integral in which the length of an interval, [x, y] is replaced with an expression
of the form F (y) − F (x) where F is an increasing function, then the generalization is
given. However, there is much more that can be written about Stieltjes integrals than
what is presented here. A good source for this is the book by Apostol, [2].

9.1 The Darboux Stieltjes Integral

9.1.1 Upper And Lower Darboux Stieltjes Sums

The Darboux integral pertains to bounded functions which are defined on a bounded
interval. Let [a, b] be a closed interval. A set of points in [a, b], {x0, · · · , xn} is a partition
if

a = x0 < x1 < · · · < xn = b.

Such partitions are denoted by P or Q. For f a bounded function defined on [a, b] , let

Mi (f) ≡ sup{f (x) : x ∈ [xi−1, xi]},
mi (f) ≡ inf{f (x) : x ∈ [xi−1, xi]}.

Definition 9.1.1 Let F be an increasing function defined on [a, b] and let ∆Fi ≡
F (xi)− F (xi−1) . Then define upper and lower sums as

U (f, P ) ≡
n∑

i=1

Mi (f)∆Fi and L (f, P ) ≡
n∑

i=1

mi (f)∆Fi

1Archimedes 287-212 B.C. found areas of curved regions by stuffing them with simple shapes which
he knew the area of and taking a limit. He also made fundamental contributions to physics. The story
is told about how he determined that a gold smith had cheated the king by giving him a crown which
was not solid gold as had been claimed. He did this by finding the amount of water displaced by the
crown and comparing with the amount of water it should have displaced if it had been solid gold.

187
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respectively. The numbers, Mi (f) and mi (f) , are well defined real numbers because f
is assumed to be bounded and R is complete. Thus the set S = {f (x) : x ∈ [xi−1, xi]}
is bounded above and below. The function F will be called an integrator.

In the following picture, the sum of the areas of the rectangles in the picture on
the left is a lower sum for the function in the picture and the sum of the areas of the
rectangles in the picture on the right is an upper sum for the same function which uses
the same partition. In these pictures the function F is given by F (x) = x and these
are the ordinary upper and lower sums from calculus.

y = f(x)

x0 x1 x2 x3 x0 x1 x2 x3

What happens when you add in more points in a partition? The following pictures
illustrate in the context of the above example. In this example a single additional point,
labeled z has been added in.

y = f(x)

x0 x1 x2 x3z x0 x1 x2 x3z

Note how the lower sum got larger by the amount of the area in the shaded rectangle
and the upper sum got smaller by the amount in the rectangle shaded by dots. In general
this is the way it works and this is shown in the following lemma.

Lemma 9.1.2 If P ⊆ Q then

U (f,Q) ≤ U (f, P ) , and L (f, P ) ≤ L (f,Q) .

Proof:This is verified by adding in one point at a time. Thus let

P = {x0, · · · , xn}

and let

Q = {x0, · · · , xk, y, xk+1, · · · , xn}.

Thus exactly one point, y, is added between xk and xk+1. Now the term in the upper
sum which corresponds to the interval [xk, xk+1] in U (f, P ) is

sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (xk)) (9.1)
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and the term which corresponds to the interval [xk, xk+1] in U (f,Q) is

sup {f (x) : x ∈ [xk, y]} (F (y)− F (xk))

+ sup {f (x) : x ∈ [y, xk+1]} (F (xk+1)− F (y))

≡M1 (F (y)− F (xk)) +M2 (F (xk+1)− F (y))

(9.2)

All the other terms in the two sums coincide. Now sup {f (x) : x ∈ [xk, xk+1]} ≥
max (M1,M2) and so the expression in 9.2 is no larger than

sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (y))

+ sup {f (x) : x ∈ [xk, xk+1]} (F (y)− F (xk))

= sup {f (x) : x ∈ [xk, xk+1]} (F (xk+1)− F (xk)) ,

the term corresponding to the interval, [xk, xk+1] and U (f, P ) . This proves the first
part of the lemma pertaining to upper sums because if Q ⊇ P, one can obtain Q from
P by adding in one point at a time and each time a point is added, the corresponding
upper sum either gets smaller or stays the same. The second part about lower sums is
similar and is left as an exercise. �

Lemma 9.1.3 If P and Q are two partitions, then

L (f, P ) ≤ U (f,Q) .

Proof:By Lemma 9.1.2,

L (f, P ) ≤ L (f, P ∪Q) ≤ U (f, P ∪Q) ≤ U (f,Q) . �

Definition 9.1.4

I ≡ inf{U (f,Q) where Q is a partition}

I ≡ sup{L (f, P ) where P is a partition}.

Note that I and I are well defined real numbers.

Theorem 9.1.5 I ≤ I.

Proof:From Lemma 9.1.3,

I = sup{L (f, P ) where P is a partition} ≤ U (f,Q)

because U (f,Q) is an upper bound to the set of all lower sums and so it is no smaller
than the least upper bound. Therefore, since Q is arbitrary,

I = sup{L (f, P ) where P is a partition}
≤ inf{U (f,Q) where Q is a partition} ≡ I

where the inequality holds because it was just shown that I is a lower bound to the set
of all upper sums and so it is no larger than the greatest lower bound of this set. �

Definition 9.1.6 A bounded function f is Darboux Stieltjes integrable, written
as

f ∈ R ([a, b])
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if
I = I

and in this case, ∫ b

a

f (x) dF ≡ I = I.

When F (x) = x, the integral is called the Darboux integral and is written as∫ b

a

f (x) dx.

Thus, in words, the Darboux integral is the unique number which lies between all
upper sums and all lower sums if there is such a unique number. It can be shown that
this is also the Riemann integral. This distinction is discussed later. It is not very
important.

Recall the following Proposition which comes from the definitions.

Proposition 9.1.7 Let S be a nonempty set and suppose −∞ < sup (S) < ∞.
Then for every δ > 0,

S ∩ (sup (S)− δ, sup (S)] ̸= ∅.

If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) ̸= ∅.

This proposition implies the following theorem which is used to determine the ques-
tion of Darboux Stieltjes integrability.

Theorem 9.1.8 A bounded function f is Darboux Stieltjes integrable if and only
if for all ε > 0, there exists a partition P such that

U (f, P )− L (f, P ) < ε. (9.3)

Proof:First assume f is Darboux Stieltjes integrable. Then let P and Q be two
partitions such that

U (f,Q) < I + ε/2, L (f, P ) > I − ε/2.

Then since I = I,

U (f,Q ∪ P )− L (f, P ∪Q) ≤ U (f,Q)− L (f, P ) < I + ε/2− (I − ε/2) = ε.

Now suppose that for all ε > 0 there exists a partition such that 9.3 holds. Then for
given ε and partition P corresponding to ε

I − I ≤ U (f, P )− L (f, P ) ≤ ε.

Since ε is arbitrary, this shows I = I and this proves the theorem. �
The criterion of the above theorem which is equivalent to the existence of the Dar-

boux Stieltjes integral will be referred to in what follows as the Riemann criterion.
Not all bounded functions are Darboux integrable. For example, let F (x) = x and

f (x) ≡
{

1 if x ∈ Q
0 if x ∈ R \Q (9.4)

Then if [a, b] = [0, 1] all upper sums for f equal 1 while all lower sums for f equal 0.
Therefore the criterion of Theorem 9.1.8 is violated for ε = 1/2.
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Here is an interesting theorem about change of variables [31]. First here is some
notation: f ∈ R (a, b;F ) will mean f is Darboux Stieltjes integrable on [a, b] and F is
the integrator. Also let

Mi (f) ≡ sup {f (x) : x ∈ [xi−1, xi]}

with

mi (f) ≡ inf {f (x) : x ∈ [xi−1, xi]}

Theorem 9.1.9 Suppose ϕ is an increasing one to one and continuous function
which maps [a, b] onto [A,B] and f ∈ R (A,B;F ) . Then f ◦ ϕ ∈ R (a, b;F ◦ ϕ) and∫ b

a

f ◦ ϕd (F ◦ ϕ) =
∫ B

A

fdF

Proof: By assumption, there exists a partition of [A,B] , P = {y0, y1, · · · , yn} such
that

ε > |U (P, f)− L (P, f)| (9.5)

Now let yi = ϕ (xi) so that {x0, x1, · · · , xn} is a partition of [a, b] , denoted by ϕ−1 (P ) .
Also note

Mi (f) =Mi (f ◦ ϕ) , mi (f) = mi (f ◦ ϕ)

and

n∑
i=1

Mi (f) (F (yi)− F (yi−1)) =

n∑
i=1

Mi (f ◦ ϕ) (F (ϕ (xi))− F (ϕ (xi−1)))

with a similar conclusion holding for the lower sums. Then from 9.5,

ε > |U (P, f)− L (P, f)| =
n∑

i=1

(Mi (f)−mi (f)) (F (yi)− F (yi−1))

=
n∑

i=1

(Mi (f ◦ ϕ)−mi (f ◦ ϕ)) (F (ϕ (xi))− F (ϕ (xi−1)))

=
∣∣U (ϕ−1 (P ) , f ◦ ϕ

)
− L

(
ϕ−1 (P ) , f ◦ ϕ

)∣∣
which shows by the Riemann criterion that f ◦ ϕ ∈ R (a, b;F ◦ ϕ) . Also both∫ b

a

f ◦ ϕd (F ◦ ϕ) ,
∫ B

A

fdF

are in the same interval of length ε,[
L
(
ϕ−1 (P ) , f ◦ ϕ

)
, U
(
ϕ−1 (P ) , f ◦ ϕ

)]
and so since ε is arbitrary, this shows the two integrals are the same. �

9.2 Exercises

1. Prove the second half of Lemma 9.1.2 about lower sums.

2. Verify that for f given in 9.4, the lower sums on the interval [0, 1] are all equal to
zero while the upper sums are all equal to one.
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3. Let f (x) = 1 + x2 for x ∈ [−1, 3] and let P =
{
−1,−1

3 , 0,
1
2 , 1, 2

}
. Find U (f, P )

and L (f, P ) for F (x) = x and for F (x) = x3.

4. Show that if f ∈ R ([a, b]) for F (x) = x, there exists a partition, {x0, · · · , xn}
such that for any zk ∈ [xk, xk+1] ,∣∣∣∣∣

∫ b

a

f (x) dx−
n∑

k=1

f (zk) (xk − xk−1)

∣∣∣∣∣ < ε

This sum,
∑n

k=1 f (zk) (xk − xk−1) , is called a Riemann sum and this exercise
shows that the Darboux integral can always be approximated by a Riemann sum.
For the general Darboux Stieltjes case, does anything change? Explain.

5. Suppose {fn} is a sequence of functions which are Darboux Stieltjes integrable
with respect to the integrator F on [a, b] . Suppose also that the sequence converges
uniformly to f on [a, b] . Show f is also integrable and

lim
n→∞

∫ b

a

fndF =

∫ b

a

fdF.

6. Let P =
{
1, 11

4 , 1
1
2 , 1

3
4 , 2
}

and F (x) = x. Find upper and lower sums for the
function f (x) = 1

x using this partition. What does this tell you about ln (2)?

7. If f ∈ R (a, b, F ) with F (x) = x and f is changed at finitely many points, show
the new function is also in R (a, b, F ) . Is this still true for the general case where
F is only assumed to be an increasing function? Explain.

8. In the case where F (x) = x, define a “left sum” as

n∑
k=1

f (xk−1) (xk − xk−1)

and a “right sum”,
n∑

k=1

f (xk) (xk − xk−1) .

Also suppose that all partitions have the property that xk−xk−1 equals a constant,
(b− a) /n so the points in the partition are equally spaced, and define the integral
to be the number these right and left sums get close to as n gets larger and larger.
Show that for f given in 9.4,

∫ x

0
f (t) dt = x if x is rational and

∫ x

0
f (t) dt = 0

if x is irrational. It turns out that the correct answer should always equal zero
for that function, regardless of whether x is rational. This illustrates why this
method of defining the integral in terms of left and right sums is total nonsense.
Show that even though this is the case, it makes no difference if f is continuous.

9. The Darboux Stieltjes integral has been defined above for F an increasing in-
tegrator function. Suppose F is an arbitrary function defined on [a, b] . For
Px ≡ {x0, · · · , xn} a partition of [a, x] ,define V (Px, F ) by

n∑
i=1

|F (xi)− F (xi−1)| .

Define the total variation of F on [a, x] by

V[a,x] (F ) ≡ sup {V (Px, F ) : Px is a partition of [a, x]} .
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Show x → V[a,x] (F ) is an increasing function. Then F is said to be of bounded
variation on [a, b] if V[a,b] (F ) is finite. Show that every function of bounded
variation can be written as the difference of two increasing functions one of which
is the function x→ V[a,x] (F ) .

10. Using Problem 9, explain how to define
∫ b

a
fdF for F a function of bounded

variation.

11. The function F (x) ≡ ⌊x⌋ gives the greatest integer less than or equal to x. Thus
F (1/2) = 0, F (5.67) = 5, F (5) = 5, etc. If F (x) = ⌊x⌋ as just described, find∫ 10

0
xdF. More generally, find

∫ n

0
f (x) dF where f is a continuous function.

12. Suppose f is a bounded function on [0, 1] and for each ε > 0, f is Darboux inte-
grable on [ε, 1] . Can you conclude f is Darboux integrable on [0, 1]? The integrator
function is F (x) = x.

9.2.1 Functions Of Darboux Integrable Functions

It is often necessary to consider functions of Darboux integrable functions and a natural
question is whether these are Darboux integrable. The following theorem gives a partial
answer to this question. This is not the most general theorem which will relate to this
question but it will be enough for the needs of this book.

Lemma 9.2.1 Let f, g be bounded functions and let

f ([p, q]) ⊆ [c1, d1] , g ([a, b]) ⊆ [c2, d2] .

Let H : [c1, d1]× [c2, d2]→ R satisfy,

|H (a1, b1)−H (a2, b2)| ≤ K [|a1 − a2|+ |b1 − b2|]

for some constant K. Let

M (H (f, g)) ≡ sup {H (f (x) , g (x)) : x ∈ [p, q]}

and let
m (H (f, g)) ≡ inf {H (f (x) , g (x)) : x ∈ [p, q]}

and let M (f) ,M (g) ,m (f) ,m (g) be defined similarly with, for example,

M (f) ≡ sup {f (x) : x ∈ [p, q]}

Then

|M (H (f, g))−m (H (f, g))| ≤ K (|M (f)−m (f)|+ |M (g)−m (g)|)

Proof: Let ε > 0 be given. Then there exists x1 ∈ [p, q] such that

M (f, g)− ε ≤ H (f (x1) , g (x1))

and there exists x2 ∈ [p, q] such that

m (p, q) + ε ≥ H (f (x2) , g (x2))

Then
|M (H (f, g))−m (H (f, g))| =M (H (f, g))−m (H (f, g))

≤ |H (f (x1) , g (x1)) + ε− (H (f (x2) , g (x2))− ε)|
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≤ 2ε+ |H (f (x1) , g (x1))−H (f (x2) , g (x2))|

≤ 2ε+K (|f (x1)− f (x2)|+ |g (x1)− g (x2)|)

≤ 2ε+K (|M (f)−m (f)|+ |M (g)−m (g)|)

Since ε is arbitrary, this proves the lemma. �

Theorem 9.2.2 Let f, g be bounded functions and let

f ([a, b]) ⊆ [c1, d1] , g ([a, b]) ⊆ [c2, d2] .

Let H : [c1, d1]× [c2, d2]→ R satisfy,

|H (a1, b1)−H (a2, b2)| ≤ K [|a1 − a2|+ |b1 − b2|]

for some constant K. Then if f, g ∈ R (a, b, F ) it follows that H ◦ (f, g) ∈ R (a, b, F ) .

Proof: In the following claim, Mi (h) and mi (h) have the meanings assigned above
with respect to some partition of [a, b] for the function h.

Let P be such that

n∑
i=1

(Mi (f)−mi (f))∆Fi <
ε

2K
,

n∑
i=1

(Mi (g)−mi (g))∆Fi <
ε

2K
.

Then from Lemma 9.2.1 above,

n∑
i=1

(Mi (H ◦ (f, g))−mi (H ◦ (f, g)))∆Fi

<
n∑

i=1

K [|Mi (f)−mi (f)|+ |Mi (g)−mi (g)|]∆Fi < ε.

Since ε > 0 is arbitrary, this shows H ◦ (f, g) satisfies the Riemann criterion and hence
H ◦ (f, g) is Darboux integrable as claimed. �

This theorem implies that if f, g are Darboux Stieltjes integrable, then so is af +
bg, |f | , f2, along with infinitely many other such continuous combinations of Darboux
Stieltjes integrable functions. For example, to see that |f | is Darboux integrable, let
H (a, b) = |a| . Clearly this function satisfies the conditions of the above theorem and so
|f | = H (f, f) ∈ R (a, b, F ) as claimed. The following theorem gives an example of many
functions which are Darboux Stieltjes integrable. If you have f is either increasing or

decreasing and at least one of f or F is continuous, then the integral
∫ b

a
fdF will exist.

Theorem 9.2.3 Suppose

1. f : [a, b]→ R be either increasing or decreasing on [a, b].

2. F is continuous and increasing.

Then f is Riemann Stieltjes integrable with respect to F.
Suppose

1. f : [a, b]→ R is either increasing or decreasing and continuous.

2. F is increasing with no requirement of continuity.

Then f is Riemann Stieltjes integrable with respect to F.
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Proof:Let ε > 0 be given and let

xi = a+ i

(
b− a
n

)
, i = 0, · · · , n.

Since F is continuous, it follows from Corollary 6.7.3 on Page 112, it is uniformly
continuous. Therefore, if n is large enough, then for all i,

F (xi)− F (xi−1) <
ε

f (b)− f (a) + 1

Then since f is increasing,

U (f, P )− L (f, P ) =
n∑

i=1

(f (xi)− f (xi−1)) (F (xi)− F (xi−1))

≤ ε

f (b)− f (a) + 1

n∑
i=1

(f (xi)− f (xi−1))

=
ε

f (b)− f (a) + 1
(f (b)− f (a)) < ε.

Thus the Riemann criterion is satisfied and so the function is Darboux Stieltjes inte-
grable. The proof for decreasing f is similar.

Now consider the case where f is continuous and increasing and F is only given to
be increasing. Then as before, if P is a partition, {x0, · · · , xn} ,

U (f, P )− L (f, P ) =
n∑

i=1

(f (xi)− f (xi−1)) (F (xi)− F (xi−1)) (9.6)

Since f is continuous, it is uniformly continuous and so there exists δ > 0 such that if
|x− y| < δ, then

|f (x)− f (y)| < ε

(F (b)− F (a)) + 1

Then in 9.6, if each |xi − xi−1| < δ, then

U (f, P )− L (f, P ) ≤
n∑

i=1

ε

(F (b)− F (a)) + 1
(F (xi)− F (xi−1))

≤ ε

(F (b)− F (a)) + 1
(F (b)− F (a)) < ε

Thus the Riemann criterion is satisfied and so the function is Darboux Stieltjes inte-
grable. The proof for decreasing f is similar. �

Corollary 9.2.4 Let [a, b] be a bounded closed interval and let ϕ : [a, b] → R be
Lipschitz continuous and suppose F is increasing. Then ϕ ∈ R ([a, b]) . Recall that a
function ϕ, is Lipschitz continuous if there is a constant, K, such that for all x, y,

|ϕ (x)− ϕ (y)| < K |x− y| .

Proof:Let f (x) = x. Then by Theorem 9.2.3, f is Darboux Stieltjes integrable. Let
H (a, b) ≡ ϕ (a). Then by Theorem 9.2.2 H ◦ (f, f) = ϕ◦f = ϕ is also Darboux Stieltjes
integrable. �

In fact, it is enough to assume ϕ is continuous, although this is harder. This is the
content of the next theorem which is where the difficult theorems about continuity and
uniform continuity are used.
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Theorem 9.2.5 Suppose f : [a, b]→ R is continuous and F is just an increasing

function defined on [a, b]. Then
∫ b

a
fdF exists.

Proof:By Corollary 6.7.3 on Page 112, f is uniformly continuous on [a, b] . Therefore,
if ε > 0 is given, there exists a δ > 0 such that if |xi − xi−1| < δ, then Mi − mi <

ε
F (b)−F (a)+1 . Let

P ≡ {x0, · · · , xn}
be a partition with |xi − xi−1| < δ. Then

U (f, P )− L (f, P ) <
n∑

i=1

(Mi −mi) (F (xi)− F (xi−1))

<
ε

F (b)− F (a) + 1
(F (b)− F (a)) < ε.

By the Riemann criterion, f ∈ R ([a, b]) . �

9.2.2 Properties Of The Integral

The integral has many important algebraic properties. First here is a simple lemma.

Lemma 9.2.6 Let S be a nonempty set which is bounded above and below. Then if
−S ≡ {−x : x ∈ S} ,

sup (−S) = − inf (S) (9.7)

and
inf (−S) = − sup (S) . (9.8)

Proof: Consider 9.7. Let x ∈ S. Then −x ≤ sup (−S) and so x ≥ − sup (−S) .
If follows that − sup (−S) is a lower bound for S and therefore, − sup (−S) ≤ inf (S) .
This implies sup (−S) ≥ − inf (S) . Now let −x ∈ −S. Then x ∈ S and so x ≥ inf (S)
which implies −x ≤ − inf (S) . Therefore, − inf (S) is an upper bound for −S and so
− inf (S) ≥ sup (−S) . This shows 9.7. Formula 9.8 is similar and is left as an exercise.
�

In particular, the above lemma implies that for Mi (f) and mi (f) defined above
Mi (−f) = −mi (f) , and mi (−f) = −Mi (f) .

Lemma 9.2.7 If
∫ b

a
fdF exists, then

∫ b

a
(−f) dF also exists and

−
∫ b

a

f (x) dF =

∫ b

a

−f (x) dF.

Proof: The first part of the conclusion of this lemma follows from Theorem 9.2.3
since the function ϕ (y) ≡ −y is Lipschitz continuous. Now choose P such that∫ b

a

−f (x) dF − L (−f, P ) < ε.

Then since mi (−f) = −Mi (f) ,

ε >

∫ b

a

−f (x) dF −
n∑

i=1

mi (−f)∆Fi =

∫ b

a

−f (x) dF +

n∑
i=1

Mi (f)∆Fi

which implies

ε >

∫ b

a

−f (x) dF +

n∑
i=1

Mi (f)∆Fi ≥
∫ b

a

−f (x) dF +

∫ b

a

f (x) dF.
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Thus, since ε is arbitrary, ∫ b

a

−f (x) dF ≤ −
∫ b

a

f (x) dF

whenever
∫ b

a
fdF exists. It follows∫ b

a

−f (x) dF ≤ −
∫ b

a

f (x) dF = −
∫ b

a

− (−f (x)) dF ≤
∫ b

a

−f (x) dF �

Theorem 9.2.8 The integral is linear,∫ b

a

(αf + βg) (x) dF = α

∫ b

a

f (x) dF + β

∫ b

a

g (x) dF.

whenever f, g ∈ R ([a, b]) and α, β ∈ R.

Proof: First note that by Theorem 9.2.2, αf + βg ∈ R (a, b, F ) . To begin with,
consider the claim that if f, g ∈ R (a, b, F ) then∫ b

a

(f + g) (x) dF =

∫ b

a

f (x) dF +

∫ b

a

g (x) dF. (9.9)

Let P1,Q1 be such that

U (f,Q1)− L (f,Q1) < ε/2, U (g, P1)− L (g, P1) < ε/2.

Then letting P ≡ P1 ∪Q1, Lemma 9.1.2 implies

U (f, P )− L (f, P ) < ε/2, and U (g, P )− U (g, P ) < ε/2.

Next note that

mi (f + g) ≥ mi (f) +mi (g) , Mi (f + g) ≤Mi (f) +Mi (g) .

Therefore,

L (g + f, P ) ≥ L (f, P ) + L (g, P ) , U (g + f, P ) ≤ U (f, P ) + U (g, P ) .

For this partition,∫ b

a

(f + g) (x) dF ∈ [L (f + g, P ) , U (f + g, P )]

⊆ [L (f, P ) + L (g, P ) , U (f, P ) + U (g, P )]

and ∫ b

a

f (x) dF +

∫ b

a

g (x) dF ∈ [L (f, P ) + L (g, P ) , U (f, P ) + U (g, P )] .

Therefore, ∣∣∣∣∣
∫ b

a

(f + g) (x) dF −

(∫ b

a

f (x) dF +

∫ b

a

g (x) dF

)∣∣∣∣∣ ≤
U (f, P ) + U (g, P )− (L (f, P ) + L (g, P )) < ε/2 + ε/2 = ε.

This proves 9.9 since ε is arbitrary.
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It remains to show that

α

∫ b

a

f (x) dF =

∫ b

a

αf (x) dF.

Suppose first that α ≥ 0. Then∫ b

a

αf (x) dF ≡ sup{L (αf, P ) : P is a partition} =

α sup{L (f, P ) : P is a partition} ≡ α
∫ b

a

f (x) dF.

If α < 0, then this and Lemma 9.2.7 imply∫ b

a

αf (x) dF =

∫ b

a

(−α) (−f (x)) dF

= (−α)
∫ b

a

(−f (x)) dF = α

∫ b

a

f (x) dF. �

In the next theorem, suppose F is defined on [a, b] ∪ [b, c] .

Theorem 9.2.9 If f ∈ R (a, b, F ) and f ∈ R (b, c, F ) , then f ∈ R (a, c, F ) and∫ c

a

f (x) dF =

∫ b

a

f (x) dF +

∫ c

b

f (x) dF. (9.10)

Proof: Let P1 be a partition of [a, b] and P2 be a partition of [b, c] such that

U (f, Pi)− L (f, Pi) < ε/2, i = 1, 2.

Let P ≡ P1 ∪ P2. Then P is a partition of [a, c] and

U (f, P )− L (f, P )

= U (f, P1)− L (f, P1) + U (f, P2)− L (f, P2) < ε/2 + ε/2 = ε. (9.11)

Thus, f ∈ R (a, c, F ) by the Riemann criterion and also for this partition,∫ b

a

f (x) dF +

∫ c

b

f (x) dF ∈ [L (f, P1) + L (f, P2) , U (f, P1) + U (f, P2)]

= [L (f, P ) , U (f, P )]

and ∫ c

a

f (x) dF ∈ [L (f, P ) , U (f, P )] .

Hence by 9.11,∣∣∣∣∣
∫ c

a

f (x) dF −

(∫ b

a

f (x) dF +

∫ c

b

f (x) dF

)∣∣∣∣∣ < U (f, P )− L (f, P ) < ε

which shows that since ε is arbitrary, 9.10 holds. �

Corollary 9.2.10 Let F be continuous and let [a, b] be a closed and bounded interval
and suppose that

a = y1 < y2 · · · < yl = b

and that f is a bounded function defined on [a, b] which has the property that f is
either increasing on [yj , yj+1] or decreasing on [yj , yj+1] for j = 1, · · · , l − 1. Then f
∈ R ([a, b]) .
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Proof:This follows from Theorem 9.2.9 and Theorem 9.2.3. �
Given this corollary, can you think of functions which do not satisfy the conditions of

this corollary? They certainly exist. Think of the one which was 1 on the rationals and
0 on the irrationals. This is a sick function and that is what is needed for the Darboux
integral to not exist. Unfortunately, sometimes sick functions cannot be avoided.

The symbol,
∫ b

a
f (x) dF when a > b has not yet been defined.

Definition 9.2.11 Let [a, b] be an interval and let f ∈ R (a, b, F ) . Then∫ a

b

f (x) dF ≡ −
∫ b

a

f (x) dF.

Note that with this definition,∫ a

a

f (x) dF = −
∫ a

a

f (x) dF

and so ∫ a

a

f (x) dF = 0.

Theorem 9.2.12 Assuming all the integrals make sense,∫ b

a

f (x) dF +

∫ c

b

f (x) dF =

∫ c

a

f (x) dF.

Proof:This follows from Theorem 9.2.9 and Definition 9.2.11. For example, assume

c ∈ (a, b) .

Then from Theorem 9.2.9,∫ c

a

f (x) dF +

∫ b

c

f (x) dF =

∫ b

a

f (x) dF

and so by Definition 9.2.11,∫ c

a

f (x) dF =

∫ b

a

f (x) dF −
∫ b

c

f (x) dF

=

∫ b

a

f (x) dF +

∫ c

b

f (x) dF.

The other cases are similar. �
The following properties of the integral have either been established or they follow

quickly from what has been shown so far.

If f ∈ R (a, b, F ) then if c ∈ [a, b] , f ∈ R (a, c, F ) , (9.12)∫ b

a

αdF = α (F (b)− F (a)) , (9.13)∫ b

a

(αf + βg) (x) dF = α

∫ b

a

f (x) dF + β

∫ b

a

g (x) dF, (9.14)∫ b

a

f (x) dF +

∫ c

b

f (x) dF =

∫ c

a

f (x) dF, (9.15)
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∫ b

a

f (x) dF ≥ 0 if f (x) ≥ 0 and a < b, (9.16)∣∣∣∣∣
∫ b

a

f (x) dF

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

|f (x)| dF

∣∣∣∣∣ . (9.17)

The only one of these claims which may not be completely obvious is the last one. To
show this one, note that

|f (x)| − f (x) ≥ 0, |f (x)|+ f (x) ≥ 0.

Therefore, by 9.16 and 9.14, if a < b,∫ b

a

|f (x)| dF ≥
∫ b

a

f (x) dF

and ∫ b

a

|f (x)| dF ≥ −
∫ b

a

f (x) dF.

Therefore, ∫ b

a

|f (x)| dF ≥

∣∣∣∣∣
∫ b

a

f (x) dF

∣∣∣∣∣ .
If b < a then the above inequality holds with a and b switched. This implies 9.17. �

9.2.3 Fundamental Theorem Of Calculus

In this section F (x) = x so things are specialized to the ordinary Darboux integral.
With these properties 9.12 - 9.17, it is easy to prove the fundamental theorem of cal-
culus2. In this case, we write R (a, b) to signify the integral taken with respect to the
function F (x) = x. Let f ∈ R (a, b) . Then by 9.12 f ∈ R (a, x) for each x ∈ [a, b] . The
first version of the fundamental theorem of calculus is a statement about the derivative
of the function

x→
∫ x

a

f (t) dt.

Theorem 9.2.13 Let f ∈ R ([a, b]) and let

F (x) ≡
∫ x

a

f (t) dt.

Then if f is continuous at x ∈ [a, b] ,

F ′ (x) = f (x)

where the derivative refers to the right or left derivative at the endpoints.

Proof:Let x ∈ [a, b] be a point of continuity of f and let h be small enough that
x+ h ∈ [a, b] . Then by using 9.15,

F (x+ h)− F (x)− f (x)h

= F (x+ h)− F (x)−
∫ x+h

x

f (t) dt+

(∫ x+h

x

f (t) dt− f (x)h

)

=

∫ x+h

x

f (t) dt− f (x)h

2This theorem is why Newton and Liebnitz are credited with inventing calculus. The integral had
been around for thousands of years and the derivative was by their time well known. However the
connection between these two ideas had not been fully made although Newton’s predecessor, Isaac
Barrow had made some progress in this direction.
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I need to verify ∫ x+h

x

f (t) dt− f (x)h = o (h) .

Using 9.13,

f (x) = h−1

∫ x+h

x

f (x) dt.

Therefore, by 9.17,∣∣∣∣∣ 1h
(∫ x+h

x

f (t) dt− f (x)h

)∣∣∣∣∣ =
∣∣∣∣∣h−1

∫ x+h

x

(f (t)− f (x)) dt

∣∣∣∣∣
≤

∣∣∣∣∣h−1

∫ x+h

x

|f (t)− f (x)| dt

∣∣∣∣∣ .
Let ε > 0 and let δ > 0 be small enough that if |t− x| < δ, then

|f (t)− f (x)| < ε.

Therefore, if |h| < δ, the above inequality and 9.13 shows that∣∣h−1 (F (x+ h)− F (x))− f (x)
∣∣ ≤ |h|−1

ε |h| = ε.

Since ε > 0 is arbitrary, this shows∫ x+h

x

f (t) dt− f (x)h = o (h) �

Note this gives existence of a function G which is a solution to the initial value
problem,

G′ (x) = f (x) , G (a) = 0

whenever f is continuous. This is because of Theorem 9.2.5 which gives the existence
of the integral of a continuous function.

The next theorem is also called the fundamental theorem of calculus.

Theorem 9.2.14 Let f ∈ R (a, b) and suppose G′ (x) = f (x) at every point of
(a, b) and G is continuous on [a, b] . Then∫ b

a

f (x) dx = G (b)−G (a) . (9.18)

Proof:Let P = {x0, · · · , xn} be a partition satisfying

U (f, P )− L (f, P ) < ε.

Then

G (b)−G (a) = G (xn)−G (x0)

=
n∑

i=1

G (xi)−G (xi−1) .
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By the mean value theorem,

G (b)−G (a) =

n∑
i=1

G′ (zi) (xi − xi−1)

=
n∑

i=1

f (zi)∆xi

where zi is some point in (xi−1, xi) . It follows, since the above sum lies between the
upper and lower sums, that

G (b)−G (a) ∈ [L (f, P ) , U (f, P )] ,

and also ∫ b

a

f (x) dx ∈ [L (f, P ) , U (f, P )] .

Therefore, ∣∣∣∣∣G (b)−G (a)−
∫ b

a

f (x) dx

∣∣∣∣∣ < U (f, P )− L (f, P ) < ε.

Since ε > 0 is arbitrary, 9.18 holds. �
The following notation is often used in this context. Suppose F is an antiderivative

of f as just described with F continuous on [a, b] and F ′ = f on (a, b) . Then∫ b

a

f (x) dx = F (b)− F (a) ≡ F (x) |ba.

Definition 9.2.15 Let f be a bounded function defined on a closed interval
[a, b] and let P ≡ {x0, · · · , xn} be a partition of the interval. Suppose zi ∈ [xi−1, xi] is
chosen. Then the sum

n∑
i=1

f (zi) (xi − xi−1)

is known as a Riemann sum. Also,

||P || ≡ max {|xi − xi−1| : i = 1, · · · , n} . (9.19)

Proposition 9.2.16 Suppose f ∈ R (a, b) . Then there exists a partition, P ≡
{x0, · · · , xn} with the property that for any choice of zk ∈ [xk−1, xk] ,∣∣∣∣∣

∫ b

a

f (x) dx−
n∑

k=1

f (zk) (xk − xk−1)

∣∣∣∣∣ < ε.

Proof: Choose P such that U (f, P ) − L (f, P ) < ε and then both
∫ b

a
f (x) dx

and
∑n

k=1 f (zk) (xk − xk−1) are contained in [L (f, P ) , U (f, P )] and so the claimed
inequality must hold. �

You should think how the above proposition would change in the more general case
of a Darboux Stieltjes integral. This proposition is significant because it gives a way of
approximating the integral.
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9.3 Exercises

1. Let f, g be bounded functions and let

f ([a, b]) ⊆ [c1, d1] , g ([a, b]) ⊆ [c2, d2] .

Let H : [c1, d1]× [c2, d2]→ R satisfy, the following condition at every point (x, y).
For every ε > 0 there exists a δ > 0 such that if

(x, y) , (x1, y1) ∈ [c1, d1]× [c2, d2]

and max (|x− x1| , |y − y1|) < δ then

|H (x, y)−H (x1, y1)| < ε

Then if f, g ∈ R ([a, b]) it follows that H ◦ (f, g) ∈ R ([a, b]) . Is the foregoing
statement true? Prove or disprove.

2. A differentiable function f defined on (0,∞) satisfies the following conditions.

f (xy) = f (x) + f (y) , f ′ (1) = 1.

Find f and sketch its graph.

3. Does there exist a function which has two continuous derivatives but the third
derivative fails to exist at any point? If so, give an example. If not, explain why.

4. Suppose f is a continuous function on [a, b] and∫ b

a

f2dF = 0.

where F is a strictly increasing integrator function. Show that then f (x) = 0 for
all x. If F is not strictly increasing, is the result still true?

5. Suppose f is a continuous function and∫ b

a

f (x)xndx = 0

for n = 0, 1, 2, 3 · · · . Show using Problem 4 that f (x) = 0 for all x. Hint: You
might use the Weierstrass approximation theorem.

6. Here is a function:

f (x) =

{
x2 sin

(
1
x2

)
if x ̸= 0

0 if x = 0

Show this function has a derivative at every point of R. Does it make any sense
to write ∫ 1

0

f ′ (x) dx = f (1)− f (0) = f (1)?

Explain.

7. Let

f (x) =

{
sin
(
1
x

)
if x ̸= 0

0 if x = 0

Is f Darboux integrable with respect to the integrator F (x) = x on the interval
[0, 1]?
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8. Recall that for a power series,

∞∑
k=0

ak (x− c)k

you could differentiate term by term on the interval of convergence. Show that if
the radius of convergence of the above series is r > 0 and if [a, b] ⊆ (c− r, c+ r) ,
then ∫ b

a

∞∑
k=0

ak (x− c)k dx

= a0 (b− a) +
∞∑
k=1

ak
k

(b− c)k+1 −
∞∑
k=1

ak
k

(a− c)k+1

In other words, you can integrate term by term.

9. Find
∑∞

k=1
2−k

k .

10. Let f be Darboux integrable on [0, 1] . Show x→
∫ x

0
f (t) dt is continuous.

11. Suppose f, g are two functions which are continuous with continuous derivatives
on [a, b] . Show using the fundamental theorem of calculus and the product rule
the integration by parts formula. Also explain why all the terms make sense.∫ b

a

f ′ (t) g (t) dt = f (b) g (b)− f (a) g (a)−
∫ b

a

f (t) g′ (t) dt

12. Show
1

1 + x2
=

n∑
k=0

(−1)k x2k +
(−1)n+1

x2n+2

1 + x2
.

Now use this to find a series which converges to arctan (1) = π/4. Recall

arctan (x) =

∫ x

0

1

1 + t2
dt.

For which values of x will your series converge? For which values of x does the
above description of arctan in terms of an integral make sense? Does this help to
show the inferiority of power series?

13. Define F (x) ≡
∫ x

0
1

1+t2 dt. Of course F (x) = arctan (x) as mentioned above but
just consider this function in terms of the integral. Sketch the graph of F using
only its definition as an integral. Show there exists a constant M such that
−M ≤ F (x) ≤ M. Next explain why limx→∞ F (x) exists and show this limit
equals − limx→−∞ F (x).

14. In Problem 13 let the limit defined there be denoted by π/2 and define T (x) ≡
F−1 (x) for x ∈ (−π/2, π/2) . Show T ′ (x) = 1 + T (x)

2
and T (0) = 0. As

part of this, you must explain why T ′ (x) exists. For x ∈ [0, π/2] let C (x) ≡
1/

√
1 + T (x)

2
with C (π/2) = 0 and on [0, π/2] , define S (x) by

√
1− C (x)

2
.

Show both S (x) and C (x) are differentiable on [0, π/2] and satisfy S′ (x) = C (x)
and C ′ (x) = −S (x) . Find the appropriate way to define S (x) and C (x) on all
of [0, 2π] in order that these functions will be sin (x) and cos (x) and then extend
to make the result periodic of period 2π on all of R. Note this is a way to define
the trig. functions which is independent of plane geometry and also does not use
power series. See the book by Hardy, [19] for this approach.
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15. Show

arcsin (x) =

∫ x

0

1√
1− t2

dt.

Now use the binomial theorem to find a power series for arcsin (x) .

16. The initial value problem from ordinary differential equations is of the form

y′ = f (y) , y (0) = y0.

Suppose f is a continuous function of y. Show that a function t→ y (t) solves the
above initial value problem if and only if

y (t) = y0 +

∫ t

0

f (y (s)) ds.

17. Let p, q > 1 and satisfy
1

p
+

1

q
= 1.

Consider the function x = tp−1. Then solving for t, you get t = x1/(p−1) = xq−1.
Explain this. Now let a, b ≥ 0. Sketch a picture to show why∫ b

0

xq−1dx+

∫ a

0

tp−1dt ≥ ab.

Now do the integrals to obtain a very important inequality

bq

q
+
ap

p
≥ ab.

When will equality hold in this inequality?

18. Suppose f, g are two Darboux integrable functions on [a, b] with respect to an
integrator F. Verify Holder’s inequality.

∫ b

a

|f | |g| dF ≤

(∫ b

a

|f |p dF

)1/p(∫ b

a

|g|q dF

)1/q

Hint: Do the following. Let A =
(∫ b

a
|f |p dF

)1/p
, B =

(∫ b

a
|g|q dF

)1/q
. Then let

a =
|f |
A
, b =

|g|
B

and use the wonderful inequality of Problem 17.

9.4 The Riemann Stieltjes Integral

The definition of integrability given above is also called Darboux integrability and the
integral defined as the unique number which lies between all upper sums and all lower
sums is called the Darboux integral. The definition of the Riemann integral in terms
of Riemann sums is given next. I will show that these two integrals are often the same
thing.
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Definition 9.4.1 A bounded function f defined on [a, b] is said to be Riemann
Stieltjes integrable if there exists a number, I with the property that for every ε > 0,
there exists δ > 0 such that if

P ≡ {x0, x1, · · · , xn}

is any partition having ||P || < δ, and zi ∈ [xi−1, xi] ,∣∣∣∣∣I −
n∑

i=1

f (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε.

The number
∫ b

a
f (x) dF is defined as I.

It turns out Riemann Stieltjes and Darboux Stieltjes integrals are often the same.
This was shown by Darboux. The Darboux integral is easier to understand and this is
why it was presented first but the Riemann integral is the right way to look at it if you
want to generalize. The next theorem shows it is always at least as easy for a function
to be Darboux integrable as Riemann integrable.

Theorem 9.4.2 If a bounded function defined on [a, b] is Riemann Stieltjes inte-
grable with respect to an increasing F in the sense of Definition 9.4.1 then it is Darboux
Stieltjes integrable. Furthermore the two integrals coincide.

Proof: Let f be a bounded function integrable in the sense of Definition 9.4.1. This
implies there exists I and a partition

P = {x0, x1, · · · , xn}

such that whenever zi ∈ [xi−1, xi] ,∣∣∣∣∣I −
n∑

i=1

f (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε/3

It follows that for Mi and mi defined as before,∣∣∣∣∣I −
n∑

i=1

Mi (F (xi)− F (xi−1))

∣∣∣∣∣ ≤ ε/3∣∣∣∣∣I −
n∑

i=1

mi (F (xi)− F (xi−1))

∣∣∣∣∣ ≤ ε/3
Thus for this partition, P,

U (P, f)− L (P, f) =
n∑

i=1

Mi (F (xi)− F (xi−1))−
n∑

i=1

mi (F (xi)− F (xi−1))

=

n∑
i=1

Mi (F (xi)− F (xi−1))− I +

(
I −

n∑
i=1

mi (F (xi)− F (xi−1))

)

≤

∣∣∣∣∣
n∑

i=1

Mi (F (xi)− F (xi−1))− I

∣∣∣∣∣+
∣∣∣∣∣I −

n∑
i=1

mi (F (xi)− F (xi−1))

∣∣∣∣∣
≤ ε

3
+
ε

3
=

2ε

3
< ε
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Since ε is arbitrary, this and the Riemann criterion shows f is Darboux integrable.

It also follows I =
∫ b

a
fdF where

∫ b

a
fdF is the Darboux integral because∣∣∣∣∣I −

∫ b

a

fdF

∣∣∣∣∣ ≤
∣∣∣∣∣I −

n∑
i=1

Mi (F (xi)− F (xi−1))

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

Mi (F (xi)− F (xi−1))−
∫ b

a

fdF

∣∣∣∣∣
≤ ε

3
+

2ε

3
= ε

and ε is arbitrary. �
Is the converse true? If f is Darboux Stieltjes integrable, is it also Riemann Stieltjes

integrable in the sense of Definition 9.4.1? The answer is often yes. The theorem will
be proved using some lemmas.

Lemma 9.4.3 Suppose f is a bounded function defined on [a, b] and |f (x)| < M for
all x ∈ [a, b] . Let Q be a partition having n points, {x∗0, · · · , x∗n} and let P be any other
partition. Then

|U (f, P )− L (f, P )| ≤ 2Mn ||PF ||+ |U (f,Q)− L (f,Q)|

where ||PF || is defined by

max {F (xi)− F (xi−1) : P = {x0, · · · , xm}}

Proof of the lemma: Let P = {x0, · · · , xm} . Let I denote the set

I ≡ {i : [xi−1, xi] contains some point of Q}

and IC ≡ {0, · · · ,m} \ I. Then

U (f, P )− L (f, P ) =
∑
i∈I

(Mi −mi) (F (xi)− F (xi−1))

+
∑
i∈IC

(Mi −mi) (F (xi)− F (xi−1))

In the second sum above, for each i ∈ IC , [xi−1, xi] must be contained in
[
x∗k−1, x

∗
k

]
for

some k. Therefore, each term in this second sum is no larger than a corresponding term
in the sum which equals U (f,Q)−L (f,Q) . Therefore, the second sum is no larger than
U (f,Q)− L (f,Q) . Now consider the first sum. Since |f (x)| ≤M,

(Mi −mi) (F (xi)− F (xi−1)) ≤ 2M ||PF ||

and so since each of these intervals [xi−1, xi] for i ∈ I contains at least one point of Q,
there can be no more than n of these. Hence the first sum is dominated by 2Mn ||PF || .
�

Lemma 9.4.4 If ε > 0 is given and f is a Darboux integrable function defined on
[a, b], then there exists δ > 0 such that whenever ||PF || < δ, then

|U (f, P )− L (f, P )| < ε.



208 CHAPTER 9. THE RIEMANN AND RIEMANN STIELTJES INTEGRALS

Proof of the lemma: Suppose Q is a partition such that U (f,Q)−L (f,Q) < ε/2.
There exists such a partition because f is given to be Darboux integrable. Say Q has
n intervals. Then if P is any partition such that 2Mn ||PF || < ε/2, it follows from the
preceeding lemma that

|U (f, P )− L (f, P )| ≤ 2Mn ||PF ||+ |U (f,Q)− L (f,Q)|
< ε/2 + ε/2 = ε. �

Theorem 9.4.5 Suppose f is Darboux Stieltjes integrable and the integrator F
is increasing and continuous. Then f is Riemann Stieltjes integrable as described in
Definition 9.4.1.

Proof: By Lemma 9.4.4 there exists δ > 0 such that if ||PF || < δ, then

|U (f, P )− L (f, P )| < ε.

By the continuity of F, there exists η > 0 such that if ||P || < η, then ||PF || < δ. There-

fore, the above inequality holds for such P. Letting
∫ b

a
fdF be the Darboux Stieltjes

integral, it follows that every Riemann Stieltjes sum corresponding to ||P || < δ has the

property that this sum is closer to
∫ b

a
fdF than ε which shows f is Riemann Stieltjes

integrable in the sense of Definition 9.4.1 and I =
∫ b

a
fdF. �

Note this shows that the Riemann integral and the Darboux integral are completely
equivalent whenever the integrator function is continuous. This is the case when the
integrator function is F (x) = x which is the usual Riemann integral of calculus.

Recall that a continuous function f is Darboux Stieltjes integrable whenever the
integrator is increasing, not necessarily continuous. Does the same theorem hold for
Riemann Stieltjes integrability in the sense of Definition 9.4.1? It does.

Theorem 9.4.6 Let f be continuous on [a, b]. Then f is Riemann Stieltjes
integrable in the sense of Definition 9.4.1.

Proof: Since f is continuous and [a, b] is sequentially compact, it follows from
Theorem 6.7.2 that f is uniformly continuous. Thus if ε > 0 is given, there exists δ > 0
such that if |x− y| < δ, then

|f (x)− f (y)| < ε

2 (F (b)− F (a) + 1)
.

Let P = {x0, · · · , xn} be a partition such that ||P || < δ. Now if you add in a point z
on the interior of Ij and consider the new partition,

x0 < · · · < xj−1 < z < xj < · · · < xn

denoting it by P ′,

S (P, f)− S (P ′, f) =

j−1∑
i=1

(f (ti)− f (t′i)) (F (xi)− F (xi−1))

+f (tj) (F (xj)− F (xj−1))− f
(
t′j
)
(F (z)− F (xj−1))

−f
(
t′j+1

)
(F (xj)− F (z)) +

n∑
i=j+1

(
f (ti)− f

(
t′i+1

))
(F (xi)− F (xi−1))

The term, f (tj) (F (xj)− F (xj−1)) can be written as

f (tj) (F (xj)− F (xj−1)) = f (tj) (F (xj)− F (z)) + f (tj) (F (z)− F (xj−1))
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and so, the middle terms can be written as

f (tj) (F (xj)− F (z)) + f (tj) (F (z)− F (xj−1))

−f
(
t′j
)
(F (z)− F (xj−1))− f

(
t′j+1

)
(F (xj)− F (z))

=
(
f (tj)− f

(
t′j+1

))
(F (xj)− F (z))

+
(
f (tj)− f

(
t′j
))

(F (z)− F (xj−1))

The absolute value of this is dominated by

<
ε

2 (F (b)− F (a) + 1)
(F (xj)− F (xj−1))

This is because the various pairs of values at which f is evaluated are closer than δ.
Similarly, ∣∣∣∣∣

j−1∑
i=1

(f (ti)− f (t′i)) (F (xi)− F (xi−1))

∣∣∣∣∣
≤

j−1∑
i=1

|f (ti)− f (t′i)| (F (xi)− F (xi−1))

≤
j−1∑
i=1

ε

2 (F (b)− F (a) + 1)
(F (xi)− F (xi−1))

and ∣∣∣∣∣∣
n∑

i=j+1

(
f (ti)− f

(
t′i+1

))
(F (xi)− F (xi−1))

∣∣∣∣∣∣
≤

n∑
i=j+1

ε

2 (F (b)− F (a) + 1)
(F (xi)− F (xi−1)) .

Thus

|S (P, f)− S (P ′, f)| ≤
n∑

i=1

ε

2 (F (b)− F (a) + 1)
(F (xi)− F (xi−1)) < ε/2.

Similar reasoning would apply if you added in two new points in the partition or more
generally, any finite number of new points. You would just have to consider more
exceptional terms. Therefore, if ||P || < δ and Q is any partition, then from what was
just shown, you can pick the points on the interiors of the intervals any way you like
and

|S (P, f)− S (P ∪Q, f)| < ε/2.

Therefore, if ||P || , ||Q|| < δ,

|S (P, f)− S (Q, f)| ≤ |S (P, f)− S (P ∪Q, f)|+ |S (P ∪Q, f)− S (Q, f)|
< ε/2 + ε/2 = ε

Now consider a sequence εn → 0. Then from what was just shown, there exist δn > 0
such that for ||P || , ||Q|| < δn,

|S (P, f)− S (Q, f)| < εn
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Let Kn be defined by

Kn ≡ ∪{S (P, f) : ||P || < δn}.

In other words, take the closure of the set of numbers consisting of all Riemann sums,
S (P, f) such that ||P || < δn. It follows from the definition, Kn ⊇ Kn+1 for all n and
each Kn is closed with diam (Kn) → 0. Then by Theorem 4.9.21 there exists a unique
I ∈ ∩∞n=1Kn. Letting ε > 0, there exists n such that εn < ε. Then if ||P || < δn, it
follows |S (P, f)− I| ≤ εn < ε. Thus f is Riemann Stieltjes integrable in the sense of

Definition 9.4.1 and I =
∫ b

a
fdF . �

9.4.1 Change Of Variables

The formulation of the integral in terms of limits of Riemann sums makes it easy to
establish the following lemma and change of variables formula which is well known from
beginning calculus courses although there it is presented in less generality.

Lemma 9.4.7 Let f be Riemann Stieltjes integrable with an integrator function F
which is increasing and differentiable on [a, b] with continuous derivative. Then∫ b

a

fdF =

∫ b

a

fF ′dt

Proof: First note that it is not obvious the integral on the right even makes sense.
This is because it is not known, for example that f is even continuous.

Let ε > 0 be given and let δ be such that ||P || < δ, P = {x0, · · · , xn} , implies for
all zi ∈ [xi−1, xi] ∣∣∣∣∣

∫ b

a

fdF −
n∑

i=0

f (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε.

and by uniform continuity of F ′, if |x− y| < δ,

|F ′ (x)− F ′ (y)| < ε.

Now using the mean value theorem, there exists ti ∈ (xi−1, xi) such that

F (xi)− F (xi−1) = F ′ (ti) (xi − xi−1)

and so the above inequality implies that for ||P || < δ,

ε >

∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi)F
′ (ti) (xi − xi−1)

∣∣∣∣∣
≥

∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi)F
′ (zi) (xi − xi−1)

∣∣∣∣∣−
∣∣∣∣∣

n∑
i=0

f (zi) (F
′ (zi)− F ′ (ti)) (xi − xi−1)

∣∣∣∣∣
≥

∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi)F
′ (zi) (xi − xi−1)

∣∣∣∣∣−
∣∣∣∣∣

n∑
i=0

|f (zi)| ε (xi − xi−1)

∣∣∣∣∣
≥

∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi)F
′ (zi) (xi − xi−1)

∣∣∣∣∣−M (f) (b− a) ε



9.4. THE RIEMANN STIELTJES INTEGRAL 211

where M (f) is an upper bound to |f (x)|. Hence when ||P || < δ,∣∣∣∣∣
∫ b

a

fdF −
n∑

i=0

f (zi)F
′ (zi) (xi − xi−1)

∣∣∣∣∣ ≤ ε+M (f) (b− a) ε

and since ε was arbitrary, this shows
∫ b

a
fF ′dx exists and equals

∫ b

a
fdF. �

With this lemma, here is a change of variables formula.

Theorem 9.4.8 Let f be Riemann integrable on [A,B] where the integrator
function is F (t) = t. Also let ϕ be one to one, and differentiable on [a, b] with con-
tinuous derivative such that ϕ ([a, b]) = [A,B]. Then f ◦ ϕ is Riemann integrable on
[a, b] and ∫ b

a

f (ϕ (t))ϕ′ (t) dt =

∫ ϕ(b)

ϕ(a)

fdx

Proof: First consider the case that ϕ is increasing. By Lemma 6.4.3 either ϕ is
increasing or decreasing so there are only two cases to consider for ϕ. The case where
ϕ is decreasing will be considered later. By Theorem 9.1.9,∫ b

a

f ◦ ϕdϕ =

∫ b

a

f ◦ ϕd (F ◦ ϕ) =
∫ B

A

fdF =

∫ ϕ(b)

ϕ(a)

fdF

where F (t) = t. Then from Lemma 9.4.7, the left end equals∫ b

a

f (ϕ (t))ϕ′ (t) dt.

This proves the theorem in the case where ϕ is increasing.

Next consider the case where ϕ is decreasing so ϕ (a) = B,ϕ (b) = A. Then −ϕ is
increasing and maps [a, b] to [−B,−A]. Let h be defined on [−B,−A] by h (x) ≡ f (−x) .
It follows h is Riemann integrable on [−B,−A]. This follows from observing Riemann
sums. Furthermore it is seen in this way that∫ −A

−B

h (y) dy =

∫ B

A

f (x) dx.

Then applying what was just shown,

−
∫ b

a

f (ϕ (t))ϕ′ (t) dt

=

∫ b

a

h (−ϕ (t))
(
−ϕ′ (t)

)
dt

=

∫ −A

−B

h (y) dy =

∫ B

A

f (x) dx

=

∫ ϕ(a)

ϕ(b)

f (x) dx

and so ∫ b

a

f (ϕ (t))ϕ′ (t) dt =

∫ ϕ(b)

ϕ(a)

f (x) dx. �
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9.4.2 Uniform Convergence And The Integral

It turns out that uniform convergence is very agreeable in terms of the integral. The
following is the main result.

Theorem 9.4.9 Let F be increasing and let fn be Darboux integrable with respect
to F . Also suppose that fn → f uniformly on [a, b]. Then if follows f is also integrable
and ∫ b

a

fdF = lim
n→∞

∫ b

a

fndF

Proof: I will sketch the proof leaving some details for the reader. Let P be a
partition of [a, b]. Then

(U (P, f)− L (P, f)) < (U (P, fn)− L (P, fn)) + ε/2

for all n large enough. This inequality does not depend on the choice of P . This follows
right away from the uniform convergence. Thus one can pick n large enough that the
above holds for every P and then choose P to make the right side less than ε. Thus f
is integrable with respect to F . As to the convergence of the integrals,∣∣∣∣∣

∫ b

a

fdF −
∫ b

a

fndF

∣∣∣∣∣ ≤
∫ b

a

|f − fn| dF < ε (F (b)− F (a))

provided n is large enough. This is from the uniform convergence. Thus the limit holds.
�

Of course the difficulty is in dealing with pointwise convergence. In this regard, this
integral is very inferior. This is the reason for the Lebesgue integral or the generalized
Riemann integral presented later in the book.

9.4.3 A Simple Procedure For Finding Integrals

Suppose f is a continuous function and F is an increasing integrator function. How do

you find
∫ b

a
f (x) dF? Is there some sort of easy way to do it which will handle lots of

simple cases? It turns out there is a way. It is based on Lemma 9.4.7. First of all

F (x+) ≡ lim
y→x+

F (y) , F (x−) ≡ lim
y→x−

F (y)

For an increasing function F , the jump of the function at x equals F (x+)− F (x−).

Procedure 9.4.10 Suppose f is continuous on [a, b] and F is an increasing
function defined on [a, b] such that there are finitely many intervals determined by the
partition a = x0 < x1 < · · · < xn = b which have the property that on [xi, xi+1] , the
following function is differentiable and has a continuous derivative.

Gi (x) ≡

 F (x) on (xi, xi+1)
F (xi+) when x = xi
F (xi+1−) when x = xi+1

Also assume F (a) = F (a+) , F (b) = F (b−). Then∫ b

a

f (x) dF =

n−1∑
j=0

∫ xj+1

xj

f (x)G′
j (x) dx+

n−1∑
i=1

f (xi) (F (xi+)− F (xi−))
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Here is why this procedure works. Let δ be very small and consider the partition

a = x0 < x1 − δ < x1 < x1 + δ < x2 − δ < x2 < x2 + δ <

· · ·xn−1 − δ < xn−1 < xn−1 + δ < xn − δ < xn = b

where δ is also small enough that whenever |x− y| < δ, it follows |f (x)− f (y)| < ε.
Then from the properties of the integral presented above,∫ x1−δ

a

fdF +

∫ x2−δ

x1+δ

fdF + · · ·+
∫ b

xn−1+δ

fdF +

n−1∑
i=1

(f (xi)− ε) (F (xi + δ)− F (xi − δ))

≤
∫ b

a

fdF ≤

∫ x1−δ

a

fdF +

∫ x2−δ

x1+δ

fdF + · · ·+
∫ b

xn−1+δ

fdF +
n−1∑
i=1

(f (xi) + ε) (F (xi + δ)− F (xi − δ))

By Lemma 9.4.7 this implies∫ x1−δ

a

fG′
0dx+

∫ x2−δ

x1+δ

fG′
1dx+ · · ·+

∫ b

xn−1+δ

fG′
n−1dx

+

n−1∑
i=1

(f (xi)− ε) (F (xi + δ)− F (xi − δ))

≤
∫ b

a

fdF ≤

∫ x1−δ

a

fG′
0dx+

∫ x2−δ

x1+δ

fG′
1dx+ · · ·+

∫ b

xn−1+δ

fG′
n−1dx

+

n−1∑
i=1

(f (xi) + ε) (F (xi + δ)− F (xi − δ))

Now let δ → 0 to obtain the desired integral is between

n−1∑
j=0

∫ xj+1

xj

f (x)G′
j (x) dx+

n−1∑
i=1

(f (xi) + ε) (F (xi+)− F (xi−))

and
n−1∑
j=0

∫ xj+1

xj

f (x)G′
j (x) dx+

n−1∑
i=1

(f (xi)− ε) (F (xi+)− F (xi−))

Since ε is arbitrary, this shows the procedure is valid.

9.4.4 General Riemann Stieltjes Integrals

Up till now the integrator function has always been increasing. However this can easily
be generalized. To do so, here is a definition of a more general kind of function which
will serve as an integrator. First of all, here is some notation.

Notation 9.4.11 Let F be an increasing integrator function. Then when f is Riemann
Stieltjes integrable with respect to F on [a, b] , this will be written as

f ∈ R ([a, b] , F )

with similar notation applying to more general situations about to be presented.
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Definition 9.4.12 Suppose F is an arbitrary function defined on [a, b] . For
Px ≡ {x0, · · · , xn} a partition of [a, x] ,define V (Px, F ) by

n∑
i=1

|F (xi)− F (xi−1)| .

Define the total variation of F on [a, x] by

V[a,x] (F ) ≡ sup {V (Px, F ) : Px is a partition of [a, x]} .

Then F is said to be of bounded variation on [a, b] if V[a,b] (F ) is finite.

Then with this definition, one has an important proposition.

Proposition 9.4.13 Every function F of bounded variation can be written as the
difference of two increasing function, one of which is the function

x→ V[a,x] (F )

Furthermore, the functions of bounded variation are exactly those functions which are
the difference of two increasing functions.

Proof: Let F be of bounded variation. It is obvious from the definition that
x→ V[a,x] (F ) is an increasing function. Also

F (x) = V[a,x] (F )−
(
V[a,x] (F )− F (x)

)
The first part of the proposition is proved if I can show x → V[a,x] (F ) − F (x) is
increasing. Let x ≤ y. Is it true that

V[a,x] (F )− F (x) ≤ V[a,y] (F )− F (y)?

This is true if and only if

F (y)− F (x) ≤ V[a,y] (F )− V[a,x] (F ) (9.20)

To show this is so, first note that

V (Px, F ) ≤ V (Qx, F )

whenever the partition Qx ⊇ Px. You demonstrate this by adding in one point at a
time and using the triangle inequality. Now let Py and Px be partitions of [a, y] and
[a, x] respectively such that

V (Px, F ) + ε > V[a,x] (F ) , V (Py, F ) + ε > V[a,y] (F )

Without loss of generality Py contains x because from what was just shown you could
add in the point x and the approximation of V (Py, F ) to V[a,y] (F ) would only be better.
Then from the definition,

V[a,y] (F )− V[a,x] (F ) ≥ V (Py, F )− (V (Px, F ) + ε)

≥ |F (y)− F (x)| − ε
≥ F (y)− F (x)− ε

and since ε is arbitrary, this establishes 9.20. This proves the first part of the proposition.
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Now suppose
F (x) = F1 (x)− F2 (x)

where each Fi is an increasing function. Why is F of bounded variation? Letting x < y

|F (y)− F (x)| = |F1 (y)− F2 (y)− (F1 (x)− F2 (x))|
≤ (F1 (y)− F1 (x)) + (F2 (y)− F2 (x))

Therefore, if P = {x0, · · · , xn} is any partition of [a, b]

n∑
i=1

|F (xi)− F (xi−1)| ≤
n∑

i=1

(F1 (xi)− F1 (xi−1)) + (F2 (xi)− F2 (xi−1))

= (F1 (b)− F1 (a)) + (F2 (b)− F2 (a))

and this shows V[a,b] (F ) ≤ (F1 (b)− F1 (a)) + (F2 (b)− F2 (a)) so F is of bounded vari-
ation. �

With this proposition, it is possible to make the following definition of the Riemann
Stieltjes integral.

Definition 9.4.14 Let F be of bounded variation on [a, b] and let F = F1 −F2

where Fi is increasing. Then if g ∈ R ([a, b] , Fi) for i = 1, 2∫ b

a

gdF ≡
∫ b

a

gdF1 −
∫ b

a

gdF2

When this happens it is convenient to write g ∈ R ([a, b] , F ) .

Of course there is the immediate question whether the above definition is well de-
fined.

Proposition 9.4.15 Definition 9.4.14 is well defined. Also for each ε > 0 there
exists a δ > 0 such that if P = {x0, · · · , xn} is a partition of [a, b] such that ||P || < δ,
then if zi ∈ [xi−1, xi] for i = 1, 2 · · · , n, then∣∣∣∣∣

∫ b

a

gdF −
n∑

i=1

g (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε.

Proof: By assumption g ∈ R ([a, b] , Fi) for i = 1, 2. Therefore, there exists δi such
that ∣∣∣∣∣

∫ b

a

gdFi −
n∑

i=1

g (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε/2

whenever P = {x0, · · · , xn} with ||P || < δi and zi ∈ [xi−1, xi]. Let 0 < δ < min (δ1, δ2) .
Then pick a partition P = {x0, · · · , xn} such that ||P || < δ. It follows

=

∣∣∣∣∣
n∑

i=1

g (zi) (F (xi)− F (xi−1))−

(∫ b

a

gdF1 −
∫ b

a

gdF2

)∣∣∣∣∣
=

∣∣∣∣∣
(

n∑
i=1

g (zi) (F1 (xi)− F1 (xi−1))−
n∑

i=1

g (zi) (F2 (xi)− F2 (xi−1))

)

−

(∫ b

a

gdF1 −
∫ b

a

gdF2

)∣∣∣∣∣



216 CHAPTER 9. THE RIEMANN AND RIEMANN STIELTJES INTEGRALS

≤

∣∣∣∣∣
n∑

i=1

g (zi) (F1 (xi)− F1 (xi−1))−
∫ b

a

gdF1

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

g (zi) (F2 (xi)− F2 (xi−1))−
∫ b

a

gdF2

∣∣∣∣∣ < ε/2 + ε/2 = ε.

If F = F ′
1 − F ′

2 the same argument would show that for ||P || small enough,∣∣∣∣∣
n∑

i=1

g (zi) (F (xi)− F (xi−1))−

(∫ b

a

gdF ′
1 −

∫ b

a

gdF ′
2

)∣∣∣∣∣ < ε (9.21)

Therefore, picking a partition P with ||P || small enough to satisfy 9.21 for Fi and F
′
i ,

it follows ∣∣∣∣∣
(∫ b

a

gdF ′
1 −

∫ b

a

gdF ′
2

)
−

(∫ b

a

gdF1 −
∫ b

a

gdF2

)∣∣∣∣∣
≤

∣∣∣∣∣
(∫ b

a

gdF ′
1 −

∫ b

a

gdF ′
2

)
−

n∑
i=1

g (zi) (F (xi)− F (xi−1))

∣∣∣∣∣
+

∣∣∣∣∣
(∫ b

a

gdF1 −
∫ b

a

gdF2

)
−

n∑
i=1

g (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < 2ε

since ε is arbitrary this shows the definition is well defined and the approximation claim
holds. �

More generally, let f and g be two arbitrary functions defined on [a, b] . Then the
following definition tells what it means for f ∈ R ([a, b] , g) . Note the above takes care
of the case where integrator function is of bounded variation.

Definition 9.4.16 f ∈ R ([a, b] , g) means that there exists a number I such
that for every ε > 0 there exists δ > 0 such that if

P = {x0, · · · , xn}

is a partition of [a, b] with ||P || < δ, then whenever zi ∈ [xi−1, xi] for each i,∣∣∣∣∣
n∑

i=1

f (zi) (g (xi)− g (xi−1))− I

∣∣∣∣∣ < ε.

Then

I =

∫ b

a

fdg.

Now here is a general integration by parts formula. This is a very remarkable formula.

Theorem 9.4.17 Let f, g be two functions defined on [a, b]. Suppose f ∈ R ([a, b] , g) .
Then g ∈ R ([a, b] , f) and the following integration by parts formula holds.∫ b

a

fdg +

∫ b

a

gdf = fg (b)− fg (a) .

Proof: By definition there exists δ > 0 such that if ||P || < δ then whenever
zi ∈ [xi−1, xi] , ∣∣∣∣∣

n∑
i=1

f (zi) (g (xi)− g (xi−1))−
∫ b

a

fdg

∣∣∣∣∣ < ε
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Pick such a partition. Now consider a sum of the form

n∑
i=1

g (ti) (f (xi)− f (xi−1))

Also notice

fg (b)− fg (a) =
n∑

i=1

fg (xi)− fg (xi−1) .

Therefore,

fg (b)− fg (a)−
n∑

i=1

g (ti) (f (xi)− f (xi−1))

=

n∑
i=1

fg (xi)− fg (xi−1)−
n∑

i=1

g (ti) (f (xi)− f (xi−1))

=
n∑

i=1

f (xi) g (xi)− f (xi−1) g (xi−1)− g (ti) f (xi) + g (ti) f (xi−1)

=

n∑
i=1

f (xi) (g (xi)− g (ti)) + f (xi−1) (g (ti)− g (xi−1))

But this is just a Riemann Stieltjes sum for∫ b

a

fdg

corresponding to the partition which consists of all the xi along with all the ti and if
P ′ is this partition, ||P ′|| < δ because it possibly more points in it than P. Therefore,∣∣∣∣∣∣∣∣∣∣∣

Riemann sum for
∫ b
a
fdg︷ ︸︸ ︷

fg (b)− fg (a)−
n∑

i=1

g (ti) (f (xi)− f (xi−1))−
∫ b

a

fdg

∣∣∣∣∣∣∣∣∣∣∣
< ε

and this has shown that from the definition, g ∈ R ([a, b] , f) and∫ b

a

gdf = fg (b)− fg (a)−
∫ b

a

fdg. �

It is an easy theorem to remember. Think something sloppy like this.

d (fg) = fdg + gdf

and so

fg (b)− fg (a) =
∫ b

a

d (fg) =

∫ b

a

fdg +

∫ b

a

gdf

and all you need is for at least one of these integrals on the right to make sense. Then
the other automatically does and the formula follows.

When is f ∈ R ([a, b] , g)? It was shown above in Theorem 9.4.6 along with Definition
9.4.16 and 9.4.14 and Proposition 9.4.15 that if g is of bounded variation and f is con-
tinuous, then f is Riemann Stieltjes integrable. From the above theorem on integration
by parts, this yields the following existence theorem.

Theorem 9.4.18 Suppose f is continuous and g is of bounded variation on
[a, b]. Then f ∈ R ([a, b] , g) . Also if g is of bounded variation and f is continuous, then
g ∈ R ([a, b] , f).
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9.4.5 Stirling’s Formula

Stirling’s formula is a very useful approximation for n!. I am going to give a presentation
of this which follows that in the calculus book by Courant.

Let An ≡
∫ n

1
ln (x) dx = n lnn−n+1. Now use the trapezoidal rule to approximate

this area. This rule is described in the following exercises but it is also a common topic
in an introductory calculus course. You form a uniform partition and sum the areas
of the trapezoids which result. Here is a picture in which the bottom trapezoid is one
which is included in the sum.

!!!!!

!!!!!

k + 1
2k k + 1

Thus, summing the areas of the inscribed trapezoids and denoting this approximate
area by Tn, it equals

Tn =
n−1∑
k=1

ln (k + 1) + ln (k)

2
=

1

2
(ln (n!) + ln ((n− 1)!)) = ln (n!)− 1

2
lnn

Here this comes from the observation that
∑n−1

k=1 ln (k + 1) = ln (n!) from the laws of
logarithms. Of course, it follows from the picture that the approximation is smaller
than An. Let an = An − Tn. Now consider the above picture. Approximate the area
between the curve ln (x) and the inscribed trapezoid with the difference in area between
the two trapezoids in the above picture. Thus

0 ≤ an ≤
n−1∑
k=1

(
ln

(
k +

1

2

)
− ln (k + 1) + ln (k)

2

)
Consider the term of the series. It equals

1

2

(
ln

(
k +

1

2

)
− ln (k)

)
− 1

2

(
ln (k + 1)− ln

(
k +

1

2

))
=

1

2

(
ln k

(
1 +

1

2k

)
− ln (k)

)
− 1

2

(
ln (k + 1)− ln (k + 1)

(
k

k + 1
+

1

2 (k + 1)

))
=

1

2
ln

(
1 +

1

2k

)
− 1

2
ln

(
1

k
k+1 + 1

2(k+1)

)
=

1

2
ln

(
1 +

1

2k

)
− 1

2
ln

(
k + 1

k + 1
2

)

=
1

2
ln

(
1 +

1

2k

)
− 1

2
ln

(
1 +

1

2
(
k + 1

2

)) ≤ 1

2
ln

(
1 +

1

2k

)
− 1

2
ln

(
1 +

1

2 (k + 1)

)
Thus

0 ≤ an ≤
1

2
ln

(
1 +

1

2

)
− 1

2
ln

(
1 +

1

2n

)
≤ 1

2
ln

(
3

2

)
.

Since an is increasing, this implies that limn→∞ an = β exists. Now this implies that
ean also converges to some number α. Hence

lim
n→∞

eAn

eTn
= lim

n→∞

en lnn−n+1

eln(n!)−
1
2 lnn

= lim
n→∞

nne−n
√
ne

n!
= α
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Letting c = eα−1, it follows from the above that

lim
n→∞

nne−n
√
nc

n!
= 1.

This has proved the following lemma.

Lemma 9.4.19 There exists a positive number c such that

lim
n→∞

n!

nn+(1/2)e−nc
= 1.

There are various ways to show that this constant c equals
√
2π. Using integration

by parts, it follows that whenever n is a positive integer larger than 1,∫ π/2

0

sinn (x) dx =
n− 1

n

∫ π/2

0

sinn−2 (x) dx

Lemma 9.4.20 For m ≥ 1,∫ π/2

0

sin2m (x) dx =
(2m− 1) · · · 1

2m (2m− 2) · · · 2
π

2∫ π/2

0

sin2m+1 (x) dx =
(2m) (2m− 2) · · · 2

(2m+ 1) (2m− 1) · · · 3

Proof: Consider the first formula in the case wherem = 1. From beginning calculus,∫ π/2

0

sin2 (x) dx =
π

4
=

1

2

π

2

so the formula holds in this case. Suppose it holds form. Then from the above reduction
identity and induction,∫ π/2

0

sin2m+2 (x) dx =
2m+ 1

2 (m+ 1)

∫ π/2

0

sin2m (x) dx

=
2m+ 1

2 (m+ 1)

(2m− 1) · · · 1
2m (2m− 2) · · · 2

π

2
.

The second claim is proved similarly. �
Now from the above identities,∫ π/2

0
sin2m (x) dx∫ π/2

0
sin2m+1 (x) dx

=
π

2
(2m+ 1)

(2m− 1)
2 · · · 32 · 12

(2m)
2
(2m− 2)

2 · · · 22

which implies

π

2
=

1

2m+ 1

(2m)
2
(2m− 2)

2 · · · 22

(2m− 1)
2 · · · 32 · 12

∫ π/2

0
sin2m (x) dx∫ π/2

0
sin2m+1 (x) dx

From the reduction identity,

1 ≤
∫ π/2

0
sin2m (x) dx∫ π/2

0
sin2m+1 (x) dx

=

∫ π/2

0
sin2m (x) dx

2m
2m+1

∫ π/2

0
sin2m−1 (x) dx

≤ 2m+ 1

2m
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It follows

2m

2m+ 1
2m

(2m− 2)
2 · · · 22

(2m− 1)
2 · · · 32 · 12

≤ π

2
≤ 1

2m+ 1

(2m)
2
(2m− 2)

2 · · · 22

(2m− 1)
2 · · · 32 · 12

2m+ 1

2m

= 2m
(2m− 2)

2 · · · 22

(2m− 1)
2 · · · 32 · 12

It follows that
2m

2m+ 1
≤ π/2

2m (2m−2)2···22
(2m−1)2···32·12

≤ 1

and so

lim
m→∞

2m
(2m− 2)

2 · · · 22

(2m− 1)
2 · · · 32 · 12

=
π

2

This is sometimes called Wallis’s formula. This implies

lim
m→∞

2m
22m−2 ((m− 1)!)

2

(2m− 1)
2 · · · 32 · 12

=
π

2

Now multiply on the bottom and top by (2m)
2
(2m− 2)

2 · · · 22 = 22m (m!)
2
to obtain

lim
m→∞

2m
22m−2 ((m− 1)!)

2
22m (m!)

2

((2m)!)
2 = lim

m→∞
22m2 2

2m−2 ((m− 1)!)
2
22m (m!)

2

2m ((2m)!)
2

lim
m→∞

22m (m!)
2
22m (m!)

2

2m ((2m)!)
2 =

π

2

It follows that

lim
m→∞

22m (m!)
2

(2m)
1/2

(2m)!
=

√
π

2
(9.22)

Now with this result, it is possible to find c in Stirling’s formula. Recall

lim
m→∞

m!

mm+(1/2)e−mc
= 1

It follows that

lim
m→∞

(2m)!

(2m)
2m+(1/2)

e−2mc
= 1

Therefore, from 9.22,√
π

2
= lim

m→∞

22m
(

m!
mm+(1/2)e−mc

)2 (
mm+(1/2)e−mc

)2
(2m)

1/2
(

(2m)!

(2m)2m+(1/2)e−2mc

)(
(2m)

2m+(1/2)
e−2mc

)
= lim

m→∞

22m
(
mm+(1/2)e−mc

)2
(2m)

1/2
(
(2m)

2m+(1/2)
e−2mc

)
= lim

m→∞

22mm2m+1e−2mc2

(2m)
1/2
(
(2m)

2m+(1/2)
e−2mc

)
= lim

m→∞

22mm2m+1c

(2m)
1/2

(2m)
2m+(1/2)

=
1

2
c

which shows that c =
√
2π. This proves Stirling’s formula.

Theorem 9.4.21 The following formula holds.

lim
m→∞

m!

mm+(1/2)e−m
=
√
2π



9.5. EXERCISES 221

9.5 Exercises

1. Let F (x) =
∫ x3

x2
t5+7

t7+87t6+1 dt. Find F
′ (x) .

2. Let F (x) =
∫ x

2
1

1+t4 dt. Sketch a graph of F and explain why it looks the way it
does.

3. Let a and b be positive numbers and consider the function

F (x) =

∫ ax

0

1

a2 + t2
dt+

∫ a/x

b

1

a2 + t2
dt.

Show that F is a constant.

4. Solve the following initial value problem from ordinary differential equations which
is to find a function y such that

y′ (x) =
x4 + 2x3 + 4x2 + 3x+ 2

x3 + x2 + x+ 1
, y (0) = 2.

5. If F,G ∈
∫
f (x) dx for all x ∈ R, show F (x) = G (x) + C for some constant, C.

Use this to give a different proof of the fundamental theorem of calculus which

has for its conclusion
∫ b

a
f (t) dt = G (b)−G (a) where G′ (x) = f (x) .

6. Suppose f is continuous on [a, b]. Show there exists c ∈ (a, b) such that

f (c) =
1

b− a

∫ b

a

f (x) dx.

Hint: You might consider the function F (x) ≡
∫ x

a
f (t) dt and use the mean value

theorem for derivatives and the fundamental theorem of calculus.

7. Suppose f and g are continuous functions on [a, b] and that g (x) ̸= 0 on (a, b) .
Show there exists c ∈ (a, b) such that

f (c)

∫ b

a

g (x) dx =

∫ b

a

f (x) g (x) dx.

Hint: Define F (x) ≡
∫ x

a
f (t) g (t) dt and let G (x) ≡

∫ x

a
g (t) dt. Then use the

Cauchy mean value theorem on these two functions.

8. Consider the function

f (x) ≡
{

sin
(
1
x

)
if x ̸= 0

0 if x = 0
.

Is f Riemann integrable on [0, 1]? Explain why or why not.

9. Prove the second part of Theorem 9.2.3 about decreasing functions.

10. The Riemann integral is only defined for bounded functions on bounded intervals.
When f is Riemann integrable on [a,R] for each R > a define an “improper”
integral as follows. ∫ ∞

a

f (t) dt ≡ lim
R→∞

∫ R

a

f (t) dt

whenever this limit exists. Show ∫ ∞

0

sinx

x
dx

exists. Here the integrand is defined to equal 1 when x = 0, not that this matters.
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11. Show ∫ ∞

0

sin
(
t2
)
dt

exists.

12. The Gamma function is defined for x > 0 by

Γ (x) ≡
∫ ∞

0

e−ttx−1dt

Give a meaning to the above improper integral and show it exists. Also show

Γ (x+ 1) = Γ (x)x, Γ (1) = 1,

and for n a positive integer, Γ (n+ 1) = n!. Hint: The hard part is showing the
integral exists. To do this, first show that if f (x) is an increasing function which
is bounded above, then limx→∞ f (x) must exist and equal sup {f (x) : x ≥ 0} .
Then show ∫ R

0

e−ttx−1dt ≡ lim
ε→0+

∫ R

ε

e−ttx−1dt

is an increasing function of R which is bounded above.

13. The most important of all differential equations is the first order linear equation,
y′+p (t) y = f (t) where p, f are continuous. Show the solution to the initial value
problem consisting of this equation and the initial condition, y (a) = ya is

y (t) = e−P (t)ya + e−P (t)

∫ t

a

eP (s)f (s) ds,

where P (t) =
∫ t

a
p (s) ds. Give conditions under which everything is correct.

Hint: You use the integrating factor approach. Multiply both sides by eP (t),
verify the left side equals

d

dt

(
eP (t)y (t)

)
,

and then take the integral,
∫ t

a
of both sides.

14. Suppose f is a continuous function which is not equal to zero on [0, b] . Show that∫ b

0

f (x)

f (x) + f (b− x)
dx =

b

2
.

Hint: First change the variables to obtain the integral equals∫ b/2

−b/2

f (y + b/2)

f (y + b/2) + f (b/2− y)
dy

Next show by another change of variables that this integral equals∫ b/2

−b/2

f (b/2− y)
f (y + b/2) + f (b/2− y)

dy.

Thus the sum of these equals b.
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15. Let there be three equally spaced points, xi−1, xi−1 + h ≡ xi, and xi +2h ≡ xi+1.
Suppose also a function f, has the value fi−1 at x, fi at x+h, and fi+1 at x+2h.
Then consider

gi (x) ≡
fi−1

2h2
(x− xi) (x− xi+1)−

fi
h2

(x− xi−1) (x− xi+1)+
fi+1

2h2
(x− xi−1) (x− xi) .

Check that this is a second degree polynomial which equals the values fi−1, fi,
and fi+1 at the points xi−1, xi, and xi+1 respectively. The function gi is an
approximation to the function f on the interval [xi−1, xi+1] . Also,∫ xi+1

xi−1

gi (x) dx

is an approximation to
∫ xi+1

xi−1
f (x) dx. Show

∫ xi+1

xi−1
gi (x) dx equals

hfi−1

3
+
hfi4

3
+
hfi+1

3
.

Now suppose n is even and {x0, x1, · · · , xn} is a partition of the interval, [a, b] and
the values of a function f defined on this interval are fi = f (xi) . Adding these
approximations for the integral of f on the succession of intervals,

[x0, x2] , [x2, x4] , · · · , [xn−2, xn] ,

show that an approximation to
∫ b

a
f (x) dx is

h

3
[f0 + 4f1 + 2f2 + 4f3 + 2f2 + · · ·+ 4fn−1 + fn] .

This is called Simpson’s rule. Use Simpson’s rule to compute an approximation

to
∫ 2

1
1
t dt letting n = 4.

16. Suppose x0 ∈ (a, b) and that f is a function which has n+1 continuous derivatives
on this interval. Consider the following.

f (x) = f (x0) +

∫ x

x0

f ′ (t) dt

= f (x0) + (t− x) f ′ (t) |xx0
+

∫ x

x0

(x− t) f ′′ (t) dt

= f (x0) + f ′ (x0) (x− x0) +
∫ x

x0

(x− t) f ′′ (t) dt.

Explain the above steps and continue the process to eventually obtain Taylor’s
formula,

f (x) = f (x0) +
n∑

k=1

f (k) (x0)

k!
(x− x0)k +

1

n!

∫ x

x0

(x− t)n f (n+1) (t) dt

where n! ≡ n (n− 1) · · · 3 · 2 · 1 if n ≥ 1 and 0! ≡ 1.

17. In the above Taylor’s formula, use Problem 7 on Page 221 to obtain the existence
of some z between x0 and x such that

f (x) = f (x0) +
n∑

k=1

f (k) (x0)

k!
(x− x0)k +

f (n+1) (z)

(n+ 1)!
(x− x0)n+1

.

Hint: You might consider two cases, the case when x > x0 and the case when
x < x0.
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18. There is a general procedure for constructing methods of approximate integration
like the trapezoid rule and Simpson’s rule. Consider [0, 1] and divide this interval
into n pieces using a uniform partition, {x0, · · · , xn} where xi − xi−1 = 1/n for
each i. The approximate integration scheme for a function f, will be of the form(

1

n

) n∑
i=0

cifi ≈
∫ 1

0

f (x) dx

where fi = f (xi) and the constants, ci are chosen in such a way that the above

sum gives the exact answer for
∫ 1

0
f (x) dx where f (x) = 1, x, x2, · · · , xn. When

this has been done, change variables to write∫ b

a

f (y) dy = (b− a)
∫ 1

0

f (a+ (b− a)x) dx

≈ b− a
n

n∑
i=1

cif

(
a+ (b− a)

(
i

n

))

=
b− a
n

n∑
i=1

cifi

where fi = f
(
a+ (b− a)

(
i
n

))
. Consider the case where n = 1. It is necessary to

find constants c0 and c1 such that

c0 + c1 = 1 =
∫ 1

0
1 dx

0c0 + c1 = 1/2 =
∫ 1

0
x dx.

Show that c0 = c1 = 1/2, and that this yields the trapezoid rule. Next take
n = 2 and show the above procedure yields Simpson’s rule. Show also that if
this integration scheme is applied to any polynomial of degree 3 the result will be
exact. That is,

1

2

(
1

3
f0 +

4

3
f1 +

1

3
f2

)
=

∫ 1

0

f (x) dx

whenever f (x) is a polynomial of degree three. Show that if fi are the values of f at

a, a+b
2 , and b with f1 = f

(
a+b
2

)
, it follows that the above formula gives

∫ b

a
f (x) dx

exactly whenever f is a polynomial of degree three. Obtain an integration scheme
for n = 3.

19. Let f have four continuous derivatives on [xi−1, xi+1] where xi+1 = xi−1+2h and
xi = xi−1 + h. Show using Problem 17, there exists a polynomial of degree three,
p3 (x) , such that

f (x) = p3 (x) +
1

4!
f (4) (ξ) (x− xi)4

Now use Problem 18 and Problem 15 to conclude∣∣∣∣∣
∫ xi+1

xi−1

f (x) dx−
(
hfi−1

3
+
hfi4

3
+
hfi+1

3

)∣∣∣∣∣ < M

4!

2h5

5
,

where M satisfies, M ≥ max
{∣∣f (4) (t)∣∣ : t ∈ [xi−1, xi]

}
. Now let S (a, b, f, 2m)

denote the approximation to
∫ b

a
f (x) dx obtained from Simpson’s rule using 2m

equally spaced points. Show∣∣∣∣∣
∫ b

a

f (x) dx− S (a, b, f, 2m)

∣∣∣∣∣ < M

1920
(b− a)5 1

m4
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whereM ≥ max
{∣∣f (4) (t)∣∣ : t ∈ [a, b]

}
. Better estimates are available in numerical

analysis books. However, these also have the error in the form C
(
1/m4

)
.

20. A regular Sturm Liouville problem involves the differential equation, for an
unknown function of x which is denoted here by y,

(p (x) y′)
′
+ (λq (x) + r (x)) y = 0, x ∈ [a, b]

and it is assumed that p (t) , q (t) > 0 for any t along with boundary conditions,

C1y (a) + C2y
′ (a) = 0

C3y (b) + C4y
′ (b) = 0

where

C2
1 + C2

2 > 0, and C2
3 + C2

4 > 0.

There is an immense theory connected to these important problems. The constant,
λ is called an eigenvalue. Show that if y is a solution to the above problem
corresponding toλ = λ1 and if z is a solution corresponding to λ = λ2 ̸= λ1, then∫ b

a

q (x) y (x) z (x) dx = 0. (9.23)

Hint: Do something like this:

(p (x) y′)
′
z + (λ1q (x) + r (x)) yz = 0,

(p (x) z′)
′
y + (λ2q (x) + r (x)) zy = 0.

Now subtract and either use integration by parts or show

(p (x) y′)
′
z − (p (x) z′)

′
y = ((p (x) y′) z − (p (x) z′) y)

′

and then integrate. Use the boundary conditions to show that y′ (a) z (a) −
z′ (a) y (a) = 0 and y′ (b) z (b) − z′ (b) y (b) = 0. The formula, 9.23 is called an
orthogonality relation and it makes possible an expansion in terms of certain
functions called eigenfunctions.

21. Letting [a, b] = [−π, π] , consider an example of a regular Sturm Liouville problem
which is of the form

y′′ + λy = 0, y (−π) = 0, y (π) = 0.

Show that if λ = n2 and yn (x) = sin (nx) for n a positive integer, then yn is a
solution to this regular Sturm Liouville problem. In this case, q (x) = 1 and so
from Problem 20, it must be the case that∫ π

−π

sin (nx) sin (mx) dx = 0

if n ̸= m. Show directly using integration by parts that the above equation is true.

22. Let f be increasing and g continuous on [a, b]. Then there exists c ∈ [a, b] such
that ∫ b

a

gdf = g (c) (f (b)− f (c)) .
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Hint: First note g Riemann Stieltjes integrable because it is continuous. Since g
is continuous, you can let

m = min {g (x) : x ∈ [a, b]}

and
M = max {g (x) : x ∈ [a, b]}

Then

m

∫ b

a

df ≤
∫ b

a

gdf ≤M
∫ b

a

df

Now if f (b)− f (a) ̸= 0, you could divide by it and conclude

m ≤
∫ b

a
gdf

f (b)− f (a)
≤M.

You need to explain why
∫ b

a
df = f (b) − f (a). Next use the intermediate value

theorem to get the term in the middle equal to g (c) for some c. What happens if
f (b)−f (a) = 0? Modify the argument and fill in the details to show the conclusion
still follows.

23. Suppose g is increasing and f is continuous and of bounded variation. By Theorem
9.4.18,

g ∈ R ([a, b] , f) .

Show there exists c ∈ [a, b] such that∫ b

a

gdf = g (a)

∫ c

a

df + g (b)

∫ b

c

df

This is called the second mean value theorem for integrals. Hint: Use integration
by parts. ∫ b

a

gdf = −
∫ b

a

fdg + f (b) g (b)− f (a) g (a)

Now use the first mean value theorem, the result of Problem 22 to substitute

something for
∫ b

a
fdg and then simplify.

24. Let f : [a, b]× [c, d]→ R satisfy the following condition at (x0, y0) ∈ [a, b]× [c, d].
For every ε > 0 there exists a δ > 0 possibly depending on (x0, y0) such that if

max (|x− x0| , |y − y0|) < δ

then
|f (x, y)− f (x0, y0)| < ε.

This is what it means for f to be continuous at (x0, y0) . Show that if f is continu-
ous at every point of [a, b]× [c, d] , then it is uniformly continuous on [a, b]× [c, d] .
That is, for every ε > 0 there exists a δ > 0 such that if (x0, y0) , (x, y) are any
two points of [a, b]× [c, d] such that

max (|x− x0| , |y − y0|) < δ,

then
|f (x, y)− f (x0, y0)| < ε.

Also show that such a function achieves its maximum and its minimum on [a, b]×
[c, d] . Hint: This is easy if you follow the same procedure that was used earlier
but you take subsequences for each component to show [a, b]× [c, d] is sequentially
compact.
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25. Suppose f is a real valued function defined on [a, b]× [c, d] which is uniformly con-
tinuous as described in Problem 24 and bounded which follow from an assumption
that it is continuous. Also suppose α, β are increasing continuous functions. Show

x→
∫ d

c

f (x, y) dβ (y) , y →
∫ b

a

f (x, y) dα (x)

are both continuous functions. The idea is you fix one of the variables, x in the
first and then integrate the continuous function of y obtaining a real number which
depends on the value of x fixed. Explain why it makes sense to write∫ b

a

∫ d

c

f (x, y) dβ (y) dα (x) ,

∫ d

c

∫ b

a

f (x, y) dα (x) dβ (y) .

Now consider the first of the above iterated integrals. (That is what these are
called.) Consider the following argument in which you fill in the details.∫ b

a

∫ d

c

f (x, y) dβ (y) dα (x) =

n∑
i=1

∫ xi

xi−1

∫ d

c

f (x, y) dβ (y) dα (x)

=

n∑
i=1

∫ xi

xi−1

m∑
j=1

∫ yj

yj−1

f (x, y) dβ (y) dα (x)

=
n∑

i=1

m∑
j=1

∫ xi

xi−1

∫ yj

yj−1

f (x, y) dβ (y) dα (x)

=
n∑

i=1

m∑
j=1

∫ xi

xi−1

(β (yj)− β (yj−1)) f (x, tj) dα (x)

=
n∑

i=1

m∑
j=1

(β (yj)− β (yj−1)) (α (xi)− α (xj−1)) f (sj , tj)

Also ∫ d

c

∫ b

a

f (x, y) dα (x) dβ (y)

=
m∑
j=1

n∑
i=1

(β (yj)− β (yj−1)) (α (xi)− α (xj−1)) f
(
s′j , t

′
j

)
and now because of uniform continuity, it follows that if the partition points are
close enough, ∣∣f (s′j , t′j)− f (sj , tj)∣∣ < ε

(β (d)− β (c)) (α (b)− α (a))

and so ∣∣∣∣∣
∫ d

c

∫ b

a

f (x, y) dα (x) dβ (y)−
∫ d

c

∫ b

a

f (x, y) dα (x) dβ (y)

∣∣∣∣∣ < ε

Since ε is arbitrary, this shows the two iterated integrals are equal. This is a case
of Fubini’s theorem.

26. Generalize the result of Problem 25 to the situation where α and β are only of
bounded variation.
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27. This problem is in Apostol [2]. Explain why whenever f is continuous on [a, b]

lim
n→∞

b− a
n

n∑
k=1

f

(
a+ k

(
b− a
n

))
=

∫ b

a

fdx.

Apply this to f (x) = 1
1+x2 on the interval [0, 1] to obtain the very interesting

formula
π

4
= lim

n→∞

n∑
k=1

n

n2 + k2
.

28. Suppose f : [a, b] × (c, d) → R is continuous. Recall the meaning of the partial
derivative from calculus,

∂f

∂x
(t, x) ≡ lim

h→0

f (t, x+ h)− f (t, x)
h

Suppose also
∂f

∂x
(t, x)

exists and for some K independent of t,∣∣∣∣∂f∂x (t, z)− ∂f

∂x
(t, x)

∣∣∣∣ < K |z − x| .

This last condition happens, for example if ∂2f(t,x)
∂x2 is uniformly bounded on [a, b]×

(c, d) . (Why?) Define

F (x) ≡
∫ b

a

f (t, x) dt.

Take the difference quotient of F and show using the mean value theorem and the
above assumptions that

F ′ (x) =

∫ b

a

∂f (t, x)

∂x
dt.

Is there a version of this result with dt replaced with dα where α is an increasing
function? How about α a function of bounded variation?

29. I found this problem in Apostol’s book [2]. This is a very important result and is
obtained very simply. Let

g (x) ≡
∫ 1

0

e−x2(1+t2)

1 + t2
dt

and

f (x) ≡
(∫ x

0

e−t2dt

)2

.

Note
∂

∂x

(
e−x2(1+t2)

1 + t2

)
= −2xe−x2(1+t2)

and

∂2

∂x2

(
e−x2(1+t2)

1 + t2

)
= −2e−x2(1+t2) + 4x2e−x2(1+t2) + 4x2e−x2(1+t2)t2
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which is bounded for t ∈ [0, 1] and x ∈ (−∞,∞) . Explain why this is so. Also
show the conditions of Problem 28 are satisfied so that

g′ (x) =

∫ 1

0

(
−2xe−x2(1+t2)

)
dt.

Now use the chain rule and the fundamental theorem of calculus to find f ′ (x) .
Then change the variable in the formula for f ′ (x) to make it an integral from 0
to 1 and show

f ′ (x) + g′ (x) = 0.

Now this shows f (x) + g (x) is a constant. Show the constant is π/4 by assigning
x = 0. Next take a limit as x→∞ to obtain the following formula for the improper
integral,

∫∞
0
e−t2dt, (∫ ∞

0

e−t2dt

)2

= π/4.

In passing to the limit in the integral for g as x→∞ you need to justify why that
integral converges to 0. To do this, argue the integrand converges uniformly to 0
for t ∈ [0, 1] and then explain why this gives convergence of the integral. Thus∫ ∞

0

e−t2dt =
√
π/2.

30. The gamma function is defined for x > 0 as

Γ (x) ≡
∫ ∞

0

e−ttx−1dt ≡ lim
R→∞

∫ R

0

e−ttx−1dt

Show this limit exists. Note you might have to give a meaning to∫ R

0

e−ttx−1dt

if x < 1. Also show that

Γ (x+ 1) = xΓ (x) , Γ (1) = 1.

How does Γ (n) for n an integer compare with (n− 1)!?

31. Find Γ
(
1
2

)
. Hint: Γ

(
1
2

)
≡
∫∞
0
e−tt−1/2dt. Explain carefully why this equals

2

∫ ∞

0

e−u2

du

Then use Problem 29. Find a formula for Γ
(
3
2

)
,Γ
(
5
2

)
, etc.

32. For p, q > 0, B(p, q) ≡
∫ 1

0
xp−1(1 − x)q−1dx. This is called the beta function.

Show Γ(p)Γ(q) = B(p, q)Γ(p + q). Hint: You might want to adapt and use the
Fubini theorem presented earlier in Problem 25 about iterated integrals.

33. This problem outlines an approach to Stirling’s formula which is found in [31] and
[7]. From the above problems, Γ (n+ 1) = n! for n ≥ 0. Consider more generally
Γ (x+ 1) for x > 0. It equals

∫∞
0
e−ttxdt. Change variables letting t = x (1 + u)

to obtain

Γ (x+ 1) = xx+1e−x

∫ ∞

−1

(
(1 + u) e−u

)x
du
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Next let h (u) be such that h (0) = 1 and

(1 + u) e−u = exp

(
−u

2

2
h (u)

)
Show that the thing which works is h (u) = 2

u2 (u− ln (1 + u)). Use L’Hospital’s
rule to verify that the limit of h (u) as u → 0 is 1. The graph of h is illustrated
in the following picture. Verify that its graph is like this, with an asymptote at
u = −1 decreasing and equal to 1 at 0 and converging to 0 as u→∞.

−1

d1

Next change the variables again letting u = s
√

2
x . This yields

Γ (x+ 1) = xxe−x
√
2x

∫ ∞

−
√

x/2

exp

(
−s2h

(
s

√
2

x

))
ds

Consider the integrand in the above. Using the description of h in the above
graph, verify that

lim
x→∞

exp

(
−s2h

(
s

√
2

x

))
= exp

(
−s2

)
and that this convergence is uniform on any interval of the form [−A,A]. So that
all makes sense, you should have x large enough that

−A
√

2

x
> −1, (

√
x > A

√
2),

√
x

2
> A, −A > −

√
x

2

To verify this convergence, explain why it suffices to verify the uniform convergence

of h
(
s
√

2
x

)
to 1 on this interval. Use the graph to observe why this is so. Now

consider and explain the following inequality valid for
√
x > A

√
2 and x large.∣∣∣∣∣

∫ ∞

−
√

x/2

exp

(
−s2h

(
s

√
2

x

))
ds−

∫ ∞

−∞
e−s2ds

∣∣∣∣∣
<

∫ −A

−
√

x
2

exp

(
−s2h

(
s

√
2

x

))
ds

+

∫ −A

−∞
e−s2ds+

∫ ∞

A

e−s2ds+

∫ ∞

A

exp

(
−s2h

(
s

√
2

x

))
ds

+

∫ A

−A

∣∣∣∣∣exp
(
−s2h

(
s

√
2

x

))
− e−s2

∣∣∣∣∣ ds
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First consider s < 0 and the first integral on the right of the inequality. For s < 0,

you have h
(
s
√

2
x

)
> 1. See the above graph. Thus the integrand is no larger

than e−s2 . Now consider the fourth integral

s2h

(
s

√
2

x

)
= s2

(
2

s2 (2/x)

(
s

√
2

x
− ln

(
1 + s

√
2

x

)))
=

(
s
√
2x− ln

(
1 + s

√
2x
))

and so the integrand reduces to(
1 + s

√
2x
)
exp

(
−s
√
2x
)

Thus, this integrand is dominated by
(
1 + s

√
2
)
exp

(
−s
√
2
)
for s > 0 and large

x. Explain why this is so. Therefore,∣∣∣∣∣
∫ ∞

−
√

x/2

exp

(
−s2h

(
s

√
2

x

))
ds−

∫ ∞

−∞
e−s2ds

∣∣∣∣∣
<

∫ −A

−∞
e−s2ds+

∫ −A

−∞
e−s2ds+

∫ ∞

A

e−s2ds+

∫ ∞

A

(
1 + s

√
2
)
exp

(
−s
√
2
)
ds

+

∫ A

−A

∣∣∣∣∣exp
(
−s2h

(
s

√
2

x

))
− e−s2

∣∣∣∣∣ ds
Now pick A sufficiently large that all but the last term adds to no more than
ε/2. Then use the uniform convergence mentioned above to observe that the last
integral is less than ε/2 whenever x is large enough. Thus

Γ (x+ 1)

xxe−x
√
2x

=

∫ ∞

−
√

x/2

exp

(
−s2h

(
s

√
2

x

))
ds→

∫ ∞

−∞
e−s2ds

Explain why this last integral equals
√
π. See Problem 29. This yields a general

Stirling’s formula,

lim
x→∞

Γ (x+ 1)

xxe−x
√
2x

=
√
π.

34. To show you the power of Stirling’s formula, find whether the series

∞∑
n=1

n!en

nn

converges. The ratio test falls flat but you can try it if you like. Now explain why,
if n is large enough,

n! ≥ 1

2

√
π
√
2e−nnn+(1/2) ≡ c

√
2e−nnn+(1/2)
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Chapter 10

Fourier Series

10.1 The Complex Exponential

What does eix mean? Here i2 = −1. Recall the complex numbers are of the form a+ ib
and are identified as points in the plane. For f (x) = eix, you would want

f ′′ (x) = i2f (x) = −f (x)

so
f ′′ (x) + f (x) = 0.

Also, you would want
f (0) = e0 = 1, f ′ (0) = ie0 = i.

One solution to these conditions is

f (x) = cos (x) + i sin (x) .

Is it the only solution? Suppose g (x) is another solution. Consider u (x) = f (x)−g (x) .
Then it follows

u′′ (x) + u (x) = 0, u (0) = 0 = u′ (0) .

Thus both Reu and Imu solve the differential equation and 0 initial condition. By
Lemma 8.3.3 both Reu and Imu are equal to 0. Thus the above is the only solution.
Recall by De’Moivre’s theorem

(cosx+ i sinx)
n
= cos (nx) + i sin (nx)

for any integer n and so (
eix
)n

= einx.

10.2 Definition And Basic Properties

A Fourier series is an expression of the form

∞∑
k=−∞

cke
ikx

where this means

lim
n→∞

n∑
k=−n

cke
ikx.

233
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Obviously such a sequence of partial sums may or may not converge at a particular
value of x.

These series have been important in applied math since the time of Fourier who
was an officer in Napoleon’s army. He was interested in studying the flow of heat in
cannons and invented the concept to aid him in his study. Since that time, Fourier
series and the mathematical problems related to their convergence have motivated the
development of modern methods in analysis. As recently as the mid 1960’s a problem
related to convergence of Fourier series was solved for the first time and the solution of
this problem was a big surprise.1 This chapter is on the classical theory of convergence
of Fourier series.

If you can approximate a function f with an expression of the form

∞∑
k=−∞

cke
ikx

then the function must have the property f (x+ 2π) = f (x) because this is true of
every term in the above series. More generally, here is a definition.

Definition 10.2.1 A function f defined on R is a periodic function of period
T if f (x+ T ) = f (x) for all x.

As just explained, Fourier series are useful for representing periodic functions and
no other kind of function.There is no loss of generality in studying only functions which
are periodic of period 2π. Indeed, if f is a function which has period T , you can study
this function in terms of the function g (x) ≡ f

(
Tx
2π

)
where g is periodic of period 2π.

Definition 10.2.2 For f ∈ R ([−π, π]) and f periodic on R, define the Fourier
series of f as

∞∑
k=−∞

cke
ikx, (10.1)

where

ck ≡
1

2π

∫ π

−π

f (y) e−ikydy. (10.2)

Also define the nth partial sum of the Fourier series of f by

Sn (f) (x) ≡
n∑

k=−n

cke
ikx. (10.3)

It may be interesting to see where this formula came from. Suppose then that

f (x) =
∞∑

k=−∞

cke
ikx,

multiply both sides by e−imx and take the integral
∫ π

−π
, so that∫ π

−π

f (x) e−imxdx =

∫ π

−π

∞∑
k=−∞

cke
ikxe−imxdx.

1The question was whether the Fourier series of a function in L2 converged a.e. to the function.
It turned out that it did, to the surprise of many because it was known that the Fourier series of a
function in L1 does not necessarily converge to the function a.e. The problem was solved by Carleson
in 1965.
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Now switch the sum and the integral on the right side even though there is absolutely
no reason to believe this makes any sense. Then∫ π

−π

f (x) e−imxdx =
∞∑

k=−∞

ck

∫ π

−π

eikxe−imxdx

= cm

∫ π

−π

1dx = 2πcm

because
∫ π

−π
eikxe−imxdx = 0 if k ̸= m. It is formal manipulations of the sort just

presented which suggest that Definition 10.2.2 might be interesting.
In case f is real valued, ck = c−k and so

Snf (x) =
1

2π

∫ π

−π

f (y) dy +

n∑
k=1

2Re
(
cke

ikx
)
.

Letting ck ≡ αk + iβk

Snf (x) =
1

2π

∫ π

−π

f (y) dy +
n∑

k=1

2 [αk cos kx− βk sin kx]

where

ck =
1

2π

∫ π

−π

f (y) e−ikydy =
1

2π

∫ π

−π

f (y) (cos ky − i sin ky) dy

which shows that

αk =
1

2π

∫ π

−π

f (y) cos (ky) dy, βk =
−1
2π

∫ π

−π

f (y) sin (ky) dy

Therefore, letting ak = 2αk and bk = −2βk,

ak =
1

π

∫ π

−π

f (y) cos (ky) dy, bk =
1

π

∫ π

−π

f (y) sin (ky) dy

and

Snf (x) =
a0
2

+
n∑

k=1

ak cos kx+ bk sin kx (10.4)

This is often the way Fourier series are presented in elementary courses where it is only
real functions which are to be approximated. However it is easier to stick with Definition
10.2.2.

The partial sums of a Fourier series can be written in a particularly simple form
which is presented next.

Snf (x) =
n∑

k=−n

cke
ikx

=

n∑
k=−n

(
1

2π

∫ π

−π

f (y) e−ikydy

)
eikx

=

∫ π

−π

1

2π

n∑
k=−n

(
eik(x−y)

)
f (y) dy

≡
∫ π

−π

Dn (x− y) f (y) dy. (10.5)
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The function

Dn (t) ≡
1

2π

n∑
k=−n

eikt

is called the Dirichlet Kernel

Theorem 10.2.3 The function Dn satisfies the following:

1.
∫ π

−π
Dn (t) dt = 1

2. Dn is periodic of period 2π

3. Dn (t) = (2π)
−1 sin(n+ 1

2 )t
sin( t

2 )
.

Proof:Part 1 is obvious because 1
2π

∫ π

−π
e−ikydy = 0 whenever k ̸= 0 and it equals 1

if k = 0. Part 2 is also obvious because t→ eikt is periodic of period 2π. It remains to
verify Part 3. Note

2πDn (t) =

n∑
k=−n

eikt = 1 + 2

n∑
k=1

cos (kt)

Therefore,

2πDn (t) sin

(
t

2

)
= sin

(
t

2

)
+ 2

n∑
k=1

sin

(
t

2

)
cos (kt)

= sin

(
t

2

)
+

n∑
k=1

sin

((
k +

1

2

)
t

)
− sin

((
k − 1

2

)
t

)
= sin

((
n+

1

2

)
t

)
where the easily verified trig. identity cos (a) sin (b) = 1

2 (sin (a+ b)− sin (a− b)) is used
to get to the second line. This proves 3 and proves the theorem.

Here is a picture of the Dirichlet kernels for n=1,2, and 3

x

0−1−2 1

1

−1

0

32

2

−3

y

Note they are not nonnegative but there is a large central positive bump which gets
larger as n gets larger.

It is not reasonable to expect a Fourier series to converge to the function at every
point. To see this, change the value of the function at a single point in (−π, π) and
extend to keep the modified function periodic. Then the Fourier series of the modified
function is the same as the Fourier series of the original function and so if pointwise
convergence did take place, it no longer does. However, it is possible to prove an
interesting theorem about pointwise convergence of Fourier series. This is done next.
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10.3 The Riemann Lebesgue Lemma

The Riemann Lebesgue lemma is the basic result which makes possible the study of
pointwise convergence of Fourier series. It is also a major result in other contexts and
serves as a useful example.

For the purpose of simple notation, let R ((a, b]) denote those functions f which are
in R ([a+ δ, b]) for every δ > 0 and the improper integral

lim
δ→0

∫ b

a+δ

f (x) dx exists.

Lemma 10.3.1 Let f ∈ R ((a, b]) , f (x) ≥ 0, where (a, b) is some finite interval
and let ε > 0. Then there exists an interval of finite length, [a1, b1] ⊆ (a, b) and a
differentiable function h having continuous derivative such that both h and h′ equal 0
outside of [a1, b1] which has the property that 0 ≤ h (x) ≤ f (x) and∫ b

a

|f − h| dx < ε (10.6)

Proof: First here is a claim.
Claim: There exists a continuous g which vanishes near a and b such that g ≤ f

and ∫ b

a

|f (x)− g (x)| dx < ε/3.

where the integral is the improper Riemann integral defined by∫ b

a

(f (x)− g (x)) dx ≡ lim
δ→0+

∫ b

a+δ

(f (x)− g (x)) dx

Proof of the claim: First let a0 > a such that∣∣∣∣∣
∫ b

a

f (x) dx−
∫ b

a0

f (x) dx

∣∣∣∣∣ =
∫ a0

a

|f (x)| dx < ε/3.

Let {x0, x1, · · · , xn} be a partition of [a0, b] and let

n∑
k=1

ak (xk − xk−1)

be a lower sum such that∣∣∣∣∣
∫ b

a0

f (x) dx−
n∑

k=1

ak (xk − xk−1)

∣∣∣∣∣ < ε/6.

The sum in the above equals ∫ b

a0

n∑
k=1

akX[xk−1,xk) (x) dx

where

X[xk−1,xk) (x) =

{
1 if x ∈ [xk−1, xk)
0 if x /∈ [xk−1, xk)

Now let ψk be a continuous function which approximates X[xk−1,xk) (x) and vanishes near
the endpoints of [xk−1, xk) as shown in the following picture in which δ is sufficiently
small.
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�
�
�
�
�
� A

A
A
A
A
A

xk−1 xk−1 + 2δ xk − 2δ xk
Then ∫ b

a0

∣∣akX[xk−1,xk) (x)− akψk (x)
∣∣ akdx

≤
∫ xk−1+δ

xk−1

akdx+

∫ xk−1+2δ

xk−1+δ

ak
∣∣X[xk−1,xk) (x)− ψk (x)

∣∣ dx
+

∫ xk−δ

xk−2δ

ak
∣∣X[xk−1,xk) (x)− ψk (x)

∣∣ dx+

∫ xk

xk−δ

ak

≤ δak + δak + δak + δak = 4δak.

Let δ be chosen small enough that the above expression is less than ε/6n. Therefore,
choosing ψk in this manner for each k = 1, · · · , n yields∣∣∣∣∣

∫ b

a0

n∑
k=1

akX[xk−1,xk) (x) dx−
∫ b

a0

n∑
k=1

akψk (x) dx

∣∣∣∣∣
=

∫ b

a0

n∑
k=1

ak
∣∣X[xk−1,xk) (x)− ψk (x)

∣∣ dx < n× ε

6n
= ε/6.

Let g (x) =
∑n

k=1 akψk (x).∫ b

a0

|f (x)− g (x)| dx =

∣∣∣∣∣
∫ b

a0

(f (x)− g (x)) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a0

f (x) dx−
n∑

k=1

ak (xk − xk−1)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

k=1

ak (xk − xk−1)−
∫ b

a0

n∑
k=1

akψk (x) dx

∣∣∣∣∣ < ε/6 + ε/6 = ε/3.

This proves the claim.
Now say g equals zero off [a′, b′] ⊆ (a, b) . Then for small h > 0,

h < min ((a′ − a) /3, (b− b′) /3) (10.7)

define

gh (x) ≡
1

2h

∫ x+h

x−h

g (t) dt

Then gh is continuous and has a continuous derivative which equals

1

2h
(g (x+ h)− g (x− h)) .

Say x ∈ [xk−1, xk) and let δ be as above. Let h < δ/2. Then gh (x) ≤ f (x) because on
this interval f (x) ≥ ak and g (x) ≤ ak. Also∫ b

a0

|g (x)− gh (x)| dx =

∫ b

a0

∣∣∣∣∣g (x)− 1

2h

∫ x+h

x−h

g (t) dt

∣∣∣∣∣ dx
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=

∫ b

a0

∣∣∣∣∣ 12h
∫ x+h

x−h

(g (x)− g (t)) dt

∣∣∣∣∣ dx ≤
∫ b

a0

1

2h

∫ x+h

x−h

|g (x)− g (t)| dtdx

<

∫ b

a0

1

2h

∫ x+h

x−h

ε

3 (b− a0)
dtdx =

ε

3

provided h is small enough, due to the uniform continuity of g. (Why is g uniformly
continuous?) Also, since h satisfies 10.7, gh and g′h vanish outside some closed interval,
[a1, b1] ⊆ (a0, b). Since gh equals zero between a and a0, this shows that for such h,∫ b

a

|f (x)− gh (x)| dx =

∣∣∣∣∣
∫ b

a

f (x) dx−
∫ b

a

gh (x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ b

a

f (x) dx−
∫ b

a0

f (x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a0

f (x) dx−
∫ b

a0

gh (x) dx

∣∣∣∣∣
≤ ε

3
+

∣∣∣∣∣
∫ b

a0

f (x) dx−
∫ b

a0

g (x) dx

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a0

g (x) dx−
∫ b

a0

gh (x) dx

∣∣∣∣∣
< ε/3 + ε/3 + ε/3 = ε.

Letting h = gh this proves the Lemma.
The lemma can be generalized to the case where f has values in C. In this case,∫ b

a

f (x) dx ≡
∫ b

a

Re f (x) dx+ i

∫ b

a

Im f (x) dx

and f ∈ R ((a, b]) means Re f, Im f ∈ R ((a, b]).

Lemma 10.3.2 Let |f | ∈ R ((a, b]) , where (a, b) is some finite interval and let ε > 0.
Then there exists an interval of finite length, [a1, b1] ⊆ (a, b) and a differentiable function
h having continuous derivative such that both h and h′ equal 0 outside of [a1, b1] which
has the property that ∫ b

a

|f − h| dx < ε (10.8)

Proof: For g a real valued bounded function, define

g+ (x) ≡ g (x) + |g (x)|
2

, g− (x) ≡ |g (x)| − g (x)
2

.

First suppose f is real valued. Then apply Lemma 10.3.2 to f+ and f− to obtain h+
and h− continuous and vanishing on some interval, [a1, b1] ⊆ (a, b) such that∫ b

a

(f+ − h+) dx < ε/5,

∫ b

a

(f− − h−) dx < ε/5

Let h = h+ − h−. Then if f (x) ≥ 0, f− (x) = 0 and so

f (x)− h (x) = f+ (x)− h+ (x) + h− (x) = f+ (x)− h+ (x) ≥ 0

If f (x) < 0, then f+ (x) = 0 and so h+ (x) = 0 and

h (x)− f (x) = −h− (x)− (−f− (x)) = f− (x)− h− (x) ≥ 0.
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Therefore, |f (x)− h (x)| ≤ f+ (x)− h+ (x) + (f− (x)− h− (x)) and so∫ b

a

|f − h| dx ≤
∫ b

a

(f+ − h+) dx+

∫ b

a

(f− − h−) dx <
2ε

5
.

Now if f has values in C, from what was just shown, there exist h1, h2 continuous
and vanishing on some interval, [a1, b1] ⊆ (a, b) such that∫ b

a

|Re f − h1| dx,
∫ b

a

|Im f − h2| dx <
2ε

5

and therefore, ∫ b

a

|Re f + i Im f − (h1 + ih2)| dx ≤
∫ b

a

|Re f − h1| dx

+

∫ b

a

|Im f − h2| dx <
4ε

5
< ε.

This proves the lemma.
The lemma is the basis for the Riemann Lebesgue lemma, the main result in the

study of pointwise convergence of Fourier series.

Lemma 10.3.3 (Riemann Lebesgue) Let |f | ∈ R ((a, b]) where (a, b) is some finite
interval. Then

lim
α→∞

∫ b

a

f (t) sin (αt+ β) dt = 0. (10.9)

Here the integral is the improper Riemann integral defined by

lim
δ→0+

∫ b

a+δ

f (t) sin (αt+ β) dt

Proof: Let ε > 0 be given and use Lemma 10.3.2 to obtain g such that g and g′ are
both continuous and vanish outside [a1, b1] ⊆ (a, b), and∫ b

a

|g − f | dx < ε

2
. (10.10)

Then ∣∣∣∣∣
∫ b

a

f (t) sin (αt+ β) dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

(f (t)− g (t)) sin (αt+ β) dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

g (t) sin (αt+ β) dt

∣∣∣∣∣
≤

∫ b

a

|f − g| dx+

∣∣∣∣∣
∫ b

a

g (t) sin (αt+ β) dt

∣∣∣∣∣
<

ε

2
+

∣∣∣∣∣
∫ b1

a1

g (t) sin (αt+ β) dt

∣∣∣∣∣ .
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Integrate the last term by parts.∫ b1

a1

g (t) sin (αt+ β) dt =
− cos (αt+ β)

α
g (t) |b1a1

+

∫ b1

a1

cos (αt+ β)

α
g′ (t) dt,

an expression which converges to zero since g′ is bounded and

− cos (αt+ β)

α
g (t) |b1a1

= 0

because g vanishes at a1 and b1. Therefore, taking α large enough,∣∣∣∣∣
∫ b

a

f (t) sin (αt+ β) dt

∣∣∣∣∣ < ε

2
+
ε

2
= ε

and this proves the lemma.

10.4 Dini’s Criterion For Convergence

Fourier series like to converge to the midpoint of the jump of a function under certain
conditions. The condition given for convergence in the following theorem is due to Dini.
It is a generalization of the usual theorem presented in elementary books on Fourier
series methods. [3].

Recall
lim

t→x+
f (t) ≡ f (x+) , and lim

t→x−
f (t) ≡ f (x−)

Theorem 10.4.1 Let f be a periodic function of period 2π which is in R ([−π, π]).
Suppose at some x, f (x+) and f (x−) both exist and that the function

y →
∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ ≡ h (y) (10.11)

is in R ((0, π]) which means

lim
ε→0+

∫ π

ε

h (y) dy exists (10.12)

Then

lim
n→∞

Snf (x) =
f (x+) + f (x−)

2
. (10.13)

Proof:

Snf (x) =

∫ π

−π

Dn (x− y) f (y) dy

Change variables x− y → y and use the periodicity of f and Dn along with the formula
for Dn (y) to write this as

Snf (x) =

∫ π

−π

Dn (y) f (x− y)

=

∫ π

0

Dn (y) f (x− y) dy +
∫ 0

−π

Dn (y) f (x− y) dy

=

∫ π

0

Dn (y) [f (x− y) + f (x+ y)] dy

=

∫ π

0

1

π

sin
((
n+ 1

2

)
y
)

sin
(
y
2

) [
f (x− y) + f (x+ y)

2

]
dy. (10.14)
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Note the function

y → 1

π

sin
((
n+ 1

2

)
y
)

sin
(
y
2

) ,

while it is not defined at 0, is at least bounded and by L’Hospital’s rule,

lim
y→0

1

π

sin
((
n+ 1

2

)
y
)

sin
(
y
2

) =
2n+ 1

π

so defining it to equal this value at 0 yields a continuous, hence Riemann integrable
function and so the above integral at least makes sense. Also from the property that∫ π

−π
Dn (t) dt = 1,

f (x+) + f (x−) =

∫ π

−π

Dn (y) [f (x+) + f (x−)] dy

= 2

∫ π

0

Dn (y) [f (x+) + f (x−)] dy

=

∫ π

0

1

π

sin
((
n+ 1

2

)
y
)

sin
(
y
2

) [f (x+) + f (x−)] dy

and so ∣∣∣∣Snf (x)−
f (x+) + f (x−)

2

∣∣∣∣ =∣∣∣∣∣
∫ π

0

1

π

sin
((
n+ 1

2

)
y
)

sin
(
y
2

) [
f (x− y)− f (x−) + f (x+ y)− f (x+)

2

]
dy

∣∣∣∣∣ . (10.15)

Now the function

y →

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ (10.16)

satisfies the condition 10.12. To see this, note the numerator is in R ([0, π]) because f
is. Therefore, this function is in R ([δ, π]) for each δ > 0 because sin

(
y
2

)
is bounded

below by sin
(
δ
2

)
for such y. It remains to show it is in R ((0, π]) . For ε1 < ε2,∫ π

ε1

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ dy
−
∫ π

ε2

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ dy
=

∫ ε2

ε1

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ dy
=

∫ ε2

ε1

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ y

2 sin
(
y
2

)dy
≤

∫ ε2

ε1

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy
=

∫ π

ε1

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy
−
∫ π

ε2

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy
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Letting {εk} be any sequence of positive numbers converging to 0, this shows{∫ π

εk

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ dy
}∞

k=1

is a Cauchy sequence because the difference between the kth and themth terms, εk < εm,
is no larger than the difference between the kth and mth terms of the sequence{∫ π

εk

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy}∞

k=1

which is given to be Cauchy. Since the function

ε→
∫ π

ε

∣∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

2 sin
(
y
2

) ∣∣∣∣∣ dy
is decreasing, the limit of this function must exist.

Thus the function in 10.16 is in R ((0, π]) as claimed. It follows from the Riemann
Lebesgue lemma, that 10.15 converges to zero as n→∞. This proves the theorem.

The following corollary is obtained immediately from the above proof with minor
modifications.

Corollary 10.4.2 Let f be a periodic function of period 2π which is an element of
R ([−π, π]). Suppose at some x, the function

y →
∣∣∣∣f (x− y) + f (x+ y)− 2s

y

∣∣∣∣ (10.17)

is in R ((0, π]). Then
lim

n→∞
Snf (x) = s. (10.18)

The following corollary gives an easy to check condition for the Fourier series to
converge to the mid point of the jump.

Corollary 10.4.3 Let f be a periodic function of period 2π which is an element of
R ([−π, π]). Suppose at some x, f (x+) and f (x−) both exist and there exist positive
constants, K and δ such that whenever 0 < y < δ

|f (x− y)− f (x−)| ≤ Kyθ, |f (x+ y)− f (x+)| < Kyθ (10.19)

where θ ∈ (0, 1]. Then

lim
n→∞

Snf (x) =
f (x+) + f (x−)

2
. (10.20)

Proof: The condition 10.19 clearly implies Dini’s condition, 10.11. This is because
for 0 < y < δ ∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ ≤ 2Kyθ−1

and ∫ π

ε

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy
≤
∫ δ

ε

2Kyθ−1dy +
1

δ

∫ π

δ

|f (x− y)− f (x−) + f (x+ y)− f (x+)| dy.
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Now ∫ δ

ε

2Kyθ−1dy = 2K
δθ − εθ

θ

which converges to

2K
δθ

θ

as ε→ 0. Thus

lim
ε→0+

∫ π

ε

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy
exists and equals

sup

{∫ π

ε

∣∣∣∣f (x− y)− f (x−) + f (x+ y)− f (x+)

y

∣∣∣∣ dy : ε > 0

}
because it is bounded above by

2K
δθ

θ
+

1

δ

∫ π

δ

|f (x− y)− f (x−) + f (x+ y)− f (x+)| dy.

(Why?) This proves the corollary.
As pointed out by Apostol [3], where you can read more of this sort of thing, this is a

very remarkable result because even though the Fourier coeficients depend on the values
of the function on all of [−π, π], the convergence properties depend in this theorem on
very local behavior of the function.

10.5 Integrating And Differentiating Fourier Series

You can typically integrate Fourier series term by term and things will work out ac-
cording to your expectations. More precisely, if the Fourier series of f is

∞∑
k=−∞

ake
ikx

then it will be true for x ∈ [−π, π] that

F (x) ≡
∫ x

−π

f (t) dt = lim
n→∞

n∑
k=−n

ak

∫ x

−π

eiktdt

= a0 (x+ π) + lim
n→∞

n∑
k=−n,k ̸=0

ak

(
eikx

ik
− (−1)k

ik

)
.

I shall show this is true for the case where f is an arbitrary 2π periodic function which
on (−π, π) is the restriction of a continuous function on [−π, π] but it holds for any
f ∈ R ([−π, π]) and in the case of a more general notion of integration, it holds for more
general functions than these. Note it is not necessary to assume anything about the
function f being the limit of its Fourier series. Let

G (x) ≡ F (x)− a0 (x+ π) =

∫ x

−π

(f (t)− a0) dt
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Then G equals 0 at −π and π. Therefore, the periodic extension of G is continuous.
Also

|G (x)−G (x1)| ≤
∣∣∣∣∫ x

x1

Mdt

∣∣∣∣ ≤M |x− x1|
where M is an upper bound for |f (t)− a0|. Thus the Dini condition of Corollary 10.4.3
holds. Therefore for all x ∈ R,

G (x) =

∞∑
k=−∞

Ake
ikx (10.21)

where

Ak =
1

2π

∫ π

−π

G (x) eikxdx

Now from 10.21 and the definition of the Fourier coefficients for f,

G (π) = F (π)− a02π = 0 = A0 + lim
n→∞

n∑
k=−n,k ̸=0

Ak (−1)k (10.22)

Next consider Ak for k ̸= 0.

Ak ≡
1

2π

∫ π

−π

G (x) e−ikxdx =
1

2π

∫ π

−π

∫ x

−π

(f (t)− a0) dte−ikxdx

and now this is integrated by parts using the fundamental theorem of calculus. This
is the only place where f is continuous is used. (There are other arguments using, for
example, Fubini’s theorem which could be applied at this stage which require very little
about f . However, this mathematical machinery has not been discussed.)

Ak =
1

2π

(
−e

−ikx

ik

)∫ x

−π

(f (t)− a0) dt|π−π +
1

2πik

∫ π

−π

(f (x)− a0) e−ikxdx

Now from the definition of a0, ∫ π

−π

(f (t)− a0) dt = 0

and so

Ak =
1

2πik

∫ π

−π

(f (x)− a0) e−ikxdx =
ak
ik
.

From 10.21 and 10.22

F (x)− a0 (x+ π) = lim
n→∞

n∑
k=−n,k ̸=0

ak
ik
eikx −

n∑
k=−n,k ̸=0

ak
ik

(−1)k

and so

F (x) =

∫ x

−π

f (t) dt =

∫ x

−π

a0dt+ lim
n→∞

n∑
k=−n,k ̸=0

ak
ik

(
eikx − (−1)k

)
=

∫ x

−π

a0dt+ lim
n→∞

n∑
k=−n,k ̸=0

ak

∫ x

−π

eiktdt

This proves the following theorem.
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Theorem 10.5.1 Let f be 2π periodic and on (−π, π) f is the restriction of a
function continuous on [−π, π]. Then∫ x

−π

f (t) dt =

∫ x

−π

a0dt+ lim
n→∞

n∑
k=−n,k ̸=0

ak

∫ x

−π

eiktdt

where ak are the Fourier coefficients of f .

Example 10.5.2 Let f (x) = x for x ∈ [−π, π) and extend f to make it 2π periodic.
Then the Fourier coefficients of f are

a0 = 0, ak =
(−1)k i
k

Therefore, 1
2π

∫ π

−π
te−ikt = i

k cosπk∫ x

−π

tdt =
1

2
x2 − 1

2
π2

= lim
n→∞

n∑
k=−n,k ̸=0

(−1)k i
k

∫ x

−π

eiktdt

= lim
n→∞

n∑
k=−n,k ̸=0

(−1)k i
k

(
sinxk

k
+ i
− cosxk + (−1)k

k

)

For fun, let x = 0 and conclude

−1

2
π2 = lim

n→∞

n∑
k=−n,k ̸=0

(−1)k i
k

(
i
−1 + (−1)k

k

)

= lim
n→∞

n∑
k=−n,k ̸=0

(−1)k+1

k

(
−1 + (−1)k

k

)

= lim
n→∞

2
n∑

k=1

(−1)k + (−1)
k2

=
∞∑
k=1

−4
(2k − 1)

2

and so
π2

8
=

∞∑
k=1

1

(2k − 1)
2

The above theorem can easily be generalized to piecewise continuous functions de-
fined below.

Definition 10.5.3 Let f be a function defined on [a, b] . It is called piecewise
continuous if there is a partition of [a, b] , {x0, · · · , xn} such that on [xk−1, xk] there is
a continuous function gk such that f (x) = gk (x) for all x ∈ (xk−1, xk).

Then the proof of the above theorem generalizes right away to yield the following
corollary. It involves splitting the integral into a sum of integrals taken over the subin-
tervals determined by the partition in the above definition and on each of these one uses
a similar argument.
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Corollary 10.5.4 Let f be 2π periodic and piecewise continuous on [−π, π]. Then∫ x

−π

f (t) dt =

∫ x

−π

a0dt+ lim
n→∞

n∑
k=−n,k ̸=0

ak

∫ x

−π

eiktdt

where ak are the Fourier coefficients of f .

Of course it is not reasonable to suppose you can differentiate a Fourier series term
by term and get good results.

Consider the series for f (x) = 1 if x ∈ (0, π] and f (x) = −1 on (−π, 0) with
f (0) = 0. In this case a0 = 0.

ak =
1

2π

(∫ π

0

e−iktdt−
∫ 0

−π

e−iktdt

)
=

i

π

cosπk − 1

k

so the Fourier series is ∑
k ̸=0

(
(−1)k − 1

πk

)
ieikx

What happens if you differentiate it term by term? It gives

∑
k ̸=0

− (−1)k − 1

π
eikx

which fails to converge anywhere because the kth term fails to converge to 0. This is in
spite of the fact that f has a derivative away from 0.

However, it is possible to prove some theorems which let you differentiate a Fourier
series term by term. Here is one such theorem.

Theorem 10.5.5 Suppose for x ∈ [−π, π]

f (x) =

∫ x

−π

f ′ (t) dt+ f (−π)

and f ′ (t) is piecewise continuous. Then if

f (x) =

∞∑
k=−∞

ake
ikx

it follows the Fourier series of f ′ is

∞∑
k=−∞

akike
ikx.

Proof: Since f ′ is piecewise continuous, 2π periodic (why?) it follows from Corollary
10.5.4

f (x)− f (−π) =
∞∑

k=−∞

bk

(∫ x

−π

eiktdt

)
where bk is the kth Fourier coefficient of f ′. Thus

bk =
1

2π

∫ π

−π

f ′ (t) e−iktdt
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Breaking the integral into pieces if necessary, and integrating these by parts yields finally

=
1

2π

[
f (t) e−ikt|π−π + ik

∫ π

−π

f (t) e−iktdt

]
= ik

1

2π

∫ π

−π

f (t) e−iktdt = ikak

where ak is the Fourier coefficient of f . Since f is periodic of period 2π, the boundary
term vanishes. It follows the Fourier series for f ′ is

∞∑
k=−∞

ikake
ikx

as claimed. This proves the theorem.

Note the conclusion of this theorem is only about the Fourier series of f ′. It does
not say the Fourier series of f ′ converges pointwise to f ′. However, if f ′ satisfies a Dini
condition, then this will also occur. For example, if f ′ has a bounded derivative at every
point, then by the mean value theorem |f ′ (x)− f ′ (y)| ≤ K |x− y| and this is enough
to show the Fourier series converges to f ′ (x) thanks to Corollary 10.4.3.

10.6 Ways Of Approximating Functions

Given above is a theorem about Fourier series converging pointwise to a periodic function
or more generally to the mid point of the jump of the function. Notice that some sort
of smoothness of the function approximated was required, the Dini condition. It can be
shown that if this sort of thing is not present, the Fourier series of a continuous periodic
function may fail to converge to it in a very spectacular manner. In fact, Fourier series
don’t do very well at converging pointwise. However, there is another way of converging
at which Fourier series cannot be beat. It is mean square convergence.

Definition 10.6.1 Let f be a function defined on an interval, [a, b] . Then a
sequence, {gn} of functions is said to converge uniformly to f on [a, b] if

lim
n→∞

sup {|f (x)− gn (x)| : x ∈ [a, b]} = 0.

The expression sup {|f (x)− gn (x)| : x ∈ [a, b]} is sometimes written2 as

||f − gn||0

More generally, if f is a function,

||f ||0 ≡ sup {|f (x)| : x ∈ [a, b]}

The sequence is said to converge mean square to f if

lim
n→∞

||f − gn||2 ≡ lim
n→∞

(∫ b

a

|f − gn|2 dx

)1/2

= 0

2There is absolutely no consistency in this notation. It is often the case that ||·||0 is what is referred
to in this definition as ||·||2 . Also ||·||0 here is sometimes referred to as ||·||∞. Sometimes ||·||2 referrs
to a norm which involves derivatives of the function.
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10.6.1 Uniform Approximation With Trig. Polynomials

It turns out that if you don’t insist the ak be the Fourier coefficients, then every con-
tinuous 2π periodic function θ → f (θ) can be approximated uniformly with a Trig.
polynomial of the form

pn (θ) ≡
n∑

k=−n

ake
ikθ

This means that for all ε > 0 there exists a pn (θ) such that

||f − pn||0 < ε.

Definition 10.6.2 Recall the nth partial sum of the Fourier series Snf (x) is
given by

Snf (x) =

∫ π

−π

Dn (x− y) f (y) dy =

∫ π

−π

Dn (t) f (x− t) dt

where Dn (t) is the Dirichlet kernel,

Dn (t) = (2π)
−1 sin

(
n+ 1

2

)
t

sin
(
t
2

)
The nth Fejer mean, σnf (x) is the average of the first n of the Snf (x). Thus

σn+1f (x) ≡
1

n+ 1

n∑
k=0

Skf (x) =

∫ π

−π

(
1

n+ 1

n∑
k=0

Dk (t)

)
f (x− t) dt

The Fejer kernel is

Fn+1 (t) ≡
1

n+ 1

n∑
k=0

Dk (t) .

As was the case with the Dirichlet kernel, the Fejer kernel has some properties.

Lemma 10.6.3 The Fejer kernel has the following properties.

1. Fn+1 (t) = Fn+1 (t+ 2π)

2.
∫ π

−π
Fn+1 (t) dt = 1

3.
∫ π

−π
Fn+1 (t) f (x− t) dt =

∑n
k=−n bke

ikθ for a suitable choice of bk.

4. Fn+1 (t) =
1−cos((n+1)t)

4π(n+1) sin2( t
2 )
, Fn+1 (t) ≥ 0, Fn (t) = Fn (−t) .

5. For every δ > 0,
lim
n→∞

sup {Fn+1 (t) : π ≥ |t| ≥ δ} = 0.

In fact, for |t| ≥ δ,
Fn+1 (t) ≤

2

(n+ 1) sin2
(
δ
2

)
4π
.

Proof: Part 1.) is obvious because Fn+1 is the average of functions for which this
is true.

Part 2.) is also obvious for the same reason as Part 1.). Part 3.) is obvious because
it is true for Dn in place of Fn+1 and then taking the average yields the same sort of
sum.
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The last statements in 4.) are obvious from the formula which is the only hard part
of 4.).

Fn+1 (t) =
1

(n+ 1) sin
(
t
2

)
2π

n∑
k=0

sin

((
k +

1

2

)
t

)

=
1

(n+ 1) sin2
(
t
2

)
2π

n∑
k=0

sin

((
k +

1

2

)
t

)
sin

(
t

2

)
Using the identity sin (a) sin (b) = cos (a− b)−cos (a+ b) with a =

(
k + 1

2

)
t and b = t

2 ,
it follows

Fn+1 (t) =
1

(n+ 1) sin2
(
t
2

)
4π

n∑
k=0

(cos (kt)− cos (k + 1) t)

=
1− cos ((n+ 1) t)

(n+ 1) sin2
(
t
2

)
4π

which completes the demonstration of 4.).
Next consider 5.). Since Fn+1 is even it suffices to show

lim
n→∞

sup {Fn+1 (t) : π ≥ t ≥ δ} = 0

For the given t,

Fn+1 (t) ≤
1− cos ((n+ 1) t)

(n+ 1) sin2
(
δ
2

)
4π
≤ 2

(n+ 1) sin2
(
δ
2

)
4π

which shows 5.). This proves the lemma.
Here is a picture of the Fejer kernels for n=2,4,6.

2−3

y

t

3−1

0.25

0.5

1.0

0.0
10

0.75

−2

Note how these kernels are nonnegative, unlike the Dirichlet kernels. Also there is a
large bump in the center which gets increasingly large as n gets larger. The fact these
kernels are nonnegative is what is responsible for the superior ability of the Fejer means
to approximate a continuous function.

Theorem 10.6.4 Let f be a continuous and 2π periodic function. Then

lim
n→∞

||f − σn+1f ||0 = 0.

Proof: Let ε > 0 be given. Then by part 2. of Lemma 10.6.3,

|f (x)− σn+1f (x)| =
∣∣∣∣∫ π

−π

f (x)Fn+1 (y) dy −
∫ π

−π

Fn+1 (y) f (x− y) dy
∣∣∣∣

=

∣∣∣∣∫ π

−π

(f (x)− f (x− y))Fn+1 (y) dy

∣∣∣∣
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≤
∫ π

−π

|f (x)− f (x− y)|Fn+1 (y) dy

=

∫ δ

−δ

|f (x)− f (x− y)|Fn+1 (y) dy +

∫ π

δ

|f (x)− f (x− y)|Fn+1 (y) dy

+

∫ −δ

−π

|f (x)− f (x− y)|Fn+1 (y) dy

Since Fn+1 is even and |f | is continuous and periodic, hence bounded by some constant
M the above is dominated by

≤
∫ δ

−δ

|f (x)− f (x− y)|Fn+1 (y) dy + 4M

∫ π

δ

Fn+1 (y) dy

Now choose δ such that for all x, it follows that if |y| < δ then

|f (x)− f (x− y)| < ε/2.

This can be done because f is uniformly continuous on [−π, π] by Theorem 6.7.2 on
Page 111. Since it is periodic, it must also be uniformly continuous on R. (why?)
Therefore, for this δ, this has shown that for all x

|f (x)− σn+1f (x)| ≤ ε/2 + 4M

∫ π

δ

Fn+1 (y) dy

and now by Lemma 10.6.3 it follows

||f − σn+1f ||0 ≤ ε/2 +
8Mπ

(n+ 1) sin2
(
δ
2

)
4π

< ε

provided n is large enough. This proves the theorem.

10.6.2 Mean Square Approximation

The partial sums of the Fourier series of f do a better job approximating f in the
mean square sense than any other linear combination of the functions, eikθ for |k| ≤ n.
This will be shown next. It is nothing but a simple computation. Recall the Fourier
coefficients are

ak =
1

2π

∫ π

−π

f (θ) e−ikθ

Then using this fact as needed, consider the following computation.∫ π

−π

∣∣∣∣∣f (θ)−
n∑

k=−n

bke
ikθ

∣∣∣∣∣
2

dθ

=

∫ π

−π

(
f (θ)−

n∑
k=−n

bke
ikθ

)(
f (θ)−

n∑
l=−n

ale
−ilθ

)
dθ

=

∫ π

−π

(
|f (θ)|2 +

(
n∑

k=−n

bke
ikθ

)(
n∑

l=−n

ble
−ilθ

)

−f (θ)
n∑

l=−n

ble
−ilθ − f (θ)

n∑
k=−n

bke
ikθ

)
dθ
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=

∫ π

−π

|f (θ)|2 dθ +
∑
kl

bkbl

∫ π

−π

eikθe−ilθdθ − 2π
∑
l

blal − 2π
∑
k

bkak

Then adding and subtracting 2π
∑

k |ak|
2
,

=

∫ π

−π

|f (θ)|2 dθ − 2π
∑
k

|ak|2 + 2π
∑
k

|bk|2

−2π
∑
l

blal − 2π
∑
k

bkak + 2π
∑
k

|ak|2

=

∫ π

−π

|f (θ)|2 dθ − 2π
∑
k

|ak|2 + 2π

(∑
k

(bk − ak)
(
bk − ak

))

=

∫ π

−π

|f (θ)|2 dθ − 2π
∑
k

|ak|2 + 2π
∑
k

|bk − ak|2

Therefore, to make ∫ π

−π

∣∣∣∣∣f (θ)−
n∑

k=−n

bke
ikθ

∣∣∣∣∣
2

dθ

as small as possible for all choices of bk, one should let bk = ak, the k
th Fourier coefficient.

Stated another way,∫ π

−π

∣∣∣∣∣f (θ)−
n∑

k=−n

bke
ikθ

∣∣∣∣∣
2

dθ ≥
∫ π

−π

|f (θ)− Snf (θ)|2 dθ

for any choice of bk. In particular,∫ π

−π

|f (θ)− σn+1f (θ)|2 dθ ≥
∫ π

−π

|f (θ)− Snf (θ)|2 dθ. (10.23)

Also, ∫ π

−π

f (θ)Snf (θ)dθ =

∫ π

−π

n∑
k=−n

akf (θ) e
−ikθdθ

=
n∑

k=−n

ak

=2πak︷ ︸︸ ︷∫ π

−π

f (θ) e−ikθdθ

= 2π
n∑

k=−n

|ak|2

Similarly, ∫ π

−π

f (θ)Snf (θ) dθ = 2π

n∑
k=−n

|ak|2

and a simple computation of the above sort shows that also∫ π

−π

Snf (θ)Snf (θ)dθ = 2π

n∑
k=−n

|ak|2 .

Therefore,

0 ≤
∫ π

−π

(f (θ)− Snf (θ))
(
f (θ)− Snf (θ)

)
dθ



10.6. WAYS OF APPROXIMATING FUNCTIONS 253

=

∫ π

−π

|f (θ)|2 + |Snf (θ)|2 − f (θ)Snf (θ)− f (θ)Snf (θ)dθ

=

∫ π

−π

|f (θ)|2 − |Snf (θ)|2 dθ

showing

2π
n∑

k=−n

|ak|2 ≤
∫ π

−π

|Snf (θ)|2 dθ ≤
∫ π

−π

|f (θ)|2 dθ (10.24)

Now it is easy to prove the following fundamental theorem.

Theorem 10.6.5 Let f ∈ R ([−π, π]) and it is periodic of period 2π. Then

lim
n→∞

∫ π

−π

|f − Snf |2 dx = 0.

Proof: First assume f is continuous and 2π periodic. Then by 10.23∫ π

−π

|f − Snf |2 dx ≤
∫ π

−π

|f − σn+1f |2 dx

≤
∫ π

−π

||f − σn+1f ||20 dx = 2π ||f − σn+1f ||20

and the last expression converges to 0 by Theorem 10.6.4.
Next suppose f ∈ R ([−π, π]) and |f (x)| < M for all x. Then the construction used

in Lemma 10.3.2 yields a continuous function h which vanishes off some closed interval
contained in (−π, π) such that

ε

32M2
>

∫ π

−π

|f (x)− h (x)| dx ≥ 1

2M

∫ π

−π

|f (x)− h (x)|2 dx. (10.25)

Since h vanishes off some closed interval contained in (−π, π) , if h is extended off [−π, π]
to be 2π periodic, it follows the resulting function, still denoted by h, is continuous. Then
using the inequality (For a better inequality, see Problem 2.)

(a+ b+ c)
2 ≤ 4

(
a2 + b2 + c2

)
∫ π

−π

|f − Snf |2 dx =

∫ π

−π

(|f − h|+ |h− Snh|+ |Snh− Snf |)2 dx

≤ 4

∫ π

−π

(
|f − h|2 + |h− Snh|2 + |Snh− Snf |2

)
dx

and from 10.24 and 10.25 this is no larger than

8

∫ π

−π

|f − h|2 dx+ 4

∫ π

−π

|h− Snh|2 dx

< 16M
ε

16M
+ 4

∫ π

−π

|h− Snh|2 dx

= ε+ 4

∫ π

−π

|h− Snh|2 dx

and by the first part, this last term converges to 0 as n → ∞. Therefore, since ε is
arbitrary, this shows that for n large enough,∫ π

−π

|f − Snf |2 dx < ε

This proves the theorem.
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10.7 Exercises

1. Suppose f has infinitely many derivatives and is also periodic with period 2π. Let
the Fourier series of f be

∞∑
k=−∞

ake
ikθ

Show that

lim
k→∞

kmak = lim
k→∞

kma−k = 0

for every m ∈ N.

2. The proof of Theorem 10.6.5 used the inequality (a+ b+ c)
2 ≤ 4

(
a2 + b2 + c2

)
whenever a, b and c are nonnegative numbers. In fact the 4 can be replaced with
3. Show this is true.

3. Let f be a continuous function defined on [−π, π]. Show there exists a polynomial,
p such that ||p− f || < ε where

||g|| ≡ sup {|g (x)| : x ∈ [−π, π]} .

Extend this result to an arbitrary interval. This is another approach to the Weier-
strass approximation theorem. Hint: First find a linear function ax+ b = y such
that f − y has the property that it has the same value at both ends of [−π, π].
Therefore, you may consider this as the restriction to [−π, π] of a continuous
periodic function F . Now find a trig polynomial,

σ (x) ≡ a0 +
n∑

k=1

ak cos kx+ bk sin kx

such that ||σ − F || < ε
3 . Recall 10.4. Now consider the power series of the trig

functions making use of the error estimate for the remainder after m terms.

4. The inequality established above,

2π

n∑
k=−n

|ak|2 ≤
∫ π

−π

|Snf (θ)|2 dθ ≤
∫ π

−π

|f (θ)|2 dθ

is called Bessel’s inequality. Use this inequality to give an easy proof that for all
f ∈ R ([−π, π]) ,

lim
n→∞

∫ π

−π

f (x) einxdx = 0.

Recall that in the Riemann Lebesgue lemma |f | ∈ R ((a, b]) so while this exercise
is easier, it lacks the generality of the earlier proof.

5. Suppose f (x) = X[a,b] (x) . Show

lim
α→∞

∫ b

a

f (x) sin (αx+ β) dx = 0.

Use this to construct a much simpler proof of the Riemann Lebesgue lemma than
that given in the chapter. Hint: Show it works for f a step function and then
obtain the conclusion for |f | ∈ R ((a, b]) .
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6. Let f (x) = x for x ∈ (−π, π) and extend to make the resulting function defined
on R and periodic of period 2π. Find the Fourier series of f . Verify the Fourier
series converges to the midpoint of the jump and use this series to find a nice
formula for π

4 . Hint: For the last part consider x = π
2 .

7. Let f (x) = x2 on (−π, π) and extend to form a 2π periodic function defined on

R. Find the Fourier series of f . Now obtain a famous formula for π2

6 by letting
x = π.

8. Let f (x) = cosx for x ∈ (0, π) and define f (x) ≡ − cosx for x ∈ (−π, 0). Now
extend this function to make it 2π periodic. Find the Fourier series of f .

9. Suppose f, g ∈ R ([−π, π]). Show

1

2π

∫ π

−π

fgdx =
∞∑

k=−∞

αkβk,

where αk are the Fourier coefficients of f and βk are the Fourier coefficients of g.

10. Recall the partial summation formula, called the Dirichlet formula which says that

q∑
k=p

akbk = Aqbq −Ap−1bp +

q−1∑
k=p

Ak (bk − bk+1) .

Here Aq ≡
∑q

k=1 ak. Also recall Dirichlet’s test which says that if limk→∞ bk = 0,
Ak are bounded, and

∑
|bk − bk+1| converges, then

∑
akbk converges. Show the

partial sums of
∑

k sin kx are bounded for each x ∈ R. Using this fact and the
Dirichlet test above, obtain some theorems which will state that

∑
k ak sin kx

converges for all x.

11. Let {an} be a sequence of positive numbers having the property that limn→∞ nan =
0 and for all n ∈ N, nan ≥ (n+ 1) an+1. Show that if this is so, it follows that
the series,

∑∞
k=1 an sinnx converges uniformly on R. This is a variation of a very

interesting problem found in Apostol’s book, [3]. Hint: Use the Dirichlet formula
of Problem 10 on

∑
kak

sin kx
k and show the partial sums of

∑
sin kx

k are bounded
independent of x. To do this, you might argue the maximum value of the partial
sums of this series occur when

∑n
k=1 cos kx = 0. Sum this series by considering

the real part of the geometric series,
∑q

k=1

(
eix
)k

and then show the partial sums

of
∑

sin kx
k are Riemann sums for a certain finite integral.

12. The problem in Apostol’s book mentioned in Problem 11 does not require nan
to be decreasing and is as follows. Let {ak}∞k=1 be a decreasing sequence of non-
negative numbers which satisfies limn→∞ nan = 0. Then

∞∑
k=1

ak sin (kx)

converges uniformly on R. You can find this problem worked out completely in
Jones [22]. Fill in the details to the following argument or something like it to
obtain a proof. First show that for p < q, and x ∈ (0, π) ,∣∣∣∣∣∣

q∑
k=p

ak sin (kx)

∣∣∣∣∣∣ ≤ 3ap csc
(x
2

)
. (10.26)
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To do this, use summation by parts using the formula

q∑
k=p

sin (kx) =
cos
((
p− 1

2

)
x
)
− cos

((
q + 1

2

)
x
)

2 sin
(
x
2

) ,

which you can establish by taking the imaginary part of a geometric series of

the form
∑q

k=1

(
eix
)k

or else the approach used above to find a formula for the
Dirichlet kernel. Now define

b (p) ≡ sup {nan : n ≥ p} .

Thus b (p) → 0, b (p) is decreasing in p, and if k ≥ n, ak ≤ b (n) /k. Then from
10.26 and the assumption {ak} is decreasing,

∣∣∣∣∣∣
q∑

k=p

ak sin (kx)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

m∑
k=p

ak sin (kx)

∣∣∣∣∣∣+
≡0 if m=q︷ ︸︸ ︷∣∣∣∣∣

q∑
k=m+1

ak sin (kx)

∣∣∣∣∣
≤

{ ∑m
k=p

b(k)
k |sin (kx)|+ 3ap csc

(
x
2

)
if m < q∑q

k=p
b(k)
k |sin (kx)| if m = q.

≤

{ ∑m
k=p

b(k)
k kx+ 3ap

2π
x if m < q∑q

k=p
b(k)
k kx if m = q

(10.27)

where this uses the inequalities

sin
(x
2

)
≥ x

2π
, |sin (x)| ≤ |x| for x ∈ (0, π) .

There are two cases to consider depending on whether x ≤ 1/q. First suppose
that x ≤ 1/q. Then let m = q and use the bottom line of 10.27 to write that in
this case, ∣∣∣∣∣∣

q∑
k=p

ak sin (kx)

∣∣∣∣∣∣ ≤ 1

q

q∑
k=p

b (k) ≤ b (p) .

If x > 1/q, then q > 1/x and you use the top line of 10.27 picking m such that

q >
1

x
≥ m ≥ 1

x
− 1.

Then in this case,∣∣∣∣∣∣
q∑

k=p

ak sin (kx)

∣∣∣∣∣∣ ≤
m∑

k=p

b (k)

k
kx+ 3ap

2π

x

≤ b (p)x (m− p) + 6πap (m+ 1)

≤ b (p)x

(
1

x

)
+ 6π

b (p)

m+ 1
(m+ 1) ≤ 25b (p) .

Therefore, the partial sums of the series,
∑
ak sin kx form a uniformly Cauchy

sequence and must converge uniformly on (0, π). Now explain why this implies
the series converges uniformly on R.

13. Suppose f (x) =
∑∞

k=1 ak sin kx and that the convergence is uniform. Recall
something like this holds for power series. Is it reasonable to suppose that f ′ (x) =∑∞

k=1 akk cos kx? Explain.
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14. Suppose |uk (x)| ≤ Kk for all x ∈ D where

∞∑
k=−∞

Kk = lim
n→∞

n∑
k=−n

Kk <∞.

Show that
∑∞

k=−∞ uk (x) converges converges uniformly on D in the sense that
for all ε > 0, there exists N such that whenever n > N ,∣∣∣∣∣

∞∑
k=−∞

uk (x)−
n∑

k=−n

uk (x)

∣∣∣∣∣ < ε

for all x ∈ D. This is called the Weierstrass M test.

15. Let ak, bk ≥ 0. Show the Cauchy Schwarz inequality

n∑
k=1

akbk ≤

(
n∑

k=1

a2k

)1/2( n∑
k=1

b2k

)1/2

To do this note that

p (t) ≡
n∑

k=1

(ak + tbk)
2 ≥ 0

for all t. Now pick an auspicious value of t, perhaps the value at which p (t) achieves
its minimum.

16. Suppose f is a differentiable function of period 2π and suppose that both f and
f ′ are in R ([−π, π]) such that for all x ∈ (−π, π) and y sufficiently small,

f (x+ y)− f (x) =
∫ x+y

x

f ′ (t) dt.

Show that the Fourier series of f converges uniformly to f . Hint: First show using
the Dini criterion that Snf (x) → f (x) for all x. Next let

∑∞
k=−∞ ake

ikx be the

Fourier series for f . Then from the definition of ak, show that for k ̸= 0, ak = 1
ika

′
k

where a′k is the Fourier coefficient of f ′. Now use the Bessel’s inequality to argue

that
∑∞

k=−∞ |a′k|
2
< ∞ and then show this implies

∑
|ak| < ∞. You might

want to use the Cauchy Schwarz inequality in Problem 15 to do this part. Then
using the version of the Weierstrass M test given in Problem 14 obtain uniform
convergence of the Fourier series to f .

17. Let f be a function defined on R. Then f is even if f (θ) = f (−θ) for all θ ∈ R.
Also f is called odd if for all θ ∈ R, −f (θ) = f (−θ). Now using the Weierstrass
approximation theorem show directly that if h is a continuous even 2π periodic
function, then for every ε > 0 there exists an m and constants, a0, · · · , am such
that ∣∣∣∣∣h (θ)−

m∑
k=0

ak cos
k (θ)

∣∣∣∣∣ < ε

for all θ ∈ R. Hint: Note the function arccos is continuous and maps [−1, 1]
onto [0, π] . Using this show you can define g a continuous function on [−1, 1] by
g (cos θ) = h (θ) for θ on [0, π]. Now use the Weierstrass approximation theorem
on [−1, 1].
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18. Show that if f is any odd 2π periodic function, then its Fourier series can be
simplified to an expression of the form

∞∑
n=1

bn sin (nx)

and also f (mπ) = 0 for all m ∈ N.

19. Consider the symbol
∑∞

k=1 an. The infinite sum might not converge. Summability
methods are systematic ways of assigning a number to such a symbol. The nth

Ceasaro mean σn is defined as the average of the first n partial sums of the series.
Thus

σn ≡
1

n

n∑
k=1

Sk

where

Sk ≡
k∑

j=1

aj .

Show that if
∑∞

k=1 an converges then limn→∞ σn also exists and equals the same
thing. Next find an example where, although

∑∞
k=1 an fails to converge, limn→∞ σn

does exist. This summability method is called Ceasaro summability. Recall the
Fejer means were obtained in just this way.

20. Let 0 < r < 1 and for f a periodic function of period 2π where f ∈ R ([−π, π]) ,
consider

Arf (θ) ≡
∞∑

k=−∞

r|k|ake
ikθ

where the ak are the Fourier coefficients of f. Show that if f is continuous, then

lim
r→1−

Arf (θ) = f (θ) .

Hint: You need to find a kernel and write as the integral of the kernel convolved
with f . Then consider properties of this kernel as was done with the Fejer kernel.
In carrying out the details, you need to verify the convergence of the series is
uniform in some sense in order to switch the sum with an integral.

21. Recall the Dirichlet kernel is

Dn (t) ≡ (2π)
−1 sin

(
n+ 1

2

)
t

sin
(
t
2

)
and it has the property that

∫ π

−π
Dn (t) dt = 1. Show first that this implies

1

2π

∫ π

−π

sin (nt) cos (t/2)

sin (t/2)
dt = 1

and this implies
1

π

∫ π

0

sin (nt) cos (t/2)

sin (t/2)
= 1.

Next change the variable to show the integral equals

1

π

∫ nπ

0

sin (u) cos (u/2n)

sin (u/2n)

1

n
du
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Now show that

lim
n→∞

sin (u) cos (u/2n)

sin (u/2n)

1

n
=

2 sinu

u

Next show that

lim
n→∞

1

π

∫ nπ

0

2 sinu

u
du = lim

n→∞

1

π

∫ nπ

0

sin (u) cos (u/2n)

sin (u/2n)

1

n
du = 1

Finally show

lim
R→∞

∫ R

0

sinu

u
du =

π

2
≡
∫ π

0

sinu

u
du

This is a very important improper integral.

22. To work this problem, you should first review Problem 25 on Page 227 about
interchanging the order of iterated integrals. Suppose f is Riemann integrable on
every finite interval, bounded, and

lim
R→∞

∫ R

0

|f (t)| dt <∞, lim
R→∞

∫ 0

−R

|f (t)| dt <∞.

Show that

lim
R→∞

∫ R

0

f (t) eistdt, lim
R→∞

∫ 0

−R

f (t) e−itsdt

both exist. Define

lim
R→∞

∫ R

0

f (t) eistdt ≡
∫ ∞

0

f (t) e−itsdt

lim
R→∞

∫ 0

−R

f (t) e−itsdt ≡
∫ 0

−∞
f (t) e−itsdt

and ∫ ∞

−∞
f (t) e−istdt ≡

∫ ∞

0

f (t) e−itsdt+

∫ 0

−∞
f (t) e−itsdt

Now suppose the Dini condition on f, that

t→ f (x− t) + f (x+ t)− (f (x−) + f (x+))

2t

is a function in R ((0, 1]) . This happens, for example if for t > 0 and small,

|f (x+ t)− f (x+)| ≤ Ctθ for θ > 0

and if
|f (x− t)− f (x−)| ≤ Ctα for α > 0

Now show using Problem 25 on Page 227 (You fill in the details including modi-
fying things so that the result of this problem applies.) to conclude

1

2π

∫ R

−R

∫ ∞

−∞
f (t) e−itsdteisxds =

1

2π

∫ R

−R

∫ ∞

−∞
f (x− u) eisududs

=
1

2π

∫ ∞

−∞
f (x− u)

∫ R

−R

eisudsdu =
1

π

∫ ∞

−∞
f (x− u) sinRu

u
du

=
2

π

∫ ∞

0

sinu

u

f
(
x− u

R

)
+ f

(
x+ u

R

)
2

du
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Conclude using Problem 21

1

2π

∫ R

−R

∫ ∞

−∞
f (t) e−itsdteisxds− f (x−) + f (x+)

2
(10.28)

=
2

π

∫ ∞

0

sinu

u

(
f
(
x− u

R

)
+ f

(
x+ u

R

)
2

− f (x−) + f (x+)

2

)
du

Explain how the above equals an expression of the form

2

π

∫ R

0

sinu

u

(
f
(
x− u

R

)
+ f

(
x+ u

R

)
2

− f (x−) + f (x+)

2

)
du+ e (R)

where e (R) → 0 as R → ∞. Now change the variable letting u/R = t and
conclude 10.28 equals

2

π

∫ 1

0

sin (Rt)

(
f (x− t) + f (x+ t)− (f (x−) + f (x+))

2t

)
dt+ e (R)

Now apply the Riemann Lebesgue lemma to conclude

lim
R→∞

1

2π

∫ R

−R

∫ ∞

−∞
f (t) e−itsdteisxds =

f (x−) + f (x+)

2
.

The Fourier transform is defined as

F (s) ≡ 1√
2π

∫ ∞

−∞
f (t) e−itsdt

and this has shown that under the Dini condition described above and for the sort
of f defined above,

f (x−) + f (x+)

2
= lim

R→∞

1

2π

∫ R

−R

F (s) eisxds

This is the Fourier inversion formula.



Chapter 11

The Generalized Riemann
Integral

11.1 Definitions And Basic Properties

This chapter is on the generalized Riemann integral. The Riemann Darboux integral
presended earlier has been obsolete for over 100 years. The integral of this chapter is
certainly not obsolete and is in certain important ways the very best integral currently
known. This integral is called the generalized Riemann integral, also the Henstock
Kurzweil integral after the two people who invented it and sometimes the gauge integral.
Other books which discuss this integral are the books by Bartle [5], Bartle and Sherbert,
[6], Henstock [20], or McLeod [27]. Considerably more is presented in these references.
In what follows, F will be an increasing function, the most important example being
F (x) = x.

Definition 11.1.1 Let [a, b] be a closed and bounded interval. A tagged divi-
sion1 of [a, b] = I is a set of the form P ≡ {(Ii, ti)}ni=1 where ti ∈ Ii = [xi−1, xi], and
a = xi−1 < · · · < xn = b. Let the ti be referred to as the tags. A function δ : I → (0,∞)
is called a gauge function or simply gauge for short. A tagged division, P is called δ
fine if

Ii ⊆ [ti − δ (ti) , ti + δ (ti)] .

A δ fine division, is understood to be tagged. More generally, a collection, {(Ii, ti)}pi=1

is δ fine if the above inclusion holds for each of these intervals and their interiors are
disjoint even if their union is not equal to the whole interval, [a, b].

The following fundamental result is essential.

Proposition 11.1.2 Let [a, b] be an interval and let δ be a gauge function on [a, b].
Then there exists a δ fine tagged division of [a, b].

Proof:Suppose not. Then one of
[
a, a+b

2

]
or
[
a+b
2 , b

]
must fail to have a δ fine

tagged division because if they both had such a δ fine division, the union of the two δ
fine divisions would be a δ fine division of [a, b]. Denote by I1 the interval which does
not have a δ fine division. Then repeat the above argument, dividing I1 into two equal
intervals and pick the one, I2 which fails to have a δ fine division. Continue this way to

1In beginning calculus books, this is often called a partition. The word, division is a much better
word to use. what the xi do is to “divide” the interval into little subintervals.

261
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get a nested sequence of closed intervals, {Ii} having the property that each interval in
the set fails to have a δ fine division and diam (Ii)→ 0. Therefore,

∩∞i=1Ii = {x}

where x ∈ [a, b]. Now [x− δ (x) , x+ δ (x)] must contain some Ik because the diameters
of these intervals converge to zero. It follows that {(Ik, x)} is a δ fine division of Ik,
contrary to the construction which required that none of these intervals had a δ fine
division. This proves the proposition.

With this proposition and definition, it is time to define the generalized Riemann
integral. The functions being integrated typically have values in R or C but there is
no reason to restrict to this situation and so in the following definition, X will denote
the space in which f has its values. For example, X could be Rp which becomes
important in multivariable calculus. For now, just think R if you like. It will be assumed
Cauchy sequences converge and there is something like the absolute value, called a norm
although it is possible to generalize even further.

Definition 11.1.3 Let X be a complete normed vector space. (For example,
X = R or X = C or X = Rp.) Then f : [a, b] → X is generalized Riemann integrable,
written as f ∈ R∗ [a, b] if there exists R ∈ X such that for all ε > 0, there exists a
gauge, δ, such that if P ≡ {(Ii, ti)}ni=1 is δ fine then defining, S (P, f) by

S (P, f) ≡
n∑

i=1

f (ti)∆Fi,

where if Ii = [xi−1, xi] ,
∆Fi ≡ F (xi)− F (xi−1)

it follows
|S (P, f)−R| < ε.

Then ∫
I

fdF ≡
∫ b

a

fdF ≡ R.

Here |·| refers to the norm on X for R this is just the absolute value.

Note that if P is δ1 fine and δ1 ≤ δ then it follows P is also δ fine.
How does this relate to the usual Riemann integral discussed above in Theorem 9.4.2

and the definition of the Riemann integral given before this?
To begin with, is there a way to tell whether a given function is in R∗ [a, b]? The

following Cauchy criterion is useful to make this determination.

Proposition 11.1.4 A function f : [a, b]→ X is in R∗ [a, b] if and only if for every
ε > 0, there exists a gauge function δε such that if P and Q are any two divisions which
are δε fine, then

|S (P, f)− S (Q, f)| < ε.

Proof:Suppose first that f ∈ R∗ [a, b]. Then there exists a gauge, δε, and an element
of X, R, such that if P is δε fine, then

|R− S (P, f)| < ε/2.

Now let P,Q be two such δε fine divisions. Then

|S (P, f)− S (Q, f)| ≤ |S (P, f)−R|+ |R− S (Q, f)|

<
ε

2
+
ε

2
= ε.
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Conversely, suppose the condition of the proposition holds. Let εn → 0+ as n→∞
and let δεn denote the gauge which goes with εn. Without loss of generality, assume
that δεn is decreasing in n. Let Rεn denote the closure of all the sums, S (P, f) where P
is δεn fine. From the condition, it follows diam (Rεn) ≤ εn and that these closed sets are
nested in the sense that Rεn ⊇ Rεn+1 because δεn is decreasing in n. Therefore, there
exists a unique, R ∈ ∩∞n=1Rεn . To see this, let rn ∈ Rεn . Then since the diameters of
the Rεn are converging to 0, {rn} is a Cauchy sequence which must converge to some
R ∈ X. Since Rεn is closed, it follows R ∈ Rεn for each n. Letting ε > 0 be given, there
exists εn < ε and for P a δεn fine division,

|S (P, f)−R| ≤ εn < ε.

Therefore, R =
∫
I
f . This proves the proposition.

Are there examples of functions which are in R∗ [a, b]? Are there examples of func-
tions which are not? It turns out the second question is harder than the first although
it is very easy to answer this question in the case of the obsolete Riemann integral. The
generalized Riemann integral is a vastly superior integral which can integrate a very
impressive collection of functions. Consider the first question. Recall the definition of
the Riemann integral given above which is listed here for convenience.

Definition 11.1.5 A bounded function f defined on [a, b] is said to be Riemann
Stieltjes integrable if there exists a number, I with the property that for every ε > 0,
there exists δ > 0 such that if

P ≡ {x0, x1, · · · , xn}

is any partition having ||P || < δ, and zi ∈ [xi−1, xi] ,∣∣∣∣∣I −
n∑

i=1

f (zi) (F (xi)− F (xi−1))

∣∣∣∣∣ < ε.

The number
∫ b

a
f (x) dF is defined as I.

First note that if δ > 0 and if every interval in a division has length less than δ then
the division is δ fine. In fact, you could pick the tags as any point in the intervals. Then
the following theorem follows immediately.

Theorem 11.1.6 Let f be Riemann Stieltjes integrable according to Definition
11.1.5. Then f is generalized Riemann integrable and the integrals are the same.

Proof: Just let the gauge functions be constant functions.
In particular, the following important theorem follows from Theorem 9.4.6.

Theorem 11.1.7 Let f be continuous on [a, b] and let F be any increasing in-
tegrator. Then f ∈ R∗ [a, b] .

Many functions other than continuous ones are integrable however. In fact, it is
fairly difficult to come up with easy examples because this integral can integrate almost
anything you can imagine, including the function which equals 1 on the rationals and 0
on the irrationals which is not Riemann integrable. This will be shown later.

The integral is linear. This will be shown next.

Theorem 11.1.8 Suppose α and β are constants and that f and g are in
R∗ [a, b]. Then αf + βg ∈ R∗ [a, b] and∫

I

(αf + βg) dF = α

∫
I

fdF + β

∫
I

gdF.
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Proof:Let η = ε
|β|+|α|+1 and choose gauges, δg and δf such that if P is δg fine,∣∣∣∣S (P, g)−

∫
I

gdF

∣∣∣∣ < η

and that if P is δf fine, ∣∣∣∣S (P, f)−
∫
I

fdF

∣∣∣∣ < η.

Now let δ = min (δg, δf ). Then if P is δ fine the above inequalities both hold. Therefore,
from the definition of S (P, f),

S (P, αf + βg) = αS (P, f) + βS (P, g)

and so ∣∣∣∣S (P, αf + βg)−
(
β

∫
I

gdF + α

∫
I

fdF

)∣∣∣∣ ≤ ∣∣∣∣βS (P, g)− β
∫
I

gdF

∣∣∣∣
+

∣∣∣∣αS (P, f)− α
∫
I

fdF

∣∣∣∣ ≤ |β| η + |α| η < ε.

Since ε > 0 is arbitrary, this shows the number, β
∫
I
gdF + α

∫
I
fdF qualifies in the

definition of the generalized Riemann integral and so αf + βg ∈ R∗ [a, b] and∫
I

(αf + βg) dF = β

∫
I

gdF + α

∫
I

fdF.

The following lemma is also very easy to establish from the definition.

Lemma 11.1.9 If f ≥ 0 and f ∈ R∗ [a, b], then
∫
I
fdF ≥ 0. Also, if f has complex

values and is in R∗ [I], then both Re f and Im f are in R∗ [I].

Proof: To show the first part, let ε > 0 be given and let δ be a gauge function such
that if P is δ fine then ∣∣∣∣S (f, P )−

∫
I

fdF

∣∣∣∣ ≤ ε.
Since F is increasing, it is clear that S (f, P ) ≥ 0. Therefore,∫

I

fdF ≥ S (f, P )− ε ≥ −ε

and since ε is arbitrary, it follows
∫
I
fdF ≥ 0 as claimed.

To verify the second part, note that by Proposition 11.1.4 there exists a gauge, δ
such that if P,Q are δ fine then

|S (f, P )− S (f,Q)| < ε

But

|S (Re f, P )− S (Re f,Q)| = |Re (S (f, P ))− Re (S (f,Q))|
≤ |S (f, P )− S (f,Q)|

and so the conditions of Proposition 11.1.4 are satisfied and you can conclude Re f ∈
R∗ [I] . Similar reasoning applies to Im f. This proves the lemma.
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Corollary 11.1.10 If |f | , f ∈ R∗ [a, b], where f has values in C, then∣∣∣∣∫
I

fdF

∣∣∣∣ ≤ ∫
I

|f | dF.

Proof:Let |α| = 1 and α
∫
I
fdF =

∣∣∫
I
fdF

∣∣. Then by Theorem 11.1.8 and Lemma
11.1.9, ∣∣∣∣∫

I

fdF

∣∣∣∣ =

∫
I

αfdF =

∫
I

(Re (αf) + i Im (αf)) dF

=

∫
I

Re (αf) dF + i

∫
I

Im (αf) dF =

∫
I

Re (αf) dF

≤
∫
I

|Re (αf)| dF ≤
∫
I

|f | dF

Note the assumption that |f | ∈ R∗ [a, b].
The following lemma is also fundamental.

Lemma 11.1.11 If f ∈ R∗ [a, b] and [c, d] ⊆ [a, b], then f ∈ R∗ [c, d].

Proof:Let ε > 0 and choose a gauge δ such that if P is a division of [a, b] which is
δ fine, then

|S (P, f)−R| < ε/2.

Now pick a δ fine division of [c, d] , {(Ii, ti)}li=r and then let {(Ii, ti)}r−1
i=1 and {(Ii, ti)}ni=l+1

be fixed δ fine divisions on [a, c] and [d, b] respectively.
Now let P1 and Q1 be δ fine divisions of [c, d] and let P and Q be the respective δ

fine divisions if [a, b] just described which are obtained from P1 and Q1 by adding in

{(Ii, ti)}r−1
i=1 and {(Ii, ti)}ni=l+1. Then

ε > |S (Q, f)− S (P, f)| = |S (Q1, f)− S (P1, f)| .

By the above Cauchy criterion, Proposition 11.1.4, f ∈ R∗ [c, d] as claimed.

Corollary 11.1.12 Suppose c ∈ [a, b] and that f ∈ R∗ [a, b] . Then f ∈ R∗ [a, c] and
f ∈ R∗ [c, b]. Furthermore, ∫

I

fdF =

∫ c

a

fdF +

∫ b

c

fdF.

Here
∫ c

a
fdF means

∫
[a,c]

fdF .

Proof: Let ε > 0. Let δ1 be a gauge function on [a, c] such that whenever P1 is a
δ1 fine division of [a, c], ∣∣∣∣∫ c

a

fdF − S (P1, f)

∣∣∣∣ < ε/3.

Let δ2 be a gauge function on [c, b] such that whenever P2 is a δ2 fine division of [c, b],∣∣∣∣∣
∫ b

c

fdF − S (P2, f)

∣∣∣∣∣ < ε/3.

Let δ3 be a gauge function on [a, b] such that if P is a δ3 fine division of [a, b] ,∣∣∣∣∣
∫ b

a

fdF − S (P, f)

∣∣∣∣∣ < ε/3.
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Now define a gauge function

δ (x) ≡
{

min (δ1, δ3) on [a, c]
min (δ2, δ3) on [c, b]

Then letting P1 be a δ fine division on [a, c] and P2 be a δ fine division on [c, b] , it
follows that P = P1∪P2 is a δ3 fine division on [a, b] and all the above inequalities hold.
Thus noting that S (P, f) = S (P1, f) + S (P2, f) ,∣∣∣∣∣

∫
I

fdF −

(∫ c

a

fdF +

∫ b

c

fdF

)∣∣∣∣∣
≤

∣∣∣∣∫
I

fdF − (S (P1, f) + S (P2, f))

∣∣∣∣
+

∣∣∣∣∣S (P1, f) + S (P2, f)−

(∫ c

a

fdF +

∫ b

c

fdF

)∣∣∣∣∣
≤

∣∣∣∣∫
I

fdF − S (P, f)

∣∣∣∣+ ∣∣∣∣S (P1, f)−
∫ c

a

fdF

∣∣∣∣+
∣∣∣∣∣S (P2, f)−

∫ b

c

fdF

∣∣∣∣∣
< ε/3 + ε/3 + ε/3 = ε.

Since ε is arbitrary, the conclusion of the corollary follows. This proves the corollary.
The following lemma, sometimes called Henstock’s lemma is of great significance.

Lemma 11.1.13 Suppose that f ∈ R∗ [a, b] and that whenever, Q is a δ fine division
of I, ∣∣∣∣S (Q, f)−

∫
I

fdF

∣∣∣∣ ≤ ε.
Then if P = {(Ii, ti)}ni=1 is any δ fine division, and P ′ =

{(
Iij , tij

)}r
j=1

is a subset of

P , then ∣∣∣∣∣∣
r∑

j=1

f
(
tij
)
∆Fi −

r∑
j=1

∫
Iij

fdF

∣∣∣∣∣∣ ≤ ε.
Proof:Let (Jk, t) ∈ P \ P ′. From Lemma 11.1.11, f ∈ R∗ [Jk]. Therefore, letting

{(Jki, tki)}lki=1 be a suitable δ fine division of Jk,∣∣∣∣∣
∫
Jk

fdF −
lk∑
i=1

f (tki)∆Fi

∣∣∣∣∣ < η

where η > 0. Then the collection of these δ fine divisions, {(Jki, tki)}lki=1 taken together

with
{(
Iij , tij

)}r
j=1

forms a δ fine division of I denoted by P̃ . Therefore,

ε ≥
∣∣∣∣S (P̃ , f)− ∫

I

fdF

∣∣∣∣ =
∣∣∣∣∣∣

r∑
j=1

f
(
tij
)
∆Fi −

r∑
j=1

∫
Iij

fdF

+
∑

k/∈{i1,··· ,ir}

lk∑
i=1

f (tki)∆Fi −
∑

k/∈{i1,··· ,ir}

∫
Jk

fdF

∣∣∣∣∣∣
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≥

∣∣∣∣∣∣
r∑

j=1

f
(
tij
)
∆Fi −

r∑
j=1

∫
Iij

fdF

∣∣∣∣∣∣− |P \ P ′| η

where |P \ P ′| denotes the number of intervals contained in P \ P ′. It follows that

ε+ |P \ P ′| η ≥

∣∣∣∣∣∣
r∑

j=1

f
(
tij
)
∆Fi −

r∑
j=1

∫
Iij

fdF

∣∣∣∣∣∣
and since η is arbitrary, this proves the lemma.

Consider {(Ij , tj)}pj=1 a subset of a division of [a, b]. If δ is a gauge and {(Ij , tj)}pj=1
is δ fine, this can always be considered as a subset of a δ fine division of the whole
interval and so the following corollary is immediate. It is this corollary which seems of
most use and may also be referred to as Henstock’s lemma.

Corollary 11.1.14 Suppose that f ∈ R∗ [a, b] and that whenever, Q is a δ fine
division of I, ∣∣∣∣S (Q, f)−

∫
I

fdF

∣∣∣∣ ≤ ε.
Then if {(Ii, ti)}pi=1 is δ fine, it follows that∣∣∣∣∣∣

p∑
j=1

f (tj)∆F (Ij)−
p∑

j=1

∫
Ij

fdF

∣∣∣∣∣∣ ≤ ε.
Here is another corollary in the special case where f has real values.

Corollary 11.1.15 Suppose f ∈ R∗ [a, b] has values in R and that∣∣∣∣S (P, f)−
∫
I

fdF

∣∣∣∣ ≤ ε
for all P which is δ fine. Then if P = {(Ii, ti)}ni=1 is δ fine,

n∑
i=1

∣∣∣∣f (ti)∆Fi −
∫
Ii

fdF

∣∣∣∣ ≤ 2ε. (11.1)

Proof:Let I ≡
{
i : f (ti)∆Fi ≥

∫
Ii
fdF

}
and let IC ≡ {1, · · · , n} \ I. Then by

Henstock’s lemma∣∣∣∣∣∑
i∈I

f (ti)∆Fi −
∑
i∈I

∫
Ii

fdF

∣∣∣∣∣ =∑
i∈I

∣∣∣∣f (ti)∆Fi −
∫
Ii

fdF

∣∣∣∣ ≤ ε
and ∣∣∣∣∣∑

i∈IC

f (ti)∆Fi −
∑
i∈IC

∫
Ii

fdF

∣∣∣∣∣ = ∑
i∈IC

∣∣∣∣f (ti)∆Fi −
∫
Ii

fdF

∣∣∣∣ ≤ ε
so adding these together yields 11.1.

This generalizes immediately to the following.

Corollary 11.1.16 Suppose f ∈ R∗ [a, b] has values in C and that∣∣∣∣S (P, f)−
∫
I

fdF

∣∣∣∣ ≤ ε (11.2)
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for all P which is δ fine. Then if P = {(Ii, ti)}ni=1 is δ fine,

n∑
i=1

∣∣∣∣f (ti)∆Fi −
∫
Ii

fdF

∣∣∣∣ ≤ 4ε. (11.3)

Proof: It is clear that if 11.2 holds, then∣∣∣∣S (P,Re f)− Re

∫
I

fdF

∣∣∣∣ ≤ ε
which shows that Re

∫
I
fdF =

∫
I
Re fdF . Similarly Im

∫
I
fdF =

∫
I
Im fdF . Therefore,

using Corollary 11.1.15

n∑
i=1

∣∣∣∣Re f (ti)∆Fi −
∫
Ii

Re fdF

∣∣∣∣ ≤ 2ε

and
n∑

i=1

∣∣∣∣i Im f (ti)∆Fi −
∫
Ii

i Im fdF

∣∣∣∣ ≤ 2ε.

Adding and using the triangle inequality, yields 11.3.
Next is a version of the monotone convergence theorem. The monotone convergence

theorem is one which says that under suitable conditions, if fn → f pointwise, then∫
I
fndF →

∫
I
fdF . These sorts of theorems are not available for the beginning calculus

type of integral. This is one of the reasons for considering the generalized integral. The
following proof is a special case of one presented in McLeod [27].

Theorem 11.1.17 Let fn (x) ≥ 0 and suppose fn ∈ R∗ [a, b] , · · · fn (x) ≤
fn+1 (x) · · · and that f (x) = limn→∞ fn (x) for all x and that f (x) has real values.
Also suppose that

{∫
I
fn
}∞
n=1

is a bounded sequence. Then f ∈ R∗ [a, b] and∫
I

fdF = lim
n→∞

∫
I

fndF (11.4)

Proof:The proof will be based on the following lemma. The conclusion of this lemma
is sometimes referred to as equiintegrable.

Lemma 11.1.18 In the situation of Theorem 11.1.17 let ε > 0 be given. Then there
exists a gauge, δ, such that if P is δ fine, then for all n ∈ N,∣∣∣∣S (P, fn)−

∫
I

fndF

∣∣∣∣ < ε. (11.5)

Proof of the Lemma: Let 3η + (F (b)− F (a)) η < ε.
Claim 1: There exists N ∈ N such that whenever n, j ≥ N∣∣∣∣∫

I

fndF −
∫
I

fjdF

∣∣∣∣ < η. (11.6)

Proof of Claim 1: Such an N exists because, the sequence,
{∫

I
fndF

}∞
n=1

is increasing
and bounded above and is therefore a Cauchy sequence. This proves the claim.

Claim 2: There exists a sequence of disjoint sets, {En}∞n=N such that for x ∈ En,
it follows that for all j ≥ n,

|fj (x)− f (x)| < η.
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Proof of Claim 2: For n ≥ N , let

Fn ≡ {x : |fj (x)− f (x)| < η for all j ≥ n} .

Then the sets, Fn are increasing in n and their union equals I. Let EN = FN and let
En = Fn \ Fn−1. Therefore, the En are disjoint and their union equals I. This proves
the claim.

Claim 3: There exists a gauge function δ such that if P = {(Ii, ti)}qi=1 is δ fine and
if

Ij ≡ {i : ti ∈ Ej} , Ij ≡ ∅ if j < N,

then if J ⊆ {n, n+ 1, · · · }∣∣∣∣∣∣
∑
j=J

∑
i∈Ij

fn (ti)∆Fi −
∑
j∈J

∑
i∈Ij

∫
Ii

fndF

∣∣∣∣∣∣ ≤ η2−n. (11.7)

Proof of Claim 3: First note the sums are not really infinite sums because there
are only finitely many tags. Thus Ij = ∅ for all but finitely many j. Choose gauges,
δn, n = 1, 2, · · · such that if P is δn fine, then∣∣∣∣∫

I

fndF − S (P, fn)

∣∣∣∣ < η2−n (11.8)

and define δ on I by letting

δ (x) = min (δ1 (x) , · · · , δp (x)) if x ∈ Ep. (11.9)

Since the union of the En equals I, this defines δ on I. Note that some of the En may be
empty. If n ≤ j, then δn (x) got included in the above minimum for all x ∈ Ej , j ∈ J .
Therefore, by Corollary 11.1.14, Henstock’s lemma, it follows that 11.7 holds. This
proves Claim 3.

Suppose now that P = {(Ii, ti)}qi=1 is δ fine. It is desired to verify 11.5. Note first∫
I

fndF =
∞∑

j=min(n,N)

∑
i∈Ij

∫
Ii

fndF, S (P, fn) =
∞∑

j=min(n,N)

∑
i∈Ij

fn (ti)∆Fi

where as before, the sums are really finite. Recall Ij ≡ ∅ if j < N . If n ≤ N, then by
Claim 3,

∣∣∣∣∫
I

fndF − S (P, f)

∣∣∣∣ =
∣∣∣∣∣∣
∞∑
j=n

∑
i∈Ij

∫
Ii

fndF −
∞∑
j=n

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣ < η2−n < ε

Therefore, 11.5 holds in case n ≤ N .
The interesting case is when n > N . Then in this case,∣∣∣∣∫

I

fndF − S (P, f)

∣∣∣∣ =
∣∣∣∣∣∣

∞∑
j=N

∑
i∈Ij

∫
Ii

fndF −
∞∑

j=N

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fndF −
n−1∑
j=N

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∑
j=n

∑
i∈Ij

∫
Ii

fndF −
∞∑
j=n

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣ (11.10)
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By Claim 3, the last term in 11.10 is smaller than η2−n. Thus

∣∣∣∣∫
I

fndF − S (P, f)

∣∣∣∣ ≤ η2−n +

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fndF −
n−1∑
j=N

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣
≤ η2−n +

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fndF −
n−1∑
j=N

∑
i∈Ij

∫
Ii

fjdF

∣∣∣∣∣∣ (11.11)

+

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fjdF −
n−1∑
j=N

∑
i∈Ij

fj (ti)∆Fi

∣∣∣∣∣∣ (11.12)

+

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

fj (ti)∆Fi −
n−1∑
j=N

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣ (11.13)

Then using Claim 1 on 11.11, the messy term is dominated by∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fndF −
n−1∑
j=N

∑
i∈Ij

∫
Ii

fjdF

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

(∫
Ii

fndF −
∫
Ii

fjdF

)∣∣∣∣∣∣
=

n−1∑
j=N

∑
i∈Ij

∫
Ii

(fn − fj) dF ≤
∣∣∣∣∫

I

fndF −
∫
I

fjdF

∣∣∣∣ < η

Next consider the term in 11.12. By Claim 3 with J ≡ {j}∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

∫
Ii

fjdF −
n−1∑
j=N

∑
i∈Ij

fj (ti)∆Fi

∣∣∣∣∣∣
≤

n−1∑
j=N

∣∣∣∣∣∣
∑
i∈Ij

∫
Ii

fjdF −
∑
i∈Ij

fj (ti)∆Fi

∣∣∣∣∣∣
≤

n−1∑
j=N

η2−j ≤ η.

Finally consider 11.13. By Claim 2,∣∣∣∣∣∣
n−1∑
j=N

∑
i∈Ij

fj (ti)∆Fi −
n−1∑
j=N

∑
i∈Ij

fn (ti)∆Fi

∣∣∣∣∣∣
≤

n−1∑
j=N

∑
i∈Ij

|fj (ti)− fn (ti)|∆Fi ≤ η (F (b)− F (a))

Thus the terms in 11.11 - 11.13 have been estimated and are no larger than

η2−n + η + η + η (F (b)− F (a)) < ε
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by the choice of η. This proves the lemma.
Now here is the proof of the monotone convergence theorem. By the lemma there

exists a gauge, δ, such that if P is δ fine then∣∣∣∣∫
I

fndF − S (P, fn)

∣∣∣∣ < ε

for all n ∈ N. Taking the limit as n→∞ in the above inequality,∣∣∣∣ limn→∞

∫
I

fndF − S (P, f)

∣∣∣∣ ≤ ε
and since ε is arbitrary, this shows that∫

I

fdF = lim
n→∞

∫
I

fndF.

This proves the theorem.

Example 11.1.19 Let

f (x) =

{
1 if x ∈ Q
0 if x /∈ Q

Then f ∈ R∗ [0, 1] and ∫ 1

0

fdF = 0.

Here assume F (x) = x.

This is obvious. Let fn (x) to equal 1 on the first n rational numbers in an enumer-
ation of the rationals and zero everywhere else. Clearly fn (x) ↑ f (x) for every x and
also fn is Riemann integrable and has integral 0. Now apply the monotone convergence
theorem. Note this example is one which has no Riemann or Darboux integral.

11.2 Integrals Of Derivatives

Consider the case where F (t) = t. Here I will write dt for dF. The generalized Riemann
integral does something very significant which is far superior to what can be achieved
with other integrals. It can always integrate derivatives. Suppose f is defined on an
interval, [a, b] and that f ′ (x) exists for all x ∈ [a, b], taking the derivative from the right
or left at the endpoints. What about the formula∫ b

a

f ′ (t) dt = f (b)− f (a)? (11.14)

Can one take the integral of f ′? If f ′ is continuous there is no problem of course.
However, sometimes the derivative may exist and yet not be continuous. Here is a
simple example.

Example 11.2.1 Let

f (x) =

{
x2 sin

(
1
x2

)
if x ∈ (0, 1]

0 if x = 0
.

You can verify that f has a derivative on [0, 1] but that this derivative is not continuous.



272 CHAPTER 11. THE GENERALIZED RIEMANN INTEGRAL

The fact that derivatives are generalized Riemann integrable depends on the follow-
ing simple lemma called the straddle lemma by McLeod [27].

Lemma 11.2.2 Suppose f : [a, b] → R is differentiable. Then there exist δ (x) > 0
such that if u ≤ x ≤ v and u, v ∈ [x− δ (x) , x+ δ (x)], then

|f (v)− f (u)− f ′ (x) (v − u)| < ε |v − u| .

Proof: Consider the following picture.

u x v

From the definition of the derivative, there exists δ (x) > 0 such that if |v − x|,
|x− u| < δ (x), then

|f (u)− f (x)− f ′ (x) (u− x)| < ε

2
|u− x|

and

|f ′ (x) (v − x)− f (v) + f (x)| < ε

2
|v − x|

Now add these and use the triangle inequality along with the above picture to write

|f ′ (x) (v − u)− (f (v)− f (u))| < ε |v − u| .

This proves the lemma.

The next proposition says 11.14 makes sense for the generalized Riemann integral.

Proposition 11.2.3 Suppose f : [a, b] → R is differentiable. Then f ′ ∈ R∗ [a, b]
and

f (b)− f (a) =
∫ b

a

f ′dx

where the integrator function is F (x) = x.

Proof:Let ε > 0 be given and let δ (x) be such that the conclusion of the above
lemma holds for ε replaced with ε/ (b− a). Then let P = {(Ii, ti)}ni=1 be δ fine. Then
using the triangle inequality and the result of the above lemma with ∆xi = xi − xi−1,∣∣∣∣∣f (b)− f (a)−

n∑
i=1

f ′ (ti)∆xi

∣∣∣∣∣ =

∣∣∣∣∣
n∑

i=1

f (xi)− f (xi−1)− f ′ (ti)∆xi

∣∣∣∣∣
≤

n∑
i=1

ε/ (b− a)∆xi = ε.

This proves the proposition.

With this proposition there is a very simple statement of the integration by parts
formula which follows immediately.

Corollary 11.2.4 Suppose f, g are differentiable on [a, b]. Then f ′g ∈ R∗ [a, b] if
and only if g′f ∈ R∗ [a, b] and in this case,

fg|ba −
∫ b

a

fg′dx =

∫ b

a

f ′gdx
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The following example, is very significant. It exposes an unpleasant property of the
generalized Riemann integral. You can’t multiply two generalized Riemann integrable
functions together and expect to get one which is generalized Riemann integrable. Also,
just because f is generalized Riemann integrable, you cannot conclude |f | is. This is
very different than the case of the Riemann integrable. It is unpleasant from the point
of view of pushing symbols. The reason for this unpleasantness is that there are so
many functions which can be integrated by the generalized Riemann integral. When
you say a function is generalized Riemann integrable, you do not say much about it.

Example 11.2.5 Consider the function

f (x) =

{
x2 sin

(
1
x2

)
if x ̸= 0

0 if x = 0

Then f ′ (x) exists for all x ∈ R and equals

f ′ (x) =

{
2x sin

(
1
x2

)
− 2

x cos
(

1
x2

)
if x ̸= 0

0 if x = 0

Then f ′ is generalized Riemann integrable on [0, 1] because it is a derivative. Now let
ψ (x) denote the sign of f (x) . Thus

ψ (x) ≡

 1 if f (x) > 0
−1 if f (x) < 0
0 if f (x) = 0

Then ψ is a bounded function and you can argue it is Riemann integrable on [0, 1] .
However, ψ (x) f (x) = |f (x)| and this is not generalized Riemann integrable.

11.3 Exercises

1. Prove that if fn ∈ R∗ [a, b] and {fn} converges uniformly to f , then f ∈ R∗ [a, b]
and limn→∞

∫
I
fn =

∫
I
f .

2. In Example 11.2.5 there is the function given

g (x) ≡
{

2x sin
(

1
x2

)
− 2

x cos
(

1
x2

)
if x ̸= 0

0 if x = 0

It equals the derivative of a function as explained in this example. Thus g
is generalized Riemann integrable on [0, 1]. What about the function h (x) =
max (0, g (x))?

3. Let f ∈ R∗ [a, b] and consider the function x→
∫ x

a
f (t) dt. Is this function contin-

uous? Explain. Hint: Let ε > 0 be given and let a gauge, δ be such that if P is
δ fine then ∣∣∣∣∣S (P, f)−

∫ b

a

fdx

∣∣∣∣∣ < ε/2

Now pick h < δ (x) for some x ∈ (a, b) such that x + h < b. Then consider the
single tagged interval, ([x, x+ h] , x) where x is the tag. By Corollary 11.1.14∣∣∣∣∣f (x)h−

∫ x+h

x

f (t) dt

∣∣∣∣∣ < ε/2.

Now you finish the argument and show f is continuous from the right. A similar
argument will work for continuity from the left.
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4. Generalize Problem 3 to the case where the integrator function is more general.
You need to consider two cases, one when the integrator function is continuous at
x and the other when it is not continuous.

5. Suppose f ∈ R∗ [a, b] and f is continuous at x ∈ [a, b] . Show G (y) ≡
∫ y

a
f (t) dt is

differentiable at x and G′ (x) = f (x).

6. Suppose f has n + 1 derivatives on an open interval containing c. Show using
induction and integration by parts that

f (x) = f (c) +

n∑
k=1

fk (c)

k!
(x− c)k +

1

n!

∫ x

c

f (n+1) (t) (x− t)n dt.

Would this technique work with the ordinary Riemann or Darboux integrals?

7. The ordinary Riemann integral is only applicable to bounded functions. However,
the Generalized Riemann integral has no such restriction. Let f (x) = x−1/2 for

x > 0 and 0 for x = 0. Find
∫ 1

0
x−1/2dx. Hint: Let fn (x) = 0 for x ∈ [0, 1/n] and

x−1/2 for x > 1/n. Now consider each of these functions and use the monotone
convergence theorem.

8. Can you establish a version of the monotone convergence theorem which has a
decreasing sequence of functions, {fk} rather than an increasing sequence?

9. For E a subset of R, let XE (x) be defined by

XE (x) =

{
1 if x ∈ E
0 if x /∈ E

For F an integrator function, define E to be measurable if for all n ∈ N, XE ∈
R∗ [−n, n] and in this case, let

µ (E) ≡ sup

{∫ n

−n

XE (t) dt : n ∈ N
}

Show that if each Ek is measurable, then so is ∪∞k=1Ek and if E is measurable,
then so is R \ E. Hint: This will involve the monotone convergence theorem.

10. The gamma function is defined for x > 0 as

Γ (x) ≡
∫ ∞

0

e−ttx−1dt ≡ lim
R→∞

∫ R

0

e−ttx−1dt

Show this limit exists. Also show that

Γ (x+ 1) = xΓ (x) , Γ (1) = 1.

How does Γ (n) for n an integer compare with (n− 1)!?



Appendix A

Construction Of Real
Numbers

The purpose of this chapter is to give a construction of the real numbers from the
rationals.

Definition A.0.1 Let R denote the set of Cauchy sequences of rational num-
bers. If {xn}∞n=1 is such a Cauchy sequence, this will be denoted by x for the sake of
simplicity of notation. A Cauchy sequence x will be called a null sequence if

lim
n→∞

xn = 0.

Denote the collection of such null Cauchy sequences as N.Then define x ∼ y if and only
if

x− y ∈ N

Here x− y signifies the Cauchy sequence {xn − yn}∞n=1. Also, for simplicity of notation,
let Q denote the collection of constant Cauchy sequences: for a ∈ Q, let a ≡{an}∞n=1

where an = a for all n. Thus Q ⊆ R.

Then the following proposition is very easy to establish and is left to the reader.

Proposition A.0.2 ∼ is an equivalence relation on R.

Definition A.0.3 Define R as the set of equivalence classes of R. For [x] , [y] , [z] ∈
R, define

[x] [y] ≡ [xy]

where xy is the sequence {xnyn}∞n=1 . Also define

[x] + [y] ≡ [x+ y] .

Theorem A.0.4 With the two operations defined above, R is a field.

Proof: First it is necessary to verify that the two operations are binary operations
on R. This is obvious for addition. The question for multiplication reduces to whether
xy is a Cauchy sequence.

|xnyn − xmym| ≤ |xnyn − xmyn|+ |xmyn − xmym|
≤ C (|xn − xm|+ |yn − ym|)

275
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for some constant which is independent of n,m. This follows because x,y being Cauchy
implies that these sequences are both bounded.

Now why are these operations well defined? Consider multiplication because it
is fairly obvious that addition is well defined. If x ∼ x′ and y ∼ y′, is it true that
[x′y′] = [xy]? Is {x′ny′n − xnyn}

∞
n=1 ∈ N?

|x′ny′n − xnyn| ≤ |x′ny′n − x′nyn|+ |x′nyn − xnyn|
≤ C (|y′n − yn|+ |x′n − xn|)

where C is a constant which bounds all terms of all four given Cauchy sequences, the
constant existing because these are all Cauchy sequences. By assumption, the last
expression converges to 0 as n→∞ and so {x′ny′n − xnyn}

∞
n=1 ∈ N which verifies that

[x′y′] = [xy] as hoped. The case for addition is similar but easier.
Commutative and associative laws for addition and multiplication are all obvious.

So is the distributive law. The existence of an additive identity is clear. You just use
[0] . Similarly [1] is a multiplicative identity. For [x] ̸= [0] , let yn = 1 if xn = 0 and
yn = x−1

n if xn ̸= 0. Is y ∈ R? Since [x] ̸= [0] , there exists a subsequence of x, {xnk
}

and a positive number δ > 0 such that

|xnk
| > 2δ

for all k. Therefore, since x is a Cauchy sequence, it must be the case that for some N,

|xn| ≥ δ

for all n > N . Now for m,n > N,

|yn − ym| =
∣∣∣∣ 1xn − 1

xm

∣∣∣∣ = |xn − xm||xn| |xm|
≤ 1

δ2
|xn − xm|

which shows that {yn}∞n=1 ∈ R. Then clearly [y] = [x]
−1

because

[y] [x] = [yx]

and yx is a Cauchy sequence which equals 1 for all n large enough. Therefore, [xy] = [1]
as required. It is obvious that an additive inverse [−x] ≡ − [x] exists for each [x] ∈ R.
Thus R is a field as claimed. �

Of course there are two other properties which need to be considered. Is R ordered?
Is R complete? First recall what it means for R to be ordered. There is a subset of R
called the positive numbers, such that

The sum of positive numbers is positive.

The product of positive numbers is positive.

[x] is either positive [0] , or − [x] is positive.

Definition A.0.5 Define [x] > [0] if there exists δ > 0 and a subsequence of x
{xnk

}∞k=1 with the property that

xnk
> δ for all k.

First, it is convenient to present a simple lemma.

Lemma A.0.6 [x] > [0] if and only if for every 0 < r < 1 there exists δ > 0 and m
such that xn > rδ for all n > m.
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Proof: ⇐= is obvious. Suppose then that [x] > [0] . Then there exists δ > 0 and a
subsequence {xnk

} such that xnk
> δ. Let m be large enough that |xn − xl| < (1− r) δ

for all l, n > m. Then pick k > m. It follows that nk > m and so for n > m,

− (1− r) δ < xn − xnk
< (1− r) δ

and so
rδ = δ − (1− r) δ < xnk

− δ < xn �

Theorem A.0.7 The above definition makes R into an ordered field.

Proof: First, why is the above definition even well defined? Suppose [x] is positive
with δ as in the definition. Is it true that if x′∼ x, then x′ is also positive? By the
above lemma, there exists an N such that xn > 2δ/3 for all n > N. Since x− x′ ∈ N, it
follows that there is a larger N1 such that if n > N1, then x

′
n > δ/2. Thus the concept

of being positive is well defined.
Suppose both [x] , [y] are positive. Then by the above lemma, there exists anN, δ > 0

such that if n > N, then
xn > δ, yn > δ

Therefore, if n > N,
xnyn > δ2

and so [xy] = [x] [y] > 0. It is obvious that the sum of positive numbers is positive.
Next suppose that [x] ̸= [0]. Then there exists a subsequence {xnk

} such that

|xnk
| > δ

It follows that either xnk
> δ infinitely often or xnk

< −δ infinitely often but not both.
Thus either [x] > 0 or [x] < 0. �

For a rational number r, denote by r the real number [r] , r being the constant
sequence equalling r. Then also r [x] = [rx].

It remains to verify that R is complete. This requires a measure of distance between
two elements of R. So how do you do this? Simply define the absolute value the usual
way.

|[x]| ≡

 [x] if [x] > [0]
[0] if [x] = [0]
[−x] ≡ − [x] if [x] < 0

.

Then it is routine to verify that this satisfies the usual properties of absolute value.
The main difficulty is, as usual, the triangle inequality. Note that from the definition,
|[x]| ≥ [x]. First say that [x+ y] ≥ [0] .

|[x] + [y]| = |[x+ y]| = [x+ y] = [x] + [y] ≤ |[x]|+ |[y]|

In case [x+ y] < [0] , it is a similar argument. Thus the triangle inequality holds. What
about |[x] [y]| = |[x]| |[y]|? You can simply check the various cases. Consider the case
that [x] < [0] and [y] > [0] .

|[x] [y]| = |[xy]| = − [xy] = [−xy] = [−x] [y] = |[x]| |[y]| .

Lemma A.0.8 If r > 1, then there exists mr such that for all n > mr,

|xn − yn| < r |[x− y]| .

Also |[x]| = [|x|] where |x| ≡ {|xk|}∞k=1 .
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Proof: Consider the last claim first. If [x] < [0] , then there exists δ < 0 such that
for all n large enough xn < δ < 0. Therefore, |[x]| = [−x]. Also [|x|] = [−x] so these
are equal. The case where [x] > 0 is similar. Consider the other assertion.

|[x− y]| = [|x− y|] < [r |x− y|] = r [|x− y|] = r |[x− y]|

and so, it follows as in Lemma A.0.6 that for all n large enough, the above conclusion
holds. �

Finally, here is a proof that R is complete.

Theorem A.0.9 R as defined above is a complete ordered field.

Proof: Suppose {[xn]}∞n=1 is a Cauchy sequence in R. Then there exists a subse-
quence, still denoted as {[xn]} such that∣∣[xn]−

[
xn+1

]∣∣ < 2−n.

I will show that a subsequence of this one converges. Then it will follow that the original
Cauchy sequence converges.

Since each xn is a Cauchy sequence, there exists N (n) , · · ·N (n) < N (n+ 1) · · · ,
such that if k, l ≥ N (n) , then

|xnk − xnl | < 2−n

By making N (n) larger if necessary, it can also be assumed that for each k ≥ N (n) ,∣∣xnk − xn+1
k

∣∣ < 2−n

Then define a sequence y as
yk ≡ xkN(k).

Then

|yk − yk+1| =
∣∣∣xkN(k) − x

k+1
N(k+1)

∣∣∣ ≤ ∣∣∣xkN(k) − x
k
N(k+1)

∣∣∣+ ∣∣∣xkN(k+1) − x
k+1
N(k+1)

∣∣∣
< 2−k + 2−k = 2−(k−1)

the second term on the right of the top line being less that 2−k because N (k + 1) >
N (k). It follows that {yk}∞k=1 is a Cauchy sequence.

It remains to verify if possible that limk→∞
∣∣[xk

]
− [y]

∣∣ = 0. First consider the

subsequence
{[
xN(k)

]}∞
k=1

. Let l ≥ N (N (k)) . Then∣∣∣xN(k)
l − yl

∣∣∣ = ∣∣∣xN(k)
l − xlN(l)

∣∣∣ ≤ ∣∣∣xN(k)
l − xkl

∣∣∣+ ∣∣∣xkl − xkN(l)

∣∣∣+ ∣∣∣xkN(l) − x
l
N(l)

∣∣∣
Now both l, N (l) ≥ N (k) because

l ≥ N (N (k)) ≥ N (k) ≥ k

and so the middle term above is less than 2−k. Consider the last term. If l ≥ i ≥ k,
then N (l) ≥ N (i) and so ∣∣∣xiN(l) − x

i+1
N(l)

∣∣∣ ≤ 2−i

Therefore, in the case that k ̸= l, the last term is dominated by

l−1∑
i=k

∣∣∣xiN(l) − x
i+1
N(l)

∣∣∣ ≤ ∞∑
i=k

2−i = 2−(k−1).
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Next consider the first term. For k ≤ i ≤ N (k) , N (i) ≤ N (N (k)) ≤ l and so∣∣xil − xi+1
l

∣∣ ≤ 2−i

Therefore, supposing that N (k) > k, (There is nothing to show if this is not so.)

∣∣∣xN(k)
l − xkl

∣∣∣ ≤ N(k)−1∑
i=k

∣∣xil − xi+1
l

∣∣ ≤ ∞∑
i=k

2−i = 2−(k−1).

It follows that for l > N (N (k)) ,∣∣∣xN(k)
l − yl

∣∣∣ ≤ 3
(
2−(k−1)

)
and consequently, ∣∣∣[xN(k) − y

]∣∣∣ < 5
(
2−(k−1)

)
The given sequence is a Cauchy sequence, so if ε > 0 is given, there exists Kε such that
if m,n > Kε, then

|[xn]− [xm]| < ε

2

Pick k > Kε. Then for n > Kε,

|[xn]− [y]| ≤
∣∣∣[xn]−

[
xN(k)

]∣∣∣+ ∣∣∣[xN(k)
]
− [y]

∣∣∣
<

ε

2
+ 5

(
2−(k−1)

)
Therefore, simply pick k sufficiently large and it follows that for n > Kε,

|[xn]− [y]| < ε.

Hence the given Cauchy sequence converges to [y]. �
It follows you can consider each real number in R as an equivalence class of Cauchy

sequences. It seems to me that it is easier to consider it simply as a point on the number
line and begin with the real number line as the fundamental thing to study.

There are other ways to construct the real numbers from the rational numbers. The
technique of Dedekind cuts is often used for example. See the advanced calculus book
by Rudin [31] for this. It might be a little shorter and easier to understand. However,
the above technique of the consideration of equivalence classes of Cauchy sequences can
also be used to complete any metric space. The technique of Dedekind cuts cannot. A
metric space is just a nonempty set X on which is defined a distance function (metric)
which satisfies the following axioms for x, y, z ∈ X.

d (x, y) = d (y, x) , ∞ > d (x, y) ≥ 0

d (x, y) + d (y, z) ≥ d (x, z)

d (x, y) = 0 if and only if x = y.
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∩, 14
∪, 14
δ fine, 261
nth term test, 81

absolute convergence, 85
rearrangement, 78

absolute convergence, 78
alternating series, 84
alternating series test, 84
annuity

ordinary, 25
Archimedian property, 22
Ascoli Arzela, 120
at most countable, 39
axiom of choice, 35, 39
axiom of extension, 35
axiom of specification, 35
axiom of unions, 35

Bair theorem, 69
Bernstein polynomials, 118
Bessel’s inequality, 254
binomial series, 164
binomial theorem, 20, 26

infinite series, 165
bounded, 57
bounded variation, 193, 214

difference of two increasing functions,
214

Cantor diagonal process, 121
Cantor function, 143
Cantor set, 61, 143
Cauchy, 96
Cauchy condensation test, 81
Cauchy criterion for sums, 77
Cauchy mean value theorem, 144
Cauchy product, 91
Cauchy Schwarz inequality, 257
Cauchy sequence

completeness, 63
convergent subsequence, 63

Cauchy sequence, 62

cauchy sequence
bounded, 62

Ceasaro summability, 258
chain rule, 138
change of variables, 211

integrals, 191
closed and bounded

sequentially compact, 57
closed intervals

compact, 59
closed subset of compact set, 57
closure, 108
compact, 59

closed intervals, 59
compactness

preservation, 105
continuous function, 105

comparison test, 79
comparison test, 78
completeness, 27

convergence of monotone sequences, 64
real and complex numbers, 64

completeness, 63
completeness axiom, 27
completing the square, 30
complex conjugate, 32
complex numbers

sequentially compact sets, 58
complex numbers, 31
conditional convergence, 78
connected, 108

components of open set, 109
continuous image, 108
on the real line, 109
union, 108

connected component, 109
connected components, 109
connected set

preservation, 108
continuity

bounded, 104
convergent sequences, 101
equivalent formulations, 101
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intermediate value theorem, 106
inverse function, 107
inverse image of closed sets, 101
inverse image of open sets, 101
limits, 128
limits of sequences, 101
litany of properties, 98
on a compact set, 111
one to one, 106
preservation of inequality, 101
uniform, 111
uniform convergence, 115

continuous
at one point, 97
not differentiable anywhere, 136

continuous and one to one
monotone, 106

continuous function, 96
only at irrationals, 103

continuous functions
sums, products, quotients, composi-

tions, 98
supremum and infimum, 113

continuous image of compact set, 105
contitional convergence, 85
convergence

of derivatives, 149
convergent sequences

continuity, 101
convex, 151
cosine and sine

periodic, 160
countable, 39
countable intersection of dense open sets,

70
critical points, 141

Darboux, 206
Darboux integral, 190, 205
Darboux Stieltjes integral, 190
decimal expansion of a number, 64
dense, 23
density of rationals, 23
derivative

chain rule, 138
definition, 132
equals zero, then function is constant,

144
equivalent difference quotient, 138
higher order derivatives, 140
intermediate value property, 146
inverse function, 148
mean value theorem, 143

product rule, 138
quotient rule, 139
sum, product, quotient, chain rule, 138
well defined, 133

derivative exists
continuous, 133

derivatives
cosine and sine, 158
right and left, 133

diameter of a set, 69
differentiable

continuous, 133
differentiation rules, 138
Dirichlet function, 43
Dirichlet kernel, 236
Dirichlet test, 84
discriminant, 31
domain, 43
double series

absolute convergence, 89
interchange order of summation, 89

double sum
interchange of order, 89

epigraph, 113
equicontinuous, 120
equiintegrable, 268
equivalence class, 41
equivalence relation, 40
Euclidean algorithm, 23
even, 257
exponential function, 161

properties, 161
exponential sine and cosine functions, 157
extreme value theorem, 105

Fibonacci sequence, 46
field axioms, 10
finite intersection property, 60
first mean value theorem integrals, 226
first order linear differential euqations, 222
Fourier series, 234

pointwise convergence, 241
uniform convergence, 257

Fourier transform, 260
Fubini’s theorem., 227
function, 38

even, 142
odd, 142
uniformly continuous, 111

functions of integrable functions, 193, 194
fundamental theorem of algebra, 179, 180
fundamental theorem of calculus, 201
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future value of an annuity, 25

G delta set, 70
gamma function, 229, 274
gauge function, 261
generalized Riemann integral

Cauchy criterion, 262
geometric series, 76
geometric series, 76
greatest lower bound, 27

Heine Borel, 55
Heine Borel theorem, 59
Henstock, 261
Holder condition, 123
Holder functions, 123
Holder’s inequality, 205

identities
cosine and sine, 158

improper integral, 221
infinite series

raised to a power, 182
infinite sums

properties, 76
integral

uniform convergence, 212
approximation, Riemann sums, 202
change of variables, 210
continuous function, 196
existence, 194
finding them, 212
linear, 197
Riemann sum, 202
splitting the interval, 198

integration by parts, 204
integration by parts formula, 216
integrator function, 188
interest

compounded continuously, 173
interior point, 55
intermediate value theorem, 105, 106
intersection of dense open sets, 69
intervals, 14

connected, 109
inverse image, 37, 45

jump discontinuity, 131

Kurzweil, 261

L’Hopital’s rule, 169
L’Hopitals rule, 170
least upper bound, 27

lim inf, 66
properties, 68

lim sup, 66
properties, 68

limit
one sided, 125

limit comparison test, 80
limit of a function, 125
limit of a sequence

derivative, 149
limit of a subsequence, 52
limit of nth root of n, 153
limit point, 56

sequence of distinct points, 56
limit points, 108

closed sets, 56
limits

at infinity, 125
continuity, 128
cosine and sine, 159
existence of limits, 67
properties, 127
squeezing theorem, 51, 128
uniqueness, 49, 126
well defined, 126

limits of sequences
preservation of order, 52
properties, 50

Lipschitz, 112
little o notation, 131, 132
ln, 162

derivative, properties, 162
local extrema, 140
local extremum

derivative equals 0, 141
local maximum, 140
local minimum, 140
locally finite, 61
logarithms

other bases, 163
properties, 163

lower semicontinuous, 112

mathematical induction, 21
max. min.theorem, 105
maximizing sequence, 112
mean square convergence, 248
mean value theorem

Cauchy, 144
for integrals, 221
usual version, 144

Merten’s theorem, 91, 181
minimizing sequence, 112
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monotone decreasing, 63
monotone increasing, 63
multinomial expansion, 30

nested closed sets
shrinking diameters, 69

nested interval lemma, 53
nonremovable discontinuity, 95
nowhere differentiable function, 137

odd, 257
open set, 55

union of disjoint connected components,
109

order, 14

p series, 81
partial summation formula, 84
partition, 187
perfect sets, 111
periodic function, 234
permutations, 19
permutations and combinations, 30
piecewise continuous, 246
pointwise convergence

sequence, 114
series, 116

power series, 153
exponential sine and cosine, 157
multiplication, 175
of a quotient, 185
raising to a power, 183

power set, 35, 42
present value of an annuity, 25
preservation of compactness, 105
prime numbers less than a given number,

93
product rule, 138
properties of integral

properties, 199

quadratic formula, 30
quotient rule, 139

Raabe’s test, 151
radius of convergence, 154
raising a number to a power, 163
range, 43
ratio test, 85
rational function, 45
real numbers, 9
rearranged series

convergence, 78
recurrence relation, 46

recursively defined sequence, 71
recursively defined sequence, 46
regular Sturm Liouville problem, 225
removable discontinuity, 95
Rieman and Darboux Stieltjes integrals, 206
Rieman Stieltjes integral

bounded variation integrator, 216
existence, 217

Riemann criterion, 190
Riemann integrable, 190
Riemann Lebesgue lemma, 240
Riemann Stieltjes integral

bounded variation integrator, 215
Rolle’s theorem, 144
root test, 85, 86
roots

existence, 28
roots of complex number, 180
Russell’s paradox, 37

Schroder Bernstein theorem, 38
second derivative test, 151
second mean value theorem, 226
separated, 108
sequence of partial sums, 75
sequences, 46

terminating, 42
uncountable, 42

sequential compactness, 111
sequentially compact

closed and bounded, 57
in complex numbers, 58

series
absolute convergence, 78
conditional convergence, 78
convergence criterion, 77
double sum, 87
meaning of convergence, 75
multiplication of series, 91
nonnegative terms, 75
p series test, 81
ratio test, 85
root test, 86

series of functions
uniform convergence, 117

sets, 35
Simpson’s rule, 223, 224
smooth and not analytic, 175
smoothness more general than analytic, 175
squeezing theorem, 128
squeezing theorem, 51
Stieltjes integrals

change of variables, 191
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Stirling’s formula, 220, 231
sup

increasing sequence, 89
interchange of order, 88

tagged division, 261
Taylor series, 153, 154

coefficients, 156
convergence and divergence, 154
differentiation, 155
exponential sine and cosine, 157
multiplication, 175
of quotient, 185
raising to a power, 183
uniqueness, 156

Taylor’s formula, 146, 223
total variation, 214
trapezoid rule, 224
triangle inequality, 32
trichotomy, 15
trigonometric functions, 161

uncountable
unit interval, 65

uniform convergence, 248
sequence, 114, 149
series, 116, 117

uniformly bounded, 120
uniformly Cauchy, 115

sequence, 115
uniformly continuous, 111, 226
unit interval

uncountable, 65
upper and lower sums, 188
upper semicontinuous, 113
upper sums and lower sums

different partitions, 188

Wallis’s formula, 220
Weierstrass, 96
Weierstrass approximation theorem, 119
Weierstrass M test, 117, 257
well ordered, 20, 21


