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2 REID DALE

1. INTRODUCTION
2. BAsic DIFFERENTIAL ALGEBRA

2.1. Derivations and Dual Numbers. The fundamental object that we will be
working with throughout this section is that of a (commutative) differential ring
(R, 0), which is a ring R equipped with a derivation

0:R— R,
which is a function satisfying
oz +y) = d(z) + y)

o(zy) = wo(y) + yo(x).
While this ¢ is not a ring homomorphism, it is possible to view a derivation as
a component of a certain homomorphism from R to the dual numbers R[e]/(€?) as
follows:

Proposition 2.1. There is a bijective correspondence between derivations ¢ on R
and sections s : R — R[e]/(€?) of the canonical projection 7 : R[e]/(e?) — R.

Proof. We first define a map from derivations to sections 0 — sy given by
so(x) = x + ed(x).

The function s; is a ring homomorphism as it is certainly additive, and it is multi-
plicative as

sa()sa(y) = (x + €d(@))(y + €d(y)) = zy + e(wd(y) + yo(x)) + € ((x)a(y))

= a2y + ed(xy) = sa(xy).

Conversely, we define a map s — ds given by mapping a section s = = + ef(x),
where f : R — R is a function, to ds = f. Note that the f described here is a
well-defined function as {1, ¢} is a basis for R[e]/(¢?) as an R-module. This map is
a derivation as the fact that s is a section forces

(@ +ef(@)(y +ef(y) = xy + e(xf(y) + yf(2)) = s(zy) = zy + ef (xy)
and so f(zy) = xf(y) +yf(x). Additivity is clear, so that Js is indeed a derivation
on R.
Finally, the maps 0 — s3 and s — 0, are inverse to each other and so these sets
are in bijective correspondence. ([

This identification of derivations with certain sections has the advantage of sim-
plifying a lot of arguments about the existence and uniqueness of certain extensions
of derivations; instead of doing explicit computations once can often exploit func-
toriality to cook up the desired extension since functors always preserve sections.

Proposition 2.2. Let (R, 0) be a differential ring with and S < R a multiplicatively
closed set. Then there exists an extension of @ to ST'R.

Proof. Working in the category of R-algebras, consider R[e]/(€?) as an R-algebra
by equipping it with the structure map s; : R — R|[e]/(e?). This is a section of
the natural projection R[e]/(¢2) — R in the category of R-algebras. Moreover, by
composing with the natural homomorphism R[e]/(€?) — (ST1R)[€]/(¢?) we get a
map

so: R— (STIR)[e]/(€).
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By the universal property of the localization, if s, maps S to the units of (S~ R)[e]/(¢?)
then s, extends to a unique map on S~'R. We check that for all z € S, s5(x) is a
unit. Indeed

z—ex _ (x4 ed(x))(z — ed(z)) x?

(S[}(J})) 72 = ) = ﬁ =1
and so the map extends. It is clear that the homomorphism is a section of the
s . . . 1y _ z—ed(xz) _ 1 o(x)
canonical projection since so(5) = =5~ = ¢ + € 7. O

Another useful application of the section point of view is in constructing the ring
of differential polynomials over R.

Proposition 2.3. Let (R,0) be a differential ring. Then the ring of differential
polynomials

R{z} := R[z, 2,z ... ]
is a differential ring with 0 : R{z} — R{z} giwen by 0|g := 0, 0(z) = z(+1),
and extended to the whole domain by Leibniz’s rule.

Proof. To construct a derivation on R{x} it suffices to construct a section

s: R{z} — R{z}[e]/(€?).

Since, as a ring, R{x} is the free commutative R-algebra on the elements {z("},c,,,
to define a map s : R{z} — R{z}[e]/(e?) it suffices to specify a homomorphism
s0: R — R{z}[¢]/(¢?) as well as the elements s(z(™) for all n € w. We set

e so: R — R{z}[e]/(€?) by so(r) =7 + €d(r)

o s(z(™) = z(™ 4 ez(n+D)
Then s is a section of the dual numbers for R{z} and @, = 0, the desired derivation
on R{x}. O

Finally, one can show that derivations extend uniquely to separable field exten-
sions in this manner using more universal properties in commutative algebra.

Proposition 2.4. Let (K,0) be a differential field and let L/K be a separable
algebraic extension. Then 0 extends uniquely to L.

Proof. We first show the result for a finite separable extension L/K and then
conclude by noting that if L/K is separable then L is the union of an ascend-
ing chain of separable extensions of K. As L is finite separable we may write
L = K[x]/(f(z)) = K(a) with f(z) = Y. b;z® the minimal polynomial of a such
that the formal derivative f'(z) given by f'(x) = Y ib;x'~! satisfies f'(a) # 0. We
first show uniqueness of the extension of ¢ to L, assuming that it exists.

If 0 is an extension of 0 to L then

ZONTDEDY (a(cj)aj + é(a)jcjaj—l)

so that knowing d(a) and @ determines ¢ uniquely. Thus, to show that @ extends to
at most one derivation on L we show that the value of d(a) is uniquely determined.
First we compute what 0 should be. If L = K(a) then f(a) = 0 with f(z) = > b;2?,
so that

lf(a)] = 0.

Expanding this expression gives us

0 (Z bia:i) = Z o(b)z" + bz to(z) = (Z a(bi)xi) + 0(z) f ().
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The polynomial (}]d(b;)x*) is just the polynomial obtained by applying ¢ to the
coefficients of f and we set

Folz) = (Z a(bi)xi) .

Applying the above formula to a,

0=0[f(a)] = f(a) + o(a) f'(a)

so that
o fa(a)
) ==

showing that ¢ extends in at most one way to a derivation on L.

To show the existence of the derivation extending ¢ to L we use the charac-
terization of derivations as certain sections of the dual numbers. Since 0 is a
derivation, we obtain a canonical section s; : K — K[e]/(¢2). We may compose s,
with the natural injection K[e]/(e?) — L[e]/(€?) to get a map we abusively name
so + K — L[e]/(¢?). Our goal is to extend this to a section s3 : L — L[e]/(€?).
Towards this, we first extend s5 to K[z] via the map

f(’)(a)
I'(a)

which, as we showed above, is the only possible option for d(a). To show that this
map descends to L we need to show that in the dual numbers L[e]/(€?),

B f(')(a)> B
/ ( ) =0

To evaluate polynomials in the dual numbers we use the formula

fle+ed) = Z(bi + €d(b;))(c + ed)’

r—a—¢e€

since we are thinking of K[e]/(€?) as having the K-algebra structure given by s;.

Now note that
c+ed) = <,>CJ ed)™7
( )y =] j (ed)

which is 0 for all i — j > 2 as (ed)? = 0. Thus (c + ed)’ = ¢ + iec’"1d so that
flc+ed) = Z(bl + €d(b;))(c" +iectd).

d(a)

Now we need to check that f <a — 6%) = 0. Expanding, we have that

oefi) - - )
S

5o )

(1)

O
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2.2. Differential Ideals and Ritt Noetherianity. As in usual ring theory, the
notion of a differential ideal plays a fundamental role in differential algebra and
differential algebraic geometry. The motivation is nearly identical as in the case
of algebraic geometry: if we know that a differential equation f = 0 holds, then
differentiating both sides yields that d(f) = 0 as well.

Throughout these notes we adopt the convention that if X € R, then the ideal
generated by X is denoted (X).

Definition 2.5. Let (R, ?0) be a differential ring. An ideal I < R is a differential
ideal just in case (1) < I.

Given a family F = {rs}a<x S R of elements of R, we can consider the differen-
tial ideal J(F) generated by F, which is the smallest differential ideal containing
F. It has a straightforward explicit presentation:

Proposition 2.6. Let (R,0) be a differential ring and F < R be a family of
elements. If we enumerate F = {ro}a<r S R, then

J(]:) = <{ai(7"a)}a<>\;i<w>7
i.e. J(F) is generated as an ideal by F and all of the higher derivatives of its
elements.

Proof. Write F = {rota<x € R. As F < J(F) and J(F) is a differential ideal, we
immediately have that
<{ai(7'a)}a<>\;i<w> c J(F)
To show that _
J(F) € ({0 (ra)}a<rsi<w)
we need only show that ({0°(ra)}a<rsi<w ) is a differential ideal since J(F) is min-
imal amongst all differential ideals. Suppose that

gE€ <{ai(7aa)}a<)\;i<w>
so that g = Y. ga.i0" (7). Then

(}(g) = Z (a(ga,i)ai(roz) + ga,iai+1(ra)) € <{ai(ra)}a<k;i<w>

and so <{6i(ra)}a<>\;,~<w> is a differential idea. Therefore J(F) = <{0i(ra)}a<)\;i<w>,
as desired. O

A useful geometric fact in algebraic geometry is that the Zariski topology is a
noetherian topology, which can be seen as a corollary of the Hilbert Basis The-
orem. In the context of differential algebraic geometry, the Kolchin topology is
also noetherian, but the straightforward analogue of the Hilbert Basis theorem is
false: there exist strictly increasing ascending chains of differential ideals in dif-
ferential polynomial rings. However, in the case of radical differential ideals, the
Ritt-Raudenbush theorem tells us that all radical differential ideals in a differen-
tial polynomial ring over a field K containing Q are finitely differentially-radically
generated.

Example 2.7. We give an example of an ascending chain of differential ideals that
does not terminate. Consider the chain of ideals I,, € Q{x} given by

In = J(izv (m/)Q Ty (x(n—l))2)
as well as the ideal T = J({(2")?}icw)
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Clearly whenever ¢ < j we have I; < I;, so our goal is to show that for all n € w,
I, < I, to yield a strictly ascending chain. To do this, we will often work with
the auxiliary ideal I defined above, because it admits a set of especially nice looking
generators.

Claim 2.8. I = (zWz0)|i < j)

To show that <x(i)x(j) | <j> c I, we go by induction on k = 57 —i. The
case k = 0 is immediate by the definition of I, and the k& = 1 case follows since
((x)?) = 2@ 2+ and since in Q we can divide by 2.

Suppose now that all z(D20) e I for (i,7) with j —i < k for k > 1; we wish
to show that z(Mz() e I for all (i,j) with j —i = k + 1. Let (i,7) be such that
j—i=k+1 Then (i,5) = (io,jo + 1) with jo — ip = k. Then o(x(?0)z0)) =
g0+ 1) 00) 4 200) x(Go+1)  Since jy — (ig + 1) = k — 1 we have that x0TV z0o) e T
by induction hypothesis and so z(%0) g0+ — £ 20) e I as desired.

To show that I < <x(i)x(j) |7 < j> it suffices by 2.6 to show that the higher
derivatives of its differential generators (z(*))? are all expressible as sums of prod-
ucts of elements of Q{z} with elements of the form z(92(), which is a very straight-
forward computation (in fact, this computation is nested in the induction step of
the <a:(i)x(j) |i < j> c I direction of the argument). I think that this direction
is the only one needed for the argument, actually...

Now that we understand the ideal I we proceed with the argument. We wish to
show that I,, < I,,;1 by arguing that (z(™)? ¢ I,,. We make two slight simplifica-
tions:

e We may work in Q{z}/J(z"+V) = Q[z,2/,--- ,2"] since if we can show
that (z(™)2mod J(x(™ 1) ¢ I, mod J(z(+1) then (z(™)? ¢ I,
o We instead show that

()2 mod J (V) ¢ <x(i)x(j) [0<i<j<nor0<i=j<n-— 1>mod J(zm+h)
which suffices since
I, mod J(z("*V) < <x(i)x(j) [0<i<j< n>

by one direction of the containment argument for .
Now suppose that inside Q[z, 2/, - - -, z(™] we have that

(x("))26<m(i)x(j)|0<i<j<nor0<i:j<n—1>.

Then writing out a witnessing expression to ((™)? being in the above ideal we find
that

(i(n))2 _ Z 2 fi,j,f . (x(n))lm(l)x(J) + 2 Z keom (x(n))m+lx(k)

¢ 0<i<j<n—1 m 1<k<n—1
with f; ;¢ and g, inside Q[x,a’,--- ,2(™]. But then since it’s a polynomial in
the variable (™ we can simplify this to
ER = N F @200 1 g (@),
0<i<j<n—1 1<k<n—1

But then R o
1 = Z fi,jx(z)xo) + Z gkm(k)

o<i<j<n—1 1<k<n—1
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which is impossible as 1 ¢ (|0 <i<n) € K[z, 2/, ,z™].
Therefore I,, < I, and so we get a strictly increasing chain of differential ideals

Lhehe gl -
O

One way to circumvent pathologies of this sort is to look at ideals of geometric
significance from the Kolchin viewpoint: the radical differential ideals. The mo-
tivation for considering this class of ideals comes from the same motivation as in
algebraic geometry: if (K, 0) is a field of functions and 2 € K is a point, then if
(f™)(z) = 0 then f(x) = 0 as well, so that the ideal of differential polynomials
vanishing on x is radical.

Definition 2.9. A differential ring (R, ) is called Ritt-noetherian provided every
properly ascending chain of radical differential ideals is finite.

Our aim now is to prove the Ritt-Raudenbush theorem:

Theorem 2.10. Let R © Q be a Ritt-noetherian differential ring. Then R{x} is
Ritt-noetherian.

Before proving this, we first establish some basic properties of radical differential
ideals and Ritt-noetherianity.

Proposition 2.11. Let F < R be a family of elements with R > Q. Then the
minimal radical ideal containing F, {F}, can be characterized by the equation

Fr =V J(F)

i.e. the minimal radical differential ideal containing F is the radical of the minimal
differential ideal containing F.

Proof. Since intersections of radical differential ideals are radical differential, {F}
exists (here allowing the possibility that {F} = R). It’s immediate that 1/J(F) <
{F}, so it suffices to show that /J(F) is itself a radical differential ideal. It’s
certainly a radical ideal, so we just check that d(+/J(F)) € /J(F).

Suppose that a € 4/J(F), so that a™ € J(F). We want to show that there is an
m such that d(a)™ € J(F). We do this by differentiating o™ and seeing what we
get. Since a” € J(F), d(a™) € J(F). Expanding we get

(a™) = d(a)na™ "t e J(F).
Differentiating again, we see that

2 (a™) = *(a)na" ' + d(a)*n(n — 1)a" "2 € J(F)

While this looks ugly, multiplying by d(a) on both sides yields
*(a) (0(a)na™ ") + d(a)®n(n — 1)a"* € J(F)
so that since 0?(a) (0(a)na™') € J(F) we can conclude that
d(a)*n(n — 1)a" 2 e J(F).
Repeating this exact process repeatedly we can conclude that

d(a)™ nl e J(F).
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Since R > QQ we can conclude that
d(a)™ e J(F)
so that d(a) € v/J(F). O

Ritt-noetherianity can, like usual noetherianity, be expressed in terms of a kind
of finite generation of ideals:

Proposition 2.12. (R,?J) is Ritt-noetherian if and only if all radical differential
ideals I € R are finitely generated; that is, that there exists a finite set Iy < I such
that I = {Io}

Proof. Suppose that there is an infinite ascending chain of radical differential ideals
Ipc I < ---. Let I =|J1I,; this is a proper radical differential ideal since if 1 € I

then 1 € I, for some m < w. If I were finitely generated, then I = {f1,---, fu}
for some finite collection of f;’s. But then there is m such that fy, -, f, € Iin, so
that I,, = {f1, -+, fn}- But then the ideal chain stabilizes at m, a contradiction.

Conversely, suppose that there is a radical differential ideal I which is not finitely
generated. We build a chain inductively as follows:
e Pick 79 € I and set Iy = {ro}.
e Given I, = {rg,--r,} S I finitely generated, select r,, 1 € I\I,,, which ex-
ists as otherwise I would be finitely generated. Thenlet I,,11 = {ro, - ,7n+1}-
This yields a properly increasing chain of radical differential ideals. (I

Proposition 2.13. Let X, Y € R be two sets. Then
XY} < fayloe X,ye Y},

Proof. To prove this we prove some slightly more general lemmas.

Suppose that I is a radical differential ideal and S < R is closed under multipli-
cation (e.g. S is an ideal). Then I claim that Ts = {z € R|2S < I} is a radical
differential ideal. Note that if x € T then d(x) € T since if ab € I then d(a)b € I
by Leibniz’ rule together with the differential radicality of I (the full argument is
written up later in the proof of 2.40). Hence T is a differential ideal, and moreover
if 2™ € T then ™S < I. Since S is multiplicatively closed, ™S™ < I so that since
I is radical, xS < I and z is in T

Now, we prove the proposition in the case that X is a single element. If X = {a}
and Y is any set, then

a{Y'} < {aY}
since the set
T, ={z e R|za" € {aY}}
is a radical ideal containing a{Y}. Then if X is larger, this shows that
Tx ={xe R|z{Y} c {YV}}

contains {X}, so that
XHY} e {aylze X,yeY)
O

A crucial part of the usual proof of Hilbert’s basis theorem is the division lemma
for polynomial rings; we will rely on an analogue of it for differential rings to prove
the Ritt-Raudenbush theorem. To state the division lemma we will need to define
a convenient quantity associated to differential polynomials.



NOTES ON DIFFERENTIAL ALGEBRA 9

Definition 2.14. Let (R, 0) be a differential ring and f € R{z}\R. The order of
f, ord(f) is the largest n such that (™) appears in f; if f € R, then its order is —1.
Given f of order n we can write

d

f=> g @™y

i=0
with all g; € R[z,2’,--- ,2" D] and g4 # 0. In this case we say that f has degree
d.
We write f « g in case ord(f) < ord(g) or if ord(f) = ord(g) and deg(f) <

deg(g).

Recall the usual division algorithm lemma for polynomial rings over fields:

Lemma 2.15. Let f,g € K[z] be a polynomial. Then there exists a polynomial
g € K[z] with deg(g) < deg(f) such that

g =gmod{f)

While we cannot achieve a differential division algorithm as clean as this since,
as a pure ring, R{z} is the polynomial ring on countably many variables, the dif-
ferential structure on R{z} allows us to simplify differential polynomials.

Two crucial quantities associated to a differential polynomial f, the initial If
and the separant sy occur naturally in the course of devising the division algorithm.
Let ord(f) = n and deg,m (f) = d. The initial I; is the leading coefficient of f
considered as a polynomial in (R[z,2™),... 2= D])[z(™]. In other words, I} is
the unique element such that

f:f:If'(x(”))d—k 2 hy - (2™
0<i<d—1

with each h; € R[z,z™M), ..., 2("=VD]. The separant is the initial of O(f): sy = In(p).
Its importance stems from the fact (to be proven shortly) that, in fact, sy = Iox(y)
for all £ > 0, which is a key observation for carrying out the division algorithm.

Lemma 2.16. Let R be a commutative differential ring containing Q, f € R{x} be
of order n > 0 and degree d. Writing

f=]f.(x(n)>d+ Z Ry - (™)
0<i<d-1

with initial Iy and coefficients h; all inside R[z,2’, ..., D). Then for all g €
R{z} there exist g € R{x} such that § < f (in the order-degree ordering), an element
r € R, and integers £ and t with

r(Iy) (s5)'g = gmod J(f)
Proof. By induction we see that
FR) = Sfm(nJrk) + fi
with ord(fx) <n+k—1.

¢
o (k=1) Writing f = 20 hi(x(™)? with ord(h;) < n — 1 we have that

14
Z < 1 1 (n+1) + (h ) (x(n))i) _ Sfx(n-&-l) + fl

=0
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with ord(f1) <n=n+1-1.
e (k> 1) Suppose that f(*) = Sfx(”+k) + fr with ord(fx) <n+k—1. Then

FED = s (@) 4 (sp) 2R 4 (fi).

But then as ord(sy) < n and ord(fx) < n+ k — 1 we have that fi11 =
(57)' xR 4 (fi) has order

ord(fry1) <n+k—-1+1=n+k=n+(k+1)—1
as desired.

Now let g € R{z}. If g has order n + k, writing g = Z?:o v (x("R)) T with
ord(g;) < n+ k — 1 we have that rs?g — vgf® « g¢. Tterating this process we
can replace g by g = Z?:o 9; ()7 equivalent mod J(f) with ord(§) = ¢q. If
d := deg(§) = deg(f) then we may reduce the degree d of § by multiplying by some
power of I; and r € R to get deg(rl;§ — 93(x(™)4=*f) < d.! Tterating this process
we can push the degree of g below ¢ = deg(f).

Thus, by collecting all of these steps, we only multiplied g by powers of Iy and
sy and so the result holds. [

noticing the appearance of both the initial I and the separant sy in the dif-
ferential division lemma. This adds a step of complication in our proof of the
Ritt-Raudenbush theorem. We now prove the Ritt-Raudenbush theorem (following
the proof from Marker’s notes, but organized in a different way):

Proof. Suppose that (R, d) is a commutative Ritt-noetherian differential ring con-
taining Q. We wish to show that R{x} is as well. By 2.12 this is equivalent to
showing that every radical differential ideal I < R{z} is finitely generated.

Step 1: Find a maximal counterexample. Suppose for contradiction that
there is a radical differential ideal I < R{z} which is not finitely generated. I
claim that we can take I to be a maximal ideal amongst the family of radical,
non-finitely-generated differential ideals by Zorn’s lemma. Consider the family

T ={I < R{z}|I is a proper, radical, non-finitely-generated differential ideal}

ordered by inclusion. By assumption, Z is nonempty so it suffices to show that
every chain in Z has an upper bound in Z. Let {I,}a<x be a chain of elements of

Z. Their union I = |J I, is a radical differential ideal. It is a proper ideal since
a<A

if 1 €7 then1 = > rifi with r; € R and each f; in some I,. But as only finitely
many f; occur in this expression and since {I,}q<) forms an ascending chain, we
must have that 1 € I,, for some ag < A. But then I,, is not a proper ideal, a
contradiction. Similarly, T is not finitely generated, for if I = {fi,-++, fn} then
there would exist an I, with fi, -, f, € I, and so as

{fla"' af"l}gloéo gf: {f17”' 7fn}a

we would have that I, is a finitely generated radical differential ideal.

Thus, by Zorn’s lemma, we may assume that the radical, non-finitely-generated
differential ideal I that we take is maximal amongst that family.

Step 2: Intersect I with R, find a minimal element f outside the
radical-differential ideal generated by I n R Since I is a radical differential

1Unlike the case R = K a field, we may need to multiply by some r € R, e.g. in the case R = Z



NOTES ON DIFFERENTIAL ALGEBRA 11

ideal, sois In R. Now, I n R € R is finitely generated; say InR = {ry, - r;m} S R.
Set Iy = /JINR) = {r,---rm} S R{z}; Iy does not depend on choice of
generators for I n R. Now, as I # Iy we may pick f € I\Iy of minimal order-degree.

Our goal is to reduce every element of I modulo f using the differential division
lemma 2.16. 2.

Writing

f=L@™) 4+ Y hi(a™) = Ii(@™)? + fo
0<i<d—1

we see that Iy ¢ I for if Iy € I then since Iy « f we have that Iy € Iy and
so Y hi(z(™) e I\Iy with lower order-degree than that of f. Similarly, the

0<i<d—1
separant sy ¢ I, for if sy € I then sy € Iy and so fo = f — 2s;2(™ e I\Io?,
again contradicting minimality. Since coefficients of the form I ]‘is’; occur in 2.16,
we wish to show that I¢s¢ ¢ I. One way to accomplish this is to show that I is in
fact a prime ideal*. Therefore {I, 1 fsf} D I is a radical differential ideal properly
containing I, so that {I,Ifss} = {g1, -, ge, Iyss} with each g; € I.

Step 3: Divide modulo J(f) and apply radicality. The way we intend to
use the radicality of I is to use the following immediate fact: if I is a radical ideal
and I < I, for some k, then I; < Iy. Given this, our goal is to contain some power
of our maximal counterexample I inside a finitely generated radical ideal and then
show that they are, in fact, equal.

To construct a candidate finitely generated ideal we first reduce every element
of I modulo J(f) using 2.16. Pick g € I. There is some § € R{z} with

r(I7)*(s5)™g = gmod J(f)
with g « f. But since g, f € I, g € I and hence in Iy. Thus
(1) (s5)™g € {To, f};

by multiplying (I7)*(ss)™g by (I;)"*(
ing the radicality of I we have that

Ifog € J(Io,f)
Since g was arbitrary we have that

(Ifo)I o= {Io, f}

sf)tfmgtfl for t = max{k, m, 1} and apply-

But then

IQ = I{IaIfo} < I{gh' v agEaIfsf} < {I'glal’g%'"' 7I'gfaIfoI} = {Ioafagl7"’ 7gZ} cl
But then if g € T then g2 € I? and hence in the finitely-generated radical differential

ideal {Io, g1, " ,9¢}, so that g € {lo, g1, - ,9¢}. Thus I = {Ip, 91, - ,ge} and is

finitely generated, contradicting our original assumption, giving us that I is finitely
generated to start with.

Appendix: the primality of I We claim that I is a prime differential ideal.
Suppose that I is not prime, so that there is some a,b € R with abe I but a,b ¢ I.
Consider the radical differential ideals {I,a} and {I,b}; (note that here we are not
assuming on the outset that these ideals are necessarily properly contained inside

2Marker does not note this, but his argument uses a version of 2.16 that assumes that f is
irreducible. Because I is prime, one may however reduce to this case.

3Here using that R 2 Q

HWe prove the primality of I at the very end of the argument
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R{z}). These ideals properly contain I and so they are finitely generated®. But
then we may write

{I,CL} = {fla"’ afn} and {I>b} = {gla"' ;gm}
with all f]" € J(I,a) and g;.” € J(I,b). In fact, we may write

{I7a} = {fla"' 7f€7a} and {Ivb} = {gla'" 7§k,,b}
with all f;, g;j € I by rewriting the original (f;)™’s in terms of finitely many elements
fi,---, fe and a (and likewise for the g;’s). But then by 2.13

{I,a{1,b} < {ab,{] [ 3 fi}is, {fiai {G;b};} = T

But then if z € I, then 2% € I'n({I,a}{I,b}) and so as {ab, {] | gjfl}”, {fza}“ {g;b};}
is radical, z € {ab, {] | g]fz}ua {fza}u {g;b};}. Thus I = {ab, {[] g]fl}l]’ {fza}u {g]b}]}

and so I would finitely generated, a contradiction. Thus [ is prime.

2.3. Characteristic Sets and the Partial Ritt-Raudenbush. The framework
for differential algebra that we’ve considered corresponds to the study of a certain
class of ordinary differential equations, but can be extended to study algebraic
properties of partial differential equations as well.

Definition 2.17. A partial differential ring (R,A) is a ring R equipped with a
(finite) family A = {0y, ,0,} of commuting R-derivations.’

The analogue of the Ritt-Raudenbush theorem is true in this setting, although
the proof is more involved: to perform an analogue of the reduction step of the ordi-
nary case of Ritt-Raudenbush, we must consider not a single differential polynomial
f of a specific type in the ideal I but rather a finite family C of A-polynomials called
a characteristic set. To define and motivate characteristic sets, we need the concept
of a ranking on the set of “A-variables” (Better name for this?) in the ring of
A-polynomials Ra{x}.

Definition 2.18. Let (R,A) be a partial differential ring with A = {01, 9,}.

The ring of A-polynomials in m variables Ra{xy, -+ ,xn} is the ring
[(afl o) ]
(Zla“' 7671)Ewn7je{1="' am}
with each k; € {1,...,n} equipped with an extension of the elements of A from R

to Raf{x1, - ,zm} given by setting
aj(ake T aklzq) = ajakz T aklxq'
Let Ma = {0z;|0 = 0k, -+ 0Ok, } U {x1, -+ ,xm} be the set of A-variables. A
ranking < on Ma is a well-ordering satisfying two further conditions:
e For all u,v e Ma and 0 = 0, - - Ok,, u < v implies fu < Gv.
e Forallue Ma and 0 = 0, -+ 0, # id, u < Ou.

Remark 2.19. e The proof that Ra{x1,- -+ ,x,,} gives us a well-defined A-
ring is essentially the exact same as the argument that R{z} is a d-ring.

5If either ideal were not a proper ideal then they would still be finitely generated as they are
then the unit ideal.
6Recall that 9; and 0; commute provided 0;(d;r) = 9;(0;r) for all € R.
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e An ordering on M is essentially an ordering on the variables of Ra{x},
thought of as R[0x;]g.,erm, compatible with the application of derivations.

Fixing a ranking < on M we can define, given a A-polynomial f, the auxiliary
A-polynomials of initial and separant as in the ordinary case.

Definition 2.20. Fix a ranking < on Ma and f € Ra{z1, - ,zn}\R. The
variable of highest <-rank, 6x;, is called the leader uy of f.
Writing
f=galug) + -+ grug + go
with each g; € R[0z; |0z; < uy] and gq # 0, we call g4 the initial Iy of f.
Let € A and f € Ra{z1, -+ ,zm}\R. Then

of =0 gi(us)’) = Y agi(us)’) = Y (2gi) (ug)' + igs(ug)' ™" o(uy))
By inspection, d(uy) is the leader of 0(f) by combining the two compatibility con-
ditions necessary of < and the fact that uy is the leader of f. But then we may
write
0f =sy0(ug) +9
where § € R[0x;|0x; < 0(uy)]. The coefficient of 0y, is the separant of f and, by
the above computation, is independent of choice of ¢ and is equal to

d
sp = igi(ug)™!
=1

The notions of ranking and of leaders of differential polynomials give us a way
to measure the complezity of a differential polynomial, allowing us to perform re-
duction and division procedures in an algorithmic fashion.

Definition 2.21. Let f,g € Raf{z1, -,z }\R. We say that f is reduced with
respect to g provided that

e f is partially reduced with respect to g: no term in f contains an instance
of a proper derivative of ug.
o If uy = uy =: u, then deg, (f) < deg,(g)-
Using this notion of reduction we can compare A-polynomials: we define for dif-
ferential polynomials f and g the relation f < g just in case uy < ugy or uy = uq4
and deg,, (f) < deg,, (g9). Write f ~ g if f <gand g < [, ie. if f and g have the
same leading term and degree.

Remark 2.22. The definition of reduction makes no essential use or mention of the
underlying arithmetic of the coeflicient ring R. Because of this, when we prove the
partial case of Ritt-Raudenbush we will have to simultaneously study the arithmetic
of R in conjunction with the bare structure of differential polynomials.

Example 2.23. In Q{z} (equipped with the unique ranking <), x is partially
reduced with respect to 2’ since x contains no proper derivatives of z’, but =’ is not
partially reduced with respect to x.

Now we come to the key technical notion underlying the definition of character-
istic sets, that of an autoreduced set of differential polynomials.

Definition 2.24. A subset A € Ra{z1, - ,Tm} is autoreduced provided that for
all f # ge A, f is reduced with respect to g.
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Example 2.25. If f € Ra{z1, -+ ,2m}\{0} then the singleton {f} is autoreduced;
thus there are always autoreduced sets.
In K{z,y,z} for A = {0}, with monomial ordering

r<y<z<or<ody<oz<--
the set {0%x, 0%y — Ox, dxdydz} is autoreduced.
A useful property of autoreduced sets is that they are necessarily finite:

Proposition 2.26. Let A S Ra{z1, - ,Zm} be a set autoreduced with respect to
some ranking <. Then A is finite.

Proof. We first recast what it means for A to be autoreduced in terms of the
leading monomials u¢. Since being autoreduced demands that for any ordered pair
f,g € Athat f is reduced with respect to g, the condition that uy = u, implies
that deg, (f) < deg,,(g) cannot ever hold and so for all f # g € A, uy # u,.
Thus, if we show that only finitely many leading terms uy occur in A then we will
have shown that A is finite. Moreover, the condition that no term of f contains an
instance of some proper derivative u, implies that uy is not some proper derivative
of ug (in fact, uy contains a proper derivative of uy if and only if it is a proper
derivative of ).

Moreover, if A is infinite then within A there is an infinite subset A, < A such
that for all f € A, the variable of uy is x, and certainly A, is autoreduced.

With these observations in mind we can translate this problem to a combinatorial
problem. Since each leading term uy for f € A, can be rewritten uniquely as
o4 0%z, and the statement that u; = 0i'---0%x is a proper derivative of
Ug = 8’f1 -+ 0kn i is equivalent to saying that (ki,--- ,k,) < (€1,--- ,£,) where <
is the partial order given by

(k1, - kn) < (b1, by) <= k; <{; for i < n.
If A, were an infinite autoreduced set, then the set
{(br,-+ ,€,) eN"| (3f € Ay)up = 0y - 0br )

must form an infinite antichain with respect to the pointwise partial ordering < on
N™. Thus we reduce the problem to the following claim: the pointwise order on
N™ has no infinite antichains. To do this it suffices to show that given an infinite
X < N” there is exist a comparable pair of tuples (z1,...,z,), (y1, - ,yn) € X.
We prove this by induction on n:

e (n=1) Nis a linear order, so this is automatically satisfied.

e (n+1) Suppose that the result holds for N* and that X < N"*1 is an infinite
set. Consider the projection 7 : X — N which maps (z1, - ,Zp41) —
Zn+1. Then one of two things can happen: either 7(X) contains an element
m with infinite fiber or every fiber 7=1(m) is finite and «(S) is infinite.

Suppose that 7(X) contains an element m with infinite fiber, consisting

of elements of the form (x1,--- ,2,,m). The set

{(xla e 7xn) | (xlv e 7:En7m) € ﬂ-_l(m)} c N*
is infinite and thus contains a comparable pair (w1, ,uy) < (1, ,Vy).
But then (u,- - ,un,m) < (v1, -+ ,v,,m) is a comparable pair in S, as

desired.
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Conversely, suppose that every element m € N has 7—1(m) finite. Then
m(X) is necessarily infinite and so there exists an ascending sequence m; <
mg < ---. By the proof of the infinite fiber case above, we may assume that
for all j < n + 1 we have an infinite ascending chain in each coordinate:
consider the coordinate projections p; : N*** — N. Then p;(X) < N is
an infinite linearly ordered set. Pick for each m € p;(X) a tuple T,, with
01(T) = m and set

X1 = (@ | m e p1 (X))

Now, the image p2(X7) is infinite by assumption as X; € X and no fiber of
any number under any projection is infinite by assumption. Constructing
sets Xo, -+, X411 in the following way yields at the end an infinite set
X, 41 of comparable elements under < since, by construction, at stage ¢ we
ensured that the projection X, — N’ dropping the last n+ 1—¢ coordinates
consists only of comparable elements.

O

Remark 2.27. In the analogous case of several noncommuting derivations, autore-
duced sets need not be finite. For instance, in the case of the free noncommuting
derivations A = {0,0} on Qa{z} we have that the set {06"x},e, is infinite and
autoreduced. One way to account for this is the existence of infinite antichains in
the tree 2<% >~ {6, 0} <, where each sequence s € {0,6}<% can be thought of as a
term in MAa.

The proposition also fails in the case of admitting infinitely many variables:
consider the ring K{(z;);e,} with A = {0} and ordering the monomials in any way.
Then the set A = {(2;)iew} is autoreduced but infinite.

Autoreduced sets give admit a convenient division algorithm similar to that of
dividing by a single differential polynomial.

Proposition 2.28. Let A = {a1 < -+ ,ai} be an autoreduced set with respect to
an ordering < and f € Ra{x1, - ,x,}. Then there exists an f € Ra{x1, -+ ,x,}

k -
o <H Iﬁisé@) f = fmod J(A) for some tuple (€1,t1,--- , Ly, tr) € N** and
g=1

reR,
° f reduced with respect to all elements of A,

e f<f
We callf a remainder of f and say that f reduces to f via A, written f — 4 f7.

Proof. The process is very similar to that for dividing by a single differential poly-
nomial. If f is already reduced with respect to all elements in A, then taking f = f
satisfies the conclusions of the proposition.

Suppose that f is not reduced with respect to all elements in A. If f is not
reduced with respect to A, we first ensure that f is partially reduced with respect
to A. We’ve ordered A by the differential polynomial ordering <. By applying the

“a priori f may reduce to many f with respect to A depending on how one performed a
reduction procedure. This is fine for us.
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single differential polynomial division algorithm® to divide f by a; we may find a
differential polynomial fj such that f is reduced with respect to a; and

I5is f = frmodJ(A)°

Note that if f is already reduced with respect to ax then fr = f. Repeating this
process to fi, then f;_1, all the way through f; and noting that by construction f;
is reduced with respect to all a,, for m > j by construction, after a finite number
of steps we will find an f := f1 which is reduced with respect to all elements of A,
obtained only by multiplying f by powers of I, and s, for a € A. O

‘We now define a partial ordering between autoreduced sets; the minimal elements
in this partial ordering will be our characteristic sets.

Definition 2.29. Given two autoreduced sets A = {a1,--- ,a,}and B = {by, -+ , by}
with a; < -+ < a, and by < --- < b,'0 we write A < B if either:

e There is some 1 <7 <nsothat forall 1 <j<i—1,a; ~b; but a; <b;
e m <n and for all j <m, a; ~ b;.

Remark 2.30. In this partial ordering, for all autoreduced sets A we have that
A< @.

As Tracey McGrail says in [7], “the order is lexicographic in nature, but ’humane’
comes before ’human.””

Corollary 2.31. Let Ay > Ay > -+ be a descending chain of autoreduced sets.
Then the chain eventually stabilizes; that is, there exists an n such that for all
m>n, A, = A,..

Proof. Suppose that the chain A; > Az > --- does not stabilize. Then by the
definition of < we have a descending chain of

ay > agy1 > -

where a; 1 € A; is the first element. But this is an infinite descending chain in Nrtl
(counting degree), which is therefore finite and stabilizes: the <-class of a; ; is the
same for all sufficiently large j > 0. Now, amongst those A; with a4 ; stabilized, we
may compare the second elements as ;, which must stabilize as well. Proceeding in
this fashion, we find that for all n we have a differential monomial @, in all A, for
all ¢ sufficiently large. Picking a representative a; from some A, of the stabilized
class of the j' elements, this yields for all n the autoreduced set {a;}j<n. But
as being reduced is a property of pairs of pairs, we must have that {f;};c. is an
infinite autoreduced set. By 2.26, such sets do not exist and so A; > Ay > ---
must stabilize. |

Definition 2.32. Let I € Ra{x1, - ,2,} be a A-ideal. A characteristic set for I
is a <-minimal autoreduced subset of A-polynomials in I.

8We did not consider the multivariate case in our original account of it, but the proof works
word-for-word for a choice of a differential ranking on the variables of R{z1, -,z } in the ordinary
case

Isince J({a;}) S J(A).

LOnote that, as argued above, the case uy = ugy with f # g does not occur for autoreduced sets
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Note that for any differential ideal I (or, really, any ideal) characteristic sets
exist. The two crucial properties we need for proving the Ritt-Raudenbush theorem
are their finiteness and their minimality; their minimality allows us to control the
reduction process in much the same way that we were able to control the reduction
process in the proof of the ordinary case of Ritt-Raudenbush. The main lemma is
this:

Lemma 2.33. Let I € Ra{xz1, - Tm} be a differential ideal and C a characteristic
set for I. If f € I is with respect to C then f € I n R. Moreover, s.,1. ¢ I for all
ceC.

In the special case when R = K is a field, if f € I is reduced with respect to C
then fe I n K = {0}.

Proof. Suppose that f e I with f ¢ I n R is reduced with respect to C. Let

¢ = feeCle< fluif)

Then C; is autoreduced and C; < C by definition of C;. But this violates the
minimality of C amongst autoreduced subsets of I, and so f must have been in
InR.

Now suppose that either I. or s. were in I. If I, € I for some ¢ € C then since
I. « ¢ we can form the new autoreduced set C' = {ge€ C|g < ¢} u {¢ — I.u.} where
U, is the leader of ¢. But then €’ < C, contradicting minimality.

Likewise, if s. € I then set

1
C’:{g€C|g<c}u{c—Escuc}

where d = deg, (c) would also satisfy C’ < C strictly, again contradicting the
assumption that C is a characteristic set. ([l

This reduction algorithm can actually be used to characterize which autoreduced
sets are characteristic sets:

Proposition 2.34. An autoreduced set A is a characteristic set for a differential
ideal I if and only if for oll f € I, f reduces to some element in I N R with respect

to A.

Proof. The above argument yields the left-to-right direction.

For the other direction, suppose that A is autoreduced and for all f € I, f reduces
to some element of I N R with respect to .A. Then no matter which f € I\ A, we
have that

A< Ay ={aecAla< flu{f}=A{a, .. an f}
since “humane comes before human:” as f is reduced with respect to A we have
that a1 ~ f. O

Example 2.35. Consider the case of Q{x, y} with a single derivation and monomial
ordering given by x < y < dx < dy < ---, and the ideal I = J(0%z + y, 0%y + ).
Then [ is a prime differential ideal since it is linear, and the set A = {0?2+y, 0*y+x}
is autoreduced. Since every element of I reduces to 0.

This process can be generalized: note that in the above example that J(A) = I.
If I ¢ Ka{xy,...,z,} is a differential ideal such that I = J(f1,...,f,) with
each fy,...,f, having unit initial and separant then a characteristic set is just
any autoreduced generating set for I by the above criterion. Since the theoretical
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interest in characteristic sets arises in radical differential ideals, which may or may
not be finitely generated as differential ideals, the assumption that I = J(f1,..., fn)
is a very special one to make. In the case of finitely generated linear differential
ideals like the one above, which are always prime, characteristic sets can be found
by repeatedly reducing the elements of a given generating set with respect to each
other, which must terminate.

Theorem 2.36. Suppose that (R, A) is a commutative Ritt-Noetherian ring con-
taining Q. Then so is Ra{z1, -+ ,xn}.

Proof. Suppose that (R,A) is a commutative Ritt-Noetherian ring containing Q.
We need to show that every radical differential ideal I € Ra{x1,- -+ ,xy} is finitely
generated.

Step 1: Find a maximal counterexample. We wish to show the existence of
a radical differential ideal maximal amongst those that are not finitely generated.
The proof is word-for-word the same as the one given in the proof of 2.10.

Step 2: Find and use a characteristic set for I. By 2.31 we may extract
from I a characteristic set C. Now we have that for all c € C, I.,s. ¢ I by 2.33.
By primality of I, this implies that [] I.s. ¢ I. This product makes sense as C,

ceC
being autoreduced, is finite by 2.26. Thus {I, [ ] I.s.} is a finitely generated radical
ceC
differential ideal, which we may write as

{Ivnjcsc} = {917 cot ,gm7HICSc}

ceC ceC

Now let f € I. By applying the division algorithm 2.28 to f we find an f such
that f is reduced with respect to C and

r <Hffcsgc> f—-fedJCInR CI
ceC
But then f € I and is reduced with respect to C and therefore by 2.33 f eI n R
Therefore
r (H Ichfgc> feJCInRCI
ceC
and so by multiplying by appropriate powers of f, I., and s. for ¢ € C we can

conclude that
T (HICSC> fe{C,InR}c1I

ceC
Since f € I was arbitrary we have that

{<chsc> I} < {C,In R}

ceC

so that
r < [{I,Hffﬂsgc} = {IHIfC$§”7Ig1,-~- 7Igm} < {C,I NR,gi,-- 7gm} eI

ceC ceC

Uy proofs of the Ritt-Raudenbush theorem in the case of differential polynomial rings over
fields, this step is usually omitted: in that case 2.33 yields that f is 0. Since we are not assuming
that R is a field, we must take care to ensure that the arithmetic of R is accounted for in the
proof.
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Since I n R < R is a radical differential ideal, it is finitely generated by the assump-
tion of Ritt-noetherianity for R. But then by radicality of {C, g1, -+ ,gm}, entails
that I ={C,r1, - ,7k, 91, -+ ,gm} is finitely generated.

Appendix: The primality of I. Same proof as in the proof of 2.10. (]

2.4. Basic Differential Algebraic Geometry: Properties of the Kolchin
Topology. To study the geometric properties of algebraic differential equations
we define an analogue of the Zariski topology for algebraic varieties— called the
Kolchin topology— that shares many of the same fundamental properties as the
Zariski topology. Our focus will be primarily on fields equipped with many com-
muting derivations.

Definition 2.37. Let (K, A) be a differential field. A subset X < K™ is said to be
Kolchin closed provided X is the zero set of finitely many elements Ka{x1,...,2n};
namely,

X:Z(fl,...,fm):{xeK"| A fi(x):O}

1<is<m

A priori this particular set of subsets of K™ may not form a topology since it
only mentions zero sets of finite collections of differential polynomials.

Proposition 2.38. The set of Kolchin closed subsets of K™ forms a topology on
K",

Proof. To verify that the Kolchin closed subsets of K™ form a topology, we need
to check that @ and K™ are both Kolchin closed and that the family of closed sets
is closed under finite unions and arbitrary intersections. Clearly Z(0) = K™ and
Z(1) = & and so both are Kolchin closed.

To prove the more nontrivial properties, note that it suffices to show that the
union of any two Kolchin closed sets is Kolchin closed. Given X = Z(f1,..., fm)
and Y = Z(g1,...,9¢), I claim that

Xoy=2 <{figj}i<m,j<e>

We first show that X uY < Z ({figj} z)' If ze X UY then either z € X =
i<m,j<

Z(f1,---sfm)orx €Y = Z(g1,...,9¢), so that either f;(x) = 0 for all i < m or
g;j(xz) =0 for all j < £. In either case, f;g;j(z) =0 for all i <m and j < £.
Conversely, if z ¢ X UY then there is some iy and jo such that f;,(z) # 0 and

gjo(x) # 0. Since K is a field, f;,g;,(x) # 0 and so z ¢ Z ({figj}

Finally, we wish to show that the intersection of an arbitrary family of Kolchin
closed sets is Kolchin closed. To do so, suppose that X; = Z(F;) is Kolchin-closed
with F; a finite family of elements of Ka{x1,...,2,}. To prove the results, we
define the locus of a differential ideal I as follows:

Z(I)={xe K"|f(z)=0forall fel}

Note that since K is a field, Z(I) = Z(+/I) and, moreover, for an arbitrary set of
differential polynomials F, Z(F) = Z({F}). Finally,

NzF) -2z (Jx)

i<m,j </t
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so that

NzF) =2(UF) =2({UFR}) = 21 .om)
for some finite list of g1,...,9m € Ka{x1,...,2,} since every radical differential
ideal is finitely generated. ([

Moreover, the proof that the Zariski topology is closed under intersection imme-
diately implies that the Zariski topology is Noetherian: since

ﬂZGQ:ZQJE):Z@uuym

with each g; € Fy; for some function d : N — N we have that an arbitrary
intersection of closed sets is equal to an intersection of finitely many of them. Thus

Proposition 2.39. The Kolchin topology on K™ is Noetherian.

Ritt-Noetherianity moreover implies an analogue of primary decomposition which
allows us to talk about irreducible components in the context of the Kolchin topol-

ogy

Proposition 2.40. Let R be a Ritt-Noetherian ring. Then any non-unit radical
differential ideal I is the intersection of a finite set of prime differential ideals.
Moreover, the set of prime differential ideals occurring in any such decomposition
1s unique provided the decomposition is irredundant in the sense that if P is the set
of primes then (P = I but for all P’ = P proper then (P # I.

Proof. Suppose otherwise, so that there exists an ideal I maximal amongst those
that are not expressible as the intersection of a finite number of prime ideals. To
apply Zorn’s lemma to show that there is such a maximal element, let {I,}q,<x be
a chain. By Ritt-Noetherianity, there are no infinite chains of radical differential
ideals and so the maximal element of the chain is an upper bound amongst those
radical differential ideals that are not the intersections of finitely many prime ideals.

By construction, I itself is not prime, so that there is some r = ab € I with
a,b ¢ I. But then {I,a} and {I,b} contain I properly and so are themselves the
intersection of finitely many prime differential ideals, provided that they are non-
unit ideals. To see this, suppose that {I,a} = (1). Then J(I,a) = 1 since 1™ =1
for all m. Then we may write

l=c+ ngﬂ(a)
0

so that by multiplying by b we obtain
b=ch+ Zrﬁ(a)b
0

I now claim that since I is radical, for all § = 07" --- 07" we have that b6(a) € I.
It suffices to show that this is the case for 8 = 0 for some 0 € A. Indeed, since I is
a radical differential ideal

d(ab) = ad(b) + bd(a) € I
and so
abd(b) + b*0(a) e I
but then since ab € I we have that, by subtracting abd(b) and then multiplying by
d(a)
b*o(a)? el
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so that by radicality
bo(a) e I

as desired.
But

{I,a}{I,b} < {I* Ia,Ib,ab} < I
and if c € {I,a} n {I,b} then c¢* € I by above, so that c € I by radicality. Hence
{I,a} n{I,b} =1

is the intersection of finitely many prime ideals.
Now, for uniqueness, suppose that

=r=¢

for irredundant families of prime differential ideals P and Q. We first claim that for
all ¢ € Q there exists a p € P such that ¢ 2 p. Suppose otherwise; if ¢ contains none

of the p € P then we may find a, € p\q for all pe P. Then [[a,e P =1cgq
peP
but none of the a, € g, contradicting primality of ¢, proving the result. Likewise

for every p € P there is a ¢ € Q such that p o ¢. Similarly, every p € P is contained
in some q € Q.

We go by induction on the size of Q. The case that |Q| = 1 is trivial. Suppose
|Q| = 1. Pick ¢ € Q and find p < ¢ inside P. Then either p =qorp #q. If p=g¢g
then applying induction to Q\{¢} and P\{p} finishes the job. If p # ¢ then by the
above argument we may find some ¢’ € Q such that p > ¢’. But then

=y =y

so that ¢ D ¢’ properly, contradicting the irredundancy of ¢. Thus the induction
goes through and P = Q. (]

Remark 2.41. The natural notion of Noetherian dimension is not as well-behaved
in the context of differential algebraic geometry as it is in usual algebraic geometry.
Recall that a closed set X in a Noetherian space has dimension defined as follows:

dim(X) = sup{n|3X = Xy o X5 o --- D X,, with each X,, closed irreducible }

Now note that in the case of Kolchin-closed sets the supremum may not exist in
N. For instance, we have an ascending chain {X;} with each X; = Z(d*(z) = 0)
which is properly ascending over a sufficiently rich differential field K (such as a
differentially closed field, which will be discussed shortly). Then for each n we have
the chain

K=XyoX,>5X, 122 X;=2Z(0(zx) =0)
Later on we will discuss some notions of dimension that are amenable to studying

differential algebraic geometry.

Primary decomposition gives some insight into the structure of maximal differ-
ential ideals:

Proposition 2.42. Let R be a Ritt-Noetherian ring and I < R a maximal proper
differential ideal. Then I is prime.
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Proof. Since I is proper, v/I is also proper as 1 ¢ I means that 1™ ¢ I for all n € w.
Then I < /T and so, by maximality, I = v/I. But then I is a radical differential
ideal and so I = (| P; for some prime differential ideals P; by primary decomposi-
tion. But then I = P; for one (any) of the P;’s occuring in the decomposition, so
that I is prime. O

Remark 2.43. While every maximal differential ideal is a prime ideal, it is not the
case that every maximal differential ideal is a mazimal ideal. For example, consider
the ring R = C[z, y] equipped with the derivation that is trivial on C and satisfying
d(z) = x and d(y) = —y. Then the prime ideal I = {xy — 1) is a differential ideal
as
O(xy —1) = d(x)y + 0(y)x = 2y —yx = 0.

Since I is a curve and C is algebraically closed, the only prime ideals properly
containing I are maximal ideals of the form mq, = {z — a,y — b) with a,b € C such
that ab = 1. In particular, a,b # 0. Now, the ideals m, ; are not differential ideals:
if they were, then 0(z — a) = x so that

a=(x—a)—0(x—a)emgp

so that mg, = (1), which is clearly false.

Since [ is a prime differential ideal and the only prime ideals containing it are
maximal, non-differential ideals, I is a maximal differential ideal which is not a
maximal ideal.

2.5. Differentially Closed Fields. At this point we introduce the fields that play
an analogous role to algebraically closed fields in the context of studying differential
equations: differentially closed fields. For simplicity we give only the definitions for
the single-derivation case:

Definition 2.44. A differentially closed field (F,0) is an differentially closed field,
i.e. if for every finite system of equations and inequations involving differential
polynomials in F{zy,...,2,} for some m with a solution in some L > F then
there exists a solution in F', i.e. if F' is an existentially closed differential field.

A differential field (K, ) is a model of DCF provided that for any nonconstant
differential polynomials f, g € K{x} with ord(g) < ord(f) there is some x € K such
that f(z) =0 and g(x) # 0.

The above axiomatization of DCF( can be easily translated into the first-order
language of differential rings

Lé’—rings = {Oa 17 =+, Xva}~

We will show that models of DCF are differentially closed. The following propo-
sition implies the converse: that differentially closed fields model DCFy.

Proposition 2.45. Let (K, ) be a differential field. Then there exists a (K,0) 2
(K, d) modeling DCFy.

Proof. Suppose that f € K{z} and ord(g) < ord(f). Then there is an irreducible
factor f of f which has order ord(f). As f is irreducible, the division algorithm
guarantees that g ¢ J(f). But then setting K’ = Frac(K{z}/J(f)) yields a field
such that the image of = under the canonical projection satisfies f(xz) = 0 but
g(x) # 0.
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To construct a differentially closed field using this procedure, first enumerate the
set of pairs

{(f,9) ] ord(g) < ord(f) and there is no z € K with f(z) = 0 and g(z) # 0}

This set has size < |K|. Sequentially construct differential field extensions adding
points witnessing differential closure as above. The new field K7 obtained this way
may not be differentially closed; but repeating this process to construct Ko, K3,
and so on yields an ascending chain

KCK1CK2C~'~

such that each pair (f,g) in K; with no = € K; witnessing f(z) = 0 and g(x) # 0
has such a witness in K;, 1. Thus the field K= |J K is differentially closed. By this
construction, we see that we can take |K| = | K| since it is obtained by adding only
| K|-many points at each stage and that there are only countably many stages. O

We now prove that DCFy admits elimination of quantifiers in this language:
Theorem 2.46. DCFy eliminates quantifiers in the language Lo—rings-

Proof. We use a standard model-theoretical test for quantifier-elimination proven
in the appendix (A.1): if for any K, L = DCF, with k ¢ K, L a differential field
and @ € k™ and ¢(v,w) a quantifier free formula in Ls_ings with K |= ¢(a,b) then
L = Jwé(a,w).

Replacing K, L with sufficiently saturated elementarily equivalent models and
that k£ = dcl(@). We simply need to show that k(b), = k{V'), for some V' € L so
that L = ¢(a,l’). We argue this as follows:

Let K, L = DCFy be sufficiently saturated and suppose that k ¢ K, [ < L are
small isomorphic J-fields, isomorphic via ¢. Then for all a € K there is b € L such
that o extends to an isomorphism

G:k{ay, = 1{b),.

We break into two cases: if a is satisfies a nontrivial differential polynomial over
k or not'2. If a is differentially transcendental then by w-saturation we may find a
realization of o4 (tp(a/k)) = p € S(l) inside L, so that k{a), = [{b),.

If a is differential algebraic over k then let f be a minimal polynomial of I5(a/k).
Let g = 04(f) € i{z}. Then the partial type

{g(x) =0} U {h(x) # 0| h(z) € {z} and h < g}.

This type is finitely satisfiable, and so it is satisfiable and by saturation we find a
realization b of it in L. But then

k{ay, = k{x}/To(a/k) = U{x}/Io(b/1) = 1{b), .

Thus, in either case we may extend the isomorphism and so we have quantifier
elimination. O

Quantifier elimination immediately implies the following characterization of de-
finable sets in DCFy.

121f ¢ does satisfy a nontrivial differential polynomial over k then we say it’s differentially
algebraic over k; otherwise we say that a is differentially transcendental over k
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Proposition 2.47. Every formula in Lo_rings 15 equivalent modulo DCFy to a
formula of the form

\ [ I\ Fi(@) =0 A gi(0) £ 01 .
o<ism LI<j<sn,

Proof. Quantifier elimination immediately tells us that every formula is equivalent

to one of the form
V l N fi@=0r N\ 9@ #0] .

o<i<m [ 1<j<n; 1<k<t;

But since A gri(D) # 0 is equivalent to [ gr; # 0 since we're in a field, we

can set g; = [] gri to yield the desired result. [

This characterization allows us to classify and count the types in DCF.

Proposition 2.48. Given a type p € S, (k), let

[P = {f € k{ajlw .. axn} | “f(f) =0 €p}
The map p — I, is a bijection from S, (k) to the set of prime differential ideals
over k{x1,...,xn}.

Proof. The map is clearly well-defined, and I, is prime since for all f, g if fg(z) =
0 € p then either f(z) = 0¢€ p or g(z) = 0 € p since p is a complete type. Thus we
need to show that it is both injective and surjective.

For injectivity, suppose that p # g € S, (k). Then there is a formula ¢(z,a) € p\q
equivalent to a formula of the form

\/ /\ flj(@)ZOAgl(@)S’&O
o<ism L1<j<n;

with f;; and g¢; all in k{z1,...,z,}. But then ¢(z,a) € piff fi; € I, and g; ¢ I, for
all 4,j. Since p # ¢, this means that either some f;; ¢ I, or some g; € Iy; in either
case I, # I,.

For surjectivity, let I be a prime differential ideal, so that k{z1,...,z,}/I is a
differential domain. Then Frac(k{z1,...,x,}/I) is a field and tp(z/k) — I under
the above function. Hence p — I, is surjective. ([l

Corollary 2.49. Over any base field k, |S, (k)| = |k| and so DCFy is w-stable and,
in particular, totally transcendental.

Proof. Over any differential field K, there are at most |[K<“| = | K| prime differ-
ential ideals in K by the Ritt-Raudenbush theorem. Thus there are at most |K]|
types, so that DCFy is w-stable. O

Using quantifier elimination we can prove that models of DCF are differentially
closed as well as the differential analogue of the Nullstellensatz:

Theorem 2.50. (1) (Models of DCFq are existentially closed) Let k be a 0-
field and ¥ a finite collection of equations and inequations over k with a
solution in some differential field | © k, then X has a solution in any K D k

with K |= DCF,.
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(2) (Algebra-geometry correspondence)Let K |= DCFq and ¥ < K{z1,...,z,}
and V < K". Set

V(E) ={ze K"[(VfeX)f(x) =0}

and
I(V)={fe K{xy,...,2n,} | Vz e V)f(z) =0
Then
I(V(%)) = {%}
Proof. (1) Suppose that there is a solution to ¥ in some extension ! D k. Then

[ is contained inside a differentially closed Z, and any point in [ solving X
remains a solution to X in [. But then by quantifier elimination, there being
a solution to X is equivalent to a quantifier-free sentence ¢s. over k, so that

[ ¢s «— I ¢n < k| ¢s
But then if K D k is any differentially closed field,

klEo¢s —= Kk o¢s

so that K has a solution of X.

(2) Note first of all that {¥} < I(V(X)) since I(V (X)) contains ¥ and is a
radical differential ideal as K is a field so that if f(z) = 0 for all z € V(¥)
then f(z) = 0.

Conversely we show that I(V (X)) = {X}. Suppose that I(V (X)) # {X}.
Since {£} < I(V(X)) this means that there is some g € I(V(X))\{Z}. But
then g ¢ {¥} and so by the decomposition theorem we may find a prime
ideal P o {X} with g ¢ P. Then the field Frac(Ka{z1,...,z,}/P) D K has
a point z € V(X) such that g ¢ I5(z/k), as does its differential closure. But
then by the above argument there must be such a point in K, contradicting
the assumption that g € I(V(X)).

O

While we showed above that any differential field F' is contained inside some dif-
ferentially closed field, DCF( being w-stable actually gives us much more: there is a
unique-up-to-differential-isomorphism differentially closed F > F with the property
that if L = DCF, contains F' then E embeds into L.

Corollary 2.51. Let (F,J) be a differential field. Then there exists a differential
field F, unique up to differential field isomorphism, such that if K = DCFy and
contains F, then there is an embedding F' — K.

Proof. By w-stability of DCFy (2.49) and the results on existence (A.5) and unique-
ness (A.6) of prime models for w-stable theories in the appendix on model theory
we have prime models F' = DCFy for any differential field F.

Note that by quantifier elimination (2.46) if K = DCF( then any differential
field embedding F— K isan elementary embedding. O

Remark 2.52. We note here that we can give an a priori non-first-order axiom-
atization of what it means for a differential field with m commuting derivations to
be differentially closed:
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A A-field (F, A) is differentially closed provided every finite system of differential
polynomial equations and inequations in Fa{xi,...,x,} for any m that has a
solution in some L D F' has a solution in F.

It turns out that there is a first-order axiomatization for this theory, but we will
not discuss it here.

A crucial fact that we will use when we come to differential Galois theory is the
precise relationship between the fields of constants of F' and F.

Proposition 2.53. Let F' be a differential field and Fits differential closure. Then

_ alg.
Cp=0CF

Proof. First note that C'z > C;,lg since every order-zero (i.e. algebraic) differential
polynomial over C'r has a solution inside C'z.

We now wish to show that Cp < C’%lg , which means that we need to show that
every a € C is algebraic over F. It suffices to show that trdeg(F5 (a)) = 0. Since
da = 0, trdegp(Fs (a)) < 1. Moreover, since a € F, its type tp(a/F) is isolated by
a quantifier free formula ¢ of the form

/\fi(x)zo/\g;ﬁo.

If trdeg(a/F) = 1 then, since C is a pure algebraically closed field it is strongly
minimal ¢ is of the form

o(z)=0Ag(z)#0
for g € F[x] a polynomial. But this cannot be an isolating formula since there exists
a € Cp satisfying this formula. Thus trdeg(a/F) = 0 and so a € C%9. O

Similarly, every element of Fis differentially algebraic over F":

Proposition 2.54. Leta € F. Thena satisfies a nontrivial differential polynomial
f e F{z}\{0}.

Proof. Suppose a satisfies no nonzero differential polynomial f € F{z}\{0}. Since
tp(a/F) is isolated and a, we may pick an isolating formula ¢ of the form f(z) # 0.
Suppose that f is of order n; then inside F' there is a solution b to

"t (z) =0 f(x) #0
so that a # b. But then tp(a/F) is not isolated by ¢, a contradiction. O

Finally, we end this section by showing that the class of definable sets in DCFy
represents quotients. In other words, that DCF( eliminates imaginaries.

Proposition 2.55. Let T be a theory that has at least two constant symbols and
eliminates imaginaries. Then for all definable equivalence relations E on M™ there
exists a definable function fg: M™ — M™ such that

T (zBy < fu(x) = fe(y))

Remark 2.56. Note that if T eliminates imaginaries then, given a definable set X
and equivalence relation on X we may identify the quotient X/FE with the image
fe(X), which is another definable set.

Theorem 2.57. DCF( eliminates imaginaries.
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Proof. The proof of the theorem is in three steps:
Step 1: Reduce to coding conjugacy classes of differential ideals. First
of all note that every definable equivalence relation E is of the following form:

Ey(y,2) < Vo (d(z,2) < d(z,y)) .

and that, for all ¢(z,y), E, is an equivalence relation'®. Then an automorphism
of a model K = DCF fixes ¢(z,a) if and only if it fixes the Ey4-class of a. Let
P1,-..,Ppn be the finitely many types over U of maximal Morley rank containing
E4(y, a) and partition them into their G-conjugacy classes Py U - - - U Py where G is
the group of global automorphisms fixing F4(y, a) setwise. If we can find for each
conjugacy class P; a finite tuple b; depending on a such that P; is fixed setwise if
and only if b; is fixed pointwise then by compactness we can find formulas 1; such
that b; is the unique element such that

E¢(yva) = /\wj(y7 b])

so that we get a definable map a — b = (by,...,bg).

We reduce to the case of looking at a single conjugacy class of {p1,...,pr}; by
concatenating tuples we get the result that we want. So assume that I, ,..., I, are
conjugate prime differential ideals. Now an automorphism ¢ permutes {p1,...,pr}
if and only if it permutes the corresponding differential prime ideals I, ,...,Ip,.

Our goal is therefore to find a finite tuple b so that the p; are permuted if and only
if b is fixed pointwise.

Step 2: Reduce to the algebraic case. Let I = (1,,. Then I, is a radical
differential ideal, and o fixes I setwise if and only if it permutes I, ,..., I, . By
2.10 we know that that I = {f1,..., fi}, so that there is an m such that each

fgeK[zgj)|1<i<mand1<j<n]=R0

Set Ip = I n Ry. Then o fixes I setwise if and only if o fixes Iy setwise. We now find
a field k ¢ K finitely differentially generated such that I is fixed setwise if and only
if k is fixed pointwise if and only if some choice of finite tuple of generators b for
k is fixed pointwise. We can resort to looking at fields of definition for polynomial
ideals by our reduction to looking at the ideal Iy < Ry.

Step 3: Construct fields of definition. Consider the K vector space Ro/Ip.
Let B be a basis of monomials for this vector space. Then every monomial u € Ry
can be written as u = (3 ay ¢b¢) + go with a, e € K and by € B and g, € Iy. Note
that the a, ¢ are uniquely determined by our choice of B. Then u — (3 ay, ¢bs) is in
Iy and in fact generate Iy since the B are a basis. Let

k= Q<au,f>

Then every element of I has coefficients in k. Moreover this is a finitely generated
field extension since the ideal generated by the a, is finitely generated, so that

kE=Q<a,...,an). O

131f E is a definable equivalence relation defined by ¢(z,y), then Ey4(y, z) holds iff E(y,z)
holds by a very easy computation.
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2.6. Differential Dimension Polynomials. We argue here the polynomial growth
of the transcendence degree of a differential field extension. On the face of it, how-
ever, “growth” has to measure something changing, and a differential field extension
on its own is not something that changes. However, given a differential field exten-
sion K = F (1, ,nn)a) over F, we may write K as the union of the fields

Kyq :=F<9m|1 <i<nand =070 with > ji <q>.
1<k<e
The K, are simply the fields generated by applications of operators in © of order
less than or equal to g to the generators np,---,m,. The differential dimension
polynomial w, /r measures the transcendence degree trdeg K, for ¢ » 0 sufficiently
large.

Theorem 2.58. Let n = {n1,--- ,na} be a finite tuple of elements of some A =
{01,...,0m}-field extending F' and let K = F (n) . Then there ezists a numerical
polynomial w, r such that
(1) For g >0,
trdegp(Ky,q) = wn,r(q)
(2) deg(wy ) < |A] = m

Proof. The proof of the theorem goes by reducing the algebraic problem— counting
the size of a transcendence basis for K, over F'-to a combinatorial problem obtained
by looking at a characteristic set of A-locus loca(n/F).

Step 1: Find dependencies.

Since loca (n/F) is a radical differential ideal of Fa{z1,---,2,} we can extract
from it a characteristic set C,. As

feloca(n/F) < f(n) =0
we have that for all ¢ € Cp, ¢(n) = 0 but that S.(n) # 0 # I.(n). As I.(n) # 0 we
have that u.(n) is algebraic over the field extension
F(On|1<t<nandOn <u,)
and so if v = Qu, then similarly v(n) is algebraic over
F(0n;|1<{<nandbn <v)

by differentiating the polynomial witnessing the algebraicity of u, and using the
fact that I,(n) = S.(n) # 0.
Step 2: Reduce to a combinatorial problem Set

V = {0x; | 0z; # 0'u. for any 0’ and c € C,, with ord(#’) > 1} = {0z, | (Vc € Cy))0x; * u.}

and let V(¢) = {0z; |0z; € V and ord(9) < t}

By construction K, ; is algebraic over Ky := F(v(n)|v € V(t)) and, moreover,
trdegp Ky, = |V (t)| since otherwise we would find some nonzero A-polynomial f
in loca (n/F) such that f(v1(n), - ,vm(n)) = 0 for some enumeration of V(t). Re-
ducing (f(v1,- -+ ,vm))(u) with respect to C yields another polynomial f equivalent
to f(v1,- -+ ,vm,) modulo C and thus identical as functions on Ky;. But then f =0
since it is reduced with respect to C, so that f(vy,---,v,) is the zero function,

contradicting our assumption that it was a nontrivial relation between the v(n)’s
for v e V().
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We put V in correspondence with a subset of {1,...,n} x N™ as follows. Define
a map L from differential variables fz; to {1,...,n} x N™ by mapping
91}1‘ = 6{1 s 0,{,;"331 — (i,fl, . ,fm)

Then let C, — {1,...,n} x N given by mapping ¢ — L(u.) and call its image
L(C,) the lattice of C,. Then L is a bijection between V and L(V') and, moreover,
L(V) is the complement of the set of elements greater than or equal to the elements
of L(C,).

Step 3: Count. It therefore suffices to show that for V< N as above, |V (¢)]
has polynomial growth in ¢t. We construct w, by induction on m and the quantity

|A|

S(Cn) = Z Zni,c

ceCy i=1
where n; . is the order of u. relative to d;. In other words, n; . is the unique natural

n1,¢ M c Nm,c
number such that u, = ;" -+, " -0, x;.

K2 p

If S(Cy,) = 0 then either L(C,) = @ or L(C,) = (0,...,0). If it’s the former case

then
VOl = St o<al= (70"

If it’s the latter case then |V (t)| = 0, so the case S(C,) = 0 is finished.

Suppose now that S(C,) > 0 but that for all n < S(C,) and p < m = |A| we
have the result. If S(C,) > 0 then there is some point (i,¢1,...,%4y) € L(C,) with
not all 4; equal to 0. We may assume that £,, # 0. We partition L(C,) into the
two sets: Lo and L; as follows:

Lo={v=20(i,l1,....0n-1)€{l,...,k} x N""1|(v,0) € L(C,)}

Ly ={(i,01,....4m) | lm # 0 and (i,0q,...,0pn+1) € L(C,) or £y, = 0 and (4,41,...,4m) € L(Cy)}

By induction there is a polynomial wy(t) that is asymptotically equal to the size of
the complement of Ly of size < ¢, while the size of the complement of L, of size
less than ¢ is also asymptotically a polynomial wy (¢ — 1), so that

V()] = wo(t) +wi(t = 1) = wy(t)
is a polynomial. [

Thus, associated to a tuple n = (11, -+ ,7m,) in some A-field extension K/F
we may associate to it a numerical polynomial w,/r. A natural question arises: is
wy/p an invariant of the field extension Fa(n)/F? The answer to this is no, as can
be seen by how taking prolongation sequences affects the behavior of the Kolchin
polynomial.

Definition 2.59. Let = (11, -+ ,m,) € K be an element in a A-field. Fix an
ordering A = {01, ---,0r}. The prolongation of 1, V(n), is the element

V() = (1.01(n), -+, () € KO™,
For ¢ > 1 The ¢*" prolongation of , V¢(n) is defined recursively as follows:

V() = V(v () € KD
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Remark 2.60. The fact that V*1(n) extends V¥(n) can be restated by saying
that applying the natural projection

pf;“ : K(m+1)“1n . K(m+1)2n

given by projecting the first (m + 1)‘n coordinates to V/*! behaves as follows:

P V() = V()
Note that, as sequences, V**1(n) extends V¢(n for all £ € w. The full prolongation
sequence of 7, V*(n) = {VX(n)} e

In this context, we note that the A-field generated by n over F' is precisely the
pure field extension F(V®(n), and that moreover for all £ € w,

Fa(Vi(n)) = F(V*(n))
Thus, if w, /r were an invariant of the A-field generated by 7, then in particular

it would have to satisfy w,/r = wy(y)/r. However, V acts as the shift operator at
the level of Kolchin polynomials.

Proposition 2.61. Let ne K™ with FF < K. Then

wy )/ (1) = wy/p(n +1)
Proof. Restating the definition of the Kolchin dimension-counting function in terms
of prolongations we have that for sufficiently large m that

wy (y/r(m) = trdegp (F(V™(V (1)) = trdegp(F(V™ " (n)) = wyyp(m + 1).
Thus wy (y)/r(M) —wy/p(m+1) =0 for m » 0 and so, as they are univariate poly-
nomials in m we have that wy(;)/7(m) = wy/p(m + 1) on the nose as polynomials
in m. g

This proposition allows us to cook up many examples witnessing the fact that
the Kolchin polynomial is not an invariant of the A-field extension K/F.

Example 2.62. Let F = Q, A = {01}, and let  be a differential transcendental
element. For instance, take K = Frac(Qa{z}) and n = 2. Then

weg(n) =n
but
Wy (zy/0(n) =n+ 1.
Note that if 7 is comprised solely of elements in K“=% or elements in F then
wy/F 18 a constant number and so wy(,))/F = Wy /p-

While the Kolchin polynomial is not a birational invariant of the point 7, it is a
generic property of n in the following sense:

Proposition 2.63. Suppose that n1,1m2 € K™ are such that

IA(m/F) = Ia(n2/F) = p.
Then
Wi /F = Wny/F

Proof. This follows from the proof that w, r is a numerical polynomial; namely,
wy/F can be computed solely in terms of a characteristic set for the ideal p =
Ia(n/F). Thus, if two points 7; and 72 have the same associated differential ideals
over F' then they have the same characteristic sets and therefore the same Kolchin
polynomials. O
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3. DIFFERENTIAL GALOIS THEORY

3.1. Binding Groups and Internality. In this section we give a naive approach
to the construction of model theoretic Galois groups called binding groups in a
similar manner as that developed by Poizat in Stable Groups [9]. Loosely speaking,
Poizat’s approach takes as input two definable sets X and Y, with X internal to Y.
Intuitively, internality is basically a condition that says that Y parametrizes X in a
strong definable way. Using this parametrizing function, one builds up a definable*
group of automorphisms of X fixing Y. This theory allows one to provide a nice,
coherent generalization of Kolchin’s theory of strongly normal extensions and the
associated Galois theory as well as a slick, conceptual proof that the differential
Galois group is an algebraic group.

Definition 3.1. Let T be a theory and let X and Y be definable sets. We say
that X is internal to Y provided there exists a point ¢ € X™ and function u :
X" x Y™ — X such that for all z € X

z = u(,)

for some 5 € Y". Such a w is called an internality function and a choice of ¢ is
called a fundamental system of solutions of X relative to Y via w.

Remark 3.2. e We often represent the data implicit in the statement “X is
internal to Y via u” as a triple (X, Y, u). We call this an internal triple. A
fundamental system for (X,Y,u) is a tuple ¢ € X" such that the function
u(@,y) : Y™ — X is surjective.

e An example of internality that we've already seen is the case of linear
differential equations: In a model of DCFy, a linear differential operator £
of order n in a single variable has a solution space Z(£) which has dimension
n over the constants C. Let ¢ = (¢q,- -+ ,¢,) € K™ be a basis for Z(£). Then
Z(L) is internal to C' via the function u : Z(£)™ x C™ given by

1<ig<n

and taking as our fundamental set of solutions T = ¢.
e Note that, in general, there is no unique choice of u to witness the in-
ternality of X to Y. For instance, in the above case of linear differential

equations we could replace the function w(Z,7) = >, x;y; with the func-
1<ig<n
tion @(Z,y) = Y, 2x,;y; still provides a witness to internality. We will
1<i<n

see later on that the binding groups constructed depend only on
the pair (X,Y); in other words, the choice of u does not affect the
binding group even though the explicit presentation does invoke
U.

Given an internal triple (X,Y,u) and choice of fundamental system ¢ we can
construct the binding group Bind(X,Y, u,¢), which is an explicitly presented inter-
pretable group in 7.

14Really, it’s a group interpretable in Y together with all induced structure
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Construction 3.3. Let T be a (complete) totally transcendental theory MT,
M = T the prime model, and let (X,Y,u) be an internal triple and ¢ e X(M)" a
fundamental system?!®.

Step 1: Find a definable set in natural correspondence with the group
of automorphisms in question. The binding group Bind X, Y, u, ¢ is a definable
group of permutations of X (M) fixing V(M) pointwise, defined as follows. We
first note that given ¢ € X(M)" a fundamental set of solutions for X and o €
Aut(M/Y (M))), o|x is determined uniquely by where o maps ¢, since for all  the
equation

o(2) = o(u(e,7)) = u(o(c),7)
is determined by the fact that o is an automorphism fixing Y (M). Now, the
collection of all fundamental systems ¢ for the internal triple (X, Y, u) is a definable
subset of X™:

Fund(X,Y,u) ={ze X" | (Vze X) Gy e Y")z = u(z,7)} < X"

Within the set Fund(X,Y,u) is the subset tp(¢/@) < Fund(X,Y,u). This type is
isolated by a formula ¢. € £(M).'® Using ¢. we can set up a bijective correspon-
dence
Autx (M/Y (M)) = {o|x ) |0 € Aut(M/Y (M))} = ¢(M)

given by mapping o — 0(¢) € ¢z(M) and Z € ¢z(M) mapping to the unique o €
Aut(M /Y (M)) mapping ¢ to Z. The map ¢z(M) — Autx (M /Y (M)) is well-defined
because prime models are homogeneous Model theory fact; include and because
the and these maps are clearly inverses. This therefore identifies Aut(M /Y (M)) as
a set with a definable set ¢z.

Step 2: Lift the problem from X to Y and use u to define the group
law. We now wish to show that we can endow ¢z with the structure of a definable
group in such a way that Autx (M /Y (M)) = ¢z as groups. This definable group
will be called the binding group Bind(X,Y,u,¢). The approach we take for doing
this is to use the internality function u, together with ¢, to lift the problem to a
problem in Y.

Since elements of Autx (M /Y (M)) are in natural correspondence with elements
of ¢z(M), which is a certain subset of fundamental systems living inside X", we
slightly tweak v in order to obtain another, related, internal triple that allows us
to represent the composition of automorphisms. The function

Y™ x Xt > X"
given by the equation

W15 Yn>T) = (W@, 2), -, u(¥n, @)
is surjective, as is the function iz = 4(—, ) : Y™ — X™.17 With this in mind, the

set ¢z is internal to the subset

Yo =0z (¢e) Y™

15We can find such a ¢ in M because saying that there exists a fundamental system for the
internal triple (X,Y,u) can be straightforwardly expressed as a single first order sentence

16 4 priori this depends on choice of choice of function u witnessing internality as well as the
choice of fundamental system ¢. In the end we will argue that the binding group is independent
of this choice up to definable isomorphism.

n fact, it is surjective for any fundamental system z € Fund(X, Y, u), not just ¢.
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via .18

Thus we may regard ¢z as a set interpretable in the induced structure on Y as
follows:

be(M) = Y/ ~
where
(yla e 7yn) ~c (y/h e 7?21) A ﬂ(gla e 7yn76) = a(?lla T 7?2176)
We may now represent the group law on ¢z by coding a o|x € Autx (M /Y (M)) by

a equivalence class of [(F1, . .., Tm)]~. := [y] € Yz as follows: let [y], [w] € Y. Then

[y] * [w] := the unique [v] such that @([v],¢) = u([y], &([w],€))

The identification Yz/ ~z with Auty (M /Y (M)) via the function

[y] = opy) the unique o|x € Autx (M/Y (M)) such that o(¢) = u([y],¢)

satisfies

T[yl*[w] = 9y] © T[w]
by construction and therefore induces a group structure on Yz isomorphic to that
of Autx (M/Y (M)). We define the binding group of (X,Y,u,¢) to be
Bind(X, Y, u,?) := (Y, %)

equipped with all structure induced by 7°9.

Remark 3.4. e Note that the choice of ¢ and u are immaterial at the level
of classifying Bind(X,Y,u,¢)(M) as an abstract group: no matter what
choice of internality function v and fundamental system ¢ we choose, the
identification of Autx (M /Y (M)) with ¢z goes through and, at the level
of group structure, we have that if (X,Y,u;,¢) and (X,Y, us,¢2) are two
quadruples witnessing the internality of X to Y then the above argument
yields
Bind(X,Y,u1,¢)(M) =~ Autx (M/Y (M)) =~ Bind(X, Y, us,¢) (M)

e In fact, more than being isomorphic as abstract groups, these groups are
definably isomorphic. If (X,Y,u1,¢1) and (X, Y, us2,¢) are as above with
isomorphisms
given by the identification

[y]z, — the unique o such that o(c;) = w;([y]z, )
Then
05" 06y : Bind(X,Y,uy,¢) (M) — Bind(X, Y, ug, ) (M)

is a definable automorphism, mapping

[y1]z; — the unique [y2]z, such that ui([3]e,) = ua([Y2lz,)
which is a definable relation. It is an isomorphism as it is the composition
of two isomorphisms.
e The group Bind(X,Y) is interpretable in the induced structure on Y.

18Again, this set facially depends on the choice of internality function u and fundamental
system ¢.
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So far we’ve constructed a definable group of automorphisms of the prime model
M of T, but what is the significance of the definable group Bind(X,Y") as we move
to other models of T'?

Proposition 3.5. Let T be totally transcendental, (X,Y,u) an internal triple, and
N &= T. Then for all elements a,b € X(N), a and b are conjugate by an element
of Bind(X,Y) if and only if tp(a/Y (N)) = tp(b/Y (N)).

Proof. Suppose that tp(a/Y (N)) = tp(b/Y(N)). Then since a = u(y,¢) for some
class in Y (IV), we have that b = u(y, @) since (3z € Fund(X,Y,u))b = u(y,z) is a
formula in tp(a/Y (N)) = tp(b/Y (N)). But then the automorphism o|x mapping
¢ ¢ exists and is unique, and takes a — b.

On the other hand, suppose that a and b are conjugate via an element of the
group Bind(X,Y,w,¢)(N). Now, over the prime model M of T, tp(¢/Y(M)) is
isolated by ¢z. This exactly says that there are no tuples of V(M) witnessing
da(2) A de(2") A Y(z,9) A (2, y); in other words, for all formulas ¢(z,y) we have
that

T (W € Y) [(6e(2) A 62(2)) — (U(2,9) < 0(=, )]
which means that ¢z isolates the type of ¢ over Y (N) as well. But since any element
of Bind(X, Y, u,¢) preserves ¢z, which isolates the type of ¢, it preserves the types
of any element of X (V) as, over any base X(N) < del(Y(N) u {¢}). O

3.2. Pillay’s X-strongly-normal theory. Using the machinery of binding groups,
Pillay is able to generalize Kolchin’s Galois theory of so-called strongly normal ex-
tensions of differential fields, which themselves generalize the Picard-Vessiot theory
of linear differential equations. Pillay’s definition guarantees that the automor-
phism groups in question have the structure of binding groups and that there is a
Galois correspondence.

Throughout this section we fix a large model U = DCFy that everything we
consider embeds into.

Definition 3.6. Let F be a differential field, X a set definable from parameters in
F in the language of 0-rings, and K a differential field such that FF > K o F. We
say that K is an X -strongly-normal extension of F' provided

(1) X(F) = X(K) for some differential closure K of K.
(2) K is finitely generated over F' as a differential field.
(3) For any embedding o : K — U fixing F,

o(K) = K{(X(U)),

Remark 3.7. e Condition (1) above is the analogue of the algebraically closed
constants and no new constants condition in the Picard-Vessiot theory.
e Condition (2) guarantees that K = dcl(F,a) for some finite tuple a; the
finiteness of this tuple is a technical assumption that will let us move to
the framework of binding groups.

We now show how to go from an X-strongly-normal extension to a binding group,
which has the structure of an interpretable group in the induced structure on X.

Construction 3.8. Given K an X-normal extension of F', we wish to construct
a definable group G with isomorphism 6 : Autx (K<(X(U))/F) — G(U) and that
0(Aut(K/F)) = G(F) under this same identification.
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To do this, we construct a binding group out of information from the X-strongly
normal extension. By assumption, we may pick a tuple a € U such that K =
F{ay =dcl(Fu{a}). Since DCFy(F) is totally transcendental, the type tp(a/F) is
isolated by a formula ¢,. Now, b € ¢,(U) if and only if there is some o € Aut(U/F)
such that o(a) = b by the homogeneity of U. But then o(a) € o(K) € K{(X(U))
and so, given a, b € dcl(F u X(U) u {a}). Thus there is an F-definable function
fo(a,x) such that fy(a,z) = b for some choice of tuple x € X(U)™. Because we
cover ¢, as the ranges of such functions, the compactness theorem allows us to
find a single function u : Xg — ¢, witnessing the internality of ¢, to a subset of
Xo € X™. Let

G := Bind(¢q, Xo)

We now wish to relate G to the automorphism groups in question.
First of all, since F is the prime model of DCF(F), we claim that

G(F) = Auty_ (F/(F U Xo(F))) = Aut(K/F).

The first isomorphism is given by the usual identification of the binding group with
the group of automorphisms of the prime model of a totally transcendental theory
T fixing pointwise the parameters F' and X, (F') with the prime-model-points of
the group. The second identification occurs since an automorphism of K fixing F’
is determined uniquely by the restriction of o to a as K = dcl(F u {a}), and since
any such automorphism must map a to some element o(a) € ¢, that generates K.
We can identify
G(U) = Autx (K (X(U)) /F)
by the homogeneity of U and the property that ¢, isolates the type of a over F.
This construction moreover admits a very general Galois correspondence:

Theorem 3.9. Let K be an X-strongly-normal extension of F with Galois group
G. For L (F c L c K) an intermediate differential field set

G ={ge G| (Vee L)g(c) = c}.
Then

(1) K is an X -strongly-normal extension of L,

(2) Gy is an F-definable subgroup of G and Gy, is the Galois group of K over
L

(3) The assignment L — G, is a bijective correspondence between intermediate
finitely-differentially-generated differential subfields of K containing F and
the F-definable subgroups of G

(4) L is an X -strongly-normal extension of F if and only if Gr, = G is a normal
subgroup.

Proof. (1) We first check that K is an X-strongly-normal extension of L. This
follows straightforwardly from the definition since
e X(F)=X(K)=X(L)=X(L)since Fc Lc Kand F =L =K.
e K is finitely differentially generated over L as

K =Fs{ayc Lp{ayc K

o if o : K — U is an L-embedding then o is also an F-embedding, so
that o(K) < Ka(X(U)).
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Note that in this step of the proof we did not use that L is finitely differ-
entially generated over F'.

We first show that G is an F-definable subgroup of G. Since F < L c
K = Fs(a) with F' = K, we have that L = F. Moreover, L = F5{b)
for some finite tuple b € L. Since b € K, b = h(a) for some F-definable
function h. Let u(—, —) : Fund(K, Xy) x G — K be the function mapping
a fundamental system for K to its image under application by G: u(a, g) =
g(a). Then for g € G,

g9(b) =b < h(a) = g(h(a)) = h(g(a)) = h(u(a,g)) <= (Vce Fund(K, Xo))h(c)

and so G, is an F-definable!® subgroup of G.
We now wish to show that G, is the Galois group of K over L. Let
o€ Autx(Ks(X(U))/L) and let g, = 6(c) € G. Then

h(a) = h(o(a)) = h(g(a))
so that g € G, by the above characterization of G,. Likewise if o € 67(G)
then o € Autx (K, (X (U)) /L) since it stabilizes L and fixes X pointwise.
We now check that F-definable subgroups of G correspond to intermedi-
ate finitely-differentially-generated extensions of F. Let H — G be an
F-definable subgroup and consider the K-definable coset of a under H:

Wh = {g(a)|g € H}
By elimination of imaginaries in DCFy there is a code ¢y for Wy living in
K. Set
LH = Fa <CH> .
As argued above K is an X-strongly-normal extension of L with Galois
group Gru. We claim that

Guu = H.

To see this we show that H < G u# and that Gy » < H.
o If g € H then for all h € H we have that

g9(h(a)) = (gh)(a) e W

so that 07(g)(W) = W and thus 671 (g)(cu) = cu, so that g € Gpu
by construction.
o If g € Gpu then g(W) = W so that g(a) € W. But then g(a) = h(a)
for some h € H, hence g = he H.
This shows that the map H — LY — G is the identity; we now check
that the map L — G — LCr is the identity. Indeed, if L = F5{b) then b
is a code for Gy, so that

La, = Folea,) = Folby =L

so that these maps are mutual inverses.
We finally wish to check that normal F-definable subgroups of G correspond
to intermediate X-normal subextensions L/F of K.

First we check that if H <G then L¥ is X strongly normal over F' Note
that, by assumption, L is finitely generated over F' and that X (F) = X(IA/)7

19The function h may have introduced parameters from F' not present in the original data.

h(u(c, 9))
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so that we need only check the condition that for any o : L7 — U fixing
F,

(L) = (L™M)a (X (U))
Indeed, we know that o(L?) < K;(X(U)) since K is X strongly normal.
Now we wish to show that o(L¥) = (L#),(X (U)). This follows immedi-

ately from normality of H.
O

We can sharpen this result by showing that the hypothesis that L is a finitely
differentially generated subextension of K over F' is redundant:

Proposition 3.10. Suppose that K is an X strongly normal extension of F'. Then
any intermediate differential field F < L < K is also finitely differentially gener-
ated.

Proof. SKETCH: Requires more thorough treatment of the Galois theory
of types and type-definable Galois groups The above Galois correspondence
goes through verbatim for type-definable subgroups of G and (a priori) infinitely
differentially generated subextensions L. But the descending chain condition on
differential algebraic groups would yield for any infinitely differentially generated
subextensions L an F-definable group G, whose code is a finite tuple which also
generates L. ]

3.3. Galois Theory of Linear Differential Equations. The theory of binding
groups and X strongly normal extensions outlined above has conceptual elegance
and give a very general and widely applicable account of Galois theory. In this
section, however, we study the classical Picard-Vessiot theory of linear differential
equations which Kolchin’s strongly normal and Pillay’s X strongly normal theories
generalize. We first review some of the basic theory of ordinary linear differential
equations and then reconstruct the Picard-Vessiot approach to Galois theory using
the model-theoretical machinery that we have developed.

Definition 3.11. Fix (F,0) an ordinary differential field. A linear differential
operator of order n over F is a differential polynomial £ € F{x} of the form

n—1
L(z) = 2™ + Z az®
i=0

A homogeneous linear differential equation of order n over F' is an equation of
the form

L(x)=0

for £ an order n linear differential operator.

Our goal is to understand, over various differential field extensions K > F', the
structure of the space of solutions Z(L)(K) < K. We first establish that Z(L)
admits a natural Cg vector space structure and that its dimension is bounded
above by ord(L).

Proposition 3.12. Let L be a linear differential operator over F and K > F. Then
(Z(L),+) forms an additive subgroup of K which is a vector space of dimension

< ord(L).
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The typical proof of the dimension bound of this proposition uses the notion of
the wronskian of a tuple of elements in K.

Definition 3.13. Let x1,...,2, € K. The wronskian w(x1,...,2,) of this collec-
tion of elements is the determinant of the matrix

(7
Wr(xy,...,¢n) = (951 4 ‘
1<i<n;0<j<n—1

The wronskian gives a way of measuring linear independence over the constants.

Proposition 3.14. Let xq,...,z, € K. Then w(z1,...,z,) = 0 if and only if

T1,...,Ty are linearly dependent over Ci .
Proof. Suppose that z1,...,z, are linearly dependent over C'i-, so that there exist
c1,...,cn € Ck not all zero with

Z Cil; = 0.

Then Zcixl(-j) = 0 for all j € w, so that

Z Ej) )<j<n 1= 0

yielding linear dependence of the column vectors of Wr(xq,...,z,), so that
w(xy,...,o,) = 0.
Conversely, suppose that w(z1,...,2,) = 0. Then there are ay,...,a, € K such
that

Z a; [zz(])]oTsjsn—l =0
=1

By dividing and reordering we may assume that a; = 1 and that w(za,...,z,) # 0.

But then
acgj) + Z ajscl(-j) =0
=2
for all j. Differentiating we have that

J}Z(-j+1) + Z ajxl(-jﬂ) + Z(aj)’x(j)
j=2 1=2

But since
]+1) + Z (J+1)

we have that
]:2

for all j. But then if (a1)’,..., (a,) € K are not all 0, then
w(wz, ..., on) =0

a contradiction. Thus (a1),..., (an)’ are all 0 so that ay,...,a, € Ck. O
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Remark 3.15. The real utility of the wronskian is that gives a field-independent
way to measure the linear dependence of a set of elements living in some differential
field. In other words, for any differential field K o> F, we have the following
equivalences

Z1,...,%, are linearly independent over Cp <= w(x1,...,2,) # 0
<= 11,...,T, are linearly independent over Ck.

This characterization of linear dependence over the constants of a differential
field provides us with our upper bound on the Cx-dimension on Z(L)(K).

Proof. We first check that Z(L£)(K) is a Ck vector space. If s1,s0 € Z(L£)(K) and
c1,co € Ck then
ﬁ(clsl + 0282) = Clﬁ(sl) + CQ,C(SQ) =04+0=0

so that ¢181 + cas2 € Z(L)(K).
We now argue that dime, (Z(£)(K)) < ord(L). Let ord(£) = n and let £ =
2™ 4+ N aa®. If aq,... 2041 € Z(L)(K) then the first j rows for 1 < j < n are

of the form (xgj‘l), . ,xﬁfgf)) while the last row can be rewritten as

(Z —aixgz), e ,Z —ail‘,E:il)
so that the rows are dependent and w(z1,...,Z,41) = 0, so that any set of n + 1
elements of Z(L)(K) is dependent. Thus dime,. (Z(£)(K)) < ord(L). O

In general, a differential field (F, @) may have no nontrivial solutions to a ho-
mogeneous linear differential equation. For instance, if (F,d) = (C,0) then the
differential equation 2’ + x = 0 has no nonzero solutions. That being said, given
any linear differential operator L it is possible to find a K > F with maximum
possible dimension.

Proposition 3.16. Let F' be a differential field and L a linear differential operator
of order n, then inside any differentially closed F < K |= DCFq we have that
dime, (Z(L)(K)) = n.

Proof. We build up solutions to £ inside K by induction using the axiomatization
of DCFy. A first solution exists inside K since

(L(z) = 0) A (1 #0)

satisfies the criteria for having a solution inside K.

Suppose that aq,...,ay are Ck-linearly independent solutions to £ for ¢ < n.
We wish to find an £+ 15¢ linearly independent solution. Since ¢ < n, the differential
polynomial [w(aq,...,as)](x) € K{z} has order { < n, so that by the axioms of

differentially closed fields, we know that the system
L(z) =0 A [w(ay,...,a)](x) #0

is has a solution agi; in K. Since w(ay,...,ap,ap11) # 0, a1,...,ap41 are Ck
linearly independent.

This process terminates after adjoining an n*" solution since then the polynomial
[w(ai,...,an)](x) has order n and we can no longer adjoin new linearly independent
elements. (]
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We call a Ck-basis for Z(L£)(K) a fundamental system of solutions for L. Our
the Picard-Vessiot theory centers on Picard-Vessiot extensions, which are highly
related to Pillay’s X strongly normal extensions.

Definition 3.17. Let K/F be differential fields. K is a Picard-Vessiot extension
of I for the linear operator £ provided

o K =Fylay,...,an for {ay,...,a,} a fundamental system of solutions for
L.
o Cx =Cp.

Many results in the Picard-Vessiot extension are proven under the assumption
that Cx = C}l(lg , and in this case a Picard-Vessiot extension is in fact an example
of a C normal extension in the Pillay theory.

Proposition 3.18. Assume that K/F is Picard-Vessiot with Cx = C’%g. Then K
is C strongly normal.

Proof. K is a finitely differentially generated extension by construction, and since
Ck = C’%g we have that
Cr =Ck =Cp.

It remains to show that for all embeddings o : K — U fixing F that o(K) < K {(Cy)
for our universe U. If 0 : K — U is an F-embedding, then it is determined by its
image o(a1),...,0(a,). But each o(a;) must also lie in Z(L£)(U) as the coefficients
of £ are all in F. But then as {a1,...,a,} are linearly independent over C'x they
are also linearly independent over Cy by the wronskian condition, and therefore
form a basis for Z(L£)(U). This means that there exist constants ¢1,...,¢, € Cy

such that
ola;) = Z cia;
so that o(a;) € K5{Cy). O

Therefore whenever we have a Picard-Vessiot extension K /F with Cx = C%y we
are free to use any of the results from Pillay’s X strongly normal theory, including
the Galois correspondence.

Our main theoretical goals at this point are twofold:

(1) Under the assumption that Cr = C%Y we will show that Picard-Vessiot
extensions always exist by using the model-theoretic machinery we’ve built
up.

(2) Since Picard-Vessiot extensions are C' strongly normal, their Galois groups
are algebraic groups over C. We will show that, in fact, their Galois groups
are linear algebraic by giving a definable representation of Gal(K/F') into
GL,(C) for n = ord(L). We will see this using the explicit function wit-
nessing the internality of fundamental sets of solutions to £ to C.

Proposition 3.19. Let F be a differential field such that Cp = C’;lg and L over
F a linear differential operator. Then there exists a Picard-Vessiot extension K/F
contained inside the differential closure of F', F'.

Proof. Model-theoretic proof. Since Cp = C;lg, Cp = Cp. Since we can always

find a fundamental system of solutions to £ = 0 inside F pick aq,...,a, € F a
Cr-basis for £ = 0 and set

K =F;lay,...,an).
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Then K is generated by a fundamental system of solutions to £ = 0 and
OF C CK = Cp = OF

so that Cx = Cp.
O

We now show that given a Picard-Vessiot extension K/F for L of order n, the
Galois group is not just an algebraic group over C, but in fact a subgroup of

GLn(C).

Proposition 3.20. Let K/F be a Picard-Vessiot extension K/F for L of order
n with binding group G. Then there is a faithful definable representation G —
GL,(C), so that G is a linear algebraic group.

Proof. We identify G as a set with the set of realizations of p = tp(aq,...,a,/F)
of some fundamental set of solutions of £ as in the binding group construction. If
g € G(F) then knowing the formulas g(a;) = >, ¢;;a; for all ¢ uniquely determines
g, so that the map

g — Ag = (cij) € GLn(C)
is injective, and is well-defined since the a; being a basis for Z(£)(F) means that
the (c;;) are unique. Moreover, the set

G c GL,(C)

given by
G = {(cij) € GLn(C)| (g€ G) A glas) = Y. cijai}

is definable. The map g — A, is a group homomorphism since

Agh(al,...,an)T = gh(ay,...,a,) = g(h(ay,...,a,)) = Ag(Ah(al,...,an)T)
for all g,h € G. (]

To finish off our study of Picard-Vessiot extensions we compute a few differential
Galois groups.

We first address the relationship between Picard-Vessiot theory and the usual
algebraic Galois theory: algebraic Galois extensions of differential fields with alge-
braically closed constants are Picard-Vessiot? The answer is yes, following Cormier,
Singer, and Ulmer [11].

Theorem 3.21. Let K be a differential field such that Cx = C}l(lg. Let f € K[y] be
an trreducible polynomial. Then its splitting field Ky is a Picard-Vessiot extension
of K.

Proof. We assume that f is irreducible of degree m and write f as

m—1

fy)=y™+ > ay' € Cla)[y].

=0

We now construct a linear operator £y such that Z(Ly) is spanned by the solutions

of f.
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Let 21,..., 2z, be the solutions of f. Then for each z; the (unique) derivation on
K (z;) extending 0 is given by

m—1 .
mz" !+ jajzl 7"
j=1

given by differentiating the formula f(z;) = 0. Note that this equation is implied
by the equation f = 0.

We claim that there is some n such that the solutions of f satisfy a nontrivial
order n homogeneous linear differential equation. Since K (z;)/K is a dimension m
vector space over K we have that

Ziy (Zi)/v ey Zz(nl)

must be linearly dependent over K: there exists by, . .., b, not all zero such that

2 bJZ,L(]) =0.
7=0

The same b; work for all z; satisfying f. Pick n < m minimal such that the z;
satisfy a linear differential equation of order n and call it L£¢(y).

Then any root of f solves L. To show that K is itself Picard-Vessiot we must
show that inside Ky we can find a fundamental system of solutions and that Ky
has no new constants.

e (No new constants) Since K is an algebraic extension of K, K; ¢ K which
has constants C'i, so that

CKCCKJ:CC[(=0K

so Ky has no new constants.

o (Fundamental system of solutions) Let L be the Picard-Vessiot extension
Ly and let G be its Galois group. Then G acts on Z(f) and so the vector
space V' generated by {z1,..., 2y} is invariant under the action of G. and,
therefore, satisfies a linear differential equation of order < ord(L;) which
is a factor of Ly:

Ly =w(y, 21, ., zm)/w(z1,...,2m)

has coefficients fixed by G and is therefore an equation over K, of order
< ord(Ly). But £; has minimal order, so that £; and Ly differ only
by a multiple factor and so V' generates L as well as Ky. Thus Ky is a
Picard-Vessiot extension.

Finally we claim that G(Ck) = Gal(K;/K). Since any o € Gal(K;/K) fixes Ck
by construction, and since 0(z;) is a rational function in K, any o € Gal(K/K) is
an element of G(Ck) and visa versa. O

Example 3.22. Consider K = C(x) and consider the equation
y3 —z=0.
Then differentiating the equation on both sides yields
3y%y —1=0
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so that
gLt -y _ 1
3y2  3y? 3z
But then L
Lr=y — —
=y Bxy

is our associated linear differential operator. The solutions of f are
Z; = {x1/3,§x1/3,§2x1/3}

for ¢ a primitive cube root of unity. But then the C vector space generated by Zy
is dimension 1 and the Galois group is cyclic of order 3.

3.4. Algebraic D-Groups and Logarithmic Derivatives. With the tools de-
veloped in the previous section applied to the single-derivation case we can show
that every X-strongly normal field extension K over an algebraically closed base
field F = F%9 can be written as

K = F{a),

where « is a tuple satisfying a certain equation called a logarithmic differential
equation over some algebraic group.
FINISH

3.5. Constrained Cohomology. In analogy with algebraic geometry, one can
study an analogue of Galois cohomology called Kolchin’s constrained cohomology
in the context of differential algebraic geometry. Given the model-theoretic tools
that we have developed so far, we opt to follow the approach of Pillay, who showed
that constrained cohomology is a special case of his so-called definable cohomology.
To give some substance to the theory we will discuss how one may use definable
cohomology in classifying certain special extensions of structures, including how to
use constrained cohomology to classify generalized strongly normal extensions of a
given differential field.

The general setup of Pillay’s theory of definable cohomology is to work in a
first-order structure M and subset A — M such that M is atomic and (strongly?)
homogeneous over A. G = G(M) will be an A-definable group?® and Gal will be
the group Aut(M/A) automorphisms of M fixing A pointwise.

Note that Gal acts on G since G is A-definable: if ¢(a, x) is the formula defining
G, then o(G) is defined by the ¥(o(a),x) = ¥(a,z), so that 0(G) = G and so any
o € Gal induces an automorphism of G.

Definition 3.23. A cocycle from Gal to G is a set-theoretic function f : Gal —> G
such that for all o, 7 € Gal,

flooT)=flo) o[f(r)]€G.
We say that f is a definable cocycle provided that it is represented by a definable
function h(z,y) in the following sense: there exists a finite tuple ¢ such that for all
o € Gal,
flo) = h(a,0(a))
Cocycles f and g are cohomologous, written f ~ g provided there is some b € G
such that for all o € Gal

g(o) =" f(o)a(b).

20There’s no need to take G to be abelian for the general construction
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Note that ~ is an equivalence relation as G is a group. A trivial cocycle is one that
is cohomologous to the cocycle e : Gal — G given by the function e(o) = eq for
all o € Gal. Namely, a trivial cocycle is a cocycle of the form f,(o) = b=1o(b) for
some given b € G.

The first definable cohomology set H}, f(Gal7 G) is the set of cocycles modulo

the relation ~ of being cohomologous.?

We now give two geometric interpretations of H ;ef (Gal,G): one corresponding
to classifying principal homogeneous spaces of the group G up to G-equivariant
definable isomorphism, and one corresponding to classifying the A-forms of an A-
definable set X.

To interpret definable cohomology in the context of definable principal homoge-
neous spaces, we fix a few definitions.

Definition 3.24. A definable principal homogeneous space X over A for a definable
group G consists of the following data:
e A definable set X definable over A
e A definable regular (right) action of G on X; that is, a right action G & X
definable over A such that for all 1,22 € X there is a unique g € G such
that 1 - g = 22
An A-isomorphism of definable G-principal homogeneous spaces X and Y over A
(with actions -x and -y of G on X and Y respectively) is a definable isomorphism
f: X - Y over A such that for all ge G and z € X,

fle-xg9)=[f=)vg,
i.e. fis a G-equivariant definable isomorphism between X and Y.
The set of A-definable principal homogeneous spaces for G up to isomorphism
is denoted PHS4(QG).

Definable cohomology (over A) classifies definable principal homogeneous spaces
for G up to A-isomorphism.

Proposition 3.25. There is a correspondence between PHSA(G) and classes of
cocycles in Hy,;(Gal,G).

Proof. The main idea is to find a canonical way to associate to an X € PHS4(G)
an element of cx € Héef(Gal, G) and visa versa.

First suppose that X € PHS4(G). Then pick 29 € X. For any o € Gal there is
a unique g, € G such that

o(xo) = X0 * go-
Define cx (o) = ¢g,. This map is a cocycle as
o gor = 0T (T0) = (T0 - gr) - 7(9o)

by construction. Note that this is a definable cocycle as it is represented by the

map
h(z,y) = the unique g € G such that z-g =1y

2l Gis a group, then Héef(Gal, @) is in fact a group. The set of cocycles is a group under
pointwise multiplication in G: f % g(c) = f(0)g(o) is a cocycle as

fwglor) = flor)g(or) = f(o)o[f(T)]g(a)alg(T)] = [ * g(o)o[f * g(T)].

It is easy to see that trivial cocycles are a normal subgroup of this group.
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by taking = = zg.
The cohomology class of cx is independent of choice of g, since if x1 = xg - g
then the resulting cocycle ¢ is cohomologous to cx via

&(o) =g~ ex(0) - alg)

which comes from “untwisting” the action of ¢(o) by first moving x; to zg via g~ !

and computing everything from there.

Conversely, we wish to construct an A-definable principal homogeneous space X,
out of a given cocycle ¢ € Hy,;(Gal,G). By representing ¢ as h(zo,o(x0)), let Xo
be a formula isolating tp(zo/A) (which exists by our assumption that M is atomic
over A) and for all z,y € Xo, h(x,y) € G by choice of Xj. O

Forms

THE ARITHMETIC PICTURE

Following the yoga of using binding groups to glean information about differential
Galois theory, the geometric interpretations of H}, 7 can be used to give results
about the existence and uniqueness of strongly normal extensions of a differential
field k.

To motivate how definable cohomology could show up in this context, consider
the case of a linear differential operator £ over a field K with Cx = C’%g . In
this setting we have the existence and uniqueness of Picard-Vessiot extensions of
K for the equation £ = 0. In this case any extension of the form K (a) for any
element a € Fund(Z (L)) is a Picard-Vessiot extension of K, and if two elements
a,b € Fund(Z (L)) have the same type over K then the resulting extensions K(a)
and K (b) are K-isomorphic differential fields for trivial reasons. On the other hand,
if tp(a/A) # tp(b/A), when do we know that K(a) ~x K(b)?

For instance, consider the differential operator £ = 0% over the field K = C.
Then the tuples (1,¢) and (¢,1) in C(¢)? have different types over K but still yield
isomorphic Picard-Vessiot extensions of K, as can be witnessed by the isomorphism
f o tp((1,¢£)/C) — tp((¢,1)/C) given by f(z,y) = (y,z), which is defined over C.
In other words, there exists a C-definable isomorphism between the types of these
two elements which guarantees that these extensions are isomorphic. More geo-
metrically, the types tp((1,t)/C) and tp((¢,1)/C) are both principal homogeneous
spaces of the differential Galois group of £ over K, and they are isomorphic by a
G-equivariant definable action. It is this perspective that allows us to use definable
cohomology to give a precise answer to questions like: how many non-isomorphic
Picard-Vessiot extensions of k are there for the equation £ = 07

3.6. The Galois Groupoid. Intrinsic Galois Group; the action induced from in-
ternality
Connected components

4. DIFFERENTIAL ALGEBRAIC GROUPS

For me, a differential algebraic group will simply be a Kolchin-closed set G
equipped with a differential morphism m : G x G — G satisfying the usual group
multiplication laws and i : G — G for the inversion map g — ¢g~! compatible with
m.



46 REID DALE

APPENDIX A. PRELIMINARIES FROM MODEL THEORY

In this section we prove a few model-theoretic results used in the main text that
would have taken us too far afield. We go roughly in order of appearance. We
start with the proof of the quantifier elimination test we used to show that DCFy
eliminates quantifiers.

Proposition A.1. Suppose that L is a language, T an L-theory, and ¢(v) an
L-formula. Then the following are equivalent:
(1) There is a quantifier-free ¥(v) equivalent to ¢(v) modulo T
(2) For all models M, N =T and common substructure A < M, N, then M =
o(a) if and only if N = ¢(a) for all tuples a from A.

Proof. (1 implies 2) If ¢ is equivalent to a quantifier-free ¢ then for all tuples a
from A we have that

M 6(a) = M (o) « Al u(a) < N F (@) < Nk o(a).

(2 implies 1) We first handle two degenerate cases: if T = Yvp(v) or T |
Yu—¢(v) then ¢(v) is equivalent modulo T to the formulas v = v and v # v
respectively. Thus we may assume that both T U {Fve(v)} and T U Jv—¢(v) are

consistent.
Let

i (v) = {p(v) | ¥ (v) quantifier-free such that T' = Vo(¢(v) — ¢ (v)}

i.e. 'y (v) is the set of quantifier-free consequences of ¢. If we can show that a real-
ization of I'; (v) realizes ¢ then by compactness there exists a finite set {11, ..., ¥}

such that
(A ) = ()

so that, since each 1, was a consequence of ¢,

(/\W ><—>¢ v)
modulo T'.

For contradiction suppose that there were a realization a of I'y that —(¢)(a).
Let M |= T contain a and let A = (x) be the substructure generated by a. Then
the type

¥ =T udiag,;(A) v {¢(a)}
is satisfiable since, if unsatisfiable, it it because there exists 91, ..., %, € ' (v) such

that

T kYo (A vrv) — ~6(v))
so that

T Vo (6(0) = \/ ~ti(v))
contradicting the fact that the ¢y (v) are all consequences of ¢(v).

Pick N = T containing A such that N = ¢(a). Then M = —¢(a) but N | ¢(a)
and A < M, N, a contradiction. O

Remark A.2. In applying the above quantifier elimination test we may replace
M and N with saturated elementary extensions M > M, N > N and it does not
affect either direction of the proof. Thus it suffices to show the result for sufficiently
saturated models of T
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Moreover, it suffices to apply the result to existential formulas since one can
perform quantifier elimination one quantifier at a time.

We also used a result in stability theory known as the stable embeddedness of
definable sets:

Definition A.3. Let X be a definable set in some theory 7. Then X is stably
embedded provided that for all definable subsets Y = ¢(z,m) < X" defined with
a parameter in some M = T, we may find m’ € X (M) such that Y = ¢(x, m’).

Every definable set in a stable theory is stably embedded.
Proposition A.4. Let T be stable and X be definable. Then X is stably embedded.

Proof. Let Y = ¢(m,z) € X™. Then since p = tp(m/X (M)) is definable, we have
that

¢(m, X(M)) = (dp)¢(z, X (M))
by definability of types. But (d,x)¢(x,y) is defined over X (M). O

Theorem A.5. Let T be an w-stable theory. Then over every set A of parameters
T(A) has a prime model.

Theorem A.6. Let T be an w-stable theory, A a set of parameters, and M, N > A
be two prime models. Then M ~ N.

Proof. We break the proof into two parts: first showing that every prime model
is constructible and then showing that any two constructible models over A are
isomorphic.

Step 1: Prime models are constructible.

Step 2: Constructible Models are pairwise isomorphic. Let M and N
be constructible models of T(A). The goal is to perform a (somewhat subtle)

back-and-forth argument using an explicit construction of each model. ([
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