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1. Introduction

2. Basic Differential Algebra

2.1. Derivations and Dual Numbers. The fundamental object that we will be
working with throughout this section is that of a (commutative) differential ring
pR, Bq, which is a ring R equipped with a derivation

B : RÑ R,

which is a function satisfying

Bpx` yq “ Bpxq ` Bpyq

Bpxyq “ xBpyq ` yBpxq.

While this B is not a ring homomorphism, it is possible to view a derivation as
a component of a certain homomorphism from R to the dual numbers Rrεs{pε2q as
follows:

Proposition 2.1. There is a bijective correspondence between derivations B on R
and sections s : RÑ Rrεs{pε2q of the canonical projection π : Rrεs{pε2q Ñ R.

Proof. We first define a map from derivations to sections B ÞÑ sB given by

sBpxq “ x` εBpxq.

The function sB is a ring homomorphism as it is certainly additive, and it is multi-
plicative as

sBpxqsBpyq “ px` εBpxqqpy ` εBpyqq “ xy ` εpxBpyq ` yBpxqq ` ε2pBpxqBpyqq

“ xy ` εBpxyq “ sBpxyq.

Conversely, we define a map s ÞÑ Bs given by mapping a section s “ x ` εfpxq,
where f : R Ñ R is a function, to Bs “ f . Note that the f described here is a
well-defined function as t1, εu is a basis for Rrεs{pε2q as an R-module. This map is
a derivation as the fact that s is a section forces

px` εfpxqqpy ` εfpyqq “ xy ` εpxfpyq ` yfpxqq “ spxyq “ xy ` εfpxyq

and so fpxyq “ xfpyq` yfpxq. Additivity is clear, so that Bs is indeed a derivation
on R.

Finally, the maps B ÞÑ sB and s ÞÑ Bs are inverse to each other and so these sets
are in bijective correspondence. �

This identification of derivations with certain sections has the advantage of sim-
plifying a lot of arguments about the existence and uniqueness of certain extensions
of derivations; instead of doing explicit computations once can often exploit func-
toriality to cook up the desired extension since functors always preserve sections.

Proposition 2.2. Let pR, Bq be a differential ring with and S Ă R a multiplicatively
closed set. Then there exists an extension of B to S´1R.

Proof. Working in the category of R-algebras, consider Rrεs{pε2q as an R-algebra
by equipping it with the structure map sB : R Ñ Rrεs{pε2q. This is a section of
the natural projection Rrεs{pε2q Ñ R in the category of R-algebras. Moreover, by
composing with the natural homomorphism Rrεs{pε2q Ñ pS´1Rqrεs{pε2q we get a
map

sB : RÑ pS´1Rqrεs{pε2q.
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By the universal property of the localization, if sB maps S to the units of pS´1Rqrεs{pε2q
then sB extends to a unique map on S´1R. We check that for all x P S, sBpxq is a
unit. Indeed

psBpxqq ¨
x´ εBx

x2
“
px` εBpxqqpx´ εBpxqq

x2
“
x2

x2
“ 1

and so the map extends. It is clear that the homomorphism is a section of the

canonical projection since sBp
1
x q “

x´εBpxq
x2 “ 1

x ` ε
Bpxq
x2 . �

Another useful application of the section point of view is in constructing the ring
of differential polynomials over R.

Proposition 2.3. Let pR, Bq be a differential ring. Then the ring of differential
polynomials

Rtxu :“ Rrx, x1, xp2q, ¨ ¨ ¨ s

is a differential ring with B̃ : Rtxu Ñ Rtxu given by B̃|R :“ B, B̃pxpnqq “ xpn`1q,
and extended to the whole domain by Leibniz’s rule.

Proof. To construct a derivation on Rtxu it suffices to construct a section

s : Rtxu Ñ Rtxurεs{pε2q.

Since, as a ring, Rtxu is the free commutative R-algebra on the elements txpnqunPω,
to define a map s : Rtxu Ñ Rtxurεs{pε2q it suffices to specify a homomorphism
s0 : RÑ Rtxurεs{pε2q as well as the elements spxpnqq for all n P ω. We set

‚ s0 : RÑ Rtxurεs{pε2q by s0prq “ r ` εBprq
‚ spxpnqq “ xpnq ` εxpn`1q

Then s is a section of the dual numbers for Rtxu and Bs “ B̃, the desired derivation
on Rtxu. �

Finally, one can show that derivations extend uniquely to separable field exten-
sions in this manner using more universal properties in commutative algebra.

Proposition 2.4. Let pK, Bq be a differential field and let L{K be a separable
algebraic extension. Then B extends uniquely to L.

Proof. We first show the result for a finite separable extension L{K and then
conclude by noting that if L{K is separable then L is the union of an ascend-
ing chain of separable extensions of K. As L is finite separable we may write
L “ Krxs{pfpxqq “ Kpaq with fpxq “

ř

bix
i the minimal polynomial of a such

that the formal derivative f 1pxq given by f 1pxq “
ř

ibix
i´1 satisfies f 1paq ‰ 0. We

first show uniqueness of the extension of B to L, assuming that it exists.
If B̃ is an extension of B to L then

B̃p
ÿ

cja
jq “

ÿ

´

Bpcjqa
j ` B̃paqjcja

j´1
¯

so that knowing B̃paq and B determines B̃ uniquely. Thus, to show that B extends to
at most one derivation on L we show that the value of Bpaq is uniquely determined.
First we compute what B should be. If L “ Kpaq then fpaq “ 0 with fpxq “

ř

bix
i,

so that
Brfpaqs “ 0.

Expanding this expression gives us

B

´

ÿ

bix
i
¯

“
ÿ

Bpbiqx
i ` ibix

i´1Bpxq “
´

ÿ

Bpbiqx
i
¯

` Bpxqf 1pxq.
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The polynomial
`
ř

Bpbiqx
i
˘

is just the polynomial obtained by applying B to the
coefficients of f and we set

fBpxq “
´

ÿ

Bpbiqx
i
¯

.

Applying the above formula to a,

0 “ Brfpaqs “ fBpaq ` Bpaqf 1paq

so that

Bpaq “ ´
fBpaq

f 1paq

showing that B extends in at most one way to a derivation on L.
To show the existence of the derivation extending B to L we use the charac-

terization of derivations as certain sections of the dual numbers. Since B is a
derivation, we obtain a canonical section sB : K Ñ Krεs{pε2q. We may compose sB
with the natural injection Krεs{pε2q Ñ Lrεs{pε2q to get a map we abusively name
sB : K Ñ Lrεs{pε2q. Our goal is to extend this to a section s

B̃
: L Ñ Lrεs{pε2q.

Towards this, we first extend sB to Krxs via the map

x ÞÑ a´ ε
fBpaq

f 1paq

which, as we showed above, is the only possible option for B̃paq. To show that this
map descends to L we need to show that in the dual numbers Lrεs{pε2q,

f

ˆ

a´ ε
fBpaq

f 1paq

˙

“ 0.

To evaluate polynomials in the dual numbers we use the formula

fpc` εdq “
ÿ

pbi ` εBpbiqqpc` εdq
i

since we are thinking of Krεs{pε2q as having the K-algebra structure given by sB.
Now note that

pc` εdqi “
ÿ

ˆ

i

j

˙

cjpεdqi´j

which is 0 for all i´ j ě 2 as pεdq2 “ 0. Thus pc` εdqi “ ci ` iεci´1d so that

fpc` εdq “
ÿ

pbi ` εBpbiqqpc
i ` iεci´1dq.

Now we need to check that f
´

a´ ε f
Bpaq

f 1paq

¯

“ 0. Expanding, we have that

f

ˆ

a´ ε
fBpaq

f 1paq

˙

“
ÿ

pbi ` εBpbiqq

ˆ

ai ´ iεai´1 f
Bpaq

f 1paq

˙

“
ÿ

ˆ

bia
i ` εBpbiqa

i ´ ibiεa
i´1 f

Bpaq

f 1paq
` ε2piBpbiqa

i´1 f
Bpaq

f 1paq

˙

(1)

�
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2.2. Differential Ideals and Ritt Noetherianity. As in usual ring theory, the
notion of a differential ideal plays a fundamental role in differential algebra and
differential algebraic geometry. The motivation is nearly identical as in the case
of algebraic geometry: if we know that a differential equation f “ 0 holds, then
differentiating both sides yields that Bpfq “ 0 as well.

Throughout these notes we adopt the convention that if X Ď R, then the ideal
generated by X is denoted xXy.

Definition 2.5. Let pR, Bq be a differential ring. An ideal I Ă R is a differential
ideal just in case BpIq Ď I.

Given a family F “ trαuαăλ Ď R of elements of R, we can consider the differen-
tial ideal JpFq generated by F , which is the smallest differential ideal containing
F . It has a straightforward explicit presentation:

Proposition 2.6. Let pR, Bq be a differential ring and F Ď R be a family of
elements. If we enumerate F “ trαuαăλ Ď R, then

JpFq “
@

tBiprαquαăλ;iăω

D

,

i.e. JpFq is generated as an ideal by F and all of the higher derivatives of its
elements.

Proof. Write F “ trαuαăλ Ď R. As F Ď JpFq and JpFq is a differential ideal, we
immediately have that

@

tBiprαquαăλ;iăω

D

Ď JpFq
To show that

JpFq Ď
@

tBiprαquαăλ;iăω

D

we need only show that
@

tBiprαquαăλ;iăω

D

is a differential ideal since JpFq is min-
imal amongst all differential ideals. Suppose that

g P
@

tBiprαquαăλ;iăω

D

so that g “
ř

gα,iB
iprαq. Then

Bpgq “
ÿ

`

Bpgα,iqB
iprαq ` gα,iB

i`1prαq
˘

P
@

tBiprαquαăλ;iăω

D

and so
@

tBiprαquαăλ;iăω

D

is a differential idea. Therefore JpFq “
@

tBiprαquαăλ;iăω

D

,
as desired. �

A useful geometric fact in algebraic geometry is that the Zariski topology is a
noetherian topology, which can be seen as a corollary of the Hilbert Basis The-
orem. In the context of differential algebraic geometry, the Kolchin topology is
also noetherian, but the straightforward analogue of the Hilbert Basis theorem is
false: there exist strictly increasing ascending chains of differential ideals in dif-
ferential polynomial rings. However, in the case of radical differential ideals, the
Ritt-Raudenbush theorem tells us that all radical differential ideals in a differen-
tial polynomial ring over a field K containing Q are finitely differentially-radically
generated.

Example 2.7. We give an example of an ascending chain of differential ideals that
does not terminate. Consider the chain of ideals In Ď Qtxu given by

In “ Jpx2, px1q2 ¨ ¨ ¨ , pxpn´1qq2q

as well as the ideal I “ Jptpxpiqq2uiPωq



6 REID DALE

Clearly whenever i ď j we have Ii Ď Ij , so our goal is to show that for all n P ω,
In Ĺ In`1 to yield a strictly ascending chain. To do this, we will often work with
the auxiliary ideal I defined above, because it admits a set of especially nice looking
generators.

Claim 2.8. I “
@

xpiqxpjq | i ď j
D

To show that
@

xpiqxpjq | i ď j
D

Ď I, we go by induction on k “ j ´ i. The
case k “ 0 is immediate by the definition of I, and the k “ 1 case follows since
Bppxpiqq2q “ 2xpiqxpi`1q and since in Q we can divide by 2.

Suppose now that all xpiqxpjq P I for pi, jq with j ´ i ď k for k ě 1; we wish
to show that xpiqxpjq P I for all pi, jq with j ´ i “ k ` 1. Let pi, jq be such that
j ´ i “ k ` 1. Then pi, jq “ pi0, j0 ` 1q with j0 ´ i0 “ k. Then Bpxpi0qxpj0qq “
xpi0`1qxpj0q ` xpi0qxpj0`1q. Since j0 ´ pi0 ` 1q “ k ´ 1 we have that xpi0`1qxpj0q P I
by induction hypothesis and so xpi0qxpj0`1q “ xpiqxpjq P I, as desired.

To show that I Ď
@

xpiqxpjq | i ď j
D

it suffices by 2.6 to show that the higher

derivatives of its differential generators pxpiqq2 are all expressible as sums of prod-
ucts of elements of Qtxu with elements of the form xpiqxpjq, which is a very straight-
forward computation (in fact, this computation is nested in the induction step of
the

@

xpiqxpjq | i ď j
D

Ď I direction of the argument). I think that this direction
is the only one needed for the argument, actually...

Now that we understand the ideal I we proceed with the argument. We wish to
show that In Ĺ In`1 by arguing that pxpnqq2 R In. We make two slight simplifica-
tions:

‚ We may work in Qtxu{Jpxpn`1qq – Qrx, x1, ¨ ¨ ¨ , xns since if we can show
that pxpnqq2 mod Jpxpn`1qq R In mod Jpxpn`1qq then pxpnqq2 R In

‚ We instead show that

pxpnqq2 mod Jpxpn`1qq R

A

xpiqxpjq | 0 ď i ă j ď n or 0 ď i “ j ď n´ 1
E

mod Jpxpn`1qq

which suffices since

In mod Jpxpn`1qq Ď

A

xpiqxpjq | 0 ď i ă j ď n
E

by one direction of the containment argument for I.

Now suppose that inside Qrx, x1, ¨ ¨ ¨ , xpnqs we have that

pxpnqq2 P
A

xpiqxpjq | 0 ď i ă j ď n or 0 ď i “ j ď n´ 1
E

.

Then writing out a witnessing expression to pxpnqq2 being in the above ideal we find
that

pxpnqq2 “
ÿ

`

ÿ

0ďiďjďn´1

fi,j,` ¨ px
pnqq`xpiqxpjq `

ÿ

m

ÿ

1ďkďn´1

gk,m ¨ px
pnqqm`1xpkq

with fi,j,` and gk,m inside Qrx, x1, ¨ ¨ ¨ , xpnqs. But then since it’s a polynomial in

the variable xpnq we can simplify this to

pxpnqq2 “
ÿ

0ďiďjďn´1

f̃i,j ¨ px
pnqq2xpiqxpjq `

ÿ

1ďkďn´1

g̃k ¨ px
pnqq2xpkq.

But then

1 “
ÿ

0ďiďjďn´1

f̃i,jx
piqxpjq `

ÿ

1ďkďn´1

g̃kx
pkq
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which is impossible as 1 R
@

xpiq | 0 ď i ď n
D

Ď Krx, x1, ¨ ¨ ¨ , xpnqs.
Therefore In Ĺ In`1 and so we get a strictly increasing chain of differential ideals

I1 Ĺ I2 Ĺ ¨ ¨ ¨ Ĺ In Ĺ ¨ ¨ ¨

�

One way to circumvent pathologies of this sort is to look at ideals of geometric
significance from the Kolchin viewpoint: the radical differential ideals. The mo-
tivation for considering this class of ideals comes from the same motivation as in
algebraic geometry: if pK, Bq is a field of functions and x P K is a point, then if
pfnqpxq “ 0 then fpxq “ 0 as well, so that the ideal of differential polynomials
vanishing on x is radical.

Definition 2.9. A differential ring pR, Bq is called Ritt-noetherian provided every
properly ascending chain of radical differential ideals is finite.

Our aim now is to prove the Ritt-Raudenbush theorem:

Theorem 2.10. Let R Ě Q be a Ritt-noetherian differential ring. Then Rtxu is
Ritt-noetherian.

Before proving this, we first establish some basic properties of radical differential
ideals and Ritt-noetherianity.

Proposition 2.11. Let F Ă R be a family of elements with R Ą Q. Then the
minimal radical ideal containing F , tFu, can be characterized by the equation

tFu “
a

JpFq

i.e. the minimal radical differential ideal containing F is the radical of the minimal
differential ideal containing F .

Proof. Since intersections of radical differential ideals are radical differential, tFu
exists (here allowing the possibility that tF u “ R). It’s immediate that

a

JpFq Ď
tFu, so it suffices to show that

a

JpFq is itself a radical differential ideal. It’s

certainly a radical ideal, so we just check that Bp
a

JpFqq Ď
a

JpFq.
Suppose that a P

a

JpFq, so that an P JpFq. We want to show that there is an
m such that Bpaqm P JpF q. We do this by differentiating an and seeing what we
get. Since an P JpFq, Bpanq P JpFq. Expanding we get

Bpanq “ Bpaqnan´1 P JpFq.

Differentiating again, we see that

B2panq “ B2paqnan´1 ` Bpaq2npn´ 1qan´2 P JpFq

While this looks ugly, multiplying by Bpaq on both sides yields

B2paq
`

Bpaqnan´1
˘

` Bpaq3npn´ 1qan´2 P JpFq

so that since B2paq
`

Bpaqnan´1
˘

P JpFq we can conclude that

Bpaq3npn´ 1qan´2 P JpFq.

Repeating this exact process repeatedly we can conclude that

Bpaq2n´1n! P JpFq.
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Since R Ą Q we can conclude that

Bpaq2n´1 P JpFq
so that Bpaq P

a

JpFq. �

Ritt-noetherianity can, like usual noetherianity, be expressed in terms of a kind
of finite generation of ideals:

Proposition 2.12. pR, Bq is Ritt-noetherian if and only if all radical differential
ideals I Ď R are finitely generated; that is, that there exists a finite set I0 Ď I such
that I “ tI0u.

Proof. Suppose that there is an infinite ascending chain of radical differential ideals
I0 Ă I1 Ă ¨ ¨ ¨ . Let I “

Ť

In; this is a proper radical differential ideal since if 1 P I
then 1 P Im for some m ă ω. If I were finitely generated, then I “ tf1, ¨ ¨ ¨ , fnu
for some finite collection of fi’s. But then there is m such that f1, ¨ ¨ ¨ , fn P Im, so
that Im “ tf1, ¨ ¨ ¨ , fnu. But then the ideal chain stabilizes at m, a contradiction.

Conversely, suppose that there is a radical differential ideal I which is not finitely
generated. We build a chain inductively as follows:

‚ Pick r0 P I and set I0 “ tr0u.
‚ Given In “ tr0, ¨ ¨ ¨ rnu Ď I finitely generated, select rn`1 P IzIn, which ex-

ists as otherwise I would be finitely generated. Then let In`1 “ tr0, ¨ ¨ ¨ , rn`1u.

This yields a properly increasing chain of radical differential ideals. �

Proposition 2.13. Let X,Y Ď R be two sets. Then

tXutY u Ď txy |x P X, y P Y u.

Proof. To prove this we prove some slightly more general lemmas.
Suppose that I is a radical differential ideal and S Ă R is closed under multipli-

cation (e.g. S is an ideal). Then I claim that TS “ tx P R |xS Ă Iu is a radical
differential ideal. Note that if x P T then Bpxq P T since if ab P I then Bpaqb P I
by Leibniz’ rule together with the differential radicality of I (the full argument is
written up later in the proof of 2.40). Hence T is a differential ideal, and moreover
if xn P T then xnS Ă I. Since S is multiplicatively closed, xnSn Ă I so that since
I is radical, xS Ă I and x is in T .

Now, we prove the proposition in the case that X is a single element. If X “ tau
and Y is any set, then

atY u Ă taY u

since the set
Ta “ tx P R |xa

n P taY uu

is a radical ideal containing atY u. Then if X is larger, this shows that

TX “ tx P R |xtY u Ă tY uu

contains tXu, so that
tXutY u Ă txy |x P X, y P Y u

�

A crucial part of the usual proof of Hilbert’s basis theorem is the division lemma
for polynomial rings; we will rely on an analogue of it for differential rings to prove
the Ritt-Raudenbush theorem. To state the division lemma we will need to define
a convenient quantity associated to differential polynomials.
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Definition 2.14. Let pR, Bq be a differential ring and f P RtxuzR. The order of
f , ordpfq is the largest n such that xpnq appears in f ; if f P R, then its order is ´1.
Given f of order n we can write

f “
d
ÿ

i“0

gi ¨ px
pnqqi

with all gi P Rrx, x
1, ¨ ¨ ¨ , xpn´1qs and gd ‰ 0. In this case we say that f has degree

d.
We write f ! g in case ordpfq ă ordpgq or if ordpfq “ ordpgq and degpfq ă

degpgq.

Recall the usual division algorithm lemma for polynomial rings over fields:

Lemma 2.15. Let f, g P Krxs be a polynomial. Then there exists a polynomial
g̃ P Krxs with degpg̃q ă degpfq such that

g ” g̃mod xfy

While we cannot achieve a differential division algorithm as clean as this since,
as a pure ring, Rtxu is the polynomial ring on countably many variables, the dif-
ferential structure on Rtxu allows us to simplify differential polynomials.

Two crucial quantities associated to a differential polynomial f , the initial If
and the separant sf occur naturally in the course of devising the division algorithm.
Let ordpfq “ n and degxpnqpfq “ d. The initial If is the leading coefficient of f

considered as a polynomial in pRrx, xp1q, . . . , xpn´1qsqrxpnqs. In other words, If is
the unique element such that

f “ f “ If ¨ px
pnqqd `

ÿ

0ďiďd´1

hi ¨ px
pnqqi

with each hi P Rrx, x
p1q, . . . , xpn´1qs. The separant is the initial of Bpfq: sf “ IBpfq.

Its importance stems from the fact (to be proven shortly) that, in fact, sf “ IBkpfq
for all k ą 0, which is a key observation for carrying out the division algorithm.

Lemma 2.16. Let R be a commutative differential ring containing Q, f P Rtxu be
of order n ą 0 and degree d. Writing

f “ If ¨ px
pnqqd `

ÿ

0ďiďd´1

hi ¨ px
pnqqi

with initial If and coefficients hi all inside Rrx, x1, . . . , xpn´1qs. Then for all g P
Rtxu there exist g̃ P Rtxu such that g̃ ! f (in the order-degree ordering), an element
r P R, and integers ` and t with

rpIf q
`psf q

tg ” g̃mod Jpfq

Proof. By induction we see that

f pkq “ sfx
pn`kq ` fk

with ordpfkq ď n` k ´ 1.

‚ (k “ 1) Writing f “
ř̀

i“0

hipx
pnqqi with ordphiq ď n´ 1 we have that

f 1 “
ÿ̀

i“0

´

ihipx
pnqqi´1xpn`1q ` phiq

1pxpnqqi
¯

“ sfx
pn`1q ` f1



10 REID DALE

with ordpf1q ď n “ n` 1´ 1.
‚ (k ě 1) Suppose that f pkq “ sfx

pn`kq` fk with ordpfkq ď n` k´ 1. Then

f pk`1q “ sf px
n`k`1q ` psf q

1xpn`kq ` pfkq
1.

But then as ordpsf q ď n and ordpfkq ď n ` k ´ 1 we have that fk`1 :“

psf q
1xpn`kq ` pfkq

1 has order

ordpfk`1q ď n` k ´ 1` 1 “ n` k “ n` pk ` 1q ´ 1

as desired.

Now let g P Rtxu. If g has order n ` k, writing g “
řd
i“0 vipx

pn`kqqi with

ordpgiq ď n ` k ´ 1 we have that rsdfg ´ vdf
pkq ! g. Iterating this process we

can replace g by g̃ “
řd̃
j“0 ṽjpx

pnqqj equivalent mod Jpfq with ordpg̃q “ q. If

d̃ :“ degpg̃q ě degpfq then we may reduce the degree d̃ of g̃ by multiplying by some

power of If and r P R to get degprIf g̃ ´ ṽd̃px
pnqqd̃´`fq ă d̃.1 Iterating this process

we can push the degree of g̃ below ` “ degpfq.
Thus, by collecting all of these steps, we only multiplied g by powers of If and

sf and so the result holds. �

noticing the appearance of both the initial If and the separant sf in the dif-
ferential division lemma. This adds a step of complication in our proof of the
Ritt-Raudenbush theorem. We now prove the Ritt-Raudenbush theorem (following
the proof from Marker’s notes, but organized in a different way):

Proof. Suppose that pR, Bq is a commutative Ritt-noetherian differential ring con-
taining Q. We wish to show that Rtxu is as well. By 2.12 this is equivalent to
showing that every radical differential ideal I Ď Rtxu is finitely generated.

Step 1: Find a maximal counterexample. Suppose for contradiction that
there is a radical differential ideal I Ď Rtxu which is not finitely generated. I
claim that we can take I to be a maximal ideal amongst the family of radical,
non-finitely-generated differential ideals by Zorn’s lemma. Consider the family

I “ tI Ď Rtxu | I is a proper, radical, non-finitely-generated differential idealu

ordered by inclusion. By assumption, I is nonempty so it suffices to show that
every chain in I has an upper bound in I. Let tIαuαăλ be a chain of elements of

I. Their union Ĩ “
Ť

αăλ

Iα is a radical differential ideal. It is a proper ideal since

if 1 P Ĩ then 1 “
ř

rifi with ri P R and each fi in some Iα. But as only finitely
many fi occur in this expression and since tIαuαăλ forms an ascending chain, we
must have that 1 P Iα0

for some α0 ă λ. But then Iα0
is not a proper ideal, a

contradiction. Similarly, Ĩ is not finitely generated, for if I “ tf1, ¨ ¨ ¨ , fnu then
there would exist an Iα0

with f1, ¨ ¨ ¨ , fn P Iα0
and so as

tf1, ¨ ¨ ¨ , fnu Ď Iα0 Ď Ĩ “ tf1, ¨ ¨ ¨ , fnu,

we would have that Iα0 is a finitely generated radical differential ideal.
Thus, by Zorn’s lemma, we may assume that the radical, non-finitely-generated

differential ideal I that we take is maximal amongst that family.
Step 2: Intersect I with R, find a minimal element f outside the

radical-differential ideal generated by I X R Since I is a radical differential

1Unlike the case R “ K a field, we may need to multiply by some r P R, e.g. in the case R “ Z
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ideal, so is IXR. Now, IXR Ď R is finitely generated; say IXR “ tr1, ¨ ¨ ¨ rmu Ď R.

Set I0 “
a

JpI XRq “ tr1, ¨ ¨ ¨ rmu Ď Rtxu; I0 does not depend on choice of
generators for IXR. Now, as I ‰ I0 we may pick f P IzI0 of minimal order-degree.

Our goal is to reduce every element of I modulo f using the differential division
lemma 2.16. 2.

Writing

f “ If px
pnqqd `

ÿ

0ďiďd´1

hipx
pnqqi “ If px

pnqqd ` f0

we see that If R I for if If P I then since If ! f we have that If P I0 and

so
ř

0ďiďd´1

hipx
pnqqi P IzI0 with lower order-degree than that of f . Similarly, the

separant sf R I, for if sf P I then sf P I0 and so f0 “ f ´ 1
dsfx

pnq P IzI0
3,

again contradicting minimality. Since coefficients of the form I`fs
k
f occur in 2.16,

we wish to show that Ifsf R I. One way to accomplish this is to show that I is in
fact a prime ideal4. Therefore tI, Ifsfu Ą I is a radical differential ideal properly
containing I, so that tI, Ifsfu “ tg1, ¨ ¨ ¨ , g`, Ifsfu with each gi P I.

Step 3: Divide modulo Jpfq and apply radicality. The way we intend to
use the radicality of I is to use the following immediate fact: if I0 is a radical ideal
and Ik1 Ď I0 for some k, then I1 Ď I0. Given this, our goal is to contain some power
of our maximal counterexample I inside a finitely generated radical ideal and then
show that they are, in fact, equal.

To construct a candidate finitely generated ideal we first reduce every element
of I modulo Jpfq using 2.16. Pick g P I. There is some g̃ P Rtxu with

rpIf q
kpsf q

mg ” g̃mod Jpfq

with g̃ ! f . But since g, f P I, g̃ P I and hence in I0. Thus

pIf q
kpsf q

mg P tI0, fu;

by multiplying pIf q
kpsf q

mg by pIf q
t´kpsf q

t´mgt´1 for t “ maxtk,m, 1u and apply-
ing the radicality of I we have that

Ifsfg P JpI0, fq.

Since g was arbitrary we have that

pIfsf qI Ď tI0, fu

But then

I2 Ď ItI, Ifsfu Ď Itg1, ¨ ¨ ¨ , g`, Ifsfu Ď tI¨g1, I¨g2, ¨ ¨ ¨ , I¨g`, IfsfIu Ď tI0, f, g1, ¨ ¨ ¨ , g`u Ď I.

But then if g P I then g2 P I2 and hence in the finitely-generated radical differential
ideal tI0, g1, ¨ ¨ ¨ , g`u, so that g P tI0, g1, ¨ ¨ ¨ , g`u. Thus I “ tI0, g1, ¨ ¨ ¨ , g`u and is
finitely generated, contradicting our original assumption, giving us that I is finitely
generated to start with.

Appendix: the primality of I We claim that I is a prime differential ideal.
Suppose that I is not prime, so that there is some a, b P R with ab P I but a, b R I.
Consider the radical differential ideals tI, au and tI, bu; (note that here we are not
assuming on the outset that these ideals are necessarily properly contained inside

2Marker does not note this, but his argument uses a version of 2.16 that assumes that f is

irreducible. Because I is prime, one may however reduce to this case.
3Here using that R Ě Q
4We prove the primality of I at the very end of the argument
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Rtxu). These ideals properly contain I and so they are finitely generated5. But
then we may write

tI, au “ tf1, ¨ ¨ ¨ , fnu and tI, bu “ tg1, ¨ ¨ ¨ , gmu

with all fnii P JpI, aq and g
nj
j P JpI, bq. In fact, we may write

tI, au “ tf̃1, ¨ ¨ ¨ , f̃`, au and tI, bu “ tg̃1, ¨ ¨ ¨ , g̃k, bu

with all f̃i, g̃j P I by rewriting the original pfiq
ni ’s in terms of finitely many elements

f̃1, ¨ ¨ ¨ , f̃` and a (and likewise for the g̃j ’s). But then by 2.13

tI, autI, bu Ď tab, t
ź

g̃j f̃iuij , tf̃iaui, tg̃jbuju Ď I

But then if z P I, then z2 P IXptI, autI, buq and so as tab, t
ś

g̃j f̃iuij , tf̃iaui, tg̃jbuju

is radical, z P tab, t
ś

g̃j f̃iuij , tf̃iaui, tg̃jbuju. Thus I “ tab, t
ś

g̃j f̃iuij , tf̃iaui, tg̃jbuju
and so I would finitely generated, a contradiction. Thus I is prime. �

2.3. Characteristic Sets and the Partial Ritt-Raudenbush. The framework
for differential algebra that we’ve considered corresponds to the study of a certain
class of ordinary differential equations, but can be extended to study algebraic
properties of partial differential equations as well.

Definition 2.17. A partial differential ring pR,∆q is a ring R equipped with a
(finite) family ∆ “ tB1, ¨ ¨ ¨ , Bnu of commuting R-derivations.6

The analogue of the Ritt-Raudenbush theorem is true in this setting, although
the proof is more involved: to perform an analogue of the reduction step of the ordi-
nary case of Ritt-Raudenbush, we must consider not a single differential polynomial
f of a specific type in the ideal I but rather a finite family C of ∆-polynomials called
a characteristic set. To define and motivate characteristic sets, we need the concept
of a ranking on the set of “∆-variables” (Better name for this?) in the ring of
∆-polynomials R∆txu.

Definition 2.18. Let pR,∆q be a partial differential ring with ∆ “ tB1, ¨ ¨ ¨ Bnu.
The ring of ∆-polynomials in m variables R∆tx1, ¨ ¨ ¨ , xmu is the ring

R

„

´

B
`1
1 ¨ ¨ ¨ B

`n
n xj

¯

p`1,¨¨¨ ,`nqPωn, jPt1,¨¨¨ ,mu



with each ki P t1, . . . , nu equipped with an extension of the elements of ∆ from R
to R∆tx1, ¨ ¨ ¨ , xmu given by setting

BjpBk` ¨ ¨ ¨ Bk1
xqq “ BjBk` ¨ ¨ ¨ Bk1

xq.

Let M∆ “ tθxi | θ “ Bkm ¨ ¨ ¨ Bk1
u Y tx1, ¨ ¨ ¨ , xmu be the set of ∆-variables. A

ranking ă on M∆ is a well-ordering satisfying two further conditions:

‚ For all u, v PM∆ and θ “ Bkm ¨ ¨ ¨ Bk1
, u ă v implies θu ă θv.

‚ For all u PM∆ and θ “ Bkm ¨ ¨ ¨ Bk1
‰ id, u ă θu.

Remark 2.19. ‚ The proof that R∆tx1, ¨ ¨ ¨ , xmu gives us a well-defined ∆-
ring is essentially the exact same as the argument that Rtxu is a B-ring.

5If either ideal were not a proper ideal then they would still be finitely generated as they are

then the unit ideal.
6Recall that Bi and Bj commute provided BipBjrq “ BjpBirq for all r P R.
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‚ An ordering on M∆ is essentially an ordering on the variables of R∆txu,
thought of as RrθxisθxiPM∆ compatible with the application of derivations.

Fixing a ranking ă on M∆ we can define, given a ∆-polynomial f , the auxiliary
∆-polynomials of initial and separant as in the ordinary case.

Definition 2.20. Fix a ranking ă on M∆ and f P R∆tx1, ¨ ¨ ¨ , xmuzR. The
variable of highest ă-rank, θxi, is called the leader uf of f .

Writing
f “ gdpuf q

d ` ¨ ¨ ¨ ` g1uf ` g0

with each gi P Rrθxi | θxi ă uf s and gd ‰ 0, we call gd the initial If of f .
Let B P ∆ and f P R∆tx1, ¨ ¨ ¨ , xmuzR. Then

Bf “ Bp
ÿ

gipuf q
iq “

ÿ

Bpgipuf q
iq “

ÿ

`

Bpgiqpuf q
i ` igipuf q

i´1Bpuf q
˘

By inspection, Bpuf q is the leader of Bpfq by combining the two compatibility con-
ditions necessary of ă and the fact that uf is the leader of f . But then we may
write

Bf “ sfBpuf q ` g̃

where g̃ P Rrθxi | θxi ă Bpuf qs. The coefficient of Buf is the separant of f and, by
the above computation, is independent of choice of B and is equal to

sf “
d
ÿ

i“1

igipuf q
i´1

The notions of ranking and of leaders of differential polynomials give us a way
to measure the complexity of a differential polynomial, allowing us to perform re-
duction and division procedures in an algorithmic fashion.

Definition 2.21. Let f, g P R∆tx1, ¨ ¨ ¨ , xmuzR. We say that f is reduced with
respect to g provided that

‚ f is partially reduced with respect to g: no term in f contains an instance
of a proper derivative of ug.

‚ If uf “ ug “: u, then degupfq ă degupgq.

Using this notion of reduction we can compare ∆-polynomials: we define for dif-
ferential polynomials f and g the relation f ă g just in case uf ă ug or uf “ ug
and deguf pfq ă degug pgq. Write f „ g if f ď g and g ď f , i.e. if f and g have the
same leading term and degree.

Remark 2.22. The definition of reduction makes no essential use or mention of the
underlying arithmetic of the coefficient ring R. Because of this, when we prove the
partial case of Ritt-Raudenbush we will have to simultaneously study the arithmetic
of R in conjunction with the bare structure of differential polynomials.

Example 2.23. In Qtxu (equipped with the unique ranking ă), x is partially
reduced with respect to x1 since x contains no proper derivatives of x1, but x1 is not
partially reduced with respect to x.

Now we come to the key technical notion underlying the definition of character-
istic sets, that of an autoreduced set of differential polynomials.

Definition 2.24. A subset A Ď R∆tx1, ¨ ¨ ¨ , xmu is autoreduced provided that for
all f ‰ g P A, f is reduced with respect to g.
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Example 2.25. If f P R∆tx1, ¨ ¨ ¨ , xmuzt0u then the singleton tfu is autoreduced;
thus there are always autoreduced sets.

In Ktx, y, zu for ∆ “ tBu, with monomial ordering

x ă y ă z ă Bx ă By ă Bz ă ¨ ¨ ¨

the set tB2x, B2y ´ Bx, BxByBzu is autoreduced.

A useful property of autoreduced sets is that they are necessarily finite:

Proposition 2.26. Let A Ď R∆tx1, ¨ ¨ ¨ , xmu be a set autoreduced with respect to
some ranking ă. Then A is finite.

Proof. We first recast what it means for A to be autoreduced in terms of the
leading monomials uf . Since being autoreduced demands that for any ordered pair
f, g P A that f is reduced with respect to g, the condition that uf “ ug implies
that deguf pfq ă degug pgq cannot ever hold and so for all f ‰ g P A, uf ‰ ug.
Thus, if we show that only finitely many leading terms uf occur in A then we will
have shown that A is finite. Moreover, the condition that no term of f contains an
instance of some proper derivative ug implies that uf is not some proper derivative
of ug (in fact, uf contains a proper derivative of ug if and only if it is a proper
derivative of ug).

Moreover, if A is infinite then within A there is an infinite subset Ax Ď A such
that for all f P Ax, the variable of uf is x, and certainly Ax is autoreduced.

With these observations in mind we can translate this problem to a combinatorial
problem. Since each leading term uf for f P Ax can be rewritten uniquely as

B
`1
1 ¨ ¨ ¨ B

`n
n x, and the statement that uf “ B

`1
1 ¨ ¨ ¨ B

`n
n x is a proper derivative of

ug “ B
k1
1 ¨ ¨ ¨ Bknn x is equivalent to saying that pk1, ¨ ¨ ¨ , knq ă p`1, ¨ ¨ ¨ , `nq where ď

is the partial order given by

pk1, ¨ ¨ ¨ , knq ă p`1, ¨ ¨ ¨ , `nq ðñ ki ă `i for i ď n.

If Ax were an infinite autoreduced set, then the set

tp`1, ¨ ¨ ¨ , `nq P Nn | pDf P Axquf “ B
`1
1 ¨ ¨ ¨ B

`n
n xu

must form an infinite antichain with respect to the pointwise partial ordering ď on
Nn. Thus we reduce the problem to the following claim: the pointwise order on
Nn has no infinite antichains. To do this it suffices to show that given an infinite
X Ď Nn there is exist a comparable pair of tuples px1, . . . , xnq, py1, ¨ ¨ ¨ , ynq P X.
We prove this by induction on n:

‚ (n “ 1) N is a linear order, so this is automatically satisfied.
‚ (n`1) Suppose that the result holds for Nn and that X Ď Nn`1 is an infinite

set. Consider the projection π : X Ñ N which maps px1, ¨ ¨ ¨ , xn`1q ÞÑ

xn`1. Then one of two things can happen: either πpXq contains an element
m with infinite fiber or every fiber π´1pmq is finite and πpSq is infinite.

Suppose that πpXq contains an element m with infinite fiber, consisting
of elements of the form px1, ¨ ¨ ¨ , xn,mq. The set

tpx1, ¨ ¨ ¨ , xnq | px1, ¨ ¨ ¨ , xn,mq P π
´1pmqu Ă Nn

is infinite and thus contains a comparable pair pu1, ¨ ¨ ¨ , unq ď pv1, ¨ ¨ ¨ , vnq.
But then pu1, ¨ ¨ ¨ , un,mq ď pv1, ¨ ¨ ¨ , vn,mq is a comparable pair in S, as
desired.
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Conversely, suppose that every element m P N has π´1pmq finite. Then
πpXq is necessarily infinite and so there exists an ascending sequence m1 ă

m2 ă ¨ ¨ ¨ . By the proof of the infinite fiber case above, we may assume that
for all j ď n ` 1 we have an infinite ascending chain in each coordinate:
consider the coordinate projections ρi : Nn`1 Ñ N. Then ρ1pXq Ď N is
an infinite linearly ordered set. Pick for each m P ρipXq a tuple xm with
ρ1pxmq “ m and set

X1 “ txm |m P ρ1pXqu

Now, the image ρ2pX1q is infinite by assumption as X1 Ď X and no fiber of
any number under any projection is infinite by assumption. Constructing
sets X2, ¨ ¨ ¨ , Xn`1 in the following way yields at the end an infinite set
Xn`1 of comparable elements under ď since, by construction, at stage ` we
ensured that the projection X` Ñ N` dropping the last n`1´` coordinates
consists only of comparable elements.

�

Remark 2.27. In the analogous case of several noncommuting derivations, autore-
duced sets need not be finite. For instance, in the case of the free noncommuting
derivations ∆ “ tB, θu on Q∆txu we have that the set tBθnxunPω is infinite and
autoreduced. One way to account for this is the existence of infinite antichains in
the tree 2ăω – tθ, Buăω, where each sequence s P tB, θuăω can be thought of as a
term in M∆.

The proposition also fails in the case of admitting infinitely many variables:
consider the ring KtpxiqiPωu with ∆ “ tBu and ordering the monomials in any way.
Then the set A “ tpxiqiPωu is autoreduced but infinite.

Autoreduced sets give admit a convenient division algorithm similar to that of
dividing by a single differential polynomial.

Proposition 2.28. Let A “ ta1 ă ¨ ¨ ¨ , aku be an autoreduced set with respect to

an ordering ă and f P R∆tx1, ¨ ¨ ¨ , xnu. Then there exists an f̃ P R∆tx1, ¨ ¨ ¨ , xnu

‚ r

˜

k
ś

q“1
I
`q
aqs

tq
aq

¸

f ” f̃ mod JpAq for some tuple p`1, t1, ¨ ¨ ¨ , `k, tkq P N2k and

r P R,
‚ f̃ reduced with respect to all elements of A,
‚ f̃ ď f

We call f̃ a remainder of f and say that f reduces to f̃ via A, written f ÑA f̃7.

Proof. The process is very similar to that for dividing by a single differential poly-
nomial. If f is already reduced with respect to all elements in A, then taking f̃ “ f
satisfies the conclusions of the proposition.

Suppose that f is not reduced with respect to all elements in A. If f is not
reduced with respect to A, we first ensure that f is partially reduced with respect
to A. We’ve ordered A by the differential polynomial ordering ă. By applying the

7a priori f may reduce to many f̃ with respect to A depending on how one performed a
reduction procedure. This is fine for us.
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single differential polynomial division algorithm8 to divide f by ak we may find a
differential polynomial fk such that fk is reduced with respect to ak and

I`jajs
tj
ajf ” fk mod JpAq9

Note that if f is already reduced with respect to ak then fk “ f . Repeating this
process to fk, then fk´1, all the way through f1 and noting that by construction fj
is reduced with respect to all am for m ě j by construction, after a finite number
of steps we will find an f̃ :“ f1 which is reduced with respect to all elements of A,
obtained only by multiplying f by powers of Ia and sa for a P A. �

We now define a partial ordering between autoreduced sets; the minimal elements
in this partial ordering will be our characteristic sets.

Definition 2.29. Given two autoreduced sets A “ ta1, ¨ ¨ ¨ , anu and B “ tb1, ¨ ¨ ¨ , bmu
with a1 ă ¨ ¨ ¨ ă an and b1 ă ¨ ¨ ¨ ă bn

10 we write A ă B if either:

‚ There is some 1 ď i ď n so that for all 1 ď j ď i´ 1, aj „ bj but ai ă bi
‚ m ă n and for all j ď m, aj „ bj .

Remark 2.30. In this partial ordering, for all autoreduced sets A we have that
A ă ∅.

As Tracey McGrail says in [7], “the order is lexicographic in nature, but ’humane’
comes before ’human.’”

Corollary 2.31. Let A1 ą A2 ą ¨ ¨ ¨ be a descending chain of autoreduced sets.
Then the chain eventually stabilizes; that is, there exists an n such that for all
m ą n, An “ Am.

Proof. Suppose that the chain A1 ą A2 ą ¨ ¨ ¨ does not stabilize. Then by the
definition of ă we have a descending chain of

a1,1 ą a2,1 ą ¨ ¨ ¨

where ai,1 P Ai is the first element. But this is an infinite descending chain in Nn`1

(counting degree), which is therefore finite and stabilizes: the ă-class of a1,j is the
same for all sufficiently large j ą 0. Now, amongst those Ai with a1,i stabilized, we
may compare the second elements a2,i, which must stabilize as well. Proceeding in
this fashion, we find that for all n we have a differential monomial ũn in all A` for
all ` sufficiently large. Picking a representative aj from some A` of the stabilized
class of the jth elements, this yields for all n the autoreduced set tajujďn. But
as being reduced is a property of pairs of pairs, we must have that tfjujPω is an
infinite autoreduced set. By 2.26, such sets do not exist and so A1 ą A2 ą ¨ ¨ ¨

must stabilize. �

Definition 2.32. Let I Ď R∆tx1, ¨ ¨ ¨ , xnu be a ∆-ideal. A characteristic set for I
is a ă-minimal autoreduced subset of ∆-polynomials in I.

8We did not consider the multivariate case in our original account of it, but the proof works
word-for-word for a choice of a differential ranking on the variables ofRtx1, ¨ ¨ ¨ , xnu in the ordinary

case
9since Jptajuq Ď JpAq.
10note that, as argued above, the case uf “ ug with f ‰ g does not occur for autoreduced sets
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Note that for any differential ideal I (or, really, any ideal) characteristic sets
exist. The two crucial properties we need for proving the Ritt-Raudenbush theorem
are their finiteness and their minimality ; their minimality allows us to control the
reduction process in much the same way that we were able to control the reduction
process in the proof of the ordinary case of Ritt-Raudenbush. The main lemma is
this:

Lemma 2.33. Let I Ď R∆tx1, ¨ ¨ ¨xmu be a differential ideal and C a characteristic
set for I. If f P I is with respect to C then f P I X R. Moreover, sc, Ic R I for all
c P C.

In the special case when R “ K is a field, if f P I is reduced with respect to C
then f P I XK “ t0u.

Proof. Suppose that f P I with f R I XR is reduced with respect to C. Let

Cf “ tc P C | c ă fu Y tfu.

Then Cf is autoreduced and Cf ă C by definition of Cf . But this violates the
minimality of C amongst autoreduced subsets of I, and so f must have been in
I XR.

Now suppose that either Ic or sc were in I. If Ic P I for some c P C then since
Ic ! c we can form the new autoreduced set C1 “ tg P C | g ă cu Y tc´ Icucu where
uc is the leader of c. But then C1 ă C, contradicting minimality.

Likewise, if sc P I then set

C1 “ tg P C | g ă cu Y tc´
1

d
scucu

where d “ degucpcq would also satisfy C1 ă C strictly, again contradicting the
assumption that C is a characteristic set. �

This reduction algorithm can actually be used to characterize which autoreduced
sets are characteristic sets:

Proposition 2.34. An autoreduced set A is a characteristic set for a differential
ideal I if and only if for all f P I, f reduces to some element in I XR with respect
to A.

Proof. The above argument yields the left-to-right direction.
For the other direction, suppose that A is autoreduced and for all f P I, f reduces

to some element of I X R with respect to A. Then no matter which f P IzA, we
have that

A ă Af “ ta P A | a ă fu Y tfu “ ta1, . . . , an, fu

since “humane comes before human:” as f is reduced with respect to A we have
that an`1 „ f . �

Example 2.35. Consider the case of Qtx, yu with a single derivation and monomial
ordering given by x ă y ă Bx ă By ă ¨ ¨ ¨ , and the ideal I “ JpB2x ` y, B2y ` xq.
Then I is a prime differential ideal since it is linear, and the set A “ tB2x`y, B2y`xu
is autoreduced. Since every element of I reduces to 0.

This process can be generalized: note that in the above example that JpAq “ I.
If I Ă K∆tx1, . . . , xnu is a differential ideal such that I “ Jpf1, . . . , fnq with
each f1, . . . , fn having unit initial and separant then a characteristic set is just
any autoreduced generating set for I by the above criterion. Since the theoretical
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interest in characteristic sets arises in radical differential ideals, which may or may
not be finitely generated as differential ideals, the assumption that I “ Jpf1, . . . , fnq
is a very special one to make. In the case of finitely generated linear differential
ideals like the one above, which are always prime, characteristic sets can be found
by repeatedly reducing the elements of a given generating set with respect to each
other, which must terminate.

Theorem 2.36. Suppose that pR,∆q is a commutative Ritt-Noetherian ring con-
taining Q. Then so is R∆tx1, ¨ ¨ ¨ , xnu.

Proof. Suppose that pR,∆q is a commutative Ritt-Noetherian ring containing Q.
We need to show that every radical differential ideal I Ď R∆tx1, ¨ ¨ ¨ , xnu is finitely
generated.

Step 1: Find a maximal counterexample. We wish to show the existence of
a radical differential ideal maximal amongst those that are not finitely generated.
The proof is word-for-word the same as the one given in the proof of 2.10.

Step 2: Find and use a characteristic set for I. By 2.31 we may extract
from I a characteristic set C. Now we have that for all c P C, Ic, sc R I by 2.33.
By primality of I, this implies that

ś

cPC
Icsc R I. This product makes sense as C,

being autoreduced, is finite by 2.26. Thus tI,
ś

cPC
Icscu is a finitely generated radical

differential ideal, which we may write as

tI,
ź

cPC
Icscu “ tg1, ¨ ¨ ¨ , gm,

ź

cPC
Icscu

Now let f P I. By applying the division algorithm 2.28 to f we find an f̃ such
that f̃ is reduced with respect to C and

r

˜

ź

cPC
I`cc s

pc
c

¸

f ´ f̃ P JpC, I XRq Ď I

But then f̃ P I and is reduced with respect to C and therefore by 2.33 f̃ P I XR11.
Therefore

r

˜

ź

cPC
I`cc s

pc
c

¸

f P JpC, I XRq Ď I

and so by multiplying by appropriate powers of f , Ic, and sc for c P C we can
conclude that

r

˜

ź

cPC
Icsc

¸

f P tC, I XRu Ď I

Since f P I was arbitrary we have that

t

˜

ź

cPC
Icsc

¸

Iu Ď tC, I XRu

so that

I2 Ď ItI,
ź

cPC
I`cc s

pc
c u Ď tI

ź

cPC
I`cc s

pc
c , Ig1, ¨ ¨ ¨ , Igmu Ď tC, I XR, g1, ¨ ¨ ¨ , gmu Ď I.

11In proofs of the Ritt-Raudenbush theorem in the case of differential polynomial rings over

fields, this step is usually omitted: in that case 2.33 yields that f is 0. Since we are not assuming

that R is a field, we must take care to ensure that the arithmetic of R is accounted for in the
proof.
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Since IXR Ď R is a radical differential ideal, it is finitely generated by the assump-
tion of Ritt-noetherianity for R. But then by radicality of tC, g1, ¨ ¨ ¨ , gmu, entails
that I “ tC, r1, ¨ ¨ ¨ , rk, g1, ¨ ¨ ¨ , gmu is finitely generated.

Appendix: The primality of I. Same proof as in the proof of 2.10. �

2.4. Basic Differential Algebraic Geometry: Properties of the Kolchin
Topology. To study the geometric properties of algebraic differential equations
we define an analogue of the Zariski topology for algebraic varieties– called the
Kolchin topology– that shares many of the same fundamental properties as the
Zariski topology. Our focus will be primarily on fields equipped with many com-
muting derivations.

Definition 2.37. Let pK,∆q be a differential field. A subset X Ă Kn is said to be
Kolchin closed provided X is the zero set of finitely many elements K∆tx1, . . . , xnu;
namely,

X “ Zpf1, . . . , fmq “
!

x P Kn |
ľ

1ďiďm

fipxq “ 0
)

A priori this particular set of subsets of Kn may not form a topology since it
only mentions zero sets of finite collections of differential polynomials.

Proposition 2.38. The set of Kolchin closed subsets of Kn forms a topology on
Kn.

Proof. To verify that the Kolchin closed subsets of Kn form a topology, we need
to check that ∅ and Kn are both Kolchin closed and that the family of closed sets
is closed under finite unions and arbitrary intersections. Clearly Zp0q “ Kn and
Zp1q “ ∅ and so both are Kolchin closed.

To prove the more nontrivial properties, note that it suffices to show that the
union of any two Kolchin closed sets is Kolchin closed. Given X “ Zpf1, . . . , fmq
and Y “ Zpg1, . . . , g`q, I claim that

X Y Y “ Z

ˆ

!

figj

)

iďm,jď`

˙

We first show that XYY Ă Z

ˆ

!

figj

)

iďm,jď`

˙

. If x P XYY then either x P X “

Zpf1, . . . , fmq or x P Y “ Zpg1, . . . , g`q, so that either fipxq “ 0 for all i ď m or
gjpxq “ 0 for all j ď `. In either case, figjpxq “ 0 for all i ď m and j ď `.

Conversely, if x R X Y Y then there is some i0 and j0 such that fi0pxq ‰ 0 and

gj0pxq ‰ 0. Since K is a field, fi0gj0pxq ‰ 0 and so x R Z

ˆ

!

figj

)

iďm,jď`

˙

.

Finally, we wish to show that the intersection of an arbitrary family of Kolchin
closed sets is Kolchin closed. To do so, suppose that Xi “ ZpFiq is Kolchin-closed
with Fi a finite family of elements of K∆tx1, . . . , xnu. To prove the results, we
define the locus of a differential ideal I as follows:

ZpIq “ tx P Kn | fpxq “ 0 for all f P Iu

Note that since K is a field, ZpIq “ Zp
?
Iq and, moreover, for an arbitrary set of

differential polynomials F , ZpFq “ ZptFuq. Finally,
č

ZpFiq “ Z
´

ď

Fi
¯
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so that
č

ZpFiq “ Z
´

ď

Fi
¯

“ Z
´!

ď

Fi
)¯

“ Zpg1, . . . , gmq

for some finite list of g1, . . . , gm P K∆tx1, . . . , xnu since every radical differential
ideal is finitely generated. �

Moreover, the proof that the Zariski topology is closed under intersection imme-
diately implies that the Zariski topology is Noetherian: since

č

ZpFiq “ Z
´

ď

Fi
¯

“ Zpg1, . . . , gmq

with each gi P Fdpiq for some function d : N Ñ N we have that an arbitrary
intersection of closed sets is equal to an intersection of finitely many of them. Thus

Proposition 2.39. The Kolchin topology on Kn is Noetherian.

Ritt-Noetherianity moreover implies an analogue of primary decomposition which
allows us to talk about irreducible components in the context of the Kolchin topol-
ogy

Proposition 2.40. Let R be a Ritt-Noetherian ring. Then any non-unit radical
differential ideal I is the intersection of a finite set of prime differential ideals.
Moreover, the set of prime differential ideals occurring in any such decomposition
is unique provided the decomposition is irredundant in the sense that if P is the set
of primes then

Ş

P “ I but for all P 1 Ă P proper then
Ş

P 1 ‰ I.

Proof. Suppose otherwise, so that there exists an ideal I maximal amongst those
that are not expressible as the intersection of a finite number of prime ideals. To
apply Zorn’s lemma to show that there is such a maximal element, let tIαuαăλ be
a chain. By Ritt-Noetherianity, there are no infinite chains of radical differential
ideals and so the maximal element of the chain is an upper bound amongst those
radical differential ideals that are not the intersections of finitely many prime ideals.

By construction, I itself is not prime, so that there is some r “ ab P I with
a, b R I. But then tI, au and tI, bu contain I properly and so are themselves the
intersection of finitely many prime differential ideals, provided that they are non-
unit ideals. To see this, suppose that tI, au “ p1q. Then JpI, aq “ 1 since 1m “ 1
for all m. Then we may write

1 “ c`
ÿ

θ

rθθpaq

so that by multiplying by b we obtain

b “ cb`
ÿ

θ

rθθpaqb

I now claim that since I is radical, for all θ “ Bm1
1 ¨ ¨ ¨ Bmnn we have that bθpaq P I.

It suffices to show that this is the case for θ “ B for some B P ∆. Indeed, since I is
a radical differential ideal

Bpabq “ aBpbq ` bBpaq P I

and so
abBpbq ` b2Bpaq P I

but then since ab P I we have that, by subtracting abBpbq and then multiplying by
Bpaq

b2Bpaq2 P I
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so that by radicality

bBpaq P I

as desired.
But

tI, autI, bu Ď tI2, Ia, Ib, abu Ď I

and if c P tI, au X tI, bu then c2 P I by above, so that c P I by radicality. Hence

tI, au X tI, bu “ I

is the intersection of finitely many prime ideals.
Now, for uniqueness, suppose that

I “
č

P “
č

Q

for irredundant families of prime differential ideals P and Q. We first claim that for
all q P Q there exists a p P P such that q Ě p. Suppose otherwise; if q contains none
of the p P P then we may find ap P pzq for all p P P. Then

ś

pPP
ap P

Ş

P “ I Ă q

but none of the ap P q, contradicting primality of q, proving the result. Likewise
for every p P P there is a q P Q such that p Ą q. Similarly, every p P P is contained
in some q P Q.

We go by induction on the size of Q. The case that |Q| “ 1 is trivial. Suppose
|Q| ě 1. Pick q P Q and find p Ă q inside P. Then either p “ q or p ‰ q. If p “ q
then applying induction to Qztqu and Pztpu finishes the job. If p ‰ q then by the
above argument we may find some q1 P Q such that p Ą q1. But then

q Ą p Ą q1

so that q Ą q1 properly, contradicting the irredundancy of q. Thus the induction
goes through and P “ Q. �

Remark 2.41. The natural notion of Noetherian dimension is not as well-behaved
in the context of differential algebraic geometry as it is in usual algebraic geometry.
Recall that a closed set X in a Noetherian space has dimension defined as follows:

dimpXq “ suptn | DX “ X0 Ą X2 Ą ¨ ¨ ¨ Ą Xn with each Xn closed irreducible u

Now note that in the case of Kolchin-closed sets the supremum may not exist in
N. For instance, we have an ascending chain tXiu with each Xi “ ZpBipxq “ 0q
which is properly ascending over a sufficiently rich differential field K (such as a
differentially closed field, which will be discussed shortly). Then for each n we have
the chain

K “ X0 Ą Xn Ą Xn´1 Ą ¨ ¨ ¨ Ą X1 “ ZpBpxq “ 0q

Later on we will discuss some notions of dimension that are amenable to studying
differential algebraic geometry.

Primary decomposition gives some insight into the structure of maximal differ-
ential ideals:

Proposition 2.42. Let R be a Ritt-Noetherian ring and I Ă R a maximal proper
differential ideal. Then I is prime.
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Proof. Since I is proper,
?
I is also proper as 1 R I means that 1n R I for all n P ω.

Then I Ă
?
I and so, by maximality, I “

?
I. But then I is a radical differential

ideal and so I “
Ş

Pi for some prime differential ideals Pi by primary decomposi-
tion. But then I “ Pi for one (any) of the Pi’s occuring in the decomposition, so
that I is prime. �

Remark 2.43. While every maximal differential ideal is a prime ideal, it is not the
case that every maximal differential ideal is a maximal ideal. For example, consider
the ring R “ Crx, ys equipped with the derivation that is trivial on C and satisfying
Bpxq “ x and Bpyq “ ´y. Then the prime ideal I “ xxy ´ 1y is a differential ideal
as

Bpxy ´ 1q “ Bpxqy ` Bpyqx “ xy ´ yx “ 0.

Since I is a curve and C is algebraically closed, the only prime ideals properly
containing I are maximal ideals of the form ma,b “ xx´ a, y ´ by with a, b P C such
that ab “ 1. In particular, a, b ‰ 0. Now, the ideals ma,b are not differential ideals:
if they were, then Bpx´ aq “ x so that

a “ px´ aq ´ Bpx´ aq P ma,b

so that ma,b “ p1q, which is clearly false.
Since I is a prime differential ideal and the only prime ideals containing it are

maximal, non-differential ideals, I is a maximal differential ideal which is not a
maximal ideal.

2.5. Differentially Closed Fields. At this point we introduce the fields that play
an analogous role to algebraically closed fields in the context of studying differential
equations: differentially closed fields. For simplicity we give only the definitions for
the single-derivation case:

Definition 2.44. A differentially closed field pF, Bq is an differentially closed field,
i.e. if for every finite system of equations and inequations involving differential
polynomials in F tx1, . . . , xmu for some m with a solution in some L Ą F then
there exists a solution in F , i.e. if F is an existentially closed differential field.

A differential field pK, Bq is a model of DCF0 provided that for any nonconstant
differential polynomials f, g P Ktxu with ordpgq ă ordpfq there is some x P K such
that fpxq “ 0 and gpxq ‰ 0.

The above axiomatization of DCF0 can be easily translated into the first-order
language of differential rings

LB´rings “ t0, 1,`,ˆ, Bu.

We will show that models of DCF0 are differentially closed. The following propo-
sition implies the converse: that differentially closed fields model DCF0.

Proposition 2.45. Let pK, Bq be a differential field. Then there exists a pK̂, B̂q Ě
pK, Bq modeling DCF0.

Proof. Suppose that f P Ktxu and ordpgq ă ordpfq. Then there is an irreducible

factor f̃ of f which has order ordpfq. As f̃ is irreducible, the division algorithm
guarantees that g R Jpfq. But then setting K 1 “ FracpKtxu{Jpfqq yields a field
such that the image of x under the canonical projection satisfies fpxq “ 0 but
gpxq ‰ 0.
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To construct a differentially closed field using this procedure, first enumerate the
set of pairs

tpf, gq | ordpgq ă ordpfq and there is no x P K with fpxq “ 0 and gpxq ‰ 0u

This set has size ď |K|. Sequentially construct differential field extensions adding
points witnessing differential closure as above. The new field K1 obtained this way
may not be differentially closed; but repeating this process to construct K2, K3,
and so on yields an ascending chain

K Ă K1 Ă K2 Ă ¨ ¨ ¨

such that each pair pf, gq in Ki with no x P Ki witnessing fpxq “ 0 and gpxq ‰ 0

has such a witness in Ki`1. Thus the field K̂ “
Ť

Ki is differentially closed. By this

construction, we see that we can take |K̂| “ |K| since it is obtained by adding only
|K|-many points at each stage and that there are only countably many stages. �

We now prove that DCF0 admits elimination of quantifiers in this language:

Theorem 2.46. DCF0 eliminates quantifiers in the language LB´rings.

Proof. We use a standard model-theoretical test for quantifier-elimination proven
in the appendix (A.1): if for any K,L |ù DCF0 with k Ă K,L a differential field
and a P kn and φpv, wq a quantifier free formula in LB´rings with K |ù φpa, bq then
L |ù Dwφpa,wq.

Replacing K,L with sufficiently saturated elementarily equivalent models and
that k “ dclpaq. We simply need to show that k xbyB – k xb1yB for some b1 P L so
that L |ù φpa, b1q. We argue this as follows:

Let K,L |ù DCF0 be sufficiently saturated and suppose that k Ă K, l Ă L are
small isomorphic B-fields, isomorphic via σ. Then for all a P K there is b P L such
that σ extends to an isomorphism

σ̂ : k xayB Ñ l xbyB .

We break into two cases: if a is satisfies a nontrivial differential polynomial over
k or not12. If a is differentially transcendental then by ω-saturation we may find a
realization of σ˚ptppa{kqq “ p P Splq inside L, so that k xayB – l xbyB.

If a is differential algebraic over k then let f be a minimal polynomial of IBpa{kq.
Let g “ σ˚pfq P ltxu. Then the partial type

tgpxq “ 0u Y thpxq ‰ 0 |hpxq P ltxu and h ! gu.

This type is finitely satisfiable, and so it is satisfiable and by saturation we find a
realization b of it in L. But then

k xayB – ktxu{IBpa{kq – ltxu{IBpb{lq – l xbyB .

Thus, in either case we may extend the isomorphism and so we have quantifier
elimination. �

Quantifier elimination immediately implies the following characterization of de-
finable sets in DCF0.

12If a does satisfy a nontrivial differential polynomial over k then we say it’s differentially
algebraic over k; otherwise we say that a is differentially transcendental over k
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Proposition 2.47. Every formula in LB´rings is equivalent modulo DCF0 to a
formula of the form

ł

0ďiďm

«

ľ

1ďjďni

fijpvq “ 0^ gipvq ‰ 0

ff

.

Proof. Quantifier elimination immediately tells us that every formula is equivalent
to one of the form

ł

0ďiďm

«

ľ

1ďjďni

fijpvq “ 0^
ľ

1ďkď`i

gkipvq ‰ 0

ff

.

But since
Ź

1ďkď`i

gkipvq ‰ 0 is equivalent to
ś

1ďkď`i

gki ‰ 0 since we’re in a field, we

can set gi “
ś

1ďkď`i

gki to yield the desired result. �

This characterization allows us to classify and count the types in DCF0.

Proposition 2.48. Given a type p P Snpkq, let

Ip “ tf P ktx1, . . . , xnu | “fpxq “ 0” P pu.

The map p ÞÑ Ip is a bijection from Snpkq to the set of prime differential ideals
over ktx1, . . . , xnu.

Proof. The map is clearly well-defined, and Ip is prime since for all f, g if fgpxq “
0 P p then either fpxq “ 0 P p or gpxq “ 0 P p since p is a complete type. Thus we
need to show that it is both injective and surjective.

For injectivity, suppose that p ‰ q P Snpkq. Then there is a formula φpx, aq P pzq
equivalent to a formula of the form

ł

0ďiďm

«

ľ

1ďjďni

fijpvq “ 0^ gipvq ‰ 0

ff

with fij and gi all in ktx1, . . . , xnu. But then φpx, aq P p iff fij P Ip and gi R Ip for
all i, j. Since p ‰ q, this means that either some fij R Iq or some gi P Iq; in either
case Ip ‰ Iq.

For surjectivity, let I be a prime differential ideal, so that ktx1, . . . , xnu{I is a
differential domain. Then Fracpktx1, . . . , xnu{Iq is a field and tppx{kq ÞÑ I under
the above function. Hence p ÞÑ Ip is surjective. �

Corollary 2.49. Over any base field k, |Snpkq| “ |k| and so DCF0 is ω-stable and,
in particular, totally transcendental.

Proof. Over any differential field K, there are at most |Kăω| “ |K| prime differ-
ential ideals in K by the Ritt-Raudenbush theorem. Thus there are at most |K|
types, so that DCF0 is ω-stable. �

Using quantifier elimination we can prove that models of DCF0 are differentially
closed as well as the differential analogue of the Nullstellensatz:

Theorem 2.50. (1) (Models of DCF0 are existentially closed) Let k be a B-
field and Σ a finite collection of equations and inequations over k with a
solution in some differential field l Ą k, then Σ has a solution in any K Ą k
with K |ù DCF0.



NOTES ON DIFFERENTIAL ALGEBRA 25

(2) (Algebra-geometry correspondence)Let K |ù DCF0 and Σ Ă Ktx1, . . . , xnu
and V Ă Kn. Set

V pΣq “ tx P Kn | p@f P Σq fpxq “ 0u

and

IpV q “ tf P Ktx1, . . . , xnu | p@x P V qfpxq “ 0

Then

IpV pΣqq “ tΣu

Proof. (1) Suppose that there is a solution to Σ in some extension l Ą k. Then

l is contained inside a differentially closed l̂, and any point in l solving Σ

remains a solution to Σ in l̂. But then by quantifier elimination, there being
a solution to Σ is equivalent to a quantifier-free sentence φΣ over k, so that

l̂ |ù φΣ ðñ l |ù φΣ ðñ k |ù φΣ

But then if K Ą k is any differentially closed field,

k |ù φΣ ðñ K |ù φΣ

so that K has a solution of Σ.
(2) Note first of all that tΣu Ď IpV pΣqq since IpV pΣqq contains Σ and is a

radical differential ideal as K is a field so that if fnpxq “ 0 for all x P V pΣq
then fpxq “ 0.

Conversely we show that IpV pΣqq “ tΣu. Suppose that IpV pΣqq ‰ tΣu.
Since tΣu Ă IpV pΣqq this means that there is some g P IpV pΣqqztΣu. But
then g R tΣu and so by the decomposition theorem we may find a prime
ideal P Ą tΣu with g R P . Then the field FracpKBtx1, . . . , xnu{P q Ą K has
a point z P V pΣq such that g R IBpz{kq, as does its differential closure. But
then by the above argument there must be such a point in K, contradicting
the assumption that g P IpV pΣqq.

�

While we showed above that any differential field F is contained inside some dif-
ferentially closed field, DCF0 being ω-stable actually gives us much more: there is a
unique-up-to-differential-isomorphism differentially closed F̂ Ą F with the property
that if L |ù DCF0 contains F then F̂ embeds into L.

Corollary 2.51. Let pF, Bq be a differential field. Then there exists a differential

field F̂ , unique up to differential field isomorphism, such that if K |ù DCF0 and

contains F , then there is an embedding F̂ Ñ K.

Proof. By ω-stability of DCF0 (2.49) and the results on existence (A.5) and unique-
ness (A.6) of prime models for ω-stable theories in the appendix on model theory

we have prime models F̂ |ù DCF0 for any differential field F .
Note that by quantifier elimination (2.46) if K |ù DCF0 then any differential

field embedding F̂ Ñ K is an elementary embedding. �

Remark 2.52. We note here that we can give an a priori non-first-order axiom-
atization of what it means for a differential field with m commuting derivations to
be differentially closed:
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A ∆-field pF,∆q is differentially closed provided every finite system of differential
polynomial equations and inequations in F∆tx1, . . . , xmu for any m that has a
solution in some L Ą F has a solution in F .

It turns out that there is a first-order axiomatization for this theory, but we will
not discuss it here.

A crucial fact that we will use when we come to differential Galois theory is the
precise relationship between the fields of constants of F and F̂ .

Proposition 2.53. Let F be a differential field and F̂ its differential closure. Then

CF̂ “ Calg.F

Proof. First note that CF̂ Ą CalgF since every order-zero (i.e. algebraic) differential
polynomial over CF has a solution inside CF̂ .

We now wish to show that CF̂ Ă CalgF , which means that we need to show that
every a P CF̂ is algebraic over F . It suffices to show that trdegF pFB xayq “ 0. Since
Ba “ 0, trdegF pFB xayq ď 1. Moreover, since a P F , its type tppa{F q is isolated by
a quantifier free formula φ of the form

ľ

fipxq “ 0^ g ‰ 0.

If trdegpa{F q “ 1 then, since C is a pure algebraically closed field it is strongly
minimal φ is of the form

Bpxq “ 0^ gpxq ‰ 0

for g P F rxs a polynomial. But this cannot be an isolating formula since there exists

a P CF satisfying this formula. Thus trdegpa{F q “ 0 and so a P CalgF . �

Similarly, every element of F̂ is differentially algebraic over F :

Proposition 2.54. Let a P F̂ . Then a satisfies a nontrivial differential polynomial
f P F txuzt0u.

Proof. Suppose a satisfies no nonzero differential polynomial f P F txuzt0u. Since
tppa{F q is isolated and a, we may pick an isolating formula φ of the form fpxq ‰ 0.

Suppose that f is of order n; then inside F̂ there is a solution b to

Bn`1pxq “ 0^ fpxq ‰ 0

so that a ‰ b. But then tppa{F q is not isolated by φ, a contradiction. �

Finally, we end this section by showing that the class of definable sets in DCF0

represents quotients. In other words, that DCF0 eliminates imaginaries.

Proposition 2.55. Let T be a theory that has at least two constant symbols and
eliminates imaginaries. Then for all definable equivalence relations E on Mn there
exists a definable function fE : Mn ÑMm such that

T |ù pxEy ðñ fEpxq “ fEpyqq

Remark 2.56. Note that if T eliminates imaginaries then, given a definable set X
and equivalence relation on X we may identify the quotient X{E with the image
fEpXq, which is another definable set.

Theorem 2.57. DCF0 eliminates imaginaries.
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Proof. The proof of the theorem is in three steps:
Step 1: Reduce to coding conjugacy classes of differential ideals. First

of all note that every definable equivalence relation E is of the following form:

Eφpy, zq ðñ @x pφpx, zq Ø φpx, yqq .

and that, for all φpx, yq, Eφ is an equivalence relation13. Then an automorphism
of a model K |ù DCF0 fixes φpx, aq if and only if it fixes the Eφ-class of a. Let
p1, . . . , pn be the finitely many types over U of maximal Morley rank containing
Eφpy, aq and partition them into their G-conjugacy classes P1Y¨ ¨ ¨YPk where G is
the group of global automorphisms fixing Eφpy, aq setwise. If we can find for each
conjugacy class Pj a finite tuple bj depending on a such that Pj is fixed setwise if
and only if bj is fixed pointwise then by compactness we can find formulas ψj such
that bj is the unique element such that

Eφpy, aq ðñ
ľ

j

ψjpy, bjq

so that we get a definable map a ÞÑ b “ pb1, . . . , bkq.
We reduce to the case of looking at a single conjugacy class of tp1, . . . , pku; by

concatenating tuples we get the result that we want. So assume that Ip1 , . . . , Ipk are
conjugate prime differential ideals. Now an automorphism σ permutes tp1, . . . , pku
if and only if it permutes the corresponding differential prime ideals Ip1

, . . . , Ipk .
Our goal is therefore to find a finite tuple b so that the pi are permuted if and only
if b is fixed pointwise.

Step 2: Reduce to the algebraic case. Let I “
Ş

Ipj . Then Ipj is a radical
differential ideal, and σ fixes I setwise if and only if it permutes Ip1

, . . . , Ipk . By
2.10 we know that that I “ tf1, . . . , fmu, so that there is an m such that each

f` P Krx
pjq
i | 1 ď i ď m and 1 ď j ď ns “ R0

Set I0 “ IXR0. Then σ fixes I setwise if and only if σ fixes I0 setwise. We now find
a field k Ă K finitely differentially generated such that I is fixed setwise if and only
if k is fixed pointwise if and only if some choice of finite tuple of generators b for
k is fixed pointwise. We can resort to looking at fields of definition for polynomial
ideals by our reduction to looking at the ideal I0 Ă R0.

Step 3: Construct fields of definition. Consider the K vector space R0{I0.
Let B be a basis of monomials for this vector space. Then every monomial u P R0

can be written as u “ p
ř

au,`b`q ` gu with au,` P K and b` P B and gu P I0. Note
that the au,` are uniquely determined by our choice of B. Then u´p

ř

au,`b`q is in
I0 and in fact generate I0 since the B are a basis. Let

k “ Q xau,`y

Then every element of I0 has coefficients in k. Moreover this is a finitely generated
field extension since the ideal generated by the au,` is finitely generated, so that
k “ Q xa1, . . . , any. �

13If E is a definable equivalence relation defined by φpx, yq, then Eφpy, zq holds iff Epy, zq

holds by a very easy computation.
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2.6. Differential Dimension Polynomials. We argue here the polynomial growth
of the transcendence degree of a differential field extension. On the face of it, how-
ever, “growth” has to measure something changing, and a differential field extension
on its own is not something that changes. However, given a differential field exten-
sion K “ F pη1, ¨ ¨ ¨ , ηnq∆q over F , we may write K as the union of the fields

Kη,q :“ F

˜

θηi | 1 ď i ď n and θ “ Bj11 ¨ ¨ ¨ B
j`
` with

ÿ

1ďkď`

jk ď q

¸

.

The Kq are simply the fields generated by applications of operators in Θ of order
less than or equal to q to the generators η1, ¨ ¨ ¨ , ηn. The differential dimension
polynomial ωη{F measures the transcendence degree trdegFKq for q " 0 sufficiently
large.

Theorem 2.58. Let η “ tη1, ¨ ¨ ¨ , ηnu be a finite tuple of elements of some ∆ “

tB1, . . . , Bmu-field extending F and let K “ F pηq∆. Then there exists a numerical
polynomial ωη,F such that

(1) For q " 0,

trdegF pKη,qq “ ωη,F pqq

(2) degpωη,F q ď |∆| “ m

Proof. The proof of the theorem goes by reducing the algebraic problem– counting
the size of a transcendence basis forKq over F– to a combinatorial problem obtained
by looking at a characteristic set of ∆-locus loc∆pη{F q.

Step 1: Find dependencies.
Since loc∆pη{F q is a radical differential ideal of F∆tx1, ¨ ¨ ¨ , xnu we can extract

from it a characteristic set Cη. As

f P loc∆pη{F q ðñ fpηq “ 0

we have that for all c P Cη, cpηq “ 0 but that Scpηq ‰ 0 ‰ Icpηq. As Icpηq ‰ 0 we
have that ucpηq is algebraic over the field extension

F pθηi | 1 ď ` ď n and θηi ă uaq

and so if v “ θuc then similarly vpηq is algebraic over

F pθηi | 1 ď ` ď n and θηi ă vq

by differentiating the polynomial witnessing the algebraicity of ua and using the
fact that Ivpηq “ Scpηq ‰ 0.

Step 2: Reduce to a combinatorial problem Set

V “ tθxi | θxi ‰ θ1uc for any θ1 and c P Cη with ordpθ1q ě 1u “ tθxi | p@c P Cηqθxi ğ ucu

and let V ptq “ tθxi | θxi P V and ordpθq ď tu
By construction Kη,t is algebraic over KV,t :“ F pvpηq | v P V ptqq and, moreover,

trdegF KV,t “ |V ptq| since otherwise we would find some nonzero ∆-polynomial f
in loc∆pη{F q such that fpv1pηq, ¨ ¨ ¨ , vmpηqq “ 0 for some enumeration of V ptq. Re-

ducing pfpv1, ¨ ¨ ¨ , vmqqpuq with respect to C yields another polynomial f̃ equivalent

to fpv1, ¨ ¨ ¨ , vmq modulo C and thus identical as functions on KV,t. But then f̃ “ 0
since it is reduced with respect to C, so that fpv1, ¨ ¨ ¨ , vnq is the zero function,
contradicting our assumption that it was a nontrivial relation between the vpηq’s
for v P V ptq.
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We put V in correspondence with a subset of t1, . . . , nu ˆNm as follows. Define
a map L from differential variables θxi to t1, . . . , nu ˆ Nm by mapping

θxi “ B
`1
1 ¨ ¨ ¨ B

`m
m xi ÞÑ pi, `1, . . . , `mq.

Then let Cη Ñ t1, . . . , nu ˆ Nm given by mapping c ÞÑ Lpucq and call its image
LpCηq the lattice of Cη. Then L is a bijection between V and LpV q and, moreover,
LpV q is the complement of the set of elements greater than or equal to the elements
of LpCηq.

Step 3: Count. It therefore suffices to show that for V Ď N as above, |V ptq|
has polynomial growth in t. We construct ωη by induction on m and the quantity

SpCηq “
ÿ

cPCη

|∆|
ÿ

i“1

ni,c

where ni,c is the order of uc relative to Bi. In other words, ni,c is the unique natural
number such that uc “ B

n1,c

1 ¨ ¨ ¨ B
ni,c
i ¨ ¨ ¨ B

nm,c
k xj .

If SpCηq “ 0 then either LpCηq “ ∅ or LpCηq “ p0, . . . , 0q. If it’s the former case
then

|V ptq| “
n
ÿ

i“1

|tp`1, . . . , `mq |
ÿ

`i ď tu| “

ˆ

t`m

m

˙

If it’s the latter case then |V ptq| “ 0, so the case SpCηq “ 0 is finished.
Suppose now that SpCηq ą 0 but that for all n ă SpCηq and p ă m “ |∆| we

have the result. If SpCηq ą 0 then there is some point pi, `1, . . . , `mq P LpCηq with
not all `j equal to 0. We may assume that `m ‰ 0. We partition LpCηq into the
two sets: L0 and L1 as follows:

L0 “ tv “ vpi, `1, . . . , `m´1q P t1, . . . , ku ˆ Nm´1 | pv, 0q P LpCηqu

L1 “ tpi, `1, . . . , `mq | `m ‰ 0 and pi, `1, . . . , `m`1q P LpCηq or `m “ 0 and pi, `1, . . . , `mq P LpCηqu
By induction there is a polynomial ω0ptq that is asymptotically equal to the size of
the complement of L0 of size ď t, while the size of the complement of L1 of size
less than t is also asymptotically a polynomial ω1pt´ 1q, so that

|V ptq| “ ω0ptq ` ω1pt´ 1q “ ωηptq

is a polynomial. �

Thus, associated to a tuple η “ pη1, ¨ ¨ ¨ , ηmq in some ∆-field extension K{F
we may associate to it a numerical polynomial ωη{F . A natural question arises: is
ωη{F an invariant of the field extension F∆pηq{F? The answer to this is no, as can
be seen by how taking prolongation sequences affects the behavior of the Kolchin
polynomial.

Definition 2.59. Let η “ pη1, ¨ ¨ ¨ , ηnq P K be an element in a ∆-field. Fix an
ordering ∆ “ tB1, ¨ ¨ ¨ , Bku. The prolongation of η, ∇pηq, is the element

∇pηq “ pη, B1pηq, ¨ ¨ ¨ , Bkpηqq P K
pm`1qn.

For ` ą 1 The `th prolongation of η, ∇`pηq is defined recursively as follows:

∇`pηq “ ∇p∇`´1pηqq P Kpm`1q`n
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Remark 2.60. The fact that ∇``1pηq extends ∇`pηq can be restated by saying
that applying the natural projection

ρ``1
` : Kpm`1q``1n Ñ Kpm`1q`n

given by projecting the first pm` 1q`n coordinates to ∇``1 behaves as follows:

ρ``1
` p∇``1qpηq “ ∇`pηq

Note that, as sequences, ∇``1pηq extends ∇`pη for all ` P ω. The full prolongation
sequence of η, ∇8pηq “ t∇`pηqu`Pω

In this context, we note that the ∆-field generated by η over F is precisely the
pure field extension F p∇8pηq, and that moreover for all ` P ω,

F∆p∇`pηqq “ F p∇8pηqq
Thus, if ωη{F were an invariant of the ∆-field generated by η, then in particular

it would have to satisfy ωη{F “ ω∇pηq{F . However, ∇ acts as the shift operator at
the level of Kolchin polynomials.

Proposition 2.61. Let η P Kn with F Ď K. Then

ω∇pηq{F pnq “ ωη{F pn` 1q

Proof. Restating the definition of the Kolchin dimension-counting function in terms
of prolongations we have that for sufficiently large m that

ω∇pηq{F pmq “ trdegF pF p∇mp∇pηqqq “ trdegF pF p∇m`1pηqq “ ωη{F pm` 1q.

Thus ω∇pηq{F pmq ´ωη{F pm` 1q “ 0 for m " 0 and so, as they are univariate poly-
nomials in m we have that ω∇pηq{F pmq ” ωη{F pm` 1q on the nose as polynomials
in m. �

This proposition allows us to cook up many examples witnessing the fact that
the Kolchin polynomial is not an invariant of the ∆-field extension K{F .

Example 2.62. Let F “ Q, ∆ “ tB1u, and let η be a differential transcendental
element. For instance, take K “ FracpQ∆txuq and η “ x. Then

ωx{Qpnq “ n

but
ω∇pxq{Qpnq “ n` 1.

Note that if η is comprised solely of elements in K∆“0 or elements in F then
ωη{F is a constant number and so ω∇pηq{F “ ωη{F .

While the Kolchin polynomial is not a birational invariant of the point η, it is a
generic property of η in the following sense:

Proposition 2.63. Suppose that η1, η2 P K
n are such that

I∆pη1{F q “ I∆pη2{F q “ p.

Then
ωη1{F “ ωη2{F

Proof. This follows from the proof that ωη{F is a numerical polynomial; namely,
ωη{F can be computed solely in terms of a characteristic set for the ideal p “
I∆pη{F q. Thus, if two points η1 and η2 have the same associated differential ideals
over F then they have the same characteristic sets and therefore the same Kolchin
polynomials. �
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3. Differential Galois Theory

3.1. Binding Groups and Internality. In this section we give a näıve approach
to the construction of model theoretic Galois groups called binding groups in a
similar manner as that developed by Poizat in Stable Groups [9]. Loosely speaking,
Poizat’s approach takes as input two definable sets X and Y , with X internal to Y .
Intuitively, internality is basically a condition that says that Y parametrizes X in a
strong definable way. Using this parametrizing function, one builds up a definable14

group of automorphisms of X fixing Y . This theory allows one to provide a nice,
coherent generalization of Kolchin’s theory of strongly normal extensions and the
associated Galois theory as well as a slick, conceptual proof that the differential
Galois group is an algebraic group.

Definition 3.1. Let T be a theory and let X and Y be definable sets. We say
that X is internal to Y provided there exists a point c P Xm and function u :
Xn ˆ Y m Ñ X such that for all x P X

x “ upc, yq

for some y P Y n. Such a u is called an internality function and a choice of c is
called a fundamental system of solutions of X relative to Y via u.

Remark 3.2. ‚ We often represent the data implicit in the statement “X is
internal to Y via u” as a triple pX,Y, uq. We call this an internal triple. A
fundamental system for pX,Y, uq is a tuple c P Xn such that the function
upc, yq : Y m Ñ X is surjective.

‚ An example of internality that we’ve already seen is the case of linear
differential equations: In a model of DCF0, a linear differential operator L
of order n in a single variable has a solution space ZpLq which has dimension
n over the constants C. Let c “ pc1, ¨ ¨ ¨ , cnq P K

n be a basis for ZpLq. Then
ZpLq is internal to C via the function u : ZpLqn ˆ Cn given by

upx, yq “
ÿ

1ďiďn

xiyi

and taking as our fundamental set of solutions x “ c.
‚ Note that, in general, there is no unique choice of u to witness the in-

ternality of X to Y . For instance, in the above case of linear differential
equations we could replace the function upx, yq “

ř

1ďiďn

xiyi with the func-

tion ũpx, yq “
ř

1ďiďn

2xiyi still provides a witness to internality. We will

see later on that the binding groups constructed depend only on
the pair pX,Y q; in other words, the choice of u does not affect the
binding group even though the explicit presentation does invoke
u.

Given an internal triple pX,Y, uq and choice of fundamental system c we can
construct the binding group BindpX,Y, u, cq, which is an explicitly presented inter-
pretable group in T .

14Really, it’s a group interpretable in Y together with all induced structure
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Construction 3.3. Let T be a (complete) totally transcendental theory MT,
M |ù T the prime model, and let pX,Y, uq be an internal triple and c P XpMqn a
fundamental system15.

Step 1: Find a definable set in natural correspondence with the group
of automorphisms in question. The binding group BindX,Y, u, c is a definable
group of permutations of XpMq fixing Y pMq pointwise, defined as follows. We
first note that given c P XpMqn a fundamental set of solutions for X and σ P
AutpM{Y pMqqq, σ|X is determined uniquely by where σ maps c, since for all x the
equation

σpxq “ σpupc, yqq “ upσpcq, yq

is determined by the fact that σ is an automorphism fixing Y pMq. Now, the
collection of all fundamental systems c for the internal triple pX,Y, uq is a definable
subset of Xn:

FundpX,Y, uq “ tz P Xn | p@x P Xq pDy P Y mqx “ upz, yqu Ď Xn

Within the set FundpX,Y, uq is the subset tppc{∅q Ď FundpX,Y, uq. This type is
isolated by a formula φc P LpMq.16 Using φc we can set up a bijective correspon-
dence

AutXpM{Y pMqq “ tσ|XpMq |σ P AutpM{Y pMqqu – φcpMq

given by mapping σ ÞÑ σpcq P φcpMq and z P φcpMq mapping to the unique σ P
AutpM{Y pMqqmapping c to z. The map φcpMq Ñ AutXpM{Y pMqq is well-defined
because prime models are homogeneous Model theory fact; include and because
the and these maps are clearly inverses. This therefore identifies AutpM{Y pMqq as
a set with a definable set φc.

Step 2: Lift the problem from X to Y and use u to define the group
law. We now wish to show that we can endow φc with the structure of a definable
group in such a way that AutXpM{Y pMqq – φc as groups. This definable group
will be called the binding group BindpX,Y, u, cq. The approach we take for doing
this is to use the internality function u, together with c, to lift the problem to a
problem in Y .

Since elements of AutXpM{Y pMqq are in natural correspondence with elements
of φcpMq, which is a certain subset of fundamental systems living inside Xn, we
slightly tweak u in order to obtain another, related, internal triple that allows us
to represent the composition of automorphisms. The function

û : Y nm ˆXn Ñ Xn

given by the equation

ûpy1, . . . , yn, xq “ pupy1, xq, . . . , upyn, xqq

is surjective, as is the function ûc “ ûp´, cq : Y mn Ñ Xn.17 With this in mind, the
set φc is internal to the subset

Ŷc “ û´1
c pφcq Ď Y mn

15We can find such a c in M because saying that there exists a fundamental system for the
internal triple pX,Y, uq can be straightforwardly expressed as a single first order sentence

16A priori this depends on choice of choice of function u witnessing internality as well as the

choice of fundamental system c. In the end we will argue that the binding group is independent

of this choice up to definable isomorphism.
17In fact, it is surjective for any fundamental system z P FundpX,Y, uq, not just c.
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via û.18

Thus we may regard φc as a set interpretable in the induced structure on Y as
follows:

φcpMq – Ŷ mnc { „c

where

py1, ¨ ¨ ¨ , ynq „c py
1
1, ¨ ¨ ¨ , y

1
nq ðñ ûpy1, ¨ ¨ ¨ , yn, cq “ ûpy11, ¨ ¨ ¨ , y

1
n, cq

We may now represent the group law on φc by coding a σ|X P AutXpM{Y pMqq by

a equivalence class of rpy1, . . . , ymqs„c :“ rys P Ŷc as follows: let rys, rws P Ŷc. Then

rys ˚ rws :“ the unique rvs such that ûprvs, cq “ ûprys, ûprws, cqq

The identification Ŷc{ „c with AutXpM{Y pMqq via the function

rys ÞÑ σrys the unique σ|X P AutXpM{Y pMqq such that σpcq “ uprys, cq

satisfies
σrys˚rws “ σrys ˝ σrws

by construction and therefore induces a group structure on Ŷc isomorphic to that
of AutXpM{Y pMqq. We define the binding group of pX,Y, u, cq to be

BindpX,Y, u, cq :“ pŶc, ˚q

equipped with all structure induced by T eq.

Remark 3.4. ‚ Note that the choice of c and u are immaterial at the level
of classifying BindpX,Y, u, cqpMq as an abstract group: no matter what
choice of internality function u and fundamental system c we choose, the
identification of AutXpM{Y pMqq with φc goes through and, at the level
of group structure, we have that if pX,Y, u1, c1q and pX,Y, u2, c2q are two
quadruples witnessing the internality of X to Y then the above argument
yields

BindpX,Y, u1, c1qpMq – AutXpM{Y pMqq – BindpX,Y, u2, c2qpMq

‚ In fact, more than being isomorphic as abstract groups, these groups are
definably isomorphic. If pX,Y, u1, c1q and pX,Y, u2, c2q are as above with
isomorphisms

θi : BindpX,Y, ui, ciq Ñ AutXpM{Y pMqq

given by the identification

rysci ÞÑ the unique σ such that σpciq “ uiprysci , ciq

Then

θ´1
2 ˝ θ1 : BindpX,Y, u1, c1qpMq Ñ BindpX,Y, u2, c2qpMq

is a definable automorphism, mapping

ry1sc1 ÞÑ the unique ry2sc2 such that u1pry1sc1q “ u2pry2sc2q

which is a definable relation. It is an isomorphism as it is the composition
of two isomorphisms.

‚ The group BindpX,Y q is interpretable in the induced structure on Y .

18Again, this set facially depends on the choice of internality function u and fundamental
system c.
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So far we’ve constructed a definable group of automorphisms of the prime model
M of T , but what is the significance of the definable group BindpX,Y q as we move
to other models of T?

Proposition 3.5. Let T be totally transcendental, pX,Y, uq an internal triple, and
N |ù T . Then for all elements a, b P XpNq, a and b are conjugate by an element
of BindpX,Y q if and only if tppa{Y pNqq “ tppb{Y pNqq.

Proof. Suppose that tppa{Y pNqq “ tppb{Y pNqq. Then since a “ upy, cq for some
class in Y pNq, we have that b “ upy, c1q since pDz P FundpX,Y, uqq b “ upy, zq is a
formula in tppa{Y pNqq “ tppb{Y pNqq. But then the automorphism σ|X mapping
c ÞÑ c1 exists and is unique, and takes a ÞÑ b.

On the other hand, suppose that a and b are conjugate via an element of the
group BindpX,Y, u, cqpNq. Now, over the prime model M of T , tppc{Y pMqq is
isolated by φc. This exactly says that there are no tuples of Y pMq witnessing
φcpzq ^ φcpz

1q ^ ψpz, yq ^ ψpz1, yq; in other words, for all formulas φpz, yq we have
that

T |ù p@y P Y q rpφcpzq ^ φcpzqq Ñ pψpz, yq Ø ψpz1, yqqs

which means that φc isolates the type of c over Y pNq as well. But since any element
of BindpX,Y, u, cq preserves φc, which isolates the type of c, it preserves the types
of any element of XpNq as, over any base XpNq Ď dclpY pNq Y tcuq. �

3.2. Pillay’s X-strongly-normal theory. Using the machinery of binding groups,
Pillay is able to generalize Kolchin’s Galois theory of so-called strongly normal ex-
tensions of differential fields, which themselves generalize the Picard-Vessiot theory
of linear differential equations. Pillay’s definition guarantees that the automor-
phism groups in question have the structure of binding groups and that there is a
Galois correspondence.

Throughout this section we fix a large model U |ù DCF0 that everything we
consider embeds into.

Definition 3.6. Let F be a differential field, X a set definable from parameters in
F in the language of B-rings, and K a differential field such that F̂ Ą K Ą F . We
say that K is an X-strongly-normal extension of F provided

(1) XpF q “ XpK̂q for some differential closure K̂ of K.
(2) K is finitely generated over F as a differential field.
(3) For any embedding σ : K Ñ U fixing F ,

σpKq Ď K xXpUqyB

Remark 3.7. ‚ Condition (1) above is the analogue of the algebraically closed
constants and no new constants condition in the Picard-Vessiot theory.

‚ Condition (2) guarantees that K “ dclpF, aq for some finite tuple a; the
finiteness of this tuple is a technical assumption that will let us move to
the framework of binding groups.

We now show how to go from an X-strongly-normal extension to a binding group,
which has the structure of an interpretable group in the induced structure on X.

Construction 3.8. Given K an X-normal extension of F , we wish to construct
a definable group G with isomorphism θ : AutXpK xXpUqy {F q Ñ GpUq and that

θpAutpK{F qq “ GpF̂ q under this same identification.
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To do this, we construct a binding group out of information from the X-strongly
normal extension. By assumption, we may pick a tuple a P U such that K “

F xay “ dclpF Ytauq. Since DCF0pF q is totally transcendental, the type tppa{F q is
isolated by a formula φa. Now, b P φapUq if and only if there is some σ P AutpU{F q
such that σpaq “ b by the homogeneity of U . But then σpaq P σpKq Ď K xXpUqy
and so, given a, b P dclpF Y XpUq Y tauq. Thus there is an F -definable function
fbpa, xq such that fbpa, xq “ b for some choice of tuple x P XpUqm. Because we
cover φa as the ranges of such functions, the compactness theorem allows us to
find a single function u : X0 Ñ φa witnessing the internality of φa to a subset of
X0 Ď Xm. Let

G :“ Bindpφa, X0q

We now wish to relate G to the automorphism groups in question.
First of all, since F̂ is the prime model of DCF0pF q, we claim that

GpF̂ q – AutφcpF̂ {pF YX0pF̂ qqq – AutpK{F q.

The first isomorphism is given by the usual identification of the binding group with
the group of automorphisms of the prime model of a totally transcendental theory
T fixing pointwise the parameters F and X0pF q with the prime-model-points of
the group. The second identification occurs since an automorphism of K fixing F
is determined uniquely by the restriction of σ to a as K “ dclpF Y tauq, and since
any such automorphism must map a to some element σpaq P φa that generates K.

We can identify

GpUq – AutXpK xXpUqy {F q

by the homogeneity of U and the property that φa isolates the type of a over F .

This construction moreover admits a very general Galois correspondence:

Theorem 3.9. Let K be an X-strongly-normal extension of F with Galois group
G. For L (F Ă L Ă K) an intermediate differential field set

GL “ tg P G | p@c P Lq gpcq “ cu.

Then

(1) K is an X-strongly-normal extension of L,
(2) GL is an F -definable subgroup of G and GL is the Galois group of K over

L
(3) The assignment L ÞÑ GL is a bijective correspondence between intermediate

finitely-differentially-generated differential subfields of K containing F and
the F -definable subgroups of G

(4) L is an X-strongly-normal extension of F if and only if GL Ă G is a normal
subgroup.

Proof. (1) We first check that K is an X-strongly-normal extension of L. This
follows straightforwardly from the definition since
‚ XpF q “ XpK̂q “ XpL̂q “ XpLq since F Ă L Ă K and F̂ “ L̂ “ K̂.
‚ K is finitely differentially generated over L as

K “ FB xay Ă LB xay Ă K

‚ if σ : K Ñ U is an L-embedding then σ is also an F -embedding, so
that σpKq Ă KB xXpUqy.
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Note that in this step of the proof we did not use that L is finitely differ-
entially generated over F .

(2) We first show that GL is an F -definable subgroup of G. Since F Ă L Ă

K “ FBpaq with F̂ “ K̂, we have that L̂ “ F̂ . Moreover, L “ FB xby
for some finite tuple b P L. Since b P K, b “ hpaq for some F -definable
function h. Let up´,´q : FundpK,X0q ˆGÑ K be the function mapping
a fundamental system for K to its image under application by G: upa, gq “
gpaq. Then for g P G,

gpbq “ b ðñ hpaq “ gphpaqq “ hpgpaqq “ hpupa, gqq ðñ p@c P FundpK,X0qqhpcq “ hpupc, gqq

and so GL is an F -definable19 subgroup of G.
We now wish to show that GL is the Galois group of K over L. Let

σ P AutXpKB xXpUqy {Lq and let gσ “ θpσq P G. Then

hpaq “ hpσpaqq “ hpgpaqq

so that g P GL by the above characterization of GL. Likewise if σ P θ´1pGLq
then σ P AutXpKB xXpUqy {Lq since it stabilizes L and fixes X pointwise.

(3) We now check that F -definable subgroups of G correspond to intermedi-
ate finitely-differentially-generated extensions of F . Let H Ă G be an
F -definable subgroup and consider the K-definable coset of a under H:

WH :“ tgpaq | g P Hu

By elimination of imaginaries in DCF0 there is a code cH for WH living in
K. Set

LH “ FB xcHy .

As argued above K is an X-strongly-normal extension of LH with Galois
group GLH . We claim that

GLH “ H.

To see this we show that H Ă GLH and that GLH Ă H.
‚ If g P H then for all h P H we have that

gphpaqq “ pghqpaq PW

so that θ´1pgqpW q “ W and thus θ´1pgqpcHq “ cH , so that g P GLH
by construction.

‚ If g P GLH then gpW q “ W so that gpaq P W . But then gpaq “ hpaq
for some h P H, hence g “ h P H.

This shows that the map H ÞÑ LH ÞÑ GLH is the identity; we now check
that the map L ÞÑ GL ÞÑ LGL is the identity. Indeed, if L “ FB xby then b
is a code for GL, so that

LGL “ FB xcGLy “ FB xby “ L

so that these maps are mutual inverses.
(4) We finally wish to check that normal F -definable subgroups of G correspond

to intermediate X-normal subextensions L{F of K.
First we check that if H ŸG then LH is X strongly normal over F Note

that, by assumption, L is finitely generated over F and that XpF q “ XpL̂q,

19The function h may have introduced parameters from F not present in the original data.
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so that we need only check the condition that for any σ : LH Ñ U fixing
F ,

σpLHq Ă pLHqB xXpUqy

Indeed, we know that σpLHq Ă KB xXpUqy since K is X strongly normal.
Now we wish to show that σpLHq Ă pLHqB xXpUqy. This follows immedi-
ately from normality of H.

�

We can sharpen this result by showing that the hypothesis that L is a finitely
differentially generated subextension of K over F is redundant:

Proposition 3.10. Suppose that K is an X strongly normal extension of F . Then
any intermediate differential field F Ă L Ă K is also finitely differentially gener-
ated.

Proof. SKETCH: Requires more thorough treatment of the Galois theory
of types and type-definable Galois groups The above Galois correspondence
goes through verbatim for type-definable subgroups of G and (a priori) infinitely
differentially generated subextensions L. But the descending chain condition on
differential algebraic groups would yield for any infinitely differentially generated
subextensions L an F -definable group GL, whose code is a finite tuple which also
generates L. �

3.3. Galois Theory of Linear Differential Equations. The theory of binding
groups and X strongly normal extensions outlined above has conceptual elegance
and give a very general and widely applicable account of Galois theory. In this
section, however, we study the classical Picard-Vessiot theory of linear differential
equations which Kolchin’s strongly normal and Pillay’s X strongly normal theories
generalize. We first review some of the basic theory of ordinary linear differential
equations and then reconstruct the Picard-Vessiot approach to Galois theory using
the model-theoretical machinery that we have developed.

Definition 3.11. Fix pF, Bq an ordinary differential field. A linear differential
operator of order n over F is a differential polynomial L P F txu of the form

Lpxq “ xpnq `
n´1
ÿ

i“0

aix
piq

A homogeneous linear differential equation of order n over F is an equation of
the form

Lpxq “ 0

for L an order n linear differential operator.

Our goal is to understand, over various differential field extensions K Ą F , the
structure of the space of solutions ZpLqpKq Ă K. We first establish that ZpLq
admits a natural CK vector space structure and that its dimension is bounded
above by ordpLq.

Proposition 3.12. Let L be a linear differential operator over F and K Ą F . Then
pZpLq,`q forms an additive subgroup of K which is a vector space of dimension
ď ordpLq.
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The typical proof of the dimension bound of this proposition uses the notion of
the wronskian of a tuple of elements in K.

Definition 3.13. Let x1, . . . , xn P K. The wronskian wpx1, . . . , xnq of this collec-
tion of elements is the determinant of the matrix

Wrpx1, . . . , xnq “
´

x
pjq
i

¯

1ďiďn;0ďjďn´1

The wronskian gives a way of measuring linear independence over the constants.

Proposition 3.14. Let x1, . . . , xn P K. Then wpx1, . . . , xnq “ 0 if and only if
x1, . . . , xn are linearly dependent over CK .

Proof. Suppose that x1, . . . , xn are linearly dependent over CK , so that there exist
c1, . . . , cn P CK not all zero with

ÿ

cixi “ 0.

Then
ř

cix
pjq
i “ 0 for all j P ω, so that

n
ÿ

i“1

cirx
pjq
i s

T
0ďjďn´1 “ 0

yielding linear dependence of the column vectors of Wrpx1, . . . , xnq, so that

wpx1, . . . , xnq “ 0.

Conversely, suppose that wpx1, . . . , xnq “ 0. Then there are a1, . . . , an P K such
that

n
ÿ

j“1

ajrx
pjq
i s

T
0ďjďn´1 “ 0

By dividing and reordering we may assume that a1 “ 1 and that wpx2, . . . , xnq ‰ 0.
But then

x
pjq
1 `

n
ÿ

j“2

ajx
pjq
i “ 0

for all j. Differentiating we have that

x
pj`1q
i `

n
ÿ

j“2

ajx
pj`1q
i `

n
ÿ

i“2

pajq
1x
pjq
i “ 0.

But since

x
pj`1q
1 `

n
ÿ

j“2

ajx
pj`1q
i “ 0

we have that
n
ÿ

j“2

pajq
1x
pjq
i “ 0

for all j. But then if pa1q
1, . . . , panq

1 P K are not all 0, then

wpx2, . . . , xnq “ 0

a contradiction. Thus pa1q
1, . . . , panq

1 are all 0 so that a1, . . . , an P CK . �



NOTES ON DIFFERENTIAL ALGEBRA 39

Remark 3.15. The real utility of the wronskian is that gives a field-independent
way to measure the linear dependence of a set of elements living in some differential
field. In other words, for any differential field K Ą F , we have the following
equivalences

x1, . . . , xn are linearly independent over CF ðñ wpx1, . . . , xnq ‰ 0

ðñ x1, . . . , xn are linearly independent over CK .

This characterization of linear dependence over the constants of a differential
field provides us with our upper bound on the CK-dimension on ZpLqpKq.

Proof. We first check that ZpLqpKq is a CK vector space. If s1, s2 P ZpLqpKq and
c1, c2 P CK then

Lpc1s1 ` c2s2q “ c1Lps1q ` c2Lps2q “ 0` 0 “ 0

so that c1s1 ` c2s2 P ZpLqpKq.
We now argue that dimCK pZpLqpKqq ď ordpLq. Let ordpLq “ n and let L “

xpnq `
ř

aix
piq. If x1, . . . , xn`1 P ZpLqpKq then the first j rows for 1 ď j ď n are

of the form px
pj´1q
1 , . . . , x

pj´1q
n`1 q while the last row can be rewritten as
´

ÿ

´aix
piq
1 , . . . ,

ÿ

´aix
piq
n`1

¯

so that the rows are dependent and wpx1, . . . , xn`1q “ 0, so that any set of n ` 1
elements of ZpLqpKq is dependent. Thus dimCK pZpLqpKqq ď ordpLq. �

In general, a differential field pF, Bq may have no nontrivial solutions to a ho-
mogeneous linear differential equation. For instance, if pF, Bq “ pC, 0q then the
differential equation x1 ` x “ 0 has no nonzero solutions. That being said, given
any linear differential operator L it is possible to find a K Ą F with maximum
possible dimension.

Proposition 3.16. Let F be a differential field and L a linear differential operator
of order n, then inside any differentially closed F Ă K |ù DCF0 we have that
dimCK pZpLqpKqq “ n.

Proof. We build up solutions to L inside K by induction using the axiomatization
of DCF0. A first solution exists inside K since

pLpxq “ 0q ^ p1 ‰ 0q

satisfies the criteria for having a solution inside K.
Suppose that a1, . . . , a` are CK-linearly independent solutions to L for ` ă n.

We wish to find an ``1st linearly independent solution. Since ` ă n, the differential
polynomial rwpa1, . . . , a`qspxq P Ktxu has order ` ă n, so that by the axioms of
differentially closed fields, we know that the system

Lpxq “ 0^ rwpa1, . . . , a`qspxq ‰ 0

is has a solution a``1 in K. Since wpa1, . . . , a`, a``1q ‰ 0, a1, . . . , a``1 are CK
linearly independent.

This process terminates after adjoining an nth solution since then the polynomial
rwpa1, . . . , anqspxq has order n and we can no longer adjoin new linearly independent
elements. �
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We call a CK-basis for ZpLqpKq a fundamental system of solutions for L. Our
the Picard-Vessiot theory centers on Picard-Vessiot extensions, which are highly
related to Pillay’s X strongly normal extensions.

Definition 3.17. Let K{F be differential fields. K is a Picard-Vessiot extension
of F for the linear operator L provided

‚ K “ FB xa1, . . . , any for ta1, . . . , anu a fundamental system of solutions for
L.

‚ CK “ CF .

Many results in the Picard-Vessiot extension are proven under the assumption

that CK “ CalgK , and in this case a Picard-Vessiot extension is in fact an example
of a C normal extension in the Pillay theory.

Proposition 3.18. Assume that K{F is Picard-Vessiot with CK “ CalgK . Then K
is C strongly normal.

Proof. K is a finitely differentially generated extension by construction, and since

CK “ CalgK we have that
CK̂ “ CK “ CF .

It remains to show that for all embeddings σ : K Ñ U fixing F that σpKq Ă K xCU y
for our universe U . If σ : K Ñ U is an F -embedding, then it is determined by its
image σpa1q, . . . , σpanq. But each σpaiq must also lie in ZpLqpUq as the coefficients
of L are all in F . But then as ta1, . . . , anu are linearly independent over CK they
are also linearly independent over CU by the wronskian condition, and therefore
form a basis for ZpLqpUq. This means that there exist constants c1, . . . , cn P CU
such that

σpaiq “
ÿ

ciai

so that σpaiq P KB xCU y. �

Therefore whenever we have a Picard-Vessiot extension K{F with CK “ CalgK we
are free to use any of the results from Pillay’s X strongly normal theory, including
the Galois correspondence.

Our main theoretical goals at this point are twofold:

(1) Under the assumption that CF “ CalgF we will show that Picard-Vessiot
extensions always exist by using the model-theoretic machinery we’ve built
up.

(2) Since Picard-Vessiot extensions are C strongly normal, their Galois groups
are algebraic groups over C. We will show that, in fact, their Galois groups
are linear algebraic by giving a definable representation of GalpK{F q into
GLnpCq for n “ ordpLq. We will see this using the explicit function wit-
nessing the internality of fundamental sets of solutions to L to C.

Proposition 3.19. Let F be a differential field such that CF “ CalgF and L over
F a linear differential operator. Then there exists a Picard-Vessiot extension K{F

contained inside the differential closure of F , F̂ .

Proof. Model-theoretic proof. Since CF “ CalgF , CF “ CF̂ . Since we can always

find a fundamental system of solutions to L “ 0 inside F̂ pick a1, . . . , an P F̂ a
CF -basis for L “ 0 and set

K “ FB xa1, . . . , any .
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Then K is generated by a fundamental system of solutions to L “ 0 and

CF Ă CK Ă CF̂ “ CF

so that CK “ CF .
�

We now show that given a Picard-Vessiot extension K{F for L of order n, the
Galois group is not just an algebraic group over C, but in fact a subgroup of
GLnpCq.

Proposition 3.20. Let K{F be a Picard-Vessiot extension K{F for L of order
n with binding group G. Then there is a faithful definable representation G Ñ

GLnpCq, so that G is a linear algebraic group.

Proof. We identify G as a set with the set of realizations of p “ tppa1, . . . , an{F q
of some fundamental set of solutions of L as in the binding group construction. If
g P GpF q then knowing the formulas gpaiq “

ř

cijai for all i uniquely determines
g, so that the map

g ÞÑ Ag :“ pcijq P GLnpCq

is injective, and is well-defined since the ai being a basis for ZpLqpF̂ q means that
the pcijq are unique. Moreover, the set

G̃ Ă GLnpCq

given by

G̃ “ tpcijq P GLnpCq | pDg P Gq ^ gpaiq “
ÿ

cijaiu

is definable. The map g ÞÑ Ag is a group homomorphism since

Aghpa1, . . . , anq
T “ ghpa1, . . . , anq “ gphpa1, . . . , anqq “ AgpAhpa1, . . . , anq

T q

for all g, h P G. �

To finish off our study of Picard-Vessiot extensions we compute a few differential
Galois groups.

We first address the relationship between Picard-Vessiot theory and the usual
algebraic Galois theory: algebraic Galois extensions of differential fields with alge-
braically closed constants are Picard-Vessiot? The answer is yes, following Cormier,
Singer, and Ulmer [11].

Theorem 3.21. Let K be a differential field such that CK “ CalgK . Let f P Krys be
an irreducible polynomial. Then its splitting field Kf is a Picard-Vessiot extension
of K.

Proof. We assume that f is irreducible of degree m and write f as

fpyq “ ym `
m´1
ÿ

i“0

aiy
i P Cpxqrys.

We now construct a linear operator Lf such that ZpLf q is spanned by the solutions
of f .
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Let z1, . . . , zm be the solutions of f . Then for each zi the (unique) derivation on
Kpziq extending B is given by

Bpziq “ ´

m´1
ř

j“0

a1jz
j
i

mzm´1
i `

m´1
ř

j“1

jajz
j´1
i

given by differentiating the formula fpziq “ 0. Note that this equation is implied
by the equation f “ 0.

We claim that there is some n such that the solutions of f satisfy a nontrivial
order n homogeneous linear differential equation. Since Kpziq{K is a dimension m
vector space over K we have that

zi, pziq
1, . . . , z

pmq
i

must be linearly dependent over K: there exists b0, . . . , bm not all zero such that
m
ÿ

j“0

bjz
pjq
i “ 0.

The same bj work for all zi satisfying f . Pick n ď m minimal such that the zi
satisfy a linear differential equation of order n and call it Lf pyq.

Then any root of f solves Lf . To show that Kf is itself Picard-Vessiot we must
show that inside Kf we can find a fundamental system of solutions and that Kf

has no new constants.

‚ (No new constants) Since Kf is an algebraic extension of K, Kf Ă K̂ which
has constants CK , so that

CK Ă CKf Ă CK̂ “ CK

so Kf has no new constants.
‚ (Fundamental system of solutions) Let L be the Picard-Vessiot extension
Lf and let G be its Galois group. Then G acts on Zpfq and so the vector
space V generated by tz1, . . . , zmu is invariant under the action of G. and,
therefore, satisfies a linear differential equation of order ď ordpLf q which
is a factor of Lf :

LV “ wpy, z1, . . . , zmq{wpz1, . . . , zmq

has coefficients fixed by G and is therefore an equation over K, of order
ď ordpLf q. But Lf has minimal order, so that Lf and LV differ only
by a multiple factor and so V generates L as well as Kf . Thus Kf is a
Picard-Vessiot extension.

Finally we claim that GpCKq “ GalpKf {Kq. Since any σ P GalpKf {Kq fixes CK
by construction, and since Bpziq is a rational function in K, any σ P GalpKf {Kq is
an element of GpCKq and visa versa. �

Example 3.22. Consider K “ Cpxq and consider the equation

y3 ´ x “ 0.

Then differentiating the equation on both sides yields

3y2y1 ´ 1 “ 0
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so that

y1 “
1

3y2
“

y

3y3
“

1

3x
y

But then

Lf “ y1 ´
1

3x
y

is our associated linear differential operator. The solutions of f are

Zf “ tx
1{3, ξx1{3, ξ2x1{3u

for ξ a primitive cube root of unity. But then the C vector space generated by Zf
is dimension 1 and the Galois group is cyclic of order 3.

3.4. Algebraic D-Groups and Logarithmic Derivatives. With the tools de-
veloped in the previous section applied to the single-derivation case we can show
that every X-strongly normal field extension K over an algebraically closed base
field F “ F alg can be written as

K “ F xαyB

where α is a tuple satisfying a certain equation called a logarithmic differential
equation over some algebraic group.

FINISH

3.5. Constrained Cohomology. In analogy with algebraic geometry, one can
study an analogue of Galois cohomology called Kolchin’s constrained cohomology
in the context of differential algebraic geometry. Given the model-theoretic tools
that we have developed so far, we opt to follow the approach of Pillay, who showed
that constrained cohomology is a special case of his so-called definable cohomology.
To give some substance to the theory we will discuss how one may use definable
cohomology in classifying certain special extensions of structures, including how to
use constrained cohomology to classify generalized strongly normal extensions of a
given differential field.

The general setup of Pillay’s theory of definable cohomology is to work in a
first-order structure M and subset A ĂM such that M is atomic and (strongly?)
homogeneous over A. G “ GpMq will be an A-definable group20 and Gal will be
the group AutpM{Aq automorphisms of M fixing A pointwise.

Note that Gal acts on G since G is A-definable: if ψpa, xq is the formula defining
G, then σpGq is defined by the ψpσpaq, xq “ ψpa, xq, so that σpGq “ G and so any
σ P Gal induces an automorphism of G.

Definition 3.23. A cocycle from Gal to G is a set-theoretic function f : GalÑ G
such that for all σ, τ P Gal,

fpσ ˝ τq “ fpσq ¨ σrfpτqs P G.

We say that f is a definable cocycle provided that it is represented by a definable
function hpx, yq in the following sense: there exists a finite tuple c such that for all
σ P Gal,

fpσq “ hpa, σpaqq

Cocycles f and g are cohomologous, written f „ g provided there is some b P G
such that for all σ P Gal

gpσq “ b´1fpσqσpbq.

20There’s no need to take G to be abelian for the general construction
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Note that „ is an equivalence relation as G is a group. A trivial cocycle is one that
is cohomologous to the cocycle e : Gal Ñ G given by the function epσq “ eG for
all σ P Gal. Namely, a trivial cocycle is a cocycle of the form fbpσq “ b´1σpbq for
some given b P G.

The first definable cohomology set H1
def pGal,Gq is the set of cocycles modulo

the relation „ of being cohomologous.21

We now give two geometric interpretations of H1
def pGal,Gq: one corresponding

to classifying principal homogeneous spaces of the group G up to G-equivariant
definable isomorphism, and one corresponding to classifying the A-forms of an A-
definable set X.

To interpret definable cohomology in the context of definable principal homoge-
neous spaces, we fix a few definitions.

Definition 3.24. A definable principal homogeneous space X over A for a definable
group G consists of the following data:

‚ A definable set X definable over A
‚ A definable regular (right) action of G on X; that is, a right action G ýX

definable over A such that for all x1, x2 P X there is a unique g P G such
that x1 ¨ g “ x2

An A-isomorphism of definable G-principal homogeneous spaces X and Y over A
(with actions ¨X and ¨Y of G on X and Y respectively) is a definable isomorphism
f : X Ñ Y over A such that for all g P G and x P X,

fpx ¨X gq “ fpxq ¨Y g,

i.e. f is a G-equivariant definable isomorphism between X and Y .
The set of A-definable principal homogeneous spaces for G up to isomorphism

is denoted PHSApGq.

Definable cohomology (over A) classifies definable principal homogeneous spaces
for G up to A-isomorphism.

Proposition 3.25. There is a correspondence between PHSApGq and classes of
cocycles in H1

def pGal,Gq.

Proof. The main idea is to find a canonical way to associate to an X P PHSApGq
an element of cX P H

1
def pGal,Gq and visa versa.

First suppose that X P PHSApGq. Then pick x0 P X. For any σ P Gal there is
a unique gσ P G such that

σpx0q “ x0 ¨ gσ.

Define cXpσq “ gσ. This map is a cocycle as

x0 ¨ gστ “ στpx0q “ px0 ¨ gτ q ¨ τpgσq

by construction. Note that this is a definable cocycle as it is represented by the
map

hpx, yq “ the unique g P G such that x ¨ g “ y

21If G is a group, then H1
def pGal,Gq is in fact a group. The set of cocycles is a group under

pointwise multiplication in G: f ˚ gpσq “ fpσqgpσq is a cocycle as

f ˚ gpστq “ fpστqgpστq “ fpσqσrfpτqsgpσqσrgpτqs “ f ˚ gpσqσrf ˚ gpτqs.

It is easy to see that trivial cocycles are a normal subgroup of this group.
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by taking x “ x0.
The cohomology class of cX is independent of choice of x0, since if x1 “ x0 ¨ g

then the resulting cocycle c̃ is cohomologous to cX via

c̃pσq “ g´1 ¨ cXpσq ¨ σpgq

which comes from “untwisting” the action of c̃pσq by first moving x1 to x0 via g´1

and computing everything from there.
Conversely, we wish to construct an A-definable principal homogeneous space Xc

out of a given cocycle c P H1
def pGal,Gq. By representing c as hpx0, σpx0qq, let X0

be a formula isolating tppx0{Aq (which exists by our assumption that M is atomic
over A) and for all x, y P X0, hpx, yq P G by choice of X0. �

Forms
THE ARITHMETIC PICTURE
Following the yoga of using binding groups to glean information about differential

Galois theory, the geometric interpretations of H1
def can be used to give results

about the existence and uniqueness of strongly normal extensions of a differential
field k.

To motivate how definable cohomology could show up in this context, consider

the case of a linear differential operator L over a field K with CK “ CalgK . In
this setting we have the existence and uniqueness of Picard-Vessiot extensions of
K for the equation L “ 0. In this case any extension of the form Kpaq for any
element a P FundpZpLqq is a Picard-Vessiot extension of K, and if two elements
a, b P FundpZpLqq have the same type over K then the resulting extensions Kpaq
and Kpbq are K-isomorphic differential fields for trivial reasons. On the other hand,
if tppa{Aq ‰ tppb{Aq, when do we know that Kpaq –K Kpbq?

For instance, consider the differential operator L “ B2 over the field K “ C.
Then the tuples p1, tq and pt, 1q in Cptq2 have different types over K but still yield
isomorphic Picard-Vessiot extensions of K, as can be witnessed by the isomorphism
f : tppp1, tq{Cq Ñ tpppt, 1q{Cq given by fpx, yq “ py, xq, which is defined over C.
In other words, there exists a C-definable isomorphism between the types of these
two elements which guarantees that these extensions are isomorphic. More geo-
metrically, the types tppp1, tq{Cq and tpppt, 1q{Cq are both principal homogeneous
spaces of the differential Galois group of L over K, and they are isomorphic by a
G-equivariant definable action. It is this perspective that allows us to use definable
cohomology to give a precise answer to questions like: how many non-isomorphic
Picard-Vessiot extensions of k are there for the equation L “ 0?

3.6. The Galois Groupoid. Intrinsic Galois Group; the action induced from in-
ternality

Connected components

4. Differential Algebraic Groups

For me, a differential algebraic group will simply be a Kolchin-closed set G
equipped with a differential morphism m : G ˆ G Ñ G satisfying the usual group
multiplication laws and i : GÑ G for the inversion map g ÞÑ g´1 compatible with
m.
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Appendix A. Preliminaries from Model Theory

In this section we prove a few model-theoretic results used in the main text that
would have taken us too far afield. We go roughly in order of appearance. We
start with the proof of the quantifier elimination test we used to show that DCF0

eliminates quantifiers.

Proposition A.1. Suppose that L is a language, T an L-theory, and φpvq an
L-formula. Then the following are equivalent:

(1) There is a quantifier-free ψpvq equivalent to φpvq modulo T
(2) For all models M,N |ù T and common substructure A ĂM,N , then M |ù

φpaq if and only if N |ù φpaq for all tuples a from A.

Proof. (1 implies 2) If φ is equivalent to a quantifier-free ψ then for all tuples a
from A we have that

M |ù φpaq ðñ M |ù ψpaq ðñ A |ù ψpaq ðñ N |ù ψpaq ðñ N |ù φpaq.

(2 implies 1) We first handle two degenerate cases: if T |ù @vφpvq or T |ù

@v φpvq then φpvq is equivalent modulo T to the formulas v “ v and v ‰ v
respectively. Thus we may assume that both T Y tDvφpvqu and T Y Dv φpvq are
consistent.

Let

Γ`pvq “ tψpvq |ψpvq quantifier-free such that T |ù @vpφpvq Ñ ψpvqu

i.e. Γ`pvq is the set of quantifier-free consequences of φ. If we can show that a real-
ization of Γ`pvq realizes φ then by compactness there exists a finite set tψ1, . . . , ψku
such that

´

ľ

ψkpvq
¯

Ñ φpvq

so that, since each ψk was a consequence of φ,
´

ľ

ψkpvq
¯

Ø φpvq

modulo T .
For contradiction suppose that there were a realization a of Γ` that  pφqpaq.

Let M |ù T contain a and let A “ xxy be the substructure generated by a. Then
the type

Σ “ T Y diagqf pAq Y tφpaqu

is satisfiable since, if unsatisfiable, it it because there exists ψ1, . . . , ψ` P Γ`pvq such
that

T |ù @v
´

ľ

ψkpvq Ñ  φpvq
¯

so that

T |ù @v
´

φpvq Ñ
ł

 ψkpvq
¯

contradicting the fact that the ψkpvq are all consequences of φpvq.
Pick N |ù T containing A such that N |ù φpaq. Then M |ù  φpaq but N |ù φpaq

and A ĂM,N , a contradiction. �

Remark A.2. In applying the above quantifier elimination test we may replace
M and N with saturated elementary extensions M̃ ą M , Ñ ą N and it does not
affect either direction of the proof. Thus it suffices to show the result for sufficiently
saturated models of T .
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Moreover, it suffices to apply the result to existential formulas since one can
perform quantifier elimination one quantifier at a time.

We also used a result in stability theory known as the stable embeddedness of
definable sets:

Definition A.3. Let X be a definable set in some theory T . Then X is stably
embedded provided that for all definable subsets Y “ φpx,mq Ă Xn defined with
a parameter in some M |ù T , we may find m1 P XpMq such that Y “ φpx,m1q.

Every definable set in a stable theory is stably embedded.

Proposition A.4. Let T be stable and X be definable. Then X is stably embedded.

Proof. Let Y “ φpm,xq Ă Xn. Then since p “ tppm{XpMqq is definable, we have
that

φpm,XpMqq “ pdpxqφpx,XpMqq

by definability of types. But pdpxqφpx, yq is defined over XpMq. �

Theorem A.5. Let T be an ω-stable theory. Then over every set A of parameters
T pAq has a prime model.

Theorem A.6. Let T be an ω-stable theory, A a set of parameters, and M,N Ą A
be two prime models. Then M – N .

Proof. We break the proof into two parts: first showing that every prime model
is constructible and then showing that any two constructible models over A are
isomorphic.

Step 1: Prime models are constructible.
Step 2: Constructible Models are pairwise isomorphic. Let M and N

be constructible models of T pAq. The goal is to perform a (somewhat subtle)
back-and-forth argument using an explicit construction of each model. �
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