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Preface

These are lecture notes for the courses “Differentiable Manifolds I” and
“Differentiable Manifolds II”, that I am lecturing at UIUC. This course is
usually taken by graduate students in Mathematics in their first or second
year of studies. The background for this course is a basic knowledge of
analysis, algebra and topology.

My main aim in writing up these lectures notes is to offer a written version
of the lectures. This should give a chance to students to concentrate more
on the class, without worrying about taking notes. It offers also a guide
for what material was covered in class. These notes do not replace the
recommended texts for this course, quite the contrary: I hope they will be
a stimulus for the students to consult those works. In fact, some of these
notes follow the material in theses texts.

These notes are organized into “Lectures”. Each of these lectures should
correspond approximately to 1 hour and 30 minutes of classroom time. How-
ever, some lectures do include more material than others, which correspond
to different rhythms in class. The exercises at the end of each lecture are
a very important part of the course, since one learns a good deal about
mathematics by solving exercises. Moreover, sometimes the exercises con-
tain results that were mentioned in class, but not proved, and which are used
in later lectures. The students should also keep in mind that the exercises
are not homogeneous: this is in line with the fact that in mathematics when
one faces for the first time a problem, one usually does not know if it has
an easy solution, a hard solution or if it is an open problem.

These notes are a modified version of similar lectures in portuguese that
I have used at IST-Lisbon. For the portuguese version I have profited from
comments from Ana Rita Pires, Georgios Kydonakis, Miguel Negrão, Miguel
Olmos, Ricardo Inglês, Ricardo Joel, José Natário and Roger Picken. Since
this is the first english version of these notes, they contain too many typos
and mistakes. I will be grateful for any corrections and suggestions for
improvement that are sent to me.

Rui Loja Fernandes
ruiloja@illinois.edu

Department of Mathematics, UIUC
Urbana IL, 2013
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Part 1. Basic Concepts

The notion of a smooth manifold of dimension d makes precise the con-
cept of a space which locally looks like the usual euclidean space Rd. Hence,
it generalizes the usual notions of curve (locally looks like R1) and surface
(locally looks like R2). This course consists of a precise study of this fun-
damental concept of Mathematics and some of the constructions associated
with it. We will see that many constructions familiar in infinitesimal anal-
ysis (i.e., calculus) extend from euclidean space to smooth manifolds. On
the other hand, the global analysis of manifolds requires new techniques and
methods, and often elementary questions lead to open problems.

In this first series of lectures we will introduce the most basic concepts of
Differential Geometry, starting with the precise notion of a smooth manifold.
The main concepts and ideas to keep in mind from these first series of
lectures are:

• Lecture 0: Amanifold as a subset of Euclidean space, and the various
categories of manifolds: topological, smooth and analytic manifolds.

• Lecture 1: The abstract notion of smooth manifold (our objects) and
smooth map (our morphisms).

• Lecture 2: A technique of gluing called Partions of unity.
• Lecture 3: Manifolds with boundary and smooth maps between man-
ifolds with boundary.

• Lecture 4: Tangent vector, tangent space (our infinitesimal objects)
and the differential of a smooth map (our infinitesimal morphisms).

• Lecture 5: Important classes of smooth maps: immersions, submer-
sions and local difeomorphisms. Submanifolds (our sub-objects).

• Lecture 6: Embedded sub manifolds and the Whitney Embedding
Theorem, showing that any smooth manifold can be embedded in
some Euclidean space Rn.

• Lecture 7 Foliations, which are certain partitions of a manifold into
submanifolds, a very useful generalization of the notion of manifold.

• Lecture 8: Quotients of manifolds, i.e., smooth manifolds obtained
from other smooth manifolds by taking equivalence relations.
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Lecture 0. Manifolds as subsets of Euclidean space

Recall that the Euclidean space of dimension d is:

Rn :=
{
(x1, . . . , xn) : x1, . . . , xn ∈ R

}

We will also denote by xi : Rn → R the i-th coordinate function in Rn. If
U ⊂ Rn is an open set, a map f : U → Rm is called a smooth map if all
its partials derivatives of every order:

∂i1+···+irf j

∂xi1 · · · ∂xir (x),

exist and are continuous functions in U . More generally, given any subset
X ⊂ Rn and a map f : X → Rm, where X is not necessarily an open set,
we say that f is a smooth map if every x ∈ X has an open neighborhood
U ⊂ Rn where there exists a smooth map F : U → Rm such that F |X = f .

A very basic property which we leave as an exercise is that:

Proposition 0.1. Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp. If f : X → Y and
g : Y → Z are smooth maps, then g ◦ f : X → Z is also a smooth map.

A bijection f : X → Y , where X ⊂ Rn and Y ⊂ Rm, with inverse
map f−1 : Y → X, such that both f and f−1 are smooth, is called a
diffeomorphism and we say that X and Y are diffeomorphic subsets.

X

Yf

Rn
Rm

One would like to study properties of sets which are invariant under dif-
feomorphisms, characterize classes of sets invariant under diffeomorphisms,
etc. However, in this definition, the sets X and Y are just too general, and
it is hopeless to try to say anything interesting about classes of such diffeo-
morphic subsets. One must consider nicer subsets of Euclidean space: for
example, it is desirable that the subset has at each point a tangent space
and that the tangent spaces vary smoothly.

Recall that a subset X ⊂ Rn has an induced topology, called the relative
topology, where the relative open sets are just the sets of the form X ∩ U ,
where U ⊂ Rn is an open set.

Definition 0.2. A subset M ⊂ Rn is called a smooth manifold of di-

mension d if each p ∈M has a neighborhood M ∩U which is diffeomorphic
to an open set V ⊂ Rd.
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The diffeomorphism φ : M ∩ U → V , in this definition, is called a coor-
dinate system. The inverse map φ−1 : V →M ∩ U , which by assumption
is smooth, is called a parameterization.

M
U

U ∩M

V

Rd

Rn

φ

We have the category of smooth manifolds where:

• the objects are smooth manifolds;
• the morphisms are smooth maps.

The reason they form a category is because the composition of smooth maps
is a smooth map and the identity is also a smooth map.

Examples 0.3.

1. Any open subset U ⊂ Rd is itself a smooth manifold of dimension d: the
inclusion i : U →֒ Rd gives a global defined coordinate chart.

2. If f : Rd → Rm is any smooth map, its graph:

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+m

is a smooth manifold of dimension d: the map x 7→ (x, f(x)) is a diffeomor-
phism Rd → Graph(M), so gives a global parametrization of Graph(f).

(x, f(x))

R
d

Rm
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3. The unit d-sphere is the subset of Rd+1 formed by all vectors of length 1:

Sd := {x ∈ Rd+1 : ||x|| = 1}.
This is a d-dimensional manifold which does not admit a global parametriza-
tion. However we can cover the sphere by two coordinate systems: if we let
N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) denote the north and south poles,
then stereographic projection relative to N and S give two coordinate systems
πN : Sd − {N} → Rd and πS : Sd − {S} → Rd.PSfrag repla
ementsMU�U�������1� Æ ����1� Æ ��Rd

Sd N p �N (p)
4. The only connected manifolds of dimension 1 are the line R and the circle
S1. What this statement means is that any connected manifold of dimension 1
is diffeomorphic to R or to S1.

5. The manifolds of dimension 2 include the compact surfaces of genus g. For
g = 0 this is the sphere S2. For g = 1 this is the torus:

For g > 1, the compact surface of genus g is a g-holed torus:
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You should note, however, that a compact surface of genus g can be embedded
in R3 in many forms. Here is one example (can you figure out what is the genus
of this surface?):

You should note that in the definitions we have adopted so far in this lec-
ture we have chosen the smooth category, where differentiable maps have all
partial derivatives of all orders. We could have chose other classes, such as
continuous maps, Ck-maps, or analytic maps(1). This would lead us to the
categories of topological manifolds, Ck manifolds or analytic mani-
folds. Note that in each such category we have an appropriate notion of
equivalence: for example, two topological manifolds X and Y are equivalent
if and only if there exists a homeomorphism between them, i.e., a continuous
bijection f : X → Y such that the inverse is also continuous.

Examples 0.4.

1. Let I = [−1, 1]. The unit cube d-dimensional cube is the set:

Id = {(x1, . . . , xd) ∈ Rd+1 : xi ∈ I, for all i = 1, . . . , n}.
The boundary of the cube

∂Id = {(x1, . . . , xd) ∈ Id : xi = −1 or 1, for some i = 1, . . . , n}.
is a topological manifold of dimension d− 1, which is not a smooth manifold.

1We shall also use the term Ck-map, k = 1, 2, ...,+∞, for a map whose partial deriva-
tives of all orders up to k exist and are continuous, and we make the conventions that a
C0-map is simply a continuous map and a Cω-map means an analytic map. A Ck-map
which is invertible and whose inverse is also a Ck-map is called a Ck-equivalence or a
Ck-isomorphism.
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2. If f : Rd → Rl is any map of class Ck, its graph:

Graph(f) := {(x, f(x)) : x ∈ Rd} ⊂ Rd+l

is a Ck-manifold of dimension d. Similarly, if f is any analytic map then
Graph(f) is an analytic manifold.

Most of the times we will be working with smooth manifolds. However,
there are many situations where it is desirable to consider other categories
of manifolds, so you should keep them in mind.

You may wonder if the dimension d that appears in the definition of a
manifold is a well defined integer, in other words if a manifold M ⊂ Rn

could be of dimension d and d′, for distinct integers d 6= d′. The reason that
this cannot happen is due to the following important result:

Theorem 0.5 (Invariance of Domain). Let U ⊂ Rn be an open set and let
φ : U → Rn be a 1:1, continuous map. Then φ(U) is open.

The reason for calling this result “invariance of domain” is that a domain
is a connected open set of Rn, so the result says that the property of being
a domain remains invariant under a continuous, 1:1 map. The proof of this
result requires some methods from algebraic topology and so we will not give
it here. We leave it as an exercise to show that the invariance of domain
implies that the dimension of a manifold is a well defined integer.

Homework.

1. Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp. If f : X → Y and g : Y → Z are
smooth maps, show that g ◦ f : X → Z is also a smooth map.

2. Let f : Rd → Rm be a map of class Ck, k = 0, . . . , ω. Show that φ : Rd →
Graph(f), x 7→ (x, f(x)), is a Ck-equivalence.

3. Show that the sphere Sd and the boundary of the cube ∂Id+1 are equivalent
topological manifolds.

4. Consider the set SL(2,R) formed by all 2× 2 matrices with real entries and
determinant 1:

SL(2,R) =

{[
a b
c d

]
: ad− bc = 1

}
⊂ R4.

Show that SL(2,R) is a 3-dimensional smooth manifold.

5. Use invariance of domain to show that the notion of dimension of a topo-
logical manifold is well defined.
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Lecture 1. Abstract Manifolds

In many situations manifolds do not arise naturally as subsets of Eu-
clidean space. We will see several examples of this later. For that reason,
the definition of manifold that we have seen in the previous lecture is often
not the most useful one. We need a different definition of a manifold, where
M is not assumed a priori to be a subset of some Rn. For this more abstract
definition of manifold we need the set M to have a notion of proximity, in
other words, we need M to be furnished with a topology. At this point, it
maybe useful to remind yourself of the basics of point set topology.

In this more general context, the definition of a topological manifold is
very simple:

Definition 1.1. A topological space M is called a topological manifold

of dimension d if every p ∈M has a neighborhood U ⊂M homeomorphic
to some open subset V ⊂ Rd.

PSfrag repla
ements

MM

NQ

U

OVxyzqCSRr��U�U��1�2�3������1� Æ ����1� Æ ��

Rd

RdRe�dRR2R4Np�N (p)�2�112� ��~v~wTpSTpMTM
Some times one also calls a topological manifold a locally Euclidean

space. In this more general context we still use the same notation as be-
fore: we call φ : U → Rd a system of coordintaes or a chart, and the
functions φi = xi ◦ φ are called coordinate functions. We shall denote
a system of coordinates by (U, φ). Often we write xi instead of φi for the
coordinate functions, in which case we may denote the system of coordinates
by (U, x1, . . . , xd). We say that a system of coordinates is (U, φ) centered at
a point p ∈M if φ(p) = 0.

There is a tacit assumption about the underlying topology of a mani-
fold, that we will also adopt here, and which is the following:

Manifolds are assumed to be Hausdorff and second countable

This assumption has significant implications, as we shall see shortly, which
are very useful in the study of manifolds (e.g., existence of partitions of
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unity or of Riemannian metrics). On the other hand, it means that in any
construction of a manifold we have to show that the underlying topology
satisfies these assumptions. This is often easy since, for example, any metric
space satisfies these assumptions.

It should be noted, however, that non-Hausdorff manifolds do appear
sometimes, for example when one forms quotients of (Hausdorff) manifolds
(see Lecture 8). Manifolds which are not second countable can also appear
(e.g., in sheaf theory), although we will not meet them in the course of these
lectures. We limit ourselves here to give one such example.

Example 1.2.
Consider M = R2 with the topology generated by sets of the form U × {y},
where U ⊂ R is open and y ∈ R. It is easy to see that this topology does not
have a countable basis. However, M is a topological one-dimensional manifold
with coordinate charts (U × {y} , φy) given by φy(x, y) = x.

Of course we are interested in smooth manifolds. The definition is slightly
more involved:

Definition 1.3. A smooth structure on a topological d-manifold M is a
collection of coordinate systems C = {(Uα, φα) : α ∈ A} which satisfies the
following properties:

(i) The collection C covers M :
⋃
α∈A Uα =M ;

(ii) For all α, β ∈ A, the transition function φα ◦ φ−1
β is a smooth map;

(iii) The collection C is maximal: if (U, φ) any coordinate system such that
φ ◦ φ−1

α and φα ◦ φ−1 are smooth maps for all α ∈ A, then (U, φ) ∈ C.
The pair (M, C) is called a smooth manifold of dimension d.

PSfrag repla
ements

MMM

NUV

U�U�

�1�2�3

���� ��1� Æ ��
��1� Æ ��Rd Rd

RdRe�dRR2SdNp�N (p)�2�112���~v~wTpSTpMTMS
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Given a topological manifold, a collection of coordinate systems which
satisfies (i) and (ii) in the previous definition is called an atlas. Given an
atlas C0 = {(Uα, φα) : α ∈ A} there exists a unique maximal atlas C which
contains C0: it is enough to define C to be the collection of all smooth
coordinate systems relative to C, i.e., all coordinate systems (U, φ) such
that φ ◦ φ−1

α and φα ◦ φ−1 are both smooth, for all (Uα, φα) ∈ C0. For this
reason, one often defines a smooth structure by specifying some atlas, and
it is then implicit that the smooth structure is the one associated with the
corresponding maximal atlas.

It should be clear from this definition that one can define in a similar
fashion manifolds of class Ck for any k = 1, . . . ,+∞, ω, by requiring the
transition functions to be of class Ck. In these lectures, we shall concentrate
on the case k = +∞.

Examples 1.4.

1. The standard differential structure on Euclidean space Rd is the
maximal atlas that contains the coordinate system (Rd, i), where i : Rd → Rd

is the identity map. It is a non-trivial fact that the Euclidean space R4 has
an infinite number of smooth structures, with the same underlying topology,
but which are not equivalent to this one (in a sense to be made precise later).
These are called exotic smooth structures. It is also known that Rd, for
d 6= 4, has no exotic smooth structures.

2. If M ⊂ Rn is a d-dimensional manifold in the sense of Definition 0.2, then
M carries a natural smooth structure: the coordinate systems in Definition 0.2
form a maximal atlas (exercise) for the topology on M induced from the usual
topology on Rn. We shall see later in Lecture 6, that the Whitney Embedding
Theorem shows that, conversely, any smooth manifold M arises in this way.
Henceforth, we shall refer to a manifold M ⊂ Rn in the sense of Definition
0.2 as an embedded manifold in Rn.

3. If M is a d-dimensional smooth manifold with smooth structure C and U ⊂
M is an open subset, then U with the relative topology is also a smooth d-
dimensional manifold with smooth structure given by:

CU = {(Uα ∩ U, φα|Uα∩U ) : (U, φα) ∈ C} .
4. IfM and N are smooth manifolds then the Cartesian productM×N , with
the product topology, is a smooth manifold: in M×N we consider the maximal
atlas that contains all coordinate systems of the form (Uα×Vβ , φα×ψβ), where
(Uα, φα) and (Vβ , ψβ) are smooth coordinate systems of M and N , respectively.
It should be clear that dimM × N = dimM + dimN . More generally, if
M1, . . . ,Mk are smooth manifolds then M1× · · · ×Mk is a smooth manifold of
dimension dimM1+ · · ·+dimMk. For example, the d-torus Td = S1×· · ·×S1

and the cylinders Rn×Sm are smooth manifolds of dimensions d and n+m,
respectively.

5. The projective d-dimensional space is the set

Pd =
{
L ⊂ Rd+1 : L is a straight line through the origin

}
.
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We can think of Pd as the quotient space Rd+1 − {0} / ∼ where ∼ is the
equivalence relation:

(x0, . . . , xd) ∼ (y0, . . . , yd) if and only if (x0, . . . , xd) = λ(y0, . . . , yd),

for some λ ∈ R − 0. If take on Pd the quotient topology, then it becomes
a topological manifold of dimension d: if we denote by [x0 : · · · : xd] the
equivalence class of (x0, . . . , xd) ∈ Rd+1, then for each α = 0, . . . , n we have
the coordinate system (Uα, φα) where:

Uα =
{
[x0 : · · · : xd] : xα 6= 0

}
,

φα : Uα → Rd, [x0 : · · · : xd] 7→ (
x0

xα
, . . . ,

x̂α

xα
, . . . ,

xd

xα
)

(the symbol â means that we omit the term a). We leave it as an exercise
to check that the transition functions between these coordinate functions are
smooth, so they form an atlas on Pd. Note that in this example Pd does not
arise naturally as a subset of some Euclidean space.

We have established what are our objects. Now we turn to the morphisms.

Definition 1.5. Let M and N be smooth manifolds.

(i) A function f : M → R is called a smooth function if f ◦ φ−1 is
smooth for all smooth coordinate systems (U, φ) of M .

(ii) A map Ψ : M → N is called a smooth map if τ ◦ Ψ ◦ φ−1 is smooth
for all smooth coordinate systems (U, φ) of M and (V, τ) of N .

A smooth map Ψ :M → N which is invertible and whose inverse is smooth
is called a diffeomorphism. In this case we say that M and N are dif-

feomorphic manifolds.

Note that to check that a map Ψ : M → N is smooth, it is enough to
verify that for each p ∈ M , there exist a smooth coordinate system (U, φ)
of M and (V, τ) of N , with p ∈ U and Ψ(p) ∈ V , such that τ ◦ Ψ ◦ φ−1 is
a smooth map. Also, a smooth function f : M → R is just a smooth map
where R has its standard smooth structure.

Clearly, the composition of two smooth maps, whenever defined, is a
smooth map. The identity map is also a smooth map. So we have the
category of smooth manifolds, whose objects are the smooth manifolds
and whose morphisms are the smooth maps.

Just as we did for maps between subsets of Euclidean space, when X ⊂
M and Y ⊂ N are arbitrary subsets of some smooth manifolds, we will
say that Ψ : X → Y is a smooth map if for each p ∈ X there is an
open neighborhood U ⊂ M and a smooth map F : U → N such that
F |U∩M = Ψ|U∩M .

The set of smooth maps from X to Y will be denoted C∞(X;Y ). When
Y = R, we use C∞(X) instead of C∞(X;R).
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Examples 1.6.

1. If M ⊂ Rn is an embedded manifold, any smooth function F : U → R
defined on an open Rd+1 ⊃ U ⊃ M induces, by restriction, a smooth function
f : M → R. Conversely, every smooth function f : M → R is the restriction
of some smooth function F : U → R defined on some open set Rd+1 ⊃ U ⊃M .
To see this we will need the partitions of unity to be introduced in the next
lecture.

You should also check that if M ⊂ Rn and N ⊂ Rm are embedded manifolds
then Ψ : M → N is a smooth map if and only if for every p ∈ M there exists
an open neighborhood U ⊂ Rn of p and a smooth map F : U → Rm such that
Ψ|U∩M = F |U∩M . This shows that the notion of smooth map in Definition 1.5
extends the notion we have introduced in the previous lecture.

2. The map π : Sd → Pd defined by:

π(x0, . . . , xd) = [x0 : · · · : xd],
is a smooth map. Moreover, any smooth function F : Sd → R which is invariant
under inversion (i.e., F (−x) = F (x)), induces a smooth function f : Pd → R:
the function f is the unique one that makes the following diagram commutative:

Sd

π

��

F // R

Pd
f

??�
�

�
�

Conversely, every smooth function in C∞(Pd) arises in this way.

If we are given two smooth structures C1 and C2 on the same manifold M
we say that they are equivalent smooth structures if there is a diffeo-
morphism Ψ : (M, C1) → (M, C2).

Example 1.7.
On the line R the identity map R → R, x 7→ x, gives a chart which defines
a smooth structure C1. We can also consider the chart R → R, x 7→ x3, and
this defines a distinct smooth structure C2 on R (why?). However, these two
smooth structures are equivalent since the map x 7→ x3 gives a diffeomorphism
from (M, C2) to (M, C1).

It is known that every topological manifold of dimension less or equal
than 3 has a unique smooth structure. For dimension greater than 3 the
situation is much more complicated, and not much is known. However, as
we have mentioned before, the smooth structures on Rd, compatible with
the usual topology, are all equivalent if d 6= 4, and there are uncountably
many inequivalent exotic smooth structures on R4. On the other hand,
for the sphere Sd there are no exotic smooth structures for d ≤ 6 but Milnor
found that S7 has 27 inequivalent smooth structures. Its known, e.g., that
S31 has more than 16 million inequivalent smooth structures!
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Homework.

1. Let M be a topological manifold. Show that M is locally compact, i.e.,
every point of M has a compact neighborhood.

2. A normal topological space with a countable basis is metrizable. Use this
to show that every topological manifold M is metrizable.
Hint: A topological space is called normal if for every disjoint pair of closed
sets A1 and A2, there exist disjoint open sets O1 and O2 such that A1 ⊂ O1

and A2 ⊂ O2.

3. LetM be a connected topological manifold. Show thatM is path connected.
If, additionally,M is a smooth manifold, show that for any p, q ∈M there exists
a smooth path c : [0, 1] →M with c(0) = p and c(1) = q.
Hint: Given any smooth path c : [0, 1] → Rn there is a smooth function
τ : R → R, with τ(t) = 0 if t ≤ 0, τ(t) = 1 if t ≥ 1, and τ ′(t) > 0 if t ∈]0, 1[,
so that cτ := c ◦ τ : [0, 1] → Rn is a new smooth path with the same image as
c and c′τ (0) = c′τ (1) = 0.

4. Let φ : Rm → Rn be a diffeomorphism. Use the chain rule to deduce that
one must have m = n. Use this result to conclude that if M and N are
diffeomorphic smooth manifolds then dimM = dimN , without appealing to
invariance of domain.

5. Compute the transition functions for the atlas of projective space Pd and
show that they are smooth. Show also that:
(a) P1 is diffeomorphic to S1;
(b) Pd − Pd−1 is diffeomorphic to the open disc Dn = {x ∈ Rd : ||x|| < 1} ,

where we identify Pd−1 with the subset {[x0 : · · · : xd] : xd = 0} ⊂ Pd.

6. Show that is M ⊂ Rn is a d-dimensional manifold in the sense of Definition
0.2, then M carries a natural smooth structure.
Note: One sometimes says that M is an embedded manifold in Rn or a d-
surface in Rn. When d = 1, one says that M is a curve, when d = 2 one says
thatM is a surface, and when k = n−1 one says thatM is an hypersurface.

7. Let M ⊂ Rn be a subset with the following property: for each p ∈M , there
exists an open set U ⊂ Rn containing p and diffeomorphism Φ : U → V onto
an open set V ⊂ Rn, such that:

Φ(U ∩M) =
{
q ∈ V : qd+1 = · · · = qn = 0

}
.

Show that M is a smooth manifold of dimension d (in fact, M is an embedded
manifold or a d-surface in Rn; see the previous exercise).

8. LetM be a set and assume that one has a collection C = {(Uα, φα) : α ∈ A},
where Uα ⊂M and φα : Uα → Rd, satisfying the following properties:
(a) For each α ∈ A, φα(Uα) ⊂ Rn is open and φα : Uα → φα(Uα) is a

bijection
(b) For each α, β ∈ A, the sets φα(Uα ∩ Uβ) ⊂ Rn are open.
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(c) For each α, β ∈ A, with Uα ∩ Uβ 6= ∅ the map φβ ◦ φ−1
α : φα(Uα ∩ Uβ) →

φβ(Uα ∩ Uβ) is smooth.
(d) There is a countable set of Uα that cover M .
(e) For any p, q ∈M , with p 6= q, either there exists a Uα such that p, q ∈ Uα,

or there exists Uα and Uβ , with p ∈ Uα, q ∈ Uβ and Uα ∩ Uβ = ∅.
Show that there exists a unique smooth structure onM such that the collection
C is an atlas.

9. LetM = C∪{∞}. Let U :=M−{∞} = C and φU : U → C be the identity
map and let V := M − {0} and φV : V → C be the map φV (z) = 1/z, with
the convention that φ(∞) = 0. Use the previous exercise to show that M has
a unique smooth structure with atlas C := {(U, φU ), (V, φV )}. Show that M is
diffeomorphic to S2.
Hint: Be careful with item (e)!

10. Let M and N be smooth manifolds and let Ψ : M → N be a map. Show
that the following statements are equivalent:
(i) Ψ :M → N is smooth.
(ii) For every p ∈M there are coordinate systems (U, φ) of M and (V, τ) of

N , with p ∈ U and Φ(p) ∈ V , such that τ ◦Ψ ◦ φ−1 is smooth.
(iii) There exist smooth atlases {(Uα, φα) : α ∈ A} and {(Uβ, ψβ) : β ∈ B} of

M and N , such that for each α ∈ A and β ∈ B, ψβ ◦Ψ ◦ φ−1
α is smooth.

11. Let M and N be smooth manifolds and let Φ : M → N be a map. Show
that:
(i) If Φ is smooth, then for every open set U ⊂M the restriction Φ|U : U →

N is a smooth map.
(ii) if every p ∈ M has an open neighborhood U such that the restriction

Φ|U : U → N is a smooth map, then Φ : M → N is smooth.

Lecture 2. Manifolds with Boundary

There are many spaces, such as the closed unit ball, a solid donought
or the Möbius strip, which just fail to be a manifold because they have a
“boundary”. One can remedy this situation by trying to enlarge the notion
of manifold so that it includes this possibility. The clue to be able to include
boundary points is to understand what is the local model around points in
the “boundary” and this turns out to be the closed half-space Hd:

Hd := {(x1, . . . , xd) ∈ Rd : xd ≥ 0}.
We will denote the open half-space by:

IntHd =: {(x1, . . . , xd) ∈ Rd : xd > 0}.
and the boundary of the closed half-space by:

∂Hd =: {(x1, . . . , xd) ∈ Rd : xd = 0}.
When n = 0, we have H0 = R0 = {0}, so IntH0 = R0 and ∂H0 = ∅.
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Definition 2.1. A topological manifold with boundary of dimension

d is a topological space M such that every p ∈ M has a neighborhood U
which is homeomorphic to some open set V ⊂ Hd.

M
U

U

V
V

HdHd

φ
φ

Just as we do for manifolds without boundary, we shall assume that all
manifolds with boundary are Hausdorff and have a countable basis of open
sets.

We shall use the same notations as before, so we call a homeomorphism
φ : U → V as in the definition a system of coordinates or a coordinate chart.
Note that there are two types of open sets in Hd according to whether they
intersect ∂Hd or not. These give rise to two types of coordinate systems
φ : U → V , according to whether V intersects ∂Hd or not. In the first case,
when V ∩ ∂Hd = ∅, we just have a coordinate system of the same sort as
for manifolds without boundary, and we call it an interior chart. In the
second case, when V ∩ ∂Hd 6= ∅, we call it a boundary chart.

Using Invariance of Domain (Theorem 0.5), one shows that:

Lemma 2.2. Let M be a topological manifold with boundary of dimension
d. If for some chart (U, φ) we have φ(p) ∈ ∂Hd, then this is also true for
every other chart.

Proof. Exercise. �

This justifies the following definition:

Definition 2.3. LetM be a topological manifold with boundary of dimension
d. A point p ∈ M is called a boundary point if there exists some chart
(U, φ) with p ∈ U , such that φ(p) ∈ ∂Hd. Otherwise, p is called an interior

point.

The set of boundary points of M will be denoted by ∂M and is called
the boundary of M and the set of interior points of M will be denoted
by IntM and is called the interior of M. If on both sets we consider the
topology induced from M , we have:
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Proposition 2.4. Let M be a topological manifold with boundary of di-
mension d > 0. Then IntM and ∂ M are topological manifolds without
boundary of dimension d and d − 1, respectively. If N is another manifold
with boundary and Ψ : M → N is a homeomorphism then Ψ restricts to
homeomorphisms Ψ|∂M : ∂ M → ∂ N and Ψ|IntM : IntM → IntN .

Proof. Let p ∈ IntM and let φ : U → V be a chart with p ∈ U and
V ⊂ H. Then if we set V0 := V − ∂H and U0 := φ−1(V0), we have that U0

is an open neighborhood of M , V0 is open in Rd, and φ|U0
: U0 → V0 is a

homeomorphism. This shows that IntM is a topological manifold without
boundary of dimension d.

On the other hand, let p ∈ ∂ M and let φ : U → V be a chart with
p ∈ U and φ(p) ∈ ∂H. Then if we set V0 := V ∩ ∂H and U0 := φ−1(V0),
we have that U0 = U ∩ ∂M is an open neighborhood of ∂M , V0 is open in
∂H ≃ Rd−1, and φ|U0

: U0 → V0 is a homeomorphism. This shows that ∂M
is a topological manifold without boundary of dimension d− 1. �

It is important not to confuse the notions of interior and boundary point
for manifolds with boundary with the usual notions of interior and boundary
point of a subset of a topological space. If M happens to be a manifold
with boundary embedded in some Rn then the two notions may or may not
coincide, as shown by the following examples.

Examples 2.5.

1. M = Hd is itself a topological manifold with boundary of dimension d, where
IntM = IntHd and ∂M = ∂Hd, so our notations are consistent. If we think
of Hd ⊂ Rd, then these notions coincide with the usual notions of boundary
and interior of Hd as a topological subspace of Rd.

2. The closed unit disk:

Dk = Bd := {x ∈ Rd : ||x|| ≤ 1},
is a topological manifold with boundary of dimension d with interior the open
unit ball Bd and boundary the unit sphere Sd−1. If we think of Dd ⊂ Rd, then
these notions coincide with the usual notions of boundary and interior of Dd

as a topological subspace of Rd.

3. The cube Id is a topological manifold with boundary of dimension d. Id and
Dd are homeomorphic topological manifolds with boundary.

4. The Möbius stripM ⊂ R3 is a topological manifold with boundary ∂M = S1.
Note that, as a topological subspace of R3, all points of M are boundary points!

Now that we have the notion of chart for a topological manifold with
boundary, we can define a smooth structure on a topological d-manifold
with boundary M by exactly the same procedure as we did for manifolds
without boundary: it is a collection of charts C = {(Uα, φα) : α ∈ A} which
satisfies the following properties:
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(i) The collection C is an open cover of M :
⋃
α∈A Uα =M ;

(ii) For all α, β ∈ A, the transition function φα ◦ φ−1
β is a smooth map;

(iii) The collection C is maximal: if (U, φ) any coordinate system such that
φ ◦ φ−1

α and φα ◦ φ−1 are smooth maps for all α ∈ A, then (U, φ) ∈ C.
The pair (M, C) is called a smooth d-manifold with boundary.

Again, given an atlas C0 = {(Uα, φα) : α ∈ A} (i.e., a collection satisfying
(i) and (ii)), there exists a unique maximal atlas C which contains C0: it is
enough to define C to be the collection of all smooth coordinate systems
relative to C, i.e., all coordinate systems (U, φ) such that φ◦φ−1

α and φα◦φ−1

are both smooth, for all (Uα, φα) ∈ C0.
The notion of smooth map Ψ : M → N between two manifolds with

boundary is also defined in exactly the same way as in the case of manifolds
without boundary.

Proposition 2.6. Let M be a smooth manifold with boundary of dimen-
sion d > 0. Then IntM and ∂M are smooth manifolds without boundary
of dimension d and d − 1, respectively. If N is another smooth manifold
with boundary and Ψ : M → N is a diffeomorphism then Ψ restricts to
diffeomorphisms Ψ|∂ M : ∂ M → ∂ N and Ψ|IntM : IntM → IntN .

Proof. Exercise. �

Although often one can work with manifolds with boundary much the
same way as one can work with manifolds without boundary, some care
must be taken. For example, the Cartesian product of two half-spaces is not
a manifold with boundary (it is rather a manifold with corners, a notion we
will not discuss). So the cartesian product of manifolds with boundary may
not be a manifold with boundary. However, we do have the following result:

Proposition 2.7. If M is a smooth manifold without boundary and N is
a smooth manifold with boundary, then M × N is a smooth manifold with
boundary with ∂ (M ×N) =M × ∂ N and Int(M ×N) =M × IntN .

Proof. Exercise. �

Example 2.8.
If M is a manifold without boundary and I = [0, 1] then M × I is a manifold
with boundary for which:

Int(M × I) =M×]0, 1[, ∂(M × I) =M × {0} ∪M × {1}.

It is very cumbersome to write always “manifold without boundary”, so
we agree to refer to manifolds without boundary simply as “manifolds”, and
add the qualitative “with boundary”, whenever that is the case. You should
be aware that in the literature it is common to use non-bounded manifold
for a manifold in our sense, and to call a closed manifold a compact non-
bounded manifold and open manifold a non-bounded manifold with no
compact component.
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Homework.

1. Using Invariance of Domain, show that if for some chart (U, φ) of a topo-
logical manifold with boundary one has φ(p) ∈ ∂Hd, then this is also true for
every other chart.

2. Let M ⊂ Rd have the induced topology. Show that if M is a closed subset
and a d-dimensional manifold with boundary then the topological boundary
of M coincides with ∂ M . Give a counterexample to this statement when M
is not a closed subset.

3. Give the details of the proof of Proposition 2.6.

4. Show that if M is a smooth manifold without boundary and N is a smooth
manifold with boundary, then M × N is a smooth manifold with boundary
with ∂ (M ×N) =M × ∂ N and Int(M ×N) =M × IntN .

5. A solid torus is the 3-manifold with boundaryD2×S1. What is the boundary
of the solid torus? How does this generalize to dimensions larger than 3?

Lecture 3. Partitions of Unity

In this lecture we will study an important gluing technique for smooth
manifolds. If M is a smooth manifold and f ∈ C∞(M), we define the
support of f to be the closed set:

supp f ≡ {p ∈M : f(p) 6= 0}.

Also, given a collection C = {Uα : α ∈ A} of subsets of M we say that

• C is locally finite if, for all p ∈ M , there exists a neighborhood
p ∈ O ⊂M such that O ∩Uα 6= ∅ for only a finite number of α ∈ A.

• C is a cover of M if
⋃
α∈A Uα =M .

• C0 = {Uβ : β ∈ B is subcover if C0 ⊂ C and C0 still covers M .
• C′ = {Vi : i ∈ I} is a refinement of a cover C if it is itself a cover
and for each i ∈ I there exists α = α(i) ∈ A such that Vi ⊂ Uα.

Definition 3.1. A partition of unity in a smooth manifold M is a col-
lection {φi : i ∈ I} ⊂ C∞(M) such that:

(i) the collection of supports {suppφi : i ∈ I} is locally finite;
(ii) φi(p) ≥ 0 and

∑
i∈I φi(p) = 1 for every p ∈M .

A partition of unity {φi : i ∈ I} is called subordinated to a cover {Uα : α ∈ A}
of M if for each i ∈ I there exists α ∈ A such that suppφi ⊂ Uα.

Notice that the sum in (ii) is actually finite: by (i), for each p ∈M there
is only a finite number of functions φi with φi(p) 6= 0.

The existence of partitions of unity is not obvious, but we will see in this
lecture that there are many partitions of unity on a manifold.
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Theorem 3.2 (Existence of Partitions of Unity). Let M be a smooth man-
ifold and let {Uα : α ∈ A} be an open cover of M . Then there exists a
countable partition of unity {φi : i = 1, 2, . . . }, subordinated to the cover
{Uα : α ∈ A} and with suppφi compact for all i.

If we do not care about compact supports, for any open cover we can get
partitions of unity with the same set of indices:

Corollary 3.3. Let M be a smooth manifold and let {Uα : α ∈ A} be an
open cover of M . Then there exists a partition of unity {φα : α ∈ A} such
that suppφα ⊂ Uα for each α ∈ A.

Proof. By Theorem 3.2 there exists a countable partition of unity

{ψi : i = 1, 2, . . . }
subordinated to the cover {Uα : α ∈ A}. For each i we can choose a α = α(i)
such that suppψi ⊂ Uα(i). Then the functions

φα =





∑
α(i)=α ψi, if {i : α(i) = α} 6= ∅,

0 otherwise,

form a partition of unity with suppφα ⊂ Uα, for all α ∈ A. �

Example 3.4.
For the sphere Sd, consider the cover with the two opens sets UN := Sd − N
and US := Sd − S. Then the corollary says that there exists a partition of unit
subordinated to this cover with the same indices, i.e., a pair of non-negative
smooth functions φN , φS ∈ C∞(Sd) with suppφN ⊂ UN and suppφS ⊂ US,
such that φN (p) + φS(p) = 1, for all p ∈ Sd.

Corollary 3.5. Let A ⊂ O ⊂ M , where O is an open subset and A is
a closed subset of a smooth manifold M . There exists a smooth function
φ ∈ C∞(M) such that:

(i) 0 ≤ φ(p) ≤ 1 for each p ∈M ;
(ii) φ(p) = 1 if p ∈ A;
(iii) suppφ ⊂ O.

Proof. The open sets {O,M −A} give an open cover of M . Therefore, by
the previous corollary, there is a partition of unity {φ,ψ} with supφ ⊂ O
and supψ ⊂M −A. The function φ satisfies (i)-(iii). �

Roughly speaking, partitions of unity are used to “glue” local properties
(i.e., properties that hold on domains of local coordinates), giving rise to
global properties of a manifold, as shown in the proof of the following result.

Corollary 3.6 (Extension Lemma for smooth maps). Let M be a smooth
manifold, A ⊂ M a closed subset and Ψ : A → Rn a smooth map. For any

open set A ⊂ U ⊂ M there exists a smooth map Ψ̃ : M → Rn such that

Ψ̃|A = Ψ and supp Ψ̃ ⊂ U .
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Proof. For each p ∈ A we can find an open neighborhood Up ⊂M , such that

we can extend Ψ|Up∩A to a smooth function Ψ̃p : Up → Rn. By replacing Up
by Up ∩ U we can assume that Up ⊂ U . The sets {Up,M −A; p ∈ A} form
an open cover of M so we can find a partition of unit {φp : p ∈ A} ∪ {φ0},
subordinated to this cover with suppφp ⊂ Up. Now define Ψ̃ : M → Rn by
setting

Ψ̃ :=
∑

p∈A
φpΨ̃p.

Clearly Ψ̃ has the required properties. �

We now turn to the proof of Theorem 3.2. There are two main ingredients
in the proof. The first one is that topological manifolds are paracompact,
i.e., every open cover has an open locally finite refinement. This is in fact
a consequence of our assumption that manifolds are Hausdorff and second
countable, and we will use the following more precise versions:

(a) Every open cover of a topological manifoldM has a countable subcover.
(b) Every open cover of a topological manifold M has a countable, locally

finite refinement consisting of open sets with compact closures.

The proofs are left to the exercises. The second ingredient is the existence
of “very flexible” smooth functions, some times called bump functions:

• The function f : R → R defined by:

f(x) =





exp(− 1
x2
), x 6= 0,

0, x = 0.

is a smooth function.
• If δ > 0, the function g : R → R defined by:

g(x) = f(x)f(δ − x),

is smooth, g(x) > 0 if x ∈]0, δ[ and g(x) = 0 otherwise.
• The function h : R → R defined by:

h(x) :=

∫ x
0 g(t) dt∫ δ
0 g(t) dt

,

is smooth, non-decreasing, h(x) = 0 if x ≤ 0 and h(x) = 1 if x ≥ δ.

Using these functions you should now be able to show that:

(c) there exists a function φ ∈ C∞(Rd) such that φ(x) = 1, if x ∈ B1(0),
and φ(x) = 0, if x ∈ B2(0)

c.

Proof of Theorem 3.2. By (b) above, we can assume that the open cover
{Uα : α ∈ A} is countable, locally finite, and the sets Uα are compacts. If
p ∈ Uα, we can choose a coordinate system (Vp, τ), centered in p, with
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Vp ⊂ Uα, and such that B2(0) ⊂ τ(Vp). Now if φ the function defined in (c)
above, we set:

ψp :=





φ ◦ τ, em Vp,

0, em M − Vp.

The function ψp ∈ C∞(M) is non-negative and takes the value 1 in an open
set Wp ⊂ Vp which contains p. Since {Wp : p ∈M} is an open cover of M ,
by (a) above, there exists a countable subcover {Wp1 ,Wp2 , . . . } of M . Then
the open cover {Vp1 , Vp2 , . . . } is locally finite and subordinated to the cover

{Uα : α ∈ A}. Moreover, the closures V pi are compact.
The sum

∑
i ψpi may not be equal to 1. To fix this we observe that

ψ =
+∞∑

i=1

ψpi ,

is well defined, of class C∞ and φ(p) > 0 for every p ∈M . If we define:

φi =
ψpi
ψ
,

then the functions {φ1, φ2, . . . } give a partition of unity, subordinated to the
cover {Uα : α ∈ A}, with suppφi compact for each i = 1, 2, . . . .

This completes the proof of Theorem 3.2. �

Homework.

1. Show that f : R → R, defined by f(x) = exp(−1/x2) is a smooth function.

2. Show that there exists a function φ ∈ C∞(Rd) such that 0 ≤ φ(x) ≤ 1,
φ(x) = 1 if |x| ≤ 1 and φ(x) = 0 if |x| > 2.
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3. Show that for a second countable topological space X , every open cover of
X has a countable subcover.

Hint: If {Uα : α ∈ A} is an open cover of X and B = {Vj ∈ J} is a countable
basis of the topology of X , show that the collection B′ formed by Vj ∈ B such
that Vj ⊂ Uα for some α, is also a basis. Now, for each Vj ∈ B′ choose some
Uαj

containing Vj , and show that {Uαj
} is a countable subcover.
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4. Show that a topological manifold is paracompact, in fact, show that every
open cover of a topological manifold M has a countable, locally finite refine-
ment consisting of open sets with compact closures.

Hint: Show first thatM can be covered by open sets O1, O2, . . . , with compact
closures and Oi ⊂ Oi+1. Then given an arbitrary open cover {Uα : α ∈ A} of
M , choose for each i ≥ 3 a finite subcover of the cover {Uα ∩ (Oi+1 − Oi−2 :
α ∈ A} of the compact set Oi − Oi−1, and a finite subcover of the cover
{Uα∩O3 : α ∈ A} of the compact set O2. The collection of such open sets will
do it.

5. Show that if M ⊂ Rn is an embedded manifold then a function f :M → R
is smooth if and only if there exists an open set M ⊂ U ⊂ Rn and a function
F : U → R such that F |M = f .

6. Show that the conclusion of the Extension Lemma for Smooth Maps may
fail if A ⊂M is not assumed to be closed.

7. Show that Theorem 3.2 still holds for manifolds with boundary.

Lecture 4. Tangent Space and the Differential

The tangent space to Rd at p ∈ Rd is by definition the set:

TpR
d :=

{
(p,~v) : ~v ∈ Rd

}
.
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Note that this tangent space is a vector space over R where addition is
defined by:

(p,~v1) + (p,~v2) ≡ (p,~v1 + ~v2),

while multiplication is given by:

λ(p,~v) ≡ (p, λ~v).

Of course there is a natural isomorphism TpRd ≃ Rd, but in many situations

it is better to think of TpRd as the set of vectors with origin at p.
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This distinction is even more clear in the case of embedded manifolds, or
d-surfaces, S ⊂ Rn. In this case, we can define the tangent space to S at
p ∈ S to be the subspace TpS ⊂ TpRn consisting of those tangent vectors
(p,~v), for which there exists a smooth curve c : (−ε, ε) → Rn, with c(t) ∈ S,
c(0) = p and c′(0) = ~v.
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A tangent vector (p,~v) ∈ TpS acts on smooth functions defined in a
neighborhood of p: if f : U → R is a smooth function defined on a open set
U containing p then we can choose a smooth curve c : (−ε, ε) → U , with
c(0) = p and c′(0) = ~v, and set:

(p,~v)(f) :=
d

dt
f ◦ c(0).

This operation does not depend on the choice of smooth curve c (exercise).
In fact, this is just the usual notion of directional derivative of f at p in
the direction ~v.

We will now define the tangent space to an abstract manifoldM at p ∈M .
There are several different approaches to define the tangent space at p ∈M ,
which correspond to different points of view, all of them very useful. We
shall give here three distinct descriptions and we leave it to the exercises to
show that they are actually equivalent.

Description 1. Let M be a smooth d-dimensional manifold with an atlas
C = {(Uα, φα) : α ∈ A}. To each point p ∈ M we would like to associate a
copy of Rd, so that each element ~v ∈ Rd should represent a tangent vector.
Of course if p ∈ Uα, the system of coordinates φα gives an identification
of an open neighborhood of p with Rd. Distinct smooth charts will give
different identifications, but they are all related by the transition functions.

This suggests one should consider triples (p, α,~v) ∈ M × A × Rd, with
p ∈ Uα, and that two such triples should be declared to be equivalent if

[p, α,~v] = [q, β, ~w] iff p = q and (φα ◦ φ−1
β )′(φβ(p)) · ~w = ~v.
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Hence, we define a tangent vector to M at a point p ∈ M to be an

equivalence class [p, α,~v], and the tangent space at p to be the set of all
such equivalence classes:

TpM ≡
{
[p, α,~v] : α ∈ A,~v ∈ Rd

}
.

We leave it as an exercise to check that the operations:

[p, α,~v1] + [p, α,~v2] := [p, α,~v1 + ~v2], λ[p, α,~v] := [p, α, λ~v],

are well defined and give TpM the structure of vector space over R. Notice
that we still have an isomorphism TpM ≃ Rd, but this isomorphism now
depends on the choice of a chart.

Description 2. Again, fix p ∈M . For this second description we will consider
all smooth curves c : (−ε, ε) →M , with c(0) = p. Two such smooth curves
c1 and c2 will be declared equivalent if there exists some smooth chart (U, φ)
with p ∈ U , such that

d

dt
(φ ◦ c1)(0) =

d

dt
(φ ◦ c2)(0).

It should be clear that if this condition holds for some smooth chart around
p, then it also holds for every other smooth chart around p belonging to the
smooth structure.

We call a tangent vector at p ∈ M an equivalence class of smooth
curves [c], and the set of all such classes is called the tangent space TpM
at the point p. Again, you should check that this tangent space has the
structure of vector space over R and that TpM is isomorphic to Rd, through
an isomorphism that depends on a choice of smooth chart.
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Description 3. The two previous descriptions use smooth charts. Our third
description has the advantage of not using charts, and it will be our final
description of tangent vectors and tangent space.

Again we fix p ∈M and we look at the set of all smooth functions defined
in some open neighborhood of p. Given two smooth functions f : U → R
and g : V → R, where U and V are opens that contain p, we say that f and
g define the same germ at p if there is an open set W ⊂ U ∩ V containing
p and such that

f |W = g|W .
We denote by Gp the set of all germs at p. This set has the structure of an
R-algebra, where addition, product and multiplication by scalars are defined
in the obvious way:

[f ] + [g] ≡ [f + g],

[f ][g] ≡ [fg],

λ[f ] ≡ [λf ].

Notice also that it makes sense to talk of the value of a germ [f ] ∈ Gp at
the point p, which is f(p). On the other hand, the value of [f ] ∈ Gp at any
other point q 6= p is not defined.

Definition 4.1. A tangent vector at a point p ∈M is a linear derivation
of Gp, i.e., a map v : Gp → R satisfying:

(i) v([f ] + λ[g]) = v([f ]) + λv([g]);
(ii) v([f ][g]) = v([f ])g(p) + f(p)v([g]);

The tangent space at a point p ∈ M is the set of all such tangent vectors
and is denoted by TpM .

Since linear derivations can be added and multiplied by real numbers, it
is clear that the tangent space TpM has the structure of a real vector space.
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Example 4.2.
Let (U, φ) = (U, x1, . . . , xd) be a coordinate system in M with p ∈ U . We
define the tangent vectors ∂

∂xi

∣∣
p
∈ TpM , i = 1, . . . , d, to be the derivations

∂

∂xi

∣∣∣∣
p

([f ]) =
∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

.

Notice that the tangent vector ∂
∂xi

∣∣
p
corresponds to the direction one obtains

by freezing all coordinates but the i-th coordinate.

In order to check that TpM is a vector space with dimension equal to
dimM , consider the set of all germs that vanish at p:

Mp = {[f ] ∈ Gp : f(p) = 0} ,
It is immediate to check that Mp ⊂ Gp is a maximal ideal in Gp. The k-th
power of this ideal

Mk
p = Mp · · ·Mp︸ ︷︷ ︸

k

,

consists of germs that vanish to order k at p: if [f ] ∈ Mk
p and (U, φ) is

a coordinate system centered at p, then the smooth function f ◦ φ−1 has
vanishing partial derivatives at φ(p) up to order k − 1. These powers form
a tower of ideals

Gp ⊃ Mp ⊃ M2
p ⊃ · · · ⊃ Mk

p ⊃ . . .

Theorem 4.3. The tangent space TpM is naturally isomorphic to (Mp/M2
p)

∗

and has dimension dimM .

Proof. First we check that if [c] ∈ Gp is the germ of the constant function
f(x) = c then v([c]) = 0, for any tangent vector v ∈ TpM . In fact, we have
that

v([c]) = cv([1]),

and that

v([1]) = v([1][1]) = 1v([1]) + 1v([1]) = 2v([1]),

hence v([1]) = 0.
Now if [f ] ∈ Gp and c = f(p), we remark that

v([f ]) = v([f ]− [c]),

so the derivation v is completely determined by its effect on Mp. On the
other hand, any derivation vanishes on M2

p, because if f(p) = g(p) = 0,
then

v([f ][g]) = v([f ])g(p) + f(p)v([g]) = 0.

We conclude that every tangent vector v ∈ TpM determines a unique
linear transformation Mp → R, which vanishes on M2

p. Conversely, if
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L ∈ (Mp/M2
p)

∗ is a linear transformation, we can define a linear trans-
formation v : Gp → R by setting

v([f ]) ≡ L([f ]− [f(p)]).

This is actually a derivation (exercise), so we conclude that TpM ≃ (Mp/M2
p)

∗.
In order to verify the dimension of TpM , we choose some system of coor-

dinates (U, x1, . . . , xd) centered at p, and we show that the tangent vector

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

form a basis for TpM . If f : U → R is any smooth function, then f ◦ φ−1 :

Rd → R is smooth in a neighborhood of the origin. This function can be
expanded as:

f ◦ φ−1(x) = f ◦ φ−1(0) +

d∑

i=1

∂(f ◦ φ−1)

∂xi
(0)xi +

∑

i,j

gij(x)x
ixj ,

where the gij are some smooth functions in a neighborhood of the origin. It
follows that we have the expansion:

f(q) = f(p) +
d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

xi(q) +
∑

i,j

hij(q)x
i(q)xj(q),

where hij ∈ C∞(U), valid for any q ∈ U . We conclude that for any tangent
vector v ∈ TpM :

v([f ]) =

d∑

i=1

∂(f ◦ φ−1)

∂xi

∣∣∣∣
φ(p)

v([xi]).

In other words, we have:

v =

d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

,

where ai = v([xi]). This shows that the vectors (∂/∂xi)|p ∈ TpM , i =
1, . . . ,dimM form a generating set. We leave it as an exercise to show that
they are linearly independent. �

From now on, given v ∈ TpM and a smooth function f defined in some
neighborhood of p ∈M we set:

v(f) ≡ v([f ]).

Note that v(f) = v(g) if f and g coincide in some neighborhood of p and
that:

v(f + λg) = v(f) + λv(g), (λ ∈ R),

v(fg) = f(p)v(g) + v(f)g(p),
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where f +λg and fg are defined in the intersection of the domains of f and
g.

The proof of Theorem 4.3 shows that if (U, φ) = (U, x1, . . . , xd) is a coor-
dinate system around p, then any tangent vector v ∈ TpM can be written
as:

v =

d∑

i=1

ai
∂

∂xi

∣∣∣∣
p

.

The numbers ai = v(xi) are called the components of tangent vector v
in the coordinate system (U, x1, . . . , xd). If we introduce the notation

∂f

∂xi

∣∣∣∣
p

≡ ∂f ◦ φ−1

∂xi

∣∣∣∣
φ(p)

,

then we see that:

v(f) =

d∑

i=1

ai
∂f

∂xi

∣∣∣∣
p

.

On the other hand, given another coordinate system (V, y1, . . . , yd) we
find that

∂

∂yj

∣∣∣∣
p

=
d∑

i=1

∂xi

∂yj

∣∣∣∣
p

∂

∂xi

∣∣∣∣
p

.

Hence, in this new coordinate system we have

v =

d∑

j=1

bj
∂

∂yj

∣∣∣∣
p

, with bj = v(yj),

where the new components bj are related to the old components ai by the
transformation formula:

(4.1) ai =

d∑

j=1

∂xi

∂yj

∣∣∣∣
p

bj.

A smooth map between two smooth manifolds determines a linear trans-
formation between the corresponding tangent spaces:

Definition 4.4. Let Ψ :M → N be a smooth map. The differential of Ψ
at p ∈M is the linear transformation dpΨ : TpM → TΨ(p)N defined by

dpΨ(v)(f) ≡ v(f ◦Ψ),

where f is any smooth function defined in a neighborhood of Ψ(p).

If (U, φ) = (U, x1, . . . , xd) is a coordinate system around p and (V, ψ) =
(V, y1, . . . , ye) is a coordinate system around Ψ(p), we obtain

dpΨ · ∂

∂xi

∣∣∣∣
p

=
e∑

j=1

∂(ψ ◦Ψ ◦ φ−1)j

∂xi

∣∣∣∣
φ(p)

∂

∂yj

∣∣∣∣
Ψ(p)

.
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The matrix formed by the partial derivatives ∂(ψ◦Ψ◦φ−1)j

∂xi
is often abbreviated

to ∂(yj◦Ψ)
∂xi

and is called the Jacobian matrix of the smooth map Ψ relative
to the specified system of coordinates.

The following result is an immediate consequence of the definitions and
the usual chain rule for smooth maps between euclidean space:

Proposition 4.5 (Chain Rule). Let Ψ :M → N and Φ : N → P be smooth
maps. Then the composition Φ ◦Ψ is smooth and we have that:

dp(Φ ◦Ψ) = dΨ(p)Φ ◦ dpΨ.
Similarly, it is easy to prove the following proposition that generalizes a

well known result:

Proposition 4.6. If a smooth map Ψ : M → N has zero differential on a
connected open set U ⊂M , then Ψ is constant in U .

A very important special case concerns real valued smooth functions f :
M → R, which can be thought as smooth maps betweenM and the manifold
R, with its canonical smooth structure. In this case the differential at p is
a linear transformation dpf : TpM → Tf(p)R, and since we have a canonical
identification TxR ≃ R, the differential is an element in the dual vector space
to TpM .

Definition 4.7. The cotangent space to M at a point p is the vector space
T ∗
pM dual to the tangent space TpM :

T ∗
pM ≡ {ω : TpM → R, com ω linear} .

Of course we can define dpf ∈ T ∗
pM even if f is a smooth function defined

only in a neighborhood of p. In particular, if choose a coordinate system
(U, x1, . . . , xd) around p, we obtain elements

{
dpx

1, . . . ,dpx
d
}
⊂ T ∗

pM.

It is then easy to check that

dpx
i · ∂

∂xj

∣∣∣∣
p

=





1 if i = j,

0 if i 6= j.

Hence:

Lemma 4.8. For any coordinate system (U, x1, . . . , xd) of M around p,
{dpx1, . . . ,dpxd} is the basis of T ∗

pM dual to the basis { ∂
∂x1

∣∣
p
, . . . , ∂

∂xd

∣∣
p
} of

TpM .

Therefore, once we have fixed a coordinate system (U, x1, . . . , xd) around
p, every element ω ∈ T ∗

pM can be written in the basis
{
dpx

1, . . . ,dpx
d
}
:

ω =
d∑

i=1

aidpx
i, with ai = ω(∂/∂xi

∣∣
p
).
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If (V, y1, . . . , yd) is another coordinate system, we find

ω =
d∑

j=1

bjdpy
j, with bj = ω(∂/∂yj

∣∣
p
),

and one checks easily that:

(4.2) ai =
d∑

j=1

∂yj

∂xi

∣∣∣∣
p

bj.

This transformation formula for the components of elements of T ∗
pM should

be compared with the corresponding transformation formula (4.1) for the
components of elements de TpM .

Let us turn now to the question of how the tangent spaces vary from point
to point. We define the tangent bundle and the cotangent bundle to
M as:

TM ≡
⋃

p∈M
TpM, T ∗M ≡

⋃

p∈M
T ∗
pM.

Notice that we have natural projections π : TM → M and π : T ∗M → M ,
which associate to a tangent vector v ∈ TpM and to a tangent covector ω ∈
T ∗
pM the corresponding base point π(v) = p = π(ω). The term “bundle”

comes from the fact that we can picture TM (or T ∗M) as a set of fibers
(the spaces TpM or T ∗

pM), juxtaposed with each other, forming a manifold:

Proposition 4.9. TM and T ∗M have natural smooth structures of mani-
folds of dimension 2 dimM , such that the projections in the base are smooth
maps.
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Proof. We give the proof for TM . The proof for T ∗M is similar and is left
as an exercise.

Let {(Uα, φα) : α ∈ A} be an atlas forM . For each smooth chart (Uα, φα) =

(Uα, x
1, . . . , xn), we define φ̃α : π−1(Uα) → R2d by setting:

φ̃α(v) = (x1(π(v)), . . . , xd(π(v)),dπ(v)x
1(v), . . . ,dπ(v)x

d(v)).

One checks easily that the collection:
{
φ̃−1
α (O) : O ⊂ R2d open, α ∈ A

}

is a basis for a topology of TM , which is Hausdorff and second countable.
Now, we have that:

(a) TM is a topological manifold with local charts (π−1(Uα), φ̃α).

(b) For any pair of charts (π−1(Uα), φ̃α) and (π−1(Uβ), φ̃β), the transition

functions φ̃β ◦ φ̃−1
α are smooth.

We conclude that the collection
{
(π−1(Uα), φ̃α) : α ∈ A

}
is an atlas, and so

defines on TM the structure of a smooth manifold of dimension dimTM =
2dimM . Finally, the map π : TM → M is smooth because for each α
we have that φα ◦ π ◦ φ̃−1

α : R2d → Rd is just the projection in the first d
components. �

Let Ψ :M → N be a smooth map. We we will denote by dΨ : TM → TN
induced map on the tangent bundle which is defined by:

dΨ(v) ≡ dπ(v)Ψ(v).

We call this map the differential of Ψ. We leave it as an exercise to check
that dΨ : TM → TN is a smooth map between the smooth manifolds TM
and TN .

If f : M → R is a smooth function and (U, x1, . . . , xd) is a system of
coordinates around p, then from the definition we see that dpf ∈ T ∗

pM
satisfies:

dpf · ∂

∂xi

∣∣∣∣
p

=
∂f

∂xi

∣∣∣∣
p

.

It follows that the expression for df in local coordinates (x1, . . . , xd) is:

df |U =

d∑

i=1

∂f

∂xi
dxi.

Notice that in this formula all terms have been precisely defined, in contrast
with some formulas one often finds, where heuristic manipulations with df
are done without much justifications!

We leave it to you to check that what we have done in this section extends
to manifolds with boundary. One defines the tangent space to a manifold
with boundary of dimension d at some point p ∈M exactly as in Definition
4.1. The tangent space at any point p ∈M , even at points of the boundary,
has dimension d. The tangent bundle TM is now a manifold with boundary
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of dimension 2 dimM . Similarly, one defines the differential of a smooth
map Ψ :M → N between manifolds with boundary and this gives a smooth
map between their tangent bundles dΦ : TM → TN .

For a manifold with boundaryM of dimension d > 0, the boundary ∂M is
a smooth manifold of dimension d−1. Hence, if p ∈ ∂M we have two tangent
spaces: TpM , which has dimension d, and Tp(∂ M), which has dimension
d− 1. We leave it as an exercise to check that the inclusion i : ∂M →֒M is
a smooth and its differential dpi : Tp(∂M) → TpM is injective, at any point
p ∈ ∂M . It follows that we can identify Tp(∂M) with its image in TpM ,
so inside the tangent space to M at points of the boundary we have a well-
defined subspace. It is common to denote this subspace also by Tp(∂M), a
practice that we will also adopt here.

Homework.

1. Show that the 3 descriptions of tangent vectors given in this lecture are
indeed equivalent.

2. In R3 consider the usual Cartesian coordinates (x, y, z). One defines spher-
ical coordinates in R3 to be the smooth chart (U, φ), where U = R3 −
{(x, 0, z) : x ≥ 0} and φ = (r, θ, ϕ) is defined as usual by

• r(x, y, z) :=
√
x2 + y2 + z2 is the distance to the origin;

• θ(x, y, z) is the longitude, i.e., the angle in ]0, 2π[ between the vector
(x, y, 0) and the x-axis;

• ϕ(x, y, z) is the co-latitude, i.e., the angle in ]0, π[ between the vector
(x, y, z) and the z-axis.

Compute:
(a) The components of the tangent vectors to R3 ∂

∂r ,
∂
∂θ ,

∂
∂ϕ in Cartesian

coordinates;
(b) The components of the tangent vectors to R3 ∂

∂x ,
∂
∂y ,

∂
∂z in spherical

coordinates.

3. Let M ⊂ Rn be an embedded d-manifold. Show that if ψ : V → M ∩ U is
a parameterization of a neighborhood of p ∈ M , then the tangent space TpM
can be identified with the subspace ψ′(q)(Rd) ⊂ Rn.

4. Let (U, x1, . . . , xd) be a local coordinate system in a manifoldM . Show that
the tangent vectors

∂

∂xi

∣∣∣∣
p

∈ TpM, i = 1, . . . , d,

are linearly independent.

5. Show that T ∗M has a smooth structure of manifold of dimension 2 dimM ,
for which the projection π : T ∗M →M is a smooth map.

6. Check that if M and N are smooth manifolds and Ψ :M → N is a smooth
map, then dΨ : TM → TN is also smooth.
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Lecture 5. Immersions, Submersions and Submanifolds

As we can expect from what we know from calculus in Euclidean space the
properties of the differential of a smooth map between two smooth manifolds
reflect the local behavior of the smooth map. In this lecture we will make
this precise.

Definition 5.1. Let Ψ :M → N be a smooth map:

(a) Ψ is called an immersion if dpΨ : TpM → TΨ(p)N is injective, for all
p ∈M ;

(b) Ψ is called a submersion if dpΨ : TpM → TΨ(p)N is surjective, for all
p ∈M ;

(a) Ψ is called an étale2 if dpΨ : TpM → TΨ(p)N is an isomorphism, for
all p ∈M .

Immersions, submersions and étales have local canonical forms. They are
all consequences of the following general result:

Theorem 5.2 (Constant Rank Theorem). Let Ψ : M → N be a smooth
map and p ∈M . If dqΨ : TqM → TΨ(q)N has constant rank r, for all q in a

neighborhood of p, then there are local coordinates (U, φ) = (U, x1, . . . , xm)
for M centered at p and local coordinates (V, ψ) = (V, y1, . . . , yn) for N
centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

Proof. Let (Ũ , φ̃) and (Ṽ , ψ̃) be local coordinates centered at p and Ψ(p),
respectively. Then

ψ̃ ◦Ψ ◦ φ̃−1 : φ̃(Ũ ∩ Ṽ ) → ψ̃(Ũ ∩ Ṽ )

is a smooth map from a neighborhood of zero in Rm to a neighborhood of
zero in Rn, whose differential has constant rank. Therefore, it is enough to
consider the case where Ψ : Rm → Rn is a smooth map

(x1, . . . , xm) 7→ (Ψ1(x), . . . ,Ψn(x)),

whose differential has constant rank in a neighborhood of the origin.
Let r be the rank of dΨ. Eventually after some reordering of the coordi-

nates, we can assume that

det

[
∂Ψj

∂xi

]r

i,j=1

(0) 6= 0.

It follows immediately from the Inverse Function Theorem, that the smooth
map φ : Rm → Rm defined by

(x1, . . . , xm) → (Ψ1(x), . . . ,Ψr(x), xr+1, . . . , xm),

2We use this term provisionally. We shall see later in Corollary 5.5 that an étale map
is the same thing as a local diffeomorphism.
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is a diffeomorphism from a neighborhood of the origin. We conclude that:

Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr,Ψr+1 ◦ φ−1(x), . . . ,Ψn ◦ φ−1(x)).

Let q be any point in the domain of Ψ ◦φ−1. We can compute the Jacobian
matrix of Ψ ◦ φ−1 as: [

Ir 0

* ∂(Ψj◦φ−1)
∂xi

(q)

]
,

where Ir is the r × r identity matrix and where in the lower right corner
i, j > r. Since this matrix has exactly rank r, we conclude that:

∂(Ψj ◦ φ−1)

∂xi
(q) = 0, if i, j > r.

In other words, the components of Ψj ◦ φ−1, for j > r, do not depend on
the coordinates xr+1, . . . , xm:

Ψj ◦ φ−1(x) = Ψj ◦ φ−1(x1, . . . , xr), if j > r.

Let us consider now the map ψ : Rn → Rn given by

ψ(y1, . . . , yn) = (y1, . . . , yr, yr+1 −Ψr+1 ◦ φ−1(y), . . . , yn −Ψn ◦ φ−1(y)).

We see that ψ is a diffeomorphism since its Jacobian matrix at the origin is
given by: [

Ir 0
* Ie−r

]
,

which is non-singular. But now we compute:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

�

An immediate corollary of this result is that an immersion of am-manifold
into a n-manifold, where necessarily m ≤ n, locally looks like the inclusion
Rm →֒ Rn:

Corollary 5.3. Let Ψ : M → N be an immersion. Then for each p ∈ M ,
there are local coordinates (U, φ) = (U, x1, . . . , xm) for M centered at p and
local coordinates (V, ψ) = (V, y1, . . . , yn) for N centered at Ψ(p), such that:
tais que:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Similarly, we conclude that a submersion of am-manifold into a n-manifold,
where necessarily m ≥ n, locally looks like the projection Rm ։ Rn:

Corollary 5.4. Let Ψ : M → N be a submersion. Then for each p ∈ M ,
there are local coordinates (U, φ) = (U, x1, . . . , xm) for M centered at p and
local coordinates (V, ψ) = (V, y1, . . . , yn) for N centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xm) = (x1, . . . , xn).

Since an étale is a smooth map which is simultaneously an immersion and
a submersion, we conclude that an étale is just a local diffeomorphism:
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Corollary 5.5. Let Ψ : M → N be an étale. Then for each p ∈ M , there
are local coordinates (U, φ) = (U, x1, . . . , xd) for M centered at p and local
coordinates (V, ψ) = (V, y1, . . . , yd) for N centered at Ψ(p), such that:

ψ ◦Ψ ◦ φ−1(x1, . . . , xd) = (x1, . . . , xd).

Let us now turn to the study of subobjects in the category of smooth
manifolds:

Definition 5.6. A submanifold of a manifold M is a pair (N,Φ) where
N is a manifold and Φ : N → M is an injective immersion. When Φ :
N → Φ(N) is a homeomorphism, where on Φ(N) one takes the relative
topology, one calls the pair (N,Φ) an embedded submanifold and Φ an
embedding.

One sometimes uses the term immersed submanifold to emphasize that
Φ : N → M is only an immersion and reserves the term submanifold for
embedded submanifolds.

Example 5.7.
The next picture illustrates various immersions of N = R in M = R2. No-
tice that (R,Φ1) is an embedded submanifold of R2, while (R,Φ2) is only an
immersed submanifold of R2. On the other hand, Φ3 is an immersion but it is
not injective, so (R,Φ3) is not a submanifold of R2.
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If (N,Φ) is a submanifold of M , then for each p ∈ N , the linear map

dpΦ : TpN → TΦ(p)M is injective. Hence, we can always identify the tangent
space TpN with its image dpΦ(TpN), which is a subspace of TΦ(p)M . From
now on, we will use this identification, so that TpN will always be interpreted
as a subspace of TΦ(p)M .

The local canonical form (Corollary 5.3) implies immediately the follow-
ing:

Proposition 5.8 (Local normal form for immersed submanifolds). Let (N,Φ)
be a submanifold of dimension d of a manifold M . Then for all p ∈ N , there
exists a neighborhood U of p and a coordinate system (V, x1, . . . , xm) for M
centered at Φ(p) such that:

Φ(U) =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.
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Proof. By Corollary 5.3, for any p ∈ N we can choose coordinates (U, φ) for
N centered at p and coordinates (V, ψ) = (V, x1, . . . , xm) for N centered at
Φ(p), such that ψ ◦ Φ ◦ φ−1 : Rd → Rm is the inclusion. But then ψ ◦ Φ(U)
is exactly the set of points in ψ(V ) ⊂ Rm with the last m − d coordinates
equal to 0.

�

You should notice (using the same notation as in the proposition) that,
in general, Φ(N)∩V 6= Φ(U), so there could exist points in Φ(N)∩V which
do not belong to the slice

{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

However, whenever (N,Φ) is an embedded submanifold we find:

Corollary 5.9 (Local normal form for embedded submanifolds). Let (N,Φ)
be an embedded submanifold of dimension d of a manifold M . For each
p ∈ N , there exists a coordinate system (V, x1, . . . , xm) of M centered at
Φ(p), such that:

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xm(q) = 0

}
.

Proof. Fix p ∈ N and choose a a neighborhood U of p and a coordinate
system (V ′, x1, . . . , xe) centered at Φ(p), as in the proposition. Since (N,Φ)
is assumed to be embedded, Φ(U) is an open subset of Φ(N) for the relative
topology: there exists an open set V ′′ ⊂M such that Φ(U) = V ′ ∩Φ(N). If
we set V = V ′∩V ′′ the restrictions of the xi to V , yield a coordinate system
(V, x1, . . . , xe) such that:

Φ(N) ∩ V =
{
q ∈ V : xd+1(q) = · · · = xe(q) = 0

}
.

�

We would like to think of submanifolds of M simply as subsets of M .
However, this in general is not possible, as shown by the following simple
example.
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Example 5.10.
There are two injective immersions Φi : R → R2, i = 1, 2, whose images in
R2 coincide with the infinite symbol: Hence, the infinite symbol by itself, does
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not have a unique submanifold structure, and additional data must be specified.

The example of the infinity symbol shows one must be careful when we
think of a submanifold of M as a subset of M . In order to see what can go
wrong, we introduce the following equivalence relation:

Definition 5.11. We say that (N1,Φ1) and (N2,Φ2) are equivalent sub-

manifolds of M if there exists a diffeomorphism Ψ : N1 → N2 such that
the following diagram commutes:

N1
Φ1 //

Ψ !!B
B

B
B

M

N2

Φ2

OO

If (N,Φ) is a submanifold of M we can consider the image Φ(N) ⊂ M

with the unique smooth structure for which Φ̂ : N → Φ(N) is a diffeomor-
phism. Obviously, if we take this smooth structure on Φ(N), the inclusion
i : Φ(N) →֒ M is an injective immersion and the following diagram com-
mutes:

N
Φ //

Φ̂ ""E
EE

EE
EE

E M

Φ(N)

i

OO

Therefore, every submanifold (N,Φ) as a unique representative (A, i), where
A ⊂M is a subset and i : A →֒M is the inclusion. We then say that A ⊂M
is a submanifold.

Example 5.12.
If A ⊂M is an arbitrary subset, in general, there will be no smooth structure
on A for which the inclusion i : A →֒ M is an immersion. For example, the
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subset A = {(x, |x|) : x ∈ R} ⊂ R2 does not admit such a smooth structure
(exercise).

On the other hand, if A admits a smooth structure such that the inclusion
i : A →֒ M is an immersion, this smooth structure may not be unique: this is
exactly what we saw Example 5.10.

Still, we have the following result:

Theorem 5.13. Let A ⊂ M be some subset of a smooth manifold and
i : A →֒M the inclusion. Then:

(i) For each choice of a topology in A there exists at most one smooth
structure compatible with this topology and such that (A, i) is a sub-
manifold of M .

(ii) If for the relative topology in A there exists a compatible smooth struc-
ture such that (A, i) is a submanifold of M , then this is the only topol-
ogy in A for which there exists a compatible smooth structure such that
(A, i) is a submanifold of M .

Example 5.14.
The sphere S7 ⊂ R8 is an embedded submanifold. We have mentioned before
that the sphere S7 have smooth structures compatible with the usual topology
but which are not equivalent to the standard smooth structure on the sphere. It
follows that for these exotic smooth structures, S7 is not a submanifold of R8.

In order to prove Theorem 5.13, we observe that if (N,Φ) is a submanifold
of M and Ψ : P → M is a smooth map such that Ψ(P ) ⊂ Φ(N), the fact

that Φ is 1:1 implies that Ψ factors through a map Ψ̂ : P → N , i.e., we have
a commutative diagram:

P
Ψ //

Ψ̂   A
A

A
A M

N

Φ

OO

However, the problem is that, in general, the map Ψ̂ is not smooth, as shown
by the example of the infinite symbol.

Example 5.15.
Let Φi : R → R2, i = 1, 2, be the two injective immersion whose images in R2

coincide with the infinite symbol, as in Example 5.10. Since Φ1(R) = Φ2(R),
we have unique maps Φ̂12 : R → R e Φ̂21 : R → R. such that Φ̂12 ◦ Φ2 = Φ1

and Φ̂21 ◦ Φ1 = Φ2. It is easy to check that Φ̂12 and Φ̂21 are not continuous,
hence they are not smooth.

The next result shows that what may fail is precisely the continuity of
the map Ψ̂:
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Proposition 5.16. Let (N,Φ) be a submanifold ofM , Ψ : P →M a smooth

map such that Ψ(P ) ⊂ Φ(N) and Ψ̂ : P → N the induced map.

(i) If Ψ̂ is continuous, then it is smooth.

(ii) If Φ is an embedding, then Ψ̂ is continuous (hence smooth).

Proof. Assume first that Ψ̂ is continuous. For each p ∈ N , choose U ⊂ N
and (V, φ) = (V, x1, . . . , xm) as in Proposition 5.8, and consider the smooth
map

ψ = π ◦ φ ◦Φ : U → Rd,

where π : Rm → Rd is the projection (x1, . . . , xm) 7→ (x1, . . . , xd). The pair
(U,ψ) is a smooth coordinate system for N centered at p. On the other
hand, we see that

ψ ◦ Ψ̂ = π ◦ φ ◦Φ ◦ Ψ̂ = π ◦ φ ◦Ψ,
is smooth in the open set Ψ̂−1(U). Since the collection of all such open sets

Ψ̂−1(U) covers P , we conclude that Ψ̂ is smooth, so (i) holds.
Now if Φ is an embedding, then every open set U ⊂ N is of the form

Φ−1(V ), where V ⊂M is open. Hence, Ψ̂−1(U) = Ψ̂−1(Φ−1(V )) = Ψ−1(V )

is also open. We conclude that Ψ̂ is continuous, so (ii) also holds. �

Proof of Theorem 5.13. (i) follows immediately from Proposition 5.16 (i).
On the other hand, to prove (ii), let (N,Φ) be a submanifold with Φ(N) =

A and consider the following diagram:

N
Φ //

Φ̂   B
BB

BB
BB

B M

A

i

OO

Since A is assume to have the relative topology, by Proposition 5.16 (ii), Φ̂

is smooth. Hence, Φ̂ is an invertible immersion so it is a diffeomorphism
(exercise). We conclude that (N,Φ) is equivalent to (A, i), so (ii) holds.

�

The previous discussion justifies considering the following class of sub-
manifolds, which is lies in between immersed submanifolds and embedded
submanifolds:

Definition 5.17. A initial submanifold of M is a submanifold (N,Φ)
such that every Ψ : P → M with Ψ(P ) ⊂ Φ(N) factors through a smooth

map Ψ̂ : P → N :

P
Ψ //

Ψ̂   A
A

A
A M

N

Φ

OO
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Sometimes initial submanifolds are also called regular immersed sub-
manifolds or weakly embedded submanifolds. The two different im-
mersions of the infinity symbol that we saw above are not initial submanifols.
On the other hand, Proposition 5.16 (ii) shows that embedded submanifolds
are initial submanifolds. But you should be aware that there are many
examples of initial submanifolds which are not embedded, such as in the
following example.

Example 5.18.
In the 2-torus T2 = S1×S1 we have a family of submanifolds (R,Φa), depend-
ing on the parameter a ∈ R, defined by:

Φa(t) = (eit, eiat).

If a = m/n is rational, this is a closed curve, which turns m times in one
torus direction and n times in the other torus direction, so this is an embedding.

If a 6∈ Q then the curve is dense in the 2-torus, so this is only an immersed
submanifold. However, if Ψ̂ : P → R is a map such that the composition
Φa ◦ Ψ̂ is smooth, then we see immediately that Ψ̂ : P → R is continuous. By
Proposition 5.16, we conclude that Ψ̂ is smooth. Hence, (N,Φa) is a initial
submanifold.

Homework.

1. Show that {(x, |x|) : x ∈ R} is not the image of an immersion Φ : R → R2.

2. Show that there exists a diffeomorphism Ψ : TS3 → S3 × R3, which makes
the following diagram commutative:

TS3

π
!!C

CC
CC

CC
C

Ψ // S3 × R3

τ
{{ww

ww
ww

ww
w

S3

where τ : S3 × R3 → S3 is the projection in the first factor and the restriction
Ψ : TpS3 → R3 is linear for every p ∈ S3.
Hint: The 3-sphere is the set of quaternions of norm 1.

3. Let
{
y1, . . . , ye

}
be some set of smooth functions on a manifold M . Show

that:
(a) If

{
dpy

1, . . . , dpy
e
}
⊂ T ∗

pM is a linearly independent set, then the func-

tions
{
y1, . . . , ye

}
is a part of a coordinate system around p.

(b) If
{
dpy

1, . . . , dpy
e
}
⊂ T ∗

pM is a generating set, then a subset of
{
y1, . . . , ye

}

is a coordinate system around p.
(c) If

{
dpy

1, . . . , dpy
e
}

⊂ T ∗
pM is a basis, then the functions

{
y1, . . . , ye

}

form a coordinate system around p.

4. Show that a submersion is an open map. What can you say about an
immersion?
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5. Let Φ : P2 → R3 be the map defined by

Φ([x, y, z]) =
1

x2 + y2 + z2
(yz, xz, xy).

Show that Φ is smooth and show that it only fails to be an immersion at 6
points. Make a sketch of the image of Φ.

6. Let M be a manifold, A ⊂ M , and i : A →֒ M the inclusion. Show that
(A, i) is a an embedded submanifold of M of dimension d, if and only if for
each p ∈ A there exists a coordinate system (U, x1, . . . , xe) centered at p such
that

A ∩ U =
{
p ∈ U : xd+1(p) = · · · = xe(p) = 0

}
.

7. Show that a subset M ⊂ Rn is a k-surface if and only it is an embedded
submanifold (so this justifies us calling M and embedded manifold in Rn).

8. One says that a subset S of a manifold M has zero measure if for every
coordinate system (U, φ) of M , the set φ(S ∩U) ⊂ Rd has zero measure. Show
that if Φ : N →M is an immersion then
(a) Φ maps zero measure sets to zero measure sets;
(b) If dimN < dimM then Φ(N) has zero measure.

9. Show that for a submanifold (N,Φ) of a smooth manifold M the following
are equivalent:
(a) Φ(N) ⊂M is a closed subset and (N,Φ) is embedded.
(b) Φ : N → M is a closed map (i.e, Φ(A) is closed whenever A ⊂ N is a

closed subset).
(c) Φ : N → M is a proper map (i.e., Φ−1(K) ⊂ N is compact, whenever

K ⊂M is compact).
Use this to conclude that a submanifold (N,Φ) with N compact, is always an
embedded submanifold.

10. Show that an invertible immersion Φ : N → M is a diffeomorphism. Give
a counterexample to this statement if N does not have a countable basis.

11. Let π : M̃ → M be a covering space of a smooth manifold M . Show

that M̃ has unique smooth structure for which the covering map π is a local
diffeomorphism.

Lecture 6. Embeddings and Whitney’s Theorem

Definition 6.1. Let Ψ :M → N be a smooth map

(i) One calls p ∈ M a regular point of Ψ if dpΨ : TpM → TΨ(p)N is
surjective. Otherwise one calls p a singular point of Ψ;

(ii) One calls q ∈ N a regular value of Ψ if every p ∈ Ψ−1(q) is a regular
point. Otherwise one calls q a singular value of Ψ.

The following example gives some evidence for the use of the terms “reg-
ular” and “singular”.
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Example 6.2.
Let Ψ : R2 → R be the map defined by

Φ(x, y) = x2 − y2.

This map has Jacobian matrix [2x 2y]. Therefore, every (x, y) 6= (0, 0) is a
regular point of Ψ and (0, 0) is a singular point of Ψ. On the other hand, 0 is
a singular value of Ψ, while every other value is a regular value of Ψ.

If we consider a regular value c 6= 0, the level set Φ−1(c) is a submanifold of
R2 (an hyperboloid). On the other hand, for the singular value 0, we see that
Φ−1(0) is a union of two lines x = ±y, which is not a manifold at the origin,
where the two lines cross each other.

In fact, the level sets of regular values are always submanifolds:

Theorem 6.3. Let Ψ :M → N be a smooth map and let q ∈ N be a regular
value of Ψ. Then Ψ−1(q) ⊂ M is an embedded submanifold of dimension
dimM − dimN and:

Tm(Ψ
−1(q)) = Ker dmΨ.

Proof. If q ∈ N is a regular value of Ψ there exists an open set Ψ−1(q) ⊂
O ⊂M such that Ψ|O is a submersion. Therefore, for any p ∈ Φ−1(q) we can
choose coordinates (U, x1, . . . , xm) around p and coordinates (V, y1, . . . , yn)
around q, such that Ψ is represented in these local coordinates by the pro-
jection

Rm → Rn : (x1, . . . , xm) 7→ (x1, . . . , xn).

Therefore, we see that

Ψ−1(q) ∩ U =
{
p ∈ U : x1(p) = · · · = xn(p) = 0

}
.

It follows that Ψ−1(q) is an embedded submanifold of dimension m − n =
dimM − dimN (see Exercise 6 in the previous lecture). The statement
about the tangent space to Ψ−1(q) is left as an exercise.

�
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Example 6.4.
Let M = Rd+1 and let Ψ : Rd+1 → R be the smooth map:

Ψ(x) = ||x||2.
The Jacobian matrix of Ψ at x is given by:

Ψ′(x) = [2x1, . . . , 2xd+1].

Since Ψ′(x) has rank one if ||x|| > 0, it follows that any c = R2 > 0 is a regular
value of Ψ. The theorem above then asserts that the spheres SdR = Ψ−1(R) are
embedded submanifolds of Rd+1 of codimension 1. Note that for the differential
structure on Sd that we have defined before, Sd is also an embedded submanifold
of Rd+1. Hence, that differential structure coincides with this one.

Not every embedded submanifold S ⊂M is of the form Ψ−1(q), for a reg-
ular value of some smooth map Ψ :M → N . There are global obstructions
that we will study later. Also, what happens at regular values can be very
wild: using a partition of unity argument it is possible to show that for any
closed subset A ⊂ M of a smooth manifold, there exists a smooth function
f :M → R such that f−1(0) = A.

If N ⊂ M is a submanifold we call the codimension of N in M the
integer dimM − dimN . Since a set with a single point is a manifold
of dimension 0, the previous result can be restated as saying that if q
is a regular value of Ψ, then Ψ−1(q) is an embedded submanifold with
codimΨ−1(q) = codim {q}. In this form, the previous result can be gen-
eralized in the following very useful way:

Theorem 6.5. Let Ψ : M → N be a smooth map and let Q ⊂ N be an
embedded submanifold. Assume that for all p ∈ Ψ−1(Q) one has:

(6.1) ImdpΨ+ TΨ(p)Q = TΨ(p)N.

Then Ψ−1(Q) ⊂M is an embedded submanifold with

codimΨ−1(Q) = codimQ

and:
Tm(Ψ

−1(Q)) = (dmΨ)−1(TΨ(m)Q).

Proof. Choose p0 ∈ Ψ−1(Q) and set q0 = Ψ(p0). Since Q ⊂ N is assumed to
be an embedded submanifold, we can choose a coordinate system (V, φ) =
(V, y1, . . . , yn) for N around q0, such that

Q ∩ V =
{
q ∈ V : yl+1(q) = · · · = yn(q) = 0

}
,

where l = dimQ. Define a smooth map Φ : Ψ−1(V ) → Rn−l by

Φ = (yl+1 ◦Ψ, . . . , yn ◦Ψ).

Then we see that U = Ψ−1(V ) is an open subset ofM which contains p0 and
such that Ψ−1(Q)∩U = Φ−1(0). If we can show that 0 is a regular value of
Φ, then by Theorem 6.3 it follows that for all p0 ∈ Ψ−1(Q), there exists an
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open set U ⊂ M such that Ψ−1(Q) ∩ U is an embedded submanifold of M
of codimension n− l = codimQ. This implies that Ψ−1(Q) is an embedded
submanifold of M , as claimed.

To check that 0 is a regular value of Φ note that Φ = π ◦ φ ◦ Ψ, where
π : Rn → Rn−l is the projection in the last n − l components. Since π
is a submersion, φ is a diffeomorphism and ker dq(π ◦ φ) = TqQ, for all
q ∈ Q ∩ V , it follows from (6.1), that dpΦ = dΨ(p)(π ◦ φ) · dpΨ is surjective,

for all p ∈ Ψ−1(Q) ∩ U = Φ−1(0), i.e., 0 is a regular value of Φ.
The statement about the tangent space to Ψ−1(Q) is left as an exercise.

�

The condition (6.1) appearing in the statement of the theorem is so im-
portant that one has a special name for it.

Definition 6.6. Let Φ : M → N be a smooth map. We say that Ψ is
transversal to a submanifold Q ⊂ N , and we write Ψ ⋔ Q, if:

ImdpΨ+ TΨ(p)Q = TΨ(p)N, ∀p ∈ Ψ−1(Q).

Notice that submersions Φ : M → N are specially nice: they are trans-
verse to every submanifold Q ⊂ N ! So for a submersion the theorem shows
that the inverse image of any submanifold is a submanifold.

A special case that justifies the use of the term “transversal” is when
M ⊂ N is a submanifold and Ψ : M →֒ N is the inclusion. In this case,
Ψ−1(Q) =M ∩Q and the transversality condition reduces to:

TqM + TqQ = TqN, ∀q ∈M ∩Q.
Note that this condition is symmetric in M and Q. So in this case we
simply say that M and Q intersect transversely and we write M ⋔ Q.
The previous result then gives that:

Corollary 6.7. If M,Q ⊂ N are embedded submanifolds such that M ⋔ Q.
Then M ∩Q is an embedded submanifold of N with:

dimM ∩Q = dimM + dimQ− dimN,

and

Tn(M ∩Q) = TnM ∩ TnQ.

Although Theorem 6.5 and its corollary were stated for embedded sub-
manifolds, you are asked in an exercise in this Lecture to check that these
results still hold for immersed submanifolds.

Transversality plays an important role because of the following properties:

• Transversality is a stable property: If Φ :M → N is transverse to Q
then any map Ψ :M → N close enough to Φ is also transverse to Q.

• Transversality is a generic property: Any map Φ : M → N can be

approximated by a map Φ̃ :M → N which is transverse to Q.
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We shall not attempt to make precise these two statements, since we would
need to introduce and study appropriate topologies on the space of smooth
maps C∞(M,N). In fact, transversality is one of the most important topics
of study in Differential Topology.

On the other hand, when two manifolds do not intersect transversally,
in general the intersection is not a manifold as illustrated by the following
figure.
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Examples 6.8.

1. Let M = S1×R be a cylinder. We can embed M in R3 as follows: we define
a smooth map Φ : M → R3 by:

Φ(θ, t) = (R cos θ,R sen θ, t),

wheer we identify S1 = [0, 2π]/2πZ. This map is injective and its Jacobian
matrix Φ′(θ, t) has rank 2, hence Φ is an injective immersion.

The image of Φ is the subset of R3:
{
(x, y, z) ∈ R3 : x2 + y2 = R2

}
= Ψ−1(c),

where c = R2 and Ψ : R3 → R is the smooth map

Ψ(x, y, z) = x2 + y2.

Since Ψ′(x, y, z) = [2x, 2y, 0] 6= 0 if x2+y2 = c 6= 0, we conclude that any c 6= 0
is a regular value of Ψ. Hence, we have indeed an embedding of the cylinder
S1 × R in R3.

2. The 2-torus M = S1 × S1 can also be embedded in R3 as follows/ We can
think of the the two torus as S1 × S1 = [0, 2π]/2πZ × [0, 2π]/2πZ. Note that
this amounts to think of the torus as a square of side 2π where we identify the
sides of the square, as in the following figure:

Now define Φ :M → R3 by:

Φ(θ, φ) = ((R + r cosφ) cos θ, (R + r cosφ) sen θ, r senφ).

It is easy to check that if R > r > 0, then Φ is an injective immersion whose
image is the subset of R3:
{
(x, y, z) ∈ R3 : (x2 + y2 + z2 − R2 − r2)2 + 4R2z2 = 4R2r2

}
= Ψ−1(c),
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where c = 4R2r2 and Ψ : R3 → R is the smooth map

Ψ(x, y, z) = (x2 + y2 + z2 −R2 − r2)2 + 4R2z2.

We leave it as an exercise to check that every c 6= 0 is a regular value of Ψ, so
this gives an embedding of S1 × S1 in R3.

3. The Klein bottle is the subset K ⊂ R4 defined as follows: Let Ox, Oy,
Oz, and Ow, be the coordinate axes in R4 and denote by C a circle of radius
R in the plane xOy. Let θ be the angle coordinate on this circle (say, measured
from the Ox-axis).
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If S1 is a circle of radius r in the plane xOz, with centre at q ∈ C, then K
is the figure obtained by rotating this circle around the Oz axis so that when its
center q ∈ C as rotated an angle θ, the plane where S1 lies has rotated an angle
θ/2 around the Oq-axis in the 3-space OqOzOw. Let φ be the angle coordinate
in the circle S1 (say, measured from the Oq-axis).

Note that the points of K with θ 6= 0 and φ 6= 0 can be parameterized by:
Φ1 :]0, 2π[×]0, 2π[→ R4:

Φ1(θ, φ) = ((R+ r cosφ) cos θ, (R + r cosφ) sen θ, r senφ cos θ/2, r senφ sen θ/2).

We can change the origin of θ and φ, obtaining new parameterizations, which
all together cover K. We leave it as an exercise to show that 3 parameteriza-
tions Φ1, Φ2 and Φ3 are enough to cover K. Since for these parameterizations
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the transitions Φi ◦Φ−1
j are C∞, we see that K is a 2-surface in R4. Also, we

remark that these parameterizations amount to think of K as a square of side
2π where we identify the sides of the square, as in the following figure: Just

like for the 2-torus, one checks that K is given by:

K = Ψ−1(c, 0),

where c = 4R2r2 and Ψ : R4 → R2 is the smooth map

Ψ(x, y, z) = ((x2 + y2 + z2 + w2 −R2 − r2)2 + 4R2(z2 + w2), y(z2 − w2)− 2xzw).

For c 6= 0, one checks that (c, 0) is a regular value of Ψ, so we conclude that
K is an embedded submanifold of R4.

Actually, any manifold can always be embedded in a Euclidean space of
large enough dimension.

Theorem 6.9 (Whitney). Let M be a compact manifold. There exists an
injective embedding Ψ :M → Rm, for some integer m.

Proof. Since M is compact, we can find a finite collection of coordinate
systems {(Ui, φi) : i = 1, . . . , N} such that:

(a) B1(0) ⊂ φi(Ui) ⊂ B2(0);

(b)
⋃N
i=1 φ

−1
i (B1(0)) =M .

Let λi :M → R, i = 1, . . . , N , be smooth functions such that

λi(p) =





1 if p ∈ φ−1
i (B1(0)),

0 if p 6∈ Ui.

Also, let ψi :M → Rd, i = 1, . . . , N , be smooth maps defined by:

ψi(p) =





λiφi(p) if p ∈ Ui,

0 if p 6∈ Ui.

We claim that the smooth map Φ :M → RNd+N defined by:

Φ(p) = (ψ1(p), λ1(p), . . . , ψN (p), λN (p))

is the desired embedding. In fact, we have that
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(i) Φ is an immersion: if p ∈ M then p ∈ φ−1
i (B1(0)), for some i. Hence,

we have that ψi = φi in a neighborhood p. We conclude that dpψi =
dpφi is injective. This shows that dpΦ is injective.

(ii) Φ is injective: Let p, q ∈M , p 6= q, and choose i such that p ∈ λ−1
i (1).

If q 6∈ λ−1
i (1), then λi(p) 6= λi(q) so that Φ(p) 6= Φ(q). On the other

hand, if q ∈ λ−1
i (1), then ψi(p) = φi(p) 6= φi(q) = ψi(q), since φi is

injective. In any case, Φ(p) 6= Φ(q), so Φ is injective.

Since M is compact, we conclude that Φ is an embedding.
�

The previous result also holds for non-compact manifolds (see the exer-
cises in this Lecture) and is valid also for manifolds with boundary.

This result is a weaker version of a famous theorem of Whitney: he showed
that any smooth manifold (compact or not) of dimension d can be embedded
in R2d. Note that there are smooth manifolds of dimension d which cannot
be embedded in R2d−1 (e.g., the Klein bottle). On the other hand, for d > 1,
Whitney also showed that any manifold of dimension d can be immersed in
R2d−1. However, these results are not the best possible: Ralph Cohen in
1985 showed that a compact manifold of dimension d can be immersed in
R2d−a(d) where a(d) is the number of 1’s in the binary expression of d, and
this is the best possible!! (e.g., every compact 5-manifold can immersed in
R8, but there are compact 5-manifolds which cannot be immersed in R7).
On the other hand, the best optimal embedding dimension is only known for
a few dimensions.

Homework.

1. Consider the following sets of n× n matrices:
• O(n) =

{
A : AAT = I

}
(orthogonal matrices);

• S(n) =
{
A : A = AT

}
(symmetric matrices).

Show that O(n) and S(n) are embedded submanifolds of the space Rn
2

of all
n × n matrices and check that they intersect transversely at I. Use this to
conclude that there is a neighborhood of I where the only n× n-matrix which
is both orthogonal and symmetric is I itself.

2. Let Φ : P2 → R4 be the smooth map defined by

Φ([x, y, z]) =
1

x2 + y2 + z2
(x2 − z2, yz, xz, xy).

Show that (P2,Φ) is an embedded submanifold in R4.

3. Furnish the details of the example of the Klein bottle K and show that K
is a 2-surface in R4.

4. Let Ψ : M → N be a smooth map and let q ∈ N be a regular value of Ψ.
Show that

TpΨ
−1(q) = {v ∈ TpM : dpΨ · v = 0} .
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5. Let Ψ : M → N be a smooth map which is transversal to a submanifold
Q ⊂ N (not necessarily embedded). Show that Ψ−1(Q) is a submanifold of M
(not necessarily embedded) and that

TpΨ
−1(Q) =

{
v ∈ TpM : dpΨ · v ∈ TΨ(p)Q

}
.

6. Let M and N be smooth manifolds and let S ⊂ M ×N be a submanifold.
Denote by πM : M ×N → M and πN : M ×N → N the projections on each
factor. Show that the following are equivalent:
(a) S is the graph of a smooth map Φ : M → N ;
(b) πM |S is a diffeomorphism from S onto M ;
(c) For each p ∈ M , the submanifolds S and {p} × N = π−1

M (p) intersect
transversely and the intersection consists of a single point.

Moreover, if any of these hold then S is an embedded submanifold.

7. Extend Theorem 6.5 to the case where Ψ :M → N is a smooth map between
manifolds with boundary such that Ψ(∂M) = ∂N . Show that the conclusion
of the theorem may fail if this last condition is omitted.

The next sequence of exercises give a sketch of the proof of the weak Whitney’s
Embedding Theorem for non-compact manifolds.

8. Proof the following week version of Sard’s Theorem: If Ψ : M → N is a
smooth map between manifolds of the same dimension, then the set of singular
values of Ψ has measure zero.

Note: The general Sard’s Theorem states that for any smooth map Ψ the set
of singular values has measure zero.

9. Using Sard’s Theorem, show that if Φ : M → N is a smooth map between
smooth manifolds and dimM < dimN then Φ(M) has measure zero.

10. LetM ⊂ Rn be a smooth submanifold of dimension d. Given v ∈ Rn−Rn−1

denote by πv : Rn → Rn−1 the linear projection with kernel Rv. Show that if
n > 2d+ 1 there is a dense set of vectors v ∈ Rn −Rn−1 for which πv|M is an
injective immersion of M in Rn−1. Conclude that any compact manifold with
boundary of dimension d can be embedded in R2d+1.

Hint: Check that the proof given in the text of Whitney’s embedding theorem
is valid for compact manifolds with boundary. Then apply Sard’s theorem in
a clever way.

11. Using a smooth exhaustion function, show that any smooth manifold M
of dimension d can be embedded in R2d+1.

Hint: If f :M → R is a smooth exhaustion function, then by Sard’s Theorem,
in each interval [i, i+ 1[, the function f has a regular value ai. It follows that
the sets E0 = f−1(] − ∞, a2], Ei = f−1([ai−1, ai+1] (i = 1, 2, . . . ), are all
compact submanifolds of M of dimension d to which the previous result can
be applied. Now use a partition of unity to build an embedding ofM in R2d+1.
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Lecture 7. Foliations

A foliation is a nice decomposition of a manifold into submanifolds:

Definition 7.1. Let M be a manifold of dimension d. A foliation of
dimension k of M is a decomposition {Lα : α ∈ A} of M into disjoint path-
connected subsets satisfying the following property: for any p ∈ M there
exists a smooth chart φ = (x1, . . . , xk, y1, . . . , yd−k) : U → Rd = Rk × Rd−k,
such the the connected components of Lα ∩ U are the sets of

{p ∈ U : y1(p) = const., . . . , yd−k(p) = const.}.
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We will denote a foliation by F = {Lα : α ∈ A}. The connected sets

Lα are called leaves of F and a chart (U, φ) as in the definition is called
an foliated coordinate chart. The connected components of U ∩ Lα are
called plaques.

A path of plaques is a collection of plaques P1, . . . , Pl such that Pi ∩
Pi+1 6= ∅, for all i = 1, . . . , l − 1. The integer l is called the length of the
path of plaques. Two points p, q ∈M belong to the same leaf if and only
if there exists a path of plaques P1, . . . , Pl, with p ∈ P1 and q ∈ Pl.

Each leaf of a k-dimensional foliation of M is a submanifold of M of
dimension k. In general, these are only immersed submanifolds: a leaf
can intersect a foliated coordinate chart an infinite number of times and
accumulate overt itself. Before we check that leaves are submanifolds, let us
look at some examples.

Examples 7.2.

1. Let Φ :M → N be a submersion. By the local normal form for submersions,
the connected components of the fibers Φ−1(q), where q ∈ N , form a foliation
of M of codimension equal to the dimension of N . In this case, all leaves are
actually embedded submanifolds.

2. In R2, take the foliation by straight lines with a fixed slope a ∈ R. This is
just a special case of the previous example, where Φ : R2 → R, is given by:

Φ(x, y) = y − ax.
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Now let T2 = R2/Z2 be the torus. Then we have an induced foliation on T2,
and there are two possibilities. If a ∈ Q, the leaves are closed curves, hence
they are embedded submanifolds. However, if a 6∈ Q, then the leaves are dense
in the torus, so they are only immersed submanifolds.
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3. Let Φ : R3 → R be the smooth map defined by

Φ(x, y, z) = f(x2 + y2)ez,

where f ∈ C∞(R) is a smooth function with f(0) = −1, f(1) = 0 and f ′(t) > 0.
It is easy to check that Φ is a submersion and so determines a foliation F of
R3 whose leaves are the pre-images {Φ−1(c)}c∈R. When c = 0 we obtain as
leaf the cylinder C = {(x, y, z) : x2 + y2 = 1}. This cylinder splits the leaves
into two classes:

• The leaves with c < 0 lying in the interior of the cylinder C, which are
all diffeomorphic to R2;

• The leaves with c > 0 lying in the exterior of the cylinder C which are all
diffeomorphic to C;

An explicit parameterization of the leaves with c 6= 0 is given by:

(x, y) 7→ (x, y, log(c/f(x2 + y2)).

For the first type of leaves, c < 0 and x2 + y2 < 1, while for the second type of
leaves c > 0 and x2 + y2 > 1.
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4. The foliation in the previous example is invariant under translations in the
Oz-axis direction. If we identify R3 = R2 × R, we obtain a foliation in the
quotient R2 × S1 = R2 × R/Z. If we restrict this foliation to IntD2 × S1,
where D2 = {(x, y) : x2 + y2 ≤ 1}, we obtain a foliation of the solid 2-
torus. This example suggests that foliations of manifolds with boundary are

also interesting. We will not pursue this topic, but you should be aware of the
existence of foliations on manifolds with boundary.

5. The 3-sphere S3 can be obtained by “gluing” two solid 2-torus along its
boundary:

S3 = T1 ∪Φ T2,

where Φ : ∂T1 → ∂T2 is a diffeomorphism that takes the meridians of ∂T1 in
the circles of latitude of ∂T2, and vice-versa. Explicitly, if S3 = {(x, y, z, w) :
x2 + y2 + z2 + w2 = 1}, then we can take:

T1 = {(x, y, z, w) ∈ S3 : x2 + y2 ≤ 1/2},
T2 = {(x, y, z, w) ∈ S3 : x2 + y2 ≥ 1/2}.

Each of these solid 2-torus admits a 2-dimensional foliation as in the previous
example. One then obtains a famous 2-dimensional foliation of the sphere S3,
called the Reeb foliation of S3.

Proposition 7.3. Let F be a k-dimensional foliation of a smooth manifold
M . Every leaf L ∈ F is a initial submanifold of dimension k.

Proof. Let L be a leaf of F . The topology of L is the topology generated
by the plaques of L, i.e., the connected components of L ∩ U , where U the
domain of a foliated chart. For each plaque P , associated with a foliated
chart (U, φ) = (U, x1, . . . , xk, y1, . . . , yd−k), we consider the map ψ : P → Rk

obtain by choosing the first k-components:

ψ(p) = (x1(p), . . . , xk(p)).

The pairs (P, φ) give charts for L, which shows that L is a Hausdorff topo-
logical manifold. The transition functions for these charts are clearly as C∞,
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so we can consider the maximal atlas that contains all the charts (U,ψ). To
check that L is a manifold, we only need to check that the topology admits
a countable basis. For that we use the following lemma:

Lemma 7.4. Let L be a leaf of F and {Un : n ∈ Z} a covering of M by
domains of foliated charts. The number of plaques of L in this covering,
i.e., the number of connected components of L ∩ Un, n ∈ Z, is countable.

Fix a plaque P0 of L in the covering {Un : n ∈ Z}. If a plaque P ′ belongs
to L then there exists a path of plaques P1, . . . , Pl in the covering, with
Pi ∩Pi+1 6= ∅ which connects P ′ to P0. Therefore it is enough to check that
the collection of such paths is countable.

For each path of plaques P1, . . . , Pl let us call l the length of the path.
Using induction on n, we show that the collection of paths of length less or
equal to n is countable:

• The collection of paths of length 1 has only one element hence is
countable.

• Assume that the collection of paths of length n−1 is countable. Let
P1, . . . , Pn−1 be a path of length n− 1, corresponding to domains of
foliated charts U1, . . . , Un−1. In order to obtain a path of plaques of
length n, we choose a domain of a foliated chart Un 6= Un−1 and we
consider the plaques P ′, which are connected components of L∩Un,
such that the intersection with Pn−1 is non-empty. Now observe
that:

(L ∩ Un) ∩ Pn−1 = Un ∩ Pn−1,

intersections form an open cover of the plaque Pn−1. This cover has
a countable subcover, so the collection of all such P ′ is countable. It
follows that the collection of paths of length less or equal that n is
countable.

We leave it as an exercise to check that the leaves are actually initial
submanifolds. �

Corollary 7.5. Each leaf of a foliation intersects the domain of a foliated
chart at most a countable number of times.

There are few constructions which allows one to obtain new foliations
out of other foliations. The details of these constructions are left for the
exercises.

Product of foliations. Let F1 and F2 be foliations of M1 and M2, respec-
tively. Then the product foliation F1×F2 is a foliation ofM1×M2 defined

as follows: if F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B , then

F1 ×F2 = {L(1)
α × L

(2)
β }(α,β)∈A×B .

It should be clear that dim(F1 × F2) = dimF1 + dimF2 and, hence, that
codim (F1 ×F2) = codimF1 + codimF2
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Pull-back of a foliation. Let Φ :M → N be a smooth map between smooth
manifolds. If F is a foliation of N we will say that Φ is transversal to F
and write Φ ⋔ F if Φ is transversal to every leaf L of F :

dpΦ(TpM) + TΦ(p)L = TΦ(p)N, ∀p ∈ L.

Whenever Φ ⋔ F one defines the pull-back foliation Φ∗(F) to be the
foliation of M whose leaves are the connected components of Φ−1(L), where
L ∈ F . It should be clear that codimΦ∗(F) = codimF .

Suspension of a difeomorphism. The manifold R×M has a foliation F of of
dimension 1: the leaves are the sets R×{p}, where p ∈M (or if your prefer,
the fibers of the projection π : R×M →M). A difeomorphism Φ :M →M
induces an action of Z on R×M by setting

n · (t, p) = (t+ n,Φn(p)).

This action takes leaves of F into leaves of F . The quotient N = (R×M)/Z
is a manifold and has an induced foliation F̃ whose leaves are the equivalence
classes [L] in N , where L ∈ F . This foliation is called the suspension of
the diffemorphism Φ.

It is convenient to have alternative characterizations of foliations.

Foliations via smooth Gkd -structures. Let F = {Lα : α ∈ A} be a k-dimensional
foliation of M . If (U, φ) and (V, ψ) are foliated charts then the change of
coordinates ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is of the form:

Rk ×Rd−k ∋ (x, y) 7→ (h1(x, y), h2(y)) ∈ Rk × Rd−k.

In other words, we have that the transition functions satisfy:

(7.1)
∂(ψ ◦ φ−1)j

∂xi
= 0, (i = 1, . . . , k, j = k + 1, . . . , d).

U
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Conversely, denote by Gkd the local diffeomorphisms Rd → Rd that satisfy
this condition. We can refine the notion of smooth structure by requiring
that in Definition 1.3 the transition functions belong to Gkd , and we then

speak of a smooth Gkd -structure. An ordinary smooth structure on M is

just a Gdd -structure: the leaves are the connected components of M .
We have the following alternative description of a foliation:

Proposition 7.6. Let M be a smooth d-dimensional manifold. Given a
foliation F = {Lα : α ∈ A} of M of dimension k the collection of all foliated
charts C = {(U, φ)} defines a smooth Gkd -structure. Conversely, for every

smooth Gkd -structure C on a topological space M , there is smooth structure
that makes M into a d-dimensional manifold and there exists a foliation F
of M of dimension k, for which the foliated charts are the elements of C.
Proof. We have shown above that every k-dimensional foliation of a d-
dimensional manifold determines a smooth Gkd -structure. We will show that,

conversely, given a smooth Gkd -structure C = {(U, φ)} we can associate to it
a smooth structure on M of dimension d and a k-dimensional foliation F of
M .

It should be clear that a smooth Gkd -structure C = {(U, φ)} determines a
smooth structure on M of dimension d, since it is in particular an atlas. In
order to build F , we consider the sets φ−1(Rk×{c}), where c ∈ Rd−k, which
we call plaques. Since M is covered by all such plaques, we can define an
equivalence relation in M by:

• p ∼ q if there exists a path of plaques P1, . . . , Pl with p ∈ P1 and
q ∈ Pl.

Let F be the set of equivalence classes of ∼. We will show that F is a
foliation of M .

Let p0 ∈M and consider a plaque P0 which contains p0. Then

P0 = φ−1(Rk × {c0}),
for some smooth chart (U, φ) ∈ C with φ(p0) = (a0, c0) ∈ Rk × Rd−k. We
claim that (U, φ) is a foliated chart: let L ∈ F be an equivalence class that
intersects U . If p ∈ U ∩ L, then φ(p) = (a, c) ∈ Rk × Rd−k, so we see that
that the plaque

P = φ−1(Rk × {c}),
is contained in L. Since P is connected, it is clear that P is contained in the
connected component of L∩U that contains p. We claim that this connected
component is actually P , from which it will follow that (U, φ) is a foliated
chart.

Let q ∈ L ∩ U be some point in the connected component of L ∩ U
containing p. We claim that q ∈ P . By the definition of ∼, there exists a
path of plaques P1, . . . , Pl, with p ∈ P1 and q ∈ Pl, and such that Pi ⊂ U .
Each plaque Pi is associated to a smooth chart (Ui, φi) ∈ C such that

Pi = φ−1
i (Rk × {ci}).
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We can assume also that U1 = U , φ1 = φ, P1 = P and c1 = c. Since
φ2 ◦ φ−1 ∈ Gkd , we have that:

φ−1
2 (Rk × {c2}) ⊂ φ−1

2 ◦ φ2 ◦ φ−1 ◦ (Rk × {c̄2}) = φ−1(Rk × {c̄2}),
for some c̄2 ∈ Rd−k. Since P2 ∩P1 6= ∅ and the plaques φ−1 ◦ (Rk ×{c}) are
disjoint, we conclude that c̄2 = c1 and P2 ⊂ P1 = P . By induction, Pi ⊂ P
so q ∈ P , as claimed. �

Foliations via Haefliger cocycles. We saw before that the connected compo-
nents of the fibers of a submersion is an example of a foliation. Actually,
every foliation is locally of this form: if F = {Lα}α∈A is a foliation of M of
dimension k, for any foliated chart:

φ = (x1, . . . , xk, y1, . . . , yd−k) : U → Rd,

the projection in the last (d− k)-components gives a submersion:

ψ = (y1, . . . , yd−k) : U → Rd−k,

whose fibers are the connected components of Lα∩U . Given another foliated
chart:

φ̄ = (x̄1, . . . , x̄k, ȳ1, . . . , ȳd−k) : Ū → Rd,

with U ∩ Ū 6= ∅, for the corresponding submersion

ψ̄ = (ȳ1, . . . , ȳd−k) : Ū → Rd−k,

we have a change of coordinates of the form

φ̄ ◦ φ−1(x, y) = (h1(x, y), h2(y)),

where h2 has Jacobian matrix
[
∂hj2
∂yi

]d−k

i,j=1

with rank d−k. We conclude that the submersions ψ and ψ̄ differ by a local
diffeomorphism: for every p ∈ U ∩ Ū there exists an open neighborhood
p ∈ Up ⊂ U ∩ Ū and a local diffeomorphism Ψ : Rd−k → Rd−k, such that:

ψ̄|Up = Ψ ◦ ψ|Up .

This suggests another way of defining foliations:

Proposition 7.7. LetM be a d-dimensional manifold. Every k-dimensional
foliation F of M determines a maximal collection {ψi}i∈I of submersions
ψi : Ui → Rd−k, where {Ui}i∈I is an open cover of M , and which satisfies
the following property: for every i, j ∈ I and p ∈ Ui∩Uj, there exists a local

diffeomorphism ψpji de Rd−k, such that:

ψj = ψpji ◦ ψi,
in an open neighborhood Up of p. Conversely, every such collection deter-
mines a foliation of M .
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We have already seen how to a foliation we can associate a collection of
submersions. We leave it as an exercise to prove the converse.

Given a collection of submersions {ψi}i∈I , as in the proposition, we con-
sider for each pair i, j ∈ I, the map

ψij : Ui ∩ Uj → Diff loc(R
d−k), p 7−→ ψpij .

This map satisfies:

(7.2) (ψji)
−1 = ψji em Ui ∩ Uj ,

and the cocycle condition:

(7.3) ψij ◦ ψjk ◦ ψki = 1 in Ui ∩ Uj ∩ Uk.
We will see later, in Part IV of these notes, when we study the theory of
fiber bundles, that these cocycles, called Haefliger cocycles, play a very
important role.

Foliations appear naturally in many problems in differential geometry,
and we shall see many other examples of foliations during the course of
these lectures.

Homework.

1. Show that the leaves of a foliation are regularly immersed submanifolds.

2. Let F be the Reeb foliation of S3 and let Φ : S3 → N be a continuous map
whose restriction to each leaf F is constant. Show that Φ is constant.

3. Proof Proposition 7.7.

4. Let F1 = {L(1)
α }α∈A and F2 = {L(2)

β }β∈B be foliations. Using your favorite
definition of a foliation, show that the product F1 ×F2 is a foliation:

F1 ×F2 := {L(1)
α × L

(2)
β }(α,β)∈A×B.

5. Let Φ : M → N be a smooth map and let F = {Lα}α∈A be a foliation of
N . Using your favorite definition of a foliation, show that the pull-back Φ∗(F)
is a foliation:

Φ∗(F) := {connected components of Φ−1(Lα)}α∈A.

6. Let F1 e F2 be two foliations of a smooth manifold M such that F1 ⋔ F2,
i.e., such that

TpM = TpL
(1) + TpL

(2), ∀p ∈M,

where L(1) and L(2) are the leaves of F1 and F2 through p. Show that there
exists a foliation F1 ∩ F2 of M whose leaves are the connected components of

L
(1)
α ∩ L(2)

β , and which satisfies codimF = codimF1 + codimF2.

7. Given a foliation F of M , one denotes by M/F the space of leaves of F
with the quotient topology. Try to describe for each of the examples given in
the text their space of leaves.
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Lecture 8. Quotients

We have seen before several constructions that produce new manifolds
out of old manifolds, such as the product of manifolds or the pullback of sub
manifolds under transversal maps. We will now study another important,
but more delicate, construction: forming quotients of manifolds.

Let X be a topological space. If ∼ is an equivalence relation on X, we will
denote by X/ ∼ the set of equivalence classes of ∼ and by π : X → X/ ∼ the
quotient map which associates to each x ∈ X its equivalence class π(x) = [x].
In X/ ∼ we consider the quotient topology : a subset V ⊂ X/ ∼ is open if
and only if π−1(V ) is open. This is the largest topology in X/ ∼ for which
the quotient map π :M →M/ ∼ is continuous. We have the following basic
result about the quotient topology which we leave as an exercise:

Lemma 8.1. Let X be a Hausdorff topological space and let ∼ be an equiv-
alence relation on X such that π : X → X/ ∼ is an open map. Then X/ ∼
is Hausdorff if and only if the graph of ∼:

R = {(x, y) ∈ X ×X : x ∼ y},
is a closed subset of X ×X.

Let M be a smooth manifold and let ∼ be an equivalence relation on M .
We would like to known when there exists a smooth structure on M/ ∼,
compatible with the quotient topology, such that π : M → M/ ∼ becomes
a submersion. Before we can state a result that gives a complete answer to
this question, we need one definition.

Recall that a continuous map Φ : X → Y , between two Hausdorff topo-
logical spaces is called a proper map if Φ−1(K) ⊂ X is compact whenever
K ⊂ Y is compact. A proper map is always a closed map.

Definition 8.2. A proper submanifold of M is a submanifold (N,Φ)
such that Φ : N →M is a proper map.

By an exercise in Lecture 5, any proper submanifold is an embedded
submanifold. Also, if Φ : N →M is proper, then its image Φ(N) is a closed
subset of M . Conversely, every embedded closed submanifold of M is a
proper submanifold.

Theorem 8.3. Let M be a smooth manifold and let ∼ be an equivalence
relation on M . The following statements are equivalent:

(i) There exists a smooth structure on M/ ∼, compatible with the quotient
topology, such that π :M →M/ ∼ is a submersion.

(ii) The graph R of ∼ is a proper submanifold of M×M and the restriction
of the projection p1 :M ×M →M to R is a submersion.

R �

� // M ×M
p2

$$I
IIIIIIII

p1

zzuuuuuuuuu

M M
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Proof. We must show both implications:
(i) ⇒ (ii). The graph of the quotient map, as for every smooth map, is a

closed embedded submanifold:

G(π) = {(p, π(p)) : p ∈M} ⊂M ×M/ ∼,
Since I × π :M ×M →M ×M/ ∼ is a submersion and

R = (Id× π)−1(G(π)),
we conclude that R ⊂M ×M is an embedded closed submanifold, i.e., is a
proper submanifold.

On the other hand, the map (I × π)|R : R → G(π) is a submersion while
G(π) →M , (p, π(p)) 7→ p is a diffeomorphism, hence their composition p1|R
is a submersion.

(ii) ⇒ (i). We split the proof into several lemmas. The first of these
lemmas states that we can ”straighten out” ∼:

Lemma 8.4. For every p ∈ M , there exists a local chart (U, (x1, . . . , xd))
centered at p, such that

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q) = xk+1(q′), . . . , xd(q) = xd(q′),

where k is an integer independent of p and d = dimM .

To prove this lemma, let ∆ ⊂M×M be the diagonal. Note that ∆ ⊂ R ⊂
M ×M , and since ∆ and R are both embedded submanifolds of M ×M ,
we have that ∆ is an embedded submanifold of R. Therefore, for each
p ∈M , there exists a neighborhood O of (p, p) in M ×M and a submersion
Φ : O → Rd−k, where d− k = codimR, such that:

(q, q′) ∈ O ∩R if and only if Φ(q, q′) = 0.

We have that k ≥ 0, since ∆ ⊂ R and codim∆ = d.
Next we observe that the differential of the map q 7→ Φ(q, p) has maximal

rank at q = p: in fact, after identifying T(p,p)(M ×M) = TpM × TpM , we
see that d(p,p)Φ is zero precisely in the subspace formed by pairs (v,v) ∈
TpM × TpM , and this subspace is complementary to the subspace formed
by elements of the form (v, 0) ∈ TpM ×TpM . We conclude that there exists
a neighborhood V ′ of p such that V ′×V ′ ⊂ O, and the map q 7→ Φ(q, p) is a
submersion in V ′. By the local canonical form for submersions, there exist
a chart (V, φ) = (V, (u1, . . . , uk, v1, . . . , vd−k)) centered at p, with V ⊂ V ′,
such that

Φ ◦ (φ−1 × φ−1)(u1, . . . , uk, v1, . . . , vd−k, 0, . . . , 0) = (v1, . . . , vd−k).

In the domain of this chart, the points q ∈ V such that q ∼ p are precisely
the points satisfying v1(q) = 0, . . . , vd−k(q) = 0.

Now set Φ̂ = Φ ◦ (φ−1 × φ−1). The smooth map

Rd × Rd−k → Rd−k, (u, v, w) 7→ Φ̂((u, v), (0, w)),
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satisfies

Φ̂((u, v), (0, 0)) = v.

so the matrix of partial derivatives ∂Φ̂i/∂vj , (i, j = 1, . . . , d − k) is non-
degenerate. We can apply the Implicit Function Theorem to conclude that
there exists a local defined smooth function Rk × Rd−k → Rd−k, (u,w) 7→
v(u,w), such that:

Φ̂((u, v), (0, w)) = 0 if and only if v = v(u,w).

Since v(0, w) = w is a solution, uniqueness implies that:

φ(0, w) ∼ φ(0, w′) if and only if w = w′.

This shows that the map (u,w) 7→ (u, v(u,w)) is a local diffeomorphism.
Hence, there exists an open set U where

(x1, . . . , xd) = (u1, . . . , uk, w1, . . . , wd−k)

are local coordinates and in these coordinates:

∀q, q′ ∈ U, q ∼ q′ if and only if xk+1(q) = xk+1(q′), . . . , xd(q) = xd(q′),

so the lemma follows.

Since the functions xk+1, . . . , xd given by this lemma induce well-defined
functions x̄k+1, . . . , x̄d on the quotient M/ ∼, we consider the pairs of the
form (π(U), x̄k+1, . . . , x̄d):

Lemma 8.5. The collection C = {(π(U), x̄k+1, . . . , x̄d)} gives M/ ∼, with
the quotient topology, the structure of a topological manifold of dimension
d− k.

First note that π : M → M/ ∼ is an open map: in fact, for any V ⊂ M ,
we have that

π−1(π(V )) = p1|R((p2|R)−1(V )).

By assumption, p1|R is a submersion hence is an open map. Therefore, if
V ⊂M is open then π−1(π(V )) is also open, so π(V ) ⊂M/ ∼ is open.

This shows that π(U) is open. Since the map

(xk+1, . . . , xd) : U → Rd−k

is both continuous and open, it follows that the induced map

(x̄k+1, . . . , x̄d) : π(U) → Rd−k

is continuous, open and injective, i.e., is a homeomorphism onto its image.

Now we show that:

Lemma 8.6. The family C = {(π(U), x̄k+1, . . . , x̄d)} is an atlas generating
a smooth structure for M/ ∼ such that π :M →M/ ∼ is a submersion.
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Take two pairs in C:
(π(U), φ̄) = (π(U), x̄k+1, . . . , x̄d),

(π(V ), ψ̄) = (π(V ), ȳk+1, . . . , ȳd),

which correspond to two charts in M :

(U, φ) = (U, x1, . . . , xd),

(V, ψ) = (V, y1, . . . , yd).

The corresponding transition function:

ψ̄ ◦ φ̄−1 : Rd−k → Rd−k,

composed with the projection p : Rd → Rd−k in the last d − k components
is given by:

ψ̄ ◦ φ̄−1 ◦ p = p ◦ ψ ◦ φ−1.

Since the right-hand side is a smooth map Rd → Rd−k it follows that ψ̄◦ φ̄−1

is smooth.
In order to check that π : M → M/ ∼ is a submersion, it is enough to

observe that in the charts (U, x1, . . . , xd) for M and (π(U), x̄k+1, . . . , x̄d) for
M/ ∼, this map corresponds to the projection p : Rd → Rd−k.

To finish the proof of Theorem 8.3, we check that

Lemma 8.7. The quotient topology M/ ∼ is Hausdorff and second count-
able.

It is obvious that if M has a countable basis, then the quotient topology
also has a countable basis. Since the graph R of ∼ is closed in M ×M , M
is Hausdorff and π is an open map, it follows form Lemma 8.1 that M/ ∼
is Hausdorff.

�

Remark 8.8. The proof above shows that if we assume that R is embedded,
not closed, and p1|R : R → M is a submersion, then the quotient M/ ∼ is
a smooth manifold, second countable, but not Hausdorff (see Exercise 3 for
an example).

The proof above also shows that, under the assumptions of the theorem,
the equivalence classes of R form a foliation of M of codimension R which
is a simple foliation (see Exercise 7).

A very important class of equivalence relations on manifolds is given by
actions of groups of diffeomorphisms. If G is a group, we recall that an

action of G on a set M is a group homomorphism Ψ̂ from G to the group
of bijections of M . One can also view an action as a map Ψ : G×M →M ,
which we write as (g, p) 7→ g · p, if one sets:

g · p ≡ Ψ̂(g)(p).

Since Ψ̂ is a group homomorphism, it follows that:
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(a) e · p = p, for all p ∈M ;
(b) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

Conversely, any map Ψ : G ×M → M satisfying (a) and (b), determines a

homomorphism Ψ̂. From now on, we will denote an action by Ψ : G×M →
M , and for each g ∈ G we denote by Ψg the bijection:

Ψg :M →M, p 7→ g · p
Assume now that M is a manifold. We say that that a group G acts on

M by diffeomorphims if, for each g ∈ G, Ψg :M →M is a diffeomorphism.

This means that we have a group homomorfismo Ψ̂ : G → Diff(M), where
Diff(M) is the group of all diffeomorphisms of M . We can also express this
condition by saying that the map Ψ : G ×M → M is smooth, where G is
viewed as a smooth 0-dimensional manifold with the discrete topology. So
we will also say in this case that the discrete group G acts smoothly on M .

Given any action of G on M the quotient G\M is, by definition, the set
of equivalence classes determined by the orbit equivalence relation:

p ∼ q ⇐⇒ ∃g ∈ G : q = g · p.
Let us see conditions on an action by diffeomorphisms for the quotient G\M
to be a manifold.

We recall that a free action is an action G ×M → M such that each
g ∈ G− {e} acts without fixed points, i.e.,

g · p = p for some p ∈M =⇒ g = e.

Denoting by Gp the isotropy subgroup of p ∈M , i.e.,

Gp = {g ∈ G : g · p = p},
an action is free if and only if Gp = {e}, for all p ∈M .

Definition 8.9. A smooth action Ψ : G ×M → M of a discrete group G
on a smooth manifold M is said to be proper if the map:

G×M →M ×M, (g, p) 7→ (g · p, p),
is a proper map.

For example, actions of finite groups are always proper.

Corollary 8.10. Let Ψ : G×M →M be a free and proper smooth action of
a discrete group G on M . There exists a unique smooth structure on G\M
such that π :M → G\M is a local diffeomorphism.

Proof. We check that condition (ii) of Theorem 8.3 holds.
We claim that R ⊂ M ×M is a proper submanifold. Since the action if

free and proper, it follows (see Exercise 6) that for each (p0, g0 · p0) ∈ R,
there exists an open set p0 ∈ U , such that:

g · U ∩ U = ∅, ∀g ∈ G− {e}.
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It follows that

(U × g0 · U) ∩R = {(q, g0 · q) : q ∈ U}.
so the map

U → (U × g0 · U) ∩R, q 7→ (q, g0 · q),
is a parameterization of O ∩ R, with O ⊂ M ×M open. It follows that R
can be covered by open sets O ∩ R embedded in M ×M , so that R is an
embedded submanifold. Also, the action being proper, the inclusion

R = {(p, g · p) : p ∈M,g ∈ G} →֒M ×M

is a proper map.
Now we observe that the projection p1 : M ×M → M restricted to R is

an inverse to the parameterizations of R constructed above, hence p1|R is a
local diffeomorphism. �

Under the conditions of this corollary, it is easy to check that the projec-
tion π : M → G\M is in fact a covering map. Therefore, if M is simply
connected, them M is the universal covering space of G\M and we conclude
that π1(G\M) ≃ G.

Examples 8.11.

1. Let M = Sd, with d > 1. Consider the action of Z2 × Sd → Sd defined by:

±1 · (x1, . . . , xd+1) = ±(x1, . . . , xd+1).

This action is free and proper. We conclude that the quotient Sd/Z2 is a
manifold. This manifold is diffeomorphic to Pd: the map Sd → Pd given by
(x1, . . . , xd) 7→ [x1 : · · · : xd] induces a diffeomorphism Sd/Z2 → Pd such that
the following diagram commutes:

Sd

�� ""E
EE

EE
EE

EE

Sd/Z2
// Pd

For d > 1, Sd is simply connected, so we conclude also that the quotient map
is a covering map and that π1(Pd) = Z2.

2. Let Zd act on Rd by translations:

(n1, . . . , nd) · (x1, . . . , xd) = (x1 + n1, . . . , x
d + nd).

This action is free and proper. It follows that the d-torus Td = Rd/Zd is
a smooth manifold. This manifold is diffeomorphic to Td: the map Rd → Td

given by (x1, . . . , xd) → (e2πix
1

, . . . , e2πix
1

) induces a diffeomorphism Rd/Zd →
Td such that the following diagram commutes:

Rd

�� ""E
EE

EE
EE

EE

Rd/Zd // Td
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Since Rd is simply connected, we conclude also that the quotient map is a
covering map and that π1(Td) = Zn.

3. Let R act on R2 by translations in the x-direction:

λ · (x1, x2) = (x1 + λ, x2).

This is not a free and proper action of a discrete group. However, we leave it
as an exercise to check that the orbit equivalence relation ∼ determined by this
action satisfies condition (ii) of Theorem 8.3, so that R2/ ∼ inherits a smooth
structure. The quotient R2/ ∼ is diffeomorphic to R with its usual smooth
structure.

The last example suggests that actions of non-discrete groups are also
interesting. We will study later Lie groups where the group itself carries a
smooth structure of positive dimension. These will give rise, as we will see
later, to many other examples of quotients.

Homework.

1. Let X be a Hausdorff topological space and ∼ an equivalence relation in X
such that π : X → X/ ∼ is an open map, for the quotient topology. Show that
X/ ∼ with the quotient topology is Hausdorff if and only if the graph of ∼ is
closed in X ×X .

2. Let R act on R2 by translations in the x-direction:

λ · (x1, x2) = (x1 + λ, x2).

Show that the equivalence relation ∼ determined by this action satisfies con-
dition (ii) of Theorem 8.3, so that R2/ ∼ inherits a smooth structure. Check
that R2/ ∼ is diffeomorphic to R with its usual smooth structure.

3. Let R2 − {0} with the equivalence relation ∼ for which the equivalence
classes are the connected components of the horizontal lines y = const. Show
that the quotient space R2 − {0}/ ∼ has a non-Hausdorff smooth structure
(this manifold is sometimes called the line with two origins).

4. Let π :M → Q be a surjective submersion, Φ :M → N and Ψ : Q→ N any
maps into a smooth submanifold N such that the following diagram commutes:

M

π

��

Φ

&&NNNNNNNNNNNNN

Q
Ψ

// N

Show that Φ is smooth if and only if Ψ is smooth. Use this to conclude that if
M is a manifold, ∼ is an equivalence relation satisfying any of the conditions
of Theorem 8.3, and Φ : M → N is a smooth map such that Φ(x) = Φ(y)
whenever x ∼ y, then there is an induced smooth map Φ : M/ ∼→ N such
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that the following diagram commutes:

M

π

��

Φ

''OOOOOOOOOOOOOO

M/ ∼
Φ

//______ N

5. Show that any smooth action G×M →M of a finite group G on a manifold
M is proper.

6. A smooth action Ψ : G × M → M of a discrete group G is said to be
properly discontinuous if the following two conditions are satisfied:
(a) For every p ∈M , there exists a neighborhood U of p, such that:

g · U ∩ U = ∅, ∀g ∈ G−Gp.

(b) If p, q ∈ M do not belong to the same orbit, then there are open neigh-
borhoods U of p and V of q, such that

g · U ∩ V = ∅, ∀g ∈ G.

Show that a free action of a discrete group is proper if and only if it is properly
discontinuous.

7. Show that for a proper a free action of a discrete group G ×M → M , the
projection π : M → G\M is a local diffeomorphism, so that π is a covering
map.

8. Let F be a foliation of M and denote by M/F its leaf space. One calls F
a simple foliation if for each p ∈ M there exists a foliated chart (U, φ) with
the property that every leaf L intersects U at most in one plaque. Show that
a foliation F is simple if and only if there exists a smooth structure M/F ,
in general non-Hausdorff, for which the quotient map π : M → M/F is a
submersion.
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Part 2. Lie Theory

In the first part of these lectures we have introduced and study some
elementary concepts about manifolds. We will now initiate the study of
the local differential geometry of smooth manifolds. The main concept and
ideas that we will introduce in this round of lectures are the following:

• Lecture 9: the notion of vector field and the related concepts of
integral curve and flow of a vector field.

• Lecture 10: the Lie bracket of vector fields and the Lie derivative,
which allows to differentiate along vector fields.

• Lecture 11: an important generalization of vector fields, called dis-
tributions. The Frobenius Theorem says that foliations are the global
objects associated with involutive distributions.

• Lecture 12: Lie groups and their infinitesimal versions called Lie
algebras.

• Lecture 11: how to integrate Lie algebras to Lie groups.
• Lecture 12: transformation groups which are concrete realizations of
Lie groups.
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Lecture 9. Vector Fields and Flows

Definition 9.1. A vector field on a manifold M is a section of the tangent
bundle π : TM → M , i.e., a map X : M → TM such that π ◦X = I. We
say that the vector field X is smooth or C∞, if the map X : M → TM
is smooth. We will denote by X(M) the set of smooth vector fields on a
manifold M .

If X is a vector field on M , we denote by Xp, rather than X(p), the value
of X at p ∈ M . For each p ∈ M , Xp is a derivation, hence, given any
f ∈ C∞(M) we can define a new function X(f) :M → R by setting

X(f)(p) ≡ Xp(f).

If you recall the definition of the differential of a function, you see immedi-
ately that this definition is equivalent to:

X(f) = df(X).

Also, from the definition of a tangent vector as a derivation, we see that
f 7→ X(f) satisfies:

(i) X(f + λg) = X(f) + λX(g);
(ii) X(fg) = X(f)g + fX(g);

Let (U, x1, . . . , xd) be a coordinate system onM . Then we have the vector
fields ∂

∂xi
∈ X(U) defined by:

∂

∂xi
(p) ≡ ∂

∂xi

∣∣∣∣
p

, (i = 1, . . . , d).

At each p ∈ U these vector fields yield a basis of TpM , so if X ∈ X(M) is
any vector field on M , its restriction to the open set U , denoted by X|U ,
can be written in the form:

X|U =

d∑

i=1

Xi ∂

∂xi
,

where Xi : U → R are certain functions which we call the components of
the vector field X with respect to the chart (x1, . . . , xd).

Lemma 9.2. Let X be a vector field on M . The following statements are
equivalent:

(i) The vector field X is C∞;
(ii) For any chart (U, x1, . . . , xd), the components Xi of X with respect to

this chart are C∞;
(iii) For any f ∈ C∞(M), the function X(f) is C∞.

Proof. We show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
To show that (i) ⇒ (ii), note that if X is C∞ and U is an open set, the

restriction X|U is also C∞. Hence, if (U, x1, . . . , xd) is any chart, we have
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that dxi(X|U ) := dxi ◦X|U is C∞. But:

dxi(X|U ) = dxi(
d∑

j=1

Xj ∂

∂xj
) = Xi.

To show that (ii) ⇒ (iii), note that f ∈ C∞(M) if and only if f |U ∈
C∞(U), for every domain U of a chart. But:

X(f)|U =
d∑

i=1

Xi ∂f

∂xi
∈ C∞(U).

To show that (iii) ⇒ (i), it is enough to show that X|U is C∞, for every
domain U of a chart. Recall that if (U, x1, . . . , xd) is a chart then

(π−1(U), (x1 ◦ π, . . . , xd ◦ π,dx1, . . . ,dxd))
is a coordinate systems in TM . Since:

xi ◦ π ◦X|U = xi ∈ C∞(U),

dxi ◦X|U = X(xi) ∈ C∞(U),

we conclude that X|U is C∞. �

We conclude from this lemma, that a vector field X ∈ X(M) defines a
linear derivation DX : C∞(M) → C∞(M), f 7→ X(f). Conversely, we have:

Lemma 9.3. Every linear derivation D : C∞(M) → C∞(M) determines a
vector field X ∈ X(M) through the formula:

Xp(f) = D(f)(p).

Proof. We only need to show that Xp(f) only depends on the germ [f ] ∈ Gp,
i.e., if f, g ∈ C∞(M) are two function which agree in some neighborhood U
of p, then D(f)(p) = D(g)(p). This follows from the fact that derivations
are local: if D is a derivation and f ∈ C∞(M) is zero on some open set
U ⊂ M , then D(f) is also zero in U . To see this, let p ∈ U and choose
g ∈ C∞(M) such that g(p) > 0 and supp g ⊂ U . Since gf ≡ 0, we have
that:

0 = D(gf) = D(g)f + gD(f).

If we evaluate both sides at p, we obtain D(f)(p) = 0. Hence, D(f)|U = 0
as claimed. �

From now on we will not distinguish between a vector field and the asso-
ciated derivation of C∞(M), so we will the same letter to denote them.

Recall that a path in a manifold M is a continuous map γ : I → M ,
where I ⊂ R is an interval. A smooth path is a path for which γ is C∞.
Note that if ∂I 6= ∅, i.e., is not an open interval, then γ is smooth if and only
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if it has a smooth extension to a smooth path defined in an open interval
J ⊃ I. If γ : I →M is a smooth path, its derivative is:

dγ

dt
(t) ≡ dγ · ∂

∂t

∣∣∣∣
t

∈ Tγ(t)M, (t ∈ I)

We often abbreviate writing γ̇(t) instead of dγ
dt (t). The derivative t 7→ γ̇(t)

is a smooth path in the manifold TM .

Definition 9.4. Let X ∈ X(M) be a vector field. A smooth path γ : I →M
is called an integral curve of X if

(9.1) γ̇(t) = Xγ(t), ∀t ∈ I.

In a chart (U, (x1, . . . , xd)), a path γ(t) is determined by its components
γi(t) = xi(γ(t)). Its derivative is then given by

γ̇(t) = dγ · ∂
∂t

=
d∑

i=1

dγi

dt

∂

∂xi
.

It follows that the integral curves of a vector field X, which has components
Xi in the local chart (x1, . . . , xd), are the solutions of the system of o.d.e.’s:

(9.2)
dγi

dt
= Xi(γ1(t), . . . , γd(t)), (i = 1, . . . , d).

This system is the local form of the equation (9.1). Note that it is common
to write xi(t) for the components γi(t) = xi(γ(t)) so that this system of
equations becomes:

dxi

dt
= Xi(x1(t), . . . , xd(t)), (i = 1, . . . , d).

Example 9.5.
In R2 consider the vector field X = x ∂

∂y − y ∂
∂x . The equations for the integral

curves (9.2) are: {
ẋ(t) = −y(t),
ẏ(t) = x(t).

Hence, the curves γ(t) = (R cos t, R sin t) are integral curves of this vector field.
This vector field is tangent to the submanifold S1 = {(x, y) : x2 + y2 = 1},

so defines a vector field on the circle: Y = X |S1 . If we consider the angle
coordinate θ on the circle, the smooth functions C∞(S1) can be identified with
the 2π-periodic smooth functions f(θ) = f(θ + 2π). It is easy to see that the
vector field Y as a derivation is given by:

Y (f)(θ) = f ′(θ).

Hence we will write this vector field as:

Y =
∂

∂θ
,

although the function θ is not a globally defined smooth coordinate on S1.
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Now consider the cylinder M = S1 × R, with coordinates (θ, x). We have a
well defined vector field:

Z =
∂

∂θ
+ x

∂

∂x
.

You should try to plot this vector field on a cylinder and verify that the integral
curve of Z through a point (θ0, x0) is given by

γ(t) = (θ0 + t, x0e
t).

If x0 = 0, this is just a circle around the cylinder. If x0 6= 0 this is a spiral
that approaches the circle when t→ −∞ and goes to infinity when t→ +∞.

Standard results about existence, uniqueness and maximal interval of def-
inition of solutions a system of o.d.e.’s lead to the following proposition:

Proposition 9.6. Let X ∈ X(M) be a vector field. For each p ∈ M , there
exist real numbers ap, bp ∈ R ∪ {±∞} and a smooth path γp :]ap, bp[→ M ,
such that:

(i) 0 ∈]ap, bp[ and γp(0) = p;
(ii) γp is an integral curve of X;
(iii) If η :]c, d[→ M is any integral curve of X with η(0) = p, then ]c, d[⊂

]ap, bp[ and γp|]c,d[ = η.

We call the integral curve γp given by this proposition the maximal
integral curve of X through p. For each t ∈ R, we define the domain
Dt(X) consisting of those points for which the integral curve through p
exists at least until time t:

Dt(X) = {p ∈M : t ∈]ap, bp[}.
If it is clear the vector field we are referring to, we will write Dt instead of
Dt(X). The flow of the vector field X ∈ X(M) is the map φtX : Dt →M
given by

φtX(p) ≡ γp(t).

Proposition 9.7. Let X ∈ X(M) be a vector field with flow φtX . Then:

(i) For each p ∈ M , there exists a neighborhood U of p and ε > 0, such
that the map (−ε, ε) × U →M given by:

(t, q) 7→ φtX(q),

is well defined and smooth;
(ii) For each t ∈ R, Dt is open and

⋃
t>0Dt =M ;

(iii) For each t ∈ R, φtX : Dt → D−t is a diffeomorphism and:

(φtX)
−1 = φ−tX ;

(iv) For each s, t ∈ R, the domain of φtX ◦ φsX is contained in Dt+s and:

φt+sX = φtX ◦ φsX .
Proof. Exercise. �
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One calls a vector field X complete if Dt(X) = M , for every t ∈ R,
i.e., if the maximal integral curve through any p ∈ M is defined for all
t ∈]−∞,+∞[. In this case the flow of X is a map:

R×M →M, (t, p) 7→ φtX(p).

The properties above then say that this map gives an action of the group
(R,+) in M . In other words, the map

R → Diff(M), t 7→ φtX ,

is a group homomorphism from (R,+) to the group (Diff(M), ◦) of dif-
feomorphisms of M . One often says that φtX is a 1-parameter group of
transformations of M . In the non-complete case, one also says that φtX is a
1-parameter group of local transformations of M .

Examples 9.8.

1. The vector field X = x ∂
∂y − y ∂

∂x in R2 is complete (see Example 9.5) and is

flow is given by:

φtX(x, y) = (x cos t− y sin t, x sin t+ y cos t).

2. The vector field Y = −x2 ∂
∂x − y ∂

∂y in R2 is not complete: the integral curve

through a point (x0, y0) is the solution to the system of odes:
{
ẋ(t) = −x2, x(0) = x0,
ẏ(t) = −y, y(0) = y0.

After solving this system, ones obtains the flow of Y :

φtX(x, y) =

(
x

xt+ 1
, ye−t

)
.

It follows that the flow through points (0, y) exist for all t. But for points
(x, y), with x 6= 0, the flow exists only for t ∈] − 1/x,+∞[ if x > 0 and for
t ∈]−∞,−1/x[ if x > 0. The domain of the flow is then given by:

Dt(Y ) =





{(x, y) ∈ R2 : x > −1/t} if t > 0,

R, if t = 0,

{(x, y) ∈ R2 : x < −1/t} if t < 0

Let Φ : M → N be a smooth map. In general, given a vector field X in
M , it is not possible to use Φ to map X to obtain a vector field Y in N .
However, given two vector fields, one in M and one in N , we can say when
they are related by this map:

Definition 9.9. Let Φ :M → N be a smooth map. A vector field X ∈ X(M)
is said to be Φ-related to a vector field Y ∈ X(N) if

YΦ(p) = dΦ(Xp), ∀p ∈M.

77



If X and Y are Φ-related vector fields then, as derivations of C∞(M):

Y (f) ◦ Φ = X(f ◦ Φ), ∀f ∈ C∞(N).

When Y is determined from X via Φ we write Y = Φ∗(X), and call Φ∗(X)
the push forward of X by Φ. This is the case, for example, when Φ is a
diffeomorphism, in which case:

Φ∗(X)(f) = X(f ◦ Φ) ◦Φ−1, ∀f ∈ C∞(N).

The integral curves of vector fields which are Φ-related are also Φ-related.
The proof is a simple exercise applying the chain rule:

Proposition 9.10. Let Φ : M → N be a smooth map and let X ∈ X(M)
and Y ∈ X(N) be Φ-related vector fields. If γ : I → M is an integral curve
of X, then Φ ◦ γ : I → N is an integral curve of Y . In particular, we have
that Φ(Dt(X)) ⊂ Dt(Y ) and that the flows of X and Y are related by:

Dt(X)
Φ //

φtX
��

Dt(Y )

φtY
��

D−t(X)
Φ // D−t(Y )

If X ∈ X(M) is a vector field and f ∈ C∞(M), we already know that
X(f) ∈ C∞(M). The expression for X(f) is local coordinates show that X
is a first order differential operator. If we iterate, we obtain the powers Xk,
which are kth-order differential operators:

Xk+1(f) ≡ X(Xk(f)).

Proposition 9.11 (Taylor Formula). Let X ∈ X(M) be a vector field and
f ∈ C∞(M). For each positive integer k, one has the expansion

f ◦ φtX = f + tX(f) +
t2

2!
X2(f) + · · · + tk

k!
Xk(f) + 0(tk+1),

where for each p ∈M , t 7→ 0(tk+1)(p) denotes a real smooth function defined
in a neighborhood of the origin whose terms of order ≤ k all vanish.

Proof. By the usual Taylor formula for real functions applied to t 7→ f(φtX(p)),
it is enough to show that:

dk

dtk
f(φtX(p))

∣∣∣∣
t=0

= Xk(f)(p).

To prove this, we show by induction that:

dk

dtk
f(φtX(p)) = Xk(f)(φtX(p)).

When k = 1, this follows because:

d

dt
f(φtX(p)) = dpf ·Xφt

X
(p)

= Xφt
X
(p)(f) = X(f)(φtX(p)).
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On the other hand, if we assume that the formula is valid for k − 1, we
obtain:

dk

dtk
f(φtX(p)) =

d

dt

(
dk−1

dtk−1
f(φtX(p))

)

=
d

dt
Xk−1(f)(φtX(p))

= X(Xk−1(f))(φtX (p)) = Xk(f)(φtX(p)).

�

Another common notation for the flow of a vector field, which is justified
by the previous result, is the exponential notation:

exp(tX) ≡ φtX .

In this notation, the properties of the flow are written as:

exp(tX)−1 = exp(−tX), exp((t+ s)X) = exp(tX) ◦ exp(sX),

while the Taylor expansion takes the following suggestive form:

f(exp(tX)) = f + tX(f) +
t2

2!
X2(f) + · · ·+ tk

k!
Xk(f) + 0(tk+1).

We will not use this notation in these lectures.

If X ∈ X(M) is a vector field, a point p ∈ M is called a singular point
or an equilibrium point of X if Xp = 0. It should be obvious that the
integral curve through a singular point ofX is the constant path: φtX(p) = p,
para todo o t ∈ R. On the other hand, for non-singular points we have a
unique local canonical form X:

Theorem 9.12 (Flow Box Theorem). Let X ∈ X(M) be a vector field
and p ∈ M a non-singular point: Xp 6= 0. There are local coordinates

(U, (x1, . . . , xd)) centered at p, such that:

X|U =
∂

∂x1
.

Proof. First we choose a chart (V, (y1, . . . , yd)) = (V, ψ), centered at p, such
that:

X|p =
∂

∂y1

∣∣∣∣
p

.

The map σ : Rd →M given by

σ(t1, . . . , td) = φt1X(ψ
−1(0, t2, . . . , td)),
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is well defined and C∞ in a neighborhood of the origin. Its differential at
the origin is given by:

d0σ · ∂

∂t1

∣∣∣∣
0

=
d

dt1
φt1X(ψ

−1(0, 0, . . . , 0))

∣∣∣∣
t1=0

= Xp =
∂

∂y1

∣∣∣∣
p

,

d0σ · ∂

∂ti

∣∣∣∣
0

=
∂

∂ti
ψ−1(0, t2, . . . , td))

∣∣∣∣
0

=
∂

∂yi

∣∣∣∣
p

.

We conclude that σ is a local diffeomorphism in a neighborhood of the origin.
Hence, there exists an open set U containing p such that φ = σ−1 : U → Rd

is a chart. If we write (U, φ) = (U, (x1, . . . , xd)), we have:

∂

∂x1

∣∣∣∣
σ(t1 ,...,td)

= dσ · ∂

∂t1

∣∣∣∣
(t1,...,td)

=
d

dt
φtX(ψ

−1(0, t2, . . . , td))

∣∣∣∣
t=t1

= X(φt1X(ψ
−1(0, t2, . . . , td))) = Xσ(t1,...,td).

�

Homework.

1. Let M be a connected manifold. Show that for any pair of points p, q ∈M ,
with p 6= q, there exists a smooth path γ : [0, 1] →M such that
(a) γ(0) = p and γ(1) = q;

(b) dγ
dt (t) 6= 0, for every t ∈ [0, 1];

(c) γ is simple (i.e., γ is injective).
Use this to prove that any connected manifold of dimension 1 is diffeomorphic
to either R or S1.

2. Let X ∈ X(M) be a vector field and λ ∈ R. What is the relationship
between the integral curves of X and the integral curves of λX?

3. Verify the properties of the flow of a vector field given by Proposition 9.7.

4. Determine the flow of the vector field X = y∂/∂x − x∂/∂y in R3 with
coordinates (x, y, z).

5. Is a vector field X in R necessarily complete? What about in R2?

6. Show that on a compact manifold M every vector field X ∈ X(M) is com-
plete. Give an example of two vector fields X1 and X2 which are complete but
for which their sum X1 +X2 is not complete.

7. Let A ⊂ M . Call X a vector field along A if X : A → TM satisfies
Xp ∈ TpM for all p ∈ A. We say that X is smooth if every p ∈ A has a

neighborhood Up and a smooth vector field X̃ ∈ X(Up) such that X̃|A∩Up
= X .

Show that if A ⊂ O ⊂M , with A closed and O open, then every smooth vector
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fieldX along A can be extended to a smooth vector field inM such thatXp = 0
for p 6∈ O.

8. Let X ∈ X(M) be a vector field without singular points. Show that the
integral curves of X form a foliation F of M of dimension 1. Conversely, show
that locally the leaves of a foliation of dimension 1 are the orbits of a vector
field. What about globally?

9. A Riemannian structure on a manifold M is a smooth choice of an inner
product 〈 , 〉p in each tangent space TpM . Here by smooth we mean that for
any vector fields X,Y ∈ X(M), the function p 7→ 〈X(p), Y (p)〉p is C∞). Show
that every smooth manifold admits a Riemannian structure M .

Lecture 10. Lie Bracket and Lie Derivative

Definition 10.1. Let X,Y ∈ X(M) be smooth vector fields. The Lie

bracket of X and Y is the vector field [X,Y ] ∈ X(M) given by:

[X,Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(M).

Note that the formula for the Lie bracket [X,Y ] shows that it is a differ-
ential operator of order ≤ 2. A simple computation shows that [X,Y ] is a
linear derivation of C∞(M):

[X,Y ](fg) = [X,Y ](f)g + f [X,Y ](g), ∀f, g ∈ C∞(M).

In order words, the terms of 2nd order cancel each other and we have in fact
that [X,Y ] ∈ X(M).

In a local chart we can compute the Lie bracket in a straightforward way
if we think of vector fields as differential operators. This is illustrated in the
next example.

Example 10.2.
Let M = R3 with coordinates (x, y, z), and consider the vector fields:

X = z
∂

∂y
− y

∂

∂z
,

Y = x
∂

∂z
− z

∂

∂x
,

Z = y
∂

∂x
− x

∂

∂y
.

Then we compute:

[X,Y ] =

(
z
∂

∂y
− y

∂

∂z

)(
x
∂

∂z
− z

∂

∂x

)
−
(
x
∂

∂z
− z

∂

∂x

)(
z
∂

∂y
− y

∂

∂z

)

= y
∂

∂x
− x

∂

∂y
= Z.

We leave it as an exercise the computation of the other Lie brackets:

[Y, Z] = X, [Z,X ] = Y.
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Our next result shows that the Lie bracket [X,Y ] measures the failure in
the commutativity of the flows of X and Y .

Proposition 10.3. Let X,Y ∈ X(M) be vector fields. For each p ∈M , the
commutator

γp(ε) ≡ φ
−√

ε
Y ◦ φ−

√
ε

X ◦ φ
√
ε

Y ◦ φ
√
ε

X (p)

is well defined for a small enough ε ≥ 0, and we have:

[X,Y ]p =
d

dε
γp(ε)

∣∣∣∣
ε=0+

.

Proof. Fix a local chart (U, x1, . . . , xd), centered at p, and write:

X =

d∑

i=1

Xi ∂

∂xi
, Y =

d∑

i=1

Y i ∂

∂xi
.

The Lie bracket of X and Y is given by:

[X,Y ](xi) = X(Y i)−X(Y i).

Consider the points p1, p2 and p3 defined by (see figure above):

p1 = φ
√
ε

X (p), p2 = φ
√
ε

Y (p1), p3 = φ
−√

ε
X (p2),

Then γp(ε) = φ
−√

ε
Y (p3), and Taylor’s formula (see Proposition 9.11), applied

to each coordinate xi, yields:

xi(p1) = xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p) +O(ε

3

2 )
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Similarly, we have:

xi(p2) = xi(p1) +
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3

2 ) =

= xi(p) +
√
εXi(p) +

1

2
εX2(xi)(p)+

+
√
εY i(p1) +

1

2
εY 2(xi)(p1) +O(ε

3

2 )

The last two terms can also be estimated using again Taylor’s formula:

Y i(p1) = Y i(φ
√
ε

X (p)) = Y i(p) +
√
εX(Y j)(p) +O(ε)

Y 2(xi)(p1) = Y 2(xi)(φ
√
ε

X (p)) = Y 2(xi)(p) +
√
εY 2(xi)(p) +O(ε)

hence, we have:

xi(p2) =x
i(p) +

√
ε(Y i(p) +Xi(p))+

+ ε

(
1

2
Y 2(xi)(p) +X(Y i)(p) +

1

2
X2(xi)(p)

)
+O(ε

3

2 )

Proceeding in a similar fashion, we can estimate xi(p3) and xi(γp(ε)), ob-
taining:

xi(p3) = xi(p2)−
√
εXi(p2) +

1

2
εX2(xi)(p2) +O(ε

3

2 )

= xi(p) +
√
εY i(p) + ε

(
X(Y i)(p)− Y (Xi)(p) +

1

2
Y 2(xi)(p)

)
+O(ε

3

2 )

xi(γp(ε)) = xi(p3)−
√
εY i(p3) +

1

2
εY 2(xi)(p3) +O(ε

3

2 )

= xi(p) + ε
(
X(Y i)(p)− Y (Xi)(p)

)
+O(ε

3

2 )

Therefore:

lim
ε→0+

xi(γp(ε)) − xi(p)

ε
= X(Y i)(p)− Y (Xi)(p) = [X,Y ]p(x

i).

�

The following proposition gives the most basic properties of the Lie bracket
of vector fields. The proof is elementary and is left as an exercise.

Proposition 10.4. The Lie bracket satisfies the following properties:

(i) Skew-symmetry: [X,Y ] = −[Y,X];
(ii) Bi-linearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R;
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0;
(iv) Leibniz identity: [X, fY ] = X(f)Y + f [X,Y ], ∀f ∈ C∞(M).

Moreover, if Φ :M → N is a smooth map, X and Y ∈ X(M) are Φ-related
with, respectively, Z and W ∈ X(N), then [X,Y ] is Φ-related with [Z,W ].
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The geometric interpretation of the Lie bracket given by Proposition 10.3
shows that the Lie bracket and the flow of vector fields are intimately related.
There is another form of this relationship which we now explain. For that,
we need the following definition:

Definition 10.5. Let X ∈ X(M) be a vector field.

(i) The Lie derivative of a function f ∈ C∞(M) along X is the smooth
function LXf given by:

(LXf)p = lim
t→0

1

t

(
f(φtX(p)− f(p)

)
.

(ii) The Lie derivative of a vector field Y ∈ X(M) along X is the
smooth vector field LXY given by:

(LXY )p = lim
t→0

1

t

(
dφ−tX · Yφt

X
(p) − Yp

)
.

One can “unify” these two definitions observing that a diffeomorphism
Φ :M →M acts on functions C∞(M) by:

(Φ∗f)(p) = f(Φ(p)),

and it acts on vector fields Y ∈ X(M):

(Φ∗Y )p = dΦ−1 · YΦ(p).

Note that Φ∗Y = (Φ−1)∗Y , so the two operations are related by:

Φ∗Y (f) = Y ((Φ−1)∗f).

It follows that the Lie derivative of an object P (a function or a vector field)
is given by:

(10.1) LXP = lim
t→0

1

t

(
(φtX)

∗P − P
)
.

We will see later that one can take Lie derivatives of other objects using
precisely this definition.

Theorem 10.6. Let X ∈ X(M) be a vector field.

(i) For any functions f ∈ C∞(M): LXf = X(f).
(ii) For any vector field Y ∈ X(M): LXY = [X,Y ].

Proof. To prove (i), we simply observe that:

LXf =
d

dt
f ◦ φtX

∣∣∣∣
t=0

= df ·X = X(f).

To prove (ii), we note first that:

(LXY )(f)(p) = lim
t→0

1

t

(
dφ−tX · Yφt

X
(p) − Yp

)
(f)

= lim
t→0

1

t

(
Yφt

X
(p)(f ◦ φ−tX )− Yp(f)

)
.
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On the other hand, Taylor’s formula gives::

f ◦ φ−tX = f − tX(f) +O(t2),

hence:

(LXY )(f)(p) = lim
t→0

1

t

(
Yφt

X
(p)(f)− tYφt

X
(p)(X(f))− Yp(f)

)

= lim
t→0

1

t

(
Yφt

X
(p)(f)− Yp(f)

)
− Yp(X(f))

= Xp(Y (f))− Yp(X(f)) = [X,Y ](f)(p).

�

Homework.

1. Complete the computation of the Lie brackets in Example 10.2 and show
that all 3 vector fields X ,Y and Z are tangent to the sphere S2 ⊂ R3. Show
that there are unique vector fields X̃ , Ỹ and Z̃ on P2 such that π∗X = X̃,
π∗Y = Ỹ and π∗Z = Z̃ where π : S2 → P2 is the projection. What are the Lie
brackets between X̃, Ỹ and Z̃?

2. Find 3 everywhere linearly independent vector fields X ,Y and Z on the
sphere S3 such that [X,Y ] = Z, [Y, Z] = X and [Z,X ] = Y .

Hint: Recall that S3 can be identified with the unit quaternions.

3. Check the properties of the Lie bracket given in Proposition 10.4.

4. In R2 consider the vector fields X = ∂
∂x and Y = x ∂

∂y . Compute the Lie

bracket [X,Y ] in two distinct ways: (i) using the definition and (ii) using the
flows of X and Y , as in Proposition 10.3.

5. Let X,Y ∈ X(M) be complete vector fields with flows φtX and φsY . Show
that φtX ◦ φsY = φsY ◦ φtX for all s and t if and only if [X,Y ] = 0.

6. Let X1, . . . , Xk ∈ X(M) be vector fields such that:
(a) {X1|p, . . . , Xk|p} are linearly independent, for all p ∈M ;
(b) [Xi, Xj ] = 0, for all i, j = 1, . . . , k.
Show that there exists a unique k-dimensional foliation F of M such that for
all p ∈M :

TpL = 〈X1|p , . . . , Xk|p〉,

where L ∈ F is the leaf containing p.

Hint: Use the previous exercise and show that

L = {φt1X1
◦ φt2X2

◦ · · · ◦ φtkXk
(p) : t1, t2, . . . , tk ∈ R}.
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Lecture 11. Distributions and the Frobenius Theorem

A vector field X ∈ X(M) which is nowhere vanishing determines a sub-
space 〈Xp〉 ⊂ TpM , for each p ∈ M . These subspaces depend smoothly on
p and our next definition generalizes this situation:

Definition 11.1. Let M be a smooth manifold of dimension d and let 1 ≤
k ≤ d be an integer. A k-dimensional distribution D in M is a map

M ∋ p 7→ Dp ⊂ TpM,

which associates to each p ∈ M a subspace Dp ⊂ TpM of dimension k. We
say that a distribution D is of class C∞ if for each p ∈ M there exists a
neighborhood U of p and smooth vector fields X1, . . . ,Xk ∈ X(U), such that:

Dq = 〈X1|q, . . . ,Xk|q〉, ∀q ∈ U.

If D is a distribution in M we consider the set of vector fields tangent
to D:

X(D) := {X ∈ X(M) : Xp ∈ Dp,∀p ∈M}.
Note that X(D) is a module over the ring C∞(M): if f ∈ C∞(M) and
X ∈ X(D) then fX ∈ X(D).

Examples 11.2.

1. Every nowhere vanishing smooth vector field X defines a 1-dimensional
smooth distribution by:

Dp := 〈Xp〉 = {λXp : λ ∈ R}.
We have that Y ∈ X(D) if and only Y = fX for some uniquely defined smooth
function f ∈ C∞(M).

2. A set of smooth vector fields X1, . . . , Xk which at each p ∈ M are linearly
independent define a k-dimensional smooth distribution by:

Dp := 〈X1|p, . . . , Xk|p〉.
We have that a vector field X ∈ X(D) if and only if

X = f1X1 + · · ·+ fkXk,

for uniquely defined functions fi ∈ C∞(M).
For example, in M = R3, we have the 2-dimensional smooth distribution

D = 〈X1, X2〉 generated by the vector fields:

X1 =
∂

∂x
+ z2

∂

∂y
,

X2 =
∂

∂y
+ z2

∂

∂z
.

and every vector field X ∈ X(D) is a linear combination aX + bY , where the
smooth functions a = a(x, y) and b = b(x, y) are uniquely determined.

3. More generally, a set of smooth vector fields X1, . . . , Xs which at each p ∈M
span a k-dimensional subspace define a k-dimensional smooth distribution by:

Dp := 〈X1|p, . . . , Xs|p〉.
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We have that X ∈ X(D) if and only if

X = f1X1 + · · ·+ fsXs,

for some smooth functions fi ∈ C∞(M). The difference from the previous
example is that the functions fi are not uniquely defined. Moreover, we may
not be able to find k-vector fields tangent to D which globally generate D.

For example, in M = R3−{0} consider the vector fields X, Y and Z defined
in Example 10.2. The matrix whose columns are the components of the vector
fields X, Y and Z relative to the usual coordinates (x, y, z) of R3 is:




0 −z y
z 0 −x

−y x 0




and has rank 2 everywhere. Hence, we have the 2-dimensional distribution
D = 〈X,Y, Z〉. We leave it as an exercise to check that this distribution is not
globally generated by only 2 vector fields.

We can think of a distribution as a generalization of the notion of a
vector field. In this sense, the concept of an integral curve of a vector field
is replaced by the following:

Definition 11.3. Let D be a distribution in M . A connected submanifold
(N,Φ) of M is called an integral manifold of D if:

dpΦ(TpN) = DΦ(p),∀p ∈ N.

Note that if D is a k-dimensional distribution, its integral manifolds, if
they exist, are k-dimensional manifolds.

Examples 11.4.

1. Consider the 2-distribution of R3 given in Example 11.2.2. The plane N =
{z = 0} is an integral manifold of this distribution, since it is a connected
submanifold and

D(x,y,0) =

〈
∂

∂x

∣∣∣∣
(x,y,0)

,
∂

∂y

∣∣∣∣
(x,y,0)

〉
= T(x,y,0)N.

2. Consider the 2-distribution D of R3 −{0} defined by the vector fields X, Y
and Z in Example 11.2.3. The spheres

Sc = {(x, y, z) ∈ R3 − 0 : x2 + y2 + z2 = c},
are integral manifolds of D: each sphere is a connected submanifold and

T(x,y,z)Sc = {~v ∈ R3 : (x, y, z) · ~v = 0},
hence:

T(x,y,z)Sc ⊂ 〈X,Y, Z〉.
Since both spaces have dimension 2, we have TpSc = Dp, for all p ∈ Sc.
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In the last example, through each p ∈ M there is an integral manifold
containing p. Moreover, the collection of all these integral manifolds form a
foliation of R3 − 0.

More generally, if F is a smooth k-dimensional foliation of a manifold
M , we denote by TpF ≡ TpL the tangent space to L that contains p. The
assignment p 7→ TpF gives a smooth k-dimensional distribution in M and a
vector field is tangent to TF if and only if it is tangent to the foliation, i.e.,
if and only if every integral curve of X is contained in a leaf of F .

Definition 11.5. A smooth distribution D in M is called integrable if
there exists a foliation F in M such that D = TF .

A distribution D in M may fail to be integrable. In fact, there may
not even exist integral manifolds through each point of M . The following
proposition gives a necessary condition for this to happen:

Proposition 11.6. Let D be a smooth distribution in M . If there exists an
integral manifold of D through p ∈ M , then for any X,Y ∈ X(D) we must
have that [X,Y ]p ∈ Dp.

Proof. Let X,Y ∈ X(D) and fix p ∈ M . Assume there exists an integral
manifold (N,Φ) of D through p and choose q ∈ N , such that Φ(q) = p.
For any q′ ∈ N , the map dq′Φ : Tq′N → TΦ(q′)M is injective and its image

is DΦ(q′). Hence, there exist smooth vector fields X̃, Ỹ ∈ X(N) which are

Φ-related with X and Y , respectively. It follows that [X̃, Ỹ ] is also Φ-related
with [X,Y ] and we must have

[X,Y ]p = dq0Φ([X̃, Ỹ ]q) ∈ dqΦ(TqN) = Dp.

�

In particular, if D = TF for some foliation F , then for any pair of vector
fields X,Y ∈ X(D) we have that [X,Y ] ∈ X(D).

Definition 11.7. A smooth distribution D in M is called involutive if for
any X,Y ∈ X(D) one has [X,Y ] ∈ X(D).

The following result says that the lack of involutivity is the only obstruc-
tion to integrability of a distribution:

Theorem 11.8 (Frobenius). A smooth distribution D is integrable if and
only if it is involutive. In this case, the integral foliation tangent to D is
unique.

Proof. Proposition 11.6 show that one of the implications hold. To check
the other implication we assume that D is an involutive distribution.

We claim that, for each p ∈ M , there exist vector fields X1, . . . ,Xk ∈
X(U), defined in an open neighborhood U de p, such that:

(a) D|U = 〈X1, . . . ,Xk〉;
(b) [Xi,Xj ] = 0, for every i, j = 1, . . . , k.
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Then, by Exercise 6 in Lecture 10, we obtain an open cover {Ui}i∈I of
M , such that for each i ∈ I there exists a unique foliation Fi in Ui which
satisfies TFi = D|Ui

. By uniqueness, whenever Ui ∩ Uj 6= 0, we obtain
Fi|Ui∩Uj

= Fj |Ui∩Uj
. Hence, there exists a unique foliation F of M such

that F|Ui
= Fi.

To prove the claim, fix p ∈ M . Since D is smooth, there exist vector
fields Y1, . . . , Yk defined in some neighborhood V of p, such that D|V =
〈Y1, . . . , Yk〉. We can also assume that V is the domain of some coordinate
system (x1, . . . , xd) of M , so that

Yi =

d∑

l=1

ail
∂

∂xl
, (i = 1, . . . , k),

where ail ∈ C∞(V ). The matrix A(q) = [ail(q)]
k,d
i,l=1 has rank k at p and

we can assume, eventually after some relabeling of the the coordinates, that
the k× k minor formed by the first k rows and k columns of A has non-zero
determinant in a smaller open neighborhood U of p. Let B be the k × k
inverse matrix of this minor, and define new vector fields X1, . . . ,Xk ∈ X(U)
by:

Xi =

k,d∑

j,l=1

bijajl
∂

∂xl

=
∂

∂xi
+

d∑

l=k+1

cil
∂

∂xl
, (i = 1, . . . , k),

where cil ∈ C∞(U). On the one hand, we have that

D|U = 〈Y1, . . . , Yk〉 = 〈X1, . . . ,Xk〉,
so (a) is satisfied. On the other hand, a simple computation shows that:

[Xi,Xj ] =

d∑

l=k+1

dijl
∂

∂xl
, (i, j = 1, . . . , k),

for certain functions dijl ∈ C∞(U). Since D is involutive, this commuta-
tor must be a C∞(M)-linear combination of X1, . . . ,Xk. Therefore, the

functions dijl must be identically zero, so (b) also holds. �

Homework.

1. Give an example of a smooth distribution D of dimension 1 which is not
globally generated by only one vector field.

2. Show that the 2-dimensional distributionD in Example 11.2.3 is not globally
generated by only 2 vector fields.

3. For the distribution given in Example 11.2.2, show that the only points
through which there exist integral manifolds are the points in the plane z = 0.
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4. Show that the 2-dimensional distribution in R3 defined by the vector fields

X1 =
∂

∂x
, X2 = e−x

∂

∂y
+

∂

∂z
,

has no integral manifolds.

5. Consider the distribution D in R3 generated by the vector fields:

∂

∂x
+ cosx cos y

∂

∂z
,

∂

∂y
− sinx sin y

∂

∂z
.

Check that D is involutive and determine the foliation F that integrates it.

6. In the 3-sphere S3 ⊂ R4 consider the 1-dimensional distribution defined by

X = −y ∂
∂x

+ x
∂

∂y
− w

∂

∂z
+ z

∂

∂w
.

Determine the foliation F integrating this distribution.

Lecture 12. Lie Groups and Lie Algebras

The next definition axiomatizes some of the properties of the Lie bracket
of vector fields (see Proposition 10.4).

Definition 12.1. A Lie algebra is a vector space g with a binary operation
[ , ] : g× g → g, called the Lie bracket, which satisfies:

(i) Skew-symmetry: [X,Y ] = −[Y,X];
(ii) Bilinearity: [aX + bY, Z] = a[X,Z] + b[Y,Z], ∀a, b ∈ R;
(iii) Jacobi identity: [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

We can also define Lie algebras over the complex numbers (g is a complex
vector space) or over other fields. Note also, that g can have infinite dimen-
sion, but we will be mainly interested in finite dimensional Lie algebras.

Examples 12.2.

1. Rd with the zero Lie bracket [ , ] ≡ 0 is a Lie algebra, called the abelian

Lie algebra of dimension d.

2. In R3, we can define a Lie algebra structure where the Lie bracket is the
vector product:

[~v, ~w] = ~v × ~w.

3. If V is any vector space, the vector space of all linear transformations T :
V → V is a Lie algebra with Lie bracket the commutator:

[T, S] = T ◦ S − S ◦ T.
This Lie algebra is called the general linear Lie algebra and denoted gl(V ).
When V = Rn, we denote it by gl(n). After fixing a basis, we can identitify
gl(n) with the space of all n × n matrices, and the Lie bracket becomes the
commutator of matrices.
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4. If g1, . . . , gk are Lie algebras, their cartesian product g1 × · · · × gk is a Lie
algebra with Lie bracket:

[(X1, . . . , Xk), (Y1, . . . , Yk)] = ([X1, Y1]g1
, . . . , [Xk, Yk]gk

).

We shall see shortly that Lie algebras are the “infinitesimal versions” of
groups with a smooth structure:

Definition 12.3. A Lie group is a group G with a smooth structure such
that the following maps are smooth:

µ : G×G→ G, (g, h) 7→ gh (multiplication),

ι : G→ G, g 7→ g−1 (inverse).

One can also define topological groups, analytic groups, etc.

Examples 12.4.

1. Any countable group with the discrete topology is a Lie group of dimension
0 (we need it to be countable so that the discrete topology is second countable).

2. Rd with the usual addition of vectors is an abelian Lie group. The groups
of all non-zero real numbers R∗ and all non-zero complex numbers C∗, with
the usual multiplication operations, are also abelian Lie groups. Note that C∗

is also a complex Lie group (thinking of C∗ as a complex manifold), but we
will restrict ourselves always to real Lie groups (i.e., all our manifolds are real
manifolds).

3. The circle S1 = {z ∈ C : ||z|| = 1} ⊂ C∗ with the usual complex multiplica-
tion is also an abelian Lie group. The unit quaternions S3, with quaternionic
multiplication, is a non-abelian Lie group. It can be shown that the only spheres
Sd that admit Lie group structures are d = 0, 1, 3.

4. The set of all invertible linear transformations T : Rn → Rn is a Lie group,
called the general linear group and denoted by GL(n). After fixing a basis
we can identify GL(n) with the group of all invertible n× n matrices.

5. If G1, . . . , Gk are Lie groups their cartesian product G× · · · ×Gk is also a
Lie group. For example, the torus Td = S1 × · · · × S1 is a (abelian) Lie group.

6. If G is a Lie group, its connected component of the identity, is a Lie group
denoted by G0. For example, the connected component of the identity of the
Lie group (R∗,×) is group of positive real numbers (R+,×).

In a Lie group G, a left invariant vector field is a vector field X such
that:

(Lg)∗X = X, ∀g ∈ G,

where Lg : G→ G, h 7→ gh denotes the left translation by g. One defines
analogously a right invariant vector field using the right translation
Rg : G→ G, h 7→ hg.
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Proposition 12.5. Let G be a Lie group.

(i) Every left invariant vector field if smooth.
(ii) If X,Y ∈ X(G) are left invariant vector fields then [X,Y ] is also left

invariant.
(iii) The set of all left invariant vector fields is a finite dimensional subspace

of X(G) of dimension dimG.

Proof. We leave the prof of (i) as an exercise. To check (ii), it is enough to
observe that if X and Y are left invariant vector fields then:

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ], ∀g ∈ G.

Hence, [X,Y ] is also a left invariant vector field.
Now to see that (iii) holds, let Xinv(G) be the set of all left invariant

vector fields. It is clear from the definition of a left invariant vector field
that Xinv(G) ⊂ X(G) is a linear subspace. O the other hand, the restriction
map

Xinv(G) → TeG, X 7→ Xe,

is a linear isomorphism: if v ∈ TeG we can define a left invariant vector field
X in G with Xe = v by setting

Xg = dLg · v.
Hence, the restriction Xinv(G) → TeG is invertible. We conclude that:

dimXinv(G) = dimTeG = dimG.

�

This proposition show that for a Lie group G the set of all left invariant
vector fields forms a Lie algebra, called the Lie algebra of the Lie group
G, and denoted by g. The proof also shows that g can be identified with
TeG.

Examples 12.6.

1. The Lie algebra of a discrete Lie group G is the zero dimensional vector
space g = R0 = {0}.

2. Let G = (Rd,+). A vector field in Rd is left invariant if and only if it is

constant: X =
∑d

i=1 ai
∂
∂xi , with ai ∈ R. The Lie bracket of any two such

constant vector fields is zero, hence the Lie algebra of G is the abelian Lie
algebra of dimension d.

3. The Lie algebra of the cartesian product G × H of two Lie groups, is the
cartesian product g × h of their Lie algebras. For example, the Lie algebra of
S1 has dimension 1, hence it is abelian. It follows that the Lie algebra of the
torus Td is also the abelian Lie algebra of dimension d.

4. The tangent space at the identity to the general linear group G = GL(n) can
be identified with gl(n). The restriction map g → gl(n), maps the commutator
of left invariant vector fields in the commutator of matrices (exercise). Hence,
we can identify the Lie algebra of GL(n) with gl(n).
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Remark 12.7. The space X(M) formed by all vector fields in a manifoldM
is a Lie algebra. One may wonder if the Lie algebra X(M) is associated with
some Lie group. Since this Lie algebra is infinite dimensional (if dimM > 0),
this Lie group must be infinite dimension. This group exists: it is the group
Diff(M) of all diffeomorphisms of M under composition. The study of such
infinite dimensional Lie groups is an important topic which is beyond the
scope of this course.

We have seen that to each Lie groups there is associated a Lie algebra.
Similarly, to each homomorphism of Lie groups there is associated a homo-
morphism of their Lie algebras.

Definition 12.8.

(i) A homomorphism of Lie algebras is a linear map φ : g → h

between two Lie algebras which preserves the Lie brackets:

φ([X,Y ]g) = [φ(X), φ(Y )]h, ∀X,Y ∈ g.

(ii) A homomorphism of Lie groups is a smooth map Φ : G → H
between two Lie groups which is also a group homorphism:

Φ(gh−1) = Φ(g)Φ(h)−1, ∀g, h ∈ G.

If Φ : G→ H is a homomorphism of Lie groups we have an induced map
Φ∗ : g → h: if X ∈ g, then Φ∗(X) ∈ h is the unique left invariant vector
field such that deΦ ·Xe.

Proposition 12.9. If Φ : G→ H is a Lie group homomorphism, then:

(i) For all X ∈ g, Φ∗X is Φ-related with X;
(ii) Φ∗ : g → h is a Lie algebra homomorphism.

Proof. Part (ii) follows from (i), since the Lie bracket of Φ-related vector
fields is preserved. In order to show that (i) holds, we observe that since Φ
is a group homomorphism, Φ ◦ Lg = LΦ(g) ◦Φ. Hence:

Φ∗(X)Φ(g) = deLΦ(g) · deΦ ·Xe

= de(LΦ(g) ◦ Φ) ·Xe

= de(Φ ◦ Lg) ·Xe

= dgΦ · deLg ·Xe = dgΦ ·Xg.

�

Examples 12.10.

1. Let T 2 = S1 × S1. For each a ∈ R we have the Lie group homomorphism
Φa : R → T2 given by:

Φa(t) = (eit, eiat).

If a is rational, the image Φa is a closed curve, while if a is irrational the
image is dense curve in the torus. The induced Lie algebra homomorphism
(Φa)∗ : R → R2 is given by:

(Φa)∗ = (X, aX).
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2. The determinant defines a Lie group homomorphim det : GL(n) → R∗. The
induced Lie algebra homomorphism is the trace tr = (det)∗ : gl(n) → R.

3. Each invertible matrix A ∈ GL(n) determines a Lie group automorphism
ΦA : GL(n) → GL(n) given by conjugation:

ΦA(B) = ABA−1.

Since this map is linear, the associated Lie algebra automorphism (ΦA)∗ :
gl(n) → gl(n) is also given by:

(ΦA)∗(X) = AXA−1.

4. More generally, for any Lie group G we can consider conjugation by a fix
g ∈ G: ig : G → G, h 7→ ghg−1. This is a Lie group automorphism and the
induced Lie algebra automorphism is denoted by Ad(g) : g → g:

Ad(g)(X) = (ig)∗X.

Let us continue our study of the Lie group/algebra correspondence. We
show now that to each subgroup of a Lie group G corresponds a Lie sub
algebra of the Lie algebra g of G.

Definition 12.11. A subspace h ⊂ g is called a Lie subalgebra if, for all
X,Y ∈ h, we have [X,Y ] ∈ h.

Examples 12.12.

1. Any subspace of the abelian Lie algebra Rd is a Lie subalgebra.

2. In the Lie algebra gl(n) we have the Lie subalgebra formed by all matrices
of zero trace:

sl(n) = {X ∈ gl(n) : trX = 0},
and also the Lie subalgebra formed by all skew-symmetric matrices:

o(n) = {X ∈ gl(n) : X +XT = 0}.
3. The complex n× n matrices, denoted by gl(n,C), can be seen as a real Lie
algebra. It has the Lie subalgebra of all skew-Hermitean matrices:

u(n) = {X ∈ gl(n,C) : X + X̄T = 0},
and the Lie subalgebra of all skew-Hermitean matrices of trace zero:

su(n) = {X ∈ gl(n,C) : X + X̄T = 0, trX = 0}.
4. If φ : g → h is a homomorphism of Lie algebras de Lie, then its kernel is a
Lie subalgebra of g and its image is a Lie subalgebra of h.

A notion of a Lie subgroup is defined similarly:

Definition 12.13. A Lie subgroup of G is a submanifold (H,Φ) of G such
that:

(i) H is Lie group;
(ii) Φ : H → G is a Lie group homomorphism.
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As we discussed in Lecture 5, we can always replace the submanifold
(H,Φ) by the subset Φ(G) ⊂ G, and the immersion Φ by the inclusion i.
Since Φ(G) is a subgroup of G, in the definition of a Lie subgroup we can
assume that H ⊂ G is a a subgroup and that Φ is the inclusion. On the
other hand, since the induced map Φ∗ : h → g is injective, we can assume
that the Lie algebra of a Lie subgroup H ⊂ G is a Lie subalgebra h ⊂ g.

Examples 12.14.

1. In Example 12.10.1, for each a ∈ R we have a Lie subgroup Φa(R) of T2.
If a is rational, this Lie subgroup is embedded, while if a is irrational this Lie
subgroup is only immersed.

2. The general linear group GL(n) has the following (embedded) subgroups:
(i) The special linear group of all matrices of determinant 1:

SL(n) = {A ∈ GL(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra sl(n).

(ii) The orthogonal group of all orthogonal matrices:

O(n) = {A ∈ GL(n) : AAT = I}.
To this subgroup corresponds the Lie subalgebra o(n).

(iii) The special orthogonal group of all orthogonal matrices of positive
determinant:

SO(n) = {A ∈ O(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra so(n) = o(n).

3. The (real) Lie group GL(n,C) has the following (embedded) subgroups:
(i) The unitary group of all unitary matrices:

U(n) = {A ∈ GL(n,C) : AĀT = I}.
To this subgroup corresponds the Lie subalgebra u(n).

(ii) The special unitary group of all unitary matrices of determinant 1:

SU(n) = {A ∈ U(n) : detA = 1}.
To this subgroup corresponds the Lie subalgebra su(n).

4. Let Φ : G → H is a Lie group homomorphism and let (Φ)∗ : g → h the
induced Lie algebra homomorphism. Then KerΦ ⊂ G and ImΦ ⊂ H are Lie
subgroups whose Lie algebras coincide with Ker(Φ)∗ ⊂ g and Im (Φ)∗ ⊂ h,
respectively.

Homework.

1. Show that in the definition of a Lie group, it is enough to assume that:
(a) The inverse map G→ G, g 7→ g−1 is smooth, or that
(b) The map G×G→ G, (g, h) 7→ gh−1, is smooth.

2. Show that every left invariant vector field in a Lie group G is smooth and
complete.
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3. Show that the tangent space at the identity of GL(n) can be identified
with gl(n). Show also that, under this identification, the linear isomorphism
g → gl(n) takes the Lie bracket of left invariant vector fields to the commutator
of matrices.

4. Show that the the tangent bundle TG of a Lie group G is trivial, i.e., there
exist vector fields X1, . . . , Xd ∈ X(G) which at each g ∈ G give a basis for TgG.
Conclude that an even dimension sphere S2n does not admit the structure of
a Lie group.

5. Show that the Lie algebra homomorphism induced by the determinant det :
GL(n) → R∗ is the trace: tr = (det)∗ : gl(n) → R.

6. Consider S3 ⊂ H as the set of quaternions of norm 1. Show that S3, with
the product of quaternions, is a Lie group and determine its Lie algebra.

7. Show that S3 and SU(2) are isomorphic Lie groups.

Hint: For any pair of complex numbers z, w ∈ C with |z|2 + |w|2 = 1, the
matrix:

(
z w

−w̄ z̄

)

is an element in SU(2).

8. Identify the vectors v ∈ R3 with the purely imaginary quaternions. For
each quaternion q ∈ S3 of norm 1 define a linear map Tq : R3 → R3 by
v 7→ qvq−1. Show that Tq is a special orthogonal transformation and that
the map S3 → SO(3), q 7→ Tq, is a Lie group homomorphism. Is this map
surjective? Injective?

9. Let G be a Lie group. Show that the connected component of the identity
is a Lie group G0 whose Lie algebra is isomorphic to the Lie algebra of G.

10. Let G be a connected Lie group with Lie algebra g. Show that G is abelian
if and only if g is abelian. What can you say if G is not connected?

11. Show that a compact connected abelian Lie group G is isomorphic to a
torus Td.

12. Let (H,Φ) be a Lie subgroup of G. Show that Φ is an embedding if and
only if Φ(H) is closed in G.

13. Let A ⊂ G be a subgroup of a Lie group G. Show that if (A, i) has a
smooth structure making it into a submanifold ofG, then this smooth structure
is unique and that for that smooth structure A is a Lie group and (A, i) a Lie
subgroup.

Hint: Show that (A, i) is a regularly embedded submanifold.
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Lecture 13. Integrations of Lie Algebras and the Exponential

We saw in the previous lecture that:

• To each Lie group corresponds a Lie algebra;
• To each Lie group homomorphism corresponds a Lie algebra homo-
morphism;

• To each Lie subgroup corresponds a Lie subalgebra.

It is natural to wonder about the inverse to these correspondences. We have
seen that two distinct Lie groups can have isomorphic Lie algebras (e.g., Rn

and Tn,O(n) and SO(n), SU(2) and SO(3)). There are indeed topological
issues that one must take care of when studying the inverse correspondences.

We start with the following result that shows that a connected Lie group
is determined by a neighborhood of the identity:

Proposition 13.1. Let G be a connected Lie group and U a neighborhood
of the identity e ∈ G. Then,

G =

∞⋃

n=1

Un,

where Un = {g1 · · · gn : gi ∈ U, i = 1, . . . , n}.
Proof. If U−1 = {g−1 : g ∈ U} and V = U ∩U−1, then V is a neighborhood
of the origin such that V = V −1. Let:

H =

∞⋃

n=1

V n ⊂
∞⋃

n=1

Un.

To complete the proof it is enough to show that H = G. For that observe
that:

(i) H is a subgroup: if g, h ∈ H, then g = g1 . . . gn and h = h1 . . . hm,
with gi, hj ∈ V . Hence,

gh−1 = g1 . . . gnh
−1
m . . . h−1

1 ∈ V n+m ⊂ H.

(ii) H is open: if g ∈ H then gV ⊂ gH = H is an open set containing g.
(iii) H is closed: for each g ∈ G, gH is an open set and we have

Hc =
⋃

g 6∈H
gH.

Since G is connected and H 6= ∅ is open and closed, we conclude that
H = G. �

We can now prove:

Theorem 13.2. Let G be a Lie group with Lie algebra g. Gien a Lie
subalgebra h ⊂ g, there exists a unique connected Lie subgroup H ⊂ G with
Lie algebra h.
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Proof. A Lie subalgebra h defines a distribution in G by setting:

D : g 7→ Dg ≡ {Xg : X ∈ h}.
This distribution is smooth and involutive: if X1, . . . ,Xk is a basis for h,
then these vector fields are smooth and generate D everywhere, hence D is
smooth C∞. On the other hand, if Y,Z ∈ X(D), then

Y =

k∑

i=1

aiXi, Z =

k∑

j=1

bjXj .

so using that h is a Lie subalgebra it follows that:

[Y,Z] =

k∑

i,j=1

aiaj[Xi,Xj ] + aiXi(bj)Xj − bjXj(ai)Xi ∈ X(D),

so this distribution is involutive.
Let (H,Φ) be the leaf of this distribution that contains the identity e ∈ G.

If g ∈ Φ(H), then (H,Lg−1 ◦ Φ) is also an integral manifold of D which
contains e. Hence, Lg−1 ◦ Φ(H) ⊂ Φ(H). We conclude that for all g, h ∈
Φ(H), we have g−1h ∈ Φ(H), so Φ(H) is a subgroup of G. Since Φ :
H → Φ(H) is a bijection, it follows that H as unique group structure such
that Φ : H → G is a group homomorphism. To verify that (H,Φ) is a Lie
subgroup, it remains to prove that ν̂ : H×H → H, (g, h) 7→ g−1h, is smooth.
For this we observe that the map ν : H ×H → G, (g, h) 7→ Φ(g)−1Φ(h) is
smooth, being the composition of smooth maps. The following diagram is
commutative:

H ×H
ν //

ν̂ ##G
GG

GG
GG

GG
G

H

Φ

OO

Since the leaves of any foliation are regularly embedded, we conclude that
ν̂ : H ×H → H is smooth.

Uniqueness follows from Proposition 13.1 (exercise). �

The question of deciding if every finite dimensional Lie algebra g is asso-
ciated with some Lie group G is a much harder question which is beyond
these notes. There are several ways to proceed to prove that this is indeed
true. One way, is to first show that any finite dimensional Lie algebra is
isomorphic to a matrix Lie algebra. This requires developing the structure
theory of Lie algebras and can be stated as follows:

Theorem 13.3 (Ado). Let g be a finite dimensional Lie algebra. There
exists an integer n and an injective Lie algebra homomorphism φ : g → gl(n).

Remark 13.4. A representation of a Lie algebra g in a vector space
V is a Lia algebra homomorphism ρ : g → gl(V ). A representation (V, ρ) is
called faithful if ρ is injective. In this language, Ado’s Theorem states that
every finite dimensional representation has a faithful representation.
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Since gl(n) is the Lie algebra of GL(n), as a corollary of Ado’s Theorem
and Theorem 13.2 we obtain:

Theorem 13.5. For any finite dimensional Lie algebra g there exists a Lie
group G with Lie algebra isomorphic to g.

The previous theorem gives a matrix group integrating any finite dimen-
sional Lie algebra. Note however, in spite of what Ado’s Theorem may
suggest, that there are Lie groups which are not isomorphic to any matrix
group. This happens because, as we know, there can be several Lie groups
integrating the same Lie algebra.

In order to clarify the issue of multiple Lie groups integrating the same
Lie algebra, recall that if π : N → M is a covering of a manifold M ,
then there is a unique differentiable structure on N for which the covering
map is a local diffeomorphism. In particular, if M is connected then the
universal covering space of M , which is characterize as a 1-connected
(i.e., connected and simply connected) covering of M , is a manifold and is
unique up to diffeomorphism. For Lie groups this leads to:

Proposition 13.6. Let G be a Lie group. Its universal covering space G̃

has a unique Lie group structure such that the covering map π : G̃→ G is a

Lie group homomorphism and the Lie algebras of G and G̃ are isomorphic.

Proof. We can identify the universal covering space G̃ with the homotopy
classes of paths γ : [0, 1] → G, γ(0) = e, so that the covering map is

π([γ]) = γ(1). We define a group structure in G̃ as follows:

(a) Multiplication µ : G̃× G̃→ G̃: the product [γ][η] is the homotopy class
of the path t 7→ γ(t)η(t).

(b) Identity ẽ ∈ G̃: it is homotopy class of the constant path based at the
identity γ(t) = e.

(c) Inverse i : G̃ → G̃: the inverso of the element [γ] is the homotopy class
of the path t 7→ γ(t)−1.

It is clear that we these choices the covering map π : G̃ → G is a group
homomorphism.

Recall now that there is a unique smooth structure on G̃ for which the

covering map is a local diffeomorphism. To check that G̃ is a Lie group,

we observe that ν̃ : G̃ × G̃ → G̃, (g, h) → g−1h, is smooth since we have a
commutative diagram:

G̃× G̃
ν̃ //

π×π
��

G̃

π

��
G×G ν

// G

where the vertical arrows are local diffeomorphisms and ν is differentiable.

Since π : G̃ → G is a local diffeomorphism it induces an isomorphism be-

tween the Lie algebras of G̃ and G.
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Uniqueness follows, because the condition that π : G̃ → G induces an

isomorphism between the Lie algebras of G̃ and G implies that π is a local
diffeomorphism, so both the smooth structure and the group structure are
uniquely determined. �

From the uniqueness of the universal covering space we conclude that:

Corollary 13.7. Given a finite dimensional Lie algebra g there exists, up to
isomorphism, a unique 1-connected Lie group G with Lie algebra isomorphic
to g.

Example 13.8.
The special unitary group SU(2) is formed by the matrices:

SU(2) =

{(
a b
−b̄ ā

)
, a, b ∈ C, |a|2 + |b|2 = 1

}
.

Therefore SU(2) is isomorphic as a manifold to S3, hence it is 1-connected.
In fact, by an exercise in the previous lecture, SU(2) is isomorphic, as a Lie
group, to S3.

The Lie algebra of SU(2) consists of the skew-hermitean matrices of trace
zero:

su(2) =

{(
iα β
−β̄ −iα

)
: α ∈ R, β ∈ C

}
.

We will identify the matrix defined by the elements α and β with the vector
(α,Re β, Imβ) ∈ R3, so we will think of su(2) as R3 with the standard euclidean
inner product.

For each g ∈ SU(2) we have the linear transformation Ad g : su(2) → su(2)
(see Example 12.10.3). We leave it as an exercise to check that:
(a) The linear transformation Ad g determines an element in SO(3).
(b) Ad : SU(2) → SO(3) is a surjective group homomorphism with kernel

{±I}.
It follows that Ad : SU(2) → SO(3) is a covering map. Since SU(2) is 1-
connected, we conclude that SU(2) ≃ S3 is the universal covering space of
SO(3). The covering map identifies the antipodal points in the sphere, so we
can identify SO(3) with the projective space P3 and π1(SO(3)) = Z2.

Let us consider now the question of integrating homomorphisms of Lie
algebras to homomorphisms of Lie groups.

We start by remarking that again there are topological obstructions. For
example, the identity map φ : R → R is a Lie algebra isomorphism between
the Lie algebras of the Lie groups S1 andR. However, there are no non-trivial
Lie group homomorphisms Φ : S1 → R: if there was such homomorphism
its image Φ(S1) would be a compact, nontrivial, subgroup of R. Therefore,
there is no Lie group homomorphism Φ : S1 → R with Φ∗ = φ.

The problem in this example is that S1 is not simply connected. In fact,
we have:
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Theorem 13.9. Let G and H be Lie groups with Lie algebras g and h. If
G is 1-connected then for every Lie algebra homomorphism φ : g → h there
exists a unique Lie group homomorphism Φ : G→ H such that Φ∗ = φ.

Proof. Let k = {(X,φ(X)) : X ∈ g} ⊂ g × h be the graph of φ. Since φ
is a Lie algebra homomorphism, de álgebras k is a Lie subalgebra of g × h.
Hence, there exists a unique connected Lie subgroup K ⊂ G ×H with Lie
algebra k. Let us consider the restriction to K of the projections on each
factor:

K ⊂ G×H
π1

yyrrrrrrrrrrr
π2

%%LLLLLLLLLLL

G H

The restriction of the first projection π1|K : K → G gives a Lie group
homomorphism such that:

(π1)∗(X,φ(X)) = X.

Hence, the map (π1|K)∗ : k → g is a Lie algebra isomorphism and it fol-
lows that π1|K : K → G is a covering map (see the Exercises). Since G
is 1-connected, we conclude that π1|K is a Lie isomorphism. Then, the
composition

Φ = π2 ◦ (π1|K)−1 : G→ H

is a Lie group homomorphism and we have that:

(Φ)∗(X) = (π2)∗ ◦ (π1|K)−1
∗ (X)

= (π2)∗(X,φ(X)) = φ(X).

We leave the proof of uniqueness as an exercise. �

We saw above that every Lie algebra is isomorphic to a Lie algebra of ma-
trices (Ado’s Theorem). As an application of the integration of morphisms
we show that there are Lie groups which are not groups of matrices.

Example 13.10.
For the special linear group

SL(2) =

{(
a b
c d

)
: ad− bc = 1

}
.

the Lie algebra sl(2) is formed by the space of 2 × 2 matrices with trace zero.
To exhibit the topological structure of SL(2) it is convenient to perform the
change of variables (a, b, c, d) 7→ (p, q, r, s) defined by

a = p+ q, d = p− q, b = r + s, c = r − s.

Then

ad− bc = 1 ⇐⇒ p2 + s2 = q2 + r2 + 1.

Hence we se that we can also describe SL(2) as:

SL(2) = {(p, q, r, s) ∈ R4 : p2 + s2 = q2 + r2 + 1}
101



so we conclude that SL(2) is diffeomorphic to R2 × S1. In particular,

π1(SL(2)) = π1(S
1) = Z.

Let S̃L(2) be the universal covering group of SL(2). We claim that S̃L(2) is
not isomorphic to any group of matrices. We shall need the following lemma,
whose proof we leave as an exercise:

Lemma 13.11. Let φ : sl(2) → gl(n) be a Lie algebra morphism. There
exists a unique Lie group morphism Φ : SL(2) → GL(n) such that Φ∗ = φ.

Assume that, for some n, there exists an injective Lie group homomorphism:

Φ̃ : S̃L(2) → GL(n).

We claim that this leads to a contradiction. In fact, Φ̃ induces a Lie alge-
bra morphism φ : sl(2) → gl(n). By the lemma, there exists a unique Lie
group homomorphism Φ : SL(2) → GL(n) such that Φ∗ = φ and we obtain a
commutative diagram:

S̃L(2)
Φ̃ //

π

��

GL(V )

SL(2)

Φ

;;vvvvvvvvv

G

In this diagram the morphism π is not injective, while the morphism Φ̃ is
injective, which is a contradiction.

As another application of the integration of morphisms, we show how one
can construct an exponential map for Lie groups/algebras, which generalizes
the exponential of matrices. Let G be a Lie group with Lie algebra g. Given
a left invariant vector field X ∈ g, the map R → g, t 7→ tX, is a Lie algebra
homomorphism. Since R is 1-connected it follows that there exists a unique
Lie group homomorphism ΦX : R → G with Φ∗ = φ. We note that

ΦX(0) = e

ΦX(t+ s) = ΦX(t)ΦX(s) = LΦX(t)ΦX(s),

d

dt
ΦX(t) =

d

ds
ΦX(t+ s)

∣∣∣∣
s=0

= deLΦX(t) ·
d

ds
ΦX(s)

∣∣∣∣
s=0

= deLΦX(t) ·Xe = XΦX(t).

This means that t 7→ ΦX(t) is actually the integral curve of X through
e ∈ G. Recalling that φtX denotes the flow of the vector field X, we have:

Definition 13.12. The exponential map exp : g → G is the map

exp(X) = φ1X(e).
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The following proposition lists the main properties of the exponential
map. Its proof is left for the exercises.

Proposition 13.13. The exponential map exp : g → G satisfies:

(i) exp((t+ s)X) = exp(sX) exp(tX);
(ii) exp(−tX) = [exp(tX)]−1;
(iii) exp is a smooth map and d0 exp = I;
(iv) For any Lie group homomorphism Φ : G → H the following diagram

is a commutative:

G
Φ // H

g

exp

OO

Φ∗

// h

exp

OO

Property (iii) implies that that the exponential is a diffeomorphism from a
neighborhood of 0 ∈ g to a neighborhood of e ∈ G. In geral, the exponential
exp : g → G is neither surjective, nor injective. Also, it may fail to be a
local diffeomorphism at other points of G. There are however examples of
Lie groups/algebras in which some of these properties do hold (see also the
exercises).

Example 13.14.
Recall that the Lie algebra of G = GL(n) can be identified with gl(n). If A ∈
gl(n), the left invariant vector field associated with the Lie algebra A = (aij)
is:

XA =
∑

ijk

aikxkj
∂

∂xij
.

Hence, the integral curves if this vector field are the solutions of the system of
ode’s:

ẋij =
∑

k

aikxkj ,

These are given by:

(xij)(t) = etA(xij)(0),

where the matrix exponential is defined by:

eA =

+∞∑

k=0

An

n!
.

We conclude that the exponential map exp : gl(n) → GL(n) coincides with the
usual matrix exponential.

By item (iv) in Proposition 13.13, we conclude that if h ⊂ gl(n) a Lie
subalgebra and H ⊂ GL(n) is the associated connected Lie subgroup, then
exponential map exp : h → H also coincides with the matrix exponential. For
example, if h = sl(n) and H = SL(n) the exponential of a matrix of zero
trace is a matrix of determinant 1, a fact that also follows from the well-known
formula:

det(eA) = etrA.
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The exponential map is very useful in the study of Lie groups and Lie
algebras since it provides a direct link between the Lie algebra (the infini-
tesimal object) and the Lie group (the global object). For example, we have
the following result whose proof is left as an exercise:

Proposition 13.15. Let H be a subgroup of a Lie group G and let h ⊂ g

be a subspace of the Lie algebra of G. If U ⊂ g is some neighborhood of 0
which is diffeomorphic via the exponential map to a neighborhood V ⊂ G of
e, and

exp(h ∩ U) = H ∩ V,
then H, with the relative topology, is a Lie subgroup of G whose Lie algebra
is h.

Using this proposition one can then proof the following important result:

Theorem 13.16. Let G be a Lie group and H ⊂ G a closed subgroup. Then
H, with relative topology, is a Lie subgroup.

Homework.

1. Let Φ : G → H be a Lie group homomorphism between connected Lie
groups G and H such that (Φ)∗ : g → h is an isomorphism. Show that Φ is a
covering map.

2. Complete the proof of Theorem 13.2 by showing that the integrating Lie
subgroup is unique.

3. Let G be a Lie group and let π : H → G be a covering map. Show that H
is a Lie group.

4. Let SL(2,C) be the group of complex 2 × 2 matrices with determinant 1.
Show that SL(2,C) is 1-connected.
(Hint: Show that there exists a retraction of SL(2,C) in SU(2) = S3.)

5. Show that any homomorphism of Lie algebras φ : sl(2) → gl(n) integrates
to a unique homomorphism of Lie groups Φ : SL(2) → GL(n).
(Hint: Consider the complexification φc : sl(2,C) → gl(n,C) of φ and use the
previous exercise.)

6. Show that the matrix (
−2 0
0 −1

)

is not in the image of exp : gl(2) → GL(2).

7. Let G be a compact Lie group. Show that exp : g → G is surjective.
(Hint: Use the fact, to be proved later, that any compact Lie group has a bi-
invariant metric, i.e., a metric invariant under both right and left translations.)

8. Let Φ : G → H be a Lie group homomorphism, with G connected. Show
that if the kernel of Φ is discrete then it is contained in the center of G.
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Conclude that the fundamental group of a Lie group is always an abelian
group.

9. Let G and H be Lie groups. Show that:
(a) Every continuous homomorphism Φ : R → G is smooth;
(b) Every continuous homomorphism Φ : G→ H is smooth;
(c) If G and H are isomorphic as topological groups, then G and H are

isomorphic as Lie groups.

10. Prove Proposition 13.15.

Lecture 14. Transformation Groups

Let G be a group. Recall (Lecture 8) that we denote an action of G on
a set M by a map Ψ : G ×M → M , which we write as (g, p) 7→ g · p, and
satisfies:

(a) e · p = p, for all p ∈M ;
(b) g · (h · p) = (gh) · p, for all g, h ∈ G and p ∈M .

An action can also be viewed as a group homomorphism Ψ̂ from G to the
group of bijections of M . For each g ∈ G we denote by Ψg the bijection:

Ψg :M →M, p 7→ g · p
When G is a Lie group, M is a smooth manifold and the map Ψ : G×M →
M is smooth, we say that we have a smooth action. In this case each
Ψg : M → M is a diffeomorphism of M , so one also says that G is a
transformation group of M . Note that for a smooth action, for each
p ∈M , the isotropy subgroup

Gp ≡ {g ∈ G : g · p = p}.
is a closed subgroup, hence it is an (embedded) Lie subgroup of G (see
Theorem 13.16).

The results in Lecture 8 concerning smooth structures on orbits spaces of
discrete group actions extend to arbitrary smooth actions of Lie groups. A
smooth action Ψ : G×M →M is called a proper action if the map:

G×M →M ×M, (g, p) 7→ (p, g · p),
is proper. For example, actions of compact Lie groups are always proper.
We have:

Theorem 14.1. Let Ψ : G ×M → M be a smooth action of a Lie group
G on a manifold M . If the action is free and proper, then G\M has a
unique smooth structure, compatible with the quotient topology, such that
π :M → G\M is a submersion. In particular,

dimG\M = dimM − dimG.
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Proof. We apply Theorem 8.3 to the orbit equivalence relation defined by
the action. This means that we need to verify that its graph:

R = {(p, g · p) : p ∈M,g ∈ G} ⊂M ×M,

is a proper submanifold of M ×M and that the restriction of the projection
p1|R : R→M is a submersion.

Let us consider the map:

Φ : G×M →M ×M, (g, p) 7→ (p, g · p),
whose image is precisely R. Since the action is assumed to be free, we
see that the image of this map is injective. The differential of this map
d(g,p)Φ : TgG× TpM → TpM × Tg·pM is given by:

(v,w) 7→ (w,dΨp · v+ dΨg ·w).

Since this differential is injective we conclude that Φ is an injective immer-
sion with image R. Since, by assumption, Φ is proper, it follows that R is a
proper submanifold of M ×M .

To verify that p1|R : R → M is a submersion, it is enough to show that
the composition p1 ◦Φ : G×M →M is a submersion. But this composition
is just the projection (g, p) 7→ p, which is obviously a submersion. �

It follows from this result that the orbits of a proper and free action are
always embedded submanifolds diffeomorphic to G.

Example 14.2.
Consider the action of S1 on the 3-sphere S3 = {(z, w) ∈ C2 : |z|2+ |w|2 = 1},
defined by:

θ · (z, w) = (eiθz, eiθw).

This action is free and proper. Hence, the orbits of this action are embedded
submanifolds of S3 diffeomorphic to S1. The orbit space S1\S3 is a smooth
manifold. We will see later that this manifold is diffeomorphic to S2.

Let G be a Lie group and consider the action of G on itself by left trans-
lations:

G×G→ G, (g, h) 7→ gh.

This action is free and proper. If H ⊂ G is a closed subgroup, then H is a
Lie subgroup and the action of H on G, by left translation is also free and
proper. The orbit space for this action consist of the right cosets:

H\G = {Hg : g ∈ G}.
From Theorem 14.1, we conclude that:

Corollary 14.3. Let G be a Lie group and let H ⊂ G be a closed subgroup.
Then H\G has a unique smooth structure, compatible with the quotient topol-
ogy, such that π : G→ H\G is a submersion. In particular,

dimH\G = dimG− dimH.
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Remark 14.4. So far we have discussed left actions. We can also discuss
right actions M ×G → M , (m, g) → m · g, where axioms (a) and (b) are
replaced by:

(a) p · e = p, for all p ∈M ;
(b) (p · h) · g = p · (hg), for all g, h ∈ G and p ∈M .

Given a left action (g,m) 7→ g · m one obtains a right action by setting
(m, g) 7→ g−1 · m, and conversely. Hence, every result about left actions
yields a result about right actions, and conversely. For example, if G is a
Lie group and H ⊂ G is a closed subgroup, the right action of H on G by
right translations is free and proper. Hence, the set of left cosets

G/H = {gH : g ∈ G},
also has a natural smooth structure.

Given two G-actions, G ×M → M and G × N → N , a G-equivariant
map is a map Φ :M → N such that:

Φ(g · p) = g · Φ(p), ∀g ∈ G, p ∈M.

We say that we have equivalent actions is there exists a G-equivariant
bijection between them.

Given any action Ψ : G×M →M , for each p ∈M the map

Ψp : G→M, g 7→ g · p,
induces a bijection Ψ̄p between G/Gp and the orbit through p. Notice that
G acts on the set of right cosets by left translations:

G×G/Gp → G/Gp, (h, gGp) 7→ (hg)Gp.

The map Ψ̄p is a G-equivariant bijection between the set of right cosets
G/Gp and the orbit through p.

If we have a smooth action Ψ : G×M →M we can use the results above
with H = Gp to conclude that G/Gp has a smooth structure and that the
map:

Ψ̄p : G/Gp →M, gGp 7→ g · p,
is an injective immersion. Since the image of this map is the orbit through
p, we conclude that:

Theorem 14.5. Let Ψ : G×M →M be a smooth action of a Lie group G on
a manifold M . The orbits of the action are regularly immersed submanifolds
of M . Moreover, for every p ∈M , the map

Ψ̄p : G/Gp →M, gGp 7→ g · p,
is a G-equivariant diffeomorphism between G/Gp and the orbit through p.

Proof. Since Gp is a closed subgroup, by Corollary 14.3, G/Gp has a smooth
structure. The map:

Ψ̄p : G/Gp →M, gGp 7→ g · p,
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is an injective immersion whose image is the orbit through p. This makes
the orbit an immersed submanifold and we leave it as an exercise to show
that it is regularly immersed.

This smooth structure on the orbit does not depend on the choice of
p ∈M : two points p, q ∈M which belong to the same orbit have conjugate
isotropy groups:

q = g · p =⇒ Gq = gGpg
−1.

It follows that Φ : G/Gp → G/Gq, hGp 7→ ghg−1Gq, is an equivariant
diffeomorphism which makes the following diagram commute:

G/Gp
Ψ̄p //

Φ
��

M

Ψg

��
G/Gq

Ψ̄q // M

Since Ψg :M →M , m 7→ g ·m, is a diffeomorphism, it is clear that the two
immersions give equivalent smooth structures on the orbit. �

A transitive action Ψ : G ×M → M is an action with only one orbit.
This means that for any pair of points p, q ∈ M , there exists g ∈ G such
that q = g ·p. In this case, fixing any point p ∈M , we obtain an equivariant
bijection G/Gp →M . When the action is smooth, this gives an equivariant
diffeomorphism between M and the quotient G/Gp. In this case, one also
calls M a homogeneous space.

The homogeneous G-spaces are just the manifolds of the form G/H where
H ⊂ G is a closed subgroup. In the homogenous space G/H we have the
natural G-action, induced from the action of G on itself by left transla-
tions. Homogenous spaces are particularly nice examples of manifolds. The
next examples will show that a manifold can be a homogeneous G-space for
different choices of Lie groups.

Examples 14.6.

1. Let S3 be the unit quarternions. Identifying R3 with the purely imaginary
quaternions, we obtain an action of S3 on R3:

q · v = qvq−1.

It is easy to see that the orbits of this action are the spheres of radius r and
the origin. Let us restrict the action to S2, the sphere of radius 1. An easy
computation shows that the isotropy group of p = (1, 0, 0) is the subgroup S1 =
(S3)p ⊂ S3 formed by quaternions of the form q0+ iq1+0j+0k. It follows that
the sphere is diffeomorphic to the homogeneous space S3/S1. The surjective
submersion π : S3 → S2, q 7→ q · (1, 0, 0), whose fibers are diffeomorphic to S1,
is known Hopf fibration.

2. Let O(d+1)×Rd+1 → Rd+1 be the standard action by matrix multiplication:

(A,~v) 7→ A~v.
108



The orbits of this action are the spheres (x0)2+ · · ·+(xd)2 = r2 and the origin.
Again, we consider the sphere Sd of radius 1 and we let pN = (0, . . . , 0, 1) ∈ Sd,
the north pole. The isotropy group at pN consists of matrices of the form:




B 0

0 1


 ∈ O(d + 1),

so we can identify it with O(d). It follows that the map

O(d + 1)/O(d) → Sd, A O(d) 7→ A · pN ,
is a diffeomorphism. A similar reasoning shows that Sd is also diffeomorphic
to the homogeneous space SO(d + 1)/SO(d).

3. Let Pd be the projective space and denote by π : Rd+1 − {0} → Pd the map

π(x0, . . . , xd) = [x0 : · · · : xd].
The action SO(d + 1) × Rd+1 → Rd+1 by matrix multiplication, induces a
smooth transitive action SO(d + 1) × Pd → Pd. The isotropy subgroup of the
point [0 : · · · : 0 : 1] consist of matrices of the form:




B 0

0 detB


 ∈ SO(d+ 1),

so we can identify it with O(d). We conclude that Pd is diffeomorphic to the
homogeneous space SO(d+ 1)/O(d).

A similar reasoning shows that the complex projective space CPd is diffeo-
morphic to the homogeneous space SU(d+ 1)/U(d).

4. Let Gk(Rd) denote that set of all linear subspaces of Rd of dimension k.
The usual action of the orthogonal group O(d) on Rd by matrix multiplication
induces an action O(d) × Gk(Rd) → Gk(Rd): an invertible linear transfor-
mation takes linear subspaces of dimension k to linear subspaces of dimen-
sion k. It is easy to check that given any two k-dimensional linear subspaces
S1, S2 ⊂ Rd there exists A ∈ O(d) mapping S1 onto S2. This means that the
action O(d) ×Gk(Rd) → Gk(Rd) is transitive.

We fix the point S0 ∈ Gk(Rd to be the subspace Rk×{0} ⊂ Rd. The isotropy
group of this point is:

H =

{(
A 0
0 B

)
∈ O(d) : A ∈ O(k), B ∈ O(d− k)

}
.

so we have a bijection

O(d)/O(k) ×O(d − k) → Gk(V ).

On Gk(Rd) we can consider the unique smooth structure for which this bijection
becomes a diffeomorphism. This gives Gk(Rd) the structure of a manifold of
dimension de k(d−k) = dimO(d)− (dimO(k)+dimO(d−k)). One can show
that this smooth structure is independent of the choice of base point S0. The
manifold Gk(Rd) is called the Grassmannian manifold of k-planes in Rd.
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Since Lie groups have infinitesimal counterparts, it should come as no
surprise that Lie group actions also have an infinitesimal counterpart. Let
Ψ : G ×M → M be a smooth action, which we can view as “Lie group”
homomorphism:

Ψ̂ : G→ Diff(M).

We think of Diff(M) as a Lie group with Lie algebra X(M), then there must
exist a homomorphism of Lie algebras

ψ = (Ψ̂)∗ : g → X(M).

In fact, if X ∈ g and p ∈M , the curve

t 7→ exp(tX) · p,
goes through p at t = 0, and it is defined and smooth in a small interval
]− ε, ε[. We define the vector field ψ(X) in M , by:

ψ(X)p ≡
d

dt
exp(tX) · p

∣∣∣∣
t=0

.

The proof of the following lemma is left as an exercise:

Lemma 14.7. For each X ∈ g, ψ(X) is a smooth vector field and the map
ψ : g → X(M) is linear and satisfies:

ψ([X,Y ]g) = −[ψ(X), ψ(Y )], ∀X,Y ∈ g.

Remark 14.8. An anti-homomorphism of Lie algebras is a linear map φ :
g → h which satisfies:

φ([X,Y ]) = −[φ(X), φ(Y )], ∀X,Y ∈ g.

The appearance of a minus sign in the lemma is easy to explain: with
our conventions, where the Lie algebra of a Lie group is formed by the
left invariant vector fields, the Lie algebra of the group of diffeomorphisms
Diff(M) is formed by the vector fields X(M) with a Lie bracket which is
the simmetric of the usual Lie bracket of vector fields. One can see this,
for example, by determining the 1-parameter subgroups of the group of
diffeomorphims. 3

The lemma above suggests the following definition:

Definition 14.9. An infinitesimal action of a Lie algebra g on a manifold
M is an anti-homomorphism of Lie algebras ψ : g → X(M).

Example 14.10.
The Lie algebra so(3) has a basis consisting of the skew-symmetric matrices:

X =




0 0 0
0 0 1
0 −1 0


 , Y =




0 0 −1
0 0 0
1 0 0


 , Z =




0 1 0
−1 0 0
0 0 0


 .

3We could have defined the Lie bracket of vector fields with the opposite sign, but this
would lead to the presence of negative signs in other formulas.
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In this basis, we have the following Lie bracket relations:

[X,Y ] = −Z, [Y, Z] = −X, [Z,X ] = −Y.
For the usual action of SO(3) on R3 by rotations, we can compute the infini-
tesimal action as follows. First, we compute the exponential

exp(tX) =




1 0 0
0 cos t sen t
0 − sen t cos t


 .

Then:

ψ(X)(x,y,z) =
d

dt
exp(tX) · (x, y, z)

∣∣∣∣
t=0

= z
∂

∂y
− y

∂

∂z
.

Similarly, we compute:

ψ(Y ) = x
∂

∂z
− z

∂

∂x
, ψ(Z) = y

∂

∂x
− x

∂

∂y
.

The vector fields {ψ(X), ψ(Y ), ψ(Z)} are called the infinitesimal generators

of the action. Using that ψ is an anti-homomorphism of Lie algebras, one
recovers the Lie brackets of Example 10.2.

A smooth action Ψ : G × M → M determines an infinitesimal action
ψ : g → X(M). The converse does not necessarily hold, as our next example
shows.

Examples 14.11.

1. Consider the infinitesimal Lie algebra action of so(3) on R3 given in Ex-
ample 14.10. We can restrict this action to M = R3 − {p0} by taking for each
X ∈ g, the restriction of ψ(X) to M . This defines an infinitesimal action of
so(3) on M which, if p0 6= 0, is not induced from a Lie group action of SO(3)
in M .

2. Any non-zero vector field X on a manifold M determines an infinitesimal
action of the Lie algebra g = R onM by setting ψ(λ) := λX. This infinitesimal
action integrates to a Lie group action of G = (R,+) on M if and only if the
vector field X is complete. The Lie group S1 also has Lie algebra R, but even
if the vector field is complete, there will be no action Ψ : S1 ×M → M with
Ψ∗ = ψ, since the orbits of X may not be periodic.

Obviously, for any infinitesimal Lie algebra action ψ : g → X(M) which
is induced from a Lie group action G×M →M the infinitesimal generators
ρ(X) ∈ X(M) are all complete vector fields. Conversely, one can show that:

Theorem 14.12. Let ψ : g → X(M) be an infinitesimal Lie algebra action
such ψ(X) is complete, for all X ∈ g. Then there exists a smooth action
Ψ : G → Diff(M) with Ψ∗ = φ, where G is the 1-connected Lie group with
Lie algebra g.
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For example, if M is a compact manifold then every infinitesimal Lie
algebra action ψ : g → X(M) integrates to a smooth Lie group action
Ψ : G×M →M , where G is the 1-connected Lie group with Lie algebra g.

Examples 14.13.

1. A representation of a Lie group G in a vector space V is a Lie group

homomorphism Ψ̂ : G→ GL(V ). Since GL(V ) ⊂ Diff(V ), this is the same as
a smooth linear action Ψ : G× V → V . A

At the Lie algebra level, a representation of a Lie algebra g is a Lie
algebra homomorphism ρ : g → gl(V ). We also have a natural inclusion
gl(V ) →֒ X(V ), which to a linear map T : V → V associates a unique (linear)
vector field XT ∈ X(V ) which acts on linear functions l : V → R by:

XT (l) = l ◦ T.
One checks that [XT1

, XT2
] = −X[T1,T2], so that the Lie algebra homomorphism

ρ : g → gl(V ) determines a anti-Lie algebra homomorphism ψ : g → X(V ).

It follows that a representation Ψ̂ : G → GL(V ) is the same as a linear

action. It yields by differentiation a Lie algebra representation Ψ̂∗ : g → gl(V )
which is the same as an infinitesimal Lie algebra action ψ : g → X(V ).

Conversely, since a linear vector field on a vector space is complete, any
Lie algebra representation g → gl(V ) integrates to a Lie group representation
G→ GL(V ) of the 1-connected Lie group G with Lie algebra G.

Homework.

1. Let Ψ : G×M →M be a proper and free smooth action and denote by B =
G\M its orbit space. Show that the projection π : M → B is locally trivial,
i.e., for any b ∈ B there exists a neighborhood b ∈ U ⊂ B and diffeomorphism

σ : π−1(U) → G× U, q 7→ (χ(q), π(q)),

such that:

σ(g · q) = (gχ(q), π(q)), ∀q ∈ π−1(U), g ∈ G.

2. Show that the orbits of a smooth action are regularly immersed submani-
folds.

3. Let G be a Lie group and H ⊂ G a closed connected subgroup. Show that:
(a) H is a normal subgroup of G if and only if its Lie algebra h ⊂ g is an

ideal, i.e.,

∀X ∈ g, Y ∈ h, [X,Y ] ∈ h.

(b) If H is normal in G, then G/H is a Lie group and π : G→ G/H is a Lie
group homomorphism.

4. Let G be a Lie group and let H ⊂ G be a closed subgroup. Show that if
G/H and H are both connected then G is connected. Conclude from this that
the groups SO(d), SU(d) and U(d) are all connected. Show that O(d) and
GL(d) have two connected components.
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5. Let Ψ : G×M →M be a smooth transitive action withM connected. Show
that:
(a) The connected component of the identity G0 also acts transitively on M ;
(b) For all p ∈M , G/G0 is diffeomorphic to Gp/(Gp ∩G0);
(c) If Gp is connected for some p ∈M , then G is connected.

6. For any Lie group G, recall that its adjoint representation Ad : G →
GL(g), g 7→ Ad g, is defined by Ad(g) := deig, where ig : G → G is given by
ig(h) = ghg−1. Show that the induced Lie algebra representation ad : g →
gl(g) is given by:

ad(X)(Y ) = [X,Y ], ∀X,Y ∈ g.

7. Find the orbits and the isotropy groups for the adjoint representations of
the following Lie groups:
(a) SL(2).
(b) SO(3).
(c) SU(2).

8. For a vector space V of dimension d denote by Sk(V ) the set of all k-frames
of V :

Sk(V ) = {(v1, . . . ,vk) ∈ V × · · · × V : v1, . . . ,vk are linearly independent}.
Show that Sk(V ) is a homogenous space of dimension dk. Sk(V ) is called the
Stiefel manifold of k-frames of V .
(Hint: Fix a base of V and consider the action GL(d) in V by matrix multi-
plication.)

9. Give a proof of Lema 14.7.
(Hint: If G is a Lie group with Lie algebra g, for each X ∈ g denoted by
X ∈ X(G) the right invariant vector field in G which takes the value Xe at
the identity. Show that:

[X,Y ] = −[X,Y ], ∀X,Y ∈ g,

and express the infinitesimal action φ : g → X(M) in terms of right invariant
vector fields.)

10. Let Ψ : G × M → M be a smooth action with associated infinitesimal
action ψ : g → X(M). If Gp is the isotropy group at p, show that its Lie
algebra is the isotropy subalgebra:

gp = {X ∈ g : ψ(X)p = 0}.

11. Let Ψ : G × M → M be a smooth action with associated infinitesimal
action ψ : g → X(M). We call p0 ∈M a fixed point of the action if:

g · p0 = p0, ∀g ∈ G.

Show that if p0 is a fixed point of the action then:
(a) Ψ induces a representation Ξ : G→ GL(Tp0M);
(b) ψ induces a representation ξ : g → gl(Tp0M);
(c) The representation Ξ of G integrates the representation ξ of g: (Ξ)∗ = ξ.
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Part 3. Differential Forms

Differential forms are the objects that can be integrated over a manifold.
For this reason, they play a crucial role when passing from local to global
aspects of manifolds. In this third part of the lectures, we will introduce
differential forms and we will see how effective they are in the study of global
properties of manifolds.

The main concept and ideas that we will introduce in this round of lectures
are the following:

• In Lecture 15: the notion of differential form and, more generally,
of tensor fields. The elementary operations with differential forms:
exterior product, inner product and pull-back.

• In Lecture 16: the differential and the Lie derivative of differential
forms, which give rise to the Cartan calculus on differential forms.

• In Lecture 17: the integration of differential forms on manifolds and
Stokes Theorem.

• In Lecture 18: the de Rham complex formed by the differential forms
and its cohomology, an important invariant of a differentiable mani-
fold.

• In Lecture 19: the relationship between de Rham cohomology and
singular cohomology, which shows that de Rham cohomology is a
topological invariant.

• In Lecture 20: the basic properties of de Rham cohomology: homo-
topy invariance and the Mayer-Vietoris sequence.

• In Lecture 22: applications of the Mayer-Vietoris sequence to de-
duce further properties of cohomology like finite dimensionality and
Poincaré duality. How to define and compute the Euler characteris-
tic of a manifold.

• In Lecture 21: applications of cohomology: the degree of a map and
the index of a zero of a vector field.
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Lecture 15. Differential Forms and Tensor Fields

For a finite dimensional vector space V , we denote the dual vector space
by V ∗:

V ∗ = {α : α : V → R is a linear map}.
Its tensor algebra is:

⊗
V ∗ =

+∞⊕

k=0

⊗kV ∗,

and is furnished with the tensor product ⊗ : ⊗kV ∗ × ⊗lV ∗ → ⊗k+lV ∗.
Its exterior algebra is:

∧
V ∗ =

d⊕

k=0

∧kV ∗

and is furnished with the exterior product ∧ : ∧kV ∗ × ∧lV ∗ → ∧k+lV ∗.
If α1, . . . , αk ∈ V ∗ and v1, . . . ,vk ∈ V , our convention is that:

α1 ∧ · · · ∧ αk(v1, . . . ,vk) = det(αi(vj))
k
i,j=1.

It maybe worth to recall that one can identify ⊗kV ∗ (respectively, ∧kV ∗)
with the space of k-multilinear (respectively, k-multilinear and alternating)
maps V × · · · × V → R.

If T : V → W is a linear transformation between two finite dimensional
vector spaces, its transpose is the linear transformation T ∗ : W ∗ → V ∗

defined by:

T ∗α(v) = α(Tv).

Similarly, there exists an induced application T ∗ : ∧kW ∗ → ∧kV ∗ defined
by:

T ∗ω(v1, . . . ,vk) = ω(Tv1, . . . , Tvk).

This is the restriction of a similarly defined map T ∗ : ⊗kW ∗ → ⊗kV ∗.

Let now M be a smooth manifold. If (x1, . . . , xd) are local coordinates
around p ∈M , we know that the tangent vectors

∂

∂xi

∣∣∣∣
p

(i = 1, . . . , d),

form a base for TpM . Similarly, the forms

dpx
i (i = 1, . . . , d),

form a base for T ∗
pM . These basis are dual to each other. If we take tensor

products and exterior products of elements of these basis, we obtain basis
for ⊗kTpM , ∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc. For example, the space ∧kT ∗

pM
has the base

dpx
i1 ∧ · · · ∧ dpx

ik (i1 < · · · < ik).
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As in the case of the tangent and cotangent spaces, we are interested
in the spaces ⊗kTpM , ∧kTpM , ⊗kT ∗

pM , ∧kT ∗
pM , etc., when p varies. For

example, we define

∧kT ∗M :=
⋃

p∈M
∧kT ∗

pM.

and we have a projection π : ∧kT ∗M →M . We call ∧kT ∗M the k-exterior
bundle of M . Just like the case of the tangent bundle, one has a smooth
structure on this bundle.

Proposition 15.1. There exists a canonical smooth structure on ∧kT ∗M
such that the canonical projection in M is a submersion.

The proof is similar to the case of the tangent bundle and is left as an
exercise. One has also similar smooth structures on the bundles ∧kTM ,
⊗kT ∗M , ⊗kTM , ⊗kT ∗M ⊗s T ∗M , etc. For any such bundle π : E → M a
section is a map s :M → E such that π ◦ s(p) = p, for all p ∈M .

Definition 15.2. Let M be a manifold.

(i) A differential form of degree k is a section of ∧kT ∗M .
(ii) A multivector field of degree k is a section of ∧kTM .
(iii) A tensor field of degree (k, s) is a section of ⊗kTM ⊗s T ∗M .

We will consider only smooth differential forms, smooth multivector fields
and smooth tensor fields, meaning that the corresponding sections are smooth
maps.

If (U, φ) = (U, x1, . . . , xd) is a chart then a differential form ω of degree k
can be written in the form:

ω|U =
∑

i1<···<ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik

=
∑

i1···ik

1

k!
ωi1···ikdx

i1 ∧ · · · ∧ dxik ,

where the components ωi1···ik are alternating: for every permutation σ ∈ Sk
one has

ωσ(i1)···σ(ik) = (−1)sgn σωi1···ik .

It should be clear that ω is smooth if and only if for any open cover by charts
the components ωi1···ik ∈ C∞(U) are smooth. If (V, ψ) = (V, y1, . . . , yd) is
another chart, so that

ω|V =
∑

j1<···<jk
ωj1···jkdy

j1 ∧ · · · ∧ dyjk ,

where ωj1···jk ∈ C∞(V ). If U ∩ V 6= ∅ the components in the overlap of the
two charts are related by:

ωj1···jk(y) =
∑

i1<···<ik
ωi1···ik(φ ◦ ψ−1(y))

∂(xi1 · · · xik)
∂(yj1 · · · yjk) .
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The symbol in the right side of this expression is an abbreviation for the
minor consisting of the rows i1, . . . , ik and the columns j1, . . . , jk of the
Jacobian matrix of the change of coordinates φ◦ψ−1 : ψ(U∩V ) → φ(U∩V ).

If Π is a multivector field of degree k, we have similar expressions in a
local chart:

Π|U =
∑

i1<···<ik
Πi1···ik

∂

∂xi1
∧ · · · ∧ ∂

∂xik
,

and similarly for a tensor field T of degree (k, s), which can be written in a
local chart:

T |U =
∑

i1,...,ik,j1,...,js

T i1,...,ikj1,...,js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjk .

We leave it as an exercise to determine the formulas of transformation of
variables for multivector fields and tensor fields.

Remark 15.3. One maybe intrigued with the relative positions of the in-
dices, as subscripts and superscripts, in the different objects. The convention
that we follow is such that an index is only summed if it appears in a formula
repeated both as a subscript and as a superscript. With this convention,
one can even omit the summation sign from the formula, with the agree-
ment that one sums over an index whenever that index is repeated. This
convention is called the Einstein convention sum.

From now on we will concentrate on the study of differential forms. Al-
though other objects, such as multivector fields and tensor fields, are also
interesting, differential forms play a more fundamental role because they are
the objects one can integrate over a manifold.

We will denote the vector space of smooth differential forms of degree k
on a manifold M by Ωk(M). Given a differential form ω ∈ Ωk(M) its value
at a point ωp ∈ ∧kT ∗

pM can be seen as an alternating, multilinear, map

ωp : TpM × · · · × TpM → R.

Hence, ifX1, . . . ,Xk ∈ X(M) are smooth vector fieldsM we obtain a smooth
function ω(X1, . . . ,Xk) ∈ C∞(M):

p 7→ ωp(X1|p, . . . ,Xk|p).

Therefore every differential form ω ∈ Ωk(M) can be seen as a map

ω : X(M)× · · · × X(M) → C∞(M).

This map is C∞(M)-multilinear and alternating. Conversely, every C∞(M)-
multilinear, alternating, map X(M) × · · · × X(M) → C∞(M) defines a
smooth differential form.

We consider now several basic operations with differential forms.
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Exterior product of differential forms. The exterior (or wedge) product ∧
in the exterior algebra ∧T ∗

pM induces an exterior (or wedge) product of
differential forms

∧ : Ωk(M)× Ωs(M) → Ωk+s(M), (ω ∧ η)p ≡ ωp ∧ ηp.
If we consider the space of all differential forms:

Ω(M) =

d⊕

k=0

Ωk(M).

where we convention that Ω0(M) = C∞(M) and fω = f ∧ ω, the exterior
product turns Ω(M) into a Grassmannn algebra over the ring C∞(M),
i.e., the following properties hold:

(a) (fω + gη) ∧ θ = fω ∧ θ + gη ∧ θ.
(b) ω ∧ η = (−1)deg ω deg ηη ∧ ω.
(c) (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ).

If α1, . . . , αk ∈ Ω1(M) and X1, . . . ,Xk ∈ X(M), according to our conven-
tions we have:

α1 ∧ · · · ∧ αk(X1, . . . ,Xk) = det [αi(Xj)]
k
i,j=1 .

This properties is all that we need to know to compute exterior products
in local coordinates, as we illustrate in the next example:

Example 15.4.
In R4, with coordinates (x, y, z, w), consider the differential forms of degree 2:

ω = (x+ w2)dx ∧ dy + ezdx ∧ dw + cosxdy ∧ dz,

η = xdy ∧ dz − ezdz ∧ dw.

Then:

ω ∧ η = −(x+ w2)ezdx ∧ dy ∧ dz ∧ dw + xezdx ∧ dw ∧ dy ∧ dz

= −w2ezdx ∧ dy ∧ dz ∧ dw.

Also, if we would like to compute, e.g., η on the vector fields X = y ∂
∂z − ∂

∂y

and Y = ez ∂
∂w we proceed as follows:

η(X,Y ) = xdy ∧ dz(X,Y )− ezdz ∧ dw(X,Y )

= x

∣∣∣∣
dy(X) dy(Y )
dz(X) dz(Y )

∣∣∣∣− ez
∣∣∣∣
dz(X) dz(Y )
dw(X) dw(Y )

∣∣∣∣

= x

∣∣∣∣
−1 0
y 0

∣∣∣∣− ez
∣∣∣∣
y 0
0 ez

∣∣∣∣ = −ye2z

Pull-back of differential forms. Let Φ :M → N be a smooth map. For each
p ∈M , the transpose of the differential

(dpΦ)
∗ : T ∗

Φ(p)N → T ∗
pM.
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induces a linear map

(dpΦ)
∗ : ∧kT ∗

Φ(p)N → ∧kT ∗
pM.

The pull-back of differential forms Φ∗ : Ωk(N) → Ωk(M) is defined as:

(Φ∗ω)(X1, . . . ,Xk)p = ((dpΦ)
∗ω)(X1|p, . . . ,Xk|p)

= ωΦ(p)(dpΦ ·X1|p, . . . ,dpΦ ·Xk|p).
This defines a C∞(M)-multilinear, alternating, map X(M)× · · · ×X(M) →
C∞(M), hence Φ∗ω is a smooth differential form of degree k in M .

It is easy to check that for any smooth map Φ : M → N , the pull-back
Φ∗ : Ω(N) → Ω(M) is a homomorphism of Grassmann algebras, i.e., the
following properties hold:

(a) Φ∗(aω + bη) = aΦ∗ω + bΦ∗η, a, b ∈ R;
(b) Φ∗(ω ∧ η) = Φ∗ω ∧ Φ∗η;
(c) Φ∗(fω) = (f ◦ Φ)Φ∗ω, f ∈ C∞(M);

Note that if f : N → R is a smooth function then the differential df can be
viewed as a differential form of degree 1. We have also that:

(d) Φ∗(df) = d(f ◦Φ).
These properties is all that it is needed to compute pull-backs in local coor-
dinates, as we illustrate in the next example:

Example 15.5.
Let Φ : R2 → R4 be the smooth map:

Φ(u, v) = (u+ v, u− v, v2,
1

1 + u2
).

In order to compute the pull-back under Φ of the form:

η = xdy ∧ dz − ezdz ∧ dw ∈ Ω2(R4),

we proceed as follows:

Φ∗η = (x ◦ Φ)d(y ◦ Φ) ∧ d(z ◦ Φ)− e(z◦Φ)d(z ◦ Φ) ∧ d(w ◦ Φ)

= (u+ v)d(u − v) ∧ d(v2)− ev
2

d(v2) ∧ d(
1

1 + u2
)

= (u+ v)du ∧ 2vdv − 2vev
2

dv ∧ −2udu

(1 + u2)2

=

(
2v(u+ v)− 4uvev

2

(1 + u2)2

)
du ∧ dv.

In other words, to compute the pull-back Φ∗η, one replaces in η, the coordinates
(x, y, z, w) by its expressions in terms of the coordinates (u, v).

Remark 15.6. When (N, i) is a submanifold of M the pull-back of a dif-
ferential form ω ∈ Ωk(M) by the inclusion map i : N →֒ M is called the
restriction of the differential form ω to N . Often one denotes the
restriction ω|N instead of i∗ω.
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For example, for the sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
we can write

ω = (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)|S3 ,
meaning that ω is the pull-back by the inclusion i : S2 →֒ R3 of the differ-
ential form xdy ∧ dz + ydz ∧ dx+ zdx∧ dy ∈ Ω2(R3). Sometimes, one even
drops the restriction sign.

One should also notice that if Φ : M → N and Ψ : N → Q are smooth
maps, then Ψ ◦Φ :M → Q is a smooth map and we have:

(Ψ ◦ Φ)∗ω = Φ∗(Ψ∗ω).

In categorial language, we have a contravariant functor from the category of
smooth manifolds to the category of Grassmann algebras, which to a smooth
manifold M associates the algebra Ω(M) and to a smooth map Φ :M → N
associates a homomorphism Φ∗ : Ω(N) → Ω(M).

Interior Product. Given a vector field X ∈ X(M) and a differential form
ω ∈ Ωk(M), the interior product of ω by X, denoted iXω ∈ Ωk−1(M), is
the the differential form of degree (k − 1) defined by:

iXω(X1, . . . ,Xk−1) = ω(X,X1, . . . ,Xk−1).

Since iXω : X(M) × · · · × X(M) → C∞(M) is a C∞(M)-multilinear, alter-
nating, map, it is indeed a smooth differential form of degree k − 1.

It is easy to check that the following properties hold:

(a) iX(fω + gθ) = fiXω + giXθ.
(b) iX(ω ∧ θ) = (iXω) ∧ θ + (−1)deg ωω ∧ (iXθ).
(c) i(fX+gY )ω = fiXω + giY ω.
(d) iX(df) = X(f);

Again, these properties is all that it is needed to compute interior products
in local coordinates.

Example 15.7.
Let ω = exdx∧dy+ezdy∧dz ∈ Ω2(R3), and X = x ∂

∂y −y ∂
∂x ∈ X(R3). Then:

i ∂
∂x
(dx ∧ dy) = (i ∂

∂x
dx) ∧ dy − dx ∧ (i ∂

∂y
dy) = dy,

i ∂
∂y
(dx ∧ dy) = (i ∂

∂y
dx) ∧ dy − dx ∧ (i ∂

∂y
dy) = −dx,

i ∂
∂x
(dy ∧ dz) = (i ∂

∂x
dy) ∧ dz − dy ∧ (i ∂

∂x
dz) = 0,

i ∂
∂y
(dy ∧ dz) = (i ∂

∂y
dy) ∧ dz − dy ∧ (i ∂

∂y
dz) = dz.

Hence, we conclude that:

iXω = −xexdx− yexdy + xezdz.

121



Remark 15.8. One can extend the interior product in a more or less obvious
way to other objects (multivector fields, tensor fields, etc.). For these objects
it is frequent to use the designation contraction, instead of interior product.
For example, one can define the contraction of a differential form ω of degree
k by a multivector field Π of degree l < k, to be a differential form iΠω of
degree k − l. In a local chart (U, x1, . . . , xd), if

ω|U =
∑

i1···ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik , Π|U =
∑

j1···jl
Πj1···jl

∂

∂xj1
∧ · · · ∧ ∂

∂xjl
,

then:

(iΠω)|U =
∑

i1···ik
ωi1···ikΠ

i1···ildxil+1 ∧ · · · ∧ dxik .

As a first application of differential forms, we are going to formalize the
notion of orientation of a manifold.

Recall that if V is a linear vector space of dimension d and µ ∈ ∧d(V ∗) is
a non-zero element, then for any base {v1, . . . ,vd} of V we have

µ(v1, . . . ,vd) 6= 0.

This implies that µ splits the ordered basis of V into two classes: a base
{v1, . . . ,vd} has positive (respectively, negative) µ-orientation if this number
is positive (respectively, negative). Hence, µ determines a orientation for V .

Definition 15.9. For a smooth manifold M of dimension d, we call a dif-
ferential form µ ∈ Ωd(M) a volume form if µp 6= 0, for all p ∈ M . A
manifold M is said to be orientable if it admits a volume form.

Notice that if µ ∈ Ωd(M) is a volume form then any other differential
form of degree d in M is of the form fµ for a smooth function f ∈ C∞(M).
In particular, if µ1, µ2 ∈ Ωd(M) are two volume forms then there exists a
unique smooth non-vanishing function f ∈ C∞(M) such that µ2 = fµ1.

Let M be an orientable manifold of dimension d. If µ1, µ2 ∈ Ωd(M) are
volumes forms we say that µ1 e µ2 define the same orientation if for all
p ∈M and any ordered base {v1, . . . ,vd} of TpM , one has:

µ1(v1, . . . ,vd)µ2(v1, . . . ,vd) > 0.

Note that if µ1 and µ2 define the same orientation, then a base is µ1-positive
if and only if it is µ2-positive. We leave the proof of the following lemma as
an exercise:

Lemma 15.10. Let M be manifold of dimension d. Two volume forms
µ1, µ2 ∈ Ωd(M) define the same orientation if and only if µ2 = fω1 for a
smooth everywhere positive function f ∈ C∞(M).

The property “define the same orientation” is an equivalence relation on
the set of volume forms in an orientable manifold M .
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Definition 15.11. An orientation for an orientable manifold M is a
choice of an equivalence class [µ]. A pair (M, [µ]) is called an oriented

manifold.

A connected orientable manifold has two orientations. More generally, an
orientable manifold with k connected components has 2k orientations.

Examples 15.12.

1. The euclidean space Rd is orientable. The canonical orientation of Rd is
the orientation defined by the volume form dx1 ∧ · · · ∧ dxd. For this canonical
orientation, the canonical base of TpRd ≃ Rd has positive orientation.

2. A Lie group G is always orientable. If {α1, . . . , αd} is a base of left invariant
1-forms then µ = α1 ∧ · · · ∧ αd a left invariant volume form.

3. The sphere Sd is an orientable manifold. A volume form is given by:

ω =

d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

We leave it as an exercise to check that this form never vanishes.

4. The projective space P2 is not orientable. To see this let µ ∈ Ω2(P2) be any
differential 2-form. If π : S2 → P2 is the quotient map, then the pull-back π∗µ
is a differential 2-form in S2. It follows from the previous example that

π∗µ = fω,

for some smooth function f ∈ C∞(S2).
Let Φ : S2 → S2 be the anti-podal map: p 7→ −p. Since π ◦ Φ = π, we have:

Φ∗(π∗µ) = (π ◦ Φ)∗µ = π∗µ.

On the other, it is easy to check that Φ∗ω = −ω. Hence:

fω = π∗µ = Φ∗(π∗µ)

= Φ∗(fω) = (f ◦ Φ)Φ∗(ω) = −(f ◦ Φ)ω.
We conclude that f(−p) = −f(p), for all p ∈ S2. But then we must have
f(p0) = 0, at some p0 ∈ S2. Hence, π∗µ vanishes at some point. Since π is
a local diffeomorphism, we conclude that every differential form µ ∈ Ω2(P2)
vanishes at some point, so P2 has no volume forms, and it is non-orientable.

Let (M, [µM ]) and (N, [µN ]) be oriented manifolds. We say that a diffeo-
morphism Φ : M → N preserves orientations or that it is positive, if
[Φ∗µN ] = [µM ].

Example 15.13.
Let [dx1∧· · ·∧dxd] be the standard orientation for Rd. Given a diffeomorphism
φ : U → V , where U, V are open sets in Rd, we have:

φ∗(dx1 ∧ · · · ∧ dxd) = det[φ′(x)]dx1 ∧ · · · ∧ dxd.

Hence φ preserves the standard orientation if and only if det[φ′(x)] > 0, for
all x ∈ Rd.
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One can also express the possibility of orienting a manifold in terms of an
atlas, as shown by the following proposition. The proof is left as an exercise.

Proposition 15.14. Let M be a manifold of dimension d. The following
statements are equivalents:

(i) M is orientable, i.e., M has a volume form.
(ii) There exists an atlas {(Ui, φi)}i∈I for M such that for all i, j ∈ I the

transition functions preserve the standard orientation of Rd.

In particular, if [µM ] is an orientation for M , then there exists an atlas
{(Ui, φi)}i∈I for M such that each chart φi : Ui → Rd is positive, where in
Rd we consider the canonical orientation.

Homework.

1. Construct the natural differentiable structure on ∧kT ∗M , for which the
canonical projection π : ∧kT ∗M →M is a submersion.

2. Determine the formulas of transformation of variables for multivector fields
and tensor fields.

3. Show that a Riemannian structure on a manifold M (see Exercise 8 in
Lecture 9) defines a symmetric tensor field of degree (0,2).
Note: In a chart (U, xi), a symmetric tensor field of degree (0,2) is written as

g|U =
∑

i,j

gijdx
i ⊗ dxj ,

where the components gij ∈ C∞(U) satisfy gij = gji.

4. Proof the basic properties of the pull-back and interior product of differential
forms.

5. Let Φ : M → N be a smooth map and let X ∈ X(M) and Y ∈ X(N) be
Φ-related smooth vector fields. Show that

Φ∗(iY ω) = iXΦ∗ω,

for any differential form ω ∈ Ω(N).

6. Proof Proposition 15.14.

7. Show that for any orientable manifolds M and N the product M × N is
orientable. Conclude that the torus Td is orientable. Give an example of a
volume form in Td.

8. Show that the projective space Pd is orientable if and only if d is odd.

9. Verify that the Klein bottle (see Example 6.8.4) is a non-orientable manifold.

10. Show that every oriented manifold (M, [µ]) has an atlas consisting of pos-
itive charts.
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11. Let M be a Riemannian manifold of dimension d. Show that:
(a) Each inner product on the tangent space TpM induces an inner product

on the cotangent space T ∗
pM .

(b) For each p ∈ M , there exists a neighborhood U of p and orthonormal
smooth vector fields X1, . . . , Xd ∈ X(U):

〈Xi, Xj〉 = δij (Kronecker symbol).

The set {X1, . . . , Xd} is called a (local) orthonormal frame.
(c) For each p ∈ M , there exists a neighborhood U of p and orthonormal

differential forms α1, . . . , αd ∈ Ω1(U):

〈αi, αj〉 = δij (Kronecker symbol).

The set {α1, . . . , αd} is called a (local) orthonormal coframe.

12. Let (M, [µ]) be an oriented Riemannian manifold of dimension d. Show
that there exists a unique linear map ∗ : Ωk(M) → Ωd−k(M) such that for
every local orthonormal coframe α1, . . . , αd which is positive (i.e., α1∧· · ·∧αd
is positive) the following properties hold:
(a) ∗1 = α1 ∧ · · · ∧ αd and ∗(α1 ∧ · · · ∧ αd) = 1;
(b) ∗(α1 ∧ · · · ∧ αk) = αk+1 ∧ · · · ∧ αd.
Show also that:

∗ ∗ ω = (−1)k(d−k)ω, where k = degω.

∗ is called the Hodge star operator.

Lecture 16. Differential and Cartan Calculus

We will introduce now two important differentiation operations on differ-
ential forms: the differential of forms, which is an intrinsic derivative, and
the Lie derivative of differential forms, which is a derivative along vector
fields. These differential operations together with the algebraic operations
on differential forms that we studied in the previous lecture, are the basis of
a calculus on differential forms on which is usually called Cartan Calculus.

Let ω ∈ Ωk(M). The differential of ω is the differential form of degree
k + 1, denoted dω, defined by:

(16.1) dω(X0, . . . ,Xk) =
k∑

i=0

(−1)iXi(ω(X0, . . . , X̂i, . . . ,Xk))+

+
∑

0≤i<j≤k
(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j . . . ,Xk),

for any smooth vector fields X0, . . . ,Xk ∈ X(M). Since this formula defines
a C∞(M)-multilinear, alternating, map X(M)× · · · ×X(M) → C∞(M), we
see that dω is indeed a smooth differential (k+1)-form.

A smooth function f ∈ C∞(M) is a degree 0 form. In this case, formula
(16.1) gives:

df(X) = X(f).
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Therefore this definition matches our previous definition of the differential
of a smooth function. Our next result shows that the differential is the
only operation on the forms which extends the differential of functions in a
reasonable way:

Theorem 16.1. The differential

d : Ω•(M) → Ω•+1(M)

is the only operation on forms satisfying the following properties:

(i) d is R-linear:

d(aω + bθ) = adω + bdθ.

(ii) d is a derivation:

d(ω ∧ θ) = (dω) ∧ θ + (−1)deg ωω ∧ (dθ).

(iii) d extends the differential of smooth functions: if f ∈ C∞(M), then

df(X) = X(f),∀X ∈ X(M).

(iv) d2 = 0.

Moreover, if Φ :M → N is a smooth map, then for every ω ∈ Ωk(N):

Φ∗dω = dΦ∗ω.

Proof. We leave it for the exercises to check that d, as defined by (16.1),
satisfies properties (i) through (iv). To prove uniqueness, we need to check
that given ω ∈ Ωk(M), then dω is determined by properties (i)–(iv).

Since d is a derivation, it is local: if ω|U = 0 on an open set U then
(dω)|U = 0. In fact, let p ∈ U and f ∈ C∞(M) with f(p) > 0 and supp f ⊂
U . Since fω ≡ 0, we find that:

0 = d(fω) = df ∧ ω + fdω.

If we evaluate both sides of this identity at p, we conclude that f(p)(dω)p =
0. Hence dω|U = 0, as claimed.

Therefore, to prove uniqueness, it is enough to consider the case where
ω ∈ Ωk(U), where U is the domain of some local chart (x1, . . . , xd). In this
case we have:

ω =
∑

i1<···<ik
ωi1···ikdx

i1 ∧ · · · ∧ dxik .

Using only properties (i)–(iv) we find:

dω =
∑

i1<···<ik
d(ωi1···ikdx

i1 ∧ · · · ∧ dxik) (by (i))

=
∑

i1<···<ik
d(ωi1···ik) ∧ dxi1 ∧ · · · ∧ dxik (by (ii) and (iv))

=
∑

i1<···<ik

∑

i

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik (by (iii)).
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The last expression defines a differential form of degree k + 1 in U . Hence,
dω is completely determine by properties (i)–(iv), as claimed.

The proof that the differential commutes with pull-backs can also be
reduced to a computation in local charts, and we leave it to the exercises. �

As this proof shows, one can compute the differential of a form using only
properties (i)–(iv). This is often much more efficient than applying directly
the formula (16.1), as we illustrate in the next example.

Example 16.2.
Let ω = eydx ∧ dz + ezdy ∧ dz ∈ Ω2(R3). Then using properties (i)–(iv), we
find:

dω = d(eydx ∧ dz + ezdy ∧ dz)

= (dey) ∧ dx ∧ dz + d(ez) ∧ dy ∧ dz

= eydy ∧ dx ∧ dz + ezdz ∧ dy ∧ dz

= −eydx ∧ dy ∧ dz.

The operation d : Ω•(M) → Ω•+1(M) is also referred to as exterior
differentiation, since it increases the degree of a form. There is another type
of differentiation of a form which preserves the degree:

Definition 16.3. The Lie derivative of a differential form ω ∈ Ωk(M)
along a vector X ∈ X(M) is the differential form LXω ∈ Ωk(M) defined by:

LXω =
d

dt
(φtX)

∗ω

∣∣∣∣
t=0

= lim
t→0

1

t

(
(φtX)

∗ω − ω
)
.

Example 16.4.
Let ω = exdx ∧ dy + eydy ∧ dz ∈ Ω2(R3) and X = x ∂

∂y ∈ X(R3). The flow of

X is given by φtX(x, y, z) = (x, y + tx, z). Hence, we find that:

(φtX)∗ω = exdx ∧ d(y + tx) + ey+txd(y + tx) ∧ dz

= exdx ∧ dy + ey+txdy ∧ dz + tey+txdx ∧ dz

Then:

LXω =
d

dt
(φtX)∗ω

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(
(ey+tx − ey)dy ∧ dz + ey+txdx ∧ dz

)

= xeydy ∧ dz + eydx ∧ dz.

In most examples, it is impossible to find explicitly the flow of a vector
field. Still the basic properties of the Lie derivative listed in the next propo-
sition allow one to find the Lie derivative without knowledge of the flow.
The proof is left as an exercise:
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Proposition 16.5. Let X ∈ X(M) and ω, η ∈ Ω•(M). Then:

(i) LX(aω + bη) = aLXω + bLXη for all a, b ∈ R.
(ii) LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη.
(iii) LX(f) = X(f), if f ∈ Ω0(M) = C∞(M).
(iv) LXdω = dLXω.
Example 16.6.
Let us redo Example 16.4 using only properties (i)-(iv) in the previous propo-
sition:

LXω = LX(exdx ∧ dy + eydy ∧ dz)

= LX(ex)dx ∧ dy + exLX(dx) ∧ dy + exdx ∧ LX(dy)+

+ LX(ey)dy ∧ dz + eyLX(dy) ∧ dz + eydy ∧ LX(dz)

= exdx ∧ dX(y) +X(ey)dy ∧ dz + eydX(y) ∧ dz

= xeydy ∧ dz + eydx ∧ dz.

There is still another efficient way to compute the Lie derivative. In fact,
there is an important “magical” formula, often playing an unexpected role,
which relates all three operations: Lie derivative, exterior differential and
interior product:

Theorem 16.7 (Cartan’s Magic Formula). Let X ∈ X(M) and ω ∈ Ω(M).
Then:

(16.2) LXω = iXdω + diXω.

Proof. By Proposition 16.5 (iii), LX : Ω(M) → Ω(M) is a derivation. The
properties of d and iX give that iXd + diX : Ω(M) → Ω(M) is also a
derivation. Hence, it is enough to check that both derivations take the
same values on differential forms of the type ω = f and ω = dg, where
f, g ∈ C∞(M).

On the one hand, the properties in Proposition 16.5, give:

LX(f) = X(f), LX(dg) = dLXg = d(X(g)).

On the other hand, the properties of d and iX yield:

(iXd + diX)f = iXdf = X(f),

(iXd + diX)dg = d(iXdg) = d(X(g)).

�

Example 16.8.
Let us redo Example 16.4 using Cartan’s Magic Formula:

LXω = iXdω + diXω

= iX(0) + d(−xexdx+ xeydz)

= eydx ∧ dz + xeydy ∧ dz.
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As an pplication of the notion of differential, we show how one can restate
the Frobenius Theorem in the language of differential forms. IfD is a smooth
distribution in a manifold M we will say that ω ∈ Ωk(M) annihilates D if:

ω(X1, . . . ,Xk) = 0 whenever X1, . . . ,Xk ∈ X(D).

We denote by I(D) the collection of all such forms:

I(D) ≡ {ω ∈ Ω(M) : ω annihilates D}.
Also, given a collection of differential 1-forms α1, . . . , αk ∈ Ω1(M) we will
say that the collection is linearly independent if for each p ∈ M they
yield a linearly independent set in T ∗

pM .
One can describe any distribution using differential forms:

Proposition 16.9. Let D be a smooth k-dimensional distribution in a man-
ifold M of dimension d. Then:

(i) I(D) is an ideal in the Grassmann algebra Ω(M).
(ii) I(D) is locally generated by d− k linearly independent 1-forms.

Conversely, if I ⊂ Ω(M) is an ideal which is locally generated by d− k dif-
ferential forms of degree 1, then there exists a unique smooth k-dimensional
distribution D such that I = I(D).

Proof. Assume that D be a smooth k-dimensional distribution in a manifold
M of dimension d. Item (i) follows immediately from the definition of I(D)
and the properties of the wedge product. To show that (ii) holds, for each
p ∈M let U be an open neighborhood of p and let Xd−k+1, . . . ,Xd ∈ X(U)
be linearly independent vector fields generating D|U . We can complete this
collection with vector fields so that X1, . . . ,Xd ∈ X(U), is a base for TpM ,
at each p ∈ U . Let α1, . . . , αd ∈ Ω1(U) be the dual base of 1-forms:

αi(Xj) = δij .

We claim that α1, . . . , αk are the desired 1-differential forms:

• The collection α1, . . . , αk is linearly independent: this is obvious,
since {α1, . . . , αd} yield a base for form T ∗

pM , for each p ∈ U .
• The collection α1, . . . , αk is a generating set for I(D): if ω ∈ Ωr(M),
there exist ai1···ir ∈ C∞(U) such that

ω|U =
∑

1≤i1<···<ir≤d
ai1···irαi1 ∧ · · · ∧ αir .

When ω ∈ I(D) we see that ai1···ir = 0 for all ij ≥ k, by evaluating
both sides on the vector fields Xd−k+1, . . . ,Xd. Hence,

ω|U =
∑

1≤i1<···<ir≤k
ai1···irαi1 ∧ · · · ∧ αir ,

so the collection α1, . . . , αk is a generating set for I(D).
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In order to show the converse, let p ∈M and let α1, . . . , αk be independent
1-forms which generate the ideal I in some neighborhood U of p. Define
Dp ⊂ TpM to be the subspace:

Dp = {v ∈ TpM : α1(v) = · · · = αk(v) = 0}.
It is easy to check that D is a smooth k-dimensional distribution in M such
that I = I(D). Uniqueness follows from the fact that if D1 6= D2, then
I(D1) 6= I(D2). �

Define a differential ideal to be an ideal I ⊂ Ω(M) which is closed
under the differential:

ω ∈ I =⇒ dω ∈ I.
The Frobenius Theorem can be restated in the language of differential forms:

Theorem 16.10 (Frobenius). A distribution D is integrable if and only if
I(D) is a differential ideal.

Proof. It is enough to show that D is involutive if and only if I(D) is a
differential ideal.

On the one hand, expression (16.1) for the differential shows that if D is
involutive then I(D) is a differential ideal. On the other hand, if I(D) is a
differential ideal and X,Y ∈ X(D), then for any degree 1 form ω ∈ I(D) we
find, using (16.1), that:

ω([X,Y ]) = −dω(X,Y ) +X(ω(Y ))− Y (ω(X)) = 0.

Hence, [X,Y ] ∈ X(D), so we conclude that D is involutive. �

Example 16.11.
Let ω ∈ Ω1(M) be a differential 1-form which is nowhere vanishing. Then ω
define a smooth distribution of codimension 1. By the Theorem, this distribu-
tion is integrable if and only if

dω = η ∧ ω,
for some 1-form η ∈ Ω1(M).

Homework.

1. Show that d defined by formula (16.1), satisfies properties (i)–(iv) in Theo-
rem 16.1.

2. Let Φ :M → N be a smooth map. Show that for any form ω ∈ Ωk(M):

Φ∗dω = dΦ∗ω.

3. Let I ⊂ Ω(M) be an ideal generated by k independent differential forms
α1, . . . , αk of degree 1. Show that the following statements are equivalent:
(a) I is a differential ideal;
(b) dαi =

∑
j ωij ∧ αj , for some 1-forms ωij ∈ Ω1(M);

(c) If ω = α1 ∧ · · · ∧ αk, then dω = α ∧ ω, for some 1-form α ∈ Ω1(M).
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4. Prove the properties of the Lie derivative given in Proposition 16.5.

5. Let X,Y ∈ X(M) be vector fields and ω ∈ Ω(M) a differential form. Show
that:

L[X,Y ]ω = LX(LY ω)− LY (LXω).

6. Let Φ : M → N be smooth. Show that if X ∈ X(M) and Y ∈ X(N) are
Φ-related vector fields, then

Φ∗(LY ω) = LX(Φ∗ω),

for every differential form ω ∈ Ω(N).

7. Let X ∈ X(M) and ω ∈ Ωk(M). Show that:

(16.3) LX(ω(X1, . . . , Xk)) = LXω(X1, . . . , Xk) +
k∑

i=1

ω(X1, . . . ,LXXi, . . . , Xk).

Use this formula to compute LXω when X = x ∂
∂y ∈ X(R3) and ω = exdx ∧

dy + eydy ∧ dz ∈ Ω2(R3).

(Hint: Take X1 and X2 to be the vector fields ∂
∂x ,

∂
∂y and ∂

∂z .)

8. Let M be an oriented Riemannian manifold. If v ∈ TpM denoted by v♭ ∈
T ∗M the unique convector defined by v♭(w) = 〈v,w〉. The map v 7→ v♭ is an
isomorphism and we denote its inverse by α 7→ α♯. The gradient of a function
f :M → R is the vector field grad f ∈ X(M) defined by:

grad f := (df)♯.

The divergence of a vector field X ∈ X(M) is the function divX : M → R
defined by

divX := ∗d ∗X.
The laplacian of f : M → R is the function ∆f : M → R defined by:

∆f := − div(grad f).

When M = R3 with its canonical Riemannian structure, find the gradient, the
divergence and the laplacian in cylindrical and in spherical coordinates.

9. In a smooth manifold M denote by Xk(M) the vector space of multivector
fields of degree k. Show that there exists a unique R-bilinear operation [ , ] :
Xk(M) × Xs(M) → Xk+s(M) which coincides with the usual Lie bracket of
vector fields when k = s = 1 and satisfies:
(a) [P,Q] = (−1)pq[Q,P ];
(b) [P,Q ∧R] = [P,Q] ∧R+ (−1)q(p+1)Q ∧ [P,R];
Verify that this bracket satisfies the following Jacobi type identity:

(−1)p(r−1)[P, [Q,R]] + (−1)q(p−1)[Q, [R,P ]] + (−1)r(q−1)[R, [P,Q]] = 0.

In all these identities, p = degP , q = degQ and r = degR.
Note: This operation is known as the Schouten bracket and is the counter-
part for multivector fields of the exterior differential for forms. It is an example
of a graded or super Lie bracket.
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Lecture 17. Integration on Manifolds

Ultimately, our interest on differential forms of degree d lies in the fact
that they can be integrated over oriented d-manifolds, as we now explain.

Let us start with the case where M = Rd, with the usual orientation. If
U ⊂ Rd is open, then every differential form ω ∈ Ωd(U) can be written as:

ω = f dx1 ∧ · · · ∧ dxd, (f ∈ C∞(U)).

We say that ω is integrable in U and we define its integral by:∫

U
ω =

∫

U
f(x1, . . . , xd)dx1 · · · dxd,

provided the integral in the right hand side exists and is finite.
The usual change of variable formula for the integral in Rd yields the

following result:

Lemma 17.1. Let Φ : U → Rd be a diffeomorphism defined in an open
connected set U ⊂ Rd. If ω is a differential form integrable in Φ(U), then
Φ∗ω is integrable in U and ∫

Φ(U)
ω = ±

∫

U
Φ∗ω,

where ± is the sign of the determinant of the Jacobian matrix Φ′(p).

Therefore, as long as we consider only orientation preserving diffeomor-
phisms, the integral is invariant under diffeomorphisms. For this reason, we
will only consider the integral of differential forms over oriented manifolds.
It is possible to define the integral over non-oriented manifolds, but this
requires introducing odd differential forms, which generalize the even
differential forms that we have been discussing.

We will also assume, in order to avoid convergence issues, that the differ-
ential forms ω ∈ Ωk(M) to be integrated have support

supω = {p ∈M : ωp 6= 0},
a compact set. We will denote by Ωkc (M) the smooth differential forms of
degree k with compact support.

Definition 17.2. If M is an oriented d-manifold and ω ∈ Ωdc(M) has com-
pact support, we define its integral over M as follows:

• If supω ⊂ U , where (U, φ) is a positive coordinate chart, then:∫

M
ω :=

∫

φ(U)
(φ−1)∗ω.

• More generally, we consider an open cover of M by positive charts
(Uα, φα) and a partition of unit {ρα} subordinated to this cover, and
we define: ∫

M
ω =

∑

α

∫

M
ραω.
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We remark that the sum in this definition is finite, since we assume that
suppω is compact. The definition gives distinct ways to compute the integral
of a form with support in a chart. It is easy to check that they yield the
same result. One can also show that the definition is independent of the
choice of covering and partition of unit. We leave it to the exercises the
check of all these details.

It is also easy to check, that the integral satisfies the following basic
properties:

(a) Linearity: If ω, η ∈ Ωdc(M) and a, b ∈ R, then:
∫

M
(aω + bη) = a

∫

M
ω + b

∫

M
η.

(b) Additivity: If M =M1 ∪M2 and ω ∈ Ωdc(M), then:
∫

M
ω =

∫

M1

ω +

∫

M2

ω,

provided that M1 ∩M2 has zero measure.

Moreover, we have:

Theorem 17.3 (Change of Variables Formula). Let M and N be oriented
manifolds of dimension d and let Φ : M → N be an orientation preserving
diffeomorphism. Then, for every differential form ω ∈ Ωdc(N), one has:

∫

N
ω =

∫

M
Φ∗ω.

Proof. Since Φ is a diffeomorphism and preserves orientations, we can find
an open cover of M by positive charts (Uα, φα) positivos, such that the open
sets Φ(Uα) are domains of positive charts ψα : Φ(Uα) → Rd for N . Let {ρα}
be a partition of unity for N subordinated to the cover {Φ(Uα)}, so that
{ρα ◦ Φ} is a partition of unity for M subordinated to the cover {Uα}. By
Lemma 17.1, we find:∫

Φ(Uα)
ραω =

∫

Uα

Φ∗(ραω) =
∫

Uα

(ρα ◦ Φ)Φ∗ω.

Hence, we obtain: ∫

N
ω =

∑

α

∫

N
ραω

=
∑

α

∫

Φ(Uα)
ραω

=
∑

α

∫

Uα

(ρα ◦ Φ)Φ∗ω

=
∑

α

∫

M
(ρα ◦ Φ)Φ∗ω =

∫

M
Φ∗ω.

�
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The computation of the integral of differential forms from the definition
is not practical since it uses a partition of unity. The following result can
often be applied to avoid the use of partitions of unity:

Proposition 17.4. Let M be an oriented manifold of dimension d and
let C ⊂ M be a closed subset of zero measure. For any differential form
ω ∈ Ωdc(N), we have: ∫

M
ω =

∫

M−C
ω.

Proof. Using a partition of unity we can reduce the result to the case where
M is an open subset of Rd. For any open set U ⊂ Rd, the result reduced to
the equality: ∫

U
fdx1 . . . dxd =

∫

U−C
fdx1 . . . dxd,

where f : U → R is smooth and bounded. This result holds, since C has
zero measure. �

Example 17.5.
Let i : S2 →֒ R3 be the 2-sphere and consider the standard orientation defined
by the volume form µ ∈ Ω2(R3):

µ = i∗xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

By the proposition, we have that:
∫

S2

µ =

∫

S2−p

µ,

for any p ∈ S2. Let us take the north pole p = pN . Then the stereographic
projection o pólo πN : S2−N → R2 defines a global chart for S2−{pN} whose
inverse is the parameterization:

π−1
N (u, v) =

1

u2 + v2 + 1
(2u, 2v, u2 + v2 − 1).

We then compute:

(π−1
N )∗i∗ω = (i ◦ π−1

N )∗ω = − 4

(u2 + v2 + 1)2
du ∧ dv.

Which shows that πN is a negative chart. Therefore:
∫

S2

µ =

∫

R2

4

(u2 + v2 + 1)2
du ∧ dv.

The integral on the right can be computed using polar coordinates, and the
result is: ∫

S2

µ =

∫ +∞

0

∫ 2π

0

4r

(r2 + 1)2
dθdr = 4π

Our next aim is to generalize Stokes Theorem to differential forms.
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Let M be a manifold with boundary and p ∈ ∂M . In local coordinates
(U, x1, . . . , xd) centered at p, a tangent vector v ∈ TpM can be written in
the form:

v =
d∑

i=1

vi
∂

∂xi

∣∣∣∣
p

.

and the tangent vectors in Tp(∂M) are exactly the tangent vectors whose
last component vanishes:

Tp(∂M) = {v ∈ TpM : vd = 0}.
We will say that a tangent vector is exterior to ∂M if vd < 0. It is easy to
see that this condition is independent of the choice of charts centered at p.

We can use this remark to construct the induced orientation on ∂M ,
whenever (M, [µ]) is an oriented manifold with boundary: if p ∈ ∂M , the
orientation of Tp(∂M) is, by definition, [ivµp] where v ∈ TpM is any exterior
tangent vector to ∂M . Is easy to see that this definition is independent of
choice of exterior tangent vector so we have a well defined orientation [∂µ]
for ∂M . Henceforth, whenever M is an oriented manifold with boundary,
we will always consider the induced orientation on ∂M .

Theorem 17.6 (Stokes Formula). Let M be an oriented manifold with
boundary of dimension d. If ω ∈ Ωd−1

c (M) then:
∫

M
dω =

∫

∂M
ω.

Proof. We consider first two special cases.

The case M = Rd: By linearity of the integral, we can reduce to the case
where ω = fdx1 ∧ · · · ∧ dxd−1 where f has compact support. Then:

dω = (−1)d−1 ∂f

∂xd
dx1 ∧ · · · ∧ dxd.

By Fubini’s Theorem:
∫

M
dω = (−1)d−1

∫

Rd−1

(∫ +∞

−∞

∂f

∂xd
dxd
)
dx1 · · · dxd−1 = 0.

since f compacto support. Since ∂Rd = ∅, Stokes Formula for Rd follows.

The case M = Hd: In this case, we can write:

ω =

d∑

i=1

fidx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd,

hence:

dω =
d∑

i=1

(−1)i−1 ∂fi
∂xi

dx1 ∧ · · · ∧ dxd,
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For i 6= d, by a computation entirely similar to the previous case, we obtain:

∫

Hd

∂fi
∂xi

dx1 ∧ · · · ∧ dxd = 0.

For i = d, we compute:

(−1)d−1

∫

Hd

∂fd
∂xd

dx1 ∧ · · · ∧ dxd =

= (−1)d−1

∫

Rd−1

(∫ +∞

0

∂fd
∂xd

dxd
)
dx1 · · · dxd−1

= (−1)d
∫

Rd−1

fd(x
1, . . . , xd−1, 0)dx1 · · · dxd−1.

Assim, obtemos:

∫

Hd

dω = (−1)d
∫

Rd−1

fd(x
1, . . . , xd−1, 0)dx1 · · · dxd−1.

Por outro lado, ∂Hd = {(x1, . . . , xd) : xd = 0}, logo
∫

∂Hd

ω =

∫

∂Hd

fd(x
1, . . . , xd−1, 0)dx1 ∧ · · · ∧ dxd−1.

In ∂Hd = Rd−1 we must take the induced orientation from the canonical
orientation [µ] = [dx1 ∧ · · · ∧ dxd] in Hd. The induced orientation is given
by: [(−1)ddx1 ∧ · · · ∧ dxd−1] so we conclude that:

∫

∂Hd

ω = (−1)d
∫

∂Rd−1

fd(x
1, . . . , xd−1, 0)dx1 · · · dxd−1.

Therefore, Stokes Formula also hold for the half space Hd.

We now consider the general case of a manifold of dimension d. We fix
an open cover of M by positive charts (Uα, φα) and we choose a partition of
unity {ρα} subordinated to this cover. The forms ραω have compact support
contained in Uα:

supp ραω ⊂ supp ρα ∩ suppω.

Since each Uα is diffeomorphic to either Rd or to Hd, we already know that:

∫

Uα

d(ραω) =

∫

∂Uα

ραω.
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By the linearity and the additivity of the integral, we obtain:∫

M
dω =

∑

α

∫

M
d(ραω)

=
∑

α

∫

Uα

d(ραω)

=
∑

α

∫

∂Uα

ραω

=

∫

∂M

∑

α

ραω =

∫

∂M
ω.

�

Corollary 17.7. Let M be a compact, oriented, manifold of dimension d
(without boundary). For any ω ∈ Ωd−1(M):

∫

M
dω = 0.

Homework.

1. Show that the integral of differential forms is linear and additive relative to
the region of integration.

2. Show that if in Hd one considers the standard orientation [dx1 ∧ · · · ∧ dxd],
then the induced orientation in ∂Hd = Rd−1 is given by [(−1)ddx1∧· · ·∧dxd−1]

3. Consider the 2-torus T 2 as an embedded submanifold of R4:

T 2 = {(x, y, z, w) ∈ R4 : x2 + y2 = 1, z2 + y2 = 1}.
Let ω be the restriction of the form dx ∧ dz ∈ Ω2(R4) to T 2. Compute the
integral

∫
T 2 ω for an orientation of your choice.

4. Given a volume form µ on a compact manifoldM one defines the volume of
M to be the integral

∫
M µ, where the integral is taken relative to the orientation

[µ]. Find the volume of Sd for the standard volume form on the sphere:

µ =

d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1

∣∣∣∣∣
Sd

.

5. Let M be an oriented Riemannian manifold with boundary. If f : M → R
is a smooth, compactly supported function, define the integral of f overM by:

∫

M

f ≡
∫

M

∗ω.

Also, if X is any vector field proof the classical Divergence Theorem:
∫

M

divX =

∫

∂M

X · n,

where n : ∂M → T∂MM is the unit exterior normal vector along ∂M .
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6. LetM be an oriented Riemannian manifold with boundary. For any smooth
function f :M → R denote by ∂f

∂n the function n(f) : ∂M → R, where n is the
unit exterior normal vector along ∂M . Verify the following Green identities:

∫

∂M

f
∂g

∂n
=

∫

M

〈grad f, grad g〉 −
∫

M

f∆g,

∫

∂M

(
f
∂g

∂n
− g

∂f

∂n

)
=

∫

M

(g∆f − f∆g),

where f, g ∈ C∞(M).

7. Let G be a Lie group of dimension d.
(a) Show that if ω, ω′ ∈ Ωd(M) are left invariant and [ω] = [ω′], then

∫

G

fω = a

∫

G

fω′, ∀f ∈ C∞(M),

for some real number a > 0.
Fix an orientation µ for G and choose a left invariant form ω ∈ Ωd(M) such
that µ = [ω]. Define the integral of f : G→ R by:

∫

G

f ≡
∫

G

fω.

(b) Show that the integral is left invariant, i.e., for every g ∈ G is valid the
identity: ∫

G

f ◦ Lg =
∫

G

f.

(c) Give an example of a Lie group where the integral is not right invariant.
For each g ∈ G, the differential form R∗

gω is left invariant, hence

R∗
gω = λ̃(g)ω,

for some smooth function λ̃ : G→ R. The modular function λ : G→ R+ is

defined to be λ(g) = |λ̃(g)|.
(d) Show that the integral is right invariant if and only if G is unimodular,

i.e., λ ≡ 1.
(e) Show that a compact Lie group is unimodular.

8. Let G be a compact Lie group and let Φ : G→ GL(V ) be a representation
of G. Show that there exists an inner product 〈 , 〉 in V such that this
representation is by orthogonal transformations:

〈Φ(g) · v,Φ(g) ·w〉 = 〈v,w〉, ∀g ∈ G.

(Hint Use the fact that a compact Lie group is unimodular.)

9. Let G be a compact Lie group. Show that G has a bi-invariant Riemannian
metric, i.e., a Riemannian metric which is both right and left invariant.
(Hint: A left invariant Riemannian metric in G is also right invariant if and
only if the inner product 〈 , 〉 induced in g ≃ TeG satisfies:

〈Ad(g) ·X,Ad(g) · Y 〉 = 〈X,Y 〉, ∀g ∈ G,X, Y ∈ g.
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Lecture 18. de Rham Cohomology

The equation d2 = 0, which so far we have made little use, has in fact
some deep consequences, as we shall see in the next few lectures.

Definition 18.1. Let ω ∈ Ωk(M).

(i) ω is called a closed form if dω = 0.
(ii) ω is called an exact form if ω = dη, for some η ∈ Ωk−1(M).

We will denote by Zk(M), respectively Bk(M), the subspaces of closed, re-
spectively exact, differential forms of degree k.

In other words, the closed forms form the kernel of d, while the exact forms
form the image of d. The pair (Ω(M),d) is called the de Rham complex of
M and we will often represent it as:

· · · // Ωk−1(M)
d // Ωk(M)

d // Ωk+1(M) // · · ·

The fact that d2 = 0 means that every exact form is closed:

Bk(M) ⊂ Zk(M).

One should think of (Ω(M),d) as a set of differential equations associ-
ated with the manifold M . Finding the closed forms, means to solve the
differential equation:

dω = 0.

On the other hand, the exact forms can be thought of as the trivial solutions
of this equation. We are interested in the space of all solutions modulus the
trivial solutions, and this is called the de Rham cohomology of M :

Definition 18.2. The de Rham cohomology space of order k is the
vector space:

Hk(M) ≡ Zk(M)/Bk(M).

One can also consider differential forms whose support is compact, which
we denote by Ωkc (M). Clearly, the differential d takes a compactly sup-
ported form to a compactly supported form, so we have another complex
(Ωc(M),d), and we let:

Definition 18.3. The compactly supported de Rham cohomology space

of order k is the vector space:

Hk
c (M) ≡ Zkc (M)/Bk

c (M),

where Zkc (M) ⊂ Ωkc (M), respectively Bk
c (M) ⊂ Ωkc (M), denotes the sub-

spaces of closed, respectively exact, compactly supported forms of degree k.

Obviously, Hk(M) = Hk
c (M) if M is compact. In general these two

groups are different, as we can see already in degree 0, where the de Rham
cohomology spaces have the following meaning:
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Theorem 18.4. Let M be a smooth manifold. Then:

H0(M) = Rl,

where l is the number of connected components of M , and

H0
c (M) = Rl

′

,

where l′ is the number of compact connected components of M .

Proof. We have Ω0(M) = C∞(M) and if f ∈ C∞(M) satisfies df = 0, then
f is locally constant. Hence:

Z0(M) = Rl,

where l is the number of connected components of M . Since

B0(M) = {0},
we have that H0(M) = Rl.

On the other hand, if we consider compactly supported forms, we note
that if f ∈ C∞

c (M) satisfies df = 0, then f is constant in the compact
connected components of M and is zero in the non-compact connected com-
ponents. Since B0

c (M) = {0}, we conclude that

H0
c (M) = Rl

′

,

where l′ is the number of compact connected components of M . �

In geral, the computation of the cohomology groups Hk(M) and Hk
c (M),

for k ≥ 1, directly from the definition is very hard. Note however, that we
have

Hk(M) = Hk
c (M) = 0, if k > dimM,

since Ωk(M) = 0 if k > dimM .
In the next lectures we will study several properties of the de Rham co-

homology spaces which can be used to compute them. For now, we consider
a simple example where one can still use the definition to compute them.

Example 18.5.
Let M = S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. Since S1 is compact, we have that
H•(S1) = H•

c (S
1). Since S1 is connected, it follows that:

H0(S1) = R.

Now to compute H1(S1), we consider the 1-form −ydx+xdy ∈ Ω1(R2). This
form restricts to a 1-form in S1 which we will denote by ω. Since dim S1 = 1,
ω is closed. On the other hand, consider the parameterization σ :]0, 2π[→
S1 − {(1, 0)}, given by σ(t) = (cos t, sen t). Then:

∫

S1

ω =

∫

]0,2π[

σ∗ω

=

∫

]0,2π[

(− sin t)d cos t+ cos td sin t =

∫ 2π

0

dt = 2π.
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By the corollary to Stokes Formula, we see that ω is not exact, so it represents
a non-trivial cohomology class [ω] ∈ H1(S1).

The form ω has a simple geometric meaning: since σ∗ω = dt, we have that
ω = dθ in S1 − {(1, 0)}, where θ : S1 − {(1, 0)} → R is the angle coordinate
(the inverse of the parameterization σ). Sometimes one denotes ω by dθ, in
spite of the fact that this is not an exact form.

We claim that [ω] is a basis for H1(S1). Given a form α ∈ Ω1(S1) we have
that α = fω, for some function f : S1 → R. Let

c =
1

2π

∫

S1

α =
1

2π

∫ 2π

0

f(θ)dθ,

and define g : R → R by:

g(t) =

∫ t

0

(α− cω) =

∫ t

0

(f(θ)− c)dθ.

Since:

g(t+ 2π) =

∫ t+2π

0

(f(θ) − c)dθ

=

∫ t

0

(f(θ)− c)dθ +

∫ t+2π

t

(f(θ)− c)dθ

= g(t) +

∫ 2π

0

(f(θ)− c)dθ = g(t),

we obtain a C∞ function g : S1 → R. In S1 − {(1, 0)}, we have that

dg = f(θ)dθ − cdθ = α− cω.

Hence, we must have dg = α− cω in S1 so that [α] = c[ω]. This shows that [ω]
generates H1(S1) so we conclude that:

H1(S1) ≃ R.

The wedge product ∧ : Ωk(M)×Ωl(M) → Ωk+l(M) induces a product in
the de Rham cohomology of M by setting:

[α] ∪ [β] := [α ∧ β].
We leave it as an exercise to check that this definition is independent of
the choice of representatives of the cohomology classes. With this product
H•(M) = ⊕kH

k(M) and H•
c (M) = ⊕kH

k
c (M) become rings.

If Φ : M → N is a smooth map, then pull-back map gives a linear map
Φ∗ : Ω•(N) → Ω•(M) which commutes with the differentials:

Φ∗dω = d(Φ∗ω).

Therefore, Φ∗ takes closed (respectively, exact) forms to closed (respectively,
exact) forms, and we have an induced map in cohomology:

Φ∗ : H•(N) → H•(M), [ω] 7−→ [Φ∗ω].

This correspondence has the following properties:
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(i) Φ∗(α ∧ β) = (Φ∗α) ∧ (Φ∗β), so Φ∗ : H•(N) → H•(M) is a ring homo-
morphism.

(ii) If Φ :M → N and Ψ : N → Q are smooth maps, then the composition
(Ψ ◦Φ)∗ : H•(Q) → H•(M) satisfies (Ψ ◦ Φ)∗ = Φ∗ ◦Ψ∗;

(iii) The identity map M → M induces the identity linear transformation
H•(M) → H•(M).

In particular, when Φ :M → N is a diffeomorphism, the induced linear map
Φ∗ : H•(N) → H•(M) is an isomorphism in cohomology. Hence, we have:

Corollary 18.6. The de Rham cohomology ring is an invariant of differen-
tiable manifolds: if M and N are diffeomorphic, then H•(M) and H•(N)
are isomorphic rings.

Note that if Φ : M → N is a smooth map, in general, the pull-back Φ∗ω
of a compactly supported form ω ∈ Ωc(N) is not compactly supported. This
will be the case, however, if Φ :M → N is a smooth proper map. Hence, we
can still conclude that:

Corollary 18.7. The compactly supported de Rham cohomology ring is an
invariant of differentiable manifolds: if M and N are diffeomorphic, then
H•
c (M) and H•

c (N) are isomorphic rings.

Remark 18.8 (A Crash Course in Homological Algebra - part I ). The de
Rham complex (Ω•(M),d) and the compactly supported de Rham com-
plex (Ω•

c(M),d) are examples of cochain complexes. In general, one calls a
cochain complex a pair (C,d) where:

(a) C is a Z-graded vector space, i.e., C = ⊕k∈ZCk is the direct sum of
vector spaces 4;

(b) d : C → C is a linear transformation of degree 1, i.e., d(Ck) ⊂ Ck+1,
such that d2 = 0.

One represents a complex by the diagram:

· · · // Ck−1
d // Ck

d // Ck+1 // · · ·
The transformation d is called the differential of the complex.

For any cochain complex, (C,d) one defines the subspace of all cocycles:

Zk(C) ≡ {z ∈ Ck : dz = 0},
and the subspace of all coboundaries

Bk(C) ≡ {dz : z ∈ Ck−1}.
Since d2 = 0, we have that Bk(C) ⊂ Zk(C). The cohomology of (C,d) is
the direct sum H(C) = ⊕k∈ZHk(C) of all the cohomology spaces of order

4More generally, one can consider complexes formed by Z-graded modules over com-
mutative rings with unit (e.g., abelian groups). Most of the following statements are valid
for the category of modules over commutative rings with unit, with obvious modifications.
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k, which are defined by:

Hk(C) =
Zk(C)

Bk(C)
.

Given two cochain complexes (A,dA) and (B,dB), a cochain map is a
linear map f : A→ B such that:

(a) f preserves the grading, i.e., f(Ak) ⊂ Bk;
(b) f commutes with the differentials, i.e., fdA = dBf .

One represents a cochain map by a commutative diagram:

· · · // Ak−1
dA //

f
��

Ak
dA //

f
��

Ak+1 //

f
��

· · ·

· · · // Bk−1
dB

// Bk
dB

// Bk+1 // · · ·

It should be clear that a cochain map f : A → B takes cocycles to cocy-
cles and coboundaries to coboundaries. Hence, f induces a linear map in
cohomology, which we denote by the same letter: f : H•(A) → H•(B).

The cochain complexes and cochain maps form a category, and their study
is one of the central themes of Homological Algebra.

One can summarize the remarks above as follows: the assignment which
associates to a differential manifold M its de Rham complex (Ω(M),d) and
to each smooth map Φ : M → N the pull-back Φ∗ : Ω•(N) → Ω•(M)
is a contravariant functor from the category of differential manifolds to
the category of cochain complexes. Similarly, the same assignment gives a
functor from the category of differential manifolds and smooth proper maps
to the to the category of cochain complexes which assigns to a differentiable
manifold M its compactly supported de Rham complex.

Homework.

1. Consider the 2-sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
(a) Show that every closed 1-form ω ∈ Ω1(S2) is exact.
(b) Show that the 2-form in R3 − 0 given by

ω = xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy.

induces by restriction to S2 a non-trivial cohomology class [ω] ∈ H2(S2).

2. Show that H1(Td) = Rd, using the definition of the de Rham cohomology.

Hint: Show that a basis for H1(Td) is given by {[dθ1], . . . , [dθd]}, where
(θ1, . . . , θd) are the angles on each S1 factor.

3. Show that if M is a compact, orientable, d-manifold, then Hd(M) 6= 0.

Hint: Consider the cohomology class defined by some volume form µ ∈
Ωd(M).
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4. Use de Rham cohomology to prove that T2 and S2 are not diffeomorphic
manifolds.

Hint: Show that every closed 1-form on S2 is exact as follows: if ω ∈ Ω1(S2)
is closed, then ω = df , where f ∈ C∞(S2) is defined by f(x) :=

∫
γ ω, where γ

is any curve in S2 with γ(0) = pN and γ(1) = x.

5. Show that the wedge product ∧ : Ωk(M) × Ωl(M) → Ωk+l(M) induces a
product ∪ in the de Rham cohomology of M for which H(M) = ⊕kHk(M)
becomes a ring.

6. A symplectic form on a manifold M of dimension 2n is a 2-form ω ∈ Ω2(M)
such that dω = 0 and ∧nω is a volume form. Show that if M is compact and
admits some symplectic form, then H2k(M) 6= 0 for k = 0, . . . , n.

Hint: Use the ring structure of H•(M).

Lecture 19. The de Rham Theorem

We saw in the previous lecture that de Rham cohomology is an invariant
of differential manifolds. Actually, de Rham cohomology is a topological
invariant: if M and N are smooth manifolds which are homeomorphic as
topological spaces, then their de Rham cohomologies are isomorphic. This
is a consequence of the famous de Rham Theorem, which shows that for any
smooth manifold its singular cohomology with real coefficients is isomorphic
with its de Rham cohomology.

Singular Homology. We recall the definition of the singular homology of a
topological space M . Although we will continue to use the letter M , the
following discussion only uses the topology of M .

We denote by ∆k ⊂ Rk+1 the standard k-simplex:

∆k = {(t0, . . . , tk) ∈ Rk+1 :

k∑

i=0

ti = 1, ti ≥ 0}.

Note that ∆0 = {1} has only one element.

∆0 ∆1 ∆2
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Definition 19.1. A singular k-simplex in M is a continuous map σ :
∆k →M . A singular k-chain is a formal linear combination

c =

p∑

i=1

aiσi,

where ai ∈ R and the σi are singular k-simplices.

We will denote by Sk(M ;R) the set of all singular k-chains. Note that
Sk(M ;R) is a real vector space. In fact, formally, Sk(M ;R) is the free vector
space generated by the set of all singular k-simplices. One can also consider
other coefficients besides R, but here we will consider only real coefficients.

We define the i-face map of the standard k-simplex, where 0 ≤ i ≤ k,
to be the map εi : ∆k−1 → ∆k defined by:

εi(t0, . . . , tk−1) = (t0, . . . , ti−1, 0, ti+1, . . . , tk−1).

These face maps of the standard k-simplex induce face maps εi of any sin-
gular k-simplex σ : ∆k →M by setting:

εi(σ) = σ ◦ εi.
These clearly extend by linearity to any k-chain, yielding linear maps

εi : Sk(M ;R) → Sk−1(M ;R),

and these lead to the following definition:

Definition 19.2. The boundary of a k-chain c is the (k − 1)-chain ∂c
defined by

∂c =
k∑

i=0

(−1)iεi(c).

The geometric meaning of this definition is that we consider the faces
of each simplex with a certain choice of signs, which one should view as
some kind of orientations of the faces. We illustrate this choice in the next
example.

Example 19.3.
The boundary of the standard 2-simplex σ =id: ∆2 → R3 is the chain:

∂σ = ε0(σ) − ε1(σ) + ε2(σ),

where ε0, ε1 and ε2 are the 1-simplices (faces) given by:

ε0(σ)(t0, t1) = (0, t0, t1),

ε1(σ)(t0, t1) = (t0, 0, t1),

ε2(σ)(t0, t1) = (t0, t1, 0).

Also, the simplices ε0, ε1 and ε2 have boundaries:

∂ε0(σ)(0, 1) = (0, 0, 1)− (0, 1, 0),

∂ε1(σ)(0, 1) = (1, 0, 0)− (0, 0, 1),

∂ε2(σ)(0, 1) = (1, 0, 0)− (0, 1, 0).
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We can represent this choice of signs by including orientations on the faces of
the simplex, as shown schematically by the following figure:

σ

ε0(σ)

−ε1(σ)

ε2(σ)

Note that:

∂2σ = ∂(∂σ) = ∂ε0(σ) − ∂ε1(σ) + ∂ε2(σ) = 0.

We noticed in this example that ∂2σ = 0. This is actually a general fact
which is a consequence of the judicious choice of signs and parameterizations
of the faces. We leave its proof as an exercise:

Lemma 19.4. For every singular chain c:

∂(∂c) = 0.

In this way we obtain a complex S(M ;R) = ⊕k∈ZSk(M ;R):

· · · Sk−1(M ;R)oo Sk(M ;R)∂oo Sk+1(M ;R)∂oo · · ·oo

One calls (S(M ;R), ∂) the complex of singular chains in M .

Remark 19.5 (A Crash Course in Homological Algebra - part II ). In the
cochain complexes that we studied related to de Rham cohomology the
differentials increase the degree, while for the singular chains the differential
decreases the degree.

We call a complex C = ⊕k∈ZCk where the differential decreases the degree

· · · Ck−1
oo Ck

∂oo Ck+1
∂oo · · ·oo

a chain complex. We say that z ∈ Ck is a cycle if ∂z = 0 and we say that
z is a boundary if z = ∂b (5). In this case, once defines the homology of
the complex C is the direct sum H(C) = ⊕k∈ZHk(C) of the vector spaces:

Hk(C) =
Zk(C)

Bk(C)
,

where Zk(C) is the subspace of all cycles and Bk(C) is the subspace of all
boundaries. Note also the position of the indices.

5Notice that given a complex (C, ∂) where the differential decreases one can define
a new complex (C̄,d) setting C̄k

≡ C−k and d = ∂, obtaining a complex where the
differential increases the degree. Therefore, these conventions are somewhat arbitrary.

146



The homology of the complex (S(M ;R), ∂) is called the singular ho-
mology of M with real coefficients, and is denoted

Hk(M ;R) =
Zk(M ;R)

Bk(M ;R)
,

If Φ :M → N continuous map, then for any singular simplex σ : ∆k →M ,
we have that Φ∗(σ) ≡ Φ◦σ : ∆k → N is a singular simplex in N . We extend
this map to any chain c =

∑
j ajσj requiring linearity to hold:

Φ∗(c) ≡
∑

j

aj(Φ ◦ σj).

It follows that Φ∗ : S(M ;R) → S(N ;R) is a chain map:

· · · Sk−1(M ;R)oo

Φ∗

��

Sk(M ;R)
∂oo

Φ∗

��

Sk+1(M ;R)
∂oo

Φ∗

��

· · ·oo

· · · Sk−1(N ;R)oo Sk(N ;R)
∂oo Sk+1(N ;R)

∂oo · · ·oo

Therefore, Φ∗ induces a linear map in singular homology:

Φ∗ : H•(M ;R) → H•(N ;R).

One checks easily that this assignment has the following properties:

(i) If Φ :M → N e Ψ : N → Q are continuous maps, then:

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗;

(ii) The identity map id:M →M induces the identity map in homology:

id∗ = id : H•(M ;R) → H•(M ;R).

It follows that singular homology is a topological invariant :

Theorem 19.6. IfM and N are are homeomorphic spaces then H•(M,R) ≃
H•(N,R).

Smooth Singular Homology. Assume now that M is a manifold. The chain
complex (S•(M ;R), ∂) has a subcomplex (S∞

• (M ;R), ∂) formed by the smooth
singular k-chains:

S∞
k (M ;R) = {

p∑

i=1

aiσi : σi : ∆
k →M is smooth}

This is a sub complex because if c ∈ S∞
k (M ;R) is a smooth k-chain, then

so is ∂c ∈ S∞
k (M ;R).

Remark 19.7. Even when c is smooth, the use of the term “singular” is
justified by the absence of any assumption on the differentials of the maps
σi: in general, a smooth k-simplex does not parameterize any submanifold
and its image may be contained in a submanifold of dimension less than k.

One has the following important fact, which we will not prove here:
147



Proposition 19.8. The inclusion S∞
• (M,R) →֒ S•(M,R) induces an iso-

morphism in homology:

H(S∞
• (M,R)) ≃ H(S•(M,R)).

This proposition says that:

(i) every homology class in H•(M ;R) has a representative c which is a
C∞ cycle, and

(ii) if two C∞ cycles c and c′ differ by a continuous boundary (c−c′ = ∂b),
then they also differ by a C∞ boundary b′ (c− c′ = ∂b′).

Hence, smooth singular homology and singular homology coincide.

Singular Cohomology. Dually, one defines the singular cohomology of M
as follows. First, one defines the space of singular k-cochains with real
coefficients to be the vector space dual to Sk(M.R)

Sk(M ;R) := Hom(Sk(M ;R),R).

We have a differential d : Sk(M ;R) → Sk+1(M ;R) obtained by transposing
the singular boundary operator: if c : Sk(M,R) → R is a linear function
we can think of it as collection of numbers c = (cσ), indexed by singular
simplices, and then we define:

(dc)σ =
k∑

i=0

(−1)icεi(σ).

It follows that d2 = 0, so we do have a cochain complex (S•(M ;R),d). The
corresponding cohomology is called the singular cohomology with real
coefficients and is denoted by H•(M ;R).

If Φ : M → N we can transpose the map Φ∗ : Sk(M ;R) → Sk(N ;R),
obtaining a cochain map Φ∗ : Sk(N ;R) → Sk(M ;R):

Φ∗d = dΦ∗,

Therefore, we have an induced linear map in singular cohomology Φ∗ :
H•(N ;R) → H•(M ;R), which satisfies the obvious functorial properties,
and hence we also have:

Theorem 19.9. If M and N are homeomorphic spaces then H•(M,R) ≃
H•(N,R).

Of course, one can also consider smooth singular k-cochains:

Sk∞(M ;R) := Hom(S∞
k (M ;R),R).

which form a a complex (S•
∞(M ;R),d). There is an obvious restriction

map Sk(M ;R) → Sk∞(M ;R), which is a cochain map, and this yields an
isomorphism in cohomology:

H(S•(M ;R),d) ≃ H(S•
∞(M ;R),d).

For this reason, in the sequel we will not distinguish between these coho-
mologies.
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Singular Cohomology vs. de Rham Cohomology. We now take advantage of
the fact that singular cohomology and differentiable singular cohomology
coincide to relate it with the de Rham cohomology. For that, we start by
explaining that one can integrate differential forms over singular chains.

First, we observe that we can parameterize the standard k-simplex ∆k by
the map φ : ∆k

0 → ∆k, where:

∆k
0 := {(x1, . . . , xk) : xi ≥ 0,

k∑

i=1

xi ≤ 1}

φ(x1, . . . , xk) = (1−
k∑

i=1

xi, x1, . . . , xk),

Hence, if ω ∈ Ωk(U) is a k-form which is defined in some open set U ⊂ Rk+1

containing the standard k-simplex ∆k, we can write:

φ∗ω = f(x1, . . . , xk)dx1 ∧ · · · ∧ dxk,

and define: ∫

∆k

ω :=

∫

∆k
0

fdx1 · · · dxk.

Next, given any differential form ω ∈ Ωk(M) in a smooth manifold M ,
we define the integral of ω over a smooth simplex σ : ∆k → M to be
the real number: ∫

σ
ω :=

∫

∆k

σ∗ω.

We extend this definition to any smooth singular k-chain c =
∑p

j=1 ajσj by
linearity: ∫

c
ω :=

p∑

j=1

aj

∫

σj

ω.

We leave it to the exercises the proof of the following version of Stokes
formula:

Theorem 19.10 (Stokes II). Let M be a smooth manifold, ω ∈ Ωk−1(M) a
(k − 1)-differential form, and c a smooth singular k-chain. Then:

∫

c
dω =

∫

∂c
ω.

Now we can define an integration map I : Ω•(M) → S•
∞(M ;R):

I(ω)σ =

∫

σ
ω, ω ∈ Ωk(M), σ ∈ S∞

k (M ;R).

and we have:

Proposition 19.11. The integration map I : (Ω•(M),d) → (S•
∞(M ;R),d)

is a chain map:
I(dω) = dI(ω).
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Proof. This follows from the following computation, using Stokes formula
for chains:

I(dω)σ =

∫

σ
dω

=

∫

∂σ
ω

=
k+1∑

i=0

(−1)i
∫

εi(σ)
ω

=

k+1∑

i=0

(−1)i(I(ω))εi(σ) = dI(ω).

�

It follows that we have an induced linear map in cohomology:

I : Hk
dR(M) → Hk(M ;R).

Theorem 19.12 (de Rham). For any smooth manifold the integration map
I : H•

dR(M) → H•(M ;R) is an isomorphism.

We will not prove this result in these lectures. We note however that it
has the following very important consequence: the de Rham cohomology
is actually a topological invariant of smooth manifolds, i.e., if M and N
are homeomorphic smooth manifolds then their de Rham cohomologies are
isomorphic. For example, the different exotic smooth structures on the
spheres all have the same de Rham cohomology!

Homework.

1. Show that for every singular chain c one has ∂(∂c) = 0.

2. Give a proof of Stokes Formula for singular chains, by showing the following:
(a) It is enough to prove the formula for chains consisting of a singular sim-

plex.
(b) It is enough to prove the formula for the standard k-simplex.
(c) It is enough to prove the formula for (k − 1)-differential forms in Rk of

the type:

ω = fdx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk.

(d) Show that ∫

∆k

dω =

∫

∂∆k

ω,

where ω is a differential form of the type (c).

3. In the torus Td = S1 × · · · × S1 consider the 1-chains c1, . . . , cd : [0, 1] → Td

defined by:

cj(t) ≡ (1, . . . , e2πit, . . . , 1) (j = 1, . . . , d).

Show that:
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(a) The cj ’s are 1-cycles: ∂cj = 0;
(b) The cj ’s are not 1-boundaries;
(c) The classes {[c1], . . . , [cd]} ⊂ H1(Td,R) form a linearly independent set.

Hint: Use Stokes formula.

4. The de Rham Theorem, shows that the exterior product induces a product

∪ : Hk(M ;R)×H l(M : R) → Hk+l(M ;R),

so that H•(M ;R) becomes a ring. This product is called the cup product.
Here is one way of constructing it directly:
(a) Show that for l < k and 0 ≤ i0 < · · · < il ≤ k one has maps εi0,...,il :

∆l → ∆k, defined by:

εi0,...,il(t0, . . . , tl) = (s0, . . . , sk), where

{
sl = 0, if l 6∈ {i0, . . . , il}
sij = tj , otherwise.

(b) Show that if c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) the formula:

(c1 ∪ c2)(σ) := c1(σ ◦ ε1,...,k)c2(σ ◦ εk+1,...,k+l),

defines an element c1 ∪ c2 ∈ Sk+l(M ;R).
(c) Show that for any chains c1 ∈ Sk(M ;R) and c2 ∈ Sl(M ;R) one has:

d(c1 ∪ c2) = (dc1) ∪ c2 + (−1)kc1 ∪ (dc2).

It follows that one can define ∪ : Hk(M ;R)×H l(M : R) → Hk+l(M ;R) by

[c1] ∪ [c2] := [c1 ∪ c2].
Note that for the integration map I : Ωk(M) → Sk∞(M), in general, I(ω∧η) 6=
I(ω) ∪ I(η). However, this equality holds in cohomology:

I([ω] ∧ [η]) = I([ω]) ∪ I([η]), [ω] ∈ Hk
dR(M), [η] ∈ H l

dR(M).

Lecture 20. Homotopy Invariance and Mayer-Vietoris

Sequence

We shall now study some properties of de Rham cohomology which are
very useful in the computation of these rings in specific examples.

The Poincaré Lemma. We start with the simplest example of manifold,
namely M = Rd. In order to compute its cohomology we will proceed
by induction in the dimension d. Since Rd+1 = Rd × R, we consider the
projection π : Rd × R → Rd and the inclusion i : Rd → Rd × R given by:

Rd × R

π

��
Rd

i

OO π(x, t) = x,
i(x) = (x, 0).
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The associated pull-back maps give linear maps

Ω•(Rd × R)

i∗

��
Ω•(Rd)

π∗

OO

and we will see that these induce isomorphisms in cohomology:

Proposition 20.1. The induced maps i∗ : H•(Rd × R) → H•(Rd) and
π∗ : H•(Rd) → H•(Rd ×R) are inverse to each other.

Remark 20.2 (A Crash Course in Homological Algebra - part III ). In order
to prove this proposition we will use the notion of homotopy operator. Given
two cochain complexes (A,d) and (B,d) and cochain maps f, g : A → B a
homotopy operator is a linear map h : A→ B of degree −1, such that

f − g = ±(dh± hd)

(the choice of signs is irrelevant). In this case, we say that f and g are
homotopic cochain maps and we express it by the diagram:

· · · // Ak−1
d //

f
��

g

��||yy
yy

yy
yy

y
Ak

d //

f
��

g

��

h

||yy
yy

yy
yy

Ak+1 //

f
��

g

��

h

||yy
yy

yy
yy

· · ·

||yy
yy

yy
yy

y

· · · // Bk−1
d

// Bk
d

// Bk+1 // · · ·

Since ±(dh±hd) maps closed forms to exact forms, it is induces the zero
map in cohomology. Hence. if f and g are homotopic chain maps, they
induce the same map in cohomology:

f∗ = g∗ : H
•(A) → H•(B).

Proof of Proposition 20.1. Note that π◦i =id, hence i∗◦π∗ =id. To complete
the proof we need to check that π∗◦i∗ =id. For this we construct a homotopy
operator h : Ω•(Rd × R) → Ω•−1(Rd × R) such that:

id− π∗ ◦ i∗ = dh+ hd.

To construct h, note that a differential form in Rd × R is a linear combi-
nation of differential forms of two kinds:

f(x, t)π∗ω,

f(x, t)dt ∧ π∗ω,
where ω is a differential form in Rd. So we define the homotopy operator in
each of these kinds of forms by:

h :

{
f(x, t)π∗ω 7−→ 0,

f(x, t)dt ∧ π∗ω 7−→
∫ t
0 f(x, s)ds π

∗ω,

and then we extend it by linearity to all forms. We now check that h is
indeed a homotopy operator:
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Let θ = f(x, t)π∗ω ∈ Ωk(Rd × R) be a form of the first kind. Then:

(id− π∗ ◦ i∗)θ = θ − π∗(f(x, 0)ω) = (f(x, t)− f(x, 0))π∗ω.

On the other hand,

(dh+ hd)θ = hdθ

= h

(
(
∑

i

∂f

∂xi
dxi +

∂f

∂t
dt) ∧ π∗ω + fπ∗dω

)

= h

(
∂f

∂t
dt ∧ π∗ω

)

=

∫ t

0

∂f

∂t
(x, s)ds π∗ω = (f(x, t)− f(x, 0))π∗ω.

Hence, for any form θ of the first kind:

(id − π∗ ◦ i∗)θ = (dh+ dh)θ.

Let now θ = f(x, t)dt∧π∗ω be a differential form of the second kind. On
the one hand,

(id − π∗ ◦ i∗)θ = θ.

On the other hand,

(dh+ hd)θ = d(

∫ t

0
f(x, s)ds π∗ω) + h

(∑

i

∂f

∂xi
dxi ∧ dt ∧ π∗ω − fdt ∧ π∗dω

)

= f(x, t)dt ∧ π∗ω +
∑

i

∫ t

0

∂f

∂xi
ds dxi ∧ π∗ω +

∫ t

0
f(x, s)ds dπ∗ω

−
∑

i

∫ t

0

∂f

∂xi
ds dxi ∧ π∗ω −

∫ t

0
f(x, s)ds π∗dω

= f(x, t)dt ∧ π∗ω = θ.

Therefore, for any form θ of the second kind:

(id − π∗ ◦ i∗)θ = (dh+ dh)θ.

�

It is should be clear that H0(R0) = R, since a set with one point is
connected. On the other hand, Hk(R0) = 0 if k 6= 0. By induction we
conclude that the cohomology of euclidean space is:

Corollary 20.3 (Poincaré Lemma).

Hk(Rd) = Hk(R0) =





R if k = 0,

0 if k 6= 0.

Note that the Poincaré Lemma states that in Rd every closed form is
exact.
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Homotopy Invariance. The argument used above to show thatH•(Rd×R) ≃
H•(Rd) can be extended easily from Rd to any smooth manifoldM yielding:

Proposition 20.4. If M is a smooth manifold, consider the maps π :M ×
R →M and i :M →M × R:

M × R

π

��
M

i

OO π(p, t) = p,
i(p) = (p, 0).

The induced maps i∗ : H•(M×R) → H•(M) and π∗ : H•(M) → H•(M×R)
are inverse to each other.

We leave the proof for the homework at the end of the lecture.
Actually, this proposition is a very special case of a general property

of cohomology: if a manifold can be continuously deformed into another
manifold then their cohomologies are isomorphic. In order to turn this into
a precise statement, we make the following definition.

Definition 20.5. Let Φ,Ψ : M → N be smooth maps. A smooth homo-

topy between Φ and Ψ is a smooth map H :M × R → N such that:6

H(p, t) =





Φ(p) if t ≤ 0,

Ψ(p) if t ≥ 1.

The general property we alluded too is the following:

Theorem 20.6 (Homotopy Invariance). If Φ,Ψ : M → N are homotopic
maps then Φ∗ = Ψ∗ : H•(N) → H•(M).

Proof. Denote by π : M × R → M the projection and i0, i1 : M → M × R
the sections:

i0(p) = (p, 0) and i1(p) = (p, 1).

By Proposition 20.4, i∗0 and i∗1 are linear maps which both invert π∗, so they
must coincide: i∗0 = i∗1.

Now let H : M × R → N be a homotopy between Φ and Ψ. Then
Φ = H ◦ i0 and Ψ = H ◦ i1. At the level of cohomology we find:

Φ∗ = (H ◦ i0)∗ = i∗0 H
∗,

Ψ∗ = (H ◦ i1)∗ = i∗1 H
∗.

Since i∗0 = i∗1, we conclude that Φ∗ = Ψ∗. �

6One can show that two smooth maps are C∞-homotopic iff they are C0-homotopic
and also that any continuous map between two smooth manifolds is C0-homotopic to a
smooth map. For this reason, one often defines the homotopy in the interval [0, 1].
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We say that two manifolds M and N have the same homotopy type if
there exist smooth map Φ : M → N and Ψ : N → M such that Ψ ◦ Φ and
Φ ◦Ψ are homotopic to idM and idN , respectively. A manifold is said to be
contractible if is has the same homotopy type as R0.

Corollary 20.7. If M and N have the same homotopy type then H•(M) ≃
H•(N). In particular, if M is a contractible manifold then:

Hk(M) =





R if k = 0,

0 if k 6= 0.

Examples 20.8.

1. An open set U ⊂ Rd is called star shaped if there exists some x0 ∈ U such
that for any x ∈ U , the segment tx+(1− t)x0 lies in U . We leave it as exercise
to show that a star shaped open set U is contractible, so that

Hk(U) =





R if k = 0,

0 if k 6= 0.

2. The manifoldM = Rd+1−0 has the same homotopy type as Sd: the inclusion
i : Sd →֒ Rd+1 − 0 and the projection π : Rd+1 − 0 → Sd, x 7→ x/||x||, are
homotopic inverses to each other. Hence:

H•(Sd) = H•(Rd+1 − 0).

Notice that we don’t know yet how to compute H•(Rd+1 − 0)!

Mayer-Vietoris Sequence. Let us discuss now another important property
of cohomology, which allows to compute the cohomology of a manifold M
from a decomposition of M into more elementary pieces of which we already
know the cohomology.

Theorem 20.9 (Mayer-Vietoris Sequence). Let M be a smooth manifold
and let U, V ⊂M be open subsets such that M = U ∪V . There exists a long
exact sequence:

// Hk(M) // Hk(U)⊕Hk(V ) // Hk(U ∩ V )
δ∗ // Hk+1(M) //

Remark 20.10 (A Crash Course in Homological Algebra - part IV ). A
sequence of vector spaces and linear maps

· · · // Ck−1
fk−1 // Ck

fk // Ck+1 // · · ·
is called exact if Im fk−1 = Ker fk. An exact sequence of the form:

0 // A
f // B

g // C // 0

is called a short exact sequence. This means that:

(a) f is injective,
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(b) Im f = Ker g, and
(c) g is surjective.

A basic property of exact sequences is the following: given any exact
sequence ending in trivial vector spaces

0 // C0 // · · · // Ck // · · · // Cd // 0

the alternating sum of the dimensions is zero:

d∑

i=0

(−1)i dimCi = 0.

We leave the (easy) proof for the exercises.
Note that a short exact sequences of complexes:

0 // (A•,d)
f // (B•,d)

g // (C•,d) // 0

can be represented by a large commutative diagram where all rows are exact:

0 // Ak+1
f //

OO

Bk+1
g //

OO

Ck+1 //

OO

0

0 // Ak
f //

d

OO

Bk
g //

d

OO

Ck //

d

OO

0

0 // Ak−1
f //

d

OO

Bk−1
g //

d

OO

Ck−1 //

d

OO

0OO OO OO

We have the following basic fact: given a short exact sequence of complexes
as above there exists an associated long exact sequence in cohomology

· · · // Hk(A)
f // Hk(B)

g // Hk(C)
δ∗ // Hk+1(A) // · · ·

where δ∗ : Hk(C) → Hk+1(A) is called the connecting homomorphism. The
fact that Im f = Ker g follows immediately from the definition of short exact
sequence. On the other hand, the identities Im g = Ker δ∗ and Im δ∗ = Ker f
follow from the way δ∗ is constructed, and which we now describe.

For the construction of d∗ one should keep in mind the large commutative
diagram above. Given a cocycle c ∈ Ck so that dc = 0, it follows from the
fact that the rows are exact that there exists b ∈ Bk such that g(b) = c.
Since the diagram commutes, we have

g(db) = dg(b) = dc = 0.
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Using again that the rows are exact, we conclude that there exists a unique
a ∈ Ak+1 such that f(a) = db. Note that:

f(da) = df(a) = d2b = 0,

and since f is injective, we have da = 0, i.e., a is cocycle. In this way, we
have associated to a cocycle c ∈ Ck a cocycle a ∈ Ak+1.

This association depends on a choice of an intermediate element b ∈ Ck.
If we choose a different b′ ∈ Ck such g(b′) = c, we obtain a different element
a′ ∈ Ak+1. However, note that

g(b− b′) = g(b′)− g(b) = c− c = 0,

so there exist ā ∈ Ak such that f(ā) = b− b′. Hence, we find

f(a− a′) = f(a)− f(a′) = db− db′ = df(ā) = f(dā).

Since f is injective, we conclude that a− a′ = dā. This shows that different
intermediate choices lead to elements in the same cohomology class.

Finally, note that this assignment associates a coboundary to a cobound-
ary. In fact, if c ∈ Ck is a coboundary, i.e., c = dc′, then there exists
b′ ∈ Ck−1 such that g(b′) = c′. Moreover,

g(b− db′) = g(b)− dg(b′) = c− dc′ = 0.

Therefore, there exists a′ ∈ Ak such that f(a′) = b− db′, and:

f(a− da′) = f(a)− df(a′) = db− db+ d2b′ = 0.

Since f is injective, we conclude that a = da′ is a coboundary, as claimed.
This discussion shows that we have a well-defined linear map

δ∗ : Hk(C) → Hk+1(A), [c] 7→ [a].

We leave it as an exercise to check that this definition leads to Im g = Ker δ∗

and Im δ∗ = ker f .

Proof of Theorem 20.9. We claim that we have a short exact sequence:

0 // Ω•(M) // Ω•(U)⊕ Ω•(V ) // Ω•(U ∩ V ) // 0

where the first map is given by:

ω 7→ (ω|U , ω|V ),
while the second map is defined by:

(θ, η) 7→ θ|U∩V − η|U∩V .

Since M = U ∪ V , the first map is injective. Also, it is clear that the image
of the first map is contained in the kernel of the second map. On the other
hand, if (θ, η) ∈ Ω•(U) ⊕ Ω•(V ) belongs to the kernel of the second map,
then

θ|U∩V = η|U∩V .
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Hence, we can define a smooth differential form in M by:

ωp =





θp if p ∈ U,

ηp if p ∈ V.

Therefore the image of the first map coincides with the kernel of the second
map. Finally, let α ∈ Ω•(U ∩ V ) and choose a partition of unit {ρU , ρV }
subordinated to the cover {U, V }. Then ρV α ∈ Ω•(U) and ρUα ∈ Ω•(V )
and this pair of forms is transformed by the second map to

(ρV α,−ρUα) 7→ ρV α+ ρUα = α.

Therefore, the second map is surjective and we have a short exact sequence
as claimed. The corresponding long exact sequence in cohomology yields
the statement of the theorem. �

Example 20.11.
Let us use the Mayer-Vietoris sequence to compute the cohomology of Sd for
d ≥ 2 (we already know the cohomology H•(S1); see in Example 18.5).

Let pN ∈ Sd be the north pole and let U = Sd − pN . The stereographic
projection πN : U → Rd−1 is a diffeomorphism, so U is contractible. Similarly
if pS ∈ Sd is the south pole, the open set V = Sd − pS is contractible. On the
other hand, we have thatM = U∩V and the intersection U∩V is diffeomorphic
to Rd−1−0 (via any of the stereographic projections). We saw in Example 20.8
that Rd−1 − 0 as the same homotopy type as Sd−1.

We have all the ingredients to compute the Mayer-Vietoris sequence:
• if k ≥ 1, the sequence gives:

· · · // 0⊕ 0 // Hk(Sd−1)
d∗

// Hk+1(Sd) // 0⊕ 0 // · · ·

Hence, Hk+1(Sd) ≃ Hk(Sd−1). By induction, we conclude that:

Hk(Sd) ≃ Hk−1(Sd−1) ≃ · · · ≃ H1(Sd−k+1).

• On the other hand, since U , V and U ∩ V are connected, the first terms
of the sequence are

0 // R // R⊕ R // R
δ∗ // H1(Sd) // 0 // · · ·

It follows that dimH1(Sd) = 0 if d ≥ 2, since the alternating sum of the
dimensions must be zero.

Since H1(S1) = R, we conclude that:

Hk(Sd) =





R if k = 0, d,

0 otherwise.

Compactly supported cohomology. As we saw in the previous lecture, com-
pactly supported cohomology does not behave functorialy under smooth
maps. Still this cohomology behaves functorialy under proper maps and,
because of this, compactly supported cohomology still satisfies properties
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analogous, but distinct, to the properties we have studied for de Rham co-
homology.

Proposition 20.12. Let M be a smooth manifold. Then:

H•
c (M × R) ≃ H•−1

c (M).

Proof. It is enough to consider the case ofM = Rd. Note that if π : Rd×R →
Rd is the projection then π∗ω does not have compact support, if ω 6= 0.
Instead, one has “push-forward” maps

π∗ : Ω
•+1
c (Rd × R) → Ω•

c(R
d),

e∗ : Ω
•
c(R

d) → Ω•+1
c (Rd × R).

which are cochains maps homotopic inverse to each other.
We start by constructing π∗. Note that every compactly supported form

in Rd × R is a linear combination of forms of two kinds:

f(x, t)(π∗ω),

f(x, t)dt ∧ π∗ω,

where ω is a differential form in Rd with compact support and f is a com-
pactly supported smooth function. The map π∗ is given by:

f(x, t)(π∗ω) 7−→ 0,

f(x, t)dt ∧ π∗ω 7−→
∫ +∞

−∞
f(x, t)dt ω.

and it is known as integration along the fibers.
On the other hand, in order to construct e∗ one chooses some 1-form

θ = g(t)dt ∈ Ω1
c(R) with

∫
R θ = 1 and sets:

e∗ : ω → π∗ω ∧ θ.
It follows from these definitions that:

π∗ ◦ e∗ = id, dπ∗ = π∗d, e∗d = de∗.

To finish the proof, it is enough to check that e∗ ◦π∗ is homotopic to the the
identity. We leave it as an exercise to check that the map h : Ω•

c(R
d×R) →

Ω•−1
c (Rd ×R) defined by:

f(x, t)(π∗ω) 7−→ 0,

f(x, t)dt ∧ π∗ω 7−→
(∫ t

−∞
f(x, s)ds−

∫ +∞

−∞
f(x, s)ds

∫ t

−∞
g(s)ds

)
π∗ω,

is indeed a homotopy from e∗ ◦ π∗ to the identity. �

The proposition shows that compactly supported cohomology is not ho-
motopy invariant. On the other hand, the proposition shows that the
Poincaré Lemma must be modified as follows:
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Corollary 20.13 (Poincaré Lemma for compactly supported cohomology).

Hk
c (R

d) =





R if k = d,

0 if k 6= d.

Next we construct the Mayer-Vietoris sequence for compactly supported
cohomology. Notice that if U, V ⊂ M are open sets with U ∪ V = M , the
inclusions U, V →֒ M , U ∩ V →֒ U and U ∩ V →֒ V give a short exact
sequence

0 Ω•
c(M)oo Ω•

c(U)⊕ Ω•
c(V )oo Ω•

c(U ∩ V )oo 0oo

where the first map is:

(θ, η) 7→ θ + η,

while the second map is:

ω 7→ (−ω, ω).
Hence, it follows that

Theorem 20.14 (Mayer-Vietoris sequence for compactly supported coho-
mology). Let M be a smooth manifold and U, V →֒ M open subsets such
that M = U ∪ V . There exists a long exact sequence

Hk
c (M)oo Hk

c (U)⊕Hk
c (V )oo Hk

c (U ∩ V )oo Hk−1
c (M)

δ∗oo oo

We leave the details of the argument for the exercises. For now you
should observe that in the Mayer-Vietoris sequence for compact supported
cohomology the inclusions U, V →֒M , U ∩ V →֒ U and U ∩ V →֒ V induce
maps in the same direction, while for the ordinary de Rham cohomology the
inclusions are reversed in the sequence. In the next lecture we will relate
these two cohomology theories, and this will explain all the differences of
behavior that we have just discussed.

Homework.

1. Give a proof of Proposition 20.4.

2. Show that a star shaped open set is contractible.

3. Let i : N →֒ M be a submanifold. We say that a map r : M → N is a
retraction of M in N if r ◦ i =idN and that N is a deformation retract of
M if there exists a retraction r : M → N such that i ◦ r is homotopic to idM .
Show that:
(a) If N is a deformation retract of M , then H•(N) ≃ H•(M).
(b) Show that S2 is a deformation retract of R3 − 0.
(c) Show that T2, viewed as a submanifold of R3 as in Example 6.8.2, is a

deformation retract of R3 − {L ∪ S} where L is the z-axis and S is the
circle in the xy-plane of radius R and center the origin.
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4. In Remark 20.10, show that the connecting homomorphism in the long exact
sequence satisfies Im g = Ker d∗ and Imd∗ = ker f .

5. Given a long exact sequence of vector spaces

0 // C0 // · · · // Ck−1 // Ck // · · · // Cd // 0

show that:
d∑

i=0

(−1)i dimCi = 0.

6. Show that a generator of Hd(Sd) is given by the restriction to Sd of the form
ω ∈ Ωd(Rd+1) defined by:

ω =

d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1.

7. Compute the cohomology of T2 and P2.

8. Complete the construction of the Mayer-Vietoris sequence for compactly
supported cohomology, by showing that:

0 Ω•
c(M)oo Ω•

c(U)⊕ Ω•
c(V )oo Ω•

c(U ∩ V )oo 0oo

is a short exact sequence of complexes.

9. Compute the compactly supported cohomology of Rd − 0.

Lecture 21. Computations in Cohomology

In the previous lecture we constructed the Mayer-Vietoris sequence re-
lating the cohomology of the union of open sets with the cohomology of
its factors. This sequence leads to a very useful technique to compute co-
homology by induction, which also allows to extract many properties of
cohomology. In order to apply it, we need to cover M by open sets whose
intersections have trivial cohomology.

Definition 21.1. An open cover {Uα} of a smooth manifold M is called a
good cover if all finite intersections Uα1

∩ · · · ∩ Uαp are diffeomorphic to

Rd. We say that M is a manifold of finite type if it admits a finite good
cover.

Proposition 21.2. Every smooth manifold M admits a good cover. If M
is compact then it admits a finite good cover.

Proof. 7 Let g be a Riemannian metric for M . In Riemannian geometry one
shows that each point p ∈ M has a geodesically convex neighborhood Up

7This proof requires some knowledge of Riemannian geometry. If you are not familiar
with the notion of geodesics, you may wish to skip the proof and admit the result as valid.
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(i.e., for any q, q′ ∈ Up there exists a unique geodesic in Up which connects
q and q′), such that:

(i) each Up is diffeomorphic to Rd, and
(ii) the intersection of geodesically convex neighborhoods is geodesically

convex.

It follows that {Up}p∈M is a good cover of M .
If M is compact, then a finite number of geodesically convex neighbor-

hoods cover M . �

Finite dimensional cohomology. We can use good covers and the Mayer-
Vietoris sequence to show that the cohomology is often finite dimensional:

Theorem 21.3. IfM is a manifold of finite type then the cohomology spaces
Hk(M) and Hk

c (M) have finite dimension.

Proof. For any two open sets U e V , the Mayer-Vietoris sequence:

· · · // Hk−1(U ∩ V )
δ∗ // Hk(U ∪ V )

r // Hk(U)⊕Hk(V ) // . . .

shows that:

Hk(U ∪ V ) ≃ Im δ∗ ⊕ Im r.

Hence, if the cohomologies of U , V and U ∩ V are finite dimensional, then
so is the cohomology of U ∪ V .

Now we can use induction on the number of open sets in a cover, to
show that manifolds which admit a finite good cover have finite dimensional
cohomology:

• If M is diffeomorphic to Rd the Poincaré Lemma shows that M has
finite dimensional cohomology.

• Now assume that all manifolds admitting a good cover with at most
p open sets have finite dimensional cohomology. Let M be manifold
which admits a good cover with p+1 open sets {U1, . . . , Up+1}. We
observe that the open sets:

Up+1,

U1 ∪ · · · ∪ Up, and
(U1 ∪ · · · ∪ Up) ∩ Up+1 = (U1 ∩ Up+1) ∪ · · · ∪ (Up ∩ Up+1),

all have finite dimensional cohomology, since they all admit a good
cover with at most p open sets. Hence, the cohomology of M =
U1 ∪ · · · ∪ Up+1 is also finite dimensional.

The proof for compactly supported cohomology is similar. �

Triangulations and Euler’s formula. As another application of the Mayer-
Vietoris sequence, we show how the familiar Euler’s formula for regular
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polygons can be extended to any compact manifold M admitting a trian-
gulation, i.e., a nice decomposition of M into regular simplices as we now
explain(8).

A regular simplex is a simplex σ : ∆d → M which can be extended to
a diffeomorphism σ̃ : U → σ̃(U) ⊂ M , where U is some open neighborhood
of ∆d. We have defined before the (d − 1)-dimensional faces of a simplex
σ : ∆d → M . For a regular simplex, these are regular (d − 1)-simplices
εi(sigma) : ∆

d−1 →M of dimension (d− 1). By iterating this construction
we obtain the d − k-dimensional faces of a simplex, which are regular
(d− k)-simplices εi1,i2,...,id−k

(σ) : ∆d−k →M .

Definition 21.4. A triangulation of a compact manifold M of dimension
d is a finite collection {σi} of regular d-simplices such that:

(i) the collection {σi} covers M , and
(ii) if two simplices in {σi} have non-empty intersection, then there inter-

section σi ∩ σj is a face of both simplices σi and σj .

The next figure illustrates condition (ii) in this definition for dimensions 2
and 3. Notice that on the top the condition is satisfied while on the bottom

PSfrag repla
ementsT2MCXY�X�Y[X;Y ℄qCSRr��U0U��  Æ ��1pp1 = �p"Y (p)p2 = �p"X (p1)p3 = ��p"Y (p2)
p(") = ��p"X (p3)RdRdRd�kRkRe�dRR2R4
d = 3d = 2

p�N (p)�2�112���~v~wTpSTpMTM
the condition fails.

If M is a manifold with finite dimensional cohomology (e.g., if M is com-
pact) one defines the Euler characteristic of M to be the integer χ(M)
given by:

χ(M) = dimH0(M)− dimH1(M) + · · ·+ (−1)d dimHd(M).

The generalization we alluded to before is the following:

Theorem 21.5 (Euler’s Formula). IfM is a compact manifold of dimension
d, for any triangulation we have:

(−1)dχ(M) = r0 − r1 + · · ·+ (−1)drd,

where ri denotes the number of faces of dimension i of the triangulation.

8Actually, one can show that every compact manifold can be triangulated. This result
is very technical and we will not discuss it in these notes.
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Proof. Let us fix a triangulation {σ1, σ2, . . . , σrd} of M and define open sets:

Vk :=M − {k-faces of the triangulation}.
We claim that for 0 ≤ k ≤ d− 1 we have:

(21.1) χ(M) = χ(Vk) + (−1)d(r0 − r1 + · · ·+ (−1)krk).

Assuming this claim, since

Vd−1 =

rd⋃

j=1

int(σj),

and each open set int(σj) is contractible, we have Hk(Vd−1) = 0, for k > 0.
Hence:

χ(Vd−1) = dimH0(Vd−1) = rd.

Relation (21.1) for k = d−1 and this last identity, together show that Euler’s
formula holds.

Lets us start by verifying (21.1) for k = 0. For each 0-dimensional face we
can choose disjoint open neighborhoods U0,1, . . . , U0,r0 , each diffeomorphic

to the open ball Bd
1 = {x ∈ Rd : ||x|| < 1}, and we let

U0 =

r0⋃

i=0

U0,i.

U0

Notice that V0 ∪ U0 =M . Since each U0,i is contractible, we have:

dimHk(U0) =





r0, if k = 0,

0, if k 6= 0.
164



On the other hand, the intersection V0 ∩ U0,i deformation retracts in Sd−1,
hence

dimHk(V0 ∩ U0) =





r0, if k = 0, d − 1,

0, if k 6= 0, d − 1.

We can apply the Mayer-Vietoris argument to the pair (U0, V0): if d > 2,
this sequence gives the following information:

(i) The lowest degree terms in the sequence are:

0 // H0(M) // H0(U0)⊕H0(V0) // H0(U0 ∩ V0) //

// H1(M) // 0⊕H1(V0) // 0

so it follows that:

dimH0(M)− dimH0(U0)− dimH0(V0)+

+ dimH0(U0 ∩ V0)− dimH1(M) + dimH1(V0) = 0.

Since M and V0 have the same number of connected components we find

dimH0(M) = dimH0(V0).

On the other hand, the number of connected components of U0 and V0 ∩U0

are also the same, hence we conclude that:

dimH1(M) = dimH1(V0).

(ii) For 1 < k < d− 1, the Mayer-Vietoris sequence gives:

0 // Hk(M) // 0⊕Hk(V0) // 0

Hence:

dimHk(M) = dimHk(V0).

(iii) Finally, the last terms in the sequence give:

0 // Hd−1(M) // 0⊕Hd−1(V0) // Hd−1(U0 ∩ V0) //

// Hd(M) // 0⊕Hd(V0) // 0

Since dimHd−1(U0 ∩ V0) = rd, we conclude that:

dimHd−1(M)− dimHd−1(V0) + dimHd−1(V0)− dimHd(M) = −rd.
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When d = 2, we obtain exactly the same results except that we can
consider the whole sequence at once. In an any case, we conclude that:

χ(M) =

d∑

i=0

(−1)i dimH i(M)

=
d∑

i=0

(−1)i dimH i(V0) + (−1)drd = χ(V0) + (−1)drd.

which yields (21.1) if k = 0.
In order to prove (21.1) when k = 1, we can proceed as follows: for each

1-face we choose open disjoint neighborhoods U1,1, . . . , U1,r1 of the (1-faces)-

(0-faces), diffeomorphic to (int ∆1)×Bd−1
1 , and we define the open set:

U1 =

r1⋃

i=0

U1,i.
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We have that V0 = U1 ∪ V1. Moreover, U1 is a disjoint union of r1

contractible open sets, while U1 ∩ V1 as the same homotopy type as the
disjoint union of (d− 2)-spheres This allows one to show, exactly like in the
case k = 0, that the Mayer-Vietoris sequence yields:

χ(V0) = χ(V1) + (−1)d−1r1.

In general, for each k, we choose open disjoint neighborhoodsUk,1, . . . , Uk,rk
of {k-faces}−{(k−1)-faces}, diffeomorphic to (int ∆k)×Bd−k

1 , and we define
the open set:

Uk =

rk⋃

i=0

Uk,i.

166



We have that Vk = Uk ∪ Vk, where Uk is a union of rk contractible open
sets, while Uk ∩ Vk as the same homotopy type as the disjoint union of
(d− k − 1)-spheres. The Mayer-Vietoris sequence then shows that:

χ(Vk−1) = χ(Vk) + (−1)d−krk.

This proves (21.1) and finishes the proof of Euler’s formula. �

Poincaré duality. Recall (see the exercises in Lecture 18) that the exterior
product induces a ring structure in cohomology:

∪ : Hk(M)×H l(M) → Hk+l(M), [ω] ∪ [η] ≡ [ω ∧ η].

Obviously, if η has compact support then ω ∧ η also has compact support,
hence we obtain also a “product”:

∪ : Hk(M)×H l
c(M) → Hk+l

c (M).

Stokes formula shows that the integral of differential forms descends to
the level of cohomology. Hence, if M is an oriented manifold of dimension
d we obtain a bilinear form

(21.2) Hk(M)×Hd−k
c (M) → R, ([ω], [η]) 7→

∫

M
ω ∧ η.

Theorem 21.6 (Poincaré duality). If M is an oriented manifold of finite
type the bilinear form (21.2) is non-degenerate. In particular:

Hk(M) ≃ Hd−k
c (M)∗.

Remark 21.7 (A Crash Course in Homological Algebra - part V ). For the
proof of Poincaré duality we turn once more to Homological Algebra.

Lemma 21.8 (Five Lemma). Consider a commutative diagram of homo-
morphisms of vector spaces:

A
f1 //

α

��

B
f2 //

β
��

C
f3 //

γ

��

D
f4 //

δ
��

E

ε

��
A′

f ′
1 // B′

f ′
2 // C ′

f ′
3 // D′

f ′
4 // E′

where the rows are exact. If α, β, δ and ε are isomorphisms, then γ is also
an isomorphism.

The proof of this lemma is by diagram chasing and is left as an easy
exercise.

Proof of Theorem 21.6. Let us start by observing that the bilinear form
(21.2) gives always a linear map Hk(M) → Hd−k

c (M)∗. If U and V are
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open sets, one checks easily that the Mayer-Vietoris sequence for Ω• and
Ω•
c , give a diagram of exact sequences:

// Hk(U ∪ V ) //

��

Hk(U)⊕Hk(V ) //

��

Hk(U ∩ V ) //

��
// Hd−k

c (U ∪ V )∗ // Hd−k
c (U)∗ ⊕Hd−k

c (V )∗ // Hd−k
c (U ∩ V )∗ //

which commutes up to signs: for example, we have∫

U∩V
ω ∧ δ∗θ = ±

∫

U∪V
δ∗ω ∧ τ.

If we apply the Five Lemma to this diagram, we conclude that if Poincaré
duality holds for U , V and U ∩ V , then it also holds for U ∪ V .

Now letM be a manifold with a finite good cover. We show that Poincaré
duality holds using induction on the cardinality of the cover:

• If M ≃ Rd, the Poincaré Lemmas give:

Hk(Rd) =





R if k = 0,

0 if k 6= 0.
Hk
c (R

d) =





R if k = d,

0 if k 6= d.

Therefore, the bilinear form is non-degenerate in this case.
• Now assume that Poincaré duality holds for any manifold admitting
a good cover with at most p open sets. If M is a manifold which
admits an open cover {U1, . . . , Up+1} with p + 1 open sets, we note
that the open sets:

Up+1, U1 ∪ · · · ∪ Up, and
(U1 ∪ · · · ∪ Up) ∩ Up+1 = (U1 ∩ Up+1) ∪ · · · ∪ (Up ∩ Up+1),

all satisfy Poincaré duality, since they all admit a good cover with at
most p open sets. It follows that M = U1 ∪ · · · ∪ Up+1 also satisfies
Poincaré duality.

�

If M is a compact manifold, we have H•
c (M) = H•(M). Hence:

Corollary 21.9. Se M is a compact oriented manifold then:

Hk(M) ≃ Hd−k(M).

In particular, if additionally dimM is odd, then:

χ(M) = 0.

Remark 21.10. One can show that Poincaré duality still holds for mani-
folds which do not admit a finite good cover. However, when the cohomology
of M is not finite dimensional one must be careful in stating it. The correct
statement is that for any oriented manifold M one has an isomorphism:

Hk(M) ≃ (Hd−k
c (M))∗.
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In general, one does not have a dual isomorphism Hd−k
c (M) ≃ Hk(M)∗.

The reason is that while the dual of direct product is a direct sum, the dual
of an infinite direct sum is not a direct product. We discuss an example in
the exercises.

Because of the previous remark, in the next corollary we omit the as-
sumption that M has a finite good cover.

Corollary 21.11. Let M be a connected manifold of dimension d. Then:

Hd
c (M) ≃





R if M is orientable,

0 if M is not orientable.

In particular, if M is compact and connected of dimension d, then M is
orientable if and only if Hd(M) ≃ R.

Proof. By Poincaré duality, if M is a connected orientable manifold of di-
mension d, then Hd

c (M) ≃ H0(M)∗ ≃ R. We leave the converse to the
exercises. �

Homework.

1. Given an example of a connected manifold which is not of finite type.

2. Prove the Five Lemma and find weaker conditions on the maps α, β, ε and
δ, so that the conclusion still holds.

3. Check the commutativity, up to signs, of the following diagram of long exact
sequences that appears in the proof of Poincaré duality:

// Hk(U ∪ V ) //

��

Hk(U)⊕Hk(V ) //

��

Hk(U ∩ V ) //

��
// Hd−k

c (U ∪ V )∗ // Hd−k
c (U)∗ ⊕Hd−k

c (V )∗ // Hd−k
c (U ∩ V )∗ //

4. Consider the following two subdivisions of the square [0, 1]× [0, 1]:
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(a) Verify that only one of these subdivisions induces a triangulation of the

2-torus T2;
(b) Compute r0, r1 and r2 for this triangulation.
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5. Let M and N be connected compact manifolds of dimension d. Let M#N
be the connected sum of M and N , i.e., the manifold obtained by gluing M
and N along the boundary of open sets U ⊂M and V ⊂ N both diffeomorphic
to the ball {x ∈ Rd : ||x|| < 1}: Show that the Euler characteristics satisfy:

PSfrag repla
ementsT2

M N
M#N

CXY�X�Y[X;Y ℄qCRr��U1U��  Æ ��1pp1 = �p"Y (p)p2 = �p"X (p1)p3 = ��p"Y (p2)
p(") = ��p"X (p3)RdRdRd�kRkRe�dRR2R4d = 3d = 2p�N (p)�2�112���~v~wTpSTpMTM
χ(M#N) = χ(M) + χ(N)− χ(Sd).

6. Let M be a connected manifold of dimension d, which is not orientable.

Show that Hd
c (M) = 0 as follows. Let M̃ denote the set of orientations for all

the tangent spaces TpM :

M̃ = {(p, [µp]) : [µp] is an orientation for TpM}.

One calls M̃ the orientation cover of M . Show that:
(a) π : M̃ →M , (p, [µp]) 7→ p, is double covering of M .

(b) For the unique smooth structure on M̃ for which π : M̃ → M is a local

diffeomorphism, show that M̃ is a connected orientable manifold.

(c) Show that the map Φ : M̃ → M̃ , (p, [µp]) 7→ (p,−[µp]) is a diffeomorphism
that changes orientation and satisfies:

π = π ◦ Φ, Φ ◦ Φ = id.

(d) Show that ω̃ ∈ Ωk(M̃) is of the form ω̃ = π∗ω, for some ω ∈ Ωk(M), if
and only if Φ∗ω̃ = ω̃.

(e) Conclude that one must have Hd
c (M) = 0.

7. Let M1,M2, . . . , be manifolds of finite type of dimension d and consider the
disjoint union of the Mi:

M =

+∞⋃

i=1

Mi.

Show that:
(a) The cohomology of M is the direct product:

Hk(M) =

+∞∏

i=1

Hk(Mi);

170



(b) The cohomology of M with compact support is the direct sum:

Hk
c (M) =

+∞⊕

i=1

Hk
c (Mi);

Conclude that there exists an isomorphism:

Hk(M) ≃ (Hd−k
c (M))∗,

but that Hd−k
c (M) may not be isomorphic to Hk(M)∗.

8. Compute Hk(M) and Hk
c (M) for the following manifolds:

(a) Möbius band;
(b) Klein bottle;
(c) The d-torus;

(Answer: dimHk(Td) =
(
d
k

)
.)

(d) Complex projective space;
(Answer: dimH2k(Pd(C)) = 1 if 2k ≤ d, and 0 otherwise.)

Lecture 22. The Degree and the Index

We saw in the previous lecture that a connected manifoldM of dimension
d is orientable if and only if Hd

c (M) ≃ R. Notice that a choice of orientation
for M determines a generator of Hd

c (M). In fact, in this case, integration
gives an isomorphism Hd

c (M) ≃ R by:

Hd
c (M) → R, [ω] 7→

∫

M
ω.

By the way, this isomorphism is just Poincaré duality, since M being con-
nected H0(M) is the space of constant functions in M . In the sequel, we
will often use the same symbol µ to denote the orientation and the generator
µ ∈ Hd

c (M) that corresponds to the constant function 1.
Let Φ :M → N be a proper map between connected, oriented manifolds

of the same dimension: dimM = dimN = d. The canonical isomorphisms
Hd
c (M) ≃ R and Hd

c (N) ≃ R give a representation of the induced map in
cohomology

Φ∗ : Hd
c (N) → Hd

c (M)

as a real number which one calls the degree of the map. In other words:

Definition 22.1. Let Φ : M → N be a proper map between connected,
oriented manifolds of the same dimension d. The degree of Φ is the unique
real number degΦ such that:

∫

M
Φ∗ω = degΦ

∫

N
ω,

for every differential form ω ∈ Ωdc(N).
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Notice that if µM and µN are orientations of M and N then the degree
of a proper map Φ :M → N is given by:

Φ∗µN = (degΦ)µM ,

where, according to the convention above, the symbols µM and µN represent
also generators of Hd

c (M) and Hd
c (N) determined by the orientations.

In the sequel. for simplicity, we will consider only the case where both
manifolds are compact. You may wish to try to extend the results below
to any proper map. Our aim is to give a geometric characterization of the
degree of map, which allows also for its computation.

We start with the following property:

Proposition 22.2. Let Φ : M → N be a smooth map between compact,
connected, oriented manifolds of the same dimension d. If Φ is not surjective
then degΦ = 0.

Proof. Let q0 ∈ N − Φ(M). Since Φ(M) is closed, there is an open neigh-
borhood of q0 such that U ⊂ N − Φ(M). Let ω ∈ Ωdc(N) have its support
in U be such that

∫
N ω 6= 0. Then:

0 =

∫

M
Φ∗ω = degΦ

∫

N
ω,

hence deg Φ = 0. �

We can now give a geometric interpretation of the degree of a map. This
interpretation also shows that the degree is always an integer, something
which is not obvious from our definition of the degree.

Theorem 22.3. Let Φ : M → N be a smooth map between compact, con-
nected, oriented manifolds of the same dimension d. Let q ∈ N be a regular
value of Φ and for each p ∈ Φ−1(q) define

sgnpΦ ≡





1 if dpΦ : TpM → TqN preserves orientations,

−1 if dpΦ : TpM → TqN switches orientations.

Then 9:
degΦ =

∑

p∈Φ−1(q)

sgnpΦ.

In particular, the degree is an integer.

Proof. Let q be a regular value of Φ. Then Φ−1(q) is a discrete subset of
M which, by compactness, must be finite: Φ−1(q) = {p1, . . . , pN}. We need
the following lemma:

Lemma 22.4. There exists a neighborhood V of q and disjoint neighbor-
hoods U1, . . . , Un of p1, . . . , pN such that

Φ−1(V ) = U1 ∪ · · · ∪ UN .
9If Φ−1(q) is empty then we convention that the sum is zero.
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Assuming this lemma to hold, let V and U1, . . . , UN be as in its statement.
Since each pi is a regular point, we can assume, additionally that V is the
domain of a chart (y1, . . . , yd) in N and that the Ui’s are domains of charts
in M , such that the restrictions Φ|Ui

are diffeomorphisms.
Let ω ∈ Ωd(N) be a form:

ω = fdy1 ∧ · · · ∧ dyd,

where f ≥ 0 has supp f ⊂ V . Obviously, we have

suppΦ∗ω ⊂ U1 ∪ · · · ∪ UN ,
so we find: ∫

M
Φ∗ω =

N∑

i=1

∫

Ui

Φ∗ω.

Since each Φ|Ui
is a diffeomorphism, the change of variables formula gives:

∫

Ui

Φ∗ω = ±
∫

V
ω = ±

∫

N
ω,

where the sign is positive if Φ|Ui
preserves orientations and negative other-

wise. Since Φ|Ui
preserves orientations if sgnpi Φ > 0 and switches orienta-

tions if sgnpi Φ < 0, we conclude that

∫

M
Φ∗ω =

N∑

i=1

sgnpi Φ

∫

N
ω,

as claimed.
To finish the proof it remains to prove the lemma. Let O1, . . . , ON be any

disjoint open neighborhoods of p1, . . . , pN , and W a compact neighborhood
of q. The set W ′ ⊂M defined by:

W ′ = Φ−1(W )− (O1 ∪ · · · ∪ON ),
is compact. Hence, Φ(W ′) is a closed set which does not contain q. There-
fore, there exists an open set V ⊂ W − Φ(W ′), containing q, and we have
Φ−1(V ) ⊂ O1∪· · · ∪ON . If we let Ui = Oi∩Φ−1(V ), we see that the lemma
holds. �

The degrees of two homotopic maps coincide, since homotopic maps in-
duce the same map in homotopy. This is a very useful fact in computing
degrees, and can be explored to deduce global properties of manifolds. A
classic illustration of this is given in the next example.

Example 22.5.
Consider the antipodal map Φ : Sd → Sd, p 7→ −p. For the canonical orienta-
tion of the sphere Sd defined by the form

ω =

d+1∑

i=1

(−1)ixidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd+1.
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we see that Φ preserves or switches orientations if d is odd or or even. Since
Φ−1(q) has only a point, we conclude that

deg Φ = (−1)d−1.

By the way, we could also compute the degree directly from the definition, since
we have ∫

Sd

Φ∗ω = (−1)d−1

∫

Sd

ω.

We claim that we can use this fact to show that every vector field on a
even dimensional sphere vanishes at some point. In fact, let X ∈ X(S2d) be
a nowhere vanishing vector field. Then for each p ∈ S2d there exists a semi-
circle γp joining p to −p with tangent vector X(p). It follows that the map
H : S2d × [0, 1] → S2d given by

H(p, t) = γp(t),

is a homotopy between Φ and the identity map. Hence,

−1 = deg Φ = deg id = 1,

a contradiction.
You should notice that, in contrast, any odd degree S2d−1 ⊂ R2d admits the

vector field:

X = x2
∂

∂x1
− x1

∂

∂x2
+ · · ·+ x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
,

which is a nowhere vanishing vector field.

As another application of degree theory, we will introduce now the index
of a vector field, which will eventually lead to a geometric formula for the
Euler characteristic of a manifold, known as the Poincaré-Hopf Theorem.

Consider first a vector field defined in some open set U ⊂ Rd which has
an isolated zero at x0 ∈ U . This means that we have a map X : U → Rd

which vanishes at x0 and is non-zero is some deleted neighborhood V −{x0}.
In other words, there exists ε > 0 such that B̄ε(x0) ⊂ U , the closed ball of
radius ε centered at x0, does not contain another zero of X. If

Sε := ∂B̄ε(x0)

is the sphere of radius ε centered at x0, we can define the Gauss map
G : Sε → Sd−1 by:

G(x) =
X(x)

||X(x)|| .

The index of X at x0 is the degree of the Gauss map:

indx0 X ≡ degG,

where on each sphere we consider the orientation induced from the canonical
orientation on Rd.

Our next result shows that the degree is independent of ε and is a diffeo-
morphism invariant:
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Proposition 22.6. (i) For all ε small enough the degree of the Gauss
map is the same, so the degree is independent of ε.

(ii) Let X and X ′ be vector fields in U,U ′ ⊂ Rd and Φ : U → U ′ a
diffeomorphism. If X is Φ-related with X ′ and x0 is an isolated zero
of X, then

indx0 X = indΦ(x0)X
′.

Proof. We can assume that Φ(x0) = x0 = 0 and that U is convex.
Assume first that Φ preserves orientations. Then the map

H(t, x) =





1
tΦ(tx), if t > 0,

Φ′(x), if t = 0.

is a homotopy between Φ′ and Φ, consisting of diffeomorphismos that fix
the origin. Since Φ′ is homotopic to the identity, via diffeomorphismos that
fix the origin, we see that there exists a homotopy, via diffeomorphismos
that fix the origin, between Φ and the identity. Hence, we conclude that the
Gauss maps of X and X ′ are homotopic, so that the indices of X and X ′

coincide.
To deal with the case where Φ switches orientations, it is enough to con-

sider the case where Φ is any reflection. In this case the vector fields X and
X ′ are related by:

X ′ = Φ ◦X ◦ Φ−1.

The corresponding Gauss maps are also related by:

G′ = Φ ◦G ◦ Φ−1,

and, hence, their degrees coincide. �

The proposition allows us to define the index for a vector field on a man-
ifold:

Definition 22.7. If X ∈ X(M) is a vector field with an isolated zero x0,
the index of X at p0 ∈M , is the number

indp0 X ≡ ind0 φ∗X|U ,
where (U, φ) is any coordinate system centered at p0.

We will see in the next set of lectures that we have the following famous
result:

Theorem 22.8 (Poincaré-Hopf). Let X ∈ X(M) is a vector field on a
compact manifold with a finite number of zeros {p1, . . . , pN}. Then:

χ(M) =

N∑

i=1

indpi X.
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For now we limit ourselves to explain how one can compute the index of
a vector field. Let X be a vector field in a manifold M and let p0 ∈ M be
a zero of X. The zero section Z ⊂ TM and the fiber Tp0M ⊂ TM intersect
transversely at 0 ∈ Tp0M :

T0(TM) = Tp0Z ⊕ Tp0(Tp0M) ≃ Tp0M ⊕ Tp0M.

Under this decomposition, the differential dp0X : Tp0M → T0(TM) has first
component the identity (since X is a section), while the second component
is a linear map Tp0M → Tp0M which will be denoted also by dp0X, and
called the linear approximation to X at the zero p0.

Definition 22.9. A zero p0 of a vector field X ∈ X(M) is called a non-

degenerate zero if the the linear approximation dp0X : Tp0M → Tp0M is
invertible.

Non-degenerate zeros are always isolated and their index can be computed
very easily:

Proposition 22.10. Let p0 ∈M be a non-degenerate zero of a vector field
X ∈ X(M). Then p0 is an isolated zero and:

indp0 X =





+1, if det dp0X > 0,

−1, if det dp0X < 0.

Proof. Choose local coordinates (U, φ) centered at p0. The vector field
(φ)∗X|U has an associated Gauss map G : Sε → Sd−1 which is a diffeo-
morphism. Moreover, this diffeomorphism preserves (switches) orientations
if and only if det dp0X > 0 (respectively, < 0). Hence the result follows from
Theorem 22.3. �

Example 22.11.
Em R3, with coordinates (x, y, z), consider the vector fuel

X = y
∂

∂x
− x

∂

∂y
.

This vector field is tangent to the sphere S2 = {(x, y, z) : x2+ y2+ z2 = 1} and
hence defines a vector field X ∈ X(S2), with exactly two zeros: the north pole
pN and the south pole pS.
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The projection φ : (x, y, z) 7→ (x, y) give a system of coordinates S2 centered
at pN (and also pS), and we have:

φ∗X = v
∂

∂u
− u

∂

∂v
.

where (u, v) are coordenates in R2. Since the map (u, v) 7→ (v,−u) has differ-
ential [

0 1
−1 0

]
,

we conclude that pN and pS are non-degenerate zeros and:

indpN X = indpS X = 1.

In some simple cases it is possible to determine the index of a vector field
from its phase portrait, even if the zeros are degenerate. The next figure
illustrates some examples of planar vector fields with a zero and the value
of its index. You should try to check that the degree of the corresponding
Gauss maps is indeed the integer in each figure.
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Homework.

1. Let Φ : C → C be a polynomial map of degree d. Find degΦ.

2. Show that for a smooth manifold M of dimension d > 0 the identity map
M → M is never homotopic to a constant map. Use this fact to prove that
there is no retraction of the closed unit ball B̄1(0) ⊂ Rd on its boundary.

Hint: If there was such a retraction r : B̄1(0) → Sd−1 consider the map
H(x, t) = r(rx).

3. Let A =

(
a b
c d

)
be a 2 × 2 matrix with integer entries. Identifying

T2 = R2/Z2, consider the map Φ : T2 → T2 defined by:

Φ([x, y]) = [ax+ by, cx+ dy].

Determine degΨ.

4. Let X : Rd → Rd be a vector field with an isolated zero at 0 and for any
ε > 0 let

Sε := ∂B̄ε(x0)

be the sphere of radius ε centered at x0. Show that degree of the Gauss map
G : Sε → Sd−1

Gε(x) =
X(x)

||X(x)|| .

is the same all ε, so the degree is independent of ε.

5. Identify M = R2 with the field of complex numbers C. Show that the
polynomial map z 7→ zk defines a vector field in R2 which has a zero at the
origin of index k. How would you change z 7→ zk to obtain a vector field with
a zero of index −k?

6. Find the index of the zeros of the following vector fields in R2:
(a) x ∂

∂x ± y ∂
∂y ;

(b) (x2y + y3) ∂∂x − (x3 + xy2) ∂∂y ;

7. Show that a vector field on a compact, oriented, surface of genus g, where
g 6= 1, must have at least one zero.

8. Consider the vector field X ∈ S2d obtained by restriction of the vector field
in R2d+1:

X = x2
∂

∂x1
− x1

∂

∂x2
+ · · ·+ x2d

∂

∂x2d−1
− x2d−1 ∂

∂x2d
.

Show that X induces a vector field X in P2d. Use this vector field and the
Poincaré-Hopf theorem to compute the Euler characteristic of P2d.
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Part 4. Fiber Bundles

We have seen already several examples of fiber bundles, such as the tan-
gent bundle, the cotangent bundle or the exterior bundles. So far, we have
used the concept of a bundle in a more or less informal way. We will see now
that one can understand many global properties of manifolds by studying
more systematically fibre bundles and their properties.

The main notions and concepts to retain from the next series of lectures
are the following:

• Lecture 23: The notion of a vector bundle and the basic constructions
with these bundles, such as the sum, tensor product and exterior
product. produtos tensoriais, produtos exteriores, etc.

• Lecture 24: Two import an invariants of vector bundles: the Thom
class and the Euler class. The relationship between the Euler class
of the tangent bundle and the Euler characteristic and, as a conse-
quence, the Poincaré-Hopf Theorem.

• Lecture 25: The pull-back of vector bundles and the classification of
vector bundles, which shows that every vector bundle is the pull-back
of a universal vector bundle.

• Lecture 26: The concept of a connection in a vector bundle, which
allows one to differentiate sections of the vector bundle along vector
fields in the basisand hence compare different fibers.

• Lecture 27: The curvature of a connection and the holonomy of a
connection, which give rise to invariants, characterizing the global
structure of a vector bundle with a connection.

• Lecture 28: The Chern-Weil theory of characteristics classes of real
vector bundles (Pontrjagin classes) and complex vector bundles (Chern
classes).

• Lecture 29: The abstract notion of a fibre bundle and of a principal
fibre bundle. The constructions of the associated bundles.

• Lecture 30: The classification of principal bundles, connections in
principal bundles and characteristics classes of principal bundles.
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Lecture 23. Vector Bundles

A vector bundle is a collection {Ep}p∈M of vector spaces parameterized
by a manifold M . The union of these vector spaces is a manifold E, and
the map π : E →M , π(Ep) = p must satisfy a local trivialization condition.
You should be able to recognize all these properties in the tangent bundle
of a manifold.
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In order to formalize this concept, let π : E → M be a smooth map
between differentiable manifolds. A trivializing chart of dimension r for
π is a pair (U, φ), where U ⊂ M is open and φ : π−1(U) → U × Rr is a
diffeomorphism, such that we have a commutative diagram:

π−1(U)
φ //

π
##F

FF
FF

FF
FF

U × Rr

π1
{{xxxxxxxxx

U

In this diagram, π1 : U × Rr → U denotes the projection in the first factor.
Let Ep = π−1(p) be the fiber over p ∈ U . We define a diffeomorphism

φp : Ep → Rr as the composition:

φp : Ep
φ // {p} × Rr // Rr .

Hence, if v ∈ Ep, we have

φ(v) = (p, φp(v)).
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Notice that since each φp is a diffeomorphism, we can use φp to transport
the vector space structure of Rr to Ep. Given two trivializing charts whose
domains intersect we would like that the induced vector space structures on
the fibers coincide. This leads to the following definition:

Definition 23.1. A vector bundle structure of rank r over a manifold
M is a triple ξ = (π,E,M), where π : E → M is a smooth map admitting
a collection of trivializing charts C = {(Uα, φα) : α ∈ A} of dimension r,
satisfying the following properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα =M ;

(ii) The charts are compatible: for any α, β ∈ A and every p ∈ Uα ∩ Uβ ,
the transition functions gαβ(p) ≡ φpα ◦ (φpβ)−1 : Rr → Rr are linear

isomorphisms;
(iii) The collection C is maximal: if (U, φ) is a trivializing chart of dimen-

sion r with the property that for every α ∈ A, the maps φp ◦ (φpα)−1 e
φpα ◦ (φp)−1 are linear isomorphisms, then (U, φ) ∈ C.

We call ξ = (π,E,M) a vector bundle of rank r.

For a vector bundle ξ = (π,E,M) we will use the following notations:

• E is call the total space, M is called the basisspace, and π the
projection of ξ.

• A collection of charts satisfying (i) and (ii) is called an atlas of the
vector bundle or a trivialization of ξ.

An atlas of a vector bundle defines a vector bundle, since every atlas is
contain in a unique maximal atlas. As we have already remarked, (ii) implies
that the fiber Ep has a vector space structure such that for any trivializing
chart (U, φ) the map φp : Ep → Rr is a linear isomorphism.

In the definition above of a vector bundle all maps are C∞. Of course,
one can also define Ck-vector bundles over Ck-manifold or even topological
manifolds. On the other hand, one can define complex vector bundles over
smooth manifolds by replacing Rr by Cr (note that the basisis still a real
smooth manifold). In these notes, unless otherwise mentioned, all vector
bundles are real and C∞.

Let ξ = (π,E,M) be a vector bundle and U ⊂ M an open set. A map
s : U → E is called a section over U if π ◦ s is the identity in U . The
sections over U form a real vector space which will be denoted by ΓU (E). If
rank ξ = r a collection s1, . . . , sr of sections over U is called a frame in U if,
for every p ∈ U , the sections {s1(p), . . . , sr(p)} form a basis for Ep. When
U =M we call a section over M a global section of E and we write Γ(E)
instead of ΓM (E).

Definition 23.2. Let ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) be two vector
bundles. A morphism of vector bundles is a smooth map Ψ : E1 → E2

which maps the fibers of ξ1 linearly in the fibers of ξ2, i.e., Ψ covers a smooth
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map ψ :M1 →M2:

E1
Ψ //

π1
��

E2

π2
��

M1
ψ // M2

and, for which p ∈M1, the map of the fibers

Ψp ≡ Ψ|(E1)p : (E1)p → (E2)ψ(p)

is a linear transformation.

In this way we have the category of vector bundles.
Often we will be interested in vector bundles over the same basisand

morphisms over the identity (i.e., the map ψ : M → M is the identity).
These also form a category.

Two vector bundles ξ1 = (π1, E1,M1) and ξ2 = (π2, E2,M2) are called:

• equivalent if there exist morphisms Ψ : ξ1 → ξ2 and Ψ′ : ξ2 → ξ1
which are inverse to each other, i.e., an isomorphism in the category
of vector bundles. Then Ψ covers a diffeomorphism ψ : M1 → M2

and each fiber map Ψp : (E1)p → (E2)ψ(p) is a linear isomorphism.
• isomorphic if M1 = M2 = M and there exist morphisms Ψ : ξ1 →
ξ2 and Ψ′ : ξ2 → ξ1, covering the identity which are inverse to each
other, i.e., an isomorphism in the subcategory of vector bundles over
the same base). In this case, Ψ covers the identity ψ =idM and each
fiber map Ψp : (E1)p → (E2)p is a linear isomorphism.

Examples 23.3.

1. Obviously, for any smooth manifold M , we have the vector bundles TM ,
T ∗M and ∧k(T ∗M). The sections of these bundles are the vector fields and
the differential forms that we have studied before. If Ψ : M → N is a smooth
map, its differential dΨ : TM → TN is a morphism of vector bundles (note,
however, that the transpose (dxΦ)

∗, in general, is not a vector bundle mor-
phism).

2. The trivial vector bundle of rank r over M is the vector bundle εrM =
(π,M × Rr,M), where π : M × Rr → M is the projection in the first factor.
Note that Γ(εrM ) = C∞(M ;Rr). In geral, a vector bundle ξ over M of rank
r is said to be trivial if it is isomorphic to εrM . We leave it as an exercise to
show that a vector bundle is trivial if and only if it admits a global frame. A
parallelizable manifold is a manifold M for which TM is a trivial vector
bundle. For example, any Lie group G is parallelizable, but S2 is not paralleliz-
able (actually, one can show that Sd is parallelizable if and only if d = 0, 1, 3
and 7).

3. A r-dimensional distribution D in a manifold M , defines a vector bundle
over M of rank r. The fibers are the subspaces Dp ⊂ TpM . You should verify
that the local triviality condition holds. A section of this vector bundle is a
vector field tangent to the distribution.

183



4. A vector bundle of rank 1 is usually refer to as a line bundle. For example,
a non-vanishing vector field defines a line bundle which is always trivial. More
generally a rank 1 distribution defines a line bundle which is trivial if and only
if the distribution is generated by a single vector field.

5. For another example of a line bundle let

E = {([x],v) ∈ Pd × Rd+1 : v = λx, for some λ ∈ R}.
In other words, a element of E is a pair ([x],v) where [x] is a line through
the origin in Rd+1 and v is a point in this line. The projection π : E → Pd

is given by π([x],v) = [x]. In other to check the local triviality, let V ⊂ Sd be
an open set such that if x ∈ V then −x 6∈ V . The corresponding open set in
projective space is denoted U = {[x] : x ∈ V } ⊂ Pd. Then the map defined by:

ψ : U × R → π−1(U), ψ([x], t) = ([x], tx), ∀x ∈ V,

is a diffeomorphism and its inverse φ = ψ−1 defines a trivializing chart over
U . The family of all such charts (U, φ) form an atlas of a vector bundle over
Pd. This vector bundle is called the canonical line bundle over Pd and is
denoted γ1d.

One can describe a vector bundles through its transition functions: let
ξ = (π,E,M) be a rank r vector bundle. If (Uα, φα) and (Uα, φα) are
trivializing charts let gαβ : Uα ∩ Uβ → GL(r) be the transition function

p 7→ gαβ(p) ≡ φpα ◦ (φpβ)−1,

so that:

φα ◦ (φβ)−1(p,v) = (p, gαβ(p) · v).
These transition functions satisfy:

(23.1) gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ).
If α = β = γ, this condition reduces to:

gαα(p) = I, (p ∈ Uα),

and when γ = α we obtain:

gβα(p) = gαβ(p)
−1, (p ∈ Uα ∩ Uβ).

The family {gαβ} depends on the choice of trivializing charts. However,
we have:

Lemma 23.4. Let ξ and η be vector bundles over M with trivializations
{φα} and {φ′α} subordinated to the same open covering {Uα} of M . Denote
by {gαβ} and {g′αβ} the corresponding transition functions. If ξ is isomor-

phic to η, then there exist smooth maps λα : Uα → GL(r) such that:

(23.2) g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ).
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Proof. Let Ψ : ξ → η be an isomorphism. For each Uα we define smooth
maps λα : Uα → GL(r) by:

λα(p) = φ′pα ◦Ψ ◦ (φpα)−1.

If p ∈ Uα ∩ Uβ, we have:

g′αβ(p) = φ′pα ◦ (φ′pβ)−1

= λα(p) ◦ φpα ◦ (φpβ)−1 ◦ (λβ(p))−1

= λα(p) ◦ gαβ(p) ◦ λβ(p)−1.

�

For a manifold M we call a family of maps gαβ : Uα ∩ Uβ → GL(r)
a cocycle subordinated to the open cover {Uα}α∈A of M , if they satisfy
(23.1). Two cocycles {gαβ} and {g′αβ} subordinated to the same cover are

said to be equivalents if there exist smooth maps λα : Uα → GL(r) of
classe C∞, satisfying (23.2).

We saw above that (i) a trivialization of a vector bundle determines a
cocycle, and that (ii) two trivializations of isomorphic vector bundles sub-
ordinated to the same cover determine equivalent cocycles. Note that if two
cocycles are subordinated to different covers we can always refine the covers
to obtain cocycles subordinated to the same cover. Moreover, we have the
following converse:

Proposition 23.5. Let {gαβ} be a cocycle subordinates to an open cover
{Uα} of M . There exists a vector bundle ξ = (π,E,M), that admits a
trivialization {φα} for which the transition functions are the {gαβ}. Two
equivalent cocycles {gαβ} and {g′αβ} determine isomorphic vector bundles.

Proof. Given a cocycle {gαβ}, subordinated to the cover {Uα} of M , we
construct the manifold E as the quotient:

E =
⋃

α∈A
(Uα × Rr)

/
∼

where ∼ is the equivalence relation defined by:

(p,v) ∼ (q,w) iff





p = q and

∃α, β ∈ A : gαβ(p) · v = w.

The projection π : E →M is the obvious map:

π([p,v]) = p.

It is easy to see that the maps φα : π−1(Uα) → Uα × Rr given by:

φα([p,v]) = (p,v),

give trivializing charts. The corresponding transition functions are exactly
the {gαβ}. Denote this vector bundle by ξ = (π,E,M)
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If {g′αβ} is another cocycle equivalent to {gαβ} through the family {λα}
and ξ′ = (π′, E′,M) denotes the vector bundle associated with {g′αβ}, we
have a vector isomorphism Ψ : ξ → ξ′, which in each open set π−1(Uα) is
given by:

Ψ([p,v]) = [p, λα(p) · v].
The details are left as an exercise. �

Let us now turn to constructions with vector bundles. We have the fol-
lowing general principle: for every functorial construction with vector spaces
there is a similar construction with vector bundles. This principle can ac-
tually be made precise, but instead of following the abstract route, we will
describe now explicitly the constructions that are most relevant to us.

Subbundles and quotients. Every vector bundle ξ = (π,E,M) can be re-
stricted to a submanifold N ⊂M . The restriction ξN is the vector bundle
with total space:

EN = {Ep : p ∈ N},
and projection πN : EN → N the restriction of π to EN . The restriction is
an example of a vector subbundle:

Definition 23.6. A vector bundle η = (τ, F,N) is called a vector subbun-

dle of a vector bundle ξ = (π,E,M) if F is a submanifold of E, and the
inclusion F →֒ E is a morphism of vector bundles.

If Ψ : η → ξ is a morphism of vector bundles covering the identity, in
general, its image and its kernel are not vector subbundles. However, this
will be the case if the morphism of vector bundles Ψ : (π,E,M) → (τ, F,M)
has constant rank k, i.e., if all linear maps Ψp : Ep → Fp have the same
rank k. For a constant rank morphism we can define the following vector
subbundles over M :

• The kernel of Ψ is the vector subbundle KerΦ ⊂ E whose total
space is {v ∈ E : Φ(v) = 0};

• The image of Ψ is the vector subbundle ImΦ ⊂ F whose total space
is {Φ(v) ∈ F : v ∈ E};

• The co-kernel of Ψ is the vector bundle coKer Φ whose total space
is the quotient F/ ∼, where ∼ the equivalence relation w1 ∼ w2 if
and only if w1 −w2 = Φ(v), for some v ∈ E.

Note that if Ψ is a monomorphism (i.e., each Ψp is injective) or if Ψ is an
epimorphism (i.e., each Ψp is surjective) then Ψ has constant rank. There-
fore, the kernel, image and cokernel of monomorphisms and epimorphisms
are vector subbundles. We leave the details as an exercise.

The notions associated with exact sequences can be easily extended to
vector bundles and morphisms of constant rank. For example, a short exact
sequence of vector bundles is a sequence

0 // ξ
Φ // η Ψ // θ // 0
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where Φ is a monomorphism, Ψ is an epimorphism and ImΦ = KerΨ. In
this case, we have vector bundle isomorphisms ξ ≃ KerΨ and θ ≃ coKerΨ,
and we say that θ is the quotient vector bundle of the monomorphism
Φ.

An important example of a quotient vector bundle is obtained by tak-
ing a vector subbundle ξ = (τ, F,M) ⊂ η = (π,E,M): the inclusion is a
monomorphism of vector bundles, hence we can form its quotient, which we
denote by η/ξ. Notice that the fibers of η/ξ are the quotient vector spaces
Ep/Fp.

Example 23.7.
Let M be a manifold and N ⊂M a submanifold. The tangent bundle TN is a
vector subbundle of TNM . The quotient bundle ν(N) ≡ TNM/TN is usually
called the normal bundle to N in M .

More generally, let F be a foliation of M . Then F gives rise to the vector
subbundle TF ⊂ TM . The quotient bundle ν(F) ≡ TM/TF is usually called
the normal bundle of F in M . If L is a leaf of F the restriction of ν(F) to
L is the normal bundle ν(L).

Sums and tensor products. Let ξ = (π,E,M) and η = (τ, F,M) be vector
bundles over the same manifold M . The Whitney sum or direct sum of
ξ and η is the vector bundle ξ ⊕ η whose total space is:

E ⊕ F = {(v,w) ∈ E × F : π(v) = τ(w)},
and whose projection is:

E ⊕ F →M, (v,w) 7→ π(v) = τ(w).

Note that the fiber of ξ⊕ η over p ∈M is the direct sum Ep⊕Fp. The local
triviality condition is easily verified: if {φα} and {ψα} are trivializations of ξ
and η, subordinated to the same covering, with corresponding cocycles {gαβ}
and {hαβ}, then we have the trivialization of ξ⊕η given by {(φα×ψα)|E⊕F },
to which corresponds the cocycle defined by:

gαβ ⊕ hαβ =

[
gαβ 0
0 hαβ

]
.

Similarly, we can define:

• The tensor product ξ⊗η: the fibers are the tensor products Ep⊗Fp
and the transition functions are gαβ ⊗ hαβ .

• The dual vector bundle ξ∗: the fibers are the dual vector spaces
E∗
p and the transition functions are inverse transpose maps (gtαβ)

−1.

• The exterior product ∧kξ: the fibers are the exterior products
∧kEp and the transition functions are the exterior powers ∧kgαβ .

• The Hom(ξ, η)-bundles: the fibers are the space of all linear mor-
phisms Hom(Ex, Fx). We leave as an exercise to show that there is
a natural isomorphism Hom(ξ, η) ≃ ξ∗ ⊗ η.
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Orientations. A vector bundle ξ = (π,E,M) of rank r is called an ori-
entable vector bundle if the exterior product ∧rξ has a section which
never vanishes. Note that this section corresponds to a smooth choice of an
orientation in each vector space Ep. We call an orientation for ξ an equiv-
alence class [s], where two non-vanishing sections s1, s2 ∈ Γ(∧rξ) are equiv-
alent if and only if s2 = fs1 for some smooth positive function f ∈ C∞(M).
We leave as an exercise to check that ξ is orientable if and only if it admits
a trivialization {φα} for which the associated cocycle {gαβ} takes values in
GL+(r), the group of invertible r × r matrices with positive determinant:

gαβ : Uα ∩ Uβ → GL+(r) ⊂ GL(r).

When ξ = TM , this notion of orientation corresponds to the notion of
orientation for M that we have studied before. The possible orientations for
ξ, E and M are related as follows:

Lemma 23.8. If ξ = (π,E,M) is an orientable vector bundle. Then M is
an orientable manifold if and only if E is also an orientable manifold.

The proof is elementary and is left as an exercise.

Riemmanian structures. A Riemann structure in a vector bundle ξ =
(π,E,M) is a choice of an inner product 〈 , 〉 : Ep × Ep → R in each
fiber which varies smoothly, i.e., for any sections s1, s2 ∈ Γ(E) the map
p 7→ 〈s1(p), s2(p)〉 is smooth. This condition is equivalent to say that the
section of the vector bundle ⊗2ξ defined by 〈 , 〉 is smooth.

You should check that ξ has a Riemann structure if and only it it admits
a trivialization {φα} where the associated cocycle {gαβ} take values in O(r):

gαβ : Uα ∩ Uβ → O(r) ⊂ GL(r).

It is easy to see, using a partition of unity, that every vector bundle admits
a Riemann structure. Underlying this fact, is the polar decomposition of
GL(r):

GL(r) = O(r)× {positive definite symmetric matrices}.
If ξ = (π,E,M) is a vector bundle and 〈 , 〉 is a Riemann structure in ξ,

then for any vector subbundle η = (τ, F,N) we can define the orthogonal
vector bundle η⊥ over N as the subbundle of ξ with total space F⊥, where

F⊥
p ≡ {v ∈ Ep : 〈v,w〉 = 0,∀w ∈ Fp}.

When M = N , we obtain:

ξ = η ⊕ η⊥.

in this case η⊥ ≃ ξ/η, since the natural projection ξ → ξ/η restricts to an
isomorphism on η⊥.

Homework.

1. Show that a vector bundle is trivial if and only it admits a global frame.
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2. Let Gr(Rd) be the Grassmannian manifold of r-planes in Rd. Consider the
submanifold E ⊂ Gr(Rd)× Rd defined by:

E = {(S, x) : S is a subspace of Rd and x ∈ S},
and the smooth map π : E → Gr(Rd) given by:

π(S, x) = S.

Show that γrd = (π,E,Gr(Rd)) is a vector bundle of rank k. It is called the
canonical bundle over Gr(Rd).

3. Let Ψ : η → ξ be a morphism of vector bundles which covers the identity.
Show that the kernel and the image of Ψ are vector subbundles if the rank of
the linear maps Ψp is constant. Give counter-examples when the rank is not
constant.

4. Consider a short exact sequence of vector bundles

0 // ξ // η Ψ // θ // 0

Show that this sequence always splits, i.e., there exists a monomorphism of
vector bundles Φ : θ → η such that Ψ ◦ Φ =idθ.

5. Given two vector bundles ξ = (π,E,M) and η = (τ, F,M), show that
there exists a vector bundle Hom(ξ, η) whose fibers are the vector spaces
Hom(Ex, Fx). Find the transition function of Hom(ξ, η) in terms of the tran-
sition functions of ξ and η and verify that there exists a natural isomorphism
Hom(ξ, η) ≃ ξ∗ ⊗ η.

6. If ξ = (π,E,M) is an orientable vector bundle. Show that M is orientable
if and only if E is an orientable manifold.

7. Let ξ = (π,E,M) be a vector bundle. Show that there exists an isomor-
phism of vector bundles

TME ≃ ξ ⊕ TM,

which is natural: if Ψ : (π,E,M) → (τ, F,N) is a morphism of vector bundles
which covers the map ψ :M → N , then the following diagram commutes:

TME
dΨ //

≃

��

TNF

≃

��
ξ ⊕ TM

Ψ⊕dψ
// η ⊕ TN

8. For a vector bundle ξ show that the following statements are equivalent:
(a) ξ is orientable;
(b) There exists a trivialization of ξ for which the transition functions take

values in GL+(r);
(c) There exists a trivialization of ξ for which the transition functions take

values in SO(r).
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Lecture 24. The Thom Class and the Euler Class

The homotopy invariance of de Rham cohomology relied crucially on the
following isomorphisms

H•(M × Rr) ≃ H•(M),

H•
c (M × Rr) ≃ H•−r

c (M).

One can interpret these isomorphisms as relating the cohomology of the total
space of the trivial bundle with the cohomology of the base. More generally,
we have:

Proposition 24.1. For any vector bundle ξ = (π,E,M):

H•(E) ≃ H•(M).

Proof. Let s :M → E be the zero. Its image is a deformation retract of E.
Therefore, by homotopy invariance we see that s∗ : H•(E) → H•(M) is an
isomorphism. �

One may guess that the statement for compactly supported cohomology
also generalizes, but the following example shows that one must be careful:

Example 24.2.
Let M = S1 and consider the non-trivial line bundle π : E → S1. One can
realize this line bundle, for example, by considering the central circle in the
Möbius band and the fibers to be the transverse lines. Since E is a non-oriented
manifold of dimension 2, we have H2

c (E) = 0. On the other hand,

H2−1
c (S1) = H1(S1) ≃ R 6= 0.

When E and M are both orientable we do have:

Proposition 24.3. Let ξ = (π,E,M) be a vector bundle of rank r, where
E and M are both orientable of finite type. Then:

H•
c (E) ≃ H•−r

c (M).

Proof. Since E and M are both orientable of finite type we can apply
Poincaré duality to conclude:

H•
c (E) ≃ Hd+r−•(E) (by Poincaré duality for E),

≃ Hd+r−•(M) (by Proposition 24.1),

≃ H•−r
c (M) (by Poincaré duality for M ).

�

When M is a compact manifold the total space of any vector bundle over
M is of finite type. Therefore:
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Corollary 24.4 (Thom Duality). Let ξ = (π,E,M) be an orientable vector
bundle of rank r and M an orientable compact manifold. Then:

H•
c (E) ≃ H•−r(M).

The map giving the isomorphism in Thom duality is a push-forward map

π∗ : Ω
•
c(E) → Ω•−r(M)

and is called integration along the fibers. If we unwind the proof above,
we can find an explicit description of π∗ as follows. We start by cover-
ing M by trivializing oriented charts (Uα, φα) for ξ, where each Uα is the
domain of a chart (x1, . . . , xd) of M . We obtain a system of coordinates
(x1, . . . , xd, t1, . . . , tr) for the total space E with domain π−1(Uα), where
(t1, . . . , tr) are linear coordinates on the fibers. If ω is some differential form
in E, then ωα = ω|π−1(Uα) is a linear combination of two kinds of forms:

• f(x, t)(π∗θ) ∧ dti1 ∧ · · · ∧ dtik , with k < r;
• f(x, t)(π∗θ) ∧ dt1 ∧ · · · ∧ dtr;

where θ is a differential form in M and f(x, t) has compact support. The
map π∗ : Ω•

c(E) → Ω•−r(M) is zero on forms of the first kind, and on forms
of the second kind it is integration along the fibers:

f(x, t)(π∗θ) ∧ dt1 ∧ · · · ∧ dtr 7−→ θ

∫

Rr

f(x, t1, . . . , tr)dt1 · · · dtr.

Since two such system of coordinates in the fibers, say (t1, . . . , tr) and
(t̄1, . . . , t̄r), are related by an element of GL(r)+, we obtain π∗ωα = π∗ωβ,
whenever Uα ∩ Uβ 6= ∅.

With this explicit description, it is now easy to check that:

Proposition 24.5. If π∗ : Ω•
c(E) → Ω•−r(M) denotes integration along the

fibers, then:

(i) π∗ is a cochain map:

dπ∗ = π∗d;

(ii) for any θ ∈ Ω∗(M) and ω ∈ Ω•
c(E) the following projection formula

holds:

(24.1) π∗(π
∗θ ∧ ω) = θ ∧ π∗ω.

Remark 24.6. The explicit description of integration along the fibers also
shows how one should proceed when one has a vector bundle over a non-
comptac manifold. One considers compactly supported forms in the vertical
direction: the complex Ω∗

cv(E) is defined by differential forms ω in E such
that suppω ∩π−1(K) is compact for every compact set K ⊂M . Hence, the
restriction of ω to each fiber Ep has compact support and we can still define
integration along the fibers by the same formula. If one assumes that E is
orientable, we obtain Thom duality:

H•
cv(E) ≃ H•−r(M).

191



In order to simplify the presentation, we will consider only Thom duality in
the case where M is compact.

Let M be an oriented compact, connected, manifold. Let d = dimM
and denote the orientation by µ. We know that there exists a canonical
generator in cohomology which we also denote by µ ∈ Hd

c (M): the class µ
is represented by any top degree form ω ∈ Ωdc(M) such that:

∫

M
ω = 1.

In fact µ is the image of 1 under Poincaré duality H0(M) ≃ Hd
c (M). On

the other hand, we can use Thom duality in much the same way to obtain
a canonical class in Hr

c (E):

Definition 24.7. The Thom class of an oriented vector bundle ξ = (π,E,M)
over a compact, connected, oriented manifold M is the image of 1 under
Thom duality H0(M) ≃ Hr

c (E). We will denote this class by U ∈ Hr
c (E).

The Thom class allows one to write, in a more or less explicit way, the
inverse to the integration along fibers π∗ : H•

c (E) → H•−r(M). In fact,
since π∗U = 1, the projection formula (24.1) shows that the linear map
H•(M) → H•+r

c (E) defined map por:

(π∗)
−1([ω]) = [π∗ω] ∪ U.

is an inverse to π∗.
The following result gives an alternative characterization of the Thom

class:

Theorem 24.8. The Thom class of an oriented vector bundle ξ = (π,E,M)
over an oriented, compact, connected manifold is the unique class U ∈
Hr
c (E) whose pull-back to each fiber Ep is the canonical generator of H

r
c (Ep),

i.e., ∫

Ep

i∗U = 1, ∀p ∈M,

where i : Ep →֒ E is the inclusion.

Proof. Since π∗U = 1, we see that the restriction i∗U to each fiber Ep is a
compactly supported form with

∫
Ec
i∗U = 1.

Conversely, let U ′ ∈ Hr
c (E) be a class such the restriction i∗U ′ ∈ Hr

c (Ep)
is the canonical generator, for each p ∈M . By the projection formula (24.1),
we obtain

π∗(π
∗θ ∧ U ′) = θ ∧ π∗U ′ = θ, ∀θ ∈ H•(M).

Hence, θ 7→ π∗θ ∧ U ′ inverts π∗, and the image of 1, which is U ′, coincides
with the Thom class. �

The Thom class of a vector bundle ξ = (π,E,M) is an invariant of the
bundle, but it lies in the cohomology of the total space. We can use a global
section to obtain an invariant which lies in the cohomology of the base:
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Definition 24.9. Let ξ = (π,E,M) be an oriented vector bundle of rank r
over an oriented, compact, connected manifold M . The Euler class of ξ is
the class χ(ξ) ∈ Hr(M) defined by:

χ(ξ) ≡ s∗U,

where U is the Thom class of ξ and s :M → E is any section global of ξ.

Note that a vector bundle always as a global section, namely the zero
section. On the other hand, if s0, s1 : M → E are two global sections then
H(p, t) = ts1(p) + (1 − t)s0(p) is an homotopy between them, so we have
[s∗0U ] = [s∗1U ]. This shows that the definition above of the Euler class makes
sense.

The following proposition lists some properties of the Euler class. We
leave its proof for the exercises:

Proposition 24.10. Let ξ = (π,E,M) be an oriented vector bundle of rank
r over an oriented, compact, connected manifold M . Then:

(i) If Ψ : η → ξ is a morphism of vector bundles of rank r, preserving
orientations, which covers a map ψ : N →M , then: χ(η) = ψ∗χ(ξ).

(ii) If ξ̄ denotes the vector bundle ξ with the opposite orientation then
χ(ξ̄) = −χ(ξ).

(iii) If rank r is odd, then χ(ξ) = 0.
(iv) If ξ′ = (π′, E′,M) is another oriented vector bundle of rank r′ over M ,

then χ(ξ ⊕ ξ′) = χ(ξ) ∪ χ(ξ′).

The Euler class of a vector bundle is an obstruction to the existence of a
non-vanishing global section. In fact, we have:

Theorem 24.11. Let ξ = (π,E,M) be an oriented vector bundle of rank
r over an oriented, compact, connected manifold M . If ξ admits a non-
vanishing section then χ(ξ) = 0.

Proof. Let s : M → E be a non-vanishing section. If ω ∈ Ωrc(E) is a
compactly supported form representing the Thom class, i.e., U = [ω], then
there exists a c ∈ R such that the image of the section cs does not intersect
suppω. Hence:

χ(ξ) = (cs)∗U = [(cs)∗ω] = 0.

�

Note, however, that in general the Euler class is not the only obstruction
to the existence of a non-vanishing global section: there are examples of
vector bundles ξ with χ(ξ) = 0, but where any global section has a zero.

The name Euler class is related with the special case where ξ = TM .
Recalling the notion of index of an isolated zero of a vector field from Lecture
22), we have:
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Theorem 24.12. Let M an oriented, compact, connected manifold of di-
mension d. For any vector field X ∈ X(M) with a finite number of zeros
{p1, . . . , pN}, one has:

χ(TM) =

(
N∑

i=1

indpi X

)
µ ∈ Hd(M),

where µ ∈ Hd(M) the class defined by the orientation of M .

Proof. Let ω ∈ Ωdc(TM) be a compactly supported form representing the
Thom class. Denote the sum of the indices of the zeros by σ. We need to
show that: ∫

M
X∗ω = σ.

Choose coordinate systems (Ui, φi) centered at pi and denote by Bi the
closed balls:

Bi = φ−1
i ({x ∈ Rd : ||x|| < 1}).

We can assume that Xp 6∈ suppω, for all p 6∈ ⋃N
i=1Bi. Therefore, it is

enough to verify that: ∫

Bi

X∗ω = indpi X.

and we leaved this check to the exercises. �

An immediate corollary is:

Corollary 24.13. Let X and Y be vector fields with a finite number of zeros
on an oriented, compact, connected manifold M . The sum of the indices of
the zeros of X coincides with the sum of the indices of the zeros of Y .

We must have already guessed that we have:

Theorem 24.14 (Poincaré-Hopf). Let M be an oriented, compact, con-
nected manifold of dimension d. Then for any vector field X ∈ X(M) with
a finite number of zeros {p1, . . . , pN}, we have:

χ(M) =

N∑

i=1

indpi X.

In particular, χ(TM) = χ(M)µ, where µ ∈ Hd(M) is the orientation class.

Proof. By the corollary above it is enough to construct a vector field X in
M , with a finite number of zeros, for which the equality holds. For that,
we fix a triangulation {σ1, . . . , σrd} of M , and we construct a vector field X
with the following properties:

(a) X has exactly one zero pi in each face of the triangulation.
(b) The zero pi is non-degenerate and indpi X = (−1)k, where k is the

dimension of the face.
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Hence, if rk is the number of faces of dimension k, we have

N∑

i=1

indpi X = r0 − r1 + · · ·+ (−1)drd,

so the result follows from Euler’s Formula (Theorem 21.5).
We construct X describing its phase portrait in each face:

• In each face of dimension 0, the vector field X has a zero.
• In each face of dimension 1, we put a zero in the center of the face and
connect it by orbits to the zeros in the vertices, as in the following
figure:

PSfrag repla
ementsT2MEEp��0�1�2CXY�X�Y[X;Y ℄qC�0�1�2�3Rr��U1U��  Æ ��1p1 = �p"Y (p)p2 = �p"X (p1)p3 = ��p"Y (p2)
p(") = ��p"X (p3)RdRdRd�kRkRe�dRR2R4d = 3d = 2p�N (p)indp0X = �1indp0X = 0indp0X = 1indp0X = 2�112���~v~wTpSTpMTM
• In each face of dimension 2, we put a zero in the center of the face
and connect it by heteroclinic orbits to the zeros in the faces of
dimension 1, as in the following figure:

PSfrag repla
ementsT2MEEp��0�1�2CXY�X�Y[X;Y ℄qC�0�1�2�3Rr��U1U��  Æ ��1p1 = �p"Y (p)p2 = �p"X (p1)p3 = ��p"Y (p2)
p(") = ��p"X (p3)RdRdRd�kRkRe�dRR2R4d = 3d = 2p�N (p)indp0X = �1indp0X = 0indp0X = 1indp0X = 2�112���~v~wTpSTpMTM
Then we complete the phase portrait of X in the face of dimension

2, so that the zero in its interior becomes an attractor of the vector
field restricted to the face:

PSfrag repla
ementsT2MEEp��0�1�2CXY�X�Y[X;Y ℄qC�0�1�2�3Rr��U1U��  Æ ��1p1 = �p"Y (p)p2 = �p"X (p1)p3 = ��p"Y (p2)
p(") = ��p"X (p3)RdRdRd�kRkRe�dRR2R4d = 3d = 2p�N (p)indp0X = �1indp0X = 0indp0X = 1indp0X = 2�112���~v~wTpSTpMTM
• In general, once one has constructed the phase portrait in the faces
of dimension k − 1, we construct the phase portrait in a face of
dimension k, putting a zero in the center of the face and connecting
it by heteroclinic orbits to the zeros in the faces of dimension k− 1.
We then complete the phase portrait so that the new zero is an
attractor of the vector field restricted to the face of dimension k.
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The vector field one constructs in this way has exactly one zero in each
face. Moreover, we can assume that they are non-degenerate zeros. For a
zero pi in the face of dimension k, the linearization of the vector field at pi
is a real matrix with k eingenvalues with negative real part, corresponding
to the directions along the face, and n − k eingenvalues with positive real
part, corresponding to the directions normal to the face. The determinant
of this matrix if (−1)k. Hence, we have that indpi X = (−1)k, so the vector
field X satisfies (a) and (b). �

Remark 24.15. We remarked above that there exists vector bundles with
χ(ξ) = 0, but where every section has a zero. However, in the case of the
tangent bundle the Euler class χ(TM) (and hence the Euler number χ(M))
is the only obstruction: an exercise in this section shows that χ(TM) = 0 if
and only if é there exists a non-vanishing vector field in M .

Homework.

1. Let ξ = (π,E,M) be an orientable vector bundle over a compact manifold.
Show that the projection formula holds:

π∗(π
∗θ ∧ ω) = θ ∧ π∗ω, (θ ∈ Ω∗(M), ω ∈ Ω•

c(E)).

2. Let E1 → M and E2 → M be oriented vector bundles over an oriented,
compact, connected manifoldM . Consider their Whitney sum and the natural
projections:

E1 ⊕ E2

π1

zzvvvvvvvvv
π2

$$H
HHHHHHHH

E1 E2

Show that the Thom classes of E1, E2 and E1 ⊕ E2 are related by:

UE1⊕E2
= π∗

1UE1
∧ π∗

2UE2
.

3. Let ξ = (π,E,M) and ξ′ = (π′, E′,M ′) be oriented vector bundles over an
oriented, compact, connected manifold M . Show that:

χ(ξ ⊕ ξ′) = χ(ξ) ∪ χ(ξ′),
where on the Whitney sum ξ ⊕ ξ′ we take the direct sum of the orientations.

4. Let ξ = (π,E,M) and η = (τ, F,N) be oriented vector bundles of rank r,
where M and N are oriented, compact, connected manifolds. If Ψ : η → ξ
is a vector bundle morphism which preserves orientations, covering a map
ψ : N →M , show that:

χ(η) = ψ∗χ(ξ).

Use this property to conclude that:
(a) If ξ̄ denotes the vector bundle ξ with the opposite orientation then χ(ξ̄) =

−χ(ξ).
(b) If rank ξ is odd, then χ(ξ) = 0.

5. Complete the proof of Theorem 24.12.
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6. Let M be a compact manifold of dimension d. One can show that:
(a) If p1, . . . , pN ∈ M there exists an open set U ⊂ M , diffeomorphic to the

ball {x ∈ Rd : ||x|| < 1}, such that p1, . . . , pn ∈ U .
(b) If ψ : Sd−1 → Sd−1 is a map with degree zero, then it is homotopic to the

constant map.
Use these facts to show that if χ(M) = 0, then there exists a nowhere vanishing
vector field in M .

Lecture 25. Pull-backs and the Classification of Vector

Bundles

We now turn to the global characterization of vector bundles. In this
characterization the pull-back of vector bundles under a smooth map plays
a crucial role.

Definition 25.1. Let ψ : M → N be a smooth map and ξ = (π,E,N)
a vector bundle over N of rank r. The pull-back of ξ by ψ is the vector
bundle ψ∗ξ = (π̂, ψ∗E,M) of rank r, with total space given by:

ψ∗E = {(p,v) ∈M × E : ψ(p) = π(v)},
and projection defined by:

π̂ : ψ∗E → N, (p,v) 7→ p.

Note that the fiber of ψ∗ξ over p is a copy of the fiber of ξ over ψ(p).
Therefore the pull-back of ξ by ψ is a vector bundle for which we take a
copy of the fiber of ξ over q for each point in the preimage ψ−1(q).

We still need to check that the construction in the definition above does
indeed produce a vector bundle. First of all, note that

ψ∗E = (ψ × π)(∆),

where ∆ ⊂ N × N is the diagonal. Since π : E → N is a submersion, we
have that (ψ × π) ⋔ ∆, so E is a manifold. To cheek local triviality of ψ∗ξ,
let {φα} be a trivialization of ξ, subordinated to the open cover {Uα} of

N . We obtain a trivialization {φ̃α} for ψ∗ξ, subordinated to the open cover
{ψ−1(Uα)} of M , where

φ̃α : π̂−1(ψ−1(Uα)) → ψ−1(Uα)× Rr

(p,v) 7−→ (p, φψ(p)α (v)).

Moreover, if {gαβ} is the cocycle of ξ associated with the trivialization {φα},
then {ψ∗gαβ} = {gαβ ◦ ψ} is the cocycle of ψ∗ξ associated with the trivial-

ization {φ̃α}.
Let us notice now that the map

Ψ : ψ∗ξ → ξ (p,v) 7→ v,
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is a morphism of vector bundles covering ψ. Hence, the pull-back construc-
tion allows us to complete the following commutative diagram of morphisms
of vector bundles:

ψ∗E

π̂
���
�

�

Ψ //______ E

π

��
M

ψ // N

In fact, we have the following universal property which characterizes the
pull-back up to isomorphism:

Proposition 25.2. Let ψ : M → N be a smooth map, η = (τ, F,M)
and ξ = (π,E,N) vector bundles and Φ : η → ξ a morphism of vector
bundles covering ψ. Then there exists a unique morphism of vector bundles
Φ̃ : η → ψ∗ξ, covering the identity, which makes the following diagram
commutative:

F
Φ

''

Φ̃

!!C
C

C
C

τ

��

ψ∗E
Ψ //

π̂
��

E

π

��
M

ψ
// N

Moreover, Φ̃ is an isomorphism if an only if Φp : Fp → Eψ(p) is an isomor-
phism for all p ∈M .

Let ξ = (π,E,N) and η = (τ, F,N) be vector bundles over N , and
let Φ : ξ → η be a morphism of vector bundles covering the identity. If
ψ : M → N is a smooth map, then we have a morphism of vector bundles
ψ∗(Φ) : ψ∗ξ → ψ∗η, defined by:

ψ∗(Φ)(p,v) = (p,Φ(v)).

Obviously, this morphism makes the following diagram commute:

ψ∗E
ψ∗(Φ)

//

��

!!D
DD

DD
DD

D
ψ∗F

��

!!D
DD

DD
DD

D

E

��

Φ // F

��

M //

ψ ""E
EE

EE
EE

E M

ψ ""E
EE

EE
EE

E

N // N

We can now list the main properties of the pull-back of vector bundles:
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Proposition 25.3. Let ψ :M → N be a smooth map. Then:

(i) The pull-back of the trivial vector bundle is the trivial vector bundle:
ψ∗(εrN ) = εrM .

(ii) If φ : Q → M is a smooth map, then (ψ ◦ φ)∗ξ = φ∗(ψ∗ξ), for any
vector bundle ξ over N .

(iii) The pull-back of the identity morphism is the identity: ψ∗(idξ) = idψ∗ξ.
(iv) If Φ : ξ → η and Ψ : η → θ are morphisms of vector bundles over the

identity, then φ∗(Ψ ◦ Φ) = φ∗(Ψ) ◦ φ∗(Φ).

The results above show that if we fix manifolds M and N , as well as a
smooth map ψ :M → N , then we have:

• The pull-back defines a covariant functor from the category of vector
bundles over N to the category of vector bundles over M .

Let us denote by Vectr(M) the set of isomorphism classes of vector bun-
dles of rank r over a manifold M . There is a distinguish point in Vectr(M),
namely the class of the the trivial vector bundles. Given a smooth map
ψ :M → N , the pull-back ψ∗ : Vectr(N) → Vectr(M) preserves this distin-
guished point, so we conclude also:

• The pull-back defines a contravariant functor from the category of
smooth manifolds to the category of sets with a distinguished point.

The fundamental property of the pull-back of vector bundles is the fol-
lowing:

Theorem 25.4 (Homotopy invariance). If ψ and φ :M → N are homotopic
maps and ξ is a vector bundle over N , then the pull-backs ψ∗ξ and φ∗ξ are
isomorphic vector bundles.

Proof. Let H :M × [0, 1] → N be an homotopy between φ and ψ. We have:

φ∗ξ = H∗
0ξ = H∗ξ|M×{0},

ψ∗ξ = H∗
1ξ = H∗ξ|M×{1}.

Hence, it is enough to show that for any vector bundle η over M × [0, 1], the
restrictions η|M×{0} and η|M×{1} are isomorphic.

One can show that:

(a) a morphism of vector bundles of class C0, covering a map of class C∞,
can be approximated by a morphism of classe C∞, which covers the
same map.

(b) a morphism which is close enough to an isomorphism, is also an isomor-
phism.

Hence, it is enough to proof that for any vector bundle η = (π,E,M×[0, 1]),
there exists a C0-morphism of vector bundles ∆ : η → η, covering the smooth
map

δ :M × [0, 1] →M × [0, 1], (p, t) 7→ (t, 1),
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and such that the induced maps in the fibers are isomorphisms. In order
to construct ∆, we will use the following lemma, whose proof is left as an
exercise:

Lemma 25.5. Let η be a vector bundle over M×[0, 1]. There exists an open
cover {Uα}α∈A of M such that the restrictions η|Uα×[0,1] are trivial vector
bundles.

Now choose a locally finite countable open cover {Uk}k∈N of M such that
the restrictions η|Uk×[0,1] are trivial. Let us denote the trivializing maps φk
by:

E|Uk×[0,1]
φk //

π
&&MMMMMMMMMMM

(Uk × [0, 1]) × Rr

π1vvmmmmmmmmmmmmm

Uk × [0, 1]

Denote by {ρk}k∈N an envelope of unity subordinated to the cover {Uk}k∈Nn,
i.e., a collection of continuous maps ρk : M → R such that 0 ≤ ρk ≤ 1,
suppρk ⊂ Uk and, for all p ∈M ,

max{ρk(p) : k ∈ N} = 1.

Such an envelope of unity can be constructed starting with a partition of
unity {θk} and defining:

ρk(p) ≡
θk(p)

max{θk(p) : k ∈ N} .

For each k ∈ N we define vector bundle morphisms ∆k : η → η by:

(a) ∆k cover the map δk :M × [0, 1] →M × [0, 1] given by:

δk(p, t) = (p,max(ρk(p), t)).

(b) In π−1(Uk × [0, 1]), ∆k is defined by:

∆k(φ
−1
k (p, t,v)) ≡ φ−1

k (p,max(ρk(p), t), v),

and ∆k is the identity outside π−1(Uk × [0, 1]).

Finally, one defines ∆ : η → η by:

∆ = · · · ◦∆k ◦ · · · ◦∆1.

Since each p ∈ M has a neighborhood which intersects a finite number of
open sets Uk, this is a well-defined vector bundle morphism ∆ : η → η
which locally is an the composition of vector bundle which isomorphisms
on the fibers. Hence, ∆ is a vector bundle isomorphism which covers δ :
M × [0, 1] →M × [0, 1]. �

Corollary 25.6. Any vector bundle over a contractible manifold is trivial.
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Proof. Let ξ = (π,E,M) be a vector bundle and let φ : M → {∗} and
ψ : {∗} → M be smooth maps such that ψ ◦ φ is homotopic to idM . The
Theorem shows that:

ξ ≃ (ψ ◦ φ)∗ξ ≃ φ∗(ψ∗ξ).

Since ψ∗ξ is a vector bundle over a set which consist of a single point, it is
the trivial vector bundle. Hence ξ ≃ φ∗(ψ∗ξ) is a trivial vector bundle. �

Hence, when M is contractible the space Vectr(M) consisting of isomor-
phism classes of vector bundles of rank r over M has only one point.

Example 25.7.
Let M = S1. Given a line bundle ξ = (π,E, S1), we can cover S1 by the two
contractible open sets U = S1 − {pN} and V = S1 − {pS}. By the corollary,
over each open set U and V the vector bundle trivializes: φU : E|U ≃ U × R
and φV : E|V ≃ V × R. Therefore, the line bundle is completely characterized
by the transition function gUV : U ∩ V → R, so that:

φV ◦ φ−1
U : U × R → V × R, (p, v) 7→ (p, gUV (p)v).

The intersection U ∩ V has two connected components, and we leave it as an
exercise to check that if gUV (x) has the same sign in both components, then ξ
is trivial, while if gUV (x) has the opposite signs in the two components then
the line bundle is isomorphic to the line bundle whose total space is the Möbis
band. In other words, the the space Vect1(S1) consisting of isomorphism classes
of line bundles over S1 has two points.

The problem of determining Vectk(M) can be reduced to a problem in
homotopy theory, as we now briefly indicate.

Recall that γrn denotes the canonical bundle over the Grassmannian
Gr(Rn) (Lecture 23, Exercise 2): the total space of γrn is defined by:

E = {(S, x) : S is r-dimensional subspace of Rn and x ∈ S},
and the projection π : E → Gr(Rn) is given by π(S, x) = S. The canonical
bundle is a subbundle of the trivial vector bundle εnGr(Rn). The universal

bundle is the quotient vector bundle obtained from the short exact sequence
of vector bundles:

0 // γn−rn
// εnGn−r(Rn)

// ηrn // 0

Note that the fiber of ηrn over the n− r-dimensional subspace S ∈ Gn−r(Rn)
is the quotient Rn/S. The reason for the name universal is justified by the
following proposition:

Proposition 25.8. Let M be a smooth manifold and ξ a rank r vector
bundle over M . If ξ admits n global sections s1, . . . , sn which generate Ep
for all p ∈ M , then there exists a smooth map ψ : M → Gn−r(Rn) such
that:

ξ ≃ ψ∗(ηrn).
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Proof. Let V be the n-dimensional vector space with basis {s1, . . . , sn}.
Since the sections si generate Ep, for each p ∈ M , there exists a linear
surjective map

V
evp // Ep // 0 .

The kernel Ker evp of this map is a subspace of V of codimension r. On
the other hand, the fiber of the universal bundle ηrn over the Grassmannian
Gn−r(V ) is V/Ker evp ≃ Ep. Hence, if we define a smooth map by

ψ :M → Gn−r(V ), p 7→ Ker evp,

then ξ ≃ ψ∗(ηrn). Now, if we identify V with Rn andGn−r(V ) withGn−r(Rn),
the result follows. �

A map ψ : M → Gn−r(Rn) such that ξ ≃ ψ∗ηrn is called a classifying
map for the vector bundle ξ.

Proposition 25.9. Let M be a manifold which admits a good cover with k
open sets and let ξ be a vector bundle over M of rank r. If

n ≥ max{rk,dimM + r − 1},
then:

(i) There exist classifying maps ψ :M → Gn−r(Rn) for ξ;
(ii) Any two classifying maps are homotopic.

Proof. Let U1, . . . , Uk be a good cover of M . We claim that ξ admits n = rk
global sections s1, . . . , sn which generate Ep, for all p ∈ M , so that (i)
follows from Proposition 25.8. To see this, we observe that since each Ui is
contractible, the restriction ξ|Uα is trivial. Hence, we can choose a basis of
local sections {sα1 , . . . , sαr } for Γ(ξ|Uα). Therefore, if we choose a partition
of unity {ρα} subordinated to the cover {Uα}, we can define the rk global
sections s̃αi := ραs

α
i , which generate Ep, for all p ∈M .

Let us sketch a proof of (ii). If ψ : M → Gn−r(Rn) is a classifying map,
the isomorphism Ψ : ξ ≃ ψ∗ηrn gives a vector bundle map from the trivial
vector bundle to ξ, covering the identity:

M × Rn
Ψ̂ //

$$I
IIIIIIII

E

~~}}
}}

}}
}}

M

which is surjective on the fibers. Conversely, given such an epimorphism Ψ̂
we can associate to it the classifying map:

ψ :M → Gn−r(R
n), p 7→ Ker Ψ̂p.

Therefore, to give a classifying map ψ :M → Gn−r(Rn) is the same as giving

a section Ψ̂ of the vector bundle End(M ×Rn, E), which takes values in the
submanifold Epi(M × Rn, E) consisting of linear maps bewteen the fibers
which are surjective. Hence, assume we are given two sets of such sections
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Ψ̂0 and Ψ̂0, yielding classifying maps ψ0, ψ1 :M → Gn−r(Rn). We obtain a

section Ψ̂ of the bundle End(M ×Rn, E), defined in M × {0, 1}, and which

takes values in Epi(M ×Rn, E). We need to show that we can extend Ψ̂ to
section in M × [0, 1], which takes values in Epi(M ×Rn, E). The associated
family of classifying maps define the desired homotopy φt :M → Gn−r(Rn).

Of course, there is no problem in extending the section Ψ̂ to a section of
End(M × Rn, E), defined in M × [0, 1]. If this section is transverse to the
submanifold consisting of linear maps between the fibers whose rank is less
than r, then we can perturb it to a section extending the original section,
and which takes values in Epi(M × Rn, E). Since the codimension of the
submanifold consisting of linear maps between the fibers whose rank is less
than r is n− r + 1, it is enough to assume that:

dimM < n− r + 1 ⇐⇒ n > dimM + r − 1.

�

Denote by [M,N ] the set of homotopy classes of maps φ : M → N . We
obtain:

Theorem 25.10 (Classification of vector bundles). Let M be a manifold
which admits a good open cover with k open sets. For every n ≥ rk, there
exists a bijection:

Vectr(M) ≃ [M,Gn−r(R
n)].

Proof. We saw above that the homotopy class of a classifying map for ξ is
determined by the isomorphism class of ξ, so we have a well-defined map:

f : Vectr(M) → [M : Gn−r(R
n)].

On the other hand, by the homotopy invariance of the pull-backs, we
conclude that the pull-back of the universal bundle induces a map

g : [M : Gn−r(R
n)] → Vectr(M), ψ 7→ ψ∗ηrn.

We leave as an exercise to show that the maps f and g are inverse to each
other, so the result follows. �

This result reduces the classification of vector bundles to a homotopy
issue. We illustrate this in the next example, which assumes some knowledge
of homotopy theory.

Example 25.11.
Let us recall that if X is a path connected topological space then the free ho-
motopies and the homotopies based at x0 ∈ X are related by:

πk(X, x)/π1(X, x) ≃ [Sk, X ],

where the quotient is the orbit space for the natural action of π1(X, x) in
πk(X, x). Therefore, we have:

Vectr(S
k) = [Sk, Gn−r(R

n)] ≃ πk(Gn−r(R
n))/π1(Gn−r(R

n)),
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for n large enough. On the other, since the Grassmannian is a homogeneous
space:

Gn−r(R
n) = O(n)/(O(n − r)×O(r)),

and πk(O(n)/O(n − r)) = 0, if n is large enough, the long exact sequence in
homotopy yields:

πk(Gn−r(R
n)) = πk−1(O(r)),

for n large enough. Hence, we conclude that:

Vectr(S
k) = πk−1(O(r))/π0(O(r)) = πk−1(O(r))/Z2 .

In order to understand this quotient, we need to figure out the action of
π0(O(r)) on πk−1(O(r)). If g ∈ O(r), the action by conjugation of g in O(r)
induces an action in homotopy:

ig : O(n) → O(n), ig(h) = ghg−1 =⇒ (ig)∗ : πk(O(r)) → πk(O(r)).

If g1 and g2 being to the same connected component, then (ig1)∗ = (ig2)∗.
Hence, we obtain an action of π0(O(r)) = Z2 on πk−1(O(r)), which is precisely
the action above.

For example, if r is odd then −I represents the non-trivial class in π0(Or).
Since the action by conjugation of −I is trivial, we conclude that

Vectr(S
k) = πk−1(O(r)), if r is odd.

For example, we have:

Vect3(S
4) = π3(SO(3)) = π3(S

3) = Z.

On the other hand, when r is even, the action maybe non-trivial. Take for
example r = 2, so we have π1(O(2)) = Z. The action of π0(O2) = Z2 in Z is
just ±1 · n = ±n. Hence, we have

Vect2(S
k) = πk−1(O(2))/Z2 = πk−1(S

1)/Z2 =

{
Z/Z2 if k = 2,

0 if k ≥ 3.

Remark 25.12. If a manifold is not of finite type, there still exists a classi-
fication of vector bundles over M . In this case, we need to consider the the
space:

R∞ =

∞⊕

d=0

Rd,

which is the direct limit of the increasing sequence of vector spaces:

· · · ⊂ Rd ⊂ Rd+1 ⊂ Rd+2 ⊂ · · ·
In R∞, we can consider the set of subspaces of dimension r, i.e., the Grass-
mannian:

G̃r(R
∞) = G∞−r(R

∞) = {S ⊂ R∞ : subspace of codimension r}.
Over this infinite Grassmannian there is a vector bundle ηr∞ = (π,E, G̃r(R∞)),
called the universal bundle of rank r. It has total space:

E = {(S, x) : S ⊂ R∞ subspace of codimension r, x ∈ R∞/S},
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and projection:

π : E → G̃r(R
∞), (S, x) 7→ S.

One can show that a vector bundle of rank r over a manifoldM is isomorphic
to the pull-back ψ∗ηr∞, for some classifying map ψ : M → G̃r(R∞). Hence,
for any manifold M , we have a bijection:

Vectr(M) ≃ [M, G̃r(R
∞)].

Homework.

1. Give a proof of the universal property of pull-backs (Proposition 25.2). Show
that this property characterizes the pull-back of vector bundles up to isomor-
phism.

2. Verify the properties of the pull-back of vector bundles given by Proposition
25.3.

3. Let ξ be a vector bundle over M × [0, 1]. Show that there exists an open
cover {Uα}α∈A of M such that the restrictions ξ|Uα×[0,1] are trivial.
Hint: Show that if ξ is a vector bundle over M × [a, c] which is trivial when
restricted to both M × [a, b] and M × [b, c], for some a < b < c, then ξ is a
trivial vector bundle.

4. Let ξ = (π,E,M) be a vector bundle and N ⊂ M a closed submanifold.
Show that every section s : N → E over N , admits an extension to a section
s̃ : U → E definided over an open set U ⊃ N .

5. Determine Vect1(S1) without using the classification of vector bundles.

6. Determine Vectr(S1), Vectr(S2) and Vectr(S3).

Lecture 26. Connections and Parallel Transport

In general, there is no natural way to differentiate sections of a vector
bundle. The reason is that, in general, there is no way of comparing fibers
of a vector bundle over different points of the base. We will now see how to
fix this.

Definition 26.1. A connection on a vector bundle ξ = (π,E,M) is a
map

∇ : X(M) × Γ(E) → Γ(E), (X, s) 7→ ∇Xs,

which satisfies the following properties:

(i) ∇X1+X2
s = ∇X1

s+∇X2
s;

(ii) ∇X(s1 + s2) = ∇Xs1 +∇Xs2;
(iii) ∇fXs = f∇Xs;
(iv) ∇X(fs) = f∇Xs+X(f)s.
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Properties (iii) a (iv) show that a connection ∇ is local. Hence a connec-
tion ∇ can be restrict to any open set U ⊂M , yielding a connection in ξ|U .
On the other hand, a map X 7→ ∇X is C∞(M)-linear, hence, for any section
s definided in a neighborhood U of p ∈M and any v ∈ TpM , we can define

∇vs ≡ ∇Xs(p) ∈ Ep,

where X is any vector field defined in a neighborhood of p such that Xp = v.
Note, however, that ∇vs depends on the values of s is a neighborhood of p,
not only on s(p) (property (iv) in the definition).

Let U ⊂ M be an open set where ξ trivializes, so we can choose a ba-
sis of sections {s1, . . . , sr} for ξ|U . Any other section s of ξ|U is a linear
combination:

s = f1s1 + · · ·+ frsr.

for unique smooth functions fi ∈ C∞(U). The connection ∇ is then com-
pletely determined by its effect on the sections si: for any vector field
X ∈ X(M), by property (iv), we have:

∇Xs =
r∑

a=1

fa∇Xsa +X(fi)sa.

Moreover, if additionally U is the domain of some coordinate system (x1, . . . , xd)
of M , we find:

∇ ∂

∂xi
sa =

r∑

b=1

Γbiasb, (i = 1, . . . , d, a = 1, . . . , r),

for unique functions Γbiasb ∈ C∞(U). One calls Γbiasb the Christoffel sym-
bols of the connection relative to the coordinate systems and basis of local
sections.

We can also organize the Christoffel symbols as a r×rmatrix of differential
forms in U defined by:

ωba =

r∑

i=1

Γbiadx
i.

One calls ω = [ωba] the connection 1-form. By property (iii) in the defi-
nition of a connection, it is independent of the choice of local coordinates.
Exercise 3, in the Homework, discusses how it depends on the choice of
trivializing sections.

Example 26.2.
Recall that the vector bundle ξ = (π,E,M) of rank r is trivial if and only if it
admits a basis of global sections {s1, . . . , sr}. For each choice of basis, we can
define a connection in ξ by setting:

∇Xsi = 0, (a = 1, . . . , r).

Note that this connection depends on the choice of trivializing sections.
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The collection of all connections on a fixed vector bundle ξ has an affine
structure: if f ∈ C∞(M) is any smooth function, ∇1 and∇2 are connections,
then the affine combination

f∇1 + (1− f)∇2,

also defines a connection in ξ. It is this fact that allows us to show that:

Proposition 26.3. Every vector bundle ξ = (π,E,M) admits a connection.

Proof. Let {Uα} be an open cover of M by trivializing open sets. The
previous example shows that in each Uα we can choose a connection ∇α.
We define a connection ∇ in M “gluing” these connections: if {ρα} is a
partition of unity subordinated to the cover {Uα}, then

∇ ≡
∑

α

ρα∇α,

defines a connection in ξ. �

If one starts with vector bundles with a connection, the usual construc-
tions lead to vector bundles with connections:

Proposition 26.4. Let ξ and ξ′ be vector bundles over M , furnished with
connections ∇ and ∇′. Then the associated bundles ξ⊕ ξ′, ξ∗ and ∧kξ, have
induced connections satisfying:

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇Xs2,

∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · · ∇X ∧ sk
X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.

If ψ : N →M is a smooth map, then ψ∗ξ has a connection induced from ∇
such that:

(∇vψ
∗s) = ψ∗(∇dpψ(v)s), ∀v ∈ TpN, s ∈ Γ(ξ).

We leave the proof for the exercises.
Connections can be used to compare different fibers of a vector bundle.

Let ξ = (π,E,M) be a vector bundle with a connection ∇. If c : [0, 1] →M
is a smooth curve then the pullback bundle c∗ξ has an induced connection
which we still denote by ∇. Notice that a section s of the bundle c∗ξ is
just a section of ξ along c, i.e., a smooth map s : [0, 1] → E such that
π(s(t)) = c(t), for all t ∈ [0, 1].

Definition 26.5. The covariant derivative of a section along a curve c
is the section along c given by:

Ds

Dt
≡ ∇ d

dt
s.

A section along c is called a parallel section if it has vanishing covariant
derivative: Ds

Dt = 0
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Choose local coordinates (U, x1, . . . , xd) and trivializing sections {s1, . . . , sr}
over U . Given a curve c(t) we let ci(t) = xi(c(t)), an for a section s along c
we write s(t) =

∑
a v

a(t)sa(c(t)). Then the covariant derivative along c has
components:

(26.1)

(
Ds

Dt

)a
=

dva(t)

dt
+
∑

ib

dci(t)

dt
Γaib(c(t))v

b(t), (a = 1, . . . , r).

Remark 26.6. Not that even for a constant curve c(t) = p0, the covariant
derivative along c is not zero! In fact, in this case, a section along c is just
a curve s : [0, 1] → Tp0M in the tangent space at p0 and the the covariant
derivative is the usual derivative of this curve.

The well known results about existence and uniqueness of solutions of
linear ordinary equations with time dependent coefficients, we obtain:

Lemma 26.7. For any curve c : [0, 1] →M and any v0 ∈ Ec(0), there exists
a unique parallel section s along c with initial condition s(0) = v0.

Under the conditions of this lemma, we say that the vectors s(t) ∈ Ec(t)
are obtained by parallel transport along c. We denote by τt : Ec(0) → Ec(t)
the operation of parallel transport defined by τt(v0) = s(t).

Proposition 26.8. Let ξ = (π,E,M) be a vector bundle with a connection
∇ and let c : [0, 1] →M be a smooth curve. Then:

(i) Parallel transport τt : Ec(0) → Ec(t) along c is a linear isomorphism.
(ii) If v = c′(0) ∈ Tc(0)M is the vector tangent to c, then:

∇vs = lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)
,

for any section s ∈ Γ(ξ).

Proof. Since the differential equation defining parallel transport is linear,
it depends linear on the initial conditions, so τt is linear. On the other
hand, τt is invertible, since its inverse is parallel transport along the curve
c̄ : [0, t] → M , given by c̄(ε) = c(t − ε). We leave the proof of (ii) as an
exercise. �

Consider now the tangent bundle ξ = TM of a manifold M . For a
connection ∇ in TM , the notions above have a more geometric meaning. For
example, in M = Rd, there is a canonical connection ∇ in TRd = Rd × Rd,
which corresponds to the usual directional derivative. A vector field X (i.e.,
a section of TM) is parallel for this connection along a curve c(t) if and only
if the vectors Xc(t) are parallel in the usual sense.

For a connection in the tangent bundle TM there are additional notions
that do not make sense for connections on a general vector bundle. This is
because a connection in TM differentiates vector fields along vector fields,
so we have a more symmetric situation. Here is a first example:
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Definition 26.9. Let ∇ be a connection in TM . A geodesic is a curve
c(t) for which its derivative ċ(t) (a vector field along c(t)) is parallel, i.e.,
we have:

Dċ

Dt
(t) = 0.

If we choose local coordinates (U, x1, . . . , xd), we have trivializing vector
fields { ∂

∂x1 , . . . ,
∂
∂xd

} for TM |U , and we can write:

∇ ∂

∂xi

∂

∂xj
=
∑

k

Γkij
∂

∂xk
.

The equations for the components ci(t) = xi(c(t)) of a geodesic c(t) in local
coordinates are:

d2ck(t)

dt2
= −

∑

ij

Γkij(c(t))
dci(t)

dt

dcj(t)

dt
, (k = 1, . . . , n).

Using these equations, it should be clear that given p0 ∈M and v ∈ Tp0M ,
there exists a unique geodesic c(t) such that c(0) = p0 and ċ(0) = v. This
geodesic is defined for 0 ≤ t < ε, and if we choose v sufficiently small we
can assume that ε > 1. In this case, we set::

expp0(v) ≡ c(1).

In this way, we obtain the exponential map expp0 : U → M , which is
defined in an open neighborhood U ⊂ Tp0M of the origin.

Another notion which only makes sense for connections ∇ in TM is the
torsion of a connection: this is the map T : X(M) × X(M) → X(M)
defined by:

T (X,Y ) = ∇XY −∇YX − [X,Y ].

One checks that T is C∞(M)-linear in both arguments, so it defines a mor-
phism of vector bundles T : TM ⊕ TM → TM . One calls T the torsion
tensor of the connection. A symmetric connection is a connection ∇
whose torsion is zero.

The next proposition gives a characterization of the torsion in terms of the
covariant derivative. For that we choose φ : [0, 1] × [0, 1] → M an injective
immersion (i.e., a parameterized surface) and we denote the parameters by
(x, y). This section gives rise to:

∂φ

∂x
≡ φ∗(

∂

∂x
),

∂φ

∂y
≡ φ∗(

∂

∂y
)

which are vector fields along the curves obtained by freezing x and y. Hence,
we can take the covariant derivatives:

• D
Dx

∂φ
∂y the covariant derivative along the curve t 7→ φ(t, y) at t = x;

• D
Dy

∂φ
∂x the covariant derivative along the curve t 7→ φ(x, t) at t = y;

We have:
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Proposition 26.10. Consider a parameterized surface φ : [0, 1] × [0, 1] →
M . The torsion of a connection ∇ in TM satisfies:

D

Dx

∂φ

∂y
− D

Dy

∂φ

∂x
= T (

∂φ

∂x
,
∂φ

∂x
).

Proof. The proof is immediate if one computes both sides in local coordi-
nates. �

The most classical example of a connection is the Levi-Civita connection
in the tangent bundle of a Riemannian manifold, which we now describe.
We start with a definition:

Definition 26.11. Let ξ be a vector bundle over M with a fiber metric 〈 , 〉.
A connection in ξ is said to be compatible with the metric if

X(〈s1, s2〉) = 〈∇Xs1, s2〉+ 〈s1,∇Xs2〉,
for every vector field X ∈ X(M) and every pair of sections s1, s2 ∈ Γ(ξ).

For a Riemannian manifold we have a natural choice of compatible metric:

Proposition 26.12. Let (M, 〈 , 〉) be a Riemannian manifold. There exists
a unique symmetric connection in TM compatible with the metric.

Proof. Let X,Y,Z ∈ X(M) be vector fields in M . The compatibility of ∇
with the metric gives:

X · 〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉,
Y · 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇YX〉,
Z · 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉.

Adding the first two equations and subtracting the third one, gives:

X · 〈Y,Z〉+ Y · 〈Z,X〉 − Z · 〈X,Y 〉 = 2〈∇XY,Z〉
− 〈X, [Y,Z]〉 − 〈Y, [Z,X]〉 − 〈Z, [X,Y ]〉,

where we have used the symmetry of the connection. This relation shows
that the two conditions completely determine the connection by the formula:

〈∇XY,Z〉 =
1

2
(X · 〈Y,Z〉+ Y · 〈Z,X〉 − Z · 〈X,Y 〉)

+
1

2
(〈X, [Y,Z]〉 + 〈Y, [Z,X]〉 + 〈Z, [X,Y ]〉) .

On the other, one checks easily that this formula does define a connection
in TM which is symmetric and compatible with the metric. �

The connection in the propositions is known as the Levi-Civita connec-
tion of the Riemannian manifold. This allows to define parallel transport,
geodesics, exponential map, etc., for a Riemannian manifold. The fact that
this connection comes from a metric leads to additional properties of these
notions (see the Homework).
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Homework.

1. Let ξ and ξ′ be vector bundles overM , furnished with connections∇ and∇′.
Show that the associated bundles ξ⊕ ξ′, ξ∗ and ∧kξ, have induced connections
satisfying:

∇X(s1 ⊕ s2) = ∇Xs1 ⊕∇Xs2,

∇X(s1 ∧ · · · ∧ sk) = ∇Xs1 ∧ · · · ∧ sk + · · ·+ s1 ∧ · · ·∇X ∧ sk
X(〈s, η〉) = 〈∇Xs, η〉+ 〈s,∇Xη〉.

Determine the connection 1-form of the pull-back connections in terms of the
connection 1-form of the original connections.

2. Let ξ be a vector bundle over M with a connection ∇. If ψ : N → M is a
smooth map, show that ψ∗ξ has a connection induced from ∇ such that:

(∇vψ
∗s) = ψ∗(∇dpψ(v)s), ∀v ∈ TpN, s ∈ Γ(ξ).

Determine the connection 1-form of the pull-back connections in terms of the
connection 1-form of the original connection.

3. Let U ⊂M be an open set where the vector bundle ξ = (π,E,M) trivializes,
and let {s1, . . . , sr} and {s′1, . . . , s′r} be two basis of local sections for ξ. Denote

byA = (aji ) ∈ C∞(U,GL(r)) the matrix of change of basis so that s′i =
∑

j a
j
isj .

If ω and ω′ denote the corresponding connection 1-forms show that they are
related by:

ω′ = A−1ωA+A−1dA.

4. Deduce formula (26.1) for the local expression of the covariant derivative of
a connection.

5. Let ξ = (π,E,M) be a vector bundle with a connection ∇. If c : [0, 1] →M
is a smooth curve and v = c′(0) ∈ Tc(0)M show that for any section s ∈ Γ(ξ):

∇vs = lim
t→0

1

t

(
τ−1
t (s(c(t))) − s(c(0))

)
.

6. Let ξ be a vector bundle over M with a fiber metric 〈 , 〉. Show that ξ has
a connection compatible with the metric.

7. Let ξ = (π,E,M) be a vector bundle with a fiber metric 〈 , 〉. For a
connection ∇ in ξ, show that the following are equivalent:
(i) ∇ is compatible with the metric.
(ii) Parallel transport τt : Ec(0) → Ec(t) along any curve c is an isometry.
(iii) For any basis of orthonormal trivializing sections the connection 1-form

ω = [ωba] is a skew-symmetric matrix.

8. Let 〈 , 〉 be a Riemannian metric in M and let (x1, . . . , xd) be local coor-
dinates. Find the expression for the Christoffel symbols Γkij(x) of the Levi-
Civita connection of the metric in terms of the components of the metric
gij(x) := 〈 ∂

∂xi

∣∣
x
, ∂
∂xj

∣∣
x
〉
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Lecture 27. Curvature and Holonomy

We saw in the previous lecture that a trivial vector bundle carries natural
connections defined in terms of trivializing sections si, for which ∇si = 0.
In general, for an arbitrary connection, it is not possible to choose a basis
of local sections si such that ∇si = 0. The obstruction is given by the
curvature of the connection.

If ∇ is a connection in a vector bundle ξ = (π,E,M), one defines the
curvature of ∇ to be the map R : X(M)× X(M) × Γ(ξ) → Γ(ξ) given by:

(X,Y, s) 7→ R(X,Y )s ≡ ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s.

A simple computation shows that R is C∞(M)-linear in all the arguments,
so we can think of R as a vector bundle map R : TM ⊕ TM ⊕E → E. For
this reason one also calls R the curvature tensor.

The local expression for the curvature in a trivializing open set U ⊂
M for ξ, in terms of a basis of sections {s1, . . . , sr} and local coordinates
(x1, . . . , xd), is given by:

R(
∂

∂xi
,
∂

∂xj
)sa = Rbijasb,

where the components Rbija can be expressed in terms of the Christoffel

symbols Γbia by:

Rbija =
∂Γbja
∂xi

− ∂Γbia
∂xj

+ ΓciaΓ
b
jc − ΓcjaΓ

b
ic.

We can also codify the curvature in terms of a matrix of differential forms:

Ωba =
∑

i<j

Rbijadx
i ∧ dxj,

and Ω = [Ωba] is called the curvature 2-form of the connection. This
matrix-valued 2-form is independent of the choice of local coordinates. The
dependence on the choice of trivializing sections is discussed in the Home-
work.

Theorem 27.1. For a connection in a vector bundle ξ, the connection 1-
form ω and the curvature 2-form Ω associated with some trivializing sections,
are related by the structure equations:

Ωba = dωba +
∑

c

ωca ∧ ωbc,

one has the Bianchi’s identity:

dΩba = Ωca ∧ ωbc − ωca ∧ Ωbc,

or equivalently:

Ω = dω + ω ∧ ω and dΩ = Ω ∧ ω − ω ∧ Ω.
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Proof. The structure equation follows from the definitions of the connection
1-form and the curvature 2-form. Bianchi’s identity follows by taking ex-
terior differentiation of the structure equation. The details are left as an
exercise. �

Let us turn now to the geometric interpretation of curvature in term of
parallel transport. We choose an injective immersion φ : [0, 1] × [0, 1] →M
(i.e., a parameterized surface) and we denote the parameters by (x, y). We
have the vector fields along φ given by:

∂φ

∂x
≡ φ∗(

∂

∂x
),

∂φ

∂y
≡ φ∗(

∂

∂y
).

Moreover, given a section s of the vector bundle ξ along φ, we can introduce
the covariant derivatives:

• Ds
Dx(x, y) the covariant derivative along the curve t 7→ φ(t, y) in t = x;

• Ds
Dy (x, y) the covariant derivative along the curve t 7→ φ(x, t) in t = y;

We have:

Proposition 27.2. For any section s of ξ along a parameterized surface
φ : [0, 1] × [0, 1] →M , the curvature of the connection satisfies:

D

Dx

Ds

Dy
− D

Dy

Ds

Dx
= R(

∂φ

∂x
,
∂φ

∂x
)s.

Again the proof is immediate in local coordinates.
A flat connection is a connection for which the curvature tensor van-

ishes. We will often refer to a vector bundle with a flat connection as a
flat bundle. Clearly, if around each point one can choose coordinates and
trivializing sections for which the Christoffel symbols vanish, the connection
is flat. The converse is also true, as a consequence of the following local
normal form for flat bundles:

Corollary 27.3. Let ξ = (π,E,M) be a vector bundle of rank r with a
flat connection ∇. For each p ∈ M , there exists a base of local sections
{s1, . . . , sr} definided in a neighborhood U of p, such that

∇Xsi = 0, ∀X ∈ X(M).

Hence, ξ|U is isomorphic to the trivial vector bundle εrU with the canonical
flat connection.

Proof. See Exercise 4 in the Homework. �

In the case of Riemannian manifolds, Corollary 27.3 takes the following
more geometric meaning:

Corollary 27.4. Let (M, 〈 , 〉) be a Riemannian manifold with vanishing
curvature tensor: R = 0. For each p ∈M , there exists a neighborhood U of
p which is isometric to Rd, with the canonical metric.

Proof. See Exercise 5 in the Homework. �
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The previous results describe flat connections locally. To describe what
happens with a flat connection globally, we need to introduce the notion of
of holonomy of a connection. Given a vector bundle ξ = (π,E,M) of rank
r with a connection ∇ fix a base point p0 ∈ M . For each a closed curve
c : [0, 1] → M base at p0, so c(0) = c(1) = p0, parallel transport along the
curve c(t) gives a linear isomorphism Hp0(c) ≡ τ1 : Ep0 → Ep0 . We can
extend this definition to closed curves which are piecewise smooth in the
obvious way. It should be clear that if c1 and c2 are piecewise smooth closed
curves and c1 · c2 denotes their concatenation then:

Hp0(c1 · c2) = Hp0(c1) ◦H(c2).

When the connection is flat we have:

Lemma 27.5. If c0 and c1 are homotopic closed curves based at p0, then
Hp0(c0) = Hp0(c1).

It follows that we have a group homomorphismHp0 : π1(M,p0) → GL(Ep0),
called the holonomy representation of the flat connection ∇, with base
point p0. Note that if q0 ∈ M is a different point in the same connected
component of M , we can choose a smooth path c : [0, 1] → M , connecting
p0 to q0 (i.e., c(0) = p0 and c(1) = q0). Parallel transport along c(t) gives
an isomorphism τ : Ep0 → Eq0 and:

Hq0 = τ ◦Hp0 ◦ τ−1.

Hence, the holonomy representations of different points in the same compo-
nent are related by conjugacy.

Conversely, the holonomy representation determines the flat bundle:

Theorem 27.6. Let ξ = (π,E,M) be a vector bundle of rank r with a flat
connection ∇ over a connected manifold. Then the holonomy of ∇ induces a
representation H : π1(M,x0) → GL(Rr). Conversely, every representation
of the fundamental group π1(M,x0) defines a vector bundle of rank r with
a flat connection ∇, whose holonomy with base point x0 coincides with the
given representation.

Proof. We already know that a flat vector bundle induces a representation of
the fundamental group. Conversely, given a representation H : π1(M,p0) →
GL(Rr) we construct a flat vector bundle as follows: on the one hand,
the representation gives an action of π(M,p0) in Rr. On the other hand,

the fundamental group π1(M,p0) acts in the universal cover M̃ by deck

transformations: identifying M̃ with the set of homotopy classes of paths

[c] with initial point c(0) = p0, the action of π1(M,p0) in M̃ is given by
concatenation:

π1(M,p0)× M̃ → M̃, ([γ], [c]) 7→ [γ · c].
Since this action is proper and free, the resulting diagonal action of π1(M,p0)

in M̃ × Rr is also proper and free. Hence, the quotient space E = (M̃ ×
214



Rr)/π1(M,p0) is a manifold, and we have the projection

π : E →M, [[c],v] 7→ c(1).

The triple ξ = (π,E,M) is a vector bundle. Moreover, the canonical flat

connection in M̃×Rr induces a connection in ξ for which the holonomy with
base point p0 is precisely H : π1(M,p0) → GL(Rr). �

Homework.

1. Deduce the structure equation and Bianchi’s identity for the connection
1-form and the curvature 2-form of a connection.

2. Let U ⊂M be an open set where the vector bundle ξ = (π,E,M) trivializes,
and let {s1, . . . , sr} and {s′1, . . . , s′r} be two basis of local sections for ξ. Denote

byA = (aji ) ∈ C∞(U,GL(r)) the matrix of change of basis so that s′i =
∑

j a
j
isj .

If Ω and Ω′ denote the corresponding curvature 2-forms show that they are
related by:

Ω′ = A−1ΩA.

3. Use Exercise 3 in the previous lecture and the previous exercise to show
that if ∇ is a flat connection in the vector bundle ξ = (π,E,M), then around
any point p ∈Mone can find a local basis of flat sections.
Hint: Use the condition ω′ = 0 to define a integrable distribution in U×GL(r)
and apply Frobenius.

4. Let G be a connected Lie group with Lie algebra g. Show that there exists a
unique connection∇ in TG, which is invariant under left and right translations,
and under inversion. Show that ∇ satisfies the following properties:
(a) For any left invariant vector fields X,Y ∈ g:

∇XY =
1

2
[X,Y ].

(b) The torsion of ∇ vanishes and its curvature is given by:

R(X,Y ) · Z =
1

4
[[X,Y ], Z], ∀X,Y, Z ∈ g).

(c) The exponential map of ∇ at the identity expe coincides with the Lie
group exponential map exp : g → G.

(d) Parallel transport along the curve c(t) = exp(tX), X ∈ g, is given by:

τt(v) = dLexp( t
2
X) · dRexp( t

2
X) · v, ∀v ∈ TeG.

(e) The geodesics are translations of the 1-parameter subgroups of G.

5. Let (M, 〈 , 〉) be a Riemannian manifold whose curvature tensor vanishes:
R = 0. Show that for each p ∈M , there exists a neighborhood U isometric to
Rd with the Euclidean metric.
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Lecture 28. Characteristic Classes

We saw in the previous lecture that a flat vector bundle is globally char-
acterized by its holonomy representation. The situation in the non-flat case
is more complicated but more interesting: we will see now that one can use a
connection on a vector bundle to associate to the vector bundle cohomology
classes which are invariants of the vector bundle, and which characterize
certain properties of the vector bundle up to isomorphism.

Let π : E → M be a vector bundle. We consider differential forms in M
with values in E, which we denote by

Ω•(M ;E) = Ω•(M)⊗ Γ(E).

Hence, Ωk(M ;E) consists of sections of the vector bundle ∧kT ∗M ⊗E, so a
differential form of degree k with values in E is a k-multilinear alternating
map:

ω : X(M) × · · · × X(M) → Γ(E).

In particular, Ω0(M ;E) is the space Γ(E) of global sections of the vector
bundle π : E →M .

In order to take the differential of E-valued differential forms we need to
choose a connection ∇ in π : E → M . Such a connection determines an
operator d∇ : Ω0(M ;E) → Ω1(M ;E) through the formula:

(d∇s)(X) = ∇Xs.

The map d∇ is R-linear and satisfies:

d∇(fs) = df ⊗ s+ fd∇s.

Conversely, every map Ω0(M ;E) → Ω1(M ;E) which is R-linear and satisfies
this property defines a connection, so this gives an alternative approach to
the theory of connections E.

We have that d∇ extends, in a unique way, to E-valued differential forms
of arbitrary degree:

Proposition 28.1. Given a connection ∇ and ω ∈ Ωk(M ;E) define d∇ω ∈
Ωk+1(M ;E) by:

(28.1) d∇ω(X0, . . . ,Xk) =

k+1∑

i=0

(−1)i∇Xi
(ω(X0, . . . , X̂i, . . . ,Xk))

+
∑

i<j

(−1)i+jω([Xi,Xj ],X0, . . . , X̂i, . . . , X̂j , . . . ,Xk).

Then d∇ : Ω•(M ;E) → Ω•+1(M ;E) is the unique operator satisfying:

(i) d∇ is R-linear and satisfies the Leibniz identity:

d∇(ω ⊗ s) = d∇(ω)⊗ s+ (−1)deg ωω ∧ d∇(s), ∀ω ∈ Ω•(M), s ∈ Γ(E).

(ii) For 0-forms, (d∇s)(X) = ∇Xs.
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Note that, in general, d2∇ 6= 0, so d∇ is not a differential. In fact, a more
or less tedious computation shows that

d2∇s(X,Y ) = R∇(X,Y )s, ∀X,Y ∈ X(M), s ∈ Γ(E).

so d∇ is a differential if and only if the connection is flat. In this case,
one calls the cohomology of the complex (Ω•(M ;E),d∇) the de Rham
cohomology of M with coefficients in E and denotes it by H•(M ;E).
Notice that the usual de Rham cohomology corresponds to the case where
E =M × R is the trivial flat line bundle.

In general, we will have R 6= 0, but it will satisfy Bianchi’s identity, which
in this language can be written in the form:

(28.2) d∇R∇ = 0.

Note that in this last identity we view the curvature tensor as a bilinear
alternating map R : X(M) × X(M) → Γ(End(E)), i.e., as a 2-form with
values in End(E). Also, in End(E) we consider the connection induced by
∇, so the equation makes sense.

The Bianchi identity can be used to define certain cohomology classes. For
that we need first to recall the relationship between homogeneous polynomi-
als in a vector space V and multilinear symmetric maps P : V ×· · ·×V → R:

(i) Every k-multilinear symmetric map P : V × · · · × V → R determines

a homogeneous polynomial P̃ : g → R of degree k, by the formula:

P̃ : v 7→ P (v, . . . , v).

(ii) Conversely, every homogeneous polynomial P̃ : V → R of degree k
determines a k-multilinear symmetric map P : V × · · · × V → R: if

ξ1, . . . , ξr is a base for V ∗, then the polynomial P̃ : V → R can be
written as:

P̃ (v) =

r∑

i1···ik=1

ai1···ikξ
i1 · · · ξik ,

where the coefficients ai1···ik are symmetric in the indices. Hence, we
can define a k-multilinear, symmetric map P : V × · · · × V → R by:

P (v1, . . . , vk) =

r∑

i1···ik=1

ai1···ikξ
i1(v1) · · · ξik(vk).

These correspondences are inverse to each other. Under this correspondence
the product of k-multilinear, symmetric maps, defined by:

P1 ◦ P2(v1, . . . , vk+l) =

1

(k + l)!

∑

σ∈Sk+l

P1(vσ(1), . . . , vσ(k))P2(vσ(k+1), . . . , vσ(k+l)).

is mapped to the usual product of polynomials.
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We are interested in the case where V = g is the Lie algebra of a Lie
group G. We will denote by Ik(G) the space of k-multilinear, symmetric
maps P : g× · · · × g → R which are invariant under the adjoint action:

P (Ad g · v1, . . . ,Ad g · vk) = P (v1, . . . , vk), ∀g ∈ G, v1, . . . , vk ∈ g.

and we let

I(G) =

∞⊕

k=0

Ik(G).

Note that I(G) is a ring with the symmetric product. Under the corre-
spondence above, we can identify I(G) with the algebra of polynomials in g

which are Ad-invariant.
For now, we are only interested in the case where G = GL(r), so that

g = gl(r) is the space of all r× r-matrices. Then the invariance condition is
just:

P (AX1A
−1, . . . , AXkA

−1) = P (X1, . . . ,Xk), X1, . . . ,Xk ∈ gl(r),

which must hold for any invertible matrix A ∈ GL(r). The key remark is
the following:

Proposition 28.2. Let ξ = (π,E,M) be a rank r vector bundle with a
connection ∇. Every element P ∈ Ik(GL(r)) determines a map

P : Ω•(M ;⊗k End(E)) → Ω•(M),

which satisfies:

dP = Pd∇.

Proof. Note that if s1, . . . , sr is a base of local of sections of E then for any
section A ∈ Γ(End(E)), we have:

Asi =

r∑

j=1

Ajisj ,

for some functions Aji . Hence, given a P ∈ Ik(GL(r)), we can define a map

P : Γ(⊗k End(E)) → C∞(M) by:

P (A1 ⊗ · · · ⊗Ak) = P ([(A1)
j
i ], · · · , [(Ak)

j
i ]).

By the invariance condition, this definition is independent of the choice
of base of local of sections. Since a form ω ∈ Ωl(M ;⊗k End(E)) is an
l-multilinear alternating map ω : X(M) × · · · × X(M) → Γ(⊗k End(E)),
the composition with P determines an l-multilinear alternating map P ◦
ω : X(M) × · · · × X(M) → C∞(M), i.e., an element P (ω) ∈ Ωl(M). An
elementary computation shows that:

dP = Pd∇.

�
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If ∇ is a connection in a vector bundle π : E → M of rank r with
curvature R, then the k-symmetric power of the curvature is an element
Rk ∈ Ω2k(M ;⊗k End(E)). Explicitly, we have:

Rk(X1, . . . ,X2K) =
1

(2k)!

∑

σ∈S2k

(−1)sgn σR(Xσ(1),Xσ(2))⊗· · ·⊗R(Xσ(2k−1),Xσ(2k)).

Therefore, if P ∈ Ik(GL(r)), we obtain a differential form P (Rk) ∈ Ω2k(M).
This form is given explicitly by

P (Rk)(X1, . . . ,X2k) =

1

(2k)!

∑

σ∈S2k

(−1)sgn σP (Ω(Xσ(1),Xσ(2)), . . . ,Ω(Xσ(2k−1),Xσ(2k))).

It follows that if P1 ∈ Ik(GL(r)) and P2 ∈ I l(GL(r)), then:

P1 ◦ P2(R
k+l) = P1(R

k) ∧ P2(R
l) ∈ Ω2(k+l)(M).

The Bianchi identity (28.2) gives:

dP (Rk) = P (d∇R
k) = kP (Rk−1d∇R) = 0,

so P (R) is a closed 2k-form. Now, we have:

Theorem 28.3 (Chern-Weil). Let ∇ be a connection in a vector bundle
π : E → M of rank r, with curvature R. The map I(GL(r)) → H(M)
defined by:

Ik(GL(r)) → H2k(M), P 7−→ [P (Rk)],

is a ring homomorphism. This homomorphism is independent of the choice
of connection.

Proof. All that it remains to be proved is that the homomorphism is inde-
pendent of the choice of connection. For that we claim that if ∇0 and ∇1 are
two connections in π : E → M , then for all P ∈ Ik(GL(r)) the differential
forms P (Rk∇0

) and P (Rk∇1
) differ by an exact form.

To prove the claim, consider the projection p : M × [0, 1] → M . The
pull-back bundle p∗E carries a connection ∇ defined by:

∇ := t∇1 + (1− t)∇0, (t ∈ [0, 1]).

On the other hand, we can consider an operation of integration along the
fibers: ∫ 1

0
: Ω•(M × [0, 1]) → Ω•−1(M),

by setting:

(

∫ 1

0
ω)(X1, . . . ,Xl−1) =

∫ 1

0
ω(

∂

∂t
,X1, . . . ,Xl−1)dt.
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The Chern-Simons transgression form is defined by

(28.3) P (∇0,∇1) ≡
∫ 1

0
P (Rk∇) ∈ Ω2k−1(M).

We leave as an exercise to check that:

dP (∇0,∇1) = P (Rk∇1
)− P (Rk∇0

).

This proves the claim, so P (Rk∇1
) and P (Rk∇0

) define the same cohomology
class. �

The map I(GL(r)) → H•(M) is called the Chern-Weil homomor-
phism of the vector bundle ξ = (π,E,M). An element in the image of the
Chern-Weil homomorphism is called a characteristic class of the vector
bundle ξ = (π,E,M). Because of the next proposition, this class depends
only on the isomorphism class of ξ:

Proposition 28.4. Let ψ : N →M be a smooth map and let ξ = (π,E,M)
be a vector bundle of rank r. For every P ∈ I•(GL(r)),

φ∗P (Rk∇) = P (Rkφ∗∇),

where ∇ is any connection in ξ.

We leave the proof for the Homework.

It remains to find the invariant symmetric multilinear maps or, equiva-
lently, the invariant polynomials. For that, given a matrix X ∈ gl(r) denote
by σk(X) the elementary symmetric function of degree k, so that:

det(I + λX) = I + λσ1(X) + · · ·+ λrσr(X),

for every λ ∈ R. One checks easily that σk : gl(r) → R is a homogeneous
polynomial of degree k which is Ad-invariant. These elements generate the
ring I(GL(r)). For example, one has:

σ1(X) = trX,

σ2(X) =
1

2

(
(trX)2 − trX2

)
,

...

σr(X) = detX.

Definition 28.5. Let ξ = (π,E,M) be a vector bundle of rank r. For
k = 1, 2, . . . , the Pontrjagin classes of ξ are:

pk(ξ) =
1

(2π)2k
[σ2k(R

2k)] ∈ H4k(M),

where R is the curvature of any connection ∇ in ξ. The total Pontrjagin

class of the vector bundle ξ is:

p(ξ) = 1 + p1(ξ) + · · · + p[r/2](ξ),

where [r/2] denotes the largest integer less or equal to r/2.
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The reason one does not consider the classes [σk(R
k)] for odd k is that

these classes are always zero (see the Homework). The next proposition lists
basic properties of these characteristic classes. The proof is immediate from
the construction of these classes.

Proposition 28.6. Let M be a smooth manifold. The Pontrjagin classes
satisfy:

(i) p(ξ ⊕ η) = p(ξ) ∪ p(η), for any vector bundles ξ and η over M ;
(ii) p(ψ∗ξ) = ψ∗p(ξ), for any vector bundle ξ over M and smooth map

ψ : N →M ;
(iii) p(ξ) = 1, if the vector bundle ξ admits a flat connection.

The Pontrjagin classes p(TM) of the tangent bundle of a manifold M
give an important invariant of a smooth manifold. Novikov proved that
these classes are in fact topological invariants: two smooth manifolds which
are homemorphic have the same Pontrjagin classes p(TM).

Examples 28.7.

1. Let M = Sd →֒ Rd+1 and denote by ν(Sd) = TSdR
d+1/TSd the normal

bundle of Sd. Notice that the Whitney sum

TSd ⊕ ν(Sd) = TSdR
d,

is the trivial vector bundle over Sd. On the other hand, the normal bundle
ν(Sd) is also trivial, for it is a line bundle which admits a nowhere vanishing
section. By property (i) in the Proposition we conclude that p(TSd) = 1.

2. Let M = CPd. Recall that we have CPd = S2d+1/S1, where S2d+1 ⊂ Cd+1

and S1 acts by complex multiplication: θ · z = eiθ. The Euclidean metric
in Cd+1 = R2d+2 induces a Riemannian metric in S2d+1 which is invariant
under the S1-action. Hence, this induces a Riemannian metric in the quotient
CPd = S2d+1/S1, called the Fubini-Study metric.

One can use the connection associated with the Fubini-Study metric to com-
pute the Pontrjagin classes p(TCPd). For example, in the Homework we sketch
how in the case of CP2 one finds that p(TCP2) = 3[µ], where [µ] ∈ H4(CP2) is
the class representing the canonical orientation of CP2 (the orientation induced
from the standard orientation of S5).

So far, all our vector bundles were real vector bundles. One can also
consider complex vector bundles (π,E,M), where the fibers Ex are now
complex vector bundles of complex dimension r and the transition functions
gαβ take values in GL(Cr). Every complex vector bundle of rank r can be
viewed as a real vector bundle of rank 2r, with a complex structure, i.e., an
endomorphism of (real) vector bundles J : ξ → ξ such that J2 = −id. The
complex structure J and the complex structure in the fibers are related by:

(a+ ib)v = av + bJ(v), ∀v ∈ E.

On a complex vector bundle one considers C-connections, i.e., connections
∇ which are compatible with the complex structure: ∇J = J∇. This means
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that for each vector field X ∈ X(M) the map s 7→ ∇Xs is C-linear:

∇X(λ1s1 + λ2s2) = λ1∇Xs1 + λ2∇Xs2, ∀λi ∈ C, si ∈ Γ(ξ).

Using such connections, one defines the Chern-Weil homomorphism much
the same way as in the real case, obtaining a ring homomorphism

I(GL(r,C)) → H•(M).

Again, the ring of invariant polynomials I(GL(r,C)) is generated by the
elementary invariant polynomials: every invariant polynomial in gl(r,C)
can be expressed as a function of the polynomials σ1, . . . , σr defined for any
element X ∈ gl(r,C) by:

det(I + λX) = I + λσ1(X) + · · ·+ λrσr(X),

for all λ ∈ C. These allow us to define:

Definition 28.8. Let ξ = (π,E,M) be a complex vector bundle of rank r.
For k = 1, . . . , r we define the Chern classes of ξ by:

ck(ξ) =
1

(2πi)k
[σk(R

k)] ∈ H2k(M),

where R is the curvature of any connection ∇ in ξ. The total Chern class

of ξ is sum:

c(ξ) = 1 + c1(ξ) + · · ·+ cr(ξ) ∈ H(M).

Note that, a priori, the Chern classes are cohomology classes lying in
complex de Rham cohomology H•(M,C). However, the normalization factor
makes them real cohomology classes. To see this, we use the following
lemma:

Lemma 28.9. Every complex vector bundle ξ = (π,E,M) admits a fiber
hermitian metric 〈·, ·〉 and a C-connection ∇ compatible with the metric.

Choosing a connection as in the lemma, for any orthonormal C-basis of
local sections {s1, . . . , sr} of E, the connection 1-form is a unitary matrix.
By the structure equation, the curvature 2-form is also unitary so its eigen-
values are purely imaginary. It follows that ikσk(R

k) is a real form, so the
Chern classes are real cohomology classes.

Similar to the real case, we have the following properties:

Proposition 28.10. Let M be a smooth manifold. The Chern classes sat-
isfy:

(i) c(ξ⊕ η) = c(ξ)∪ c(η), for any complex vector bundles ξ and η over M ;
(ii) c(ψ∗ξ) = ψ∗c(ξ), for any complex vector bundle ξ over M and smooth

map ψ : N →M ;
(iii) c(ξ) = 1, if ξ is a complex vector bundle which admits a flat connection.
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Remark 28.11. One of the exercises in the Homework asks you to verify
that for the canonical (complex) line bundle over CP1 = S2, which we denote
by γ11(C), the first Chern class is:

c1(γ
1
1) = −1,

where 1 ∈ H2(CP1) denotes the generator defined by the canonical orienta-
tion. One can show that with this normalization properties (i)–(iii) above
determine completely the Chern classes.

If ξ = (π,E,M) is a complex vector bundle then its complex conjugate
is the complex vector bundle ξ̄ which, as a real vector bundle, coincides with
ξ, but where the complex structure is the opposite: Jξ̄ = −Jξ. Hence, the

identity map id: ξ → ξ̄ satisfies:

id(λv) = λ̄ id(v), ∀v ∈ E,λ ∈ C.

The proof of the next proposition is left as an exercise:

Proposition 28.12. Let ξ = (π,E,M) be a complex vector bundle. The
Chern classes of ξ and ξ̄ are related by ck(ξ̄) = (−1)kck(ξ) so that:

c(ξ̄) = 1− c1(ξ) + c2(ξ)− · · ·+ (−1)rcr(ξ).

Proof. Let ∇ be a C-connection in ξ. It defines also a C-connection in ξ̄
which we denote by ∇. If one fixes local trivializing sections {s1, . . . , sr} for
ξ, then we have:

∇Xsi =
∑

j

ωji (X)sj , ∇Xsi =
∑

j

ωji (X)sj .

Hence, the curvature 2-forms of these two connections relative to this basis
are related by:

Ω∇(X,Y ) = Ω∇(X,Y ),

and it follows that σk(R
k
∇) = σk(R

k
∇). Therefore, we have:

ck(ξ̄) =
1

(2πi)k
[σk(R

k
∇)]

=
1

(2πi)k
[σk(R

k
∇)]

= (−1)k
1

(2πi)k
[σk(R

k
∇)]

= (−1)k
1

(2πi)k
[σk(R

k
∇)] = (−1)kck(ξ).

�

Let ξ = (π,E,M) be a real vector bundle of rank r, and let M ×C →M
be the trivial real vector bundle of rank 2. The tensor product ξ ⊗ C is
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a real vector bundle of rank 2r, and we can define a vector bundle map
J : ξ ⊗ C → ξ ⊗ C by:

J(v ⊗ λ) = v ⊗ iλ.

Since J2 = −id, this defines a complex structure in ξ ⊗ C. One calls the
resulting complex vector bundle ξ ⊗ C the complexification of ξ.

The Pontrjagin classes of a real vector bundle ξ can be obtained from the
Chern classes of its complexification ξ ⊗ C:

Proposition 28.13. Let ξ be a real vector bundle. Then the Pontrjagin
classes of ξ and the Chern classes of of its complexification ξ⊗C are related
by:

pk(ξ) = (−1)kc2k(ξ ⊗ C).

The complexification ξ⊗C and its conjugate complex vector bundle ξ ⊗ C
are isomorphic complex vector bundles. An explicit isomorphism is given
by the complex conjugation map:

ξ ⊗C → ξ ⊗ C, v ⊗ λ 7→ v ⊗ λ.

Hence, by Proposition 28.12, we conclude that

ck(ξ ⊗ C) = 0, if k is odd.

This gives another explanation for why the Pontrjagin classes of a real vector
bundle are concentrated in degree 4k.

Homework.

1. Let ∇ be a connection in a vector bundle π : E → M . Show that there
exists a unique R-linear operator d∇ : Ω•(M ;E) → Ω•+1(M ;E) which satisfies
the Leibniz identity:

d∇(ω ⊗ s) = d∇(ω)⊗ s+ (−1)degωω ∧ d∇(s), ∀ω ∈ Ω•(M ;E), s ∈ Γ(E).

Show that d∇ ◦ d∇ = 0 if and only if the connection is flat.

2. Let π : E → M be a vector bundle of rank r. Given P ∈ Ik(GL(r)), show
that P : Ω•(M ;⊗k End(E)) → Ω•(M), satisfies: dP = Pd∇.

3. Show that the Chern-Simons transgression form (28.3), satisfies:

dP (∇0,∇1) = P (Rk∇1
)− P (Rk∇0

).

4. Let ψ : N → M be a smooth map and ξ = (π,E,M) a vector bundle of
rank r with a connection ∇. Show that for all P ∈ I•(GL(r)),

φ∗P (Rk∇) = P (Rkφ∗∇).

5. Let ξ = (π,E,M) be a vector bundle of rank r. Show that for k odd one
has [σ2k(R

2k)] = 0, for any connection ∇ in ξ with curvature R.
(Hint: Consider some fiber metric in ξ and take a connection ∇ compatible
with the metric.)
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6. Let ξ = (π,E,M) be a complex vector bundle. Show that the Chern classes
of ξ and of its conjugate ξ̄ are related by ck(ξ̄) = (−1)kck(ξ).

7. Let γ11(C) be the canonical complex line bundle over P1(C) = S2. Show that
c1(γ

1
1) = −1, where −1 ∈ H2(P1(C)) is the canonical generator.

8. Show that the total Chern class of the tangent bundle to Pn(C) is given by:

c(TPn(C)) = (1 + a)n,

where a ∈ H2(Pn(C)) is an appropriate generator.

9. Let σr(X) = det(X). Given a complex vector bundle ξ = (π,E,M) of rank
r, what is the relationship between the Chern class σr(R

2r) ∈ H2r(M) and the
Euler class χ(ξ) ∈ H2r(M)?

Lecture 29. Fiber Bundles

Bundles with fiber which are not vector spaces also occur frequently in
Differential Geometry. We will study them briefly in these last two lecturers.

Let π : E → M be a surjective submersion. A trivializing chart for
π with fiber type F is a pair (U, φ), where U ⊂ M is an open set and
φ : π−1(U) → U × F is a diffeomorphism such that the following diagram
commuttes:

π−1(U)
φ //

π
##F

FF
FF

FF
FF

U × F

π1
||yy

yy
yy

yy
y

U

where π1 : U × F → U denotes the projection in the first factor. If Ep =
π−1(p) is the fiber over p ∈ U we obtain a diffeomorphism φp : Ep → F as
the composition of the maps:

φp : Ep
φ // {p} × F // F .

Hence, if v ∈ Ep, we have φ(v) = (p, φp(v)). If one is given two trivializing
charts (Uα, φα) and (Uβ , φβ) then we have the transition map:

φα ◦ φ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F, (p, f) 7→ (p, φpα ◦ (φpβ)−1(f)).

This defines the transition functions gαβ : Uα ∩ Uβ → Diff(F ), where
gαβ(p) ≡ φpα ◦ (φpβ)−1.

If one is given a covering of M by trivializing charts {(Uα, φα) : α ∈ A},
this leads to a cocycle {gαβ} with values in the group Diff(M). Because this
is an infinite dimensional Lie group, we will restrict our attention to fibre
bundles which have a finite dimensional structure group G ⊂ Diff(F ). In
other words, we assume that the we have an action of a Lie group G on F
and we set:
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Definition 29.1. Let G be a Lie group and G×F → F a smooth action. A
G-fiber bundle over M with fiber type F is a triple ξ = (π,E,M), where
π : E → M is a smooth map admitting a collection of trivializing charts
C = {(Uα, φα) : α ∈ A} with fiber type F , satisfying the following properties:

(i) {Uα : α ∈ A} is an open cover of M :
⋃
α∈A Uα =M ;

(ii) The charts are compatible: for any α, β ∈ A there are smooth maps
gαβ : Uα ∩ Uβ → G such that the transition functions take the form:

(p, f) 7→ (p, gαβ(p) · f);
(iii) The collection C is maximal: if (U, φ) is a trivializing chart with the

property that for every α ∈ A, the maps p 7→ φp ◦ (φpα)−1 and p 7→
φpα ◦ (φp)−1 factor through maps U ∩ Uα → G, then (U, φ) ∈ C.

We shall use the same notation as in the case of vector bundles, so we have
the total space, the base space, and the projection of the G-bundle. A
collection of charts that satisfies only (i) and (ii) is called an atlas of fiber
bundle or a trivialization of ξ. We define a section over an open set U
in the obvious way and we denote the set of all sections over U by ΓU (E).
Although a fiber bundle always as local sections, it may fail to have global
sections.

Among the most important classes of G-bundles we have:

• Vector bundles: In this case the fiber F is a vector space and
the structure group is the group of linear invertible transformations
G = GL(V ). These are precisely the bundles that we have studied
in the previous lectures.

• Principal G-bundles In this case the fiber F is itself a Lie group
G and the structure group is the same Lie group G acting on itself
by translations G×G→ G, (g, h) 7→ gh. We shall see that principal
bundles play a central role among all G-bundles.

The notion of morphism of G-fiber bundles is similar to the notion of
morphisms of vector bundles, where we replace GL(r) by the structure group
G.

Definition 29.2. Let ξ = (π,E,M) and ξ′ = (π′, E′,M ′) be two G-bundles
with the same fiber F and structure group G. A morphism of G-bundles
is a smooth map Ψ : E → E′ mapping fibers of ξ to fibers of ξ′, so Ψ cover
a smooth map ψ :M →M ′:

E
Ψ //

π

��

E′

π′

��
M

ψ // M ′

and such that for each p ∈M , the map on the fibers

Ψp ≡ Ψ|Ep : Ep → E′
q, (q = ψ(p))
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satisfies
φ′qβ ◦Ψp ◦ (φpα)−1 ∈ G,

for any trivializations {φα} of ξ and {φ′β} of ξ′.

In this way, we have the category of fiber bundles with fiber type F
structure group G. Just like in the case of vector bundles, we shall also
distinguish between equivalence and isomorphism of G-bundles, according
to wether the base map is the identity map or not.

The set of transition functions associated with an atlas of a G-fiber bundle
completely determined the bundle. The discussion is entirely analogous
to the case of vector bundles. First, if ξ = (π,E,M) is a G-bundle the
transition functions gαβ : Uα ∩ Uβ → G, relative to some trivialization
{(Uα, φα)}, satisfy the cocycle condition:

gαβ(p)gβγ(p) = gαγ(p), (p ∈ Uα ∩ Uβ ∩ Uγ).
We say that two cocycles {gαβ} and {g′αβ} are equivalent if there exist
smooth maps λα : Uα → G such that:

g′αβ(p) = λα(p) · gαβ(p) · λ−1
β (p), (p ∈ Uα ∩ Uβ).

One checks easily the following analogue of Proposition 23.5:

Proposition 29.3. Let M be a manifold and G a Lie group acting on
another smooth manifold F . Given a cocycle {gαβ} with values in G, sub-
ordinated to a covering {Uα} of M , there exists a G-bundle ξ = (π,E,M)
with fiber type F which admits an atlas {φα}, for which the transition func-
tions give the cocycle {gαβ}. Two equivalent cocycles determine isomorphic
G-bundles.

Let ξ = (π,E,M) be a G-fiber bundle with fiber type F and let {gαβ}
be a cocycle associated with a trivialization {φα} of ξ. If H ⊂ G is a Lie
subgroup, we say that the structure group of ξ can be reduced to H
if the cocycle is equivalent to a cocycle {g′αβ} where the transition functions
take values in H:

g′αβ : Uα ∩ Uβ → H ⊂ GL(r).

The next examples illustrate how the structure group (and its possible re-
ductions) are intimately related with geometric properties of the bundle.

Examples 29.4.

1. A fiber bundle ξ = (π,E,M) with fiber type F and structure group G is
trivial if and only if its structure group can be reduced to the trivial group {e}.

2. We saw before that a vector bundle of rank r is orientable if and only if its
structure group can be reduced to GL+(r). Similarly, a vector bundles admits
a fiber metric if and only if its structure group can be reduced to O(r) (and by
the polar decomposition, this can always be achieved). A further reduction of
its structure group to SO(r) amounts to an additional choice of an orientation
for the bundle.
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Remark 29.5. In the definition of morphism of G-bundles the choice of a
structure group is crucial. For example, a G-bundle may not be isomorphic
to the trivial bundle via a morphism of G-bundles, but can be isomorphic
to the trivial bundle via a morphism of G′-bundles, where G′ ⊃ G is a
structure group containing G as a Lie subgroup. An example is given in the
Homework at the end of this lecture.

Principal G-bundles play a special role among all G-bundles because of
the following:

• To a G-bundle ξF = (π,E,M) with fiber type F , we can associate
a principal G-bundle ξ = (π, P,M): we fix a trivialization {φα} of
ξF , so the associated cocycle {gαβ} takes values in G. Since G acts
on itself by translations, this cocycle defines a G-bundle with fibre
type G, which is a principal G-bundle.

• To a principal G-bundle ξ = (π, P,M), a manifold F and an action
of G on F , we can associate a G-bundle ξF = (π,E,M) with fibre
type F : a trivialization {φα} of ξ, determines a cocycle {gαβ} with
values in G. Since G acts in F , this cocycle defines a G-bundle ξF
with fiber F .

Principal G-bundles can also be described more succinctly because of the
following:

Proposition 29.6. A fiber bundle ξ = (π, P,M) is a principal G-bundle
principal if and only if there exists a right action P ×G→ P satisfying the
following properties:

(i) The action is free and proper;
(ii) The quotient P/G is a manifold, M ≃ P/G and π : P → P/G ≃M is

the quotient map;
(iii) The local trivializations (U, φ) are G-equivariant: φp(g ·v) = g ·φp(v).
Let us explain how given a principal G-bundle ξ = (π, P,M) one obtains

the right action P ×G→ P . For this one chooses a trivializing chart (U, φ)
and defines the action of G on π−1(U) by setting:

u · g := φ−1(p, φp(u)g), (p = π(u)).

One checks easily that this definition is independent of the choice of trivial-
ization.

Therefore, one can think of a principal G-bundle as being given by a free
and proper right action P ×G→ P for then ξ = (π, P,M) where M = P/G
and π : E → M is the quotient map. Moreover, if G× F → F is a smooth
action the associated fiber bundle ξF = (πF , E,M) can be described
explicitly as

E = P ×G F,

where P×GF denotes the quotient space for the action of G in P×F defined
by:

(u, f) · g ≡ (u · g, g−1 · f)
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(recall that G acts on the right in P and on the left in F ). The projection
πF : E →M is given by: πF ([u, f ]) = π(u).

This descriptions of principalG-bundles and the associated bundles allows
us to give many examples of principal G-bundles and fibre bundles.

Examples 29.7.

1. For any Lie group G, we have the trivial principal G-bundle M ×G→M .
Sections of this bundle are just smooth maps M → G. Moreover, if G acts on
some space F , then the associated bundle is also the trivial bundleM×F →M .

2. For any Lie group G and any closed subgroup H ⊂ G, the quotient G →
G/H is a principal H-bundle. For example, if we let S3 be the group of unit
quaternions and let S1 ⊂ S3 be the subgroup of unit complex numbers, then we
obtain a principal S1-bundle, which is easily seen to be isomorphic to the Hopf
fibration.

3. If π : M̃ → M is the universal covering space of a manifold M , the triple
(π, M̃ ,M) is a principal bundle with structure group the fundamental group
π1(M) (the topology in π1(M) is the discrete topology).

4. Let M be a smooth manifold of dimension d. The frame bundle is the
principal bundle π : F (M) → M with structure group GL(d) whose fiber over
p ∈M consists of the set of all ordered basis of TpM :

F (M)p = {(v1, . . . ,vr) : v1, . . . ,vr é uma basisof TpM}.

The group GL(d) acts on the right on F (M): if u = (v1, . . . ,vr) is a frame

and A = (aji ) is an invertible matrix, then u · A = (w1, . . . ,wd) the frame:

wi =

d∑

j=1

ajiwj , (i = 1, . . . , d).

This is a proper and free action, hence F (M) is a principal bundle with struc-
ture group GL(d).

The group GL(d) acts (on the left) in Rd by matrix multiplication. Hence,
F (M) has an associated fibre bundle with fiber Rd, i.e., a vector bundle. We
leave it as an exercise to check that this bundle is canonically isomorphic to the
tangent bundle T (M). Similarly, one obtains the cotangent bundle, exterior
bundles, tensor bundle, etc., if one considers instead the induced actions of
GL(d) in (Rd)∗, ∧kRd, ⊗kRd, etc.

More generally, for any (real) vector bundle π : E →M of rank r, one can
form the frame bundle F (E), a principal bundle with structure group GL(r).
For the usual action of GL(r) on Rr one obtains an associated bundle to F (E)
with fiber Rr, which is canonically isomorphic to the original vector bundle
π : E →M . Similarly, one can obtained as associated bundles E∗, ∧kE, ⊗kE,
etc.

An entirely similar discussion is valid for complex vector bundles and the
bundle of complex frames.
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If ξ = (π, P,M) is a principalG-bundle and G×F → F is a smooth action,
then one should expect that any functorial construction in the associated
bundle ξF = (π,E,M) should be expressed in terms of ξ and F . As an
example of this principle, for the sections of ξF we have

Proposition 29.8. Let ξ = (π, P,M) be a principal G-bundle and G×F →
F a smooth action. The sections of the associated bundle ξF = (π,E,M)
are in one to one correspondence with the G-equivariant maps h : P → F .

Proof. The total space of the associated bundle is

E = P ×G F = (P × F )/G.

An element v ∈ Ep is an equivalence class in Pp×G F , which can be written
as:

v = [(u, hp(u))], ∀u ∈ Pp,

for a unique map hp : Pp → F which is G-equivariant:

hp(u · g) = g−1 · hp(u).
Hence, a section s :M → E can be written in the form:

s(p) = [(u, h(u))], ∀u ∈ P com π(u) = p,

where h : P → F is a G-equivariant map. Conversely, a G-equivariant map
h : P → F determines through this formula a section of ξF . �

In order to understand the issue of reduction of the structure group, it is
convenient to enlarge the notion of morphism of principal bundles as follows:

Definition 29.9. Let ξ′ = (π′, P ′,M ′) be a principal G′-bundle and ξ =
(π, P,M) a principal G-bundle. A morphism Ψ : ξ′ → ξ is a pair formed
by a smooth map Ψ : P ′ → P and a Lie group homomorphism Φ : G′ → G,
such that

Ψ(u · g) = Ψ(u)Φ(g),∀u ∈ P ′, g ∈ G′.

Since a morphism of principal bundles Ψ : ξ′ → ξ takes fibers to fibers, Ψ
covers a smooth map ψ :M ′ →M :

P ′ Ψ //

π′

��

P

π

��
M ′

ψ
// M

If Ψ : P ′ → P and Φ : G′ → G are both embeddings, one can identify P ′

and G′ with its images Ψ(P ′) ⊂ P and Φ(G′) ⊂ G. We then say that ξ′

is a subbundle of the principal bundle ξ. When M ′ = M and ψ =id, the
sub bundle corresponds to the reduction of the structure group from G to
H. In this case, we say that ξ′ is a reduced subbundle of ξ. You should
check that this matches the notion of reduction of the structure group we
have introduced before in terms of cocycles.
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Homework.

1. Show that ξ = (π, P,M) is a principal G-bundle principal if and only if
there exists a right action P ×G→ P satisfying the following properties:
(i) The action is free and proper;
(ii) The quotient P/G is a manifold, M ≃ P/G and π : P → P/G ≃ M is

the quotient map;
(iii) The local trivializations (U, φ) are G-equivariant: φp(g · v) = g · φp(v).

2. Give a proof of Proposition 29.3

3. Consider the covering of M = S1 by the open sets:

U± = {(x, y) ∈ R2 : x2 + y2 = 1} − {(±1, 0)}.

Define a cocycle {gαβ} relative to this covering by

g+−(x, y) =





I if (x, y) ∈ y > 0,

−I if (x, y) ∈ y < 0.

where I is the 2× 2 identity matrix Show that:
(a) This cocycle defines a G-bundle with fibre type S1 and structure group

S1 = S0(2) which is isomorphic (as an S1-bundle) to the trivial bundle.
(b) This cocycle defines a G-bundle with fibre type S1 and structure group

Z2 = {I,−I} which is not isomorphic (as a Z2-bundle) to the trivial
bundle.

4. Show that a principal bundle is trivial if and only if it has a global section.
(Note: This exercise is a very special case of the next exercise.)

5. Let ξ = (π, P,M) be a principal G-bundle and H ⊂ G a closed subgroup.
Note that G acts in the quotient G/H hence there is an associate bundle
ξG/H = (π′, P ×G (G/H),M). Show that this bundle can be identified with
the quotient (π′, P/H,M), where π′ : P/H → M is the map induced in the
quotient by π : P →M . Show that the following statements are equivalent:
(a) The structure group of ξ can be reduced to H .
(b) The associated bundle ξG/H has a section, i.e., there exists a map s :

M → P/H such that π′ ◦ s =id.
(c) There exists a G-equivariant map h : P → G/H .

6. LetM be a Riemannian manifold and let π : OF (M) →M be the principal
O(d)-bundle formed by the orthogonal frames:

OF (M)p = {(v1, . . . ,vr) : v1, . . . ,vr is an orthonormal base of TpM}.

Show that OF (M) is the reduced bundle from F (M), which corresponds to
the reduction of the structure group from GL(d) to O(d).
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