Fourier analysis and distribution theory
Lecture notes, Fall 2022
(Version: October 7, 2022)

Pu-Zhao Kow

DEPARTMENT OF MATHEMATICS AND STATISTICS, P.O. Box 35 (MAD), FI-40014
UNIVERSITY OF JYVASKYLA, FINLAND
Email address: pu-zhao.pz.kow@jyu.fi






Preface

This lecture note is prepared for the course Fourier Analysis (MATS315) in the 1% period,
which gives an introduction to Fourier analysis and distribution theory, mainly based on
Mikko Salo’s lecture note some parts of the monographs [FJ98, Mit18]. We also refer to
some other materials such that the monographs [Brell, Str08], as well as Richard Melrose’s
lecture note.
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October 20, 2022.

Language. Instruction and completion in English
Instructor. Pu-Zhao Kow, (Office: MaD369, Email: pu-zhao.pz.kow@jyu.fi)

Completion. The course can be taken for credit by attending the lectures, returning written
solutions (at least 50%, please indicate your email) and writing a short report (not more than
10 pages) with an oral presentation on it at the end of the course. One possible topic for the
final report is some theorems in the lecture note that the proofs are omitted. To get grade
5, you need to complete at least 80% of the returning written solutions.

There will be a following up course Fourier Analysis II (MATS5170) in the 2"¢ period, which
will lectured by Tuomas Orponen. The course will be lectured in English.
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CHAPTER 1

Fourier series

1.1. Weak derivatives

Given any integer n > 1. For each multi-index o = (o, - - - , o) with o € Z>g, we define
supp(a) = { je {17 7n} ‘ O‘j#o }7

n n
al == aylas! - - a! EHaj! and | ::Zaj
Jj=1 Jj=1

o o . . . . a
9% = | H 8]-] with the partial derivatives 0; := a_x]
Jj€supp (a)
= [ 2 forallz=(z1,--,2,) €C"
Jj€supp (a)

with the convention
900 .—1d and 2@ .=1.
Let 8 = (B1,- -+, Pn) be another multi-index such that
p<a (thatis, 5; < ay for all j),
we define the multi-index
a—pF:= (a1 — B, an — Bn).
We have the following binomial theorem [Mit18]:

(1.1.1) (x+y) = T *y? for all z,y € C".

Let €2 be an open set in R™. For each k € Z>o U {00}, we define the following functional
spaces:

C*(Q):={ ¢:Q— C| 0% is continuous for all & with |a| <k },
C*(Q) = { ¢lg | ¢ € C*(U) for some open set U D Q },
CE(Q) :={ ¢ € C*(Q) | supp (¢) C Q is compact }

= { ¢ € C*(R") | supp (¢) C Q is compact } .

Given any f € C'(), using (1-dimensional) integration by parts, we can easily compute
that

/(@f)godx = —/ fojpdx  for all p € C°(Q).
Q Q

1



1.1. WEAK DERIVATIVES 2

Using induction, for each f € C*l(Q), we can easily verify that
(1.1.2) /(8af)godx = (—1)l / fo“pdx  for all p € C(Q).
Q Q

We see that the right-hand-side of (1.1.2) is actually well-defined for all locally L' functions
f,ie.

FeLy(Q):={f:Q=C||fllonx = [i|fldr < oo for all compact set K C Q }.
This suggests the following definition:

DEFINITION 1.1.1. Let f € L{ (Q). A function g € L{ () is called a weak derivative
(of order a) of f if

(1.1.3) /ggpdx = (—1)'6“‘ / fo%pdx for all ¢ € CF(Q).
Q Q

THEOREM 1.1.2 (Theorem 1.3 in [Mit18]). If g € Li.(Q) satisfying g = 0 in Q-
distribution sense, i.e.

(1.1.4) / gpdr =0 for all ¢ € C°(92),
Q

then g =0 a.e. in Q.

REMARK 1.1.3. The converse of Theorem 1.1.2 is trivial. Here and after, we shall omit
the notation “a.e.” if there is no any ambiguity.

REMARK 1.1.4. In particular, for any multi-index «, each function g € L{ (Q) produced

loc

from f € L{_(92) must be unique. Therefore, we can just simply write 9°f := g. However,

Theorem 1.1.2 does not guarantee the existence of such 0°f.

PrROOF OF THEOREM 1.1.2. Consider a function ¢ satisfying
¢ < Cso(Rn)7 gb > 07 supp (Qb) C E and qﬁ(qj) dr = 1.
Rn

One concrete example is the function ¢ : R" — R defined by

1
C _ fi B
b(x) = eXp(\xP—l) oree sy

0 otherwise,
with C' = (wp_1 fol (a)cp(p21_1)p"‘1 dp)~t, where w, | = n|B;| = ?7{5) is the surface area of

the unit sphere 0B;. For each € > 0, we define (sometimes we refer it the standard mollifier)

1
dc(x) = —gb(f) for each z € R".
en €
Then for each ¢ > 0 we have

b € CX(R™), ¢.>0, supp(¢.) C B, and ¢c(x)dr = 1.

R'IZ
Fix 2 € Q and 0 < e < dist (z,09), then B.(z) C Q2 and ¢.(z — -) € C(Q). Therefore from
(1.1.4) we have

(1.1.5) g* o) = / 9(Y)pe(r —y)dy =0 forall x € Q.
Q
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Therefore from Lebesgue’s differentiation theorem we have

=0 by (1.1.5)

A

~

l9(z)| = ‘/Qg(x)@(:v —y)dy — /Qg(y)qﬁe r—y)dy
1

< — lg(x) — g(y)|<b(%) dy

€" JB.(z)
1
< IBIoll oy [, 1068 ol dy =0 as €0

for a.e. x € Q (in particular, for all Lebesgue point z in ), which conclude our lemma. [

When f € C1*/(Q), then the weak derivative 0°f is coincide with the usual derivative
0% f (which is continuous). The (classical) Laplacian is defined by

Af=> 0f forall feC*Q).
j=1
Using the weak derivatives as in Definition 1.1.1, we can define the weak Laplacian Lf of f
by
/(ﬁf)gp dr = / fApdx for all ¢ € C°(Q)
Q Q

provided the weak derivatives of f exist. Similar ideas also can apply to other differential
operators.

EXAMPLE 1.1.5. We now consider the Heaviside function

(1.1.6) H(zx) = {

1 for all x > 0,
0 forall x <O.

It is easy to see that H € L\ (R). We define

loc
x forall z > 0,
flz) =
0 forall z<O.

It is easy to see that

_/Rf(x)¢'(x) dr = — /OOO z¢'(x) de = —zp(z)

=00

+ [ty = [ @t de

which shows that the Heaviside function H given in (1.1.6) is the weak derivative of order
one of f.

=0

1

loe(€2) function admits weak derivative:

However, not all L

EXAMPLE 1.1.6. We now show that the weak derivative of order 1 of the Heaviside
function H given in (1.1.6) does not exist. Suppose the contrary, that H has a weak derivative
of order 1, says g € L .(R). We see that

loc

(1.1.7) / " g(@)ple) dr = / " H(@)g/ (2) dr = — / " (@) dx = (0)

—00
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for all ¢ € C°(R). Hence we know that

/000 g(x)p(z)dx =0 for all p € C(R\ {0}).

Using Theorem 1.1.2 with Q = R\ {0}, we conclude that g = 0 a.e. in R. Therefore from
(1.1.7) we know that ¢(0) = 0 for all ¢ € C°(R), which leading to a contradiction.

REMARK 1.1.7 (Theorem 1 in Section 4.3 of [EG15]). The following general integration
by parts formula is well-known: Let €2 be a bounded Lipschitz domain in R™ and given any
1 < p < 00. There exists a bounded linear operator

Tr: WHP(Q) — LP(OS1; H™)  such that Tr(f) = f on 9Q for all f € WH(Q)NC(Q),

which is uniquely defined up to sets of H"~'|9Q measure zero (It is called the trace of f on
99Q). Furthermore, for all p € (C'(R"))" and f € WP(Q), we have

/ fdiv(p)dr = —/ Vf-godx+/ (v-o)Tr (f)dH"
Q Q a0
where v is the unit outer normal to 9.

1.2. 1-dimensional Fourier series in 2

Let Q2 C R™ be an open set and let 1 < p < oo. For each m € N, the Sobolev space
Wm™P(Q) is defined by

Wme(Q) = { feLrQ)|0°f € LP(Q) forall o] <m },
equipped with the norm

I lhweiey = (3 ||aaf||L,,(m) |

|a|<m
where 0% f are the weak derivatives (Definition 1.1.1) of f. We set
H™(Q) = W™(Q).
Note that H™(€) is indeed a Hilbert space equipped with the scalar product
(f,9)um@) = Z (0%f,0%9)L2(0),
|| <m
where

(f, 9) 2@ /fgdx for all f,g € L*().

For 1 < p < oo, we denote Wgnp(Q) the closure of C°(Q) in W™?(Q), and we set H}(Q) =
Wol’Q(Q). Here we refer to the monograph [Brell| for properties of these Sobolev spaces,
here we will not going to exhaust all of these details. The following theorem is an important
fact in the Hilbert space theory, which can be found in [Brell, Theorem 9.31] (see also
[Brell, Theorem 8.22| for 1-dimensional case).

THEOREM 1.2.1 (Spectral decomposition of Dirichlet Laplacian). Let Q be a bounded
Lipschitz domain. There exist a Hilbert basis { ¢y fren of L*(Q) and a sequence of real numbers
{ Ak een with 0 < A\ < Ay < -++ — 00 such that

or € Hy(Q)NC™(Q), —Ady = Moy, in Q.
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For each (real-valued) f € L*()) we have
(1.2.1) f= i(f, Gr)r2 )¢k converges in L*(9).
k=1
The precise meaning of (1.2.1) is
= 0.

lim Hf— > (b)) 2@ dn
e k=1 L2(9)

If (f,ér)r2(0) = 0 for all & € N, then (1.2.1) implies that f = 0 a.e. in . Moreover, the
following Parseval-Bessel identity holds:

1flI720) = Z |(f, dr) 2|
k=1

In particular, the following general result on separable Hilbert space can be proved using the
Hahn-Banach theorem [Brell, Corollary 1.8]:

PROPOSITION 1.2.2. Let (H, (,)) be a separable Hilbert space, and let {¢g}ren be an
orthonormal subset of H. Then the following are equivalent:

(1) {ér}ren is an orthonormal (Hilbert) basis.
(2) The following Parseval identity holds:

AP =1 ).

keN

(3) If f€ H and (f,¢r) =0 for all k € N, then f =0.

Choosing n = 1 and © = (0,7) in Theorem 1.2.1, we know that the sequence {¢x}ren
defined by

2
Cbk(x) = \/jsin(kx) fork=1,2,---
T
is an orthonormal basis of L?(0, 7). In particular, we compute that

2 /07r sin(kz) sin(kz) dv = 1 /07T (1 — cos(2kx)) dx

T T
o 'n(zk)Tr ~1
= 5% 5t x . =
and for each k; # ko we have
2 iy
—/ sin(kyz) sin(kqz) dx
T Jo
1 s
= %/ (cos((k1 — ka)z) — cos((k1 + ko)z)) d
0
1( L sin((y — )a) — — s'(<k+k>))x:ﬂ 0
== in — ko)x) — in x =0.
T ]{?1 — k’Q ! 2 kl + kQ ! ? =0

Hence given any real-valued f € L?(0, ), we can write

(1.2.2) flz) = Zak sin(kz) converges in L*(0, ),
k=1
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with

™

ap = 2 /07r sin(kzx) f(z) dx.

The expansion (1.2.2) is called the Fourier sine expansion. In fact, we can do the similar
things for Laplacian with Neumann eigenvalues: The sequence {¢; }renujoy defined by

. 9
or(x) = \/jcos(ka:) for k=0,1,2,---
7r

is also an orthonormal basis of L?(0,7), and similar idea induces Fourier cosine expansion

1 oo
(1.2.3) f(z) = §bo + Z b cos(kx) converges in L*(0, ),
k=1
with
2 s
by = —/ cos(kx) f(z) dx
T Jo

see [Brell, Comments on Chapter 5]. Indeed, we also compute that

2 (7 1 ["
—/ cos(kx) cos(kx) dr = —/ (1 + cos(2kz)) d
T Jo T Jo

1 L gnekn| =1

= 57, Sin(2kz T

and for each k; # ko we have

g/ sin(kyz) sin(kox) dx
T Jo
1 K
— ;/ (cos((k1 — ka)x) + cos((k1 + ko)) d
0
L Gtk — ko)) sin((h +B)a) )| =0
=— in((k; — in = 0.
™ kl—kgs ! 2)% k1+k2s ' 2t =0

EXAMPLE 1.2.3. Let f(z) = 1 in the interval (0, 7). The function has a Fourier sine series
with coefficients

=T

2 [T 2
ay = —/ sin(kx) dx = = cos(kx)
0

™ s

=0

2 2 m
= %(1 — COSk‘ﬂ') = %ﬂ - (_1) >’

which in particular gives

iﬁ if k is odd,
ar = e
0 if k is even.

Thus

4 1
1=— ZN S sin ((Qm — 1)x) converges in L*(0, 7).
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The same function has a Fourier cosine series with coefficients

2 (7 2
b = —/0 cos(kx) dr = — sin(kx)

T=T

=0 forallk#0

m z=0

2 ™
T Jo

This shows that the Fourier cosine series of this function is trivial.

EXAMPLE 1.2.4. Let f(z) =z in (0, 7). Its Fourier sine series has the coefficients

2 [7 2 2 =
ak——/ rsinkr dr = ——xcoskx+—sinkx
T Jo km k*m =0
2 2
=~ cos km = <_1)k+1E'
Thus in (0, 7) we have
r=2 i(—l)kﬂw converges in L*(0, )
k=1 k o
Its Fourier cosine series has the coefficients by = % fow zdr = 7 and
2 (" 2 2 =
bk:—/ rcoskxdr = —xsinkx—l-—coskx
T Jo km k*m =0
2 2 2
=7 sin km + %(coslm —-1)= E((—l)k - 1),
which gives
b — —ﬁ for k£ odd,
"o for k£ # 0 even.
Thus in (0, 7) we have
m_4 Z ! cos((2 1)z) converges in L*(0,7)
r=—=—— —_— m—1)x nverges in ).
2w 2m 1) & ’

Given any function f : R — R, we can decompose it into the sum of even function and
odd function by the following simple observation:

odd qunction even fuJ\nction
(1.2.4) fz) = f(z) _Qf(_x) n f(x) +2f(—m) |

Moreover, the decomposition (1.2.4) is unique: If f(x) = foqa(x) + foven(z) for some odd
function f,qq and even function feyen, then from (1.2.4) we can write

odd function even function
foaa(z) — /@) —2f(—x) = /() —|—2f(—x) — foven(z) for all z € R.

This implies

and feven(x) = w
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We see that sin(kz) are odd functions, while cos(kz) are even functions. Therefore, it is
natural to represent f : (—m,m) — C by the Fourier series

odd part even part

(1.2.5) flz) = %Bo + Z (Ag sin k:a:) + By, cos(kx)) for z € (—m,m)
k=1

in a suitable sense. In next subsection we will show that the series (1.2.5) as well as (1.2.6) are
converges in L?*(—m, 7). In addition, if f is sufficiently smooth, in particular the convergence
is point-wise. Using similar computations, the coefficients are given by

1 ™
:—/ f(z)sin(kx)dz for k=1,2,---
™ —T

1 s
:—/ f(z)cos(kx)dx for k=0,1,2,---
™ —T

Since € = cosf + isinf for all § € R, we may alternatively consider the series
(1.2.6) f(z) = i cre™ for x € (—m,7)
k=—00
with ¢, € C. We can write (1.2.6) as
f(z) = i cre™ = co + i(ckelk‘r + c_pe” ")
k=—o0 k=1

=cy+ Z (= Sk + Sy, + i(Rep — Re_y)) sin(kz)

+ Z (Rey, + Re_y + i(Sey, + Sey)) cos(kz)

k=1
[o@) o
—co—l—E ck—cksmkx—l—g (e + c_g) cos(kzx).
k=1 k=1

Therefore from (1.2.5) (the coefficient are unique) we have

1
co=5Bo, outen=Beandi(e,—cy) = A forallkeN.
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Equivalently,

1 1 1
(127) Cyo — §B0, C = §(Bk — ZAk) and C_| = §(Bk + ZAk) for all £k € N.

In particular, (1.2.7) is equivalent to
1 [ ,
= — / f(z)e **dx for all k € Z.
2 J_,

REMARK 1.2.5. If f is real-valued, then

1 [ . 1 [" .
[ —/ f(z)ethr dx = —/ f(x)e ™ dy = ¢, forall k € Z.
27 J_. 2 J_.

Conversely, if c_; = ¢, for all k € Z, then from (1.2.6) we have

o0 o0

00 L (e e]

k=—o00 k=—o00 k=—00 k=—00

that is, f is real-valued.

EXAMPLE 1.2.6. Let f(z) = « in the interval (—m, 7). Its full Fourier series has the

coefficients -
By = —/ xdx =0,
™ —T
Be= 2 [ wcosthoyde = ([smihe) + - costin) )|
F= _chos z)dr = | —sin(kz) + 5 cos(kz o
1
= ——(cos(km) — cos(—km)) =0
k2m
and
[ . x 1 T
Ay = —/ xsin(kx)dr = | — — cos(kx) + —— sin(kx)
) . km k2 R
_ ! cos km — — cos(—km) = (—1)’ng
k k k-

This gives us exactly the same series as in Example 1.2.4, except that it is supposed to be
valid in (—m, 7). Since f is a odd function, therefore the even part of (1.2.5) should vanishes.

1.3. n-dimensional Fourier series in L2

The ideas for multi-variable case is also similar: If f : R® — C is of 27m-periodic in each
variable, we want to represent it by the Fourier series

(1.3.1) flz) = Z cretT = Z etk for all x = (zy,--- ,2,) €R"
kezn kezn
in some suitable sense. We now consider the cube ) = [—m,7]", and normalize the inner

product on L*(Q) by
(f.9) = (F. )iz == — / Jgda = ][ fgde forall f.g € L*(Q).
) ) |Q| 0 o )

with |Q| = (2m)".
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LEMMA 1.3.1. The countable set {€®}pczn is an orthonormal subset of L*(Q).
PROOF. For each k, ¢ € 7", using Fubini’s theorem we see that

(eik-m’ ei[-:p) — (27_‘_)11/ ei(kfé)-z dr
Q

LY 1 =
= (2m)™" H/ etk —L;)z; dr; = k=
L 0 k#L

which conclude the lemma. U
We will put much effort to prove the following proposition:
PROPOSITION 1.3.2. {€®*®},czn a complete orthonormal basis of L2(Q).

REMARK 1.3.3. Given any f € L*(Q) be such that (f,e*®) = 0 for all k € Z". If we
can prove f = 0 a.e. in @, using Proposition 1.2.2 we conclude Proposition 1.3.2. Since
ehr = gz ... giknn e see that

(1.3.2) 0= / fem*e dy = / < / fx)e dx’) e~ he gy, for all k € Z7,
[—m,m]|™ -7 [—m,m]n—1

with &' = (ko,-++ ,k,) and 2/ = (x9,--- ,z,). If we can show Proposition 1.3.2 for the case
when n = 1, using Proposition 1.2.2 we know that

(1.3.3) 0= / f(x)e™* =" dz' for all K € Z" 1.
[_ﬂ-’ﬂ-]’nfl

Repeating the arguments that proving from (1.3.2) to (1.3.3), we conclude that f =0 a.e. in
Q.

PROOF OF PROPOSITION 1.3.2 USING SPECTRAL THEORY. We decompose

f(x) = fodd(l/’) + feven(x)

for some odd function fyqq and even function feye, as in (1.2.4). Then Proposition 1.3.2
immediately follows by approximate f,qq using the Fourier sine series, while approximate
feven using the Fourier cosine series, as stated in Section 1.2. ]

We will exhibit the classical proof of Proposition 1.3.2, which involving Dirichlet kernel,
later. We are now ready to prove the main result of this section.

THEOREM 1.3.4 (Fourier series of L? functions). If f € L*(Q), then one has the Fourier
series

(1.3.4) flz) = Z F(k)e™™ converges in L*(Q),

keZm

with the Fourier coefficients
(135) f) = (7.%) = f fla)e ™ da
Q

One has the Parseval identity

1 7a) = D IF (R

kezn
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Conversely, if ¢ = (c,) € (*(Z"), then the series Y, cpn c€™™ converges in L*(Q) to some
f € L*(Q) and il is necessarily ¢, = f(k)

REMARK 1.3.5. Here we denote by ¢?(Z") the space of the complex sequences ¢ = (¢ )rezn

with norm )
2
lelle@n = ( 3 w)

kezn
Theorem 1.3.4 says that there is a 1-1 corresponding between the elements in L?(Q) with the
elements in ¢?(Z"). In other words, (1.3.5) can be viewed as the discrete Fourier transform,
and the inverse discrete Fourier transform is given by the formula (1.3.4).

PROOF OF THEOREM 1.3.4. The first part of Theorem 1.3.4 is an immediate consequence
of Proposition 1.3.2. For the converse, if (c;) € ¢*(Z"), then we see that the partial sum

Sy = E cret
k|<N

is a Cauchy sequence in L?*(Q). Since L?(Q) is complete, then we know that the series
> wezn Ck€™ T converges in L*(Q) to some f € L*(Q). For each N > k, we also see that

e = FR) = 1(Sn = f.™)| < Culle™ 21w = Fllzz@) — 0 as N = oo,
which conclude ¢ = f(k). O

We now give a direct proof to Proposition 1.3.2 (for the case when n = 1). We wish to
construction a special kernel as follows:

DEFINITION 1.3.6. A sequence {Qn(2)} nyen of 27-period continuous functions on the real
line is called an approzimate identity if

()QN>0f0rallN€N
2) {7 Qn(z)dr = (27)~' [T Qn(z)dr =1for all N € N, and
(3) foreach0<e<7ronehas lim sup Qun(z)=0.

N=00 e<lg|<n
We now prove the existence of such function satisfies Definition 1.3.6.

LEMMA 1.3.7. The sequence

1 N e N ~1
Qn(x) =cpn (y) with cny = 27r(/ (w) dx)

1$ an approximale identity.

PROOF. It is easy to see that Qn > 0 and (27)~ f Qn(z)dx =1 for all N € N. We
estimate the constant cy as followings:

1:c_N T (1+cosx Ndx:C—N T (14 cosx Ndx
2 J_ 2 T Jo 2
(1+cosx>N,
sin x dx

1+t 2 ! 2
/(+) g v g 2ev

WV,
3'|z

ﬂlé‘
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Thus for each 0 < € < ™ we have

(1—|—COS€)N < 7(N +1) (1+COS€

N
N
5 5 5 ) —0 as N — oo,

0< sup Qn(z) < Qn(e) =cn

e<lal<n
because 0 < % < 1. O

Let f and g be two 2m-period functions. Then we formally define the convolution f * g
by
1 [" 1 ["
(1.3.6) (frg)(@) = | [l —y)dy=— [ gy)flz—y)dy,

2 J_.

which is also a 2m-periodic function (the second identity holds only for 27-period functions).
The following lemma explains the naming of Definition 1.3.6.

LEMMA 1.3.8. Let Qn be an approximate identity as in Definition 1.3.6 and let f be a
2m-periodic function. If f is continuous, then

lim Qn * f=f converges in L>(—m,m).
N—o0
If f € LP(—7,m) for some 1 < p < o0, then
lim Qn * f=f converges in LP(—m, 7).
N—o00

Proor or LEMMA 1.3.8. We first observe that

Quxf =Nl = o [ ) —y) = 1) dy

Case 1: [ is a continuous 27-periodic function. Given any € > 0, there exists d(e) > 0
such that

sup |f(z—y)— f(z)] <e forallz €R

ly|<d(e)
and
(1.3.7) sup  Qn(x) < e for all sufficiently large N.
s()<|z|<m

Then for all sufficiently large N we estimate

1
s =@ ([ o[ Jeslie—n - s@la

<27 <dr|| fllpee r)
7\

A\

e ~N r ~N

< (o [ jie— sl )
< e(1+ 2 fllem)),
which gives
limsup [(Qn * f — f)(@)] < (14 2[| f[ 1o r))-

N—o0

By arbitrariness of ¢ > 0, we conclude the first part of the lemma.
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Case 2: f € LP(—m, ) for some 1 < p < oco. Using the Mikowski’s inequality, we estimate

I PN\
19+ £ = sy < 5 [ )

3 | ([ lexmre = - sanpac) ay
-4 / Qv = 1) = Fllosnm du

| o) (tta=y) - s@) dy

Since f € LP(—m, ), by approximate it by C°(—m,7) functions, given any ¢ > 0, there
exists d(e) > 0 such that

sup [[f(- =) = fllee(enm) <€
ly|<d(e)

Again using (1.3.7), then for all sufficiently large NV we estimate

1
- Pl—m,m) = 5 T - P(—m,m d
0w s =M <= ([ [ YOS =0~ My

<om <4dn||fllLp(—x,mx)
o\

A

N la ™\

€

<o ([ awar [ 1)~ Sl i)
T\ Jlyl<é(e) S(e)<|y|<m

< €(1+2[| fllLeow)),

and we prove the second part of the lemma similar as in first part. 0
We are now ready to give a direct proof to Proposition 1.3.2.

PROOF OF PROPOSITION 1.3.2 USING DEFINITION 1.3.6. As mentioned in Re-
mark 1.3.3, it is suffice to prove the case when n = 1. Tet f € L?*(—m,m) be such
that

(1.3.8) (f,e*) =0 forall k€ Z.

Using Proposition 1.2.2, it is suffice to show f = 0 a.e. Using Lemma 1.3.7, in particular
from (1.3.8) we have Qux * f = 0 for all N € N. Since Qn * f — f as N — oo in L*(—m, 7),
we conclude our result. O

1.4. Pointwise convergence and Gibbs-Wilbraham phnomenon

Although the convergence of Fourier series in other sense is not the main topic of this
course, it may be of interest to mention a few classcial results. In order to simplify the
analysis, here we only consider the case when n = 1. We first prove the result for piecewise
C! functions:

THEOREM 1.4.1 (Theorem 5.4.400 of [Str08]). Let f be a 2m-periodic function which is
piecewise C* (i.e. f and [’ are piecewise continuous) in R. The Fourier coefficients are given
by
1 s

J) = (F.e™) = o | Jlape ™ de = ]f F()e™ da
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Then the (1-dimensional) Fourier series ), ., f(k‘)e““” of f converges to

%(f(x—k) + f(:):—)) pointwsely,

where f(x£) := limg_,o, f(z£0).

PROOF. The partial sum of the Fourier series of a function f € L'(—m, ) extended as a
2m-periodic function into R, are given by

~Dne)
(141) kz fuer= L [ :f(y)(ki_ o) dy = (Do s Do),

where the convolution is given in (1.3.6). The Dirichlet kernel D,,(z) can be represented by

m L _ iemt)z
Dm(Z) — E /‘ ezkz — e—zmz 2 ezkz — 6—zmz —
e —1
k=—m k=0
i m+%)z

el — emilm+3)z _sin((m + 1)z)

e%z — e_%z N sin(%z)

Since [ €% dz = 0 for all k # 0, then it is easy to verify that
][ Dy (2)dz=1 forall m e N.

Then we have

Snf () — 5 (Fla+) + ()
:i WD m(0)(f (2 +0) — f(x+))d9+%/ Dpn(0)(f(x +6) — f(z—)) db

(1.4.2) :—/ G O @) d0+ = [ g (@)hn(8) do

2 J .

with

gu(0) = 1 Efn) (%_9{ @) and by (6) = sin (<m + %) 9).

1
Using the mean value theorem, the fact limg_, ﬁ = 1 and the piecewise C'! assumption

39)
on f, we see that

limsup |g4(0)| = 2lim sup Jlw+0) = Jlat) ‘ < 00,
‘94)0_’_ 9*}0_’, 0

lim sup |g—(#)| = 2lim sup Jlz+0) = f(:v—)‘ < 00,
6—0_ 0—0_ 0
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then we see that gy is bounded in (0,7) and (—m,0) respectively. Since {hy, }men form an
orthogonal set in the interval (0, 7) and (—, 0) then we have the Bessel’s inequality

2
| fy 9+ d9l2 / )2
19+(0)|° df < o0,
mzl f0|h y2d9 9+
2 d92
:Z|f « 9-(0)hm (9) |_/ l9-(0)]2dO < oc.

m=1 f_ﬂlh ()I2d9

_(0)hun(6) df

This implies

which complete the proof of Theorem 1.4.1. O

Despite the partial sum S, f converges pointwisely to the piecewise C! function f, the
partial sum S,, f produces large peaks around the jump of f, which overshoot and undershoot
the function’s actual values. This approximation error approaches a limit of about 9%. This
phenomenon is called the Gibbs-Wilbraham phenomenon, and we refer the details to the
survey paper [HH79|. We now state without proof the following theorem:

THEOREM 1.4.2 (Gibbs-Wilbraham, Theorem F of [HHT79]|). Let f be the function given
in Theorem 1.4.1. Let & be the set of discontinuities of f. For each x € &, let {, be the
vertical line segment with

2 1
length —Si (7)|f(z+) — f(x—)| centered at Q(f(x—l—) — flz—)).
T
Let G(g) be the graph of g. Then we have
lebl_ril)o G(Snf)=6(f)u U l,  (limit as a set).

€9
REMARK 1.4.3. Note that

abou‘ilQ‘VE
9 ™ Gind 9 overshoo
—/ TR0 = ZSi(r) =1+ 2(0.0804- ).
TmJo 0 T

Sometimes Si(7) is known as the Gibbs-Wilbraham constant. In general, there are many
jumps in signal, therefore this 9% overshoot actually causing significant noise in computation.

EXAMPLE 1.4.4 (|Str08]). The Fourier series
2 .
E — sinnw
nw
n>1 odd

converges pointwisely to
for 0 < x<m,

1
2

f(z)=120  when z =0,

for —m <2 <O.
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Using (1.4.1), we know that the partial sum is given by

s =2 ([ - ) ey

where M = m + 3. We consider the change of variable § = M (z — y) in the first integral,
while § = M(y — x) in the second integral, we have

(Sm ) (%) o (/ /_W Mw) 2M211T1(QLM) "
VR =T
(1.4.3) ~ o (/ /M”:r:” ) 2Mssllrrllf ) v

where we have changed the variable 6 — —6 in the last equality. When M > 2, we see that

1 0 1 3
z<<1——>z< (1—|— )z<_7r forall 0 € (Mm — 7, M7+ 7),

4 M)/ 2 2M — M)/ 2 4
which implies
0 1
sin (W) > 7 forall 0 € (M7 — 7, Mm+ ).
Therefore, we see that

sin @

1 Mm+m
lim sup — / — | df
Mﬁoop 27 Jafoer |12M sm(iM) ‘
Mn+m
1.4.4 < limsup —— df = lim su = 0.
(144) = e 2V M Jytnen Mo /2M
On the other hand, we see that
0
4. — = —rm <0<
(1.4.5) ]Vl[gnoo 2M sin Yi =0 uniformly in —7 <60 <.

Combining (1.4.3), (1.4.4) and (1.4.5), we know that

) T 1 T sin 6 1 ["sinf 1 .

which verifies Theorem 1.4.2.

1.5. Absolute convergence and uniform convergence

From Theorem 1.4.1, we know that if f has a jump, then the Fourier series of f never
converges to f uniformly due to the Gibbs-Wilbraham phenomenon (Theorem 1.4.2). The
following theorem shows that if f is sufficiently smooth, then the convergence can be uniform.

THEOREM 1.5.1 (Theorem 5.4.2 of [Str08]). Let f € C'(R) be a 2w-periodic function.
The Fourier coefficients are given by

f) = e = o [ et an = £ gwe .

2 J .
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Then the (1-dimensional) Fourier series ), ., f(k:)eikx of f converges to f absolutely and
uniformly in R.

EXERCISE 1.5.2. Prove Theorem 1.5.1. (Hint: Compute the Fourier coefficients of f'.)

1.6. Pointwise convergence: Dini’s criterion

We now want to prove a pointwise convergence result as in Mikko Salo’s lecture note. We
begin our discussions from the following fundamental result due to Riemann and Lebesgue:

LEMMA 1.6.1 (Riemann-Lebesgue). If f € L'(—m,x), then f(k) = 0 as k — +o0.

PROOF. Since both f and e~ are periodic, we have
1) 2)

o f(k) = /7r F(x)e ™ dg = /7r f(x 3 %) e~k @E—E) qp — _ /7r f(x _ %) ke g

Then

using (1) using (2)

onf(k) = %( _W f(x)e ke al:l:—/Tr f(az - %)e‘i’m dx)

A oo ee

Since f € L'(—m,7), given any € > 0, we choose a continuous periodic function g with
If = gller(—xm) < €. Then we see that

LR < I(f =) (k) + 19(k)] < e+ 13(R)].

By (uniform) continuity of g, we see that

. ~ o L. " T —ikx _
kh—>r£lo 2rg(k) = 5 kh—>I£lo ) {g(m) - g(x - E)}e dxr =0,

™

therefore by arbitrariness of € > 0, we conclude the lemma. U

LEMMA 1.6.2 (Riemann localization principle). For each 6 > 0 we have

lim Do(0)(f(z+60) — f(z)) dd = 0.

m=—00 0<]y|<m
In particular, if f € L'(—n,7) satisfies f = 0 near z (i.e. f =0 a.e. in (x — 5,z +0) for
some § > 0), then limy, 0 Sy f(x) = limy 00 5= fk‘qu D(0)(f(z+06) — f(z)) dd = 0.

PROOF. Using (1.4.2) we have

™

/5  DalO(f(+0) ~ f) o = / 99 hm(y) dy

—TT
with

flo y))X{5<y|<7r} and  hy(0) = sin ((m + %) 9)'

g9(0) = W


http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
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- . it __ ,—it
Since g € L'(—m,7) and sint = 55—, we have

Don(0) (f(z +0) — f(x)) dO = — (eigg)A(m) + (eiglg)A(m).

21 21

1

27 Js<lyl<n

Hence the Riemann-Lebesgue lemma (Lemma 1.6.1) concludes Lemma 1.6.2. O
By assuming something slightly stronger than continuity, pointwise convergence holds:

THEOREM 1.6.3 (Dini’s criterion). If f € L'(—m, ) and let x be a point such that
ly|<d

Y
then limy, oo Sif(z) = f(2).
REMARK 1.6.4. If f is a-Holder continuous near x for some o > 0, i.e.

£(@) = f(y)| < Cle —y|* for all y near .

dy < oo for some 6 > 0,

then f satisfies (1.6.1). It is interesting to compare Theorem 1.6.3 (lower regularity assump-
tions, but need continuity) with Theorem 1.4.1 (allowing finitely many jumps).

PROOF OF THEOREM 1.6.3. Similar to (1.4.2), we have

Suf(@) = 1) = 5= [ Dul®)(f(o+6) — fia))
</|y<6 /6<|y<7r> (f(x - 9) f( )) .
We see that
‘ Dp(0) (f(z +6) — f(x)) d@' <C fe=y) = J@),,
ly|<o ly|<é Y

From (1.6.1), given any € > 0, we can choose 6 = d(€) > 0 such that

‘/m (f(z+0) = f(x)) do SC/Iy|<5 flz—y) - f(z)

Y
Using Lemma 1.6.2, we have
limsup (S, f(z) — f(z)) <e.

m—r0o0

‘dy<e.

Then our result follows from the arbitrariness of € > 0. O

1.7. Cesaro summability of Fourier series in L?
We begin our discussions from the following simple observation:

LEMMA 1.7.1. Let {¢n}m=012.. be a sequence of complex numbers. Suppose that it con-
verges to a limit ¢ € C, then so its Cesaro sum:

lim —— —
leéoN+1ZC"
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PROOF. Given any € > 0, there exists a sufficiently large Ny € N such that
| — € <€ for all m > Ny.

For each N > N, we write

1 N N | Mo ;N
N——i—lzcm_g‘ < szm—a :NZMW_EH—N Z |am — £
m—0 m=0 m=0 m=No+1
<1
—— Se
1 N — Ny~ -
< —([(Ny+1) su am—€)+ su A, — 0
N <( ’ )OSWENO | | N No<mp§N| ‘
1
< — <(N0 +1) sup |an, — €|) + €,
N 0<m<Ng
which implies
1 N
lim su e — 0 <€
mow |5y e
Our lemma follows from the arbitrariness of ¢ > 0. O
EXAMPLE 1.7.2 (Grandi’s series). Let a,, = (—1)"™ for m > 0. Hence {a,,}5_, is the
sequence 1,—1,1,—1,---. Clearly the partial sum S,, = > " ;a, does not converges, and in

particular
{Smte_y=141,0,1,0,---}.
We see that the Cesaro sums are given by

N M . o .
- 1 Z‘Sm: s N =2M —1is odd,
N+1 if N =2M is even,

m=0

N [—= N

which implies

lim ON = —.
N—oo 2

The above observation suggests that, instead of the partial sums S,,f, we consider the
Cesaro sums
1 N
= — S .
onf(x) N1 2 f(x)

This can be written in convolution form as
N
1

= 7 2 (D @) = (Fy % (@)

m=0

onf(z)
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where Fly is the Fejér kernel:

FN{L‘

N z(m+ )z (m+%)x
N+1Z ¢iz® i%
m=0
’Ll L(NJrl)L_l —ill’ e*i(N#»l):L’_l
. 1 €2 ( eiz_l ) — € 2 ( efia:_l )
N+1 el — ¢iz?

1 ei(N-l—l)x _

T N+1

(ez%a: _ e—z%:c)z

1 sin®(¥Ha)

TN+l sin®(32)

EXERCISE 1.7.3. Verify that the Fejér kernel is an approximate identity as in Defini-

tion 1.3.6.

Our previous sections concerning how the partial sum S,,f = D,,

x f converges to f in

different senses. Since the Dirichlet kernel D,, takes negative values, it is not an approximate
identity (Definition 1.3.6). However, using the summation method, we obtain an approximate
kernel. In other words, the Cesaro sums “regularize” the kernel'. Therefore using Lemma 1.3.8
we conclude the following theorem.

THEOREM 1.7.4 (Cesaro summability of Fourier series). Let f be a 2m-periodic function
inR. If f € LP(—m, ) for some 1 < p < oo, then

If f is continuous, then

]\}Lmoo ||0Nf - fHLp(—ﬂ’,?T) = 0.

]\}gnoo lonf — f”LO"(fﬂ,ﬂ) = 0.

LA possible topic for final presentation: In view of Gibbs-Wilbraham phenomena (Theorem 1.4.2), does

Cesaro sum reduces some noise?



CHAPTER 2

Fourier transform

In previous chapter, we consider Fourier series for periodic functions. The main goal of
this chapter is to study an analogue for non-periodic functions.

2.1. Motivations
We first perform some formal computations to bring out some motivations.

EXERCISE 2.1.1. Let T' > 0 and let f : R® — C be a function with period 27 on each
variable. Show that the Fourier series of f is given by

(2.1.1) =Y f(k)e'Th  with f(k):][ fy)e 7% dy,
kezn (-7 7]
where f 7. 18 the average integral given by f T = —I[ T f T = (2%)77, f[fT’T]n.

If we denote { = k% € ZZ, then (2.1.1) is just simply

162 g 2 (L 700) (7).

kezm

We observe that (7)" is the volume of each square in the mesh 7Z. In view of Riemann
integral, formally taking the limit 7" — oo we see that

1 . A
2.1.2 flx)= —/ ( fly e"g'y)elf'x d§.
(2.1.2) () 2 Jon \ o ()
DEFINITION 2.1.2. The Fourier transform of f € L'(R") is defined by (Zf)(&) =

f):= | revay.

REMARK 2.1.3. It is easy to see that HfHLOO(Rn) < |Ifllz1(rny and f e CORM).

From (2.1.2) we formally have the Fourier inversion formula

T) = 1 F&)eee
(213 1@) = oy [ FOde

which is indeed true in some sense. In this course, we will focus on Fourier series in Euclidean
space R™. Here we remark that the Fourier series we consider in previous chapter is indeed
equivalent to the Fourier transform on torus T".

Indeed, we often approximate Fourier transform by Fourier series in practical engineering
application (e.g. signal processing).

EXERCISE 2.1.4 (Riemann-Lebesgue). Prove that if f € L'(R™), then limg_o. f(&)=o.
[Hint: C>°(R") is dense in L'(R™), and consider the Laplacian.|'

1See Lemma 1.6.1 for corresponding lemma, for Fourier series

21
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2.2. Schwartz space .¥/(R")

Using Fubini’s theorem, it is easy to see that

(2:2.1) f(€)g(©)de = | f(x)j(x)de forall f,ge L'(R").
R’ﬂ R’ﬂ

Identity (2.2.1) might suggest defining the Fourier transform f of a distribution f € 2'(R") =

(C*(R™))". However, there is a series problem to implement this idea, since

F(CE(RY) £ CZ(RY),

see Corollary 2.3.7. To overcome this difficulty, we consider the functional space .#(R"),
which is the set of those smooth functions which, together with their derivatives, decrease
more rapidly than the inverse of any polynomial. Precisely see the following definition:

DEFINITION 2.2.1. The Schwartz class of rapidly decreasing functions is defined as

[Plas = Suglmﬁa%(@l < 00
TER™ .
for all multi-indices «,

(2.2.2) S (R") == { o € C*(R")

The elements of . (R™) are called the Schwartz function.
REMARK 2.2.2. For each m € N, we see that there exists C' > 1 such that
CHz[™ < > |27 < Cla|™ forall z € R,
Iyl=m

since the restriction of the function g(z) := 3", _, 27| on S™~1 attains a nonzero minimum.
Therefore each smooth function ¢ belongs to ./(R") if and only if

(2.2.3) wseuﬂg |(x>m80‘gp(x)| < oo with (z)=(1+ |:B|2)%

for all m € Z>¢ and for all multi-index a with |a| < m. In other words,

lillm == > sup|{z)m0°p(x)| < oo

(2.2.4) L (R") =< ¢ e C®R") jaj<m “ER"
forall m e N
Here we remark that [-|, 5 is a semi-norm and || - ||,, is a norm.

EXERCISE 2.2.3. Prove that for each fixed number a € (0, 00) the function f(z) = e~
(x € R") belongs to .(R"). Therefore C*(R™) C . (R™) C C*(R"). However note that
e~ 1l is not in Schwartz space since it is not C™ near the origin.

We already define Schwartz class .(R™) as a set. We now define a topology for it (i.e.
define open sets in .(R™)), in order to make the notion of “continuous” make sense. Using
the norms || - ||;n, we now define

oo

(2.2.5) do@m (@, 0) =) 27

m=0

[ — Pllm

—————— — for all p, v € S(R").
T+ o — ol )

EXERCISE 2.2.4. Verify that (2.2.5) is a metric. [Hint: If || - || is a norm on a vector space,

o] ol
show that L= < o + Ty
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In particular, {¢;} C .7 (R™) converges to zero in .#(R") if and only if
l@jllm — 0 for all m € Zs,

or equivalently [p;], 3 — 0 for all multi-indices «, 5. Consequently, we have the following
observation:

LEMMA 2.2.5. The linear operator T : (R") — Z(R") is continuous if and only if
(2.2.6) |T@;||lm — 0 provided ||@;||lm — 0 for all m € Zx,
or equivalently
[T'ila — 0 provided [¢;]as — 0 for all multi-indices «, B.

Proor. If T : /(R") — (R") is continuous, then it is clearly that (2.2.6) holds.
Conversely, we now assume that (2.2.6). Since >~ 27" < oo, given any € > 0, there exists
N(e) > 0 such that 377 vy, 27™ <€, which implies

N(€) o0

— ||90_77D||m — ||90_77b||m > _
domm (o) — Y 27m—— T — om_r_ T < 27M < e
@) (:9) mZ 1+ g — ¢lm 2 1+ g — ¢llm 2

m=N(e)+1 m=N(e)+1
Hence from (2.2.6) we have
N(e)
. s [T(¢ — 9)]m
limsup d o) (T, TY) < €+ 27 lim sup =
a0 ) mz::o lo—tllm—0 1+ [|T(0 = 1)||m
By arbitrariness of ¢ > 0, we conclude our lemma. O

THEOREM 2.2.6. Let dywny be the metric given by (2.2.5). Then (L (R"),dymn)) is a
Fréchet space space, that is, it 1s a complete metric space.

REMARK 2.2.7. Note that .(R") is a (Grothedieck) nuclear space. Since each infinitely
dimensional Banach space spaces are not nuclear, then we cannot define a norm on . (R").

PROOF OF THEOREM 2.2.6. Let {p;} be a Cauchy sequence in .(R"). Given any € > 0
and multi-indices «, 8, using the above observation, there exists M > 0 such that

[pj — Prlas = [|2°0°0; — 2°0° i || Loe@ny < € for all j,k > M.

Hence the sequence {z%9%¢;} is a Cauchy in the complete space (CO(R™), | - ||ze(rn)). then
there exists a unique g, g € C°(R™) such that

] o 6 ;o oo n)y —
Jlim {22070 = gapll ooy = 0.

Let g := go,, using the fact that C™(IR") is complete, then we see that 9°g = gy 5 inductively.
By the uniqueness of the limit, we see that 1°9°g = g, 5 and g € .(R"), and consequently

p; — g in L (R"). O
DEFINITION 2.2.8. The space of slowly increasing functions in R" is defined as
for each multi-index «, there exists
OuR") =9 f€CYR") | M€ Zg such that sup [(z)~M0° f(z)| < 0o
zeR?

EXERCISE 2.2.9. Prove that for each s € R the function f(x) := (z)* (z € R") belongs
to ﬁM(Rn)
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EXERCISE 2.2.10. Prove that the function f(z) = e** (z € R") belongs to Oy (R™).
Some other basic properties of the Schwartz class are collected in the next proposition.
PROPOSITION 2.2.11. If f € O(R™) and v € L (R"), then the following operations are
continuous maps from . (R"™) into &/ (R™):

(1) Reflection. ¢ — ¢ with o(x) = p(—x),

(2) Conjugation. ¢ — p,

(3) Translation. ¢ — T,,¢ with T,,¢(z) = e(x — x),

(4) Derivative. ¢ — 0%p, in other words, ./ (R™) is stable under differentiation (using

similar arguments, we know that O\ (R™) is also stable under differentiation),
(5) Multiplication. ¢ — fop.

PROOF. Part (1) and (2) are clear. For (3), by observing that

% = (r —xo+20)" = Z ey (x — 20)7,

<«
we see that
[Ta0)as = sup |z%0° oz — z0)|
TER?
<C sup |(z — 29)"0%0(z — x ) =C
Zgﬂg I¢ 0) o( 0)l Z

y<a v<a

Therefore (3) follows from Lemma 2.2.5. Part (4) is an immediate consequence of the follow-
ing identity:

07l = [Pl 575
Since f € Oy, given any [ we may choose C' and N such that }<x>*N87f(m)‘ < C whenever
v < 3. Now we have

([l = 12°0° (o)l oe @y = [|2% ) e, (077 F)(07p)

v<B Loo(Rm)
<c
f————/\————\

<O @) (@) )OO oy

v<p
< O e 0l o oy

v<B

Therefore (5) follows from Lemma 2.2.5. O

LEMMA 2.2.12. For each 1 < p < oo, the space . (R") is continuous embedded in LP(R"),
i.e. L (R™) C LP(R") as a set and the inclusion mapping ¢ : . (R™) — LP(R™) is continuous.

PROOF. Let p € ./ (R"). For p = 1, the claim follows from

el = [ (@7 (@) (o)) do

<00

——

< Il | (o) da

Rn

= C|l ()" pll oo -
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For p > 1, the inequality

_ P 1 1—
lpllzogeny = ( / (@) () 1dx) < 1l oy 01l e
implies the result. O

2.3. Fourier transform on Schwartz space

In view of Lemma 2.2.12, the Fourier transform is well-defined on .7 (R™) by restriction.

EXERCISE 2.3.1. Let ¢,(z) = e 21" which is in .#(R") by Exercise 2.2.3. Prove that
On = (2m) 2y, and ¢, (0) = (2m) 7" [ On() da.

We first show that f is smooth whenever f € .7 (R"):

LEMMA 2.3.2. For any f € .Z(R"), the Fourier transform f is in C=(R") and 0°f €
L>*(R"™) for all multi-indez «.

~ PROOF. From Lemma 2.2.12 and the definition of the Fourier transform, we know that
f € L>*(R™).
Observe that

f(f + hek) — f(f) _ / e‘ixff(x) e—ther _ q "

h h

_ / () (% /0 Ik%(e—iht) dt) dz
= — / ) et f(x)( /O i dt) dx.

Since | [;* e~ dt| < |xy|, the Lebesgue dominated convergence theorem implies

A~

0 F(6) = tim 1€ Ther) = 1(©)

h—0 h

= — / ) et f(:c)(}llii% /O e dt) dx
_ / (= i f(2)) du = F(—izp f().

Since —ixy f(x) is also in .7 (R™), the using the observation in the first line of the proof we see

that O, f(€) is in L°(R™). Inductively, by observing that z“f(z) is in ./(R"), we conclude

A

that 9g f(&) is in L>(R™). O

PROPOSITION 2.3.3 (Basic properties of Fourier transform). Let f € ./ (R"™), z¢,& € R",
c¢ > 0 and multi-indices o, 5. Then the following identities hold:
(1) Translation. (1, f)"(&) = e ¢ f(&) with 1, f(x) = f(x — x0),
(2) Modulation. (¢ f)\(€) = ¢, f(€),
(3) Scaling. (£))(&) = " f(/e) with fu(z) = f(cx),
(1) Derivative. (92 )\(€) = (i€)* f(¢),
(5) Polynomial. ((—ix)’f)"(&) = 9 f(€).
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REMARK 2.3.4. In some context of pseudo—diﬂierential operator, some autbors denote
Dy, = 40, In this case, we write (Dgf)"(€) = £€*f(€) and ((=2)° f)"(€) = D f(€).

EXERCISE 2.3.5. Proof Proposition 2.3.3.
We are now able to prove (2.1.2) in a rigorous sense as follows:

THEOREM 2.3.6. The mapping F : L (R") — L (R") is an algebraic and topological
isomorphism (i.e. it is bijective, continuous and its inverse is also continuous). In addition,
its inverse is the operator F 1 : S (R") — S (R") is given by the formula

(2.3.1) (F1g)(x) = (27?)_”/ e tg(€)d¢  for all g € S (R™) and x € R™,

n

that is, (F~1g)(C) = (2m)"(F g)(=().

PROOF. Let f € .7 (R"). From Lemma 2.3.2, we already know that f € C*°(R"). Given
any multi-indices a and [, we see that

[flays = sup €207 f(€)| = sup |(i)*0; f(£)]
£eRn R
= sup | [0 ((—iz)” £)]" ()]
£eRn
<105 ((=i)? £) | 1 ).

Using Leibniz rule (a.k.a. product rule), we see that 9% ((—iz)’f) = )L, crpa® 02 f(z) for
some constants ¢, and multi-indices oy, 8, so

flas < CY a0 flls@ny < C Y a0 f oo an.
k=1 k=1
By arbitrariness of a and (3, and using Lemma 2.2.5, we conclude that .Z : . (R") — . (R")
1s continuous.
To prove Theorem 2.3.6, it is remain to show (2.3.1). Fixing any ¢ € (R") and ¢ > 0.
Choosing g(z) = ¢(x/c) in (2.2.1) gives

5 f@)p(z/c) dx = Rnf(y)C”s@(cy) dy = Rnf(y/C)@(y) dy.

Taking the limit ¢ — oo (Lebesgue dominated convergence theorem) in the equality above,
we have

o) [ farde=10) [ sy

n

We now choose ¢ to be the Gaussian ¢,, in Exercise 2.3.1, then we obtain that

fO)=@n)™ [ flz)de,

Rn
which proves (2.3.1) for z = 0. Therefore, from Proposition 2.3.3 we know that

232 @)= @00 =0 [ = en [ e

which implies the theorem?. 0

2The surjectivity can be seen by rephrase (2.3.2) as (#2f)(—x) = (2m)" f(z) for all z € R™.
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COROLLARY 2.3.7. If p € C*(R"™) and ¢ € CX(R™), then ¢ = 0.
PROOF. Suppose that ¢ € C°(R") with ¢ € C*(R"), and let * = (27,--- ,2}) € R™.
Define ® : C — C by setting
O(z) := / e ML 2 T8 (g oo 2y )dy -+ da,  for z € C.

Then @ is analytic in C and ®(t) = 4(t, a5, -+, x)) for every ¢t € R. Since ¢ has compact

rn

support, then ® =0 in R\ [—R, R] if R > 0 sufficiently large. Using the unique continuation
property of analytic function, we conclude that ® = 0 in C, which gives

Bty = (a}) = 0.

By arbitrariness of z* € R™, and using the injectivity of the Fourier transform on C°(R™) C
< (R™), we conclude our lemma. 0J

We finally end this subsection by the following proposition.

PROPOSITION 2.3.8. For each f,g € Z(R"™), one has
(1) Symmetry. F2f = (2n)"f with f(z) = f(—z). Consequently, F*f = (2m)*"f.
(2) Parseval’s identity. / flx)g(x)de = / f(z)g(z) dx.

R R
(3) Parseval’s identity. / f(x)g(x)da:z(%r)‘"/ F(©)g(&)de.  Consequently,
R™ R
f@)Pde = 2m) " [ |F©P de.
R™ R

EXERCISE 2.3.9. Prove Proposition 2.3.8.

2.4. The space of tempered distributions ./(R")

We now want to define the corresponding class of distributions, namely the tempered
distributional Fourier transform.

DEFINITION 2.4.1. Let ./(R™) be the set of continuous (w.r.t. the metric (2.2.5)) linear
functional on .7 (R™), i.e. dual space of .(R"). Precisely,

P ' " T linear and T'(p;) — 0
Y(R)._{T.Y(R)%(C whenever ¢; — 0 in S (R") [~
The elements of ./(R™) are called tempered distributions.
We first show that any tempered distribution has finite order in the following lemma:

LEMMA 2.4.2. For any T € .'(R"), there exist C' >0 and N € N such that

T(p) <C Y [(2)¥ 0 pllmeqny  for all p € F(R™).
BI<N

PROOF. Suppose the contrary, that for any N > 0 there is a py € (R™) such that

(2.4.1) T(en) = N D @)V 0 oo gamy.
BN
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If we define

1 —1
n(x) = N( Z H(x)NaﬁwNHLoo(Rn)) on(z) forall x € R",
[BI<N

from (2.4.1) it is easy to see that
(2.4.2) T(¢Yn)] > 1 forall N €N.

On the other hand, for each fixed multi-index (3, we have

1 - 1
[{z)N 0% || oo (rmy = N( > H<I>Naﬂ90N||L°°(Rn)> ()N 0% o || Lo (rny < N

|BI<N

for all sufficiently large N. By arbitrariness of Sy, from Lemma 2.2.5 we know that ¢y — 0
in .Z(R"). Since T' € ./(R™), then

lim T'(¢n) =0,

N—o0

which contradicts with (2.4.2). O

ExXAMPLE 2.4.3. If f: R"™ — C any measurable polynomially bounded function f, in the
sense that |f(z)] < C(x)Y for a.e. z € R™, define

T : SR = C, Tylp)= | fedr
R’ﬂ

Since for any ¢ € .(R") we have

/Rnfsodx

Using Lemma 2.2.5, we know that T'(¢;) — 0 whenever ¢; — 0 in ./(R"). Moreover, it is
possible to identify the distribution 7} with the function f, since the condition T}, = Tj,
implies that

Ty ()| =

<C | (2)V]p()| de < ()M | oo ).
R

/ (fi — f2a)pdxr =0 forall p € S (R"),
R

which implies that f; = f, a.e., hence it is legitimate to denote f € .#'(R"). Therefore, we
can identify )/(R") as a subspace of ./ (R").

EXERCISE 2.4.4. Prove that for each a € (—n, 00) the function |z|* is a tempered distri-
bution in R"™. Therefore, we know that &), (R") C ."(R™).

EXAMPLE 2.4.5 (Measures as distributions). Let u be either a complex Borel measure or
a positive Borel measure® on R”. We say that the measure y is polynomially bounded if for
some N the total variation |u| satisfies

/ @) Ndlpl(z) < oo

3For complex measures, the measure can take on complex values, infinite values are not allowed. In
contrast, infinite values are allowed for positive measures. In particular, a finite positive measure is a special
case of a complex measures.
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Any polynomial bounded measure p and for any ¢ € . (R"), we see that

[ o] < [ @l delo) < 16 ool [ 07 dlo)

which shows u can be 1dent1fy as an element 7), in ./ (R") given by

7,0 = [ ola)dula),

therefore it is legitimate to denote p € ./(R™).

EXAMPLE 2.4.6 (LP functions as distributions). For each 1 < p < oo, we have LP(R™)
can be identify as a subspace of .#/(R") by identifying f with the element

Ti(p)i= | fla)ole)de

In particular, we see that

T < [ flle@nll@ll o @ny < CllF oy 0]l ),

where we used Hoélder’s inequality and Lemma 2.2.12.

DEFINITION 2.4.7. Let {T;}32, C /(R") and T € #/(R"). We say that 7; — T in
SR if
Ti(p) = T(p) for any ¢ € S (R").

LEMMA 2.4.8 (Convergence in ./(R"™)). The followings are true:

(1) f T; = T in ' (R") and T; — S in ' (R"), then T = S.

(2) If {¢;} is a sequence in L (R™) (resp. LP(R™) for some 1 < p < 00) with p; — ¢

in & (R™) (resp. in LP(R™)), then ¢; — ¢ in ' (R™).

EXERCISE 2.4.9. Prove Lemma 2.4.8.

The operations on tempered distribution can be induced from Proposition 2.2.11:

PROPOSITION 2.4.10. Let f € Ou(R"™). The following operations map &' (R"™) into
L' (R™), and they extend the corresponding operations on . (R™):
(1) Reflection. T(p) = T(p) with $(z) = ¢(—1),
) Conjugation. T(p) = T(P),
) Translation. (7,,T)(¢) = T(7_z,p) with T_,,(x) = p(z + 0),
) Distributional derivative. (0°T)(p) = (—1)T(9%p),
) Multiplication. (fT)(p)=T(fp).

REMARK 2.4.11 (Distributional derivatie v.s. weak derivative). Perhaps the most strik-
ing point is that any tempered distribution has distributional derivatives of any order,
and these derivatives are still tempered distributions. We consider the Heaviside function
H e L*(R) C 7'(R) (see Example 2.4.6) given in (1.1.6). According to Proposition 2.4.10,
the distributional derivative of H is given by

H'(p) = / H(x dx——/ooogo'(x)dx:go(O) for all p € S (R),

therefore, we have H' = §y. It is worth-mentioning that the weak derivative (Definition 1.1.1)
of H does not exist (see Example 1.1.6). Each weak derivative also a distributional derivative,

(2
(3
(4
(5
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but not the converse. Without any ambiguity, here and after, we denote 9 the distributional
derivatives.

2.5. Fourier transform on ./(R")

Parseval’s identity in Proposition 2.3.8 shows that the following definition extends the
Fourier transform:

DEFINITION 2.5.1. The Fourier transform of any tempered distribution 7" € .#’(R") is
the tempered distribution 7' = .Z#T defined by

T(p) =T().
Similarly, the inverse Fourier transform of 7' € .%/(R") is the distribution 7 = .#~'T for
which T'(¢) = T(p).

EXAMPLE 2.5.2. The Fourier transform of the Dirac measure ¢,, is the tempered distri-
bution given by

(520" 0) = 6y (2) = hlan) = | e S(€) e

Thus, (d,,)" can be identify with the function £ — e~@¢. In particular, #§, = 1.

ExAMPLE 2.5.3. Using Proposition 2.3.3, the derivative of Dirac measure can be com-
puted as followings:

(9°80)" () = (900) () = (~1)*16y(9°)
= (=116 (((—iz)*0)")
= ao(((in)e)) = [ (ie)"e(e)de.
which conclude (0%0)" = (i€)*.

Similar to the Fourier transform on Schwartz space, it is easy (and natural) to see that
the Fourier transform is also isomorphism on the space of the tempered distributions. Here
we record this observation as a theorem:

THEOREM 2.5.4 (Fourier inversion theorem). The Fourier transform is a bijective map
from ' (R") — "(R™). It is continuous in the sense that

T, =T in ' (RY) = T; = T in ' (R").
One has the inversion formula
(2.5.1) T(@) = (20)™T(@) for all p € S (R")
with () = p(—x).
PROOF. The inversion formula (2.5.1) immediately follows from Proposition 2.3.8. From

(2.5.1) and since .7 : S (R™) — .(R") is continuous bijective, we know that .7 : ./ (R") —
< (R™) is also continuous bijective. O

From Proposition 2.3.3, it is easy to see the following properties:

PROPOSITION 2.5.5 (Basic properties of Fourier transform). Let T € '(R"), ¢ €
L (R"™), x0,& € R™, ¢ > 0 and multi-indices o, 5. Then the Fourier transform on /' (R")
has the following properties:
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(1) Translation. (7,,T)" = e 0t
(2) Modulation. (¢T)" =7, T,
(3) Derivative. (02T)" = (i&)*T,
(4) Polynomial. ((—iz)’T)" = 8?T.

Here the operators are given in Proposition 2.4.10.

2.6. Fourier transform on 2

To extend the Fourier transform on L?(R™), we prove the following extension lemma for
densely defined bounded linear transform:

LEMMA 2.6.1. Let X and Y be Banach spaces and let Xy be a dense subspace of X. If
Ty : Xo — Y be a linear mapping satisfies

(2.6.1) |Tozlly < C|lz||x for all z € Xy,

then there exists a unique bounded linear mapping T : X — Y with T|x, = Ty such that
(2.6.2) | Tz|ly < C|lz||lx forallze X

and

(2.6.3) Tx = jli_glo Tox; for all {x;} C Xy with x; — x in X.

PROOF. Let {z;} C Xj be such that z; — x in X. Using (2.6.1), it is easy to see that

limsup ||Toz; — Toxklly < limsup ||z; — x||x =0,

Jik—o00 j,k—o00
that is {Toz;} is a Cauchy sequence in Y. Since Y is a Banach space, then there exists a
unique y € Y such that

lim Th(z;) =y inY.

j—o0
Suppose that {2/} C X is another sequence such that 2 — x. Using (2.6.1), we see that

limsup ||Toz; — TOOC;-HY < limsup ||z; — 95;HX = 0.
j—o0 Jj—oo

Therefore, the unique extension 7" given in (2.6.3) is well-defined. On the other hand, we see
that

|WﬂwsnmprWx—%%m+w%%m)

j—o0

= limsup ||Tox;|ly < limsup C||z;||x
j—00 Jj—oo

< ¢ (tmsup o, — sl + el ) = Cllolc

J—oo
which conclude (2.6.2). O
Using the fact that (R™) is a dense subspace of LP(R™) for 1 < p < oo, we now show

that the restriction of % : '(R") — %'(R") on L'(R") is consistent with the Fourier
transform on L(R™).
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THEOREM 2.6.2. The Fourier transform is a continuous map from L'(R") into C°(R").
For any f € LY(R") the Fourier transform is given by the usual formula

(2.6.4) f(é) = / e" " f(x)dr  for all € € R™

PROOF. If f € .#(R") then we already know that f € CO(R") such that | f|| =) <
| fll22(gn). This means that .Z : #(R") — C°(R") is a bounded linear map from a dense
subspace of L'(R™) to C°(R"), hence using Lemma 2.6.1 there exists a unique bounded
extension

®: L'(R") = CO(R™)  with [|®(f)||reo@ny < |12 @n)-

We wish to show that ® = .%|,1gn), where .# is the Fourier transform on .#/(R"). For this
we take any f € L'(R") and choose a sequence {f;} C .(R") such that f; — f in L'(R").
Then

Ff; = ®(f) in L2(RY) = Ff; — (f) in & (RY).

Using Theorem 2.5.4, we know that .# f; — Z# f in /(R"), then the uniqueness of limit
gives

Ff=(f) in S'(R").
The formula (2.6.4) is given by

B(F)(€) = lim (&) = lm [ e ®f(r) d = / e f() da,

where the last equality follows since || f; — f||z1@&n) = 0. O

THEOREM 2.6.3 (Plancherel). The Fourier transform is an isomorphism from L?*(R")
onto L*(R™). It is isometric in the sense that

||f||L2(]R”) = (277)%||f||L2(]R")-
The transform is given by

A~

(2.6.5) f(¢) = lim f(z)e ™Sdx in L*(R™).

PROOF. Using the Parseval’s identity, we know that % : #(R") — L*(R") is an isometry
from a dense subset of L*(R™) to L*(R"). Therefore from Lemma 2.6.1, it extends uniquely
to an isometry @ : L?(R") — L?*(R"). Using a similar argument, we can show that ® and
Z |2@®ny coincide. For any f € L*(R"), we have

xBpf — f in L*(R") as R — oo.
Hence Parseval’s identity gives

/ e f(x)dr = (xpof)" — f in L}(R") as R — oo,
lz|<R

where we used the fact that xp,f € L'(R"). O
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2.7. The space of compactly supported distributions &”(£2)

To study the local behavior of tempered distributions, we introduce the following concepts.

DEFINITION 2.7.1. For any open set 2 C R”, the distribution 7" € ./(R") is said to
vanish on €, written T'= 0 in €2, if

T(p) =0 forall ¢ € C*().
Two distributions 77 and T3 are said to be equal in € if T7 — T, vanish in 2.

We recall the following proposition regarding to the partition of unity [Mit18, Theo-
rem 14.42]:

PROPOSITION 2.7.2 (Partition of unity for arbitrary open covers). Let {$2;};c; be an arbi-
trary family of open sets in R™ and set () := U]EJ Q2;. Then there exists an at most countable
collection {p;}icr C C(Q) of non-zero functions satisfying the following properties:

(1) For everyi € I, there exists j € J such that supp (¢;) C Q;;

(2) For everyi € I, one has 0 < ¢; <1 in Q;

(3) The family of sets { x € Q| pi(x) #0 }, indexed by i € I, is locally finite in Q; *
(4) > icrwilz) =1 for every x € (1.

The family {¢;}ier is called a partition of unity subordinate to the family {€;};e,.

REMARK 2.7.3 (Reindexing). First of all, for those j € J such that there does not exist
i such that supp (¢;) C €;, we define ¢»; = 0. Let J C J be the index set such that for
each j € J there exists ¢ € I such that supp (i) C Q;. Since [ is countable, then J is also
countable, therefore we can identify J = N. We define °

Li:={iel|supp(p)C },
I; ::{ ie]‘supp(gpi)cﬂj }\Ij_l forall j =2,3,---.

We see that [; are disjoint and |,y [; = I. We now consider the family of functions {¢;};e,

defined by
V= Z Pi-

iE[j

We see that ¢, € C*°(£;), 0 < ¢; <1, such that any compact set K C 2 has a neighborhood
U where only finite many 1; are not identically zero, and

ij(x) =1 forallz e U.

jeJ
We now able to prove the following lemma:

LEMMA 2.74. If {Q;}jes is a family of open sets in R™, and if T vanishes in each §2;,
then T vanishes on Q := J;c; €Y.

4A family {A;}ier of subsets of R™ is said to be locally finite in E C R™ provided every 2 € E has a
neighborhood U C R™ with the property that the set { i € I | A;NU # 0 } is finite.

SHere we remark that it is possible to have supp (¢;) C Q;, NQy, with j1 # jo.
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PROOF. Let {t;};cs be the family of functions described in Remark 2.7.3. Let p € C2°(Q2)
and write K = supp (¢). We can now write

o= Uip
jeJ
where only finitely many terms of the sum are nonzero. Thus
T(p) =) T(¥0) =0,
jeJ
using the fact that 7" vanishes on each €2;. 0

This lemma ensures the following make sense:

DEFINITION 2.7.5. The support of a distribution 7' € .#’(R"), denoted by supp (7, is
the complement of the largest open subset of R” where T" vanishes.

We now want to give a characterization of the tempered distributions with compact
support. Let &(R") = C>*°(R™). We define

[f]N = Z |\(9“f||Loo(BN(O)) for each N € ZZO,
la| <N

which are semi-norms on &(R"). Similarly to Exercise 2.2.4, we induce a metric on &(R"™)
defined by

o0

,_ I n

and that f; — f in &(R") if and only if 0*f; — 0“f uniformly on compact subsets of R"
for any multi-index «. Therefore, using a similar argument as in Theorem 2.2.6, we have the
following;:

THEOREM 2.7.6. Let dgmwny be the metric given by (2.7.1). Then (&(R"),dewn)) is a
Fréchet space space (i.e. complete metric space), and the identity map ¢ : &/ (R") — &(R")
18 CONTINUOUS.

REMARK 2.7.7. Similar to Remark 2.2.7, since &(R") is a (Grothedieck) nuclear space,
then we cannot define a norm on & (R").

Similar to Definition 2.4.1, we also consider the following definition:

DEFINITION 2.7.8. Let &'(R™) be the set of continuous (w.r.t. the metric (2.7.1)) linear
functional on &(R™), i.e. dual space of &(R™). Precisely,

T linear and T'(p;) — 0 }

M1 . — . n
&R ){ T:6R") = C whenever ¢; — 0 in &(R")
Similar to Lemma 2.4.2, we have the following lemma:

LEMMA 2.7.9. For any T € &' (R™), there exist C >0 and N € N such that
T/ <C Y 10"y for all f € ER).

la|<N

EXERCISE 2.7.10. Prove Lemma 2.7.9.
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Each element S € & (R") induces T := S o1 € '(R"), where ¢ : /(R") — &(R") is
given in Theorem 2.7.6. Since .#(R") is dense in &(R"™) (for any f € &(R"™) just take a
sequence {f;} C (R™) such that f; = f in B;(0)), then S induces a unique 7" = S o ¢.
Moreover, the mapping ¢ : ./ (R™) — &(R") is continuous, therefore &’(R") is continuously
embedded in .#/(R™), i.e. the topology are compatible. The following theorem is the main
result of this section, it states that &’(R") is exactly the compactly supported (tempered)
distributions:

THEOREM 2.7.11. Let T € ' (R"). The following are equivalent:
(1) T has compact support,
(2) T can be extended to an element in &' (R™).

REMARK 2.7.12. Accordingly, we can define Fourier transform on &”’(R") as in Defini-
tion 2.5.1.

PROOF OF THEOREM 2.7.11. (1) = (2). Suppose T € ./(R"™) has compact support,
and choose ¢ € C>°(R™) so that 1) = 1 on some open set containing supp (7')°, and we denote
K :=supp (¢). Then we see that

T(p) =T(dyp) forall p € Z(R"),
and we can extend 7" on &(R™) by defining
T(f)=T(wf) forall fe&R").
We now want to show 7" € &(R"). Since T' € ./(R"), using Lemma 2.4.2 there exist C' and

N such that
T <C Y @)V 0"l Lomny  for all p € Z(R").
o] <N
Since for any f € &(R"), the function ¢ f € C°(R"™) satisfies supp (¢ f) C K, this implies
that
TN = 1T@WHI<C D N0 @ )liee@ny < C" D 10 Fllsei)s
lal<N lal<N
which implies that 7" € &' (R").
(2) = (1). For the converse, we suppose that 7' € &'(R"™). Using Lemma 2.7.9, there exist
C > 0and N € N such that

TN <C Y N0llimy@y forall f e &R
la|<N

If T does not have compact support, then for any M there is a function ¢ € C°(R™\ By (0))
for which T'(¢) # 0, this clearly contradicts the above inequality. 0

The extreme case of a distribution with compact support is one whose support is a point.
The following theorem characterizes all distributions with support consisting of one point,
which can be found in [FJ98, Theorem 3.2.1]:

6Sometimes, we simply say ¢ = 1 near supp (7).
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THEOREM 2.7.13. Suppose that T € /'(R™) such that supp (T') = {0}. Then there is a
non-negative integer N such that
T=>" c.0%,

la|<N

where ¢, are complexr numbers.

For each u € ./(R"), we can define the distributional Laplacian

Au:=Y " 0uec.7'(R")
j=1
by using Proposition 2.4.10. Then we say that Au = 0 in distribution sense if (Au)(¢) =0
for all ¢ € Z(R"). As a consequence, we obtain a generalization of the standard Liouville
theorem which states that any bounded harmonic function is constant.

COROLLARY 2.7.14 (Liouville-type theorem for distributions). If u € ./(R") satisfies
Au = 0 in distribution sense, then u is a polynomial.

REMARK 2.7.15. The only bounded polynomial is constant function. Therefore, if u €
L>°(R™) satisfying Au = 0 (in distribution sense), then u = constant.

PRrROOF. Using Proposition 2.5.5, taking Fourier transform in the equation Au = 0 implies
that |¢|*¢ = 0 in distribution sense. Hence we know that

i(p) = [g]*a(lg] ) =0 for all p € CZ(R™\ {0}),
which shows that supp (@) = {0}. Using Theorem 2.7.13, we know that
i= Y 0.
lo|<N

Taking the inverse Fourier transform and using Proposition 2.5.5, we see that u is a polyno-
mial. ]

2.8. The space of test functions Z(2) and distributions Z'(Q2)

Fixing any compact set K in R", we denote
Dy = { @ € C*(R™) ‘ supp (¢) C K }
For each fixed N € Z>, it is easy to see that
lellv =Y 10%l e
la|l<N

is a norm defined on Z. Similar to (2.2.5), Exercise 2.2.4 and Theorem 2.2.6, we have the
following lemma:

LEMMA 2.8.1. Pk is a Fréchet space (i.e. complete metric space) equipped with the metric

o0

_ ~ e —?Ylnr
(2.8.1) dg, (¢, 1) ._szoz R P

REMARK 2.8.2. Similar to Remark 2.2.7, since P is a (Grothedieck) nuclear space, then
we cannot define a norm on Y.
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Let €2 C R™ be an open set. We now define the set of test functions by
2@Q)=cx= |J o
KCQ compact

Similarly, let us introduce the norms

lelln = llellve = Y 110°@llze@)-

la|<N

Similarly, we can equip Z(£2) with the metric

[e.e]

~_lle =9l
do(o) (e, ¥) = Z 2 :
= T+l —vlx

However, this topology has the disadvantage of not being complete.

EXAMPLE 2.8.3. Take n =1 and Q = R. Let ¢ € Z(R) with supp (¢) C [0,1] and ¢ > 0
in (0,1). Define

Yn() = 6z = 1)+ 568(z =2+ + o —m).

Note that {¢,} is a Cauchy sequence in (Z(R),dgw)), but the limit lim,, . ¥m(x) does not
have compact support.

We usually equip 2(€2) by another (locally convex) topology 7 in which Cauchy sequences
do converge. The fact the topology 7 is not metrizable is only a minor inconvenience. The
following fact can be found in [Rud91, Chapter 6] (see also [Mit18, Appendix 14.1] as well
as Theorem 3.6.2 in Mikko Salo’s lecture note):

THEOREM 2.8.4. There exists a topology T on P()) which is a vector space topology (i.e.
addition and scalar multiplication are continuous operations) and has the following properties:
(1) A sequence {p;} in 2() converges if and only if {p;} C Dk for some fized compact
set K C Q and {¢;} converges in P,
(2) 2(2) is a complete topological space (i.e. any Cauchy sequence, or net, in ()
converges).

We now introduce the usual operations on the space Z(£2), which can be proved similar
to the case of Schwartz functions:

PROPOSITION 2.8.5. Let Q0 C R™ be an open set, and we consider the topological space
(2(Q0), 1), where T is the topology given in Theorem 2.8.4. If f € C*(Q), then the following
operations are continuous maps from (2(Q), ) into (2(2),7):

(1) Conjugation. ¢ — p,

(2) Derivative. ¢ — 0%,

(3) Multiplication. ¢ — fo.
If Q = R™, then additionally the following operations are continuous from (Z(R™), 1) into
(Z2(R"), 7):

(1) Reflection. ¢ — ¢ with o(x) = ¢(—x),

(2) Translation. ¢ — 7,,¢ with T,,p(z) = p(xr — 0),

The following theorem is a special case of [Rud91, Chapter 6] (see also [Mit18, Appen-
dix 14.6] as well as Theorem 3.6.3 in Mikko Salo’s lecture note):


http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
http://users.jyu.fi/~salomi/lecturenotes/FA_distributions.pdf
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THEOREM 2.8.6. Let T be a linear map from (2(Q),7) into (C,|-|). The following
statements are equivalent:

(1) T is continuous (with respect to the topology T given in Theorem 2.8.4),
(2) lim;_,oo T'(¢;) = 0 whenever ¢; — 0 in (2(Q), 1),
(3) T\, is conlinuous for each compact subset K in Q wit respect to the metric dg
given in (2.8.1).
Here and after, we do not explicit state the topology T of the space of test function 2(2).
The following definition suggested by Theorem 2.8.6:

DEFINITION 2.8.7 (Distributions). The set of continuous linear functionals on Z(Q) is
denoted by 2'(Q2) and its elements are called distributions on €.

The following fact can be proved using similar ideas as in Lemma 2.4.2:

LEMMA 2.8.8. If T € 2'(Q), then for any compact set K C Q there exist C' > 0 and
N >0 (depending on K ) such that

(2.8.2) T() < C D N0l Jor all p € Dy
la| <N

DEFINITION 2.8.9. If there is a fixed N such that (2.8.2) is satisfies for any K (i.e. N is
independent of K), then such distribution 7" is said to be of order < N, and if N is the least
such integer then T is said to be of order N.

EXAMPLE 2.8.10. Each element f € L{ .(Q) can be identify with 7, € 2'(Q) defined by

loc

Ti(p) = | f(x)p(z)dz,

Rn
by using Theorem 2.8.6 with the estimate

Ty(0)] < /K @)@ de < [l e /K f(@)|de for all ¢ € Z.

In particular, any continuous function gives rise to a distribution.

EXAMPLE 2.8.11 (Measures). Let p be either a complex Borel measure on €2, or a Borel
positive measure on ) that is locally finite (i.e. satisfies |u|(K) < oo for every compact
K c Q). Consider the linear mapping 7}, : 2(Q2) — C defined by

T.(p) = / o(x)du(z) for all p € 2(Q) = CX(NQ).
Q
It is easy to see that

Tu(@)] < [l (K)ol zoex)  for all o € D,

where the positive Borel measure || is the total variation of . Therefore from Theorem 2.8.6
we know that 7), € 2'(Q2) and it is of order 0.

Conversely, if T € 2'(R") has order 0, using [Mit18, Proposition 2.16|, in particular 7'
determines a (necessarily unique) measure p. Precisely, the statement reads:

"For complex measures, the measure can take on complex values, infinite values are not allowed. In
contrast, infinite values are allowed for positive measures. In particular, a finite positive measure is a special
case of a complex measures.
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THEOREM 2.8.12. Let T € 2'(Y) has order 0. Then the distribution T extends uniquely
to linear map T,, : C%(Q) — C that is locally bounded in the following sense: for each compact
set K C Q) there exists Cx > 0 such that

I Tu(#)] < Ciligllrew)  for all o € C(Q).
In addition, the functional T, satisfies the following properties:

(1) Let {K;};en be a compact exhaustion® of Q, that is, a sequence of compact subsets
of 1 satisfying K; C int (K1) and Q = U2, K. Then there exists a sequence of
complex reqular Borel measures p; on K; such that
(a) wu;j(E) = w(E) for every £ € N, every Borel set E C int (K;) and every j >,
(b) for each j € N one has

A@:/wwjﬁmM%C%DWMWN@C&-
K .

J
(2) There exist two Radon measures iy, ja, taking Borel sets from Q into [0, 00], such
that

R(T,(p)) = / wduy — / ©duy  for all real-valued @ € CO(Q).
Q Q
Furthermore, a similar conclusion is valid for I(T,(¢)).

Hence we can identify Radon measures with distributions of order 0.

ExXAMPLE 2.8.13 (Continuous embedding). Clearly, .#”(R") is a subset of 2'(R™). We
now want to show the topology are compatible, that is, we want to show that .#/(R") is
continuously embedded in Z'(R"): We want to show if 7" € .”/(R") and ¢; — 0 in Z(R"),
then T'(p;) — 0. Using Theorem 2.8.4, there exists a compact set K C R™ such that
supp (¢;) C K for all j and 0%p; — 0 uniformly on K for any multi-index «. It is easy to
see that

Jim [[{z)¥ 0%l o) = 0 for any N and a,

showing that ¢; — 0 in “(R"). Since 7' € ¥/(R"), then T(p;) — 0. Together with
Theorem 2.7.11, we have the following continuous embedding:

&'(R") c S (R") Cc Z'(R™).

In particular, the distribution derivative in Proposition 2.4.10 is a special case of the
following definition:

DEFINITION 2.8.14. For any T' € 2'(Q), the distribution derivative 0°T € 2'() of T is
defined by
(0°T)(p) == (—=1)T(5%p) for all p € 2(Q).

REMARK 2.8.15. Despite some authors also called it the weak derivative, remember not
to be confused with Definition 1.1.1. We again refer to Remark 2.4.11.

PROPOSITION 2.8.16. Z(R") is dense in . (R™). Consequently, from Example 2.8.13, we
know that
u,v € S (R") withu=v in 2’ (R") = u=vin ' (R").
8For example, if we define K; :=Q\ ({ = | |z| >m }uU Userma Bi/m(2)), then {K;};en is a compact
exhaustion of .
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PROOF. Fixing any ¢ € Z(R™). We choose p € C2°(R") such that p =1 for |z| < 1 and
set

pj(x) = p(z/j)p(x) where j € N.
Then there are constants Cy such that
Z [ — ¥jlas < Cn Z sup |2%0° p(z)].
|al<N,IBI<N lal<N, gl 17127

Since ¢ € .#(R™), then the right-hand-side converges to 0 as j — oc. O

Since 0% : () — 2(Q) is continuous (Proposition 2.8.5), then using Theorem 2.8.6 we
know that 0*T is continuous (with respect to the topology 7 given in Theorem 2.8.4), that
is,

0°T € 2'(Q) for any multi-index «,

showing that Definition 2.8.14 is well-defined for all multi-index «. In other words, any

distribution has well defined derivatives of any order even if it arises from a function which
is not differentiable in the classical sense (as well as in the sense of Definition 1.1.1).

EXERCISE 2.8.17. Prove that for every ¢ € R one has
(7l = —ce " H(z) + ceH(—z) in Z'(R).
EXERCISE 2.8.18. Let f : R — R be defined by
_Jzlnjz| -2z for z #0,
fl2) = {0 for x = 0.
Prove that f is a continuous function and compute its distributional derivative (of order 1)
I
EXERCISE 2.8.19. Let n =1 and T =37, 0/0; € Z'(R), that is,

for all ¢ € Z(R).
j=1

Show that T does not have finite order.

An immediate consequence of the definition is that this map is also sequentially continu-
ous:

THEOREM 2.8.20 (Theorem 2.1.1 in [FJ98]). If {T}} be a sequence of distributions in
2'(Q) converges to T in 2'(Q2). For each multi-index o, one has

0°T; — 0°T in 9'(Q).
PrROOF. It follows from the Theorem 2.8.6 and Definition 2.8.14 that as j — oo,
lim 9°Tj(¢) = (—1)* lim T;(9%¢) = (—1)*IT(8¢) = 8°T(9)
j—00 j—o00
for all p € 2(Q2) = C(Q). O

The final operation on distributions that we wish to introduce here is multiplication by
functions. This is easy to define since if f € C°°(Q2) then f7T is a well-defined distribution if

(fT)(p) :==T(fp) forall p € 2(Q)=CF(Q).

We summarize that we have done in the following proposition:
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PROPOSITION 2.8.21. If f € C*°(Q)), then the following operations are well-defined maps
from 2'(Q) into 2'(Q):
1) Reflection. T(p) = T(@) with $(x) = p(—x),
2) Conjugation. T(p) = T(p),
3) Translation. (1,,T)() = T(T_s,p) with T_z,0(x) = @(x + x0),
4) Distributional derivative. (0°T)(p) = (=1)MT(0%p),
(5) Multiplication. (fT)(¢) =T(fp).

(
(
(
(

To study the local behavior of distributions we introduce the following concepts similar
to Definition 2.7.1:

DEFINITION 2.8.22. For any open set V' C 2, the distribution T' € 2'(Q) is said to vanish
on V, written T'=0in V, if

T(p)=0 forall p e 2(V)=Cx(V).
Two distributions 77 and T3 are said to be equal in V' if T7 — T, vanish in V.

It is an important fact that if the local behavior of a distribution is known at each point,
then the distribution is uniquely determined globally. The proof uses a partition of unity.

THEOREM 2.8.23. Let {€;} be an open cover of Q and let {T;} be a family of distributions
such that T; € 2'(SY;), and suppose that for any §;, Q; with Q; N Q; # 0, one has

T, =T; onNEQ;.
Then there is a unique T € 2'(Q) for which T =T, on each ;.

PROOF. Let {1;} be the partition of unity subordinate to {£2;} as in Remark 2.7.3 (The-
orem 2.7.2). We see that ¢; € C*(£);), 0 < 1; < 1, such that any compact set K C €2 has a
neighborhood U where only finite many 1; are not identically zero, and

> wi(z) =1 forallzeU.

Accordingly, we define the distribution 7" by
T(p) = S Tig) for all ¢ € 2() = C=(9).

Then we can easily verify that 7' = T; in €); by testing ¢ € P with compact subset K C ;.
Using similar ideas, the uniqueness also follows. 0

2.9. Convolution of functions

DEFINITION 2.9.1. The convolution of two measurable functions f,g : R — C is the
function f % g : R™ — C given by

(fxg)@)= | flyglz—y)dy
R
provided that the integral exists almost everywhere.

REMARK 2.9.2. A change of variable gives that f x g = g * f. Moreover, we also see that

(29.1)  (fxg)(z)= . fWglr —y)dy = . fWaly —z)dy = . fW)(79)(y) dy.
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We denote”

n th ists C' > 0 such that
pOIy R :{ f Rn—)@ ere exists Suc a }’

|f(x)] < C{z)N for a.e. x € R"

(R") :={ f € Lpoy(R™) | f is continuous },

COO(R”) ={ feC'R") | (x)Nf e L*R") foral N eN },
CER™) = { f:R" = C|0°f € Cou(R") for all [a <k },

CERY = { fRY = C [ 0°f € Cpory(R") for all [a] <k }.

p

We will first prove the following theorem to ensure the well-definedness of convolution:

THEOREM 2.9.3. The convolution is a mapping

) Ligo(R") x CE(R") — C*(R"),

) C7(R™) x CE(R™) — CTHH(R™),

) CI(R™) x CK(R"™) — CItkE(R"),

) poly( ) x Ck (Rn> - Cffoly( n)

5) C2,, (R") x CE(R™) — CI50(R™),
(6) CL(R"™) x CL(R™) — CLH(R™).

In addition, we have

(2.9.2) OP(f % g) = (0“f) % (0°g)  whenever |a| < j and |B| < k.
We choose j =0 in (1) and (4).

(1
(2
(3
(4
(

We need the following auxiliary lemma to prove Theorem 2.9.3:
LEMMA 2.9.4. Given any positive integer N and a compact set K C R"”, we have
(2.9.3) (x —y)N <C@)N forallyc K

for some constant C = Cx n > 0. Consequently, if ()N f € L>®(R"), then there exists a
constant C = Cg n > 0 such that

sup sup [(z)" f(z +y)| = sup sup [(z — y)" f(2)| < O @)™ [l oo (rn).
yeK zeR™ yeK reR®

PROOF. Note that there exists R = R(K) > 0 such that K C Br(0). We first consider
the case when N = 2m to be an even integer. The expression

o=y =0+]r—y)" = (O +|2[) + (=22 -y + [y[*)"
may be expanded using binomial theorem into

(—y)’™ =3 (J) (1+ |2]?)™ (=22 -y + |y[*)’.
=0
The condition |y| < R implies that | — 2z -y + |y|*| < Cr(z). We thus have the estimate
(2.9.4) (x —y)* < C{z)* forally € K.

If N=2m+1is an odd integer, we write
2mt1 2mt1
(2.9.5) (x—y)*™" ' = ((z —y)*™) > < (Clz)*™) > < C'{2)*™' forally € K.

9Some authors denote LO(€2) = L(Q) be the set of measurable functions f : Q — C with |f(x)| < oo for
a.e. x € (.
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Combining (2.9.4) and (2.9.5), we conclude (2.9.3). O
With Lemma 2.9.4 at hand, we are now ready to prove Theorem 2.9.3.

PROOF OF THEOREM 2.9.3 (1). Let f € L. _(R") and g € C¥(R"). For each fixed z €
R™, using (2.9.1) we know that

(f xg)(z) :/ - f (W) (729)(y) dy is well-defined.

On the other hand, for each h € R\ {0}, we see that

(f*g)(Hhe;L-) —(fx9)(=) _ Rnf(y)g(w—erhe;L-) —g(z—y)

We see that there exists a compact set K such that

) supp (g(x—-+h6j) —g(x - -)) cK

h
|h|<1

(2.9.6)

Y.

In addition, for each |h| < 1, using Taylor’s theorem (in this particular case, simply the mean
value theorem), we have

g(x —y+he;) —glz —y) 89(

(2.9.7) Y = o, r —y+0e;) for some 0] < 1.
Since % is uniformly bounded, then we can apply Lebesgue dominated convergence theorem
on (2.9.6) to obtain
o(f * g) g
2.9.8 ——(z) = — .
(298) 52w = (g )@

Iterating this argument gives that
0°(fxg)=f*(8"g) forall 8] <k
and f x g € C*(R"). O
PROOF OF THEOREM 2.9.3 (2). The same argument as in (1) shows that
O*(fxg)=(0f)*g forall |o| <7,
and we also conclude (2.9.2). O

PROOF OF THEOREM 2.9.3 (3). Differentiability follows from (2), and the support con-
dition follows from the inclusion

closed

supp (f * g) C supp (f) h supp (g) -
—_— Y=

compact compact

This fact can be shown by noting that: if x ¢ supp (f) + supp (g), then
y € supp (f) = = —y & supp (9),
and then (f % g)(x) = 0 by the definition of convolution, i.e. x ¢ supp (f * g). O

EXERCISE 2.9.5. Show that if A C R" is compact and B C R" is closed, then A+ B is a
closed set in R".
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PROOF OF THEOREM 2.9.3 (4). Let f € Lyoy(R") and g € C%(R"). Then (:)"Vf €
LY(R™) for some large enough N, and for any fixed z € R", by using (2.9.1) we have

(f * g)(x)] < . |Fw)glz =)l dy < 1N Flloen 1Y gl Lo @y,

which shows that f % g is well-defined. On the other hand, if |h| < 1, using (2.9.7) we have

uniformly bounded by Lemma 2.9.4
7\

€L (R™) P
(z —y+ hej) —g(z — (y)N == 99 (z —y + Oe;) for some |0| < 1.

———
1w)? ; D < T [ 32

Then we can apply Lebesgue dominated convergence theorem on (2.9.6) to obtain (2.9.8).
Similar to (1), it follows that f x g € C*(R™).

To show f xg € Cgoly(R”), using an iterative argument, it is suffice to show f x g €
Cpoly (R™). We see that

(@)™ (f * g)(2)| =

@ [ =t o
(& —y)™

< [ = U =R et dy

S €O s sup i

Since
(x—y)?=1+]z—y> <1+2(|z + [y[*) <21+ |[z[*) (1 + |y]*) = 2(z)*(y)?,

then we see that

N 2\ ¥
T —y T —y N
SUP%:< <2>2> =27,
zyern (1)V (y) zyern (2)2(y)
thus [(z) "N (f * g)(z)| < Cn||{-)™" f|| 21 &), which conclude our result. O
PROOF OF THEOREM 2.9.3 (5). This follows similarly as in (4). O

PROOF OF THEOREM 2.9.3 (6). By (5), it is enough to show that f*g € C(R"™) when-
ever f,g € Co(R™). The binomial expansion (1.1.1) gives

(z—y+y)° Z

i=1
for some constants ¢; and some multi-indices a; and ;, so we have

2%(f % ) ()] < / dy

(z—y+y)* fy)g(x—y)

n

< Z el [ [P f ) (@ — ) g(x — y)| dy

Rn”

(2.9.9) <Z|Cz(sup 2% g (2 )/ 1P £(2)] d.

z€R?

This implies that (x)"(f*g)(z) is a bounded function for any N € N, so the claim follows. [J
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THEOREM 2.9.6. The convolution is a separately continuous map'°
(1) 2(R") x 2(R") = 2(R"),
(2) £(R") x Z(R") = &(R"),
(3) L (R") x L(R") — Z(R").
PROOF. Theorem 2.9.3 immediately gives that the ranges in (1)—(3) are correct. It re-
mains to show continuity.
If fe &R™) and ¢ € Pk, then for any compact subset Ky C R™ we have

sup [0°(f * 9)(@)| = sup |(f % 0°9)(x)] < sup/ (& — 9)(@) ()| dy

z€Ko zeKo e Ko
< KNl oo ey 19% 6l Lo 0),
where K, := Ky — K is compact. Taking ¢ = ¢, with ¢, — 0 in Pk, we conclude the
mapping
(2.9.10) e IR~ frpe R
is continuous by using Theorem 2.8.6.
Similarly, for each fixed ¢ € Z(R™), we can obtain the estimate

sup [0%(f * @) (@) < [K[[]0% f| oe reny el L= (x0)

zeKy
Taking f = fr with fr — 0in &(R™), we conclude the mapping
(2.9.11) feER") — f*xpe &R

is continuous. Then we conclude (1) and (2) by (2.9.10) and (2.9.11).
Using (2.9.9), we know that

oup [2°(f #.9)(2) Z (s g ) [ sl
TER” 2ER™
Note that p is a continuous semi-norm on 5” (R™). This implies that

[f * glas = sup [z (f % 0°g)(x)| < p(0°g)

and we see that g — p(0°g) is also a continuous semi-norm on .(R"™). Then we conclude
(3) from Lemma 2.2.5. O

2.10. Tensor products

Before we define convolution between distributions, we first introduce some concept of
tensor products. Given any functions f, g, the tensor product f ® g is defined by

(f®9)(z,y) = f(x)g(y).

If Ty € 2'() (resp. T, € 2'(€)y)) is the corresponding distribution of f (resp. g), then we
define

(Ty & T,)(¢) = / J@aela)drdy forall g € (@ x )

10This means that convolution satisfies the followings:

(1) for each fixed 1, the mapping ¢ +— ¢ * ¢ is continuous,
(2) for each ¢, the mapping v — ¢ x4 is continuous.
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If one take p(z,y) = (v1 ® p2)(z,y) = v1(x)p2(y), here one obtains the identity

(Tr @ Ty) (1 @ p2) = Ty (1) Tg(02).
The above ideas are in fact rigorous by the following facts (here we list them without proof):

PROPOSITION 2.10.1 (Corollaries 4.1.1 and 4.1.2 in [FJ98]). Let U,V C R™ be open sets.
Let T € 2'(U) and let ¢ € &(U x V) satisfy the following hypothesis: each point y' € V' has
a neighborhood Q(y') C V' such that supp (¢(-,y)) is contained in a compact set K = K(y')
ify € QUy'). Then

v(y) :==T(¢(-,y)) is in C=(V)
and for each multi-index a we have
dyv(y) = T(9,¢(-,y))-

In particular, we have the following special cases:

(1) IfT € 2'(U) and p € (U x V), then v e 2(V).
(2) IfT € &(U) and p € E(U x V), thenv € &(V).

The following theorem ensures the well-definedness of the tensor product of distributions:

THEOREM 2.10.2 (Theorem 4.3.2 in [FJ98|). Let U,V C R"™ be open sets. Given any
T e P'U) and S € P'(V). There ezists a unique element T @ S € P'(U x V), called the
tensor product of T and S, written as T X S, such that

(T ® S)(p1 @ p2) = T(p1)S(p2) for all o € Z(U) and py € 2(V).

PROPOSITION 2.10.3 (Theorem 4.3.3 in [FJ98|). Let U,V C R" be open sets. Given any
Te2U),Se2'(V)and p € 2(U x V).

(1) The tensor product T ® S € 2'(U x V') given in Theorem 2.10.2 can be computed as

(T'® S5)(p) = S),  wvly) =T(p(y)) for eachy €V,
(T®8S)(p)=T(u), ulx)=>S(e(x,-)) for each x € U,

forall p € (U x V).
(2) supp (T’ ® S) = supp (T") x supp ().
(3) Given any multi-indices o and [, we have

00T ® S) = 8T © LS.

(4) The tensor product is a separately continuous bilinear form on 2'(U) x 2'(V).

2.11. Convolution of distributions

We now want to define convolution between distributions as a special case of tensor prod-
ucts. The usual requirement that the operation should extend the convolution of functions
leads to the following: Given any functions f, g, and let T}, T, € Z'(R"™) be the corresponding
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distributions, we see that

T T)e) = [ Fra@eeds= [ [ g - e v

:/n Rnf(w)g(y)w(x+y) dy dx

/ F(@)gw)de, v)dydz where §(z,y) = p(z +y)
n ]Rn
= (T @ T,) (o).
This suggests us to define the convolution of T, S € Z'(R") by
(2.11.1) (T*S)(p):=(T®S)(p) foral p e 2(R").

However, the convolution (2.11.1) may not exist, since in general ¢ € &(R"™ x R") does not
have compact support even when ¢ € C°(R"™). A simply way to overcome this difficulty is
to assume that one of the distributions 7" and S has compact support.

Let us assume 7' € &' (R") and S € Z'(R"). We choose p € C(R™) such that p =1 on a
neighborhood of supp (T'), see Theorem 2.7.11. For each ¢ € Z(R"), we define the function

(2.11.2) Op(@,y) = p(x)p(z +y).
Note that
(z,y) € supp (¢,)
= x € supp (p) and z 4y € supp (p)
<= x €supp (p) and y € supp (p) — z,

which implies that

supp (¢,) = supp (p) x (supp (¢) — supp (p)),
which shows that ¢, € Z(R" x R"). Plugging (2.11.2) in Proposition 2.10.3, we conclude the
followings:

THEOREM 2.11.1. The convolution 1s a separately continuous map
(1) "(R") x Z7'(R") — Z'(R"),
(2) &"(R") x &"(R") = &"(R"),
Here, the convolution is given by
(2.11.3) (T*8)(p) = (T'®S)(p,) forallype2R")

with (2.11.2) and the cut-off function p € C°(R") satisfies p = 1 on a neighborhood of
supp (T). In particular, (2.11.3) is independent'’ of choices of the cut-off function p. More-
over, it can be computed as follows:

(T'*8)(¢) =S(), vly) =T(P,(-,y)) for each y € R",
(T 5)(p) = T(w), u(x) = S(@y(z,")) for each z € R,
for all p € 2(R™), and consequently T .S = S+ T. In addition, we have
(2.11.4) supp (T * S) C supp (T) +supp (S) for all T € &'(R") and S € Z'(R™).

Hif 6 € C >°(R™) be another cut-off function satisfies o = 1 on a neighborhood of supp (7T'), for each
x near supp (T ) we see that (p(x) — o(x))¢(x +y) = 0, and we have (T @ S)(¢,) = (T ® S)(¢,) for all
¢ € IR
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REMARK 2.11.2. Since supp (7T') is compact and supp (S) is closed, then supp (7)) +
supp () is closed, see Exercise 2.9.5.

PROOF. It is remain to show that 2.11.4. To show this, it is suffice to show that if
x ¢ supp (T) + supp (S), then = ¢ supp (T * S), equivalently, we want to show

T+S=0 in R"\ (supp (7)) + supp (59)).
From Proposition 2.10.3(2), we know that
(2,y) € supp (T ® S) = x+y € supp (T) + supp (9).

Hence we know that if the support of ¢ € Z(R") is disjoint from supp (T') + supp (5), then
the support of (z,y) — ¢(z + y) is disjoint from

supp (T ® S) = supp (') x supp (5),

which conclude our theorem. O

Having defined the convolution on fairly general spaces, we now summarize some of the
properties of the operation.

PROPOSITION 2.11.3. Let T € &'(R") and S € Z'(R").

(1) Associativity. If R € &' (R™), then Rx (S+«T)=(R+«S)*T =(R«T) xS.

(2) Translation. If x € R™, then 7,(T % S) = (1,T) * S =T * (7,.5).

(3) Differentiation. If o is a multi-indez, then 0*(T % S) = (0°T) % S =T * (0“9).

(4) Translation. If x € R", then S %6, = 0, xS = 7,.5. In particular when x = 0, the
Dirac measure 0y is an identity element for the convolution operation.

These are all easily derived from Theorem 2.11.1, the proofs are left to the reader.

EXERCISE 2.11.4. Let Ty = 1, Ty = §) and T3 = H (the Heaviside unit step function)
and show that

(Ty * Ty) * Ty and (T3 = T3) * 11 both exist but they are not identical.

This exercise emphasizes that in general the associativity property in Proposition 2.11.3(1)
only valid with the condition on supports.

The next theorem asserts that it is separately sequentially continuous with an appropriate
definition of convergence in & (R™).

PROPOSITION 2.11.5. The following are true:
(1) Suppose that T' € &'(R™) and the sequence {S;};en converges to S in Z'(R™). Then

(2.11.5) TxS;—TxS 1in2'(R").

(2) Suppose that T € Z'(R™) and the sequence {S;}jen converges to S in Z'(R") such
that supp (S;) C K for some compact set K independent of j. Then (2.11.5) holds.

PrOOF. (1). If T € &'(R") and ¢ € C°(R"), then v(y) = T(p(- +y)) is in Z(R") by
Proposition 2.10.1. Hence it follows from Theorem 2.11.1 that

lim (T 5,)(¢) = lim ,(v) = S(v) = (T S)() for all o € PR,
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(ii). Choosing a cut-off function p € C2°(R") with p = 1 in a neighborhood of K. Then one
has, again from Theorem 2.11.1 that

lim (7" S;) () = lim S;(pv) = S(pv) = (T x S)(p) for all p € Z(R"),
j—o0 Jj—o0
which conclude our proposition. [l

2.12. Convolution between distributions and functions

So far, we discussed the convolution between functions, and between distributions. We
now consider the convolution between a function and a distribution. Fixing any ¢ € C2°(R™).
Using Theorem 2.11.1 (with 7" =T},), we have

(Tp x S)(p) = S(v),  v(y) = Tp(ds(:,y)) for each y € R,

with ¢,(x,y) = o(x)p(xz + y), where 0 € C(R™) is a cut-off function with ¢ = 1 on a
neighborhood of supp (p). We compute that

o) = Ty = [ pla)ple+y)do
= / p(x — y)p(x) do.

Using Proposition 2.10.1 we know that the function w(z) := S(p(z — -)) is actually is in C'*,
therefore we see that

(T, % S)(p) = / w(z)p(z)dr for all p € CF(R").

n

Therefore, in this case, we can just simply identify the distribution 7}, * S with the function
w. In this case, we just simply denote w = p* S, i.e. we define

(2.12.1) (pxS)(z):=S(p(x —-)) forall xeR",
and we reach the following theorem:
THEOREM 2.12.1. If S € Z'(R") and p € Z(R"), then px S € C(R").

REMARK 2.12.2. In particular when S € &’(R"™), then p* S € C®(R"™). See also Theo-
rem 2.14.6.

From (2.12.1), we also see that (p*S)~(z) = (p*S)(—x) = S(p(—z —-)) = S(p(x + )).
Let T € &'(R™). Using Proposition 2.11.1, we conclude the following corollary:

COROLLARY 2.12.3. Let T € &'(R") and S € Z'(R") (or T € Z'(R") and S € &'(R")),
then T((p* S)~) = (T * S)(p) for all p € Z(R™).

We can now prove one of the principal results in the theory of distributions.
THEOREM 2.12.4 (Density). C°(R") is dense in 2'(R™).

PROOF. Given any T € 2'(R"). Fixing any ¢ € C>°(R") with [ (z)dz = 1, and set
Yi(x) = j™p(jx) for j =1,2,---. Then ¢p; — dp in Z'(R™) and supp (¢;) C supp (¢) for all
j. Hence by Proposition 2.11.5 we have

YixT = 0oxT =T in 2'(R").
By Theorem 2.12.1, we know that ¢; x T € C=(R").
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Now take xy € C°(R"™) such that y =1 in B;(0), and put
T; .= x(z/j); T forall j € N.
If ¢ € C°(R"), then

Ti(p) := / (¢; * T)(z)p(x)dr for all sufficiently large j.

Hence we know that T; € C2°(R™) and converges to 7" in Z'(R"™), which conclude the proof
of the theorem. O

The above theorem can be extended to distributions defined on an open set {2 C R™:
THEOREM 2.12.5 (Density). If Q@ C R™ is an open set, then C°(R2) is dense in Z'(Q).

PROOF. Let T' € 2'(2). Let {K;}jen be a compact exhaustion of Q (described in The-
orem 2.8.12). For each j, choosing p; € C2°(f2) such that p; = 1 in a neighborhood of Kj.
We define

T; := p;T forall j €N,
Then T; € &'(2) extends trivially to an element of &’(R"). Now choose 1 such that

Y e CF(R"), supp (¥) C Bi(0), Y(z)dr = 1.

Rﬂ/
Using (2.11.4) (in Theorem 2.11.1), one can find a decreasing sequence of positive real num-
bers {¢;}, which tending to zero, such that, if one sets

Vi(x) = €;"p(x/e;) forall j €N,

then 1); * T; are supported in {2 and hence are elements of C'°(€2).
It is remains to prove ¢; * T; — T in 2'(Q2). For each ¢ € C°(Q), there is a k such that

T(p) = Ti(y) and
(v Tj)(p) = Tj(u;) = Ti(uy) = (5 % Ti)(p) forall j >k,
with u;(z) = [g. ¥;(y)e(x+y) dy. By observing that ¢; — ¢ in 2'(R") and that supp (¢;) C
supp (¢) for all 7 € N, using Proposition 2.11.5 we have
i (4 = T5) () = lim (5 + Ti) () = (0% Tir) () = Ti() = T(¢),
and our theorem follows by arbitrariness of ¢ € C2°(Q2). O

2.13. Convolution of distributions with non-compact supports

So far, it has been assumed that at least one of the distributions 7" and S has compact
support, in order to ensure the existence of the convolution 7" S. This can be replaced by a
condition that is more symmetric, and extends to any finite set of distributions. Let m € Z>,
and let

(2.13.1) p(a® 2ty =W g2 for all 29 € R™

DEFINITION 2.13.1. Let Ay,--- , A,, be closed sets in R™. We shall say that the restriction
of the mapping p (as in (2.13.1)) to Ay X - - - X A,, is proper if, for any 6 > 0, thereisa ¢’ > 0
such that
il oo arsnan) <0 = sup |z <"

jzlv"' ;1M
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EXAMPLE 2.13.2. Suppose that A; C { x eR” ‘ x; >0foralli=1,---,n }, then the
restriction of the mapping x4 (as in (2.13.1)) to A; x --- x A, is proper by choosing §' = 6.

LEMMA 2.13.3. Let Ay, -+, Ay, be closed subsets of R™. Let € > 0 and let A = A;+ B.(0)
be the closed neighborhood of A;. Assume that the restriction of the mapping pu (as in (2.13.1))
to Ay X -+ X Ay, is proper, then its restriction to A7 X --- X A$ is also proper.

PROOF. Fixing any § > 0. Suppose that 2U) € Aj and |z 4. .. (M| < §. There exist
25 € A; such that [29) — z{| < ¢, hence
) 4+ 4+ 20 < 65+ me.

Since the restriction of the mapping p (as in (2.13.1)) to Ay x --- X A,, is proper, then there
exists 0” > 0 such that

sup |z$’| < 8" which implies  sup [zW)| <8 =8+,

Jj=1,,m j=1,,m
which conclude the lemma. 0
Let Ty,--+,T,, € 2'(R"), and suppose that the restriction of the mapping p (as in

(2.13.1)) to supp (T1) X - - - x supp (T;,,) is proper. Let € > 0, ¢ € Z(R") and we set ¢ := popu.
By Lemma 2.13.3, the set

K (p) = ((Supp (T1))" x -+ x (supp (Tm))6> N supp (@)

is compact'?. One can choose cut-off functions p1, - - , p,, € C>°(R") such that

is supported in K. (¢) and p = 1 in a neighborhood of Ky(¢). Then we we conclude the
following theorem:

THEOREM 2.13.4 (Convolution of distributions with non-compact supports). Let
Ty, -, T € Z'(R™). If restriction of the mapping u (as in (2.13.1)) to supp (T1) X -+ X
supp (T},,) is proper, then we can define the convolution Ty * - -+ x T,, € Z'(R™) by

(2.13.2) (Ty*--*Tp)(p) = (T Q- T,)(pp) for all p € D(R™).
The definition (2.13.2) is independent of the choice of cul-off functions p.

REMARK 2.13.5. It reduces to the convolution as defined in Theorem 2.11.1 when m = 2
and 77 € &'(R™).

We also list some basic properties of this extended version of convolution as a proposition.

PROPOSITION 2.13.6. Let Ty,--- ,T,, € 2'(R") and assume that the restriction of the
mapping p (as in (2.13.1)) to supp (T1) X - -+ x supp (T},,) is proper.

(1) Associativity. If I and J are disjoint subsets of {1,--- ,m} whose union is
{1,---,m}, then

Ty -5 Ty = (5T5)ier * (%1}) jes-
(2) Support. supp (Ty *---xT,,) Csupp (T1) + -+ + supp (Trn)-

2Clearly K. (o) is closed. We only need to show boundedness, which is easily follows from Lemma 2.13.3.
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2.14. Structure of 7'(R"), &'(R") and .¥'(R")

We first prove structure theorem for 2'(R") using some fundamental solutions of some
differential operators. Recall that the distributional derivative of the Heaviside function H
(given in (1.1.6)) is simply the Dirac measure, i.e.

0H = 6.

In other words, H is the fundamental solution of the differential operator 0. This can easily
be extended as follows: By observing that

ry =xH(x) forall x € R,

we see that Or, = H, and so

" x’rl =4, foreach ke N
(k—1)1) ‘

Using Proposition 2.10.3(iii), if one sets

k-1 k-1
Ey(z) = (21); (n)y for all z € R",

(k=1

then one has
(2.14.1) (01 00)FE, =8y in Z2'(R"),
that is, Ej, is the fundamental solution of the differential operator (9; - --9,)*. This can be

used to prove the following so-called structure theorem:

THEOREM 2.14.1 (Structure of 2'(R™) restricted on a bounded open set). Let Q be a
bounded open set in R™. For each T € 2'(R"), then
Tlg=0f

for some multi-index « and for some function f € C°(R™). Precisely,
T(p) = (—1) f(2)0%p(x)dx  for all p € C°().
Rn

REMARK 2.14.2. From the proof, we see that we can choose supp (f) in any pre-assigned
neighborhood of ). In particular, the structure theorem also can be formulated in terms of
Laplacian, see Theorem 2.15.6.

PROOF. Since €2 is bounded, one can find a cut-off function ¢ € C'°(R™) such that ¢ =1
in 2. It is easy to see that
T =4T inQQ.
Since ¢T has compact support, then it is of finite order N (as in Definition 2.8.9). From
(2.14.1) (as well as Proposition 2.10.3(iii)), one has

YT = (01 0,) "2 Enyo * (YT).

So the theorem will follow, with multi-index o = (N +2,--- | N + 2), once it is shown that
the distribution Ey o * (¢T") can be identify with a continuous function.

Let p € C°(R™) be such that p > 0, supp (p) C B1(0) and [,, p(z)dx = 1. We set
pe(x) := € "p(x/e) where e > 0. We define

fe = (Ens2 % (WT)) % p. € C*(R") (by Theorem 2.12.1).
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Since YT and p, have compact support, the associative law applies (Proposition 2.11.3), and
gives
Je=YT % (Enya * pe).
Using Theorem 2.12.1, we see that Ey o x p. € C°(R™), and therefore we compute that
Je(x) =T (Enge * p)(z — ).
In fact, we can show that
(2.14.2) Enio*pe — Enyo  in CN(R")

as € — 0 (left as exercise). Since ¥T is of order N using Definition 2.8.9 we see that for each
compact set K

i || fe = Eno # (OT) | 1) = 0,
thus the mapping
f(x) := Enyox (YT)(2) = ¢T(Eno(x —-)) is in C°(R").

On the other hand, using Proposition 2.11.5, f, also converges to En o * (¢T) in Z'(R")
as € — 0. It is clear that the limits are the same in this case, therefore we conclude our
proof. O

EXERCISE 2.14.3. Prove (2.14.2). |Hint: Note that p. is simply the standard mollifier.
See the proof of properties of mollifier.|

COROLLARY 2.14.4 (Structure of &'(R")). Let T € &'(R™). Then there is an integer
m >0 and a set of continuous functions { fo}aj<m such that

T=Y 0
|| <m

Precisely,

T(p) = Z (—1)l - fa(2)0%(x)dx  for all p € &R™).

loe|<m

PROOF. Let 0 € C°(R") be such that ¢ = 1 in a neighborhood of supp (T"). Let Q be
an open set such that supp (7') C €. Using Theorem 2.14.1, we see that

T(p) = (=) [ f(x)0%p(x)dz  for all v € 2(Q).
R
Therefore, we see that
T(p) = T(op) = (1) @ (ep)@)dr forall p € SR),

and thus we obtain our corollary. O

We now prove structure theorem for .#/(R™) using Fourier transform, which stated that
every tempered distribution is a distributional derivative of finite order of some continuous
function of polynomial growth, can be found in [FJ98, Theorem 8.3.1]:

THEOREM 2.14.5 (Structure of .#'(R")). Any T € /'(R™) can be written as T = 0*f
for some multi-index o and some polynomially bounded continuous function f.
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PrOOF. It is suffice to prove this for 77 € (R") supported in =

{ xER”\xl >0,---,2,>0 },i.e.
T(p)=0 forall p € .#(R") with supp (¢) C R™\ Q.

For this implies the result when T € Z'(R") is supported in
{ xR ‘ o1 > =0, OpTy > —0 } where 6 > 0 and each o; = =1 (using
Lemma 2.13.3), and, via a partition of unity, any tempered distribution can be writ-
ten as the sum of 2" distributions of this type.

Let T € .'(R") with supp (T") C €. Using Lemma 2.4.2 (as well as Remark 2.2.2), we
have
(2.14.3) T(p)| <C Y supa®|DPp(z)| forall p € .7 (R).

jal,[81<N “EF"
Choosing ¢ = p¢ with ¢ € C°(R") and p € C*(R") with p = 1 on a neighborhood of
supp (T'), we have (with different constant C)
T(¢) <C > sup(a*|D’¢(x)[) for all ¢ € C(R™),
Q

jal 181N €
since |z = 2* when x € Q.
We define Ey, o € 2'(R™) by
(%1)1+1 T (xn)-&]\—”rl
(N +1)l)n
Since restriction of the mapping p (as in (2.13.1)) to supp (En42) X supp (T') is proper (see

Example 2.13.2), using Theorem 2.13.4 the convolution Ey,o x T is well-defined. From
Theorem 2.11.1 and (2.14.1), we see that

supp (Enya #T) CQ, T = (01 0,) " (Enpa x T).

As in the proof of Theorem 2.14.1, we can show that f := Enx 0% T € C°(R") and that from
(2.14.3) we have

E]\H_Q(.CE) =

F@ISC Y st (o — ), — 1))
lal,|gI<N €9

with C" = C/((N+1)1)". An elementary computation, which is left to the reader, shows that
|f(x)| < C"(x)™ with M = 2N + 1 for some constant C” > 0, so the theorem is proved. [

With the structure theorem at hand, we can prove the following result (see e.g. Theo-
rem 3.9.1 of Mikko Salo’s lecture note).

THEOREM 2.14.6. If T' € /' (R") and f € L (R"), then f T € Oy(R"™).

PrROOF. By Theorem 2.14.5, there is a multi-index « and a polynomially bounded con-
tinuous function h such that T'= 0%h, i.e.

T(o) = (~1) / W) (y) dy.

n

From (2.12.1), we have

(F D)) = T(F o =) = (-0 [ b fla =) dy = () (b4 07 ) (o)
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which implies our desired result. O

2.15. Fourier transform on £’(R") and the convolution theorem

With the structure theorem at hand, we are now able to show that the Fourier transform
of compactly supported distribution (see Definition 2.5.1 and Theorem 2.7.11) is actually a
smooth function in R™. This illustrates the fact that the Fourier transform exchanges decay
properties with smoothness.

THEOREM 2.15.1. Let T € &'(R™), then its Fourier transform T = Tp with F(£) =
T(p(-,€)) with ¢(z,€) = e and F € O(R™).

REMARK 2.15.2. Accordingly, we can identify 7' with the function T(é) =T(¢(+,&)) for
all £ € R™.

PROOF OF THEOREM 2.15.1. Let T € &'(R"™). Using the structure theorem in Corol-
lary 2.14.4, we can write T = Z|Oé|§N 0%fo with f, € C.(R™). Then by properties of the

Fourier transform on Schwartz functions (Proposition 2.3.3), for each ¢ € .(R"), we have

T(o)=T() = Y (-1 | fal2)0"¢(x)dz

lal<N e
D) / fa(@)(()°9)" (@) da
- / <§N(i§)“fa(§))so(€) de.

On the other hand, we compute that

> (i) ful©) = DY () [ fal&)eTEdE

la|<N la|<N R
= > (=) a0 e ¢ dg
la|<N
(2.15.1) =T(¢(-,€)) with ¢(z,&) = e ™%,

which gives

Since f € L*>®(R™), from (2.15.1) we immediately see that the mapping & — T'(¢4(-,€)) is in
O (R™). O

COROLLARY 2.15.3. If T, S € &'(R"), then (T % S) (&) = T(€)S(¢).

PROOF. Using Theorem 2.11.1, we know that 7% S € &'(R™). Using Theorem 2.15.1,
one can computes follows:

(T + S)NE) = (T * S)(¢(-,€))  with ¢(x,€) = e
= (T ®S)(Y(-,€)) with ¢(z,y,&) = e = g(x, )¢ (y, £)
=T(¢(-,)S(6(-,€)) = T(£)S(&),
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which conclude our corollary. 0

We now establish a version of the convolution theorem for distributions.

THEOREM 2.15.4. Let T € /'(R™) and S € &' (R"). Then TxS € . (R") and (T'xS)" =
TS.

REMARK 2.15.5. Recall that .Z : L*(R™) — L*(R") is an isomorphism. Using Schwartz’s
inequality, it is easy to show that uxv € L*(R") C ./(R") is well-defined. Using Parseval’s
identity, we also can easily see that 40 € L'(R") C ./(R"). In particular, the convolution
theorem also holds for L?(R") functions: (u * v)" = 40 for all u,v € L*(R"), see e.g. [FJ98,
Theorem 9.2.3|.

PROOF OF THEOREM 2.15.4. By Proposition 2.4.10 and Theorem 2.15.1, one has TS e
Z'(R"). Since F : S'(R") — (R") is bijective (Theorem 2.5.4), there exists a unique

R € '(R") such that R = T'S. To compute R, we use the Fourier inversion formula in
Theorem 2.5.4 and Corollary 2.15.3: For each ¢ € Z(R™), we have

R(p) 2" (2m) " R($) = (2m) " (E9)0) = 21" [ TOS(©0()de
= n) " [ TS <0 (€ ds = n) TS +0)) “EVT((S0)) = (T S)(@),

where the last equality follows from Corollary 2.12.3. Hence we conclude our result from
density result in Proposition 2.8.16. U

We now also able to obtain a structure theorem for 2’(R") in terms of Laplacian (see
also Theorem 2.14.1).

THEOREM 2.15.6 (Structure of 2'(R™)). If T € Z'(R™) and Q) is a bounded open set in
R™. Then there is a f € C°(R™) and an integer N > 0 such that

T=01-AYf inQ.

PROOF. One can choose a cut-off function p € C°(R™) such that p = 1 in Q. As
pT € &' (R™), Theorem 2.15.1 implies that (pT)" € O\(R™). Hence one can find an integer
N such that

(&) = (L+ € (pT)"(€) isin L'(R").

Since L'(R") C &'(R") and .Z : '(R") — %'(R") is bijective continuous, then there exists
f € C°(R"™) such that such that f = g, which gives

(P& = (L +[E*)Nf(§) forall ¢ €R™.
Hence the Fourier inversion formula implies that
pT = (1 —A)Nf in R,

which conclude our theorem. O
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2.16. Convolution of pv tempered distributions and Fourier transform

As a preamble, observe that f(z) := I for  # 0 is not L{(R), therefore we cannot

associate it by a distribution using the way described in Example 2.8.10. Nonetheless, it is
possible to associate to this function a certain using some tricks.

EXAMPLE 2.16.1. We consider the mapping T': Z2(R) — C by

(2.16.1) T(p) := lim @dx for all p € Z(R).

O Sjafze T

We first prove the mapping (2.16.1) is well-defined. Given any ¢ € Z(R) and suppose R > 0
is such that supp (¢) C (=R, R). Fixing any 0 < € < R, and since < is odd, we have

/ @ dr = / M dr = / —go(x) —¢(0) dz.
lz[>e ¥ e<lzg|<r T e<|z|<R X

Since ’¢(x);¢(0)‘ < supy,<g ¢’ (y)| for each x € R\{0}, using Lebesgue dominated convergence
theorem, we see that
— (0 — (0
(2.16.2) T(p) = lim plo) =20 4 / pl@) =20 ;.
=0+ Je<lzl<r x |z|<R x

this shows that (2.16.1) is well-defined, and it can expressed in terms of (2.16.2). From the
estimate
T(p)| < 2R sup |¢'(x)| forall ¢ € Z((—R, R)),
|z|<R
we know that T is a distribution in R of order at most one (see Definition 2.8.9).
We are left with showing that 7" does not have order (. Consider the compact set K =
[0,1] and for each j € N, let p; € 2((0,1)) be such that 0 < ¢; < 1 and ¢; = 1 on

[+45: 1 — 535). Then we see that

1 -1

T(pj) = / 215 dzx > / " ldx =In(j+1) foreachjeN.
0 T ]% xz

Since sup,c |¢j(x)] < 1 and lim; o In(j + 1) = oo, this shows that there is no constant

C > 0 with the property that

IT(¢)| < Csup |p(z)| forall p € D,
zeK

this proves that T does not have order 0. Therefore we conclude that 7" of order 1. We usually
denote such distribution 17" by pv %, called the principal value % Many authors (including
myself) just simply ignore the notation “pv”, so we need to understand it by ourselves when

reading these literature.

EXERCISE 2.16.2. Show that pv i € &' (R).

z
EXERCISE 2.16.3. Prove that (In|z])’ = pvi in &/(R).
To generalize the above idea to general case, we need to introduce some definition.

DEFINITION 2.16.4. A nonempty open set O in R" is called a cone-like region if tx € O
whenever z € O and t > 0. Given a cone-like region O C R”, call a function f : O — C
positive homogeneous of degree k € R if f(tz) = t* f(x) for every t > 0 and every z € O.
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From Example 2.16.1, we see that the key features of the function ©(z) := < (z € R\ {0})
that allowed us to define pv% as a tempered distribution on the real line as follows:
© € C°(R\ {0}), positive homogeneous of degree — 1, ©O(1)+O(—1) = 0.

EXERCISE 2.16.5. Prove that if f € C°(R"\{0}) is positive homogeneous of degree k € R,
then

|f(x)| < ||f||Loo($n71)|$|k for all x € R™\ {0}.
We now want to generalize the above to R™:

PROPOSITION 2.16.6. Let n > 2 be an integer, and let © be a function satisfying
(2.16.3) 0 € C°(R™\ {0}), positive homogeneous of degree — n, / Ods = 0.
Sn—1
Then the linear map pv © : (R") — C given by

(2.16.4) (pvO)(p) := lim O(x)p(x)dx  for all p € S (R")

E%0+ ‘$|Z€

is well-defined and is in ' (R"). In addition,

(2.16.5) pv O e

R™\{0} R™\{0}

PROOF. Writing & = z/|z| for all x # 0. Fixing any radially symmetric function ¢ €
CH(R™) with ¢(0) =1 and

|Y(z)| < Clez|~ for all z with |z| > R
for some ¢y > 0, R > 0 and C > 0. For each € > 0, we compute

O(x)Y(x) dx:/||> O@)

in 2/(R"\ {0}).

Y(x)dx (positive homogeneous of degree — n)

|z|>€ |x’n

Then we have
Lolx) —e(0)Y(x
| ewstdr= [ 6w - 0@y ir= [ omAl =20,
lz|>e lz|>e |z|>e 2]
Since © € C°(R™ \ {0}) and using Exercise 2.16.5, then we see that for each ¢ € .(R™) we
know that

the mapping = — O(z)(¢(z) — ¢(0)¢(z)) = @(i)(p(x) —¢(0)u() is in L*(R™).

[

i

Therefore using Lebesgue dominated convergence theorem, we have
(2.16.6) (pvO)(p) = O(z)(¢(z) — ¢(0)ih(z)) dz  for all p € S (R™).
Rn
Using mean value theorem on the mapping t — @(tx)y((1 — t)x), it is easy to see that

(pvO)(p)| <C  sup  [¢lags,
o] <1,181<1
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where []o5 is given by (2.2.2), which shows that pv© € .#/(R"). The fact (2.16.5) is
immediate from definitions. 0

REMARK 2.16.7 (Representation). By choosing ¢» = 1 in B;(0) in (2.16.6), we can com-
pute that

(2.16.7) (pvO)(p) = e O(z)(p(z) — ¢(0)) dz + " O(z)p(x)dx for all p € L (R™).

ExAMPLE 2.16.8. If j € {1,--,n}, the function © defined by ©(z) := 7 for each
xz € R™\ {0} satisfies (2.16.3). By Proposition 2.16.6, we have

pv |T—J+1 belongs to .#'(R™).
€T n

From (2.16.7), we have the representation

(pV ,QJTCTjH><<P) = lim /|:c . T;ﬁfl) dx
_/ z(p(x) — ¢(0)) dx+/ z0(x) .
|z[<1

||t w>1 2|7

From Proposition 2.16.6, we know that whenever © is a function satisfying the conditions
in (2.16.3), the principal value distribution pv©® € .%/(R™). As such, its Fourier transform
makes sense in .7/ (R"), see Theorem 2.5.4. Here we do not walk through all the computations
(they are quite technical). The results following are adopted from [Mit18, Section 4.5].

Before discussing the Fourier transform of principal value distributions pv ©, we first
introduce an auxiliary function as in [Mit18, Therem 4.74|:

PROPOSITION 2.16.9 (Theorem 4.74 in [Mit18|). Let © be a function satisfying the con-
ditions in (2.16.3). Then the function given by the formula

me(§) == — - O(w) log(i€ - w) ds(w)  for all £ € R™\ {0},

where we choose the branch
log(i€ - w) =In|€ - w| + igsgn (€ w),

18 well-defined, positive homogeneous of degree zero, satisfies

/ m®(€) dS(g) = 07 HmGHLoo(R") S CnH@HLoo(Sn—l)
Sn—1

with positive constant C,, = ”'S;F” + [sna | In |é—| w||ds(w) and F 1 (me) = mg-1pve. In

addition, if © € C*(R™\ {0}) for some k € Z>oU {oo}, then

€ C*(R"\ {0}).

me

R™\{0}

If © is an even function in the sense of O(w) = O(—w) for allw € 8", then Mg = myg.

In fact, the function introduce above is the Fourier transform of the tempered distribution
pv O:
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THEOREM 2.16.10 (Theorem 4.74 in [Mit18]). Let © be a function satisfying the con-
ditions in (2.16.3). Then the Fourier transform of the tempered distribution pv © is given

by
F(pvO) =meg in ' (R").

The next proposition elaborates on the manner in which principal value tempered distri-
butions convoluted with Schwartz functions.

PROPOSITION 2.16.11. Let © be a function satisfies (2.16.3). Then for each ¢ € ./ (R")
one has that (pv ©) x ¢ € O\ (R™) and

((pvO) * ¢)(z) = lim O(x —y)e(y)dy for all x € R™.

E%O+ \x—y\Ze

PROOF. Using Proposition 2.16.6, we know that pv@® € .#/(R"). For each ¢ € S (R"),
using Theorem 2.14.6, we know that (pv©)xp € O\ (R™). On the other hand, using (2.12.1),
we compute that

((pv0) (o) = (v O) il =) = Jip [ O(e)ple —2)

which conclude our proposition. O

Let ©1, O, be functions satisfy (2.16.3). From Proposition 2.16.6, we know that pv©, €
S'(R™) for j = 1,2. We now want to define the convolution (pv ©1)x*(pv 0O3). Let v € Z(R"™)
such that 1 = 1 near the origin, and we write

Too = (¢PV @1) * (¢pV @2),

Tor := (¢pv @1) * ((1 —Y)pv @2),

Ty := ((1 —Y)pv @1) * (T/JPV @2),

Ty = ((1 —Y)pv @1) * ((1 —Y)pv @2).

Note that Tyo, Ty and Tiy are well-defined by Theorem 2.11.1. In particular, T; is well-
defined as follows:

EXERCISE 2.16.12. Show that 777 = fi* fo where f; = (1—4)0, for j = 1,2, are functions
belonging in L*(R").

From this, we know that wy; is well-defined in .”/(R™). Then it is make sense to define
(pV @1) * (pV @2) = TOO =+ TOl + TlO + T11 in y’(R”)

Since .7 : '(R") — .#/(R™) is a continuous bijective, then .7 ((pv©;) x (pvO,)) is make
sense. In fact, we have

F ((pv©1) * (pv O3)) = me,me, in '(R"),
see [Mit18, Section 4.6] for more details.

EXAMPLE 2.16.13. For each j € {1,--- ,n}, the operators R; defined by

Rp = (pv \x:ﬁjﬂ) xp for all p € L(R"),
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are called the Riesz transform in R™. In the particular case when n = 1 the corresponding
operator

1
Hyp = (pv—) xp forall p € S(R),
x

is called the Hilbert transform. These operators play a fundamental role in harmonic analysis.
In particular, the Riesz transform can be extended as a bounded linear operator

R; : L*(R") — L2(R")

and its Fourier transform is given by

A 5] - : / n : ﬂ-%
; in . with C), = — ,
(Rip)"(€) = Cafit o) in 7/ (R") with €, =~y

see e.g. [Mitl8, Theorem 4.97| for more details. By writing V = (0y,---,0,) and R =
(Ry,- -+, Ry), since (9;0)"(&) = i&p(€) and (—Ap)" (&) = |£]2(€), therefore sometimes we
simply denote

N

Rj = Cody(~A)
or in vector notation R = C,V(—A)"z.

EXERCISE 2.16.14. Show that if f € C°(R" \ {0}) is positive homogeneous of degree
k € R with & > —n, then f € .'(R").

EXERCISE 2.16.15. Prove that if f € CO(R™\{0}) is positive homogeneous of degree 1 —n
on R"\ {0} and g € C%(S™!), then
/ g(z/R)f(z) ds(x) = / g(2)f(x) ds(x) for all R > 0.
OBR(0) Sn—1
Based on the above observation, we discusses a basic class of principal value tempered
distributions.

EXAMPLE 2.16.16. Let ® € C*(R™\ {0}) be positive homogeneous of degree 1 —n (and
hence & € ' (R™) by Exercise 2.16.14). Then for each j € {1,---,n} it follows that
0;® satisfies the conditions in (2.16.3). Consequently, pv (0;®) is a well-defined tempered
distribution by Proposition 2.16.6. The condition [, ,(9;®)(z)ds(%) = 0 can be verified
using Exercise 2.16.15 as follows:

Oz/m 2<I>(:E)%ds(x)—/|x _ @)z ds() :/K'm'daj@(x) dx

/ /S (@) (i) ds(@) dr = (/Q%dr)/sn (000
_ 1n2[5n_1(aj¢)(j) ds(2).

Principal value tempered distributions often arise when differentiating certain types of
functions exhibiting a point singularity. Specifically, we have the following theorem:

THEOREM 2.16.17. Let ® € C*(R™\ {0}) be a function that is positive homogeneous of
degree 1 —n. Then for each j € {1,--- ,n}, the distributional derivative 0;® satisfies

(2.16.8) 0,0 — ( /S ), ds(:z))ao +pv(9;®) in (R,

s(2)
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PROOF. Using Proposition 2.8.16, it is suffice to prove (2.16.8) in 2'(R™). Fixing any
© € 2(R"), we see that

@0)) =~ [ dwopdr =l [ o)) ds

6—)0+ |CE|26

=lm | 00t lim | 80 ds(@)
= (pv (9;2))(¢) + lim - %@(@ﬂ@ ds(z).

For each € > 0, using Exercise 2.16.15 we see that

| e )

€

= /|: ﬁ@(ﬁ) (¢(z) — ¢(0)) ds(z) +gp(0)/|: &(I)(x) ds(x)

€ €

€

x; o n .
= [ R o) — o) sty +00) [ 0 dsta)
xXT|=e€ Sn—l
In addition, using Exercise 2.16.5 we may estimate

[ ) (o) o) st

€

1

|x’nfl

ds(x)

= e[Vl oo @) || Lo (sn-1)| 8™ = 0 as € — 0.

< e[Vl ey 1Bl e sty /

|z|=e

Combining the equations above, we conclude our theorem. 0
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